RSX-11M/M-PLUS and Micro/RSX Crash Dump Analyzer Reference Manual

Order No. AA-FD11A-TC

RSX-11M/M-PLUS and Micro/RSX Crash Dump Analyzer Reference Manual

Order No. AA-FD11A-TC

RSX-11M Version 4.2 RSX-11M-PLUS Version 3.0 Micro/RSX Version 3.0

First Printing, May 1979
Revised, January 1982
Updated, April 1982
Revised, April 1983
Revised, July 1985

The information in this document is subject to change without notice and should not be construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by Digital Equipment Corporation or its affiliated companies.

Copyright © 1979, 1982, 1983, 1985 by Digital Equipment Corporation All Rights Reserved.

Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document requests the user's critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL PDT DEC/CMS RSTS EduSystem DEC/MMS IAS RSX **DECnet** MASSBUS UNIBUS DECsystem-10 MicroPDP-11 VAX DECSYSTEM-20 Micro/RSTS VMS Micro/RSX **DECUS** VТ digital DECwriter PDP

HOW TO ORDER ADDITIONAL DOCUMENTATION

In Continental USA and Puerto Rico call 800-258-1710

In New Hampshire, Alaska, and Hawaii call 603-884-6660

In Canada call 800-267-6215

DIRECT MAIL ORDERS (USA & PUERTO RICO)*

Digital Equipment Corporation P.O. Box CS2008 Nashua, New Hampshire 03061

*Any prepaid order from Puerto Rico must be placed with the local Digital subsidiary (809-754-7575)

DIRECT MAIL ORDERS (CANADA)

Digital Equipment of Canada Ltd. 100 Herzberg Road Kanata, Ontario K2K 2A6 Attn: Direct Order Desk

DIRECT MAIL ORDERS (INTERNATIONAL)

ZK2572

Digital Equipment Corporation PSG Business Manager c/o Digital's local subsidiary or approved distributor

CONTENTS

			Page
PREFACE			vii
SUMMARY	OF TECHI	NICAL CHANGES	iх
			1 X
CHAPTER	1	INTRODUCTION	
	1.1	CRASH DUMP ANALYZER FUNCTION	. 1-1
	1.2	SYSTEM REQUIREMENTS	. 1-1
	1.3	OBTAINING A CRASH DUMP	
	1.4	LOADABLE CRASH DUMP DRIVERS	. 1-3
	1.4.1	Crash Devices	. 1-3
	1.4.2	Loading a Crash Dump Driver	. 1-4
	1.4.3	Unloading a Crash Dump Driver	
	1.4.4	When the System Crashes	. 1-6
	1.4.4.1	A System Crash with a Driver Loaded and XDT	
	1.4.4.2	Unloaded	. 1-6
	1.1.1.2		1 6
	1.4.4.3	Loaded	1-7
	1.4.4.4	Inducing a System Crash	1-7
	1.5	RUNNING CDA	
	1.6	INDIRECT COMMAND FILES	
	1.7	DIGIG CDICH DIVING THE TANK	. 1-8
CHAPTER	2	COMMAND LINES	
	2.1	CDA COMMAND LINES	. 2-1
•	2.1.1 2.1.1.1		. 2-3
	2.1.1.2	Analysis Switches	
	2.1.2	Function Switches	. 2-7
	2.2	THE DCL ANALYZE/CRASH_DUMP COMMAND	2-10
	2.2.1	ANALYZE/CRASH DUMP Command Qualifiers	2-11
	2.2.1.1		
	2.2.1.2	Crash-input File Qualifiers	2-15
	2.2.2	ANALYZE/CRASH_DUMP Command Examples	2-21
CHAPTER	3	ANALYSIS LISTINGS	
	3.1	CVCMEM INFORMATION	<u>_</u> -
	3.1.1	SYSTEM INFORMATION	. 3-1
	3.1.2	Kernel Stack	
	3.1.3		3-53-6
	3.1.4	System Common Alphabetized Dump	. 3-9
	3.1.5		3-15
	3.1.6	Logical Assignment Table	3-17
	3.1.7	Group-Global Event Flags	3-18
	3.1.8	Error Log Packets	3-19
	3.1.9	Low Core Memory Dump (RSX-11M-PLUS Only)	3-20
	3.2		3-21
	3.2.1	Active Tasks	3-21
	3.2.2 3.2.3	Active Task (MCR)	3-26
	3.2.4	Task Headers	3-28
	J . 4 . T	command fine interpreter raiser block (CPB) .	ე-ე⊥

CONTENTS

3.2.5 3.2.6 3.2.7 3.2.8 3.2.9 3.2.10 3.2.11 3.2.12 3.2.13 3.2.14 3.2.15 3.2.16	Partition Information 3-31 Common Block Directory 3-36 Device Information 3-38 System Task Directory 3-44 Pool Dump 3-45 Task Dump 3-48 Clock Queue 3-50 Controller Information 3-51 Kernel Data Space 3-53 Kernel Instruction Space 3-53 Task Data Space 3-53 Task Instruction Space 3-53
CHAPTER 4	INTERPRETING A CRASH DUMP LISTING
4.1 4.1.1 4.1.2	Determining What Was Mapped 4-1 Interpreting the Kernel Stack 4-2
APPENDIX A	CDA MESSAGES
APPENDIX B	RSX-11M SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS
APPENDIX C	RSX-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS
APPENDIX D	MICRO/RSX COMMON ERROR CODE DEFINITIONS
FIGURES	
3-1 3-2 3-3 3-4 3-5 3-6 3-7 3-8 3-9 3-10 3-11 3-12 3-13 3-14 3-15	Volatile Registers
3-16 3-17 3-18 3-19 3-20 3-21 3-22 3-23 3-24 3-25 3-26 4-1	Descriptors

CONTENTS

TABLES

2-1	File Defau	lt Values	2_3
2-2	Summary of	CDA Analysis Switches	2-3
2-3	Summary of	CDA Function Switches	2-8
2-4	Summary of	ANALYZE/CRASH DUMP Command Qualifiers	2-13
2-5	Summary of	ANALYZE/CRASH DUMP Crash-input	
	Qualifiers		2-15
B-1	Summary of	System Data Structure Macros	B-1
C-1	Summary of	System Data Structure Macros	C-1

PREFACE

MANUAL OBJECTIVES

This manual describes the operation of the Crash Dump Analyzer (CDA). It does not attempt to describe the operation of the RSX-11M-PLUS Executive or the significance of the individual data structures. The RSX-11M/M-PLUS Executive Reference Manual and the RSX-11M and RSX-11M-PLUS Guide to Writing an I/O Driver describe these data structures.

INTENDED AUDIENCE

This manual is intended for system managers who are responsible for interpreting system failures and for system operators who run CDA to generate dumps. Understanding CDA output requires a working knowledge of assembly language programming and the Executive data structures.

STRUCTURE OF THIS MANUAL

Chapter 1 explains the function of the Crash Dump Analyzer. It describes the system resources necessary and the procedure for obtaining a crash dump. The chapter continues with an overview of loadable crash dump drivers, and explains how to run CDA. The chapter also describes indirect command files as they pertain to CDA.

Chapter 2 describes the two ways that you can use CDA: by issuing the CDA command line or the DCL ANALYZE/CRASH_DUMP command. The chapter begins by describing the CDA command line format, including command line specifications and switches. Two summary tables provide quick reference on switch operation. Finally, the chapter concludes with a description of the DCL ANALYZE/CRASH_DUMP command.

Chapter 3 consists of examples and descriptions of CDA output listings.

Chapter 4 contains helpful hints for interpreting CDA output listings.

Appendix A contains a short description of each CDA error message.

Appendix B lists system macros that supply symbolic offsets for system data structures for RSX-11M.

Appendix C lists system macros that supply symbolic offsets for system data structures for RSX-11M-PLUS.

Appendix D lists error code definitions for Micro/RSX operating systems.

PREFACE

ASSOCIATED MANUALS

Refer to the RSX-11M/RSX-11S Information Directory and Index for a brief description of each manual in the RSX-11M documentation set.

Refer to the RSX-llM-PLUS Information Directory and Index for a brief description of each manual in the RSX-llM-PLUS documentation set.

CONVENTIONS USED IN THIS MANUAL

RET	This	symbol	indicates	that you	press	the	RETURN	key.
-----	------	--------	-----------	----------	-------	-----	--------	------

[] Square brackets show elements in a command line format that are optional. For example, [/switch] indicates that you can include a switch if you want to, but you do not have to.

[,...] Square brackets around a comma and an ellipsis mark indicate that you can use a series of optional elements separated by commas. For example, (argument[,...]) means that you can specify a series of optional arguments by enclosing the arguments in parentheses and separating them with commas.

red ink Red ink in the examples of this manual denotes user input.

pink shading in this manual indicates features that are specific to RSX-11M operating systems only.

gray shading Gray shading indicates features that are specific to RSX-11M-PLUS operating systems only.

SUMMARY OF TECHNICAL CHANGES

TECHNICAL CHANGES

- The system Assign Table, which is one of the report listings that CDA generates, has been changed. The table now lists logical assignments in two categories: system logical assignments, and user logical assignments. The entry in the table for each assignment includes its size in blocks, its type, and its status.
- Some of the system data structures that are shown in Appendix B and Appendix C have changed as a result of new system features such as support for logical names and networking. Refer to the specific data structures in Appendix B (RSX-11M) or Appendix C (RSX-11M-PLUS) to see the changes.

NEW DEVICE SUPPORT

You can specify any of the following new devices as the crash dump device for your system:

For RSX-11M/M-PLUS Systems

Device Type	Mnemonic
RA60/RX50 disk packs	DU:
RC25 removable disk packs	DU:
TK25/TU80 magnetic tapes	MS:
TK50 magnetic tapes	MU:

For Micro/RSX or Pregenerated RSX-11M-PLUS Systems

Device Type	Mnemonic
RD52 disks	DU:
TK25 magnetic tapes	MS:
TK50 magnetic tapes	MU:

ADDITIONS TO THE CRASH DUMP ANALYZER REFERENCE MANUAL

The following documentation has been added to this manual:

 Chapter 1 now includes a description of loadable crash dump support for Micro/RSX and pregenerated RSX-11M-PLUS systems.
 You load a crash dump driver by specifying a crash dump device. If the system crashes when the driver is loaded, the driver dumps the contents of memory at the time of the crash

SUMMARY OF TECHNICAL CHANGES

onto the specified crash dump device. When you do not want a crash driver resident in memory, you can unload it to the system disk. Thus, loadable crash drivers allow you to choose when you want crash dump support.

- Chapter 2 now includes a description of the DCL ANALYZE/CRASH_DUMP command. If your terminal supports the DIGITAL Command Language (DCL) command line interpreter, you can use the ANALYZE/CRASH_DUMP command to run CDA. Command qualifiers let you choose which report listings you want CDA to generate. You can also use qualifiers to specify the format of the CDA report listings.
- A new appendix, Appendix D, lists error code definitions for Micro/RSX operating systems, including facility-independent definitions and Bugcheck standard format definitions.

CHAPTER 1

INTRODUCTION

This chapter introduces the Crash Dump Analyzer (CDA). It describes the function of CDA, details the system features that CDA requires, and explains how to obtain a crash dump. The procedures for generating a crash dump vary from system to system. This chapter explains how to obtain a crash dump on different types of systems. Then this chapter describes how to run CDA, and how to use CDA with indirect command files. Finally, the last section of the chapter lists the six basic analysis listings that the Crash Dump Analyzer generates.

1.1 CRASH DUMP ANALYZER FUNCTION

CDA is a specialized utility that helps you establish the cause of system crashes. It is installed in a system as a nonprivileged task that any user can run. CDA reads the contents of a memory dump created by the crash dump routine of the Executive. CDA then uses the data in the Executive symbol table file (RSX11M.STB) to format the binary input of the memory dump into readable analysis listings. Finally, CDA prints the analysis listings on a line printer. Examining the CDA listings can help you to determine the cause of a system crash.

CDA is a nonprivileged task that any user can run.

1.2 SYSTEM REQUIREMENTS

Micro/RSX operating systems with the Advanced Programmer's Kit and pregenerated RSX-11M-PLUS operating systems support loadable crash dump drivers. Refer to Section 1.4 for a description of loadable crash dump support.

On RSX-11M operating systems, and on non-pregenerated RSX-11M-PLUS operating systems, you can select support for crash dump analysis during system generation. Refer to the RSX-11M System Generation and Installation Guide or the RSX-11M-PLUS System Generation and Installation Guide for instructions on how to include CDA in your system. If you select support for crash dump analysis during system generation, you specify a crash notification device and a crash dump device. The system then builds a crash dump routine into the Executive. Thereafter, when the system crashes, the crash dump routine displays a message on the crash notification device and writes the contents of memory onto the specified crash dump device. The contents of memory are the input to CDA. If you decide to change the crash dump or crash notification devices, you must perform another system generation in order to specify the new devices.

Since CDA overwrites the contents of the crash dump device, you should not specify the system device as the crash dump device. Also, the following fixed disks cannot serve as CDA crash dump devices:

RA80 RA81 RD51 RC25

However, you may use any of the following mass storage devices as the crash dump device for your system.

For RSX-11M/M-PLUS Operating Systems

Device	Mnemoni
RP04/RP05/RP06 disk packs	DB:
DECtape II (TU58)	DD:
RK05/J/F disk cartridge	DK:
RL01/RL02 disks	DL:
RK06/RK07 disk cartridges	DM:
RM02/RM03/RM05 disk packs	DR:
DECtape (TU56)	DT:
RC25 removable disk pack	DU:
RA60/RX50 disk packs	DU:
RX01 diskette (RSX-11M only)	DX:
RX02 diskette	DY:
TU45/TU16/TE16/TU77 magnetic tapes	MM:
TS11/TU80/TSV05/TK25 magnetic tapes	MS:
TS03/TU10/TE10 magnetic tapes	MT:
TK50 magnetic tapes	MU:

For Micro/RSX and Pregenerated RSX-11M-PLUS Operating Systems

Device	Mnemonic
RL01/RL02 disks	DL:
RD51/RD52/RX50 disks	DU:
TSV05/TK25 magnetic tape	MS:
TK50 magnetic tapes	MU:

1.3 OBTAINING A CRASH DUMP

To obtain a crash dump, control of the processor must be transferred to the Executive crash dump routine following a system crash. The transfer of processor control depends on how the crash occurred and whether you built the Executive Debugging Tool (XDT) into your system during system generation.

System crashes can result from any of the following causes:

- 1. The processor encounters a program condition that causes it to trap to location 40 or to XDT.
- 2. An infinite loop condition occurs.
- The processor encounters an unintentional HALT instruction in kernel mode (000000).

When a program condition causes a processor trap and XDT is included in your system, control transfers automatically to XDT. You can then type X at the console terminal, and XDT transfers control to the crash dump routine. For example:

XDT>X RET

Refer to the RSX-11M/M-PLUS and Micro/RSX Debugging Reference Manual for a description of XDT.

If your system does not include XDT, a processor trap causes control to be transferred directly to the crash dump routine of the Executive.

When a system crash is the result of a HALT instruction or an infinite loop condition, you must restart the processor manually at location 40.

Regardless of how control is transferred, once the processor enters the crash dump routine, the routine prints the following informational message on the crash notification device:

CRASH-CONT WITH SCRATCH MEDIA ON ddnn

After displaying the message, the crash dump routine halts the processor so you can put the crash dump device on line. When the device is on line, restart the processor by depressing the Continue switch on the processor console. The crash dump routine then dumps memory on the crash dump device and halts the processor when the dump finishes. The volume in the crash dump device now contains a binary representation of the contents of memory at the time of the crash. These contents are the input to CDA. You can then reboot the system and run CDA to analyze the dump.

If you attempt to crash to an illegal device, the crash dump routine displays the following message on the crash notification device:

CRASH -- ILLEGAL CRASH DEVICE

After displaying the message, the crash dump routine halts. The illegal crash device error occurs if you specify a fixed media device as the crash dump device. If you have a removable media device on the same controller, you can switch the physical unit number plugs on the devices to assign the removable media device to the crash device. Then press the Continue key on the operator's console and the crash dump routine will attempt the dump again.

1.4 LOADABLE CRASH DUMP DRIVERS

The pregenerated RSX-11M-PLUS operating system and the Privileged Development option of the Micro/RSX Advanced Programmer's Kit include loadable crash dump drivers. Loadable drivers reside on an external storage device when they are not in use. Using loadable drivers for crash dump support reduces the size of the Executive and frees memory space for other purposes.

1.4.1 Crash Devices

Loadable crash dump support is provided by four loadable crash dump drivers, each of which dumps the contents of memory to a specific type of device. The following list shows the crash dump drivers and their corresponding device types.

Crash Dump Driver Crash Dump Device

DLCRSH.TSK RL02 cartridge disk

DUCRSH.TSK RX50 diskette

MSCRSH.TSK TSV05/TK25 magnetic tape

MUCRSH.TSK TK50 magnetic tape(Micro/RSX)

TK50 magnetic tape(RSX-11M-PLUS)

If the crash dump driver is loaded and the system crashes, the contents of memory are dumped to the designated crash device. You can then use the Crash Dump Analyzer to investigate the cause of the crash. If there is not a crash driver resident in the system when the system crashes, the Bugcheck facility displays the following message:

SYSTEM FAULT DETECTED AT PC=xxxxxx FACILITY=xxxxxx ERROR CODE=xxxxxx CRASH -- CRASH DRIVER NOT LOADED nnnnnn @?

1.4.2 Loading a Crash Dump Driver

A loadable crash driver resides on the system disk until you specify a crash device. To specify a crash device, use the following command:

SET SYSTEM /CRASH DEVICE:ddn: ET

This command loads a specific crash driver into a main memory partition and updates the crash data base. Also, you may use this command to change the crash dump device or to change the unit number of the crash device while the system is running.

When the crash driver is successfully loaded, you receive the following message:

SET -- Crash device ddn: has been successfully loaded

If the device that you specified as the crash device is not in the current system, the following error message is displayed:

SET -- Device not in system

If a crash driver is already loaded and you specify a different device with the SET SYSTEM/CRASH_DEVICE command, the system unloads the resident crash driver, loads the new driver for the device that you specified, and updates the crash data base. If a crash driver is loaded and you specify the same device but a different unit number, the resident driver remains loaded and the system changes the device unit number in the crash data base.

If you specify the system disk as a crash device, you receive the following warning message:

SET -- WARNING, System disk chosen as crash device SET -- Crash device ddn: has been successfully loaded

Note that if your system disk is a removable disk, it is a valid crash dump device. The system warns you that you have specified the system disk, but it loads the crash dump driver for the disk despite the warning message. You should avoid using the system disk as the crash dump device, because the memory dump will overwrite the contents of the disk, unless you remove the system disk and replace it with a scratch disk when the system crashes.

It is not possible to crash to a fixed media device such as the RD51 fixed disk. If you indicate the RD51 or any other fixed disk as a crash device, you receive the following message:

CRASH -- ILLEGAL CRASH DEVICE CRASH -- CONT WITH SCRATCH MEDIA ON ddn

At this point, you cannot obtain a crash dump of memory.

NOTE

You cannot select a crash device and unit number once the crash has occurred.

However, you may choose a crash device unit that is not in the current system. To do this, specify the address of the control and status register (CSR) of the device that you want as the crash device. Use the /REGISTER switch to specify the address of the CSR of the desired device:

SET SYSTEM /CRASH DEVICE:ddn:REGISTER:csraddr RET

To display the current crash dump device unit, use the following command:

\$ SHOW SYSTEM /CRASH DEVICE (RET)

In response to this command, the system displays the current device unit, as follows:

CRASHDEV=ddn:

1.4.3 Unloading a Crash Dump Driver

You use the following command to unload a crash dump driver when crash dump support is unnecessary:

\$ SET SYSTEM /NOCRASH DEVICE RET

In response to this command, the system displays the following message:

SET -- Crash device ddn: is being unloaded SET -- WARNING, Crash dump support is inactive

The system then unloads the crash dump driver and updates the crash data base. When there is no crash dump driver resident in memory, the Bugcheck facility services system crashes (refer to Appendix D for a list of error code definitions used by Bugcheck). Unloading the crash dump driver frees the memory space in the crash driver partition until you decide to reactivate crash dump support. You can reactivate crash dump support at any time simply by specifying a new crash device unit.

1.4.4 When the System Crashes

When a Micro/RSX or pregenerated RSX-llM-PLUS operating system crashes, the reaction of the system depends on the type of crash support that is loaded when the crash occurs. There are three types of crash support:

- The Bugcheck facility, which is a standard part of the operating system, and is therefore resident in memory
- 2. Loadable crash dump drivers
- 3. XDT, which is also loadable

Thus, when a system crashes, any of the following conditions may exist:

- A crash dump driver is loaded but XDT is not
- Both a crash dump driver and XDT are loaded
- XDT is loaded but a crash dump driver is not
- 1.4.4.1 A System Crash with a Driver Loaded and XDT Unloaded If a system crashes when a crash driver is loaded but XDT is not loaded, the crash dump routine notifies you of the crash with the following message:

CRASH -- CONT WITH SCRATCH MEDIA ON ddn

After displaying this message, the crash routine halts the hardware processor so that you can make sure there is a scratch media in the crash device. When you have the crash device ready, press the P key followed by a carriage return to proceed.

In response to your command to proceed, the crash dump routine dumps memory to the designated crash dump device. When the dump is completed, the processor is again halted. During the memory dump, the processor Run light is on; when the dump is completed, the processor Run light goes off.

At this point, the medium in the crash dump device contains a binary representation of the contents of memory at the time the system crash occurred. This memory dump is the input to CDA. Now you can use the ANALYZE/CRASH_DUMP command, which is described in Section 2.2 of this manual, to control how CDA processes the crash dump. Then you can analyze the output listings that CDA generates to determine why your system crashed.

1.4.4.2 A System Crash with a Driver Loaded and XDT Loaded - If a system crashes when a crash driver and XDT are loaded, control is transferred to XDT. After you use XDT to debug the system, if you want to obtain a crash dump, press the X key followed by a carriage return. The following message is then displayed:

CRASH -- CONT WITH SCRATCH MEDIA ON ddn

Now you can follow the procedure in Section 1.4.4.1 to obtain the crash dump.

1.4.4.3 A System Crash with only XDT Loaded - If a system crashes when XDT is loaded but a crash driver is not loaded, control is transferred to XDT. However, when you enter the X command, the following is displayed:

SYSTEM FAULT DETECTED AT PC=xxxxxx FACILITY=xxxxxx ERROR CODE=xxxxxx CRASH -- CRASH DRIVER NOT LOADED

- 1.4.4.4 Inducing a System Crash In some situations, you may want to purposely induce a system crash. Then, if you have a crash driver loaded, you can dump the contents of memory and examine them. For example, suppose that you want to stop the processor from executing in an infinite loop. You can induce a system crash by performing the following procedure:
 - Push the Halt button on the processor. On processors with console ODT, the following is displayed:

nnnnnn @

- 2. Release the Halt button.
- 3. At the terminal, type 40G. The following is displayed:

CRASH -- CONT WITH SCRATCH MEDIA ON ddn

nnnnnn @

If you have a crash driver loaded, you can obtain a crash dump now by pressing the P key followed by RETURN.

1.5 RUNNING CDA

There are several ways to run CDA, and you can run it as either an installed or an uninstalled task. Also, you can run CDA from either the DCL or MCR command line interpreter (CLI). This section describes the alternative ways of running CDA.

If CDA is an installed task on your system, you can enter the CDA command line at the CLI prompt. After CDA processes your command, the CLI prompt returns. In the following example, MCR is the CLI:

>CDA CRASH_DUMP.LST,COPY.CDA=[1,54]/STB,DR5: RET

If CDA is installed and you want to enter commands directly to CDA, you can invoke the command level of the CDA utility by typing CDA and a carriage return. When you are finished using CDA, you exit from CDA by pressing CTRL/Z, which returns control to the CLI. In the following example, DCL is the CLI:

\$ CDA RET
CDA>command line RET
CDA>command line RET
CDA>^Z
\$

If CDA is an uninstalled task, the system has to find and install the CDA task image file before it can run CDA. Therefore, the command you use depends upon the location of the CDA task image file (CDA.TSK). If CDA.TSK is in the system UFD or the system library, type:

RUN \$CDA RET
CDA>command line RET
CDA>

On RSX-11M operating systems, you can use the RUN CDA command only if CDA.TSK is present in the UFD that corresponds to the system UIC on device LB:. On RSX-11M-PLUS operating systems, CDA.TSK must be present in the UFD that corresponds to the library UIC.

If CDA.TSK is present in the UFD that corresponds to the current UIC on the default system device (the current UFD for the terminal from which the command is entered), you can run CDA by typing the following command:

RUN CDA RET CDA>command line RET

Finally, you can run CDA by using the DCL ANALYZE/CRASH DUMP command:

\$ ANALYZE/CRASH DUMP RET

If your CLI is MCR, but your terminal also supports DCL, you can run the ANALYZE/CRASH_DUMP command by typing DCL and a space before the command. For example:

>DCL ANALYZE/CRASH DUMP RET

Chapter 2 shows you how to use CDA command lines and the ANALYZE/CRASH DUMP command.

1.6 INDIRECT COMMAND FILES

As with other utilities, you can enter CDA command lines directly from the terminal or from an indirect command file. However, CDA indirect command files must not contain a reference to another command file.

1.7 BASIC CRASH DUMP ANALYZER OUTPUT LISTING

While the Crash Dump Analyzer provides many output listing options, fundamental system information appears on the first six pages of output listing (you can suppress this information by using the /-SYS switch, which is described in Chapter 2). The first six pages of output listings contain the following information:

Page 1 -- Volatile registers

Page 2 -- Kernel stack

Page 3 -- System common

Page 4 -- System common labeled dump

Page 5 -- Pool statistics

Page 6 -- Assign table

Sections 3.1.1 through 3.1.6 describe these pages in detail.

The system information section also includes three more pages if the relevant information is in memory at the time of the crash. These pages display group-global event flags, error log packets, and, on RSX-11M-PLUS systems, the contents of low core memory. Section 3.1.7 describes the group-global event flag page, Section 3.1.8 describes the error log page, and Section 3.1.9 describes the RSX-11M-PLUS low core memory page that is part of the system common dump.

CHAPTER 2

COMMAND LINES

CDA commands control how the Crash Dump Analyzer processes a memory dump and how it formats the output listings that it generates. You can use CDA command lines to enter commands directly to the CDA utility or, if your terminal supports the DIGITAL Command Language (DCL), you can use the DCL ANALYZE/CRASH_DUMP command to run CDA. This chapter describes CDA command lines and the ANALYZE/CRASH_DUMP command by showing the format of the command lines, the command specifications and qualifiers, and examples of how the commands work.

2.1 CDA COMMAND LINES

This section shows the CDA command line format, lists and describes command line switches, and provides some examples of CDA command lines.

The CDA command line has the following format:

CDA>[listfile/sw],[binaryfile/sw]=[symbolfile/STB],crash-input[/sw]

The CDA command line specifies the input to CDA and the output from CDA. The specifications to the left of the equal sign in the command line are output specifications, and those on the right side of the equal sign are input specifications.

You must include at least one output specification and one input specification in the command line. For output from CDA, you can specify a list file only, a binary file only, or both a list file and a binary file. For input to CDA, you must specify the crash-input, but the symbol file specification is optional.

Output file specifications are position dependent. Position dependent means that when you include both output specifications, you must place them in the positions shown in the command line. If you omit the list file, you must place a comma before the binary file specification.

Input file specifications are position independent and can appear in either order.

The remainder of this section describes CDA command line specifications.

Output Specifications:

listfile

The output specification of the formatted CDA analysis listings. You can use either a device or a file as the list file specification. If you specify a file, CDA creates the file and writes the output listings to the file. By default, CDA then

spools the file to the system line printer queue, unless you specify otherwise. If you specify a device for the list file, CDA displays or prints its output listings on that specific device. For example, if you specify your terminal (TTnn: or TI:) as the list file, CDA displays the output listings on your terminal. Chapter 3 describes the analysis listings that CDA generates.

binaryfile

The file specification for the optional binary file. This file is a copy of the binary data that the crash dump routine wrote on the crash dump device. It allows you to selectively create an historical record of crash dumps. If you create this file during an initial analysis, you can use it for input to CDA at a later time. Since the crash dump routine overwrites the information on the crash dump volume with each successive dump, this feature allows you to use a single volume for all crash dumps.

If the crash dump device on your system is a secondary storage or sequential device, you can reduce CDA analysis time by copying the crash input to a binary file on another device. Then you can use the binary file as input to CDA for analysis.

Input Specifications:

symbolfile/STB

The file specification of the symbol table file for the crashed system. The /STB switch is an integral part of this file specification, because CDA uses the data in the symbol table file to format the binary memory dump into readable formats. If you omit this file specification and switch, CDA uses the default symbol table file, which is the file named RSX11M.STB in the UFD that corresponds to the current UIC.

crash-input

The source of the binary input to CDA. This specification can be either a device name (the crash dump device) or a binary file that was created during a previous CDA analysis. However, if the crash-input specification is a binary file, you cannot also include a binary file output specification in the command line.

Switches:

/sw

An optional CDA switch. The list file, binary file, and crash-input file specifications can include optional switches that modify CDA action. Each specification in the command line has its own switches. Section 2.1.1 describes the CDA switches and lists which specification they apply to.

File specifications in the CDA command line can appear in complete Files-11 format, with device name, UFD, file name, file type, and version number. When you omit any of these elements, CDA uses the defaults shown in Table 2-1. However, not all of the elements in file specifications have defaults.

Table 2-1
File Default Values

			Default	: Value
File	Device	UFD	File Name	File Type
List file	SY:	Current	None	.LST
Binary file	SY:	Current	None	.CDA
Symbol file/STB	SY:	Current	RSX11M	.STB
Crash-input	SY:	Current	None	.CDA

See Section 2.1.2 for examples of CDA command lines, which include examples that show how CDA uses default file types.

2.1.1 CDA Command Line Switches

Two kinds of command line switches, analysis switches and function switches, allow you to control CDA operation.

Analysis switches determine which analysis routines CDA applies to the crash input. Thus, you can select the types of data that you want CDA to output. For example, analysis switches can list information about all of the devices in the system, or they can list information about active devices only.

Function switches provide a number of options for controlling CDA output. For example, function switches can terminate an analysis after CDA encounters a specified number of errors, or they can limit the number of pages of output listings.

Both types of switches are file specific. That is, each switch applies to a particular file and may not be used without that file or with any other file.

2.1.1.1 Analysis Switches - Table 2-2 summarizes the analysis switches and gives brief descriptions of their effects. Some of the switches in Table 2-2 have synonyms or alternate mnemonics. These are shown under each switch. Expanded descriptions of each switch follow the table.

Table 2-2 Summary of CDA Analysis Switches

Switch	Function	Applies to File
/ACT /ATL	Lists the contents of the Task Control Block (TCB) for each active task	Crash-input
/ADV	Lists information for all devices in the system	Crash-input

(Continued on next page)

Table 2-2 (Cont.) Summary of CDA Analysis Switches

Switch	Function	Applies to File
/ALL	Lists the output of all analysis routines ,	Crash-input
/CLI /CPB	Lists the contents of the CLI Parser Blocks in the system	Crash-input
/CLQ	Lists the contents of the clock queue	Crash-input
/CTL	Lists information for each device controller	Crash-input
/DEV /DCB /SCB /UCB	Lists information for all active devices in the system	Crash-input
/DUMP:a:b:[c] /DMP:a:b:[c]	Lists the contents of physical memory between address a and address b; (c is an optional virtual starting address)	Crash-input
/HDR	Lists the contents of the task headers for each task resident in memory	Crash-input
/KDS:a:b	Lists the contents of the kernel data space from virtual address a to virtual address b (RSX-11M-PLUS systems only)	Crash-input
/KIS:a:b	Lists the contents of kernel instruction space from virtual address b (RSX-11M-PLUS systems only)	Crash-input
/PCB /PAR	Lists the contents of each Partition Control Block	Crash-input
/POOL	Lists the contents of the system's pool	Crash-input
/SECPOL	Lists the contents of system secondary pool (RSX-11M-PLUS systems only)	Crash-input
/-SYS	Suppresses listing of the system information	Crash-input
/TASK:name:a:b /TAS:name:a:b /TSK:name:a:b	Lists the contents of task "name" between virtual address a and virtual address b; lists the contents of task data space (if task includes data space) on RSX-11M-PLUS	Crash-input

(Continued on next page)

Table 2-2 (Cont.) Summary of CDA Analysis Switches

Switch	Function	Applies to File
/TCB /TAL /STD	Lists the contents of the TCB for every task in the System Task Directory	Crash-input
/TDS:name:a:b	Lists the contents of task data space (RSX-11M-PLUS only)	Crash-input
/TIS:name:a:b	Lists the contents of task instruction space (RSX-11M-PLUS systems only)	Crash-input

/ACT or /ATL (Task Control Blocks for Active Tasks)

File: Crash-input

Effect: CDA lists the contents of the Task Control Block (TCB) for each active task.

/ADV (All Devices)

File: Crash-input

Effect: CDA lists the contents of the control blocks for all devices in the system. To list active devices, use the /DEV switch.

/ALL (All Analysis Routines)

File: Crash-input

Effect: CDA applies all of its analysis routines (except those associated with memory and task dumps) to the specified crash-input. The output from these routines is listed in the following order:

- 1. System information
- 2. Active tasks information
- Task headers information
- 4. Partition information
- 5. Common Block Directory entries
- 6. Device information
- 7. Clock queue contents
- 8. Device controller information
- 9. Pool contents

/CLI or /CPB (Command Line Interpreter Parser Blocks)

File: Crash-input

Effect: CDA lists the contents of all Command Line Interpreter Parser Blocks (CPBs) in the system.

/CLQ (Clock Queue)

File: Crash-input

Effect: CDA lists the contents of the clock queue.

/CTL (Device Controllers)

File: Crash-input

Effect: CDA lists the contents of the controller table and Controller Request Block (KRB) for each device controller in the system.

/DEV, /DCB, /SCB, or /UCB (Devices in System)

File: Crash-input

Effect: CDA scans the system device tables and lists the contents of the control blocks for each active device in the system. To list all devices, use the /ADV switch.

/DUMP:a:b:[c] or /DMP (Physical Memory)

File: Crash-input

Effect: If only a and b are specified, CDA dumps the contents of physical addresses a through b inclusive and labels them with their physical addresses. If a, b, and c are specified, CDA dumps the contents of physical addresses a through b, but labels them with dummy virtual addresses, starting at the address specified by c.

CDA allows you to specify a virtual starting address because RSX-11M and RSX-11M-PLUS systems use physical memory in terms of virtual addresses. If you dump physical memory labeled with the corresponding virtual addresses, you do not have to translate physical addresses to virtual addresses as you read the dump.

/HDR (Headers for Memory-Resident Tasks)

File: Crash-input

 ${\tt Effect:}\ {\tt CDA}\ {\tt lists}\ {\tt the}\ {\tt contents}\ {\tt of}\ {\tt the}\ {\tt task}\ {\tt headers}\ {\tt for}\ {\tt each}\ {\tt task}$ resident in memory.

/KDS:a:b (Kernel Data Space)

File: Crash-input

Effect: CDA lists the contents of kernel data space between the virtual addresses a and b inclusive.

/KIS:a:b (Kernel Instruction Space)

File: Crash-input

Effect: CDA lists the contents of kernel instruction space between the virtual addresses a and b inclusive.

/PCB or /PAR (Partition Control Blocks)

File: Crash-input

Effect: CDA outputs a map that lists all the occupants of memory and the contents of each Partition Control Block (PCB).

/POOL:a:b (System Pool)

File: Crash-input

Effect: CDA lists the system pool in octal, Radix-50, and ASCII.

/SECPOOL[:a:b] (Secondary Pool)

File: Crash-input

 ${\tt Effect:}\ {\tt Lists}\ {\tt the}\ {\tt contents}\ {\tt of}\ {\tt the}\ {\tt secondary}\ {\tt pool}\ {\tt on}\ {\tt RSX-llM-PLUS}\ {\tt systems.}$

/STD, /TCB, or /TAL (System Task Directory)

File: Crash-input

Effect: CDA lists the contents of all of the Task Control Blocks in the System Task Directory (STD) at the time of the crash.

/-SYS (System Information)

File: Crash-input

Effect: CDA suppresses the system information listing.

/TASK:name:a:b, /TAS, or /TSK (Task Virtual Address Space)

File: Crash-input

Effect: CDA lists the virtual address space from the 16-bit virtual address a through b for the task specified by "name." If you do not specify addresses, CDA lists the task's entire virtual address space.

/TDS:name[:a:b] (Task Data Space)

File: Crash-input

Effect: CDA lists the contents of the task data space between the virtual addresses a and b inclusive. If you do not specify addresses, CDA lists the entire task data space.

/TIS:name:a:b (Task Instruction Space)

File: Crash-input

Effect: CDA lists the contents of the task instruction space between the virtual addresses a and b inclusive. If you do not specify addresses, CDA lists the entire task instruction space.

2.1.1.2 Function Switches - Table 2-3 summarizes the function switches and gives brief descriptions of their effects. Expanded descriptions of each switch follow the table.

Table 2-3
Summary of CDA Function Switches

Switch	Function	Applies to File	Default ¹
/BL:n	Identifies the starting block number of the crash-input device; the value of n must be less than 65535.	Crash- input	n=l
/DENS:n :HIGH :LOW	Sets density of crash input tape to 800 or 1600 bits per inch (bpi)	Crash- input	n=800
/EXIT:n	Terminates analysis after encountering n analysis errors	List file	
/LIMIT:n	Limits output listing to n pages	List file	n=300.
/LINES:n	Limits page length to n lines	List file	n=60.
/MEMSIZ:n	Saves nKb memory from crash in a binary file	Binary file	n=124.
/KMR	Forces the assignment of kernel address register values for the crashed system	Crash- input	/-KMR
/-SP	Does not print analysis output listing	List file	/SP
/STB	Identifies the file specifica- tion that contains the Executive symbol table	Symbol file	
	expressed as an octal or decimal llowing the number denotes decimal.	number. A	decimal

/BL:n (Identify Starting Block Number)

File: Crash-input

Effect: CDA reads the dump from the input device beginning at block n. If the crash dump device is not a disk or a DECtape, CDA ignores this switch.

Default: n = 1

/DENS:n (Sets Tape Density)

:HIGH :LOW

File: Crash-input

Effect: CDA reads the crash input tape at the density specified: 800 or 1600 bpi. You can also use LOW to indicate 800 bpi or HIGH to indicate 1600 bpi.

Default: n=800

/EXIT:n (Exit After n Errors)

File: List file

Effect: CDA maintains an error count. As it encounters inconsistencies in the system data structures, it increments this count. If you specify the /EXIT:n switch, CDA terminates analysis after n errors. If you specify the /EXIT switch but do not specify n, CDA exits after one error.

Default: CDA runs to completion.

/LIMIT:n (Limit Output Listing)

File: List file

Effect: The /LIMIT:n switch limits the number of pages of analysis output. When CDA has generated n pages, it terminates the analysis and prints a message on the user terminal indicating that it has done so.

Default: n = 300.

/LINES:n (Print n Lines per Page)

File: List file

Effect: This switch lets you specify the number of lines you want CDA to print per page. After n lines are printed, a new page is ejected.

Default: n=60.

/MEMSIZ:n (Establish Size of Binary Output File)

File: Binary file

Effect: This switch causes CDA to create a binary output file 4*n blocks long and to transfer nKb words to it from the crash-input file. The value of n must be greater than 16.

This switch is particularly useful when transferring binary crash dumps from disk or DECtape. Since disks and DECtapes have no physical EOFs, it is necessary to specify the size of the actual memory dump.

When the crash input resides on magnetic tape, the binary output file is filled with zeroes if the EOF is read before nKb words are transferred.

Default: n = 124.

/KMR (Assign Kernel Mapping Register Values)

File: Crash-input

Effect: On mapped systems, when CDA reads incorrect Page Address Register (PAR) values from the crash stack, it aborts the analysis and prints an error message on the terminal. If this happens, you can use the /KMR switch to retry the analysis. When you specify /KMR, CDA uses standard mapping values to convert kernel virtual addresses to physical memory addresses.

Default: CDA uses existing Page Address Registers.

/-SP (Do Not Spool)

File: List file

Effect: CDA does not spool the analysis output listing to the system line printer queue. Instead, it creates an output list file on the device indicated in the output file specification. If you do not specify a device in the output file specification when you use the /-SP qualifier, CDA creates the output list file on SYO:.

Default: /SP

/STB (File Specified Contains the Executive Symbol Table)

File: Symbol file (RSX11M.STB)

Effect: The /STB switch identifies a file containing the Executive symbol table. This file must correspond to the crashed system. CDA opens the symbol file and extracts the necessary symbol values. If it fails to find any required symbol values, CDA aborts the analysis and returns an error message.

Default: [current UIC]RSX11M.STB

2.1.2 CDA Command Line Examples

The following examples illustrate CDA command lines. Assume that the user in these examples is logged in under UIC [301,356], that the crash dump device is DR5:, and that CDA is running as an installed task. Also, note how CDA uses default file types.

Example 1

>CDA RET
CDA>DUMP,DUMP=RSX11M.STB/STB,DR5: RET

This command line creates:

- A list file, DUMP.LST, in UFD [301,356], which is printed automatically
- A binary file, DUMP.CDA, in UFD [301,356]

CDA reads the binary crash dump input from the crash dump device (DR5:), makes a binary copy of the crash dump input named DUMP.CDA, analyzes the crash dump input according to the information in the Executive symbol table file named RSX1lM.STB in UFD [301,356], and writes a formatted output listing to a file named DUMP.LST. CDA then spools DUMP.LST to the system line printer queue.

Example 2

>CDA RET CDA>, DUMP=[1,54]/STB, DR5: RET

This command line creates a binary file named DUMP.CDA in UFD [301,356].

CDA reads the binary crash dump input from DR5: and analyzes it according to the information in the Executive symbol table file, which is named RSX11M.STB in UFD [1,54].

Example 3

```
>CDA LP:=[1,54]/STB,DUMP RET >
```

This command line creates an output listing on device LP:.

CDA reads the binary input from a previously created binary file named DUMP.CDA, and analyzes it in accordance with the information contained in the Executive symbol table file named RSX1lM.STB in UFD [1,54]. The CDA output listings are then printed on LP:.

This command line is also an example of a CDA command that is issued from the CLI prompt. Thus, the CLI prompt returns after the command is issued.

Example 4

```
>CDA TI:=DUMP RET
```

This command line creates an output listing that is displayed on the terminal from which the command was issued.

CDA reads the binary input from a previously created binary file named DUMP.CDA and analyzes it according to the information in the default symbol table file, (the file named RSX11M.STB in the UFD that currently corresponds to UIC [301,356]). The CDA output listings are then displayed on TI:.

2.2 THE DCL ANALYZE/CRASH DUMP COMMAND

If your terminal supports the DIGITAL Command Language (DCL) command line interpreter, you can run the CDA utility by using the DCL ANALYZE/CRASH_DUMP command as an alternative to the CDA command line. This section describes the ANALYZE/CRASH_DUMP command line format and qualifiers. The section concludes with some examples of ANALYZE/CRASH_DUMP command lines.

The ANALYZE/CRASH DUMP command line has the following format:

ANALYZE/CRASH DUMP[/qualifiers] crash-input[/qualifiers]

You use the ANALYZE/CRASH_DUMP command to specify CDA input and output. The command qualifiers that you place immediately after the command name specify the CDA output files and, optionally, the symbol table file that CDA uses to process the crash dump input. The crash-input specification is mandatory because it directs CDA to the source of the binary crash dump input.

Output Specifications:

You must specify at least one of the following command qualifiers as an output specification in the command line:

/LIST: Specifies the output list file

• /BINARY: Specifies a binary copy of the crash-input file

• /SYMBOLS: Specifies the symbol definition file

You can specify /LIST: only, /BINARY: only, or /LIST: and /BINARY: together. You can optionally specify /SYMBOLS: with any combination of the /LIST: and /BINARY: qualifiers. However, if you do specify /SYMBOLS, you must include at least one of the other command qualifiers (because the symbol definition file is not an output file; it is used by CDA to generate an output file). Section 2.2.1.1. provides complete descriptions of the functions of each of the command qualifiers.

If you omit the crash-input specification from the command line, CDA prompts you for it, as shown in the following example:

\$ ANALYZE/CRASH_DUMP/LIST:LP: RET Crash input? DR5: RET

If you enter the command name only, CDA prompts you for input and output, as shown in the following example:

\$ ANALYZE/CRASH_DUMP RET Crash output? /LIST:SY:[301,356]CRASH.LST:/BINARY:COPY.CDA RET Crash input? DUMP.CDA RET

Note that if you enter an output file in this way, you must include the /LIST: or /BINARY: qualifiers as part of the output file specification.

Input Specification:

crash-input

Specifies the location of the binary input to the ANALYZE/CRASH DUMP command. The crash-input specification can be the name of the crash dump device, or it can be a binary file that was created during a previous crash dump analysis.

When you enter an ANALYZE/CRASH_DUMP command line, you can include command qualifiers, qualifiers for the crash-input parameter, or both. Section 2.2.1 describes qualifiers.

2.2.1 ANALYZE/CRASH DUMP Command Qualifiers

You can control the way CDA processes the crash input and how it formats the output listings by using command qualifiers in the command line. You can select the information that you want in the CDA output listings by using qualifiers for the crash-input specification. Section 2.2.1.1 describes command qualifiers. Section 2.2.1.2 describes the qualifiers that you can use when you specify the crash input.

2.2.1.1 Command Qualifiers - You can use command qualifiers with the ANALYZE/CRASH_DUMP command to control how CDA processes the binary crash-input, and how it formats the output analysis listings. You place command qualifiers immediately after the command name in the command line. Table 2-4 summarizes the command qualifiers and gives brief descriptions of their effects. Expanded descriptions of each qualifier follow the table.

Table 2-4
Summary of ANALYZE/CRASH_DUMP Command Qualifiers

Command Qualifier	Function	Applies to File
/LIST:listfile[/qualifiers]	Specifies the output list file or device	List file
listfile qualifiers:		
/ERROR_LIMIT	Specifies an error limit at which CDA analysis terminates	List file
/PAGE_COUNT:n	Specifies the number of output pages	List file
/PAGE_LENGTH:n	Specifies the number of output lines per page	List file
/[NO]PRINTER	Specifies whether the output should be printed on the system line printer	List file
/BINARY:binaryfile[/qual]	Specifies an optional copy of the binary input file	Crash-input
binaryfile qualifier:		
/MEMORY_SIZE:n	Copies nKb words of memory from a crashed system	Crash-input
/SYMBOLS:symbolfile	Specifies the symbol definition file	Crash-input

Command Qualifier Descriptions:

/LIST:listfile[/qualifiers]

/ERROR_LIMIT[:n]
/PAGE_COUNT:n
/PAGE_LENGTH:n
/[NO]PRINTER

File: List file

Effect: Specifies the optional formatted CDA output list file. This list file consists of the analysis report listings that are described in Chapter 3. You can also specify a device for the list file, in which case CDA displays or prints its output listings on the specified device. You can control the list file output by using the following file qualifiers.

List File Qualifiers:

/ERROR LIMIT[:n]

Effect: CDA maintains an error count. As it encounters inconsistencies in the system data structures, it increments the error count. CDA terminates the crash dump analysis when it finds the number of errors that you specify with this qualifier. If you use the /ERROR_LIMIT qualifier without specifying a number, the crash dump analysis terminates after one error.

Default: CDA runs the analysis until it is completed.

/PAGE COUNT:n

Effect: This qualifier limits the number of pages of analysis output. When CDA has generated n pages, it terminates the analysis and prints a message on the terminal indicating that the analysis has terminated.

Default: Analysis terminates after 300 pages.

/PAGE LENGTH:n

Effect: This qualifier lets you specify the number of lines that you want CDA to print per output page. After the specified number of lines are printed, CDA breaks to a new page.

Default: CDA prints 60 lines per page.

/[NO]PRINTER

Effect: This qualifier prevents the printing of the analysis output on the system line printer. Instead, CDA creates the output list file on the device in the list file specification. If a device is not specified in the list file specification, CDA creates the output file on the default user disk (SY0:).

Default: CDA prints all output on the system line printer.

/BINARY:binaryfile[/qualifier] /MEMORY SIZE:n

File: Crash-input

Effect: Specifies that an optional binary file should be created. This file is a copy of the binary data that the crash dump routine wrote on the crash dump device. If you create the file during an initial analysis, you can use it as input to the ANALYZE/CRASH_DUMP command at a later time. Also, because the crash dump routine overwrites the contents of the crash dump volume with each crash dump, this qualifier allows you to save the results of crash dumps. You can then reuse the same volume for successive crash dumps while maintaining a record of previous crash dumps.

Binary File Qualifier:

/MEMORY SIZE:n

Effect: Specifies memory size for the binary copy of the crash dump input file. You specify n, where n is the number of Kb words. CDA then creates a binary file 4n words long and transfers nKb words to it from the crash-input file. The value of n must be greater than 16 (decimal).

Default: n=124

/SYMBOLS:symbolfile

File: Symbol definition file

Effect: Specifies the symbol definition file for the crashed system, which contains the Executive symbol table. The symbol file must correspond to the crashed system. CDA opens the file and extracts the necessary symbol values. If it fails to find any required symbol values, CDA aborts the analysis and returns an error message. If you omit this file specification, CDA uses the default file, which is the file named RSX11M.STB in the UFD that corresponds to the current UIC.

2.2.1.2 Crash-input File Qualifiers - You can select the analysis listings that you want CDA to output by using qualifiers for the crash-input file specification in the ANALYZE/CRASH DUMP command line. Table 2-5 summarizes the crash-input qualifiers and gives brief descriptions of their effects. Expanded descriptions of each qualifier follow the table.

Table 2-5
Summary of ANALYZE/CRASH DUMP Crash-input Qualifiers

Qualifier or Argument	Function	Applies to File
/ACTIVE: (arg[,])	Lists data on active tasks and/or devices	Crash-input
/ACTIVE arguments:		
DEVICES	Lists data about active devices	Crash-input
TASKS	Lists contents of the Task Control Blocks for active tasks	Crash-input
/ALL	Lists all available crash dump data	Crash-input
/BLOCK:n	Specifies the block number where crash dump begins on the crash dump device	Crash-input

(Continued on next page)

Table 2-5 (Cont.) Summary of ANALYZE/CRASH_DUMP Crash-input Qualifiers

Qualifier or Argument	Function	Applies to File
/CLOCK_QUEUE	Lists the contents of the clock queue	Crash-input
/CONTROLLERS	Lists device controller data	Crash-input
/DATA_STRUCTURES: (arg[,])	Specifies which data structures are to be formatted and listed	Crash-input
/DATA_STRUCTURES arguments:		
COMMAND_PARSER	Lists contents of CLI Parser Blocks	Crash-input
DEVICE STATUS UNIT	List contents of the control blocks for active devices	Crash-input
PARTITION	Lists contents of Partition Control Blocks	Crash-input
TASK	Lists contents of the Task Control Blocks for tasks in the STD	Crash-input
/DENSITY:n	Specifies bits per inch for input device	Crash-input
/DEVICES	Lists contents of all Device Control Blocks	Crash-input
/DUMP[:(START:n,END:n,ADDRESS:n)]	Lists contents of physical addresses	Crash-input
/HEADERS	Lists contents of resident task headers	Crash-input
/KERNEL:(arg[,])	Lists kernel contents	Crash-input
/KERNEL arguments:		
DATA: (START:n, END:n)	Lists contents of kernel data space	Crash-input
INSTRUCTION: (START:n, END:n)	Lists contents of kernel instruction space	Crash-input
REGISTERS	Forces assignment of values for the kernel address registers	Crash-input

(Continued on next page)

Table 2-5 (Cont.) Summary of ANALYZE/CRASH DUMP Crash-input Qualifiers

Qualifier or Argument	Function	Applies to File
/PARTITION	Lists contents of Partition Control Blocks	Crash-input
/POOL: (START:n, END:n)	Lists pool contents	Crash-input
/SECONDARY_POOL[:(START:n,END:n)]	Lists contents of secondary pool from START to END	Crash-input
/[NO]SYSTEM	Suppresses listing of system information	Crash-input
/TASKS:(arg[,])	Lists task data	Crash-input
/TASKS arguments:		
DIRECTORY	Lists contents of the Task Control Blocks for tasks in the STD	Crash-input
ADDRESS: (NAME:name[,START:n,END:n])	Lists contents of task addresses from START to END	Crash-input
DATA: (NAME:name[,START:n,END:n])	Lists contents of task data space	Crash-input
<pre>INSTRUCTION: (NAME: [,START:n,END:n])</pre>	Lists contents of task instruction space	Crash-input

File Qualifier Descriptions:

/ACTIVE: (arg[,...])

DEVICES TASKS

File: Crash-input

Effect: Lists data on active tasks and devices.

/ACTIVE arguments:

DEVICES

Effect: Lists data on the devices active in the system at the time of the crash. If you want CDA to list data on all of the devices known to the system at the time of the crash, use the /DEVICES qualifier.

TASKS

Effect: Lists the contents of the Task Control Blocks of active tasks. If you want CDA to list the contents of the Task Control Blocks of all installed tasks, both active and dormant, use the /TASKS: (DIRECTORY) qualifier.

/ALL

File: Crash-input

Effect: Analyzes all information available in the crash dump file (except the information associated with memory and task dumps). CDA lists the output in the following order:

- 1. System information
- 2. Active tasks information
- 3. Task headers information
- 4. Partition information
- 5. Common Block Directory entries
- 6. Device information
- 7. Clock queue contents
- 8. Device controller information
- 9. Pool contents

/BLOCK:n

File: Crash-input

Effect: Identifies the starting block number of the crash dump file on the crash input device. The value of n must be less than 65535 (decimal).

/CLOCK_QUEUE

File: Crash-input

Effect: Lists the contents of the system clock queue.

/CONTROLLERS

File: Crash-input

Effect: Lists the contents of the controller table and Controller Request Block (KRB) for each device controller in the system.

/DATA STRUCTURES: (arg[,...])

COMMANDPARSER

DEVICE
PARTITION
STATUS
TASK
UNIT

File: Crash-input

Effect: Selects which system data structures CDA will format and list.

/DATA STRUCTURES arguments:

COMMAND PARSER

Effect: Lists the contents of the Command Line Interpreter (CLI) Parser Blocks.

PARTITION

Effect: Lists the contents of the Partition Control Blocks.

TASK

Effect: Lists the contents of the Task Control Block for every task in the System Task Directory (all installed tasks) at the time of the system crash.

DEVICE

Effect: Lists the contents of the Device Control Blocks for active devices.

STATUS

Effect: Lists the contents of the Status Control Blocks for active devices.

UNIT

Effect: Lists the contents of the Unit Control Blocks for active devices.

/DENSITY:n

File: Crash-input

Effect: Causes a crash input tape to be read at the density specified, 800 or 1600 bpi. The default is 800 bpi.

/DEVICES

File: Crash-input

Effect: Lists the contents of the control blocks for all devices in the system. To list only active devices, use the /ACTIVE: (DEVICES) qualifier.

/DUMP[:(START:a,END:b[,ADDRESS:c])]

File: Crash-input

Effect: Lists the contents of physical addresses a through b inclusive and labels them with their physical addresses. If you include address c, the /DUMP qualifier dumps the contents of physical addresses a through b, but labels them with dummy virtual addresses, starting at c.

/HEADERS

File: Crash-input

Effect: Lists the contents of the task headers for each task resident in memory.

/KERNEL: (arg[,...])

DATA: (START:n,END:n)

INSTRUCTION: (START:n, END:n)

REGISTERS

File: Crash-input

Effect: Lists kernel data.

/KERNEL arguments:

DATA: (START:n, END:n)

Effect: Lists the contents of kernel data space from

virtual addresses START:n to END:n.

INSTRUCTION: (START:n, END:n)

Effect: Lists the contents of kernel instruction space from

virtual address START:n to END:n.

REGISTERS

Effect: Forces the assignment of the kernel address

register values for the crashed system.

/PARTITION

File: Crash-input

Effect: Lists the contents of the Partition Control Blocks.

/POOL: (START:n, END:n)

File: Crash-input

Effect: Lists the contents of system pool between the addresses

specified in octal, Radix-50, and ASCII.

/SECONDARY POOL: (START:n, END:n)]

File: Crash-input

Effect: Lists the contents of system secondary pool between the

addresses specified by START and END.

/[NO]SYSTEM

File: Crash-input

Effect: The /NOSYSTEM qualifier suppresses the system information listing. The default action of CDA is /SYSTEM; that

is, it lists the system information.

/TASKS: (arg[,...])

DIRECTORY

ADDRESS: (NAME:name,START:n,END:n)

DATA: (NAME:name[,START:n,END:n])

INSTRUCTION: (NAME:name[,START:n,END:n])

File: Crash-input

Effect: Lists task data.

/TASKS arguments:

DIRECTORY

Effect: Lists the contents of the Task Control Block for every task in the System Task Directory (all installed tasks) at the time of the system crash.

ADDRESS: (NAME:name,START:n,END:n)

Effect: Lists the contents of the task specified by NAME between the virtual addresses specified by START and END. Includes the contents of task data space if a task includes data space.

DATA: (NAME:name[,START:n,END:n])

Effect: RSX-11M-PLUS operating systems only. Lists the contents of task data space for the task specified by NAME.

INSTRUCTION: (NAME:name[,START:n,END:n])

Effect: RSX-llM-PLUS operating systems only. Lists the contents of task instruction space for the task specified by NAME.

2.2.2 ANALYZE/CRASH DUMP Command Examples

The following examples illustrate the ANALYZE/CRASH_DUMP command. Assume that the user in these examples is logged in under UIC [301,356], and that the crash dump device is DR5:. In this way, you can note how CDA uses default file types. Also, assume that CDA is running as an installed task.

Example 1

\$ ANALYZE/CRASH_DUMP/LIST:CRASH/BINARY:COPY/MEMORYSIZE:250 DR5: RET
This command creates:

- An output list file named CRASH.LST in the current UFD for UIC [301,356].
- A binary copy of 250kb words of the crash dump from DR5: (the crash dump device). The copy is named COPY.CDA and is placed in the current UFD for UIC [301,56].

CDA reads the binary crash dump input from the crash dump device and analyzes it according to the default symbol definition file, since a symbol definition file is not specified in the command line. CDA uses the file named RSX1lM.STB in the current UIC as the symbol definition file. CDA then generates a list file named CRASH.LST and spools it to the default system line printer queue. CDA also copies the specified amount of memory from the crash dump device to a binary file named COPY.CDA.

Example 2

\$ ANALYZE/CRASH DUMP/LIST:LP5:/PAGE_COUNT:5 DR5:/BL:100 RET

This command creates a list file that is printed on LP5:.

CDA reads the crash input from DR5:, beginning at block 100, and analyzes it according to the default symbol definition file. CDA then prints the first five pages of its output listing on LP5:.

Example 3

\$ ANALYZE/CRASH_DUMP/LIST:TI:/SYMBOLS:[1,54] COPY.CDA RET

This command creates a list file that is displayed on TI: (the terminal at which the command was issued).

CDA reads the previously generated binary file named COPY.CDA, analyzes it according to the file named RSX11M.STB in UFD [1,54], and displays its output listings on TI:.

CHAPTER 3

ANALYSIS LISTINGS

The CDA output listings in this chapter illustrate CDA operation. Each item of each listing is keyed to the brief explanatory text that precedes it.

Dumps shown in offset mode use relative addresses. They are offset from the beginning of the displayed data. They are neither physical nor virtual addresses of the data.

NOTE

These listings came from several different crash dumps. Therefore, values that would usually correlate across the various listings do not necessarily correlate here. Those listings that extend across several pages in an actual dump of a crashed system are truncated here and reflect only a typical printout format for them.

3.1 SYSTEM INFORMATION

The first six pages of a CDA output listing normally contain the system information described in Sections 3.1.1 through 3.1.6. The system information consists of the following:

- Volatile registers
- Kernel stack
- System common
- System common alphabetized dump
- Pool statistics
- Assign table

If Group-global Event Flag Blocks are in memory when the system crashes, the listing described in Section 3.1.7 appears. If error log packets are in memory at the time of the crash, the listing described in Section 3.1.8 appears. On RSX-11M-PLUS systems, CDA generates the listing of low core memory shown in Section 3.1.9 as part of the system common dump.

3.1.1 Volatile Registers

Figure 3-1 is a listing that reflects the state of the hardware registers at the time of the crash. Refer to the appropriate PDP-11 processor handbook for detailed information on these registers. Each item in the following list describes a correspondingly numbered item in Figure 3-1.

Item

Description

- Contents of Processor Status Word (PSW) and kernel and user stack pointers after crash
- Program counter and PSW (that the system pushed onto the kernel stack) just prior to system crash (These values are valid only if the system trapped.)
- Contents of general registers
- 4. Contents of memory management registers
- Contents of Page Address and Page Description Registers (See Section 4.1.1 for information on how to interpret this information.)
- 6. Contents of UNIBUS map registers (This field is suppressed if the processor does not have a UNIBUS map.)
- 7. Contents of CPU error register that identifies the source of the abort or trap that used the vector at location 4 (on RSX-llM-PLUS systems, this field is suppressed if the processor does not have a UNIBUS map.)
- 8. Contents of memory system error register (On RSX-llM-PLUS systems, this field is suppressed if the processor does not have a UNIBUS map.)
- 9. Contents of cache control register (On RSX-11M-PLUS systems, this field is suppressed if the processor does not have a UNIBUS map.)

ER CRASH: PS=00000		=001674 1)
ORE CRASH: PC=0000	00 PS#120476 2	
007760 R1=007377	R2=007530 R3=000000	R4=000001 R5=000000 3
0=00000 MMR1=000	000 MMR2=002256 MMR3:	=000000 4
U S	E R	UNIBUS MAP
ISPACE	DSPACE	1 00000000
PDR PAR	PDR PAR	2 00020000
77506 000000	000000 000000 000000	3 00040000 4 00060000
77406 000200 77506 000400	000000 000000 000000 000000	5 00100000
77406 000600	000000 000000	6 00120000
77466 001000	000000 000000	7 00140000
37506 001600	000000 000000 000000 000000	8 00327024 9 01132134
44084 003123 77406 177600	000000 000000 000000 000000	10 01152134
		11 01157134
SUPER	V I S O R	12 01200134 13 01674220
		14 00430770
ISPACE	D SPACE	15 01636100 >
PDR PAR 00000 000000	PDR PAR 000000	16 17416700 17 17416700
00000 00000	000000 000000	18 17416700
00000 00000) < 400000 000000 > (!	5) 19 17416700
00000 000000	000000 000000	20 17416700
00003 000000 00008 000000	000000 000000 000000 000000	21 17416700 22 17416700
00000 00000	999999 999999	23 17416700
00000 000000	00000 000000 N00000	24 17416700
		25 17416700
KER	NEL	26 17416700 27 17416700
I SPACE	DSPACE	28 17416700 29 17416700
PDR PAR	PDR PAR	30 17416700
77506 000000	000000 000000	31 17416700
77546 000209 77546 000400	000000 000000	
77506 000600	999000 990000	
77506 881000	000000 000000	
77406 001600	UUU000 000000	
77406 003123 77506 177600	000000 000000 000000 000000	
77506 177600	000000 000000	

```
19-APR-85 14103
                                                                          PAGE 1
RSX-11M-PLUS CRASH DUMP ANALYZER V3.0
VOLATILE REGISTERS
                            SP(K)=000604
                                            SP(S)=001212
AFTER CRASH!
               PS=000344
                                                             SP(U)=120362
               CPU ERR = 000100
                                                 (8)
                                    MEM SYS ERR = 000000
                                                             CACHE CTL REG = 000001
BEFORE CRASH: PC=045210
                             PS=030005
             R1=053550 R2=000000 R3=000010 R4=000102
                                                                  R5=120526
R0=000401
                              MMR2=011710
                                            MMR3=000066
MMR0=000001
               MMR1=000000
                                                           UNIBUS
                   USER
                                                                           MAP
                             D S P A C E PDR PAR
      S P A C E PAR
                                                                   00000000
                                                                   00074400
   PDR
  015006
             000000
                            000000
                                       000000
                                                                   00114400
                                                                   00134400
  077406
             000744
                            000000
                                       000000
  077406
             001144
                            000000
                                       000000
                                                                   00154400
                                                                   00243400
  077406
                            000000
                                       000000
             001344
                                                               7 00263400
8 00461124
9 02642064
  077406
             001544
                            000000
                                       000000
             001744
                            000000
                                       000000
  037506
  000000
             027255
                            000000
                                       000000
                                                                   02642064
                                                              10 02662064
  077406
             177600
                            999999
                                       000000
                                                              11 02702064
12 02722064
13 02742064
             SUPERVISOR
                                                              14 02762064
                             D S P A C E
PDR PAR
  I SPACE
                                                              15 15350622
                                                              16 17776366
17 07720376
   PDR
             PAR
  077402
                            077406
                                       020347
             006210
                                                              18 13340176
19 11420312
20 14020346
  004402
             006410
                            014406
                                       020547
                            000000
  000000
             000000
                                       022713
  000000
             000000
                            000000
                                       @23113
                                                              21 12100272
22 03140176
23 04410272
24 00020200
  000000
             000000
                            200000
                                       023313
  000000
             000000
                            000000
                                       016267
  999999
             000000
                            074406
                                       004750
             000000
  000000
                            000000
                                       005142
                                                              25
                                                                   06335600
                                                              26 04637510
27 17567456
                 KERNEL
                                                              28 17357734
                            D S P A C E PDR PAR
                                                              29 10217500
      SPACE
  PDR
             PAR
                                       PAR
                                                              30 00217404
                                                              31 11357560
  077506
             000000
                            077506
                                       000000
                                       000744
  077406
             00020U
                            077506
                            077506
             000400
                                       001144
  077406
                                       001344
  077406
             000600
                            077506
  077406
             001000
                                       001544
                            077506
  077406
             001744
                            077406
                                       001744
  077406
                            077496
                                       027255
             027255
  077406
             177600
                            077506
                                       177600
                  Figure 3-1 (Cont.) Volatile Registers
```

3.1.2 Kernel Stack

Figure 3-2 shows the contents of the kernel stack area beginning at V\$\$CTR and ending at \$STACK. The kernel stack pointer points to a location within this area. See Section 4.1.2 for information on interpreting the contents of the kernel stack.

RSX-11M CRASH DUMP ANALYZER V4.2 19-APR-85 15:13 PAGE 2 KERNEL STACK

KERNEL STACK:

000400	000000	000000	000000	000000	000000	000000	000000	000000
000420	999999	000000	000000	000000	000000	000000	000000	000000
000440	000000	000000	000000	000000	000000	000000	000000	000000
000460	000000	000000	000000	000000	000000	000000	000000	000000
000500	000000	000000	000000	000000	000000	000000	000000	000000
000520	000000	000000	000000	000000	000000	000000	000000	000000
000540	000000	000000	000000	000000	000000	000000	000000	000000
000560	000000	000000	000000	123064	177613	120204	000251	000251
000600	123224	116506	000000	122710	009014	120344	123064	001446
000620	120204	123064	123064	001446	120204	161121	006066	110160
000640	114514	025160	000000	023540	006066	133362	126570	000000
000660	140672	130054	160020	136744	122026	000000	137062	160020
000700	130110	130054	006066	105664	000000	120644	022402	011762
000720	030011	000700	007736	121000	003306	120212	025616	177777
000740	106036	000000	106004	120220	170000			

Figure 3-2 Kernel Stack

3.1.3 System Common

The listing in Figure 3-3 provides a selective interpretation of some of the items in system common. Each item in the following describes the corresponding numbered item in Figure 3-3. (Refer to the RSX-11M Guide to Writing an I/O Driver or the RSX-11M-PLUS Guide to Writing an I/O Driver for further information.)

