
United States Patent (19)
Pettet et al.

(54) INVERSE ASSEMBLY METHOD AND
APPARATUS

75 Inventors: Mark E. Pettet, Hillsboro; Gerd H.
Hoeren, Lake Oswego, both of Oreg.

73 Assignee: Tektronix, Inc., Beaverton, Oreg.
21 Appl. No.: 814,152
22 Filed: Dec. 23, 1985

Related U.S. Application Data
63 Continuation of Ser. No. 417,014, Sep. 13, 1982, aban

doned.

51) Int, C. .. G06F 15/00
52 U.S. C. 364/900; 371/19
58) Field of Search ... 364/200 MS File, 900 MS File,

364/200, 900, 300; 371/20, 25, 27, 17, 19;
324/73 R, 73 AT

56) References Cited
U.S. PATENT DOCUMENTS

3,105,143 9/1963 Hosier et al. 364/200
3,883,847 5/1975 Frank 364/90O
3,918,047 1 1/1975 Denes 340/347 DD
3,987,420 10/1976 Badagnani. 371/7
4,099,230 7/1978 Mead 364/2OO
4,205,371 5/1980 Feather 364/200
4,231,087 10/1980 Hunsberger et al. 364200
4,309,756 1/1982 Beckler 364/300
4,312,066 1/982 Bantz et al. 371/16
4,398,249 8/1983 Pardo et al. ..., ... 364/300
4,475,174, 10/1984 Kanayama 364/900
4,493,044 A1985 Hoeren et al. 364/579
4,498,148 2/1985 Glickman 364/900
4,533,997 8/1985 Furgerson 364/200
4,541,069 9/1985 Kanou et al. 364/900

Primary Examiner-Gareth D. Shaw
Assistant Examiner-Jonathan Fairbanks

Users CRCUT 26 S4 56

4,694,420
Sep. 15, 1987

Patent Number:

Date of Patent:
11)

45)

Attorney, Agent, or Firm-John H. Bouchard; John P.
Dellett; Francis I. Gray
57 ABSTRACT
An inverse assembly method for converting binary
executable microprocessor code into corresponding
assembly language mnemonics provides for the storage
of all the possible binary codes and corresponding as
sembly language mnemonics in a plurality of tables set
up in a decision tree form which corresponds to the
format of a user document provided by the manufac
turer of a target microprocessor. The instructions and
data information contained within the executable code
acquired from the taret microprocessor are distinguish
ably tagged prior to being stored in an acquisition mem
ory. The code from the acquisition memory, in binary
or hex form, indexes a primary table which contains a
plurality of entries containing a binary value which may
have a mask portion, each entry containing a plurality
of actions having an optional string to be displayed,
optional parameter masks and an optional table to call.
The unmasked portion of the binary value is compared
with the code from the acquisition memory and, if a
match occurs, this entry is used for further processing,
otherwise the comparison process moves on to the next
entry in the table. Once a match is found a character
string is displayed, parameter bits are picked off to be
passed to another table, and another table is called
within the decision tree. This continues until all actions
are completed, including calls to additional tables
which are similarly processed. After the processing of
each called, or current, table is completed, a return to
the calling table is made, and if there is no calling table
then disassembly for the current code from the acquisi
tion memory is completed. In like manner all the ac
quired executable code is processed to obtain the corre
sponding assembly language mnemonic.

3 Claims, 8 Drawing Figures

Ses
SO CHARACER OSPAY

OSPLAY GENERATOR Monitor
rom codifier 64

MNG
WAVEFORM
GENERATOR

42 ES w
REGISTER CLOCK

NPUT

CONROER
NERFACEK) REGISTER

counter

U.S. Patent Sep 15, 1987 Sheet 2 of 5 4,694,420

ABLE TABLE

TAETAETAETABLE TABETEE TEE TEE
FIG.2.

STATE TABLE DISPLAY; REFERENCE COMPARE: START SEQ

STOP SEQ 5
TRG s F7E6D Ooi oo FF7D
SRCH = XXXXX XXXXXXXX XXXX
MASK a

SEQ ADDR CTR DATA

OOEA
5 FFFF2 OQQ QOEQ)
6 FFFF4 QQQQ) 00F0)
7 FFFF6 (2002 (2002)
8 FE000 0000 7EBC
9 FEG202 (20 O C724
2O FE004 000. 42O6
2 FEO06 0000 224
22 FE008 O000 3300
23 FEOGA (2002) B9CG)
24, 20442 00 0002
25 FEOOC 000 00. A
26 FE0OE 0002) 02BF
27 FEO) 00 Q 8804
28 FE22 (200 4725
29 FEO 4 002 FBE2

I6' 18' 20- FIG.4.

U.S. Patent Sep. 15, 1987 Sheet 3 of 5 4,694,420
DEFINE MNEMONICS TABLE NAME: OPCODEo MODE:

P
SEQ BIN CALL DISPLAY

(2) OOOOXXX

-------- KTAB
----AAA REGI6
-------- O C
OQ)0 XXX DEC

- am XTAB

Mmm REGI6

2 Q) (2 OXXX PUSH
are as an as a as see o XTAB

M M M REGI6

IO-1 I2-1 41 FG.3A

DEFINE MNEMONICS TABLE NAME REGI6 MODE:

P
SEQ BIN DISPLAY

(2) (2) DX
(2) BX
QQ) SP
Q BP

Q) S.
D.

