=2 522 [nstruments

—r — -
- . an_ -
"3 .

- g v —
————-u—-——-—

— - - e

280 Tutorial for the UniLab [I™

780

ORIOIN Instruments, Incorporated
702'Marghall Street

Pedwood City, California

Q40563

Contents

Introduction
HAowtausethe tirorial
Hoat ot nead topwecesd
(et connected
D1stadi ke dardvare andsoatware

The UniLab Environment

MWasterthe Ifcer Tnterisce

Use the Bus-State Analyzer
Airafyre Propyane Evecntica
Choaee vherdin alywer ticns

Build Analyzer Triggers .
Learn to ive Digrers
Eatend Trigrey Fower
Filtervhe Trace
Gusiifyra idgrer

Use the Debug Features .
Zeraldisk Defng Contral
After Repieter Contents
Trippkr & Rresdpnwaint
Digdspthe diternate Registers
Kead eind Keiteve Thigie Foatr

Operate on Memory . . .
Lisascamble Fracy Mesranyr

Eresaine aindditer Fex Wesmorg-Dhevay

Line-by-Line Assembler .
Alterthe Thrget {ode
Hiite & FParch Routine

Control the UniLab Environment

Open Wndows car Your Reak

Use Finctica Nepe

Detine Macro Cooamaiids

Lice the MWode Paneld

Save Your Changesto the Symten

By Marlin Quyerson, Moo, Mey 18, 1987
Grlon Instruments, Inc. — Copyright 1987 — All dglite reperved
280 Tutorlal — Page 2

INTRODUCTION
The UniLsh opens an interactive window into your developonent system,
Developerz of microproceszor-besed devices, who sre already scoustomed to
treditionsl delbugging, can just &3 easily monitor their syatema’ real-time
performence. You can execute and fully test your programs before embedding
them in ROM, even befare the terget hardware is complete,

The perverful UniLah concept offers tranaparent emulation, non-intmsive
analysis, and precise specification of execution cycles, All target activity can be
monitored, including kus signals, port 10, register contents, target RAM, and
emulation ROM. Pratotyping, delmgging, and optimizing are all done from your
IBM-compatible computar, '

Take the time to explors all of the Unilzb finctions, The snalyzer, trigder
debug, sssermbly, snd memory facilities work together seamlessly to greatly
increase your productivity, 4

[figure 1-1]

What The Tutorial Covers

This tatorial introduces the msjor UniLal components, providing a basic
understanding of the software and specific 80 operations. Included is a
simnple program that runs on the Orion Micro Target, In the conrze of
exploring that program's operation, you will exercise the UniLsh thoroughly,
Follow the step-y-step instructions, and it will be eazy to learn sll the related
commands and fanctions, You will use the systern procuctively in a very short
timne.

Puge 3

Introduction

How to Use The Tutorial

Be sure to sit within easy reach of your computer when you nae the tutorial,
Follow the inatructions for connecting it to the Unilah, Then, Every time you
open the tutorisl:

+ First, turn on the aystem,

+ Read a section, doing all the exercises,

+ Experiment with the meterial you learned,
+ Teke a bresk before proceeding further.

We suggest a rest after each chapter, to let the material sink in and to avoid
information cverload. It is best to proceed sequentielly, from beginning to
ending, bt feel free to explore the aystem ss your interests dictate,

What You Need to Proceed
All of the Unilah's rescurces can he tapped immediately, without complex or
costly add-cns, Here iz all you need:

+ IBM PC (or cornpatible) computer with:
two floppy disk drives (or optional hard disk)
320K RAM
one standard serisl port
DOS wersion 2.0 or higher
+ The UniLab unit
+ 280 Personality Pak (includes microtarget with emulation module, and
software),

ZB0 Tutorisl — Pugr 4

Introduction

Get Connected

Setting up the Unilab system is 25y, The herdhware is ready to plug into sy
IBM PC-compatible host computer, The softwsre must be backed up onto your
system dizk. Then you are rescy to become familier with the powerfil new
tools at your disposal.

Install the Hardware

First, unpeck the UniLsh, Two cablez emerge from the back, Attach the one
with an RS-232 connector to the host computer's serisl port (it vzes a

. standard, 25-pin serial port; if the host port has oaly 9 pins, you will need to
get an acapter), Plug the other calile into a power outlet,

[figure 1-4a]

Now open the Perzonality Pak and look at the microtarget bosrd, lesving it in
the protective hox. The smeller, elevatad hoard holding the Z20 CPU iz called
the ermulation module, Check to see that it iz still firraly zeated on the
microtarget sfter shipping, The clearly lahellad power jumper wire provides
power to the bosard, and would ke disconnected if the ernulstion module wers
used on snother board with its cwn power supply.

[figure 1-4b]

Hendle the board as carefully as any other slectronic circuitry: keep it clesn,
keep liquids safely awsy, and avoid Irpacts or pressure on the various
components. Do not allow anything to cause an electrical short between the
pins or other conductors,

Two ribbon cables come off the emulation module, Their free ends are labeled
"ernulator cshle" and "analyzer cebls,"

Plug the emulator cshle intc the UniLsh front panel connector marked "8, 15
Bit In-Circuit Eraulator." 4 saall, plestic "key" indicates the top side of the
cable. Taking care not to bend any of the pins, press evenly until the cshle is
seated snugly in the connector, In the same w w, plug the analyzer cable into
the "48 Channel Bus State Anslyzer." :

[figure 1-dc] [figure 1-4d]

Now you have finished installing the UniLsb herdware, Turn on the power
switch on the front panel of the UnilLsk: the indicator light confirms that the
unit is turned on,

Poge 6

Imtroduction

Install the Software
(For installation on a hard disk, plesse refer to the "Softwars Inatallation”
insert that accompenies the Unilsh diskettes,)

1. Make a‘system diskette,
Boot the host computer with a copy of the DOS verzion (3.2 or higher})
you will use with the working UniLsh system. Insert a blank diskette
into drive B. Format it as & "bootshle” system disketts by using the
FORMAT B: /S command,

2. Copy all UniLab files to the new diskette,
Put awsy the original DOS diskette and insert the master UniLsh Main
Program diskette into drive A Copy all the UniLah files onto the new
dizketts in drive B by using the COPY A:*.* B: command,

3. This is alzo a good time to meake a hackup copy of the UniLah Glossary
diskette (do not put the glossary files on & system diskette),

