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PREFACE 

MANUAL OBJEC~IVES 

This document is a guide to using RMS-ll capabilities and operations 
in file and task design for application programs written in either 
MACRO-ll or high-level languages. 

INTENDED AUDIENCE 

This document is intended for application programmers who want to 
achieve optimal performance with new applications they are writing or 
with existing applications. 

NOTE 

Only MACRO-ll programmers can use the 
full set of RMS-ll capabilities. 
Subsets of these capabilities are 
available to high-level language 
programmers. See your high-level 
language documentation to determine: 

• What RMS-ll facilities you can use in 
your high-level language 

• The syntax for using these facilities 

S~RUCTURE OF ~HIS DOCUMENT 

This manual contains eight chapters and two appendixes: 

• Chapter 1, RMS-ll Concepts and processing Environment, 
introduces the concepts of data organization and access and 
the RMS-ll implementation of these concepts. 

• Chapter 2, Application Design, presents general considerations 
that apply to application design and information that will 
help the application designer select a ~ile organization. 

• Chapter 3, Sequential File Applications, discusses sequential 
file structure, design, and processing. 

• Chapter 4, Relative File Applications, discusses relative file 
structure, design, and prricessing. 
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• Chapters 5, Indexed File Structure and Access, 6, Indexed File 
Design, and 7, Record and File processing of Indexed Files, 
discuss indexed file structure, design, and processing. 

• Chapter 8, Task Building and Common Optimization Techniques, 
describes techniques that can be used to optimize application 
programs that use RMS-II, regardless of the file organization 
selected. 

• Appendix A, File Specification Parsing, documents RMS-Il's 
handling of file specifications~ 

• Appendix B, Remote File and Record Access via DECnet, briefly 
describes the remote access environment and remote file 
specification syntax~ 

ASS()CIATED DOCUMENTS 

In addition to this user's guide, the RMS-II documentation set 
contains the following manuals. 

RSX~llM!M-PLUS RMS .. ll: An Introduction presents the major concepts of 
RMS-II, introduces the-RMS-II operations, and defin.es key terms 
required for understanding RMS-II capabilities and £unctions~ You 
should read the introduction before proceeding to other manuals in the 
RMS-.II documentation set. 

The RSX .. IIM!M ... PLUS RMS .. ll Macro programmer's Guide is a 
document for MACRO-II programmers that describes the 
symbols that make up the interface between a MACRO-II 
subprogram and the RMS-II operation routines. 

reference 
macros and 

program or 

The RSX~llM!M-PLUS RMS ... ll Utilities manual is both a user and a 
reference document for all users, both programmers and nonprogrammers. 
It describes the RMS-II utilities that are available for creating and 
maintaining RMS-II files. 

In addition, the Mini-Reference Insert includes an easy-reference 
guide for users who are familiar with RMS-II and its documentation. 
It summarizes the RMS-II utilities and error codes. 

CONVENTIONS USED IN THIS DOCUMENT 

Convention Meaning 

UPPERCASE Uppercase words and le.tters, used in format examples, 
indicate that you should type the word or letter 
exactly as shown~ 

lowercase Lowercase wo.rds and letters, used in format examples, 
indicate that you are to substitute a word or value 
of your choice. 

quotation marks The term "quotation marks" refers to double quotation 
marks ("). 

apostrophes The term "apostrophe" refers to a single quotation 
mark ('). 
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TKB> // 

PREFACE 

Square brackets indicate that the enclosed item is 
optional. 

A horizontal ellipsis indicates 
item(s) can be repeated one 
example: 

file-spec[,file-spec .•. ] 

that the preceding 
or more times. For 

A vertical ellipsis indicates that not all of the 
statements in an example or figure are shown. 

In examples of commands you enter and system 
responses, all output lines and prompting characters 
that the system prints or displays are shown in black 
letters. All the lines you type are shown in red 
letters. 

Unless otherwise noted, all numeric values are represented in decimal 
notation. 

Unless otherwise specified, you terminate commands by pressing the 
RETURN key. 
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SUMMARY OF TECHNICAL CHANGES 

RMS-ll Version 2.0 supports random access to fixed-format disk 
sequential files and sequential block access to disk files of any 
format and organization. 

The RMS-ll Version 2.0 resident libraries are task independent. This 
means that once a program is linked with this library, the library can 
be rebuilt or replaced without requiring that the task linked to it be 
rebuilt. 

RMS-ll Version 2.0 contains no library equivalent to the 
memory-resident library included with RMS-ll Version 1.8. The 
resident library or the disk-resident ODL files can.be used to 
equivalent functionality and performance. 

RMSSEQ 
RMSRES 
obtain 

New versions of the RMS-ll Version 1.8 ODL files are provided. These 
ODL files are: RMSllS.ODL, RMSIIX.ODL, RMS12X.ODL, and RMSll.ODL. 
The Version 1.8 ODL files will still work with Version 2.0, but the 
new versions will be more efficient. RMS-ll Vl.8 ODL structures other 
than RMSllS.ODL, RMSIIX.ODL, and RMS12X.ODL may not work correctly 
with the RMS-Il V2.0 code; when in doubt, verify them by comparison 
with the V2.0 RMSILoDL file. In addition, two new ODL files are 
provided with Version 2.0: RMSI2S.0DL and DAPlIX.ODL. 

Files with stream and VFC records can now be created on 
devices to avoid the need for special-case code 
operations. 

unit-record 
in copy-type 

• For VFC files, the record header is thrown away on output 
unless the file is a "print format" file. 

• For stream files, if none of the 3 carriage control bits is 
set (print file format, carriage control, or FORTRAN carriage 
control), and if the last character is not a linefeed, 
formfeed, or vertical tab, the carriage-return/linefeed 
(CR/LF) is appended at the end of the record. 

• For stream files, if either the carriage control or FORTRAN 
carriage control attribute is set, and if the last 2 
characters of the record are CR/LF, the trailing CR/LF is 
stripped off and then definition ot the carriage control 
attribute (CR or FTN) is applied. 

For similar ease-of-copying reasons, RMS-ll now allows creation of 
relative and indexed files for output to nondisk devices (for magtape, 
however, the record format must be variable length or fixed length). 

The RMS-II File Design Utility (RMSDES) is a new utility that allows 
you to design and create files interactively. It is fully documented 
in the RSX .... nM!M .... PLUS RMS ... 11 Utilities manual. 

RMS-il Version 2.0 supports five new directory operations: $ENTER, 
$PARSE, $REMOVE, $RENAME, and $SEARCH. These operations are fully 
documented in the RSX~IIM/M~PLUS RMS-II Macro Programmer's Guide. 
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SUMMARY OF TECHNICAL CHANGES 

RMS-ll Version 2.0 supports a new wildcard file specification facility 
and a new print-record output handling format. These are also fully 
documented in the macro programmer's guide. 

User-provided interlocks allow a special, limited form of sequential 
file sharing among a group of accessors that includes at most one 
read/write accessor and any number of read-only accessors. 

If suitable DECnet facilities exist on your system and on the target 
system, RMS-ll Version 2.0 will allow file and record access to files 
on remote network nodes, if those nodes include an RMS-ll-based file 
access listener (FAL). 

For magtape, RMS-ll now allows fixed-format records to be less than 18 
bytes. 

Files with stream or VFC records can now be 
devices. In addition) RMS-ll now allows the 
indexed files for output to nondisk devices, 
treated as sequential files. 

created on unit-record 
creation of relative and 
although they will be 

<CTRL/Z> and <ESC> are no longer recognized as record terminators 
stream files, and <CTRL/Z> is no longer recognized as a 
terminator for stream files. 

for 
file 

RMS-ll Version 2.0 pads stream files with null characters, to the high 
block of the file (not just to the end of the current block) j 

The memory-resident library RMSRES can be clustered with any other 
resident library that supports clustering. 

On RSX-1IM-PLUS systems that include hardware support for supervisor 
mode, RMSRES can also be used in supervisor mode. 

On RSX-llM systems, an optional subset library, which contains support 
for sequential and relative files only, is available. 

NOTE 

All new RMS-ll features 
accessible only to MACRO~ll 
See your high-level 
documentation for supported 
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are fully 
programmers. 

language 
features. 
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CHAPTER 1 

RMS-ll CONCEPTS AND PROCESSING ENVIRONMENT 

Your business, whether commercial, scientific, governmental, or 
educational, relies on data. That data indicates the current state of 
your business and helps you control the future of the business. 
Therefore, you want fast, efficient access to the right data when you 
need it. 

You are familiar with dealing with data on paper and know that records 
of transactions and reports on your business's activities can occupy a 
very large number of file folders. You also know that finding exactly 
the data you need can be a time-consuming process. 

computer hardware,however, with it~ speed and mass data storage 
capabilities, provides the means for fast, efficient access to data. 
Computer software provides the means for translating the data from the 
format you use to a format the computer system can handle -- and back 
again. 

RMS-ll is such a translater between you and your system. This chapter 
introduces RMS-ll in terms of general concepts of data organization 
and access, which apply regardless of whether data is stored on paper 
or within a computer's memory. It then discusses the RMS-ll 
implementation of data organization and access, and the RMS-ll data 
processing environment. 

1.1 CONCEPTS OF DATA ORGANIZATION AND ACCESS 

This section examines the general concepts of data organization, using 
images from the noncomputer environment you may be most familiar with. 

1.1.1 Records 

When data is stored on paper, it is recorded in groups of items whose 
form is repeated throughout the data. Each group of items is called a 
record. Within each record are the specific items of data you are 
concerned with. For example, all the information on an employee 
constitutes a personnel record; all the information on a stock item 
constitutes an inventory record. 

On paper, a record can be a form; different types of records require 
different forms. Some forms are always the same length; their 
information does not expand with time or use. For example, a product 
information form does not vary in size. If the facts about a product 
change, you fill out a new form. Ifa new product is added, you also 
fill out a new form. 
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Other forms vary in length with time and use, continuing on to new 
pages as they grow. For example, an employee with the company for 10 
years has more data in his or her personnel record than a new 
employee. 

Other forms might use a combination of these two formats. For 
example, a record of service on a piece of equipment might begin with 
control information describing the specific piece of equipment (name, 
model number, date of installation, and so on) and continue on to new 
pages documenting the service performed on it. 

Figure 1-1 illustrates various record formats. 

PRODUCT RECORD 

~""""'----
--~---"""""""'''--::::: .... iQ. ~ 
.... ~\~ --... '";- ---
~ .......... --. 
""""'"---­
-~-END 

1.1.2 Files 
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Fignre 1-1: Record Formats 

When data is stored on paper records, it is usually gathered into 
files and stored physically in filing cabinets, organized by related 
records. For example, all employee records might be stored in one 
file and placed in one drawer of the filing cabinet. 

A file not only keeps related data in one place, it also segregates 
that data from other, unrelated data. 

As data grows, the file and storage requirements become more 
complicated, and the number of filing cabinets multiplies. Then, the 
files acquire names or numbers, the drawers acquire signs indicating 
the contents of the drawers and who may use them, and 
cross-referencing systems are introduced to help locate data. These 
identifying characteristics and restrictions upon who may read or 
alter specific files can be called attributes. 
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Figure 1-2 illustrates data storage using filing cabinets. 

ZK-1167-82 

Figure 1-2: Files 

In general, the person who 
organizing the records within 
and dictates what information 
to locate a record within the 

uses a file establishes a method of 
it. This method reflects the file's use 
is needed and how much time is required 
file. 

There are several typical methods for organizing records in a file, 
depending on how the records are used. If you generally use all the 
records in a file whenever you open it (that is, you have little or no 
need to locate individual records in the file) and the order of the 
records is not important, then you can organize the records 
sequentially: 

• The records assume the physical sequence in which they are 
inserted into the file (that is, records are appended to the 
file) • 

• No empty spaces are left in the sequence of records, where 
records could be inserted later. Each record, except the 
first, has a record before it; each record, except the last, 
has a record following it. 

1-3 



RMS-ll CONCEPTS AND PROCESSING ENVIRONMENT 

Employee payroll records, for example, might be kept in a sequential 
file. Because all the records must be accessed every time the payroll 
is done, sequential file organization would allow easy access to the 
records. 

The overhead and maintenance for sequential files is minimal. To 
insert a record into the file, you simply put it after the last record 
already there. Figure 1-3 illustrates sequential file organization. 

ZK-1168-82 

Figure 1-3: Sequential File Organization 

For more access flexibility than sequential filest if you want to be 
able to locate individual records easily, you can set up a series of 
file folders and nl,lmber them in sequence from first folder to last. 
Each folder is the same size; it holds only one record, but it can be 
empty. Thus, you do not have to look sequentially through the records 
to locate the one you want (although you can if you want to access all 
the records). You use the numbers on the folders to locate or insert 
records; each record will be numbered relative to the beginning of 
the file. The numbers can relate to some numbering system meaningful 
to your business: for example, order numbers or part numbers. 

Figure 1-4 illustrates relative file organization. 
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ZK-1171-82 

Figure 1-4: Relative File Organization 

If you have a large file and most of the time you want to be able to 
locate individual records, you may want to index your files. Indexing 
is useful when you want to be able to use several kinds of information 
to locate rec9rds. For example, in an employee file, you may want to 
use last-name information to ohtain a report on all employees, and 
jOb-designation .' information· to obtain a repo.rt on all clerical 
employees. 

When you open an indexed file drawer, you find records filed with 
numbered tabs separating them. At the front of the drawer is a set of 
small card files, containing groups of card. £eparated by dividers. 
The cards in each of these small card files are an index to the 
records at the back of the file. To insert a r~cord in the file, you 
find the data item marked "key" on the re.cord, and using that 
information, consult the appropriate index to" determine where the 
record should be inserted. Figure 1-5 illustrates indexed file 
organization. 

To find a record in an indexed file, you look for the specific key 
information in the appropriate key file and use that information to 
locate the record. For example, .if you want the record of a 
transaction with the Q,R,&S Company, you open the indexed file drawer 
for transactions, which contains data records filed at the back and 
indexes at the front. Figure 1-6 illustrates this example. 
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Figure 1-5: Indexed File Organization c 
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Figure 1-6: Indexed File Example 
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You know that company name is the primary key for records in the file 
and that index 0 indexes the primary keys-.--The first record in index 
o is the root, which lists selected primary key values, that is, the 
company names, in alphabetical order. Not all company names appear 
here: instead, a small subset of names, distributed fairly evenly 
across the full set of names, is used as the highest level of 
indexing. By selecting one name, you establish the region of the file 
(range of names) that interests you. 

You look down the list until you find a name that 
Q,R,&S or occurs after this name in the alphabet. 
Inc with the number 3 alongside it. 

either matches 
You find Rhesus, 

You put the root record back in the file and go to the first 
and the third index record behind it. Again, the set of names 
incomplete: only a small set of names distributed fairly 
across the range covered by the highest level index entry 
This provides an intermediate level of indexing, and further 
the range of names in which you are interested. 

divider 
here is 

evenly 
exists. 

limi ts 

Rhesus, Inc is the last 
find the name Queeg Co, 
alphabetical sequence. 
alongside it. 

entry on this card, but you scan the list and 
which is the first entry at or after Q,R,&S in 
The entry for Queeg Co has the number 7 

So you reach into the data records at the back of the drawer to tab 
number 7. You search sequentially through the records behind this tab 
until you find the record of the Q,R,&S transaction. 

For another example, using the same transaction file, suppose you want 
to find a record but all you know is its transaction number. 
Fortunately, the second alternate key for the file is transaction 
number. Index 2 indexes the second alternate keys (recall from the 
previous example, that the indexes are numbered starting with primary 
index 0). You look at the root record in index 2 and move through the 
index as you did in the previous example until you find a card listing 
the transaction number you are looking for. Next to the number is the 
code 7/5. 

So you reach into the data records at the back of the drawer to tab 
number 7 and count back to the fifth record behind the tab. You find 
that the transaction you are looking for was made with the Q,R,&S 
Company. 

Here, only one level of indexing 
many records exist in the file, 
be used, as it was in index O. 
allows the number of entries you 
regardless of the total number of 

1.1.3 Access 

-- the root record -- was used. If 
another intermediate level would also 

Use of intermediate index levels 
must scan in each level to be small, 
records in the file. 

Once you have records organized in a file, you can get, or access, 
them in two ways: 

• You can search all the records one after the other. 
called sequential access. 

This is 

• You can use an identifier to locate an individual record. 
This is called random access. 

Note that access means not only retrieving a record from a file but 
putting a record into the file as well. 
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Figure 1-7 illustrates the random and sequential access modes. 

ZK-1172-B2 

Figure 1-7: Record Access Modes 

Sequential .Access 

For sequential access, you pick a point in the file and access the 
re~ords beyond that point one at a time. At times, the starting point 
is the beginning of the file because you want to look at, or access~ 
each record in the file. Other times, you may begin midway through 
the file. 

To read each record, you take it out of the file, marking the position 
of the record you just removed with a card or some other marker so 
that you know: 

• Where to put the record back into the file 

• Where the next record is 

To insert records sequeritially, you reach into the drawer to the place 
where you want the records to go and mark the position of that place. 
Often, the point at which you will insert the new records will be the 
end of the file. At other times, it may be midway through the file. 
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RMS-ll CONCEPTS AND PROCESSING ENVIRONMENT 

You insert the records by taking the first record 
new records and slipping it into position in the 
the position after the record you just inserted 
record in that position. You continue in this 
new records are inserted. 

from the stack of 
file. You then mark 

and add the next 
manner until all the 

Note that in both retrieving and inserting records you move through 
the records consecutively. Each record is retrieved or inserted with 
respect to the record accessed right before it. 

Random Access 

For random access, you determine the location of the record you want 
on the basis of some identifier, rather than on the basis of the 
record's position within the file. If, for example, you have a list 
of locations of records in the file, you can reach into the file to a 
record's exact location. Each record selection is independent of the 
previously accessed record and of the next record to be accessed. 

The record identifier can be a number, as for relative files, or it 
can be a key, as for indexed files. Or, the identifier can be a 
physical location within the file drawer; for example, you could 
place each record in a numbered slot within the file drawer and use 
the slot number to access the records in the file. The slot number 
would be the address of the record. This type of random access could 
be used with any type of file organization. 

Often, you will want to switch the mode of access you use. You may 
want to use random access to find the first record in a series and 
then use sequential access to retrieve a~l the records in that series. 
For example, if your employee records are grouped by department codes 
within the file, you can use a specific department code as the 
identifier to randomly access the first record with that department 
code and then switch to sequential access to consecutively read all 
the records with that code. 

Context 

In either type of access, sequential or random, the marking 
position ln the file is important. This is called context: 
position of the record you are accessing is the current record, 
the position of the record that follows it is the next record. 

of 
the 
and 

Access Control 

One advantage of the segregation of data provided by files is 
controlled access. Some files, such as budget or payroll, should be 
available to only a small group of authorized people. Other files, 
such as inventory or transaction files, may be used by larger groups 
of people. And some files, such as the telephone directory, must be 
accessible to everyone. 

Files allow you to control who can use what data. You can lock the 
filing cabinet that contains the payroll data and give keys to 
yourself and the payroll manager only. And you can distribute 
telephone directories to every employee. 

In addition, within a file, you can further control how the data can 
be used within the group of authorized users. Some users may be 
allowed to write new data in the file or to modify existing data, 
while others may be allowed only to read the data. 
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1.1.4 Processing 

Once you locate, either sequentially or randomly, a record's position 
within a file, you will probably want to do something with the record 
that belongs there. Record operations fall generally into the 
following categories: 

• verify that the record exists in the right location 

• Read the record; that is, examine its data contents 

• Insert a record in the position that you have located 

• Revise the contents of the record; that is, modify some of 
its data contents 

• Remove the record from the file 

1.1.5 File Maintenance 

Once you establish files and their records and begin using them 
regularly, you will want to be able to maintain them to ensure both 
the protection of the data within them and their continued usability. 

Typically, maintenance might include the following activities. 

• The data in a file is valuable or you would not keep it. You 
should have duplicates of your records in some other place in 
case something happens to the originals. Therefore, you need 
theabili ty to back up files. 

• If something does happen to your original data, you must be 
able to obtain, or restore, the duplicate records. 

• You need the ability to list, or display, your files, with 
their names and other attributes. 

• Files often grow very large and their usage can change over 
time. Therefore, you may want to change a file's organization 
from sequential to indexed; or you may want to reload a file 
that has grown very large to use space more efficiently~ 
Conversely, usage and file size might decrease and you may 
want to make a file simpler. It is also possible that the 
information in one file is suitable for another application~ 
In all these cases, you would want to .be able to convert a 
file into a new one, perhaps changing some attributes 
(including organization) to make it more usable. 

• You want to be able to design and create files that you 
require. 

• Creating an indexed file and putting records into it can be 
complicated and time-consuming. You would want a procedure 
indexed file loading -- that would produce an optimal indexed 
file quickly and efficiently. 
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1.2 RMS-ll IMPLEMENTATION OF DATA ORGANIZATION AND ACCESS 

RMS-ll provides file structure capabilities that allow you to organize 
your data within a computer's memory using the same concepts that were 
described in Section 1.1 for paper records in filing cabinets. 

The following sections briefly present 
capabilities. For more details, see 
Introduction. 

1.2.1 RMS-11 Record Formats 

the RMS-ll file structure 
RSX-llM!M-PLUS RMS-ll: An 

RMS-11 supports the following record formats that allow you to define 
the size of your data records: 

• Fixed length -- Every record in the file is the same size. 

• Variable length Records in the file are of different 
lengths, up to a maximum size that you can optionally specify. 

• Variable with fixed control -- Records 
different lengths, up to a maximum 
optionally specify, and in addition, a 
area precedes the data. 

in the file 
size that 

fixed-length 

are of 
you can 
control 

• Stream -- Records consist of. a continuous stream of ASCII 
characters delimited by a special termina·tor character or 
sequence of characters. 

• Undefined -- Records in a file may have no record format or 
may be in a format different from the four standard RMS-ll 
formats. 

RMS-ll's support of stream and undefined record formats provides 
limited support for non-RMS-ll files. 

1. 2.2 RMS-11 File Organizations 

RMS-ll supports three file organizations: 

• Sequential -- Records are arranged within the file in the 
order in which they were written into the file. 

• Relative -- Records are stored in the file in 
fixed-length units Of storage, one record per cell. 
are numbered sequentially. These numbers, called 
record numbers, are identifiers for the records. 

cells, or 
The cells 
relative 

• Indexed -- Records are arranged in the file in ascending order 
by key. A key is a data field within the record that RMS-ll 
uses as an identifier to access the record. An indexed file 
must have one primary key and may optionally have other 
alternate keys. 
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1.2.3 RMS-11 Record Access Modes 

RMS-ll provides three record access modes for storing and retrieving 
records in files: 

• Sequential RMS-ll stores and retrieves records 
sequentiallYi one after another. 

• Random by key -- RMS-ll uses either a key (for an indexed 
file) or a relative record number (for a relative file or for 
a disk sequential file with fixed-length format records) as an 
identifier to gain direct access to an individual record in 
the file. 

• Random by record file 
an identifier to gain 
the file. The RFA 
establish~s for every 

1.2.4 RMS-ll utilities 

address (RFA) -- RMS-ll uses the RFA as 
direct access to an individual record in 

is a unique identifier thatRMS-ll 
record that it writes into a disk file. 

RMS-ll provides utility programs that can help you perform file and 
record maintenance: 

• RMSBCK -- The RMS-ll File Back-Up Utility transfers the 
contents of an RMS-ll file to another file, which may be on. 
another devicei to maintain the file should the original file 
be lost or damaged. 

.RMSRST -- The RMS-ll File Restoration Utility transfers files 
that were backed up using RMSBCK back to you so your programs 
can access them. 

• RMSDSP -- The RMS-ll File Display Utility produces a concise 
description of any RMS-ll file, including back-up files. 

• RMSCNV -- The RMS-ll File Conversion utility reads records 
from an RMS-ll file of any organization and loads them into 
another RMS-ll file of any organization. 

• RMSDES -- The RMS-ll File Design Utility allows you to pesign 
and create sequeptial, relative, and indexed files. 

• RMSIFL -- The RMS-ll Indexed File Load utility reads records 
from an RMS-ll file of any organization and loads them into an 
indexed file. 

1. 3 RMS-ll PROCESSING ENVIRONMENT 

The RMS-ll software routines organize data on your computer, 
implementing the concepts discussed in the previous sections, and 
provide the interface between your application programs and the 
computer system. 

Your computer system consists of layers of hardware and software: 

• The hardware devices -- magnetic tapes and disks -- to store 
the data. 
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• The operating system software file control processor, 
device drivers -- controls the hardware to maintain files. 

• RMS-ll software controls the internal structure of files (as 
described in Section 1.2). 

• Your application program makes use of these hardware and 
software facilities to process data records and files. 

1.3.1 RMS-ll Task Structure 

You use the RMS-ll software routines by combining them with a program 
you have written in a language that implements RMS-ll. 

NOTE 

Only MACRO-II programmers can use the 
full set of RMS-ll capabilities. 
Subsets of these capabilities are 
available to high-level language 
programmers. See your high-level 
language documentation to determine: 

• Which RMS-ll facilities you can use 
in your high-level language 

• The syntax for using these facilities 

Once you write your program, you convert it to object code, using 
either a compiler or an assembler. 

To combine your object code with the RMS-ll routines, you use the task 
builder, which converts object code (modules) to an executable form 
called a task. In the process, the task builder not only combines 
different object modules, but may also arrange the task so that some 
executable modules overlay each other when the task is run. 

You can combine RMS-ll routines with your object code in either of the 
following ways: 

• 

• 

In the task itself, with nonoverlaid 
disk-resident overlay s.tructure 

routines 

In memory-resident overlays, a form apart from your task 

or a 

The primary difference 
memory-resident overlays 
and disk-resident overlaid 
program must have its 
memory-resident overlays 
disk-resident overlays 
significantly faster. 

between these techniques is that 
can be shared among programs. Nonoverlaid 
routines cannot be shared; each accessing 

own copy of such routines. In addition, 
eliminate the I/O opera~ions needed to bring 
from disk, thereby making your tasks run 

In either case, your-task takes a logical form in which program code 
exists in one part of the task and the RMS-ll routines run in another 
part. When your program performs an RMS-ll operatIon, it sets up the 
necessary parameters and data and calls the appropriate RMS-l1 
routine. Control jumps to that part of the task, the routine ~uns to 
completion, and control returns to your program. Figure 1-8 
illustrates this logical structure. 
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Figure 1-8:· RMS-ll Task Structure 

Also part of the task are storage structures, which generally take 
three forms: 

• User buffers -- These buffers are used to pass data records 
between your program and RMS-Il. They are available to your 
program and the data in them can be manipulated, read, 
changed, used for calculations, and so on. 

• I/O buffers ~- For each file your ,program has open, RMS-II 
normally requires at least one internal I/O buffer. All data 
going to or coming from disk is stored in---an I/O buffer as 
follows: 

RMS-II requests the file control processor to move block(s) 
from a disk file into this buffer to satisfy your program's 
requirements. Each request normally specifies the same 
number of blocks, called an I/O unit. The size of the I/O 
unit depends on the file organization, file design, and 
settings at access time (such as multiblock count). 

RMS-II moves records between the I/O buffer and the user 
buffer. Your program can also directly access a reco~d 
within the I/O buffer in certain restricted circumstances. 

• Control structures RMS-II control structures, called 
control blocks, are used to communicate between your program 
and the RMS-Il routines and with each other. Some are 
accessible to your program; others are for RMS-ll internal 
use only. 
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1.3.2 RMS-ll Record Processing 

The RMS-ll stream and record operations are the interface between your 
program and the data records your program requires. 

Before your program can access records in a file, the file must be 
open and an access stream must be initiated. 

Most high-level 
access streams 
use the RMS-Il 
to implement 
techniques. 

NOTE 

languages do not support 
at the user level. They 

access stream facilities 
their own file access 

An access stream is a path to the file's data records; record 
operations are performed via that stream, one operation at a time. 
RMS-ll keeps track of the stream's position, or context, in a file, in 
terms of current record and next record. The stream's position 
changes at the completion of an operation. Chapters 3, 4, and 7 
discuss context for record operations with the different file 
organizations. 

The stream operations control the stream associated with a file. They 
are: 

• CONNECT -- initiates an access stream. 

• DISCONNECT -- terminates a stream. 

• FLUSH -- writes the currrent contents of I/O buffers to the 
file. 

• FREE -- releases control of the record or block most recently 
accessed (and locked) by the stream. 

• REWIND -- resets the stream context to the first record in the 
file. 

• WAIT -- suspends processing until an outstanding asynchronous 
operation is completed. 

The record operations process records within a file. They are: 

• FIND -- reads a record from a file to an I/O buffer and sets 
the current-record context to that record. 

• GET -- reads a record from a file to an I/O buffer and then to 
a user buffer, and sets the current-record context to that 
record. 

• PUT -- writes a new record from a user buffer to an I/O buffer 
and then to a file. 

• UPDATE -- transfers a modified record from a user buffer to an 
I/O buffer and then to a file, overwriting the previous copy 
of the record in the file. 

• DELETE -- removes an existing record from a relative or 
indexed file. 

• TRUNCATE -- effectively deletes all records in a sequential 
file from the current record to the logical end-of-file. 
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For the FIND, GET, and PUT operations, your program specifies the 
record access mode -- sequential, random by RFA (FIND and GET only), 
or random by key -,.. which determines which record is the target of the 
operation. 

See ~SX-IIM/M-PLUS RMS-ll: An Introduction, Chapter 4,· for a more 
detailed introduction to record processing. Chapters 3, 4, and 7 of 
this user's guide describe specifically how the record operations work 
depending on the file organization selected and (for FIND, GET, and 
PUT) the access mode specified. 

1.3.3 RMS-ll Fi~e Processing 

RMS-ll must manipulate the contents of files so that it can process 
records. However, RMS-ll does not directly perform the actual file 
manipulation, and the flow of data, control, and overlay segments that 
the file manipulation entails. RMS-ll issues requests to the file 
control processor to perform the actual I/O and other operations on 
the files. Thus, the fi~e .control processor's iriternal operation, 
while invisible to RMS-ll, can·affect your program'sperfotmance. 

The file control processor is not concerned with the data records in a 
file. It knows only virtual and logical block numbers, directories 
and otber information, and the disk drivers involved~ Therefore, 
RMS-ll can direct file manipulation as long as it makes the proper 
requests to the file control processor. To do so, RMS-ll maintains 
the following structures, or I/O units: 

• Blocks -- The I/O 
can adjust the 
that more than 
operation. 

unit for sequential files is the block. You 
block count for each record access stream so 

one block ·can be moved during each I/O 

In addition, you must decide whether records can cross block 
boundaries. When records can cross block boundaries, RMS-ll 
can pack them with optimal density in the file because a 
record can be stored in one or mtire blocks. This is called 
block spanning. Figure 1-9 illustrates block spanning. 

When records are restricted by block boundaries, each record 
must be no more than 512 bytes (one block) long, and unused 
bytes may be left at the end of each block. 

• Buckets -- The I/O unit for relative and indexed files is the 
bucket. A bucket consists of one-or more blocks that RMS-ll 
treats as a unit. Records can cross block boundaries but they 
cannot cross bucket boundaries. Bucket size is a file 
attribute that you specify when you create the file. 

Buckets are an RMS-ll concept, so when RMS-ll .initiates an 
operation for a relative or indexed file, it requests the file 
control processor to move a bucket by specifying the virtual 
block number for the first block in the bucket and the size of 
the bucket in bytes. Note that buckets are fixed within the 
file; once created, buckets contain the same virtual blocks 
at all times. 
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processor to 
This is called 
advantage of, 

RMS-l1 provides access sharing; that is, your program can control who 
can gain concurrent access to the data ina file and what type of 
operations they can perform on the data. See Section 2.2.3 for more 
information on access sharing. 

The RMS-ll directory and file operations perform the file-level 
functions. The directory operations affect file specification entries 
in directories (not the contents of the files). They are: 

• ENTER -- places a disk file specification in a directory. 

• REMOVE 

• RENAME 
new one. 

• PARSE 
program. 

deletes a disk file specification from a directory. 

replaces an existing disk file specification with a 

returns file specification information to your 

• SEARCH -- examines one or more directories for a specified 
file and returns the file specification and location. 
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NOTE 

Most high-level languages do not support 
the directory operations. See your 
high-level language documentation. 

The file operations provide access to files. They are: 

• CREATE -- creates a new file with the attributes you specify 
and opens it for processing. 

• OPEN -- makes an existing file available for processing. 

• CLOSE terminates access to a file. 

• ERASE deletes a file and removes its directory entry, if 
one is specified. 

• EXTEND -- increases the allocated size of an open file. 

• DISPLAY -- returns file information about an open file to your 
program. 

See RSX~llM/M-PLUS RMS-ll: An Introduction, Chapter 4, for a more 
detailed introduction to fIle processing. Chapters 3, 4, and 7 of 
this user's guide describe specifically how the file operations work 
depending on the file organization selected. 

1.4 FILE ATTRIBUTES 

When you create an RMS-ll file, either through a program (using the 
CREATE file operation routine) or by using the RMSDES utility, you 
must specify the following information: 

• Medium -- Disk or magnetic tape. You can also create files on 
unit-record devices, such as line printers and terminals. 
Note that relative and indexed files are restricted to disk 
devices. 

• File specification -- The name you assign to a file enable$ 
RMS-ll to find the file later. Use the file specification 
conventions specific to your operating system. 

• Protection -- RMS-ll allows you to assign a protection code to 
a file when you create it. Use the protection codes specific 
to your operatlng system. 

• File organization -- Sequential, relative, or indexed. 

• Record format 
or undefined. 

Fixed length, variable length, VFC, stream, 

• Record size For fixed-length records, the size is. the same 
for every record in the file. For variable-length records, 
the size is the maximum length any record can be •. 

For VFC records, there are two size specifications: (1) the 
fixed length of the control area, and (2) the maximum length 
of the variable data area. 

RMS-ll also keeps the length of the 
stored in a sequential file for 
records. 
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• Block spanning (sequential files) -- Whether records can cross 
block boundaries. 

• Bucket size (relative and indexed files) 
blocks in each bucket. 

The number of 

• Maximum record number (relative files) -- The maximum number 
of records that the file will contain. 

• 

• 

Keys (indexed files) -- "'he number of keys; the position and 
size of each key; the data type for each key; and other key 
characteristics. 

Record-output handling You can specify three (mutually 
exclusive) types of handling for records being written 
directly to a unit-record device~ although you need not 
specify any: 

Carriage control -- The device driver inserts a linefeed 
character as·a prefix to each record and a carriage-return 
character as a suffix to each record before passing it to 
the device. 

FORTRAN -- The device interprets the first byte of each 
record as a FORTRAN forms control character. 

Print file format (VFC records with a fixed header size of 
o or 2 bytes) -- RMS-ll interptets the first byte of the 
header as a prefix for the record and the second byte as a 
suffix for the record. 

• File.allocation -- You must specify two quantities: 

• 

Initial allocation -- the size of the file in blocks when 
it is created. 

Default extension quantity -- the number of blocks to be 
added to a file when RMS-ll automatically extends it. 

Contiguity 
the file 
blocks. 

Whether the disk space initially allocated to 
is to be allocated in continuous, adjacent logical 

• Placement control -- Where the file is to be physically 
located on the disk. 

During the file creation process, RMS-ll stores this information, 
called the fHe attributes, in the file directory and, for relative 
and indexed files, in the first blocks, or prologue, of the file as 
well. 

After creation, for the life of the file, RMS-ll gets inforI'Qation 
about a file from the file itself. This offers several advantages: 

• Most file attributes do not change. 

• You can design your RMS-ll files offline. No program 
accessing the files need specify attributes (except those that 
may be required by high-level languages), because RMS-ll 
requires only a file specification from a program to open a 
file. 

• You can open an RMS-ll file with its file specification only. 
After that, RMS-ll enables you to read the file attributes. 
You can write a program or use the RMSDSP utility to display 
those attributes. 
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Note that some of the attributes are interdependent; that is, the 
selection of one attribute directly affects, or restricts, other 
attribute options. File organization, record format, and medium are 
all interdependent. For example, if you select magnetic tape medium, 
you must use sequential file organization. And if you select VFC 
records, you cannot use indexed file organization and you must use a 
disk device. 

Table 1-1 lists 
interdependencies. 

the record format and file organization 

Table 1-1: Rec.ord Formats and File Organizations 

File Record Format: 
Organization Fixed Variable VFC Stre.am Undefined 

Sequential: 

Magtape Yes Yes No No No 
Disk Yes Yes Yes Yes Yes 

Relative Yes Yes Yes No No 

Indexed Yes Yes No No No 

Chapters 3 through 7 discuss your file design options in detail, 
depending on your selection of file organization. Chapter 2 provides 
information to help you make that selection. 

