SE=ises

i

Instruments

UniLabIl™

Volume One
User’s Guide

Copyright 1984, 1985, 1986 by Orion Instruments, Redwood City, California
All rights reserved

EPROM Ciamp

(Down to connect
EPROM in Socket)
ORION Universal Development Laboratory
Instruments
EPROM PROGRAMMER p—
1IN

Ui
8/16 BIT IN-CIRCUIT EMULATOR 48 CHANNEL BUS STATE ANALYZER PM16 -

2716

3532

I IR T P Rl U]]I[]]I]]]\[IEI
Z \
. / \
Power On Power Emulator (ROM) Analyzer Cable Oscilloscope Analyzer EPHOM Socket Programming
LED On/Off Cable Connector Connector Trigger Output Trigger LED (Also used for Voltage for
Switch (C8-24/28, C16-24/28, (CA-AB,...) {Strobes when trigger " Stimulus Cable) EPROM Bumer
C8-D, or C16-D) is met. Can be connected Personality (Vpp)
1o oscilloscope to Module for EPROM
synchronize scope with
analyzer trigger.)
EPROM PROGRAMMER

Uipl.

PMI6

2ne

24-pin Package is -

shifted all the way
to the left

24 Pin EPROM in Programming Socket

EPROM PROGRAMMER

Wiot

26 Pin EPROM in Programming Socket

TO HOST

COMPUTER’S
RS232 PORT
INTERNAL SERIAL 110
cPU POWER
SUPPLY
EMULATOR ANALYZER
PPI
T D0-D15
AO-A14
A15-A19
’ A
T NN
RESET CLIP

CPU DIP CLIP

CONNECTIONS TO
TARGET BOARD

Table of Contents
UniLab Manual

VOLUME ONE
UnilLab User's Guide

Introduction: Getting Acquainted
The UniLab Method page i
Guide to the Documentation page v

Chapter One: Installing The UniLab

Equipment Requirements

Processor-specific Configuration

16-bit systems

Basic Information
«+. The UnilLab ... Installation ... Test and Verification
«++ Additional Documentation ... TroubleShooting

—_ e
1
W

Additional Useful Information 1-9
Quick Step-by-Step 1-11
Detailed Step-by-Step 1-12

1. Connect the UnilLab to Host 1-13

Find the Correct Port ... Serial Port of AT ...
Connect the Cable ... Turn on the Unilab ...
Trouble?

2. Software Installation 1-16
Install the Software

On a Hard Disk
On a Floppy Disk Drive

Reboot Your Computer ... Start Up the UniLab
Program ... Trouble?

3. Connect the UnilLab to Target Board 1-25
Overview ... All About Cables ... Plug Cables into
UniLab Connectors ... Take PROM off Board ... Put
ROM Cable in ROM Socket ... Put
DIP Clip onto Microprocessor ... Attach Proper
Wires to the Clip ... Attach the RES- Wire ...
Attach the NMI- Wire

4, Verify Your Setup 1-40
Load a Sample Program ... Run the Progra ...
Compare to Sample Trace ... Play Around a Little
... How to Exit

Where to Go Next 1-46
Special Note: Operator and Macro Systems 1-47
Special Note: Display Characteristic Commands 1-48
Special Note: Alter the Baud Rate 1-48

UniLab is a trademark of Orion Instruments, Inc.

March 25, 1987 Page i ~-- Contents --

Chapter Two: Guided Demonstration
Overview

Call Up the Software

Get the MAIN Menu

The Five-Step Demonstration:

1. Enable Memory

2. Load a Program

3. Examine the Program
Memory Dump
Disassemble from Memory

4. Use the Analyzer
Get the First Cycles of Program
Sample the Bus
Set a Trigger on an Address

5. Use the DEBUG
Set a Breakpoint to Establish Debug Control
Set Another Breakpoint .
Single Step Through Code

End note

Chapter Three: Operation
Overview
1. Menu Mode
2. Command Mode
The Command Language
The Simple Trigger
Specify Delay Cycles
Describe the Trigger Bus Cycle
The Filter Trigger
The Qualifier Trigger
Trigger Specification Example
3. DOS and the UniLab
Command Tail
Batch Files
Command Tail and Macros
4, Special Features
Key Diagrams
The Use of Special Keys
Trace Display
Screen History
Windows
Disassembly from memory
Change window size
Split screens and help displays
Command line editor
View textfiles

-- Contents -- Page ii

NN N
!
> w -

NN
|
~N oy

3-2

3-4
3-20
3-21
3-23
3-26
3-27
3-30
3-34
3-40
3-46
3-46
3-47
3-49
3-50
3-54
3-59
3-59
3-61
3-63
3-66
3-68
3-69
3-70
3-76

Chapter Four:

1.

Overview

Program Performance Analyzer (PPA)

of the (PPA)

Basics

How
The
PPA
PPA
The
The

to choose the correct mode
three PPA modes

command summary

menu

interactive screen

PPA and symbolic labels

Saving histograms
Loading the Target Program into Memory
Basics

Run the program from emulation memory
Run the program from ROM on target board

Address-Domain Analyzer
Simple procedure
Address-domain histogram (AHIST)
Function keys
Example of AHIST test
Time-Domain Analyzer
Simple procedure
Time-domain histogram (THIST)
A useful analogy
Function keys
Example of THIST test

Multiple-

Pass Address-Domain Analyzer

Simple procedure
Multiple-pass histogram (MHIST)
Another analogy
Funtion keys
Troubleshooting
Specifications

Chapter Five:
Command Reference
Alphabetical Lookup

1.
2.
3.
4.
5.
6.

Reminders

On-Line Help

Function Keys

Mode Panels
Help Screens: By Category

INDEX for volume one

March 25, 1987 Page iii

4238

-- Contents --

VOLUME TWO
UniLab Reference Manual

The information in this
reference manual applies to both
the UniLab and the Optilab.

Chapter Six: The Unilab in Detail
Overview 6-2

.1.

Interpret the Trace Display 6-5
What Each Column Means...Sample Traces Examined...
Move through Trace...Symbolic Names...Toggle
Display Options (Mode Panels)

Ready and Load Memory 6-29
Emulation ROM...Get Ready...Load Programs ...Save
Programs

Examine and Alter Memory 643

Memory Access Complications...Display and
Modify...Disassemble...Assembler...Block Memory
Commands...Byte and Word Commands

Set up a Trigger (generate a trace) 6-64
Simple Example...NORMx Words...RESETting...General
Purpose Triggers...Real-life Examples...Limits...
Filtered Traces...Qualifying Events...Refine
Triggers

Save Information 6-93
Screen History...Log File...Printer...Trace Save...
Symbol Table...Binary Image...SAVE-SYS

Breakpoints and the DEBUG 6-103
Establish Debug Control...Breakpoint Display...
Within the DEBUG...Exit from DEBUG...Disable

Program EPROMs 6-130
Personality Modules...Plugging In...Checksums
eesVerify...16-bit...Standalone...Macros

Generate Stimuli 6-140
How to do it

Special Keys 6-145
Function Keys...Cursor Keys

Mode Panels-- easy toggling of options 6-152

Analyzer panel...Display panel...Log panel

~-- Contents -- Page iv

Chapter Seven: UniLab Command Reference

The Categories 7-2
The Commands 7-9
Chapter Eight: TroubleShooting
Overview ' 8-2
How to use this chapter 8-2
Solutions in Depth:
Addresses do not appear on bus in proper sequence, or
occasionally are incorrect. « o« v o o o o o« o o o o . 8-4
Incorrect data fetched from memory. . « « o o o o o o . . 8-6
Emulation memory does not respond to fetches. 8-7
Program hangs up on "Initializing UnilLab. . . " message . . 8-8

Program hangs on initialization some of the time, not all of

the time . o & & & ¢ i i i i e e e e e e e e e e e . 8-10
RS-232 error message: '"RS-232 Error #XX" . v o v o o . . 8211
STARTUP does not work -- never get to see trace, or see

trace filled with garbage . « v v v ¢ v v o o o o . 8-13
Error message: "NO ANALYZER CLOCK" v v & v v v o o o o . . 8-15
Program runs, UniLab traces, but reads bad data from stack 8-17
Program runs and UniLab traces, but does not disassemble

PIOPEIrLY & & ¢ 4 4 4 4 & o o o o o o o o o o o o .. 8-18
Program runs, Unilab traces properly, but cannot set a

breakpoint-- gives a "DEBUG Control not established"

MESSAGE o o o o o o o = o o o o o o« « o s s o « o o 8-19
Program runs, UniLab traces properly, but cannot set a

breakpoint-- hangs with red light next to Analyzer

socket on until key pressed. . ¢« v 4 4 ¢ o o o o o . 8-20
NMI does not work-- get "DEBUG control not established" . 8-21
Bad input buffers on the UniLab, as if an IC has been blown 8-22
Screen flickers when you use PgUp key to look at line

NISEOry « v v v v it e e e e e e e e e e e e e e 8§-23
APPENDICES:

Appendix A: UniLab Command and Feature List

Appendix B: Sources of Cross Assemblers

Appendix C: Cabling Chart

Appendix D: Custom Cables

Appendix E: UniLab II Specifications

Appendix F: Writing Macros

Appendix G: EPROMs and EEPROMs Supported

Appendix H: Microprocessor Support

Appendix I: System Messages

Appendix J: «BIN files and .TRC files

INDEX for both volumes

March 25, 1987 Page v -- Contents --

Introduction:
Getting Acquainted

Contents
The UniLab Method page i
Guide to the Documentation page v

The UniLab Method

Welcome to a new world of development systems.

The UniLab IItm will change the way you develop software for
your microprocessor projects. The UnilLab does away with most of
the guesswork and frustration associated with hunting for bugs in
your code. ‘

What Is the UniLab?

The UniLab (Universal Development Laboratory) is a personal
microprocessor development system.

In one box, the UniLab includes all of the instruments
needed for the development of microprocessor-based products. It
transforms your personal computer into a complete workstation for
prototyping, testing, and debugging.

The UniLab monitors the address, data and control signals on
your microprocessor circuit board. This lets you see how the
system responds to your programmed instructions.

You use the UniLab to tell your processor what you want it
to do, and at the same time watch what it really does.

March 25, 1987 Page i ~- Introduction --

-- Method --
How the UniLab Works

The UniLab's emulation ROM feeds instructions to the
processor while the bus state analyzer watches the effect of
those instructions. When you use the UnilLab, you watch your
processor executing your code.

Your microprocessor stays in control of the board-- but the
UniLab is in control of your processor.

How You Work with the UniLab

You conduct a dialogue with the UniLab. The topic of
conversation is the system you are testing. You describe some
condition that appears on the bus, and the Unilab replies with a
display of the program execution. '

Non-Intrusive Analysis

The UniLab can watch your target board's bus without
interfering with your processor. Unlike other hardware test and
diagnostic systems, the UnilLab does not alter the flow of your
program. This means that your processor continues to run after
the UniLab has captured a trace of the program activity.

The Unilab can also stop your processor at a breakpoint, or
with a hardware interrupt signal.

A New Way to Solve Your Problems
The UniLab is a step ahead of traditional techniques.

Older methods work best when you know the cause of the
problem at the beginning. With those methods you could only look
at the program's execution by stopping at specific code
addresses. Since you usually don't start out knowing the cause
of your problem, the older methods required that you spend a lot
of time guessing.

With the Unilab, you describe the symptom of your bug. Then
you can watch what the program does both before and after the
symptom occurs. The symptom that you describe is called the
"trigger specification." For example, you might start out by
asking the UnilLab to show you what happened just before your
stack overflowed, or you might want to see each write into a
particular string variable.

-- Introduction -- Page ii

-- Method --

You start by asking general questions, and quickly zero in
as the UniLab helps you track down the specific problem.

If you are used to single-stepping, or setting multiple
breakpoints, you will appreciate the new, more powerful method of
observing program flow with the UnilLab's combination of emulator
and bus state analyzer,

Breakpoints and Single-stepping

The UniLab's unique approach to problem solving emphasizes
the actions of your processor. After all, what you really care
about is getting results, not the contents of Register DX at step
235.

But sometimes, to get the job done, you do need to know the
"internal state" of the processor. The UniLab's processor- :
specific DEBUG software lets you set breakpoints, look at and
alter both internal registers and target RAM, and single-step
through code,

To do this, the UniLab needs some of your target processor's
resources. Usually all the UniLab needs is a working stack and
one to four bytes of ROM. We call the required bytes of ROM "the
reserved area." This area can be moved with the command
=OVERLAY.

On many Disassembler/DEBUG packages the DEBUG needs to use a
software interrupt vector on the target processor.

Hardware Interrupt feature

The DEBUG software, in combination with the UniLab hardware,
provides an additional feature: immediate DEBUG control. The
UniLab can interrupt the target processor and perform any of the
DEBUG features at any time, without the need to set a breakpoint.

The Unilab system provides this feature by using an
additional target system resource: either a non-maskable
interrupt or the interrupt request. This feature can be easily
disabled if desired.

March 25, 1987 Page iii -- Introduction --

-- Method --
Simulating Inputs

You use the Stimulus Generator to simulate inputs to your
target board. You control the stimulus generator from the
keyboard, and eliminate the need for the usual input switches on
prototype boards.

Programming EPROMs and EEPROMs

When you have completed the design and testing of your
software, you use the UniLab's built-in EPROM programmer to burn
your code into an EPROM.

Automated production tester

Once you have a product ready to ship, you can use the
UniLab macro capability to write test macros. A test macro can
load routines into emulation memory, run them, and compare the
traces to known good traces that were saved earlier. The UniLab
can thus verify all the functions of your product.

From first prototype to final test
Since the Unilab runs properly when your target system has
bus shorts, it can even help diagnose hardware problems (see the

first several entries in the TroubleShooting Chapter).

So as you develop your product from the prototype phase to
the production floor, the UnilLab II will help you every step of
the way.

-- Introduction -- Page iv

Guide to the Documentation

Document conventions: special words

Orion's Emulation Moduletm

An Emulation Module is a small board that plugs into the
target system in place of the microprocessor. It makes the
connection between the UniLab and the target system quick and
easy.

Orion's MicroTargetstm

A MicroTarget is a minimally configured, expandable control
board that you can use to verify your setup and to develop your
software before your prototype hardware is ready.

Orion's DDBs
DDB refers to the Disassembler/DEBUG software packages that
support specific processors. .

DEBUG

DEBUG refers to the features of the DDB package that provide
breakpoint displays, hardware interrupt, and access to target RAM
and internal registers.

DEBUG control
You have DEBUG control when the processor is under the
control of the UniLab idle hardware.

Trigger spec

The trigger specification (trigger spec) tells the UniLab
when to freeze the trace buffer and send it to the host system
for display. The trace buffer contains a record of the bus
activity of your target system.

The minimal trigger spec describes only a set of bus cycles
(the trigger cycle). The trigger spec can be as narrow as a
single address, or so broad that every cycle matches. The
trigger spec usually includes a delay as well-- a count of how
many cycles to capture after the trigger cycle.

More advanced trigger specs produce filtered traces (for
example, a trace that contains only the write cycles), or can
include a sequence of qualifiers which must be seen before the
trigger cycle is sought.

Orion's PPA

The Program Performance Analyzertm (ppa) produces tables and
bar graphs of program activity. These displays help you debug
and optimize your software.

March 25, 1987 Page v -- Introduction --

-- Documentation --
Document conventions: typeface conventions

Commands always appear in UPPER CASE, BOLD FACE type. The
UniLab software accepts commands in any mixture of upper and
lower case.

The UniLab recognizes only hexadecimal numbers, unless you
use either D# or B# in front of the number, for decimal and
binary, respectively.

A description of a parameter is shown in lower case type
inside <pointy brackets». An example of a parameter is shown in
the same type as the command.

The names of function and cursor keys are shown in Bold Face
with initial capitals. For example: press function key nine (F9)
to start the target program and capture a trace, press the Home
key to see a trace display from the top. -

On-line documentation
The word HELP is the key to on-line help.

Type HELP by itself to see a screenful of information on all
the on-line help resources,

Type HELP followed by the name of a command to get the on-
line glossary entry. Chapter Seven of the Reference Manual is a
printed version of the information in the on-line glossary.

Printed documents

The User Manual and the associated Reference Manual are
general purpose documents. The features they describe apply to
every UniLab Disassembler/DEBUG (DDB) software package.

Your DDB software package is shipped with an additional
document, a Target Application Note which contains information on
package-specific features.

The Unilab Programmer's Guide, available from Orion, will be
of value mainly to experienced users who wish to write
sophisticated macros.

A growing list of Engineering Technical Notes (ETNs)
published by Orion's Applications Engineering Department can help
you get the most out of your UnilLab. Many of these notes deal
with microprocessor board design and the connection to the
UnilLab. Write to Orion to get the latest list.

-- Introduction -- Page vi

-- Documentation --
Altogether, the UniLab documentation provides assistance
from the installation of the software to the writing of automated
test macros.

Where to go for which information

Volume One: User Manual

The User Manual contains the information needed to install
and work with the UnilLab software.

To get started on installation, turn to Chapter One.

Chapter Two contains a guided demonstration of the UnilLab
capabilities on a Z80 target system. You should look through
this short chapter, after you have completed installation.
Unguided sample sessions in the Target Application Notes show the
same capabilities on other processors.

Chapter Three provides an exhaustive map of the menu systen,
a guide to the trigger specification commands, a description of
the use of command tail and batch files, and a thorough tutorial
on the special features.

Chapter Four describes the optional Program Performance
Analyzer.

Chapter Five describes the on-line help.

Volume Two: Reference Manual

Consult the Reference Manual for in-depth information on the
UniLab.

Chapter Six has detailed information on the Unilab software
commands and displays. Turn to this chapter as needed, after
consulting Chapter Three and the Target Application Note.

Chapter Seven is a printed version of the information in the
on-line glossary.

Chapter Eight is a guide to troubleshooting. Turn here for
help when you have problems with your target system or with the
UniLab.

The appendices contain useful information on DDBs, macros,
cross-assemblers and compilers, EPROMs and system messages.

March 25, 1987 Page vii -- Introduction --

-- Documentation --

Target Application Notes

These Notes are guides to the Unilab trace and DEBUG
features on each specific processor. A Target Application Note
is shipped with the DDB software. Each Note includes:

1)
2)
3)
4)

5)

6)

a list of the processors supported by that
package,

a diagram of the connection between the UniLab and
the target microprocessor(s),

the instruction set recognized by the llne -by-line
assembler,

a guide to the DEBUG capabilities and an overview
of the specific features of the disassembler/DEBUG
package,

a sample session which includes both trace and
breakpoint displays, and

a glossary of the DEBUG commands supported by that
DDB package.

ORION Programmer's Guide

A guide to macros and some of the internal words of the
UniLab. Includes sample macros and definitions of some of the
internal words available in the MACRO system. Can be ordered

from Orion.

This document includes:

file and editor commands,

direct access to the UniLab trace buffer,
UnilLab string package, and

examples of automated test routines.

Engineering Technical Notes

Short notes on microprocessor control board design issues

and solutions.

Write to Orion to get the latest list of notes or

to order a specific note.

-- Introduction -- Page viii

Chapter One:
Installing The UniLab

Contents
Equipment Requirements 1-2
Processor-specific Configuration 1-3
16-bit systems 1-3
Basic Information 1-4
The Unilab
Installation
Test and Verification
Additional Documentation
TroubleShooting
Additional Useful Information 1-9
Quick Step-by-Step 1-11
Detailed Step-by-Step 1-12
1. Connect the UnilLab to Host 1-13
Find the Correct Port ’
Serial Port of AT ’
Connect the Cable
Turn on the Unilab
Trouble?
2. Software Installation 1-16
Install the Software
On a Hard Disk
On a Floppy Disk Drive
Reboot Your Computer
Start Up the UniLab Program
Trouble?
3. Connect the Unilab to Target Board 1-25
Overview

All About Cables
Plug Cables into UniLab Connectors
Take PROM off Board
Put ROM Cable in ROM Socket
Put DIP Clip onto Microprocessor
Attach Proper Wires to the Clip
Attach the RES- Wire
Attach the NMI- Wire

4, Verify Your Setup 1-40
Load a Sample Program
Run the Program
Compare to Sample Trace
Play Around a Little
How to Exit

Where to Go Next 1-46
Special Note: Operator and Macro Systems 1-47
Special Note: Display Characteristic Commands 1-48
Special Note: Alter the Baud Rate 1-48

March 25, 1987 Page 1-1 -- Installation --

Equipment Requirements

All the discussions that follow assume that your host
computer is:

a PC, or XT, or AT compatible machine,

with at least 320K of RAM,

with a standard serial port,

running DOS version 2.0 or higher.

Unless you have this equipment, you will not be able to run the
UniLab software. If you know that your system meets these
requirements, skip to the next page.

Available RAM

During "boot up" most PC compatible machines tell you how
much RAM they have. If you have any doubts, you can usge the DOS
CHKDSK utility (CHecK DiSK). This utility was designed to
examine your disk-- but it also reports the status of your RAM; -
after it reports the status of your disk. To invoke it, type
CHKDSK at the DOS prompt.

If you do not have enough RAM to run the UniLab software,
you will need to purchase either additional RAM chips or a memory
expansion board for your computer.

Serial port

To connect to the UniLab, your computer must have a 25-pin

serial port connection, or, for ATs, a 9-pin connection and a

short 9-to-25 adapter cable.

Serial port boards are inexpensive and widely available.

DOS Version

Type VER at a DOS prompt (A> or B> or C>) to find out what
version you are using.

Your operating system will respond with a short message that
includes the version number, such as:

XXX Personal Computer DOS Version 3.10

If the version is lower than 2.0, you will not be able to run the
UniLab software until you get a more recent version of DOS. If
your operating system does not recognize the command VER, then
either you have a very old version of DOS, or you have some other
operating system.

-- Installation -- Page 1-2

Processor-specific Configuration

As part of the installation of your UniLab you will need to
connect the Orion hardware to your target system. Orion offers
a line of Personality Paks (PPAKs), which include all the
connections, equipment, accessories and software you will need.

Personality Paks

The Orion Personality Pak includes additional documentation,
which supplements the User's Manual.

In some cases, the PPAK includes installation information
which replaces the instructions in step three of the process
described in this chapter.

Some Personality Paks include Emulation Modulest®m and
MicroTargetst™™, An Emulation Module plugs into your target
board, in place of the microprocessor. It simplifies the task of
connecting the UniLab to your target system. -

Orion MicroTargets are expandable target boards, which allow
you to start running your code on known good hardware before your
own target system is running.

Consult your Orion Sales Representative for current product
availability and pricing.

16-bit Systems

If your target system has a 16-bit data bus, you follow the
installation procedure described in this chapter, but you must
use a 16-bit emulator cable, as illustrated on page 1-??. These
cables have two separate ROM plugs, one of which must be plugged
into an odd byte ROM socket and the other into an even byte ROM
socket.

Either the odd or the even byte can be the most significant

byte of the 16-bit word, depending upon whether your processor
follows the Intel or Motorola model of memory organization.

March 25, 1987 Page 1-3 -- Installation --

Basic Information...

.« s About the UnilLab Hardware and Software

Hardware controls

You control the UniLab with a program that runs on your
personal computer. The instrument itself has only two physical
switches--

the on/off switch on the front panel,
and a baud rate selector inside the instrument.

When you turn on the UniLab, the light above the switch goes
on. Then the Unilab is ready to accept an initialization command
from the host computer.

The instrument is shipped with the baud rate already set
properly. If you want to change the baud rate, see the Special
Note on baud rate at the end of this chapter.

-

Distribution diskette

All of your interactions with the UniLab will be done
through a program called ULxx.EXE, which runs on your host
computer under the DOS operating system. Your Disassembler/DEBUG
(DDB) software has already been installed as part of this file.
To distinguish among DDBs, each .EXE file has a distinctive name,
based on the processor name, such as UL48, UL88, etc,

The .VIR, .OVL files included on your distribution diskette
contain additional executable code. The .OPR files are necessary
to run an operator system, the .MCR files to run a macro system.
See the Special Note on Operator and Macro Systems at the end of
this chapter.

The UNILAB.SCR file contains some message text,

You need all of these files for the Unilab system to
operate. If you have more than one Disassembler/DEBUG package,
they can both reside on the same directory without any problem,
as long as they have the same release number (that is, 3.30 or
3.12).

Your distribution diskette also contains AUTOEXEC.BAT,
CONFIG.SYS and INSTALL.BAT files, which are described in section
two of the installation procedure, and .BIN and .TRC files,
described in appendix J.

Glossary diskette

A separate diskette contains the on-line glossary and it's
supporting files.

-- Installation -- Page 1-4

.« «About Installation

Quick instructions, for the experienced. . . .

If you can get the installation done with a minimum of
guidance, you will want to follow the Quick Step by Step.

And detailed instructions, to help you learn as you install

The Detailed Step by Step contains thorough instructions and
longer explanations.

The best of both worlds

The parallel organization of the two sets of instructions
allows you to dip into the detailed procedure while following the
quick procedure. Entries in the Quick Step by Step refer you -
to the appropriate pages in the Detailed writeup.

For example, most people will want to read the Detailed
description of how to connect the RES- wire to their target
board.

Overview of the installation process

You go through a four-step installation process the first
time you get the UnilLab ready for work:

1. Connect the UniLab to the serial port on your
computer.

2, Install the UniLab software.

3. Connect your UniLab to the target system.

4, Test and verify your connection

Once the UniLab has been connected and verified, you will
never need to go through this process again.

March 25, 1987 Page 1-5 -- Installation --

.« «About Test and Verification of Your Setup

Test procedure

After you have connected the UnilLab to your target board and
installed the software, you should verify the connection using
the simple test program included with your Disassembler/DEBUG
(DDB) software. The verification procedure confirms that you
have correctly connected the UniLab to a functional target board.

Load the test program into emulation memory with the command
LTARG. You should get a trace of that program, then use both
breakpoints (RB) and the hardware interrupt (NMI) to establish
DEBUG control.

For a complete guide to verification, turn to section four
of the Detailed installation. Below is an introduction to the
verification procedure. .

Introduction to verification

You can choose between two methods of verifying your trace
display. You can compare your trace with the printout which
appears in the separate Target Application Note included with
your DDB software. Or you can use a UnilLab command to compare
your trace with the one stored in a file on your distribution
diskette.

You might need to alter the LTARG program to reflect the
memory map of your target board-- especially the location of the
stack pointer. If you do so, your trace will be slightly
different from the standard one.

The breakpoint display you will compare with the printout in
the Orion documentation.

If both the trace compare and the breakpoint display are

accurate you can be certain that you have connected everything
properly, and that you have a working target board.

-

-~ Installation -- Page 1-6

<« «About Additional Documentation

Connection information

. With either a Personality Pak or an Emulation Module, you
receive specific connection instructions, which may replace some
of the information in this chapter.

You will find a connection diagram in the Target Application
Note for your processor. Appendix C is a table of the -
connections for all microprocessors,

If you need to build a customized cable, turn to Appendix D.

Information on UniLab software

For an brief introduction to the general capabilities of the
UnilLab, turn to the next chapter, Guided Demo, and to the command
reference card. -

For the authoritative guide to the processor specific
features of your DDB software, turn to your processor-specific
Target Application Note. That document also makes note of any
configuration commands that you must include in your target
program for the DEBUG features.

Chapter three, Operation, gives you an overview of the
UniLab's features. The chapter after that, Performance Analysis,
covers the tools for analyzing and optimizing your program.

As you use the UnilLab software, you will appreciate the on-
line help facilities. These are covered in the last chapter in
volume one, On-Line Help.

UniLab Reference Manual

Turn to volume two, the UniLab Reference Manual, for more
information. The Operations In Detail chapter thoroughly covers
the use of the features which were introduced in volume one.

The Command Reference chapter gives you a definition,
explanation and example for every UniLab command. The on-line
version of this information, available by typing
HELP <command name>, is updated more frequently than the printed
Reference Manual.

March 25, 1987 Page 1-7 -- Installation --

-«About TroubleShooting

Difficulties with UniLab software

The very first resource to turn to is the on-line help
facilities., Chapter Five covers the on-line help thoroughly.
Press F1 to get either the general help screen or a context
dependent help screen. Use HELP <command> to get the on-line
glossary entry for a particular command.

If you do not understand an error or status message, you
will want to consult Appendix I.

Trouble with target system
The TroubleShooting chapter in the Reference Manual starts

with a list of symptoms. The Solutions in Depth section, of that
chapter then helps you solve your problems.

~- Installation -- Page 1-8

Additional Useful Information

Who is hosting this party? Wwhat all the names mean

The UniLab receives all commands from your personal
computer-- the host. The UnilLab software resides on the host. A
little bit of code resides in the UnilLab's ROM. The UniLab
receives instructions from the host, and sends information to it,
over a serial port.

The UniLab, in turn, controls the target board. The target
board is the microprocessor control system that you are
developing-- or the one that Orion sent you as part of the
Personality Pak. 1In either case, the UniLab's emulation memory
contains the program that runs the target board.

.

How they all talk to one another: UniLab & host

The host talks to the UniLab through the RS-232 interface at
19,200 baud. We achieve this high speed by talking directly to
your serial communications chip.

The serial port is rated at only 9600 baud, the highest
speed you can achieve when using DOS calls for serial
communications. The higher speed used by the UniLab does not
harm your serial port in any way. If you wish to change the baud
rate, turn to the special note on baud rate at the end of this
chapter.

After the UniLab gets an instruction, it often performs
actions without needing to talk to the host again. When the
UniLab needs to send information back to the host it uses the
same RS-232 interface.

But the speed of most Unilab operations does not depend on
the speed of the serial interface. The rate of serial data
transfer will make you wait only when you load or save large
programs.

Serial port of AT
The UniLab plugs into a standard 25 pin serial port, not the
9 pin port of the AT. If you have an AT or AT compatible you

must put a 9 to 25 pin adapter on the serial port of your
computer.

March 25, 1987 Page 1-9 ~- Installation --

-- Useful Information --
How they all talk to one another: UniLab & target

The UniLab communicates with the target board through two
fifty-pin parallel connectors on the front of the UniLab, which
carry signals back and forth as sketched out below.

UniLab inputs

The bus state analyzer of the UniLab has 48 input bits.
The addresses take up to twenty bits, the data takes eight or
sixteen, and the control lines take another four. Between eight
and twenty lines are left over for miscellaneous uses, to be
chosen by you.

The UniLab also has four clock inputs from the target board:
K2-, K1-, RD-, and WR-. The UnilLab uses these inputs to
determine whether the processor is working, and to clock
information into the trace buffer.

UniLab outputs

The emulator of the UniLab looks at the twenty bit address
and the bus control signals, and responds with eight- or 16-bit
data when the- processor tries to fetch from an emulated address.
Emulation ROM may respond to a read signal as well, depending on
the bus architecture of the microprocessor. Your microprocessor
will not be able to write into emulation memory.

The UniLab also sends a RESET signal out on the wire
labeled RES-. This wire often requires special connection.

When you use certain DEBUG routines, a signal is sent out on
the wire labeled NMI- (Non-Maskable Interrupt), to either the
NMI pin of the processor, or to the IRQ (Interrupt ReQuest) pin
if the processor lacks an NMI. This wire sometimes requires
special handling.

-- Installation -- Page 1-10

Quick Step-by-Step

1.

2.

4.

Connect the UniLab to Host (page 1-13)
Connect the UniLab to your host computer, and turn it on.

Software Installation (page 1-16)

On hard disk systems:
Use the command INSTALL to move the UniLab software
onto your hard disk. Change or create a CONFIG.SYS
file in your hard disk's root directory, so that it
contains the settings in the sample CONFIG.SYS file on
your distribution diskette. Copy the glossary files
from the second diskette to the directory C:\ORION.

On floppy disk systems:
Copy all the files from your UniLab distribution
diskette to a "bootable" diskette.

On both hard and floppy disk systems:

Reboot your system and start up the UnilLab program.,

Connect the UniLab to Target Board (page 1-25) ‘
You can keep the UnilLab turned on while you connect it to
the target board, but we recommend that you turn off the
power supply to the target. You must turn off the power to
your system if it runs on anything but +5 voltage.

Remove any ROMs to be emulated from their sockets on your
board, and then put ROM plug of the emulator cable into a
vacant socket. Connect the other end of the cable to the

emulator socket of the UnilLab.

Put the DIP clip onto your microprocessor and connect the
wires from the emulator cable and the analyzer cable to the
correct processor pins. See the Target Application Note for
your DDB, or use the PINOUT command. Connect the other end
of the analyzer cable to the analyzer socket of the UniLab.

Connect the RES- wire to the proper place in the reset
circuit. See pages 1-34 to 1-36 for details.
Turn on the power supply to your target board.

Verify Your Setup (page 1-40)

Follow the verification procedure described on page 42, or
the minimal test described here: get into the UniLab
program and press F10 to enter the menu mode. Select the
"LOAD OR SAVE A PROGRAM" sub-menu with F2, then choose the
"LOAD A SAMPLE PROGRAM" option, F4. Then return you to the
Main Menu with F10, and select the "USE THE ANALYZER" sub-
menu, F4. Select the "RESET AND TRACE FIRST CYCLES," F1.

After you've verified the connection, you can turn to page
2-1 to learn more about the UniLab.
When you want to exit, type in the command BYE.

March 25, 1987 : Page 1-11 -- Installation --

Detailed Step by Step

Use this section to get more information than you can find
in the very sparse Quick Step-by-Step. The numbered headings
follow the outline of the Quick section, but here you get several
pages for each numbered heading.

Each numbered task has been broken down into several
subtasks. Some troubleshooting help appears here, but if you
really run into difficulties you should consult the
TroubleShooting chapter in the Reference Manual.

~- Installation -- Page 1-12

-~ Connect UnilLab to Host ~--

1. Connect the UniLab to Host
Overview
Find the correct port
Serial port of AT
Connect the cable
Turn on the UnilLab
Trouble?

Overview

The first thing you will want to do is connect the UnilLab to
your personal computer.

Once it has been connected, you will never need to
disconnect it, unless you have to use the serial port for some
other instrument or device. The UniLab will not interfere with
the proper functioning of your other personal computer software.

You could go directly to step two and install your software
without the UniLab attached to the host computer. However, you
would not be able to use the program, since the first thing it
does is send a message to the Unilab and wait for a reply.

When you do start up your software, the UniLab must be
properly connected and turned on-- otherwise the software will
freeze up (hit CTRL-BREAK to unfreeze). So we recommend that
you first connect the UniLab, then install your software.,

March 25, 1987 Page 1-13 -- Installation --

-~ Connect Unilab to Host --
Find the correct port

The UniLab usually talks with the host through
communications port one (COM1)-- the usual default serial
communications port. In general COM1 will either be the only
serial port on your system or be one of two ports. Loock for the
male DB-25 connector on the back or side of your computer. The
female DB-25 connector is for a parallel printer.

DB-25 Connector

1 2 3 4 5 6 7 8 9 10 11 12 13
voooooooooooo] .

O0O00O00O0DO00ODO0O0OO
14 15 16 17 18 19 20 21 22 23 24 25

Serial port of AT

If you have an AT or AT compatible, with a 9 pin serial
port, you will need a standard 9 to 25 pin adapter.

Connect the cable

After you've faund the serial port, plug in the RS-232 cable
from the Unilab.

Turn on the UniLab

Then plug the UnilLab into an electrical outlet, and turn it
on. Your UniLab is now connected and ready for the software.

-- Installation -- Page 1-14

-- Connect Unilab to Host --

Trouble?