Item

Description

- 1. Time and date of crash, as set in the system
- 2. The task that was running at the time of the crash (If no task was running, this field contains the null task. This condition could develop if all the active tasks are blocked at the time of the crash. For information on determining which task or driver was mapped at the time of the crash, see Section 4.1.1.)
- 3. The address of the Task Control Block (TCB) of the current task
- 4. The contents of the 4-byte system ID indicating system base level
- 5. The first address available for partitions (the last address of the Executive plus 1)
- 6. The system size in 32-word blocks and in total words
- 7. System UIC
- 8. Stack depth count
- 9. Contents of the global event flag words
- 10. Name of the system for which dump is generated
- 11. Network UIC
- 12. Device from which the system was booted
- 13. Logical block number (LBN) of the beginning of the system image
- 14. Size of system image file in blocks
- 15. The octal value of the system feature masks and the meaning of each set bit
- 16. Octal dump of system common in offset mode in numerical order by address

```
R8X-11M CRASH DUMP ANALYZER
                                              19-APR-85
                                    V4.2
                                                             15113
                                                                          PAGE 3
SYSTEM COMMON
CRASH OCCURRED AT 09:53:51 21-MAY-81(1)
          (2)
                                     (3)
CURRENT TASK = LDR...
                           TCB ADDRESS = 112050
                                                                $8YUIC = [2,54]
                 $EXSIZ = 115000
                                      $$Y$IZ = 16384./512K
$STKDP = 000000
                      SCOMEF :
                               <33-48> 000000
                                                 <49-64> 000000
               QUASAR
LOAD DEVICE = DBØ
                                 (13)
                        LBN = 00124461
                                            FILE SIZE = 496.
SYSTEM FEATURE MASK (FIRST WORD) = 033377
       BIT SET
                             MEANING
         EXT
                     22-BIT EXTENDED MEMORY SUPPORT
         MUP
                     MULTI-USER PROTECTION SUPPORT
         EXV
                     20K EXEC SUPPORTED
                     LOADABLE DRIVER SUPPORT
         DRV
         PLA
                    PLAS SUPPORT
                    DYNAMIC CHECKPOINT SPACE ALLOCATION
        CAL
                    PREALLOCATION OF I/O PACKETS EXTEND TASK DIRECTIVE SUPPORTED
        PKT
         EXP
        OFF
                    PARENT/OFFSPRING TASKING SUPPORTED
                    FULL DUPLEX TERMINAL DRIVER
        FDT
                    DYNAMIC MEMORY ALLOCATION SUPPORTED
        DYM
                    COMMUNICATIONS EXEC IS LOADED
        CEX
SYSTEM FEATURE MASK (SECOND WORD) = 167400
                                                                      (15)
      BIT SET
                             MEANING
        DPR
                    DIRECTIVE PARTITION SUPPORT
                    INSTALL, REQUEST, AND REMOVE TASK SUPPORT GROUP GLOBAL EVENT FLAG SUPPORT
        IRR
        GGF
        RAS
                    RECEIVE/SEND DATA PACKET SUPPORT
        RBN
                    ROUND ROBIN SCHEDULING SUPPORTED
        SWP
                    EXECUTIVE LEVEL DISK SWAPPING SUPPORTED
        STP
                    EVENT FLAG MASK IS IN THE TCB
SYSTEM FEATURE MASK (THIRD WORD) = 025215
      BIT SET
                             MEANING
                    MULTIPLE CLI SUPPORT
        CLI
        EIS
                    SYSTEM REQUIRES THE EXTENDED INSTRUCTION SET
                    SYSTEM SPONTANEOUSLY CRASHED (1=YES)
        CRA
        STM
                    SYSTEM HAS SET SYSTEM TIME DIRECTIVE
        AST
                    SYSTEM HAS AST SUPPORT
```

Figure 3-3 System Common

	IIM CRAS		ANALYZER	V	4.2	19-APR-85	15:13	PAG	E 4
		(·			16	V			
ADDR	LABEL	VALUE		ADDR	LABEL	VALUE	ADDR	LABEL	VALUE
007660		000760		010020	SPOLST	000403	010160		000000
:		010316				003100			000000
		000207				001130			000000
	SHEADR	111700				000310			000000
	O I I E HO I	174000				000063			000000
,	SCOME	000000				000500			000000
	000,.21	000000				000144			000000
	SSYSID	030063				017226			000000
007700		020105		010040	SCLKHD	044414	010200		000000
007.00	STENPT	107134			SCOPT	037356			000000
		106704				114734			000000
		177546				112050			000000
		177546			-	112050			000000
		000000				001600			000000
					\$XCOM2				000000
	331010	001054 000000			\$GGEF	000000)	000000
007720	SEXSIZ	115000		010060	SGFTCB	010064	010220		000000
	SPWRFL			010000		010064	0.0000	SERBAF	
	SSIGFL					000356		O L N D A	030131
	SLOGHD				SIDLCT				055472
									026061
	SMCRCB				SIDLPT				
	SESIEK	103640			SUTEMN	020035			056466
		000003				020037			040502
	SCRAVL	045074			* - 1	020037			045503
007740		000000		010100		017440	010240		050125
	_	112050				017440			042456
	SDICSV	001051				020040			051122
	STKTCB	112050			SBTMSK	000001			000000
	SLBUIC	000454				000002			000000
	SABTIM	007572				000004			000000
	SROSCH	000000				000010			000000
	SSTKDP	000000				000020			000000
007760	SDEVHD	063460		010120		000040	010260	r · · ·	000000
	SRNDCT	000005				000100			000000
	SSWPCT	000036				000200			000000
	SERRPT					200400		SERFID	000000
	SCFLPT	046444				001000			000000
		000000		1		002000			000000
		026222				004000			000000
	SINTCT	177777				010000	•		000000
010000	SFRKHD	000000		010140		02000	010300	SPRMOD	000000
		010000				040000	• • • • • • • • • • • • • • • • • • •	SSYSIZ	
	SFMASK	033377				100000			000000
		167400			SERHEA				124461
		025215				010146			041104
	SHEMCK	000003			SENTSO	000001			000760
	SPTICE					888888			177777
	SPRISZ					888888			000015
	ack 197	שוננטיי			O CALLA	KKEREE			200012

Figure 3-3 (Cont.) System Common

3.1.4 System Common Alphabetized Dump

The listing in Figure 3-4 represents an alphabetical list of the locations in system common that have a label associated with them. The octal numbers represent the contents of those locations, not the addresses of the labels. The following summary lists the labels and their meanings. Note that some of these labels may not appear on your listing, or that additional labels may appear, depending upon the options you selected at system generation.

\$ABTIM	Absolute time counter
\$ACCLK	Absolute time clock for accounting
ŞACNFE	Accounting feature mask word
\$ACTHD	Active task listhead
\$ACTPS	Clock rate for accounting
\$APLIM	Free secondary pool space ACNT reserves
\$AVRHD	Automatic volume recognition listhead
\$BTTIM \$CBDHD	Absolute time when system was booted Common block directory listhead
SCFLPT	Checkpoint file PCB listhead
\$CKCNT	Address of clock count register
\$CKCSR	Clock control status register (CSR)
\$CKLDC	Clock load count
\$CKUAB	User Account Block (UAB) for task run from clock queue
\$CKURM	UNIBUS Run Mask (URM) of processor that keeps the clock
\$CLICQ	Command queue listhead
\$CLKHD	Clock queue listhead
\$COPT	Pointer to Console Output (COO:) Unit Control Block (UCB)
\$CPMSK \$CPPAR	Processor bit clear mask Pointer to partition for CPU local memory
\$CPTBL	Pointer to Command Line Interpreter Parser Block (CPB) Table
\$CRAVL	Free system pool listhead
\$CRCSR	Crash device CSR address with no Controller Request Block (KRB)
\$CRFLG	Flag indicating saved registers
\$CRFPR	Number of first processor to crash
\$CRKRB	Crash dump device KRB address

\$CRLCK	One CPU dumps memory
\$CRSUN	Crash physical unit number
\$CTLST	Start of the Controller Table (CTB) list
\$CURPR	Current task priority
\$CXDBL	Context switching disabled flag
\$DEVHD	Pointer to first Device Control Block (DCB)
\$DICSV	Temporary storage for directive services
\$DRAPR \$DVSAV	APR value to map directive partition Saved CSR contents for error logging
\$ENTSQ	Error log entry sequence number
\$ERFLA	Error Logger flag word
\$ERHEA	Error Log message queue listhead
\$ERRPT	Pointer to Error Logger Task Control Block
\$ERRSQ	Universal error sequence number
\$EVBSQ	Buffer sequence number
\$EVDIS	Buffer position for next event
\$EVKS6	KISAR6 offset to buffer
\$EVLEN	Pointer to word beyond end of buffer
\$EVLOS	Number of events lost through saturation
\$EVSEQ	Event sequence number
\$EVTCB	TCB address of event logger task
\$EXCRC	Executive read-only code cyclic redundancy check (CRC)
\$EXECL	Serialize access to executive data lock
\$EXSIZ	Executive size
\$FMASK	System feature mask
\$FORKL	Serialize access to fork list lock
\$FRKHD	Fork queue listhead
\$FXRPT \$GEFDM	Pointer to parity error task Group-global dummy mask address word
\$GEF PT	Group-global mask address pointer
\$GFTCB	Group-global user TCB pointer
\$GGEF	Group-global event flags listhead
\$GNLST	General use pool packet listhead

SHEADR Pointer to current task header \$HFMSK Hardware system feature mask Pointer to HRC... task (privileged task for SHRCPT reconfiguration services) \$ICAVL ICB pool; same as core pool if no data space on system \$IDLCT Idle pattern count byte \$IDLFL Idle pattern flag in bytes \$IDLPT Idle pattern word Mask of interrupted URMs \$IICPU \$11FNL Serialize access to \$MPTAB lock ŞIIMSK IIst interrupt mask word \$IINXT Round robin word for \$IISVC \$IIPND Pending URM work word \$INTCT Clock interrupt ticks count \$LBUIC Library UIC \$LDPCB Current loader PCB pointer Pointer to loader TCB \$LDRPT \$LOGHD Logical device assignment listhead Lock word; TCB address of owner \$LSTLK \$MCRPT Pointer to MCR TCB Mount listhead \$MOULS \$MXEXT Last address in system common Number of processors in system \$NCPU \$NTUIC Network UIC \$PARHD Pointer to partition list Partition AST listhead \$PASTH Minimum size of largest fragment in pool \$PFRSZ \$PFURM URM to powerfail \$PKAVL Pointer to first preallocated I/O packet \$PKMAX Maximum number of preallocated I/O packets Number of preallocated I/O packets currently in list \$PKNUM \$PLPAR Pointer to secondary pool PCB Minimum priority for nonprivileged task to execute at \$POLBP low pool

\$POLFL	Executive pool usage control flags	
\$POLHD	Listhead for secondary pool free list	
SPOLST	Executive pool communications word	j
\$PRIFR	Current amount of free pool	
\$PRIHL	Upper limit for pool monitoring	
SPRILL	Lower limit for pool monitoring	
\$PRISZ	Minimum size of largest pool fragment	
\$PRMOD	Processor model number	
\$PRTAB	Processor current task priority table	
\$PTCBL	Prototype TCB listhead	
\$PTCPT	KISAR6 bias of prototype TCB	
\$PTTCB	TCB address of pool recovery task	
\$PWRFL	Power-fail recovery request flag	
\$PWRLK	Serialize access to \$PWRMK lock	
\$PWRMK	Mask of CPU in power-fail code	
\$RNDC	Clock ticks for each scheduling interval	
\$RNDCT	Number of clock ticks until next scheduled interva	1
\$RNDH	Highest priority class to consider	
\$RNDL	Lowest priority class to consider	
\$ROEND	End of read-only part of the Executive	
\$RQSCH	Schedule request TCB address	
\$RQTAB	Reschedule pointer to TCB table	
\$SABPT	Pointer to System Account Block	
\$SAHDB	Bias of current task header	
\$ЅАНРТ	Virtual address of current task header	
\$SAVSP	Saved stack pointer	
\$SCCTB	CTB if \$SCDEV contains KRB	
\$SCDEV	UCB or KRB for status change	ı.
\$SCERR	Error return from driver	
\$SCMOF	Offset to data space	
\$SCOFL	On-line or off-line parameter	
\$SECFR	Number of free blocks in secondary pool	
\$SGFFR	Pointer into stack for \$SGFIN	

\$SHERR	Points to TCB of shadow error task
\$SHFCT	Minimum ticks between shuffler requests
\$SHFPT	Pointer to Shuffler Task Control Block
\$SHFTM	Time remaining before next possible request to Shuffler
\$SHLIM \$SHLOS	Error packet limit Number of packets lost from saturation
\$SHPCT \$SHUMB	Current shadow error count Root for UMB list
\$SIGFL	Task waiting for significant event
\$STALR \$STENB	Sanity timer alarm enabled on CPU Sanity timer enabled
\$STKDP	Stack depth indicator
\$SWPC	Clock ticks for each swapping interval
SSWPCT	Number of clock ticks to next swapping interval
\$SWPR \$SWR \$SYLHD	Swapping priority Multiprocessor console switch register Listhead for System log input queue
\$SYSIZ	Size of memory in 32Kb-word blocks
\$SYUAB	Address of UAB for system tasks
\$SYUIC	System User Identification Code (UIC)
\$TKNPT	Pointer to Task Termination Notification Program (TKTN) Task Control Block
\$TKPS	Ticks per second
\$TNAME	Multiuser task name
\$TSKHD	Pointer to System Task Directory (STD)
\$TTNS	Tick of second
\$ULDPT \$UMRST	Microcode loader task TCB address Unibus Run Mask (URM) status table
\$VECTR	Highest vector address
\$XDTFL	Executive Debugging Tool (XDT) initialization table
\$XDTPR	Flag for prompts from XDT

	DUMP ANALYZER ALPHABETIZED DUMP	V4.2 19-APF	R=85 1511	3 PA	GE 6
\$ABTIM 007572	SERRPT 0000	30 SNETPF	000000	SSWPCT	000036
\$ACTHD 112050	SERRSQ 00000	SO SNTUIC	041054	SSYSIZ	040000
\$AVRHD 000000	SEXSIZ 11500	30 SPARHD	114734	SSYSNM	052521
SCFLPT 046444	SFMASK Ø3337	77 SPARPT	017226	SSYUIC	001054
SCKCNT 177546	\$FRKHD 00000	30 SPFRSZ	000310	STEMP0	110160
SCKCSR 177546	\$GEFDM 00035	56 SPKAVL	072230	STEMP1	064170
SCKLDC 000000	\$GEFPT 01006	SPKMAX	017	STEMP2	013356
SCLICQ 000000	\$GFTCB 01006	\$PKNUM	012	STEMP4	000000
SCLKHD 044414	\$GGEF 00000	90 SPOLBP	000063	STKNPT	107134
SCOPT 037356	SHEADR 11176	90 SPOLFL	000200	STKPS	000074
SCPTBL 010472	SHFMSK 00000	33 SPOLLW	000144	STKTCB	112050
SCRAVL 045074	SIDLCT 00	90 SPOLST	000403	STSKHD	112050
SCURPR 370	SIDLFL 00	90 SPRIHL	003100	STTNS	000066
SCXDBL 000	SIDLPT 10374	sprill	001130	\$UMRHD	052642
\$DEVHD 063460	SINTCT 17777	77 SPRISZ	003370	SUMRPT	170200
SDICSV 001051	SLBUIC 00045	\$PRMOD	000000	SUMRWT	000000
SDPM 000040	\$LDRPT 11205	SU SPTTCB	053510	SWTCSR	017226
SENTSQ 000001	\$LOGHD 05225	SPWRFL	000000	SWTDUM	017226
SERBAF 023	\$LSTLK 10364	9 SRNDCT	000005	\$XCOM1	001600
\$ERFID 000000	\$MCRCB 10436	9 SRQSCH	000000	\$XCOM2	001746
SERFLA 000	SMCRPT 11016	SSHFPT	106704		
SERHEA 000000	\$MOULS 04661	4 \$SIGFL	000000		
SERLOF 000	SMXEXT 17777	77 SSTKOP	000000		

Figure 3-4 System Common Alphabetized Dump

3.1.5 Pool Statistics

The listing in Figure 3-5 contains information concerning the system pool. CDA derives Items 2, 3, and 4 by scanning the free block pointers of the pool. The minimum block size (that is, pool granularity) in Item 5 comes from the contents of \$CRAVL-2. Each item in the following list describes a correspondingly numbered item in Figure 3-5.

Item Description

- 1. Pool size in decimal bytes
- The largest fragment of pool space
- 3. Total number of free bytes in pool
- 4. Number of fragments not allocated
- 5. Smallest possible block (This is the minimum number of bytes which may be requested at a time. The minimum block size is always four bytes.)
- 6. Bit map in octal

Each bit in the bit map represents one 4-byte block. If the bit is set, the block is free. The first block in the pool is bit 0 of the first octal word in the bit map. The bits are numbered as follows:

Bit Num	ber 1	L5	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Binary		0	0	1	1	1	0	1	1	1	1	1	1	1	0	0	0
Octal		0		3			5			7			7			0	

Any bits left over in the last word of the bit map are cleared.

```
R8X-11M CRASH DUMP ANALYZER
                                    V4.2
                                               19-APR-85
                                                               10:58
                                                                             PAGE 5
POOL STATISTICS
POOL SIZE (BYTES) = 16532.(1)
LARGEST FREE BLOCK (BYTES) = 12416. (2)
TOTAL FREE BYTES = 12676. (3)
NUMBER OF FRAGMENTS = 10.4
MINIMUM BLOCK SIZE (BYTES) = 4.(5)
POOL BITMAP (CONSTRUCTED FROM LINKED POOL, BLOCK FREE IF BIT SET):
      000000
               100434
                        000000
                                 007000
                                          000040
                                                   140000
                                                             002001
                                                                      000000
      000000
               000000
                        000000
                                                             000000
                                                                      000000
                                  000000
                                           000004
                                                   000000
               177777
       176000
                        177777
                                  017777
                                           000000
                                                   000000
                                                             177740
                                                                      177777
       177777
               177777
                        177777
                                  177777
                                           177777
                                                   177777
                                                             177777
                                                                      177777
       177777
               177777
                        177777
                                  177777
                                                             177777
                                           177777
                                                   177777
                                                                      177777
       177777
               177777
                        177777
                                  177777
                                           177777
                                                   177777
                                                             177777
                                                                      177777
       177777
               177777
                        177777
                                  177777
                                           177777
                                                   177777
                                                             177777
                                                                      177777
      177777
               177777
                        177777
                                 177777
                                           177777
                                                   177777
                                                             177777
                                                                      177777
      177777
               177777
                        177777
                                 177777
                                           177777
                                                   177777
                                                             177777
                                                                      177777
      177777
               177777
                        177777
                                 177777
                                           177777
                                                   177777
                                                             177777
                                                                      177777
       177777
               177777
                        177777
                                 177777
                                          177777
                                                   177777
                                                            177777
                                                                      177777
       1,77777
               177777
                        177777
                                  177777
                                           177777
                                                   177777
                                                             177777
                                                                      177777
      177777
               177777
                        177777
                                  177777
                                           177777
                                                   177777
                                                             177777
                                                                      177777
      177777
               177777
                        177777
                                 177777
                                           177777
                                                   177777
                                                             177777
                                                                      177777
      177777
               177777
                                 177777
                        177777
                                           177777
                                                    177777
                                                             177777
                                                                      177777
      177777
                        177777
                                          177777
               177777
                                 177777
                                                   177777
                                                             177777
                                                                      177777
                                                                                (6)
      177777
               177777
                        177777
                                 177777
                                           177777
                                                   177777
                                                             177777
                                                                      177777
      177777
               177777
                        177777
                                 177777
                                          177777
                                                   177777
                                                             177777
                                                                      177777
      177777
               177777
                        177777
                                 177777
                                          177777
                                                   177777
                                                             177777
                                                                      177777
      177777
               177777
                        177777
                                 177777
                                          177777
                                                   177777
                                                            177777
                                                                      177777
      177777
               177777
                        177777
                                 177777
                                          177777
                                                   177777
                                                            177777
                                                                      177777
      177777
               177777
                        177777
                                 177777
                                          177777
                                                   177777
                                                            177777
                                                                     177777
      177777
               177777
                        177777
                                 177777
                                          177777
                                                   177777
                                                            177777
                                                                     177777
      177777
               177777
                        177777
                                 177777
                                          177777
                                                   177777
                                                            177777
                                                                     177777
      177777
               177777
                        177777
                                 177777
                                          177777
                                                   177777
                                                             177777
                                                                      177777
      177777
               177777
                        177777
                                 177777
                                          177777
                                                   177777
                                                             177777
                                                                      177777
      177777
               177777
                        177777
                                 177777
                                          177777
                                                   177777
                                                            177777
                                                                     177777
      000037
               000000
                        000000
                                 000000
                                          000000
                                                   000000
                                                            000000
                                                                     000000
      000000
               200000
                        000000
                                 000000
                                          000000
                                                   000000
                                                            000000
                                                                     000000
                        000000
      000000
               000000
                                 000000
                                          000000
                                                   000000
                                                            000000
                                                                     000000
      000000
               000000
                        000000
                                 000000
                                          000000
                                                   000000
                                                            000000
                                                                     000000
      000000
               000000
                        000000
                                 000000
                                          000000
                                                   000000
                                                            000000
                                                                     000000
      999999
               000000
                        000000
```

Figure 3-5 Pool Statistics

3.1.6 Assign Table

Figure 3-6 is a listing of the logical device assignment table.

RSX-11M-PLUS CRASH DUMP ANALYZER V3.0 16-APR-85 09:15

System Logicals:

SY = DR5:

Block: 1 Status: (Final)

EDTINI = SYS\$LOGIN:EDTINI Block: 1

User Logicals:

Terminal: TT5:

SYS\$LOGIN = DR5:[COVERT]

Block: 2 Status: (Final, Privileged)

Terminal: TT24:

IN = DR5:

Block: 1 Status: (Final)

SYSSLOGIN = DR5:[007,325]

Block: 2 Status: (Final, Privileged)

Terminal: TT75:

HOME = DR5:[7,40]

Block: 1

DEFCOR = DB3:[61,40]

Block: 1

DUMPS = LB:[4,54]

Block: 1

SYSSLOGIN = DR5:[7,40]

Block: 2 Status: (Final, Privileged)

Figure 3-6 Logical Assignment Table

The Assign Table lists logical assignment table entries in two categories: system logicals and user logicals. The system logicals listing shows the logical name, the equivalence name, the number of blocks, and the status of an assignment. The user logicals listing also shows the terminal from which an assignment was made.

3.1.7 Group-Global Event Flags

Figure 3-7 shows a group-global event flag dump. If there are no group-global event flags, this dump does not appear.

Item

Description

- 1. Group number
- 2. Access count
- 3. Group-global Event Flag Block dump (The last two words are the group-global event flags.)

RSX-11M-PLUS CRASH DUMP ANALYZER V4.2 19-APR-85 10:17 PAGE 18 GROUP GLOBAL EVENT FLAGS

GROUP NUMBER =1

ACCESS COUNT =177476

GGEF DUMP:

(3)

000000 / 056660 000401 177476 000015 000000

GROUP NUMBER =7

ACCESS COUNT =006332

GGEF DUMP:

000000 000000 000007 006332 000014 000000

Figure 3-7 Group-global Event Flags

3.1.8 Error Log Packets

Item

The listing shown in Figure 3-8 contains error logging information that resided in memory at the time of the crash. This page does not appear if no error log packets were in memory at the time of the crash. This data is not written to the Error Log file on disk.

Description

1.	Addre	ss of	error	log buf	fer				
2.	Error	log p	acket	entry t	ype co	de			
3.	Error	log p	acket	entry t	ype sul	bcode			
4.	Time	the pa	cket wa	as logg	red				
5.	Dump	of err	or log	packet	in oc	tal			
SX-11M CRA	SH DUMP ANA UFFERS	LYZER	V4.2	19	-APR-85	13:58	P	PAGE 8	
ROR LOG B				2 19 TYPE COD			RY TYPE	3	= 00000
ROR LOG B	UFFERS 1 ADDRESS = 0		ENTRY	2 TYPE COD				3	= 00000
ROR LOG B	UFFERS 1 ADDRESS = 0 7-JUL-81	72304	ENTRY 1	TYPE COD	E = 0000	102 ENT	RY TYPE	3 SUBCODE	= 00000
ROR LOG B BUFFER TIME =	UFFERS 1 ADDRESS = 0 7-JUL-81	72304 07:46:1	ENTRY	2 TYPE COD		02 ENT	RY TYPE 020040	3 SUBCODE	3 00000
ROR LOG B BUFFER TIME = 000000 000020 000040	UFFERS (1) ADDRESS = 0 7-JUL-81 0000000 000025	72304 07:46:1	ENTRY 1 000034	2) TYPE COD 4 000055	E = 0000	102 ENT	RY TYPE 020040 000106	3 SUBCODE 003401	= 00000
BUFFER TIME = 000000 000020 0000440 000060	UFFERS (1) ADDRESS = 0 7-JUL-81 0000000 000025 000046 041117	72304 07:46:1 000210 000013 046504 000112	ENTRY 1 000034 000402 000401 000000	2) TYPE COD 4 000055 003521	E = 0000 000401 003407	02 ENT 030463 005456	RY TYPE 020040	3 SUBCODE	= 00000
ROR LOG B BUFFER TIME 000000 000020 0000440 00004000	UFFERS 1 ADDRESS = 0 7-JUL-81 000025 000046 041117 011532	72304 07:46:1 000210 000013 000013 000112 00000	ENTRY 1 000402 000402 000000 000000	(2) TYPE COD (4) 0000555 003521 0000001 0000000000000000000000000000	E = 0000 000401 003407 000000 045662	030463 030463 005456 047115	20040 000106 052105	3 SUBCODE 003401 000001 031526	# 00000
ROR LOG B BUFFER TIME = 000000 000020 000040 000060 000100 000120	UFFERS 1 ADDRESS = 0 7-JUL-81 000000 000025 000046 041117 011532 020400	72304 07:46:1 000210 000013 046504 0001112 000000 001000	ENTRY 1 000034 000402 000000 000000 000000	4 000555 003521 000000 000000 000000 000000	E = 0000 000401 003407 00000 045662 004010	030463 005456 047115 000001 131574 177000	020040 000106 052105 064766	3 SUBCODE 003401 000001 031526	
BUFFER TIME = 000000 000020 000024 000040 000040	UFFERS 1 ADDRESS = 0 7-JUL-81 0000000 000025 000046 041117 041532 000400 101220	72304 07:46:1 000210 000013 000013 000112 00000	ENTRY 1 000402 000402 000000 000000	(2) TYPE COD (4) 0000555 003521 0000001 0000000000000000000000000000	E = 0000 000401 003407 000000 045662	030463 005456 047115 000001 131574	020040 000106 052105 064766 000424	3 SUBCODE 003401 000001 031526 000000 047503	

Figure 3-8 Error Log Packets

3.1.9 Low Core Memory Dump (RSX-11M-PLUS Only)

The listing shown in Figure 3-9 contains a dump of RSX-llM-PLUS low core memory, alphabetized by label.

The following summary lists labels found in RSX-llM-PLUS low core memory and their meanings:

\$CRSBF	Internal crash stack		
\$CRUPC	Scratch user program		
\$CRUST	Scratch user Processon		N)
\$CURPR	Pointer to current tag		
\$CXDBL	Context switch disable		
\$DICSV	Temporary storage for		
\$DXDEP	Entry point to dynamic		
\$DXDK5	Saved KINAR5 for dynam		
\$DXDRL	Relocation bias for interface	dynamic Exec	utive debugge
\$HEADR	Pointer to current tag	sk header	
\$PARLV	Interrupt recursion le	evel counter	
\$RQSCH	Pointer to current res	schedule pointer	
\$SAHDB	Bias of current task 1	neader	
\$SAHPT	Virtual address of cur	rent task header	
ŞSAVSP	Saved stack pointer		
\$SIRWF	Supervisor instruction	n space read/write	e flag
\$STKDP	Stack depth indicator		
\$SUPFL	Supervisor window flag		
\$TKTCB	Pointer to current tag	sk TCB	
IM-PILIS CD	ASH DUMP ANALYZER V3.0	19-APR-85 15:44	PAGE 3
RE ALPHABE		1,-4,,,-03	
Section 1			20000
F 000000	090000	000000	SRQSCH 021712
аааааа	00000	999999	SSAHDR RARAGA

SROSCH	000000		000000	RSBF 000000
SSAHDB	000000		00000	000000
SSAHPT	000000		000000	000000
SSAVSP	000000		00000	000000
SSIRWF	000000	\$DXDEP	000000	RUPC 000000
SSTKDP	000000	SDXDK5	000000	RUST 000000
SSUPFL	000000	SOXDEL	000000	JRPR 021722
STKTCB	000000	SHEADR	000000	XDBL 000
	177777	SPARLV	000000	ICSV 000000
PT SP NF OP	SSAHF SSAVS SSIRI SSTKI	000000 \$SAH 000000 \$SAV 000000 \$SIR 000000 \$STKI 000000 \$SUPI 000000 \$TKTI	######################################	000000 000000 \$SAH 000000 000000 SSAV 000000 \$DXDEP 000000 SSIR 000000 SDXDK5 000000 SSTKI 000000 SDXDRL 000000 SSUP 000000 SHEADR 0000000 STKT

3.2 OPTIONAL INFORMATION

CDA gives you additional information when you use the analysis switches described in Chapter 2. Figures 3-10 through 3-24 illustrate the output that CDA provides when you use these switches.

3.2.1 Active Tasks

The listing shown in Figure 3-10 contains active task information. The Receive Queue, AST Queue, Receive-by-Reference Queue, and Offspring Control Block sections of this example appear only if the task has them; otherwise, they are suppressed. Section 3.2.2 describes the additional information in the active task listing when the active task is MCR.

Item

Description

- 1. Task name
- Address of Task Control Block (TCB) for the task
- Name of the partition in which the task runs
- 4. Address of Partition Control Block (PCB)
- 5. Base address for the partition in which the task runs
- 6. Device that contains task image
- Beginning logical block number (LBN) of the task on the device
- 8. Running priority
- 9. Number of outstanding QIO requests
- 10. Current UIC (either the login UIC or the UIC specified with a SET command)
- 11. Physical name of task's pseudo device
- 12. Maximum size of task image in 32(decimal)-word blocks
- 13. State of local event flags for task
- 14. First status word (blocking bits), using the following three-letter codes:
 - -EXE Task not executing
 - RDN I/O rundown in progress
 - CIP Task blocked for checkpoint in progress
 - MSG Abort message being output
 - CKR Task has checkpoint request (RSX-11M-PLUS only)
 - BLC Increment blocking count
 - STP Task stopped by CLI command

Item

Description

- 15. Second status word (state bits), using the following
 three-letter codes:
 - AST Asynchronous system trap (AST) in progress
 - SIO Task stopped for buffered I/O
 - DST AST recognition disabled
 - AFF Task installed with affinity
 - -CHK Task not checkpointable
 - SEF Stopped for event flag
 - REX Exit AST specified
 - HLT Task being halted
 - ABO Task marked for abort
 - STP Task stopped
 - SPN Task suspended
 - WFR Task in wait-for state
- 16. Third status word (attribute bits), using the following three-letter codes:
 - ACP Task is an Ancillary Control Processor (ACP)
 - PMD Task not dumped on synchronous abort
 - CMD Task is executing a CLI command
 - REM Remove task on exit
 - PRV Task is privileged
 - MCR Task requested as an external MCR function
 - SLV Task is a slave task
 - CLI Task is a command line interpreter
 - RST Task is restricted
 - NSD Task does not allow send data
 - CAL Task has checkpoint space in task image
 - ROV Task has resident overlays
 - NET Network protocol level
 - GFL Group-global event flags are locked
 - SWS Reserved for Software Services
 - MPC Mapping change with outstanding I/O

Item

Description

- 17. Fourth status word, using the following three-letter codes:
 - MUT Task is a multiuser task
 - LDD Task load device is dismounted
 - PRO TCB is a prototype
 - PRV Task was privileged but has cleared TB.PRV with the GIN directive
 - DSP Task was built for user data space
 - SNC Task uses common synchronization
- 18. Octal dump of TCB in offset mode

RECEIVE QUEUE (if the task has one)

- 19. Starting address of receive block
- 20. Name of task
- 21. Octal dump of receive block in offset mode

OFFSPRING CONTROL BLOCK (OCB) LIST (if the task has one)

- 22. Exit event flag number of offspring task
- 23. Name of parent task
- 24. Octal dump of offspring control block in offset mode

ASYNCHRONOUS SYSTEM TRAP (AST) QUEUE (if the task has one)

If a task has an AST Queue, CDA lists its contents. If the task also has a Receive Queue, the AST Queue appears immediately after the Receive Queue on the output listing. If the task does not have a Receive Queue, the AST Queue is listed after the fourth status word information (the example in Figure 3-10 does not include an AST Queue).

An item appearing in the AST queue may be one of the following:

- Unsolicited AST
- Floating point AST
- Receive data AST
- Receive-by-reference AST
- Parity error AST
- Requested exit AST
- Power fail
- CLI command arrival AST
- Buffered I/O AST

- Offspring task AST
- Segmented buffered I/O completion AST
- Task force trace bit trap AST
- Delayed I/O completion AST
- Group-global rundown AST
- I/O request packet
 - Address of AST block
 - A 2-byte indicator (The high-order byte is an offset into the header of the AST control block; the low-order byte is the length of the AST control block in bytes.)

NOTE

If the low-order byte is negative, the block is not an AST block, but an I/O request packet internal to the system. If the low-order byte is 0, the block is an unsolicited character AST.

- Number of bytes allocated on task stack
- Entry point of AST routine
- Number of AST parameters
- Octal dump of the AST block in offset mode (On RSX-llM-PLUS systems, two additional negative offset words appear in the dump.)

RECEIVE-BY-REFERENCE QUEUE (if the task has one)

If a task has a Receive-by-Reference Queue, CDA lists its contents. If the task also has an Offspring Control Block list, the Receive-by-Reference Queue appears immediately before the OCB list on the output listing. If the task does not have an OCB list, the Receive-by-Reference Queue is the last list on the Active Tasks listing (the example in Figure 3-10 does not include a Receive-by-Reference Queue).

- Address of Receive-by-Reference Queue Block
- Address of the Task Control Block (TCB) for the task that initiated the Send by Reference
- Contents of event flag mask
- Address of event flag mask
- Pointer to created attachment descriptor
- Offset into partition as specified in window definition
- Length to be mapped
- The receiving task's access rights to region being mapped
- Octal dump of Receive-by-Reference Block in offset mode

19-APR-85 13:02

PAGE 13

RSX-11M-PLUS CRASH DUMP ANALYZER V3.0

```
ACTIVE TASKS
...LDR (1)
-----
                                                      (4)
                                (3)
  TCB ADDRESS =_11165@
                           PAR = SYSPAR
                                             PCB ADDRESS = 111434
 LOAD_ADDRESS # 00461600
                              LOAD DEVICE = LBØ:
                                                      LBN = 00076636
                                         (10)
 PRI # 248.
                 I/O COUNT # 0.
                                    UIC = [1,24]
                                                      TI = C00:
         (12)
                        EVENT FLAGS = <1-16> 000001 <17-32> 000000
  MAX SIZE # 000035
  T.STAT: 000000 (14)
 T.ST2:
           020020 -CHK STP (15)
 T.873:
           050200 -PMD PRV NSD (16)
 T.ST4:
           000000 (17)
 TCB DUMP:
   000000
              000000
                      000370 000000
                                     131574
                                               Ø45662
                                                       000000 111662
                                                                       000000
   000020
              111666
                      000001
                              000000
                                      022370
                                               111300
                                                       000000
                                                               020020
                                                                       050200
   000040
              000370
                                               000035
                      076636
                              031420
                                      111434
                                                       033500
                                                               111426
                                                                       111426 (18)
   000060
              000000
                      000000
                              000000
                                      000001
                                               111672
                                                       000035
                                                               000000
                                                                       000000
   000100
              000000 111750
                                      111754
                              000000
                                               000000
                                                       000000
                                                               000000
                                                                       000000
   RECEIVE QUEUE
                (19)
                                               (20)
   RECEIVE BLOCK ADDRESS = 062000
                                     TASK NAME = TUSKED
              000000 100143 043624 062640 050210 016000 121502 024172 (21)
   000000
   999929
   000040
              046522 000000
 OCB LIST:
   EXIT EVENT FLAG (0.EFN) = 000000 (22)
   PARENT TASK NAME = QMG... (23)
   OCB DUMP :
   000000
             000000 000000 106424 121350 000000 000000 066117 131574 (24)
   090020
              000000 000000 000000 000000 000000
                                                      000000
```

Figure 3-10 Active Tasks (Truncated)

3.2.2 Active Task (MCR)

The active task listing for the MCR task (MCR...) contains more information than the active task listing for other tasks. Figure 3-11 shows a listing in which the first 17 items are the same as those in Figure 3-10. The following list describes only the items that are different from those in the previous figure, when MCR... is the active task.

Item

- 1. Address of MCR input buffer
- 2. Address of Unit Control Block (UCB) of the requesting terminal
- 3. Device name and unit number of the terminal that sent block to MCR (ASCII characters)
- 4. Octal dump of the MCR input buffer in offset mode
- 5. Address of command buffer
- 6. Address of Task Control Block of the requesting task
- 7. ASCII dump of command buffer
- 8. Octal dump of command buffer in offset mode

19-APR-85 16:23

PAGE 10

V3.0

RSX-11M-PLUS CRASH DUMP ANALYZER

ACTIVE TASKS

```
MCR...
  TCB ADDRESS = 114610
                          PAR = SYSPAR
                                            PCB ADDRESS = 037050
  LOAD ADDRESS = 00174400
                              LOAD DEVICE = LBØ
                                                     LBN = 00073747
  PRI = 160.
               I/O COUNT = 0.
                                    UIC = [1,24]
                                                     TI = TT3
  MAX SIZE = 000100
                       EVENT FLAGS = <1-16> 000001
                                                    <17-32> 040000
  T.STAT: 000000
  T.ST2:
           000020 STP
 T.ST3:
          051300 -PMD PRV CLI NSD CAL
TCB DUMP
    000000
             000000 000240
                             000000 050712
                                             131574
                                                     000000
                                                             114622
                                                                     000000
   000020
             114626
                     000001
                                     024552
                             040000
                                             113760
                                                     000000
                                                             000020
                                                                     051300
   000040
             000240
                     073747
                             035636
                                     437050
                                             000100
                                                     112330
                                                             036046
                                                                     036046
    000060
              000000
                     000000
                                             000000 114700 000000
                             000000
                                     114674
                                                                     000000
   000100
             004256
   RECEIVE QUEUE
   COMMAND LINE INPUT BUFFER ADDRESS = 036730
                                                 UCB = 030245
   1150 : (3)
   000000
             043214 030245
                             035770 000050
                                             000000 000000
                                                             030244
                                                                     900400
                     001750
   000020
             120430
                             140030
                                     000000
                                             001751
                                                     140010
                                                             000027
                                                                     000361
    000040
             000040
                     900000 000000
                                     000000
                                             000000
                                                     000000
                                                             300000
                                                                              ≻ (4)
                                                                     000214
                                     117404
   000060
             026226
                     999999
                             000000
                                             005627
                                                     000362
                                                             000000
                                                                     000362
   000100
             000000 113234
                             000010
                                     037050
                                             900000
                                                    036120
                                                             036120
                                                                     000000
   MCR COMMAND BLOCKS
   BUFFER ADDRESS = 103100
                              TCB = 102730
    ASN DB01:=SY:/LOGIN (7)
   000000
             000000
                     102730
                             051501
                                     020116
                                             041104
                                                     030460
                                                             036472 054523
                     047514
   000020
             927472
                             244597
                                     015516
                                             056556
                                                     000000
                                                             000000
                                                                     117404
   ааааца
             024600
                     000420
                             000000
                                     000420
                                             000000
                                                    103020
                                                             000010
                                                                     104074
   000066
             000000
                     060440
                             060440
                                                             000612
                                                                     033406
                                     060370
                                             103370
                                                     000114
   000100
             170000
                     126192
                             000000
                                     000000
                                            000000 000000
                                                             000012
                                                                     000137
   900120
             000000 000000
```

Figure 3-11 Active Task (MCR)

3.2.3 Task Headers

Figure 3-12 is an example of a task header listing. The following list describes its contents.

Item Description

- 1. Task name
- 2. Pointer to the first word in the task header
- 3. Pointer to the first word in the Task Control Block (TCB)
- 4. Contents of Processor Status Word (PSW) and Program Counter (PC)
- 5. Contents of the general registers
- Initial contents of the PSW, the PC, and the stack pointer (SP)
- 7. The task header size in decimal bytes, the number of windows required to map the task, and the number of logical unit numbers assigned to the task
- 8. Current and default UIC
- 9. Pointer to number of window blocks
- 10. Pointer to header guard word
- 11. Work area extension vector pointer
- 12. Priority difference for swapping
- 13. Directive Status Word
- 14. Address of File Control Services (FCS) impure area
- 15. Address of FORTRAN impure area
- 16. Address of overlay impure storage

LOGICAL UNIT TABLE

- 17. Logical unit number (LUN)
- 18. Physical device name before redirect
- 19. Window pointer in header

Item Description 20. Low-order byte of this word indicates the number of map entries active; the high-order byte has the following bit assignments: WI.RDV=400 - read virtual address allowed if set WI.WRV=1000 - write virtual block allowed if set WI.EXT=2000 - extend allowed if set WI.LCK=4000 - set if locked against shared access WI.DLK=10000 - set if deaccess lock enabled WI.BPS=100000 - bypass access interlock if set Address of File Control Block 21. 22. File number 23. File sequence number 24. File Control Block status word 25. Number of accesses 26. Number of block locks WINDOW BLOCKS 27. The name of the partition in which the task runs 28. The virtual limits of the task 29. Address of attachment descriptor 30. Window size in 32-word blocks 31. Offset into partition 32. Address of the first Page Description Register (PDR) used to map the window 33. Number of PDRs used

The contents of the last PDR used

Octal dump of task header in offset mode

34.

35.

RSX=11M CRASH DUMP ANALYZER V4.2 19-APR-85 15:13 PAGE 37 TASK HEADERS TKTN (1) (2) HEADER ADDRESS = 076060 TCB ADDRESS = 107134 PC=122630 (4) PS=170000 R0=120254 R1=000065 R2=000060 R3=140354 R4=120702 R5=051024 SP=120226(5) INITIAL PS = 170017 INITIAL PC = 120764 INITIAL SP = 120230(6)HEADER SIZE = 102. NO. OF WINDOWS = 1. NO. OF LUNS = 1.(7)CURRENT UIC = [1,24] DEFAULT UIC = [1,24](8)H. VEXT = 000000 H. WND = 076162 H. GARD = 076224 H. SPRI = 5. (16) (13) (15)H.FCS = 000000 DSW = 000001 H.FORT = 000000 H. OVLY = 000000 LOGICAL UNIT TABLE: (17) (18) (19) (20) (21) (22) (24) (23) (25) (26) WINDOW W.CTL F.FSEQ DEV W.FCB F.FNUM F.STAT NAC NLCK TIO: 000000 WINDOW BLOCKS: (27) (29) (30) (31) (32) PAR WND SIZE ATT DESC OFFSET 1ST PDR LAST PDR VIRT LIMITS NO. TKNPAR 120000 127777 045220 037406 000100 000000 177612 HEADER: 163500 999999 000146 140354 120226 000424 000424 170017 120764 000000 000020 120230 000000 000000 000000 000000 000000 000000 000040 000000 000000 076162 000001 000000 000000 000000 000000 000060 900000 000005 000000 000000 000000 076224 000001 044570 000100 000001 114450 000000 120000 127777 045220 00100 000000 000120 000612 037406 170000 122630 051024 120702 140354 000060 000140 120254 000065 000000

Figure 3-12 Task Headers (Truncated)

3.2.4 Command Line Interpreter Parser Block (CPB)

The listing shown in Figure 3-13 contains the Command Line Interpreter Parser Block for MCR. The listing corresponds to the following items:

Item Description

- 1. Task name of the CLI
- Starting address of the CPB
- 3. C.PSTS, which is the CPB status word
- 4. Dump of the CPB in octal

RSX-11M CRASH DUMP ANALYZER V4.2 19-APR-85 15:13 PAGE 9 CLI PARSER BLOCKS

CLI TASK NAME MCR... (1)
CPB ADDRESS = 010472 CLI NAME = MCR (2)
C.PSTS: SGL (3)

CPB DUMP:

6.

000000 110160 050712 000000 000040 003404 005015 000076 005015 4 000020 041515 037122 000000

Figure 3-13 CLI Parser Blocks

3.2.5 Partition Information

CDA outputs partition information in two segments. The listing shown in Figure 3-14 contains system partition information, and the listing shown in Figure 3-15 represents individual partition information. The following list describes elements of Figure 3-14. Individual partitions include Attachment Descriptors and Wait Queues when they apply.

Item	Description
1.	Partition names
2.	Partition Control Block (PCB) address
3.	Base address of partition in memory
4.	Size of the partition
5.	Type of partition

Task or tasks occupying the partition

RSX-11M CRASH DUMP ANALYZER PARTITION INFORMATION

V4.2

19-APR-85

15:13

PAGE 54

MEMORY MAP

1 PARTITION	2 PCB ADR	3 BASE	SIZE	TYPE	6 OCCUPIED BY
<exec></exec>		00000000 00044700	00044700 00050100		
CEXPAR	114734	00115000	00003000	MAIN COMMON	
TTPAR	114670	00120000	00040000	MAIN DRIVER	TT:
EXCOM1	114624	00160000	00014600	MAIN COMMON	
EXCOMS	114560	00174600	00006100	MAIN COMMON	
SYSPAR	114514	00202700	00010000	MAIN TASK	MCR
TKNPAR	114450	00212700	00010000	MAIN TASK	TKTN
DRVPAR	114404 114340 114240 114140 114040 113740 113640 113540 113340	00222700 00222700 002225000 00226200 00231200 00235200 00235200 00235200	00002100 00002100 00001200 00003000 0000100 00000100 00001100 00001100 00001100	MAIN SYS SUB DRIVER	DB: DK: DM: DR: EM: DT: DX: DL: DD:
LDRPAR	113240 113104 112450	00245000 00246300 00252600	00001300 00004300 00004300	SUB DRIVER SUB DRIVER SUB DRIVER MAIN TASK	LP: MM: CO: LDR
BASIC2	112340	00255600	00040000	MAIN COMMON	
FCSRES	112274	00315600	00040000	MAIN COMMON	
TSTPAR	112230	00355600	90100000	MAIN TASK	
GEN	112164 045620 057144	00455600 00455600 00501600 00527300	Ø332220Ø Ø0Ø24ØØØ Ø0Ø255ØØ ØØØØ52ØØ	MAIN SYS SUB TASK SUB TASK <hole></hole>	DB2FCP NETACP
	064060 053004 073534	00534500 00560000 00565200 00572400	00023300 00005200 00005200 00005700	SUB TASK SUB TASK SUB TASK <hole></hole>	RMHACP CA.T6 CA.T30
	045010	00600300	99995799	SUB TASK	PMT

Figure 3-14 Partition Information

Each item in the following list describes a correspondingly numbered item in Figure 3-15.

Item

Description

PARTITION CONTROL BLOCK

- 1. Partition name
- 2. Pointer to the first word of the PCB
- Type of partition
- 4. Name of main partition
- 5. Physical base address of partition in 32-word blocks
- 6. Partition size in 32-word blocks
- 7. Pointer to the first word of the TCB of attached task
- 8. Partition protection word (mapped system only)
- 9. Priority of attached task or partition
- 10. I/O count of attached task or partition
- 11. Partition status flags, using the following three-letter codes:
 - OUT Partition is out of memory
 - CKP Partition checkpoint in progress
 - CKR Partition checkpoint is requested
 - CAF Checkpoint space allocation failure
 - -CHK Partition is not checkpointable
 - FXD Partition is fixed
 - LFR Last head of region failure
 - PER Parity error in partition
 - LIO Marked by Shuffler for long I/O
 - NSF Partition cannot be shuffled
 - COM Library or common block
 - DEL Partition should be deleted when not attached
- 12. Octal dump of PCB in offset mode

Item

Description

ATTACHMENT DESCRIPTOR

- 13. Address of attachment descriptor
- 14. Partition to which attachment occurs
- 15. Name of attaching task
- 16. PCB attachment queue thread word
- 17. TCB attachment queue thread word
- 18. Priority of highest priority task attached to this partition
- 19. I/O count of attached task on RSX-11M systems; I/O count of attached partition on RSX-11M-PLUS systems
- 20. Number of times task is mapped through this attachment descriptor
- 21. Attachment descriptor status byte, using the following three-letter codes:
 - DEL Task has delete access
 - EXT Task has extend access
 - WRT Task has write access
 - RED Task has read access
 - PRO TCB is secondary pool TCB bias
 - SPB Cache bypass request
 - RBP Request to not bypass cache
- 22. Octal dump of attachment descriptors in offset mode

PARTITION WAIT QUEUE

- 23. Name of the task awaiting access to the partition
- 24. Address of TCB for the task
- 25. TI: device for the task
- 26. Task's priority
- 27. Second status word (state bits) -- same as item 15 of the active task dump (Section 3.2.1)

RSX-11M-PLUS SYSTEMS ONLY ADDITIONAL ITEM DESCRIPTION

- 28. Resident mapped task count
- 29. Wait queue contains partition description rather than task description

PARTITION PCB ADR TYPE MAIN BASE SIZE P.TCB PRO PRI IOC DRVPAR 001312 000060 040754 117270 SUB 000000 ٥. P.STAT: SYS DRV 866698 000020 000040 117326 (1) (2) (3) 4 (5) (6) (8) (9) PARTITION PCB ADR TYPE BASE PRI MAIN SIZE P.TCB PRO IOC SYSPAR 117974 SYSPAR 001372 000105 115264 MAIN 000000 P. STAT: (1) 117030 000000 075273 062072 000000 117074 001372 000105 115764 115764 100200 115264 000000 042760 000000 042000 000000 929999 000040 941764 WAIT QUEUE:

23) 24) 25) (27) TCB ADR STATE BITS (T.ST2) TASK TI T.PRI F11ACP 115764 COØ 149. CAF STP

ATTACHMENT DESCRIPTORS:

(13) (15) (16) (17) (18) (19) 20 ADDRESS PARTITION ATT TASK A.PCBL IOC A.TCBL PRI MAP COUNT 042050 SYSPAR ...MCR 041764 000000 Ø. 160. 0.

A.STAT: WRT RED (21)

041764 000240 115264 000000 000003 117074 (2) 006960

Figure 3-15 Partition Control Blocks and Attachment Descriptors

NAME	PCB ADR	TYPE	MAI		BASE	SIZ	!E	P.OWN	PRO	PRI	28 RMCT
GEN	117404	MAIN	GEN		00443	2 0473	46	000000	00000	0 0.	Ø.
P.STAT:	000000										
P.ST2;	000000										
000000 000020 000040	000000 061774 000000	063		026 000		222842 22282			-	004432 000000	04734 00000
UQ TIAW	JEUE: 29										
NAME	PCB ADR	TYPE	MAI	N	BASE	SIZ	Ε	P.TCB	PRO	PRI	RMCT
BAP2	061774	SUB	GEN	•	01273	1 0003	72	261670	00000	0 50.	0.
P.STAT:	140010	out d	KP	DEL							
00000V 000020 00004V	263170 20000 237368	0003		026 274		888888 861678				012731 000000	00037 03736

3.2.6 Common Block Directory

CDA lists partition information, status words, and Partition Control Blocks for each installed, named common region. The listing in Figure 3-16 shows a Common Block Directory entry. The following list describes the items in Figure 3-16.

Item Description

- 1. Name of the installed common region partition
- 2. Address of Partition Control Block (PCB)
- 3. Type of partition
- 4. Name of the main partition
- 5. Physical base address of partition
- 6. Size of partition in 32(decimal)-word blocks
- 7. Owning UIC of the common region
- 8. Partition protection word

Item	Description	
9.	Resident mapped task count	
10.	Partition status words (refer to Section 3.2.4)	
11.	Octal dump of PCB	
12.	Address of PCB of the common task image file	
13.	Address of Unit Control Block (UCB) of the device on which the common resides	
14.	Starting logical block number (LBN) of the common task image file	
15.	Word that always contains a 0	
	US CRASH DUMP ANALYZER V3.0 2-MAY-85 14:03 PAGE 75 CK DIRECTORY	
NAME BASIC2	2 3 4 6 6 7 8 9 PCB ADR TYPE MAIN BASE SIZE P.OWN PRO PRI RMCT 043254 SUB GEN 017747 000400 001454 000000 0. 0.	
P.STAT:	0043254 SUB GEN 017747 000400 001454 000000 0. 0.	
P.ST2:	ØØØØØ6 APR	
0 000000 000020 000040)
COMMON 122 PCB	ADR P.UCB P.LBN P.REL	
NAME	PCB ADR TYPE MAIN BASE SIZE P.OWN PRO PRI RMCT	
FCSSUP	053550 SUB GEN 000000 000212 000401 000000 0. 0.	
P.STAT:	100200 OUT COM	
P.ST2:	0000 000	
ଷଷଣଜନ ଉପଟଣ 2 ଓ ଉପଟଣ 4 ଓ	000000 000400 023013 075030 000000 117404 000000 000212 047304 000212 040114 000401 100200 000000 000000 000000 053606	
COMMON	TASK IMAGE FILE PCB	
PCB A	ADR P.UCB P.LBN P.REL	
04011	14 035662 000002,001071 000000	

Figure 3-16 Common Block Directory

3.2.7 Device Information

CDA lists information on all devices known to the system. The listing in Figure 3-17 shows a typical terminal device listing with an I/O packet. The Terminal Status Words (items 15, 16, and 17) appear only in listings for terminal devices. The codes for these items apply only to the full-duplex terminal driver. The section labeled I/O REQUEST PACKETS appears only for devices that have an I/O request in progress or an I/O request queued at the time of the system crash. The following list describes the items in Figure 3-17.

Item

- 1. Device name
- 2. Address of offset 0 in Unit Control Block (UCB)
- 3. Address of offset 0 in Device Control Block (DCB)
- 4. Address of offset 0 in Status Control Block (SCB)
- 5. Device to which unit is redirected
- 6. Name of Ancillary Control Processor (ACP)
- 7. Name of attached task
- 8. Pointer to the UCB name of the owning terminal
- 9. UIC used to log into the system
- 10. Unit status byte, using the following three-letter codes:
 - BSY Unit is busy
 - -MNT Unit is not mounted
 - FOR Unit is mounted as a foreign volume
 - MDM Unit is marked for dismount
 - PWF Power fail occurred
 - WCK Write check enabled
 - SPU Unit is spinning up
 - VV Volume is valid
- 11. Unit status extension byte, using the following three-letter codes:
 - OFL Unit off line
 - -RED Unit is not redirectable
 - PUB Unit is public device
 - UMD Unit attached for diagnostics
 - PDF Privileged diagnostic functions only

Item

- 12. Control Processing flags, using the following three-letter codes:
 - -ALG Byte alignment not allowed
 - NPR Device is a NPR device
 - QUE Call driver before queuing
 - PWF Always call driver at power fail entry point
 - ATT Call driver on attach/detach
 - KIL Always call driver at I/O kill
- First device characteristics word, using the following three-letter codes:
 - REC Record-oriented device
 - CCL Carriage-control device
 - TTY Terminal device
 - DIR File-structured device
 - SDI Single directory device
 - SQD Sequential device
 - MSD Mass storage device
 - EXT Unit on extended 22-bit UNIBUS controller
 - UMD User-mode diagnostics supported
 - MBC MASSBUS device
 - SWL Unit software write locked
 - ISP Input spooled device
 - OSP Output spooled device
 - PSE Pseudo device
 - COM Device is mountable as COM channel
 - Fll Device is mountable as Files-11 device
 - MNT Device is mountable
- 14. Second device characteristics word, using the following three-letter codes:
 - DH1 Unit is a multiplexer
 - DJ1 Unit is a DJ11
 - RMT Unit is remote
 - HFF Unit handles hardware form feeds
 - NEC Solicited input not echoed

Item

- CRT Unit is a CRT
- ESC Unit generates escape sequences
- -LOG User not logged in on terminal
- SLV Unit is a slave terminal
- DZ1 Unit is a DZ11
- HLD Terminal is in hold screen mode
- AT. MCR command AT. is being processed
- PRV Unit is a privileged terminal
- L3S Unit is a LA30S terminal
- VT5 Unit is a VT05B terminal
- LWC Lowercase to uppercase conversion
- 15. Terminal status word, using the following three-letter codes:
 - RST Read with special terminators in progress
 - RUB Rubout sequence (non-CRT) in progress
 - ESC Escape sequence in progress
 - RAL Read pass all in progress
 - RNE Echo suppressed
 - CTO Output disabled
 - OBY Output busy
 - IBY Input busy
 - BEL Bell pending
 - DPR Defer processing of character in buffer
 - DEC Defer echo of character in buffer
 - DSI Input processing disabled
 - CTS Output stopped by CTRL-S
 - USI Unsolicited input in progress
 - OBF Buffered output in progress
 - IBF Buffered input in progress

Item

- 16. Second terminal status word using the following three-letter codes:
 - ACR Wrap-around required
 - CR Trailing carriage return required on output
 - BRQ Break-through write is queued
 - WRA Control for wraparound
 - SRQ Special request is queued
 - WRB Low bit in 52-WRA bit pattern
 - ORQ Output request is queued
 - IRQ Input request is queued
 - HFL Horizontal fill required
 - VFL Vertical fill required
 - HHT Hardware horizontal tab is present
 - HFF Hardware form-feed is present
 - FLF Force line feed before next echo
 - FDX Line is full duplex mode
- 17. Fourth terminal status word, using the following
 three-letter codes:
 - RAL Terminal is in read-pass-all mode
 - WES Task waiting for escape sequence
 - RPO Read with prompt output in progress
 - TAB Type-ahead buffer allocation requested
 - 8BC Pass eight bits on input
 - ABD Autobaud speed detection enabled
 - RCU Restore cursor
 - ABP Autobaud speed detection in progress
 - WAL Terminal is in write-pass-all mode
 - VER Last character in type-ahead buffer has a parity error

Item

Description

- BCC Last character in type-ahead buffer has a framing error
- DAO Last character in type-ahead buffer has a data overrun error
- PCU Position cursor

NOTE

On RSX-11M systems that use the half-duplex terminal driver, CDA dumps two terminal status words.

UNIT CONTROL BLOCK

18. Octal dump of Unit Control Block (UCB), including negative offsets, and octal dump of UCB extension if a UCB extension is present

DEVICE CONTROL BLOCK

19. Octal dump of Device Control Block

STATUS CONTROL BLOCK

20. Octal dump of Status Control Block

I/O REQUEST PACKETS

- 21. Address of the first word of the I/O packet
- 22. Name of the task requesting I/O
- 23. Priority of the task requesting I/O
- 24. Event flag number used to signal I/O completion
- 25. Logical unit number used by requesting task

NOTE

If the task was checkpointed while the packet was queued, this number may not be correct. If the address in I.LN2 is within the task header, the logical unit number is correct.

- I/O function codes (for detailed information on the legal I/O function codes for each device, refer to the RSX-11M-PLUS I/O Drivers Reference Manual)
- 27. Status of the I/O request current or queued
- 28. Octal dump of I/O request packet in offset mode
- 29. I.LN2 pointer to the second word of the LUN

			1 CF				P A	NAL	ΥZ	ER		٧	4.	2		ë	-	MA	Y - 8	95			1 !	511	3			P	AGE	110
<i>)</i> [. V 1	LE	1 14 1	UR	MA I	10	N																	٠,						
7 1	11																													
•		•																												
	UCI	B A	DR	(PCB	A	DR	S	СВ	ADF	₹	R	DI	RE	CT		A	CP			AT	T -		Ow	NE	R	Ļ	OG	IN U	IC
	041	047	4		037	63	ð	0	44	266										•		MA:	ľ	NO	NE	-	[7,	37]	
	U.\$	RTS																												
	U. S																													
	U.(QI	ı E		NF	AT	T .	KIL																				
										VIL	•																			
	U.(ľΥ		CL	RE																						
	U.(DI	41	CF		PR		LWC	:																			
	U.1	rst	A :			I	3 Y	18	F																					
	U.1	rst	A+2	2 1		A (CR	OR	Q	IRG) .	ннт	•	FL	F															
	U.1	rst	A + 4	:		T	В																							
	L	INL	T C	ONT	RO	LE	3600	CK-≇																						
			466 506			000 020	100			37		000 001			03				140 156					74			010		000	
	Q	940	526 546		Ø	001	00	1		130	0	000 000	30		000				13					37			201 015		050 000	-
							-		-) 4) (2)																	
										ENS								_										_		
	1	45	100		1	756 271	47	Ø	467 000	01	1	467 467	34		146	547	Ø		900					30			400		000	
			140			000			134	100	0	200	100		023	353	5 1													
	. 0	EV	ICE	CC	TNC	ROL	. BL	.oc	K g																					
			630 650			444 600	_		376 000			521 000			030				100					74			177		000	130
	s	TA	TUS	cc	NT	ROL	. BL	.00	K:												- :									
			260				90			111	Ø	200	ац		000	100	10	0	144	26	4	az	.u 2	40		1011	000	7	000	999
	6	44	300 320		1	600	20	Ø	674	54	0	310	00		176	150	0	0	60	00	0			00			200		000	
		, , ,	<i>J</i>		·	~ ~ .	,,,	•		, 40	*27		. W. Z. W.			, L 1.	_	•		V ¬ 1	u									
	I	/0	RE	QUE	ST	PA	CKE	TS	:																					
	_										V.,										_			<u>.</u>						
		AL	KET	A L	-		REG			-	•	RI			EFN				N		-	JNC						•	STAT	
		Ø,	756	70				. M	I		6	5.			32.			5	•			I	0.	RLE	3			I	NPUT	r
	_																												_	
	Ø	000	000 020		14	100	20	00	201	00		66 05			074 140				404			10	-				220 200		0176	
	Ø	000	340		00	000	20	0	'56	24																				

Figure 3-17 Device Information and I/O Packet (Truncated)

3.2.8 System Task Directory

CDA scans the System Task Directory and outputs the information contained in Figure 3-18. The information in this format is identical to the first 17 items described in Figure 3-11 of this manual.

RSX-11M CRASH DUMP ANALYZER V4.2 2-MAY-85 15:15 PAGE 31 SYSTEM TASK DIRECTORY

. LDR.

T.ST2: -CHK FXD STP

T.ST3: PRV

300000	000000	000370	000000	127414	015754	000000	041604	000000
000020	041610	000001	000000	041304	114564	000000	022020	010000
000040	999370	000000	041354	041536	000000	115264	000000	041646
000060	999999	000000	000000	041656	000000	041662	000000	000000

TKTN

TCB ADDRESS = 114564 PAR = SYSPAR PCB ADDRESS = 117074

LOAD ADDRESS = 00137200 LOAD DEVICE = LB0 LBN = 00057410

PRI = 248. I/O COUNT = 0. UIC = [0,0] TI = NONE

MAX SIZE = 000105 EVENT FLAGS = <1-16> 000000 <17-32> 000000

T.STAT: -EXE OUT

T.ST3: -PMD PRV CAL

000000	000000	000370	000000	077314	053600	000000	114576	000000
000020	114602	000000	000000	000000	116064	100400	000000	050100
000040	000370	057410	041354	117074	000105	000000	000000	000000
000060	114642	000000	000000	000000	114652	000000	114656	000000

Figure 3-18 System Task Directory (Truncated)

3.2.9 Pool Dump

As shown in Figure 3-19, CDA prints the system pool in octal, Radix-50, and ASCII. On RSX-llM-PLUS systems with secondary pool support, CDA prints a dump of secondary pool with the /SECPOL switch. If a line is repeated more than nine times, CDA prints it once and then prints a message indicating the number of identical lines.

The symbols in Figure 3-19 have the following meanings:

- * Indicates that the next word is allocated.
- + Indicates that the next word is contained in an unused, preallocated I/O packet (in \$PKAVL free list).

NOTE

\$PKAVL is a list containing fixed-size blocks. The blocks in this list are used for fast allocation, and I.LGTH determines the length of these blocks.

 Indicates that the next word is allocated in both \$CRAVL and \$PKAVL. (This is an error condition).

NOTE

\$CRAVL is the free pool list head.

RSX-11M CRASH DUMP ANALYZER V4.2 2-MAY-85 15:15 PAGE 42 POOL DUMP

SYSTEM POOL

* = NEXT WORD ALLOCATED FIRST FREE BLOCK (\$CRAVL) = 041760 + = NEXT WORD IS IN \$PKAVL LIST \$PKAVL = 042120

- # NEXT WORD IS IN SPKAVL AND ALSO IN SCRAVL

```
KFX J8D J8D11
                                                                      HEtDtD!
041674
         * 000000 * 042710 * 042164 * 042164
                                                1
                                                1 FP
                                                       B AA.
         * 000400 * 000002 * 003204 * 000407
                                                                FWII
041784
                                                   G
041714
         * 000007 * 002400 * 002112 * 000401
                                                       2
                                                           $R
                                                                FOIL
         * 200000 * 000030 * 160000 * 000000
041724
                                                        X 53X
                                                1
                                                                  11
                                                       10 MMJ G5211
041734
         * 177400 * 002347 * 051522 * 030530
                                                1 2
                                                                      g RSX11
                                                                  111MBL25
041744
         * 046461 * 046102 * 032462 * 000000
                                                ILNA LHB HTR
041754
         * 000000 * 044506
                              042014
                                        000004
                                                1
                                                      K.8 J5T
                                                                 DII FI D
                                                       C/ X8D
041764
         * 000000 * 000225 * 115764 * 000000
                                                                  11
                                                                D 11
041774
         * 000003 * 117074 * 041764 * 000240
                                                   C YL. J46
                                                1
         * 115264 * 000000 * 000003 * 117074
                                                              YL.114
042004
                                                1 X Ø D
                                                            С
                                                                          •
                     000004 + 042264 + 000044
                                                1J6T
                                                        D
                                                          J9.
                                                                6114D
                                                                        4D$
042014
           042064
042024
         + 000020 + 000000 + 040212 + 001010
                                                   P
                                                          JMB
                                                                M 11
                                                                         ٥
                                                       $ Q
                                                                  11 "I
042034
         + 121290 + 002111 + 140000 + 000000
                                                1 Z
                                                          0.2
042044
                                                   P CID
         + 000020 + 012054 + 001350 + 000000
                                                1
                                                           RX
                                                1 IC
042054
         + 000553 + 001016 + 000000 + 000000
                                                       MF
                                                                  114
                                                          XUD BPRIL D
042064
           042240
                     000034
                               115264
                                        007422
                                                1J9H
                                                          TSH XØVII
042074
           000000
                     000000
                               100000
                                        115396
                                                 1
           042240
                                                1J9H
042104
                     000014
                                                                  11 D
                              aaaaaa
                                        aaaaaa
                                                1 C
                                                                         D.S
                                                        I
                                                          J5X
042114
           000003
                     000011 + 042020 + 000044
                                                                 611
                                                   P
                                                                         В
042124
         + 000020 + 000000 + 041016 + 000400
                                                          JVØ
                                                                FP11
                                                1
                                                                 11 1"
                                                      SF
042134
         + 120426 +
                     001376 +
                              140026 + 000000
                                                1 Y Ø 8
                                                          0/N
                                                                         ٥
042144
                                                1 SR 0/1
                                                                      . .
                                                            С
         + 001412 + 140047 + 000003 + 000000
                                                                  11
042154
                                                               JZ211
                                                                          081
         + 000000 + 000000 + 000000 + 041260
042164
         * 200000 * 000001 * 000001 * 000000
                                                                  1.1
                                                1
042174
         * 000401 * 000000 * 000000 * 000000
                                                1 FG
                                                                  11
042204
         * 000003 * 000000 * 000000 * 000000
                                                1 C
                                                                  11
                                                1 5R
042214
         * 002112 * 000401 * 000000 * 000000
                                                      FQ
                                                                  113
042224
         * 000000 * 000000 * 000000 * 000001
                                                                 AII
                                                      ZJB K X
                                                                       SXD
                                        000024
                                                                 T 1 1
042234
         * 000000 * 122022
                               042330
                                                - 1
                                                IXOD AOL
042244
           115264
                     005374
                               aaaaaa
                                        000000
                                                                  114
                                                                 DII F PE
042254
           100000
                     115306
                               042760
                                        000004
                                                 ITSH XOV KGX
          + 042504 + 002114 + 140054 + 000000
042264
                                                IKCL $T 0/6
                                                                 IIDEL ,0
                                                                SHII .
                                                       L2 Y4N
042274
         + 040212 + 001000 + 120636 + 001400
                                                LJMB
                                                10/1
                                                               1M211 0
042384
         + 140036 + 000000 + 000000 + 141750
                                                                UII
042314
         + 001000 + 000000 + 000040 + 000025
                                                1 12
                                                            2
                                                        P KDH
                                                                B. 11
042324
         + 000000 + 000020
                              042550
                                        000154
                                                 1
042334
                                                                F/111PE 60
           050061
                               030066
                                        000415
                                                IL3I EFU G.V
                     020105
042344
           170017
                     120374
                               120252
                                        000000
                                                18PO YOL Y.J
                                                                  11 pl *
                                        000000
                               000016
                                                      Y5R
042354
           DRRRRR
                     120712
                                                                  11
                                                                      JI
042364
           000000
                     000000
                               000000
                                        000000
                                                                  11
042374
           442436
                     000001
                               000000
                                        000000
                                                 IKBN
                                                                  11 E
042494
           123550
                               000375
                                        999999
                                                 1Z1P
                                                                  11h
                     ananaa
                                                                          OF I
042414
           699699
                     000000
                               999999
                                        042560
                                                               KCH11
                                                               J.LII
                                                     JMB
                                                                          181
042424
           200000
                     040212
                               999999
                                        041354
                                                    В
042434
           RUBBUD
                     000001
                               117074
                                        120000
                                                 1
                                                        A YL.
                                                              YX 11
                                                                        •
                                                 1.NO J46
                                                                  1171tCE
                                                           Δ/
042444
           130477
                     N41764
                               000105
                                        BNBBBB
```

Figure 3-19 Pool Dump (Truncated)

3.2.10 Task Dump

CDA prints all or a portion of the task's virtual address space if the /TASK switch is specified. Figure 3-20 and the following list illustrate this output.

Item

Description

- 1. Task name
- Address of the first word of the Task Control Block for the task
- 3. Address of the first word of the task's header

WINDOW BLOCKS

- 4. Name of the partition to which the task is mapped
- 5. Task virtual address limits
- 6. Address of the attachment descriptor
- 7. Size of window in 32-word blocks
- Offset to memory region within partition in 32-word blocks
- 9. First Page Description Register (PDR) used to map the task
- 10. Number of PDRs used to map task
- 11. Contents of the last PDR used to map the task
- 12. Task virtual address limits
- 13. Physical starting address of the memory region being dumped
- 14. Dump of the data within the window, formatted in octal, Radix-50, and ASCII

V4.2

2-MAY-85

13:52

PAGE 1

RSX-11M CRASH DUMP ANALYZER

TASK DUMP

TASK DUMP OF ...MCR (1) (3) TCB ADDRESS = 115264 HEADER ADDRESS = 042760 WINDOW BLOCKS: (4) **6** 7 (8) (9) PAR VIRT LIMITS ATT DESC WND SIZE OFFSET 1ST PDR NO. LAST PDR SYSPAR 120000 130477 042000 000105 000000 177612 1 042006 WINDOW #1 -- TASK VIRTUAL LIMITS 120000-130477 (12) PHYSICAL STARTING ADDRESS = 00137200 (13) 120000 120362 000162 040000 115310 IYOB B4 JIX XOXIIP P OH I 000424 170017 120636 1 F6 F6 8P0 Y4N11 120010 999424 p 11 120020 120362 000000 000000 000000 LYØB 110 000000 000000 120030 000000 000000 11 120040 000000 000000 043076 000001 KIV 1 ALL 120050 000000 000000 121176 000000 Y98 11
 040004
 000000
 000000
 000000

 000000
 043140
 000004
 041260

 000000
 041400
 000000
 041400
 120060 1 D 11 | KJP D JZ211 | J.2 J.211 | J.L All *F Ø81 120070 C CI 120100 000000 041354 000000 000001 120110 ALL 1B IYL. YX .NO J5HII< ?1 DI 1 A/ I4 J5NIIE DI 18P ZOX II PPS I 117074 120000 130477 042000 120120 000612 042006 - (14) 120130 000105 000000 120140 170000 122360 000000 000000 120472 000000 120426 000070 1708 AP Y14 120150 11 18 11 1 120160 000000 000000 000000 000000 11 [ABOVE LINE REPEATED 10. TIMES] 000000 000000 006001 001010 120310 A63 M 11 120320 000004 000037 121202 000000 1 D 1 Z B 11 120330 121634 000000 000001 AII #X IIJ+# MI 004130 IZGD AMP 1\$PJ OP Y2M 11J+0 M1
1Z Z TK M1 \$H211 "+ " 120340 125512 060100 120515 000000 001453 001047 125040 121232 120350

Figure 3-20 Task Dump (Truncated)

3.2.11 Clock Queue

The example in Figure 3-21 shows a clock queue listing. The following list explains the example.