X
X

XXX FIG.3B.

U.S. Patent Sep 15, 1987

STATE TABLE DISPLAY : REFERENCE

TRG a

SRCH

F7E6D of oil it tool FF7D
XXXXX XXXXXXXX XXXX

8086 MNEMONICS

FFFFQ) JMP E000, F000
FEOOQ) MOVW SP, O47E
FEO03 MOVW 0442, 80002
FEOO9 XORW AXAX
00442 Q002 (MEM WRITE)
FEOOB MOVW CX, HOOA
FEOOE MOVW DI, k0402
FEO MOVE (DI), AL
FEO 3 NC D
FEQ) 4 LOOP FEQ)
00402 OQ) (MEM WRITE)
FEQ) I MOVE (DI), AL
FEQ) 3 INC D
FEQ) 4 LOOP FEQ)
Q0403 00 (MEM WRITE)
FEO MOMB (DI), AL

- y
24

Sheet 4 of 5 4,694,420

COMPARE: START SEQ

STOP SEQ 5

FIG.5.

4,694,420

ETTOJOWN Å LITVNOS?|B|d

NOLLISITHOOV/ Sheet 5 of 5

E8O?Jej NOLLISITHOOV/

?JO LA78BINES)

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

U.S. Patent
Sep 15, 1987

4,694,420
1.

NVERSE ASSEMBLY METHOD AND
APPARATUS

This is a continuation of application Ser. No. 417,014,
filed Sept. 13, 1982 and now abandoned.

BACKGROUND OF THE INVENTION
1. Field of the Invention
The subject matter of the present invention pertains

to an inverse assembler for translating the executable
code output from an assembler of a data processing
system into a corresponding set of assembly language
mnemonics for debugging software associated with said
executable code.

2. Description of the Prior Art
Logic State Analyzers typically perform the function

of an inverse assembler. An inverse assembler is utilized
to translate a set of executable code, generated by an
assembler of a data processing system, into a corre
sponding set of assembly language mnemonics for the
purpose of debugging a software package representing
the executable code. For example, in FIG. 1a, during a
software development process, the executable code is
generated either from an assembler or a compiler, the
assembler inputs a set of assembly language instructions
from a user thereby generating the executable code.
The executable code comprises a multitude of binary
codes representing the assembly language instructions,
the executable code being used by the target system
(which may be, for example, a microprocessor). In FIG.
1b, a software analysis process is performed by the logic
analyzer-inverse assembler wherein the executable
code, utilized by the target system, is converted into a
corresponding set of assembly language mnemonics.
The corresponding set of assembly language mnemon
ics is analyzed for the purpose of debugging the set of
assembly language instructions. If the target system,
shown in FIG. 1a, executed the assembly language
instructions properly (developing the results desired by
the user), as determined by the corresponding set of
assembly language mnemonics, the set of assembly lan
guage instructions (or a high level language corre
sponding to the assembly language instructions) have
been written correctly.
As mentioned above, the assembler assembles the set

of assembly language instructions input by the user to
generate the executable code comprising a multitude of
binary codes. The target system is typically (but not
limited to) a microprocessor. The microprocessor exe
cutes the binary codes produced by the assembler. Exe
cution of these binary codes may be monitored by a
logic analyzer. In order to debug the code, it is neces
sary that the binary codes (executed by the micro
processor) be re-converted to the original set of assem
bly language instructions, that is, be inverse assembled
into the corresponding set of assembly language mne
monics, for interpretation thereof by the user.

In order to inverse assemble the multitude of binary
codes into the corresponding set of assembly language
mnemonics, it is necessary to enter and store into mem
ory information required to build a table, the table in
cluding two columns of information: the first column
comprising a list of binary codes representing all of the
possible binary codes capable of being generated by the
microprocessor, the second column comprising a corre
sponding list of assembly language mnemonics (instruc
tions) associated therewith.

5

O

15

25

30

35

40

45

50

55

60

65

2
For each of the binary codes, associated with the

multitude of binary codes produced by the micro
processor, the process of inverse assembly was com
prised of the following steps: locating the binary code as
an address in the first column of said table stored in said
memory, and identifying the corresponding assembly
language mnemonic (instruction) in the second column
thereof. Therefore, using said table, the multitude of
binary codes produced by the microprocessor are in
verse assembled into the corresponding set of assembly
language mnemonics.
However, with respect to the inverse assemblers of

the prior art, the task involving building said table was
quite lengthy and tedious, if not impossible to accom
plish. For most eight (8)-bit microprocessors, the first
column of said table was comprised of a list of 28 entries
(that is, 256). This number of entries is reasonable. How
ever, if a 16-bit microprocessor was utilized, the first
column of said table was comprised of a list of 26 (that
is, 65,536) entries of binary code. A user must therefore
enter 65,536 binary codes and the associated instruc
tions to build said table. If such a table is built, the men
ory space required to store said table would be quite
large. Consequently, the process of inverse assembly
using the inverse assembler of the prior art (in particu
lar, when associated with the 16-bit processor) proved
to be impractical, if not impossible, to accomplish.

