
RSX-11 M/M-PLUS
RMS-11: An Introduction
Order No. AA-L682A-TC

(

c

(

RSX-11 M/M-PLUS
RMS-11: An Introduction·
Order No. AA-L682A-Te

April 1983

This document introduces the concepts, operations, and utilities of Record
Management Services for PDP-11 operating systems (HMS-11).

SUPERSESSION/UPDATE INFORMATION: This is a new manual for this
release.

OPERATING SYSTEM AND VERSION:

SOFTWARE VERSION:

RSX-11 M Version 4.1 and
.RSX-11 M-PLUS Version 2.1

RMS-11 Version 2.0

digital equipment corporation · maynard, massachusetts

First Printing, April 1983

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

No responsibility is assumed for the use or reI (ability of software on
equipment that is not !'upplied by Digital Equi'pment Corporation or its
affiliated companies.

Copyright 0 1983 by Digital Equipment Corporation
All Rights Reserved.

Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

DEC
DEC/CMS
DECnet
DECsystem-10
DECSYSTEM-20
DECUS
DECwriter

DIBOt
EduSystem
lAS
MASSBUS
PDP
PDT
RSTS

RSX
UNIBUS
VAX
VMS
VT

mOmODmO

------------_._----_._------------_._._._-_ - _._.-

. HOW TO ORDER ADDITIONAL DOCUMENTATION

In Continental USA and Puerto Rico call 800-258-1710

In New Hampshire. Alaska. and Hawaii call 603-884-6660

In Canada call 613-234-7726 (Ottawa-Hull)
800-267-6146 (all other Canadian)

DIRECT MAil ORDERS (USA & PUERTO RICO)'

Digital Equipment Corporation
P.O. Box CS2008
Nashua. New Hampshire 03061

'Any prepaid order from Puerto Rico must be placed
with the local Digital subsidiary (809-754-7575)

DIRECT MAil ORDERS (CANADA)

Digital Equipment of Canada Ltd
940 Be!fast Road
Ottawa. Ontario K 1 G 4C2
Attn: A&SG Business Manager

DIRECT MAil ORDERS (INTERNATIONAL)

Digital Equipment Corporation
A&SG Business Manager
cio Digital's local subSidiary or
approved distributor

Internal orders should be placed through the Software Distribution Center (SOC!. Digital Equipment
Corporation. Northboro. Massachusetts 01532

4183-14

ZK2l70

(

c

c

c

(

(

PREFACE

CHAPTER 1

CHAPTER 2

CHAPTER 3

(

CHAPTER 4

CONTENTS

MANUAL OBJECTIVES
INTENDED AUDIENCE • • • • •
ASSOCIATED DOCUMENTS • • • • •

INTRODUCTION

DATA STORAGE

DISK STRUCTURE '. • • • •
MAGNETIC TAPE SiRUC~URE

FILE STRUCTURE

Page

v

• v
• v . .. • v

• 2-1
• 2-4

• 3-1 RECORD FORMATS • • • • • • • •
Fixed-Length Records • • • •
Variable-Length 'Records
Variable-Length with Fixed
Stream Records • • •
Undefined Records ••••

• • • • • • 3-2
. 3-2

Control (VFC) Records 3-2

FILE ORGANIZATIONS • • • • • •
• • • • • 3-4

3-4
• 3-4

3-4
3-5

., • • 3-5

Sequent~al Organization
Special Case • • • • .
Relative Organization ••••
Indexed Organization. • • • • • • • • 3-6

ACCESS MODES . • • • • • • • • • • •• 3-11
Record Access Modes
Block Access Modes •

• • • • • • • •.• • 3-11

Access Mode Switching ••••••••
FILE STRUCTURE INTERDEPENDENCIES •

File Organization and Access •
Summary • • •• ••••

3-12
• • •• 3-13

3-13
3-13
3-15

FILE DESIGN • • • • • • . • • • • • • • • •• 3-15

OPERATIONS

FILE PROCESSING
I/O Buffers and Data Transfer
Access Sharing ••••••••

RECORD PROCESSING • • • •
Synchronous and Asynchronous Operations
Record Context • ; • •
Record Access Modes
Record Transfer Modes

BLOCK PROCESSING •••
Block Access Modes • • • • •

MACROS AND SYMBOLS • • • • • •

iii

• 4-1
• 4-2

• • • • • 4-3
• • • • • 4-3

• 4-4
• 4-5

4-5
• 4-6

• • • • • 4-7
• • • • • 4-7

• 4-7

CHAPTER 5

INDEX

FIGURE, 1
2
3
.4
5
6

TABLE

7
8
9
10

1
2

CONTENTS

UTILITIES

CREATING A FILE 0 0 0 0 0 0 0 0 0 0 0 • 0 5-1
POPULATING OR REORGANIZING A FILE 0 5-2
DISPLAYING FiLE ATTRIBUTES 0 0 0 0 0 0 0 0 0 0 5-3
BACKING UP AND RESTORING FILES • 0 0 0 0 0 0 0 0 0 5-3

FIGURES

Physical Disk Structure 0 0 0 0 0 • 0 0 0 0 0 2-2
Logical Disk Structure 0 0 0 0 • 0 0 0 0 0 0 0 2-3
Virtual-to-Logical Block Mapping 0 0 0 0 0 0 2-4
Magnetic Tape Structure 0 0 0 0 0 0 0 0 • 0 2-5
Fixed-Length and Variable-Length Record Formats 0 3-3
VFC Record Format 0 0 0 0 0 0 0 0 3-3
Sequential File Organization 0 0 0 0 0 0 3-5
Relative File Organization 0 • 0 0 0 0 0 0 • 0 3-6
Indexed File Organization Single Key 0 • 3-8
Indexed File Organization -- Multiple K~ys 0 0 3-9

TABLES

File Structure Interdependencies 0

File a,nd Record Attributes 0 00

iv

3-16
3-16

c

c

c

c

c

(

('

c

c

PREFACE

MANUAL OBJEGTIVES

This document introduces the major concepts of RMS-II:
formats, file organizations, and record access modes.

reco,rd

It also introduces the RMS-II operations and
key terms required for understanding
functions.

utilities, and defines
RMS-II capabilities and

This document does not provide reference or usage information. You
should read it, however, before you proceed to the other RMS-II
documents. See the Associated Documents section below.

INTENDED AUDIENCE

This document is intended for all users of RMS-II, including MACRO-II
and high-level language programmers. Nonprogramming users,
programming users who are new to the PDP-II operating systems, and
PDP-II programming users who are new to RMS-II will find this document
useful.

ASSOCIATED DOCUMENTS

This introduction to RMS-II also serves as an introduction to the
other manuals in the RMS-II documentation set, defining the terms and
concepts you need to know before you use those manuals. .

The RSX-IIM!M-PLUS RMS-II User's Guide provides detailed information
for both MACRO-II and hlgh-level language programmers on file and task
design using RMS-II. Chapter 2, Data Storage, and Chapter 3, File
Structure, of this manual provide a background for the usage
information.

The RSX-IIM!M-PLUS RMS-II Macro programmer's Guide is a reference
document for MACRO-II programmers that desc'ribes the macros and
symbols that make up the interface between a MACRO-II program or
subprogram and the RMS-II operation routines. Chapter 4, Operations,
of this manual provides a background for the reference information.

The RSX-IIM!M-PLUS RMS-II Utilities manual is both a user and a
reference document for all users, both programmers and nonprogrammers.
It descrfbes the RMS-II utilities that are available for creating and
maintaining RMS-II files. Chapter 5, Utilities, of this manual
introduces the utility programs.

v

PREFACE
Associated Documents

In addition, the RSX-IIM/M-PLUS RMS-ll Mini-Reference Insert is an ('
easy-reference guide for users who are familiar with RMS-ll and its ,
documentation. It summarizes the RMS-ll utilities and error codes.

c

c

c

c
vi

(

(

(

(

CHAPTER I

INTRODUCTION

The PDP-II computer allows you to store large amounts of information.
The combination of the software supplied by DIGITAL and the software
that you write allows you to access and manipulate that information.
This means that you can store, retrieve, and process (modify and
delete) data according to your requirements.

All businesses, for example, need to store detailed and up-to-date
personnel information. At a minimum, this information would include
each employee's name, address, and social security number.

The employer will want to be able to retrieve this information in some
orderly fashion, perhaps in alphabetical order by employee name or by
social security number for tax purposes.

The employer also must be able to readily process the information:
add information on new employees, delete information on employees who
leave, and modify information that is incorrect or changes (the
employee moves) •

The ability to store and retrieve information and to process that
information readily and in some orderly fashion implies that the
information is stored in some orderly fashion, such as in records. A
record is a logical unit of data, that is, an item or collection of
items that are related in some manner.

The information on each employee -- name, address, and social security
number would constitute one record. The information on each
~anufactured part in inventory -- part name, number, and price
would constitute another, different type of record.

To keep records of one type separate from records of another type,
records are organized into files. A file contains groups of records
of the same type. One or more-rTIes, depending on the amount of data,
would contain all the records of a specific type.

In a small business, all the employee records would be stored in one
file; all the inventory records would be stored in another.

How the data is used helps determine how the records are stored in and
retrieved from files so they can be processed, or used for a specific
purpose. Data storage and retrieval is also called access.

