
IAS/RSX-11
OCT Reference Manual
Order No. AA-M507 A-TC

(

(

(

(

IAS/RSX-11
oor Reference Manual
Order No. AA-M507 A-TC

RSX-11 M Version 4.0
RSX- 11 M-PLUS Version 2.0
lAS Version 3.1

digital equipment corporation · maynard, massachusetts

First Printing, December 1975
Revised, May 1977

Revised, January 1982

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

No r~sponsibility is assumed for the use or reliability of software on
equipment that is not supplied by Digital Equipment Corporation or its
affiliated companies.

Copyright ~ 1975, 1977, 1978, 1982 by Digital Equipment Corporation
All Rights Reserved.

Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

DEC EduSystem RSX
DECnet IAS UNIBUS
DECsystem-lO MASSBUS VAX
DECSYSTEM-20 PDP VMS
DECUS PDT VT
DECwriter RSTS

~D~DD~D DIBOL

ZK20~2

(

(

(

(

(

(

CONTENTS

Page

PREFACE vii

SUMMARY OF TECHNICAL CHANGES ix

CHAPTER 1

1.1
1.2
1. 2.1
1. 2.2
1. 2.3
1. 2.4
1.2.4.1

1.2.4.2

1.3
1.4
1.5
1. 5.1
1. 5.2

CHAPTER 2

2.1
2.2
2.2. 1
2.2.2
2.3

CHAPTER 3

3.1
3.1.1
3.1. 2
3.2
3.3
3.4
3.5

CHAPTER 4

4.1
4.2
4.3
4.3.1
4.3.2
4.3.3

INTRODUCTION TO ODT

OVERVIEW OF ODT
LINKING ODT WITH A USER PROGRAM

Linking ODT from MCR • . .

• 1-1
• • 1-2

• 1-2
• 1-3 Linking ODT from DCL

Linking ODT Using lAS PDS • • • 1-3
Linking to Enable RSX-11M-PLUS Features

Enabling Instruction and Data Space
(RSX-11M-PLUS only)
Enabling Supervisor-Mode Library Debugging
(RSX-I1M-PLUS only) .•..

INVOKING ODT
RETURNING CONTROL TO THE HOST SYSTEM •
INTERRUPTING A DEBUGGING SESSION . . .

Resuming a Debugging Session (RSX-11M-PLUS)
Resuming a Debugging Session (lAS) •....

ODT CHARACTERS AND SYMBOLS

VARIABLES USED IN COMMAND DESCRIPTIONS •
ADDRESS EXPRESSION FORMATS • . • .

Absolute and Relative Addressing •
Forming Expressions

OPERATOR AND COMMAND SUMMARY . . .

CONTROLLING PROGRAM EXECUTION

SETTING AND REMOVING BREAKPOINTS
Setting Breakpoints
Removing Breakpoints •..

BEGINNING PROGRAM EXECUTION
CONTINUING PROGRAM EXECUTION
USING THE BREAKPOINT PROCEED COUNT
STEPPING THROUGH THE PROGRAM

1-3

• 1-3

1-4
1-4

• 1-4
1-5
1-5
1-5

• 2-1
2-2

• • 2- 2
2-3
2-4

3-1
• 3-1

3-2
3-2
3-3
3-4

• 3-4

DISPLAYING AND ALTERING THE CONTENTS OF LOCATIONS

ALTERING THE CONTENTS OF A LOCATION
CLOSING A LOCATION • •
OPENING WORD AND BYTE LOCATIONS

The a/ and a\ Commands . . .
The / and \ Commands •
Moving Between Word and Byte Modes

iii

4-1
• 4-2

4-2
4-2

• 4-3
4-3

4.4
4.5
4.11
4.7
4.8
4.9
4.10
4.10.1
4.10. 2

CHAPTER 5

5.1
5.1. 1
5.1. 2
5.2
5.2.1
5.2.1.1
5.2.1.2
5.2.2

CHAPTER 11

fi.l
fi.1.1
5.1.2
6.1. '3
6.1. 4
5.2
fi. 2 • 1
6.2.2
fi. 2.3
fi.3
fi.4
fi. 4 • 1
fi.4 • '2

CHAPTER 7

7.1
7 .2
7.3
7.3.1
7.3.2
7.3.3
7.3 .4
7.3.5

CHAPTER 8

8.1
8.1. 1
8.1.2
8.1.3
8.2
8.2.1
8.2.2
8.2.2.1
8.2.2.2

CONTENTS

OPENING THE NEXT SEQUENTIAL LOCATION
OPENING THE PRECEDING LOCATION
OPENING ABSOLUTE LOCATIONS . •
OPENING PC-RELATIVE LOCATIONS
OPENING RELATIVE BRANCH OFFSET LOCATIONS
RETURNING FROM A CALCULATED LOCATION
USING DIFFERENT OUTPUT MODES

ASCII Mode •
Radix-50 Mode

USING REGISTERS

GENERAL REGISTERS •• ••.•.. .•
Examining and Setting General Registers
Contents of General Registers

ODT INTERNAL REGISTERS •..•
Relocation Registers . •• .

Setting Relocation Registers
Clearing Relocation Registers

The Reentry Vector Register

MEMORY OPERATIONS

REGISTERS USED IN MEMORY OPERATIONS
Search Limit Registers.
Search Mask Register •
Search Argument Register •.
Device Control LUN Registers

SEARCHING MEMORY . . • •• .
Searching for a Word or Byte
Searching for Inequality of a Word or Byte
Searching for a Reference

FILLING ME.MORY •
LISTING MEMORY .

Command Format
Listing Format

PERFORMING CALCULATIONS

CALCULATING RELOCATABLE ADDRESSES
CALCULATING OFFSETS
EVALUATING EXPRESSIONS . • •

Equal Sign Operator
Current Location Indicator
Constant Register Indicator
Quantity Register Indicator
Radix-50 Evaluation •.••

ADDITIONAL DEBUGGING AIDS

ACCESSING OTHER DEBUGGING AIDS
MCR Command Line • •
DCL Command Line • • • . .
lAS PDS Command Line •••

THE TRACE DEBUGGING PROGRAM
The Trace Listing .•••
Bias Values and Ra~ges ••

Specifying a Bias Value
Specifying Ranges to be Traced

iv

Page

4-4
4-4
4-4
4-5
4-5
4-5
4-6
4-0
4- 7

5-1
5-1
5-2
5- 2
5-6
5-6
5-6
5-7

6-1
11-1
6-2
fi-2
6-2
1)-3
6-3
6-3
6-3
fi-4
fi-4
6-4
6-5

7-1
7-1
7-2
7-2
7- 3
7-3
7-3
7-4

8-1
8-1
8-1
8-2
8-2
8-2
8-3
8-3
8-3

(

(

(

(

(

APPENDIX A

A.l
A.2

APPENDIX B

INDEX

EXAMPLE 0-1
8-1

FIGURE B-1

TABLE 2-1
2-2
2-3
5-1
5-2
7-1

CONTENTS

ERROR DETECTION

INPUT ERRORS . .
TASK IMAGE ERROR CODES

PROCESSOR STATUS WORD

EXAMPLES

ODT Listing Format .
Sample Trace Output

FIGURES

Page

A-l
A-2

0-5
8-3

Format of the Processor Status Word •...... B-1

TABLES

Variables Used in ODT Command Descriptions
Forms of Address Expressions
ODT Operators a nd Commands
ODT Single Registers .
ODT Register Sets
Numeric Equivalents of Radix-50 Characters

v

2-1
2-4
2-4
5-3
5-4
7-4

PREFACE

MANUAL OBJECTIVES

This manual describes the On-Line Debugging Tool, ODT- ll, used to
debug user task images on RSXII-M, RSX-IIM-PLUS, and IAS systems. It
provides reference information on all ODT commands, plus information
on how to use the commands to debug user task images.

INTENDED AUDIENCE

This manual is intended for all systems and applications programmers
who develop task images under the RSX-IIM, RSX-IIM-PLUS, or IAS
operating syst~ms. Readers should understand the user interface of
the operating system that they are using. RSX-IIM and RSX-IIM-PLUS
users should be familiar with the contents of the RSX-IIM/M-PLUS Guide
to Program Development before reading this manual.

STRUCTURE OF THIS DOCUMENT

This manual is divided into eight chapters and two appendixes, as
follows:

Chapter 1, Introduction to ODT, gives an overview of ODT. It then
explains how to link the debugger into a user task image and how to
begin and end a debugging session.

Chapter 2, ODT Characters and Symbols, explains the special symbols
used in ODT and includes a reference table of all ODT commands, in
alphabetical order. Readers who are approachingODT for the first
time should read Chapters 3 through 7 for explanations of the commands
before studying the table of commands in detail. Experienced ODT
users can use Chapter 2 by itself for quick reference.

Chapter 3, Controlling Program Execution, describes the command used
to begin program execution, to stop execution at breakpoints, and to
continue execution after breakpoints. It also explains how to execute
a program one or more instructions at a time.

Chapter 4, Displaying and Altering the Contents of Locations, explains
how to open and close task locations, how to change the contents of
locations, and how to display the contents of locations in different
modes .

Chapter 5, Using Registers, describes all of the registers used by
ODT. It includes reference tables as well as explanations of how
registers are set and cleared. Experienced ODT users may wish to
consult the tables in this chapter, as well as those in Chapter 2, for
quick reference regarding specific registers.

vii

PREFACE

Chapter 6, Memory Operations, describes ODT's memory search, fill, and
list capabilities.

Chapter 7, Performing Calculations, describes how to use ODT to
perform arithmetic calculations.

Chapter 8, Additional Debugging Aids, explains how to link debuggers
other than ODT into a user task image. It describes the Trace
program, a debugging aid that can be used in conjunction with ODT.

Appendix A, Error" Detection, describes how ODT responds to errors in
user input or program logic. It lists all ODT error message codes in
alphabetical order.

Appendix B, Processor Status Word, shows the format of the PSW and
summarizes the functions of its bits.

ASSOCIATED DOCUMENTS

The documentation directory of the host operating system describes
other manuals that will be of interest to ODT users.

CONVENTIONS USED IN THIS DOCUMENT

Throughout this book symbols and other
to represent keyboard characters, to
to aid the reader's understanding of
conventions are explained below.

notation conventions are used
convey textual information, and
material. These symbols and

Convention

red ink

shading

Meaning

A symbol with a 1- to 3-character abbreviation,
such as @ or (5ITl , indicates that you press a
key on the terminal.

This phrase indicates that you press the key
labeled CTRL while simultaneously pressing another
key, such as C or Y. In examples, this control
key sequence is shown as AX (for example, AC or
Ay), because that is how the system displays it on
your terminal.

Us er input appears in red ink in the examples
throughout this book. ODT responses appear in
black ink.

Gray shading denotes information specific
RSX-llM-PLUS.

viii

to

(

(

(

(

SUMMARY OF TECHNICAL CHANGES

This manu a l describes four new ODT commands for use on RSX- IIM- PLUS
systems:

D Accesses data space

I Accesses instruction space

U Sets the current mode of ODT to user mode

Z Sets the current mode of ODT to supervisor mode

This manual also corrects small technical
examples of the previous version. It
reorganization of material, intended to
available to readers.

ix

errors in the text and
represents a significant

make information more

(

CHAPTER 1

INTRODUCTION TO ODT

ODT, or On-line Debugging Tool, is a utility for debugging task
images. You can use ODT to:

• Control program execution

• Display the contents of locations or registers

• Alter the contents of locations or registers

• Search and fill memory

• Perform calculations

ODT commands consist of one
or alphabetic argument.
used in them, are listed in
how you use the commands.

character; some commands take a numeric
All ODT commands, and the symbols that are
Chapter 2. Chapters 3 through 7 describe

This chapter introduces ODT and describes how the debugger is
initiated.

1.1 OVERVIEW OF ODT

ODT is special code that you link into your task image to help you
debug your program . When you run a task into which ODT has been
linked, the debugger receives control automatically upon task
initiation. Then, through ODT, you can execute your task gradually,
setting breakpoints at selected locations or stepping through the
program one instruction at a time. Chapter 3 describes ODT commands
for controlling program execution.

You can examine any location in your program -- instruction or data,
word or byte - - by "opening" the location with ODT. While the
location is open, you can immediately change the contents. You can
proceed forwards or backwards to examine and modify other locations.
Thus, you can test any numb e r of modifications without rebuilding your
task. Chapter 4 describes ODT commands for examining and altering
locations and for moving from one location to another.

ODT operates through the use of a number of registers, all of which
you can set and reset . Some of these registers are used to store
information about your program while ODT has control. Eight registers
~an be set to the locations of breakpoints. Eight can be set to
relocation biases -- the absolute base addresses of relocated object
nodules. You can use other registers to store values that you may
Nant to use repeatedly during your debugging session. Chapter 5
jescribes the ODT registers .

1-1

INTRODUCTION TO ODT

You can use ODT to search for bit patterns in memory, to fill blocks
of memory with a value, or to list blocks of memory on an output
device. Chapter 6 describes these operations.

During a debugging session, you can perform a variety of calculations:
determining offsets, evaluating arithmetic expressions, and
constructing Radix-50 words. These calculations are described in
Chapter 7.

1.2 LINKING ODT WITH A USER PROGRAM

ODT is provided on your system as an object module, LB: [l,l]ODT.OBJ.
The version of ODT supporting the instruction and data space features
of RSX-IIM-PLUS is provided in the object module LB: [l,l]ODTID.OBJ.
To use ODT, you must link the appropriate object module with the
object module(s) of your program. When the resulting task image is
run, ODT is invoked and initiated automatically.

If the task image is overlaid, ODT is linked into the root segment so
that the debugger will always be available.

The following sections describe how to link ODT into a task image in
different environments. Section 1.2.1 describes how to link ODT if
your command line interpreter is MCR. Section 1.2.2 describes how to
link ODT using the DCL command line interpreter. Section 1.2.3
describes how to use the lAS Program Development System (PDS) to link
ODT into your task image. Section 1.2.4 describes how to enable the
I- and D-space and supervisor-mode features of ODT used under
RSX-IIM-PLUS.