Can't find any port

Look at the sides, the back, and the bottom of the computer.
Some even have them hidden behind removable panels (especially
some of the popular lap-tops). Some computers are sold without a
serial port as standard equipment.

If you do not have a serial port, you will have to acquire
and install a serial port board before you can continue.

Found more than one port

You might have more than one RS-232 standard serial port. If
they both are female (that is, they both accept the host end of
the UniLab-to-host cable), then you have several choices. You
could check the manual for your computer, or look at its internal
connections-- but there is a much simpler approach:

Choose one of the ports, and plug the UniLab into it.
Later in this process, after you have the software
installed, start it up. If it doesn't freeze-up, then you
have the UniLab connected to the correct port.

If it does freeze-up immediately after displaying
"Initializing UniLab," then use CTRL-BREAK (tap the break
key while holding down the control key) to break out of the
freeze. Plug the UnilLab into the other port, and type INIT.
The program should initialize the Unilab without freezing
up.

If the program freezes with the UniLab plugged into
either port, consult the TroubleShooting chapter.

March 25, 1987 Page 1-15 -- Installation --

-~ Software Installation --

2. Software Installation
Install the software
On a hard disk
On a floppy disk computer
Reboot your computer
Start up the Unilab program
Trouble?

Install the software

If you have a hard disk on your computer, you probably will
want to use the INSTALL.BAT file to install the UniLab software
on your hard disk. You can, if you wish, perform the
installation tasks yourself.

If you have only floppy drives on your computer, you will
need to copy the Unilab software onto a "bootable" DOS diskette.

-- Installation -- Page 1-16

-- Software Installation --

On a hard disk

Explanation

The INSTALL batch file makes a directory called \ORION on
your hard disk and copies to that directory all the files on the
distribution diskette.

INSTALL.BAT also adds two lines to your AUTOEXEC.BAT file:

set ORION=C:\ORION
set GLOSSARY=C:\ORION

which set up two "environment strings" that the UniLab software
requires, The first string tells the Unilab program where to
look for various overlay files, the second tells the pragram
where to look for the on-line glossary files.

You will need to copy the files on the glossary disk by
yourself, or the commands WORDS and HELP <command> will not work.

You also must create or alter your CONFIG.SYS file so that
DOS allows the UniLab software to have 16 files open and use 10
buffers. A sample CONFIG.SYS file is included on your
distribution diskette. The CONFIG.SYS file must reside in your
root directory (C:\). It should contain these two lines:

N files=16
buffers=10

The new settings in CONFIG.SYS do not take effect until you
reboot your computer. If these system variables are already set
to higher values, that is fine. However, if "files" is set too
low then some UniLab features will not work and if "buffers" is
too small then many Unilab commands will run slowly.

Procedure

Put the master UniLab diskette into floppy drive A. Execute
the INSTALL batch file by typing

A:INSTALL
You will also need to copy the files from the second

diskette to your C:\ORION directory and create or alter the
CONFIG.SYS file in your root directory (C:\).

March 25, 1987 Page 1-17 -- Installation --

-- Software Installation --
On a floppy disk computer

Explanation

Before you can use all the features of the UniLab software
you need to set up two "environment strings" and two system
variables. The sample AUTOEXEC.BAT and CONFIG.SYS files on your
distribution diskette will, when put onto a bootable diskette,
set up your floppy disk system.

Make a new "bootable diskette" and use it to boot up your
system, so that the environment gets set up properly for your new
software. You can copy onto the bootable diskette either the
entire UniLab system or just the CONFIG.SYS and AUTOEXEC.BAT
files.

The AUTOEXEC.BAT included on the distribution diskette sets
the environment string "ORION" to the correct value for running
the UniLab software from floppy disk drive A.

set ORION=A:\
set GLOSSARY=B:\

The first string tells the UniLab program where to look for
various overlay files, the second tells the program where to look
for the on-line glossary file.

If you wanted to run the UnilLab software from drive B you
would have to change the AUTOEXEC.BAT file to say:

set ORION=B:\

The CONFIG.SYS file included on the distribution diskette
tells DOS to allow any piece of software to have a maximum of 16
files open and use 10 buffers. It contains these two lines:

files=16
buffers=10

The new settings in CONFIG.SYS do not take effect until you
reboot your computer. If these system variables are already set
to higher values, that is fine. However, if '"files" is set too
low then some UnilLab features will not work and if "buffers" is
too small then many UnilLab commands will run slowly.

-~ Installation -- Page 1-18

-- Software Installation --
On a floppy disk computer (continued)

Procedure

Put your DOS master diskette in drive A. Put a new blank
diskette in drive B and format it as a "system" diskette with the
DOS command:

FORMAT /S B:

After you have formatted the diskette, take your DOS master
out of drive A, and replace it with the UniLab distribution
diskette. Copy all the UniLab files to the newly formatted
diskette with the DOS command:

COPY A:*_,* B:
Or, copy only the AUTOEXEC.BAT and CONFIG.SYS files onto the
newly formatted diskette. Each time you use your Unilab

software, you should make certain that the computer has been
booted up from a diskette with the correct CONFIG.SYS file on it.

March 25, 1987 Page 1-19 -- Installation --

-- Software Installation --
Reboot your computer

Explanation

The settings of the system constants "files" and "buffers"
can only be changed by rebooting the system.

The lines in AUTOEXEC.BAT are not as vital-- you can set or
change the value of the variable "ORION" at any time, by typing
in from your keyboard:

SET ORION=<path name>

where <path name> is any valid DOS path description, such as
C:\ORION or C:\ASM\DDB. You can change the value of '"GLOSSARY"
in the same way. Of course, you will want to change the setting
of these two variables only if you actually move the UniLab files
to a different directory. -

The GLOSSARY variable tells the program where to look for
the on-line glossary and its associated files. The UniLab
software needs the glossary only when you use either HELP or
WORDS. On a floppy drive system, you have to put the glossary
diskette in drive B: when you want to use the on-line glossary.
With a hard disk, you will want to copy the files from the
glossary diskette to the \ORION directory on drive C:.

Reboot Procedure

With a hard disk computer:
Hold down the CTRL and ALT keys, and tap the DEL key.

Or, turn the power off and back on again. On some computers

you must wait half a minute before turning the power back
on.

With a floppy disk system:
First put your new bootable diskette in drive A.

Then you can reboot the same way that you do with the hard
disk (see above).

-- Installation -- Page 1-20

-- Software Installation --

Start up the UniLab program

The diskette you received contains eight or more files.
Though you need all of the «SCR, .VIR, .OVL, .OPR and .MCR files
for the software to run properly, you only call one file by name-
- the command file, which ends in .EXE.

Use the DOS command DIR to get a listing of all your UnilLab
files. You will see one with .EXE at the end of its name.

Hard disk: DIR C:\ORION
Floppy disk: DIR A:

Start up the program by typing in the name of the command
file.

First actions

The first thing the program does is spend a second or two
loading itself from disk. Then it will display the welcoming
help screen, reproduced on the next page. If your software
package supports several related processors, you will be
presented with a menu of processors during this startup sequence.

After it has displayed that screen, it sends an
initialization message to the UniLab and waits for a reply from
the UniLab. When the program receives a reply from the UnilLab it
displays the message "Initialized," then determines and displays
the size of your UnilLab's emulation memory (8K, 32K, 64K, or
128K).

You, and the program, are now ready to get started.

March 25, 1987 Page 1-21 -~ Installation --

-- Software Installation --

Welcoming help screen:

UniLab Copyright 198X
II1 Orion Instruments
Version X.XXX Redwood City, CA

XXXXX disassembler installed - with DEBUG.

HELP is available on-line by entering HELP or F1.
Enter HELP command to see the definition of "command."
Type WORDS command to see a list of commands.

Use the function key F10 for MENU mode operation and gquick
access to most common commands.

More help is available on the Ctrl-F1 key.

Press Ctrl-F10 for display of cursor key functions.

Type MESSAGE for current messages.
Initializing UniLab...
Initialized 32K Emulation Memory

NOTE: Type in MESSAGE to get information about the most recent
additions and updates.

-- Installation -- Page 1-22

-- Software Installation --

Trouble?

If the UniLab does not respond, you will see the program
freeze-up after printing the "Initializing UniLab..." message on
the screen. If the response from the UnilLab was somehow garbled,
you will see a "RS-232 error #xx" message. See below and in the
TroubleShooting chapter.

If the program does not get a response from the UniLab, you
will have to press the CONTROL and BREAK keys at the same time.

You probably have the UniLab plugged into the wrong port.
Plug the RS-232 cable into the alternative port, and use the
UniLab command INIT to send the initializing message to the
instrument again. If the program again freezes, consult the
TroubleShooting chapter.

If you get an "RS-232 Error #xx" then you probably have a -
background task running, such as a printer spooler, or have a
"bus contention problem" on the serial ports of your computer.
Both problems can be quickly solved. See the TroubleShooting
chapter.

March 25, 1987 Page 1-23 -- Installation --

-~ Connect Unilab to Target --

Insert picture of UniLab from frontispiece of Manual.

TO HOST
COMPUTER’S
RS232 PORT
INTERNAL SERIAL 110
CPU POWER
SUPPLY
NALYZER
EMULATOR
PRI |
T DO-D15L?
AO-A14
A15-A19
. M
RESET CLIP

CPU DIP CLIP
TO ROM
SOCKET

CONNECTIONS TO
TARGET BOARD

-- Installation -- Page 1-24

3. Connect the UniLab to the Target Board
Overview
All about cables
Plug cables into unilab connectors
Take PROM off board
Put ROM cable in rom socket
Put DIP clip onto microprocessor
Attach proper wires to the clip
Attach the RES- wire
Attach the NMI- wire

Overview

The UniLab controls and monitors the target board through
the cables that connect to the two fifty-pin connectors on the
front of the UniLab, between the power switch on the left side
and the EPROM programmer socket on the right.

The emulator cable plugs into the socket on the left. This
cable carries the data signals from the UniLab to the board, and
the address signals from the board back to the UniLab.

The analyzer cable plugs into the socket on the right, and
carries control signals back and forth. The analyzer cable also
picks up some of the address signals.

Personality Paks and Emulation Modules

If you have a Personality Pak or an Emulation Module, you
should consult the documentation which accompanies those products
for any additional information about the connecting the UniLab to
your target system.

March 25, 1987 Page 1-25 -- Installation --

-- Connect UniLab to Target --
All about cables

Make certain that you have the proper cable for your
microprocessor. Most analyzer cables support several different
processors. The cables are labeled with a letter, which should
match the letter on the pinout diagram in the Target Application
Note for your processor.

You can also get a cabling diagram on the screen with the
PINOUT command. This on-line diagram usually shows only the main
processor supported by the software package.

When you connect to your target board, you will be hooking
up to your board at three different places:

1) at a ROM socket (with the ROM connector plug),
2) at the microprocessor (with the DIP Clip),
3) and at the reset circuit (with the RES- wire). °

With some processors, you will also need to make a fourth
connection for the NMI- wire from the UniLab.

ROIM Connector

Most of the wires from the outlet on the left side, labeled
8/16 BIT IN-CIRCUIT EMULATOR, go to a ROM connector. This
connector plugs into the target board, occupying a ROM socket.
Here the UniLab picks up data signals and address inputs. You
must orient the plug properly.

DIP Clip

The remaining wires from the EMULATOR cable go to the DIP
clip, along with most of the wires from the right side outlet--
labeled 48 CHANNEL BUS STATE ANALYZER. The DIP clip physically
clips onto the microprocessor.

At the processor, the UniLab picks up and asserts control

signals. It also picks up the microprocessor clock signals and,
often, the upper bits of the address.

-- Installation -- Page 1-26

-- Connect UniLab to Target --

Reset wire and the NMI wire complications

These two wires carry output signals from the UnilLab to the
target processor. The reset signal causes your processor to
start executing the target program from the beginning. The NMI

signal tells your processor to jump to a hardware interrupt
vector.

Both these wires would be connected directly to the pins of
your processor, in the best of all possible worlds. However,
the real world is not always that simple.

Complication explanation

These two UniLab output signals are "open collector'
(resistor-transistor logic-- RTL), which means that the signal
is not strong enough to pull down the output of a logic element
(transistor-transistor logic-- TTL).

These two signals are inputs to a "logic element" -- your
processor. However, these input pins of your processor are often
driven by the (TTL) outputs of other chips (logic elements) on
your target board.

If the pin of your processor that you are trying to connect
the UniLab's wire to is driven by an external logic gate, you
might have to:

disconnect your processor's pin from the circuit
that drives it,
connect the pin to a "pullup resistor,"
and then connect the UniLab wire directly to your
processor's pin;

OR

disconnect from the circuit the pin that drives
your microprocessor's pin,
and then connect the pullup resistor and the
UniLab wire to the processor pin;

OR

connect the UniLab wire to the input of the chip
whose output drives your processor's pin.

OR

Depending upon the unique configuration of your target
board, you might have to do something else.

March 25, 1987 Page 1-27 -- Installation --

—-- Connect UnilLab to Target --
Plug cables into UniLab connectors

Plug the 50-pin cable labeled "Emulator" into the left
socket on the UnilLab, plug the "Analyzer" cable into the right

socket.

Both connectors must be plugged in with the plastic key on
the upper surface, and the red edge of the cable to the left.

ORION Universal Develoj

INSTRUMENTS

Emulator Cable

»pment Laboratory [UniLab 11 ™

48 CHANNEL BUS STATE ANALYZER
. e . o

Analyzer Cable

-- Installation -- Page 1-28

-- Connect UniLab to Target --

Take PROMs off board

The Unilab emulates the Read Only Memory (ROM) of the target
board. To avoid bus contention problems you should remove the
ROMs that you will emulate. Note that you can run a program
partly out of emulation ROM and partly out of chips.

To avoid damage to components, turn off the power to your
target system before removing chips.

Exception: run program from PROM

You will keep the ROM chips on your target board when you
want to watch the execution of a program running from the chip.
Before you can execute a program completely from chips, make
certain that you disable the emulation ROM with EMCLR. .

EMCLR will also disable all the DEBUG features. Later,
after you re-enable emulation you will want to re-enable the
DEBUG features as well. Use the Mode Panel (press F8) to re-
enable option SWI VECTOR on mode panel three.

Alternative to running the program from ROM

When you want to run the program that resides in a ROM, you
could instead read the program from the chip into the UniLab's
emulation memory, using the PROM READER MENU.

March 25, 1987 Page 1-29 -- Installation --

-- Connect Unilab to Target --
Put ROM cable in ROM socket

The ROM plug on the emulator cable goes into any ROM socket
in the target system. A single connection allows you to emulate
several ROMs, but all ROMs that are to be emulated must be
removed from their sockets.

Put the ROM plug into a vacant ROM socket, preferably the
one the microprocessor reads from on reset.

24 Pin ROM Plug
in 24 Pin Socket

24-pin ROM plugs go into 24-pin ROM sockets. And 28-pin
plugs (not pictured) are suitable for 28-pin sockets.

24-pin Plug in 28-pin Socket

A 24-pin ROM plug can also go into a 28-pin socket, if pin
one of the cable goes into pin three of the ROM it replaces.
That will leave four unfilled positions on the socket, 1 & 2 and
27 & 28. :

24 Pin ROM Plug
in 28 Pin Socket

-- Installation -- Page 1-30

-- Connect UniLab to Target --

16-bit ROM Plugs

The 16-bit ROM cables are a pair of ROM plugs on a single
cable. One goes into an odd byte plug, the other goes into an
even byte plug.

16 bit ROM CABLE

/
//////// W

March 25, 1987 Page 1-31 -- Installation --

-- Connect UniLab to Target --

Put DIP clip onto microprocessor

With the power to the target system still turned off, put
the DIP clip onto the microprocessor, being sure to orient pin
one of the DIP clip with pin one of the microprocessor.

NEBIREERENEREEEETSC
Illlllllllll_l

RN EEE R 4+

-- Installation -- Page 1-32

-- Connect Unilab to Target --
Attach proper wires to the clip

Connect the proper wires from the emulator cable and from
the analyzer cable to the pins on the 40-pin DIP clip provided.
The connection diagram is in the Target Application Note for your
processor-- or type PINOUT to get an on-line diagram.

Double-check your wiring to the DIP clip, since this is a
vital link in the connection.

Making Connections from
Analyzer and Emulator Cables

March 25, 1987 Page 1-33 -- Installation --

-- Connect Unilab to Target --
Attach the RES- wire

The RES- wire carries the reset strobe from the UniLab to
your target board. This signal causes the target board to start
the target program from the beginning.

Connection to Simple Circuits

If you have a simple RC (Resistance-Capacitance) network
attached to the reset pin of your microprocessor, then you can
connect the RES- wire directly to the reset pin, and move on to
connecting the NMI- wire.

Common Complication

However, many boards have a logic element in the reset
circuit, an SSI or MSI chip that drives the reset pin, and gets
driven in turn by a simple RC network. ‘

As noted in the overview a few pages back, an '"open
collector" (RTL) circuit in the UnilLab generates the signal on
the RES- wire, so you cannot wuse it to "pull down" the output of
a logic gate (a TTL or "totem pole" output).

Common Solution

The UniLab's RES- output can pull down the input of the
logic gate. By controlling the logic gate, the UniLab controls
the RESET pin of your microprocessor.

In general, you will find it easiest to clip the RES- wire
onto the positive side of the capacitor in the RC circuit. See
the diagrams on following pages that show typical reset circuit
connections for an INTEL processor and for the Z80.

If you have trouble finding the capacitor, try asking the
board designer, if you can find him. It might be easier to find
and read the schematics. If neither personnel nor diagrams can
be found, then you might have to trace the circuit.

Less Common Solution

Sometimes the common solution will not work, and you will
have to alter your reset circuit. You might have to remove the
chip that drives the reset circuit, and connect a pullup resistor
in its place.

-- Installation -- Page 1-34

-- Connect UniLab to Target --

8051 Family Complication

If your processor is in the 8051 family, the RESET pin of
your processor requires a positive going signal. You will have
to feed the Unilab's negative going signal through a special
inverting circuit, such as the one below.

The members of the 8051 family:

8051, 8052, 8031, 8032 and the piggyback 8051.

+5Y

4.7 K ohms

Connect RES- wire LS14

from UniLab here —> To Reset Pin of
8051 Family processor

Typical Reset Circuit necessary
for 8051 family processor

March 25, 1987 Page 1-35 -- Installation --

-- Connect UnilLab to Target --

+5Y

15K
IN914

Connect RES- wire _
from UniLab here —> {>° {}o‘é To RESET PIN

|+ of Microprocessor
— 47 uF P

Typical "power on reset circuit” for
/80 microprocessor, showinq_conne—ction
of RES- line from Unilab

Connect RES- wire
from UniLab here

A\
198 cLk
8
CLK
+5 8086
8284A PROCESSOR
CLOCK GEN.
RESET |2 21§ RESET
10KQ ouT IN
\4 1] s
+
— 33uf

Typical “power on reset circuit” for
Intel microprocessor, showing (:_onnection
of RES- line from Unilab

-~ lnstallation -- Page 1-36

-~ Connect UniLab to Target --

Attach NMI- wire

The NMI- signal asserted by the UnilLab causes the target
microprocessor to vector to a hardware interrupt location. The
UniLab software uses the hardware interrupt for several DEBUG
features:

NMI,
RI <trig spec>» SI, and
"silent" DEBUG control for automatic RAM access.

The Non-Maskable Interrupt signal is connected to either the
NMI or IRQ circuit of your board.

Simple Pullup Circuits

If you have a simple pullup resistor (a resistor running
from the pin to the power supply voltage) attached to the Non
Maskable pin of your microprocessor, then you can connect the
NMI- wire from the UniLab directly to the microprocessor pin and
move on to step 4 of the installation-- checkout your setup.

Common Complication

However, some boards have a logic element in the circuit, an
SSI or MSI chip that drives the NMI pin. Sometimes an output of
the processor causes the NMI pin to be activated.

Since an "open collector" circuit in the UniLab generates
the signal on the NMI- wire, you cannot use it to "pull down"
the output of a logic gate.

Hardware Solution

If you encounter this problem, the easiest solution is to
temporarily alter your target board:

isolate the NMI pin from the circuit that drives it,

connect a resistor of from 1K to 10K ohms between the
pin and your power supply voltage (pullup
resistor),

connect the wire from the UnilLab directly to the
processor pin.

March 25, 1987 Page 1-37 -- Installation --

-~ Connect Unilab to Target --

To isolate the NMI pin from the circuit that drives it you
can either:

bend the pin of your processor out of the socket on
your target board

OR
build a stacked socket arrangement by cutting the
appropriate pin off of a "soldertail socket'" and
plugging the processor into this new socket. Then put
this stacked arrangement into the socket on your target
board.

Software Solution

If your target board makes use of the NMI pin of your
processor, you might choose to do without the UniLab features
that require this resource.

Use the mode panel (press F8) to disable the NMI VECTOR
option on mode panel three, and then use the command SAVE-SYS to
save the newly configured software.

Other uses of the NMI output

You can use the INT command to produce a low-going
transition on the NMI- wire when the UniLab goes into trigger
search state.

If you need to shut down some peripheral equipment when an
error condition occurs, you can disable the UniLab NMI routines
and write your own interrupt routine. See the entry on INT in
the on-line glossary, or in the Command Reference chapter of the

Reference Manual.
AN

-~ Installation -- Page 1-38

-- Connect UniLab to Target --

8088 and 8086 Family Complication

Most NMI pins are "active low"-- that is, the pin should
normally be held at high voltage, and the program gets
interrupted when the pin is pulled to low voltage.

However, Intel chose the opposite convention for their 8088
and 8086 family of processors. The NMI pin on these processors
is active high.

This means that you must feed the signal coming from the

UniLab through an inverting circuit. One choice is to use a
74L.S14, as shown below.

+5Y

NMI wire from —> To NMI pin of
UniLab 8088/86 family
processor

Typical NMI circuit needed for
8088/8086 family processors

Mlarch 25, 1987 Page 1-39 -- Installation --

-~ Checkout Your Setup --

4. Verify Your Setup
Overview
Load a sample program
Run the program
Compare to sample trace
Play around a little
How to exit

Overview

Now that you have your target board properly connected, you
should give it a small shakedown cruise.

You will load in a sample program and run it while it
resides in UniLab emulation ROM.

This will only take a few minutes, and will provide you with
a broad idea of what the UniLab can do, at the same time as you
test out your installation.

This section assumes that you have purchased a
disassembler/DEBUG packages.

If, instead, you purchased the '"generic" UniLab software,

then you will not have any of the disassembly and DEBUG features.
And, a sample program is not included in your software.

Where next?

For more instruction, follow along with the Guided Demo in
the next chapter. See also the Operations chapter.

-- Installation -- Page 1-40

-- Checkout Your Setup --

Load a sample program

Start up the UnilLab program if you have not already done so.
press function key 10 (F10) to get the main menu.

From the main menu of the Unilab program, press
F2
to select the "LOAD OR SAVE A PROGRAM" submenu, then press
F4

to select "LOAD A SAMPLE PROGRAM." This will enable memory and
load the simple demo program for your target processor.

(Main Menu)

Gbé@ @ @ @ 6 @

Enable Examine Set Stimulus Read
Program or Alter Anslyzer Generator EPROM
Memory Memory Trigger
Load or Analyzer— Set Breakpoints Toolkit of Retumto
Save Walch Screen Command
Program Program Displays @ Mode

Execute EPROM
Progremmer# 1

EPROM
Programmer#2

i N
EEE
y
BEE)

March 25, 1987 Page 1-41 -- Installation --

-- Checkout Your Setup --

Run the program

To watch the program executing, first press F10 to return to
the main menu and use F4 to select the "USE THE ANALYZER" sub-
menu. Then, press F1 to select "RESET AND TRACE FIRST CYCLES."

(Main Menu)

éé@

Enable Examine Set Stimulus Read
Program or Alter Analyzer Generator EPROM

Memory Memory Trigger

Load or Anglyzer— Set Breskpoints Toolkit of Retumto
Save Watch Screen Command
Progrem Program Displays @ Mode
Execute

EPROM
. @ Programmer# 1
EPROM
Programmer #2

M) (= -r|
EEE

2
(<]

EEREE

You should get a trace display that agrees with the one in
the Target Application Note for your processor. See the next
page to find out how to have the computer compare your trace to
the sample trace produced by Orion.

Trouble?

If you get a '"NO ANALYZER CLOCK" message, or find that your
trace buffer is filled with garbage, or have any other problen,
then consult the TroubleShooting chapter.

-- Installation -- Page 1-42

-~ Checkout Your Setup --

Compare to sample trace

After you have generated a trace with the simple target
program, compare your trace to the standard trace. Either look
at the printout in the Disassembler/DEBUG writeup for your
processor, or use the UniLab command

AA TCOMP TESTxxxx.TRC

to compare your trace to the sample trace included on the
distribution diskette. The sample trace, stored as an encoded
file called TESTxxxx.TRC on your distribution diskette, is not
available for all processors. See appendix J, or get a directory
listing of your distribution diskette.

If TCOMP detects a difference between your trace and the
known good trace stored as a file, then it will show you part of
the good trace followed by the first differing line of your
trace.

If your trace is okay, then you can be confident that you
have connected your UnilLab properly and that your target board is
working. You should skip to the page after next, with the Play
Around heading.

If you have a bad trace, whether you detect it visually or
with TCOMP, see the next page.

Visual Iﬁspection

You should be especially sensitive to four aspects of the
trace when you examine it:

1) The very first address-- if it is not right, then
you've already found the problem, and shouldn't bother
to look any further.

2) The very first item in the data column-- if it is
wrong, then you probably have bad data lines on your
target board.

3) The value popped off the stack-- if it is not the
same as the value pushed, then you probably need to
patch the value of the stack pointer in the test
program.

4) Other addresses and data-- you can have a problem
even though the first part of the program looks okay.
For example, you have a grounded address line on your
target board, bit 6 of the address. You won't notice
this until bit 6 is supposed to go high (40 hex), and
doesn't.

March 25, 1987 Page 1-43 ~-- Installation --

-- Checkout Your Setup --
' Bad Trace?

Typically you will find one of three things wrong with your
trace if the fault lies in your connection to the Unilab:

1) Very first address wrong-- you should check:
RES- wire and address wires.
2) Control column incorrect-- you should check
: wires C4 through C7.
3) Bad data popped off stack-- see below.

Bad Data from stack?

Be especially aware of the push and pop instructions early
on in the program. Is the same value getting read as is being
written? If the answer is no, then it might be that your stack
pointer is not pointing at RAHM.

Check the Stack Pointer-- Processors with Stack in External RAM

The simple test programs generally set the stack pointer
within the first few steps. The program sets the stack pointer
so that it points at the RAM on the Orion MicroTargett® board.

If you do not have RAM at that region of the memory map, then the
program will read garbage data when it tries to pop values off
the stack.

When this happens, you will either get bad data at the
breakpoints (all FFFF's, for example) or you will not be able to
get DEBUG control at all.

Look at the program as it executes, or look at the listing
of it in the DEBUG notes. 1Is the stack pointer pointing to RAM
on your target board?

If the stack pointer needs a different value, use the
optional on-line assembler, ASM, or use the UniLab command
<word> <addr> MM!,. You can use MM! to poke a new 16-bit word
into the instruction that initializes the stack pointer. You can
easily patch the program, so that the 16-bit address of the stack
pointer points to RAM. For example, FFFE 10 MM! will put the
value FFFE into bytes 10 and 11 of emulation ROM.

Stack Pointer Note

If you change the address of the stack, TCOMP will indicate
a difference between your trace and the standard trace. You
will have to visually inspect the trace to determine whether you
have good data.

Once everything is properly connected, you can use TSAVE to
save a trace for future testing.

-- Installation -- Page 1-44

-- Checkout Your Setup --
Play around a little
This concludes the installation section.

Your target system should now work normally with the
emulated ROM. Consult the TroubleShooting chapter if you have
any problems.

Play with the menu system a bit, to get an idea of the
capabilities of the UnilLab. Turn to the Menu section of Chapter
Three for a map of the menus. The menu mode makes a good
interactive learning tool-- before each command that it executes,
it echoes to the screen the words that you would type in from
command mode.

Experiment a bit with the instrument. For guidance, turn to
the next chapter, the Guided Demo. When you feel ready ,to use

the command mode, press F10 once to get into the Main menu, and
then a second time to get to command mode. .

How to exit

When you want to leave the program, type BYE on a line by
itself, followed by a carriage return.

March 25, 1987 Page 1-45 -~ Installation --

Where to go Next

With trouble

If you have trouble getting your system working with the
UniLab, follow the suggestions in the TroubleShooting chapter of

the UniLab reference manual.

With a functioning system

You want to either learn more about the UnilLab, or to start

using it immediately.

To gain the most familiarity with the instrument you can
follow this sequence of four steps:

1) Go through the
just read through
the steps on your

2) Use the UniLab

Guided Demo chapter first. You can
it, but will learn more by following
computer.

for a while in MENU mode, to gain

familiarity with basic commands.

3) Look at the Operations chapter, especially the

second section.

4) Use the Unilab
Command Reference

on tasks, with the help of the
card.

Of course, you can skip steps, and even go directly to step

four.

-- Installation --

Page 1-46

~-- Checkout Your Setup --

Special Note: Operator and Macro Systems

Your software is shipped configured as an operator system.
This system recognizes only:

D) the commands described in the Command Reference
chapter of the UniLab Reference manual (use the command
WORDS to see the list),

2) hexadecimal numbers,
3) four mathematical operators (+, -, *, and /), and
4) the commands U. and . (a period), which pop a

number off the top of the host system stack and display
it. U. displays the number as an unsigned integer,
while . displays the number as a signed integer.

The UniLab uses postfix operators-- type in an operator
after the operands. These operators will consume two operands,
and leave the result on the host stack. Use U. or . to
(destructively) display the result.

You will not need any other commands, or access to internal
variables and constants, unless you need either to write macros,
or to customize your software.

If you need more power than the operator system has, use the
UniLab command MACRO to create a macro system.

You can return to the standard operator system with the
command OPERATOR.

MAKE-OPERATOR creates a new operator system that recognizes
the macros you defined in your macro system. The current macro
system will be saved, then an operator system created and saved.
You can specify different names for the macro and operator
systems. After the files have been saved, MAKE-OPERATOR will
cause the UnilLab program to terminate, returning you to DOS.

The file "MAKE," from your distribution diskette, must be in
your ORION directory when you use MAKE-OPERATOR.

Use the on-line glossary for more information on these
commands.

March 25, 1987 Page 1-47 -- Installation --

Special Note: Display Characteristic Commands

Color Monitor

If you have a color monitor, you will want to let the UniLab
software know, by entering the command COLOR. You can change the
default colors with the menu-driven command SET-COLOR. See the
entries in the Command Reference chapter for more information.
After you issue the command COLOR, you will want to use SAVE-SYS
to save the newly configured program.

Screen Flicker

If your monitor flickers when you use the PgUp key, you will
want to issue the command CLEAR, and then use SAVE-SYS to save
the newly configured program. You can turn this alteration off
with CLEAR'.

Special Note: Alter the Baud Rate

When you want to change the baud rate of serial
communications between the UniLab and the host computer, you must

toggle a switch on the main board of the UniLab,
and use a command to change the software.

First

The very first thing you should do is reconsider your
decision to change the baud rate. It is rarely, if ever,
necessary, and serves only to slow down the software.

But if you decide to change from 19200 baud to 9600 baud,

you should follow the instructions in the TroubleShooting chapter
of volume II.

-- Installation -- Page 1-48

Chapter Two:
Guided Demonstration

Contents
Overview 2-1
Call Up the Software 2-3
Get the MAIN Menu 2-4
The Five-Step Demonstration:
1. Enable Memory 2-5
2. Load a Program 2-6
3. Examine the Program 2-7
Memory Dump
Disassemble from Memory
4, Use the Analyzer . 2-9
Get the First Cycles of Program
Sample the Bus
Set a Trigger on an Address
5. Use the DEBUG 2-13
Set a Breakpoint to Establish Debug Control
Set Another Breakpoint
Single Step Through Code
End note 2-16
Overview

This Guided Demo uses the menus of the UnilLab software to:

1. Enable emulation memory

2. Load a program into memory

3. Look at the program in memory

4, Get a trace of the program executing
5. Set a breakpoint in the program.

You get your program into emulation ROM in steps one and
two, double-check your preparations in optional step three, and
then work with the program in steps four and five.

The demonstration generates several traces of program
execution, and sets a breakpoint to establish DEBUG control over
the target processor, It uses a 7280 processor and a very simple
program for all the examples. However, you will follow the same
procedure when analyzing any program on any processor,

March 25, 1987 Page 2-1 ' -- Guided Demo --

Menus and commands

The heading on each page tells you which command you could
use, instead of the menu choice. Also, whenever you execute a
menu option the UniLab software tells you what command causes the
same effect as your menu choice.

How to follow the demonstration

You can use your UniLab system to follow the steps of this
demonstration. You can follow exactly the sequence of function
keys pressed in this chapter.

However, unless you have the Z80 DDB package, you will have
to enter different values and file names in response to the menu
prompts.

The trace and breakpoint displays will differ from processor
to processor. For processor-specific trace and breakpoint :
displays, turn to the Target Application Note for your DDB
software.

Related Documentation

Before using this chapter, you should have your UniLab
system installed and verified, using the instructions in Chapter
One.

After going through this chapter, you will know how to use
the basic features of your Disassembler/DEBUG software on your
own program. You can gain more expertise as you need it, with
the help of the printed documentation and the on-line help
facilities.

See the Operation chapter for information on the commands
and the special features, as well as a complete guide to the menu
system. The separate Target Application Note contains
information on the processor-specific features of your DDB
software.

-- Guided Demo -- Page 2-2

Call Up the Unilab Software

When you call up the UnilLab program, there will be a
brief pause while the s¢ftware is loaded from disk.
The first actions the program takes:

1 display the copyright notice,

2. either tell you which processor is supported
by this software package,
OR,

if your DDB software supports more than one
processor, present you with a menu of "processors
supported" and wait for you to choose one,

3. display the opening screen,

4. initialize the UniLab.

After it initializes the Unilab, the software will
execute any commands that you included on the DOS command
line. You will find that useful later, since you can set
up a batch file to always load a program and a symbol filé
when you enter the UniLab software. See the DOS and UnilLab
section of the Chapter Three for more information.

UniLab Copyright 198X
IT Orion Instruments -
Version X.XXX Redwood City, CA

XXXXX disassembler installed - with DEBUG.

HELP is available on-line by entering HELP or F1.
Enter HELP command to see the definition of "“command".
Type WORDS command to see a list of commands.

Use the function key F10 for MENU mode operation and quick
access to most common commands.

More help is available on the Ctrl-F1 key.

Press Ctrl-F10 for display of cursor key functions.

Type MESSAGE for current messages.
Initializing UniLab...
Initialized 32K Emulation Memory

March 25, 1987 Page 2-3 -~ Guided Demo --

Get the Main Menu

In command mode, press function key 10 (F10) to get
the main menu.

UniLab MAIN MENU

F1 ENABLE PROGRAM MEMORY

F2 LOAD OR SAVE A PROGRAM

F3 EXAMINE OR CHANGE PROGRAM MEMORY

F4 ANALYZER -- WATCH PROGRAM EXECUTE

F5 ADVANCED ANALYZER TRIGGER

Fé6 SET BREAKPOINTS AND SINGLE STEP PROGRAM
F7 USE THE STIMULUS GENERATOR

F8 TOOLKIT ROUTINES

F9 READ OR PROGRAM A PROM
F10 EXIT TO COMMAND MODE

Before you load a program into the UniLab emulation
ROM, you must enable a range of program memory. This tells
the UnilLab hardware which ROM addresses it is to emulate.

