
Professional Software and 
Hardware-Assisted Debuggers 

Periscope Manual 



Periscope Manual Version M54 
Liceme Agretment 

Should you have questions concerning the Program or this Ucense Agreement, please contact: 

The Periscope (Computing) Co, Inc., 1475 Peachtree S t., Suite 100, Atlanta, GA 30309 USA 
Phone: 404/888-5335 FAX: 404/888-5520 Sales: 800n22-7006 (US & Canada) 
Support: 404/888-5550 (1-5 pm EST, Mon-Fri, except holidays) BBS: 404/888-5522 

I.JCENSE. The Periscope Computing Company, Inc. ("TPC") grants you a limited, non-exclu­
sive license ("License") in the specified version of TPC's software product identified in this 
manual ("Program") to (i) install and operate the copy of the Program in machine-executable 
form on one computer at a time and (ii) make one archival copy of the Program. TPC and its 
third party suppliers retain all rights to the Program not expressly granted in this Agreement. 

OWNERSffiP OF P ROG RAM AND COPIES. This license is not a sale of the original Pro­
gram or any copies. TPC and its third party suppliers retain the ownership of the Program and 
all subsequent copies of the Program made by you, regardless of the form in which the copies 
may exist. The Program and accompanying manual(s) ("Documentation") are copyrighted 
works of authorship and contain valuable trade secrets and confidential information proprietary 
to TPC and its third party suppliers. You agree to exercise reasonable efforts to protect the pro­
prietary interest of TPC and its third party suppliers in the Program and Documentation and 
maintain them in strict confidence. 

USER RESTRICfiONS. You may physically transfer the Program from one computer to an­
other provided that the Program is operated only on one computer at a time. You may not elec­
tronically transfer the program or operate it in a time-sharing or service bureau operation. You 
agree not to translate, modify, adapt, disassemble, decompile, or reverse engineer the Program, . 
or create derivative works based on the Program or Documentation or any portion thereof. You 
may not reproduce or distribute the Documentation or any part thereof without the prior written 
consent ofTPC. 

TRANSFER. You may not rent, lease, sublicense, sell, assign, pledge, or transfer or otherwise 
dispose of the Prqgram or Docuinentation, on a temporary or permanent basis, without the prior 
written consent of TPC, except you may transfer the Program and Documentation to another 
party so long as that party agrees to this License Agreement and you retain no copies of the Pro­
gram or Documentation. 

I.JMIT A TION OF WARRANTY AND LIABILITY. TPC warrants that the Program media 
and the Documentation provided herein are free of defects in materials or workmanship, assum­
ing normal use, for a period of ninety (90) days from the date of purchase by you as evidenced 
by a copy of your receipt. In the event a defect occurs in materials or workmanship within the 
warranty period, TPC will replace the defective item(s). TPC AND ITS TlllRD PARTY SUP­
PLIERS MAKE NO OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IM­
PLIED, REGARDING THE PROGRAM, MEDIA OR DOCUMENTATION AND HEREBY 
EXPRESSLY DISCLAIM THE WARRANTIES OF MERCHANT ABILITY AND FITNESS 
FOR A PARTICULAR PURPOSE. TPC and its third party suppliers do not warrant the Pro­
gram will meet your requirements or that its operation will be uninterrupted or error-free. TPC, 
its third party suppliers, or anyone involved in the cre.ation or delivery of the Program or Docu­
mentation to you shall have no liability to you or any third partyJor special: incidental, or col)Se­
quential damages (including, but not limited to, loss ofprofits orsavings, downtime, damage to 
or replacement of equipment and property' o'r recovery or'replacement of programs or data) aris• 
ing from claims based in warranty, contract, tort (including negligence), strict tort, or otherwise 
even if TPC or its third party suppliers have been advised of the possibility of such claim of 
damage. The liability of TPC and its third party suppliers for direct damages shall not exceed 
the actual amount paid for this copy of the program. Some states do not allow the exclusion or 
limitation of implied warranties or liability for incidental or consequential damages, so the above 
limitations or exclusions may not apply to you. 

U.S. GOVERNMENT RESTRICTED RIGHTS. The Program and Documentation are pro­
vided with RESTRICTED RIGHTS. Use, duplication, or disclosure by the Government is sub­
ject to restrictions as set forth in subdivision (c)(1)(ii) of the Rights in Technical Data and 
Computer Software clause at DFARS 252.227-7013 or subdivision 9(c)(l) and (2) of the Com­
mercial Computer Sofrware--Restricted Rights 48 C FR 52.227-19, as applicable. Contrac­
tor/manufacturer is The Periscope Computing Company, Inc., 1475 Peachtree Street, Suite 100, 
Atlanta, Georgia 30309. 

GENERAL. This License shall be governed and construed in accordance with the laws of the 
State of Georgia. 



Table of Contents 

1 Introduction 1 
1 . 1  REGI S1R ATI ON, U PDA1E S, AND U PGRADES . . . . . 2 

, 1.2 WARRANTIE S . . . . . . . . . . . . . . . . . . . . . . . . 2 
1.3 MONEY -B ACK GU ARAN1E E . . . . . . . . . . . . . . . 3 
1. 4 U SI NG THE MANUAL . . . . . . . . . . . . . . . . . . . . 4 
1.5 PRODU CTS COVERED IN THIS MA NU AL . . . . . . . . 4 
1. 6 SYS1E M  REQUIREM EN TS . . . . . . . . . . . . . . . . . 6 

. 1.7 GEffi NG STAR1ED . . . . . . . . . . . . . . . . . . . . .  7 

2 Tutorials 9 
2 . 1  C TU TORIAL . . . . . . . . . . . . . . . . . . . . . . . . . 10 
2.2 ASSEMBLY TU TORI AL . . . . . . . . . . . . . . . . . . 16  

3 Configuring Periscope 21 
� 3.1 RUN NI NG SETU P  AND CONFI G . . . . . . . . . . . . . .  22 

4 Install ing the Break-out Switch 27 
4. 1 I NSTALLI NG THE B REAK-OU T  SWI TC H  . . . . . . . . 28 

5 Install ing the Software 31 
5 . 1  IN STALLI NG PERI SCOP E/E M  . . . . . . . . . . . . . . . 3 2  
5.2 I NS TALLATI ON OPTI ONS . . . . . . . . . . . . . . . . .  3 2  
5.3 AL1E RNA1E STA RT-U P METHODS . . . . . . . . . . . 43 

6 Using Periscope 45 
6. 1 RU NNI NG FR OM EM ME MOR Y . . . . . . . . . . . . . .  46 
6.2 SYMB OLS AND SOU RC E  SUPP ORT . . . . . . . . . . . 48 
6.3 SU PPOR1E D  COMPIL ERS AN D LI NKER S . . . . . . . . 5 1  
6.4 DEVI CE DRI VER S  . . . . . . . . . . . . . . . . . . . . . . 52 
6.5 PLI NK APPLI CATI ONS . . . . . . . . . . . . . . . . . . 5 2  
6.6 .RTLI NK APPLI CA TIO NS . . . . . . . . . . . . . . . . . .  53 
6.7 MI CR OSOFT WIND OWS AN D IBM OS/2 . . . . . . . . .  53 
6.8 NON-DOS AND PR E-D OS PR OGRA MS . . . . . . . . . .  54 
6.9 DEBUGGI NG AT ROM-SCAN TI ME . . . . . . . . . . . .  55 



Table of Contents 

6 . 1 0  HARDWA RE IN1ERRUPT S . . . . . . . . . . . . . . .  55 
6.11 MEMORY-R ESID ENT P ROGRA MS . . . . . . . . . . .  56 
6 . 1 2  US ING AN ALTE RNATE P C  . . . . . . . . . . . . . . . 56 
6.1 3 U SI NG A N  EGA O R  A VGA . . . . . . . . . . . . . . . 57 
6. 14 P S/ 2  MACHINE S . . . . . . . . . . . . . . . . . . . . . . 57 
6 . 15  DEBU GGING SP AWN ED (C HILD) P ROCES SES . . . . 57 

7 Periscope Uti l ities 59 
7 . 1  CLEARING NMI (CLEARN MI) . . . . . . . . . . . . . .  60 
7.2 YOU R  P ROGR AM' S  IN1ERRUPT S (I NT) . . . . . . . . 60 
7.3 SETII NG UP HOT KE YS (PSKE Y) . . . . . . . . . . . . 6 1  
7.4 U� ING AN ALTE RNATE PC (P STE RM) . . . . . . . . .  62 
7.5 RE CORD AND ALIAS DEF INIT IONS (RS) . . . . . . . . 63 
7.6 P ERISCOP E/ EM' S  P RO GRA M  LOADER (RU N) . . . . . 67 
7.7 LOADIN G  SYMBOL T ABLES (SYML OAD) . . . . . . . 7 1  
7.8 DEBU GGI NG DEVICE DRI VERS (SYSLOAD) . . . . . 72 
7.9 G ENERATI NG SYMB OL T ABLES (T S) . . . . . . . . . 73 
7 . 1 0  CU ST OMIZ ING PER ISCOPE/E M (U SEREXIT) . . . . . 76 
7. 1 1  WHEN DOS IS BU SY (W AITI NG) . . . . . . . . . . . .  78 

8 Reference 79 
8 . 1 OPT IONAL MENU S . . . . . . . . . . . . . . . . . . . . . 80 
8.2 COMM AND SU MMA RY . . . . . . . . . . . . . . . . . 82 
8.3 COMMANDP ARAMET ERS . . . . . . . . . . . . . . . . 86 
8.4 COMMAND EDIT OR . . . . . . . . . . . . . . . . . . . . 92 
8 .5 FU NCTI ON K EY S  . . . . . . . . . . . . . . . . . . . . . . 93 
8.6 SHORT CUT K EYS AND K EYBO ARD ASSI GNMENT S  94 

9 Command Reference 101 
9 . 1  COMMA NDS . . . . . . . . . . . . . . . . . . . . . . . . 1 02 

help (?) . . . . . . . . . . . . . . . . . . . . . . . . . 102 
Assemble to memory (A) . . . . . . . . . . . . . . . .  102 
Assemble then Unassemble (AU) . . . . . . . . . . . .  1 03 
software Breakpoints All (BA) . . . . . . . . . . . . 104 
Breakpoint on Byte (BB) . . . . . . . . . . . . . . . .  1 05 
Breakpoint on Code (BC) . . . . . . . . . • . . . . . . 106 
Breakpoint on 80386 Debug Registers (BD) . . . . . .  107 
Breakpoint on Flag (BF) . . . . . . . . . . . . . . . . 1 08 
Breakpoint on Interrupt (BI) . . . . . . . . . . . . . . 108 
Breakpoint on Line (BL) . . . . . . . . . . . . . . . .  109 
Breakpoint on Memory (BM) . . . . . . . . . . . . . .  110 



Table of Contents 

Breakpoint on Port (BP) . . . 1 1 1  
Breakpoint on Register (BR) . 1 1 2 
Breakpoint on User test (BU) . 1 1 3 
Breakpoint on Word (BW) . . 1 14 
Breakpoint on eXit (BX) . . . 1 15 
Compare (C) . . . . . . . . . 1 1 5 
Display using current format (D) . 1 17 
Display using ASCII format (DA) 1 18 
Display using Byte format (DB) . 1 18 
Display using Double word format (DD) . 1 19 
Display Effective address (DE) . . . . . . 1 20 
Display Global/local descriptor table (DG) 1 2 1  
Display using Integer format (DI) . . 1 2 1  
Display using Long real format (DL) 1 22 
Display using Number format (DN) . 1 22 
Display using Record format (DR) . . 1 23 
Display using Short real format (DS) 1 25 
Display TSS (D'I) . . . . . . . . . . 126 
Display interrupt descriptor table (DV) 1 26 
Display using Word format (DW) . . . . . . . . 1 26 
Display using long integer format (DX) 1 27 
Display using long signed integer format (DY) . 1 27 
Display using asciiZ format (DZ) 1 28 
Enter (E) . . . . . . . . . 1 29 
Enter Alias (EA) . . . . . . . . . 1 30 
Enter Bytes (EB) . . . . . . . . . 1 30 
Enter Doublewords (ED) . . . . . 1 3 1  
Access memory anywhere in the target system (EM) 1 3 1  
Enter Symbol (ES) 1 32 
Enter Words (EW) 1 32 
Fill (F) . . . . 1 3 3  
Go (G) . . . . . . 1 33 
Go plus (G+) . . . 1 35 
Go equal (G=) . . . 1 35 
Go using All (GA) 1 36 
Go using Monitor (GM) 1 36 
Go to Return address on stack (GR) 1 37 
Go using Trace (G'I) . . . . . . . . 138 
Hex arithmetic (H) . . . . . . . . . 139 
Model IV Hardware (H series) Commands-

please see the Model IV manual 
Input (I) . . . . . . . . . . . . . . . . . . . . . . . . . 140 

i i i 



Table of Contents 

iv 

Interrupt Compare (IC) . 141  
Interrupt Restore (IR) . . . . . . 141  
Interrupt Save (IS) . 142 
Jump (J) . . . . . . . . . . .  143 
Jump Line (JL) . . . . . . . . . . 144 
clear (K) . . . . . . . . . . . . . . . . 144 
clear and Initialize (KI) . . . 144 
Load Absolute disk sectors (LA) . . . . . . . . . . . .  145 
Load Batch file (LB) . . . . . . . . . . . . . . . . . .  146 
Load alias and record Definitions (LD) . . 146 
Load File from disk (LF) . . . . . . . . . . . . . . . . 146 
Load Symbols from disk (LS) . . . . . . . . . . . .  147 
Move (M) . . . . . . . . . . . . . . . . . . . . . . . . 148 
Name (N) . . . . . . . . . . . . . . . . . . . . . . . .  149 
Output (0) . . . . . . . . . . . . . . . . . . . . . . . . 1 50 
Quit (Q) . . . . . . . . . . . . . . . . . . . . . . . . . 1 50 
Quit, reboot host, Unhook remote driver (QU) . . . . .  153  
Register (R) . . . . . . . . . . . . . . . . . . . . . . .  153  
Register Extended FLags (R EFL) . . . . . . . . . . .  1 58 
Register Compare (RC) . . . . . . . . . . . . . . . . 158 
Register Restore (RR) . . . . . . . . . . . . . . . . . .  159 
Register Save (RS) . . . . . . . . . . . . . . . . . . .  1 59 
display eXtended Registers (RX) . . . . . . . . . . . . 1 60 
Search (S) . . . . . . . . . . . . . . . . . . . . . . . . 1 60 
Search for Address reference (SA) . . . . . . . . . . . 1 6 1  
Search for Calls (SC) . . . . . . . . . . . . . . . . . .  1 62 
Search then Display (SD) . . . . . . . . . . . . . . . .  163  
Search for Return address (SR) . . . . . . . . .  1 63 
Search for Unassembly match (SU) . . . . . . . . . .  1 64 
Trace (T) . . . . . . . . . . . . . . . . . . . . . . . . 1 65 
Trace Back/Registers/Unasm (TBITRffU) . . . . . . . 1 66 
Trace all but Interrupts (TI) . . . . . . . . . . . . . . . 1 69 
Trace Line (TL) . . . . . . . . . . . . . . . . . . . ; . 1 69 
Unassemble memory (UAIUB/US) . . . . . . . . . . . 1 70 
View file (V) . . . . . . . . . . . . . . . . . . . . . .  1 74 
View Source file (VS) . . . . . . . . . . . . . . . . . .  1 75 
Watch (W) . . . . . . . . . . . . . . . . . . . . . • . .  1 76 .� 
Write Absolute disk sectors (W A) . . . . . . . . . . . 1 77 
Write Batch file (WB) . . . . . . . . . . . . ...... 178 
Write alias and record Definitions (WD) . 1 78 
Write File to disk (WF) . . . . . . . . . . 1 79 
Write Symbols to disk (WS) . . . . . . . . . . . . . . 179 



Table of Contents 

translate (X) . . . . . . . . . . . . . . . . . . . . . . . 1 80 
Use 1 6  or 32-bit disassembly (1 6/32) . . . . . . . . .  1 8 1  
Option ditto (copy Periscope's screen) . . . . . . . . . 1 8 1  
Options 1 and 2 (switch symbol tables) . . . . . . .  1 82 
Option 3 (enable/disable ring 3 debugging) . . . . . .  1 8 3  
Option 4 (toggle intema1486 cache) . . . . . . . . . .  1 83 
Option A (toggle DOS Access) . . . . . . . . . . . .  183 
Option C (display and set Colors) . . . . . . . . . . .  1 84 
Option D (Data window select) . . . . . . . . . . . .  1 84 
Option E (Echo screen to a file) . . . . . . . . . . . . 1 85 
Option K (capture Keystrokes to a file) . . . . . . .  1 8 5  
Option L (display Line symbols and 

source debug status) . . . . . . . . . . . . . . . .  1 86 
Option N (Nearest symbols) . . . . . . . . . . . . . .  1 87 
Option Q (Quiet) . . . . . . . . . . . . . . . . . . . . 1 87 
Option R (Remove symbol) . . . . . . . . . . . . . .  1 88 
Option S (Segment change) . . . . . . . . . . . . . .  188 
Option T (Trace interrupt table) . . . . . . . . . . . .  1 89 
Option U (User exit) . . . . . . . . . . . . . . . . . .  1 90 
Option W (Window setup) . . . . . . . . . . . . . . .  1 9 1  
Option X (eXit to DOS) . . . . . . . . . . . . . . . . 195 

Appendix A: Messages 197 
A. 1 INF ORM ATIONAL ME SSAGES AND PROMPT S . . . .  198 
A.2 ERROR ME S SAGES . . . . . . . . . . . . . . . . . . . . . 200 

Appendix B: Technical  Support and 
Troubleshooting 221 

B . 1 T ECHNI CAL SU PP ORT . . . . . . . . . . . . . . . . . .  22 2 
B .2 T ROUBL ESH OOTIN G . . . . . . . . . . . . . . . . . . . .  22 2 

Appendix C: Periscope/32 227 
C.l INTRODUCTION TO PE RI SCOPE/ 32 . . . . . . . . . . . 22 8 
C .2 DIFFERENC ES B ETWEEN PERI SC OPE/EM AND 

PE RI SCOPE/ 32 . . . . . . . . . . . . . . . . . . . . . . . . . 228 

Index 233 

v 



List of Tables and 
Figures 

Table Page 
8-1 . Execution Speeds of Various B reakp oints . . . . . . . . . . . . 84 

8-2. F lag Regis ter Values/M nemonics 89 

9-1. Pe riscope Wind ow Le ngths 192 

Figure 

vi 

2-1. P eris cope/E M's Default Scr een . . . . . . . . . . . . . . . . 12  
2-2. P eris cope/EM's M enus . . . . . . . . . . . . . . . . . . . . 14 

3-1. Periscope/E M Co nfiguration Screen 22 

4-1. Ins tallation of the B reak-out Switch . 28 

S-1. P eris cope Ins tallation Scr een . . . . . . . . . . . . . . . .  44 

7-1. A Section of the P S. DEFF ile . . . . . . . . 64 

8-1. Periscope/E M B reak points Menu . . . . .  81 

9-1 . Sample Dis play Us ing the DR Comm and . . . . . . 123 
9-2. Defmition of the PSP fr om th e  F ile PS .DEF . . . . . . . . 124 
9-3. Sample Dis plays of Regis ters and F lags. . . . . . . . . . . 1 54 
9-4. Dis play of RCC ommand . . . . . .. . . . . . . . . . , . 1�58 
9-S. Software T rac e  B uffer D isp lay Usin g th e  T B  Comman d . . 1 67 
9-6. Sof tware T race B uff er D isp lay Us ing th e  TR C ommand . , 1 68 
9-7. Dis ass embly of FlOC Pr og ram in U A  Mode . . . . . . . . 1 7 1 
9-8. Dis ass embly of F10C Program in U S  Mod e . 1 7 1  � 

9-9. Dis ass embly of FlOC P rogram in UB Mode . . . . . . . . 17� 



c H A p I E R 0 N E 

Introduction 

• Registration, U pdates, and Upgrades 
• Warranties 
• Money-Back Guarantee 
• Using the Manual 
• Products Covered in this Manual 
• System Requirements 
• Getting Started 

T
hank you for choosing Periscope. If you're anxious to 
get started on a bug hunt, go immediately to Section 
1. 7, Getting Started. Just be sure to read the other sec­

tions in this chapter as soon as you can. The first three sec­
tions will familiarize you with important benefits of owning 
a Periscope and how to take advantage of those benefits. The 
next three sections will familiarize you with this manual, the 
Periscope products covered in this manual, and the system re­
quirements for running Periscope. 



1 . 1 REGISTRATION, UPDATES, AND UPGRADES 

Registration. Please complete and return the registration 
card included with your Periscope package. When we re- � 

ceive your card, we will register your Periscope so that you 
will receive free Technical Support when you call our sup-
port line, leave a message on our BBS,  or send us a fax. 
(Please see the back of the title page for numbers and hours 
of operation) . We will send you update notices , special of-
fers on new products, newsletters, and other pertinent infor-
mation as well. 

If you misplace your registration card, call us with your reg­
istration number (sticker on inside front cover of binder). If 
you do not have your registration number, you will have to 
provide us with proofof purchase. 

Updates and Upgrades. Registered users of Periscope may 
update or upgrade at any time. Please call Sales (see back of 
title page for phone number) for current prices and full de­
tails. 

1 .2 WARRANTIES 

2 

Software. Please see the License Agreement on the back of 
the title page for our warranty on software, disks, and manu­
als. 

Hardware. We (The Periscope Company, Inc.) warrant all 
hardware in the Periscope package to be in good working or­
der for a period of one year from the date of purchase as a 
new (or factory-refurbished) product. This warranty covers 
all hardware, i .e. , boards, cables, switches, adapters, clips, 
and other hardware accessories included in the package. 

Should any of these items fail to perform properly any time 
within the stated warranty period, we will, at our option, re­
pair or replace it at no cost except as set forth in this war­
ranty. We will furnish replacement parts or products on an 
exchange basis only. Replaced parts and/or products become 
our property. 

We do not express or imply any warranty for damage caused 

1.2 WARRANTIES 



by accident, abuse, misuse, natural or personal disaster, or 
unauthorized modification, nor do we warrant that the hard­
ware will meet your requirements or that its operation will 
be uninterrupted or error-free. 

To obtain warranty service, please follow this procedure: 
• Call Technical Support (see back of title page for phone 

number) for a return authorization number. 
• Write this number clearly on the outside of the package 

you are returning. 
• Include proof of your purchase date and your registration 

number (or registration card) in the package if you did 
not purchase your Periscope directly from us. 

• Insure the package (or accept all liability for loss or darn­
age) and prepay all shipping charges, duties, and taxes. 

1 .3 MONEY-BACK GUARANTEE 

If you purchased Periscope directly from us (The Periscope 
Company, Inc.) and the product does not perform to your sat­
isfaction, you may return it to us within 30 days of our in­
voice date for a refund of your purchase price (excluding 
shipping charges) less, on Model IV products only, a restock­
ing fee of 5% of your purchase price. 

Please follow this procedure to return a Periscope package 
under this guarantee: 
• Make sure we receive the package within 30 days of our 

invoice date. We cannot extend the guarantee beyond this 
30-day period. 

• Call for a Return Authorization number prior to sending 
the package to us. (See the back of the title page for 
phone numbers.) 

• - Write this number clearly on the outside of the package 
you are returning. 

• Make sure all items are in the package, including the 
registration card (unless you have already sent it to us) . 
We will deduct the price of any missing items from your 
refund. 

• Make sure that the package is well-packed so that items 
are not damaged in shipping. We will deduct the price of 
any damaged items (whether damaged during or prior to 
shipping) from your refund. 

1 .3 MONEY-BACK GUARANTEE 3 



1 .4 USING THE MANUAL 

Typography. The normal font used in the body of the man­
ual is a proportional font, meaning different spacing is used 
for different characters to make the text appear evenly­
spaced and more readable. This can make it difficult for you 
to detenhine the spacing of items you might enter into the 
computer. Therefore, when we specify syntax, a command 
or options that you might enter, messages that appear on the 
screen, etc . ,  we use a fixed-space font, which uses exactly 
the same amount of space for all characters. 

This sentence is formatted in the normal proportional font 
used for most body copy. 

Thi s  sentence i s  format ted in the f ixed­
space font that i s  used for " entry "  
items , screen message s ,  etc. 

We point out Periscope model differences, warn ings, excep­
tions, and special instructions with a note l ike this. 

A t appears at the end of each chapter to indicate the 
end of the chapter. 

Other. This manual covers both the Periscope/EM software 
and its derivative, Periscope/32. We use the generic term 
"Periscope" to refer to both, unless we 're discussing some­
thing specific to one that does not apply to the other. See Sec­
tion 1 .5 below and Appendix C for details . 

The Model I Board and the Model IV Plus Board are one 
and the same board. Wherever we use the term "Model I 
Board", you can assume we also mean the Plus board, unless 
we specify otherwise. 

1.5 PRODUCTS COVERED IN THIS MANUAL 

4 

This manual documents all Periscope capabilities except 
those requiring the Model IV hardware (see the Model IV 
manual for Model IV specifics) . Use this manual with these 
Periscope products :  

1.5 PRODUCTS COVERED IN  TH IS MANUAL 



Periscope/EM: Periscope/EM is the "regular" or "main" 
Periscope debugger software. It is sold with a Break-out 
Switch and this manual as "Periscope/EM".  It is also in­
cluded with the hardware-assisted Periscope Model I and 
Periscope Model IV products (see below) . 

Periscope/32: Periscope/32 is a 32-bit-aware version of 
(and is derived from) the Periscope/EM software. It can run 
standalone as a full-function debugger in a single system, 
like Periscope/EM, or as the host debugger in a remote de­
bugging environment, as it does in the Periscope/32 for Win­
dows and Periscope/32 for OS/2 products. Appendix C 
provides an overview of how Periscope/32 differs from Peri­
scope/EM. Specific command and other syntactical differ­
ences are noted in the appropriate locations throughout the 
manual. The information you need to install Periscope/32 as 
the host debugger for target Windows or OS/2 environments 
is included in the addenda included with the Periscope/32 for 
Windows and Periscope/32 for OS/2 products. 

The Periscope 32-bit Toolkit , combined with Periscope/32, 
can help you create a system-level debugger for a pro­
prietary target operating environment. Please call 
Sales or Techn ical Support for more information. 

Periscope Model 1: Periscope Model I includes the Peri­
scope/EM software, a Break-out Switch, the Model I Rev 3 
Board (with 5 1 2K of write-protected RAM), this manual, 
and an addendum that covers hardware installation and run­
ning the hardware diagnostics program, PS1EST. 

Periscope Model IV: Periscol?e Model IV includes the Peri­
scope/EM software, the PopU� Periscope software, a Break­
out Switch, a Model IV (Rev 1 or Rev 2) Board, this manual, 
the PopUp Periscope manual, and the Model IV manual. (A 
CPU-specific Pod, sold separately, is also required to run 
Model IV.) 

If you're using the Periscope/EM software with your Model 
IV, use this manual as a general reference and the Model IV 
manual as a Model IV -specific reference. 

If you're using the PopUp Periscope software, you will not 

1.5 PRODUCTS COVERED IN THIS M AN UAL 5 



need this manual. Use the PopUp Periscope and Model IV 
manuals for reference. 

You'l l find a list of discontinued products in the NOTES. TXT 
fi le on the Periscope distribution disks. In most cases, 
we currently produce a product that covers the func­
tionality of the discontinued product. For instance, Peri­
scope/EM covers all the capabi lities-and more--of 
discontinued Models I I  and 11-X. 

You' l l  also find descriptions of the files on the distribution disks in 
the NOTES.TXT fi le. 

1 .6 SYSTEM REQUIREMENTS 

The Periscope software requires: 
• an IBM PC, XT, AT, 80386,  80486, PS/2 or compatible 

personal computer 
• PC/MS-DOS 3 . 1 0  or later 
• one disk drive 
• an 80-colurnn monitor 
• 75K (minimum) to 1 50K RAM in the lower 640K or 

for 386 and higher machines with a supportin1memory 
manager (QEMM, 386MAX, BlueMAX, or 
NETROOM) installed, zeroK RAM in the lo er 640K 
and 32K (36K for QEMM and NETROOM) AM be­
tween 640K and one megabyte and-300K RAM beyond 
one megabyte 

The Periscope hardware requires: 

6 

• The Periscope Model I Board requires an IBM PC­
compatible (ISA or EISA) bus, one full-length slot, and 
32K of address space above the lower 640K but in the 
first megabyte of system memory. 

• The Periscope Model IV Boards and Pods require a 
machine with an 80286, 80386DX, 80386SX, 80486DX, 
or 80486DX2 CPU running up to 33MHz (external 
speed) with zero or more wait states. The boards require 
an ISA or EISA bus and one full-length slot. The op­
tional Plus Board is the Periscope Model I Board (see 
requirements above). 

1.6 SYSTEM REQUIREMENTS 



i�-

Please call Technical Support if you have compatibility ques­
tions or problems. 

1 .7 GETTING STARTED 

Here are the steps you need to follow to start debugging with 
Periscope/EM or Periscope Model l .  These steps direct you 
to additional details should you have questions or need help. 
If you're using Model IV, please see the Model IV and ' 
PopUp Periscope manuals. 

Step 1-Install the Model I Board or Periscope Break-out 
Switch. 

To install the Model I Board, see the installation addendum. 
To install the Break-out Switch without a board, see Chapter 4. 

Step 2-Configure Periscope. 

Insert the distribution disk in Drive A and enter a :  setup. 
Follow the on-screen instructions. See Chapter 3 for details. 

Step 3-Install the software. 

From the Periscope directory (usually c :  \peri), enter 
ps.  For options, enter ps ? or see Chapter 5 .  

Step 4--Begin debugging with Periscope! 

For a quick tour of Periscope, see the tutorials in Chapter 2. 

Step 5-For reference, see: 

Chapter 6 for usage tips. 

Chapter 7 for information on using Periscope utilities . 

Chapters 8 and 9 for information on menus, commands, com­
mand parameters, the command editor, shortcut keys, func­
tion keys, keyboard assignments, and aliases. 

Appendices A and B for error messages and troubleshooting 

1.7 GETIING STARTED 7 

---- . .  - -- - · - -



8 

tips. 

Appendix C for the differences between Periscope/EM and 
Periscope/3 2. t 

1.7 GETTING STARTED 



c H A p I E 8 I w 0 

Tutorials 

• C Tutorial 
• Assembly Tutoria l 

W
e intend that the following tutorials help you get 
familiar enough with Periscope that you can be­
gin using it to debug your own programs right 

away. (If you're using Model IV, please see the Model IV 
manual for a Model IV-specific tutorial.) The C tutorial fo­
cuses on symbolic and source-level debugging for high-level 
languages. The assembly tutorial is more general. We recom­
mend you take both tutorials regardless of the programming 
language you use. Because the tutorials do not cover all com­
mands, we also recommend that you supplement what you 
learn in the tutorials with information contained elsewhere in 
this manual. 

9 



Please don't skip, add, or change any steps in the tutorials. 

2 . 1  C TUTORIAL 

This tutorial takes you through a guided tour of Periscope 
from the high-level language perspective. It uses the pro­
gram FTOC, with these files : 

FTOC.C is the source code for FTOC. Periscope uses this 
file to display source code. 

FTOC.DEF is the optional FTOC definition file, which con­
tains two alias definitions and one record definition. Peri­
scope uses it to read alias and record definitions into 
memory. You create a .DEF file with an editor as a standard 
ASCIT text file. See the description of the utility program RS 
in Section 7 .5 for more information about .DEF files. 

FTOC.EXE is  the executable program. 

FTOC.MAP is the .MAP file produced by the linker. Unless 
you use the TS program to create symbols from another 
source, Periscope uses the information in the .MAP file to re­
place memory addresses with symbols {rom the program 
you're debugging. You cr{(ate a .MAP file at lillk time by 
specifying a .MAP file and the link options /LI and /M. 
This file contains public and line-number symbols. 

In this tutorial we '11 use symbols stored at the end of the 
FTOC.EXE file by the link option I CO instead of those in 
the .MAP file, as explained in Step 3 below. 

Step 1-.. Configure Periscope for your system. 

10 

Place the. distribution disk in Drive A and enter A: SETUP. � 

SETUP copies the files from the distribution disk to your 
working directory. CONFIG generates the executable Peri-
scope software to support the hardware you have installed, if 
any. For purposes of this tutorial, enable Periscope' s  menu 

2.1 C TUTORIAL 



system and select the Code View function-key emulation. 
You can run CONFIG again later to change these options if 
you wish. See Chapter 3 for details .  

You can configure Periscope as software only even if you 
have hardware. If you do configu re for one of the 
board models, you must instal l the hardware before 
you can take the tutorials. 

Step 2-Install the Periscope software. 

Enter CD\PERI , tlien PS /H /T : 4 .  

This makes the Periscope directory the default directory, 
loads Periscope into memory, loads the on-line help and in­
terrupt comment files into memory, and allocates 4KB for 
symbol tables. 

I f you have installed a Model l Board in you r  system or if you 
are using EM memory (with 386MAX, QEMM, orNE� 
TROOM), just enter PS. You do not need the /H 
and /T options. If you're using the Model l Board 
and changed the DI P switches on the board, however, 
do enter the memory (/M) and/or port (/P) options. 
See Section 5.2 for detai ls. 

Step 3-Create a sY:�bo� file with local symbols. 

Enter TS .FTOC /E. 

This creates a Periscope symbol file from FTOC.EXE. (To 
use the .MAP file for symbols ,  you would enter TS FTOC.) 

We used Microsoft C to cpmpile FTOC . . If we had used the 
Borland compiler and linker, you'd enter TS FTOC /B.  

Microsoft LINK does not place local symbol information in 
the .MAP file. To provide you with access to local symbols 
as well as public and line-number symbols while you're de­
bugging, Periscope must get symbol information from the 
.EXE file . 

Step 4-Use the program loader to run FTOC. 

2.1 C TUTORIAL 



Enter RUN FTOC. 

RUN displays informational messages and the address of the 
PSP, then switches to Periscope' s screen. Normally, Peri� 
scope starts at the very beginning of the program and dis­
plays assembly code, but we've included a special alias in 
the .DEF file, \XO =G _MAIN, that causes Periscope to im­
mediately go to _MAIN, which is the beginning of the C 
source code. 

Step 5-Display Periscope's windows. 

12 

Since we didn' t specify any windows when we installed Peri­
scope in Step 2, you see Periscope' s default windows, as 
shown in Figure 2- 1 .  

Figure 2-1. Periscope/EM's Default Screen 

• The first line of the screen contains the menu bar, which 
now shows the function key assignments for Code View 
emulation. If you don't  see this, start over at Step 1 ! 

• The next two lines of the screen show a Data window � 

which you can use to display memory in various formats. 
• The next window is the Watch window, which you can 

use to monitor various memory and 110 port locations. 
The only watch item currently set shows the Periscope 
software version with a suffix that indicates the model of 

2.1 C TUTORIAL 



Periscope you're using. 
• The next window is the Disassembly window. You use 

this window to display the program being debugged in 
source, assembly, or mixed mode. 

• On the right-hand side of the screen, there are two verti-
cal windows for the system registers and the stack. 

The current stack pointer is at the top of the Stack window. 
(A chevron points to the value of the BP register when BP is 
in the range shown by the stack.) 

Press Alt-R several times to toggle the Register window. 

Press Alt-S several times to toggle the Stack window. 

You can specify your own windows using either the /W in­
stallation option or the /W coiillnand; 

When we refer to an i nstal lation option, we mean an option 
that you specify when you i nstall Periscope. (See 
Chapter 5 for detai ls.) When we refer to a command, 
we mean a command that you enter whi le  Periscope's 
screen is displayed. (See Chapter 9 for details. ) 

Step 6-Activate the menu system. 

Press Alt-M to activate the menu system. Notice how the 
menu bar changes from showing the key prompts to showing 
the various menus available. 

Use the right arrow key to browse through the various 
menus. See Section 8 . 1 for information on using menus. 

The menus are a convenient way to execute infrequently­
used or complicated commands, but because of the extra key­
strokes required, you'll want to either enter the most fre­
quently used commands directly or set them up on function 
keys as has been done with the Code View function key emu­
lation. 

Press Esc to return to the command interface. 

2.1 C TUTORIAL 13 



Figure 2-2. Periscope/EM's Menus 

Step 7-Display the three disassembly modes. 

Enter UA, then us, then UB. 

You can see FfOC in the Disassembly window in three 
modes : UA shows Assembly only; UB shows Both 
source and assembly; and us shows Source-only. (The 
source-on ly display shows assembly code until the first 
source line reference is found, then displays source-only.) 
Periscope defaults to us mode, unless it finds no line num­
bers in the symbol file. 

Step 8--Use Periscope's help feature. 

To see a summary of all commands, enter ? . To see help on 
the Display command, enter ? D. 

Press Enter to remove the help display. 

Step 9-Set up to local variables to watch. 

To go to linelO inFfOC, enter G #10. 

14 2.1 C TUTORIAL 



To display STEP in integer format, enter w I STEP. 

To display FAHR in short-real format, enter w S FAHR. 

Neither variable is initialized yet, so their values mean noth­
ing. 

Step 10---Trace at source then assembly level. 

Press FlO, or enter JL: This steps to the next source line in 
the program. The Jump Lin� command uses the Jump com­
mand to step through your program until the 'current' in­
struction is the beginning of a source line. 

The Jump command steps to the next sequential assembly 
level instruction. The Trace command is the same as the 
Jump command, except that it traces into called routines and 
interrupts, instead of staying atthe instruction level. 

Enter J and T a few times. Note how the Disassembly 
window changes. 

Step 1 1-Go to th� next call of_PRINTF. 

Enter G _PRINTF. 

Since _PRIN1F is.a library procedure, you're away from 
FTOC's source code, so you don'tsee any source code. 
Also, you don't see the names of the local variables in the 
Watch window, since the procedurein which they are de­
fined is not currently executing. 

Step 12-Analyze the stack for return points. 

Enter SR. 

FTOC# 17 + 0 0 2 0 indicates the instruction after the call to 

�PRINTF . 

Enter GR to quickly return to the mainline code. 

Then to go to line 1 8, press FlO or enter JL. 

Step 13--Go to the next source line yery slowly. 

2 . 1  C TUTORIAL · 1 5  



Enter G _PRINTF, then press F8 or enter TL. The TL 

command traces instructions until the next source line, line 
1 8 , is executed. Check the value of FAHR in the Watch win­
dow versus the value just displayed by FTOC. 

Press Alt-O or F4 to switch back to the program' s display. 

Step 14--Watch the local variable FAHR. 

Press F7 a few times or enter G FTOC# 18 . 

This shows the next several executions of line 18. Notice 
how the value of F AHR in the Watch window changes each 
time. You can use the short form of the line number, G 

# 1 8 ,  when you are already 'in' the module. 

Step 1 5-Use a record definition to display local symbols. 

To tum the windows off temporarily, enter IW. 

Then type I I and press Alt-1 to display the local symbols. .� 

To call a keyboard macro that executes the command DR 

ss : BP-E VARS, press Ctrl-Fl. This command uses a Peri-
scope record definition to display the values of the local vari-
ables. You would normally use this method only with 
compilers that provide no local symbol support. 

To restore Periscope' s windows, press Ctrl-F9. 

Step 1 6-End the debugging session. 

To exit Periscope, enter QC or G. 

2 .2 ASSEMBLY TUTORIAL 

16 

This tutorial takes you through a guided tour of Periscope us­
ing a simple Assembly language program. It demonstrates 
some of Periscope' s  commonly-used debugging commands. 
For more detailed information see Chapter 9. 

This tutorial uses the program SAMPLE, which displays the 
total and available memory in the system, and these files: 

2.2 ASSEMBL Y.TUTORIAL 



PS.DEF is the optional Periscope definition file. It contains 
two alias definitions and three record definitions. Periscope 
uses this file to read alias and record definitions into mem­
ory. You create a .DEF file with an editor as a standard AS­
CII text file. Record definitions can be used to display any 
area of memory in an easy-to-read format. The utility pro­
gram RS verifies and calculates the memory a .DEF file re­
quires. See the description ofRS in Section 7.5 for more 
information. 

SAMPLE.ASM is the source code for SAMPLE. Periscope 
uses this file to display SAMPLE's  source code. 

SAMPLE. COM is the executable program. 

SAMPLE.MAP is the .MAP file produced by the linker. 
See the description of FTOC.MAP at the start of the C tuto­
rial above. 

If you just completed the C tutorial, begin at Step 3 below. 

Step !-Configure Periscope for your system. 

See Step 1 of the C tutorial above. 

Step 2-Install the Periscope software. 

See Step 2 of the C tutorial above. 

Step 3--Use the program loader to run sample. 

Enter RUN SAMPLE. R UN displays informational mes­
sages and the address of the PSP, then switches to Peri­
scope's screen. 

Step 4-Display Periscope's windows. 

To toggle the Register window, press Alt-R. 

To toggle the Stack window, press Alt-S. 

To display the 386 registers on an 80386 or later system, 

2.2 ASSEM BLY TUTOR IAL 17 



press Alt-3. 

Since we didn't  specify any windows when we installed Peri­
scope in Step 2, you see Periscope' s default windows: a Data 
window, a Watch window, a Disassembly window, and the 
vertical Register and Stack windows. The current stack 
pointer is at the top of the Stack window. (See Figure 2- 1 . ) 

Step 5-Display the three disassembly modes. 

Enter UA, then us, then UB. 

You' ll see SAMPLE in the Disassembly window in three 
modes : UA shows Assembly only; UB shows Both 
source and assembly; and us shows Source-only. (The 
source-only display shows assembly code until the first 
source line reference is found, then displays source-only.) 
Periscope defaults to US mode, unless it finds no line num­
bers in the symbol file. Note that UB mode appears to show 
each line twice: once as source and once as assembly. 

The register pair BX:CX shows the size of the program. Reg­
isters DS , ES, SS, and CS all show the PSP segment since 
this is a .COM program. The segment value varies , depend­
ing on the version of DOS and any memory-resident pro­
grams you're using. 

Step 6--Use Periscope's help feature. 

To see a summary of all commands, enter ? . To see help on 
the Display command, enter ? D. 

Step 7-Display the PSP in the Data window. 

1 8  

To see the first 32 bytes of the PSP in Byte format, enter 
DB CS: 0. 

To tum Periscope' s  windows off, enter /W. 

To see the PSP displayed in Record definition format, enter 
DR cs : 0 PSP. This makes it much easier to see what ' s  
what in  the PSP. You can add record definitions as  you need 
them by editing the .DEF file. (See the description of RS in 
Section 7.5). 

2.2 ASSEM BLY TUTORIAL 



To see the record definitions available, press Alt-E before 
entering anything after the Periscope prompt 

To restore Periscope' s  windows, press Ctrl-F9. 

Step 8-Set up variables in the Watch window. 

To clear the Watch window, enter w * .  

Enter W I TOTMEM, then enter W I FREMEM. 

You can monitor the values of TOTME M and FREMEM in 
integer format. 

Step 9-Set and execute breakpoints. 

To set a sticky code breakpoint at the end of the program 
(DOSRET), enter BC OOSRET. 

Press Alt-1 to see the available symbols. 

To set a word breakpoint on the value of the variable TOT­
MEM changing from zero to any other value, enter BW 

TOTMEM NE 0. 

To display the current breakpoints,  enter BA ? . You' ll see 
BC DOS RET and BW TOTMEM NE 0 0 0 0. 

To execute SAMPLE with both of the breakpoints activated, 
enter GT. Execution will stop at the instruction after the one 
that moves register AX into TOTMEM. 

Press PadMinus twice to move the Disassembly window 
back two lines. 

To see the instruction that caused the breakpoint, enter TB. 

Periscope' s traceback command shows previously-executed 
instructions in a full-screen mode using the software trace 

· 

buffer . The last entry is the breakpoint event. Use PgUp and 
PgDn to scroll through the buffer, then press Esc to display 
Periscope' s prompt. 

To clear the word breakpoint, enter BW * .  

To display the breakpoints, enter BA or BA ? . 

2.2 ASSEMBLY TUTORIAL 19 



Only one breakpoint is still set, BC DOSRET. 

Step 10-Convert hex to decimal. 

To display the value of TOTME M in the Watch window in 
hex, enter w w TOTMEM. 

To convert the value back to decimal, enter X nnnn. 
nnnn is the hex value of TOTM EM. 

The decimal value is displayed as  the second field. Since the 
value of TOTME M is still in register AX , X AX gives the 
same result. 

Step 1 1-Trace at the assembly level. 

To step through the next few instructions, enter J, then 
preSs Alt-D several times. 

When you get to the RET instruction, enter J again. This 
will take you back to the mainline code. 

Step 1 2-Disassemble and verify the number conversion 
routine. 

To disassemble the number conversion routine, enter 
U CONVERT. 

To restore the disassembly to the current instruction, enter R. 

To go to the instruction after the first call to CONVERT, en­
ter G #35. 

To display the converted value, enter DA TOTAL or 
DA TMEMORY. The result should agree with the value of 
TOTMEM in the Watch window. 

Step 13-Retum to DOS. 

20 

Enter G twice . 

The first G takes you to DOSRET, since the sticky code 
breakpoint for DOSR ET is still in effect. The second G re­
turns you to DOS.  If the sticky breakpoint did not exist, you 
could just enter G once. • 

2.2 ASSEM BLY TUTORIAL 



c H A p I E R I H R E E 

Configuring 
Periscope 

• Running SETU P and CON FIG 

T
his chapter describes the procedure for configuring 
Periscope for your computer system and for the Peri­
scope hardware you're using, if any. 

21 



3.1  RUNNING SETUP AND CONFIG 

Step 1-Piace the Periscope disk in drive A, and enter A :  
SETUP. 

SETUP will prompt you for the name of the Periscope direc­
tory. The default is c :  \ PERI. SETUP then copies the Peri­
scope files from the floppy disk to the directory. After the 
files have been copied, SETUP executes the CONFIG pro­
gram, which configures Periscope for your system. 

For best results, edit AUTOEXEC.BAT to contain the line 
SET PS=C : \ P ERI, substituting the directory you entered, 
if any, for PERI. 

Step 2 - Answer the prompts on the full-screen display 
shown in Figure 3-1 (explanations follow), then press F1 0. 

Periscope Hode l [choose one ) :  

1 :  11ode l I [protected 111e1110ry board ) 
z :  Periscope/EI1 [software onl y )  
3 : 11od e  l IV Chard.....-e breo.l<po i n t  boar d  o. ncl  C PV  pod ) 
Enter cho i ce  1 1-3 ) I Z J  

H i n i RUM  � nd  length added t o  ed it buffer [ 1-�) I l l  
Characters between ta b  stops U-B l I B l  
Enab I e 3B&riB£> debug registers [ !.'/11>? I !.'  1 
Use fast color output (!1/ltl? I Y l  

= Key  usage = 
Enter - next f l e l d  
Home - f i rst f i e l d  
End - l ast f i e l d  
Up - pr ior f i e l d  
Down - ne xt  f ie l d  
Esc - ex i t  to DOS 
F19 - conf i gure  PS 

Systen ho.s a PC or xr OIOtherboo.rd w i th o.n 00286 or later turbo card ( \'/11)? I N J  
Use Watchdog t imer o n  PS /2  to act i uo.te Per iscope C !.'/Nl7 I N J  
Ignore case of SIJ1bo l naPleS C Y/Nl? I Y J  
Po int 286.138&.1186 except i on interrupt 6 t o  Periscope C 'l/N ) ?  I Y l  
Po int 286.138&.1186 except i on interrupt 9 DH  t o  Peri scope C'l/N)? I Y l  
Refresh I nterrupts L 2 ,  a nd  3 eac h  t i me  Peri scope I s  act l ue  C 'l/N )? I 'l l  
Defau l t  t o  Insert OIOd e  when Per i scope' s COIIIIIIdnd- l ine ed i tor I s  used ( \'/N)? I N l  
Vs e  Periscope' s ...,nu syst""' C Y/Nl? I 'l l  
Funct ion lc ey  use : Peri scope C 1 )  , Cod eV  iew (2) , or Turbo Debugger 13 J? I l l  

22 

Figure 3-1 .  Periscope/EM Configuration Screen 

The configuration screen shows the current settings (in 
PS l .COM) . If you 've never run CONFIG before (you' ll see 
[ ? ]  after Enter choice ( 1 - 3 ) ) , the screen displays 

Periscope' s default settings.  Otherwise it displays the set-
tings as of the last time you ran CONFIG, as shown in Fig­
ure 3- 1 .  