Item

- 1. Address of the clock queue entry
- Types of time schedule requests One of the following types:
 - Type 0 Mark time request
 - Type 2 Request with periodic rescheduling
 - Type 4 Single-shot task request
 - Type 6 Single-shot internal system subroutine with system subroutine identification
 - Type 10- Single-shot internal system subroutine without system subroutine identification
 - Type 12- Clear stop bit (Shuffler)
- Task Control Block address or system subroutine identification
- 4. Task issuing the clock request
- 5. The hour, minute, and second that time request comes due
- 6. This field varies with each type of time schedule request For a Mark Time request, the labels are:
 - C.AST AST address
 - C.SRC Event flag mask word
 - C.DST Event flag mask address
 - Event Flag Number
 - For a periodic rescheduling request, the labels are:
 - C.RSI Reschedule internal
 - C.UIC Scheduling UIC
 - The field for a single-shot task request contains only one label:
 - C.UIC Scheduling UIC
 - The field for a single-shot internal subroutine (both with and without system subroutine identification) contains:
 - C.SUB Subroutine address
 - C.AR5 Relocation base address (for loadable drivers)
- 7. Octal dump of clock queue in offset mode

R8X-11M CRASH DUMP ANALYZER V4.2 2-MAY-85 15:13 PAGE 116 CLOCK QUEUE

000000 057250 010000 107134 011374 000000 000000 100000 107156} 7

ADDRESS = 057250 REQUEST TYPE = 0 TCB = 053510 TASK = PMT...
TIME REQUEST BECOMES DUE = 09:54:10.2

000000 046760 001000 053510 011707 000000 124602 000002 053532

ADDRESS = 046760 REQUEST TYPE = 0 TCB = 053510 TASK = PMT...
TIME REQUEST BECOMES DUE = 09:54:50.2

000000 000000 001400 053510 016447 000000 000000 000004 053532

Figure 3-21 Clock Queue

3.2.12 Controller Information

Figure 3-22 shows the information associated with a device controller. This information appears only in crash dumps of RSX-11M-PLUS systems. The following list explains the items in Figure 3-22.

Item Description

- 1. Name of the device controller
- 2. Address of the Controller Table (CTB)
- Address of the Device Controller Block (DCB) for this device
- 4. CTB status byte, which may contain any of the following three-letter status codes:

CLK - Clock block appears at the top of the CTB

MDC - Multidriver CTB

CBL - Clock block is linked into the clock queue

CIN - Controller uses the common interrupt dispatch table

NET - DECnet device

- 5. Octal dump of the CTB
- 6. Common Interrupt Address

Item	Description
7.	DCB for each device interfaced by this controller
8.	Name of each device interfaced by this controller
9.	Address of the Controller Request Block (KRB)
10.	Controller status. The following is a list of possible status values and their meanings:
	OFL - Controller is off line MOF - Controller is marked for off line UOP - Controller supports overlapped operations MBC - Device is a MASSBUS controller SDX - Seek operations allowed during data transfers POE - Parallel operations enabled UCB - UCB table present DIP - Data transfer in progress PDF - Privileged diagnostic functions only
11.	Octal dump of KRB in one or two parts
RH (1)	CRASH DUMP ANALYZER V3.0 2-MAY-85 15:08 PAGE 149 FORMATION 3 SS = 020454 L.DCB = 022020
	R TABLE BLOCK
020454	022200 044122 022020 005004 022044 022102 022134 022160 S
	NTERFACED BY THIS CONTROLLER ITERRUPT ADDRESS = 017526 6 DEVICE NAME 8
021142 021410 021616	DR DS MM
KRB ADDRE K.STS: S	SS = 022044 9 DX UOP MBC POE UCB DIP 10
022026 022046 022066	021410 021616 000000 177777 025640 000400 000374 176700 000016 000003 020534 021112 021112 000050 020534 020602 020650 020716 177777 015240
022046 022066	000016 000003 020534 021112 021112 000050 020534 020602 020650 020716
	SS = 022102 DX UOP MBC PDE UCB
022064 022104 022124	020602 020650 020716 177777 015240 000002 000174 176300 000016 000001 000000 000000 022112 000050 021202 021252 177777 020640 000004 000030
022104	000016 000001 000000 000000 022112 000050 021202 021252
	Figure 3-22 Controller Information

KRB ADDR	RESS = 022 SDX MBC	1154						
022116	000050	021202	021252	177777	020640	000004	000030	172040
022136	000016	000001	021516	000000	022144	000030	022640	000006
022156	000030	172440	000016	000000				
022136	000016	000001	021516	000000	022144	000030	022640	000006
KRB ADDR	ESS = 022	160						
K.STS:	SDX MBC							
022142	021516	000000	022144	000030	022640	000006	000030	172442
022162	000016	000000	000000	000000	022170	000034	004270	022454
055505	045504	022212	000001	022372				
022162	000016	660600	000000	000000	022170	000034	004270	

Figure 3-22 (Cont.) Controller Information

3.2.13 Kernel Data Space

Figure 3-23 shows a dump of kernel data space from the specified starting virtual address to the specified ending virtual address.

3.2.14 Kernel Instruction Space

Figure 3-24 shows a dump of kernel instruction space from the specified starting virtual address to the specified ending virtual address.

3.2.15 Task Data Space

Figure 3-25 shows a dump of task data space. This dump occurs only on RSX-11M-PLUS systems.

3.2.16 Task Instruction Space

Figure 3-26 shows a dump of task instruction space. This dump occurs only on $\mbox{RSX-11M-PLUS}$ systems.

		RESS: Ø	01020	PHYSIC		51 0000	
001000	000000	90000	000000	000000	I and the second		
991759	awaaaa		INE REPE		TIMES)	EVT	
001350 001360 001370	177400	000000	020422 000000 042452	000000 020416 042530	1 1 2 1 AXM F/4	EKV	
001400	005015 020103	025052	044522	054524	LEFS JR	K/J NK.	IIC PARIT
001410	042440 047524	051122 025120	051117 025052	051440 005015	IKBP MF4		II ERROR
001430	000012 160377	177777	172020	003110	1 J 80 1599 2A		11 ° v
001450	000001	001450	001450	001450	1 A TH	TH TH	
001460	001450	001450	001450	001450	1 TH TH	I TH TH	iic c c
001500 001520	001450 177746	177750	001450 177752	001450 177766	1 TH TH		11((() 114 h] (
001530 001540	999999	909996 909996	000000 050044	000000 000000	1.575,000		
001550	120030	000000	000000	000001	IAXX	A	11
001560 001570	000001 040522	042220 044123	005015 026440	041412 020055	JRB KV5	GH2 EE7	IIRASH -
001600 001610	047503 020110	Ø52116 Ø41523	053440 040522	052111 041524	ILSK MSV		LICONT W: Lih scrat
001620 001630	020110 047117	042515 042040	030113	020101 005015	LEFX KCU		IION DKØ
001640 001650	000012	005015 026455	051103	051501 020117	I J AXM IEFX GIE	MFS ML3	
001660	951105	047522	020122	047117	IMFU LSZ	EF4 LUG	LIERROR (
001670	041440 046525	040522 020120	044123 042504	042040 044526	IJ/X JRB ILN7 EF2	KCL KIN	II CRASH IIUMP DE\
001710 001720	042503	006400	041412 020055	040522 040523	IKCK BCH		11CE
001730	044516 051105	054524 042440	052040 050130	046511 051111	IK/F NK.	MRP LNY	LINITY T
001750	042105	047440	020116	051120	1J67 LZP	EFØ MF2	LIED ON F
001760 001770		951595 996499	047523 041412	020122 040522		J/B JRB	LICESSON
002000	044123	026440	000003	116301	IKV5 GHZ	C YCI	11SH - /

3-54

VI	RTUAL ADD	RESS: 0	01000	PHYSIC	CAL ADO	RESS	0000	1000
001000	000000	000000	000000	000000	1			11
		[ABOVE L	INE REPE	ATED 28.	TIMES]			
001350	NOONO	000000	020422	000000	1	E	KZ	11 1
001360	177400	900000	000000	020416	1 2		EKV	
001370	005015	025052	042452	042530	1 A X M	F/4 H	BZ KCZ	III ***E
001400	020103	040520	044522	054524	1EFS			IIC PARI
001410	042440	051122	251117	051440	IKBP		AF1 ML	
001420	047524	025120	025052	005015	1L\$.	_		ILITOP***
001430	000012	177777	172020	003110	l J		B A H	
001440	160377	177401	000366	000000	1599	88	FF	11 ° v
001450	000001	001450	001450	00145u	1 A	TH		irr cc
001460	001450	001450	001450	001450	1 TH	TH		iric c c
001470	001452	001450	001450	и01450	1 TH	TH		iric c c
001500	001450	001450	991450	201450	1 TH	TH-		1116 6 6
001520	177746	177750	177752	177766	1 70	72	74 8F	lif h j
001530	000000	200000	000000	000000	l l		3 /	11
001540	000000	200000	050044	000000	1 2 2 2	L	.26	11 SP
001550	120030	000000	000000	000001	TAXX	105		11
001560 001570	000001 040522	Ø42220 Ø44123	005015 026440	041412	I A		XM J/B	III D IIRASH =
001600	047503	052116	053440	052111	LSK			LICONT W
001610	020110	041523	040522	041524	1EFX			LIH SCRA
001620	020110	042515	044504	020101	LEFX			IIH MEDI
001630	947117	042040	030113	005015	LUG			LION DKØ
001640	000012	905015	051103	051501			FS ML3	
001650	020110	926455	244442	020117	IEFX			11H I
001660	051105	047522	020122	047117				LIERROR
001670	041440	040522	044123	942940	IJ/X			II CRASH
001700	046525	020120	042504	044526	ILN7			LLUMP DE
001710	042503	906400	041412	949522	IKCK			LICE C
001720	044123	026440	020055	040523	IKV5	GH2 E	E7 JRC	11SH
001730	044516	254524	052040	046511	1K/F			LINITY T
001742	051105	242440	050130	051111	1 MFU	KBP L		HER EXP
001750	042105	247442	020116	051120	1J67			LIED ON
001760	041517	051505		020122				LLOCESSO
001770	050103	006400	041412	040522			/8 JR8	
002000	044123	026446	000003	116301	1KV5	GH2	C YCI	11SH -

RSX-11M-PLUS CRASH DUMP ANALYZER V3.0 2-MAY-85 PAGE 1 16113 TASK DUMP OF LITT27 DATA SPACE TCB ADDRESS = 042204 HEADER ADDRESS = 011323 WINDOW BLOCKS: PAR VIRT LIMITS ATT DESC WND SIZE OFFSET 1ST PDR NO. LAST PDR GEN 000000 002077 040030 000021 000015 177620 010006 1 160000 160177 041040 000002 000010 177636 000402 WINDOW #2 -- TASK VIRTUAL LIMITS 000000-002077 PHYSICAL STARTING ADDRESS = Ø1134000 000000 000000 000252 140313 160400 DJ 035 6 11 000010 003471 003471 170017 1AFI AFI 8PO 53X119 9 160000 000020 000000 000000 000000 001334 1 RL 000030 000000 000000 000000 000000 000040 000000 140252 140126 000001 03B 008 ALL *0V0 000000 000000 000050 000000 000000 11 000060 000000 000000 000000 000000 000070 000000 140250 000006 022520 F E8211 03 (e P%) 000100 000000 022520 000000 022520 PXI E82 E8211 PX 022520 000110 000000 037462 000000 E82 JDR11 P% 271 037506 000000 000004 001077 000000 000120 000000 JD8 F? DII 000130 000000 147. 107544 NO lld 000600 004006 000140 000011 000004 1 I D IX AKNII 177. 000150 107544 000000 002077 000000 SG 11d 000160 000021 000021 000620 010006 J BVVII 000170 040144 160000 160577 000000 IJLD 53X 6CG 11d0 ' a 000200 000006 000000 000616 002402 1 F 18 2B11 lide . . 000210 040144 160000 160177 000000 IJLD 53X 561 000220 999992 000010 000636 000402 I B H JN FRII 000230 017747 000004 000000 160400 D 1 F D G 6 119 000240 046174 1035 LIT ... 140313 131574 000000 11KelL13 000250 000000 000000 000000 000000 [ABOVE LINE REPEATED 63, TIMES]

Figure 3-25 Task Data Space

```
RSX-11M-PLUS CRASH DUMP ANALYZER V3.0
                                            2-MAY-85
                                                        13146
                                                                    PAGE 1
TASK DUMP
                          TASK DUMP OF ...LDR
           INSTRUCTION
                         SPACE
           TCB ADDRESS = 117300
                                     HEADER ADDRESS = 117130
 WINDOW BLOCKS:
  PAR
          VIRT LIMITS
                         ATT DESC
                                  WND SIZE
                                             OFFSET
                                                     1ST PDR
                                                             NO.
                                                                   LAST PDR
 SYSPAR
         120000 123777
                         117114
                                   000040
                                             200000
                                                     177612
                                                                    017406
 WINDOW #1 -- TASK VIRTUAL LIMITS 120000-123777
   PHYSICAL STARTING ADDRESS = 00530100
   120000
             000000
                     000146
                             140664
                                     140630
                                                     BV 09. 09 11
                                                                    F 4A AL
   120010
                     000424
             000424
                             170017
                                     120226
                                                1 F6
                                                     F6 8P0 YS011
                                                                      P
   120020
                     000000
                            000000
             120166
                                     000000
                                                LYZ8
                                                               110
   120030
             000000
                     000000 000000
                                     000000
   120040
                     000000
                             000102
             ааааааа
                                     000000
                                                                     В
                                                          AZ
   120050
             000000
                     000000
                             000000
                                     000000
   120060
                     000000
             000000
                             000000
                                     000000
   120070
             000000
                     000144
                                                          A JFRII
                             000001
                                     037602
                                                                        71
   120100
             000000
                     000001
                             117610
                                     120000
                                                      A YU YX II
   120110
                                                               11 "
             123777
                     000000
                             000040
                                     000000
                                               125G
                                                          5
   120120
             000612
                     017406
                             000143
                                     000003
                                               1 I4 D8V 8S
                                                              CII
   120130
                    140630 140664
                                     045662
             200000
                                                    09 09. LDR11
   120140
             131574
                    000000 000000
                                     000000
                                                               1113
   120150
                    000000 000000
             000000
                                     140630
                                                            09 11
   120160
             000002
                     120166
                             102700
                                     006003
                                                  B YZ8 UP A6511
   120170
             001000
                     000001
                             000001
                                     120214
                                                     A A YSTII
                                                1 FS
   120200
             000000
                     140000
                             101700
                                     000000
                                                    0.2 UCH
                                                               11
   120210
             000000
                     000000
                             047660
                                     000000
                                                        LØ
                                                               11
                                                                     00
                                                                      3*
             000000
   120220
                     000000
                             031401
                                     104376
                                                        HFQ U6011
   120230
             120454
                     005067
                             100570
                                     016700
                                               191T AYO T.X DØP11,17 x # 1
   120240
                    062700
             061024
                            000012
                                     004767
                                               108. PKH
                                                          J AWILL bee
                 Figure 3-26 Task Instruction Space
```


CHAPTER 4

INTERPRETING A CRASH DUMP LISTING

This chapter introduces basic concepts that can help you to use CDA output listings to analyze the cause of a system crash. However, this chapter is not intended as a complete guide to interpreting a crash dump.

4.1 HELPFUL CONCEPTS

Two concepts are helpful in using CDA output listings to determine the cause of a system failure:

- Determining what was mapped at the time of the crash
- Interpreting stack depth and the kernel stack

4.1.1 Determining What Was Mapped

To determine what was mapped at the time of the crash, look at the dump of the Kernel Page Address Registers on the first page of the CDA listing (instruction space registers on RSX-11M systems, both instruction and data space registers on RSX-11M-PLUS systems). This listing, titled Volatile Registers, is shown in Figure 3-1.

Figure 4-1 is an example of the listing of the contents of the sixth and seventh words from a Kernel Page Address Registers dump. The contents of the sixth and seventh words are the block numbers of the task or driver that was mapped at the time of the crash. You can determine what occupied that portion of memory from the memory map on the first page of partition information in the $\mathring{\text{CDA}}$ output listing. Look under the BASE heading (for the base address of the mapped partition).

You can use this information, along with data from the kernel stack and system common listings, to analyze the state of the system at the time of the crash.

INTERPRETING A CRASH DUMP LISTING

KERNEL

I SP	ACE	DSP	ACE
PDR	PAR	PDR	PAR
077506	000000	000000	000000
077506	000200	000000	000000
077506	000400	000000	000000
077406	000600	000000	000000
077506	001000	000000	000000
077406	001372	000000	000000
077406	002077	000000	000000
077506	007600	000000	000000

Figure 4-1 Kernel Page Address Registers

4.1.2 Interpreting the Kernel Stack

\$STKDP, which appears on the first page of the system common listing, is the system stack depth indicator. The value of the stack depth indicator shows which state the system was in when it crashed. The following lists shows the possible values of the stack depth indicator and the corresponding system states.

```
\$STKDP = 1 Indicates User state \$STKDP = 0 Indicates System state \$STKDP = -1, -2, -3, -4, \dots Indicates Interrupt state
```

Note that when the system is in Interrupt state, the stack depth value is negative. Two types of interrupt conditions can decrement stack depth:

- 1. A synchronous system trap (SST), which can be caused by any of the following:
 - A directive
 - A TRAP instruction
 - An illegal instruction
 - Another SST
- The interrupt save routine (\$INTSV)

When an SST occurs, the following information from the current task is pushed onto the stack:

```
The Processor Status Word (PSW)
The Program Counter (PC)
The address of return to DIRSV
SST specific information
R5 (Mapped systems only)
R4 (Mapped systems only)
R3
R2
R1
R0
```

INTERPRETING A CRASH DUMP LISTING

When an interrupt occurs, the following are pushed onto the stack:

PSW

PC

If a call to \$INTSV is then issued, the following are pushed onto the stack after the PC:

Address of return to \$INTSV

R5

R4

The stack depth is then decremented. If the value of \$STKDP is 0 and the currently mapped driver issues a call to the \$FORK routine, the following items are pushed onto the stack:

Return to \$FORK

R3 (Which replaces the return to \$INTSV)

R2

Rl

R0

If the driver issues a call to \$FORK when \$STKDP is not 0, the registers are saved in a fork block, which is queued for later execution.

Since interrupts can still occur, more of both basic types of stack contents (interrupt or \$INTSV) can be pushed. If an SST occurs in the Executive, SST information will be pushed onto the stack, possibly followed by a system crash.

This information, along with the kernel stack pointer SP(K), which appears on the first page of the CDA listing, can be used to interpret the contents of the dump of the kernel stack.

The contents of the PC and the PSW before the crash appear on the first page of the CDA listing. You can compare this information to the contents of the PC and the PSW on the stack to help locate the cause of the crash.

Refer to the RSX-11M Guide to Writing an I/O Driver or to the RSX-11M-PLUS Guide to Writing an I/O Driver for a further description of the contents of the kernel stack.

APPENDIX A

CDA MESSAGES

CDA displays a message on your terminal when it detects one of the error conditions described below. These messages reflect operational conditions. Do not confuse these messages with the diagnostic analysis messages that CDA generates during the analysis and prints in the analysis listing.

Not all of the messages listed below terminate CDA analysis. Some are simply informational messages, and others warn you of nonfatal errors. Also, this list includes some ANALYZE/CRASH_DUMP command error messages.

ANALYZE -- Illegal crash input specification

Type: Fatal

Explanation: You must include a crash-input device or file in the command line. Also, you must use the correct command line syntax when you specify the crash input.

ANALYZE -- Illegal crash output specification

Type: Fatal

Explanation: You must specify at least one output file or device specification. Also, you must use the correct command line syntax when you specify the crash output.

ANALYZE -- Illegal, contradictory, or ambiguous qualifiers

Type: Fatal

Explanation: You must use qualifiers with the correct file or device specification. Refer to the qualifier tables in Chapter 2 if you are unsure which file or device specification a qualifier modifies. Also, when you specify qualifier arguments, be sure to enclose them in parentheses. If you specify more than one argument for the same qualifier, separate the arguments with commas.

ANALYZE -- Sorry, task not installed

Type: Fatal

Explanation: CDA is not presently installed in the system. If you are a nonprivileged user, refer to Chapter 1 for an explanation of how you can run CDA as an uninstalled task, or ask a privileged user (such as your system manager) to install CDA.

CDA MESSAGES

If you are a privileged user, you can install CDA and then reenter your command line.

CDA -- ACP out of memory or not in execution

Type: Analysis diagnostic

Explanation: The partition containing the File Control Block (FCB) for the current logical unit number (LUN) was not in memory.

CDA -- Address out of range

Type: Fatal

Explanation: CDA was unable to read a block from the crash-input file. Possible causes for this are:

- A device failure
- A bad block on the volume
- The crashed system had a corrupted data base
- The binary file does not contain all of the crashed system's memory

CDA -- Analysis output must be directed to an explicit device or file

Type: Fatal

Explanation: CDA requires an explicit output file specification. There are no default output file names.

CDA -- Analysis terminated after n. pages

Type: Informational

Explanation: CDA terminated the analysis after generating n pages of analysis output. If you have not specified the /LIMIT switch in the CDA command string, this message indicates that CDA has generated more than 300 (decimal) pages of output.

CDA -- Command I/O error

Type: Fatal

Explanation: The system returned an error when CDA attempted to read a command line.

CDA -- Command line syntax error

Type: Fatal

Explanation: CDA detected an error in the syntax of a CDA command line. CDA will point to the beginning of the error within the command line.

CDA -- Crash dump must be input from an explicit device or file

Type: Fatal

Explanation: The crash dump input file specification must be explicit. There is no default file specification for the crash dump input.

CDA -- Device driver missing

Type: Fatal

Explanation: You have not loaded the driver for the crash dump input device.

CDA -- Dump aborted - kernel PARs clobbered

Type: Fatal

Explanation: This message appears on mapped systems only. It indicates that the values contained in the kernel Page Address Registers are invalid. To restart the analysis, you must specify the /KMR switch. This switch forces CDA to use standard mapping values when converting kernel virtual addresses to physical memory addresses.

CDA -- Error reading crash dump

Type: Fatal

Explanation: The system returned an error when CDA attempted to read the crash dump file. This could be caused by:

- A device failure
- A bad block on the volume
- On RSX-11M-PLUS systems, the device might not be mounted foreign

CDA -- Error reading file filename

Type: Fatal

Explanation: The system returned an error when CDA attempted to read the crash dump file. This could be caused by:

- A device failure
- A bad block on the volume

CDA -- Error reading symbol file filename

Type: Fatal

Explanation: The system returned an error when CDA attempted to read the symbol table file indicated. Possible causes for the error are:

- A device failure
- A bad block on the volume
- The specified symbol file was not an STB file

CDA -- Errors detected: n.

Type: Informational

Explanation: CDA has detected n analysis errors during the run.

CDA -- Error writing analysis file

Type: Fatal

Explanation: The system returned an error when CDA attempted to write a line into the analysis listing file. This could be caused by:

- A full volume
- A problem with the device
- A bad block on the volume

CDA -- Error writing dump file filename

Type: Fatal

Explanation: The system returned an error when CDA attempted to write into the binary output file. This condition could be caused by:

- A full volume
- A problem with the device
- A bad block on the volume

CDA -- Exiting due to illegal trap - snapshot dump being attempted

Type: Fatal

Explanation: CDA has aborted after detecting an odd address or some other type of fault. If Postmortem Dump (PMD) is installed in the system, the system will generate a snapshot dump. This is an indication of a software problem. If you send a Software Performance Report (SPR) to DIGITAL for this type of failure, you should include any available dumps.

Also, preserve the following until your SPR is answered:

- 1. From the crashed system:
 - All applicable user task images
 - RSX11M.SYS
 - RSX11M.STB
 - RSXMC.MAC
 - All applicable privileged task images
 - Crash dump volume
- 2. From the system used for analysis:
 - RSX11M.SYS
 - RSX11M.STB
 - CDA.TSK

CDA -- Failed to assign LUN to input device ddu

Type: Fatal

Explanation: The Assign LUN (ALUN\$) directive failed when CDA attempted to use it to attach the specified input device before reading the crash dump from the device. ALUN\$ will fail if the device name in the CDA command line is invalid.

CDA -- Failed to extend page buffer - n. pages available

Type: Informational

Explanation: The Extend Task (EXTK\$) directive failed when CDA attempted to use it to expand the page buffer. This problem will cause the analysis to take longer, but the analysis will continue with a buffer of n pages, each 256 words long.

NOTE

CDA uses the Extend Task directive to obtain additional buffering space. CDA does not use space allocated by a /INC= qualifier on the INStall command.

CDA -- Failed to open input file filename

Type: Fatal

Explanation: One of the following conditions exists:

- The specified device does not exist.
- The volume is not mounted.
- A problem exists with the device.

- The specified UFD does not exist.
- The specified file does not exist.
- You do not have read access privileges.

CDA -- Failed to open output file filename

Type: Fatal

Explanation: One of the following conditions exists:

- The specified device does not exist.
- The volume is not mounted.
- A problem exists with the device.
- The specified UFD does not exist.
- The volume is full or the device is write-protected.
- You do not have write access privilege to UFD.

CDA -- Illegal switch

Type: Fatal

Explanation: You specified an unknown switch or used a legal switch with the wrong file specification. CDA will point to the error within the command line.

CDA -- Inconsistency in dynamic storage

Type: Informational

Explanation: CDA detected an inconsistency while scanning the pool pointers. This condition could be associated with the crash. However, it may mean that you specified the wrong executive symbol table file.

CDA -- Indirect command syntax error

Type: Fatal

Explanation: The name of the indirect command file (@filename) is syntactically incorrect.

CDA -- Indirect file open failure

Type: Fatal

Explanation: CDA could not open an indirect command file specified as "@filename" in the CDA command line.

CDA -- Invalid address range

Type: Fatal

Explanation: You specified an address that was not consistent with Active Page Register (APR) mapping.

CDA -- List count expired

Type: Analysis diagnostic

Explanation: The linked list of data structures has too many entries. The list may be corrupted, or contains a loop.

CDA -- Maximum indirect file depth exceeded

Type: Fatal

Explanation: You exceeded the maximum allowable number of nested indirect command files. (CDA only permits one indirect command level.)

CDA -- No input file specified

Type: Fatal

Explanation: You did not specify a crash dump input file.

CDA -- No output file specified

Type: Fatal

Explanation: You did not specify an output file.

CDA -- Output dump filename must be explicit

Type: Fatal

Explanation: You did not specify a valid output file.

CDA -- Pool link error found - continuing

Type: Analysis diagnostic

Explanation: CDA detected a link error while scanning the pool free block pointers (\$CRAVL). This condition can be associated with the crash. It can also mean that you specified the wrong Executive symbol table file. If the latter is true, the entire analysis will be meaningless and you should abort CDA.

CDA -- Premature end of dump input - filename being zero-filled

Type: Informational

Explanation: CDA reached the end of the medium (or the end-of-file mark on a magnetic tape) before the crash dump output file had been completely filled. If you expected the file to be completely filled by the dump, this condition could indicate a problem.

CDA -- Processor n failed to dump its registers

Type: Informational

Explanation: On a multiprocessor system, when the system crashes, each on-line processor is notified by an interrupt. If the processor does not respond to the interrupt (for example, if it halted or is off line), it won't dump its registers into the crash buffer. CDA notes this and prints the informational message.

CDA -- Redirect error (U.RED=0)

Type: Analysis diagnostic

Explanation: CDA detected an error in the pointer to the Unit Control Block (UCB) of a redirected unit. This condition may be associated with the cause of the crash.

CDA -- Symbol symbolname not defined in symbol file

Type: Fatal

Explanation: CDA did not find a symbol that it required for the analysis in the specified Executive symbol table file. You have probably entered the wrong file name or have mistakenly used the default file name.

CDA -- Symbol file filename has illegal format

Type: Fatal

Explanation: The specified Executive symbol table file has an improper format, probably caused by entry of the wrong file name. However, this message could also indicate a problem with the device or medium on which the file is located.

CDA -- Task 'taskname' not in memory

Type: Analysis diagnostic

Explanation: This message can be caused by two conditions:

- You have requested a dump of a task which does not have an entry in the System Task Directory
- The task has an entry in the System Task Directory, but it is marked out of memory.

You can verify the state of the task by examining a dump of the Task Control Blocks.

CDA -- Transfer complete - ddu may be unloaded

Type: Informational

Explanation: The transfer of the crash dump to the output file is finished; you may unload the crash dump device. This message occurs only when you have specified a binary file in the output of the command string to CDA.

CDA -- Unknown AST type

Type: Analysis diagnostic

Explanation: CDA has detected an AST block which is not one of the following valid types of ASTs:

- Unsolicited character AST
- Buffered I/O AST
- Emit status AST
- Completion AST from:

QIO\$
MRKT\$
SPWN\$
CNCT\$
CINT\$

1. Specified AST from:

SFPA\$ SRDA\$ SRRA\$ SPFA\$

CDA -- Unknown get command line error

Type: Fatal

Explanation: An unrecognized error occurred when CDA attempted to read a command line.

CDA -- \$PKVAL link error at n --FWD PTR = n

Type: Analysis diagnostic

Explanation: CDA detected a link error while scanning the pool free packet list \$PKVAL. This condition can be associated with the crash. It can also mean that you specified the wrong executive symbol table file.

APPENDIX B

RSX-11M SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

This appendix describes the RSX-llM system macros that supply symbolic offsets for data structures listed in Table B-1.

The data structures are defined by macros in the Executive macro library. To reference any of the data structure offsets from your code, include the macro name in an .MCALL directive and invoke the macro. For example:

.MCALL DCBDF\$
DCBDF\$

;Define DCB offsets

NOTE

All physical offsets and bit definitions are subject to change in future releases of the operating system. Code that accesses system data structures should always use the symbolic offsets rather than the physical offsets.

The first two arguments, <:> and <=>, make all definitions global. If they are left blank, the definitions will be local.

All of these macros are in the Executive macro library LB:[1,1]EXEMC.MLB. All except ITBDF\$ and MTADF\$ are also in the Executive definition library LB:[1,1]EXELIB.OLB.

Table B-1
Summary of System Data Structure Macros

Macro	Arguments	Data Structures
ABODF\$	<:>,<=>	Task abort and termination notification message codes
CLKDF\$	<:>,<=>	Clock queue control block
DCBDF\$	<:>,<=>	Device Control Block
EPKDF\$	<:>,<=>	Error message block
EVNDF\$	<:>,<=>	Terminal Software Architecture (TSA) event packet definitions

(Continued on next page)

RSX-11M SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

Table B-1 (Cont.) Summary of System Data Structure Macros

Macro	Arguments	Data Structures
F11DF\$	<:>,<=>	Files-ll data structures (volume control block, mount list entry, file Control Block, file window block, locked block list node)
HDRDF\$	<:>,<=>	Task header and window block
HWDDF\$	<:>,<=>	Hardware register addresses and feature mask definitions
ITBDF\$	<:>,<=>	Interrupt transfer block
LCBDF\$	<:>,<=>	Logical assignment control block
MTADF\$	<:>,<=>	ANSI magtape data strucures (volume set control block)
PCBDF\$	<:>,<=>	Partition Control Block and attachment descriptor
PKTDF\$	<:>,<=>	I/O packet, AST control block, offspring control block, group global event flag control block, and CLI parser block
SCBDF\$	<:>,<=>	Status Control Block and UMR assignment block
TCBDF\$	<:>,<=>	Task Control Block
UCBDF\$	<:>,<=>,TTDEF	Unit Control Block

ABODF\$, L, B

.MACRO

ABODFS

```
;+
; TASK ABORT CODES
; NOTE: S.COAD-S.CFLT ARE ALSO SST VECTOR OFFSETS
S.CACT='B'-4.
                               ;TASK STILL ACTIVE
S.CEXT='B'-2.
                               ;TASK EXITTED NORMALLY
S.COAD='B'0.
                               ;ODD ADDRESS AND TRAPS TO 4
S.CSGF='B'2.
                              ;SEGMENT FAULT
S.CBPT='B'4.
                              ;BREAK POINT OR TRACE TRAP
                              ; IOT INSTRUCTION
S.CIOT='B'6.
S.CILI='B'8.
                              ;ILLEGAL OR RESERVED INSTRUCTION
                              ; NON RSX EMT INSTRUCTION
S.CEMT='B'10.
S.CTRP='B'12.
                              ;TRAP INSTRUCTION
S.CFLT='B'14.
                               ;11/40 FLOATING POINT EXCEPTION
S.CSST='B'16.
                               ;SST ABORT-BAD STACK
S.CAST='B'18.
                               ;AST ABORT-BAD STACK
S.CABO='B'20.
                               ; ABORT VIA DIRECTIVE
S.CLRF='B'22.
                               ; TASK LOAD REQUEST FAILURE
S.CCRF='B'24.
                              ;TASK CHECKPOINT READ FAILURE
S.IOMG='B'26.
                              ;TASK EXIT WITH OUTSTANDING I/O
S.PRTY='B'28.
                              ;TASK MEMORY PARITY ERROR
S.CPMD='B'30.
                              ; TASK ABORTED WITH PMD REQUEST
S.CINS='B'32.
                               ;TASK INSTALLED IN TWO SYSTEMS
; TASK TERMINATION NOTIFICATION MESSAGE CODES
T.NDNR='B'0
                               ; DEVICE NOT READY
.NDSE='B'2
                               ; DEVICE SELECT ERROR
T.NCWF='B'4
                               ;CHECKPOINT WRITE FAILURE
                               ; CARD READER HARDWARE ERROR
T.NCRE='B'6
T.NDMO='B'8.
                               ; DISMOUNT COMPLETE
T.NUER='B'10.
                               ;UNRECOVERABLE ERROR
T.NLDN='B'12.
                               ;LINK DOWN (NETWORKS)
                               ;LINK UP (NETWORKS)
T.NLUP='B'14.
                               ;CHECKPOINT FILE INACTIVE
T.NCFI='B'16.
T.NUDE='B'18.
                               ;UNRECOVERABLE DEVICE ERROR
T.NMPE='B'20.
                               :MEMORY PARITY ERROR
T.NKLF='B'22.
                               ;UCODE LOADER NOT INSTALLED
T.NDEB='B'24.
                               ;TASK HAS NO DEBUGGING AID
T.NRCT='B'26.
                               ; CONTROL TASK NOT INSTALLED
T.NWBL='B'28.
                               ;WRITE BACK CACHING DATA LOST. UNIT
                               ;WRITE LOCKED
T.NPNT='B'30.
                               ; REQUIRED PARTITION NOT IN SYSTEM
T.NIOS='B'32.
                               ; I /O STALLED
T.NIOR='B'34.
                               ; I/O RESUMING
                    ABODF$
       .MACRO
                               X,Y
       .ENDM
       . ENDM
```

CLKDF\$

```
.MACRO
                     CLKDF$,L,B
; CLOCK QUEUE CONTROL BLOCK OFFSET DEFINITIONS
; CLOCK QUEUE CONTROL BLOCK
; THERE ARE SIX TYPES OF CLOCK QUEUE CONTROL BLOCKS. EACH CONTROL
; BLOCK HAS THE SAME FORMAT IN THE FIRST FIVE WORDS AND DIFFERS
; IN THE REMAINING THREE.
; THE FOLLOWING CONTROL BLOCK TYPES ARE DEFINED:
C.MRKT='B'0
                                 ;MARK TIME REQUEST
C.SCHD='B'2
                                 ; TASK REQUEST WITH PERIODIC RESCHEDULING
C.SSHT='B'4
                                 ;SINGLE SHOT TASK REQUEST
C.SYST='B'6
                                 ;SINGLE SHOT INTERNAL SYSTEM SUBROUTINE
                                 ; (IDENT)
                                 ;SINGLE SHOT INTERNAL SYSTEM SUBROUTINE
C.SYTK='B'8.
C.CSTP='B'10.
                                 ;CLEAR STOP BIT (CONDITIONALIZED ON
                                 ;SHUFFLING)
; CLOCK QUEUE CONTROL BLOCK TYPE INDEPENDENT OFFSET DEFINTIONS
       .ASECT
.=0
C.LNK: 'L' .BLKW 1
C.RQT: 'L' .BLKB 1
C.EFN: 'L' .BLKB 1
C.TCB: 'L' .BLKW 1
                               ;CLOCK QUEUE THREAD WORD
                              REQUEST TYPE ;EVENT FLAG NUMBER (MARK TIME ONLY)
                                ;TCB ADDRESS OR SYSTEM SUBROUTINE
                                ; IDENTIFICATION
C.TIM: 'L' .BLKW 2
                                ; ABSOLUTE TIME WHEN REQUEST COMES DUE
; CLOCK QUEUE CONTROL BLOCK-MARK TIME DEPENDENT OFFSET DEFINITIONS
.=C.TIM+4
                                ;START OF DEPENDENT AREA
C.AST:'L' .BLKW 1
C.SRC:'L' .BLKW 1
                                ;AST ADDRESS
                                ;FLAG MASK WORD FOR 'BIS' SOURCE
C.DST:'L' .BLKW 1
                                ;ADDRESS OF 'BIS' DESTINATION
; CLOCK QUEUE CONTROL BLOCK-PERIODIC RESCHEDULING DEPENDENT OFFSET
; DEFINITIONS
.=C.TIM+4
                                ;START OF DEPENDENT AREA
C.RSI:'L' .BLKW 2
C.UIC:'L' .BLKW 1
                                ; RESCHEDULE INTERVAL IN CLOCK TICKS
                                ;SCHEDULING UIC
```

CLKDF\$ (Cont.)

```
; CLOCK QUEUE CONTROL BLOCK-SINGLE SHOT DEPENDENT OFFSET DEFINITIONS
.=C.TIM+4
                               ;START OF DEPENDENT AREA
       .BLKW 2
                               ;TWO UNUSED WORDS
       .BLKW 1
                               ;SCHEDULING UIC
 CLOCK QUEUE CONTROL BLOCK-SINGLE SHOT INTERNAL SUBROUTINE OFFSET
 DEFINITIONS
; THERE ARE TWO TYPE CODES FOR THIS TYPE OF REQUEST: 'L'
        TYPE 6=SINGLE SHOT INTERNAL SUBROUTINE WITH A 16-BIT VALUE AS
               AN IDENTIFIER.
      TYPE 8=SINGLE SHOT INTERNAL SUBROUTINE WITH A TCB ADDRESS AS
               AN IDENTIFIER.
.=C.TIM+4
                               ;START OF DEPENDENT AREA
C.SUB:'L' .BLKW 1
C.AR5:'L' .BLKW 1
                               ;SUBROUTINE ADDRESS
                               ; RELOCATION BASE (FOR LOADABLE DRIVERS)
          .BLKW 1
                               ;ONE UNUSED WORD
C.LGTH='B'.
                               ; LENGTH OF CLOCK QUEUE CONTROL BLOCK
          .PSECT
          .MACRO
                       CLKDF$ X,Y
          .ENDM
          . ENDM
```

DCBDF\$

DCBDF

```
.MACRO
                   DCBDF$
     ; DEVICE CONTROL BLOCK
     ; THE DEVICE CONTROL BLOCK (DCB) DEFINES GENERIC
     ; INFORMATION ABOUT A DEVICE TYPE AND THE LOWEST AND
     ; HIGHEST UNIT NUMBERS. THERE IS AT LEAST ONE DCB FOR
     ; EACH DEVICE TYPE IN A SYSTEM. FOR EXAMPLE, IF THERE
     ; ARE TELETYPES IN A SYSTEM, THEN THERE IS AT LEAST ONE ; DCB WITH THE DEVICE NAME 'TT'. IF PART OF THE
     ; TELETYPES WERE INTERFACED VIA DL11-A'S AND THE REST
     ; VIA A DH11, THEN THERE WOULD BE TWO DCB'S. ONE FOR
     ; ALL DL11-A INTERFACED TELETYPES, AND ONE FOR ALL DH11
     ; INTERFACED TELETYPES.
             .ASECT
     .=0
000000
       D.LNK:
                        1 ;LINK TO NEXT DCB
                 .BLKW
000002
       D.UCB:
                 .BLKW
                        1
                           ; POINTER TO FIRST UNIT CONTROL BLOCK
000004
        D.NAM:
                           GENERIC DEVICE NAME
                .BLKW
                        1
                           ;LOWEST UNIT NUMBER COVERED BY THIS DCB
000006 D.UNIT: .BLKB
                 .BLKB
000007
                           ;HIGHEST UNIT NUMBER COVERED BY THIS DCB
000010 D.UCBL: .BLKW 1
                           ; LENGTH OF UNIT CONTROL BLOCK IN BYTES
                 .BLKW
000012 D.DSP:
                           ; POINTER TO DRIVER DISPATCH TABLE
000014
       D.MSK:
                 .BLKW
                        1
                           ;LEGAL FUNCTION MASK CODES 0-15.
                 .BLKW
000016
                        1
                           ;CONTROL FUNCTION MASK CODES 0-15.
000020
                 .BLKW
                        1
                           ; NOP'ED FUNCTION MASK CODES 0-15.
000022
                 .BLKW
                        1
                           ;ACP FUNCTION MASK CODES 0-15.
000024
                 .BLKW
                           :LEGAL FUNCTION MASK CODES 16.-31.
000026
                 .BLKW
                           ;CONTROL FUNCTION MASK CODES 16.-31.
000030
                           ; NOP'ED FUNCTION MASK CODES 16.-31.
                 .BLKW
                        1
000032
                           ;ACP FUNCTION MASK CODES 16.-31.
                 .BLKW
                        1
000034 D.PCB:
                .BLKW
                           ;LOADABLE DRIVER PCB ADDRESS
                 . PSECT
        ; DRIVER DISPATCH TABLE OFFSET DEFINITIONS
        D. VDEB=177776
                           ; DEALLOCATE INTERNAL BUFFERS (FD TTDRV)
        D.VINI=0
                           ;DEVICE INITIATOR
                           ;CANCEL CURRENT I/O FUNCTION
        D.VCAN=2
        D.VOUT=4
                           ; DEVICE TIMEOUT
        D. VPWF=6
                           ; POWERFAIL RECOVERY
```

EPKDF\$

```
.MACRO EPKDF$,L,B
; Error Message Block Definitions
          .ASECT
  Header Subpacket
                 _____+
              Subpacket Length in Bytes
              _____
             Subpacket Flags
             Format Identification | Operating System Code |
             -----
              Operating System Identification
                                       Context Code
             Entry Type Subcode | Entry Type Code
              Time Stamp
            Reserved
                                    Processor Type
            | Processor Identification (URM)
-0
E$HLGH:'L'

E$HSBF:'L'

BLKW 1

; Subpacket length in bytes

E$HSYS:'L'

BLKW 1

; Subpacket Flags

E$HSYS:'L'

BLKB 1

; Operating System Code

E$HIDN:'L'

BLKB 1

; Format Identification

C$HSID:'L'

BLKB 4

; Operating System Identification

E$HCTX:'L'

BLKB 1

; Context Code

E$HFLG:'L'

BLKB 1

; Flags

E$HENS:'L'

BLKW 1

; Entry Sequence Number

E$HERS:'L'

BLKW 1

; Error Sequence Number
                                     ; Entry Code
; Entry Type Code
; Entry Type Subcode
; Time Stamp
ESHENC: 'L'
                    .BLKB 1
E$HTYC: 'L'
                     .BLKB 1
ESHTYS: 'L'
                      .BLKB 6
ESHTIM: 'L'
                       .BLKB 1 ; Processor Type
.BLKB 1 ; Reserved
.BLKW 1 ; Processor Identification (URM)
                       .BLKB 1
ESHPTY: 'L'
E$HURM: 'L'
                        .EVEN
E$HLEN: 'L'
                                           ; Length
```

```
Subpacket Flags for E$HSBF
                    1
1
2
4
     SM.ERR='B'
                               ; Error Packet
     SM.HDR='B'
                               ; Header Subpacket
     SM.TSK='B' 2
SM.DID='B' 4
SM.DOP='B' 10
                              ; Task Subpacket
                               ; Device Identification Subpacket
                              ; Device Operation Subpacket
                              ; Device Activity Subpacket
      SM.DAC='B' 20
                              ; Data Subpacket
      SM.DAT='B'
                    40
     SM.MBC='B' 20000
SM.CMD='B' 40000
SM.ZER='B' 100000
                              ; 22-bit massbus controller present
                              ; Error Log Command Packet
                              ; Zero I/O Counts
Codes for field E$HIDN
      EH$FOR='B' 1
                               ; Current packet format
Flags for the error log flags byte ($ERFLA) in the exec.
     ES.INI='B'
                          ; Error log initialized
     ES.DAT='B' 2
ES.LIM='B' 4
                          ; Error log receiving data packets
                          ; Error limiting enabled
     ES.LOG='B' 10
                          ; Error logging enabled
Type and Subtype Codes for fields E$HTYC and E$HTYS
      Symbols with names E$Cxxx are type codes for field E$HTYC,
      symbols with names E$Sxxx are subtype codes for field E$HTYS.
     E$CCMD='B' 1
                        ; Error Log Control
     E$SSTA='B' 1
                                  Error Log Status Change
                         ;
     E$SSWI='B' 2
                         ;
                                  Switch Logging Files
     E$SAPP='B' 3
                                  Append File
                         ;
     E$SBAC='B' 4
                         ;
                                  Declare Backup File
     E$SSHO='B' 5
                        ;
                                  Show
     E$SCHL='B' 6
                                  Change Limits
                        ; Device Errors
     E$CERR='B' 2
E$SDVH='B' 1
                                 Device Hard Error
     E$SDVS='B' 2
                                  Device Soft Error
     E$$DV$='B' 2

E$$TMO='B' 3

E$$UN$='B' 4

E$$TM$='B' 5

E$CDVI='B' 3

E$$DVI='B' 1
                                  Device Interrupt Timeout (HARD)
                                  Device Unsolicited Interrupt
                                 Device Interrupt Timeout (SOFT)
                         ; Device Information
                                 Device Information Message
     E$CDCI='B' 4 ; Device Control Information
     E$SMOU='B' 1
                                  Device Mount
                        ;
     E$SDMO='B' 2
                                  Device Dismount
                         ;
     E$SRES='B' 3
                                  Device Count Reset
     E$SRCT='B' 4
                                 Block Replacement
     ESCMEM='B' 5
                         ; Memory Detected Errors
     ESSMEM='B' 1
                                 Memory Error
     E$CSYS='B' 6 ; S
E$SPWR='B' 1 ;
                         ; System Control Information
                                 Power Recovery
```

```
; Control Information
        ESCCTL='B' 7
        ESSTIM='B' 1
                                       Time Change
        E$SCRS='B' 2
                                      System Crash
                             ;
        ESSLOA='B' 3
                                     Device Driver Load
        ESSUNL='B' 4
                                   Device Driver Unload
                             ;
        E$SHRC='B' 5
                                     Reconfiguration Status Change
                             ;
        E$SMES='B' 6
                                       Message
        E$CCPU='B' 10 ; CPU Detected Errors
        E$SINT='B' 1
                                       Unexpected Interrupt
        E$CSDE='B' 11
                              ; Software Detected Events
        E$SABO='B' 1
                                       Task Abort
                              ;
; Codes for Context Code entry E$HCTX
        EH$NOR='B'
                     1
                              ; Normal Entry
                              ; Start Entry
        EH$STA='B' 2
        EH$CRS='B' 3
                              ; Crash Entry
  Codes for Flags entry E$HFLG
        EH$VIR='B' 1 ; Addresses are virtual
        EH$EXT='B' 2 ; Addresses are extended EH$COU='B' 4 ; Error counts supplied EH$QBS='B' 10 ; Q-BUS CPU EH$LMR='B' 20 ; Limit reached
; Task Subpacket
           Task Subpacket Length
            -----
            Task Name in RAD50
         +-----
         | Task UIC
           _______
         | Task TI: Device Name
         Flags
                                     | Task TI: Unit Number
.=0
E$TLGH:'L' .BLKW 1 ; Task Subpacket Length
E$TTSK:'L' .BLKW 2 ; Task Name in RAD50
E$TUIC:'L' .BLKW 1 ; Task UIC
E$TTID:'L' .BLKB 2 ; Task TI: Device Name
E$TTIU:'L' .BLKB 1 ; Task TI: Unit
                            ; Task Name in RAD50
; Task UIC
; Task TI: Device Name
; Task TI: Unit
E$TFLG: 'L'
             .BLKB l
                            ; Flags
              .EVEN
ESTLEN: 'L'
; Flags for entry E$TFLG
        ET$PRV='B' 1
                              ; Task is Privileged
        ET$PRI='B' 2
                              ; Terminal is Privileged
```

```
; Device Identification Subpacket
         Device Identification Subpacket Length
            Device Mnemonic Name
          Controller Number | Device Unit Number
          Physical Subunit # | Physical Unit #
          ______
          Physical Device Mnemonic (RSX-11M-PLUS only)
          _____
                                 | Flags
          Reserved
          Volume Name of Mounted Volume
          Pack Identification
           _____
          Device Type Class
          Device Type
          I/O Operation Count Longword
          Hard Error Count | Soft Error Count
          Blocks Transferred Count (RSX-11M-PLUS only)
          Cylinders Crossed Count (RSX-11M-PLUS only)
.=0
E$ILGH:'L' .BLKW 1 ; Device Identification Subpacket Length
E$ILDV:'L' .BLKW 1 ; Device Mnemonic Name
E$ILUN:'L' .BLKB 1 ; Device Unit Number
E$IPCO:'L' .BLKB 1 ; Controller Number
E$IPUN:'L' .BLKB 1 ; Physical Unit Number
E$IPSU:'L' .BLKB 1 ; Physical Subunit Number
              .IF DF RSSMPL
E$IPDV:'L' .BLKW 1 ; Physical Device Mnemonic
              .ENDC ; R$$MPL
```

```
E$IFLG:'L' .BLKB 1 ; Flags
E$IVOL:'L' .BLKB 12. ; Volume Name
E$IPAK:'L' .BLKB 4 ; Pack Identification
E$IDEV:'L' ; Device Type
E$IDCL:'L' .BLKW 1 ; Device Type Class
E$IDTY:'L' .BLKW 2 ; Device Type
E$IOPR:'L' .BLKW 2 ; I/O Operation Count Longword
E$IERS:'L' .BLKB 1 ; Soft Error Count
E$IERH:'L' .BLKB 1 ; Hard Error Count
                .IF DF R$$MPL
E$IBLK:'L' .BLKW 2
                           ; Blocks transferred count
E$ICYL:'L' .BLKW 2 ; Cylinders crossed count
                .ENDC ; R$$MPL
             .EVEN
ESILEN: 'L'
                             ; Subpacket Length
; Flags for field E$IFLG
        EI$SUB='B' 1 ; Subcontroller device
               .IF DF R$$MPL
        EI$NUX='B' 2 ; No UCB extension, data invalid
                .ENDC ; R$$MPL
  Device Operation Subpacket
         +-----+
           Device Operation Subpacket Length
            ______
           Task Name in RAD50
           Task UIC
           Task TI: Logical Device Mnemonic
           Reserved | Task TI: Device Unit
           I/O Function Code
           Reserved
                                  Operation Flags
           Transfer Operation Address
         | Transfer Operation Byte Count
         +------
         | Current Operation Retry Count
```

```
.EVEN
E$OLEN:'L'
                     ; Device Operation Subpacket Length
; Flags for field ESOFLG
      EO$TRA='B' 1 ; Transfer Operation

EO$DMA='B' 2 ; DMA Device

EO$EXT='B' 4 ; Extended Addressing Device

EO$PIP='B' 10 ; Device is positioning
 I/O Activity Subpacket
       I/O Activity Subpacket Length
.=0
E$ALGH:'L' .BLKW 1 ; Subpacket Length
 I/O Activity Subpacket Entry
        Logical Device Name Mnemonic
          ______
        Controller Number | Logical Device Unit |
        Physical Subunit # | Physical Unit Number
        Physical Device Mnemonic (RSX-11M-PLUS only)
       +----+
       | Task TI: logical unit | Device flags
       +----+
        Requesting Task Name in RAD50
       | Requesting Task UIC
       | Task TI: Logical Device Name
        _____
       | I/O Function Code
```

(Continued on next page)

```
;
               Reserved
                                                    | Flags
                 Transfer Operation Address
                 Transfer Operation Byte Count
 _{-} = 0
                                 ; Logical Device Name Mnemonic
; Logical Device Unit
; Controller Number
 E$ALDV:'L' .BLKW 1
 E$ALUN: 'L' .BLKB 1
E$APCO:'L' .BLKB 1
E$APUN:'L' .BLKB 1
E$APSU:'L' .BLKB 1
                                       ; Physical Unit Number
                                       ; Physical Subunit Number
                       .IF DF RSSMPL
 E$APDV:'L' .BLKW 1
                                       ; Physical Device Mnemonic
                  . ENDC
, Device flags
; Task TI: Logical Unit
ESATSK:'L' .BLKW 2 ; Requesting Task Name in RAD50
ESAUIC:'L' .BLKW 1 ; Requesting Task UIC
ESATID:'L' .BLKW 1 ; Task TI: Logical Device Name
ESAFNC:'L' .BLKW 1 ; I/O Function Code
ESAFLG:'L' .BLKB 1 ; Flags
.BLKB 1 ; Reserved
ESAADD:'L' .BLKW 2
ESASIZ:'-
E$AADD:'L' .BLKW 2
E$ASIZ:'L' .BLKW 1
                               ; Transfer Operation Address; Transfer Operation Byte Count
                  .EVEN
EŞALEN: 'L'
                                        ; Subpacket Entry Length
 ; Flags for field ESADFG
            EA$SUB='B' 1
                                        ; Subcontroller device
                       .IF DF R$$MPL
            EA$NUX='B' 2 ; No UCB extension, data invalid
                       .ENDC ; R$$MPL
; Flags for field E$AFLG
            EASTRA='B' 1
                                      ; Transfer Operation
           EA$DMA='B' 2 ; DMA Device
EA$EXT='B' 4 ; Device has Extended Addressing
EA$PIP='B' 10 ; Device is positioning
            . PSECT
            .MACRO EPKDF$ X,Y
            . ENDM
            - ENDM
```

EVNDF\$

.MACRO EVNDF\$, L, B, LST

```
EVNDF$ -- Event Packet Definitions
          This module contains a macro which defines the offsets and field values for TSA Event Packets (TEP's). These packets are used to
          pass data and status information between system components that
          provide Digital's Terminal Software Architecture support on RSX.
  Explicit Inputs:
                                     ":" for global offset definitions
          Ţ,
                                     "=" for global bit/value definitions
          В
          LST
                                     "LIST" for macro expansion listing
  Implicit Inputs:
          NONE
  Outputs:
          Symbols defined as described above.
          Listing as described above.
 General packet header format
           .ASECT
                                       ; Define offsets absolutely
           = 0
E.VLNK: 'L'
                                      .BLKW 1 ; Link word
                                     .BLKB 1 ; Packet size
E.VSIZ: 'L'
E.VTYP: 'L'
                                     .BLKB 1 ; Packet type
E.VUCB: 'L'
                                      .BLKW 1 ; Terminal UCB address
; E.VTYP Values
ET.LOW='B'0
                                        ; Lowest valid type code
                                        ; QIO (distinguishes QIO packet from TEP)
ET.QIO='B'0
ET.BND='B'2
                                         Bind Request
ET.UNB='B'4
                                        ; Unbind Request
ET.BCP='B'6
                                        ; Bind Complete
ET.REJ='B'10
                                         Bind Reject
ET.DIS='B'12
                                        ; Disconnect Notification
ET.DCP='B'14
                                        ; Disconnect Complete
                                        ; Input Count State Change
; Out-of-Band (OOB)
ET.ICS='B'16
ET.OOB= 'B'20
ET.ONO='B'22
                                        ; Abnormal Termination Request
ET.PHO='B'24
                                        ; Physical Terminal Disconnected
ET.HI='B'24
                                        ; Highest valid type code
```

EVNDF\$ (Cont.)

```
The following definitions are for packet types that require
   passing additional information in the packets. All other packet
   types use the general packet format described above.
; Bind Request packet (Terminal Management Mode --> Network)
           .=E.VUCB+2
E. VBCT: 'L'
                                    .BLKW 1 ; Count of nodes (One for now)
E. VBND: 'L'
                                    .BLKB 6 ; Node name
E. VBLN: 'L'
                                      ; Length of bind request
; Input Count State Change, Out-Of-Band packets (TTDRV --> Network)
; And Modem Hang-up packets (TSA... --> Network)
          .=E.VUCB+2
E.VAPR:'L'
                                    .BLKW 1 ; Doubleword address of packet...
                                    .BLKW 1 ; ...queueing routine
E. VADR: 'L'
E.VFLG:'L'
                                    .BLKW 1 ; Flag
; Input Count State Change
          .=E.VFLG+2
E. VSLN: 'L'
                                      ; Length of Input state message
; OOB
          .=E.VFLG+2
E.VOBM:'L'
                                    .BLKW 6 ; Out-of-Band bitmasks
                                    .BLKW 2 ; Type-ahead buffer header .BLKB 10. ; Type-ahead buffer
E.VHDR: 'L'
E.VTAB: 'L'
E.VOLN: 'L'
                                      ; Length of OOB packet
; Terminal Management Switch Characters
          .=E.VFLG+2
E. VSWC: 'L'
                                    .BLKW 1 ; Terminal management switch characters
E.VTLN: 'L'
                                      ; Length of Switch Character packet
; Bit values in flag word (E.VFLG). For convenience some bits have
          corresponding bits in the AST Control Block flag word (A.PRM+5).
EF.NCO='B'1
                                      ; All non-control characters are out-of band
EF.NOI='B'2
                                      ; All non-control OOB are include-OOB
EF.AST='B'10
                                      ; Reserved bit synonymous with TF.AST
EF.LCK= 'B'40
                                      ; Reserved bit synonymous with AF.LCK
EF.QUE='B'100
                                      ; TEP is queued
EF.MDE='B'200
                                      ; TEP is marked for delete
```

EVNDF\$ (Cont.)

```
; Unbind Request packet (TMM --> Network)
          .=E.VUCB+2
E.VULN:'L'
                                     ; Length of Unbind message
; Connect Reject notification packet (Network --> TMM)
          .=E.VUCB+2
E.VRR:'L' .BLKW
E.VRLN:'L'
                                   1 ; Reason for Rejection
                                     ; Length of Reject message
; Disconnect Notification packet (Network --> TMM)
          .=E.VUCB+2
E.VRD:'L' .BLKW
                                   1 ; Reason for Disconnect
E. VDLN: 'L'
                                     ; Length of Disconnect message
; Disconnect Complete packet (TMM --> Network)
          .=E.VUCB+2
E.VDCL: 'L'
                                     ; Length of Disconnect Complete message
          .PSECT
.IF NB LST
          .NLIST
                                     ; Turn listing back off
.IFF
          .MACRO
                                   EVNDF$; If not listing, redefine
                                     ; macro to nothing
          .ENDM
. ENDC
                                   EVNDF$
          .ENDM
```

.MACRO F11DF\$,L,B

F11DF\$

```
; VOLUME CONTROL BLOCK
       .ASECT
=0
V.TRCT: 'L'.BLKW 1
                        ; TRANSACTION COUNT
V.TYPE: 'L'.BLKB 1

VT.FOR='B' 0

VT.SL1='B' 1

VT.SL2='B' 2
                         ; VOLUME TYPE DESCRIPTOR
                            ; Foreign volume structure
                            ; Files-11 Structure level 1
                           ; Files-11 Structure level 2
       VT.ANS='B' 10 ; ANSI labeled to VT.UNL='B' 11 ; Unlabeled tape 'L'.BLKB 1 ; Volume characteris
                           ; ANSI labeled tape
V.VCHA: 'L'.BLKB 1
                         ; Volume characteristics
                         ; Clear volume valid on dismount
       VC.SLK='B'
       VC.HLK='B' 2
                           ; Unload the volume on dismount
       VC.DEA='B' 4
                            ; Deallocate the volume on dismount
       VC.PUB='B' 10
                            ; Set (clear) US.PUB on dismount
       VC.DUP='B' 20
                            ; Duplicate volume name; don't delete
                             ;logicals
                          ; Volume label (ASCII)
V.LABL: 'L'.BLKB 14
V.PKSR: 'L'.BLKW 2
                          ; Pack serial number for error logging
V.SLEN:'L'
                          ; Length of short VCB
V.IFWI: 'L'.BLKW 1
                          ; INDEX FILE WINDOW
                          ; FILE CONTROL BLOCK LIST HEAD
V.FCB: 'L' .BLKW 2
                          ; INDEX BIT MAP 1ST LBN HIGH BYTE
V.IBLB:'L'.BLKB 1
                          ; INDEX BIT MAP SIZE IN BLOCKS
V.IBSZ:'L'.BLKB 1
                         ; INDEX BITMAP 1ST LBN LOW BITS
       .BLKW
                 1
                         ; MAX NO. OF FILES ON VOLUME
V.FMAX: 'L'.BLKW 1
V.WISZ:'L'.BLKB 1
                         ; DEFAULT SIZE OF WINDOW IN RTRV PTRS
                          ; VALUE IS < 128.
                         ; STORAGE BIT MAP CLUSTER FACTOR
V.SBCL: 'L'.BLKB
                 1
V.SBSZ:'L'.BLKW
                          ; STORAGE BIT MAP SIZE IN BLOCKS
V.SBLB: 'L'.BLKB
                          ; STORAGE BIT MAP 1ST LBN HIGH BYTE
                  1
V.FIEX: 'L'.BLKB 1
                          ; DEFAULT FILE EXTEND SIZE
           .BLKW 1
                          ; STORAGE BIT MAP 1ST LBN LOW BITS
V.VOWN: 'L'.BLKW 1
                          ; VOLUME OWNER'S UIC
                          ; VOLUME PROTECTION
V.VPRO: 'L'.BLKW 1
                          ; VOLUME DEFAULT FILE PROTECTION
V.FPRO: 'L'.BLKW 1
                          ; NUMBER OF FREE BLOCKS ON VOLUME HIGH BYTE
V.FRBK: 'L'.BLKB 1
                          ; COUNT OF AVAILABLE LRU SLOTS IN FCB LIST
V.LRUC: 'L'.BLKB 1
          .BLKW 1
                          ; NUMBER OF FREE BLOCKS ON VOLUME LOW BITS
V.STS:'L' .BLKB 1
                          ; VOLUME STATUS BYTE, CONTAINING THE
                          ; FOLLOWING
       VS.IFW='B'1
                          ; INDEX FILE IS WRITE ACCESSED
       VS.BMW='B'2
                          ; STORAGE BITMAP FILE IS WRITE ACCESSED
V.FFNU: 'L'.BLKB 1
                          ; FIRST FREE INDEX FILE BITMAP BLOCK
V.EXT:'L' .BLKW 1
V.HBLB:'L'.BLKW 2
V.HBCS:'L'.BLKW 2
                         ; POINTER TO VCB EXTENSION
                         ; LBN of home block
                         ; Home block checksums
V.LGTH: 'L'
                          ; SIZE IN BYTES OF VCB
```

F11DF\$ (Cont.)

```
; MOUNT LIST ENTRY
; EACH ENTRY ALLOWS ACCESS TO A SPECIFIED USER FOR A NON-PUBLIC DEVICE
; TO ALLOW EXPANSION, ONLY THE ONLY TYPE CODE DEFINED IS "1" FOR
; DEVICE ACCESS BLOCKS
        . ASECT
.=0
                       ; LINK WORD
M.LNK:'L' .BLKW 1
                         ; TYPE OF ENTRY
; Mounted volume user access list
; NUMBER OF ACCESSES
M.TYPE: 'L'.BLKB 1
       MT.MLS='B' 1
M.ACC: 'L' .BLKB 1
M.DEV: 'L' .BLKW 1
                          ; DEVICE UCB
M.TI:'L' .BLKW 1
                         ; ACCESSOR TI: UCB
M.LEN: 'L'
                          ; LENGTH OF ENTRY
; FILE CONTROL BLOCK
;
        .ASECT
.=0
F.LINK: 'L'.BLKW 1
                         ; FCB CHAIN POINTER
                         ; FILE NUMBER
F.FNUM: 'L'.BLKW 1
F.FSEQ: 'L'.BLKW 1
                          ; FILE SEQUENCE NUMBER
           .BLKB 1
                        ; NOT USED
F.FSQN:'L'.BLKB 1
                          ; FILE SEGMENT NUMBER
F.FOWN: 'L'.BLKW 1
                          ; FILE OWNER'S UIC
F.FPRO: 'L'.BLKW 1
                          ; FILE PROTECTION CODE
F.UCHA: 'L'.BLKB 1
                          ; USER CONTROLLED CHARACTERISTICS
F.SCHA: 'L'.BLKB 1
                          ; SYSTEM CONTROLLED CHARACTERISTICS
F.HDLB: 'L'.BLKW 2
                          ; FILE HEADER LOGICAL BLOCK NUMBER
                          ; BEGINNING OF STATISTICS BLOCK
                          ; LBN OF VIRTUAL BLOCK 1 IF CONTIGUOUS
                  2
F.LBN: 'L'.BLKW
                          ; 0 IF NON CONTIGUOUS
F.SIZE: 'L'.BLKW 2
                          ; SIZE OF FILE IN BLOCKS
F.NACS:'L'.BLKB 1
F.NLCK:'L'.BLKB 1
                          ; NO. OF ACCESSES
                          ; NO. OF LOCKS
S.STBK='B'.-F.LBN
                          ; SIZE OF STATISTICS BLOCK
F.STAT: 'L'
                          ; FCB STATUS WORD
F.NWAC: 'L'.BLKB 1
                          ; NUMBER OF WRITE ACCESSORS
                           ; STATUS BITS FOR FCB CONSISTING OF
           .BLKB 1
       FC.WAC='B' 100000; SET IF FILE ACCESSED FOR WRITE
       FC.DIR='B' 40000 ; SET IF FCB IS IN DIRECTORY LRU FC.CEF='B' 20000 ; SET IF DIRECTORY EOF NEEDS UPDATING
       FC.FCO='B' 10000 ; SET IF TRYING TO FORCE DIRECTORY CONTIG
                          ; DIRECTORY EOF BLOCK NUMBER
F.DREF: 'L'.BLKW 1
F.DRNM: 'L'.BLKW 1
                          ; 1ST WORD OF DIRECTORY NAME
F.FEXT: 'L'.BLKW 1
                          ; POINTER TO EXTENSION FCB
F.FVBN:'L'.BLKW 2
F.LKL:'L'.BLKW 1
F.WIN:'L'.BLKW 1
                          ; STARTING VBN OF THIS FILE SEGMENT
                          ; POINTER TO LOCKED BLOCK LIST FOR FILE
                          ; WINDOW BLOCK LIST FOR THIS FILE
F.LGTH: 'L'
                           ; SIZE IN BYTES OF FCB
```

F11DF\$ (Cont.)

```
WINDOW
        .ASECT
_{-} = 0
W.ACT: 'L'
                        ; NUMBER OF ACTIVE MAPPING POINTERS
                        ; WHEN NO SECONDARY POOL
W.BLKS: 'L'
                        ; BLOCK SIZE OF SECONDARY POOL SEGMENT
                        ; WHEN SECONDARY POOL
W.CTL:'L'.BLKW 1
                        ; LOW BYTE = # OF MAP ENTRIES ACTIVE
                        ; HIGH BYTE CONSISTS OF CONTROL BITS
                          ; READ VIRTUAL BLOCK ALLOWED IF SET
       WI.RDV='B' 400
                         ; WRITE VIRTUAL BLOCK ALLOWED IF SET
; EXTEND ALLOWED IF SET
; SET IF LOCKED AGAINST SHARED ACCESS
       WI.WRV='B' 1000
       WI.EXT='B' 2000
       WI.LCK='B' 4000
       WI.DLK='B' 10000 ; SET IF DEACCESS LOCK ENABLED
       WI.PND='B' 20000 ; WINDOW TURN PENDING BIT
       WI.EXL='B' 40000 ; SET IF MANUAL UNLOCK DESIRED
       WI.WCK='B' 100000; Data check all writes to file
W.IOC: 'L'.BLKB 1
                       ; COUNT OF I/O THROUGH THIS WINDOW
.BLKB 1
W.FCB:'L'.BLKW 1
W.TCB:'L'.BLKW 1
W.UCB:'L'.BLKW 1
                        ; Reserved
                        ; FILE CONTROL BLOCK ADDRESS
                         ; TCB address of accessor
                         ; Original UCB address of device
W.LKL:'L'.BLKW 1
W.WIN:'L'.BLKW 1
                         ; POINTER TO LIST OF USERS LOCKED BLOCKS
                          ; WINDOW BLOCK LIST LINK WORD
        .IF
                 NB, SYSDEF ; IF SYSDEF SPECIFIED IN CALL
        .IF
                  NDF, P$$WND; IF SECONDARY POOL WINDOWS NOT ALLOWED
; NON-SECONDARY POOL WINDOW BLOCK
        IF SECONDARY POOL WINDOWS ARE NOT ENABLED, THE WINDOW BLOCK
        CONTAINS THE CONTROL INFORMATION AND RETRIEVAL POINTERS.
W.VBN:'L' .BLKB 1
                          ; HIGH BYTE OF 1ST VBN MAPPED BY WINDOW
                          ; DEFINE LABEL WITH ODD ADDRESS TO CATCH BAD
W.MAP:'L'
                          ; REFS
                          ; SIZE IN RTRV PTRS OF WINDOW (7 BITS)
W.WISZ:'L'.BLKB
                  1
                          ; LOW ORDER WORD OF 1ST VBN MAPPED
           .BLKW 1
W.RTRV:'L'
                          ; OFFSET TO 1ST RETRIEVAL POINTER IN WINDOW
W.SLEN='B'-4
                           ; Dummy definition to prevent incorrect
                           ; reference
                           ; (-4 when rounded "up" is a VERY large block)
        . IFF
                           ; IF WINDOWS IN SECONDARY POOL
  SECONDARY POOL WINDOW CONTROL AND MAPPING BLOCK
        IF SECONDARY POOL WINDOW BLOCKS ARE ENABLED, LUTN2 POINTS
        TO A CONTROL BLOCK IN SYSTEM POOL WHICH CONTAINS THE
        FOLLOWING CONTROL FIELDS AND THE MAPPING INFORMATION
        FOR THE SECONDARY POOL WINDOW.
```

F11DF\$ (Cont.)

```
W.MAP: 'L' .BLKW 1 ; ADDR TO THE MAPPING PTRS IN SECONDARY POOL
W.SLEN: 'L'
                                   ; Length of primary pool stub
; SECONDARY POOL WINDOW
           IF SECONDARY POOL WINDOW BLOCKS ARE ENABLED, THE RETRIEVAL
           POINTERS ARE MAINTAINED IN SECONDARY POOL IN THE FOLLOWING
 ;
 -0
          ASSUME
                           W.CTL,0
.BLKB 1 ; NUMBER OF ACTIVE .....

W.USE: 'L' .BLKB 1 ; STATUS OF BLOCK

W.VBN: 'L' .BLKB 1 ; HIGH BYTE OF 1ST VBN MAPPED BY WINDOW

W.WISZ: 'L' .BLKB 1 ; SIZE IN RTRV PTRS OF WINDOW (7 BITS)

.BLKW 1 ; LOW ORDER WORD OF 1ST VBN MAPPED

OFFSET TO 1ST RETRIEVAL POINTER IN WIN
                                  ; OFFSET TO 1ST RETRIEVAL POINTER IN WINDOW
          .ENDC
                                  ; END SECONDARY POOL WINDOW CONDITIONAL
          . ENDC
                                   ; END SYSDEF CONDITIONAL
; LOCKED BLOCK LIST NODE
          .ASECT
 -0
                                ; LINK TO NEXT NODE IN LIST
L.LNK:'L' .BLKW 1
L.WI1: 'L' .BLKW 1
L.VB1: 'L' .BLKB 1
L.CNT: 'L' .BLKB 1
                                ; POINTER TO WINDOW FOR FIRST ENTRY
                           ; POINTER TO WINDOW ?; HIGH ORDER VBN BYTE ; COUNT FOR ENTRY ; LOW ORDER VBN
              .BLKW 1
L.LKSZ:'L '
; END OF DEFINITIONS
          . PSECT
          .MACRO F11DF$ X,Y,Z
          .ENDM F11DF$
          .ENDM
                     F11DF$
```

.MACRO HDRDF\$, L, B

HDRDF\$

```
;+
; TASK HEADER OFFSET DEFINITIONS
        .ASECT
-0
H.CSP:'L' .BLKW
H.HDLN:'L'.BLKW
                               ;CURRENT STACK POINTER
                   1
                               ;HEADER LENGTH IN BYTES
H.EFLM: 'L'.BLKW
                   2
                               ; EVENT FLAG MASK WORD AND ADDRESS
H.CUIC: 'L'.BLKW
H.DUIC: 'L'.BLKW
                   1
                               ;CURRENT TASK UIC
                               ;DEFAULT TASK UIC
                   1
H.IPS:'L' .BLKW
H.IPC:'L' .BLKW
H.ISP:'L' .BLKW
                               ; INITIAL PROCESSOR STATUS WORD (PS)
                  1
                   1
                               ; INITIAL PROGRAM COUNTER (PC)
                  1
                               ; INITIAL STACK POINTER (SP)
H.ODVA: 'L'.BLKW
                               ;ODT SST VECTOR ADDRESS
                  1
H.ODVL: 'L'.BLKW
                               ODT SST VECTOR LENGTH
H.TKVA: 'L'.BLKW
                              ;TASK SST VECTOR ADDRESS
H.TKVL: 'L'.BLKW
                  1
                              ; TASK SST VECTOR LENGTH
H.PFVA: 'L'.BLKW
                  1
                              ; POWER FAIL AST CONTROL BLOCK ADDRESS
                  1
H.FPVA: 'L'.BLKW
                               ;FLOATING POINT AST CONTROL BLOCK ADDRESS
H.RCVA: 'L'.BLKW
                  1
                               ; RECIEVE AST CONTROL BLOCK ADDRESS
H.EFSV: 'L'.BLKW
                   1
                               ; EVENT FLAG ADDRESS SAVE ADDRESS
H.FPSA: 'L'.BLKW
                               ; POINTER TO FLOATING POINT/EAE SAVE AREA
H.WND:'L' .BLKW
H.DSW:'L' .BLKW
H.FCS:'L' .BLKW
                   1
                               ; POINTER TO NUMBER OF WINDOW BLOCKS
                               ;TASK DIRECTIVE STATUS WORD
                               ;FCS IMPURE POINTER
                   1
H.FORT: 'L'.BLKW
                   1
                               ; FORTRAN IMPURE POINTER
H.OVLY: 'L'.BLKW
                               ;OVERLAY IMPURE POINTER
                   1
H.VEXT: 'L'.BLKW
                  1
                               ; WORK AREA EXTENSION VECTOR POINTER
                               ; PRIORITY DIFFERENCE FOR SWAPPING
H.SPRI:'L'.BLKB
H.NML:'L' .BLKB
                               ; NETWORK MAILBOX LUN
H.RRVA: 'L'.BLKW
                               ; RECEIVE BY REFERENCE AST CONTROL BLOCK
                               ; ADDRESS
H.X25:'L' .BLKB 1
                               ; FOR USE BY X.25 SOFTWARE
                  1
                               ; FIVE RESERVED BYTES
           .BLKB
           .BLKW
                   2
H.GARD: 'L'.BLKW
                   1
                               ; POINTER TO HEADER GUARD WORD
H.NLUN: 'L'.BLKW
H.LUN: 'L'.BLKW
                               ; NUMBER OF LUN'S
                   1
                   2
                               ;START OF LOGICAL UNIT TABLE
; LENGTH OF FLOATING POINT SAVE AREA
H.FPSL='B'25.*2
                                        ;
;+
; WINDOW BLOCK OFFSETS
.=0
W.BPCB: 'L'.BLKW
                                   ; PARTITION CONTROL BLOCK ADDRESS
                                   ;LOW VIRTUAL ADDRESS LIMIT
W.BLVR: 'L'.BLKW
                   1
W.BHVR: 'L'.BLKW
                                   ;HIGH VIRTUAL ADDRESS LIMIT
                  1
W.BATT: 'L'.BLKW
                  1
                                   ;ADDRESS OF ATTACHMENT DESCRIPTOR
W.BSIZ:'L'.BLKW 1
                                   ;SIZE OF WINDOW IN 32W BLOCKS
```

HDRDF\$ (Cont.)