4. Now put the master Unilsh diskettes safely away,
8. Put the new, bootshle copy of the UniLak Main Program dizk in drive A
The copy of the Unilsh Glossery should ke in drive B, where it will be nzed for

on-line help fonctions,

If you encounter sny difficulty with these procedures, please refer to vour DOS
menual, '

ZBU Tutarinl — Pags §

Poge 7

THE UNILAB ENVIRONMENT

Master the User Interface
Start the Unilsh svstem

Get help with commends

Use menus & fanction keys
Leave the program

EXPLORE THE UNILAB ENVIRONMENT
The UniLsh environment provides immediate scoess to the satire
development system. Analyzer, debug, assembly, and memory finctions are co-
resident at all times, An easy way to become familiar with the general
capabilities of the UniLab is to browse thr ough its menus. You will s=e the
varicus components of the software system and thpn‘ rt=lat1n mnship to both the
terget and Unilaeb hardwere. Later, Llnfalle-.l investigation will fill in the overall
picture you gain in this section,

Start the UniLab System

Turn on the UniLsh power switch, Put your working copy of the Unilah system
disketts in drive A and the glossary diskette in dri ive B, then boot the host
computer,

At the A> DOS prompt, type ULZ80 to exscute the Unilah softwere.

Checking for Problems?

Ifthelast word onthe scraen is "Initializing,." andyour keyboard seams frozan, be surathe red
indicator light on the front of the Unilak indicatesthat the powar switch izsturned on, Also check |
that all cebiles are snu 2ly attached, ‘Ihanpz 255 Cexl-Break o fraethe kaybosard, and vp2 IRIT,
Communication with the Unilab m»:q-,rbe disruptedby devices connectedro cther RS-222 ports, If
trouble occurs, try connectingthe UniLeb to a different BS-232 port. Ifit persists, seethe Hnilak
Feferencs IManmszl for “Troublashocting."

Enter Commands

The program starts cut in command mode. The introductory displey provides
genersl information shout on-ling help and the menu made of o operation. A
cursor indicates where commends may be entered.

[figare 2-4h]

Try typing WORDS followed by a carriage return,

An alphabetical list of all UniLah commands is displayed with brief ussga
notes. The concluding "PgDn for more" always appesrs when more data
cen he displeyed by pressing that key. Try it, or press the Ente
(carriage return) key to end ths listing, When the listing ter nna.tes,
the "ok" prompt and a cursor are displayed,

Z80 Tutorial — Pugr 8

Explore the Unilab Environment

Enter a misspelling: type WIRDS and « carrisge return,
A "not recognized” messege sppesrs snd the incorrect entry is
underscored,

Get Help On-Line
The UniLsh softweare will provide deteiled sssistsnce when vou need it,

Type HELP BINLOAD followed ki a carriegs return.
A screenful of informeation is presented shout the BINLOAD command:
what it does, its ussge, and sn example,

Now try a misspelling: HELP WIRDS, for instsnce.
The "WIRDS not in glossary" reply indicates that help iz not avsilshle for
that subject, On-line help is avsilshle only for commends UniLsh
recognizes, '

Enter the single word HELP,
The resulting text explains how to get assistance with specific
commands and with command-maode operations sssigned to the
fanction keys, This is the same introductory screen that sppesrs every
time you start the program with ULZ80,
[figure 1-7]

Puge 9

Explore the Unilab Envitonment

Select Functions by Menu

This tutorial relies heavily on the Unilab menus, With therm, there i= no need
to lesrn a lot of commeands before using the system — function kevs offer Eazy
access to most operations, Later, you will find the command mode more

expedient for many operstions,

Press F10 to enter the menu mode of operation,
The "UniLab Main Menu" iz dizplayed on your screen. The menn
presents & list of choices and the finction }feg. uzed to select each cne.
[figure 2-4a]
Selecting any menu item, except F10, will display a sub-meny,

Press F8 to exarnine the "Toolkit Raoutines."
The sub-menu presents a list of choices,

Press F10 to return to the main menu.
Presz F10 at any sub-menu to return to the main memn

Leave the Program .

When you are rescly to stop work, tyre BYE. You will be laft at the normal DOS
pmmpt When working with the UniLab softwsre, & = vaterm reset or power-
down is safe at any time,

ZBU Tutorinl — Puge 10

Puge 11

USE THE BUS-STATE ANALYZER

Obzerve target execution without interfering

fAnalyze Program Execution
Eneble mernory and losd a program
Dizassemble ermulation ROM

- Capture and display a trace

Scrall the trace displsy

Interpret the display

Choose Other Analyzer Options
Sample cycles while executing

Use the Bus-State Analzyer
Developing microprocessor bazed devices goes hand-in-hand with debugging,
the moat time-consuming phasze of many projects, Intermpting the target
processor and single-stepping through its instructions until a problem is
detected can be lahorious and, for cartain problems, very inefficient, Unilab
ceptures information ebout the real-time execution of your target system,
allowing you to track down bugs and test hypotheses quickly.

In this chepter, you will chserve & program running on the microtarget, Bus
cycles will be recorded in the trace buffer and displeyed to the user: all

program instructions and their effects will be monitored without disturbing
target execution,

ZB80 Tutorial — Page 12

Use the Bus-State Analyzer

Load a Sample Program
Boot the UniLeb system and enter memm mode by pressing F10.

Press F2 to use the "Losd or Sawve & Program" sub-menu,

[figure 3-3a "

Select F2 to load a hinary ohject file from disk,
UniLsk requests the memaory sddress where you wish to start loading
the file. Enter 0 to start loading at address 0000, UniLah now requests
en ending sddress for the program,

Since you don't know the length of the sample file, just enter FFFF.
UniLab will stop loading = program at the ending sddress you specify or
ot the end-of-file, whichever it reaches first, After you enter the ending
addresz, the program displays the cornmends you would type if you
Weren't using the menus, and requests the name of the file you wish to
load,

Type DEMO3.TSK for the filename.
UniLsh loads DEMOS,TSK snd shows the progrem's ending address,

Press F10 to return to the msin menu,

Puge 13

Unethe Bus-State Analyzer

Disassemble Emulation ROM

Since this is your first use of the systermn, hefore proceeding farther you may

wish to confirm that the program hss been losded,

Press F3 for the "Exsmine and Change Program Memory” sub-menu.
This menu provides several options we will explors later,
[figure 3-3b]

For now, press F2 to view a dizsassembly of the code,

The program requests a starting address for the dizeszembly.