3.1 R U N N I NG SETUP AN D CONF IG 



P er i s cope Mode l ( choo s e  one ) : 
Enter cho i c e ( 1 - 3 ) 

Enter the number corresponding to your model of Periscope. 

If you enter 1 (Periscope Model I), the Periscope software 
will load into the Model I Board's  memory when you install 
it unless ( 1 )  you install the software with the /N option or 
(2) the board is not present when you install the software. In 
either of these cases, Periscope will load into conventional 
DOS memory (lower 640K) . 

If you enter 2 (Periscope/EM) or 3 (Periscope Model 
IV) , the Periscope software will load into extended memory 
( 'EM'  memory) when you install it unless ( l )  you install the 
software with the /N option or (2) you install the software 
with the / NE option or memory manager support is not 
available. See Section 6- 1 for details .  

In the first case, the Periscope software will load into conven­
tional DOS memory (lower 640K) . In the second case, the 
software will load into the Model I Board' s memory if a 
board is present and into conventional DOS memory (lower 
640K) if a board is not present. 

To force Periscope to run f rom the Plus Board's memory when 
you're using Model IV with a Plus Board and you have 
a supporting memory manager instal led, use the 
/NE instal lation option. 

Please see Section 5 .2  for options when installing the Peri­
scope software. See Section 6. 1 for additional information 
on using supporting memory managers to load Periscope 
into extended memory. 

M i n i mum command l ength added to ed i t  
bu f f er ( 1 - 9 )  

The default value 1 adds all commands to the buffer. To 
add only commands longer than two characters, enter 3 .  

Charac t er s  be tween t ab s t op s ( 1 - 8 )  

3.1 R U N N ING SETUP AND CO N FIG 23 



Enter the tab column width, from 1 to 8 characters . 

Enab l e  3 8 6 / 4 8 6  debug reg i s t e r s  ( Y / N ) ? 

Enter N if you're using a memory manager such as Com­
paq 's  CEMM that does not support real-mode access to the 
80386 debug registers . Enter Y if you're using QEMM or 
3 86MAX or no 386 control program. 

U s e  f a s t  c o l or outpu t ( Y / N ) ? 

Enter N if you 're using a ' snowy' color card. 

Sys t em ha s a PC or XT motherboard wi th an 

8 0 2 8 6  or l a t e r  turbo c a rd ( Y / N ) ? 

Enter Y if you' re using a system with a PC or XT mother­
board and an 80286 or later turbo card. 

u s e  Wa t c hdog t imer on P S / 2  to a c t iva t e  
P er i s cope ( Y / N ) ? 

Enter Y if you' re using an IBM PS/2 and you want Peri­
scope to automatically wake up after two seconds of 
'missed' timer ticks . When the watchdog kicks in, Periscope 
displays the message Grrr ! . 

If you enter Y, do not use Ctri-Ait-Del to reboot or your sys­
tem wil l hang. Instead use Periscope's QB, os , or 
QL commands to reboot your system, or  instal l 
PSKEY, which disarms the watchdog. 

I gnore c a s e  of symbol name s ( Y / N ) ? 

Enter N if you want Periscope to support case sensitivity. If 
you enter N, Periscope will display Peri scope in mixed 
case in the Watch window. Enter Y if you want Periscope 
to ignore the case of symbols .  If you enter Y, Periscope will 
display PERI SCOPE in all caps in the Watch window. 

P o i n t  2 8 6 / 3 8 6 / 4 8 6  exc ep t i on i nt errupt 6 

t o  P er i s cope ( Y / N } ? 

24 3 . 1  R U N N I N G  SETUP AND CONFIG 



Enter N if you' re using software that uses this interrupt to 
intercept an illegal instruction. If possible, allow Periscope 
to handle this interrupt. It will help you capture runaway pro­
grams quickly. 

Po ' nt 2 8 6 / 3 8 6 / 4 8 6  exc ep t i on i n t errupt O DH 
to Per i s cope { Y/ N ) ? 

Enter N if you're using software or hardware that uses this 
interrupt (IRQ 5).  If you must use a mouse on this IRQ line, 
install the mouse before you install Periscope. If possible, al­
low Periscope to handle this interrupt. 

Re �resh i nt errup t s  1 ,  2 ,  and 3 each t ime 
Pe� i s cope i s  a c t ive { Y/ N ) ? 

Enter N if you don't want Periscope to ensure that these 
vectors point to it. This is useful if you want your program to 
filter INT 1 ,  2, or 3 before Periscope gets control. 

De f au l t  t o  i n s e r t  mode when Per i s cope ' s  
command- l i ne edi tor i s  u s ed { Y/ N ) ? 

Enter Y if you want Periscope to default to insert mode 
when you enter commands. 

us e Per i s cope ' s  menu sys t em { Y/ N ) ? 

Enter N if you want to turn off Periscope' s  menu system. 
When the menu system is enabled with Y, CONFIG also 
loads the on-line help and interrupt comments, consuming 
approximately 60KB. If you need to minimize Periscope's  
use of DOS memory, you may want to turn the menu system 
off. 

Func t i on key u s e : Per i s cope { 1 ) , CodeV i ew 
� { 2 ) , or Turbo Debugger { 3 ) ?  

Periscope' s function key usage is configurable. You can 
choose the standard Periscope function keys, the Code View 
or Turbo Debugger emulation keys, or configure your own 
keys. For details, see Section 8 .5 and the NOTES.TXT file. t 

3 . 1  RUNN ING SETUP AND CONFIG 25 



26 3 .1  RUNN ING SETUP AND CONFIG 



c H A p I E B F 0 u B 

� Installing 
the 

Break-out 
Switch 

• Instal l ing the Break-Out Switch 

Y
ou' ll find the information you need to install your 
Periscope Break-out Switch without a board in this 
chapter . If you have Model I or Model IV, you' ll 

find installation instructions for your Break-out Switch, 
which plugs into your board, included in the hardware instal­
lation instructions for your board. 

27 



4.1 INSTALLING THE BREAK-OUT SWITCH 

Component 

Before you install the Break-out Switch, tum the power off, 
remove the power cord from your PC, and obtain a small 
screwdriver and a flashlight. Figure 4- 1 shows the switch in­
stalled in a PC. 

Exploded View A 

Side of ---""<1++11:1 
Board 

n���=�==A1 
A2 (Pins) 
A3 

-+---:.r--- Socket 

Exploded View B 

Figure 4-1. Installation of the Break-out Switch 

Step 1-0pen your system. 

28 

Remove the cover mounting screws on the rear of the system 
unit. Slide the cover of the system unit forward as far as pos­
sible without removing it from the system unit. Be sure to 
ground yourself. While working inside the system unit, 

4 .1  I NSTALL ING THE BREAK-OUT SWITCH 



touch the chassis or other ground frequently to avoid the 
build up of static electricity. 

Step 2-Route the connector end of the cable assembly into 
your system from the back of the unit. 

The cable assembly has a push-button switch, a five-foot 
length of cable and two connectors. One of the connectors is 
a ring terminal (see Exploded View A in Figure 4- 1 )  and the 
other is a gold-plated probe (see Exploded View B). 

There are several possible ways of routing the cable into the 
PC, either through a knock-out panel or in the space between 
the keyboard connector and the expansion slots. Do NOT in­
stall the cable so that it is lying on top of the back panel. 
When the cover is installed, the cable may be damaged. 

Step 3-Select an in-use slot, then install the ring terminal 
for ground and strain relief. 

Remove the retaining screw on the expansion slot mounting 
bracket nearest to the power supply. This slot is usually, but 
not always, occupied by a disk controller card. If the slot 
nearest to the power supply is not in use, use the in-use slot 
that gives you the best accessibility to the component (chip) 
side of the board 

Insert the retaining screw through the ring terminal and then 
place the washer on the retaining screw. Re-install the retain­
ing screw as shown in Figure 4- 1 .  Align the cable so that it is 
parallel with the back panel of the system unit. Be sure it has 
a minimum of twists and turns between the ring terminal and 
the point where the cable comes into the system unit. The 
ring terminal provides both an electrical ground and strain re­
lief. Be sure that it is securely installed. 

Step �Install the gold-plated probe. 
Using the flashlight or other bright light source, install the 
gold-plated probe into pin A1  of the expansion slot used in 
Step 3. The slot must be in use for secure attachment. 

Pin A1  is the pin on the component (chip) side of the expan­
sion board that is closest to the board' s mounting bracket. 
This pin is used to generate a Non-Maskable Interrupt (NMI). 

4 . 1  I NSTALLING THE BREAK-OUT SWITCH 29 



To install the probe, hold the probe so that it is pointing 
downward and the cable is angled away from the board. 
Push the probe down firmly into pin AI between the gold fin­
ger on the board and the connector in the socket as shown in 
Figure 4- 1 .  (Not all boards have a gold finger at pin A I .  
Look for the first socket connector to positively identify the 
pin.) Push the probe in as far as possible to ensure a good 
connection and to keep the non-insulated part of the probe 
from contacting anything other than the desired pin. 

If you can't get the probe into the socket, try removing the 
board and sliding the board and the probe in together. On 
systems without enough room to get your hands near the 
socket, you may need to use a pair of needle-nose pliers. 

Step 5-Double check the placement of the probe. 
It should be in the socket on the component (chip) side of the 
expansion board nearest the board' s mounting bracket. The 
probe must be between the board and the connector pin in 
the socket. It must not be between the connector pin and the 
outer edge of the socket. Some sockets have a dummy hole 
at the end of the socket. Do not insert the probe in this hole. 

Step 6-Double check the placement of the ring terminal. 
It should be firmly held by the retaining screw that holds the 
expansion board in place. For the best electrical contact, be 
sure that the supplied washer has been installed between the 
ring terminal and the board' s mounting bracket. 

Step 7-Siide the cover of the system unit back over your 
machine and install the cover mounting screws. 

Step 8-Re-connect all peripherals ; replace the power cord. 

Step 9-Install the Periscope software. 

30 

Enter PS to install Periscope, press the Break-out Switch 
to display the Periscope screen, then enter G. Do not press 
the Break-out Switch before you install the Periscope soft­
ware or you' ll get a parity error. t 

4.1 I NSTALL ING THE BREAK-OUT SWITCH 



c H A p I E B F v E 

Installing the 
Software 

• Instal l ing Periscope 
. • Installation Options 

• Alternate Start-up Methods 

T
his chapter describes how to install the Periscope soft­
ware. 

31 



5.1 INSTALLING PERISCOPE/EM 

To load Periscope, enter PS from the DOS prompt, fol­
lowed by the appropriate installation options (details follow 
below) . You can install Periscope multiple times per DOS 
session, but each install allocates more memory if you 're 
loading it into DOS memory. Specify the /Y installation 
option to remove the previous copy from memory. 

Press Alt-Ctrl while PS.COM is loading to terminate Peri­
scope. Use this procedure to keep Periscope from loading 
from A UTOEXEC .BAT (or any other batch file) without 
having to modify the batch file. 

5.2 INSTALLATION OPTIONS 

All installation options contain a forward slash ( /) and a one­
to three-character mnemonic, except as shown. Some op­
tions include a number. Numbers are always preceded by a 
colon ( : )  and are in hexadecimal notation. The installation 
options are: 

?-Display help information about Periscope's installation 
options. 

I 2 : px-Run Periscope in active remote mode. 
Use this option when you' re running remote Periscope soft­
ware, such as Periscope/Remote for DOS, Periscope/Remote 
for OS/2, or Periscope/Remote for Windows, on a target sys­
tem. See your remote documentation for more information. 

1 2  5-Run Periscope in split-screen mode on a VGA. 
Use this option to debug text-based applications on a VGA 
display. It sets the display to 50-line mode and uses the top 
25 lines for your program and the bottom 25 lines for Peri­
scope. You cannot use this option on an EGA or with graph­
ics applications. For best results, use ANSI.SYS from prior 
to DOS 5.0 when using this option. 

1 2 8 6-Run Periscope Model IV in passive remote mode 

32 5 .2 INSTALLATION OPTIONS 



.�. 

where the target system contains an 80286 CPU. 
To use this option, you must have a Model IV Pod installed 
in a target 286 system. See the Model IV manual for more in­
formation. 

I 3 8 6-Use Periscope Model IV in passive remote mode 
where the target system contains an 80386 CPU. 

To use this option, you must have a Model IV Pod installed 
in a target 3 86 (OX or SX) system. See the Model IV man­
ual for more information. 

I 4 8 6-Use Periscope Model IV in passive remote mode 
where the target system contains an 80486 CPU. 

To use this option, you must have a Model IV Pod installed 
in a target 486 (DX or DX/2) system. See the Model IV man­
ual for more information. 

I 4 3 or I 5 0-Use the EGA 43-line mode or the VGA 
50-line mode. 

When you specify one of these options, Periscope supports a 
single monitor in the specified mode, presuming that the dis­
play is already in that mode when the resident portion of 
Periscope is activated. These options reserve 8KB of mem­
ory for Periscope' s  screen and 8KB for the application' s 
screen. Dual-monitor support is not currently available for 
43- or 50-line mode. 

If you set Periscope to run in 43- or 50-line mode with 
screen swap off and the program' s  screen is set to 25-line 
mode, Periscope will revert to 25-line mode and tum screen 
swap back on. 

I A-Use an alternate monitor. 
Use this option to indicate that you have both a monochrome 
and a color monitor attached to the system via separate dis­
play adapters. Periscope uses the monitor that is not cur­
rently active when you press the Break-out Switch or when 
you load a program with RUN. If you specify this option, 
Periscope ignores the IS option and reserves no memory 
for the program' s  or Periscope' s  screen buffer. Periscope ig­
nores this option if it is unable to initialize the second moni-

5.2 I NSTAL LATION OPTIONS 33 



tor. 

Periscope/32 users: This opt ion is not avai lable in remote 
mode. 

/AD [ :  nnn ] -Use a Dual-VGA as an alternate monitor. 
See the NOTES. TXT file for details. 

I AK [ : px ] -Use an alternate PC for Periscope's 
keyboard. 

Use this option to specify that you are using an alternate PC 
for Periscope' s  keyboard. See the description of IAV be­
low for more information. 

Periscope/32 users: This option is not available in remote 
mode. 

/AV [ :  px ] -Use an alternate PC for Periscope's display. 

34 

Use this option to specify that you are using an alternate PC 
for Periscope' s  display. � 

The /AK and /AV options have two requirements : 
• You must start the program PSTERM.COM on the alter­

nate PC before you load PS.COM on the (local) debug­
ging system. Please see the description of PSTERM in 
Section 7.4 for details .  

• You must connect the two systems with a null-modem 
cable that has Receive and Transmit crossed and has CTS 
and RTS crossed. See the specifications for the null-mo­
dem cable in the file NOTES.TXT. 

The I AK and I AV options default to using COM port 1 
at the fast ( 1 1 5 ,200 baud) speed. To use another port or a dif­
ferent speed, specify I AK :  px or I AV : px, where p is 
the port number (1  through 8)  and x is the speed (S,  M, 

or F for Slow (9,600), Medium (38 ,400) , or Fast 
( 1 1 5,200) , respectively). Be sure that the speed used by 
PS.COM matches the speed used by PSTERM.COM on the � 
alternate PC !  For best results, use the Fast speed. If you en-
counter time-outs or other problems, try using Medium 
speed. 

When you use an alternate video, the screen appears exactly 

5.2 I NSTALLATION OPTIONS 



as it does when Periscope runs on the same system. When 
you use an alternate keyboard and press any key on the alter­
nate system, Periscope "wakes up" on the local system. 
Should you ever get a timeout message on the alternate sys­
tem, avoid giving it the Fail  reply since this can cause a 
system hang. For more information, see the description of 
PSTERM in Section 7.4. 

Periscope/32 users:  This option is not available in remote 
mode. 

/ B : nn-Set the size of the software trace buffer to 
something other than lKB. 

Use this option when you want more than the 32 trace en­
tries available from the default buffer size. The one- or two­
digit hexadecimal number nn is the size of the trace buffer 
in KB. The number may be from 0 to 3 FH, allowing a 
maximum of 2,0 16  entries . Remember that the input is in 
hex ! When you use the Model I Board or EM memory, this 
buffer defaults to 8K. 

The real-time hardware trace buffer available with Periscope 
Model IV is separate f rom this software buffer. See the 
Model IV manual for details. 

/C : nn-Set the color attribute for Periscope's display. 
Use this option to change the foreground and background 
colors of Periscope' s  display. The two digit number nn is 
from 1 to FFH. 

To calculate the number for the colors you want, see the file 
NOTES.TXT or enter /C  at the Periscope prompt. For ex­
ample, if you want white on blue, enter I C :  lF. 

There are some illegal color combinations that Periscope 
won't allow. These include 0, 80H, and 8 8H, which are all 
variants of black on black, and other similar situations where 
the foreground and background colors are the same, such as 

77H and F7H. 

/ D-Restore the original INT 13H vector before a short 
boot. 

5.2 I NSTALLATION OPTIONS 35 



Use this option with certain RAM disk software to re-point 
the diskette interrupt vector to BIOS before you issue a short 
boot. You need to use this option only if the RAM disk soft­
ware you use modifies the original interrupt 1 3H to point to 
memory corrupted by a short boot. 

I E  : n-Set the size of the source file buffer to something 
other than 2KB. 

Use this option to improve performance when you use the 
Unassemble Source or View file commands. The one-digit 
hexadecimal number n is the size of the buffer in KB .  The 
number may be from 0 to 8 .  

You should not use this option unless you're debugging 
large files . Then make the buffer size one thirty-second of 
the size of the largest file. 

When you're using the Model I Board or EM memory, the 
source buffer defaults to 8KB. 

I H-lnstall the on-line help and interrupt comments. 

36 

Specify this option to load the files PSHELP.TXT and 
PSINT.DAT into RAM so they are available from Periscope. 
This option defaults to 'on' if you 're using the menu system, 
EM memory, or a Model I Board. 

The help and interrupt comments files must be in the current 
directory or Periscope path. (To set the Periscope path, en­
ter SET PS =XXX at the DOS prompt, where XXX is the 
path.) The amount of memory required is the same as the 
size of the file. 

The file PSHELP.TXT is a normal ASCII text file. You can 
edit it to add or remove help information. Be sure to leave 
the back-slashes and commands on a separate line and to end 
the file with a single back-slash. 

The file PSINT. TXT is a normal ASCII file that contains in­
terrupt and I/0 port comments. It is compiled to the file 
PSINT.DAT when you run CONFIG. You can edit the .TXT 
file to add or remove interrupt or 110 port information. Each 
line in the file contains one of the following three formats : 

5 .2 I NSTALLATION OP.TIONS 



1 )  An interrupt number, a space, a 2-byte function number 
(value of register AH), a space, and a description of up to 26 
characters . 
2) An interrupt number, a space, a 4-byte number (value of 
register AX), a space, and a description of up to 26 charac­
ters. 
3) Two asterisks, a space, a 1- to 4-digit port number, a 
space, and a description of up to 26 characters . 

Each line must end with a carriage return and line feed. The 
numbers are all in hex. If a function number is ' • •  ' ,  Peri­
scope displays the associated description for any value of 
AH or when the interrupt is not the current instruction. See 
the file PSINT.TXT for examples of each of the three for­
mats. 

Each line in the file PSINT.TXT uses 32 bytes in the file 
PSINT.DAT. The maximum size of the file PSINT.DA T is 
64K, so the maximum number of lines in the file 
PSINT.TXT is 2048. 

To load only one of the files PSHELP.TXT or PSINT.TXT, 
rename the other file. 

I I : nn-Allow access to user-written code from Periscope. 
The user-written program must be a memory-resident rou­
tine that is already installed using an interrupt from 60H to 
FFH , specified with nn. It must meet the specifications de­
fined for the program USEREXIT in Section 7. 1 0. 

/ K : nn [ nn ]  -Mask hardware interrupt request (IRQ) 
lines when Periscope's screen is displayed. 

Use this option to protect yourself from a hardware interrupt 
while you're in Periscope. 

The value of nn may be from 0 to FFH. The first value 
corresponds to the first 8259. The optional second value cor­
responds to the second 8259 on AT-class machines. The de­
fault value is 0, meaning mask no IRQ lines. A one bit in 
nn masks the corresponding IRQ line. 

For example, to mask the timer (IRQ 0), use /K : 1 .  To 

5.2 I NSTALLATION OPTIONS 37 



mask the keyboard (IRQ 1 ) ,  use /K : 2 .  (Don' t do this un­
less you 're using an alternate keyboard !) To mask IRQ 1 and 
IRQ 2, use /K : 6 (bits 1 and 2 on). 

When you use a Trace, Go, or Jump command, interrupts 
may occur unless the Dl (disable interrupts) f lag is set. 

I L : nnnn-Load Periscope starting at the specified 
segment. 

If you're debugging non-DOS programs, you can use this op­
tion to place Periscope in an area of memory that is not cor­
rupted by a short boot. The four-digit hexadecimal number is 
the segment where the tables should start. It must be greater 
than the current PSP plus IOH paragraphs and less than the 
top of memory minus 2000H paragraphs. For example, if the 
PSP is COOH and the top of memory is AOOOH, the limits for 
this option would be C 1 OH through 8000H. 

When you' re using EM memory or the Model l Board's mem­
ory, Periscope ignores this opt ion .  

I LCD--Set menu colors for use with an LCD or Plasma 
display. 

This option tells Periscope to adjust its default menu colors 
so they' ll be readable on an LCD screen. 

IM : nnnn-Set the Model I Board's paged memory 
segment to something other than DOOOH. 

The Model I Board uses 32KB of system memory above the 
lower 640K but within the first megabyte. The default start­
ing segment of this 32K is DOOOH. You can specify use of 
another segment with the four-digit hexadecimal number 
nnnn. Be sure that the segment you specify does not con­
flict with other memory installed in your system and that the 
memory settings on the board correspond to the value you 
use here. See the hardware installation instructions for the 
board. 

1 N-Run the Periscope software from conventional DOS 
memory. 

38 5.2 I NSTALLATION OPTIONS 



If you want to run the Periscope software from conventional 
DOS memory (lower 640K), use this option. 

/ NE-Do not run the Periscope software from EM 
memory. 

If you have a supporting memory manager installed but do 
not want to run from EM memory, use this option. 

I P : nnn-Set the starting port to something other than 
300H. 

The Periscope Model I Board uses two consecutive ports and 
the Periscope Model IV Board uses eight consecutive ports . 
In both cases the default starting port is 300H. 

Use this option if you need to change the starting port from 
the default. Be sure that you' ve also changed the DIP 
switches on your board(s) to the specified port (see the hard­
ware installation instructions for the boards). 

The architecture of the 8086 family supports 64K 1/0 ports (0 
through FFFFH), but the IBM PC and compatibles sup-
port only the first 1 024 (3FFH)  of these ports, many of 
which are reserved. The high 6 bijs are ignored, wijh 
the resun that port 1 200H is really 200H ,  etc. 

/Q-Activate Periscope at ROM-scan time. 
Use this option, which requires the Model I Board, to acti­
vate Periscope at ROM-scan time so that you can debug add­
in ROM. See Section 6. 10  for details . 

/R : nn--Set the size of the record definition table to 
something other than lKB. 

Use this option to debug programs with large .DEF files and 
large resultant record tables . The one or two-digit hexadeci­
mal number nn is the table size in KB .  The number may 
be from 0 to 2 OH. Remember that the input is in hex ! See 
the description of RS, which determines the required size 
and verifies the .DEF file, in Section 7.5 .  

The record definition table size defaults to 8KB instead of 
l KB  if you're using EM memory or the Model I Board's 

5 .2  I NSTALLATION OPTIONS 39 



memory. 

I S  : nn-Set the size of the program's screen buffer to 
something other than 4KB. 

Use this option only for single-monitor systems with a CGA, 
EGA, or VGA where a 4KB screen buffer is too small. The 
one or two-digit hexadecimal number nn is the buffer size 
in KB, from 0 to 4 0H. If you need 16KB , enter i S : l O .  
Remember that the input i s  in hex ! 

The maximum size allowable is 64KB , or IS : 4 0 in hex. 
Keep the number as small as possible, since each Trace or 
Go command has to copy this buffer twice. If you're using 
graphics modes that need more than 1 6KB on an EGA or 
VGA, we strongly recommend you use a dual-monitor sys­
tem for speed. 

Periscope ignores this option if you use the I A, I AD, or 
I AV options . 

I SX-A 386SX chip is in use. 
You must specify this option if you 're using Model IV in a 
system with an 80386SX CPU. 

I T  : nnn-Set the size of the symbol table to something 
other than 1 KB. 

40 

Use this option to debug programs with large symbol tables. 
The one- to three-digit hexadecimal number nnn is the 
size in KB. The number may be from 0 to lFFH (5 1 1 ) . 
Remember that the input is in hex ! See Section 7.9 for infor­
mation on TS , which determines the symbol table size re­
quired and generates the .PSS file. 

You can override the IT  installation option when you use 
RUN to load a program. You can temporarily increase the 
symbol space Periscope uses with the appropriate RUN op­
tion. See the description of RUN in Section 7.6 for details .  

You can specify a second IT option to set up two symbol 
tables . When you do this, the 1 1  and /2  commands en­
able you to switch between the two symbol tables while 
you're debugging. 

5 .2 I NSTALLATION OPTIONS 



When you use EM memory or the Model I Board's memory, 
the defau lt symbol table s ize is SOH ( 1 28) KB. 

/V : nn-Do not reset this BIOS interrupt vector while 
Periscope is active. 

Normally, each time Periscope displays its screen, it first 
saves your program' s  interrupt vectors, then temporarily re­
sets the interrupt vectors it uses to their power-on default val­
ues . (It does this so it will be as dependable as possible.) 
When Periscope returns control to the interrupted program, it 
restores the interrupt vectors to their prior values. 

Assume your program changes INT 9. If you don't  specify 
/ V :  9 ,  Periscope saves your program' s vector, swaps to a 
known good value (in BIOS) for its use, and then restores 
your program' s vector on exit from Periscope. If you spec­
ify /V : 9 ,  Periscope uses your program's  vector. If your 
program crashes, it may take Periscope with it. 

If you have a situation where you want Periscope to use your 
modified interrupt vectors while it is running, specify the 
/V : nn option, where nn is a one- or two-digit hexadeci­
mal interrupt number. The possible numbers are 8 (timer), 
9 (keyboard), 10H (video), 1 5 H  (scheduler), 1 6 H  
(keyboard 110), 1 7 H  (printer) , and 1CH (timer control) .  
Note that you must enter each vector separately. For exam­
ple, to leave vectors lOH and 1 7H alone, use /V:  10  
/V : 17 . Periscope temporarily changes the Ctrl-Break vec­
tor ( l BH) ,  the DOS Ctrl-Break exit address (23H), and the 
DOS Fatal error vector (24H), but you cannot override these 
changes. 

386MAX and other 386 control programs must have i nterrupt 
vector 1 5H left alone whi le Periscope is act ive . To 
automate th is process on a 386 system, Periscope 
looks for a 386 contro l program. Periscope automat· 
ical ly generates a /V : 15 instal lation option if tt 
fi nds one. 

Here are some specific situations where you should use the 
/V option: 

5 .2 I NSTALLATION OPTIONS 41 



• If you 're using one of the keyboard translation programs 
(KEYBxx.COM), use /V : 9 to keep the keyboard han­
dler available from within Periscope. 

• If you're using Hercules graphics, run the public domain 
program HERC and use /V : 9 to be able to switch 
screen modes from within Periscope. 

• If you 're using a serial printer, run MODE and use 
/V : 17 to be able to access your printer from within 
Periscope. 

/W-Set Periscope's windows. 
Please see the Option W command in Chapter 9 for the syn­
tax and a complete description. (You can set up Periscope' s  
windows with this installation option or with the Option W 
command at the Periscope prompt.) 

/Y-Remove the c rent copy ofPeriscope from memory. 
Use this optio to release any DOS memory used by Peri­
scope and rest re any vectors Periscope is using to their 
original values 

You should use this option alone. You cannot use it if you 
specified the L option when you loaded Periscope. 

When using he Model I Board or EM memory, you do not 
need th is op i on .  You can run Periscope as many 
ti mes as you des i re .  Each copy of Periscope will over-
lay the previ us copy in the Model l Board's memory 
or extended emory, and wil l never consume any 
DOS memo . 

If you're run 
'
ing Periscope f rom conventional DOS memory 

and you've i stal led another resident program after 
Periscope, t is option can l eave a black hole in the 
middle of m mory. 

Examples. 

42 

You can enter e installation options in any combination of 
upper and low r case. No spaces are required between en­
tries, except er numbers in the window specification. 
Sonie example follow: 

5.2 I NSTALLATION OPTIONS 



PS /A/WD : 8 RU : 8 - Use two monitors and establish win­
dows showing eight lines of data, two lines (default) of regis­
ter information, and eight lines of disassembly. 

PS /M : AO O O /P :  3 1C/S : 1 0 - Use memory in the screen 
buffer area (starting at AOOO:OOOO) for the protected memory 
and use ports starting at 3 1C. Reserve 16KB to save the pro-

• gram's  screen on a single-monitor system. 

PS /T : 2 0 /V :  1 0 / H - Reserve 32KB for the symbol table, 
preserve the current INT 1 OH vector when Periscope is ac­
tive, and load the on-line help file. 

The cumulative size of the external tables can be from OKB 
to over 5 1 1  KB .  These buffers are located in normal RAM us­
ing the terminate-and-stay-resident function of DOS when 
you run Periscope from DOS memory. No external buffers 
are used when you run from EM memory or the Model I 
Board's  memory. 

If Periscope encounters any errors during the initialization 
process, it displays an error message and terminates. See Ap­
pendix A for an explanation of the error messages. It is possi­
ble to hang the system by specifying an invalid port or 
memory address or by setting the DIP switches incorrectly. 
If you are not sure whether Periscope is installed, do not 
press the Break-out Switch. Execute RUN. If Periscope is 
not installed, RUN will display an error message. 

5.3 ALTERNATE START-UP METHODS 

Full-Screen Install. You can install Periscope via a full­
screen display of the installation options. To use this method, 
enter PS * at the DOS prompt. Periscope displays the 
screen shown in Figure 5- 1 .  A second screen, not shown, 
helps you customize the Periscope windows if you do not 
want to use the default windows. Periscope does not display 
information messages when you use the installation screen to 
install Periscope. It displays only error messages. 

Once you have entered your responses, press FlO to install 
Periscope. Note that you can also create a response file (see 

5 .3 AL TEA NATE START-UP METHODS 43 



below) named PS by pressing F9 instead. 

The / 2 ,  / 2 8 6 ,  / 3 8 6 , / 4 8 6 , /AD, /AK, /AV, 
/ LCD, /NE, / SX and /Y i nsta l lat ion options 
are not avai lable from Periscope's fu l l-screen display. 

er iscope Uersion 5 .4GE Copyright 1986-1993. The Per iscope CoMpany. Inc . 

- Use spl it 25/25-l ine IIIOde on a l!GA (y/11 )7 [Nl 
3 - Use 43 or 59- l ine IIIOde on an EGA or l!GA Cy/11 >7 INl 

- Use an alternate MOn itor Cy/11 )7 INl 

Key usage 
Enter - next f ie l d  
Hollie - f i rst f ield 
End - last f ield - Software trace buffer size C9-3FH kb ) [611 

- Screen co l or attribute C 1-FFH > £671 
- Restore or iginal INT 13H for short boot (yVn )'? [Nl 
- Source f i le buffer size CG-B kb l [2] 
- Insta l l  he l p  and interrupt c0111111ents CyVn >7 INl 

I - User interrupt uector IIWIIber CG-FFH > [Gal 

Up - prior f ield 
Down - next field 
Esc - exit to DOS 
PgDn - next screen 
F9 - write response 

- Hardware interrupt C IRQ >  masks CG-FFH> [Gal [Gal 
- Load Periscope tab l es  at �nt Iaaaal 
- Protected 111e1110ry �nt Cxxxx-EGGG l IOOGGl 
- Run w i thout us ing protected 111e1110ry (yVn )7 [Nl 
- Base port C1G9-3FC> [3aal 

f i le 8: insta l l PS 
F1G - insta l l  PS 

- Act i uate Periscope when QB or QL cOIIIIIIdnd used Cy�n >? CNl  
- Record def inition tab le s i ze C9-2GH kb ) [611 
- Screen buffer s i ze CG--4GH kb ) [64] 

T - �bol tab le s i ze C9-1FFH kb ) [Gail 

44 

- Leaue BIOS interrupts alone wh i le Periscope is act i ue  [yVn)'? -
INT GBH lNl G� lNl 1GH CNl 15H INl 16H INl 17H lNl 1CH lNl 

t ions not auai l ab l e  here : /2 .  /286. /386 , /486 , /AD , /AI< , /AU and /Y . 
PgDn for next screen . • .  

Figure 5-1.  Periscope Installation Screen 

Response Files. Normally, we recommend that you invoke 
Periscope from an AUTOEXEC.BAT file to ensure its pres­
ence each time you boot your system. If, however, you some­
times need different Periscope options for debugging 
different types of programs, the response file is for you. 

The response file is an ASCII text file that contains Peri­
scope installation options. For example, if you create a file 
named C :  STD that contains I B : 4 /V :  1 0  I A, you can 
then enter PS @C :  STD to load Periscope using the op­
tions in the file C :STD. Entering PS /C : 1 7  @C : STD 
sets the color attribute and then retrieves additional options 
from the file C :STD. Periscope ignores any options you en­
ter after the response file name. For example, PS 
@C :  STD /C : 17 does not set the color attribute. You can 
use any legal file name for the response file. t 

5 .3 ALTER NATE START-UP M ETHODS 



c H A p I E R s X 

Using 
Periscope 

• Running from EM Memory 
• Symbols and Source Support 
• Supported Compilers and Linkers 
• Device Drivers 
• PLINK Applications 
• .RTLink Applications 
• Microsoft Windows and IBM OS/2 
• Non-DOS and Pre-DOS Programs 
• Debugging at ROM-Scan Time 
• Hardware Interrupts 
• Memory-Resident Programs 
• Using an Alternate PC 
• Using an EGA or a VGA 
• PS/2 Machines 
• Debugging Spawned (Chi ld) Processes 

T
his

.
chapter provides information for debugging in 

various environments supported by Periscope. 

45 



6.1 RUNNING FROM EM MEMORY 

46 

Periscope works with the three most popular 386 memory 
managers to give you the option of running the debugger 
software from extended memory rather than from conven­
tional DOS memory (lower 640K) or from the Model I 
Board's  memory. Two of the supporting memory managers 
write-protect the extended memory where Periscope resides, 
so no runaway program can corrupt the debugger software. 

The functionality you get by running from EM memory is ba­
sically that you'd get by using the Model I Board, i .e. , Peri­
scope doesn' t need any conventional DOS memory and 
(usually) is protected from being overwritten. The two fea­
tures not available using EM memory that are available with 
the Model I Board are the ability to debug at ROM-scan time 
and support for pre-80386 machines. 

To run from extended memory, you'll need a 386 or later 
PC, approximately 300K of extended memory, and 32K or 
36K of memory between 640K and one megabyte. You can­
not run Periscope from extended memory in a DOS box un­
der Windows 3 .x .  Specifics for running with each of the 
supporting memory managers follow. 

For all of the memory managers, don't let the optimization 
process load Periscope into high DOS memory. It needs to 
start in low DOS memory tO have enough transient work­
space to load. 

386MAX or BlueMAX by Qualitas. You' ll need 386MAX 
or BlueMAX version 5 . 1 1  or later and Periscope version 
5 . 1 0  or later to run from EM memory. These memory manag­
ers write-protect the extended memory they provide for Peri­
scope. 

Place the option PSMEM=nnn , mmmm in your MAX profile 
where nnn is the decimal amount of memory in KB to as­
sign and the optional mmmm is the hex memory segment 
you 'd like MAX to use for the EM memory. The memory 
size should be a multiple of four. For example, the option 
PSMEM=5 12 reserves 5 1 2KB of memory for use by Peri­
scope at an address selected by MAX. The option 
PSMEM=3 84 , B O O O  reserves 3 84KB of memory for use by 

6.1 RUNN ING FROM EM M EMORY 



Periscope at the monochrome screen address of BOOOH. If 
you specify a memory address, be sure that it is not being 
used by another device ! 

If you're not sure how much memory to allocate, try starting 
at 5 1 2KB and then adjust the amount upward or downward 
depending on the memory Periscope actually uses . Periscope 
will not load if insufficient memory is available, so err on 
the high side when starting out. If you get Error 4 1 -
Not enough memory above 6 4 0K, increase the 
memory specified with the PSMEM option, or change the 
Periscope installation options to reduce Periscope' s  memory 
requirements . 

Periscope needs 32K of memory between 640K and one 
megabyte for paging when you're using MAX to provide 
EM memory. 

We suggest that you place the DEBUG= INV statement in 
your MAX profile so that illegal instructions will be passed 
on to Periscope. 

The OEM versions of MAX do not contain support for 
PSMEM. You ' ll need the full production version of MAX to 
get EM support for Periscope. 

QEMM by Quarterdeck. You' ll need QEMM version 6.0 
or later and Periscope 5 .40 or later to run from EM memory. 

You do not need to make any changes to your 
QEMM386.SYS invocation. Just make sure that the de­
vice=qemm3 8 6 . sys line contains the statement ram 
to make XMS memory available. At load time, Periscope 
will need at least 5 1 2K of extended memory. lt will release 
any surplus when it completes loading. 

Periscope uses a 36K block of XMS memory (the extra 4K 
assures starting on a 4K boundary) with QEMM. 

Unlike the other memory managers, QEMM does not write­
protect the EM memory it provides. For best results , use ver­
sion 7.0 or later of QEMM. Version 6.x may cause a system 
reboot when you press the Break-out Switch. 

NETROOM by Helix Software. You'll need NETROOM 

6 . 1  RUNN ING FROM EM M EMORY 47 



version 2.2  or later and Periscope version 5 . 3 1  or later to run 
from EM memory. 

You do not need to make any changes to your RM386.SYS 
invocation. Just make sure that you have EMS and XMS 
memory available. At load time, Periscope will need at least 
5 1 2K of EMS memory. It will release any surplus when it 
completes loading . Note that Periscope' s  use of EMS will 
not conflict with any EMS memory your program needs to 
use, nor will it inhibit you from debugging programs that use 
EMS memory. 

Periscope uses a 36K block of XMS memory (the extra 4K 
assures starting on a 4K boundary) with NETROOM. If no 
UMB space is available, Periscope displays a warning mes­
sage and loads into low DOS memory. 

If you use NETROOM's  BIOSHMA:FULL directive, be 
sure to use all possible /V : xx installation options when 
you load Periscope. 

If you use the DOS=UMB directive in CONFIG.SYS, Peri­
scope will use a 96-byte area in low DOS memory as an an­
chor for the memory it uses in the UMB region. To avoid 
this low memory usage, do not use the DOS 5 .0 DOS=UMB 
directive. 

6.2 SYMBOLS AND SOURCE SUPPORT 

48 

Symbols are the names you give to variables and procedures 
in your program. When you compile and link your program, 
the names are matched to their run-time memory locations. 
If you use a linker that outputs this name-and-location infor­
mation to its .MAP file or .EXE file, Periscope is able to sub­
stitute the symbol names for the memory addresses, and can 
display source code while you're debugging. This symbolic 
capability makes debugging much easier and faster . 

As an example, assume that a program you' re debugging 
calls a subroutine named PRINTLINE, and you want to go 
to the first call of this subroutine in your program. You en­
ter G PRINTLINE. (G is the mnemonic for the Periscope 

6 .2 SYMBOLS AND SOURCE SUPPORT 



Go command.) If symbols were not available, you'd have to 
know the address of the subroutine in order to get to it. 
When you disassemble this same program, the disassembly 
displays PRINTLINE wherever it is referenced in the pro­
gram. 

There are three major categories of symbols : public symbols, 
line-number symbols, and local symbols. Public symbols 
are global symbols that may reference code or data. Line­
number symbols reference line numbers in your source pro­
gram. Line-number symbols are the hook that makes 
source-level debugging possible. Both public and line-num­
ber symbols (but not local symbols) are available via the 
.MAP file for most languages . 

Local symbols include local code, local data, and stack data. 
Local code and local data symbols are names that are valid 
only within the scope of a particular module, i .e. , the current 
code segment matches that of the module and the instruction 
pointer is within the range of the module. The locations cor­
responding to these symbols are fixed and may be accessed 
even when the module is not active, although the symbol 
name cannot be used when the module is not active. Stack 
data symbols have the same scope restrictions, plus even fur­
ther restrictions on the range of the instruction pointer, since 
the stack must be set up before these values can be accessed. 

For some languages, such as the Microsoft and Borland prod­
ucts, local symbols are available in the .EXE file, and Peri­
scope provides local symbol support via the .EXE file. 
Periscope does not currently support typing, structures, or 
register variables , however. 

Debugging at the source level. To debug at the source 
level, you ' ll need to get line numbers into your symbol table 
by using the necessary compile and link options (see Section 
6 .3  below) . You can verify that line numbers are in your 
symbol table by using the /V switch when you run 

TS.COM (see Section 7.9) .  This will display the count of 
various symbols, including line numbers. If no line symbols 
are indicated, recheck your compile and/or link options . 

We suggest that you specify the full path name of the source 
file to the compiler. That way, the full path name will be 

6.2 SYM BOLS AND SOURCE SUPPORT 49 



50 

passed on to the linker and to Periscope so that Periscope 
can find your source file no matter what directory you debug 
your program from. If you are debugging on a system whose 
file structure is different than the system the program was � 

compiled on, you can use the DOS APPEND program to 
pull together the source code from one or more directories. 

When using RUN to load a high-level language program, 
you' ll start at the very beginning of the program, which is 
usually an assembly prolog. To get to your source code, as-
suming a C program, enter G _MAIN. 

If you have problems displaying source code, check the fol­
lowing: 
• Use the I L command to confrrm the presence of line 

symbols,  the availability of DOS, and the presence of a 
source file buffer. See the / L  command in Chapter 9. 

• You must be disassembling memory in an area where 
source line symbols exist (you should see some symbols 
of the form module name plus # plus the decimal line 
number) . 

Notes on Periscope's Symbolic and Source-level Support. 
A single source statement that spans two or more lines may 
generate only one line-number reference, causing Periscope 
to show only one line when displaying the source code. 

Line numbers are formed by the module name, a #, and the 
line number. For example, line number 1 2  in the module 
FTOC is called FTOC# 12 .  When in the module, the short 
form # 12 may be used. 

For best results, tum code optimization off when using 
source-level debugging, since the line sequence can become 
quite scrambled when optimization is on. 

Symbol names may be up to 32 characters. Any characters 
beyond the 32-character limit are discarded by Periscope. 

To force Periscope to interpret a name as a symbol, use a pe­
riod before the name. To force Periscope to interpret an item 
as not being a symbol, use a tilde ( - ) before the name. 

To dispiay the current symbols, press Alt-1 .  Unloaded sym­
bols are shown in parentheses. These unloaded symbols can 

6.2 SYMBOLS AND SOURCE SUPPORT 



only be referenced by a BC or G command. To see all 
symbols for an address, enter /addres s  and press Alt-1. 

6.3 SUPPORTED COMPILERS AND LINKERS 

Periscope works with programs written in any language. 
However, the amount of symbol and source-level support 
Periscope can provide to you varies depending on the com­
piler and linker you use. This is because Periscope normally 
gets symbol information from the .MAP or .EXE file output 
by the linker, and the linker gets symbol information from 
the .OBJ files generated by the compiler. 

If your compi ler and/or l i nker are not discussed below, please 
cal l  Techn ical Support. We' l l  be happy to help you f ig-
u re out how to get t he maximum symbol support for 
your programming environment. 

Borland's Assembler. Use the / Zi option. 

Borland's Compilers. Use the -v  compiler option to out­
put public, line-number, and local symbols to the .OBJ file. 

Microsoft's Assembler and Compilers. Use the / Z i  
compiler option to output public, line-number, and local sym­
bols to the . OBJ file. 

SLR's OPTASM. Use the / Zi option. 

Other Compilers. Here' s  how you can find out what sym­
bol information your compiler provides : 
• Compile a test program. 
• Run the IBM or Microsoft linker, specifying a .MAP file 

and the /LI  and /M options. 
• Look at the .MAP file. Any of the names in the 'Publics 

by Value' list or any of the line numbers at the end of the 
.MAP file can be used as symbols. 

External references to  other modu les or  subrout i nes are al­
ways incl uded i n  the .MAP f i le. L ine numbers i nd icate 
the beginn ing of a sou rce l ine in  memory and are re­
qu i red for Periscope source-level support.  

Borland's TLINK. Use the /M and /LI options to out-

6.3 SUPPORTED COM P I LERS AND L I N KERS 51 



put public and line-number symbols to the .MAP file. Use 
the /V option to output public, line-number, and local sym­
bols to the .EXE file. 

Microsoft's LINK . Use the /M and /LI options to out­
put public and line-number symbols to the .MAP file. Use 
the I co option to output public, line-number, and local 
symbols to the .EXE file. 

SLR's OPTLINK. Use the same options as with Mi­
crosoft' s  LINK. 

PocketSoft's .RTLink. Specify a .MAP file and use the s,  

A,  and L options to output public and line-number sym­
bols. Periscope does not support local symbols or the VML 
feature of .RTLink. 

PLINK. Use SYMTABLE as a linker directive to output all 
possible symbols to the .EXE file. PLINK does not provide 
local symbol information, so Periscope cannot provide local 
symbol support for PLINK programs. 

6.4 DEVICE DRIVERS 

You can use the utility program SYSLOAD.SYS to load 
Periscope at CONFIG.SYS time. Then Periscope is available 
to debug your device driver. See the description of SYS­
LOAD in Section 7.8 .  

6.5 PLINK APPLICATIONS 

52 

Using Periscope, you can set breakpoints in PLINK over­
lays. Be sure to set the breakpoints on program symbols 
only, however, since other locations are subject to being relo­
cated without communication back to Periscope. The short 
form of the line number cannot be used to set breakpoints 
when PLINK overlays are used. Do not set a breakpoint at 
the symbol $LDEX$, since Periscope uses this location. 

When loading a program generated with PLINK, RUN al­
ways uses the DOS EXEC function to load the .EXE file. 

6.4 DEVICE DRIVERS 



At link time, specify the SYMTABLE directive. When you 
run TS, use the I Q, /RP, and /RX options. Also, set up 
the MP and MX aliases using RS. (See Sections 7.5 and 7 .9 
for more information on RS and TS .)You may also interac­
tively enter the aliases using the EA command. (See Chap­
ter 9.) 

6.6 .RTUNK APPLICATIONS 

You can set breakpoints in .RTLink overlays and you can 
get access to global and line-number symbols (no locals) for 
standard or overlaid programs. You'll need version 2.05 or 
later of .RTLink and you' ll need to use the /P  option when 
you run TS .COM. When you use RUN.COM to load your 
program, it will use the DOS EXEC function. If you ever de­
bug an .R1Link .EXE without a symbol table, be sure to use 
either the /T or /X option with RUN.COM. 

