
f -

ERX
FOR

64180
USER'S MANUAL

Zax Corporation

Limitation _.Q.!! Warranties and Liability

ZAX Corporation warrants this equipment to be free from defects in
materials and workmanship for a period of 1 (one) year from the original
shipment date from ZAX. This warranty is limited to the repair and
replacement of parts and the necessary labor and services required to
repair this equipment. During the 1-year warranty period, ZAX will
repair or replace, at its option, any defective equipment or parts at no
additional charge, provided that the equipment is returned, shipping
prepaid, to ZAX. The purchaser is responsible for insuring any equipment
returned, and assumes the risk of loss during shipment.

Except as specified below, the ZAX Warranty covers all defects in
material and workmanship. The following are not covered: Damaged as a
result of accident, misuse, abuse, or as a result of installation,
operation, modification, or service on the equipment; damage resulting
from failure to follow instruction contained in the User's Manual;
damage resulting from the performance of repairs by someone not
authorized by ZAX; any ZAX equipment on which the serial number has been
defaced, modified, or removed.

Limitation of Implied Warranties

ALL IMPLIED WARRANTIES, INCLUDING WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR PARTICULAR PURPOSE, ARE LIMITED IN DURATION TO THE LENGTH OF
THIS WARRANTY. IN NO EVENT WILL ZAX BE LIABLE TO THE PURCHASER OR ANY
USER FOR ANY DAMAGES, INCLUDING ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES,
EXPENSES, LOST PROFITS, LOST SAVINGS, OR OTHER DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THIS EQUIPMENT. THIS EXCEPTION INCLUDES
DAMAGES THAT RESULT FROM ANY DEFECT IN THE SOFTWARE OR MANUAL, EVEN IF
THEY HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF IMPLIED
WARRANTIES OR LIABILITY FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE
LIMITATION OR EXCLUSION MAY NOT APPLY TO YOU. THIS WARRANTY GIVES YOU
SPECIFIC LEGAL RIGHTS, AND YOU MAY ALSO HAVE OTHER RIGHTS WHICH VARY
FROM STATE TO STATE.

Disclaimer

Although every effort has been made to make this User's Manual
technically accurate, ZAX assumes no responsibility for any errors,
omissions, inconsistencies, or misprints within this document.

Copyright

This manual and the software described in it are copyrighted with all
rights reserved. No part of this manual or the programs may be copied,
in whole or in part, without written consent from ZAX, except in the
normal use of software or to make a backup copy for use with the same
system. This exception does not allow copies to be made for other
persons.

ZAX Corporation
Technical Publications Department
2572 White Road, Irvine, California 92714

Contents Special Notice
Reserved Memory Spaces
ERX for 64180 Features
ERX Clock Modification

SECTION 1 - ERX DESCRIPTION AND OPERATION

13 Introduction
13 A Word Of Caution!
13 Getting Acquainted With Your ERX
14 A Few Features
15 How To Connect Your ERX To Other Devices
15 Introduction
16 A Word About Grounds and Power
16 About Grounds
16 About Power
17 ERX Inventory Checklist
17 ERX Personality Pod
17 Auxiliary Modules
18 Interface Cables
18 Connecting Your ERX To A Personal Computer
18 Tool List
18 Removing the PC Cover
19 Installing the Auxiliary Modules
20 Connecting the Interface Cables
20 Connecting Your ERX To A Target System
21 Installing ER-ICE
22 What Can You Do With Your MOS?
22 What To Do If Your MOS Is Not Working
23 Trouble Shooting
23 Introduction: The Problem O••
23 ••• And The Solution!
23 What Should Happen
24 Checking Electrical Connections
24 Diagnosing Other ERX Problems
25 What To Do If The ERX Still Doesn't Work

SECTION 2 - ERX MASTER COMMAND GUIDE

26 Fast Start
26 Introduction
27 ERX Command Structure
34 Understanding ERX ConTnands
35 About the Command Language
36 Elements Within A Command Statement
38 Sequential ConTnand Execution
38 What To Do If You Make An Input Error
38 Control Codes and their Functions

39
41
42
43
44
45
56
57
58
59
60
61
66
67
68
69
70
71
72
73
74
75
84
86
87
88
89
90
91
92
93
109
110
111
112
113
114
115
116
117
118
119
121
122
123
124
125
126
127

ABASE Command
AMAP Command
ASSEMBLE Command
BATCH Conmand
BEEP Command
BREAK Command
CALCULATE Command
CGET (Console GET) Command
CLOCK Command
CLOSE Command
COMPARE Conmand
COVERAGE Command
CPUT {Console PUT) Command
DEFM (DEFault Module) Command
DISASSEMBLE Conmand
DISPLAY Conmand
DUMP Command
ECHO Corrmand
EMSELECT (Emulation Method SELECT)
EDF (End Of File) Conmand
ERX Command
EVENT Conmands
EXAMINE Command
EXECUTE Conmand
FILL Command
FNKEY {Function KEY) Corrmand
GET Corrmand
GO Conmand
GOTO Corrmand
HELP Conmand
HISTORY Conmand
ICERESET Corrmand
IDENTIFICATION Corrrnand
IF Conmand
JOURNAL Command
KEY Command
LET Command
LOAD Command
LOG Command
LOOPOUT Conmand
MACRO Command
MAP ColTITland
MDELETE (Macro DELETE) Command
MLOAD {Macro LOAD) Command
MODLEN {MODule LENgth) Command
MOVE Command
MSAVE {Macro SAVE) Command
MSHOW {Macro SHOW) Corrmand
NOJOURNAL Command

128 NOLOG Conmand
129 OPEN Command
130 PAUSE Corrmand
131 PERFORMANCE Conmand
138 PIN Conmand
139 PORT Corrmand
140 PROMPT Corrmand
141 PUT Command
142 QUIT Command
143 REGISTER Command
144 REM {REMark) Command
145 REPEAT Corrmand
146 RESET Corrmand
147 SAVE Conmand
148 SCOPE Conmand
149 SEARCH Conmand
150 SHELL Command
151 STEP Corrmand
152 STOP Command
153 STUB {SubsTitute sUBroutine) Conmand
154 SYMLEN {SYMbol LENgth) Conmand
155 TRIGGER Conmand
156 VERIFY Command
157 WAIT Conmand
158 WHILE Conmand

159 Conmand Syntax Summary

SECTION 3 - TECHNICAL REFERENCES

167 Appendix A - "In-Circuit Emulators Spearhead
The New Microprocessor Development Systems"

177 Appendix B - ERX Product Demonstration

179 Appendix C - Technical Bulletins & Application
Notes

181 Appendix D - Suggested Reading

183 Glossary

Reserved Memory
Spaces

I
1/0

Address

100 to 17F

180 to lDF

lEO to lEF

Key: N/A;
R;
P;

I;

I
ROM 8-bit 16-bit 32-bit

Writer ERX ERX ERX

N/A p p p

N/A I I I

R N/A N/A N/A

unused Host 1/0 space
host 1/0 space reserved for ROM writer
host I/O space reserved for ERX Personality
Pod
host 1/0 space reserved form ERX interface
modules

I

ERX for 64180 Features

GENERAL CHARACTERISTICS

* Real-time Execution for Transparent Emulation
*PC-driven Control and Symbolic Debug
* 128K Bytes Emulation Memory
* Adjustable Real-time Trace Buffer
* 64,000 Breakpoints x 4 channels (up to 256,000 breakpoints)
* High-Speed Static RAM Ensures No Added Wait States
* All memory available to the target
* All I/0 ports available
*On-line Help Facility
* One-Year Warranty

USER INTERFACE

* You control all functions from computer
*Symbolic debugging available through ER-ICE
* Mnemonic conmand names
* Setup emulation control from batch file on computer

EMULATION CONTROLS

* Software selectable internal or external clock
* Disable interrupt inputs
* Disable bus request input

MEMORY MAPPING

* 128K bytes emulation memory
* lK mapping resolution
* Mapping options:

Read/Write
Read Only
User/Target Memory
No Memory .(guarded access)

BREAKPOINTS

* Break on specific address or data
* Break on memory status
* Break on symbol
* Break on I/O port access
* Break after executing conmand
* Break on access to non-memory area
* Break on write to read-only area
* Sequential break (up to four levels deep)
* Break on Nth occurrence
* Break on range

SINGLE-STEP CAPABILITY

* Single step
* Step N steps
* Display jump instructions only

REAL-TIME TRACE

* Stores address, data and status
* 4K deep x 32 bits wide trace memory size
* Trigger on event or symbol
* Trace control modes include:

Begin Monitor
End Monitor
Begin Event
End Event
Center Event
Multiple Event
Inner Event
Outer Event

* Adjustable trace range

DISASSEMBLY CAPABILITIES

* Disassemble from program memory
* Disassemble trace memory from any selected area

SPECIAL FEATURES

* Assemble into memory
* Search program memory for pattern
* Instruction execution counter
* Built-in timing analysis
*Multiple event tracing
* Subroutine simulation
*On-line help facility

SYSTEM REQUIREMENTS

IBM PC-AT or any 100% compatible computer with minimum one diskette
drive {360K or 1.2M) and 512K-byte RAM.

ERX EMULATION SPECIFICATIONS

Processors Supported (Max Clock Speed)
ERX for 64180 (6MHz)

Resident Emulation Memory
128K-bytes high-speed static RAM

Mapping Resolution
lK-byte blocks

Real-time Trace Buffer
4K bytes deep x 48 bits wide

PHYSICAL SPECIFICATIONS

Personality Pod Dimensions
75mm {3.0in) high
160mm (6.3inl wide
220mm (8.7in deep

Auxiliary Module Dimensions
330nm {13in) high
125mm (5in) wide

Interface Cable Dimensions
lOOOmm {39o3in) x 60mm (2.4in)

Emulation Probe Dimensions
500mm (20in) x 85mm (3.2in)

Weight/Main Unit
1.2kg (2.6lb)

Power Requirements
+5VDC

ERX Clock
Modification

The XTAL and EXTAL pins are used to connect a
parallel resonant fundamental crystal, AT cut. For
instance, because a divide-by-4 circuit in employed,
in order to obtain the system clock of 1 MHz, a 4MHz
resonant fundamental crystal is used.

To attach a crystal clock, find the clock module
at location Ml on the TRU interface module (internal
to the ERX Personality Pod). Connect one of the
crystal leads to pin 2, 3 or 4. Connect the
remaining lead to pin 19, 20 or 21. Solder the
crystal case to any ground pin (5 through 18).

22 21 20 19 18 17 16 15 14 13 12
- * * *

Ground-- Ground

- * * *
1 2 3 4 5 6 7 8 9 10 11

* - Location of crystal leads.

SECTION 1 ERX DESCRIPTION AND OPERATION

Introduction In Section 1 you'll learn about the different
components that make up your ERX, what they do, and
how to use them. You'll also learn how to connect
the ERX to your system (computer, printer, target
system), and find out about how to use the acces­
sories that come with the ERX. Your ERX has a few
special features that you should know about too; you
can find information about these features in this
section as we 11 .

A Word Of Caution! You shouldn't try to attach the ERX to any external
device before you finish reading this section. As
long as power is absent to the emulator you can't
hurt anything internally, but don't connect the ERX
to your target system before you read "How To
Connect Your ERX To Other Dev ices. 11 Although it is
difficult, it is possible to reverse the cables
going to the target system, which could result in
damage to the ERX's internal components as well as
your target system.

Getting Acquainted Your ZAX ERX-series emulator is a PC-driven micro-
With Your ERX processor emulation device that can be used for

developing and maintaining microprocessor-based
(HD64180) systems. It does this by letting you direct
and test activities in your prototype ("target")
system. You carry out these operations by entering
one or more of the emulator's debugger commands.

ZAX ERX-series emulation equipment require the
presence of a computer (AT-class) for control. This
arrangement has several advantages over dedicated
microprocessor development systems and even stand­
alone emulators. Instead of operating as an inde­
pendent device, the ERX uses several of the comput­
er's facilities and is therefore smaller and less
intricate in its design than a typical emulator,
yet just as powerful!

The ERX emulation system incorporates six "modules"
(also called circuit boards or "cards") that permit
emulation of the target processor, memory manage­
ment, program tracing and performance evaluation.
Two of the modules are conman to all 8-bit ERX­
series emulators and are installed within your
computer on a semi-permanent basis. (Before you can
use the ERX emulator, you'll need to install these
two auxiliary modules within your computer.) The
other four modules reside in the ERX Personality
pod.

13

A Few Features

An emulation probe connects the ERX Personality pod
to your target system for running hardware tests.

After you form the ERX system, you'll use simple
mnemonic command statements to invoke the debugger
functions. You can use the debugger commands by
simply inputting the command statements from the
computer keyboard.

Here are just a few things you can do using the
debugger commands:

*Use the ERX's emulation memory to simulate or take
the place of memory (or future memory) in your
target system.

* Use a single-step trace operation to move through
your program, one step at a time, and examine the
registers' contents after each step.

* Set breakpoints to stop your program when: data is
written or read into a specific address, an event
point or symbol is passed, a non-exi-stent memory
access is attempted, or an interrupt is acknowledged
by the MPU. Hardware breakpoints can also generate
triggers for instruments such as logic analyzers and
oscilloscopes.

* Substitute an emulator cortlTland to simulate a
not-yet-written subroutine.

* Analyze the time spent executing subroutines.

* Record ("trace") a portion of your program
(beginning and ending anywhere within the program)
and store it in the ERX real-time trace buffer
without affecting the emulation process. Later you
can display the recorded memory contents in either
machine code or in its disassembled format.

*Translate symbolic codes into machine instruc­
tions, item for item, using the in-line assembler.

* Selectively enable and disable the interrupt
inputs - including non-maskable interrupts.

You can turn to Section 2 for a complete list of the
ERX's debugger commands. To find out about other
things your ERX can do, turn to "More About Your
ERX. II

Now turn the page to learn about how to connect
your ERX to other devices.

14

A Word About
Grounds and
Power

About Grounds

About Power

Your ERX receives its power (+5 VDC) from the
auxiliary modules located in your computer. The
computer, in nearly all cases, receives its power
through a three-wire polarized power cord. This cord
connects to a power source and protective ground.
Make sure that you plug the power cord into a
properly grounded 115 VAC receptacle. Do not try to
bypass the three-prong plug with an adapter (three­
into-two-prong adapter).

WARNING: THE GROUND TERMINAL OF THE 3-PRONG PLUG IS
USED TO PREVENT SHOCK HAZARDS - DO NOT BYPASS IT!

Your ERX runs on a voltage supply of +5 VDC provided
by the computer. This +5 volt supply is provided for
the ERX regardless of the computer's operating
voltage. To determine the proper operating voltage
of your computer for your application, consult your
computer's operator manual.

NOTE: Whenever possible, use a multiple power outlet
strip to provide voltage to the entire system
(computer, printer, target system). Most power
outlet strips are equipped with a circuit breaker in
case of an overload, and all are properly grounded.

16

ERX Inventory
Checklist

ERX Personality
Module

Auxiliary
Modules

The ERX emulation system features the following:

- 1 ERX Personality Pod (contains 4 modules)

- 2 Auxiliary Modules (reside in computer)

- 3 Interface Cables

Forming the ERX Personality pod itself are four
modules:

- 2 MPU (Microprocessor Unit) Modules

- TRU (Transfer Unit) Module

- EMU (Emulator Control Unit) Module

One of the MPU modules contains the HD64180 proces­
sor that permits emulation of the prototype or
target system. It also contains two receptacles for
receiving the emulation probe. The TRU module
manages the coverage and performance facilities. The
EMU module controls the emulation mode or monitor
mode of operation for the ERX. The TRU and EMU
modules each contain a receptacle that accepts the
interface cables running to the computer. The four
modules are housed in the top and bottom case covers
which form the ERX emulator.

The two auxiliary modules include:

- MMU (Memory Mapping Unit) Module

- RTS (Real-time Storage) Module

The two auxiliary modules are installed in your
computer. The MMU module contains high-speed static
RAM which can be used for downloading files, alter­
ing the memory contents and loading future memory
into the target system. The RTS module includes the
controller, memory and real-time counter for tracing
and storing program execution.

The two auxiliary modules are designed for simple
installation into two of the computer's 16-bit
(long) expansion slots. The only restriction on
positioning the interface modules is that they be
located adjacent to one another (a short bus cable
joins the two auxiliary modules together).

17

Interface Cables

Connecting Your
ERX To A Personal
Computer

Tool List

Removing the PC
Cover

The three interface cables are used to connect the
modules to your computer and target system. The
cable that connects the ERX Personality pod to your
target system is called the "MPU emulation probe."
Each cable is designed to connect to a specific
component at a specific location; you cannot
substitute one cable for·another.

The following describes the steps that must be taken
to prepare your computer and physically install the
two auxiliary {RTS and MMU) modules, and how to
connect the ERX Personality pod to your computer and
target system.

NOTE: Instructions are given for the IBM PC-AT
machine only; you should consult your reference
manual if you are installing the auxiliary modules
in an IBM compatible computer. In this case, we
reconmend using a 100% IBM PC-AT compatible
computer.

The following tools are needed to install the two
auxiliary modules:

- Flat-blade or Phillips-type screwdriver

- 3/16-inch nutdriver or 3/16-inch wrench

- Small needle-nose pliers

In order to gain access to the expansion slots on
the PC motherboard, you must disconnect the system
unit {mainframe) from the other system components
and remove the unit cover. The following steps
explain how to prepare your computer for installing
the auxiliary modules. For non-IBM units, refer to
the appropriate installation manual for instructions
on removing the system cover.

Step 1. Switch off the power to the system unit.
Switch off the power on all peripheral
equipment (printer, monitor, etc.). Unplug
the system unit and other optional equipment
from the wall outlet or power supply.

Step 2. Disconnect all peripheral cables (including
the keyboard cable) from the rear panel of
the system unit. Remove all peripherals from
the work area.

18

Installing the
Auxiliary Modules

Step 3. Position the system unit so that you have
easy access to the rear panel.

Remove the cover mounting screws located on
the rear panel, using a flat blade
screwdriver.

The number of screws depends on the make of.
your PC. The screws are located in the upper
and lower left and right corners and the
upper center of the back panel.

Turn the screws counterclockwise. After
removing the screws, place them in a safe
location.

Step 4. Carefully slide the system unit cover
forward from the rear as shown below. When
the cover will go no farther, tilt the cover
up and remove from the base. Set the cover
in a safe place.

The following steps explain how to install the two
auxiliary modules.

Step 1. Facing the disk drive(s), look at the inside
left rear of your system unit. Several
expansion slots (some long, some shorter)
are available for additional modules. You
can install the two auxiliary modules in any
two adjacent full-length (16-bit) slots.

Step 2. Using a flat-blade screwdriver or a 3/16-
inch nutdriver, remove the screws that hold
the system expansion slot covers in place
(see below).

Step 3. Insert the two auxiliary modules into the
motherboard connectors which face up on the
motherboard. Place the RTS module into the
full-length slot that is closest to the
power supply. Now, place the MMU module (the
module with the second receptacle on top)
into the full-length slot adjacent to the
RTS module. Press down finnly on both
auxiliary modules to be sure that they
are securely seated in the connectors.

19

Connecting the
Interface Cables

Connecting Your
ERX To A Target
System

The following steps explain how to connect the two
interface cables to the two auxiliary modules that
are located in the computer.

Step 1. Note the identification marking on the RTS
and MMU auxiliary modules, and then note the
same markings on the interface cables.

Step 2. Connect the appropriate interface cable to
the corresponding auxiliary module. Note the
key on the end-connectors and then press the
cable connectors firmly into the module
receptacles. Now, snap the latching clips
into place to lock the connectors.

CAUTION: DO NOT REVERSE CABLE POSITIONS TO THE
AUXILIARY MODULES. MISMATCHING THE CABLE POSITIONS
WILL CAUSE SEVERE DAMAGE TO THE ERX.

Step 3. Connect the RTS and MMU modules together
with the short bus cable. Note the key on
the end-connectors and then press the cable
connectors firmly into the module recepta­
cles. Now, snap the latching clips into
place to lock the connectors.

The ERX is now ready for operation. Refer to
"Installing ER-ICE" for an explanation on instal­
ling the co1T1T1unications program, or continue on to
learn how to connect the ERX Personality pod to your
target system.

The MPU emulation probe is used to connect the ERX
Personality pod to your target system·when you are
emulating the HD64180 MPU. The probe consists of a
20-inch multi-way cable and a 60-pin end connector.
The 60-pin end connector of the probe plugs into the
target system's microprocessor socket.

The following steps explain how to connect the MPU
emulation probe to your target system.