W.BOFF: 'L'.BLKW 1 ;PHYSICAL MEMORY OFFSET IN 32W BLOCKS W.BFPD: 'L'.BLKB 1 ;FIRST PDR ADDRESS W.BNPD: 'L'.BLKB 1 ;NUMBER OF PDR'S TO MAP W.BLPD: 'L'.BLKW 1 ;CONTENTS OF LAST PDR W.BLGH: 'L' ;LENGTH OF WINDOW DESCRIPTOR

. PSECT

.MACRO HDRDF\$ X,Y

.ENDM

.ENDM

HWDDF\$

.MACRO HWDDF\$, L, B

KISAR6='B'

KINAR6='B'

KISAR7='B'

KINAR7='B'

KISDR0='B'

KISDR6='B'

172354

KISAR6

172356

KISAR7

172300

172314

```
;+
; HARDWARE REGISTER ADDRESSES AND STATUS CODES
; –
MPCSR='B'
           177746
                                         ;ADDRESS OF PDP-11/70 MEMORY
                                         ; PARITY REGISTER
MPAR='B'
           172100
                                         ; ADDRESS OF FIRST MEMORY
                                         ; PARITY REGISTER
PIRQ='B'
           177772
                                         ; PROGRAMMED INTERRUPT REQUEST
                                         ; REGISTER
PR0= 'B'
                 0
                                         ;PROCESSOR PRIORITY 0
                                         ; PROCESSOR PRIORITY 1
PR1='B'
                40
PR4= 'B'
               200
                                         ;PROCESSOR PRIORITY 4
PR5='B'
               240
                                         ; PROCESSOR PRIORITY 5
PR6='B'
               300
                                         ; PROCESSOR PRIORITY 6
PR7='B'
               340
                                         ; PROCESSOR PRIORITY 7
PS= 'B'
           177776
                                         ; PROCESSOR STATUS WORD
SWR='B'
           177570
                                         ; CONSOLE SWITCH AND DISPLAY
                                         ; REGISTER
                                         ; CONSOLE TERMINAL PRINTER STATUS
TPS='B'
           177564
                                         ; REGISTER
;+
; EXTENDED ARITHMETIC ELEMENT REGISTERS
       . IF DF
                     ESSEAE
AC='B'
           177302
                                         ;ACCUMULATOR
MQ = 'B'
           177304
                                         ;MULTIPLIER-QUOTIENT
SC='B'
           177310
                                         ;SHIFT COUNT
       . ENDC
;+
; MEMORY MANAGEMENT HARDWARE REGISTERS AND STATUS CODES
; -
       .IF DF
                     M$$MGE
KDSAR0='B'
                172360
                                      ; KERNEL D PAR 0
                                     ;KERNEL D PDR 0
KDSDR0='B'
                172320
KISARO='B'
                172340
                                     ;KERNEL I PAR 0
KINARO='B'
                KISAR0
                                     ; KERNEL I PAR 0
KISAR5='B'
                172352
                                     ;KERNEL I PAR 5
KINAR5='B'
                KISAR5
                                     ;KERNEL I PAR 5
```

;KERNEL I PAR 6

;KERNEL I PAR 6

;KERNEL I PAR 7

;KERNEL I PAR 7

;KERNEL I PDR 0

; KERNEL I PDR 6

HWDDF\$ (Cont.)

```
KISDR7='B'
                172316
                                     ;KERNEL I PAR 7
SISDR0='B'
                172200
                                     ;SUPERVISOR I PDR 0
UDSAR0='B'
                177660
                                     ;USER D PAR 0
UDSDR0='B'
                177620
                                     ;USER D PDR 0
UISAR0='B'
                177640
                                     :USER I PAR 0
UISAR4='B'
                                     ;USER I PAR 4
                177650
UISAR5='B'
                177652
                                     ;USER I PAR 5
UISAR6='B'
                177654
                                    ;USER I PAR 6
UISAR7='B'
                177656
                                     ;USER I PAR 7
UISDR0='B'
               177600
                                     ;USER I PDR 0
UISDR4='B'
               177610
                                     ;USER I PDR 4
UISDR5='B'
               177612
                                     ;USER I PDR 5
UISDR6='B'
                177614
                                     ;USER I PDR 6
UISDR7='B'
               177616
                                     ;USER I PDR 7
UBMPR='B'
                170200
                                     ;UNIBUS MAPPING REGISTER 0
CMODE = 'B'
               140000
                                     ;CURRENT MODE FIELD OF PS WORD
       .IFTF
                    ;M$$MGE
PMODE = 'B'
                30000
                                     ; PREVIOUS MODE FIELD OF PS WORD
     .IFT
                   ;M$$MGE
SR0='B'
               177572
                                     ;SEGMENT STATUS REGISTER 0
SR3='B'
               172516
                                     ;SEGMENT STATUS REGISTER 3
       .ENDC
; FEATURE SYMBOL DEFINITIONS
FE.EXT='B'
                 1
                              ;22-BIT EXTENDED MEMORY SUPPORT
FE.MUP='B'
                 2
                              ;MULTI-USER PROTECTION SUPPORT
                              ; EXECUTIVE IS SUPPORTED TO 20K
FE.EXV='B'
                 4
                              ;LOADABLE DRIVER SUPPORT
FE.DRV='B'
                10
FE.PLA='B'
                20
                              ;PLAS SUPPORT
FE.CAL='B'
                40
                              ; DYNAMIC CHECKPOINT SPACE ALLOCATION
FE.PKT='B'
               100
                              ;PREALLOCATION OF I/O PACKETS
FE.EXP='B'
               200
                              ;EXTEND TASK DIRECTIVE SUPPORTED
FE.LSI='B'
                400
                              ;PROCESSOR IS AN LSI-11
              1000
                              ; PARENT OFFSPRING TASKING SUPPORTED
FE.OFF='B'
FE.FDT='B'
              2000
                              ;FULL DUPLEX TERMINAL DRIVER
                              ; X.25 COM EXECUTIVE LOADED (1=YES)
FE.X25='B'
              4000
FE.DYM='B'
             10000
                              ; DYNAMIC MEMORY ALLOCATION SUPPORTED
FE.CEX='B'
             20000
                              COM EXEC IS LOADED
FE.MXT='B'
                              ;MCR EXIT AFTER EACH COMMAND MODE
             40000
FE.NLG='B'
                              ;LOGINS DISABLED - MULTI-USER SUPPORT
            100000
; SECOND FEATURE MASK SYMBOL DEFINITIONS
; -
F2.DAS='B'
                1
                          ; KERNEL DATA SPACE (M-PLUS ONLY)
                          ;SUPERVISOR MODE LIBRARIES
F2.LIB='B'
                2
F2.MP='B'
                          ;MULTIPROCESSING SUPPORT
```

HWDDF\$ (Cont.)

```
F2.EVT='B'
               10
                          ; EVENT TRACE SUPPORT
F2.ACN='B'
               20
                          ;CPU ACCOUNTING
F2.SDW='B'
               40
                          ;SHADOW RECORDING
F2.POL='B'
              100
                          ;SECONDARY POOLS
F2.WND='B'
              200
                          ;SECONDARY POOL FILE WINDOWS
F2.DPR='B'
                          ;DIRECTIVE PARTITION SUPPORT
              400
F2.IRR='B'
             1000
                          ; INSTALL, REQUEST AND REMOVE SUPPORT
F2.GGF='B'
                          ;GROUP GLOBAL EVENT FLAG SUPPORT
             2000
F2.RAS='B'
             4000
                          ; RECEIVE/SEND DATA PACKET SUPPORT
F2.AHR='B'
            10000
                          ;ALT. HEADER REFRESH AREAS SUPPORTED
F2.RBN='B'
            20000
                          ; ROUND ROBIN SCHEDULING SUPPORT
F2.SWP='B'
            40000
                          ; EXECUTIVE LEVEL DISK SWAPPING SUPPORT
F2.STP='B' 100000
                          ; EVENT FLAG MASK IS IN THE TCB (1=YES)
; THIRD FEATURE MASK SYMBOL DEFINITIONS
F3.CRA='B'
                            ;SPONTANEOUS CRASH (1=YES)
                            ;SYSTEM HAS NETWORK SUPPORT
F3.NWK='B'
                 2
F3.EIS='B'
                 4
                            ;SYSTEM REQUIRES THE EXTENDED INST. SET
F3.STM='B'
                10
                           ;SYSTEM HAS SET SYSTEM TIME DIRECTIVE
F3.UDS='B'
                20
                           ;USER DATA SPACE (M-PLUS ONLY)
F3.PRO='B'
                40
                            ;PROTO TCBS OUT OF POOL
F3.XHR='B'
               100
                            ; EXTERNAL HEADER SUPPORT
                                                       **
                            ;SYSTEM HAS AST SUPPORT
F3.AST='B'
               200
                            ;SYSTEM IS RSX-11S
F3.11S='B'
               400
F3.CLI='B'
              1000
                            ;SYSTEM HAS MULTIPLE CLI SUPPORT
F3.TCM='B'
              2000
                            ;TERMINAL COMMON (M-PLUS ONLY)
                            ; POOL MONITORING SUPPORT
F3.PMN='B'
              4000
F3.WAT='B'
             10000
                            ;WATCHDOG TIMER SUPPORT
F3.RLK='B'
             20000
                            ; 'RMS' RECORD LOCKING SUPPORT
F3.SHF='B'
                            ; MEMORY SHUFFLER SUPPORTED
             40000
;F3.RES='B' 100000
                            RESERVED FOR FUTURE EXPANSION OF 11M
; HARDWARE FEATURE MASK SYMBOL DEFINITIONS
; –
HF.UBM='B'
                1
                       ;SYSTEM HAS A UNIBUS MAP (1=YES)
                       ;SYSTEM HAS EXTENDED INSTRUCTION SET
                2
HF.EIS='B'
HF.QB = 'B'
                4
                       ;SYSTEM HAS A QBUS BACKPLANE (1=YES)
                       ;SYSTEM HAS COMMERCIAL INSTRUCTION SET
HF.CIS='B'
              200
HF.FPP='B' 100000
                       ;SYSTEM SUPPORTS FLOATING POINT (1=NO)
       .MACRO
               HWDDF$ X,Y
       . ENDM
```

. ENDM

ITBDF\$

```
;
       .MACRO ITBDF$ L,B
; INTERRUPT TRANSFER BLOCK (ITB) OFFSET DEFINITIONS
          .IF DF A$$TRP
          .MCALL PKTDF$
          PKTDFS
                                ; DEFINE AST BLOCK OFFSETS
          .ENDC
          .ASECT
          .=0
                               ; LINK WORD FOR ITB LIST STARTING IN TCB
X.LNK:'L' .BLKW 1
X.LNK:'L' .BLKW 1
X.JSR:'L' JSR R5,0#0
                               ; CALL $INTSC
; LOW BYTE OF PSW FOR ISR
X.PSW:'L' .BLKB 1
                               ; UNUSED
          .BLKB 1
X.ISR:'L' .BLKW 1
                              ; ISR ENTRY POINT (APR5 MAPPING)
                               ; FORK BLOCK
X.FORK: 'L'
          .BLKW 1
                               ; THREAD WORD
                               ; FORK PC
          .BLKW 1
                               ; SAVED R5
          .BLKW 1
                               ; SAVED R4
          .IF DF M$$MGE
X.REL:'L' .BLKW 1
                               ; RELOCATION BASE FOR APR5
          .ENDC
X.DSI:'L' .BLKW 1
                               ; ADDRESS OF DIS.INT. ROUTINE
X.TCB:'L' .BLKW 1
                                ; TCB ADDRESS OF OWNING TASK
          .IF NB SYSDEF
          .IF DF A$$TRP
          .BLKW 1
                               ; A.DQSR FOR AST BLOCK
X.AST:'L' .BLKB A.PRM
                               ; AST BLOCK
          .ENDC
                               ; VECTOR ADDRESS (IF AST SUPPORT,
X.VEC:'L' .BLKW 1
                               ; THIS IS FIRST AND ONLY AST ;PARAMETER)
                                ; SAVED VECTOR PC
X.VPC:'L' .BLKW 1
X.LEN:'L'
                                ; LENGTH IN BYTES OF ITB
          . ENDC
          .PSECT
          .MACRO ITBDF$ X,Y,Z
          .ENDM ITBDF$
          .ENDM
                  ITBDF$
```

LCBDF\$

```
;
           .MACRO LCBDF$, L, B
; LOGICAL ASSIGNMENT CONTROL BLOCK
; THE LOGICAL ASSIGNMENT CONTROL BLOCK (LCB) IS USED TO ASSOCIATE A
; LOGICAL NAME WITH A PHYSICAL DEVICE UNIT. LCB'S ARE LINKED TOGETHER
; TO FORM THE LOGICAL ASSIGNMENTS OF A SYSTEM. ASSIGNMENTS MAY BE ON
; A SYSTEM WIDE OR LOCAL (TERMINAL) BASIS.
; –
       .ASECT
.=0
L.LNK:'L'
          .BLKW l
                                ;LINK TO NEXT LCB
L.NAM: 'L'
          .BLKW l
                                ;LOGICAL NAME OF DEVICE
L.UNIT: 'L' .BLKB 1
                                ;LOGICAL UNIT NUMBER
L.TYPE: 'L' .BLKB 1
                                ;TYPE OF ENTRY (0=SYSTEM WIDE)
          .BLKW 1
                                ;TI UCB ADDRESS
L.UCB:'L'
L.ASG:'L'
          .BLKW 1
                                ; ASSIGNMENT UCB ADDRESS
L.LGTH='B' .-L.LNK
                                ;LENGTH OF LCB
           .PSECT
                        LCBDF$,X,Y
           .MACRO
           .ENDM
           .ENDM
```

MTADF\$

```
.MACRO
                       MTADF$, L, B
            .ASECT
; ANSI MAGTAPE SPECIFIC DATA STRUCTURES
; VOLUME SET CONTROL BLOCK OFFSET DEFININTIONS (VSCB)
; VOLUME SET AND PROCESS CONTROL SECTION
.=0
V.TCNT: 'L' .BLKW 1
                           ;TRANSACTION COUNT
V.TYPE:'L' .BLKB 1
V.VCHA:'L' .BLKB 1
                           ; VOLUME TYPE DESCRIPTOR
                           ; VOLUME CHARACTERISTICS
V.LABL: 'L' .BLKB 12.
                           ;FILE SET ID (FIRST SIX BYTES)
                           ;PTR TO NEXT VSCB NODE
V.NXT:'L'
            .BLKW 1
V.MVL:'L'
                           ;PTR TO MOUNTED VOL LIST
           .BLKW 1
                           ;PTR TO UNMOUNTED VOL LIST
V.UVL:'L' .BLKW 1
V.ATL:'L' .BLKW 1
                           ;ATL ADDR OF ACCESSING TASK
                           ; TCB IN RSX11M
V.UCB:'L'
            .BLKW 1
                           ;ADDR OF CURRENT UCB OR PUD
                           ;CURRENT RELATIVE VOL #
V.RVOL:'L' .BLKB 1
V.MOU:'L' .BLKB 1
                           ; MOUNT MODE BYTE
V.TCHR:'L' .BLKW 1
                           ;UINT CHAR. FOR ALL UNITS USED FOR VOL SET
V.SEQN:'L' .BLKW 1
                           ;CURRENT FILE SEQUENCE #
                           ;CURRENT FILE SECTION #
V.SECN:'L' .BLKW 1
                           ; POSITION OF TAPE IN TM'S TO NXT HDR1
V.TPOS: 'L' .BLKB 1
V.PSTA:'L' .BLKB 1
V.TIMO:'L' .BLKW 1
V.STAT:'L' .BLKW 3
                           ; PROCESS STATUS BYTE
                           ;BLOCKED PROCESS TIMEOUT COUNTER
                           ; STATUS WORDS USED BY COMMAND
                           ; EXECUTION MODULES
V.TRTB:'L' .BLKB 1
                            ;TRANSLATION CONTROL BYTE
V.EFTV: 'L' .BLKB 1
                            ; FOR MAG TO RETURN IE.EOF, EOT, EOV
; LABEL DATA SECTION
V.BLKL: 'B' .BLKW 1
                           ;BLOCK LENGTH
V.RECL: 'B' .BLKW 1
                           ;RECORD LENGTH
V.FNAM:'L' .BLKW 3
                           ;FILE NAME
V.FTYP: 'L' .BLKW 1
                           ;FILE TYPE
V.FVER: L' .BLKW 1
V.CDAT: L' .BLKW 2
V.EDAT: L' .BLKW 2
V.BLKC: L' .BLKW 2
V.RTYP: L' .BLKB 1
                          ;FILE VERSION #
                           CREATION DATE
                           ; EXPRIATION DATE
                           ;BLOCK COUNT FOR FILE SECTION
                           ; RECORD TYPE
V.FATT: 'L' .BLKB 1
                           ;FILE ATTRIBUTES FOR CARRIAGE CONTROL
            .BLKB 30.
                           ; REMAINDER OF FILE ATTRIBUTES
; NULL WINDOW SECTION
V.WIND:'L' .BLKW 4.
                           ; NULL WINDOW
        ; * * * * *
```

MTADF\$ (Cont.)

```
V.MST2: 'L' .BLKW 1 ;MAGTAPE STATUS BITS
V.FABY:'L' .BLKB 1 .BLKB 1
                           ;FILE ACCESSIBILITY BYTE (HDR1)
                           ;SPARE
V.ANSN:'L' .BLKB 17.
                           ; ANSI 17 CHARACTER FILE NAME
V.ANSN: L' .BLKB 1/.

V.BOFF: 'L' .BLKB 1.

V.DENS: 'L' .BLKB 1.

V.DENS: 'L' .BLKB 1.

V.DRAT: 'L' .BLKB 1.

V.DBLK: 'L' .BLKB 1.

V.DBLK: 'L' .BLKW 1.

V.DREC: 'L' .BLKW 1.

V.DREC: 'L' .BLKW 1.

V.DREC: 'L' .BLKW 1.
        ;****
S.VSCB=.
                             ;SIZE OF VSCB
             . PSECT
; DEFINE OFFSETS INTO NULL WINDOW SECTION
ï
             .ASECT
\cdot = 0
        W.CTL: .BLKW 1
                                    ;CONTROL WORD IN WINDOW
        V.WINC=V.WIND+W.CTL
                                    ; CNTRL WORD IN NULL WINDOW
             . PSECT
                                    ; RELATIVE TO THE VSCB
  MOUNTED VOLUME LIST OFFSET DEFININTIONS (MVL)
             .ASECT
.=0
             .IF DF R$$11M
M.NXT:'L'
             .BLKW 1
                                     ;PTR TO NXT MVL NODE (11M)
             . ENDC
M.UIC: 'L'
             .BLKW 1
                                     ;OWNER UIC FROM RVOL #1
M.CH:'L'
             .BLKW 1
                                    ; U.CH/U.VP (11D)
M.PROT: 'L' .BLKW 1
                                     ;PROTECTION U.AR IN 11D
             .IF NDF R$$11M
             .BLKW 2
                                     ; ACP WORDS 11D
M.NXT:'L'
            .BLKW 1
                                     ;PTR TO NEXT MVL NODE (11D)
             .ENDC
M.RVOL:'L' .BLKB 1
                                     ; RELATIVE VOL # OF MOUNTED VOLUME
M.STAT:'L' .BLKB 1
                                     ; VOLUME STATUS
M.VIDP: 'L' .BLKW 1
                                     ; VOLUME ID POINTER
M.UCB:'L'
            .BLKW 1
                                     ;ADDR OF ASSOC UCB OR PUD
S.MVL=.
                                     ;SIZE OF MVL NODE
             . PSECT
; UNMOUNTED VOLUME AND VOLUME LIST OFFSET DEFINITIONS (UVL)
             .ASECT
.=0
L.NXT:'L'
            .BLKW 1
                                     ;PTR TO NXT UVL NODE
L.VOL1: 'L' .BLKB 1
                                     ; REL VOL # OF 1'ST VOL IN NODE
L.VOL2: 'L' .BLKB 1
                                    ; REL VOL # OF 2'ND VOL IN NODE
L.VID1: 'L' .BLKB 6
                                     ; VOL ID OF 1'ST VOL IN NODE
L.VID2: 'L' .BLKB 6
                                     ; VOL ID OF 2'ND VOL IN NODE
S.UVL=.
                                     ;SIZE OF UVL NODE
             . PSECT
; SYSTEM DATA STRUCTURE CONTENT VALUES
```

; VSCB VALUES

MTADF\$ (Cont.)

```
; V.MOU VALUES
                             ;OLD .FL300 VOLUME -- VM.BYP WILL ALSO
VM.OLD='B' 200
                             ; BE SET
                             BYPASS LABEL PROCESSING
VM.BYP='B'
            100
                             ;UNLABELED TAPE
VM.ULB='B'
            40
                             ;OVERRIDE FILE SET ID CHECK ;OVERRIDE EXPIRATION DATE CHECK
VM.FSC='B'
             20
VM.EXC='B'
             10
; V.MST2 VALUES[[B
                           ; MAG WANTS US TO INITIALIZE NEXT OUTPUT
V2.INI='B'
V2.XH2='B'
                           ;THIS FILE HAS NO HDR2, DON'T WRITE EOF2
          - 2
V2.XH3='B' 4
                           ;THIS FILE HAS NO HDR3, DON'T WRITE EOF3
V2.NH3='B' 10
                           ;DON'T WRITE HDR3/EOX3 LABELS
V2.OAC='B' 20
                           ;OVERRIDE FILE/VOLUME ACCESSIBILITY
; V.PSTA VALUES - UNBLOCKED TRANSITION STATE
VP.RM='B'
                             ; READ DATA MODE
             2
VP.WM='B'
             4
                             :WRITE DATA MODE
VP.UCM='B'
            6
                             ;UNLABELLED CREATE POSITIONING MODE
VP.SM='B'
            -10
                             :SEARCH MODE
VP.MOU='B'
                             ; MOUNT MODE
            20
VP.RWD='B'
                             ; REWIND OR VOL VERIFICATION WAIT
            40
VP.VFY='B' VP.RWD
VP.POS='B' 100
                             ; PROCESS IN POSITIONING MODE (MULTI-SECTION
                             ;FILE)
; BLOCKED STATE = - (UNBLOCKED TRANSITION STATE VALUES)
; PROCESS TIMED OUT BIT 0 = 1
       VP.TO=1
; NULL WINDOW CONTROL BIT DEFINITIONS
                               ;ACCESSED FOR READ
WI.RDV='B'
             400
                               ;ACCESSED FOR WRITE
WI.WRV='B'
            1000
WI.EXT='B'
            2000
                               ;ACCESSED FOR EXTEND
WI.LCK='B'
            4000
                               ; LOCKED
;
; MVL VALUES IN THE M.STAT FIELD
MS.VER='B'
            200
                              ; VOL ID NOT VERIFIED
                             ; VOL ID TO BE READ NOT CHECKED
MS.RID='B'
              1
MS.NMO='B'
              2
                             ; MOUNT MESSAGE NOT GIVEN YET
MS.TMO='B'
             4
                             ONE TIMEOUT ALREADY EXPRIED
MS.EXP='B'
                             ; EXPIRATION DATE MESSAGE GIVEN
             10
; MISC BITS USED IN MOUNT (STORED IN V.STS)
MO.OVR='B'
                              ; OVER RIDE VOL NAME SWITCH
              1
                             ; EXPLICIT UIC GIVEN
MO.UIC='B'
              2
                              ; EXPLICIT PROTECTION GIVEN
MO.PRO='B'
              4
                             ; 1600 BPI SPECIFIED
MO.160='B'
             10
       . ENDM
```

PCBDF\$

```
.MACRO PCBDF$ L,B
;+
; PARTITION CONTROL BLOCK OFFSET DEFINITIONS
           .ASECT
.=0
P.LNK: 'L' .BLKW 1
                                  ;LINK TO NEXT PARTITION PCB
P.PRI:'L' .BLKB 1
                                  ; PRIORITY OF PARTITION
P.IOC:'L' BLKB 1
P.NAM:'L' BLKW 2
P.SUB:'L' BLKW 1
                                  ;I/O + I/O STATUS BLOCK COUNT
                                  ; PARTITION NAME IN RAD50
                                 ; POINTER TO NEXT SUBPARTITION
P.MAIN: 'L'.BLKW 1
                                  ; POINTER TO MAIN PARTITION
           .IF NB SYSDEF
           .IF NDF M$$MGE
P. HDR: 'L'
                                ; POINTER TO HEADER CONTROL BLOCK
           . ENDC
           . IFTF
P.REL:'L' .BLKW 1
                                 ;STARTING PHYSICAL ADDRESS OF PARTITION
P.BLKS:'L'
P.SIZE: 'L'.BLKW 1
                                 ;SIZE OF PARTITION IN:
                                     UNMAPPED SYSTEMS - BYTES
                                     MAPPED SYSTEMS
                                                      - 32 WORD BLOCKS
                                 ; PARTITION WAIT QUEUE LISTHEAD (2 WORDS)
P.WAIT: 'L'.BLKW 1
                                 ; PARTITION SWAP SIZE (SYSTEM ONLY)
P.SWSZ:'L'.BLKW 1
P.BUSY: 'L'.BLKB 2
                                 ; PARTITION BUSY FLAGS
P.OWN:'L'
P.TCB:'L' .BLKW 1
                                 ;TCB ADDRESS OF OWNER TASK
P.STAT: 'L'.BLKW 1
                                 ; PARTITION STATUS FLAGS
           .IFT
           .IF DF
                        M$$MGE
P.HDR: 'L' .BLKW 1
                                 ; POINTER TO HEADER CONTROL BLOCK
           . ENDC
P.PRO:'L' .BLKW 1
                                 ; PROTECTION WORD [DEWR, DEWR, DEWR, DEWR]
P.ATT: 'L' .BLKW 2
                                 ;ATTACHMENT DESCRIPTOR LISTHEAD
           .IF NDF P$$LAS
P.LGTH='B'P.PRO
                                 ;LENGTH OF PARTITION CONTROL BLOCK
```

.IFF

```
P.LGTH='B'.
                                    ; LENGTH OF PARTITION CONTROL BLOCK
            .ENDC
            .IFF
            . PSECT
; PARTITION STATUS WORD BIT DEFINITIONS
PS.OUT='B' 100000
                              ; PARTITION IS OUT OF MEMORY (1=YES)
PS.CKP='B'
              40000
                              ; PARTITION CHECKPOINT IN PROGRESS (1=YES)
PS.CKR='B'
              20000
                             ; PARTITION CHECKPOINT IS REQUESTED (1=YES)
PS.CHK='B'
                             ; PARTITION IS NOT CHECKPOINTABLE (1=YES)
              10000
PS.FXD='B'
              4000
                              ; PARTITION IS FIXED (1=YES)
              2000
PS.PER='B'
                             ; PARITY ERROR IN PARTITION (1=YES)
PS.LIO='B'
              1000
                             ;MARKED BY SHUFFLER FOR LONG I/O (1=YES)
PS.NSF='B'
                400
                             ; PARTITION IS NOT SHUFFLEABLE (1=YES)
                200
PS.COM='B'
                             ;LIBRARY OR COMMON BLOCK (1=YES)
                             ; POSITION INDEPENDENT LIBRARY OR COMMON
PS.PIC='B'
                100
                             ; (1=YES)
PS.SYS='B'
                              ;SYSTEM CONTROLLED PARTITION (1=YES)
                 40
                              ;DRIVER IS LOADED IN PARTITION (1=YES)
PS.DRV='B'
                 20
                              ; PARTITION SHOULD BE DELETED WHEN NOT
PS.DEL='B'
                 10
                              ;ATTACHED (1=YES)
                              :STARTING APR NUMBER MASK
PS.APR='B'
                  7
; ATTACHMENT DESCRIPTOR OFFSETS
        .ASECT
.=0
                          ;PCB ATTACHMENT QUEUE THREAD WORD ;PRIORITY OF ATTACHED TASK ;I/O COUNT THROUGH THIS DESCRIPTOR ;TCB ADDRESS OF ATTACHED TASK
A.PCBL:'L' .BLKW 1
A.PRI:'L' .BLKW I
A.PRI:'L' .BLKB 1
            .BLKB 1
A.IOC:'L'
A.TCB:'L' BLKW 1
A.TCBL:'L' BLKW 1
A.TCBL:'L' BLKW 1
A.STAT:'L' BLKB 1
A.MPCT:'L' BLKB 1
A.PCB:'L' BLKW 1
A.LGTH='B' .
                             ;TCB ATTACHMENT QUEUE THREAD WORD
                             ;STATUS BYTE
                             ; MAPPING COUNT OF TASK THRU THIS DESCRIPTOR
                             ; PCB ADDRESS OF ATTACHED TASK
                             ;LENGTH OF ATTACHMENT DESCRIPTOR
; ATTACHMENT DESCRIPTOR STATUS BYTE BIT DEFINITIONS
        . PSECT
AS.DEL='B' 10
                       ;TASK HAS DELETE ACCESS (1=YES)
AS.EXT='B' 4
AS.WRT='B' 2
AS.RED='B' 1
                       ;TASK HAS EXTEND ACCESS (1=YES)
                       ;TASK HAS WRITE ACCESS (1=YES)
                        ;TASK HAS READ ACCESS (1=YES)
        . ENDC
                       PCBDF$
        .MACRO
                                      X,Y,Z
        . ENDM
        . ENDM
```

PKTDF\$

.MACRO PKTDF\$, L, B

```
; ASYNCHRONOUS SYSTEM TRAP CONTROL BLOCK OFFSET DEFINITIONS
; SOME POSITIONAL DEPENDENCIES BETWEEN THE OCB AND THE AST CONTROL
; BLOCK ARE RELIED UPON IN THE ROUTINE $FINXT IN THE MODULE SYSXT.
       .ASECT
.=177774
A.KSR5:'L'
          .BLKW 1
                      ;SUBROUTINE KISAR5 BIAS (A.CBL=0)
A.DQSR:'L' .BLKW 1
                      ; DEQUEUE SUBROUTINE ADDRESS (A.CBL=0)
                      ;AST QUEUE THREAD WORD
           .BLKW 1
A.CBL:'L'
                      ; LENGTH OF CONTROL BLOCK IN BYTES
           .BLKW 1
                       ; IF A.CBL = 0, THE AST CONTROL BLOCK IS
                       ;TO BE DEALLOCATED BY THE DEQUEUE SUBROUTINE
                       ; POINTED TO BY A.DQSR MAPPED VIA APR 5
                       ; VALUE A.KSR5. THIS IS CURRENTLY USED ONLY
                       ;BY THE FULL DUPLEX TERMINAL DRIVER FOR
                       ;UNSOLICITED CHARACTER ASTS.
                       ; IF THE LOW BYTE OF A.CBL = 0, AND THE
                       ;HIGH BYTE IS NOT = 0, THE AST CONTROL BLOCK
                       ; IS A SPECIFIABLE AST, WITH LENGTH, C.LGTH.
                       ; IF THE HIGH BYTE OF A.CBL = 0 AND THE LOW
                       ;BYTE > 0, THEN THE LOW BYTE IS THE LENGTH
                       ;OF THE AST CONTROL BLOCK. IF THE HIGH BYTE
                       ;OF A.CBL = 0 AND THE LOW BYTE IS NEGATIVE,
                      ;THIS IS A KERNEL AST. SEE BELOW FOR
                      ; A DESCRIPTION OF A.CBL FOR KERNEL ASTS.
A.BYT:'L'
           .BLKW 1
                      ; NUMBER OF BYTES TO ALLOCATE ON TASK STACK
A.AST:'L'
           .BLKW 1
                      ;AST TRAP ADDRESS
A.NPR:'L'
           .BLKW 1
                      ; NUMBER OF AST PARAMETERS
                      ;FIRST AST PARAMETER
A.PRM:'L'
           .BLKW 1
; THE SPECIFIABLE AST CODES MUST NOT BE 0.
AS.FPA='B' 1
                      ;CODE FOR FLOATING POINT AST
AS.RCA='B' 2
                      ;CODE FOR RECEIVE DATA AST
AS.RRA='B' 3
                      ;CODE FOR RECEIVE BY REFERENCE AST
AS.PFA='B' 4
                      ;CODE FOR POWERFAIL AST
AS.REA='B' 5
                      ; CODE FOR REQUESTED EXIT (ABORT) AST
AS.CAA='B' 6
                      ;CODE FOR COMMAND ARRIVAL AST FOR CLIS
; BIT VALUES IN A.PRM+5
AF.XCC='B'
                      ;ATTACHED FOR ALL BUT CONTROL-C (TF.XCC)
AF.NOT='B'
                       ;ATTACHED FOR ALL NOTIFICATION (TF.NOT)
AF.OOB='B'
             4
                      ;ACB IS FOR OUT-OF-BAND AST
                      ; ACB HANDLES UNSOL. INPUT CHAR AST'S (TF.AST)
            10
AF.AST='B'
                      ;ATTACHED FOR ESCAPE SEQUENCES (TF.ESQ)
AF.ESQ='B'
            20
AF.LCK='B'
            40
                      ;ACB IS LOCKED
AF.QUE='B' 100
                      ;ACB IS QUEUED
AF.MDE='B' 200
                      ;ACB IS MARKED FOR DELETE
;
;
```

```
; ABORTER SUBCODES FOR ABORT AST (AS.REA) TO BE RETURNED ON USER'S
; STACK
AB.NPV='B'
                      ; ABORTER IS NONPRIVILEGED (1=YES)
             1
AB.TYP='B'
             2
                      ;ABORT FROM DIRECTIVE (0=YES)
                      ; ABORT FROM CLI COMMAND (1=YES)
;+
; KERNEL AST CONTROL BLOCK DEFINITIONS
 THE LOW BYTE OF A.CBL FOR A KERNEL AST HAS THE FOLLOWING FORMAT:
        BIT #200 ALWAYS EQUALS 1
        BIT #100 IS ZERO IF $SGFIN MUST BE CALLED DURING AST
        PROCESSING THE REMAINING SIX BITS ARE USED AS THE
        KERNEL AST TYPE FIELD
; BECAUSE THERE ARE ONLY 6 BITS AVAILABLE TO THE KERNEL AST
; INDEX FIELD, ONLY (2**6)-1 KERNEL AST TYPES ARE POSSIBLE.
AK.BUF='B' 200
                      ;BUFFERED I/O COMPLETION AST
AK.OCB='B' 201
                      ;OFFSPRING EXIT
AK.GBI='B' 202
                      ;GENERAL BUFFERED I/O AST
AK.GGF='B' 303
                      GROUP GLOBAL RUNDOWN AST
; OFFSPRING CONTROL BLOCK DEFINITIONS
; SOME POSITIONAL DEPENDENCIES EXIST BETWEEN THE OCB AND THE AST
; CONTROL BLOCK IN ROUTINE $FINXT IN MODULE SYSXT
.=0
O.LNK:'L' .BLKW 1
                       ;OCB LINK WORD
O.MCRL:'L' .BLKW 1
                       ; ADDRESS OF MCR COMMAND LINE
O.PTCB:'L' .BLKW 1
                       ; PARENT TCB ADDRESS
                       ;EXIT AST ADDRESS
O.AST:'L'
          .BLKW 1
          .BLKW 1
O.EFN: 'L'
                       ;EXIT EVENT FLAG
                       ;EXIT STATUS BLOCK VIRTUAL ADDRESS
O.ESB:'L
          .BLKW 1
O.STAT:'L' .BLKW 8.
                       ;EXIT STATUS BUFFER
O.LGTH='B' .
                       ;LENGTH OF OCB
; I/O PACKET OFFSET DEFINITIONS
; -
           .ASECT
.=0
I.LNK:'L' .BLKW 1
                       ; I /O QUEUE THREAD WORD
                       ;REQUEST PRIORITY
          .BLKB 1
I.PRI:'L'
                       ;EVENT FLAG NUMBER
I.EFN:'L'
          .BLKB 1
I.TCB: 'L'
           .BLKW 1
                      ;TCB ADDRESS OF REQUESTOR
                       ; POINTER TO SECOND LUN WORD
I.LN2:'L'
           .BLKW 1
I.UCB: 'L'
           .BLKW 1
                       ; POINTER TO UNIT CONTROL BLOCK
I.FCN:'L'
          .BLKW 1
                       ;I/O FUNCTION CODE
```

```
I.IOSB:'L' .BLKW 1
                        ; VIRTUAL ADDRESS OF I/O STATUS BLOCK
            .BLKW 1
                        ; I/O STATUS BLOCK RELOCATON BIAS
                        ;I/O STATUS BLOCK ADDRESS
            .BLKW 1
I.AST:'L'
            .BLKW 1
                        ;AST SERVICE ROUTINE ADDRESS
I.PRM: 'L'
            .BLKW 1
                        ; RESERVED FOR MAPPING PARAMETER #1
            .BLKW 6
                        ; PARAMETERS 1 TO 6
                        ;USER MODE DIAGNOSTIC PARAMETER WORD
            .BLKW 1
; FOLLOWING ARE DEFINITIONS FOR FLAG BITS IN I.PRM+11
; (DSA DRIVERS INTERNAL USE ONLY)
IP.FAK='B' 20
                        ; IOP IS PSEUDO IOP
IP.ABO='B' 40
                        ; (MUDRV) ABORT COMMAND MUST BE ISSUED FOR IOP
IP.PND='B' 100
                        ; (MUDRV) ABORT COMMAND WAS ISSUED FOR IOP
IP.UMR='B' 200
                        ; A UMR WAIT BLOCK IS IN USE FOR THIS I/O
I.ATTL='B'.
                        ; MINIMUM LENGTH OF I/O PACKET (USED BY
                        ;FILE SYSTEM TO CALCULATE MAXIMUM
                        ; NUMBER OF ATTRIBUTES)
I.LGTH='B'.
                        ;LENGTH OF I/O REQUEST CONTROL BLOCK
; DEFINE OFFSETS IN I/O PACKET EXTENSION (IOPX)
            .ASECT
\cdot = 0
I.XLNK:'L' .BLKW 1
                        ;LINK WORD
I.XIOP: 'L' .BLKW 1
                        ; I /O PACKET ADDRESS
I.XTCB: 'L' .BLKW 1
                        ;TCB ADDRESS OF REQUESTING TASK
I.XMOD: 'L' .BLKW 2
                        ; MODIFIER WORDS (NOTE: 2ND WORD MUST BE
                        ;SPECIFIED AND MUST BE ZERO.)
I.XRBF: 'L' .BLKW 2
                        ; READ DATA BUFFER ADDRESS APR BIAS
                        ; READ DATA BUFFER VIRTUAL ADDRESS
I.XRBL: 'L' .BLKW 1
                        ; READ DATA BUFFER LENGTH
I.XTMO:'L' .BLKW 1
                        :READ TIME-OUT INTERVAL
I.XPBF:'L' .BLKW 2
                        ; PROMPT BUFFER ADDRESS APR BIAS
                        ; PROMPT BUFFER VIRTUAL ADDRESS
I.XPBL: 'L' .BLKW 1
                        ;PROMPT BUFFER LENGTH
I.XPBV:'L' .BLKW 1
                        ; PROMPT BUFFER VERTICAL FORMS CONTROL
I.XTTB: 'L' .BLKW 2
                        ;TERMINATOR TABLE ADDRESS APR BIAS
                        ;TERMINATOR TABLE VIRTUAL ADDRESS
I.XTTL: 'L' .BLKW 1
                        ;TERMINATOR TABLE LENGTH
I.XDBF: 'L' .BLKW 2
                        ; DEFAULT INPUT BUFFER ADDRESS APR BIAS
                        ;DEFAULT INPUT BUFFER VIRTUAL ADDRESS
I.XDBL: 'L' .BLKW 1
                        ; DEFAULT INPUT BUFFER LENGTH
; GROUP GLOBAL EVENT FLAG CONTROL BLOCK OFFSETS
=0
                        ;LINK WORD
G.LNK:'L'
           .BLKW 1
           .BLKB 1
                        ;GROUP NUMBER
G.GRP: 'L'
G.STAT:'L' .BLKB 1
                        ;STATUS BYTE
G.CNT: 'L'
           .BLKW 1
                        ;ACCESS COUNT
G.EFLG: 'L' .BLKW 2
                        ;EVENT FLAGS
G.LGTH='B' .
                        ; LENGTH OF GROUP GLOBAL CONTROL BLOCK
```

```
: STATUS BYTE DEFINITIONS
GS.DEL='B'1
                        GROUP MARKED FOR DELETE
; EXECUTIVE POOL MONITOR CONTROL FLAGS
; $POLST IS THE SYNCHRONIZATION WORD BETWEEN THE EXEC AND POOL MONITOR
PC.HIH='B'
                        ;HIGH POOL LIMIT CROSSED (1=YES)
PC.LOW='B'
              2
                        ;LOW POOL LIMIT CROSSED (1=YES)
PC.ALF='B'
             4
                        ;FAILED TO ALLOCATE LARGE BLOCK (1=YES)
PC.XAF='B'
             10
                        ;FAILED TO ALLOCATE SMALL BLOCK (1=YES)
                        ;FORCE POOL MONITOR TASK TO EXIT
PC.XIT='B'
            200
PC.NRM='B'
            PC.HIH*400 ; POOL TASK INHIBIT BIT FOR HIGH POOL
PC.ALM='B'
            PC.LOW*400 ; POOL TASK INHIBIT BIT FOR LOW POOL
; $POLFL IS THE POOL USAGE CONTROL WORD
PF.INS='B'
             40
                        ; REJECT NONPRIVILEGED INS/RUN/REM
PF.LOG='B'
            100
                        ;LOGINS ARE DISABLED
PF.REO='B'
            200
                        ;STALL REQUEST OF NONPRIV. TASKS
PF.ALL='B' 177777
                        ;TAKE ALL POSSIBLE ACTIONS TO SAVE POOL
; CLI PARSER BLOCK (CPB) DEFINITIONS
\cdot = 0
C.PTCB:'L' .BLKW 1
                       ;ADDRESS OF CLI'S TCB
C.PNAM:'L' .BLKW 2
C.PSTS:'L' .BLKW 1
C.PDPL:'L' .BLKB 1
                       ;CLI NAME
                       ;STATUS MASK
                       ;LENGTH OF DEFAULT PROMPT
C.PCPL:'L' .BLKB 1
                        ;LENGTH OF CNTRL/C PROMPT
                        ;START OF ASCII PROMPT STRINGS
C.PRMT: 'L'
                        ;THE DEFAULT STRING IS CONCANTENATED
                        ;WITH THE ^C STRING
; STATUS BIT DEFINITIONS
CP.NUL='B'
             1
                       ; PASS EMPTY COMMAND LINES TO CLI
CP.MSG='B'
             2
                       ;CLI DESIRES SYSTEM MESSAGES
            4
CP.LGO='B'
                       ;CLI WANTS COMMANDS FROM LOGGED OFF TTYS
CP.DSB='B'
            10
                        ;CLI IS DISABLED
CP.PRV='B'
           20
                        ;USER MUST BE PRIV TO SET TTY TO THIS CLI
CP.SGL='B' 40
                        ; DON'T HANDLE CONTINUATIONS (M-PLUS ONLY)
                        ;MCR..., HEL, BYE DO NO I/O TO TTY
CP.NIO='B' 100
                        ;HEL, BYE ALSO DO NOT SET CLI ETC.
CP.RST='B' 200
                        ; ABILITY TO SET TO THIS CLI IS RESTRICTED
                        ;TO THE CLI ITSELF
CP.EXT='B' 400
                        ; PASS TASK EXIT PROMPT REQUESTS TO CLI
; IDENTIFIER CODES FOR SYSTEM TO CLI MESSAGES.
; CODES 0 - 127. ARE RESERVED FOR USE BY DIGITAL,
; CODES 128. - 255. ARE RESERVED FOR USE BY CUSTOMERS
```

```
CM.INE='B' 1
                       ;CLI INITIALIZED ENABLED
CM.IND='B' 2
CM.CEN='B' 3
                        ;CLI INITIALIZED DISABLED
                      ;CLI INITIAL
;CLI ENABLED
CM.CDS='B' 4
                       ;CLI DISABLED
CM.EXT='B' 5
CM.EXT='B' 6
                       ;CLI BEING ELIMINATED
                       ;CLI MUST EXIT IMMEDIATELY
CM.LKT='B' 7
                       ; NEW TERMINAL LINKED TO CLI
CM.RMT='B' 8.
                       ;TERMINAL REMOVED FROM CLI
CM.MSG='B' 9.
                       GENERAL MESSAGE TO CLI
;+
; ANCILLARY CONTROL BLOCK (ACB) DEFINITIONS
.=0
           .BLKW 1
                        ;ACD RELOCATION BIAS
A.REL: 'L'
                        ;ACD DISPATCH TABLE POINTER
A.DIS: 'L'
           .BLKW 1
A.MAS:'L'
           .BLKW 2
                        ;ACT FUNCTION MASK
A.NUM: 'L'
           .BLKB 1
                        ;ACD IDENTIFICATION NUMBER
A.FLEN: 'L' .BLKB 1
                        ;LENGTH IN BYTES OF FULL ACB
                        ;ACD LINK WORD
A.LIN: 'L'
           .BLKW 1
           .BLKB 1
A.ACC:'L'
                        ;ACD ACCESS COUNT
           .BLKB 1
                        ;ACD STATUS BYTE
A.STA:'L'
A.PLEN='B' .
                        ;LENGTH IN BYTES OF PROTOTYPE ACB
                        ;FULL ACB OVERLAPS PROTOTYPE ACB
.=A.LIN
A.IMAP: 'L' .BLKW 1
                        ;ACD INTERRUPT BUFFER RELOCATION BIAS
A. IBUF: 'L' .BLKW 1
                        ;ACD INTERRUPT BUFFER ADDRESS
A.ILEN: 'L' .BLKW 1
                        ;ACD INTERRUPT BUFFER LENGTH
A.SMAP:'L' .BLKW 1
                        ;ACD SYSTEM STATE BUFFER RELOCATION BIAS
                        ;ACD SYSTEM STATE BUFFER ADDRESS
A.SBUF:'L' .BLKW 1
A.SLEN:'L' .BLKW 1
                        ; ACD SYSTEM STATE BUFFER LENGTH
A.IOS:'L'
           .BLKW 2
                        ;ACD I/O STATUS
A.RES='B'
                        ;START OF ACB RESERVED FOR USE BY THE ACD
; DEFINE THE FLAG VALUES IN THE OFFSET U.AFLG
UA.ACC='B'
                        ; ACCEPT THIS CHARACTER
UA.PRO='B'
                        ; PROCESS THIS CHARACTER
UA.ECH='B'
                        ; ECHO THIS CHARACTER
UA.TYP='B'
             10
                        ; FORCE THIS CHARACTER INTO TYPEAHEAD
UA.SPE='B'
             20
                        ;THIS CHARACTER HAS A SPECIAL ECHO
UA.PUT='B'
           40
                        ; PUT THIS CHARACTER IN THE INPUT BUFFER
UA.CAL='B' 100
                        ; CALL THE ACD BACK AFTER THE TRANSFER
UA.COM='B'
           200
                        ;COMPLETE THE INPUT REQUEST
UA.ALL='B'
           400
                        ;ALLOW PROCESSING OF THIS I/O REQUEST
UA.TRN='B' 1000
                        ;TRANSLATE CHARACTERS FROM OUTPUT QIO
UA.TRA='B' 2000
                        ;TRANSFER CHARACTERS WHEN I/O COMPLETES
; DEFINE THE ACD ENTRY POINTS (OFFSETS INTO THE DISPATCH TABLE)
;
. = 0
A.ACCE:'L' .BLKW 1
                        ; I/O REQUEST ACCEPTANCE ENTRY POINT
A.DEQU: L' .BLKW 1
                       ;I/O REQUEST DEQUEUE ENTRY POINT
A.POWE:'L' .BLKW 1
A.INPU:'L' .BLKW 1
                        ; POWER FAILURE ENTRY POINT
                        ; INPUT COMPLETION ENTRY POINT
```

```
A.OUTP:'L' .BLKW 1
A.CONN:'L' .BLKW 1
                         ;OUTPUT COMPLETION ENTRY POINT
                         ;CONNECTION ENTRY POINT
A.DISC:'L' .BLKW 1
A.RECE:'L' .BLKW 1
A.PROC:'L' .BLKW 1
                         ;DISCONNECTION ENTRY POINT
                         ; INPUT CHARACTER RECEPTION ENTRY POINT
                          ; INPUT CHARACTER PROCESSING ENTRY POINT
A.TRAN: 'L' .BLKW 1
                         ;OUTPUT QIO CHARACTER TRANSLATION ENTRY POINT
A.CALL: 'L' .BLKW 1
                         ;CALL ACD BACK AFTER TRANSFER ENTRY POINT
; DEFINE THE STATUS BITS IN A.STA OF THE PROTOTYPE ACB
AS.DLT='B' 1
                          ; ACD IS MARKED FOR DELETE
AS.DIS='B' 2
                          ;ACD IS DISABLED
            .PSECT
            .MACRO PKTDF$ X,Y,Z
            .ENDM
            . ENDM
```

SCBDF\$

```
; THE STATUS CONTROL BLOCK (SCB) DEFINES THE STATUS OF A DEVICE
; CONTROLLER. THERE IS ONE SCB FOR EACH CONTROLLER IN A SYSTEM.
; THE SCB IS POINTED TO BY UNIT CONTROL BLOCKS. TO EXPAND ON THE
; TELETYPE EXAMPLE ABOVE, EACH TELETYPEWRITER TYPE INTERFACED VIA
; A DL11-A WOULD HAVE A SCB SINCE EACH DL11-A IS AN INDEPENDENT
; INTERFACE UNIT. THE TELETYPES INTERFACED VIA THE DH11 WOULD
; ALSO EACH HAVE AN SCB SINCE THE DH11 IS A SINGLE CONTROLLER BUT
; MULTIPLEXES MANY UNITS IN PARALLEL.
           .ASECT
.=177772
S.RCNT:'L'
                           ; NUMBER OF REGISTERS TO COPY ON ERROR
           .BLKB 1
                           ;OFFSET TO FIRST DEVICE REGISTER
S.ROFF: 'L'
           .BLKB 1
S.BMSV:'L' .BLKW 1
                           ;SAVED I/O ACTIVE BITMAP AND POINTER TO EMB
S.BMSK: 'L' .BLKW 1
                           ; DEVICE I/O ACTIVE BIT MASK
           .BLKW 2
S.LHD:'L'
                           ;CONTROLLER I/O QUEUE LISTHEAD
S.PRI:'L'
           .BLKB 1
                           ; DEVICE PRIORITY
S.VCT:'L'
           .BLKB 1
                           ; INTERRUPT VECTOR ADDRESS /4
S.CTM:'L'
           .BLKB 1
                           ;CURRENT TIMEOUT COUNT
S.ITM:'L'
           .BLKB 1
                           ; INITIAL TIMEOUT COUNT
S.CON: 'L'
           .BLKB 1
                           ;CONTROLLER INDEX
S.STS:'L'
           .BLKB 1
                           ; CONTROLLER STATUS (0=IDLE, 1=BUSY)
S.CSR:'L'
                           ; ADDRESS OF CONTROL STATUS REGISTER
           .BLKW 1
S.PKT:'L'
           .BLKW 1
                           ;ADDRESS OF CURRENT I/O PACKET
           .BLKW 1
                           ; FORK BLOCK LINK WORD
S.FRK:'L'
S.DMCS:'L'
                           ;DM11-BB CSR FOR FDX TTDRV
           .BLKW 1
                           ;FORK-PC
            .BLKW 1
                           ;FORK-R5
            .BLKW 1
                           ;FORK-R4
           .IF NB SYSDEF
           .IF DF L$$DRV & M$$MGE
           .BLKW 1
                           ;FORK-DRIVER RELOCATION BASE
            . ENDC
S.PORT: 'L'
                           ;FIRST THREE CHAR. OF PORT NAME (RAD50)
S.PBIA='B' S.PORT+2
                           ;BIAS OF PORT COMMON
                           ;ADDRESS OF QST, CONTROLLER STATE TABLE ;ADDRESS OF UNIT CORRESPONDING TO OLDEST CMD.
S.OST='B'
          S.PORT+4
S.BSYU='B' S.PORT+6
                              ZERO IF THERE ARE NO OUTSTANDING CMDS.
S.CCB: 'L'
                           ; MIXED MASSBUS CHANNEL CONTROL BLOCK
S.MPR:'L'
                           ;11/70 EXTENDED MEMORY UNIBUS DEVICE C-BLOCK
           .BLKW 6
           .BLKW 1
                           ;BUFFER WORD
S.UMHD: 'L' .BLKW 2
                           ;LIST HEAD FOR UMR ASSIGNMENT BLOCK(S)
S.UMCT: 'L' .BLKW 1
                           ; COUNT OF AVAILABLE UMR ASSIGNMENT BLOCK (S)
           . IFF
```

.PSECT

```
; STATUS CONTROL BLOCK PRIORITY BYTE CONDITION CODE STATUS BIT
; DEFINITIONS
                            ; ERROR IN PROGRESS (1=YES)
SP.EIP='B' 1
                            ; ERROR LOGGING ENABLED (0=YES)
SP.ENB='B' 2
SP.LOG='B' 4
                            ; ERROR LOGGING AVAILABLE (1=YES)
SPARE=10
                             ;SPARE BIT
;+
; MAPPING ASSIGNMENT BLOCK (FOR UNIBUS MAPPING REGISTER ASSIGNMENT)
            .ASECT
.=0
M.LNK:'L' .BLKW 1
                             ;LINK WORD
M.UMRA: 'L' BLKW 1
M.UMRN: 'L' BLKW 1
M.UMVL: 'L' BLKW 1
M.UMVH: 'L' BLKB 1
M.BFVH: 'L' BLKB 1
                             ;ADDRESS OF FIRST ASSIGNED UMR
                            ; NUMBER OF UMR'S ASSIGNED * 4
                            ;LOW 16 BITS MAPPED BY 1ST ASSIGNED UMR
                          ;HIGH 2 BITS MAPPED IN BITS 4 AND 5
                            ;HIGH 6 BITS OF PHYSICAL BUFFER ADDRESS
M.BFVL:'L' .BLKW 1
                            ;LOW 16 BITS OF PHYSICAL BUFFER ADDRESS
                             ; LENGTH OF MAPPING ASSIGNMENT BLOCK
M.LGTH='B'.
            .ENDC
            .PSECT
             .MACRO SCBDF$,X,Y,Z
             . ENDM
            . ENDM
```

TCBDF\$

```
.MACRO TCBDF$, L, B
; TASK CONTROL BLOCK OFFSET AND STATUS DEFINITIONS
; TASK CONTROL BLOCK
; –
; SEVERAL PIECES OF PRIVILEGED CODE EXIST THAT CREATE TCBS FROM
; OTHER TCBS. SINCE THESE PIECES OF CODE ARE GENERALLY OPTIMIZED
 FOR SPEED AND DO NOT USE THE SYMBOLIC OFFSETS PROVIDED BELOW,
 ANY CHANGE IN THE TCB MUST ALSO BE MADE TO EACH OF THESE PIECES
 OF CODE. THE KNOWN LIST OF SUCH PIECES OF CODE IS AS FOLLOWS:
; LIBRARY
                MODULE
                                     COMMENT
; RSX11M
               DRSPW
                                   TCB CREATED FOR RPOI$ DIRECTIVE
               MCROV, MCRDIS
; MCR
                                   MULTIUSER TASK DISPATCHING
;
       .ASECT
.=0
T.LNK:'L'
           .BLKW 1
                            ;UTILITY LINK WORD
T.PRI:'L'
           .BLKB 1
                            ;TASK PRIORITY
           .BLKB 1
                            ;I/O PENDING COUNT
T.IOC:'L'
T.CPCB: 'L' .BLKW 1
                            ; POINTER TO CHECKPOINT PCB
          .BLKW 2
                            ;TASK NAME IN RAD50
T.NAM: 'L'
T.RCVL:'L' .BLKW 2
T.ASTL:'L' .BLKW 2
                            ;RECEIVE QUEUE LISTHEAD
                            ;AST QUEUE LISTHEAD
T.EFLG: 'L' .BLKW 2
                            ;TASK LOCAL EVENT FLAGS 1-32
           .BLKW 1
                            ;UCB ADDRESS FOR PSEUDO DEVICE 'TI'
T.UCB:'L'
T.TCBL: 'L' .BLKW 1
                            ;TASK LIST THREAD WORD
T.STAT:'L' .BLKW 1
                            ;FIRST STATUS WORD (BLOCKING BITS)
T.ST2: 'L'
          .BLKW 1
                            ;SECOND STATUS WORD (STATE BITS)
T.ST3:'L'
          .BLKW 1
                            ;THIRD STATUS WORD (ATTRIBUTE BITS)
T.DPRI:'L' .BLKB 1
                            ;TASK'S DEFAULT PRIORITY
T.LBN:'L'
          .BLKB 3
                           ;LBN OF TASK LOAD IMAGE
T.LDV:'L' .BLKW 1
T.PCB:'L' .BLKW 1
                           ;UCB ADDRESS OF LOAD DEVICE
                           ; PCB ADDRESS OF TASK PARTITION
T.MXSZ:'L' .BLKW 1
                           ;MAXIMUM SIZE OF TASK IMAGE (MAPPED ONLY)
T.ACTL: 'L' .BLKW 1
                           ;ADDRESS OF NEXT TASK IN ACTIVE LIST
T.SAST:'L' .BLKW 1
                            ;SPECIFIED AST LISTHEAD
           .BLKB 1
                            ; RESERVED BYTE (CURRENTLY MUST BE 0)
           .BLKB 1
T.TIO: 'L'
                            ;BUFFERED I/O COUNT
T.TKSZ:'L' .BLKW 1
                             ;TASK SIZE (FROM L$BLDZ IN LABEL BLK) IN:
                                  UNMAPPED SYSTEMS - BYTES
                                  MAPPED SYSTEMS
                                                  - 32 WORD BLOCKS
                             ;TASK SIZE (FROM L$BMXZ IN LABEL BLK)
;FOR RSX11S SYSTEMS ONLY
                                  MAPPED SYSTEMS - 32 WORD BLOCKS
                                  UNMAPPED SYSTEMS - BYTES
$$$=.
                             ;MARK START OF PLAS AREA
T.ATT: 'L'
                             ;ATTACHMENT DESCRIPTOR LISTHEAD
          .BLKW 2
                             ;OFFSET TO TASK IMAGE IN PARTITION
T.OFF: 'L'
           .BLKW 1
                             ; IF ASSHDR IS DEFINED, THIS WORD ALSO
```

; RESERVED

.BLKB 1

; INCLUDES THE LENGTH OF THE ALTERNATE ; HEADER REFRESH AREA STORED IN T.HDLN

T.SRCT:'L' .BLKB 1 ;SREF WITH EFN COUNT IN ALL RECEIVE QUEUES T.RRFL:'L' .BLKW 2 ; RECEIVE BY REFERENCE LISTHEAD .IF NDF P\$\$LAS ; POINT TO START OF PLAS AREA .=\$\$\$. ENDC ;P\$\$LAS .IF NB SYSDEF \$\$\$=. ; MARK START OF PARENT OFFSPRING TASKING AREA T.OCBH: 'L' .BLKW 2 ;OFFSPRING CONTROL BLOCK LISTHEAD T.RDCT: 'L' .BLKW 1 ;OUTSTANDING OFFSPRING COUNT .IF NDF P\$\$OFF .=\$\$\$; POINT TO START OF PARENT OFFSPRING AREA . ENDC ;P\$\$OFF \$\$\$=. ; MARK START OF EVENT FLAG MASK AREA T.EFLM: 'L' .BLKW 2 ; EVENT FLAG MASK WORD ; EVENT FLAG MASK ADDRESS .IF NDF S\$\$TOP&T\$\$BUF ; POINT TO START OF EVENT FLAG MASK AREA .=\$\$\$. ENDC ;S\$\$TOP&T\$\$BUF \$\$\$=. T.HDLN:'L' .BLKB 1 ;TASK HEADER LENGTH IN 32-WORD BLOCKS .IF NDF A\$\$HDR .=\$\$\$; NOT SUPPORTED IF NDF . ENDC ;A\$\$HDR \$\$\$=. T.GGF: 'L' .BLKB 1 ;GROUP GLOBAL USE COUNT FOR TASK .IF NDF R\$\$SND&G\$\$EFN!A\$\$CLI&G\$\$EFN .=\$\$\$.ENDC - EVEN T.LGTH='B' ; LENGTH OF TASK CONTROL BLOCK ; LENGTH OF TCB EXTENSION T.EXT='B'0

. IFF

```
;+
; TASK STATUS DEFINITIONS
; FIRST STATUS WORD (BLOCKING BITS)
TS.EXE='B' 100000
                    ; TASK NOT IN EXECUTION (1=YES)
            40000
                      ; I/O RUN DOWN IN PROGRESS (1=YES)
TS.RDN='B'
                      ;ABORT MESSAGE BEING OUTPUT (1=YES)
;TASK MAPPED TO NONRESIDENT PARTITION (1=YES)
TS.MSG='B'
            20000
TS.NRP='B'
            10000
TS.RUN='B'
             4000
                      :TASK IS RUNNING ON ANOTHER PROCESSOR (1=YES)
                      ;TASK HALF-LOADED BY TASK LOADER
             2000
TS.HLD='B'
                       ;TASK EXTERNALLY BLOCKED VIA CLI COMMAND
TS.STP='B'
             1000
                       ; TASK IS OUT OF MEMORY (1=YES)
TS.OUT='B'
              400
                       ;TASK IS BEING CHECKPOINTED (1=YES)
TS.CKP='B'
              200
                       ;TASK CHECKPOINT REQUESTED (1=YES)
TS.CKR='B'
              100
; TASK BLOCKING STATUS MASK
TS.BLK='B'TS.CKP!TS.CKR!TS.EXE!TS.MSG!TS.NRP!TS.OUT!TS.RDN!TS.STP
; SECOND STATUS WORD (STATE BITS)
                             ;AST IN PROGRESS (1=YES)
T2.AST='B' 100000
T2.DST='B'
            40000
                             ;AST RECOGNITION DISABLED (1=YES)
T2.CHK='B'
            20000
                             ;TASK NOT CHECKPOINTABLE (1=YES)
T2.CKD='B'
            10000
                             ;CHECKPOINTING DISABLED (1=YES)
                             ;TASK STOPPED FOR EVENT FLAGS (1=YES)
T2.SEF='B'
             4000
T2.FXD='B'
             2000
                             ;TASK FIXED IN MEMORY (1=YES)
T2.REX='B'
             1000
                             ;ABORT AST EFFECTED OR IN PROGRESS (1=YES)
T2.CAF='B'
              400
                             ; DYN CHECKPOINT SPACE ALLOCATION FAILURE
T2.HLT='B'
              200
                             ;TASK IS BEING HALTED (1=YES)
                             ;TASK MARKED FOR ABORT (1=YES)
              100
T2.ABO='B'
T2.STP='B'
                40
                             ;SAVED T2.STP ON AST IN PROGRESS
                             ;TASK STOPPED (1=YES)
T2.STP='B'
               20
                             ;SAVED T2.SPN ON AST IN PROGRESS
T2.SPN='B'
               10
                             ;TASK SUSPENDED (1=YES)
T2.SPN='B'
                4
T2.WFR='B'
                2
                             ;SAVED T2.WFR ON AST IN PROGRESS
T2.WFR='B'
                             ;TASK IN WAITFOR STATE (1=YES)
; THIRD STATUS WORD (ATTRIBUTE BITS)
T3.ACP='B' 100000
                          ;ANCILLARY CONTROL PROCESSOR (1=YES)
T3.PMD='B'
            40000
                          ; DUMP TASK ON SYNCHRONOUS ABORT (0=YES)
                          ; REMOVE TASK ON EXIT (1=YES)
T3.REM='B'
            20000
T3.PRV='B'
            10000
                          ; TASK IS PRIVILEGED (1=YES)
T3.MCR='B'
             4000
                          ;TASK REQUESTED AS EXTERNAL MCR FUNCTION
                          ; (1=YES)
T3.SLV='B'
             2000
                          ; TASK IS A SLAVE TASK (1=YES)
T3.CLI='B'
             1000
                          ;TASK IS A COMMAND LINE INTERPRETER (1=YES)
                          ;TASK IS RESTRICTED (1=YES)
T3.RST='B'
              400
T3.NSD='B'
                          ; TASK DOES NOT ALLOW SEND DATA
              200
```

```
; TASK HAS CHECKPOINT SPACE IN TASK IMAGE
             100
T3.CAL='B'
                        ;TASK HAS RESIDENT OVERLAYS
T3.ROV='B'
              40
                        ; NETWORK PROTOCOL LEVEL
T3.NET='B'
              20
T3.GFL='B'
                        ;TASK HAS ITS GRP GBL EVENT FLAGS LOCKED
              10
; = 'B'
                        ; RESERVED FOR FUTURE USE
               4
T3.SWS='B'
               2
                        ; RESERVED FOR USE BY SOFTWARE SERVICES
    ='B'
               1
                        ; RESERVED FOR FUTURE USE
```

