RSX-11M/M-PLUS
and Micro/RSX

I/O Operations Reference Manual
Order No. AA-FD14A-TC

RSX-11M/M-PLUS
and Micro/RSX

I/0 Operations Reference Manual
Order No. AA-FD14A-TC

RSX-11M Version 4.2
RSX-11M-PLUS Version 3.0
Micro/RSX Version 3.0

digital equipment corporation - maynard, massachusetts

First Printing, December 1975
Revised, December 1976
Revised, December 1977

Revised, June 1979
Revised, November 1981
Revised, July 1985

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in. accordance with the terms of such
license. : ‘

No responsibility is assumed for the use or reliability of software on

equipment that is not supplied by Digital Equipment Corporation or its
affiliated companies.

Copyright C) 1975, 1976, 1977, 1979, 1981, 1985
by Digital Equipment Corporation
All Rights Reserved.

Printed in Australia

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL PDT
DEC/CMS EduSystem RSTS
DEC/MMS IAS RSX
DECnet MASSBUS UNIBUS
DECsystem-10 MicroPDP-11 VAX
DECSYSTEM-20 Micro/RSTS VMS
DECUS Micro/RSX

VT
preETer i clilgliltiall 2K2565

HOW TO ORDER ADDITIONAL DOCUMENTATION

In Continental USA and Puerto Rico call 800-258-1710 DIRECT MAIL ORDERS (CANADA)
In New Hampshire, Alaska, and Hawaii call 603-884-6660 Digital Equipment of Canada Ltd.
o 100 Herzberg Road
In Canada call 613-234-7726 (Ottawa-Hull) Kanata, Ontario K2K 2A6
800-267-6215 (all other Canadian) Attn: Direct Order Desk

DIRECT MAIL ORDERS (USA & PUERTO RICO)* DIRECT MAIL ORDERS (INTERNATIONAL)

Digital Equipment Corporation Digital Equipment Corporation

P.O. Box CS2008 . PSG Business Manager

Nashua, New Hampshire 03061 ' ' c/o Digital's local subsidiary or

approved distributor

*Any prepaid order from Puerto Rico must be placed
with the local Digital subsidiary (809-754-7575)

CONTENTS

PREFACE
SUMMARY OF TECHNICAL CHANGES

FILE CONTROL SERVICES

CHAPTER 1
1.1 KEY TERMS USED THROUGHOUT THIS MANUAL
1.2 IMPORTANT FCS CHARACTERISTICS . ¢ ¢ o« ¢ o o o o o
1.3 FCS DATA STRUCTURES . . e o o s e o o o o
1.3.1 File Descriptor Block (FDB) o . e e e o o & @
1.3.2 Dataset Descriptor and Default Fllename Block .
1.3.3 ‘'File Storage Region (FSR) .+ « ¢ ¢ « o o o o o @
1.4 FILE ACCESS METHODS e e o o e o o &
1.5 DATA FORMATS FOR FILE-STRUCTURED DEVICES e o e o o
1.5.1 Data Formats for ANSI Magnetic Tape
1.6 BLOCK I/0 OPERATIONS . & & 2 o o o o o o o o o o &
1.7 RECORD I/O OPERATIONS .« ¢ « ¢ o ¢ « o o o o o« o &
1.7.1 ‘'Record I/0 Data-Transfer Modes . . « ¢ « o o o o«
1.7.1.1 Move MOde . o ¢ o ¢ o « o o o o o o s o o o @
1.7.1.2 Locate Mode e o e e o o
1.7.2 Multiple Buffering for Record I/O e o o e o o
1.7.2.1 Multiple Buffering Performance « &«
1.7.3 Big Buffering for Record I/O . « « « ¢ ¢ o « &
1.8 SHARED ACCESS TO FILES . ¢ « ¢ o s o o o o o o o
1.9 FILE SPECIFICATION SYNTAX ¢ & ¢ ¢ « o o o o o &
1.9.1 DEVICE ¢« o o ¢ o o o o o o o o o o o o o o o o
1.9.2 DIirectory ¢ o o o ¢ o o o o o o o o o o o o
1.9.3 NaMe o o o o o o o e o o o o o o o o o o o o &
1.9.4 TYPE o o o o o o o o o o o o o o o o o o s o
1.9.5 Version & v o« o o o o o o o o o o o o o o o o
1.10 - ANSI MAGNETIC TAPE FILE SPECIFICATION SYNTAX . .
1.10.1 DEVICE v o ¢ o « o o o s o o o o o o o o o o =
1.10.2 DIirectory .« ¢ o o o o o o o o o o o o o o o
1.10.3 Quoted String . . ¢ ¢ ¢ e e o o e e e e s e .
1.10.4 Version . . o ¢ ¢ ¢ 4 4 4 e e o o e o o o o o
1.10.4.1 Example Magnetic Tape File Specification . .
1.11 GENERATION OF A FULL FILE SPECIFICATION
1.12 LOGICAL NAMES e o o o e o o s e o e @
1.12.1 Using Logical Names for Program Input and
‘ Ooutput . . ¢ ¢ ¢ ¢ o o e e o o e o e s e o o
1.12.1.1 Logical Name TableS « v o o o o o o & o o« o
1.12.1.2 Specifying Logical Names . . « « « ¢ ¢ o o &
1.13 ROUTINES INCLUDED IN FCSRES . . o o o o o o o @
CHAPTER 2 ' PREPARING FOR I/0

2.1 PREPARING FOR I/0 -- GENERAL INFORMATION . . .«
2,2 +MCALL DIRECTIVE - LISTING NAMES OF REQUIRED MACRO

. DEFINITIONS . . ¢ o o s e o o o o s o o o s o o @
2.3 FILE DESCRIPTOR BLOCK (FDB) e o s s 4 e e o e e e
2.3.1 Assembly-Time FDB. Initialization Macros .
2.3.1.1 FDBDF$ - Allocate File Descriptor Block (FDB)
2.3.1.2 FDATSA - Initialize File Attribute Section

of FDB . . . « + 4

iii

. . o o o o . . .

Page

xi

xiii

-

| R
R R
COVWVBNNAAUVINIUTEWN

-
o

iy

CHAPTER

2.3.1.3

N
.

NN

°

w W w

. .
[
.
[-Y

.

e
o .
awm

NN
° e .
* e

www

*$¢ e o o o o
NN
o o
N =

[(SIL.CH SIS O O N Ll S N

AU LU U1

)
N

N = [SN

e . o © o o o o

WO WOWWWWYWW VO NI NI
e o o o o o,

[, ROV NN o

DN DDNDDNDND NN

wWwwwww WWWwWwww w
e o o o 0 o o o o » o e

WWWWwwwwuwwwwwwww

CONTENTS

FDRCS$SA - Initialize Record Access Section of
FDB ° . . L] . L] o L] L] L] L] L] L] L] L] L . o L L]
FDBKSA - Initialize Block Access Section of
FDB L] L] o L] L] L] L] L] L] e L] L] L] L] ® L] . L] L] o
FDOPSA - Initialize File-Open Section of FDB
FDBFSA - Initialize Block Buffer Section of

FDB L] L] L o L] . L] ® ° L] L] L] L] L] L] L] L] ° L °
Run-Time FDB Initialization Macros
Run-Time FDB Macro Exceptions . . « « « « &
Specifying the FDB Address in Run-Time
MacCYoOS o o «c o o o o o o o o o o o o o o o o
GLOBAL VERSUS LOCAL DEFINITIONS FOR FDB OFFSETS
Specifying Global Symbols in the Source Code .
Defining FDB Offsets and Bit Values Locally .
CREATING FILE SPECIFICATIONS WITHIN YOUR PROGRAM
Dataset DeSCriptor . . « o o o o o o o o o o &
Default Filename Block - NMBLKS Macro
Dynamic Processing of File Specifications .« e
OPTIMIZING FILE ACCESS . . « « « o o o o o o
Initializing the Filename Block as a Function
Of OPENSX « ¢ ¢ o ¢ o o o o o s o o -2 s o @
Manually Initializing the Filename Block . . .
INITIALIZING THE FILE STORAGE REGION
FSRSZ$ - Initialize FSR at Assembly Time . . .
FINITS - Initialize FSR at Run Time
INCREASING THE SIZE OF THE FILE STORAGE REGION .
FSR Extension Procedures for MACRO-11l Programs
FSR Extension Procedures for FORTRAN Programs
COORDINATING I/0 OPERATIONS o
Event Flags « .
I/0 Status Block
AST Service Routine ., .
Block Locking
Error Codes Related to Sh
Locking« « .« « &

. . 3
° . .
. . .
° . . ° . .

red Files and Block

o) e o o o

FILE-PROCESSING MACROS

OPENSX - GENERALIZED OPEN MACRO . ¢ ¢ ¢ o « o &
Format of Generalized OPENSX Macro s+ o«
FDB Requirements for Generalized OPEN$x Macro

OPNSS$SX - OPEN FILE FOR SHARED ACCESS . « « o «

OPNTSW - CREATE AND OPEN TEMPORARY FILE

OPNTS$SD - CREATE AND OPEN TEMPORARY FILE AND MARK

FOR DELETION . ¢ ¢ ¢ ¢ o « o o o o o o s s o o @

OFIDS$SX - OPEN FILE BY FILE ID . . ¢ ¢ o o o o &

OFNBSX OPEN FILE BY FILENAME BLOCK
Dataset Descriptor or Default Filename Block .
Default Filename Block Only « . o .

OPENS$ - GENERALIZED OPEN FOR SPECIFYING FILE

ACCESS ¢ ¢ ¢ o o o o o o o o o o o o @

CLOSES - CLOSE SPECIFIED FILE
Format of CLOSES Macro . . « « « « &

GETS - READ LOGICAL RECORD . . .

Format of GET$ Macro« .«

The FDB Relevant to GETS Operatlons
GETS$ Operations in Move Mode
GETS$ Operations in Locate Mode . . .

GETSR - READ LOGICAL RECORD IN RANDOM MODE
GETSS - READ LOGICAL RECORD IN SEQUENTIAL MOD
PUTS - WRITE LOGICAL RECORD . . « « « &

Format of PUTS MacCro . . « « o o o o o

The FDB Relevant to PUTS$ Operations .

" PUT$ Operations in Move Mode
PUTS Operations in Locate Mode . . .
PUTSR - WRITE LOGICAL RECORD IN RANDOM MODE . .

.
.
.
.
.
.

.

s ® o o [XJe o ® o o o o o o

.
.

e o
. 0

iv

2-10

2-12
2-14

2-18
2-21
2-22

2-24
2-25
2-26
2-27
2-27
2-28
2-31
2-34
2-34

2-35
2-36
2-37
2-37
2-40
2-41
2-41
2-42
2-42
2-43
2-44
2-45
2-46

2-48

3-14
3-15
3-15

3-16
3-18
3-18
3-19

- 3-19

3-21
3-21
3-21
3-22
3-24
3-24
3-24
3-25
3-26
3-27
3-28

/ /—-\.\\

SN

CHAPTER

3:14
3:15
3:15.1
3315.2
3:.16
3i16.1
3.16.2
3:17
3.17.1

3318

3.18.1

NN - N - [\

e o o o

.
NN NNNOaNNo Aot n

L]
.

L] L) L] L]
L] . . .
. .« .

N -

[l Y T [N
.

L

wN =

LN
)
* o o
L3 WD
)
AU >

NN
.

-3
.

>
.
~ ~
. .
wm

e o e
.
[+)}

Lol el (-] O O 00 0o 00J

[N >Nl
.

.
. °
[\S) - w N -

N N O O G N N N O '
LI) L ¢
.
[\

CONTENTS

PUTS$S - WRITE LOGICAL RECORD IN SEQUENTIAL MODE
READS - READ VIRTUAL BLOCK &« ¢« ¢ ¢ o o o o o o o
Format of READS MacCro . . « « « o« .
The FDB Relevant to READS Operatlons .
WRITES - WRITE VIRTUAL BLOCK . . « « « &
Format of WRITES Macro . . « « « o« « &«
The FDB Relevant to WRITES$ Operations .
WAITS - WAIT FOR BLOCK I1/0 COMPLETION
Format of WAITS Macro . « « « « « &
DELETS - DELETE SPECIFIED FILE
Format of DELETS Macro . . « « « « &

FILE CONTROL ROUTINES

CALLING FILE CONTROL ROUTINES . ¢ ¢ ¢ ¢ o o o =«
DEFAULT DIRECTORY STRING ROUTINES . . « o« « o o
.RDFDR - Read $$FSR2 Default Directory String

DeSCriptor « v v o« o o o o o o o o o o o o o o
.WDFDR - Write New $SFSR2 Default Directory
String Descriptor . . . « « « o« o«
DEFAULT UIC ROUTINES . ¢« « ¢« o « o o«
.RDFUI - Read Default UIC
.WDFUI - Write Default UIC
DEFAULT FILE PROTECTION WORD ROUTINES . . .
.RDFFP - Read SFSR2 Default File Protection
WOXA ¢ ¢ ¢ o o o o o o e o o o o o o o o o o o
.WDFFP - Write New $SFSR2 Default File
Protection Word . . ¢ ¢ ¢ o o o o o o o o o o«
FILE OWNER WORD ROUTINES « o o o
.RFOWN - Read $SFSR2 File Owner Word o o o
.WFOWN - Write New $$FSR2 File Owner Word
ASCII/BINARY UIC CONVERSION ROUTINES
.ASCPP - Convert ASCII Directory Strlng to
Equivalent Binary UIC « . . . o .
.PPASC - Convert UIC to ASCII Dlrectory Strlng
FILENAME BLOCK ROUTINES . . ¢ o o o o o o
Logical Name Translation ¢« ¢ ¢ & o o &
Iterative Translation
Logical Translation Process o« .
.PARSE - Fill in All File Name Informatlon o .
Device and Unit Information
Directory Identification Information
File Name, File Type, and File Version
Information . . . & & ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o .
Using the FDB Extension for Logical Names .
Other Filename Block Information
.EXPLG Module (Expand Logical) . . « « « « &
.PRSDV - Fill in Device and Unit Information
ONly o ¢ ¢ o o o o o o o o o o o o o @ o o e
.PRSDI - Fill in Directory Identlflcatlon
Information Only . . ¢ ¢ ¢ ¢ & o o ¢ o o &
.PRSFN - Fill in File Name, File Type, and
Version Only . ¢ ¢ ¢ & o o o o o o o
.ASLUN - Assign Logical Unit Number
DIRECTORY ENTRY ROUTINES
.FIND - Locate Directory Entry . .
.ENTER - Insert Directory Entry .
.REMOV - Delete Directory Entry .
FILENAME BLOCK ROUTINES . & ¢ ¢ o o ¢ ¢ o o o o
.GTDIR - Insert Directory Information in
Filename BloCKk « ¢« & ¢ o « o o o o o o o o o
.GTDID - Insert Default Directory Information
in Filename BloCK =+ & 2 « ¢ « o o o o o o o
FILE POINTER ROUTINES . ¢ ¢ . ¢ o « o o o o o
.POINT - Position File to Specified Byte . .
.POSRC - Position File to Specified Record .

. e o o

e o o

.
. 3
e e o o .
e o e o .

.

e
e
[

e e o ¢ o o
e o o ¢ o o
e o o o o o
e o e o e o

3-30
3-30
3-31
3-33
3-34
3-34
3-36
3-37
3-37
3-39
3-39

> >
UL

LT
1 [} [} U
B oW W N N

Lo W N Lo >

1
HEeELD L
NHFEF OV NN Ao n (8]

> [
1 | |
.—l
w

CONTENTS

4.10.3 .MARK - Save Position Information Context of
File e e e & e e o o o o o o 4-22
4.10.4 .POSIT - Return Spec1f1ed Record Position
Information . . e e e oie e o o o o o o 4-22
4.11 QUEUE I/O FUNCTION ROUTINE (. XQIO) e e o o o & o 4-23
4,12 RENAME FILE ROUTINE (.RENAM) . « « ¢« ¢ o « o« o o 4-23
4,13 FILE EXTENSION ROUTINE (.EXTND) e e o e o o« o o 4-24
4.14 FILE TRUNCATION ROUTINE (.TRNCL) . ¢« ¢ « o « o« o 4-25
4.15 FILE DELETION ROUTINES e o o o 6o o o 4-25
4.15.1 -MRKDL - Mark Temporary File for Deletion . . 4-25
4.15.2 .DLFNB - Delete File by Filename Block 4-26
4,16 DEVICE CONTROL ROUTINE (.CTRL) « ¢ o o o o o o o 4=27
4,17 BUFFER FLUSH ROUTINE (.FLUSH) e o o o o o o o o 4-28
4.17.1 Purpose of the .FLUSH Routine 4-28
4.17.2 When .FLUSH Should Be Used . . « « « « & o« «» o 4-28
4.17.3 Performance Considerations Using .FLUSH . . . 4-28
4.17.4 Using the .FLUSH Routine « . « v ¢ & ¢ « & « o 4-=29
CHAPTER 5 FILE STRUCTURES
5.1 DISK AND DECTAPE FILE STRUCTURE (FILES-11) 5-1
5.1.1 User File Structure . . ¢ ¢ « o ¢ ¢ o o .« o« o o 5=2
5.1.2 Directory FileS . ¢ ¢ v ¢ ¢ v o o o o « o o o o 5=2
5.1.3 Index File . ¢ & & ¢ o ¢ o o e o o o o o o o o & 5=2
5. lo4 File Header BlOCk ° . ° ° . ° ° o ° . . 5-3
5.2 MAGNETIC TAPE FILE PROCESSING . & ¢ ¢ ¢ « o o« o » 5-4
5.2.1 Access to Magnetic Tape VolumesS . « ¢ o o« o « o 5=5
5.2.2 Rewinding Volume Sets . . ¢ ¢« « « « « o« « « o « 5-5
5.2.3 Positioning to the Next File Position 5-5
5.2.4 Single-File Operations . . « &« « « o« « « « « « « 5-6
5.2.5 Multiple-File Operations . ¢ v« ¢« ¢ ¢ « ¢« ¢ « o« « 5=6
5. 2-6 USing oCTRL ° . L] . 3 . ° ° . . . °® [5‘7
5.2.7 Examples of Magnetic Tape Processing 5-8
5.2.7.1 Examples of OPENSW Macro-ll Statements to
Create a New File e o+ o .6 s s o « 5-8
5.2.7.2 Examples of OPENSR Macro—ll Statements to Read
a File . . ¢ e o e e . e« o o o« s o o o« 5-8
5.2.7.3 Examples of CLOSE$ Macro-ll Statements o« . 5-9
5.2.7.4 Combined Examples of OPENS$ and CLOSES$ Macro-ll
Statements . . ¢ ¢ ¢ ¢ ¢ o 2 e o o s e o s o o 5=9
CHAPTER 6 COMMAND LINE PROCESSING
6.1 GET COMMAND LINE (GCML) ROUTINE e o 6-2
6.1.1 GCMLBS$ - Allocate and Initialize GCML Control
BlOCk ° . °) ° ° . . .o . ° . ° 6"3
6.1.2 GCMLD$ - Define GCML Control Block Offsets and
Blt Values 3 . . . ° ° . . . ° . . 6-5
6.1.3 GCML Routine Run-Time Macros . « « « « « o« o« o« o 6=9
6.1.3.1 GCML$ - Get Command Line Macro . . . e o o 6-9
6.1.3.2 RCML$ - Reset Indirect Command File Scan
MaCIO ° ° . 6"12
6.1.3.3 CCMLS$ - Close Current Command File Macro . . 6-12
6.1.4 GCML Usage Considerations . . . e «.s o 6-13
6.2 COMMAND STRING INTERPRETER (CSI) ROUTINE e o o o 6-14
6.2.1 CSI$ - Define CSI Control Block Offsets and Bit
Values Macro e o 6-14
6.2.2 CSI$ Macro Control Block Offset and B1t Value
Definitions . . & ¢ 4 ¢« ¢ 4 ¢ ¢ o ¢« o ¢« o« o « 6-15
6.2.3 CSI RUN-Time MAcCroS . . « o v o« o o« o o o o« « 6-=19
6.2.3.1 CSI$1 - Command Syntax Analyzer 6-19
6.2.3.2 CSI$2 - Command Semantic Parser Macro . . . 6-20
6.2.3.3 CS1$4 - Command Semantic Parser Macro . . . 6-22
6.2.4 CSI Switch Definition Macros . ¢« ¢« ¢« ¢« ¢« « « « 6-23

vi

TN

CONTENTS

6.2.4.1 CSI$SW - Create Switch Descriptor Table Entry
MaCIO 6-24

6.2.4.2 CSISSV - Create Sw1tch Value Descriptor Table
Entry Macro . . o o e o o o o o o o o« o 6-28

6.2.4.3 CSISND - Define End of Descrlptor Table . . 6-31

CHAPTER THE TABLE-DRIVEN PARSER (TPARS)
CODING TPARS SOURCE PROGRAMS . .« « « ¢ « ¢ o &«
TPARS Macros: ISTATS, STATES$, and TRANS . .
ISTATS Macro - Initialize the State Table
STATES$ Macro - Defining a Syntax Element
TRANS Macro - Defining a Transition .
Action Routines and Built-In Variables .
TPARS Built-In Variables
Calling Action Routines
Using Action Routines to Reject a
Transition . . .« ¢« ¢« ¢ o o o &« . o« .
Optional Debug Routine for Rsx-ll Users
TPARS Subexpressions . .« « « « o o ¢ o o
GENERAL CODING CONSIDERATIONS . . « « ¢ « &
Suggested Arrangement of Syntax Types in a
Table .« ¢ o ¢ o o o o o o o o o o o o o @
Ignoring Blanks and Tabs in a Command Line
Entering Special Characters . . « « « « &
Recognition of Keywords . . . « « « o .
PROGRAM SECTIONS GENERATED BY TPARS MACROS
INVOKING TPARS &+ ©o o ¢ o o o o o o o o o o
Register Usage and Calling Conventions .
Using the Options Word . .
HOW TO GENERATE A PARSER PROGRAM USING TPARS
PROGRAMMING EXAMPLES . &« o« ¢ o ¢ ¢ o o o o o
Parsing a UFD Command Line . « « « o« o o « &
Using Subexpressions and Rejecting Transitions 7-18
Using Subexpressions to Parse Complex Command
LinesS . ¢ ¢ ¢ o o o o o o o o o o o o o o o & 1-19