Step 1. Remove the existing MPU {HD64180) from your
target system.

Step 2. Carefully insert the ERX's MPU emulation
probe {60-pin end) into the target system's
MPU socket. Be careful not to damage the
pins of the end connector.

NOTE: Pin #1 of the probe's end connector
goes into pin #1 of the target system's MPU
socket.

20

The ERX is now ready for operation. Refer to
"Installing ER-ICE" for an explanation on instal­
ling the communications program.

Installing ER-ICE ER-ICE is ZAX's communications/symbolic debug
program for the ERX emulation system. The program is
contained on a single diskette that is included with
your ERX system. Before invoking ER-ICE, the program
must be properly installed on your particular
system.

NOTE: The ERX emulator is designed for interface to
an IBM PC-AT or 100% compatible computer. Other
systems are not recorrmended.

To install ER-ICE, complete the following steps:

Step 1. Bootup your computer, and then insert the
ER-ICE diskette into any available drive.
On the diskette reside four file~:

ERX180V.EXE (executable program)
ERX180V.MAC (autoexecuteable macro)
ERX180V.HLP (help menu - contains

command syntax format
and examples)

CVT.18 (conversion program)

Step 2. Transfer the files to your system's
fixed-disk drive by using the INSTALL.BAT
file. To do so, enter the following:

INSTALL

When you do so, ER-ICE will place the three
working files in a directory called, ZAXBIN.

Step 3. Now, enter the following:

[drive:][path]ERX180V

to invoke the corrmunications/symbolic debug
program.

The DOS prompt will vanish for approximately 15
seconds and then the general ERX identification
message will appear followed by the following
prompt:

ERX180V>

This prompt indicates that the system is working
properly and that the ERX is ready to accept
corrmands.

21

What Can You Do
With Your MOS?

NOTE: When the ERX initializes itself, it defaults
its entire memory space (0-FFFFH in ERX) to the
"user" memory specification. In this mode, the ERX
assumes that you'll be executing memory entirely out
of the target and not out of the emulator. If you
wish to examine ERX memory at this point, you must
re-map the memory as read/write or read-only. To do
so, enter the following command:

MA O,OFFFF=RW <CR>

or refer to the MAP command for more information.

You should now have a fully operational Microproces­
sor-Development System (MOS) capable of developing
and debugging your hardware and software designs. If
your MOS is functioning correctly, and the ERX's
identification message appears on your screen, you
can now:

* Turn to the "Master Command Guide" in Section 2,
for a complete analysis of your ERX's debugger
commands;

* Turn to Appendix B for a demonstration of the
features and functions of your ERX;

* Use the fold-out "Corrmand Reference Guide" (from
the front of this manual) as a source for the
various corrmand formats.

NOTE: Appendix B and the Corrmand Reference Guide are
not included in this manual. They will be available
in the first quarter of 1988.

What To Do If Your If your MOS is not functioning correctly or gives
MOS Is Not Working you problems during emulation, turn to "Trouble

Shooting," on the next page. Start by reading
"Checking Electrical Connections," and then proceed
to "Diagnosing Other ERX Problems" if you
encounter problems when you're emulating.

22

Trouble Shooting

Introduction:
The Problem ••.

... And The
Solution!

What Should
Happen

Because you must install the interface modules
within the computer and then connect the various
interface cables to each component of the system,
there is always the possibility of misplacing a
cable, misaligning a module, or bypassing a proce­
dure. The result of this exercise is sometimes a
system that works improperly, or worse, doesn't
work at all .

"Trouble Shooting" is designed to get you through
the problems you might have encountered in "How To
Connect Your ERX To Other Devices," and begins with
a typical example of what the ERX should do if the
system is operating correctly. Then the ERX is
disconnected and reconnected to ensure that the
cables are properely positioned.

After installing the interface modules in the
computer and then connecting the interface cables to
the ERX Personality pod and computer, you enter the
following command:

ERX180V(X) <CR>

The DOS prompt will vanish for approximately 15
seconds and then the general ERX identification
message will appear followed by the following
prompt:

ERX180V(X)>

This prompt indicates that the system is working
properly and that the ERX is ready to accept
commands.

At this point, any of the "status commands" (command
name followed by a RETURN) can be entered.

Enter one of the following:

;r, CLO' Jlr: MA or R

If the response from the ERX is the command's
status, then the system is probably functioning
properly.

23

What To Do If The
ERX Still Doesn't
Work

To correct this condition you will need to either
attach a target system to the ERX or remap all or a
portion of ERX memory to read/write or read-only, as
shown in the example below:

>DI 100,2FF <--tries to disassemble range of memory
ER-ICE: Target memory access failure at 0100.
>
>MA 0,0FFFF=RW <--remaps memory as read/write
>DI 100,2FF <--successful memory disassembly
00100 0100 MAIN NOP
00101 0101 LO B,H
00102 0102 · NOP
00103 0103

At this point, the next snag may involve the use of
the ERX conmand syntax, specifically, using a non­
existant symbol name to define an address, as in the
following:

>DI O,EFF

Here, the ERX sees the "EFF" as a symbol name rather
than an address value. To convert the parameter to
an address, simply insert a zero before the "E" as
shown below:

>DI 0,0EFF

Another potential obstacle exists in the default
clock speed of the ERX's MPU. With the ERX for
64180, there are two external and three internal
clock speeds:

External: TTL
External : XT AL
Internal: 6MHz
Internal: 3MHz
Internal: 1.5MHz

The default internal clock speed is 3MHz, but this
may be changed to 6MHz or l.5MHz by using the CLOCK
corrmand. If your application requires a different
clock speed, see the CLOCK command in Section 2.

In most cases, the procedures just listed will solve
all but the most stubborn problems. However, it is
possible that your ERX is still not functioning
correctly. If this is the case, you should consult
directly with ZAX Corporation's Customer Service
department at the number below:

1-800-421-0982 (outside California)

1-800-233-9817 (in California)

25

SECTION 2

Fast Start

Introduction

ERX MASTER COMMAND GUIDE

If you are already familiar with the ERX command
syntax, you may choose to begin debugging and/or
developing with your ERX immediately. In this case,
enter the following commands to initialize your ERX:

>MA O,OFFFF=RW <--remaps ERX memory to internal
>R RESET <--resets registers
>R <--examines registers
>L[/source] filename[.ftype] <--downloads file from

host computer
>G address <--begins program execution

All ERX-series emulators respond to mnemonic
commands (e.g., G for Go, B for Break) entered from
the computer keyboard. By using a simple-to­
understand and universally adopted command structure
(as opposed to complicated logic statements), ZAX
emulators are able to perform hundreds of testing
and debugging tasks, immediately.

26

Debug Mode
----------BREAK
COVERAGE
EVENT
EDELETE
ESAVE
ESHOW
GO
HISTORY
ICERESET
PERFORMANCE
PIN
PORT
RESET
SCOPE
STEP
STOP
STUB
TRIGGER
WAIT

The following chart and listing defines and explains
the principal debugger commands available with the
ERX emulator.

Edit Mode Batch/Macro Miscellaneous
--------- ----------- -------------ABASE BATCH BEEP
AMAP CGET CALCULATE
ASSEMBLE CLOSE CLOCK
COMPARE CPUT EMS ELECT
DISASSEMBLE DEFM ERX
DUMP DISPLAY HELP
EXAMINE ECHO IDENTIFICATION
FILL EOF PROMPT
IF EXECUTE QUIT
LOAD FNKEY
MAP GET
MOVE GOTO
SAVE JOURNAL/
SEARCH NOJOURNAL
REGISTER KEY
VERIFY LET

LOG/NOLOG
LOOPOUT
MACRO
MDELETE
MLOAD
MOD LEN
MSAVE
MS HOW
OPEN
PAUSE
PUT
REM
REPEAT
SHELL
SYMLEN
WHILE

27

Debug Mode BREAK ••• Stops program execution on a variety of
different parameters. When the conditions satisfying
the parameters are met, program execution halts and
control of the emulator is returned to the user.

COVERAGE ... Flags each address passed during program
execution, compares it to a range, and then reports
(as a percentage) the number of address lines passed
during program execution, or displays the passed or
unpassed address lines themselves.

EVENToo.Defines an event in the program. An event
may be defined by a symbol name; an address location
or range; a memory type; and a data value or range
of values. Once an event is specified, it may be
directed to act as a breakpoint or a trigger.

EDELETE (Event DELETE) ... Deletes a pre-set event
point either by its symbol name or number.

ESAVE (Event SAVE) ..• Stores the parameters of an
event point or a series of event points that were
previously defined with the EVENT command.

ESHOW (Event SHOW) ... Displays the event point(s) and
the parameters of the event point(s). The display
can also include a range of previously defined
events expressed as either numbers or symbols.

GOa .. Executes the user program from the current
program counter or a defined address.

HISTORY .•. Records program execution in real time and
then displays it in either machine or disassembled
format.

ICERESET ... Halts emulation and resets the MPU and
I/0 of the ERX Personality pod (causes the Reset pin
to go low).

PERFORMANCE ... Records and displays the total
emulation time, the number of event points passed
during program execution, the time duration between
event points, the average time of each event
duration and the the percentage of total event
duration to total emulation time.

PIN ... Masks or unmasks selected input signals,
including the RESET, NMI (non-maskable interrupt),
STBY (stand-by), and IRQ (interrupt request)
signals, or all the interrupt signals.

28

COMPARE •.• Compares the contents of specified memory
blocks within the ERX or target system and then
displays the non-matching data along with their
locations. The comparison can be made between
different memory blocks as mapped to the ERX, or
between one block of memory within the ERX and one
within the target system.

DISASSEMBLE ... Translates the memory contents from
machine codes to assembly language mnemonics, and
then displays the converted contents.

DUMP ••. Displays the memory contents in both hexa­
decimal and ASCII format.

EXAMINE ..• Inspects one or more memory locations and
optionally modifies them. The locations can be
displayed and changed with either ASCII or hexa­
decimal values.

FILL ... Fills a block of memory with either hexa­
decimal or ASCII codes.

IF ... Allows conditional execution of commands
dependent upon specific register, memory or port
contents; also allows specification of arithmetic
and bit-wise operators.

LOAD ... Downloads object files from the host computer
in either Intel, Motorola or dump format. Also
downloads a previously saved event file to the ERX.

MAP ... Categorizes the ERX/target system memory
functions as read/write memory, read-only memory,
user (target system) memory, or nonexistent memory
(guarded access).

MOVE ... Moves the memory contents between different
locations within the ERX, or between the ERX and the
target system.

SAVE ... Saves an Intel, Motorola or dump format file
to the host computer.

SEARCH ..• Searches through the memory contents and
displays the matching or unmatching data, if any.

REGISTER ... Displays the status of a register or all
the registers, and optionally modifies the regis­
ter(s) contents.

30

Batch/Macro
Commands

VERIFY ... Compares the contents of specified memory
blocks within the ERX or target system and
acknowledges the match, if any. If the match is
exact, nothing is displayed; otherwise the non­
matching data is displayed along with their
locations. The comparison can be made between
different memory blocks as mapped to the ERX, or
between one block of memory within the ERX and one
within the target system.

BATCH •.. Executes a series of command grouped as a
batch file.

CGET (Console GET) ..• Allows the entry of numerical
values, or string values into a numerically
specified "N" variable.

CLOSE ... Closes a previously opened file and then
informs you if the file was closed successfully.

CPUT (Console PUT) ... Allows the entry of numerical
values, or string values into a numerically
specified "N" variable.

DEFM (DEFault Module) ... Allows alteration of the
default module name.

DISPLAY ... Enables and disables the display of
symbols during disassembly.

ECHO ... Enables or disables the display of the
command lines within a batch or macro file.

EOF (End-Of-File) ... Informs you if the end-of-file
has or has not been reached.

EXECUTE ... Allows the execution of a single DOS
command from within the ER-ICE environment.

FNKEY (Function KEY) ... Allows the execution of a
pre-defined function key from within a batch file.
The function is specified by the KEY command.

GET ... Fetches numeric values or ASCII characters
from a file and assigns them to a variable.

GOTO •.. Allows you to branch to a label located
within a batch file or macro.

JOURNAL, NOJOURNAL ... Opens a file for storing all
subsequent corrmands until a NOJOURNAL command is
issued.

31

KEY ••• Program the function keys to a command or
series of commands.

LET •.. Assigns values to variables.

LOG, NOLOG •.. Opens a file which is used to store
all subsequent user commands and ERX output for
later processing. The NOLOG tenninates command
logging.

LOOPOUT ••. Breaks out of a loop condition from within
a macro or batch file.

MACRO .•• Creates an unlimited number of user-defined
commands that can be locally created, and loaded/
saved from/to a disk file.

MDELETE (Macro DELETE) ... Deletes a macro saved in
the host computer.

MLOAD (Macro LOAD) ..• Loads a macro stored in the
host computer.

MODLEN (MODule LENgth) ... Sets the length of module
names to be used on the screen display.

MSAVE (Macro SAVE) ... Saves a macro to a file in the
host computer.

MSHOW (Macro SHOW) ... Displays the name and contents
of all the macros.

OPEN ... Opens a file in the host computer for reading
or writing.

PAUSE .•. Suspends execution of a batch file until a
key on the keyboard is depressed.

PUT .•• Displays ASCII text or variable values to a
file.

REM (REMark) ... Allows you to insert comments into
batch files.

REPEAT ... Executes a command or series of commands
11 x11 number of times

SHELL ... Allows another system col'11Tland interpreter
(shell) to be run while preserving all symbols and
the ER-ICE environment.

SYMLEN (SYMbol LENgth) ... Varies the number of
symbol-name characters to be used for output.

32

Miscellaneous

WHILE ... Repeats a command or a block of commands as
long as a specified condition remains
lexicographically true.

BEEP ..• Sounds the system bell to indicate the
completion of a batch file.

CALCULATE •.. Performs addition, subtraction, multi­
plication and division of hexadecimal, decimal,
octal and binary numbers. It also performs base
conversions.

CLOCK ... Sets the clock configuration for the MPU via
the keyboard. Four internal speeds are selectable
and two external inputs are available through the
target system.

EMSELECT (Emulation Method Select) ... Allows you to
control signal 1/0 between the ERX and target system
during emulation.

ERX ... The executable program for the ERX emulator.

HELP ... Surrrnons the on-line help menu for the ERX and
provides on-line syntax and examples for ERX
commands.

IDENTIFICATION ... Displays the ERX model, software
and hardware versions.

PROMPT ... Alters the ER ICE prompt to any alphanu­
meric character string-:-

QUIT ... Terminates ER-ICE and returns control to DOS.

33

Understanding
ERX Commands

The key to using the ERX debugging commands effec­
tively is understanding their individual character­
istics as well as their relationship to each other.
Some commands are "active" while other commands are
"passive," and some commands are both active and
passive depending on which variation of the command
you specify. Active commands perform or execute
actions which you can see, now! For example, the
DISASSEMBLE command translates the memory contents
from machine language to assembly language mnemonics
and then displays the converted data - all in one
step. A passive command, such as the EVENT command,
allows you to set conditions that will be utilized
by the emulator at a later time (e.g., during
program execution). Some passive commands masquerade
as active commands by allowing you to observe their
status; it's all in how you state the command
syntax.

You can use the ERX corrmands together, in various
combinations, to effectively test, debug, modify
and integrate both your hardware and software
prototype designs. The following example shows how
you might combine the ERX commands to test prototype
code:

COMMAND ACTION

LOAD Downloads a prototype program from the
host coding station or prototype hardware
to the ERX.

DISAS- Disassembles a section of the program
SEMBLE residing in the ERX for inspection.

ASSEMBLE Assembles a software patch into the
program.

BREAK & Instructs the ERX to stop program execu-
EVENT tion at a particular point in the program,

such as when a memory write operation
occurs to a certain address.

GO Runs the program from a specified address.
When the program stops at the breakpoint,
shows the status of the registers and
where the break occurred.

34

About the Command
Language

COMMAND ACTION

HISTORY Replays the latest series of machine
cycles allowing you to examine address,
data and control bus conditions.

STEP Steps through the program display on a
line-for-line basis.

REGISTER Examines the register contents at a
specific location.

COMPARE, Locates or compares different memory
EXAMINE, locations, makes changes to the program,
SEARCH, re-starts the program from the beginning
MOVE, GO and checks the perfonnance again.

All ZAX ERX-series emulators execute operations
in response to "command statements" made up of the
"command name" and "parameters." The command name
refers to a character or group of characters that
designate the basic emulation operation to be
performed (e.g., G for GO, MA for MAP, etc.).
Parameters refer to any additional information that
complements the command name, such as a specific
address or symbol, an address range, a memory type,
or a base value. Together, the command name and the
parameters can be combined to execute a variety of
complex debugging operations.

The control firmware within the ERX requires that
the command statements be entered in a concise and
logical manner, and that all required elements of
the command statement be used. The elements of
the command statement are described in the following
paragraphs. The elements shown here represent all
possible items within a command statement. Of
course, not all commands require the presence or
absence of each element.

35

Elements Within
A Command
Statement

The Prompt Character. The prompt character lets
you know that the ERX is ready to accept a command
statement. The prompt character is supplied by the
ERX - you do not enter it - and it is always
displayed on the left side of the console's screen.
The prompt may also be changed to any alphanumeric
string of characters you desire (see the PROMPT
command).

Example of prompt character: ERX180X>

The Emulation-in-Progress (EIP) S)1'Tlbol. The emula­
tion-in-progress symbol is displayed whenever you
are executing code in real time (i.e., after you
enter a GO co1T1T1and). The symbol is displayed
immediately before the 11 >" character.

Example of the EIP symbol: ERX180X+>

The Corrmand Name. Commands are represented by the
first or first few letters of the command name.
The co1T1T1ands are displayed in upper-case typeface
but may be entered using any combination of upper­
or lower-case letters.

Examples of command names: B (for BREAK),
CO (for COMPARE), SA (for SAVE).

Command Qualifiers. The slash key(/) acts to signal
a qualifier for the cornnand whenever it appears
irrmediately following the command mnemonic.

Examples of a qualifier: F/W H/M L/I

The Space Character. The space character is an
invisible character that not only improves the
readability of a sentence, but in the case of the
command fonnat, it is recognized as a delimiter for
the command name. Spaces must be interpreted from
the corm1and fonnat; there is no S)1'Tlbol used to
indicate spacing.

Example of space character in use: HE CLO

Keywords are items which you must enter as shown.
These items are displayed by upper-case typeface,
but any combination of upper-case or lower-case
letters may be used to enter them. NOTE: Some
tenninals must use upper-case letters only. If the
ERX responds with an error message, try using upper­
case letters.

Examples of keywords: EN LO ON OFF

36

User-Supplied Items. Lower-case letters in italic
typeface show items which you may supply; these are
called user-supplied items.

Examples of user-supplied items include the
name of your file (TEST.HEX), a beginning
address, ending address and comparison address
(100), a SJ111bol name (demo.tst), and data (55).

Address And Data Parameters. The common numerical
parameters for the ERX commands are described
below:

addr, beg addr, comp addr, mov addr, end addr,
search addr, etc. = hexadecimaT numbers Tn 16 bits
(O-FFFF). SJ111bols may also be used.

data, mod data, and search data = hexadecimal/binary
number in-8/16 bits (0-FFFF).

The Equal Sign. The equal sign (=) causes the value
or information on its right to assume a relationship
with the value on its left.

Example of the equal sign: MA 0,0FFFF=NO

In this example, the ERX does not display
anything in response to this entry, but the
value entered on the right (which represents a
non-memory area) is now assigned a relationship
with the value on the left (an address range
from 0 to OFFFF.)

The Comma Character. The conma character (,) is used
to separate parameters when more than one parameter
is required to form a command statement. NOTE: A
space and a conma may be be used interchangeably.

Example of the corrma character: DI 0,100

Brackets. Items in square brackets are optional. If
you choose to include the information, you should
not enter the brackets, only the information inside
the brackets.

Examples of brackets: [D=data] [,switch]

The Return Key. The return key is used to terminate
statements and execute commands, and it must be
entered after every statement. It is assumed that
the return key must be pressed after the command
statement is entered; there is no SJ11lbol used to
indicate the return key in the command format.

37

Sequential Command Your ERX can execute a single corranand or a series of
Execution commands in a sequential manner. To execute a

series of commands, simply enter a semi-colon
(;) after each command operation. For example:

What To Do If
You Make An
Input Error

Control Codes
and their
Functions

>F 100,lFF,OO;DI 100,lFF;R RESET;G 100,l?F

This command line tells the ERX to first fill
memory, then disassemble it, reset the registers,
and finally start program execution at address lOOH
and stop it at address 17FH - all in one step!