.ENDC

- .PSECT
- .MACRO TCBDF\$ X,Y,Z
- . ENDM
- . ENDM

UCBDF\$

```
.MACRO
                     UCBDF$, L, B, TTDEF, SYSDF
;+
; UNIT CONTROL BLOCK
 THE UNIT CONTROL BLOCK (UCB) DEFINES THE STATUS OF AN INDIVIDUAL
; DEVICE UNIT AND IS THE CONTROL BLOCK THAT IS POINTED TO BY THE
; FIRST WORD OF AN ASSIGNED LUN. THERE IS ONE UCB FOR EACH DEVICE
; UNIT OF EACH DCB. THE UCB'S ASSOCIATED WITH A PARTICULAR DCB ARE
; CONTIGUOUS IN MEMORY AND ARE POINTED TO BY THE DCB. UCB'S ARE
; VARIABLE LENGTH BETWEEN DCB'S BUT ARE OF THE SAME LENGTH FOR A
; SPECIFIC DCB. TO FINISH THE TELETYPE EXAMPLE ABOVE, EACH UNIT
; ON BOTH INTERFACES WOULD HAVE A UCB.
           .ASECT
           .IF NB SYSDF
           .IF DF E$$DVC
           .IF DF M$$MUP
                              ; IS U.OWN THERE?
.=177766
       . IFF
.=177770
       .ENDC
U.IOC: 'L'
           .BLKW 2
                              ;I/O COUNT SINCE MOUNT (ERROR LOG DEVS
                              ;ONLY)
U.ERSL:'L' .BLKB 1
                              ;SOFT ERROR LIMIT
U.ERHL:'L'
                              ;HARD ERROR LIMIT
           .BLKB 1
U.ERSC: 'L' .BLKB 1
                              ;SOFT ERROR COUNT
U.ERHC: 'L' .BLKB 1
                              ; HARD ERROR COUNT
           . ENDC
            .ENDC
.=177772
U.MUP: 'L'
                               ;MULTIUSER PROTECTION FLAG WORD
U.CLI:'L'
           .BLKW 1
                               :TCB OF COMMAND LINE INTERPRETER
U.LUIC: 'L'
                               ;LOGIN UIC - MULTI USER SYSTEMS ONLY
           .BLKW 1
U.OWN: 'L'
           .BLKW 1
                               ;OWNING TERMINAL - MULTI USER SYSTEMS
U.DCB: 'L'
                               ;BACK POINTER TO DCB
           .BLKW 1
U.RED: 'L'
           .BLKW 1
                               ; POINTER TO REDIRECT UNIT UCB
U.CTL: 'L'
           .BLKB 1
                               ;CONTROL PROCESSING FLAGS
U.STS:'L'
           .BLKB 1
                               ;UNIT STATUS
U.UNIT: 'L'
                               ; PHYSICAL UNIT NUMBER
           .BLKB 1
U.ST2: 'L'
                               ;UNIT STATUS EXTENSION
           .BLKB 1
U.CW1: 'L'
           .BLKW 1
                               ;FIRST DEVICE CHARACTERISTICS WORD
U.CW2: 'L'
           .BLKW 1
                               ;SECOND DEVICE CHARACTERISTICS WORD
U.CW3: 'L'
           .BLKW 1
                               ;THIRD DEVICE CHARACTERISTICS WORD
U.CW4:'L '
           .BLKW 1
                               ; FOURTH DEVICE CHARACTERISTICS WORD
           .BLKW 1
U.SCB: 'L'
                               ; POINTER TO SCB
U.ATT:'L'
           .BLKW 1
                               ;TCB ADDRESS OF ATTACHED TASK
                               ; RELOCATION BIAS OF CURRENT I/O REQUEST
U.BUF: 'L'
           .BLKW 1
```

;BUFFER ADDRESS OF CURRENT I/O REQUEST

.BLKW 1

```
;BYTE COUNT OF CURRENT I/O REQUEST
U.CNT: 'L' .BLKW 1
                              ;ADDRESS OF TCB OF MOUNTED ACP
;ADDRESS OF VOLUME CONTROL BLOCK
;CONTROL BUFFER RELOCATION AND ADDRESS
U.ACP='B' U.CNT+2
U.VCB='B' U.CNT+4
U.CBF='B' U.CNT+2
U.KCSR='B' U.CNT+2
U.KCS6='B' U.KCSR+2
                               ;CSR ADDRESS OF KMC-11
                            ;CSR+6 OF KMC-11
      MAGTAPE DRIVER DEFINITIONS
U.SPC='B' U.CNT+6
                               ;SPACING COUNT
U.SUB='B' U.CNT+6
U.FNUM='B' U.CNT+10
U.FCDE='B' U.CNT+12
                               ;SUBCONTROLLER, PHYSICAL UNIT #.
                               ;FORMATTER NUMBER
                               ;FUNCTION CODE AND INDEX
                MSCP/TMSCP DRIVER UCB OFFSETS
U.UTIL='B' U.VCB+2
                               ;UNIT STATE WORD
; DEFINITIONS FOR U.UTIL BITS
UU.SER='B'
                                ;SERIAL MODE
               7
                                ; (DUDRV) RCT IN PROGRESS
UU.RCT='B'
               2
UU.AVN='B'
                                ;UNIT IS WAITING FOR OTHER UNITS TO SPIN
                               ;DOWN
                              ;UNIT MUST HAVE A GUS COMMAND ISSUED
UU.GUS='B'
             10
                              ;UNIT MUST HAVE A ONL COMMAND ISSUED
UU.ONL='B' 20
                              ;SPECIAL ONLINE TRANSITION
UU.SPC='B' 40
                               ;UNIT HAS SENT ATTENTION MESSAGE
UU.ATN='B'
            100
UU.RDY='B'
            200
                               ;UNIT IS READY
UU.ABO='B' 400
                               ; IF SET, XXCAN SET UU.SER FLAG FOR UNIT
                              ;THIS UNIT CAN STALL I/O
UU.SIO='B' 1000
UU.IOS='B' 2000
                               ;THIS UNIT HAS I/O STALLED
U.MEDI='B' U.VCB+4
                               ; MEDIA IDENTIFIER (2 WORDS)
; ALL THE FOLLOWING MSCP FIELDS APPLY ONLY TO DISK
U.BPKT='B' U.VCB+10
                                ;UNIT BAD BLOCK PACKET WAITING LIST
; CHARACTERISTICS OBTAINED FROM "GET UNIT STATUS" END PACKETS
U.MLUN='B' U.VCB+14
                                ;MULTI-UNIT CODE
U.UNFL='B' U.VCB+16
                               ;UNIT FLAGS
U.UNTI='B' U.VCB+24
                               ;UNIT IDENTIFIER
                               ;ORIGINAL COPY OF MEDIA IDENTIFIER
U. 2MED='B' U. VCB+34
U.SHUN='B' U.VCB+40
                               ;SHADOW UNIT
U.SHST='B' U.VCB+42
                               ;SHADOW UNIT STATUS
U.TRCK='B' U.VCB+44
                               ;UNIT TRACK SIZE
U.GRP='B' U.VCB+46
U.CYL='B' U.VCB+50
                              UNIT GROUP SIZE
                              ;UNIT CYLINDER SIZE
U.USVR='B' U.VCB+52
                               ;UNIT SOFTWARE VERSION
U.UHVR='B' U.VCB+53
U.RCTS='B' U.VCB+54
                               ;UNIT HARDWARE VERSION
                              ;UNIT RCT TABLE SIZE
U.RCTS B U.VCB+56
U.RBNS='B' U.VCB+57
                               ;UNIT RBN 'S / TRACK
U.RCTC='B' U.VCB+57
                                ;UNIT RCT COPIES
```

```
; CHARACTERISTICS OBTAINED FROM "ONLINE" OR "SET UNIT CHARACTERISTICS"
; END PACKETS
U.UNSZ='B'U.VCB+60
                                ;UNIT SIZE
U.VSER='B'U.VCB+64
                                ; VOLUME SERIAL NUMBER
 TERMINAL DRIVER DEFINITIONS
.=U.BUF
U.TUX:'L'
           .BLKW 1
                                ; POINTER TO UCB EXTENSION (UCBX)
U.TSTA:'L' .BLKW 4
                                ;STATUS QUADRUPLE-WORD
U.TFRQ: 'L' .BLKW 1
U.TFLK: 'L' .BLKW 1
                               ;FORK REQUEST WORD
                               FORK LIST LINK WORD
U.TCHP:'L' .BLKB 1
                               ;CURRENT HORIZONTAL POSITION
U.TCVP: 'L' .BLKB 1
                               ;CURRENT VERTICAL POSITION
U.UIC:'L'
          .BLKW 1
                               ;TERMINAL UIC
U.TTYP:'L' .BLKB 1
U.TMTI:'L' .BLKB 1
                               ;TERMINAL TYPE
                               ; MODEM TIMER
U.TTAB: 'L' .BLKW 1
                               ; IF 0: U.TTAB+1 IS SINGLE-CHARACTER
                                ; TYPE-AHEAD BUFFER, CURRENTLY EMPTY
                                ; IF ODD: U.TTAB+1 IS SINGLE-CHARACTER
                                ; TYPE-AHEAD BUFFER AND HOLDS A
                                ; CHARACTER
                                ; IF NON-0 AND EVEN: POINTER TO
                                ; MULTI-CHARACTER TYPE-AHEAD BUFFER
U.CTYP: 'L' .BLKB 1
                                ;CONTROLLER TYPE
U.TLPP:'L' .BLKB 1
                                ;LINES PER PAGE
U.TST5:'L' .BLKW 1
                               ;ADDITIONAL STATUS BITS
U.TST6:'L' .BLKW 1
                               ;EXTENDED I/O STATUS BITS
U.TIXL:'L' .BLKW 1
                               ; I/O PACKET EXTENSION LISTHEAD
           .BLKW 1
U.ACB: 'L'
                               ;ANCILLARY CONTROL DRIVER BLOCK ADDR
U.AFLG: 'L' .BLKW 1
                               ;ANCILLARY CONTROL DRIVER FLAGS WORD
U.ADMA: 'L' .BLKW 1
                                ; ANCILLARY CONTROL DRIVER DMA BUFFER
 CONSOLE DRIVER DEFINITIONS
.=U.BUF+2
U.CTCB:'L' .BLKW 1
U.COTQ:'L' .BLKW 2
                                ; ADDRESS OF CONSOLE LOGGER TCB
                               ;I/O PACKET LIST QUEUE
U.RED2: 'L' .BLKW 1
                                ; REDIRECT UCB ADDRESS
 DEFINE BITS IN STATUS WORD 1 (U.TSTA)
; INPUT
              STATUS
S1.RST='B'
                1
                              ; READ WITH SPECIAL TERMINATORS IN
                              ; PROGRESS
                2
S1.ESC='B'
                             ; ESCAPE SEQUENCE IN PROGRESS
Sl.RSP='B'
                4
                             ; READ WITH SPECIAL PROCESSING
S1.PTH='B'
               10
                             ; PASS THRU IS CURRENTLY ACTIVE
S1.RNE='B'
               20
                             ;ECHO SUPPRESSED
S1.TSY='B'
                40
                             ;TERMINAL OUTPUT SYNC IS CURRENTLY
                             ; ENABLED
```

```
;OUTPUT BUSY
S1.OBY='B'
              100
                            ; INPUT BUSY
Sl. IBY='B'
              200
S1.DPR='B'
              400
                            ; DEFER PROCESSING OF CHAR. IN U.TECB
S1.DEC='B'
             1000
                            ;DEFER ECHO OF CHAR. IN U.TECB
Sl.IBF='B'
             2000
                            ;BUFFERED INPUT IN PROGRESS
                            ; INPUT PROCESSING DISABLED
Sl.DSI='B'
             4000
Sl.RES='B'
            10000
                            ; ESC. SEQ PROCESSING IS ENABLED FOR THE
                            ;CURRENT READ
                             ; READ NO FILTER IS ACTIVE (EDIT CHARS.
S1.RNF='B'
            20000
                             ; ARE DISPLAYED)
S1.TNE='B' 40000
                            ;TERMINATOR NO ECHO
S1.USI='B' 100000
                            ;UNSOLICITED INPUT IN PROGRESS
; DEFINE BITS IN STATUS WORD 2 (U.TSTA+2)
     OUTPUT
                   STATUS
S2.RCU='B'
                             ; RESTORE CURSOR (MUST = TF.RCU)
                1
                             ; CONTEXT FOR WRAP-AROUND
S2.WRA='B'
                6
S2.WRB='B'
                2
                             ;LOW BIT IN S2.WRA BIT PATTERN
S2.WAL='B'
               10
                             ;WRITE PASS ALL (MUST = TF.WAL)
                            ;BREAK-THROUGH-WRITE REQUEST IN QUEUE
S2.BRQ='B'
               20
S2.SRO='B'
               40
                            ;SPECIAL REQUEST IN QUEUE
                            ; (IO.ATT, IO.DET, SF.SMC)
                            ;OUTPUT REQUEST IN QUEUE (MUST = S1.OBY)
S2.ORO='B'
              100
S2. IRQ='B'
                            ; INPUT REQUEST IN QUEUE (MUST = S1.IBY)
              200
S2.FLF='B'
                             ;FORCE LINEFEED BEFORE NEXT ECHO
              400
S2.ELF='B'
                             ;EAT A LINEFEED (IGNORE A LEADING LF ON
             1000
                            ;OUTPUT)
S2.CR='B'
                            ;TRAILING CR REQUIRED ON OUTPUT
             2000
S2.OBF='B'
                            :BUFFERED OUTPUT IN PROGRESS
             4000
S2.PCU='B'
            10000
                            ; POSITION CURSOR BEFORE WRITE
S2.BEL='B'
            20000
                            ;BELL PENDING
S2.CTO='B'
                            ;OUTPUT STOPPED BY CTRL-O 266.
           40000
S2.CTS='B' 100000
                             ;OUTPUT STOPPED BY CTRL-S
; DEFINE BITS IN STATUS WORD 3 (U.TSTA+4)
    TERMINAL OPERATION CHARACTERISTICS
S3.ACR='B'
                             ;WRAP-AROUND (AUTOMATIC CR-LF) REQUIRED
S3.TAB='B'
                             ;TYPE-AHEAD BUFFER ALLOCATION REQUESTED
S3.CTC='B'
                             ;TERMINAL WANTS CLI TO HAVE ^C NOTIFICATION
               4
S3.RAL='B'
                             ;TERMINAL IS IN READ-PASS-ALL MODE
              10
S3.NEC='B'
              20
                            ; NO ECHO
S3.TSY='B'
             40
                            ;TERMINAL SYNC
S3.8BC='B'
             100
                            ; PASS 8 BITS ON INPUT
                            ;LINE IS IN FULL DUPLEX MODE
S3.FDX='B'
             200
S3.MHE='B'
             400
                            ; NOTIFY ATTACHED TASK OF MODEM HANG-UP
S3.ICE='B'
            1000
                            ; INPUT COUNT STATE ENABLED
                           ;TERMINAL MANAGEMENT MODE ENABLED
S3.TME='B'
            2000
S3.PTH='B'
            4000
                           ; PASS THROUGH REQUESTED
S3.RES='B' 10000
                          ;TASK WANTS ESCAPE SEQUENCES
                           ;TERMINAL HAS PRINTER PORT
S3.PPT='B' 20000
S3.RUB='B' 40000
                            ; RUBOUT SEQUENCE IN PROGRESS (NON-SCOPE)
```

```
DEFINE BITS IN STATUS WORD 4 (U.TSTA+6)
 TERMINAL ATTRIBUTE CHARACTERISTICS
S4.HFL='B'
                7
                             ;HORIZONTAL FILL REQUIREMENT
S4.VFL='B'
               10
                             ; VERTICAL FILL REQUIREMENT
S4.HFF='B'
               20
                             ;HARDWARE FORM-FEED PRESENT
                             ; HARDWARE HORIZONTAL TAB PRESENT
S4.HHT='B'
               40
                             ;DIAL-OUT LINE (IMPLIES U2.RMT)
S4.DLO='B'
              100
                             ; HOST/TERMINAL SYNCHRONIZATION ENABLED
S4.HSY='B'
              200
                             ; (1=YES)
S4.ANI='B'
              400
                             ;ANSI CRT TERMINAL
             1000
S4.AVO='B'
                             ;VT100-FAMILY TERMINAL DISPLAY
S4.BLK='B'
             2000
                             ;BLOCK MODE TERMINAL
S4.DEC='B'
             4000
                             ;DIGITAL CRT TERMINAL
S4.EDT='B'
            10000
                            ;TERMINAL HAS LOCAL EDITING FUNCTIONS
S4.RGS='B'
            20000
                             ;TERMINAL SUPPORTS REGIS GRAPHICS
S4.SFC='B'
            40000
                             ;TERMINAL SUPPORTS SOFT CHARACTERS (DRCS)
                             :AUTO-BAUD SPEED DETECTION ENABLED
S4.ABD='B' 100000
 DEFINE BITS IN STATUS WORD U.TST5
  ADDITIONAL STATUS CHARACTERISTICS
S5.SW1='B'
                1
                             ;FIRST TERMINAL MANAGEMENT SWITCH
                             ;CHARACTER HAS BEEN SEEN
S5.TMM='B'
                2
                             ;TERMINAL IN TERMINAL MANAGEMENT MODE
                             ;SEND AN XOFF AT FIRST OPPORTUNITY
S5.XOF='B'
                4
                             ;SEND AN XON AT FIRST OPPORTUNITY
S5.XON='B'
               10
S5.HPC='B'
               14
                             ;OUTPUT OF HIGH PRIORITY CHARACTERS
                             ; REQUESTED
                             ;HIGH PRIORITY OUTPUT IN PROGRESS
S5.HPO='B'
               20
S5.OXF='B'
                             :XOFF HAS BEEN OUTPUT
               40
S5.ITI='B'
              100
                             ; IMMEDIATE TIMEOUT ON INPUT
S5.RPO='B'
                             ; READ W/PROMPT OUTPUT IN PROGRESS
             2000
                             ;LAST CHAR. IN TYPE-AHEAD BUFFER
S5.VER='B'
            10000
                             ;HAS PARITY ERROR
S5.BCC='B'
            20000
                             ;LAST CHAR. IN TYPE-AHEAD BUFFER
                             :HAS FRAMING ERROR
S5.DAO='B'
            40000
                             ;LAST CHAR. IN TYPE-AHEAD BUFFER
                             ;HAS DATA OVERRUN ERROR
                             ; NOTE - THE 3 BITS ABOVE MUST CORRESPOND
                             ;TO THE RESPECTIVE ERROR FLAGS IN THE
                             ; HARDWARE RECEIVE BUFFER
S5.ABP='B' 100000
                             ;AUTO-BAUD SPEED DETECTION IN PROGRESS
; DEFINE BITS IN EXTENDED I/O STATUS WORD U.TST6
S6.EIO='B'
              400
                             ; READ WAS AN EXTENDED I/O
S6.RLU='B'
             1000
                             ; READ WITH LOWER CASE TO UPPER CASE
                             ;CONVERSION
S6.RDI='B' 100000
                             ; READ WITH DEFAULT INPUT
```

;

```
. PSECT
; DEVICE TABLE STATUS DEFINITIONS
; DEVICE CHARACTERISTICS WORD 1 (U.CW1) DEVICE TYPE DEFINITION BITS.
; –
DV.REC='B'
                             ; RECORD ORIENTED DEVICE (1=YES)
DV.CCL='B'
                2
                             :CARRIAGE CONTROL DEVICE (1=YES)
DV.TTY='B'
                4
                             ;TERMINAL DEVICE (1=YES)
DV.DIR='B'
                             ;FILE STRUCTURED DEVICE (1=YES)
               10
DV.SDI='B'
               20
                             ;SINGLE DIRECTORY DEVICE (1=YES)
DV.SQD='B'
               40
                             ;SEQUENTIAL DEVICE (1=YES)
                             ;MASS STORAGE DEVICE (1=YES)
DV.MSD='B'
              100
DV.UMD='B'
              200
                             ;USER MODE DIAGNOSTICS SUPPORTED (1=YES)
DV.MBC='B'
              400
                             ; DEVICE IS ON MASSBUS CONTROLLER (1=YES)
                             ; DEVICE ON EXTENDED ADDRESSING CONTROLLER
DV.EXT='B'
              400
DV.SWL='B'
             1000
                             ;UNIT SOFTWARE WRITE LOCKED (1=YES)
DV.ISP='B'
             2000
                             ; INPUT SPOOLED DEVICE (1=YES)
DV.OSP='B'
                             ;OUTPUT SPOOLED DEVICE (1=YES)
             4000
DV.PSE='B'
                             ; PSEUDO DEVICE (1=YES)
            10000
DV.COM='B'
            20000
                             ; DEVICE IS MOUNTABLE AS COM CHANNEL
                             ; (1=YES)
DV.F11='B'
           40000
                             ; DEVICE IS MOUNTABLE AS F11 DEVICE (1=YES)
DV.MNT='B' 100000
                             ; DEVICE IS MOUNTABLE (1=YES)
; TERMINAL DEPENDENT CHARACTERISTICS WORD 2 (U.CW2) BIT DEFINITIONS
U2.DH1='B' 100000
                             ;UNIT IS A MULTIPLEXER (1=YES)
U2.DJ1='B'
            40000
                             ;UNIT IS A DJ11 (1=YES)
U2.RMT='B'
            20000
                             ;UNIT IS REMOTE (1=YES)
U2.HFF='B'
            10000
                             ;UNIT HANDLES HARDWARE FORM FEEDS (1=YES)
U2.L8S='B'
            10000
                             ;OLD NAME FOR U2.HFF
                             ;DON'T ECHO SOLICITED INPUT (1=YES)
U2.NEC='B'
             4000
                             ;UNIT IS A CRT (1=YES)
;UNIT GENERATES ESCAPE SEQUENCES (1=YES)
U2.CRT='B'
             2000
U2.ESC='B'
             1000
U2.LOG='B'
                             ;USER LOGGED ON TERMINAL (0=YES)
              400
U2.SLV='B'
                             ;UNIT IS A SLAVE TERMINAL (1=YES)
              200
U2.DZ1='B'
                             ;UNIT IS A DZ11 (1=YES)
              100
U2.HLD='B'
                             ;TERMINAL IS IN HOLD SCREEN MODE (1=YES)
               40
U2.AT.='B'
                             ;MCR COMMAND AT. BEING PROCESSED (1=YES)
               20
U2.PRV='B'
                             ;UNIT IS A PRIVILEGED TERMINAL (1=YES)
               10
U2.L3S='B'
                             ;UNIT IS A LA30S TERMINAL (1=YES)
U2.SCS='B'
                4
                             ;SCS-11 COMMAND TERMINAL (1=YES)
U2.VT5='B'
                             ;UNIT IS A VT05B TERMINAL (1=YES)
                2
                             ;LOWER CASE TO UPPER CASE CONVERSION
U2.LWC='B'
                1
                             ; (0=YES)
;+
; BIT DEFINITIONS FOR U.MUP (SYSTEMS WITH ALTERNATE CLI SUPPORT ONLY)
```

```
UM.OVR='B'
                           ;OVERRIDE CLI INDICATOR
UM.CLI='B' 36
                            ;CLI INDICATOR BITS
UM.DSB='B' 200
                            ;TERMINAL DISABLED SINCE CLI ELIMINATED
UM.NBR='B' 400
                            ; NO BROADCAST
;+
; RH11-RS03/RS04 CHARACTERISTICS WORD 2 (U.CW2) BIT DEFINITIONS
U2.R04='B' 100000
                            ;UNIT IS A RS04 (1=YES)
; RH11-TU16 CHARACTERISTICS WORD 2 (U.CW2) BIT DEFINITIONS
U2.7CH='B' 10000
                            ;UNIT IS A 7 CHANNEL DRIVE (1=YES)
; TERMINAL DEPENDENT CHARACTERISTICS WORD 3 (U.CW3) BIT DEFINITIONS
                            ;UPCASE OUTPUT FLAG
U3.UPC='B'
           20000
           40000
U3.PAR='B'
                           ; PARITY GENERATION AND CHECKING
U3.OPA='B' 100000
                            ; PARITY SENSE (1=ODD PARITY)
; TERMINAL DEPENDENT CHARACTERISTICS WORD 4 (U.CW4) BIT DEFINITIONS
U4.CR='B' 100
                           ;LOOK FOR CARRIAGE RETURN
;+
; UNIT CONTROL PROCESSING FLAG DEFINITIONS
UC.ALG='B' 200
                            ;BYTE ALIGNMENT ALLOWED (1=NO)
UC.NPR='B' 100
                            ; DEVICE IS AN NPR DEVICE (1=YES)
UC.OUE='B'
           40
                            ;CALL DRIVER BEFORE QUEUING (1=YES)
UC.PWF='B'
            20
                            ;CALL DRIVER AT POWERFAIL ALWAYS (1=YES)
UC.ATT='B'
                            ;CALL DRIVER ON ATTACH/DETACH (1=YES)
            10
                            ;CALL DRIVER AT I/O KILL ALWAYS (1=YES)
UC.KIL='B'
            4
UC.LGH='B'
             3
                            ;TRANSFER LENGTH MASK BITS
; UNIT STATUS BIT DEFINTIONS
; -
US.BSY='B' 200
                           ;UNIT IS BUSY (1=YES)
US.MNT='B' 100
                            ;UNIT IS MOUNTED (0=YES)
US.FOR='B'
           40
                           ;UNIT IS MOUNTED AS FOREIGN VOLUME (1=YES)
US.MDM='B'
           20
                            ;UNIT IS MARKED FOR DISMOUNT (1=YES)
US.PWF='B' 10
                            ; POWERFAIL OCCURRED (1=YES)
;+
; CARD READER DEPENDENT UNIT STATUS BIT DEFINITIONS
US.ABO='B' 1
                            ;UNIT IS MARKED FOR ABORT IF NOT READY
                            ; (1=YES)
US.MDE='B' 2
                            ;UNIT IS IN 029 TRANSLATION NODE (1=YES)
```

```
;+
; FILES-11 DEPENDENT UNIT STATUS BITS
US.WCK='B' 10
                            ;WRITE CHECK ENABLED (1=YES)
US.SPU='B' 2
                            ;UNIT IS SPINNING UP (1=YES)
US.VV='B'
                            ; VOLUME VALID IS SET (1=YES)
           1
;+
; KMC-11-LP DEPDENDENT UNIT STATUS BITS
US.KPF='B' 1
                            ;KMC-11 POWERFAIL INTERLOCK
;+
; TERMINAL DEPENDENT UNIT STATUS BIT DEFINITIONS
           .IF NB TTDEF
           .IF DF T$$CPW
US.CRW='B' 4
                            ;UNIT IS WAITING FOR CARRIER (1=YES)
US.DSB='B' 2
                            ;UNIT IS DISABLED (1=YES)
US.OIU='B' 1
                            ;OUTPUT INTERRUPT IS UNEXPECTED ON UNIT
                            ; (1=YES)
           .IFF
                            ;T$$CPW
US.DSB='B' 10
                            ;UNIT IS DISABLED (1=YES)
US.CRW='B'
           4
                            ;UNIT IS WAITING FOR CARRIER (1=YES)
US.ECH='B' 2
                            ;UNIT HAS ECHO IN PROGRESS (1=YES)
US.OUT='B' 1
                            ;UNIT IS EXPECTING OUTPUT INTERRUPT
                            ; (1=YES)
           .ENDC
          .ENDC
                            ;TTDEF
; LPS11 DEPENDENT UNIT STATUS BIT DEFINITIONS
US.FRK='B' 2
                            ; FORK IN PROGRESS (1=YES)
US.SHR='B' 1
                            ;SHAREABLE FUNCTION IN PROGRESS (0='B'YES)
; MAGTAPE DEPENDENT UNIT STATUS BITS
                            ; UNIT HAS LABELED TAPE ON IT (1=YES)
US.LAB='B' 4
US.BSP='B' 2
                            ; INTERNAL BACKSPACE IN PROGRESS (1=YES)
; UNIT STATUS EXTENSION (U.ST2) BIT DEFINITIONS
```

```
;UNIT OFFLINE (1=YES)
;UNIT REDIRECTABLE (0=YES)
US.OFL='B'
US.RED='B' 2
US.PUB='B' 4
                                 ;UNIT IS PUBLIC DEVICE (1=YES)
US.UMD='B' 10
                                 ;UNIT ATTACHED FOR DIAGNOSTICS (1=YES)
; MAG TAPE DENS SUPPORT IDENT IN CHAR WORD 3 (U.CW3) DEFENITION
         ASSIGNMENTS PER NUMERICAL SEQUENCE 0 - 255.
;
; –
UD.UNS='B' 0
                                 ; UNSUPPORTED
UD.200='B' 1
                                 ; 200BPI, 7 TRACK
                                ; 556BPI, 7 TRACK
; 800BPI, 7 OR 9 TRACK
;1600BPI, 9 TRACK
;6250BPI, 9 TRACK
UD.556='B' 2
UD.800='B' 3
UD.160='B' 4
UD.625='B' 5
UD.8K='B' 6
                                  ;8K BPI - SERIAL, SERPENTINE RECORDING
        .MACRO UCBDF$,X,Y,Z,ZZ
        . ENDM
        . ENDM
```

APPENDIX C

RSX-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

This appendix describes the RSX-llM-PLUS system macros that supply symbolic offsets for data structures listed in Table C-1.

The data structures are defined by macros in the Executive macro library. To reference any of the data structure offsets from your code, include the macro name in an .MCALL directive and invoke the macro. For example:

.MCALL DCBDF\$
DCBDF\$

;Define DBC offsets

NOTE

All physical offsets and bit definitions are subject to change in future releases of the operating system. Code that accesses system data structures should always use the symbolic offsets rather than the physical offsets.

The first two arguments, <:> and <=>, make all definitions global. If they are left blank, the definitions will be local.

All of these macros are in the Executive macro library LB:[1,1]EXEMC.MLB. All except FllDF\$, ITBDF\$, MTADF\$, OLRDF\$, and SHDDF\$ are also in the Executive definition library LB:[1,1]EXELIB.OLB.

Table C-1 Summary of System Data Structure Macros

Macro Arguments	Data Structures
ABODF\$ <:>,<=>	Task abort and termination notification message codes
ACNDF\$ <:>,<=>	Accounting data structures (user account block, task account block, system account block)
CLKDF\$ <:>,<=>	Clock queue control block
CTBDF\$ <:>,<=>	Controller table

(Continued on next page)

RSX-11M-PLUS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

Table C-1 (Cont.) Summary of System Data Structure Macros

Macro Arguments	Data Structures
DCBDF\$ <:>,<=>	Device Control Block
EPKDF\$ <:>,<=>	Error message block
EVNDF\$ <:>,<=>	Terminal Software Architecture (TSA) event packet definitions
F11DF\$ <:>,<=>	FILES-11 data structures (Volume Control Block, mount list entry, File Control Block, file window block, locked block list node)
HDRDF\$ <:>,<=>	Task header and window block
HWDDF\$ <:>,<=>	Hardware register addresses and feature mask definitions
ITBDF\$ <:>,<=>	Interrupt transfer block
KRBDF\$ <:>,<=>	Controller request block
LCBDF\$ <:>,<=>	Logical assignment control block
MTADF\$ <:>,<=>	ANSI magtape data structures (volume set control block)
OLRDF\$	On-line reconfiguration interface
PCBDF\$ <:>,<=>	Partition Control Block and attachment descriptor
PKTDF\$ <:>,<=>	I/O packet, AST control block, offspring control block, group global event flag control block, and CLI parser block
SCBDF\$ <:>,<=>	Status Control Block and UMR assignment block
SHDDF\$ <:>,<=>	Shadow recording linkage block
TCBDF\$ <:>,<=>	Task Control Block
UCBDF\$ <:>,<=>,TTDEF	Unit Control Block

ABODF\$

.MACRO ABODF\$, L, B

```
;+
; TASK ABORT CODES
; NOTE: S.COAD-S.CFLT ARE ALSO SST VECTOR OFFSETS
S.CACT='B'-4.
                                  ;TASK STILL ACTIVE
                                 ; TASK EXITED NORMALLY
S.CEXT='B'-2.
S.COAD='B'0.
                                  ;ODD ADDRESS AND TRAPS TO 4
S.CSGF='B'2.
                                  ;SEGMENT FAULT
S.CBPT='B'4.
                                  ;BREAK POINT OR TRACE TRAP
S.CIOT='B'6.
                                  ; IOT INSTRUCTION
S.CIOT='B'6.
S.CILI='B'8.
S.CEMT='B'10.
S.CTRP='B'12.
S.CFLT='B'14.
                                  ;ILLEGAL OR RESERVED INSTRUCTION
                                  ; NON RSX EMT INSTRUCTION
                                  ;TRAP INSTRUCTION
                                 ;11/40 FLOATING POINT EXCEPTION
S.CSST='B'16.
                                 ;SST ABORT-BAD STACK
S.CAST='B'18.
                                  ;AST ABORT-BAD STACK
S.CABO='B'20.
                                  ; ABORT VIA DIRECTIVE
S.CLRF='B'22.
                                  ; TASK LOAD REQUEST FAILURE
S.CCRF='B'24.
                                  ;TASK CHECKPOINT READ FAILURE
                                  ; TASK EXIT WITH OUTSTANDING I/O
S.IOMG='B'26.
S.PRTY='B'28.
                                  ;TASK MEMORY PARITY ERROR
S.CPMD='B'30.
                                  ; TASK ABORTED WITH PMD REQUEST
S.CELV='B'32.
                                  ;TI: VIRTUAL TERMINAL WAS ELIMINATED
                                  ; TASK INSTALLED IN 2 DIFFERENT SYSTEMS
S.CINS='B'34.
S.CAFF='B'36.
                                  ;TASK ABORTED DUE TO BAD AFFINITY (REQUIRED
                                  ;BUS RUNS ARE OFFLINE OR NOT PRESENT)
S.CCSM='B'38.
                                  ;BAD CSM PARAMETERS OR BAD STACK
                                  ;TASK HAS RUN OVER ITS TIME LIMIT
S.COTL='B'40.
S.CTKN='B'42.
                                  ;ABORT VIA DIRECTIVE WITH NO TKTN MESSAGE
  TERMINATION CODES FOR BOM$
; NOTE:
; THE NORMAL TKTN ERROR CODES SPAN -4 THROUGH 42. THE BOM CODES,
; ALTHOUGH DEFINED FOR THE TASK, ETC, AS 0 THROUGH N, ARE PASSED TO
; TKTN AS -127 THROUGH -127+N. AN UNRECOGNIZED CODE IS PASSED AS -128,
; UNKNOWN ERROR.
S.BUNK='B'-128.
                                 ;UNKNOWN BOM$ ERROR
                                  ; ERROR IN HIGH LEVEL LANGUAGE INTERFACE
S.BFEI = 'B'0.
S.BOVL='B'1.
                                  ;LOAD OVERLAY FAILURE
; KEEP THE FOLLOWING DEFINED AS THE HIGHEST CODE IN USE
S.BHI='B'1.
                                  ;HIGHEST ACCEPTABLE BOM$ CODE
; BIT DEFINITIONS FOR BOM$ FLAGS WORD
S.BBIF='B'1.
                                  ; ENABLE CONDITIONAL BREAKPOINT
```

ABODF\$ (Cont.)

```
; TASK TERMINATION NOTIFICATION MESSAGE CODES
T.NDNR='B'0
                                 DEVICE NOT READY
T.NDSE='B'2
                                 ; DEVICE SELECT ERROR
T.NCWF='B'4
                                 ;CHECKPOINT WRITE FAILURE
T.NCRE='B'6
                                 ; CARD READER HARDWARE ERROR
T.NDMO='B'8.
                                 ;DISMOUNT COMPLETE
T.NUER='B'10.
                                 ;UNRECOVERABLE ERROR
T.NLDN='B'12.
                                 ; LINK DOWN (NETWORKS)
T.NLUP='B'14.
                                 ;LINK UP (NETWORKS)
T.NCFI='B'16.
                                 ;CHECKPOINT FILE INACTIVE
T.NUDE='B'18.
                                 ;UNRECOVERABLE DEVICE ERROR
T.NMPE='B'20.
                                 ; MEMORY PARITY ERROR
T.NKLF='B'22.
                                 ;UCODE LOADER NOT INSTALLED
T.NAAF='B'24.
                                 ; ACCOUNTING ALLOCATION FAILURE
T.NTAF = 'B'26.
                                 ; ACCOUNTING TAB ALLOCATION FAILURE
T.NDEB='B'28.
                                 ;TASK HAS NO DEBUGGING AID
T.NRCT='B'30.
                                 ; REPLACEMENT CONTROL TASK NOT INSTALLED
T.NWBL='B'32.
                                 ;WRITE BACK CACHING DATA LOST
                                 ;UNIT WRITE LOCKED
T.NVER= 'B'34.
                                 ; MOUNT VERIFICATION TASK NOT INSTALLED
T.NIOS='B'36.
                                 ;I/O STALLED TO DEVICE
T.NIOR='B'38.
                                 ; I/O RESUMING ON DEVICE
        .MACRO ABODF$ X,Y
        .ENDM
        . ENDM
```

ACNDF\$

.MACRO ACNDF\$, L, B

```
; ACCOUNTING BLOCK OFFSET AND STATUS DEFINITIONS
; FOR EACH TRANSACTION TYPE.
; HEADER COMMON TO ALL TRANSACTIONS
        .ASECT
\cdot = 0
B.LNK: 'L'.BLKW 1
                                ;LINK TO NEXT IN SYSLOG QUEUE
B.TYP: 'L'.BLKB 1
                                ;TRANSACTION TYPE
B.LEN:'L'.BLKB 1
                                ;TRANSACTION LENGTH
B.TIM: 'L'.BLKW 3
                                ; ENDING TIME OF TRANSACTION
B.HID='B'.
                                ;START OF HEADER IDENTIFICATION AREA
B.UID: 'L'.BLKW 2
                                ;UNIQUE SESSION IDENT
                                ; FIRST WORD-RAD50, SECOND-BINARY
B.ACN: 'L'.BLKW 1
                                ;ACCOUNT NUMBER
B.TID:'L'.BLKB 1
                                ;ASCII TERMINAL TYPE (V,T,B OR C)
                                ; (VIRTUAL, REAL, BATCH, OR CONSOLE)
         .BLKB 1
                                ;UNIT NUMBER
B.HEND='B'.
                                ; END OF HEADER ID AREA
$$$HLN=.
                                ; HEADER LENGTH
; ACCUMULATION FIELDS FOR TAB, UAB, AND SAB
B.CPU: 'L'.BLKW 2
                                ;TOTAL CPU TIME USED
B.DIR: 'L'.BLKW 2
                                ; TOTAL DIRECTIVE COUNT
B.QIO: 'L'.BLKW 2
                                ;TOTAL QIOS COUNT
B.TAS: 'L'.BLKW 2
                                ; TOTAL TASK COUNT
B.MEM: 'L'.BLKW 3
                               ; RESERVED
B.BEG: 'L'.BLKW 3
                              ;BEGINNING/LOGIN TIME
B.CPUL: 'L'.BLKW 2
                               ;CPU LIMIT
B.PNT: 'L'.BLKW 1
                                ; POINTER TO HIGHER LEVEL TOTALS
B.STM:'L'.BLKB 1
                                ;STATUS MASK
$$$TLN=.
                                ;TOTAL'S LENGTH
;+
; USER ACCOUNT BLOCK (UAB)
        NOTE: UAB'S MUST END ON A WORD BOUNDRY
;
.=$$$TLN
                                ;START AFTER TOTALS
B.USE: 'L'.BLKB 1
                                ;USE COUNT
B.ACT: 'L'.BLKW 1
                                ; NUMBER OF CURRENTLY ACTIVE TASKS
B.UUIC: 'L'.BLKW 1
                                ;LOGIN UIC
B.UCB: 'L'.BLKW 1
                                ; POINTER TO UCB
B.LGO:'L'.BLKW 3
                                ;LOGOFF TIME
B.ULNK: 'L'.BLKW 1
                                ;LINK TO NEXT UAB
B.RNA: 'L'.BLKW 3
                                ;LOC IN SYSTEM ACCNT FILE
                                ; (OFFSET, VBN-HI, VBN-LO)
```

```
B.NAM: 'L'.BLKB 14.
                                   ;LAST NAME OF USER
                                   ;FIRST INITIAL OF USER
          .BLKB 1
                                  ;FLAG BYTE FOR UAB (bs.sil) etc.
          .BLKB 1
B.LDS:'L'.BLKB 10.
                                   ;LOGIN DIRECTORY STRING
                                   ;UAB LENGTH
B.ULEN='B'.
                                   ; UAB LENGTH (ROUNDED UP TO 32 WORD BOUND)
$$$=
         <.+77>/100
; TASK ACCOUNT BLOCK (TAB)
         NOTE: THE TAB MUST END ON A WORD BOUNDARY
.=$$$TLN
                                    ;STARTS AFTER TOTALS
B.PRI: 'L'.BLKB 1
                                    ;HIGHEST RUNNING PRIORITY
                                   ;TASK NAME
B.TNAM: 'L'.BLKW 2
B.TCB: 'L' .BLKW 1
                                   ;TCB ADDRESS
B.TST3:'L'.BLKW 1
                                   ;T.ST3 FROM TASK'S TCB
.BLKW 1
B.CUIC: 'L'.BLKW 1
                                   RESERVED FOR FUTURE STATUS BITS
                                   CURRENT UIC OF TASK
                                   ; PROTECTION UIC OF TASK
B.PUIC: 'L'.BLKW 1
                                   ; NUMBER OF CONTEXT LOADS
B.CTXT:'L'.BLKW 2
                                  ;TIMES TASK HAS BEEN CHECKPOINTED
;NUMBER OF DISK OVERLAY LOADS
;EXIT STATUS AND ABORT CODE
;TAB LENGTH
;NUMBER OF SEC POOL BLOCKS IN TAB
B.TCKP: 'L'.BLKW 2
B.OVLY: 'L'.BLKW 2
B.EXST: 'L'.BLKW 2
B.TLEN='B'.
B.TBLK='B'<.+77>/100
; SYSTEM ACCOUNT BLOCK (SAB)
.=$$$TLN
                                   ;START AFTER TOTALS
                                   ;ACCOUNTING SHUTDOWN REASON CODE
B.SHDN: 'L'.BLKB 1
B.UHD: 'L'.BLKW 1
                                   ;UAB LISTHEAD
                                   ; NUMBER OF USERS CURRENTLY LOGGED ON
B.ULO: 'L'.BLKW 1
B.ULT: 'L'.BLKW 2
B.CKP: 'L'.BLKW 2
B.SHF: 'L'.BLKW 2
B.RND: 'L'.BLKW 2
B.FID: 'L'.BLKW 3
                                   ;TOTAL NUMBER OF LOGONS
                                   ; TOTAL NUMBER OF CHECKPOINTS
                                   ;TOTAL NUMBER OF SHUFFLER RUNS
                                   ; NUMBER OF CPU INTERVALS ROUNDED UP TO 1
                                   ;FILE-ID OF TRANSACTION FILE
                                   ;DEVICE OF TRANSACTION FILE
B.DVNM: 'L'.BLKB 2
                                   ;UNIT
                                            OF TRANSACTION FILE
B.UNIT: 'L'.BLKW 1
                                   ; EXTEND SIZE FOR TRANSACTION FILE
B.EXTS: 'L'.BLKW 1
                                    ;TIME OF LAST SCAN
B.LSCN:'L'.BLKW 3
B.SCNR: 'L'.BLKW 1
                                    ;SCAN RATE IN SECONDS
B.DSCN: 'L'.BLKW 1
                                    ;STATISTICAL SCAN RATE (IN SEC)
B.STSP: 'L'.BLKW 2
                                    ; RESERVED
B.SYSM: 'L'.BLKW 1
                                    ; RESERVED
B.CKUS: 'L'.BLKW 3
                                    ; RESERVED
B.CKSP:'L'.BLKW 2
                                    ; RESERVED
B.CKAL: 'L'.BLKW 1
                                    ; RESERVED
B.SLEN='B'.
                                    ;SAB LENGTH
```

; NEW FIELDS FOR EXTENDED ACCOUNTING

```
;CPU TIME USED PER PROCESSOR
B.CPUT: 'L'.BLKW 8.
B.CTXP: 'L'.BLKW 8.
                                          ; NUMBER OF CONTEXT SWITCHES (PER PROC)
                                         ; NUMBER OF IDLE LOOP ENTRIES (PER PROC)
; NUMBER OF I/O INITIATIONS (PER PROC)
; MASS STORE I/O COMPLETIONS (PER PROC)
B.IDCT: 'L'.BLKW 8.
B.QIOC: 'L'.BLKW 8.
B.MIOC: 'L'.BLKW 8.
                                          ;ALL I/O COMPLETIONS (PER PROC)
B.AIOC: 'L'.BLKW 8.
B.IPSN: 'L'.BLKW 8.
B.IPRC: 'L'.BLKW 8.
B.CKEX: 'L'.BLKW 2
B.CFCL: 'L'.BLKW 2
                                         ; IP INTERRUPTS SENT (PER PROC)
                                        ; IP INTERRUPTS RCVD (PER PROC)
; CHECKPOINT DUE TO EXTEND TASKS
; CALLS TO CFORK
; CFORK FORKS
B.CFRK: 'L'.BLKW 2
B.TLOD: 'L'.BLKW 2
B.RLOD: 'L'.BLKW 2
                                          ;TASK LOADS
                                          ; REGION LOADS
            .BLKW 2
.BLKB 82.
B.SLEN
                                         BUMP SIZE TO NEXT 32 WORD BLOCK
B.SSBL=.-B.SLEN
                                         ; EXTRA LENGTH OF SYSTEM STATISTICS BLOCK
$$$= <.+77>/100
                                          ;SAB LENGTH (ROUNDED UP TO 32 WORD BOUND)
; SYSLOG STARTUP TRANSACTION
. =
        $$$HLN
                                          ;START AFTER HEADER
B.SSLN='B'
                                         ;TRANSACTION LENGTH
; CRASH RECOVERY TRANSACTION
                                   ;START AFTER STANDARD HEADER
;TIME OF LAST SCAN BEFORE CRA
        $$$HLN
.=
                                         ;TIME OF LAST SCAN BEFORE CRASH
B.CTLS:'L'.BLKW 3
B.CSRT:'L'.BLKW 1
                                         ;SCAN RATE BEFORE CRASH
                                         ; ASCII TEXT EXPLAINING CRASH
B.CRSN: 'L'.BLKB 60.
B.CLEN='B'.
                                          ;TRANSACTION LENGTH
; INVALID LOGIN TRANSACTION
          $$$HLN
B.INAM: 'L'.BLKB 14.
B.IUIC: 'L'.BLKB 6.
B.IPSW: 'L'.BLKB 6.
                                      ; NAME FROM LOGIN LINE
;UIC FROM LOGIN LINE
;PASSWORD FROM LOGIN LINE
B.ILEN='B'.
                                          TRANSACTION LENGTH
; DEVICE TRANSACTIONS (ALLOCATION, DEALLOCATION, MOUNT, AND DISMOUNT)
          $$$HLN
B.DNAM: 'L'.BLKW 1
B.DUNT: 'L'.BLKB 1
B.DLEN='B'.
                                          ;ASCII DEVICE NAME
                                        OCTAL DEVICE UNIT NUMBER; TRANSACTION LENGTH FOR ALL, DEA, AND DMO; UNUSED BYTE
              .BLKB 1
```

```
B.DLBL: 'L'.BLKW 6
                                ; VOLUME LABEL
B.DMST: 'L'.BLKW 1
                                ; MOUNT STATUS BITS
B.DUIC: 'L'.BLKW 1
                                ;OWNER UIC
B.DVPR: 'L'.BLKW 1
                                ; VOLUME PROTECTION CODE
B.DACP: 'L'.BLKW 2
                                ; NAME OF ACP FOR DEVICE
B.MLEN='B'.
                                 ; LENGTH OF MOUNT TRANSACTION
;+
; STATUS BITS FOR MOUNT STATUS MASK (B.DMST)
                                 ; DEVICE IS MOUNTED SHARED
BM.SHR='B'1
                                 ; DEVICE IS MOUNTED NOSHARE
BM.NOS='B'2
                                 ; DEVICE IS MOUNTED FOR THE SYSTEM (PUBLIC)
BM.SYS='B'4
BM.FOR='B'10
                                :DEVICE IS MOUNTED FOREIGN
; SYSTEM TIME CHANGE TRANSACTION
       $$$HLN
_ =
                                ;OLD TIME (YR, MON, DAY, HR, MIN, SEC);NEW TIME (YR, MON, DAY, HR, MIN, SEC)
B.TOLD: 'L'.BLKB 6
B.TNEW: 'L'.BLKB 6
B.TMLN='B'.
                                 ;TRANSACTION LENGTH
; PRINT DESPOOLER TRANSACTION
        $$$HLN
                                ;START AFTER HEADER
                                ;PRINT JOB NAME (RAD50)
B.PNAM: 'L'.BLKW 3
B.PPGS: 'L'.BLKW 1
                                ; PAGE COUNT
B.PNFI: 'L'.BLKW 1
                                ; NUMBER OF FILES PRINTED
                                ;FORM NUMBER
B.PFRM: 'L'.BLKB 1
                                ;PRINT PRIORITY
B.PPRI: 'L'.BLKB 1
                                ; PRINT DEVICE NAME (ASCII)
B.PDEV: 'L'.BLKW 1
                                ;UNIT NUMBER OF PRINT DEVICE
B.PPUN: 'L'.BLKB 1
B.PLEN='B'.
                                ;TRANSACTION LENGTH
;+
; CARD READER SPOOLING TRANSACTION
        $$$HLN
                                 ;START AFTER HEADER
B.RNAM: 'L'.BLKW 3
                                ;BATCH OR PRINT JOB NAME
                                NUMBER OF CARDS READ
B.RCDS: 'L'.BLKW 1
B.RDEV: 'L'.BLKW 1
                                ; READER DEVICE NAME (ASCII)
B.RUNT: 'L'.BLKB 1
                                ;UNIT NUMBER OF READER DEVICE
                                ;SUBMIT OR PRINT (0=SUBMIT, 1=PRINT)
B.RSOP: 'L'.BLKB 1
                                 ;TRANSACTION LENGTH
B.RLEN='B'.
;+
; LOGIN TRANSACTION
```

```
;START AFTER HEADER
       $$$HLN
. =
B.LUIC: 'L'.BLKW 1
                                ;LOGIN UIC
B.LNAM: 'L'.BLKB 14.
                                ;USER'S LAST NAME
                                ;AND FIRST INITIAL
          .BLKB 1
B.LLEN='B'.
                                ;TRANSACTION LENGTH
; RESET TRANSACTION PARAMETERS
; -
.=$$$HLN
                                 ;AFTER HEADER
B.OFID: 'L'.BLKW 3
                                 ;FILE-ID OF OLD TRN. FILE
B.ODNM: 'L'.BLKB 2
                                ; DEVICE OF OLD TRN. FILE
B.OUNT: 'L'.BLKW 1
                                ;UNIT OF OLD TRN. FILE
B.NFID: 'L'.BLKW 3
                                ;FILE-ID OF NEW TRN. FILE
B.NDNM: 'L'.BLKB 2
                                ; DEVICE OF NEW TRN. FILE
B.NUNT: 'L'.BLKW 1
                               ;UNIT OF NEW TRN. FILE
B.OEXS: 'L'.BLKW 1
                               ;EXT. SIZE FOR OLD TRN. FILE
B.NEXS: 'L'.BLKW 1
                               ;EXT. SIZE FOR NEW TRN. FILE
B.OSCR: 'L'.BLKW 1
                                ;OLD SCAN RATE IN SECONDS
B.NSCR: 'L'.BLKW 1
                               ; NEW SCAN RATE IN SECONDS
B.ODSC: 'L'.BLKW 1
B.NDSC: 'L'.BLKW 1
                               ;OLD STATISTICAL SCAN RATE
                                ; NEW STATISTICAL SCAN RATE
B.RTLN='B'.
;+
; TRANSACTION TYPES
        000 THRU 127
                                RESERVED FOR DEC USE
        128 THRU 255
                                RESERVED FOR CUSTOMER USE
;
;-
                                 ;SYSTEM ACCOUNT BLOCK (SAB)
BT.SAB='B'1
BT.UAB='B'2
                                ;USER ACCOUNT BLOCK (UAB)
BT.TAB='B'3
                                 ;TASK ACCOUNT BLOCK (TAB)
BT.SS='B'11
                                 ;SYSLOG STARTUP TRANSACTION
                                 ; INVALID LOGIN TRANSACTION
BT.INV='B'12
BT.TIM='B'13
                                 ;SYSTEM TIME CHANGE TRANSACTION
                               ; ALLOCATE DEVICE TRANSACTION
BT.ALL='B'14
BT.DEA='B'15
                                 ; DEALLOCATE DEVICE TRANSACTION
                                 ; MOUNT DEVICE TRANSACTION
BT.MOU='B'16
                                 ;DISMOUNT DEVICE TRANSACTION
BT.DMO='B'17
                                 ;PRINT DESPOOLER TRANSACTION
BT.PRT='B'20
                                 ;DISK ACCOUNTING BY DIRECTORY
BT.DIR='B'21
                                 ; (UNSUPPORTED)
BT.VOL='B'22
                                 ;DISK ACCOUNTING BY VOLUME
                                 ; (UNSUPPORTED)
BT.LOG='B'23
                                ;LOGIN TRANSACTION
BT.CRH='B'24
                                ;CRASH RECOVERY TRANSACTION
BT.DST='B'25
                                ; DEVICE STATISTICS (UCB EXTENSION)
                                ; RESET TRANSACTION PARAMETERS
BT.RTP='B'26
BT.INP='B'27
                                 ;CARD READER SPOOLING TRANSACTION
; STATUS MASK BIT DEFINITIONS (B.STM)
```

```
BS.ACT='B'200
                               :CONTROL BLOCK ACTIVE
                               :RECORD FROM "TMP" FILE AFTER SYSTEM CRASH
BS.CRH='B'100
BS.LGO='B'40
                               ;LOGGED OFF WITH OUTSTANDING ACTIVITY (UAB)
                               ;TASK'S TI: IS CO: (TAB ONLY)
BS.CO='B'40
BS.TML='B'20
                              ; TAB EXISTS ONLY FOR TIME LIMIT (TAB ONLY)
BS.SIL='B'20
                               ;SILENT LOGIN/LOGOUT (UAB ONLY)
BS.ZER='B'10
                               ;LAST CPU INTERVAL WAS OF LENGTH ZERO
BS.SCN='B'4
                               ;TRANSACTION READY FOR WRITE TO SCAN FILE
;+
; ACCOUNTING FEATURE MASK ($ACNFE)
                               ;STATISTICAL SCAN RATE
BF.DST='B'40000
BF.WRT='B'2000
                               FORCE SYSLOG TO WRITE ITS BUFFER
BF.SCN='B'1000
                               ;SCAN REQUESTED
BF.SLR='B'400
                               ;SYSLOG IS RUNNING (NOT STOPPED)
BF.ERR='B'200
                              ;ACCOUNTING STOPPED DUE TO FATAL ERROR
                              ;ACCOUNTING IS STARTING UP / SHUTTING DOWN
BF.STR='B'100
                              ;ACCUMULATE SYSTEM STATISTICS
BF.LSS='B'40
                              ; (POINT UAB TO SAB)
                              ;OUTPUT TO TRANSACTION FILE
BF.TRN='B'10
BF.XTK='B'4
                              ;CHECKPOINT REQUEST IS DUE TO EXTK$
BF.TSK='B'2
                              ; TASK ACCOUNTING TURNED ON
BF.XAC='B'1
                              ; EXTENDED ACCOUNTING ASSEMBLED IN
; SHUTDOWN CODES (B.SHDN)
; 1
               MAINTENANCE
 2
               REBOOT
;
; 3
               SCHEDULED SHUTDOWN
; 4
               ACCOUNTING SHUTDOWN BY TASK "SHUTUP"
; 5
B.MAXL='B'128.
                               ; MAXIMUM TRANSACTION LENGTH
                               ;MINIMUM TRANSACTION LENGTH
B.MINL='B'SSSHLN
*************************
        . PSECT
        .MACRO ACNDF$ X,Y
       . ENDM
       . ENDM
       .MACRO
               ACTDF$, L, B
       .ASECT
.=0
A.GRP:'L'
               .BLKB
                       3
                                      ; GROUP CODE (ASCII)
A.MBR: 'L'
               .BLKB
                       3
                                      ; MEMBER CODE
A.PSWD:'L'
               .BLKB
                       6
                                     ; PASSWORD
               .BLKB
                       14.
A.LNM:'L'
                                      ; LAST NAME
               .BLKB
                                      ; FIRST NAME
A.FNM:'L'
                       12.
A.LDAT: 'L'
                                      ; DATE OF LAST LOGON
               .BLKB
                       6
                                      ; FORMAT = (DD/MM/YY HH:MM:SS)
```

ACNDF\$ (Cont.)

```
A.NLOG: 'L'
                 .BLKB
                          2
                                           ; TOTAL NUMBER OF LOGONS
A.SYDV:'L'
                 .BLKB
                          4
                                           ; DEFAULT SYSTEM DEVICE
A.ACN: 'L'
                 .BLKW
                          1
                                           ;ACCOUNT NUMBER (BINARY)
A.CLI:'L'
                 .BLKW
                                           ; RAD50 USER CLI
                          2 .
                          2
                 .BLKW
                                           ; UNUSED
A.LPRV:'L'
                 .BLKW
                          1
                                           ;LOGIN PRIVILEGE WORD
                 .BLKW
A.SID:'L'
                          1
                                           ; SESSION IDENTIFIER
A.DDS:'L'
                 .BLKB
                          11.
                                           ;DEFAULT DIRECTORY STRING
                 .BLKB
                          1
                                           ;UNUSED BYTE
A.FPRO:'L'
                 .BLKW
                          1
                                           ;DEFAULT FILE PROTECTION
A.RLVL:'L'
                 .BLKW
                          1
                                           ;ACCOUNT RECORD REV. LEVEL
AR.LVL='B'401
A.SALT: 'L'
                 .BLKW
                          7
                                           ;16-BIT ENCRYPTION SALT VALUE
A.ENCT: 'L'
                 .BLKB
                          1
                                           ; ENCRYPTION TYPE
                                                    0 = PLAIN TEXT OR ENCRYPT
                                                    1 = PURDY-V ALGORITHM
                 .BLKB
                                           ;UNUSED
A.HPW:'L'
                 .BLKW
                          4
                                           ;HASHED PASSWORD
                 .IF DF
                         A$$LOG
A.TTY:'L'
                 .BLKB
                          5
                                           ;TERMINAL TTNNN FOR AUTO LOGIN
A.PRID: 'L'
                 .BLKB
                          1
                                           ; PRIMARY DAYS MASK
A.SECD:'L'
                 .BLKB
                          1
                                           ;SECONDARY DAYS MASK
A.PRIT:'L'
                 .BLKW
                          1
                                           ;PRIMARY DAYS TIME
A.SECT:'L'
                 .BLKW
                          1
                                           ;SECONDARY DAYS TIME
A.RLEN = 'B'
                 . ENDC
                          ; DF A$$LOG
A.LEN
        = 'B'
                 128.
                                           ;LENGTH OF CONTROL BLOCK
;
; BIT DEFINITIONS ON A.LPRV - LOGIN PRIVILEGE BITS
AL.SLV='B'
                 1
                                           ;SLAVE TERMINAL ON LOGIN
AL.DDS='B'
                 2
                                           ; INDICATOR FOR PROLOGUE 2 FORMAT
AL.SIL='B'
                 4
                                           ;SILENT LOGIN/LOGOUT
                 .IF DF A$$LOG
AL.AUT='B'
                 10
                                           ;AUTO LOGIN ENABLED
                                                                     ( * * )
AL.BND='B'
                 20
                                           ;BINDING ENABLED
                                                                     ('Y)
AL.RMT='B'
                 40
                                           ; REMOTE DIALUP 1=NO
AL.NET='B'
                 100
                                           ; NETWORK LOGIN 1=NO
AL.DIS='B'
                 200
                                           ;DISABLE THIS ACCOUNT FROM LOGIN
AL.PRI='B'
                                           ;PRIMARY DAYS LIMIT SET
                 400
AL.SEC='B'
                 1000
                                           ;SECONDARY DAYS LIMIT SET
                 .ENDC ; DF A$$LOG
;
        . PSECT
        . ENDM
```

CLKDF\$

.MACRO CLKDF\$, L, B

```
; CLOCK QUEUE CONTROL BLOCK OFFSET DEFINITIONS
; CLOCK QUEUE CONTROL BLOCK
; THERE ARE FIVE TYPES OF CLOCK QUEUE CONTROL BLOCKS. EACH CONTROL BLOCK
; HAS THE SAME FORMAT IN THE FIRST FIVE WORDS AND DIFFERS IN THE REMAINING
; THREE. THE FOLLOWING CONTROL BLOCK TYPES ARE DEFINED:
C.MRKT='B'0
                                   ;MARK TIME REQUEST
C.SCHD='B'2
                                   ;TASK REQUEST WITH PERIODIC RESCHEDULING
                                   ;SINGLE SHOT TASK REQUEST
;SINGLE SHOT INTERNAL SYSTEM SUBROUTINE
C.SSHT='B'4
C.SYST='B'6
                                   ; (IDENT)
C.SYTK='B'8.
                                   ;SINGLE SHOT INTERNAL SYSTEM SUBROUTINE
                                   ; (TASK)
C.CSTP='B'10.
                                   ;CLEAR STOP BIT (CONDITIONALIZED ON
                                   ; SHUFFLING)
; CLOCK QUEUE CONTROL BLOCK TYPE INDEPENDENT OFFSET DEFINTIONS
         .ASECT
·=0
C.LNK:'L' .BLKW 1
                                  ;CLOCK QUEUE THREAD WORD
C.RQT:'L' .BLKB 1
C.EFN:'L' .BLKB 1
                                  ; REQUEST TYPE
                                  ; EVENT FLAG NUMBER (MARK TIME ONLY)
C.TCB: 'L' .BLKW 1
                                  ;TCB ADDRESS OR SYSTEM SUBROUTINE
                                   ; IDENTIFICATION
C.TIM: 'L' .BLKW 2
                                   ; ABSOLUTE TIME WHEN REQUEST COMES DUE
; CLOCK QUEUE CONTROL BLOCK-MARK TIME DEPENDENT OFFSET DEFINITIONS
.=C.TIM+4
                                   ;START OF DEPENDENT AREA
C.AST:'L' .BLKW 1
                                   ;AST ADDRESS
C.SRC:'L' .BLKW 1
C.DST:'L' .BLKW 1
                                   ;FLAG MASK WORD FOR 'BIS' SOURCE
                                   ;ADDRESS OF 'BIS' DESTINATION
         .BLKW
                                   ;UNUSED
 CLOCK QUEUE CONTROL BLOCK-PERIODIC RESCHEDULING DEPENDENT OFFSET DEFINITIONS
.=C.TIM+4
                                   ;START OF DEPENDENT AREA
C.RSI:'L' .BLKW 2
C.UIC:'L' .BLKW 1
                                   ; RESCHEDULE INTERVAL IN CLOCK TICKS
                                  ;SCHEDULING UIC
C.UAB: 'L'.BLKW 1
                                  ; POINTER TO ASSOCIATED UAB
; CLOCK QUEUE CONTROL BLOCK-SINGLE SHOT DEPENDENT OFFSET DEFINITIONS
```

CLKDF\$ (Cont.)

```
;START OF DEPENDENT AREA
.=C.TIM+4
        .BLKW
                                  ;TWO UNUSED WORDS
        .BLKW
                                  ;SCHEDULING UIC
                 1
         .BLKW
                                  ;C.UAB
; CLOCK QUEUE CONTROL BLOCK-SINGLE SHOT INTERNAL SUBROUTINE OFFSET
    DEFINITIONS
; THERE ARE TWO TYPE CODES FOR THIS TYPE OF REQUEST: 'L'
    TYPE 6=SINGLE SHOT INTERNAL SUBROUTINE WITH A 16 BIT VALUE AS AN
      IDENTIFIER.
    TYPE 8=SINGLE SHOT INTERNAL SUBROUTINE WITH A TCB ADDRESS AS AN
      IDENTIFIER.
                                  ;START OF DEPENDENT AREA
.=C.TIM+4
C.SUB: 'L' .BLKW 1
C.AR5: 'L' .BLKW 1
                                  ;SUBROUTINE ADDRESS
                                  ; RELOCATION BASE (FOR LOADABLE DRIVERS)
                                  ;URM TO EXECUTE ROUTINE ON ; (MP SYSTEMS, C.SYST ONLY)
C.URM: 'L'.BLKW 1
                                  ;UNUSED
        .BLKW
C.LGTH='B'.
                                  ;LENGTH OF CLOCK QUEUE CONTROL BLOCK
        NAMED DIRECTORY SUPPORT
; OFFSET C.EFN WILL BE REUSED IN SCHEDULING REQUESTS TO INDICATE IF C.UIC
; HAS A VALID UIC (C.NAM=0) OR IF C.UIC POINTS TO A CONTEXT BLOCK WITH A
; DDS. IN SCHEDULE REQUESTS, C.EFN WILL BE REFERRED TO AS C.NAM.
C.NAM='B'C.EFN
                                  ;FLAG WORD FOR USE WITH NAME DIRECTORIES
; DEPENDING ON THE VALUE IN C.NAM, C.UIC WILL CONTAIN A UIC OR A POINTER
; TO A CONTEXT BLOCK. C.UIC WILL BE REFERED TO AS C.CTX WHEN IT CONTAINS
; A POINTER TO A CONTEXT BLOCK.
C.CTX='B'C.UIC
                                  ; POINTER TO CONTEXT BLOCK
        . PSECT
        .MACRO CLKDF$ X,Y
        . ENDM
        .ENDM
```

CTBDF\$

```
.MACRO
                      CTBDFS
        ; CONTROLLER TABLE (CTB)
        ; THE CONTROLLER TABLE IS A CONTROL BLOCK THAT CONTAINS A
        ; VECTOR OF KRB ADDRESSES. THIS VECTOR MAY BE ADDRESSED
        ; BY THE CONTROLLER INDEX TAKEN FROM THE INTERRUPT PS BY
        ; $INTSV/$INTSE.
                 .ASECT
        .=177756
                                ;START OF CLOCK BLOCK (IF ANY)
177756 L.CLK: .BLKW
177776 L.ICB: .BLKW 1
000000 L.LNK: .BLKW 1
000002 L.NAM: .BLKW 1
000004 L.DCB: .BLKW 1
000006 L.NUM: .BLKB 1
                                 ; ICB CHAIN FOR THIS CTB
                                 ;CTB LINK WORD
                                  GENERIC CONTROLLER NAME (ASCII)
                                 ;DCB ADDRESS OF THIS DEVICE
                                 ; NUMBER OF KRB ADDRESSES IN TABLE
000007 L.STS: .BLKB 1
                                 CTB STATUS BYTE
000010 L.KRB: .BLKW 1
                                 ;START OF KRB ADDRESSES
        ; NOTE: THE SYMBOL $XYCTB:: IS DEFINED FOR EACH CTB,
        ; WHERE THE CHARACTERS XY ARE THE SAME AS THOSE STORED IN
        ; L.NAM. THESYMBOL IS NOT THE START OF THE CTB, BUT THE
        ; START OFTHE KRB TABLE AT THE END OF THE CTB (L.KRB).
               . PSECT
        ; CONTROLLER TABLE STATUS BYTE BIT DEFINITIONS
                                  ;CLOCK BLOCK AT TOP OF CTB (1=YES)
        LS.CLK=1
        LS.MDC=2
                                  ;MULTIDRIVER CTB (1=YES)
        LS.CBL=4
                                  ;CLOCK BLK LINKED INTO CLK Q (1=YES)
                                  ;CONT. USE COMMON INT TABLE (1=YES)
        LS.CIN=10
        LS.NET=20
                                  ;THIS IS DECNET DEVICE.
                                  ; ICB'S IN K.PRM
                                  ; (1=YES)
        ; COMMON INTERRUPT TABLE DISPATCH ENTRY POINTS
        CI.CSR=-6
                                  CSR TEST ENTRY POINT
                                  KRB STATUS CHANGE ENTRY POINT
        CI.KRB=-4
        CI.PWF=-2
                                  ; POWERFAIL ENTRY POINT
                                  ;COMMON INTERRUPT ADDRESS
        CI.INT=0
        CI.DCB=2
                                  ;START OF DCB TABLE (0 ENDS TABLE)
```

DCBDF\$

```
.MACRO DCBDF$, L, B
 DEVICE CONTROL BLOCK
; THE DEVICE CONTROL BLOCK (DCB) DEFINES GENERIC INFORMATION ABOUT A DEVICE
  TYPE AND THE LOWEST AND HIGHEST UNIT NUMBERS. THERE IS AT LEAST ONE DCB
; FOR EACH DEVICE TYPE IN A SYSTEM. FOR EXAMPLE, IF THERE ARE TELETYPES IN A
; SYSTEM, THEN THERE IS AT LEAST ONE DCB WITH THE DEVICE NAME 'TT'. IF PART
; OF THE TELETYPES WERE INTERFACED VIA DL11-A'S AND THE REST VIA A DH11, THEN
; THERE WOULD BE TWO DCB'S. ONE FOR ALL DL11-A INTERFACED TELETYPES, AND ONE
; FOR ALL DH11 INTERFACED TELETYPES.
        .ASECT
. = 0
                                ;LINK TO NEXT DCB
D.LNK:'L' .BLKW 1
D.UCB:'L' .BLKW 1
D.NAM:'L' .BLKW 1
D.UNIT:'L' .BLKB 1
                                ; POINTER TO FIRST UNIT CONTROL BLOCK
                                GENERIC DEVICE NAME
                                 ;LOWEST UNIT NUMBER COVERED BY THIS DCB
        .BLKB
                                 ;HIGHEST UNIT NUMBER COVERED BY THIS DCB
               1
D.UCBL: 'L' .BLKW 1
                                 ; LENGTH OF EACH UNIT CONTROL BLOCK IN BYTES
D.DSP:'L' .BLKW 1
                                 ; POINTER TO DRIVER DISPATCH TABLE
D.MSK:'L' .BLKW 1
                                 ;LEGAL FUNCTION MASK CODES 0-15.
                                 ;CONTROL FUNCTION MASK CODES 0-15.
          .BLKW 1
          .BLKW 1
                                 ; NOP'ED FUNCTION MASK CODES 0-15.
                                 ;ACP FUNCTION MASK CODES 0-15.
          .BLKW 1
                                 ;LEGAL FUNCTION MASK CODES 16.-31.
          .BLKW 1
                                 ;CONTROL FUNCTION MASK CODES 16.-31.
          .BLKW 1
                                 ; NOP'ED FUNCTION MASK CODES 16.-31.
          .BLKW 1
                                 ;ACP FUNCTION MASK CODES 16.-31.
          .BLKW 1
D.PCB:'L' .BLKW 1
                                 ;LOADABLE DRIVER PCB ADDRESS
        . PSECT
; DRIVER DISPATCH TABLE OFFSET DEFINITIONS
D. VDEB= 'B'-2
                                 ; DEALLOCATE BUFFER (S)
D. VCHK= 'B'-4
                                  ; ADDRESS OF ROUTINE CALLED TO VALIDATE
                                 ; AND CONVERT THE LBN. USED BY DRIVERS
                                 ;THAT SUPPORT SEEK OPTIMIZATION.
D. VNXC= 'B'-4
                                 ; ADDRESS OF ROUTINE IN TTDRV CALLED TO
                                 ; HAVE IT SEND THE NEXT COMMAND IN THE
                                 ;TYPEAHEAD BUFFER TO MCR...
D. VTOU= 'B'-10
                                 ; ADDRESS OF ROUTINE IN TTDRV CALLED
                                 FOR OUTPUT COMPLETION
D.VTIN='B'-6
                                 ; ADDRESS OF ROUTINE IN TTDRV CALLED
                                 ;FOR INPUT FROM THE CT FIRMWARE TASK
D.VINI='B'0
                                 ;DEVICE INITIATOR
D. VCAN='B'2
                                 ; CANCEL CURRENT I/O FUNCTION
D.VOUT='B'4
                                 ; DEVICE TIMEOUT
D.VPWF='B'6
                                 ; POWERFAIL RECOVERY
```

D.VKRB='B'10 D.VUCB='B'12 ; CONTROLLER STATUS CHANGE ENTRY

;UNIT STATUS CHANGE ENTRY

DCBDF\$ (Cont.)