To obtain a complete report on all employees, the employer might
simply get each record, one after another. New records might be put
at the end of the file, one after another. To withhold state income
tax, the employer might use the address data to identify the records
of employees who reside in that state.

1-1

Introduction

The software that provides data access is RMS-ll. RMS-ll is a set of
routines that allows your programs to gain access to and process
add, ~odify, and delete -- records and files. RMS-l1 provides the
connection between your program and the stored data that your program
requites.

This document is an introduction to RMS-ll. Data storage devices,
although governed by operating system software, are described briefly
in Chapter 2. Devices are discussed in this document because the type
of device you use to store data directly affects file structure and
access, which are described in Chapter 3.

The RMS-ll operation routines that provide file and rec9rd processing
are introduced in Chapter 4. Chapter 5 briefly describes the RMS-ll
utility ~rograms that facilitate file creation and malnfenance.

1-2

c

c

c

c

(

(

(

(

CHAPTER 2

DATA STORAGE

The data that your programs use typically is stored on mass-storage
devices magnetic tapes and disks. The operating system software
controls these hardware devices, and allows your programs to access
the data stored on them. Each device is controlled by a device
driver, or software that handles the input/output (I/O) -- the writing
of data into and reading of data out of storage.

The Files-II Ancillary Control Processor (FIIACP)
RSX-IIM/M-PLUS file control processor that catalogues and
files on the disks, and issues I/O requests to the device
For magnetic tape devices, the Magnetic Tape Ancillary
Processor (MTAACP) does this.

is the
maintains
drivers.

Control

The smallest unit of information stored on hardware devices is the
bit. A bit is an area of disk or tape surface for which the magnetic
orientation can be changed to one of two values, conventionally
designated Q and l.
Information typically is grouped into units of 8 bi ts, called bytes.
Bytes are used, for example, to represent text in memory with the
ASCII codes. l Other ways of representing data, particularly numeric
data, may require 2 or more bytes. A word, for example, consists. of 2
b yt e s (0 r 16 bit s) .

DISK STRUCTURE

A disk is made up of one or more circular platters, typically arranged
one above the other to form a cylinder. A disk is mounted on a drive,
which is the electromechanical unit for reading and writing da~n
the platters. The disk platters spin and the read/write heads of the
drive move across the platters to access the data. Data is usually
written on both sides of a platter.

Figure 1 shows how data is stored on a disk. On most disks supplied
by DIGITAL, a sector consists of 512 bytes. A track consists of all
the sectors at a single radius on one disk platt~and a cylinder
consists of all the tracks at the same radius on all the platters:----

The disk drive can access all tracks on a single cylinder without
changing the position of the read/write heads. Any sector on a disk
thus has a unique physical address: its cylinder number, its track
number, and its sector number on that track.

1. American Standard Code for Information Interchange.

2-1

Bit

Byte

Sector

1

t
......

I I

-I
-<

......
......

......

Data Storage
Disk Structure

8

I I I I

Track ..

Cylinder

Remainder of
Volume

ZK-1073-82

Figure 1: Physical Disk Structure

2-2

(

c

c

c

c

c

c

Data Storage
Disk Structure

The device drivers impose a simpler logical addressing structure on
each disk. They treat the disk as a single, logically contiguous,
series of data units, called blocks. A block contains 512 8-bit
bytes. Logical blocks are numbered sequentially, from 0 to n-l, where
n is the number of blocks on the disk. Figure 2 illustrates this
logical structure. Blocks, which are logically_ adjacent, frequently
correspond to sectors, which are physically adjacent on the disk.

Logical
Block

Number
o

Sector 1,
Track 1

Figure 2: Logical Disk Structure

Logical
Block

ZK-1074-82

On disk, a file is simply a series of blocks, which contain your data
organized into records. You can store multiple files on a disk. The
file control processor treats each file as a unit, ignoring any blocks
on the disk exc~pt those in the file being processed.

Figure 3 illustrates how blocks in a file -- called virtual blocks
may be mapped to logical blocks. Virtual blocks are numbered
sequentially in a file from 1 to ~, where n is the number of blocks in
a file.

The blocks in a file, however, need not be logically contiguous. As
files are created or extended, the file control processor may allocate
blocks to the file that are not next to each other on the disk. The
blocks in a file, then, are virtually contiguous. ,

2-3

- ------------------ --------------------------------------- --------------------------------- -

Data Storage
Disk Structure

File A l 1", "-
I I

, "-..... "-

I
, , , .,...

Logical blocks
IA

A A A A~ B B B

.....

B
B:

A A A A Al

./ ./
./ ./

./ ./
./ ./

./ ./
;' ./

File B r r
ZK-l07S-B2

Figufe 3: virtual-to-Logical Block Mapping

Note that a virtual block number (VBN) and a, logical block number
(LBN) refer to the same physical unit of disk storage space. But
although a virtual block also has anLBN, a logical block has a VBN
only if it is allocated to a file.

To access files, the file control processor tr~nslates VBNs to LBNs
and issues an I/O request to the device driver. The device driver, in
turn, translates the LBNs to the physical location (cylinder, track,
and sector) that is to be read or written. '

Disk storage offers two main, advantages: 1) it allows both sequential
and random access and 2) it allows access sharing. Sequential access
means that virtual blocks containing data are stored and retrieved
consecutively, one after another.

On the other hand, random access (also called direct access) m~ans
that a specific block containing data can be located and, retrieved
without a search of all the blocks that precede it in the f~le. The
time needed to access the data may thus be improved over sequential
access.

In addition, disk storage allows access sharing. This means that more
than one user can access the same disk at one time, and more than one
user can be allowed to open the same file at one time.

MAGNETIC TAPE STRUCTURE

Files can also be stored on magnetic tape. RMS-ll support for
magnetic tape is based on American National Standard X3.27-1978,
Magnetic ~ape Labels and File Structure for Information Interchange.

-,-- --- ---- ---

The data in a magnetic tape file is also stored as a series of blocks,
similar to a disk. However, on magnetic tape, the size of the block
is user definable.

2-4

(

c

c

c

c

c

(

Data Storage
Magnetic Tape Structure

Only one user can aCCeSS a given reel of tape (called a volume) at a
time, and only one file in a volume can be open at a time.

You can store one or more files on a single volume, a single file on
multiple volumes, or multiple files on multiple volumes.

The magnetic tape ancillary' control process (MTAACP) determines
magnetic tape volumes and files begin and end by using labels.
are three types of labels:

where
There

• Volume label (VOLl) is the first label on a tape volume;
identifies the volume.

• File header labels (HDRl, HDR2, and HDR3) -- precede each file
in a volume to identify the file and its contents.

• Trailer labels (EOFl, EOF2, and EOF3 or EOVl, EOV2, and EOV3)
follow each file in a volume to denote the end of the file

or file section. The EOF and EOV labels have the same
structure; the EOV labels are used when the file is continued
on another volume.

The labels and file data on a magnetic tape are delimited by tape
marks. Figure 4 illustrates how data is stored on magnetic tape. Tne
example in the figure shows multiple files on a single volume.

Multiple Files on a Single Volume

Key:

BOT - Beginning of tape

* - Tape mark

ZK-10B7-82

Figure 4: Magnetic Tape Structure

Magnetic tape storage allows sequential access only. This can affect
the time needed to access the data since a block containing data that
is near the end of a file can be located only by a search through all
the blOcks that precede it in the file.

2-5

(

c

c

(

c

(

c

(

CHAPTER 3

FILE STRUCTURE

The operating system s~ftware
drivers handles files. You~
access the recotds within the files
within the records.

file control processor, device
programs, however, must be able to

so they can process the data

RMS""'11 allows you to define· the internal structure of files (the si ze
and arrangement of records within files} and provides operations that
allow your programs to read and wri terecords in files. RMS-II thus
provides the interface between the operating system and your programs.

You define the internal structure of a file when you create it by
selecting record format and file organization.

Your selection of file organization may have to take into account your
choice of data storage device. In addition, your selection of file
organization and device may have to take into account the access modes
that you will use to store and retrieve your data.

This chapter
organization,
operations.

RECORD FORMATS

introduces
and access

the concepts of
modes. Chapter

record format, file
4 introduces the RMS-II

RMS-II does not handle, or process, data within records. Your program
does that. However, to retrieve or store a record for your program,
RMS-I~ must know how large that record is. The record formats that
allow you to define for RMS-II the size of your data records are:

• Fixed length

• Variable length

• Variable length with fixed control (VFC)

• Stream

These are the standard RMS-II record formats. In addition, you can
specify undefined as the record format for non-RMS-Il files.

Fixed-Length Records

File Structure
Record Formats

In a file that contains fixed-length records, every record is the same
size. The size (number of bytes) is fixed at file-creation time and
cannot be changed for the life of the file.

Typically, fixed-length records are used to contain data that is
always the same length. This is the most efficient use, although your
program need not-supply data for every byte of a fixed-length record.
RMS-ll will simply store and return the fixed-size record regardless
of whether every byte in the record contains data that is meaningful
to you. Your program must be able to recognize that some bytes in the
record are "unneeded."