Alternatively, the inverse assembler of the prior art
included a read-only-memory having firmware encoded
therein which was responsible for debugging the set of
assembly language instructions executed by said micro
processor. However, the read-only-memory was re
sponsible for disassembling the assembly language in
structions executed by only certain specific types of said
microprocessors. If other ones of said microprocessors
were utilized to execute said instructions, the firmware
in the original read-only-memory could not disassemble
(or inverse assemble) the instructions.

It was therefore necessary to remove the read-only
memory and replace it with a different read-only-mem
ory having firmware disposed therein which could,
accurately, disassemble the assembly language instruc
tions. The need to remove the original read-only-mem
ory and replace it with a new one, when a different
microprocessor was utilized to execute the set of assem
bly language instructions, severely limited the scope of
use associated with said inverse assembler of the prior
att.

SUMMARY OF THE INVENTION

It is a primary object of the present invention to over
come the disadvantages associated with the inverse
assemblers of the prior art.

It is another object of the present invention to over
come said disadvantages by allowing the user of the
inverse assembler of the present invention to enter the
information required to build said table.

It is another object of the present invention to over
come the disadvantages associated with the inverse
assemblers of the prior art by allowing said user to enter
said information to build said table and by substantially
reducing the number of entries of said binary codes and
associated assembly language mnemonics (instructions)
required to build said table associated with the inverse
assembly process.

It is still another object of the present invention to
overcome said disadvantages by reducing the number
of said entries required for said user to build said table

4,694,420
3

and by simplifying the user's process of entering the
binary codes and the instructions associated therewith.

It is still another object of the present invention to
distinguish between instructions and data information
inverse assembled from said executable code.
These and other objects of the present invention are

accomplished by providing an inverse assembler which
permits the entry of all of the possible binary codes
capable of being produced by the assembler and all of
the corresponding assembly language mnemonics (in
structions) associated therewith, during the process of
building said table, the binary codes and the assembly
language mnemonics being stored therein in the form of
a set of decision tree tables whereby the elements associ
ated with each branch of the decision tree are entered
into the inverse assembler of the present invention in
direct correspondence with the format of a user docu
ment published by the manufacturer of said micro
processor, and whereby each of the branches of the
decision tree are linked together in decision tree form.
Furthermore, the inverse assembler of the present in
vention is capable of inverse assembling the executable
code such that instructions and data information con
tained therein are distinguishable, the instructions
within the executable code being tagged by a first iden
tification means, and the data information within the
executable code being tagged by a second identification
means, the instructions and the data information, and
the corresponding first and second identification means
corresponding thereto, acquired as part of the execut
able code, being stored in an acquistion memory of an
acquisition device (such as the logic analyzer) and oper
ated on by said inverse assembler.

Further scope of applicability of the present inven
tion will become apparent from the description given
hereinafter. However, it should be understood that the
details of the description and the specific examples,
while indicating preferred embodiments of the inven
tion, are given by way of illustration only, since various
changes and modifications within the spirit and scope of
the invention will become apparent to those skilled in
the art from the detailed description.
BRIEF DESCRIPTION OF THE DRAWINGS

A full understanding of the present invention will be
obtained from the detailed description given hereinbe
low and the accompanying drawings which are given
by way of illustration only, and thus are not limitative of
the present invention, and wherein:

FIG. 1a illustrates a software development process
wherein a high-level language or an assembly language
is utilized to generate a set of executable code.
FIG. 1b illustrates a software analysis process

wherein the executable code is converted into a set of
assembly language mnemonics for debugging and anal
ysis of the assembly language (the user written soft
ware).
FIG. 2 illustrates a decision tree concept, a general

concept utilized for storage of said tables in the inverse
assembler of the present invention.
FIGS. 3a and 3b collectively illustrate a pair of cath

ode-ray-tube displays on the inverse assembler of the
present invention, wherein each of the binary codes
capable of being produced by the microprocessor and
the corresponding instructions are stored in said inverse
assembler as a set of tables, the tables being stored in
decision tree form, the table requiring a substantially
reduced number of entries for completion thereof.

10

15

20

25

30

35

40

45

50

55

60

65

4.
FIG. 4 illustrates the multitude of binary codes pro

duced by the microprocessor and representing address,
control and data information acquired by the inverse
assembler of the present invention, the illustrated binary
codes representing instructions and data information
stored in the acquisition memory of the acquisition
device (the logic analyzer) existing prior to the inverse
assembly process performed by the inverse assembler of
the present invention.
FIG. 5 illustrates the binary codes of FIG. 4 existing

subsequent to the inverse assembly process performed
by the inverse assembler of the present invention, the
binary codes of FIG. 5 including a set of assembly lan
guage mnemonics corresponding thereto.
FIG. 6 illustrates a system block diagram of the in

verse assembler of the present invention illustrated as
being connected to a user's circuit, the user's circuit
including, as a component part thereof, a memory for
storing the binary codes associated with the assembly
language instructions being debugged, and said micro
processor for executing said binary codes and produc
ing said executable code, comprising the multitude of
binary codes representing read, write, and instruction
fetch information, in response thereto.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