.IF NB SYSDEF

D.VINT='B'14

;BEGINNING OF INTERRUPT DATA

.ENDC

.MACRO DCBDF\$, X, Y, Z

.ENDM

.ENDM

EPKDF\$

.MACRO EPKDF\$, L, B

```
;+
; Error Message Block Definitions
           .ASECT
 Header Subpacket
            | Subpacket Length in Bytes
           | Subpacket Flags
           | Format Identification | Operating System Code |
           Operating System Identification
           | Flags | Context Code
           | Entry Sequence
           | Error Sequence
           +----
           | Entry Type Subcode | Entry Type Code
           | Time Stamp
           +----+
          | Reserved | Processor Type
           +----+
           | Processor Identification (URM)
              .BLKW 1 ; Subpacket length in bytes
.BLKW 1 ; Subpacket Flags
.BLKB 1 ; Operating System Code
.BLKB 1 ; Format Identification
.BLKB 4 ; Operating System Identification
.BLKB 1 ; Context Code
.BLKB 1 ; Flags
.BLKW 1 ; Entry Sequence Number
.BLKW 1 ; Error Sequence Number
.BLKW 1 ; Entry Code
.BLKB 1 ; Entry Type Code
.BLKB 1 ; Entry Type Subcode
.BLKB 1 ; Entry Type Subcode
.BLKB 1 ; Processor Type
.BLKB 1 ; Reserved
.BLKB 1 ; Reserved
.BLKW 1 ; Processor Identification (URM)
E$HLGH:'L'
E$HSBF: 'L'
E$HSYS: 'L'
ESHIDN: 'L'
E$HSID: 'L'
E$HCTX: 'L'
E$HFLG: 'L'
E$HENS: 'L'
E$HERS: 'L'
E$HENC: 'L'
E$HTYC: 'L'
E$HTYS: 'L'
E$HTIM: 'L'
E$HPTY: 'L'
E$HURM: 'L'
                      .EVEN
E$HLEN: 'L'
                                             ; Length
```

```
Subpacket Flags for E$HSBF
        SM.ERR = 'B'
                          ; Header Subpacket
2 ; Task Subpacket
4 ; Device Identified
                             1
                                ; Error Packet
        SM.HDR = 'B'
                             1 ; Header Subpacket
        SM.TSK = 'B'
        SM.DID
                = 'B'
                             4 ; Device Identification Subpacket
        SM.DOP
               ='B'
                            10 ; Device Operation Subpacket
                                ; Device Activity Subpacket
        SM.DAC
                ='B'
                            20
                                ; Data Subpacket
                ='B'
        SM.DAT
                             40
                = 'B'
                                ; 22-bit massbus controller present
        SM.MBC
                          20000
               ='B'
                                ; Error Log Command Packet
        SM.CMD
                         40000
        SM.ZER = 'B'
                        100000
                                ; Zero I/O Counts
 Codes for field E$HIDN
;
        EH\$FOR = 'B'
                              2 ; Current packet format
 Flags for the error log flags byte ($ERFLA) in the Executive
        ES.INI
                              1
                                ; Error log initialized
                                ; Error log receiving data packets
        ES.DAT
                ='B'
                              2
                                 ; Error limiting enabled
        ES.LIM
                ='B'
                              4
        ES.LOG
               ='B'
                             10
                                 ; Error logging enabled
; Type and Subtype Codes for fields E$HTYC and E$HTYS
        Symbols with names E$Cxxx are type codes for field E$HTYC,
        Symbols with names E$Sxxx are subtype codes for field E$HTYS.
                                ; Error Log Control
        E$CCMD
               = 'B'
                             1 ;
        E$SSTA
               ='B'
                                         Error Log Status Change
                = 'B'
                             2 ;
        E$SSWI
                                         Switch Logging Files
                             3 ;
        E$SAPP
                ='B'
                                         Append File
                = 'B'
                             4 ;
        E$SBAC
                                         Declare Backup File
                             5 ;
        ESSSHO
               = 'B'
                                         Show
        E$SCHL
                ='B'
                             6 ;
                                         Change Limits
                             2 ; Device Errors
                = 'B'
        E$CERR
                = 'B'
                             1 ;
                                         Device Hard Error
        E$SDVH
                             2;
        E$SDVS
                ='B'
                                         Device Soft Error
               = 'B'
        E$STMO
                                         Device Interrupt Timeout (HARD)
               = 'B'
        E$SUNS
                              4
                                ;
                                         Device Unsolicited Interrupt
        E$STMS
               = 'B'
                             5
                                         Device Interrupt Timeout (SOFT)
               = 'B'
        E$CDVI
                             3 ; Device Information
        E$SDVI
               = 'B'
                             1
                                         Device Information Message
                                ;
                                ; Device Control Information
        E$CDCI
                = 'B'
                              4
        E$SMOU
                = 'B'
                             1
                                         Device Mount
                                ;
                = 'B'
                             2 ;
        E$SDMO
                                         Device Dismount
                ='B'
                             3 ;
        E$SRES
                                         Device Count Reset
        E$SRCT
               ='B'
                                         Block Replacement
        E$CMEM
                = 'B'
                             5 ; Memory Detected Errors
        E$SMEM
               ='B'
                             1 ;
                                         Memory Error
```

```
E$CSYS = 'B'
                             6 ; System Control Information
         E$SPWR = 'B'
                                1 ;
                                             Power Recovery
         E$CCTL = 'B'
                               7 ; Control Information
                             1 ;
2 ;
3 ;
4 ;
5 ;
         E$STIM = 'B'
                                             Time Change
                                            System Crash
         E$SCRS = 'B'
         E$SLOA = 'B'
                                            Device Driver Load
        E$SUNL = 'B'
E$SHRC = 'B'
E$SMES = 'B'
                                            Device Driver Unload
                                            Reconfiguration Status Change
                                             Message
        E$CCPU ='B' 10 ; CPU Detected Errors
E$SINT ='B' 1 ; Unexpected Int
E$SINT ='B' 2 ; Unexpected Int
                                             Unexpected Interrupt
                                             Unexpected Interrupt
; Subtype code 2 is reserved. Use 3 for the next following Subtype code
         E$CSDE = 'B'
                               11 ; Software Detected Events
         E$SABO = 'B'
                                1 ; Task Abort
 Codes for Context Code entry E$HCTX
         EH$NOR = 'B'
                                 1 ; Normal Entry
                             2 ; Start Entry
3 ; Crash Entry
         EH$STA = 'B'
         EH$CRS = 'B'
; Codes for Flags entry E$HFLG
        EH$VIR ='B' 1 ; Addresses are virtual
EH$EXT ='B' 2 ; Addresses are extended
EH$COU ='B' 4 ; Error counts supplied
EH$QBS ='B' 10 ; Q-BUS CPU
EH$LMR ='B' 20 ; Limit reached
; Task Subpacket
         | Task Subpacket Length
         +----
           Task Name in RAD50
         | Task UIC
         | Task TI: Device Name
;
         +----+
                                  | Task TI: Unit Number
.=0
```

```
.BLKW 1 ; Task Subpacket Length
.BLKW 2 ; Task Name in RAD50
.BLKW 1 ; Task UIC
.BLKB 2 ; Task TI: Device Name
.BLKB 1 ; Task TI: Unit
.BLKB 1 ; Flags
E$TLGH: 'L'
E$TTSK: 'L'
E$TUIC: 'L'
ESTTID: 'L'
E$TTIU: 'L'
E$TFLG:'L'
        .EVEN
ESTLEN: 'L'
; Flags for entry E$TFLG
        ET$PRV = 'B'
                             1 ; Task is Privileged
                         2 ; Terminal is Privileged
        ETSPRI = 'B'
; Device Identification Subpacket
          Device Identification Subpacket Length
          Device Mnemonic Name
          Controller Number | Device Unit Number
          Physical Subunit # | Physical Unit #
          Physical Device Mnemonic (RSX-11M-PLUS only)
        Reserved
                                 Flags
          Volume Name of Mounted Volume
          Pack Identification
            -----
          Device Type Class
          _____
          Device Type
          I/O Operation Count Longword
          Hard Error Count | Soft Error Count
          Blocks Transferred Count (RSX-11M-PLUS only)
         Cylinders Crossed Count (RSX-11M-PLUS only)
```

```
.=0
                   .BLKW 1 ; Device Identification Subpacket Length .BLKW 1 ; Device Mnemonic Name .BLKB 1 ; Device Unit Number .BLKB 1 ; Controller Number
E$ILGH: 'L'
E$ILDV:'L'
ESILUN: 'L'
E$IPCO:'L'
                                   ; Controller Number
ESIPUN: 'L'
                    .BLKB
                                      ; Physical Unit Number
E$IPSU:'L'
                    .BLKB 1
                                       ; Physical Subunit Number
                    .IF DF R$$MPL
E$IPDV:'L'
                    .BLKW
                            1
                                  ; Physical Device Mnemonic
                    .ENDC ; R$$MPL
E$IFLG: 'L'
                    .BLKB 1
                                       ; Flags
                    .BLKB 1
                   .BLKB 1 ; Reserved ; Volume Name .BLKB 4 ; Pack Identification ; Device Type
                                      ; Reserved
E$IVOL: 'L'
ESIPAK: 'L'
                                      ; Pack Identification
E$IDEV:'L'
                                      ; Device Type
                   .BLKW 1 ; Device Type Class
.BLKW 2 ; Device Type
.BLKW 2 ; I/O Operation Count Longword
.BLKB 1 ; Soft Error Count
.BLKB 1 ; Hard Error Count
ESIDCL: 'L'
ESIDTY: 'L'
E$IOPR:'L'
E$IERS:'L'
E$IERH:'L'
                    .IF DF R$$MPL
E$IBLK:'L'
                    .BLKW
                              2
                                       ; Blocks transferred count
E$ICYL: 'L'
                    .BLKW
                             2
                                       ; Cylinders crossed count
                    .ENDC ; R$$MPL
          .EVEN
E$ILEN: 'L'
                                       ; Subpacket Length
 Flags for field E$IFLG
         EI$SUB = 'B'
                                   1 ; Subcontroller device
                   .IF DF R$$MPL
          EI$NUX = 'B'
                                  2 ; No UCB extension, data invalid
                   .ENDC ; R$$MPL
; Device Operation Subpacket
           Device Operation Subpacket Length
            Task Name in RAD50
          | Task UIC
          | Task TI: Logical Device Mnemonic
```

```
+----+
                                          Task TI: Device Unit
          | I/O Function Code
                                          | Operation Flags
          +____+
            Transfer Operation Address
          | Transfer Operation Byte Count
;
            ------
;
          Maximum Retries Retries Left
;
          +-----
.=0
              .BLKW 1 ; Subpacket Length
.BLKW 2 ; Task Name in RAD50
.BLKW 1 ; Task UIC
.BLKB 2 ; Task TI: Logical Device Mnemonic
.BLKB 1 ; Task TI: Logical Device Unit
.BLKB 1 ; Reserved
.BLKW 1 ; I/O Function Code
.BLKB 1 ; Operation Flags
.BLKB 1 ; Reserved
.BLKB 1 ; Reserved
.BLKW 2 ; Transfer Operation Address
.BLKW 1 ; Transfer Operation Byte Count
.BLKB 1 ; Retries Left
.BLKB 1 ; Maximum Retries
E$OLGN: 'L'
E$OTSK: 'L'
E$OUIC: 'L'
E$OTID: 'L'
ESOTIU: 'L'
E$OFNC: 'L'
E$OFLG: 'L'
E$OADD: 'L'
E$OSIZ:'L'
E$ORTY: 'L'
          .EVEN
E$OLEN: 'L'
                                        ; Device Operation Subpacket Length
; Flags for field E$OFLG
          EO$TRA ='B' 1 ; Transfer Operation
EO$DMA ='B' 2 ; DMA Device
EO$EXT ='B' 4 ; Extended Addressing Device
EO$PIP ='B' 10 ; Device is positioning
EO$IIO ='B' 20 ; Internal I/O operation
; I/O Activity Subpacket
          | I/O Activity Subpacket Length
             .=0
E$ALGH: 'L' .BLKW 1 ; Subpacket Length
```

```
I/O Activity Subpacket Entry
         _____+
          Logical Device Name Mnemonic
          _______
          Controller Number | Logical Device Unit
          __________
          Physical Subunit # | Physical Unit Number |
          _______
        | Physical Device Mnemonic (RSX-11M-PLUS only)
         ----+
        | Task TI: logical unit | Device flags
         -----<del>-</del>
        | Requesting Task Name in RAD50
        | Requesting Task UIC
        | Task TI: Logical Device Name
        +-------
        | I/O Function Code
                                Flags
        Reserved
        | Transfer Operation Address
        +------
        | Transfer Operation Byte Count
          . = 0
              .BLKW l ; Logical Device Name Mnemonic
.BLKB l ; Logical Device Unit
.BLKB l ; Controller Number
.BLKB l ; Physical Unit Number
.BLKB l ; Physical Subunit Number
E$ALDV: 'L'
E$ALUN: 'L'
E$APCO:'L'
E$APUN: 'L'
E$APSU: 'L'
                .IF DF R$$MPL
E$APDV: 'L'
                                 ; Physical Device Mnemonic
                .BLKW
                         1
                . ENDC
               .BLKB 1 ; Device flags
.BLKB 1 ; Task TI: Logical Unit
.BLKW 2 ; Requesting Task Name in RAD50
.BLKW 1 ; Requesting Task UIC
.BLKW 1 ; Task TI: Logical Device Name
.BLKW 1 ; I/O Function Code
.BLKB 1 ; Flags
.BLKB 1 ; Reserved
.BLKW 2 ; Transfer Operation Address
.BLKW 1 ; Transfer Operation Byte Count
E$ADFG: 'L'
ESATIU: 'L'
EŞATSK: 'L'
E$AUIC: 'L'
E$ATID: 'L'
E$AFNC: 'L'
E$AFLG: 'L'
E$AADD: 'L'
E$ASIZ: 'L'
        .EVEN
```

```
E$ALEN: 'L'
                                      ; Subpacket Entry Length
; Flags for field E$ADFG
          EA$SUB = 'B'
                                   1 ; Subcontroller device
                    .IF DF R$$MPL
          EA$NUX = 'B'
                                    2 ; No UCB extension, data invalid
                    .ENDC ; R$$MPL
; Flags for field E$AFLG
                               1 ; Transfer Operation
2 ; DMA Device
4 ; Device has Extended Addressing
10 ; Device is positioning
20 ; Internal I/O operation
          EA$TRA = 'B'
          EA$DMA = 'B'
          EASEXT = 'B'
          EASPIP = 'B'
          EASIIO = 'B'
          . PSECT
; FLAG DEFINITIONS FOR ERROR LOG FEATURE MASK
                  ='B'
                                       ;SET - Inhibit Operator Console Messages
          EL.ICM
                                    ;SET - Special File Formats Enabled
;SET - Process MOU/DMO In Special Files
                  = 'B '
          EL.SEF
                             2
          EL.MOU = 'B'
          .MACRO EPKDF$ X,Y
          .ENDM
          . ENDM
```

EVNDF\$

.MACRO EVNDF\$ L,B,LST

```
EVNDF$ -- Event Packet Definitions
        This module contains a macro which defines the offsets and field
        values for TSA Event Packets (TEP's). These packets are used to
        pass data and status information between system/components that
        provide Digital's Terminal Software Architecture support on RSX.
 Explicit Inputs:
                ":" for global offset definitions
                "=" for global bit/value definitions
        В
                "LIST" for macro expansion listing
        LST
 Implicit Inputs:
        NONE
  Outputs:
        Symbols defined as described above.
        Listing as described above.
;
 General packet header format
        .ASECT
                                 ; Define offsets absolutely
        .=0
E.VLNK: 'L'
                 .BLKW
                         1
                                 ; Link word
                                 ; Packet size
E. VSIZ: 'L'
                .BLKB
                         1
E.VTYP:'L'
                        1
                                 ; Packet type
                .BLKB
E.VUCB: 'L'
                .BLKW
                                 ; Terminal UCB address
 E.VTYP Values
ET.LOW='B'0
                                 ; Lowest valid type code
ET.QIO='B'0
                                 ; QIO (distinguishes QIO packet from TEP)
ET.BND='B'2
                                 ; Bind Request
ET.UNB='B'4
                                 ; Unbind Request
ET.BCP='B'6
                                 ; Bind Complete
ET.REJ= 'B'10
                                 ; Bind Reject
ET.DIS='B'12
                                 ; Disconnect Notification
ET.DCP= 'B'14
                                 ; Disconnect Complete
ET.ICS='B'16
                                 ; Input Count State Change
ET.00B='B'20
                                 ; Out-of-Band (OOB)
ET.ONO='B'22
                                 ; Abnormal Termination Request
ET.PHO='B'24
                                 ; Physical Terminal Disconnected
ET.HI='B'24
                                 ; Highest valid type code
```

EVNDF\$ (Cont.)

```
;
        The following definitions are for packet types that require
        passing additional information in the packets. All other
        packet types use the general packet format described above.
; Bind Request packet (Terminal Management Mode --> Network)
        .=E.VUCB+2
E. VBCT: 'L'
                 .BLKW
                                 ; Count of nodes (One for now)
E. VBND: 'L'
                 .BLKB
                                 ; Node name
                         6
E. VBLN: 'L'
                                 ; Length of bind request
; Input Count State Change, Out-Of-Band packets (TTDRV --> Network)
; And Modem Hang-up packets (TSA... --> Network)
        .=E.VUCB+2
                                 ; Doubleword address of packet...
E.VAPR:'L'
                .BLKW
E. VADR: 'L'
                .BLKW
                         1
                                 ; ...queueing routine
E.VFLG:'L'
                .BLKW
                         7
                                 ; Flag
; Input Count State Change
        .=E.VFLG+2
E.VSLN:'L'
                                 ; Length of Input state message
; 00B
        .=E.VFLG+2
                                 ; Out-of-Band bitmasks
E.VOBM: 'L'
                .BLKW
                         6
E.VHDR: 'L'
                .BLKW
                         2
                                 ; Type-ahead buffer header
                                 ; Type-ahead buffer
E.VTAB: 'L'
                .BLKB
                         10.
E.VOLN: 'L'
                                 ; Length of OOB packet
; Terminal Management Switch Characters
        .=E.VFLG+2
E.VSWC: 'L'
                .BLKW
                                 ; Terminal management switch characters
                         1
E.VTLN: 'L'
                                 ; Length of Switch Character packet
        Bit values in flag word (E.VFLG). For convenience some bits have
;
        corresponding bits in the AST Control Block flag word (A.PRM+5).
```

EVNDF\$ (Cont.)

```
EF.NCO='B'1
                                 ; All non-control characters are out-of band
EF.NOI='B'2
                                 ; All non-control OOB are include-OOB
EF.AST='B'10
                                 ; Reserved bit synonymous with TF.AST
EF.LCK='B'40
                                 ; Reserved bit synonymous with AF.LCK
EF.QUE='B'100
                                 ; TEP is queued
EF.MDE='B'200
                                 ; TEP is marked for delete
; Unbind Request packet (TMM --> Network)
        .=E.VUCB+2
E.VULN: 'L'
                                 ; Length of Unbind message
; Connect Reject notification packet (Network --> TMM)
        .=E.VUCB+2
E.VRR:'L'
                .BLKW
                                 ; Reason for Rejection
E.VRLN: 'L'
                                 ; Length of Reject message
; Disconnect Notification packet (Network --> TMM)
        .=E.VUCB+2
E.VRD:'L'
                .BLKW
                                 ; Reason for Disconnect
E.VDLN: 'L'
                                 ; Length of Disconnect message
; Disconnect Complete packet (TMM --> Network)
        .=E.VUCB+2
E.VDCL: 'L'
                                 ; Length of Disconnect Complete message
        .PSECT
.IF NB LST
        .NLIST
                                 ; Turn listing back off
.IFF
        .MACRO
                EVNDF$
                                 ; If not listing, redefine
        . ENDM
                                 ; macro to nothing
. ENDC
        .ENDM
                EVNDFS
```

F11DF\$

```
.MACRO F11DF$, L, B
; VOLUME CONTROL BLOCK
           .ASECT
\cdot = 0
V.TRCT: 'L'.BLKW 1 ; TRANSACTION COUNT
V.TYPE: 'L'.BLKB 1 ; VOLUME TYPE DESCRIPTOR
VT.FOR='B' 0 ; FOREIGN VOLUME STRUCTURE
VT.SL1='B' 1 ; FILES-11 STRUCTURE LEVEL 1
VT.SL2='B' 2 ; FILES-11 STRUCTURE LEVEL 2
VT.ANS='B' 10 ; ANSI LABELED TAPE
VT.UNL='B' 11 ; UNLABELED TAPE
V.VCHA: 'L'.BLKB 1 ; VOLUME CHARACTERISTICS
          VC.SLK='B' 1 ; CLEAR VOLUME VALID ON DISMOUNT
VC.HLK='B' 2 ; UNLOAD THE VOLUME ON DISMOUNT
VC.DEA='B' 4 ; DEALLOCATE THE VOLUME ON DISMOUNT
          VC.PUB='B' 10 ; SET (CLEAR) US.PUB ON DISMOUNT
          VC.DUP='B' 20 ; DUPLICATE VOLUME NAME; DON'T DELETE LOGICALS
          VC.SIL='B' 40
                             ; SILENT MODE; SUPPRESS DISMOUNT COMPLETE MESSAGE
V.LABL: 'L'.BLKB 14 ; VOLUME LABEL (ASCII)
                              ; PACK SERIAL NUMBER FOR ERROR LOGGING
V.PKSR: 'L'.BLKW 2
                              ; LENGTH OF SHORT VCB
V.SLEN: 'L'
                             ; INDEX FILE WINDOW
V.IFWI: 'L'.BLKW 1
                        ; FILE CONTROL BLOCK LIST HEAD
; INDEX BIT MAP 1ST LBN HIGH BYTE
V.FCB: 'L'.BLKW 2
V.IBLB: 'L'.BLKB 1
                             ; INDEX BIT MAP SIZE IN BLOCKS
V.IBSZ:'L'.BLKB 1
          .BLKW 1
                             ; INDEX BITMAP 1ST LBN LOW BITS
                              ; MAX NO. OF FILES ON VOLUME
V.FMAX: 'L'.BLKW 1
                              ; DEFAULT SIZE OF WINDOW IN RTRV PTRS
V.WISZ:'L'.BLKB 1
                             ; VALUE IS < 128.
; STORAGE BIT MAP CLUSTER FACTOR
V.SBCL: 'L'.BLKB 1
V.SBSZ:'L'.BLKW 1
                             ; STORAGE BIT MAP SIZE IN BLOCKS
V.SBLB: 'L'.BLKB 1
                             ; STORAGE BIT MAP 1ST LBN HIGH BYTE
V.FIEX: 'L'.BLKB 1
                              ; DEFAULT FILE EXTEND SIZE
                             ; STORAGE BIT MAP 1ST LBN LOW BITS
          .BLKW 1
    WARNING
          THE FOLLOWING CELLS OF THE VCB ARE ORDER DEPENDENT.
          THEY ARE RETURNED BY A READ ATTRIBUTES FUNCTION AND
          MUST BE KEPT CONTIGUOUS. IF THE ORDER OF THE CELLS
          IS BROKEN, THE CODE MAY BREAK AS WELL.
                              ; VOLUME OWNER'S UIC
V.VOWN: 'L'.BLKW 1
V.VPRO: 'L'.BLKW 1
                              ; VOLUME PROTECTION
                             ; VOLUME DEFAULT FILE PROTECTION
V.FPRO: 'L'.BLKW 1
                          ; NUMBER OF FREE BLOCKS ON VOLUME HIGH BYTE
; COUNT OF AVAILABLE LRU SLOTS IN FCB LIST
; NUMBER OF FREE BLOCKS ON VOLUME LOW BITS
V.FRBK: 'L'.BLKB 1
V.LRUC: 'L'.BLKB 1
          .BLKW 1
```

```
WARNING
                        THE ABOVE CELLS OF THE VCB ARE ORDER DEPENDENT.
                       THEY ARE RETURNED BY A READ ATTRIBUTES FUNCTION AND
                       MUST BE KEPT CONTIGUOUS. IF THE ORDER OF THE CELLS
                        IS BROKEN, THE CODE MAY BREAK AS WELL.
V.STS: 'L'.BLKB 1 ; VOLUME STATUS BYTE, CONTAINING THE FOLLOWING VS.IFW='B' 1 ; INDEX FILE IS WRITE ACCESSED VS.BMW='B' 2 ; STORAGE BITMAP FILE IS WRITE ACCESSED ; FIRST FREE INDEX FILE BITMAP BLOCK ; POINTER TO VCB EXTENSION ; POINTER T
 V.HBLB: 'L'.BLKW 2
V.HBCS: 'L'.BLKW 2
                                                                ; LBN OF HOME BLOCK
                                                                  ; HOME BLOCK CHECKSUMS
                                                                ; SIZE IN BYTES OF VCB
 V.LGTH: 'L'
 ; MOUNT LIST ENTRY
 ; EACH ENTRY ALLOWS ACCESS TO A SPECIFIED USER FOR A NON-PUBLIC DEVICE
 ; TO ALLOW EXPANSION, ONLY THE ONLY TYPE CODE DEFINED IS "1" FOR
 ; DEVICE ACCESS BLOCKS
                        .ASECT
 \cdot = 0
M.LNK:'L'.BLKW 1
                                                               ; LINK WORD
; TYPE OF ENTRY
M.TYPE: 'L'.BLKB 1
                       MT.MLS='B' 1
                                                             ; MOUNTED VOLUME USER ACCESS LIST
M.ACC: 'L'.BLKB 1 ; NUMBER OF ACCESSES
                                                                   ; DEVICE UCB
M.DEV: 'L'.BLKW 1
M.TI:'L'.BLKW 1
                                                                  ; ACCESSOR TI: UCB
                                                                   ; LENGTH OF ENTRY
M.LEN:'L'
 ; FILE CONTROL BLOCK
                        .ASECT
 .=0
F.LINK: 'L'.BLKW 1 ; FCB CHAIN POINTER
F.FNUM: 'L'.BLKW 1 ; FILE NUMBER
F.FSEQ: 'L'.BLKW 1 ; FILE SEQUENCE NUMBER
.BLKB 1 ; NOT USED
F.FSQN:'L'.BLKB 1 ; FILE SEGMENT NUMBER F.FOWN:'L'.BLKW 1 ; FILE OWNER'S UIC
F.FPRO:'L'.BLKW 1 ; FILE PROTECTION CODE
F.UCHA: 'L'.BLKB 1
                                                                ; USER CONTROLLED CHARACTERISTICS
                                                                 ; SYSTEM CONTROLLED CHARACTERISTICS
F.SCHA: 'L'.BLKB 1
F.HDLB: 'L'.BLKW 2
                                                                   ; FILE HEADER LOGICAL BLOCK NUMBER
```

```
; BEGINNING OF STATISTICS BLOCK
F.LBN:'L'.BLKW 2
                        ; LBN OF VIRTUAL BLOCK 1 IF CONTIGUOUS
                         ; 0 IF NON CONTIGUOUS
                         ; SIZE OF FILE IN BLOCKS
F.SIZE: 'L'.BLKW 2
F.NACS: 'L'.BLKB 1
                        ; NO. OF ACCESSES
F.NLCK: 'L'.BLKB 1
                        ; NO. OF LOCKS
S.STBK='B'.-F.LBN
                        ; SIZE OF STATISTICS BLOCK
                        ; FCB STATUS WORD
F.STAT: 'L'
                        ; NUMBER OF WRITE ACCESSORS
F.NWAC: 'L'.BLKB 1
                         ; STATUS BITS FOR FCB CONSISTING OF
        .BLKB
                1
        FC.WAC='B' 100000; SET IF FILE ACCESSED FOR WRITE
        FC.DIR='B' 40000; SET IF FCB IS IN DIRECTORY LRU
FC.CEF='B' 20000; SET IF DIRECTORY EOF NEEDS UPDATING
        FC.FCO='B' 10000 ; SET IF TRYING TO FORCE DIRECTORY CONTIG
                       ; DIRECTORY EOF BLOCK NUMBER
F.DREF: 'L'.BLKW 1
                        ; 1ST WORD OF DIRECTORY NAME
F.DRNM: 'L'.BLKW 1
F.FEXT: 'L'.BLKW 1
                        ; POINTER TO EXTENSION FCB
F.FVBN: 'L'.BLKW 2
                        ; STARTING VBN OF THIS FILE SEGMENT
F.LKL:'L'.BLKW 1
                        ; POINTER TO LOCKED BLOCK LIST FOR FILE
                        ; WINDOW BLOCK LIST FOR THIS FILE
F.WIN: 'L'.BLKW 1
F.LGTH: 'L'
                         ; SIZE IN BYTES OF FCB
  WINDOW
;
        .ASECT
= 0
W.ACT:'L'
                         ; NUMBER OF ACTIVE MAPPING POINTERS
                          WHEN NO SECONDARY POOL
W.BLKS: 'L'
                         ; BLOCK SIZE OF SECONDARY POOL SEGMENT
                           WHEN SECONDARY POOL
W.CTL:'L'.BLKW 1
                        ; LOW BYTE = # OF MAP ENTRIES ACTIVE
                        ; HIGH BYTE CONSISTS OF CONTROL BITS
        WI.RDV='B' 400
                          ; READ VIRTUAL BLOCK ALLOWED IF SET
        WI.WRV='B' 1000
                         ; WRITE VIRTUAL BLOCK ALLOWED IF SET
        WI.EXT='B' 2000 ; EXTEND ALLOWED IF SET
                         ; SET IF LOCKED AGAINST SHARED ACCESS
        WI.LCK='B' 4000
        WI.DLK='B' 10000 ; SET IF DEACCESS LOCK ENABLED
        WI.PND='B' 20000 ; WINDOW TURN PENDING BIT
        WI.EXL='B' 40000 ; SET IF MANUAL UNLOCK DESIRED
        WI.WCK='B' 100000 ; DATA CHECK ALL WRITES TO FILE
W.IOC: 'L'.BLKB 1
                        ; COUNT OF I/O THROUGH THIS WINDOW
                        ; RESERVED
        .BLKB
                1
W.FCB:'L'.BLKW 1
                        ; FILE CONTROL BLOCK ADDRESS
W.TCB: 'L'.BLKW 1
                        ; TCB ADDRESS OF ACCESSOR
W.UCB: 'L'.BLKW 1
                        ; ORIGINAL UCB ADDRESS OF DEVICE
W.LKL: 'L'.BLKW 1
                        ; POINTER TO LIST OF USERS LOCKED BLOCKS
W.WIN: 'L'.BLKW 1
                        ; WINDOW BLOCK LIST LINK WORD
                NB, SYSDEF ; IF SYSDEF SPECIFIED IN CALL
        .IF
        .IF
                NDF, P$$WND ; IF SECONDARY POOL WINDOWS NOT ALLOWED
```

```
; NON-SECONDARY POOL WINDOW BLOCK
        IF SECONDARY POOL WINDOWS ARE NOT ENABLED, THE WINDOW BLOCK
        CONTAINS THE CONTROL INFORMATION AND RETRIEVAL POINTERS.
W.VBN:'L'.BLKB 1
                        ; HIGH BYTE OF 1ST VBN MAPPED BY WINDOW
W.MAP: 'L'
                        ; DEFINE LABEL WITH ODD ADDRESS TO CATCH BAD REFS
                       ; SIZE IN RTRV PTRS OF WINDOW (7 BITS)
W.WISZ:'L'.BLKB 1
.BLKW 1
                        ; LOW ORDER WORD OF 1ST VBN MAPPED
W.RTRV:'L'
                        ; OFFSET TO 1ST RETRIEVAL POINTER IN WINDOW
W.SLEN='B'-4
                        ; DUMMY DEFINITION TO PREVENT INCORRECT REFERENCE
                        ; (-4 WHEN ROUNDED "UP" IS A VERY LARGE BLOCK)
        .IFF
                        ; IF WINDOWS IN SECONDARY POOL
SECONDARY POOL WINDOW CONTROL AND MAPPING BLOCK
        IF SECONDARY POOL WINDOW BLOCKS ARE ENABLED, LUTN2 POINTS
        TO A CONTROL BLOCK IN SYSTEM POOL WHICH CONTAINS THE
        FOLLOWING CONTROL FIELDS AND THE MAPPING INFORMATION
        FOR THE SECONDARY POOL WINDOW.
W.MAP: 'L'.BLKW 1
                       ; ADDR TO THE MAPPING PTRS IN SECONDARY POOL
W.SLEN: 'L'
                        ; LENGTH OF PRIMARY POOL STUB
; SECONDARY POOL WINDOW
        IF SECONDARY POOL WINDOW BLOCKS ARE ENABLED, THE RETRIEVAL
        POINTERS ARE MAINTAINED IN SECONDARY POOL IN THE FOLLOWING
        FORMAT.
. = 0
        ASSUME W.CTL, 0
        .BLKB 1
                        ; NUMBER OF ACTIVE MAPPING POINTERS
                       ; STATUS OF BLOCK
W.USE: 'L'.BLKB 1
W.VBN: 'L'.BLKB 1
                        ; HIGH BYTE OF 1ST VBN MAPPED BY WINDOW
                        ; SIZE IN RTRV PTRS OF WINDOW (7 BITS)
W.WISZ:'L'.BLKB 1
                        ; LOW ORDER WORD OF 1ST VBN MAPPED
        .BLKW 1
W.RTRV:'L'
                        ; OFFSET TO 1ST RETRIEVAL POINTER IN WINDOW
        .ENDC
                       ; END SECONDARY POOL WINDOW CONDITIONAL
                        ; END SYSDEF CONDITIONAL
        - ENDC
; LOCKED BLOCK LIST NODE
        .ASECT
\cdot = 0
```

```
; LINK TO NEXT NODE IN LIST
L.LNK: 'L'.BLKW 1
                       ; POINTER TO WINDOW FOR FIRST ENTRY
L.WI1: 'L'.BLKW 1
                       ; HIGH ORDER VBN BYTE
L.VBl:'L'.BLKB 1
L.CNT: 'L'.BLKB 1
                      ; COUNT FOR ENTRY
                     ; LOW ORDER VBN
       .BLKW
              1
L.LKSZ:'L'
; END OF DEFINITIONS
        .PSECT
        .MACRO F11DF$ X,Y,Z
        .ENDM
               F11DF$
               F11DF$
        .ENDM
```

HDRDF\$

.MACRO HDRDF\$,L,B

```
;+
; TASK HEADER OFFSET DEFINITIONS
         .ASECT
_{-} = 0
H.CSP: 'L'.BLKW 1
                                 ;CURRENT STACK POINTER
H.HDLN: 'L'.BLKW 1
                                 ; HEADER LENGTH IN BYTES
H.SMAP: 'L'.BLKB 1
                                 ;SUPERVISOR D SPACE OVERMAP MASK
H.DMAP: 'L'.BLKB 1
                                 ;USER D SPACE OVERMAP MASK
H.FMAP: 'L'.BLKW 1
                                 ; POINTER TO FAST MAP SECTION OF HDR
H.CUIC: 'L'.BLKW 1
                                 CURRENT TASK UIC
H.DUIC: 'L'.BLKW 1
                                 ;DEFAULT TASK UIC
H.IPS: 'L'.BLKW 1
H.IPC: 'L'.BLKW 1
                                 ; INITIAL PROCESSOR STATUS WORD (PS)
                                 ; INITIAL PROGRAM COUNTER (PC)
H.ISP:'L'.BLKW 1
                               ; INITIAL STACK POINTER (SP)
H.ODVA:'L'.BLKW 1
H.ODVL:'L'.BLKW 1
H.TKVA:'L'.BLKW 1
                                 ;ODT SST VECTOR ADDRESS
                                 ;ODT SST VECTOR LENGTH
                                 ;TASK SST VECTOR ADDRESS
H.TKVL: 'L'.BLKW 1
                                 ; TASK SST VECTOR LENGTH
H.PFVA: 'L'.BLKW 1
                                 ; POWER FAIL AST CONTROL BLOCK ADDRESS
H.FPVA: 'L'.BLKW 1
                                 ;FLOATING POINT AST CONTROL BLOCK ADDRESS
H.RCVA: 'L'.BLKW 1
                                 ; RECIEVE AST CONTROL BLOCK ADDRESS
H.EFSV: 'L'.BLKW 1
                                 ; EVENT FLAG ADDRESS SAVE ADDRESS
H.FPSA: 'L'.BLKW 1
                                 ; POINTER TO FLOATING POINT/EAE SAVE AREA
                                 ; POINTER TO NUMBER OF WINDOW BLOCKS
H.WND: 'L'.BLKW 1
H.DSW:'L'.BLKW 1
                                 ;TASK DIRECTIVE STATUS WORD
H.FCS: 'L'.BLKW 1
                                 ;FCS IMPURE POINTER
H.FORT: 'L'.BLKW 1
                                 ;FORTRAN IMPURE POINTER
H.OVLY: 'L'.BLKW 1
                                 ;OVERLAY IMPURE POINTER
H.VEXT: 'L'.BLKW 1
                                 ; WORK AREA EXTENSION VECTOR POINTER
                                 ; PRIORITY DIFFERENCE FOR SWAPPING
H.SPRI: 'L'.BLKB 1
                                 ; NETWORK MAILBOX LUN
H.NML:'L'.BLKB 1
                                  ; RECEIVE BY REFERENCE AST CONTROL BLOCK
H.RRVA: 'L'.BLKW 1
                                  ; ADDRESS
H.X25:'L'.BLKB 1
                                  FOR USE BY X25 SOFTWARE
                                  ;5 RESERVED BYTES
                 1
        .BLKB
        .BLKW
               2
                                 ; POINTER TO HEADER GUARD WORD
H.GARD: 'L'.BLKW 1
H.NLUN: 'L'.BLKW 1
                                 ; NUMBER OF LUN'S
H.LUN: 'L'.BLKW 2
                                  ;START OF LOGICAL UNIT TABLE
; LENGTH OF FLOATING POINT SAVE AREA
H.FPSL='B'25.*2
; WINDOW BLOCK OFFSETS
= 0
W.BPCB: 'L'.BLKW 1
                                 ; PARTITION CONTROL BLOCK ADDRESS
W.BLVR: 'L'.BLKW 1
                                 ;LOW VIRTUAL ADDRESS LIMIT
W.BHVR: 'L'.BLKW 1
                                 ;HIGH VIRTUAL ADDRESS LIMIT
W.BATT: 'L'.BLKW 1
                                 ; ADDRESS OF ATTACHMENT DESCRIPTOR
W.BSIZ: 'L'.BLKW 1
                                 ;SIZE OF WINDOW IN 32W BLOCKS
```

```
W.BOFF: 'L'.BLKW 1
                                ; PHYSICAL MEMORY OFFSET IN 32W BLOCKS
W.BFPD: 'L'.BLKB 1
                                ;FIRST PDR ADDRESS
W.BNPD: 'L'.BLKB 1
                                 ; NUMBER OF PDR'S TO MAP
W.BLPD:'L'.BLKW 1
                                 ;CONTENTS OF LAST PDR
W.BLGH: 'L'
                                 ;LENGTH OF WINDOW DESCRIPTOR
; BIT DEFINITION FOR W.BLPD
WB.NBP='B'20
                                 ; CACHE BYPASS NOT DESIRED FOR THIS WINDOW
WB.BPS='B'40
                                 ; ALWAYS BYPASS THE CACHE FOR THIS WINDOW
        .PSECT
        .MACRO HDRDF$ X,Y
        .ENDM
        .ENDM
```

HWDDF\$

```
.MACRO HWDDF$, L, B
;+
; MACROS FOR DEFINING MAPPING REGISTER DEFINITIONS
        .MACRO CRESET NAM, ADDR
$$$=0
        .REPT
        CRENAM NAM, ADDR+<$$$2>,$$$
$$$=$$$+1
        .ENDR
        . ENDM
        .MACRO CRENAM NAM, ADDR, N
'NAM''N'==ADDR
        .ENDM
;+
; HARDWARE REGISTER ADDRESSES AND STATUS CODES
MPCSR='B'177746
                                 ;ADDRESS OF PDP-11/70 MEMORY PARITY
                                 ; REGISTER
MPAR='B'172100
                                 ; ADDRESS OF FIRST MEMORY PARITY REGISTER
PIRQ='B'177772
                                 ; PROGRAMMED INTERRUPT REQUEST REGISTER
PR0='B'0
                                 ;PROCESSOR PRIORITY 0
PR1='B'40
                                 ; PROCESSOR PRIORITY 1
PR4= 'B'200
                                 ; PROCESSOR PRIORITY 4
PR5='B'240
                                 ; PROCESSOR PRIORITY 5
PR6= 'B'300
                                 ; PROCESSOR PRIORITY 6
PR7= 'B'340
                                 ; PROCESSOR PRIORITY 7
PS='B'177776
                                 ; PROCESSOR STATUS WORD
SWR='B'177570
                                 ; CONSOLE SWITCH AND DISPLAY REGISTER
TPS='B'177564
                                 ; CONSOLE TERMINAL PRINTER STATUS REGISTER
;+
; EXTENDED ARITHMETIC ELEMENT REGISTERS
        .IF DF E$$EAE
AC='B'177302
                                 ; ACCUMULATOR
MQ='B'177304
                                 ;MULTIPLIER-QUOTIENT
SC='B'177310
                                 ;SHIFT COUNT
        . ENDC
;+
; MEMORY MANAGEMENT HARDWARE REGISTERS AND STATUS CODES
        .IF NB B
        CRESET
                KINAR, 172340
                                 ; KERNEL I PAR'S
        CRESET
                KINDR,172300
                                 ;KERNEL I PDR'S
        CRESET
                KDSAR, 172360
                                 ; KERNEL D PAR'S
        CRESET KDSDR,172320
                                 ;KERNEL D PDR'S
```

```
;SUPERVISOR I PAR'S
        CRESET SISAR, 172240
                                 ;SUPERVISOR I PDR'S
        CRESET
                SISDR, 172200
                                 ;SUPERVISOR D PAR'S
                SDSAR,172260
        CRESET
        CRESET
                SDSDR,172220
                                 ;SUPERVISOR D PDR'S
                                 ;USER I PAR'S
        CRESET
                UINAR,177640
        CRESET
                UINDR,177600
                                 ;USER I PDR'S
                                 ;USER D PAR'S
        CRESET
                UDSAR,177660
        CRESET
                UDSDR,177620
                                 ;USER D PDR'S
        . ENDC
        .IF NB
                SYSDEF
                K$$DAS
        .IF DF
        CRESET
                KISAR, 172360
                                 ; KERNEL D PAR'S
        CRESET
                KISDR,172320
                                 ; KERNEL D PDR'S
        .IFF
                                 ; KERNEL I PAR'S
        CRESET
                KISAR, 172340
        CRESET
                KISDR, 172300
                                 ; KERNEL I PDR'S
        .ENDC
        .IF DF
                U$$DAS
                UISAR,177660
        CRESET
                                 ;USER D PAR'S
        CRESET
                UISDR,177620
                                 ;USER D PDR'S
                ; DF USSDAS
        .IFF
        CRESET
                UISAR, 177640
                                 ;USER I PAR'S
                UISDR,177600
                                 ;USER I PDR'S
        CRESET
        .ENDC
                ; DF U$$DAS
        .ENDC
UBMPR='B'170200
                                 ;UNIBUS MAPPING REGISTER 0
CMODE= 'B '140000
                                 ;CURRENT MODE FIELD OF PS WORD
                                 ;PREVIOUS MODE FIELD OF PS WORD
PMODE='B'30000
                                ;CURRENT MODE = SUPERVISOR PS WORD BITS
CSMODE= 'B' 40000
                                ;PREVIOUS MODE = SUPERVISOR PS WORD BITS
PSMODE='B'10000
SR0='B'177572
                                 ;SEGMENT STATUS REGISTER 0
SR3='B'172516
                                ;SEGMENT STATUS REGISTER 3
                                ;CPU ERROR REGISTER
CPUERR='B'177766
                                 ;MEMORY SYSTEM ERROR REGISTER
MEMERR= 'B '177744
MEMCTL='B'177746
                                 ; MEMORY CONTROL REGISTER
; DEFINE THE LOCATIONS USED IN THE NON-VOLATILE RAM (NVR)
; FOR XT SYSTEMS
N.KEY='B'173054
                                 :NUMBER OF KEYS PRESSED
N.UPT='B'173064
                                 ;UPTIME IN MINUTES
N.DZA='B'173074
                                 NUMBER OF I/OS DONE ON THE DZ
N.DWA='B'173104
                                ; NUMBER OF I/OS DONE ON THE DW
N.DAY='B'173114
                                ;DATE THAT THE NVR WAS LAST INITIALIZED
N.MON='B'173116
                                 ; . . .
N.YEA='B'173120
                                 ; . . .
```

```
;+
; FEATURE SYMBOL DEFINITIONS
FE.EXT='B'1
                                 ;22-BIT EXTENDED MEMORY SUPPORT
FE.MUP='B'2
                                 :MULTI-USER PROTECTION SUPPORT
FE.EXV='B'4
                                 ; EXECUTIVE IS SUPPORTED TO 20K
FE.DRV='B'10
                                 ;LOADABLE DRIVER SUPPORT
FE.PLA='B'20
                                 ; PLAS SUPPORT
FE.CAL='B'40
                                 ; DYNAMIC CHECKPOINT SPACE ALLOCATION
FE.PKT='B'100
                                 ;PREALLOCATION OF I/O PACKETS
                                 ; EXTEND TASK DIRECTIVE SUPPORTED
FE.EXP= 'B'200
FE.LSI='B'400
                                 ;PROCESSOR IS AN LSI-11
FE.OFF= 'B'1000
                                 ; PARENT/OFFSPRING TASKING SUPPORTED
FE.FDT='B'2000
                                 ;FULL DUPLEX TERMINAL DRIVER SUPPORTED
FE.X25='B'4000
                                 ;X.25 CEX IS LOADED
FE.DYM='B'10000
                                 ; DYNAMIC MEMORY ALLOCATION SUPPORTED
FE.CEX='B'20000
                                 ;COM EXEC IS LOADED
FE.MXT='B'40000
                                 ;MCR EXIT AFTER EACH COMMAND MODE
FE.NLG='B'100000
                                 ;LOGINS DISABLED - MULTI-USER SUPPORT
; FEATURE MASK DEFINITIONS (SECOND WORD)
F2.DAS='B'1
                                 ; KERNEL DATA SPACE SUPPORTED
F2.LIB='B'2
                                 ;SUPERVISOR MODE LIBRARIES SUPPORTED
F2.MP='B'4
                                 ;SYSTEM SUPPORTS MULTIPROCESSING
F2.EVT='B'10
                                 ;SYSTEM SUPPORTS EVENT TRACE FEATURE
F2.ACN='B'20
                                 ;SYSTEM SUPPORTS CPU ACCOUNTING
F2.SDW='B'40
                                 ;SYSTEM SUPPORTS SHADOW RECORDING
F2.POL='B'100
                                 ;SYSTEM SUPPORTS SECONDARY POOLS
F2.WND='B'200
                                 ;SYSTEM SUPPORTS SECONDARY POOL FILE WINDOWS
F2.DPR='B'400
                                 ;SYSTEM HAS A SEPARATE DIRECTIVE PARTITION
F2.IRR='B'1000
                                 ; INSTALL, RUN, AND REMOVE SUPPORT
F2.GGF='B'2000
                                 GROUP GLOBAL EVENT FLAG SUPPORT
F2.RAS='B'4000
                                 ; RECEIVE/SEND DATA PACKET SUPPORT
F2.AHR='B'10000
                                 ;ALT. HEADER REFRESH AREA SUPPORT
F2.RBN='B'20000
                                 ; ROUND ROBIN SCHEDULING SUPPORT
F2.SWP='B'40000
                                 ; EXECUTIVE LEVEL DISK SWAPPING SUPPORT
F2.STP='B'100000
                                 ; EVENT FLAG MASK IS IN THE TCB (1=YES)
; THIRD FEATURE MASK SYMBOL DEFINITIONS
                                 ;SYSTEM SPONTANEOUSLY CRASHED (1=YES)
F3.CRA='B'1
F3.XCR='B'2
                                 ;SYSTEM CRASHED FROM XDT (1=YES)
F3.EIS='B'4
                                 ;SYSTEM REQUIRES EXTENDED INSTRUCTION SET
F3.STM='B'10
                                 ;SYSTEM HAS SET SYSTEM TIME DIRECTIVE
                                 ;SYSTEM SUPPORTS USER DATA SPACE
F3.UDS='B'20
F3.PRO='B'40
                                 ;SYSTEM SUPPORTS SEC. POOL PROTO TCBS
F3.XHR='B'100
                                 ;SYSTEM SUPPORTS EXTERNAL TASK HEADERS
F3.AST='B'200
                                 ;SYSTEM HAS AST SUPPORT
                                 ;RSX-11S SYSTEM
F3.11S='B'400
F3.CLI='B'1000
                                 ;MULTIPLE CLI SUPPORT
F3.TCM='B'2000
                                 ;SYSTEM HAS SEPARATE TERMINAL DRIVER POOL
F3.PMN='B'4000
                                 ;SYSTEM SUPPORTS POOL MONITORING
F3.WAT='B'10000
                                 ;SYSTEM HAS WATCHDOG TIMER SUPPORT
                                 ;SYSTEM SUPPORTS RMS RECORD LOCKING
;SYSTEM SUPPORTS SHUFFLER TASK
F3.RLK='B'20000
F3.SHF='B'40000
```

```
; FOURTH FEATURE MASK BITS
F4.CXD='B'1
                                          ; COMM EXEC IS DEALLOCATED (NON-I/D ONLY)
F4.XT='B'2
                                         ;SYSTEM IS AN XT SYSTEM (1=YES)
                                       ;SYSTEM SUPPORTS ERROR LOGGING (1=YES)
;SYSTEM SUPPORTS PARITY MEMORY (1=YES)
;SYSTEM SUPPORTS DECIMAL VERSIONS (1=YES)
;SYSTEM SUPPORTS LOADABLE CRASH (1=YES)
;SYSTEM SUPPORTS DELETED TASK IMAGES (1=YES)
F4.ERL='B'4
F4.PTY='B'10
F4.DVN='B'20
F4.LCD='B'40
F4.NIM='B'100
                                      ;SYSTEM SUPPORTS DELETED TASK IMAGES (1=YES)
;SYSTEM SUPPORTS DISK DATA CACHING (1=YES)
;SYSTEM SUPPORTS LOGICAL NAMES (1=YES)
;SYSTEM SUPPORTS NAMED DIRECTORIES (1=YES)
;SYSTEM SUPPORTS FAST MAP DIRECTIVE
;DCL IS DEFAULT CLI (1=YES)
;NAMED DIRECTORY MODE IS THE DEFAULT (1=YES)
;SYSTEM SUPPORTS ACD'S
F4.CHE='B'200
F4.LOG='B'400
F4.NAM='B'1000
F4.FMP='B'2000
F4.DCL='B'4000
F4.DDS='B'10000
F4.ACD='B'20000
; HARDWARE FEATURE MASK BIT DEFINITIONS
          HF.CIS, HF. FPP DEFINED AS SIGN BITS FOR RUN TIME SPEED
;
HF.UBM='B'1
                                         ; PROCESSOR HAS A UNIBUS MAP (1=YES)
HF.EIS='B'2
                                         ; PROCESSOR HAS EXTENDED INSTRUCION SET
HF.OB='B'4
                                        ;SYSTEM HAS A QBUS (1=YES)
                                        ; HARDWARE SUPPORTS DATA SPACE
HF.DSP='B'10
                                        ;PROCESSOR SUPPORTS COMMERCIAL INSTRUCTION SET ; (1=PROC. HAS NO FLOATING POINT UNIT)
HF.CIS='B'200
HF.FPP='B'100000
; SECOND HARDWARE FEATURE MASK BIT DEFINITIONS
; THIS WORD IS RESERVED FOR XT HARDWARE FEATURES
H2.NVR='B'1
                                         ;XT NON-VOLATILE RAM PRESENT (1=YES)
H2.INV='B'2
                                         ; NON-VOLATILE RAM IS INVALID (1=YES)
H2.CLK='B'4
                                         ;XT CLOCK IS PRESENT (1=YES)
                                         ; INVALID TIME FORMAT IN NON-VOLATILE RAM
H2.ITF='B'10
                                        ; (1=YES)
; RUNNING ON PRO/3XX HARDWARE
H2.PRO='B'20
H2.BRG='B'100000
                                         ;XT BRIDGE MODULE PRESENT (1=YES)
; SYSGEN FEATURE SELECTIONS MASK. THIS IS INTENDED TO RECORD IN A
; BIT MASK THE CHOICES MADE AT SYSGEN TIME. FEATURES ARE LISTED HERE FOR
; OUR INFORMATIONAL PURPOSES ONLY. THEY CANNOT BE TESTED LIKE BITS IN THE
; FEATURE MASK SINCE THIS ONLY EXISTS IN THE RSX11M.STB FILE. NO BITS IN
; MEMORY ; ARE USED. THEY ARE ONLY INTENDED TO BE PRINTED FROM THE STB FILE
; BY CDA.
SF.STD='B'1
                                         ;STANDARD EXEC SELECTED
                                         ;SYSTEM WAS PRE-GENERATED
SF.PGN='B'2
                                         ; (EX. RL02/RC25 SYSTEM)
```

```
; MULTIPROCESSOR STATUS TABLE DEFINITIONS (TEMPORARY)
MP.CRH='B'100000
                                ;CRASH PROCESSOR IMMEDIATELY
MP.PWF='B'40000
                                ; POWERFAIL ON ONE CPU
MP.RSM='B'20000
                                 ; RESET INTERRUPT MASKS
MP.NOP='B'10000
                                ; NOP FUNCTION FOR TRANSMISSION CHECK
MP.STP='B'4
                                ;STOP PROCESSOR IN ORDERLY FASHION
MP.INT='B'7777
                                ;BIC MASK FOR INTERRUPT LVL FUNCTIONS
        .MACRO HWDDF$ X,Y,Z
        .ENDM
        . ENDM
```

ITBDF\$

```
.MACRO ITBDF$ L,B
; INTERRUPT TRANSFER BLOCK (ITB) OFFSET DEFINITIONS
        .IF DF A$$TRP
        .MCALL PKTDF$
        PKTDFS
                                  ; DEFINE AST BLOCK OFFSETS
        . ENDC
        .ASECT
                              ; LINK WORD FOR ITB LIST STARTING IN TCB ; CALL $INTSC
X.LNK:'L' .BLKW 1
X.JSR:'L' JSR R5,@ 0
X.PSW:'L' .BLKB 1
                                 ; LOW BYTE OF PSW FOR ISR
.BLKB 1
X.ISR:'L' .BLKW 1
                                 ; UNUSED
                                 ; ISR ENTRY POINT (APR5 MAPPING)
X.FORK: 'L'
                                 ; FORK BLOCK
          .BLKW 1
                                 ; THREAD WORD
                                ; FORK PC
                                ; SAVED R5
          .BLKW
                 1
          .BLKW
                   1
                                 ; SAVED R4
        .IF DF M$$MGE
X.REL:'L' .BLKW 1
                                ; RELOCATION BASE FOR APR5
          .ENDC
X.DSI:'L' .BLKW 1
                                ; ADDRESS OF DIS.INT. ROUTINE
X.TCB:'L' .BLKW 1
                                 ; TCB ADDRESS OF OWNING TASK
        .IF NB SYSDEF
        .IF DF A$$TRP
                              ; A.DQSR FOR AST BLOCK ; AST BLOCK
          .BLKW 1
X.AST:'L' .BLKB A.PRM
        .ENDC
                                ; VECTOR ADDRESS (IF AST SUPPORT,
X.VEC:'L' .BLKW 1
                                ; THIS IS FIRST AND ONLY AST PARAMETER) ; SAVED VECTOR PC
X.VPC:'L' .BLKW 1
X.LEN:'L'
                                 ; LENGTH IN BYTES OF ITB
        . ENDC
        .PSECT
        .MACRO ITBDF$ X,Y,Z
        .ENDM
                ITBDF$
```

KRBDF\$

```
; .MACRO
                      KRBDF$
        ; CONTROLLER REQUEST BLOCK (KRB)
        ; THE CONTROLLER REQUEST BLOCK DEFINES THE ENVIRONMENT OF A DEVICE
        ; CONTROLLER. EXACTLY ONE KRB EXISTS FOR EVERY DEVICE CONTROLLER
        ; IN AN RSX-11M+ SYSTEM. THE KRB CONTAINS CERTAIN DEVICE STATUS
        ; INCLUDING THE CSR AND VECTOR ADDRESS FOR THE CONTROLLER.
                .ASECT
        .=177770
177770
       K.PRM: .BLKW
                                ;DEVICE DEPENDANT PARAMETER WORD
                                ;CONTROLLER PRIORITY
       K.PRI:
              .BLKB 1
177772
       K.VCT: .BLKB
                      1
                                ; INTERRUPT VECTOR ADDRESS
177773
                                ; CONTROLLER INDEX WITHIN THE SYSTEM
177774
        K.CON: .BLKB
                      1
177775
       K.IOC: .BLKB
                                ;CONTROLLER I/O COUNT
                        1
                                ; CONTROLLER STATUS
177776
       K.STS: .BLKW
                        1
000000
        K.CSR:
                .BLKW
                        1
                                ; ADDRESS OF CONTROL STATUS REGISTER
        ; NOTE: K.CSR MUST BE THE ZERO OFFSET!
000002
       K.OFF:
                .BLKW
                        1
                                 ;OFFSET TO UCB/UMR/RHBAE TABLE
000004
       K.HPU:
                                 ;HIGHEST PHYSICAL UNIT NUMBER
                .BLKB
                        1
000005
                .BLKB
                                ;UNUSED BYTE
                        1
000006
       K.OWN:
                .BLKW
                       1
                                ;OWNER OF CONTROLLER
                                ;CONTROLLER REQUEST QUEUE
000010
       K.CRO:
               .BLKW
                        2
000014
        K.URM:
                .BLKW
                                 ;CONTROLLER UNIBUS RUN MASK
000016
        K.FRK:
                .BLKW
                                ; POSSIBLE KRB FORK BLOCK
        ; OFFSETS FOR THE KRB EXTENSION REACHED BY ADDING (K.OFF) TO
        ; THE STARTING ADDRESS OF THE KRB.
         DEFINE OFFSETS IN SCB/KRB FOR DISK MSCP CONTROLLERS
        .=-20.
                                 ;LIST HEAD FOR UMR WAITING ASSIGNMENT
177754
       KE.UMH: .BLKW
                        2
                                     ;BLK(S)
                                 ;COUNT OF AVAILABLE UMR WAITING
177760
        KE.UMC: .BLKW
                        1
                                 ; ASSIGNMENT BLOCK (S)
        .=177776
                                 ;OFFSET TO RHBAE REGISTER (IF ANY)
177776
       KE.RHB: .BLKW
                        1
        ; WHEN ONE ADDS (K.OFF) TO THE KRB ADDRESS, IT YIELDS AN
        ; ADDRESS WHICH POINTS TO HERE.
000000 KE.UCB: .BLKW
                        1
                                ;OFFSET TO UCB TABLE (IF KS.UCB SET)
                . PSECT
```

KRBDF\$ (Cont.)

```
; CONTROLLER REQUEST BLOCK (KRB) STATUS BIT DEFINITIONS
                                 ; CONTROLLER OFFLINE (1=YES)
        KS.OFL=1
                                 ; CONTROLLER MARKED FOR OFFLINE (1=YES)
        KS.MOF=2
        KS.UOP=4
                                 ;SUPPORTS OVERLAPPED OPERATION (1=YES)
                                ; DEVICE IS MASSBUS CONTROLLER (1=YES)
        KS.MBC=10
                                ;SEEKS ALLOWED DURING DATA XFERS (1=YES)
        KS.SDX=20
                                 ; PARALLEL OPERATION ENABLED (1=YES)
        KS.POE=40
                                 ;UCB TABLE PRESENT (1=YES)
        KS.UCB=100
                                 ;DATA TRANSFER IN PROGRESS (1=YES)
        KS.DIP=200
                                 ;PRIVILEGED DIAGNOSTIC FUNCTIONS ONLY
        KS.PDF=400
                                 ;BLOCK(S)(1=YES)
                                 ; EXTENDED 22-BIT UNIBUS CONTROLLER
        KS.EXT=1000
                                 ;BLOCK(S); (1=YES)
                                 CONTROLLER IS SLOW COMING ONLINE
        KS.SLO=2000
                                 ;BLOCK(S)(1=YES)
        ; DEFINE THE CONTIGUOUS SCB OFFSETS
                .ASECT
        .=177762
                                 ; CONTROLLER PRIORITY
177762
        S.PRI:
                .BLKB
                                 ; INTERRUPT VECTOR ADDRESS
177763
       S.VCT:
                .BLKB
                        1
177764
       S.CON:
                .BLKB
                        1
                                 :CONTROLLER INDEX
                .BLKB
177765
                        1
                .BLKW
177766
                                 CONTROL AND STATUS REGISTER
177770
       S.CSR:
                .BLKW
                        1
177772
                .BLKW
177774
                .BLKB
                        1
                        1
                .BLKB
177775
                         1
                                 ;DISTRIBUTED CNTBL
177776
        S.OWN:
                .BLKW
        ; SUBCONTROLLER REQUEST BLOCK (KRB1)
        ; THE SUBCONTROLLER REQUEST BLOCK DEFINES THE ENVIRONMENT OF A
        ; DEVICE SUBCONTROLLER. EXACTLY ONE KRB1 EXISTS FOR EVERY DEVICE
        ; SUBCONTROLLER IN AN RSX-11M+ SYSTEM.
        ï
                 .ASECT
        .=-4
                                 ;SUBCONTROLLER INDEX WITHIN THE SYSTEM
177774
        K1.CON: .BLKB
                         1
                                 ;UNUSED BYTE
177775
                 .BLKB
                        1
                                 ;SUBCONTROLLER STATUS
        K1.STS: .BLKW
177776
                         1
                                 ;UCB ADDRESS OF THE MASTER UNIT
000000
        Kl.MAS: .BLKW
                         1
        ; NOTE: Kl.MAS MUST BE THE ZERO OFFSET
000002
       K1.OWN: .BLKW
                         1
                                 OWNER OF SUBCONTROLLER
                                 ;SUBCONTROLLER REQUEST QUEUE
000004
        K1.CRQ: .BLKW
                         2
                                 ;START OF THE UCB TABLE (IF ANY)
000010
       K1.UCB:
                 . PSECT
```

LCBDF\$

```
; .MACRO
                      LCBDF$
        ; LOGICAL ASSIGNMENT CONTROL BLOCK
        ; THE LOGICAL ASSIGNMENT CONTROL BLOCK (LCB) IS USED TO
        ; ASSOCIATE A LOGICAL NAME WITH A PHYSICAL DEVICE UNIT.
        ; LOGICAL CONTROL BLOCKS ARE LINKED TO FORM THE LOGICAL
        ; ASSIGNMENTS OF A SYSTEM. LOGICAL ASSIGNMENTS CAN BE MADE
        ; ON A SYSTEM-WIDE OR LOCAL (TERMINAL) BASIS.
        ;
                .ASECT
        .=0
000000 L.LNK:
                .BLKW
                        1
                                 ;LINK TO NEXT LCB
                .BLKW
000002
       L.NAM:
                        1
                                 ;LOGICAL NAME OF DEVICE
               .BLKW
.BLKW
.BLKW
000004
       L.UNIT: .BLKB
                        1
                                ;LOGICAL UNIT NUMBER
000005
       L.TYPE: .BLKB
                        1
                                ; TYPE OF ENTRY (0=SYSTEM WIDE)
000006
       L.UCB:
                        1
                                ;TI UCB ADDRESS
000010
       L.ASG:
                                ; ASSIGNMENT UCB ADDRESS
                        1
000012
       L.LGTH=.-L.LNK
                                ;LENGTH OF LCB
                . PSECT
```

MTADF\$

```
.MACRO MTADF$,L,B
              .ASECT
 ; ANSI MAGTAPE SPECIFIC DATA STRUCTURES
 ; VOLUME SET CONTROL BLOCK OFFSET DEFINITIONS (VSCB)
 ; VOLUME SET AND PROCESS CONTROL SECTION
 .=0
V.TCNT:'L' .BLKW 1
V.TYPE:'L' .BLKB 1
V.VCHA:'L' .BLKB 1
V.LABL:'L' .BLKB 12.
                                                 ;TRANSACTION COUNT
;VOLUME TYPE DESCRIPTOR
;VOLUME CHARACTERISTICS
;FILE SET ID (FIRST SIX BYTES)
;PTR TO NEXT VSCB NODE
V.NXT:'L' .BLKW 1
V.MVL:'L' .BLKW 1
V.UVL:'L' .BLKW 1
V.ATL:'L' .BLKW 1
                                                   ; PTR TO MOUNTED VOL LIST
                                                   ;PTR TO UNMOUNTED VOL LIST
                                                   ;ATL ADDR OF ACCESSING TASK
                                                    ; TCB IN RSX11M
V.UCB: 'L' .BLKW 1
V.RVOL: 'L' .BLKB 1
V.MOU: 'L' .BLKB 1
V.TCHR: 'L' .BLKW 1
V.SEQN: 'L' .BLKW 1
V.SECN: 'L' .BLKW 1
V.TPOS: 'L' .BLKW 1
V.PSTA: 'L' .BLKB 1
V.TIMO: 'L' .BLKW 3
                                                    ;ADDR OF CURRENT UCB OR PUD
                                                ;CURRENT RELATIVE VOL #
;MOUNT MODE BYTE
;UINT CHAR. FOR ALL UNITS USED FOR VOL SET
;CURRENT FILE SEQUENCE #
;CURRENT FILE SECTION #
;POSITION OF TAPE IN TM'S TO NXT HDR1
;PROCESS STATUS BYTE
                                                 ;BLOCKED PROCESS TIMEOUT COUNTER
                                                    ; STATUS WORDS USED BY COMMAND
                                                   EXECUTION MODULES
V.TRTB: 'L' .BLKB 1
                                                   ;TRANSLATION CONTROL BYTE
V.EFTV: 'L' .BLKB 1
                                                    FOR MAG TO RETURN IE.EOF, EOT, EOV
; LABEL DATA SECTION
V.BLKL:'L' .BLKW 1
                                                  ;BLOCK LENGTH
V.BLKL:'L' .BLKW 1
V.RECL:'L' .BLKW 1
V.FNAM:'L' .BLKW 3
V.FTYP:'L' .BLKW 1
V.FVER:'L' .BLKW 1
V.CDAT:'L' .BLKW 2
V.EDAT:'L' .BLKW 2
V.BLKC:'L' .BLKW 2
V.RTYP:'L' .BLKB 1
V.FATT:'L' .BLKB 1
BLKB 30.
                                                   ; RECORD LENGTH
                                                   ;FILE NAME
                                                   ;FILE TYPE
                                                   ;FILE VERSION #
                                                    ;CREATION DATE
                                                    ; EXPRIATION DATE
                                                   ;BLOCK COUNT FOR FILE SECTION ;RECORD TYPE
                                                    ;FILE ATTRIBUTES FOR CARRIAGE CONTROL
                  .BLKB 30.
                                                    ; REMAINDER OF FILE ATTRIBUTES
; NULL WINDOW SECTION
                                                ; NULL WINDOW
V.WIND:'L' .BLKW 4.
V.MST2:'L' .BLKW 1
                                                   ;MAGTAPE STATUS BITS
V.FABY:'L' .BLKB 1 .BLKB 1
                                                    ;FILE ACCESSIBILITY BYTE (HDR1)
                                                   ;SPARE
V.ANSN:'L' .BLKB 17.
V.BOFF:'L' .BLKB 1.
V.DENS:'L' .BLKB 1.
V.DRAT:'L' .BLKB 1.
V.DBLK:'L' .BLKW 1.
V.DREC:'L' .BLKW 1.
                                                   ; ANSI 17 CHARACTER FILE NAME
                                                    ;BUFFER OFFSET
                                              ;REQUESTED UNIT DENSITY
;DEFAULT RECORD ATTRIBUTES
;DEFAULT BLOCK SIZE
;DEFAULT RECORD SIZE
S.VSCB='B'.
                                                    ;SIZE OF VSCB
```