1. 5 PRO.CESSING BY BLOCK ACCESS 

Your program can bypass RMS-ll record processing and process any 
RMS-ll file in a mode called block access. 

Your program can read or write blocks in a file either sequentially or 
(on disk only) randomly by virtual block number (VBN) ~ But your 
program must be able to interpret the contents of those blocks. 

See RSX ... IIM!M"'PLUS RMS ... ll: An Introduction for an introduction to 
block access and processing. See the RSX-llM/M-PLUS RMS-ll Macro 
Programmer's Guide for detailed information on block access and 
processing. 
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CHAPTER 2 

APPLICATION DESIGN 

When you write an application program, you want that program to input 
data, process it, store it, update it if necessary, and at intervals 
output it in the proper formats. 

You want all this to happen simply, quickly, and accurately. You must 
therefore take the time to design your application by carefully 
considering RMS-ll file structure and file and record processing 
capabilities. Important RMS-ll cOnsiderations are data storage 
medium, record format, file organization, access mode, allocation, 
overlays, and so on. . 

If you do not consider RMS-ll capabilities when you design your 
application, you may not get the bestpeformance possible from your 
application because of the defaults that will be applied automatically 
to your files (see Section 2.1). 

Example: The first time one user created a file, she 
high-level language program and took all the defaults. 
loaded records into the file; the process was quite lengthy. 

used a 
Then she 

However, when she re-examined the file and re-created it applying some 
RMS-ll design considerations, the record insertion process went 10 
times as fast. 

Example: Some users, accustomed to programming with BASIC-PLUS record 
I/O, learned that RMS-ll uses 15 bytes of control data in each bucket 
and 7 bytes of control data for each fixed-length record in an indexed 
file (see Chapter 6). Then, because they were accustomed to working 
with whole blocks, they set up single-block buckets (512 bytes) and 
subtracted RMS-ll overhead (22 bytes) to come up with a record size of 
490 bytes. 

But when they used those files, the users were alarmed to see them 
grow at high rates. They had not iead that RMS-ll preserves its fast 
sequential and alternate key access during random insertions by moving 
records and leaving behind 7-byte pointers (see Chapter 5). 
Therefore, when one of those 490-byte records was moved, it left 
behind 7 bytes, which meant that no other record fit into that bucket. 
Soon the file was filled with practically empty buckets that could not 
be used because the designers did riot allow for the full implications 
of RMS-ll structure. 

If you develop an application with a high-level language, you probably 
will not worry about RMS-ll. You will accept the language's concept 
of design, if any. It is possible, however, that the defaults the 
language uses in its interface with RMS-llare not well suited for 
your application. 
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This chapter presents general design considerations that apply to all 
application designs and information that will help you make the first 
important design decision: selection of a file organization. 

2.1 WHEN TO DESIGN 

There are two times to design an application: 

1. Before you write the application, especially if you have: 

• Large file(s) 

• Many users simultaneously accessing the file(s) 

• A high level of activity (many records read, written, 
updated~ or deleted in a given time period) 

2. After you write the application, if you are not happy with 
i t.s performance. 

Often, poor 
inappropriate 
improvements by 
they affect the 

performance 
for your 
studying the 
structure of 

results from default values that are 
application. You can frequently find 
nature and source of the defaults and how 
your application and your file. 

Basically, defaults have three sources: 

1. Source language compilers 

In many instances, source language compilers such as COBOL-Bl 
or BASIC-PLUS-2 supply default values for RMS-ll file 
attributes and/or facilities. 

Example: RMS-ll does not calculate an optimal bucket size 
for indexed files. Rather, the program creating the file 
must specify a bucket size. When that program is the product 
of a compiler, the bucket size can be explicitly specified in 
the source code or it can be implicitly set by the compiler, 
using a default value. 

2. RMS-ll 

The interface between the RMS-II routines and· your program 
has the same structure _in all tasks, regardless of their 
source (PDP-II COBOL-BI, RPG, MACRO-II, and so on). This 
interface consists of control blocks (see the RSX-IIM/M-PLUS 
RMS ... ll Macro Programmer's Guide for details). The 
informatron-- Provided by your--program in these blocks 
effectively controls RMS-II, causing it to create,· open; 
access, and close files. However, when explicit information 
is not provided, RMS-li uses its default values. 

3. Operating system 

RMS-II acts as an intermediary between your task and the 
operating system. As such, RMS-Il can supply control 
information for system functions such as protection codes. 
However, if RMS,..,11 supplies no control data, the system uses 
its defaults. 
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2.2 DESIGN CONSIDERATIONS 

When you design your application, you are .concerned primarily with 
four design considerations: 

1. Speed -- You want to max imi ze the speed wi th which the 
programs process data. 

2. Space -- You want to minimize the room for the data and the 
task on disk and the memory the task takes to run. 

3. Shared access You want your data to be exactly as 
accessible to the people using the computer system as 
necessary. 

4. Ease of design You do not want to spend more time than 
necessary writing the application. 

Remember, the importance of design is proportional to the complexity 
of the file organization. That is, design is least important for 
applications using sequential files and most important for 
applications using indexed files. 

2.2.1 Speed 

You can make many performance (speed) decisions before you have to 
consider anything else. Therefore, the first criterion to apply 
throughout the design process is minimize 1/0 time. 

The mechanics of the mass ,storage devices on your system consume most 
of the time for any RMS-ll operation. The memory-resident routines 
that prepare the data for I/O or process it afterwards are very much 
faster (one to three orders of magnitude) • 

An application's entire environment affects I/O time: 

• File structure -- A variety of file attributes affect I/O 
time, including: 

bucket size (for ~ relative or indexed file) 
number of keys (for an indexed file) 
number of duplicate key values (for an indexed file) 
initial file allocation 
default extension quantity 

• File size -- The number of records in the file affects the I/O 
operations required to scan a file sequentially or follow an 
index. 

• Program -- Your program affects I/O time by requiring I/O 
operations for file operations (OPEN, CLOSE, and so on), 
record operations (GET, PUT, and so on), and overlays. 

• RMS-ll The RMS-ll routines can be structured as 
disk-resident overlays or as memory~resident overlays. 

• File control processor -- Besides requiring overlay segments 
from disk, the file control processor can also request I/O 
operations required to map virtual blocks of the file to 
logical blocks on the storage device. 
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• Device hardware -- The storage device that contains the task 
and data files is the primary contributor to the length of an 
I/O operation. The type of device chosen (moving~head, 
fixed-head, and so on) and the demands on it (amount of I/O 
activity for that device within the system) are crucial to I/O 
performance. 

Figure 2-1 illustrates this environment. 

rig@ 
TIME 

DATA 

DEVICE 
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Figure 2-1: Time Factors in an I/O Operation 

2.2.2 Space 

RMS-ll requires space for three reasons: 

1. To store data in a file 

2. To store the RMS-ll routines either (a) on disk when they are 
not in use, or (b) in memory when they are being executed 

3. To buffer data in memory while the task runs 
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2.2.2.1 Data Storage - The space RMS-11 requires to store data is 
proportional to the organization of the file, ,and to the processing 
capabilities of that organization: 

• 

• 

Sequential file 
your data an 
fixed-length, 
even-numbered 
variable-length 
each record. 

organization -- RMS-11 adds to the size of 
empty byte, if necessary, to align each 

variable-length, or VFC record on an 
byte boundary. When the file contains 
records, RMS-11 also prefixes a count field to 

Relative file organization -- RMS-ll constructs 
record storage cells based on the length of the 
cells are 1 byte longet than the fixed size of 
records or 3 by.tes longer than the maximum size 
variable-length records. 

a series of 
records. The 
fixed-length 

specified for 

• Indexed file organization RMS-11 adds to your data: 

An index for each defined key. 

15 bytes of formatting information for each bucket. 

A 7-byte header for each record. 

A count field for each variable-length record. 

Other overhead of varying lengths for records RMS-l1 moves 
during file activity and for deleted records. 

You should keep the size of records to the minimum required for your 
application. 

2.2.2.2 Task Size - The space RMS-11 routines occupy in a task 
depends on the method you use to link the routines with your program. 
See Section 8.1 for more details. 

2.2.2.3 Buffer Sizes - You can vary the size of the I/O buffers 
RMS-ll uses to store data in memory. Generally, the larger the 
buffers, the faster the task processes data. See Section 3.5.3, 
Section 4.5.3, or Section 7.4 for the fileorganization(s) you are 
interested in. 

2.2.3 Shared Ac.cess 

Shared access revolves around the question: Who is allowed to read 
from or write to a file? The answer involves your operating system's 
protection codes, your access declaration, and your sharing 
declaration. 

System Protection Codes: Before yOu can access an RMS-11 file, you 
must log into your computer system using an account number that will 
allow you the kinds of access you need when your access request is 
validated against the file's protection codes. 
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Operating systems allow you to assign a protection code to each file 
when it is created. This code describes concentric circles of users 
who are allowed different levels of access to that file. See your 
operating system documentation for specific protection conventions. 

Figure 2-2 illustrates the system protection concepts. 

READ ACCESS WRITE ACCESS 

EXTEND ACCESS DELETE ACCESS 

RSX-11 M/M-PLUS 
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Figure 2-2: Sy~tem Pr.otection Concepts 

Acc.ess Declarations: Your program must declare the types of access 
you need by specifying the record or block operations it intends to 
perform on the file~ as follows: 

• Read-only access is granted if your program specifies that 
only FIND/GET or READ operations can be performed. 

No PUT, UPDATE, DELETE, TRUNCATE, or WRITE operations will be 
allowed, nor will any other operation which·,would modify the 
file (an EXTEND operation, for example, will not be allowed 
for read-only access). 

• Read/writ~ access is granted if your program specifies that 
PUT, UPDATE, DELETE, TRUNCATE, or WRITE operations can be 
performed. FIND/GET and READ operations will also be allowed, 
as will EXTEND operations. 

Note that, in addition to any access declaration, a ;CREATE 
operation always forces read/write access so that the newly 
created file can be populated (using PUT operations for recor~ 
access or WRITE operations for block access). 
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Sharing Declarations: Your sharing declaration specifies the types of 
access to the file that your program is willing to allow to other 
programs that request access to the file at the same time that your 
program is accessing it. ' These declarations can be: 

• No sharing -- You do not want any other program to access the 
file. 

A no-sharing specification in your sharing declaration 
overrides any other sharing specification you may also have 
included, and guarantees that no other program will have 
concurrent read/write access to the file. That is, no other 
program will be able to modify the file. 

Note, however, that it is not possible to guarantee that 
concurrent read-only accessors will be denied access. 

• Read-only sharing -- You are willing to allow other programs 
read-only access to the file. 

• Read/write sharing -- You are willing to allow other programs 
read/write, as well as read-only, access to the file. 

• Sharing with user-provided interlocks (sequential files only) 
This specifies a special form of sharing among a group of 

programs that includes any number of read-only accessors and 
at most one read/write accessor. 

User-provided interlocks offer a limited form of access 
sharing of sequential files. If the file organization is 
sequential, this specification in your sharing declaration 
overrides any other sharing specification (except no sharing) • 
For any other file organization, this specification is 
ignored. 

NOTE 

High-level languages may use slightly 
different terms to designate the access 
and sharing declarations, and may not 
provide equivalents for all the sharing 
options. See your high-level language 
documentation. 

Once the operating system's protection checks are passed, RMS-ll and 
the operating system cooperate to determine whether the type of access 
you request (your access declaration) and the type of sharing you 
permit (your sharing' declaration) are consistent with any other 
current accessors of the file. 

If no other tasks have accessed the file at the time that your program 
requests access, your access request must only pass the system 
protection checks to be granted. However, if one or more programs 
already have access to the file, RMS-ll and the operating system will 
use the access and sharing declarations of those programs along with 
those of your program to determine whether your program will be 
allowed concurrent access. 

No-sharing and read-only declarations are processed as described above 
for files of all organizations and access method (block or record). 
In other cases, however, RMS-ll and the operating system interpret the 
access and sharing declarations in the manner best suited to the 
file's organization and the access method, as described in Section 3.4 
for; sequential files, Section 4.4 for relative files, and Section 7.1 
for indexed files. 
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NOTE 

As noted, file sharing is a cooperative 
effort between RMS-ll and the operating 
system. The RMS-ll processing 
algorithms depend upon the detailed 
nature of this cooperation. If you 
access a file concurrently with multiple 
programs, some of which use RMS-ll and 
some of which do not, the results may be 
unpredictable. 

2.2.3.1 Bucket Locking - Any time a record is updated, accessing 
programs must 'be assured that the data written to the file is current 
until the record is re-accessed and the record updated again. 

If no control is placed on access, two or more programs could access 
the same record~ one after the other, and update it, one after the 
other. Only the last update would remain in the file. Access sharing 
could thus impair data integrity. 

To ensure data integrity, RMS-ll uses bucket locking for a relative or 
indexed file when the file is open for write-shared access. From that 
point, RMS-ll requests the operating system to lock each bucket read 
from disk until RMS-ll explicitly releases the bucket. After a GET, 
FIND, or mass-insert PUT operation, only the bucket containing the 
data. record remains' locked. (See Chapter 7 for information on mass 
insertion.) While that bucket is locked, no other program can access 
it. 

RMS-ll requests the operating system to unlock such a bucket when one 
of the following occurs: 

• The GET, FIND, or PUT operation fails. 

• The GET or FIND operation succeeds 
declared read-only access to the file. 

if the program has 

• The program initiates another record operation that accesses a 
different bucket. 

After the bucket is unlocked, other programs can access it. 

Example: Programs A and B are write-sharing a file named RMSREL.DAT. 
Both try to update relative record number ;L2. However, program B 
initiates the prerequisite GET operation firstj locking the bucket 
containing the record. The operating system keeps program A from 
accessing that bucket while program B uses it. After program B 
updates record 12, RMS-ll unlocks the bucket and the operating system 
allows program A to'get record 12 (including' program B's updated 
data). Figure 2-3 illustrates this example. 

Bucket locking incurs costs: The operating system administers bucket 
locking. It establishes, for each file, a list of virtual blocks that 
are locked. The system must ~can this list every time RMS-ll performs 
an I/O operation and then either permit the operation or return an 
error. In addition to this lock-list overhead, extra instructions are 
executed to lock and unlock the buckets. 
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2.2.3.2 Sharing among Access S.treams - In addition to the bucket 
locking used when programs allow sharing, RMS-II provides its own 
version of bucket locking when a program accesses a file for 
write-type operations. This locking allows multiple streams to share 
the file. RMS-II bucket locking works the same way as the locking 
provided by the operating system, except that the locks can be 
encountered only by different access streams within the same program. 

The overhead for RMS-II bucket locking is small. 
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2.2.3.3 programming Considerations - For the greatest flexibility at 
run time, you should assume that access to any record by your program 
can be denied because the bucket containing the record is locked. 
RMS-ll returns the ~rror code ER$RLK when the bucket is locked by 
another access stream in the same or in another program. 

Therefore, you should use the following techniques when you write 
RMS-ll programs that involve shared access: 

• Never keep a bucket locked longer than necessary. You should 
follow any successful GET or FIND operation with another 
record operation of any type as soon as possible. The second 
.operation unlocks the bucket locked by the read-type. 
operation. 

• 

Alternatively, you can release the bucket explicitly with a 
FREE operation. A FREE operation releases only the bucket 
locked by the access stream associated with the operation. 

If your program detects an ER$RLK error (or 
language equivalent), its error processing 
number of access streams active on the file: 

its high-level 
depends on the 

Single stream Set up a loop that stalls, then 
re-initiates the record operation until RMS-ll indicates a 
successful completion. 

Multiple streams -- Do not set up a loop that continuously 
re~initiates the record operation. You ihould either (a) 
continue processing on the other streams, attempting the 
record operation on the locked-out stream periodically, or 
(b) release the buckets locked by all other streams, then 
re-initiate the record operation that failed. Any 
GET-UPDATE or FIND-UPDATE sequences interrupted on the 
other streams must be restarted, because the release of a 
bucket destroys the record context. 

2.2.4 Ease of Design 

When you design and write your application, you should 
yourself and the person who will maintain the application. 
following design guidelines in mind: 

consider 
Keep the 

• Keep things simple. You can apply this criterion to the whole 
development process, from program flowcharts to the record 
layouts to file organization and design. 

Example: From sequential through indexed, the RMS-ll file 
organizations offer increasing capabilities, but they are also 
increasingly complex. Choose the organization that supplies 
enough capabilities, but no mor~. For instance, if you want 
to randomly access a file by a single key only, you might use 
a relative file and a hashing algorithm instead of an indexed 
file. 

• Apply optimizations one by one until you reach a satisfactory 
level of performance. Generally, further improvements are not 
necessary. 
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Example: The optimization of performance of applications 
using indexed files can be involved, but you do not have to 
use every technique discussed in this manual. You should only 
satisfy current performance requirements. For instance, when 
an application program needed optimization, the indexed file 
being read was made contiguous (see Chapter 6) and the RMS-ll 
overlay structure was changed (see Chapter 8). Execution time 
dropped from 16 minutes to 8.5. Since this performance was 
adequate, no further optimizations were considered. 

Some optimizations apply to one type of record operation, but 
not to others. Determine whether an optimization will benefit 
your processing before you implement it. 

2.3 DESIGN PROCESS 

The first step in the design process is the selection of the file 
organization. Section 2.4 presents information to help you make this 
selection. 

Once you have selected a file organization, go to the appropriate 
chapter(s) : 

Sequential 
Relative 
Indexed 

Chapter 3 
Chapter 4 
Chapters 5, 6, 7 

Each chapter discusses file structure (physical and conceptual) as 
well as design considerations. Indexed files are the most complex to 
design because of their power and flexibility. 

After you read the file organization chapter(s), go to Chapter 8, Task 
Building and Common Optimization Techniques. 

Finally, apply the design considerations described in these chapters. 
Write your application; create and populate the files, using the 
RMS-ll utilities when they are useful; use the programs and files in 
a simulated environment while you evaluate performance. YoU may haV'e 
to return to this manual, changing your design and/or combining 
attributes and RMS-ll facilities in different ways, until the 
application runs to your satisfaction. 

Good design is important to the success of your RMS-ll application. 

2.4 SELECTING A FILE ORGAN.IZATION 

Table 2-1 lists important 
sequential, relative, and 
you need. Table 2-2 points 
organization. 

features of each file organization 
indexed -- to help you decide which one(s) 
out advantages and disadvantages of each 

The sections that follow the tables provide information about two of 
the features of file organization -- record format and I/O techniques 
-- to help you select a file organization. 
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Table 2-1: File Organization Characteristics and Capabilities 

Characteristics 
and 

Capabilities Sequential 

Medium 
Disk Yes 
Magnetic Tape Yes 
unit Record Yes 

Record Formats 
Fixed-length Yes 
Variable-length Yes 
VFC (disk only) Yes 
Stream (disk only) Yes 
Undefined (disk only) Yes 

Overhead per Record None 

Access Modes 
Sequential Yes 
Random yes l 
RFA access (disk only) Yes 

Record Operations 
CONNECT 
DELETE 
DISCONNECT 
FIND 
FLUSH 
FREE 
GET 
REWIND 
TRUNCATE 
UPDATE (disk only) 
PUT 

I/O Unit 

I/O Techniques 
Deferred write 

Multiblock count 
Multiple access 

streams 
Multiple buffers 
Mass insertion 

Access Sharing 2 

Other Features 

Yes 
No 
Yes 
Yes 
Yes 
No 
Yes 
Yes 
Yes 
Yes 
Yes 

1 or more 
blocks 

Normal mode 
of operation 

Yes 
No 

No 
No 

Read-only 

Block-span­
ning records 

Relative Indexed 

Yes Yes 
No No. 
No No 

Yes Yes 
Yes Yes 
Yes No 
No No 
No No 

1 byte 7 bytes 

Yes Yes 
Yes Yes 
Yes Yes 

Yes Yes 
Yes Yes 
Yes Yes 
Yes Yes· 
Yes Yes 
Yes Yes 
Yes Yes 
Yes Yes 
No No 
Yes Yes 
Yes Yes 

Bucket Bucket 

Selectable Selectable 

Bucket size Bucket size 
Yes 

Yes 
No 

Read/write 

Maximum record 
number 

Yes 

Yes 
Yes 

Read/write 

Areas 

1. For fixed-format disk sequential files only. 

2. See exceptions in Section 2.2.3, and in Sections 3.4, 4.4, and 
7.1. 
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Table 2-2: File Organization Advantages and Disadvantages 

Organization 

Sequential 

Relative 

Advantages 

Simplest organization. 

Optimal use of disk and 
memory: 

• minimum overhead on 
disk 

• block spanning 

Optimal if application 
accesses all records on 
each run, except if file 
must be write-shared. 

Most versatile in record 
formats: 

• exchange data with 
non _RMS-ll systems 

• compatible with 
RSX-llM/M.,.PLUS 
FCS files l 

• compatible with ANSI 
magnetic tape format 

• compatible with 
RSTS/E stream files l 

Most versatile in storage 
media; file is portable. 

Random by key (RRN) 
record access available 
on fixed-format disk 
Sequential files. 

Random access in all 
languages. 

Allows deletions. 

Allows random GET and 
PUT operations. 

Disadvantages 

To get a record, most 
high-level languages 
must aCCess all records 
before it (no access by 
RFA or by key).2 

You can add records only 
at end of file. 2 

Interactive process is 
awkward: operator must 
wait as a program searches 
for a record.2 

Certain compiled programs 
cannot access a record 
already passed without 
c-losing and re-opening 
file (REWIND is not 
available) • 

You can delete records 
only at end of file; Use 
TRUNCATE record operation. 

Sharing normally' restricted 
to multiple readers. 

Restricted to disk. 

File contains a cell 
for each cell number 
between 1 and last 
record in file; data may 
not be stored densely. 

1.RMS-ll can read these file structures and return a record to your program. 
However, differences in data storage techniques among programming languages 
can keep the program from properly interpreting the contents of that record. 

2. These restrictions do not exist for disk sequential files with fixed-length 
record format; records in such files can be stored and retrieved using random 
by key iccess, depending on your high-level language capabilities. 

(Continued on next page) 
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Table 2-2 (Cont.): File Organization Advantages and Disadvantages 

Organization 

Relative 
(Cont. ) 

'Indexed 

Advantages 

Optimal if application 
accesses all records on 
each run and file must 
be write-shared~ 

Random and sequential 
access with low overhead. 

Can be write-shared. 

Most flexible random 
access: 

• by anyone of mul­
tiple keys or RFA 

• key access by generic 
or approximate value 

• you access records by 
record contents 

Duplicate key values 
possible. 

Automatic sort of re­
cords by primary and 
alternate keys; avail­
able during sequential 
access. 

Record location is 
transparent to user. 

Can be write-shared. 

Potential range of key 
values not physically 
present as in relative 
file organization. 

Variety of data formats 
for keys. 

2-14 

Disadvantages 

Program must know rela­
tive record number or 
RFA of record before it 
can randomly access the 
data; no generic access 
as in indexed file organi­
zation. 

Interactive access can be 
awkward if you do not 
access records by relative 
number: 

You can insert records . 
only into unused record 
cells~ but you can update 
existing records. 

RMS-II does not allow 
duplicate relative record 
numbers. 

Highest overhead on 
disk and in memory. 

Restricted to disk. 

Least simple program­
ming. 
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2.4.1 Record Formats 

RMS-11 supports all of the record form~ts described in the following 
sections for sequential files, but restricts relative and indexed file 
organizations (see Table 2-1). 

2.4.1.1 Fixed-Length Format - Records in the file are the same size, 
which is a file attribute. The fixed-length record format requires no 
RMS-11 overhead. 

RMS-ll limits fixed block-spanning records to 32,765 bytes, while the 
minimum valid record is 1 byte of data. 

2.4.1.2 Variable-Length Format -Records in the file can be· any 
length, up to a maximum of 32,763 bytes for block-spanning records. 
This file attribute is user-settable and optional. For each record, 
RMS-ll maintains a count field specifying the number of data bytes in 
the record. The size of this field depends on the storage medium for 
the file. 

• On disk, the count field is a 2-byte binary count that does 
not include the 2 bytes for the field. 

• On ANSI magnetic tape, the count 
decimal count that does include 
field. 

field is a 4-character 
the 4 characters for the 

Figure 2-4 illustrates the count field for each medium~ 

I LE~~:HI DATA RECORD ION DISK 
_ 11,1.~ _ _ 

I LENGTH 

. I ~l~\ I 

\ ./ " -- . DATA RECORD ION MAGTAPE 

,- ...... _-_...-' -~~ / -- ....-------------
ZK-1162-82 

Figure 2-4: Count Field on Disk and Tape 

Choose the variable-length record format i£: 

• The data truly varies in length, because the format adds the 
length field to each record's si~e. 

• You are designing a new application where future uses may 
require records to change length. 
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NOTE 

Changing a record's size during an 
UPDATE operation is restricted by file 
organization. See Sections 3.5.1, 
4.5.1, and 7.2 for more information on 
using the UPDATE operation with the 
specific file organizations. 

RMS.-ll limi ts var iable-length block-spanning records on disk to 32,763 
bytes because of the count field. RMS-ll allows records to reach this 
maximum only in sequential files; other file organizations place 
further ,restrictions on record size. The minimum valid record is 2 
bytes of zeroes, representing a null record. 

2.4.1.3 Variable-with~Fixed-Contr01 Format - A VFC record consists of 
twp areas: 

• 

• 

A fixed-length control area from 1 to 255 bytes long; the 
length is maintained as a file attribute. 

A variable-length area that can vary in length from zero bytes 
to the maximum record size stored as a file attribute. 

For each rec,ord, RMS-il maintains a count field specifying the number 
of data pytes in the. record including fixed and variable areas. The 
size of this field is a 2-byte binary count that does not include the 
2 bytes for the field. 

RMS-ll limits VFC block-spanning records. to 32,763 bytes because of 
the count field. The minimum valid record is 3 bytes: the length 
field plus the minimum fixed area of 1 byte.' The maximum variable 
area is the difference between 32,763 and the length of the fixed 
area. 

2.4.1.4 Stream Format - A stream record consists of a series of 
contiguous bytes. RMS-ll detects the end of a stream record only by 
the presence of one of the following terminators: 

Form feed (014 octal) 
Line feed. (012 octal) 
Vertical tab (013 octal) 

RMS-il limits stream format to disk sequential files. In addition, 
the format causes the most CPU overhead because RMS-Il must examine 
each record character by character for the terminator. 

During record operations, RMS-ll processes stream records as follows: 

• For FIND and GET operations, RMS-ll scans the stream of bytes, 
removiug leading NULL (000) characters and searching for the 
first occurrence of one of the terminators. If it finds a 
form feed, vertical tab, or line feed, RMS-ll. includes the 
terminator character with the record and considers the record 
complete. 
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If it finds a carriage return, RMS-ll checks the character 
following the carriage return. If the next character is a 
line feed, RMS-ll discards both characters (carriage return 
~nd line feed) and considers the record complete. Otherwise, 
RMS...,ll includes the carriage-return character in the record 
and resumes its search fora terminator. 

During a GET operation, RMS-ll moves each character included 
in the record into the user buffer as it scans the stream of 
bytes. RMS-ll does not move any data in~o the user buffer 
during a FIND operation. 

• For PUT and UPDATE operations, RMS-ll checks the last 
character of the record in the user buffer. If it finds a 
line feed, vertical tab, or form feed, RMS-ll moves the record 
as it is to the I/O buffer. If it~oes not find one of these 
terminators, RMS-ll moves the record to the I/O buffer and 
adds a c~rriage-return/line-feed pair to .the end of the 
record. 

2.4.1.5 Undefined Format - The undefined 
reads only blocks, not records. Your 
contents of each block. 

2.4.2 I/O Techniques 

format means that RMS-ll 
program must interpret the 

RMS-ll supports the following I/O techniques so you can adjust the 
performance of record operations: 

• Asynchronous record operations When operating 
asynchronously, your program may regain control before the 
operation is completed; that is, the program will continue 
processing while the operation is being performed. This may 
improve processing time. 

• Multiple access streams -- A stream can handle only one record 
at a time, but you can connect more than one access stream to 
a relative or indexed file if you want to: 

Process more than one record in a file at a time with 
asynchronous record operations. 

Maintain more than one context during the processing of a 
file. 

Each stream represents an independent, concurrently active 
sequence of record operations. 

• Deferred write -- Normally, every write-type record operation 
to a relative or indexed file results in a physical I/O 
operation. However, you can sometimes have RMS-ll defer this 
write function until the I/O buffer is full or must be used 
for another bucket. Deferred write is the normal mode of I/O 
for sequential files. 

• Multiblock count -- You can open a disk sequential file so 
that RMS-ll reads or writes more than one block of the file 
into the I/O buffer at a time. This capability speeds file 
processing, though the buffer gets bigger. For relative and 
indexed files, you achieve a similar effect by increasing 
bucket sizes. 
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• Multiple buffers You can allocate I/O buffers for a 
relative or indexed file beyond RMS-ll's minimum requirements: 
one for relative; two for indexed. If the file is not 
accessed for read/write sharing, RMS-ll uses the buffers to 
save in memory, or cache, buckets from the file, so that they 
do not have to be read again from disk if needed. 

For indexed files, RMS-ll cach~sthe root buckets from indexes 
that are used, saving one I/O operation on every random record 
operation. However~ for relative files,RMS-ll makes no 
distinction between buckets, saving them until it has to use 
the buffer. 

• Mass insertion -- Specified before the insertion of a series 
of records already sorted in ascending order by primary key~ 
this mode enables RMS-ll to store the records tightly and 
quickly in the file. Records can be mass inserted only at the 
logical end of an indexed file. Mass insertion significantly 
improves performance for single-key indexed files~ However~ 
with each additional key defined for the file, the percentage 
improvement is smaller·~ 
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CHAPTER 3 

SEQUENTIAL FIL.E APPLICATIONS 

This chapter discusses. sequential file structure, design, and 
processing. Sequential file design consists generally of determining 
the specific attributes, including record size and format, that will 
allow you to store, retrieve, and process your data efficiently within 
the sequential file structure. Your task design, along with your file 
design, will determine your record and file processing options, 
including record access modes. 

3.1 FILE STRUCTURE 

Physical Structure Sequential files carry almost no RMS-ll 
overhead. The operating system's file management software stores 
attributes in the file directory. RMS-ll stores data records 
beginning with virtual block number (VBN) 1. 

• If records cross block boundaries (span blocks), RMS-ll packs 
records into the file end-to-end, allowing for control 
information and padding. 

• If you do not allow records to span blocks, RMS-ll packs 
records into each block, allowing for control information and 
padding. 

NOTE 

You will waste space in your file if 
both of the following are true: 

• You do not allow records to span 
blocks. 

• Your records do not exactly fit into 
a block. 

TO be compatible with other file management systems, RMS-ll flags 
space that is not used at the end of each block. When you allow 
records to span blocks, the only unused space starts after the last 
record in the file. Table 3-1 lists the end-of-block indicators. 
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Table 3-1: End-of-Block Indicators 

Medium Record Format End-of-Block Indicator 

Disk All but stream -1 in word following last valid byte 

Disk Stream nulls (000) to end of file 

Magtape All circumflex (") to end of block 

For disk sequential files, RMS-ll uses the end-of-file attribute, 
stored in the file directory, to determine where the valid data in a 
file ends. This attribute includes a VBN and a byte offset within 
this block. The virtual block containing the logical end-of-file may 
not be the last block allocated to the file. 

RMS-ll reads the end-of-file attribute with the other file attributes 
when it opens a file. RMS~ll also updates the end-of-file in the file 
directory when it closes the file if the end-of-file changed while the 
file was open. The end-of-file changes if records were added to the 
end of the file or if the file was truncated. 

conceptual Structure -- In most cases, RMS-ll stores records in the 
sequence that programs write them, one after the other from the first 
record in the file to the last. For these files, RMS-11 can only 
access the records sequentially or, for disk files, randomly by record 
file address (RFA). 

The exception to this structure is the case of disk sequential files. 
with fixed-length record format. In this case, RMS-11 stores records 
in a series of fixed-length cells~ this is similar to relative file 
organization (see Chapter 4). The cell size is the size of the 
fixed-length record. Only one record can be put into a cell, and 
RMS-ll assumes that each cell contains a record. RMS-ll numbers the 
cells consecutively from 1 to n, where n indicates the last cell in 
the file. A cell number indicates the location of the cell relative 
to the beginning of the file, and is associated with the record as a 
relative record number (RRN). 

RMS-ll can access records in a fixed-format disk sequential file 
sequentially, randomly by RFA, or randomly by key (RRN). 

NOTE 

RMS-ll does not initialize the cells in 
a fixed-format disk sequential file, nor 
does it "know" whether a cell contains a 
valid record. Your applicatioh program 
must maintain this information. 

3.2 RECORD SIZE 

Records in disk sequential files are word aligned, which means that 
RMS-l1 adds a pad byte to the end of any record with an odd number of 
bytes. RMS-ll uses this convention to maintain structural 
compatibility with FCS-ll sequential files. 

You can define a sequential file so that RMS-ll writes records across 
the boundaries between blocks. Such a sequential file is optimally 
dense~ all bytes within its allocated space are used, except at the 
end of the file where no data has been written. 
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Table 3-2 shows the maximum data size for records in a sequential 
file. They are adjusted for RMS-ll restrictions and overhead. 

Format 

Fixed 

Variable 

Table 3-2: Sequential File Data Sizes (in bytes) 

Maximum Size 

With Block With.out Block 
Spanning Spanning 

32,766 512 

32,765 510 

Data Size Calculation 

Your data + MOD(DS/2)1 

Your data + 2 + MOD(DS/2)1 

VFC 32,765 509 

511 2 

Fixed + variable + 2 + MOD(DS/2)1 

Stream None Data + terminator(s) 

1.MOD(DS/2) is the remainder after the size of your data (DS) 
bytes is divided by 2: 

• MOD(DS/2) o if the data size is an even number of bytes. 

• MOD (DS/2) 1 if the data size is an odd number of bytes. 

For VFC, DS = fixed + variable 

in 

2. Assuming a I-byte terminator character; however, if the 
terminator is CR-LF, then the maximum length without block-spanning 
records is 510 bytes. Note that these figures do not include the 
terminator characters. 

3.3 FILE DESIGN 

For sequential files, the primary design considerations are: 

• Record format (see Section 2.4.1 for a description of the 
RMS-ll record formats) 

• Data storage medium 

• File allocation 

• Contiguity 

3.3.1 Data Storage Medium 

Sequential files can be accessed on both disk and magnetic tape. 
you select the medium for your file, you should consider 
fOllowing: 

When 
the 

• Speed of access -- How long can each record operation take? 
Tape is significantly slower than disk. 

• Frequency of use -- How often do you use the file? If you use 
it once a month, a quarter, and so on, you could store the 
file on tape and save your disk for more immediate purposes. 
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• Transportability -- Do you need to use the file on different 
operating systems? RSTS/E disk structure is not compatible 
with lAS, RSX-IIM/M-PLUS, or VAX/VMS, and vice-versa. If you 
need to use the file across these systems, you should consider 
using a magnetic tape file. 

3.3.2 File Allocation 

Disk file allocation involves two quantities: 

• Initial allocation quantity -- the number of blocks assigned 
to a file when you create it~ 

• Default extension quantity -- the number of blocks added to a 
file each time RMS-Il automatically extends it. 

3.3.2.1 Initial Allocation - Even with sequential files, where a file 
extension requires onl~ an allocation of blocks by the operating 
system; total allocation of the file when you create it is much more 
efficient~ 

You calculate the allocation (ALQ) , in blocks, for block-spanning 
records as follow.s: 

ALQ = (NRF*RSZ)/512 

where: 

ALQ is the allocation quantity in blocks 

NRF is the largest number of records that will be in the file at one 
time 

RSZ is the size of the record in bytes 

For variable-length or VFC records, use the average record size for 
RSZ, including 2 bytes for the count field. 

For fixed-length records, use the actual record size for RSZ. 

Be sure to round RSZ up to a multiple of 2 to account for word 
alignment ~ 

This allocation can be done by RMSDES or by your application program, 
depending on the capabilities of your high-level language. 

3.3.2~2 Default Extension Quantity - If the file cannot be totally 
allocated at creation time, you should establish a reasonable default 
extension quantity (DEQ) to minimize the number of (and the time spent 
on) file extensions. Even if the file is totally allocated when you 
create it, you should establish a reasonable DEQ in case the file gets 
bigger than planned. The time required for each file extension is 
significant, involving: 

• A call to the file control processor 

• possible I/O operations to bring file controi processor 
routines into memory 
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• I/O operations to read and change file directory information 

• I/O operations to read and change the disk free-block bit map 

A good ba'sis for calculation is the number of records add,ed to the 
file in a given period of time, such as a day; use the formula for 
allocation quantity in Section 3.3.2.1. 