If you make an error while entering a command
statement, merely backspace over the error (which
cancels the character) and enter the new informa­
tion. You can also press the Esc key to exit the
current corrmand line and bring back up the ERX
prompL

<ctrl t> = abort batch process
<ctrl-e> = recall command function (backward)
<ctrl-x> = recall command function (forward)
<ctrl-a> = re-run last command
<ctrl-y> = same as SHELL command
<ctrl-z> = same as QUIT command
<ctrl-c> = abort ERX
<ctrl-s> = X-OFF
<ctrl-q> = X-ON

38

Command

Operation

Syntax

Terms

Syntax Example

Remarks

Corrmand Example

ABASE

Allows you to program a specific configuration of
logical and physical memory via the Common/Bank Area
Register. It may be necessary to use this command
only if Corrmon Area 0, Common Area 1 or Bank Area
overlap to a physical address space .through HD64180
on-chip MMU programming.

>AB [base_l,base_2]

base_l,base_2 = 0, 1 or B

>AB 0,B

0 refers to Corrmon Area O; 1 refers to Common Area
1; B refers to Bank Area.

AB alone, displays the current status of the ABASE
conmand.

The Common/Bank Area Register (CBAR) is used to
define the logical memory organization. CBAR
specifies boundaries within the HD64180's 64K bytes
logical address space for up to three areas: Common
Area 0, Bank Area and Common Area 1.

The CAR field of CBAR determines the start address
of Co1T111on Area 1 (Upper Corrmon) and by default, the
end address of the Bank Area. The BAR field deter­
mines the start address of the Bank Area and by
default, the end address of Common Area 0 (Lower
Common).

The CA and BA fields of CBAR may be freely program­
med subject only to the restriction that CA may
never be less than BA.

Spacing: A space is required after AB. No spaces are
permitted where conmas act as separators.

>AMAP
Common 0 : 0000 - 03FFF (0000 - 3FFF) *1
Bank : 1000 - 03FFF (4000 - 7FFF) *2
Common 1 : 1000 - 07FFF (8000 - FFFF) *3

*1 = CBAR(I/0 3AH) may be programmed 84H (start
Common 1 8000H, Bank 4000H)
*2 = BBR(I/0 39H) may be programmed OCH (Bank base
OCOOOH)
*3 = CBR(I/0 38H) may be programmed 08H (Common 1
base 08000H).

39

>AB B,1 <--Bank area is first choice for translation
>D 10000+10

0 1 2 3 4 5 6 7 8 9 A ...
10000 4000 00 00 00 00 00 00 00 00 00 00 00 ••.
>AB 1,B <--Corrmon 1 Area is first choice for
translation
>D 10000+ 10 .

0 1 2 3 4 5 6 7 8 9 A
10000 8000 00 00 00 00 00 00 00 00 00 00 00

Physical Memory Map
1M/512K

00000 +-----------+
03FFF Common 0

10000
13FFF
14000
18FFF

Bank/Coml

Common 1

1-----------1

40

Logical Memory Map
64K

0000

4000

8000

FFFF

+-----------+
Common 0

Bank

Common 1

+-----------+

Command

Operation

Syntax

Terms

ASSEMBLE

The ASSEMBLE conmand invokes the in-line assembler
to modify a program stored in memory. It allows you
to use mnemonics to alter the memory contents
instead of machine codes.

Applications Note: The In-line assembler in ERX is a
powerful software tool that can be used for writing
patches into software code that has either been
downloaded from a host computer or originated in the
target system. This feature also allows you to
quickly write your own routines, develop small
programs, etc.

>A mem addr <CR>
xxxxx xxxx {Assembly code} <CR>
xxxxx xxxx <CR> >

mem addr = The beginning memory address where
assembled code is stored. Also, you may use a
previously defined symbol name that has been
directed at a starting address. If the symbol name
has not been assigned a starting address, "0000" is
assumed.

xxxxx xxxx = The next storage location.

Assembly code = The mnemonic instruction to be
assembled and stored. (Operand may include number or
symbol if previously defined.)

<CR> = Exits the assemble mode.

Syntax Example >A 100

Remarks Spacing: A space is required between A and mem addr.
A space is required between opcode and operancr-of
mnemonic instructions (no tab).

Command Example(s) >A begin_prog <--begins assembling at symbol
"begin_prog"

>A 1000 <--begins assembling at address lOOOH
01000 1000 RST 38H
01001 1001 SUB B
01002 1002 <CR> <--terminates input
>

42

Command

Operation

Syntax

Terms

Syntax Example

Remarks

Command Example

BATCH

The BATCH command executes batch files. (A batch
file contains a series of commands to be executed.)

>BA file name[.cmd]

file name = The name of the batch file to be
executed.

cmd = The default extension.

>BA setup.I

Spacing: A space is required between BA and
filename.

See Syntax Example, above.

43

Command

Operation

Syntax

Terms

Remarks

Command Example

BEEP

The BEEP command sounds the system bell.

Applications Note: You can use the BEEP command to
indicate the completion of a batch file.

>BEEP

none

none

>BA TEST
>loop:
>@counter = @counter + 1
)if @counter < 10
>goto loop
>BEEP <-- sounds system bell at completion of batch

command

44

Command

Introduction

BREAK

The best way to safely stop a moving car is to use
the brakes. In emulation, the best way to stop a
program for examination is by using BREAKpoints. The
BREAK command specifies a break condition that
allows you to stop program execution on a variety of
different parameters. When the conditions satisfying
the parameters are met, program execution halts and
control of the emulator is returned to the user. You
can use the BREAK commands to set breakpoints
anywhere within a program, and you can specify many
different types of breaks to stop program execution.

Breakpoints can be created directly with the BREAK:
Specification command, or converted to breakpoints
from previously set event points (see the EVENT
command). Breakpoints that were created from event
points can also be deleted without canceling their
designation as event points.

Breakpoints differ from event points in that they
actually cause the program to stop execution,
whereas event points are used to trigger various
functions without necessarily affecting the
emulation process.

With the ERX for 64180, there are 64,000 hardware
breakpoints x 4 channels available, or 256,000
breakpoints available if only one channel is
required. (Channels define operational parameters
such as address locations, a memory status or data.)
If one channel is used to define a particular
operation, such as a memory write, a bank of 64,000
breakpoints will be reserved for that type of
operation. A different operation, such as a memory
read, opcode fetch or data value, requires the use
of another bank of 64,000 breakpoints, and so on.
However, by using a single channel (as is the case
when only address locations are considered) you have
access to 256,000 individual breakpoints.

The display below shows the four-channel
restrictiveness as it applies to the ERX emulator:

>B 100,M <--breakpoint at addr 100; memory status
>B 200,MR <--breakpoint at addr 200; memory read
>B 300,MW <--breakpoint at addr 300; memory write
>B 400,P <--breakpoint at addr 400; port access

45

No. Module
&1 $$
&2 $$
&3 $$
&4 $$

>B

Symbol Address St Data Count(EX) EX SEQ B H P T
1 0100 M --,-- 1 0 * --2 0200 MR --,-- 1 0 * -

-3 / 0300 MW --,-- 1 0 -- --- * -4 0400 p --,-- 1 0 -- --- *
The display above shows that, while only four
breakpoints have been set, in fact, all four
channels have been exhausted. For each address
location, a correspondingly different memory status
attribute appears; in all, four different memory
types. If you were to attempt to create another
breakpoint with yet another memory status, such as a
port read, the ERX would respond with the following
error message:

>B 500,PR
ER-ICE : Reached maximum definitions on this event -

create another event

At this point, you can't create another event, of
course, because all four channels have been
exhaused; however, you could still create other
breakpoints at a differnt addresses but including
one of the four memory types as shown below:

>B 600,M
>B 700,MR

The same restrictions hold true for data values.

If you choose only one memory type or data type, you
have access to all four channels of 64,000
breakpoints for a total of 256,000 breakpoints - a
generous supply.

Hardware breakpoints recognize machine cycles but do
not disturb nonnal software execution. Hardware
breakpoints can cause the ERX hardware to monitor
the address and memory status signals for a speci­
fied condition. When the conditions are met, a break
occurs.

46

You can also enable and disable multiple breakpoints
within a range of the program, and you can break on
all breakpoints within a range of the program.
Hardware breakpoints can be activated (unmasked),
and then temporarily deactivated (masked), without
affecting their location addresses within the
program or their parameter specifications.

NOTE: In addition to the individual examples for
each BREAK corrmand, there is a short demo at the end
of the BREAK corrmand section that further explains
the theory and practice of setting, altering and
using breakpoints.

47

Command

Operation

Syntax

Terms

Remarks

Command Example

Noo Module
&l $$
&2 $$
&3 $$
&4 $$

BREAK: Status

Displays the current state of the break corrunand.

Applications Note: Use this command to check the
condition of the breakpoint settings after they've
been set or converted using the BREAK or EVENT
corrunands.

>B

none

You can view the breakpoint settings in two ways:
either by using the BREAK: Status (B) command, or by
using the EVENT: Show (ES) co1T111and. The EVENT: Show
cormland displays all the event points and break­
points; the BREAK: Status command displays only
breakpoints. You can distinguish a breakpoint by an
asterisk (11 * 11

) located under the 11 811 in the display
below (also in the EVENT: Show display).

This command example shows what the break status
might reveal after several break parameters have
been defined.

S)'1T1bol Address St Data Count(EX) EX SEQ B H P T
1 0100 MR --,-- 1 0 * -2 0200 MW --,-- 1 0 * -

test 0300 -- 55,55 1 0 *
4 0400 OF --,-- 4 0 * -

NOTE: "No. 11 shows S)'1T1bol line numbers for each
breakpoint; "Module" shows the name of the main
module($$ is the default); 11 S)'1T1bol 11 shows the
SJ1Tlbol name (n is the default); "Address" shows
the location wnere the breakpoint resides I "St"
shows the memory status for the breakpoint; "Data"
shows the data value (e.go, 55) or data range (e.g.,
24-58) to match for the breakpoint; "Count" shows
the passcount specification (the number of occur­
rences before a break); "(EX)" shows the number of
passcounts actua 11 y executed; "EX" shows the 1eve1
or edge-position of an external signal trigger (see
EVENT command); "SEQ" shows the sequence of break
execution (see EVENT command); 11 811 shows the
presence of a breakpoint; "H, 11 11 P11 and 11 T11 relate to
the HISTORY, PERFORMANCE and TRIGGER commands.

48

Corrmand

Operation

Syntax

Terms

Syntax Example

Remarks

Command Example

BREAK: Specification

Sets hardware breakpoints within the user program.
Setting a hardware breakpoint configures the ERX to
monitor the address and status signals for the
specified condition to occur.

>B address[,status][,passcount]

address = The address or symbol name to break on. If
symbol name is chosen, it must be predefined by the
EVENT conmand.

status = The type of cycle to break on, including:

M (any memory access)
DM {OMA memory access)
CMR {CPU memory read)
MW (memory write)
DMW {OMA memory write)
P (port access)
DP {OMA port access)
CPR {CPU port read)
PW (port write)
DPW (OMA port write)
HA (halt acknowledge)
OF (opcode fetch)

CM (CPU memory access)
MR (memory read)
OMR (OMA read)
CMW (CPU memory write)
CPU (CPU access)
CP (CPU port access)
PR (port read)
DPR (OMA port read)
CPW (CPU port write)
OMA (OMA access)
IA (interrupt acknowledge)
ANY (any operation)

passcount = The number of occurrences before a
break, from lH to FFFFH (1 to 65535).

>B 100,MR,3

If status is omitted, ANY is assumed.

If passcount is specified, real-time operation is
momentarily lost each time the condition occurs. If
the passcount specification is omitted, 1 is
assumed.

Spacing: A space is required between 11 811 and
"address." No spaces are permitted where commas are
used as separators.

See "More BREAK CofT1Tland Examples."

49

Corrmand

Operation

Syntax

Tenns

Syntax Example

Remarks

Conmand Example

BREAK: Event Conversion

Converts event points with symbol names to break­
points. Also masks and unmasks the converted
breakpoints (essentially, swapping them back to
event points and visa-versa).

>B event_symbol[=switch]

event symbol = The name of the event to convert to a
breakpoint.

switch = ON or OFF

>B fetch

Wildcard (11 *11
) characters are allowed in the

event_sj1Tlbol name.

To convert the event point to a breakpoint directly,
only the event symbol name is required; you do not
need to switch on the event symbol name.

OFF masks the breakpoint as an event point, and ON
unmasks the breakpoint as an event pointo

Spacing: A space is required between B and
event_symbol. No spaces are permitted thereafter.

>B evntl <--converts event point to breakpoint
>B evn*=OFF <--masks a 11 "evn*" breakpoints
>B evn*=ON <--unmasks all "evn*" breakpoints

51

Corrmand

Operation

Syntax

Terms

Syntax Example

Remarks

Command Example

BREAK: Multi-breakpoint Specification

Enables or disables all pre-set breakpoints within a
range according to their symbo 1 i c names or symbol .i c
line numbers. With this command, it is possible to
enable or disable up to 256,000 breakpoints at a
time.

>B/M beg sym_name/line,end_sym_name/line[=switch]

beg sym name, beg sym line= The beginning symbol
name or symbol line of the range.

end sym name, end sym line =The ending symbol name
or symbol line of-the-range.

switch = ON or OFF

>B/M routl,rout2

ON (the default) enables the break function from a
masked state; OFF disables or masks the function but
does not delete it (it may be recalled with ON).

Spacing: A space is required between M and
beg sym name/line. Spaces are not permitted where
corrmas are used to separate the parameters.

>B/M 100,4FF <--enables a range of breakpoints
>B/M tom,harry=OFF <--masks a range of breakpoints

52

More BREAK
Command Examples The BREAK command, along with its ally the EVENT

command, work together as two of the most powerful
and useful commands available with your ERX.
Understanding their relationship to one another will
help you to better understand when and how to use
the BREAK command.

The following demonstration begins from an initial­
ized state and then proceeds to show you how to set,
alter and confirm breakpoints. If you would like to
perform the demo yourself, merely initialize your
ERX and then enter the item after "Command."

NOTE: Before beginning the demo, make sure that the
ERX memory is mapped as read/write (use the command
MA O,OFFFF=RW).

It is assumed that a carriage return {CR) follows
each command statement.

Command

>B

>ES

>EV

>EV

53

Comment

Normally, this command reveals
the status of the breakpoints,
however, because none have been
set yet, nothing is displayed on
the screen. The same holds true
for the EVENT command:

Again, nothing is displayed on
your screen - yet. Now, lets set
a few event points and then
convert them to breakpoints.

This command allows you to set
an event point. When the command
queries you for a S)mbol, enter:

EVNTl

When the command queries you for
an address, enter:

100/ {The slash exits the
command.)

Let's set another event point.
Enter the following S)mbol:

EVNT2

and address:

200/

>ES

>B EV*

>ES

>B

>B EVNTl=OFF

>B
>ES

54

Now, lets examine the event
points.

The Event Show command displays
the two events that you just
set. Next, look over to the far
right corner. There you will see
the letter "B" with two dashes
under it. The "B" informs you if
a breakpoint has been set for
that symbol or address by
displaying an asterisk (*).

Now we'll change the two event
points into breakpoints with the
following command:

This command told the ERX to
convert all symbol names
starting with "EV" to break­
points. (We could have named
them individually, but this is
quicker.) You can verify this
fact in two ways, either by
using the BREAK Status or EVENT
Show commands. First, use the
EVENT Show command.

Look to the far right side of
the display and you'll notice
the two asterisks (*) under the
"B. 11 This indicates to you that
both event points presently act
as breakpoints. Now examine the
BREAK Status command.

You will see the exact same
display. Why? The BREAK Status
conmand now has something to
reveal - but both display won't
always appear alike.

We've now disabled or masked
breakpoint 11 EVNTl, 11 however, it
still exists. Check both the
BREAK Status and EVENT Show
commands to see the changes.

The first command displays
on 1 y one breakpoint, 11 EVENT2."
The second command shows that
while both event points still
ex i st , 11 EV NTl 11 i s no 1 on g er a
breakpoint. It can be converted
back to a breakpoint by turning
it back On.

>B EVNTl=ON
>B

>B 300,MR
>B

>B 500,0F

55

See. You can't set a breakpoint
directly using a symbol name,
but you can define a breakpoint
directly by an address or memory
status. When you do, the ERX
assigns its own symbol name (as
in, " 311

) and number (as in,
"&3")to the value.

If you choose to name a symbol
as a breakpoint, you must do so
by first creating it as an
event, and then converting it to
a breakpoint as just shown. This
also holds true for breakpoints
that contain specific data
values. Hardware breakpoints
that are defined by address and
memory parameters can be created
directly, as shown below.

This format creates a hardware
breakpoint, directly.

Corrmand_

Operation

Syntax

Terms

Syntax Example

Remarks

Command Example

CALCULATE

Performs addition, subtraction, multiplication and
division of hexadecimal, decimal, octal and binary
numbers; also performs base conversions. The results
are displayed in hexadecimal, decimal, octal and
binary notation.

>C exp#l +,-,*,/ exp#n

exp#l .•• exp#n =The hexadecimal, decimal, octal or
binary number.

C 123+0FFH

Addition(+), subtraction(-), multiplication(*) and
division(/) operations may be performed on the same
line, and more than one type of operation may be
performed on the same line.

Spacing: A space is required between C and exp#l.
Spaces are not restricted thereafter.

>C 123+65fh <--adds decimal and hex values
Hex = 6DA
Dec = 1754(1754)
Oct = 3332
Bin = 0000,0000,0000,0000,0000,0110,1101,1010
>C 1 <--converts decimal value
Hex = 1
Dec = 1(1)
Oct = 1
Bin = 0000,0000,0000,0000,0000,0000,0000,0001
>C 1000H*2-4 <--multiple operations
Hex = IFFC
Dec = 8188(8188)
Oct = 17774
Bin = oooo,oooo,oooo,0000,0001,1111,1111,1100
>C 2&3 <--bit-wise AND operation
Hex = 2
Dec = 2(2)
Oct = 2
Bin = 0000,0000,0000,0000,0000,0000,0000,0010

56

Corrmand

Operation

Syntax

Terms

Syntax Example

Remarks

Conunand Example

CLOCK

Sets the clock configuration for the MPU via the
keyboard. Four internal speeds are selectable and
two external inputs are available to match the
target system's unique clock configuration.

>CLO [clock_mode]

clock mode = 0,1,2,3,4

CLO 4

O means use an external TTL-level clock; 1 means use
an external XTAL level clock; 2 means to use the ERX
internal 6MHz clock; 3 means use the ERX internal
3MHz clock (the default); 4 means use the ERX
internal 1.5MHz clocko

The HD64180 contains a crystal oscillator and system
clock generator. A crystal can be directly connected
or an external clock input can be provided. I~either
case, the system clock is equal to one-half the
input clock. For example, a crystal or external
clock input of 8 MHz corresponds with a system clock
rate of 4 MHz.

If an external clock input is used instead of a
crystal, the waveform should exhibit a 50% (+/-5%)
duty ~ycle. Note that the minimum clock input HIGH
voltage level is Vcc-0.6V. The external clock input
is connected to the EXTAL pin, while the XTAL pin is
left open. (For more information on clock circuitry,
see Section 3, "Technical References.")

Spacing: A space is required between CLO and
clock mode.

>CLO 3 <--sets the clock speed to lMHz

>CLO <--displays and allows alteration of clock
setting

Cl oc'k Mode is 3
0. External (TTL)
1. External (XTAL)
2. Internal (6MHz)
3o Internal (3MHz)
4. Internal (1.5MHz)
Select (0-4) ? 4

58

Command

Operation

Syntax

Terms

Syntax Example

Remarks

Command Example

CLOSE

The CLOSE command closes a previously opened file
and then informs you if the file was closed succes­
sfully. (The variable "sts" will contain a non-zero
value if the close was unsuccessful.)

>CLOSE #file no

#file no = The named number of the file to close.

>CLOSE #1

Spacing: A space is required after CLOSE.

>CLOSE #2 <--closes the file associated with
file #2

>IF #sts <> 0 <--checks for successful closure
>CPUT "File close failure" <--prints error if

close failed

59

Command

Operation

Syntax

Terms

Syntax Example

Remarks

Command Example

COMPARE

Compares the contents of specified memory blocks
within the ERX or target system and then displays
the non-matching data along with their locations.
The comparison can be made between different memory
blocks as mapped to the ERX, or between one block of
memory within the ERX and one within the target
system a

>CO beg_addr,end_addr,cmp_addr[,direction]

beg_addr = The beginning address for comparison.

end addr = The ending address for comparison. (May
also be stated in number of bytes, e.g., beg_addr,
+num bytes.)

cmp addr = The beginning memory address to be
compared.

direction = UE or EU

>CO 0,2FF,500,UE

If UE is selected, beg addr is user memory and
cmp addr is ERX memory. If EU is selected, beg addr
is !'RX memory and cmp_addr is user memory. -

If "direction" is omitted, memory locations are
selected according to the MAP command.