As mentioned hereinabove, it was stated that, in
order to inverse assemble the executable code-that is,
the multitude of binary codes, output from the assem
bler (i.e. microprocessor), it was necessary to build said
table. However, with respect to the inverse assemblers
of the prior art, the task involving building said table
was very lengthy and tedious, if not impossible to ac
complish. It was therefore one major object of this
invention to reduce the number of entries of said binary
codes and associated instructions required to build said
table, while, simultaneously, simplifying the entry
thereof. The first above mentioned objective, the reduc
tion in the number of said entries, is accomplished by
recognizing the following general principle: 2">2-2
when i-ji=n,

In the context of the present invention, if the assem
bler is a microprocessor, and if a 16 bit microprocessor
is utilized, each binary code, that is, each bus transac
tion, generated by the microprocessor will be a 16 bit
binary number. However, there are 216 possible binary
numbers which may be generated by the microproces
sor, and therefore, there are 216 possible instructions
which need to be inverse assembled.
The inverse assembler of the prior art required that a

table be built and stored in memory, the table, in the
above example, having a first column comprising a list
of 216 binary numbers (for a 16-bit microprocessor), the
second column being a list of 216 instructions corre
sponding, respectively, thereto. With this high number
of required entries, the table was difficult, if not impossi
ble, to build. Alternatively, the inverse assembler of the
prior art required that a microprocessor specific inverse
assembly Read-Only-Memory (ROM) be inserted into
the logic analyzer.
The inverse assembler of the present invention, on the

other hand, also requires that said table be built. How
ever, the table, to be built and stored in memory, will be
structured in the form of a decision tree, wherein, in lieu
of one table requiring a list of 26 entries, two or more
tables, linked together in the form of a tree, are utilized.
Using the above example, two tables linked together

4,694,420
5

may be utilized, each table having 28 entries in the first
and second columns thereof. Since 26>28-28, fewer
entries are required to be made in each of the first and
second columns of said two tables then are required in
the single table of the prior art. Similarly, four tables,
linked together in the form of said decision tree, may be
utilized, each table requiring 2 entries in the first and
second columns thereof. Since 26>2+2+2+2, it
is much easier to build four decision tree tables than to
build the single table of the prior art. Reference is di
rected to FIG. 2 for an example of the decision tree
concept, utilized by the present invention.

In FIG. 2, a plurality of tables are illustrated, linked
together in decision tree form. The composition of each
of said tables will be described with reference to FIGS.
3a and 3b. If table 1 is initially referenced by the inverse
assembler of the present invention, to inverse assemble
the executable code into a corresponding set of assem
bly language mnemonics, a decision is made to refer to
either table 2 or table 3. If table 2 is referenced, a further
decision is made to refer to either table 4 or table 5. If
the table 5 is referenced, a further decision is made to
refer to either table 10 or table 11. By referencing tables
1, 2, 5, and 11 in combination, one binary code (i.e. the

5

O

15

20

16 bit binary code), acquired by the inverse assembler of 25
the present invention, output from the microprocessor,
is inverse assembled into a corresponding assembly
language mnemonic. If a 16 bit binary code must be
inverse assembled, 2 entries in each column of tables 1,
2, 5, and 11 are required in order to inverse assemble the
16 bit binary code into a corresponding assembly lan
guage mnemonic. It is much easier to provide 2 entries
in each column of these tables than to provide 26
entries in each column of the single table, associated
with the inverse assembler of the prior art.

Referring to FIGS. 3a and 3b, a cathode-ray-tube
display on the inverse assembler of the present inven
tion is illustrated. The display exhibits a more specific
example of the decision tree structure of said table. In
FIG. 3a, the "OPCODE1” table is illustrated. Eight
(8) bit binary codes appear in the first column 10 of the
"OPCODE1" table. A second column 12 is a “call"
column, for referring to another table. A third column
14 is a display column for relating a portion of a binary
code to an instruction. For example, a binary code
"01000XXX" appears in the first column 10 in FIG. 3a.
The binary numbers 01000 relate to an increment (INC)
instruction. The last three generic bits, “XXX", are
ignored when this table is searched and are passed,
regardless of their value, to a table called "REG 16', as
determined from column 12. Referring to FIG. 3b, table
"REG 16" is illustrated. If the three generic bits
"XXX" are "000", register identifier "AX" corresponds
thereto. Therefore, by linking the "OPCODEg1' 1
table (FIG. 3a) with the "REG 16" table (FIG. 3b), in
decision tree form, it may be determined that a binary
code "01000000" corresponds to an increment register
AX ("INCAX') instruction.
The tables shown in FIGS. 3a and 3b are formatted in

a unique way in order to simplify the entry of binary
codes (FIG. 3a) and corresponding instructions associ
ated therewith. As stated hereinabove, the microproces
sor executes each instruction, producing for said each
instruction a binary code. The manufacturer of each
microprocessor (which processes the set of assembly
language instructions set forth in the software to be
de-bugged) supplies a set of user documentation
wherein the binary codes generated by said micro

35

45

SO

55

65

6
processor are correspondingly related to an instruction.
The format of the tables shown in FIGS. 3a and 3b are
purposely made to directly correspond to the format of
the user documentation supplied by the manufacturer of
the microprocessor. As a result of these matching for
mats, it becomes easier to enter the multitude of binary
codes into the inverse assembler of the present inven
tion and the corresponding instructions associated
therewith during the process of building said table.