When setting breakpoints in overlays, be sure to use symbol 
names instead of addresses, since Periscope needs to know 
the overlay to correctly set the breakpoint. Be careful to not 
execute across an overlay reload using the Jump command, 
since this can cause Periscope to lose control. When you de­
bug a program that uses reloads, set code breakpoints at the 
.RTLink vectors (see the .VEC file) to avoid problems using 
the Jump command. 

If you're debugging programs that use R1Ls, execute the fol­
lowing Periscope commands immediately after loading your 
program: 

j ; j ; j ; l s ds + l O  xxxx ; g  $ $main 

replacing xxxx with your program' s  name. This sequence 
must be used to execute through the loading of the run-time 
library before the symbol table is loaded. 

6.7 MICROSOFT WINDOWS AND IBM OS/2 

Use Periscope/32 for Windows for debugging system-level 

6.6 . RTL INK APPLICATIONS 53 



software running under enhanced-mode Windows 3.x.  Use 
Periscope/32 for OS/2 for debugging system-level software 
running under OS/2 2.x. For details, see Section 1 .5 ,  Appen-
dix C, and the addendum included with the Periscope/32 � 

product you have. 

You can use Periscope to debug DOS applications running 
in the DOS box under Windows 3.x.  While in a Windows 
DOS box, neither debug register support or EM memory is 
available. 

We do not recommend that you use Periscope in the DOS 
box under OS/2 2.0 due to incompatibilities between the 
OS/2 DOS box and "real" DOS. The problems are caused 
mostly by OS/2' s  lack of full instruction emulation for the 
DOS box. We have addressed the problems with IBM and 
hope to see them corrected in future versions of OS/2. 

6.8 NON-DOS AND PRE-DOS PROGRAMS 

54 

For non-DOS or pre-DOS programs, install Periscope nor­
mally, then press the Break-out Switch to get into the debug­
ger. Then enter QS to perform a short boot. This technique 
can be used to cross-boot into another operating system, a 
non-DOS environment such as a self-contained program, or 
back into DOS. The short boot performs an INT 19H, but de­
stroys INT 2 when you use DOS 3 .20 or later (see the 
NOTES. TXT file) . If you are debugging non-DOS or pre­
DOS programs, you can use the Break-out Switch after a 
short boot to get back into Periscope. If the timing is critical, 
embed an INT 2 or INT 3 in the code itself. 

When performing a short boot, be aware that any DOS mem­
ory used by Periscope is no longer an extension of DOS and 
may be used by another program or garbled during the boot 
process. For best results, if you're using the /N installation 
option to run Periscope from conventional memory, also use 
the / L  installation option to place Periscope' s  code in the 
middle of conventional memory. If you 're using the Model I 
Board's  memory, all of Periscope' s code and data are on the 
board and won't be corrupted by the short boot. 

6.8 NON-DOS AND PRE-DOS PROGRAMS 



6.9 DEBUGGING AT ROM-SCAN TIME 

If you have a Model I Board, you can have Periscope be­
come active at ROM-scan time. Here ' s  how: 

Boot the system normally and install Periscope with the /Q  
installation option (see Chapter 5 ) .  Then enter the QL or 
QB command to perform a long or normal boot. When the 
ROM scan of the Model I Board's  protected memory occurs, 
Periscope displays its screen. You can then trace through the 
remainder of the boot process. There are three caveats : 
• The Model I Board's protected memory must be in the 

ROM-scan region (usually C800 to EOOO) 
• Recent versions of DOS zap INT 1 and INT 3 while 

DOS is loading, so be careful not to set a code breakpoint 
across this section of code. 

• After you enter QB or QL, you cannot use DOS until 
you load another copy of Periscope. 

I f  your system uses shadow RAM , the video i nterrupt vector 
{I NT 1 0) may point to memory that is not valid at ROM­
scan t ime. For example, on Compaq 386 systems, the 

· VGA ROM at COOO may be remapped to faster RAM 
at EOOO. If th is is the case, either d isable the RAM 
shadowing ,  repa int t he i nterrupt vector to COOO before 
you use the QL or QB command to boot the system, or  
use the N: 1 0 instal lation  option when you instal l Peri­
scope. 

This method is better than the method described at the begin­
ning of this chapter, using the QS command, since that 
command does not work in some systems. 

6.1 0 HARDWARE INTERRUPTS 

To debug hardware interrupts most easily, the code should 
be in RAM so that you can set code breakpoints in the inter­
rupt service code. Periscope' s  T, GA, or GT commands 
will not trace into hardware interrupts such as the Timer tick 
(IRQ 0) and the Keyboard (IRQ 1), so you must set a code 
breakpoint to be able to stop in the interrupt code. Once 
stopped, you can trace through the code as desired. 

6.9 DEBUGGING AT ROM-SCAN TIM E 55 



For serious hardware i nterrupt work, you need Periscope 
Model IV to be able to set real-t ime breakpoints and to 
see just what happens when your code runs at fu l l  
speed. See the  M odel IV manual fo r  more informat ion.  

If Periscope must issue a non-specific End of Interrupt (EOI) 
to clear interrupts, it displays a message of the form 
EOI i ssued for IRQ x, where x is zero for the 
timer and one for the keyboard, respectively. The EOI is one 
of the few things that Periscope cannot undo when it returns 
control to your program, so you may want to use a sema­
phore mechanism to keep your code from being re-entered 
while you 're debugging it. On AT-class machines, Periscope 
can issue an EOI for IRQ 0 and 1 only, but on a PC-class ma­
chine, Periscope may issue an EOI for any IRQ level . 

If you're debugging a keyboard or video handler, you may 
want to use an alternate PC for the keyboard or video. (See 
Section 6. 1 2.) 

To prevent hardware interrupts from being executed while 
Periscope is active, use the /K installation option when 
you install Periscope. 

6.1 1 MEMORY-RESIDENT PROGRAMS 

To debug a memory-resident program, use RUN to load the 
program and its symbol table. The program will load in the 
same location it would if you were to run it directly from the 
DOS prompt. Enter G to install the program and return to 
the DOS prompt. Until you use RUN to load another pro­
gram, the symbol table will remain available, ready for you 
at a push of the Break-out Switch ! Source code will be avail­
able only when DOS is not busy, however. To keep DOS 
from being busy, use the W AITING.COM program de­
scribed in Section 7 . 1 1 .  

6.1 2  USING AN ALTERNATE PC 

You can use an alternate PC for either an alternate screen or 

56 6 . 1 1 M EMORY-RES IDENT PROGRAMS 



keyboard or both. Use the IAV installation option to select 
alternate video support, and the I AK option to select alter­
nate keyboard support. See the descriptions of the I AK 
and I AV installation options in Chapter 5 for more infor­
mation. 

6.1 3 USING AN EGA OR A VGA 

Periscope supports the various EGA and VGA video modes. 
For single-monitor systems, a maximum of 64K of the 
screen buffer is saved and restored by Periscope. Generally, 
for graphics work, you'll want a dual-monitor system for 
best results. 

Periscope has limited support of the EGA' s 43-line mode 
and the VGA's 50-line mode. See the description of the 
I 2 5 ,  I 4 3 and I 5 0  installation options in Chapter 5 .  

6.1 4  PS/2 MACHINES 

Periscope supports dual VGAs on PS/2 systems using the 
Dual-VGA board made by Colorgraphic Communications. 
See the NOlES. TXT file for more details . You can also use 
another PC for an alternate keyboard, video, or both. 

Periscope supports the PS/2 watchdog timer. See the descrip­
tion of CONFlG in Chapter 3 for details .  

6.15 DEBUGGING SPAWNED (CHILD) PROCESSES 

If you want to debug a program that must be loaded by an­
other program, you won't  be able to use Periscope' s  pro­
gram loader RUN.COM to get your symbols loaded. You 
can still use Periscope to debug your program with one mi­
nor change - simply embed an INT 2 (software NMI) or an 
INT 3 (code breakpoint) in your program, possibly activated 
by a command-line switch. 

When your program executes the interrupt, it will activate 

6 . 1 3  US ING AN EGA OR A VGA 57 



58 

Periscope. To load the symbols for the program, enter LS 
$ < fi le >, where < f ile>  is the name of your program. 
This syntax assumes you're debugging an .EXE file. If you 
are debugging a .COM file, enter LS cs < fi le >. 

From here, you can set breakpoints in the spawned program 
and debug it. Also, for debugging multiple processes, be 
aware of the dual symbol table support provided by Peri­
scope. Please see the description of the I 1 and I 2 com­
mands in Chapter 9.  

To automate the above process, you may wish to use the 
SYMLOAD utility. Please see Section 7.7 for more informa­
tion on this program. t 

6 . 1 5  DEBUGGI NG SPAWNED (CH ILD) PROCESSES 



C H A p I E B S E V E N 

Periscope 
Utilities 

• Clearing N MI (C LEARN MI) 
• Your Program's Interrupts (INT) 
• Setting up Hot Keys (PSKEY) 
• Using an Alternate PC (PSTERM) 
• Record and Alias Definitions (RS) 
• Periscope's Program Loader (RU N) 
• Loading Symbol Tables (SYMLOAD) 
• Debugging Device Drivers (SYSLOAD) 
• Generating Symbol Tables (TS) 
• Customizing Periscope (USER EXIT) 
• When DOS is Busy (WAITING) 

T
his chapter describes the capabilities of Periscope' s  
utility programs and how and when to use them. 

59 



7.1 CLEARING NMI (CLEARNMI) 

Despite the name, the non-maskable interrupt (NMI) used by 
the Break-out Switch can be masked out. Since the NMI sig­
nal travels through two ports going from the expansion bus 
to the CPU, these ports can disable the Break-out Switch. 
The memory-resident utility program CLEARNMI attaches 
to the user timer interrupt ( lCH) and clears these two ports 
once a second. 

To use it, load CLEARNMI anytime, preferably from your 
AUTOEXEC.BAT file .. There are three options : 

/ Q-Use only if you configured Periscope to run on a PC­
or XT -based machine with a 286 or later turbo card installed. 

/R-Use to refresh the NMI vector to point to Periscope 
once every 1 8  timer ticks (the program ' learns' Periscope' s 
address and then refreshes INT 2 as needed). 

/Y-Use to remove the current copy of CLEARNMI from 
memory. 

7.2 YOUR PROGRAM'S INTERRUPTS (INT) 

60 

Use this program to display, save, or compare interrupt vec­
tors. The three usage modes are: 

INT < file>  /W-save the current interrupt vectors to a 
file. 

INT [ < file> ] [ /D <lowint > <hi int > ] -display 
the previously-saved interrupt vectors from a file (if no file­
name is present, INT displays the current vectors) .  The op­
tional numbers lowint and hi int indicate the range 
of vectors to be displayed. 

INT < file>  I c- compare the interrupt vectors in a pre­
viously-saved file with the current interrupt vectors . 

To see the interrupt vectors used by a resident program, save 
the current vectors using the /W option, load the program 
in question, and then compare the current vectors with the 
saved vectors using the I c option. 

7.2 YOUR PROGRAM'S INTERRUPTS ( INT) 



For example, to see the interrupts used by CLEARNMI, en­
ter INT CLEAR/W to save the current interrupt vectors . 
Load CLEARNMI from DOS. Enter INT CLEAR/ C to 
compare the current interrupt vectors with the values saved 
in the file CLEAR. You can also display the saved vectors 
using INT CLEAR/D. 

7.3 SETTING UP HOT KEYS (PSKEY) 

PSKEY is a memory-resident utility program that enables 
you to select your own hot-key combination to activate Peri­
scope. This program can use interrupts 2 or 3 ,  5, or 15H to 
activate Periscope, depending on the command-line options. 
lt always uses interrupt 9. 

The command-line options available are: 

3 - Use INT 3 instead of INT 2 to activate Periscope 
A - Use Alt (combined with other shift keys) 
c - Use Ctrl (combined with other shift keys) 
I - Use Insert (combined with other shift keys ;  must be 
first key pressed) 
L - Use left Shift (combined with other shift keys) 
P - Use Shift-PrtSc to activate Periscope (via INT 5) 
R - Use right Shift (combined with. other shift keys) 
s - Use SysReq to activate Periscope (via INT 1 5H) 
/Y - Remove the current copy of PSKEY from memory 

For example, PSKEY LR would activate Periscope when 
the left and right Shift keys are simultaneously pressed. 

A void using the P or s options since Periscope comes up 
in BIOS, far away from your code. Since the Shift key com­
binations 'back-end' the keyboard interrupt, a single Trace 
command puts you back to the code that was interrupted by 
the key press.  You can define the Shift key combinations as 
needed to avoid conflicts with other memory-resident pro­
grams. 

If PSKEY cannot find Periscope via interrupts 2 or 3 when 
you press the hot keys, it displays the message Error 

7.3 SETTI NG UP HOT KEYS (PSKEY) 6 1  



15 0 - Int x does not point to Periscope ! Since 
PSKEY loads into normal memory and is dependent on hard­
ware interrupts being enabled, use the Break-out Switch for 
maximum dependability. 

7.4 USING AN ALTERNATE PC (PSTERM) 

62 

To use Periscope' s  alternate PC support, you'll need another 
PC with an available COM port and a null-mcx:lem cable 
similar to the ones provided with Brooklyn Bridge and 
Lap link. See the file N 01ES.  TXT for a description of the ca­
ble required. 

There are four options : 

I AK and I AV-Use to enable the keyboard and video only 
when you must restart PS1ERM on the alternate PC without 
restarting Periscope on the main system. 

1 2 : px-Use to specify the com port, p ( 1-8), and the 
speed, x (S=Slow, M=Medium, or F=Fast), when you're 
using other than com port 1 at the fast speed. Use the fast 
( 1 1 5 ,200 baud) speed if at all possible. 

I T-Use only to test the serial ports and null-modem cable 
on both the main and alternate systems. You can run 
PSTERM IT on either system first. Be sure to also specify 
the 1 2 : xy option if you're using other than com port 1 at 
the fast speed. If PSTERM displays No errors de­
tec ted on both systems, the serial ports and cable are 
okay for use with Periscope. If PSTERM displays Wait ­
ing for s lave on both systems and does not appear to 
proceed on either system, either the serial cable does not 
have transmit and receive crossed properly or you' re using 
an incorrect com port. See Appendix A for other error mes­
sages. 

Load PSTERM.COM in the alternate system first, specifying 
the I 2 : px option if needed. On the host system, you ' 11 
need to install Periscope using the I AV and/or I ..U: instal­
lation options after PS1ERM is running on the alternate sys­
tem. Be sure to specify the : px syntax if you use other 

7.4 USING AN AL TERNATE PC (PSTERM) 



than port 1 at the fast speed. See the description of the 1 AV 
and I AK installation options in Chapter 5 for more infor­
mation. 

To terminate PSTERM on the alternate system, press Alt­
Ctrl. 

7.5 RECORD AND ALIAS DEFINITIONS (RS) 

Use RS to verify and size a record definition file. RS reads a 
.DEF file containing record and alias definitions and creates 
a Periscope definition (.PSD) file. RUN loads these defini­
tions to provide support for Periscope's  DR command and 
commands that use the aliases . 

To run RS , enter RS filename from the DOS prompt. 
RS assumes an extension of .DEF. When you install Peri­
scope, specify the IR installation option with the size RS 
shows. You can load the .PSD file while in Periscope using 
the LD command. 

You must edit .DEF f i les created prior to Version 5 to change 
F1 through F1 0 to Ctri·F1 through Ctri·F1 0, since be­
g inn ing with Version 5 ,  F1 th rough F9 refer to key as­
signments for t he f unct ion keys F1 th rough F9. (F1 0 is 
represented as FO. ) Also,  you must regenerate al l 
. PSD f i les created prior to Version 5 .  

Figure 7- 1 shows a section of the PS.DEF file. It contains 
two alias definitions and a record definition. The third line of 
the file starts a record definition named FCB. 

Record· Definitions 

The format for a record definition is :  
• A backslash and the record name of up to sixteen charac­

ters on one line 
• One or more field definitions that contain the following 

separated by commas: 
- The field name of up to ten characters ; 
- the display type (any display format) plus an optional 

bracket or brace indicating a near or far pointer re-

7 .5  RECORD AND ALIAS DEF IN ITIONS (AS) 63 



spectively ; 
the field length (total length in hex bytes) ; 
optional comments preceded by a semi-colon (no pre­
ceding comma) 

\ c l = k : dr c s : O . p sp ;  
\ c :C = dr c s : S c  . fe b ;  
\ F C B  F i l e  C o n t ro l Bl o c k  
Dr iv e , b ,  1 D r i ve O =d e f au l t , l = A ,  2 =B ,  et c .  

F i l e  name Fi l e , b , 8  
Ex t ,  b ,  3 
Bl o c k  # , w, 2 

F i l e  ex t e ns i o n  
C u r rent b l o ck n um be r 
L og i c al r e c o r d  s i z e  
F i l e s i z e  

Re c S i z e , w ,  2 
Fi l e  S i z e , d ,  4 
Da te , w , 2  D at e o f  l as t  up d a t e  

R es e r ve d  f o r  DOS Re s .  , + , a  
Re c 4 ,  b ,  l C u r re nt r e l at i v e  re co rd n um b e r 
Re l Re c # ,  d, 4 R e l at i v e  re co rd n umbe r f r om b e g i n r. i ng o f  f i l e  

64 

Figure 7-1 .  A Section of the PS. DEF File 

Place each field definition on a line by itself. If the field dis­
play type is long real (L), the length must be a multiple of 
eight. If the field display type is long integer (X), double 
word (D), or short real (S), the length must be a multiple of 
four. If the field display type is word (W), integer (I or Y), 
or number (N), the length must be a multiple of two. The 
length of any one field and the total length of the record may 
be from 1 to FFFFH. A field display type of + skips 
over the indicated number of bytes without displaying any­
thing. 

The record definition can reference the contents of near and 
far pointers . To use a field as a pointer, add a bracket ( [ ) for 
a near pointer or a brace ( { ) for a far pointer immediately af­
ter the field display type. A near pointer always uses a word 
offset from the current segment and a far pointer always uses 
a double word segment:offset. 

For example, the field definition farptr , b { 1 10 uses 
the double word at the current location as a far pointer and 
displays the target of that pointer in 'b ' yte format for 1 0H 
bytes, with a name of farptr.  Similarly, the field defini­
tion nearptr ,  d [ I  4 uses the word at the current loca­
tion as a near pointer and displays the target of that pointer 
in ' d' ouble word format for . 4 bytes, with a name of 

7.5 RECORD AN D ALIAS DEFI N ITIONS (RS) 



Aliases 

nearptr.  

You must individually describe each pointer in the record 
definition. Periscope supports only one level of indirection. 
To remind yourself that the field is a pointer, you may wish 
to start the field name with a bracket or brace. 

The other type of definition in a .DEF file is the alias. An 
alias is a two-character mnemonic that represents a string of 
up to 64 characters . You may enter an alias as a line in a 
.DEF file or by using the EA command (see Chapter 9). 

You may use aliases in various ways : 
• To assign commands to function keys (Fl through FlO, 

Ctrl-Fl through Ctrl-F8, Alt-Fl through Alt-FlO, and 
Shift-Fl through Shift-FlO) 

• To store special strings for use by Periscope (see the MP, 
MX, and XO through X3 aliases below) 

• To assign character strings or commands to any alias that 
is not reserved by Periscope and then to execute the alias 
by typing " and the two-character alias name. You can 
chain (not nest) aliases by embedding a "xx at the end 
of one alias to start up the next one. Watch out for infi­
nite loops , such as "Yl chaining to "Y2 , which chains 
to "Yl. 

The first two lines of the file in Figure 7- 1 contain alias deft­
nitions for function keys Ctrl-Fl and Ctrl-F2. While in Peri­
scope, you can execute these aliases by pressing Ctrl-Fl or 
Ctrl-F2. 

The format for an alias definition in a .DEF file is :  
• A backslash 
• The two-character alias name 
• An equal sign 
• The one to 64-character string to be assigned to the alias 

No spaces are allowed until after the equal sign. If you want 
multiple commands, use a semi-colon to separate the com­
mands. If you want the command to be executed immedi­
ately, place a semi-colon at the end of the line. There may be 
up to 1 28 alias definitions in a .DEF file. 

7.5 RECORD AND ALIAS DEF IN ITIONS (RS) 65 



66 

Reserved Aliases. There are various aliases reserved by Peri­
scope. The reserved aliases are: 

MP - The module path name for source-level debugging. If 
used, this alias should be the complete drive and path name, 
ending in a back:slash. 
MX - The module extension for source-level debugging. If 
used, this alias should be the file extension, starting with a 
period. 

Different l i n kers put different i nformation in the . MAP and 
. EXE fi les, so Periscope may or may not need the M P  
and M X  al iases t o  construct the fu l l  sou rce f i le  name. 
Periscope concatenates the path ,  name, and exten-
sion to get the module's fu l l  f i le name. I f  Periscope 
prompts you for a sou rce f i le  name, press Alt-C to see 
the f i le name Periscope tried to use. You can edij t he 
fi le name and press return to try the f i le again .  To fix 
the problem permanently, set the MP or MX al iases by 
us ing the EA command or by plac ing them in  the 

· ·  

.DEF f i le  for the program. I f  t he path i s  m issing o r  in­
correct, use t he MP al ias to automate source-level de­
bugging of the program. S imi larly, ff the file extension 
is m issing or  incorrect, use the MX al ias. Note that the 
path  name used wijh the MP al ias shou ld end in a 
backslash .  

XO - The commands executed when RUN transfers control 
to Periscope on entry to the program. 
XI - The commands executed on entry to Periscope each 
time control is transferred from your program to Periscope. 
X2 - The commands executed after each Periscope com­
mand. 
X3 - The commands executed on exit from Periscope each 
time Periscope transfers control to your program. 
CO - The commands to restore the last Periscope window 
settings (Ctri-FlO). 
C9 - The commands to restore the original (default) Peri­
scope window settings (Ctrl-F9). 
Fx - Defines the contents of the menu bar. Used with 
xxKEYS.PSD. See NOTES. TXT. (These are marked read-

7.5 RECORD AND ALIAS DEFI N ITIONS (RS) 



only.) 

These are the aliases you can custom-define in the .DEF file : 

Al through A9 and AO - Assign string to Alt-Fl-Ait-FlO. 
Cl through C8 - Assign string to Ctrl-Fl-Ctri-F8. 
(Ctrl-F9 and Ctri-FlO are reserved by Periscope.) 
Fl through F9 and FO - Assign string to Fl-FlO. 
Sl through S9 and SO - Assign string to Shift-Fl-Shift-FlO. 

See also Sections 8 .3  and 8 .5 .  

7.6 PERISCOPE/EM'S PROG RAM LOADER (RUN) 

The program RUN can load data files , .COM and .EXE files, 
or no file at all. 

Start RUN by entering 

RUN [ / 2 ]  [ IT I  /X [ : nnn ] ] [ < fi le> ] [ <com­
mand line > ]  

at the DOS prompt, where < file>  i s  the path, file name, 
and extension (.EXE, .COM or other) of the file you want to 
load. If you do not specify the file extension, RUN presumes 
.COM, then .EXE, then no extension. 

When you enter RUN with no arguments, RUN loads no 
file. It sets the first instruction to INT 20H, the DOS return, 
to prevent accidental execution of meaningless data. Use this 
technique to clear and initialize Periscope. RUN performs 
these tasks when you execute it: 
• Resets Periscope' s  display address to the PSP segment at 

offset 1 OOH. 
• Clears some of Periscope' s  tables, including the software 

trace buffer, source file buffer, screen buffers, record 
definition table, and symbol table. 

• Disables any breakpoints that are set to avoid possible 
interference with the current program being debugged. 

• Reverses out any code breakpoints that are set, so as not 
to leave an INT 3 in the code. 

• Clears the breakpoints and watch variables for a program 
if the date/time of the program is different than the last 
program so that one program' s  breakpoints/watch vari-

7 .6  PER ISCOPE/EM'S PROGRAM LOADER (RUN) 67 



68 

abies won't be used on another program. 
• Resets the Display windows to the standard values . 

Loading a data file with RUN enables you to patch the file. 
If you load a data file, be sure to use the QR command to 
quit Periscope and return to DOS. Using the QC or G com­
mands would have unpredictable results. 

Enter the same command-line after the filename as you 
would enter if you were running from DOS. RUN adjusts the 
FCBs and command line in the PSP to look like the target 
program was started directly from DOS. 

If you're loading an executable program ( .COM or .EXE 
file), RUN loads the related symbol table if it finds a .PSS or 
.MAP file. It loads the related record definition table if it 
finds a .PSD or .DEF file. 

To locate the symbol file, RUN first searches the specified 
directory for a file of the form filename . PSS .  If it finds 
this file, it uses it to load the program' s symbols. If it doesn't 
find a .PSS file or if the date of the . .  PSS file precedes the 
date of the executable file, it searches the directory for a file 
of the form filename . MAP. If it finds it, RUN executes 
the TS program to generate a .PSS file. 

RUN executes TS with no command-l i ne  options, so TS as­
sumes a .MAP f i le. I f  you've set t he Periscope path  
(SET PS = ) , RUN uses i t  to  f ind TS.COM. Otherwise , 
� uses the DOS path .  If you have a copy of Peter Nor-
ton's TS. EXE i n  you r  DOS path ,  you' l l  need to set the 
Periscope path  to avoid execut ing the wrong TS. 

If no symbols are available or the symbols will not fit in the 
allocated space, RUN clears the symbol table. If it finds 
source lines in the .PSS file, RUN sets Periscope for Source­
only mode. If it finds no source lines, it defaults to mixed 
(Both) mode. 

To locate the record definition file, RUN first searches the � 

specified directory for f i lename . PSD. If it does not find 
this file, it then searches for filename . DEF. If doesn't 
find this file, it then searches the Periscope directory, which 
you can set by entering SET PS=xxx, where xxx is the 

7.6 PERISCOPE/EM'S PROGRAM LOADER (RUN)  



path required to find the file PS.PSD. If it doesn't find 
PS.PSD, it searches for PS.DEF. It uses the .PSD or .DEF 
file to load Periscope' s  record and alias definition tables. If it 
doesn' t find a definition file, it clears the record and alias 
definitions. If it finds an error in the .DEF file, it will par­
tially load the record definition table. 

Once RUN loads the symbol and definition tables, it relo­
cates itself upward and reads the target program into mem­
ory beginning at RUN's  original location, and performs any 
segment relocation required by .EXE files. It sets the register 
pair BX:CX to the size in bytes of the target file. It sets other 
registers according to the rules for loading .COM and .EXE 
files (see the DOS technical reference manual). 

Starting with DOS 3 .00, the drive, path, and filename of the 
loaded program is stored at the end of the environment 
space. Since RUN does not use the EXEC function to load 
programs (unless you use the /T or /X option), this area 
shows RUN rather than the target program as the loaded pro­
gram . The environment space is of variable length and is fol­
lowed by DOS ' s memory allocation blocks, so it is not safe 
for anything but DOS to modify the environment. If your 
program uses this information, specify the IT  or I x op­
tions described below. 

RUN loads your program exactly DOS would load it under 
the same conditions, so you can use RUN to load memory­
resident programs. Until you use RUN again, the record defi­
nition, alias , and symbol tables are preserved. 

Finally, RUN passes control to the resident portion of Peri­
scope. When you've finished debugging your program, you 
can exit Periscope in one of three ways : use the G com­
mand with no breakpoints set, use the QC command to quit 
Periscope and continue execution, or use the QR command 
to quit Periscope and return to DOS. If you use the last op­
tion, be sure that all output files are closed and that any inter­
rupt vectors your program has modified have been reset to 
their original values. 

If you're using two symbol tables, you can have RUN load 
the program' s symbols into the second symbol table using 
RUN / 2  < file> .  If you do not specify this option, RUN 

7.6 PERISCOPE/EM'S PROGRAM LOADER (RUN)  69 



70 

loads the symbols into the first symbol table. You can only 
use this option if you specified two /T : nnn installation 
options when you installed Periscope. 

You can temporarily increase the symbol space Periscope 
uses with two RUN options , /X [ : nnn ] and / T. When 
you specify either of these options , RUN uses the DOS 
EXEC function to load your program. 

Allocate temporary symbol space by entering the /X : nnn 
option immediately after RUN. The optional nnn is from 
1 to lFFH (5 1 1 ) KB. For example, if the symbol size was 
set for 4KB, and the program 1EST needs 8KB, enter RUN 
I X :  8 TEST . EXE to allocate the temporary symbol table 
and load the program with the DOS EXEC function. 

Enter the /T option immediately after RUN to allocate 
the exact amount of symbol space required by the program, 
with at most 1 KB  to add symbols dynamically. This option 
also uses the DOS EXEC function to load the program. 

When running Periscope from EM memory or the Model I 
Board's  memory, the only effect of the /X  and /T  op­
tions is to use the DOS EXEC function to load your program. 

If you experience problems using RUN,  you should use the 
IX [ : nn ] option  or the /T opt ion.  They both use 
the DOS EXEC funct ion,  so you r  program loads ap­
proximately 8KB higher in memory than otherwise ,  but 
the program name in the environment space is  correct. 
To use the EXEC functi on, add / T or /X [ : nnn l 
immediately after RUN.  For example, enter RUN/T 
FTOC. I f  a n  EXEC error occu rs, R U N  displays error 
1 82, which usual ly ind icates a bad path name. 

You must l oad programs l in ked with PLIN K  or . RTLink with the 
/T option or the /X opt ion since these programs 
look for their  name in  the environment space. Peri-
scope handles this automatical ly if you use a symbol 
fi le. 

7.6 PERISCOPE/EM'S PROGRAM LOADER (RUN)  



7.7 LOADING SYMBOL TABLES (SYMLOAD) 

Use this program to load Periscope' s  symbol tables from 
within your program when your program manages overlays 
or when you do not use RUN to load your program. You can 
also use the LS command to load symbols on the fly. 

SYMLOAD is a memory-resident routine that is run once 
per DOS session. The /Y option removes the current copy 
from memory. SYMLOAD attaches itself to an interrupt vec­
tor so your program can access it as desired. The default in­
terrupt used by SYMLOAD is 67H, but you can change this 
if you need to. SYMLOAD uses DOS calls to read a symbol 
file, so DOS must not be busy for SYMLOAD to work. 

To install SYMLOAD, enter SYMLOAD / I : nn, where 
nn is the interrupt number you will use to access SYM­
LOAD. Be sure that Periscope is installed, since it is re­
quired for SYMLOAD to work. You must specify the 
I I :  nn command-line entry only when you want SYM­
LOAD to use an interrupt other than 67H. If you do specify 
an interrupt, be sure that the interrupt is not already used by 
another program. 

Once you've installed SYMLOAD, you may access it from 
your program by performing the appropriate interrupt. The 
registers used on entry are : 

BX-The value of your program' s  PSP segment. If your pro­
grain is an .EXE file, add IOH to the PSP segment. The sym­
bols ' segments will be relocated relative to the value passed 
in this register. 

DS:DX-Points to a .PSS file name in ASCIIZ format with 
a required extension of .PSS. For example, to load C :SAM­
PLE.PSS, DS :DX would point to the string C :SAMPLE.PSS 
followed by a binary zero. 

On return, register AH contains the status of the operation. 
The possible values of AH are: 

0 - Successful symbol table load 
1 - Error reading .PSS file (DOS error returned in AL) 
2 - Periscope symbol table too small for .PSS file 

7.7 LOADING SYM BOL TABLES (SYM LOAD) 7 1  



3 - Logical error in .PSS file 
4 - Periscope is not installed 
5 - Logical error in symbol table 

If SYMLOAD returns a status of zero, it has successfully 
loaded the symbol table. Note that it relocates all addresses 
relative to the segment address passed in register BX, except 
for symbols whose segment was already in the range of 
FOOOH to FFFFH. 

SYMLOAD uses register AL to return additional error infor­
mation if a read error occurred. 

7.8 DEBUGGING DEVICE DRIVERS (SYSLOAD) 

72 

SYSLOAD allows you to load any of the .COM programs in 
the Periscope package at CONFIG.SYS time as a device 
driver. By being able to load Periscope as a device driver, 
you can greatly ease the debugging of your own device driv­
ers. 

To use SYSLOAD, place a line of the form 
device= sysload . sys argument s in the CON­
FIG.SYS file. The argument s  field may be one or more 
of the following : 

I I is an optional argument that generates an INT 3 to acti­
vate Periscope just before jumping to the specified program. 

I Q is an optional argument that sets quiet mode and dis­
plays serious error messages only. This option is useful 
when loading a transient program. 

IP=c : fi lename . ext argl arg2 . . . is required 
and must appear last. It specifies the drive, path, and file 
name of the program to be loaded, followed by the argu­
ments the program needs Be sure to specify the full file ex­
tension although only .C M programs can be handled at 
present. Note that the p of DOS which loads device driv­
ers also converts all char cters to upper case. Thus case sen­
sitive arguments cannot e passed to the program. 

To load Periscope via SYSLOAD.SYS , use a line similar to 

7.8 DEBUGGING DEVI CE DRIVERS (SYSLOAD) 



device=sysload . sys /p=c : \peri \ps . cam/a 
in CONFIG.SYS. Follow this line with the invocation of 
your device driver . Embed an INT 2 or an INT 3 in the strat­
egy and/or interrupt entry points of the driver. When the 
driver executes, Periscope displays its screen. You can then 
use the LS command to load the driver ' s  symbols and be­
gin debugging the driver. 

If you're using DR-DOS, use the DR-DOS INSTALL com­
mand instead of SYSLOAD. Make sure the PS* .COM and 
PM*.COM files are in the root directory of the boot disk. 

7.9 GENERATING SYMBOL TABLES (TS) 

The TS program verifies and sizes .MAP or other symbol 
files, and generates a Periscope symbol file with an exten­
sion of .PSS. To run TS, enter TS progname from the 
DOS prompt. Unless you specify options that indicate· other­
wise (see below), TS assumes a file extension of .MAP and 
assumes that the .MAP file is in the same format as the sam­
ple file FTOC.MAP. For help when running TS, enter TS 
? . TS rieeds approximately 1 80K of work space plus the size 
of the .PSS file that it generates. 

The options available are: 

/ 3 2  (Periscope/32 only) - Extract 32-bit symbol informa­
tion from a .MAP or .EXE file. 

If you're using MASM 5 . 1 0B or MASM 6.00, use a .MAP 
instead of an .EXE if possible. There are problems with local 
code and data variables generated by these two versions of 
MASM. 

· I A xxxx - Add a variable-length prefix to symbols. 

/B - Read an .EXE file produced by Borland' s TLINK. 

Periscope supports local symbols for Borland products when 
compiled and linked with the appropriate options. 

Periscope does not currently support typing, structures, or 
register variables. You may need to use the - r - option 
with Turbo C to force register variables off if you have prob-

7.9 GENERATI NG SYM BOL TABLES (TS) 73 



74 

lems accessing all local variables. Also, watch out for librar­
ies with extended dictionaries. You may need to rebuild the 
library without the I e switch. 

If you experience problems reading a Borland .EXE file, use 
the TDSTRIP utility to create a .TDS file, then run TS using 
that file. For example, to generate a . TDS file for FOO.EXE, 
enter TDSTRIP - S  FOO, then enter TS FOO . TDS 
IBIV to read the symbols from the .TDS file. 

I C - Read a DeSmet .MAP file produced by CWare' s C 
compiler. 

ID - Read a LINK86 .SYM file produced by Digital Re­
search's  LINK86. 

IE - Read a Code View .EXE file produced by Microsoft' s 
LINK. 

Local symbols are available for Microsoft products when 
compiled and linked with the appropriate options. You must 
run TS with the /E  option to generate a .PSS file that in­
cludes local as well as public and line number symbols. 

If you have problems generating symbols from an .EXE file, 
try loading the program under Code View and then use the 
x command to display symbols. If you get an error, call Mi­
crosoft. If all else fails , try using the .MAP file. You won't 
have any local symbols, but at least you can use an editor to 
fix any problems. 

IFx - Filter leading character x from public symbols. 

For example, Microsoft C uses leading underscores on pub­
lic symbols. If you use IF_, TS will remove any leading un­
derscores from the symbols. 

A different f i lter funct ion enables you to l imit the s ize of your 
symbol table when you are on ly debugging a few mod-
u les in  a large program. To use t h is f i lter funct ion ,  cre-
ate an ASC I I  text f i le with an extension of . PSF and 
one statement per l ine in  the format X=NAME, where 
x is L for l ine number or P for pub l ic symbol. 
NAME is the name of the module or pub l ic symbol .  

7.9 GENERATING SYM BOL TABLES (TS) 



The match is made on as many characters as are en­
tered as NAME, and t he match is  case-sensit ive. For 
example, the l ine P =A wou ld f i lter out all pub l ic, lo­
cal data, or  local code (but not stack-based) symbols 
starting with A, whi le  the l ine L=FTOC would f i lter 
out a l l  l ines in the modu le  FTOC or  FTOC? ? ? ? , 
where ? ? ? ? may be any characters .  

If you have some symbols that you don't want included in 
the symbol table, edit the .MAP file and delete the desired 
symbols or insert braces as desired to turn off symbol genera­
tion. A left brace ( { ) turns symbol generation off, and a right 
brace ( } ) turns it back on. Put the braces in the beginning of 
existing lines. Do not add any new lines to the file ! Be care­
ful when saving the .MAP file. Don't let any TABs or high­
bit characters into the file. 

I LA - Accept line numbers that are out of sequence. Use 
this option for programs produced by Borland' s C compiler 
and other optimized code. 

I LD - Discard all line numbers that are out of sequence. 
Use this option to discard all lines for a module after a dis­
continuity, such as Code View information for an_.ASM pro­
gram that uses includes. 

I P - Read an .RTLink .MAP file produced by PocketSoft' s 
.RTLink. This option reads public and line-number symbols 
from the .RTLink .MAP file. No local symbol support or 
VML support is available for .RTLink as of this writing. 

I Q - Read a PLINK .EXE file produced by PLINK. This 
option reads public and line-number symbols from the 
PLINK .EXE file. No local symbol support is available for 
PLINK. 

If TS finds static symbols with embedded brackets in a 
PLINK .EXE file, TS converts the brackets to underscores . 
For example, FOO[BAR.C] becomes FOO_BAR.C_, unless 
you use the IS option, in which case TS does not output 
the static symbols into the .PSS file. 

IRP - Remove path from line-number records. 

/RX - Remove file extension from line-number records; 

7.9 GENERATI NG SYM BOL TABLES (TS) 75 



The IRP and IRX options are intended for use with 
PLINK only, since it is inconsistent in the filenames it gener­
ates for line-number symbols. When using these options, be 
sure to use the MP and MX aliases to provide the needed 
path and extension. 

I S - Filter static variables from a PLINK .EXE file. 

IV - Verbose mode: show statistics on the number and 
type of symbols. 

7.1 0 CUSTOMIZING PERISCOPE/EM (USEREXIT) 

76 

The USEREXIT program illustrates Periscope's  ability to 
perform user-written code. Use user-written code to perform 
breakpoint tests (see the BU command) and user exits (see 
the IU  command) . 

Install the user-written code as a memory-resident program 
using an available interrupt from 60H to FFH . You must in­
stall the program before you install Periscope. Also, you 
must specify the Periscope installation option I I :  nn, 
where nn is the interrupt vector used to access the user­
written code, and you must include a signature of PS in the 
resident routine in the word preceding the interrupt entry 
point. 

The registers used on entry are: 

AH - Contains the breakpoint test number of one to eight 
or the user exit number of nine to FFH. 

AL - Always zero. 

DS :SI - Points to Periscope' s  data area (see the file USER­
EXIT.ASM for the layout of the table) . This table contains 
the values of various variables used by Periscope. Any 
changes to the variables in this table are passed back to Peri­
scope. 

ES:BX - Points to a user service routine in Periscope. Ac­
cess this routine with a far call. Use register AH to indicate 
the function desired. When using this routine, all registers 

7 . 1 0  CUSTOM IZING PERISCOPE/EM (USEREXIT) 



are preserved. The functions available are (see the sample 
program USEREXIT.ASM for details) :  
• Display nul-terminated string on the screen using Peri-

scope's  display handler 
• Get command line using Periscope' s keyboard handler 
• Search symbol table using ASCITZ string 
• Search symbol table using an address 

On return from a user breakpoint, register AL should be set 
to a binary one to indicate a hit. Any other value indicates 
that no breakpoint is to be taken. 

On return from a user exit, register AL indicates whether the 
exit code has set a command to be executed by Periscope. If 
AL equals 2, Periscope reads the command line passed back 
from the user exit. The command line must start with a semi­
colon and end with a carriage return. A user exit may use 
BIOS functions as desired. Periscope assumes any screen 
output is done via the user service routine described above. 

Do not attempt to perform DOS functions from user-written 
code as DOS may be busy ! You do not need to preserve the 
values of any registers other than SS and SP on return to 
Periscope. If your routine needs more than 32 words of stack 
space, switch to an internal stack, but be sure to switch back 
to the original stack before returning. 

To install USEREXIT, run the program from DOS. Then in­
stall Periscope using the installation option I I : 6 0 .  When 
Periscope is active, try using BU 1 and then GT to get to 
a point where DOS is not busy. Try /U 9 as an example 
of a user exit modifying the command line. If you have a nu­
meric co-processor, try /U 8 7  to display the numeric 
processor status .  To display the BASIC-style string A$ , en­
ter /U D A$.  To display DOS ' s  memory allocation, enter 
/U 8 8 .  

The user exit / U  A sets a range of values for the C S  regis­
ter to be used by the user breakpoint BU 2. The range must 
be entered as a segment:offset pair, with the colon. To en­
able the user breakpoint, enter BU 2 and then GA, GM, or 
GT as needed. 

USEREXIT reflects these additional reserved user exits: 

7. 1 0  CUSTOMIZI NG PERISCOPE/EM (USEREXIT) 77 



• FO - invoked after each command is entered, so that 
your code can modify the command line as needed. 

• Fl - invoked before a short boot (QS), so that your code 
can perform any required cleanup. 

• F2 - invoked before a normal boot (QB) . 
• F3 - invoked before a long boot (QL). 

To debug user exits, do the following: 
• Load Periscope normally, without the / I  : nn installa­

tion option. 
• Load your user exit code. 
• Enter RUN/T PS /X/X/ I : nn to load a test copy of 

Periscope, adding any installation options you like at the 
end. 

• Set a code breakpoint on the user exit using 
BC { 0 : nn * 4 } , where nn is the interrupt number. 

• Use G to get to the test copy of Periscope. Note that the 
prompt is an asterisk. 

• Enter /U nn to activate your user exit. Execution will 
stop in the real Periscope at the start of the routine. 

• Debug your code. 
• When done, use QC at the asterisk prompt to terminate 

the test copy of Periscope. 

Periscope/32 users:  The USER EXIT program supports re­
mote mode. 

7.1 1 WHEN DOS IS BUSY (WAITING) 

78 

If you're debugging TSRs that do not hook INT 2 1 ,  a simple 
program running in the foreground can keep DOS available 
so you can use source-level debugging while your program 
is running. The program W AITING.COM continuously calls 
the BIOS keyboard handler while looking for a Ctrl-C. 
When a Ctrl-C is pressed, control is returned to DOS. 

Use RUN to load your program and set whatever break­
points you desire. When the DOS prompt is displayed, run 
WAITING. Then when debugging your program, DOS 
won't be busy . .-

7 . 1 1 WHEN DOS I S  BUSY (WAIT ING) 



C H A p I E B E G H I 

Reference 

• Optional Menus 
• Command Summary 
• Command Parameters 
• Command Editor 
• Function Keys 
• Shortcut Keys and Keyboard Assignments 

T
his chapter introduces the optional menus you can 
use to issue commands, summarizes the commands, 
defines the command parameters, describes Peri­

scope's  command editor, and defines the shortcut keys and 
keyboard assignments. You' ll find a detailed description of 
the commands in Chapter 9. 

Page 79 



8.1 OPTIONAL MENUS 

Page 80 

Periscope' s  menu system is an optional way that you as a 
new or occasional user can quickly and easily find and exe­
cute the appropriate Periscope command. Once you are an 
expert user, you can use it to find commands you infre­
quently use. 

You can enable or disable the menu system when you run 
CONAG. If you enable it, you'll be able to call it up any 
time you need it while you're debugging. It will use one line 
at the top of the display and load the menu system code and 
the on-line help and interrupt comments, all of which con­
sume approximately 60KB of memory. 

If you're running Periscope in conventional DOS memory, 
the additional 60K that the menu system requires may affect 
your ability to debug your programs. You can reduce the 
size required by renaming the file PSINT.DAT so that the in­
terrupt comments won't be loaded. We do recommend that 
you leave the on-line help intact, but if you want to eliminate 
it, you can rename the file PSHELP.TXT as well. 

When you enable the menu system, the top line of Peri­
scope's  display starts with the prompt Alt - M :  Menu to 
remind you to press Alt-M to activate the menu system. The 
rest of this line usually displays a description of the function 
key assignments from the xxKEYS.PSD file, where xx is 
PS, CV, or TD for Periscope, Code View, or Turbo Debug­
ger key usage respectively. See Section 8 .5 for more infor­
mation. 

When you activate the menu system by pressing Alt-M, you 
can then use the left and right arrow keys to select the de­
sired top-level menu, or you can press Alt-x, where x is the 
first character of the menu name. It is not possible to go di­
rectly to a specific top-level menu before you press Alt-M 
since Periscope is already using some of the Alt-key combi­
nations for other functions. 

Within a menu, you may use the up arrow, down arrow, 
Home, and End keys or the character corresponding to the 
first letter of the option you want to select. (If more than one 
option starts with the same character, press that letter until 

8 . 1  OPTIONAL MENUS 



#19 : 
au : 
#12 : 

the option you want is selected.) 

/* t of temperature table 
/* 11pper l i• i t  */ 
/* step size */ 

#14 : fahr = lower ;  
#15 : whi le Cfahr <= 11pper) { 
#1& : celsius = [5 . 9/9 . 9 )  * Cfahr-32 . 9 ) ;  

U T=  I n  C : \fER NU't . cott CFTOC > ============ I 

8-1 .  Periscope Breakpoints Menu 

There are three basic types of options available from the top­
level menus: 

Options (commands) that require additional informa­
tion. When you select one of these options, Periscope 
prompts you for the additional information required. All of 
the usual editing keys (except Esc) are available. After the 
command executes, Periscope redisplays the top-level menu. 

Options (commands) that require no additional informa­
tion. When you select one of these options, the command im­
mediately executes, then Periscope redisplays the top-level 
menu. Some options are 'toggles ' and have an up or down ar­
row in front of the option to indicate that they are turned on 
(up arrow) or off (down arrow). 

Sub-menus. For these options, Periscope displays a sub­
menu. Choose the appropriate entry and press Enter. Sub­
menu options show brackets instead of parentheses around 
the Periscope command at the end of the line. 

There are only two levels of menus - the top-level menus 
and one level of sub-menus. Throughout the menu system, 

8. 1 OPTIONAL M ENUS Page 81  



you can use Esc to exit the current level . If you are at the top­
level menu display, Esc returns to the Periscope prompt. If 
you are at a lower level in the menu system, Esc returns you 
to the top-level menu. 

Periscope displays the command generated by the menu sys­
tem, so that you can learn as you use Periscope. While in the 
menu system, you can get help on a command by pressing 
Fl or by pressing ? with the desired option selected. No help 
is available for sub-menus (where the command is in brack­
ets instead of parentheses), but help is available for the items 
within the sub-menus. 

The vast majority of Periscope commands are built into the 
menu system. For information on commands that are not, 
please see Chapter 9 .  

8.2 COMMAND SUMMARY 

Page 82 

This summary is an introduction to the various types of com- .� 

mands available. The commands fall into fourteen groups, as 
follows : 

1 .  Breakpoints. There are four categories of breakpoints : 
Code, Monitor, Hardware, and Debug register. 