For example, you could use a fixed-length record to contain
information on manufactured parts including, say, part number, dat~ of
manufacture, and price. Each of these fields would always be the same
length and would always be filled.

If you
le.ngth
fields
format

also used a field for a part name, that field would vary in
with the names of the parts. However, as long.as most of the

contain data whose length does not vary, fixed...,length record
may still be the most efficient way to store your data.

Variable-Length Records

In a file that contains variable-length records, records can be of
different lengths, up to a maximum size that you specify. This
maximum is fixed at file-creation time and cannot be changed for the
life of the file.

fixed, each
be to contain

.record for
is prefixed

Because the number of bytes of data per record is not
variable-length record .is only as long as it needs to
the record data. To keep track of the length of each
reading and writing, RMS-ll maintains a length field which
to each reco rd •

Thus, a variable-length record will require slightly more space than a
fixed-length record to hold exactly the same amount of data. However,
if the number of bytes of data in.a record must vary, fixed-length
records would waste. space in unneeded bytes, and variable-length
records may therefore be more efficient.

Typically, variable-length records contain text data
length: for example, the names and addresses of
fixed-length records for this information could
unneeded bytes and inefficient use of storage space.

that varies in
employees. Using
result in many

Figure 5 compares the fixed-length and variable-length record formats.

Variable-Leng.th with Fixed Control (VFC) Records

A VFC record is much like a variable-length record
record in the file a fixed-length control
variable-length data. This for~at allows you to
with additional data that labels, or identifies,
variable-length portion of the reco"rd ..

3-2

except that in each
area precedes the
construct records

the contents of the

(

c

(~

c

(

c

Fixed-length
records

Variable-length
records

File Structure
Record Formats

32 bytes

8
bytes

16
bytes

Length fields

32 bytes

24
bytes

32 bytes

ZK-l077-82

Figure 5: Fixed-Length and Variable-Length Record Form~ts

For example, in a text file, each line of text constitutes the
variable-length portion of a record. The fixed-length control area of
each iecordcontains a line number that indicates the sequence in
~hich the line occurs in the text file: line 3,say, in a text file
of 10 lines (that is, 10 records). An editing program can use the
line numbers to locate a particular line of text easily in the file.

At file-creation time, you specify two sizes for the records in the
file: the maximum size permitted for the variable-length portion and
the fixed size of the control area.

As for variable-length records, RMS-Il keeps track of the length of
each record by maintaining a length field for each record. Thus, in
memory, a VFC record consists of a length field, aflxed-l~ngth
control area, and variable-length data.

Figure 6 illustrates the VFC record format.

Length Fixed-length Variable-length
field control area data

ZK-l078-82

Figure 6: VFC Record Format

3-3

Stream Records

File Structure
Recor.d Formats

A stream record consists of a continuous series of ASCII characters
delimited by a special character or se~u~nce of characters called
terminators: form feed,line feed, or vertical tab are all
terminators.

For example~ a text file might consist of a series of stream
terminated by carriage-return/line-feed characters pairs.

RMS-II considers each record a series of bytes; the length
stream record is determined by the position of the terminator.
supports stream records for disk files only.

Undefined Records

records

of a
RMS-ll

(

A file with undefined records either may have no record format or may (_
contain records that are not in one of the four standard RMS-II
formats described in the previous sections.

RMS-II considers a file with undefined records as a series of blocks;
that is, it stores and retrieves data in files by blocks (SI2-byte
blocks for disk files, and the user-definableblocksi ze for magnetic
tape files). Your program must be able to interpret the contents of
the blocks.

RMS-Il's support of both undefined and stream records provides
compatibility with non-RMS-II files. This means that, with some
limitations, RMS-II can process fllescreat~d under :other file
systems.

FILE ORGANIZATIONS

The arrangement qf r~cords within files directly affects access
flexibility, or ,how quickly and easily HMS-:-II can access those
records. Your. selection of file organization, therefore~ should take

c

access mode into consideration. For m.ore information on access mode (
selection, see the Access Modes section and the File Structure
Interdependencies section.

RMS-Il makes three file organizations available:

• .Sequential

• Relative

• Indexed

Sequential Organization

In a sequential file, records normally are arranged within the file in
the order in which they were written; that is, the first record
written is the first record in the file, and the record written most
recently is the last record in the file.

3-4

(

(

(

c

File Structure
File Organizations

You can add records t6 a sequential file only at the logical end of
the file. You can delete a record or series of records in a
sequential file only by truncating the file from a specific point to
the logical end of the file, which effectively deletes the record(s).
You can, however, update a record -- retrieve it, change its contents,
and rewrite it in the file -- as long as the length of the record has
not changed.

Sequential file organization is supported for all devices and all
record formats. In addition, sequential files on disk allow shared
access for reading data.

Figure 7 illustrates sequential file organization.

1st 2nd 3rd 4th 5th 6th n-1
record record record record record record • •• record
written written written written written written written

l The 4th record written is
located between the 3rd
and 5th records written.

Figure 7: Sequential File Organization

End of file

nth
record
written

ZK-1079-82

Special Case - In a sequential file on disk with fixed-length records,
the records are numbered consecutively from 1 to n, where n is the
number of records in the file. The record numbers are known as
relative record numbers. In this case, records may not be arranged in
the file in the order in which they were written. You can, for
example, specify that relative record number 5 be written before
relative record number 4. When relative record number 4 is written
later, it will be inserted before relative record number 5.
Fixed-length records in a disk sequential file can be retrieved by
random access.

In addition, RMS-ll supports the use of unit-record devices (such as
terminals and line printers) by treating them as sequential files.
That is, your program can write to and read from a unit-record device
in much the same manner as it would to a sequential file.

Relative Organization

A relative file consists of a series of cells, or fixed-length units
of storage. Each record within a relative file is stored in a cell;
however, not every cell need contain a record. The cells are numbered
consecutively from 1 to n, where n is the number of cells in the file.
As for sequential files with fixed-length records, the cell numbers
are known as relative record numbers.

3-5

File Structure
File Organizations

To randomly access a record in a cell, your program must keep track of
the relative record number. One way to do so is to a$sociate a value
within the record (for example, an order number) with the relative
record number.

Because records are stored by relative record number, ,they need not be
arranged within the file in the same order in which they were written.
For example, order number 4 may be completed and its record written to
the file before order number 3. Thus, order number 4 will be stoted
in cell 4, and cell 3 will remain empty until order number 3 has been
completed and its record written to the file.

Figure 8 illustrates. relative file organization.

Cell
number 2

Record Record
1 2

t t
1 st record 2nd record

written written

3

Empty

4

Record
4

t
3rd record

written

5

Empty

6

Record
6

t
10th record

written

•••

n-l

Record
n-l

t
11th record

written

Figure 8: Relative File Organization

End of file

n

Empty

ZK·10BO·B2

The records in a relative file can be fixed length, variable length,
or VFC. Since there can be only one record per cell, RMS~ll
determines the cell size based on the maximum record size that you
specify. This means that with variable-length and VFC records there
may be unneeded bytes in a cell (much like fixed-length records in
which there may be unneeded bytes).

un1.ike sequential files" relative files
capabD i ties:

permit the following

• Random access by relative record number, regardless of record
format

• Record deletion

• Access sharing for both reading and writing data

Relative files can be stored only on disk.

Indexed Organization

In an indexed file, records are arranged in ascending order by key. A
key is a data field within the record that RMS-II uses to determine
the order in which to access the recorc;ls in the file. This is the
only case in which RMS-II interprets data within records; thus, a
record can be identified by its contents, instead of by its position
within the file.

3-6

(

(

c

c

c

(

c

File Structure
File Organizations

When you create an indexed file, you must define one field of the
record as the primary key. A key is defined by its location within
the record, its data type;-and its length. When a record is stored in
that file, RMS-II inserts the record in order based on the value that
it finds in the primary key field; that is, RMS-ll inserts the record
after a record with a lower or equal value in the primary key field,
and before a record with a higher value in the primary key field.

You can optionally define other fields of a record as alternate keys.
These keys specify alternate access orders for the retrieved records;
they do not affect the order in which the records are arranged within
the file.

The data type of values in key fields can be byte (character) string,
signedinteg~r; unsigned binary number, or packed decimal number.

For each data field defined as a primary
constructs an index. A primary index
primary key fields, and an alternate index
alternate key fields.

or alternate Key, RMS-ll
contains the values in the
contains the values in

An indexed file is a heirarchical, or tree, structure consisting of
levels of records. The highest leveIlST are the index records. The
data records comprise the lowe~t level. An indexed file consists of
at least two levels of records: index and data. Each index record
contains the highest key value in a group of records at the next lower
level plus a pointer to that group of records.

Thus, each key value provides a logical access path to locate a
specific record or set of records in a file •. The indexes also allow
your program to retrieve your records in a specific order. RMS-ll
stores the indexes in the file itself.

For example, to maintain employee files in alphabetical order by
employee name, you could create an indexed file and specify the
employee-name field of the record as the primary key. RMS-ll would
construct a prlmary index consisting of employee names, in
alphabetical order, and insert the records in the file in that order.

Figure 9 illustrates an indexed file with only a primary key defined;
note that the data records contain other fields, including address and
badge number.