- wN NN -

e o o o
« o o

e o o o

o o o o o

o o o 8 o o o o
e o o o o o
Tl\l\l\l?l\l\l\l

» wWnN - wN =

NN HERR RSP

QNe o o o
ot
Qe o o o
ct
[K]

“
o wWwN
11

[}
HO WO NN o AVTULITWNN -

I\I\I\ITI NN

I
= =

A OGOON LIk WNDNON
« ®
N -~
* e o o

. L[] . . . L] .
~
|
[}
ot

NNSNNNNNNNNNN
wN =

CHAPTER SPOOLING
PRINTS MACRO . . « ¢ ¢ « o s o o« o o s o o s o« o« » 8-1
.PRINT SUBROUTINE . . ¢« ¢ ¢ ¢ o o & e o o o o e 8-1
Opening a File on Disk and Using the PRINT
Comand) . .) . . ° . o - o . . 3 . 3 . . ® . 8-2
8-2
8-2

Opening a File on LP. e o o o o o o s e o o o
ERROR HANDLING . o o ¢ o o o o o o o o o o o o o =

w N [LSS I
L]
N Lol

o

APPENDIX A FILE DESCRIPTOR BLOCK
APPENDIX B FILENAME BLOCK
APPENDIX C SUMMARY OF I/O-RELATED SYSTEM DIRECTIVES
APPENDIX D SAMPLE PROGRAMS

APPENDIX E INDEX FILE FORMAT

BOOTSTRAP BLOCK . . .« ¢ ¢ « &
HOME BLOCK « ¢ ¢ ¢ o ¢ o o o @

1

.2

.3 INDEX FILE BIT MAP

.4 PREDEFINED FILE HEADER BLOCKS

o« o o o
e o o o
e o o o
e o o o
e o o o
e o o o
e o o o
e o o o
e o o o
e o o o

vii

CONTENTS

APPENDIX F FILE HEADER BLOCK FORMAT
F.1l HEADER AREA . . ¢ 2 o o o s o s o o s o o s o
F.2 IDENTIFICATION AREA . . ¢ «c o o o o o o o o o
F.3 MAP AREA ¢ & ¢ o o o o o s o o o o o o o o o =

APPENDIX G SUPPORT OF ANSI MAGNETIC TAPE STANDARD
G.1 VOLUME AND FILE LABELS . « ¢ ¢ o o o s o o o o
G.1l.1 Volume Label Format . ¢ ¢« o ¢ o o o o o o o
G.1l.1l.1 Contents of Owner Identification Field . .
G.1l.2 User Volume Labels . ¢« ¢ o o o« o o o« o o o &
G.1l.3 File Header Labels . +o ¢ ¢ o o o ¢ o o o o
G.1l.3.1 File Identifier Processing by Files-11 . .
G.1l.4 End-of-Volume Labels . ¢« ¢« « ¢ o o o o o o &
G.1l.5 File Trailer Labels . . o ¢« ¢ ¢ o« o o s o &
G.1l.6 User File Labels . . &+ ¢ ¢« « ¢ o o o ¢ o o
G. 2 FILE STRUCTURES ° ° . . . ° ° . ° ° ° ° ° ° °
G.2.1 Single File Single Volume . « « o o o o o &
'G.2.2 Single File Multivolume . . . ¢« ¢ ¢ o o « &
G.2.3 Multifile Single Volume . .« ¢ ¢ ¢ ¢ ¢ « « &
G.2.4 Multifile Multivolume . . . o ¢ ¢ ¢ o o o &«
G.3 END-OF-TAPE HANDLING «. ¢« ¢« ¢ « s o o o o o o
G.4 ANSI MAGNETIC TAPE FILE HEADER BLOCK (FCS

COMPATIBLE) L] ® L] L] L] © L] L ® . L] L] L] L] o L2 °
G.5 THE MAGNETIC TAPE CONTROL TASK . ¢ « o .5 ¢ o =
G.5.1 MAG Command Example . « ¢ o« ¢ s o o o o« o «
G.5.2 MAG Command Error MeSSagesS . . o o o o o o o
G.6 UNLABELED TAPE . ©. o ¢ o o 2 o o o o o o o o o
G.6.1 Block Size on Tapes Mounted /NOLABEL
G.6.2 Tape Positioning . o o ¢ ¢ ¢ o o o o o o o &
G.6.3 Specifying File Attributes . . . ¢
G.6.4 Tape Translation « e . o o e e
G.6.5 Example of EBCDIC Translatlon Tables e o o o
G.7 EXAMPLE USING AN INDIRECT COMMAND FILE TO READ
TAPE o o o o o o o o o o o o s o s o o o o o

APPENDIX H STATISTICS BLOCK

APPENDIX I ERROR CODES

APPENDIX J FIELD SIZE SYMBOLS

APPENDIX K RSX-11M/M-PLUS FCS LIBRARY SYSGEN OPTIONS
K.1l FCS LIBRARY OPTIONS . & « ¢ « o o o o o o o o
K. 2 L] FCTYP] Ll L] L] o L . e L] L] ° L] L] L] . . L] L] . L]

FIGURES

File Access Operation . . ¢« « « « o« « o o &
Record I1/0 Operations . . ¢« ¢« o o o o & .
Single Buffering Versus Multiple Bufferlng .
Directory Structure for Single-User Volumes
Directory Structure for Multiuser Volumes . .
Data Flow During Command Line Processing . . .
- Format of Switch Descriptor Table Entry . . .
Format of Switch Value Descriptor Table Entry
Processing Steps Required to Generate a Parser
Program Using TPARS . & o ¢« « « o o o o o« o &

\lO\O\O\L{IU’Il—‘l—"—'
HWNHNDHEWND -

viii

g
U W

IO QR
O WVWWOWWOWWOWWO NIWWN =

@
=1

® o © o © o o o o

e Po o o o

CONWWOUVUN

-
ol =
[

o o o o
[-))
[
wN i

D R -)

fur
w

TN

CONTENTS

7-2 Flow of Control When TPARS Is Called From An
Executing User Program . « « o« o« o o o o o o
A-1 File Descriptor Block Format . . « « « « o o«
B-1 Filename Block Format . . « o« ¢ o o o o o &
B-2 ANSI Filename Block Format
G-1 ANSI Magnetic Tape File Header Block (FCS
Compatible) .« o ¢ o o o o o o o o s o o o @
H-1 Statistics Block Format . « « ¢ ¢ ¢ o o o &«

TABLES

Shared File ACCESS &« o o o o o o o o o o o o
Macro Calls Generating FDB Information . . .
File Access Privileges Resulting from OPENS$x
R2 Control Bits for _.EXTND Routine
FDB Offset Definitions « . &
Filename Block Offset Definitions .
Filename Block Status Word (N.STAT) .
Filename Block Offset Definitions for ANSI
Magnetic Tape . o « o o o o o o o o o o
Summary of I/O-Related System Directives
Home BlOCk FOrmat . . L[] . (]
File Header Block . . .
Volume Label Format . .
File Header Label (HDR1)
File Header Label (HDR2)
File Header Label (HDR3)
FCS Library Descriptions
_.FCTYP Values . . . « .

e o o

3
. .
e e o o
. .

. . . e o

NNOQQQ"HN? WOWw P wN -
NHBWNHFFFKFE W R

e o o o o o o

e o o ® o o o

e o o o o © o o
e o o © o o o

e o o o o o

e & 2 o o o o

e o o o o o o

e o o o o o o

e o o e o o o o o o

ix

[
A

()
w

.
.
N
1
N

[+
e o o o 0
=
o]
w
w

>

"RROQOQQHEOW ww:w'no
(=)}

o o o o Ko o

| I L L O I |
NGO HFHWH® wHWw

e o o ® o © o o o o
e o o o o & o o o o
e & o o o o o o o o

TN

PREFACE

MANUAL OBJECTIVES

The purpose of this manual is to familiarize the users of an RSX-11M,
RSX-11M-PLUS, or Micro/RSX operating system with the File Control
Services (FCS) facility provided with the system.

INTENDED AUDIENCE

Because the File Control Services described in this manual pertain to
both MACRO-11 and FORTRAN programs, the reader is assumed to be
familiar with these 1languages. Also, because the development of
programs in an RSX-11M/M-PLUS and Micro/RSX environment requires the
use of the Task Builder, the reader is also assumed to be familiar
with "the contents of the RSX-11M/M-PLUS and Micro/RSX Task Builder
Manual.

STRUCTURE OF THIS MANUAL

Chapter 1 describes the FCS features available for RSX-11M/M-PLUS and
Micro/RSX users, and defines some of the terminology used throughout
the manual. This chapter is vital to understanding the balance of the
manual.

Chapter 2 describes the actions you must take at assembly time to
prepare adequately for all intended file I/0 processing through FCS.
This chapter describes the data structures and working storage ‘areas
that you must define within a particular program to use any of the
File Control Services. Until you are thoroughly familiar with this
chapter, you are advised to postpone reading subsequent chapters.

Chapter 3 describes the run-time macro calls that allow you to
manipulate files and to perform I/O operationms.

Chapter 4 describes a set of run-time routines that perform 1I/0
functions on files, such as reading and writing dlrectory entries, and
renaming or extending files.

Chapter 5 describes the structure of files for disk, DECtapes and
magnetic tapes supported by the RSX-11M/M-PLUS and Micro/RSX systems.

Chapter 6 describes two collections of object library routines. The
Get Command Line (GCML) routine and the Command String Interpreter
(CSI) routine may be linked with the user task to perform operations
that request command 1line input. Such input consists of file
specifications that identify and control the files to be processed by
your program.

xi

PREFACE

Chapter 7 describes the table-driven parser (TPARS), which provides
you with the means to define and parse command lines in a unique
user-designed syntax.

Chapter 8 describes queuing files for printing. You can queue files
for printing at both the MACRO and subroutine levels.

Finally, the appendixes provide detailed information to help you
better understand 1I/0 operations. Appendix A and Appendix B outline
the File Descriptor Block (FDB) and the filename block, respectively.
Appendix C summarizes a number of I/O-related system directives that
form a part of the total resource management capabilities of the
RSX-11M/M~-PLUS Executive. Through simplified sample programs,
Appendix D illustrates the use of the macro calls that create and
initialize the FDB. These sample programs also include some of the
macro calls used for processing files. Appendix E illustrates the
structure of the index file of a Files-1ll volume. The format and
content of the file header block, magnetic tape labels, and the
statistics block are described in Appendixes F, G, and H,
respectively. The error codes returned by the system are 1listed in
Appendix I. Field-size symbols are listed in Appendix J. Appendix K
lists RSX-11M/M-PLUS FCS 1library system generation options and
provides a brief description of each.

ASSOCIATED MANUALS
The following manuals may be useful:

® RSX-11M/M-PLUS Information Directory and Master Index

® RSX-11M/M-PLUS and Micro/RSX Executive Reference Manual

® RSX-11M/M-PLUS and Micro/RSX Task Builder Manual

e PDP-11 MACRO-11 Language Reference Manual

In addition, documentation for programming in any of the PDP-11
languages may be helpful.

CONVENTIONS USED IN THIS MANUAL

Unless otherwise noted, the term "RSX-11l" refers to the RSX-11lM,
RSX-11M-PLUS, and Micro/RSX operating systems.

xii

SUMMARY OF TECHNICAL CHANGES

This revision of the RSX-11M/M-PLUS and Micro/RSX I/0 Operations
Reference Manual reflects the following software technical changes and
additions:

e Support for logical names, which affects information in this
manual on file and ANSI magnetic tape specification syntax,
and filename block routines

e Support for logical name parsing

e Support for the CSI$4 command semantic parser

e Changes in parameters for the FDAT$A, FDOPSA, and OPENSx
macros

e New information on block locking

e A new file control routine, .FLUSH (buffer flush)

e Changes to the C.EXPS user task expansion buffer size offset
and to the C.CMLD command line descriptor offset in the CSI
control block

e Changes to offsets within the File Descriptor Block

e New volume label offsets

e New file header format

In addition to these changes, the manual has been reorgénized to make
the information more easily accessible to the reader. Appendix C has

also been revised to include all 1I/0-related system Executive
directives.

xiii

CHAPTER 1

FILE CONTROL SERVICES

This chapter describes the File Control Services (FCS) features
available for RSX-11/M-PLUS and Micro/RSX users. It defines some of
the terminology used throughout the manual. FCS enables you to
perform record-oriented and block-oriented I/0O operations, as well as
additional operations required for file control. Open, close, wait,
and delete are some of these additional operations. The term FCS as
used in this manual is a substitute for FCSRES, a memory-resident
library. This memory-resident library contains commonly used routines
that are linked with your task at task-build time. These routines may
also be linked with your task from a system object module library
(SYSLIB.OLB). There are three kinds of FCS:

® ANSI - supports ANSI format magnetic tape and big buffers
® Non-ANSI - does not support ANSI tape or big buffers

e Multibuffered - supports ANSI tape, big buffers, and multiple
buffers

When your task uses commonly requested functions such as OPEN$, which
opens a file, and CLOSE$, which closes a file, the Task Builder
resolves the address of these routines in FCSRES, thereby eliminating
these routines from your task image. Thus, commonly used FCS routines
do not significantly increase the size of your task image. If you do
not 1link your task with FCSRES at task-build time, the routines must
come from SYSLIB and are included in your task image, increasing its
size. These routines, consisting of pure, position-independent code,
provide an interface to the file system, enabling you to read and
write files on file-structured devices and to process files by using
logical records. :

Your program regards logical records as data units that are structured
in accordance with application requirements, rather than as physical
blocks of data on a particular storage medium. To meet the
application's requirements, FCS allows a collection of data--distinct
logical records--to be written to a file in a way that enables you to
retrieve the data from the file without having to know the exact
format in which it was written to the file. FCS, therefore, is
transparent to your task; records can be read or written in logical
units that are consistent with particular application requirements.

To invoke FCS functions from your task or application, your task
issues macro calls to specify desired file control operations. The
FCS macros are called at assembly time to generate code for specified
functions and operations. The macro calls provide the system-level,
file control primitives with the necessary parameters to perform the
file access operations that you request (see Figure 1l-1).

FILE CONTROL SERVICES

| USER-ISSUED MACRO CALL |

g

| FILECONTROL SERVICES |

1

| FILE CONTROL PRIMITIVES |

i

PERIPHERAL DEVICE HARDWARE
(e.g., disk, VTO5)

ZK-290-81

Figure 1-1 File Access Operation

1.1 KEY TERMS USED THROUGHOUT THIS MANUAL

Listed next are terms used throughout this manual, which have unique
definitions in the context of FCS operations.

File Descriptor Block (FDB)

The data structure that provides FCS with information needed to
perform 1I/0 operations on a file. The space for this data
structure is allocated in your program by issuing the FDBDF$
macro call (see Section 2.3.1.1). Each file to be opened
simultaneously by your program must have an associated FDB.
Portions of the FDB, which may be defined by you or the system,
are maintained by FCS. Assembly-time or run-time macro calls are
provided for you to initialize the FDB. The format and content
of the FDB are detailed in Appendix A.

Filename Block

The portion of the FDB that contains the various elements of a
file specification (see the File Specification entry in this
section) that FCS uses. 1Initially, as a file 1is opened, FCS
fills in the filename block with information that you specify and
that is taken from the dataset descriptor or the default filename
block (see the next entry). Section 2.4 describes how FCS fills
in the filename block from a file specification; the format and
content of the filename block are described in Appendix B.

Default Filename Block

An area allocated within your program by issuing the NMBLK$ macro
call (see Section 2.5.2) that contains the various elements of a
file specification. You create the default filename block,
whereas the filename block within the FDB is maintained by FCS.
You create the default filename block to supply file
specifications to FCS that are not otherwise available through
the dataset descriptor (see the next entry). FCS takes these
file specifications and creates a parallel structure in the FDB
that contains information that FCS requires during execution time
in opening and operating on files.

P

FILE CONTROL SERVICES

Thus, the terms "default filename block" and "filename block"
refer to separate and distinct data structures. These
distinctions should be kept in mind whenever these terms appear
in this manual. These areas are structurally identical, but they
are created and used differently, and may contain different
information at different times.

Dataset Descriptor

A 6-word block in your program that contains the sizes and the
addresses of ASCII data strings that together constitute a file
specification (see Section 1.9). This 6-word block, which you
also create, is described in detail in Section 2.4.1. Unless the
filename block in the FDB has been initialized, you must provide
FCS with dataset-descriptor or default filename block information
before the specified file can be opened.

Dataset Descriptor Pointer

File

File

1.2

An address value that points to the 6-word dataset descriptor
within your program. This address value is stored in the FDB,
allowing FCS to access a file specification that you created in
the dataset descriptor. '

Specification

The unique file identification that names a file, specifies the
location, and allows it to be explicitly referenced by any task.
The operating system, or your task, must refer to files by using
a file specification. The file specification contains specific
information that must be made available to FCS before that file
can be opened. See Section 1.9 for a description of a file
specification.