This command displays non-matching data on a line­
for-line basis. To control the scrolling of the
display, alternately press the space bar. To exit
the display, press the Esc key.

Spacing: A space is required between CO and
beg addr. No spaces are permitted where commas are
used to separate the parameters.

>CO 0,0FF,1000 <--compares memory to addr lOOOH
Address Data Address Data

0000 01 1000 00
0001 FF 1001 AA
0002 AC 1002 OA
0003

>CO 0,+100,2000 <--compares memory to addr 2000H
Address Data Address Data

0000 30 2000 37
0001 FE 2001 Al
0002 25 2002 16
0003

60

Conmand

Operation

Syntax

Terms

Syntax Example

Remarks

Command Example

COVERAGE: Specification

Initializes and defines the range of the Coverage
function. With this command you can define the
boundaries of the Coverage function to either a
select range or the entire memory range (O-lFFFF).

>COV/CL [beg_addr[,end_addr]]

CL= Initializes (clears) the entire memory area or
a range of memory (if beg addr and end addr are
supplied). - -

beg_addr = The beginning address of the range.

end addr = The ending address of the range.

>COV/CL 0,lFF

If beg addr and end addr are omitted, the entire
memory-range will be covered.

Spacing: A space is required after CL. No spaces are
permitted where conTTlas are used as separators.

>COV/CL <--initializes and specifies to cover the
entire memory range

>COV/CL 1000 <--initializes and specifies to cover
from addr 1000 to lFFFF

>COV/CL 2000,2FFF <--initializes and specifies the
coverage of a range

Also, see "More COVERAGE Command Examples," on the
following pages.

62

Conunand

Operation

Syntax

Terms

Syntax Example

Remarks

Corranand Example

COVERAGE: Display

Displays the results of the COVERAGE command as a
percentage of the selected coverage range compared
to the total number of of instructions passed during
program execution.

>COV[/disp] [beg_addr[,end_addr]]

disp = CA, U or P

beg addr = The beginning address or symbol name to
disj)lay (default is O).

end addr = The ending address or symbol name to
display (default is lFFFF).

COV/U 100,7FF

CA displays the percentage of address lines passed;
U displays all unpassed address lines; P displays
all passed address lines.

Spacing: A space is required between disp and
beg address. Spaces cannot be used where commas are
usea to separate the parameters.

>COV/CL 0,3FFF <--initializes area for coverage
>COV/S MR <--sets coverage area for memory read
>GOV 0,lFFF <--display coverage range
>COV/U 0,0FFF <--display all unpassed symbols from

range

Also see, "More COVERAGE Command Examples," on the
following pages.

64

Corrmand

Operation

Syntax

Terms

Syntax Example

Remarks

Command Example

CPUT (Console Put)

Allows the display of numerical (@), or string (!)
values into a numericaly specified "N" variable.

>CPUT @num
>CPUT !num

@ = Numerical data entry modifier

= String data entry modifier

num = Variable name

>CPUT @2 (Numerical display)
)345235H

>CPUT !4 (String display)
>This is just a test.o.

>CPUT !2 (String with 11 \n")
>1
>2
>3
>Testingo•o

The CPUT Command allows the use of the 11 \n" command
(

11 \n" is the C Language command for carriage return,
1 inefeed).

Spacing: A space is required after CPUT. No spaces
are permitted thereafter.

>CPUT !2
:for !2 = 1 ... \n2 ... \n3 ... \nTesting ... \n

>1. 0.

>2 0 DO

>3. 0.
>Testing ...

66

Corrmand

Operation

Syntax

Terms

Syntax Example

Remarks

Command Example

DEFM (Default Module)

Allows you to change the default module. After the
change, all memory disassembly, inspection, etc.
commences from the new module.

>DEFM [def _mod_name]

def mod name = The name of the new default module.

>DEFM MAIN

DEFM alone, displays the current default module
name {$$ is the default).

Spacing: A space is required after DEFM.

>DEFM <--displays current module name
DEFAULT MODULE NAME: $$
>DEFM MAIN <--Changes module name to MAIN
>DEFM
DEFAULT MODULE NAME: MAIN <--shows new name
>

67

Corrmand

Operation

Syntax

Terms

Syntax Example

Remarks

Corrmand· Example

DISASSEMBLE

Translates the memory contents from machine codes to
assembly language mnemonics, and then displays the
converted contents.

>DI [beg_addr][,end_addr]

beg_addr = The beginning memory address in the
programo

end addr = The ending memory address in the program,
or the number of bytes from the beginning address.

>DI 50,SF
>DI 300 (need displays)
>DI 100,+30
>DI START,START+20H

If beg addr is omitted, disassembly begins at the
current program counter. If end addr is omitted, 10
lines of instructions are automatically displayed.

This co111T1and displays items on a line-for-line
basiso To control the scrolling of the display,
alternately press the space bar. To exit the
display, press the Esc key.

Spacing: A space is required between DI and beg addr
{if beg addr is selected). Space are not permitted
where co11111as are used to separate the parameters.

See Syntax Example. The first example shows that the
memory contents in the ERX are disassembled begin­
ning from address 50 to address SF. In the second
example, the ending address is omitted, which causes
10 lines of the memory contents to be disassembled
starting from address 300. The third example
illustrates how 30 bytes are disassembled from a
starting address {lOO)o The fourth example disas­
sembles from the symbol "START" to "START" plus 20
bytes.

68

Corrmand

Operation

Syntax

Terms

Syntax Example

Remarks

Command Example

DUMP

Displays the memory contents in both hexadecimal
and ASCII code.

>D[/length] beg_addr[,end_addr]

length = B, W or S

beg_addr = Beginning address of display.

end addr = Ending address of display. (May also be
stated in byte format, e.g., beg_addr+,num_bytes.)

D/W 100,lFF
D 2000
D 1000,+30
D/S START

B means byte length display; W means word length
display; S means s)1'T1bol display.

The end add is an optional parameter. If it is
omitted: 16 bytes are displayed starting with
beg_addr.

This command displays items on a line-for-line
basis. To control the scrolling of the display,
alternately press the space bar. To exit the
display, press the Esc key.

Spacing: A space is required between D and beg addr
or length and beg addr. Spaces are not permitted
where commas are used to separate the parameters.

See Syntax Example. The first example shows that the
memory contents are displayed in word units,
beginning with address 100 and ending with address
lFF. The second example shows that the last 16 bytes
are displayed beginning at address 2000. The third
example shows how 30 bytes of memory are displayed
from address 1000. The fourth example displays 16
bytes of memory from the S)1'Tlbol "START."

70

Corrmand

Operation

Syntax

Terms

Syntax Example

Remarks

Corrmand Example

ECHO

Enables or disables the console display of the
corrmand lines within a batch or macro file.

>EC switch

switch = ON or OFF

>EC OFF

ON (the default) enables the display of command
lines with a batch or macro file, and OFF disables
the display.

Spacing: A space is required between EC and switch.

>ECHO ON
>TEST
CPUT "TEST COMPLETED!! \n"
TEST COMPLETED!!
Macro TEST completed.
>
>ECHO OFF
>TEST
TEST COMPLETED!!
>)

71

ConJTiand

Operation

Syntax

Terms

Syntax Example

Remarks

Command Example

EMSELECT (Emulation Method Select)

Allows you to control signal I/0 between the ERX and
the target system during emulation.

>EMS [select][=switch]

select = A, B, C, D or E

switch = EN, DI, 1, 2 or 3

EMS C=EN
EMS E=3

A: Allows you to control the generation of a user
wait state during an emulation;

B: Allows you to control the generation of a timeout
break for all memory access conditions;

C: Allows you control the generation of an automatic
wait state for all memory access conditions;

D: Allows you to control the generation of an
automatic wait state for all I/0 port access
conditions;

E: Allows you to control the insertion of up to
three wait states into each machine cycle.

EN unmasks and allows the implementation of the
associated function; DI masks or suppresses the
implementation of the associated functiono

1, 2 and 3 refer to the number of wait states
associated with the E function.

EMS alone, displays the status of the EMSELECT
cortlTland.

Spacing: A space is required after EMS. No spaces
are permitted thereaftero

See Syntax Example, above. The first example shows
how to generate an auto wait state for all memory
access conditions, and the second example shows how
to insert three wait states into each machine cycle.

72

Command

Operation

Syntax

Terms

Syntax Example

Remarks

Command Example

EOF (End Of File)

The EOF (End Of File) command informs you if the
end-of-file has or has not been reached. (The user­
defined variable will contain zero if end-of-file is
reached.)

>EOF #file_no,@ret_value

file no = The number of the file.

ret value = 0 if end of file, non-zero if not end
of Tile.

>EOF #1,@1

Spacing: A space is required between EOF and #.
Spaces are not permitted where commas are used to
separate the parameters.

>EOF #4,@1
>IF @l==O
>GOTO GET END

73

Command

Operation

Syntax

Terms

Syntax Example

Remarks

ERX

The ERX corrmand is the executable program for the
ERX emulator. With it, you can invoke the communi­
cations program or invoke the setup program for the
ERX emulatore

DOS>ERX [batch_file[.cmd]]

batch fileocmd = The name of the batch file to be
executed.

DOS>ERX SETUP

Spacing: A space is required after ERX.

74

Sequential = The order of break implementation. Two
different sets of four priorities can be named,
including:

#1,#2,#3,#4
$1,$2,$3,$4

The Sequential function is set by the EVENT command
and used by the BREAK command to prioritize
breaking.

77

Syntax Example

Remarks

Command Example

78

>EV
Symbol = Checkl
Address 0000,FFFF = 2000
Status = MR
Data ' = 34
Passcount 00001 = 5
External = HI
Sequential = #2
>

Setting an event conmand requires that you supply
parameters in response to the ERX. These parameters
allow you to create and identify an event by its
1) symbol name; 2) address; 3) memory type; 4) data
type; 5) passcount number; 6) external trigger
specification; or 7) sequential designator. You
can supply all seven parameters or any combination
thereof, including only a single parameter.

A slash terminates the entry and exits the input
mode. Example:

>EV
Symbol
Address
>
#1
>EV
Symbol
Address
Status
Data
Passcount
External
>
#2
>EV
S)11lbo1
Address
Status
>
#3
>EV
S)11lbo l
Address
Status
Data
>

= fred
0000,FFFF = 234/ <--slash to terminate

=
0000,FFFF = 1234

=
= ' 00001 =
= HI/

= bob
0000,FFFF = 4FF

= MR/

= tom
0000,FFFF = OFEE,3FFO

=
--,-- = 12/

#4
>EV
Symbol
Address
Status
>

= all range
0000,FFFF =

= MW/

In example #1, an address and external trigger
specification is defined. The ERX then assigns its
own symbol name to the event point. In example #2, a
symbol name, address and memory type is defined. In
example #3, a symbol name and address range is
defined for a data value. In example #4, a symbol is
defined for a memory typeo

79

Command

Operation

Syntax

Terms

Syntax Example

Remarks

Command Example

ESAVE (Event Save)

Stores in host memory the parameters of an event
point or a series of event points that were
previously defined with the EVENT command.

>ESA file_name[.evt]

file name = The name assigned to the event point
map.-(If the extension is omitted, EVT is automati­
cally supplied as the extension.)

>ESA EVENTl

The ESAVE command stores all parameters for all
previously defined event points, including the
number, module designation, symbol name, address,
etc. The LOAD command downloads the event file(s)
back to the ERX (see the LOAD command).

Spacing: A space is required between ESA and
file name.

See Syntax Example, above. This example saves an
event file named 11 EVENT1. 11

80

Command

Operation

Syntax

Terms

Syntax Example

Remarks

Command Example

EDELETE (Event Delete)

Deletes a pre-set event point or series of event
points either by its/their symbol name(s) or
number(s).

>ED beg addr,end addr
>ED sym-name -
>ED sym-line
>ED beg-sym name,end sym name
>ED beg sym-,ine,en~sym-,ine

beg addr, beg sym name, beg sym line =The beginning
address, symbol name or symool Tine that marks the
range of the pre-set event points.

end addr, end sym name, end sym line =The ending
address, symbol name or symbol Tine that marks the
range of the pre-set event points.

sym name, sym line= The symbol name or symbol line
that identifies a particular event point.

>ED start

Wildcard characters (*) may be used in place of
specific names or addresses (e.g., ED module*)

Because event points have a higher priority than
breakpoints, deleting an event point also causes the
deletion of a breakpoint if they occupy the same
address, symbol line or symbol name. The same holds
true for a history trigger, performance trigger,
or external trigger.

Spacing: A space is required between ED and the next
parameter. Spaces are not permitted where commas are
used to separate the parameters.

>ED 1000,3000 <--deletes by address range
>ED start <--deletes by symbol name
>ED module * <--deletes by range of symbol names
>ED &20 <--=-deletes by symbol line
>ED start,end <--deletes by range of symbol names
>ED &34,&51 <--deletes by range of symbol lines

81

Corrmand

Operation

Syntax

Terms

Syntax Example

Remarks

Conmand Example

ESHOW (Event Show)

Displays the event point(s) and the parameters of
the event point(s).

>ES
>ES beg addr,end addr
>ES sym-name -
>ES sym-line
>ES beg-sym name,end sym name
>ES beg syml ine,enasyml ine

beg addr, beg sym name, beg sym line = The beginning
address, symbol name or symool Tine that marks the
range of the event points to be displayed.

end addr, end sym name, end sym line = The ending
address, symbol name or symbol Tine that marks the
range of the event points to be displayed.

sym name, sym line= The symbol name or symbol line
that identifies a particular event point.

ES 100 ,300

Wildcard characters (*) may be used in place of
specific names or addresses (e.g., ED module*)

Spacing: A space is required between ED and the next
parameter. Spaces are not pennitted where commas are
used to separate the parameters.

>ES <--displays event status
>ES 1000,3000 <--displays event status by range
>ES start <--displays event named "start"
>ES module * <--displays range of event names
>ES &20 <--=-displays event by symbol line
>ES start,end <--displays event symbol names
>ES &34,&51 <--displays event by symbol line range

82

No. Module
&l $$
&2 $$
&3 $$
&4 $$
&5 $$
&6 $$

Now examine the sample status display below:

Symbol Address St Data Count(EX) EX SEQ B H P T
eventl 0100 -- --,-- 1 0 -- - s - -
event2 02FF -- -- -- 1 0 -- - E - -' test 0300 MR --,-- 1 0 -- * -

4 0400 OF 55,-- 1 0 -- - - - *
newrtl 0600 OF --,-- 1 0 -- - - s -
newrt2 07FF OF --,-- 1 0 -- E -

The first {&l) and second {&2) lines show the
parameters for a beginning and ending trigger for
the real-time trace feature; the third {&3) line
shows the parameters that define a typical break­
point; the fourth {&4) line shows the parameters
that define a typical external trigger; and the
fifth {&5) and sixth {&6) lines show the parameters
that define a typical perfonnance function.

83

Command

Operation

Syntax

Terms

Syntax Example

Remarks

Conmand Example

EXAMINE

Inspects one or more memory locations and optionally
modifies them. The locations can be displayed and
changed with either ASCII or hexadecimal values.

>E[/length][/N] beg_addr[=mod_data]

length = B or W

N = No-verify (the default is to read-verify after
writing).

beg_addr = Beginning address of display.

mod data = Modified (new) data for this location.

E/W 100=5555
E OFFE

B means byte length display, and W means word length
display.

If mod data is omitted, the command enters a repeat
mode, which allows several locations to be changed.
The repeat mode includes:

return (er) to display the next byte (word) of data
corrrna (,) to display the same byte (word) of data
caret (-) to display previous byte (word) of data
slash (/) to exit the EXAMINE command.

Spacing: A space is required before beg addr. No
spaces are pennitted between beg addr and mod data;
the equal sign acts as the separator.

See Syntax Example, above. This example shows that
the memory address to convert is 100, and that the
data to convert to is 5555. Now examine the fol­
lowing examples:

>E 0
0020 54=74, <--change value to 74H/re-examine
0020 74= <--leave value unchanged/go to next address
0021 68= <--leave value unchanged/go to next address
0022 69='a' <--change value/go to next address
0023 73=74- <--change value/go to previous address
0022 61=- <--leave value unchanged/go to previous

address
0021 68, <--leave value unchanged/re-examine address
0021 68=- <--leave value unchanged/go to previous

address
0020 74=/ <--leave value unchanged/exit command
>

84

>E/W 30
0030 A9BF=4455, <--change word value/re-examine
0030 4455= <--leave value unchanged/ go to next

address
0032 FDB2='HI', <--change value (ASCII)/re-examine
0032 4948= <--leave value unchanged/go to next

address
0034 CFED=O/ <--change value/exit command
>
>E 40
0040 06= <--examine only
0041 AO=
0042 00=
0043 64=
0044 OC=
0045 OE=/ <--exits command

85

Corrmand

Operation

Syntax

Terms

Syntax Example

Remarks

Cor11T1and Example

FILL

Fills a block of memory with either hexadecimal or
ASCII codes.

>F[/length][/N] beg_addr,[end_addr],data

length = B or W

N = No-verify (the default is to read-verify after
writing).

beg addr = The block beginning address to be filled
(from 0 to lFFFEH).

end addr = The block ending address to be filled
(from 0 to lFFFFH).

data = Data that fills the block.

F 100,0FEF,55

B means byte length display, and W means word length
display.

When W is selected, the word will be displayed or
entered in LSB/MSB (Least Significant Bit/Most
Significant Bit) order.

Spacing: A space is required before beg addr. No
spaces are permitted where commas act as separators.

>F/N 4000,4FFF,O <--fills memory without verifying
>F/W 20,0FF,3412 <--fills on word basis
>F 4000,+500,'ABCDEFGH' <--fills with ASCII codes

87

Command

Operation

Syntax

Terms

Syntax'Example

Remarks

Corrrnand Example

GO

Executes the user program.

>G [beg_addr][,end addr]

beg_addr = The address to begin execution.

end addr = the last address to execute.

>G
>G 100
>G 200,2FFF

All parameters for this command are optional. If
beg addr is omitted, the program continues from the
current program counter. If end addr is omitted, the
program continues until a breakpoint or until a STOP
corrmand is issued.

Spacing: A space is required between G and any
additional parameters. Spaces .are not permitted
where commas are used to separate the parameters.

See Syntax Example, above. The first example starts
the program from the current program counter. The
second example starts the program from address lOOH.
The third example starts the program from 200H and
stops it at address 2FFFH.

90

Corrmand

Operation

Syntax

Terms

Syntax Example

Remarks

Corrmand Example

GOTO

Allows you to branch to a label located within a
batch file or macro.

>GOTO label

label = The name of the label located within a batch
file or macro.

>GOTO LABEL 1

Spacing: A space is required between GOTO and label.

See Syntax Example, above.

91

Command

Operation

Syntax

Terms

Syntax Example

Remarks

Command Example

HELP

Summons the on-line help menu for the ERX and
provides on-line syntax and examples for ERX
conmands.

>HE [conmand]

command = The identifier for the particular command
{B for BREAK, EX for EXAMINE, etc.).

>HE
>HE FILL

Entering HE only, will display the command names.
Explanations and syntax help is available for each
conmand but each must be entered individually.

Spacing: A space is required between HE and command.

See Syntax Example, above.

92

Conmand

Introduction

Trace Width
and Depth

HISTORY

The real-time trace is one of the most powerful and
useful features of your ERX. It allows you to record
{hence the name "History" command) and then analyze
a specific section of program execution rather than
sifting through the entire program looking for an
isolated problem.

As with the BREAK command, you must first set event
points and then specify them to act as triggers to
start and stop the data storage process to the real­
time trace buffer. By specifying different storage
modes, you can control how the real-time trace
captures data. After program execution stops, you
can view the address, data, and control bus of
the latest series of machine cycles {in either
machine cycle or disassembled format) on the console
screen, or dump the infonnation to a printer. Thus,
if a problem develops during program execution, the
real-time trace provides a record that can be
reviewed to determine what the problem is and where
it resides.

An emulator's trace memory needs to be wide enough
to acconmodate the processor's address and data
lines. With the ERX for 64180, the trace memory
is 32 bits wide {8 bits data/16 bits address/8 bits
status).