In many cases, employee records may need to be retrieved in different
orders; for example, the payroll may be processed by badge number
rather than by employee name. Thus, you might want to define the
badge-number field as an alternate key for· the file.

Figure 10 illustrates an indexed file with an alternate key defined.

3-7

w
I

(X)

KEY DEFINITION

... . .. TAYLOR

• • • CLARK ... JONES . .. SMITH . .. WYMAN

\. DATARECORDS)

ZK-l081·B2

Figure 9: Indexed File Organization -- Single Key

(\ ,r\ (\ ,r'\ ,~

"IJ
I-'''IJ
(1)

I-'
. 0 II) ..,
<Q.tJ)
DIrt
::I..,
.... c::
NO
DIrt
rtc:: ... ;..,
0(1)
::I
In

'I

(

File Structure
File Org~nizations

3-9

File Structure
File Organi zations

You can optionally specify three key value characteristics for
individual keys:

1. Duplicate values for primary and/or alternate keys.

This means that more than one record in ~he file can have the
same value for the key.

In the employee file example, duplicate key values could be
allowed for employee name but not for badge number.

By default, RMS-ll
primary keys but

.keys.

does not allow duplicate values for
does allow duplicate values for alternate

2. Changeable values for alternate keys.

This means that the data in the key field can be modified.
For example, if employee address was also an alternate key in
the employee file, key values would be allowed to change in
case the employee moves.

If the field does chan~e, RMS-ll updates the appropriate
index to reflect the new key val ue.

By default, RMS:-ll allows alternate key values to 'be changed.
Note, however, that alternate key values can change only if
duplicate key values are also allowed. primary key values
cannot be changed.

3. Null values for alternate keys.

This means that the data in the key field can be null, that
is, have no value. It is possible, for example, that
employee information may be incomplete when the record is put
into the file, and that one of the incomplete fields is a
key.

RMS-ll makes no alternate index entry for such a record; if
the record is subsequently modified to include the
information, RMS-ll makes an entry in the appropriate index.
Note that primary key values cannot be null, nor can a null
value later be changed unless the key was specif-ied to be
changeable.

By default, RMS-ll treats any value in the key field as a
true key value.

When keys are character strings, you can also specify that keys are
segmented; that is, the keys consist of separate fields of the
record. For example, you can define a key in an employee file as
consisting of both the employee-name and badge-number fields. RMS-ll
will concatenate the segments to form the key.

Indexed files permit fast sequential acces~ (in key order) and random
access by key value. Indexed files can be stored only on disk, and
allow only fixed- and variable-length record formats.

3-10

(

c

c

(

l

(

(-

c

(
\

ACCESS MODES

File Structure
File Organizations

The access modes are the methods that RMS-ll uses to store or retrieve
the contents of files. The contents of files can be either records or
blocks.

The record access modes are:

• Sequential

• Random by record file address (RFA)

" Random by key

The block access modes are:

• Sequential

• Random by virtual block number (VBN)

In the sequential access modes, RMS-ll stores or retrieves records or
blocks consecutively, one after another.

Sequential access is efficient when you need to read all the records
or blocks in a file. For example, you would use sequential record
access mode with ah employee file to perform weekly payroll processing
because you would always want to access all of the employee records.

In the random access modes, RMS-ll stores or retrieves records or
blocks directly, using an identifier unique to the required record or
block. This means that your program, not the sequence of records or
blocks within the file, establishes the order in which records or
blocks are processed. You can use the random access modes only with
disk files.

Random access is efficient when you need to "jump ar6und" in a file,
rather than access all the records or blocks one after another. For
example, if your program needs to process only the records for
employees who receive sick pay during a payroll period, you would use
a random record access mode to access only those records, by employee
name.

Record Access Modes

For sequential access, record storage and retrieval begins at a point
in the file and continues with consecutive records through the file.
Your program issues a series of requests to RMS-ll to successively
retrieve the next record in the file.

Sequential access does not allow you to backspace through a file; you
must reopen the file, or rewind to the first record in the file, and
begin again at the first record.

For random by RFA access, RMS-ll uses the record file address (RFA) as
an identifier to gain direct access to a speci~record in a file,
without a successive search of all the records that precede it. The
RFA is a unique record identifier that RMS-ll establishes for every
record that it writes to a file.

3-11

File Structure
Access Modes

When RMS-11 stores a record in a file, it establishes the RFA for that ('
re'cord and returns the RFA information to your program. Your program
oanthen use the RFA to retrieve the record.

Note that because only RMS-l1 can establish the RFA, you cannot store
a record by RFA (that is, you cannot specify an RFA for the record).

RFA access can be used with disk files of any organization and record
format; it is the fastest way to read a record randomly in an indexed
file.

For random by key access, your program specifies an identifier that
allows RMS-1l to gain direct access to a specific record without a
successive search of all the records that precede it. For sequential
files with fixed-length records or for relative files, the identifier
is a relative record number (RRN). For indexed files, the identifier
is a key value.

To randomly read a record in an indexed fiIe, your program specifies a C·
key value and the index (primary, first alternate, and so on). RMS-11
searches the index to locate the record with the specific key value.
For byte (character) string keys, your program can also specify the
number of characters on which the match is to be made; this is called
generic match.

In addition to specifying a key value or RRN, you can also specify
match criteria:

• An exact match an the key value or RRN, that i~, only the
record with the specified key value or RRN

• A greater-than match on the key value or 'RRN, that is, the
next record after the record with the specified key value or
RRN

• A greater-than-or~equal-to match on the key value or RRN, that
is, either 1) the record vith the specified key valus or, if
there is no such record, the recard with the next higher key
value; or 2) the record in the cell with the specified RRN
or, if that cell is empty, the first record in a cell after
the specified RRN

For example, in an employee file the second alternate key might be the
social security number. If you want to read the first record that
contains a social security number beginning with 175, you would
specify key number 2 (the index), key value 175, and that the match is
to be an exact match on the first three characters of the key.

Block Access Modes

For sequential access to. blocks, RMS-l1 stores or retrieves data as a
consecutive series of blocks. Your program issues a series of
requests to RMS-1l to successively access the next block(s) in the
file.

c

c

For random by VBN access, your program specifies the virtual block
number (VBN) as the identifier of the first block to be accessed.
RMS-11 uses the VBN to gain direct access to the specified block(s)
without a successive search of all the blocks that precede it. ~

3-12

(

(

(

Access Mode Switching

File Structure
Access Modes

RMS-II allows your programs to change access modes -- either among the
three record access modes or between the two block access modes -- at
any time during file processing, as long as the file organization and
device allow the access modes selected.

However, you must make the basic selection of either record access or
block access when you open the file. You can switch between record
and block access only by closing and reopening the file.

Access mode switching is most useful when a random access mode is used
to retrieve the first record or block of a series, and then sequential
access mode is used to retrieve subsequent records or blocks of that
series.

For example, if an indexed employee file uses the department code as
one of the alternate keys, your program could print a report on all
the employees in a specific department. It would do this by using key
record access mode to locate the first record whose department field
matches the specified key and then switch to sequential record access
mode to consecutively retrieve all the remaining records of the
employees in that department.

FILE STRUCTURE INTERDEPENDENCIES

As the previous sections indicate, your selection of device, record
format, file organization, and access mode(s) cannot be made
independently of each other. For example, if you want to use VFC
records, you cannot choose indexed file organization; if you choose
relative file organization, you must use a disk device; and if your
files must be stored on magnetic tape, you must use a sequential
access mode.

File Organization and Access

You can use sequential record access mode with any RMS-II file
organization. The organization of the file determines the order in
which the records are stored and retrieved.

You must use a sequential access mode with magnetic tape files. You
can also use the sequential access modes with ~isk files.

You can use random by RFA record access mode and VBN access
any· file organization on a disk device. For random by
access mode, your program must save the RFAs established
when it stores the records in the file.

mode with
RFA record
by RMS-II

Random by key record access mode also can be used with any file
organization. For sequential files, however, the record format must
be fixed length.

You can use sequential block access mode with a file of any
organization, including non-RMS-II files.

3-13

File Structure
File Structure Interdependencies

The block access modes may improve access time because RMS-ll ignores
file structure and record characteristics. Your program, however,
must be able to interpret the contents of the blocks.

Sequential Access to Sequential Files. If you use sequential record
access mode with a file of sequential organization, your program must
open the file and read through the records one ~fter the other
beginning with the first record. Even though the record you require
may be near the end of the file, your program must read every record
that precedes it. In addition, records can be added sequentially only
at the end of a sequential file.

Sequential Access to Rela'tive FUes. If you use sequential record
access mode with a relative file, RMS-Il will search for successive
record cells, ignoring cells that are empty. For example, if a
relative file contains records in cells 1, 2, 4, and 8, and all other
cells are empty., RMS-Il will check each cell from 1 through 8 but will
read only RRNs 1, 2, 4, and 8, in that order.

To.retrieve a specific record in a relative
access, your p~ogram must retrieve. all
preceding cells first.

file, using
the records

sequential
in all the

To. insert a record sequentially in a relative file, RMS-Il puts the
record in the next cell after the cell just accessed (the cell with an
RRN one number higher than the current cell), if that cell is empty.
If the cell contains a record, RMS-ll will return an error code.