Enter 0 as the starting address.

The program now asks for the number of lines you wish to disasserble

— it will provide five lines by defanlt, if no value iz entered,

Press Enter to see five lines.

The equivelent keyboard commeand is displayed, followed by the listing,
The three columns represent sddresses, bus data, and dizassermnbled
280 mnemonics, These will be discuzsed shortly — for now, we are just

confirming that the target program is in memory.

Z8U Tutorial — Page 14

Use the Buz-State Analyzer

Capture and Display a Trace
Return to the main menu by pressing F10,

Press F4 to use the enalyzer sub-menn.
[figure 3-2]
Press F1 to display the initial c cycles of program execution.
This displeys the equivalent keyboard command (STARTUP), then
lssues areset to the target system, end records initial bus activity,
[figure 3-4]
The display shows what took place during the first cycles of the DEMO2,TSE
program's execution on the targst systermn. All bus activity was recorded until
the analyzer's trace kuffer was filled, hpn the buffer's contenta were uploaded
to the host computer, The microta rget's LEDs reveal that the targst avatem
continues to execute the program even after the analyzer display is complete,

Scroll the Trace Display
More data iz chtained than can be shown on one CRT screen — the Unilsh
trace buffer holds 170 (A4 hex) target cvcles,

Use the Down-Arrow and PgDn keys to look through the trace,

(The up-arrow snd PgUp keys scroll back thx ough the CRT history, not
through the trace kuffer's contents,)

Press the Home ksy to return to the beginning of the trace.

Puge 15

Use the Bus-State Anolyzer

Interpret the Display
The colurnns of data displayed liy the anslyzer are shown halow:

The first line of cur sarnple trace tells ua this: The 0 in the cy# column shows
this is the first cycle of the trace — called the “trigger” cycle, We will
disregard the CONT column in this tutorisl (see chapter B of the Unilsh
Reference Manual for details), The ADR column shows that execution during
this bus cycle was at address 0000, DATA column contents 31FE 18 are
disassernbled to the right: load into the stack pointer the value 18FE, The
HDATA and MISC columns display input from the UniLab's additionsl signal
wires; their values float high when unused (these columns can he eliminaterd
from the display with the mode penel, discussed later),

[figure 3-0)

Refer to the next line in the trace display. From the cycle number, we ses that
it took three hus cycles to fetch the previous instruction,

Note: if DATA contains a twodwyte immediate value, the bytes sre shown in
J o
reverse order (Intel fm'mat).

Choose Other Analyzer Options

S0 far, you have traced the firat Al (hex) bus cycles of the targst program's
execution. Some menu options illnstrate other simple wses of the analyzer, You
can try them now, while you sre in the analyzer sub-menu,

F2 — displays the most recent 170 cycles when you press the key,
F8 — samples shout two bus cycles per second. Press any key to stop,
FB — sarnples shout two sddress references per second. Press any key to stop,

The UniLsb cen also show what happens to the target system after (or hefore)
a particular event takes place. And when analyzing execution, it is often nseful
to recard only certain types of bus cycles, The next chapter shows how to
ohserve any part of a target program's activity. You will use more sophisticated
Unilab fanctions to understand DEMO3,TSK's execution on the microtarget,

ZBU Tutorial — Page 16

Build Analyzer Triggers
Unilab allows you to define triggers that recognize target bnard s events of
any type, and to stert (or end) a trace at that point, This makes it easy to
ohserve a program's behavior after a particuler data value, range of addresses,
or other user-defined event appears on the bus, You can record all bus cycles,
or only cycles thet match a trigger description,

The powerful capshilities of triggers deserve close inspection, heginning with
simple trigger spacifications and progressing to more cormnplex examples that
use filters and qualifiers. Here we will use them fo understand more of
DEMOS.TSK's execution on the microtargdet,

Inspect Current Trigger Status
With the sample progrem loaded, press F1 at the analyzer sub-menu (the
STARTUP cormimeand), which sets a defanlt trigger and captures a trace,

Type TSTAT tc view the current trigger status,
This commend displays the current trigger specifications, RESET
indicates the target system will be resst when the analyzer is started,
The DCYCLES value is the hex mumber of bus cycles the analyzer will
record after it detects sn event that matches the triggers specs, 0
QUALIFIERS indicates that na qualifiers (discussed later) are heing
usad,
[figure 4-24]
Use Preset Triggers
When defining analyzer triggers, you will frequently uss one of thres
"normalizing" words to clear out any previous trigger specifications, They
differ only in the number of bus cycles they tell the anslyzer to record sfter
the trigger event (the DCYCLES variable),

Type NORMB followed by TSTAT to ses the effect,
The trigger status shows that the enelyzer will recard only 4 bus cycles
sfter the trigger before "freszing"the trace buffer's contents,
[figure 4-Zh]

Try typing NORMM end NORMT and check their effects with TSTAT.

NORMB placas the trigger svent at the hottom of the trace buffer, preserving «

Foge 17

Pulld Anwlyzer Triggers

record mostly of pre-trigger cycles, NORMM places the trigger st the middle
of the buffer, HORMT places it at the top of the buffer, recarding the greatest
number of post-trigger cycles,

(figure 4-3]

Define a Simple Trigger =~

The anelyzer watches for an event that matches the current trigger
specifications, and records the nurnbher of post-trigger cycles sst by the
NORMx words discussed shove. To define ax analyzer trigger, you just specify
the characteristics of the desired target event,

Type NORMT to set the trigger near the top of the trace buffer,

Go to the enslyzer menu snd press F1.
The display shows that during the first eleven cycles, the Z80 registers
are initialized, followed by an LDIR instruction that transfers s hlock of
memory from ROM to RAM.

Use PgDn to scroll the display through the repeated LDIR fresd jwrite
secuence,
At cycle #94, the terget system hegins executing new instructions,
starting at address 0016, But using PgDn again reveals that you have
reached the end of the trece buffer. 4 trace that begins when address
0016 sppesrs on the kus will better show what happens next,

Press F3 to define an address as the analyzer's trigger. When Unilab prompts
you to supply the sddress, enter 16, ‘
The terget system is reset (becsuse RESET is ensbled), snd the analyzer
begins looking for a bus cycls containing address 0016, When it
appears, the trece buffer fills and its contents are displayed, The targst
system continues to execute, ’
(figure 4-Ba)
You cen see by the listing that the program loads a value into the A
register and sends it to target port 7B, Next, another value is loaded
into A, sent to port 73, end the velue in A is rotated. Then the routins at
address 00AD is called, There, you can see that 40FF is loaded into the
HL registers, then L is decremsnted in a conditionaljump timing loop.