The information in subsequent sections on initiating and using ODT
applies equally to all environments, except as noted.

1.2.1 Linking ODT from MCR

To link ODT with your program when your command line interpreter is
the Monitor Console Routine (MCR) , you first invoke the Task Builder
by typing TKB in response to the MCR prompt. The Task Builder replies
with its own prompt, TKB>. In response to this prompt, enter a Task
Builder command specifying the name of the filers) to be linked.
Include the /DA switch, which indicates that a debugger (in this case
ODT, the default) should be linked into the image. The following
example shows the resulting command line:

TKB> MYTASK/DA=MYFILEl,MYFILE2

The Task Builder accesses the file ODT.OBJ in UFO [1,1] on the library
device and links it with the files MYFILEl.OBJ and MYFILE2.0BJ into
the task MYTASK.

Using ODT requires that you consult an up-to-date map of your task.
Therefore, you should in most cases request a new map when you build
the task, as in the following command line:

TKB> MYTASK/DA,MYTASK/CR/-SP=MYFILEl,MYFILE2

For more information on using the Task Builder, consult the
RSX-IIM/M-Plus Task Builder Manual or the lAS Task Builder Reference
Manual, as appropriate for your system. --- ----

1-2

(

(

(

(

(

INTRODUCTION TO ODT

1.2.2 Linking ODT from DCL

To link ODT with your program(s) when your command line interpreter is
the DIGITAL Command Language (DCL) , use the /DEBUG qualifier with the
LINK command. To obtain a current map of the image file produced, you
should also i nclude the /MAP qualifier. The following example s hows
the resulting command line:

>LINK/MAP/DEBUG/TASK:MYTASK MYFILEl,MYFILE2

Object modules MYFILEl.OBJ and
module ODT.OBJ in UFO [1,1] on
image is named MYTASK.TSK.

MYFILE2.0BJ are linked with object
the library device. The resulting task

For further information on using DCL, consult the RSX-IIM/M-PLUS
Command Language Manual.

1.2.3 Linking ODT Using lAS PDS

To link your program(s) with the lAS Program Development System , enter
the LINK command with the /DEBUG switch in response to the PDS prompt.
To obtain a map of the image file produced, include the /MAP switch as
well. The following example shows the resulting command line:

PDS> LINK/MAP/DEBUG MYFILE

This command links the object module MYFILE.OBJ with the object module
ODT.OBJ from LB: [1,1] to produce the task image MYFILE.TSK.

For more information on linking under lAS, consult the lAS Task
Builder Reference Manual.

1.2.4 Linking to Enable RSX-IIM-PLUS Features

To use the instruction and data space capabilities of RSX-IIM-PLUS,
you must link your program with the object module LB: [l,ljODTID.OBJ
instead of ODT.OBJ. Section 1.2.4.1 describes the MCR and DCL command
lines that link this object module. To use ODT to debug a
supervisor-mode library, you should follow the guidelines in Section
1.2.4.2.

1.2.4.1 Enabling Instruction and Data Space (RSX-IIM-PLUS o nly) - To
enable ODT's D, I, U, and Z commands, you must link LB: [l,ljODTID.OBJ
with your program instead of ODT.OBJ.

If your command line interpreter is MCR, you enable these commands by
adding the /10 switch, as well as the /DA switch, to the TKB command
line, as in the following example:

TKB>MYTASK/DA/ID=MYTASK

You can add other switches to the command line as desired. Consult
the RSX-IIM/M-PLUS Task Builder Manual for information on TKB command
lines.

1-3

INTRODUCTION TO ODT

If your CLI is DCL, you enable instruction and data space commands by
using the qualifier /CODE:DATA SPACE, as well as the /DEBUG qualifier,
with the LINK command. The foll owing example shows the resulting
command line:

>LINK/DEBUG/CODE:DATA_ SPACE MYTASK

You can add other qualifiers to the LINK command, as described in the
RSX-IIM/M-PLUS Command Language Manual.

Alternatively, you can link ODTID.OBJ explicitly, specifying the
debugger object module in the MCR or DCL command line. To do this,
follow the procedure described in Sections 8.1.1 and 8.1.2.

1.2.4.2 Enabling Supervisor- Mode Library Debugging (RSX-IIM-PLUS only)
- On RSX-I IM-PLUS systems, you can use ODT to debug supervisor-mode

libraries. To enable the Z command, you must link your program as
described in Section 1.2.4 . 1 .

In addition, to set breakpoints or write into the supervisor-mode
libraries, you must install the library READ/WRITE, or build the task
as Privilege: o.

1.3 INVOKING ODT

ODT is invoked automatically when you run a task image into which ODT
has been linked, as described in the previous sections. Regardless of
what operating system or CLI you use, enter the RUN command,
specifying the name of the task image file.

ODT responds with a mes sage indicating that it has been invoked and
identifying the task image that it controls. On the next line, ODT
displays its prompt, an underscore(), indicating that it is ready to
accept commands .

The following example (using MCR)
HIYA.TSK is run:

>RUN HIYA
ODT:TT15

shows how ODT is invoked when

In response to the ODT prompt, you can enter any ODT command. ODT
commands are immediate-act ion commands; that is, ODT responds to the
commands as soon as they are typed, without waiting for a line
terminator. Therefore, commands cannot be corrected once they have
been typed . You can, however, erase an incorr ectly typed command
argument by typing an illegal character or command (such as 8 or 9),
or by typing PRLI~ or @] In response, ODT discards your input
line, displays a question mark (?), and prompts for another command.

Error detection is described in greater detail in Appendix A.

1.4 RETURNING CONTROL TO THE HOST SYSTEM

To return control from ODT to the host operating system, type X in
response to the ODT prompt. This command causes execution of the
system Task Exit directive, which terminates task execution.

1-4

(

(

(

(

(

(

(

(

(

INTRODUCTION TO ODT

1.5 INTERRUPTING A DEBUGGING SESSION

When you run a task linked with ODT, you can return to the
line interpreter prompt at any time by typing ftRLlC) Your
still active. To stop execution of the task, enter the ABORT
in response to the MCR or DCL prompt. You cannot resume the
debugging session; you can only run your program again.

command
task is
command
aborted

On RSX- IIM - PLUS and lAS systems, you can interrupt task execution
without aborting your task and then continue debugging. After typing
ftRL~ , use the commands described in the following sections, as
appropriate for your system.

1.5.1 Resuming a Debugging Session (RSX-IIM-PLUS)

RSX-IIM-PLUS allows you to interrupt execution and then resume
execution from the point at which the program was interrupted. To use
this feature, you do not enter the ABORT command. Instead, you type
the DEBUG command in response to the MCR prompt . This command
overrides the task's current status and causes a T- bit exception (as
described in Appendix A). ODT generates a TE error message, showing
the current value of the program counter as the location where the
error occurred . This message is followed' by the ODT prompt ().

The DEBUG command has the following format:

DEBUG [taskname]

The task name argument is the specification of the task to be
interrupted, as used when the task was originally invoked. If you do
not specify a task name, the default is a task initiated thro ugh the
RUN command.

The following example shows how the DEBUG command is used:

>RUN HIYA
ODT :TT15

G
AC
>DEBUG
TE:004020

The DEBUG command is especially useful if your program is caught in an
infinite loop, or if you need to stop execution before the next
breakpoint.

1.5.2 Resuming a Debugging Session (lAS)

On an lAS time - sharing system using the PDS command line interpreter,
you can use the CONTINUE/DEBUG command to interrupt task execution and
return to the ODT prompt. ODT respond s with a TE error message,
showing the current value of the program counter as the location where
the error occurred .

1 - 5

INTRODUCTION TO ODT

The following example shows how the CONTINUE/DEBUG command is used:

PDS> RUN MYFILE
ODT:TT5

G
AC
PDS> CONTINUE/DEBUG
TE:004020

Note that this command can be used only on a time-sharing system, not
on an lAS multiuser system. For further information, consult the lAS
PDS User's Guide.

1-6

(

(

(

(

(

CHAPTER 2

ODT CHARACTERS AND SYMBOLS

This chapter presents all of the ODT operators and commands and
explains the meanings of ODT-specif ic symbols used in this book.
(Symbols common to the document set are presented in the Preface.)

2.1 VARIABLES USED IN COMMAND DESCRIPTIONS

Table 2-3 and the command descriptions in Chapters 3 through 7 use
lowercase alphabetic variables to represent numeric and alphabetic
arguments specified in commands. These symbols are explained in Table
2-1.

Variable

a

k

m

n

x

Table 2-1
Variables Used in ODT Command Descriptions

Meaning

An address expression representing the address of a
task image location. The various forms in which an
address expression can be specified are explained in
Section 2.2.

An octal value up to 6 digits long with a maximum
value of 177777(octal), or an expression representing
such a value. An expression may include arithmetic
operators or indicators, as described in Section
2.2.2. If more than 6 digits are specified, ODT
truncates to the low-order 16 bits. If the octal
value is preceded by a minus sign, ODT takes the
two's complement of the value.

An octal value six digits long, used to represent a
search mask.

An octal integer in the range 0 through 7.

An alphabetic character.
alphabetic characters is
the variable x is used.

2- 1

A list of permitted
given in the tables where

DDT CHARACTERS AND SYMBOLS

2. 2 ADDRESS EXPRESSION FORMATS

An address expression,
lowercase letter a,
(6 - digit octal) value.
location in your task .

represented throughout this manual by the
is an expression interpreted by DDT as a 16- bit

You use an address expression to refer to a

You can specify an address expression in either absolute or relative
(relocatable) form, as described in Section 2.2.1. You can include in
the address expression various operators and symbols, as described in
Section 2 . 2.2 .

2.2.1 Absolute and Relative Addressing

Each location has an absolute address assigned to it when the task is
built. You can refer to the location using this n- digit octal value.
However, when the task is built again, with modules added or changed,
this value may not refer to the same location. Therefore, it is often
more convenient to refer to locations using relative (relocatable)
addressing, which is less likely to be affected by subsequent task
builds .

When you use relative addressing, you refer to a location not by its
absolute value but by its position relative to a movable point.
Usually, this movable point is the base (starting) address of the
module to which the location belongs, because the distance between the
base address and the addresses of locations within the module is
easily determined from a task map or listing and is not likely to
change without your knowledge. The movable point can, however, be any
point that is convenient for debugging.

To use this form of addressing, you must first establish a simple
means of referring to movable points through the use of DDT's
relocation registers $RO through $R7. Each time you run a task built
with DDT, consult a task map to determine the absolute addresses of
convenient movable points. The map's memory allocation synopsis
contains the base addresses of all the modules in the task. Follow
the procedure described in Section 5 . 2.1.1 to set DDT's eight
relocation registers to absolute addresses.

Once a relocation register is set, you can use the number of that
register, 0 through 7, in forming relative addresses.

A relative address has the following form:

n,k

n

(comma)

The number of a relocation register, 0 through 7,
representing $RO through $R7 .

A required separator between the two parts of the
relative address.

2- 2

(

(

(

(

(

k

DDT CHARACTERS AND SYMBOLS

The relative location, the distance of the desired
location from the value contained in register $Rn.
Usually, this is the location's position within the
module whose base address is the value of the register.

Thus, relative address 0,100 refers to location 100 within the module
whose base address is stored in DDT's relocation register $RO.
Relative address 5,300 refers to location 300 within the module whose
base address is stored in relocation register $R5.

A general term for the value stored in a relocation register is "bias
value": a quantity equal to the distance (bias) between a relative
location and its absolute address. A general term for the second part
of a relative address is "offset": the distance of a relative
location from the closest value (l ess than that location) stored in a
relocation register. These terms are used throughout this manual.

2.2.2 Forming Expressions

An expression is a string of numbers, symbols, and operators that is
interpreted as a number. For example, 3+6 is an expression; DDT
would interpret it as the octal value 11.

You can use an expression to represent an absolute address, a register
containing a bias value, or an offset, as described in Section 2.2.1.

An expression used in an ODT session can contain any of the following
elements:

• Octal numbers. ODT will not accept input containing an 8 or
9; instead, it displays a question mark and a new prompt.

• The arithmetic operators plus sign (+) or space, indicating
that values should be added, or minus sign (-), indicating
that the value that follows it should be subtracted from the
value that precedes it.

• The unary operator minus sign (-), indicating that the value
that follows it is negative and should be interpreted in two's
complement form.

• ODT register indicators Q or
registers, as described in

C, representing $Q and $C
Sections 7.3.3 and 7.3.4

to represent a register
have a value in the range 0
represent an offset, it may

respectively. When Q or C is us ed
containing a bias value, it must
through 7 . When Q or C is used to
contain any 16-bit value.

• The name of one of ODT's registers, used in the operations
described in Chapters 5 and o.

• The current location indicator
7.3.2.

(.), described in Section

In evaluating expressions, ODT proceeds from left to right. It does
not assign precedence to any operator, or recognize parentheses to
establish precedence. Therefore, you must be careful to form
expressions so that they will be interpreted correctly. You can use
the equal sign operator (=), described in Section 7.3.1, to determine
the value of expressions before using them in ODT operations .

2-3

DDT CHARACTERS AND SYMBOLS

Table 2-2 shows how DDT interprets the various forms of address
expressions. This table assumes a value of 003400 for relocation
register 3 ($R3) and a value of 3 for the constant register ($C).

Table 2-2
Forms of Address Expressions

Address Expression
Input

DDT Octal
Interpretation

5

-17

3,150

C

C,lO

C,C+C

3,C

$3

000005

177761

003550

000003

003410

003406

003403

Task general
register 3

2.3 OPERATOR AND COMMAND SUMMARY

DDT commands are made up of a combination of symbols and uppercase
letters. Some commands have multiple forms.

Table 2-3 summarizes the DDT commands and operators, which are
explained in detail in Chapters 3 through 7. The lowercase letters
used in the command descriptions are explained in Table 2-1.