Sequential Access to Indexed Files. If you
access mode to retrieve records in an ind.exed
key for RM~-ll to use to establish the order
records sequentially. The key you specify
any alternate key. You can use sequential
retrieve records in the order represented by

use sequential record
file, you must specify a

in which it will read the
can be the primary key or

record access mode to
any index for the .file.

RMS-ll will retrieve the records in ascending order by key value;
that is, if you specify the employee-name key, all employee records
will be read beginning with the A's.

To store, or insert, a record sequentially in an indexed file, RMS-ll
uses the primary key value to insert the record in order in the,file,
and updates the primary and alternate indexes according to the key
fields within the record.

In a series of sequential insertions, RMS-ll verifies that the primary
key of each new record has a value equal to or greater than the
primary key of the previously inserted record.

Random Access to Sequential Files. If you use random by key record
acceSS mode with a sequential file, the file must reside on disk and
the record format must be fixed length. Your program specifies the
RRN of a record in the file and the match criterion, and RMS-ll stores
or retrieves that record.

When you are reading a record from a file, RMS-ll will. retrieve that
record or return an error code if the specified redord position lies
beyond the end of the file.

Note that RMS-ll does not initialize sequential files. Thus, if you
attempt to read a record from a disk sequential file with fixed-length
records to which records have been randomly written, you may get
"garbage" data. That is, if you specify an RRN that is not beyond the
end of the file but at which no record has been stored, RMS-ll will
return whatever data happens to be at that location.

3-14

(

c

c

(

(

c

c

c

l

File Structure
File Structure Interdependencies

When you are writing records to a file and specify anRRN, RMS-ll will
store the record in that RRN's position in the file regardless of
whether a record with that RRN already exists. If the specified
record position lies beyond the end of the file, RMS-ll will extend
the file anQ store the record at the designated RRN.

If you know the RFA, you can use random by RFA record access m6de to
read sequential files. This is the only random record access mode in
which your program can read sequential files of variable-length or VFC
record format.

Random Access to Relative Files. In random by key record access mode,
your program specifies the relative record number of a record's cell
in the file. RMS-Il then stores or retrieves the record in that cell.

When you are reading records from a file and specify an exact match on
an RRN, RMS-ll will retrieve the record in that cell or return an
error cod~ if the cell is empty.

When you are writing records to a file, RMS-ll will store the record
in the cell if the cell is empty or return an error code if the cell
contains a record. Only on an UPDATE record operation (see Chapter 4)
will RMS-il write a record into a cell that already contains a record.

If you know the RFA, you can use random by RFA record access mode to
read relative files.

Random Access to Indexed Files. In random by key record access
your program supplies the key valu~ of a record in the file.
then retrieves the record associated with that key value.

mode,
RMS-II

If you know the RFA, you can use random by RFA record access mode to
read indexed files. RFA access is faster than key access because it
bypasses the searching of the index, but your program must keep track
of the RFAs.

Summary

Table I summarizes the RMS-il file structure interdependenci~s.

FILE DESIGN

To create a file that will allow your program to store, retrieve~ and
process your data records readily and efficiently, you must specify to
RMS-il the ~ile and record attributes. The attributes consist of the
device, file organization, and record format, plus additional values
that describe the characteristics of your files and records.

You can design files with the attributes you require and create them
by using either the CREATE operation routine (see Chapter 4,
Operations) or the RMSDES utility (see Chapter 5, Utilities).

RMS-Il requires this information to access your data. The information
is stored in the file di~ectory and, for relative and indexed files,
in the file prologue, and is passed to RMS-II as required for the file
and record operations. The prologue consists of the first blocks of a
relative or indexed file and is used to store specific relative or
indexed file attributes that cannot be stored in the file directory.

Table 2 lists the RMS-II file and record attributes.

3-15

Device

Magnetic
tape

Disk

File Structure
File Design

Tabl~ 1: Pile Structure Interdependencies

File Organization Record Access Mode

Sequential Sequential

Sequential Sequential,

Relative

Indexed

Random by RFA

Random by key

Sequential,
Random by key,
Random by RFA

Sequential,
Random by key,
Random by RFA

Reco rd Fo rma t

Fixed,
Variable

Fixed,
Variable,
VFC,
Stream

Fixed

Fixed,
Variable,
VFC

Fixed,
Variable

NOTE: The block access modes can be used to access files of any
organization and any record format. A block access mode mus_t be
used to access a file with undefined record format.

c

Sequential block access mode can be used with any device. Random by (-_
VBN access mode can be used only with disks.

Table 2: File and Record Attributes

Attribute

File Attributes:

File specification

File organization

Allocation

Extension

Explanation

System node, device, .ccount, file
name, type, and version

Sequential, relative, or indexed

Initial size of the file,
blocks

in

The number of blocks to be added
to the file each time its size
must be increased

(Continued on next page.)

3-16

c

(

(

(

File Structure
'File Design

Table 2 (Cont .-): File and Record Attributes

Attribute

File Attributes (Cont.):

Bucket size l -

Contiguity

Location

Protection

Magnetic"tape block size

Max imum reco-rd number

Record Attributes:

Record format

Record size

Control field size

Block spanning l

Record-output handling

Explanation

For relative and indexed files,
the number of blocks per bucket

'Whether disk
allocated
continuous,
blocks

space is
to the

adjacent

to be
file in

logical

Where the file is to be physically
placed on the disk

The type of access - different
categories of user may have

The number of bytes
magnetic tape block

For relative-files,
number of records
contain

the
the

in each

maximum
file can

Fixed length, variable length,
VFC, stream, or undefined

The size of the record in bytes:
for _ variable-length and stream
records, record size is a maximum
length;, for fixed"";length records,
record size is the exact length of
each record; for VFC records,
record size is the maximum
allowable length of the variable
portion

For VFC records, the size in bytes
of the fixed-length portion of the
record

For sequential files, the ability
for records to span physical block
boundaries

Carriage control: how a record is
to be treated when written to a
terminal or line printer

1. See the File Processing section in Chapter 4 for
information.

more

(Continued on next page.)

3-17

File Structure
File Design

Table 2 (Cont.): File.and Record Attributes

Attribute

Indexed File Key Attributes:

Key number

Key position

Key size

Key data type

Key name

Duplicate key values

Changeable key values

Null key values

Segmented keys

Bucket fill size1

Explanation

The number of the key

The location of the key within the
record

The length of the key, in bytes

Byte (character) string, signed
integer, unsigned binary number,
or packed decimal number

The name for the key ~optional)

The ability to have more than one
record in the file with the same
primary or alternate key value

The ability to modify alternate
.key values

The ability to have null alternate
key values

The ability to use separate fields
of the record as the key value

The level to which buckets are to
be loaded with records

1. See the File processing section' in Chapter 4 for
information.

more

3-18

c

(

(~

c

c

(\

c

c

CHAPTER 4

OPERATIONS

The RMS-II routines operate either on a file as a whole or on a record
or block within a file. The operation routines allow your programs to
add, retrieve, modify, and delete files, records, or blocks.

At the file processing
processor to access
operations.

level,
files,

RMS-ll
by means

makes
of

requests of
the directory

the file
and file

At the record processing lev.el, RMS-llstream· and record operations
provide access to individual records.

At the block processing level, RMS-ll block operations provide access
to the individual virtual blocks of a file, regardless of file
organization and record format.

FILE PROCESSING

The RMS-il directory and file operations are the interface between
your program and your data files.

The directory operations affect only file specification entries ih
directories. RMS-ll operations construct and use file specification
strings and file identifiers, including wildcard file specification
strings. The directory operations are:

• ENTER -- places a disk file specification in a directory

•
•

•

•

REMOVE deletes a disk file specification from a directory

RENAME replaces an existing disk file specification with a
new one

PARSE returns file
program

SEARCH -- examines one or
file and returns the file
that can be used by other
operations

specification information to your

more directories for a specified
specification and location in a form
directory operations or by file

4-1

Operations
File processing

The file operations provide access to files as whole entities
is, they do not provide access to records wi thin fi les) •
operations are:

(that
These

• CREATE -- creates a new file with the attributes you specify
and opens it for processing

• OPEN -- makes an existing file available for processing

• CLOSE terminates access to a file

• ERASE deletes a file and removes its directory entry, if
one is specified

• EXTEND -- increases the allocated size of an open file

• DISPLAY -,- returns file information to your program

I/O Buffers and Data Transfer

For each file that is open for processing, RMS-ll requires that you
provide at lsast one I/O buffer for its internal use in transferring
data. RMS-ll either reads the data from disk or magnet.ic t;ape to an
I/O buffer, or writes the data from an I/O buffer to disk or tape.

Data in sequential files is transferred in.blocks. If the file is on
magnetic tape, the block si ze is user definabl.e. The user can also
define whether records in disk files can cross block boundaries. If
you specify block spanning when you create a file, records may
continue across block boundaries. This means that they can be stored
most efficiently within a file.

When records are restricted by block boundaries, they must be less
than or equal to 512 bytes (or the user-specified number of bytes for
a magnetic tape file). Unneeded bytes may remain after each record to
the end of that block i-f the next record will not fit wi thin those
bytes.