You set Code breakpoints on specific addresses in your pro­
gram with the BC (Breakpoint on Code) command. When 
the instructions at the specified addresses execute, execution 
stops and the debugger displays its screen. These break­
points are ' sticky' since Periscope "remembers" them until 
you explicitly clear them with the BC or BA commands. 
You can set temporary code breakpoints by entering an ad­
dress after the G (Go) command. Periscope does not re­
member these breakpoints after the G command that set 
them executes . All of the Periscope Go commands activate 
Code breakpoints, which run at full speed except when you 
use GA, GM, or GT. 

You set monitor breakpoints on a wide class of dynami­
cally-evaluated conditions with these commands : BB 
(Byte) , BF (Flag), BI (Interrupt), BL (Line), BM 

8.2 COMMAND SUMMARY 



(Memory), BP (Port) , BR (Register), BU (User) , BW 
(Word), and BX (eXit). They are all ' sticky ' ,  or remem­
bered until you explicitly clear them. You activate them with 
the GA, GM, and GT commands only, which can cause the 
system to run much slower than full speed. 

You set hardware breakpoints on the real-time CPU events 
that occur during the execution of your program with the 
HB (Hardware Bit), HC (Hardware Controls) , HD (Hard­
ware Data), HM (Hardware Memory), and HP (Hardware 
Port) commands. These commands are not covered in this 
manual. Please see the Model IV manual for details .  

Debug register breakpoints are available on 80386 and 
higher machines. You set these breakpoints on reads, writes, 
and executes of memory with the BD (Breakpoint on 
80386 Debug Registers) command. They are activated by all 
of the Go commands, and run at full speed except when you 
use the GA, GM, or GT commands. 

Table 8 - 1  summarizes program execution speeds for the vari­
ous types of breakpoints and the various Go commands. 

The breakpoint command terms set, clear, enable, and dis­
able may be confusing. Here' s  what they mean. When you 
set any ' sticky' breakpoint, it will be in effect each time you 
use the appropriate Go command. You can keep it from be­
ing in effect by either disabling it or clearing it. If you clear 
it, Periscope no longer knows about it. If you disable it, Peri­
scope knows it' s there, but does not use it until you enable 
it. Periscope displays disabled breakpoints with a leading mi­
nus sign. 

To clear all breakpoints, enter BA * (for software break­
points) or HA * (for hardware breakpoints) .  To clear an 
entire group of breakpoints, enter Bx * or Hx * ,  where 
x indicates the group you want to clear, such as Byte, Mem­
ory, Port, Word, etc. To clear an individual breakpoint, re-en­
ter the breakpoint (except for the HB and HC 
breakpoints) . Periscope's  program loader, RUN, always dis­
ables all hardware and software breakpoints, except for the 
HC breakpoints . A useful habit to develop is to display all 
breakpoints with BA and HA before executing the Go 
command, so that you know for sure what breakpoints are 

8.2 COMMAND SUMMARY Page 83 



set and enabled. 

• 
GO COMMAND BREAKPOINT TYPES SPEED 

G c ,  D Ful l spee d 

G +  c ,  D Ful l sp ee d 

G =  c ,  D Ful l sp e e d  

GA C ,  D ,  M Very s l ow 

GH c ,  D ,  H Ful l sp ee d 

GM C ,  D ,  M ,  H May b e  s l ow 

G R  c ,  D Ful l sp ee d 

G T  C ,  D ,  M Very s l ow 

BREAKPOINT TYPES : C=CODE ; D=DEBUG REGI STER; M=MONITOR; H=HARDWARE 

Page 84 

Table 8-1.  Execution Speeds of Various Breakpoints 

2. Controls: Use the clear screen commands (K and KI) to 
clear Periscope' s  screen. Use the Color command ( /C) to set 
Periscope' s screen color. Use the Window command ( /W) to 
set Periscope' s  windows. Use the Data window select corn- � 

rnand ( /D) to select the active Data window when you're us-
ing multiple Data windows .  Use the Quiet command ( /Q) to 
temporarily suppress Periscope' s  screen output. 

3. Disassembly: The Unassernble commands (UA, UB, and 
us) disassemble memory in Assembly-only, Both-source­
and-assembly, and Source-only modes respectively. You can 
use 1 6-bit (16) or 32-bit (3 2 )  disassembly as needed. 

4. Disk 1/0: These commands include Load Absolute (LA) 
and Load File (LF), the corresponding Write commands 
( WA and WF), and the Name command (N). 

5. Display: The Display commands (Dx) display memory in 
various formats, including ASCII, byte, double word, effec­
tive address, integer, long real, signed integer, record, short 
real, word, long integer, signed long integer, and ASCIIz. 
Use the Watch commands (W) to display memory in any of 
the above formats in a Watch window. 

6. Execution : These commands include the Trace and Trace 
Line commands (T and TL), the Jump and Jump Line com­
mands (J and JL), and the Go commands (Gx) that exe-

8.2 COMMAN D SUMMARY 



cute your program under various conditions. To trace all but 
interrupts, use the (TI) command. Use the Breakpoint com­
mands (Bx and Hx) to set code, monitor and hardware 
breakpoints. See the discussion of Periscope' s  breakpoint 
commands earlier in this chapter. 

7. Hardware: Use the Hardware commands (Hx) to set hard­
ware breakpoints and controls and to display the hardware 
trace buffer when you have Model IV hardware installed. 
See the separate Model IV manual for details .  

8. 1/0: Use the Input (I and IW) and Output (O and OW) 
commands to read and write 110 ports, respectively. 

9. Modify: Use various commands to modify memory, in­
cluding the Enter commands (E, E.B, ED, and EW), the Fill 
command (F), and the Move command (M). 

10. Search : The Search commands search memory in a vari­
ety of ways, including two data searches (S and SD), an ad­
dress search (SA), a disassembly search (SO), and two stack 
searches, one for calls (SC) and one for returns (SR) .  

11 .  Status i: The status commands include the Register com­
mand (Rx) which you use to display, change, save, compare, 
and restor� the machine registers and flags. View tlle soft­
ware trace buffer with the Traceback commands (TB, TR, 
and TO), X ou can save, c6mpare, and restore the interrupt 
veetots uSinRthe IR , IC, and IS commands. To save 
the, state of a

·
debug session, use the WB command. To later 

� restore the state; 'use the LB command. 

12. Symbols: Load and write the symbol table using the 
Load Symbols (LS) and Write Symbols (WS) commands. 
The Load Definitions (LD) and Write Definitions (WD) com­
mands load and write the record definition table. Use the En­
ter Symbol command (ES) to add symbols on the fly. Use 
the Near command (IN) to search for the nearest symbols to 
a specified address . Use the Remove symbol command ( /R) 
to delete a symbol from the symbol table. Use the Segment 
change command ( IS) to modify the segment for a group of 
symbols. 

13. Periscope/32-specific Commands. Please see Appendix 

8.2 COMMAND SUMMARY Page 85 



C.  

14. Miscellaneous. Other commands include an in-line As­
sembler (A and AU), a Compare memory command (C), an 
Enter Alias command (EA) , Hex arithmetic (H), Quit (Qx), 
View file (V and VS),  and translate addresses and numhers 
(XA, XD, and XH). 

Also available are option (/) commands, including the Echo 
command (I E) which echoes Periscope' s  screen output to a 
disk file. Use the User exit command (/U) to execute user­
written code from within Periscope. Use the eXit command 
(I  X) to exit to DOS. 

The Key capture command (/K) captures keyboard input to a 
file. The I 1 and I 2 commands allow you to switch to the 
first and second symbol tables, respectively. The DOS Access 
command (I  A) turns DOS access on and off. To copy Peri­
scope's screen to the other display, use the dupe (/ " )  com­
mand. To toggle the display of line-number symbols and 
source-level debugging status, use the IL  command. 

8.3 COMMAND PARAMETERS 

Page 86 

You may enter Periscope commands in upper or lower case. 
Use either a space or a comma to delimit parameters within a 
command. A delimiter is required when the command is 
only one character in length, after a symbol, and between 
two numbers. 

Periscope/32 users:  You cannot use a comma as a general 
del imiter. See Appendix C. 

Each command requires at least a single-character mne­
monic. All but a few commands require additional input. 

Periscope' s command parameters are listed below in alpha­
betical order. Square brackets ( [ 1 ) in the command syntax 
indicate an optional entry. (Brackets actually entered in a 
command line indicate that the address is to be used as a 
near pointer.) An ellipsis ( • • •  ) indicates a repetitive entry. 

* - An asterisk in the first position of a Periscope com-

8.3 COMMAND PARAM ETERS 



mand line causes the entire line to be treated as a comment. 

? - Indicates a variable. 

- Indicates a logical OR. 

Periscope/32 users: Use a st i le ( 1 ) to separate the segment 
and offset in  an address when you want Periscope/32 
to use real-mode style address convers ion (segment 
times 1 6  plus offset) . See Appendix C. 

$ - Use the dollar sign or 'here' indicator with the Display 
commands to replace the display address and more easily dis­
play some types of data. It assumes a value equal to one 
more than the last byte previously displayed. For example, if 
you want to page through memory displaying 200H bytes at 
a time, you can use D $ L2 0 0 rather than having to spec­
ify an address each time. Similarly, you can use the DR 
command to display repeating record definitions. For exam­
ple, use DR $ RECORD to display a repeating fixed­
length record. 

[ ] - Brackets around an address indicates that the offset 
is a near pointer to another offset within the specified seg­
ment. The trailing bracket is optional. For example, if the 
word at CS:250H contains 1 234H, u [ CS : 2 5 0 ] disas­
sembles memory starting at CS: 1 234. 

Periscope/32 users: Periscope/32 also supports double 
brackets ( [ [ 1 1 ) to  indicate a near 32-bit pointer. 

{ } - Braces around an address indicates that the segment 
and offset are a far pointer to another segment and offset 
pair. The trailing brace is optional. For example, to disassem­
ble INT 1 OH, enter u { 0 : 1 0  * 4 } . This command uses the 
offset at 0 :40H and the segment at 0 :42H, which is interrupt 
vector IOH. 

Periscope/32 users: Periscope/32 also supports double 
braces ( { { } } ) to i ndicate a far 32-bit pointer. 

o . - A prefix of o . before a symbol name extracts the 
offset portion of a symbol name. For example, to set AX to 
the offset portion of the symbol NEWPAGE, use R AX 

O . NEWPAGE. 

8 .3 COMMAND PARAM ETERS Page 87 



Page 88 

S • - A prefix of S • before a symbol name extracts the 
segment portion of a symbol name. For example, assume the 
symbol ARRAY points to 1 234:5678 .  To display memory at 
1 234 :0000, you could use D s . ARRAY :  0 .  

T .  - A  prefix of T .  indicates that a decimal number fol­
lows. For example, to display memory at offset 2000 deci­
mal, enter D T • 2 0 0 0 .  

w.  - A prefix of W .  extracts the word at the target ad­
dress and uses it as the argument. For example, to display 
memory at offset 1 OOOH in the segment referenced by the 
symbol DOSSEG, enter D W .  DOSSEG : 10 0 0 .  

+ ,  - ,  * ,  I - These arithmetic operators perform inline 
arithmetic. They are evaluated from left to right. For exam­
ple, dd 0 :  2 1* 4 ,  r ip ip+ 1, d ss  : sp - 4 ,  and 
u bx+ s i - 5  are all valid. 

<addres s >  - The address of a memory location, com­
posed of a segment and an offset separated by a colon. Alter­
nately, you can use registers for either or both numbers, or 
you can use a valid symbol for both the segment and offset. 
For some commands, you may omit the segment. Possible 
addresses include 1 0  0 0 : 12 3 4 ,  DS : S I, and 
PRINTLINE.  

Periscope/32 users: Periscope/32 assumes that addresses 
are in selector: offset format rather than segment :offset 
format. I n  most cases the selector and segment are in­
terchangeable.  See Appendix C for detai ls. 

<al ias > - An  alias is a two-character shorthand notation 
that can have an associated character string of up to 64 char­
acters. There are currently 38  alias names defined and eight 
aliases reserved for use with Periscope. (You may define oth­
ers.) You can enter aliases in a .DEF file or with the EA 
command. 

See Section 7.5 and the EA command in Chapter 9 for de­
tails on aliases . 

< arithmet ic operator> - The arithmetic symbols 
+ , - ,  * ,  and I ,  for addition, subtraction, multiplication, 

8.3 COMMAND PARAM ETERS 



FLAG 

and division, respectively. 

<byte> - A  one- or two-digit hexadecimal number from 
0 �o FF or an 8-bit register. 

< command> - A  Periscope command, such as us (unas­
sernble source) or D (display in current format) . 

<decimal number > � A  decimal number from 0 to 
6 5 5 3 5 .  No punctuation is allowed. 

< drive> - A single-digit number corresponding to a 
disk drive, where 0 equals drive A, 1 equals drive B ,  etc. 
Also you may use A :  , B : , etc. 

< file>  - Afile name, including drive, path, and exten­
sion as needed. 

< flag>  - A  flag register. The possible values and two­
character mnemonics are shown in Table 8-2. 

Periscope/32 users: Please see the note at the end of the 
Register command in Chapter 9 for addit ional f lag 
mnemon ics. 

SET ( = 1 )  CLEAR ( = 0 )  

Ove r f l o w  ov NV 
D i r ec t i on DN ( ST D )  U P  ( C LD )  

I nt er rupt EI I ST I )  D I  ( C LI ) 

S i g n  NG ( ne ga t i ve ) P L  ( p o s i t iv e )  

Z er o ZR ( ze ro ) NZ ( n on - z er o )  

Aux i l i a ry  c ar ry  AC NA 
Par i t y  PE ( ev en ) PO ( o dd )  

Table 8-2. Flag Register Values/Mnenwnics 

< format > - The formats available with the display and 
watch commands: A (ASCII) , B (byte), D (double word), 
E (effective address), I (integer), L (long real), N 
(number), R (record) , s (short real), w (word), x (long 
integer) , Y (long signed integer) , and z (ASCIIz). See the 
Display (D) commands in Chapter 9 for details. 

< length> - The number of bytes affected by a corn-

8 .3  COM MAND PARAM ETERS Page 89 



mand. Tilis may be represented by L nnnn where nnnn 
is a hexadecimal number from 1 to FFFF. It may also be 
represented by a number following an address. In this case . 
the length is calculated as the number plus one minus the off­
set. For example, D cs : 1 0 0  L 1 0 0  and D cs : 1 0 0  
1FF ( I FF  plus I minus 100) both have a length of lOOH. 

You may substitute a register name for the number in either 
format. Periscope uses the current value of the register for 
the number. 

You may also use a symbol for the length argument. The seg­
ment associated with the symbol must be the same as the seg­
ment referenced in the preceding address and the offset must 
not be less than the offset referenced in the address. 

¢ 
Periscope/32 users: Periscope/32 supports 32-bit lengths. 

< li st >  - A  listof byte(s) and/or string(s) . For example 
0 3 ' COMMAND COM ' 12 3 4 is a list composed of a 
byte, a string, and two trailing bytes. 

<name > - A  one- to 64-character name used as an alias. 

<number > - A one- to four-digit hexadecimal number 
from 0 to FFFF. If you use a register name, Periscope 
substitutes its current value for the number. 

Periscope/32 users: Periscope/32 supports 32-bit hex num­
bers. 

<offset > - The one- to four-digit hexadecimal number 
or register representing the offset into the specified segment. 

¢ 
Periscope/32 users: Periscope/32 supports 32-bit offsets. 

<pointer> - A  bracket ( [ ) or brace ( { ) used to indicate 
a near or far pointer respectively. 

Page 90 

Periscope/32 users: Periscope/32 also supports double 
brackets ( [ [ ) and double braces ( { { ) to indicate near 
and far 32-bit pointers. 

<port > - The one- to four-digit hexadecimal number as­
sociated with an 1/0 port. 

8 .3  COMMAND PARAM ETERS 



< range> - An address and a length. For example 
CS : lO O  L 1 0 0  and 0 : 0  FF are ranges. You can use 
two symbols if they both reference the same segment and if 
the offset of the second symbol is greater than or equal to the 
offset of the first symbol . 

< regi ster> - A  machine register. The 1 6-bit registers 
are AX, BX, CX, DX, SP, BP, SI, DI , DS, ES, FS, GS, SS, 
CS, and IP. The 8-bit registers are AH, AL, BH, BL, CH, 
CL, DH, and DL. 

Periscope/32 users: You can also use the 32-bit registers 
EAX, EBX, ECX, EDX, ESP, EBP, ES I ,  EDI ,  and E IP. 

< sector s >  - Two hexadecimal numbers representing 
the starting relative sector number and the total number of 
sectors (max 80H) . The sector numbering scheme is the one 
used by DOS interrupts 25H and 26H. 

< segment > - A  one- to four-digit hexadecimal number 
or register representing one of the six segment registers (CS, 
DS, ES, FS, GS , SS). 

Periscope/32 users: Substitute selector for segment in  re­
mote mode. 

< string > - A  quoted list of ASCII characters. You may 
use either single or double quotes to delimit the string. To en­
ter a string containing an embedded quote, use the other 
form of quote to delimit the string, or enter two quotes where 
you want a single embedded quote. 

< symbol > - A  name corresponding to an address or a re­
cord definition. RUN loads symbols from a .PSS file when it 
loads the corresponding program. You may optionally pre­
cede a symbol name with a period, which forces Periscope to 
treat the name as a symbol. For example, to disassemble 
memory starting at the symbol PRINTLINE, enter u 

• PRINTLINE. 

Periscope evaluates symbols first, before numbers and regis­
ters. This can cause conflicts and/or confusion if a symbol 
has the same name as a valid register or number (e .g. AX or 
A1 23) . Be careful not to confuse symbol names with ad-

8.3 COMMAND PARAM ETERS Page 9 1  



dresses . When Periscope processes the command D A12 3 ,  
it first tries to use A123 as a symbol name. If it doesn't find 
a symbol with that name, it tries to use it as a hex number. 
To inhibit its use as a hex number, precede the address with 
a period, D • A12 3 .  

Use a tilde (-) to force the name not to be treated as a sym­
bol. For example, to display memory at address FOO when a 
symbol of the same name exists, enter D -F O O .  

Use symbols also to reference record definitions read from a 
.DEF file. For example, to display the FCB , enter DR 
CS : SC FCB. 

< test > - Compare two values. The possible tests are 
LT (less than), LE (less than or equal), EQ (equal), NE 
(not equal), GE (greater than or equal), and GT (greater 
than) . 

8.4 COMMAND EDITOR 

Page 92 

Periscope has a CED-like command editor. It stores pre­
viously-entered commands in a 5 1 2-byte circular buffer. It 
saves all lines greater than the minimum length set in CON­
FIG, except when Alt-C or Alt-D is used to repeat a pre­
vious line. It supports the following editing keys: 

Backspace - Delete the character to the left of the cursor 
and back up one character. 
Ctrl-End - Erase the remainder of the command line, start­
ing at the current cursor position. 
Ctrl-Left - Move to the start of the previous word in the 
command line. 
Ctrl-PgDn - Remove the current command line from the 
circular edit buffer. 
Ctrl-PgUp - Clear the entire circular edit buffer. 
Ctrl-Right - Move to the start of the next word in the com­
mand line. 
Del - Delete a character from the command line. 
Down Arrow - Display the next command line from the 
circular buffer. 

8.4 COMMAND EDITOR 



End - Move the cursor to the end of the command line. 
Esc - Erase the current command line. 
Home - Move the cursor to the start of the command line. 
Ins - Toggle insert mode on and off. 
Left Arrow - Move the cursor one position to the left. 
Right Arrow - Move the cursor one position to the right. 
Tab - Space. 
Up Arrow - Display the previous command line from the 
circular buffer. 

8.5 FUNCTION KEYS 

When you configure Periscope (see Chapter 3), you can as­
sign function keys Fl through FlO to make Periscope's  key 
usage like that of Borland' s  Turbo Debugger, or like that of 
Microsoft' s  Code View, or assume Periscope' s  defaults . The 
default function keys and their Alt key equivalents are : 

KEY 
Fl 
F2 
F3 
F4 
F5 
F6 
F7 
F8 
F9 
FlO 

ALT KEY 
Alt-T 
Alt-N 
Alt-C 
Alt-D 
Alt-A 
Alt-G 
Alt-E 
Alt-I 
Alt-H 
Alt-O 

DESCRIPTION 
Code timing toggle 
Screen swap toggle 
Copy previous line 
Copy previous line plus return 
Display alias definitions 
Set pause mode 
Display record definitions 
Display symbols 
Call trace 
Display user screen 

Since the Periscope defaults duplicate Alt key assignments, 
you may want to assign Fl through FlO in other ways, using 
aliases Fl - F9, and FO. If you define FO through F9 via ali­
ases, the alias definitions will override the default function 
key assignments . Please see the description of RS in Section 
7.5 and the EA command in Chapter 9 for more informa­
tion on aliases . 

8.5 FUNCTION KEYS Page 93 



8.6 SHORTCUT KEYS AND KEYBOARD ASSIGNMENTS 

AFl-AF9, and AFO - Use to execute Fl through FlO. 

! CA-!CZ - Use to execute Ctri-A through Ctrl-Z. 

!AA-!AZ - Use to execute Alt-A through Alt-Z. 

!Al- !A9 - Use to execute Alt-1 through Alt-9. 

Alt-3 - Toggle the vertical 80386 register display on and off. 
You must use at least one window for this key sequence to 
have any effect. 

Alt-A- Display the alias definitions. 
Place the cursor at the beginning of the command line to dis­
play all aliases. To display alias names that start with certain 
characters, enter the characters, then press Alt-A. For exam­
ple, to display all alias names starting with the letter C, type 
C at the start of a command line, then press Alt-A. Be sure 
not to enter any spaces before or after the characters . 

Alt-B - Toggle printer double spacing on and off when 
Ctrl-P is used. 

This has no effect when you use Shift-PrtSc . 

Alt-C- Copy the remainder of the previous command line 
into the current command line. 

This copies up to, but does not include the carriage return. 
The command line is not added to the circular edit buffer 
again. 

Alt-D - Copy the remainder of the previous command 
line into the current command line and add a carriage 
return at the end. 

For repetitive commands, you can use Alt-D. 

Alt-E - Display the record definitions. 
Place the cursor at the beginning of the command line to dis-

Page 94 8.6 SHORTCUT KEYS AND KEYBOARD ASSIGNM ENTS 



play all record definitions. To display record definitions that 
start with certain characters, enter the characters, then press 
Alt-E. For example, to display all record definitions starting 
with PS, enter PS at the start of the command line and 
press Alt-E. Be sure not to enter any spaces before or after 
the characters .  

Alt-G - Select one of three pause modes: Pause on; 
Pause/clear on; and Pause oft'. 

The Pause on mode displays a message when the screen 
is full ,  then waits for you to press a key before it scrolls an­
other screen full of information into view. Pause/c lear 
on differs from the Pause on mode in that it clears the 
screen after you press a key, then displays data from the top 
of the screen. This technique allows for much quicker updat­
ing of the second and subsequent screens, but loses the prior 
screen as soon as you press a key. The Pause off mode 
continually scrolls the non-windowed area of the screen. 
Periscope defaults to Pause on. It ignores the pause 
mode when the /E (echo) mode or Ctrl-PrtSc is active. 

Alt-H - Toggle call tracing on and oft'. 
When you enter this mode, Periscope displays the message 
Cal l trace on. Then when you enter a GA or a GT 
command, Periscope displays any CALL instructions exe­
cuted. It shows nested calls by leading spaces before the ad­
dress, up to a maximum of 1 6  levels deep. For example, part 
of the call trace of the FTOC program (using GT) is :  

1 7 0 D : 0 0 1 6  E 8 BD0 2 CALL -C HK S TK 

1 7 0 D : 0 0 7 2  E 8 A 9 0 5  CALL P R I NTF 

1 7 0 D :  0 6 3 0 E 8 BD 0 1 CALL S TBUF 

1 7 0 D : 0 6 4 0  E 8 5 1 0 3 CALL -OUTPUT 

1 7 0 D : 0 9 9 A E 8 3 9 F 9  CALL -C HKSTK 

This mode works best on a dual-monitor system. When a 
procedure label or source code is shown along with the disas­
sembled call , the label or source code is correctly indented, 
but the associated call is not. When you turn this mode off, 
Periscope displays the message Call trace o f f .  

8 . 6  SHORTCUT KEYS A N D  KEYBOARD ASSIGNMENTS Page 95 



Alt-1 - Display the address and name of the symbol table 
entries. 

Place the cursor at the beginning of the command line to dis� 
pJay all symbols .  To display symbols that start with certain 
characters, enter the characters, then press Alt-1. For exam­
ple, to display all symbols starting with the letter A, type A 
at the start of a command line, then press Alt-1. Be sure not 
to enter any spaces before or after the characters. 

When Periscope displays local code or local data symbols, it 
places an asterisk immediately after the address. When it dis­
plays a symbol that is not currently loaded (using PLINK or 
.RTLink), it places it in parentheses . When you enter a line 
number, enter the full name. 

To display all symbols in a segment, enter I <number >, 
where <number > is  the segment, then press Alt-1. To dis­
play all symbols at a specific address, enter I <addre s s >, 
where <addres s >  may be any of the legal address for­
mats , then press Alt-1. To display stack data variables, enter 
I I [ <name> 1 ,  where the optional <name > is the name of 
the procedure, then press Alt-1. Stack data variables are only 
displayed when you use I I .  

Alt-L - Toggle the display of commands generated by the 
menu system. 

Alt-M - Activate Periscope's menu system (assumes you 
enabled it when you ran CONFIG). 

Alt-N - Toggle screen swap on and off when using 
Periscope on a single monitor. 

Page 96 

This has no effect when you use the I A, I AD, or I AV in­
stallation options. When off, this mode keeps Periscope from 
displaying the program' s  screen when you use a Jump or 
Trace command. If you're tracing code that doesn't modify 
the display, you may want to turn screen swap off to avoid 
the ' flash' caused by the restoration of the program's  screen 
during each Jump or Trace command. Be sure to turn screen 
swap back on before executing code that will cause the pro-

8.6 SHORTCUT KEYS AND KEYBOARD ASSIGNM ENTS 



gram under test to output to the screen. If screen swap is off 
when a Go or Quit command is used, Periscope swaps the 
screen anyway. 

Alt-O - Switch from Periscope's screen to the program's 
screen when using only one monitor. 

If you used the I A , I AD, or I AV installation option or if 
screen swap is off, this has no effect. To return to Peri­
scope' s screen from the program' s screen, press any key. 

Alt-P - Generate a form feed to the parallel printer. 

Alt-R - Toggle the vertical register display on and ofT. 
You must use at least one window for this to have any effect. 

Alt-S -. Toggle the vertical windowed stack display on and off. 
You must use at least one window for this to have any effect. 

-- Alt-T - Toggle code timing on and off. 
When you enter this mode, Periscope displays the message 
Code timing on. Periscope times your code ' s  execution 
in increments of 8 3 8  nanoseconds (the standard 55 millisec­
ond timer-tick divided by 64K), and displays the timed value 
as a decimal number. The maximum event length you can 
time is 655 ,359,999 times 838  nanoseconds , or approxi­
mately nine minutes. Periscope uses 1/0 ports 40H and 43H. 

This method is very accurate, except for very short duration 
events of less than 20 to 30 ticks. If Periscope displays a 
time of less than 20 to 30 ticks or displays N I A, run the 
stand-alone pmer test program (available in the UTILS SIG 
of our BBS) or time the code multiple times and take an aver­
age. 

To tum code timing off, press Alt-T. Periscope displays the 
message Code t iming off.  Note that your code runs at 
full speed when code timing is on. Use of the GA or GT 
commands turns the code timing off. Code timing can con­
flict with the · IK : 1 installation option, since this option 
turns the system timer off while you're in Periscope. 

8.6 SHORTCUT KEYS AND KEYBOARD ASSIGNMENTS Page 97 



Alt-W - Toggle the current window from the Data 
window to the Watch window to the Disassembly window. 

The current window has an up arrow in the separator line fol­
lowing the window and a double separator line. 

Ctri-B - Set a code breakpoint on the instruction at the 
top of the Disassembly window. 

If a breakpoint is already set, clear it. When using overlays , 
be sure to set breakpoints at a symbol or source line. 

Ctrl-Break - Cancel the current Periscope command. 

Ctri-E - Move the source disassembly display to the end 
of the source file. 

If the source file is too big for its buffer, Ctrl-E will not go 
all the way to the end of the source file. 

Ctrl-G - Go to the address shown at the top of the 
Disassembly window. 

Ctrl-PrtSc or Ctri-P - Toggle printer echo of screen 
output on and off. 

Any control codes or special characters other than carriage 
return and line feed are suppressed. Only the non-windowed 
area of the screen is printed. 

Ctri-R - Set the current instruction (CS :IP) to the 
instruction at the top of the Disassembly window. 

Ctrl-S - Suspend output until another key is pressed. 

Ctrl-T - Move the source disassembly display to the 
beginning of the source file. 

PadMinus (gray minus key on numeric pad) - Move 
backward one line in the current window. 

To enter a minus sign, use the other minus key. 

Page 98 8.6 SHORTCUT KEYS AND KEYBOARD ASSIGNMENTS 



Pad.Pius (gray plus key on numeric pad) - Move forward 
one line in the current window. 

To enter a plus sign, use the other plus key. 

PgDn - Page forward through the current window. 

PgUp - Page backward through the current window. 

Semi-colon - A  pseudo carriage return. 
Use the semi-colon to enter multiple commands on one line. 
For example, if you're tracing through a program that re­
quires repetitive Go and Enter commands, you could enter 
G NEWPAGE ; EW PAGENO 0 to go to the procedure 
NEWPAGE and modify memory starting at PAGENO. After 
you enter the line once, you can use Alt-D to repeat it. 

Shift-PrtSc - Print the entire screen to the parallel printer. 
Be careful if control codes are displayed on the screen with 
the Display or Xlate commands. Use Ctrl-PrtSc to avoid 
output of control codes to the printer. t 

8.6 SHORTCUT KEYS AND KEYBOARD ASSIGN M ENTS Page 99 



Page 1 00 8.6 SHORTCUT KEYS AN D  KEYBOARD ASSIGNMENTS 



c H A p I E 8 N N E 

Command 
Reference 

• Commands 

T
his chapter describes in detail all Periscope (/EM and 
/32) commands, except those that are only available 
when you have the Model IV hardware installed. 

Please see the Model IV manual for details on Model IV -spe­
cific commands. See Chapter 8 for a summary of all com­
mands and other related information, and Appendix C for a 
summary of the differences between Periscope/EM and Peri­
scope/32. 

1 0 1  



9.1 COMMANDS 

Command: help (?) 

Syntax: ? [ <command> ]  

Description:  Use this command to display help on Peri­
scope' s commands . If the help file is not available, it dis­
plays a command summary. 

Examples: 

? displays a command summary. 

? DD displays help for the Display Double word command 
when the on-line help file is loaded. 

Command: Assemble to memory (A) 

Syntax: A [ <address > ]  

1 02 

Description: Use this command to assemble instructions to 
memory. 

To use the in-line assembler , enter A [ < addres s > ]  at 
the Periscope prompt. Periscope displays the specified 
< addres s > , or if you do not enter an address, it displays 
CS:IP. Enter the instructions to be assembled and press re­
turn. To terminate the assembly, press return when the cur­
sor is at the beginning of a new line. 

The assembler supports all of the real-mode opcodes up 
through the 80286 and 80287. It does not support the protect 
mode opcodes of the 80286, 80386, and later. If you use the 
LOCK prefix, place it on a separate line preceding the in­
struction it affects . 

Periscope supports various forms of the opcodes, including 
synonyms such as JE and JZ, etc. There are two special 
cases: String primitives such as MOVS must explicitly refer-

Command: help (?)  



ence a byte or word (MOVSB or MOVSW), and you must 
enter a far return as RE1F. 

Jump or call instructions generate the shortest form of call 
for the address specified. When referencing memory, be sure 
to use brackets around the address field to differentiate it 
from a direct reference. 

When using symbols,  you may precede the symbol name 
with a period. If you are referencing the contents of a sym­
bol, be sure to put the symbol name in brackets (e.g. ,  MOV 
AX ,  [ PAGENO ] ). To get the offset of a symbol into a regis­
ter, do not use the brackets (e.g. ,  MOV AX ,  PAGENO) . You 
may also use symbols as arguments to JMPs and CALLs. 

Periscope also supports the DB pseudo-op, allowing you to 
enter hex or ASCII characters into memory. 

Example: 

To assemble an instruction at 1 234:5678 to jump to the sym­
bol NEWPAGE, enter A 12 3 4 : 5 6 7 8  and press return. 
Then enter JMP NEWPAGE and press return. Press return 
again to exit the in-line assembler. 

Command: Assemble then Unassemble (AU) 

Syntax: AU [ < addres s >  1 

Description : Use this command to assemble then disassem­
ble an instruction. 

Example: 

To assemble an instruction at CS :IP to move the value of the 
symbol TOTMEM to register AX, enter AU and press re­
turn. Then enter MOV AX ,  [ TOTMEM] and press Enter. 
Periscope disassembles the instruction and displays the next 
prompt. Press Enter again to exit. 

Command :  Assemble then Unassemble (AU) 1 0 3  



Command: software Breakpoints All {BA) 

Syntax : BA [ ? ]  [ * ]  [ + ]  [ - ]  [A ]  

1 04  

Description : Use this command to display ( ? ), clear (*), en­
able ( + ), ancVor disable ( - )  all currently-set breakpoints, 
ancVor to toggle (A) the monitor breakpoint AND mode for 
the currently-set software breakpoints. If you enter BA 
only, it displays all currently-set breakpoints . It displays dis­
abled breakpoints with a leading minus sign. 

The AND mode ANDs the results of monitor breakpoints in 
different classes . Multiple breakpoints within a class (i .e. 
multiple register breakpoints) are still ORed together, but the 
result of one class is ANDed with the results of other classes. 

Each class of currently-set monitor breakpoints must indi­
cate a 'hit' for a breakpoint to be generated when the AND 
mode is on. For example, if the BB, BI ,  and BM break­
points are all set and enabled, all must be true for a break­
point to be generated when AND mode is on. If multiple 
breakpoints are set within a class, such as two register break­
points, only one true condition within the class is needed to 
make the entire class true. 

Si nce RUN d isables al l breakpoints , use th is command to re­
enable previously-set breakpoi nts after us ing RUN.  

Examples: 

Assume that a Byte breakpoint is set for the symbol LINE­
COUNT equal to 38H, and that a Register breakpoint is set 
for CX less than 5 .  No other breakpoints are set. 

BA or BA ? displays both breakpoints : 
BB LINECOUNT EQ 3 8  and BR CX LT 0 0 0 5 .  

BA * clears both breakpoints. 

BA + enables both breakpoints. (It enables Line and eXit 
breakpoints only if you have previously set them with BL 
+ or BX + and then disabled them.) 

BA - disables both breakpoints . (It disables Line and eXit 
breakpoints only if you have previously set them with BL 

Command: software Breakpoints All (BA) 



+ or BX +.)  

Assume you want to watch for a RETurn where SP is greater 
than or equal to the current value : 

BA * A; BX + ;  BR SP GE SP clears all breakpoints, 
sets AND mode on, sets the exit breakpoint on, and sets a 
breakpoint when SP is greater than or equal to its current 
value. 

Command: Breakpoint on Byte (BB) 

Syntax: BB [ < addres s >  < test > <byte> ] [ ? ]  
[ * ]  [ + ]  [ - ]  [ • • •  ] 

Description: Use this command to set a monitor breakpoint 
when a byte of memory meets a test. 

You may set up to eight byte breakpoints at one time. Multi­
ple breakpoints may be set on a single input line, along with 
the breakpoint clear (*), display ( ? ), enable (+) , and disable 
( - )  functions. If any of the tests pass, a breakpoint is taken. 

If you do not specify a segment in the address, Periscope 
uses the current data segment. This breakpoint stops execu­
tion of a program on the instruction following the instruction 
that changed the specified byte of memory. 

Periscope remembers these breakpoints until you clear them. 
Re-enter a previously set breakpoint to clear it and display 
the message Breakpoint c leared. Be careful to dis­
play all breakpoints before using the Go command to make 
sure the breakpoints you've got are the ones you want. 

Examples: 

BB LINE COUNT EQ 3 8 sets a Byte breakpoint for the 
memory location corresponding to LINECOUNT. 

BB * DS : 123  GT FO  ? clears all Byte breakpoints , 
sets one, and then displays the Byte breakpoint. 

BB or BB ? displays all Byte breakpoints . 

Command :  Breakpoint on Byte (BB) 105  



Command: Breakpoint on Code {BC) 

1 06  

Syntax: B C  [ <addres s > ]  [ ? ]  [ * ]  [ + ] [ - ]  
[ ! <number > ]  [ • • •  ] 

Description : Use this command to set a code breakpoint 
when an instruction executes. You can specify a software 
pass count by entering a number from 1 to FFFFH after 
the exclamation mark. 1his command performs the same 
function as addresses you enter with the Go command, ex­
cept that these breakpoints are "sticky" whereas addresses 
you enter with the Go command are temporary. 

If you do not specify a segment in the address, this command 
presumes CS. You can use any form of the Go command to 
activate Code breakpoints, but only the GM command acti­
vates the software pass counter. 

You can enter multiple breakpoints on a single input line 
along with the breakpoint clear (*) ,  display (? ) ,  enable ( + ), 
and disable ( - )  functions. 

To clear a previously set breakpoint and display the message 
Breakpoint cleared, re-enter it. Be careful to display 
all breakpoints before using the Go command to make sure 
the breakpoints you've got are the ones you want. 

When you set a code breakpoint, Periscope highlights the in­
struction in the Disassembly window unless it is the current 
line, in which case it places an arrow at the start of the line. 

Examples: 

BC PRINTLINE sets a Code breakpoint for the memory 
location corresponding to PRINTLINE. 

BC * cs : 12 3 ? clears all Code breakpoints, sets one, 
and then displays the Code breakpoint. 

BC { 0 : 2 1  * 4 sets a Code breakpoint at the entry point for 
Interrupt 21 H. 

BC or BC ? displays all Code breakpoints . 

Command : Breakpoin t on Code (BC) 



Command: Breakpoint on 80386 Debug Registers (BD) 

Syntax: BD [ < addres s > ]  [ L<byte> R I W I X ] 
[ ? ]  [ * ]  [ + ]  [ - ]  [ • • •  ] 

Description : Use this command to take advantage of the 
80386 debug registers. You can set up to four limited real­
time hardware breakpoints on instruction execution, memory 
writes, or memory access (read or write). 

In the syntax, <byte> is 1, 2 ,  or 4 ,  representing a byte, 
word, or double word respectively. The R, w, and x indi­
cate read/write, write, and execute respectively. The segment 
portion of the <address > defaults to DS . Be sure to 
override it as needed. 

Be sure to set execution breakpoints on the first byte of the 
instruction, including any prefixes. For read/write break­
points, proper alignment is necessary if you want to avoid 
missed breakpoints . If the length is 2 ,  the address should be 
on a word boundary. Similarly, if the length is 4 ,  the ad­
dress should be on a double word boundary. 

To use this command, you must have an 80386 or later CPU 
and you must have indicated that you want to use the debug 
registers when you configured Periscope (see Chapter 3). 

Do not reboot the system while a BD breakpoint is in ef­
fect, since it can hang the system. If the breakpoint is hit dur­
ing the boot process, the system tries to access Periscope, 
which is no longer resident. In general, you should clear or 
disable BD breakpoints before your program terminates. 

Examples: 

BD F 0 0 0 : FEED sets a breakpoint on instruction execution 
in ROM. 

BD 0 : 4 6 c L2 w sets a breakpoint on a write to the sys­
tem clock. 

Comm.and : Breakpoint on 80386 Debug Regi sters (BD) 107 



Command: Breakpoint on Flag (BF) 

Syntax: BF [ < flag > ]  [ ? ]  [ * ]  [ + ]  [ - ]  

Description : Use this command to set a monitor breakpoint 
on a single < flag >  register value. For example, to check 
for unsuccessful DOS calls where the carry flag is set, set a 
code breakpoint at the return point, enter BF CY to set a 
flag breakpoint, and enter GM to begin execution. 

You can set only one flag breakpoint at any time, along with 
the breakpoint clear ( * ) , display ( ?  ) , enable ( + ) , and disable 
( - )  functions. 

Periscope remembers these breakpoints until you clear them. 
Be careful to display all breakpoints before using the Go 
command to make sure the breakpoints you' ve got are the 
ones you want. 

PeriscopefJ2 users: Periscope/32 does not support break­
points on the IOPL status, aijhough it supports t he 
other  32-bit flags. 

Examples: 

BF ov sets a breakpoint when the overflow flag is on. 

BF - disables the flag breakpoint. 

Command: Breakpoint on Interrupt (BI) 

1 08  

Syntax: BJ: [ <byte> ]  [ ? ]  [ * ]  [ + ]  [ - ]  [ # ]  
[ . . .  ] 

Description : Use this command to set a monitor breakpoint 
when a software interrupt executes. You' ll get to the next oc­
currence of any software interrupts from 0 to FFH. 

Enter the interrupt number as a <byte> .  You can enter 
multiple interrupt numbers on a single line, along with the _ 
breakpoint clear (*) ,  display (? ) ,  enable (+) , and disable ( - )  
functions. To set breakpoints on all interrupts, enter BJ: # .  

Command: Breakpoint o n  Rag (BF) 



If the interrupt of interest is in RAM, don't use this com­
mand. Use a Go command instead to get to the interrupt at 
full speed. For example, to get to Int 2 1H, enter G 
{ 0 : 2 1* 4 } .  

Periscope remembers these breakpoints until you clear them. 
Re-enter a breakpoint to clear it and display the message 
Breakpoint cleared. Be careful to display all break­
points before using the Go command to make sure the break­
points you've got are the ones you want. 

Examples: 

BI  * 13 clears all Interrupt breakpoints and then sets a 
breakpoint on Interrupt 1 3H. 

BI # sets all Interrupt breakpoints. 

BI or BI  ? displays all Interrupt breakpoints . 

Command: Breakpoint on Line (BL) 

Syntax: BL [ ?  ] [ * ] [ + ]  [ - ] 

Description: Use this command to set a monitor breakpoint 
at the next source code line. This breakpoint gets you to the 
next instruction that corresponds to a source line of a pro­
gram. You may want to use the JL command instead 

If your program is executing and you press the Break-out 
Switch, chances are very good that you will stop the pro­
gram in DOS, in BIOS, or in a library routine. This break­
point is a convenient (but slow) method of getting back to 
the source program. It requires source line numbers to be in 
the symbol table. 

After you set the Une breakpoint, enter GA or GT to exe­
cute to the next source line. Since this command can be very 
slow, use a G command to get a known execution address 
if possible. 

You must turn on Une breakpoints for the first time with 

Command : Breakpoint on U ne {BL) 109 



BL + . After you do that, you can then use BA to enable and 
disable the Line breakpoint. Periscope remembers this break­
point until you clear it. 

You may also use the SR and sc commands to analyze 
the stack to determine the next source l ine. 

Example: 

BL + turns the Line breakpoint on so that a subsequent 
GA or GT command will stop when it reaches the next in­
struction that corresponds to a source code line. 

Command: Breakpoint on Memory (BM) 

1 10 

Syntax: BM [ <addres s >  < addres s >  R and/or W 
and/or X ]  [ ? ]  [ * ]  [ + ]  [ - ]  [ • • •  ] 

Description: Use this command to set a monitor breakpoint 
when a range of memory will be read, written, and/or exe­
cuted. 

The two addresses may have different segments, but the sec­
ond <address > must not be lower in memory than the 
first <address > .  If you do not specify a segment in the 
address, Periscope uses the current data segment. You may 
use a range instead of the two addresses. You may also sub­
stitute registers and valid symbols (see the < addres s >  
command parameter in Section 8 . 3) .  

You may set up to eight breakpoints at one time. The read 
(R) or write (W) breakpoints will occur only if a read or write 
starts in the specified range. The execute (X) breakpoint will 
occur only if CS :IP is in the specified range. If any of the 
tests pass, a breakpoint is taken. This breakpoint stops execu­
tion of the program on the instruction that will read, write, or 
execute in the specified range of memory. 

This breakpoint will not detect a change caused by code that 
is not traced. It will never see changes made by a hardware 
interrupt. If you're using the GT command, be sure that the 
you' re tracing the appropriate interrupts. 

Command: Breakpoint on Memory (BM) 



You may enter multiple breakpoints on a single input line, 
along with the breakpoint clear (*) ,  display (? ) ,  enable ( + ), 
and disable ( - )  functions. Periscope remembers these break­
points until you clear them. Re-enter a breakpoint to clear it 
and display the message Breakpoint cleared. Be 
careful to display all breakpoints before you use the Go com­
mand to make sure the breakpoints you've got are the ones 
you want. 

Periscope/32 users: Periscope/32 assumes the h igh and l ow 
selectors are the same. 

Examples: 

BM DATASTART DATAEND W sets a Memory breakpoint 
for writes from DATASTART through DATAEND. Any in­
struction that writes to this range of memory causes a break­
point to be taken, before the instruction executes. 

BM * SS : SP SS : FFFF RW ? clears all Memory break­
points , sets a breakpoint to trap any reads or writes to the 
memory from SS:SP (the current stack position) to SS :FFFF 
(the top of the stack segment), and displays the Memory 
breakpoint. 

BM or BM ? displays all Memory breakpoints. 

Command: Breakpoint on Port (BP) 

Syntax: BP [ <port > [ <port > ]  I and/or 0 ]  [ ?  ] 
[ * ]  [ + ]  [ - ]  [ • • •  ] 

Description: Use this command to set a monitor breakpoint 
when a range of 1/0 ports will be read and/or written as the 
result of an instruction. 

The second port must be greater than or equal to the first 
port. You can set up to eight port breakpoints at one time. A 
breakpoint will occur only if an IN or an OUT occurs to a 
port in the specified range. If any of the tests pass, a break­
point is taken. This breakpoint stops execution of a program 

Command : Breakpoin t on Port (BP) 1 1 1  



on the instruction that will read or write the specified range 
of ports. 

You may set multiple breakpoints on a single input line, � 

along with the breakpoint clear (*) ,  display ( ?), enable ( + ), 
and disable ( - )  functions. Periscope remembers these break-
points until you clear them. Re-enter a previously set break-
point to clear it and display the message Breakpoint 
c leared. Be careful to display all breakpoints before using 
the Go command to make sure the breakpoints you've got 
are the ones you want. 

Examples: 

BP 3 1 0 3 1F :r sets a Port breakpoint for ports from 3 10  
to 3 1F. Any instruction that reads from this range of  ports 
causes a breakpoint to be taken, before the instruction is exe­
cuted. 

BP * 3 0 4  o ? clears all Port breakpoints, sets a break­
point to trap any writes to port 304, and displays the Port 
breakpoint. 

BP or BP ? displays all Port breakpoints . 

Command: Breakpoint on Register (BR) 

1 12 

Syntax: BR [ < regi ster >  <tes t >  <number > ]  
[ ? ]  [ * ]  [ + ]  [ - ]  [ .  0 . ]  

Description : Use this command to set a monitor breakpoint 
when a <register> meets a <tes t >. 

You may set up to one test per register, on any of the 8-bit or 
1 6-bit registers except FS and GS, at one time. If any of the 
tests pass, a breakpoint is taken. This breakpoint stops execu-
tion of a program on the instruction following the instruction � 

that changed the specified register. 

You can set multiple breakpoints on a single input line, 
along with the breakpoint clear (*) ,  display (? ) ,  enable ( + ) , 
and disable (-) functions. 