Format

+ or space

(comma)

Table 2-3
DDT Operators and Commands

Meaning

Arithmetic operator used in expressions.
Add the preceding argument to the following
argument to form the current argument.

Arithmetic operator used in expressions.
Subtract the following argument from the
preceding argument to form the current
argument. Also used as a unary operator to
indicate a negative value.

Argument separator. Separates the number
of a relocation register from a relative
location to specify a relocatable address.

(continued on next page)

2-4

(

(

(

(

Format

*

00l or
k OOl

(

@ or
k @

or k

(

@ or k@

(

ODT CHARACTERS AND SYMBOLS

Table 2- 3 (Cont .)
ODT Operators and Commands

Meaning

Radix - 50 separator used in constructing
Radix - 50 words (see Section 7 . 3 . 5) .

Current location indicator. Causes the
address of the last explicitly opened
location to be used as the current address
for ODT operations .

Argument separator. Sepa rates multiple
arguments, allowing an address expression
or ODT register value to be identified .

Closes the currently open location and
prompts for the next command . If 00l is
preceded by k, the value k replaces the
contents of the currently open location
before it is closed.

Closes the currently open location, opens
the next sequential location (a word or a
byte, depending on the mode in effect) and
displays its contents. If @ is preceded
by k, the value k replaces the contents of
the currently open location before it is
clos e d .

Closes the c urrently open location, opens
the immediately preceding location and
displays its contents. If ~ is preceded by
k, the value k replaces the contents of the
currently open location before it is
closed.

Interprets the contents of the currently
open location as a PC - relative offset and
calculates the address of the next location
to be opened; closes the currently open
location, and opens and displays the
contents of the new location thus
evaluated. I£ is preceded by k, the value
k replaces the contents of the curren t ly
open location before it is closed .

Interprets the contents of the currently
open word location as an absolute address,
closes the currently open location, and
opens and displays the contents of the
absolute location thus evaluated . If @ is
preceded by k, the value k replaces the
contents of the currently open location
before it is closed .

(continued on ne x t page)

2-5

Format

> or k>

< or k<

$n

$x or $nx

ODT CHARACTERS AND SYMBOLS

Table 2-3 (Cont .)
ODT Operators and Commands

Meaning

Interprets the low-order byte of the
currently open word location as a relative
branch offset, and calculates the address
of the next location to be opened; closes
the currently open location, and opens and
displays the contents of the relative
branch location thus evaluated. If > is
preceded by k, the value k replaces the
contents of the currently open location
before it is closed.

Closes the currently open location (opened
by a ,@, or > command), and reopens the
word location most recently opened by a I,
@ ,or~. If the currently open location
was not opened by a , @, or >, then <
simply closes and reopens the current
location. If < is preceded by k, the value
k replaces the contents of the currently
open location before it is closed.

Represents the address of one
general registers, where n is
digit identifying RO through R7.

Represents the address of one
internal registers, where x is
following alphabetic characters,

of eight
an octal

of ODT's
one of the
and n is

one octal dig i t. Registers exist within
ODT in

S

the following order:

Processor Status register
PS)

(hardware

W Directive Status Word register for
the user's task

A Search argument register

M Search mask register

L Low memory limit register

H High memory limit register

C Constant register

Q Quantity register

F Format register

X Reentry vector register

nB Breakpoint address registers

(continued on next page)

2-6

(

(

(

(

(

ODT CHARACTERS AND SYMBOLS

Ta ble 2- 3 (Cont .)
ODT Operators and Commands

Format Meaning

" or a"

, or a'

% or a%

/ or a/

\ or a\

nG Breakpoint proceed count registers

nI Breakpoint instruction registers

nR Relocation registers

nV SST vector registers

nE SST (synchronous system trap)
contents registers

nO Device
number)

control LUN
registers

(logical

stack

unit

Word mode ASCII operator. Interprets and
displays the contents of the currently open
(or the last previously opened) location as
two ASCII characters, and stores this word
in the quantity register ($Q). If " is
preceded by a, the value a is taken as the
address of the location to be interpreted
and displayed.

Byte mode ASCII operator. Interprets and
displays the contents of the currently open
(or the last previously opened) location as
one ASCII character, and stores this byte
in the quantity register ($Q) . If ' is
preceded by a, the value a is taken as the
address of the location to be interpreted
and displayed.

Word mode Radix-50 operator. Interprets
and displays the contents of the currently
open (or the last previously opened)
location as three Radix-50 characters, and
stores this word in the quantity register
($Q). If % is preceded by a, the value a
is taken as the address of the location to
be interpreted and displayed .

Word mode octal operator . Displays the
contents of the last word location opened,
and stores this octal word in the quantity
register ($Q) . If / is preceded by a, the
value is taken as the address of a word
location to be opened and displayed.

Byte mode octal operator . Displays the
contents of the last byte location opened,
and stores this octal byte in the quantity
register ($Q) . If \ is preceded by a, ODT
takes the value a as the address of a byte
location to be opened and displayed.

(continued on next page)

2-7

Format

k=

8 or 9,
RUBOUT,
or t TALlUj

B

nB

ai nB

C

D

E or kE
or miE
or mikE

ODT CHARACTERS AND SYMBOLS

Table 2- 3 (Cont.)
ODT Operators and Commands

Meaning

Interprets and displays expression value k
as six octal digits and stores this word in
the quantity register ($Q).

Cancels the current command and awaits a
new command. The decimal value 8 or 9 is
not a legal character and thus, when
entered, causes ODT to ignore the current
command. The RUBOUT and tTALI~ functions
are not operational in RSX- llM unless the
terminal driver supports transparent
read/write (a system generation option) •

Removes all breakpoints from the user task .

Removes the nth breakpoint from the user
task.

Sets breakpoint n in the user task at
address a. If n is omitted, ODT assumes
the lowest - numbered available sequential
breakpoint.

Constant register
the contents of
register) •

indicator.
register $C

Represents
(constant

Accesses data space . After this command is
issued, ODT interprets all references to
locations as referring to the D- space of
the task (RSX- llM-PLUS only).

Searches memory between t he address limits
specified by the low memory limit register
($L) and the high memory limit register
($H) . ODT examines these locations for
references to the effective address
specified in the search argument register
($A), as masked by the value specified in
the search mask register ($M) . (The mask
should normally be set to 177777 for the E
command.) Such references may be equal to,
PC - relative to, or a branch displacement to
the location specified in $A . If E is
preceded by k, the value k replaces the
current contents of $A before ODT initiates
the search. If E is preceded by m, the
current contents of $M are replaced with
the value m before ODT initiates the
search.

(continued on next page)

2-8

(

(

(

(

(

(

(

Format

F or kF

G or aG

I

K

nK

ai nK

L or kL
ora i L
or aikL

ODT CHARACTERS AND SYMBOLS

Table 2- 3 (Cont.)
ODT Operators a nd Comma nds

Meaning

Fills memory locations within the address
limits specified by the low memory limit
register ($L) and the high memory limit
register ($H) with the contents of the
search argument register ($A). If F is
preceded by k, the value k replaces the
current contents of $A before ODT initiates
the fill operation.

Begins task execution, following these
steps: sets BPT instructions in or
restores BPT instructions to all breakpoint
locations in the task imagei restores the
Processor Status Word and user program
registersi and starts execution at the
address specified by the program counter
(user register $7). If G is preceded by a ,
the value a replaces the current contents
of $7 before proceeding as described above.

Accesses instruction space. After this
command is issued, ODT interprets all
references to locations as referring to the
I-space of the task (RSX- IIM-PLUS only) .

Using the relocation register whose
contents are equal to or closest to (but
less than) the address of the currently
open location, ODT computes the physical
distance (in bytes) between the address of
the currently open location and the value
contained in that relocation register. ODT
displays this offset and stores the value
in the quantity register ($Q).

Computes the physical distance (in bytes)
between the address of the currently open
or the last-opened location and the value
contained in relocation register n. ODT
displays this offset and stores the value
in the quantity register ($Q).

Computes the physical distance (in bytes)
between address a and the value contained
in relocation register n. ODT displays this
offset and stores the value in the quantity
register ($Q).

Lists all word or byte locations in the
task between the address limits specified
by the low memory limit register ($L) and
the high memory limit register. If L is
preceded by k, the value k replaces the
current contents of $H before initiating
the list operation. If L is p r eceded by a,
the value a replaces th e current contents
of $L before initiating the list operation.

(continued on next page)

2- 9

Format

N or kN
or miN
or mikN

aO or aikO

P or kP

Q

R

nR

ai nR

S or nS

ODT CHARACTERS AND SYMBOLS

Table 2- 3 (Cont.)
ODT Operators and Commands

Meaning

Searches memory between the address limits
specified by the low memory limit register
($L) and the high memory limit register
($H) for words with bit patterns that do
not match those of the search argument
specified in the search argument register
($A). Only bit positions set to 1 in the
mask are compared. This search is
identical in form and function to the word
(W) search described below, except that ODT
performs a test for inequality.

Calculates and displays the PC-relative
offset and the 8-bit branch displacement
from the currently open location to address
ai or calculates and displays the
PC - relative offset and the 8-bit branch
displacement from the specified address a
to the specified address k.

Proceeds with user program execution from
the current breakpoint location and stops
when the next breakpoint location is
encountered or the end of the program is
reached. If k is specified, ODT proceeds
with program execution from the current
location and stops at the breakpoint only
after encountering it the number of times
specified by integer k.

Quantity register
the contents of
register) •

indicator.
register $Q

Represents
(quantity

Sets all relocation registers to the
highest address value, 177777 (octal), so
that they cannot be used in forming
addresses.

Sets relocation register n to the highest
address value, l77777 (octal), so that it
cannot be used in forming addresses.

Sets relocation register n to address value
a. If n is omitted, ODT assumes relocation
register o.

Executes one instruction and displays the
address of the next instru~tion to be
executed . If n is specified, ODT executes
n instructions and displays the address of
the next instruction to be executed.

(co ntinued on next page)

2- 10

(

(

(

(

(

(

(

(

Format

U

v

W or kW
or m;W
or m;kW

x

z

ODT CHARACTERS AND SYMBOLS

Table 2-3 (Cont .)
ODT Operators and Commands

Meaning

Sets the current mode of ODT to user mode
(RSX-IIM-PL US only).

Enables ODT's handling of all SST vectors,
and writes the addresses of ODT's trap
entry points into the table used by the
SVDB$ Executive directive. (See Table 5-2
for a discussion of the SST vector
registers and the $nV/ command.)

Searches memory between the address limits
specified by the low memory limit register
($L) and the high memory limit register
($H) for words with bit patterns that match
those of the search argument specified in
the search argument register ($A) . ODT
compares each memory word and the search
argument for equality under the mask
specified in the search mask register ($M) .
Only bit positions set to I are compared.
When a match occurs, ODT displays the
address of the matching location and its
contents. If W is preceded by k, the value
k replaces the current co ntents of $A
before initiating the search. If W is
preceded by m (identified by the semicolon
that follows it), the value m replaces the
current contents of $M before ODT initiates
the sear ch.

Exits from ODT and returns control to the
Executive of the host operating system.

Sets the current mode of ODT to supervisor
mode '(RSX-11M-PL US only).

2-11

(

(

(

(

CHAPTER 3

CONTROLLING PROGRAM EXECUTION

When you run a task image into which ODT has been linked, ODT takes
control before the first instruction of the task is executed.
Information about the task is stored in ODT's internal registers, as
described in Section 5.1.2.

At this point, you can execute your task immediately or issue ODT
commands to affect locations or registers.

3.1 SETTING AND REMOVING BREAKPOINTS

A common method of using ODT is to set breakpoints at important points
in the task and then to execute the task. When a breakpoint is
reached, execution is suspended. You can examine locations or
registers to see how your task is executing . You can then change
elements of your task and see how the changes affect execution .

3.1.1 Setting Breakpoints

To set a breakpoint at a location, issue a B (for 'breakpoint')
command in the following format:

a

n

a;nB

An address expression (in any of the forms described in Section
2.2) representing the location at which the breakpoint is to be
set. This location must always be the first word of an
instruction.

The number of the breakpoint address register (from 0 to 7) to be
used to store the address of the specified location . If you omit
n, breakpoint address registers are assigned sequentially,
beginning with register o.

You can also set a breakpoint by opening a breakpoint address register
as a word location and changing its contents. The address of a
breakpoint address register is its register name, $nB. Opening and
changing the contents of word locations is described in Chapter 4.
Registers are described in Chapter 5.

3- 1

CONTROLLING PROGRAM EXECUTION

In RSX- llM- PLUS systems where separate instruction and data space are
used, breakpoints always refer to instruction space, regardless of the
space to which you are referring when you set the breakpoints . When a
debugging session begins, you are automatically accessing instruction
space. You access data space by entering the D command and return to
instruction space by entering the I command.

For RSX- llM- PLUS systems, each breakpoint address register is
associated with a mode indicator showing whether the breakpoint occurs
in user or supervisor mode; this mode indicator depends on the mode
in effect at the time the breakpoint is set. You set supervisor mode
by entering the Z command and return to user mode by entering the U
command.

3.1.2 Removing Breakpoints

You can clear breakpoint address registers (and thus remove
breakpoints) using the nB command, where n represents the number of
the register. If you omit n, all breakpoint address registers are
cleared . You can also clear a breakpoint and reset it by specifying a
new address expression for a breakpoint address register, using the
a;nB command.

The following example shows how breakpoints are set, cleared, and
reset:

B
- 1020;B

2030;B
3040;B

- 4050;B
2032;lB
3B

At this point, breakpoint address register 0 is set to location 1020,
breakpoint address register 1 is set to 2032, and breakpoint address
register 2 is set to 3040. Breakpoint address register 3 is clear.

Note that ODT generates a carriage return, a line feed, and a new
prompt immediately when you type the letter B.

You can also clear a breakpoint register by opening it as a word
location whose address is $nB and changing its contents, as described
in Chapter 4.