Storage Region (FSR)
An area of memory that you reserve for use in I/O operations (see

Section 1.7.3). You can allocate this area by issuing the FSRSZ$
macro call in your program (see Section 2.7).

IMPORTANT FCS CHARACTERISTICS

You should be aware of the following FCS characteristics when using
its 1/0 facilities:

@ I/0 operations initiated By READS and WRITE$ macros are
asynchronous; you are responsible for coordinating all block
I/0 activity.

e I/O operations initiated by GET$ and PUT$ macros are
synchronized entirely by FCS; control is not returned to your
program until the requested GET$ or PUT$ operation is
complete.

® FCS macro calls save and restore all registers, with the
following exceptions:

- The file-processing macro calls (see Chapter 3) place the
File Descriptor Block (FDB) address in RO.

- Many of the file control routines (see 'Chapter 4) return
requested information in the general registers.

FILE CONTROL SERVICES

e The macro that defines and allocates the space for the File
Descriptor Block (FDB) is the FDBDF$ macro (see Section
2.3.1.1). Once the FDB is allocated, necessary information
can be placed in this data construct through any logical
combination of assembly-time or run-time macro calls (see
Sections 2.3.1 and 2.3.2, respectively). Certain information
must be present in the FDB before FCS can open and operate on
a specified file.

® For each assembly-time FDB initialization macro call, a
corresponding run-time macro call is provided that supplies
identical information. Although both sets of macro calls (see
Table 2-1 1in Section 2-1) place the same information in the
FDB, each set does so in a different way. The assembly-time
calls generate .BYTE or .WORD directives that create specific
data, while the run-time calls generate MOV or MOVB
instructions that place desired information in the FDB during
program execution.

e If an error condition 1is detected during any of the
file-processing operations described in Chapter 3, or during
the execution of several of the file control routines (see
Section 4.1), the Carry bit in the Processor Status Word is
set, and an error indicator is returned to FDB offset location
F.ERR.

NOTE

When you use the READS or WRITES macros to execute
system 1I/0, the IOSB parameter must be specified for
F.ERR and the Carry bit to be properly returned (see
Section 3.15).

If the address of a user-defined error-handling routine 1is specified
as a parameter in any of the file-processing macro calls, a JSR PC
instruction to that error-handling routine is generated. The routine
is then executed if the Carry bit in the Processor Status Word is set.

1.3 FCS DATA STRUCTURES

In addition to generating calls to FCS subroutines, FCS macros issued
by your task create and maintain certain data structures that file I/0
operations require. These required data structures include the
following:

© A File Descriptor Block (FDB) that contains information
necessary for processing the file.

® A dataset descriptor that FCS accesses to obtain ASCII file
name information required to open a specified file. :

® A default filename block that FCS accesses to obtain default
file name information to open a specified file. FCS accesses
the default filename block when complete file information is
not specified in the dataset descriptor.

e A file storage region (FSR) that FCS uses for working storage.
The FSR is described in Section 1.3.3.

TN

TN

FILE CONTROL SERVICES

1.3.1 File Descriptor Block (FDB)

The File Descriptor Block (FDB) contains information that FCS uses to
open and process files. One FDB is required for each file that your
program opens simultaneously. You initialize some portions of the FDB
with assembly-time or run-time macro calls, and FCS maintains other
portions. Each FDB has five sections that contain information. that
your task or the system defines:

e File attribute section

® Record or block access section
e File open section

® Block buffer section

e Filename block portion

The information stored in the FDB depends upon the characteristics of
the file to be processed. The FDB and the macro calls that cause
values to be stored in this structure are described in detail in
Section 2.3. Appendix A describes the format and the content of the
FDB.

1.3.2 Dataset Descriptor and Default Filename Block

You must specify either a dataset descriptor or a default filename
block for each file that you intend to open. These data structures
provide FCS with the file specifications required for opening a file.
Although either the dataset descriptor or the default filename block
is usually specified, you may also specify both for the same file.
The dataset descriptor and the default filename block are further
described in detail in Sections 2.5.1 and 2.5.2.

When a file is being opened using information already present in the
filename block, neither the dataset descriptor nor the default
filename block is accessed by FCS for required file information. This
method of file access, which is termed "opening a file by file ID" is
an efficient means of opening files. Section 2.6 describes this
process in detail.

1.3.3 File Storage Region (FSR)

The file storage region (FSR) is an area allocated in your program as
working storage for record 1/0 operations (see Section 1.7). The FSR
consists of two program sections that are always contiguous. These
program sections exist for the following purposes:

S$FSR1 - This area of the FSR contains the block buffers and the
block buffer headers for record I/0 processing. You
determine the size of this area at assembly time by
issuing the FSRSZ$ macro call (see Section 2.7). The
number of block buffers and associated headers is based
on the number of files that you intend to open
simultaneously for record I/0 operations.

FILE CONTROL SERVICES

$SFSR2 - This area of the FSR contains impure data that FCS uses
and maintains when performing both record and block I1/0
operations. Portions of this area are initialized at
task-build time, and other portions are maintained by
FCS.

The size of the FSR can be changed, if desired, at task-build time.
Section 2.8 shows you how to do this.

l.4 FILE ACCESS METHODS

RSX-11M/M-PLUS and Micro/RSX systems support both sequential and
random access to data in files on sequential access devices (such as
magnetic tapes and card readers) and random access devices (such as
disks). The sequential access method is device independent; that is,
sequential access is usable on both record-oriented and random access
devices (for example, card reader and disk). You can use the random
access method only for random access devices.

1.5 DATA FORMATS FOR FILE-STRUCTURED DEVICES

Data is transferred between peripheral devices and memory in blocks.
A data file consists of virtual blocks, each of which may contain one
or more logical records created by your program. In FCS terms, a
virtual block in a file consists of 512(decimal) bytes for random
access devices. The size of the logical records in the virtual blocks
is under the control of the program that originally wrote the records.

When creating a new file, your program can specify that the records in
the file will differ in size. Such records are known as
variable-length records. Conversely, if your program indicates that
all records in the new file will be equal in size, the records are
known as fixed length.

There are two types of variable-length records: sequenced and
nonsequenced. Both must be word aligned. Sequenced variable-length
records are preceded by a 2-word record header. The first word
contains the 1length of the record, and the second word contains the
value of the sequence number:

16 16 vy

: 49
Byte Count|Sequence Number n-2 bytes of data
)

T

Nonsequenced variable—length records are preceded by a single-word
record header containing the length of the record:

16 3y

«
Byte Count n bytes of data
))
1S9

Both fixed- and variable-length records are aligned on a word
boundary. Any extra byte that results from an odd-length record is
simply ignored. (The extra byte is not necessarily a 0 byte.)

FILE CONTROL SERVICES

virtual blocks and 1logical records within a file are numbered
sequentially, each starting at 1. A virtual block number is a file
relative value, whereas a logical block number is a volume relative
value. Ordinarily, records may cross block boundaries. Crossing
block boundaries means that the beginning of a record can fill out the
end. of a block, while the rest of the record occupies the beginning of
the next block.

1l.5.1 Data Formats for ANSI Magnetic Tape

You can use both fixed- and variable-length records on magnetic tape;
their format conforms to the ANSI standard.

On magnetic tape, a virtual block corresponds to a physical record.
The default length of a block is 512 bytes. 1Its length can be changed
to any value from 8 through 2048 bytes (14 through 2048 bytes for a
write function) with the use of the FDBF$ macro (see Section 2.3.1.6).
Records are not allowed to cross block boundaries.

Fixed-length records are packed into a block with no control
information and no padding for alignment. The block is truncated so
that it ends at the word boundary immediately following the last
record that will fit in the block buffer.

Variable-length records are preceded by a 4-byte count field,
expressed in decimal in ASCII characters. The count includes the
length of the record and the 4-byte count field. After the 1last
record in a block (if there is any space left in the block), a caret
character (""", ASCII code 136) appears where the next byte count
should be, signaling the end of data in that block.

1.6 BLOCK I/O OPERATIONS

Block I/0 operations provide an efficient means of processing file
data, because such operations do not involve the blocking and
deblocking of records within the file. Also, block I/O operations
permit your task to read or write files in an asynchronous manner;
that is, control may be returned to your program before the requested
I1/0 operation is completed.

The read and write macro calls (READ$ and WRITE$) allow your task to
read and write virtual blocks of data to and from a file without
regard to logical records within the file. (See Sections 3.15 and
3.16 for a description of READS$ and WRITES$ macro calls.) When your
task uses block I/O, the number of the virtual block to be processed
is specified as a parameter in the appropriate READ$ or WRITE$ macro
call. The virtual blocks so specified are processed directly in a
reserved buffer in your task's memory space. Your task can use READS$
and WRITES$ only on block-structured devices.

You are responsible for synchronizing all block I/0 operations. Such
asynchronous operations can be coordinated through an event flag (see
Section 2.9.1) specified in the READS/WRITES macro call. The system
uses the event flag to signal the completion of a specified block I/0O
transfer, enabling you to coordinate those block I/0O operations that
are dependent on each other.

FILE CONTROL SERVICES

1.7 RECORD I/O OPERATIONS

Sequential access mode 1/0 operations can be performed for both
fixed- and variable-length records. Random access mode I/0 operations
can be performed only for fixed-length records. Your program accesses
records randomly by specifying a record number. This number
represents the position of the desired record within the file (viewing
the file as an array of fixed-sized records, with the number 1
representing the first record physically present in the file, and n
the last).

The GET$ and PUT$ macro calls (see Sections 3.9 and 3.12,
respectively) are provided for processing individual records in files.
Using the FSR block buffers (see Section 1.3.3), the GET$ and PUTS$
routines perform the necessary blocking and deblocking of records
within the virtual blocks of the file, allowing your program to access
logical records. Successive GET$ or PUT$ operations in random access
mode can access records anywhere within the file. To do so, your
program need only modify the record number specified as part of the
random record operation. After each such random operation, FCS
increases by one the record number used in the operation. If your
program does not again modify this number prior to issuing another
record operation, the record actually accessed is the next sequential
record in the file.

In contrast to block I/0 opeiations, all record 1I/0 operations are
synchronous; that is, control is returned to your program only after
the requested I/0 operation is completed.

Because GETS$ or PUT$ operations process 1logical records within a
virtual block, only a limited number of GET$ or PUTS operations result
in an actual I/0 transfer (for example, when the end of a data block
is reached). Therefore, all GET$ or PUT$ I/0 requests do not
necessarily involve an actual physical transfer of data.

The data flow during record I/0 operations is shown in Figure 1-2,
Note that blocks of data are transferred directly between the FSR
block buffer and the device containing the desired file. The
deblocking of records during input occurs in the FSR block buffer, and
the blocking of records occurs in the FSR block buffer during output.
Note also that FCS serves as your task's interface to the FSR block
buffer pool. All record 1/0 operations, which are initiated through
GETS$ and PUTS macro calls, are synchronized by FCS unless
multibuffering is in use.

1-8

FILE CONTROL SERVICES

USER
FCS RECORD
BUFFER

DEVICE

$$FSR2
IMPURE DATA

ZK-291-81

Figure 1-2 Record I/0O Operations

1.7.1 Record 1/0 Data-Transfer Modes

By using record 1/0, a program can gain access to a record in either
of the two following ways after the virtual block has been transferred
into the FSR from a file:

® In move mode, by specifying that individual records are to be
moved from the FSR block buffer to a record buffer that you
have defined (see Figure 1-2)

¢ In locate mode, by referencing a 1location in the File
Descriptor Block (see Section 1.3.1) that contains a pointer
to the desired record within the FSR block buffer

1.7.1.1 Move Mode - Move mode requires that data be moved between the
FSR block buffer and a record buffer that you have defined. For
input, data is first read into the FSR block buffer from a peripheral
device and then moved to your task's record buffer for processing.
For output, your program builds a record in your task's record buffer;
FCS then moves the record to the FSR block buffer, from which it is
written to a peripheral device when the entire block is filled.

Move mode simulates the reading of a record directly into your task's
record buffer; thus the blocking and deblocking of records is
transparent.

FILE CONTROL SERVICES

1.7.1.2 Locate Mode - Locate mode enables your task to access records
directly in the FSR block buffer. Consequently, there is normally no
need to transfer data from the FSR block buffer to your task's record
buffer. To access records directly in the FSR block buffer, refer to
locations in the File Descriptor Block (see Section 1.3.1 and Appendix
A) that contain values defining the length and the address of the
desired record within the FSR block buffer. These values are present
in the FDB as a result of FCS macro calls that you issued.

Program overhead is reduced in locate mode because records can be
processed directly within the FSR block buffer. Moving data to your
task's record buffer in locate mode is required only when the last
record of a virtual block crosses block boundaries.

1.7.2 Multiple Buffering for Record 1I/0

By supporting multiple buffers for record I1/0, FCS provides the
ability in multibuffered FCS (see Appendix K) to read data into
buffers in anticipation of user program requirements, and to write the
contents of buffers while your program is building records for output.
You can thus overlap the internal processing of data with file 1I/0
operations, as illustrated in Figure 1-3.

When your task uses read-ahead multiple buffering, the file must be
sequentially accessed to derive full benefit from multiple buffering.
For write-behind multiple buffering, you can use any file access
method with full benefit.

When your task uses multiple buffering, you must allocate sufficient
space in the FSR for the total number of block buffers in use at any
given time. The FSRSZS$ macro call (see Section 2.6.1) allocates space
for FSR block buffers.

Time =

Single process record write record process record write record o
Buffer

Multiple process record write record * process record write record

Buffer process record write record process record °°c

ZK-292-81

Figure 1-3 Single Buffering Versus Multiple Buffering

1.7.2.1 Multiple Buffering Performance - Multiple buffering can
improve performance for I/0-bound tasks under certain circumstances.
However, multibuffer processing in random mode is not very efficient.
When using multibuffering in random mode, a user record buffer is
always required. 1If one is not supplied, the task's low memory may be
overwritten and the task may abort.

TN

FILE CONTROL: SERVICES

For example, consider an I/O-bound task running as the dedicated or
highest priority app11cat1on on a system. For such a task, multiple
buffering can decrease execution time by enabllng overlap of I/O and
task execution.

However, if other tasks run at the same priority as that of the
application task described previously, then an overlap of I/0 and task
execution is already achieved among these tasks without multiple
buffering. In this case, multiple buffering would use up address
space and pool without improving execution speed. If virtual and
physical address space is available, big buffering would improve
performance (see Section 1.7.3). However, big buffer processing in
random mode is not very efficient.

1.7.3 Eig Buffering for Record 1I/0

If the task uses large records or operates on clusters of records, big
buffering is advantageous. The use of big buffering assumes that it
is reasonable to use more task address space and physical memory for
increased buffer space, and more pool for the increased number of
outstanding I/0 packets.

Big buffering reduces the number of disk accesses by allowing
multiblock input and output. Normally, the disk accesses for GET$ or
PUT$ operations are performed one sector at a time. Using FCS big
buffers allows you to read or write a specified number of sectors in a
single operation.

When using big buffering in random mode, a user record buffer is
always required. If one is not supplied, the task's low memory may be
overwritten and the task may abort. Using big buffering with random
GET$ and PUT$ can cause data to be lost from the end of a file. 1In
this case, a directory of the file would indicate more blocks in use
than it had allocated. To prevent this condition from happening,
follow these steps:

® Preallocate enough space to make writing an extension
unnecessary.

® Execute a FLUSH operation after the highest-numbered record is
written by a PUTS$ macro.

o After a PUT$ macro, arrange not to execute any GETS macro that
could cause the file to extend.

To use big buffers, you must select the buffer size and specify that
buffer size in the parameter lists for each occurrence of both the
FSRSZ$ macro and the FDBDF$ macro in your program.

You should choose a buffer size that is a multiple of 512(decimal)
bytes, the size of one disk block. Because the default amount
allocated by a file extend is five blocks and disks often contain many
5-block. files or parts of files, a buffer size of five blocks is
generally a good choice. Larger amounts may increase performance, but
note that you are trading large amounts of memory for speed.

You must reserve the buffer space in your program and you must specify
the buffer size to the FDB. The FSRSZ$ macro allows you to specify
the total buffer space needed. Specify 512 (decimal) bytes for each
normal disk file, plus the buffer size that you have selected for each

- FILE CONTROL SERVICES

big buffered file. For example, assume that a program has three
files: one normal file (512-byte buffer); one file with a big buffer
size of three blocks; and one file with a big buffer size of five
blocks. The following call to the FSRSZ$ macro reserves the space
properly:

FSRSZS$ 3,<<1+3+5>*512.>

In the FDB of each file that has a big buffer, you must override the
default buffer size, using either the FDBFS$A macro or the FDBFS$R
macro. For a file with five blocks as a big buffer, the assembly-time
macro call is:

FDBF$A ,<5%*512.>

On RSX-11M-PLUS and Micro/RSX systems, the SYSLIB provided as the
default 1library contains all the proper FCS modules for big buffer
support. RSX-11lM user tasks must link to ANSLIB for these modules.

1.8 SHARED ACCESS TO FILES

The Files-11 disk architecture permits shared access to files
according to established conventions. You can issue one of two macro
calls, among several available in FCS for opening files, to invoke
these conventions. The OPNSS$x macro call (see Section 3.2)
specifically opens a file for shared access. The OPENSx macro call
(see Section 3.1), on the other hand, invokes generalized open
functions that have shared-access implications only in relation to
other I/0 requests subsequently issued. Both macro calls take an
alphabetic suffix that specifies the type of operation being requested
for the file, as follows: '

R - Read existing file

W - Write (create) a new file

M - Modify existing file without extending its length

U - Update existing file and extend its length, if necessary
A - Append data to end of existing file

The suffix R applies to the reading of a file, whereas the suffixes W,
M, U, and A all apply to the writing of a file. You can use the
OPNS$x and OPENS$x macro calls as follows for shared access to files:

1. When the OPNSSR macro call is issued, read access to the file
is granted unconditionally, regardless of the presence of one
or more concurrent write-access requests to the file. (The
OPNSSR macro call permits concurrent write accesses to the
file while it is being read.) Subsequent write-access
requests for this same file are honored. Thus, several
active read-access requests and one or more write-access
requests may be present for the same file. However, multiple
tasks simultaneously accessing the file for write operations
are subject to certain restrictions, as detailed in number 2.

2. While FCS allows concurrent write-access requests through the
use of the OPNSSW, OPNS$SM, OPNSS$U, and OPNSSA macro,
synchronizing access to the file is your task's

TN

FILE CONTROL SERVICES

responsibility. To avoid the retrieval or storage of
inconsistent data, each task must implement and use some
mechanism, which you - define, ensuring that the file Iis
serially accessed.

3. When the OPENSR macro call is issued, read access to the file
is granted, provided that no write-access requests for that
file are active. (The OPENSR macro call does not permit
concurrent write access to the file while it is being read.)

‘Note from the previous text that readers of a shared file should be

aware that the file may yield inconsistent data from request to
request if that file is also being written.

Shared access during reading does not necessarily mean that the access
requests are all from separate tasks. A file could also be shared by
a single task that has opened the file on several different 1logical
unit numbers.

Table 1-1 shows the circumstances under which Files-11 permits a
second file access when the file is opened for shared access.