The DEQ can be set by RMSDES or by your application program, depending 
on the ,capabili ties of your high-level language. If you do not 
specify a DEQ, it will default to zero whether you create the file 
with RMSDES or a high-level language. This means that RMS-ll will 
extend the file according to the operating system default for file 
extensions. 

Example.: You are inserting 1000 50-byte fixed-length records into a 
sequential file. Records do not span blocks; therefore, each block 
contains 10 records. The file is currently full; that is, no more 
records can be added without an extension. 

• If DEQ is zero, RMS-ll extends the file according 
system defaults, which are typically only a 
Therefore, in this example, if the system default 
RMS-ll extends the file 20 times. 

to operating 
few blocks. 

is 5 blocks, 

• If DEQ is 1, RMS-ll extends the file for every tenth PUT 
operation after the first, for a total of 100 extensions. 

• If DEQ is 25, RMS-ll extends the file 4 times. 

• If DEQ is 100 or more, RMS-ll extends the file only once. 

3.3.3 Contiguity 

Contiguity can significantly affect performance. Therefore, you 
should consider contiguity for a disk sequential file to mi~imize the 
time spent on each I/O operation. 

If the blocks in a file are not contiguous, they may be on different 
parts of the disk, and thus require significant head movement to 
access the file contents. _ 

Physical contiguity, however, ensures that the file is stored on one 
track or, at worst, adjacent tracks. Because the disk can read a 
track without moving the heads, file contiguity reduces head movement. 
This assumes that no other software is accessing the disk at the same 
time. 

Contiguity also enhances virtual-to-logical-block mapping (see Chapter 
8) • 

To ensure that the blocks in the file are physically contiguous, 
allocate the whole file when you create it (see Section 3.3.2.1) and 
specify that the allocation be performed contiguously. 

3.4 ACCESS SHARING 

Access sharing can be specified for 
described in the following sections. 
information on shared access. 
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3.4.1 Record Access to Sequential Files 

Because of their internal structure, record-structured sequential 
files are not read/write sharable in the manner of relative and 
indexed files. Thus, a read/write sharing declaration for such a file 
is converted internally to a read-only sharing declaration before the 
file is processed. 

As a result, multiple read-only accessors who have specified 
no-sharing, read-only sharing, or read/write sharing can access such a 
file concurrently as long as no read/write accessor is present~ or a 
single accessor who has specified no-sharing, read-only sharing, or 
read/write sharing can access such a file as long as no other accessor 
of any kind is present. Other combinations are rejected: the access 
and sharing declarations are incompatible. 

Limited sequential file sharing is p~ssible, however, in the case of a 
single read/write accessor in combination with multiple read-only 
accessors~ when the application programs involved (rather than RMS-II)­
can take responsibility for any interlocking required. 

In this case, the read-only accessors must specify sharing with 
user-provided interlocks to gain access~ the sharing declaration of 
the single read/write accessor 1S immaterial. Each read-only accessor 
cannot read beyond the logical end-of-file mark that existed at the 
time that accessor opened the file, and must recognize that 
inconsistent data may be returned if the single read/write accessor 
modifies data within the accessible portion of the file. 

3.4.2 Block Access to Sequential Files 

Sequential files can be read/write shared using block access, but for 
those accessors who specify read/write sharing, automatic file 
extensions will not occur and the logical.end-of-file mark in the file 
header will be neither respected nor updated. (Again, this is because 
of the internal structure of sequential files.) Such read/write 
sharing uses the operating system's block-locking facilities to 
coordinate shared access. 

Sequential files can also be shared in a noninterlocked manner, with 
user-provided interlocks. Because of operating system restrictions, 
the single read/write accessor must specify no-sharing or sharing with 
user-provided interlocks, and multiple read-only accessors must 
specify sharing with user-provided interlocks. These restrictions 
also prohibit concurrent access to the file by read/write-sharing 
accessors or an accessor who specified read-only sharing and 
read/write access. 

When no write accessor is present, sequential files can be shared 
among multiple read-only accessors who have specified no sharing or 
read-only sharing. 

3.5 RECORD AND .FILE PROCESSI.NG OF SEQUENTIAL FILES 

The record and file processing capabilities 
RSX-IIM!M-PLUS RMS-ll: An Introduction are available 
files. This section discusses the operations and their 
and restrictions with sequential files. 
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3.5.1 Record and Stream Operations 

The following record and stream operations can be performed on 
sequential files: 

CONNECT 
DISCONNECT 
FIND 
FLUSH 
GET 
PUT 
REWIND 
TRUNCATE 
UPDATE 

In all record operations, RMS-II establishes the current 
context (if any) and the next record context (if applicable). 
record operation fails, RMS-II normally sets the current 
context to none and does not change the next record context. 

NOTE 

For more information on the RMS-II error 
codes referred to in the following 
sections, see the RSX~llM/M-PLUS RMS~ll 
Macro Programmer's Guide. 

record 
If any 
record 

3.5.1.1 CONNECT - A CONNECT operation affects the record context for 
the access stream as follows: 

• Current record -- There is no current record. Any operation 
requiring a current,record fails at this point. 

• Next record -- If you did not specify that you were going to 
append records to the file, the next record is the first 
record in the file. 

If you, did specify that you were going to append records to 
the file, the next record is the end-of-file. 

3.5.1.2 DISCONNECT - A DISCONNECT operation destroys the current 
record context for the access stream. You cannot resume this context 
by reconnecting the stream. 

3.5.1.3 FIND - To perform a FIND operatidn on a sequential .~ile, 
RMS-ll: 

1. Determines the location of the record in the file accordiQg 
to the specified record access mode: 

• In sequential-access mode, location is indicated by the 
next record pointer. 

• In key-access mode, location is determined by the 
specified relative record number and match criterion. 
(This access mode is available for fixed-format disk 
sequential files only.) 
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2. 

• In RFA-access 
specified RFA. 
files only.) 

mode, location is determined by the 
(This access mode is available for disk 

Reads the block containing the record, or the first part of 
the record if the record spans blocks, from disk into the 
task's I/O buffer, if it is not already in memory. The block 
may be in memory if the block was required by a previous 
operation. 

3. For disk files, returns the RFA to the program, but does not 
transfer the record to the program's user buffer. 

4. Returns the RRN for fixed-format disk sequential files. 

If no valiQ record exists in the location specified, the response 
depends on the access mode: 

• In sequential-access mode, the error coda is ER$EOF, meaning 
that no record was located because there are no more records 
in the file. 

• In RFA-access mode, the error code is ei ther ER$.RFA, if the 
RFA had an invalid format, or ER$EOF, if the RFA specified a 
location beyond the end of the fila~ 

• In key-access mode for fixed-format disk sequential files, the 
error code is ER$KEY~ if the key value had an invalid format, 
or ER$EOF, if the key value specified a location beyond the 
end of the file. 

A FIND operation affects the record context for the access stream as 
follows: 

• For a sequential-access FIND operation: 

Current record is set to value of the record found, that 
is, the next record before the FIND operation started • 

. Example: You have connected a stream to a sequential file 
without specifying that records will be appended to the 
file (see Sec~ion 3.5.1.1). There is no current record, 
but the next record is the first record in the file. If 
you execute a sequential FIND operation, the current record 
is set to the first zecord in the file. 

Next record is set to the record virtually following the 
current record. 

Example: From the previous example, the next record is the 
second record in the file. 

• For an RFA-access or key-access FIND operation: 

Current record is set to the record found, that is, the 
record identified by the RFA or RRN. 

Next record is unchanged. 
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Example: In the preceding example, you performed a 
sequential-access FIND operation after connecting the 
stream to the file. You now execute a FIND by RFA. The 
current record is set to the record specified, but the next 
record is not changed. Therefore, when you perform another 
sequential FIND op~ration, the current record is set to the 
second record in the file, not to the record following the 
one found by RFA. 

You use a FIND operation instead of a GET operation for two reasons: 

1. It is faster because the record is not moved to the user 
buffer. Although the time required to move a record from one 
part of memory to another is very short, do not expend it 
unnecessarily. 

2. It does not change the next record in RFA or key access mode. 
This convention allows you to branch off sequential 
processing for updating or deleting, and keep your place in 
the file. 

You can use a FIND operation in the following ways: 

• To skip records in sequential access mode by initiating 
successive FIND operations. 

• To establish a random starting point using RFA or key access 
mode. You could then initiate successive GET operations, 
where the first operation gets the record found by RFA or by 
RRN. 

• To establish a current record for an UPDATE or TRUNCATE 
operation. 

• To determine whether a record cell specified by RRN exists in 
a file (for fixed-format disk sequential files only). 

3.5.1.4 FLUSH - A FLUSH operation does not affect the record context 
for the access stream. 

3.5.1.5 GET - ~o perform a GET operation on a sequential file, 
RMS-ll : 

1. Determines the location of the record in the file according 
to the specified access mode: 

• In sequential-access mode, location is indicated by the 
next record pointer, if the get operation was not 
immediately preceded by a successful FIND operation, or 
the current record pointer set by an immediately preceding 
successful FIND operation. 

• Location is determined by the specified relative record 
number and match criterion in key-access mode 
(fixed-format disk sequential files only) • 

• Location is determined by the specified RFA in RFA-access 
mode (disk files only). 

2. Reads the block containing the record, or the first part of 
the record if the record spans blocks, from disk into the 
task's I/O buffer, if the block is not already in memory. 
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Example: Your records are 50 
sequentially through the file, 
operation for every tenth GET 
executes. 

bytes long. When you read 
RMS-ll must request a disk I/O 
operation that your program 

3. For disk files, returns the RFA to the program and moves the 
record from the I/O buffer to the specified user buffer in 
the program unless the program is operating in locate record 
transfer mode (see Section 3.5.2). If the buffer does not 
contain the entire record, RMS-ll reads more blocks into the 
I/O buffer and assembles the record in the program's user 
buffer, regardless of record transfer mode. 

4. Returns the RRN for fixed-format disk sequential files. 

If no valid record exists in the location specified, the response 
depends on the access mode: 

• In sequential-access mode, the error code is ER$EOF, meaning 
that no record was located because there are no more records 
in the file. 

• In RFA-access mode, the error code is either ER$RFA, if the 
RFA had an invalid format, or ER$EOF, if the RFA specified a 
location beyond the end of the file. 

• In key-access mode for fixed-format disk sequential files, the 
error code is ER$KEY, if the key value had an invalid format, 
or ER$EOF, if the key value .. speci fied a location beyond the 
end of the file. 

A GET operation affects the current record context for the access 
stream as follows: 

• Current record is set to the record read. 

• Next record is set to the record virtually following the 
current record. 

Example: You have connected a stream to a sequential file without 
specifying that records will be appended to the file (see Section 
3.5.1.1). There is no current record, but the next record is the 
first record in the file. If you execute a sequential-access GET 
operation, the current record is set to the first record in the file 
and the next record is the second record in the file. 

3.5.1.6 PUT - To perform a PUT operation on a sequential file, 
RMS-ll : 

1. Determines whether the specified access mode is allowed. 
Sequential-access mode must be specified unless the file is a 
fixed-format disk file; in that case, key-access mode is 
allowed. RMS-ll returns the error code ER$RAC if an illegal 
access mode is specified. 

2. Determines the destination of the record in the 
according to the specified access mode: 

file 

• In sequential-access mode, the 
indicates the destination. The 
end-of~file; if it is not, RMS-ll 
ER$NEF. 
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Your program gets to the end of a sequential file by: 

Specifying that records will be appended to the file 
when the program connects the record access stream to 
the file (see Section 3.5.1.1). 

Initiating sequential FIND and/or GET operations until 
RMS-ll returns an ER$EOF error code. 

• In key-access mode, the specified relative record number 
indicates the destination. Note that RMS-ll does not 
check the validity of the designated RRN: if the 
destination block is beyond the current end-of-file, 
RMS-ll will extend the file to the destination block. 

3. Reads the destination block in the file into the I/O buffer, 
if the block is not already in memory. The block may be in 
memory if it was required by a previous operation. 

4. Moves the record from the user buffer to the task's I/O 
buffer. 

5. Writes the I/O buffer to disk only if the buffer is full. If 
there is no room for the block(s) in the file, RMS-ll extends 
the file (see section 3.3.2) and then writes the buffer to 
disk. 

6. For disk files, returns the RFA to the program. 

7. Returns the RRN for fixed-format disk sequential files. 

A PUT operation affects the context for tha access stream as follows: 

• For a sequential-access PUT operation: 

Current record -- None. Any operation requiring a current 
record fails at this point. 

Next record -- End-of-file. A sequential FIND or GET 
operation fails with error code ER$EOF. 

• For a key-access PUT operation: 

Current record -- None. Any operation requiring a current 
record fails at this point. 

Next record -- Unchanged. 

3.5.1.7 REWIND - A REWIND operation affects the record context for 
the access stream as follows: 

• Current record -- None. Any operation requiring a current 
record fails at this point. 

• Next record -- Set to the first record in the file. 
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3.5.1.8 TRUNCATE - A TRUNCATE operation declares end-of-file at the 
position of the current record. In doing so, the operation 
effectively deletes the current record and all records in the 
sequential file following that record. 

The TRUNCATE operation requires a valid current record. It therefore 
should follow a successful GET or FIND operation; otherwise, RMS-ll 
returns the error code ER$CUR. 

A TRUNCATE operation affects the context for the access stream as 
follows: 

• Current record -- None. Any operation requiring a current 
record fails at this point. 

• Next record -- End-of-file. 

After a TRUNCATE operation, you can immediately add records to the 
file using PUT operations. 

NOTE 

The TRUNCATE operation does not reduce 
the actual allocated size of a 
sequential file on a disk: it merely 
specifies a new logical end-of-file 
mark. 

3.5.1.9 UPDATE - In an UPDATE operation, RMS-ll moves the specified 
record from the task's user buffer to the I/O buffer, replacing the 
current record set by a previous GET or FIND operation. However, 
RMS-ll does not immediately write the buffer to the file. RMS-ll 
requests the file control processor to write the changed buffer over 
its original location on the disk only when the buffer must be 
replaced in memory by another operation. 

Example: You get a record by RFA and update it. Then, 
another .record by RFA. RMS-ll writes the buffer containing 
record you updated only when it must replace the data in the 
satisfy the second GET operation. 

UPDATE operations have the following restrictions: 

you get 
the first 
buffer to 

• The operation is valid only on disk sequential files. If you 
attempt it on magnetic tape files or unit record devices, 
RMS-ll returns the error code ER$IOP. 

• 

• 

The operation requires a valid current record. It 
should follow a successful GET or FIND operation; 
RMS-ll returns the error ER$CUR. 

therefore 
otherwise, 

The size 
operation. 
ER$RSZ. 

of the 
If it 

record cannot change during an UPDATE 
changes, RMS-ll -zeturns the error code 

• You cannot update stream records. If you attempt it, RMS-ll 
returns the error code ER$RFM. 

None of these errors affects the original record in the file on disk. 
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An UPDATE operation affects the context for the access stream as 
follows: 

• Current record -- None. Any operation requiring a current 
record fails at this point. 

• Next record -- Unchanged. 

3.5 0 2 Rec.ord Tr.ansfer Modes 

You can manipulate records either in the I/O buffer or in your 
program's user buffer. Each of these options is called a record 
transfer mode. You can change record transfer mode at run time, even 
between record operations. 

Figure 3-1 shows the I/O and user buffers. 

VIRTUAL 
MEMORY 

r;; -- - - - - - - - - -- --, 
I SIZE DEPENDS ON: I 

10 NUMBER OF FILES OPENED SIMULTANEOUSLY: 
I· BUCKET SIZES 

USER BUFFERS --. 
I I 

~ NUMBER-.-9~RECfD ~CCE~ ~~AMS __ J 

PROGRAM 

1/0 
BUFFERS 

RMS-11 

INTERNAL 
CONTROL 

STRUCTURES 

I . 

fSiZEDEPENDS 00:- ~- ~ 
i· RMS-11 FUNCTIONS USED i 
~ ~V~LA~~U.£TURE~~E~ 

ZK-1174-82 

Figure 3-1: RMS-ll Task Structure 

3.5.2.1 Move Mode - Move mode requires that each record be copied 
between the user and I/O buffers: 

• On GET operations, RMS-ll moves the record from the I/O buffer 
to the user buffer before returning control to your program. 

• On PUT and UPDATE operations, your program assembles the 
record to be written into the file in the user buffer. During 
the operation, RMS-ll moves the data into the I/O buffer 
before updating the file. 

Move mode is the default record transfer mode for all programming 
languages and all file organizations. 
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3.5.2.2 Locate Mode - Locate mode enables your program to manipulate 
records in the I/O buffer, eliminating the data transfers between it 
and the user buffer. However, when you specify locate mode, RMS-ll 
uses it only when such usage does not compromise data integrity. 
Otherwise, RMS-ll uses move mode. Therefore, your program must still 
contain a user buffer. 

Example: RMS-ll uses move mode instead of locate mode when records 
span buffers in a sequential file. 

Example: 
the file 
on it. 

RMS-ll uses move mode instead of locate mode if you opened 
indicating that you were going to perform UPDATE operations 

RMS-ll's use of move mode instead of locate mode is transparent to 
your program as long as you use RMS-ll facilities to access the record 
data. 

For sequential files, your program can both performs both GET and PUT 
operations in locate mo~e. See your high-level language documentation 
to determine whether the language supports locate mode and, if it 
does, what the programming techniques are. 

3.5.3 I/O Techniques 

You can use the following techniques to improve the performance of 
record operations. 

3.5.3.1 Asynchronous Record Operations - Within each access stream, 
your program can perform any record operation either synchronously or 
asynchronously. In synchronous operations, RMS-ll returns control to 
your program after the op~~ation ends, either successfully or with an 
error. 

When you execute an aSynchronous operation, RMS-ll may return control 
to your program before the operation is complete. The program 
continues processing while the physical transfer of data between disk 
and memory is carried out. However, you must not initiate another 
record operation on that stream until the first operation ends; 
otherwise, RMS-ll returns the error code ER$ACT. See your high-level 
language documentation for asynchronous techniques. 

3.5.3.2 Deferred Write- The normal mode of operation for sequential 
files is similar to operations using deferred wri tewi th the other 
file organizations (see Chapters 4 and 7). Using this technique for 
sequential files does not change or improve performance. 

3.5.3.3 Multiple Buffers - The multiple buffer capability is not 
available. to sequential files. 
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3.5.3.4 Multiple Access Streams - RMS-ll allows each program to use 
only one stream on a sequential file because sequential files are not 
formatted to permit simple and economical sharing (see Section 3.4). 

3.5.3.5 Multiblock Count - Your task can be set up so that more than 
one block from a disk sequential file is read or written at one time. 
This multiple-block I/O can improve processing because it tends to 
reduce the number of physical I/O operations. However, it also 
increases the size of the task, on a one-for-one basis; that is, for 
each increment of the multiblock count (MBC) , the I/O buffer in the 
~ask grows by 512 bytes. 

An MBC greater than 1 is therefore useful for sequential processing, 
including file population. 

Example.: You are using 50-byte records. During sequential 
processing, if the MBC is 1, RMS-ll requests a disk I/O operation for 
every tenth record operation your program executes, whether the 
operations are GET or PUT operations. If you set MBC to 5 for 
instance, RMS-ll requests a physical I/O operation for every 50 record 
operations. 

3.5.4 File and Directory Operations 

The following file and directory operations can be performed on 
sequential files: 

CLOSE 
CREATE 
DISPLAY 
ENTER 
ERASE 
EXTEND 
OPEN 
PARSE 
REMOVE 
RENAME 
SEARCH 

See your high-level language documentation for a description of the 
support provided. 
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CHAPTER 4: 

RELATIVE FILE APPLICATIONS 

This chapter discusses relative file structure, design, and 
processing. Relative file design consists generally of determining 
the specific attributes, including record size and format, that will 
allow you to store, retrieve, and process your data efficently within 
the relative file structure. Your task design, along with your file 
design, will determine your record and file processing options, 
including record access modes. 

4.1 FILE STRUCTURE 

Physical Structure -- Relative files contain at least one block of 
RMS-ll information known as the prologue. The operating system's file 
management software stores attributes in the file directory. RMS-ll 
stores the prologue in VBN 1 -- unless the bucket size is 2, 4, or 8 
blocks. In that case, RMS-ll makes the prologue equal to 1 bucket in 
size. Data records begin in the block following the prologue. 

RMS-ll alloc~tes relative files in bucket increments. The first 
bucket begins with the first data block. To support deleted record 
control, RMS-ll initializes each bucket (sets all bits to 0) when it 
allocates the blocks to the file. 

The fixed-length cells are set up in each bucket starting with byte 0 
and packed end-to-end, byte-aligned, until no more cells can fit in 
the bucket (no padding necessary). Cells cannot span bucket 
boundaries, although they can cross block boundaries within multiblock 
buckets. The first byte of each cell is used by RMS-ll to provide 
deleted record control. 

Conceptual Structure RMS-ll stores records in a series of 
fixed-size cells. Only one record can be put into a cell, but all 
cells do not have to contain records. The cell size is based on the 
length you specify as the maximum for any record in the file. RMS-li 
numbers the cells consecutively from I to n, where n indicates the 
last cell in the file. A cell number relates its location to the 
beginning of the file and is associated with the record in the cell, 
if any, as a relative record number. 

RMS-Il can access records in a relative file either sequentially or 
randomly, both by relative record number (key) and by RFA. 
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4.2 RECORD SIZE 

RMS-ll calculates the number of bytes in each record cell in the file 
(CL) of a relative record cell as follows~ 

CL = l+RFO+DS+FSZ 

where: 

1 is a byte for RMS-ll overhead 

RFO is bytes for record format overhead: 
variable or VFC 

o for fixed; 2 for 

FSZ is the fixed control size for VFC format; 0 for other formats 

os is bytes of data 

For variable-length or VFC record format, os is the maximum record 
size set for the file. 

Table 4-1 shows the maximum data sizes for records in a relative file. 
These are the sizes of your data; they are adjusted for RMS-ll 
restrictions and overhead. 

Table 4-1: Relative File Data Sizes (in bytes) 

Format 

Fixed 
Variable 
VFC 

4.3 FILE DESIGN 

Maximum Size 

16,383 
16,381 
16,381 

Record Cell Size Calculation 

Data size + 1 
Maximum record size + 3 
Fixed + variable + 3 

For relative files, the primary design considerations are: 

• Record format (See Section 2.4.1 for a description of the 
RMS-ll record formats) 

• Bucket size 

• File allocation 

• Contiguity 

• Maximum record number 

4.3.1 Bucket Size 

Buckets are the I/O units fo~ relative files. Their size is therefore 
critical to the space required by a task and the speed with which the 
task performs. Sequential access, especially, benefits when there are 
multiple records per bucket. There is, of cours~, a ttade-off: the 
larger the bucket si ze, the larger the task, but the fast.er the task 
reads data sequentially: 

• Each block added to the bucket size increases the task size by 
512 bytes for each access stream. 
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• The speed of an RMS-ll operation is closely proportional to 
the number of I/O operations involved. RMS-ll requests an I/O 
operation each time it requires a new bucket to locate a 
record. Therefore, the more record cells in a bucket, the 
fewer I/O operations RMS-ll needs to read a file sequentially. 

However, write sharing a relative file counteracts this 
optimization if your program has read-only access to the file. 
RMS-ll reads a bucket from disk during each GET operation 
even if the next record is in the bucket in memory -- because 
the bucket is not locked after each GET operation and a 
writing program may have changed the bucket since the record 
was last read. 

Bucket size can be set by RMSDES or by your application program 
depending on the capabilities of your high-level language. 

4.3.2 File Allocation 

File allocation involves two quantities: 

• Initial allocation quantity -- The number of blocks assigned 
to a file when you create it 

• Default extension quantity -- The number of blocks added to a 
file each time RMS-ll automatically extends it 

4.3.2.1 Initial Allocation - Total allocation of a file when you 
create it is the most efficient technique regardless of file 
organization, but with relative files initial allocation becomes most 
critical. Each allocation, whether at creation time or during an 
extension, requires RMS-ll to initialize the new buckets by setting 
all bits to zero. You can avoid time-consuming file extensions during 
normal processing by totally allocating the file when you create it or 
by explicitly extending the file when it is not being used for 
processing. 

You calculate the allocation (ALQ), in blocks, as follows: 

ALQ PLG+ (NRF/NRBKT) *BKS 

where: 

PLG is equal to 1 block or to BKS if BKS is 2, 4, or 8 

NRF is equal to the maximum record number (MRN) or to the number of 
records that will be written into the file 

BKS is the bucket size in blocks 

NRBKT is the number of records in a bucket 
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You calculate NRBKT as follows: 

NRBKT = (5l2*BKS)/(RSZ+RFO) 

where: 

RSZ is the size of the record in bytes: 

• Data size for fixed-length records 

• Maximum record length for variable-length records 

• Size of the fixed-length control area plus the maximum size of 
the variable-length area for VFC records 

RFO is the record format overhead: 

• RFO 1 byte for fixed-length records 

• RFO 3 bytes for variable-length and VFC records 

This allocation can be done during file creation by RMSDES or by your 
application program, depending on the capabilities of your high-level 
language. 

The allocation can also be done by using a PUT operation to write the 
"last record" into the file fi-rsti that is, the record whose relative 
record number is equal to the maximum record number (MRN). Before 
RMS-ll can write this record, it must allocate all record cells from 1 
to MRN and initialize the new blocks. After the PUT operation, the 
relati ve file wi 11 be completely allocate-d. 

4.3.2.2 Default Extension Quantity - If the file cannot be totally 
allocated at creation time, you should establish a reasonable default 
extension quantity (DEQ) to minimize the number of (and the time spent 
on) file extensions. Even if the file is totally allocated when you 
create it, you should establish a reasona6le DEQ in case the file must 
become bigger than planned. 

A good basis for calculation is the number of records that are added 
to the end of the file in a given time period, such as a daYi use the 
formula for allocation quantity in Section 4.3.2.l. 

The DEQ for the file can be set by RMSDES or by your ,application 
program, depending on the capabilities of your high-level language. 

If you do not specify a DEQ, it defaults to zero. RMS-ll responds to 
a DEQ of zero by requesting 4 times the bucket size in blocks from the 
file control processor each time it automatically extends the file. 

4.3.3 Contiguity 

Contiguity can significantly affect performance. Therefote, 
should consider contiguity for a relative fil~ to minimize the 
spent on each I/O operation. If the blocks in a file are 
contiguous, they may be on different parts of the disk and 
require significant head movement to access the file contents. 
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Physical contiguity, however, ensures that the file is stored 
single track or, at worst, adjacent tracks. Because the disk can 
an entire track without moving the heads, file contiguity reduces 
movement. This assumes that no other software is accessing the 
at the same time. 

on a 
read 
head 
disk 

Contiguity also enhances virtual-to-logical-block mapping 
in Chapter 8). 

(discussed 

To ensure that the blocks in the file are physically contiguous, 
allocate the whole file when you create it (see Section 4.3.2.1). 

4.3.4 Maximum Record Number 

The MRN associated with a relative file limits the size of the file. 
RMS-ll will not put a record into a file with a relative record number 
greater than the assigned MRN. However, if an MRN is not set (that 
is, MRN is zero), RMS-ll only checks whether the record number is 
greater than zero before attempting to store a record in a relative 
file. 

MRN determines the maximum useful size of a file because RMS-ll 
allocates a record cell for each record between relative record number 
land the highest relative record number used. You can explicitly 
make the file larger than this maximum, but RMS-ll will not use the 
space. The actual size can be smaller than the size that would be set 
if a record with the MRN were written into the file. 

You can calculate the file size (FSZ) in blocks from the largest 
relative record number actually present in the file: 

FSZ PLG+l+((LRN-l)/((BKS*512)/(RSZ+RFO))) 

where: 

PLG is the size of the prologue: 
otherwise, 1 

BKS if BKS 

LRN is the largest RRN actually present in the file 

BKS is the bucket size in blocks 

RSZ is the size of the record in bytes: 

• Data size for fixed-length records 

2, 4, or 8; 

• Maximum record length for variable-length records 

• Size of the fixed-length control area plus the maximum size of 
the variable-length area for VFC records 

RFO is the record format overhead: 

• RFO 1 byte for fixed-length records 

• RFO 3 bytes for variable-leqgth and VFC records 

MRN can be set by RMSDES or by your application program, depending on 
the capabilities of your high-level language. 

4-5 



RELATIVE FILE APPLICATIONS 

4.4 ACCESS SHARING 

Access sharing can be specified for relative files as described in the 
following sections. See Section 2.2.3 for general information on 
shared access. 

4.4.1 Record Access to Relative Files 

Relative files allow fully interlocked read/write sharing, dependent 
upon the compatibility of the access and sharing declarations of 
multiple accessors, as follows: 

• If you have requested read/write access, your request will be 
denied unless all other accessors have allowed read/write 
sharing. (Otherwise, your read/write access request will 
conflict with the sharing declaration of at least one other 
accessor.) 

• If you have not permitted read/write sharing, your request for 
read/write access will be denied if any other read/write 
accessor is present. (In thi s case, the read/wr i te accessor 
does not meet the requirements of your sharing declaration.) 

4.4.2 Block Access to Relative Files 

Because block access bypasses the record structure and interlocking 
algorithms used with relative filesi read/write sharing cannot be 
permitted. Any read/write sharing declaration is converted internally 
to read-only before the file is processed (this is similar to 
record-accessed sequential files). 

Thus, multiple read-only accessors (regardless of their sharing 
declarations) can share relative files concurrently using block 
access, as long as no read/write record accessor is present. 
Read-only block accessorS can share files with read-only record 
accessors. In addition, a single read/write accessor can access a 
relative file using block access (regardless of sharing declaration) 
as long as no other accessor of any kind is present. 

Other combinations are rejected: the access and sharing declarations 
are incompatible. 

4.5 RECORD AND FILE PROCESSING OF RELATIVE FILES 

The record and file processing capabilities described in 
RSX~llM/M-PLUS RMS~ll: An Introduction are available for relative 
files. This section discusses the operations and their implementation 
and restrictions with relative files. 
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4.5.1 Record and Stream OP.erations 

The following record and stream operations can be performed on a 
relative file: 

CONNECT 
DELETE 
DISCONNECT 
FIND 
FLUSH 
GET 
PUT 
REWIND 
UPDATE 

In all record operations, RMS-II establishes the current 
context (if any) and next record context (if applicable). 
record operation fails, RMS-II normally sets the current 
context to none and does not change the next record context. 

NOTE 

For more information on the RMS-II error 
codes referred to in the following 
sections, see the RSX-11M!M-PLUS RMS-11 
Macro Programmer's Guide. 

record 
If any 
record 

4.5.1.1 CONNECT - A CONNECT operation affects the current record 
context for the access stream as follows: 

• Current record -- There is no current record. Any operation 
requiring a current record fails at this point. 

• Next record -- The next record is the first record cell in the 
file. 

4.5.1.2 DELETE - In a DELETE operation, RMS-II flags the current 
record cell to, indicate that it contains a deleted record. RMS-II 
does this by setting theRMS-II control byte in the cell to a certain 
value. Then, RMS-II writes the bucket over its original location pn 
the disk; unless you have specified deferred write (see Section 
4.5.3.2) • 

A DELETE operation requires a valid current record~ Therefore, a 
DELETE operation should follow a successful GET or FIND operation; 
otherwise, RMS-II returns the error code ER$CUR. This error does not 
affect the original record in the file on disk. 

A DELETE operation affects the current record context for the access 
stream as follows: 

• Current record -- None. Any operation requiring a current 
record fails at this point. 

• Next record -- Unchanged. 
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4.5.1.3 DISCONNECT - A DISCONNECT operation destroys the current 
record context for the access stream. You cannot resume this context 
by reconnecting the stream. 

4.S.l.4 FIND - To perform a FIND operation on a relative file, 
RMS-ll : 

1. Determines the location of the record in the file according 
to the specified access mode: 

• In sequential-access mode, location is indicated by the 
next record pointer. , 

• In key-access mode, location is determined by the 
specified relative record number and match criterion. 

• In RFA-access mode, location is determined 
specified RFA. 

by the 

2. Reads the bucket containing the indicated cell from disk into 
the task's I/O buffer, if the bucket is not already in 
memory. The bucket may be in memory if it was required by a 
previous operation. 

3. Returns the RFA and theRRN to the program, but does not 
transfer the record to the program's user buffer. 

If the cell is empty or contains a deleted record, the 
response depends on the access mode: 

• In sequential-access mode, RMS-ll repeats steps 1 through 
3, moving through cells until the MRN is exceeded (ER$MRN) 
or the end of the file is reached (ER$EOF). 

• In key-access mode, RMS-ll reacts according to the 
specified match criterion: 

On an equal match, RMS-ll returns the error code 
ER$RNF. 

Ona greater-than or greater~than-or-equal match, 
RMS-ll internally adds 1 to the relative record number 
and repeats steps 1 through 3, until either the MRN is 
exceeded (ER$MRN) or the end of the file is reached 
(ER$RNF) • 

• In RFA-access mode, RMS-ll returns the appropriate error 
code: 

ER$RNF No valid record has ever existed at the 
specified location. 

ER$DEL -- The control byte in the cell indicates that 
the record in it was deleted. 

A FIND operation affects the record context for the access stream as 
follows: 

• For a sequential-access FIND operation: 

Current record is set to the relative record number of the 
record found, that is, the next record before the FIND 
operation started. 
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Example: You have connected a stream to a relative file. 
There is no current record, but the next record is the 
first record in the file. If you execute a 
sequential-access FIND operation, the current record is set 
to the first record in the file. 

Next record is set to a relative record number 1 higher 
than the relative record number for the current record. 

Example: From the previous example, the next record is the 
second record cell in the file. 

• For a key-access or RF.A-access FIND operation: 

Current record is set to the record found, that is, the 
record identified ,by the relative record number or RFA. 

Next record is unchanged. 

Example: In the preceding examples, you performed a 
sequential~access FIND operation after connecting the 
stream to the file. You now execute an RFA-access FIND 
operation. The current record is set to the record 
specified, but the next record is not changed. Therefore, 
when you perform another sequential-access FIND, the search 
will begin in the second record cell in the file~ not in 
the cell following the one found by RFA. 

You use a FIND operation instead of a GET operation for two teasons: 

1. It is faster because the record is not moved to the user 
buffer. Although the time required to move a record from one 
part of memory to another is very short, there is no use 
expending it if you do not ne~d to. 

2. It does not change the next record in key-access mode or 
RFA-access mode. This allows you to branch off sequential 
processing for purposes of updating or deleting records, and 
keep your place. 

You can use a FIND operation in the following ways: 

• To skip records in sequential.access mode by initiating 
successive FIND operations. 

• To establish a random starting point for sequential processing 
using RFA-access mode. You could then initiate successive GET 
oper~tions, where the first operation gets the record found by 
RFA. 

• To establish a current record for a DELETE or 
operation. 

UPDATE 

• To determine the existence of a record by using a random 
access mode. 
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4.5.1.5 FLUSH - A FLUSH operation does not affect the record context 
for the access stream. 

4.5.1.6 GET - To perform a GET operation on a relative file, RMS-Il: 

1. Determines the location of the record in the file according 
to the specified access mode: 

• In sequential-access mode, location is indicated by: (a) 
the next record pointer, if the GET operation was not 
immediately preceded by a successful FIND operation; or 
(b) the current record pointer set by an immediately 
preceding FIND operation. 

• In key-access mode, location is determined by the 
specified relative record number and match criterion. 

• In RFA-access mode, location is determined by specified 
RFA. 

2. Reads the bucket containing the indicated cell from disk into 
the task's I/O buffer, if the bucket is not already in 
memory. The bucket may be in memory if it was required by a 
previous operation. 

Example: Your fixed-Iengtn records are 50 bytes long; 
bucket size is 2 blocks. When you. read .sequentially through 
the file, RMS-il must request a disk I/O operation every' 
twentieth GET operation that your program executes. 

NOTE 

If you have opened a relative file with read-only 
access and read/write sharing declarations, each GET 
operation causes an I/O operation. 

3. Returns the RFA and the RRN to the program and moves the 
record from the I/O buffer to the specified user buffer in 
the program -- unless the program is operating in locate 
record transfer mode (see Section 4.5.2.2). 

If the cell is empty or contains a deleted record, the 
response depends on the access mode: 

• In sequential-access mode, RMS-ll repeats steps 1 through 
3, moving through cells until the MRN is exceeded (ER$MRN) 
or the end of the file is reached (ER$EOF). 