MTADF\$ (Cont.)

```
.PSECT
; DEFINE OFFSETS INTO NULL WINDOW SECTION
          .ASECT
\cdot = 0
W.CTL: 'L'.BLKW 1
                                     ;CONTROL WORD IN WINDOW
V.WINC='B'V.WIND+W.CTL
                                     ; CNTRL WORD IN NULL WINDOW
         . PSECT
                                      ; RELATIVE TO THE VSCB
; MOUNTED VOLUME LIST OFFSET DEFINITIONS (MVL)
          .ASECT
 = 0 
                          R$$11M
         .IF
                 DF
M.NXT:'L' .BLKW 1
                                      ;PTR TO NXT MVL NODE (11M)
         .ENDC
M.UIC:'L' .BLKW 1
M.CH:'L' .BLKW 1
                                     ;OWNER UIC FROM RVOL #1
                                     ; U.CH/U.VP (11D)
M.PROT:'L' .BLKW 1
                                     ;PROTECTION U.AR IN 11D
         .IF
              NDF
                          R$$11M
             .BLKW 2
                                     ; ACP WORDS 11D
M.NXT:'L'
             .BLKW 1
                                     ;PTR TO NEXT MVL NODE (11D)
             .ENDC
M.RVOL:'L' .BLKB 1
                                     ; RELATIVE VOL # OF MOUNTED VOLUME
M.STAT: 'L' .BLKB 1
M.VIDP: 'L' .BLKW 1
                                     ; VOLUME STATUS
                                     ; VOLUME ID POINTER
M.UCB:'L' .BLKW 1
                                      ; ADDR OF ASSOC UCB OR PUD
S.MVL='B'.
                                     ;SIZE OF MVL NODE
         . PSECT
; UNMOUNTED VOLUME AND VOLUME LIST OFFSET DEFINITIONS (UVL)
;
         .ASECT
.=0
L.NXT:'L' .BLKW 1
L.VOL1:'L' .BLKB 1
L.VOL2:'L' .BLKB 1
L.VID1:'L' .BLKB 6
L.VID2:'L' .BLKB 6
                                    ;PTR TO NXT UVL NODE
                                    ;REL VOL # OF 1'ST VOL IN NODE
;REL VOL # OF 2'ND VOL IN NODE
                                     ; VOL ID OF 1'ST VOL IN NODE
                                     ; VOL ID OF 2'ND VOL IN NODE
S.UVL='B'.
                                     ;SIZE OF UVL NODE
         . PSECT
; SYSTEM DATA STRUCTURE CONTENT VALUES
; VSCB VALUES
```

MTADF\$ (Cont.)

```
; V.MOU VALUES
VM.OLD = 'B'
                200
                                 ;OLD .FL300 VOLUME -- VM.BYP WILL ALSO BE SET
        = 'B'
                 100
VM.BYP
                                 ;BYPASS LABEL PROCESSING
VM.ULB = 'B'
                 40
                                 ;UNLABELED TAPE
VM.FSC = 'B'
                                 ; OVERRIDE FILE SET ID CHECK
                20
VM.EXC = 'B'
                10
                                 ;OVERRIDE EXPRIATION DATE CHECK
; V.MST2 VALUES
V2.INI = 'B'
                1
                                 ;MAG WANTS US TO INITIALIZE NEXT OUTPUT
V2.XH2 = 'B'
                                 ; THIS FILE HAS NO HDR2, DON'T WRITE EOF2
                2
V2.XH3 = 'B'
                 4
                                 ;THIS FILE HAS NO HDR3, DON'T WRITE EOF3
                                 ;DON'T WRITE HDR3/EOX3 LABELS
V2.NH3 = 'B'
                10
V2.OAC = 'B'
                                 ;OVERRIDE FILE/VOLUME ACCESIBILITY
                20
; V.PSTA VALUES - UNBLOCKED TRANSITION STATE
        = 'B'
                2
VP.RM
                                 ;READ DATA MODE
        = 'B'
VP.WM
                 4
                                 ;WRITE DATA MODE
VP.UCM = 'B'
                                 ;UNLABELLED CREATE POSITIONING MODE
                6
        = 'B'
VP.SM
                10
                                 ;SEARCH MODE
VP.MOU ='B'
                20
                                 ; MOUNT MODE
                                 ; REWIND OR VOL VERIFICATION WAIT
VP.RWD = 'B'
                 40
VP.VFY = 'B'
                VP.RWD
VP.POS = 'B'
                100
                                 ; PROCESS IN POSITIONING MODE
                                 ; (MULTI-SECTION FILE)
; BLOCKED STATE = - (UNBLOCKED TRANSITION STATE VALUES)
; PROCESS TIMED OUT BIT 0 = 1
        VP.TO='B'1
; NULL WINDOW CONTROL BIT DEFINITIONS
WI.RDV = 'B'
                                 ;ACCESSED FOR READ
                 400
WI.WRV = 'B'
                                 ;ACCESSED FOR WRITE
                1000
WI.EXT = 'B'
                                 ;ACCESSED FOR EXTEND
                2000
WI.LCK = 'B'
                4000
                                 :LOCKED
; MVL VALUES IN THE M.STAT FIELD
MS.VER = 'B'
                200
                                 ; VOL ID NOT VERIFIED
MS.RID
                                 ; VOL ID TO BE READ NOT CHECKED
       ='B'
                1
       ='B'
MS.NMO
                2
                                 ; MOUNT MESSAGE NOT GIVEN YET
MS.TMO = 'B'
                                 ; ONE TIMEOUT ALREADY EXPRIED
                 4
MS.EXP = 'B'
                10
                                 ;EXPIRATION DATE MESSAGE GIVEN
; MISC BITS USED IN MOUNT (STORED IN V.STS)
                                 ; OVER RIDE VOL NAME SWITCH
       ='B'
MO.OVR
                1
                                 ; EXPLICIT UIC GIVEN
MO.UIC = 'B'
                2
       ='B'
MO.PRO
                                 ; EXPLICIT PROTECTION GIVEN
       = 'B'
MO.160
                10
                                 ; 1600 BPI SPECIFIED
        .ENDM
```

OLRDF\$

.MACRO OLRDF\$ \$\$\$GBL

```
; THIS MODULE DEFINES THE ONLINE RECONFIGURATION INTERFACE
; AS IMPLEMENTED BETWEEN THE RSX-11M-PLUS TASKS CON, HRC, AND
; THE RDDRV.
; DEFINE THE I/O FUNCTION CODES FOR ONLINE RECONFIGURATION CONTROL.
          .MCALL .WORD., DEFIN$
          .IF IDN <$$$GBL>, <DEF$G>
          . IFF
...GBL=0
          .ENDC
 THE FOLLOWING MACRO DEFINES THE SUB-FUNCTION CODES FOR EACH OF THE
; OPERATIONS PERFORMED BY THE HRC TASK AND A PARAMETER DESCRIBING THE ; ARGUMENTS REQUIRED FOR EACH FUNCTION. IN A MACRO CALL THE FOLLOWING
; ARE THE LEGAL COMBINATIONS FOR THE 'MASK' PARAMETER:
                    <>
                              SIGNIFYING NO PARAMETERS
                    <D>
                               SIGNIFYING ONE BUFFER DESCRIPTOR
                    <D,D>
                              SIGNIFYING TWO BUFFER DESCRIPTORS
                    <D,CT>
                               SIGNIFYING ONE DESCRIPTOR AND 'CT'
                              BYTES OF PARAMETERS
SIGNIFYING 'CT' BYTES OF PARAMETERS
                    <CT>
          .MACRO FUNC
                             NAME, SUBF, FUN, MASK
          .WORD. IO.'NAME, SUBF, FUN
          FUNCA NAME, < MASK>
          . ENDM
          .MACRO FUNCA NAME, MSK
          PARCT=0
          DESCT=0
          .IRP X, <MSK>
          .IIF IDN <X>,<P> PARCT=PARCT+1
.IIF IDN <X>,<D> DESCT=DESCT+1
          .IIF GT <PARCT-17> .ERROR INVALID PARAMETER COUNT
          .IIF GT <DESCT-17> .ERROR INVALID DESCRIPTOR COUNT
          .ENDR
          TEMP=<DESCT*4>+<PARCT*2>
          .WORD.
                  IO$'NAME, < < DESCT * 20 + PARCT >> , TEMP
          .ENDM
; DEFINE ONLINE RECONFIGURATION I/O FUNCTIONS
                  IO.MFC,000,001; MULTI-FUNCTION MODIFY CONFIGURATION
IO.RSC,000,002; READ SYSTEM CONFIGURATION
IO.WSC,000,006; MODIFY DEVICE CONFIGURATION
          .WORD.
          .WORD.
```

```
; DEFINE SUBFUNCTIONS TO MODIFY DEVICE CONFIGURATION
        FUNC
                ONL,001,006,<D,D>
                                        ; SET DEVICE ONLINE
                                        ; SET DEVICE OFFLINE
        FUNC
                OFL,002,006,<D,D>
        FUNC
                MAI,003,006,<D,D>
                                        ; SET DEVICE IN MAINTAINENCE MODE
                CAC,004,006,<>
                                        ; CACHE CONTROL
        FUNC
        FUNC
                MEM,005,006,<>
                                        ; MIND CONTROL
                                        ; RECONFIGURATION CONTROL,
        FUNC
                STN,006,006,<P,P>
                                        ; SPECIFY TASK NAME
                                        ; RECONFIGURATION CONTROL,
        FUNC
                HRC,007,006,<P,P>
                                        ; HRC OPERATING MODE
                                        ; ON <CONDITION> <COMMAND>
        FUNC
                ONE,010,006,<P,P>
                                        ; RETURN DEVICE STATE
        FUNC
                STA,011,006,<D>
                IF ,012,006,<P,P>
                                        ; IF <CONDITION> <COMMAND>
        FUNC
                                       ; LINK UNIBUS RUN
; UNLINK UNIBUS RUN
        FUNC
                RLI,013,006,<D,D,D,D>
        FUNC
                RUL,014,006,<D,D,D,D>
        FUNC
                MBO,015,006,<P,P,D,D,D,D,D,D,D,D,D; MEMORY BOX ONLINE
                RSW,016,006,<D,D,D,D, ; SWITCH BUS
        FUNC
                WAT,017,006,<D>
        FUNC
                                        ; WRITE ATTRIBUTES
                RAT,020,006,<D,D>
                                        ; READ ATTRIBUTES
        FUNC
        FUNC
                MBF,021,006,<P,P,D,D,D,D,D,D,D,D,D; MEMORY BOX OFFLINE
        IO$MAX=21
                                         ; DEFINE MAXIMUM SUBFUNCTION
                                ; STOP PROCESSING CONDITION ENCOUNTERED
        DEFINS IS.HRG, 6.
                                ; SECOND STATUS WORD IS ARGUMENT
; DEFINE A MACRO, WHICH WHEN EXPANDED WITH THE APPROPRIATE DEFINITION
 FOR .IOER. WILL DEFINE THE PRIVATE ERROR CODES USED BY HRC AND CON.
        .MACRO OLREM$
        $$$VAL=-256.
                               ; DEFINE INITIAL ERROR NUMBER VALUE
        .IOER.
               IE$DAL, <DEVICE already linked>
        .IOER. IE$DNL, <DEVICE not linked>
        .IOER.
               IE$PRM, <Parameter error>
        .IOER.
                IE$SYN, <Syntax error>
        .IOER.
                IE$AFE,<Attribute format error>
                IE$TMU,<HRC... Internal tables insufficient for this system>
        .IOER.
                IE$CAB, <Unable to access busrun>
                IE$TRP,<HRC... internal addressing error>
        .IOER.
        .IOER.
                IE$ALG,<Memory box parameter error>
        .IOER.
                IE$TQU,<Timeout on unit quieting operation>
                IE$EPO, <ONLINE CPU failure>
                IE$EUO, <ONLINE UNIT failure>
        .IOER.
                IE$ECO, <ONLINE CONTROLLER failure>
        .IOER.
                IE$EPF, <OFFLINE CPU failure>
                IE$EUF, <OFFLINE UNIT failure>
        .IOER.
                IE$ECF, <OFFLINE CONTROLLER failure>
        .IOER.
        .IOER.
                IE$CFU, <Attempt to quiet unit for controller failed>
        .IOER.
                IE$CSR, <CSR for controller not present in I/O page>
        .IOER.
                IE$SWF, <Unable to switch unit away from current controller>
                IE$ICE,<HRC... detected I/O database consistancy error>
        .IOER.
        .IOER.
                IESSCE, <Executive or Driver status change error>
        .IOER.
                IE$MDE, <HRC... Memory descriptor format error>
```

```
IE$NFW,<No path to target device is available>
         .IOER. IE$CXT, <Unable to take unit with context offline.>
         .IOER. IE$IDU, <Invalid device descriptor>
         .IOER.
                 IE$UNK, < Device is unknown in this configuration>
                 IE$SZE,<HRC... Unable to access device to size drive>
IE$POB,<HRC... Can't take box offline. Partition overmaps box>
         .IOER.
         .IOER.
         .IOER.
                 IE$NLB, <HRC... Can't take box offline. Not last box in memory>
                 IE$OMP,<HRC... Can't modify partition size. Overmap exists>
IE$POC,<HRC... Can't modify partition size. Occupied>
IE$DFE,<HRC... Request format error.>
         .IOER.
         .IOER.
         .IOER.
         .IOER.
                 IE$IDS,<HRC... Invalid device specification.>
         .IOER.
                  IE$UOE, <HRC... Unkown error from online/offline call>
         . ENDM
  CONDITION CODES FOR CONDITIONS TESTED BY IO.ONE AND IO.IF FUNCTIONS
                                   ; IF DEVICE NOW ONLINE
         CO\$ONL = 1
                                   ; IF DEVICE NOW OFFLINE
         CO\$OFL = 2
         CO$UNK = 3
                                   ; UNKNOWN DEVICE
                                   ; ACCESSABLE (ACCESS PATH EXISTS)
         CO$ACC = 4
                                   ; ANY ERROR CONDITION
         CO$ANY = 5
                                    ; MAINTENANCE MODE
         CO$MAI = 6
         CO$MAX = 6
                                    ; MAXIMUM CODE
  CONDITION COMMAND CODES FOR IO.ONE AND IO.IF FUNCTIONS
                                    ; 'STOP' COMMAND
         CD\$STO = 2
                                    ; 'GOTO'
         CD\$GOT = 4
                                    ; 'CONTINUE'
         CD$CON = 6
         CD$MAX = 6
                                    ; MAXIMUM CONDITION DEFINED
  ARGUMENT DEFINITION FOR IO.HRC FUNCTION
                                   ; SUPRESS CONFIGURATION TRANSMISSION TO ERRLOG
         M$LOG = 1
                                   ; INITALIZE HRC
         M$INIT = 2
         M$DEBG = 4
                                   ; SET HRC INTO DEBUG MODE. (DEVELOPMENT ONLY)
         M\$EXIT = 10
                                    ; EXIT REQUEST (FROM ABORT AST REQUEST)
; DEFINE TABLE OFFSETS AND STATUS BITS RETURNED IN RESPONSE TO
; A 'READ CONFIGURATION' QIO
         .ASECT
         =0
CSDTYP: .BLKB
                                    ; ENTRY TYPE FIELD
; ENTRY TYPE CODES ARE AS FOLLOWS
```

```
ET$HDR = 1
                                 ; CONFIGURATION HEADER ENTRY
                                 ; END OF CONFIGURATION DATA
        ET\$END = 2
        ETSDEV = 'A
                                  ; MINIMUM VALUE FOR DEVICE SPECIFICATION
                                     ENTRY
C$DECT: .BLKB
                                  ; COUNT OF TABLE ENTRIES (CPUS+SWITCHED
                                  ; BUS RUNS+CONTROLLERS+UNITS)
                                  ; VERSION OF RECONFIGURATION TASK PROTOCAL
C$DVER: .BLKB
                                 ; SIZE OF HEADER
C$DSTD: .BLKB
                 1
                                  ; MAXIMUM UNIBUS RUNS SUPPORTED
C$DMUB: .BLKB
C$DMCT: .BLKB
                 1
                                  ; MAXIMUM CONTROLLERS OF A GIVEN TYPE
                 1
                                  ; SUPPORTED
        .EVEN
                                  ; FACILITES SUPPORTED IN HOST SYSTEM
C$DFAC: .BLKW
                 2
C$DIDN: .BLKW
                                  ; HRC VERSION AND BUILD TIMESTAMP
                 9.
                                  ; SIZE OF THE TABLE HEADER
CSSTD:
; OFFSETS WITHIN THE FIXED PORTION OF A GIVEN ENTRY
        -0
C$DTYP:
                                  ; ENTRY TYPE CODE
                                  ; TWO ASCII CHARACTER UNIT OR CONTROLLER NAME
C$DNAM: .BLKW
                                  ; CONTROLLER NUMBER (0-255.)
C$DPUN: .BLKB
                 1
                                 ; LOGICAL UNIT NUMBER IF THIS DEVICE IS A UNIT
C$DLUN: .BLKB
                1
C$DSCT: .BLKB
C$DEVT: .BLKB
C$DSTS: .BLKW
                                 ; SUB-CONTROLLER NUMBER
                 1
                                 ; DEVICE TYPE CODE
                 1
                 1
                                  : DEVICE STATUS MASK
 FLAG VALUES FOR CSDSTS
                                  ; VARIABLE LENGTH ATTRIBUTE INFO IS APPENDED
        CSSATR=1
                                  ; FIELD IN C$DSTS CONTAINING COUNT OF ADDITIONAL
        CS$EXF=76
                                  ; BYTES IN THIS DEVICE ENTRY
                                  ; THIS IS A SUB-CONTROLLER DEVICE
        CS$SUB=100
        ;CS$XXX=200
                                 ; UNUSED
                                 ; 1=>DEVICE IS OFFLINE, 0=>DEVICE IS ONLINE
        CSSOFL=400
                                 ; DEVICE IS RESTRICTED TO PRIVILEGED DIAG FNS
; THIS IS A MULTIPORT DEVICE
; DEVICE IS A MASS BUS DEVICE
        CS$PDF=1000
        CS$POR=2000
        CS$MBD=4000
                                 ; DEVICE IS UNKNOWN
        CS$UNK=10000
                                 ; AN ONLINE ACCESS PATH EXISTS TO THIS DEVICE
        CS$ACC=20000
        CS$MTD=40000
                                 ; DEVICE IS MOUNTED (DISK) OR LOGGED IN (TERM)
                                 ; A DRIVER IS LOADED FOR THIS DEVICE
        CS$DRV=100000
C$DST2: .BLKW
                                  ; STATUS EXTENSION
                                  ; 1=> THIS DEVICE SPECIFIED WITH PHYSICAL
        CS$PUN=20
                                          UNIT NUMBER
                                  ; 1=> THIS IS A CONTROLLER RELATIVE DEVICE SPEC
        CSSCRD=40
        CS$PRC=100
                                  ; 1=> THIS IS A PORT RELATIVE CONTROLLER SPEC
                                  ; DEVICE IS A CONTROLLER (MUST BE SIGN BIT)
        CS$CTL=200
        CS$DCL=3400
                                  ; DEVICE CLASS CODE FIELD. MUST BE LOW ORDER
```

BIT OF HIGH BYTE.

```
DEVICE CLASS VALUES
;
        DC$UNI = 0
                                 ; UNIT
        DC\$CTL = 1
                                 ; CONTROLLER
        DC$MKU = 2
                                 ; MEMORY BOX UNIT
        DC \$MKC = 3
                                 ; MEMORY BOX CONTROLLER
        DC\$SBU = 4
                                 ; SWITCHED BUS UNIT
                                 ; SWITCHED BUS CONTROLLER
        DC\$SBC = 5
        DCSCPU = 6
                                 ; CPU
        ;DC$XXX = 7
                                 ; UNUSED
C$DDAT: .BLKW
                                 ; DEVICE DEPENDANT DATA
C$SME:
                                 ; SIZE IF A MINIMUM ENTRY
  VARIABLE PORTION OF A GIVEN ENTRY
  FOR CONTROLLERS
        .=C$SME
C$DKPO: .BLKW
                                 ; PORT-STATUS-WORD. THIS DESCRIBES THE BUS RUN
                                 ; CPU OR SWITCHED BUS, TO WHICH THIS
                                 ; CONTROLLER IS CONNECTED.
C$SCT:
                                 ; MIMIMUM SIZE OF A CONTROLLER ENTRY
; FOR UNIT ENTRIES
        .=C$SME
C$DCTN: .BLKW
                                 ; CONTROLLER NAME. TWO CHARACTER ASCII CODE
                                 ; OF THE CONTROLLER TO WHICH THIS UNIT IS
                                 ; ATTACHED.
C$DUPO: .BLKW
                                 ; PORT-STATUS-WORD. THIS IS THE
                1
                                 ; FIRST OF THE PSWS DESCRIBING THE CONTROLLER(S)
                                 ; TO WHICH THIS UNIT IS CONNECTED.
C$SUN:
                                 ; MIMIMUM SIZE OF A UNIT ENTRY
 FOR CPU-S
        .=C$SME
C$DCPO: .BLKW
                                ; PORT-STATUS-WORD. THIS IS THE BUS
                                 ; NUMBER FOR THIS CPU.
C$SCP:
                                 ; MINIMUM SIZE OF A CPU ENTRY
 FOR MEMORY BOXES
```

```
.=C$SME
                                    ; CONTROLLER NAME.
C$DCTN: .BLKW
                   1
         .BLKW
                                     ; MAXIMUM OF 4 PORTS FOR MEMORY CONTROLLERS
C$SMB:
                                      ; MAXIMUM SIZE OF A MEMORY BOX ENTRY
  STATUS BIT DEFINITIONS FOR THE PORT STATUS WORD
         CP$OFL=400
                                     ; 1=> PORT IS OFFLINE
                                      ; UNUSED
         CP$XXX=1000
         CP$CUR=2000
                                     ; THIS PORT IS THE CURRENT PORT (S.KRB
                                     ; REFERENCES THIS PORT
         CP$XXX=4000
                                     ; UNUSED
         CP$XXX=10000
                                    ; UNUSED
         CP$ACC=20000
                                    ; THIS PORT HAS AN ACCESS PATH
; PORT HAS CONTEXT OR SERVICES A DEVICE HAVING
         CP$MTD=40000
                                     ; CONTEXT
                                    ; UNUSED
         CP$XXX=100000
; DEVICE ATTRIBUTES CODES
         .MACRO ATT NAME, SIZ
         $$$TMP=$$$TMP+1
         DEFIN$ DA$'NAME,$$$TMP!<400*SIZ>
         . ENDM
         $$$TMP=0
         ATT
                  CSR,2
                                    ; CSR ADDRESS
                   VEC,2
                                    ; VECTOR ADDRESS
         ATT
                                    ; UNIBUS RUN
; DEVICE TYPE, READ ONLY
         ATT
                   UBR,2
         ATT
                   TYP,2
                                    ; MOUNTED VOLUME NAME, READ ONLY
         ATT
                  VOL,12.
                                    ; DEVICE ERROR COUNTERS, READ/WRITE
; DEVICE INTERRUPT PRIORITY
; MEMORY BOX PARAMETER
; SANITY TIMER ENABLE/DISABLE
; ALARM ENABLE/DISABLE
         ATT
                   ERR,10
                  PRI,2
         ATT
                  MBP,6
STE,2
         ATT
         ATT
                   SAL,2
         ATT
                                    ; DEVICE SERIAL NUMBER
                  DSN,2
         ATT
         ATT
                  CSN,10
                                    ; CPU SERIAL NUMBERS
; MEMORY BOX ATTRIBUTE BUFFER
         .ASECT
         \cdot = 0
C$MBAS: .BLKW
                  1
                                     ; BASE ADDRESS OF BOX
                                     ; INTERLEAVE FACTOR
C$MINT: .BLKB
                  1
         .BLKB
                  1
                                     ; FREE BYTE
C$MSIZ: .BLKW
C$MGRN: .BLKW
                                     ; SIZE OF BOX IN 32 WORD BLOCKS
                  1
                                     ; BOX GRANULARITY. "BYTES-PER-UNIT"
                  1
                                     ; SIZE OF BOX ATTRIBUTE BUFFER
C$MDSC:
```

```
.PSECT
; REDEFINE MACRO TO NULL
        .MACRO OLRDF$ X
        . ENDM
        .MACRO ATT X
        . ENDM
        .ENDM
; MACRO FOR THE DEFINITION OF DEVICE TYPE CODES
        .MACRO DEVCD$ $$$GBL
        .MCALL DEFIN$
        .IF IDN <$$$GBL>, <DEF$G>
...GBL=1
        .IFF
...GBL=0
        . ENDC
        .MACRO DEV X
        DEFINS DS'X, $$$TMP
        $$$TMP=$$$TMP+1
        . ENDM
        $$$TMP = 0
        DEV UDET
                        ; UNDETERMINED DEVICE TYPE
        DEV UKNO
                        ; UNKNOWN DEVICE TYPE
        DEV RK03
                        ; RK03
        DEV RK05
                        ; RK05
        DEV RK5F
                        ; RK05-F (DUAL DENSITY FIXED CARTRIDGE)
        DEV RX01
                        ; RX01
        DEV RX02
                        ; RX02 (DUAL DENSITY RX01)
        DEV RL01
                         ; RL01
        DEV RL02
                         ; RL02
       DEV RP02
                        ; RP02
                         ; RP03
       DEV RP03
       DEV RP04
                        ; RP04
                        ; RP05
        DEV RP05
       DEV RP06
                        ; RP06
                        ; RP07
       DEV RP07
       DEV RK06
                        ; RK06
       DEV RK07
                         ; RK07
```

.ENDM

```
; RM02
DEV RM02
                ; RM03
DEV RM03
                ; RM05
DEV RM05
                ; RM80
DEV RM80
DEV RS03
                ; RS03
                ; RS04 (DUAL DENSITY RS03)
DEV RS04
                ; RF11/RS08
DEV RF11
                ; TK25
DEV TK25
                ; TK50
DEV TK50
DEV TU10
                ; TU10
                ; TU16
; TU45
DEV TU16
DEV TU45
                ; TU77
DEV TU77
                ; TU78
DEV TU78
                ; TS11
; TSU05
DEV TS11
DEV TSU0
                ; TSV05
DEV TSV0
DEV TU80
                ; TU80
                ; TU81
DEV TU81
DEV TM02
                ; TM02
DEV TM03
                ; TM03
DEV TM78
                ; TM78
                ; TU56
DEV TU56
DEV TU58
                ; TU58
                ; TU60
DEV TU60
DEV MSCP
                ; UDA50
                ; RA60
DEV RA60
DEV RA80
                ; RA80
                ; RA81
DEV RA81
               ; RC25 (AZTEC)
DEV RC25
                ; RD50
DEV RD50
DEV RD51
                ; RD51
DEV RX50
                ; RX50
                ; ML11
DEV ML11
                ; TERMINAL
DEV TERM
$$$TMP=370
                 ; USER TYPE 0
DEV USR0
DEV USR1
                ; USER TYPE 1
                ; USER TYPE 2
DEV USR2
                ; USER TYPE 3 ; USER TYPE 4
DEV USR3
DEV USR4
DEV USR5
                ; USER TYPE 5
DEV USR6
                ; USER TYPE 6
                ; USER TYPE 7
DEV USR7
.MACRO DEVCD$
. ENDM
.MACRO DEV X
. ENDM
```

PCBDF\$

```
.MACRO PCBDF$ L,B
;+
; MAIN PARTITION PCB
         .ASECT
.=0
P.LNK: 'L'.BLKW
                                  ;LINK TO NEXT MAIN PARTITION PCB
          .BLKW
                                  ; (UNUSED)
P.NAM:'L'.BLKW 2
                                  ; PARTITION NAME IN RAD50
P.SUB:'L'.BLKW 1
                                  ; POINTER TO FIRST SUBPARTITION
P.MAIN: 'L'.BLKW 1
                                  ; POINTER TO SELF
P.REL: 'L'.BLKW 1
                                  ;STARTING PHYSICAL ADDRESS IN 32W BLOCKS
P.BLKS:'L'
P.SIZE: 'L'.BLKW 1
                                  ;SIZE OF PARTITION IN 32W BLOCKS
P.WAIT: 'L'.BLKW 2
                                  ; PARTITION WAIT QUEUE LISTHEAD
          .BLKW 2
                                  ; (UNUSED)
P.STAT: 'L'.BLKW 1
P.ST2: 'L'.BLKW 1
                                  ; PARTITION STATUS FLAGS
                                  ;STATUS EXTENSION FOR COMMON AND MAIN PCB'S
          .BLKW 3
                                  ; (UNUSED)
P.HDLN: 'L'.BLKB 1
                                  ;SIZE OF EXTERNAL HEADER IN 32W BLOCKS
P.IOC: 'L' .BLKB 1
                                  ; PARTITION I/O COUNT
$$$=.
P.RRM: 'L'.BLKW 1
                                  ; REQUIRED RUN MASK
        .IF NDF M$$PRO
.=$$$
        .ENDC
         .IF NB SYSDEF
P.LGTH='B'.
                                  ; PARTITION CONTROL BLOCK LENGTH
         . ENDC
; TASK REGION PCB
.=0
P.LNK: 'L'.BLKW 1
                                  ;UTILITY LINK WORD
P.PRI:'L'.BLKB 1
P.RMCT:'L'.BLKB 1
                                  ; PRIORITY OF PARTITION
                                  ; RESIDENT MAPPED TASKS COUNT
P.NAM: 'L'.BLKW 2
                                  ; PARTITION NAME IN RAD50
P.SUB: 'L'.BLKW 1
                                  ; POINTER TO NEXT SUBPARTITION
P.MAIN: 'L'.BLKW 1
                                  ; POINTER TO MAIN PARTITION
P.REL: 'L'.BLKW 1
                                  ;STARTING PHYSICAL ADDRESS IN 32W BLOCKS
P.BLKS: 'L'
```

```
;SIZE OF PARTITION IN 32W BLOCKS
P.SIZE: 'L'.BLKW 1
          .BLKW 1
                                  ; (UNUSED)
P.SWSZ:'L'.BLKW 1
                                  ; PARTITION SWAP SIZE
P.DPCB: 'L'.BLKW 1
                                 ;CHECKPOINT ALLOCATION PCB
P.TCB: 'L'.BLKW 1
                                 ; TCB ADDRESS OF OWNER TASK
P.STAT: 'L'.BLKW 1
                                  ; PARTITION STATUS FLAGS
P.HDR: 'L' .BLKW 1
                                  ; POINTER TO HEADER CONTROL BLOCK
          .BLKW 1
                                  ; (UNUSED)
                                 ;ATTACHMENT DESCRIPTOR LISTHEAD
P.ATT: 'L' .BLKW 2
P.HDLN: 'L'.BLKB 1
                              ;SIZE OF EXTERNAL HEADER IN 32W BLOCKS
P.IOC: 'L' .BLKB 1
                                  ; PARTITION I/O COUNT
$$$=.
P.RRM: 'L'.BLKW 1
                                  ; REQUIRED RUN MASK
        .IF NDF M$$PRO
.=$$$
         .ENDC
; +
; COMMON REGION PCB
.=0
P.LNK:'L'.BLKW 1
P.PRI:'L'.BLKB 1
                                  ;UTILITY LINK WORD
                                  ; PRIORITY OF PARTITION
P.RMCT: 'L'.BLKB 1
                                  ; RESIDENT MAPPED TASKS COUNT
P.NAM: 'L'.BLKW 2
                                  ; PARTITION NAME IN RAD50
P.SUB: 'L'.BLKW 1
                                 ; POINTER TO NEXT SUBPARTITION
P.MAIN: 'L'.BLKW 1
                                  ; POINTER TO MAIN PARTITION
P.REL: 'L'.BLKW 1
                                  ;STARTING PHYSICAL ADDRESS IN 32W BLOCKS
P.BLKS:'L'
P.SIZE: 'L'.BLKW 1
                                 ;SIZE OF PARTITION IN 32W BLOCKS
P.CBDL: 'L'.BLKW 1
P.CSBA: 'L'
                                 ; COMMON BLOCK DIRECTORY LINK
                                  ; CACHE STATISTICS BLOCK LISTHEAD
                                  ; ... (IF P2.CHE IS SET, PARTITION WON'T SWAP)
P.SWSZ:'L'.BLKW 1
                                  ; PARTITION SWAP SIZE
P.DPCB: 'L'.BLKW 1
                                 ; POINTER TO DISK PCB
P.OWN: 'L' .BLKW 1
P.STAT: 'L'.BLKW 1
                                  ; OWNING UIC OF REGION
                                  ; PARTITION STATUS FLAGS
P.ST2:'L' .BLKW 1
P.PRO:'L' .BLKW 1
                                  ;STATUS EXTENSION FOR COMMON AND MAIN PCB'S
                                  ; PROTECTION WORD [DEWR, DEWR, DEWR, DEWR]
P.ATT:'L' .BLKW 2
                                  ;ATTACHMENT DESCRIPTOR LISTHEAD
P.HDLN: 'L'.BLKB 1
                                  ;SIZE OF EXTERNAL HEADER IN 32W BLOCKS
P.IOC: 'L' .BLKB 1
                                  ; PARTITION I/O COUNT
$$$=.
P.RRM:'L'.BLKW 1
                                  ; REQUIRED RUN MASK
```

```
.IF NDF M$$PRO
.=$$$
         .ENDC
         . PSECT
; PARTITION STATUS WORD BIT DEFINITIONS
PS.OUT='B'100000
                                   ; PARTITION IS OUT OF MEMORY (1=YES)
PS.CKP='B'40000
                                   ; PARTITION CHECKPOINT IN PROGRESS (1=YES)
; PARTITION CHECKPOINT IS REQUESTED (1=YES)
PS.CKR='B'20000
PS.CHK='B'10000
                                   ; PARTITION IS NOT CHECKPOINTABLE (1=YES)
PS.FXD='B'4000
                                   ; PARTITION IS FIXED (1=YES)
PS.CAF='B'2000
                                   ; CHECKPOINT SPACE ALLOCATION FAILURE (1=YES)
PS.LIO='B'1000
                                   ;MARKED BY SHUFFLER FOR LONG I/O (1=YES)
PS.NSF='B'400
                                   ; PARTITION IS NOT SHUFFLEABLE (1=YES)
PS.COM='B'200
                                   ;LIBRARY OR COMMON BLOCK (1=YES)
PS.LFR= 'B'100
                                   ;LAST LOAD OF REGION FAILED (1=YES)
PS.PER='B'40
                                   ; PARTIY ERROR OCCURED IN THIS REGION (1=YES)
PS.NWB='B'20
                                   ; COMMON SHOULDN'T BE WRITTEN BACK
PS.DEL='B'10
                                   ; PARTITION SHOULD BE DELETED WHEN NOT ATTACHED
                                   : (1=YES)
PS.AST='B'4
                                   ; PARTITION HAS REGION LOAD AST PENDING
; REQUIRED RUN MASK
PR.UBT='B'100000
                                   ;UNIBUS RUN T
PR.UBS='B'40000
                                  ;UNIBUS RUN S
PR.UBR='B'20000
                                   ;UNIBUS RUN R
PR.UBP='B'10000
                                   ;UNIBUS RUN P
PR.UBN='B'4000
                                   ;UNIBUS RUN N
PR.UBM= 'B' 2000
                                   ;UNIBUS RUN M
PR.UBL='B'1000
                                  ;UNIBUS RUN L
PR.UBK='B'400
                                  ;UNIBUS RUN K
PR.UBJ='B'200
                                  ;UNIBUS RUN J
PR.UBH= 'B'100
                                  ;UNIBUS RUN H
PR.UBF='B'40
                                  ;UNIBUS RUN F
PR.UBE= 'B'20
                                  ;UNIBUS RUN E
PR.CPD='B'10
                                  ; PROCESSOR D
PR.CPC='B'4
                                  ; PROCESSOR C
PR.CPB='B'2
                                  ; PROCESSOR B
PR.CPA='B'1
                                   ; PROCESSOR A
;+
; STATUS EXTENSION WORD BIT DEFINITIONS
         (THESE BITS CAN ONLY BE EXAMINED IN COMMON OR MAIN PCB'S)
;
```

```
P2.LMA='B'40000
                                        ;DON'T SHUFFLE, DELETE SPINDLE OR MUTILATE
                                         ;THIS PARTITION
                                         ;CPCR INITIATED CHECKPOINT PENDING
P2.CPC='B'20000
P2.CHE='B'10000
                                          ;CACHE PARTITION
P2.SEC='B'4000
                                         ;THIS IS RO SECTION OF MU TASK
                                         ;WITH TCB IN SEC. POOL
                                         ; THE FIXER TASK HAS HANDLED A PARITY ERROR
P2.PAR='B'2000
                                         ;SECONDARY POOL PARTITION
P2.POL='B'1000
P2.CPU='B'400
                                        ;MULTIPROCESSOR CPU PARTITION
                                        ; POSITION INDEPENDENT LIBRARY OR COMMON (1=YES)
P2.PIC='B'200
                                        ; READ-ONLY COMMON (1=YES)
P2.RON='B'100
P2.DRV='B'40
                                         ;DRIVER COMMON PARTITION (1=YES)
P2.APR='B'7
                                          STARTING APR NUMBER MASK FOR NON-PIC COMMON
; CHECKPOINT FILE PCB
          .ASECT
\cdot = 0
P.LNK:'L' .BLKW 1
P.UCB:'L' .BLKW 1
P.LBN:'L' .BLKW 1
                                          ;LINK WORD OF CHECKPOINT FILE PCB'S
                                         ;UCB ADDRESS OF CHECKPOINT FILE DEVICE
                                        HIGH PART OF STARTING LBN
BLKW 1
P.SUB: 'L' .BLKW 1
P.MAIN: 'L' .BLKW 1
                                        ;LOW PART OF STARTING LBN
                                        ; POINTER TO FIRST CHECKPOINT ALLOCATION PCB ; MUST BE 0 (FOR $RLPR1)
P.REL: 'L' .BLKW 1
P.SIZE: 'L' .BLKW 1
                                         ; CONTAINS O IF FILE IN USE, 1 IF NOT IN USE
                                         ;SIZE OF CHECKPOINT FILE IN 256W BLOCKS
P.DLGH='B'.
                                          ;LENGTH OF ALL DISK PCB'S
; CHECKPOINT ALLOCATION PCB
.=0
                                       ; (UNUSED)
;LINK TO NEXT CHECKPOINT ALLOCATION PCB
;ADDRESS OF CHECKPOINT FILE PCB
;RELATIVE POSITION IN FILE IN 256W BLOCKS
          .BLKW 4
P.SUB: 'L' .BLKW 1
P.MAIN: 'L' .BLKW 1
P.REL: 'L' .BLKW 1
P.SIZE: 'L' .BLKW 1
                                        ;SIZE ALLOCATED IN 256W BLOCKS
; COMMON TASK IMAGE FILE PCB
.=0
P.FID1:'L' .BLKW 1
P.UCB:'L' .BLKW 1
P.LBN:'L' .BLKW 1
                                      ;FILE ID WORD FOR SAVE
;UCB ADDRESS OF DEVICE ON WHICH COMMON RESIDES
;HIGH PART OF STARTING LBN
;LOW PART OF STARTING LBN
:FILE ID WORD FOR SAVE
         .BLKW 1
P.FID2: 'L' .BLKW 1
P.MAIN: 'L' .BLKW 1
                                        ;FILE ID WORD FOR SAVE
;POINTER TO SELF
P.REL: 'L' .BLKW 1
                                        ;ALWAYS CONTAINS A 0
P.FID3:'L' .BLKW 1
                                        ;FILE ID WORD FOR SAVE
; ATTACHMENT DESCRIPTOR OFFSETS
```

```
.ASECT
.=0
A.PCBL: 'L'.BLKW 1
                                   ; PCB ATTACHMENT QUEUE THREAD WORD
                             ;PRIORITY OF ATTACHED TASK
A.PRI: 'L'.BLKB 1
A.IOC:'L'.BLKB 1
A.TCB:'L'.BLKW 1
A.TCBL:'L'.BLKW 1
                                   ; I/O COUNT THROUGH THIS DESCRIPTOR
                                   ;TCB ADDRESS OF ATTACHED TASK
                                   ;TCB ATTACHMENT QUEUE THREAD WORD
A.STAT: 'L'.BLKB 1
                                   ;STATUS BYTE
A.MPCT: 'L'.BLKB 1
                                   ;MAPPING COUNT OF TASK THRU THIS DESCRIPTOR
A.PCB: 'L'.BLKW 1
                                    ; PCB ADDRESS OF ATTACHED TASK
A.LGTH='B'.
                                    ;LENGTH OF ATTACHMENT DESCRIPTOR
; ATTACHMENT DESCRIPTOR STATUS BYTE BIT DEFINITIONS
         .PSECT
                                    ;A.TCB IS SEC POOL TCB BIAS (1=YES);CACHE BYPASS REQUESTED
AS.PRO='B'100
AS.SBP='B'20
AS.RBP='B'40
                                    ; REQUEST TO NOT BYPASS CACHE
AS.DEL='B'10
                                    ; TASK HAS DELETE ACCESS (1=YES)
                                    ;TASK HAS EXTEND ACCESS (1=YES);TASK HAS WRITE ACCESS (1=YES)
AS.EXT='B'4
AS.WRT='B'2
AS.RED='B'1
                                    ;TASK HAS READ ACCESS (1=YES)
         .MACRO PCBDF$ X,Y,Z
         .ENDM
```

. ENDM

PKTDF\$

```
.MACRO PKTDF$,L,B
```

```
ASYNCHRONOUS SYSTEM TRAP CONTROL BLOCK OFFSET DEFINITIONS
; SOME POSITIONAL DEPENDENCIES BETWEEN THE OCB AND THE AST CONTROL BLOCK
; ARE RELIED UPON IN THE ROUTINE $FINXT IN THE MODULE SYSXT.
        .ASECT
.=177774
                                ;SUBROUTINE KISAR5 BIAS (A.CBL=0);DEQUEUE SUBROUTINE ADDRESS (A.CBL=0);AST QUEUE THREAD WORD
A.KSR5:'L' .BLKW 1
A.DQSR:'L' .BLKW 1
        .BLKW 1
A.CBL:'L' .BLKW 1
                                  ; LENGTH OF CONTROL BLOCK IN BYTES
                                  ; IF A.CBL = 0, THE AST CONTROL BLOCK IS
                                  ; TO BE DEALLOCATED BY THE DEQUEUE SUBROUTINE
                                  ; POINTED TO BY A.DQSR MAPPED VIA APR 5
                                  ; VALUE A.KSR5. THIS IS CURRENTLY USED ONLY
                                  ;BY THE FULL DUPLEX TERMINAL DRIVER FOR
                                  ;UNSOLICITED CHARACTER ASTS.
                                  ; IF THE LOW BYTE OF A.CBL = 0, AND THE
                                  ;HIGH BYTE IS NOT = 0, THE AST CONTROL BLOCK
                                  ; IS A SPECIFIED AST, WITH LENGTH, C.LGTH.
                                  ; IF THE HIGH BYTE OF A.CBL=0
                                  ;AND THE LOW BYTE > 0, THEN
                                  ; THE LOW BYTE IS THE LENGTH OF THE
                                  ;AST CONTROL BLOCK.
                                  ; IF HIGH BYTE = 0 AND LOW BYTE IS NEGATIVE,
                                  ; THEN THE BLOCK IS A KERNEL AST
                                  BIT 6 IS SET IF SSGFIN SHOULD
                                  ; NOT BE CALLED PRIOR TO DISPATCHING
                                  ;THE AST, AND THE LOW SIX BITS (5-0)
                                  ; REPRESENT THE INDEX/2 INTO THE
                                  ; KERNEL AST DISPATCH TABLE ($KATBL)
A.BYT:'L' .BLKW 1
A.AST:'L' .BLKW 1
                                  ; NUMBER OF BYTES TO ALLOCATE ON TASK STACK
                                 ;AST TRAP ADDRESS
A.NPR:'L' .BLKW 1
A.PRM:'L' .BLKW 1
                                 ; NUMBER OF AST PARAMETERS
                                 FIRST AST PARAMETER
                                ; CODE FOR FLOATING POINT AST
AS.FPA='B'1
                                 ;CODE FOR RECEIVE DATA AST
AS.RCA='B'2
                                  ; CODE FOR RECEIVE BY REFERENCE AST
AS.RRA='B'3
                                  ;CODE FOR PARITY ERROR AST
AS.PEA='B'4
                                  ;CODE FOR REQUESTED EXIT AST
AS.REA='B'5
                                  ;CODE FOR POWER FAIL AST
AS.PFA='B'6
                                  ;CODE FOR CLI COMMAND ARRIVAL AST
AS.CAA='B'7
; BIT VALUES IN A.PRM+5
AF.XCC='B'1
                                 ;ATTACHED FOR ALL BUT CONTROL-C (TF XCC)
AF.NOT='B'2
                                  ;ATTACHED FOR ALL NOTIFICATION (TF.NOT)
                                  ;ACB IS FOR OUT-OF-BAND AST
AF.OOB='B'4
                                  ; ACB HANDLES UNSOL. INPUT CHAR AST'S (TF.AST)
AF.AST='B'10
AF.ESQ='B'20
                                 ;ATTACHED FOR ESCAPE SEQUENCES (TF.ESQ)
                                  ;ACB IS LOCKED
AF.LCK='B'40
AF.OUE='B'100
                                  ;ACB IS QUEUED
                                  ; ACB IS MARKED FOR DELETE
AF.MDE='B'200
```

```
; ABORTER SUBCODES FOR ABORT AST (AS.REA) TO BE RETURNED ON USER'S STACK
AB.NPV='B'1
                                 ; ABORTER IS NONPRIVILEGED (1=YES)
AB.TYP='B'2
                                 ;ABORT FROM DIRECTIVE (0=YES)
                                 ;ABORT FROM CLI COMMAND (1=YES)
                                 ; SIZE OF PARITY ERROR AST CONTROL BLOCK
A. PLGH= 'B'70
A.DUCB='B'10
                                 ;UCB OF TERM ISSUING DEBUG COMMAND
A.DLGH='B'10.
                                 ; LENGTH OF DEBUG (AK.TBT) AST BLOCK
        KERNEL AST CONTROL CODES (A.CBL)
AK.BUF='B'200
                                 ;BUFFERED I/O COMPLETION
                                 ;THIS CODE MUST BE 200 UNTIL ALL
                                 ; REFERENCES IN TTDRV ARE FIXED
                                 ;OFFSPRING TASK EXIT
AK.OCB='B'201
AK.GBI='B'202
                                 ;SEGMENTED BUFFERED I/O COMPLETION
AK.TBT='B'203
                                 :TASK FORCE T-BIT TRAP (DEBUG CMD)
AK.DIO='B'204
                                 ;DELAYED I/O COMPLETION
                                 ;GRP. GBL. RUNDWN
AK.GGF='B'205
;+
; BIT DEFINITIONS FOR THE GET/SET INFORMATION DIRECTIVE.
SF.PRV='B'100000
                                 ;FUNCTION IS PRIVILEGED
SF.IN='B' 40000
                                 ; FUNCTION IS AN INPUT FUNCTION
; GROUP GLOBAL EVENT FLAG BLOCK OFFSETS
.=0
                                 ;LINK WORD
G.LNK: 'L'.BLKW 1
G.GRP: 'L'.BLKB 1
                                 ;GROUP NUMBER
G.STAT: 'L'.BLKB 1
                                 ;STATUS BYTE
G.CNT: 'L'.BLKW 1
                                 ;ACCESS COUNT
G.EFLG: 'L'.BLKW 2
                                 ; EVENT FLAGS
                                 ; LENGTH OF GROUP GLOBAL EVENT FLAG
G.LGTH='B'.
                                 ;BLOCK
GS.DEL='B'1
                                 ;STATUS BIT -- MARKED FOR DELETE
; EXECUTIVE POOL MONITOR CONTROL FLAGS
; $POLST IS THE SYNCHRONIZATION WORD BETWEEN THE EXEC AND POOL MONITOR
PC.HIH='B'1
                                 ;HIGH POOL LIMIT CROSSED (1=YES)
PC.LOW='B'2
                                 ;LOW POOL LIMIT CROSSED (1=YES)
PC.ALF='B'4
                                 ; POOL ALLOCATION FAILURE (1=YES)
                                 ; FORCE POOL MONITOR TASK TO EXIT (MUST
PC.XIT='B'200
                                 ;BE COUPLED WITH SETTING FE.MXT IN THE
                                 ;FEATURE MASK)
PC.NRM='B'PC.HIH*400
                                 ; POOL TASK INHIBIT BIT FOR HIGH POOL
PC.ALM='B'PC.LOW*400
                                 ; POOL TASK INHIBIT BIT FOR LOW POOL
```

```
; $POLFL IS THE POOL USAGE CONTROL WORD
                                          ; REJECT NONPRIVILEGED INS/RUN/REM
PF.INS='B'40
PF.LOG='B'100
                                          ; NONPRIVILEGED LOGINS ARE DISABLED
PF.REO='B'200
                                          ;STALL REQUEST OF NONPRIV. TASKS
                                         ; TAKE ALL POSSIBLE ACTIONS TO SAVE POOL
PF.ALL='B'177777
;+
; OFFSPRING CONTROL BLOCK DEFINITIONS
; SOME POSITIONAL DEPENDENCIES ARE DEPENDED ON BETWEEN THE OCB AND THE
; AST BLOCK IN THE ROUTINE SFINXT IN THE MODULE SYSXT.
.=0
                                         ;OCB LINK WORD
O.LNK: 'L'.BLKW 1
                                         ;ADDRESS OF MCR COMMAND LINE
;PARENT TCB ADDRESS
;EXIT AST ADDRESS
;EXIT EVENT FLAG
;EXIT STATUS BLOCK VIRTUAL ADDRESS
;EXIT STATUS BUFFER
O.MCRL: 'L'.BLKW 1
O.PTCB:'L'.BLKW 1
O.AST: 'L'.BLKW 1
O.EFN: 'L'.BLKW 1
O.ESB:'L'.BLKW 1
O.STAT: 'L'.BLKW 8.
O.LGTH='B'.
                                          ;LENGTH OF OCB
; I/O PACKET OFFSET DEFINITIONS
           .ASECT
. = 0
                                         ;I/O QUEUE THREAD WORD
I.LNK:'L' .BLKW 1
I.LNK: 'L' .BLKW |
I.PRI: 'L' .BLKB |
I.EFN: 'L' .BLKB |
I.TCB: 'L' .BLKW |
I.LN2: 'L' .BLKW |
I.UCB: 'L' .BLKW |
I.FCN: 'L' .BLKW |
                                         REQUEST PRIORITY
                                       ; REQUEST PRIORITY
; EVENT FLAG NUMBER
; TCB ADDRESS OF REQUESTOR
; POINTER TO SECOND LUN WORD
; POINTER TO UNIT CONTROL BLOCK
; I/O FUNCTION CODE
; VIRTUAL ADDRESS OF I/O STATUS BLOCK
; I/O STATUS BLOCK RELOCATON BIAS
: I/O STATUS BLOCK ADDRESS
I.IOSB:'L' .BLKW 1
             .BLKW 1
                                         ;I/O STATUS BLOCK ADDRESS
             .BLKW l
                                         ;AST SERVICE ROUTINE ADDRESS
I.AST:'L' .BLKW 1
                                         ;RESERVED FOR MAPPING PARAMETER #1
I.PRM:'L' .BLKW 1
                                         ; PARAMETERS 1 TO 6 ; USER MODE DIAGNOSTIC PARAMETER WORD
              .BLKW 6
              .BLKW 1
; FOLLOWING ARE DEFINITIONS FOR FLAG BITS IN I.PRM+11
; (DSA DRIVERS INTERNAL USE ONLY)
IP.FAK = 'B' 20
                                         ; IOP IS PSEUDO IOP
                                          ; (MUDRV) ABORT COMMAND MUST BE ISSUED FOR IOP
IP.ABO = 'B' 40
IP.PND = 'B' 100
                                         ; (MUDRV) ABORT COMMAND WAS ISSUED FOR IOP
                                          ; A UMR WAIT BLOCK IS IN USE FOR THIS I/O
IP.UMR = 'B'200
```

```
I.ATTL='B'.
                                  ;MINIMUM LENGTH OF I/O PACKET (USED BY
                                  ;FILE SYSTEM TO CALCULATE MAXIMUM
                                  ; NUMBER OF ATTRIBUTES)
I.AADA:'L' .BLKW 2
                                 ;STORAGE FOR ATT DESCR PTRS WITH I/O
I.LGTH='B'.
                                 ;LENGTH OF I/O REQUEST CONTROL BLOCK
                                  ; LENGTH OF FILE SYSTEM ATTRIBUTE BLOCK
I.ATRL='B'6*8.
; DEFINE OFFSETS IN I/O PACKET EXTENSION (IOPX)
        .ASECT
        0
I.XLNK: 'L' .BLKW 1
                                  ;LINK WORD
I.XIOP: 'L' .BLKW 1
                                  ;I/O PACKET ADDRESS
I.XTCB:'L' .BLKW 1
                                  ;TCB ADDRESS OF REQUESTING TASK
I.XMOD: 'L' .BLKW 2
                                  ; MODIFIER WORDS (NOTE: 2ND WORD MUST BE
                                  ;SPECIFIED AND MUST BE ZERO.)
I.XRBF: 'L' .BLKW 2
                                  ; READ DATA BUFFER ADDRESS APR BIAS
                                  ; READ DATA BUFFER VIRTUAL ADDRESS
I.XRBL:'L' .BLKW
I.XTMO:'L' .BLKW
                                  ; READ DATA BUFFER LENGTH
                                  ; READ TIME-OUT INTERVAL
                   1
I.XPBF: 'L' .BLKW 2
                                  ;PROMPT BUFFER ADDRESS APR BIAS
                                  ; PROMPT BUFFER VIRTUAL ADDRESS
I.XPBL:'L' .BLKW 1
                                  ; PROMPT BUFFER LENGTH
I.XPBV:'L' .BLKW 1
                                  ; PROMPT BUFFER VERTICAL FORMS CONTROL
I.XTTB:'L' .BLKW 2
                                  ; TERMINATOR TABLE ADDRESS APR BIAS
                                  ;TERMINATOR TABLE VIRTUAL ADDRESS
I.XTTL:'L' .BLKW 1
                                  ; TERMINATOR TABLE LENGTH
I.XDBF: 'L' .BLKW
                                 :DEFAULT INPUT BUFFER ADDRESS APR BIAS
                                  ; DEFAULT INPUT BUFFER VIRTUAL ADDRESS
                                  ; DEFAULT INPUT BUFFER LENGTH
I.XDBL:'L' .BLKW 1
;+
; CLI PARSER BLOCK (CPB) DEFINITIONS
.=0
C.PTCB:'L' .BLKW 1
                                 ;ADDRESS OF CLI'S TCB
C.PNAM: 'L' .BLKW 2
C.PSTS: 'L' .BLKW 1
C.PDPL: 'L' .BLKB 1
                                 ;CLI NAME
                                 ;STATUS MASK
                                  ; LENGTH OF DEFAULT PROMPT
C.PCPL:'L' .BLKB 1
                                 ;LENGTH O CNTRL/C PROMPT
C.PRMT: 'L'
                                  START OF PROMPT STRINGS. DEFAULT
                                  ; IS CONCATENATED WITH CONTROL C PROMPT
; STATUS BIT DEFINITIONS
CP.NUL='B'1
                                  ; PASS EMPTY COMMANDS TO CLI
CP.MSG='B'2
                                  ;CLI DESIRES SYSTEM MESSAGES
CP.LGO='B'4
                                  ;CLI WANTS COMMANDS FROM LOGGED OFF TTYS
CP.DSB='B'10
                                  ;CLI IS DISABLED
                                  ;USER MUST BE PRIV TO SET TTY TO THIS CLI
CP.PRV='B'20
CP.SGL='B'40
                                  ; DON'T HANDLE CONTINUATIONS (M-PLUS ONLY)
                                  ;MCR..., HEL, BYE DO NO I/O TO TTY
CP.NIO='B'100
                                  ; HEL, BYE DO NOT SET CLI ETC.
```

```
CP.RST='B'200
                                  ;ABILITY TO SET TO THIS CLI IS RESTRICTED
                                  TO THE CLI ITSELF
CP.EXT='B'400
                                  : PASS TASK EXIT PROMPT REQUESTS TO CLI
CP.POL='B'1000
                                 ;CLI TCB IS IN SECONDARY POOL
CP.CTC='B'2000
                                 ; C NOTIFICATION PACKETS ARE WANTED
; SECONDARY POOL COMMAND BUFFER BLOCKS
; -
\cdot = 0
           .BLKW
C.CLK: 'L'
                         1
                                  ;LINK WORD
C.CTCB:'L' .BLKW
                                  ; TCB ADDRESS OF TASK TO RECEIVE COMMAND
                         1
C.CUCB: 'L' .BLKW
                                  ;UCB ADDRESS OF RESPONSIBLE TERMINAL
            .BLKW
C.CCT: 'L'
                                  ; CHARACTER COUNT, EXCLUDING TRAILING CR
C.CSTS: 'L' .BLKW
                         1
                                  ;STATUS MASK
C.CMCD: 'L'
                                  ;SYSTEM MESSAGE CODE
C.CSO:'L'
                         1
                                  STARTING OFFSET OF VALID COMMAND TEXT
           .BLKW
C.CTR: 'L'
           .BLKB
                         1
                                  ; TERMINATOR CHARACTER
C.CBLK:'L' .BLKB
                                  ;SIZE OF PACKET IN SEC POOL (32 WD.) BLOCKS
                         1
C.CTXT: 'L'
                                  ; COMMAND TEXT, FOLLOWED BY CR
; STATUS BITS FOR COMMAND BLOCKS
; -
CC.MCR='B'1
                                  ; FORCE COMMAND TO MCR
CC.PRM='B'2
                                  ; ISSUE DEFAULT PROMPT
CC.EXT='B'4
                                  ;TASK EXIT PROMPT REQUEST
CC.KIL='B'10
                                  ; DELETE ALL CONTINUATION PIECES FROM THIS TTY
CC.CLI='B'20
                                  ;COMMAND TO BE RETREIVED BY GCCI$ ONLY
                                  : PACKET CONTAINS SYSTEM MESSAGE TO CLI
CC.MSG='B'40
                                  ;COMMAND CAME FROM TTDRV
CC.TTD='B'100
CC.CTC='B'200
                                  ; C NOTIFICATION PACKET
; IDENTIFIER CODES FOR SYSTEM TO CLI MESSAGES
; CODES 0-127. ARE RESERVED FOR USE BY DIGITAL
; CODES 128.-255. ARE RESERVED FOR USE BY CUSTOMERS
CM.INE='B'1
                                  ;CLI INITIALIZED ENABLED
CM.IND='B'2
                                  ;CLI INITIALIZED DISABLED
CM.CEN='B'3
                                  ;CLI ENABLED
CM.CDS='B'4
                                  ;CLI DISABLED
CM.ELM='B'5
                                  ;CLI BEING ELIMINATED
CM.EXT='B'6
                                 ;CLI MUST EXIT IMMEDIATELY
CM.LKT='B'7
                                 ; NEW TERMINAL LINKED TO CLI
CM.RMT='B'8.
                                 ;TERMINAL REMOVED FROM CLI
CM.MSG='B'9.
                                 GENERAL MESSAGE TO CLI
; ANCILLARY CONTROL BLOCK (ACB) DEFINITIONS
.=0
                                 ; ACD RELOCATION BIAS
A.REL:'L' .BLKW 1
A.DIS: 'L' .BLKW 1
                                ;ACD DISPATCH TABLE POINTER
A.MAS:'L' .BLKW 2
A.NUM:'L' .BLKB 1
                               ;ACD FUNCTION MASK WORDS ;ACD IDENTIFICATION NUMBER
A.FLEN: 'L'.BLKB 1
                                ;LENGTH IN BYTES OF FULL ACB
```

```
;ACD LINK WORD
A.LIN:'L' .BLKW 1
A.ACC:'L' .BLKB 1
A.STA:'L' .BLKB 1
                                  ;ACD ACCESS COUNT
                                  ;ACD STATUS BYTE
A.PLEN='B'.
                                  LENGTH IN BYTES OF PROTOTYPE ACB
                                 ;FULL ACB OVERLAPS PROTOTYPE ACB
.=A.LIN
A.IMAP: 'L' .BLKW 1
                                 ;ACD INTERRUPT BUFFER RELOCATION BIAS
A. IBUF: 'L' .BLKW 1
                                 ;ACD INTERRUPT BUFFER ADDRESS
A.ILEN: 'L' .BLKW 1
                                 ;ACD INTERRUPT BUFFER LENGTH
A.SMAP:'L' .BLKW 1
                                 ; ACD SYSTEM STATE BUFFER RELOCATION BIAS
A.SBUF:'L' .BLKW 1
A.SLEN:'L' .BLKW 1
A.IOS:'L' .BLKW 2
                                 ;ACD SYSTEM STATE BUFFER ADDRESS
                                  ;ACD SYSTEM STATE BUFFER LENGTH
                                  ;ACD I/O STATUS
A.RES='B'.
                                  ;START OF ACB RESERVED FOR USE BY THE ACD
; DEFINE THE FLAG VALUES IN THE OFFSET U.AFLG
UA.ACC='B'1
                                  ;ACCEPT THIS CHARACTER
UA.PRO='B'2
                                  ; PROCESS THIS CHARACTER
UA.ECH='B'4
                                  ; ECHO THIS CHARACTER
UA.TYP='B'10
                                  ; FORCE THIS CHARACTER INTO TYPEAHEAD
UA.SPE='B'20
                                  ;THIS CHARACTER HAS A SPECIAL ECHO
UA.PUT='B'40
                                  ; PUT THIS CHARACTER IN THE INPUT BUFFER
UA.CAL='B'100
                                  ;CALL THE ACD BACK AFTER THE TRANSFER
UA.COM= 'B'200
                                  ;COMPLETE THE INPUT REQUEST
UA.ALL='B'400
                                 ;ALLOW PROCESSING OF THIS I/O REQUEST
                                  ; TRANSLATE CHARACTERS FROM OUTPUT QIO
UA.TRN='B'1000
UA.TRA= 'B'2000
                                  ;TRANSFER CHARACTERS WHEN I/O COMPLETES
; DEFINE THE ACD ENTRY POINTS (OFFSETS INTO THE DISPATCH TABLE)
.=0
                                 ; I/O REQUEST ACCEPTANCE ENTRY POINT
A.ACCE:'L' .BLKW 1
A.DEQU:'L' .BLKW 1
A.POWE:'L' .BLKW 1
A.INPU:'L' .BLKW 1
                                 ; I/O REQUEST DEQUEUE ENTRY POINT
                                 ; POWER FAILURE ENTRY POINT
                                 ; INPUT COMPLETION ENTRY POINT
                                 ;OUTPUT COMPLETION ENTRY POINT
A.OUTP:'L' .BLKW 1
A.CONN:'L' .BLKW 1
                                 ;CONNECTION ENTRY POINT
A.DISC:'L' .BLKW 1
                                 ;DISCONNECTION ENTRY POINT
                                 ; INPUT CHARACTER RECEPTION ENTRY POINT
A.RECE: 'L' .BLKW 1
                                 ; INPUT CHARACTER PROCESSING ENTRY POINT
A.PROC:'L' .BLKW 1
A.TRAN:'L' .BLKW 1
                                 ;OUTPUT QIO CHARACTER TRANSLATION ENTRY POINT
A.CALL:'L' .BLKW 1
                                ; CALL ACD BACK AFTER TRANSFER ENTRY POINT
; DEFINE THE STATUS BITS IN A.STA OF THE PROTOTYPE ACB
AS.DLT='B'1
                                  ; ACD IS MARKED FOR DELETE
AS.DIS='B'2
                                  ;ACD IS DISABLED
        .PSECT
        .MACRO PKTDF$ X,Y,Z
        .ENDM
        . ENDM
```

SCBDF\$

. PSECT

```
.MACRO SCBDF$, L, B
; STATUS CONTROL BLOCK
; THE STATUS CONTROL BLOCK (SCB) DEFINES THE STATUS OF A DEVICE CONTROLLER.
; THERE IS ONE SCB FOR EACH CONTROLLER IN A SYSTEM. THE SCB IS POINTED TO
; BY UNIT CONTROL BLOCKS. TO EXPAND ON THE TELETYPE EXAMPLE ABOVE, EACH TELE-
; TYPE INTERFACED VIA A DL11-A WOULD HAVE A SCB SINCE EACH DL11-A IS AN IN-
; DEPENDENT INTERFACE UNIT. THE TELETYPES INTERFACED VIA THE DH11 WOULD ALSO
; EACH HAVE AN SCB SINCE THE DH11 IS A SINGLE CONTROLLER BUT MULTIPLEXES MANY
; UNITS IN PARALLEL.
        .IF NB SYSDEF
        .ASECT
.=0
S.LHD:'L' .BLKW 2
                                  ;CONTROLLER I/O QUEUE LISTHEAD
                                  REFERENCE LABEL
S.URM: 'L'
        .IF DF
                M$$PRO
        .BLKW
                                  ;UNIBUS RUN MASK FOR THE FORK BLOCK
        . ENDC
S.FRK:'L' .BLKW 1
                                  ;FORK BLOCK LINK WORD
        .BLKW
                                  ;FORK-PC
                1
        .BLKW
                                  ;FORK-R5
        .BLKW
                                  ;FORK-R4
                 1
        .IF DF L$$DRV
S.KS5:'L' .BLKW 1
                                  ;FORK KISAR5
        . ENDC
S.PKT:'L' .BLKW 1
                                 ; ADDRESS OF CURRENT I/O PACKET
S.CTM: 'L' .BLKB 1
S.ITM: 'L' .BLKB 1
S.STS: 'L' .BLKB 1
                                  ;CURRENT TIMEOUT COUNT
                                 ; INITIAL TIMEOUT COUNT
                                 ;STATUS (0=FREE, NE 0=BUSY)
S.ST3:'L'.BLKB 1
                                 ;STATUS EXTENSION BYTE
S.ST2:'L' .BLKW 1
S.KRB:'L' .BLKW 1
                                 ;STATUS EXTENSION
                                  ;ADDRESS OF KRB
S.RCNT: 'L'.BLKB 1
                                 ; NUMBER OF REGISTERS TO COPY
                                 ;OFFSET TO FIRST DEV REG TO COPY
S.ROFF: 'L'.BLKB 1
S.EMB: 'L'.BLKW 1
S.KTB: 'L'.BLKW 1
                                  ; ERROR MESSAGE BLOCK POINTER
                                  ;START OF MULTI-ACCESS KRBS
```

```
; OFFSETS FOR MSCP/TMSCP DRIVER DATA BASES (MUDRV, DUDRV)
S.PORT='B'S.EMB+2
                                 ;FIRST 3 CHAR. OF PORT NAME IN RAD50
S.PBIA='B'S.EMB+4
                                ;BIAS OF PORT
S.QST='B'S.EMB+6
                                 ; ADDRESS OF QST (MU, DU CONTR. TABLE)
                                ;UNIT ASSOCIATED WITH OLDEST CMD TO CONTR.
S.BSYU='B'S.EMB+10
        .IFF
; STATUS CONTROL BLOCK STATUS EXTENSION BIT DEFINITIONS
S2.EIP='B'1
                                 ; ERROR IN PROGRESS (1=YES)
                                 ; ERROR LOGGING ENABLED (0=YES)
S2.ENB='B'2
                                 ; ERROR LOGGING SUPPORTED (1=YES)
S2.LOG='B'4
S2.MAD='B'10
                                 ;MULTIACCESS DEVICE (1=YES)
S2.LDS='B'40
                                ;LOAD SHARING ENABLED (1=YES)
S2.OPT='B'100
                                ;SUPPORTS SEEK OPTIMIZATION (1=YES)
S2.CON='B'200
                                 ;SCB AND KRB ARE CONTIGUOUS (1=YES)
                                 ; THESE TWO BITS DEFINE THE OPTIMIZATION
S2.OP1='B'400
S2.OP2='B'1000
                                 ;METHOD.
                                 ;OP2,OP1=0,0 INDICATES NEAREST CYLINDER
                                 ;OP2,OP1=0,1 INDICATES ELEVATOR
                                 ;OP2,OP1=1,0 INDICATES C-SCAN
                                 ;OP2,OP1=1,1 RESERVED
                                ; DRIVER HAS OPERATION OUTSTANDING (1=YES)
S2.ACT='B'2000
                                 ; EXTERNAL HEADER AND NEW I.LN2 SUPPORT
S2.XHR= 'B '4000
S2.KRQ='B'10000
                                 ;SCB IS QUEUED IN CONTROLLER REQUEST QUEUE
; STATUS CONTROL BLOCK STATUS EXTENSION (S.ST3) DEFINITIONS
; –
                                 ;MULTI-ACCESS DRIVE IN RELEASED STATE (1=YES)
S3.DRL='B'1
S3.NRL='B'2
                                 ; DRIVER SHOULDN'T RLS MULTI-ACCESS DRIVE (1=YES)
                                 ;SEEK IN PROGRESS (1=YES)
S3.SIP='B'4
S3.ATN='B'10
                                 ; DRIVER MUST CLEAR ATTENTION BIT (1=YES)
S3.SLV='B'20
                                 ; DEVICE USES SLAVE UNITS (1=YES)
S3.SPA='B'40
                                 ; PORT 'A' SPINNING UP
                                 ; PORT 'B' SPINNING UP
S3.SPB='B'100
                                 ;SEEK OPTIMIZATION ENABLED (1=YES)
S3.OPT='B'200
S3.SPU='B'S3.SPA!S3.SPB
                                 ;.OR. OF PORT SPINUP BITS
; KRB ADDRESS TABLE (S.KTB) PORT OFFLINE FROM THIS SCB FLAG.
KP.OFL='B'1
                                 ; KRB ADDRESS POINTS TO OFFLINE PORT (1=YES)
; MAPPING ASSIGNMENT BLOCK (FOR UNIBUS MAPPING REGISTER ASSIGNMENT)
```

.MACRO SCBDF\$, X, Y, Z

.ENDM

.ASECT .=0 M.LNK:'L' .BLKW 1 ;LINK WORD M.UMRA:'L' .BLKW 1 ;ADDRESS OF FIRST ASSIGNED UMR M.UMRN:'L' .BLKW 1 ;NUMBER OF UMR'S ASSIGNED * 4 M.UMVL:'L' .BLKW 1 ;LOW 16 BITS MAPPED BY 1ST ASSIGNED UMR M.UMVH:'L' .BLKB 1 ;HIGH 2 BITS MAPPED IN BITS 4 AND 5 M.BFVH:'L' .BLKB 1 ;HIGH 6 BITS OF PHYSICAL BUFFER ADDRESS M.BFVL:'L' .BLKW 1 ;LOW 16 BITS OF PHYSICAL BUFFER ADDRESS M.LGTH='B'. ;LENGTH OF MAPPING ASSIGNMENT BLOCK .ENDC .PSECT

SHDDF\$

```
.MACRO SHDDF$, L, B
; FIRST, WE MUST DEFINE THE I/O PACKET DEFINITIONS, SINCE WE
; USE THEM IN OUR DEFINITIONS.
                                 ; DEFINE I/O PACKET DEFINITIONS
        PKTDF$
 SHADOW RECORDING LINKAGE BLOCK (UMB)
; THE UMB LINKS TOGETHER TWO UCB'S AS A SHADOW SET. ONE IS THE
; PRIMARY UCB, THE OTHER THE SECONDARY UCB. THE EXISTANCE OF A
; UMB SIGNALS THAT SHADOW RECORDING IS ENABLED ON A PARTICULAR
; UCB.
; –
        .ASECT
\cdot = 0
                                 ;LINKAGE OF ALL UMB'S IN THE SYSTEM
M.LNK:'L' .BLKW 1
M.LHD:'L' .BLKW 1
                                 ;LISTHEAD OF ALL ML NODES FOR THIS SET
                                 ; PRIMARY AND SECONDARY UCB ADDRESSES
M.UCBS: 'L'.BLKW 2
                                 ;STATUS WORD
M.STS:'L' .BLKW 1
M.LBN:'L' .BLKB 1
                                 ;HIGH ORDER BYTE OF FENCE
                                 ;UNUSED BYTE (MAYBE STATUS?)
           .BLKB 1
           .BLKW 1
                                 ;LOW ORDER WORD OF FENCE
M.LGH=.
;+
; UMB STATUS BIT DEFINITIONS
        . PSECT
MS.MDA'B'=1
                                 ; UMB MARKED FOR DEALLOCATION (1=YES)
MS.CHP'B'=2
                                  ;CATCHUP IN PROGRESS (1=YES)
; DEFINE THE OFFSETS FOR THE ML NODE, LINKED OFF OF THE UMB
; THROUGH CELL M.LHD. THIS NODE CONTAINS THE SECONDARY I/O
; PACKET, AND DOUBLES AS THE ERROR PACKET TO THE ERROR MESSAGE
; TASK.
;-
        .ASECT
-0
ML.LNK: 'L' .BLKW 1
                                 ;LINKAGE OF ALL ML NODES ON UMB
ML.LEN: 'L' .BLKB 1
                                 ;LENGTH OF ML NODE FOR DEALLOCATION
ML.TYP:'L' .BLKB 1
ML.DNC:'L' .BLKB 1
                                 ;TYPE OF ML NODE FOR ERROR TASK
                                 ; DONE COUNT OF PACKETS
           .BLKB 1
                                 ;UNUSED
                                 ;PRIMARY I/O PACKET ADDRESS
ML.PRI: 'L' .BLKW 1
ML.PKT:'L' .BLKB I.LGTH
                                 ;SECONDARY I/O PACKET
```

ML.LGH=.

