
TECHNICAL INFORMATION
FOR TEKTRONIX CUSTOMERS

~ ~ w
~~
~ ~
!.;.,I

VOLUME 12 NUMBER 4
DECEMBER 1980

"""-'iii
llW
- lil

• • , .. ~. -~ .

COMMITTED TO EXCELLENCE

Mike Reiney, project
manager for the
7002, joined Tek in
1971 following re­
ceipt of his Bache­
lor 's and Master 's
degrees in electrical
engineering from
Rice University. Mike

.a.,.. was involved in the
ff';, design of several

TM 500 Series products before joining the Logic
Analyzer design group . In his spare time Mike
enjoys skiing , sailing , and motorcycling.

A User-Programm·able
Logic Analyzer for
Microprocessor-Based Design
The logic analyzer is the basic tool for de­
signing and debugging digital circuitry.
The characteristics of a logic analyzer de­
signed for working with random-logic sys­
tems differ considerably from those re­
quired for working with microprocessor­
based systems. Random-logic analyzers
usually emphasize sampling speed and
depth of memory, while analyzers suitable
for working with microprocessor systems
feature a large number of input channels
and extremely flexible triggering .

The new Tektronix 7002 Logic Analyzer
is primarily a tool for designing , debug­
ging , and troubleshooting microprocessor
systems. It can support both 8-bit and
16-bit microprocessors.

The 7002 can acquire up to 28 channels
(44 optionally) of synchronous data, and an
additional eight channels of synchronous
data or eight channels of asynchronous
timing or state information are available
through a timing option, for a total of 52
channels. With the timing option installed,
the 7002 is one of the most powerful, yet
easy to use, tools available for working with
microprocessor systems.

The 7002 can be e·asily programmed
(through a front-page keypad) to follow the
complex sequences of events occurring in

the system under test. Program displays
are dynamic and interactive, with only
necessary prompting on-screen at any
given time.

As the programming cursor is moved,
new prompting occurs. Menus default to
reasonable values to simplify input, and the
7002 assumes the most logical program
and supplies intermediate program steps.
Displayed data can be formatted in the
basic radices and mnemonics pertinent to
the microprocessor under test.

A series of personality modules adapt
the 7002 to the clock and bus characteris­
tics of individual microprocessors. The
basic 7002 contains four word recogniz­
ers, two general-purpose counters, a
user-configurable clock, data-qualification
circuitry, programmable state machine,
and three memories.

A programmable state machine
The programmable state machine is the
key to the 7002's flexibility. It provides two
equally powerful capabilities- generation
of a trigger algorithm that tracks the com­
plex, convoluted program flow to trigger
exactly where the user requires, and data
qualification that determines precisely
which data will be stored in the acquisition
memory. In the 7002, the qualify command
works exactly like the trigger command .
The user can employ these two commands
to discard the bus transactions of no con­
sequence and to store only that data which
is of interest in solving the problem.

The user can program the 7002's state
machine for any one of four states, with
each state representing a user-determined
output that is the result of a user­
determined input. The state-machine input
consists of lines from the tour word recog­
nizers and two counters; the output con­
sists of individual lines to the main trigger,
timing option trigger, data qualifier, and
four lines to control the two counters.

The inputs from the word recognizers
and counters are called events, and the
outputs are called commands. When pro­
gramming the 7002, the user can link any
event or combination of events to any
command or combination of commands.
The state machine executes in real time
with the system-under-test and can enter
any of its states in any order, any number of
times. These capabilities allow the user to
program the 7002 to follow the complex
sequences encountered in micro­
processor-based systems.

3

Block-structured programming
language
The 7D02 programs with a block­
structured language. The programming
language uses four tests, each con.­
structed using an IF-THEN-ELSE syntax.
This syntax makes the execution of a com­
mand conditional on the occurrence of an
event. Events are keyed in following an IF
or an OR IF prompt, and commands are
keyed in following a THEN DO or ELSE DO
prompt. The user can have as many OR IF
- THEN DO clause pairs as necessary
(subject to memory limitations), but there
can be only one ELSE clause in each test.