Command : Breakpoint on Register (BR) 



Periscope remembers these breakpoints until you clear them. 
Re-enter a previously-set breakpoint to clear it and display 
the message Breakpoint c leared. Be careful to dis­
play all breakpoints before using the Go command to make 
sure the breakpoints you've got are the ones you want. 

Periscope/32 users: Periscope/32 does not yet support set­
ti ng breakpoi nts on the 32-bit registers. 

Examples: 

BR CX EQ 0 12 3  sets a breakpoint when register CX is 
equal to 1 23H. 

BR * ES NE DS ? clears all Register breakpoints, sets 
one, and then displays it. DS is used for its current value 
only. 

BR or BR ? displays all Register breakpoints. 

Command: Breakpoint on User test (BU) 
Syntax: BU [ <number > ]  [ ? ]  [ * ]  [ + ]  [ - ] 
[ . . .  ] 

Description: Use this command to enable a user-written 
monitor breakpoint. The user breakpoints permit breakpoint 
tests not provided by Periscope. The <number > may vary 
from 1 to 8 ,  indicating one of eight possible user break­
points. 

To use this breakpoint, install Periscope with the / I  instal­
lation option, then install a program similar to USER­
EXIT.ASM described in Section 7. 10 before you run the 
debugger. When you enter a User breakpoint command, Peri­
scope displays an error if it cannot find the signature of the 
user exit code. The user routine must set register AL to 1 if a 
breakpoint is to be taken before returning control to Peri­
scope. Otherwise, no breakpoint will be taken. 

You can set multiple breakpoints on a single input line, 

Command : Breakpoint on User test (BU) 1 1 3  



along with the breakpoint clear (*) ,  display (? ) ,  enable ( + ), 
and disable ( - ) functions. Periscope remembers these break­
points until you clear them. Re-enter a previously-set break­
point to clear the breakpoint and display the message 
Breakpoint cleared. Be careful to display all break­
points before using the Go command to make sure the break­
points you've got are the ones you want. 

Examples: 

Assuming that a user-written interrupt handler has been in­
stalled using INT 60H and thatPeriscope was installed with 
the I I : 6 0 installation option: 

BU 1 enables User breakpoint number 1 .  

BU 9 returns an error since the User breakpoint range is 
from one to eight. 

BU or BU ? displays all User breakpoints . 

Command: Breakpoint on Word (BW) 

114 

Syntax: BW [ < addres s >  < test > <number> ] 
[ ? ]  [ * ]  [ + ]  [ - ]  [ .  • •  ] 

Description: Use this command to set a monitor breakpoint 
when a word of memory meets a test. 

You can set up to eight breakpoints at one time. If you do 
not specify a segment in the address, Periscope uses the cur­
rent data segment. If any of the tests pass, a breakpoint is 
taken. This breakpoint stops execution of a program on the 
instruction following the instruction that changed the speci­
fied word of memory. 

You can set multiple breakpoints on a single input line, 
along with the breakpoint clear (*) ,  display ( ?) ,  enable ( + ) , 
and disable (- ) functions. Periscope remembers these break­
points until you clear them. Re-enter a previously-set break­
point to clear it and display the message Breakpoint 
c leared. Be careful to display all breakpoints before using 

Command : Breakpoint on Word (BW) 



the Go command to make sure the breakpoints you 've got 
are the ones you want. 

Examples: 

BW CHARCOUNT EQ 12 3 4  sets a Word breakpoint for 
the memory location corresponding to CHARCOUNT. 

BW * DS : 123  GT S I  ? clears all Word breakpoints, 
sets one, and then displays it. SI is used for its current value 
only. 

BW or BW ? displays all Word breakpoints. 

Command: Breakpoint on eXit (BX) 

Syntax: BX [ ? ] [ * ] [ - ] [ + ]  

Description: Use this command to set a monitor breakpoint 
on return from a subroutine or interrupt handler. 

With this breakpoint set, execution continues until Periscope 
finds a RET, RE1F, or IRET instruction. It is a convenient 
method of executing until the program is about to transfer 
control to another procedure. 

You must tum on the eXit breakpoint for the first time with 
BX + . You can then disable and enable it with the BA com­
mand. Periscope remembers this breakpoint until you clear it. 

Examples: 

BX + turns the eXit breakpoint on so that a subsequent 
GA or GT command will stop when a RET, RE1F, or 
IRET instruction occurs. 

BX or BX ? displays the status of the eXit breakpoint. 

Command: Compare (C) 

Syntax : C < range> < addres s >  

Command : Breakpoin t on eXit (BX) 1 1 5  



1 16 

Description: Use this command to compare two blocks of 
memory a byte at a time. 

Periscope displays the address and value of the byte from the 
first block of memory and the value and address of the corre­
sponding byte from the second block of memory, only when 
the bytes are different. It displays nothing for bytes that 
match. 

Since this command accepts two addresses as input, the two 
blocks of memory may be in different segments. If you do 
not specify a segment, Periscope uses the current data seg­
ment. The length part of the <range > parameter indicates 
how much memory you want to compare. 

For example, assume that you want to compare memory loca­
tion 3000:0000 with 3000:0010 for 8 bytes. Enter 
C 3 0 0 0 : 0 L 8 3 0 0 0 : 1 0 .  The result might be: 

3 0 0 0 : 0 0 0 0  8 8  0 0  3 0 0 0 : 0 0 1 0  

3 0 0 0 : 0 0 0 1  0 2  6 6  3 0 0 0 : 0 0 1 1  

3 0 0 0 : 0 0 0 3 0 4  2 7  3 0 0 0 : 0 0 1 3  

The above display shows three bytes that are different. Each 
line shows the first address, the value of the frrst address, the 
value of the second address, and the second address. Since 
the other five lines are not displayed, the values of these 
bytes are the same. 

Periscope/32 users: Lengths can be greater than 64K in re­
mote mode. 

Examples: 

C DS : S I  L 1 0 0  ES : DI compares lOOH bytes starting 
at DS :SI with lOOH bytes starting at ES :DI. 

c 123  L ex 4 5 6 compares memory starting at DS : 1 23 
with memory starting at DS :456. The number of bytes com­
pared is the current value of register CX. 

c FCBl L 2 5  FCB2 compares memory starting at the 
symbol FCB 1 with memory starting at the symbol FCB2 for 
25H bytes. 

Command : Compare (C) 



Command: Display using current format (D) 

Syntax: D [ <range> ]  

Description : Use this command to display a block of mem­
ory in the current display format. 

When you install Periscope, the Display command defaults 
to a Byte format. Subsequent Display commands use the 
most recent explicit format. See both the descriptions of the 
various display formats on the following pages and the infor­
mation applicable to all display formats in the following 
three paragraphs. 

The syntax for all of the Display commands except DE 
and DR is very flexible. If you enter Dx , where x is the 
format, Periscope displays memory starting where the last . 
Display command left off. If you enter Dx <number>,  
Periscope presumes the <number > to be an offset, the 
segment to be DS, and the length to be SOH. If you enter Dx 
<number > < length>,  it presumes the <number> to 
be an offset and the segment to be DS. If you're using a Data 
window, the size of the window overrides the < length> 
parameter. 

When you' re not displaying information in a window and 
one or more lines in the middle of the display are multiple 
occurrences of the same number, Periscope suppresses the 
line(s) and displays a message of the form * NNNN 
Lines Of XX Skipped * in place of the line(s). 
NNNN is the number (in hex) of lines skipped and XX is 
the byte value found in all bytes of the skipped lines. 

If you're using a Data window and the window is active, you 
can use the PgUp, PgDn, Pad.Minus, and PadPius keys to 
move forward and backward through memory. 

Examples: 

D displays memory starting where the last Display com­
mand left off. 

D ES : DI displays memory starting at ES :DI for a length 
of 80H. 

Co mmand: Display u sing current format (D)  1 1 7 



D LINECOUNT L 1 displays memory starting at the sym­
bol LINECOUNT for a length of 1 using the current format. 

Command: Display using ASCII format {DA) 

Syntax: DA [ < range> ] 

Description : Use this command to display a block of mem­
ory in ASCII . 

Each line of the display shows the starting segment and off­
set and up to 64 bytes of ASCII characters. This command 
displays all characters as is, except for the control characters 
nul, backspace, tab, carriage return, and line feed. It converts 
nuls to spaces and the other three control characters to peri­
ods. It begins a new line when it finds a CRILF. When it 
finds a tab character, it moves the output position to the next 
tab stop. 

If you're using a Data window with this format, the PgUp 
and PadMinus keys do not keep the display aligned since 
the data is variable length. 

Examples: 

DA displays memory starting where the last Display com­
mand left off. 

DA FILENAME L2 0 displays memory starting at the sym­
bol ALENAME for a length of 20H bytes. 

DA ES : DI displays memory starting at ES :DI for a length 
of 80H. 

Command: Display using Byte format (DB) 

Syntax: DB [ < range> ]  

1 1 8 

Description : Use this command to display a block of mem­
ory in hex and ASCII . 

Command :  Display us ing ASCI I  format (DA) 



The display shows the starting segment and offset, up to 16  
bytes , and their ASCII representation for each line. A dash 
appears between the eighth and ninth bytes for readability. 

This command ignores the high-order bit for the ASCII dis­
play, i.e., it ands the original byte with a value of 7FH. Also, 
it displays any bytes from zero to lFH as periods. 

Examples: 

DB displays memory starting where the last Display com­
mand left off. 

DB LINECOUNT L 1 displays the byte at the symbol 
LINECOUNT. 

DB ES : DI displays memory starting at ES :DI for a length 
of 80H. 

Command: Display using Double word format (DO) 

Syntax: DD [ < range> ]  

Description : Use this command to display a block of mem­
ory in double word format. 

This format is useful for examining data that is stored as a 
word offset followed by a word segment. Each line of the 
display shows the starting segment and offset and up to four 
pairs of segments and offsets. 

This command shows your program' s  interrupt vectors for 
interrupts 8 ,  9 ,  lOH, 1 5H, 1 6H, 1 7H, lBH, lCH, 23H, and 
24H, with an asterisk after the doubleword indicating this is 
a virtual value. The other display commands show the real 
values, which are Periscope' s  current values. 

Periscope/32 users: The doubleword format is e ight d ig its 
separated i n  the middle by a comma. 

Command : Display u sing Double word fo.rmat (DD) 1 1 9  



Examples: 

DD displays memory starting where the last Display com­
mand left off. 

DD 0 : 0 L 2 0 displays the interrupt vectors 0 through 7 .  

Command: Display Effective address (DE) 

Syntax: DE 

1 20  

Description : Use this command to display the effective ad­
dress of any reads or writes performed by the current instruc­
tion. It has no arguments. 

The display shows the address, in Byte format, of any reads 
or writes performed by the instruction at CS:IP. If you've set 
up a Data window, the window displays the current effective 
address automatically before each instruction executes. 

If the current instruction reads memory or reads and writes 
memory, this command displays the effective address of the 
read. If the instruction writes memory, it displays the effec­
tive address of the write. 

Examples: 

If the current instruction is LODSB, the DE command dis­
plays memory in Byte format starting at the read address, 
DS:SI .  

If the current instruction is MOV [ 0 12 3 ] , AX, the DE 
command displays memory starting at DS : 1 23H. 

If the current instruction is MOVSW, the DE command dis­
plays memory starting at DS :SI but does not display the 
write address of ES :DI. 

Command : D isplay Effective address (DE) 



Command (Periscope/32 only): Display GlobaVIocal descriptor 
table (DG) 

Syntax: DG [ < range> ]  

Description: Use this command to display the global (GDT) 
or local (LDT) descriptor table. 

Periscope/32 treats the first address in the < range> as a 
selector number from 0 to FFFF. The optional second ar­
gument is the ending selector. If bit two of the selector is 
zero, Periscope/32 displays entries from the GDT. Other­
wise, it displays entries from the LDT. 

Example: 

One line of a sample display below shows the selector, base, 
limit, access rights byte, P (present), A (accessed), G or L 
(GDT or LDT) , default privilege level, and type (Read/Write 
in this case). 

0 3 0  Bas 2 = 0 0 0 0 , 0 0 0 0  L i mi t =FFFF , FFFF AR= 9 3  PAG DPL= O Read/Wr i t e  

Command: Display using Integer format (DI) 

Syntax: DI [ < range> ] 

Description: Use this command to display a block of mem­
ory in unsigned integer (word) format. 

This · format is useful for examining data that is stored as an 
unsigned word integer. Each line of the display shows the 
starting segment and offset and up to eight decimal numbers. 
The number displayed may be from 0 to 6 5 5  3 5 .  

Examples: 

DI displays memory starting where the last Display com­
mand left off. 

DI DS : S I  L 2 0  displays memory starting at DS:Si for a 
length of 20H bytes . 

Command (Peri scope/32 only): Display Global/local descriptor table (DG)  1 2 1  



DI ARRAY displays memory starting at the symbol AR­
RAY. 

Command: Display using Long real format (DL) 

Syntax: DL [ < range> ]  

Description: Use this command to display a block of mem­
ory in long real (quad word) format. 

This format enables you to examine data that is stored as an 
eight-byte floating point number in 8087 (IEEE) format. 
Each line of the display shows the starting segment and off­
set and up to two numbers in scientific notation. 

Examples: 

DL displays memory starting where the last Display com­
mand left off. 

DL DS : S I L 2 0 displays memory starting at OS :SI for a 
length of 20H bytes. 

DL ARRAY displays memory starting at the symbol AR- , 
RAY. 

Command: Display using Number format (ON) 

Syntax: DN [ < range> ]  

1 22  

Description: Use this command to display a block of  mem­
ory in signed integer (word) format. 

This format enables you to examine data that is stored as a 
signed word integer. Each line of the display shows the start­
ing segment and offset and up to eight decimal numbers. The 
decimal numbers shown may vary from 0 to 3 2 7 6 7 (OH 
to 7FFFH) and from - 3  2 7 6 8 to - 1 (8000H to FFFFH). 

Command: Display using Long real format (DL) 



Examples: 

DN displays memory starting where the last Display com­
mand left off. 

DN DS : S I  L 2 0  displays memory starting at DS :SI for a 
length of 20H bytes. 

DN ARRAY displays memory starting at the symbol AR­
RAY . 

. Command: Display using Record format (DR) 

Syntax: DR [ ! ]  <address > < symbol >  

Description : Use this command to display a block of mem­
ory in an easy-to-read format using a previously-created re­
cord definition. 

I nt 2 0  C D  2 0  

Topmem 9 FF F  

L on g  Ca l l  9A 

DOS Furrc F 0 1 D : FEFO 

Term Ad dr 0 3 B 7 : 0 1 DC 

B rk Add r 0 3 B 7 : 0 1 4B 

Err Ad dr 0 3 8 7 : 0 1 5 6  

Cal l e r  

F i l e  Tb l 

0 3 B 7  

0 1  0 1  0 1  0 0  0 2  0 3  0 4  FF - F F  F F  F F  F F  F F  F F  F F  FF 

FF FF FF FF 

Env i r on O D8 E  

Las t St ac k  C 8 0 0 : 0 8 0 C  

F i l es 0 0 1 4 

F i l e Pt r O DA F : 0 0 1 8  

DOS Ver 05 00 

M 

FCB 1 0 0  2 0  2 0  2 0  2 0  2 0  2 0  2 0 -2 0  2 0  2 0  2 0  0 0  00 0 0  00 . 

FCB2 00 2 0  2 0  2 0  2 0  20  2 0  2 0 -2 0  2 0  2 0  2 0  00  0 0  00  0 0  . 

6 9  7A 6 5  2 0  i z e  

Figure 9-1 . Sample Display Using the DR Command 

This format enables you to examine data that is part of a re-

Command : Display u sing Record format (DR)  123 



cord, such as the PSP or an PCB,  and to define a structure. 
Each line of the display shows a field name and the data for 
the field in any display format supported by Periscope. You 
can display any area of memory using any record definition. 
When you use the optional exclamation point, the address of 
each field appears on the line before the field. 

To use a record format, a record definition (.DEF) file, must 
exist. RUN loads the record definitions from the .DEF file. 
You can add record definitions to the .DEF file using a text 
editor. See the sample file PS .DEF and the description of RS 
in Section 7 .5 .  

Enter DR ES : 0 PSP to get a display similar to Figure 9-
1 .  

\ PS P  

I nt 2 0 , b , 2  

Topmem , w1 2 

R e s . ,  + , 1 

Lon g Ca l l , b ,  1 

DOS F un c ,  d, 4 

Term Ad dr , d , 4  

Brk A dd r ,  d , 4 

Err A dd r , d , 4 

C a l l e r , w, 2 

F i l e Tb l ,  b ,  1 4  

Env i r on , w , 2 

Las t S t ac k ,  d, 4 

F i l es , w , 2  

F i l e Pt r , d , 4 

R es . , + , 8 

DOS V er , b , 2  

Res . r + ,  la 

FCB l ,  b ,  1 0  

F C B  2 , b , 1 4  

P ro gr am  S egme nt P re f i x  

DOS r e t ur n  

Amo un t o f  m emory in p ar ag ra ph s  

R es erve d  fo r DO S  

L on g  ca l l  t o  DO S  func t i on d i s pa tc he r  

C S : I P  o f  DO S  func t i on d i s pa tc he r  

C S : I P  o f  DO S  t e rm i n at e  addr e s s  

C S : I P  o f  Ct rl - B re ak exi t ad dr e s s  

C S : I P  o f  cr i t i c al e rr or exi t ad dr e s s 

P S P  o f  ca l l er 

F i l e  tabl e 

DOS 2 . 0 0  Envi ronm e n t  s e gm en t  

S S : SP a ft er l as t  DO S  ca l l  

F i l e  tabl e s i z e  

F i l e  tabl e po i n t e r  

R e s erve d  f o r  DO S  

DOS v e r s i on a ft er S et ve r  

R e s erve d  fo r DO S  

The f ir st F CB r e a d  f r om t he c ommand l in e  

The s ec on d  FC B re ad f ro m  th e comman d  l i ne 

Figure 9-2. Definition of the PSP from the File PS.DEF 

1 24 

The syntax for this command is less flexible than that of the 
other Display commands. You must enter an address and a 
record name. The address should include a segment, since 
the address used for this command is separate from the ad­
dress used for the other Display commands. 

Command : Display using Record format (DR) 



Examples: 

Assume that the records PSP and FCB are defined (as in the 
file PS .DEF) . 

DR cs : 0 PSP displays the PSP, using memory starting at 
CS:O. 

DR CS : S C  FCB displays the first FCB in the PSP, which 
starts at CS:5C. 

DR FCBl FCB displays the FCB starting at the address 
referenced by the symbol FCB 1 .  Note that the symbol table 
is used for the frrst symbol and the record definition table is 
used for the second symbol. 

Command: Display using Short real format {DS) 

Syntax: DS [ < range> ] 

Description: Use this command to display a block of mem­
ory in short real (double word) format. 

1bis format enables you to examine data that is stored as a 
four-byte floating point number in 8087 (IEEE) format. Each 
line of the display shows the starting segment and offset and 
up to two numbers in scientific notation. 

Examples: 

DS displays memory starting where the last Display com­
mand left off. 

DS DS : S I  L 10 displays memory starting at DS:Si for a 
length of 1 OH bytes. 

DS ARRAY displays memory starting at the symbol AR­
RAY. 

Command : Display u sing Short real format (DS) 125 



Command (Periscope/32 only}: Display TSS {DT} 

Syntax: DT 

dt 

Description: Use this command to display the task state seg­
ment (TSS). The display shows the task' s backlink selector, 
LDT selector, 1/0 Map Base, stack segment for privilege lev­
els 0, 1 ,  and 2, general registers, segment registers, and flags. 

Example: 

Li nk �o o o o  L DT S el ec to r� o o o o I / O  Ba se �0 0 6 8  
SS : E SP 0 �0 03 0 : 8 0 0 1 , 0 D9 8  1 �0 0 0 0 , 0 0 0 0  2 � 0 0 0 0 : 0 0 0 0 , 0 0 0 0  

EAx� o o o o , o o o o  E Bx �o o o o , o o o o  Ec x� o o o o , o o o o  EDx�o o o o , o o o o  

Es P� o o o o , o o o o  E I P � o o o o , o o o o  Es r � o o o o , o o o o  EDI �o o o o , o o oo F s - o o o o  
S S - 0 0 0 0  CS - 0 0 0 0  D S - 0 0 0 0  ES - 0 0 0 0 G S - 0 0 0 0  

EB P� O O O O , O O O O  E FL �O O O O , O O O O  S M  NR N N  NV U P  D I  P L  N Z  N A  PO N C  I O  V 8 6  

Command (Periscope/32 only}: Display interrupt descriptor table 
(DV} 

Syntax: DV [ < range> ]  

Description:  Use this command to display the interrupt de­
scriptor table. 

Example: 

One line of a sample display below shows the vector num­
ber, the gate type, address, the access rights byte, P (pre­
sent) , and the default privilege level. 

0 0 0 2  Int 0 0 2 8 : 8 0 0 l , C 5 3 0  AR= EE P DPL = 3  

Command: Display using Word format (DW} 

Syntax: DW [ < range> ] 

1 26 

Description : Use this command to display a block of mem­
ory in word format. 

Command ( Periscope/32 on ly) : Di splay TSS (DT) 



This format enables you to examine data that is stored as 
words rather than as bytes. It reverses out the 'back words ' 
style of storage used by the 8086 family. Each line of the dis­
play shows the starting segment and offset and up to eight 
words. 

Examples: 

DW displays memory starting where the last Display com­
mand left off. 

DW ss : SP FFFF displays the stack from SS :SP to the top 
of the stack segment. 

DW POINTER displays memory starting at the symbol 
POINTER. 

Command: Display using long i nteger format (OX) 
Syntax: DX [ < range> ] 

Description : Use this command to display memory in long 
integer (four-byte) format. This format enables you to exam­
ine data that is stored as an unsigned long integer. 

Each line of the display shows the starting segment and off­
set and up to four decimal numbers. The number displayed 
may be from 0 to 4 , 2 9 4 , 9 6 7 , 2 9 5 .  

Examples: 

DX displays memory starting where the last Display com­
mand left off. 

DX ARRAY displays memory starting at the symbol AR­
RAY. 

Command: Display using long signed integer format (DY) 

Syntax: DY [ < range> ] 

Command :  Display u sing l ong integer format (DX) 127 



Description: Use this command to display memory in a long 
signed integer (four-byte) format. 

Each line of the display shows the starting segment and off­
set and up to four decimal numbers . The number displayed 
may be from - 2 , 14 7 , 4 8 3 , 6 4 8  to 
+ 2 , 14 7 , 4 8 3 ,  6 4 7 .  

Examples: 

DY displays memory starting where the last Display com­
mand left off. 

DY DATAPOINTS displays memory starting at the symbol 
DATAPOINTS. 

Command: Display using asciiZ format (DZ) 

1 28 

Syntax: DZ [ < range> ] 

Description: Use this command to display a block of mem­
ory in nul-terminated ASCII format. 

This command is the same as the DA command, except that 
it ends the display when it finds a nul (binary zero). If you're 
using a Data window, the display continues to the end of the 
window. See the description of the DA command above for 
more information. 

Examples: 

DZ displays memory starting where the last Display com­
mand left off. 

DZ FILENAME displays memory starting at the symbol 
FILENAME and continues until a nul is found or SOH bytes 
have been displayed. 

Command: Di splay using asciiZ format (DZ) 



Command: Enter (E) 

Syntax: E <addres s >  [ < l i s t > ]  

Description : Use this command to modify memory. 

You must specify the segment and offset for the <ad­
dress > to avoid accidental changes to memory. If  you 
specify the optional < l i s t > , the command modifies the 
specified memory and terminates. If you do not specify the 
list, an interactive mode begins. This mode allows you to ex­
amine and optionally modify individual bytes starting at the 
specified address. 

For example, if you enter E 2 0 0 0 : 12 3 and press return, 
the interactive mode begins. Periscope displays the address 
and the current value of the byte as 2 0 0 0 : 0 12 3 xx, 

where xx is the current value. To modify this value, enter 
the hex number ( 0 through FF). Periscope echoes your in­
put unless it' s invalid, such as G9 or too many digits . 

Press the space bar to go to the next byte. Press the hyphen 
key to back up one byte. Use the backspace key to discard a 
single digit. Use the return key to terminate the interactive 
mode. 

Examples: 

E CS : SC 0 " FI LENAMEEXT " modifies the value of 
CS:5C through CS :67 to contain a binary zero and the string 
FILENAMEEXT. 

E 4 0 4 : 1 0  0 starts the interactive mode and displays 
0 4 0 4 : 1 0 0 8 0 .  To change this value to 88H, type 8 8 .  To 
display the next byte, press the space bar. To change the byte 
at offset 1 04H to 0, enter 0 when the byte is displayed. To 
back up to offset 1 02H, press the hyphen key as many times 
as needed to get back to it. When you' ve finished your 
changes, press Enter. 

Command : Enter (E)  129 



Command: Enter Al ias (EA) 

Syntax: EA <alias > [ <name > ]  

Description :  Use this command to define or redefine an 
alias, which is a two-character shorthand notation for a one­
to-64-character <name> .  If you enter this command with­
out a name parameter, the <alias > is deleted. 

To display the current aliases, press Alt-A. You can assign 
other aliases as needed and then activate them as commands 
by using "XX, where XX is the two-character alias name. 
You cannot modify a read-only alias, such as FX, with this 
command. 

For more information on aliases, see RS in Section 7 .5 .  

Example: 

EA X2 D ES : DI defines .alias X2 as D ES : DI.  This 
command is executed after each Periscope command, a con­
venient way to constantly monitor the current value of ES :DI. 

Command: Enter Bytes (EB) 

1 30  

Syntax: E B  <address > < l i s t >  

Description : Use this command to modify memory a byte at 
a time. It is similar to the Enter command, but has no interac­
tive mode. Each item in the < 1 is  t > is a byte value. You 
may enter one or more bytes. You must specify the segment 
and offset for the <address >. 

Example: 

EB FILENAME 1 A :  FILE 1 0 modifies memory at the 
symbol FILENAME to contain the nul-terminated string 
A:FILE. 

Command :  Enter Alias (EA) 



Command: Enter Doublewords (ED) 
Syntax: ED <address >  <address > [ • • •  ] 

Description:  Use this command to modify memory a double­
word at a time. It is similar to the Enter command, but has no 
interactive mode. Each < addres s >  in the command line 
is composed of a segment and offset or a symbol. you must 
specify the segment and offset for the first address, which is 
the destination. The second and subsequent addresses are the 
values to be written. 

PeriscopefJ2 users: Periscope/32 accepts eHher a 32-bit off­
set or a segment, colon, and 1 6-bit offset. 

Example: 

ED 0 : 0  1� 34 : 5 67 8  modifies iNT O (divide overflow) 
to point to 1234:5678. 

Command (Periscope/32 only): Access memory anywhere in the 
t•get system (EM) 

Syntax: EM <address > 

Description: Use this command to access memory any­
where in the target system. 

Enter a 32-bit address and Periscope/32 returns a selector 
that you can use to access memory starting at the address 
you entered. You must enter the address as a 32-bit address, 
not in segment:offset format. 

Example: 

To access memory on the monochrome display adapter at 
· BOOO:OOOO, enter (comma is optional): 

EM B, O O O O  

Corrmand: Enter Doubleworcls (ED) 1 3 1  



Command: Enter Symbol (ES). ,,, :, , _,,"'�;,.,_ ··% · .! "\ I t  I! .  

Syntax: E S  <addres s >  .< symbol > 

Description : Use this command to define.or redefine sym-
bol table entries. . · ' . . ·· " '  

You must specify a segment ru;ll;l,offset{or,t:Qe . ,.:;aQ.­
dress>. The < syxnbol >  J;Iaml( mll.�t pe 32 characters or 
less and may be preceded by_ a J)eri�d. TQis cO!llipand adds 
symbols to the end of the symbol table, regardless of any du­
plicate names in prior public, line, or local symbols. Use the 
/R command to delete any conflicting symbol names. 

Examples: 

ES cs : 1 0  0 START defines a symbol named START to 
have a segment equal to the current value of CS ·and an off­
set of lOOH. 

ES ES : DI OUTDATA defines a symbol named OUT­
DATA to have a segment and offset equal to the current val­
ues of ES and Dl, respectively. 

Command: Enter Words (EW) 

1 32  

Syntax: EW <address > <number> [ • • •  ] 

Description : Use this C()mmand to modify memory a word 
at a time. It is similar to the Enter,command, but has no inter­
active mode. Each <number> is .a word. You may enter 
one or more words. You must specify the segment and offset 
for the <address >. 

Example: 

EW ARRAY 1 2 3 writes three words starting at ARRAY. 

Command :  Enter Symbol (ES) 



Command: Fil l (F) 

Syntax: F < range> < list > 

Description : Use this command to fill a block of memory 
with a byte/string pattern. 

You must specify a segment and offset for the address por­
tion of the < range> .  The length specifies the number of 
bytes affected. The < 1 is t > is the pattern copied into the 
specified range of memory. If the length of the list is less 
than the length of the range you specify, the command cop­
ies the list as many times as needed to fill the range. Con­
versely, if the length of the list is greater than the length of 
the range, it does not copy the extra'bytes. 

Periscope/32 users: Lengths may be greater than 64K in re­
mote mode. · 

Examples: 

F ES : 0 L 1 0 0 0  0 writes biliary zeroes to memory start­
ing at ES :0 for a length of 1 OOOH bytes. 

F DS : s:r L ex II test II writes the string test to 
memory starting at DS:SI.  If CX is 3, olily tes is copied. 
If ex is 8 ,  test is copied exactly two times, etc. 

F ARRAY ENDARRAY 0 zeroes memory from the sym­
bol ARRAY up to and including the symbol ENDARRA Y. 

Command: Go (G) 
Syntax: G [ <address > ]  [ • • .  ] 

Description: Use the Go command to set temporary code 
breakpoints, activate sticky code breakpoints and debug reg­
ister breakpoints, and execute the program you're debug­
ging. (See Section 8.2 for a general discussion of 
breakpoints.)  This command activates code breakpoints and 
debug register breakpoints olily. To activate monitor break­
points, use the GA, GM or GT commands. 

Command :  Fill (F) 133 



1 34  

You can use ctrl - G  to g o  t o  the l i ne displayed atthe top 
of t he Disassembly window. 

If you specify any < addres s >  parameters on the com­
mand line, this command replaces the byte at each. of the ad­
dresses with a CCH, the single-byte breakpoint. When 
Periscope regains control via any method, it restores the 
original byte. The addresses you enter on the command line 
are temporary code breakpoints. You may specify up to four 
of these breakpoints. If you do not specify a segment, the 
command uses the current code segment. 

To set up to sixteen "sticky" code breakpoints, use the BC 
command. To set debug register breakpoints, use the BD 
command, which allows you to set up to four limited real­
time hardware breakpoints on instruction execution, memory 
writes, or memory access (read or write). 

If you enter G with no addresses, any sticky code and de­
bug register breakpoints are activated. If no sticky code or 
debug register breakpoints are set, program execution contin­
ues until completion or until you press the Break-out Switch. 

Periscope remembers code breakpoints until you clear them 
or until you re-run Periscope. If you have set code or debug 
register breakpoints and want to continue program execution 
without using any of the breakpoints, you can disable all 
breakpoints using BA - , or you can use the QC command. 

You cannot set code breakpoints in ROM. (Use the debug 
register breakpoints for this ! )  Code breakpoints require that 
Periscope be able to exchange the original byte with CCH be­
fore starting the Go command. Since the setting of a code 
breakpoint in the middle of an instruction can have unpre­
dictable results , set code breakpoints using symbol names 
where possible. 

Examples: 

G PRINTLINE sets a temporary code breakpoint at the ad­
dress equal to the symbol PRIN1LINE and starts execution 
of the program. 

Command: Go (G) 



J 

� \ 

G FF 0 0 : 0 0 0 0 returns an error since the address is in 
ROM. 

G begins execution of the program with no temporary code 
breakpoints. 

G 1 2 3  sets a temporary code breakpoint at CS : 1 23 and 
starts execution of the program . .  

Command: Go plus {G+) 

Syntax: G+ 

Description: Use this command to set a temporary code 
breakpoint on the next instruction, activate any code break­
points set with the BC command, and execute the program 
you're debugging. G+ activates code and debug register 
breakpoints only. Other than setting a temporary breakpoint 
on the following instruction, it is. identical in function to the 
G command described above. 

Example: 

If IP is 200H and the current instruction is INT 2 1H: 

G+ sets a temporary breakpoint at 202H, which is after the 
INT instruction. 

Command: Go equal {G=) 

Syntax: G= [ <address > ]  [ . . .  ] 

Description: Use this command to set CS:IP to the first 
< addres s > ,  set any indicated temporary code breakpoints, 
activate any sticky code breakpoints set with the BC com­
mand, and execute the program you're debugging. 1bis com­
mand activates code and debug register breakpoints only. 

Other than setting CS :IP to the first address entered, this 
command is identical in function to the G command de-

Comm and : Go pl us (G+) 135 



scribed above. The equal sign must appear immediately after 
the letter G. 

Examples: 

G=PRINTF sets CS:IP to the value indicated by the symbol 
PRINTF and executes the program. 

G= 1 2 3  sets CS :IP to CS : 1 23 and executes the program. 

Command: Go using All (GA) 

Syntax: GA [ <addres s > ]  [ • • •  ] 

Description : Use this command when you want to trace 
ALL instructions. Otherwise, it is identical to the GT com­
mand. 

This command activates code breakpoints, debug register 
breakpoints, and monitor breakpoints. It always traces ALL 
the way through ALL software interrupts. The GT com­
mand single steps through instructions, except when it en­
counters a software interrupt. Then it checks the interrupt 
trace table (see the I T  command) . If the interrupt is not in 
. the table, GT does not trace through the interrupt. This can 
cause GT to miss breakpoints. The GA command is 
slower than GT, but more dependable. 

I t is not possible to trace into hardware i nterrupts with th is 
command. Use Periscope Model IV for this purpose. 

Example: 

See the examples under the GT command. 

Command: Go using Monitor (GM) 

Syntax: GM [ <addres s >  1 [ • • •  ] 

Description : Use this command to go at full speed to a cer-

1 36  Command :  Go using All (GA) 



tain point and then evaluate the monitor breakpoints. If any 
of the monitor breakpoints indicate a hit, Periscope displays 
its screen. Otherwise full speed execution resumes. 

Titis command activates code breakpoints, debug register 
breakpoints, and hardware breakpoints . It evaluates the moni­
tor breakpoints only when a code, debug register, or hard­
ware breakpoint occurs . 

Unless you are using Periscope Model IV, this command 
acts as a combination of the G and GT commands. Con­
sider the situation where you need to watch a buffer for an 
end of file marker. Using GT, this would usually be very 
time-consuming. If you enter a monitor test (such as BR 
AL EQ lA) and then use GM to go to the appropriate 
place in your code, most of the code will be executed at full 
speed. Each time a code or debug register breakpoint is 
reached, the monitor breakpoint(s) are evaluated, rather than 
after every instruction. 

Example: 

GM PRINTLINE sets a temporary code breakpoint at the 
address equal to the symbol PRINTLINE. When a code, de­
bug register, or hardware breakpoint occurs, the monitor 
breakpoints are evaluated. If any of the monitor breakpoints 
indicate a hit, Periscope displays its screen. Otherwise, full­
speed execution resumes. 

Command: Go to Return address on stack (GR) 

Syntax: GR 

Description: Use this command to analyze the stack for the 
first return address and set a temporary code breakpoint at 
that address ; 

Titis command uses the same logic as the SR command. If 
it does not find a return address, it displays an error. Titis 
command has no arguments. It ignores any addresses you en­
ter after GR. 

Command :  Go to Return address on stack (GR)  137 



Example: 

GR examines the stack for a return address and then goes to 
that address. 

Command: Go using Trace (GT) 

1 38  

Syntax: GT [ <addres s > ]  [ • • •  ] 

Description : Use this command to trace in a single-step 
mode that evaluates the monitor breakpoints after each in­
struction. This command activates code breakpoints, debug 
register breakpoints, and monitor breakpoints . 

This command puts the system into a mode where it ana­
lyzes every instruction executed by your program to see if a 
breakpoint has been reached. This analysis can slow down 
the execution of your program by a factor of 100 to 1000 or 
more, but in many cases is the only way to find an elusive 
bug (unless you're using Periscope Model IV). Since this 
command is slow, try to use the normal Go command to get 
as close to the problem as possible, then use GT. 

Periscope remembers the monitor breakpoints until you clear 
them or re-run Periscope. If you have code, debug register, 
and/or monitor breakpoints set and want to continue program 
execution without using any of the breakpoints, you can dis­
able all breakpoints (using BA -)  or use the QC command. 

To make sure you' ve got the correct breakpoints, get in the 
habit of checking the breakpoint settings before using this 
command. Enter BA to display the current breakpoints be­
fore entering GT. 

For temporary and sticky code breakpoints, this command 
performs in the same fashion as the Go command. After a 
breakpoint, use the TB command to see the instructions pre­
ceding the instruction that caused the breakpoint. 

When this command encounters a software interrupt, it exe­
cutes it step-by-step if and only if the interrupt number is set 

Command: Go us ing Trace (GT) 



in the trace table (see the description of the /T command). 
If the breakpoint you're trying to find is in an interrupt or is 
caused by an interrupt, you should use the GA command, 
since it traces all software interrupts. 

I t  is not possible to trace into hardware i nterrupts with this 
command. Use Periscope Model IV for this pu rpose. 

If you're using the GT command and the program you're 
debugging starts running at full speed, an ill-behaved inter­
rupt has probably modified the trap (single-step) flag. To 
find the problem interrupt, press the Break-out Switch and 
then use TB to see the last code that Periscope traced. Note 
the last entry in the software trace buffer. The interrupt 
shown is the one that caused Periscope to lose control. 

You've got two possible solutions : either use the /T com­
mand to force tracing of the offending interrupt or use the 
GA command to force tracing of all interrupts. 

Examples: 

GT PRINTLINE NEWPAGE sets temporary code break­
points at the addresses equal to the symbols PRIN'ILINE 
and NEWPAGE. 

GT begins execution of the program with no temporary 
code breakpoints, only sticky code, debug register, and moni­
tor breakpoints that are enabled. 

GT ES : 4 5 6  sets a temporary code breakpoint at ES :456. 

Command: Hex arithmetic (H) 
Syntax: H <number > <arithmetic operator> 
<number >  

Description: Use this command to perform hexadecimal 
arithmetic. 

Addition, subtraction, multiplication, and division are avail­
able, using the standard <arithmetic operator >s. 

Command : Hex arith metic (H) 1 39 



Each <number> must be in hex and may be from one to 
four hex digits . If you enter a register name in place of one 
of the numbers, this command uses its current value for the 
number. � 

Multiplication returns two words separated by spaces. The 
first word is the high-order part. Division returns two words 
separated by the letter R. The frrst word is the quotient and 
the second is the remainder. 

See also the X (translate) command. 

¢ 
Periscope/32 users: Numbers can be up to eight d ig its each.  

Examples: 

H 12 3 4 / 12 3  gives an answer of 0 0 1 0  R 0 0 0 4 .  

H 12 3 4 * 12 3  gives an answer of 0 0 14 B1 1C. 

Model IV Hardware (H series) Commands-please see the Model 
IV manual. 

Command: Input ( I) 

Syntax: I <port > or IW <port > 

Description: Use this command to read an 110 port. The 
first form reads a byte while the second form reads a word. 

The port number may be from 0 to FFFFH, although the 
IBM PC only supports ports from zero to 3FFH. Any larger 
number is effectively ANDed with 3FFH. The value re­
trieved by reading the port displays on the line following the 
command. 

Examples: 

I 1 o o performs a byte read of port 1 OOH and displays the 
byte input. 

1 40  Model I V  Hardware ( H  series) Commands-please see the Model IV m anual .  



/ 

IW DX performs a word read of the port indicated by regis­
ter DX and displays the word input. 

Command: Interrupt Compare ( IC) 

Syntax: IC 

Description: Use this command to compare the current 
value of the interrupt vectors with their previously-saved val­
ues. 

IC is available only after you have used an IS command 
to save the interrupt vectors. After you've used an IR com­
mand, this command is disabled until you 've issued another 
IS command. 

Assuming the vector for Interrupt 0 had bcim changed, the 
display of the IC command might be 0 0 0 2 9 4 : 5 8  8 F 
2 3 4 5 : 6 7  8 9 ,  where the first field is the interrupt number, 
which is followed by the old interrupt vector and the new 

· (current) interrupt vector. 

Periscope!J2 users: Periscope/32 does not support th is com­
mand in remote mode. 

Example: 

Assuming the interrupt vectors were previously saved using 
the IS �ommand, enter IC to compare all vectors with 
their saved values. 

Command: Interrupt Restore ( IR) 

Syntax: IR 

Description: Use this command to restore the interrupt vec­
tors to a previously-saved state. 

This command is usable only after you 've used an IS com­
mand to save the interrupt vectors. After you've performed 

Command :  lnterrup� Compare (I C) 1 4 1  



an Interrupt Restore, the Interrupt Restore command is dis­
abled until you've performed another Interrupt Save. 

PeriscopefJ2 users: Periscope/32 does not support th is com­
mand in  remote mode. 

Example: 

Assume the interrupt vectors were previously saved using 
the IS command. Enter IR to restore all vectors to their 
values saved by the IS command. 

Command: Interrupt Save (IS) 

Syntax: IS 

1 42  

Description: Use this command to save the interrupts for 
later comparison or restoration. 

The Interrupt Save command saves the current state of the 
machine' s interrupt vectors in case you need to restore the 
vectors to that state at some later point. For example, assume 
you' re debugging a program that modifies some of the inter­
rupt vectors . If you need to terminate execution of the pro­
gram, you can restore the interrupt vectors and then use the 
QR command to return to DOS. 

To use the Interrupt Save command, enter IS at the Peri­
scope prompt. Later, you can restore the vectors to their 
saved state by using the IR command. 

To prevent accidental restoration of the vectors, the IS 
command sets a flag that is cleared by the IR command. 
When this flag is cleared, the IR command generates an er­
ror. 

PeriscopefJ2 users:  Periscope/32 does not support th is com­
mand in  remote mode. 

Example: 

Enter IS to save the interrupt vectors. At any point later, 

Command : Interrupt Save ( IS) 



the IR command may be used to restore the vectors to 
their saved state. 

Command: Jump (J) 

Syntax: J 

Description: Use this command as a shorthand form of Go, 
to execute (step) to the next instruction. 

This command executes the current instruction at full speed, 
avoiding tracing through the execution of CALL, INT, 
LOOP or other repeated instructions. It performs the same 
function as a temporary code breakpoint set on the next in­
struction. The difference is that you don't  have to stop and 
compute the address and then enter a Go command. Jump 
does it for you. If the current instruction is any form of a 
RET, IRET, or JMP (including conditional jumps) Periscope 
traces one instruction (to follow the code) instead of using a 
temporary code breakpoint. 

There is one condition under which this command does not 
work. When you're tracing ROM you cannot use code break­
points, since you can't write to ROM. 

Generally speaking, it is safe to use this command in place 
of the Trace command. There are some cases that present a 
problem, however. One possibility is a LOOP instruction 
that passes control downwards rather than upwards. Others 
include CALLs or INTs that do not return control to the next 
instruction. 

Examples: 

Assume that the current instruction is INT 2 1 .  Enter J to 
place a temporary code breakpoint at the instruction after the 
INT 2 1  and execute the INT at full speed. 

Assume that the current instruction is RET. Enter J to 
trace to the next logical (not physical) instruction. 

Command : Jump (J) 143  



Command: Jump Line (JL) 

Syntax: JL 

Description: Use this command to step to the next source­
code line. 

The JL command performs Jump (step) commands until it 
finds the next source line. This is a quick method of moving 
through a high-level language program at the source-code 
level. If it finds no source line symbols, this command acts 
like the J command. See also the TL command. 

Example: 

Assume the current instruction is line 10 of the first source­
code module. Enter JL to step to the next logical source­
code line. 

I f your  compi ler does not generate l ine numbers for every l ine ,  
some l ines may be skipped. 

Command: clear (K) 

Syntax: K 

Description: Use this command to clear the Periscope 
screen and regenerate any windows. It has no arguments. 

Example: 

K clears the screen. 

Command: clear and Initialize (KI) 

Syntax: KI 

144 

Description: Use this command to initialize the monitor, 
clear the Periscope screen, and regenerate any windows. It 
has no arguments. 

Command: Jump Une (JL) 



Use this variant of the clear command if Periscope's  screen 
is not in text mode on entry to Periscope. Do not use this 
command if you've set 43-line or 50-line mode. It will revert 
the screen to 25-line mode. 

Example: 

KI performs a mode set and clears the screen. 

Command: Load Absolute disk sectors (LA) 

Syn�: LA <addre s s >  <drive >  < sectors > 

Description: Use this command to load absolute disk sec­
tors into memory. 

The segment defaults to CS if you do not specify a segment 
in the < addres s > .  The <drive >  is either a single-digit 
number indicating the disk drive (O=A, 1=B, etc.) or A : , 
B : ,  etc. The < sector s >  parameter is the starting sector 
number and the number of sectors to be read. The maximum 
number of sectors that can be read in one operation is 80H, 
which equals 64K bytes. 

To use this command, DOS must not be busy. This com­
mand uses DOS interrupt 25H. See the DOS manual for in­
formation on the numbering of the absolute disk sectors. 

Periscope/32 users: Periscope/32 does not support th is com­
mand in remote mode. 

Examples: 

LA DB : 1 0  0 A :  10 2 0 loads data into memory starting 
at DS: lOO from drive A, starting at sector number lOH for 
20H sectors. 

LA 10 0 B :  0 4 loads data into memory starting at 
CS:  100 from drive B, starting at sector 0 for 4 sectors. 

Command: Load Absolute disk sectors (LA) 145 



I . 

Command: Load Batch file (LB) 

Syntax: LB < f i le> 

Description: Use this command to load a batch or script file 
that contains Periscope commands. 

To use this command, DOS must not be busy. The input file 
defaults to an extension of .PSB . You may create the file 
with the WB command, the /K command, or a text editor. 
You can place any legal Periscope commands in the file. 

Example: 

After using WB SAVE to save the breakpoint and window 
settings to the file SA VE.PSB, use LB SAVE to later re­
load the breakpoint and window settings. 

Command: Load alias and record Definitions (LD) 

Syntax: LD * or LD < f ile> 

Description: Use this command to clear and/or load alias 
and record definitions from a .PSD < f i le> created by RS. 

The asterisk clears the alias and record definitions. You can 
only load .PSD files, not .DEF files, with the LD com­
mand. See the description of RS in Section 7.5. To load a 
file, DOS must not be busy. 

Examples: 

LD * clears all alias and record definitions. 

LD FTOC loads the alias and record definitions from the 

file FTOC.PSD. 

Command: Load File from disk (LF) 

Syntax: LF [ < addres s > ]  

1 46  Command: Load Batch file (LB) 



Description: Use this command to load a file from disk into 
memory. Before you can use this command, you must spec­
ify a file name with the Name command. 

Specify where the file is to be loaded with the optional 
< addres s > .  If you do not specify the address, LF as­
sumes CS: 100. To use this command, DOS must not be busy. 

You can load any type of file into memory with the LF 
command. Mter you've loaded the file, BX and CX indicate 
the size of the file in bytes and no other processing occurs. 
LF does not relocate or strip the headers of .EXE files. 

You should generally use RUN to load and execute a pro­
gram, since it loads the symbol table and performs relocation 
for .EXE files. Use the LF command to load a file into mem­
ory to examine or modify it 

This command cannot load into memory beyond the end of 
DOS memory. For a 640K system, the maximum ad-
dress is 9000:FFFF. 

Periscope/32 users: Periscope/32 does not support th is com­
mand in  remote mode. 