When it comes to the trace memory's depth, more is
not always better. If too much depth is specified,
it may be difficult to sift through all the data; if
the trace memory depth is insufficient, the chances
of recording the trace section where the problem
exists are diminished. Your ERX has a maximum trace
memory depth of 4K {4095) machine cycles, but this
may be reduced by specifying the "length 11 in the
HISTORY conmand. The ability to alter the size of
the trace storage size pennits very specific
tracing.

93

Real-time
Trace Buff er

Using The
Real-time Trace

Simplest Case:
Begin Monitor
Mode

The data that is recorded during program execution
is stored in the real-time trace buffer. The real­
time trace buffer can be thought of as a data
storage facility that moves along parallel to
the user program, storing the same data that is
being executed by the user program.

The maximum storage capacity of the real-time trace
buffer is 4K machine cycles, but by using a 11 First­
In/First-Out11 (FIFO) recording technique, the buffer
captures the latest program execution by discarding
old data and replacing it with new data. By using
this technique, the display always reveals the
latest data that the buffer has stored.

The ERX's real-time trace is always active, that is,
it records the program execution even if the HISTORY
command parameters are omitted. There are, however,
eight different storage modes to choose from. The
storage modes determine where and when the real­
time trace begins and ends, and how much information
it stores. After the information has been stored in
the real-time trace buffer, it can be displayed in
either machine cycle or disassembled format.

The options, then, for the HISTORY command involve
first creating event points, then converting them to
triggers, and finally, selecting the proper storage
mode to trigger or halt the real-time trace. A
discussion of each storage mode follows.

An easy way to understand how the real-time trace
works is to examine the Begin Monitor mode. In
this mode, the GO corrmand (which begins emulation)
also triggers the start of real-time tracing so
that all activity executed from the program memory
area is simultaneously transferred to the real-time
trace buffer.

After the user program executes (and the buffer
stores) the activity equivalent of the length, the
trace buffer fills to that point and then stops. The
activity that is now stored in the buffer is the
"captured" trace section (the section that the ERX
displays). The real-time trace then enters a non­
trace mode and stops when a monitor break (accom­
plished by entering the STOP command) or breakpoint
is encountered.

94

Begin Event
Mode

End Monitor
Mode

End Event
Mode

Center Event
Mode

The Begin Event mode works in the same way as the
Begin Monitor mode except that an event point
triggers the real-time trace instead of the GO
command. The buffer stores the amount specified by
the length (up to 4K) and then stops.

NOTE: The event itself is not stored in the buffer,
but triggers the buffer to begin storing.

The End Monitor mode begins storing all activity
upon program execution and then terminates the
tracing process when a breakpoint is encountered or
when the STOP command is issued. The captured trace
section is the last 4K before the breakpoint or STOP
command.

The ERX accomplishes this type of tracing by
storing data on a First-In/First-Out {FIFO) basis
after the buffer is filled. By using this storage
technique, the ERX displays the latest data in the
trace buffer.

The End and Center Event modes use this same FIFO
recording technique in their operation.

The End Event mode works in the same way as the End
Monitor mode except that an event point (instead of
a breakpoint) triggers the buffer to suspend
tracing. The captured trace section is the last 4K
before and including the event point.

The Center Event mode is used when you desire
the trace to surround a single event point in the
program. It performs this task by reading the length
specification and recording that number of cycles
after the event point occurs. The remainder of the
4K buffer then contains cycles just prior to and
including the event point. For example, if lK is
specified as the range, lK cycles would be captured
after the event point, and the remaining 3K cycles
would be captured before the event point. If the
specified length is 4K, 4K cycles would be captured
after the event, and the remaining 95 cycles would
be captured before the event point. (4K = 4095
cycles.)

Just like the End Monitor and End Event modes, the
Center Event mode causes the real-time trace to
start recording activity immediately after the GO
command.

95

Corrmand

Operation

Syntax

Terms

Remarks

Command Example

No. Module
&1 $$
&2 $$
Auto Start
Length
Multi
Freeze
>

Symbol
trigl
trig2
ON
$
ON
OFF

HISTORY: Real-time Trace Status

Displays the current status of the real-time
trace.

Applications Note: Use the real-time trace status
to analyze the condition of the real-time trace
buffer, i.e., the address or symbol to trigger on,
the parameters defining the trigger, the length of
the trace range, etc.

>H/S

none

The status of the HISTORY corrrnand can only be
examined after the trigger parameters have been
specified. See the HISTORY: Specification command
for details on how to set the trigger parameters.

>H/S

Address
0100
0200

St Data Count(EX) EX SEQ B H P T
--,-- 1 0 - s - -
--,-- 1 0 -- - E - -

This co1T111and shows what the HISTORY: Status corrmand
might display after two trigger points have been
set. Note the "B H P T" display on the far right.
The "H" character refers to the trigger status of
the HISTORY corrrnand. The "S" indicates the starting
point to trigger the real-time trace, and the "E"
indicates the ending point to trigger the real-time
trace. Now look to the far left of the display.
"Auto Start : ON" tells you that the storage process
will commence when emulation begins; "Length : $"
tells you that the storage range is set to maximum
(4K); "Multi : ON" tells you that the ERX will
recognize several trigger points; and "Freeze : OFF"
tells you that the ERX will trace without
interruption.

See the other HISTORY corrmands for more infonnation
and then refer to "More HISTORY Command Examples."

97

Command

Operation

Syntax

Terms

Syntax Example

Remarks

Conmand Example

HISTORY: Real-time Trace Storage Display

Displays the number of cycles passed since the
program was started, from 1 to 4096.

>H/SI

none

see above

If the Storage Size displays "Full," it indicates a
full buffer or 4095 cycles.

>H/SI
Storage Size = 0256

This example shows that 256 machine cycles have been
passed since the program was started.

98

Corrmand

Operation

Syntax

Terms

Syntax Example

Remarks

HISTORY: Real-time Trace Format Display

Displays the contents of the real-time trace buffer
in either machine cycle format or disassembled
format. This corrmand may be used after or during
program execution.

H/mode[,int point][,term point][,A=address]
[,ST=statusJ[,D=data] -

mode = M or D

int point = Initial point of display, from 1 to
409"'5".

term_point = Point at which display terminates,
from 1 to 4095.

address = The address to begin display.

status = The type of memory cycle to display,
including:

M (any memory access)
DM (DMA memory access)
CMR (CPU memory read)
MW (memory write)
DMW (DMA memory write)
P (port access)
DP (OMA port access)
CPR (CPU port read)
PW (port write)
DPW (DMA port write)
HA (halt acknowledge)
OF (opcode fetch)

CM (CPU memory access)
MR (memory read)
DMR (OMA read)
CMW (CPU memory write)
CPU (CPU access)
CP (CPU port access)
PR (port read)
OPR (OMA port read)
CPW (CPU port write)
OMA (OMA access)
IA (interrupt acknowledge)
ANY (any operation)

data = The type of data to display.

H/M,200,100,A=lOO,D=OO
H/D

M specifies to display the program execution in
machine cycle format; 0 displays the program
execution in disassembled format.

With this col'111land, int_point must be greater than or
equal to term_point. Tfle storage pointer is numbered
by bus cycles - displayed from high to low - where
"1" is the most recent bus cycle.

99

Command Example

This command displays items on a line-for-line
basis. To control the scrolling of the display,
alternately press the space bar. To exit the
display, press the Escape (Esc) key.

Spacing: No spaces are permitted where commas are
used as separators.

>H/D
Point E Phy Log Dt St Opcode Operand

4096 * 082AC 82AC trigl NOP
4095 082AD 82AD INC L
4094 082AE 82AE NOP
4093 082AF 82AF DEC c
4092

This example shows what the real-time trace format
display might reveal after program execution has
been terminated. This command and the resulting
display could also have been entered during program
execution.

Note the event point counter (under "Point"), the
event point trigger indicator (the asterisk under
"E"), the address location (expressed both
physically and logically), the type of data to
display (under "Dt"), the type of memory cycle
displayed (under "St"), the Opcode name and the
Operand. The "trigl" indicates the name of the
Sj11lbol assigned to the event point trigger at that
particular address.

100

Command

Operation

Syntax

Tenns

Syntax Example

Remarks

HISTORY: Real-time Trace Storage Mode

Specifies the parameters that define the eight
different trace modes. These modes include Begin
Monitor, End Monitor, Begin Event, Center Event, End
Event, Multiple Event, Inner Event and Outer Event.
Upon invocation, this command will query you to
supply infonnation such as the location to begin
tracing, the location to end tracing, the length of
the trace section, etc.

>H
Start Event = event symbol[,switch]
End Event = event-symbol[,switch]
Auto Start ON = switch
Length $ = 1 ength
Multi ON = switch
Freeze OFF = switch
>

event symbol = The symbol name that identifies the
previously defined event point. If a symbol name is
omitted, the ERX supplies its own symbol name (as in
"_1, 1111 _3, 11 etc.)

switch = ON or OFF

length = 1 to 4096 or $

see above

ON enables the particular function, and OFF disables
the particular function.

The length defines the size of the trace buffer,
from 1 to 4096 machine cycles. The 11 $11 instructs
the ERX to use the maximum allowable trace buffer
size for the particular condition.

Creating trigger points for real-time tracing begins
by setting event points and then converting them to
triggers. (See HISTORY Command Examples, a few pages
from here.)

The eight different trace modes were defined at the
beginning of the HISTORY command. Refer to this
information to detennine which mode is correct for
your application and then supply the proper
information as shown on the next few pages.

NOTE: You can also invoke the eight different trace
modes through a macro, just by entering the mode
mnemonic (e.g., EM for End Monitor, BE for Begin
Event, and so on).

101

End Monitor Mode

To select the End Monitor Mode, enter the following
information:

>H
Start Event
End Event
Auto Start
Length
Multi
Freeze

= *,OFF
= *,OFF

ON = ON
$ = $ {4095)
ON = OFF
OFF = OFF

Or, to invoke the macro for this mode, simply enter
EM <CR>. This function duplicates the attributes
listed in the display above.

Begin Event Mode

To select the Begin Event Mode, enter the fol­
lowing information:

>H
Start Event = MAIN .MAIN <-example only
End Event = *,OFF
Auto Start ON = OFF
Length $ = $
Multi ON = OFF
Freeze OFF = ON

Or, to invoke the macro for this mode, simply enter
BE <CR>. This function duplicates the attributes
listed in the display above, however, you must
suppl~ the starting event point after BE (e.g., BE
evntl), and the event point must have been
previously defined with the EVENT command.

103

Multiple Event Mode

To select the Multiple Event Mode, enter the fol­
lowing information:

>H
Start Event
End . Event
Auto Start
Length
Multi
Freeze

= MAIN.MAIN,ON <-example only
= *,OFF

ON = OFF
$ = 256 <--example only
ON = ON
OFF = OFF

Or, to invoke the macro for this mode, simply enter
ME <CR>. This function duplicates the attributes
listed in the display above, however, you must
supply the starting event point after ME (e.g., ME
evntl), and the event point must have been
previously defined with the EVENT command.

Inner Event Mode

To select the Inner Event Mode, enter the following
information:

>H
Start Event = MAIN.MEM LOP,ON <-example only
End Event = MAIN.ME~END,ON <-example only
Auto Start ON = OFF
Length $ = 256 <--example only
Multi ON = OFF
Freeze OFF = OFF

Or, to invoke the macro for this mode, simply enter
IE <CR>. This function duplicates the attributes
listed in the display above, however, you must
supply the event points after IE (e.g., IE
evntl,evnt2), and the event points must have been
previously defined with the EVENT command.

105

Command Example

Outer Event Mode

To select the Outer Event Mode, enter the following
infonnation:

>H
Start Event
End Event
Auto Start
Length
Multi
Freeze

= MAIN.MEM END,ON <-example only
= MAIN.ME~OP,ON <-example only

ON = ON -
$ = $
ON = OFF
OFF = OFF

Or, to invoke the macro for this mode, simply enter
OE <CR>. This function duplicates the attributes
listed in the display above, however, you must
supply the event points after OE (e.g., OE
evntl,evnt2), and the event points must have been
previously defined with the EVENT command.

See "More HISTORY Corrmand Example."

106

>EV
Symbol = T2
Address = lFF/

>ES

>H
Start Event = Tl
End Event = T2
Auto Start = OFF
Length = 256
Multi = OFF
Freeze = OFF

>H/S

>F 100,lFF,OO

>A 200
200 JP 100
203 <er>

>R RESET
>R PC=lOO
>G

>H/D

>STOP
>H/D

108

Here, you are creating a second
event point named "T2" at
address lFFH.

Take a look at the two event
points you just created. They'll
now be used to mark the trigger
points for the real-time trace.
Enter·this data in response to
the ERX. Here, you are estab-
1 ishing event points as trigger
points, and defining how much
activity is stored in the trace
buffer. Once these parameters
have been set, you can examine
the status of the HISTORY
command.

Look to the far right under the
11 H11 and you'll see that the ERX
has now assigned a starting
("S") and ending ("E") trigger
to the event points.

Now, we need some code to
execute.

First, fill a memory range with
NOPs.

Now, assemble a Jump to 100
instruction at the end of the
NOP range.

Reset the registers, initialize
the program counter to 100, and
Go!

You can now examine the program
even though it's running. To
control the scrolling, press the
space bar. To resume emulation,
press the Esc key.

You can also stop program
execution and examine the real­
time trace buffer, directly.
Press the space bar to scroll
through the display; press the
Esc key to exit.

Command

Operation

Syntax

Terms

Syntax Example

Remarks

Conmand Example

ICERESET

Halts emulation and resets the 1/0 of the ERX.

>I CERES

none

see above

This command is different from the STOP command in
that it only halts emulation but does not display
the current status of the registers at the break,
the address of the break, or the instruction just
executed.

>G 100 <--starts program execution
+> <--emulation-in-progress indicator
+>!CERES <--halts emulation
>

109

Cormnand

Operation

Syntax

Terms

Syntax Example

Remarks

Corrrnand Example

IDENTIFICATION

Displays the ERX model and software version.

>ID
none

see above

none

>ID
THE BOX-ER.ICE H064180 Software Version 1.000

This example shows the ERX emulates the H064180
processor and that the software version is 1.000.
(Your software version may be different, depending
on your purchase date.)

110

Corrmand

Operation

Syntax

Terms

Syntax Example

Remarks

Corrmand Example

IF

Allows conditional execution of commands dependent
upon specific register, memory or port contents.
You may also specify arithmetic and bit-wise
operators.

>IF condition

condition = The condition to execute the command,
including:

symbol name
MB (memory address; byte value)
MW (memory address; word value)
PB (port address; byte value)
LOG (logical address)
PHY (physical address)
register name
@n (variable)
!n (character variable)
#STS (status variable)
+,-,*,/,&,1,-,-,==,>,>=,<,<=,<>

>IF @10 == 0

Spacing: A space is required between IF and
condition.

MACRO>IF #STS==O
MACRO> GET #1,!1
MACRO> ELSE
MACRO> LET @1=0
MACRO>ENDl

111

Corrmand

Operation

Syntax

Terms

Syntax Example

Remarks

Conmand Example

JOURNAL

Opens a file for storing all subsequent corrmands
until a NOJOURNAL command is issued. The command
sequences can be recorded to a disk file for later
re-execution as a BATCH file.

>J file_name[.cmd]

file name = The name of the file to store all
subsequent corrmandso

>J TEST

Spacing: A space is required after J.

See Syntax Example, above.

112

Corrmand

Operation

Syntax

Terms

Syntax Example

Remarks

Conmand Example

KEY

Programs the function keys to carry out a command or
series of commands.

Applications Note: The KEY command can be used
to conveniently execute a single command or string
of commands by simply pressing a single function key
(Fl, F2, etc.) If your function keys have be
previously defined for other operations, you can
still use this command to program functions. (See
the FNKEY conmand for more information.)

>K [number="conmand_string"]

number= 1,2,3,4,5,6,7,8,9 or 10

command string = The single command or command
string to program for execution.

K 3=01 100

A single conmand may be prograrrrned to a particular
function key, or a string of commands. A string of
commands may be programmed to a function key by
entering a semi-colon(;) after each command (e.g.,
R RESET;R;G 100).

A "K" followed by a return, displays the command(s)
associated with the function key(s).

Spacing: A space is required between K and "number"
(if a number is used). No spaces are permitted
thereafter.

>K <--displays all previous defined keys
>K 3="H/S" <--programs function key "3" to display

History status
>K 7="R;DI 0 lO;G MAIN.LOOP" <--programs function

key 11 711 to execute
series of corrmands

113

Comnand

Operation

Syntax

Terms

Syntax Example

Remarks

Command Example

LET

The LET command assigns values to variables.

>LET var=val

var/val = symbol name
= MB (memory address; byte value)
= MW (memory address; word value)
= PB (port address; byte value)
= LOG (logical address)
= PHY (physical address)
= register name
= @n (variable)
= !n (character variable)
= #STS (status variable)
+,-,*,/,&,I,-,-,==,>,>=,<,<=,<>

>LET @2=1000H-@2

Spacing: A space is required between LET and "var."
No spaces are permitted thereafter.

MACRO>LET @1=1000
MACRO>LET @2=MB(lOOO)
MACRO>LET !l="This is a message.\n"

114

Corrmand

Operation

Syntax

Terms

Syntax Example

Remarks

Command Example

LOAD

The LOAD command downloads object files from the
host computer in either Intel, Motorola or dump
format. The LOAD corrmand also loads an event file.

>L[/format] [object file name[.abs]]
[,event_file_name[.evtJr-

format = The format of the file, including:

I (Intel-hex)
M (Motorola)
D (dump format)

object file name = The name of the file to download
to the-ERX.-

event file name = The name of the event file to
download to the ERX. (See the EVENT command for more
information on setting and saving events.) Note: An
event file may be loaded without specifying the
object filename. In this case, a comma must be
substituted for the object filename (e.g.,
"L , EVENT. EVT").

>L/M TEST
>L TESTl,EVENTl.EVT

If the format specification is omitted, command
defaults to dump format.

The "format" is not needed if the command is used to
load an event file. (See the EVENT: Save command for
more information.)

Spacing: A space is required after L/format or L and
the next parameter if "format" is omitted.

See Syntax Example, above. The first example shows
how to 1 oad a Motoro 1 a-format fi 1 e named "TEST." The
second example shows how to load an event file.

115

Command

Operation

Syntax

Terms

Syntax Example

Remarks

Command Example

LOG

Opens and records your emulation session to a file.

>LOG filename[.log]

filename = The name of the file to store your
emulation session.

>LOG DEBUGl

Spacing: A space is required between LOG and
fi 1 ename.

See Syntax Example, above.

116

Conmand

Operation

Syntax

Terms

Syntax Example

Remarks

Command Example

LOOP OUT

Breaks out of a loop condition from within a macro
or batch file.

>LOOPOUT

none

see above

none

>LET @FRED=lO
>:LOOP
>D @FRED
>LET @FRED=@FRED-1
>IF @FRED==O
>LOO POUT
>GOTO LOOP

117

Corrmand

Operatfon

Syntax

Terms

Syntax Example

Remarks

Command Example

MACRO

Creates an unlimited number of user-defined commands
that can be locally created and loaded/saved from/to
a disk file.

>MAC macro name

macro name = The name of the disk file to store the
user-aefined commands.

>MAC THEKNIFE

The MACRO command prompts for corrrnand lines until a
blank line is read.

Spacing: A space is required between MAC and
macro name.

>MAC INITL <--creates a macro named "initl"
MACRO>R RESET <--resets the registers
MACRO>R <--examines the registers
MACRO>R PC=l <--changes the pc register to 1
MACRO> <--terminates macro
>
>INITL 1000

118

Corrmand

Operation

Syntax

Terms

Syntax Example

Remarks

MAP

Categorizes the ERX/target system memory functions
as either read/write, read-only, user, or no memory
(guarded access).

Applications Note: This corrmand can be used to
develop your target system's firmware (ROM) by
allowing code in a mainframe to be downloaded to the
ERX, mapped as RO, and tested before being burned
into the target's ROM.

>MA [beg_addr[,end_addr]=area]

beg_addr = The beginning address of mapping.

end addr = The ending address of mapping. (The
endTng address may also be expressed in absolute
number of b~tes from the beginning address; e.g., MA
100,+30=RO.)

area = RO, RW, US or NO

>MA
>MA 1000,lFFF=RW
>MA 150=RO

The mapping granularity is lK-byte blocks.

The MA specification displays the current status
of the memory map.

If the beg addr or end addr does not coincide with
the beginnTng or ending of a lK-block location, the
beginning or ending area is assigned a location that
includes beg_addr or end addr.