ZB0 Tutoriel — Puge 19

Build Analyzer Triggers

Type TSTAT.
Your trigger spec (16 ADR) has besn added to the tr igger statuz — as
long s it appesrs here; it is part of the current trigger specification,
[figure 4-Bh]

The threedyte instruction st 0016 jurnps to 0082, C

_uricsity might lead
us to find cut what happens when the program resches a

clcdress 0019,

Use F3 to trigger the analyzer when address 19 appears on the bus,
The analyzer displays a the Trigger Wait Status message while it waits,
Address 0019 never appeers, 0 press any key to inter rupt the sesrch.
[figure 4-Gc]
Use TSTAT again now.
The 19 ADR trigger spec replsced the previcus 15 ADR, When you,
specify a new value for the same input group, it replaces the esrlier one.

You can trigger a trace with & value in any of the displeyed fislds except the
disassernbled mnernconics and the cy# value (which is relative to the trigger
event), Here is en example using data input:

Enter NORMT 80 DATA 5 to clear the old setting and start the trace when
80 appeers in the data field,
The display shows a trace that begins (cycle #-1) with 80, the second
byte in the data field, being loaded into the 4 redister,
[figure 4-7] ,
Any byte in the data field can be used a5 a trigger. And while you cannot
define a trigger with mnermonics, it iz gasy to use the opcode walues in
the data field if you went to trigger on a particular type of instruction.
For example, OF DATA will trigger on an RRCA instruction.

Puage 19

Build Anmlyzer Triggers

Extend Trigger Power

You can start a trace when any one of several values appesr,

Enter RESET" so the systern will trace the executing system without
restarting it, '
Reset can be disshled with RESET' and enshled hy typing RESET; or
use the Mode Panel, discussed later. :

Type NORMB to clesr the previous trigger specificationa,

Type 80 DATA ALSO 40 DATA S to trigger the analyzer when sither of
those data values appears.
" This allows either data value to trigger the analyzer. As vaual, UniLsh
displsys the Trigger Wait Statuz line if it must wait fop the trigger evant,
Press 5 repeatedly, and von will find that the value 40 frequently shows
up on the databus, in the timing loop at addreas 00AQ, Less often, 60
triggers the trace when the contents of A are written to port 749,

ALSO adds avalue to the corrent trigger spec, and as meany values can
be added ss you find useful; without it in the ahave example, 40 DATA
would have cverwritten the preceding 80 DATA,

There is an sdditional precantion when using ALSO with sddress input: The
acldresses are composed of twa, 2ight-bit input values. Cross products will be
produced if the upper bytes of ALSO-ad addresses do not match, and can
cause a trigger on unanticipated values,

Z89 Tutorial — Page 20

Build Anwlyzer Triggers

Trigger on a Range of Values

Now type NORMT A0 TO A8 ADR S to trigger the analyzer on a range of

addresses,
This address range containz the delay loop instructions, The trace
begins with the first cycls that contains an address in the range AQ to
A3, TO is most often used with address or data input,

The purpose of these cycles is fairly self-evident, so it will be usefil to
trigger a trace when any other cperstion takes place.

Exclude Values from Trigger Specs

The previous example demonstrated how TO is used to specify a continuous
range of values, and how ALSO includes multiple, non-continuons values in a
trigger spec,

Many programs, including DEMO2.TSE, repeat one operation frequently
during execution. You can instruct the analyzer to ignore that operation and
trigger when any other event takes place, NOT is uzed to prevent single
values, or renges of values, from acting as triggers, This becomes valushle for
trepping a bad address or bed data, In our exsmple, it is uzed to trigger on
terget activity outside the delsy loop,

First, type NORMT 8.

Enter NOT AD TO A9 ADR S.
The trace begins with the first operstion that does not contain an
address in the range 00AQ through 00AS. Here it is reading the return
address, which conteins a jurmp to the program’s main loop. This loop,
at address 88, sends the value in A to the terget port and rotates the
contznts of A before calling the delay loop at address 00AD ance again.

Remember that you can use TSTAT to zee how UniLah interprets your trigger
specifications,

Puge 21

Bulld Anslyzer Triggers

TIrigger on Multiple Fields

You heve defined triggers using values from a single column of the anslyzer
display at a time, However, it is just az simple to incorporste ssveral fields into
your trigger specifications,

Enter NORMB 79 LADR 80 DATA S
DEMO3.TSK, az we saw earlier, sends the value 80 to the target port,
Here, we specify a trigger with 79 in the low address byte and 80 as the
data kyte, The resulting trace shows the value 80 heing cutput to port
79, followed by the rotate operation,
[figure 4-9]

Enter NORMB 79 LADR NOT 380 DATA S to see what elas gets sent to port

749,
Cycle#0 contains a different valie being output, Press 5 several times,
and you will see the output values that result from rotating the contents
of register A, These values determine the changing pattern displayed by
the microtarget's LEDs,

Any combination of frigger specifications may be used;

» ALS0 performs a logical "or," triggering the analyzer when one value or
another appesrs in one of the input fields, |

+ TO extends that concept to any value in a range,

+ NOT triggers on any velus cutside the specified nurnber or range of
nurnbers,

+ Logical "and” operations ocour when you define trigger specs for more
then one of the input groups (2.8, when the desired trigger event
containg a specific addresas and data value), All of the current specs
must be met to trigger the analyzer,

Exercize a few, simple combinations of these commands before going on to
learn further features. If no trece results after issuing the S commeand, it is
because the trigger event you specified never occurs, A trigger's result may
vary, depending on whether reset is enahled or disahbled, Use the NORMx
wards to clear cut your trigger specifications, as needed,

ZBU Tutorial — Puge 22

Bulld Anatyzer Triggers

Filter the Trace

So fer, you have learned how to trigger the UniLsh snalyzer's trace function.
That is, you can begin a trace at any time by describing a specific target bus
event. You can also specify the charscteristics of the cycles you wish to
examine, and only those will be saved in the trace buffer. With this conditional
recording of target bus cycles, the displey focuses only on the most valuable
information,

The filter commend clears any previous trigger specificationz and will record
A9 bus cycles that match the filter characteristics.