You will want to know the memory map of your target
board, so that you do not cause a bus contention problem by
mapping emulation ROM into the same address space as target
RAM. However, certain processors, such as the 8051, do
allow RAM and ROM to occupy the same address at the same
time.

If you use the command LTARG instead, you will not

need to enable memory first-- that command enables the
range it needs before poking a test program into memory.

-~ Guided Demo -- Page 2-4

The Five-Step Demonstration

1. Enable a segment of memory The command is: EMENABLE

In the MAIN menu, press function key 1 (F1) to get to the
ENABLE PROGRAM MEMORY menu.

In the ENABLE menu, press F2 to enable a range of memory.
You will be prompted for the start and end address of the range
to emulate. After you enter the parameters, you will see a
report on the current setting of emulation memory.

With the Z80, we will be loading a program into the lowest
2K of memory, addresses 0 through 7FF (the UniLab expects all

numbers in hexadecimal). This range includes the reset address
of the Z80 processor: 0000.

ENABLE PROGRAM MEMORY MENU

F1 DISPLAY CURRENT STATUS OF EMULATION MEMORY
F2 ENABLE A RANGE OF EMULATION MEMORY
F3 ADD ANOTHER RANGE OF MEMORY
F4 SET A16-A19 MEMORY SEGMENT BITS
F5 DISABLE ALL EMULATION MEMORY
F10 RETURN TO MAIN MENU

Enter starting address of emulation memory (on 2K boundary):0

Enter ending address of emulation memory (rounded to 2K blocks):7FF
The command is: 0 7FF EMENABLE

Emulator Memory Enable Status:
7 =EMSEG
0 TO 7FF EMENABLE

Emulator memory enable status

The memory status report tells you not only the setting of
EMENABLE, but also the value of =EMSEG, which has already been
set to the correct default value for your processor.

The =EMSEG value will differ from DDB to DDB. It
corresponds to the most significant four bits (A16-A19) of the
20-bit address input to the UniLab. The UniLab emulation ROM
will only respond on the bus when the upper four bits of the
address input match the =EMSEG value and the lower 16 bits match
an emulated address. See the on-line glossary entry, or Section

Two of the Operations In Detail chapter for more information on

March 25, 1987 Page 2-5 -- Guided Demo --

2. Load a program into memory
Binary file load The command is: BINLOA

After you enable the proper range of memory, press F10
to get back to the MAIN menu.

In the MAIN menu press F2 to get the LOAD OR SAVE A
PROGRAM menu.

UniLab MAIN MENU

F2 LOAD OR SAVE A PROGRAM

In the LOAD menu press F2 to load a binary format
file. You will be prompted for the start and end addresses
for this memory load. The UnilLab software will stop at the
end of the file, or at the "end address,'" whichever comes-
first. When it is done loading, the UniLab software tells
you the last address that it wrote into.

Load the short and simple program included on the
distribution diskette. The program for the Z80 gets loaded
in starting at address 0000. This sample program is very
short (32 bytes), so the UniLab only loads up to address
31.

Some disassembler packages support several different
processors, and so will have several different .BIN files on the
diskette. Consult Appendix J if you are not certain which file
to load in, or what address to start loading at. Or, instead,
you can choose F4 on this menu, which will both enable memory and
load the test program for you.

LOAD OR SAVE PROGRAM MENU

F1 LOAD INTEL HEX FILE

F2 LOAD BINARY OBJECT FILE

F3 SAVE A BLOCK OF MEMORY TO DISK FILE
F4 LOAD A SAMPLE PROGRAM
F10 RETURN TO MAIN MENU

Enter the Starting address:0
Enter the Ending address:7FF
The command is: 0 7FF BINLOAD

File Name? --- astestZ80.bin end = 31

-- Guided Demo -- Page 2-6

w
.

3. Examine the program in emulation memory
Memory Dump The command is: MDUMP

After you load the program, press F10 to return to
the MAIN menu.

In the MAIN menu, press F3 to get the EXAMINE OR
CHANGE PROGRAM MEMORY menu.

UniLab MAIN MENU

F3 EXAMINE OR CHANGE PROGRAM MEMORY

In the EXAMINE MEMORY menu, press F8 to "dump" a range

of memory. You will be prompted for the start and end
address of the range to dump.

This simple command for examining memory shows you only the
hexadecimal contents and ASCII interpretation of each byte.
Since it works on 10-byte chunks of memory, you get the full
range 0 through 2F when you ask for 0 to 2B.

EXAMINE OR CHANGE PROGRAM MEMORY MENU

F1 EXAMINE AND ALTER MEMORY
F2 DISASSEMBLE FROM MEMORY
F3 CHANGE ONE BYTE
F4 CHANGE ONE WORD
F5 FILL A BLOCK OF MEMORY WITH ONE VALUE
F6 MOVE A BLOCK OF MEMORY
7 COMPARE TWO BLOCKS OF MEMORY
F8 EXAMINE A RANGE MEMORY
F10 RETURN TO MAIN MENU

Enter the Starting address:0
Enter the Ending address:2B

The command is: 0 2B MDUMP

0 317 00 19 3E 12 01 56 34 11 9A 78 21 DE BC C5 C1 TeedeeVd,eXtou..
10 3C 3C 3C 3C 3C 3C 3C 3C 3C 3C 3C 3C 3C 3C 3C 3¢ <K<K
20 3C 3C 3C 3C 3C 3C 3C 3C 3C C3 05 00 8E 84 F7 A0 <<€ <0 nunnnn

When you work on program memory, you will more often
use the command that disassembles from memory, rather than
just dumping memory. See the next page.

March 25, 1987 Page 2-7 -- Guided Demo --

w

Examine the program in emulation memory
Disassemble the program The command is: DM

In the EXAMINE MEMORY menu press F2 to disassemble
from memory. You will be prompted for the start address
and the number of lines to disassemble.

Here we disassemble OA lines (10 decimal) so that the
disassembled display fits on the screen.

When you are in command mode, you can also use the command
DN, which requires only a starting address, and disassembles into
a full length window on the right-hand side of the screen.

EXAMINE OR CHANGE PROGRAM MEMORY: MENU

F1 EXAMINE AND ALTER MEMORY
F2 DISASSEMBLE FROM MEMORY
F3 CHANGE ONE BYTE
F4 CHANGE ONE WORD
F5 FILL A BLOCK OF MEMORY WITH ONE VALUE
Fé6 MOVE A BLOCK OF MEMORY
F7 COMPARE TWO BLOCKS OF MEMORY
F8 EXAMINE A RANGE MEMORY
F10 RETURN TO MAIN MENU

Znter the Starting address:0
Enter the number of lines to disassemble (default=5):A

The command is: 0 10 DM
0000 310019 LD SP,1900
0003 3E12 LD A,12
0005 015634 LD BC, 3456
0008 119A78 LD DE,789a
000B 21DEBC LD HL,BCDE

000E C5 PUSH BC
000F C1 POP BC
0010 3C INC A
0011 3C INC A
0012 3C INC A

You may have already noticed that the simple
program in the .BIN file is identical to the
program poked into memory by the command LTARG.

-- Guided Demo -- Page 2-8

4. Use the Analyzer

Though it was helpful to see a disassembly of the
program from memory, the value of the UnilLab comes from the

ability to watch your microprocessor system as it executes
the program.

In the EXAMINE MEMORY menu, press F10 to return to the
MAIN menu. ' '

In the MAIN menu, press F4 to get the ANALYZER menu.

UniLab MAIN MENU

F4 ANALYZER -- WATCH PROGRAM EXECUTE

March 25, 1987 Page 2-9 -- Guided Demo --

‘b

Use the Analyzer
Reset the microprocessor, and watch the first cycles
The command is: STARTUP

In the ANALYZER menu, press F1 to reset your
microprocessor and display a trace buffer of the first
cycles of the program execution.

Only the first few lines of the trace are shown, but you can
look at more of the trace by using the Down Arrow and the PgDn
keys on the cursor/numeric key pad. The Home key shows the trace
from the top. See the Special Features section of the Chapter
Three for more information on the use of these keys.

ANALYZER MENU

F1 RESET AND TRACE FIRST CYCLES

F2 TRACE IMMEDIATELY

F3 TRACE FROM A SPECIFIC ADDRESS

F4 COUNT CYCLES BETWEEN TWO ADDRESSES
F5 SAMPLE THE BUS CONTINUOQUSLY

F6 SAMPLE ADDRESS ACTIVITY
F10 RETURN TO MAIN MENU

The command is: STARTUP resetting
cy# CONT ADR DATA

HEhwoeouwo

10
11
12

14
15

B7 0000 310019 LD sP,1900
B7 0003 3E12 LD A,12

B7 0005 015634 LD BC, 3456
B7 0008 119A78 LD DE,789A
B7 000B 21DEBC LD HL,BCDE
B7 O000E C5 PUSH BC

D7 18FF 34 write

D7 18FE 56 write

B7 000F C1 POP BC

F7 18FE 56 read

F7 18FF 34 read

B7 0010 3C INC A

B7 0011 3C INC A

Whenever you start the analyzer, the Unilab will receive a
trigger specification from the host computer, which tells it,
among other things, when to freeze the trace buffer. As soon as
the trace buffer has been frozen, it is transferred to the host
for display. Your microprocessor, however, continues to execute
code.

See Section One of the Operations In Detail chapter to find
out more about interpreting the trace.

-- Guided Demo -- Page 2-10

|

Use the Analyzer

Sample the bus The command is: SAMP

Though you are looking at a trace of the first cycles of the

program, the program continues to run.

In the ANALYZER menu, press F5 to sample about one bus cycle

every second. These are random selections from the
microprocessor bus. Press any key to stop the display.

ANALYZER MENU

F1 RESET AND TRACE FIRST CYCLES

F2 TRACE IMMEDIATELY

F3 TRACE FROM A SPECIFIC ADDRESS

F4 COUNT CYCLES BETWEEN TWO ADDRESSES
F5 SAMPLE THE BUS CONTINUOUSLY

Fb6 SAMPLE ADDRESS ACTIVITY
F10 RETURN TO MAIN MENU

The command is: SAMP

F7
B7
B7
B7
F7
B7
F7

000C
001C
001C
001F
002B
001D
0007

DE read
3C INC A
3C INC A
3C INC A
00 read
3C INC A
34 read

This use of SAMP confirms what was already obvious from the

STARTUP trace-- the program spends most of its time executing
"INC A" instructions.

Since SAMP gathers isolated bus states, the data going to

the trace disassembler is isolated bytes (or words, with 16-bit
processors). This means that often the disassembler sees only a
portion of a multi-byte instruction.

For example, the very first cycle captured by SAMP in the

transcript above is interpreted as a read of DE. However, the
program never reads a value of DE-- except when it reads the
immediate value to load into the HL register, in the fifth line
of the program (see previous page). '

The lesson: while using SAMP either turn off the

disassembler (with DASM'), or leave it on while realizing that it
can be "fooled."

March 25, 1987 Page 2-11 -- Guided Demo --

4. Use the Analyzer

"Set a trigger on an address The command is: <address> AS

The preset triggers of the UniLab are helpful, but once you
become familiar with the UniLab system you will usually prefer
set up your own trigger specification.

In the ANALYZER menu, press F3 to set up a trigger on a
single address. You will be prompted for the address.

For the z80, specify 29, the address of the jump
instruction.

ANALYZER MENU

F1 RESET AND TRACE FIRST CYCLES

F2 TRACE IMMEDIATELY

F3 TRACE FROM A SPECIFIC ADDRESS

F4 COUNT CYCLES BETWEEN TWO ADDRESSES
F5 SAMPLE THE BUS CONTINUOUSLY

Fe SAMPLE ADDRESS ACTIVITY
F10 RETURN TO MAIN MENU

Enter the Trigger address:29
The command is: 29 AS

-5 B7 0024 3C INC A
-4 B7 0025 3C INC A
-3 B7 0026 3C INC A
-2 B7 0027 3C INC A
-1 B7 0028 3C INC A
0 B7 0029 C30500 JP 5
3 B7 0005 0156034 LD BC, 3456
6 B7 0008 119A78 LD DE,789A
9 B7 000B 21DEBC LD HL,BCDE
C B7 000E C5 PUSH BC
D D7 18FF 34 write
E D7 18FE 56 write
The trigger address is always labeled as cycle 0, and the
rest of the bus cycles are labeled relative to the trigger.
As always, the program shows you only a screenful of the
trace. You can use the PgDn, Down Arrow and Home keys to look
through the trace, as mentioned two pages back.

-- Guided Demo -- Page 2-12

5. Use the DEBUG
Set a breakpoint to Establish Debug Control

The command is: RESET <address> RB

When you are done with the ANALYZER menu, press F10 to
get back to the MAIN menu.

In the MAIN menu, press F6 to choose the DEBUG -- SET
BREAKPOINTS AND SINGLE STEP PROGRAM menu.

Unilab MAIN MENU

Fé6 SET BREAKPOINTS AND SINGLE STEP PROGRAM

When you want to use any of the DEBUG features, you must
establish debug control-- which causes special hardware in the
UniLab to take control of your microprocessor. There are
several ways to establish DEBUG control. 1In this demonstration,
we establish DEBUG control by setting a breakpoint.

In the DEBUG menu, press F1 to set a breakpoint. You will
be prompted for the program address where you wish to set the
breakpoint. The example shows a breakpoint set at address 27,
two cycles before the JUMP instruction.

For more information on DEBUG control, consult the on-line
glossary entries for specific commands, or read the DEBUG section
of the Operations In Detail chapter. The Target Application Note
for your DDB software contains a sample trace and DEBUG session.

DEBUG MENU

F1 SET A BREAKPOINT TO ESTABLISH DEBUG CONTROL

F2 RESUME EXECUTION TO A BREAKPOINT

F3 EXECUTE THE NEXT STEP (WON'T FOLLOW JUMPS & BRANCHES)
F4 SINGLE STEP or IMMEDIATE DEBUG CONTROL

F5 GO TO AN ADDRESS WITH A BREAKPOINT SET

F6 GO TO AN ADDRESS AND EXIT THE DEBUG

F10 RETURN TO MAIN MENU

Enter the breakpoint address in emulation memory:27
The command is: RESET 27 RB resetting

AF=2928 (sz-a-pnc) BC=3456 DE=789A HL=BCDE IX=FFFF IY=FDFF SP=1900
0027 3C INC A (next step)

March 25, 1987 Page 2-13 -~ Guided Demo --

Use the DEBUG
Set another breakpoint The command is: <address> RB

Once you have established DEBUG control, you c¢an use
any of the other DEBUG features.

In the DEBUG menu, press F2 to set a breakpoint and
then release the processor. You will be prompted for the
address. When the program reaches the new breakpoint,
you will again see the breakpoint display.

Here we begin with the processor stopped just before
address 27 and set the next breakpoint to address 5. This
allows us to see the state of the processor immediately
after it executes the JUMP instruction.

DEBUG MENU

F1 SET A BREAKPOINT TO ESTABLISH DEBUG CONTROL

F2 RESUME EXECUTION TO A BREAKPOINT

F3 EXECUTE THE NEXT STEP (WON'T FOLLOW JUMPS & BRANCHES)
F4 SINGLE STEP or IMMEDIATE DEBUG CONTROL

F5 GO TO AN ADDRESS WITH A BREAKPOINT SET

Feé GO TO AN ADDRESS AND EXIT THE DEBUG

F10 RETURN TO MAIN MENU

AF=2928 (sz-a-pnc) BC=3456 DE=789A HL=BCDE IX=FFFF IY=FDFF SP=1900

0027

3C INC A (next step)

Enter the breakpoint address in emulation memory:'OS
The command is: 05 RB

AF=2B28 (sz-a-pnc) BC=3456 DE=789A HL=BCDE IX=FFFF IY=FDFF SP=1900

0005

015634 LD BC, 3456 (next step)

Breakpoints and DEBUG control

When you set a breakpoint to establish debug control, the
target microprocessor gets reset after the UniLab system sets up
the software breakpoint. When you resume to a breakpoint, the
processor continues execution from the current breakpoint.

-- Guided Demo -- Page 2-14

[

Use the DEBUG
Single-step through code The Command is: NMI

The UniLab single-steps either by issuing a hardware
interrupt (to the NMI or IRQ pin of the processor) or by
setting a breakpoint just after the instruction currently
pointed to by the program counter.

In the DEBUG menu, press F3 to single-step with the
hardware interrupt. You can also use F4 to single step,
but that option will not follow branches, calls, etc.

DEBUG MENU

F1 SET A BREAKPOINT TO ESTABLISH DEBUG CONTROL

F2 RESUME EXECUTION TO A BREAKPOINT

F3 EXECUTE THE NEXT STEP (WON'T FOLLOW JUMPS & BRANCHES)
F4 SINGLE STEP or IMMEDIATE DEBUG CONTROL

F5 GO TO AN ADDRESS WITH A BREAKPOINT SET

Fé6 GO TO AN ADDRESS AND EXIT THE DEBUG

F10 RETURN TO MAIN MENU

AF=2928 (sz-a-pnc) BC=3456 DE=789A HL=BCDE IX=FFFF IY=FDFF SP=1900
0027 3cC INC A (next step)

The command is: NMI

AF=2A28 (sz-a-pnc) BC=3456 DE=789A HL=BCDE IX=FFFF IY=FDFF SP=1900
0028 3C INC A {next step)

The command is: NMI

AF=2B28 (sz-a-pnc) BC=3456 DE=789A HL=BCDE IX=FFFF I1Y=FDFF SP=1900
0029 C30500 JP 5 (next step)

The command is: NMI

AF=2B28 (sz-a-pnc) BC=3456 DE=789A HL=BCDE IX=FFFF IY=FDFF SP=1900
0005 015634 LD BC, 3456 (next step)

Here we begin with the processor stopped at address 27, and
then press F4 three times, to step up to and then through the
jump instruction.

You can also use the NMI command to establish DEBUG control
in the first place, instead of RESET <addr> RB. 1In fact, if you
accidentally set a breakpoint on an address that is never
executed, then you can press any key, which will generate a
hardware interrupt.

March 25, 1987 Page 2-15 -- Guided Demo --

End Note
Summary

This demo has gone through the process of loading a progranm,
looking at it, and running it. It generated two traces of the
program, then set breakpoints and single-stepped through a jump
instruction.

How to leave

If you now want to exit from the UnilLab program, type BYE.

Preview: advanced trigger and trace

Every bus cycle, the UniLab reads in 6 bytes of information.
In this Guided Demo we set a trigger specification on only 2
bytes-- the 16 bits of the address input with the AS command.

The trigger can be a much more sophisticated than that. You
can also:
1) set triggers on any combination of the six
bytes that the UniLab reads from the target
board each bus cycle,

2) use qualifiers to delay the search for the
trigger until after some other bus activity
occurs,

3) and produce filtered traces that can include

or exclude the bus cycles you describe.

These capabilities are discussed in the Command section of
Chapter Three.

Preview: more DEBUG

As was hinted in the last section of this demonstration,
there is more than one way to establish DEBUG control. And once
you have control, there are a number of things you are able to
do, besides setting breakpoints and single-stepping through
emulation ROM:
alter any writable register,
examine and alter target system RAM,
read and write to ports,
set multiple breakpoints,
set breakpoints and single-step through RAM,
exit DEBUG control.

(o2 O BTSN U I AR
Nt Nt St ww? '

These are discussed in the Target Application Note for your
DDB software, as well as in the DEBUG section of the Chapter Six.

-~ Guided Demo -- Page 2-16

Preview: command mode

As you use the menus, you will gain familiarity with UniLab
methods and commands. Soon you will feel comfortable enough to
operate in command mode most of the time.

In command mode you have access to many helpful features
that you cannot use in menu mode. For example, you can split the
screen, and display different data in the top and bottom. Or,
you can invoke the "mode panel" and toggle features on and off.

For more information, consult the Commands and Special
Features sections of Chapter Three.

Next

With the background this chapter has given you, you, should
be able to get to work with the basic features of your software.

You can gain more expertise as you need it, with the help of
the printed documentation and the on-line help facilities.

March 25, 1987 Page 2-17 -- Guided Demo --

Chapter Three:

Operations
Contents

Overview 3-2
1. Menu Mode 3-4
2. Command Mode - 3-20
The Command Language 3-21

The Simple Trigger 3-23
Specify Delay Cycles 3-26
Describe the Trigger Bus Cycle 3=-27

The Filter Trigger 3-30

The Qualifier Trigger " 3-34
Trigger Specification Examples 3-40

3. DOS and the UniLab 3-46
Command Tail 3-46
Batch files 3-47
Command Tail and Macros : 3-49

4. Special Features 3-50
Key Diagrams 3-54

The Use of Special Keys 3-59
Trace display 3-59

Screen history 3-61

Windows 3-63
Disassembly from memory 3-66

Change window size 3-68

Split screens and help displays 3-69

Command line editor 3-70

View texfiles 3-76

March 25, 1987 Page 3-1 -- Operation --

Qverview

Chapter description

This four section chapter provides an overview of the Unilab
features.

Section One is an exhaustive guide to the menu system.

Section Two introduces the Unilab command language, then
focuses on how to build a trigger specification. It includes flow
charts which illustrate the trigger commands. Many examples are
worked through and explained.

The brief third section shows how to use DOS batch files and
the UnilLab command tail. This knowledge can reduce repetition and
tedium while you test and alter your code.

The last section demonstrates special screen-oriented
features of the UnilLab, and explains the features assigned to
function keys and cursor keys in command mode.

When to use: menus, commands and special features

Menus

The menus help to guide your activities when you first work
with the Unilab. And they help you learn the command language, by
displaying the command which corresponds to your menu selection.
Most UnilLab commands can be used while in the menu system. This
allows you to try out a command as soon as you learn it. After a
short time, you will be ready to work without menus.

Commands
Use the command mode when you have gained passing familiarity
with some of the Unilab's functions. In command mode you have

access to the full power of the UnilLab trace, trigger and DEBUG
features, and can take advantage of the special features that are
not available in menu mode.

-- Operation -- Page 3-2

Special features

You can start using the special features as soon as you leave
menu mode. The wealth of special features includes:

the split screen, to show several types of information at
once,

the screen history, to recover commands and displays,

the command line editor, to edit and re-issue commands,

the mode panel, to toggle features on and off, etc.

Related chapters

When you require more information than this chapter provides,
turn to the Operations In Detail chapter of the Reference Manual
for in-depth information about every aspect of the instrument.

For information on the Program Performance Analyzer (PPA)
consult Chapter Four.

If you have not yet installed and verified your Unilab
system, turn to Chapter One, Installation.

March 25, 1987 Page 3-3 -- Operation --

1. The Menu Mode

The menu system allows you to do work with the Unilab without
any previous experience-- and at the same time gain familiarity
with the commands. You enter (and leave) the menu system with
function key 10 (F10).

You get the Program Performance Analyzer (PPA) menu Dby
pressing ALT-F10. See the next chapter for more information on
the PPA.

After you have gained familiarity with the UnilLab program,
you will spend most of your time working with the command
language, which allows you to control all aspects of the
instrument from a single context.

Choose from menus
You choose from the menus with the press of a function key
Whenever you make a menu choice, the Unilab program will:
ask you for any needed parameters,
tell you what command you would use,
and then execute the command.

The arrangement of options

Within many of the menus, the options appear in roughly the
order that you will need them. For example, the ADVANCED ANALYZER
menu shows the trigger spec commands in order of increasing
complexity.
Commands and special features in menu mode

You can use many Unilab commands from within the menu mode.

However, the mode panels, windows and most of the other
special functions are pot available.

-- Operation -- Page 3-4

-- Menus --

Map to the menu system

Each of the following pages shows one of the menus, and
briefly explains the menu choices.

The chart below shows you the straightforward arrangement of
the menus. The only complication, and that a mild one, is that
you must travel through the EPROM reader menu to get to the two
EPROM programmer menus. Even with this inconvenience, you can get
any EPROM programmed with five key strokes, in the very worst
case.

The charts on the next two pages illustrate the functions
available from each submenu. The first chart shows the
descriptions of the options, the second lists the equivalent
commands.

(Main Menu)

olcicicicl

Enable Examine Set Stimulus Read
Program or Alter Anslyzer Generstor EPROM
Memory Memory Trigger
Load or Anslyz er— Set Breakpoints Toolkit of Retumto
Save Waltch Screen Command
Program Progrem ‘Displays @ Mode
Execute
EPROM
Programmer#1
EPROM
Programmer #2

In the Main menu, press F10 to exit from menu mode. Press
Fl0 again to return to menu mode.

From any of the sub-menus, press F1l0 to return to the Main
menu.

March 25, 1987 . Page 3-5 -- Operation --

(Main Me nu)
A\

Display Status of Memory

Display status of memory
Enable a range of memotry
Add another range

Set A16-19, memory segment
Disable all emulation memory

Load or Save Program

Load Intel HEX file
Load binary object file

(3

Q (% (¥

Examine or Change
Memory

Examine and alter memory
Disassemble from memory
Change one byte

Change one word

Fill a range with a single value
Move an area of memory
Compare two areas of memory
Examine a range of memory

Analyzer-- Watch

Advanced Analyzer
Trigger

Trigger on: An address
An address range
An address range and data valie
Outside an address range

Filter, excluding an address rangg

Enable/Disable RESET

Program Execute

Reset and trace first cycles

Set Breakpoints

Breakpoint for DEBUG control

(=)

Stimulus Generator

Set a stimulus bit
Reset a stimulus bit
Define all 8 stimulus bits

Toolkit of Screen

Displays

3

Display 2716 pinout

Save a range of memory to file
Load the sample program

Trace immediately

Trace from an address

Count cycles between addresses
Sample the bus continuously
Sample the address lines only

Resume to another breakpoint
Execute the next step

Single step & Immediate DEBUG
Go to address rand set breakpoint
Go to address and exit DEBUG

Display 2764 pinout

@

EPROM Reader

Read 2716/48016
Read 2532

Read 2732

Read 2764

Read 27128
Read 27256

Read 27512

Display connection between TlniLab and Target

Display catalog of all pinouts
Display ASCIi table

@

EPROM Programmer #1

EPROM Programmer #2

(Main Menu)

0.0 _6_a_0

Display Status of Memory

ESTAT

<addr> EMENARLE
ALSO <addr> EMENABLE
<value> =EMSEG
EMCLR

Load or Save Program

HEXLOAD <file>
<adr> <adr> BINLOAD <file>
<adr> <adr> BINSAVE <file>

LTARG

Examine or Change
Memory
<adr> MODIFY
<adr><count> DM
<byte><adr> M!
<word><adr> MM!
<adr><adr><byte> MFILL

Analyzer-- Watch

Advanced Analyzer
Trigger
<adr> AS

NORMT <adr> TO <adr> ADR S
NORMT <adr> TO <adr> ADR <byte> DATA S
NORMT NOT <adr> TO <adr> ADR S

ONLY NOT <adr> TO <adr> ADR AFTER <adr> ADR

RESET or RESET'

Program Execute

STARTUP
NOW?
<adr> AS

<adr> <adr> CYCLES?

SAMP
ADR?

RESET <adr> RB

<adr> RB
N
NMI

<adr> <adr> GB

<adr> G

Set Breakpoints

Stimulus Generator
<bit#> SET
<bit#> RES
<byte> STIMULUS

Toolkit of

Displays
52716
S2764
SXXXX

CATALOG

ASC

9) (9

EPROM Reader

RPROM
R2532
R2732
RPROM
RPROM
R27256

<adr>
<adr>
<adr>
<adr>
<adr>
<adr>

<adr>
<adr>
<adr>
<adr>
<adr>
<adr>
R27512

Screen

‘F9|
EPROM Programmer #1

EPROM Programmer #2

-- Menus --

The Unilab system will present you with the main menu
whenever you enter menu mode, which you do either with function
key 10, or with the command MENU

Unilab MAIN MENU

F1 ENABLE PROGRAM MEMORY

F2 LOAD OR SAVE A PROGRAM

F3 EXAMINE OR CHANGE PROGRAM MEMORY

F4 ANALYZER-- WATCH PROGRAM EXECUTE

ES ADVANCED ANALYZER TRIGGER

Fé SET BREAKPOINTS AND SINGLE STEP PROGRAM

E7 USE THE STIMULUS GENERATOR

F8 TOOLKIT ROUTINES

F9 READ OR PROGRAM A PROM

F10 EXIT TO COMMAND MODE

Explanation

None of the entries on this menu actually correspond to
UnilLab commands. You use this menu to choose the appropriate sub-
menu. The options appear in the order that you will need them:

To work on your target software in emulation ROM, you need
first to enable memory (Fl), and then load the program into
emulation memory (F2).

After that, you will probably want either to look at the
program in memory (F3) or to watch it execute (F4). You will need
both of these capabilities during your work with the target
system.

Most of your time with the Unilab will be spent setting
trigger specifications and examining the traces that result. This
is how you track down bugs. The menu supplies the most common
trigger commands (F5). You will need to use commands to make use
of the full power of the UniLab trigger logic.

After you track the bug down to a small section of code, you
might want to look at the internal state of the processor (F6)
while it executes that portion of the program-- though this is not
necessary for most test and diagnostic work. But if you want to
look at the internal state, you must first establish DEBUG
control. You can then take advantage of all the DEBUG features,
including the ability to single-step.

When you are done with testing and altering your code, you
can burn the tested program into an EPROM (F9).

-- Operation -- Page 3-8

-- Menus --

In the Main Menu, press Fl to get the first sub-menu:
ENABLE PROGRAM MEMORY MENU

Fl DISPLAY CURRENT STATUS OF EMULATION MEMORY
F2 ENABLE A RANGE OF EMULATION MEMORY
F3 ADD ANOTHER RANGE OF MEMORY
F4 SET Al6-Al19 MEMORY SEGMENT BITS
F5 DISABLE ALL EMULATION MEMORY
F10 RETURN TO MAIN MENU
Explanation

Use this menu to tell the Unilab which ROM addresses it is to
emulate.

The Unilab can load programs into any area of emulation
memory that has been enabled. Check the current status of
emulation memory with the first menu choice (Fl1l or ESTAT) before
loading in a program. The Unilab can load a program into target
RAM, after DEBUG control has been established.

Enable an area of emulation memory with the second menu
choice (F2 or <start addr> <end addr> EMENABLE). This will clear
out any previous enable settings. The command SAVE-SYS
<filename> will save the current settings of Unilab software.

Save the software after you enable the range of memory that you
need for your project, and you will not need to enable memory
again.

To enable another range of memory without clearing out the
previous setting, pick the third item on the menu (F3 or ALSO
<start addr> <end addr> EMENABLE) .

The upper four bits of the address are properly set up by
each Disassembler/DEBUG software package. In the unlikely event
that you need to change that setting, use menu choice four (F4 or
<hex digit> =EMSEG). The change does not have any effect until
the next EMENABLE command. See the first section of the
Operations In Detail chapter in the Unilab Reference Manual if
you need more information about the upper four bits of the
address.

To disable all emulation memory use the fifth menu choice (F5
or EMCLR). Normally this is done only when you want to run a
program from a ROM chip on the microprocessor board. This command
also disables the DEBUG features.

As in all sub-menus, F1l0 returns you to the MAIN MENU.

March 25, 1987 Page 3-9 -- Operation --

-- Menus --

Press F2 from the MAIN MENU to get the second sub-menu:
LOAD OR SAVE PROGRAM MENU

F1l LOAD INTEL HEX FILE
F2 LOAD BINARY OBJECT FILE
F3 SAVE A RANGE OF MEMORY TO DISK FILE
F4 LOAD A SAMPLE PROGRAM
F10 RETURN TO MAIN MENU
Explanation

Use this sub-menu to load programs into emulation memory, or
to save memory as a binary file.

An INTEL hex format file contains within it the address that
every byte of code will go to. When you load one of these files,
you specify only the name of the file, since you cannot choose
what addresses it will load into (F1 or HEXLOAD <file name>).

When you load a binary object file, you must specify where in
emulation ROM to start and end
(F2 or <from addr> <to addr> BINLOAD <file name>). The program
will load until either it reaches the <to addr>, or it reaches the
end of file, whichever comes first. If you wish, you can load
only a portion of a file.

Save a range of memory to a disk file with the third menu
choice
(F3 or <from addr> <to addr> BINSAVE <file name>) .

Load and run the simple test program as part of the
verification of your installation (F4 or LTARG). This choice
changes the enable status of emulation ROM.

As in all sub-menus, F10 returns you to the MAIN MENU.

-- Operation -- Page 3-10

-- Menus --

Press F3 from the MAIN MENU to get the third sub-menu:
EXAMINE OR CHANGE PROGRAM MEMORY MENU

Fl EXAMINE AND ALTER MEMORY

F2 DISASSEMBLE FROM MEMORY

F3 CHANGE ONE BYTE

F4 CHANGE ONE WORD

F5 FILL A RANGE OF MEMORY WITH ONE VALUE
Fé6 MOVE AN AREA OF MEMORY

F7 COMPARE TWO AREAS OF MEMORY

F8 EXAMINE A RANGE OF MEMORY
F10 RETURN TO MAIN MENU

Explanation

Use this sub-menu to examine, alter, move and compare either
emulation ROM or target RAM. All memory operations work on RAM,
after you have established DEBUG control; or, with the NMI-
dependent automatic DEBUG control feature, any time you hdve a
program running

Call the screen oriented display to see the hexadecimal and
ASCII representation of memory, and alter it if you wish (Fl or
<addr> MODIFY) .

Use the disassembler to see what instructions are stored in
memory (F2 or <from addr> <# of instructions> DM).

Alter memory either with choice three to change a byte (F3 or
<byte> <address> M!), or with choice four to change a 16-bit word
(F4 or <word> <address> MM!) .

Use menu choice five to fill a block of memory with a single
byte (F5 or <from addr> <to addr> <byte value> MFILL).

Move blocks of code from one place to another with choice six
(F6 or <start addr source> <end addr source> <start addr dest>
MMOVE) .

Use choice seven to compare two areas of memory, and get a
display of where they differ (F7 or <from addr> <to addr> <comp
addr> MCOMP) .

Choice eight shows a hexadecimal and ASCII dump of any range
of memory (F8 or <from addr> <to addr> MDUMP) .

As in all sub-menus, F10 returns you to the MAIN MENU.

March 25, 1987 Page 3-11 -- Operation --

-- Menus --

Press F4 from the MAIN MENU to get the fourth sub-menu:

ANALYZER MENU

F1l RESET AND TRACE FIRST CYCLES
F2 TRACE IMMEDIATELY
F3 TRACE FROM A SPECIFIC ADDRESS
F4 COUNT CYCLES BETWEEN TWO ADDRESSES
F5 SAMPLE THE BUS CONTINUOUSLY
Fé SAMPLE ADDRESS ACTIVITY
F10 RETURN TO MAIN MENU
Explanation ‘

This submenu provides six "pre-configured" analyzer triggers,
that will capture and display program execution.

Use the first menu choice to look at the first cycles that
your program executes (F1l or STARTUP). This is a good first step
when you start testing a new piece of software for your
microprocessor board,

Choice two captures a "snapshot" trace buffer of the current
state of the target system (F2 or NOW?). This command
demonstrates an important principle: your processor does not stop
when you capture a trace. While you are examining the "frozen"
trace buffer, the processor continues to execute code.

The simplest-- and most frequently used-- trigger
specification tells the Unilab to show what happens after the
program reaches the address you specify (F3 or <addr> AS).