• In key-access mode, RMS-ll reacts according to the 
specified match criterion: 

On an equal match, RMS-ll returns the error code 
ER$RNF. 

On a greater-than or greater-than-or-equal match, 
RMS-ll internally adds 1 to the relative record number 
and repeats steps 1 through 3, until either the MRN is 
exceeded (ER$MRN) or the end of the file is reached 
(ER$RNF) • 
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• In RFA-access mode, RMS-ll returns the appropriate' error 
code: 

ER$RNF No valid record has ever existed at the 
specified location. 

ER$DEL -- The control byte in the cell indicates that 
the record in it was deleted. 

A GET operation affects the record context for the access stream as 
follows: 

• Current record is set to the relative record number of the 
record read. 

• Next record is set to a relative record number 1 higher than 
the relative record number for current record. 

4.5.1.7 PUT - To perform a PUT operation on a relative file, RMS-ll: 

1. Determines the destination of the record in the 
according to the specified access mode: 

• In sequential-access mode, the next 
indicates the destination. 

record 

file 

pointer 

• In key-access mode, the specified relative record number 
indicates the destination. 

2. Determines whether the bucket containing the indicated cell 
is in the file. If it is, RMS-ll goes to the next step. If 
it is not, RMS-ll extends the file until it has enough blocks 
for all buckets up to and including the required one. Then, 
RMS-ll initializes all newly allocated buckets. 

3. Reads the bucket containing the indicated cell from disk into 
the task's I/O buffer, if the bucket is not already in 
memory. The bucket may be in memory if it was required by a 
previous operation. 

4. Checks the indicated cell: if it already contains an 
existing, valid record, RMS-ll returns error code ER$REXi 
otherwise, RMS-ll goes to the next step. 

Note that in some cases, 
existing, valid record 
language documehtation~ 

you may be 
in a cell. 

able to update an 
See your high-level 

5. Moves the record from the user buffer in the program to the 
task's I/O buffer. 

6. Returns the RFA and the RRN to the program. 

7. writes the I/O buffer to disk, unless' you have specified 
deferred write (see Section 4.5.3.2). 

A PUT operation affects the record context- for the access stream as 
follows: 

., For a sequential-access PUT operation: 

Current record -- None. Any operation requiring a current 
record fails at this point. 
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Next record -- The cell with a relative record number I 
higher than the relative record number of the record just 
inserted. 

• For a key-access PUT operation: 

Current record -- None. Any operation requiring a current 
record fails at this point. 

Next record -- Unchanged. 

4.5.1.8 REWIND - A REWIND operation sets the context of the access 
stream to the beginning of the relative file. In doing so, it affects 
the record context for the stream as follows: 

• Current record -- None. Any operation requiring a current 
record fails at this point. 

• Next record -- Set to the first record cell in the file. 

4.5.1.9 UPD.ATE - In an UPDATE operation, RMS-I1 moves the specified 
record from the task's user buffer to the I/O buffer, replacing the 
current record set by a previous GET or FIND operation. Then, RMS-11 
writes the bucket over its original location on the disk, unless you 
have specified deferred write (see Section 4.5~3.2). 

An UPDATE operation requires a valid current record. 
UPDATE operation should follow a successful GET or 
otherwise~ RMS-11 returns the error code ER$CUR. This 
affect the original record in the file on disk. 

Therefore, an 
FIND operation; 
error does not 

An UPDATE operation affects the current record context for the access 
stream as follows: 

• . Current record .,-- None. Any operation requiring a current 
record will fail at this point. 

• Next Record -- Unchanged. 

4.5.2 Record Transfer Modes 

You can manipulate records either in the i/O buffer or in your 
program's user buffer. Each of these options is called a J;ecord 
transfer mode. You can change record transfer mode at run time, even 
between record operations. Figure 4~1 illustrates the RMS-I\ task 
s.tructure. 

4~5.2.1 Move Mode - Move mode requires that each record be copied 
between the user and I/O buffers: 

• On GET operations, RMS.;...ll moves the record from the I/O buffer 
to the user buffer before returning control to your program. 

, On PUT and UPDATE operations, your program assembles the 
record to be written int6 the file in the user buffer and, 
during the operations, RMS-II moves the data into the I/O 
buffer before updating the file. 
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Move mode is the default record transfer mode for all programming 
languages and all file organizations. 

4.5.2.2 Locate Mode - Locate mode enables your program to manipulate 
records in the I/O buffer, eliminating the data transfers between it 
and the user buffer. However, when you specify locate mode, RMS-ll 
uses it only when such usage does not compromise data integrity. 
Otherwise, RMS-ll uses move mode. Therefore, your program must still 
contain a user buffer. 

VIRTUAL 
MEMORY 

r;:;-------- -------, 
\ SIZE DEPENDS ON: I 

\. NUMBER OF FILES OPENED SIMULTANEOUSLY I 
,. BUCKET SIZES \ 

USER BUFFERS --. 
( I 

~ NUMBER O~RECrD ~CCE~ ~~AMS __ J 

PROGRAM 

1/0 
BUFFERS 

RMS-11 

INTERNAL 
CONTROL 

STRUCTURES 

fSizEDEPENDS ON:- ~- ~ 
1· RMS~11 FUNCTIONS USED 1 
~ ~V~LA~~U.£TURE~~E~ 

ZK-1174-82 

Figure 4-1: RMS-ll Task Structure 

Example: RMS-ll uses move mode instead of locate mode when a relative. 
file is shared. 

Example.: RMS-ll uses move mode iqstead of locate mode if you opened a 
file indicating you were going to perfor~ UPDATE operations on it. 

RMS-ll's use of move mode instead of locate mode is transparent to 
your program as long as you use RMS-ll facilities to access the record 
data. 

For relative files, your program can only perform GET operations in 
locate mode. See your high-level language documentation to determine 
whether the language supports locate mode and, if it does, what the 
exact programming techniques are. 
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4.5.3 I/O Techniques 

You can use the following techniques to improve the performance of 
record operations. 

4.5.3.1 Asynchronous Record Operations - Within each access stream, 
your program can perform any record operation either synchronously or 
asynchronously. In synchronous operations, RMS-ll returns control to 
your program after the operation ends, either successfully or with an 
error. 

When you execute an asynchronous operation, RMS-ll may return control 
to your program before the operation is complete. The program 
continues processing while the physical transfer of data between disk 
and memory is carried out. However, you must not initiate another 
record operation on that stream until the first operation ends; 
otherwise, RMS-ll returns the error code ER$ACT. See your high-level 
language documentation for asynchronous techniques. 

4.5.3.2 Deferred Write - Normally, each write-type record operation 
(DELETE, UPDATE, and PUT) results in a bucket being written to disk. 
This convention emphasizes data integrity: you know that when a 
write-type operation has ended successfully, the file reflects that 
operation. 

However, you can improve the performance of sequential write-type 
operations by using deferred write~ Basically, deferred write directs 
RMS-ll to write a bucket to disk only when RMS-ll must use the I/O 
buffer for some other purpose. 

NOTE 

Deferred write, although not illegal, is 
essentially invalidated while a relative 
file is being shared by multiple tasks 
or streams. In that environment, every 
write-type operation results in an I/O 
operation so that: 

• The bucket locked 
or FIND (for 
operations) or by 
can be released. 

by the previous GET 
UPDATE and DELETE 
the PUT operation 

• The new data is available to the 
other tasks or streams. 

Therefore, if you perform sequential write-type operations on a 
nonshared relative file, deferred write improves performance. RMS-ll 
writes out the buffer only when it must read another bucket to 
complete an operation. 

Example: Your records are 304 bytes long and the bucket size 
blocks. During sequential write-type operations, deferred 
causes I/O operations per bucket to drop from 5 to 1. 

is 3 
wri te -

Deferred write offers little or no benefit to random write-type 
operations or read-type operations in any access mode. 
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4.5.3.3 Multiple Buffers - When you open a relative file, RMS-ll 
normally allocates 1 bucket-sized I/O buffer in your task's address 
space. RMS-ll uses this buffer during record operations. However, 
you can direct RMS-ll to allocate more than the one buffer. 

RMS-ll uses any extra buffers to keep, or cache, buckets in memory. 
When a record operation requires that-a-bUcket be read from disk, 
RMS-ll checks its cache first. RMS-ll does not perform an I/O 
operation if both of the following are true: 

• The requested bucket is already in memory. 

• That bucket is still valld, that is, the file is not shared 
and/or the bucket has been kept locked. 

You do not benefit from multiple buffers during sequential operations. 
You can improve performance with multiple buffers during random" 
operations only if your program accesses the same buckets often. 

4.5.3.4 Multiple Access Streams - RMS-ll allows each program to use 
multiple streams on a relative file. 

4.5.4 File and Directory Operations 

The following file and directory operations can be performed on 
relative files: 

CLOSE 
CREATE 
DISPLAY 
ENTER 
ERASE 
EXTEND 
OPEN 
PARSE 
REMOVE 
RENAM;E: 
SEARCH 

See your high-level language documentation for a description of the 
support provided. 
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CHAPTER 5 

INDEX.ED .FILE STRUCTURE AND ACCESS 

DIGITAL designed the RMS-ll indexed file organization to achieve the 
following goals: 

• Content-~ddressable record access -- Each record in the file 
can be located on the basis of the values in designated 
portions of· the data, called keyfields~ 

• Uniform random access time -- Each record in the file can be 
located with approximately the same number of I/O operations, 
regardless of when it was added to the file. 

• Alternate key capabilities (comply with ANSI COBOL Level 2) -­
Each record in the file can be located via more than one key 
field. 

• Very good performance on sequential access by primary key -- A 
program can sequentially read a reasonably designed indexed 
file by primary key almost as fast as it can sequentially read 
a sequential file. 

• Good performance on sequential access by alternate keys 
Each record in the series can be accessed with (typically) one 
to three I/O operations. 

• 

• 

pnique record address £or the life of the file (data base key 
concept) A record in a file can be located via a unique 
identifier (record file address) established by the PUT 
operation. The record may be deleted, but its unique 
identifier is never reused. 

Preserve the state of processing despite 
Normally, each logical write operation 
transfer of data from memory to disk. 
reflects each record inserted. However, 
mode with deferred write in some cases. 

a system failure 
results in a physical 
Therefore, the file 
you can override this 

More importantl.y, RMS-ll performs record operations so that both of 
the following are true: 

• File corruption is avoided or minimized even if a system 
failure occurs during a write-type record operation. 

• Even if some corruption exists, user data can still be 
accessed. 

NOTE 

You should still reorganize your file if 
the system fails during write-type 
processing on an RMS-ll indexed file. 
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5.1 PHYSICAL FILE STRUCTURE 

On disk, an indexed file consists of three kinds of blocks: 

• Prologue -- RMS-ll information about the file, including 
attributes and key and area descriptions 

• Index -- Index records f6r primary and alternate keys pointing 
the way to a data record 

• Data Your data records and index data records 

The prologue contains information about the keys and areas of the 
file. RMS-ll allocates at least one block for the key descriptors and 
at least one block for the area descriptors. RMS-ll uses more blocks 
as needed. Size calculations are discussed in Section 6.6.1. 

Areas are portions of an indexed file that are treated independently 
for initial allocation, extensions~ placement, and bucket sizes~ Like 
subfiles, but invisible to the operating system~ areas allow you to 
divide indexed files logically into separate units for each index and 
for the data records to improve performance; see Section 6~3 for more 
information on areas. 

In addition, RMS-ll extends the prologue to an integral multiple of 
the area 0 bucket size, if the area 0 bucket size is 2, 4, or 8 
blocks. See Section 6.5 for more information on bucket sizes. 

The location of the index and data blocks is up to you: 

• If the file is a single area; RMS~il allocates data and index 
blocks in buckets as it needs them; they are therefore 
interspersed throughout the file. 

• If the index and data are set up in separate areas, RMS-ll 
.allocates each type of bucket from the appropriate area; the 
index is therefore set apart physically from the data portion 
of the file ~ 

Figure 5-1 illustrates an indexed file both with and without ~reas. 

RMS-ll formats buckets in an indexed file as it requires them for 
record storage~ The RMS-ll control bytes are set to their initial 
values: 

• 14 bytes, beginning with byte 0 of the bucket contain buck~t 
control information. 

• The last byte of the last block duplicates the first byte of 
the bucket for checking I/O completion. 

RMS-ll packs index or data records, including record format overhead, 
into each bucket, beginning with byte 14, end-to-end and byte-aligned. 

Figure 5-2 shows the RMS-ll bucket format. 
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Figure 5-1: Indexed File with and without Areas 
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Figure 5-2: Formatted Bucket 

5.2 CONCEPTUAL FILE STRUCTURE 

No matter how it is laid out physically, the indexed file is 
conceptually a prologue plus a group of indexes, one per key. Each 
index consists of horizontal chains of buckets called levels. Figure 
5-3 illustrates this structure as a pyramid. 

LEVEL 2 

LEVEL 1 

LEVEL 0 

QBUCKET 

Figure 5-3: Index as a pyramid 
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The lowest level of an index is level O. The. level number is 
incremented for each successive (and smaller) level, that is, levell, 
level.2, and so on. The highest level in an index is a single bucket 
called the root; this bucket i~ the entry point to the index for 
random accesses using this key. Each index has at least two levels (0 
and 1). 

The depth of an index is equal to the level number of the root. An 
index depth relates to the time needed to randomly access any record 
in the file via that ind~x. 

5.2.1 Data 

Level 0 of each index is cailed the data level; it consists of data 
buckets. In the primary index, level 0 contains buckets of your data 
records. In the alternateindexesj level 0 buckets contain pointers 
to your data records. 

5.2.1.1 Level 0 of the primary Index - RMS-11 physically orders data 
records by ascending primary key value along the bucket chain. The 
records having the lowest primary key value reside in the first bucket 
of the level and the records Mith the bighest primary key values 
reside in the last bucket. RMS-11 preserves this order regardless of 
the insertion sequence of the· records. 

Each bucket in level 0 shares the following properties: 

• The last data record in a bucket has an equal or higher key 
value than any other record in the bucket • 

• The last data.record in a bucket has a lower key value than 
the first record in the next bucket in the chain. 

Each bucket thus has a high-key value, located in the last record of 
the bucket. This concept is the core of RMS-11·index file strlicture. 

NOTE 

RMS-11 places records with duplicate key 
values next to each other on a first-in, 
first-out (FIFO) basis. If these 
duplicate records cannot fit in the same· 
bucket, RMS-11 stores the overflow in a 
continuation bucket. Continuation 
buckets are extensions of level 0 
buckets andy as such, are not indexed. 
This extension storage preserves the 
high-key concept. 

5.2.1.2 Level 0 of an Alternate Index - Level 0, the data level,of 
an alternate index' contains secondary index data records (SIDRs). A 
SIDR consists of two elements: 

1. An alternate key value from a data record stored in the 
primary data level. The SIDRs in the data level of each 
alternate index are stored in ascending order by this key 
value. 
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2. One or more pointers to data records in the primary 
level. Multiple pointers occur when you allow duplicates 
the alternate key and records with duplicate values for 
key actually exist in the file. 

Figure 5-4 illustrates the SIDR format. 

ZK-1152-82 

Figure 5-4: Format for Secondary Index Data Record 

5.2.2 Indexes 

data 
for 
the 

Levels 1 and 
consist of 
guide RMS-ll 
O. An index 

above in an index are called the index levels; they 
index buckets. Index buckets contain index records that 
through the levels to the data records rn--primary level 
record consists of two elements: 

1. The high-key value of a bucket in the next lower level in the 
index. Because RMS-ll arranges these values in ascending 
sequence, there is a high-key value for index buckets also. 
However, the last high-key value in the last index bucket of 
a level is set to the highest possible key value, rather than 
the highest key value in the file. The associated pointer 
references the last bucket in the next lower level. 

2. A pointer to the bucket associated with the high-key value. 

Example: The buckets in level 1 of the primary index contain the 
high-key values of the data buckets in level· O. Then, level 2 
contains the high-key values from levelland so on. Figure 5-5 shows 
an example ofa primary index. 

In other words, each bucket on a given level is represented by an 
index record in the next higher level. Thus, the number of buckets 
required on each successive level decreases exponentially until the 
root bucket is reached. 

Example: If an index bucket can hold 10 index records, then: 

• If level 0 contains 2000 data buckets: 

Level 1 contains 200 index buckets 
Level 2 contains 20 index buckets 
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2 index buckets 
1 index bucket 

10,000 data buckets: 

1000 index buckets 
100 index buckets 
10 index buckets 
1 index bucket 

1 YOOS,FIRST ST. ,9782 1 
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Figure 5-5: Example of a Primary Index 

5.2.3 Random Access Using the RMS-ll Indexed File Structure 

The following steps show how RMS-ll uses the indexed file structure to 
execute a random access operation. These steps constitute a process 
called "follow the index." 

1. RMS-ll examines memory-resident index descriptors to 
location of the root for the specified index. Note 
root can be cached (see Section 7.4.3), eliminating 
operation to read the root in the next step. 

find the 
that the 
the I/O 

2. RMS-ll reads the root and scans for the first value greater 
than or equal to the key value specified when the op~ration 
was initiated. If all else fails, the search will find the 
highest possible key value in the last index record. 

3. RMS-ll reads the bucket indicated by .the pointer associated 
with the selected key value and scans for the first key value 
greater than or equal to the value specified. RMS-ll repeats 
this step through the levels until level 0 is reached. 
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Example: Refer to Figure 5-5 for this example. 

The specified primary key value is "YOOS." 

RMS-ll determines the VBNs of the root bucket from the memory-resident 
index descriptors and requests the file control processor to read 
those blocks into an I/O buffer. RMS-ll scans the index records in 
the root. The first key value equal to or greater than "YOOS" is the 
maximum key value in the last record. 

RMS-ll uses the bucket pointer in this index record to request another 
I/O operation. The file control processor reads the specified blocks 
into the I/O buffer, and RMS-ll scans them looking for a key value 
equal to or greater than "YOOS." Again, it finds no qualifying key 
value until the last record in the bucket, which contains the maximum 
key value. This index record points to a level 1 bucket. 

Upon RMS-ll's request, the file control processor brings the indicated 
bucket into memory. RMS-ll searches the bucket, terminating with the 
last record in the bucket, which contains the.m:aximum key value. 

The file control processor reads the indicated level 0 bucket at 
RMS-ll's request. 

5.2.4 Why this Structure? 

Mechanical data storage devices make I/O operations the slowest part 
of file processing. Ideally, a file is read into memory when it is 
ope-ned and maintained there, without additional I/O operations, until 
the file is closed. Some very small files allow this approach and are 
handled most efficiently by your own search techniques r~ther than by 
RMS-ll'sindexing facilities. 

However, most indexed files are very much larger than the memory 
available for data buffering. Such files are therefore partitioned 
into pieces that can be read to memory. RMS-ll calls these pieces 
buckets. By definition, one I/O operation is required to access one 
bucket. 

If no index to the data exists, a task must scan sequentially through 
the buckets of a file to find a specific record. Such a search, on 
the average, accesses half the buckets in the file. Figure 5-6 plots 
the time curves for various file searching techniques. 

You can optimize nonindexed access by: 

• Ordering the records by a key value 

• Using a binary search technique 

Then, the number of accesses required to find a record approaches 10g2 
of the total number of buckets (see Figure 5-6). This better, but 
still mediocre, speed is realized on one of perhaps many keys. 

The RMS-ll indexed structure uses buckets so that your programs can 
handle files more efficiently. In most cases l RMS-ll uses n+l I/O 
operations to locate a record by primary key, where n is the depth of 
the file's primary index. 
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In a small file, this technique is not appreciably faster than a 
sequential scan. However, given typical key sizes, a primary index of 
depth 3 can represent from 1,000 to 125,000 buckets of data records, 
using only single-block buckets. Normally, four disk accesses are 
needed to get any record by primary key value. 

Example: You want to search 50 buckets .of data for records with 
specific primary key values. The average number of buckets you read 
during each search depends on your search technique (see Figure 5-6): 

25.5 
5+ 

2 

buckets for a nonindexed search of unsorted records 
buckets for a binary search of records sorted by primary 
key 
buckets for an RMS-ll indexed search 

5.3 PROCEDURES FOR PERFORMING RANDOM RECORD OPERATIONS 

The procedures for performing random record oper~tions on indexed 
files depend on the circumstances for the individual operation, the 
file's design, and whether alternate indexes must be updated. 

NUMBER OF 
PRIMARY DATA 
BUCKETS 

RMS-11 PRIMARY INDEX SEARCH, 
10 RECORDS PER INDEX BUCKET' 

BINARY SEARCH FOR PRIMARY KEY, 
RECORDS ORDERED BY PRIMARY KEY 

o 5 10 15 20 

NUMBER OF BUCKETS READ IN SEARCH 

"LINE SHIFTS TO LEFT AND BREAK RIGHT MOVES UP 
AS NUMBER OF INDEX RECORDS PER BUCKET GOES UP 
ASSUMING OPTIMAL PACKING ' 

Figure 5-6: Search Time Curves 
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5.3.1 Writing a Record 

When your program initiates a PUT operation, RMS-ll moves the data 
from the task to the proper bucket in level 0 of the primary index and 
updates all indexes involved with the record. This process can be 
simple, requiring minimal I/O operations. It can also be complex, 
requiring more procedures and data transfers. The complexity depends 
on whether there is enough room for the new record in its data bucket. 

5.3.1.1 Simplest Case - In the simplest PUT operation, 
room in the target data bucket to insert the record. 
operation, RMS-ll performs the following steps: 

RMS-ll finds 
To execute the 

1. Determines the value of the primary key field from the 
record. 

2. Follows the primary index to the proper level 0 bucket. 

3. Reads the level 0 bucket and sequentially scans for the first 
record with a primary key value greater than the specified 
value. RMS-ll then establishes a position before that 
record, or after the last existing record in the bucket if: 

• The key values are equal. 

• The first record in the next data bucket has a higher key 
value. 

4. Compresses deleted records. RMS-1l can reuse bytes in a 
deleted record depending on the record format and whether you 
allow duplicates in the primary key field. Section 6.2.5 
discusses reusing space from deleted records. 

5. Determines whether the record to be inserted fits in the 
bucket (in this simplest case, it does). 

6. Inserts the record at the established position. 
index buckets are updated since no high-key 
changed. 

No primary 
value has 

7. If there are alternate keys, updates those indexes, using the 
following sequence of steps for each one: 

• Follows the alternate index to the proper level 0 bucket. 

• Reads the level 0 bucket and sequentially scans for the 
key value specified in the record: 

If a value higher than the one specified is found, 
inserts a SIDR for the record before the SIDR for the 
higher value. 

If a match is found, determines whether duplicates are 
allowed for the alternate key: 

If duplicates are allowed, RMS-llfollows the duplicate 
pointer array in the SIOR to the end, then inserts a 
pointer to the newly inserted record. This procedure 
preserves the first-in, first-out convention. After 
the last alternate key, RMS-ll returns a successful 
completion code to the program. 

5-10 

c 

c 



( 

c 

c 

Bxamp1e: 

INDEXED .FILE STRUCTURE AND ACCESS 

If duplicates are not allowed, RMS-ll returns to level 
o of the primary index, flags the newly inserted record 
as deleted, logically removing it, and returns an error 
code to the program. 

Refer to Figure 5-5 for this example. 

RMS-ll examines the record in the user buffer of the record access 
stream initiating the PUT operation. The value in the primary key 
field is "JACKSON." RMS-ll locates the primary root and requests the 
file control processor to read the bucket into the I/O buffer 
associated with the stream. When that I/O operation completes, RMS-ll 
scans the bucket; looking for a key value equal to or greater than 
"JACKSON." It finds "JONES." 

RMS-ll requests the bucket indicated by the pointer in the "JONES" 
index record~ When RMS-ll scans this level 2 bucket, it finds that 
"JONES" again ends the search. Following the pointer in this index 
record, RMS-ll requests another bucket. Its search of the level 1 
bucket ends in another "JONES" index record. 

RMS-ll requests the level 0 bucket indicated by this last index 
record. It finds that a data record with a primary key value of 
"JONES" is the only occupant of the bucket. There are no deleted 
records to compress, so RMS-ll writes the "JACKSON" record before the 
"JONES" data record, moving the "JACKSON" record down in the bucket. 

There are no alternate keys. RMS-ll returns a successful completion 
code to the program. 

5.3.1.2 Bucket Splitting - If there is not enough 
data bucket for the record, RMS-11 allocates 
reorganizes the records in the old one between the 
procedure is called bucket splitting. 

room in the target 
a new bucket and 

two buckets. This 

Bucket splitting is identical with the simplest case (Section 5.3.1.1) 
to step 5 where RMS-ll determines whether the new record fits in the 
bucket. When there is not enough room, RMS-ll does the following: 

1. Reads the appropriate area descriptor from the file prologue. 
If enough blocks for a bucket are allocated for the area, 
RMS-ll formats the blocks into a bucket and updates the area 
descriptor to reflect the new bucket. Otherwise, RMS-ll 
requests the operating system to. allocate enough blocks, and 
then formats them into a bucket and updates the area 
descriptor. 

2. Splits the target bucket at the point where the record should 
be inserted. RMS-ll moves the records in the high portion of 
the bucket into the new bucket; these records have primary 
key values higher than those of the new record. 
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NOTE 

When RMS-ll moves a record between buckets, it marks 
the record's original location with a record 
reference vector (RRV). An RRV is a copy of the 
record's header (both contain 7 bytes). RRVs 
preserve alternate key and RFA access, holding the 
original location of the record and pointing to its 
current location. Only one RRV is created for a 
record: if the record moves again, RMS-ll updates 
the RRV with the record's new location. 

Since the original location of a record is filled, 
either with the record or a pointer to that record, 
RMS-ll does not have to· update alternate indexes 
every time a record moves. This convention means one 
extra I/O operation may be needed to find Or get a 
record via an alternate key, but it prevents a 
complex and costly index updCite for each bucket 
spli t. 

3. Inserts the data record in the original target bucket. If 
the record will not fit, RMS-ll inserts it into the new 
bucket. If the record will not fit there either, RMS-ll will 
create another bucket (see step 1) and put the record there. 

4. Updates the level 0 bucket chain to include the new 
bucket (s) • 

5. Returns to the primary root bucket and follows the index to 
the level 1 index bucket that points to the data bucket that 
spli t. 

6. Inserts index record(s) for the new data bUcket(s). If the 
index bucket splits, RMS-ll uses a procedure similar to this 
to move the index records and update the next higher level of 
the index. Splitting can occur all the way to the root where 
a new root is created and the file prologue updated. 

7. If there are alternate keys, RMS-ll updates those indexes as 
described in step 7 of the simplest case (Section 5.3.1.1). 
Bucket splitting can occur in alternate indexes also. 

5.3.1.3 Incremental Reorganization - The process· of inserting 
data record where it belongs in level 0 and updating the indexes 
RMS-ll inserts the record is called incremental reorganization of 
file. 

Incremental reorganization has the following advantages: 

each 
when 

the 

• It eliminates reorganization periods where special software 
incorporates overflow areas into the main file and that file 
is not available for processing 

• It ensures equal access time to old and new records 

• It enables performance on sequential access by primary key to 
approach the speed of sequential access to a sequential file 
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This process has its costs: additional I/O operations occur when a 
bucket splits. But with good file design and file loading, bucket 
splitting (arid the time for each bucket split) is minimal. Chapter 6 
discusses these considerations in detail. 

5.3.2 Getting.and/or Finding a Record 

To execute a key-access GET or FIND operation, RMS-ll performs the 
following steps: 

1. Determines from the instruction initiating the operation the 
following criteria: 

• Key of reference, indicating which index to search and 
which key field within the data 'record to examine 

• Value to find 

• Match criterion (equal to, greater than, or both) 

• Number of characters to match 

2. Follows the index to the proper level 0 bucket. 

3. Reads the level 0 bucket, sequentially scanning for the first 
record with a value in the specified key field that matches 
the specified value according to the match criterion. This 
search can continue into other buckets: 

• If no such record is found, RMS-ll returns an error code. 

• If such a record is found, RMS-ll: 

Determines which index has been read: 

If it is the primary index, RMS-ll· goes to the next 
step. 

If it is an alternate index, the record located is a 
SIDR. RMS-ll ,fOllows the SIDR pointer to the primary 
level 0 data record. 

For a GET operation only, moves the record to the user 
buffer associated with the access stream performing the 
operation. 

Sets the current context for the stream performing this 
operation. The effect of each record operation on 
context is described in Section 7.2. 

Returns a successful completion code. 

Example: Refer to Figure 5-5 for this example. 

RMS-ll determines the key (and index) of reference and 
find ,from the instruction ini tiating the operation. 
they are .the primary key (key 0) and "ABI." 
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RMS-ll locates the primary root and requests the file control 
processor to read the bucket into an I/O buffer. RMS-ll sequentially 
scans the root for an index record whose key value is equal to or 
greater than "ABI." It finds "ABRAM." 

RMS-ll requests the bucket indicated by the pointer in the "ABRAM" 
index record. When RMS-ll searches this level 2 bucket, it finds an 
index record containing the key v~lue "ABNER." Following the pointer 
in this index record; RMS-ll requests another bucket. The search of 
the level 1 bucket ends in the key value "ABLE." 

RMS-ll requests the level 0 bucket indicated by this last index 
record. RMS-ll changes its search criteria to th~t specified in the 
initiating instruction: it looks for a record where the first 3 bytes 
of the primary key field equal "ABI." Since the only record in the 
bucket contains "ABLE" in its primary key field, RMS-ll cannot satisfy 
the search requirements. It returns a "record not found" error code 
to the program. 

5.3. J Updating a Reco.rd 

RMS-ll requires an UPDATE operation to be preceded by a GET or FIND 
operation, although some high-level languages hide this prerequisite. 

To execute an UPDATE operation, RMS-ll performs the following steps: 

1. Locates the key fields of the revised record in the user 
buffer associated with the access stream performing the 
operation~ RMS-ll compares those key values with the values 
in the current record: 

• If the primary key value changed, RMS-ll returns an error 
code. 

• If an alternate key value changed, RMS-ll checks whether 
you allowed changes for that key: 

If not, RMS-ll returns an error code. 

If so, RMS-ll continues processing. 

2. For each alternate key where the key value changed, RMS-ll 
performs the following s·teps to delete the pre-update value 
from the alternate index: 

• Reads the data bucket containing the current record, if 
that bucket is not in memory. 

• Sa~es the pre-update alternate key value from the current 
record. 

• Follows the index to the level 0 bucket that should 
contain the SIDR for the pre-update key value. 

• Reads the level 0 bucket and sequentially scans for the 
pre-update key value: 

If a value higher than the one specified is found, 
RMS-ll goes to the next alternate index. 
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Example: RMS-ll scans a bucket, searching 
pre-update key value of "D." It finds a record 
key value of "E." Since "E" is greater than "0," 
ends the search and this step in the procedure. 

for a 
with a 
RMS-ll 

If a match is found, RMS-II scans the duplicate pointer 
array in the SIOR to the entry for the record being 
updated and flags it as deleted. 

NOTE 

To allow keys to change, RMS-II requires that you 
also allow duplicates. Therefore, if you allow 
alternate key values to change, there is a 
duplicate pointer array in the SIOR for each key 
value. However, you should refer to your 
high-level language documentation for specific 
information on your compiler's implementation of 
this capability~ 

3. Reads the data bucket containing the current record, if that 
bucket is not in memory. RMS-II replaces the current record 
in the I/O buffer with the updated version in the user 
buffer. 

4. Writes the bucket to the file. 

5. For each alternate key where the key value changed, RMS-Il 
performs the following steps to insert the post-update value 
in the alternate index: 

• Reads the data bucket containing the current record, if 
that buc.ket is not in memory. 

• Follows the index to the level 0 bucket that should 
contain the post-update key value. 

• Reads the level 0 bucket and sequentially scans for the 
post-update key value~ 

If a value higher than the one specified is foundi 
RMS-II inserts a SIOR for the new record before the 
SIOR for the higher value. 

If a match is found, RMS-II follows th~ duplicate 
pointer array in the SIOR to the end, then inserts a 
pointer to the new record. 

After the last alternate key is updated, RMS-II returns a 
successful completion code to the program. 

5.3.4 Deleting a Record 

RMS-II requires a DELETE operation to be preceded by a GET or FIND 
operation, although some high-level languages hide this prerequisite. 
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To execute a DELETE operation, RMS-ll performs the following steps: 

1. If there are alternate keys, RMS-ll updates those indexes as 
follows, using the same sequence of steps for each: 

• Reads the data bucket containing the current record, if 
that bucket is not in memory. 

• Follows the index to the level 0 bucket that should 
contain the SIDR for the key value in the deleted record. 

• Reads the level 0 bucket and sequentially scans for the 
specified key value: 

If a value higher than the one specified is found, RMS-ll 
goes to the next alternate index, if any. 

If a match is found, RMS-ll determines whether you have 
allowed duplicates: 

If so, RMS-ll follows the duplicate pointer array in 
the SIDR to the entry for the record being deleted and 
flags it as deleted. 

If not, RMS-ll deletes the SIDR. 

2. Reads the data bucket containing the current record, if that 
bucket is not in memory. 

3. Changes the flag byte in the header of the current record to 
indicate that the current record is deleted. 

4. Writes the bucket to the file. 

5. If the record has moved, reads the level 0 bucket containing 
the RRV. RMS-ll changes the flag byte in the RRV to indicate 
that the record is deleted. 

6. Writes the bucket to the file. 

RMS-ll does not compress a deleted record until· it needs space to 
insert another user data record into the bucket (see Section 5.3.1). 
RMS-ll does not compress deleted RRVs. 

RMS-ll does not 
index structure 
DELETE operation. 

NOTE 

modify or reduce any 
or allocation during a 

5.4 PROCEDURES FOR PERFORMING SEQUENTIAL RECORD OPERATIONS 

Your program can use sequential access mode to perform the following 
record operations: 

FIND 
GET 
PUT 
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During sequential-access GET ~nd FIND operations, RMS-ll does not 
usually read an index to locate the specified record. Instead, RMS-ll 
uses the record context for the stream performing the operation to 
identify the proper data bucket. 

For FIND operations, RMS-ll uses the next record pointer to identify 
the target bucket. For GET operations, RMS-ll uses the next record 
pointer, if the GET operation was not immediately preceded by a 
successful FIND operation. The current record pointer is used if the 
GET operation was immediately preceded by a successfui FIND operation. 

Next, RMS-ll requests the file control 
bucket into the I/O buffer, if that 
has requested a SIDR bucket, RMS-ll 
pointer to the user data record. 

processor to move the target 
bucket is not in memory. If it 
then follows the appropriate 

During sequential-access PUT operations, RMS-ll compares the primary 
key value of the specified record with the primary key value of the 
last record written: 

• If the specified record's primary key value is equal to or 
greater than the last record's primary key value, RMS-ll 
performs a key-access PUT operation (described in Section 
5.3.1) • 

• If the specified record's primary key value is less than the 
last record's primary key value, RMS-ll returns an error code 
to the program. 

5.S I/O COST OF PERFORMING RECORD OPERATIONS 

Table 5-1 provides simple algorithms for predicting the number of I/O 
operations any RMS-ll record operation requires: 

• The value n = index depth of the indicated key; 
do not necessarily have the same depth. 

a.ll indexes 

• Algorithms do not include I/O operations caused by program or 
RMS-ll overlays, operating system overhead, ·or by file 
extensions (see Chapter 8). 
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Table 5-1: I/O Cost of Performing Record Operations 

Each 
Primary Alternate 

Record Operation Key Key 

Key-access GET or FIND 
Record in original location n+1 n+2 
RRV in original location (record moved) n+1 n+3 

Sequential-access GET or FIND 0-2 a 1-4 b 

PUT 
Simplest case n+2 n+2 

2n+6 c 2n+6 c 
(n**2+11n+20)/2 d (n**2+11n+20) /2 d 

Split in data level 
Bucket split up entire index 

UPDATE e 
Alternate key value did not change 
Alternate key value changed 

DELETE 
Record in original location 
RRV i.n original location (record moved) 

aBreaks down to: 

o or I 
o or 1 

I/O to position to current record 
I/O to locate next record 

bBreaks down to: 

1 
1 

1 
3 

o or 1 
o or I 
I or 2 

I/O to position to SIDR for current record 
I/O to locate SIDR fOl; next record 
I/Os to retrieve user data record 

cBreaks down to: 

n+2 I/Os to read and write the old bucket 
n+1 I/Os to read and write the level I index bucket 

3 I/Os to write the hew bucket and update the area 
descriptor in the prologue 

dBreaks down to: 

(n+2)+(n+1)+n+(n-1)+ ••• +3+2 

I/Os to return to the primary root and read and 
write updated buckets from level 0 to the root 

3 (n+l,) 
5 

I/Os for each bucket split (see footnote c) 
I/Os to create the new root 

e Va1ues assume record length does 
spli tting. 

not change and cause bucket 

fn+2 if either the old or new key 
index; for example, the 
defined for the key, or a 
contain the whole key field. 

value does not belong in the 
field contains the null key value 
variable_length record does not 

gValue is different if one of the following is true: 

• You specified the "fast delete" option (available in MACRO-II 
only) when you initiated the DELETE operation. Then, RMS-il does 
not update alternate indexes in which duplicate keys are allowed. 

