PDP-11 MACRO-11

Language Reference Manual

Order No. AA-5075A-TC

dlilgliltlall

PDP-11 MACRO-11

Language Reference Manual
Order No. AA-5075A-TC

August 1977

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754.

digital equipment corporation - maynard. massachusetts

First Printing, August 1977

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use
or reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright (:) 1977 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8

DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-10

DECCOMM DECSYSTEM-20 TYPESET-11

7/79-15

CONTENTS

Page

PREFACE ix
0.1 MANUAL OBJECTIVES AND READER ASSUMPTIONS ix
0.2 STRUCTURE OF THE DOCUMENT ix
0.3 ASSOCIATED DOCUMENTS X
0.4 DOCUMENT CONVENTIONS X

PART I INTRODUCTION TO MACRO-11

CHAPTER 1 MACRO-11 FEATURES 1-1
1.1 OVERVIEW OF MACRO-11 1-1
1.1.1 Assembly Pass 1 1-1
1.1.2 Assembly Pass 2 1-2

CHAPTER 2 SOURCE PROGRAM FORMAT 2-1
2.1 PROGRAMMING STANDARDS AND CONVENTIONS 2-1
2,2 STATEMENT FORMAT 2-1
2,2.1 Label Field 2-2
2.2.2 Operator Field 2-4
2,2.3 Operand Field 2-4
2.2.4 Comment Field 2=-5
2.3 FORMAT CONTROL 2-6

PART II PROGRAMMING IN MACRO-11 ASSEMBLY LANGUAGE

CHAPTER 3 SYMBOLS AND EXPRESSIONS 3-1
3.1 CHARACTER SET 3-1
3.1.1 Separating and Delimiting Characters 3-2
3.1.2 Illegal Characters 3-3
3.1.3 Unary and Binary Operators 3-4
3.2 MACRO-11 SYMBOLS 3-5
3.2.1 Permanent Symbols 3-5
3.2.2 User-Defined and Macro Symbols 3-5
3.3 DIRECT ASSIGNMENT STATEMENTS 3-7
3.4 REGISTER SYMBOLS 3-9
3.5 LOCAL SYMBOLS 3-10
3.6 CURRENT LOCATION COUNTER 3-11
3.7 NUMBERS 3-13
3.8 TERMS 3-14
3.9 EXPRESSIONS 3-15

CHAPTER 4 RELOCATION AND LINKING 4-1

CHAPTER 5 2DDRESSING MODES 5-1
5.1 FEGISTER MODE 5-1
5.2 REGISTER DEFERRED MODE 5-2
5.3 AUTOINCREMENT MODE 5-=2

iii

CONTENTS (Cont.)

AUTOINCREMENT DEFERRED MODE
AUTODECREMENT MODE
AUTODECREMENT DEFERRED MODE
INDEX MODE
INDEX DEFERRED MODE
IMMEDIATE MODE

0 ABSOLUTE MODE

1 RELATIVE MODE

5.12 RELATIVE DEFERRED MODE

5.13 SUMMARY OF ADDRESSING FORMS

5.14 BRANCH INSTRUCTION ADDRESSING

5.15 USING TRAP INSTRUCTIONS

aguuututunnutun
® e o o o o o o

HHOVoOoNONULU &

PART III MACRO-11 DIRECTIVES

CHAPTER

=)}

GENERAL ASSEMBLER DIRECTIVES

LISTING CONTROL DIRECTIVES

1 .LIST and .NLIST Directives

2 Page Headings

3 .TITLE Directive

4 «SBTTL Directive

5 .IDENT Directive

6 .PAGE Directive/Page Ejection
FUNCTION DIRECTIVES: .ENABL AND .DSABI.
DATA STORAGE DIRECTIVES

.1 .BYTE Directive

.2 .WORD Directive

.3 ASCII Conversion Characters

.4 +ASCII Directive

.5 .ASCIZ Directive

.6 .RADS50 Directive

.7 Temporary Radix-50 Control Operator: "R

RADIX AND NUMERIC CONTROL FACILITIES

Radix Control and Unary Control Operators

.1 .RADIX Directive

-2 Temporary Radix Control Operators: "D, "0,
and "B

DAAANOOANTANAANAAANANAC OO O A O O\
. L] . . .