Table 1-1
Shared File Access

First Access

Second Access Read Shared read Write Shared write
Read Yes Yes No . No
Shared
Read Yes Yes Yes Yes
Write No Yes No No
Shared
Write No Yes . No Yes

1.9 FILE SPECIFICATION SYNTAX

A full file specification has the following elements, in the order
listed:

device

directory ,
name .

type
version
A file specification has the following format:
device: [directory]filename.filetype;version B}

An example of a full file specification follows:

LB: [1,*]SUPLIB.OLB;0 is a full file specification.

FILE CONTROL SERVICES

1.9.1 Device
The device element of the file specification names the device on which
the file resides. For unit-record devices, such as terminals and line
printers, this 1is. the only significant element in the file
specification.
Except for logical nameé, the device specification consists of two
alphabetic characters specifying the device name, followed by 0- to
3-character octal numeric string specifying the device wunit number,
followed by a colon (:). FCS converts lowercase alphabetic characters
to uppercase before passing them to the operating system. The device
unit number must not exceed 377 octal; if no unit number is given, FCS
assumes unit 0.
For example:

db2: and DBO02: are equivalent device specifications.

SY: and sy00: are equivalent device specifications.

login: and LOGIN: are equivalent logical device specifications.

1.9.2 Directory

The directory elemént of the file specification names the directory
through which the file can be found on the device. For ANSI magnetic
tape files, this element is not significant (see Section A.2).

If you use numbered directories, the directory specification can take
either of the following forms:

[group,member]

or

<group ,member>
Note that the delimiting characters ([] or <>) and the comma (,) must
appear as shown. The group and member subelements each consist of a
1- to 3-digit octal number in the range of 0 to 377 octal. In
situations where wildcards are permitted, you can substitute a single
asterisk (*) character for the group or member subelement, or both, to
indicate that all such elements are acceptable.

You can explicitly request the current default directory by specifying
[1 or <> as the directory specification.

The following are equivalent directory specifications:
[27,36] or <027,036>

The following show the use of various wildcard substitutions:
[27,*] indicates all members in group 27.
[*] indicates all directories.

[] indicates the current default directory.

SN

FILE CONTROL SERVICES

If you use named directories, the directory specification can take any
of the following forms:

[namenamen] or <namenamen>

or
[001009036] or <001009036>
or

[name09030] or <name09030>

Note that the delimiting characters ([] or <>) must appear as shown.
The name may consist of as many as nine characters. The characters
must be only the 36 alphanumeric characters from A through Z and O
through 9. In situations where wildcards are permitted, you can
substitute a single asterisk (*) character for the named directory.

1.9.3 Name

The name element of the file specification is the name by which the
file 1is known in the directory. The name specification is a 0- to
9-character alphanumeric string. That is, the alphabetic characters A
to Z, the numbers 0 to 9, the underscore (), and the dollar sign ($)
are all allowed. FCS converts lowercase alphabetic characters to
uppercase before passing them to the operating system.

In situations where wildcards are permitted, you can substitute an
asterisk (*) character in the name string for any string including the
null string. :

For example, the following names are acceptable within a file
specification: _

MyFile.; is interpreted as MYFILE..
*,; matches all names.

.7 is interpreted as the null name of 0 length.

1.9.4 Type

The type element of the file specification is the type by which the
file is known in the directory. The type specification consists of a
period (.) followed by a 0- to 3-character alphanumeric string. FCS
converts the 1lowercase alphabetic characters to uppercase before
passing them to the operating system. In situations where wildcards
are permitted, you can substitute asterisk (*) characters for any
string including the null string.

The following examples show some of the conversions that FCS makes:
.dat is interpreted as .DAT
¥ is interpreted as all types

. is interpreted as the null type

FILE CONTROL SERVICES

1.9.5 Version

The version element of the file specification provides the version
number by which the file is known in the directory. The version
specification consists of a semicolon (;) followed by a 0- to 5-digit
octal number in the range of 0 to 77777.

NOTE

On RSX-11M-PLUS and Micro/RSX systems, decimal numbers
are a system generation option. Decimal numbers can
range from 0 through 32767.

In situations where wildcards are permitted, you can substitute a
single asterisk (*) character for the octal number to indicate that
all versions are acceptable. In situations where you are specifying a
file that already exists, you can substitute the two characters "-1"
for the octal number to specify the lowest-numbered version of the
file that is known to the directory.

You can specify a version number of 0 or the null version to indicate
either of the following:

¢ The highest-numbered version of the file that is known to the
directory, when the file already exists

® A version number one greater than the highest-numbered version
of the file (if any) known to the directory, when you are
creating a new directory entry

The following show some conversions that FCS makes regarding version
numbers:

;5 and ;0005 are equivalent versions.

;* indicates all versions.

;-1 indicates the lowest-numbered version.

; indicates the null version; this is equivalent to ;0.
For compatibility with other systems, FCS access methods can process
version specifications beginning with a period (.) instead of

semicolon (;) when the presence of a type specification eliminates
ambiguity.

1.10 ANSI MAGNETIC TAPE FILE SPECIFICATION SYNTAX

The file specification format specific to magnetic tapes consists of
the following elements, in the order listed:

device
directory

quoted string
version

1.10.1 Device

The device element is the same as that described in Section 1.9.1.
The device must be a magnetic tape device.

1-16

FILE CONTROL SERVICES

1.10.2 Directory

The directory element is the same as that described in Section 1.9.2.
This element has no meaning for ANSI magnetic tape files, and it is
ignored if present.

1.10.3 Quoted String

FCS treats a quoted string as a unit representing both the name and
type elements of a standard file specification. This mechanism allows
expression of tape file names up to 17 characters in 1length that
include the full set of ANSI "a" characters (some of which would
otherwise be ignored or treated as element delimiters in a standard
file specification)."

You specify an ANSI name by including the name in quotation characters
("name") . If the name itself contains full quotation characters ("),
you must also precede each such character with an additional £full
quotation character (V). FCS converts any lowercase alphabetic
characters to uppercase, strips the full-quotation characters that you
have added, and passes the result to the operating system without
further modification (including ANSI "a" characters such as SPACE).

The following examples show the results of FCS-processed quoted
strings:

"My File" is interpreted as MY FILE.

"""pon't Panic""" is interpreted as "DON'T PANIC".

1.10.4 Version

The version element of a magnetic tape file specification is the same
as that for a conventional file specification (see Section 1.9.5). A
version specification of ;0, ;-1, or the null version, is interpreted
as any version for magnetic tape files.

1.10.4.1 Example Magnetic Tape File Specification - An example of an
ANSI magnetic tape file specification follows:

MM1:"MULP's file" specifies any version of MULP'S FILE on device MMIl:

The standard file specification format described in Section 1.9 can
also be used with magnetic tapes; this permits file transport to
nontape devices and file accessibility by the widest possible range of
software. See Appendix G of this manual for additional information
concerning the use of names in ANSI magnetic tape files.

1.11 GENERATION OF A FULL FILE SPECIFICATION

When you specify the target file for an FCS operation, FCS generates a
full file specification in the following manner:

1. FCS parses the filename string to determine which elements
are present. You need not provide a full file specification
in the filename string; however, any elements present must be

FILE CONTROL SERVICES

syntactically correct and in the proper order. FCS ignores
any NULL, SPACE, or TAB characters that may be present in the
string unless they occur within an ANSI magnetic tape
quoted-string name.

2. FCS processes the default name block to determine which
elements are present. You need not provide a full file
specification in the default name block.

3. If the filename string does not provide a full file
specification, FCS obtains missing elements from the default
name block; if any elements are lost as a result of this
merge, FCS provides default values for them as follows:

- Device -- defaults to the device to which the specified
logical wunit 1is currently assigned; if the specified
logical unit is not assigned to any device, defaults to
SY:

- Directory -- defaults to the current directory

- Name, type, version -- defaults to null

1.12 TLOGICAL NAMES

A logical name is a name that you or the system defines for:
® All or part of a file specifiqation
e A physical device

To keep your program and command procedures independent of physical
file specifications, you can substitute a logical name for all or part
of a file specification, either interactively or from within a program
or command procedure.

A logical name may contain 1 through 63 alphanumeric characters,
including the special characters dollar sign ($) and underscore (_).

A logical name must have an entry in the logical name table.

If the first character of the logical name is an underscore (_), the
translation process that replaces the logical name with its equivalent
string removes the underscore only. Thus, the input string is not
translated, the translation stops, and the resultant string remains.

A logical name may be a device name or a file name. If a logical name
is a device name, it must be terminated by a colon (:).

You can assign 1logical names to devices such as tape drives,
terminals, and 1line printers. The system manager may assign logical
names to public disk volumes, so that you do not have to be concerned
with the physical location of those volumes.

In addition, to reduce typing you can use logical names as a shorthand
way of specifying files or directories that you refer to frequently.
For example, you might assign the logical name HOME to your task's
default disk and directory.

P

FILE CONTROL SERVICES

1.12.1 Using Logical Names for Program Input and Output

Programs that read and write data can be designed to read from or
write (perform 1/0) to different files or devices each time they are
run. Performing I/0 to different files or devices at different times
is called device and file independence and is accomplished through the
use of logical names.

When you write a program, you can refer to an input or output file by
using a logical name. For instance, you might use INFILE to represent
the data file or input device from which the program is to - read, and
OUTFILE to represent the file or device to which the program is to
write. After your program is compiled and linked, but before it is
run, you use system commands to associate the logical names you used
in the program and the actual files or devices you want to use when
you run the program.

The DEFINE and ASSIGN commands associate the logical names with the
files or devices. They establish the correspondence between a logical
name (that is, the name that you used in the program) and an
equivalence name (that 1is, the actual file or device name that you
want the program to use).

1.12.1.1 Logical Name Tables - The system maintains logical name and
equivalence name pairs in three logical name tables.

® User logical name table -- contains logical name entries that
are local to a particular task. By default, the DEFINE and
ASSIGN commands place a logical name in the user logical name
table.

@ Group logical name table -- contains logical name entries that
are qualified by .a group number. These entries can be
accessed only by tasks that execute with the same group number
in their user identification codes (UICs) as the task that
assigned the logical name.

® System logical name table -- contains entries that can be
accessed by any task in the system. :

1.12.1.2 Specifying Logical Names - Logical names and their
equivalence 'name strings can have a maximum of 63 characters, and can
form all or part of a file specification. If only part of a file
specification 1is a logical name, it must be the leftmost component of
the file specification. You can then specify the 1logical name in
place of the device name or device and directory name in subsequent
file specifications. A logical name can contain both a device name
and a directory name.

The equivalence name for a logical name must contain the proper
punctuation for a file specification (colons, brackets, periods). If
the equivalence name is a device name, it must be terminated by a
colon (:).

Logical name translation is discussed in Chapter 4.

FILE CONTRO

1.13 ROUTINES INCLUDED IN FCSRES

The following lists the routines
However, the routines included
placed into two overlay segments.

L SERVICES

contained in all forms of FCS.
in the overlaid version FCSRES are
The first overlay segment for open,

close, and associated user-accessible routines includes:

Routine Name

ASCII UIC to Binary Conversion
Assign Logical Unit Number
Binary UIC to ASCII Conversion
Close :
Delete File
Delete File by File Name Block
Directory Primitives
Extend File
Expand Logical Name and Return
Pointer to Expanded String
File Storage Region Initializa
Get Directory
Get Directory ID
Mark for Deletion (Internal)
Mark for Deletion (User Interf
Octal to Decimal Conversion
Open :
Parse
Parse
Parse
Parse
Print
Rename
Request Logical Core Block
Send Data to and Start a Subsi
Truncate and Close File
User Directive Primitives

Device
Directory
File Name

The
user-

second overlay for get,
accessible routines includes:

Routine Name

Arithmetic Routines

ASCII to Binary Conversion
Binary to ASCII Conversion
Convert Double Precision to De
Double Precision Arithmetic Ro
Edit Message

Edit Time and Date

Exit With Status

Read/Write File Storage Region 2

Flush

Get Record

Obtain Library Attributes
Octal to Binary Conversion
Parse Command Line

Point and Mark
Position Record

Put Record
QIO
Read Block

Return Position

User Device Control Function
Wait

Write Block

Module Name

ASCPPN
ASSLUN
PPNASC
CLOSE
DELJMP,
DEL
DIRECT

EXTEND

DELETE

-EXPLG
FINIT
GETDIR
GETDID
MKDL
MRKDL
.ODCVT
OPNJMP,
PARSE
PARSDV
PARSDI
PARSFEN
SPRINT
RENAME
RQLCB
DSPAT
TRNCLS
UDIREC

tion

ace)

OPENR

diary Task

put, read, write, and other

Module Name

ARITH
CATB
CBTA
CODMG
DARITH
EDTMG
EDDAT
EXST
RWFSR2
FLUSH
GETJMP,
FCSTYP
.0D2CT
.Cs11,
.CSI4,
PNTMRK
POSREC
GETJMP,
XQI0U
READ
POSIT
CONTRL
WAITU
WRITE

cimal
utines

GET

.Cs12,
.EXPLG

PUT

CHAPTER 2

PREPARING FOR I/0

This chapter describes the macro calls that your task must invoke to
provide the necessary file-processing information for the file
descriptor block (FDB).

2.1 PREPARING FOR I/0 -- GENERAL INFORMATION

The MACRO-11 programmer must establish the proper data base and
working storage areas within the particular program to perform
input/output operations. You must do the following:

l. Define a File Descriptor Block (FDB) for each file that your
program is to open simultaneously (see Section 2.2).

2, Define a dataset descriptor and a default filename block, . or
both (see Sections 2.5.1 or 2.5.2, respectively) if you
intend to access these structures to provide file
specifications that FCS requires.

3. Establish a file storage region (FSR) within the program (see
Section 2.6). (The initialization procedures for FORTRAN
tasks are described in detail in the PDP-11 FORTRAN-77 User's
Guide.) ‘

Your task can place such information in the FDB in one of three ways:

e By the assembly-time FDB initialization macro calls (see
Section 2.3.1)

e By the run-time FDB initialization macro «calls (see Section
2,3.2)

e By the file-processing macro calls (see Chapter 3)

Data supplied during the assembly of the source program establishes
the initial -values in the FDB. Data supplied at run time can either
initialize additional portions of the FDB or change values established
at assembly time. Similarly, the data supplied through the
file-processing macro calls can either initialize portions of the FDB
or change previously initialized values.

Table 2-1 lists the macro calls that generate FDB information.

PREPARING FOR I/0

Table 2-1
Macro Calls Generating FDB Information

Assembly-Time FDB Run-Time FDB File-Processing
Macro Calls Macro Calls Macro Calls
FDBDF$ (Required) FDATSR OPENS$ (all variations)
FDAT $A FDRCSR CLOSES
FDRCSA FDBKSR GETS$ (all variations)
FDBKSA FDOPSR PUTS (all variations)
FDOPSA FDBF$R READS
FDBF $A WRITES

DELETS

WAITS

2.2 JMCALL DIRECTIVE - LISTING NAMES OF REQUIRED MACRO DEFINITIONS

You must 1list as arguments in an .MCALL directive all the
assembly-time, run-time, and file-processing macro calls (see Table
2-1) that you intend to issue in a program. Doing so allows the
required macro definitions to be read in from the system macro library
during assembly.

You must write the .MCALL directive and associated arguments in the
program prior to writing any macro call in the execution code of the
program. If the 1list of macro names 1is 1lengthy in the .MCALL
statement, you must specify several .MCALL directives, each appearing
on a separate source line. The availability of space within an
80-byte 1line of source code limits the number of such names that may
appear in any one .MCALL statement.

Format

«MCALL argl,arg2,...,argn
Arguments
argl,arg2,...,argn

A list of symbolic names that identify the macro definitions that
you use 1in your program. If more than one source line is
required to list the names of all desired macros, each additional
line must begin with an .MCALL directive.

For clarity in your source code, you may list the assembly-time,
run-time, and file-processing macro names in each of three
separate .MCALL statements; you may list the macro names
alphabetically, or mix them. None of these optional arrangements
have any effect whatever on retrieving macro definitions from the
system macro library.

If you are planning to invoke the command line processing
capabilities of the Get Command Line (GCML) routine and the
Command String Interpreter (CSI), you must list all the names of
the associated macros as arguments in an .MCALL directive. GCML
and CSI, ordinarily employed in system or application programs
for convenience in dynamically processing file specifications,
are described in detail in Chapter 6.

/TN

PREPARING FOR I/0

The .MCALL directive is described in detail in the PDP-11 MACRO-1l1
Language Reference Manual. The sample programs in Appendix D also
illustrate the use of the .MCALL directive. Note that these .MCALL
directives appear as the first statements in the preparatory coding of
these programs.

The object routines described in Chapter 4 should not be confused with
the macro definitions available from the system macro library. The
file control routines, constituting a body of object modules, are
linked into your program at task-build time from the system object
library ([1,1]SYSLIB.OLB). Consult Section 4.1 for a description of
these routines.

The following statements show sample uses of the .MCALL directive:

.MCALL FDBDFS$,FDATSA,FDRCSA,FDOPSA,NMBLKS,FSRSZS,FINITS
.MCALL OPENSR,OPENSW,GETS$,PUTS,CLOSES

NOTE

You can use the macro FCSMC$ to declare the most
commonly used FCS macros within the .MCALL format:

.MCALL FCSMC$
FCSMCS$

FCS macros declared in this manner include: OPENSx,
OPNS$x, CLOSES, READS$, WRITES, WAITS$, GETS, PUTS,
DELETS$, FINITS$, FSRSZ$, FDBDFS, FDATSX, FDRCSx,
FDOPSx, FDBF$x, FDBKSx, and NMBLKS. If other macros
are required, explicit .MCALL directives must be
issued. One disadvantage of using this method to
declare .MCALL directives is that unused macros may
take up possibly critical assembler symbol table
space, thus slowing down the assembly process.

2.3 FILE DESCRIPTOR BLOCK (FDB)

The File Descriptor Block (FDB) is the data structure that provides
the information FCS needs for all file I/O operations. Two sets of
macro calls are available for FDB initialization: you can use one set
for assembly-time initialization (see Section 2.3.1) and the other set
for run-time initialization (see Section 2.3.2). Use the run-time
macros to supplement. or override information specified during
assembly. The FDB sections are described in Appendixes A and B.

2.3.1 Assembly-Time FDB Initialization Macros

Assembly-time initialization requires that the FDBDF$ macro call be
issued (see Section 2.3.1.1) to allocate space for and to define the
beginning address of the FDB. Additional macro calls can then be
issued to establish other required information in this structure.
The assembly-time macros that accomplish these functions are described
in the following sections.

Format

mcnam$A pl,p2,...,pn

PREPARING FOR I/0

Macro Name
mcnam$A
The symbolic name of the macro.
Parameter
pl,p2,...,pn

The string of initialization parameters associated with the
specified macro. A parameter may be omitted from the string by
leaving its field between delimiting commas null. Assume, for
example, that a macro call may take the following parameters:

FDOP$A 2,DSPT,DFNB

Assume further that the second parameter field is to be coded as
a null specification. In this case, the statement is coded as
follows:

FDOPS$A 2, ,DFNB

A trailing comma need not be inserted to reflect the omission of
a parameter beyond the last explicit specification. For example,
the following macro call:

FDOPSA 2,DSPT,DFNB
need not be specified as
FDOP$A 2,DSPT,

if the last parameter (DFNB) is omitted. Rather, such a macro
call is specified as follows:

FDOP$SA 2,DSPT

If any parameter is not specified, that is, if any field in the macro
call contains a null specification, the corresponding cell in the FDB
is not initialized and thus remains 0.

Multiple values may be specified in a parameter field of certain macro
calls. Such values are indicated by placing an exclamation point (!)
between the values, indicating a logical OR operation to the MACRO-11
assembler. Specifying multiple values in this manner is mentioned
throughout this manual if applicable to the macro call.