Referring to FIG. 4, the multitude of binary codes as
stored in the acquisition memory of the logic analyzer
inverse assembler is illustrated. These codes are gener
ated by the microprocessor, corresponding to the multi
tude of instructions executed thereby. These binary
codes are acquired by the logic analyzer (an Acquisition
device) of the present invention from the microproces
sor, and are stored in the acquisition memory. Note that
these binary codes have not been subjected to the in
verse assembly process performed by the logic analyzer
inverse assembler of the present invention and therefore
do not have associated therewith the assembly language
mnemonics corresponding thereto.
The microprocessor is a component of a user's cir

cuit. The user's circuit also includes a first memory (e.g.
a ROM) for storing the set of assembly language in
structions therein and a second memory (e.g. a RAM)
for storing data information therein to be utilized by the
microprocessor when executing the instructions stored
in the first memory. In FIG. 4, a first column of infor
mation 16 includes address data indicative of the ad
dress in the first memory of the users circuit wherein the
assembly language instructions are stored and indicative
of the address in the second memory of the users circuit
wherein the data information is stored. A second col
umn 18 comprises a plurality of tag bits utilized for
distinguishing between the binary codes, representative
of the assembly language instructions generated by the
microprocessor as part of the executable code and
stored in the first memory and the binary codes repre
sentative of the data information also generated by said
microprocessor, and stored in the second memory. A
third column 20 comprises said assembly language in
structions and data information in hexidecimal form
corresponding to the addresses appearing in the first
column 16. However, note that the instructions and data
information, appearing in the third column 20, are not
easy to decipher and understand, since the instructions
and data information appear in the form of hexadecimal
characters.

In order to debug the assembly language instructions
disposed in said first memory of the user's circuit, it is
necessary to be able to easily read the information ap
pearing in column 20 of FIG. 4, that is, to be able to
easily determine and analyze the instructions and data
information retrieved from the microprocessor and
disposed in the acquisition memory of the logic analyz
er-inverse assembler to thereby determine the degree to
which these instructions and data information disposed
therein accurately reflect the set of assembly language
instructions stored in the first memory of the user's
circuit.
As a result, refering to FIG. 5, the multitude of binary

codes, as shown in FIG. 4, after being subjected to the
inverse assembly process of the present invention, is
illustrated. A first column 22 represents the same ad
dress data shown in the first column 16 of FIG. 4. How
ever, a second column 24 comprises the set of assembly
language mnemonics, corresponding to the assembly

4,694,420
7

language instructions and data information appearing in
the third column 20 shown in FIG. 4. These assembly
language mnemonics represent the instructions and data
information disposed in the acquisition memory of the
logic analyzer-inverse assembler and are utilized by the
software designer to debug the set of assembly language
instructions disposed in the first memory of the user's
circuit.

However, as previously indicated in the paragraphs
hereinabove, in order to convert the information shown
in FIG. 4 to the information shown in FIG. 5, informa
tion must be entered and stored into a memory (a Ran
dom. Access Memory) of the inverse assembler, in order
to build said table, said table comprising the multitude
of binary codes capable of being generated by the mi
croprocessor in a first column thereof and the instruc
tions or assembly language mnemonics corresponding
thereto in a second column thereof. The assembly lan
guage instructions, in binary, or preferably hex form,
shown in the third column 20 of FIG. 4, are located as
an index to said table in the first column thereof, the
corresponding assembly language mnemonic being lo
cated therein, in the second column thereof, the located
assembly language mnemonic being used to form the
display on the logic analyzer as shown in FIG. 5. How
ever, if an 8-bit or larger bit-type, microprocessor in the
users circuit was used in conjunction with the logic
analyzer-inverse assembler of the prior art, as previ
ously indicated, the task of building said table proved to
be very difficult if not impossible to accomplish. There
fore, the decision tree structure of said table stored in
the random-access-memory of the logic analyzer, in
accordance with the present invention, is utilized, as
shown in FIGS. 2, 3a, and 3b, in order to simplify the
task of building said table.

Referring to FIG. 6, a system block diagram of the
logic analyzer-inverse assembler of the present inven
tion is illustrated.
A user's circuit 26 includes a first memory 26a (typi

cally a Read-Only-Memory-ROM) connected to a
system bus for storing firmware/software to be de
bugged. It also includes the microprocessor 26b con
nected to the system bus for executing said firmware/-
software and generating the executable code, that is, the
multitude of binary codes in response thereto. It further
includes a second memory 26c (typically a random ac
cess memory-RAM) connected to the system bus. The
microprocessor 26b is also connected to a personality
module 28. The personality module receives the multi
tude of binary codes from the microprocessor 26b, dis
tinguishes between the assembly language instructions
received thereby and stored in the first memory 26a and
the data information received thereby and stored in the
second memory 26c, and assigns a tag bit to the assem
bly language instructions received from the micro
processor 26b, and assigns another tag bit to the data
information received from said microprocessor. A typi
cal personality module which may be used to perform
the function of the personality module 28 shown in
FIG. 6 is a module made by Tektronix, Inc., product
number PM1XX (e.g. a PM111 for a 6809 microproces
sor). Patent application Ser. No. 312,466, filed Oct. 19,
1981, now abandoned, discloses the details of construc
tion associated with the personality module 28. The
specification associated with Patent application Ser.
No. 312,466, filed Oct. 19, 1981 is hereby incorporated