> BB R RWWWWWWWWN R

6.4. Numeric Directives and Unary Control Operators

6.4.2.1 -FLT2 and .FLT4 - Floating-Point Storage
Directives

6.4.2.2 Temporary Numeric Control Operators: “C and “F

6.5 LOCATION COUNTER CONTROL DIRECTIVES

6.5.1 .EVEN Directive

6.5.2 .ODD Directive

6.5.3 .BLKB and .BLKW Directives

6.6 TERMINATING DIRECTIVES

6.6.1 .END Directive

6.6.2 .EOT Directive

6.7 PROGRAM BOUNDARIES DIRECTIVE: .LIMIT

6.8 PROGRAM SECTIONING DIRECTIVES

6.8.1 .PSECT Directive

6.8.1.1 Creating Program Sections

6.8.1.2 Code or Data Sharing

6.8.1.3 Memory Allocation Considerations

6.8.2 .ASECT and .CSECT Directives

6.9 SYMBOL CONTROL DIRECTIVE: .GLOBL

6.10 CONDITIONAL ASSEMBLY DIRECTIVES

iv

oot n
o ~JoyUt U

CONTENTS (Cont.)

Page
6.10.1 Conditional Assembly Block Directives: .IF,
.ENDC 6-41
6.10.2 Subconditional Assembly Block Directives:
.IFF, .IFT, .IFTF 6-43
6.10.3 Immediate Conditional Assembly Directive:
.IIF 6-46
6.10.4 PAL-11R Conditional Assembly Directives 6-46
CHAPTER 7 MACRO DIRECTIVES 7-1
7.1 DEFINING MACROS 7-1
7.1.1 .MACRO Directive 7-1
7.1.2 .ENDM Directive 7-2
7.1.3 .MEXIT Directive 7-3
7.1.4 MACRO Definition Formatting 7-3
7.2 CALLING MACROS 7-3
7.3 ARGUMENTS IN MACRO DEFINITIONS AND MACRO CALLS 7-4
7.3.1 Macro Nesting 7-5
7.3.2 Special Characters in Macro Arguments 7-6
7.3.3 Passing Numeric Arguments as Symbols 7-6
7.3.4 Number of Arguments in Macro Calls 7-7
7.3.5 Creating Local Symbols Automatically 7-7
7.3.6 Keyword Arguments : 7-9
7.3.7 Concatenation of Macro Arguments 7-10
7.4 MACRO ATTRIBUTE DIRECTIVES: .NARG, .NCHR, AND
.NTYPE 7-11
7.4.1 .NARG Directive 7-11
7.4,2 .NCHR Directive 7-12
7.4.3 .NTYPE Directive 7-13
7.5 .ERROR AND .PRINT DIRECTIVES 7-14
7.6 INDEFINITE REPEAT BLOCK DIRECTIVES: .IRP AND
.IRPC 7-15
7.6.1 .IRP Directive 7-15
7.6.2 .IRPC Directive 7-16
7.7 REPEAT BLOCK DIRECTIVE: .REPT, .ENDR 7-17
7.8 MACRO LIBRARY DIRECTIVE: .MCALL 7-18
APPENDIX A MACRO-11 CHARACTER SETS A-1
A.l ASCII CHARACTER SET A-1
A.2 RADIX-50 CHARACTER SET A-4
APPENDIX B MACRO-11 ASSEMBLY LANGUAGE AND ASSEMBLER
DIRECTIVES B-1
B.1 SPECIAL CHARACTERS B-1
B.2 SUMMARY OF ADDRESS MODE SYNTAX B-1
B.3 ASSEMBLER DIRECTIVES B-2
APPENDIX C PERMANENT SYMBOL TABLE (PST) c-1
c.l OP CODES c-1
Cc.2 MACRO-11 DIRECTIVES c-4
APPENDIX D DIAGNOSTIC ERROR MESSAGE SUMMARY D-1
D.1 MACRO-11 ERROR CODES D-1

APPENDIX E

B BB R DD DD D W N
. . . L . L] . . . []
L] L] . L] L]

wN =

DO EE W
............0.