Use choice four to count the number of bus cycles that occur
between addresses (F4 or <first addr> <second addr> CYCLES?).

Choice five gives a rather rough grained view of your program
by displaying one bus cycle per second (F5 or SAMP) .

An even rougher grained view is available. You can look at
sample of only the address bus (Fé or ADR?).

As in all sub-menus, F10 returns you to the MAIN MENU.

-- Operation -- Page 3-12

-- Menus --

Press F5 from the MAIN MENU to get the fifth sub-menu:
ANALYZER TRIGGER MENU

Fl TRIGGER ON AN ADDRESS
F2 TRIGGER ON A RANGE OF ADDRESSES
F3 TRIGGER ON A RANGE OF ADDRESSES AND A DATA VALUE
F4 TRIGGER OUTSIDE A RANGE OF ADDRESSES
F5 FILTER EXCLUDING A RANGE OF ADDRESSES AFTER AN
ADDRESS
F6 TURN RESET OFF OR ON (reset is now on)
F10 RETURN TO MAIN MENU
Explanation

This sub-menu provides several of the more common triggers
that can be built with the UniLab command language.

The first choice is a repeat from the fourth menu. It sets a
trigger on an address (Fl or <addr> AS).

Use the second choice to trigger when any member of some
range of addresses appears on the bus (F2 or <addr> TO <addr> ADR
S). You can also set a trigger on several ranges of addresses,
but not with a menu selection.

Choice three does allow you to trigger only when both a given
range of addresses and a given data value appear on the bus
(F3 or NORMT <addr> TO <addr> ADR <byte> DATA 8).

Use choice four to trigger when the processor goes outside a
given range of memory (F4 or NOT <addr> TO <addr> ADR S8). With
most DDB software packages, you can limit the trigger event still
further with one of the commands WRITE, READ, or FETCH. Then
you can set up the Unilab to trigger when the processor tries to
fetch from outside of ROM, or write outside of RAM,.

Choice five will capture a trace that starts to record when
one address appears and excludes some other range of addresses
from the trace (F5 or ONLY NOT <addr> TO <addr> ADR AFTER
<trigger addr> ADR 8).

With RESET enabled, the Unilab resets your target processor
when the analyzer is started-- that is, whenever an S8 is issued.
With RESET disabled, the analyzer will search the program "in
progress" for the trigger whenever an 8 is issued. Toggle RESET
on and off with choice six (F6 or RESET and RESET').

As in all sub-menus, F1l0 returns you to the MAIN MENU.

March 25, 1987 Page 3-13 -- Operation --

-- Menus --

Press F6é from the MAIN MENU to get the sixth sub-menu:

DEBUG MENU

Fl SET A BREAKPOINT TO ESTABLISH DEBUG CONTROL
F2 RESUME EXECUTION TO A BREAKPOINT
F3 EXECUTE THE NEXT STEP (WON'T FOLLOW JUMPS &
BRANCHES)
F4 SINGLE STEP or IMMEDIATE DEBUG CONTROL
F5 GO TO AN ADDRESS WITH A BREAKPOINT SET
F6 GO TO AN ADDRESS AND EXIT THE DEBUG
F10 RETURN TO MAIN MENU
Explanation

This sub-menu provides DEBUG features that establish DEBUG
control, display internal registers and single-step through your
program. The menu selections do not provide you with all the
features available in command mode.

Use the first choice to set a breakpoint on the first address
of an instruction (F1l or RESET <addr> RB). This command causes
. the processor to start executing the program from the beginning,
and then disables RESET. When the program reaches the breakpoint
and shows the internal register display, you have established
DEBUG control.

With DEBUG control established, use the second choice to set
a new breakpoint and free the processor from debug control, so
that it can run until it reaches the new breakpoint (F2 or <addr>
RB). This command does not cause your program to start again.

Once at a breakpoint, step through instructions one at a time
with a display of the internal registers at each step (F3 or N),.
This command will not follow jumps, calls or branches.

Use choice four to either establish DEBUG control in the
first place, or to step through your code (F4 or NMI). This
feature works on both "in-line" code and on jumps, calls, etc.
It uses the hardware interrupt of your processor to s:nglp—step
(except with the 8088/86 DDB package) .

From a breakpoint, alter the program counter and then set a
breakpoint with menu choice five (F5 or <New PC> <addr> GB).

Use option six to change the program counter and then release
the program from DEBUG control without a breakpoint set (F6 or
<New PC> G).

As in all sub-menus, F10 returns you to the MAIN MENU,

-- Operation -- Page 3-14

-- Menus --

Press F7 from the MAIN MENU to get the seventh sub-menu:
STIMULUS MENU

Fl SET A STIMULUS BIT
F2 RESET A STIMULUS BIT
F3 DEFINE ALL 8 STIMULUS BITS
F10 RETURN TO MAIN MENU
Explanation

Use the stimulus generator to send signals out through the
PROM PROGRAMMER socket. These eight signals, which you control
from your keyboard, can replace the usual prototype board dip
switch. This sub-menu provides all the stimulus features.

Use the first choice to set (change to high signal) a single
bit of the stimulus output (F1l or <bit number> SET).

Use the second choice to "reset" (change to low signal) a
single bit of the stimulus output (F2 or <bit number> RES). .

Use the third choice to specify all eight bits at once, by
setting the output to the value of two hexadecimal digits (F3 or
<byte wvalue> STIMULUS) .

As in all sub-menus, F10 returns you to the MAIN MENU.

March 25, 1987 Page 3-15 : -- Operation --

-- Menus --

Press F8 from the MAIN MENU to get the eighth sub-menu:
TOOLKIT MENU

Fl DISPLAY PINQUT OF 2716 PROM
F2 DISPLAY PINOUT OF 2764 PROM
F3 DISPLAY PINOUT OF PROCESSOR AND Unilab CABLE
F4 DISPLAY CATALOG OF AVAILABLE PINOUTS
F5 DISPLAY ASCII TARLE
F10 RETURN TO MAIN MENU
Explanation

The toolkit menu provides valuable reference screen displays.

The most valuable is the chip diagram that shows how the
cables connect to your processor (F3 or PINOUT) .

The other choices show you the chip diagram of two PROMs (F1
and F2), a catalog of commands you can use to get the chip
diagrams of many processors (F4-- but note that these commands are
not functional in menu mode), and a display showing the
hexadecimal codes for every ASCII character (F5).

As in all sub-menus, F10 returns you to the MAIN MENU.

-- Operation -- Page 3-16

-- Menus --

Press F9 from the MAIN MENU to get the ninth sub-menu:
PROM READER MENU

F1 READ 2716/48016 - use PM16
F2 READ 2532 - use PM1l6
F3 READ 2732 - use PM32
F4 READ 2764 - use PMoc4
F5 READ 27128- use PM64 (PM56 for 271283)
F6 READ 27256- use PMS56
F7 READ 27512~ use PM512
F3 Go to Prom Programmer Menu
F10 RETURN TO MAIN MENU
Explanation

Use this sub-menu to load a program from an EPROM into the
UnilLab's emulation ROM. Use the ninth option to get write into an
EPROM with the PROM PROGRAMMER MENU (press F9).

Menu Choice Command
F1l RPROM
F2 R2532
F3 R2732
F4 RPROM
F5 RPROM
Fé6 R27256
F7 R27512

Each entry on the menu tells you which Personality Module (PM) you
need to use while reading from the PROM. The PM nestles next to
the EPROM PROGRAMMER socket, and alters control signals as
necessary for each PROM.

You can perform all EPROM programming and reading from within
the menu system. The commands, though available, are only
necessary for programming EPROMs within macros.

See Appendix G for more information on EPROMs and commands.

As in all sub-menus, F1l0 returns you to the MAIN MENU.

March 25, 1987 Page 3-17 -- Operation --

-- Menus --

Press F9 from the PROM READER MENU to get the first PROM
PROGRAMMER sub-menu:

Explanation

PROM PROGRAMMING MENU #1

Fl
F2
F3
F4
F5
F6
E7
F9
F10

PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
Next page
RETURN TO

R

2716 (use PM16 personality module)
2532 (use PM16 personality module)
2732A (use PM32 personality module)
2764A (use PM64 personality module)
27128A (use PM56 for A version)
27256A (use PM56 personality module)
27512 (use PM512 personality module)
of Prom Programming Menu

MAIN MENU

the two PROM PROGRAMMING menus can program any EPROM'that
Orion supports.

Menu Choice

Fl
F2
F3
F4
F5
F6
F7

Command
P2716
pP2532
P2732A
P2764
P2764
P27256
pP27512

Press F9 to get the second page of the menu.

See Appendix G if you want more information on EPROMs and

commands.

As in all sub-menus,

-- Operation --

F10 returns you to the MAIN MENU.

Page 3-18

-- Menus --

Press F9 from the first PROM PROGRAMMER sub-menu to get the second
PROM PROGRAMMER sub-menu:

PROM PROGRAMMING MENU #2

Fl
F2
F3
F4
F5
F6
F9
F10

Explanation

These two PROM PROGRAMMING menus provide you with all

PROGRAM A 27C16
PROGRAM A 48016
PROGRAM A 27C32
PROGRAM A 2764
PROGRAM A 27128
PROGRAM A 27256
RETURN TO

EPROM burning tools you need.

Menu Choice

Fl
F2
F3
F4
F5
Fé6

(use
(use
(use
(use
(use
(use

Command
PD2716
P48016
P27C32
PD2764
PD2764
PD27256

PM16
PM16
PM16
PM64
PM64
PM56

PROM READER MENU
RETURN TO MAIN MENU

personality
personality
personality
personality
personality
personality

Press F9 to return to the PROM READER MENU.

module)
module)
module)
module)
module)
module)

the

See Appendix G if you want more information on EPROMs and

commands.

As in all sub-menus, F10 returns you to the MAIN MENU.

March 25, 1987

Page 3-19

-- Operation --

2. The Command Mode

The Unilab command language has several significant
advantages over the menu system:

more power,
more flexibility,

access to the mode panels,

the split screen capability,
and the other special features.

The steps you go through stay the same, whether you use
commands or the menu mode:

1. enable memory,
2, load in a program,
3. set trigger specs and examine traces.

The big difference is that in command mode you make up any trigger
specification you want.

The bulk of this section covers the heart of the UniLab--how
to use the Unilab trigger commands to build a trigger
specification.

Related information

Turn to the Target Application Note of your DDB software
package for information on the processor-specific aspects of the
the Unilab software.

For more help with interpreting the trace display, consult
section One of the Operations In Detail chapter in the Unilab
Reference Manual.

If, after going through the information here, you want to
know more about the trigger commands, turn to section Four of that
chapter.

-- Operation -- Page 3-20

-- Commands --

mman Lan

In command mode, the line of text you type in is interpreted
whenever you press the carriage-return (Enter) key.

Common commands are assigned to scome function keys. Other
function keys summon help screens. Altogether forty soft-keys are
available to you on the function keys. Several more features are
assigned to the numeric key pad (cursor keys).

Any command that is still on the screen can be edited and
reissued. Even commands that have scrolled off the screen can be
reclaimed with the history feature, then edited and reissued.
These special features are covered in the Special Features section
of this chapter, along with the other features assigned to cursor
and function keys are covered in the Special Features section of
this chapter.

Enter command mode

You are normally in command mode when you first start the
program. In the menu system, go to the main menu and press
function key 10 (F10) to re-enter the command mode.
Notation conventions

Throughout the manual, UPPER CASE BOLDFACE type represents
commands. The UnilLab program itself accepts commands in any
mixture of upper and lower case.

Parameter conventions

Many commands must be preceded by one or more parameters.
The numbers you enter are interpreted as hexadecimal numbers.

Most commands will give an error message if you specify too
few parameters.

Commands that require a file name, such as SYMSAVE,

BINLOAD, etc., will prompt you for the file name if you do not
enter it.

March 25, 1987 Page 3-21 -- Operation --

-- Commands --

Other number bases

Though numbers are usually entered in hexadecimal, you can
also use decimal or binary if you precede the number with D# or B#
respectively.

Flexible entry of parameters

Entering the parameters before the command allows unlimited
flexibility in how you enter the number. For example, you can
enter a symbol, the number itself, or an equation (using reverse
polish notation) which uses as many numbers and symbols as you
like.

Spaces

Spaces are used to separate commands. It doesn't matter how
much "white space" (blank spaces)is used, as long as there is at.
least one space. The absence of space will cause the Unilab
software to misunderstand your commands.

Multiple commands can be strung together on a single line if
desired.

"Not recognized”

If the UnilLab software does not understand the command or
parameter that you have entered, it will respond with the message
"not recognized," and a row of carats (") pointing to the first
word that it does not recognize.

Usually this is the result of a typing error. You can either
retype the command, or use the command line editor to edit and re-
issue the command (see the Special Features section of this
chapter) .

Examples

The examples in the rest of this section were mostly drawn
from the Command Reference chapter of the Unilab Reference Manual.

-- Operation -- Page 3-22

-- Commands --

1 Simple Tri

Most of your test and diagnosis work can be done with simple
triggers. The simplest trigger specification has two parts:
a description of the bus cycle to trigger on
(the trigger bus cycle), and
the number of cycles to record after the trigger
cycle
(the delay counter value).

The flow chart on the next page illustrates the simple
trigger.

As soon as you start the UnilLab's bus state analyzer, it will
start looking for the trigger bus cycle, meanwhile recording every
cycle.

Trigger wait status 1line

If the search for trigger takes more than a few hundred
milliseconds, the UniLab will give you the trigger wait status.

TRIGGER Vait Status: DELAY Count=EJNPASS Count=RI(OX

This line shows you the status of both the delay counter,
explained below, and the "pass counter"™ which is explained in the
discussion of additional qualifier capabilities.

Post-trigger actions

When the Unilab finds the trigger cycle, it continues to
record bus cycles, but now counts them by decrementing the delay
counter each time it records a cycle. When the requested number
of cycles after the trigger have been recorded, the UniLab will
freeze the trace buffer and send it up to the host.

Coming attractions

The page following the flow chart has an example of a simple
trigger spec. Then come sub-sections which tell you how to specify
the number of delay cycles and how to describe the bus cycle that
you wish to trigger on. After the presentation of cycle
description commands come three more flow charts. One illustrates
a filtered trigger specification, the other two show the qualifier
logic.

March 25, 1987 Page 3-23 -- Operation --

-- Commands --

trigger bus cycle O—>P| into UniLab trigge

logic circuitry

Start search for [Read bus cycle]‘
r

|

Cycle
matches
trigger
description?

No Write cycle into)
[trace buffer

Yrite cycle into ‘_ﬁ
trace buffer

‘ Decrement
delay counter

Delay counter
down to
Zero?

Freeze trace buffer
and send up to host

Flow chart of
Simple Trigger

-- Operation -- Page 3-24

-- Commands --

Example: simple trigger

You can specify a simple trigger on address 23 with the
command string:
NORMT 23 ADR

and then use the command TSTAT to examine the trigger status. The
UnilLab will not start looking for the trigger until you start it
with the command S.

When you look at the trigger status, you will see a display
like this:

TSTAT

Analyvzer Trigger Status

23 ADR
AO0 DCYCLES 0 QUALIFIERS

The "23 ADR" is the description of the trigger bus c&cle. A0
is the number of cycles to record in the trace buffer after the -
trigger (the delay count).

So when you tell the bus state analyzer to start, by typing
'8, the Unilab will look for a bus cycle which has an address of
23, and have its delay counter set to AO. Since you have not
specified any other limitations, the UniLab does not care what
value is on the data lines, control lines, or miscellaneous
inputs.

Once the UniLab sees a bus cycle with address 23, it will
start decrementing the delay counter for every cycle it clocks in.
When A0 (decimal 160) additional cycles have been clocked in, the
UniLab will freeze the trace buffer and send it up to the host,
where it will be displayed.

The trigger cycle is always labeled as cycle zero. With

NORMT, the trace will contain 9 cycles before the trigger and AQ
cycles after it.

March 25, 1987 Page 3-25 -- Operation --

-- Commands --

Specify number of delay cycles

In the example above, the delay counter is set to A0O. That
value was set by the command NORMT.

The three commmands NORMT, NORMM and NORMB, serve a double
purpose. They each:
clear out the previous trigger specification, and
set the value of the delay counter.
As you might guess from the names, these three words set the value
of the delay counter so that the trigger cycle will end up at the
top, middle or bottom of the trace buffer.

mman Delay
Hex Decimal
NORMT A0 160
NORMM 55 85
NORMB 04 4

-

These three commands will serve your needs almost all of the
time.

You can set the delay counter to any value you like, though
you rarely will have need to do so. When you do want to set it to
a non-standard delay, use the command:

<number of cycles> DCYCLES

after one of the NORMx words.

-- Operation -- Page 3-26

-- Commands --
ri h i r

The Unilab reads 48 bits from the target system every bus
cycle. These are organized as six 8-bit groups.

The Unilab can trigger on anything from just one value on a
single input group, up to multiple ranges of wvalues, on each of
the six input groups.

Coming attractions

The next three pages show how to describe a bus cycle. That
background material is followed by discussions of filtered traces
and qualifiers. Then this command language section ends with
several pages of trigger specification examples.

The input groupings

On every target system bus cycle, the Unilab software reads.
six bytes of inputs from the target system's bus:
two bytes of address, :
two bytes of data (if a 16-bit data bus),
a byte of control values, and
a byte of miscellaneous inputs.

You can set a trigger on any of the bytes separately or in.
combination, using the names that the Unilab assigns to the
groupings. With processors that have an 8-bit data bus, the high
byte of the data inputs can be used as an additional byte of
miscellaneous inputs.

The names

Each of the groupings of inputs is referred to using the same
descriptive name that labels it on the trace display:

CONT ADR DATA HDATA MISC

Each of these names labels one byte of the inputs into the
UnilLab, except for ADR, which labels 2 bytes. You can refer
separately to the two byts of the address with LADR and HADR.
With 8-bit data bus processors, HDATA column appears on the trace
next to the MISC column. 16-bit processors show both the HDATA
and the DATA byte under the DATA column.

March 25, 1987 Page 3-27 -- Operation --

-- Commands --

Set a trigger on a single value

To set a trigger on a single value, you first clear out any
previous definitions with one of the NORMx commands, and then
define the new trigger with a value, followed by the name of one
of the groupings:

<l6-bit wvalue> ADR
to trigger on a 16-bit address (A0 to AlS5).

<8-bit wvalue> CONT
to trigger on cycle type and on Al6-Al09.

<8-bit value> DATA
to trigger on the data byte.

<8-bit value> HDATA
to trigger on the upper byte of a 16-bit data
bus or on anything you like with an 8-bit data
bus. .

<8-bit value> MISC
to trigger on anything you like. (Usually
target system inputs and outputs.)

Set a trigger on a range

Set a trigger on a range of values on any input group by
using <value> TO <value> in place of a single value. For
example:

10 TO 1A DATA

Set a trigger gutside a range by preceding the range with the
keyword NOT. For example, to trigger when a program goes outside
some acceptable area of memory, you would make this part of your
trigger bus cycle description:

NOT 0 TO 1000 ADR

-- Operation -- Page 3-28

-- Commands --

Set trigger on multiple input groups

The UniLab maintains independent truth tables for each 8-bit
input group, so you can trigger on a bus cycle that matches
certain values on each of several input group.

For example, you can tell the UnilLab to trigger only when it
sees 23 on the address lines, 61 on the data lines, 4F on the
control lines and 33 on the miscellaneous inputs:

NORMM 23 ADR 61 DATA 4F CONT 33 MIsC

You can specify ranges or, as explained below, multiple
values for each of the input groups.

Set trigger on any of several values on a single input
group

Use the keyword ALSO to add a value or a range to the trigger
description within an input group. For example, you can trigger
on any one of three data values:

NORMB 12 DATA ALSO 50 DATA ALSO 78 DATA
If you leave out the ALSOs, each use of DATA would clear out the

data truth table. You would end up with 78 DATA as the whole of
the trigger cycle description.

March 25, 1987 ‘ Page 3-29 -- Operation --

-- Commands --

1] Filt Tri

Use the filter trigger to capture a trace that includes only
cycles that match the trigger specification.

The filter trigger specification has two parts, very similar
to the simple trigger specification:
a description of the bus cycle to record
(the trigger bus cycle), and
the number of trigger cycles to record
(the delay counter wvalue).

The flow chart on the next page illustrates the filter
trigger. :

With the filter trigger, the trace buffer will only record
cycles that match the trigger specification. It will always
record A9 (169 decimal) occurrences that match the trigger bus
cycle description. ')

When you filter, the bus cycles will be marked with a lower~
case "f."

Specify a filter trigger

You specify a filter trigger with the same commands that you
use to specify the simple trigger, except that you start with the
command ONLY instead of one of the NORMx commands.

ONLY sets up the Unilab to record only those cycles that
match the trigger description.

-- Operation -- Page 3-30

-- Commands --

Start search for
trigger bus cycle, Read bus cycle

with filter on O—P] into UniLab trigger]H |

logic circuitry

Cycle
matches
trigger
description?

trace buffer

!

[Decrement)

\
[YWrite cycle into

delay counter

Delay counter
down to
Zero?

Freeze trace buffer
and send up to host

Flow chart of
Trigger with filter on

March 25, 1987 Page 3-31 -- Operation --

-- Commands --

Example: filter trigger

You can specify a filter trigger on address 23 with the
command string:
ONLY 23 ADR

and then use the command TSTAT to examine the trigger status. You
will see a display like this:

TSTAT

Analvzer Trigger Status
23 ADR
A9 DEVENTS MISC' FILTER O QUALIFIERS

The "23 ADR" is the description of the trigger bus cycle. A9
is the number of cycles to record in the trace buffer. As you can
see in the flow chart, only the bus cycles that match the trlgger
description will get written into the trace buffer.

When you tell the bus state analyzer to start (type S) the
Unilab will look for a bus cycle which has an address of 23. The
delay counter will be set to A9.

Since you have not specified any other limitations, the
UnilLab does not care what value is on the data lines, control
lines, or miscellaneous inputs.

Once the Unilab sees a bus cycle with address 23, it will
record that cycle in the trace buffer and decrement the delay
counter. Since the delay counter is not yet zero, the Unilab will
once again start looking for a bus cycle with address 23. When A9
(decimal 169) trigger cycles have been found, clocked in, and
counted, the Unilab will freeze the trace buffer and send it up to
the host, where it will be displayed.

You should ignore the first cycle in the trace buffer, as it

is a "leftover" that does not necessarily match the trigger
specification.

-~ Operation -- Page 3-32

-- Commands --

Additional filter capabilities and commands

You can, instead of ONLY, use one of the commands 1lAFTER,
2AFTER and 3AFTER. These commands clear out the previous
trigger specification and then set up the UnilLab to capture the
trigger cycle and the one, two, or three cycles which follow.

These triggers capture a trace that shows what happened just
after each of a series of trigger cycles. For example:

2AFTER 4500 ADR

will show you the bus cycles which access address 4500, and the
two cycles which follow each access to 4500.

This would be useful if 4500 were the address of a variable,
and you wanted to see which sections of your program write into
it; or, 1f 4500 were the address of a return instruction, the next
cycles would show the return address getting popped off tHe stack.

If you use TSTAT to look at the specification set up by these
commands, you will note that they use "qualifiers," and set up a
certain number of PEVENTS rather than DEVENTS.

The internal mechanism is only slightly different:
nothing gets recorded in the trace buffer until a
cycle matches the trigger specification.
When a matching cycle is found, both that cycle and
the one, two or three following are recorded.

The trigger status looks quite different, as does the flow
chart.

Filter primitives

Though you will probably use only the "prepackaged" filter
commands, the filter primitives are available to you. You can set
up some number of DEVENTS or PEVENTS and enable the filter with
MISC' FILTER or CONT FILTER. For more information on these
commands, consult the glossary entries, either on-line or in
Chapter Seven of the UniLab Reference Manual

March 25, 1987 Page 3-33 -- Operation --

-- Commands --

1 oualifi Tri

Use the qualifier trigger specify a sequence of bus cycles
that must be seen before the UnilLab starts to search for the
trigger cycle. The "qualifying sequence" can be up to FFFF
repetitions of up to 3 bus cycles.

The usual "one qualifier" trigger specification will have
only one additional part:

a description of the qualifier bus cycle that must
show up before the Unilab starts to search for
the trigger (the Q1 bus cycle).

You specify the Q1 cycle with the normal input group description
words. However, you use the keyword AFTER between the description
of the trigger and the description of the qualifier. For example:

NORMM 18FE ADR AFTER 47 CONT 20 ADR

sets up a trigger on address 18FE-- but the Unilab will ndt start
to look for this trigger until after it sees the qualifier cycles
of 47 on the control lines and 0020 on the address lines.

You can specify up to three qualifiers, by repeating the
keyword AFTER. The qualifier cycles must occur one immediately
after another, as indicated on the flow chart on the next page.
For example, if you have three qualifiers:

NORMB 10 ADR AFTER 40 DATA AFTER 20 DATA AFTER 35
DATA

then the UnilLab will start out searching for qualifier three (Q3),
which is 35 on the data lines. As soon as it finds Q3, it will
look, during the next bus cycle, for qualifier two. If that next
bus cycle does not have 20 on the data lines, the Unilab will
start to look for Q3 again.

When the Unilab does find Q3 followed by qualifier two (Q2),
it will look, during the next cycle, for Ql. And if it does not
find 40 on the data lines during that one cycle, it will go back
to searching for Q3.

Once the UnilLab finds the complete qualifier sequence, it

will start to look for the trigger. The Unilab will c¢ontinue to
search for the trigger cycle until it is found.

-- Operation -- Page 3-34

Re-entry if

Start if Z quelifiers

Read cycle into

trigger logic
circuitry, and
write cycle into
trace buffer

3 qualifiersQO—)

Cycle
matches
Q3?

Re-entry if
2 guelifiers

Start if

Read cycle into

2 qualifiers O—)p

trigger logic
cireuitry, and
write cycle into
trace buffer

Cycle
matches
Q22

Re-entry if
1 qualifier

Start if

Read cycle into

1 qualifier O—>

trigger logic
circuitry, and
write cycle into
trace buffer

Cycle

matches
Q1?

Start search for trigger bus
cycle, as detailed on the flow

chart for Simple Trigger

Flow chart of
Qualifiers

March 25, 1987 Page 3-35

-- Commands --

F N

-- Operation --

-- Commands --

Example: qualifier trigger
You can specify a qualifier trigger with the command string:
NORMB 23 ADR AFTER FF CONT 40 DATA

and then use the command TSTAT to examine the trigger status. The
UniLab will not start looking for the trigger until you start it
with the command S.

When you look at the trigger status, you will see a display
like this:

TSTAT

Analvzer Trigger Status
23 ADR
AFTER FF CONT 40 DATA
4 DCYCLES 1 QUALIFIERS Q1

The "23 ADR" is the description of the trigger bus cycle.
The keyword AFTER indicates that "FF CONT 40 DATA"™ is a qualifier,
The "1 QUALIFIERS" on the last line of the trigger status shows
that there is one qualifier. The "Q1" indicates that any
additional cycle description commands you enter will be part of
the Qualifier One description.

When you tell the bus state analyzer to start, the UnilLab
will look for the qualifier sequence, and then when it finds that
sequence, will go to the simple trigger flow chart.

In this example, the UnilLab will start out looking for a bus
cycle which has data of 40 and has FF on the control lines.

Once the Unilab sees that bus cycle, it will start to search
for a bus cycle with address 23. When that trigger cycle is
found, the Unilab will delay 4 cycles, freeze the trace buffer and
send it up to the host to be displayed.

-- Operation -- Page 3-36

-- Commands --

Additional qualifier commands

These additional commands allow you to change "context" from
qualifier to trigger and back again, and to turn qualifiers off
and back on.

Use the four commands TRIG, Ql, Q2 and Q3 to switch context
from one level to another, For example, after specifying the
following trigger:

NORMM 20 ADR AFTER 34 DATA

you can go back and alter the trigger cycle description with this
command: ‘

TRIG ALSO 30 TO 60 ADR

Use the command <number> QUALIFIERS to change the number
of qualifiers that the UnilLab will use when you start the
analyzer. You can specify between zero and three qualifiers. For
example, after the above sequence of commands, you could tell the
UnilLab not to use the qualifier (that is, to start out looking for

the trigger cycle)
0 QUALIFIERS
and then, later, tell it to use the qualifier again:

1 OQUALIFIERS

March 25, 1987 Page 3-37 -- Operation --

-- Commands --

Additional qualifier capabilities

You can use additional qualifier commands to put a delay
between qualifiers and the trigger cycle or to search for the
qualifier sequence multiple times.

By default, the Unilab will look for the complete qualifier
sequence only once, and then will start to search for the trigger
cycle after a delay of zero bus cycles. You can change either one
of these defaults, with PEVENTS and PCYCLES. Only one of these
two can have a non-default values.

For the sake of simplicity, these capabilities were not shown
on the previous qualifier flow chart. This "Pass count" logic is
detailed in the chart on the next page.

If you change the delay between qualifiers and trigger, you
can only search for one sequence of qualifiers. And if you search
for the qualifier sequence several times, you cannot have a delay
between the qualifier sequence and the trigger cycle.

For example, along with the following specification:

NORMB 10 ADR AFTER 34 DATA AFTER 45 DATA
you can further specify either 30 repetitions of the qualifying
sequence (and the default of a zero cycle delay between qualifier
sequence and trigger):

30 PEVENTS

or a 50 bus cycle delay between the qualifier sequence and the
trigger (and the default one instance of the qualifier sequence):

50 PCYCLES

-- Operation -- Page 3-38

-- Commands --

~

[Qualifier Logic previously described J

Start if
3 qualifiers 4
*

oy >
Start if 4
2 qualifiers ¢
A [l
Ney)
A
Start if
1 qualifier ¢
Re-entry if using
VN Pass counter to

count sequences of
qualifying events.
¢ 2

No

Decrement the Clock a cycle
Pass Counter into trace

Counter
=0?

cycle, as detailed on the flow

Start search for trigger bus
chart for Simple Trigger

March 25, 1987 Page 3-39 -- Operation --

-- Commands --

Tri s ificati E]
The remainder of this section contains trigger specification

examples with explanations. These examples help you get an idea
of the varied capabilities of the UnilLab trigger logic.

-- Operation -- Page 3-40

-- Commands --

Simple trigger examples: one input group

Trigger on a value

1205 &as
the abbreviated way to clear out the previous

trigger, specify a trigger on address 1205,
and start the analyzer.

NORMT 1205 ADR S
the non-abbreviated version of the above

command.

NORMT 12 DATA S
clears all previous settings with NORMT and

sets up a trigger for data input 12. S starts
the analyzer.

Trigger on a range

NORMT 110 TO 138 ADR S
triggers when any one of a range of addresses

appears on the bus.

NORMT 10 TO 21 DATA S
triggers when any one of a range of data

values appears on the bus.

Trigger on a cycle type with the CONT grouping

With some processors the Unilab can distinguish between bus
cycle types. The DDB packages for these processors include
predefined macros which set up the CONT trigger specification to
trigger on cycle types: READ, WRITE, FETCH, I/O, etc.

NORMT WRITE S
triggers when the processor writes to any address.

Trigger outside a range

NORMT NOT O TO 100 ADR S
triggers when any address outside of a range

appears on the bus

March 25, 1987 Page 3-41 -- Operation --

-- Commands --

Simple trigger examples: multiple input group
Trigger on an ADR and DATA combination

NORMT 1E DATA 1200 ADR S
triggers on 1200 address and 1lE data.

Trigger on a DATA and HDATA combination

NORMM 23 HDATA 17 DATA]
triggers when 2317 appears on the data lines.

‘Trigger on a CONT and ADR combination:
fetch from outside program memory

NORMT FETCH NOT O TO 7FF ADR S

triggers if the program tries to fetch an |
instruction from outside the 0 to 7FF range.
FETCH is a command with a processor-specific
definition. It sets up a trigger on the CONT
grouping. Not supported on some processors.

Trigger when "bad" values are associated with any of several
addresses.

NORMM 10 DATA ALSO 5 DATA ALSO 3 DATA 1200
ADR S

sets the analyzer to trigger when the data is 10 or
5 or 3 and the address is 1200

Trigger on any member of a complicated set of addresses

NORMT 12 HADR 34 LADR ALSO 10 LADR ALSO 5
LADR

sets up the analyzer to trigger on any of the
addresses 1234, 1210, or 1205.

-- Operation -- Page 3-42

-- Commands --

Filter trigger examples

Save in the trace only the cycles that meet the trigger
specification-- or save only those cycles and the one, two,or
three that follow.

Trigger cycles only

ONLY 0100 ADR S
records only those cycles that accesses address
0100.

ONLY 10 TO 30 DATA 8FDO ADR S
records only those cycles that access this RAM
address when the data is between 10 and 30.

One following cycle each trigger

1AFTER 1200 ADR S
shows only those cycles with the address 1200 and
one bus cycle following.

Two following cycles each trigger
2AFTER 1200 ADR S
shows two bus cycles following.

Two following cycles each trigger
2AFTER 1200 ADR S
shows two bus cycles following.

Filter to exclude

By including NOT in the trigger spec, you can produce a
filtered trace that excludes certain cycles, rather than one that
only shows certain cycles.

You can filter out a single address, or a single data value,
but usually will want to filter out a range of addresses. That
way you can see a trace that shows everything except some segment
of code.

ONLY NOT 50 TO 100 ADR S

shows only those cycles that are not accessing the
memory in the address range 50 to 100.

March 25, 1987 Page 3-43 -- Operation --

-- Commands --

Qualifier trigger examples

Search for a "qualifier" sequence of bus cycles, then look
for the trigger cycle.

Start searching after an address 1is seen

NORMT 100 ADR AFTER 535 ADR S
will trigger on address 100 anytime after address
535 is seen on the bus.

Multiple qualifiers

You can specify up to three qualifiers. When you have more
than one qualifier, they must appear on the bus one immediately
after another.

The trigger can occur anytime after all the qualifiers have been
found.

NORMT 100 ADR AFTER 535 ADR AFTER 3F DATA S

You can add a second qualifying event-- which must
occur earlier than the first. Now address 535
must be immediately preceded by data 3F hex
before UnilLab will look for address 100 on the
bus.

Qualifiers without triggers

If you specify a qualifier but no trigger, the Unilab will
trigger on the very first cycle after the qualifiers have been
seen.

NORMB AFTER 1500 ADR AFTER 235 ADR S

triggers as soon as address 1500 immediately
follows address 235. This would be useful
when instruction at address 235. The
qualifier will only be satisfied when the jump
is taken. If that jump is pnot taken, the
Unilab will again start looking for address
235

-- Operation -- ' Page 3-44

-- Commands --

Examples that combine qualifiers with filters

This very useful combination allows you to set up a
specification that triggers on one condition and filters on
another.

Your trace will be filtered, but the trace buffer will not
start to fill up until after the qualifier appears on the bus.
That way you can, for example, start your trace when a certain
routine is executed, and make it a filtered trace that shows only
memory reads.

Show reads after some routine 1is reached

ONLY READ AFTER FETCH 1235 ADR S

show only reads from RAM, starting after the code
at 1235 is fetched. NOTE: READ and FETCH are
processor specific macros, not defined on some
processors.

Exclude a loop from trace, start trace after some address

ONLY NOT 120 TO 135 ADR AFTER 750 ADR S
triggers on address 750, excludes from the trace
the routine at addresses 120 through 135.

March 25, 1987 Page 3-45 -- Operation --

3. 7l UnilLab i £1 pos . I

The information in this brief section tells you how to use
the batch file facility of DOS and the command tail feature of the
Unilab software to help you get your work done more easily and
with less tedium.