• RMS-II has to scan a 
continuation buckets. 
additional bucket. 

long duplicate array into one or more 
Then, one I/O operation is needed for each 
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CHAPTER 6 

INDEXED FIL.E DESIGN 

Indexed file d,esign ranges from .the basic elements of your application 
(record definition and key selection) to the structure of the file and 
to the methods used to put the data into the file. This range 
includes: 

l. Record size 

2. Key selection 

3. Areas 

4. Placement control 

5. Bucket size 

6. Allocation 

7. Population techniques 

6.1 RECORD SIZE 

You can use only fixed- and variable-length records in RMS-11 indexed 
files. RMS-ll calculates length (RL), in bytes, as follows: 

RL = 7+RFO+DS 

where: 

7 is bytes for RMS-ll record header 

RFO is bytes for re.cord format overhead: 0 for fixed, 2 for variable 

DS is bytes of data 

Set your record size to reflect application 
adJust it to fit bucket size. For instance, 
buckets, you should not, if you can avoid it, 
the records just fit into the buckets: 

512 bytes in a block 
-15 bytes of indexed file overhead 

497 bytes left for records 
- 7 bytes for the record header 

requirements; do not 
if you are using I-block 
set a record length so 

per bucket 

490 bytes left for the data and record format overhead 
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This calculation seems ideal at first. However, when the record moves 
during a bucket split or RMS-ll deletes the record, and some RMS-11 
overhead is left in the bucket, a normal data record cannot fit: the 
bucket is essentially useless, with up to 490 bytes of unused space. 

If your application requires 490-byte records, you should use them, 
keeping the preceding limitation in mind and, perhaps, choosing a 
different bucket size. 

NOTE 

Records in an indexed file cannot span 
buckets and bucket sizes are limited by 
the operating system to 32 blocks. 
Therefore, the maximum record size, 
including overhead, is 16,369 bytes. 

6.2 KEY SELECTION 

A file's keys can take up significant space in an indexed file and can 
have a significant effect on the number of I/O operations needed to 
access the file. During key selection, you should consider the 
following: 

• Number of keys 

• Key data type 

• Key Size 

• position of key in record 

• Key characteristics 

6.2.1 Number of Keys 

You can specify from 1 to 255 keys for an indexed file: 

• One primary key that RMS-ll requires for every indexed file 

• 254 alternate keys 

There are overhead costs in key specific~tion: For each key sp~cified 
in an indexed file, RMS-11 builds an index. Since RMS-ll requires a 
prim~ry k~y, you must accept that key's index overhead, but you should 
consider the cost before specifying an alternate key for the file: 

• RMS-ll updates alternate indexes when your program: 

puts a new record into the file 

Updates a ~ecord in the file and the alternate key values 
change 

Deletes an existing record 

The time required for this update relates to the number of I/O 
operations needed to follow each alternate index from the root 
to level 0, to change or insert the SIDR, and to rewrite the 
bucket. RMS-llcan require additional time if one or more 
buckets in the index split. 
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INDEXED FILE DESIGN 

• An index takes room in the file. You can estimate· the disk 
space for an alternate index (see Section 6.6.1). 

Whether the cost of each alternate key is bearable depends on your 
application. If the primary purpose of the application is to write, 
update, or delete records, each alternate key will noticeably burden 
the operations; therefore, the number of alternate keys should be 
kept to the minimum. Rarely used alternate access paths call for a 
separate program that sorts by the desired nonkey field and then 
processes the data. 

However, if the primary purpose of 
from the file, then alternate keys 
alternate keys give flexibility to 
the cost of the extra keys is 
records are added to the file. 

6.2.2 Key Data Types 

your application is to get records 
do not burden processing. In fact, 

information retrieval. However, 
borne on those few occasions when 

Each key in an indexed file can be one of the following data types: 

String 
2-byte signed integer 
4-byte signed integer 
2-byte unsigned binary 
4-byte unsigned binary 
Packed decimal 

6.2.2.1 String Type - RMS-ll interp):ets each character of the key in 
a byte by its binary contents. Permissible values are not limited to 
valid ASCII codes. 

Example: The key value "RMS-ll" is represented as follows: 

7 

0 1 0 1 0 

0 1 0 () 1 

0 1 0 1 0 

0 0 1 0 1 

0 0 1 I 1 0 

0 0 1 1 0 

0 1 0 

1 0 1 

0 1 1 

1 o I 1 

o I 0 I 1 

0 0 1 

o 
MOST SIGNIFICANT BYTE = R 

=M 

=8 

= 1 

= 1 

ZK-1191-82 

The first (lowest-addressed) byte of the key is the most significant 
byte of a string key for collating purposes. RMS-Il compares primary 
keys byte-by-byte, first-to-Iast, when it determines where the record 
should be placed in the file. 

The maximum key value is all bits in each byte set to 1 (octal 377). 

There is a cost in the number of bytes specified as the key length. 
For example, if you specify a key length of 12, each representation of 
the key in the data record and in the index takes 12 bytes. 
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6.2.2.2 Two-Byte Signed Integer Type - Each key requires 2 bytes; 
RMS-ll interprets the data in the following format: 

7 o 

I : : : : : : : 
t 

. ·1 lEAST SIGNIFICANT BYTE 

. MOST SIGNIFICANT BYTE 

SIGN BIT 

ZK·1192·82 

NOTE 

The least significant byte of an integer 
or binary key is the byte with the 
lowest address. Significance increases 
with address. Within a byte, the lowest 
significant bit is bit 0, and 
significance increases with position. 
See your PDP~ll Processor Handbook. 

A 2-byte signed integer can represent the decimal values -32,768 
through +32,767. 

Maximum key value is +32,767. 

The cost in key size is 2 bytes per representation. 

6.2.2.3 Four-Byte Signed Integer Type - Each key requires 4 bytes; 
RMS-ll interprets the d~ta in the following format: 

7 o 

I I 
LEAST SIGNIFICANT BYTE 

I 

I 

I I I I I I 
MOST SIGNIFIGANT BYTE 

t 
SIGN BIT 

ZK·1193·82 
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A 4-byte signed integer can represent 
-2,147,483,648 through +2,147,483,647. 

Maximum key value is +2,147,483,647. 

the 

The cost in key size is 4 bytes per representation. 

decimal values 

6.2.2.4 Two-Byte Unsigned Binary Type - Each key requires 2 bytes; 
RMS-ll interprets the data in the following format: 

7 o 

: : : : : : : 
LEAST SIGNIFICANT BYTE 

MOST SIGNIFICANT BYTE 

ZK-1194-82 

A 2-byte unsigned binary value can represent the decimal values 0 
through +65,535. 

Maximum key value is 65,535. 

The cost in key size is 2 bytes per representation. 

6.2.2.5 Four-Byte Unsigned Binary Type - Each key requires 4 bytes; 
RMS-l1 interprets the data in the following format: 

7 o 
LEAST SIGNIFICANT BYTE 

I 

. 
MOST SIGNIFICANT BYTE 

ZK-1195-82 

A 4-byte unsigned binary value can represent the decimal values 0 
through +4,294,967,295. 

Maximum key value is 4,294,967,295. 

The cost in key size is 4 bytes per representation. 
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6.2.2.6 Packed Decimal Type - RMS-11 recognizes 2 decimal digits of 
the key in each byte except the last. The key format takes the 
following form: 

7 o 

~ ___ 0_1 ____ ~ ____ 0_2 __ ~1 A 

03 04 A+1 
~ ______ -L ______ ~ 

01 SIGN A + N - 1 

ZK-1196-82 

where: 

A is an address: A, A+l,... are increasing (byte) addresses. 

01-01 are decimal digits: 01 is the most significant digit and 01 is 
the least significant digit. 

SIGN has a value of 10, through 15: + is represented by a 10, 12, 
14, or 15; and - is represented by an 11 or 13. 

N is the length of the key in bytes (maximum of 16) 

I is the length of the digit string, an odd number in 
of 1 through 31, where I = 2N - 1 

Maximum key value is 99 in each byte with the sign positive. 

6.2.3 Key Size 

the range 

Keys for indexed files have length restrictions according to their 
data types. Table 6-1 lists these restrictions. 

( 

c 

Table 6-1: Key Data Typel;; C~ 

Data Type Length (bytes) 

String 1-255 
IS-hi t signed integer 2 
31-bit signed integer 4 
16-bit unsigned binary 2 
32-bit unsigned binary 4 
packed decimal 1-16 

The cost of each key's size is borne in the data record and in the 
index: RMS-ll stores an entire key value in each index record. 
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6.2.4 Position of Key in Record 

You can locate any key anywhere in the record: 

• Alternate keys can precede the primary key. 

• Keys can overlap each other. Note, however, that COBOL-Bl, in 
keeping with the ANSI standard, does not permit more than one 
key to start at the same position. The standard calls this 
leftmost correspondence. 

You benefit from careful placement of keys within the record: 

• Deleting a record -- When you allow duplicates in the primary 
key of variable-length records, RMS-ll compresses a deleted 
record by removing all data except: 

The record header 

Enough of the record to contain the primary key 

Th7refore, you can optimize DELETE operations if you place the 
prImary key at the beginning of the record. The closer the 
key is to the beginning of the record and" the shorter the key, 
the fewer overhead bytes remain in the file. 

However, if you have fixed-length records or do not allow 
primary key duplicates, the position of that key in the record 
is not significant. See Section 6.2 •. 5.1 ~or more information 
on duplicates. 

• Writing a record You can optimize PUT operations for 
variable-length records, by placing alternate keys at the end 
of the record. Then, if no valid data is present in an 
alternate key field, you can shorten the record to exclude 
that field, thus reducing the record space in the data level 
as well as eliminating a reference to that record in the 
alternate index. 

You can segment string keys; all other key data types must be 
contiguous bytes. You can specify up to eight segments in one string 
key, each segment with its own length; the total of the lengths 
cannot exceed 255 bytes. Note that some high-level languages do not 
make this capability available; see your high-level language 
documentation. 

RMS-ll concatenates the segments you specify before performing any 
operations requiring a value for the key. RMS"';ll defines a segment by 
byte position within the record and length in bytes. Therefore, the 
key segments you define with either a MACRO-ll program or RMSDES do 
not have to align with the data fields you define within the records: 
RMS-ll has no knowledge of the form of such files. 

Example: You have an inventory application with a master product 
file. Within the product records, you have fields for vendor number, 
vendor's part code, and your part number, among others. You can 
define the following keys for the file regardless of the placement of 
the fields. " 

Primary key = vendor number + vendor part code 
Alternate key 1 = vendor number + your part number 
Alternate key 2 = vendor number 
Alternate key 3 your part number 
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For cost, see the preceding considerations about the placement of keys 
within a record, knowing that a key consists of all segments. 

6.2.5 Key Characteristics 

Key Characteristics include: 

• Duplicates 

• Changes 

• Null key 

Characteristics are restricted according to key number: 

Char.acter i stics primary Key (0) Alternate Keys (1+) 

Duplicates 
Changes 
Null key 

Allowed 
Not allowed 
Not allowed 

Allowed 
Allowed 
Allowed 

The combination of changes and duplicates is also 
number: 

restricted by key 

Combination Primary Key (0) Alternate Keys (1+) 

CHG+DUP Error Allowed 
CHG+NODUP Error Error 
NOCHG+DUP Allowed Allowed 
NOCHG+NODUP Allowed Allowed 

NOTE 

COBOL-8l allows the CHG+NODUP 
combination for alternate keys. To 
enable this option, the CO~OL-8l OTS 
uses a hidden FIND operation to check on 
duplicates each time an alternate key 
value changes on an UPDATE operation 
(REWRITE in COBOL-81). 

6~2.5.1 Duplicate~ - If duplicates are allowed for a key, more than 
one record can have the same value in that key field. The overhead 
costs are: 

• File space -- Duplicates have little effect on space usage as 
long as records are not frequently updated with changing k~y 
values or deleted. If anything, records with duplicate key 
values are stored more efficiently than records with 
nonduplicate values: fe~er index records are required to 
cover data records with duplicate primary keys. 

In alternate indexes, one SIDR with one representation of the 
key value is needed to cover multiple data records with the 
same value in the key field. 

• Writing a record -- RMS-li stores records with duplicate key 
values for first-in, first-out access. Writing (and updating) 
records containing duplicate key values takes more time as the 
number of duplicates builds up. 
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A PUT operation can fail because duplicates are not allowed 
for one of the keys. If this is the primary key, RMS-ll has 
wasted little time since it has performed only the I/O 
operations to find the previous record with that value in the 
key field. 

However, if you allowed no duplicates in one of the alternate 
keys, RMS-ll: 

1. Updates the primary index, including the data level. 

2. Updates the preceding alternate indexes. 

3. Discovers that it cannot insert the record because a 
record already exists with that key value. 

4. Reverses the actions it has taken, removing all updates 
from the indexes it has already rewritten. Entries made 
in SIDR duplicate arrays are flagged as deleted and not 
compressed out of existence. However, RMS-ll cannot 
reverse bucket splits. 

5. Returns an error code. 

Deleting a record -- If you do not allow duplicate 
the primary key, RMS-ll compresses a deleted 
2-byte indicator when it performs a DELETE 
However, if you allow duplicate values for the 
RMS-ll keeps enough of the record to contain 
primary key: 

values for 
record to a 
operation. 

primary key, 
the entire 

1. If the format is fixed, the entire record remains in the 
file. 

2. If the format is variable, enough of a record remains in 
place to hold the entire primary key. 

• If you do not allow duplicate values for an alternate key, 
RMS-ll removes the SIDR when it deletes the data record. 
However, if duplicates are allowed, the pointer remains in the 
SIDR array with the delete flag set. 

• Updating a record -- If you allow duplicate values for the 
primary key, the length of a variable record cannot be changed 
during an UPDATE operation. In addition, updating records 
containing duplicate key values takes more time as the number 
of duplicates builds up. Finally, the SIDR pointers for 
deleted records are flagged as deleted, but not removed from 
the duplicate array. 

• Summary -- Duplicates are not costly for write-type operations 
unless there are too many of them. pick a key field that 
minimizes duplicates. 

Example: Fields where there are only two choices for entries, 
such as sex, are not good candidates for key fields. 

6.2.5.2 Changes - The value of a primary key field cannot change 
during an UPDATE operation; however, you can allow the value in any 
alternate key field to change if you are willing to allow duplicate 
values in that key. 
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During any UPDATE operation, RMS-ll checks the characteristics of all 
keys and compares· the new key values (in the record about to be 
rewritten) with the old values: if you do not allow changes in a key 
field, but changes have been made, RMS-ll immediately terminates the 
UPDATE operation with an error code. 

Cost: If an alternate key value changes during an UPDATE operation, 
RMS-ll must trace the old SIDR and delete it, then insert the new one, 
starting with the root of the index for both processes. If the data 
does not change, however, RMS-ll does not update the alternate index. 

6.2.5.3 Null Key - You can specify the null key characteristic for 
any alternate key. If RMS-ll finds that an alternate key field is 
filled with the null key value specified for that key, it does not 
insert an entry into the index for the record being wr~tten. 

Zero is the null key value for the numeric key data types (integers, 
binaries, and packed decimal). The null key character for string keys 
can be any octal value (000 through 377) including an ASCII character: 
if all bytes in the key field contain this value, the key is 
considered null. 

Cost: The use of a null key value can reduce the disk space that an 
alternate index occuples, but it also precludes accessing those 
records not entered in the index via that alternate key. 

6.3 AREAS 

You should divide an indexed file into areas. An area is a portion of 
the file that RMS-ll treats as an entity for: 

• Initial allocation 

• Extensions 

• Bucket size 

• Placement on disk 

Areas allow you to gather logical elements of the file into groups of 
continuous ranges of VBNs. These VBNs can be mapped onto a contiguous 
set of logical blocks on disk. This tight sequence of VBNs is lost 
when RMS-ll extends an area. 

NOTE 

Unless you completely allocate each area 
when you create the indexed file, the 
division of the file into areas may not 
improve performance. 

Areas can be set up for: 

• Primary index level a (the data records) 

• Primary index level 1 (the lowest index level) 

• Primary index levels 2 and greater (the rest of the index) 
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• Alternate index level 0 (SIDRs) 

• Alternate index level 1 (the lowest index level) 

• Alternate index levels 2 and greater (the rest of the index) 

Dividing a file into areas primarily saves I/O time. As explained in 
Section 5.1, in a single-area file, RMS-ll intersperses index and data 
buckets: index buckets are scattered among the data buckets. During 
each random record access, RMS-ll consults the appropriate index 
descriptor in memory and then directs (through the operating system) 
the disk head to read the root and levels 2 and greater, levell, then 
the appropriate level 0 bucket. These buckets can be anywhere in the 
file, and the disk head can travel large distances several times to 
complete one access operation. Figure 6-1 shows an indexed file with 
one area. Figure 6-2 shows an example of a single-area indexed file. 

BUCKET 
NUMBER 

ROOT 

LEVE L2 

LEVE L 1 

LEVE LO 

3 4 K N 

DATA 
PRIMARY 

DATA DATA t INDEX 

ROOT 

PRI~~RY DATA DATA DATA •• • 

INDEX 

ZK-1153-82 

Figure 6,..1: Single-Area Indexed File 

VBN 17933 

~ 
VBN 305 . 

/ 
VBN 14 

~ 
VBN 20433 

VBN = VIRTUAL BLOCK NUMBER 

Figore 6-2: Example of Single-Area Indexed File 
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To randomly access a specific record in the file illustrated in Figure 
6-2, RMS-ll makes the following I/O requests: 

1. Read VBN 17933 

2. Read VBN 305 

3. Read VBN 14 

4. Read VBN 20433 

You can now realize how much the device has to. move its read head to 
service one random access operation. 

A multiarea file, on the other hand, can have all index buckets 
allocated contiguously (if enough blocks were initially allocated)! 
all index information is available in one physical part of the disk. 
RMS-ll .can then traverse an index with little or no head movement 
until it reads the indicated data bucket. In addition, a sequential 
read of the file moves the head mechanism smoothly through the 
physically contiguous area assigned to the primary index level O. 
Figure 6-3 shows an indexed file with two areas. 

BUCKET 
NUMBER 

PRIMARY 
INDEX 

2 

PRIMARY 
INDEX 

3 

ROOT 
OF 

PRIMARY 
INDEX 

4 N-1 N 

~ ,m ,m "'" OA" 7. 
PRIMARY 

INDEX 

~ ________ ~ ________ ~J LI ________ ~~--------~ 

AREA 0 AREA 1 
ZK-1154-82 

Figere 6-3: Two-Area Indexed File 

To refine your file even more, place the lowest level of each index 
(level 1) in an area separate from the rest of the index (levels 2 and 
greater). 

Figure 6-4 shows an example of a multiarea indexed file. 

To randomly access a specific record. in the file illustrated in Figure 
6-4, RMS-ll makes the 'following I/O requests: 

1. Read VBN 418 

2. Read VBN 423 

3. Read VBN 1537 

4. Read VBN 14703 

You can now realize how much the proper use of·areas reduces disk head 
movement during a random access operation. 
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ROO T VBN 418 

\ 
LEV EL 2 VBN 423 

- - - - - - _/AREAD - - - -
AREA 1 

LEV EL 1 VBN 1537 

- - - - - -fAREA1 - - - - -
AREA 2 

LEV EL 0 VBN 14703 

VBN ~ VIRTUAL BLOCK NUMBER 

ZK-1161-82 

Figure 6-4: Example of Multi-Area Indexed File 

When you specify and preallocate multiple areas, RMS-ll arranges them 
in order in the file: area 0 (including the file prologue) in the 
first virtual blocks of the file, then area 1, and so on. If you 
specify contiguity for the entire file, ~his contkol over the 
distribution of structural elements of the file is propagated from the 
virtual block sequence to the logical block sequence on the disk. 

Contiguity is very important to performance. For more information on 
contiguity, Section 8.3. 

6.4 PLACEMENT CONTROL 

Placement control enables you to specify the location on a disk for a 
file or the areas ofa file. You use placement control for the 
following reasons: 

• To start a file or area at the 
cylinder so that the file or 
contiguous tracks or cylinders. 
movement during file access. 
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• To place the files used by a single application together on a 
disk. This effort reduces I/O time by minimizing head 
movement among the files. 

Example: You want to run a general ledger application that 
uses several files (an accounts file, a transaction file, and 
so on) ~ The application consists of several tasks. So, you 
start with an initialized disk and copy the tasks onto it. 
Then, you create Cand populate) your data files, placing them 
near the tasks. 

This effort reduces the distance the disk head mov~s to 
service I/O operations required by an RMS-ll program: 
disk-resident overlays (discussed in Chapter 8) and data file 
accesses. 

Note, however, you gain more improvement if you eliminate head 
contention by placing the individual files on separate disks. 

You calculate track and cylinder starting block numbers as follows: 

1. Read the documentation that came with your disk drive. 
and write down the following numbers: 

Find 

2. 

• Number of surfaces on a volume (or pack or disk) 

• Number of tracks on a surface 

• Number of sectors in a track 

NOTE 

On most DIGITAL disk drives, a sector equates to a 
logical block. For example, the following decimal 
numbers apply to an RP06 only: 

Number of cylinders per disk = 815 
Number of tracks per cylinder = 19 
Number of sectors per track = 22 

Establish the starting logical block number (LBN) for 
track on the disk . by writing down the multiples 
sectors-per-track. SinceLBNs start with O,tracks start 
multiples of track length. 

each 
of 
at 

Example: From the RP06 specificatio!1s, the first 10 tracks 
start at LBNs: 0, 22, 44, 66, 88, 110, 132, 154, 176, 198. 

3. Multiply sectors-per-track by tracks-per-cylinder to get 
sectors-per-cylinder. Establish the starting LBN for each 
cylinder on the disk by writing down the multiples of 
sectors-per-cylinder. 

Example: For an RP06, the first 10 cylinders start at the 
following LBNs: 0, 418, 836, 1254, 1672, 2090, 2508, 2926, 
3344, 3762. 

After you decide where on the disk you want to place your file, you 
create 'the file using RMS-ll placement control. In the process, you 
place area 0 (which will position the whole file, if the file is 
contigu6us) at the location you calculated. 

If you are using a high-level language, you can specify place~ent 
control by using RMSDES. If you are programming in MACRO-II, you can 
specify placement contl{ol through the use of allocation XABs. 
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6.5 BUCKET SIZE 

Buckets are the units of access for indexed files. Bucket size is 
critical to the virtual address space required by a task and to the 
speed with which a task performs. There is, of course, a trade-off: 
the larger a bucket, the larger the task, but the faster it reads 
data: 

• The speed of an RMS-ll operation is closely proportional to 
the number of I/O operations involved. For indexed files, the 
number of data transfers during a random retrieval operation 
is approximately equal to the depth of the index (in most 
cases, one more than the depth). That number includes only 
the I/O operations directly related to the record operation~ 
other data transfers can be required to service the operation, 
including overlays and system overhead (discussed in Chapter 
8) • 

Therefore, the larger the buckets, the shallower the index, 
and the faster the random retrieval operation. without other 
considerations, you should pick the largest possible bucket. 
The maximum bucket size allowed is 32 blocks. 

• The larger the bucket, the more records it can contain, and 
sequential access can require fewer I/O operations. 

However, there are other considerations. RMS-ll requires two I/O 
buffers, each the size of the largest bucket, when it connects a 
record access stream to an indexed file. By making bucket size 
smaller, you reduce the size of the buffers your task requires. 
Depending on the record operations your program requires, that ~irtual 
address space may be better used in overlay structure optimization 
(discussed in Section ~.2). 

Therefore, you should set bucket size to some lower value that still 
allo~s good performance~ a reasonable goal is an index depth of 2 or 
3 (root at level 2 or 3), although very large files can require four 
levels of index, in addition to the data level (level 0). 

Each area can have its own bucket size, but normally you should use 
the maximum size for all buckets: 

• You should consider more than the size 
(plus the 7-byte header) when you 
bucket size: 

of your data record 
calculate primary data 

Records that move from one bucket to another leave a 7-byte 
pointer. 

Deleted records leave from 2 bytes to enough to hold the 
primary key to the, whole record. 

Therefore, you should consider the predominant activity in the 
file: 

If you intend to populate the file and then only read from 
it, you do not consider activity overhead. You must 
populate the file with records ip ascending order by 
primary key value (discussed in Section 6~7). 

If you intend to populate the file and then insert and/or 
delete a lot of records, you should allow for those 
activities in your bucket size calculations. 
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6.5.1 Bucket Size for Primary Index 

You can calculate bucket sizes in two steps. 

Step 1: 

Calculate the following quantities for different bucket sizes (1, 2, 
3, and so on): 

NIRBK = 

NDRBK = 

«512*BKS)-15)/(PKL+BPL) 

«512*BKS)-15-AO)/(RSZ+RFO) 

(Equation la) 

(Equation Ib) 

where: 

NIRBK is the number of index records per level 1+ index buckets 

NDRBK is the number of data records per level o bucket 

BKS is the bucket size as number of blocks 

PKL is the primary key length in bytes 

BPL is the bucket pointer length: 

BPL is 3 for pointers to the first 65,535 blocks in the 
file 

BPL is 4 for pointers to the blocks numbered between 
65,536 and (2**24)-1 

BPL is 5 for pointers to the blocks numbered between 
2**24 and (2**32)-1 

RSZ is the size of the record: 

RFO 

AO 

• data size for fixed-length records 

• average record length for variable-length records 

is the record format overhead: 

RFO is 7 bytes for fixed-length records 

RFO is 9 bytes for variable-length records 

is activity overhepd. If any noticeable number of bucket 
splits will occur (due to random record insertions or UPDATE 
operations that increase record sizes), specify a value of 
at least 7 (more if bucket splits will be common) • If 
insertion and deletion activity will occur often, 
significantly larger values of AO may be desirable, as well 
as occasional file reorganizations to reclaim space and 
improve access performance. 
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When you load a file using RMS-ll bucket fill factors, you preallocate 
space in each bucket for future activity. In such a case, Equation la 
becomes: 

NIRBK (FF-15)/(PKL+BPL) 

and Equation Ib becomes: 

NDRBK (FF-15)/(RSZ+RFO) 

where: 

FF is the appropriate fill factor in bytes and has been adjusted to 
leave extra space in each bucket to accommodate future activity 
overhead. 

Step 2: 

Select bucket size for data and index areas where the following 
equation is true: 

NIRBK**n ~ NRF/NDRBK (Equation 2) 

where: 

NRF is the number of data tecords in the file 

n is the depth of the index 

This equation portrays the exponehtial relationship betweeh the number 
of data records in a file and the depth of its index. You use the 
values for NIRBK and NDRBK you calculated in step 1. 

a. 

b. 

c. 

d. 

Set up a grid (see the example after step 2e). 

For each value of NIRBK, calculate the left side of Equation 
2, for n = 2, 3, and for very large files, 4. 

For each value of NDRBK, calculate the right side of Equation 
2. 

Where the equation is true, that is, the left side is greater 
than or equal to the right side, you have a valid combination 
of bucket sizes. The bucket size used to calculate the left 
side may be equal to the size used to calculate the right 
side, but it does not have to be. 

NOTE 

You gain no advantage using different index and data 
bucket sizes. RMS-ll requires two I/O buffers, both 
the size of the largest bucket defined for the file. 

In fact, PDP-II COBOL users must not choose different 
index and data bucket sizes. 

e. Select one of the valid combinations according to your 
application's requirements. 
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NOTE 

• Equation 2 is true only for files where records 
are inserted in order by ascending value of the 
primary key. See also Section 6.7. 

• Bucket size is a step function 
Therefore, intermediate bucket 
waste address space. 

For example, given a file where: 

BKS 4 ~ index depth of 3 
BKS 8 __ index depth of 2 

of index depth • 
sizes generally 

then bucket sizes of 5, 6, and 7 blocks would not 
normally be used, although you might choose a bucket 
size of 5 blocks if future file activity seemed 
likely to increase the index depth otherwise. 

Example: For a file containing 50,000 200-byte fixed-length records 
with a l5-byte primary key, use the equations in steps 1 and 2 to fill 
in the following grid: 

• Calculate values for NIRBK using Equation la and bucket sizes 
1 through 6. Drop the remainder; use only the integer part 
of the result. 

• Calculate values for NDRBK using Equation lb and bucket sizes 
1 through 6. Drop the remainder; use only the integer part 
of the result. 

• Calculate the number of data buckets in level 0 (NRF/NDRBK) 
corresponding to bucket sizes 1 through 6. Round the result 
up to the nearest integer. 

• Calculate NIRBK**2 for the values of NIRBK corresponding to 
bucket sizes 1 through 6. Round the result up to the nearest 
integer. 

• Calculate NIRBK**3 for the values of NIRBK corresponding to 
bucket sizes 1 through 6. Round the result up to the nearest 
integer. 

BKS 1 2 3 4 5 6 

NIRBK 27 56 84 112 141 169 

NDRBK 2 4 7 9 12 14 

NRF/NDRBK 25000 12500 7143 5556 4167 3572 

NIRBK**3 19683 175616 592704 1014049 2803220 4826810 

NIRBK**2 729 3136 7056 12544 19881 28561 
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• To determine the combinations of bucket sizes where Equation 2 
is ttue, compare the values in the NIRBK**3 row one at a time 
to each of ·the values in the NRF/NDRBK row. Where the 
NIRBK**3 value is greater than or equal to NRF/NDRBK, a valid 
bucket size combination exists. . . 

• 

Example: The first NIRBK**3 value is 19683. This is less 
than 25000, the first NRF/NDRBK value, but it is greater than 
12500, the second NRF /NDRBK value. Therefoie·,·iridexbucket 
size of 1 (from NIRBK**3 row) and data bucket size of 2 (from 
the NRF/NDRBK row) is a valid combination. 

Compare the values in the NIRBK**2 row one ata time to each 
of the values in the NRF/NDRBK row. Where the NIRBK**2 value 
is greater than or equal to NRF/NDRBK, a valid bricket size 
combination exists. 

Example: The first NIRBK**2 value is 729. This is too small 
to use, as is the second value in the row. However, the third 
value is 7056. This is less than 25000 (the· first NRF/NDRBK 
value) as well as the next two values, but greater than 5556, 
the fourth NRF /NDRBKval ue • Therefore, index buck,~t s1 ze of 3 
(from NIRBK**2 row) and data bucket size of 4 (from the 
NRF/NDRBK row) is a valid combination. 

As a result of the comparisons in steps 6 and 7 above, Equation 2 is 
true in the following cases: 

NIRBK**3 

DBKS 

1 
2 

NIRBK**2 

DBKS 

1 
2 
4 

where: 

IBKS 

2 
1 

IBKS 

6 
4 
3 

lOB (bytes) 

2048 
2048 

lOB (bytes) 

6144 
4096 
4096 

DBKS is the data bucket size from the NRF/NDRBK row 

IBKS is the index bucket size from the NIRBK**n rows 

lOB is the maximum I/O space required by the largest bucket size of 
the pair 

The choice of bucket size pairs depends on what you need to optimize 
most in the applic~tibri: task Size or access. time. After you choose, 
make data and index bucket sizes equal to thel~rg'er size selected. 

6.5.2 Bucket Sizes for Alternate Indexes 

The selection of bucket sizes for alternate indexes follows the same 
procedure as that of primary key bucket sizes. 
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Step 1: 

The records-per-bucket equations for alternate indexes are: 

NIRBK = ((512*BKS)-15)/(AKL+BPL) 

and 

NDRBK = ((512*BKS)-15)/(AKL+(OBPL*OF)+4+00) 

where: 

AKL is the alternate key length in bytes 

OBPL is the data bucket pointer length: 

OBPL is 4 for pointers to the first 65,535 blocks in the file 

OBPL is 5 for pointers to the blocks numbered between 65,536 
and (2**24)-1 

OBPL is 6 for pointers to the blocks numbered betweeri 2**24 and 
(2**32)-1 

OF is the duplicate factor: 

OF is 1 if you allow no duplicates 

'OF is the average number of records with the same key values 
for any key value present in the file 

NOTE 

The OF factor does not compensate enough if OF is 
greater than the number of data records that fit in 
a bucket. RMS-ll must then use continuation buckets 
to store the records with duplicate values. 

00 is the duplicate overhead: 

00 is 0 if you allow no duplicates 

00 is 4 if you allow duplicates 

No record movement or space/deletion overhead occurs in index buckets. 

Step 2: 

RMS-ll cannot load buckets in alternate indexes as efficiently as in 
the primary index because alternate key values inevitably fall in 
random order (unless you use the RMSIFL utility described in the 
RSX~llM/M~PLUS . RMS~ll-Utilities manual). The ideal values resulting 
from the equations in Section 6.5.1 must be reduced by a packing 
efficiency factor, unless RMSIFL is used to load the file. 

Studies have shown that the packing efficiency factor for alternate 
keys is normally about 0.5. However, this factor applies only to the 
lower levels of the index and to the data level, and not to the root. 
The packing efficiency of any index's root i8 always 1. 
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Therefore, the index depth equation for alternate indexes is: 

(PF**n) * (NIRBK**n) ~ NRF/NDRBK 

where: 

PF is the packing efficiency factor. 

Example: 
10-byte 
grid can 
record) : 

BKS 

Using the file in the primary key example and adding a 
first alternate key, allowing no duplicates, the following 
be filled in (NRF=50,000 since there is one SIDR per data 

1 2 3 4 5 6 

NIRBK 38 77 117 156 195 235 

NORBK 

NRF/NORBK 

0.125*NIRBK**3 

0.250*NIRBK**2 

The index 
following 

N.IRBK**3 

DBKS 

1 

NIRBK**2 

OBKS 

1 
2 

depth 
cases: 

IBKS 

1 

IBKS 

3 
2 

28 

1811 

6859 

361 

57 

892 

57067 

1483 

equation for 

lOB (bytes) 

1024 

lOB (bytes) 

3072 
2048 

85 

592 

200202 

3423 

alternate 

113 

443 

474552 

6084 

indexes is 

142 

354 

926860 

9507 

true in 

170 

295 

1622240 

13807 

the 

00 not choose a bucket size smaller than that selected for the primary 
index (Section 6.5.1). 

6.5.3 Program Syntax 

RMS-ll requires bucket size as a whole number of blocks. However, 
some high-level language compilers require or allow you to specify the 
bucket size in number of records. This syntax can lead to a different 
number of records per bucket than you are counting on. 

Example: A BASIC-PLUS-2 program contains the following clause in an 
OPEN statement that creates an indexed file: 

BUCKETSIZE 5% 
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The record format is fixed; record length is 100 bytes. The compiler 
makes the following calculation: 

100 bytes for the data 
+ 7 bytes for the record header 

107 bytes for each record 
x 5 records speci fied in a bucket 

535 bytes for the records in a bucket 
+15 bytes for the bucket overhead 

550 bytes required to be in the bucket 

A bucket must be a whole number of blocks long, so the. compiler rounds 
the bucket size to 2 blocks and passes that to RMS-11 to create the 
file. 

However, 2 blocks contain 1024 bytes; that leaves 1009 
record storage after the bucket overhead is subtracted. 
record is 107 bytes long, the buckets that were originally 
contain only 5 records now can contain 9 (1009/107). 

bytes for 
Since each 

supposed to 

Bucket size can be set by RMSDES or by your application program, 
depending on. the capabilities of your high-level language. 

6.6 FILE ALLOCATION 

RMS-11 requests the file control processor to allocate blocks to a 
file at three different points in the file's life: 

• When the file is created 

• When RMS-l1 must dynamica~ly extend the file to complete an 
operation 

• When you explicitly instruct RMS-ll to extend the file 

The allocation of blocks to a file takes time, mainly I/O time as the 
operating system performs its function. If RMS-ll has to request. an 
allocation every time it requires a new bucket, this time can be a 
significant factor in an application's performance, especially during. 
file popu1ation~ 

You can help optimize performance by minimizing allocation overhead ip 
the following areas: 

• Initial allocation 

• Default extension quantity 

6.6.1 Initial Allocation 

Total allocation of an indexed file when you create it is most 
efficient. 