5

O

15

25

30

35

45

50

55

65

by reference. Alternatively, another personality module
which may be used to perform the function of the per

8
sonality module 28 may be a module identified by Tek
tronix, Inc. standard part number PM109-MC68000.
A data acquisition probe pod A, 30, receives the

assembly language instructions, the data information,
and the tag bits corresponding thereto, from the person
ality module 28, since the data acquisition probe pod A,
30, is connected thereto. The other end of said data
acquisition probe pod A, 30, is connected to an acquisi
tion memory 40. In fact, a plurality of data acquisition
probe pods, inclusive of data acquisition probe pod B,
34, data acquisition probe pod C, 36, and data acquisi
tion probe pod D, 38, are connected to the acquisition
memory 40 by way of data buses. Each of the probe
pods, 30, 34, 36, and 38, have eight probe tips connected
thereto. The probe tips acquire a plurality of logic sig
nals (representative of the multitude of binary codes)
from the terminals of a product under test, such as the
personality module 28 or the microprocessor 26b associ
ated with the user's circuit 26. The probe pods transfer
the plurality of logic signals to the Acquisition Memory
40. The acquisition memory 40 is divided into sections
which correspond to the individual probe pods 30, 34,
36, and 38. Also connected to the acquisition memory
40 is a memory address register 42 which addresses
certain locations in the acquisition memory 40 and, in
accordance therewith, stores the logic signals from the
probe pods therein in locations corresponding to the
addressed locations in the acquisition memory, as deter
mined by the memory address register 42. The logic
signals acquired by probe pod A, 30 are stored in loca
tions within the acquisition memory 40 corresponding
to the section reserved for probe pod A, 30. Similiarly,
the logic signals associated with probe pods 34, 36, and
38, are stored in the acquisition memory 40, in locations
defined by the memory address register 42, in sections
reserved for probe pods B, C, and D, respectively.
Each of the acquisition probe pods are also connected

to the input of a word recognition circuit 44. The word
recognition circuit 44 detects whether or not a desired
word from the acquisition probe has been stored in the
acquisition memory 40, and applies an output signal to
the main bus of said logic analyzer-inverse assembler in
response thereto, the output signal including data, ad
dress and control information. The desired word is a
word that the user has entered in a menu on the display
before the acquisition of data has started. The word
recognition circuit 44 is connected to a counter 46, and
energizes said counter 46 in response to the receipt of
the desired word from an acquisition probe pod. The
counter 46 is also energized by a clock input 48, the
clock input 48 causing the counter to count to a prede
termined quantity. The counter 46 is connected to said
memory address register 42 and energizes said memory
address register 42 when the count in the counter
reaches said predetermined quantity. When the memory
address register 42 is energized by said counter 46, the
addressing function performed by the memory address
register is terminated. As a result, further storage of the
logic signals from the acquisition probes into the acqui
sition memory 40 is terminated.
A controller interface/register circuit 50 is connected

to the output of the acquisition memory 40 and, thereby,
receives the stored data from the acquisition memory 40
in a read out mode. The interface-register circuit 50 is
connected to a main bus 52 of the inverse assembler of
the present invention, and thereby supplies the stored
data to the main bus. Moreover, the interface/register
circuit 50 is connected to the memory address register

4,694,420
9

42, to the acquisition memory 40, and to the word rec
ognition circuit 44. As a result, when the interface/reg
ister circuit 50 receives control data from the main bus
52, the interface/register circuit 50 controls the stora
ge/read out mode of the acquisition memory 40, con
trols the speed at which the memory address register 42
addresses the acquisition memory 40, and controls the
desired word received by the word recognition circuit
44.
A microprocessor 54, a keyboard 56, a random access

memory (RAM) 58, a read only memory (ROM) 60,
and a display controller 62 are also connected to the
main bus 52 of the logic analyzer-inverse assembler.
The microprocessor 54 is a central processing unit. It

processes the information retrieved from the acquisition
memory 40, via the controller interface register 50, in
accordance with instructions received from the key
board 56 and firmware stored in the read only memory
60 and generates a control signal in response thereto,
The random access memory 58 stores said tables therein
in the form of said decision tree, the binary codes and
the instructions associated therewith being entered and
stored within the random access memory 58 of the logic
analyzer-inverse assembler via the keyboard 56. The
firmware stored in the Read-Only-Memory 60 causes
and enables the microprocessor 54 to build said tables in
decision tree form for storage in said Random-Access
Memory 58 in response to receipt of the binary codes
and instructions associated therewith entered via said
keyboard 56. The display controller 62 operates in ac
cordance with instructions received from the read only
memory 60 and the processing instructions received
from the microprocessor 54 for generating a display on
a display monitor 64 of said logic analyzer-inverse as
sembler. The display presented on the display monitor
64 is generated with the assistance of a character gener
ator 66 interconnected between the display controller
62 on one end and the display monitor 64 on the other
end.
The Display monitor 64 generates the displays shown