Type ONLY 79 TO 90 LADR S tc record only cycles with & low address byte

in the declered rangsa,
The Trigger Wait Status line sppears while events matching the filter
spec fill the trace buffer. Then the data is displayed; the "f" to the left of
each row indicates that this was a filtered trece, These cvcles represent
the main program loop, including outpmt to target port 79,
[figure 4-10]

Enter ONLY NOT A0 TO A9 ADR S,
This trace begins with the first cycle that falls outside the declared
range of eddresses, and all subsequent cycles in that range are filtered
out of the trace. This trace is similar to the one chtained shove, but
Includes read and write cycles generated by the RET and CALL
instructions.

(In the previous section, this same specification wes preceded by
NORMT instead of ONLY, and just defined the trigger event; post-
trigger cycles wers not filtared.)

Enshle reset of the target system ky typing RESET.,

Type ONLY WRITE S to record only write operations,
The first 20 lines in this trece are write cycles from the block-meove
operation at address 0014, The rest were generated by the CALL
instruction. As the next example shows, you can exclude these initisl
operations from the trace,

WRITE is & macro that specifies a presst range of CONT values, READ

Prge 23

Bulld Anutyzer Triggers

end FETCH are macros that work similarly,

Qualify a Trigger Event
You cen deley the analyzer's sesrch for a frigger until after a quelifying event
appears on the target bus,

Type NORMT WRITE AFTER 181F ADR §.
The analyzer waited until eddress 181F sppesred on the kus, then
- started looking for the trigger (WRITE), Cycle #0 contains the first
write cycle sfter the initial hlock-maove operation. Use TSTAT to see
how qualifiers, defined with AFTER, are noted in the trigger status,

Type ONLY WRITE AFTER 181F ADR S.
The filtered trece contsins only write operations sfter sddress 181F
sppesred. These ore sll cycles that store a return sddress for the timing
loop.

You could elso trigger the analyzer at the beginning of the output loop efter
that loop hes already executed once. In DEMO3.TSK, we know that after the 1
in Ais first sent to terget port (sddress 0088), A is rotated, and the delsy loop
at 00AD is called before returning to 0088 to cutput the next value,

Type NORMT 88 ADR AFTER AQO ADR S.
The analyzer weits for the fualifier address D0AD to eppeer on the bus,
then triggers the trace with the next sccurrence of acldress 0088,

[simple quelifiers chert from reference manual]
Up to three qualifiers can be used in a trigger specification. The qualifiers
must occur in sequential cycles, starting with the last one entered, then the
next-to-lest one entered, etc, The trigger event can occur at sny time after its
quelifiers appeer on the target bus.

ZB0 Tutorial — Page 24

Poge 25

USE THE DEBUG FEATURES

Establish Debug Control

| Set abreakpoint

Read the breakpoint displsy
Single-step the target system

Resume execution to a new breskpoint
Follow jurnps and loops

Alter Register Contents

Trigger a Breakpoint
Define delmg triggers

Display the Alternate Registers

Read and Write to Target Ports

Use the Debug Features
The Unilsh system provides full-festured debug facilities, You can zet a
breakpoint, or issue a non-maskahle Interrupt from the keyhosrd, to halt the
target program end single-step through its execution, You can view and alter
the contents of registers and memory, and uze bus events to trigger
breakpoints,

These tools are used while special dekug hardware controls the target
processor, A few bytes of emulaticn ROM (the reserved ares and the overleayr
area), and the processor stack are uzed by debug operations. (See Target
Application Notes.)

Establish Debug Control and Set a Breakpoint

Losd DEMO3.TSK, and use the main menu's FB6 to get to the dekbug sub-menn,
The displsy shows the functions that are availehle in menu mode,
[figure 5-2a]

Press F1 to estehlish delng contral,

Debug control must be estahlished before other delug opticns can be
uszd, Here, the program requests & breakpoint sddress,

Type 88 and a carriege return to set the address,
The equivalent command line RESET 88 RB esteblishes delug control
at addrass 0088, (RESET enchles the target system to be reset by RB.)
[figura B-Zh] :
The breskpoint display shows the redisters and their contents, prior to
the effects of the current inatruction, followed lry the address, apcade,
and disassembly,

Here, the contents of DE and HL have chenged since initialization
becanze of the block-move operation. IX and IY hold arbitrary values not
used by DEMOS.TSK, The "a" knte of AF contains the 01 to he output by
the current operation. (F is the flag register: its bits are shown to the
right in parentheses. A capital letter means the hit iz set, lower case
means it is resst, end a hyphen mesns the hit is unuzed. See the Target

Application Notes,)

ZBU Tutoriel — Page 26

Uze the Debug Features

Single-Step the Target System

Press F3 to executa the next step of the program.
The breskpoint display shows unchanged register contents, and the
RRCA instruction,

Press F3 again.

Note that the AF value has changed (because of the RRCA}, and that the
- current instruction calls the delsy loop at AQ,

Press F3 once more, .
The N command issued hy F3 "falls through" loops and branches, Now
the breakpoint display shorws the processor’s state after its return from
the delay loop, The current Instruction jumps to the main program
loop. :

Follow Jumps and Loops

To follow the jump, press F4,
As the address shows, the KM command followed the program's jump
instruction,
[figure 5-4a]

Type LP to executs the entire loop oncs,
The lighted LED advences one Position with each iteration of this loop.
LP is & quick wey to execute a loop once and stop at the same address,
LP only works when the Program is stopped at an sddress that will be
executed again,
[figure 5-4b)

Alter Register Contents

DEMO3.TSK rotates a single bit in register 4, using it to animate the
microterget's LEDs, While at a breakpoint, you can change the register's
contents to e new bit pattern end see the effect, Hers we will put a different
velue into A just before the outpmt/rotate sequence,

Ifyou followed the instructions shove, your breakpc»int display should show
address 0088, with the QUT (79).A instruction that will output the current
contents of A We will not want to change the value of the flags register (F) at

Poge 27

Use the Debug Features

this time, so type 7Fxx =AF <Enter>, where xx is the current value of F in
your breakpaint display, This replaces the current value of A with 7F,

Enter the commend RZ to resume execution,
The microtargst resumes execution with the new register contents
intact, and without resetting ar restarting the program. The LEDs now
exhibit a new pattern, even though you have not modified the program
itself,

Now, with the program executing, press F4,
This sends a non-meskable interrupt to the target processor, It gaina
debug control of the running system within a few cycles, and generates
a breskpoint display, When you ere already at a breskpoint, NMI single-
steps through normal program flow,

Resume Execution to a New Breakpoint
===0INE LXxecution to a New Breakpoint

Press F2 to resume execution from the current breakpoint until a new
breskpoint is reached.