Examples: 

LF DS : 1 0  0 0 loads the file defined by a Name command 
into memory starting at DS: 1000. 

LF loads the file defined by a Name command into memory 
starting at CS : 1 00. 

Command: Load Symbols from disk (LS) 

Syntax: LS * or LS < segment > < file> 

Description: Use this command to load a Periscope symbol 
file (.PSS) into the symbol table. 

Use the asterisk to clear the symbol table. 

Command : Load Symbols from cl sk (LS) 1 47 



Enter the relocation factor to be added to the segment values 
found in the .PSS file in the < segment >.  For .COM files, 
this is the value of the PSP segment or CS. For .EXE files, 
this is the value of the PSP segment plus lOH. To have Peri­
scope calculate the correct value for an .EXE file that is the 
currently active program, use $ as a segment value. The 
< fi le >  is the path and file name of the .PSS file. 

Use this command to load .PSS files, not .MAP files. Peri­
scope checks the version to ensure that the symbol file used 
is compatible with the current version of Periscope. To use 
this command, DOS must not be busy. 

Periscope/32 users: You cannot use LS $ in remote 
mode s ince it refers to the PSP on the host system. 

Examples: 

LS * clears the symbol table. 

LS CS SAMPLE loads the file SAMPLE.PSS into the sym­
bol table, relocating the segments by the current value of CS. 

LS $ FTOC loads the file FTOC.PSS into the symbol ta­
ble at PSP + lOH for the program FTOC.EXE. 

Command: Move (M) 

1 48  

Syntax: M < range> <addres s >  

Description: Use this command to copy a block of memory 
to another location in memory. 

You must specify the segment and offset for both addresses. 
If the source block and target block overlap, the move into 
the target block is performed without loss of data. The 
source segment and target segment may be different. 

Periscope/32 users: Lengths in remote mode can be greater 
than 64K. Periscope/32 uses only the offset to calcu-
late the d i rection of  the copy. 

Command: Move (M) 



Examples: 

M 1 0 0 0 : 0  L 10 0 1 0 0 0 : 8 0 copies lOOH bytes from 
the source block ( 1000:0 to lOOO:FF) to the target block 
( 1000: 80 to 1000: 17F). 

M 1 0 0 0 : 8 0 L 1 0 0  1 0 0 0 : 0  copies lOOH bytes from 
the source block(1000:80 to 1000: 17F) to the target block 
(1000:0 to lOOO:FF). 

M DS : S I  L CX ES : DI copies CX bytes from the 
source block (DS:SI) to the target block (ES :DI), where all 
values are the current contents of the respective registers. 

Command: Name (N) 

Syntax: N < file> 

Description: Use this command to enter data into the PSP 
for disk 110 and for naming files to be read or written by 
Periscope using the LF and WF commands. 

1bis command copies the < file> parameter to the unfor­
matted parameter area in the PSP, starting at CS :80H. After 
it copies the name into CS: 80H, it uses the DOS parsing 
function to parse the first two file names in the command 
line into the FCBs at CS:5CH and CS:6CH. If it finds an in­
valid drive id for a file, it generates a message and sets regis­
ter AL or AH to FF, indicating the first or second file, 
respectively. 

It requires that the PSP's  address has been set by RUN and 
that the first four bytes of the PSP contain the bytes CD 
2 0 followed by the top of memory size in paragraphs. 

It copies all data entered after the N until it finds a semi-co­
lon or a carriage return. If it cannot find the PSP, you can 
still use the LF and WF commands, presuming that DOS 
is not busy. 

¢ 
PeriscopefJ2 users: Periscope/32 does not support th is com-

Command :  Name (N) 149 



mand in remote mode. 

Examples: 

N c :  COMMAND . COM copies the file name to Periscope's  
internal file buffer and to the unformatted parameter area at 
CS: 80H and then parses the file name into the FCB at 
CS:5CH. 

Command: Output (0) 

Syntax: 0 <port > <byte> or OW <port > <word> 

Description: Use this command to write to an 110 port. The 
first form writes a byte and the second form writes a word. 

The <port > may be from 0 to FFFFH, although the 
IBM PC only supports ports from zero to 3FFH. Any larger 
number is effectively ANDed with 3FFH. The <byte> 
value output to the port may be from 0 to FFH. The 
<word> value output may be from 0 to FFFFH. 

Examples: 

0 1 0 0 FF outputs FFH to port 1 OOH. 

ow DX 12 3 4  outputs 1234H to the port indicated by regis­
ter DX. 

o DX AX returns an error since register AX represents a 
word. Use ow DX AX to output a word. 

Command: Quit (Q) 

1 50  

Syntax: Q, QB, QC, QL, QR or QS 

Description: Use this command to display the reason Peri­
scope was activated and to exit Periscope. 

The possible entry reasons are: 

Command: Oulput (0) 



0 1 - A trap 1 (unexpected single-step) occurred. 
0 6 - A trap 6 (illegal instruction) occurred. 
0 D - A trap D (segment wraparound) occurred. 
BR - A monitor breakpoint was taken. 
:QR - An 80386 debug register breakpoint occurred. 
GO - A code breakpoint was taken. 
HW - A hardware breakpoint occurred (Periscope Model IV). 
P 1 - Parity error 1 (motherboard) occurred. 
P2 - Parity error 2 (expansion memory) occurred. This is 
normal when you press the Break-out Switch. 
sw - The Break-out Switch or hot keys (set with PSKEY) 
were pressed. 
TR - An instruction was traced. 
WD - A watchdog interrupt occurred on a PS/2 machine. 

The QB (boot) command boots the system. It is the same as 
Alt-Ctrl-Del, clearing all of user memory and resetting the 
standard interrupt vectors. Use this option when the system 
becomes hopelessly confused or when you suspect that a run­
away program may have incorrectly modified a critical area 
of memory. If an exception interrupt or trap occurs, you 
should boot the system as soon as possible. 

The QC (continue) command returns control to the execut­
ing program after restoring the program' s  screen. If nothing 
is executing, i.e. the DOS prompt is displayed, control is re­
turned to DOS. This method does not set any breakpoints. 
Use the Go command if you want to set any breakpoints. 

The QL (long boot) command puts the system through full 
diagnostics, as when the system is first powered on. Use it if 
you need to reinstall any BIOS drivers such as the VGA. 

The QR (return to DOS) command abandons execution of 
. the current program and returns to DOS. This command 
does not close open files, which can cause problems if the 
files have been updated, or back out changes the program 
has made to interrupt vectors. It does clear the keyboard buff­
er. When possible, use QC or G instead of this command. 

Periscope allows the QR command on ly if DOS is not busy 
and you used RUN. COM to set the PSP for the execut-
ing program. 

Command :  Quit (Q) 15 1 



1 52  

If you get an error but want to return to DOS even though it 
is not 100% safe, you can enter QR ! to force it. Do so at 
your Qwn risk! 

Periscope/32 users: This command acts l ike a /X com­
mand in  remote mode since Periscope/32 stays in the 
foreground instead of going resident. Use QU or 
QR ! to terminate Periscope/32 when you're runn ing 
in  remote mode. 

The QS (short boot) command re-boots the system via In­
terrupt 19H. This method preserves most of RAM, including 
the interrupt vectors. Some sections of memory in the flrst 
64K are overwritten by the boot record and DOS. This can 
cause problems for some memory-resident programs, such 
as a low-memory RAM disk. Since all interrupts are not re­
stored, this boot option is more fragile than the other two. 

Due to the unchanged vectors, some resident programs and 
drivers may think they're still installed. If you have prob­
lems, either quit using this option or use the user exit F l  to 
clean up the necessary vectors on the way out. 

The short boot is not compatible with all systems. If it doesn't 
work i n  you r  system, try removing all device drivers 
and memory-resident programs. � it sti l l  doesn't work, 
there's probably not much hope on you r  system. 

There are dedicated user exits for the QB, QL, and QS 
commands. They enable you to customize the cleanup proc­
ess for your system before rebooting. See the · sample pro­
gram USEREXIT.ASM in Section 7. 10 for more 
information. 

Examples: 

Q displays the entry reason. 

QC exits Periscope and continues execution of the inter­
rupted program without setting any breakpoints. 

QB exits Periscope and performs a normal boot. 

Command: Quit (Q) 



Command (Periscope/32 only): 1Quit, reboot host, Unhook remote 
driver (QU) 

Syntax: QU 

Description: Use this command to reboot the host system 
and unhook the remote driver on the target system when you 
want to use the target system as if the remote Periscope 
driver had never been installed. 

Command: Register (R) 

Syntax: R [ < register > ]  or R+ or R=<ad­
dress > or R<byte> [ <number> ]  or R? 

Description: Use this command to display and modify the 
current values of the registers and flags. 

If you enter R and press return, this command displays the 
current values of the registers and flags. If the current instruc­
tion performs a memory read and/or write, it displays the ef­
fective address of the read/write, along with the current 
value of memory at the effective address( es ). Finally, it disas­
sembles the current instruction. The information is shown in 
the appropriate windows if you're using windows. 

To modify the registers or flags, enter R xx, where xx is 
the register name. Use FL for the flags. To easily move to 
the next instruction, enter R+. Periscope disassembles the 
current instruction and sets IP to the start of the next instruc­
tion. 

To change CS:IP to a new address, enter R= <addre s s >. 

There are ten user registers that you may use to hold any 
word value you desire. In the syntax shown above, the 
<byte >  is a number from 0 to 9 .  For example, to hold 
the current value of SP in user register number one, enter 
Rl=SP.  Then at a later time, you could enter DW S S : Rl 
to use the saved user register. To display the contents of a 
single user register, enter just the register name. To display 
the contents of all user registers, enter R? . These registers 

Command (Periscope/32 on ly): Quit, reboot host, Unhook remote driver (QU)  153 



BXAJIPLB 1 :  

can be used wherever a 1 6-bit register is usable. 

In all of the examples shown in Figure 9-3, the first two lines 
display the current values of the registers and the flags. See 

AX= 0 0 7F BX =0 03 4 CX= O O O O DX =O O O O S P= 1 7 2 4  SI = O Fl E  D I = 1 5 6 8  
D S = 0 0 40 ES = O O B F  S S= O O BF CS = F O O O I P= E8 5 0 FL =0 0 4 6  N V  U P  D I  P L  Z R  N A  P E  N C  
F O O O : E8 5 0 7 4F 3  J Z  E8 45 j ump 

BXAJIPLB 2 :  
AX= O O O O BX =O O O O  CX= 0 1 0 0 DX =0 0 0 1 S P= FF FO SI =O O O O D I = O O O O  
D S = 0 6 3A ES =0 6 3 A  S S = 0 6 3A CS =0 63 A I P= O l OE FL =0 2 4 6  NV U P  D I  P L  Z R  N A  P E  N C  
WR DS : 1 3 1  = 0 0 0 0  
0 63 A : 0 1 0E 8 9 1 E3 1 0 1  MOV [ F I L EO FF SET] , BX 

BXAJIPLB 3 :  
AX= O O O O BX =O O O O  CX= O l O O DX =0 0 0 1 S P= FF FB SI =O O O O D I = OO O O 
.D S= 0 6 3A ES =0 6 3 A  S S = 0 6 3A CS =0 6 3 A  I P= O l AD FL =0 2 4 6  NV UP DI PL Z R  NA PE NC 

P 5 6 5 :  
0 63 A : 0 1 AD B F2 F0 1  MOV DI , 0 12 F ; F IL E S EGMENT 

1 54  

Figure 9-3. Sample Displays o f  Registers and Flags 

the < flag >  command parameter in Section 8-3 for an ex­
planation of the flag mnemonics. The last line in each of the 
examples in Figure 9-3 shows the disassembled instruction. 
The address of the instruction (CS :IP) is shown at the left, 
followed by the bytes that make up the instruction, and the 
instruction itself. 

In Example 2 shown in Figure 9-3, the third line shows that 
the current instruction performs a write to the word at 
DS:0 1 3 1  and that the current value of the word is zero. If the 
instruction were to read memory, line three would also show 
that information. 

The evaluation of the effective address of memory reads and 
writes shows the effect of any and all memory accesses be­
fore the execution of the instruction. The effective address 
calculations and displays for real-mode instructions are sup­
ported (up to the 80286 and the 80287) , with two exceptions. 
The stack shown as affected by the EN1ER instruction is 
limited to a single PUSH BP and does not include the PUSH 
that is done for each nesting level. The FRS TOR and 

Command: Register (A) 



FSA VE instructions do not show the 94 bytes they read and 
write. 

In Example 3 shown in Figure 9-3, the third line shows 
P565, the name of the current address from the symbol table. 
Tilis line is present only when CS :IP exactly matches an en­
try in the symbol table. 

If the current instruction is a conditional jump (see Example 
1 in Figure 9-3), the jump is evaluated based on the current 
flag settings as 'jump' or 'no jump' , meaning that the jump 
will or will not be taken, respectively. If an instruction refer­
ences a byte value and the data byte is from 20H to 7FH, the 
ASCll equivalent of the byte is shown at the end of the line 
as a comment, in quotes. Illegal instructions are shown as 
? ? ? .  

If an address referenced. by an instruction is found in the 
symbol table, the symbol name is substituted for the offset 
(see Example 2 in Figure 9-3). If an ambiguous reference to 
an address is made, the symbol name is shown at the end of 
the disassembled instruction as a comment (see Example 3 
in Figure 9-3). Tilis indicates that the symbol may or may 
not have been used in the original instruction. Ambiguous 
references are generated by a move of an offset to a register, 
such as MOV DI,OFFSET FILESEGMENT. 

An address must match exactly for the symbol to be found. 
The current value of the segment used by the instruction (ex­
plicit or implicit) must match the segment in the symbol ta­
ble. The offset used by the instruction must also match the 

offset in the symbol table. 

To modify a register, enter R < regi ster>.  Periscope dis­
plays the current value of the register, followed by a colon. 
If you enter a one- to four-digit hex number or another regis­
ter name and press return, the register is changed. If you 
press return without entering a number, the register is not 
changed. The valid 1 6-bit register names are AX, BX, ex, 
DX, SP,  BP , SJ: ,  DJ:,  DS , ES , FS,  GS, SS ,  CS , J:P,  
and FL (flags) . The valid 8-bit register names are AH ,  

AL, BH, BL,  CH, CL,  DH, and DL. 

To modify a flag, enter R FL. Periscope displays the cur-

Command: Register (R) 1 55 



1 56  

rent values of the flags (see the <flag> parameter in Sec­
tion 8 .3) followed by a hyphen. To change the flags, enter 
the desired mnemonics and press return. If you press return 
without entering any flag mnemonics, no flags are changed. 
You may enter the flags in any order, in upper or lower case, 
and with or without spaces between the entries. The hex 
value of the flag register is displayed following the mne­
monic FL. 

Changes to registers and flags are highlighted, even for the 
software traceback display. This makes it easy to see what 
changes were made since the last time Periscope' s  screen 
was displayed. 

When you use windows, the register display can be put into 
a vertical window. This format requires 1 8 lines to display 
all the registers and flags. If fewer lines are available, the reg­
ister display is truncated. When you use the vertical window, 
the effective address is displayed in the separator line follow­
ing the Watch window. You may toggle this mode on and 
off by pressing Alt-R. You can also set vertical registers by 
using R :  1 in the windows specification. See the /W com­
mand for more information. 

If you're using an 80386 or later system, a vertical display of 
the 80386 registers is also available. Press Alt-3 to toggle 
386 registers on and off. You can also use R :  3 in the win­
dows specification. Note that the high part of the 32-bit regis­
ters and the FS and GS registers are never highlighted when 
changed. 

Periscope/32 users: The register display supports 32-bit reg­
isters in two formats: a horizontal four-l i ne display and 
a vertical display, both of which display the fu ll 32-bit 
registers and flags. 

Periscope/32 restricts changes to the segment registers whi le  the 
processor is in  protect mode. The new value cannot 
go beyond the l imit of the GDT or LDT and must i ndi-
cate a val id selector. 

Periscope/32 indicates that the s ize of segment register is 1 6  bits 
with a minus sign (DS - 12 3 4} and that its s ize is 32 

Command: Register (R) 



bits with an equals sign (ns = o o 3 o ) . 

You can assign values of up to 32 bits to the RO through R9 regis­
ter variables. 

The flags display (RF, RFL) shows more mnemonics and the 
state of the processor (protect, real or V86): 
VM/ SM-Virtual mode/not virtual mode 
RF /NR-Resume flag/not resume f lag 
NT INN-Nested task/not nested task 
Ix-IOPL level ,  where x is from o to 3 

Periscope/32 displays the CPU state at the end of the flags display 
as PMx, V8 6 ,  or REAL, where x is the r ing (o  
to  3 ). 

Examples: 

R displays all registers and flags, the effective address for 
reads and/or writes, and disassembles the current instruction. 
It also forces re-display of the Disassembly window if one is 
used. 

R AX displays the current value of register AX and · 
prompts you for the new value. Press return to leave the reg­
ister unchanged, or enter a one- to four-digit hex number and 
press return to change the register. 

R AX ex is a one-line method of changing the value of 
register AX to the current value of register CX. 

R+ moves the instruction pointer to the beginning of the 

next instruction. 

R=_MAIN sets CS:IP to the symbol _MAIN. 

R FL displays the current flags, followed by a hyphen. If 
you want to change the zero flag from NZ to ZR, enter ZR 
and press return. You can also enter R FL ZR. 

R O =AX saves the current value of register AX to user regis­
ter RO. 

RO displays the current value of user register RO. 

Command : Register (R) 157  



R? displays the current value of all non-zero user registers. 

Command (Periscope/32 only): Register Extended Flags (R EFL) 

Syntax: R EFL 

Description: Use this command to enter the numeric value 
for the extended flags dword. It is an alternative to entering 
the flag mnemonics with the RF or RFL command. 

Command: Register Compare (RC) 

Syntax: RC 

Description: Use this command to compare the current 
value of the registers with their previously-saved values. 

RC is available only after you've used an RS command to 
save the registers. After you've used an RR command, this 
command is disabled until you've used another RS com­
mand. 

Assuming that register CX has been changed, the display of 
the RC command might look like that shown in Figure 9-4, 
where the first line shows the register names, the second line 
shows the values of the registers at RS time, and the third 
line shows the changed registers at RC time. Double quote 
marks indicate unchanged values. 

AX BX CX DX S P  BP S I  DI DS ES S S  CS I P  FL 
@ RS : 0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  FFFE 0 0 0 0  0 0 0 0  0 0 0 0  1 3 82 1 3 8 2  13 82  1 3 8 2  0 1 0 0  0 2 4 6  
@ RC : ' '  ' '  FFF8 ' '  ' '  ' '  ' '  ' '  ' '  0 2 6 A  1 4 3 F  ' '  

1 58  

Figure 9-4. Display o f  RC Command 

Periscope/32 users: This command shows on ly the changed 
registers in a l ist format. 

Command (Periscope/32 only): Register Extended Flags (R EFL) 



Example: 

Assuming the registers were previously saved using the RS 
command, enter RC to compare all registers with their 
saved values. 

Command: Register Restore (RR) 

Syntax: RR 

Description: Use this command to restore the registers to a 
previously-saved state. 

You can use this command only after you've used an RS 
command to save the r�gisters. After you've performed a 
Register Restore, RR is disabled until you've used RS 
again to save the registers. 

Example: 

Assume the registers were previously saved using the RS 
command. Enter RR to restore all registers to their values 
saved by the RS command. 

Command: Register Save (RS) c 
Syntax: RS 

Description: Use this command to save the registers for 
later comparison or restoration. 

The Register Save command saves the current state of the 
machine' s registers and flags in case you need to restore the 

registers to that state at some later point. For example, as­
sume you're debugging a subroutine. In many situations, it is 
very convenient to save the machine's  registers and then 
start debugging the subroutine. If you discover a problem, 
you can then restart the subroutine by restoring the registers 
from their saved values. 

Command : Register Restore (RR) 159 



To use the Register Save command, enter RS at Peri­
scope's prompt. Later, you can restore the registers to their 
saved state with the RR command. This command does not 
restore any data areas. To prevent accidental restoration of 
the registers, the RS command sets a flag that is cleared by 
the RR command. If this flag is not set, RR generates an 
error. 

Example: 

Enter RS to save the machine registers. The RR com­
mand may then be used to restore the saved register values, 
and the RC command may be used to compare register val­
ues with the saved values. 

Command {Periscope/32 only): display eXtended Registers {RX) 

Syntax: RX 

Description: Use this command to display the extended reg­
isters : GDTR, IDTR, LDT, TR, CRx, DRx, and exception er­
ror code. 

Command: Search {S) 

1 60  

Syntax: S [ ! x ]  <ran,ge> < l i s t >  

Description: Use this command to search memory for a 
byte/string pattern. 

It searches the block of memory specified by the 
< range> for the pattern specified by the < l i st >. lf it 
finds a match, it displays the starting address and symbol 
name, if any, and continues the search for matches at the 
next byte. If it does not find any matches, it displays nothing. 
If you do not specify a segment in the address, it uses the cur­
rent data segment. 

A wildcard search capability is available using the optional 

Command (Periscope/32 on ly) : display eXtended Registers (RX) 



! x parameter. You can use the wildcard character x in the 
list parameter to indicate a wildcard field. For example, to 
search for all occurrences of the byte string EBH, a wild­
card, and 90H (short jumps followed by a NOP), use s ! ? 
cs : 10  0 LCX EB ? 9 0 .  A void using hex characters for 
the wildcard. Use ? or a period when possible to minimize 
confusion. Note that the wildcard character need not be in 
quotes, but any other non-hex field does. 

Examples: 

s cs : IP L 2 0 0 CD 2 1  searches memory from the cur­
rent instruction (CS :IP) for 200H bytes for the pattern 
CD 2 1. Any matChes are displayed in segment: offset format. 

s PRINT LINE L 5 0  c " Page " searches SOH bytes 
starting at the address of the symbol PRINTI..INE for the 
byte OCH followed by the string Page. 

Command: Search for Address reference (SA) 

Syntax: SA < range> < � addres s >  

Description: Use this command to search memory for refer­
ences to a specified address. It does not show any source 
code, just disassembled instructions. 

This command can be thought of as a disassembly that only 
shows instructions that reference an address of interest To 
use it, specify a < range> to be searched and the < ad­
dre s s >  to be searched for, If you do not use a symbol 
name for the address, be sure to specify the segment register. 
For example, if you're searching for a procedure reference, 
specify CS . 

. You can use this command to find JMPs and CAlLs to a 
procedure or to fmd locations in your program where a data 
variable is accessed. Any instruction that references the 

specified address is displayed. 

References to stack data variables are not shown by th is com­
mand. 

Command: Search for Address reference (SA) 1 6 1  



I i 
� ' ' 

Examples: 

SA CS : 1 0 0  L 2 0 0 CONVERT searches from CS : l OO � 

for 200H bytes for any references to the address represented 
by the symbol CONVERT. 

SA PSTART PEND DS : 0 searches from the address rep­
resented by PST ART through the address represented by 
PEND for references to DS :O. 

Command: Search for Calls (SC) 

Syntax: sc [ <byte>  1 

1 62  

Description: Use this command to search the stack for refer­
ences to CALLed subroutines and software INTerrupts. If it 
finds a match, it displays the disassembly of the CALL or 
INT. This technique can help you determine the calling se­
quence used by a program and to unravel nested code. · sc  is 
similar to SR. SR analyzes the stack looking outward, while 
sc analyzes the stack looking inward. Use the optional 
<b�te> field to q_verride the default length of lOH stack 
entries. 

The results are usually accurate, but cannot be guaranteed. 
For example, if a PUSH instruction saves a value on the 
stack that is the same as the address of the instruction after a 
CALL instruction, a false hit will occur. 

This command does not interpret hardware interrupts since 
there is no interrupt in the instruction stream to indicate what 
happened. 

Periscope/32 users: The optional argument is the maximum 
number of  l ines to display. The maximum number of 
stack entries to search is 1 6  times that number. 

Example: 

sc searches the stack for CALLS and INTS. If it finds any, 
it displays the disassembled instruction. Note that the most 

Command: Search tor cal ls (SC) 



recent item is displayed first. 

Command: Search then Display (SD) 

Syntax: SD < range> < l i s t >  

Description: Use this command to search memory for a 
byte/string pattern and then display the matches. This com­
mand is the same as the Search command, except that it dis­
plays any matches in byte format. If you're using a Data 
window, it displays the matching address in the active win­
dow. After you press a key, it continues the search. See the 
Search command for more information. 

Example: 

SD cs : 0 FFFF " Hel lo " searches memory from CS:O 
to CS :FFFF for the string Hel lo. If any matches are 
found, they are displayed in byte format. 

Command: Search for Return address (SR) 

Syntax: SR [ <byte > ] 

Description: Use this command to search the stack for re­
turn addresses. It examines each stack item to see if it con­
tains an address after a CALL or INT instruction. 

This command is similar to the sc command. SR ana­
lyzes the stack looking outward, while sc analyzes the 
stack looking inward. Use the optional <byte> field to 
override the default length of lOH stack entries. 

When SR finds an address after a CALL or INT instruc­
tion, it displays the address of the instruction and the offset 
to the nearest symbol after the CALL or INT. This technique 
can help you determine the calling sequence a program uses 
and to unravel nested code. 

The results are usually accurate, but cannot be guaranteed. 

Command : Search then Display (SD) 163 



For example, if a PUSH instruction saves a value on the 
stack that is the same as the address of the instruction after a 
CALL instruction, a false hit will occur. 

Some programs may manipulate the stack in ways that cause 
this command to fail. 

This command does not interpret hardware interrupts since 
there is no interrupt in the instruction stream to indicate what 
happened. 

Periscope/32 users: The optional argument is the maximum 
number of l ines to display. The maximum number of 
stack entries to search is 1 6  t imes that number. 

Example: 

SR searches the stack for return addresses. If any are found, 
the return address and the offset from the next lower symbol 
are displayed. The address shown is the instruction follow­
ing a CALL (near or far) or an INT. Note that the most re­
cent item is displayed first. 

Command: Search for Unassembly match (SU) 

1 64  

Syntax: s u  < range > < l i s t >  

Description: Use this command to search memory for in­
structions that match a pattern. 

Think of this command as a disassembly that only shows in­
structions that match a specified pattern. To use it, specify a 
< range> that is to be searched and the pattern that is to be 
searched for. For example, to find all MOVSB instructions, 
enter "MOVSB " (in quotes) as the < l i s t >  argument. 

To find all occurrences of MOV SP, enter "MOV SP " .  The 
command converts lower case input to upper case before it 
starts the search. It starts in the mnemonic field and goes 
through the end of the argument field. It ignores any blanks 
in the < l i s t > ,  SO "MOVSP " is the same as "MOV SP " .  

Command: Search for Unassembly match (SU) 



11 occurrences of MOV SP, enter "MOV SP " .  The com­
mand converts lower case input to upper case before it starts 
the search. It starts in the mnemonic field and goes through 
the end of the argument field. It ignores any blanks in the 
< list >, SO "MOVSP " is the same as "MOV SP " .  

This command does not f ind source-code l i nes o r  procedure 
labels, just disassembled instructions. 

Examples: 

SU CS : 1 0 0  L 2 0 0 "MOV SS " searches from CS:lOO 
for 200H bytes for any instructions that contain MOV ss.  

SU PSTART PEND '' POP " searches from the address rep­
resented by PST ART through the address represented by 
PEND for POP instructions. 

� Command: Trace (T) 

Syntax: T [ <number> ]  

Description: Use this command to trace through the current 
program one instruction at a time (i .e. , to single step). 

If you do not enter the optional <number>, this command 
executes one instruction of the program you're debugging 
then returns control to Periscope. If you enter a <num­
ber >, it executes that number of instructions before return­
ing to Periscope. After each trace, it displays the registers, 
effective address, and current instruction. 

If you're using a single-monitor system to trace code that 
does not do any .screen writes, you may want to use Alt-N to 
turn the screen swap off. This eliminates the annoying flash 
caused by the program' s screen being restored in case the in­
struction updates the screen. 

Unlike the Go command, you can use the Trace command to 
trace through ROM, since it works by changing the trap flag 
and not by modifying the code being traced 

Command: Trace (T) 165 



Examples: 

T traces the execution of a single instruction. 

T 3 traces the execution of the next three instructions. 

T ex traces the execution as many times as indicated by 
the current value of the ex register. If ex is currently 1 OOH 
and the next instruction changes it to zero, the trace will still 
be performed lOOH times. 

Command: Trace Back I Trace Registers I Trace Unasm 
(TBITRITU) 

1 66  

Syntax: TB I TR I TU [ * ]  [ ! [ #<number> ] ]  

Description: Use these commands to view the software 
trace buffer. Tilis circular buffer contains from zero to 201 6  
entries. You c an  change the default size (li<B, or 3 2  entries) 
with the /B : nn installation option. (Do not confuse this 
buffer with the real-time hardware trace buffer available 
with Periscope Model IV.) 

Whenever you exit Periscope via any execution command, 
Periscope makes an entry in the software trace buffer. Each 
entry contains the machine registers and an ascending se­
quence number. When you display the bUffer with the TB 
command, it shows, for each entry, the registers, the se­
quence number, and a symbolic disassembly of the instruc­
tion indicated by the saved es:IP. 

Periscope makes an entry i n  the software trace buffer each 
ti me n relinqu ishes control to your  program, so watch 
out for possible d iscont inun ies. If you're using the T, 
GA, or GT commands, there's no problem since 
these commands single-step. However, W you're using 
the G or  J commands, Periscope doesn't "see• al l 
instructions, so there wi l l  be disconti nuit ies in the trace 
buffer. Note that the disassembly uses the current con­
tents of memory at the saved CS: I P so the disassem-

Command :  Trace Back I Trace Registers I Trace Unasm (TB/TR/TU) 



bly may be incorrect if you have changed the i nstruc­
tions. I f  the trace buffer is empty, Periscope ignores a 
TB, TR or TO command. 

To display the entire trace buffer continuously (i.e . ,  to dump 
it to a file or to the printer), use the exclamation point. Enter 
the optional #<number> to begin the dump at a specified 
sequence number. 

Clear the trace buffer by entering TB * .  

You enter a full-screen display mode whenever you enter 
this command without an * or ! . The only way to exit this 
mode is to press Esc. The keys available are: Home, End, 
Up, Dn, PgUp, PgDn, and Esc. If you press any other key, 
Periscope displays the message Press  Esc to" end 
ful l - screen mode. 

You can position the buffer by entering a # <number>,  
where <number > i s  the sequence number. If  you enter a 
number that 's  too low, the first entry in the buffer is shown. 
Similarly, if you enter a number that 's  too high, the last entry 
in the buffer is shown. 

AX= O O O O  BX =O O O O C X= 0 0 8B DX =O O O O S P= FF FE BP=O OO O S I = O O O O DI =O O O O  # 0 0 0 1 
D S= 1 5 E6 ES = 1 5 E 6L S S= 1 5 E6 CS =1 5 E 6  I P= 0 1 3 7  FL =0 3 4 6  NV UP EI PL ZR NA PE NC 

S TA RT : 
1 5E 6 : 0 1 3 7  E 8 1 7 0 0 CALL G ETMEM 

AX= O O O O BX =O O O O C X= 0 0 8B DX =O O O O S P= FF FC BP=O O O O S I = O O O O DI =O O O O  # 0 0 02 
DS= 1 5 E6 ES = 1 5 E 6  S S= 1 5 E6 CS = 1 5 E 6  I P= 0 1 5 1  FL = 0 3 4 6  NV UP EI PL ZR NA PE NC 

G ETME M :  
1 5E 6 : 0 1 5 1  B 1 0  6 MCV C L ,  0 6  

AX= O O O O BX =O O O O 
D S= 1 5 E6 ES =l 5 E 6  
1 5E 6 : 0 1 5 3  B E0 2 0 0  

C X= 0 0 0 6  DX =O O O O S P= FF FC 
S S= l 5 E6 CS =l 5 E 6  I P= 0 1 53 

BP =O O O O S I = O O O O DI =O O O O # 0 0 03 
FL = 0 3 4 6  NV UP EI PL ZR NA PE NC 

MCV S I ,  0 0 02 

Figure 9-5. Software Trace Buffer Using the TB Command 

Figure 9-5 shows three consecutive entries in the format 
used by the TB command. 

· 

The TR and TO commands are subsets of the TB com­
mand. TR displays just the registers and sequence number, 
and TO displays just the disassembled instruction. The 

Command: Trace Back I Trace Regis1Brs I Trace Unasm (TB/TR/TU) 167 



AX� O O O O  
DS� 1 S E6 

Ax� o o o o 
D S � 1 S E6 

Ax� o o o o 
DS= 1 5 E6 

1 68  

same records shown in Figure 9-5 are shown in Figure 9-6 in 
the format displayed by the TR command. You can switch 
among any of the three formats by keying B, R, or o. 

The disassembly mode in effect when you view the trace 
buffer determines the number of lines you see for each in­
struction; If Source mode (US command) is in effect, you'll 
see one line per instruction. If Assembly mode (OA com­
mand) is in effect, you' ll see two lines per instruction. If 
Both mode (UB command) is in effect, you'll see three lines 
per instruction. You can switch disassembly modes (see the 
u command) to control the length of the screen display of 
the software trace buffer. 

BX =O O O O  C X= 0 0 8B Dx �o o o o S P� FF FE BP�O 00 0 s r � o o o o DI �o 00 0 # 0 0 0 1 
ES � 1 S E 6  s s� 1 S E6 cs �1 S E 6  I P� 0 1 3 7  FL �0 3 4 6  NV U P  EI PL ZR NA PE NC 

BX =O O O O c x� o o as Dx � o o o o S P� FF FC B P � o o o o  S I = O O O O DI =0 00 0 # 0 0 02 
ES �1 S E 6  s s� 1 S E6 cs � 1 S E 6  I P= 0 1 5 1  FL =0 3 4 6  NV U P  EI PL ZR NA PE NC 

sx �o o o o C X= 0 0 0 6  DX = O O O O S P� FF FC B P � o o o o  s r � o o o o m �o o o o  # 0 0 03 

ES � 1 S E 6  s s� 1 S E6 cs � 1 S E 6  I P= 0 1 53  FL =0 3 4 6  NV U P  EI P L  ZR NA PE NC 

Figure 9-6. Software Trace Buffer Using the TR Comnumd 

PeriscopefJ2 users:  These commands use the horizontal 
386 register display. 

Due to the number of 32-bit registers Periscope/32 saves in each 
trace buffer entry, you' l l  see on ly 1 6  entries per 1 KB of 
software t race buffer memory. The maximum number 
of t race buffer records is 1 6  times 63, or 1 008, assum-
ing you instal led Periscope/32 wtth the /B : 3 £  in-
stallation option. 

Examples: 

TB shows both the register and disassembly display of the 
software trace buffer. 

TU shows just the disassembly display. 

TB * clears the software trace buffer and resets the se-

Command : Trace Back I Trace Registers I Trace Unasm (TB/TR/TU) 

� 



quence number to zero. 

Command: Trace al l but Interrupts (TI) 

Syntax: TI 

Description: Use this command to trace (single step) all  in­
structions except interrupts. 

If a software interrupt is the current instruction, this com­
mand sets a temporary code breakpoint on the next instruc­
tion and executes the interrupt at full speed. 

Example: 

If the current instruction at offset 1 20H is INT 21H, the TI 
command sets a temporary code breakpoint at offset 122H 
and executes to that point at full speed 

Command: Trace Line (TL) 

Syntax: TL 

Description: Use this command to single step until the next 
source-code line is executed. 

The TL command performs Trace commands until it finds 
the next source line. You can use this command to get back 
to your source code if you see no source code when Peri­
scope comes up. Since this command single steps the code 
while checking for a source line, it can be slow. In many situ­
ations, the JL command will be faster. If finds no source 
line symbols, this command acts like the T command. 

Example: 

Assume the current instruction is in a library routine. Enter 
TL to single step your code until an instruction correspond­
ing to a source line is executed. 

Command : Trace all but Interrupts (TI) 169 



Command: Unassemble memory (UAIUB/US) 

Syntax: U [AIBIS ] [ < range> ]  

1 70 

Description: Use this command to disassemble memory in 
the Assembly mode, source-and-assembly (Both) mode, or 
Source-only mode as set by the UA, UB, and US com­
mands respectively. 

Source is the default mode. If you set the source file buffer 
to zero ( IE  : 0 installation option) or if Periscope is unable 
to find line number symbols, Source-and-assembly (Both) is 
the default mode. If you enter . u, the default is the last mode 
set. 

The syntax for this command is very flexible. If you enter u, 
the disassembly starts where the last u command left off. 
The G, J, R, and T series commands reset the starting 
point to CS:IP. If you enter U <number>,  Periscope pre­
sumes the <number > to be an offset and CS to be the seg­
ment. If you enter U <number > < l ength>, it presumes 
the <number > to be an offset, and CS to be the segment. 
If you're using a Disassembly window, the size of the win­
dow overrides the length parameter. 

If you're using a Disassembly window and it is active, you 
can use the PgUp, PgDn, PadPius, and PadMinus keys to 
move forward and backward through memory. When you 
use the up arrow or PgUp key to go backwards in the Disas­
sembly window, the value of iP will not go below zero. 
When you disassemble memory without a Disassembly win­
dow, the default length for disassembly is 1 8H bytes or lines, 
depending on the mode used. 

When you use UA mode (see Figure 9-7), Periscope dis­
plays all available symbols, including public and line sym­
bols. (You can turn line symbol display off using the / L  
command.) The maximum backwards movement of the UA 
Disassembly window is 21H lines. Any larger Disassembly 
window will not move back a full page. 

Command :  Unassemble memory (UA/UB/US) 



_MAI N :  
13 92 0 0 0 0  5 5  PUS H  B P  
13 92 0 0 0  1 8B EC MOV B P ,  SP 
13  92 0 0 0 3  88 1 0 0 0  MOV AX, 0 0 1 0  
13 92 0 0 0 6  9A 6 C 0 2 9A 1 3  CAL L  _ _  C HKSTK 

FTOC U O :  
13 92 : O O O B  C7 4 6 F6 0 0 0 0  MOV WOR D PTR [ B P- OA ] , 00 0 0  

FTOC # 1 1 :  
13 92 : 0 0 1 0  C7 4 6 F2 2 C 0 1 MOV WOR D PTR [ B P- OE ] , 0 1 2 C  

FTOC # 1 2 : 
1 3 92 : 0 0 1 5  C7 4 6 F4 1 4 0 0  MOV WOR D PTR [ B P- OC ] , 0 0 1 4  

Figure 9-7. Disassembly of FTOC Program i n  UA Mode 

Periscope supports disassembly of real and protect mode op­
codes for CPUs from the 8088 to the 80486, To set 1 6-bit or 
32-bit disassembly, see the 1 6  and 3 2  commands. If 
Periscope encounters an ambiguous reference to an address, 
it shows the symbol name at the end of the disassembled in­
struction as a comment. This indicates that the symbol may 
or may not have been used in the original instruction. Am­
biguous references are generated by a move of an offset to a 
register, such as MOV DI , OFFSET TMEMORY. 

# 7 :  { 
i nt l ower , uppe r ,  s te p ;  
f l o at f ah r ,  cel sius ; 

# 1 0 :  l ower = 0 ;  / *  l ower l imit o f  temp er ature tabl e * /  
# 1 1 :  upper = 3 0 0 ;  / * upper l imit * /  
# 1 2 : s tep = 2 0 ; /* s tep si ze * I  

Figure 9-8. Disassembly ofFTOC Program in US Mode 

Periscope evaluates register memory references of the cur­
rent instruction, taking into account the current values of ma­
chine registers. For example, for the instruction MOV AX , 

[ BP - 1 0 1 , it shows the symbol name STEP as a comment 
when the corresponding local symbol is used and is in the 
scope of the current procedure. Also, it evaluates references 
such as MOV [ BX+S I - 2 0 ] , AX, showing any symbols it 
finds. 

When you use us mode, you'll see source and line num� 
bers, but no other symbols unless the source is not available. 

¢ 
If the source fi le date/time stamp is more recent than t he pro-

Command : Unassemble memory (UAIU B/US) 1 7 1  



1 72  

gram's date/time stamp, however, Periscope displays 
the warn ing message, Source file more 
recent than program. 

Use the us command to tum on source-level debugging 
(see Figure 9-8). This mode shows a minimum of assembly 
code, i.e., it shows assembly code until the first source line is 
found and then shows just the source code. You can use the 
PadPius, PadMinus, PageUp, and PageDown keys to 
move through your source file. 

The source-line naming convention is composed of a module 
name of up to eight characters, an asterisk, and the line num­
ber from 1 to 65535. For example, line 10  of FfOC is re­
ferred to as FTOC# lO .  While 'in' the module, the 
shorthand form # 1 0  may be used to reference line 10. 

Periscope always displays the line number of the first source 
line for reference in a Disassembly window. If the line num­
ber is a valid symbol, it appears in the format #nnnnn : , 
where nnnnn is the line number. Otherwise, it appears as 
( nnnnn ) . When the current instruction is a conditional 

jump, Periscope displays the jump or no j ump com­
ment in the separator line of the Disassembly window. 

Periscope shows the module name in the separator line of a 
Disassembly window. It shows the module name as the first 
line of the disassembly if you're not using a Disassembly 
window. When possible, use a Disassembly window so you 
can scroll through the source file. 

Periscope should never prompt you for a file name for 
source-level debugging. If you are ever prompted for a 
source f'lle name, press Alt-C to see the name Periscope tried 
to use. Edit the f'lle name as needed and press return. To fix 
the name permanently, change your make file to specify the 
full path name for your source f'lles. If you press return with­
out entering a file name, source disassembly is disabled. To 
display the file name prompt again, enter UA and then en­
ter us. 

To display source code, these conditions must be met: 
• DOS must not be busy. 

· 

• A source . file buffer must be. available (if you installed 

Command :  Unassemble memory (UA/UB/US) 



Periscope with /E : 0 ,  the us command is not avail­
able). 

• Une symbols must be available for Periscope to be able 
to associate an instruction with a source-code line. 

• You must be disassembling memory at a source line 
symbol. 

To test for these conditions, see the / L  command. 

_MAI N :  
# 7 : { 

13 92 : 0 00 0 5 5  P US H  
13 92 : 0 00 1  SBEC MOV 
13 92 : 0 00 3  BS 1 0 0 0  MOV 
13 92 : 0 0 0 6  9A 6 C 0 2 9A 13 CAL L  

# 1 0 : lowe r = 0 ;  
13 92 : O OO B  C7 4 6 F6 0 0 0 0  MOV 

ll l l : uppe r = 3 0 0 ;  
13 92 : 0 01 0  C7 4 6 F2 2C 01 MOV 

U2 : st ep = 2 0 ;  
13 92 : 0 0 1 5  C7 4 6 F4 1 4 0 0  MOV 

B P  
B P , SP 
AX, 0 0 10  
__ C HKSTK 

I *  lower l i mi t  of  t empe rature t ab l e  * I  
WOR D PTR [ B P- OA ] , O O O O  

I *  uppe r l i mi t  * I  
WOR D PTR [ B P- OE ] , 0 1 2 C  

I *  st ep s i z e  * I  
WOR D PTR [ B P- OC ] , 0 0 1 4  

Figure 9-9. Disassembly of FTOC Program i n  UB Mode 

When you use UB mode (see Figure 9-9), Periscope dis­
plays any available source code and suppresses line symbols. 
This mode shows the source code, followed by the assembly 
code generated by the source code. 

Periscope/32 users: The disassembly shows an address of 
the form xxxx:yyyy,yyyy. The maximum backward 
movement is 1 8  l ines. 

Whenever n encounters a new selector, the disassembly defaults 
to 1 6  or 32 bns depending on the mode ofthe selector. 
You can override this wtth t he 16 or 3 2  com-
mand. Periscope/32 remembers the settings for up to 
eight selectors. 

Normal ly, Periscope/32 uses the DOS memory al locat ion chain to 
display the owner of the current disassembly address 
at the bottom of the Disassembly window. It does not 
do th is in remote mode. 

Examples: 

u FTOC# disassembles memory in the current or default 

Command:  Unassemble memory (UAIUBIUS) 173 



mode, starting at the first source line in FfOC. Use this tech­
nique to find the first source line in a module if you're not 
sure what the line number is. 

u NEWPAGE disassembles memory in the current or de­
fault mode, starting at the symbol NEWPAGE. The default 
length of 1 8H bytes is used. 

UA FTOC# 1 0  L 1 disassembles memory in symbolic As­
sembly mode for one instruction starting at the symbol 
FTOC#lO. 

UB FTOC# 1 0  disassembles memory in source-and-assem­
bly (Both) mode starting at line 10  in FfOC. 

UB disassembles memory in source-and-assembly (Both) 
mode starting where the last u command left off. If the G, 
J, R or T commands were used, the disassembly starts at 
CS:IP. 

us FTOC# 1 0  disassembles memory in Source-only mode 
starting at line 10  in FTOC. 

Command: View file (V) 
Syntax: v < fi le >  

1 74 

Description: Use this command to view a text file from 
within Periscope. Don't try to use it to display a file that' s 
not in ASCII ! 

The < file> is any legal file name, including drive, path, 
file, and extension. To use this command, DOS must not be 
busy. A source file buffer must be available. If you installed 
Periscope with /E : 0 ,  this command is not available. 

Periscope displays the file in the non-windowed area of the 
screen, unless you have set up a View window. It displays 
the line numbers in the lower left-hand comer of the screen. 
Use PgUp and PgDn to page up and down through the file. 
Use the up and down arrow keys to move up or down one 
line at a time. Use Home and End to move to the start and 
end of the file. Use the right arrow key to display beyond col-

Commanc:t: View fi le (V) 



umn 80 and the left arrow key or Enter to get back. When 
you're finished viewing the file, press Esc to return to Peri­
scope' s  prompt. If View finds an EOF character ( lAH) in 
the file, it treats it as the end of the file. 

A simple string search is available. Enter a forward slash and 
the text to be located. The search begins on the second line 
from the top of the screen. The search is not case sensitive. 
When found, the string is displayed at the top of the screen. 
To repeat a search, enter a forward slash and press Alt-D. If 
no match is found, View displays the last line in the file. 

To position to a specific line, enter a pound sign (#), the deci­
mal line number (1  to 6 5 5 3 5), and press Enter. View dis­
plays the line. 

If you're using a View window, the window is static after 
you press Esc to return to the Periscope prompt. If you 
change the windows or clear the screen, you'll lose the View 
window. Use the View command again to re-display the file. 

Example: 

V C :  PS . DEF displays the file PS.DEF. Use the PgUp, 
PgDn, Up, Down, Left, Right, Home, and End keys to 
move through the file. When done, press Esc to return to the 
Periscope prompt. 

Command: View Source file (VS) 

Syntax: vs 

Description: Use this command to view the current source 
file. It has no arguments and is available only when source­
level debugging has been turned on using the UB or us 
commands. This command functions exactly like the View 
command described above. 

Example: 

vs displays the current source file. When finished viewing 
the file, press Esc to return to the Periscope prompt. 

Command: View Source fi le (VS) 175 



Command: Watch (W) 

1 76 

Syntax: W* or W<byte> * or W [ <byte> ] [ < for-
mat > ]  [ <pointer > ]  < range> � 

Description: Use this command to watch memory locations 
and 110 ports. 

Use the Watch command in conjunction with a Watch win­
dow, which may be up to eight lines long. Each line shows 
the watch variable number, the format type in parentheses, 
the symbol name or address/and the value. The display of 
each watch variable is limited to one line on the screen. The 
formats available are the same as with the Display com­
mand, plus P to watch an 110 port. 

For example, to display the variable S'IEP in integer format, 
enter W I STEP or WO I STEP L2 . When you do not 
specify a <byte>,  Watch uses the next available value. To 
watch an 110 port, enter W P <port> .  To clear the entire 
Watch window, enter W* . To clear an individual watch vari­
able, use Wn * ,  where n is from 0 to 7 .  To display all 
watch settings, use W? 