in FIGS. 3a and 3b. The user/operator of the logic
analyzer-inverse assembler views said displays on said
monitor 64 when transferring the binary codes and
instructions associated therewith from the user docu
mentation of the microprocessor 26b of the user's cir
cuit to the logic analyzer-inverse assembler via said
keyboard 56. Said binary codes and instructions repre
sent all of the possible binary codes and associated as
sembly language mnemonics capable of being generated
by the microprocessor 26b within the users circuit 26.
The operation of the system block diagram of the

logic analyzer-inverse assembler of the present inven
tion, as shown in FIG. 6, in conjunction with FIG. 2,
FIG.3a, 3b, FIGS. 4 and 5 of the drawings, is presented
in the paragraphs hereinbelow.
The operator/user of the logic analyzer-inverse as

sembler refers to the set of user documentation associ
ated with the microprocessor 26b within the user's cir
cuit 26. The user documentation is used to build the
table, stored in the random access memory 58 in deci
sion tree form, the information being entered via the
keyboard 56. The operator/user causes the logic analyz
er-inverse assembler of the present invention to display
on the display monitor 64, a display similar to that
which is shown in FIG. 3a of the drawings. Using the
set of user documentation, the display on Monitor 64
and the keyboard 56, the operator/user fills in and com
pletes the information shown in FIG. 3a, including the

10

15

25

35

45

SO

55

65

10
binary codes in the first column 10, the names of the
other referenced tables in the second column 12, and the
instructions associated with the binary codes in the
third column 14. The operator/user causes the logic
analyzer-inverse assembler to display on monitor 64 a
display similar to that which is shown in FIG. 3b of the
drawings, and completes the information shown
therein. In fact, by referring to the user documentation
set forth by the manufacturer of the microprocessor 26b
within the user's circuit 26, the operator/user enters via
keyboard 56 the multitude of binary codes capable of
being generated by the microprocessor 26b.
The microprocessor 54, in accordance with the in

structions set forth in the firmware stored in the read
only memory 60 causes said tables, such as that which
appears in FIG. 3a and 3b, to be stored in the random
access memory (RAM) 58, the tables including the
binary codes and associated mnemonics entered via the
keyboard 56. The microprocessor 54 stores said tables
in RAM 58 in the form of the decision tree which is
shown in FIG. 2 of the drawings. As a result, a fewer
number of entries are required by said logic analyzer
inverse assembler for building said tables to be stored in
the random access memory 58.
When the tables are stored in the random access

memory 58, in the form of the decision tree as shown in
FIG. 2, the inverse assembler of the present invention is
ready to acquire the multitude of binary codes from the
microprocessor 26b associated with the user's circuit 26.
The binary information representative of the set of as
sembly language instructions stored in the read only
memory 26a of the user's circuit is undergoing analysis
and debugging. The microprocessor 26b executes the
instructions stored in the read only memory 26a, and
generates a multitude of binary codes therefrom in re
sponse thereto. The personality module 28 receives the
multitude of binary codes, and assigns a tag bit to the
assembly language instructions included within the
multitude of binary codes, and assigns another tag bit to
the data information included within the multitude of
binary codes received thereby. The data acquisition

- probe pod A, 30, acquires the multitude of binary codes
and the associated tag bits, and stores the binary codes
and the tag bits in the acquisition memory 40 of the
logic analyzer-inverse assembler. The memory address
register 42 addresses the locations within the acquisition
memory 40 corresponding to probe pod A, 30, in re
sponse to output signals from the clock input 48. When
the word recognition circuit 44 receives the desired
word from an acquisition probe, the counter 46 gener
ates an output signal, energizing the memory address
register 42 in response thereto. As a result, the memory
address register 42 terminates its addressing function,
thereby terminating the storage in the acquisition mem
ory 40 of the binary codes and the tag bits received from
probe pod A, 30. The acquisition memory 40 will then
contain information in the format shown in FIG. 4 of
the drawings.
As previously mentioned, the random access memory

58 contains said tables in the form of the decision tree
shown in FIG. 2 of the drawings. The specific format of
the tables will be very similar to the format shown in
FIG.3a and 3b of the drawings. The microprocessor 54
retrieves information stored in the acquisition memory
40, and using said tables stored in RAM 58, converts the
assembly language instructions shown in the third col
umn 20 of FIG. 4 into the associated assembly mnemon
ics, as shown in the second column 24 shown in FIG. 5,

4,694,420
11

and stores the converted assembly language mnemon
ics, as shown in FIG. 5 of the drawings, into the random
access memory 58. The display controller 62 retrieves
the converted assembly language mnemonics stored in
the randon access memory 58, and displays these mne
monics on the display monitor 64, in the form shown in
FIG. 5 of the drawings, with the assistance of the char
acter generator 66.
As noted hereinabove, the firmware stored in the

read only memory 60 enables the microprocessor 54 to
store said tables in RAM 58 the form of a decision tree,
as shown in FIGS. 2, 3a, and 3b of the drawings. Once
said tables are stored in the random access memory 58,
the assembly language instructions stored in the acquisi
tion memory 40, in the form of a multitude of binary
codes, are converted to a corresponding set of assembly
language mnemonics via said tables, and stored in the
random access memory 58 in response thereto. The
firmware encoded in the read only memory 60, ulti
mately responsible for this conversion process, is char
acterized by the following algorithm:

INVERSE ASSEMBLY ALGORITHM

Description of the Decision Tree Internal Data Format
A table consists of the following:
Table definition:
Describes the environment for table. Contains: Table

name, describes what data channels are input to table,
and how many entries are in the table.
0-256 Entries:
Each entry contains the "VALUE'. The value con

sists of the binary value with a "Don't Care' mask.
Whenever a mask value is zero, the data is compared
with the value. When mask is a one (signifying a "X")
then no compare is made on this bit.