Data in relative and indexed files is transferred in buckets. A
bucket consists of one or more blocks that RMS-ll treats as a unit.
The bucket si ze, or number of blocks in a bucket, is user specified
when a file is created, and cannot be changed unless the file is
redesigned. Al though records. may span block boundar ies, they cannot
span bucket boundaries.

For indexed files, you can also specify a bucket fill size. This file
attr ibute d i·rects RMS-ll to load records into buckets only to the
particular level -- number of bytes -- specified, leaving free space
within each bucket. If a large number of random insertions are to be
made to the file, filling buckets only partially can improve
processing time.

Buckets are an RMS-ll concept; thus, when RMS-ll requests an I/O
operation fora file; it directs the file control processor to move a
bucket by specifying the VBN for the first block in the bucket and the
size of the bucket in bytes.

4-2

(~

c

c

C

(

Access Sharing

Operations
File processing

The degree to which other users can aCcess files is determined by the
protection code and by access sharing.

The protection code is a file attribute (see Table 2) that describes
the types of access granted to different users or potential users of
the file. This attribute is defined for the file at the time the file
is created, and is checked by the file control processor to determine
whether the user of an "accessing program has the right to process or
delete the file. The protection code can also be changed when the
file is closed.

In many cases, more than one program must access the same file at the
same time. RMS-ll, therefore, permits access sharing, which is
ciontrolled by the accessing programs at the time ~ file is opened for
processing.

Each program to Open a file supplies two items of information:

1. The types of operations it will perform on records

2. The types of record operations it will allow other accessing
programs to perform

The file control processor will check the file's protection code to
ensure that the intended operations are allowed. If so, the file
control processor will then check that the operationS requested and
the operations allowed are compatible with the operations being
performed and with the operations allowed by all current accessing
programs (if any) of the file. To share access to the file, accessing
programs must not only meet the protection criteria but must also
specify compatible access sharing.

To protect data in a file in which access sharing is allowed, RMS-ll
provides bucket locking. When a set of programs that are concurrently
accessing a relative or indexed file allows access sharing for write
operations, each bucket moved from disk is locked against access by
other programs until RMS-ll unlocks it, usually after completion of
the operation, or at the start of the next operation on the stream.

Access sharing also depends on the device and file organization.
Magnetic tape files cannot be shared. All disk files, however, can be
shared for reading by any number of programs.

Sequential disk files cannot be
indexed files, however, can
programs.

RECORD PROCESSING

shared for writing.
be shared for writing

Relative and
by multiple

Once file access is established, the RMS-ll stream and record
operations are the interface between your program and the records your
program requires.

An access stream is a path between your program and the records in a
file (or blocks in a filej see the Block processing section).

4-3

The stream aperatians are:

Operations
Record Processing

• CONNECT-- initiates an access stream

• DISCONNECT -- terminates a stream

• FLUSH -- writes the cantents af I/O buffers (modified records)
to the file

• FREE -- releases control of·the record or black most recently
accessed by the stream

• NXTVOL -- advances stream context to. the beginning of the next
magnetic tape volume (to the first record on the .new tape)

• REWIND --. resets stream cantext to. the beginning .of the file
(to. the first recard in the file)

• WAIT --suspends pracessing until an outstanding asynchranaus
ape rat ian is campleted

The record aperations pracess recards within files. These operatians
are af three types: lacate, read, and wri te. Locate and read
oper.atian's do. nat affect the data contents of the records; for
example, a FIND operatian merely returns the pasition af a recard in a
file. Write aperations, on the ather hand, may result in altered
data; for example,. an UPDATE operation replaces the cantents.af an
existing recard with new data.

The record aperations are:

• FIND -- reads a recard from a file to an I/O buffer and sets
the current-record stream context to. that record

• GET -~ reads a record.from a file to an I/O buffer and then to
a user buffer, and sets the current-record stream cantext to.
that recard

• PUT -- writes a.record fram,a user buffer to. an I/O buffer and
then to. a file' .

• UPDATE -- transfers a modified record from a user buffer to. an
I/O buffer and then to. a a file, overwriting the previous
version of the record in the file

• DELETE -- removes an existing record frbm a relative or
indexed file

• TRUNCATE -- effectively deletes all records in a sequential
file from the current record through the logical end of the
file

Synchronous. and Asynchronous Operations

Within each record access stream, your program can perform stream
recard aperations either synchranausly ar asynchronously.
operating synchranausly, RMS-ll returns cantrolto your pragram
when the operation is campleted.

and
When
only

When aperating asynchranously, your program may regain control befare
the aperatian is campleted; that is, the pragram will cantinue
processing while the stream ar record operation is being performed.
Asynchranaus aperations may improve processing time.

4-4

(

c

(

c

c

(

c

c

c

c

Operations
Record processing

Note, however, that you cannot initiate another record operation by
means of that stream until the current operation is completed.

Record Context·

Each record operation processes one record at a time along the path
established by the access stream. RMS-ll keeps track of the stream's
position in the file so that it knows which record is the target of
the operation. The stream's position is called its context, which is
either the current record or the next record, depending on the
operation. The stream's position -cnanges at the completion of the
operation.

In general, the current record is the record that was the target of
the just-completed operation (the record operated upon), and the next
record is the record that follows the current record.

For example, when you use a CONNECT stream operation to
access stream to a file opened by means of the OPEN
operation, the current-record context is undefined
operation has been performed), and the next-record
first record in the file.

establish an
or CREATE file

{no record
context is the

If the file is a d.isk sequential file and you use a sequential-access
FIND record operation, the target will be the next record, which was
established by the CONNECT operation as the first record in the file.
After the FIND operation is completed, the current record will be the
found record (the first record in the file), and the next record will
be the record after the found record (the second record in the file).

If you then use a GET record operation, the target will be the current
record, which was established by the FIND operation as the first
record in the file. After the GET operation is completed, the current
record will be the retrieved record (the first record in the file),
and the next record will be the record after the retrieved record (the
second record in the file).

To modify the record, you can use the UPDATE record operation. Its
target will be the current record, which was established by the GET
operation as the first record in the file. After the UPDATE operation
is completed, the current record will be undefined (it was
overwritten), and the next record will be the record that follows the
overwritten record.

After a DISCONNECT stream operation, there is no current-record or
next-record context.

Although only one record can be processed at a time by means of a
stream, more than one stream can be connected to a relative or indexed
file. For example, you can open an indexed file and, with one stream,
use the primary index to access records randomly and, with a second
stream, use an alternate index to access records sequentially.

Record Access Modes

For the FIND, GET, and PUT record operations, your program specifies
record access mode, which determines which record is the target of the
operation.

4-5

Operation.s
Record processing

A sequential-access FIND operation can be used to position to records (
from a file of any organization, and is the only type of FIND
operation that can be used for magnetic-tape sequential files. The
target of a sequential-access FIND operation is the next record, as
established by a previous CONNECT or REWIND stream operation or a FIND
or GET record operation.

Repeated sequential-access FIND operations may .be time~consuming for
files with a large number of records. For relative and indexed files
and sequential files with fixed-length records, you can use a
key-access FIND operation, the target of which is the record whose RRN.
or key value matches the one that you specify for the operation.

If you know the RFA for a disk file of any organization, you can also
use an RFA~access FIND operation, the target of which is the record
whose RFA matches the one that you specify for the operation.

Exactly the same dependencies exist for GET operatitins, which are the
same as FIND operations except that records are moved to the I/O
buffer and then on to the user buffer. In addition, the target of a
sequential-access GET operation depends on whether it was immediately
preceded by a FIND operation. If so, the target is the current
record; otherwise, the target is the next record.

A sequential-access PUT operation can be used to write records to a
file of any organization, and is the only type of PUT operation that
can be used for magn.etic-tape. sequential files. The target of a
sequential-access PUT operation depends on the file organization: for
sequential files, the target is the end of the file and for relative
files, the target is the next record. For indexed files, RMS-II
inserts the record in primary key .order and updates the indexes.

The target of a key-access PUT operation for a relative file or for a
sequential file with fixed-length records is the cell specified by the
RRN. For an indexed file, there is no target; RMS-II inserts the
record and updates the indexes.

Note that you cannot specify RFA access for PUT operations. For more
information, see the Access Modes section in Chapter 3.

Record Transfer Modes

Your program can use either of two record transfer
record operations: move mode or locate mode.

modes to· perform

In both modes, a user buffer, established by your program, is required
in addition to the I/O buffer. For read operations in move mode,
RMS-II first transfers the data into the I/O buffer, then copies the
record into the user buffer for processing by the program.

For write operations in move mode, your program builds or modifies the
record in the user buffer. Then, upon a write request, RMS-II copies
the record into the I/O buffer before writing it to the file.

In locate mode, on the other hand, your program can, under Some
circumstances, access the record in the I/O buffer directly~ This may
reduce the amount of data movement, thereby reducing processing time.

4-6

c

c

c

(

c

(

c

(

BLOCK PROCESSING

Operations
Record processing

Your program can bypass RMS-ll file and record structures and use
block access to process blocks one after the other. For disk files,
block size is 512 bytes; your program identifies the starting VBN of
'the file and· the number of bytes to be accessed. For magnetic tape
files, block size is user definable.