Respond with AO &s the new brea {point address,
The equivalent command is A0 RB, The breskpoint display is shown
when that address is reached. '

RB, unless it is precedead by RESET, sllows a program to continue
execution with a new breakpoint set,

For other ways to resume execution after esteblishing debug control, use
function key choices from the analyzer and debug menus, or directly enter:

RZ to resume execution from the current state.

<adr> G to exit debug control and resume execution from any
address,

<edr-a> <adr-b> @B to resume exscution at address-e, with a breekpoint set
for addressh,

<edr> GW to go to an address end wait for en analyzer comrmeand,

STARTUP to reset and start the microtarget and the analyzer,

NORMXx <trig> 8 to restart the analyzer and resst the target (if RESET is

ZB0 Tutorial — Page 26

Une the Debaug Features

ensabled), providing a trace of execution when a trigger
appesrs,

Define Debug Triggers

Earlier, you learned a set of commands to start the analyzer at any point
during target execution. The same trigger-specification commends can set a
breakpoint, When so used, triggers issue an MI to the tardet processor,
insteed of sffecting the trace huffer. (For debugging purposes, triggers ast a
qualifier internally, so AFTER should not be used,)

Type RL the delug equivalent of the analyzer's NORRMx words,

Enter 79 LADR 20 DATA SI to interrupt the processor after 20 is sent to
port 79,
The RI ... 51 sequence gains debug control within a cycle or two after
the specified trigger event. Here, A has alreacly been rotated and the
current instruction calls the delsy loop, S is the debug version of S,
[figure 5-G]

Display the Alternate Registers :
The Z80's alternate register set can be included in the breskpoint displey,

Type SHOW-ALT,

Now enter RESET 88 RB (or uze F1 in the delng mern),
The digplay now shows the contents of the alternate registers,

Type SHOW-ALT' and press F3 to execute the next instruction,

The display returns to its default state, without the alternate register
display.

Puge 29

Uze the Debug Features

Read and Write to Target Ports

The sample prograrn, DEMQ32.TSK, controls the microtarget’s LEDs by
sending values to port 79, Two commands make it possible to resd a port's
contents, and to send a new value to a port,

With DEMO3,TSK loaded, use STARTUP to get the program going.
Type NMI to gain debug control.

Enter 79 INP <carriege return> to see the hex contents of port 79,
The resulting number is the value that set the current LED pattern,

To try different port cutput, type A& 79 OUT,
The LEDs now light up according to the hit pattern of AA hex,
Experiment with other values to see their effects.
[figure 6-6]

Experiment hy setting some breakpoints and single-stepping through the
terget systern’s execution, You can gain delbug control at any address that
conteins the first byte of an opeode, If use an invalid address az a hreakpoint,
the system will wait indefinitely — when this hsppens, press the Enter key to
generate a hardware interrupt,

ZBU Tutoriwl — Page 30

Page 81

OQPERATE ON MEMORY

Disassemble From Memory
Set a starting memory sddress
Choose length of dizassembly

Examine and Alter Hex Memory Dump
Select a starting mermory address

Move through the display

Edit hex or ASCII values

Save the changes

Operate on Memory
The UniLab includes seversal tools that work directly on memory, You can
disassemble the contents of memory to get an essembly code listing, or nze a
hex /ASCII editor to examine and change memory.

Disassemble a Program
We will begin locking at memory cperations with a simple disassembly of the
program in emulation ROM. Load DEMOI.TSK, as described earlier.

At the msin menu, press F3 to display the sub-menu of memory operations,

Use F2 to disasserable from memory,
As the program prompts you for input, enter 0 as the starting address
and 7 for the numbker of (hex) lines you wish to disassemble,

[figure 6-2] /
The program displays the equivelent keyhoard commend O 7 DM,
followed by the dissssembly. These are the initialization instructions,
the block maove, and & jurnp instruction to the program's mein routine,
followed by unused addresses,

Now press F2 sgain, entering 82 for the starting eddress and 7 for the
number of lines,

Here is the DEMO3.TSK code that controls the LEDs,

- After initializing the port chip's control register (I/0 addresz 7B),

- it loads a value into A at sddress 0086,

- sends that value to port "A" of the port chip (1/0 address 79),

- rotates A's contents, calls the delay loop at 00AQ, and

- jurnps back to address 0088 to cutput the new hit pattern from A,

Any address can be the starting point of a disessernhly, and there is no limit to
the number of lines. You can dissssemble emulation memory end, with delug
control, terget RAM, Using DM from the command mode (or a special window,
to be discussed later) allows mare lines to fit on the screen.

Z89 Tutorisl — Page 32

Cperntr on Memory

Examine and Alter Hex Memory Dump

UniLab's hex/ASCII editor perrmits you to examine snd alter blocks of MEemory,
and to rapicly page through conzecutive blacks.

From the main menu, press F3 for the sub-menu of memory operations,

Press F1 and, when prompted for it, the starting address 0.
The commeand 0 MODIFY iz executed, bringding = dizplay of the first 90
kytes of memory, The hex display is shown alongside the ASCII dizplay,
The bottom line shows which keys control the editor,

The first 18 bytes show the opcodes and velues of the initialization
routine you dissssembled previcusly, ending with the jurnp to 0082,

Use the left-arrow snd right-arrow keys to move the cursor,
The cursor moves from address to address, sutomatically wrapping
- arcund line endings, ’

Use the down-arrow key to move down the rows.
If you scroll past the last line, the contents of additionsal addreszes will
be shown.

Now use the up-arrow to mcve shove the line containing address 0,
A message states that you have entered target RAM, then the new
address range is displayed. If you access target RAM without first
establishing debug control, UniLab issues a non-meskshle interrupt to
get control of the necessary rescurces,

PgDn and PgUp display consecutive hlocks of memory.,

Poge 53

Opemtz on Memory

Program instructions can be changed with the mernory editor, kat you will vse
it rnore often to modify data, to try a new value when initializing & regiater or
varighle, or to edit text strings.

Use Ctrl-Right Arrow to move the cursor into the ASCII dizplay.
Enter any ASCII characters here, and their hex equivalents are shown
to the left, Ctrl-Left Arrow maves the cursor back to the hex display.

Press Esc to lesve the editor without saving this input,
(figure 6-3] '
Re-enter the editor by pressing F1 and responding with address 0.