-_._---------------_._-----
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The total allocation for a file is the sum of the prologue and the 
allocations for the different indexes that make up the file; an 
index's allocation is the sum of the allocations for all levels in the 
index. You should start with the primary level 0 and "build" each 
level of each index on paper, as shown in the following steps. 

1. Calculate the number of buckets in level 0 (NBK@O): 

2. 

3. 

NBK@O = NRF/NDRBK 

where: 

NRF is the total number of records in the file 

NDRBK is the number of data records in a bucket in level 0 
(see Section 6.5.1 for the method of determining this 
value) 

NOTE 

The method described in Section 6.5.1 assumes that 
you will put records into the file in order by 
ascending primary key value. However, if you will be 
loading the file in random primary key value order, 
you should divide the NDRBK value obtained using the 
method described in Section 6.5.1 by 2. You will 
need twice as many data buckets. 

Calculate the number of buckets in level 1 (NBK@l): 

NBK@l = NB~@O/NIRBK 

where: 

NBK@O is the number of buckets in level 0 (calculated in 
Step 1) 

NIRBK is the number of index records per bucket in the index 
(see Section 6~S.1 for the method of determining this 
value) 

NOTE 

The method described in Section 6.5.1 assumes that 
you will put records into the file in order by 
ascending primary key value. However, if you will be 
loading the file in random primary key value orde,r, 
you should qivide the NIRBK value obtained using the 
method described in Section 6.5.1 by 2 for every 
index level but the root. You will need twice as 
many index buckets. 

Calculate the number of buckets in level 2: 

NBK@2 = NBK@l/NIRBK 
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4. Continue this sequence of calculations until you reach the 
root level, that is: 

NBK@n = 1 = NBK@(n-l)/NIRBK 

where: 

NBK@n is the number of buckets in the root, which is 1 by 
definition 

n is the index depth 

5. Calculate the allocation in blocks for each level: 

AQ@O = 
AQ@l 

AQ@n = 

where: 

NBK@O * OBKS 
NBK@l * IBKS 

IBKS 

AQ@nis the allocation quantity in blocks for level n (0 for 
level 0, 1 for levell, and so on) 

OBKS is the data bucket size in blocks 

IBKS is the index bucket size 

6. Calculate the allocation for each alternate index as shown in 
Steps 1 through 5~ se~ Section .6.5.2, for equations. 

NOTE 

Alternate indexes are normally populated in random 
key value order. Therefore, you should divide the 
NORBK and NIRBK values obtained using the method 
described in Section 6.5.2 by 2 except for the root 
level. 

7. The total allocation quantity for the file (ALQ) is the sum 
of the index allocation quantities plus the prologue: 

ALQ = PLG + AQPK + AQAKI + ••• + AQAKn 

where: 

n is the last alternate key defined for the file 

The prologue of an indexed file can be from 2 to 84 blocks long. The 
size is the sum of the key descriptor blocks and the area descriptor 
blocks: 

• VBNl describes the primary key (and contains other attribute 
information) • 

• Each key descriptor block covers up to 5 alternate keys. 

• Each area descriptor block covers up to 8 areas. 
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Finally, RMS-ll extends the prologue to an integral multiple of bucket 
size if the criteria described in Section 6.5 are _et. 

Example: Given an indexed file of 100,000 fixed-length user data 
records with the following attributes, calculate a reasonable initial 
allocation size in blocks: 

Data size = 200 byt~s 

Primary key 20-byte string; no duplicates allowed 

Alternate key = 8~byte packed decimal; no duplicates allowed 

Data bucket size = indexed bucket size = 3 blocks 

Calculate the primary index first: 

1. AO = 0, so 

NDRBK «(512*3)-15)/(200+7) 

NRF/NDRBK = 100000/7 

7 data records per bucket 

NBK@O 14,286 buckets in level 0 

2. NIRBK = «512*3)-15)/(20+3) = 66 index records per bucket 

NBK@l = NBK@O/NIRBK 14286/66 217 buckets in level 1 

3. NBK@2 NBK@l/NIRBK = 217/66 = 4 buckets in level 2 

NOTE 

If the number of buckets in the level under the root 
is very much less than the number of index records 
that fit in a bucket, you may be able to use a 
smaller bucket size without increasing the index -
depth. 

4. NBK@3 = NBK@2/NIRBK = 4/66 = 1 bucket in level 3, the root 

5. AQ@O = NBK@O*DBKS - 14286*3 = 42,858 blocks in level 0 

AQ@l = NBK@l*IBKS 217*3 = 648 blocks in level 1 

AQ@2 = NBK@2*IBKS = 4*3 = 12 blocks in level 2 

AQ@3 = NBK@3*IBKS 1*3 = 3 blocks in level 3 

AQPK = 43,521 blocks in the primary index 

Now calculate the alternate index (DF';'l, DO=O): 

1. NDRBK = «512*3)-15)/(8+(4*1)+4) 

= 89 data records per bucket 

NBK@O = NRFjNDRBK = 100000/89 = 1124*2 -
level 0 

2,248 buckets in 

The doubling compensates for a packing efficiency of 0.5. 
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2. NIRBK «512*3)~15)/(8+3) 138 index records per bucket 

NBK@l NBK@O/NIRBK = 17*2 34 bucket.s in level 1 

3. NBK@2 = NBK@l/NIRBK = 1 bucket in level 2, the root 

4. AQ@O NBK@O*BKS = 2248*3 = 6,744 blocks in level 0 

AQ@l NBK@l*BKS = 34*3 = 102 blocks in level 1 

AQ@2 NBK@2*IBKS = 1*3 3 blocks in level 2 

AQAK 6,849 blocks in the alternate index 

5. Finally: 

ALQ PLG + AQPK + AQAKl = 3 + 43,518 + 6,849, or 

ALQ 50,370 blocks for the whole file 

This allocation can be done by RMSDES or by your application program, 
depending on the capabilities of your high-level language. 

6.6.2 Default Extension Quantity 

If the file cannot be totally allocated at creation time, you should 
establish a reasonable default extension quahtity (DEQ) to minimize 
the number of (and the time spent on) file extensions. Even if the 
file is totally allocated when it is created, you should establish a 
reasonable DEQ in case the file gets bigger than planned. 

A good basis for calculation is the number of records 
to the file in a given period of time, such as a day; 
for allocation quariti ty in Section 6.6.1. The bEQ 
multiple of the bucket size. 

that are added 
use the formula 

should equal a 

If you do not specify a DEQ, it defaults to zero 
the file with RMSDES or a high-level language. 
DEQ of zero by requesting 4 times the bucket size 
file control processor each time it automatically 

whether you create 
RMS-ll responds to a 
in blocks from the 
extends the file. 

The DEQ for the file can be set by RMSDES or by your application 
program, depending on the capabilities of your high-level language. 

6.7 POPULATION TECHNIQUES 

File population entails a large burst of records written into the file 
after it has been created and ~eforeit. is made available for normal 
processing. You can populate a fi,le wi th the RMSIFL or RMSCNV utili ty 
programs, or wi th an application', program, depending on the 
capabilities of your high-level language. 

The aim of populating an RMS-ll indexed file is to avoid bucket splits 
and re.cord movement during the poputation and. duririg' later use of the 
file. The techniques to achieve this goal are: 

• Inserting records in ascending order by primaty key 

• Use of fill numbers 
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6.7.1 Ascend ingO.rder by Primary Key 

The best way to populate an indexed file is to insert the records in 
ascending primary key value order. You do not need to insert the 
records ~ll at once. This technique: 

• Minimizes population time 

• Avoids the creation of RRV records, allowing RMS-llto fill 
buckets with data records and thereby find records with the 
least access time. 

Contrast this technique with records loaded in descending 
primary key value. In that case, you introduce the packing 
factor p to the primary key equations. Normally, pis 1, 
inserk records in ascending order and the factor drops 
equation, as shown here: 

NIRBK**n ~ NRF/NDRBK 

But when p < 1, the equation becomes: 

(p**n) (NIRBK**n) ~ NRF/NDRBK 

order by 
efficiency 

when you 
out of the 

Since p is a fraction, the introduction of .this factor reduces the 
left side of the equation, at times dramatically, thereby potentially 
increasing: 

• The index depth needed to cover a specific number of data 
records 

• Frequency of bucket splitting (an important factor in the time 
required to populate an indexed file) 

As mentioried in Section 6.5.2, alternate indexes are a prime example 
of packing inefficiency, a situation avoided only with the RMSIFL 
util i ty. . The best general approximation for p in. the case of 
alternate indexes is 0.5, the value used in Section 6.5.2. 

You can populate a file with records in ascending order by primary key 
as follows: 

• Use the RMSIFL utility. This utility: 

Sorts your input file into ascending order by the output 
file's primary key, if the file is not already sorted that 
way 

Transfers the records from the input file to the output 
file 

RMSIFL uses techniques not available to you to further improve 
the population of an indexed file. 

• Use the RMSCNV utility, specifying the mass-insertion mode 
(/MA) swi tch. 

• Write a MACRO-II program to populate the file and specify: 

In the FAB, deferred write when you open the file 

In the RAB, when you connect to the file: 
mode and sequential access mode 
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See the RSX-llM/M-PLUS RMS-ll Macro Programmer's Guide for 
more information. 

Be sure to sort your input records into ascending order by the 
indexed file's primary key before you run the program. 

6.7.2 Random Insertions after File Population 

If you will be inserting records into an indexed file after it is 
populated, you should consider ways to optimize these operations: 

• If the new records to be inserted span the full range of 
primary key values, you should use a bucket fill size. 

• If the inserted records are sorted into ascending order by 
primary key value and added at the logical end-of-file, you 
should use mass-insertion mode. 

6.7.2.1 Bucket Fill Size - You can optimize for evenly distributed 
random insertions by leaving free space in buckets during the initial 
population of the file. To do this, you specify a bucket fill size as 
a set amount 9f bytes for each area in your file. Normally, RMS-ll 
ignores this number, but you can direct RMS-ll to obey it: RMS-ll 
then fills each bucket in the file to the level specified by the 
number~ 

Example: Your bucket size is 2 blocks; you set the bucket fill size 
to 768 bytes. When you tell RMS-ll to honor the fill size, it only 
uses 768 out of 1024 bytes in each bucket -- the buckets are logically 
three-quarters size. 

You use the bucket fill size when you populate a file to improve its 
performance during normal operations: if free space is available in 
every bucket in the file, any record randomly inserted into the file 
is likely to fit without causing a bucket split. 

The size of the bucket fill size depends on: 

• The amount of insertion activity you expect. 

Allow room (including record header) for the number of records 
you will add to each bucket during normal operations. 
Occasional insertions might not warrant the use of bucket fill 
sizes, whereas heavy insertion can require room for multiple 
additional records in each bucket to optimize, but not 
eliminate, bucket splitting activity. 

• The type of bucket (data or index) involved. 

Because of the difference in record sizes and 
insertion, data and index buckets should 
different bucket fill sizes. 

frequency of 
normally have 

Example: The file contains 240-byte fixed-length records with a 
primary key field 24 bytes long. To optimize random insertions, the 
fill size for data buckets should therefore be at most: bucket length 
minus bucket overhead (15) minus record length (240) minus record 
overhead (7). This number leaves room for one data record. 

This same bucket fill size for index buckets leaves room for 9 index 
records. A more reasonable bucket fill size for index buckets is: 
bucket length minus bucket overhead minus 2 times 27 bytes. This 
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number leaves room for 2 index records, where: the primary key length 
(24) plus the bucket pointer length (3) equals the index record length 
(27) • 

See Section 6.5.2 for a more complete discussion. 

NOTE 

RMS-ll ignores a bucket fill size of 
less than 50 percent of the bucket 
length and uses the 50 percent figure. 

The bucket fill size for a file can be set by RMSDES or by your 
application program, depending on the capabilities of your high-level 
language. 

6.7.2.2 Ma.ss Insertion - You use mass-insertion mode when you have a 
series of records to add to an indexed file and: 

• You have sorted the records into ascending order by the file's 
primary key. 

• The lowest key value in the records is 
highest key value in the file; that is, 
inserted at the logical end-of-file. 

greater than the 
the records will be 

While the mass-insertion bit is on, RMS-ll performs a PUT operation 
normally (see Section 5.3.1) except that it: 

• Does not unlock the primary level 0 data bucket 

• Keeps a pointer to the primary level 1 bucket that pointed to 
the proper level 0 bucket 

These extra steps enable RMS-ll to: 

• Write the next record without following the primary index (if 
the mass insertion bit is still on). 

• Rapidly split the primary level 0 bucket when it is full: 
since RMS-ll has a pointer to the primary level 1 bucket that 
will contain the index record for the new bucket, it can 
update that bucket without following the index. 

By using these techniques, RMS-ll can extend the primary level 0 
bucket by bucket, packing records into the buckets in the order they 
are written. As each bucket becomes full, RMS-ll creates a new one, 
beginning with the next record inserted, and notes its existence in 
the primary level 1 index bucket. 

NOTE 

Mass insertion significantly improves 
performance for single-key indexed 
files. The percentage of improvement 
lessens with each additional key defined 
in the file. 

You can enhance mass insertion performance by using deferred write 
(see Section 7.4). 
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CHAPTER 7 

RECORD AND FILE PROCESSING OF IN.DEXED FILES 

The record and file processing capabilities described in 
RSX~llM/M~PLUS RMS .. ll :' An Introduction are available for indexed 
files. This chapter discusses the operations and their implementation 
and restrictions with indexed files. 

7.1 ACCESS SHARING 

Access sharing can be specified for indexed £iles as described in the 
following sections. See Section 2.2.3 for general information on 
shared access. 

7.1.1 Record Access to Indexed Files 

Indexed files allow fully interlocked read/write sharing, dependent 
upon the compatibility of the access and sharing declarations of 
multiple accessors, as follows: 

• If you have requested read/write access, your request will be 
denied unless all other accessors have allowed read/write 
sharing. (Otherwise, your read/writeacce.s request will 
conflict with the sharing declaration of at least one other 
accessor.) 

• If you have not permitted read/write sharing, your request for 
read/write access will be denied if any other read/write 
adcessor is pte.ent. (In this case, the read/write accessor 
does not meet the requirements of your sharing declaration.) 

7.1. 2 Block Access to Indexed Files 

Because block access bypasses the record structure and interlocking 
algorithms used with indexed files, read/write sharing cannot be 
permitted. Any read/write sharing declaration is converted internally 
to read~only before the file is processed (this is similar to 
record-accessed sequential files). 

Thus, multiple read-only accessors (regardless of their sharing 
declarations) can share indexed files concurrently using block access, 
as long as no read/write record accessor is present. Read-only block 
accessors can share files with read-only record accessors. In 
addition, a single read/write accessor can access an indexed file 
using block access (regardless of sharing declaration) as long as no 
other accessor of any kind is present. 
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Other combinations are rejected: the access and sharing declarations 
are incompatible. 

7.2 RECORD AND STREAM OPERATIONS 

The following record and stream operations can be performed on indexed 
files. See also the discussions of read- and write-type record 
operations in Chapter 5. 

CONNECT 
DELETE 
DISCONNECT 
FIND 
FLUSH 
GET 
PUT 
REWIND 
UPDATE 

In all record operations, RMS-II establishes the 
any) and next record (if applicable) context. If 
fails, RMS-II normally sets the current record to 
change the next record. 

NOTE 

current record (if 
any record operation 
none and does not 

For more information on t~e RMS-II error 
codes referred to in the following 
sections, see the RSX-IIM/M-PLUS RMS-II 
Macro Programmer's Guide. 

7.2.1 CONNECT 

A CONNECT operation affects the context for the access stream as 
follows: 

• Current record -- There is no current record. Any operation 
requiring a current record fails at this point. 

• Next record 
according to 
reference. 

The next record is the first record in the file 
the collating sequence of the specified key of 

Example: In an indexed file with multiple 
record varies by the key specified in 
initiating the CONNECT operation: 

keys, the next 
the instruction 

If the primary key is specified, the. next record is the 
first record in primary level 0, the one with the lowest 
primary key value in the file. 

If an alternate key is specified, the next record is 
indicated by the first SIDR in the alternate index's level 
o~ the record itself can be located anywhere in the 
primary level O. 
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RECORD AND FILE PROCESSING OF INDEXED FILES 

7.2.2 DELETE 

In a DELETE operation, 
to indicate that it is 
operation brought the 
buffer. 

RMS-ll flags the header of the current record 
a deleted record. The prerequisite GET or FIND 
bucket containing the record into the I/O 

Then, RMS-ll writes the bucket over its original location on the disk, 
unless you specified deferred write (see Section 7.4.2). 

A DELETE operation affects the context for the access stream as 
follows: 

•. Current record -- None. Any operation· requiring a current 
record fails at this point. 

• Next record -- Unchanged. 

7.2 • .3 DISCONNECT 

A DISCONNECT operation destroys the context for the access stream. 
You cannot resume this context by reconnecting the·stream. 

7.2.4 FIND 

Section 5.3.2 describes how RMS-ll performs 
operation. Section 5.4 describes how 
sequential-access FIND operation. 

a key-access FIND 
RMS-ll performs a 

If the record does not exist or has been deleted, RMS-ll returns an 
error code depending on the access mode: 

• In sequential-access mode, the error code is ER$EOF. 

• In key-access mode, the error code is ER$RNF. 

• In RFA-access mode, the error code is: 

ER$RFA -- no valid record has ever existed at the specified 
location. 

ER$DEL -- the record header indicates that the record was 
deleted. 

A FIND operation affects the context for the access stream as follows: 

• For a sequential-access FIND operation: 

Current record -- Is set to the value of the record found. 

Example: You have connected a stream to an indexed file, 
specifying 0 as the key of reference. There is no current 
record, but the next record is the first record in primary 
level O. If you execute a sequential-access FIND 
operation, the current record is set to this record. 

Next record -~ Is set to the record logically following the 
current record in the index of reference. 
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NOTE 

RMS-ll enacts this logical sequence only when it 
actually accesses the next record: 

1. RMS-ll locates the current record, reading a 
bucket if necessary. 

2. RMS-ll locates the record logically following 
the current record, reading another bucket if 
necessary. 

If the indexed file is shared, the actual record in 
the next record position can change between the 
operation that accesses the current record and the 
one that finds the next record. 

E.xample: From the previous example, the next record is the 
record in the file with the next higher primary key value~ 

• For a key-access or RFA-access FIND operation: 

Current record -~ Is set to the record found, that is, the 
record identified by the RFA. 

Next record -- Unchanged. 

Example: In the previous examples, you did a 
sequential-access FIND operation after connecting the 
stream to the file. You now execute an RFA-access FIND 
operation. The current record is set to the record 
specified, but the next record is not changed. Therefore, 
if you do another sequential-access FIND operation, the 
current record will be set to the second record in primary 
level 0, not the record following the one found by RFA. 

You use a FIND operation instead of a GET operation for two reasons: 

1. It is faster because the record is not moved to the user 
buffer. Although the time required to move a record from one 
part of memory to another is very short, do not expend it if 
you do not need to. 

2. It does not change the next record in key-access mode or 
RFA-access mode. This convention allows you to branch off 
sequential processing for the purpose of updating or deleting 
records, and keep. your place. 

You can use a FIND operation in the following ways: 

• To skip records in sequential access mode by initiating 
successive FIND operations. 

• To establish a current record for a DELETE or 
operation. 

UPDATE 

• To determine the existence of a reciord by using key-access 
mode. 
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RECORD AND FILE PROCESSING OF INDEXED FILES 

7.2.5 FLUSH 

A FLUSH operation does not affect the context for the access stream. 

7 .• 2.6 GET 

Section 5.3.2 describes how RMS-ll performs 
operation. Section 5~4 describes how 
sequential-access GET operation. 

a key-access 
RMS-ll performs 

GET 
a 

If the record does not exist or has been deleted, RMS-ll returns an 
error code depending on the access mode: 

• 
• 
• 

In sequential-access mode, the error code is ER$EOF. 

In key-access mode, the error code is ER$RNF. 

In RFA-access mode, the error code is: 

ER$RFA -- No valid record has ever existed at the specified 
location. 

ER$DEL -- The record header indicates that the record was 
deleted. 

A GET operation affects the context for the access stream as follows: 

• Current record Is set to the value of the record read. 

• Next record -- Is set to the record logically following the 
current record in the index of reference. 

7.2.7 PUT 

NOTE 

RMS-ll enacts this logical sequence only when it 
actually accesses the next record: 

1. RMS-ll locates the current record, reading a 
bucket if necessary. 

2. RMS-ll locates the record logically following 
currerit record, reading another bucket 
necessary. 

the 
if 

If the indexed file is shared, the actual record in 
the next record position can ch~nge between the 
operation that accesses the current record and the one 
that finds the next record. 

Section 5.3.1 decribes how RMS-ll performs a key-access PUT operation. 

7-5 



RECORD AND FILE PROCESSING OF INDEXED FILES 

A PUT operation affects the context for the access stream as follows: 

• For a sequential-access PUT operation: 

Current record -- None. Any operation requiring a current 
record fails at this point. 

Next record Undefined. 
sequential-access FIND or 
not specified. 

The record retrieved by a 
GET operation at this point is 

• For a key-access PUT operation: 

Current record -- None. Any operation requiring a current 
record fails at this point. 

Next record -- Unchanged. 

7.2.8 REWIND 

A REWIND operation sets the context of the access stream to a logical 
beginning of the indexed file. In doing so., the operation affects the 
context for the stream as follows: 

• Current record None. Any operation requiring a current 
record fails at this point. 

• Next record -- is set to the first record in the file 
according to the specified key of reference. 

7.2.9 UPD.ATE 

In an UPDATE operation, RMS-ll moves the specified record from the 
task's user buffer to the I/O buffer, replacing the current record set 
by the previous GET or FIND operation. Then, RMS-ll writes the bucket 
over its original location on the disk. Section 5.3.3 describes the 
UPDATE operation in detail. 

An UPDATE operation requires a valid current record. 
UPDATE operation should follow a successful GET or 
otherwise, RMS-ll returns the error code ER$CUR. This 
affect the original record in the file on disk. 

Therefore, an 
FIND operation; 
error does not 

An UPDATE operation affects the context for the access stream as 
folows: 

• Current record -- None. Any operation requiring a current 
record fails at this point. 

• Next record -- Unchanged. 

7.3 RECORD TRANSFER .MODES 

You can manipulate records either in the I/O buffer or in your 
program's user buffer. Each of these options is called a record 
transfer mode. You can change record transfer mode at run time, even 
between record operations. Figure 7-1 illustrates the RMS-ll task 
structure. 
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VIRTUAL 
MEMORY 

Move Mode 

RECORD AND FILE PROCESSING OF INDEXED FILES 

USER BUFFERS 

PROGRAM 

fSlZE DEPENDS ON:- - - - - - - - i 
I· NUMBER OF FILES OPENED SIMULTANEOUSLY ,1 
I· BUCKET SIZES 1 
~ NUMBE~~RECOrRD ~CCE~ ~~AMS __ J --. I I 

1/0 
BUFFERS 

RMS-11 

INTERNAL 
CONTROL 

STRUCTURES 

[SIZEDEPENDS ON:- 1 - i 
i· RMS-11 FUNCTIONS USED I 
~ ~V~LA~~U~TURE~~E~ . 

ZK-1174-82 

Figure 7-1: RMS-ll Task Structure 

Move mode is the default record transfer mode for all programming 
languages and all file organizations. 

• On GET operations, RMS-ll moves the record from the I/O buffer 
to the user buffer before returning control to your program. 

• On PUT and UPDATE operations, your program assembles the 
record to be written into the file in the user buffer, and 
during the operation, RMS-ll moves the data into the I/O 
buffer before updating the file. 

7.3.2 L.ocate .Mode 

Locate mode enables your program to manipulate reCord~ in the I/O 
buffer, eliminating the data transfers between it and the user buffer. 
However, when you specify locate mode, RMS-ll use~ it only when such 
usage does not compromise data integrity. Otherwise, RMS-ll uses move 
mode. Therefore, your program must still contain a user buffer. 

Example:. RMS-ll uses move mode instead of locate mode when an indexed 
file is shared. 
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Example: 
the file 
on it. 

RMS-ll uses move mode instead of locate mode if you opened 
indicating that you were going to perform UPDATE operations 

RMS-ll's use of move mode instead of locate mode is transparent to 
your program as long as you use RMS-ll facilities to access the record 
data. 

For indexed files, your program can only perform GET operations in 
locate mode. See your high-level language documentation to determine 
whether the language supports locate mode and, if it does, what the 
exact programming techniques are. 

7.4 I/O TECHNIQUES 

You can use the following techniques to improve the performance of 
record operations. 

7.4.1 Asynchronous Record Operations 

within each record access stream, your program can perform any record 
operation either synchronously or asynchronously. In synchronous 
operations, RMS-ll returns control to your program after the operation 
completes, either successfully or with an error. 

When you execute an asynchronous operation, RMS-ll may return control 
to your program before the operation is complete. The program 
continues processing while the physical transfer of data between disk 
and memory is carried out. However, you must not initiate another 
record operation on that stream until the first operation ends; 
otherwise, RMS-ll returns the error code ER$ACT. See your high-level 
language documentation for asynchronous techniques. 

7.4.2 Def.rred write 

Normally, each write-type record operation (DELETE, PUT, and UPDATE) 
results in a bucket being written to disk. This convention emphasi~es 
data integrity: you know that when a write-type operation ends 
successfully, the file reflects that operation. 

However, you can improve the performance of mass-insert sequential (by 
primary key) PUT or DELETE operations by using deferred write. 
Basically, deferred write directs RMS-ll to write a bucket out to disk 
only when RMS-ll must use the I/O buffer for some other purpose. 

Example: Your records are 114 bytes long and the bucket si~e is 2 
blocks. During sequential write-type operations, deferred write could 
cause I/O operations per bucket to drop from 9to 1. 

Deferred write offerfj little or no benefit to random write-type 
operations or read-type operations of any mode. 
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NOTE 

Deferred write should only be used with 
mass-insert PUT operations. Although 
not illegal, deferred write is 
essentially invalidated while an indexed 
file is shared by multiple tasks 
except when you are also using mass 
insertion mode. In the 
non-mass-insertion, write-shared 
environment, every write-type operation 
results in an I/O operation so that: 

• The bucket locked by the prerequisite 
GET or FIND (for UPDATE and DELETE 
operations) or by the PUT operation 
can be released. 

• The new data is available to the 
other tasks or streams. 

7.4.3 Mol tiple Buffe.rs 

When you open an indexed file, 
bucket-sized I/O buffers in your 
both bdffers fo~ record operations. 
use more than the two buffers. 

RMS-ll normally sets up two 
task's address space~ RMS-ll uses 

However, you can direct RMS-ll to 

RMS-ll uses any extra buffers to keep, or cache, index root buckets if 
either of the following is true: 

• The file is shared only by tasks with read-only access. 

• The file is not shared. 

RMS-ll caches the roots 
specified or implicit 
buckets cached: 

as it uses them. 
in record operations 

Therefore, only keys 
have their index root 

• During normal PUT operations, RMS-ll typically accesses all 
indexes in a file. You benefit from root caching only when 
the number of extra buffers equals or exceeds the number of 
indexes. 

• During mass-insertion mode PUT operations, one extra buffer 
provides some benefit, reg.ardless of sharing and number of 
indexes. If the file is not being shared, you benefit from 
root caching only when you provide one more extra buffer than 
indexes. 

• During GET operations, RMS-ll accesses one index (associated 
with the key of reference). You benefit from root caching 
when you provide an extra buffer for each different key you 
reference.' 

• During UPDATE and DELETE operations, RMS-ll accesses the 
alternate indexes where a SIDR must be inserted or deleted. 
You benefit from root caching when you provide an extra buffer 
for each alternate index affected. 
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While root caching saves one disk read per index accessed, you may be 
able to employ the address space used for the extra buffers more 
profitably to optimize RMS-ll overlays (see Chapter 8). 

7.4.4 Mal t i pIe .Access Streams 

RMS-ll allows each pr.ogram to use multiple streams on an indexed file. 

7.4.5 Sequentially Reading Write-Shared Files 

If your task is trying to read sequentially by primary key an indexed 
file that is write-shared, you can improve performance by specifying 
write-access as well. 

Example: Include in your BASIC-PLUS-2 OPEN statement the clauses 
ACCESS MODIFY and ALLOW MODIFY. 

When there is a possibility that your task will update a record 
(established when it opened the file), RMS-ll locks the bucket when 
your task gets a record and holds the bucket in the task's I/O buffer. 
If your task then gets records sequentially, RMS-ll finds them in 
memory. When a record in a different bucket is specified, RMS-ll 
unlocks the previous bucket and repeats the procedure with the new 
one. 

However, if your task opens a file in a read-only and 
mode, RMS-ll does not retain the lock on the buckets 
reaccesses the file for each subsequent GET operation, 
does not start at the root and go down the index again. 

7.5 FILE AND DIRECT.ORY OPERATIONS 

write-sharing 
read; RMS-ll 
although it 

The following file and directory operations can be performed on 
indexed files: 

CLOSE 
CREATE 
DISPLAY 
ENTER 
ERASE 
EXTEND 
OPEN 
PARSE 
REMOVE 
RENAME 
SEARCH 

See your high-level language documentation for a description of the 
support prpvided. 
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CHAPTER 8 

TASK BUILDING AND COMMON OPTIMIZATION TECHNIQUES 

Chapter 2 introduced four application design considerations. Two of 
those design considerations, sharing and ease of design, were 
discussed there. The others, speed and space, were the underlying 
concepts for the file and task design discussions in Chapters 4 
through 7. They are also the prime cO'nsiderations for the use of the 
techniques discussed in this chapter. 

You can optimize the speed of and the space used by your application 
by: 

• Improving the structure of each task. This includes: 

The method of combtning your program with RMS-ll routines 
(discussed in Section 8.1) 

Program development, including the sequence of operations 
(discussed in Section 8.2) 

• Using all features of the environment in which the task runs. 
Especially important is optimizing virtual-to-logical-block 
mapping (discussed in Section 8.3), but there are other 
factors as well (discussed in Section 8.4). 

8.1 TASK BUILDING WITH RMS-ll ROUTINES 

The software routines that perform the RMS-ll functions are distinct 
from your programming language. These routines must be combined with 
your program as follows: 

1. A compiler or the assembler converts your program to object 
code. In the process, the RMS-ll routines that your program 
uses are listed as unresolved global references. 

2. The task builder combines object modules into an executable 
task. It resolves the RMS-Il global references with the 
RMS-ll routines in either: 

An object module library named RMSLIB.OLB 

An RMS-ll resident library 

You must decide whether RMS-ll is to be overlaid or 
nonoverlaid when combined with your program to form a task.' 
This section should guide your choice. 

3., When the task builder is finished, your task is ready to run. 
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Figure 8-1 illustrates this sequence, from source program to object 
code to executable task. 

COMPILER 
or 

ASSEMBLER 

TASK 
BUILDER 

ZK-1198-82 

Figure 8-1: Source-to-Task Sequence 

The RMS-ll routines tha't become part of your task can be overlaid or 
nonoverlaid. Overlays a~e task segments that can run indepeQdently~ 
therefore, they do not have to be available to the task at the same 
time and can share address space. When a segment is needed, the 
operating system makes it available, replacing (overlaying)·a segment 
no longer being used. By interchanging its parts, a task can run even 
though it is too large to be executed as one piece. 

Nonoverlaid RMS-ll: For synchronous operations, the task builder 
concatenates the RMS-ll routines with your program, that is, without 
overlays, if you add the following term to the command line: 

,LB: [l,l]RMSLIB/LB 

For asynchronous operations, use the foilowing term: 

,LB: [l,l]RMSLIB/LB:ROEXEC:RORSET:ROWATB,RMSLIB/LB 

The task builder extracts from RMSLIB.OLB only those routines required 
by ,your program. These routines contribute from 8KB to 44KB to the 
task size. Note that if other portions of your task are overlaid, you 
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can use nonoverlaid RMS-ll only if all references to RMS-ll take place 
in the root segment of your task. 

Overlaid RMS-l1: If the sum of your program plus RMS-11 code is 
greater than 64KB, there is not enough user address space for your 
task to run without overlays. 

NOTE 

Al though you can overlay segmen.ts of 
your program, this section is devoted to 
the best use of RMS-ll overlays. 
Therefore, all references to "overlays" 
mean "overlays in RMS-ll routines." 

Overlays can take one of two forms: 

1. Disk-resident overlays 

The overlay segments are part of the task 
remain on disk until they are needed. 
required, the operating system reads the 
containing that routine into the task's 
replacing a segment no longer needed. 
discusses disk-resident overlays. 

2. Memory-resident overlays 

The overlay segments are part of a task 
separately in memory. When a routine 
operating system maps the segment into the 
space 'with two of its active page registers 
8.1.2 discusses memory-resident overlays. 

image, and they 
When a routine is 

overlay segment 
address space, 
Section 8.1.1 

image maintained 
is needed, the 
task's address 

(APRs). Section 

Figure 8-2 illustrates nonoverlaid and overlaid (disk resident and 
memory resident) task structure. 

8.1.1 Disk-Resident Overlays 

One disk-resident overlay can address others, which can address 
others, and so on. This chain of calls defines the overlay structure 
of a task. You describe this structure in a file with overlay 
description language (ODL) statements (described in your task builder 
manual) • 

You must'generate anODL file for each overlaid task and supply it to 
the task builder. However, you do not normally create ODL statements 
for the RMS-ll portion of your task, but instead refer to the RMS-11 
ODL files provided on your system. The RMS-ll installation process 
provides overlay descriptions in two forms: 

• A series of standard ODL files describing disk-resident RMS-l1 
overlay structures that require differing amounts of task 
address space. The larger structures may run faster; you 
should use the best one for your application. 

• A prototype ODL file you can modify, making overlay segments 
larger if there1SrooIll in your address space, or eliminating 
them if your program does not use those functions. 
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The installation process places these files in account [1,1) on 
logical device LB:. If you are using asynchronous RMS-ll operatioris, 
you must select special RMS-llmodules, as indicated in these files. 

1 

A. NONOVERLAID RMS-11 

PROGRAM 

B. RMS-11 IN DISK-RESIDENT OVERLAYS 

PROGRAM 

BUFFERS 

C. RMS-11 IN MEMORY-RESIDENT OVERLAYS 

PROGRAM 

N U SHARE 

BUFFERS----1 t 
D RMS-11 

i=' a a 
!;.. 

RMS-11 

1 ... _00----- 10KB ---...... -11 
(CAN BE LARGER WITH 
FEWER OVERLAYS) 

APR n+1 

SHARED 
APR n 

COMMON OVERLAID 
SHARED 

SEGMENT 
OF SEGMENTS 

RMSRES 

OF 

RMSRES 

ZK-1199-B2 

Figure 8-2: RMS-ll Tasks 
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Each high-level language has its method of generating the ODL file for 
your program and referencing the RMS-ll ODL files. They normally 
generate the following hierarchy of files: 

• program-name.CMD 

You supply this indirect file to the task builder. The file 
contains the appropriate command lines(s) for the task builder 
and references a primary ODL file. 

• program-name.ODL 

This primary ODL file determines the general structure of the 
task and references secondary ODL files, including RMS-ll ODL 
files, such as a standard file or your modification of the 
prototype file. 

See your high-level language documentation for more details. 

If you area MACRO-ll programmer, however, you must write your own ODL 
file. Make sure the file contains the following terms, if you want to 
use RMS-ll disk-resident overlays: 

• The factor names RMSROT and RMSALL in the • ROOT statement. 
RMSROT represents a set of concatenated modules that perform 
functions common to multiple RMS-ll operations. You must 
concatenate RMSROT with your program's root so that it is 
memory-resident while the task runs. 

• An indirect reference to an RMS-ll ODL file, either a standard 
file or your customized version of the prototype, in the form: 

@file-name 

This RMS-ll ODL file resolves the references to RMSROT and 
RMSALL. For example: 

• ROOT 
U~RSEG: .FCTR 
@LB: [l,ljRMSllX 

.END 

USRROT-RMSROT-USRSEG,RMSALL 
(USR1,USR2,USR3) 

8.1.1.1 ODL Files - DIGITAL provides the following standard ODL 
files. Do not change these files; make a copy in your own directory 
if you want to modify one for your own use. 

RMSllS.ODL Structured to add about 6.5KB to the task size, this file 
provides only sequential and relative file organization 
routines in 11 overlay segments. 

RMSllS.ODL is designed to use minimal virtual address 
space for the support provided. Because of this, file 
operation performance and performance where GET, PUT, 
and/or UPDATE operations on sequential files are 
intermixed will be slower than when using other ODL 
structures. 