When you use "block access, RMS-ll regards t'he ·file as a series of
blocks; rathetthan as a 'series of records. RMS-llkeeps· track of the
stream's position, .or block context, which is either r~adable block or
writable block, dependrng-Qn the operation. -----

Block access requires minimum time and space forprocesiing; however,
your program must be able to interpret the contents of the blocks.

The bloCK· access operations are:

• READ -- gets blocks from a file

• WRITE -- puts blocks in a file

• SPACE -- moves a magnetic tape forward or backward by a
specified number of blocks

Block Access Modes

For the READ and WRITE operations, your program specifies block access
mode -- sequential or random ~by VBN -- which determines which block is
the target of the operation. Upon completion of an operation, RMS-ll
resets the readable-block and writ~ble-block conts~ts.

MACROS AND SYMBOLS

The RMS-il operation routines are fully accessible only from a
MACRO-II program. High-level languages restrict your options for some
operations; see your particular language documentation for
information on its support of RMS-I~.

The interface between a MACRO-II program and the RMS-il operation
routines is defined by the RMS-II macros and symbols. Your program
uses the RMS-ll macros to call the RMS-ll operation routines~

Information is passed between the calling program and an RMS-ll
operation routine by means of control blocks, which consist of
structured series of data fields that contain the information. The
information passed includes the attributes that your program supplies
to RMS-Il for file and record access and the returned values that
RMS-Il supplies to your program as a result of an operation. RMS-II
macros also allow your program to declare and manipUlate the control
blocks.

The fields of
locations of
the codes and
symbols) •

a control block are referenced by symbols that name the
fields within control blocks (field-offset symbols) and
bit masks used within the fields {code and mask

4-7

Operations
Macros and Symbols

The RMS-II control blocks are:

• Area allocation (ALL) bloCk -- contains information about a
file area

• File date (OAT) block -- contains file creation and revision
dates

• File access block (FAS) contains information about the
file, including device, file attributes, access sharing,
record f9rmat, record blocking, record-output handl ing

• File key (KEY) block -- contains index and key information for
. an indexed file

• File name (NAM) block
information

contains file specification

• File protection (PRO) block
protection information

contains file owner and

• Record access block (RAS) contains information about a
stream or record and record access mode

• File summary (SUM) block -- contains file and area information
for an indexed file

In addition to calling RMS-II operations and declaring and
manipulating control blocks, RMS-II macros allow your program to:

• Declare and manipulate memory space (pools)

• Declare RMS-II facilities that are required for certain
operations based on file organization

• Extract from a macro library definitions for RMS-II macros and
symbols

4-8

(

c

c

c

c-

c

c

CHAPTER 5

UTILITIES

In many cases, you may not require or have available to you the full
range of· RMS-ll operations capabil i ties. Hi.gh-level language
interfaces to RMS-ll, for example, restrict the use of RMS-ll'
operations in those languages.

In addition,MACRO~ll programmers and other users, such as system
man,agers and operators , frequently do not want or need to write
MACRO-II routines to perform standard, commonly used RMS-ll
operations, such as file creation.

A set of RMS-ll utility programs therefore are available for:

• Creating a file

• populating or reorganizing a file

• Displaying file attribu.tes

• Backing up and restoring files

CREATING A FILE

The RMS-ll File Design Utility (RMSDES)
assists you in creating an RMS-ll file.
attribute information that you provide
created.

is an interactive utility that
RMSDES accepts and interprets
describing the file to be

Among the advantages that you gain by using RMSDES are:

• Full RMS-ll file structure capabilities -- you can design and
create' any type of RMS-ll file to contain your data records,
tailoring it to meet your program's data processing
requirements exactly.

• Default qalculations -- RMSDES can calculate defaults for many
attributes. This means that you need only specify the file
characteristics that are most important for your application;
RMSDES can build a file with those characteristics, supplying
default values for the remaining attributes.

• Error detection -- RMSDES can detect many kinds of errors and
omissions in the attribute information you supply. Because
RMSDES is interactive, you can correct the errors immediately,
before you. create and load records into the file.

5-1

Util i ties
Creating a File

• Saved file description -- You can save a description of a file
design for future use, whether or not you have created a file
based on the description. This is useful if you want to
complete an unfinished file design at a later date, or modify
a file design to accommodate a new use.

• Copied file description RMSDES can construct a file
description based on the attributes of an existing data file.
You can either create a new file like the existing file, or
modify the file design before creating a new file.

POPULATING OR REORGANIZING A FILE

The RMS-ll Indexed File Load (RMSIFL) and File Conversion (RMSCNV)
Utilities allow you to load records quickly and easily into (or
populate) a file or to reorganize a file by loading the records from
one file into another file that has different attributes.

You can use RMSIFL to populate an empty indexed file. You specify any
type of RMS-II file whose records are to populate the empty indexed
file; RMSIFL sorts the records (if they are not already sorted) and
writes them into th~ indexed file, building optimal indexes.

RMSIFL can load the indexed file quickly because the records are
already sorted and it need not search for the proper place for each
one. It can build the indexes quickly because it fills the data
buckets first artd builds the indexes afterward.

You can use RMSCNV to add the records of any existing RMS-II file to
any other existing RMS-II file (even a newly created empty file),; You
can thus merge one or more files into another file, and you can
"change" file attributes by creating a new file (possibly using
RMSDES) with the desired attributes, then populating the new file with
the records from the old file.

You can also use RMSCNV to create C! new output file and load the
records of the input file into it. RMSCNV can either create a new
sequential file and load it with the records of the input file, or
create an output file with the attributes of the input file and copy
the input file records into it.

The ability to populate, repopulate, and reorganize files can be very
useful. Requirements for records may change over time, and a
sequential file, for example, may no longer be adequate for an
application. You may find you need an indexed file. ~ith RMSDES, you
can create a new, empty indexed file that will meet your new
requirements, and with RMSIFL or RMSCNV, you can load your records
into it.

In other cases, you may
extensions to a file
affecting access time.
repopulate the file.

find that many insertions, deletions, or
may have left it stored inefficiently on disk,
You can use the utilities to reconstruct and

In addition, on systems with networking capabilities, RMSCNV can be
used to create and populate files on remote nodes.

5-2

(

c

c

(

c

(

c

(

Utili ties
populating or Reorganizing a File

DISPLAYING FILE ATTRIBUTES

The RMS-II File Display Utility (RMSDSP) can be used to display
information about a file at your terminal. For disk files, the
information includes file and record attributes, creation and revision
dates, and prologue version (for relative and indexed files).

For magnetic tape files, file and record attributes are displayed;
for back-up files, the file specification, file size, and creation
date are displayed. Optional detailed displays are available for
indexed and back-up files.

RMSDSP is useful .if you want to determine the file and record
attributes of an existing file that you think you may want to
re-create in the same, or much the same, form for another application.
You can use RMSDSP to display the file and record attributes of the
old file, and then use RMSDES to create a new file with those
attributes and to modify those attributes as needed.

RMSDSP is also useful for system managers and operators to display
information on files backed up to either disk or magnetic tape. The
optional detailed display provides considerable information about
these files, including whether the file was backed up on another
operating system.

BACKING UP AND RESTORING FILES

You can use the RMS-II File Back-Up (RMSBCK) and File Restoration
(RMSRST) Utilities to back up and restore RMS-II files. RMSBCK writes
back-up files in a special format that RMSRST can read, but that other
programs and utilities cannot read. This makes it unlikely that
backed-up files will be inadvertently altered. The capability of
backing up and restoring files provides protection against loss or
damage to your files due to software error o~ hardware failure.

RMSBCK and RMSRST also make it possible to transport files to and from
different operating systems that support RMS-il. For example, you can
back up a file to magnetic tape on an RSX-IIM/M-PLUS system and
restore the file to a RSTS/E system.

5-3

(

c

c

c

(

(

c

c

Access, 1-1
block, 4-7
direct, 2-4
modes, 3-11
random, 2-4
sequential, 2-4 to 2-5
sharing, 2-4, 4-3

See also Access sharing
stream, 4-3

Access mode~, 3-l~ 3-11
and file organization,]-13
block, 3-11 to 3-12, 3-14, 4-7

sequential, 3-12
VBN, 3-12

random access to
indexed files, 3-15
relative files, 3-15
sequential files, 3-14

record, 3-11, 3-13, 4-5
FIND operations, 4-6
GET operations, 4-6
key; 3-12
PUT operations, 4-6
RFA, 3-11
sequential, '3-11

sequential access to
index~d files, 3-14
relative files, 3-L4
sequential files, 3-14

switching, 3-13
Access sharing, 2-4, 4-3

read, 3-5 to 3-6
wr i te, 3'-6

ALL control block, 4-8
Alternate keys, 3-7
Asynchronous operations, 4-4
Attributes, 3-15, 4-3, 5-1

Bit, 2-1
Block, 2-3

access, 4-7
context, 4-7

readable block, 4-7
writable block,4-7

logical, 2-3
magnetic tape

user definabl~, 2-4
operations, 4-7
processing, 4-1, 4-7
spanning, 4-2
virtual, 2-3