Each entry then contains 0-9 "Actions'. Each Ac
tion contains an optional string to be displayed, optional
param masks, and an optional table to call.

Algorithm for Calling a Table
As per the Table definition, the appropriate data is

read from acquisition (or reference) memory.
The first entry is then compared to the read data. For

each data bit, do the following:
If the "Don't Care" mask is zero, then compare the

data bit, if they match, then continue and compare
next bit. If the "Don't Care' mask is a one then this
bit automatically matches. If all bits are compared
and match, then this is the entry to use.

If a "no match' occurs, then the comparison is started
over on the next entry in the table. This continues
until either a match is found or the end of the
entries is reached. If the latter case is true, then this
table is not called.

Once a match is found the "actions' within the "En
try' must be interpreted.

The possible actions are:
Display a string: (For example “MOVE");
Pick off param bits: (Bits to be passed to another

table);
Call another table.
This continues until an end of actions is encountered.

When this occurs a return is made out of the current
Table to the calling table. If there is no calling table,
then inverse assembly is done for this line of acquisition
data.

It should be understood that the function of the as
signment of tag bits to instructions and data informa

O

15

20

25

35

45

50

55

60

65

12
tion, within the executable code, may be performed by
a post-processing algorithm encoded in the read-only
memory 60, in conjunction with the microprocessor 54,
in lieu of the personality Module 28, as described here
inabove.
The invention being thus described, it should be obvi

ous that the same may be varied in many ways. Such
variations are not to be regarded as a departure from the
spirit and scope of the invention and all such modifica
tions, as would be obvious to one skilled in the art, are
intended to be included within the scope of the follow
ing claims.
What we claim as novel is:
1. An inverse assembler capable of converting the

code associated with a stored program stored in a mem
ory of a user's circuit, the code being generated from a
microprocessor disposed in the user's circuit and having
instructions and data information, into a corresponding
set of mnemonics for interpretation by a user compris
ing:
means for entering conversion information into said

inverse assembler, said conversion information
being a list of code corresponding to said code
associated with said stored program and a list of
said mnemonics corresponding thereto;

means for receiving said conversion information and
for storing said conversion information, said con
version information being stored in said receiving
and storing means in the form of a set of decision
tree tables, each decision tree table including
entries for portions of code and mnemonic informa
tion corresponding thereto and being in a format
corresponding to the format associated with a set
of user documentation describing the characteris
tics of said microprocessor;

means responsive to said code associated with the
stored program for distinguishing between said
instructions and said data information and for as
signing a first identifier to said instructions and a
second identifier to said data information;

means for acquiring and storing said code associated
with said stored program and said first and second
identifiers associated therewith, said receiving and
storing means correlating said code stored in said
acquiring and storing means with a corresponding
set of said conversion information stored in said
receiving and storing means by providing a combi
nation of mnemonic information from said tables in
response to portions of code as stored in said ac
quiring and storing means; and

means for acquiring said corresponding set of said
conversion information from the receiving and
storing means and for presenting said correspond
ing set of said conversion information to said user
for interpretation thereof.

2. A method for converting encoded data into de
coded data comprising the steps of:
a storing a first table and a plurality of second tables

in a memory, the first table having entries each
containing a selected bit pattern, containing a first
character string, and referencing one of said plural
ity of second tables, said second tables having
entries each containing a selected bit pattern and
containing a second character string, the selected
bit pattern in said each table entry being produced
by masking an initial value bit pattern provided in
each said table entry with the last mentioned bit

4,694,420
13

pattern being at least as long as the selected bit
pattern;

b. accessing each entry of said first table and compar
ing a first portion of said encoded data with the

14
e. accessing each entry of each said selected second

table and comparing a second portion of said en
coded data with the selected bit pattern contained
in such accessed entry of the second table; and

selected bit pattern contained in each such accessed 5 f reading out the second character string contained in
entry of said first table; the accessed entry of the second table when said

c. reading out the first character string contained in second portion of the encoded data matches the
each such accessed entry of said first table when selected bit pattern contained in such accessed
said first portion of the encoded data matches the entry of the second table, said first and second
selected bit pattern contained in such accessed 10 character strings read out from said tables compris
entry of said first table; ing different portions of said decoded data.

3. The method of claim 2 wherein the second portion
such accessed entry of the first table when said first of said encoded data is selected by masking the encoded
portion of the encoded data matches the selected data with a masking code contained in the entry of said
bit pattern contained in such accessed entry of said 15 first table referencing said second selected table.

d. also selecting the second table referenced by each

first table; 2

20

25

30

35

40

45

50

55

60

65