RMSllX.ODL Structured to add about lOKB to the task size, this 
provides sequential, relative, and indexed 
organization routines in 35 overlay segments. 
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RMSllX.ODL is designed to use minimal virtual address 
space for the support provided. Because of this, 
performance for record operations on indexed files will 
usually be slower than when using the RMS12X or DAPllX ODL 
structures. 

RMS12X.ODL Structured to add about 12KB to the task size, this 
provides sequential, relative, and indexed 
organization routines in 13 overlay segments. 

file 
file 

RMS12X.ODL is designed to offer a good compromise between 
performance for record operations on indexed files and use 

,of task virtual address space. 

DAPllX.ODL Structured to add about 14KB to the task size, this file 
provides sequential, relative, indexed, and (on systems 
with the required DECnet support) remote access facilities 
in 16 overlay segments. 

virtual address 
local access, 
contained in 

DAPllX.ODL is designed to use minimal 
space for the support provided. For 
however, it uses the efficient structure 
RMS12X.ODL. 

RMS12S.0DL Structured to add about 9KB to the task size, this file 
provides only sequential and relative file organization 
routines in 5 overlay segments. 

RMS12S.0DL is designed to offer a good compromise between 
performance and use of task virtual address space. 

8.1.2 Memory-Resident Overlays 

The RMS-ll resident libraries contain RMS-ll routines in re-entrant 
executable code. Tasks that use RMS-ll can be built with global 
references resolved in the resident library RMSRES, if this library is 
present in your system. 

While it is executing one of these tasks, the operating system uses 
two of the task APRs to map references from the task to the resident 
library. Therefore, any time the task requires an RMS-ll routine, the 
operating system changes the APRs to point to the segments of the 
resident library that contain the routines for the operation. 

This mapping is called memory-resident overlaying. Because the 
overlay segments are in memory, the operating system does not perform 
an I/O operation to provide the routines (as it does with 
disk-resident overlays). 

8.1.2.1 Task Building against the RMS-ll Resident Library - You build 
tasks, directing the task builder to resolve global references with a 
library, with one of the following sequences of commands: 

TKB> command-string 
TKB> / 
ENTER OPTIONS: 
TKB> LIBR=RMSRES:RO 
TKB>// 
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or, to use RMSRES in a cooperating cluster of libraries that share the 
same set of task APRs: 

TKB> command-string 
TKB> / 
ENTER OPTIONS: 
TKB> CLSTR=LIBI,LIB2,RMSRES/RO 
TKB>// 

NOTE 

Not all libraries can be clustered with 
RMSRES. See your high-level language, 
FCS-II, or other documentation for 
details. Clustering RMSRES may decrease 
performance for some applications. 

See your task builder manual for a description of the command string. 

You must also do one of the following: 

• Specify LB: [1,I)RMSRLX.ODL as the RMS-II secondary ODL file 
name in your primary ODL file. 

• Merge the contents of RMSRLX.ODL into your own ODL file or 
into your task builder command string. 

If your system provides the required DECnet support and the RMS-II 
library DAPRES, and you want to use the RMS-II remote access 
facilities, include the entry DAPRES in the task builder CLSTR option 
(after the RMSRES entry) , as described above, and use 
LB: [1,I)DAPRLX.ODL instead of RMSRLX.ODL. 

If you are using asynchronous RMS-II · operations, you must select 
special RMS-II modules, as indicated in RMSRLX.ODL or DAPRLX.ODL. 

On RSX-IIM-PLUS systems that support supervisor mode, you may instead 
choose to use RMSRES as a supervisor-mode library. Because this 
configuration uses two otherwise idle supervisor-mode APRs to map most 
of the RMS-II code, the impact of the RMS-II code on your user-mode 
virtual address space is reduced to the absolute minimum; there also 
may be slight performance advantages over the clustered RMS - II 
configuration. 

To use RMSRES as a supervisor-mode library, use the following sequence 
of commands: 

TKB>command-string 
TKB>/ 
ENTER OPTIONS: 
TKB> RESSUP=LB: [3,54)RMSRES/SV:O 
TKB>// 

See your task builder manual for a description of the command string. 

You must also include the modules 

LB: [1,I)RMSLIB/LB:ROEXSY:ROAUTS:ROIMPA 

in the root of your task, using either the task builder command string 
or an ODL file. 
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In addition, you should include the module 

LB: [l,ljRMSLIB/LB:RMSSYM 

if your task requires global definitions of the user-visible RMS-ll 
symbols. If your task uses asynchronous operations, replace the 
module ROEXSY above with ROEXEC. To include remote access (DAP) 
support, replace the module ROAUTS above with ROAULS, and include 
DAPRES as a LIBR or CLSTR option in the task builder command sequence. 
If you are using DAPRES and the RMS-ll asynchronous facilities 
together, you must also include 

LB:[l,ljSYSLIB/LB:AUTOT 

in the task. 

If you are using resident libraries, a BPTtrap will be generated and 
RO will contain the value 175744 (the error code ER$LIB). This can 
happen if not all segments of the library are installed or if the 
version numbers of one or more segments do not match the root sgement, 
the RMSDAP code, or the task itself. See your system manager to 
properly install the library. 

8.1.2.2 Using RMS-ll Operations from within Your Own Resident Library 
- You can invoke RMS-ll operations from within a resident library if 

you task build that library to include the module RORMSC from 
RMSLIB.OLB and to exclude the following symbols using the task builder 
GBLXCL option: 

.SAVR1,$RMENT,$RMREM,$RMSEA,$RMERA,$RMOPE, 
$RMPAR,$RMCRE,$RMREN,$RMDSP,$RMEXT,$RMCLO, 
$RMCON,$RMDIS,$RMGET,$RMPUT,$RMUPD,$RMDEL, 
$RMFIN,$RMTRU,$RMFRE,$RMREL,$RMFLU,$RMRWI, 
$RMNXT,$RMSPA,$RMREA,$RMWRI,$RMWAI 

Such a resident library may be clustered with the RMS-ll resident 
libraries only if it contains absolutely no pure or impure data (such 
as, RMS-ll structures and call parameter blocks, RMS-ll internal 
structures and buffers, file specifications, key or record buffers, 
and so on) that RMS-ll needs during its processing. If such a library 
is a default member of the cluster and has a non-null root segment, it 
must not contain an RMS-ll get-space routine or the completion routine 
for any asynchronous RMS-ll operation in its root segment. 

When you build tasks that use your library, you include RMS-ll 
resident library support as described in Section 8.1.2.1. 

If instead you want to use RMS-ll disk-resident overlays, you can do 
so as described in Section 8.1.1, and must also include ORG$ 
statements in the task's root segment appropriate to the needs of your 
library. To use nonoverlaid RMS-ll routines, you must tailor and 
assemble your own copy of the source module LB: [1,ljRORMS1.MAC, 
include it in the root of your task, and build nonoverlaid RMS-ll as 
described in Section 8.1. 
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NOTE 

In RSX-1IM-PLUS systems that support 
supervisor mode: under no circumstances 
can RMS-lloperations be used in a 
supervisor-mode resident library. 

8.L.2.3 Deciding Between Types of Overlays - You should normally use 
the RMS-ll resident libraries whenever possible, for the following 
reasons: 

• Program execution speed will typically 
disk-resident overlaid RMS-ll, and 
nonoverlaid RMS-ll. 

be faster than with 
nearly as fast as with 

• Virtual address space required in your program will usually be 
less than with nonoverlaid RMS-ll, and may be less than with 
disk-resident overlaid RMS-ll, if you are able to cluster 
RMS-ll with other libraries or, on RSX-llM-PLUS systems that 
support supervisor mode, use RMSRES as a supervisor-mode 
library. 

• Your tasks will build significantly faster 
significantly less space on disk than with 
configurations. 

and take up 
other RMS-ll 

• You will usually not need to rebuild your tasks 
enhancements or corrections to RMS-ll are issued. 

when 

• Because the RMS-ll resident libraries can be shared among 
multiple programs, using them will often result in more 
efficient use of the system's physical memory. 

Reasons that you might not use RMS;...ll resident libraries include: 

• Your system manager has not included them in your system, 
perhaps because very little system memory is available and 
RMS-ll is seldom used. 

• You require indexed file organization support but your RSX-llM 
system manager has chosen the optional version of RMSRES for 
RSX-llM that does not include this support. 

• The special virtual address requirements of your task do not 
permit the use of RMS-ll resident libraries. 

8.2 PROGRAM DEVELOPMENT 

You should consider performance while you are writing an application 
program: 

• Your program's flow of operations can either cooperate with or 
fight against the RMS-ll code structure. 

• Task-building consumes a significant portion of your ma~hine 
resources. Minimize that time when you can. 
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8.2.1 Flow of Operations Should Reflect RMS-ll Code Structure 

The overlay process causes a significant portion of the I/O performed 
for a program with disk-residerit overlays. Using RMSRES, an 
RSX-IIM-PLUS system may be forced to perform I/O paging operations to 
access RMS-ll code segments if physical memory is in short supply. 
You should structure the task to maximize the time each segment stays 
in memory and thus minimize the number of I/O operations. You do this 
by placing similar RMS-ll operations together in your program. This 
process also makes you aware of the nature of the operations your 
program is performing: 

• File-related operations 

File-related operations are generally required at the 
beginning and end of processing. Therefore, they are fairly 
easy to group. 

Example: Open all files that the program uses and set up all 
record access streams at the beginning of the program. 

Example: Disconnect record access streams and close all the 
files at one time, probably at the end of the program. 

NOTE 

Most high-level languages automatically perform 
CONNECT and DISCONNECT operations during the execution 
of file open and close statements. 

• Record operations 

The primary overlay or (on RSX-IIM-PLUS systems) paging burden 
of your task comes from record operations. However, the 
nature of processi'ng often dictates the placement of record 
operations in your program. Therefore, the type and sequence 
of these operations direct your optimization of the ODL files 
(see Section 8.1.1). 

Example: If your task uses GET operations to read records 
from a sequential file, and then uses PUT operations to write 
records to an indexed file, you could reduce the number of 
overlays required for those specific operations. 

Example: If your task uses GET operations to read records 
from an indexed file and UPDATE operations to mOdify the 
records, you should optimize those operations. 

Whenever possible, perform operations on only one type of file 
organization at a time. 

8.2.2 Task Builder Considerations 

The task builder contructs a task and ensures that the task's 
overlays, if any, work properly. To do this, the task builder must 
know the task's overlay structure if you usedisk~resident overlays: 
you supply this information by means of an ODL file. 
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~o reduce the time that the task builder needs to build your task, you 
can reduce the number of overlays in the task (see Section 8.1.1). 
Each .. overlay· adds time to task bui Iding because it requires that' a 
symbol table be built and then resolved. 

NOTE 

If you use memory-resident overlays 
(resident library), you reduce task 
builder overhead needed to process 
overlay segments. 

You can also reduce task building time by not requesting a map. If 
you really need a map for debugging, specify a short one (the 
default) • 

Note that the use of overlaid 1- and D-space segments can increas.e 
task building time. 

8.3 VI.RTUAL-TO-LOGICAL-BLOCK MAPPING 

When RMS-ll issues a data transfer request,it specifies a starting 
virtual block number (VBN) and the size of the request in bytes to the 
opera.ting system. The system maps the VBN onto a logical block number 
(LBN) that it must use to find the bl~ck on disk. To do this, the 
system uses a set of retrieval pointers, called a window, to the file. 
The operating system creates a window in its part of memory by reading 
the first set of pointers from disk when a task opens a file. These 
pointers specify blocks on disk, and from the structure and content of 
the pointers for. a file, the system equates virtual blocks to logical 
blocks. 

8.3.1 Retrieval Pointers on Disk 

The file directo~y contains the retrieval pointers for a file. The 
representation depends on your operating system. 

The file control processor stores retrieval pointers in a file header, 
using enough file headers to cover the file. A file header can 
contain up to 102 pointers. Each pointer consists of: 

• The number of blocks the pointer maps 

• The LBN where the group of blocks starts 

The largest group of blocks that can be covered by one pointer is 256 
blocks. Therefore, one file header can map a maximum of 26,112 
logical blocks. 

8.3.2 Retrieval Pointers in Memory 

The operating system keeps one· window in memory' for each file. If 
that window does not contain. the retrieval pointer that covers the 
virtual block requested by RMS-ll, the system must bring more pointers 
into memory in a process called window turning. 
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Window turning normally requires an I/O operation. The operating 
system builds file control block (FCBs) in memory when a task opens a 
file. An FCBcontains information about one file header, including 
the range of virtual blocks covered by the header's retrieval 
pointers. Whenever the system has to turn a window, it consults the 
FCBs for the file to determine which file header contains the 
appropriate retrieval pointer. The file control processor then reads 

. that block from disk, requiring only one I/O operation (unless the 
software needs one or possibly two overlays). 

Example: An evaluation 
turning during record 
the I/O operations~ 

of one application revealed that window 
operations accounted for nearly 30 percent of 

8.3.3 Optimizing window Turning 

When you reduce window turning, you improve performance. 

You can reduce the I/O operations associated with window turning by' 
increasing a window size, maximizing contiguity, using areas in 
indexed files, or increasing the size of the FllACP. 

Increase Window Size: Use one of the following methods to increase 
the number of retrieval pointers the system keeps in memory for the 
file: 

• Initialize the disk volume that will contain the RMS-ll file 
with a window size'greater than the default of seven pointers 
per window. See your system documentation for initialization 
procedures. 

• Mount the volume containing the RMS-ll file 
switch to specify a window size greater 
default. See your system documentation for 
procedures. 

using the /WIN 
than the volume 

volume .. mounting 

• Use a MACRO-ll subroutine that sets the RTV field in .the FAB 
for the file. See the RSX-11M/M-PLUS RMS-ll Macro 
programmer's·Guide. 

In each of these methods, you can specify a number of window pointers, 
as follows: 

• If you specify a -1, the system tries to make the window large 
enough to map the entire file, using up to 81 retrieval 
pointers. 

.If you specify a positive number of pointers, the. system uses 
that number, up to a maximum of 127 pointers in each window. 

The initialization and mount methods apply to all files on a disk. 
These methods cause the system to use more executive memory than when 
you set window size for an individual file in a program. 

Maximize Contiguity: To maximize contiguity, you should make the file 
contiguous or, if that is not possible, reduce the-number of extents 
in 'the file, making each extent as large as possible. 
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One retrieval pointer in memory can map up to 65,536 logical blocks. 
When the file control processor reads a pointer from the header, the 
software determines whether the extent mapped by the pointer is 
logically contiguous with the extent covered by the preceding pointer 
in the window. If it is, the file control processor adds the extent 
size to the size field of the pointer in the window, then it reads the 
ne~t pointer. If the two extents are not contiguo~s, it adds the new 
pointer to the window. This compaction extends across file headers. 

In this way, any file can be mapped with a default window if the file 
is sufficiently contiguous. 

Use Areas in Indexed Files: ·Areas lodaliie successive block requests 
and reduce window turning. 

Increase the Size of theFIIACP: The'large version of the FllACP does 
not require overlay~ offts~o~n rocttirtestOperform windOw turning, 
whereas the small version does. 

8.4 OTHEROPTIMIZATIONS 

You can improve the environment in which your RMS-ll task runs by: 

• Allocating more resources to the task 

• Improving disk usage 

8.4.1 Allocating Mo.re .Resources to the Task 

You can improve the performance of a task by giving it 
system to use, more CPU time, more memory, and so on. 
resources away from other jobs, unless the system is 
capacity. 

The techniques for allocating system resources vary 
system. Each of the following techniques affects system 
changing the number of I/O operations your task requires 
its work. 

• Priorities 

• Checkpointing 

• Round-robin scheduling 

• Swapping 

8.4.2 Disk Usage 

more of the 
You take those· 

not used to 

by operating 
throughput by 
to complete 

You should consider the devices that store your data and task images 
when you are optimizing the performance of an application. Efforts at 
improving disk usage often result in significant increases in 
performance. 

• Use the fastest disk drives available because the physical I/O 
operation causes the most significant portion of I/O time. 
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• Minimize I/O request overhead: 

Reduce I/O request queues, using 
necessary. 

private packs if 

Use a disk that has exclusive use of its disk controller. 
If other disks must share the controller, a disk driver 
that supports "overlapped seeks" is desirable. 

• If your system has multiple disk drives which are not heavily 
used by other people, spread an application's files, including 
disk-resident overlaid tasks, across the devices. Thus, while 
a job runs, one disk device does not access more than one 
file. You can also put data files on a disk device other than 
the one containing a disk-resident overlaid task image. 

If you are using the resident library, and not overlays, you 
do not consider the task file, unless your code or your 
language run~time facilities are overlaid. 

• Combine free blocks on a disk into one contiguous group using 
the DSC utility. By eliminating fragmentation, you are 
increasing the chances that file extents are contiguous, even 
if they are not requested that way. The more contiguous the 
file, the fewer the disk head moves required to access it. 
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APPENDIX A 

FILE SPECIFICATION PARSING 

A.I STANDARD FILE SPECIFICATION SYNTAX 

A full file specification consists of the following elements, in the 
order listed: 

device 
directory 
name 
type 
version 

A.I.I Device 

The device element of the file specification .names the device on which 
the file resides. For unit-record devices, such as terminals and 
lineprinters, this is the only significant element in the file 
specification. 

The device specification consists of 2 alphabetic characters 
specifying the device name, ·followed by 0 to 3 octal numeric 
characters specifying the device unit number, followed by a colon (:). 
If you use lowercase characters to specify the device name, RMS-II 
will convert them to uppercase befor,e passing them to the operating 
system. The device unit number must not exceed 377 octal; if no unit 
number is given, RMS-II will specify unit number O. 

Note that RSX-IIM/M-PLUS systems allow definition of logical device 
names that conform to the above description. RMS-II processes such 
logical device names as well as physical device names. 

For example: 

db2: and DB02: Are equivalent 

SY: and syOO: Are equivalent 

A.I.2 Directory 

The directory element of the file specification names the directory 
through which the file can be found on the device. For ANSI magnetic 
tape files, this element is not significant (see Section A.2). 
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The directory specification can take either of the following forms: 

[group ,member] 

or 

<g+,oup,member> 

Note that the delimiting characters ([] or <» and the comma (,) must 
appear as shown. The group and member subelements each consist of a 
l-to-3 digit octal number in the range of ° to 377 octal. In 
situations where wildcarding is permitted, you can substitute a single 
asterisk(*) character for the group and/or member subelement to 
indicate that all such subelements are acceptable. 

You can explicitly request the current default directory by specifying 
[] or <> as the directory specification. 

For example: 

[27,36] and <027,036> Are equivalent 

[27,*] Indicates all members in group 27 

[ ] Indicates the current default directory 

For compatibility with other systems, RMS-ll access methods can 
process directory specifications of the "named" directory format. 
However, this format does not conform to RSX-llM/M-PLUS file 
specification conventions and, in general, named directories cannot be 
processed by RSX-llM/M-PLUS software. 

A.I.3 Name 

The name element of the file specification provides the name by which 
the file is known in the directory. The name specification is a 
O-to-9 character alphanumeric string. RMS-ll will convert lowercase 
alphabetic characters to uppercase before passing them to the 
operating system. In situations where wildcarding is permitted, you 
can substitute asterisk (*)and percent (%) characters in this string: 
the asterisk character matches any string (including the null string), 
and the percent character matches any single character. 

For ,example: 

MyFile Will be interpreted as MYFILE 

* Will match all names 

My*le Will match all names beginning with MY and ending in LE 

*my* Will match all names containing MY 

%%my* Will match all names containing MY as the third 'and fourth 
characters 

Will be interpreted as the null name of ° length 
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A.l.4 Type 

The type element of the file specification is the type by which the 
file is known in the directory. The type specification consists of a 
period (.) followed by a O-to-3 character alphanumeric string. RMS-ll 
will convert lowercase alphabetic characters to uppercase before 
passing them to the operating system. In situations where wildcarding 
is permitted, you can substitute asterisk (*) and percent (%) 
characters in this string. The asterisk character matches any string 
(including the null string) and the percent character matches any 
single character. 

For example: 

.dat Will be interpreted as .OAT 

* will be interpreted as all types 

.da* Will be interpreted-all. types beginning withOA 

.%* Will be interpreted all types except the null type 

Will be interpreted as the null type 

A.lo5 Version 

The version element of the file specification provides the version 
number by which the file is known in the directory. The version 
specification consists of a semicolon (;) followed by a 0-tO-5 digit 
octal number in the range of 0 to 77777 octal. In situations where 
wildcarding is permitted, you can substitute 'a single asterisk (*) 
character for the octal number to indicate that all versions are 
acceptable. In situatio.ns where you are specifying a file that 
already exists, y_ou can substi tute the two characters "-1" for the 
octal number to specify the lowest-numbered version of the file that 
is known to the directory. 

You can specify a version number of 0 or the null version to indicate 
either of the following: 

1. The highest-numbered version of the file that is known to the 
directory, when the file already exists 

2. A version number one greater than the highest-numbered 
version of the file (if any) known to the directory, when you 
are creating a new directory entry (with the CREATE or ENTER 
operation, or with the RENAME operation, using the new file 
name) 

For example: 

;5 and ;0005 Are equivalent 

;* Indicates all versions 

;-1 Indicates the low.est-numbered version 

Indicates the null version; this is equivalent to ;0 

For compatibility with other systems, RMS-ll access methods can 
process version specifications beginning with a period (.) instead of 
a semicolon (;) when the presence of a type specification eliminates 
ambiguity. However, this format does not conform to RSX-IIM/M-PLUS 
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file specification conventions and, in general, version specifications 
of this form cannot be processed by RSX-IIM/M-PLUS software. 

NOTE 

When performing ERASE, RENAME, or REMOVE 
operations within a wildcard loop whose 
file specification contains;O (or the 
null version) or ;-1 as the version and 
contains wildcards in .the name or type, 
the behavior of the loop after the first 
such operation in any directory will 
depend upon the ordering of the versions 
in that directory. This is because 
entries in the directory are deleted 
during the loop's operation, while the 
determination of the highest- or 
lowest-numbered version of a given file 
must be made during each pass through 
the loop. 

In addition, the addition of entries to 
a directory during a wildcard loop may 
result in encountering these new entries 
during subsequent iterations of the 
loop. 

Examples of a full file specification follow: 

LB: [l,l]RMSLIB.OLB;l 

LB: [I, * ] RMS * . * ; 0 The highest-numbered version of each entry on 
logical device LB: in. group 1 with a name that 
begins with "RMS" 

A.2 ANSI MAGNETIC TAPE FILE SPECIFICATION SYNTAX 

The file specification format specific to magnetic tapes consists of 
the following elements, in the order listed: 

device 
directory 
quoted-string 
version 

A.2.l Device 

The device element is the same as described in Section A.l.l. The 
device must be a magnetic tape device. 

A.2.2 Directory 

The directory element is the same as described in Section A.l.l. This 
element has no meaning for ANSI magnetic tape files, and will be 
ignored if present. 
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A.2.3 Quoted String 

RMS-ll treats a quoted string as a unit representing both the name and 
type elements of a standard file specification. This mechanism is 
used to allow expression of tape file names up to 17 characters in 
length which include the full set of ANSI "a" characters (some of 
which would otherwise be ignored or treated as element delimiters in a 
standard file specification). 

You specify an ANSI name by enclosing the name in quotation characters 
("name") • If the name itself contains full quotation characters ("), 
you must also precede each such character with an additional full 
quotation (") character. RMS-ll will convert any lowercase alphabetic 
characters to uppercase, strip the full-quotation characters that you 
have added, and pass the result to the operating system without 
further modification (including ANSI "a" characters such as SPACE). 

For example: 

"My File" Will be interpreted as MY FILE 

"""Don't Panic""" Will be interpreted as "DON'T PANIC" 

A.2.4 Version 

The version element of a magnetic tape file specification is as 
described in Section A.l.l. A version specification of ;0, ;-1, or 
the null version will be interpreted as any version for magnetic tape 
files. An example of an ANSI magnetic tape file specification 
follows: 

MMl:"John's file" Specifies any version of JOHN'S FILE on device MM1: 

The standard file specification format described in Section A.l.l can 
~lso be used with magnetic tapes; this is usually desirable to 
promote file transport to nontape devices and file accessibility by 
the widest possible range of software. See Appendix G of the 
IAS/RSX-ll I/O Operations Reference Manual for additional information 
concerning the use of names in ANSI magnetic tape files. 

A.3 GENERATION OF A FULL FILE SPECIFICATION 

When you specify the target file for an RMS-ll operation, RMS-ll 
generates a full file specification in the following manner: 

1. RMS-ll parses the file name string to determine which 
elements are present. You need not provide a full file 
specification in the file name string; however, any elements 
present must be syntactically correct and in the proper 
order. RMS-ll ignores any NULL, SPACE, or TAB characters 
that m~y be present in the string unless they occur within an 
ANSI magnetic tape quoted-string name. 

2. RMS-ll parses the default name string to determine which 
elements are present. You need not provide a full file 
specification in the default name string; however, any 
elements present must be syntactically correct and in the 
proper order. RMS-ll ignores any NULL, SPACE, or TAB 
characters ~that may be present in the string unless they 
occur within an ANSI magnetic tape quoted-string name. 
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3. If the file name string does not provide a full file 
specification, RMS-ll obtains missing elements from the 
default name string; if any elements are absent in the 
result of this merge, RMS-ll provides default values for them 
as follows: 

device -- defaulted to the device to which the specified 
logical channel is currently assigned; if the specified 
logical channel is not assigned to any device, defaulted 
to SY: 

directory -- defaulted to the current directory 

name, type, version -- defaulted to null 

4. If you have asked RMS-ll to use information from the NAM 
block, RMS-ll uses this information to override elements in 
the full file specification obtained above. This mechanism 
is described in Chapter 3 of the RSX-1IM!M-PLUS RMS-ll Macro 
Programmer's Guide. 
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APPENDIX B 

REMOTE FILE AND RECORD ACCESS VIA DECNET 

If suitable DECnet facilities exist on your system and on 
system, RMS-ll will allow file and record access to files 
other network nodes.. Note, however, that these nodes must 
RMS-ll~based file access listener (FAL) ~ see Section B.2. 

the target 
residing on 
include an 

For most purposes, remote access 
access, although performance may 
general limitations apply: 

is indistinguishable from local 
not be equivalent. The following 

• RMS-ll generally does not support remote functions (for 
example, to a VAX-ll node) that are not supported locally. 

• Certain RMS-ll functions (wildcard support~ the PARSE, 
SEARCH, ENTER, REMOVE, and RENAMEoperations~ and 
transmission of device, directory, and file identifiers) are 
not supported by the data access protocol (DAP); and thus 
cannot be executed remotely. 

• Certain FALs do not support the full. set of RMS-ll functions 
expressible via DAP, and thus further limit remote access. 
For example, the current RSTS/E RMS-ll FAL does not support 
record access to indexed files. 

• High-level languages may not 
specification required to 
node. 

allow expression of the file 
establish contact .with a remote 

To operate upon a remote file, you must include the RMS-ll remote 
access code when you build your task, and your program must include a 
node specification for the remote file. To include the remote access 
code, you must link your program with the RMSDAP modules either by 
using the disk-resident overlaid version (see Section 8.1.1) or by 
refere'ncing the DAPRES resident library (see Section 8.1. 2). 

NOTE 

RMS-ll uses the file access block (FAS) 
logical channel number as the link-id 
for remote access. Users performing 
remote access external to RMS-ll should 
be careful not to use the same link-ids. 
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REMOTE FILE AND RECORD ACCESS VIA DECNET 

B.l REMOTE NODE SPECIFICATION 

You must include a remote note specification at the beginning of the 
file name string or the default name string you provide to an OPEN, 
CREATE, or ERASE operation. In addition, your file name string and 
default name string must conform to the DIGITAL Command Language (DCL) 
file specification syntax rules, and the file specification that 
results from merging the file name string and default name string must 
conform to the file specification conventions of the target node as 
well. 

In general, a full remote file specification consists of the following 
elements, in the order (and with the delimiters) given: 

node::device:[directory]name.type;version 

Elements beyond the node element must conform to the conventions of 
the target node, as well as to DCL syntax. If the file name string 
does not provide all six elements, RMS-ll obtains missing elements 
from the default name string. Elements that are still missing after 
this merge are defaulted according to the conventions of the target 
system. 

An alternative remote file specification format is: 

node::"quotedstring" 

where quotedstring is any file specification that conforms to target 
system conventions. For example, this provides a means of passing 
certain RSTS/E logical names ($, %, and so on) that do not conform to 
DCL conventions •. 

If the quoted string itself contains any quotation mark (") 
characters, you must insert an additional quotation mark character 
before each; these additional quotation mark characters will be 
stripped from the string when the string is passed to the target 
system. Any elements not present in the quoted string will be 
defaul ted according to target system conven.tions. 

RMS-ll treats specifications of this format as complete, indivisible 
specifications. If one occurs in the file name string, no elements 
from the default name string will be used; if one occurs in the 
default name string, it will be ignored unless the file name string is 
empty. 

The node element takes the form: 

node"user password":: 

where node is the destination node 
optional access control string 
identifier and password, separated 
target system login conventions. 

name and 
containing 
by a space 

"user password" is an 
login information (user 
character) that meets 

If the login information is provided, the device and directory 
defaults and access privileges of the remote account are acquired. 
Otherwise, the device and directory defaults and access privileges of 
the default DECnet account on the target system are acquired. 
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REMOTE FILE AND RECORD ACCESS VIA DECNET 

B.2 REMOTE ACCESS ENVIRONMENTS 

RMS-ll-based FALs are currently available on VAX/VMS, RSTS/E, and 
RSX-llM/M-PLUS systems. 

The version of DAP that you use must be at least Version 5.6 or 
greater. This means that you must have at"least DECnet/E Version 2.0, 
DECnet for RSX-llM Version 3.1, DECnet for RSX-llM-PLUS Version 1.1, 
or DECnet/VAX Version 2.0. 

B.3 REMOTE ACCESS POOL CONSIDERATIONS 

Remote block acc~ss, unlike local block access, requires an internal 
I/O buffer for record operations, as well as fo~ the initial OPEN or 
CREATE operation. This buffer is reserved to the file while the file 
is open, and must b& 548 bytes in size. 

Similarly, for sequential files with a specified maximum record size 
(or actual largest record) greater than 476 bytes, an internal I/O 
buffer 36 bytes larger than this maximum is required~while the file is 
open. For record-accessed relative and indexed files, an internal I/O 
buffer equal to the bucket size is required while the file is open. 
Other pool requirements are equal to or less than those for local 
access. 
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Access, 1....;7 
block, 1-20, 3-6 
random, 1-7, 1-9 

to indexed files, 5-7, 5-9 
See also Access modes 
See also Shared access 
sequential, . 1~7 to 1-8 

to indexed files, 5~l6 

Access control, 1-9 
Access declarations, 2-6 

indexed files, 7-1 
read-only, 2-6 
read/write, 2-6 
relative files, 4-6 
sequential files, 3-6 

Access modes 
block, 1-20, 3-6 
FIND operation 

indexed files, 7~3 

relative files, 4-8 
sequential files, 3-7 

GET operation 
indexed files, 7-5 
relative files, 4-l0 
'sequential files, 3-9 

PUT operation 
indexed files, 7-6 
r~lative files, 4-11 
sequential files, 3-10 

random 
by key, 1-12 
by RFA, 1-12 
by VBN, 1~20 

record, 1-12 
See also Random access 
See also Sequential access 
sequential 

blocks, 1-20 
records, 1-12 

Access sharing 
See Shared access 

Access streams, 1-15 
multiple, 2-17 

and shared access, 
2-9 to 2-10 

indexed files, 7-10 
relative files, 4-15 
sequential files, 3-15 

Active page registers 
See APRs 

Address 
record, 1-9 
See also RFA 

Allocation, 1-19 
indexed files, 6-22 

DEQ, 6-26 
initial, 6-22 

relative files, 4-3 
DEQ, 4-4 . 