Throughout the descriptions of the assembly-time macros in this
section and elsewhere in this manual, symbols of the form F.xxx or
F.xxxx are referenced (for example, F.RTYP). These symbols are
defined as offsets from the beginning address of the FDB, allowing
specific locations within the FDB to be referenced. Thus, you can
reference or modify information within the FDB without having to
calculate word or byte offsets to specific locations. .

Using such symbols in either system software or your software also
permits the relative position of cells within the FDB to be changed
(in a subsequent release, for example) without affecting your current
programs or the coding style employed in developing new programs.

PREPARING FOR I/0

2.3.1.1 FDBDF$ - Allocate File Descriptor Block (FDB) - The FDBDF$
macro call is specified in a MACRO-1ll program to allocate space within
the program for an FDB. This macro call must be specified in the
source program once for each input or output file that your program
simultaneously opens during execution. Any associated assembly-time
macro calls (see Sections 2.3.1.2 through 2.3.1.6) must then be
specified immediately following the FDBDF$S macro if you want to
initialize certain portions of this FDB during assembly.

Macro Name and Label
label: FDBDFS$
label

A symbol, which you specify, that names this particular FDB and
defines 1its beginning address. This label is particularly
significant in all I/O operations that require access to the data
structure allocated through this macro call. FCS accesses the
fields within the FDB relative to the address represented by this
symbol.

The following examples show how the FDBDF$ macro calls might appear in
your source program:

FDBOUT: FDBDFS$;ALLOCATES SPACE FOR AN FDB NAMED
; "FDBOUT" AND ESTABLISHES THE
;BEGINNING ADDRESS OF THE FDB.

FDBIN: FDBDF$;ALLOCATES SPACE FOR AN FDB NAMED
; "FDBIN" AND ESTABLISHES THE
;BEGINNING ADDRESS OF THE FDB.

As noted earlier, the source program must embody one FDBDF$ macro call
logically similar to these example macro calls for your program to
access each file simultaneously. FDBs can be reused for many
different files, as long as the file currently using the FDB is closed
before the next file is opened. The only requirement is that an FDB
must be defined for every simultaneously opened file.

2.3.1.2 FDATSA - Initialize File Attribute Section of FDB - The
FDATSA macro call initializes the file attribute section of the FDB
when a new output file is to be created. If the file to be processed
already exists, the first four parameters of the FDATS$A initialization
macro need not be specified because FCS obtains the necessary
information from the first 14 bytes of the file attribute section.
The file attribute section is in the header block of the specified
file. (See Appendix F.)

Format
FDATSA rtyp,ratt,rsiz,cntg,aloc

Parameter

rtyp
A symbolic value that defines the type of records to be built as
the new file is created. One of three values must be specified,

as follows:

® R.FIX - Indicates that fixed-length records are to be written
in creating the file

ratt

PREPARING FOR I/0

@ R.VAR - Indicates that variable-length records are to be

written in creating the file

e R.SEQ - Indicates variable-length sequenced records are to be
written in creating the file

The rtyp parameter initializes FDB offset 1location -F.RTYP.
Because symbols R.FIX, R.VAR, and R.SEQ initialize the same
location in the FDB, these values are mutually exclusive.

Symbolic values that may be specified to define the attributes of
the records as the new file is created.

The following parameters initialize the record attribute byte
(offset location F.RATT) in the FDB. The values FD.FTN and FD.CR
are mutually exclusive and must not be specified together. Apart
from this restriction, the combination (logical OR) of multiple
parameters specified in this field must be separated by an
exclamation point (for example, FD.CR!FD.BLK).

The following symbolic values may be specified, as appropriate,
to define the desired record attributes:

e FD.FTN - Indicates that the first byte in each record will
contain a FORTRAN carriage control character.

e FD.CR - Indicates that the record is to be preceded by a <LF>
character and followed by a <CR> character when the record is
written to a carriage control device (for example, a line
printer or a terminal).

@ FD.BLK - Indicates that records are not allowed to cross block
boundaries.

® FD.PRN - Indicates that the record is preceded by a word
containing carriage control information; this value is the
print file format attribute. Files that have this attribute
set must also be sequenced files; that is, files that have the
bit R.SEQ set in byte F.RTYP in the FDB.

In a file with attribute FD.PRN, also known as COBOL carriage
control, each record is associated with its own print format
word, which describes the carriage control for that record, if
the record 1is output to a unit record device such as a
terminal or line printer. A program using FCS can read or
write a file with attribute FD.PRN, but FCS ignores and does
not interpret the format word if the file is written to 'a
terminal. Thus, PIP correctly copies such a file from disk to
disk, but a copy to TI: may not achieve the desired carriage
control.

FCS does not interpret the FD.PRN format word because such an
enhancement would make FCS larger. Files with the FD.PRN
attribute on RSX systems are rare.

‘Files with the print file format attribute are a subset of
sequenced files. Sequenced files are identified by record
type R.SEQ in FDB field R.RTYP. Sequenced files have records
of variable length; each record is associated with a l-word
sequence number. (Note that sequential is not the same as
sequenced. Sequential means that the file is not an RMS
indexed or relative file. All sequenced files are also
sequential.)

PREPARING FOR I/0

When a program is reading a sequenced file with FCS in record
mode, FCS returns the record in the normal manner on a GETS;
the sequence number is returned in FDB field F.SEQN.
Conversely, when writing a sequenced file with FCS in record
mode, FCS writes the record in the normal manner and writes
the associated sequence number from F.SEQN.

The sequence number field can contain any pattern of bits. A

frequent application of this field is its use as a line number
for text files.

The difference between a file with attribute FD.PRN and any
other sequenced file is that the sequence number is considered
to be the carriage control format word. This word has a
particular meaning in a file with attribute FD.PRN. Each byte
of the format word describes the carriage control for the
associated record. The low byte describes carriage control
action that should occur before the record is printed; the
high byte describes carriage control actlon that should occur
after the record is printed.

FCS operates on files with attribute FD.PRN in the same way.
that it operates on any other sequenced file, by using the FDB
field F.SEQN for the format word. Each byte of the format
word is defined as follows: :

Bits 0-6 ‘ ' Bit 7 Meaning
0 0 No carriage control.
1-127 0 Bits 0-6 are a count
of line records.
Bits 0-4 Bit 5 Bit 6 Bit 7 Meaning
1-31. 0 0 1 Bits 0-4 define a

7-bit ASCII control
character to be
output.

1-31. 1 0 1 Bits 0-4 are
translated as an
8-bit ASCII control

‘character ranging
from 128. to 159. to
be output.

0 1l 1 1l - Reserved for future
use. '

Because print format files must be sequenced files, FCS allows
FD.PRN as an attribute of a new file only if record type R.SEQ
is also specified. For example:

FDBDFS$;Allocate space for FDB
FDATS$SA ;Print file format

FCS does not create a file with attribute FD.PRN that has a
record type other than R.SEQ. In this case, FCS returns an
error -45., IE.RAT, "illegal attribute bits set."

rsiz

cntg

PREPARING FOR I/0

A numeric value that defines the size (in bytes) of fixed-length
records to be written to the file. This value, which initializes
FDB offset location F.RSIZ, need not be specified if R.VAR has
been specified as the record type parameter (for variable-length
records). If R.VAR or R.SEQ is specified, FCS maintains a value
in FDB offset location F.RSIZ that defines the size (in bytes) of
the largest record currently written to the file. Thus, whenever
an existing file containing variable-length records is opened,
the value in F.RSIZ defines the size of the largest record within
that file. By examining the value in this cell, a program can
dynamically allocate record buffers for its open files.

A signed numeric value that defines the number of blocks that are
allocated for the file as it is created. The signed values have
the following significance:

® Positive Value - Indicates that the specified number of blocks
is to be allocated contiguously when the file is created; also
indicates that the file is to be contiguous

® Negative Value - Indicates that the two's complement of the
specified number of blocks is to be allocated when the file is
created, not necessarily contiguously; also indicates that the
file is to be noncontiguous

The cntg parameter, which has 15 bits of magnitude (plus a sign
bit), initializes FDB offset location F.CNTG.

(You can specify an allocation of up to 24 bits by using the
.EXTND routine.)

If you can estimate how long the file might be, it is more
efficient to allocate the required number of blocks through this

. parameter when the file is created than to require FCS to extend

aloc

the file when the file is written. (See the aloc parameter in
the following text.)

If this parameter is not specified, an empty file 1is created;
that is, no space is allocated within the file as it is created.

Issuing the CLOSE$ macro call at the completion of file
processing resets the value in F.CNTG to 0. Thus, the usual
procedure is to initialize this location at run time just before
opening the file. Reinitialization is necessary if the FDB is
reused.

A signed numeric value that defines the number of blocks by which
the file is extended, if FCS determines that file extension is
necessary as records are written to the file. When the end of
allocated space in the file is reached during writing, the signed
value provided through this parameter causes file extension to
occur, as follows:

® Positive Value - Indicates that the specified number of blocks

is to be allocated contiguously as additional space within the
file; also indicates that the file is to be contiguous.

.//—\a

PREPARING FOR I/0

® Negative Value - Indicates that the two's complement of the
specified number of blocks is to be allocated noncontiguously
as additional space within the file; also indicates that the
file is to be noncontiguous.

NOTE

Once a file has had blocks allocated, all future
file extensions cause the file to become
noncontiguous, even when aloc is a positive
value.

This parameter, which also has 15 bits of magnitude (plus a sign
bit), initializes FDB offset location F.ALOC. If this optional
parameter is not specified, file extension occurs as follows:

e If the number of virtual blocks yet to be written is greater
than 1, the file 1is extended by the exact number of blocks
required to complete the writing of the file.

® If only one additional block is required to complete the
writing of the file, the file is extended in accordance with
the volume's default extend value.

The volume default extend size is established through the INITIALIZE,
INITVOLUME, or MOUNT command. The volume default extend size cannot
be established at the FCS level; this value must be established when
the volume is initially mounted.

The following example statement shows a sample of an FDATSA macro
call. This statement initializes the FDB in preparation for creating
a new file containing fixed-length, 80-byte records that will be
allowed to cross block boundaries.

FDATSA R.FIX,,80.

In the previous example statement, the record attribute (ratt)
parameter has been omitted, as indicated by the second comma (,) in
the parameter string. Also, the cntg and aloc parameters have been
omitted. Their omission, however, follows the last explicit
specification, and their absence need not be indicated by trailing
commas in the parameter string. Because the aloc parameter has been
omitted, file extension (if it becomes necessary) is accomplished in
accordance with the current default extend size in effect for the
associated volume.

If more than one record attribute is specified in the ratt parameter
field, such specifications must be separated by an exclamation point
(!), as shown in the macro following:

FDATSA R.VAR,FD.FTN!FD.BLK

The previous macro call enables a file of variable-length records to
be created. The records will contain FORTRAN vertical-formatting
information for carriage control devices; the records will not be
allowed to cross block boundaries.

PREPARING FOR I1/0

2.3.1.3 FDRCSA - Initialize Record Access Section of FDB - The FDRCSA
macro call initializes the record access section of the FDB, and
indicates whether to use record or block I/0 operations in processing
the associated file.

If you want to use record I/O operations (GET$ and PUTS macro calls),
the FDRCSA or the FDRCSR macro call (see Section 2.3.2) establishes
the FDB information necessary for record-oriented 1/0. However, if
you want to use block I/0O operations (READ$ and WRITES macro calls),
the FDBKSA macro call (see Section 2.3.1.4) or the FDBKSR macro call
(see Section 2.3.2) must also be specified to establish other values
in the FDB required for block I/0. In this case, portions of the
record access section of the FDB are physically overlaid with
parameters from the FDBKSA/FDBKS$R macro call.

You must appropriately initialize the FDB to indicate whether record
or block 1I/0 operations are to process the associated file, prior to
issuing the OPEN$ macro call to initialize file operations.

Format

FDRCSA racc,urba,urbs
Parameter
racc

Specifies which variation of block or record I/0 1is to process
the file. This parameter initializes the record access byte
(offset location F.RACC) in the FDB. The first value shown next,
FD.RWM, applies only for block I/0 (READS or WRITES) operations;
all remaining values are specific to record I/0 (GET$ or PUTS)
operations:

e FD.RWM - Indicates that READS or WRITES$ (block I/0) operations
‘ are to process the file. If this value is not specified, GET$
or PUT$ (record I/0) operations process the file by default.

Specifying FD.RWM necessitates issuing an FDBKS$A or an FDBKS$R
macro. call in the program to initialize other offsets in the
block access section of the FDB. Note also that the READ$ or
WRITES$ macro call allows the complete specification of all the
parameters required for block I/O operations.

e FD.RAN - Indicates that random access mode is to process the
file. If this value is not specified, sequential access mode
processes the file by default. See Section 1.5 for a
description of random access mode.

The following statement shows a sample FDRC$A macro call
issued for a file that may be accessed in random mode:

FDRCSA FD.RAN,BUF1,160.

You specify the address of the task's record buffer through
the symbol BUF1l, and the size of the buffer (in bytes) by the
numeric value 160 (decimal).

e FD.PLC - Indicates that locate mode is to process the file.
If this value is not specified, move mode processes the file.

e FD.INS - Indicates that a PUTS$ operation performed within the
body of the file shall not truncate the file. This value
applies only for sequential files and therefore cannot be
specified jointly with the FD.RAN parameter.

SN

N

PREPARING FOR 1/0

If you specify more than one value in the record access (racc)
field, an exclamation point (!) must separate the multiple
values, as shown here:

FDRCSA FD.RAN!FD.PLC,BUF1,160.

In addition to the functions described for the previous
example, this example specifies that locate mode is to process

the associated file. Note that the multiple parameters
specified in the first field are separated by an exclamation
point (!).

If you want your task to perform a PUTS$ operation within the
body of a file, the .POINT routine described in Section 4.10.1
may be called. This routine positions the file to a byte you
specify within a virtual block in preparation for the PUT$
operation. The .POINT routine also permits a 1limited degree
of random access to a file.

If FD.INS is not specified, a PUTS$ operation within the file
truncates the file at the point of insertion; that is, the
PUT$ operation moves the logical end-of-file (EOF) to a point
just beyond the inserted record. However, no deallocation of
blocks within the file occurs.

Regardless of the setting of the FD.INS bit, a PUT$ operation
that 1is in fact beyond the current logical end-of-file resets
the logical end of the file to a point Jjust beyond the
inserted record. '

urba

The symbolic address of your task's record buffer used for GETS$
operations in move and locate modes, and for PUT$ operations in
locate mode. This parameter initializes FDB offset 1location
F.URBD+2, and is specified only for record 1/0 operations.

urbs

A numeric value that defines the size (in bytes) of your task's
record buffer used for GET$ operations in move and locate modes,
and for PUT$ operations in locate mode. This parameter
initializes FDB offset location F.URBD, and is specified only for
record I/0 operations.

You allocate and label a record buffer in a program by issuing a .BLKB
or .BLKW directive. The address and the size of this area are then
passed to FCS as the urba and the urbs parameters shown previously.
For example, a task's record buffer may be defined through a statement
that is logically equivalent to:

RECBUF: .BLKB 82.

"RECBUF is the address of the buffer and 82(decimal) is its size (in

bytes).

Beginning a task's record buffers on a word boundary can improve
performance by allowing FCS to move the data with MOV instructions
rather than MOVB instructions.

Under certain conditions, you need not allocate a record buffer or
specify the buffer descriptors (urba and urbs) for GET$ or PUTS
operations. These conditions are described in detail in Sections
3.9.2 and 3.12.2, respectively.

PREPARING FOR I/0

2.3.1.4 FDBK$A - Initialize Block Access Section of FDB - The FDBK$A
macro call initializes the block access section of the FDB when block
I1/0 operations (READ$ and WRITES macro calls) are used for file
processing. Initializing the FDB with this macro call allows you to
read or write virtual blocks of data within a file.

Use of the FDBKS$A macro call implies that the FDRC$SA macro call has
also been specified, because the FD.RWM parameter of the FDRCS$A macro
call initially declares block I/0 operations. Thus, for block 1I/0
operations, the FDRCSA macro call must be specified, as well as any
one of the following macro calls, to appropriately initialize the
block access section of the FDB: FDBKS$SA, FDBKSR, READS, or WRITES.

Issuing the FDBK$A macro call causes certain portions of the record
access section of the FDB to be overlaid with parameters necessary for
block I/0 operations. Thus, the terms "record access section" and
"block access section" refer to a shared physical area of the FDB that
is functional for either record or block I/0 operations.

The block I/0 and record I/0 FDB-initialization macros use the same
area of the FDB for different data. Therefore, if record 1/0
operations are to be employed, nelther the FDBKSA nor the FDBK$R macro
call must be issued.

Format

FDBKS$A Dbkda,bkds,bkvb,bkef,bkst,bkdn
Parameter
bkda

The symbolic address of an area in your task's memory space to be
employed as a buffer for block I/O operations. This parameter
initializes FDB offset location F.BKDS+2.

bkds

A numeric value that specifies the size (in bytes) of the block
to be read or written when a block I/0 request (READS or WRITES
macro call) is issued. This parameter initializes FDB offset
location F.BKDS. The size specified must be an even, positive
(the sign bit must not be set) value; the maximum number of bytes
that can be specified is 32766. If an integral number of blocks
is to be specified, the practical maximum number of bytes that
can be specified is equal to 63 virtual blocks, or 32256 (decimal)
bytes.

bkvb

A dummy parameter for compatibility with the FDBK$R macro call.
The bkvb parameter is not specified in the FDBK$A macro call for
the reasons stated in item 4 of Section 2.3.2.1. In short,
assembly-time initialization of FDB offset locations F.BKVB+2 and
F.BKVB with the virtual block number is meaningless, because any
version of the generalized OPENSx macro call resets the virtual
block number in these cells to 1 as the file 1is opened.
Therefore, these cells can be initialized only at run time
through either the FDBKSR macro call (see Section 2.2.2) or the
1/0-initiating READS and WRITES macro calls (see Sections 3.15
and 3.16, respectively).

bkef

bkst

bkdn

PREPARING FOR I/0

This dummy parameter should be reflected as a null specification
(with a comma) in the parameter string only in the event that an
explicit parameter follows. This null specification is required
to maintain the proper position of any remaining field(s) in the
parameter string.

A numeric value that specifies an event flag to be used during
READS or WRITES operations to indicate the completion of a block
I1/0 transfer. This parameter initializes FDB offset 1location
F.BKEF; if not specified, event flag 32(decimal) is used by
default.

The function of an event flag is described in further detail in
Section 2.9.1.

The symbolic address of a 2-word I/O status block in your
program. If specified, this optional parameter initializes FDB
offset location F.BKST.

The I/0 status block, if it is to be used, must be defined and
appropriately labeled at assembly time. Then, if you specify the
bkst parameter, information is returned by the system to the 1I/0
status block at the completion of the block I/0 transfer. This
information reflects the status of the requested operation. If
this parameter 1is not specified, no information is returned to
the I/0 status block.

NOTE

If an error occurs during a READS$ or WRITES
operation that would normally be reported as a
negative value in the first byte of the I/0
status block, the error is not reported unless
you specify an I/0 status block address. You are
advised to specify this parameter, which allows
the return of block I/0 status information and
permits normal error reporting. '

The creation and function of the I/0 status block are described
in detail in Section 2.9.2.

The symbolic address of an optional AST service routine, which
you code. If present, this parameter causes the AST service
routine to be initiated at the specified address upon completion
of block 1I,/0; if not specified, no AST trap occurs. This
parameter initializes FDB offset location F.BKDN.