Only one test may be active at a time.
The user moves from one test to another by
executing a GO TO command . The follow­
ing example shows a program containing
two tests and illustrates moving from one
test to another. This operation represents a
two-level sequential trigger.

TEST1
1 IF
1 WORD RECOGNIZER #1
1 DATA=XX
1 ADDRESS= 4325
1 INMl=X /IRQ=X FETCH=X RIW=X
1 BA=X INVALOP=X EXT TRIG IN =X
1 TIMINGWR=X
1 THEN DO
1 GOT02

END TEST1
TEST2

21F
2 WORD RECOGNIZER #2
2 DATA=XX
2 ADDRESS= 694F
2 INMI =X IRQ=X FETCH =X R/W =X
2 BA=X INVALOP =X EXT TRIG IN =X
2 TIMING WR= X
2THEN DO
2 TRIGGER 0-MAIN
2 0-BEFORE DATA
2 0-SYSTEM UNDER TEST CONT.
2 0-STANDARD CLOCK OUAL.

ENDTEST2

Pressing the 7D02 START button initiates
TEST 1. When address 4325 is detected ,
the event in TEST 1 becomes TRUE and the
GO TO (to TEST 2) is executed , deactivat­
ing TEST 1 and activating TEST 2. If ad­
dress 694F is detected , the main acquisi­
tion memory will be triggered and data will
be stored. Note that if address 4325 occurs
again it will be ignored because TEST 1 is
inactive. Entering this program required
only three keystrokes plus filling in the
field values.

4

Solving a practical problem
Now, let's consider a practical problem.
Assume there is a location, OUTBUF, that is
the character buffer for a computer line­
printer. This location is only written-to from
subroutine OUTCHAR. Unfortunately, data
on the printer is not always what we expect.
The problem is to determine whether loca­
tion OUTBUF is being written-to from some
other section of the code.

With a traditional logic analyzer, we
could trigger on OUTBUF and examine the
data result to see if the access was legiti­
mate. We may have to examine many
legitimate accesses before finding the
problem access.

Using the 7D02 we can locate the ille­
gitimate access quickly and easily. The
program is shown in figure 2. The two
events in TEST 1 are the detection of the
addresses for OUTBUF and OUTCHAR. All
events in a test are evaluated simultane­
ously. If the location OUTBUF is written to,
the 7D02 will trigger. If the beginning of a
subroutine OUTCHAR is detected , the
7D02will progress to TEST2. As there is no
trigger in TEST 2, the 7D02 cannot trigger
during TEST 2. When the end of subroutine
OUTCHAR occurs, TEST 2 ends, and the
7D02 goes back to TEST 1. Thus, we see
that the 7D02 will trigger and display
data only when location OUTBUF is
written to, and only if subroutine
OUTCHAR is not running .

Now, let's assume that OUTBUFwas
never written-to from an improper location.
lfthe error occurs at least once every sev­
eral minutes (a reasonable time to wait for a
trigger) , the qualify command can be used
to verify the accuracy of the data being
written to OUTBUF. Figure 3 shows the ad­
dition to the program required to instruct
the 7D02 to acquire only data written to
OUTBUF If the printer malfunctions, the
user can manually stop this program. The
contents of the trace memory can then be
compared to the printed text by putting the
7D02 in the ASCII format mode.

If the error occurs very infrequently, or if
the result of the previous exercise shows
that correct data was being written to
OUTBUF, we must employ a less direct
means to solve the problem.