INDEX 

initial, 4-3 
sequential files, 3-4 

DEQ, 3-4 
initial, 3-4 

Alternate indexes 
See Indexes 

Alternate keys, 1-7, 1-11 
Applications, 1-13 

optimization, 2-11 
See also Designing applications 

APRs, 8....;3 
and memory-resident overlays, 

8-6 
supervisor mode, 8-7 

Areas, 6-10, 8-13 
contiguity, 6-13 
definition, 5-2 
mul tiarea indexed files, 6-12 
single-area indexed files, 

6-11 
Asynchronous operations, 8-2, 

8-4, 8-7 to 8-8 
I/O techniques, 2-17 
indexed files, 7-8 
relative files, 4-14 
sequential files, 3-14 

Attributes, 1-2, 1-18 
block spanning, 1-l9 
bucket size, 1-19 
contiguity, 1-19 
file allocation, 1-19 
file organization,1-18 
file specification, 1-18 
keys, 1-19 
medium, 1-18 
MRN, 1-19 
placement control, 1-19 
protection, 1-18 
record format, 1:-18 
record size, 1-18 
record-output handling, 1-19 

Backing up filest 1-10, 1-12 
Binary keys 

2-byte unsigned, 6-5 
4-byte unsigned, 6-5 

Block access, 1_20, 3-6 
remote, B-3 
see also Shared access 

Block spanning, 1-19, 3-1 
variable length records, 2-16 

Blocks, '1-16 
See also Control blocks 
spanning, 1-16, 3-1 

Bucket fill size 
populating indexed files, 6-28 

Bucket format 
indexed files, 5-2 

Bucket locking 
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and shared access, 2-8 
FIND operation, 2-8 
GET operation, 2-8 

Bucket size 
calculation 

alternate indexes, 6-19 
primary index, 6-16 

indexed files, 6-15 
prologue, 5-2 

relative files, 4-2 
Bucket splitting, 5-11 

RRV, 5-12 
Buckets 

continuation, 5-5 
high-key value, 5-5 to 5-6 
I/O units, 1-16 
index, 5-6 
relative files, 4-1 
size, 1-19 

Buffers 
cache, 4-15 
I/O, 1-14 

size, 2-5 
multiple, 2-18, 3-14, 4-15 
user, 1-14 

Building tasks, 1-13 
See also Task builder 

Cache, 4-15 
indexed files, 7-9 

Cells 
relative files, 4-1 
sequential files, 3-2 

Changeable keys, 6-9 
CLOSE operation, 1-18 
Clustered libraries, 8-7 to 8-9 
Compatibility 

file specification, A-2, A-4 
Compilers 

See High-level languages 
Compressing deleted records, 

5-10, 5-16, 6-7, 6-9 
CONNECT operation, 1-15 

indexed files, 7-2 
relative files, 4-7 
sequential files, 3-7 

Context, 1-9, 1-15 
CONNECT operation, 3-7, 4-7, 

7-2 
current record, 1-9, 1-15 
DELETE operation, 4-7, 7-3 
DISCONNECT operation, 3-7, 4-8 
FIND operation, 3-8, 4-8, 7-3 
FLUSH operation, 3-9, 4-10, 

7-5 
GET operation, 3-10, 4-11, 7~5 
next record, 1-9, l-i5 
PUT operation, 3-11, 4-11, 7-6 
REWIND operation, 3-11, 4-12, 

7-6 
TRUNCATE operation, 3-12 
UPDATE operation, 3-13, 4-12, 

7-6 

INDEX 

Contiguity, 1-19, 8-12 
indexed files, 6-13 
relative files, 4-4 
sequential files, 3-5 

Continuation buckets, 5-5 
Control blocks, 1-14, 2-2 
Converting files, 1-10, 1-12 
CREATE operation, 1-18 

and shared access, 2-6 
file versions, A-3 
remote access, B-2 to B-3 

Creating files, 1-10, 1-12 
Current record 

See Context 
Cylinder 

See Placement control 

DAP (data access protocol) 
See DECnet 

DAPRES 
remote access code, B-1 
remote access support, 8-7 

Data access protocol (DAP) 
See DECnet 

Data storage 
and file organization, 2-5 

Data types 
keys, 6-3 

2-byte unsigned binary, 6-5 
2-byte-signed integer, 6-4 
4-byte signed integer, 6-4 
4-byte unsigned binary, 6-5 
and segmenting, 6-7 
packed decimal, 6-6 
string, 6-3 

DCL, B-2 
DE'Cnet, 8-6 to 8-8, B-1 

and CREATE operations, 
B-2 to B-3 

and ENTER operations, B-1 
and ERASE operations, B-2 
and file organization, B-3 
and OPEN operations, 

B-2 to B-3 ' 
and PARSE operations, B-1 
and REMOVE operations, B-1 
and RENAME operations, B-1 
and SEARCH operations, B-1 
block access, B-3 
DAPRES resident library, B-1 
disk-resident overlaid code, 

B-1 
FALs 

on different systems, B-3 
file specification, B-2 

defaults, B-2 
node, B-2 
quoted string, B-2 

I/O buffers, B-3 
indexed files, B-3 
relative files, B-3 
sequential files, B-3 

limitations on functions, B-1 
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Default extension quantity 
See DEQ 

Defaults, 2-2 
compilers, 2-2 
DEQ, 4-4 
file specification, A-6i B-2 
operating system, 2-2 

DEQ, 3-5 
RMS-ll, 2-2 

Deferred write, 2-17, 6-27 
and mass insertion, 6~29 
indexed files, 7-8 
relative files, 4-14 
sequential files, 3-14 

DELETE operation, 1-15 
and key position, 6-7 
and shared access, 2-6 
compressing records, 5-10, 

5-16, 6-7 , 6-9 
deferred write, 7-9 
duplicate keys, 6-9 
indexed files, 5-15, 7-3, 7-9 
optimizing, 6-7 
relative files, 4-7 

Depth 
indexed files, 5-5 

DEQ 
default 

indexed files, 6-26 
relative files, 4-4 
sequential files, 3-5 

indexed files, 6-26 
relative files, 4-4 
sequential files, 3-4 

Designing applications, 2-1 
considerations, 2-3 

ease of design, 2-10 
shared access, 2-5 
space, 2-4, 8-1 
speed, 2-3, 8-1 

when to design, 2-2 
Designing files, 1-10, 1-12 

indexed, 6-1 
relative, 4-2 
See also Indexed file 

organization 
See also Rela.tive file 

organization 
See also Sequential file 

organization 
sequential, 3-3 

Devices 
and record formats, 2-15 
disk, 1-12 
file specification, A-I, A-4 
magnetic tape, 1-12 
See also Medium 

DIGITAL Command Language 
See DCL 

Directory 
default, A-6 
file specification, A-I, ~-4 

Directory operations, 1-17 

INDEX 

See also Operations 
DISCONNECT operation, 1-15 

indexed files, 7-3 
relative files, 4-8 
sequential files, 3-7 

Disk 
See Medium 

Disk-resident overlays~ 1-13, 
8-3, 8-8 to 8-9 
remote access code, B-1 

DISPLAY operation, 1-18 
Displaying filesj ~-10, 1-12 
Duplicate keys, 6-8 

End-of-block indicators 
sequential files, 3-2 

End-of-fi le 
sequential files, 3-2 

ENTER operation, 1-17 
file versions, A-3 

ENTER operations 
remote access, B-1 

ER$ACT 
asynchronous operations, 

3-14, 4-14, 7-8 
ER$CUR 

DELETE operation, 4-7 
TRUNCATE operation, 3-12 
UPDATE operation, 3-12, 4-12, 

7-6 
ER$DEL 

FIND operation, 4-8, 7-3 
GET operation, 4-11, 7-5 

ER$EOF 
FIND operation, 3-8, 4-8, 7-3 
GET operation, 3-10, 4-10, 7-5 
PUT operation, 3-11 

ER$IOP 
UPDATE operation, 3-12 

ER$KEY 
FIND operation, 3-8 
GET operation, 3-10 

ER$LIB 
and resident libraries, 8-8 

ER$MRN 
FIND operation, 4-8 
GET operation, 4-10 

ER$NEF 
PUT operation, 3-10 

ER$RAC 
PUT operation, 3-10 

ER$REX 
PUT operation, 4-11 

ER$RFA 
FIND operation, 3~8, 7-3 
GET operation, 3-10, 7-5 

ER$RFM 
UPDATE operation, 3-12 

ER$RLK 
and shared access, 2-10 

ER$RNF 
FIND operation, 4-8, 7~3 
GET operation, 4-10 to 4-11, 

Index ... 3 



INDEX 

7-5 
ER$RSZ 

UPDATE operation, 3-12 
ERASE operation, 1-18 

remote access,· B-2 
wildcard loops, A-4 

Error codes, 3-7, 4-7, 7-2 
ER$ACT, 3-14, 4-14, 7-8 
ER$CUR, 3-12, 4-7, 4-12,7-,6 
ER$DEL, 4-8, 4-11, 7-3, 7~5 

ER$EOF, 3-8, 3-10 to 3-11, 
4-8, 4-10, 7-3, 7-5 

ER$IOP, 3-12 
ER$KEY, 3-8, 3-10 
ER$LIB, 8-8 
ER$MRN, 4-8, 4-10 
ER$NEF, 3-10 
ER$RAC, 3-10 
ER$REX, 4-11 
ER$RFA, 3-8, 3-10, 7-3, 7-5 
ER$RFM, 3-12 
ER$RLK, 2-10 
ER$RNF, 4-8, 4~10 to 4-11, 

7-3, 7-5 
ER$RSZ, 3-12 

EXTEND operation, 1-18 
and shared access, 2-6 

F11ACP, 8-13 
FALs, B-1 

RSTS/E, B-1, B-3 
RSX-IIM/M-PLUS, B-3 
VAX/VMS, B-3 

FCBs, 8-12 
FCS.,.ll 

sequential file compatibility, 
3-2 

File access listener 
See FAL 

File allocation 
See Allocation 

File control blocks 
See FCBs 

File control processor, 1~16 
retrieval pointers, 8-11 
window turning, 8~12· 

File name 
default, A-6 
file specification, A-2 

File operations, 1-18 
See also Operations 

File organizations, 1-11, 1-18 
and data storage, 2-5 
and file design, 2-11 
and optimizations, 8-10 
and record formats, 1-20, 2-15 
and standard ODL files, 8-5 
indexed, 1-5, 1-11 
relative, 1-4, 1-11 
See also Indexed file 

organization 
See also Relative file 

organization 

See also Sequential file 
organization 

selection, 2-11 
sequential, 1-3, 1~11 

File sharing 
See Shared access 

File specific~tion, 1-18 to 1-19 
default name string, 

A-5 to A-6 
defaults, A-6 

directory, A-6 
name, A-6 
node, B-2 
type, A-6 
version, A-6 

file name string, A-5 
magtape, A-4 to A-5 

device, A-4 . 
directory, A-4· 
quoted string, A-5 
version, A-5 

NAM block, A-6 
node, B-2 
quoted string, B-2 
remote, B-2 
standard, A-l 

device, A-l 
directory, A-l 
name, A-2 
type, A-3 
version, A-3 

wildcards, A-2 to A.,.3 
File structure 

See structure 
File type, A-3 

default, A-6 
File version, A-3, A-5 

default, A-6 
Files, 1-2 

attributes, 1-2 
backing up, 1-10, 1-12 
converting, 1~10, 1-12 
creating, 1-10, 1-12 
designing, 1-10, 1-12 
displaying, 1-10,1-12 
loading, 1-10, 1-12 
maintaining, 1-10~ 1-12 
processing, 1-16 
restoring, 1·10, 1~12 
See also Indexed file 

organization 
See also Relative file 

organization 
See also Sequential file 

organization 
FIND operation, 1-15 

and bucket locking~ 2-8 
and shared access, 2-6~ 2-10 
and stream records, 2-16 
deferred write, 7-9 
indexed files, 7-3 

key access, 7-3 
random by key, 5-13 
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RFA access, 7-3 
sequential access, S-17, 7-3 

key access, 1~16 

relative files, ~-8 
key access, 4-8 
RFA access, 4-8 
sequential access, 4-8 

RFA access, 1-16 
sequential access, 1-16 
sequential files, 3-7 

key access, 3-7 
RFA access, 3-7 
sequential access, 3-7 

Fixed-length record format, 
1-11, 2-1S 

FLUSH operation, 1-lS 
indexed files, 7-S 
relative files, 4~10 
sequential files, 3-9 

Formats 
See Record fO.rmats 

Four-byte signed infeger keys, 
6-4 

Four-byte unsigned binary keys, 
6-S 

FREE operation, I-IS 
and shared access, 2~10 

GET operation, I-IS 
and bucket locking, 2-8 
and ODLs, 8-S 
and shared access, 2-6, 2-10 
and stream records, 

2-16 to 2-17 
deferred write~ 7~9 
indexed files, 7~S, 7-9 

key access, 7~S 

random by key, S-13 
RFA access, 7-S 
sequential access, S-17,7-S 

key access, 1-16 
locate mode, 3.;...14 

indexed files, 7-8 
relative .. files,4-13 

move mode 
indexed files, 7.;...7 
relative files, 4-1~ 
sequential files, 3-13 

relative files, 4-10 
key access, 4-10 
RFA access, 4-10 
sequential access, 4-10 

RFA access, 1-16 
sequential access, 1-16 
sequential files, 3-9 

key access, 3.-9 
RFA access, 3-9 
sequential access, 3-9 

High-key value 
buckets, S-S to S-6 

High-level languages 
access streams, 1-1S 

INDEX 

and asynchronous operations, 
3-14 

and file design, 1-19 
and ODL files, 8-S 
and remote access, B-1 
and shared access, 2-7 
asynchronous operations, 4-14 
bucket fill size, 6-29 
bucket size, 4-3, 6-21 
defaults, 2-2 
DEQ, 3-S, 4-4, 6-26 
file and directory operations, 

3-lS, 4-lS, 7-10 
file operations, 8-10 
initial allocation, 3-4, 4~4, 

6-26 
key characteristics, 6-8 
keys, 6-7 
locate mode, 3-14, 4-13 
MRN, 4-S 
placement control, 6-14 
populating files, 6-26 
restrictions, 1-13, 1-1S, 2-1 

I/O 
and performance, 2-3 
and record operations, S-17 
paging operations, 8-10 
window turning, 8-11 . 

I/O buffers, 1-14 
application design, 2-S 
remote access, B-a 

indexed files, B-3 
relative files, B-3 
seq~ential files, B-3 

I/O techhiques, 2-17 
asynchionous operations, 2~17 
deferred write, 2-17 
indexed files, 7-8 

asynchronous operations, 7-8 
deferred write, 7-8 
multiple access streams, 

7-10 . 
multiple buffers,7-9 
sequential reads, 7-10 

mass insertion, 2.-18 
MBC, 2-17 
multiple access streams, 2~17 
multiple btiffers, 2-18 
relati v·e files, 4-14 

asynchronous operations, 
4~14 

deferred write, 4-14 
multiple access streams, 

4-lS 
multiple buffers,. 4-lS 

sequential files, 3-14 
asynchronous operations,· 

3-14 
deferred wri te, 3-14 
MBC, 3-1S 
multiple access streams, 

3-lS 
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multiple buffers, 3-14 
I/O units, 1-14 

blocks, 1-16 
buckets, 1-16 

Incremental reorganization, 5-12 
Index buckets, 5-6 
Index records, 5~6 
Indexed file organization, 1-5 

access declarations, 7-1 
allocation, 6-22 

DEQ, 6-26 
initial, calculation, 6-22 

alternate keys, 1-11 
and remote access, B-3 
areas, 5-2, 6-10 

multiarea files, 6-12 
single-area files, 6-11 

asynchronous operations, 7-8 
bucket fill size, 6-28 
bucket format, 5-2 
bucket size, 6-15 

calculation, alternate indexes, 
6-19 

calculation, primary index, 
6-16 

prologue, 5-2 
bucket splitting, 5-11 
compressing deleted records, 

5-10, 5-16, 6-7, 6-9 
CONNECT operation, 7-2 
contiguity, 6-13 
data records, 5-2 
deferred write, 6-27, 7-8 
DELETE operation, 5-15, 6-7, 

7-3, 7-9 
duplicate keys, 6-9 

depth, 5-5 
design, 5-1~ 6-1 

allocation, 6~22 
areas, 6-10 
bucket size, 6-15 
keys, 6-2 
placement control, 6-13 
populating files, 6-26 
record format, 6-1 
record size, 6-1 

directory operations, 7-10 
DISCONNECT operation, 7-3 
file operations, 7-10 
FIND operation, 7-3, 7-9 

random by key, 5-13 
sequential access, 5-17 

FLUSH operation, 7-5 
GET operation, 7-5, 7-7 to 7-9 

random by key, 5-13 
sequential access, 5-17 

I/O techniques, 7-8 
incremental reorganization, 

5-12 
index buckets, 5-6 
index levels, 5-4, 5-6 
index records, 5-2, 5-6 
indexes 

data level, 5-5 
keys, 1-5, 6-2 

changeable, 6-9 
characteristics, 6-8 
data types, 6-3 
duplicates, 6-8 
null, 6-10 
number of, 6-2 
position, 6-7 
size, 6-6 

level 0 
alternate indexes, 5-5 
primary indexes, 5-5 

locate mode, 7-7 
mass insertion, 6-28 to 6-29 
move mode, 7-7 
multiple access streams, 7-10 
multiple buffers, 7-9 
placement control, 6-13 
populating files, 6-26 

primary key order, 6-27 
random insertions, 6-28 

primary keys, 1-11 
prologue, 5-2 
PUT operation, 6-7, 7-5, 7-7, 

7-9 
duplicate keys, 6-9 
mass insertion, 7-9 
random by key, 5-10 

random access, 5-7, 6-12 
record operations, 7-2 

random access, 5-9 
sequential access, 5-16 

record transfer modes, 7-6 
locate mode, 7-7 
move mode, 7-7 

.REWIND operation, 7-6 
root, 1-7, 5-5 
search times, 5-8 
See also Indexes 
sequential reads, 7-10 
shared access, 7-1 

block access, 7-1 
record access, 7-1 

sharing declarations, 7~1 
stream operations, 7-2 
structure 

conceptual, 5-4 
physical, 5-2 

UPDATE operation, 5-14, 
7-6 to-7-9 
changeable keys, 6-10 
duplicate keys, 6-9 

Indexes, 5-2 
alternate 

bucket size calculation, 
6-19 

level 0, 5-5 
SIDRs, 5-5 

depth, 5-5 
levels, 5-4, 5-6 

data, 5-5 
primary 
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bucket size calculation, 
6-16 

level 0, 5-5 
root., 5-5 

Initial allocation 
indexed files, 6-22 
relative files, 4-3 
sequential files, 3-4 

Integer keys 
2-byte signed, 6-4 
4-byte signed, 6-4 

Key access 
to indexed files, 5-7, 5-9 
to relative files, 4-1 
to sequential files, 3-2 

Keys, 1-5, 1-19, 6-2 
alternate, 1-7, 1-11 
characteristics, 6-8 

changeable, 6-9 
duplicates, 6-8 
null, 6-10 

data types, 6-3 
2-byte signed integer, 6-4 
2-byte unsigned binary, 6-5 
4-byte signed integer, 6-4 
4-byte unsigned binary, 6-5 
packed decimal, 6-6 
string, 6-3 

number of, 6-2 
position, 6-7 
primary, 1-7, 1-11 
segmented, 6-7 
size, 6-6 

LBN, 8-11 
See also Placement control 

Levels 
indexed files, 5-4 

data, 5-5 
level 0, alternate indexes, 

5-5 
level 0, primary indexes, 

5-5 
Libraries 

clustered, 8-7 to 8-9 
object module, 8-1 
resident, 8-1, 8-8 

RMSRES, 8-6, 8-9 
supervisor mode, 8-9 

Loading files, 1-10, 1-12 
Locate mode 

indexed files, 7-7 
relative files, 4-13 
sequential files, 3-14 

Logical block number 
See LBN 

MACRO-ll, 1-l3 
and ODLfiles, 8-5 
key segments, 6-7 
placement control, 6-14 
populating files, 6-27 

INDEX 

Magtape 
See Medium 

Maintaining files, 1-10, 1-12 
backing up files, 1-10, 1-12 
converting files, 1-10, 1-12 
designing and creating files, 

1-10, 1-12 
displaying files, 1-10, 1-12 
loading files, 1-10, 1-12 
restoring files, 1-10, 1-12 

Mass insertion, 2-18, 6-28, 7-9 
populating indexed files, 6-29 

Match criteria 
random access, 5-13 

Maximum record number 
See MRN 

MBC, 2-17 
sequential files, 3-15 

Medium 
and I/O time, 2-3 
and record formats and 

file organizations, 1-20 
and variable-length format, 

2-15 
disk, 1-18 

file specification, A-l 
retrieval pointers, 8-11 
usage, 8-13 

magtape, 1-18 
file specification, 

A-4 to A-5 
placement control, 6-13 
sequential files, 3-3 

Memory-resident overlays, 1-13, 
8-3, S-6 

Modes 
See Access modes 
See Record transfer modes 

Move mode 
indexed files, 7-7 
relative files, 4-12 
sequential files, 3-13 

MRN, 1-19 
relative files, 4-4 to 4-5 

Multiblock count 
See MBC 

Multiple access streams 
and shared access, 2-9 to 2-10 
I/O techniques, 2-17 
indexed files, 7-10 
relative files, 4-15 
sequential files, 3-15 

Multiple buffers, 2-18 
indexed files, 7-9 
relative files, 4-15 
sequential files, 3-14 

NAM block 
file specification, A-6 

Name 
file, A-2 

default, A-6 
Next record 
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See Context 
No sharing 

sharing declaration, 2-7 
Ndde 

remote file specification, B-2 
Nonoverlaid routines, 1-13, 

8-2, 8-8 to 8-9 
Null keys, 6-10 

Object code 
assembling, 1-13, 8-1 
compiling, 1-13, 8-1 

Obj~ct module libraries, 8-1 
ODL, 8-3 
ODL files 

DAPRLX, 8-7 
prototype, 8-3 
RMSRLX, 8-7 
standard, 8-3, 8-5 

DAPllX, 8-6 
RMSllS, 8-5 
RMSIIX, 8-5 
RMS12X, 8-6 

OPEN operation, 1-18 
remote access, B-2 to B-3 

Operating systems, 1-13 
allocating system resources, 

8-13 
block locking, 3-6 
compatibility, 3-4 
defaults, 2-2 

DEQ, 3-5 
FALs, B-3 
protection codes 

and shared access, 2-5 
remote access 

RSTS/E, B-3 
RSX-l1M/M-PLUS, B-3 
VAX/VMS, B-1, B-3 

OP.erations 
asynchronous, 2-17, 3-14, 

4~14, 7-8~ 8-2, 8-4, 
8-7 to 8-8 

CLOSE, 1-18 
CONNECT, 1-15 

indexed files, 7-2 
relative£iles, 4-7 
sequential files, 3-7 

CREATE, 1-18 
and shared access, 2-6 
file versions, A-3 
remote access, B-2 to B-3 

DELETE, 1-15 
and key position, 6-7 
and share~ access, 2-6 
deferred write, 7-9 
duplicate keys, 6-9. 
indexed files, 5-15, 7-3 
relative files, 4-7 

directory, 1-17 
indexed files, 7-10 
relative files, 4-15 
sequential files, 3-15 

INDEX 

DISCONNECT, 1-15 
indexed files, 7-3 
relative files, 4-8 
sequential files, 3-7 

DISPLAY, 1-18 
ENTER, 1-17. 

file versions, A-3 
remote access, B-1 

ERASE, 1-18 
remote access, B-2 
wildcard operations, A-4 

EXTEND, 1-18 
and shared access, 2-6 

file, 1-18 
indexed files, 7-10 
optimizations, 8-10 
relative files, 4-15 
sequential files, 3-15 

FIND, 1-15 
and bucket locking, 2-8 
and shared access, 2~6, 2-10 
and stream records, 2-16 
deferred write, 7-9 
indexed fil.es, 5-13, 5-17, 

7-3 
key access, 1-16 
relative files, 4-8 
RFA access, 1-16 
sequential access, 1-16 
sequential files, 3-7 

FLUSH, 1-15 
indexed files, 7-5 
relative files, 4-10 
sequential files, 3-9 

FREE, 1-15 
and shared access, 2-10 

GET, 1-15 
and bucket locking, 2-8 
and ODLs, 8~5 

and shared access, 2-6, 2-10 
and stream records, 

2-16 to 2-17 
deferred write, 7-9 
indexed files, 5-13, 5-17, 

7-5 
key access, 1-16 
locate mode, 3-14, 4-13, 7-8 
move mode, 3-13, 4-12, 7-7 
relative files, 4-10 
RFA access, 1-16 
sequential access, 1-16 
sequential files, 3-9 

OPEN, 1-18 
remote access, B-2 to B-3 

optimizations, 8-10 
PARSE, 1-17 

remote access, B-1 
PUT, 1-15 

and key posi tion, 6-7 
and ODLs, 8-5 
and shared access, 2-6 
and stream records, 2-17 
deferred write, 7-9 
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duplicate keys, 6-9 
indexed files, 5-10, 5-17, 

7-5, 7-9 
initial allocation, 4-4 
key access, 1-16 
locate mode, 3-14 
mass insertion, 7-9 
move mode, 3-13, 4-12, 7-7 
relative files, 4-11 
sequential access, 1-16 
sequential files, 3-10 

record, 1~10, 1-15 
and I/O costs, 5-17 
and indexed files, 5-9, 5-16 
indexed files, 7-2 
optimizations, 8-10 
relative files, 4-7 
sequential files, 3-7 

REMOVE, 1-17 
remote access, B-1 
wildcard operations, A-4 

RENAME, 1-17 
file versions, A-3 
remote access, B-1 
wildcard operations, A-4 

REWIND, 1-15 
indexed files, 7-6 
relative filesj 4-12 
sequential files, 3-11 

SEARCH, 1-17 
remote access, B-1 

stream, 1-15 
indexed files, 7-2 
relative files, 4-7 
sequential files, 3-7 

synchronous, 8-2 
TRUNCATE, 1-15 

and shared access, 2-6 
sequential files, 3-12 

UPDATE, 1-15 
and ODLs, 8-5 
and record size, 2-16 
and shared access, 2-6, 2-10 
and stream records, 2-17 
changeable keys, 6-10 
deferred write, 7·9 
duplicate keys,.6-9 
indexed files, 5-14, 7-6 
move mode, 3-13 to 3~14, 

4-12 to 4-13, 7-7 to 7-8 
relative files, 4-12 
sequential files, 3-12 

WAIT, 1-15 
WRITE 

and shared access, 2-6 
Optimizations 

allocating system resources, 
8-13 

application design, 2-11 
DELETE operation, 6-7 
disk usage, 8-13 
operations, 8-10 
overlays, 8-1 

INDEX 

program development, 8-9 
PUT operation, 6-7 
task building, 8-10 
virtual-to-logical block mapping, 

8-11 
window turning, 8-12 

Organizations 
See File organizations 

Overlay description language 
See ODL 

Overlays, 8-2 
and disk usage,' 8-14 
disk-resident, 1-13, 8-3, 

8-8 to 8-9 
memory-resident, 1-13, 8-3, 

8-6 

Packed decimal keys, 6-6 
Paging, 8-10 
PARSE operation, 1-17 
PARSE operations 

remote access, B-1 
Performance 

See Speed 
Placement control, 1-17, 1-19 
'calculating starting LBN, 6-14 
cylinder, 6-13 to 6~14· 
indexed files, 6-13 
sector, 6-14 
track, 6-13 to 6-14 

populating indexed files, 6-26 
primary key order, 6-27 
random insertions, 6-28 

bucket fill size, 6~28 
mass insertion, 6-29 

Primary indexes 
See Indexes 

Primary keys, 1-7, 1-11 
processing blocks, 1-20 
Processing files, 1-16 

indexed files, 7-10 
relative files, 4~15 , 
sequential files, 3-15 

Processing records; 1-10, 1-15 
indexed files, 7-2 
relative files, 4-7 
sequential files, 3-7 

Program development 
optimizing, 8-9 

Prologue, 1-19 
indexed files, 5-~ 

bucket size, 5-2 
relative files, '4-1 

Protection, 1-18 
Prototype ODL files, 8-3 
PUT operation, 1-15 

and key position, 6-7 
and ODLs, 8-5 
and shared. access, 2-6 
and stream records, 2-17 
deferred write, 7-9 
duplicate keys, 6-9 
indexed files, 7-5, 7-9 
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key access, 5-10, 7-' 
mass insertion, 7-9 
sequential access, 5-17, 7-6 

initial allocation, 4-4 
key access, 1-16 
locate mode, 3-14 
move mode 

indexed files, 7-7 
relative files, 4-12 
sequential files, 3-13 

optimi zing, 6-7 
relative files, 4-11 

key access, 4-11 
sequential access, 4-11 

sequential acce~s, 1-16 
sequential files, 3-10 

key access, 3-10 
sequential access, 3-10 

Quoted string 
file specification, A-5 
remote file specification, B-2 

Random access, 1-7, 1-9 
by key, 1-12 

FIND, 1-16 
GET, 1-16 
PUT, 1-16 

by RFA, 1-12 
FIND, 1-16 
GET, 1-16 

by VBN, 1-20 
match criteria, 5-13 
to indexed files, 5-7, 5-9, 

6-12 
to relative files, 4-1 
to sequential files, 3-2 

Read-only 
access declaration, 2-6 
sharing declaration, 2-7 

Read/write 
access declaration, 2-6 -
sharing declaration, 2-7 

Record access, 1-12 
See also Shared access 

Record access modes 
see Access modes 

Record file address 
See RFA 

Record formats, 1-11, 1-18 
and file organizations, 1-20, 

2-15 
fixed length, 1-11, 2-15 
indexed files, 6-1 
relative files, 4-2 
sequential files, 3-3 
stream, 1-11, 2-16 
undefined, 1-11, 2-17 
variable length, 1-11, 2-15 

and medium, 2-15 
VFC, 1-11, 2-16 

Record operations, 1-15 
See also Operations 

INDEX 

Record reference vector 
See RRV 

Record size, 1-18 
indexed files, 6-1 
relative files, 4-2 
sequential files, 3-2 
UPDATE operation, 2-16 

Record transfer modes 
indexed files, 7-6 
relative files, 4-12 
sequenti~l files, 3-13 

Record-output handling, 1-19 
Records, 1-1 

data, 5-2 
index, 5-2, 5-6 
processing, 1-15 
See also Reco~d formats 

Relative file organization, 
1-4, 1-11 
access declarations, 4-6 
allocation 

DEQ, 4-4 
ini tial, 4-3 

and remote access, B-3 
asynchronous operations, 4-14 
buckets, 4-1 
cells, 4-1 
CONNECT operation, 4-7 
contiguity, 4-4 
deferred write, 4-14 
DELETE operation, 4-7 
design, 4-1 

allocation, 4-3 
bucket size, 4-2 
MRN, 4-5 
record format, 4-2 

directory operations, 4-15 
DISCONNECT operation, 4-8 
£ile operations, 4-15 
FIND op~ration, 4-8 
FLUSH operation, 4-10 
GET operation, 4-10, 

4-12 to 4-13 
I/O techniques, 4-14 
MRN, 4-4 
multiple access streams, 4-15 
multiple buffers, 4-15 
prologue, 4-1 
PUT operation, 4-11 to 4-12 
random access 

by key, 4-1 
by RFA, 4-1 

record operations, 4-7 
record si2e, 4-2 
record transfer modes, 4-12 

move mode, 4-12 
REWIND operation, 4-12 
sequential access, 4-1 
shared access, 4-6 

block access,. 4-6 
record acceSs, 4-6 

sharing declarations, 4-6 
stream operations, 4-7 
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structure, 4-1 
conceptual, 4-1 
physical, 4-1 

UPDATE operation, 4-12 to 4-13 
Relative record number 

See RRN 
REMOVE operation, 1-17 

wildcard loops, A-4 
REMOVE operations 

remote access, B-1 
RENAME operation, 1-17 

file versions, A-3 
wildcard loops, A-4 

RENAME operations 
remote access, B-1 

Resident libraries, 8-1, 8-8 
RMSRES, 8~6, 8-9 

Restoring files, 1-10, 1-12 
Retrieval pointers, 8-11 

in memory, 8-11 
on disk, 8-11 

REWIND operation, 1-15 
indexed files, 7-6 
relative files, 4-12 
sequential files, 3-11 

RFA, 1-12 
relative files, 4-1 
sequential files, 3-2 

RFA access 
to relative files, 4-1 
to sequential files, 3-2 

RMS-ll defaults, 2-2 
RMS-ll File Back-Up Utility 

See RMSBCK 
RMS-ll File Conversion Utility 

See RMSCNV 
RMS-ll File Design Utility 

See RMSDES 
RMS-ll File Display Utility 

SeeRMSDSP 
RMS-ll File Restoration Utility 

See RMSRST 
RMS-ll Indexed File Load Utility 

See RMSIFL 
RMS-ll resident library 

,See RMSRES 
RMSBCK, 1-12 
RMSCNV, 1-12 

populating files, 6-26 to 6-27 
RMSDES, 1-12, 1-18 

bucket fill size, 6-29 
bucket size, 6-22 

relative files, 4-3 
DEQ, 3-5, 4-4, 6-26 
initial allocation, 3-4, 4-4, 

6-26 
key segments, 6-7 
MRN, 4-5 
placement control, 6-14 

RMSDSP, 1-12, 1-19 
RMSIFL, 1-12 

populating files, 6-26 to 6-27 
RMSRES 

INDEX 

and I/O paging operations, 
8-10 

and overlays, 8-6 
clustered, 8-7 
overlays, 8-9 
supervisor mode, 8-7 
task building, 8-6 

RMSRST, 1-12 
Root, 1-7 

indexed files, 5-5 
RRN 

relative files, 4-1 
sequential files, 3-2 

RRV, 5-12, 5-16 
RSTS/E 

remote access, B-3 
RSX-11M/M-PLUS 

remote access, B-3 

SEARCH operation, 1-17 
SEARCH operations 

remote access, .B-l 
Search times 

indexed files, 5-8 
Seconday index data records 

See SIDR 
Sector 

See Placement control 
Segmented keys, 6-7 
Sequential access/ 1-7 to 1-8 

FIND, 1-16 
GET, 1-16 
PUT, 1-16 
to blocks, 1-20 
to indexed files, 5-16 
to records, 1-12 
to relative files, 4-1 
to sequential files, 3-2· 

Sequential file organization, 
~ 1-3, 1-11 

access declarations, 3-6 
allocation 

DEQ, 3-4 
initial, 3-4 

and remote access, B-3 
asynchronous operations, 3-14 
cells, 3-2 
CONNECT operation, 3-7 
deferred write, 3-14 
design, 3'"'-1 

allocation, 3-4 
contiguity, 3-5 
medium, 3-3 
record format, 3-3 

directory operations, 3-15 
DISCONNECT operation, 3-7 
end-af-block indicators, 3-2 
end~of-file, 3-2 
FCS-11 compatibility, 3-2 
file operations, 3-15 
FIND operation, 3~7 

FLUSH operation, 3-9 
GET operation, 3-9, 
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3-13 to 3-14 no shar i ng, 2-7 
I/O techniques, 3-14 read-only, 2-7 
MBC, 3-15 read/wr i te, 2-7 
multiple access streams, 3-15 relative files, 4~6 

multiple buffers, 3-14 sequential files, 3-6 
PUT operation, 3-10, 3-13 user-provided interlocks, 2~7 
random access SIDR, 5-5, 7-9 

by key, 3-2 changeable keys, 6 .... 10 
by RFA, 3-2 duplicate keys, 6-8 to 6-9 

record operations, 3-7 Space 
record size, 3-2 application design consideration, 
record transfer modes, 3-13 2-4, 8-1 

locate mode, 3-14, 4-13 data storage, 2-5 
move mode, 3-13 to 3-14 I/O buffer size, 2-5 

REWIND operation, 3-11 task size, 2-5 
sequential access, 3~2 Spanning blocks, 1-16, 1-19, 3~1 
shared access, 3-5 variable length records, 2-16 

block access, 3-6 Speed 
record access, 3-6 application design consideration, 
record structured files, 3~6 2-3, 8-1 
with undefined records, 3-6 Standard ODL files, 8-3,8-5 

sharing declarations, 3-6 and file organization, 8-5 
stream operations, 3-7 DAPllX, 8-6 
structure, 3-1 RMSllS, 8-5 

conceptual, 3-2 RMSllX, 8-5 
physical, 3:-1 RMS12X, 8-6 

TRUNCATE operation, 3-12 Stream operations, 1-15 
UPDATE operation, 3-12 to 3-14 See also Operations 
user-provided interlocks, 3-6 Stream record format, 1-11, 2-16 

Shared aCGess, 1-17 terminators, 2-16 
access declarations, 2-6 Streams 

read-only, 2-6 See Access streams 
read/write, 2-6 String keys, 6-3 

and high-level languages, 2-7 segmented, 6-7 
application design consideration,Structure 

2-5 indexed files 
bucket locking, 2-8 conceptual, 5-4 
deferred wri.te physical, 5-2 

to relative files, 4-14 relative files, 4-1 
multiple access streams, conceptual, 4-1 

2-9 to 2-10 physical, 4-1 
programming considerations, sequential files, 3-1 

2-10 conceptual, 3-2 
sharing declarations~ 2-7 physical, 3-1 

no sharing, 2-7 Supervisor mode, 8-7, 8-9 
read-only, 2-7 Synchronous operations, 8-2 
read/write, 2 .. 7 
user-provided interlocks, 

2-7 
system protection codes, 
to indexed files, 7-1 

block access, 7-1 
record access, 7(-1 

to relative files, 4-6 
block access, 4:-6 
record access, 4-6 

to sequential files, 3-5 
record structured, 3-6 
with undefined recorQs, 

Sharing 
See Shared access 

Sharing declarations~ 2-7 
indexed files, 7-1 

2-5 

I· 
3-6 

Task 
executable, 8:-1 
size, 2-5 
structure, 1-13 

Task builder, 1-13 
and optimizations, 8-10 
and overlay structure, 8-10 
and remote access code, B-1 
and RMS-ll routines, 8-1 
and RMSRES, 8-6 

Terminals, A-I 
Terminators 

stream records, 2-16 
Track 

See Placement control 
TRUNCATE operation, 1-15 
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and shared access, 2-6 
sequential files, 3-12 

Two-byte signed integer keys, 
6-4 

Two-byte unsigned binary keys, 
6-5 

Type 
file, A-3 

Undefined record format, 1-11, 
2-17 

Unit-record devices, A-l 
UPDATE operation, 1-15 

and ODLs, 8-5 
and record size, 2-16 
and shared ~ccess, 2-6, 2-10 
and stream records, 2-17 
changeable keys, 6-10 
deferred write, 7-9 
duplicate keys, 6-9 
indexed files, 5-14, 7-6, 7-9 
move mode, 3-14 

indexed files, 7-7 to 7-8 
relative files, 4-12 to 4-13 
sequential files, 3-13 

relative files, 4-12 
sequential files, 3-12 

User buffers, 1-14 
User-provided interlocks, 3-6 

sharing declaration, 2-7 
Utilities, 1-12, 2-11 

RMSBCK, 1-12 
RMSCNV, 1-12 

populating files, 
6-26 to 6-27 

RMSDES, 1-12, 1-18 
bucket fill size, 6-29 
bucket size, 4-3, 6-22 
DEQ, 3-5, 4-4, 6-26 
initial allocation, 3-4, 

4-4, 6-26 
key segments, 6-7 
MRN, 4-5 
placement control, 6-14 

RMSDSP, 1-12, 1-19 
RMSIFL, 1-12 

populating files, 
6-26 to 6-27 

RMSRST, 1-12 

Variable with fixed control 
See VFC 

Variable-length record format, 
1-11, 2-15 
and medium, 2-15 

VAX/VMS 
remote access, B-1, B-3 

VBN, 8-11 
access, 1-20 
areas, 6-10 

Version 
file, A-3, A-5 

default, A-6 

INDEX 

VFC record format, 1-11, 2-16 
virtual block number 

See VBN 
Virtual-to-logical block mapping 

optimizations, 8-11 

WAIT operation, 1-15 
Wildcards 

file specification, A-2 to A-3 
loops, A-4 

Windows, 8-11 
turning, 8-11 

areas, 8-13 
contiguity, 8-12 
FllACP size, 8-13 
optimizations, 8-12 
window size, 8-12 

WRITE operation 
and shared access l 2-6 
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READER'S COMMENTS 

RSX~ llM!M-PLUS 
RMS-ll User's Guide 

AA-L66~A-TC 

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the 
company's discretion. If you require a written reply and are eligible to receive one under Software 
Performance Report (SPR) service, submit your comments on an SPR form. 

Did you find this manual understandable, usable, and well organized? Please make suggestions for improvement. 

Did you find errors in this manual? If so, specify the error and the page number. 

Please indicate the type of user/reader that you most nearly represent. 

o Assembly language programmer 
o Higher-level language programmer 
o Occasional programmer (experienced) 
o User with little programming experience 
o Student programmer 
o Other (please specify) 

Name ________________________________________________ Date ______________________________ ___ 

Organization 

Street 

City ________ ..,..--_____________ __ State ______ Zip Code _____ _ 

or Country 
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