Two of the areas, RO and RW, refer to ERX user
memory, and RW gives the user program free access to
this memory. RO enables the user program to read
this memory, but any attempt to write to this area
will be blocked.

US acts as target system memory area (US being RAM,
ROM, 1/0, etc.). NO memory assignment is useful in
debugging by allowing you to create a break in
program execution if an attempt is made to access
this non-existent memory area.

119

ConTiland Example

Special Note: When the ERX boots up, the entire
memory range is mapped as US (user or target system
memory). If you are working without a target
(developing software only), you will need to re-map
the area as read/write (e.g., MA O,lFFFF=RW).

Spacing: A space is required between MA and
beg addr. No spaces are permitted where corrunas act
as separators.

>MA <--displays the status of the memory map
>MA 0,1234=RO <--maps from 0 to 1234H as read-only
>MA 4000=NO <--maps addr 4000H as no memory

120

Command

Operation

Syntax

Terms

Syntax Example

Remarks

Command Example

MDELETE (Macro DELETE)

Deletes a macro loaded within the ER-ICE
environment.

>MD macro name

macro name = The name of the macro to be deleted.

>MD PRO START

Spacing: A space is required between MD and
macro name.

See Syntax Example, above.

121

Corrmand

Operation

Syntax

Terms

Syntax Example

Remarks

Corrunand Example

MLOAD (Macro LOAD)

Loads a macro (or macros) stored in the host
computer.

>ML file_name[.mac]

file name = The name of the macro to load to the
ERX.-

>ML USERMACRO

Spacing: A space is required between ML and
file name.

See Syntax Example, above.

122

Command

Operation

Syntax

Terms

Syntax Example

Remarks

Command Example

MODLEN (MODule LENgth)

Displays or sets the length of module names to be
used on the screen display.

>MOD [length]

length = 0 (default) to 20

>MOD 12

MOD alone displays all module lengths.

Spacing: A space is required between MOD and length
(if length is used).

See Syntax Example, above.

123

Corrmand

Operation

Syntax

Tenns

Syntax Example

Remarks

Command Example

MOVE

Moves the memory contents between different
locations within the ERX, or between the ERX and the
target system.

>M[/N] beg_addr,end_addr,mov_addr[,direct.ion]

N = No verify mode.

beg_addr = The beginning address of data source.

end addr = The ending address of data source. (The
endTng address may also be expressed in absolute
number of bytes from the beginning address; e.go, M
100,+30,1000.)

mov_addr = Beginning address for destination.

direction = UE or EU

M 1000,lFFF,3000,UE

UE means that the source is user (target system)
memory and the destination is ERX program memory. EU
means that the source is ERX program memory and the
destination is user memory. If direction is omitted,
data is relocated within the memory area as
specified by the MAP corrmand.

Spacing: A space is required between M and beg addr.
No spaces are pennitted where commas are used as
separators.

>M 0,100,1000 <--moves range of memory to addr lOOOH
>M 1000,2000,1000,UE <--moves range in target to ERX

addr lOOOH
>M/N 1000,2000,1000,EU <--moves range in ERX to

target at addr 1000 but
does not verify the move

124

Command

Operation

Syntax

Terms

Syntax Example

Remarks

Col'Tl1land Example

MSAVE (Macro SAVE)

Saves a macro to a file in the host computer.

>MSA file_name[.mac]

file name = The name of the macro file.

>MSA USER MACRO

Spacing: A space if required between MSA and
file name.

See Syntax Example, above.

125

Command NOJOURNAL

Operation Terminates corrmand journaling.

Syntax >NOJ

Terms none

Remarks none

Command Example See Syntax Example, above.

127

Conmand NO LOG

Operation Terminates emulation loggingo

Syntax >NOL

Terms none

Remarks none

Command Example See Syntax Example, above.

128

Command

Operation

Syntax

Terms

Syntax Example

Remarks

Corrmand Example

OPEN

Opens a file in the host computer for reading or
writing.

>OPEN #file_no,file_name,mode

#file no = The number of the file to open.

file name = The name of the file to open.

mode = R or W

>OPEN #1,TEXTl.DOC,R

R means open the file for reading; W means open the
file for writing.

Spacing: A space is required between OPEN and
#file no. No space are pennitted where commas are
used as separators.

See Syntax Example, above.

129

Command

Operation

PERFORMANCE

Records and displays the total emulation time, the
number of event points passed during program
execution, the time duration between event points,
the average time of each event duration and the
percentage of total event duration as compared to
total emulation time.

Applications Note: The Performance function is
useful for determining how much time was spent
within a particular routine. The procedure would be
to set event points at the addresses that mark the
beginning and ending points of a particular sub­
routine or all the subroutines, run the program, and
then analyze the total and average time spent within
these sections.

NOTE: The PERFORMANCE command works alongside the
EVENT command. As with the COVERAGE, HISTORY and
TRIGGER commands, you must first create an event
point (or event points), along with their
attributes {location, data value, memory type,
etc.), and then direct the event as a trigger using
the PERFORMANCE: Specification co!Tllland.

The following shows the order of command
implementation for using the Performance function:

1. EVENT {Sets two, or more, events according to
symbol name and address parameters. Optionally
includes data or memory type, etc.)

2. BREAKPOINT {Optional. Terminates program
execution after passing the event points. You can
also issue a STOP co!Tllland to terminate program
execution.)

3. PERFORMANCE: Specification (Directs the event
points to act as triggers for the Performance
function.)

4. PERFORMANCE: Status {Allows you to view the event
points, along with their attributes, that will be
used to trigger the Performance function.)

5. GO {Commences program execution.)

6. PERFORMANCE: Display {Allows you to view the
results of the Performance function.)

131

There are three PERFORMANCE commands available:
Status, Specification and Display. The PERFORMANCE:
Status conmand shows which event points have been
designated as triggers for use by the Perfonnance
function. The PERFORMANCE: Specification command
specifies the event points (by their symbolic
names) that mark the beginning and ending
location for the Perfonnance function. The
PERFORMANCE: Display command shows the results
(in percentage fonnat) of the Perfonnance
function.

The PERFORMANCE: Display command reveals the
following infonnation:

Total Emulation Time = OH: OM: OS: oooooous
Number of Event Occurrence = 0
Time of Event Duration = OH: OM: OS: oooooous
Average Time
Time Percentage

= ----H: --M: --S: ------US
= ---.--%

NOTE: All time values are expressed in hours,
minutes, seconds and microseconds. Events are
expressed in positive integers. Time percentage
expresses total event duration compared to emulation
time.

132

Corrmand

Operation

Syntax

Terms

Syntax Example

Remarks

Command Example

PERFORMANCE: Status

Displays the status of the Performance function.
This command allows you to view the event points
(along with their attributes) that have been
designated as triggers for the Performance function.

>PE

none

see above

To see the contents of the Status command, you must
first create event points and then direct them to
act as triggers through the PERFORMANCE:
Specification command.

See "More PERFORMANCE Command Examples~"

133

Corrmand

Operation

Syntax

Terms

Syntax Example

Remarks

Command Example

PERFORMANCE: Specification

Directs previously defined event points to act as
triggers for the Performance function. Only event
symbol names can be used.

>PE S=beg_event[,switch],E=end_event[,switch]

beg event = The name of the event point to initiate
the-Performance function.

end event = The name of the event point to terminate
the-Performance function.

switch = ON or OFF

>PE S=trigl,trig2

ON unmasks the associated function, and OFF masks
the associated function. You do not need to enter ON
to enable the function, only to unmask it from a
masked state.

Spacing: A space is required between PE and S. No
spaces are permitted where conmas are used as
separators.

>PE S=&l,E=&2
>PE S=&l,OFF,E=&2,0FF
>PE S=&l,ON,E=&2,0N

The three examples above show how two event points
are directed as triggers, temporarily masked, and
finally unmasked.

A 1 so see, "More PERFORMANCE Command Ex amp 1 e."

134

Command

Operation

Syntax

Terms

Syntax Example

Remarks

CorT111and Example

PERFORMANCE: Display

Displays the total emulation time, the number of
event points passed during program execution, the
time duration between event points, the av·erage time
of each event duration and the percentage of total
event duration as compared to total emulation time.

>PE/D

none

see above

This command is viewed after first defining the
trigger points for the Performance function, running
the program, and then terminating its execution.

See, "More PERFORMANCE Corrmand Example."

135

>ES

>PE S=TR1,E=TR2

>PE
>ES

>G 100

>PE/D

137

Now, examine the display to see
the event symbol names and their
locations.

This command allows the two
event points to serve as
triggers for the Performance
function.

Now, check these two displays to
confirm the settings you just
made. Notice the "S" and 11 E11

under the 11 P11 in the second
display. This indicates the
starting and ending points of
the Performance function.

Begins program execution. Once
the program breaks, you can then
view the information contained
in the Performance Display.

Displays the total emulation
time, the number of event points
passed during program execution,
the time duration between event
points, the average time of each
event duration and the
percentage of total event
duration as compared to total
emulation timeo

Corrmand

Operation·

Syntax

Terms

Syntax Example

Remarks

Command Example

PIN

Masks or unmasks selected input signals. Also allows
you to view the status of a single pin or all the
pins.

>PI [[signal]=switch]

signal =RESET, NMI, INTO, INTl, INT2, BUSRQ,
DRQO, DRQl, ALL

switch = EN or DI

PI NMI=DI

EN is used to unmask the associated signal, and DI
is used to mask the associated signal.

PI alone, allows you to examine the status of all
pins. PI signal allows you to examine a specific
signal. -

Spacing: A space is required between PI and the next
parameter.

>PI <--displays Pin command status
>PI NMI <--displays status of NMI pin
>PI NMI=DI <--masks NMI pin
>PI INTO=EN <--unmasks INTO pin
>PI ALL=DI <--masks all pins

138

Corrmand

Operation

Syntax

Terms

Syntax Example

Remarks

Command Example

PORT

Examines one or more I/O port locations and option­
ally modifies them. The locations can be displayed
and replaced with either hexadecimal or ASCII
values.

>P[/NOR] port_addr[=mod_data]

NOR = Write to port only, do not read back.

port_addr = Starting address for display.

mod data = New data for this location.

>P 1000=20

If mod data is omitted, the command enters a repeat
mode tnat allows several locations to be changed.
The repeat mode includes: c.

return (er) to display the next byte of data;
comma (,) to display the same byte of data;
caret (-) to display previous byte of data;
slash (/) to exit the PORT command.

Spacing: A space is required between P and port addr
(if /NOR is omitted) or between P/NOR and port addr.
No spaces are permitted thereafter. -

>P 12 <--start by examining port #12
0012 12=23, <--change value to 23; re-examine
0012 12= <--leave value unchanged; go to next addr
0013 00= <--leave value unchanged; go to next addr
0014 14='21' <--change value; go to next addr
0015 00=34- <--change value; go to previous addr
0014 14=00/ <--change value; exit command

139

Command

Operation

Syntax

Terms

Syntax Example

Remarks

Command Example

PROMPT

Alters the ER-ICE prompt to any alphanumeric
character string.

>PRO [string]

string = The name of the new ER-ICE prompt.

>PRO DEMO

Spacing: A space is required between PRO and string.

>
>PRO NEWPROMPT
NEWPROMPT>

140

Corrmand

Operation

Syntax

Terms

Syntax Example

Remarks

Conmand Example

PUT

Writes the variable contents to a file.

>PUT #file_no[,expression]

#file no = The number of the file to store the
vari aDl e contents.

expression = Literal expression or a variable.

PUT #5, ! 2

A space is required after PUT. No spaces are
permitted where conmas are used as separators.

Spacing: A space is required between PUT and
#file no. No spaces are permitted where commas are
used as separators.

>LET @2,"abcdefghi\n"
>PUT #1,@2
>GOTO FILE CLOSE

141

CorT111and

Operation

Syntax

Terms

Syntax Example

Remarks

Conrnand Example

QUIT

Terminates ER-ICE and returns control to DOS.

Q

none

see above

none

>Q
Exiting ERX
DOS>

142

Command

Operation

Syntax

Terms

Syntax Example

Remarks

Corrvnand Example

REGISTER

Displays the status of a register or all the
registers, and optionally modifies the register(s)
contents.

>R [reg[=data]]
>R RESET

reg = Any one of the following registers:

A B c D E H L
BC DE HL IY IY SP F
A' B' C' D' E' H' L'
AF' BC' DE' HL' F'
PC s z HC PV N CY
I IFF IO CL BL CB BB

data = New value for register contents.

RESET= Resets the registers to their initialized
values.

R PC=lOOO

R alone, examines the values of all the registers.
R reg examines the value of a specific register.
R RESET initializes all the registers.

If data is omitted, the command enters a repeat mode
that allows several locations to be changed. The
repeat mode includes:

return (er) to display the next byte of data;
comma (,) to display the same byte of data;
caret (-) to display previous byte of data;
slash (/) to exit the PORT command.

Spacing: A space is required between R and the next
parameter; no spaces are permitted thereafter.

>R <--displays registers' contents
>R RESET <--initializes all the registers
>R BB=llll <--changes BB to 1111
>R PC <--examines/allows changes from register 11 PC 11

PC lOOO=lFFF
A FF=55
B 00=- <--display previous register
A 55=- <--display previous register
PC lFFF=/ <--"slash" terminates entry

143

Command

Operation

Syntax

Terms

Syntax Example

Remarks

Conmand Example

REM

Allows you to insert conments into batch files. _

>REM [corrrnent]

comment = The comment to insert into the batch file.

>REM THIS IS A COMMENT

Spacing: A space is required between REM and the
comment.

>MAC TEST
MACRO>REM ****TEST MACRO PROGRAM ****
MACRO>CPUT "Test Ok!! \n"
MACRO>
>ECHO ON
>TEST
REM ****TEST MACRO PROGRAM ****
CPUT "Test Ok!! \n"
Test Ok!!
Macro TEST completed.
>ECHO OFF
>TEST
Test Ok!!
>

144

Corrmand

Operation

Syntax

Terms

Syntax Example

Remarks

Command Example

REPEAT

Repeats a conmand or series of commands "x" number
of times.

>REPEAT [num]

num = The number of time to repeat.

>REPEAT 5

Spacing: A space is required between REPEAT and num.

>MACRO TEST
MACRO>REPEAT 5
MACRO> CPUT 11 *11

MACRO>ENDR
MACRO>REPEAT 5
MACRO> REPEAT 10
MACRO> ENDR
MACRO> CPUT 11 * 11

MACRO>ENDR
MACRO>CPUT "\N"
MACRO>
>ECHO OFF
>TEST

>

145

Command

Operation

Syntax

Terms

Syntax Example

Remarks

Command Example

RESET

Resets the 1/0 of the target system via the ERX.

>RES

none

see above

When used singularly, the RESET corrmand initializes
the target system 1/0, only. When the RESET command
is used with the REGISTER command, it can initialize
the processor's registers as well.

See Syntax Example, above.

146

Cof11Tland

Operation

Syntax

Terms

Syntax Example

Remarks

Conmand Example

SAVE

Saves an Intel, Motorola or dump format file to the
host computer.

>SA[/format] filename[.abs],beg addr,end addr
[,start_addr] - -

format = The format of the file, including:

I (Intel-hex)
M (Motorola)
D (dump format)

beg_addr = First address to save.

end addr = Last address to save. (The ending address
may-also be expressed in absolute number of bytes
from the beginning address; e.g., SA TEST,0,+30.)

start_addr = Starting address of the user program.

>SA TEST,0,1000,0

Spacing: A space is required between format and
filename (if format is included). No spaces are
permitted where conmas are used as separators.

>SA FRED,100,+40,800 <--saves file named "fred"
to address 800H

>SA/M SAM,OFF,3FF <--saves a Motorola-format file
named "sam"

147

Conmand

Operation

Syntax

Terms

Syntax Example

Remarks

ColllTland Example

SHELL

Allows a DOS shell to be run while preserving all
S)TTlbols and the ER-ICE environment.

>SHE

none

see above

none

>SHE
DOS)dir a:

0 .
DOS>exit (returns to ER-ICE)
>

150

Conmand

Operation

Syntax

Terms

Syntax Example

Remarks

Conmand Example

STEP

Allows you to step through program execution in non­
real time either by examining every line from the
current pc or examining only Jump instructions.

>S[/J] [step]

J = Display only Jump instructions.

step = 1 {default) to 65535 or $ {continuous)

>S 10

When the registers' contents are displayed as a
series of periods {), it indicates that the
contents of the registers are unchanged. The
registers' contents are displayed fully, however, at
least once every 11 lines.

This conmand displays items on a line-for-line
basis. To control the scrolling of the display,
alternately press the space bar. To exit the
display, press the Esc key.

Spacing: A space is required between S/J and step or
S and step.

>R RESET
>STEP <--displays a single instruction line
>STEP/J 2 <--displays two Jump instruction lines
>R RESET
>STEP 4 <--displays four instruction lines

151

Command

Operation

Syntax

Terms

Syntax Example

Remarks

Command Example

STOP

Breaks program execution that was previously
initiated with the GO command.

>STD

none

see above

When STOP is entered, the ERX breaks program
execution and also displays the contents of the
registers and the address where the program broke.

>GO
+)
+>STO

registers' contents .•.

<Break>

>

152

Cormiand

Operation

Syntax

Terms

Syntax Example

Remarks

Corrmand Example

STUB (SubsTitute sUBroutine)

Substitutes an ERX cormiand for a subroutine that has
yet to be developed. In this way, a program that
calls a subroutine will be supplied an ERX command
in order to verify that the subroutine call
occurred.

>STUB [address, 11 corrmands 11
]

>STUB address=switch

commands =The name(s) of the ERX command(s).

address = The address where the STUB is located.

switch = ON, OFF or CLR

>STUB SIO_PORT,"EX BUFF_1=41;EX BUFF_2=42 11

STUB alone, displays the status of the STUB commando

ON enables the function at the address specified,
and OFF disables or masks the function at the
specified address.

Spacing: A space is required after STUB and before
the next parameter. No spaces are permitted where
corrmas act as separators.

>STUB <--displays the status of the Stub command
>STUB PIO PORT,"BAT CLR" <--executes batch command
>STUB l001J, 11 DI;R;PIN;G 11 <--executes command series
>STUB lOOO=OFF <--disables Stub at addr lOOOH

153

Corrmand

Operation

Syntax

Terms

Syntax Example

Remarks

Corrmand Example

TRIGGER

Enables the output of an external trigger from the
ERX when a designated symbol is encountered during
program execution. The EXT.TRG. probe line on the
ERX carries the signal (see "More About Your ERX" in
Section 1).

>TRI [event_symbol[=switch]]

event_symbol = The name of event point to trigger
on.

switch = ON or OFF

>TRI EXTTRIG=ON

The event point must first be created by the EVENT
command and then converted to a trigger point by the
TRIGGER corrmand. (See the EVENT corrmand for more
information.)

Entering TRI alone, displays the status of the
TRIGGER corrmand. (You can also view the trigger
points by using the EVENT: Show command.)

Wildcard characters (*) may be used in place of
specific names or addresses (e.g., TRI Tl.*=ON).

Spacing: A space is required after TRI. No spaces
are permitted thereafter.

>TRI <--displays status of Trigger command
>TRI MAIN <--specifies "main" S}111bol as external

trigger
>TRI &34=0N <--enables 11 &34 11 as an external trigger
>TRI PORT.*=OFF <--masks all "port•• symbols from

external trigger recognition

155

Conmand

Operation

Syntax

Terms

Syntax Example

Remarks

Conmand Example

VERIFY

Compares an Intel, Motorola or dump format file in
the host computer to a file in ERX memory and
acknowledges the match, if any. If the match is
exact, only the heading is displayed. If the data is
a mismatch, the file data and memory data for the
mismatching address locations is displayed. If the
file doesn't exist, an error message is displayed.

>V[/format] filename[.abs]

format = The format of the file, including:

I (Intel-hex)
M (Motorola)
D (dump format)

filename = The name of the file to compare.

>VII TEST.HEX

The default format is Dump.

The parameters for the VERIFY command are similar to
the LOAD command, with the exception that the VERIFY
corrmand does not alter memory but only compares the
memory contents.

Spacing: A space is required before filename.

>V/D LOOP.ABS
Address File Memory <--acknowledges exact match

>V/D MEMREG.ABS
Address File Memory <--shows mismatching data and

0201 00 10 the location(s) where the
0202 00 FF mismatch occurs
0203 C3 01

>V/D BOGUS.FIL
ER-ICE : No object record in object file. <--could

not
file

156

Conmand

Operation

Syntax

Terms

Syntax Example

Remarks

Corrmand Example

WAIT

Used within a batch file, this corrmand suspends the
execution of batch commands during emulation until a
breakpoint is encountered. When a break occurs,
emulation stops and the next batch command is
excuted.