The two counters in the 7D02 can be
used either to count discrete occurrences,
or as timers. We can employ the counters to
insert a fixed time period as a part of the

TEST1
IF
WORD RECOGNIZER# 1
DATA= XX
ADDRESS=051B
10/M= X INRQ= X FETCH=X R/W= O
INACK=X HOLD=X EXTTRIG IN=X
TIMINGWR=X

THEN DO
TRIGGER 0-MAIN

0-BEFORE DATA
0-SYSTEM UNDER TEST CONT
0-STANDARD CLOCK QUAL

ORIF
WORD RECOGNIZER# 2
DATA= XX
ADDRESS=9721
10/M=X INRQ=X FETCH=1 R/W= X
INACK=X HOLD= X EXTTRIG IN=X
TIMINGWR=X

THEN DO
GOT02

ENDTEST1
TEST2

2 IF
2 WORD RECOGNIZER# 3
2 DATA=C9
2 ADDRESS=XXXX
2 10/ M= X INRQ=X FETCH=1 R/W=X
2 INACK= X HOLD=X EXT TRIG IN=X
2 TIMING WR=X
2 THENDO
2 GOT01

ENDTEST2

Fig. 2. This 7002 program will trigger when loca­
tion OUTBUF is written to. unless subrouti ne
OUTCHAR is running at the same time. The
PM104 (8085) personality module 1s being used
Word recognizer 1 is TRUE when OUTBUF
(015B) 1s written to Word recognizer 2 is TRUE
on the first instruction of OUT CHAR (9721) Word
recognizer 3 is TRUE when a RET 1nstruct1on 1s
executed 1ndicat1ng the end of OUTCHAR. Enter­
ing this extensive program required only eight
keystrokes plus filling in the fie ld values .

trigger, a feature which can be very useful
in some instances, as the following
example shows.

Hypothesizing that there is a timing error
in the printer, we set up an experiment to
determine if the setup time specification on
the print head is being met. We start a
counter when the character is written to
OUTBUF If the print hammer is actuated
within 10 milliseconds, the timing specifica­
tion is being violated and the 7D02 will
trigger. The 7D02 program is shown in
figure 4.

QUALIFY
Q STORE ONLY ON
Q WORD RECOGNIZER# 1
Q DATA=XX
Q ADDRESS= 051B
Q 10/M=XX INRQ= X FETCH=1 R/W=O
Q INACK= X HOLD= X EXT TRIG IN= X
Q TIMING WR= X
Q END QUALIFY

Fig. 3. Program additions required to qualify any
write to 0519.

In this example, the external trigger line
is connected to the hammer-driver signal
and is defined in word recognizer 2 as a
TRUE. Word recognizer 1 detects the write
to OUTBUF.

TEST 1 waits for the write to OUTBUF.
When this happens, the counter is started
and TEST 2 is activated. In TEST 2 there is a
race. If the hammer driver is actuated first,

TEST1
IF
WORD RECOGNIZER # 1
DATA= XX
ADD RESS= 051 B
10/M=X INRQ=X FETCH=X R/W=O
INACK=X HOLD=X EXT TRIG IN=X
TIMINGWR=X

THEN DO
COUNTER # 1 2 MS

2 RESET AND RUN
GOT0 2

ENDTEST 1
TEST2

2 IF
2 WORD RECOGNIZER # 2
2 DATA=XX
2 ADDRESS=XXXX
2 10/M=X INRO=X FETCH=X R/W=X
2 INACK=X HOLD=X EXT TRIG IN=1
2 TIMING WR=X
2 THENDO
2 TRIGGER 0 MAIN
2 2AFTERDATA
2 0 SYSTEM UNDER TEST CONT 1
2 0 STANDARD CLOCK QUAL
2 ORIF
2 COUNTER # 1=000102 MS
2 THENDO
2 GO T01

ENDTEST 2

Fig. 4. Program to check timing margins. If OUT­
BUF (0518) is written to and the hammer driver is
actuated (as indicated by the TRUE and EXT
TRIG IN) before COUNTER #2reaches 10 mil­
liseconds, we know the timing specification has
been viola1ed. This program can be set up
using only seven keystrokes plus filling 1n the
field values

the 7002 triggers. If the timer runs out,
sufficient setup time has elapsed and
TEST 1 is actuated again.

It is possible for the 7002 to loop be­
tween TEST 1 and TEST 2 millions of times
without triggering . The 7002 will trigger
only when the timing constraint has
been violated .