Move the cursor ta A2, where the delsy loop's length is stored,

Type 10 to replace the 40.
This alters the value thet is decremented in this rontine, effectively
meking the delay loop shorter.,

Press End to save the change in program memory.,
UniLsb responds with "Changes saved." The LEDs blink much faster
than hefore, If you wish, try other values at 00AZ,

Changes ta memory remain in effect until you change them again, or reload
and restart the program. When you want & printed recard of your chenges to
memory, the mode penel discuzsad later provides en option that will echo the
CRT display to the printer, ‘ |

ZB0 Tutorinl — Page 34

Puge 36

LINE-BY-LINE ASSEMBLER

Alter the Target Code

Inoke the sssembler af an sddress
Use assembly language

verwrite program mernory

Write a Patch Routine
Assign & patch address
Write the new code
Jurap to the patch

Line-by-Line Assembler

You can edit code and write small test routines aor patches quickly with
Unilab's essembler, bypassing the compile-sssemble-link process, You can also
use it to he certein a value appears on the bus, The assernbler supports all Z80
instructions (except the * location counter), arithmetic expressions, and
symbols,

Alter the Target Code

The sample program begins by moving a block of mermory from 0100 to 1800,
but that code is never executed unless you slter the instruction at address
008E so that it jumps to 1800 instead of 0088, This wonld ke gasy to change
with the memory editor, bt here we will use the lineduy-line assembler.

The sssermbler is cnly avsilable in cornmand mode. Start ky loading the
DEMOS3.TSK progrsm (0 FFF BINLOAD DEMO3.TSK).

Type 8E ASM to invoke the aszsembler, starting at sddress D0SE.
The program displays the requested sddress 008E, with the cursor
Indicating where the new sssembly lasngusge instruction may he
entered,

Type JP 1800 <Enter>,
Thiz will assemble into jumnp to sddress 1800, The assernbler now
offers the next address for any further changes.
(figure 7-3a]
Press Enter to leave the contents of address 0091 unchanged and exit the
sssembler. Use STARTUP to execute the altered program.
The LED sequence changes in accord with the nesw cutput routine.

so, turn c-ff reset with RE.:E’I" (fcr a}rip the imtiqhzatu:\n 3 anm:e) and ty1 e
ONLY NOT AQ TO A9 ADR 3. You will see that the routine at 1800

- cutputs 1 from A to the terget part,

- rotates the hit pattern in A (me]qng the 1 an 80),

- calls the delsy loop at AQ,

- then jumps to 0088 to cutput the 80,

- and ends up back at 1800 again.

ZBU Tutortal — Page 36

Line-by-Line Azsembler

Write a Patch Routine

The assembler overwrites whatever is in memaory. Extra instructions cannot be
inserted between existing addresses, but you cen put in a jurnp to any unuzed
area of mernory and write a rulti-line patch there,

For example, you cen write code to brings a register's contents cnto the s,
Then that value, which would not appesar on the kus otherwise, can be used to
trigger a trace,

Type 88 ASM to write new code beginning at sddress 0088,
At the 0088, type CALL 300 <Enter>
At the 00€B, press <Enters

Now type 300 ASM <Enter:
At the 0300, type OUT (79)A <Enter>
0202 RRCA <Enter>
0303 PUSH AF <Enter>
0304 POP AF <Enter:>
0305 RET <Enter>
0306 <Enter>
(figure 7-3b]
The UniLsh assembler provides the address numbers, & carriage return
on &n empty line preserves the previous contents of that address.

The sbove patch puts the contents of AF onto the bus before the delsy loop iz
celled and before A is sent to the targst port, To trigger a breskpoint when the
value 20 is in A;

Type RI 20 DATA AFTER 303 ADR ADR SI.
The breskpoint displey shows 2060 in AF, and the microtarget's second

LED iz lit,

Type LP to execute the loop once, and you. will see that the 20 in A canses the
third LED to light, and that the RRCA instruction changed A's value to 10,

Puge 37

Use Symbolic Labels

Define syribols within UniLab

Load a symbol file

List current symbols

Use symbolic triggers and breskpoints

Z80 Tutorial — Page 58

Use Symbolic Labels
UniLab allows you to loed symbal tahles generated by your linker, It supports &
wide variety of syrmbol tahle formats, After loading a symbal table, the analyzer
will display the same labels as the source code. Or, if you wish, you can define
symbols from within the UniLeh program, Triggers and breakpoints sre easier
to set, and a trece display is moare quickly understoad, with symbolic names,

Load the DEMOS.TSK progrem and use STARTUP ta generate a trace display,

Define Symbols Within UniLab

Type 3 IS INIT_IX end 1234 IS VALUE_IX.

[figure 7-4]

Regenerate the trace displey iy pressing Home,
A new colurnn i added to the display, where the syrnbolic neme
INIT_IX is shown heside address 0003, While the opcode for that
&clcdress contains the value 1224, the mnermonics column shows
VALUE_IX,

Load a Symbol File ,
You will usually load a target program's original symbal teble, rather than
essigning many new symbols individually:

Type SYMFILE and, at the prompt for a filename, type DEMO3.5YM.
Thisz calls up the Symbol File Format menu — choose F5. To see a list of
the symbols that are now resident, type SYMLIST.

Press Home to see the top of the trace display again,
[figure 7-5]
Type NORMT OUT_LOOP ADR 5 to trigger the analyzer on the output loop,

When symbolic lebels have been defined, you cen use them with Unilab
commands anywhera you would type in a value to examine mermncry (as in
DELAY_LOOP MODIFY), or to set triggers ancl breskpoints. For added
convenience during development waork, refer to the related cormmends
SYMSAVE, SYMFILE+, and SYMLOAD in the on-line glossary (type HELP
<commend >),

Puge 39

CONTROL THE UNILAB ENYIRONMENT

Control the displays
Incresse productivity

Open Windows on Your Work
Use general-purpose windows
Generate a disaszembly windosw
Change window zizes

Use Function Keys
Dizplay function key assignments
Reassign function keys

Define Macro Commands
Ensble macro fanctions

Define amacro

Assign recros to fonction keys
Diszble macro functions

Use the Mode Panel
Adjust the analyzer, display, snd log modes

Save Your Changes to the System

ZB30 Tutorie! — Page 40

Control the UniLab Environment

The festores presented here affect the way UniLab displsys information and

responds to input, You can modify the system's defaalt settings to suit your
particular needs and work style.