SHDDF\$ (Cont.)

```
; ML NODE TYPE CODES
              . PSECT
MT.PKT'B'=1
                                                     ;ML NODE IS I/O PACKET TYPE
;+
; I/O PACKET OFFSET DEFNS FOR USE BY SHADOW RECORDING
I.RO'B'=I.PRM
                                                        ;STATUS STORAGE FOR RO STATUS
I.R1'B'=I.PRM+2
                                                        :STATUS STORAGE FOR R1 STATUS
; DEFINE THE ERROR MESSAGE POINTERS THAT RESIDE IN THE I/O PACKET.
              . PSECT
ML.FID'B'=ML.PKT+I.IOSB ;FILE ID WHICH CONTAINS ERROR
ML.FSEQ'B'=ML.PKT+I.IOSB+2 ;FILE SEQUENCE NUMBER OF FILE IN ERROR
ML.LBN'B'=ML.PKT+I.PRM+10 ;HIGH ORDER LBN OF BLOCK(S) IN ERROR
ML.CNT'B'=ML.PKT+I.PRM+4 ;NUMBER OF BLOCKS IN BAD XFER
ML.TCB'B'=ML.PKT+I.TCB ;MCB OF MACK WITH DARROW.
                                                     ;TCB OF TASK WITH BAD REQUEST
ML.TCB'B'=ML.PKT+I.TCB
ML.SRO'B'=ML.PKT+I.RO ;RO OF SECONDARY I/O PACKET
ML.SR1'B'=ML.PKT+I.R1 ;R1 OF SECONDARY I/O PACKET
ML.PRO'B'=ML.PKT+I.PRM+14 ;RO OF PRIMARY I/O PACKET
ML.PR1'B'=ML.PKT+I.PRM+16 ;R1 OF PRIMARY I/O PACKET
              .MACRO SHDDF$, X, Y, Z
              . ENDM
              .ENDM
```

TCBDF\$

.MACRO TCBDFS, L, B ; TASK CONTROL BLOCK OFFSET AND STATUS DEFINITIONS ; TASK CONTROL BLOCK ; – .ASECT 0 = 0T.LNK:'L' .BLKW 1 T.PRI:'L' .BLKB 1 T.IOC:'L' .BLKB 1 T.PCBV:'L' .BLKW 1 ;UTILITY LINK WORD ;TASK PRIORITY ; I/O PENDING COUNT ; POINTER TO COMMON PCB VECTOR T.NAM: 'L' .BLKW 2 T.RCVL: 'L' .BLKW 2 T.ASTL: 'L' .BLKW 2 T.EFLG: 'L' .BLKW 2 ;TASK NAME IN RAD50 ; RECEIVE QUEUE LISTHEAD ;AST QUEUE LISTHEAD ;TASK LOCAL EVENT FLAGS 1-32 T.UCB:'L' .BLKW 1 T.TCBL:'L' .BLKW 1 T.STAT:'L' .BLKW 1 ;UCB ADDRESS FOR PSEUDO DEVICE 'TI' ; TASK LIST THREAD WORD T.STAT: 'L' .BLKW 1 T.ST2: 'L' .BLKW 1 T.ST3: 'L' .BLKW 1 T.DPRI: 'L' .BLKB 1 T.LBN: 'L' .BLKB 3 T.LDV: 'L' .BLKW 1 T.PCB: 'L' .BLKW 1 T.MXSZ: 'L' .BLKW 1 T.ACTL: 'L' .BLKW 1 T.ATT: 'L' .BLKW 2 T.ST4: 'L' .BLKW 1 T.HDLN: 'L' .BLKB 1 ;FIRST STATUS WORD (BLOCKING BITS) ; SECOND STATUS WORD (STATE BITS) ;THIRD STATUS WORD (ATTRIBUTE BITS) ; TASK'S DEFAULT PRIORITY ;LBN OF TASK LOAD IMAGE ;UCB ADDRESS OF LOAD DEVICE ; PCB ADDRESS OF TASK PARTITION ;MAXIMUM SIZE OF TASK IMAGE (MAPPED ONLY) ;ADDRESS OF NEXT TASK IN ACTIVE LIST ;ATTACHMENT DESCRIPTOR LISTHEAD ;FOURTH TASK STATUS WORD ; LENGTH OF HEADER (0 IF HDR IN POOL) BLKB 1 T.GGF: 'L' .BLKB 1 T.TIO: 'L' .BLKB 1 T.EFLM: 'L' .BLKW 2 T.TKSZ: 'L' .BLKW 1 ;UNUSED ;GROUP GLOBAL USE COUNT FOR TASK ;BUFFERED I/O IN PROGRESS COUNT ;TASK WAITFOR MASK/ADDRESS ;TASK LOAD SIZE IN 32 WD BLOCKS \$\$\$=. ; MARK START OF PLAS AREA T.OFF: 'L' .BLKW 1 ;OFFSET TO TASK IMAGE IN PARTITION .BLKB 1 ; RESERVED T.SRCT:'L' .BLKB 1 ;SREF WITH EFN COUNT IN ALL RECEIVE QUEUES T.RRFL: 'L' .BLKW 2 ; RECEIVE BY REFERENCE LISTHEAD .IF NDF P\$\$LAS

.IF NB SYSDEF

. ENDC

\$\$\$=.

.=\$\$\$

; MOVE LC BACK TO START OF PLAS AREA

.IF NDF U\$\$DAS

; POINTER TO CONTEXT BLOCK (DDS) T.CTX:'L' .BLKW 1 .IF NDF N\$\$DIR .=\$\$\$.ENDC ; NDF N\$\$DIR \$\$\$=. ; MARK START OF PARENT/OFFSPRING AREA T.OCBH:'L' .BLKW 2 T.RDCT:'L' .BLKW 1 ;OFFSPRING CONTROL BLOCK LISTHEAD ;OUTSTANDING OFFSPRING AND VT: COUNT .IF NDF P\$\$OFF .=\$\$\$. ENDC T.SAST:'L' .BLKW 1 ;SPECIFY AST LIST HEAD \$\$\$=. T.RRM: 'L'.BLKW 1 ; REQUIRED RUN MASK ; INITIAL RUN MASK SET UP BY INSTALL T.IRM:'L'.BLKW 1 ; **** THIS WORD IS NO LONGER NECESSARY ;**** HOWEVER, INSTALL (INSLB), MCR (SPAWN), ;**** AND VMR MUST BE MODIFIED ; PROCESSOR NUMBER ON WHICH TASK LAST EXECUTED T.CPU: 'L'.BLKB 1 ; (UNUSED) .BLKB 1 .IF NDF M\$\$PRO .=\$\$\$.ENDC \$\$\$=. T.ACN: 'L'.BLKW 1 ; POINTER TO ACCOUNTING BLOCK .IF NDF ASSCNT .=\$\$\$.ENDC \$\$\$=. T.ISIZ: 'L'.BLKW 1 ;SIZE OF ROOT I SPACE

```
.=$$$
        . ENDC
                ; NDF U$$DAS
T.LGTH='B'.
                                 ; LENGTH OF TASK CONTROL BLOCK
                                 ;LENGTH OF TCB EXTENSION
T.EXT='B'0
        . IFF
;+
; TASK STATUS DEFINITIONS
; FIRST STATUS WORD (BLOCKING BITS)
TS.EXE='B'100000
                                 ;TASK NOT IN EXECUTION (1=YES)
TS.RDN='B'40000
                                 ; I/O RUN DOWN IN PROGRESS (1=YES)
TS.MSG='B'20000
                                ; ABORT MESSAGE BEING OUTPUT (1=YES)
                                 ; TASK BLOCKED FOR CHECKPOINT IN PROGRESS (1=YES)
TS.CIP='B'10000
TS.RUN='B'4000
                                ;TASK IS RUNNING ON ANOTHER PROCESSOR (1=YES)
TS.STP='B'1000
                                 ; TASK BLOCKED BY CLI COMMAND
TS.CKR='B'100
                                ;TASK HAS CKP REQUEST (MP SYSTEM ONLY) (1=YES)
TS.BLC='B'37
                                 ; INCREMENT BLOCKING COUNT MASK
; TASK BLOCKING STATUS MASK
TS.BLK='B'177777
; SECOND STATUS WORD (STATE BITS)
;-
T2.AST='B'100000
                                ;AST IN PROGRESS (1=YES)
                                ;AST RECOGNITION DISABLED (1=YES)
T2.DST='B'40000
                                 ;TASK NOT CHECKPOINTABLE (1=YES)
T2.CHK='B'20000
T2.REX='B'10000
                                 ; REQUESTED EXIT AST SPECIFIED
T2.SEF='B'4000
                                 ; TASK STOPPED FOR EVENT FLAG(S) (1=YES)
T2.SIO='B'1000
                                ;TASK STOPPED FOR BUFFERED I/O
T2.AFF='B'400
                                ;TASK IS INSTALLED WITH AFFINITY
T2.HLT='B'200
                                ;TASK IS BEING HALTED (1=YES)
T2.ABO='B'100
                                 ;TASK MARKED FOR ABORT (1=YES)
                                ;SAVED T2.SPN ON AST IN PROGRESS
T2.STP='B'40
T2.STP='B'20
                                ;TASK STOPPED (1=YES)
T2.SPN='B'10
                                 ;SAVED T2.SPN ON AST IN PROGRESS
T2.SPN='B'4
                                 ;TASK SUSPENDED (1=YES)
T2.WFR='B'2
                                 ;SAVED T2.WFR ON AST IN PROGRESS
T2.WFR='B'1
                                 ;TASK IN WAITFOR STATE (1=YES)
; THIRD STATUS WORD (ATTRIBUTE BITS)
T3.ACP='B'100000
                                 ;ANCILLARY CONTROL PROCESSOR (1=YES)
                                 ; DUMP TASK ON SYNCHRONOUS ABORT (0=YES)
T3.PMD='B'40000
T3.REM='B'20000
                                ; REMOVE TASK ON EXIT (1=YES)
T3.PRV='B'10000
                                 ;TASK IS PRIVILEGED (1=YES)
```

. ENDM

```
T3.MCR='B'4000
                                ;TASK REQUESTED AS EXTERNAL MCR FUNCTION (1=YES)
                                 ; TASK IS A SLAVE TASK (1=YES)
T3.SLV='B'2000
T3.CLI='B'1000
                                ;TASK IS A COMMAND LINE INTERPRETER (1=YES)
T3.RST='B'400
                                 ;TASK IS RESTRICTED (1=YES)
T3.NSD='B'200
                                 ;TASK DOES NOT ALLOW SEND DATA
T3.CAL='B'100
                                 ; TASK HAS CHECKPOINT SPACE IN TASK IMAGE
T3.ROV='B'40
                                 ;TASK HAS RESIDENT OVERLAYS
T3.NET='B'20
                                 ; NETWORK PROTOCOL LEVEL
T3.MPC='B'10
                                 ;MAPPING CHANGE WITH OUTSTANDING I/O (1=YES)
T3.CMD='B'4
                                 ; TASK IS EXECUTING A CLI COMMAND
T3.SWS='B'2
                                 ; RESERVED FOR SOFTWARE SERVICES USE
T3.GFL='B'1
                                 GROUP GLOBAL EVENT FLAG LOCK
; STATUS BIT DEFINITIONS FOR FOURTH STATUS WORD (T.ST4)
T4.FMP='B'200
                                 ;TASK HAS FAST MAP HDR EXT.
T4.CTC='B'100
                                 ; TASK HAS BEEN PROCESSED BY GIN C ABORT
T4.MUT='B'40
                                 ;TASK IS A MULTI-USER TASK
                                 ; TASK'S LOAD DEVICE HAS BEEN DISMOUNTED
T4.LDD='B'20
T4.PRO='B'10
                                 ;TCB IS (OR SHOULD BE) A PROTOTYPE
T4.PRV='B'4
                                 ; TASK WAS PRIV, BUT HAS CLEARED T3.PRV
                                ;WITH GIN (MAY RESET WITH GIN IF T4.PRV SET)
                                 ; TASK WAS BUILT FOR USER I/D SPACE
T4.DSP='B'2
T4.SNC='B'1
                                 ; TASK USES COMMONS FOR SYNCHRONIZATION
; REQUIRED RUN MASK
TR.UBT='B'100000
                                ;UNIBUS RUN T
TR.UBS='B'40000
                                 ;UNIBUS RUN S
TR.UBR='B'20000
                                 ;UNIBUS RUN R
TR.UBP='B'10000
                                 ;UNIBUS RUN P
TR.UBN='B'4000
                                 ;UNIBUS RUN N
TR.UBM='B'2000
                                 ;UNIBUS RUN M
TR.UBL='B'1000
                                 ;UNIBUS RUN L
TR.UBK='B'400
                                 ;UNIBUS RUN K
TR.UBJ='B'200
                                 ;UNIBUS RUN J
TR.UBH='B'100
                                 ;UNIBUS RUN H
TR.UBF='B'40
                                 ;UNIBUS RUN F
TR.UBE= 'B'20
                                 ;UNIBUS RUN E
TR.CPD='B'10
                                 ; PROCESSOR D
TR.CPC='B'4
                                 ; PROCESSOR C
TR.CPB='B'2
                                 ; PROCESSOR B
TR.CPA='B'1
                                 ; PROCESSOR A
        . ENDC
        . PSECT
        .MACRO
                TCBDF$ X,Y,Z
        .ENDM
```

UCBDF\$

.MACRO UCBDF\$, L, B, TTDEF

```
; UNIT CONTROL BLOCK
; THE UNIT CONTROL BLOCK (UCB) DEFINES THE STATUS OF AN INDIVIDUAL DEVICE
; UNIT AND IS THE CONTROL BLOCK THAT IS POINTED TO BY THE FIRST WORD OF
; AN ASSIGNED LUN. THERE IS ONE UCB FOR EACH DEVICE UNIT OF EACH DCB. THE
; UCB'S ASSOCIATED WITH A PARTICULAR DCB ARE CONTIGUOUS IN MEMORY AND ARE
; POINTED TO BY THE DCB. UCB'S ARE VARIABLE LENGTH BETWEEN DCB'S BUT ARE
; OF THE SAME LENGTH FOR A SPECIFIC DCB. TO FINISH THE TELETYPE EXAMPLE
; ABOVE, EACH UNIT ON BOTH INTERFACES WOULD HAVE A UCB.
        .ASECT
.=177772
        .IF NB SYSDEF
        .IF DF A$$CNT
.=.-2
        .ENDC ; DF A$$CNT
        .IF DF L$$GCL
.=.-2
        .ENDC
              ;DF L$$GCL
. = . - 2
        .IF DF N$$DIR
.=.-2
               ;DF N$$DIR
        .ENDC
U.UAB: 'L'
        .IF DF A$$CNT
                                ; POINTER TO USER ACCOUNT BLOCK
        .BLKW
              ;DF A$$CNT
        .ENDC
U.LOG:'L'
       .IF DF L$$GCL
                ; POINTER TO USER LOGICAL HASH TABLE
        .BLKW l
       .ENDC ; DF L$$GCL
U.FPRO:'L'
```

.BLKW 1 ; DEFAULT FILE PROTECTION WORD

U.CTX: 'L'

```
.IF DF N$$DIR
                           ; POINTER TO TERMINAL CONTEXT BLOCK
             .ENDC
                      ;DF N$$DIR
            .ENDC ; NB SYSDEF
U.MUP:'L' .BLKW 1
U.LUIC:'L' .BLKW 1
U.OWN:'L' .BLKW 1
U.DCB:'L' .BLKW 1
U.RED:'L' .BLKW 1
U.CTL:'L' .BLKB 1
U.STS:'L' .BLKB 1
U.UNIT:'L' .BLKB 1
                                       ;MULTI-USER PROTECTION WORD
;LOGIN UIC - MULTI USER SYSTEMS ONLY
;OWNING TERMINAL - MULTI USER SYSTEMS ONLY
;BACK POINTER TO DCB
;POINTER TO REDIRECT UNIT UCB
;CONTROL PROCESSING FLAGS
;UNIT STATUS
;PHYSICAL UNIT NUMBER
;UNIT STATUS EXTENSION
;FIRST DEVICE CHARACTERISTICS WORD
;SECOND DEVICE CHARACTERISTICS WORD
U.UNIT: 'L' .BLKB 1
U.ST2: 'L' .BLKB 1
U.CW1: 'L' .BLKW 1
U.CW2: 'L' .BLKW 1
U.CW3: 'L' .BLKW 1
U.CW4: 'L' .BLKW 1
U.SCB: 'L' .BLKW 1
U.ATT: 'L' .BLKW 1
U.BUF: 'L' .BLKW 1
                                              ;SECOND DEVICE CHARACTERISTICS WORD
                                                ;THIRD DEVICE CHARACTERISTICS WORD
                                               FOURTH DEVICE CHARACTERISTICS WORD
                                                ; POINTER TO SCB
                                              ;TCB ADDRESS OF ATTACHED TASK
                                                ; RELOCATION BIAS OF CURRENT I/O REQUEST
                                              BUFFER ADDRESS OF CURRENT I/O REQUEST
               .BLKW 1
                                             ;BYTE COUNT OF CURRENT I/O REQUEST
U.CNT: 'L' .BLKW 1
U.UCBX='B'U.CNT+2
                                              POINTER TO UCB EXTENSION IN SECONDARY POOL ADDRESS OF TCB OF MOUNTED ACP
ADDRESS OF VOLUME CONTROL BLOCK
CONTROL BUFFER RELOCATION AND ADDRESS
U.ACP='B'U.CNT+4
U.VCB='B'U.CNT+6
U.CBF='B'U.CNT+2
                                        ;ADDRESS OF UMB FOR SHADOW RECORDING
;DISK SIZE PARAMETER WORDS
;CSR ADDRESS (P/OS)
U.UMB='B'U.CNT+10
U.PRM='B'U.CNT+12
U.ICSR='B'U.CNT+16
                                                ;CSR ADDRESS (P/OS)
                                                ;SLOT ADRESS (P/OS)
U.SLT='B'U.CNT+20
                                               ;4 WD SAVED I/O PACKET AREA (R$$AMD)
U.SPRM='B'U.CNT+22
U.UTIL='B'U.CNT+16
                                                :STATE WORD FOR UNIT
; DEFINITIONS FOR U.UTIL BITS
UU.SER = 'B'1
                                                ;SERIAL MODE
                                                ; (DUDRV) RCT IN PROGRESS
UU.RCT = 'B'2
UU.AVN = 'B'4
                                                IS WAITING FOR OTHER UNITS TO SPIN DOWN
UU.GUS = 'B'10
UU.ONL = 'B'20
                                                ;UNIT MUST HAVE A GUS COMMAND ISSUED
                                                ;UNIT MUST HAVE A ONL COMMAND ISSUED
                                                ;SPECIAL ONLINE TRANSITION
UU.SPC = 'B'40
UU.ATN = 'B'100
                                                ;UNIT HAS SENT ATTENTION MESSAGE
UU.RDY = 'B'200
UU.ABO = 'B'400
                                               ;UNIT IS READY
                                                ; IF SET, XXCAN SET UU.SER FLAG FOR UNIT
UU.SIO = 'B'1000
                                                ;THIS UNIT CAN STALL I/O
UU.IOS = 'B'2000
                                              ;THIS UNIT HAS I/O STALLED
                                               ;THIS UNIT DOESN'T ACCEPT DENSITY SETTINGS
UU.BLK = 'B'4000
```

```
U.BPKT='B'U.CNT+20
                                        ;UNIT BAD BLOCK REPLACEMENT WAITING LIST
                                         ;MEDIA IDENTIFIER FOR MU TAPE
U.MEDI='B'U.BPKT
U.UC2X= 'B 'U.CNT+24
                                         ; POINTER TO SECOND EXTENSION IN SECONDARY POOL
; MAGTAPE DEVICE DEPENDENT UCB OFFSETS
U.SNUM='B'U.CNT+10
                                         ;SLAVE UNIT NUMBER
                                       ;FUNCTION CODE
U.FCDE='B'U.CNT+12
U.KRB1='B'U.CNT+14
                                         ;SUBCONTROLLER KRB1 POINTER
; DEFINE SECONDARY POOL UCB EXTENSION OFFSETS (ERROR LOGGING DEVICES ONLY)
.=0
                                        ;FIXED ACCOUNTING TRANSACTION HEADER
          .BLKW
X.NAME: 'L' .BLKW 2
X.IOC: 'L' .BLKW 2
X.ERSL: 'L' .BLKB 1
X.ERHL: 'L' .BLKB 1
X.ERSC: 'L' .BLKB 1
X.ERHC: 'L' .BLKB 1
X.WCNT: 'L' .BLKW 2
                                        ;DRIVE NAME IN RAD50
                                        ;I/O COUNT
                                      ;SOFT ERROR LIMIT
                                        ;HARD ERROR LIMIT
                                        ;SOFT ERROR COUNT
                                       ;HARD ERROR COUNT
                                        :WORDS TRANSFERED COUNT
; DEFINE OFFSETS FOR SEEK OPTIMIZATION DEVICES
X.CYLC:'L' .BLKW 2
X.CCYL:'L' .BLKW 1
X.FCUR:'L' .BLKB 1
                                         CYLINDERS CROSSED COUNT
                                         ;CURRENT CYLINDER
                                         CURRENT FAIRNESS COUNT
X.FLIM: 'L'
                                         ; FAIRNESS COUNT LIMIT
X.DSKD:'L' .BLKB 1
                                         ;DISK DIRECTION (HIGH BIT 1=OUT)
X.DNAM: 'L' .BLKW 1
                                         ; DEVICE NAME FOR ACCOUNTING
X.DNAM: 'L' .BLKW 1
X.UNIT: 'L' .BLKB 1
X.CSTS: 'L' .BLKB 1
X.CPCB: 'L' .BLKW 1
X.CSBA: 'L' .BLKW 1
X.CCED: 'L' .BLKW 2
X.XDAT: 'L' .BLKB 1
X.XDAR: 'L' .BLKB 1
X.XDIR: 'L' .BLKB 1
X.XOVR: 'L' .BLKB 1
BLKB 1
BLKB 1
BLKB 1
BLKB 1
BLKB 1
BLKB 1
                                         ;UNIT NUMBER FOR ACCOUNTING
                                         ;CACHE STATUS BITS
                                         ;CACHE PARTITION PCB ADDRESS
                                      ;CACHE STATISTICS BUFFER ADDRESS (BIAS)
                                        ;CACHE EXTENT DESCRIPTOR LISTHEAD
                                        ;CACHE VIRTUAL EXTENT SIZE
                                        ;CACHE READAHEAD EXTENT SIZE
                                        ;CACHE DIRECTORY EXTENT SIZE
                                        ;CACHE LOGICAL EXTENT SIZE
                                         ;CACHE OVERLAY EXTENT SIZE
             .BLKB 1
                                         ; RESERVED
X.LGTH='B'.
                                         ;LENGTH OF THE UCB EXTENSION
X.DFFL='B'10.
                                         ; DEFAULT FAIRNESS COUNT LIMIT
X.DFSL='B'8.
                                        ; DEFAULT SOFT ERROR LIMIT
X.DFHL='B'5.
                                         ; DEFAULT HARD ERROR LIMIT
; CACHE STATUS BITS IN X.CSTS
```

```
XC.ENA='B'200
                                    ;AUTOCACHE ENABLED (1=YES)
                                    ; CACHE ACTIVE FOR DEVICE (1=YES)
XC.ACT='B'100
XC.DIR='B'020
                                    ;CACHE DIRECTORY REQUESTS (1=YES)
XC.OVR='B'010
                                    ;CACHE OVERLAY REQUESTS (1=YES)
;CACHE VIRTUAL REQUESTS (1=YES)
XC.DAT='B'004
XC.LOG='B'002
                                    ; CACHE LOGICAL REQUESTS (1=YES)
                                    ;CACHE VIRTUAL READ AHEAD (1=YES)
XC.RDA='B'001
; DEFINE CACHE MAXIMUM AND DEFAULT EXTENT SIZES
                                    ; MAXIMUM EXTENT SIZE
XX.MAX='B'15.
                                     ; DEFAULT VIRTUAL EXTENT SIZE
XX.DAT='B'5.
                                     ; DEFAULT READAHEAD EXTENT SIZE
XX.RDA='B'5.
                                    ; DEFAULT DIRECTORY EXTENT SIZE
XX.DIR='B'1.
                                     ; DEFAULT LOGICAL EXTENT SIZE
XX.LOG='B'1.
                                     ; DEFAULT OVERLAY EXTENT SIZE
XX.OVR='B'4.
; DEFINE OFFSETS FOR DISK MSCP CONTROLLERS (SECOND UCB EXTENSION)
  CHARACTERISTICS OBTAINED FROM "GET UNIT STATUS" END PACKETS
.=0
X.MLUN: 'L'.BLKW 1
                                   ;MULTI-UNIT CODE
                                   ;UNIT FLAGS
X.UNFL: 'L'.BLKW 1
                                  ;RESERVED
;UNIT IDENTIFIER
;MEDIA IDENTIFIER
;SHADOW UNIT
;SHADOW UNIT STATUS
;UNIT TRACK SIZE
;UNIT GROUP SIZE
.BLKW 2
X.UNTI: 'L'.BLKW 4
X.MEDI: 'L'.BLKW 2
X.SHUN: 'L'.BLKW 1
X.SHST:'L'.BLKW 1
X.TRCK:'L'.BLKW 1
X.GRP:'L'.BLKW 1
X.CYL:'L'.BLKW 1
                                   ;UNIT CYLINDER SIZE
                                   ;UNIT SOFTWARE VERSION ;UNIT HARDWARE VERSION
X.USVR: 'L'.BLKB 1
X.UHVR: 'L'.BLKB 1
X.RCTS: 'L'.BLKW 1
                                    ;UNIT RCT TABLE SIZE
X.RBNS:'L'.BLKB 1
                                    ;UNIT RBN 'S / TRACK
                                     ;UNIT RCT COPIES
X.RCTC: 'L'.BLKB 1
; CHARACTERISTICS OBTAINED FROM "ONLINE" OR "SET UNIT CHARACTERISTICS" END
; PACKETS
X.UNSZ:'L'.BLKW 2
                                    ;UNIT SIZE
X.VSER: 'L'.BLKW 2
                                    ; VOLUME SERIAL NUMBER
                                     ;SIZE OF DISK MSCP CONTROLLER UCB EXTENTION
X.DUSZ='B'.
         .IF NB TTDEF
  TERMINAL DRIVER DEFINITIONS
```

```
.=U.BUF
U.TAPR:'L'
                                        ; APR VALUE FOR START OF UCBX
U.TUX:'L' .BLKW 1
U.TSTA:'L' .BLKW 4
                                        ; POINTER TO UCB EXTENSION (UCBX)
                                       ;STATUS QUADRUPLE-WORD
U.UIC: 'L' .BLKW 1
U.TFRQ: 'L' .BLKW 1
U.TFLK: 'L' .BLKW 1
U.TCHP: 'L' .BLKB 1
                                        ;DEFAULT UIC
                                       FORK REQUEST WORD
                                        FORK LIST LINK WORD
                                       ;CURRENT HORIZONTAL POSITION
U.TCVP:'L' .BLKB 1
U.TTYP:'L' .BLKB 1
U.TMTI:'L' .BLKB 1
U.TTAB:'L' .BLKW 1
                                       ;CURRENT VERTICAL POSITION
                                        ;TERMINAL TYPE
                                        ; MODEM TIMER
                                        ; IF 0: U.TTAB+1 IS SINGLE-CHARACTER TYPE-AHEAD
                                                 BUFFER, CURRENTLY EMPTY
                                        ; IF ODD: U.TTAB+1 IS SINGLE-CHARACTER TYPE-AHEAD
                                                 BUFFER AND HOLDS A CHARACTER
                                        ; IF NON-0 AND EVEN: POINTER TO MULTI-CHARACTER
                                                 TYPE-AHEAD BUFFER
                                        ;THE NEXT TWO OFFSETS OVERLAP U.TTAB WHEN THE
          .=.-2
                                        ; TYPEAHEAD BUFFER IS IN SECONDARY POOL
U.TECO:'L' .BLKB 1
                                        ; ECHO BUFFER FOR DMA OPERATIONS WHEN UCBX IS
                                        ; IN SECONDARY POOL AND THUS NOT MAPPED BY A UMR
U.TBSZ:'L' .BLKB 1
U.TLPP:'L' .BLKW 1
U.TST5:'L' .BLKW 1
                                       ;TYPEAHEAD BUFFER SIZE
                                       ;LINES PER PAGE
                                       ; ADDITIONAL STATUS BITS
U.TST6: 'L' .BLKW 1
                                       ;EXTENDED I/O STATUS WORD
U.TIXL: 'L' .BLKW 1
                                       ; I/O PACKET EXTENSION LISTHEAD
U.ACB:'L' .BLKW 1
U.AFLG:'L' .BLKW 1
U.ADMA:'L' .BLKW 1
                                       ; ANCILLARY CONTROL DRIVER BLOCK ADDR
                                       ;ANCILLARY CONTROL DRIVER FLAGS WORD
                                       ; ANCILLARY CONTROL DRIVER DMA BUFFER
          .IF DF T$$LTH
; LAT Host Support
                              ;STATUS/CONTROL INFORMATION
U.LINS:'L' .BLKB 1
U.CREN:'L' .BLKB 1
                                        ;LINK STATUS
                                        TRANSMIT CREDITS COUNTER
                              ;SERVER/CIRCUIT IDENTIFICATION
U.SRVN:'L' .BLKW 1
U.SESN:'L' .BLKB 1
U.SLSZ:'L' .BLKB 1
                                        ;SERVER NUMBER
                                        ;SESSION NUMBER
                                        ; MAXIMUM SLOT SIZE ON XMT
                              ; PARAMETERS ON RECEIVE DATA
U.RSBB:'L' .BLKW 1
U.RBHA:'L' .BLKW 1
U.RSDV:'L' .BLKW 1
                                       ; RECEIVE SLOT BIAS
                                        ; RECEIVE SLOT HEADER VIRTUAL
                                        ; RECEIVE DATA VIRTUAL
                              ;XMT INTERMEDIATE BUFFER CHAIN
U.TRLH:'L' .BLKW 1
U.TRSC:'L' .BLKW 1
                                        ;XMT LISTHEAD ADDRESS
                                        ;XMT REMAINED BYTES IN BUFFER
                              ; VIRTUAL CIRCUIT CCB
U.CCBA: 'L' .BLKW 1
                                       ;CCB ADDRESS (IN POOL)
; LINK STATUS WORD IN U.LINS
UL.TRS='B'1
                                        ;1-XMT STOPPED, 0-NOT
```

;>255 CHAR. FOR SLOT. HOLD IT.

```
UL.TDA='B'2
                                  ;1-XMT DATA AVAIL, 0-NOT
                                  ; DATA IN XMT QUEUE (SET BY PORT)
                                  ;1-LINE STOPPED, 0-NOT;LINE STOPPED BY USER (XOFF
UL.LST='B'4
                                  ; CAME FROM REMOTE TERMINAL)
                                  ;1-RCV DATA AVAIL, 0-NOT
;DATA IN RCV QUEUE (SET BY PROC)
;BUFFER ALLOCATION FAILURE
UL.RDA='B'10
UL.ECH= 'B'20
                                  ;FOR 1 ECHO CHARACTER
                                  ;1-RCV STOPPED, 0-NOT;RCV STOPPED BY TTDRV ON RECEIVE
UL.RSS='B'100
                                  ; IF NO RESOURCES AVAILABLE
UL.LEN='B'200
                                  ;1-LINK ENABLE, 0-NOT
                                  ;TOGGLED BY START/STOP LINK CALL
        .ENDC
                 ; .IF DF T$$LTH
; DEFINE BITS IN STATUS WORD 1 (U.TSTA)
; INPUT
               STATUS
S1.RST='B'1
                                  ; READ WITH SPECIAL TERMINATORS IN PROGRESS
S1.ESC='B'2
                                  ; ESCAPE SEQUENCE IN PROGRESS
S1.RSP='B'4
                                  ; READ WITH SPECIAL PROCESSING
S1.PTH='B'10
                                  ; PASS THRU IS CURRENTLY ACTIVE
S1.RNE='B'20
                                  ;ECHO SUPPRESSED
S1.TSY='B'40
                                  ;TERMINAL OUTPUT SYNC IS CURRENTLY ENABLED
                                 ;OUTPUT BUSY
S1.0BY='B'100
S1.IBY='B'200
                                  ; INPUT BUSY
S1.DPR='B'400
                                  ; DEFER PROCESSING OF CHAR. IN U.TECB
S1.DEC='B'1000
                                  ; DEFER ECHO OF CHAR. IN U.TECB
S1. IBF='B'2000
                                 ;BUFFERED INPUT IN PROGRESS
S1.DSI='B'4000
                                  ; INPUT PROCESSING DISABLED
S1.RES='B'10000
                                  ; ESC. SEQ PROCESSING IS ENABLED FOR THE CURRENT
                                  ; READ
S1.RNF='B'20000
                                  ; READ NO FILTER IS ACTIVE (EDIT CHARACTERS ARE
                                  ; DISPLAYED)
                                  ;TERMINATOR NO ECHO
S1.TNE='B'40000
                                  :UNSOLICITED INPUT IN PROGRESS
S1.USI='B'100000
; DEFINE BITS IN STATUS WORD 2 (U.TSTA+2)
                  STATUS
     OUTPUT
S2.RCU='B'1
                                  ; RESTORE CURSOR (MUST = TF.RCU)
S2.WRA='B'6
                                  ;CONTEXT FOR WRAP-AROUND
S2.WRB='B'2
                                  ;LOW BIT IN S2.WRA BIT PATTERN
S2.WAL='B'10
                                  ;WRITE PASS ALL (MUST = TF.WAL)
S2.BRQ='B'20
                                  ;BREAK-THROUGH-WRITE REQUEST IN QUEUE
S2.SRQ='B'40
                                  ;SPECIAL REQUEST IN QUEUE
                                  ; (IO.ATT, IO.DET, SF.SMC)
S2.ORQ='B'100
                                  ; OUTPUT REQUEST IN QUEUE (MUST = S1.OBY)
S2. IRQ= 'B'200
                                 ; INPUT REQUEST IN QUEUE (MUST = S1.IBY)
S2.FLF='B'400
                                  ;FORCE LINEFEED BEFORE NEXT ECHO
S2.ELF='B'1000
                                  ; EAT A LINEFEED (IGNORE A LEADING LF ON OUTPUT)
                                  ;TRAILING CR REQUIRED ON OUTPUT
S2.CR='B'2000
S2.OBF='B'4000
                                  ;BUFFERED OUTPUT IN PROGRESS
```

```
S2.PCU='B'10000
                                 ; POSITION CURSOR BEFORE WRITE
S2.BEL='B'20000
                                 ;BELL PENDING
S2.CTO='B'40000
                                 ;OUTPUT STOPPED BY CTRL-O 266.
S2.CTS='B'100000
                                  ;OUTPUT STOPPED BY CTRL-S
; DEFINE BITS IN STATUS WORD 3 (U.TSTA+4)
    TERMINAL OPERATION CHARACTERISTICS
S3.ACR='B'1
                                 ;WRAP-AROUND (AUTOMATIC CR-LF) REQUIRED
S3.TAB='B'2
                                 ;TYPE-AHEAD BUFFER ALLOCATION REQUESTED
S3.CTC='B'4
                                 ;TERMINAL WANTS CLI TO HAVE ^C NOTIFICATION
S3.RAL='B'10
                                 ;TERMINAL IS IN READ-PASS-ALL MODE
S3.NEC='B'20
                                 ;NO ECHO
S3.TSY='B'40
                                 ;TERMINAL SYNC
S3.8BC='B'100
                                 ; PASS 8 BITS ON INPUT
S3.FDX='B'200
                                 ;LINE IS IN FULL DUPLEX MODE
S3.MHE='B'400
                                 ; NOTIFY ATTACHED TASK OF MODEM HANG-UP
S3.ICE='B'1000
                                 ; INPUT COUNT STATE ENABLED
                                 ;TERMINAL MANAGEMENT MODE ENABLED
S3.TME='B'2000
S3.PTH='B'4000
                                 ; PASS THROUGH REQUESTED
S3.RES='B'10000
                                 ;TASK WANTS ESCAPE SEQUENCES
S3.PPT='B'20000
                                 ;TERMINAL HAS PRINTER PORT
S3.RUB='B'40000
                                 ; RUBOUT SEQUENCE IN PROGRESS (NON-SCOPE)
; DEFINE BITS IN STATUS WORD 4 (U.TSTA+6)
; TERMINAL ATTRIBUTE CHARACTERISTICS
S4.HFL='B'7
                                 :HORIZONTAL FILL REQUIREMENT
S4.VFL='B'10
                                 ; VERTICAL FILL REQUIREMENT
S4.HFF='B'20
                                 ; HARDWARE FORM-FEED PRESENT
S4.HHT='B'40
                                 ; HARDWARE HORIZONTAL TAB PRESENT
S4.DLO='B'100
                                 ; DIAL-OUT LINE (IMPLIES U2.RMT)
S4.HSY='B'200
                                 ; HOST/TERMINAL SYNCHRONIZATION ENABLED (1=YES)
S4.ANI='B'400
                                 ; ANSI CRT TERMINAL
S4.AVO='B'1000
                                 ;VT100-FAMILY TERMINAL DISPLAY
                                 ;BLOCK MODE TERMINAL
S4.BLK='B'2000
S4.DEC= 'B'4000
                                 ;DIGITAL CRT TERMINAL
                                 ;TERMINAL HAS LOCAL EDITING FUNCTIONS
S4.EDT='B'10000
                                 ;TERMINAL SUPPORTS REGIS GRAPHICS ;TERMINAL SUPPORTS SOFT CHARACTERS (DRCS)
S4.RGS='B'20000
S4.SFC='B'40000
S4.ABD='B'100000
                                 ;AUTO-BAUD SPEED DETECTION ENABLED
; DEFINE BITS IN STATUS WORD U.TST5
  ADDITIONAL STATUS CHARACTERISTICS
S5.SW1='B'1
                                 ;FIRST TERMINAL MANAGEMENT SWITCH
                                 ;CHARACTER HAS BEEN SEEN
S5.TMM='B'2
                                 ;TERMINAL IN TERMINAL MANAGEMENT MODE
S5.XOF='B'4
                                 ; SEND AN XOFF AT FIRST OPPORTUNITY
S5.XON='B'10
                                 ;SEND AN XON AT FIRST OPPORTUNITY
S5.HPC='B'14
                                 ;OUTPUT OF HIGH PRIORITY CHARACTERS REQUESTED
```

```
;HIGH PRIORITY OUTPUT IN PROGRESS
S5.HPO='B'20
                                   ;XOFF HAS BEEN OUTPUT
S5.OXF='B'40
S5.ITI='B'100
                                   ; IMMEDIATE TIMEOUT ON INPUT
S5.RPO='B'2000
                                  ; READ W/PROMPT OUTPUT IN PROGRESS
                                  ;LAST CHAR. IN TYPE-AHEAD BUFFER
S5.VER='B'10000
                                   ;HAS PARITY ERROR
                                   ;LAST CHAR. IN TYPE-AHEAD BUFFER
S5.BCC='B'20000
                                   ;HAS FRAMING ERROR
                                   ;LAST CHAR. IN TYPE-AHEAD BUFFER
S5.DAO='B'40000
                                   ; HAS DATA OVERRUN ERROR
                                   ; NOTE - THE 3 BITS ABOVE MUST CORRESPOND
                                   ;TO THE RESPECTIVE ERROR FLAGS IN THE
                                   ; HARDWARE RECEIVE BUFFER
                                   ;AUTO-BAUD SPEED DETECTION IN PROGRESS
S5.ABP='B'100000
; DEFINE BITS IN EXTENDED I/O STATUS WORD U.TST6
                                   ; READ WAS AN EXTENDED I/O
S6.EIO='B'400
                                   ; READ WITH LOWER CASE TO UPPER CASE CONVERSION
S6.RLU='B'1000
S6.RDI='B'100000
                                   ; READ WITH DEFAULT INPUT
        . ENDC
; VIRTUAL TERMINAL UCB DEFINITIONS
.=U.UNIT
U.OCNT: 'L'.BLKB 1
                                   ;OFFSPRING WITH THIS AS TI:
.=U.BUF
U.RPKT: 'L'.BLKW 1
                                   ;CURRENT OFFSPRING READ I/O PACKET
U.WPKT: 'L'.BLKW 1
                                  ;CURRENT OFFSPRING WRITE I/O PACKET
U.IAST:'L'.BLKW 1
U.OAST:'L'.BLKW 1
                                   ; INPUT AST ROUTINE ADDRESS
                                   ;OUTPUT AST ROUTINE ADDRESS
U.AAST: 'L'.BLKW 1
                                   ;ATTACH AST ROUTINE ADDRESS
         .IF NB TTDEF
.IIF NE U.AAST+2-U.UIC .ERROR ;ADJACENCY ASSUMED
         . ENDC
.=U.AAST+4
U.PTCB: 'L'.BLKW 1
                                  ; PARENT TCB ADDRESS
; CONSOLE DRIVER DEFINITIONS
.=U.BUF+2
U.CTCB:'L' .BLKW 1
U.COTQ:'L' .BLKW 2
U.RED2:'L' .BLKW 1
                                 ;ADDRESS OF CONSOLE LOGGER TCB;I/O PACKET LIST QUEUE
                                   ; REDIRECT UCB ADDRESS
```

.PSECT

```
; DEVICE TABLE STATUS DEFINITIONS
; DEVICE CHARACTERISTICS WORD 1 (U.CW1) DEVICE TYPE DEFINITION BITS.
DV.REC='B'1
                                 ; RECORD ORIENTED DEVICE (1=YES)
DV.CCL='B'2
                                 ; CARRIAGE CONTROL DEVICE (1=YES)
DV . TTY = 'B'4
                                 ;TERMINAL DEVICE (1=YES)
                                 ;FILE STRUCTURED DEVICE (1=YES)
DV.DIR='B'10
DV.SDI='B'20
                                 ;SINGLE DIRECTORY DEVICE (1=YES)
DV.SOD='B'40
                                 ;SEQUENTIAL DEVICE (1=YES)
DV.MSD='B'100
                                 ; MASS STORAGE DEVICE (1=YES)
                                 ;USER MODE DIAGNOSTICS SUPPORTED (1=YES)
DV.UMD='B'200
DV.MBC='B'400
                                 ; MASSBUS CONTROLLER (11M COMPATIBILITY ONLY)
DV.EXT= 'B'400
                                 ;UNIT ON EXTENDED 22-BIT UNIBUS CNTROLER (1=YES)
DV.SWL='B'1000
                                 ;UNIT SOFTWARE WRITE LOCKED (1=YES)
                                 ; INPUT SPOOLED DEVICE (1=YES)
DV.ISP= 'B'2000
DV.OSP='B'4000
                                 ;OUTPUT SPOOLED DEVICE (1=YES)
DV.PSE= 'B'10000
                                 ; PSEUDO DEVICE (1=YES)
DV.COM= 'B '20000
                                 ; DEVICE IS MOUNTABLE AS COM CHANNEL (1=YES)
DV.F11='B'40000
                                 ; DEVICE IS MOUNTABLE AS F11 DEVICE (1=YES)
DV.MNT='B'100000
                                 ; DEVICE IS MOUNTABLE (1=YES)
; TERMINAL DEPENDENT CHARACTERISTICS WORD 2 (U.CW2) BIT DEFINITIONS
U2.DH1='B'100000
                                 ;UNIT IS A MULTIPLEXER (1=YES)
U2.DJ1='B'40000
                                 ;UNIT IS A DJll (1=YES)
U2.RMT='B'20000
                                 ;UNIT IS REMOTE (1=YES)
U2.HFF='B'10000
                                 ;UNIT HANDLES HARDWARE FORM FEEDS (1=YES)
U2.L8S='B'10000
                                 ;OLD NAME FOR U2.HFF
U2.NEC='B'4000
                                 ;DON'T ECHO SOLICITED INPUT (1=YES)
                                 ;UNIT IS A CRT (1=YES)
;UNIT GENERATES ESCAPE SEQUENCES (1=YES)
U2.CRT='B'2000
U2.ESC='B'1000
                                 ;USER LOGGED ON TERMINAL (0=YES)
U2.LOG='B'400
U2.SLV='B'200
                                 ;UNIT IS A SLAVE TERMINAL (1=YES)
                                 ;UNIT IS A DZ11 (1=YES)
U2.DZ1='B'100
                                 ;TERMINAL IS IN HOLD SCREEN MODE (1=YES)
U2.HLD='B'40
U2.AT.='B'20
                                 ;MCR COMMAND AT. BEING PROCESSED (1=YES)
U2.PRV='B'10
                                 ;UNIT IS A PRIVILEGED TERMINAL (1=YES)
U2.L3S='B'4
                                 ;UNIT IS A LA30S TERMINAL (1=YES)
                                 ;UNIT IS A VT05B TERMINAL (1=YES)
U2.VT5='B'2
U2.LWC='B'1
                                 ; LOWER CASE TO UPPER CASE CONVERSION (0=YES)
; BIT DEFINITIONS FOR U.MUP
```

```
UM.OVR='B'1
                                ;OVERRIDE CLI INDICATOR
                                ;CLI INDICATOR BITS
UM.CLI='B'36
UM.DSB='B'200
                                 ;TERMINAL DISABLED SINCE CLI ELIMINATED
                                ;NO BROADCAST
UM.NBR='B'400
                                ;CONTINUATION LINE IN PROGRESS
UM.CNT='B'1000
                                ;COMMAND IN PROGRESS
UM.CMD='B'2000
                                 ;SERIAL COMMAND RECOGNITION ENABLED
UM.SER='B'4000
UM.KIL='B'10000
                                ;TTDRV SHOULD SEND KILL PKT ON CNTRL/C
; RH11-RS03/RS04 CHARACTERISTICS WORD 2 (U.CW2) BIT DEFINITIONS
U2.R04='B'100000
                                 :UNIT IS A RS04 (1=YES)
; RH11-TU16 CHARACTERISTICS WORD 2 (U.CW2) BIT DEFINITIONS
                               ;UNIT IS A 7 CHANNEL DRIVE (1=YES)
U2.7CH='B'10000
; TERMINAL DEPENDENT CHARACTERISTICS WORD 3 (U.CW3) BIT DEFINITIONS
U3.UPC='B'20000
                                 ;UPCASE OUTPUT FLAG
U3.PAR='B'40000
                                 ; PARITY GENERATION AND CHECKING
U3.OPA='B'100000
                                 ; PARITY SENSE (1=ODD PARITY)
; VIRTUAL TERMINAL 3RD CHARACTERISTICS WORD DEFINITIONS
U3.FDX='B'1
                                 :FULL DUPLEX MODE (1=YES)
                                 ; INTERMEDIATE BUFFERING DISABLED (1=YES)
U3.DBF='B'2
U3.RPR='B'4
                                 ; READ W/PROMPT IN PROGRESS (1=YES)
; TERMINAL DEPENDENT CHARACTERISTICS WORD 4 (U.CW4) BIT DEFINITIONS
U4.CR='B'100
                                 ;LOOK FOR CARRIAGE RETURN
; UNIT CONTROL PROCESSING FLAG DEFINITIONS
UC.ALG='B'200
                               ;BYTE ALIGNMENT ALLOWED (1=NO)
UC.NPR='B'100
                               ; DEVICE IS AN NPR DEVICE (1=YES)
                                ;CALL DRIVER BEFORE QUEUING (1=YES)
UC.QUE='B'40
                                ;CALL DRIVER AT POWERFAIL ALWAYS (1=YES);CALL DRIVER ON ATTACH/DETACH (1=YES)
UC.PWF='B'20
UC.ATT='B'10
                                ;CALL DRIVER AT I/O KILL ALWAYS (1=YES)
UC.KIL='B'4
UC.LGH='B'3
                                TRANSFER LENGTH MASK BITS
; UNIT STATUS BIT DEFINTIONS
```

```
;UNIT IS BUSY (1=YES)
US.BSY='B'200
                                 ;UNIT IS MOUNTED (0=YES)
US.MNT='B'100
US.FOR='B'40
                                 ;UNIT IS MOUNTED AS FOREIGN VOLUME (1=YES)
                                 ;UNIT IS MARKED FOR DISMOUNT (1=YES)
US.MDM= 'B'20
US.PWF='B'10
                                 ; POWERFAIL OCCURED (1=YES).
; CARD READER DEPENDENT UNIT STATUS BIT DEFINITIONS
US.ABO='B'1
                                 ;UNIT IS MARKED FOR ABORT IF NOT READY (1=YES)
US.MDE='B'2
                                 ;UNIT IS IN 029 TRANSLATION NODE (1=YES)
; FILES-11 DEPENDENT UNIT STATUS BITS
US.WCK='B'10
                                 ;WRITE CHECK ENABLED (1=YES)
                                 ;UNIT IS SPINNING UP (1=YES)
US.SPU='B'2
US.VV='B'1
                                 ; VOLUME VALID IS SET (1=YES)
;+
; TERMINAL DEPENDENT UNIT STATUS BIT DEFINITIONS
US.CRW='B'4
                                 ;UNIT IS WAITING FOR CARRIER (1=YES)
US.DSB='B'2
                                 ;UNIT IS DISABLED (1=YES)
US.OIU='B'1
                                 ;OUTPUT INTERRUPT IS UNEXPECTED ON UNIT (1=YES)
; LPS11 DEPENDENT UNIT STATUS BIT DEFINITIONS
US.FRK='B'2
                                 ; FORK IN PROGRESS (1=YES)
US.SHR='B'1
                                 ;SHAREABLE FUNCTION IN PROGRESS (0='B'YES)
; ANSI MAGTAPE DEPENDENT UNIT STATUS BITS
US.LAB='B'4
                                 ; UNIT HAS LABELED TAPE ON IT (1=YES)
; UNIT STATUS EXTENSION (U.ST2) BIT DEFINITIONS
US.OFL='B'1
                                 ;UNIT OFFLINE (1=YES)
US.RED='B'2
                                 ;UNIT REDIRECTABLE (0=YES)
US.PUB='B'4
                                 ;UNIT IS PUBLIC DEVICE (1=YES)
                                 ;UNIT ATTACHED FOR DIAGNOSTICS (1=YES)
US.UMD='B'10
US.PDF= 'B'20
                                 ; PRIVILEGED DIAGNOSTIC FUNCTIONS ONLY (1=YES)
US.MUN='B'40
                                 ;MULTI-UNIT FLAG
US.TRN='B'100
                                 ;UNIT TRANSITION HAS OCCURRED (1=YES)
US.SIO='B'200
                                 ;STALL I/O TO UNIT (1=YES)
; +
; MAGTAPE DENSITY SUPPORT DEFINITION IN U.CW3
```

```
UD.UNS='B'0

UD.200='B'1

; 200BPI, 7 TRACK

UD.556='B'2

; 556BPI, 7 TRACK

UD.800='B'3

; 800BPI, 7 OR 9 TRACK

UD.160='B'4

;1600BPI, 9 TRACK

UD.625='B'5

;6250BPI, 9 TRACK

UD.8K='B'6

;8K BPI - SERIAL, SERPENTINE RECORDING.
```

.MACRO UCBDF\$, X, Y, Z, A

.ENDM

.ENDM

APPENDIX D

MICRO/RSX COMMON ERROR CODE DEFINITIONS

This appendix lists:

- 1. Facility-independent error code definitions
- 2. Standard Bugcheck formats for facility-defined error codes

```
Common (Facility-Independent) Error Code Definitions
                SST-Type Errors - Error Code 1
                    ; Odd address or other trap four
BE.ODD = 000100
                    ; Segment fault
BE.SGF = 000102
BE.BPT = 000104
                    ; Breakpoint or T-bit trap
                    ; IOT instruction
BE.IOT = 000106
                    ; Illegal instruction ; EMT instruction
BE.ILI = 000110
BE.EMT = 000112
BE.TRP = 000114
                    ; Trap instruction
BE.STK = 000116
                     ; Stack overflow
                Internal Inconsistency Errors - Error Code 2
                     ; Task with no parent aborted
BE.NPA = 000200
BE.SGN = 000201
                    ; Feature not included in system
BE.2FR = 000202
                    ; Double fork
                    ; Interrupt service routine clobbered register
BE.ISR = 000203
                    ; Fatal hardware error
BE.FHW = 000204
BE.CSR = 000205
                    ; Device CSR disappeared
BE.IDC = 000206
                    ; Internal database consistency error
BE.ACP = 000207
                    ; ACP task aborted
BE.HSP = 000210
                     ; Header subpacket problem
BE.NCT = 000211
                     ; No current task
                System Pool Related Errors - Error Code 3
BE.NPL = 000300
                     ; No pool for operation
BE.DDA = 000301
                     ; Double deallocation
BE.SIZ = 000302
                     ; Size of block invalid
BE.BAK = 000303
                    ; Deallocated block below pool
BE.POV = 000304
                     ; Deallocation overlaps end of pool
                Group-global Event Flag Errors - Error code 4
BE.GGF = 000400
                    ; Task locked to non-existent flags
```

MICRO/RSX COMMON ERROR CODE DEFINITIONS

```
Standard Bugcheck Format Facility Code Definitions
        _____
        I/O Driver Subsystem - Facility Code 2
BF.TTD = 000200
                     ; Terminal driver
        Executive Components - Facility Code 3
BF.EXE = 000300
                    ; Exec - General and miscellaneous
BF.XDT = 000301
                    ; Exec - Executive Debugging Tool
BF.POL = 000303
                    ; Exec - Pool handling routines (CORAL)
BF.ERR = 000304
                    ; Exec - Hardware error processing subsystem
BF.INT = 000305
                    ; Exec - Internal consistency checking routine
BF.INI = 000306
                    ; Exec - INITL - initialization module
BF.DVI = 000307
                   ; Exec - DVINT common interrupt handler
                   ; Exec - Parity memory support
; Exec - Task exit/abort procesing
BF.PAR = 000310
BF.XIT = 000311
                   ; Exec - QIO directive
; Exec - Seek optimization
BF.QIO = 000312
BF.OPT = 000313
BF.ACC = 000314
                    ; Exec - System resource accounting
BF.KAS = 000315
                    ; Exec - Kernel AST support
                  ; Exec - Miscellaneous directives
; Exec - Crash with sanity timer message
BF.DIR = 000316
BF.SAN = 000317
```

ABODES, B-3, C-3	CDA (Cont.)
ACNDF\$, C-5	running, 1-7
/ACT, 2-4, 2-5	as installed task, 1-7
Active task	as uninstalled task, 1-8
address of TCB, 3-21	switches, 2-3 to 2-11
AST queue, 3-23	system requirements, 1-1
Abi queue, 3-23	
attribute bits, 3-22	CDA command line, 2-1 to 2-11
blocking bits, 3-21	binary file, 2-2
MCR, 3-26	crash input file, 2-3
name, 3-21	default, 2-10
Offspring Control Block, 3-23	format, 2-1
partition, 3-21	in indirect command file, 1-8
receive queue, 3-23	list file, 2-1
receive-by-reference queue,	symbol file, 2-2
3-24	/CLI, 2-4, 2-6
state bits, 3-22	CLI parser block dump, 3-31
	CLKDF\$, B-4, C-12
task image, 3-21	
Active task dump, 3-21	Clock queue dump, 3-50
AST queue, 3-21	Clock queue switch
Offspring Control Block, 3-21	See /CLQ
receive queue, 3-21	/CLQ, 2-4, 2-6
receive-by-reference queue,	Command line interpreter switch
3-21	See /CLI, /CPB
/ADV, 2-4, 2-5	Common Block Directory dump, 3-36
/ALL, 2-4, 2-5	/CPB, 2-4, 2-6
All devices switch	Crash
See /ADV	cause
Analysis listings, 3-1 to 3-57	determining, 4-1
interpreting, 4-1	HALT instruction, 1-2
Analysis routines switch	infinite loop, 1-2
See /ALL	processor trap, 1-2
Analysis switches, 2-3 to 2-7	restart procedure, 1-3
ANALYZE/CRASH DUMP command, 1-8	dump
error messages, A-l	obtaining, 1-2
examples, 2-21	Crash Dump Analyzer
format, 2-11	See CDA
input to, 2-12	Crash dump binary file, 1-3, 1-6,
qualifiers, 2-12 to 2-21	2-2
specification, 2-12	Crash dump device, 1-1, 1-3
Aggian table dumn 2 1 2 17	and drivers, 1-4
Assign table dump, 3-1, 3-17	
logical device names, 3-17	changing, 1-4
physical device names, 3-17	displaying, 1-5
/ATL, 2-4, 2-5	restrictions, 1-2
	specifying, 1-4, 1-5, 2-2
Binary output file size switch	valid for Micro/RSX system, 1-2
See /MEMSIZ	valid for pregenerated
/BL, 2-8	RSX-11M-PLUS system, 1-2
Block number switch	valid for RSX-llM/M-PLUS system
See /BL	1-2
Bugcheck facility, 1-5	Crash dump driver
error code definitions, D-l	and devices, 1-4
	loadable, 1-1, 1-3 to 1-7
CDA	loading, 1-4
analysis listing, 1-1, 1-6, 1-8,	unloading, 1-5
3-1 to 3-57	Crash dump listing
See also Analysis listings	See also Analysis listings
function, 1-1	interpreting, 4-1 to 4-3
generating, 1-1	mapping data, 4-1
input to, 1-1, 1-3	stack depth, 4-2
	Scaon depen, 4 2
messages, A-l	

Crash damp roderne	DACCULIVE BYMBOI CODIC (CONC.)
See Executive crash dump	switch
routine	See /STB
Crash notification device, 1-1,	/EXIT, 2-8, 2-9
1-2, 1-3	Exit switch
\$CRAVL, 3-15, 3-45	See /EXIT
CTBDF\$, C-14	
	E11000 0 00
/CTL, 2-5, 2-6	F11DF\$, C-28
Current task priority	FllTBL\$, B-17
pointer to, 3-20	Function switches, 2-7 to 2-10
	randeron bareeneby 2 7 to 2 10
/DCB, 2-5, 2-6	Group-global event flag dump, 1-9,
DCBDF\$, B-6, C-15	3-1, 3-18
/DENS, 2-8	
	/mpn 0 5 0 6
/DEV, 2-5, 2-6	/HDR, 2-5, 2-6
Device	HDRDF, C-33
crash dump, 1-1	HDRDF\$, B-21
crash notification, 1-1	HWDDF\$, B-23, C-35
See also Crash notification	
device	ITBDF\$, B-26
fixed media, 1-3, 1-5	
	/
invalid crash dump, 1-3, 1-5	/KDS, 2-5, 2-6
switches, 2-6	Kernel data space
system, 1-5	dump, 3-53
	· _ · _ · _ · _ · _ · _ · _ · _ · _
unit number, 1-4	switch
valid crash dump, 1-2, 1-5	See /KDS
Device controller dump, 3-51	Kernel instruction space
common interrupt address, 3-51	dump, 3-53
Controller Request Block, 3-52	switch
controller status, 3-52	See /KIS
Controller Table, 3-51	Kernel Mapping Register switch
Device controller switch	See /KMR
See /CTL	Kernel stack dump, 3-1, 3-5
Device information dump, 3-38	/KIS, 2-5, 2-6
	/KMR, 2-8, 2-9
control processing flags, 3-39	
device characteristics word,	KRBDF\$, C-41
3-39	
Device Control Block, 3-42	LCBDF\$, B-27, C-43
I/O request packet, 3-42	/LIMIT, 2-8, 2-9
Status Control Block, 3-42	/LINES, 2-8, 2-9
terminal status word, 3-38	Lines per page switch
UCB extension, 3-42	See /LINES
Device names	Loadable crash dump driver
logical, 3-17	See Crash dump driver
physical, 3-17	Logical device assignments, 3-17
/DVD 2 5 2 6	
/DMP, 2-5, 2-6	Logical device names, 3-17
/DUMP, 2-5, 2-6	Low core memory
	dump, 1-9, 3-1, 3-20
EDVDEC D 12 C 17	
EPKDF\$, B-13, C-17	labels, 3-20
Error code definitions, D-1	
Error log buffer	MCR Unit Control Block, 3-26
Error log buffer	MCR Unit Control Block, 3-26
address of, 3-19	/MEMSIZ, 2-8, 2-9
address of, 3-19 Error log packet dump, 1-9, 3-1,	/MEMSIZ, 2-8, 2-9 Micro/RSX
address of, 3-19	/MEMSIZ, 2-8, 2-9 Micro/RSX
address of, 3-19 Error log packet dump, 1-9, 3-1, 3-19	/MEMSIZ, 2-8, 2-9 Micro/RSX Advanced Programmer's Kit, 1-1,
address of, 3-19 Error log packet dump, 1-9, 3-1, 3-19 Error messages, A-1	/MEMSIZ, 2-8, 2-9 Micro/RSX Advanced Programmer's Kit, 1-1, 1-3
address of, 3-19 Error log packet dump, 1-9, 3-1, 3-19 Error messages, A-1 EVNDF\$, B-14, C-25	/MEMSIZ, 2-8, 2-9 Micro/RSX Advanced Programmer's Kit, 1-1,
address of, 3-19 Error log packet dump, 1-9, 3-1, 3-19 Error messages, A-1	/MEMSIZ, 2-8, 2-9 Micro/RSX Advanced Programmer's Kit, 1-1, 1-3
address of, 3-19 Error log packet dump, 1-9, 3-1, 3-19 Error messages, A-1 EVNDF\$, B-14, C-25	/MEMSIZ, 2-8, 2-9 Micro/RSX Advanced Programmer's Kit, 1-1, 1-3 MTADF\$, B-28, C-44
address of, 3-19 Error log packet dump, 1-9, 3-1, 3-19 Error messages, A-1 EVNDF\$, B-14, C-25 Executive crash dump routine, 1-1, 1-2, 1-3	/MEMSIZ, 2-8, 2-9 Micro/RSX Advanced Programmer's Kit, 1-1, 1-3 MTADF\$, B-28, C-44 No spool switch
address of, 3-19 Error log packet dump, 1-9, 3-1, 3-19 Error messages, A-1 EVNDF\$, B-14, C-25 Executive crash dump routine, 1-1, 1-2, 1-3 building, 1-1	/MEMSIZ, 2-8, 2-9 Micro/RSX Advanced Programmer's Kit, 1-1, 1-3 MTADF\$, B-28, C-44
address of, 3-19 Error log packet dump, 1-9, 3-1, 3-19 Error messages, A-1 EVNDF\$, B-14, C-25 Executive crash dump routine, 1-1, 1-2, 1-3 building, 1-1 Executive Debugging Tool	/MEMSIZ, 2-8, 2-9 Micro/RSX Advanced Programmer's Kit, 1-1, 1-3 MTADF\$, B-28, C-44 No spool switch See /-SP
address of, 3-19 Error log packet dump, 1-9, 3-1, 3-19 Error messages, A-1 EVNDF\$, B-14, C-25 Executive crash dump routine, 1-1, 1-2, 1-3 building, 1-1 Executive Debugging Tool See XDT	/MEMSIZ, 2-8, 2-9 Micro/RSX Advanced Programmer's Kit, 1-1, 1-3 MTADF\$, B-28, C-44 No spool switch See /-SP
address of, 3-19 Error log packet dump, 1-9, 3-1, 3-19 Error messages, A-1 EVNDF\$, B-14, C-25 Executive crash dump routine, 1-1, 1-2, 1-3 building, 1-1 Executive Debugging Tool See XDT	/MEMSIZ, 2-8, 2-9 Micro/RSX Advanced Programmer's Kit, 1-1, 1-3 MTADF\$, B-28, C-44 No spool switch See /-SP Offset mode, 3-1
address of, 3-19 Error log packet dump, 1-9, 3-1, 3-19 Error messages, A-1 EVNDF\$, B-14, C-25 Executive crash dump routine, 1-1, 1-2, 1-3 building, 1-1 Executive Debugging Tool	/MEMSIZ, 2-8, 2-9 Micro/RSX Advanced Programmer's Kit, 1-1, 1-3 MTADF\$, B-28, C-44 No spool switch See /-SP

/PAR, 2-5, 2-7 Partition	Secondary pool (Cont.) switch
base address, 3-21	See /SECPOOL
name, 3-21	/SECPOOL, 2-7
PCB address, 3-21	SHDDF\$, C-69
status flags, 3-33	/-SP, 2-8, 2-10
Partition Control Block, 3-33	Stack pointer
address, 3-31	kernel, 3-2, 3-5
pointer to, 3-33	user, 3-2
switch	/STB, 2-2, 2-8, 2-10
See /PCB, /PAR	/STD, 2-5, 2-7
Partition information dump	\$STKDP, 4-2
attachment descriptor, 3-34	Switches
individual, 3-33	analysis, 2-3 to 2-7
system, 3-31	function, 2-7 to 2-10
wait queue, 3-34	/-SYS, 2-5, 2-7
/PCB, 2-5, 2-7	System
PCBDF\$, B-31, C-55	device, 1-5
Physical device names, 3-17	switches, 2-6
Physical memory switch	generation
See /DUMP	and CDA, 1-1
\$PKAVL, 3-45	information, 3-1
PKTDF\$, B-33, C-60	switch
/POOL, 2-5, 2-7	See /-SYS
Pool	information dump, 1-8
bit map, 3-15	pool
dump, 3-45	dump, 3-45
free, 3-15	switch
largest fragment, 3-15	See /POOL
number of unallocated fragments,	requirements, 1-1
3-15	System common, 3-6
secondary pool dump, 3-45	active task, 3-6
size, 3-15	alphabetized dump, 3-1, 3-9
smallest possible block, 3-15	boot device, 3-6
total free bytes, 3-15	dump
Pool statistics dump, 3-1, 3-15	See System common dump
Processor Status Word, 3-2	labels, 3-9 to 3-14
Program Counter, 3-2	network UIC, 3-6
	partition address, 3-6
Qualifiers	stack depth, 3-6
command, 2-12 to 2-15	system size, 3-6
crash-input, 2-15 to 2-21	TCB address, 3-6
	UIC, 3-6
Register	System common dump, 3-1, 3-9 to
cache control, 3-3	3-14
error, 3-2	stack depth indicator, 4-2
general, 3-2	System Task Directory
memory management, 3-2	dump, 3-44
memory system error, 3-2	switch
page	See /STD
address, 3-2	/
description, 3-2	/TAL, 2-5, 2-7
UNIBUS mapping, 3-2	Tape density switch
volatile, 3-1, 3-3	See /DENS
See also Volatile registers	/TAS, 2-5, 2-7
Relative addresses, 3-1	/TASK, 2-5, 2-7
RSX11M.STB	Task Control Block switch
See Executive symbol table	See /ACT, /ATL
Saved stack nointer 2 20	Task data space
Saved stack pointer, 3-20	dump, 3-53
/SCB, 2-5, 2-6	switch
SCBDF\$, B-39, C-66	See /TDS
Secondary pool	Task dump, 3-48
dump, 3-45	window blocks, 3-48

Task header	/TCB, 2-5, 2-7
pointer to, 3-20	TCB
switch	address of, 3-21, 3-24
See /HDR	pointer to current, 3-20
Task header dump, 3-28	TCBDF\$, B-41, C-71
Directive Status Word, 3-28	/TDS, 2-5, 2-7
File Control Block, 3-29	/TIS, 2-5, 2-7
Logical Unit Table, 3-28	/TSK, 2-5, 2-7
Page Description Register, 3-29	
swapping priority, 3-28	/UCB, 2-5, 2-6
window blocks, 3-29	UCBDF\$, B-45, C-75
Task instruction space	
dump, 3-53	Volatile registers, 3-1
switch	dump, $3-2$ to $3-4$
See /TIS	
Task virtual address space switch,	
2-7	XDT, 1-2, 1-3, 1-6, 1-7

RSX-11M/M-PLUS and Micro/RSX Crash Dump Analyzer Reference Manual AA-FD11A-TC

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the company's discretion. If you require a written reply and are eligible to receive one under Software Performance Report (SPR) service, submit your comments on an SPR form.

d you find errors in this manual? If so, specify the error a	nd the page number.	
ease indicate the type of user/reader that you most nearly Assembly language programmer	represent.	
Higher-level language programmer		
Occasional programmer (experienced)		
User with little programming experience		
 Student programmer 		
Other (please specify)		
	Data	
me	Date	
ganization		
541112411011		
reet		
	0: 0 1	
y	State Zip Code	

No Postage Necessary if Mailed in the United States

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SSG PUBLICATIONS ZK1-3/J35 DIGITAL EQUIPMENT CORPORATION 110 SPIT BROOK ROAD NASHUA, NEW HAMPSHIRE 03062-2698

Do Not Tear - Fold Here

Cut Along Dotted Line