The 7002 also could be easily pro­
grammed to check that every write to
OUTBUF is followed by only one actuation
of the print hammer.

The timing option
The triggering capabil ity of the 7002
makes it an ideal tool for integrating the
hardware and software in a micro­
processor-based system. However, condi­
tions often require us to analyze the

random-logic circuits associated with the
microprocessor. The timing option avail­
able for the 7002 provides this capability.
With the timing option installed, the 7002 is
essentially two logic analyzers in one - a
52-channel synchronous analyzer (with
expansion option), or a 44-channel syn­
chronous analyzer plus an 8-channel
asynchronous logic analyzer.

The timing option uses the 8-channel
P6451 Logic Probe to acquire data. The
timing option has its own 255 x 8-bit acqui­
sition memory, 255 x 8-bit glitch memory,
8-channel word recognizer (the external
trigger input provides a ninth nonstored
channel), and an internal clock. The sam­
pling rate is programmable over a range of
20 nanoseconds to 5 mil liseconds. A
programmable 0 to 300 nanosecond filter
is provided for the word recognizer output.

You can establish the trigger relationship
of the main and timing option sections in
any manner you choose. For example,
either or both sections can be triggered or
armed from either or both sections. This
extreme trigger versatility is useful for de­
bugging the interaction between a micro­
processor and its peripheral hardware.

Some design considerations
A simplified block diagram of the 7002 is
shown in figure 5. The ability to completely
program the triggering and qualification
algorithms requires the decision blocks
(such as word recognizers and the state

- machine) to be implemented in random­
access-memory (RAM), which places
considerable time constraints on the real­
time acquisition system. At the maximum
rate of 10 megahertz, the word-recognizer
RAMs requi re almost a full clock cycle for
storage. Likewise, the counter subsystem
and state machine require another clock
cycle. The 7002 uses a pipe line decision
process ford elaying data flow to allow time
for producing complex signals such as
triggers and qualifiers. The pipeline con­
sists of two sets of data latches and the
256 x 44-bit acquisition memory. Words are
consecutively clocked into the pipeline
latches by the state clock signal; the same
clock edge writes data into the acquisition
·RAM. If the qualify signal from the state
machine is TRUE, then the RAM address
counter increments. Otherwise, the next
state clock overwrites the same memory
cell and the word is, effectively, not stored .

The state machine is RAM-based also.
The state-machine latch stores the signals
from the word recognizers, the state­
feedback bits from the RAM, and the feed­
back bits from the two counters. The
latched data (which represents events in
the user language) addresses a location in
RAM that contains the data appropriate for
the next operation. The data outputs from
the state machine are the logic analyzer
control lines and represent the commands
issued by the user language.

The dual-counter subsystem is imple­
mented with direct-memory-access con­
troller I Cs to conserve space and power.
Under state-machine control, the glitch less
start/stop allows resolution to be increased
using time-interval-averaging techniques.
One counter may be used as the loop
counter for the averaged measurement,
which is accumulated in the second
counter.

Designing plug-in personality modules
- to allow the 7002 to accommodate
many different microprocessors without
dismantling the instrument to change per­
sonalities - presented an interesting chal­
lenge. To achieve the necessary flexibility,

.a programmable clock synthesizer is used
and appropriate firmware is included in the
personality module.

The 7002 clock synthesizer can shift or
divide the input clock by up to four clock
cycles or times to accommodate multi­
phase clocks. A programmable external
synchronizer (Esync) locks the 7002 to the
system under test. A programmable wait­
state generator tracks microprocessor
wait states.

The programmable clock shifter is a uni­
ver~al shift register (see figure 6). It is
loaded by the Esync signal. The wait signal
asserts the hold line to suspend shifting.
The clock divider adds feedback around
the shifter. The Esync and wait signals are
generated from the information provided
by the hardware and by the firmware in the
personality module.