The Watch command supports the use of pointers. To use 
this feature, enter a bracket ( [ ) or a brace ( { ) after the dis­
play format and before the address. If the bracket/brace im­
mediately follows the < format > (no space!) ,  Watch 
dynamically evaluates the pointer each time it displays the 
watch item. 

If the bracket/brace does not immediately follow the < for ­
mat > (one or more spaces), it evaluates the pointer when 
you enter the command but remains static after that time. For 
example, for w B { FOO, Watch dynamically evaluates the 
far pointer FOO, whereas for w B { FOO, it only evaluates 
FOO when you enter the command. 

Examples: 

wo I AMOUNT displays the variable AMOUNT in integer 
format. 

W3 * clears the watch variable number 3 .  

Command: Watch (W) 



w P 3 1 0 displays the value read from port 3 1  OH. 

W* clears all watch variables. 

W? displays all watch settings . 

Command: Write Absolute disk sectors (WA) 

Syn�: WA <address > <drive >  < sectors > 

Description: Use this command to write memory to abso­
lute disk sectors. 

The segment defaults to CS if you do not specify a segment 
in the < addres s> .  The <drive >  is either a single-digit 
number indicating the disk drive (O=A, 1=B , etc.) or A : , 
B : ,  etc. The < sector s >  parameter is the starting sector 
number and the number of sectors to be written. The maxi­
mum number of sectors that can be written in one operation 
is SOH, which is 64K bytes. 

To use this command, DOS must not be busy. This com­
mand uses DOS interrupt 26H. See the DOS manual for in­
formation on the numbering of the absolute disk sectors. 

When using th is command, be very careful . An absolute disk 
write can very eas i ly destroy the f i le a l locat ion table 
( FAT) or t he dis� d irectory! 

Usually, you will want to perform a Load Absolute, change a 
few bytes of memory, and then perform a Write Absolute of 
the data back to disk. If this is the case, . be sure that the pa­
rameters you use with the Load and Write commands are the 
same. 

Periscope!J2 users: This command is not supported in re­
mote mode. 

Examples: 

WA DS : 1 0  0 A :  10 2 0 writes data from memory start­
ing at DS : lOO to drive A: , starting at sector number lOH for 

( 

Command : Write Absolute disk sectors (WA) 177 



20H sectors. 

WA 10 0 B :  0 4 writes data from memory starting at 
CS: lOO to drive B : , starting at sector 0 for 4 sectors. 

Command: Write Batch file (WB) 

Syntax: WB < f ile> 

Description: Use this command to write a 'batch' file that 
contains Periscope commands to save the current settings for 
the windows and the hardware and software breakpoints. To 
restore the state in a later debugging session, use the LB 
command to load the file. Unless you specify an extension, 
WB uses the default .PSB. 

Example: 

Enter WB SAVE to write the breakpoint and window set­
tings to the file SA VE.PSB. Later, use LB SAVE to reload 
the breakpoint and window settings. 

Command: Write alias and record Definitions (WD) 

Syntax: WD < f ile> 

1 78 

Description: Use this command to write the current alias 
definitions and record definitions to a .PSD file. The 
< f i le >  field is the name of the file to be written, with an 
extension of .PSD. To use this command, DOS must not be 
busy. 

Example: 

WD FTOC writes the current alias and record definitions to 
the file FTOC.PSD. 

Command: Write Batch file (WB) 



Command: Write Fi le to disk (WF) 

Syntax: WF [ < addres s > ]  

Description: Use this command to write a file from memory 
to disk. Before you do, however, you must specify a file 
name with the Name command. 

The optional < addres s >  specifies where the memory im­
age of the file begins. If you do not specify an address, WF 
uses CS : l OO. To use this command, DOS must not be busy. 

You can use this command to write any type of file to disk. 
Before you write the file, be sure that BX and CX indicate 
the size of the file in bytes. Do not attempt to write an .EXE 
file unless it was loaded with the LF command. An .EXE 
file loaded by RUN is missing its header and is executable 
only at its current address. 

Periscope/32 users: This command is not supported in  re-
mote mode. 

· 

Examples: 

WF DS : 1 0  0 0 writes the file defined by a Name command 
from memory to disk starting at DS : lOOO. 

WF writes the file defined by a Name command from mem­
ory to disk starting at CS: 100. 

Command: Write Symbols to disk (WS) 

Syntax: WS < segment > < file> 

Description: Use this command to write a Periscope symbol 
(.PSS) file using the current symbol table. 

The < segment > contains the relocation factor that is sub­
tracted from the current symbol segment before the file is 
written. For .COM files , this is the value of the PSP segment 
or CS . For .EXE files, this is the value of the PSP segment 
plus lOH. The < f i le >  is the path and ftle name of a .PSS 
file. To use this command, DOS must not be busy. 

Command: Write File to disk (WF) 179 



You cannot use this command to write a .MAP file. It only 
writes .PSS files . It does not change the symbol tables. 

If an error occurs when writing the symbol file, the symbols 
may be left with the relocation factor subtracted. If this hap­
pens, you can recover the symbols using ws 0 < file>  
to write the symbols without further relocation. Then enter 
LS * to clear the symbol table, followed by LS < seg­
ment > < file>  to restore the symbol table. 

Examples: 

ws cs SAMPLE subtracts the current value of CS from 
the symbol ' s  segments and writes. the file . SAMPlE. 

ws 0 C :  TEST subtracts zero from the symbol' s segments 
and writes the file C:TEST.PSS. 

Command: translate (X) 
Syntax: XIXH <number> or XA <address > or XD 
< decimal number> 

Description: Use X or XH to translate a one- to four­
digit hexadecimal <number> to its decimal, octal, binary, 
and ASCII equivalents. You may also use it to perform in­
line arithmetic. 

Use XA < addres s >  to translate an address (segment 
and offset) into its equivalent five-byte absolute address. The· 
absolute address is calculated by multiplying the segment by 
1 OH and adding the offset to the result. 

Use XD < decimal number> to trarislate a one- to five­
digit decimal number to its hexadecimal, octal, binary, and 
ASCII equivalents. The number must be from 0 to 
6 5 5 3 5 .  The number may not have any punctuation, such as 
commas or periods. You can translate numbers larger than 
65535, but the high order part is lost. 

¢ 
Periscope/32 users: This command supports hex numbers of 

1 80  Command : translate ()() 



up to eight d ig its . It supports decimal n umbers up to  
4,294,967,295. I t  does not support octal numbers. 

In remote mode, XA adds the offset argument to  the base of the 
selector argument, t hen returns the resu lt. Otherwise it 
uses t he normal calcu lat ion method, (segment* 1 6)+off-
set. 

Examples: 

x 5 0 5 1  displays : 

5 0 5 1 h 2 0 5 6 1 d  0 5 0 1 2 1 o  0 1 0 1  0 0 0 0  0 1 0 1  0 0 0 1 b  

XA 12 3 4 : 5 6 7 8  displays : 

1 7 9 B 8  

XD 2 0 5 61  displays : 

5 0 5 1h 2 0 5 6 1 d  0 5 0 1 2 1 0  0 1 0 1  0 0 0 0  0 1 0 1  0 0 0 1 b  

Command: Use 1 6  or 32-bit disassembly (16/32) 

Syntax: 1 6  or 3 2 

PQ 

PQ 

Description: 16 sets 1 6-bit disassembly. 3 2  sets 32-bit 
disassembly for use on 80386 or later CPUs. 

There is currently no effective address support for 32-bit in­
structions. 

Examples: 

1 6  switches to 16-bit disassembly. 

3 2 switches to 32-bit disassembly. 

Command: Option ditto (copy Periscope's screen) 

Syntax: I "  

Command : Use 1 6  or 32-bit di sassembly ( 1 6/32) 1 8 1  



/ 

Description: Use this commimd to copy Periscope's  screen 
onto the other display. It is usable only when you're using a 
dual-monitor system with one color display and one mono­
chrome display using an MDA. 

Example: 

I " copies Periscope' s  screen to the other display. 

Command: Options 1 and 2 (switch symbol tables) 

Syntax: I 1 or I 2 

1 82  

Description: Use this command to switch to an alternate 
symbol table. 

To use it, you must specify two symbol tables when you in­
stall Periscope, using two I T : xxx installation options. 
The I 1 command makes .the frrst symbol table active and � 

the I 2 command makes the second symbol table active. 

You can use the LS command to manually load the current 
symbol table or you can use RUN to load the desired symbol 
table. RUN defaults to loading symbol table 1 ,  but loads ta-
ble 2 when y�u use RUN 1 2  < fi le >. 

When debugging a program that uses overlays, you must 
load the symbol table that contains overlays last. 

·Examples: 

1 1 makes the first symbol table active. 

1 2  makes the second symbol table active, presuming that 
you specified two IT installation options when you in­
stalled Periscope. 

Command: Options 1 and 2 (switch symbol tables) 



Command (Periscope/32 only): Option 3 (enable/disable ring 3 
debugging) 

Syntax: / 3  

Description: Use this command to enable or disable ring 3 
( 1 through 3 for Windows) debugging by an application­
level debugger, such as CodeView for Windows. 

Command: Option 4 (toggle internal 486 cache) 

Syntax: / 4  

Description: Use this command to enable or disable the 
cache that is an integral part of the 80486 chip. 

Example: 

I 4 changes the state of the internal 486 cache, i.e., if it was 
enabled, it will be disabled and vice versa. 

Command: Option A (toggle DOS Access) 

Syntax: /A 

Description: Use this command to enable or disable DOS 
access by Periscope. 

The /A command toggles Periscope' s  use of DOS. When 
used once, it turns Periscope's  use of DOS off. When used 
again, it turns Periscope's use of DOS back on. 

Example: 
·
I A enables/disables DOS access by Periscope. 

Command (Periscope/32 only): Option 3 (enable/disable ring 3 debugging) 183 



Command: Option C (display and set Colors) 

Syntax: /C [ <byte > ]  

Description: Use this command to display and set the screen 
colors. 

The optional <byte>  is the color attribute. If you do not 
enter a number, this command displays the colors for 00 to 
7FH. If you enter a number, it sets the screen color as in the 
I c installation option. 

Examples: 

I c displays the available screen colors. 

I C 17 sets the Periscope screen color to white on blue. 

Command: Option D (Data window select) 

Syntax: ID [ <byte > ]  

1 84  

Description:  Use this command to select the active Data 
window when you're using more than one Data window. 

The active window is the one modified by display com­
mands. The inactive window(s) display memory in the same 
format as when they were last active. If you're using only 
one Data window, this command has no effect. If you do not 
enter a number in the <byte> parameter, it makes the 
next Data window active (as indicated by the up arrow after 
the window number) . If you enter a number that corresponds 
to a Data window ( 0-3 ) , it makes that window active. 

Examples: 

/D makes the next Data window active. If there are three 
Data windows, the first use of this command makes the sec­
ond window active. The second use of this command makes 
the third window active. The third use of this command 
makes the first window active, etc. 

ID 3 makes the last Data window active, assuming four 

Command :  Option C (display and set Colors) 



Data windows are in use. 

Command: Option E (Echo screen to a fi le) 

Syntax: / E  [ < fi le > ]  

Description: Use this command to echo Periscope' s  screen 
output to a < file> .  

This command causes all non-windowed output to be written 
to a disk file at the same time it is being written to the 
screen. To begin this mode, enter / E  followed by a file 
name and a carriage return. While active, the command 
prompt shows I E  to remind you that echo mode is on. To 
end echo mode, enter /E with no file name. The usual 
rules about DOS availability from within Periscope apply. 

Examples: 

/ E  D :  OUTPUT starts echo mode, using the file D:OUT­
PUT. Until you use another /E command, Periscope' s  non­
windowed screen output is written to this file. 

/ E  ends echo mode, closing the file D:OUTPUT, and re­
turns to the standard Periscope prompt. 

Command: Option K (capture Keystrokes to a file) 

Syntax: /K [ < file> ] 

Description:  Use this command to capture keystrokes to a 
< f i le> .  

To start keystroke capture, enter /K < fi le >. Periscope 
then writes all keystrokes to the file until you enter the /K 
command again. To replay the captured keystrokes, enter 
the LB command Note that the default file extension is 
.PSB . While this command is in use, Periscope's  prompt be­
comes /K> .  It does not capture keystrokes while the menu 
system is active. 

Command :  Option E (Echo screen to a file) 185 



Examples: 

/K TEST starts capturing keystrokes to the file 'IEST.PSB. 

/K turns off keystroke capture and closes the file 
'IEST.PSB . 

Command: Option L (display Line symbols and source debug 
status) 

1 86  

Syntax: / L  

Description: Use this command to enable/disable the dis­
play of line-number symbols when you're using the UA 
mode, and to display the status of various items required for 
source-level debugging. 

If it finds no line symbols, this command displays the mes­
sage No l ines found. If you see this message, correct 
your compile and link options to get line numbers in the sym­
bol file. They are required for source-level debugging. 

If you've set the source buffer size to zero with the /E : 0 
installation option, this command displays the message No 
buffer found. If you see this message, reinstall Peri­
scope with a source file buffer, since it is required for source­
level debugging. 

If DOS is busy, it displays the message DOS busy. Peri­
scope uses DOS to access your source file, so DOS must not 
be busy for source-level debugging. 

If it finds no problems, it displays the message 1 ines . 
found. 

Example: 

/ L  toggles the display of line-number symbols when you 
use the UA mode. It also displays the messages described 
above. 

Command : Option L (display Line symbols and source debug status) 



Command: Option N (Nearest symbols) 

Syntax: IN [ < addres s > ]  

Description: Use this command to search for the symbols 
nearest to the specified < addres s > .  

This command displays up to three symbols on up to three 
lines : the next lower symbol (preceded by >), the equal sym­
bol (preceded by = ), and the next higher symbol (preceded 
by <). 

It can help you get your bearings when you've interrupted an 
executing program by showing you the nearest symbols. If 
you do not enter an < addres s > ,  it assumes CS :IP. It dis­
plays the nearest symbol that is located lower in memory on 
the first line, the symbol for the specified address on the next 
line, and the nearest symbol that is located higher in memory 
on the next line. If it finds no lower, equal, or higher symbol, 
it displays nothing. 

Periscope/32 users: This command searches for symbols 
on ly wtth in the same selector. 

Examples: 

Assume three symbols X, Y, and Z located at 1000: 100, 
1000:200, and 1000:300 respectively. 

IN 1 0 0 0 : 2 0 0 displays : 

> X 

= y 

< z 

IN 1 0 0 0 : 0  displays : 

<X 

Command: Option Q (Quiet) 

Syntax: I Q  

Command : Option N (Nearest symbols) 187 



Description: Use this command to turn off Periscope' s  dis­
play output until the end of the current command line. 

This is useful when you want to suppress Periscope' s output 
to the screen. For example, when you're using the /E com­
mand to echo Periscope' s  output to a file, you can suppress 
the display using this command. 

Example: 

I Q ;  u IP L 1 0  0 0 turns off the display output until the dis­
assembly is complete. 

Command: Option R (Remove symbol) 

Syntax: /R < symbol >  

Description: Use this command to remove public and line 
symbols (but not local symbols) from the symbol table. For � 

instance, since Periscope evaluates symbol names before reg-
ister names, a symbol named AX would disable references 
to register AX unless you used this command to remove the 
symbol. 

Examples: 

/R AX removes the symbol AX, leaving no conflict with 
the register named AX. 

/R FTOC# l O  removes the symbol FfOC#lO. Be careful 
when removing line-number symbols, since you cannot re­
enter them with the ES command. 

Command: Option 5 (Segment change) 

1 88  

Syntax: /S < s egment > < s egment > 

Description: Use this command to make global changes to 
the values of segments in the symbol table. It searches the en-

Command: Option A (Remove symbol) 



tire symbol table for symbols, including local data symbols, 
with a segment that matches the first < segment >. When it 
finds a match, it changes the symbol ' s  segment to the sec­
ond < segment >.  Use this command to adjust the seg­
ments of symbols when a program relocates its code or data 
areas . 

Periscope/32 users: This command adjusts both the seg­
ment and offset. The syntax is /S segment : ad­
dress  segment : addres s ,  which provides 
maximum flexibilny in re locating symbols for Windows. 

Example: 

I s  12 3 4 DS changes the segment of all symbol table en­
tries that are currently 1 234 to the current value of DS. 

Command: Option T (Trace interrupt table) 

Syntax: / T  [ ? ]  [ * ]  [ # ]  [ <byte> ]  [ • • •  ] 

Description: Use this command to force tracing of inter­
rupts when you use the GT command. 

Some interrupt service routines turn the trap flag off when re­
turning status information in the flag registers . If Periscope 
does not trace all the way through such routines when you're 
using the GT command, the program can get out of Peri­
scope's control and begin executing at full speed. 

The known troublesome interrupts are 1 3H, 15H, 1 6H, lAH, 
20H, 25H, 26H, 2FH, 40H, and 41H. When you initially in­
stall Periscope, it flags these interrupts for forced tracing. Us­
ing this command, you can change the interrupts that will be 
traced when you use GT. 

The possible command arguments are * , #, ? , and num­
bers from 0 to FF (always presumed hex) . The * clears 
all traps and the # sets all traps. A ? displays the current 
trace list. The <byte> hex number toggles the state for 
that interrupt from off to on or vice-versa. 

Command: Option T (Trace interrupt table) 189 



Warnings: 
• Interrupt 21H should be in the trace list whenever you 

use function 4BH (Exec) . 
• When an interrupt is not traced, Periscope becomes dor­

mant until the second instruction after the INT XX in­
struction. 

• If you use a GT command when the current instruction 
(CS:IP) is an interrupt, the interrupt is always traced. 

• If you have problems with the GT command losing 
control, try using the GA command. 

Examples: 

I T  # forces tracing of all interrupts. 

IT * 2 1  clears all interrupts and then forces tracing of Int 
21H. 

Command: Option U (User exit) 

1 90  

Syntax: 10 <byte> [ <address > ]  

Description : Use this command to perform user-written 
code from Periscope. 

To use this command, you must install a program similar to 
USEREXIT.ASM and you must install Periscope with the 
I I option. The <byte >  you enter after the IU com­
mand must be from 9 to FFH. It cannot be a literal. Peri­
scope passes the number to the user-written program in 
register AH . It passes other information, including the op­
tional <address >  you enter on the command line. You 
may follow this parameter with additional free-form informa­
tion, which means you cannot stack commands on the line 
following a IO command. When you enter a user exit com-
mand, Periscope displays an error if it cannot find the signa- � 

ture of the user exit code. 

USEREXIT displays the status of the numeric processor. To 
use USEREXIT, load it before you install Periscope, then in­
stall Periscope with the I I : 6 0 installation option. From 

Command:  Option U (User exit) 



within Periscope, enter /U 8 7  to display the status of the 
numeric processor. 

The user exits from FO to FFH are reserved for Periscope. 
See Section 7. 10  for more information. 

Example: 

Assuming that a user-written interrupt handler has been in­
stalled using INT 60H and that Periscope was installed with 
the I I :  6 0 installation option, /U 9 executes user exit 
number 9. 

Command: Option W (Window setup) 

Syntax: /W [ < token> ] [ [ : <byte> ]  
[ . <color > ] ] [ • • •  ] , where < token> is D, R, S ,  

u ,  v, or w; <byte >  i s  the length in lines ; and 
< color> is the color attribute; or /W - < token >;  or 
/W +< token> ;  or /W ? 

Description: Use this command to change Periscope' s  win­
dows. Its use and syntax are identical to the /W installation 
option. 

Periscope can window Data, Register, Stack, Unassembly, 
View and/or Watch information. Once you establish win­
dows, Periscope displays the windowed data at a constant lo­
cation on the screen and updates the windows after each 
command (it updates the View window only when you use 
the View command). 

Indicate the type of data to be windowed with the < to­
ken >, which can be D, R, s, u, v, and/or w. The tokens 
are optional and may be in any order. If you omit a token, 
Periscope will not window the corresponding type of infor­
mation. It displays the windows in the same order as you 
place the tokens on the input line, except for the Stack and 
vertical Register windows. These windows are always on the 
right-hand side of the screen. 

The <byte >  parameter defines the length (number of 

Command :  Option W (Window setup) 1 9 1  



DATA 

lines) of the horizontal window in hex (except for the R 
window). If you do not specify a length, Periscope displays a 
default number of lines. The maximum length for any one 
window and the total area that you can window is four lines 
less than the screen length, including a separator line follow­
ing each window. When you specify a length, at least one 
space must follow the number. If you're using 43-line mode 
or 50-line mode, the windows can get quite large. Since Peri­
scope regenerates the windows after each command, large 
windows can slow Periscope' s  response time. The default 
and minimum number of lines for each of the horizontal win­
dow types (vertical window lengths are determined by the to­
tal number of horizontally-windowed lines) are shown in 
Table 9- 1 .  

DEFAULT MINIMUM 

4 1 

R EG I S TE R  2 2 

UNASM 

VIEW 

WATCH 

1 92  

4 1 
4 1 

4 1 

Table 9-1. Periscope Window Lengths 

You can individually set the colors of the windows, using a 
hex number from 1 to 7F in the < color> parameter. The 
numbering scheme is the same as that used by the I C in­
stallation option, and by the I c command. To set a Data 
window of five lines using color 1FH, use IW D :  5 . lF. 

Data Window. The D token sets up a Data window to 
show data in any of the display formats except DR (Display 
Record). The window continues to show the same address 
until you use another Display command. When you use 
RUN to enter Periscope, it sets the display address to 
DS : lOO. 

You may use up to four Data windows, with each window 
showing a different range and using a different display for­
mat. For example, if you want to set up three Data windows 
with lengths of 4 lines, 2 lines, and 6 lines, respectively, en­
ter /W D :  4 D :  2 D :  6 .  To change the active Data win­
dow, use the ID command. When the start address of a 

Command : Option W (Window setu p) 



Data window matches a symbol, Periscope displays the sym­
bol name in the separator line at the end of the window. 
When the Data window is active, you may use the PgDn, 
PgUp, PadPius, and PadMinus keys to move forward and 
backward through memory. 

Register Window. Use the R or R :  2 tokens to set up a 
horizontal Register window to show register and flag infor­
mation. The length is fixed at two lines. Periscope shows the 
effective address of any memocy reads or writes in the sepa­
rator line following this window. 

Use the R :  1 and R :  3 tOkens to establish a vertical win­
dow on the right-hand side of the screen to show standard 
and 80386 register displays, respectively. · The displays re­
quire 1 8  lines of window space for the full register set and 
the flags. Periscope truncates the register displays if fewer 
lines are available. Other windows must exist for a vertical 
Register window to exist You may toggle these vertical win­
dows off and on using Alt-R (standard) and Alt-3 (80386). 
When you use either of these windows, Periscope displays 
the effective address in the separator line following the 
Watch window. 

Stack Window. Use the s token to set up a vertical win­
dow on the right-hand side of the screen to show the stack. 
The length of the Stack window is equal to the total number 
of lines contained in the other types of windows. A Stack 
window cannot exist without other windows. A chevron in 
the left margin of the window indicates the current value of 
the BP register. You can toggle the Stack window off and on 
using Alt-S. Read the stack from the upper right -hand corner 
of tfi¢ screen downwards. Ifyou choose not to use a Stack 
window, you can always view the stack using DW ss : Sl?. 

Disassembly Window. Use the o token to set up a Disas-
. ·· sembly window to show disassembled instructions. Peri-
. scope initially uses CS:IP as the address for the disassembly, 

. •  and resets it to CS:IP each time you use a G, J, R, or T 

· sertes conimartd� You can disassemble any area of memory 
by using the .  o command with the desired address. Peri­
�cope bighJjghts sticky code breakpoints when it shows them 

in the Disassembly window. It shows the current instruction 

. Command: Option W (Window setup) 193 



1 94  

in  reverse colors. (Some window colors may cause the re­
verse color to be invisible. For example, color 7E on a mono­
chrome EGA causes the reverse bar to be invisible.) 

The maximum backwards movement of a Disassembly win­
dow is 21H lines. Any larger Disassembly windows will not 
move back a full page. If you 'lose' the reverse video bounce 
bar, use the R command to re-display it. When the Disas­
sembly window is active, you may use the PgDn, PgUp, 
PadPlus, and PadMinus keys to move forward and back­
ward through memory. 

Periscope shows the current location in the separator line fol­
lowing the Disassembly window. It uses the DOS memory 
allocation blocks to get the actual program name when possi­
ble. Two caveats : the lookup is based on CS only and it will 
display :In RUN . COM when in a program loaded by RUN 
unless you used RUN /T or RUN /X. 

View Window, Use the v token to establish a View win­
dow to display a text file. The View command uses the space 
reserved by the window. See the description of the View 
command for more information. 

Watch Window. Use the w parameter to set up a Watch 
window to display the contents of up to eight memory loca­
tions or 110 ports. Once you establish a Watch window, use 
the Watch command to specify the locations to be 
"watched" . When the Watch window is active, you may use 
the PadPius and PadMinus keys to scroll through the win­
dow. See the Watch command for more information. 

Use Ctrl-F9 to restore the original window settings in effect 
when you installed Periscope. Use Ctri-FlO to restore the 
most recent window settings. 

Use the /W - < token> and /W +<token > com­
mands to decrease or increase the length of a window by one 
line. They will not create or remove a window. To decrease 
the length of the Data window, use /W -D. To increase the 
length of the Watch window, use /W +W. When decreasing 
a window' s length, the minimum resulting length is one line. 
When increasing a window' s  length, the maximum resulting 
length is determined by the maximum length for the screen. 

Command:  Option W (Window setup) 



The /W ? command displays the current window settings. 

Periscope/32 users: The Stack window can be etther 1 6  or 
32 bits wide, depending on the width M in the stack se­
lector. Due to the wider stack, you should avoid the 
vertical register display. Also, any inval id memory ad­
dresses display as quest ion marks. 

The defautt window sett ings for Periscope/32 show a two-l ine Data 
window, fol lowed by the horizontal registers, fol lowed 
by a two-l ine Watch window and and an eight-l ine Dis-
assembly wi ndow. The vertical Stack window is on the 
right side of the screen. 

Periscope/32 interprets the Register  window setti ngs as fol lows: 
R :  1 is interpreted and saved as R :  3 (vertical display) 
R :  2 is interpreted and saved as R :  4 (horizontal display) 

Examples: 

/W D :  8 • lF R windows data in the first eight lines of the 
screen using color 1F (white on blue) followed by two lines 
of register information. A total of 12 lines are used for win­
dows, including the two separator lines. 

/W SR u :  7 windows register information in the first two 
lines of the screen, followed by seven lines of disassembly. 
A total of 1 1  lines are used for windows, including separator 
lines, so the specified Stack window is 1 1  lines long. 

Command: Option X (eXit to DOS) 

Syntax: /X 

Description: Use this command to exit to DOS. 

DOS must not be busy and memory must have been freed us­
ing DOS function ca11 4AH. To return to Periscope, enter 
EXIT at the DOS prompt. While at the DOS prompt, don't 
execute RUN, PS, or change the state of the system (e.g. 
change monitors). 

Command:  Option X (eXit to DOS) 195 



1 96  

Example: 

/X exits Periscope and displays the DOS prompt, assuming 
memory has been freed and that DOS is not busy. When 
you're ready to return to Periscope, enter EXIT at the DOS 
prompt. 't 

Command: Option X (eXit to DOS) 



A p E N 0 X A 

Messages 

• Informational Messages and Prompts 
• Error Messages 

Y
ou'll find details on informational messages, 

· 

prompts, warnings, and error messages displayed by 
Periscope in this chapter. 

197 



A.1 INFORMATIONAL MESSAGES AND PROMPTS 

Programs in the Periscope package generate the following 
messages and prompts, listed in alphabetical order: 

*Break* 
Periscope displays this message when you press the Break­
out Switch or otherwise generate an NMI while Periscope is 
already active. 

Breakpoint cleared 
Periscope displays this message when you re-enter a break­
point. 

DOS 3.10 or later required 
Periscope needs MS-DOS or IBM-DOS 3. 10 or later. 

EOI issued for IRQ x 

Periscope displays this message when it must issue an End 
of Interrupt for a hardware interrupt. The IRQ level desig­
nated by x indicates the interrupted activity: 0 = timer 
(INT 8) ; 1 = keyboard (INT 9}; etc. 

Trap xx 

Grrr! 

On an 80286 or later CPU, Periscope can intercept three 
types of exceptions, unexpected single-step (INT 1 ), illegal 
opcode (INT 6) , and segment wraparound (INT ODH). The 
xx is 0 1, 0 6  or OD. 

Periscope displays this message when the watchdog timer on 
an IBM PS/2 machine activates Periscope after detecting a 
hung system. 

Parity error 1 

1 98  

Periscope displays this message when a motherboard parity 
error occurs. Make sure you've entered the correct response 
to the Periscope configuration option that asks if you have a 
PC/XT motherboard with an 80286 or later turbo card. If 
your configuration is correct, run your system diagnostics. 

A. 1 INFORMATIONAL M ESSAGES AND PROMPTS 



Parity error 2 
Periscope generates this message when a parity error occurs 
in the expansion bus or when the you press the Break-out 
Switch. 

This message can also occur when you've i nstal led two Peri­
scope boards in your system. Try plugging the Break-
out Switch i nto the other board. 

Press Esc to end full-screen mode 
Periscope displays this message when it' s in full-screen 
mode and you enter an unexpected keystroke. 

Source buffer too small 
Periscope displays this message when the source file buffer 
is less than 1/32nd the size of the source file you're using. In­
crease the size of the buffer using the /E installation op­
tion for better performance. 

Source file? 
Periscope displays this prompt when it cannot find the 
source file. Press Alt-C to see the name Periscope tried to 
use. Correct the name and press return. Use the MP and MX 
aliases as needed to automate the source file access. 

Source file more recent than program 
Periscope displays this message when the date/time stamp on 
the source file is later than the date/time of the program file. 
An incorrect source line may be displayed if the two files do 
not match. 

Warning: Timer interrupts (IRQ 0) are turned off via port 
21H 

Periscope has found that the system clock has been turned 
off. This is not a normal condition, so we are alerting you to 
it. 

Warning: Keyboard interrupts (IRQ 1) are turned off via 
port 21H 

A. 1 INFORMATIONAL M ESSAGES AND PROM PTS 199 



Periscope has found that the keyboard has been turned off. 
This is not a normal condition, so we are alerting you to it. 

A.2 ERROR MESSAGES 

Periscope' s  error messages are numbered. Each program has 
been assigned a range of numbers for easy cross-reference. 
The error numbers and corresponding programs are: 

• 01  through 39-resident portion of PS .COM . 
• 40 through 89-transient/installation portion of PS.COM 
• 90 through 99 - RS.COM 
• 100 through 1 29 - TS.COM 
• 1 30 through 1 39 - SYMLOAD.COM 
• 140 through 149 - INT.COM 
• 150 through 159·- PSKEY.COM 
• 1 60 through 1 69 - PSTEST.COM (see Model I Board 

installation addendum) 
• 170 through 1 89 - RUN.COM 
• 190 through 199 - SYSLOAD.SYS 
• 200 through 229 - POPPS.COM (see PopUp Periscope 

manual) 
• 230 through 239 - CONFIG.COM 
• 240 through 249 - SETUP.COM 
• 260 through 269 ..,....- RX.COM (see Periscope/Remote for 

DOS addendum) 
• 270 through 279 - PSTERM.COM 
• 400 through 414 - PS41EST (see Model IV manual) 

A list of the possible error messages and an explanation of 
each follows: 

01-lnvalid command 
An unknown Periscope command was entered. Enter ? to 
display the commands available. 

· 

O�lnvalidllllissing address 
·· � Atrtlddtes� was expected, butwas not found or was fo1md to 

· · be invalid You may enter the address as a symbol or a one­
to fout"'digifsegment, a colon, and a one- to four-digit offset. 

<Y 9UlllaY sul,lstiW� � register name for the segment oroffset . -� " . · .. . . . . . . : . ' - . ·  - � ; " .. . 

A.2 · . ERROR MESSAGES 



03-Invalid/Missing segment 
Some commands that modify memory require an explicit 
segment to reduce the chance of accidental memory modifi­
cations. Enter the segment as a number or register, or use a 
symbol for the address. 

04--Invalid/missing length 
The length argument was not found or was found to be inva­
lid. If you enter L nnnn, the number nnnn must be 
greater than zero. If you enter it as an offset, the number 
must be greater than or equal to the frrst offset. If you enter a 
symbol, the symbol' s  segment must equal the first segment 
and the symbol ' s  offset must be greater than or equal to the 
first offset. 

05-Unexpected input 
After completion of a command, an unexpected entry was 
found. If you want to enter multiple commands, place a semi­
colon between the commands. 

06-Missing list 
No list was found for the Fill or Search commands. These 
commands require a byte/string list. 

07-Missing quote 
The trailing single or double quote was not found for a list. 

08-Invalid/missing operator 
An expected argument was not found. Check the command 
syntax and try again. 

09-Number is not decimal 
A decimal number must be composed of the digits 0 
through 9 with no punctuation. 

10--Invalid/missing number 
A required number was not found or was found to be invalid. 
The number must be from one to four hex digits or a valid 
register name. For some commands, the number is limited to 

A.2 ERROR M ESSAGES 20 1  



J 

two hex digits or the 8-bit registers. If part of a list, the num­
ber must be one or two digits ; you cannot use a register 
name. 

1 1-Invalid/missing register 
The register name must be AX, BX, ex, DX, SP, BP , 

S I ,  DI , DS , ES, FS, GS , SS,  CS, IP or FL; or one 
of the 8-bit registers AH, AL, BH, BL, CH, CL, DH, or 
DL. The register name may be in upj:Jer or lower case. 

If this error occurs from the in-line assembler, it may mean 
that the register specified does not fit the instruction or is ille­
gal (e.g. ,  PUSH AL or POP CS). 

12---Invalid flag 
The valid flag names are OV, NV, DN, OP, EI,  DI, 

NG, PL, ZR, NZ, AC, NA, PE, PO, CY, and NC, in up� 
per or lower case. 

1�Too many breakpoints � 

Too many breakpoints are set for the command. See the com-
mand you're using in Chapter 9 for the limits. 

14-Wrong version in PSS file 
The version number found in the .PSS file is not current Re­
generate the .PSS file using TS. 

15-Address range is too big (Periscope/32 only) 
The HM command and the hardware trace buffer I A com­
mand convert a contiguous virtual address range into one or 
more contiguous physical address ranges. The number of 
contiguous physical address ranges exceeds the capacity of 
the Model IV Board or the I A internal buffers. Try limit­
ing the virtual address range. 

1�an't modify memory � 

An attempt was made to set a Code breakpoint in memory 
that qould not be modified. The memory is not present, is 
read-only (ROM), or was not correctly updated with the 
CCH code needed for a Code breakpoint 

202 A.2 ERROR M ESSAGES 



17-Second address/port less than first 
The second address or port number is less than the first num­
ber. Enter an address or port number greater than or equal to 
the first. For commands requiring a range, the second offset 
was found to be less than the first offset. For example, the 
command D 0 : 10  0 8 0 is invalid, since 80 is less than 
100. 

18--Unknown symbol 
An unknown symbol was referenced. The symbol may be 
preceded by a period and must be followed by a delimiter 
such as a space, carriage return, or semi-colon. The maxi­
mum symbol length is 32 characters. To display the symbol 
names and addresses from the symbol table, press Alt-I. To 
display the record definition table, press Alt-E. 

19-Table full or invalid 
The record or symbol table was found to have a logical error 
or is completely full. Try using an undefined record or sym­
bol in a display statement. If this error occurs, the table has a 
logical error, otherwise the table is full. 

If the symbol table is full, reload Periscope with a larger 
I T  installation option. If the record definition table is full, 
reload Periscope with a larger /R installation option. 

If the table is invalid, chances are good that it has been gar­
bled. For the symbol table, use the LS command to clear 
and reload symbols. For the record definition table, use the 
LD command to clear and reload definitions. 

20-DOS busy 
The Load, Name, View, Unassemble Source, Write, Echo 
and DOS eXit commands use DOS function calls. Since 
DOS is not re-entrant, Periscope tests to be sure that DOS is 

� available (not busy). It does this by checking a flag set by 
DOS. This flag must be zero and interrupts must be enabled 
for Periscope to allow DOS functions. If you receive this 
message, use the Go command to get back to your program's  
code or go to the next invocation of INT 28H, using G 

A.2 ERROR M ESSAGES 203 



{ 0 : 2 8 * 4 } . Then try the command again. 

21-Not enough memory 
Insufficient memory is available to perform the Load or eXit 
to DOS command. When using the · tx command, you 
must first release memory back to DOS. 

22-Invalid drive 
One of the drive names specified in the N arne command is 
invalid. Register AL or AH is set to FFH if the first or sec­
ond file name, respectively, had an invalid drive identifier. 

23-Can't open file 
Periscope was unable to open .a file for input or output. If 
you're loading a file into memory, check the name you speci­
fied to the Name command If you're writing a file, check 
that the filename is legal, the file is not a read-only file, and 
room exists in the directory for the file. lbis error can also 
occur if too many files are open. 

" 

24--Invalid window specification 
The parameters specified with the /W option were found to 
be in error. The window specification may contain the to­
kens D, R, s, u, v and w in any order, in upper or 
lower case. If you enter a number, it must be of the form 
x :  nn, where X is the token, and nn is the number of 
lines. For the R token, the number may be 1, 2 ,  or 3 .  A 
number must be followed by a space, a slash (indicating the 
start of another installation option), a carriage return, or a 
color setting in the format • cc, where cc is a number 
from 0 1 to FF. The total number of windowed lines, in­
cluding a separator line for each window, must be 21 or less. 
If you're using 43-line or 50-line mode, the window sizes 
may be larger by the corresponding number of lines. 

25-Read/write error 

204 

A fatal error occurred when reading or writing a file or abso­
lute sectors. Check the llisk and filename and retry the com­
mand. Also check to see if DOS has become busy while 
you're using the I E  or /K command 

A.2 ERROR M ESSAGES· 



2�Function not available 
This error indicates that the desired command is not avail­
able. It can occur under various conditions : 
• when you use an :rc or :IR command and you haven't  

previously used an :IS command to save the interrupt 
vectors 

• when you use an RC or RR command and you haven' t  
previously used an RS · command to save the registers 

• when you use a TB, TR, or TU command but installed 
Periscope with the I B : 0 option (no trace buffer) 

• when you use a UB, us or v command but installed 
Periscope with the IE : 0 option (no source buffer) 

• when you use an LS command but installed Periscope 
with a IT : 0 option (no symbols) 

• when you use a BO or IU command but either did not 
install Periscope with a. I I : nn option or the user exit 
program has been corrupted 

• when you use an LD command but installed Periscope 
with the IR : 0 option (no definitions) 

• when you use a QR command and DOS is busy or you 
did not use RUN to enter Periscope 

• when you use a I 2 command but no second symbol 
table is present 

• when you use the IR command to remove a local sym­
bol 

• when you use the . BD command on a CPU prior to the 
80386 

• when you use the I 4 command on a CPU prior to the 
80486 

27-Unknown mnemonic 
An unknown mnemonic was specified to the in-line assem­
bler. The assembler knows the mnemonics for the 8086, 
8087, 8088 ,  801 86, 80286, and 80287 processors. For the 
80286, only the real-mode opcodes are supported. Check the 
mnemonic and try again. Prefixes other than segment over­
rides must be on a separate line preceding the instruction 
they affect. 

28 Byte, Word, Dword, Qword or Tenbyte pointer needed 
An ambiguous instruction was specified to the in-line assem­
bler. Some instructions, such as MOV [ SI ] , 1, require a 

A.2 ERROR M ESSAGES 205 



width indicator of byte or word. You would enter the insvuc� 
tion as MOV byte ptr [ S I ] , 1 or MOV word ptr 
[ SI 1 , 1, respectively. 8087/80287 instructions may require 
a width indicator of D, Q, or T for double word, quad � 

word, or ten byte respectively. 

29-Invalid memory reference 
An instruction that incorrectly references memory was speci� 
fled to the in-line assembler. Check the register(s) and offset 
specified in the instruction to be sure that the memory refer� 
ence is legal. For example, MOV AX ,  [ DX ]  is not legal, 
but MOV AX , [ BX 1 is legal. 

30-Invalid argument(s) 
There are too many or too few arguments for the mnemonic 
specified. Check the number of arguments and try again. 
Note that the 80286 multiply immediate instruction must al� 
ways be entered in the three�argument format. 

31-File too large 
The size of the file being loaded is too large to fit in the first 
640K of memory. Use a lower load address if possible. 

32-PSP not found 
The Name command was not able to locate the PSP. You 
can ignore this error if you need to read or write a file with 
the LF or WF commands. If you are trying to format the 
PSP, use RUN to re�enter Periscope. 

35--COMSPEC not found 
The /X command was unable to find the COMSPEC pa­
rameter in the environment block. DOS may be garbled. Re� 
boot and try again. 

36-Linear to physical address error (Periscope/32 only) 
Either no physical address currently exists for the virtual ad� 
dress specified or a selector was specified that is not cur� 
rently in use. 

37-Range conflicts with Periscope 

206 A.2 ERROR M ESSAGES 



The range specified crosses into Periscope' s memory or 
ports. Specify another range that does not interfere with Peri­
scope. 

38--Internal error 
An error has occurred in Periscope's  paged memory alloca­
tion or in Model IV' s  hardware breakpoint settings. Please 
call Technical Support if you get this error. 

39--Invalid HMIHP settings 
See the Model IV manual. 

40--Number must be 1 to 4 hex digits (0-9, A-F) 
All numbers associated with Periscope installation options 
are in hex format for consistency. For the I B, I C, IE,  
I I,  IK, IR, IS ,  and IV options, the number must be 
one or two hex digits. 

41-Not enough memory above/below 640K 
Insufficient memory is available to install Periscope. If 'be­
low' , check the amount of available memory using 
CHKDSK. If ' above' , increase the memory available via 
your memory manager. Boot the system or reduce the space 
Periscope requires by adjusting the installation options. 

42-Invalid installation option 
An unexpected entry was found in the installation options. 
To display the valid installation options, enter PS ? from 
the DOS prompt, or use PS * to install Periscope. 

43-Interrupt must be 08H, 09H, lOH, 15H, 16H, 17H, or 
1CH 

The IV option specified an interrupt number other than the 
ones listed. 

44-Error using protected memory · ·  run PSTEST 
Periscope was not able to properly install itself in the pro­
tected memory on the Model I Board. Check the port setting 
on the board and the memory and ports specified with the 
IM and IP installation options, if any. If the problem per-

A.2 ERROR M ESSAGES 207 



sists, run PSTEST (see the Model I Board's installation in-
structions). 

· 

45-Error reading xxx-- run CONFIG 
The transient portion of Periscope (PS) was not able to read 
the indicated file. Be sure that both PS and PS 1 are in the 
same directory. If you can't find PS 1 ,  you probably haven't 
run CONFIG; When you're using Model N, PS4 is also re­
quired and must be in the same directory. 

46--Copy of program in protected memory is invalid 
The copy of Periscope in the protected memory does not 
agree with the temporary copy in RAM. Check that the 
Model I Board is properly seated in the expansion slot and 
that the chips on the board are properly seated in their sock­
ets. If the problem persists, run PS1EST (see the Model I 
Board' s installation instructions). 

47-Screen size must � from 0 to 40H (64) KB 
The size of the program's  screen specified with the I S  op­
tion must be from 0 to 4'0H KB. Note that the number is 
in hex! 

48--Symbol table size must be from 0 to lFFH (51 1) KB 
The size of the symbol table specified with the I T  option 
must be from 0 to lFFH KB. Note that the number is in 
hex! 

49-INT 2 does not point to Periscope . -- check for conflicts! 
The NMI vector is not pointing to Periscope. Check to make 
sure that your display adapter is not running in an emulation 
mode where it is using NMI. See Section B.2 for more infor­
mation. 

SO-Record table size must be from 0 to 20H (32) KB 
The size of the record definition table specified with the 
/R option must be from 0 to 2 0 H KB. Note that the num­

ber is in hex! 

51-Unable to remove Periscope from memory 

208 A.2 ERROR M ESSAGES 



Periscope was unable to release memory. Use MEM or a 
similar program to check the contents of memory. 

52-Unable to read Help or Comment file 
An error occurred reading PSHELP.TXT or PSINT.DAT. 
Rerun CONFIG to regenerate these files. 

53-Port number must be from lOOH to 3FCH 
The port number specified with the IP option must be 
from 1 0 0H to 3FCH. Note that the number is in hex ! 

54-Memory specification conflicts with memory used by 
DOS 

The memory address specified with the IM option conflicts 
with DOS memory. Use a higher address, outside the range 
of DOS memory. 

55-Color attribute must be from OlH to FFH and 
foreground color must not equal background color 

The number specified with the I C or IW installation op­
tion indicates a color combination that will display nothing, 
i .e. ,  the foreground and background colors are the same. 
Choose another color and remember that the number is in 
hex! 

56-Incorrect window specification 
See the explanation of Error 24, above. 

57-Unable to read/write response file 
An error occurred when Periscope tried to read or write the 
response file. Check the file name or disk and try again. 
Note that Periscope ignores any installation options you en­
ter after the response file name. For example, PS I c : 17 
@c : std sets the color attribute to 17H and then reads the 
rest of the options from the file c :std. If you enter PS 
@c : std I c :  17 ,  the color attribute is not set to 17H. 

58-Trace buffer size must be from 0 to 3FH ( 63) KB 
The size of the software trace buffer specified with the I B 
option must be from 0 to 3 FH KB. Note that the number 

A.2 ERROR M ESSAGES 209 



is in hex ! 

59-Invalid user interrupt vector 
The user interrupt vector specified with the 1 I option must 
be from 6 0H to FFH. The interrupt handler must be al­
ready installed using the specified interrupt. Periscope 
checks for the presence of the interrupt handler by reading 
memory at the interrupt' s  segment and offset. The word 
prior to the interrupt entry point must equal PS. See the 
sample program USEREXIT.ASM in Section 7. 10 for more 
information. 

60-Load segment for Periscope tables must be from xxxx 

to yyyy 
The load segment specified with the I L option must be 
greater than the current value of the PSP plus lOH para­
graphs. The load segment must also be less than the top of 
memory minus 3000H paragraphs. If the PSP is COOH and 
the top of memory is AOOOH, then the allowable range for 
the load segment is ClOH through 7000H. 

61-Source butTer size must be from 0 to SKB 
The size of the source buffer specified with the IE option 
must be from 0 to 8KB. 

62--IRQ masks must be from 0 to FFH 
The values specified for the IRQ mask must be entered as 
one byte from 0 to FFH or two bytes from 0 to FFH, 
separated by a space. 

63--Incompatible version of Periscope/Remote used 
The version of Periscope/Remote software running on the 
target system is incompatible with the version of Periscope 
running on the host system. 

64-Unable to use 43- or 50-line mode 
An EGA is required for 43-line mode. A VGA is required 
for 50-line mode. 

65-Defective CPU (stack change was interrupted). 

210  A.2 ERROR M ESSAGES 



Replace ASAP! 
The 8088 CPU in your system is an early version of the chip 
that does not protect the instruction after the stack segment is 

,-..__ modified. This defect can cause problems when tracing 
through DOS, using a numeric processor, and when using 
Periscope. The CPU should be replaced as soon as possible. 

66-Incorrect software for Periscope hardware or CPU 
type 

An attempt was made to run the Periscope software when it 
is configured for a board that is not in the system or for a 
board that is not supported on this CPU. 

67-Unable to read trace buffer--run PS4TEST 
See the Model IV manual. 