Considerations relevant to the use of an AST service routine are
presented in Section 2.9.3. .

The following example shows an FDBKS$A macro call that uses all
available parameter fields for initializing the block access section
of the FDB:

FDBK$A BKBUF,240.,,20.,ISTAT,ASTADR

PREPARING FOR I/0

In this macro call, the symbol BKBUF identifies a block I/0 buffer
reserved in your ~program that will accommodate a 240 (decimal)-byte
block. The virtual block number is null (for the reasons stated
previously in the description of this parameter), and the event flag
to be set upon block I/0 completion is 20(decimal). Finally, the
symbol ISTAT specifies the address of the I/0 status block, and. the
symbol ASTADR specifies the entry point address of the AST service
routine.

2.3.1.5 FDOP$A - Initialize File-Open Section of FDB - The FDOPSA
macro call initializes the file-open section of the FDB. 1In addition
to a logical ‘unit number, you would normally specify a dataset
descriptor pointer and a default filename block address, or both, for
each file that is to be opened. The latter two parameters provide FCS
with the linkage necessary to retrieve file specifications from these
data structures that you created in the program.

Although both a dataset descriptor pointer (dspt) and the address of a
default filename block (dfnb) may be specified for a given file, one
or the other must be present in the FDB before that file can be
opened. I1f, however, certain information is already present in the
filename block as the result of prior .program action, neither the
dataset descriptor nor the default filename block is accessed by FCS,
and the file is opened through a process called "opening a file by
file ID." This process, which is an efficient method of opening a
file, is described in detail in Section 2.6.

The dspt and dfnb parameters represent address values that point to
data structures that you created in the program. These data
structures, which are described in detail in Section 2.5, provide file
specifications to the FCS file-processing routines.

Format

FDOP$A lun,dspt,dfnb,facc,actl
Parameter
“lun

A numeric value that specifies a 1logical wunit number. This
parameter initializes FDB offset location F.LUN. All I1/0
operations performed with this FDB are done through the specified
logical wunit number (LUN). Every active FDB must have a unique
LUN. .

The logical unit number specified through this parameter may be
any value from 1 through the largest value specified to the Task
Builder through the UNITS option. This option specifies the
number of 1logical units that the task 1is to use (see the
RSX-11M/M-Plus and Micro/RSX Task Builder Reference Manual.

dspt

The symbolic address of a 6-word block in your task containing
the dataset descriptor. This data structure, which you created,
consists of a 2-word device descriptor, a 2-word directory
descriptor, and a 2-word file name descriptor, as outlined in
Section 2.5.1.

The dspt parameter initializes FDB offset location F.DSPT. This
address value, called the dataset descriptor pointer, is the
linkage address through which FCS accesses the fields 1in the
dataset descriptor.

/ ™

e

dfnb

facc

PREPARING FOR I/0

When the Command String Interpreter (CSI) processes command
string input, a file specification is returned to the calling
program in a format identical to that of the manually created
dataset descriptor. The use of CSI as a dynamic command line
processor is described in detail in Section 6.2.

The symbolic address of +the default filename block. This
structure is allocated within your task through the NMBLK$ macro
call (see Section 2.4.2). When specified, the dfnb parameter
initializes FDB offset location F.DFNB, allowing FCS to access
the fields of the default filename block in building the filename
block in the FDB.

Specifying the dfnb parameter in the FDOP$A (or the FDOP$R) macro
call assumes that the NMBLKS macro call has been issued in the
program. Furthermore, the symbol specified as the dfnb parameter
in the FDOPSA (or the FDOPS$R) macro call must correspond exactly
to the symbol specified in the label field of the NMBLK$ macro
call. '

Any one, or any appropriate combination, of the following
symbolic values indicating how the specified file 1is to be
accessed:

e FO.RD - Indicates that an existing file is to be opened for
reading only. :

@ FO.WRT - Indicates that a new file is to be created and opened
for writing.

e FO.APD - Indicates that an existing file is to be opened for
append. '

® FO.MFY - Indicates that an existing file is to be opened for
modification.

® FO.UPD - Indicates that an existing file is to be opened for
update and if necessary, extended.

e FA.NSP -~ Indicates, in combination with FO.WRT, that an old
file having the same file - specification is not to be
superseded by the new file. Rather, an error code 1is to be
returned if a file of the same file name, type, and version
exists.

e FA.TMP - Indicates, in combination with FO.WRT, that the
created file is to be a temporary file. .

e FA.SHR - Indicates that the file is to be opened for shared

access. Shared access 1is also a “precondition. for block
locking.

The facc parameter initializes FDB offset location_.F.FACC. The
symbolic values FO.xxx, described previously, represent the
logical OR of bits in FDB location F.FACC..

The information specified by this parameter can be overridden by
an OPENS$ macro call, as described in Section 3.7. It is
overridden by an OPENS$x macro call.

actl

PREPARING FOR I/0

A symbolic value that specifies the following control information
in FDB location F.ACTL:

® Magnetic tape position

e Whether a disk file that is opened for write is to be 1locked
if it is not properly closed; for example, the file may not be
properly closed if the task terminates abnormally

® Number of retrieval pointers to allocate for a disk file
window

e Whether to enable block locking

Normally, FCS supplies default values for F.ACTL. However, if
FA.ENB is specified in combination with any of the symbolic
values described in the following text, FCS uses the information
in F.ACTL. FA.ENB must be specified with the desired values to
override the defaults. The following are the defaults for
location F.ACTL:

e For file creation, magnetic tapes are positioned to the end of
the volume set.

e At file open and close, tapes are not rewound.

e A disk file that is opened for write is locked if it 1is not
properly closed.

® The volume default is used for the file window.
The following values can be used with FA.ENB:

® FA.POS - Is meaningful only for output files and is specified
to cause a magnetic tape to be positioned just after the most
recently closed file for creating a new file. Any files that
exist after that point are lost. If rewind is specified, it
takes precedence over FA.POS, thus causing the tape to be
positioned 3just after the VOL1l label for file creation. See
Section 5.2.3 for more information on tape positioning.

e FA.RWD - Is specified to cause a magnetic tape to be rewound
when the file is opened or closed.

Examples of using FA.ENB with FA.POS and FA.RWD are provided
in Section 5.2.7.

® FA.DLK - Is specified to cause a disk file not to be locked if
it is not properly closed.

The number of retrieval pointers for a file window can be
specified in the low-order byte of F.ACTL. The default number
of retrieval pointers is the file-window mapping pointer count
parameter (/WIN) included in the INITIALIZE or MOUNT MCR
commands; the default value for this parameter is 7.
Retrieval pointers point to contiguous blocks of the file on
disk. Access to fragmented files may be optimized by
increasing the number of retrieval pointers, that is, by
increasing the size of the window. Similarly, because
retrieval pointers use up pool space, additional memory can be
freed by reducing the number of pointers for files with little
or no fragmentation, for example, contiguous files.

2 N

—
/-

PREPARING FOR I/0

e FA.LKLIFA.EXL - Is specified to lock all accessed blocks. FCS
permits 1limited block locking to coordlnate the access of the
same file by two or more tasks. All tasks accessing the file

- must open the file for shared access by settlng bit FA.SHR in
FDB field F.FACC (the field access byte).. -

See the RSX-11M/M-PLUS 1/0 Drivers Reference Manual or the
Micro/RSX I/0 Drivers Reference Manual for further information
on block locking. Also, see Section 2.8.4 of this manual.

As noted, if neither the dspt nor the dfnb parameter is specified, the
corresponding offset locations F.DSPT and F.DFNB contain 0. In this
case, no file is currently associated with this FDB. Any attempt to
open a file with this FDB results in.an open failure. Either offset
location F.DSPT or F.DFNB must be initialized with an appropriate
"address - value. before a file can be opened using this FDB. Normally,
these cells are initialized at assembly time through the FDOP$A macro
call; but they may also be initialized at run time through the FDOPS$R
or the generalized OPENS$x macro call (see Section 3.1).

The following examples show how the FDOP$A macro call may be . used in
your source program:

FDOPSA 1,,DFNB

In this example that the dataset descriptor pointer parameter (dspt)
is null, requiring that FCS rely on the:run-time specification of the
dataset descriptor pointer for the FDB . or the use of the default
filename block for required file information.

FDOP$A 2,0FDSPT

In this example, a dataset descriptor pointer (named OFDSPT) has been
specified, allowing FCS to access the fields in the dataset descrlptor
for requ1red file 1nformat10n.

‘ FDOP$A 2,0FDSPT, DFNB

This example specifies both a dataset descriptor pointer and a default
filename block address, causing FDB offset 1locations F.DSPT and
F.DFNB, respectively, to be initialized with the .appropriate values.
In this <case, FCS can access the dataset descriptor and the default
filename block, or both, for required file information. By
convention, FCS first seeks such information in the dataset
descriptor; if all the required information is not present 1in this
data structure, FCS attempts to obtain the missing information from
the default filename block.

FDOP$A 1,CSIBLK+C.DSDS

This example shows a macro call that takes as its second parameter a
symbolic value that. causes. FDB offset 1location F.DSPT to be
initialized with the address of the CSI dataset descriptor. This
structure is created in the CSI contrel block through invoking the
CSI$ macro call. All considerations relevant to the use of CSI as a
dynamic command line processor are presented in Section 6.2.

FDOPSA l,,DFNB,,FA ENB!16.

Thls example shows the use of the parameter actl 'to increaée the
number of retrieval pointers in the file window to 16. FA.ENB causes
the contents of F.ACTL, rather than the defaults, to be used.

In all the examples previously shown, the value specified as the first
parameter supplies the logical unit number used for all I/O operations
involving the associated file.

Al

PREPARING FOR I/0

2.3.1.6 FDBFSA - Initialize Block Buffer Section of FDB - The FDBFS$A
macro call initializes the block buffer section of the FDB when record
I/0 operations (GETS and PUTS macro calls) process files.
Initializing the FDB with this macro call allows FCS to control the
necessary blocking and deblocking of individual records within a
virtual block as an integral function of processing the file.

Format

FDBFSA efn,ovbs,mbct,mbfg

efn
A numeric value that specifies the event flag that FCS uses to
synchronize record 1/0 operations. This numeric value
initializes FDB offset location F.EFN. FCS uses this event flag
internally; you must not set, clear, or test it.
If this parameter 1is not specified, FCS uses event flag
32(decimal). A null specification in this field is indicated by
inserting a leading comma in the parameter string.

ovbs

A numeric value that specifies an FSR block buffer size, in
bytes, that overrides the standard block size for the particular
device associated with the file. This parameter initializes FDB
offset location F.OVBS with the specified block buffer size.

When you use ovbs to specify an FSR block buffer size for disks,
specify the desired number of bytes in integral multiples of 512.
bytes, overriding the one-sector, standard 512. bytes block
buffer size. You can specify block buffer sizes up to 63 sectors
(32256. bytes) for disks. Increasing the block buffer size in
this manner greatly reduces average disk access time, because
several contiguous sectors are generally read or written during a
typical disk access operation. An override block size of 2048.
bytes (4 sectors) or 2560. bytes (5 sectors) is recommended,
because 2048, bytes also provides ANSI magnetic tape buffer
capability, and 2560. bytes is the Files-11 default extend size.
Note that once the file has been opened, FCS uses the ovbs field
for other purposes. Thus, if your task uses the FDB for
additional disk I/0 operations, the ovbs parameter must be issued
in an FDBF$R macro prior to accessing the disk.

NOTE

When you specify block buffer sizes greater than
1 sector (512. bytes), you must increase
accordingly the size of $$FSR1. This is done by
specifying an appropriate value for the bufsiz
parameter in the FSRSZ$ macro call (see Section
2.7.1).

Routines that read ANSI-standard magnetic tape without prior
knowledge of the format of the files to be read must specify an
override block size of 2048. bytes. This value is sufficient
for the largest ANSI-standard tape blocks.

TN

T

mbct

mbfg

PREPARING FOR I/0

Issuing the CLOSES$ macro call (see Section 3.8) resets offset
location F.OVBS in the associated FDB to 0. Therefore, this

. location should typically be initialized at run time, just before

opening the file, particularly if an OPENS$x/CLOSES$ sequence for
the file is performed more than once.

On certain devices, such as 1line printers and terminals, the
block size should not exceed the device's line width. The task
can obtain the proper block size for these devices by issuing the
Get LUN Information system directive for each device. (See the
description for the Get LUN Information directive in the
RSX-11M/M-PLUS and Micro/RSX Executive Reference Manual.) The
standard block size for each device 1s established at system
generation time, or by the MCR SET/BUF command.

A numeric value that specifies the multiple buffer count, that
is, the number of buffers FCS uses in processing the associated
file. This parameter initializes FDB offset location F.MBCT. 1If
this value 1is greater than 1, multiple buffering is effectively
declared for file processing. 1In this case, FCS employs either
read-ahead or write-behind operations, depending on which of two
symbolic values is specified as the mbfg parameter (see the
following entry).

If the mbct parameter is specified as null or 0, FCS uses the
default buffer count contained in symbolic location .MBFCT in
$SFSR2 (the program section in the FSR containing impure data).
This cell normally contains a default buffer count of 1. If
desired, this value can be modified, as noted in the discussion
of the mbfg parameter in the following entry.

I1f, in specifying the FSRSZ$ macro call (see Section 2.6.1),
sufficient memory space has not been allocated to accommodate the
number of buffers established by the mbct parameter, FCS
allocates as many buffers as can fit in the available space.
Insufficient space for at least one buffer causes FCS to return
an error code to FDB o0ffset location F.ERR.

You can initialize the buffer count in F.MBCT through either the
FDBFS$A or the FDBFSR macro call. The buffer count so established
is not altered by FCS and, once set, need not be of further
concern to you.)

When input is from record devices (for example, a card reader),
F.MBCT should not be greater than 2.

A symbolic value that specifies the type of multiple buffering to
be employed in processing the file. Either of two values may be
specified to initialize FDB offset location F.MBFG:

@ FD.RAH - Indicates that read-ahead operations are to be used
in processing the file

e FD.WBH - Indicates that write-behind operations are to be used
in processing the file

These parameters are mutually exclusive; that 1is, one or the
other, but not both, may be specified.

rT

PREPARING FOR I/0

Specifying this parameter assumes that the buffer count
established in the mbct parameter shown previously is greater
.than 1. If multiple buffering has thus been declared, omitting
the mbfg parameter causes FCS to use read-ahead operations by
default for all files opened using the OPENSR macro call;
similarly, FCS uses write-behind operations by default for all
files opened using other forms of the OPENSx macro call.

If these default buffering conventions are not desired, you can
alter the value in the F.MBFG dynamically at run time. This is
done by issuing the FDBFS$R macro call, which takes as the mbfg
parameter the appropriate control flag (FD.RAH or FD.WBH). This
action must be taken, however, before opening the file.

Offset location F.MBFG in the FDB is reset to 0 each time the
associated file is closed.

NOTE

When using write-behind multibuffering, there is
no gain in efficiency if the size of the file
must be increased to make room for the data to be
written. If a file is being written at the end,
using default extension, there will be one extend
operation for each five write operations; thus,
only 80% of the write-behind operations will
actually be overlapped with processing. This
percentage can be increased as follows:

e Space for the file can be completely preallocated, either by
using the cntg parameter in the FDATSA macro, or by using the
.EXTND subroutine.

e The default extension amount can be increased from five blocks
by wusing the aloc parameter of the FDATS$A macro call. For
example, if an aloc parameter of 10(decimal) is specified, the
number of write-behind operations that will be overlapped will
increase to 90%.

e The file can be accessed using random 1/0. Because issuing
PUTSR macros to access random preexisting locations in the
file does not require extends, the percentage of overlapped
operations is increased.

You can change the default buffer count, if desired, by modifying a
location in $$FSR2, the second of two program sections comprising the
FSR. A location defined as .MBFCT in $$FSR2 normally contains a

gefault buffer count of 1. This default value may be changed, as
ollows:

® Apply a global patch to .MBFCT at task-build time to specify
the desired number of buffers.

e For MACRO-1ll programs, use the EXTSCT option of the Task
Builder (see Section 2.7.l1) to allocate more space for the FSR
block buffers; for FORTRAN programs, use the ACTFIL option of
the Task Builder (see Section 2.8.2) to allocate more space
for the FSR block buffers.

PREPARING FOR I/O

Because the previous procedure alters the default buffer count for all
files to be processed by your program, it may be desirable to force
single buffering for any specific file(s) that would not benefit from
multiple buffering. In such a case, you can set the buffer count in
F.MBCT for a specific file to 1 by issuing the following example macro
call for the applicable FDB:

FDBF$A ,,1

The value 1 specifies the buffer count (mbct) for the desired file and
is entered into offset location F.MBCT in the applicable FDB. Note in
the previous example that the event flag (efn) and the override block
buffer size (ovbs) parameters are null; these null values are for
illustrative purposes only and should not be interpreted as
conditional specifications for establishing single-buffered
operations.

The following examples show how the FDBFS$A macro call may be used in a
program:

FDBF$A 25.,,1

This example specifies that event flag 25(decimal) synchronizes record
I/0 operations and that single buffering is used in processing the
file. ‘

FDBF $A 25.,,2,FD.RAH

This example also specifies event flag 25(decimal) for synchronizing
record I/0 operations, and in addition establishes 2 as the multiple
buffer count. The buffers so specified are for read-ahead operations,
as indicated by the final parameter.

FDBFS$A ++2,FD.WBH

This example allows event flag 32(decimal) to be used by default for
synchronizing record I/0 operations, and the two buffers specified in
this case are for write-behind operations.

Note in all three examples that the second parameter, that 1is, the
override block size parameter (ovbs), is null; thus, the standard
block size in effect for the device in question is used for all file
I/0 operations.

2.3.2 Run-Time FDB Initialization Macros

Although the FDB is allocated and can be initialized during program
assembly, the contents of specific sections of the FDB can also be
initialized or changed at run time by issuing any of the following
macro calls:

@ FDATSR - Initializes or alters the file attribute section of
the FDB.

®© FDRCSR - Initializes or alters the record access section of
the FDB.

@ FDBKSR - Initializes or alters the block access section of the
FDB (see item 4 in Section 2.2.1 following).

PREPARING FOR I/0

e FDOPSR - Initializes or alters the file-open section of the
FDB.

@ FDBFS$R - Initializes or alters the block buffer section of the
FDB.

There are no default values for run-time FDB macros (except for the
FDB address). At run time, the values currently in the FDB are used
unless they are explicitly overridden. For example, values stored in
the FDB at assembly time are used at run time unless they are
overridden.

2.3.2.1 Run-Time FDB Macro Exceptions - The format and the parameters
of the run-time FDB initialization macros are identical to the
assembly-time macros described earlier, except as noted here:

e An R rather than an A must appear as the last character in the
run-time symbolic macro name.

e The first parameter in all run-time macro calls must be the
address of the FDB associated with the file to be processed.
All other parameters in the run-time macro calls are identical
to those described in Sections 2.2.1.2 through 2.2.1.6 for the
assembly-time macro calls, except as noted in items 3 and 4 in
this section.