3 . 2 BEGINNING PROGRAM EXECUTION

To begin execution of your task, type the G (for 'go') command.
command has the following effects:

This

• The task's starting address is returned to the program counter
from the ODT general register in which it was stored.

• The task's stack and other general registers are restored.

• The contents of each location at which a breakpoint was set
are swapped with the contents of the corresponding breakpoint
instruction register. (These registers, described in Section
5.2, are initialized by ODT to BPT instructions.)

• Execution of the task begins.

3-2

(

(

(

(

(

CONTROLLING PROGRAM EXECUTION

Execution continues until it reaches one of the following:

• A breakpoint

• An error of type BE, EM, FP, IO, or TR (described in Appendi x
A)

• The end of the program

Once the program is executing, you cannot stop it except by aborting
the program and restarting it. (RSX- llM- PLUS and IAS systems includ e
commands to reenter an inter r upted program, as d e scribed in Sec t ions
1.5 . 1 and 1 . 5 . 2.)

When the task reaches a breakpoint, ODT executes the BPT instruction
that was swapped into the breakpoint location. This instruction has
the following effects:

• Task execution is suspended.

• The contents of the user task general registers are stored in
ODT internal registers.

• The original contents are restored to all breakpoint locations
from the breakpoint instruction registers where they have been
stored.

• ODT issues a message indicating that a breakpoint has been
reached. This message has the format nB:a, where n is the
breakpoint address register number and a is the location of
the breakpoint that was stored in that register .

• ODT issues its prompt .

While task execution is suspended, you may issue any ODT command.

3.3 CONTINUING PROGRAM EXECUTION

You can continue program execution using either the P (for "pr oceed")
command, the G command, or the aG command. Execution continues until
a breakpoint, the end of the program, or an error of the types
specified above is reached.

Use the P command to continue execution after a breakpoint . When you
type P, thB contents of the user general registers are restored, the
BPT instructions are swapped into all breakpoint locations, and task
execution resumes at the instruction following the last logical
instruction executed. If execution stopped because of a breakpoint,
it will resume at the breakpoint location. If execution stopped
because of an error, it will resume at the location following the
error location, not at the error location itself.

You can resume execution using the G command; however, because the G
command does not transparently restore the breakpoint instruction, you
should not use it to resume execution after a breakpoint.

To resume execution at a specific location, use the aG command. The
argument a is an address expression representing the task location.
The address speci f ied must correspond to a word location boundary,
that is, an even location. Registers are affected as described in
Section 3 . 2, and execution begins at the specified location .

3- 3

CONTROLLING PROGRAM EXECUTION

Note that you can use only G or aG to begin execution of a task . If
you type P when no G command has been executed, ODT responds with a
question mark and a new prompt .

3.4 USING THE BREAKPOINT PROCEED COUNT

If you set a breakpoint inside an execution loop, you may want to
suspend execution only when the loop has been executed a certain
number of times. You can specify how many times a loop should be
executed by including a breakpoint proceed count with the P command,
in the form kP. The loop is executed k-l times; execution is
suspended when the breakpoint is reached for the kth time.

The kP command is associated only with the breakpoint that has most
recently occurred. The count k is stored as an octal value in a
breakpoint proceed count register ($nG) , where n is a number
corresponding to the number of the appropriate breakpoint address
register .

You can examine the breakpoint proceed count registers, or set them
directly, at any time following the procedures for examining and
setting word locations described in Chapter 4. These registers are
all initialized by ODT with the value 1. If you change the value of a
register, the new breakpoint proceed count will be used when the
breakpoint is next encountered as a result of the P command.

3.5 STEPPING THROUGH THE PROGRAM

Another method of executing a task in stages is to
"step") command. With this command, you can
instructions one at a time or several at a time.

use the S
execute user

(for
task

The command has the format nS, where n is the number of
that ODT should execute before suspending execution.
value of n is 1.

instructions
The default

When n instructions have been executed, ODT suspends task execution
and prints a message of the form 88:a, where a is the location of the
next instruction to be executed. (The format of a is relative by
default, as explained in Chapter 4.) ODT then prompts for another
command.

The S command is implemented through the T-bit in the Processor Status
Word (described in Appendix 8). The T- bit is set when you issue the
command; when the nth instruction is executed, control is returned to
the user .

The following example shows ODT's response to the program execution
commands described in this chapter:

1,1052;8
1,2052;18

- G
08:1,001052

P
18:1,002052

S
88:1,002056

S
88:1,002062

3- 4

(

(

(

(

CHAPTER 4

DISPLAYING AND ALTERING THE CONTENTS OF LOCATIONS

During an ODT session, you can alter the contents - - either
instructions or data -- of locations in your task. To alter the
contents of a location, you must first "open" the location.

You open a location by displaying its contents, using any of the
commands described in Sections 4.3 through 4.9. The contents
displayed a re automatically placed into the quantity ($Q) register .

ODT displays a location by showing the address followed by a mode
operator (either word mode or byte mode, depending on the size of the
location opened) and the contents of the location. The format in
which the location is displayed is controlled by the contents of the
format register ($F), as described in Table 5 - 1. By default, ODT
displ a ys addresses in relative form whenever it has the information
necessary to construct such an address: the number of the relocation
register containing the bias value closest to (but less than) the
a ddress, and the relative location of the address from that value.
When this information is not available, ODT prints the address in
absolute form. (Relative and absolute forms are described in Section
2.2.1.)

ODT does not generate a carriage return or line feed after displaying
the contents of a location. Until the location is closed, the cursor
remains on the same line, wrapping around as necessary.

4 . 1 ALTERING THE CONTENTS OF A LOCATION

You alter the contents of a location by typing the new contents
immedi a tely after the displayed contents. The new contents can be an
absolute octal value (of up to six digits) or an expression equivalent
t o a 6 - digit octal value, as described in Section 2.2 . 2.

I f you enter an octal value, you may omit leading zeros .

In the following examples, the value 1234 is substituted for the value
123450 in the location represented by the address expression 2,0. The
value 177420 (the two's complement result of the expression 16- 370)
replaces the value 000000 in the location represented by the address
e x pression 4,10.

2,0/123456 1234

4,10/000000 10-370

4-1

DISPLAYING AND ALTERING THE CONTENTS OF LOCATIONS

After you have altered the contents of a location, you can verify the
new contents by displaying them in a variety of modes, using the
commands described in Section 4.10. These commands do not close the
location . You can also verify the contents by closing the location
and then reopening it, so that the new contents are displayed.

Before you can alter the contents of a new location, you must close
the currently open location.

4.2 CLOSING A LOCATION

To close a location without automatically opening another location,
enter the (ljDJ command. Thi s command has no effect on ODT when no
location is open.

The (ljDJ command generates a carriage return and a line feed. ODT
then prompts for another command, as follows:

1 , 200/450123 (ljDJ

To close a location and automatically open another location, you can
use any of the following commands, described in Sections 4.4 through
4 . 9:

@ < >

4.3 OPENING WORD AND BYTE LOCATIONS

ODT interprets the slash character (I) as a word mode octal operator
and the backslash character (\) as a byte mode octal operator. Using
these operators in ODT commands is the most direct way to open word
and byte locations. These commands are described in the following
sections.

You can also open word and byte locations and display their contents
in ASCII, or open and display words in Radix-50 . Using these modes is
described in Section 4.10.

4 . 3.1 The al and a\ Commands

To open a word location beginning at an address, type an address
expression corresponding to that address, followed by a slash, in
response to the ODT prompt. The address must be even numbered. ODT
opens the word location beginning at the specified address and
displays the contents of that location as a n-digit octal number.

To open a byte location, type an address expression corresponding to
an odd - or even- numbered address, followed by a backslash. ODT opens
the byte location beginning at the specified address and displays the
contents of that location as a 3-digit octal number.

The following examples show the effects of the al and a\ commands:

1000/012675 (ljDJ
1001\025 (ljDJ

4- 2

(

(

(

(

(

(

(

(

DISPLAYING AND ALTERING THE CONTENTS OF LOCATIONS

4.3.2 The I and \ Commands

You can use the word mode and byte mode octal operators without
address arguments to reopen the location last opened. The I command
opens the word location last opened and displays the word at that
location. The \ command opens the byte last opened and displays the
contents of that byte. (If the last location opened was a word, the
byte opened and displayed is the low-ordered byte of that word.)

When no location is open, you can also use the ~ command to open the
last-opened location, as described in Section 4.5.

4.3.3 Moving Between Word and Byte Modes

The word mode and byte mode octal operators establish word mode and
byte mode, respectively.

Once you have opened a location using the word mode octal operator
(I), all locations subsequently opened will be octal words until the
mode is changed. Once you have opened a byte location using the byte
mode octal operator (\), all locations subsequently opened will be
octal bytes until the mode is changed.

You can change from word to byte mode by opening a location with the
a\ command or by specifying an odd-numbered address as the value a in
the al command. Subsequent locations will be displayed as bytes until
a word location is explicitly opened using an even-numbered address as
the value a in the al command (or the a" or a% commands, described in
Section 4.10).

The following example shows a change from word mode to byte mode and
back again using an odd-numbered address in the al command. (The @
command, which opens the next sequential location in whatever mode is
currently in use, is described in Section 4.4.)

1001/123 321 lliITl
_ / 321 @

001002 \021 @

001003 \010 @

001004 \201 llirn
_1006/102054

If a word location is open, you can examine its low- order byte by
typing the byte mode octal operator (\) immediately after the
displayed contents of the location. The location is not closed and
you do not leave word mode. The following example shows this use of
the byte mode octal operator:

100f)/l02054 \ 054 @

10101012345

You can also examine words or bytes of an open location in ASCII or
Radix-50 modes, as described in Section 4.10.

4-3

DISPLAYING AND ALTERING THE CONTENTS OF LOCATIONS

4 . 4 OPENING THE NEXT SEQUENTIAL LOCATION

To open and examine successive locations, use the @ command. The
@ command closes the currently open location and opens the next
sequential location. If the currently open location is a word, the
next sequential location will be opened as a word. If the currently
open location is a byte, the next sequential location will be opened
as a byte.

If you specify a value before entering the @ command, that value
replaces the contents of the open location, as described in Section
4.1.

4.5 OPENING THE PRECEDING LOCATION

To back up in your task and open the location preceding the location
that is currently open, use the A command. This command closes the
currently open location. If the currently opened location is a word
location, the command opens the word location immediately preceding
it. If the currently open location is a byte, the A command opens the
preceding byte.

If no location is currently open, the A command opens and displays the
contents of the last-opened location, a word or a byte, depending on
the mode currently in effect.

If you specify a value before entering the command, that value
replaces the contents of the open location, as described in Section
4.1.

The following example shows the use of the @ and commands.
Location 232, relative to the bias contained in relocation register 0,
is opened as a word and its contents are altered. In response to the
@ and A commands, ODT proceeds to the next word location and then
backs up to 232 to display the new contents.

0,232/005036 005046 @

0,000234 /012746 A

0,000232 /005046

4.6 OPENING ABSOLUTE LOCATIONS

To proceed from an open location to the location whose address is
contained in that location, use the @ command. This command closes
the currently open location and uses the contents of that location as
the absolute address of the next location to be opened. You can
specify new contents for the original location by entering a value
before the @ command, as described in Section 4.1.

You can only use the @ command if the currently open location is a
word.

Opening an absolute location does not necessarily
location is displayed as an absolute address.
following example, where relocation register 2 is set
bias value 370 (as described in Section 5.2.1), ODT
displays the location as a relative address.

370;2R
2,600/012345 12746@

2,017.356 /027117

4-4

mean that the
As shown in the
to contain the
still by default

(

(

(

(

DISPLAYING AND ALTERING THE CONTENTS OF LOCATIONS

Location 12356 relative to bias value 370 is equivalent to the
absolute address specified, 1274n.

4.7 OPENING PC-RELATIVE LOCATIONS

To open a location relative to the program counter, use the command.
This command adds the contents of the currently open locaton to the
value of the program counter, which is the address of the currently
openect location plus 2. ODT closes the currently open location and
opens the location whose address is the result of its calculation. If
you enter a value before the command, this value replaces the
contents of the open location and is used in the calculation.

You can only use the
word.

command if the currently open location is a

If the currently open location contains
contains an even number but is already a
calculated address does not fallon a word
opens a byte at the location calculated.

an odd number
byte location),

boundary, the

(or if it
so that the

command

The following examples show how the

1000/000040
001042 /052407

0,232/012345
0,012n01 /041

0,232/012345 123456
0,123712 /020301

command is used:

4.8 OPENING RELATIVE BRANCH OFFSET LOCATIONS

Use the> command to open a location at a branch offset relative to
the currently open location. The offset is calculated as follows:

1. The low-ordered byte of the contents of the
location is interpreted as a signed value.
results in a negative branch offset.

currently open
A negative value

2. This value is multiplied by 2.

3. The resulting offset is added to the PC value, which is the
address of the currently open location plus 2.

The > command closes the currently open location and opens the
location whose address is the value calculated. Its effects are shown
in the following examples:

1,n6/005046 >
1,000204 /000601

1032/000407 301>
000636 /000010

If you specify a value before entering the> command, the
byte of that word is used in the offset calculation.
replaces the contents of the open location, as described in
4.1.

4-5

low-order
The value

Section

DISPLAYING AND ALTERING THE CONTENTS OF LOCATIONS

4.9 RETURNING FROM A CALCULATED LOCATION

If you have used any of the three address calculation commands
described in the last three sections (@, ,or » and wish to return
to the location from which you began to calculate addresses, use the <
command. This command closes the currently open location and reopens
the word most recently opened by a /, ~,or A command .

The following example shows the use of the < command:

1030/021346 A

1034/101025 101030
102074 /000000 @
000000 /000000 >
000002 /000102 <
001034 /101036

If the currently open location was not opened by a @, ,or> command,
the < command simply closes and reopens the current location.