.« o
(SIS R R E, RO, T, B, IS, BN
e & e o O ¢ o o . e e
BB DR WN UV WN K
e o
B W=

o o o
wN -
o o o o o
Vb W -

HHHEHM DD
..I....l.l..i....'..
[

HHEMHOVOVOJIOOAO LT

OO0
o o
[(SN o

APPENDIX

APPENDIX

APPENDIX H

CONTENTS (Cont.)

SAMPLE CODING STANDARD

INTRODUCTION
LINE FORMAT
COMMENTS
NAMING STANDARDS
Register Standards
General Purpose Registers
Hardware Registers
Device Registers
Processor Priority
Other Symbols
Using the Standard Symbolics
Symbols
Global Symbols
Symbol Examples
Program-Local Symbols
Macro Names
PROGRAM MODULES
General Comments on Programs
The Mcdule Preface
Formatting the Module Preface
Modularity
Calling Conventions (Inter-Module)
Exiting
Intra-Module Calling Conventions
Success/Failure Indication
Module Checking Routines
FORMATTING STANDARDS
Program Flow
Common Exits
Code with Interrupts Inhibited
PROGRAM SOURCE FILES
FORBIDDEN INSTRUCTION USAGE
RECOMMENDED CODING PRACTICE
Conditional Branches
PDP-11 VERSION NUMBER STANDARD
Displaying the Version Identifier
Use of the Version Number in the Program

ALLOCATING VIRTUAL MEMORY

GENERAL HINTS AND SPACE-SAVING GUIDELINES
MACRO DEFINITIONS AND EXPANSIONS
OPERATIONAL TECHNIQUES

WRITING POSITION INDEPENDENT CODE

INTRODUCTION TO POSITION INDEPENDENT CODE
EXAMPLES

SAMPLE ASSEMBLY AND CROSS REFERENCE LISTING

vi

9 o
I o
= Q

o

HHonEHEHEEHEE MW
L T T N A T I |
WNNONDNNE -

1
R wWwwww

DHEHOHEEEEE
L I T T I I |

-

]
HHOYOYVVVVWVOOIULMILLULTL

mmmmmt?mmmtum

=12

CONTENTS (Cont.)

Page
FIGURES
FIGURE 3-1 Assembly Listing Showing Local Symbol Block 3-11
3-2 Sample Assembly Results 3-12
6-1 Example of Line Printer Assembly Listing 6-6
6-2 Example of Terminal Assembly Listing 6-7
6-3 Listing Produced With Listing Control
Directives 6-9
6-4 Assembly Listing Table of Contents 6-12
6-5 Example of .ENABL and .DSABL Directives 6-16
6-6 Example of .BLKB and .BLKW Directives 6-30
7-1 Example of .IRP and .IRPC Directives 7-17
TABLES
TABLE 3-1 Special Characters Used in MACRO-11 3-1
3-2 Legal Separating Characters 3-3
3-3 Legal Argument Delimiters 3-3
3-4 Legal Unary Operators 3-4
3-5 Legal Binary Operators 3-5
6-1 Symbolic Arguments of Listing Control
Directives 6-3
6-2 Symbolic Arguments of Function Control
Directives 6-14
6-3 Symbolic Arguments of .PSECT Directive 6-33
6-4 Non-IAS/RSX-1ll Program Section Default Values 6-39
6=5 Legal Condition Tests for Conditional Assembly
Directives 6-41
6-6 Subconditional Assembly Block Directives 6-44

vii

PREFACE

0.1 MANUAL OBJECTIVES AND READER ASSUMPTIONS

The intent of this manual is to enable users to develop programs coded
in the MACRO-11 assembly language. No prior knowledge of the MACRO-11
Relocatable Assembler is assumed.

Although the description of the assembly language is wholly
self-contained within this manual, the reader is assumed to be
familiar with the PDP-11 processors and related terminology, as
presented in the PDP-11 Processor Handbooks. No attempt is made in
this document to describe the PDP-11 hardware or the functions of the
various PDP-11 instructions.