Batch files can automate the sequence of calls to different
software packages that you must make when you:
alter source code,
produce object files,
and then call the Unilab software.

The command tail feature of the Unilab can be used in combination
with a batch file to perform the same operation or series of
operations every time you call the Unilab software.

This section first introduces the command tail and batch
files, then shows you how to combine the two capabilities. Last,
the use of macros is touched upon.

Command tail

The Unilab program allows you to include a "command tail"™ on
the DOS command line, each time you call up the software:

C> ULZ80 <Unilab commands>
The Unilab command(s) that you include on the DOS command
line will be executed after the instrument is initialized. For
example, if you want to go into menu mode as soon as you enter the
program, you would type in:

C> ULZ80 MENU

The command tail can be up to 80 (decimal) characters long.

-- Operation -- Page 3-46

-- DOS and UniLab --

Simple batch files

If you find yourself executing the same instruction every
time you start up your Unilab software, you might want to include
that command in a batch file, as a command tail.

Batch files are simply DOS text files that contain commands.
Their names must end in .BAT. The easiest way to make one is to
copy from the screen (CONsole) into a file. For example, if every
time you start the Unilab software you want to load in the
contents of a binary file, you could make a batch file to do that
for you: ' '

C> COPY CON Uni.BAT
ULZ80 0 7FF BINLOAD MYPROG.BIN
~Z
1 File(s) copied
c>

To finish the "copy" operation press CTRL-Z followed by a
carriage return.

Once the batch file is made, you call it by name (leaving off the
.BAT extension):

C> UNI

March 25, 1987 Page 3-47 -- Operation --

-- DOS and UnilLab --

More sophisticated batch files

You can create batch files that call several different
programs, one after another. For example, you probably go through
the same cycle of procedures time after time:

1) edit your source file to correct an error.
2) assemble (and link) your program.
3) enter the Unilab program and load your newly

altered program into emulation memory.

You can save yourself time by putting all this into a batch
file. For example, if you are using the Norton Editor and a cross
assembler for the 8096, you could make a batch file called
CHANGE3.BAT

C> COPY CON CHANGE3.BAT

NE MODULE3.ASM

X8096 MODULE3 -ep

ERASE TEST.BIN

LINK -c¢ MODULEl1l MODULE2 MODULE3 -o TEST.BIN -X
UL96 2080 3FFF BINLOAD TEST.BIN STARTUP

~Z

After you've made this batch file, you could start the
process of altering MODULE3 by typing in the command:

C> CHANGE3

The batch file first puts you into your editor, so you can
alter the source file. Once you are done editing and exit from
the editor, the batch file continues. You will not have to touch
the keyboard again until after you get the STARTUP trace from the
UniLab. The batch file assembles your code, erases the old
version of the program, links a new version, then calls the Unilab
software, loads the program into emulation memory, and starts it
executing.

Meanwhile, you can do something else, and thus avoid the
tedium of the mechanical steps. :

-- QOperation -- Page 3-48

-- DOS and UniLab --

Complex command tails and macros

The command tail can include as much as you want, as long as
it all fits on one line. For example, you could not only load a
binary file into emulation memory, you could also load in the
symbol file, disassemble the program starting from address 00, and
then start the program running:

C> ULZ80 0 7FF BINLOAD DEMO.BIN SYMFILE DEMO.SYM 0O DN
STARTUP

You would probably want to put this command tail into a batch
file if you were going to use it more than once. If you make a
typing mistake while entering the command tail, you might not
discover it until it is too late, for example when the Unilab
software tries to find a file called DEMO.BUN.

You could write a Unilab macro that does all the above and
more:

LOADUP
0 7FF BINLOAD DEMO.BIN
SYMFILE DEMO.SYM
0 DN
ONLY NOT 200 TO 2A3 ADR AFTER FE DATA 1200
ADR S ;

and use that on the DOS command line:
C> ULz80 LOADUP

By using a macro, you would be able toget around the 80
character limitation on the length of your command tail. Be sure
to use the UniLab command SAVE-SYS after you create a macro that
you want to save. For more information on macros consult the
UnilLab Reference Manual-- see Appendix F and the entry for : (the
colon) in the Command Reference Chapter.

March 25, 1987 . Page 3-49 -- Operation --

4., Special Features

This section tells you how to use the function keys and the
cursor keys. These keys give you access to special features of
the Unilab.

The section starts out with a brief overview of the function
and cursor keys. This is followed by several pages of diagrams
that summarize the features assigned to the cursor and function
keys. Last comes the bulk of this section, a tutorial on how to
use special keys with each of several features:

trace display,

screen history,

split screen,

command line editor, and
textfiles.

Key locations on PC/AT keyboard

0U000000000000 DI
OOUU00000000 D66

JUT

EEEE

-n -n
FEEGEE

[
- ()000000000000HD0E)
) 10000000000 0Lk

-~ Operation -- Page 3-50

-- Special Features --
Qverview
Function keys

Use the function keys to call up features with a single key
stroke. For example, you use F2 (function key two) to split the
screen, F8 to enter the mode panel. The function keys are
reassigned while you are in menu mode.

Wi h hi n k

Three keys can be used to modify the function keys. This
provides a total of 40 "soft-keys." Each function key can be
assigned four different commands, which you get access to by
pressing the function key alone, or while holding down:

the Shift key (labeled with a hollow arrow),
the Control key, or (labeled with Ctrl),
the Alter key ‘ (labeled with Alt).

The control key is also used to modify some cursor keys.

How to assign function keys

As you can see in the chart of the function keys, many have
been left unassigned. You can assign these surplus keys to any
command you choose (as long as that command does not require
parameters) .

Four commands assign a command to a function key:

<key number> FKEY <command>
<key number> ALT-FKEY <command>
<key number> SHIFT-FKEY <command>

<key number> CTRL-FKEY <command>
For example, to assign the command SAMP to ALT-F5, you would

type in
5 ALT-FKEY SAMP

You can assign to a function key a macro that you have
defined. See Appendix F to learn how to define a macro.

March 25, 1987 Page 3-51 -- Operation --

-- Special Features --

Cursor keys

The cursor keys are used for movement:
"up" into screen history,
"down" through the trace buffer,
"back" to a previous command,
from one window to another windows,
within the mode panels,
back and forth through a textfile, and
down through on-line glossary entries.

The following pages will show you how to use the cursor keys
Make certain that NUM LOCK (number lock) is not on when you want
to use the "cursor movement" meaning of the key.

How to assign cursor keys

There are no specific keys or commands to change the way the
cursor keys work-- their "meaning" changes dynamically when you
invoke different features, as indicated in the diagrams on the
following pages

The PgDhn key, for example, will usually present another
screenful of the trace display. After the WORDS command it will
show you the next screenful of the list of commands.

The cursor keys also have special uses in the setting of the
window size, in the use of the pop-up panels, and in the screen
oriented memory command, MODIFY. When in these modes, no other
"keys will be effective, and a special prompt will inform you that
the key settings have changed.

Usual settings

Though the cursor keys are reassigned as you invoke different
features, they are usually assigned to three types of functions:

view the trace buffer,
review screen history, and
use the command line editor.

These default settings are summarized on the next page.

-- Operation -- Page 3-52

-- Special Features --

View the trace buffer with three cursor keys:
Home
Down Arrow
PgDn.

Review screen history with two cursor keys:
Up Arrow

PgUp.

And use the command line editor, to recall previous commands

which you can then edit and reissue, with two regular cursor keys
and four "controlled" ones:

Left Arrow

Right Arrow
Ctrl-Left Arrow
Ctrl-Right Arrow
Ctrl-PgUp
Ctrl-PgDn

March 25, 1987 Page 3-53 -- Operation --

-- Special Features --
i ' iagram

The following pages use diagrams to summarize the use of the
function and cursor keys in the Unilab software.

These diagrams are followed by a demonstration of the special
features.

Function key assignments

HELP with general instructions
for using glossary. Also
Function Key assignments.

Next Step - Execute next ;
instruction. Will not follow jumps
or branches.

SPLIT mode - Enter /Exit split
screen mode.

NMI - Issue pulse on NMI- Tine to
target, to gain DEBUG control or

) . to single step through code. Function Key

Restore window split to . assignments
Default sizes. when
. ot

TSTAT - Display current MODE - Bring up pop-up mode no other key

trigger spec. held down

panels for changing display or
system modes.

MENU - Enter /Exit menu mode.

STARTUP - Issue reset pulse
to target and trace first
cycles of target operation.

-- Operation -- : Page 3-54

-- Special Features --

Help for using

on=line displays Help for using windows

Function Key

. assignments
Help for simple analyzer when

triggers
More help for analyzer

triggers held down

Help for Debuggers

Help for Emulation
memory functions

Help for mode panel
switches

Help for loading/
saving programs

Help for displaying/

for t displ
altering memory Help for trace display

List Function Key

\ e B MEMO - Bring up system editor
assignments for Shift §

for use as custom memo pad Function Key
assignments
— ASC - Show ASCII characters when
and hexadecimal code keg
i T held down

RES- - Pulls RES-
output line low, and
holds it low

WSIZE - Set new window split size

>
#

List Function Key :
assignments for ATt

Function Key
assignments
—— when

|Alt | key
held down

SSAVE - Save the
screen image as
a text file

Call up the Program
Performance Analyzer Menu

March 25, 1987 Page 3-55 -- Operation --

-- Special Features --

Cursor Keys and the Trace Buffer Display

Trace Display (WANR
Top of Buffer Hosge

(4)

<

. Y

v~
{Ioggle ge;ween 1 Trace Display

pper & Lower . 4 Next Screen

Window N/

Trace Display Down One Line

Cursor Keys and the Screen History

Screen History
Previous Line

aml: 1
Screen History

Home 2E Previous Page
s N E
4 5
‘-
\. /. J

N (- ™
1 (2
End) (¥

-- Operation -- Page 3-56

-- Special Features --

Cursor Keys and Textfiles

Up One Line

Beginning of File Previous Page

Toggle between
Upper & Lower
Window

Down One Line

Cursor Keys and the mode panel
(enter the mode panel with F8)

o) (
] [9 J
4) (pevp
g N\
> B
_ y Mode select toggle
N\
2

Exit Mode Panel o v Next Mode Panel
N/ e

March 25, 1987 Page 3-57

-- Operation --

Al

Bl&:)

-- Special Features --
Cursor Keys and split screen setup

(enter the setup screen with Shift-F8)

Move divider up

a
Save new divider, and
return to command mode

Move divider down

Home PgUp

Move divider left Move divider right

.ﬁ:jU
FI@E”

PgDn

Cursor Keys and the command line editor
Press the cursor keys while holding down Ctrl key.

=)
Home
Move to start

4
of current line

s

-- Operation -- Page 3-58

-- Special Features --

£ ial K

The rest of this chapter shows examples of the use of the
special keys. Each subsection shows how to use the cursor keys
and the function keys to get the most out of your Unilab. Screen
mockups are used to show the result of each action, starting with
how to move through the trace display.

Trace display

In command mode, first generate a trace, either of your own
program, or of the sample target program. To get a trace of the
first 170 cycles of the sample program, type LTARG then press F9
(STARTUP) .

4 FHIUTHT “‘ (
) i o

W o o o Screen
1 i womnn o fills up
i i e o from bottony
WU RHIREINE e e

T T
W U
LT TR U
1IN DO HIHRE N .

F

0o g [LLLTLU LR TV
H NI BHRHnnnnnnge THIINH IR

Once you have a display of the first part of the trace, press
the PgDn cursor key to display the next screen full of data:

T)
NI I I g
WHIEE BN [T f
[T TR I N 7
WO RN (T T Hona g
LT T T T T T Screen
LTI TR nnn mamn- scrolls up 4 6
TR T AN B fpom + -»
WO RHNRORAN D
[T i mmn bottom E
1IN R mimm we filling entire + Pqltn
W B NI I :
[T TN page with
W s o e nexd deka,
OB NI, IR et from trece

o J

You could press PgDn again to see the next portion of the
trace buffer. Do not press PgDn more than a couple of times for
now——- you would eventually come to the end of the trace.

March 25, 1987 Page 3-59 -- Operation --

-- Special Features --

You use PgDn to get a whole new screen of information. If
you want to see just one or two more lines, press the Down Arrow
cursor key once:

ar)
U N W Hnn
R L WHUNE W ?
WU HOHUNE N 7 8
TR num i Screen Hons) 1 5VUp
I WL MO s - g e polls yp
WO BRI RIHGE g . 4 6
TR wnn i One line + -»
R I . TR =
TR NG B a m
R R HRIHI + ;
WO R HULHIN
HOUBIE IR R

10 SHIE HIinnnm e tinim
It WHIL HUbunamin, e i

One additional line is shown, and everything else is scrolled up
by one line. You can press the Down Arrow four or five times to
see a 4 or 5 more lines.

You cannot move backward through the trace, but you can see
the trace again from the top, and you can recall previously
displayed lines from the history buffer. The discussion of the
screen history appears in the next two pages.

Press the Home key to see the trace again from the top:

T)
1M MR e ?
0w B I W
T T T T]
I DN R winn i Displays

LI LU T THTTHI) i i fmm tOP
I nuenoaneinm LULLUUTTU I ST

Gl
|
EICIET

WO s mu Of trace
0N N R B

U W B

R R g

0NN T NG B

0N W

WU R I B

TR L e J

\.

-- Operation -- Page 3-60

-- Special Features --

Screen history

The Up Arrow is pnot the opposite of the Down Arrow.
Instead, it recalls lines from the line history. Try it once:

(LU LU U HTHTHTTHE] nnuune ahen)
LU LTI TR T TH T TH T LLLLUTLLU R THTEET
I HIHE e HunHm: wunn ‘

R R w0
1 I REHITT WO W Up
WO O B Screen tane) (U

0o o oo o serolls 4 6

TR R e ot down one « >
IO DDA e

TR W 2

1 NI R URIHI NI
T I W N

WONNME BT WG W

WONIE WO R

WML BRI I R

_ 1 I s T)

Though it might seem as if you are looking back through the
trace, you actually are looking back through the screen history--
the record of everything that has appeared on your screen.

Now do a PgUp to see the previous screenful of the history:

(" LU LU T T HTHTEL TTHTTT S LT N
HtHN ninnm Hitnn
W HHI e HUBne i ‘

ORI ERssm [UITH TR T
HHum s N g Hons g
10 IHOH g LT T Screen -
Oootsashied Jonstan Bannanes saasses Bussann ssansasannn ssanns sanane scm"s
Old hesder—— Wl il) [down one + nd

&nd footer, [ITHID IIIIIIIIIIIIIIIIII:IIIII IIIIIIIIII: :Il:llllll en‘im 2
mevowarad from | amon ™ it €
his‘ory bu”er. WO s HUn i

0 v nume wnnei
I I BHOUNR (UL TR LTI
LU BT H T T H LLTHTTH T TTHITT
__{I e nimnma LT TR T J

You will notice that the screen display backed up a whole
page, but the display looks a little funny. Since PgUp recovers
all the lines that have gone by, you will get back the trace
header and footer, but they will end up in the middle of the page.

When you scroll back, you look at a history of the screen.
Almost everything that is scrolled off the top of the screen is
recorded by the Unilab program. The exceptions are explained
below. Every line that scrolls off the top of the screen is
recorded and can be "played back" by using the Up Arrow and PgUp
cursor keys.

You can retrieve information that has disappeared off the top

of the screen. Any trigger spec, command, or display that
scrolled off the top of the screen can be seen again by scrolling

March 25, 1987 Page 3-61 -- Operation --

-- Special Features --

the screen down.

History exception: the split screen

When you split the screen, as discussed in the next
subsection, only the information in the lower window is recorded
in the history buffer. Lines scrolled off the top of the upper
window are not recorded.

You can retrieve the line history into either window.

Summary of history and trace display cursor keys

Go forward with the Down Arrow or the PgDn cursor keys to
see new analyzed data from the trace buffer.

Go backward with the Up Arrow or the PgUp cursor keys to see
the history of the current session with the Unilab.

Increase the size of history buffer

You can have a maximum of 60K devoted to the history buffer.
Use the command ?FREE to get a report of the current memory
allocation in the host, including how much RAM is available.

?FREE

20K allocated to history
40K allocated to symbol table

220K of host RAM free

Increase the amount of RAM devoted to the history buffer with
the command <# Kbytes> =HISTORY. This command changes the
amount of memory that will be allocated when the software is
called from DOS. The new allocation will not take effect until
you SAVE-SYS, exit the Unilab program and re-enter the newly
saved software.

-- Operation -- Page 3-62

-- Special Features --

Windows

The Unilab software allows you to display information in
either one of two windows, and provides two special disassembly
windows as well.

Press F2 to split the screen:

(IE e s LT T A
OB Hiisininnm g W
LR LT TTTHTHTTH T T wsim
HOIHI NI o nssi
I HHIE g e i

LU LR LR P T T N
NN bauianniam THIHINE nin

/—-)-

dividerline
shows window
split

Il | s | il
SEEE)
m -
FEEE

-n
(@]

cursor shows you sre
‘(*-’// lower half

\ J/

You will see a display like the one above. The lower portion
of the screen has been wiped clean, and a horizontal dividing line
has appeared in the middle of the screen.

The flashing cursor is now on the bottom line of the screen.
Press the PgDn key:

(W SR T ™
10 TN IR Hunnne e
LI LT LTS ETTT T THHIHH
(LB LLLELU R TR T JHIHE N 7
LU LU TR HHUBM Bunin Hanm

LU LU U TS TTH T HHITuE wnm
11 WL T IHHme s

o o 1

)
OO
ECIE

LU T TR mminm wmn Serolls up
1 Henn I y
ot o s o 10Wer half

LU LLTER (LT T T e mnn OMY
(U T U T TR A i nagny

= J/

As you would expect, the trace listing scrolls up the screen,
but it stops when it fills only the lower half of the screen.
Press PgDn again, and notice that the trace listing scrolls by in
the lower window, while the upper window remains the same.

March 25, 1987 Page 3-63 -- Operation --

-- Special Features --

Move from window to window

When yo u pressed F2 that first time, you split *she screen.
The display is now set up for two viewing windows. All of your
commands and their actions are displayed only in the lower window,.

You can now use the End key to move from one window to
another. Press End once and notice that the cursor goes into the
upper window:

(0 e R e mn N
LU LU LR LR ITIRITR AN Him nunen Moves
i s Hinnm i sureor
LI LT LTI DU TTELTHEEL RS IR i to lop 7
cursor moves I DU Ihnm Hiang e Honm 1]

[LT nnma g h&lf
up here TN~ | = LA XL VEL HiHmE o

I HHEH i numm munn

|
(F%)(To) FO)

@)

3
iR midisanm HitHie nnding
e phniannmn HIeng e Q
1L BIEE Annunanngan HIIR g
1 B mueanam e v .

0N NN e g
L[TR EL Hne anin

You can perform any Unilab command in the upper window, and
the lower window display will stay the same. You will find this
ver y useful for comparing two trace displays, or keeping part of
a trace on the screen while you get a breakpoint display.

You can also be able to examine textfiles, as will be
discussed in a few pages. Right now, press End again to move back
into the lower window:

/7 NN . e o N
0O IR wmnsn num Moves
WOHH W N s op
It HHHL i MU tm
WU T nanmn nunn L0 top

woum ananmnnin oo wn half
AL HUHE NN N IR

- Xe)

e e THITHIE W Moves

@mc
00

I HRme msimnnnm HIuHL Bunun 3 J
W R M B CUrsor
Cursornow U I i W g bottom FyPn
sppears down AN A e

LU T U LML LLLLTEL LR U A THERT T

hers TR | e)

_ —

The End key moves you back and forth between the two windows.
You can use it any time after you have split the screen.

-- Operation -- Page 3-64

-- Special Features --

Togale split screen off and on

To get out of the split screen, press F2 again (the same key
that split the screen in the first place):

Honnae mngHniumnn TSI i
HHHN waunanntimnn nouEHe s
HOHEHN . namme s

N— J/

(o ULl Hanune i) @ -
LR T LR THTH T TH HiHw W
I DU g HUnmW
{ i e s () (F4)
LU LR T HTTTTE LTS DT T
AL U iR LLLECTTE TR T
Fé
dividerline /—).Il i niniasneam IIIIIIIII:I nunmn
removed [T T nman mnn ﬁ .
{ i A Ga

-
(=]

The dividing line disappears. If you scroll now, the entire
screen will be used for the display. Press F2 to split the screen
again:

) g i A
10 HNE Jatimdenmn e annin l =y
It HHOE SRR e e
HO0nmn Hinnmsinninm i i

HOSIHE sindstoiun T s F3 F4

W nsnnsim HHIHE e

=
EFEE

-
[e]

m MM
EEGEE

March 25, 1987 Page 3-65 -- Operation --

-- Special Features --

Show disassembly from memory in dedicated window

The right hand section of the screen serves as a dedicated
window, which shows only disassembly from memory.

First, with a split screen, press F9 again so that you will
have a trace that starts from the reset address.

Type the command 0 DN. Remember to press the carriage return
(enter) key when you have finished typing the command. You will
see a display like below:

(7 I g i Ui)
I e g manm
WO mnnuranm mnunyg i
LU HTTHEETT T s e
I U pnanmm g manm

I I i ng nm oD
W i W 1 .
TRy i e puts disassembly
WU R W M e from memory into
WO R R p P

o | g window
UOUNBE NI R

DN is a special word that disassembles from memory and
displays in a dedicated window on the right-hand side of the
screen. DN disassembles enough lines to fill up the right hand
side of the current window. Compare this with DM, which needs two
arguments—— the address to start disassembly from, and the number
of lines to disassemble—-- and displays into the current window.

The special disassembly window will stay in place until you
press F2 again.

-- Operation -- Page 3-66

-- Special Features --

You can also disassemble into the upper right hand window.
First press the End key to move the cursor up there:

I NBHE NI e e N\
HOHHEE i W W
[T T W N
1 HTHL SIEHIEHRSHAN T [T
H Nt nmsmnan HHIRINL
::;S;;QTOWS 0 i sma N NN "7
— NI SO ans ‘M,
window —/—) T T A T T HINE B i E]
I BHI BN i I e i + nd
(R HTTERTTTHTHTHT nimmn [T
LTS TR TTHTTT i [T g m
ORI RN nunin [T + ;
0 BHnnHm nainm [T TR
1600 R HORin [T]
_ ODN

Now use the DN command again. This time it will display in
the upper righthand window:

(W N R B T N\ 25 DN
[T T s P puts disassembly
i i .
W G, ;|| 0 from memory into
R R wanm P right window
-"2 gulg '\?mummuumm i S —
R R L] wun
TR R i W N
WA IR i ne Hi
WO R o W e
I BN R i e
R T L - Wl W
HOMNN BRI, N e
_ O0DN)

You can also use DN in the full screen.

March 25, 1987 Page 3-67 -- Operation --

-- Special Features --

Change window size

You can change the default window size by moving the split
line around with the cursor keys after you press SHIFT-F8 (tap
function key eight while holding down the Shift key).

For example, if you would rather have a larger lower window,
you can move the split line up.

When you press SHIFT-F8 you will see this display:

(\ En ﬁa
a F10 Al
_ Press[=B]to quit) . t

Now use the cursor arrow keys to move the split up or down,
and right or left. Move the split up to make the top half a
little smaller than it was.

. ™
4
“« >
¥
Arrow keys
move split
around
_ Press[iBto quit J

Press the End key when you have the split where you want it.
No other keys will have any effect while you are setting the
window partition.

Now you can display the trace in the new window sizes.

-- Operation -- Page 3-68

-- Special Features --

Split screens and help displays

When you have a the split screen, the HELP screen displays
will automatically change the location of the split, so that the
text of the help display fills the upper window. Press function
key F1 to see this:

HELP Disgla h

F3| [Fa
DRt et s p e A R e R DO FS||Fé
dviderline < § N DS @A

now shows LI TT U TR TR T e nin
function key LU LI LR TP K i

HONHN RN GO g
assignments LT T T A T T a w

EEE
=~J —
m -
FEEE

Now press the End key again to move the cursor to the top
window, and press the Home key. The text of the help screen will
be overwritten by the trace, but you've got a different split from
the one you set not long ago.

If you want to return to the split that you set before, press
F5 and the window split will return to that setting, the new
default:

(0 DU R R ™
WOMDE BHRRORHI WHNBR e
W HI RO wunmn iy Retums
W I NI i i o default
I A G TR [

LU UL TTHTTHTRT i i Spht size
AL N i NI B

m - mn
8 |88
m m -
EEEE

It dsnnnm T ing ‘

WAL W 0 F7)|F8

WM nansnanm [T TR TETTETTTT I

M A ;-
. J

The window size you set with Shift-F8 will be saved if you
use SAVE-SYS to save the current configuration of the system to
disk. Of course, you can use use Shift-F8 at any time to change
the split size again.

March 25, 1987 ' Page 3-69 -- Operation --

-- Special Features --

Command line editor

Qverview

This special feature of the UniLab provides the ability to
edit and repeat any command on the screen. It works both on
commands that have just been typed and on commands that are
retrieved from the screen history after scrolling off the top of
the screen.

Move the cursor back up to previous commands with CTRL-PgUp.
If you go too far press CTRL-PgDn to move down a line.

Once you are on the command you wish to edit, use the arrow
keys to move around on the line.

The command line editor is always in "insert" mode. Any
character you type will be inserted at the current cursor.
location. Use the backspace key or the Del key to delete a
character.

Ctrl-Left Arrow moves you to the start of the line, while
Ctrl-Right Arrow moves you to the end of the line.

When you press the carriage return key, the Unilab will treat

the line, up to the current cursor position, as a newly entered

command.

-- Operation -- Page 3-70

1 n w 1T1n
/" N\
10 20 MDUMP
10 32 06 54 62 1 Gl b il veenezsesss:
20 UL UL B A s
Cursor ok
location 10 15 41 MFILL ok
before ___5| _
use of the J

_
commasnd line editor

In this example,

-- Special Features --

suppose you have dumped 20 bytes of memory,

and then filled part of that memory area with hexadecimal ‘41
Now, to confirm that the correct data is in

(ASCII for A).

memory,
editor.
e N
10 20 MDUMP
20 I R s
Press ok
CTRL-PgUp _—3| 10 15 41 MFILL ok — 9
to move
cursorto end _ Y,

of the previous line

[=)

you want to reissue the dump command with the command line

I
B0
8[G]:]

The Ctrl-PgUp key combination moves the cursor up to the

previous line.

To move up a number of lines,

press this key

combination repeatedly, or hold both keys down for a brief period.

If you move the cursor up too far,

down.

Press
CTRL-PgUp _—

repestedly,
to move to
the desired line

March 25, 1987

4 a

10 20 MDUMP . ¢—

10 32 06 54 62 U Sl i €2
20 Ut o g st i i.;llun.-?.‘:(-)
ok

10 15 41 MEILL ok

Page 3-71

Alt

use Ctrl-PgDn to move back

Hona| (T Pglip
CJEJ
-~ -»
N

+ g

-3

-- Operation --

-- Special Features --

Once the cursor is on the correct line, press the Enter key,
and the dump command will be executed again. The memory display
generated by dump writes into the same place on the screen, but

with the updated values:

e N
[
10 20 rpUMP Press the Enterkey, (J
10 41 41 A% < piluhdatiddnil Aacaa and the command line
After WUMP 20 UL D T B s will be executed again. (_J
executes sgain, ok
the cursoris
10 15 41 MFILL ok
down here—> | = °
\. J

The cursor ends up at the same place it was before the user
typed the memory fill command. And because you might want to edit
and reissue that line as well, it is not wiped clean. To use that
line, press Ctrl-PgUp followed by Ctrl-PgDn.

-- Operation -- Page 3-72

Edit and then reissue a command line

-- Special Features --

This is

You can alter a command before re-using it.
while writing a

especially useful when you make some minor typo
long command string, or when you wish to change

slightly.

In this example,

a trigger spec

you have typed "BUNLOAD" by mistake, and

now want to move back up to that incorrect command line, delete

the U and type an I

Typing eror ——
causes rejection
of commend line

in its place.

0 7IT BUNLOAD DIMD2

Anmmnan

not recognized

.

First you must move the cursor up to the mis-typed command

line.

Move cursor
back up to line
with ermror

AAAAAAA

not recognized

0 7FT BUNLOAD DEMO2 _

S

March 25, 1987

Page 3-73

a~

8]
D™

(O
> ER

Al

-- Operation --

-- Special Features --

Then, Ctrl-Left Arrow moves the cursor to the start of the
command line:

4)\

7 8
Hama) (T gVp
CTRL-Left Arrow S E 6
moves cursor .— | o 7FF BUNLOAD DEMO2 * 2
to start of line Ananaan 2
L
not recognized EJ

. /

Repeated use of the Right Arrow key moves the cursor over to
the U in BUNLOAD. If you press Ctrl-Right Arrow, the cursor

will go all the way to the end of the command line again.
e ™ .

Press Ej

Riaht Arrow j ;
severs| times, j

Y
—~—=> | 0 7IT BUNLOAD DEMO2

ArnAA~nAA

to move cursor
to the typo.

ala
)

(=
@

not recognized

Now you can type an I to replace the U. Since the command
line editor is always in "insert" mode, never in "overwrite," you
need to use the Del key to delete the incorrect character. Del
deletes the character that the cursor is on. The backspace key
erases the character to the left of the cursor.

The command line
aditoris always in
insert mode. To
correct the typo,
press the letter I, —
then press the . a G B
Del keyto delete B %)

the inconrect U, j

I JE
(]
()€

Anmamanan

not recognized] @ [
J

0 7IT BINLOAD DIMO2 E]

(™)
(0
100

-- Operation -- Page 3-74

-- Special Features --

Now, after the mis-typing has been corrected, use Ctrl-Right

Arrow to move the cursor to the end of the command line.

When you

press the Enter key, the command line will only be interpreted up

to the current location of the cursor.
the end of the line first:

After correcting
typo, use
CTRL-Right Arrow
to move to

the end of

the command line

Press the Enter key,

-

0 7FF BINLOAD DIPD2_:>

LY T N

not recognized

you move the cursor to

3
_’

e

=
o[8]

L]
B0

and the newly edited command will be

interpreted. This time it works, as indicated by the "end= 7FF"
message. The "not recognized" message and the line of carats (™)
are left over from the first time the command was interpreted.

This time BINLOAD

executes properly,

and the cursor ends
down here —>

March 25, 1987

0 7FF BINLOAD DEMO2 end = 7FF

AAAAAAA

not recognized

ok

Page 3-75

Press the Enterkey,
and the newly edited
command line is exacuted.

Sisl

-- Operation --

-- Special Features --

Text files

Often, while working with the UnilLab, you will need to view a
text file. Just being able to look at the source code for your
application is much easier than having to go dig though a printout
(assuming you had the foresight to make one).

The UnilLab TEXTFILE command provides a convenient way to
view any text file, including source code files. The text always
appears in the top window.

Open a textfile by typing:
TEXTFILE <name>

After a few seconds (or more if it's a large file), you'll see the
first few lines of the text file in the top window.

The <name> is the full DOS pathname of your file. For
example, if you have a textfile called MYFILE and it is on the
diskette in drive B, then specify B:MYFILE just like you would in
DOS.

The file must be a DOS textfile. Most text editors have the
capability of saving files as text only, or as "non-document"
files. The textfile command will not accept a file that has
embedded formatting commands. If you try to use TEXTFILE to open
a file that is not text, you will get the message "Not a DOS
TextFile."

-- Operation -- Page 3-76

-- Special Features --

Cursor key assignments when viewing a text file

PgDn

Down Arrow
PgUp

Up Arrow
Home

shows the next screenful of the textfile
shows the next line

shows the previous screenful

shows the previous line

shows the file from the top

Unlike when you view the trace buffer, reverse scrolling is
not showing you a line history, but rather is moving you around in

the image of your text file.

(Remember that lines

window are not recorded in screen history.)

Try moving around in this image of your text file.

that you cannot

change your file with this command:

(M 2

[LITTHN
Hiae.
[H11]HY)
(L1111 Cy H{ FH AU R |

LLELET R T H LU NP L R U TV TT LU i

EHE LRI THTEHIH TR FHH
L I HITH

in the top

Remember

These cursor

TEXTFILE DEMO4.C

March 25, 1987

Page 3-77

keys allow you
to move through
a text file

-- Operation --

Chapter Four:
Program Performance Analyzer

contents
Page
1. Overview: the Program Performance Analyzer 4-3
PPA Basics
How to choose the correct mode
The three PPA modes
PPA command summary
The main PPA menu
The interactive screen
The PPA and symbolic labels
Saving histograms
2. Ready the Target Program 4
Basics
Run program from emulation memory
Load from disk file
Load from ROM chip
Run program from ROM on target board
3. Address-Domain Analyzer 4-25
Simple Procedure
Address-Domain Histogram (AHIST)
Function keys
Perform AHIST test
Save Histograms
4, Time-Domain Analyzer 4-38
Simple Procedure
Time-Domain Histogram (THIST)

21

A useful analogy
Function keys
Perform THIST Test
5. Multiple-Pass Address-Domain Analyzer 4-48
Simple Procedure
Multiple-pass Histogram (MHIST)
Another analogy
Function keys
6. Troubleshooting 4-56
Operating Problems
Error Messages
7. Specifications . 4-60

March 25, 1987 Page 4-1 --PPA --

Introduction

This chapter describes the optional Program Performance
Analyzer (PPA). The information here only applies if you

have purchased that option.

This chapter includes a guide to analysis, together with

typical examples and a PPA specific troubleshooting guide.
Related chapters

Before using this chapter, you will want to have the

UnilLab installed according to the directions in Chapter One.

The current chapter covers only the PPA. Chapter Two,
the Guided Demo, is a brief introduction to other features
of the UnilLab. Chapter Three, Operation, is a guide to the

Unilab features.

-- PPA -- Page 4-2

1. Qverview of +the Program Performance
Analyzer (PPA)

1.1 Basics
What the PPA does

The Program Performance Analyzer (PPA) gathers data about
your software and displays that data as both a numeric table
and a bar graph.

Confidence in your data

The data reflects the true performance of your softwarxe,
because the PPA gathers performance data while your
microprocessor board executes at full speed.
No separate installation regquired

The PPA is already part of your Unilab system. The
installation procedure for your UnilLab is described in
Chapter One.
Menu or command interface

You gain access to all the PPA features either through
the commands or through the PPA menu. See sections 1.4 and
1.5 for details.
Address-domain and Time-domain Analysis

Use the Address-domain Histogram (AHIST) to determine the
level of program activity in the entire program, or in any
specified sub-section, down to a single byte.

Use the Time-domain Histogram (THIST) to determine the

run time of any single range of code. Your results will be
accurate to within 20 milliseconds.

March 25, 1987 Page 4-3 -- PPA --

-- Overview --
Multiple pass Address-domain Analysis

Use the Multiple pass Address-domain Histogram (MHIST) to
determine the execution time of any set of code ranges.
MHIST gives you more accurate results than AHIST and
expresses the results in milliseconds rather than in number
of accesses to memory. As with THIST, the times will be
accurate to within 20 milliseconds.

See section 1.2, How to choose the correct mode, for
information on choosing among the three PPA commands.

Symbolic labels

It is easy to specify the code you are interested in.
All you do is enter the symbolic names of your procedures
and functions. The PPA automatically converts the symbols
into addresses. Or, if you want, you can manually enter the
addresses.