4 . 10 USING DIFFERENT OUTPUT MODES

The examples in the previous sections have shown ODT output in word
mode octal and byte mode octal. However, you can also use ODT to
display the contents of locations in word or byte mode ASCII and word
mode Radix - 50.

These modes follow the same rules as word mode octal and byte mode
octal:

• You can use the ~ command to open succeeding locations in
the same mode in which the currently open location was opened.

• You can enter any mode operator to display the contents of the
currently open location in another mode without changing the
mode in effect or closing the location.

The interaction of mode operators was shown in Section 4.3.3, where a
location opened in word mode octal was examined in byte mode. The
~ command that followed opened the next sequential location in word
mode octal .

4.10.1 ASCII Mode

ODT interprets the double - quote character (") as a word mode
operator and the apostrophe (') as a byte mode ASCII operator.
open a location in word mode ASCII with the a" command and in
mode ASCII with the a' command .

ASCII
You

byte

If you open a location in any mode and then type a word mode ASCII
operator, the contents of the open location will be displayed as two
ASCII characters but the location will not be closed.

If you open a location in any mode and then type a byte mode ASCII
operator, the contents of the low- order byte of the open location will
be displayed as one ASCII character. The location will not be closed.

4- 6

(

(

(

(

(

(

DISPLAYING AND ALTERING THE CONTENTS OF LOCATIONS

The following examples show these uses of the ASCII operators:

0,440" AB

2,100' H

o , 232/ 034567 ' w " w9 @

0,000234/000123 ~
S

If you enter the word mode ASCII operator to examine the contents of a
location and the location is aligned on a byte boundary (an
odd-numbered address), ODT will not return an ASCII character.
Instead, it will display the contents of the location in the mode
currently in effect, as follows:

0,000235\ 025 " 025

4.10.2 Radix-50 Mode

ODT interprets the percent sign (%) as a word mode Radix-50 operator.
(There is no byte mode Radix-50 operator, since Radix-50 is a method
of fitting three characters into a word and cannot be used in smaller
units.)

You can use the Radix-50 operator to open locations. The a% command
opens the location specified in the address expression a and displays
its contents as three Radix-50 characters. The % command reopens the
last-opened word and displays its contents as three Radix-50
characters.

If a word location is open, you can enter the % operator to examine
the Radix-50 contents of that location without closing the location.

The following examples show these uses of the word mode Radix-50
operator:

4,232% IGl

4,232/034567 (ill)
%I Gl

4,000232/034567 %IGl

Like the word mode ASCII operator, the Radix-50 operator cannot be
used to interpret values beginning on byte boundaries. If you enter
the Radix - 50 operator when the currently open location has an odd
address, ODT simply displays the byte value in the current mode.

Remember that you must enter new contents for a location as an octal
value or an expression, not as Radix - 50 characters. To determine the
octal equivalent of Radix-50 characters, use the Radix-50 evaluator
(*), as described in Section 7.3.5.

4-7

(

CHAPTER 5

USING REGISTERS

ODT has a number of l6 - bit registers. Some of these registers are
used for temporary storage of values; some contain values used
repeatedly throughout the execution of your task under ODT. All of
the registers are word locations that you can examine and alter.

Each ODT register has a unique name beginning with a dollar sign ($).
The $ and the character or characters that follow it make up an
address expression that identifies the register .

This chapter explains how ODT uses its registers . Tables 5- 1 and 5- 2
summarize the registers and are useful for quick reference.

5 . 1 GENERAL REGISTERS

ODT has eight general registers, numbered $0 though $7, which store
the contents of the user program's general registers when ODT has
control. These registers are automatically set when ODT first is
invoked and when a breakpoint occurs. They can also be set by the
user .

5.1 . 1 Examining and Setting General Registe r s

To examine a general register, enter the register name as the address
expression in the ai, a", or a% command . For example, you can enter
any of the following:

$7/
$ 3%
$1"

ODT opens a register like any other word location. You can then alter
the contents of the register or use any of the following commands, as
described in Chapter 4:

@ " %

ODT t r eats the general registers as sequential word locations.

5- 1

US I NG REGISTERS

5 . 1 . 2 Con t ents o f Gene r al Registe r s

When you issue the RUN command and ODT initially gains control,
information about the user task is stored in the general registers as
follows:

Register

$0

$1

$2

$3- $4

Contents

Task's entry- point address

First three characters of task's run - time name
(Radix- 50)

Last three characters of task's run- time name
(Radi x- 50)

Version number of user task if the program
included the .IDENT directive; otherwise, the
version number of ODT

When a breakpoint occurs, ODT's general registers store the contents
of the task's general registers.

5.2 ODT INTERNAL REGISTERS

The ODT internal registers sto r e values for use during a debugging
session . For example, they store the locations of breakpoints and the
memory limits to be used in search operations. Each registe r is a
16-bit location that you can open by specifying the register name as
the address expr e ssion with any ODT command that opens a word
location. You can enter any of the following:

$3R/
$A"
$C %

It is rarely useful to examine an internal register in ASCII or
Radix - 50 mode .

You can alter the contents of these registers as you would the
contents of any word; however, this is not recommended in some cases,
as described in Tables 5- 1 and 5- 2.

Ten of the ODT internal registers are single registers; that is,
there is only one register for each function. You refer to one of
these registers as $x, where x is an alphabetic character . Table 5 - 1
lists these registers in alphabetical order . In the task, they appear
in the order listed in Table 2-3, that is:

$S $W $A $M $L $H $C $Q $F $X

You can access these registers as sequential word locations in this
order, as in the following example:

$S/ OOOOOO ~

$W /000001 ~

$A /000000 ~

$M /177777

5- 2

(

(

(

Register

$A

$C

$F

(

$H

$L

(
$M

$Q

$S

$W

$X

USING REGISTERS

Table 5-1
ODT Single Registers

Function

Search argument register. You set this
a word search argument by opening
operator, or to a byte search argument
with the \ operator. Can also be set
memory commands described in Chapter 6.

register to
with the /
by opening
through the

Constant register. The
register can be used as an
value through the constant
described in Sections 2.2.2

16-bit value in this
address expression or a
register indicator C,
and 5.3.1.

Format register. When set to zero, all user task
addresses are displayed by ODT in relative form, if
an appropriate bias value is available in one of
the relocation registers. When set to any other
value, user task addresses are displayed in
absolute form. See Section 2.2.1 for a description
of absolute and relative forms of addresses.

High memory limit register. The location contained
in this register is the upper location limit for
ODT search, list, and fill memory operations.
Initialized to O.

Low memory limit register. The location contained
in this register is the lower location limit for
ODT search, list, and fill memory operations.
Initialized to O.

Search mask register. You set this register to a
word search mask by opening with the / operator, or
to a byte search mask by opening with the \
operator. Can also be set by arguments specified
with the memory commands described in Chapter 6.
Initialized to minus one, 177777(octal).

Quantity register. ODT sets this register to the
last value displayed, as described in Section
5.3.2. $Q is also used for the results of
expression calculations using the = operator.

Processor status register. Stores the Processor
Status Word (see Appendix B) resulting from the
last instruction executed prior to a breakpoint.
Users do not normally change the contents of this
register directly.

Directive Status Word register. Contains the
Directive Status Word (DSW) of the task, indicating
the success or specific cause of rejection of the
most recently executed directive. The contents of
this register are maintained across breakpoints.
See the Executive Reference Manual of the host
system for details on the DSW.

Reentry vector register. A positive value causes
ODT to retain register values for successive
entries of ODT, as described in Section 5.2.2.

5-3

USING REGISTERS

The other ODT internal registers are
three sequential word locations.
register name, in the form $nx; you
its value is O.

grouped into sets of eight or
The integer n is part of the

must always include n, even if

Table 5-2 lists the register sets alphabetically. In the task, they
appear as sequential word locations in the order listed in Table 2-3,
that is:

$nB $nG $nI $nR $nV $nE $nD

Register

$nB

$nD

$nE

$nG

$nI

Range of
n

0-7

0-2

0-2

0-7

0-7

Table 5-2
ODT Register Sets

Function

Breakpoint address register n. Contains
user-specified address of location
(breakpoint) in the user task whose contents
are to be swapped with the contents of $nI
when a G or P command is executed. A ninth
register, $8B, is used by ODT for single-step
execution.

Device control LUN (logical unit number)
register n. As described in Section 6.1.4,
register SOD contains the LUN of the user
terminal and register $lD contains the LUN of
the console device. Register $2D contains the
QIO event flag number, normally a default
value of 000034 (octal).

SST stack contents register n. The top three
items on the user program stack are placed
into these registers when a synchronous system
trap occurs. Stack contents depend on the
type of trap taken, as explained in the
Executive reference manual of the host
operating system.

Breakpoint proceed count register n, where n
corresponds to breakpoint address register n.
Contains number of times the breakpoint
location should be encountered before the
breakpoint is recognized. Each register is
initially set to 1 and can be set through the
kP command (see Section 3.4), or by opening
$nG and altering its contents. A ninth
register, $8G, is used by ODT for single-step
execution.

Breakpoint instruction register n.
Initialized to contain a BPT instruction, op
code 000003, which is swapped with the
contents of register $nB when the G or P
command is executed. The functions of the BPT
instruction are described in Section 3.2. A
ninth register, $8I, is used by ODT for
single-step execution.

(continued on next page)

5-4

(

(

(

(

(

(

(

Register Range of
n

$nR 0-7

$nV 0-7

USING REGISTERS

Table 5-2 (Cont.)
ODT Register Sets

Function

Relocation register n. Contains the
relocation bias of a relocatable object
module, enabling ODT to display user task
addresses in relative form, if $F is set to 0
(see Table 5-1). ODT initializes each
register to l77777(octal).

SST vector register n . Contains entry-point
address of ODT routine for handling a
synchronous system trap. If both ODT and the
user program have SST vectors enabled for the
trap, ODT automatically receives the trap,
except for vector 6 ($ 6V), which must be
explicitly enabled through the V command (see
Table 2-3). ODT handling of a trap can be
disabled by clearing the register; the user
program vector then receives the trap.
Registers correspond to traps as follows:

Register

$OV Odd address
instruction
processors,
executed)

SST Vector

reference in word
(also, on some

illegal instruction

$lV Memory protection violation

$2V T-bit trap or BPT instruction
executed

$3V lOT instruction executed

$4V Reserved or illegal instruction
executed

$5V Non-IAS/RSX- ll EMT
executed

instruction

$6V TRAP instruction executed

$7V PDP-ll/40
exception error

floating-point

The following sections describe the functions of ODT internal
registers $nR, $X, $C, and $Q in greater detail. Registers used in
memory operations ($L, $H, $M, $A, and $nd) are described in Chapter
n.

5-5

USING REGISTERS

5.2.1 Relocation Registers

ODT's eight relocation registers allow you to refer to locations by
relative addresses instead of absolute addresses. Since relative
addresses are easy to determine from source file listings, using them
makes debugging faster and simpler.

When ODT is initialized, each relocation register is set to
177777(octal). This is the highest possible memory address and
therefore cannot be used in constructing address expressions. To make
a relocation register useful, you place in it the base address of a
relocatable module or another convenient point, as explained in
Section 2.2.1. This address functions as a relocation bias that is
added to the relative address in an address expression to form the
absolute address of a location.

You obtain the base (starting) address of a module by consulting the
memory allocation synopsis in your task map. This part of the map
gives the octal starting address of each program section and each
module that makes up a program section. It also shows the extent of
the module, in octal and decimal.

The following figure shows a memory allocation synopsis for a brief
task:

SECTION TITLE IDENT FILE

• BLK.: (RW,I,LCL,REL,CON) 001264 001012 00522.
001264 000574 00380. HIYA

$$RESL: (RO,l,LCL,REL,CON) 010152 000112 00074.
$$$ODT: (RW,l,GBL,REL,OVR) 002276 005fi54 02988.

002276 005654 02988. ODTRSX M06

HIYA.OBJj1

ODT.OBJj1

5.2.1.1 Setting Relocation Registers - You can set relocation
registers either by opening them as word locations and altering them,
or by using special ODT commands that affect relocation registers.

To open a relocation register as an octal word, use the register name
$nR as the address expression a in the a/ command (or any of the other
commands described in Chapter 4 that open words). You can enter a new
value for the register after examining the existing contents.

The ODT command a;nR sets register $nR to the location specified as
address expression a. If you omit n, register $OR is assumed.

5.2.1.2 Clearing Relocation Registers - To remove a relocation
register from consideration in calculating addresses, enter the nR
command, where n is the number of the relocation register. This
command sets the register to 177777 (octal), so that it is no longer
useful in constructing address expressions. If you omit n, all
relocation registers are set to 177777(octal).

5-6

(

(

(

(

(

(

USING REGISTERS

5.2.2 The Reentry Vector Register

If you have fixed a task in memory (using the FIX command, described
in the RSX-llM/M-PLUS MCR Operations Manual, the lAS MCR Users Guide,
and the lAS PDS User'-s--Guide), you can use the -reentry vector
register, $X-,--to maintain register values set during your debugging
session and to keep track of your access to the task.

The reentry vector register contains the value - 1 when your task is
built. When you execute the task for the first time, the register
value is incremented to O. The 0 value causes ODT to omit the task
name from the invocation message line (described in Section 1 . 3) the
next time you enter the task. This omission indicates that the task
is fixed in memory.

If you intend to reenter the task for further debugging, you should
set $X to 1 or another positive nonzero value. As long as the value
of $X is positive and nonzero, the fixed task is reentered at the
value stored in $7 (the program counter), and the values stored in
ODT's registers are maintained. You can continue to debug the task
using the breakpoints, constants, and other values established in an
earlier debugging session. If $X is not positive, all registers are
initialized when you reenter the task.

You can use the reentry vector register as a counter to record how
many times you have entered a fixed task. To do this, set the
register to 1 the first time you enter your task and increment it each
time you access the task again.