Since the development of programs necessarily involves linking to
create an executable image, the reader 1is encouraged to become
familiar with this process, as presented in the applicable system
manual (see Section 0.3).

In presenting MACRO-11l, a tutorial bias has been adopted to enlarge
upon the reference material. This posture 1is reflected 1in the
examples and the accompanying commentary describing MACRO-11 language
elements in typical applications. Portions of text that are shaded
indicate that a particular MACRO-11 feature is not available in the 8K
version of MACRO-11.

0.2 STRUCTURE OF THE DOCUMENT

This manual contains three parts. Part I, consisting of two chapters,
briefly introduces MACRO-11. Chapter 1 1lists the key features of
MACRO-11, and Chapter 2 identifies the advantages of following
programming standards and conventions. Also described is the format
used in coding MACRO-11 source programs.

Part II, consisting of three chapters, presents general information
essential to programming with the MACRO-11 assembly language. Chapter
3 describes the symbols, terms, and expressions that form the elements
of MACRO-11 instructions. The character set is listed, and the types
of programming symbols that may be defined by the user are discussed.
Chapter 4 describes the output of MACRO-11 and presents concepts
essential to the proper relocation and 1linking of object modules.
Chapter 5 briefly describes how data stored in memory can be accessed

and manipulated using the addressing modes recognized by the PDP-11
hardware.

ix

Part III, consisting of two chapters, describes the MACRO-11
directives that control the processing of source statements during
assembly. Chapter 6 discusses directives which accomplish generalized
MACRO-11 functions, while Chapter 7 deals with directives used in the
definition and expansion of macros.

Finally, several appendixes are provided, supplying additional
information of interest to the MACRO-11 programmer.

Appendix A lists the ASCII and Radix-50 character sets that may be
used in MACRO-1ll1 programs. Appendix B lists the special characters
recognized by MACRO-11, summarizes the syntax of the various
addressing modes used in PDP-11 processors, and briefly describes the
MACRO-11 directives in alphabetical order. The permanent symbols that
have been defined for use with MACRO-11 are listed alphabetically in
Appendix C.

The diagnostic error codes produced by MACRO-11 to identify various
types of errors detected during the assembly process are listed
alphabetically in Appendix D. Appendix E contains a sample coding
standard that is recommended practice in preparing MACRO-11 programs.
Appendix F discusses several methods of conserving dynamic memory

space for wusers of small systems who may experience difficulty in
assembling MACRO-11l programs.

Appendix G is a discussion of position independent code (PIC).

0.3 ASSOCIATED DOCUMENTS

The reader should refer to the applicable documentation directory

listed below for descriptions of documents associated with this
manual.

IAS Documentation Directory

RSX-11D Documentation Directory

RSX-11M/RSX-11S Documentation Directory

RT-11 Documentation Directory

0.4 DOCUMENT CONVENTIONS
The symbols defined below are used throughout this manual.
Symbol Definition

[] Brackets indicate that the enclosed argument is
optional.

“ Vertical bars indicate that a single choice must be
made from a list of arguments.

ces Ellipsis indicates optional continuation of an argument
list in the form of the last specified argument.

UPPER-CASE
CHARACTERS

lower-case
characters

(n)

Upper-case characters indicate elements of the language
that must be used exactly as shown.

Lower-case characters indicate elements of the language
that are supplied by the programmer.

In some instances the symbol (n) is used following a
number to indicate the radix. For example, 100(8)
indicates that 100 is an octal value, while 100(10)
indicates a decimal value.

xi

PART I

INTRODUCTION TO MACRO-11

CHAPTER 1

MACRO-11 FEATURES

The MACRO-11 Assembler provides the following features:

1. Source and command string control of assembly functions

2. Device and filename specifications for input and output files
3. Error listing on command output device
4

. Alphabetized, formatted symbol table 1listing; optional
cross-reference listing of symbols

5. Relocatable object modules

6. Global symbols for linking object modules
7. Conditional assembly directives

8. Program sectioning directives

9. User-defined macros and macro libraries
10. Comprehensive system macro library

11. Extensive source and command string control of 1listing
functions.

1.1 OVERVIEW OF MACRO-11

MACRO-11 is a 2-pass assembler. The functions and operations relevant
to each assembly pass are described in the following sections.