Save data and picture

Whether you use symbols or numbers, you only have to
enter the information once-- the PPA software includes a
utility for saving the set-up data, described in section 1.8
of this chapter. You can save the data from a test to show
a colleague or to include in a presentation.

To make certain that you don't mix up your files, the PPA
provides a full-screen width title-- ample room for
including date and program information on the screen.

You can also use the graphs in written reports. The
touch of a function key (ALT-F9) saves the image of the
screen to a text file, which you can then print out or place
in a document.

-- PPA -- Page 4-4

-- Overview --

A complete solution

With the PPA you can solve the problems once you find
them. The other features of the UnilLab software provide you
with all the tools you need to trace execution of your code,
examine registers and memory-- even alter the code with a
line-by-line assembler.

The PPA and your software's profile

The PPA collects data about the behavior of a program as
it executes. You then compare the actual behavior of your
program with the expected profile or "signature" of the
program. You can locate problems in your code by noting, the
differences from your design expectations. And you can
optimize your code by watching its behavior during actual
running conditions.

In fact, you can alter the input conditions and watch how

your program responds—-- or compare two test runs gathered
under two different input conditions.

March 25, 1987 Page 4-5 -- PPA --

-- Overview --

1.2 How to choose the correct mode

You call up the PPA with one of three commands: AHIST,
THIST, and MHIST. Or, you can invoke any of these three
from the PPA menu.

Both THIST and MHIST have two data collection modes, as
described in section 1.3.

Address or Time domain 7?

If you are interested in the general behavior of your
program, or in the relative resource use of several modules,
then you should use one of the two address domain
histograms, AHIST or MHIST.

If you want to know the execution time of the main loop
or of any single sub-section of the code, then you will want
to use THIST, the time domain histogram. THIST is
especially useful for looking at a section of code whose
execution time varies.

AHIST or MHIST 7?

You should use either AHIST or MHIST when you want to
collect data on several address ranges of your program,

The fundamental difference between the two: for each range
you specify, AHIST gives you a count of the number of times
memory in the range is accessed, while MHIST tells you the
elapsed time between access to the first address and access
to the last address in the range.

In addition, AHIST gives you faster but less accurate
results. MHIST gives you greater accuracy by collecting
data on only one bin at a time. Note that the bin limits
you set up are preserved when you move back and forth
between AHIST and MHIST.

The two modes have a similar appearance, but act very

different. AHIST collects data on all address ranges at
once, but goes through a collect-analyze cycle. So it

- PPA -- Page 4-6

-- Overview --

misses any events that occur while it is analyzing.

MHIST cycles through your bins, collecting data on only
one bin at a time. It first finds the mean time for each
address range, then finds the number of times the first
address in each range is executed. Altogether MHIST requires
twice as many passes as you have bins. For each "pass" you
will want to restart the operation you are interested in, as
described in section 5.2.

When MHIST is needed

Use MHIST whenever you need accuracy and AHIST is not
able to provide it. AHIST will give you false results
whenever there is "shadowing" or "swamping."

Shadowing

Shadowing occurs when AHIST consistently shows the
execution of only a small section of code-- and the rest of
the code falls into the shadow of this routine.

For example, you have bins set up to watch all your
routines, except for the status loop, and your histogram
shows activity only in the section of code that occurs
immediately after you leave a status loop. While AHIST is
busy analyzing that data, the rest of your code executes.
When AHIST looks at the bus again, your program is back in
the status loop.

When you have this problem, usually one bin will show a
low level of activity and the others will show none.
However, sometimes several bins will show a little activity.

Swamping

Swamping is a closely related problem: AHIST sees only
the execution of the module that occurs most of the time.
When the program does execute some other module, AHIST
usually is analyzing the trace buffer. When you have this
problem, usually one bin will show a high level of activity.
While getting swamped AHIST might sporadically catch part
ofthe execution of modules other than the dominating one.

March 25, 1987 Page 4-7 --PPA --

-- Overview --

When to use MHIST

If the data you capture with AHIST exhibits neither
shadowing nor swamping, then you can be fairly confident of
your results. If you do see problems, then we recommend
that you use MHIST rather than AHIST.

MHIST assumptions

MHIST will work best if your program has certain

characteristics:

1) It executes (approximately) the same operation
or series of operations during each "pass" of data
collection. See below and in section 5.

2) The first address and last address in each
routine (as specified on the MHIST screen) is accessed
only once each time the routine is called.

Getting valid results with MHIST

There are three ways to make certain that your program
will perform the same series of operations during each pass.
See section 5.2 for more details.

1) Have reset enabled (RESET) so that the program starts
again with each pass. You will also need to have any inputs
read by your system set up in the same configuration or
sequence.

2) Have reset disabled (RESET') and have your program
start the operation of interest when the stimulus lines
change. You simply put the stimulus cable in the PROM
programmer socket, and then connect the lines to the
appropriate point on your board. Just before each pass,
stimulus outputs SO through S3 strobe high and then low
again, while S4 through S7 strobe low and then high again.
For more information on the stimulus outputs, consult
section 5.2 of this document and section 8 of Chapter Six.

3) Have reset disabled and . manually start the operation
of interest just before each pass.

-- PPA -- Page 4-8

-- Overview --

1.3 The three PPA modes

The three PPA commands, AHIST, MHIST and THIST, give
you access to three different ways to examine your program.

AHIST: address-domain histogram

In the address-domain mode, the PPA measures program
activity in each user-selected address-range bin.

The column labeled "COUNT" shows, for each address range,
the number of times any byte in that range is used. The
graph shows what percentage of observed activity takes place
in the address range of each bin.

MHIST: multiple-pass address-domain histogram

MHIST allows you to measure the absolute execution time
of each address range bin (in milliseconds) .

You can display either an address-domain graph of the
total execution times, or a chart of average execution time,
number of times called and total execution time. You will
probably want the chart display when gathering data, since
it gives you a clearer idea of how MHIST gathers data.

MHIST: two ways to start

You can start MHIST in one of two modes:

the Manual Jloop start (Fl) and
the Timed loop start (ALT-F1).

In either mode, you can stop at any time by pressing
either the ESCAPE key or function key 10 (F10).

March 25, 1987 Page 4-9 - PPA --

-- Overview --

Manual loop

When you press F1l, MHIST will determine the average
execution time of the address range in the first bin. MHIST
will continue this operation until you press any key. It
will pause, and wait for you to press another key. Then it
will determine the average execution of the second bin.

After all the average execution times have been
determined, MHIST will take another set of passes,
determining the number of times each bin is called. It
will continue to count the number of times the routine is
called until you press a key, then it will pause and wait
for you to press any key before it moves on to any other,
bin.

Timed loop

When you press ALT-F1 MHIST will prompt you for the
length of time (in milliseconds) that you want to gather
data on each bin. Then it will go through the same series
of operations as the Manual loop, but without any need for
you to touch the keyboard.

THIST: time-domain histogram

In the time-domain mode, the PPA measures the time spent
executing a section of code.

You specify the section by pressing F9 and entering the
start and stop address.

The column labeled "COUNT" shows the number of times the
duration falls into each time bin. The graph displays this
information as percentages of the the total number of
executions. The screen also displays the mean run-time.

--PPA -- Page 4-10

-- Overview --

THIST: Two ways to collect data

There are two ways to start the THIST PPA:

the Entry-Exit start and
the (Code Range start.

Entry-Exit

When started with F1l, the PPA records the elapsed time
starting when your program accesses the first address in
the range and only stopping when your program accesses the
last address. Note that this is the same mode used by MHIST
when it gathers average execution time data.

Code Range

When started with ALT-F1, the PPA records the elapsed
time starting when the program fetches an instruction from
any address within the range and stopping when the program
fetches any instruction from outside the range.

IMPORTANT: The Code Range mode will only work properly
if the macro FETCH is defined for your processor-specific
software package. Check the Glossary section of your
Target Application note.

March 25, 1987 ' Page 4-11 --PPA --

-- Overview --

1.4 PPA command Summary

The power of the PPA is available through either the PPA
menu, described in section 1.5, or the the PPA commands,
described below.

AHIST
Calls the address-domain histogram, described in section 4
of this chapter.

HLOAD <filename>

Loads the histogram data stored in the file, and then calls
up the proper histogram. Use this command only on files
saved with HSAVE.

HSAVE <filename>
Saves the data from the last histogram displayed, after
exiting from the histogram.

MHIST
Calls the multiple-pass address-domain histogram, described
in section 6 of this chapter. ’

SSAVE

Saves the screen image as a DOS text file. This command 1is
always assigned to function key ALT-F9, whether you are in
the PPA or not.

THIST

Calls the time-domain histogram, described in section 5 of
this chapter.

-- PPA -- Page 4-12

-- Overview --

1.5 The main PPA menu

All the PPA features can also be summoned from the PPA
menu. Press the ALT key and the F10 key at the same time:

Program Perfomance Analyzexr Henu

TIME DOMAIN Performance Anaylzer

ADDRESS DOMATN Performance Analyzer

MMULTIPLE PASS ADDRESS DOMATN Performance Analyzer
SAVE FILE for Program Performance Analyzer

LOAD FILE for Program Performance Analyzer
UNILAB IT tlenu

LEX] EXIT to Command tMMode

(Press the Function Key to select)

BB RSBdFEd
W

This menu lets you select the PPA commands with
function keys:

Fl
F2
F3
F4
F5

F6

March 25, 1987

is
is
is
is

is

equivalent to THIST.
equivalent to AHIST.
equivalent to MEIST.
equivalent to HSAVE (you will be prompted

for a file name).

equivalent to HLOAD (you will be

prompted for a file name).

will allow you to go to the other menus.
This is the same as pressing F10 from the
command mode.

F10 returns you to command mode.

Page 4-13 -- PPA --

-- Overview --

1.6 The interactive screen: AHIST, MHIST and THIST

All data and commands are entered into interactive
screens. The screen is called up with one of the three PPA
commands, AHIST, MHIST or THIST. This section discusses
all three modes. Sample screens of each appear in the next
several pages.

The AHIST screen display

" Servo Control Routine - Initial testing of ver 0.4/9jul86 flw)
Address Bins 1+ Count + ¥ 1 0 6 12 18 24 30
0 - FFF 10974 24 '
1000 -~ IFFF E74D 21 1
2000 - 2FFF 0 0 1@
3000 - 3FFF 8E73 12
4000 - 4FFF 11CS6 25 1§
5000 - 7FFF 0 0 ¢«
8000 - BOFF B1F9 16 1
8100 — FFFF 0 01
- 1
-]
- 1
-— 1
- 1
—]
- n
i Y - 1
] 30
Start Symbols Subdivide Delete Clear Counts
Clear All Title Trigger Spec 16 Bits Exit
\. J

The top line
The top line of the screen is reserved for 80 characters

of text. You can enter a title or notes into this field,
after pressing F7.

- PPA -- Page 4-14

-- Overview --

The THIST screen display

[Servo Control - Optimization for version 0.7 25 Aug 86 RWJ)
240 - 4C9 1 Mean time: 0 usec Time scale: 100 milliseconds 1
Time Bins 1 Count «+ ¥ 1 0 6 8 12 16 20

} ! — —
0 - 2499 14 13 %
2500 - 4999 28 19
5000 - 7499 17 16
7500 — 9999 9 8
10000 - 12499 11 10
12500 - 14999 9 8
15000 - 17499 S 4
17500 - 19999 0 0 1
20000 - 22499 0 0
22500 - 24999 0 0 =
25000 - 27499 18 17
27500 - 29999 0 0

1 i M 4 1
T L 1 1 1

6 8 12 16 20

Start Symbols Subdivide Delete Clear Counts
Clear All 'I'itle Set Units Adr Bounds Exit

Code range start)

The second line

The second line is blank in AHIST, but shows the address
bounds, the mean time and the time scale in THIST. In
MHIST it shows the time scale (currently unchangeable) and
the name "Multiple Pass Histogram."

You set the value of the address bounds for THIST by
pressing F9 and entering hexadecimal values. You can also
enter a symbolic label-- see the discussion on the bins and
symbolic labels, in section 1.7.

March 25, 1987 Page 4-15 --PPA --

-- Overview --

MHIST graph display

[Test of two routines-- initial test ver 0.5/12jul86 fub h
t Multiple Pass Histogram ' Time scale: 10 milliseconds
Address Bins 1Tot Times ¥ 139 38 46 54 62 70
0230 - 347 1 2088480 66
1200 - 1670 1 1074460 33 1

-] 1
- 1 1
- [] 1
- 1 1
- [] L}
- [] L}
- []]
- [|]
-] | |
- 1]
— [] []
-] 1
- [] 1
i 1 1 T 1 i
30 38 46 54 62 70
Start Symbols Subdivide E Delete Clear Counts
Clear All Title Chart 16 Bits Exit
; Timed loop start
\. y

Column ¢titles

The third line contains the scale of the graph and the
column titles.

The graph area

The most active portion of the screen shows a bar graph
(histogram) of your program's execution. Each bar
represents the proportion of activity or percentage of run-
times that fall into the corresponding bin.

The scale across the top varies automatically as the data

changes. It automatically adjusts the scale and the
display to make the best use of the screen space.

--PPA -- Page 4-16

-- Overview --

MHIST chart display

(Test of two routines—- initial test ver 0.5/12jul86 fub)
' Multiple Pass Histogram ' Time scale: 10 milliseconds 1
dddress Bins 1 Aver. Exec.Time s Num. Times Called 1Tot. Exec Time
0230 - 347 ' 60 usec ! 100343 T 2088480 usec !
1200 - 1670 1 20 usec ! 119258 ' 1074460 uvsec !

- [] 1 [] 1
-] 1 1 1
- [] [] [] L}
- 1 1 1]
- 1 [] 1 []
- L} 1] 1
- 1]] []
- i [] [] 1
- [] 1 1 1
- 1 [] 1 1
- L} 1 § 1
- 1 1] 1
- 1 1] 1
Start Symbols Subdivide Delete Clear Counts
Clear All Title Graph 16 Bits Exit
Timed loop start
y,

Count and % Columns
The information expressed in the graph is also displayed

numerically. The two columns immediately to the left of the
graph show the raw counts and the percentages.

Function key menu
The menu of commands appears below the graph area.
These commands are operated by the function keys, F1l to

F1l0.

Except for F8 and F9, all of the functions are the same
for both AHIST and THIST. ’

March 25, 1987 Page 4-17 --PPA --

-- Overview --

The message areas

The two lines at the bottom of the screen are used for
error messages and other miscellaneous purposes.

The line immediately above the function key menu is used
only for status messages. AHIST and THIST will display only
the "Now collecting data" message, while MHIST will
display one of four messages, depending on the status of the
data collection process:

Collecting average execution times.
Collecting number of times called.
Paused: press any key to continue.
Paused: will resume in a moment.

--PPA -- Page 4-18

-- Overview --
1.7 The PPA and Symbolic Labels

On the left side of the screen you enter for each bin
either a symbolic label or two numbers. Press F2 to toggle
between entering numbers and entering symbolic labels.

In AHIST and MHIST a bin is a range of memory addresses,
such as 10 to A0. In THIST a bin is a range of time, such as
10 to 20 milliseconds. As the PPA collects information about
your program, it sorts the data into your bins.

AHIST and MHIST addresses are always entered in
hexadecimal format. THIST time values are always entered in
decimal, while the address is entered in hexadecimal.

Time values are always output in decimal.

You can label each bin with a name, up to 14 characters
long. When you enter a label the PPA will look in the
symbol table for a symbol with the same name. The value of
the symbol will be used as the lower 'limit of that bin.

If the PPA finds the symbol, then it will look for a
second symbol, the same as the first except for an with "X"
as a suffix. The PPA will use the value of this symbol as
the upper limit, the eXit point.

For example, you can label the third bin with the name
FUNC1l. The PPA will use the value of the symbol FUNC1l as
the lower limit, and the value of the symbol FUNC1X as the
upper limit. Of course, if you have not defined the symbols
or have not loaded the symbol file into the UnilLab system,
then the PPA will not translate them.

See section 1.5 of Chapter Six in the UnilLab Reference
Manual for detailed information on loading symbol files.

You can turn off this symbol translation feature by
disabling the Unilab's symbol table, with SYMB'.

Press F2 to toggle between the display of bin limits and
the display of the bin name.

March 25, 1987 Page 4-19 - PPA --

-- Overview --
1.8 Saving Histograms

There are two ways to save the graph generated by a PPA--
- you can save the data, or you can save the image. If you
save the data, you can later reload the same histogram’and
look at the data or generate a new graph with the same
setup. If you save the image of the screen then you can
include the image in the text of a report.

Save the data

If you wish to save the setup of a histogram as a file,
you may do so with the command HSAVE <filename>. Issue,
this command after you exit from the histogram. This file
includes both the setup information and the current state of
the data at the time the program halted.

To re—load the saved histogram, you will use the command
HLOAD <filename> . After HLOAD loads the data, it calls up
the correct PPA mode.

Save the 4image

While in a histogram, press function key F9 while holding
down the ALT key (ALT-F9). You will then be prompted to
type in the name of the file. When you enter a name and
press the <CR> key, the image of the screen will be saved.

You can look at the image with the DOS command TYPE. You
can also include the file in reports by importing the text
file into your word processor. When you do this, you will
probably have to play with the margin settings a little, to
get the image to look right. The graphs use the full 80
columns of the CRT display, and you may have to edit the
display, or use a compressed printing mode to print it out.
The printout of the image will not show the bar graph
correctly unless you have an IBM-compatible printer.

--PPA -- Page 4-20

2. Ready the Tarxget Program

2.1 Basics
The PPA analyzes a program running on your microprocessor
control board. The program can reside either in the

Unilab's emulation memory or in a memory chip on your board.

So, to ready the program for analysis, all you must do
is:

enable emulation ROM and load the program,
OR
disable emulation ROM and put your ROM chip on your
board.
Program in emulation memory

Normally you will load your program into emulation
memory, from either a disk file or a ROM or EPROM.

In either case you first enable emulation memory.

Program in ROM or EPROM

For final testing, you may wish to run your program
directly from a memory chip on your target board.

In this case, you must first use the EMCLR command to
disable emulation memory.

March 25, 1987 Page 4-21 ~PPA -

-- Get Ready --
2.2 Run the program from emulation memory

Normally you will load your program into emulation
memory, from either a disk file or a ROM or EPROM.

Enable memory
First you must enable emulation memory with the UnilLab

command
<start address> TO <end address> EMENABLE.

The address range for this command will depend on the memory
map of the particular control board you are using. Refer to
the Unilab Reference Manual, Chapter Six, Section 2, for,a
more detailed discussion. See also the entry for EMENABLE
in Chapter Seven, Command Reference.

Load program from a disk file

Most people will use one of two commands to load a
program from a file to emulation ROM, depending on the
format of the file produced by your assembler or compiler:

1. Binary format. Load the file with:

<from addr> <to addr> BINLOAD <filename>
The filenames usually end in .BIN, .COM, or .TSK.
The screen prompts for the filename if it is not
included on the command line.

2. Inteltm—-format HEX object format. Load the file
with:

HEXLOAD <filename>
You are prompted for the filename if it is not
included on the command line. You do not specify a
loading address with HEXLOAD.

The UniLab system also supports HEXRCV and MLOADN
commands, for, respectively, loading from a remote system
and loading from host RAM. Refer to the Unilab Reference
Manual, Chapter Six, Section 2, on Readying and Loading
Memory, as well as to Chapter Seven, Commands.

- PPA -- Page 4-22

-- Get Ready --
Read Program from ROM chip

You can also use the UniLab software to read a program
into emulation memory from a ROM or EPROM. Unilab supports
all popular devices (refer to Appendix G in the Unilab
Reference Manual).

To read a program from a ROM or EPROM, first get into
Unilab command mode. Place the chip into the UnilLab's prom
socket, as shown below. Press F1l0 for the main menu, then
press F9 to get the PROM reader menu.

4 \

PROH READER HENU

READ 2716/48016 - use P16
READ 2532 - use Pile6
READ 2732 - use PII32
READ 2764 - use P64
READ 27128 - use P64 (PtIS6 for 27128A4)
READ 27256 - use PIS6
READ 27512 - use PIS12

Go to PROM Programmer tlenu
RETURN TO MATN MENU

Press the function key to select the item required.

24 Pin
Rom/Eprom

. TTEVEYEYEVAVEVRVEVEWEVETE

Note that the 24-pin chips plug into
the UniLab socket shifted all the way
to the left.

March 25, 1987 Page 4-23 -- PPA --

-- Get Ready --
2.3 Run program from a ROM on the Target Board

You may want to check the program as it runs in a ROM or
EPROM on your control board. This will allow you to confirm

that the program runs on the target board in its final form.

Enter EMCLR, to keep the UniLab emulation ROM off the
bus. You can then use the PPA in the usual way.

-- PPA -- Page 4-24

3. Ihe Address-Domain Analyzer
3.1 Simple Procedure

The program should already be in emulation ROM, or in a
ROM or EPROM chip on your board, as described in the
previous section of this chapter.

1. Enter the command AHIST, to bring up the blank
AHIST screen,

2. Enter the desired address limits (in hexadecimal)
into the two left columns or press F2 and enter
symbolic labels for each bin.

3. Press F1 (Start).

Your microprocessor will start executing your code, and
the PPA will start collecting data about your program.
Press any key to stop program execution.

3.2 The Address-Domain Histogram

The Address-Domain Histogram shows the level of program
activity in each range of addresses you specify. To analyze
a new program, first load the program into memory. Then
call up the AHIST screen with the command AHIST.

Specifying address ranges: - Strategy

Memory addresses can be entered in several ways. The
total range of addressable memory can be entered in one bin,
and the range expandéd over several bins using F3
(Subdivide) and the cursor down key on the numeric keypad.
This divides the address range equally among the bins. This
is the preferred method for early studies of the program.

Alternatively, you can enter the range separately for

each bin. This is the way to examine specific functions, or
analyze non-contiguous sections of code.

March 25, 1987 Page 4-25 --PPA --

-- AHIST --

When examining a small section of code, it may be useful
to assign the remainder of memory to a single bin, so that
activity outside of the section under review can be
monitored. This strategy can backfire-- the PPA can end up
missing the data you want to see because it is spending so
much time monitoring and sorting the activity in the
remainder.

Changing bin limits

When the sections of interest are identified, parts of
the code can be discarded using F4 (Delete). Other parts
can be expanded for closer study using F3 (Subdivide). Bin
limits can be changed by simply typing over the address
entries, so that a bin retains the same label. However, if
the label is a valid symbol, the value of the symbol will
override the number that you type in.

Symbolic labels

You can use a symbolic label to assign bin limits.
Press F2 to toggle between the display of addresses and the
display of symbols. '

After you enter a name, the PPA will search the symbol
table.

If that symbol name is found it will use that value
to replace the lower limit of the bin.

If it finds the symbol in the symbol table, the PPA will
search for a symbol to use as the value for the upper limit.
It looks for the same symbol name with an additional
suffix "X."

- PPA - Page 4-26

- AHIST --
Defining labels

The convention described above allows you to use a single
name to refer to a functional range of memory.

You will have to use the appropriate label to mark the
beginning and end of each range of interest in your source
file. For example, label the entry point of your
initialization routine with the name "PGM_START," and label
the exit point of that routine with the name "PGM STARTX."

You will then need to generate a symbol file with your
assembler/linker and load that symbol file into the UniLab
symbol table. See section 1.5 of Chapter Six of the UnilLab
Reference Manual for detailed information on symbols.

You can also make use of the UnilLab command IS to define
symbols. You will find this especially useful for defining
the exit points of ranges that already have symbolic names
for the entry points. For example, to define an area of
memory 100 (hexadecimal) bytes long that starts at the
already defined label "SORTLOOP," you type:

SORTLOOP 100 + IS SORTLOOPX

Many high-level languages create labels only for the
entry points of functions. If you are working in a high-
level language, you might find that you will have to use the
IS command to create labels for the exit points.

Saving symbols

You can save the current symbol table with SYMSAVE, and
load it again later with SYMLOAD. These commands are
especially useful after you have defined symbols with IS, or

selectively deleted symbols.

Use SYMLIST to get an ordered list of the current symbol
file. YOu can then delete symbols with <symbol #> SYMDEL.

March 25, 1987 Page 4-27 - PPA --

-- AHIST --

Labels and addresses

The PPA will automatically translate a symbol into a
value when you enter the AHIST screen and each time you
either move the cursor through a label field or enter a new
name as a symbolic label. When the PPA finds a symbol, it
overwrites the current value of the bin limit with the new
value that it has found. Of course, the PPA does nothing if
the label you specify is not in the current symbol table.

You can turn off the translation of symbols by disabling
the UniLab symbol table. Use the Unilab command SYMB' to
turn off the translation of symbols. SYMB re-enables this
feature-- as do IS, SYMFILE, and SYMLOAD.

The address bus -- 16 or 20 bits

The address bins are normally interpreted as 16-bit
numbers, even if you enter a five digit hex number (the most
significant digit is ignored). Press F9 to toggle between
a 20-bit and 16-bit address bus.

A 20-bit address bus will allow the PPA to differentiate
between addresses in different 64K segments. For example,
30000 and 40000 (hexadecimal) are both interpreted as the
same address (0000) when you specify 16-bits, but are seen
as two different addresses when you specify 20-bits.

It is a good idea not to select 20 bits unless you really
need it. The high four bits of the address inputs to the
Unilab hardware, Al6 to Al9, are usually not connected and
"float high" on processors with a 16-bit address bus. This
means that the Unilab sees the 16-bit address 0000 as the
20-bit address FQ0000. In some cases, such as the Z80, these
high order address lines are used to tell the UniLab more
about the activity of other control lines on the target
microprocessor.

- PPA -- Page 4-28

-- AHIST --

Therefore, unless your processor has a 20-bit address
bus, the high four bits of the address should be ignored by
the Program Performance Analyzer. This is the default
condition.

Even if your processor has a 20-bit address bus, you
should, for convenience, keep the PPA in 16-bit mode unless
you need to distinguish between addresses in 64K segments.

If you need to select addresses from a program that
occupies more than one 64K segment, use F9 to toggle to 20
bits and enter the additional digit in all addresses to
specify the 64K segment (using ranges from 00000 to FFFFF).

Naming screens

F7 (Title) opens a field one line by 80 characters across
the top of the screen. A title for the screen can be
entered here, or notes to identify the screen should it be
stored and retrieved at a later date. See subsection 1.8,
Saving Histograms.

Modifying the trigger spec

The PPA uses the underlying Unilab command language to
communicate with the UniLab hardware.

Function key F8 gives you access to this same command
language. You can use this function key to alter the
trigger specification (the trigger specification tells the
hardware what bus cycles to collect information on). You
can alter the trigger spec so that data is not collected
until after some event occurs, or so that only certain types
of bus cycles are collected-- only reads, or only those with
a certain data byte.

F8 opens a trap door into UnilLab software environment.
This means that once you press F8 you can enter any Unilab

March 25, 1987 Page 4-29 - PPA --

- AHIST --

command. However, we recommend that you only use this
feature to alter the trigger spec and perform other simple
commands, such as turning symbols on and off.

You can filter the trace by specifying some further
criteria that each cycle must meet, besides addresses. For
example, limit the trigger specification to only read cycles
with the command: READ.

You can delay the collection of data until after a
"qualifying event" has occurred, with the command AFTER
<qualifying event>. For example, wait until address 4500
appears on the bus with the command: AFTER 4500 ADR

You can safely change any aspect of the trigger except
the trigger addresses, which are automatically set by the
PPA. Refer to Chapter Six, Section 4, in the UniLab
Reference Manual for more information on triggers.

After you press F8, you are back in the UniLab
environment until you press <CR>. Remember that the
function keys are assigned different commands in UnilLab. Be
aware that if UniLab commands are invoked for a purpose
other than altering the trigger, then you might have to use
the command AHIST to re—-enter the PPA.

Clearing data

F5 clears acquired data, so that another program run can
be performed using the same bin allocations. F6 clears both
data and bin allocations, so that you can enter new bin
limits and names.

Exiting AHIST

F10 exits the AHIST screen, and returns the system to
the Unilab environment.

- PPA -- Page 4-30

- AHIST -

3.3 The Function Keys

This subsection lists the names and uses of the function
keys in the menu.

Fl START

Starts the collection of data. If RESET is enabled the
target program restarts from the first address. This is the
recommended procedure.

Press any key to stop the data collection.

F2 NAMES/ADDRESSES

Each bin can be given a symbolic label. Pressing this key
toggles between the bin address range and the label. See
the discussion under section 3.2 for more details.

F3 SUBDIVIDE

This key enables bins to be subdivided. Place the cursor on
any bin and press F3, which causes SUBDIVIDE in the menu to
be displayed in reverse video. Then move the cursor down,
and press F3 again. The initial bin range is now divided as
equally as possible among the bins between the starting and
ending cursor positions.

F4 DELETE
Place the cursor over a bin and press F4. The name and bin

limits of the chosen bin are deleted, and the bins below
move up to fill the space.

March 25, 1987 Page 4-31 -- PPA --

-- AHIST --
F5 CLEAR COUNTS

Pressing this key resets the data count to zero.

Fé6 CLEAR ALL

Pressing this key clears bin limits, bin names, and data
count. (Y/N) confirmation is required.

F7 TITLE

This function allows an 80-column title or notes to be
entered across the top of the screen.

F8 TRIGGER SPEC

This key opens a "trap door" to the Unilab environment, to
enable the trigger specification to be modified.

CAUTION: All function keys revert to Unilab
functions until <CR> 1is
pressed. Do not press any function key

until you have
typed in the command to alter the trigger

spec and

pressed <CR>,
F9 16 BITS/20 BITS
Toggles between 16 and 20-bit addresses. You will normally
leave this set to 16 bits, especially for processors such as
the Z80 that only have a 1l6-bit address bus.

F10 EXIT

Returns you to the Unilab environment. Requires (Y/N)
confirmation.

--PPA -- Page 4-32

- AHIST --

3.4 A Practical Example of AHIST

Suppose you have just completed version 0.4 of a program
and you need to know how well it works. There is a main
loop in ROM1 that accesses routines resident in ROM2 and
ROM3. Unknown to you, there is a bug that causes a stack
overflow. When this happens, the program attempts to write
td ROM3 instead of to the stack. This occurs on a
subroutine call, and the address on the stack tells the
program where to return to. The program then tries to read
back from ROM3 the address to RETURN to. At this point, the

program goes berserk, accessing the wrong areas.

The program is run under AHIST. You type in address
ranges for each chip on the board, the I/0 and two unused
address ranges. You use F2 to label each bin, and press F7

to give the screen a title.

March 25, 1987 Page 4-33 -- PPA --

-- AHIST --

You press Fl to start the first run, which goes well for
a time, executing the code in ROM1 and ROM2, as well as all

four of the RAM chips. I/0 operations also look good.

[Servo Control Routine - Initial testing of ver 0.4/9jul86 flw)

Address Bins 1 Count + ¥ 1 0 6 12 18 24 30

0 - FFF 10974 24 1)
1000 - 1FFF E7AD 21 1
2000 - 2FFF 0 0
3000 - 3FFF 8E73 12 1
4000 -~ 4FFF 11C56 25 »
5000 - 7FFF 0 0 1
8000 -~ 80FF BIF9 16 1
8100 - FFFF 0 01
— L}
- []
- 1
-_ L}
-]
-]
- []

i r - 1

0 30

Start Symbols Subdivide Delete . Clear Counts

Clear All Title Trigger Spec 16 Bits Exit
\. J

- PPA -- Page 4-34

- AHIST -

Suddenly the program goes wild, running into an area of
memory where it should not be. You can see that the program

has reached ROM3 but not yet executed much code there. Hit

any key to stop.

Servo Control Routine - Initial testing of ver 0.4/9jul86 flw)

Symbolic Labelss Count + ¥ 0 6 12 18 24 30

L |]
T ™ 1

ROM 1 Main_Lp 16208 19
RO 2 Servo_Ctl EASE 13
ROML 3 SubRout 42D 1
RAM 1 Scratch_Pd 8771 8
RAM 2 Data_Tbl 13236 16
unused area 1 0 0
I/0 B1F9 9
unused area 2 246BF 32

-1

0 30

Start Addresses Subdivide Delete Clear Counts
Clear All Title Trigger Spec 16 Bits Exit

March 25, 1987 Page 4-35 -- PPA --

- AHIST --

You expand the ROM3 bin over more bins, using F3 and the
cursor down key, clear the data (F5) and run the program
again. This time it crashes within the first section of

ROM3. It mysteriously accesses the top of ROM3 twelve

times.

Servo Control Routine - Initial testing of ver 0.4/9jul86 flw
Symbolic Labels 1 Count 1 ¥ 0 20 40 60 80 100
ROM 3 llow 24C 98
RO 3 mlow 0 0
ROM 3 mid 0 01
ROM 3 mhigh 0 01
ROM 3 high 12 2 18

|
L}
[]
[]
1
1
1
[]
1
1
i T 1 1 1
0 100
Start (] Addresses Subdivide Delete Clear Counts
Clear All g4 Title Trigger Spec 16 Bits Exit
\, J

- PPA -- Page 4-36

- AHIST -

You now suspect a stack overflow. Just to be sure you
change the trigger, pressing F8 and entering NOT FETCH

<CR>. The carriage return puts you back into AHIST.

Servo Control Routine - Initial testing of ver 0.4/9jul86 flw

Symbolic Labels s Count 1 ¥ 0 20 40 60 80 100

[1]]
T T T 1

]
T

ROM 3 llow 0
ROM 3 mlow 0
ROM 3 mid 0
RO 3 mhigh 0
ROM 3 high 16

3 | J 1

l

{

0 80 100

Start Addresses Subd1v1de Delete Clear Counts
Clear All Title Trigger Spec 16 Bits Exit

NOT FETCH
\

You press F1l to begin a new test. Now the histogram
shows that the access to the top of the ROM is not a fetch.
Since the program seemed to be running normally in the other
expected areas of memory, this is probably a bad read or
write. The histogram shows no access to ROM1 or ROM2,
because the processor only fetches from those chips.

At this point you can leave the PPA and look at the
program using the Unilab command language. What you see
there verifies your findings. With this information, you
make modifications necessary for version 0.5 to run

perfectly.

March 25, 1987 Page 4-37 -- PPA --

4. Ihe Time Domain Analyzexr
4.1 Simple Procedure

The program should already be in emulation ROM, or in a
ROM or EPROM on your board, as described in section 3 of
this chapter.

1. Enter THIST, to bring up the blank THIST screen

2. Enter time limits into the time bins at the left
of the screen:

3. Press F9 and enter address bounds at the top left
of the screen,

OR
press F2 and enter a symbolic label.

4. Press Fl to Start the program in the Entry-Exit

mode,
OR press ALT-Fl to Start in the Code Range mode.

4.2 The Time-Domain Histogram

This feature shows you how long any specified routine
takes to execute each time the routine executes. Simple
routines will always take the same amount of time, unless
they are interrupted.

Time bins and time scale

The collected times are sorted into the bins, for which
you have specified time-ranges which bracket your guess at
the actual execution time. For example, if you expect a
routine to take about 10 milliseconds, then you could set
the time scale to 1 millisecond (using F8) and subdivide a
range of 0 to 30 over all the bins.

The histogram will show you the percentage of execution

times that fall into each bin-range. The overall mean-time
is shown at the top of the screen.

--PPA -- Page 4-38

- THIST --
Starting THIST

There are two ways to start collecting data with the
THIST PPA: Entry-Exit and Code Range. These two starts will
give different results from the same setup.