68--Unable to initialize COM port 
An error occurred when Periscope attempted to initialize the 
COM port for alternate PC or remote support. Check the port 

,-..__ number and speed settings on both sides and try again. Also 
confrrm that your null-modem cable completely matches the 
specifications giyen in the file N01ES.TXT. 

69-Error reading PMx.COM--mn SETUP 
The menu program file PMx.COM was not found. Re-run 
SETUP (Chapter 3) . 

70--Intermpt l CH does not point to an IRET instruction 
Periscope' s dynamic configuration was not able to find an 
IRET instruction to correlate INT 1 CH to. If you encounter 
this error, please call Technical Support. 

71-Invalid com port number (1-8) or speed (S, M, or F) 
When you use an alternate PC or run in active remote mode, 
the com port number may be specified as I AV : px, 
I AK : px, or I 2 : px, where p is the port number and x 
is the speed (Slow, Medium, or Fast) .  Both systems must 
use the same speed. 

72-Installation option invalid when remote debugging is 

A.2 ERROR M ESSAGES 21 1 



used 
When you debug in active remote mode, you cannot use the 
/AK or /AV installation options. 

73-/M or IP installation option invalid for PS/2 system 
The Model 1/MC Board is no longer produced. See the man­
ual that came with your board. 

74-/Q installation option invalid when /AK or /A V used 
When you use an alternate PC, the / Q  installation option is 
not allowed. This is because the alternate PC support re­
quires a com port that will not be initialized at ROM�scan 
time. 

75-Error reading xxKEYS.PSD 
This error is displayed when Periscope is unable to read the 
file xxKEYS.PSD, where xx is PS, CV, or TD for Periscope, 
Code View, or Turbo Debugger function key emulation, re­
spectively. If the file exists, but is not in the current direc­
tory, use the DOS Set command (SET PS=C : \XXXX) to 

1 set the Periscope path. If the file does not exist, rerun 
1 .  SETUP from the original Periscope disk or a backup copy. 

The xxKEYS.PSD loaded in the read-only · area must be 5 1 1  · 
bytes or less. If it is too large, modify the .DEF file used to 
generate it. 

76--Periscope Model IV board not found 
See the Model IV manual. 

77-Unable to load Periscope; remove PopUp and try again 
PopUp Periscope and Periscope cannot co-exist. 

78-Error using XMS memo:cy (code x) 
· 

. I 
An XMS allocation error occurred. Please check XMS mem-
ory using MEM or MANIFEST. If problems persist, contact 
Technical Support. 

90-DEF file not found 
RS was not able to fmd a file of the specified name with an 

212  A.2 ERROR M ESSAGES 



extension of .DEF. 

91-Unable to read DEF file 
An error occurred reading the .DEF file. Check the file name 
and try again. 

92-Line xxxxx of DEF file is not in correct format 
The .DEF file is not in the format expected. The line number 
indicates the line in the .DEF file where the error occurred. 
Check the format of the .DEF file as defined in the descrip­
tion of RS in Section 7.5. 

93-Not enough memory 
Insufficient memory is available for RS to load the .DEF 
file. Check the amount of available memory using CHKDSK 
and re-boot as needed. 

94-Unable to write PSD file 
An error occurred when RS attempted to write the .PSD file. 
Check the file name and try again. 

100-xxx file not found 
TS was not able to find a file of the specified name with an 
extension of .MAP, .SYM, or .EXE. 

101-Unable to read xxx file 
An error occurred reading the .MAP , . SYM, or .EXE file. 
Regenerate the file and try again. 

102-Line xxxxx of xxx file is not in correct format 
The .MAP, .SYM, or .EXE file is not in the format expected. 
The line number indicates the line in the .MAP file where 
the error occurred. 

If you've used a text editor to modify the .MAP file, be sure 
to save it in its original format with no embedded tab charac­
ters or high bits set. If this error occurs on an unmodified 
.MAP file, please call Technical Support. 

103-Not enough memory 

A.2 ERROR M ESSAGES 21 3 



Insufficient memory is available for TS to load the .MAP 
file. Check the amount of available memory using CHKDSK 
and re-boot as needed. 

104-Unable to write PSS tile 
An error occurred when TS attempted to write the .PSS file. 
Check the file name and try again. 

lOS-Unknown EXE symbol type 
TS encountered an unknown symbol type in the .EXE file. 
Please call Technical Support if you get this error. 

106--Unknown PLINK symtable type - x 

TS encountered an unknown record type in the symbol table 
at the end of the PLINK file. Please call Technical Support if 
you get this error. 

107-Symbol table overflow at line xxxxx 
The compressed symbol table is too large. Use a text editor 
to modify the .MAP file. You can either delete lines from the �, 

.MAP file or comment them using braces, where { begins 
commenting and } ends it. 

lOS-Invalid option 
An invalid command-line option was used. Enter TS ? to 
display the valid options. 

109-EXE tlle contains inconsistent symbol information 
This error occurs when line numbers from two or more mod­
ules are competing for the same address space. Try changing 
any tricky segment usage or turning off symbol generation 
for any assembly routines in included files. 

110--Line numbers out of sequence at line xxxxx 
Use the / LA  or / LD options to accept or discard out-of­
sequence line numbers. 

1 1 1-Borland Pascal overlays are not supported 

130--Periscope Version x.xx not installed 

2 1 4  A.2 ERROR M ESSAGES 



SYMLOAD cannot run without the corresponding version of 
Periscope installed Install the correct version of Periscope 
and restart SYMLOAD. 

140---File not found 
INT was unable to read the specified file. Check the file 
name and try again. 

, 

1 41-Unable to read or write file 
An error occurred reading or writing the indicated file. 
Check the disk and try again. 

142-Invalid option 
An invalid command-line option was used. Enter :rNT ? 
to display the valid options. 

150-INT x does not point to Periscope! 
PSKEY cannot invoke Periscope using the indicated inter­
rupt, which must point to Periscope. Use INT to display the 
current vectors. If an interrupt has been corrupted, use RUN 
to refresh them and try again. 

160 through 169-See the Model I Board installation 
addendum. 

170-INT 2 does not point to Periscope · ·  check for 
conflicts ! 

See the explanation of Error 49 above. 

171-EXE Header not found 
A file with an extension of .EXE was specified, but the 
header record identifying the file as a valid .EXE file was 
not found. Regenerate the .EXE file and restart RUN. 

172-Unable to read file 
An error occurred reading the file. Check to be sure the disk 
is ready and that the file size shown by DIR indicates the 
true file size. 

173-Not enough memory 

A.2 ERROR M ESSAGES 21 5 



Insufficient memory is available for RUN to load the desired 
program. Check the amount of available memory using 
CHKDSK and re-boot as needed. 

17 4-Periscope Version x.xx not installed 
RUN cannot run without the corresponding version of Peri­
scope installed. Install the correct version of Periscope and 
restart RUN. 

175-Periscope not installed correctly 
RUN was unable to modify the protected memory. Reload 
Periscope and try again. 

176-Internal error 
See the explanation of Error 38 above. 

177-Unable to load DEF file 
A .DEF file was found for a .COM or .EXE file, but RUN 
was unable to load it correctly. Check the format of the .DEF 
file and the size required for the .DEF file using RS. 

If the space required by the .DEF file is greater than the re­
cord table size, as much of the .DEF file is loaded into the re­
cord table as possible. Use Alt-E to see the records that were 
loaded. Note that the last record will usually be only partially 
defined. 

178-PSS file larger than symbol table - no symbols loaded 
An error occurred when RUN attempted to load the .PSS file 
into the symbol table. Usually the .PSS file is larger than the 
space reserved for the symbol table when Periscope was in­
stalled. If this is the case, restart Periscope with a larger sym­
bol table, or use the /T or /X option with RUN. 
Otherwise check the file and try again. 

179-Symbol table full or invalid 
A logical error was found in the symbol table during final 
processing. Regenerate the .PSS file and try again. 

180-PSS file date/time is prior to program's date/time 

2 1 6  A.2 ERROR M ESSAGES 



This warning message indicates that the date/time stamp on 
the program file is more than one minute later than that of 
the .PSS file. This is to be expected if the program file has 
been patched. Otherwise, it indicates that you're using an ob­
solete .PSS file. Proceed with caution! 

181-Unable to execute TS 
RUN was unable. to EXEC TS.COM. Manually run TS and 
then re-execute RUN. 

182-Exec failure 
An error occurred when using the DOS EXEC function to 
load your program. Check the path name and try again. If the 
problem persists ,  call Technical Support. 

183--Invalid Exec symbol size 
The size indicated with the /x : option must be from 0 
to lFFH KB. 

184-PSD file larger than record table - no records/aliases 
loaded 

An error occurred when RUN attempted to load the .DEF or 
.PSD file into the record definition table. Usually the 
.DEF/.PSD file is larger than the space reserved for the re­
cord definition table when Periscope was installed. If this is 
the case, restart Periscope with a larger record definition ta­
ble. Otherwise check the file and try again. 

185-File not found 
The program to be loaded by RUN was not found Check the 
file name and try again. 

186-Wrong version number in PSS file 
See the description of Error 14 above. 

( 

187-Remote timeout 
An error occurred when RUN tried to establish communica­
tions with the remote PC. Check to make sure that the null­
modem cable is securely connected on both ends and that the 
target system is still functioning. 

A2 ERROR M ESSAGES 217 



188-0nly one symbol table found 
The 1 2  option requires two symbol tables. When PS.COM 
is loaded, be sure that two IT installation options are speci­
fied. For example, PS IT : 2 0 I T :  4 0 would set up two ta­
bles. 

190-Program terminated without resident request 
The program specified by the I P option did not terminate 
and stay resident. This is a warning message that can be sup­
pressed with the · I Q option. 

191-Unable to read file 
The file specified with the IP option cannot be read. 

192-Invalid option 
An invalid command-line option was found in SYS­
LOAD.SYS. Check the options used with the description of 
SYSLOAD.SYS in Section 7.8 .  

230-Unable to read PSx.COM 
CONFIG was unable to read the indicated file. Check the 
disk and try again. 

200 through 229-See the PopUp Periscope manual. 

231-Interrupt 1 CH does not point to an IRET instruction 
Interrupt lCH does not point to an IRET instruction. Check 
to make sure that no device drivers or memory-resident pro­
grams are installed and reboot the system as needed. If this 
does not clear up the problem, please call Technical Support 
for assistance. 

232-Unable to read file 
An error occurred when CONFIG attempted to read a file. 
Rerun SETUP and try again. 

233-Wrong model or version of Periscope 

218  

The version or model number found in PS2.COM does not 
equal the expected version or model. Rerun SETUP and try 

A.2 ERROR M ESSAGES 



again. 

234--Unable to write file 
An error occurred when CONFIG attempted to write a file 
on the target disk. Check the disk and try again. 

235-File too large 
An internal error has occurred. Reboot and try again. If the 
problem persists, please call Technical Support. 

236-Format error in PSINT. TXT at line xxxxx 

The interrupt comment file is not in the correct format. Re­
run SETUP and try again. 

240-File PERI.PGM not found 
Rerun SETUP and try again. 

241-Invalid drive or directory specified. Please try again. 
The target drive or directory is not available. Please check 
the name and try again. 

242--Not enough memory 
Insufficient memory is available for SETUP to start the self­
extract process. Check the amount of available memory us­
ing CHKDSK and re-boot as needed. 

243--Unexpected error during self-extract program 
This usually indicates that the target disk is full. Check the 
available disk space and try again. 

244--Disk error 
A disk error has occurred during the self-extract process. 
Check the target drive and try again. 

260 through 269-See the Periscope/Remote for DOS 
addendum. 

270-xxxx timeout (Function=yy, byte=zz) 
This indicates a read or write timeout when PSTERM tried 

A.2 ERROR M ESSAGES 21 9 



to read or write a byte across the serial link to Periscope. Re­
try several times, then if errors persist, select the Fail option. 
If things do not clear up, select the Abort option and restart 
PSTERM.COM and PS .COM. � 

271-Port x does not exist 
The serial port (default 1, changeable with the I 2 : px op­
tion) is not installed in the computer. 

272-UART appears defective 
The serial port failed internal diagnostic testing. Replace 
your serial port and try again. 

273-Cannot transmit, cable is wired improperly 
The serial cable does not have transmit and receive crossed 
in both directions. As a result, Periscope cannot send and re­
ceive data properly. 

274--CTS stuck high, check cable wiring and other serial port 
One of two things can cause this problem. Either the serial 
cable does not have RTS/CTS lines crossed in both direc­
tions, or the serial port on the computer that did not display 
this message is configured to always report Clear To 

Send (CTS). 

275---C1S unavailable, cable does not have RTS/C1S lines croRd 
The serial cable does not have RTS and CTS lines crossed in 
both directions. As a result, Periscope cannot handshake 
properly. 

276--No interrupt, check hardware configuration and 
TSR programs 

The receive character interrupt did not generate. This could 
happen when there are two or more serial ports configured 
for the same address, such as two ports configured as 
COMl , or a TSR program is using the same port or the same 
interrupt request line with a different port (or different hard­
ware, such as a mouse.) 

400 through 41 4-See the Model IV manual.• 

220 A.2 ERROR M ESSAGES 



A p p E N 0 X 8 

Technical 
Support and 

Trouble­
shooting 

• Technical Support 
• Troubleshooting 

T
ech support procedures and the most common prob­
lems are discussed in this appendix. Please check to 
see if your problem is discussed before calling Tech­

nical Support. Also, please either call us or use our BBS 
rather than writing or FAXing if at all possible. It' s much 
faster and easier to resolve problems on the telephone or 
BBS than by mail or FAX. 

22 1  



8.1 TECHNICAL SUPPORT 

If you are a registered Periscope user, you'll receive free 
Technical Support when you call the technical support num­
ber. We also run a BBS, so if calling is not convenient, you 
can use the BBS as a forum for your questions and/or prob­
lems. We will return Technical Support calls to registered us­
ers in the U.S. and Canada when we are not available during 
Technical Support hours. Please see the back of the cover 
page for phone numbers and hours of operation. 

When you call with a problem, please have your registration 
number handy. If you purchased your Periscope recently 
from The Periscope Company (TPC) but have not sent your 
registration card in, please have both your invoice number 
and your registration number available. If you did not pur­
chase your Periscope from TPC, we will assist you in the in­
stallation and configuration of your Periscope, but your 
registration card must be on file before we will provide any 
additional Technical Support. You may wish to send your 
card to us by overnight courier if you purchased your Peri­
scope from a dealer and need Technical Support right away. 

Please be prepared to answer these questions when you call : 
• Which Periscope product (Model I, Periscope/EM, or 

Model IV) and version (e.g. ,  Version 5 .40) are you us­
ing? 

• What brand and model of computer are you using? 
• What version of DOS, Windows, and/or OS/2 are you 

using? 
• What boards are installed in your system? 
• What device drivers and/or memory-resident software 

are you using? 
• What Periscope installation options are you using? 
• What is the problem you're experiencing? 

8.2 TROUBLESHOOTING 

386MAX Users 

222 

If you're using 386MAX by Qualitas, Inc. ,  note the follow­
ing: 
• When you load Periscope in high memory, make sure 

8. 1 TECHNICAL SUPPORT 



you have at least 1 24K of contiguous memory available. 
• Don't try to use the AC options with PSKEY. 
• Use version 2.20 or later of 386MAX to avoid conflicts 

with Periscope. 

DOS Usage 
If you try to use DOS from Periscope and get the message 
DOS busy, enter G { 0 : 2 8 * 4 } to set a breakpoint the 
next time INT 28H executes. When the CS:IP is at the start 
of INT 28H, Periscope allows you to use DOS. 

Periscope Version and Model 
The version number (Arabic number) is the release number 
of the software, such as 5 .40. The model number (Roman nu­
meral) identifies the hardware used with the software. To de­
termine which version and model you are using, check the 
default value of item 7 in the Watch window. The version 
number is followed by an alphabetic suffix, which indicates 
the model. Some of the possible values are E (Peri­
scope/EM), M (Model I, Rev 3), and K or L (Model IV). 

Traps (Exception Interrupts) 
If your program suddenly pops into Periscope with a trap, 
one of three things has happened. Either an unexpected sin­
gle-step has occurred (indicated by trap 1 ), an illegal instruc­
tion has been executed (indicated by trap 6) or a segment 
wraparound (a read or write of a word at offset FFFFH indi­
cated by trap ODH) has occurred. The illegal instruction is 
usually caused by an unbalanced stack, such as when a rou­
tine is called as a near procedure, but returns as a far proce­
dure. Similarly, mismatched PUSHes and POPs frequently 
lead to a trap. 

Break-out Switch 
If your Break-out Switch does not work, check the following 
items : 
• Make sure that your machine supports NMI. If you're 

using a system that has only 8 chips per 64/256 KB, such 
as the Tandy 1000, you're probably out of luck. 

• Use INT to display the values of the interrupt vectors. 
INTs 1 ,  2, and 3 should have the same segment, with 

B.2 TROUBLESHOOTING 223 



offsets ascending by 5. 
• Try using CLEARNMI to periodically clear out any 

blockage of the Break-out Switch. 
• Microsoft' s EMM386.SYS does not correctly handle 

NMI under some conditions. If you must use this driver, 
do not use the Break-out Switch. 

Memory Usage 
If you don't have a monochrome monitor, watch out for 
memory corruption if your memory manager attempts to use 
the mono region (BOOO-B7FF). If this region becomes cor­
rupted, it can cause the UMB chain to be destroyed. 

Port Usage 
If you configure Periscope as Model I but don't have the 
board in the system, be sure to use the /N installation op­
tion to avoid access to ports 300 and 301 .  

Symbols and Source Code 
If you have problems displaying source code, enter the /L  
command while i n  Periscope. I f  you get the message No 
l ines found, check your compile and link options. If 
you get the message DOS busy, no source code will be 
displayed until you get to a point that DOS is not busy. If 
this doesn't solve the problem, check the items listed under 
the disassemble source (US) command. Do not expect to be 
able to access source code when debugging a TSR program 
(unless you're using the Periscope utility W AITING.COM), 
since DOS is usually busy. 

If you have problems accessing symbols, press Alt-1 to dis­
play the symbols available. If you do not find the symbols 
you expect, check the compile and link options you used to 
generate the program. Also, if you configured Periscope to 
preserve the case of symbOls, be sure that the symbols are en­
tered in the same case as shown by the Alt-1 display. 

Unexpected Entry into Periscope 

224 

If Periscope comes up unexpectedly, enter Q to display the 
entry reason. See the description of the Quit command in 
Chapter 9 for more information. 

8.2 TROUBLESHOOTING 



Interrupt Vectors 
Since Periscope temporarily replaces the values of some in­
terrupt vectors while its screen is displayed, most display 
commands will show the values of Periscope' s  vectors. To 
see your program's vectors, use the doubleword format, DD. 
The values followed by an asterisk indicate your program's 
vectors. 

Disassembly Window 
If the reverse video bounce bar disappears, enter R to force 
it to reappear. 

Program Screen 
If your program's screen is not being correctly restored after 
Periscope' s screen is displayed, check to be sure you've allo­
cated enough memory for saving and restoring screens. In a 
single-monitor system, the default is 4KB, which is enough 
for text mode only. If your program uses graphics mode, we 
strongly recommend that you use a dual-monitor system. It 
will save much wear and tear on you and your display adapt­
er. 

An EGA or a VGA driving a color display can co-exist with 
a monochrome display. Be sure to use a plain Jane display 
adapter, i.e., one without any graphics ability. You can use 
one of the original IBM mono cards or the Dell mono card 
or equivalent. 

Another option is to have Periscope' s  screen displayed on an­
other PC. See the /AV installation option. 

Othel" Problems 
If you encounter problems other than the ones mentioned 
above, check to see if the situation is repeatable. First, try it 
on the same machine under the same circumstances. If the 
problem persists, try removing resident programs and device 
drivers. If the problem goes away, try to isolate the conflict­
ing program. Finally, try to repeat the problem on another 
machine. The more information you have when you call for 
Technical Support, the better, since that will help us help 

8.2 TROUBLESHOOTING 225 



you more quickly and effectively. t 

226 8.2 TROUBLESHOOTING 



A p p E N 0 X c 

Periscope/32 

• Introduction to Periscope/32 
• Differences between Periscope/EM and 

Periscope/32 

T
his appendix describes Periscope/32, a 32-bit-aware 
derivative of Periscope/EM, and summarizes how it 
differs from Periscope/EM. We've noted specific dif­

ferences throughout the manual as well. 
If you're using Periscope/32 as the host debugger in a re­

mote debugging environment with a Periscope remote driver 
running on the target, you'll find detailed installation instruc­
tions and environment -specific usage information in the ad­
denda accompanying the products that include it, such as 
Periscope/32 for Windows or Periscope/32 for OS/2. If 
you're running another (non-Periscope) remote driver on the 
target, see the documentation included with the driver for im­
plementation-specific details. If you're using the Periscope 
32-bit Toolkit, see the source files on the disk for additional 
information. 

'Z2.7 



C.1 INTRODUCTION TO PERISCOPE/32 

Periscope/32 is a 32-bit-aware version of the Periscope/EM 
software. It runs 

· 

• as a stalulalone debugger in a single-machine DOS envi­
ronment (with or without the Periscope Model IV hard­
ware), and 

• as the host debugger in a two-system, active remote envi­
ronment, with a supporting remote driver running on the 
32-bit target (again, with or without the Periscope Model 
IV hardware). 

In the remote environment, the driver software running on 
the target computer acts as Periscope/32' s "agent" , enabling 
you to use Periscope/32 to debug system-level software run­
ning in that environment. 

C.2 DIFFERENCES BETWEEN PERISCOPE/EM AND 
PERISCOPE/32 

228 

Since Periscope/32 is derived from Periscope/EM, most of 
the differences between between the two .are a result of the 
differences in the 16 : 16  memory model of Periscope/EM ver­
sus the 16 :32 memory model of Periscope/32. Other differ­
ences are due to the fact that Periscope/32 is normally used 
as a host debugger in a remote debugging environment 
whereas Periscope/EM is normally used as a standalone de­
bugger in a single-system environment. 

The differences between Periscope/EM and Periscope/32 are 
summarized below. We have detailed specific differences 
throughout the manual. 

Differences between Periscope/32 (32-bit model) and 
Periscope/EM (16-bit model) 
• Periscope/32 shows invalid or out of range memory with 

double question marks (? ?) .  This can occur when an 
offset is beyond the limit for the selector or when an 
offset is beyond OFFFFH in real mode. Periscope/32 usu­
ally displays inaccessible memory with one or more 
question marks, but some commands, such as the disas­
semble command, show invalid memory as PP. 

C. 1 INTRODUCTION TO PERISCOPE/32 



• You cannot use the comma as a general delimiter in Peri­
scope/32, since it is used as optional punctuation for 
numbers longer than four digits. For example, the com­
mand 0 2 1 , FF is legal when you're using the Peri­
scope/EM, but not when you're using Periscope/32. Use 
0 2 1  FF instead. 

• Periscope/32 generally displays eight-digit offsets with 
four digits, a comma, and four more digits for better 
readability. The only exception to this is in disassembly, 
where the comma can be confusing. For eight-digit num­
bers that you enter, the comma is optional and does not 
indicate position. So, for example, the command R EAX 
12 3 4 , 5  is the same as R EAX 12 3 4 5 ,  but is not the 
same as R EAX 12 3 4 , 0 0 05 .  Periscope/32 ignores a 
comma you input unless it is in the middle of a string or 
you're using the in-line assembler. 

• Periscope/32 supports four types of pointers: 
[ - near 16-bit pointer ( 16-bit offset) 
{ - far 16-bit pointer ( 16-bit offset, 1 6-bit segment) 
[ [ - near 32-bit pointer (32-bit offset) 
{ { - far 32-bit pointer (32-bit offset, 1 6-bit selector) 

• Periscope/32 assumes that addresses are in selector:offset 
format rather than in -segment:offset format. It supports 
32-bit offsets, while Periscope/EM supports 16-bit off­
sets. In most cases, the selector and the segment are in­
terchangeable. There is one special case use of a selector 
in Periscope/32. Using a selector value of 0, you can 
reference Virtual 86 (V86) memory while in any mode. 
The allowable offsets are from 0 to lOFFFO, which is one 
megabyte plus 64K minus 16  bytes (the XMA limit). So, 
to reference memory at the V86 address of 2000: 1234, 
you could use 0 :  2 0 0 0 * 10 + 12 3 4  or 0 : 2 12 3 4 .  
You c an  also indicate that real-mode style address con­
version (segment times 16  plus offset) is to be applied to 
an address by separating the segment and offset by a stile 
( I ) instead of a colon ( :  ). This means that you could also 
reference the above address as 2 0 0 0 1 12 3 4 .  When you 
use the stile, Periscope/32 converts the address to the 
0 : xxxxx format 

• If you're debugging code that stays in V86 mode, use the 
normal addressing. If you're debugging code that moves 
from V86 to protect mode and back, use the 0 : xxxxx 
addressing so that the address will be valid regardless of 
the mode you're currently in. Note that this is especially 
important if you use any sticky breakpoints such as BC 

C.2 DIFFERENCES BETWEEN PERISCOPE/EM AND PERISCOPE/32 229 



or BD. When you're running in V86 mode, some in­
structions cause a Trap D, including pushf, popf int, iret, 
eli, and sti . When these instructions execute, control 
transfers to the ring 0 exception handler so that it can 
emulate the instruction. For some of these instructions, 
the ring 0 emulation may cause single stepping to regain 
control at the second instruction after the emulated in­
struction. For example, assume the following code se­
quence: 

s t i  
pop ax 
pop bx 

If you single step the s t i  instruction, control returns to 
Periscope/32 at the pop bx instruction. The pop ax 
instruction executed, but because of the way some ring 0 
exception handlers work, Periscope/32 does not see it. If 
you want, you can force the display of the pop ax 
instruction by setting a code breakpoint at that address. 

Differences between Periscope/32 running in local mode 
vs. Periscope/32 running in remote mode 
Following are the differences between Periscope/32 running 
standalone in a single-system environment (local mode) and 
Periscope/32 running in the host system in a two•system en­
vironment, with a Periscope remote driver running in the tar­
get system (remote mode): 

• When you're running in remote mode, Periscope/32 does 
not go resident. It stays in the foreground on the host 
system so that DOS use is never a problem. To get to the 
DOS prompt, use the /X or QR commands. While in 
DOS, the target system is suspended. To return to Peri­
scope, use the EXIT command at the DOS prompt. To 
completely terminate Periscope/32, use the QR ! com­
mand. Warning: use of QR ! bails out of Periscope/32 
without doing a full cleanup. You should use this com­
mand with caution. You can also use the QU command 
to reboot the host system and unhook the Periscope re­
mote driver on the target system so that the target runs as 
if the driver had not been installed. 

• In remote mode, Periscope/32 does not emulate the trac­
ing of a software interrupt. Instead, it attempts to set a 

230 C.2 DIFFERENCES BETWEEN PERISCOPE/EM AND PERISCOPE/32 



breakpoint at the frrst instruction of the interrupt. If this 
is not possible (as in a BIOS interrupt), it uses the J 
command to step over the interrupt. If you want to stop 
inside a real-mode BIOS interrupt, use BD { 0 :  nn * 4 ,  
where nn i s  the desired interrupt. 

• If a Trap D occurs inside the Periscope remote driver, 
Periscope/32 displays the message Fatal error in 
Periscope/Remote. Should you ever see this mes­
sage, please mail or fax a screen dump to Technical Sup­
port. 

• Ip remote mode, Periscope/32 does not load into the 
Model I Board' s memory or EM memory, even if a 
board or supporting memory manager is present. 

• The default symbol table size for Periscope/32 in remote 
mode is SOH ( 1 28) KB. 

• Periscope/32' s screen indicates that it is in remote mode 
by displaying the prompt as I 2 > instead of >.  

• Periscope/32 in remote mode shows PSRx vers ion 
5 .  xx as item 7 in the Watch window instead of the 
normal PERISCOPE / 3 2  5 . xx . 

• In remote mode, the QS command has the same effect 
as the QB command. 

• The USEREXIT program supports remote mode. It can 
read and write memory on the target system. It can also 
download and execute code on the target system and 
upload a string from the target. See the file USER­
EXIT.ASM for details. 

• When you use the BC, Gx, or Jx commands that can 
set a code breakpoint on memory that is not valid (out of 
limits or unloaded), you'll get an Error 1 6  from Peri­
scope/32. For example, if you're at the last instruction of 
a program and the current instruction is a CALL, you 
cannot use the J and JL commands, since the current 
instruction is t,he end of the current segment. In this case, 
use one of the Trace or Go commands instead. Note that 
if you set a code breakpoint on memory using an LDT 
selector that is valid when you issue the BC command, 
but invalid when the actual breakpoint occurs, Peri­
scope/32 ignores the breakpoint and displays no mes­
sage! 

• Periscope/32 in remote mode does not allow you to use 
the 1 A, 1 AK, and 1 AV installation options. It assumes 
that you're using a single-monitor system and that you're 
using the COM port to connect the host to the target 
rather than to an alternate PC. 

C.2 DIFFERENCES BETWEEN PERISCOPE/EM AND PERISCOPE/32 23 1  



Command differences and Periscope/32-specific com­
mands 
The Periscope remote driver does not do any file 110 on the 
target system. All file-oriented commands are implemented 
on the host system. These include the following commands: 
LB, WB, LD, WD, LS, WS , V, VS, UB, US, /E,  /K, 
HR, HT, HU, HW, and /X. These commands are not avail­
able in remote mode: LA, WA, LF, WF, N, IC, IR, and 
IS.  

The following commands differ between Periscope/EM and 
Periscope/32 or are specific to Periscope/32: BF, BM, BR, 
C, DD, DG, DT, DV, ED, EM, F, H, IC, _ IR, IS,  
LA, LF, LS , M, N,  QR, QU, R,  R EFL, RF, RFL, 
RC, RX, SC, SR, TB, TR, TU, U, UA, UB, US, WA, 
WF, X, XD, XH, XA, / 3 ,  /N, IS ,  and /W. 

See Chapter 9 for details on using these commands. i" 

232 C.2 DIFFERENCES BETWEEN PERISCOPE/EM AND Pj::RISCOPE/32 



!Al- !A9 94 
!AA- !AZ 94 
!CA- !CZ 94 
ag command parameter 89 

$ command parameter 87 
* command parameter 86 
386MAX 24, 41, 46, 222 
43-line mode 33 
50-line mode 32, 33 
80386 156 

Control programs 24, 41 
Debug registers 24, 107 
Register display 94 

80486 
Debug registers 24 

8086 39 
? command parameter 87 
[] (brackets) command parameter 87 
AF1-AF9, and AFQ 94 
A.XX 130 
{ }  (braces) command parameter 87 
I command parameter 87 

A 
Absolute address 180 
Active remote mode 32 
Address 200 
address command parameter 88 
alias command parameter 88 
Aliases 12, 17, 63, 66, 94, 130, 146, 
178, 199 

C0 66 
C9 66 
Chained 65 
Defined 65 
Format 65 

Index 

Fx 66 
MP 66 
MX 66 
Reserved 66 
X0 66 
X1 66 
X2 66 
X3 66 

Alternate keyboard 34, 38, 57 
Alternate monitor 33 
Alternate PC 34, 56, 62 
Alternate start-up methods 43 
Alternate video 34, 57 
AND mode 104 
arithmetic operator command 
parameter 88 
ASCII 118, 180 
Assembly mode 170 
Asterisk (*) 119 
AUTOEXEC.BAT 44 

B 
Binary 180 
BIOS 36, 41, 77 
BlueMAX 46 
Boot 151  
Borland 5 1, 75 
Both (source and assembly) mode 
170 
Brackets [] 86 
Break-out switch 60, 151 ,  199, 223 
Breakpoints 67 

Code 133, 135, 136, 1 37, 138, 151  
Debug register 133,  1 35, 136, 137, 

138, 151  
Hardware 107, 1 37, 151  

233 



Index 

Monitor 136, 137, 138, 151 
byte command parameter 89 

c 
Call tracing 95 
Capture keystrokes 185 
Case sensitivity 24 
CED 92 
CEMM 24 
CGA 40 
Clear breakpoint 83 
Clear Periscope's screen 144 
CLEARNMI.COM 60 
Code breakpoints 

Sticky 134 
Temporary 134 

Code timing 97 
Code View 25, 74 
Color attribute 35, 184 
Colors 184 
COM file 67, 68, 69 
command command parameter 89 
Command delimiter 86 
Command length 23 
Command parameters 86 
Command summary 82 
Command types 

Breakpoints 82 
Controls 84 
Disassembly 84 
Disk I/O 84 
Display 84 
Execution 84 
Hardware 85 
1/0 85 
Miscellaneous 86 
Modify 85 
Option 86 
Periscope/32 specific 85 
Search 85 
Status 85 
Symbols 85 

Commands 102 

234 

access Memory anywhere in the 
target. .. (EM) 13 1  

Assemble then Unassemble (AU) 
103 � 

Assemble to memory (A) 102 
Breakpoint on 80386 Debug 

registers (BD) 107 
Breakpoint on Byte (BB) 105 
Breakpoint on Code (BC) 106 
Breakpoint on eXit (BX) 1 15 
Breakpoint on Flag (BF) 108 
Breakpoint on Interrupt (BI) 108 
Breakpoint on Line (BL) 109 
Breakpoint on Memory (BM) 110 
Breakpoint on Port (BP) 1 1 1  
Breakpoint on Register (BR) 112 
Breakpoint on User test (BU) 113  
Breakpoint on Word (BW) 1 14 
Clear (K) 144 
Clear and Initialize 144 
Compare (C) 115,  116 
Display Effective address (DE) 120 � 
display eXtended Registers (RX) 16C .  
Display Global/local descriptor table -

(DG) 121 
Display interrupt descriptor table 

(DV) 126 
Display TSS (DT) 126 
Display using ASCII format (DA) 

1 18  

128 
Display using asciiZ format (DZ) 

Display using Byte format (DB) 1 18  
Display using current format (D) 1 17 
Display using Double word format 

(DD) 119 
Display using Integer format (DI)_ 

121 
Display using long integer format 

(DX) 127 � 
Display using Long real format (DL) '

122 
Display using long signed integer 

format (DY) 127 
Display using Number format (DN) 



122 Option E (IE) 185 
Display using Record format (DR) Option K (/K) 185 

123, 124 Option L (IL) 186 
Display using Short real format (DS) Option N (IN) 187 

125 Option Q (/Q) 187 
Display using Word fonnat (DW) Option R (/R) 188 

126 Option S (/S) 188 
Enter (E) 129 Option T (ff) 189 
Enter Alias (EA) 130 Option U (IU) 190 

Index 

Enter Bytes (EB) 130 Option W (IW) 191 ,  192, 193, 194 
Enter Doublewords (ED) 131  Option X (IX) 195, 196 
Enter Symbol (ES) 132 Options 1 and 2 (11 and /2) 182 
Enter Words (EW) 132 Output (0) 150 
Fill (F) 133 Quit (Q) 150, 151 ,  152 
Go (G) 133, 134 Register (R) 153, 154, 155, 156, 157 
Go equal (G=) 135 Register Compare (RC) 158 
Go plus (G+) 135 Register Restore (RR) 159 
Go to Return address on stack (GR) Register Save (RS) 159 

137 Search for Address Reference (SA) 
Go using All (GA) 136 161 
Go using Monitor (GM) 136 Search for Calls (SC) 162 
Go using Trace (Gn 138 Search for Return address 163 
Help (?) 102 Search for Unassembly match (SU) 
Hex arithmetic (H) 139 164 
Input (I) 140 Search then Display 163 
Interrupt Compare (IC) 141 software Breakpoints All (BA) 104 
Interrupt Restore (IR) 141 Trace 165 
Interrupt Save (IS) 142 Trace all but Iriterrupts (TI) 169 
Jump (J) 143 Trace Back (TB) 166, 167, 168 
Jump Line (JL) 144 Trace Line (1L) 169 
Load Absolute disk sectors 145 Trace Registers (1R) 166, 167, 168 
Load alias and record Definitions Trace Unasm 166, 167, 168 

(LD) 146 Translate {X) 180 
Load Batch file (LB) 146 Use 16 or 32-bit disassembly (16 or 
Load File from disk (LF) 146 32) 181  
Load Symbols fr om  disk (LS) 147 View file (V) 174 
Move (M) 148 View Source file (VS) 175 
Multiple 99 Watch 176 
Name 149 Write Absolute disk sectors (WA) 
Option 3 (/3) 183 177 
Option 4 (/4) 183 Write alias and record Defmitions 
Option A (/A) 183 (WD) 178 
Option C (/C) 184 Write Batch ftle (WB) 178 
Option D (/D) 184 Write File to disk (WF) 179 
Option ditto (f') 181  � Write Symbols to disk (WS) 179 

235 



Index 

Common problems 221 Ellipsis 86 
Displaying source 224 EM memory 46, 47 
Displaying symbols 224 Enable breakpoint 83 
Model Ill fails to load 225 EOI 56 
Model N fails to load 225 Error messages 200 
No bounce bar 225 Exception interrupts 151 , 223 
No program interrupt vectors 225 EXE ftle 48, 67, 68, 69, 74, 179 
Program screen not restored 225 EXEC function 69, 70 
Unexpected entty into Periscope 224 Exit to DOS 195 

Compatibility 7 
Continue 151  
Conventions 4 
Copy memory 148 

D 
Data window 184, 192 

Select 184 
Debug user exits 78 
Decimal 180 
Decimal number 88 
decimal number command 
parameter 89 
DEF file 17, 39, 63, 69, 124 
DeSmet 74 
Device driver 72 
DIP switch 39 
Disable breakpoint 83 
Disassemble memory 170 
Disassembly 

Modes 14, 18 
Window 193, 225 

DOS 68, 69, 78, 183, 223 
DOS busy 203 
Double word format 1 19 
drive command parameter 89 
Dual-monitor system 33, 40, 57, 225 

E 
Echo screen to ftle 185 
Effective address 153, 154 
EGA 33, 40, 57 

236 

F 
Far pointer 64, 87 
Fast color output 24 
FCB 68 
FCC compliance 4 
ftle command parameter 89 
Files on distribution disk 6 
Fill a block of memory 133 
Filter function 7 4 
Filter leading character 74 
Flags 153 

-
format conunaild parameter 89 
FI'OC.C 10 
FI'OC.DEF 10 
FI'OC.EXE 10 
FI'OC.MAP 10 
Function key emulation 25 

G 
Go Using Hardware (HC) Command 
136 
Grrr! 24 

H 
Hardware commands 

HA 140 
Haidware interrupts 55 
Hardware requirements 6 
Hardware Trace Buffer 35 



Index 

Helix Software 47 N 41 
HERC.COM 42 /W 42 
Hercules 42 /Y 42 

�. Hex 1 18, 140, 180 ? 32 
High-level languages 9 Format 32 
Hot keys 61, 151  INT.COM 60 

Interrupt Comments 36 
Interrupt request lines 37 
Interrupt trace table 136 
Interrupt vectors 41,  60 

uo ports 39, 140, 150 Interrupts 1 19, 141 ,  142 
IBM IRQ 37, 55 

PS/2 24 
Illegru msttuctions 155 
Initiruize 144 K Instrulation options 32 

/2 32 Keyboard translation programs 42 
/25 32 Keyboard usage 
/286 32 Alt-3 keys 94 
/386 33 Alt-A keys 94 
/43 33 Alt-B keys 94 

� /486 33 Alt-C keys 94 
/50 33 Alt-D 94 
/A 33, 96, 97 Alt-E keys 94 
/AD 96, 97 Alt-G keys 95 
/AK 34 Alt-H keys 95 
/AV 34, 96, 97 Alt-I keys 96 
IB 35 Alt-L keys 96 
/C 35 Alt-M keys 96 
/D 35 Alt-N keys 96 
/E 36 Alt-O keys 97 
IH 36 Alt-P keys 97 
II 37 Alt-R keys 97 
/K 37 Alt-S keys 97 
/L 38 Alt-T keys 97 
/LCD 38 Alt-W keys 98 
/M 38 Backspace key 92 
/N 38 Ctrl-B keys 98 
/NE 39 Ctrl-Break keys 98 

, ,.-.., /P:nnn 39 Ctrl-E keys 98 
/Q 39 Ctrl-End keys 92 
/R 39 Ctrl-G keys 98 
/S 40 Ctrl-Left keys 92 
/SX 40 Ctrl-P keys 98 
/T 40  Ctrl-PgDn keys 92 

237 



Index 

L 

Ctrl-PgUp keys 92 
Ctrl-PrtSc keys 98 
Ctrl-R keys 98 
Ctrl-Right keys 92 
Ctrl-S keys 98 
Ctrl-T keys 98 
Del key 92 
Down Arrow key 92 
End key 93 
Esc key 93 
Home key 93 
Ins key 93 
Left Arrow key 93 
PadMinus key 98 
PadPlus key 99 
PgDn key 99 
PgUp key 99 
Right Arrow key 93 
Semi-colon key 99 
Shift-PrtSc keys 99 
Tab key 93 
Up Arrow key 93 

Length argument 201 
length command parameter 89 
Line numbers 50 
Line-number symbols 49 
LINK 52 
LINK86 74 
List 201 
list command parameter 90 
Loading symbol tables 71  
Local code 49 
Local data. 49 
Local symbols 49 
Local variables 15  
Long boot 151  
Long real (quad word) format 122 

238 

M 
MAP ftle 10, 48, 73, 74 
Memory-resident program 56 
Menu bar 66 
Menu system 25, 36 
Messages 198 

*Break* 198 
Breakpoint cleared 198 
DOS 3.00 or later required 198 
DOS busy 186 
EOI issued for IRQ x 198 
Grrr! 198 
Keyboard interrupts (IRQ 1) are 

turned off . . .  199 
Lines found 186 

199 

No buffer found 186 
No lines found 186 
Parity error 1 198 
Parity error 2 199 
Press Esc to end full-screen mode 

Source buffer too small 199 
Source file 199 
Source file more recent than 

program 172, 199 
Ttmer interrupts (IRQ 0) are turned 

off . . .  199 
Trap xx 198 

Microsoft 5 1, 74 
Microsoft C 1 1  
Microsoft LINK 11  
Mixed (Both) mode 68 
MODE 42 
Model IT Break-out Switch 28, 29, 30 
Modify flags 155 
Modify memory 129, 1 30, 13 1 ,  1 32 
Modify registers 155 
Module name 172 
Money-back guarantee 3 

N 
name command parameter 90 
Naming ftles 149 



Index 

Near pointer 64, 87 Printer echo 98 
Nearest symbols 187 Printer spacing 94 
NETROOM 47 PS.DEF 124 

� NMI 198 PSB ftle 185 
non-OOS programs 38, 54 PSD file 63, 69, 146, 178 
Non-Maskable Interrupt (NMI) 29, PSF ftle 74 
60 PSHELP.TXT 36 
NOTES.TXT 6 PSINT.TXT 36 
Nul-terminated ASCII format 128 PSKEY.COM 61 
Null-modem cable 34, 62 PSP 68 
Number 201 PSS ftle 68, 73, 148, 202 
number command parameter 90 PSTERM.COM 34, 62 
Numeric co-processor 77 Public symbols 49 

0 Q 
0. command parameter 87 QEMM 47 
Octal 180 QEMM.SYS 24 
Offset 87 Qualitas 46 
offset command parameter 90 Quarterdeck 47 
On-line help 36 Quiet 187 
OPTLINK 52 

R 
p Replacement 2 
Parity error 30 range command parameter 91  
Parity error 1 15 1 Real-time Trace Buffer 35 
Parity error 2 15 1 Record defmitions 10, 17, 39, 63, 
Passive remote mode 32, 33 67, 92, 94, 123, 146, 178 
Pause modes 95 File 68 
Periscope model differences Format 63 

All models 6 Refresh interrupts 25 
Periscope version and model 223 Register 202 
Periscope's windows 42, 68 register command parameter 91  
Periscope/Remote 32 Register display 97 
Peter Norton's TS .EXE 68 Register window 193 
PLINK 52, 75 Registers 153 

.� PLINK overlays 52 User 153 
PocketS oft 52, 75 Registration 2 
pointer command parameter 90 Card 222 
port command parameter 90 Number 222 
Pre-DOS programs 54 Remove ftle extension 75 
Printer 97, 99 Remove path 75 

239 



Index 

Removing Periscope from memory 
42 
Response file 209 
Restore debug settings 178 
Return authorization 3 
Return to DOS 151  
ROM-scan time 39 
RS 39 
RS.COM 63,  64, 65, 66 
.RTLink 52, 75 
RUN 17, 69 
RUN.COM 12, 67, 68, 69, 70 

s 
S. command parameter 88 
SAMPLE.ASM 17 
SAMPLE.COM 17 
SAMPLE.MAP 17 
Save debug settings 178 
Screen buffer 40, 67 
Screen swap 96 
Search for symbols 187 
Search memory 160, 161,  163, 164 
Search stack 162, 163 
sectors command parameter 91  
Segment 88, 201 
Segment change 188 
segment command parameter 91 
Serial printer 42 
Set breakpoint 83 
SETUP.COM 22 
Shift-PrtSc 61 
Short boot 35, 38, 54, 152 
Short real (double word) format 125 
Signed integer (word) format 122 
Single step 136, 138, 165, 169 
Single-monitor system 40, 225 
SLR 52 
Software installation options 

See Installation options 
Software interrupts 136 
Software pass count 106 
Software requirements 6 

240 

Software trace buffer 35, 67 
Source code 15, 172 
Source File Buffer 36, 67 
Source file name 172 
Source only mode 170 
Source-code line 144, 172 
Source-level debugging 9, 49, 78, 
175 
Source-only mode 68 
Split-screen mode 32 
Stack data 49 
Stack display 97 
Stack window 193 
Static variables 76 
Sticky code breakpoints 19, 82 
string command parameter 91 
String search 175 
Supported compilers 5 1  
Supported linkers 51  
Suppress Periscope's screen output 
188 
Switch symbol tables 182 
SYM file 74 
symbol command parameter 91  
Symbol file 68, 73 
Symbol table 40, 67, 71 ,  179, 182 

Global segment changes 188 
Symbols 19, 48, 87, 88, 90, 91 ,  96, 
103, 132, 147, 155 

Line 188 
Public 188 
Removing 188 

SYMLOAD.COM 71 
SYSLOAD.SYS 72 
SysReq 61 
System requirements 6, 7 

T 
T. command parameter 88 
Tab stops 23 
Tech support 221 
Temporary code breakpoints 82 
Temporary symbol space 70 



Index 

test command parameter 92 Window 1 76, 194 
Tilde (-) 92 Watch memory 1 76 
Timeout 34 Watch ports 1 76 

� 1LINK 5 1  Watchdog timer 24, 57, 1 5 1 ,  198 
Trace buffer Wildcard 160 

Hardware 166 Window specification 204 
Software 1 66  Windows 1 6, 98, 191  

Trace interrupt table 1 89 Colors 192 
Tracing ROM 143 Set up 1 9 1, 1 92, 193, 1 94 
Translate 1 80 Word format 126 
TS .COM 40, 73, 74, 75 Write file to disk 1 79 
TSR 78 Write Periscope symbol file 179 
Turbo card 24 Write-protected memory 38 
Turbo Debugger 25 
Tutorials 9 

X 

u xxKEYS .PSD 66t 

Unknown symbol 203 
Unsigned integer (word) format 121  

� Unsigned long integer 1 27 
Updates 2 
Upgrades 2 
User exits 37, 76, 77, 1 5 2, 1 90 
User-written code 76 
USEREXIT 37 
USEREXIT.ASM 76, 77, 1 1 3, 1 90 

v 
VGA 32, 33,  40, 57 
View file 174 
View source file 1 75 
View window 1 94 

w 
� 

W. command parameter 88 
WAITING.COM 78 
Warranty 2 
Watch 

Variables 19, 67, 1 76 

24 1 



Index 

242 