The personality module
The personality module contains input buf­
fers, bus demultiplexers, special control
generators, and firmware. The personality
module firmware provides information to
program the 7002 clock synthesizer and
clock qualifier. It also provides information

5

31

WORD
RECOGNIZER

16

28

EXPANSION
OPTION

ACQUISITION
MEMORY l::: 1 WRl-4 INHIBIT

TRIGGER IN

TRIGGER OUT

STATE CLOCKS
0 1 2

tl STORE,
DISPLAY

DISPLAY STORE
STATE

MACHINE

QUALIFY
TRACE,

STOP TRACE

MAINFRAME
CONTROL

!
DISPLAY

---+ + VERT

--+ -VERT

---+ +HORIZ

PERSONALITY ---+
MODULE

FRONT
PANEL CON RO I::

LINES .--t---

l
MASTER

STOP l
~-HORIZ

..... ,.--+ Z AXIS

THRESHOLD EXT
TRIGGER

CPU BUS

-j ASYNC
TRIGGER I..:_ IC S~ TRIGGER STORE

Ps
451 ~ •• AC.QU.IS·ITI·O·N~C-LO_C_K_2 T.IM.~N.e'!·s·E .. :·-Q-UA- L-IF-Y-TR;.;;A;;;;.CE- · ____ __, -------,. - SYNC TRIGGER

L 2~4~C~~

CPU

Fig. 5. Simpli fied block diagram of the 7002 system. The expansion option allows the 7002 to operate with 16-bit microprocessors and other systems, and
extends the address lines to 24 and the data lines to 16. The timing option consists of the P6451, IC Acquisition, and Trigger and Time Base blocks.

to format the 7D02 input and output dis­
plays into the radices and mnemonics of
the microprocessor under test.

To perform this format function, a special
interpreter was developed. In display
mode, data from the system is inhibited
and the personality ROM is accessed via
the acquisition bus. Commands are
fetched from the personality module and
executed by the interpreter. This approach
allows extreme flexibility in designing
future personality modules, saves
coding space, and simplifies coding
and debugging.

Self-test and diagnostic capabilities
An important consideration in using com­
plex instrumentation is how to determine if
it is working properly. The 7D02 has three
levels of diagnostics to assist in this test.

At power-up, the 7D02 checks internal
subsystems to the extent possible without
having known data input. If problems exist,
descriptive messages are displayed .
These are keyE3d to troubleshooting trees in
the 7D02 service manual.

The user can call up the Diagnostic
Monitor - Module Test, which employs
service test-generators contained in the
personality modules. To verify all data
paths through the system, the user plugs
the acquisition probe into the service test

6

LOAD

--+

WAIT

SYSTEM
CLOCK

!

SHIFT
REGISTER

SYNTHESIZED
CLOCK

- DIVIDE/SHIFT

Fig. 6. Simpli fied block diagram of the 7002 s
synthesized clock generator. Personality module
firmware provides information to program the
synthesizer and quali fier

socket, and the 7D02 acquires known input
data and performs a checksum.

Suspect subsystems can be analyzed
by using the Signature Exerciser Mode
which generates test patterns that can be
verified using a signature analyzer.

The diagnostic modes consume eight
kilobytes of ROM (16% of the total firmware)
and provide excel lent diagnostic coverage
of the 7D02 system.

Acknowledgements
Many people are involved in a project as
extensive as the 7D02. While it isn't feasible
to acknowledge each of them, I would like
to express my thanks to all who worked so
di ligently on the project. Special thanks go
to Dennis Glasby for the original 7D02 con­
cept. Robin Teitzel was hardware project
leader and Dave Moser performed a simi­
lar function for firmware . Paul Dittman, Ste­
ven Den Beste, Chris Benenati , and Bruce
Ableidinger designed and implemented
the firmware . The hardware team consisted
of Vicky Tuite, Doug Boyce and Keith Taylor.
Diagnostics are the work of Bob Heath, and
the personality modules were the respon­
sibility of Richard Jones.•

	1
	2
	3
	4
	5