5- 7

(

(

(

CHAPTER 6

MEMORY OPERATIONS

ODT allows you to perform three kinds of operations on blocks of
memory in your task:

• Search memory for bit patterns or references to locations

• Fill memory with a value

• List blocks of memory on an output device

Section n.l describes how you establish the registers used in memory
operations. The subsequent sections of this chapter describe how you
use ODT commands to perform these operations.

6.1 REGISTERS USED IN MEMORY OPERATIONS

ODT memory operation commands function between limits in memory that
you must specify. Search and fill commands require an argument to be
searched for or deposited. Search operations also require a search
mask.

ODT maintains registers to contain all of these values. You can set
these registers as word or byte locations (as described in Chapters 4
and 5) before issuing memory operation commands. You can also specify
a search argument and a search mask as the k and m arguments in the
commands themselves. If you do not specify an argument in one of
these commands, ODT uses the current contents of the appropriate
register; if you specify an argument, that argument replaces the
contents of the register.

n.l.l Search Limit Registers

There are two search limit registers: $H, containing the high memory
limit for a search, fill, or list operation; and $L, containing the
low memory limit. You deposit a memory location in one of these
registers by opening it as a word location and changing its value to
the address of the location. You can specify the location in either
absolute or relative form, as follows:

$L/ OOOOOO 1000 ~
~ 001000 2,4060 @

$H/OOOOOO 3 , 100 ~

6-1

MEMORY OPERATIONS

If the value in $L is greater than the value
perform the memory operation requested
Instead, ODT displays its prompt.

6 . 1 . 2 Search Mask Register

in $H, ODT
using these

will not
registers.

ODT initializes the search mask register $M to 177777(octal), so that
all bits are set to 1 . You set the value of the register by opening
it as a word location and changing its value. Only bit positions set
to 1 in the search mask are compared in the search operation . The
value compared is that set for the corresponding bit position in the
search argument register $A.

You can also set register $M by specifying a value m, followed by a
semicolon, in any of the search commands described in Section 6.2.

6.1.3 Search Argument Register

The search argument register $A contains the value searched for in a
memory search operation or filled with in a memory fill operation.
You can set this value by opening register $A as a word or byte
location and changing its contents, or by specifying the argument k in
one of the search commands described in Sections 6.2 and 6.3.

As noted in Section 6.1.2, only bit positions set to 1 in the search
mask are compared in a ny memory search operation.

6.1.4 Device Control LUN Registers

The device control LUN registers SOD and $lD contain the logical unit
numbers of (respectively) the user terminal (TI:) and the console
device (CL :) . You specify one of these registers as the value n in
the n:a;kL comma nd (described in Section 6.4.1) to indicate what
device should be used for a listing .

The Task Builder assigns default values for these registers: 000007
(octal) for SOD and 000010 (octal) for $lD. To reset these registers,
you can link your task using the TKB option UNITS=keyword as described
in the RSX - IIM/M- PLU S Task Builder Manual or the lAS Task Builder
Reference Manual.

You may find it more convenient simply to assign a new value for CL:
before beginning your debugging session. Use the MCR command ASN or
the DCL command ASSIGN, in one of the following formats:

ASN devicename =CL : (MCR command)

and

ASSIGN CL : devicename (DCL command)

For more information on these commands, see the command
interpreter manual for your system .

6 - 2

line

(

(

(

(

(

(

(

(

MEMORY OPERATIONS

6 . 2 SEARCHING MEMORY

There are three memory search commands : W, N, and E. Each of these
commands has several forms, depending on the number of registers that
already contain values that you want to use in the search operation .
The following sections describe these command forms.

6.2 . 1 Searching for a Word or Byte

The W command searches for occurrences of the search argument
(c omparing bit positions specified in the search mask) within the
range set by the contents of the search limit registers.

The full form of the command is m;kW, where m specifies the search
mask and k specifies the search argument . However, you can omit
either or both of these arguments if the corresponding registers
contain the values that you want to use. If you omit m, you should
also omit the semicolon argument separator .

ODT performs an exclusive OR (XOR) operation on the contents of each
location and the search argument; it then ANDs the result of this
comparison with the search mask. A result of zero indicates a match.
When a match occurs, ODT prints the address a ~~ contents of the
location and repeats the search operation until the high memory limit
is reached.

6 . 2 . 2 Searching for Inequality of a Word or Byte

The N command is the opposite of the W command: It examines the
search range for words or bytes that do not exactly match the search
a r gument in the positions determined by the search mask.

The full form of the command is m;kN, where m specifies a search mask
and k specifies a search argument . As with the W command, you can
omit either argument or both.

The search algorithm proceeds like that for the W command, except that
a location's address and contents are only displayed by ODT when the
AND operation has resulted in a nonzero value.

6 .2.3 Sea r ching f or a Reference

The E command searches for memory locations containing instructions
whose execution results in a reference to the task address specified
as the search argument. Because the search argument represents an
address, it can only be a word, not a byte.

The full form of the command is mikE, where m represents the search
mask and k the search argument . You can omit either or both of these
arguments if you want to use the values already contained in registers
$M and $A . For effective use of the E command, the search mask should
be set to 177777(octal), so that all bit positions are compared .

6- 3

MEMORY OPERATIONS

OOT compares each location within the search limits and displays the
address and contents of locations that contain any of the following:

• The search argument as an absolute address

• A relative address offset reference to the absolute address
specified as the search argument

• A relative address branch reference to the absolute address
specified as the search argument

n.3 FILLING MEMORY

The F command fills the block of memory defined by the high and low
memory limit registers with the value in the search argument register.
You can set this register using the command $AI (as described in
Section 0.1.3), or specify the argument k with the F command, in the
form kF.

If the last location opened was a word, the memory range is filled
with wordsi if the last location was a byte, the memory range is
filled with bytes. The low-order byte in register $A is used.

In the following example, word locations 1000 through 1776 are set to
zero and byte locations 2000 through 2777 are filled with ASCII spaces
(40 octal):

1000ilR
2000i2R
3000i3R

- $L/ oooooo 1,0 ~
- $H/ oooooo 2, - 2 ~
- OF
- $L/ oOlOOO 2,0 ~
- $H/ o01776 3,-1 ~
- $A\ OOO 40 ~
- F

6.4 LISTING MEMORY

The L command lists on an output device the block of memory defined by
the high and low memory limit registers. The following sections
describe how you request a listing and what the listing looks like.

n.4.1 Command Format

The L command has the following format:

n

n;a;kL

The device control LUN register number for the listing operation.
A value of 0 indicates the user terminal (TI:); any other value
is interpreted as 1 and indicates the console listing device
(CL:). The default is 1.

6-4

(

(

(

(

(

(

(

a

k

MEMORY OPERATIONS

The low memory limit for the listing operation. If you omit a,
the value of register $L is used. If you specify a, that value
is placed in $L.

The high memory limit for the listing operation. If you omit k,
the value of register $H is used. If you specify k, that value
is placed in $H.

You must include the semicolon argument separator (i) between a and k
if you specify the argument a. You must include two semicolons if you
specify the argument n.

~.4.2 Listing Format

A memory listing is formatted in groups of eight units. Each line
begins with a location, in relative form if possible (see Section
2.2.1), followed by eight words or eight bytes in the current output
mode. A memory listing is displayed in whatever mode was used to open
the last opened location. Thus you can list blocks of memory in word
mode octal, byte mode octal, word mode ASCII, byte mode ASCII, or word
mode Radix-50, as described in Section 4.10.

The following example shows the output displayed on the output device
in response to various listing commands. Note that the question mark
displayed in response to the' command is not in this case ODT's error
indicatori it is merely the ASCII character stored in the next byte.

Example 6-1 ODT Listing Format

1344i1400L
001344 /047503 046125 020104 020111 040510 042526 054440 052517
001364 /020122 040516 042515 050040 042514 051501 037505

1344 " CO L
001344 " CO UL D I HA VE Y OU
001364 "R NA ME P LE AS E?
1344\ 103 L

1344 \103 117 125 114 104 040 111 040
1354 \110 101 126 105 040 131 117 125
1364 \122 040 116 101 115 105 040 120
1374 \114 105 101 123 105

1344' C L
001344 ' c o U L D I
001354 'H A V E Y 0 U
001364 'R N A M E P
001374 ' L E A S E

, ?
1300iR
$H/001400 0.101
1344' C L

0,000044 'c o U L D I
0,000054 'H A V E Y o U
0,000064 'R N A M E P
0,000074 'L E A S E ?

6-5

(

(

(

(

CHAPTER 7

PERFORMING CALCULATIONS

ODT performs a variety of arithmetic calculations useful in
determining offsets, Radix-50 equivalents, and other values. The
following sections describe commands that perform calculations.
Section 7.1 explains how to calculate relocatable addresses. Section
7.2 explains how to calculate offsets. Section 7 . 3 describes how to
evaluate expressions.

7.1 CALCULATING RELOCATABLE ADDRESSES

If you know the absolute (relocated) address of a location and want to
determine what its relative address is, or what relocation register
contains the closest base address, use one of the forms of the ainK
command.

If you specify both a, the absolute address, and n, a relocation
register, in the ainK command, ODT will calculate and display the
relative address, as follows:

4000i2K =2,001460

Note that the equal sign is part of ODT's response, not part of the
command that you enter .

If you omit n, ODT uses the relocation register whose contents are
closest to (but less than) the absolute address specified.

If you omit a, ODT assumes the address of the last location opened.
You should omit the semicolon argument separator if you omit a.

To determine
last-opened
followed by
described in

the absolute address of an open location or of the
location, enter a dot (current location indicator)
an equal sign (expression evaluation operator), as

Section 7.3.2.

7.2 CALCULATING OFFSETS

The 0 (for "offset") command calculates and displays the PC - relative
offset and the branch displacement from one location to another.

There are two forms of this command. The aO command calculates the
offset from the currently open location to the location represented by
address expression a. This form of the command can only be used when
a location is openi you type it on the same line as the displayed
contents of the open location.

7-1

PERFORMING CALCULATIONS

The a;kO command calculates the offset from the location represented
by address expression a to the location represented by address
expression k. (In this case, k can have any of the address expression
forms described in Section 2.2 .) This command can be entered either on
the same line as an open location or on a separate line, in response
to the ODT prompt.

The 0 command (in either form) calculates either positive or negative
offsets. Negative offsets are displayed in two's complement form.

ODT displays the PC-relative offset and the branch displacement as
6-digit octal numbers. The PC - relative offset is preceded by an
underscore and followed by a space; the branch displacement is
preceded by a right arrow (», as shown in the following example:

1034/103421 10460 000010 >000004

A location that is open when you use the aO or a;kO commands remains
open after the offset and branch displacement are displayed. You can
perform another calculation, change the contents of the location, or
enter any ODT command that affects an open location.

Offsets can be calculated in either I- or D-space (RSX-IIM-PLUS
systems only).

7.3 EVALUATING EXPRESSIONS

You can evaluate expressions during your debugging session using the
techniques described in the following sections. To evaluate an
expression while a location is open, enter the evaluation command on
the same line as the displayed contents of the location. ODT places
the results of its evaluation into the $Q register. To replace the
contents of the open location, you enter Q or the value of the
expression. You can also evaluate expressions when no location is
open by typing the evaluation command in response to the ODT prompt.

7.3.1 Equal Sign Operator

To evaluate an expression, enter the expression
sign (=). The expression is converted to
placed in the $Q register, and displayed. ODT
value of 16 bits when necessary.

followed by the equal
a 6-digit octal value,
truncates the octal

Negative values are calculated, stored, and displayed in two's
complement form. You can specify a negative value either in two's
complement form or with the minus sign.

You can perform
evaluated. To
the values. To
not recognize
expressions are

addition and subtraction within an expression to be
add values, include a plus sign (+) or a space between
subtract values, include a minus sign (-). ODT does
parentheses or assign precedence to any operator;
evaluated left to right.

An address expression, in relative or absolute form, can be all or
part of an expression to be evaluated.

You can include in the expression the constant register indicator, the
quantity register indicator, or the current location indicator, as
described in the following sections.

7 - 2

(

(

(

(

(

(

PERFORMING CALCULATIONS

If you enter the equal sign without an expression to be evaluated, ODT
evaluates the null expression as zero and enters zeros in the $Q
register.

The following examples show the evaluation of expressions using the
equal sign. Relocation register $OR contains the value 370. The
constant register contains the value 40.

0,0= 000370
0,16=406
0,C= 000430
0,16+16+2= 0000426
16-370=177426
177777+16+16=000033
-1+16+16= 000033
C 177777=000037
232323= 032323

7.3.2 Current Location Indicator

The dot indicator (.) represents the address of the currently open
location. You use this symbol to include the address of the currently
open location as part or all of an expression to be evaluated.

The following example shows how the current location indicator is
used:

320i lR
1,10/000000 .+10=000340

7.3.3 Constant Register Indicator

The C indicator specifies the 16-bit value conta ined in the constant
register, $C. You can set this register to any value and use the
indicator in place of any a or k argument in an ODT command (as shown
in Section 2.2). You change the value of C by opening the $C register
as a word location and changing its contents.

7.3.4 Quantity Register Indicator

COT stores the last value that it displayed in the quantity register,
SQ. When you open a location, COT stores that location's contents in
the $Q register. If the location is a byte, the $Q register contains
that byte in its low-order byte a nd zeros in its high-order byte.

You can refer to this 16-bit value by using the quantity register
indicator Q. The quantity register indica tor is especially useful for
changing the contents of open locations and for setting registers, as
shown in the following examples:

1342/173214 Q+IO ®m
= / 173224 ®m

_ $3/ 013624 Qi5R ®m
5,20/ 013644

7-3

PERFORMING CALC ULATI ONS

7.3.5 Radix-5 0 Eval uation

To enter Radix-50 characters, you must know the numeric value of each
Radix-50 word. A Radix-50 word, as explai n ed in Sect i on 4.10.2,
contains t h ree Radix-50 characters. To determine the value of the
Radix-50 word, you enter the numeric equivalents of the Radix-50
characters in that word, separated by asterisks, as an expressio n to
be evaluated. Follow the expression with an equal sign, as shown in
Section 7.3.1. ODT calculates a 6-d i git octal value, places that
val ue in the $Q register, and displays it immediately after t h e equal
sign, as follows:

33*24*12=125752

Note that yo u cannot evaluate Radix-50 characters in conjunction wit h
any other evaluation operation (addition, s ubtraction, location
calculation). You cannot use any other symbol (C, Q, .) in t h e
expression to be evaluated.