>WAIT

none

see above

none

>G <--runs sample program
+>
+>D 2000,20FF <--program attempts to invoke·a

memory dump but can't because
emulation is still in progress

0 2 4 6 8 A C E ASCII CODE
2000
ER-ICE: Emulation Busy.
+>STOP <--emulation manually halted

>B 100,,3 <--breakpoint inserted to halt emulation
>R RES
>G/W (or G;W) <--GO with WAIT inserted

The display above shows the usefulness of the WAIT
corrmand. Without it, the DUMP conmand (the next
conmannd to implement in the batch file) could not
have been executed while the ERX is emulating. To
use the Wait feature, a breakpoint was set at
address 100, the registers were reset, and the
program was rerun with a GO/WAIT command. The
program would now wait until the breakpoint was
executed before invoking the memory dump.

157

Corrmand

Operation

Syntax

Terms

Syntax Example

Remarks

CoITTTiand Example

WHILE

Repeats a command or a block of commands as long as
a specified condition remains logically true.

>WHILE exp

exp = symbol name
= MB (memory address; byte value)
= MW (memory address; word value)
= PB (port address; byte value)
= LOG (logical address)
= PHY (physical address)
= register name
= @n (variable)
= !n (character variable)
= #STS (status variable)

+,-,*,/,&,I,-,-,==,>,>=,<,<=,<>

>WHILE mb==ll

Spacing: A space is required between WHILE and exp.

>WHILE @2==0

>ENDW

158

Command Syntax Summary

ABASE
>AB [base l,base 2]
*>AB O,B - -

AMAP
>AM

ASSEMBLE
>A mem addr <CR>
xxxxx xxxx {Assembly code} <CR>
xxxxx xxxx <CR> >
*>A 1000

01000 1000 beg_prog <CR>
01001 1001 <CR>

BATCH
>BA file name[.cmd]
*>BA setup.1

BEEP
>BEEP

BREAK
>B
>B address[,status][,passcount]
>B/R beg addr,end addr[,status][,passcount]
>B event-symbol[=switch]
>B/M beg-sym name/line,end sym name/line[=switch]
*>B 100,MR,3- - -
*>B/R 100,0BFF,MR,3
*>B evntl
*>B/M routl,rout2

CALCULATE
>C exp#l +,-,*,/ exp#n
*>C 123+0FFH

CGET (Console Get)
>CGET [value]name
*>CGET !FRED

CLOCK
>CLO [clock mode]
*>CLO 4 -

CLOSE
>CLOSE #file no
*>CLOSE #1 -

COMPARE
>CO beg addr,end addr,cmp addr[,direction]
*>CO 0,2FF,500,UE -

159

COVERAGE
>COV/CL [beg addr[,end addr]]
»COV/S [status] -
>COV[/disp] [beg addr[,end addr]]
*>COV/CL 0,lFF - -
*>COV/S MW
*>COV/U 100,?FF

CPUT (Console Put)
>CPUT [value]name
*>CPUT !store

DEFM (Default Module)
>DEFM [def mod name]
*>DEFM MAIN -

DISASSEMBLE
>DI [beg addr][,end addr]
*>DI STATlr,START+20'H

DISPLAY
>DISP [switch]
*>DISP ON

DUMP
>D[/length] beg addr[,end addr]
*>D/W 100,lFF - -

ECHO
>EC switch
*>EC OFF

EMSELECT (Emulation Method Select)
>EMS [select][=switch]
*>EMS C=EN

EOF (End Of File)
>EOF #file no,@ret value
*>EOF #1,@T -

ERX
DOS>ERX [batch file[.cmd]]
*DOS>ERX SETUP-

EVENT
>EV

ESAVE (Event Save)
>ESA file na~e[.evt]
*>ESA EVOOl

160

EDELETE (Event Delete)
>ED [beg addr/beg sym name/line][end addr/end sym name/line]
>ED start,end -- - - - -

ESHOW (Event Show)
>ES [beg addr/beg sym name/line][end addr/end sym name/line]
*>ES 1000,3000 - - - - -

EXAMINE
>E[/length][/N] beg_addr[=mod_data]
*>E/W 100=5555

EXECUTE
>EXEC dos command
*>EXEC TYPE DEMO.lST

FILL
>F[/length][/N] beg addr,[end addr],data
*>F 100,0FEF,55 - -

FNKEY (Function Key)
>FN number
*>FN 4

GET
>GET #file no,[value]variable
*>GET #1,!variable

GO
>G [beg addr][,end addr]
*>G 100- -

GOTO
>GOTO label
*>GOTO LABEL 1

HELP
>HE [COITITland]
*>HE FILL

HISTORY
>H
>H/S
>H/SI
>H/mode[,int point][,tenn_point][,A=address][,ST=status][,D=data]
*>H/M,200,100,A=lOO,D=OO

ICERESET
>I CERES

IDENTIFICATION
>ID

161

MSAVE (Macro SAVE)
>MSA file name[.mac]
*>MSA USER MACRO

MSHOW (Macro SHOW)
>MS

NOJOURNAL
>NOJ

NO LOG
>NOL

OPEN
>OPEN #file no,file name,mode
*>OPEN #1,ltXTl.DOC-;R

PAUSE
>PAUSE

PERFORMANCE
>PE
>PE S=beg event[,switch],E=end event[,switch]
>PE/D - -
*>PE S=&l,E=&5
*>PE S=&l,OFF,E=&5,0FF

PIN
>PI [[signal]=switch]
*>PI NMI=DI

PORT
>P[/NOR] port addr[=mod addr]
*>P 1000=20 - -

PROMPT
>PRO [string]
*>PRO DEMO

PUT
>PUT #file no[,expression]
*>PUT #5, 11

-

QUIT
>Q

REGISTER
>R [reg[=data]]
>R RESET
*>R PC=lOOO

REM
>REM [comment]
*>REM THIS IS A COMMENT

163

REPEAT
>REPEAT [num]
*>REPEAT 5

RESET
>RES

SAVE
>SA[/format] filename[.abs],beg addr,end addr[,start addr]
*>SA TEST,0,1000,0 - - -

SCOPE
>SCO [number]
*>SCO 5

SEARCH
>SE[/length][/D] beg addr,[end addr],search data
*>SE/B 100 ,5FF, - - -

SHELL
>SHE

STEP
>S[/J] [step]
*>S 10

STOP
>STO

STUB (SubsTitute sUBroutine)
>STUB [address, 11 commands 11

]

>STUB address=switch
*>STUB SIO_PORT,"EX BUFF_1=41;EX BUFF_2=42"

SYMLEN (SYMbol LENgth)
>SYM [number]
*>SYM 12

TRIGGER
>TRI [event symbol[=switch]]
*>TRI EXTTRTG=ON

VERIFY
>V[/format] filename[.abs]
*>V/I TEST.HEX

WAIT
>WAIT

WHILE
>WHILE exp
*>WHILE mb==ll

Note: 11*11 denotes command example.

164

SECTION 3 TECHNICAL REFERENCES

NOTE: THIS SECTION IS STILL UNDER DEVELOPMENT. IT
WILL BE COMPLETED THE FIRST QUARTER OF 1988.

165

166

APPENDIX A

PC Makes The
Ideal Manager

IN-CIRCUIT EMULATORS SPEARHEAD THE NEW
MICROPROCESSOR DEVELOPMENT SYSTEMS

by Mark D. Johnson

Although turnkey microprocessor development
systems have been available for about a decade now,
the new integrated microprocessor development
systems (MOS) used for testing, debugging and
integrating both hardware and software designs have
only recently become a common sight in the design
engineer's lab.

The new MOS, with its unbundled structure, is a
multi-component, multi-vendor system pieced together
by the user. It is the latest, and least expensive,
approach to implementing and automating the design
of microprocessor-based systems. These open­
architecture development systems - designed to be
compatible with existing development equipment - are
the newest and fastest growing design aids that are
more than adequately competing with the turnkey
development systems supplied by the chip
manufacturers themselves.

The latest tri-based systems incorporate a host
computer, development software and diagnostic tools
such as logic state analyzers and emulators. Of
these components, it is the emulator that transposes
the run-of-mill computer system into a full-fledged
microprocessor-based development system for managing
a project from the software coding phase right
through to hardware/software integration and final
testing.

What makes the new MOS so popular? Primarily,
its low cost. By utilizing existing resources in
their labs, engineers can now integrate the
development software and diagnostic tools needed to
form a complete MOS, while saving thousands of
dollars over the price of dedicated systems.

The heart of the MOS is the management unit -
the host computer. The host computer provides
control for the system, acts as a pipeline to
development software and provides mass memory
storage. In the past, mainframe micro computers were
the accepted standard for project control, but with
the new MOS, this expense far outweighs the costs of

167

Emulation vs
Simulation

the rema1n1ng components. The most attractive
alternative is the IBM personal computer -
indisputably the design engineer's favorite choice
in a personal computer. Other PCs can be utilized,
but the IBM PC is really the key to the flexible MOS
as other market leaders continue to tailor their
software products and diagnostic tools to IBM's
architecture.

Using the IBM PC, design engineers can now tap
an extensive line of development software products
for generating source code and compiling complete
programs. This development parallels the
longstanding ability of progra1TUTiers to incorporate
the use of assemblers, compilers, linkers, loaders
and editors as software development tools.

The remaining members in the MOS structure are
diagnostic tools; specifically, logic-state
analyzers and in-circuit emulators. When the
hardware prototype is constructed, it must be tested
to detennine whether the actual operation in real
life is within the hardware specifications. This is
where specialty diagnostic tools become a necessity,
as they have the capability to monitor signals from
the microprocessor and peripheral circuits. Since
there are numerous microprocessor signals which
require simultaneous monitoring, the use of an
oscilloscope {capable of monitoring only a few
signal lines) would be impractical for keeping track
of all the necessary signals. This is where the
logic state analyzer and emulator play such a vital
role.

A logic state analyzer {LSA) can vary from a
simple {where some indication of a single multi­
signal state is needed) to a very sophisticated
device which can store several multi-signal states
and display the results in various forms - even
showing the instruction mnemonics. LSAs, however,
lack the one feature available on virtually
every emulator - the ability to "loan" resources.
Thus, the emulator is an advance over the LSA
because it pennits the use of the more sophisticated
facilities of the LSA, combined with the ability to
transfer blocks of memory between the prototype and
the· emulator, and then modify the memory by
categorizing it as read-only, read/write, and so on.

Another popular configuration ties an LSA
directly to an emulator. The combination merges a
logic analyzer's sophisticated trigger,
qualification, data-acquisition, and measurement
capabilities with an emulator's debugging and loan
facilities. The emulator/LSA interface pennits
simultaneous control .and monitoring of the prototype
system under development.

168

Mimicking The
Prototype

For all their testing, debugging and management
capabilities, emulators remain the most
misunderstood and often intimidating devices
associated with the MOS. Part of the mystique arises
from their functionality {the ability to monitor as
well as execute), part from the lack of application
information (often vague and incomplete), and part
from their control mechanism (emulators need to be
told what to do and how to do it by a set or series
of complicated and often confusing instructions.)
Couple these problems with the fact that there are
several different system configurations, all
requiring a particular compatibility formula, and
it's no wonder designers turn to the single-vendor
development systems. Fortunately, however, the
situation is changing for the better, since vendors
are beginning to coordinate various manufacturers'
equipment and development packages for their users.

Emulation is the result of replacing the
microprocessor in a prototype design with a piece of
test equipment which incorporates an identical
microprocessor to that found in the prototype. The
strategy behind this exercise is to provide the test
equipment with all the functions of a particular
microprocessor, along with capabilities which assist
in the integration of the prototype's hardware and
software components. In a real-world testing
environment, the emulator is attached to prototype
circuitry by replacing the microprocessor with a
multi-pinned header plug with the same pin
configuration as the processor's. Thus, in its
simplest operating mode, the emulator "tricks" the
prototype into thinking nothing has changed with its
relationship to the microprocessor. The prototype
can then execute its functions while being monitored
by the emulator.

The basic components of all emulators are very
similar, usually consisting of a mainframe chassis,
individual control and memory circuit boards,
intennediary circuitry, and an isolated power
supply. The controls and components on an emulator's
external casing can range from virtually non­
existent - where control and indication is regulated
to an external tenninal - to those possessing
complete keyboard facilities, control switches and
even an EPROM socket. The physical size of an
emulator is usually dictated by the amount of
resident memory it contains, the control and
indication mechanisms, its emulation probe
arrangement and the sophistication level of its
debugging facilities.

169

Emulator Supplies
The Speed

The emulator's microprocessor, which permits
the actual emulation of the prototype hardware, is
located on the emulation board or emulation pod. The
board typically contains an emulation probe (or the
means of attaching one), which connects the
emulator's microprocessor to the prototype. The
connection between the prototype and the emulator is
necessary for hardware development but is not needed
for software debugging and testing.

Although apparently simple in its construction,
the design of the probe is critical if transparent
emulation is to occur. (Transparency is the ideal
emulation condition in which the operation of the
prototype is unaffected when the emulator
substitutes the-microprocessor. An emulator should
make no demands on any part of the prototype's
resources such as interrupts and memory allocation,
and the emulator should resemble as closely as
possible the microprocessor's characteristics such
as timing and clock speed.) Ideally, the emulation
cable represents a compromise between user
convenience and minimizing the propagation delays
and capacitive loading that the length of cable
introduces. Some emulator vendors try to eliminate
the latter by locating the emulated processor in a
pod positioned both physically and electrically as
close to the prototype's socket as possible -
sometimes a mere inch away. While this arrangement
minimizes propagation delays, there are some
disadvantages such as a bulkier probe design
(especially when interfacing to pre-constructed
designs) and the necessity for a larger buffer board
within the emulator. If clock speeds are kept under
10 MHz, this type of cable provides virtually
transparent emulation. If speeds are faster, the
microprocessor pod arrangement is preferable.

An em~lator's resident memory is composed of
high-speed static RAM, which is fast enough (i.e.,
sufficient access time) such that the program can
run at the same speed as if the prototype were
supplying the memory. High-speed static memory also
eliminates the need for the emulator to insert wait
states when accessing the memory. Emulators
typically contain between 32 and 128 kbytes of
internal RAM, and nearly all emulators allow
expansion to larger memory resources (some to
16 Mbytes via off-board memory modules or by
accessing a portion of prototype memory.

170

Emulators can also allocate their memory to the
prototype (or any location within the addressable
memory space) in specified byte blocks. For an
emulator featuring 64 kbytes of memory, the block
size (resolution) is typically 1 kbyte. The
resolution for a given emulator usually varies with
the amount of memory available, with 2- or 4-kbyte
sizes popular with emulators that have a memory
capacity of 128 kbytes to 1 Mbyte. ~hen resolution
falls below the 1 k-byte block size, it often
becomes too "fine," which necessitates several
allocating operations. The opposite condition,
"coarse" resolution, makes it impossible to
accurately emulate prototype systems incorporating
limited memory chips. Most vendors seem to agree on
confining resolution capacities to between lK and 4K
bytes.

Since the allocated memory should have the same
design characteristics of memory that will
eventually exist in the final design, mapping is
used to categorize the type of emulation memory that
will be allocated to the prototype. Most emulators
allow their resident memory to be specified as read­
only and read/write, and some add a "user" memory
specification (user being RAM, ROM, I/0, etc. -
whatever resides at those memory locations in the
prototype). A few emulators provide a "no memory"
mapping option, where any memory not mapped as
read/write or read-only is assumed to be non­
existent prototype memory. This type of mapping
turns out to be a very useful provision in software
debugging since a common result of prograrmring error
is an attempted access to an area where no memory is
present. During emulation, the recognition of an
attempted access to a protected memory area results
in a program halt.

The ability to loan memory to the prototype
design is what sets the emulator apart from an
ordinary computer system, but emulators can also
manage several other memory functions. Most
emulators feature an in-line assembler which
converts the mnemonics entered from the keyboard to
machine language in memory. The emulator's assembler
is useful for writing software patches into program
code that has either been downloaded from a
mainframe or developed in the prototype. Programmers
can also use the assembler for writing their own
routines or developing small programs.

171

Breakpoints To
Stop, Trigger To
Flag

Another memory control feature is the ability
to display the emulator's memory contents (starting
and ending anywhere that the user chooses). The
ability to change the memory contents at individual
locations and fill entire sections of memory with
specified data is also available. Another memory
control involves comparing specified blocks of
memory with other blocks in the emulator's memory or
with block~ residing in the prototype. The
comparison can show all the matching or non-matching
data and their locations. Instead of a complete
block of memory, the emulator may also locate
specific data in its memory or the prototype memory.

The key to effective program control is
installing breakpoints and triggers within the user
program so the emulator may show the condition on
the processor's address, data, and control lines.
Both software and hardware breakpoints are available
within a given emulator, and each have their own
functioning scheme. Triggers provide the emulator
with "sensors" that can be used to initiate program
recording (via the trace mechanism), tenninate the
program recording, or simply detect both operations.

Software breakpoints replace program
instructions with monitor calls in order to stop
program execution at a pre-detennined location.
Setting a software breakpoint causes the emulator to
automatically replace the op code at the specified
address with the processor's software interrupt
instruction. When the code is encountered during
program execution, a temporary break occurs while
the original content~ are replaced by the interrupt
instruction; then the execution restarts at the same
location (this causes the program to only run in
real time up to the breakpoint). Software
breakpoints are limited to address recognition only
- there is no way for a software breakpoint to
decipher between memory types.

Hardware breakpoints, which recognize machine
cycles but do not disturb nonnal software execution,
can monitor the address and status signals for a
specified condition (for example, a memory read
operation at address IOOOH) and halt program
execution when those conditions are met. Emulators
allow several bus transactions to be monitored for
program breaks including accessing any memory
operation, accessing any I/0 operation, memory
reads, memory writes, I/0 reads, I/0 writes,
operation instruction fetches and interrupt

172

Real-Time Trace
Stores Program
Execution

acknowledgment. When a break condition occurs, most
emulators ca stop the program being executed and
display the c~rrent contents of the microprocessor's
registers, the instruction just executed, the
location of the instruction and the reason the
program was halted.

Triggers can be used to initiate actions during
emulation or simply observing them and relay the
pertinent information to other devices. For example,
a trigger which is set in the program (according to
address location, data type or bus transaction) and
encountered during emulation may be used to halt
program execution in a manner similar to a normal
hardware breakpoint. But triggers are more flexible
than breakpoints in that they may be specified to
merely observe the pre-defined condition and act
without disrupting the program being executed.

Breakpoints and triggers come together under
the debugging capability called real-time tracing.
The real-time trace feature allows a user to record
program execution in real time and then analyze (by
replaying) a section of the program in non-real­
time. The entire program can be traced (and
reviewed), or just a portion - depending on your
strategy. By using various combinations of triggers
and breakpoints, the desired section where a
potential problem exists can be recorded. The
program can then be stopped, and the address, data
and control lines of the latest series of machine
cycles can be displayed or dumped to a printer for
examination.

The trace buffer size of an emulator is
determined by its width and depth. An emulator's
trace buffer should be wide enough to accommodate
the processor's address and data lines and possibly
a few external lines. Typically, emulators offer
between 32 and 64 bits of width. Some universal
emulators, designed to work with several different
processors, feature extremely wide trace buffers for
allocating the various address, data, status and
external lines for the entire line of processors
supported.

When it comes to trace buffer depth (i.e., how
many cycles of machine cycle execution the buffer
can hold), larger is not always better. If the size
is fixed at a large depth, problems may exist when
sifting through all the information accumulated in
the buffer. Conversely, if the buffer is too small,

173

Emulator
Enhancements

Command Formats
Yet To Be
Standardized

the chances of recording the section containing the
error is reduced to a hit-and-miss situation. A good
working buffer depth falls between 2k and 4k machine
cycles. A large buffer with user-variable depth
makes an ideal combination.

Functions in emulators which do not manipulate
memory or affect emulation processes are simply
debugging enhancements. Since no two vendors offer
the same set of debugging enhancements, none have
emerged as standards (as with breakpoints, for
example). Among the more useful features are built­
in test programs, which include memory tests, scope
loop tests and signature analysis tests. Memory
tests are useful in determining whether the system
RAM is functioning properly. Scope loops provide
repeated read or write operations to memory or 1/0
ports, which are useful when debugging these
circuits with an oscilloscope, while signal analysis
can be a useful test environment strategy.