Open Windows on Your Work

The displey screen con be divided into "“windows." You can refer to a
disassernbly and a trace display at the same time, or keep a portion of one
trace on the screen and generate a new one, You must lesve menu made in
order to use screen windows, kut csll up the menus again any time you wish,

Load the DEMO3.TSK program and enter RESET 88 AS to tfigg_er the
analyzer at address 0088,
The screen fills with a trace dizplay.

Press F2 once to split the screen horizontally.
A line shows the screen division, and the lower half is clesred, The
upper window retains its contents, Press End to move the cursor
between windows,

In cormmend mode, F2 toggles the split-screen display on and off, The
same analyzer settings, triggers, snd debug opticns sre in effect,
regardless of which window you use,

Press PgDn to scroll through the trace buffer,
One half of the screen remsins unchanged, while the window with the
cursor responds to your keystrokes,

In either windcw, type RESET 88 RB.
The active window shows the breakpoint display, while the other

window remsains unchenged,

Press F2 restore the full screen.
These "general purpose” windows are easily used with most commands. A

special-purpose disessembly window will remain on the screen while you
perform other functions.

Puge 41

Control the Unllab Environment

Type 0 DN to dissssemble memory, starting from address 0000,
A vertical rule delineates the right one-third of the screen, which
displays the recuested listing. Enough memory is disassembled to fill
the windcw,

Press F2 to split the screen, and type A0 DN to see more disassembled
memory.
The new disassembly is restrictad to the height of the current window.,
[figure 8-2) ,
The contents of the disassembly windcw remain in place, until yOu nEe!
-anew DN command,
- F2 to toggle the splitscreen display,
- End to move the cursor between windows, or
- F10 to call up the main rmenu.

You cen uss up to four windows to visually compare:
Target execution
Disessembled code
Register displays
Memory contents
Help and other text files

Help files will not be shown in their full width if there is an active disassemnbly
window. Use F2 or End to adjust the display appropriately.

Change the Window Sizes

Window dimensions can be modified. Perhaps you would like a nerrower
disessembly window, or a window that is anly three or four lines high for
breakpoint displays.

Press Shift-F8 or type WSIZE.
The screen temporarily clesrs, and the current windaw borders are
displayed, Now use the arrow keys to adjust the dimensions of the
windaws,

When you are satisfied, press End to accept the changes,
The display is returned to its former state, Any new commands entered

will reflect the new windeow sizes,

<80 Tutorial — Page 42

Control the UniLab Environment

Use Function Keys

UniLeb uses function keys for essy sccess to often-used commaends, which cen
save a great many keystrokes, Function keys can be used elone, or with the
Shift, Alt, or Ctrl keys. Mot all have been pre-sssigned, snd all the keys are
resssigneble,

To see what functions ere sssigned to the keys, use F1, SHIFT-F1, ALT-F1,
and CTRL-F1. It is essy to change or add function-key assignments, sad any
such changes will be shown in the displays,

[figure 8-b]

Reassign Function Keys

Type 6 FKEY PINOUT to assign the PINOUT commsnd to FB,
How, pressing FB will display the pinout of YOUr processor,
[figure 8-B]

You cen sssign & cormend to any fanction key by using the words FEEY,

SHIFT-FKEY, ALT-FKEY, or CTRL-FKEY. Their syntsx is the same:
<key#> FKEY <commend:

It is possible to assign strings of commends to a single function key, saving
even more keystrokes. To do so, you must first lesrn to define a "mscra”
fanction that executes other commends. Then that mecra's name can he
sssigned to a function key. (See entries in the on-line glossary for : snd
MACRO.)

Poge 43

Control the Unilab Environment

Define Macro Commands

If you type the seme input often, consider defining it es a macro, Whes yon
enter a complex trigger spec repeatedly, for example, making it a one- m:ml
macro will save keystrokes and minimize typing errors, Mecros can vse Unilak
commends, data, end even commands from the underlying progr arnrning
language. Each macro should have aunirue name of any length (no spaces are
allowed),

To invoke these capsbilities, type MACRO and a carrisge return.
After a few seconds of disk ancess to meke macro functionz and the
programming language availsble, the system tells you that changes to
the system cen be made permeanent with the SAVE-SYS commend (see
helow),

Now, suppose you use a particuler trigger specification often, In DEMO3TSK,
for example, it wes guite nseful to filter the delay loop from the trace:

Type : TRIGGER1 NORMT ONLY NOT A0 TO AS ADR ; <Enter>

Now type TRIGGER1 to enter the trigger spec, and § to start the analyzer.
The trace is displayed in accordance with the trigger specificationg, bt
without requiring all the parameters to be retyped esch time the

analyzer settings have been changed,

[figure 8-8]

430 Tutorinl — Puge 44

Control the Unllab Environment

Use the Mode Panel

A three-part "mode panel” provides control of Unilab's defmlt settings, You
can simplify the anelyzer displsy, log a session to disk or printer, snd disshls
the hardwsre interrupt, among other options.

Press F8 to see the first page of the mode panel.
The panel sppears in the u}:l}:-er—right corner of the screen, This is the
firat of three pages that correspond to analyzer, display, and log modes,
The down - anrl np-arrows move the cursar from item to itern,

(figure 8-9)

If you do not need the dizassemhbly, contral, or miscellane 3 inputs, that data

cen be removed easily from the display:

On the mode panel's first page, with the cursor beside "DISASSEMELER,"
press the right-arrow to turn off the disassembler,
The disassembler alwsays tries to interpret trace data as if it were from
congecutive cycles, In a nerrowly filtered trace, that can bhe
Inappropriate, At such times, turn off the diseszembler to avoid
confusing, incorrect moemonics,

Presz PgDn to move to the panel's next page, then uze the arrow keys to
turn off the MISC and CONT columns,

Press End when you a 1cme, and use STARTUP to steet the analyzer: the
trace reflects the char ge u made by suppreszing the COMT, MISC, und

mnemonics columns,

You cen press F8 to return to the mode panel and restore the defanlt settings.

Save Your Changes to the System

Whenevar you alter the defanlt UniLsh envircnment and wish to make the
change permenent, type SAVE-SYS before exiting the program and provide
the filename you will use to load the program (e.g., ULZ20MOD). The new
settings will be in effect the next time you use Unilsh, Users of floppyhased
systerns will have to save the new filename to drive B or save their settin ngs in
the original ULZE0 file,

Page 46

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45