If you specify the equivalents of only two Radix-50 characters , ODT
fills the high byte of t h e word with zeros as necessary.

The Radix-50 character set includes all alph abetic and numeric
characters (A-Z, 0-9) plus three special characters: dollar sign ($),
dot (.) , and space () . Table 7-1 contains the numeric equivalents of
all Radix-50 characters.

Table 7-1
Numeric Equivalents of Radix-50 Ch aracters

Radix-50 Numeric Radix-50 Numeric
Character Equivalent Character Equivalent

Space 0 T
A 1 U
B 2 V
C 3 W
D 4 X
E 5 Y
F 6 Z
G 7 $
H 10 .
I 11 Unused
J 12 0
K 11 1
L 14 2
M 15 3
N 16 4
0 17 5
p 20 6
Q 21 7
R 22 8
S 23 9

The following example shows how the asterisk is used in
with the Radix-50 operator (described in Section 4.10.2) :

1054/003151 %AAA 1*3*5= 003275 3275 ®]
%ACE

7-4

24
25
26
27
30
31
32
33
34
35
36
~7

40
41
42
43
44
45
46
47

conjunction

(

(

(

(

(

(

(

(

CHAPTER 8

ADDITIONAL DEBUGGING AIDS

The Task Builder on your system allows you to specify the Jebugger of
your choice to help you in program development. You should build only
one debugger into your task at a time; if you want to switch from one
debugger to another, you must rebuild your task.

Section 8.1 shows how you specify other debuggers to the Task Builder
for the three environments described in Chapter 1. Section 8.2
describes the Trace program, a debugging aid available on your sys~em.

8.1 ACCESSING OTHER DEBUGGING AIDS

The following sections show how to specify a debugger other than ODT
to be linked with your object module(s). The example in each section
shows a command line for linking the Trace debugging aid, described in
Section 8.2. You can specify the file name of any debugger in place
of [l,l]TRACE.OBJ.

8.1.1 MCR Command Line

To link a debugger with your task using MCR, specify the name of the
debugger object module as input to the Task Builder. Follow the
debugger object module name with the IDA switch, as in the following
example:

TKB>MYTASK=MYFILE,[l,l]TRACE/DA

The IDA switch identifies the file specified as a debugger. Since the
Task Builder assumes that the file type of input files is OBJ, you
need not specify the file type of the debugger object modu~e.

8.1.2 DCL Command Line

To link a debugger into your task using DCL, specify the name of the
debugger object module as an argument to the IDEBUG qualifier with the
LINK command, as in the following example:

>LINK/DEBUG:[l,l]TRACE/TASK:MYTASK MYFILE

Since DCL assumes that the file type of input files for the linker is
OBJ, you need not specify the file type of the debugger object module.

8- 1

ADDITIONAL DEBUGGING AIDS

8.1.3 lAS PDS Command Line

To link a debugger with your task using lAS PDS, specify the name of
the debugger object module as an argument to the /DEBUG switch, as in
the following example:

PDS> LINK/DEBUG: [l,l]TRACE MYFILE

8 . 2 THE TRACE DEBUGGING PROGRAM

The Trace program is a debugging aid that can be used instead of or
along with ODT to provide information about the execution of a user
task. Trace is most appropriate for use with relatively simple tasks
or with sections of tasks.

Trace is an object module that you specify to the Task Builder when
you build your task, as described in Section 8.1. It is located in
UFD [1,1] on the system disk, with the name TRACE.OBJ.

Trace is not an interactive program like ODT. When you run your task,
Trace is executed once and prints its listing on pseudo- device CL. To
run Trace again, you must run your task again.

8.2.1 The Trace Listing

A Trace listing contains two lines of information for each instruction
executed in the user's task. The first line is made up of five octal
words, representing the contents of the following registers:

l. Current relative program counter (PC)

2. Current PC

3. Next PC

4. Processor Status Word

5. Directive Status Word

The relative PC is determined by subtracting a user-specified bias
value from the actual PC. Section 8.2.2 describes how you specify
this bias value .

The second line of the Trace listing contains eight octal words
representing the contents of the following:

1-6. RO through R5

7. Stack pointer

8. The top word of the stack

Example 8-1 is a sample Trace listing for part of a user task.

8-2

(

(

(

(

(

(

ADDITIONAL DEBUGGING AIDS

Example 8-1 Sample Trace Output

001714 003174 003176 170020 000001
002637 000120 000000 140200 000000 000000 001256 003074

001716 003176 003202 170024 000001
002637 000120 000000 140200 000000 000000 001256 003074

001722 003202 003074 170024 000001
002637 000120 000000 140200 000000 000000 001260 001260

001614 003074 003100 170020 000001
002612 000120 000000 140200 000000 000000 001260 001260

8.2.2 Bias Values and Ranges

You can use the GBLPAT Task Builder option to specify:

• The bias value to be used in determining the relative PC

• The range(s) of task locations to be traced

8.2.2.1 Specifying a Bias Value - To specify a bias value for
relative PC calculation, enter an option line in the following format
in response to the Task Builder prompt:

GBLPAT=segname:.BIAS:value

segname

value

The name of the task ' s root segment.

The octal value to be subtracted from the actual PC to establish
relative PC. (If a value is not specified, the initial stack
pointer is used.)

8.2.2.2 Specifying Ranges to be Traced - To specify up to four ranges
of locations for which execution should be traced, enter an option
line in the following format in response to the Task Builder prompt:

GBLPAT=segname: . RANGE: lowl: h ighl [... : lown: h ighnJ

segname

The name of the task's root segment.

8-3

ADDITIONAL DEBUGGING AIDS

lowl ••• lown

The low addresses, relative to the bias value, of ranges to be
traced.

highl. •• highn

The high addresses, relative to the bias value, of ranges to be
traced.

There can be up to four ranges. You must specify both the low and the
high address of each range.

8-4

(

(

(

(

(

(

APPENDIX A

ERROR DETECTION

ODT responds to errors in user input and to certain hardware-detected
errors that occur during task execution. This appendix describes
these errors, ODT's response to them, and suggested user action.

A.I INPUT ERRORS

ODT uses the question mark (?) as an indicator that it has detected an
error in user input. After displaying the question mark, ODT
generates a line feed and carriage return and prompts for another
command.

ODT responds with the question mark to any of the following input
errors:

• Reference to an address without an operator

• Reference to an address outside the task's partition

• Reference to a nonexistent register - - for example, $20

• Reference to supervisor space by a nonprivileged user

• Input of an illegal character for example, 8 or 9

If you have typed an incorrect input string - - for example,
contradictory arguments for the W command -- you may find that the
simplest course of action is to cancel the input string by typing an
illegal character. You cannot, however, erase a string once you have
entered the command -- the character W, in this case.

ODT does not tell you what error has caused it to display the question
mark. However, an error sometimes causes ODT to return one of the
error codes listed in Section A. 2, plus information on the location at
which the error occurred .

In some cases (for example, if you attempt a memory operation when $L
is greater than $H), ODT repeats its prompt but does not display a
question mark .

A- I

ERROR DETECTION

A.2 TASK IMAGE ERROR CODES

As described in Table 5-2, ODT has eight SST vector registers used to
contain pointers to error-handling routines. If ODT detects an error
condition, it activates the appropriate routine and displays an error
message. This message has the form cc:k, where cc is a 2-character
error code and k is the location at which the error occurred. ODT
displays the location as a relative address if there is a relocation
register containing a base address less than the absolute address of
the location.

The following examples are error messages from a debugging session:

MP:007414

OD:I,003507

The remainder of this chapter is an alphabetic list of ODT error
codes, their meanings, and suggested user action in response to these
codes.

BE

EM

FP

IL

Explanation: Breakpoint instruction executed at unexpected
location. The address of the breakpoint instruction does not
match the contents of any register, SOB through $7B.

User Action: Examine your code to determine why the unexpected
breakpoint occurred; then continue with the P command.

Explanation: Invalid EMT instruction executed. Only EMT 377 and
EMT 376 (for a privileged task) are allowed by the Executive for
execution of Executive Directives. Normally, vector address 30
is used for this trap sequence.

User Action: If you want to use an EMT
have written, set SST vector register 5
vector address.

trap
($5V)

handler that you
to the appropriate

Explanation: Floating-point instruction error. One of the
following has occurred: division by zero; illegal Floating Op
Code; flotation overflow or underflow; conversion failure.

User Action: Check your code for sequences that may have caused
one of these conditions.

Explanation: Reserved or illegal instruction executed. The task
tried to execute a nonexistent instruction, or an EIS or FPP
instruction in a system with no EIS or FPP hardware.

User Action: Check your code for typographical errors or the use
of a nonexistent instruction.

A-2

(

(

10

MP

00

TE

TR

(

(

ERROR DETECTION

Explanation: lOT instruction executed. Normally, vector address
20 is used for this trap sequence.

User Acti on : To change the handling of I/O traps, set SST vector
reg i ster 3 ($3V) to t he appropriate vector address.

Explanatio n : Memory protection violation or illegal memory
refere nce. The task tried to access a location outside of the
ranges mapped, or a location which it did not have the privilege
to access.

User Acti on: Check your code for typographical or programming
errors that could lead to this condition.

Explanati on: Odd address reference on word instruction. The PC
co n tained an odd address when trying to access a word in memory.
Also, on some processors, execution of a n illegal instruction.

Users Action: Check your code for the use of a word instruction
when a byte instruction was intended (MOV instead of MOVB, for
example) or a typographical error in the address specification.

Explanation: T-bit exception.
mechanism than a breakpoint or
if bit 4 is set in a word that
its position on the stack.

The T-bit was set by some other
an S or P command. This can occur
is interpreted as the PSW due to

User Action: Check that the stack contains appropriate values.

Explanation: TRAP instruction executed.
address 34 is used for this trap sequence.

Normally, vector

User Action: To change the handling of TRAP instructions, set
SST vector register 6 ($6V) to the appropriate vector address.

A-3

(

APPENDIX B

PROCESSOR STATUS WORD

The Processor Status Word (PS), stored at hardware location 777776,
contains information on the current status of the processor . The
information contained in this location includes:

• The current and previous operational modes of the processor
(mapped system only)

• The current processor priority

• An indicator which, when set, causes a trap upon completion of
the current instruction

• Condition codes describing the results of the last instruction
executed

The format of the Processor Status Word is shown in Figure B- 1.

15 14 13 12 11 10 8 7 5 4 3 2 o

CARRY
L-_ _ OVERFLOW

L-___ _ ZERO

NEGATIVE
L-________ TRACE TRAP

L-_______ _ _____________ GEN REG SET

PREVIOUS MODE
CURRENT MODE

ZK-491-81

Figure B- 1 Format of the Processor Status Word

Bits 15 and 14 indicate the current processor mode: user mode (11),
supervisor mode (01), or kernel mode (00) . Bits 13 and 12 indicate
the previous mode, that is, the mode the machine was in (user,
supervisor, or kernel) prior to the last interrupt or trap.

Bits 7 through 5 show the current priority of the central processor.
The central processor operates at anyone of eight levels of priority
(0 through 7) . When the central processor is operating at level 7
(the highest priority), an external device cannot interrupt it with a
request for service. The central processor must be operating at a
lower priority than the external device's request in order for the
interrupt to take effect.

B- 1

PROCESSOR STATUS WORD

The trap bit (bit 4) can be set or cleared under program control.
When set, a processor trap will occur through location 14 upon
completion of the current user instruction, and a new Processor Status
Word will be loaded. The trap (T) bit is especially useful in
debugging programs, since it provides an efficient means for stepping
through the task one instruction at a time. ODT uses the T- bit to
execute instructions when you are stepping through your program with
the S command, described in Section 3.5.

The condition codes N, Z, V, and C (bits 3 through 0, respectively)
indicate the result of the last central processor operation. These
bits are set as follows:

N=l, if the result was negative.
Z=l, if the result was zero.
V=l, if the operation resulted in an arithmetic overflow.
C=l, if the operation resulted in a carry from the most

significant bi t.