Other feature include built-in PROM
prograrmiers, offset registers and calculation and
conversion facilities. PROM programmers are used in
microprocessor applications to place programs and
data in ROM. Offset registers. Offset registers are
helpful when debugging programs consisting of
several modules. Each module listing typically shows
the first address in the module as zero, with the
linker/loader then relocating each module to the
appropriate address. To determine the actual address
for a given instruction, the load address must be
added to the address shown in the listing. By
setting the offset register to the load address,
this procedure is handled by the emulator.

When debugging software, the use of a decimal
and hex calculator/converter can be helpful. Some
emulators have the ability to perform subtraction
and addition of hex and/or decimal numbers, and
perform hex-to-decimal or decimal-to-hex
conversions. The results of a particular operation
are displayed in both hex and decimal notation.

Before any operation can be executed or any
function monitored, the emulator must be told what
to do, and told in its own precise language - a
language that's different with almost every
emulator. While many emulators use their own simple

174

The Emulation
Session

mnemonic command structure, others rely on
complicated non-mnemonic logical statements. While
one emulator contains a built-in control keyboard,
another can only be activated from the remote
keyboard of a terminal or computer. The two
different command format styles and entry mechanisms
influence the way debugging operations are both
specified and executed. For example, assume a user
wishes to move a block of memory from a location in
the prototype memory space to a space in the
emulator's memory. One emulator, with its built-in
keyboard, would require the user to press a control
keyswitch, punch in a start address, press another
control keyswitch, punch in the end address, then
press another control to initiate the transfer. With
a mnemonic command-controlled emulator, the same
operation can be executed with a single-line entry
that specifies both the Move operation and the
beginning and ending addresses that mark the block
of memory in the prototype.

Assuming the user has an understanding of
emulation principles and can interpret the tutorial
material in the emulator's operation manual,
he is now ready to begin the art of debugging and
testing the prototype hardware and software.

Once the hardware prototype is available, the
system may be configured for emulation by first
removing the prototype's processor and then
electronically replacing it with the emulator's
processor via the emulation probe. The emulator may
now attempt to emulate the prototype. (At this
point, the prototype design takes on the role of a
"target" for the emulator.)

Initially, the emulator is instructed to
analyze certain conditions and act accordingly, for
example, it may stop program execution when a read­
only memory area is written to. The emulator then
begins executing the prototype program either from
an initial or reset state, a user-specified starting
address or the location where the emulator was last
stopped. During this time, the emulator is operating
as if the prototype's processor were controlling the
system as well as monitoring the address, data and
control lines for a breakpoint, trigger or fault
condition.

After a period of time, the emulator's
circuitry stops the execution of the prototype
program. It may have detected a breakpoint, an
illegal instruction execution, a memory protection
violation, a trigger acting as a breakpoint, or the

175

Economic
Considerations

user may have manually stopped program execution. If
a breakpoint stopped program execution, the emulator
can display the instruction just executed, the
instruction location, and the status of the
registers. If the emulator's real-time trace
mechanism has been activated, it will have stored
the latest series of machine cycles and is now
available for viewing. The buffer will show all bus
activity from the breakpoint or trigger.

Once the current status of the processor is
examined, the user may need to alter the prototype
program. This may be as simple as changing the
contents of specified registers or more involved by
writing a software patch using the emulator's in-
1 ine assembler or transferring complete sections of
prototype memory to the emulator for testing.
After the section is tested, it is moved back into
the prototype at the same location. When the user is
satisfied with the changes, the emulator starts
executing the program again, looping through the
above process until the prototype functions
correctly.

In the MOS engineering environment, emulators
play a special role by providing the unique ability
to not only monitor the prototype under actual
operating conditions, but also to loan facilities to
the prototype system itself. During prototype
execution, the emulator's testing abilities permit
the address, data and control lines of the
emulator's microprocessor to appear transparent to
the prototype until a problem occurs or a breakpoint
or trigger is encountered. The emulator then
possesses the facilities to track down and fix the
problem, then test and recheck the program.

From a monetary standpoint, emulators are cost­
effective diagnostic tools in comparison to single­
vendor turnkey development systems. Their flexible
design allows them to interface to affordable and
increasingly popular personal computers, which, in
turn, can be used to develop software code as well
as handle the editorial chores associated with a
wordprocessing system. They are also completely
compatible with existing mini and mainframe
computers - making them ideal design aids for both
large and small design departments.

176

APPENDIX B ERX DEMONSTRATION

NOTE: THIS APPENDIX IS STILL UNDER DEVELOPMENT. IT
WILL BE AVAILABLE THE FIRST QUARTER OF 1988.

177

178

APPENDIX C

Introduction

Technical
Bulletins

Application
Notes

TECHNICAL BULLETINS & APPLICATION NOTES

Things are constantly changing in the microprocessor
industry, and ZAX wants to help you stay on top
of these changes. New products, emulation methods,
and applications are always being devised and tested
by us in an effort to provide you with the latest
and most effective equipment possible. In the same
manner, revising your existing equipment keeps it
current with the latest ERX designs from ZAX.

One of the best ways we have of keeping you up-to­
date is by issuing Technical Bulletins and
Application Notes.

Technical Bulletins inform you of major changes or
revisions to the equipment's hardware or firmware.
Usually they are the result of a problem that's
recently been solved, or they could be a feature
that's been revised to improve the performance of
the emulator.

Application Notes are the result of new methods or
procedures derived from emulation practices. They
may also caution you against doing something a
certain way, or they may show you a new way of
accomplishing an old task.

Both Technical Bulletins and Application Notes are
sent to you as soon as they become available - you
should never need to request them. When you receive
your documents, insert them into this appendix for
easy reference. That's all there is to it!

179

180

182

bit

branch

breakpoint

buffer

byte

c

CLK

clock

code

compiler

A binary digit.

To depart from the normal sequence of executing
instructions in the computer. (Synonymous with a
jump.)

A point in a program as specified by an instruction
where the program may be interrupted by some
external intervention or by a monitor routine. This
program break permits a visual check, print out, or
other analysis of the program before resuming with
the normal sequence. Used extensively in debugging
operations.

A storage device in which data is assembled
temporarily during data transfers. It is used to
compensate for the differences in the rate of fl ow
of information when transferring information from
one device to another.

A sequence of adjacent binary digits operated upon
as a unit and usually shorter than a computer word.

A high-level programming language designed to
optimize run time, size, and efficiency. It was
developed as the systems programming language of the
UNIX operating system on the PDP 11/70 minicomputer
from Digital Equipment Corporation.

clock

Devices or units which control the timing of bits
sent in a data stream and the timing of the sampling
of bits received in a data stream. One such clock
device is a real-time clock, which measures the past
or used time on the same scale as the external
events it will be used to describe. Most
microprocessor clocks operate in the range of 1 to
12 MHz.

A group of symbols that represent data or
instructions in a computer. Digital codes may
represent numbers, letters of the alphabet, control
signals, etc. as a group of separate bits rather
than continuous signals. (See microcode.)

A computer program, more powerful than an assembler,
that will convert a higher level language into
machine language.

184

default value

development system

development tools

DIP

DIP switches

disassembly
(disassembler)

don't care

downloading

DTE

dump

duplex

dynamic RAM

EA ROM

The choice among exclusive alternatives made by the
system when no choice is made by the user.

A system of devices, usually consisting of a
diagnostic tool (such as an emulator), a computer, a
printer, etc., that can be used together to develop
and debug hardware and software for a given
microprocessor.

Hardware and software devices that are used to
develop and debug programs and/or microprocessor
systems.

Dual In-line Package. A standard IC package with two
rows of pins at 0.1" intervals.

A collection of small switches on a DIP that are
used to select options on circuit boards without
having to modify the hardware.

Refers to a program that translates from machine
language to assembly language. Usually used to
decipher existing machine language programs by
generating symbolic code listings of a program.

A term applied to an operation which can be changed
or interrupted upon receipt of a control signal. The
output of the operation is independent of the input.

A process whereby a file is loaded "down" to a
device from a computer system.

Data Terminal Equipment. Equipment comprising of a
data source (transmitter) or data sink (receiver)
that provides for the corrrnunication control
functions (protocol).

The process of transferring the contents of memory
at a given instant of time onto a screen for
viewing, or outputting the memory contents to a
printer.

A simultaneous two-way independent transmission.

Memory that requires constant refreshing in order to
store memory.

Electronically Alterable Read Only Memory. A
specialized random access read/write memory with a
special slow write cycle and a much faster read
cycle.

186

echo check An accuracy check of a transmission in which the
transmitted information received by an output device
is returned to the infonnation source and compared
with the original information.

editor A general-purpose text-editing program that allows
entry and maintenance of text in a computer system.
The original text is entered and held in memory ·
where it can then be changed and corrected by
inserting, deleting, or changing lines of text or
characters within a line.

EEPROM Electronically Eraseable Prograrrmable Read-Only
Memory. An EEPROM is a device that can be erased
electrically in one second and reprogrammed up to a
million times.

EEPROM progralTVller A unit that provides a means of programming a single
EEPROM or an EEPROM module from a terminal.

EIA-RS-232C A standard method adopted by the Electronic
Industries Association to ensure uniform interface
between data cofTlTlunications equipment and data
processing tenninal equipment.

emulation Techniques using software or microprografTlTling, in
which one system is made to behave exactly like
another system, i.e., the emulating system executes
programs in the native machine language code of the
emulated system.

emulation mode The mode that the ERX assumes in order to execute
instructions.

emulator An instrument that imitates the control memory of
future hardware. Also a device that causes a system
(such as the target hardware) to accept certain
software programs and routines and appear as if it
were the other system.

emulator, stand- An emulator whose execution is not controlled by a
alone control program. It also does not share system

resources with other programs and excludes all other
jobs from the computing system when it is being
executed.

187

EPROM

field

firmware

FIFO

First In, First
Out

FORTRAN

full duplex

gate

GND

half-duplex

halt

handshaking

Eraseable Programmable Read-Only Memory. A specific
type of ROM that can be programmed electrically. It
can retain data even with the power disconnected but
can be erased by exposure to short wavelength
ultraviolet light, and may be reprogrammed many
times thereafter. Other types of EPROMs may be
electrically erased. (See EEPROM.)

A set of one or more characters which is treated as
a whole.

Programs that are stored in a physical device (e.g.
ROM) that can form part of a system or machine.

First In, First Out.

A method or technique of storing and retrieving
items from a storage source. With this technique,
the "oldest" data transmitted to the storage source
is thrown out and replaced with the "newest" data.
The technique is useful when the storage source
capacity is smaller or less than the item quantity.

FORmula TRANslator. A high-level language developed
by the IBM Corporation, originally conceived for use
on scientific problems but now used for many
comnercial applications as well. It requires the use
of a compiler.

A mode of communication in which data can be
transmitted and received simultaneously.

A device that has one output channel and one or more
input channels such that the condition of the output
state is detennined by the state of the input
channel. The NANO, NOR, AND, OR, XOR, and NOT
functions are examples of gates.

Ground

A mode of corT111unication in which data may be
transmitted in only one direction at a time.

A condition which occurs when an operation in a
program stops.

A sequence of signals that are required for
communication between different systems.

188

hardware

hex, hexadecimal

high-level
language

host computer

hysteresis

ICE

in-circuit
emulation

instruction

instruction set

interface

interrupt

journaling

Physical (electric, electronic, or mechanical)
equipment - as opposed to a computer program - used
for processing data. Contrast with software.

Pertaining to a number system with a base of 16. The
digits 0 through 9 are used, then A through F, to
represent decimal numbers 0 through 15, e.g., "FF"
represents 11 11111111" binary, and "OA" is 11 00001010 11

binary.

Any group of computer languages which use symbols
and conmand statements an operator can read. High­
level languages allow a user to write in a familiar
notation rather than the machine code language of a
computer. BASIC, FORTRAN, .FOCAL, and COBOL are all
examples of high-level languages.

The primary or controlling computer in a system
operation. A host computer can also be reduced to a
simple memory storage facility.

The lagging in the response of a unit of a system
behind an increase or a decrease in the strength of
a signal.

In-Circuit Emulation.

Hardware/software facilities for real-time I/0
debugging of chips. With in-circuit emulation, the
actual microprocessor is replaced by a connector
whose signals are generated by an emulation program.
The emulated microprocessor can be stopped, its
registers examined or modified, etc.

A coded program step that tells the computer what to
do for a single operation in a program.

The basic set of instructions that a particular
computer can perform.·

The physical connection between two systems or two
devices.

A break in the normal flow of a system or program
that occurs in such a way that the flow can be
resumed from that point at a later time.

Refers to a process where all information generated
in an emulation session on a host computer is output
to a storage file. The entire session can then be
reviewed, line for line, just as it was initially
entered.

189

kilobaud

linking loader

loader

logic state
analyzer (LSA)

machine cycle

machine language

macro

macro assembler

macro instruction

mainframe, main
frame

Refers to the number of one thousand bits per
second.

A loader used to link compiled/assembled programs,
routines, and subroutines and turn the results in
operations.

A program required on practically all systems that
load the user's program along with system routines
into the central processor for execution. Loaders
transfer the object code from some external medium
(tape or disk) into RAM.

A device that monitors a system or component board
and displays the resulting information.

The time interval in which a computer (or similar
device) can perform a given number of operations.

A set of symbols, characters, or signs, and the
rules for combining them, that conveys instructions
or infonnation to a computer.

Pertains to a specific type of instruction in
assembly language that is implemented in machine
language by more than one machine-language
instruction, e.g., a group of instructions often
designed to serve as an additive co!TITland or group of
corT1T1ands.

An assembler that is capable of assembling object
programs from source programs written in symbolic
language.

An instruction which stands for a predefined
sequence of other instructions, ca 11 ed the "body" of
the macro. Whenever a macro instruction is
encountered in program text, it is "expanded, 11 i.e.,
replaced by its body.

Usually refers to large-scale computers (as opposed
to microcomputers, microprocessors, and .
minicomputers). May also mean the fundamental
portion of a computer, i.e., the portion that
contains the CPU and controller units within the
computer system.

190

microcode

mnemonic code

monitor mode

MOS

NOP, NOOP

object code

object program
1 ibrary

operating system

operation code

operator

A set of control functions performed by the
instruction decoding and execution logic of a
computer system. The microcode defines the
instruction set of a specific computer.

Refers to techniques used to assist human memory. A
mnemonic code resembles the original word and is
usually easy to remember, e.g., mpy for multiply,
ace for accumulator.

Refers to a process where monitor commands from the
ERX are executed. Dump, Fill, Disassemble, and
Examine are all examples of commands used in the
monitor mode.

Metal-Oxide Semiconductor. A technology used for
fabricating high-density ICs. The name refers to the
three layers used in forming the gate structure of a
field-effect transistor.

NO-OPeration. An instruction used to force a delay
of one instruction cycle without changing the status
flags or the contents of the registers.

The code produced by a compiler or special assembler
which can be executed by the processor when it is
loaded, as with most microcode, or it may require a
linkage phase prior to loading and execution.

An organized set of computer programs, routines, or
corrmon or specifically designed software, containing
various programs or routines, source or object
programs classified for intelligence or retrieval.

Software that is required to manage the hardware and
logical resources of a computer system. Also a part
of a software package (program or routine) dedicated
to simplifying input/output procedures, sort-merge
generators, data-conversion routines, or tests.

The symbols that designate a basic computer
operation to be performed. This can be a combination
of bits specifying an absolute machine-language
operator, or the symbolic representation of the
machine-language operator.

A symbol in prograrrming language that represents an
operation to be performed on one or more corrmands
(e.g., "add x").

191

parameter A constant or variable in an equation or statement
that may be assigned an arbitrary value.

parity bit A redundant bit added to a group of bits so that an
inaccurate retrieval of that group of bits is
detected.

Pascal A language designed to teach programming and the
elements of computer science. Based on the language
ALGOL, it emphasizes aspects of structured
programming.

peripheral devices Various kinds of machines or devices that operate in
combination with a computer but are not physically
part of the computer. Peripheral devices typically
display computer data, store data from the computer
and return it to the computer on demand, prepare
data for human use, or acquire data from a source
and convert it to a form usable by a computer.

phantom ROM A type of ROM that operates for the system bootstrap
only and then "hides" behind the main memory.

PIO interface Abbreviation for Parallel Input-Output interface.
PIO interfaces allow the computer to input and
output parallel data to and from an external
parallel device such as a keyboard or printer.
Parallel means that all the data bits output at the
same time.

PROM Programmable Read-Only Memory. A ROM that may be
altered by the user. Some PROMs can be erased and
reprogrammed through special physical processes.

PROM programmer A module or external device used to program
programmable read-only memories.

PROM programming The process of altering PROMs (called "burning"),
either by blowing (melting or vaporizing) fusible
links in bipolar PROMs or by storing a charge on the
floating gates of UVEPROMs.

RAM Random Access Memory. This type of memory is random
because it provides access to any storage location
point in the memory by means of horizontal and
vertical coordinates. Information can then be
"written" in or "read" out very quickly.

read-only (RO) Refers to a process where information can be read
from memory only.

192

read-write (RW) Refers to a process where infonnation can be read
from and written into memory.

real time Pertains to the actual time during which a physical
process transpires. In emulation, real-time
operation is very important because of the necessity
for the emulator to maintain a "transparent"
condition with regard to the device being emulated.

register A memory device capable of containing one or more
computer bits or words to facilitate arithmetical,
logical, or transferral operations.

ROM Read Only Memory. A special memory that can be read
into but not written into.

RS-232C See EIA-RS-232C.

semantics The relationship between S.J111bols and their intended
meanings independent of their interpretation.

source program A program coded in something other than machine
language that must be translated into machine
language before use.

stand-alone Pertains to a device that requires no other piece of
equipment to execute and complete its own operation.

stand-alone system Usually, a microprocessor development system (MOS)
that runs independent of the control of a computer.
The MOS may contain a tenninal and built-in display
facility, which in effect makes it a full
microcomputer with debugging capabilities.

statement An instruction (macro) to the computer or other
related device, to perform some sequence of
operations.

static RAM RAM that does not need to be refreshed or receive
any further attention as long as power is applied.

step One instruction in a computer routine.

stop bit The last element of a character that defines the
character space inmediately to the left of the most
significant character in accumulator storage.

193

symbolic debugging Symbolic commands that are used to assist in the
debugging procedure. Symbolic refers to codes which
express programs in source language, i.e., by
referring to storage locations and machine
operations by symbolic names and addresses that are
independent of their hardware-determined names and
addresses.

symbolic trace A process where addresses in a program trace are
replaced with symbols. The symbol conversion process
is performed in the host system using the
appropriate software program.

syntax Rules that govern sentence structure in a language,
or statement structure in a language such as that of
a compiler program.

target system Refers to the processor under development.

trace Refers to the operation of the real-time trace
buffer (storage facility) and its ability to capture
and store a portion of the program memory area.

transparency The ideal emulation condition in which the operation
of the target system is unaffected when the emulator
is substituted for the microprocessor. Transparency
can be broken down into two categories: functional
and electrical. To be functionally transparent, the
emulator should make no demands on any part of the
target system's resources such as interrupts and
memory allocation. To be electrically transparent,
the emulator should duplicate as closely as possible
the microprocessor's characteristics, such as timing
and clock speed.

trigger Refers to a user-specified reference point (external
to the user program) which determines where and when
to initiate or terminate a program trace.

TTL Transistor Transistor Logic. A family of integrated
circuit logic elements with a specific output
structure, usua 11 y +5 vo 1 t "ones" and 0 volt
"zeros."

universal emulator A single emulator that is able to support several
different processors, even from different
manufacturers.

uploading A process whereby a file is transferred from an
device to the computer system.

194

virtual memory

XON/XOFF

Refers to a technique that permits users to treat
secondary memory (disk) storage as an extension of
main memory and thus give the virtual appearance of
a larger main memory.

Transmitter ON/OFF.

195

196

Notes

198

Notes

199

Notes

200

	001
	002
	003
	004
	005
	007
	008
	009
	010
	011
	012
	013
	014
	016
	017
	018
	019
	020
	021
	022
	023
	025
	026
	027
	028
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	042
	043
	044
	045
	046
	047
	048
	049
	051
	052
	053
	054
	055
	056
	058
	059
	060
	062
	064
	066
	067
	068
	070
	071
	072
	073
	074
	077
	078
	079
	080
	081
	082
	083
	084
	085
	087
	090
	091
	092
	093
	094
	095
	097
	098
	099
	100
	101
	103
	105
	106
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	127
	128
	129
	131
	132
	133
	134
	135
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	150
	151
	152
	153
	155
	156
	157
	158
	159
	160
	161
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	182
	184
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	198
	199
	200