Block access, 3-11
Block access modes, 3-12, 3-14

sequential, 3-12
VBN, 3-12

Bucket, 4-2
locking, 4-3

Bucket fill size, 4-2
Byte, 2-1

Cell, 3-5

INDEX

Changeable keys, 3-10
CLOSE operation, 4-2
CONNECT operation, 4-4
Context, 4-5

block, 4-7
readable block, 4-7
writable block, 4-7

current record, 4-5
next record, 4-5

Contiguity
virtual, 2-3

Control blocks, 4-7
ALL, 4-8
DAT, 4-8
FAB, 4-8
KEY, 4-8
NAM, 4-8
PRO, 4-8
RAB, 4-8
SUM, 4-8

CREATE operation, 4-2
Current record

see Context
Cylinder, 2-1

DAT control block, 4-8
Data storage, 2-1
Data type

key val ues, 3-7
DELETE operation, 4-4
Designing files, 3-15
Device, 2-1

disk, 2-1
driver, 2-1
magnetic tape, 2-4
unit-record, 3-5

Direct access
see Random access

Directory
operations, 4-1

DISCONNECT operation, 4-4
Disk

drive, 2-1
structure, 2-1

cylinder, 2-1
platter, 2-1
sector, 2-1
track, 2-1

DISPLAY operation, 4-2
Drive, 2-1
Duplicate keys, 3-10

ENTER operation, 4-1
ERASE operation, 4-2
EXTEND operation, 4-2

FAB control blorik, 4-8
File, 1-1

attributes, 5-1
backing up, 5-3
creating, 5-2

Index-l

creation, 5-1
design, 3-15, 5-1
displaying, 5-3
load ing, 5-2
non-RMS-ll, .3-4
operations, 4-2
processing, 4-1
restoring, 5-3
specification, 4-1
structure, 3-1

File control processor,' 2-1, 4-3
File organization, 3-1, 3~4

indexed, 3-6
alternate keys, 3-7
changeable keyst 3-10'
duplicate keys, 3-10
index, 3-7
keys, 3-6
null keys, 3-10
primary key, 3-7
segmented keys, 3-10

random access to
indexed files, 3-15
~elative files, 3-15
sequential files, 3-14

relative, 3-5
cell, 3-5
RRN, 3-6

sequential, 3-4
sequential ~ccess to

indexed files, 3-14
relative files, 3-14
sequential files, 3-14

File specification,4~1
wildcard characters, 4-1

Fill si ze
see Bucket. fill size

FIND operation, 4-4
access mode~,4-&

Fixed-length record ~ormat, 3~2
FLUSH operation, 4-4
Format

see Record format
FREE operation, 4-~

Generic match, 3-12
GET operation, 4-4

access modes, 4-6

I/O, 2-1
I/O buffers, 4-2
Index, 3-7
Indexed file organization, 3-6

alternate keys,3-7
changeable keys~ 3-10
data records, 3~7
duplicate keys, 3~10
index, 3-7
index records, 3~7
keys, 3-6

data type, 3"""7
null keys, 3-10
primary key, 3-7
segmented keys, 3-10
tree structure, 3-7

INDEX

Input/output
see I/O

KEY control block, 4-8
Key record access mode, 3-12
Keys, 3-6

alternate, 3-7
changeable, 3-10
data type, 3-7
dupl icat_e, 3-10
match criteria~ 3-12
null, 3-10
primary, 3-7
segmented, 3-1.0

Label, 2-5
LBN, 2-4
Locate mode, 4-6
Locking buckets, 4-3
Logical block, 2-3
Logical block number

see LBN

Macros, 4-7·
Magnetic tape, 2-4

label, 2-5
tape mark, 2-5
volume, 2-5

Mass-storage de~ice, 2-1
Match criteria, 3-12
Mode

see Access modes
see Record trahsfer modes

Move mode, 4-6

NAM control block, 4-8
Next record

see Context
Non-RMS-11 files, 3-4
Null keys, 3-10
NXTVOL operation, 4-4

OPEN operation, 4-2
Operations, 4-1

asynchronous, 4-4
block, 4-7
CLOSE, 4-2
CONNECT, 4-.4
CREATE, 4-2
DELETE, 4-4
di rectory ,4-1
DISCONNECT, 4-4
DISPLAY, 4-2
ENTEND, 4-2
ENTER, 4-1
ERASE, 4-2
file, 4-2
FIND, 4-4

access modes, 4-6
FLUSH, 4-4
FREE, 4-4
from high-level languages, 4-7
GET, 4-4

access modes, 4-6
NXTVOL, 4-4

Index'-2

(

c

(

c

(

c

c
'-

(

OPEN, 4-2
PARSE, 4...,..1
PUT, 4-4

access modes, 4-6
READ, 4-7

access modes, 4-7
record, 4-4
REMOVE, 4-1
RENAME, 4-1
REWIND, 4-4
SEARCH, 4-1
SPACE, 4-7

access modes, 4-7
stream, 4-4
synchronous, 4-4
TRUNCATE, 4-4
UPDATE, 4-4
WAIT, 4-4
WRITE, 4-7

access modes, 4-7
Organi zation

see File organization

PARSE operation, 4-1
Platter i 2-1
Primary key, 3-7
PRO control block, 4-8
Processing blocks, 4-1, 4-7
processing files, 4-1
Processing records, 4-1, 4-3
prologue, 3-15
PUT operation, 4-4

access modes, 4-6

RAB control block, 4-8
Random access, 2-4

key, 3-12
match criteria, 3-12

RFA, 3-11
VBN, 3-12

READ operation, 4-7
access modes, 4-7

Record;. 1-1
data, 3-7
index, 3-7
operations, 4-4
processing, 4-1, 4-3
see also Record format

Record access modes, 3-11, 3-13
key, 3-12
RFA, 3-11
sequential, 3-11

Record file address
see RFA

Record format, 3-1
fixed-length, 3-2
stream, 3-4
undefined, 3-4
variable-length, 3-2
VFC, 3-2

Record transfer modes, 4-6
locate mode, 4-6
mov~ mode, 4-6

Relative file organization, 3-5
cell, 3-5

INOEX

RRN, 3-6
Relative record number

see RRN
REMOVE operation, 4-1
RENAME operation, 4-1
REWIND operation, 4-4
RFA, 3-11, 3-15
RMS-ll File Back-Up Utility

see RMSBCK
RMS-ll File Conversion Utility

see RMSCNV
RMS-l1 File Design util i ty

see RMSDES
RMS-ll File Display Utility

see RMSDSP
RMS-ll File Restoration Utility

see RMSRST
RMS-ll Indexed File Load·Utility

see RMSIFL
RMSBCK, 5-3
RMSCNV, 5-2
RMSDES, 5-1
RMSDSP, 5-3
RMSIFL, 5-2
RMSRST, 5-3
RRN, 3-5, 3-12, 3-14 to 3-15

SEARCH operation, 4-1
Sector, 2-1
Segmented keys, 3-10
Sequential access, 2-4 to 2-5

block, 3-12
record, 3-11

Sequential file organization,
3-4
RRN, 3-5

Shared access, 2-4
See also Access sharing

SPACE operation, 4-7
access modes, 4-7

Spanning blocks, 4-2
Storage

data, 2-1
Stream

access, 4-3
operations, 4-4

Stream record format, 3-4
terminators, 3-4

SUM control block, 4-8
Switching access modes, 3-13
Symbols, 4-7

code and mask, 4-7
field-offset, 4-7

Synchronous operations, 4-4

Tape mark, 2-5
Terminators

stream records, 3-4
Track, 2-1
Tree structure

indexed file organization, 3-7
TRUNCATE operation, 4-4

Undefined record format, 3-4
Unit-record devices, 3-5

Index-3

UPDATE operation, 4-4
Utilities, 5-1

RMSBCK, 5-3
RMSCNV, 5-2
RMSOES, 5-1
RMSDSP, 5-3
RMSIFL, 5-2
RMSRST, 5-3

Variable with fixed control
see VFC

Variable-length record form~t,
3-2

VBN, 2-4
acdesi, 3-12, 4~7

VFC record format, 3-2
Virtual block, 2-3
Virtual block number

see VBN

INDEX

(

magnetic tape, 2-5
Volume (-

WAIT op~ration, 4-4
Wildcard characters, 4-1
Word, 2-1
WRITE operation, 4-7

access modes, 4-7

c

c

Index-4

(

(

(

(

RSX-llM/M-PLUS RMS-ll: An Introduction
AA-L682A-TC

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the
company's discretion. If you require a written reply and are eligible to receive one under Software

. Performance Report (SPR) service, submit your comments on an SPR form .

. Did you find this manual understandable, usable, l;ind well organized? Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

o Assembly language programmer
o Higher-level language programmer
o Occasional programmer (experienced)
o User with little programming experience
o Student programmer
[J Other (please speci(y)

Name __ Date ______________________________ __

Organization

Street

City __ __ State __________ Zip Code _________ _

or Country

- - Do Not Tear - Fold Here and Tape - -- - - -

IIIIII

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

BSSG PUBLICATIONS ZK1-3/J35
DIGITAL EQUIPMENT CORPORATION
110 SPIT BROOK ROAD
NASHUA, NEW HAMPSHIRE 03061

No Postage
Necessary

if Mailed in the
United States

- - 00 Not Tear - Fold Here -

-= ~

c

c

(\

c

Printed in U.S.A.