® The parameters in the run-time macro calls must be valid
MACRO-11 source operand expressions. These parameters may be
address values or literal values; they may also represent the
contents of registers or memory 1locations. In short, any
value that is a valid source operand in a MOV or MOVB
instruction may be specified in a run-time macro call. 1In
this regard, the following conventions apply:

- If the parameter is an address value or a 1literal value
that 1is to be placed in the FDB, that is, if the parameter
itself is to be taken as an argument, it must be preceded
by the number sign (#). This symbol is the immediate
expression indicator for MACRO-11 programs, causing the
associated argument to be taken literally in initializing
the appropriate cell in the FDB. Such literal values may
be specified as follows:

FDOPSR #FDBADR, #1, #DSPT, #DFNB
- If the parameter is the address of a location containing an
argument that is to be placed in the FDB, the parameter
must be preceded by the number sign (#). Such a parameter
may be specified as follows:

ONE: -WORD 1

FDOPS$R #FDBADR, ONE, #DSPT, #DFNB

where ONE represents the symbolic address of a location
containing the desired initializing value.

2-22

.

TN

PREPARING FOR I1/0

- But, if the parameter is a register specifier (for example,
R4), the parameter must not be preceded by the number sign
(#) . Register specifiers are defined MACRO-11l symbols and
are valid expressions in any context.

NOTE

RO can only be specified in the first parameter
(FDB address). Any other use of RO will fail.
(See Section 2.2.2.2, items 1 and 2.) ’

Thus, in contrast, parameters specified in assembly-time macro
calls: are used as arguments in generating data in .WORD or
.BYTE directives, while parameters specified in run-time macro
calls are used as arguments in MOV and MOVB machine
instructions.

As noted in the description of the FDBK$A macro call in
Section 2.3.1.4, assembly-time initialization of the FDB with
the virtual block number is meaningless, because issuing the
OPEN$x macro call to prepare a file for processing resets the
virtual block number in the FDB to 1. For this reason, the
virtual block number can be specified only at run time after
the file has been opened. Do this by issuing either the
FDBKS$R. macro call or the I/0-initiating READS$ or WRITES$ macro
call. 1In all three cases, the relevant field for defining the
virtual block number is the bkvb parameter. The READ$ and
WRITES macro calls are described in detail 1in Sections. 3.15
and 3.16, respectively.

At assembly time, you must reserve and label a 2-word block in
the program to temporarily store the virtual block number
appropriate for intended block I/0O operations. Because your
task is free to manipulate the contents of these two locations
at will, any virtual block number consistent with intended
block I/0 operations may be defined. By specifying the
symbolic address (that is, the label) of this field as the
bkvb parameter in the selected run-time macro call, you can
make the virtual block number available to FCS.

In preparing for block I/0 operations, you must follow these
procedures:

l. At assembly time, reserve a 2-word block in your program
through a statement that is logically equivalent to the
following:

VBNADR: .BLKW 2

The label VBNADR names this 2-word block and defines its
address. This symbol 1is used subsequently as the bkvb
parameter in the selected run-time macro call for
initializing the FDB. '

2. At run time, load this field with the desired virtual
block number. This operation may be accomplished through
statements logically equivalent to those shown following:

CLR VBNADR
MOV #10400, VBNADR+2

2-23

PREPARING FOR I/0

Note that the first word of the block is cleared. The MOV
instruction then loads the second (low-order) word of the
block with a numeric value. This value constitutes the 16
least significant bits of the virtual block number.

If the desired virtual block number cannot be completely
expressed within 16 bits, the remaining portion of the
virtual block number must be stored in the first
(high-order) word of the block. This may be accomplished
through statements logically equivalent to the following:

MOV #1, VBNADR
MOV #10400, VBNADR+2

As a result of these two instructions, 31 bits of value
are defined in this 2-word block. The first word contains
the 15 most significant bits of the virtual block number,
and the second word contains the 16 least significant
bits. Thus, the virtual block number is an unsigned value
having 31 bits of magnitude. You must ensure that the
sign bit in the high-order word is not set.

3. Open the desired file for processing by issuing the
appropriate version of the generalized OPEN$x macro call
(see Section 3.1).

4. 1Issue either the FDBK$R macro call or the READS$ or WRITES
macro call, as appropriate, to initialize the relevant FDB
with the desired virtual block number.

If the FDBKSR macro call is elecfed, the following 1is a
representative example:

FDBKSR #FDBIN,,, #VBNADR

Regardless of the particular macro call that supplies the
virtual block number, the two words at VBNADR are loaded
into F.BKVB and F.BKVB+2. The first of these words
(F.BKVB) - is 0 if 16 bits are sufficient to express the
desired virtual block number. The I/O-initiating READS or
WRITES macro call may then be issued.

Should you choose, however, to initialize the FDB directly
through either the READS or WRITES macro call, the virtual
block number may be made available to FCS through a
statement such as that shown following:

READ S #FDBIN, #INBUF, #BUFSIZ, #VBNADR

The symbol VBNADR represents the address of the 2-word
block in your program containing the virtual block number.

2.3.2,2 Specifying the FDB Address in Run-Time Macros - In
relation to the second item of exceptions noted previously, the
address of the FDB associated with the file to be processed
corresponds to the address value of the symbol that you defined
appearing in the label field of the FDBDF$ macro call (see Section
2.3.1.1). For example, the following statement:

FDBOUT: FDBDF$

I

PREPARING FOR I1/0

not only allocates space for an FDB at assembly time, but also binds
the 1label FDBOUT to the beginning address of the FDB associated with
this file. The address value so established can then be specified as
the initial parameter in a run-time macro call in any one of three
ways:

e The address of the appropriate FDB may be specified as an
explicit ‘'parameter in a run-time macro call, as indicated in
the following example statement:

FDATSR #FDBOUT, #R. VAR, #FD.CR

The argument FDBOUT is taken literally by FCS as the address
of an FDB; furthermore, this address value, by convention, is
stored in general register 0 (R0O). Whenever this method of
specifying the FDB address is employed, the previous contents
of RO are overwritten (and thus destroyed). Therefore, you
must exercise care in issuing subsequent run-time macro calls
to ensure that the present value of RO is suitable to current
purposes.

® 'You may use -a dgeneral register specifier as the initial
parameter 1in a run-time macro call. When you use a register
other than RO, the contents of the specified register are
moved to RO. The previous contents of RO are overwritten (and
thus destroyed).

The following statement reflects the use of a general register
to specify the FDB address:

FDATSR RO, #R.VAR, #FD.CR

In this case, the current contents of RO are taken by FCS as
the address of the appropriate FDB. This method assumes that
the address of the FDB has been previously 1loaded into RO
through some overt action. Note, when using this method to
specify the FDB address, that the immediate expression
indicator (#) must not precede the register specifier (RO).

® A null specification may be used as the initial parameter in a
run-time macro call, as shown following:

FDATSR ,#R.VAR,#FD.CR

In this case, the current contents of RO are taken by default
as the address of the associated FDB. As in method 2 shown
previously, RO is assumed to contain the address of the
desired FDB. Although the comma in this instance constitutes
a valid specification, you are advised to employ methods 1 and
2 for consistency and clarity of purpose. -

These three methods of specifying the FDB address also apply to all
the FCS file-processing macro calls described in Chapter 3.

2.4 GLOBAL VERSUS LOCAL DEFINITIONS FOR FDB OFFSETS

Although the FDB offsets can be defined either 1locally or globally,
the design of FCS does not require that you be concerned with the
definition of FDB offsets 1locally. To some extent, this design
consideration 1is based on the manner in which MACRO-11 handles
symbols.

PREPARING FOR I/0O

Whenever a symbol appears in the source program, MACRO-11 assumes that
it is a global symbol unless it is presently defined within the
current assembly. Such a symbol must be defined further on in the
program; otherwise, it will be treated by MACRO-11l as a default global
reference, requiring that it be resolved by the Task Builder.

Thus, the question of global versus local symbols may simply be a
matter of the programmer's not defining the FDB offsets ‘and bit values
locally in coding the program. Such undefined symbols thus become
global references, which are reduced to absolute definitions at
task-build time.

It should be noted that global symbols may be used as operands and
macro-call parameters, or both, anywhere in the source program coding,
as described in the following section.

2.4.1 Specifying Global Symbols in the Source Code

Throughout the descriptions of the assembly-time macros (see Sections
2.3.1.2 through 2.3.1.6), global symbols are specified as parameters
in the macro calls. As noted earlier, such symbols are treated by
MACRO-11 as default global references.

For example, the global symbol FD.RAN may be specified as the initial
parameter in the FDRC$A macro call (see Section 2.3.1.3). At
task-build time, this parameter is reduced to an absolute symbol
definition, causing a prescribed bit to be set in the record access
byte (offset location F.RACC) of the FDB.

Global symbols may also be used as operands in your task's
instructions to accomplish operations associated with FDB offset
locations. For example, global offsets such as F.RACC, F.RSIZ, and
F.RTYP may be specified as operands in the source coding. Assume, for
example, that an FDBDF$ macro call (see Section 2.3.1.1) has been
issued in the source program to allocate space for an FDB, as follows:

FDBIN: FDBDF$

The coding sequence shown in the following text may then appear in the
source program, illustrating the use of the global offset F.RACC:

MOV #FDBIN, RO
MOVB #FD.RAN,F.RACC(RO)

Note that the beginning address of the FDB is first moved into general
register zero (RO). However, if the desired value already exists in
RO as the result of previous action in the program, you need issue
only the second MOV instruction (which appropriately references RO).
As a consequence of this instruction, the value FD.RAN initializes FDB
offset location F.RACC.

An equivalent instruction is the following:
MOVB #FD.RAN,FDBIN+F.RACC
which similarly initializes offset location F.RACC in the FDB with the

value of FD.RAN. Global symbols may be used anywhere in the program
in this manner to effect the dynamic storage of values within the FDB.

2-26

TN

PREPARING FOR I/0

2.4.2 Defining‘FDB Offsets and Bit Values Locally

If you want your task to declare explicitly that all FDB offsets and
bit values are to be defined locally, there are two macro calls in the
source program you can invoke. The first of these, FDOFS$L, causes the
offsets for FDBs to be defined within your program. Similarly, bit
values for all FDB parameters may be defined locally by invoking the
FCSBT$ macro call. You can invoke these macro calls anywhere in your
program. .

When issued, the FDOFSL and FCSBT$ macro calls ‘define symbols in a
manner roughly equivalent to:

F.RTYP = xxxX
F.RACC = xxxX
F.RSIZ = xxxX

where xxxx represents the value assigned to the corresponding symbol.

In other words, the macros for defining FDB offsets and bit values
locally do not generate any code. Their function is simply to create
absolute symbol definitions within the program at assembly time. The
symbols so defined, however, appear in the MACRO-11l symbol table,
rather than in the source program 1listing. Such 1local - symbol
definitions are thereby made available to MACRO-11 during assembly,
rather than forcing them to be resolved by the Task Builder.

Whether the FDOF$L and FCSBT$ macros are invoked should not in any way
affect the coding style or the manner in which the FDB offsets and bit
values are used.

Note, however, that if the FDOFSL macro is issued, the NBOFSL macro
for the local definition of the filename block need not be issued (see
Section 2.5.2). The FDOFSL macro defines all FDB offsets locally,
including those for the filename block.

If any of the previously named macros is to be issued in your program,

it must first be 1listed as an argument in an .MCALL directive (see
Section 2.2).

2.5 CREATING FILE SPECIFICATIONS WITHIN YOUR PROGRAM

Certain information describing the file must be present in the FDB
before the file can be opened. The file is located using a file
specification that contains the following:

l. A device name and unit number.

2. A directory string consisting of a group number and a member
number that specify the User File Directory (UFD) to be used
for the file. The term "UFD" is synonymous with the term
"file directory string" appearing throughout this manual.

3. A file name.

4. A file type.

5. A file version number.

2-27

PREPARING FOR I/0

A file specification describing the file to be processed is
communicated to FCS through two data structures that you create:

1. The dataset descriptor. This tabular structure may be
created and initialized manually through the use of .WORD
directives. Section 2.4.1 describes this data structure in
detail.

2. The default filename block. In contrast to the manually
created dataset descriptor, the default filename block is
created by issuing the NMBLKS macro call. This macro call
allocates a block of storage in your program at assembly time
and initializes this structure with parameters supplied in
ghi call. This structure is described in detail in Section

L] I2.

As noted in Section 2.3.1.5, the FDOPS$A or the FDOP$SR macro call is
issued to initialize the FDB with the addresses of these data
structures. These address values are supplied to FCS through the dspt
and dfnb parameters of the selected macro call. FCS uses these
addresses to access the fields of the dataset descriptor and the
default filename block, or both, for the file specification required
in opening a specified file.

By convention, a required file specification is first sought by FCS in
the dataset descriptor. Any nonnull data contained therein is
translated from ASCII to Radix-50 form and stored in the appropriate
offsets of the filename block. This area of the FDB then serves as
the execution time repository for the information describing the file
to be opened and processed. If the dataset descriptor does not
contain the required information, FCS attempts to obtain the missing
information from the default filename block. If neither of these
structures contains the required information, an open failure occurs.

Note, however, that the device name and the unit number need not be
specified in either the dataset descriptor or the default filename
block, because these values are defaulted to the device and unit
assigned to the LUN at task-build time if not explicitly specified.

The FCS file-processing macro calls used in opening files are
described in Chapter 3, beginning with the generalized OPENS$xXx macro
call in Section 3.1.

For a detailed description of the format and content of the filename
block, refer to Appendix B.

2.5.1 Dataset Descriptor

The dataset descriptor is often oriented toward the use of a fixed
(built-in) file name in your program. A given application program,
for example, may require access only to a limited and nonvariable
number of files throughout its execution. By defining the names of
these files at assembly time through the dataset descriptor mechanism,
such a program, once initiated, executes to —completion without
requiring additional file specifications.

This structure, a 6-word block of storage that you can create manually
within your program by using .WORD directives, contains information
describing a file that you intend to open during the course of program

T

.

PREPARING FOR 1/0

execution. 1In creating this structure, you can define any one or all
of three possible string descriptors for a particular file, as
follows:

® A 2-word descriptor for an ASCII device name string

e A 2-word descriptor for an ASCII file directory string

® A 2-word descriptor for an ASCII filename string

This data structure is allocated in your program in the following
format:

DEVICENAME STRING DESCRIPTOR

Word 1 - Contains the length (in bytes) of the ASCII device
name string.

This string consists of a 2-character alphabetic
device name, followed by an optional octal unit

number and an optional colon. You can create’

these strings by issuing statements such as these:
DEVNM: .ASCII /DKO:/
DEVNM: .ASCII /TT10:/

Word 2 - Contains the address of the ASCII device name
string.

DIRECTORY STRING DESCRIPTOR

Word 3 - Contains the length (in bytes) of the ASCII file
directory string.

This string consists of a group number and a
member number, separated by a comma (,). The
entire string 1is enclosed in brackets. For
example, [200,200] is a directory string. You can
create a directory string by issuing statements
such as these:

DIRNM: .ASCII /[200,200]/
DIRNM: .ASCII /[40,100]/

If you want your task to specify an explicit file
directory different from the UIC under which you
are currently running, the dataset descriptor
mechanism permits that flexibility.

Word 4 - Contains the address of the ASCII file directory
string.

FILENAME STRING DESCRIPTOR

Word 5 - Contains the 1length (in bytes) of the ASCII
filename string.

This string consists of a file name up to 9
characters in length, an optional 3-character file
type designator, and an optional file version
number. The file name and file type must be

PREPARING FOR I/0

separated by a period (.), and the file version
number must be preceded by a semicolon. A
filename string may be created as shown following:

FILNM: .ASCII /PROG1l.0BJ;7/

For Files-11l, only the characters A through Z and
0 through 9 may be used in composing an ASCII
filename string. An ANSI magnetic tape filename
string may contain, in addition, the following
special characters:

SP I "$&' ()*+,-. /1 3<=>0?

A name that contains any of these characters must
be enclosed in quotation marks. If a quotation
mark is part of the name, the string must contain
two gquotation marks. An ANSI filename string may
be created as shown in the next example:

FILNM: .ASCII /"PROG""2"";%&,";7/
The file name created in the previous example is:

PROG"2"; %&; ;7

NOTE

The semicolon is a legal character in the
name string. To delimit a version number,
the semicolon must be outside the quoted
string.

Word 6 - Contains the address of the ASCII filename string.

A length specification of 0 in Word 1, 3, or 5 of the dataset
descriptor indicates that the corresponding device name, directory, or
filename string is not present in your program. For example, the
following code creates a dataset descriptor containing only a 2-word
ASCII filename string descriptor:

FDBOUT: FDBDF$;CREATES FDB.
FDATSA R.VAR,FD.CR ; INITIALIZES FILE-ATTRIBUTE SECTION.
FDRCS$A ,RECBUF, 80. ;s INITIALIZES RECORD~ACCESS SECTION.
FDOPSA OUTLUN,OFDSPT ;INITIALIZES FILE-OPEN SECTION.

.

OFDSPT: .WORD 0,0 ;NULL DEVICE-NAME DESCRIPTOR.
-WORD 0,0 s NULL DIRECTORY DESCRIPTOR.
-WORD ONAMSZ , ONAM sFILENAME DESCRIPTOR.

ONAM: .ASCII /OUTPUT.DAT/ ;DEFINES FILENAME STRING.
ONAMSZ=.-ONAM ' ‘ sDEFINES LENGTH OF FILENAME STRING.

2-30

PREPARING FOR 1/0

Note first that an FDB labeled FDBOUT is created. Observe further
that the FDOP$A macro call takes as its second parameter the symbol
OFDSPT. This symbol represents the address value stored. in FDB offset
location F.DSPT. This value enables the .PARSE routine . (see Section
4.7.2) to access the fields of the dataset descriptor in building the
filename block.

The symbol OFDSPT also appears in the label field of the first .WORD
directive, defining the address of the dataset descriptor for the
.PARSE routine. The .WORD directives each allocate two words of
storage for the device name descriptor, the file directory descriptor,
and the filename descriptor, respectively.

In the example above, however, note that the first two descriptor
fields are filled with 2zeros, indicating null specifications. The
last .WORD directive allocates two words that contain the size and the
address of the filename string, respectively. The filename string
itself is explicitly defined in the .ASCII directive that follows.

Note that the statements defining the filename string need not be
physically contiguous to the dataset descriptor. For each such ASCII
string referenced in the dataset descrlptor, however, corresponding
statements must appear elsewhere in the source program to define the
appropriate ASCII data string(s).

A dataset descriptor for each of several files to be accessed by your
program may be defined in this manner.

2.5.2 Default Filename Block - NMBLK$ Macro

As noted earlier, you may also define a default filename block in the
program as a means of providing required file information to FCS. For
this purpose, you can issue the NMBLKS$ macro call in connection with
each FDB for which a default filename block is to be defined. When
this macro call is issued, space is allocated within your program for
the default filename block, and the appropriate locations within this
dﬁta sffucture-are initialized according to the parameters supplied in
the call.

Note in the parameter descriptions in the following text that symbols
of the form N.xxxx are used to represent the offset locations within
the filename block. These symbols are differentiated from those that
apply to the other sections of the FDB by the beginning character N.
All versions of the generalized OPENS$x macro call (see Section 3.1)
use these symbols to identify offsets in storing file information in
the filename block.

Format
label: NMBLK$ fnam,ftyp,fver,dvnm,unit
Parameter

label

A symbol, which you define, that names the default filename block
and defines its address. This 1label is the symbolic value
normally specified as the dfnb parameter when the FDOP$A or the
FDOP$R macro call is issued. This causes FDB offset location
F.DFNB to be initialized with the address of the default filename
block.