The Entry-Exit start (Fl) measures time starting when the
Unilab sees the first address in the specified range. All
activity, including calls and jumps to other routines, 1is
measured until the program accesses the last address in the
range.

The Code Range start (ALT-Fl) records the time of
execution from the initial fetch of any address in the code
range until the program fetches an instruction from outside
the range.

IMPORTANT: The Code Range mode will only work
properly if the macro FETCH is defined for your
processor-specific software package. Check the
Glossary section of your Target Application notes.

March 25, 1987 Page 4-39 - PPA --

- THIST --
4.3 An Analogy for Understanding THIST

An analogy may help in understanding the working of the
time histogram.

The investigation begins

Let's say that a woman, Rosalie, thinks that Kevin, her
husband, is spending too much time in a particular tavern.
She decides to get some hard data before confronting him.
Rosalie develops a system where she goes to the bar every
day to collect data on how long Kevin 1is there. When she
comes home, she puts the day's reading into files: 0-2:00
hours, 2:01-4:00 hours, 4:01 to 6:00 hours, and so on.

Once a week she looks through the files and updates her
"bar" graph.

Subdividing

The second file starts to get fat, so she starts more
files for that category, say 2:01-2:30, 2:31-3:00, 3:01-
3:30, and 3:31- 4:00.

Entry-Exit

At first, when she goes to the bar, Rosalie parks outside
where she can watch the entrance and exit. When she sees
her husband go in the entrance, she starts her stopwatch,
and lets it run until she sees him come out the exit. She
then determines that he has spent 3 hours and 27 minutes in
the bar.

This, of course, is the Entry-Exit method. Using this
method, the unfortunate woman has no way of knowing that
Kevin left the bar through the bathroom window and spent
over 2 hours in the apartment across the back alley, before
returning to the bar by the back way and finally leaving
through the front door.

- PPA -- Page 4-40

-~ THIST -
Code Range

Upon becoming aware of the situation, Rosalie changes her
data-collection method. She takes up residence inside the
bar (in a suitable disguise-—- fake nose and glasses). She
then observes whether her husband is actually present,
running her stopwatch only while he is there. If Kevin
leaves by the back door, the window or teleportation,
Rosalie still knows how long he spent in the bar. She has,
in fact, just invented the Code Range method.

The moral

The method you use depends on what you want to know. The
wife in our example may in fact be more interested in how
long her husband is away from home than in how long he is
drinking at the bar. In this case, Entry-Exit would be
perfectly appropriate.

The code-range method is better for "in-line" code-- a
function or procedure that stays within a small area of
memory while executing. Your code probably does not look
like this, except for specialized assembly language
routines.

More typically, your code will contain many jumps and
branches, and most routines will call to subroutines. The
entry-exit mode is more suitable for use with this type of
assembly language coding. Code generated by high-level
languages also tends to have this sort of structure. The
entry-exit mode lets you see how much time is taken up by
your routine, including any "errands" that it might run to
other areas of memory.

March 25, 1987 Page 4-41 -- PPA --

- THIST --
4.4 The Time-Domain Function Keys

This is a list of the function keys displayed, together with
their descriptions.

F1l start gathering data in the Entry-Exit mode.
ALT-F1 start gathering data in the Code Range mode.

F2 through F7
These keys have the same functions as the address-domain

keys.

F8 SET LIMITS

This sets the units of the time scale: 10 microseconds, 100
microseconds, 1 millisecond, and 10 milliseconds. For
example, a bin limit value of 2 means 20 microseconds when
the scale is 10 microseconds. (Note that the screen uses
the abbreviation usec for microseconds.)

Use the right arrow key to change the time scale; press
the END key in the numeric keypad to return to the THIST
screen. .

NOTE: The resolution for the time histogram
is accurate to within 20 microseconds.
It will not be useful to set bin limit
values in smaller increments.

F9 ADR BOUNDS

Address Bounds. These two addresses are entered in
hexadecimal on the second line of the screen, or you can
press F2 and then enter a symbolic label. See the
discussion of symbols in section 3.2 of this chapter for
more information.

The address bounds are the starting and ending address
of the code to be tested. <CR> returns the cursor to the
bin limit section of the screen.

F1l0 EXIT
Returns you to the Unilab environment.

-~ PPA -- Page 4-42

~ THIST -

4.5 A Practical Example of THIST

Your program is running, and you're ready to begin
optimizing the code. You decide to start by running a time
test on the main looﬁ. Unknown to you, an initialization
routine is called repeatedly, and takes a long time to

execute. The routine should only be called once.

You enter THIST and get the blank screen. You enter the
address range (F9), using the start and stop addresses of
the main loop. You set the scale to 10 milliseconds (F8)
using the right arrow to set the time, and the End key (same
as numeric key pad #1) to return to the THIST screen. This
relatively large time scale ensures that even events that
take longer than you would think are covered. You enter a
time range of 0 to 30000 into the top bin, and subdivide the
bin into twelve bins (press F3, then the down arrow 11 times

to indicate a total of 12 bins, and press F3 again)

March 25, 1987 ‘Page 4-43 - PPA -

-~ THIST -

You press Fl to start and run in Entry-Exit mode. All

the data falls into the top bin.

Servo Control

~ Optimization for version 0.7 25 Aug 86 RWJ

\

240 - 409 1 Mean time: 0 usec 1 Time scale: 10 milliseconds
Time Bins 1 Count e ¥ 0 20 40 60 80 100
[l L 1 (] i
0 - 2499 243 99 ; : : '
2500 - 4999 0 0
5000 - 7499 0 0
7500 - 9999 0 0 =«
10000 - 12499 0 0 1
12500 - 14999 0 0 1
15000 - 17499 0 0
17500 - 19999 0 0 =«
20000 - 22499 0 0 1
22500 - 24999 0 0 1
25000 - 27499 0 0 =
27500 - 29999 0 0
- []
-]
-— []
i t t t f i
20 40 60 80 100
Start Symbols Subdivide Delete Clear Counts
Clear All Title Set Units Adr Bounds Exit
Code range start y

Since you don't like this display, you clear the counts

‘with F5.

Then you change the time scale to 100 microseconds with

F8, and run the program again.

- PPA -

Page 4-44

~ THIST -

You now get a much better display of data. The times
fall into several bins-- including a surprising number in
the 25000-27499 bin. You suspect that the large number of
execution times indicates a problem. You decide to

investigate further.

Servo Control - Optimization for version 0.7 25 Aug 86 RWJ h
240 - 4C9 ' Mfean time: 0 usec Time scale: 100 milliseconds 1
Time Bins 1 Count v+ ¥ 1 0 6 8 12 16 20

] 1 L ! J‘
0 - 2499 14 13
2500 - 4999 28 19 1
5000 — 7499 17 16
7500 - 9999 9 8 1
10000 - 12499 11 10
12500 - 14999 9 8 1
15000 - 17499 5 4
17500 - 19999 0 0 =
20000 - 22499 0 0 =
22500 - 24999 0 0 1
25000 - 27499 18 17
27500 - 29999 0 0 1
-]
- L}
— 1

i t t t —+ {

6 8 12 16 20

Start Symbols Subdivide Delete Clear Counts

Clear All Title Set Units Adr Bounds Exit
Code range start . J

In order to narrow down the problem area, you clear the
counts again (FS) and change the second address (F9) to
point at the half-way mark of the main loop. This time when

you press Fl you don't get any long execution times.

You now know that the long execution times are caused by
code that either resides in or is called from the second

half of the main loop. You press F9 again, and change both

March 25, 1987 Page 4-45 -- PPA --

- THIST -

the starting and ending address, so that you are examining

only the third quarter of the main loop.
This time, the code often takes a long time to run. You
loock at the listing for that part of your program and find a
call to an initialization routine that you suspect is
delaying the program execution. You clear the counts again,

and this time enter addresses just before and just after the

suspicious call

You press Fl once again,

are multiple,

and immediately see that there

lengthy run times.

~
Servo Control - Optimization for version 0.7 25 Aug 86 RW
3E2 - 3F7 1 Mean time: 0 usec 1 Time scale: 100 milliseconds
Time Bins 1 Count ¢ ¥ 20 40 60 80 100
! } } + { {
0 - 2499 0 0
2500 - 4999 0 0 =
S000 - 7499 0 0 =&
7500 - 9999 0 0 «
10000 - 12499 0 0 =«
12500 - 14999 0 0
15000 - 17499 0 0
17500 - 19999 0 0 =«
20000 - 22499 0 0 1
22500 - 24999 0 0 1
25000 - 27499 27 99
27500 - 29999 0 0 1
- n
- []
- []
} t y t t 1
0 20 40 60 80 100
Start Symbols Subdivide Delete Clear Counts
Clear All Title Set Units Adr Bounds Exit
Code range start J
- PPA -- Page 4-46

-~ THIST --

Now the program can be corrected, and the test of the
routine rerun. You have found the bug and exterminated it.
The trace of the corrected program shows, properly, only

one very long execution time, indicating that the

initialization routine is now called only once.

r ™\
Servo Control - Optimization for version 0.7 25 Aug 86 RWJ
240 - 4¢9 ' Mean time: 659 ms s Time scale: 100 microseconds

Time Bins 1 Count ¢+ ¥ 1 0 6 8 12 16 20
0 - 2499 21 15 A

2500 - 4999 30 22

5000 - 7499 26 19

7500 - 9999 14 10

10000 - 12499 18 13

12500 - 14999 11 8

15000 - 17499 15 11

17500 - 19999
20000 - 22499
22500 - 24999
25000 - 27499
27500 ~ 29999

o oOoOo0oO0o
(=K = J¥ - N~ 2 -

0 6 8 12 16 20
Start Symbols Subdivide Delete Clear Counts
Clear All Title Set Units Adr Bounds Exit
L Code range start)

March 25, 1987 Page 4-47 --PPA --

2. i = =
Analyzexr

5.1 Simple Procedure

The program should already be in emulation ROM, or in a
ROM or EPROM chip on your board, as described in section 3
of this chapter.

1. Enter the command MHIST, to bring up the blank
MHIST chart screen (NOTE: if you enter MHIST after
leaving AHIST, then the bin limits will be preserved.
Within MHIST you can use F6 to clear the bin
limits).
2. Enter the desired address limits (in hexadecimal)
into the two left columns or press F2 and enter
symbolic labels for each bin. Note that MHIST allows
overlapping bins, or nested ones for that matter.
3. Press Fl to Start collecting data in Manual Loop
mode,
OR
press ALT-Fl to Start in Timed Loop mode.

In Manual Loop mode, your microprocessor will start
executing your code, and the PPA will determine the average
execution time of the first bin. You can press any key to
make the PPA pause, then when you press any key again, the

PPA will collect data on the second bin. When the PPA has
the average execution time of all bins, it will start
collecting the number of times called for each bin. So to

move from bin to bin you will need to press a key to pause
and then again to continue.

In Timed Loop mode, you will be prompted to enter the
length of time to collect data on each bin. You must enter
this (decimal) number in milliseconds. The maximum is
approximately 65000 milliseconds, or 65 seconds. The PPA
will then determine the average execution time and the the
total number of times called for each bin. You will not
need to press another key after you enter a valid number and
press carriage return. If you do press a key, you will

- PPA -- Page 4-48

-- MHIST --

prematurely stop collecting data on the current bin.

In either mode, you can stop at any time by pressing
either F10 or the ESC key. And in both modes the figures
you get will be expressed in milliseconds and will be
accurate to within 20 milliseconds.

5.2 The Multiple-Pass Address-Domain Histogram

See also section 3.2. The information in that section
applies to MHIST, except for the discussion of specifying
trigger specs. Additional information specific to MHIST
appears below.

The Multiple-pass Address-Domain Histogram shows the
average execution time, number of times called and total
execution time of each bin. The average execution time is
approximate, while the number of times called is exact. To
analyze a new program, first load the program intoc memory.
Then call up the MHIST screen with the command MHIST.

Changing from Chart to Graph

When you call MHIST, it will start up displaying the
Chart screen. This display shows you the average execution
time, the number of times called and the total execution
time for each bin. ‘

Press F8 to toggle between chart display and the graph
display. The graph display shows you only the total

execution time and a histogram of the total execution time.

Both displays highlight the number that is being altered
while gathering data.

March 25, 1987 Page 4-49 - PPA --

-- MHIST --
Getting valid results

The results that MHIST gives you are only valid if your
target software is executing the same series of instructions
each time you start it up. For this reason you should use
one of three strategies:

1) The simplest is to have reset enabled (RESET),
which will cause the target program to start over from
the beginning each time. With this method you can
perform a timed loop start.
2) Disable reset (RESET') and manually start some
operation on your target system at the start of data
collection for each bin. With this method you would
want to perform a manual loop start.
3) Disable reset (RESET') and use the stimulus
outputs to trigger some operation on your target
system at the start of data collection for each bin.
MHIST automatically sends a strobe out on the stimulus
outputs at the start of data collection for each bin.
With this method you can use a timed loop start.

MHIST normally holds the outputs SO0 through S3 low and S4
through S$7 high. Just before MHIST starts collecting data
on each bin, it reverses these outputs and then returns
them to their usual values.

line #: 0 1 2 3 4 5 6 17

normal value: o o 0 0 1 1 1 1

value during strobe: 1 1 1 1 0 0 0 O

Note that MHIST sends these signals out whether or not
you use them.

Additional stimulus information

You can only use the stimulus outputs if your program
reads an input value and then takes an action when a
certain value appears-- or if you are willing to write the
extra code to test the value and take an action. The best
way to use these stimulus outputs is to look for the
positive—-going or negative-going edge.

- PPA -- Page 4-50

-- MHIST --

To use the stimulus outputs you need to connect the
stimulus cable to the PROM programmer socket, as shown
below. The ends of the cables are labeled.

See the Unilab Reference Manual, section 8 of Chapter
Six, if you need additional information on the stimulus
outputs.

5.3 An analogy for MHIST

An analogy may help in understanding the multiple-pass
histogram.

A suspicion is hatched

Divorce seems imminent for Rosalie and Kevin, the couple
who starred in the THIST analogy.

Kevin has become suspicious of his wife, and has decided
to keep track of how she spends her time. He decides that
if would be too obvious to tail her. Instead he will watch
outside of three locations he knows Rosalie frequents: her
place of work, a health spa and an cappuccino bar.

Catching the average time

He spends a day in front of each place, watching when she
enters and leaves. Each time she leaves he writes down the
elapsed time and resets his stopwatch. That way he is able
to determine how long she spends inside each place, on the
average.

A data collection problem

Kevin realizes that his wife might only step outside for
a breath of fresh air, and then immediately go back inside.
He would not be able to spot these entrances, since he is
busy writing down the elapsed time and resetting his watch.
So Kevin doesn't even know if Rosalie behaves this way.

March 25, 1987 Page 4-51 --PPA -

-- MHIST --

MHIST has the same difficulty-- while the PPA is
recording the elapsed time and resetting the clock, your
program could re-enter the routine you are monitoring.
That's why you need the second pass through each bin.

Determining the number of events

Kevin, who has lost his job by now, decides to spend
another three days on the project. This time, he spends a
day in front of each place, Jjust watching the entrance and
keeping track of how often his wife goes in. He figures
that once he knows how often Rosalie goes into each
building, he can multiply the average stay by the number of
stays and thus calculate the total amount of time she
spends in each building.

The husband's assumptions
Kevin has made two assumptions:

1) Rosalie's behavior is constant from day to day.
2) The average time he calculated is valid, even
though it might not include all of the visits Rosalie
made to each location. That is, Kevin assumes that
the visits he misses (when determining average time)
do not deviate from the mean.

Of course, we make similar assumptions when using MHIST.
Kevin's method: stimulus and response

Kevin has cleverly manipulated Rosalie, to protect the
first assumption. He knows that she will always follow the
same routine after they have an argument. So on the morning

of every day that he wants to gather data, he starts the
same fight with her.

--PPA -- Page 4-52

- MHIST -

Of course, this couple has been having the same argument :
every morning for the last five years, so Rosalie suspects
nothing.

The moral

Remember that your program must perform the same
operation during each pass, or your results will not be

valid.

As for Kevin and Rosalie: they were thinking of divorce,
but then realized that no one else would be able to put up
with their bizarre behavior.

March 25, 1987 Page 4-53 -- PPA --

- MHIST -

5.4 The Function Keys

This subsection lists the names and usés of the function
keys in the menu.

Fl START
Starts the collection of data. If RESET is enabled the
target program restarts from the first address each time the

PPA starts to collect data on a bin. This is the
recommended procedure.

Press any key to pause, and then press any key again to
continue with the next data collection.

The PPA will stop collecting data when you have lcoped
through all the bins twice-- once for average execution time
and once for number of times called. Or you can press F10
or the ESC key to stop the data collection

ALT-F1 TIMED LOOP START

Starts the collection of data in the timed loop mode.

F2 through F7

These keys have the same functions as they do under AHIST.
F8 CHART/GRAPH

This key toggles between the chart display and the graphical
display of the data collected by MHIST. When you are

collecting data, you will probably want the Chart display,
since it gives you a clear idea of what the PPA is doing.

-- PPA -- Page 4-54

- MHIST -
F9 16 BITS/20 BITS

Same as under AHIST, toggles between 16 and 20-bit
addresses. You will normally leave this set to 16 bits,

especially for processors such as the Z80 that only have a
16-bit address bus.

F10 EXIT

Returns you to the Unilab environment. Requires (Y/N)
confirmation.

March 25, 1987 Page 4-55 - PPA --

. Irxoubleshooting

6.1 Operating problems
Here are some hints that will help you avoid problems.
Target Program Loading

If the program is run in the emulation memory, the proper
range of emulation ROM must be enabled (EMENABLE). If the
program is run from the chip, the emulation ROM must be
disabled (EMCLR) .

The RSP' command can be used to disable the debug for a
completely transparent emulation during the use of the PPA.
When you do this, be sure to re-enable the debug with RSP
before attempting to set a breakpoint.

If the debug is not disabled, it will insert code into
the ORION reserved area for your processor. Refer to the
UniLab Reference Manual and the Target Application notes for
further information.

Symbolic labels

Use the UnilLab command SYMLIST to verify that your
symbol file has loaded properly. You can use <symbol #>
SYMDEL to delete any unwanted symbols.

The PPA will look at all the symbolic label fields
whenever you enter AHIST or THIST. If it finds a symbol
then it will update the address bin. If you don't want it
to do this, then disable the symbol table with SYMB'. You
can enable the symbol table again with SYMB. Several
other commands also re-enable the symbol table: IS,
SYMFILE, and SYMLOAD. '

The PPA will not try to find the symbol for the exit

address (with suffix "X") unless it finds the symbol for the
entry address.

-- PPA -- Page 4-56

-- TroubleShooting --

If AHIST or MHIST Does Not Run Properly:

- check that the 16-bit address (F9) is selected, unless the
program operates across
64K segments.

- make certain that RESET is in the state you want (either
enabled or disabled).

If THIST Does Not Run Properly:

- check that the address range entered is within the range
of the program under test.

- check that the starting and ending addresses are correct.

If you are getting the wrong information using ALT-F1 (Code
Range mode) :

- make sure that the macro FETCH is defined for your
processor—- specific software package.

- if you have a processor that has "extra" bus cycles, as
many Motorola processors do, make certain that those
bus cycles do not appear to be fetches from an address
outside of the normal code range.

If you get an "RS-232 error" after using the PPA
The Unilab hardware can end up in an indeterminate state
if the PPA is exited from abnormally. The command INIT

will not work-- but all you have to do is turn the UnilLab
off for a second, turn it on again and then type in INIT.

March 25, 1987 Page 4-57 ‘ -- PPA --

-- TroubleShooting --
6.2 PPA Error Messages

Bad Range - can't subdivide - This error occurs if you
try to subdivide a bin with an invalid or missing number, or
one that has the lowbound larger than the highbound.

Boundaries for bins overlap - AHIST and THIST will not
produce a histogram until this error is fixed. It occurs if
any two ranges of addresses or times share a region. For
example,

1000-2000 and 1500-2500
or even just

1000-2000 and 2000-3000.

Can't create file - This error occurs if the name you
specify for the file is an invalid name, or if DOS cannot
create a file for some other reason.

Disk full - This error occurs 1f you try to use TSAVE or
try to save a screen image file when there is not enough
room on your disk.

File not found - If you try to load a non-existent file
with HLOAD, vyou will get this message. Common errors are
misspelling, using the wrong file extension, or not
specifying the proper path. You can look at the disk
directory at any time by pressing F1l0 to leave the PPA
display and then typing
DOS DIR (or DOS DIR A: or any valid DOS command).

You must be in the Unilab environment (command mode) to do

these DOS functions.

Invalid or missing number - This error occurs i1f you
try to run a test with no bin defined, or with one limit
defined but not the other, or with a label entered but no
values, or with a numeric field containing a value that is
not a number in the base you are using. For example, FF is
not a number in decimal (which THIST requires). You will
not be able to produce a histogram until you correct the
mistake.

--PPA -- Page 4-58

-- TroubleShooting --

Invalid start and stop address for THIST - This error
tells you that one of the two address bounds that you gave
to THIST is missing or is not a number in the base you are
using.

Lowbound is larger than highbound - This error occurs
if a bin has a starting value that is higher than the ending
value. You cannot produce a histogram until you correct the
mistake.

Not enough bins available - This error occurs if you
try to allot more than 15 bins using F3 (Subdivide). This
can occur if you already have several bins alloted and then
try to subdivide one of them among all the bins. Be sure to
delete enough bins to allow room for expansion.

RS-232 error #XX - This error can occur after an
abnormal exit from the PPA software. You will have to turn
off the Unilab, wait a second and turn it back on. Then you
will be able to type the command INIT.

March 25, 1987 Page 4-59 - PPA --

7. Specifications

7.1 Operating method and 1limitations
AHIST

The AHIST PPA works by collecting 170 bus cycles at a
time in a trace buffer and sorting them into the bins that
you specify. The PPA filters the data it gathers, so that
the addresses of the 170 cycles fall between the highest and
lowest address that you specify.

Generally, you can be confident of your results once the
percentage data has stabilized.

However, this method has two main limitations:

1) If you are looking exclusively at a range of code that
seldom occurs, you will get a "shadow" effect. The first
170 cycles of the routine will be gathered, and then the PPA
will not gather data during the time it is sorting the data
into bins.

2) If you are looking at a very small range of code that
occurs periodically, and also looking at a range of code
that occurs continuously, you can get a "swamped-out"
effect. The trace buffer will be continually filling up
with cycles from the code that is continuously executing,
and might miss the execution of the small code range.

MHIST
The multiple-pass histogram collects average times the
same way that THIST does, and then collects the number of

times called by keeping a count of the number of times that
the first address is accessed.

--PPA -- Page 4-60

The times are accurate to within 20 milliseconds, and the
count of the number of times called is accurate up to FFFF
hex, provided that the first address is accessed only once
each time the routine is called.

THIST
The THIST PPA works by timing the duration of a function.
It sorts each sample into a bin as soon as it finds one.

You can have confidence in the results to within 20
microseconds.

March 25, 1987 Page 4-61 -- PPA --

Chapter Five:
On-Line Help

Contents
1. Command Reference 5-2
2. Alphabetical Lookup 5-3
3. Reminders 5-4
4., Function Keys _ 5-5
5. Mode Panels 5-7
6. Help Screens: By Category 5-10

Introduction

The UniLab software provides you with extensive on-line
help. The help facilities give you the assistance you need to
solve problems and to avoid confusion.

The Menu system, demonstrated in chapter two and fully
mapped out in chapter three, helps you gain familiarity with the
use of the Unilab instrument. With the menus, you can work with
the UniLab right away and learn the command language as you go.

The command MESSAGE will give you information on the most
recent updates and additions. Your distribution diskette
includes a README.TXT file which contains update information,
some of which applies to all UniLab software, some of which
applies only to specific Disassembler/DEBUG packages.

The On-Line Help covered in this chapter includes:

on-line glossary entries (abridged version of the
Command Reference Chapter)

alphabetical lookup capability

reminders when parameters are missing

reassignable function-keys, assigned to the most common
commands

help for the mode panel options

help by category

March 25, 1987 Page 5-1 ~- On-Line Help --

1. Command Reference

The on-line version of the command reference includes the
definition of the UnilLab commands and features. Type in

HELP <command>

to get the information on your screen. If the entry takes up
more than one screen, you will be prompted to press the PgDn
(page down) key:

Pghn for more.

To use the HELP feature, you must have the DOS variable
GLOSSARY set properly, as is explained in the installation
chapter.

The on-line glossary contains the same information that

appears in the printed manual. It is formatted slightly
differently, and is updated regqularly.

Command Reference Example

HELP BYE
BYE no parameters
Exits from UnilLab program.
USAGE
To return to DOS. Use SAVE-SYS first, if you want to
save the current state of the system.
Use DOS instead if you want to execute just a few DOS
commands and then return to the UniLab program.
ok
HELP MFILL
MFILL <from addr> <to addr> <byte> MFILL
Fills every location in an area of memory with the same byte.
USAGE

A good way to check that memory address and data lines
connect properly on the target board. Use in
combination with MDUMP.
One way to find out what is happening on your boar
when LTARG test program will not run: fill a block of
memory with NOOP instructions, starting at the reset
address, and then use STARTUP. You should see a trace
of consecutive addresses.

EXAMPLES

1200 1300 20 MFILL
fills locations 1200-1300 with the value 20 hex.

-- On-Line Help -- Page 5-2

2. Alphabetical Lookup

If you forget the full name of a command, you can look up
the names of all the commands that start with a particular
character. Type in

WORDS <character>

to get a list of all the commands that start with that character.

Or use
WORDS <command>

to get a list of commands, starting from that command.

The list shows the first line of each command reference entry,
which tells you what parameters the command requires

(type HELP <command> to see the full entry).

Note the F8 that appears to the right on some of the
entries-- this indicates that the command is also a mode panel
feature (press function key 8 to get the mode panel).

Some commands are assigned to other function keys. The name
of the key will always be shown to the far right.

Alphabetical Lookup Example

WORDS N

NMIVEC no parameters F8
NMIVEC' no parameters F8
NORMB '~ no parameters

NORMM no parameters

NORMT no parameters

NOT NOT <trigger description>»
NOW? : no parameters ‘

ONLY ONLY <trigger description>
ORG <address> ORG

PAGEO no parameters

PAGINATE no parameters F8
PAGINATE' no parameters F8

PCYCLES <count> PCYCLES

March 25, 1987 Page 5-3 -- On-Line Help --

3. Reminders

If you forget what parameters a command requires, enter the
command by itself to get a message describing the required
inputs. For example, if you enter MFILL, you will get the
following message:

"Requires the First-address the Number-of-bytes and a Value"

-~ On-Line Help -- Page 5-4

4. Function Keys

In menu mode, the function keys F1 through F10, are assigned
to menu choices.

When you enter the command mode, the function keys are
automatically reassigned to some of the most common UniLab
commands. This allows you to execute with a single key-stroke
any command that does not have parameters.

Altogether, you can have forty features assigned to the
function keys. Each function key can be assigned four commands:

you get one function by pressing a
function key by itself,

a second by pressing the function
key while holding down the ALT key,

a third by pressing the function while
holding down the SHIFT key,

and. a fourth by pressing the

function key while holding down the
CTRL key.

Turn to the next page for a chart of function key
assignments.

March 25, 1987 Page 5-5 -- On-Line Help --

HELP with general instructions
for using glossary. Also
Function Key assignments.

Next Step - Execute next

instruction. Will not follow jumps

or branches.

Restore window split to
Default sizes.

TSTAT - Display current
trigger spec.

STARTUP - Issue reset pulse
to target and trace first
cycles of target operation.

Help for using
on-line displays

Help for Debuggers

Help for Emulation
memory functions

Help for loading/
saving programs

Help for displaying/
altering memory

List Function Key

assignments for Shift §

RES- - Pulls RES-
output line low, and
holds it Tow

List Function Key

assignments for Alt i

-

SSAVE - Save the
screen image as
a text file

SPLIT mode - Enter /Exit split
screen mode.

NMI - Issue pulse on NMI- Tine to
target, to gain DEBUG control or

to single step through code. Function Key
——— assignments
when
. no other key
MODE - -
DE - Bring up pop-up mode held down

panels for changing display or
system modes,

MENU - Enter /Exit menu mode.

Help for using windows
Function Key

i ts
Help for simple analyzer :shs; : nmen
triggers
G:trl’ key
More help for analyzer
triggers held down
Help for mode panel
switches
Help for trace display
MEMO - Bring up system editor
for use as custom memo pad Function Key
assignments
ASC - Show ASCI! characters when
and hexadecimal code lé}]keg
- held down

WSIZE - Set new window split size

Function Key
assignments
— when

r@ key

N

held down

——

Call up the Program
Performance Analyzer Menu

4 5. Help for the Mode Panels

You use the mode panels to toggle options on and off.

On-line help for the Mode Panels makes them as easy to
understand as they are to use.

Press F8 or type MODE to get into the mode panels,

While in a mode panel press F1 to get the help display for
the current option. These brief help displays appear in the
following pages. Turn to the Mode Panel section of the Chapter
Six if you need more detail.

The help display for each option includes the name of the
command that the mode panel replaces. Type

HELP <command>

if you need more information on any particular feature.
Example: Panel One

1. ANALYZER modes
DISASSEMBLER
SYMBOLS
RESET

Help with the DISASSEMBLER option of Mode Panel

This option toggles the processor-specific disassembler.
Turn off when examining most filtered traces.

The equivalent commands are: DASM DASM'

Help with the SYMBOLS option of Mode Panel

Toggles translation of numbers into symbolic names.
Define symbols with IS , or load from file with SYMLOAD
or SYMFILE . The equivalent commands are: SYMB SYMB'

Help with the RESET option of Mode Panel

When enabled, the processor is reset whenever the
analyzer starts up. Turn off to catch trace of program
in progress. The equivalent commands are: RESET RESET'

March 25, 1987 _ Page 5-7 -- On-Line Help --

-- Mode

Example:

-- On-Li

Panels --

Panel Two

2. DISPLAY modes
MISC COLUMN
CONT COLUMN
MISC # BASE
PAGINATE
FIXED HEADER

Help with the MISC COLUMN option of Mode Panel
When enabled, shows the MISCellaneous inputs to
the UniLab (wires MO through M7) on the trace display.
The equivalent commands are: SHOWM SHOWM'

Help with the CONT COLUMN option of Mode Panel

When enabled, shows on the trace display the CONTrol
inputs (C4 to C7), along with the high four bits of the
address (A16 to A19). The commands are: SHOWC SHOWC'

Help with the MISC #BASE option of Mode Panel
Changes the base in which the MISCellaneous inputs are
displayed. Toggles between binary and octal.

The equivalent command is: <base> =MBASE

Help with the PAGINATE option of Mode Panel

When enabled, stops the trace display when screen fills.
Disable only when you want to log entire trace to a file
or a printer. The commands are: PAGINATE PAGINATE'

Help with the FIXED HEADER option of Mode Panel
Labels the columns of the trace display with a fixed
header, rather than one that scrolls up with the display.
Lower window only. The equivalent commands are: HDG HDG'

ne Help -- Page 5-8

~- Mode Panels --

Example: Panel Three

3. LOG modes
LOG TO PRINT
LOG TO FILE
PRINTER
NMI VECTOR
SWI VECTOR

Help with the LOG TO PRINT option of Mode Panel
When enabled, logs on the printer any commands that
alter memory, such as M! and MM! . See also PRINTER
option. The commands are: LOG LOG'

Help with the LOG TO FILE option of Mode Panel
Starts logging all screen output to the logfile. Create
the file with TOFILE <name>, which can appear on the
DOS command line. The commands are: TOFILE TOFILE'

Help with the PRINTER option of Mode Panel
When enabled, logs all screen output to the printer.
The commands are: PRINT PRINT'

Help with the NMI VECTOR option of Mode Panel
When disabled, turns off the UniLab software's use of
the hardware interrupt feature of your microprocessor.
Disable if your target board needs to use that feature,
or to have nearly transparent emulation. NMIVEC NMIVEC'

Help with the SWI VECTOR option of Mode Panel

When disabled, turns off all the DEBUG features of the
UniLab software, such as RB and N . Turn off for
completely transparent emulation. The commands: RSP RSP'

March 25, 1987 Page 5-9 -- On-Line Help --

6. Help Screens: By Category

The command HELP by itself (or press F1) gives you general
information on commands that give you help with the UniLab
software.

If you press a function key while holding down the CTRL key,
the UniLab program will display a help message for one of the
categories of commands. Use CTRL-F1 to display the selection of
help screens available

These help screens appear on the following pages.

Example: General Help F1

HELP is available on-line by entering HELP or F1.
Enter HELP command to see the definition of "command"
Type WORDS command to see a list of commands.

Use the function key F10 for MENU mode operation and quick
access to most common commands.

More help is available on the Ctrl-F1 to Ctrl-F10 Keys.

Press Ctrl-F2 for display of cursor key functions.

Type MESSAGE for current messages.
F1=HELP_ F2=SPLIT F3=N F4=NMI FS5=DEF F6=NOP F7=TSTAT F8=MODE F9=:STARTUP F10=MENU

-~ On-Line Help -- Page 5-10

-- Help Screens --

Example: Using On-Line Help CTRL-F1

Help By Category
Hold down CTRL and tap one of the function keys to get a
few hints on using the Unilab.

Help On:
Using On-line Help C1 cz2 Windows
DEBUG Commands c3 Cc4 Simple Triggers
Enabling Memory Cc5 cé More on Triggers
Load/Save Programs C7 cs8 Mode Panels
See/Alter Memory c9 ci10 Trace Display

Type HELP <command> for more information about any command.
HELP BYE, for example, will give you information about the
command that you use to exit from the UniLab program.

March 25, 1987 Page 5-11 -- On-Line Help --

-- Help Screens --

Example: Windows CTRL-F2

Help for Windows
Windows make it easy for you to organize information on your
screen. Once you split the screen, you can show different
parts of a trace in the upper and lower windows, compare
a trace to the disassembled program, examine source files, etc.
SPLIT or F2 to enter split window mode.

SHIFT-F8 to change window size w/cursor keys.

END key to move from one window to another.
Other window commands: DN TEXTFILE.

Example:; DEBUG Commands CTRL-F3

Note that this help screen includes information
on the processor specific DEBUG that you are using.

Help for The DEBUG
You use the DEBUG commands to look at the internal state of
your microprocessor, single-step through your program, and
examine or change target board RAM. But first you have to
Establish Debug Control with NMI or by setting a breakpoint
with RESET <address> RB.
Once you have established debug control, you can resume
program execution with a breakpoint set at another address
with <address> RB. You single step through a program starting
at a breakpoint, with F3 or N, if you don't want to see
execution of jumps and branches. Use NMI to follow jumps
and branches.
All commands for reading and changing memory work on RAM when
stopped at a breakpoint. CTRL-F9 tells you more about memory.

{ PROCESSOR SPECIFIC INFORMATION FOR ZB80]
m n OUT writes m to port n. n INP reads port n.
EINT re-enables target IRQ'S after bp, DINT leaves disabled
reqg change: n =AF n =BC n =DE n =HL n =IX n =IY
locations 38-3D reserved, overlay starts at 3D

-- On-Line Help -- Page 5-12

-- Help Screens --

Example: Simple Triggers CTRL-F4

Simple Trigger Commands
You use the trigger commands to describe bus conditions. When
the UniLab's bus state analyzer sees the event you described,
it will "trigger" and capture a record of the bus activity.
The simplest trigger searches for an address on the bus and
freezes the trace buffer five bus cycles after finding the
address: NORMT <address> ADR S

The NORMx words clear out previous trigger specs. ADR tells
the analyzer that you want it to monitor the address lines.