B- 2

(

(

(

(

(

(

A register, 2-6, 5-3
a symbol, 2-1 to 2-2
Abort,

task execution, 1-5
ABORT command, 1-5
Absolute,

address, 2-2
location, 2-5, 4-4

Address expression,
See Expression

Altering,
contents of location, 4-1

Argument,
register, 2-6, 5-3
separator, 2-5

Arithmetic operator,
See Operator

ASCII,
displaying, 4-fi
operator, 2-7

Asterisk (*), 2-5
At sign command (@), 2-5, 4-4

B command, 2-8, 3-1 to 3-2
B register, 2-6, 5-4
Backslash operator (\), 2-7,

4-2 to 4-3
Bias value, 2-3, 5-6

Trace program, 8-2
Branch,

location, 2-6, 4-5
offset, 7-2

Breakpoint, 3-1 to 3-3, 5-1
address register, 2-6, 3-2,

5-4
clear, 3-2
set, 3- 1

INDEX

instruction, 2-7, 5-4
proceed count, 2-7, 3-3, 5-4
removing, 2- 8, 3-2
set, 3-1

Byte location,
displaying, 4-2 to 4-6
opening, 4-2 to 4-6

Byte mode,
operator,

ASCII, 2-7, 4-6
octal, 2-7, 4-2 to 4-3

C register, 2-6, 5-3, 7-3
indicator, 2-3, 2-8, 7-3

Index-l

Calculated location,
return from, 2-6, 4-6

Calculation, 7-1
offset, 7-1
relocatable,

address, 7- 1
Chang i ng ,

See also Displaying
contents of location, 4-1
display mode, 4-3

Character, 2-3 to 2-4
illegal, 2-8

Ci rcumfl ex command (~), 2-5,
4-4

Clear relocation register,
2-10

Closing,
loca tion, 4-2

definition, 4-1
open location, 2-5, 4-2

Comma (,), 2-4
Command,

ODT, 2-4
at sign (@), 2-5, 4-4
B, 2-8,3-1 to 3-2
cancel, 2-8
circumflex (~), 2-5, 4-4
0, 2-8
E, 2-8, 6-3
equal sign (=), 2-8, 7-2
F, 2-9, 6-4
G, 2-9, 3-2
I, 2-9
K, 2-9, 7-1
L, 2-9, 6-4
line feed, 2-5, 4-4
N, 2-10, 6-3
0,2-10,7-1
P, 2-10, 3-2 to 3-3
R, 2-10
relative branch location

(», 2-6
return from calculated

loca tion «), 2-6
return key, 2-5, 4- 2
S, 2-10, 3-3
U, 2-11
underscore (), 2-5, 4-5
V, 2-11
W, 2-11, 6-3
X, 1-4, 2-11
Z, 2-11

Constant register, 2-6, 5-3,
7-3

indicator, 7-3

Contents of location,
See Location

CONTINUE/DEBUG command,
lAS, 1-6

Continuing,
program exe c ution, 3- 2

CTRL/C,
ODT, 1-5

CTRL/U,
ODT, 2-8

Current location,
indicator (.), 2-3, 2-5, 7-3

Cursor,
ODT, 4-1

D command, 2- 8
D register, 2-7, 5- 4, 6-2
Da ta space, 7-2

command, 2 - 8
access, 2- 8

enable, 1-3
DCL,

linking,
deb ug g e r, 8 - 1
ODT, 1-3
ODTID, 1 - 4
supervisor libraries, 1- 4

DEBUG command,
RSX-IIM-PLUS, 1-5

Debugger,
specifying to Task Builder,

8-1
Debugging,

privileged task, 1-4
session,

abort, 1-5
begin, 1-4, 3- 1
end, 1-4
interrupting of, 1-5, 3-2
resuming, 1 - 5 to 1-6

supervisor mode, 1-4
Device control,

LUN register, 2-7, 5-4, 6-2
Directive status word,

register, 2-6, - 5- 3
Display,

mode, 4-1, 4 - 3, 4-6, 6- 5
Displaying,

byte location, 4-2 to 4 - 6
location, 4 - 1
word location, 4 - 2 to 4-6

Do t (.), 2 - 5, 7 - 3

E command, 2- 8, 6-3
E register, 2- 7, 5-4

INDEX

Equal sign (=), 2-8, 7 - 2
Error,

detection, A- I
input, A-I
task image, A-2

Evaluating expression,
See Expression

Examine location,
See Displaying

Exit,
ODT, 1-4

Exit command,
ODT, 2- 11

Expression, 2-3
evaluating, 2- 3, 7-2
format, 2-2
Radix-50, 7-4

F command, 2-9, 6-4
F reg i ster, 2-6, 5-3
Fill command, 2-9, 6-4
Fill memory, 6-4
Fixed task,

ODT, 5-7
Fo rma t,

memory listing, 6-5
reg i ster, 2-6, 5-3
Trace listing, 8-2

G command, 2-9, 3-2
G register, 2-7, 5-4
GBLPAT,

See TKB
General register, 5-2
Go command, 2-9, 3-2

H reg i ster, 2-6, 5-3

I command, 2- 9
I register, 2- 7, 5-4
lAS,

linking,
debugge r, 8 - 2
ODT, 1- 3

Indicator,
See Register indicator

Instruction space, 3-2, 7-2
command,

access, 2-9
enable, 1-3

Internal register, 5-2

Index - 2

(

(

(

(

(

(

(

Invoking,
ODT, 1-4, 5- 1

K command, 2-9 , 7-1
k symbol, 2-1 , 2-3

L co mm a nd, 2-9 , 6-4
L r egister , 2-6 , 5-3
Lim i t reg i s t e r, 2 - 6 , 5 - 3
Line feed command, 2-5 , 4-4
LINK co mmand,

DCL, 1-3 to 1-4 , 8- 1
Linking ,

ODT, 1 -2
DCL, 1 -3
MCR, 1-2
PDS, 1-3

RSX-IIM-PLUS feature, 1-3
Li st command , 2-9 , 6-4
Listing,

device,
spec ifying, 6-2 , 6-5

format,
memory, 6-5
Trac e program, 8-2

Loca tion,
altering, 4- 1
closing, 4-2
displaying, 4-1 to 4-3

Location indi ca t or ,
See Register indic a tor

M register, 2-6, 5-3
m symbo l, 2- 1
Mask register, 2-6, 5-3
MCR,

linking,
debugger , 8-1
ODT, 1-2
OOTID, 1 -3
superv i sor libraries, 1-4

Memory ,
fill co mm a nd , 2-9 , 6 - 4
limit register , 2-6 , 5-3 ,

6-1
list command , 2-9 , 6-4
li st ing format, 6-5
search, 6-3
search co mmand, 2-8, 2-1 0 to

2-11
Message ,

invocatio n, 1 -4
Mi nu s sign (-), 2-3 to 2-4

INDEX

N command , 2-10 , 6-3
n symbol , 2-1 to 2-2
Negative of fs et , 7 -2
Next sequential location, 4-4

o command , 2-10 , 7 -1
Octal operator , 2-7 , 4-2 to

4-3
ODT,

overv i ew, 1-1
OOTID module, 1-3
Offset, 2-3 , 7-1

branch, 7 -2
calculation , 2-10 , 7-1
neg a tiv e , 7-2
PC-relative, 7-2

Opening,
abso lut e location, 2-5, 4-4
byte l ocation , 4-2 to 4-6
loca tion,

def initi o n, 4- 1
PC-relative l ocat i o n, 2-5 ,

4-5
preceding l ocatio n, 2-5 , 4-4
rel a ti ve branch lo cat ion,

2-6 , 4-5
seq u e nti a l location, 2-5 ,

4-4
word location, 4-2 to 4-6

Operating system,
retur n to, 2- 11

Operator, 2-3 to 2-4 , 2-7 , 4-2
ASCII (/), 2-7

"

backs l as h (\), 2-7 , 4-2 to
4-3

byte mode,
ASC II, 2- 7
octal , 2-7 , 4-2 to 4-3

comma (,), 2-4
eq ual sig n (=), 2-8, 7-2
minus s i gn (-), 2-3 to 2-4
plus sign (+), 2-3 to 2-4
Radix-50 (%) , 2-7
s l ash (/), 4-2 to 4-3
word mode,

ASCII , 2-7
octal , 2-7 , 4-2 to 4-3

(operator), 2-7 , 4-5
% (operator), 2-7 , 4- 7

(operator), 2-7 , 4-6

P command , 2-10, 3-2 to 3-3
PC-relative,

location, 2-5, 4-5
of fset, 2-10 , 7-2

Index-3

POS,
linking,

debugger, 8-2
OOT, 1-3

Plus sign (+), 2-3 to 2-4
Preceding location,

opening, 4 - 4
Proceed,

command, 2- 10, 3-2 to 3-3
count, 2- 7, 3-3

Processor status word, 8-1
register, 2-6, 5-3

Program execution,
continuing, 3-2
resuming, 3-2

Prompt,
OOT, 1-4

Q register, 2-6, 4-1, 5-3,
7-2 to 7-3

indicator, 2-3, 2- 10, 7-3
Quantity register, 2-6, 5-3,

7-3
indicator, 2-10, 7-3

Question mark (7), A-I

R command, 2-10
R register, 2-7, 5-5 to 5-6
Radix-50,

character set, 7-4
displaying, 4-6 to 4 - 7
evaluation, 7 - 4
operator (%), 2-7, 4-6 to

4-7
separator (*), 2-5, 7-4

Range,
Trace program, 8-2

Reentry,
vector register, 5-3

Reference,
search, 2-8, 6-3

Register, 2-6, 5- 1
A, 2-6, 5-3, 6-2
argument, 6-2
8, 2-6, 5-4
breakpoint,

address, 2-6, 3-1 to 3-2,
5-4

instruction, 5-4
proceed count, 3-3, 5-4

C, 2-6, 5-3
constant, 2-6
0, 2-7, 5-4, 6-2
device LUN, 2-7, 5 - 4, 6-2

INOEX

Register (Cont.)
directive status word, 2-6,

5-3
E, 2-7, 5-4
F, 2-6,5-3
format, 2-6
G, 2-7, 5-4
general, 5-2
H, 2-6, 5-3, 6- 1
high memory limit, 2-6, 6-1
I, 2-7, 5-4
indicator, 2-8
instruction, 2-7
internal, 5-2
L, 2-6, 5-3, 6-1
low memory limit, 2-6, 6-1
M, 2-6, 5-3, 6-2
memory limit, 5-3
memory operation, 6-1
proceed count, 2-7
processor status, 2-6, 5-3
Q, 2-6, 4-1, 5-3, 7-2
quantity, 2-6, 5-3
R, 2-7, 5-5 to 5-6
reentry vector, 2-6, 5-3,

5-7
relocation, 2-7, 5-5 to 5-6
S, 2-6, 5-3
search argument, 2-6, 6-2
search limit, 5-3
search mask, 2-6, 6-2
SST stack content, 2-7, 5-4
SST vector, 2-7, 5-5
V, 2-7, 5-5
W, 2-6, 5-3
X, 2-6, 5-3, 5-7

Register indicator, 2-3, 7-3
C register, 2-3
current location (.), 2-3,

2-5
Q register, 2-3

Register set, 5-4
Relative,

address, 2-2
branch location, 2-6, 4-5

Relocatable,
address, 2-2, 5-6

calculating, 2-9, 7-1
Relocation,

register, 2-2, 2-7, 5-5 to
5-6

clear, 2-10, 5-6
set, 2-10, 5-6

Reopen last location, 4-3
Resumi ng,

program execution, 3-2
task execution, 1-5, 3-2

Return key command, 2-5, 4-2

Index-4

(

(

(

(

(

(

(

S command, 2-10, 3-3
S register, 2-6 , 5-3
Search ,

argument register, 2-6, 5-3,
6-2

command, 6-3
limit register, 2-6, 5-3,

6-1
mask register, 2-6, 5-3, 6-2
memory, 2-8, 2-10, 6-3
word or byte, 2- 11, 6-3

Search command, 2-11
Semicolon (i), 2-5
Separator,

dot (.), 2-5
Ra d i x - 50 (*), 2 - 5
sem i colon (i), 2-5

Slash operator (/), 2-7,
4-2 to 4-3

SST stack co ntent,
register, 2- 7, 5-4

SS T vector,
handl i ng, 2- 11
register, 2- 7, 5-5

Step command, 2-10, 3-3
Supervisor libraries , 1-4
Supervisor mode, 1-4, 3-2

command, 2-1 1
debugg ing, 1-4
install,

READ/WRI TE, 1-4
set, 2-11

$ symbol, 2-6 , 5-1
? symbol, A-I

Task ,
pri viI eged ,

debugging, 1-4
Task Builder,

See TKB
Task execution,

abort, 1-5
begin, 2-9, 3-2
continuing, 2-10 , 3-2
resumi ng, 1-5 to 1-6, 3-2
RSX - llM - PLU S feature, 2-9

Task name, 5-1
TE trap, 1-5 to 1-6
TKB,

GBLPAT option, 8-2
linking,

INDEX

TKB (Cant.)
ODT, 1-2
OOTID, 1-3
supervisor libraries, 1-4

specifying,
debugger, 8-1

UNITS option, 6-2
Trace program, 8-2

listing,
format, 8-2

Trap, 1-5 to l -h , 2-11, 5-5,
A-2

handl i ng, 2-11, 5-5

U command, 2-11
Underscore command (), 2- 5,

4-5
UNITS Task Builder option, 6 - 2
User mode, 1-4, 3-2

command, 2-11
set, 2-11

V command, 2-11
V register, 2-7, 5-5
Variable, 2-1
Vector register, 5-7

reentry, 2-6

W command, 2-11, 6-3
W register, 2-6, 5- 3
Word location,

displaying, 4-2 to 4-6
opening, 4-2 to 4-6

Word mode,
operator,

ASCII, 2-7, 4-6
octal, 2-7, 4-2 to 4-3
Radix -5 0, 2-7

X command, 1-4, 2-11
X reg i ster, 2-6, 5-3, 5- 7
x symbol, 2-1

Z command, 2-11

Index-5

(

(

(

READER'S COMMENT S

IAS/RSX- ll
ODT Reference Manua l

AA-M507A-T C

NOTE: This form is for document comments only. DIGITAL will use comments submi tted on t his form at t he
company's discretion . If you require a wri tten reply and are eligible to rece ive one under Software
Performance Report (SPR) service, submi t your comments on an SPR form .

Did you find this manual undr. rstandable, usable, and well -organi zed? Please make suggestions for improvement .

Did you find errors in t his manual? If so, specify t he error and t he page number.

Please indicate t he type of user/ reader that you most nearly represen t.

o Assembly language programmer
o Higher-level language programmer
o Occasiona l programmer (experienced)
o User wi th li ttle programming experience
o Student programmer
o Other (please specify)

Name __ Date ________________________________ __

Organization

Street

City __ __ Sta te ____________ Zi p Code __________ __

or Country

- - Do Not Tear - Fold Here and Tape

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

BSSG PUBLICATIONS ZK1-3/J35
DIGITAL EQUIPMENT CORPORATION
110 SPIT BROOK ROAD
NASHUA, NEW HAMPSHIRE 03061

No Postage
Necessary

if Mai led in the
United States

- - - Do Not Tear - Fold Here -

I

(

(

(

01)

.s

....l
'1:j

~
o

Q
OIl = o
< -= U

Printed in U.S.A.