PREPARING FOR I/0

fnam

The default file name. This parameter may consist of up to nine
ASCII characters. The character string is stored as six bytes in
Radix-50 format, starting at offset location N.FNAM of the
default filename block.

ftyp

The default file type. This parameter may consist of up to three
ASCII characters. The character string is stored as two bytes in
Radix-50 format in offset location N.FTYP of the default filename
block.

fver

The default file version number (binary). When specified, this
binary value identifies a particular version of a file. This
value is stored in offset location N.FVER of the default filename
block.

dvnm

The default name of the device upon which the volume containing
the desired file 1is mounted. This parameter consists of two
ASCII characters that are stored in offset location N.DVNM of the
default filename block.

unit

A binary value identifying which unit (among several like units)
is to be used in processing the file. 1If specified, this numeric
value is stored in offset location N.UNIT of the default filename
block.

Only the alphanumeric characters A through Z and 0 through 9 may be
used in composing the filename and filetype strings discussed
previously. Although the file version number and the unit number
discussed previously are binary values, these numbers are normally
represented in octal form when printed, when input by a command
string, or when supplied through a dataset descriptor string.

As evident from the foregoing, all the default information supplied in
the NMBLK$ macro call is stored in the default filename block at
offset locations that correspond to identical fields in the filename
block within the FDB. This default information is moved into the
corresponding offsets of the filename block when any version of the
generalized OPEN$x macro call 1is issued under any of the following
conditions:

® All the file information required by FCS to open the file is
not present in the dataset descriptor. Missing information is
then sought in the default filename block by the .PARSE
routine (see Section 4.7.2), which is invoked as a result of
issuing any version of the generalized OPENSx macro call.

® A dataset descriptor has not been created in your program.

® A dataset descriptor is present in your program, but the
address of this structure has not been made available to FCS
through any of the assembly-time or run-time macro calls that
initialize FDB offset location F.DSPT.

PREPARING FOR I/0

The following code illustrates the general method of specifying the
NMBLKS$ macro call:

FDBOUT: FDBDFS$ 7ALLOCATES ' SPACE FOR AN FDB.
FDATSA R.VAR,FD.CR ;INITIALIZES FILE-ATTRIBUTE SECTION.
FDRCSA ,RECBUF, 80. ; INITIALIZES RECORD-ACCESS SECTION.
FDOPSA OUTLUN, ,OFNAM ;s INITIALIZES FILE-OPEN SECTION.

FDBIN: FDBDFS$;ALLOCATES SPACE FOR AN FDB.
FDRCS$A. ,RECBUF,80. ;INITIALIZES RECORD-ATTRIBUTE SECTION.
FDOPSA INLUN,, IFNAM ;INITIALIZES FILE-OPEN SECTION.

OFNAM: NMBLK$ OUTPUT,DAT ;ESTABLISHES FILE NAME AND FILE TYPE.

IFNAM: NMBLK$ INPUT,DAT,,DT,l ;ESTABLISHES FILE NAME, FILE TYPE,
;DEVICE NAME, AND UNIT NUMBER.

- The first NMBLKS macro call in the previous coding sequence creates a

default filename block to establish default information for the FDB,

named FDBOUT. The label OFNAM in this macro defines the beginning

address of the default filename block allocated within your program.

Note that this symbol is specified as the dfnb parameter in the FDOPSA

macro call associated with this default filename block to initialize

the file open section of the corresponding FDB. The accompanying
parameters in the first NMBLKS macro call define the file name and the

file type, respectively, of the file to be opened; all remaining

parameter fields in this call are null.

The second NMBLKS macro call accomplishes essentially the same
operations in connection with the FDB, named FDBIN. Note in this
macro call that the third parameter (the file version number) is null,
as reflected by the extra comma. This null specification indicates
that the latest version of the file is desired. All other parameter
fields contain explicit declarations defining default information for
the applicable FDB.

You can define the offsets for a filename block 1locally in your
program by issuing the following macro call: '

NBOFSL

This macro call does not generate any code. Its function is merely to
define the filename block offsets 1locally, presumably to conserve
symbol table space at task-build time. The NBOFS$L macro call need not
be 1issued if the FDOFS$SL macro call has been invoked, because the
filename block offsets are defined locally as a result of issuing the
FDOFSL macro call.

If you want, you may initialize fields in the default filename block
directly with appropriate values. You can do this by placing in-line
statements in the program. For example, a specific offset in the
default filename block may be initialized through coding that is.
logically equivalent to the following:

DENB: NMBLKS$ RSXLIB,OBJ

.

NUTYP: .RAD50 /DAT/

MOV NUTYP,DFNB+N.FTYP

T

PREPARING FOR I/0

where the symbol NUTYP in the MOV instruction represents the address
of the newly defined Radix-50 file type DAT, which is to be moved into
destination offset N.FTYP of the default filename block labeled DFNB.
You can manually initialize any of the offsets within the default
filename block in this manner to establish desired values or to
override previously initialized values.

 NOTE

The NMBLKS$ macro cannot be used to create a file name
containing non-Radix-50 characters or a file name that
is not in the normal filenam.typ format. A program
that uses the file name format permitted for ANSI
magnetic tape must set up the file name in a dataset
descriptor.

2.5.3 Dynamic Processing of File Specifications

If you want your task to make use of routines available from the
system object 1library ([1,1]SYSLIB.OLB) for processing command line
input dynamically, consult Chapter 6. Chapter 6 describes the Get
Command Line (GCML) routine and the Command String Interpreter (CSI)
routine, both of which may be linked with your program to provide all
the logical capabilities required in processing dynamic terminal input
or indirect command file input.

2.6 OPTIMIZING FILE ACCESS

When certain information is present in the filename block beginning at
the symbolic F.FNB of an FDB, a file can be opened in a manner
referred to throughout this manual as "opening a file by file 1ID."
This type of open requires a minimum of system overhead, resulting in
a significant increase in the speed of preparing a file for access by
your program. If files are frequently opened and closed during
program execution, opening files by file ID accomplishes substantial
savings in overall execution time.

To open a file by file ID, the minimum information that must be
present in the filename block of the associated FDB consists of the
following:

e File Identification Field. This 3-word field, beginning at
filename block offset location N.FID, contains a file number
in the first word and a file sequence number in the second
word; the third word 1is reserved. The file identification
field is maintained by the system and ordinarily need not be
of concern to you.

® Device Name Field. This l-word field at filename block offset
location N.DVNM contains the 2-character ASCII name of the
device on which the volume containing the desired file Iis
mounted.

@ Unit Number Field. This l-word field at filename block offset
location N.UNIT contains a binary value identifying the
particular unit (among several like units) on which the volume
containing the desired file is mounted.

TN

/ ~ \

PREPARING FOR I/O

These three fields are written into the filename block in one of three
ways:

@ By issuing any version of the generalized OPEN$x macro call
for a file associated with the FDB in question.

® By initializing the filename block manually by using the
.PARSE routine (see Section 4.7.1) and the .FIND routine (see
Section 4.8.1).

@ By moving the necessary values into the filename block.

Opening an existing file by file ID is a special case (see Section
3.5). '

2.6.1 Initializing the Filename Block as a Function of OPEN$x

To understand how to effect the process of opening a file by file 1ID,
note that the initial issuance of the generalized OPEN$xXx macro call
(see Section 3.1) for a given file first invokes - the .PARSE routine
(see Section 4.7.2). The .PARSE routine is linked into your program,
along with the code for OPENS$x. This routine first zeros the filename
block and then fills it in with information taken from the dataset
descriptor and the default filename block, or both.

Thus, issuing the generalized OPENS$x macro call invokes the .PARSE
routine each time a file is opened. The .PARSE function, however, can
be bypassed altogether in -subsequent OPEN$x calls by saving and
restoring the filename block. before attempting to reopen that same
file.

This is made possible because of the logic of the OPEN$x macro call.
Specifically, after the initial OPENS$x for a file has been completed,
the necessary context for reopening that file exists within the
filename block. Therefore, before closing that file, the entire
filename block can be copied into your task's memory space and later
restored to the FDB at the desired point in program flow for use in
reopening that same file.

Your task can reopen files in this manner because FCS is sensitive to
the presence of any nonzero value in the first word of the file
identification field of the filename block. When your task invokes
the OPENSx function, FCS first examines offset location N.FID of the
filename block. If the first word of this field contains a value
other than 0, FCS logically assumes that the remaining context
necessary for opening that file is present in the filename block, and
therefore unconditionally opens that file by file ID.

To ensure that an undesired value does not remain in the first word of
the N.FID field from a previous OPENSx or CLOSES$ sequence, the first
word of this field is zeroed as the file is closed.

In opening files by file ID, you need only ensure that manual saving
and restoring of the filename block are accomplished with in-line MOV
instructions that are consistent with the desired sequence of
processing files. This process should proceed as follows:

1. Open the file in the usual manner by issuing the OPENS$x macro
call.

2. Save the filename block by copying it into your task's memory
space with appropriate MOV instructions. The filename block
begins at offset location F.FNB in the file descriptor block
(FDB) .

2-35

PREPARING FOR I/0

The value of the symbol S.FNB is the size of the filename
block in bytes, and the value of the symbol S.FNBW is the
size of the filename block in words. If desired, the NBOFSL
macro call (see Section 2.5.2) may be invoked in your program
to define these symbols locally. These symbolic values may
be used 1in appropriate MOV instructions to accomplish the
saving and restoring of the filename block. Moreover, you
must reserve sufficient space in the program for saving the
filename block.

3. At the end of current file operations, close the file in the
usual manner by issuing the CLOSE$ macro call.

4. When, in the normal flow of program logic, that same file is
about to be reopened, restore the filename block to the FDB
by reversing step 2.

5. Reopen the file by issuing any one of the macro calls
available 1in FCS for opening an existing file. Because the
first word of offset location N.FID of the filename block now
contains a nonzero value, FCS unconditionally opens the file
by file ID, regardless of the specific type of open macro
call issued.

Although you must save only the file identification, device name, and
unit number fields of the filename block in anticipation of reopening
a file by file ID, you are advised to save the entire filename block.
The file name, file type, file version, and directory-ID fields, and
so forth, may also be relevant. For example, an OPENS$x, save, CLOSES,
restore, OPEN$x, and DELETS$ sequence would require saving and
restoring the entire filename block.

Though you may be logically finished with file processing and may want
to delete the file, the delete operation will not work properly unless
the entire filename block has been saved and restored.

2.6.2 Manually Initializing the Filename Block

In addition to saving and restoring the filename block in anticipation
of reopening a file by file ID, you can also initialize the filename
block manually. If you choose to do so, the .PARSE and .FIND routines
(see Sections 4.7.2 and 4.8.1, respectively) may be invoked at
appropriate points to build the required fields of the filename block.
After the .PARSE and .FIND logic is completed, all the information
required for opening the file exists within the filename block. When
any one of the available FCS macro calls that open existing files is
then issued, FCS unconditionally opens that file by file ID.

Occasionally, instances arise that make such manual operations
desirable, especially if your program is operating in an overlaid
environment. In this case, it is highly desirable that the code for
opening a file be broken into small segments in the interest of
conserving memory space. Because the body of code for the OPEN$x and
.PARSE functions 1is sizable, two other types of macro calls for
opening files are provided for use with overlaid programs. The OFIDS$
and OFNBS macro calls (see Sections 3.5 and 3.6, respectively) are
specifically designed for this purpose.

The structure recommended for an overlaid environment is to have
either the OFID$ or the OFNB$ code on one branch of the overlay and
the .PARSE and .FIND code on another branch. Then, if you want your
task to open a file by file ID, the .PARSE and .FIND routines can be
invoked at will to insert required information in the filename block
before opening the file.

PREPARING FOR I1/0

The OFIDS$ macro call can be issued only in connection with an existing
file. The OFNB$ macro call, on the other hand, may be used for
opening either an existing file or for creating and opening a new
file. In addition, the OFNB$ macro call requires only the manual
invocation of the .PARSE routine to build the filename block before
opening the file.

If conservation of memory is an objective, and if your program will be
opening both new and existing files, it is recommended that only the
OFNB$ routine be included in one branch of the overlay; including the
OFID$ routine would needlessly consume memory space.

In all cases, however, it is important to note that all the macro
calls for opening existing files are sensitive to the presence of any
nonzero value in the first word (N.FID) of the filename block. If
this field contains any value other than 0, the file is
unconditionally opened by file ID. This does not imply, however, that
only the file identification field (N.FID) is required to open the
file in this manner. The device name field (N.DVNM) and the unit
number field (N.UNIT) must also be appropriately initialized. The
logic of the FCS macro calls for opening existing files assumes that
these other required fields are present in the .filename block if the
file identification field contains a nonzero value.

Because many programs continually reuse FDBs, the CLOSES$ function (see
- Section 3.8) puts zeros in the file identification field (N.FID) of
the filename block. This action prevents: the field (which pertains to
a previous operation) from being used mistakenly to open a file for a
current operation. Thus, if your task later intends to open a file by
file 1ID using information presently in the filename block, the entire
filename block (not just N.FID) must be saved before closing the file.
Then, at the appropriate point in program flow, the filename block may
be restored to open the desired file by file ID.

2.7 INITIALIZING THE FILE STORAGE REGION

The file storage region (FSR) is an area allocated in your program as
a buffer pool to accommodate the program's block buffer requirements
in performing record I/0 (GET$ and PUT$) operations. Although the FSR
is not applicable to block I/0 (READS$ and WRITES$) operations, you must
issue the FSRSZ$ macro once in every program that uses FCS, regardless
of the type of I/0 to be performed.

The macro calls associated with the initialization of the FSR are
described next. .

2.7.1 FSRSZ$ - Initialize FSR at Assembly Time

The MACRO-11 programmer establishes the size of the FSR at assembly
time by issuing an FSRSZ$ macro call. This macro call does not
generate any executable code. It merely allocates space for a
block-buffer pool in a program section named $$FSR1. The amount of
space allocated depends on information provided by you, or defaulted,
during the macro call.

Format

PREPARING FOR I/0

NOTE

The FSRSZ$ macro allocates the FCS impure area that is
pointed to by a fixed location in your task's virtual
memory. This pointer is not altered when overlays are
loaded; therefore, the FSRSZS$ macro must be invoked in
the root segment of a task. Unpredictable results may
occur if the FSRSZ$ macro is invoked in more than one
parallel overlay.

FSRSzZ$ fbufs,bufsiz,psect

Parameter

fbufs

A numeric value that you establish as follows:

If no record I/0 processing is to be done, fbufs equals 0. A
value of 0 indicates that an unspecified number of files may
be open simultaneously for block I/0 processing. For example,
if you intend to access three files for block I/0 operations

and no files for record I/O operations, the FSRSZ$ macro call
takes 0 as an argument:

.FSRSZ$ 0

No other parameters need be specified unless the function of
the psect parameter is required.

If record I/0, using a single buffer for each file, is to be
done, fbufs represents the maximum number of files that can be
open simultaneously for record I/0O processing. For example,
you might want to access simultaneously three files for block
I/0 and two files for record 1/0. You would specify the
following FSRSZ$ macro call:

FSRSZ$ 2

Additional parameters, bufsiz and psect (described
subsequently) could also be specified as required.

If record I/0 with multiple buffering is to be done, fbufs

. represents the maximum number of buffers ever in use

simultaneously among all files open concurrently for record
1/0. Assume, for example, that your program will
simultaneously access four disk files for record I/0
operations. Assume further that you want double-buffering for
three of the disk files and have, therefore, specified a
multiple buffer count of 2 in the FDBF$A macro calls (refer to
Section 2.3.1.6) for the associated files. You would then
issue the following FSRSZ$ macro call:

FSRSZS$ 7

This macro call indicates that a maximum of seven buffers will
be in wuse simultaneously. This total 1is calculated as
follows: one buffer for the single-buffered file and two
buffers for each of the three double-buffered files.
Additional parameters, bufsiz and psect (described next),
could also be specified as required.

// N

PREPARING FOR 1/0

bufsiz

psect

A numeric value defining the total block buffer pool space (in
bytes) needed to support the maximum number of files that can be
open simultaneously for record 1/0. If this parameter is
omitted, FCS obtains a total block buffer pool requirement by
multiplying the value specified in the fbufs parameter with a
default buffer size of 512 bytes. 1If, for example, a maximum of
two single-buffered disk files will be open simultaneously for

record I1/0, either of the following FSRSZ$ macro calls could be
issued:

FSRSZ$ 2
FSRSZ$ 2,1024.

If you want your task to explicitly specify block buffer pool
requirements, the following formula must be applied:

bufsiz=(bsizel*mbcl) [+ (bsize2*mbc2) ...+ (bsizen*mbcn)]

bsizel,bsize2,...,bsizen

The sizes, in bytes, of the buffers to support each file.
The size of a buffer for a particular file depends on the
device supporting the file if the standard block buffer size
is used. Standard block sizes for devices are established
at system generation time. The override block buffer size
(ovbs) parameter can be used in the FDBF$x macro call to
increase buffer size, as described in Section 2.2.1.6; these
increases must be considered when you explicitly specify
block buffer pool requirements.

mbcl,mbec2,...,mbcn

The multiple buffer counts (refer to Section 2.3.1.6)
specified for the respective files.

The total value expressed by the bufsiz parameters must
always represent the worst case buffer pool requirements
among all combinations of simultaneously open record 1I/0
files. The number of files (or buffers) representing the
worst case is expressed as the first parameter of the macro
call.

NOTE

If you use RSX-11D, you must not ' allocate an FSR
block buffer less than 512 (decimal) bytes in length
for spooled output to a record-oriented device (such
as a line printer).

The name of the program section (PSECT) to which control returns
after FSRSZ$ completes processing. If no name is specified,
control returns to the blank PSECT.

PREPARING FOR I/O

2.7.2 FINITS - Initialize FSR at Run Time

In addition to the FSRSZ$ macro call described in the preceding
section, the FINITS macro call must also be issued in a MACRO-1l1l
program to call initialization coding to set up the FSR. This macro
call takes the following format:

Format

label: FINITS
Parameter
label

An optional symbol, which you specify, that allows control to be
transferred to this location during program execution. Other
instructions in the program may reference this label, as in the
case of a program that has been written so that it can be
restarted.

The FINITS macro call should be issued in the program's initialization
code. The first FCS call issued for opening a file performs the FSR
initialization implicitly (if it has not already been accomplished
through an explicit invocation of the FINIT$ macro call). However, it
is necessary, in the case of a program that is written so that it can
be restarted, to issue the FINITS macro call in the program's
initialization code, as shown in the second example shown in the third
paragraph following. This requirement derives from the fact that such
a program performs all its initialization at run time, rather than at
assembly time.

For example, a program that is not written so that it can be restarted
might accomplish the initialization of the FSR implicitly through the
following macro call:

START: OPENS$R #FDBIN s IMPLICITLY INITIALIZES THE FSR
;AND OPENS THE FILE.

In this case, although transparent to you, the OPENSR macro call
invokes the FINITS operation. The label START is the transfer address
of the program.

In contrast, a program that embodies the capability to be restarted
must issue the FINITS macro call explicitly at program initialization
as shown here:

START: FINITS sEXPLICITLY INITIALIZES THE FSR AND
OPENSR #FDBIN ;OPENS THE FILE.

In this case, the FINITS macro call cannot be invoked arbitrarily
elsewhere in the program; it must be issued at program initialization.
Doing so forces the reinitialization of the FSR, whether or not it has
been done in a previous execution of the program through an OPENS$x
macro call.

It is important to realize that calling - any of the file control
routines described in Chapter 4, such as .PARSE, first requires the
initialization of the FSR. However, the FINITS operation must be
performed only once each program execution. Note also that FORTRAN
programs issue a FINIT$ macro call at the beginning of the program
execution; therefore, MACRO-1l1l routines used with the FORTRAN object
time system must not issue a FINITS macro call.

PREPARING FOR <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>