S starts the analyzer.

S+ shows you bus activity starting after the end of the
current trace buffer,

Type HELP <command> for more information on these and other
trigger words: NORMM NORMB DATA CONT MISC
CTRL-F6 gives you more hints about triggers.

Example: Enabling Memory CTRL-F5

Help for Enabling Memory
Before you load a program into the UnilLab's emulation memory
you must first enable the memory.
You specify the upper four bits of the address with
<hex digit> =EMSEG
and then specify the remaining 16 bits of the address with
<value> TO <value> EMENABLE.
To see the current status of memory, use ESTAT.

March 25, 1987 Page 5-13 -- On-Line Help --

~-- Help Screens --

Example: More on Triggers CTRL-F6

More on Triggers: Filters, Qualifiers and Reset
You can fill a trace buffer with only the bus cycles that match
a description (filtering), specify pre-conditions for trigger,

(qualifiers), or turn reset of your target board on or off.
Precede a trigger spec with ONLY to get a filtered trace.
See also 1AFTER 2AFTER 3AFTER. To avoid confusion, turn off
your disassembler while reading a filtered trace.

Precede a trigger spec with AFTER to make the condition
described by the spec a precondition for trigger.
See also PCYCLES PEVENTS.

RESET enables resetting of your target board-- your program
starts over whenever you start the analyzer with S or S+. If
you want to capture a trace of a program in progress, disable
resetting with Mode Panel F8 or with RESET'.

Example: Load/Save Programs CTRL-F7

Help for Loading and Saving Programs

Load programs from ROM with the ROM reader Menu: F10 then F9.
Load from disk files with HEXLOAD <file name> for Intel Hex
format files, or <from addr> <to addr> BINLOAD <file name> for
binary files.

Load from host RAM with <from srce> <to srce> <target> MLOADN.

Save a program to disk with
<from addr>» <to addr> BINSAVE <file name> .

-- On-Line Help -- Page 5-14

-- Help Screens --

Example: Mode Panels CTRL-F8

Help for Mode Panels
The mode panels, entered with F8 and left with END,

allow you to change display options, save information to the
printer or a file, turn off the DEBUG, etc. F8 also moves you
from one mode panel to the next.

To get more information about any of the options of the display
panel, press F1 while in the mode panel. Also try HELP MODE.

Example: See/Alter Memory CTRL-F9

Help for Examining and Altering Memory
Unless you have debug control (press CTRL-F3 for more on that)
you can only operate on emulation ROM.

<address> <count> DM disassembles from memory.
<from address> <to address> MDUMP dumps a section of memory.
<byte> <address> M! stores a byte of data.

Use HELP <command> for info on: M? MM! MM? ORG MFILIL MMOVE.

Example: Trace Display * CTRL-F10

~ Reading through your Trace Display
HOME shows you the trace display starting from the top

PgDn shows you the next page, while Down arrow shows one
more line.

<n> TN shows the trace starting from step n .

Note that PgUp and Up Arrow show you history , not trace
display.

March 25, 1987 Page 5-15 -- On-Line Help --

Index for Volume One

The full index can be found at the end of

Volume II.

BIN file o v @ v 6 ¢ v o o o o o o 2-7
fEXE ¢ 6 i e h e e e e e e e e e e s 1=21
JMCR ¢ 6 6 6 6 6 4 4 o o o o o o o « 1=21
«OPR & 4 v 4 o 4 o e o o s o a o « « 1=21
eSCR & ¢ 4 4 o o o o o o o o o o o« « 1=-21
VIR 4 6 4 ¢ o o o o o o o o s o o « 1-21

?free L] L] - L) - [. . . . - . - - . 3-62

=EMSEG . « . e o . . . 2“6, 3-9’ 5—13
=hiSt0ry ® e & s+ e e e e s e e e e 3-62

\ORION [. . [L] 3 [L] . - - . . L] . 1-17

16-bit ¢ o ¢« 4 ¢ ¢ o o o o« o o o « « 1=-31
data bus .« ¢« ¢ ¢ ¢ ¢« ¢« ¢« o« « « 1=3
installation . . . « . . « « . 1=7
TAFTER & 4 2 o o o o o« s o s a o« o » 5-14

24-pin Plug
in 28—pin SOCket . o L) . . - . 1-30
2after - . L) . L] 3_33’ 5‘14

3after . . . - - . . . [} - L] 3 3-33, 5—14
48 CHANNEL BUS STATE ANALYZER . . . 1-26
8/16 BIT IN-CIRCUIT EMULATOR
8051 . L] - - - - - L] . . . L] . 1—35, 2-5
reset . (] [[. . - 3 (] . - . - 1‘35
8086/88 family
NMI L) L) . L) . - L . . - L] [- . 1‘39

9 pin serial port . « ¢« . &« 4 ¢ o o 1-14

adapter :

9 to 25 pin & v 4+ 4 4 4 e e 4 . 1-9
Address

PPA ¢ ¢ & ¢ ¢ o o ¢ o o« o o « o« 4-3
Addresses

for triggers . ¢« ¢ ¢« ¢« « « » « 2-3
adr 3 - L) [L] - - - . - [) 3-27

March 25, 1987 Page 1 -~ Index --

ADR? v 4 o o o o o o s s o «

AFTER 4 o & o « o o o o s =

AHIST
16/20 bits .
address bus .
bin limits .
bins
definition .
false results
function keys
problem . . .
procedure . .
specifications
start « . .+ ¢ .
swamping . . .

* 8 & e & S e e o o & & s s s s e
| ©# o ¢ e ¢ ¢ o & o 8 & s o s s s 2

-—

¢ Oe & e s s o s s s s 58 s 82 s o s 2

symbol conventions
symbolic labels .
symbols
trigger spec . .
AlsOo ¢« 4« v o 4 4 . . .
also emenable
Analyzer . . « . « o 1ii, 1
cable « ¢« ¢ ¢« ¢ ¢ ¢« o @
MENU o« s o s« o o o 2-1
trigger status . . 3-2
USE &+ 2 = o o s o« o o =
ANALYZER TRIGGER MENU e o e
AS 4 ¢ 4 e o o s s o o e o o
ASCII ¢ % o & o o s o & o o
ASM « o o o o o s o s o o o

AT
serial port « .« « « o
AUTOEXEC.BAT v« & ¢ o o o o &
floppy systems

Background tasks
Bad Data

stack o o o o o o o o o
Bad Range - can't subdivid
Bad Trace « « o o s o s o
base

specifying
Batch files . .

complex . .

simple . .
Baud rate

19,200 . . o .
BINLOAD &+ o o « o «

binsave . ¢« « ¢ .
Bootable diskette .
Boundaries for bins over

lap

-—- Index --

U -

s o 8 ° -

-

o+
e}

-
w

o
1

N

(9]
-

e o INe ¢ e @2 o =B s o o o o o
|
e ® Nies s o o o s o s o o o
O
8 # W 8 8 W W S mM e e N & s e s e o o ° » o o
w
!
\\e}

~N
!
v

<
|
l_l

Breakpoint
display .
setting ¢ ¢ 4 4 2-14

buffer, trace
SIZ@ ¢ 4 4 4 4 e e e o e s o o 3-62

Buffers . ¢ ¢ 4 4 ¢ v v v 4o 4 v o . 1-17

.
.
.
.
.
.
.
.
—_
|
@)
-
[y)
[
—
w1

Bus

contention 1=29

problems iv

sample 4 0 . 4 . e . 2-12
Bus state analyzer . « o« o o« o o o o o ii
BYE . . ¢ ¢ ¢ o . . 1-11, 1-45, 5=2
CABLES ¢ 4« ¢ ¢ & & &+ 2 o o o o o « « 1-26
Can't create file . v v & v « . . . 4-58
CHEDSK 4 4 o o o o o o o o o o o o 1-2

and host ram . . . ¢« &« ¢ & & o« 1=2
Circuit

open collector . . 1-27, 1-34, 1-37

CLEAR & 4 & o o o o o o o o o o« o « 1-48
Clock

inputs . . . 4 . 0 v e 4 e . . 1-10
COLOR v ¢ ¢ & 4 o o o « o o o o « « 1-48
column

headings ¢ . . « . 5-8
COMT & & & i e 6 e e o o o o a o o« « 1-14
command

edit and reissue 3-73
re-issuing . . ¢« ¢ . 4 4 o o o 3-71
Command file . & ¢« ¢ ¢ & v v o o o o 1=-21
command language . . « « ¢ ¢ . . o o 3=21

command -‘line
editor . . . o
command mode . . . 1-45, 2-5, 2-9, 2-18,

entering ¢ ¢ ¢ . . . 3=21
Command Reference

on-line . ¢ ¢« v « o« o o o o o« o 5=2
command tail . & ¢« & ¢ ¢ ¢ o o« o« o o 3-46
Commands « « o o « o o o o« o o o« o« o 3=2
communication

unilab and host 1-10

unilab to target 1-10, 1-25
Complications

Reset and NMI . . & ¢« o o o o« o 1=27
CONFIG.SYS ¢« ¢« v &« & o « 1-11, 1-17-1019
Connect

Unilab to host « 1-13

March 25, 1987 Page 3 -- Index --

connection

addi

tional . « .« .

detailed step-by-step

diag
DIP
NMI -

ram L] L] . L] - e
CLIP .« « ¢ « &

quick step-by-step

RES-
ROM
veri

UnilLab to host
UniLab to target

Veri
CONT . .
Controls

COPY .+ =
copy con

CTRL-BREAK

cursor ke
and
and
and
and
and
assi

cycles?

D# L] - L)
data . .
Data bus

16-bit

DB-25 .
dcycles
DDB
defi
DEBUG
defi

Debug Control .

defi

debug menu . . .
define symbols .

delay cyc

cable
fy . « o e

fy . - [[

. L] . L] L] L] L[] L] & L] []

Y
mode panel . .

screen history
text files .
textfiles . .
trace buffer
gnment . . .

. .

. .

nition

nition

nition

[] L[] * L] L] L]
L] * e . L] L)
. . L] . L] L]

les . .

Demo program

.BIN

Developme
devents
DIP clip

Connection .

disable
emul

-- Index

nt system .

ation memory .

» L) . L] L] . L[] L[] * L] . L[] . L]

L] L] L] . L] L] L] L[] . L[] L] L) L] * L] . L[]

| o o @

¢« e o o

-32

1-7
1-12
1-26
1-33
1-37
1-11
1-34
1-30
, 1-43
, 1-13
, 1-25
. 1-40

L] L L] * = L] L L]

3-27, 5-13

e 8 o 8 (e

s DN)s o o

L[] -y L] L]

. 1-4
. 3-47
. 3-47
, 1-15

3-57
3-56
3-77
3-57
3-56
3-52
3-12

. Vi
3-27

o o s o w o
-
|
w

. L] ~ L] L[] L]

* = L] [.

Page 4

Disassemble .« . ¢« & ¢ ¢ ¢ « o .
emulation memory .
in dedicated window
Disassemblers
location .+ & v ¢ ¢ ¢« o o .
Disconnect
unilab from host
Disk full

DM . - . - . . L] . . . 2—9, 3-66

DI\J . » L] - . L] [] L] L] L]
Documentation
guide . + ¢ + ¢ o .

DOS L) . . L) [. . L3 . L] 3-46, 3-47,

serial communications . . .
version « o .

DOS command . . . 1-19, 1-21, 2-4,

CHKDSK ¢ v o o ¢ o o o o &
TYPE . - - - - -
VER 3 [[. . . [.

editor
command line
EMCLR &+ &« & o o @
EMENABLE + & o o
Emulation memory .
Emulation Module .
Emulation ROM . .
Emulator
cable
cable installati
Enable memory
MENU & & o o o o o
enable program memory menu
Engineering Technical Notes
information on . . .
EPROM 4 ¢ & & o o o o o o
EPROM programmer . . « o «
EPROM PROGRAMMER SOCKET .
Error messages « « « « o o
RS-232 Error #xX .+ .
Establish debug control .
ESTAT o o o o o o « o o o«
Examine
MEKOLY o o o o o o s o o o
EXAMINE OR CHANGE PROGRAM MEMORY
MENU ¢« ¢« o o o o o o

L] . L L] * L]
* L[] L] . . ¢ ™ L] L] L] L]

tio

n

.
o o o o o & s @
|
¢ 8 e & o + 8 e ® e o (e s o &
-
e o o s o o e & o o & o &

EXit . - . o . . - - 1"‘11

External logic gate

March 25, 1987 Page

DN e

-

. Vi
viii
3-17
e iV
3-17
1-23
1-23
5-12
5-13

-- Index --

F8 . . . - . . L] L] . . . L] .

fetch L] - [] - L] - . L] L]
File
names . .

File not found « ¢« ¢ « o « o«
I“‘iles L] L] [] . * L] L] L] L] * L]
text e e a e s & o o @

filter
additional capabilities
example « ¢« ¢ o o o o
examples . ¢« ¢« o o o
primitives
trigger « o« o o o o o
FIXED HEADER 4 ¢ o o o ¢ o &
Flicker .+ ¢« ¢ o ¢ ¢ o o o &

floppy disk
installation
fiow chart
of qualifiers
simple trigger
trigger with filter . .
trigger with qualifiers
Freeze-up . . .
Function keys .
assignment
AHIST . . .
and PPA .
diagram .
MHIST . .
THIST . .
GE &« « 2 o« .
Glossary . « . .
Glossary diskette

] . L] L] L] L] L[] L . L]
-3 s L] . L] L] . L] L)

Guided demo .
overview

L] . L] L] . . L] . . L] L] L]
. . L[] - e L] . L] . L] L] L]

hang up ¢« ¢ ¢« o o o o ¢ o «
hard disk
installation . . « . .
Hardware
diagnostics

Unilab « ¢« ¢ ¢ ¢ « o &
hdata .+ ¢ « o ¢ « o o o o &«
HDG o & « o o © o o o o o o
HDG'
HELP o 4 o o o ¢ o o o o o

on-line « ¢« « o« « o« o
hexload .+ ¢ ¢ ¢ ¢ ¢ o « o &«
Histograms

PPA L] L] - . L] - - - L] L]
History . .
SCreeN « o o o o o o =

-- Index --

L[] L] . - L] L] L[] L[] L] L] L] L] L] . L[] L] .

- L[] L] L

L] . L] - L[] L] L] L] L] L] .

—

We o » & ¢ 3 o
1

L] L] L] -— e L] L] L] L] . . .

« o o
-
[
-
~l

* o s & o & o
w
!
w
w

- e o o @

2 8 8 % &6 e & 3 s e s e N o v 2
1-N
1
w
—

13, 1-23

-—
()}
-
-
|
—
~

-

S UIUIs o e s »
SLL ..
~
o :n
sb-bJLliJ(D

(B

HLOAD & & 4 o« o o o o o o o s o o « 4-12
Hookup

Testing « v ¢« ¢« o o o = « o« o« o« 1-6

verification . . « &« ¢« ¢ + + . 1-6
Host computer . . ¢« ¢« ¢ « « « . 1-2, 1-9
HOST RAM

Requirements .« « « o o o o« « « 1=2
HSAVE ¢ v ¢ 6 4 o o o o ¢ o o o o o« 4-12

INIT @ o« ¢« o« o o o o o o o o o 1=15, 1-23
Initializing 1-4, 1-15, 1-21
Trouble + ¢« ¢ & ¢« ¢ ¢« ¢ &« « o . 1-23
INPUE & & ¢« ¢ ¢« & o o o o o o o o« « 1-10
groupings e e o o o « 3=27
Inputs
simulating . &« ¢ ¢ ¢ o o o & o o iV
INSTALL & o o o o o o o« o o o 1=11, 1-17
INSTALL.BAT . « ¢« &« &« o 1-4, 1-16, 1-17
Installation . . . « o+ s & o« 1-5, 1-11
detailed step- by step ¢« + o . o 1-12
floppy disk systems « « ¢« « « « 1-11
on a hard disk . . . « . 1-11, 1-17
overview . . ¢ ¢ o 4 ¢ o o o« « 1-5
quick instructions 1-5
guick step-by- step « o o o & o 1=11
software . . . e o o o o o o 1-16
trouble . « ¢ ¢« 4 ¢ ¢ ¢ ¢ o o . 1-15
INT & o o o o o o o o o o o o« o« « o 1-38
INTEL
Yeset ¢ ¢ o 4« ¢ 4 o o s s s o o 1-34
Internal state of processor. 1iii
Introduction . « « o o o o« o o o « « « i
Chapter 1 . 4 ¢« ¢« & ¢ o o & o o o i
Invalid or missing number 4-58
Invalid start and stop address . . . 4-59
IRQ o v o o o o o o o o o o o« 1=-10, 1-38

Keys
SpeCial . . - . . - L] L . . . - 3—59

Leave o o o o o o o o o o o o o« « o« 1-45
load binary .« « ¢« « « e s o o o 2-7
LOAD OR SAVE PROGRAM MENU e o o o & 3-10
Load program

intO MEMOYY « o o « o o o o o o 2-7
LOG TO FILE &« o o 2 o o s o o o o « 5-9
LOG TO PRINT 4 o o o o o o a o o o o 5-9
Lowbound is larger than highbound . 4-59

LTARG
. . . - - . . L3 - . . . 1“40' 3_10

March 25, 1987 Page 7

Index --

Ml -
macro

Macro
Macro

Main

MAKE-
MCOMP
MDUMP
Memor

Memor

MENU

Menu

MESSA
MFILL
MHIST

Micro

MISC
MISC
MISC
Misce
MLOAD

-- In

making permanent
mode . « « & o &
system
files . .
menu . .
OPERATOR

L) L3 - .

y
emulation

ENABLING . .«

enabling emulation

y organization
Intel model . .
Motorola model
command map . .
conceptual map
guided demo . .
MAP o o o o o &
mode . . . 1-11%,

2-4' 2-

special functions
use - - - - - - -
GE * - L] * L] L] L]

16/20 bits . .
and stimulus .
assumptions . .
Chart and Graph
chart/graph . .
definition .
function keys
manual loop .
problem . . .
procedure . .
specifications
start
timed loop . .
timed-loop start
understanding .
valid results

Target . « .« «
definition . . .
BASE » - . . .
COLUMN . & o o«
llaneous . « « .
N . - - [Y - L] - []
dex --

s & & ® 5 s @

o -

L]] s . L] L] & L] L] L] & & - & L] L] L * L[] L] * L] .

| o & o e o o o

* ® e ¢ =~

N

.o o o o LODN)e e o o s ¢ o

. L] . . L] L] L] L] . L[] L] L] L] L] L]] L] * L]

]
e s e s N

L] L] L] L . L] e L] * . L[] L] L] . L[] L] L] L) L] . . L] .

- e

. L] L] L]

. Ws o = s

| » o o o & o o

t
(62 =%

W8 o s o e o o

- o PO

I Ule o ¢ s ¢ o o

w

-t 9o o o o o o o

o
I

3-11
3-49
3-49
1-47

. 1-21
-5, 3-8
. 1-47
. 3-11

-
-
w
I
_
(&)

L]
NN -
|
(92 le) JNe]

e o 5 o & »
-—
w | -
Ul WWil bWNDhWW I ==
| I SR |
o Jdwww

Ns

-
NDe o o ~
-

I =3

1SN =S -
L I |
[6] I N
o oum N <= =5 O~

o

Xe]

.~ o 2 0 % o & & e s e
[N

| S

[8))] [

L O

[\¥)
¢ s e 0 e
-

MM! 6 6 6 o o o @ o 4 o o o . 1-44, 3-12
Mode
CONT COLUMN 4 4 o o o o o o o 5-8
DISASSEMBLER &« o « o o o o o 5-7
FIXED HEADER 4 o o o o o o o 5-8
LOG TO FILE v v v o o o o o o o 5-9
LOG TO PRINT 4 4 o o o o o o 5-9
MISC # BASE v 4 o ¢ o o o o o« » 5-8
MISC COLUMN 4 4 4 4 o o o o o« « 5-8
NMI VECTOR . & 4 ¢ ¢« ¢« o« « o« « 5-9
PAGINATE . 4 4« o « o« o o« o« o« o« 5-8
PRINTER « v o« 4 o o s e « o« « &« B5-9
RESET ¢ ¢ o o o o ¢« o o o o o » 5-7
SWI VECTOR 4 4 4 o o o o o s & 5-9
SYMBOLS v ¢ &4 ¢ o o o o o o o 5-7
Mode panels 5-3, 5-15
help + ¢ ¢ & v v ¢ v ¢ v o o« o« 5-7
MOALILYy « v ¢ & 4 4 4 ¢ ¢ o o o o o « 3=11
MS-DOS ¢ & 4 & 4 ¢ o o o o o o o o = 1-2
Multiple pass
PPA & & & ¢ 4 o ¢ o o o o o o » 4-4
e e
single step « ¢« ¢« + ¢« ¢ 2-16
NMI 1-26, 1-27, 1-37, 3-11, 3-14
8086/88 family .+ . & o o o o . 1-39
and 8086/88 . ¢« « & + v « & « . 1-39
disabling « & ¢« ¢« ¢« ¢ ¢ & o o« o 1-38
NMI VECTOR o o e o o o o o o 5-9
NMI-
circuit ¢ 1-26
connection 4 ¢ . o o o 1=37
NMIVEC « o ¢ ¢ & « & o« & o 1-38, 5-3, 5-9
NMIVEC' . & ¢ ¢ ¢ ¢« ¢« &« o« o« o « 5=3, 5-9
Non-Intrusive Analysis o« o ¢ o o o « o ii
NORMB « ¢ ¢ ¢ 4 o ¢ o o « o« o« « « o 3-26
NORMM 4 ¢ ¢ ¢ ¢ 4 o o o o « o« o & o 3=26
NORMT & ¢ ¢ ¢ ¢ o o o « o o« =« o« « « 3-26
NORMX ¢« & ¢ o o o o o « o o« o « « &« 5-13
NOT o 4 ¢ o o o o o o o o o« o o« o o 3-13
Not enough bins available 4-59
not recognized . . . ¢ 4 ¢ ¢ « . o o 3-22

notation

conventions « ¢« o + ¢ « ¢ ¢ o o o Vi
NOW? e ® o & & & e 8 o o e e o o 5-3
Numeric key pad .+ ¢« o & ¢ o o« o« o o 2-11

Object file . o - . - L] . 2"7

. On-Line

help - - L] L] L] L] L 3 L] L] L] - L] L] 5
On-line documentation . . o o« o o« o .
On—Line Help - . . . ° ° 3 . - - . 5"‘

March 25, 1987 ‘ Page 9 -~ Index --

ONLY v« ¢« &« « o« « o« 3-30, 3-33,
Open collector . « . . . 1-27,
ORG 4 ¢ o o o o o o o 5 o o =
ORION e e e o e o e e e s e =
Outputs
unilab .+« ¢« &+ ¢« ¢ ¢ o . .
PAGEO e e o o o w s e e o s e
PAGINATE ¢ o o o o o o o s o o
PAGINATE' &+ ¢ o o o o o o o
Parallel interface . . « . . .
PATCH e« o ® & = o s s e e s
PC compatible . ¢ ¢« ¢« o o« o «
PCYClEeS v ¢ ¢ ¢ o o o s o o
Performance Analysis
PPA . ¢ o« o o o o o o o o
Personality Pak . . 1-3, 1-7,
pevents .« « ¢« & o e o s e &
PgDn « o e e o e e s e s e o
POUPp o ¢« o« ¢ o o ¢ o o o o o o
flicker « ¢« o« o ¢« o « o @
PINOUT « . « « « - 1-11, 1-26,
Power
target .+ ¢ ¢ ¢ o ¢ o o .
unilab .« & ¢« + ¢ o o o
PPA Vv, 4-1, 4-3, 4-4,
4-13, 4-14, 4-16,
4-29-4032,
ACCUTACY & o o o o s o &
Address « « o o o o o o
bin « o« o o o o o o o o @
clear all data . . « « &
clear counts
definition « « « « « o &«
delete o+ ¢ ¢ o o « o o« &
enable mMemMOry « « « o o &
Error messSagesS « « o o«
€X1it 4 ¢ e ¢ e 2 @ o o @
function keys . « « + « .
graph « ¢« o« o o o o o o
installation . . « « « &
interactive screen . . .
load target program . . .
MENU o o o« o s » o o o o
MOAE & o o o o o o o o o
MOAES o o o o s o o s o @
Multiple pass « « o« o o« &
names/addresses . . « o .
Naming o« « o » o o « o =
Print « o« o« « o o o o o o
ready target program . .
reload « o « o« o o o o o
SAVE 4+ o s o s s s s o
-- Index --

5‘3'
1-34,

1

-17

’

-t L] . . L]

1"'48,

1"33,

N

-
O O
-

|
I

o

e & ¢ & o 0 & 6 6 s 8 & ¢ 6 o & e o e o (We o s e N

(o)

L L] L] L) L] L] L] . L] . L] L] L] L] L L] L] L[] L] . - L] L] L] L[] ~

(e

. L] .] L] L[] L] L] L L . L] . L] L] L] L] . L] L] =Se L] L] L]

>N
O b=

o N

5-14
1-37

1-18

I NN YO ==

[1 SN SN S
I
ww =
S NVONOVOWWOS » ==

W obe
[

N W
N —

4-58
4-32
4-31
4-16

4-3
4-14
4-22
4-13

4-6

4-9

4-4
4-31
4-29
4-20
4-21
4-20
4-20

Page 10

PPA (continued)
subdivide .
symbols . .

target program

Time . o o
title - L] L

L3 .

trouble shooting

PPAKs .« .
PRINT' e e o .
printing

screen . .
Processor

3 -

internal state

program

execution time

Performance Analysis

profile . .

Program Performance Analyzer

Programmer's Guide .

information
PROM o ¢« ¢ o o &
PROM PROGRAMMING
PROM READER MENU

Q1 & & o o o o &
02 ¢ v o o o o &
Q3 ¢« ¢« o o o o
qualifier

additional capabilities
additional commands

trigger . .

on

MENU

.

L]

trigger example .

with filters example

QUALIFIERS . . .

RAM access « « o
RB 4o ¢ ¢ ¢ o o
RC network

read « ¢« o o o o
Reboot - « . . 1
Reference Manual

information
RES [] - L] L] L] »
RES_ o . - o 1 -

circuit . .
connection
reserved area. .

March 25, 1987

-1, 1
on

1, 1-

5

L]

e 5 @ & & & w @ s
o
[
w

3 .

» & o o
e o s o

e ¢ & s o o o o
e (e . o] [y] .
e =2 e e s o o s o

- . . L) L) . 3_37
L] . - . L3 [3_37

L * L] L L]
* L] L] . L] L]
L] L] . L] * L[]

.
I o o

-
-

e o o e o
|

s 8 =2 | = e
| -
e 0 NO&ee o o
O~
* s o =
-

Page 11

-- Index --

Reset .+ « « &« o . 1-10,
8051 & o« o o o o &
and 8051 . . « « .
INTEL & o o« o o o
Z8B0 v ¢« ¢ o o o o
reset circuit . . 1-11,
Reset Wire o« « o« o« o o
RESET' 4 o« ¢ o o o o o @
resources

DIPII L] . - - . . - L]
ProcessSOr .« o« « o« =
Software interrupt

RI e o & o & o o o o @
.ROM

cable connection .

emulation « « ¢« o+ o«

socket . . . ¢ ¢ .
ROM cable . « « ¢ &« « &
ROM chip

analyze . « « « o
RS-232 4 ¢ o o o o o o =«
RS-232 €XTOr &« o« « o o =
RS~-232 error #XX « o« o =
RSP o o ¢ o o o o o o ¢
RSP' v v ¢ ¢ o o o o s »
S e s o s ® ° e o o e =
S+ 4 o o o o o o o o o o
SAMP &+ ¢ o o o o o o o o
Sample program

loading « « o & « &
Sample session . .« « o« o
Save

PPA & & &« o ¢ o o =
SAVE=SYS o o 2 o & s o o
saving

SCTYEEeN + o o o o
Screen

scrolling. . « « .
screen flicker . « « «
screen history . « « . .
Serial port . . « ¢ o«

9 pin « 4 ¢ ¢ ¢ o W

Of AT ¢ 4 o o o o« =
Set GLOSSARY 2 ¢ o« « o »
Set ORION ¢ & o« o o o =
SET-COLOR =« « o o « o =
SHOWC e e o o & o o e a
SHOWC' & v & o o o o o =
SHOWM e o o o o a s o »
SHOWM' v & & o o o o o«
-— Index --

—

-9 . o .

L] L L] . . L

- 9 . . . ¢ & 0

-34,
-26,
1-1,
3—9,

1-5
-17,

3-13, 3-14
.« .« 1-35
.« . 1-35
. .. 1-34
. . . 1-36
1-34, 1-36
- e . 1-27
3-13, 5-7
<« . 5-9
. .. did
. . . 5-9
. . . 1-37
< . . 1-30
c .. 1-9
1-11, 1-26
1-25, 1-30
« o . 1-29
« o . 129
4-57, 4-59
e . . 1-23
.« . 5-9
« « . 5-9
. . . 3-25
5-13, 5-14
2-12, 3-12
1-40, 1-41
e e e 1-41
c .. 2-2
. . . 4-20
3-49, 3-62
. . . 5-9
. .. 5-8
< . . 1-48
e« . 3-61
1-9, 1-14
1-9, 1-14
e .. 1-2
1-17, 1-18
1-18, 1-20
. . . 1-48
. .. 5-8
. . . 5-8
. .. 5-8
. .. 5-8

SI ¢ ¢ ¢« o o o

simulate
inputs .

single step . .

SOft—keys . . -
Software

installation

Unilab . .

SOFTWARE INTERRUPT

Special features
special keys . .
SPLIT o+ « o o
split screen
and help .
on and off
SSAVE .+ & o &
Stack
bad data
working .
Stack pointer
STARTUP . .
STIMULUS . «
MHIST . .
Stimulus genera
STIMULUS MENU
SWI VECTOR . .
SYMB o o s s
SYMB' « o o o
Symbol table
and PPA . .
symbolic support
SYMFILE
SYMLOAD .+ & o«
Symptom
describing

e » o o (9 s e s & o

Target « « « «

o o o o o o 8 ¢ o o

Target Application

information on

Target board .
connections

Target program
and PPA . .

Target system

Trouble with

TCOMP e o o & o
Test
program . .
Test Procedure
Hookup .
textfile . « . .

March 25, 1987

L] * L]
« iwv
. L] .
. - -
[] L] L]
- L] .
- L] L]
Notes

. L] L] . L] L] L] L[] . L

L] L] L] L

. L] L] L]

L] L[] L] L] L] ¢ = L] . L] .

[] . L] .
L[] L) L] L]

. 1-37

« o 1V
to 16,
5-12

L] * = * * -
._l.
._l.
'._‘.

s 8 0 Koo N 0 s e .
-

1.9

[\ I

| -

Ui 8]

L[] [] L] .

-- Index --

THIST

filter examples . .
multiple input groups
ON @ range « o« « o &
on a single value . . .
on any of several values
on multiple input groups
one input group example
qualifier . « o o o o
simple .+« . « ¢ ¢ ¢ o« &
simple example
simple examples
specification examples
wait status line . . .

ADR bounds =« « o s o o o o o o 4-42
and FETCH v o o o o o o s o « o 4=11
Dins o o o o o o o o ¢ o o« o« o 4-38
Code Range start 4-11, 4-39
COUNT 2 o « o o o o 2 o o o « « 4-10
definition . . ¢« ¢ ¢« ¢ o « « « 4-10
Entry-Exit start 4-11, 4-39
function keys « ¢ ¢« ¢« &« + o . o 4-42
mean run time . « « ¢« « o o + « 4-10
problem . « ¢« ¢« ¢ ¢ ¢ o o o o o 4-57
Procedure « « « o « o o o« « o« o 4-38
set limits . ¢ ¢ ¢ ¢ ¢ o o o o« 4-42
specifications . ¢« « ¢« o« » o o 4-61
time scale . ¢« &+ ¢ ¢ ¢ « o« « o 4-38
understanding « - « « o « o o « 4-40
Time
PPA & 4 o o o o 2 o o o o o« o o 4-3
TN e o o o e s s o . a s s e s o « 5=-15
TO e o 1-34, 1-37, 1-47, 2-6, 2-8, 5-13
TOFILE e« o o o a2 o s o a2 e s o o &« 5-9
TOFILE' s e o s o s e & » s s e e » 5-9
TOOlkit 4 o o o o o o o o o o« o« o« &« 2-5
TOOLKIT MENU 4 & o o o o « « o o o « 3-16
Trace
advanced . « o o o o 2 2-17
bad ¢ v & ¢« o« ¢ ¢ ¢ ¢ o W 1-44
history « ¢« « o« « o « « & 3-62
trace COmMpare .« « o « o o o« o 1-6
trace display « « o o« o o o« & 3-59
EXrig o« o o o 5o o o o s o o o @ 3-37
Trigger o o o o o o o o o« o i, 2-13
Address « « o« o o s o o o 2-13
addresses « o o« o o o o 2-3
advanced . ¢ ¢ o o « o 2-17
and miscellaneous lines . 3-29
definition . . &« ¢« « . . Vv
filter o o o o o o o o @ 3-30
filter example 32

s 0 e PNDe (Ue & 2 & & 86 o 2 o 5 &5 5 & & |- e e o s =
® 6 & N 8 N 6 5 8 8 2 6 8 8 8 5 & 8 8 6 % o & s o s 0
w
|

e o o (US LU® B & 6 8 8 6 8 & 8 o & & & s & & & 2 e &

-- Index -- Page 14

TroubleShooting

guide to doccumentation

PPA ., . . .
tstat
TTL
TYPE

DOS command

Unilab « o o

UniLab Reference
information
Up Arrow e o o
User Manual . .
information

VER - - L] * [] L]
Version
Voltage

watch program .
STARTUP . .

window
disassembly

windows
and help .

changing size
moving between

WORDS . & o «
Workstation . .
write . ¢ . o .

z280
reset . ., .

March 25, 1987

[3"25'
i, 1-9,

Manual
on .

L] L

on

L] L] . L] L] L] . L)

3-32

—

L] L] L] L]

’

* L L] L]

L] L . L] . . L] .

s o o &
e o o &
¢« ¢ o o

. &
¢
. o

48]
|
(8}

-

L] . * L L) ® L] *
* * L] L] L] L] L[] .
* . . * L] . L] L)

Page 15

vii

- 1-2
1-2

1-11

-- Index --

	00001
	00002
	00003
	0001
	0002
	0003
	0004
	0005
	0-01
	0-02
	0-03
	0-04
	0-05
	0-06
	0-07
	0-08
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	1-27
	1-28
	1-29
	1-30
	1-31
	1-32
	1-33
	1-34
	1-35
	1-36
	1-37
	1-38
	1-39
	1-40
	1-41
	1-42
	1-43
	1-44
	1-45
	1-46
	1-47
	1-48
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	3-50
	3-51
	3-52
	3-53
	3-54
	3-55
	3-56
	3-57
	3-58
	3-59
	3-60
	3-61
	3-62
	3-63
	3-64
	3-65
	3-66
	3-67
	3-68
	3-69
	3-70
	3-71
	3-72
	3-73
	3-74
	3-75
	3-76
	3-77
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	4-49
	4-50
	4-51
	4-52
	4-53
	4-54
	4-55
	4-56
	4-57
	4-58
	4-59
	4-60
	4-61
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-09
	Index-10
	Index-11
	Index-12
	Index-13
	Index-14
	Index-15