1.1.1 Assembly Pass 1

The main purpose of assembly pass 1 is to locate and read all required
macros from libraries; to build symbol tables and program section
tables for the program; while also performing a rudimentary assembly
of each source statement.

The first stage of assembly pass 1 is the initialization of all impure
data areas that MACRO-11 uses internally for the assembly process.
These areas include all dynamic storage areas and buffer areas used as
file storage regions.

After initializing memory areas, MACRO-11 issues a call to a system
subroutine which transfers a command line into memory. This command

1-1

MACRO-11 FEATURES

line contains the specifications of the files to be used during
assembly. After scanning the command line for proper syntax, MACRO-11
initializes the specified output files. These files are opened to
determine if valid output file specifications have been passed in the
command line. They are then closed to minimize requirements for
active file space.

As the assembly process begins, MACRO-11 initiates a routine which
retrieves source 1lines from the input file. If no such file is
currently open, as is the case at the beginning of assembly, MACRO-11
opens the next input file specified in the command line previously
read and begins to assemble the source statements. MACRO-11
determines the length of each instruction and assembles it accordingly
as one word, two words, or three words.

At the end of assembly pass 1, MACRO-1l1 reopens the output files
described above and writes out information that is to be used later in
linking the object modules. Such information as the object module
name, the program version number, and the global symbol directory
(GSD) entries for each program section are output to the object file.
After writing out the GSD entries for a given program section,
MACRO-11 scans through the symbol tables to find all the global
symbols that are bound to that particular program section. MACRO-11
then writes out GSD records to the object file for these symbols.
This process continues for each program section, bringing to a close
assembly pass 1.

1.1.2 Assembly Pass 2

As an integral part of pass 2, MACRO-11 simultaneously writes the
object records to the output file and generates the assembly listing,
followed by the symbol table listing for the program. A
cross-reference listing may also be generated.

Basically, assembly pass 2 consists of the same steps performed in
assembly pass 1, except that all source statements containing
MACRO-1ll-detected errors are flagged with an error code as the
assembly 1listing file is created. The object file that is created as
the final consequence of pass 2 contains all the object records,
together with relocation records containing information necessary for
subsequent linking of the object file.

The information thus passed enables the global symbols in the object
modules to be associated with absolute or virtual memory addresses,
thereby forming an executable body of code.

The user may wish to become familiar with the macro object file format

and description. This information is presented in the applicable
system manual (see Section 0.3 in the Preface).

1-2

CHAPTER 2

SOURCE PROGRAM FORMAT

2.1 PROGRAMMING STANDARDS AND CONVENTIONS

Assembly level programming deals directly with the host hardware.
Hence, great care must be exercised in establishing programming
standards and conventions to enable code written by one group to be
interchanged easily with another group. Standards provide a number of
advantages. When applied to the program development process,
standards make the programming effort easier to:

Plan
Comprehend
Test
Modify
Convert

Even though standards must accommodate local requirements, many
aspects of the program development process have universal
applicability. The standards common to all of DIGITAL's PDP-11
software products are presented in Appendix E as a model for users.
Observance of these standards is beneficial to DIGITAL and its users,
by simplifying both communications and the continuing task of software
maintenance and enhancement.

2.2 STATEMENT FORMAT

A source program is composed of a sequence of source coding lines.
Each 1line contains a single assembly-language statement. MACRO-11
will accept a source line of 132 characters, but 80 characters is the
recommended length, because of constraints imposed by listing format
and terminal line size.

A MACRO-11 statement may consist of as many as four fields. These
fields are identified by their order of appearance within the
statement and/or by specified separating characters between fields.
The general format of a MACRO-1l1l statement is:

Label: Operator Operand ;Comment (s)

The label and comment fields are optional. The operator and operand
fields are interdependent, i.e., when both fields are present in a
source statement, each field is evaluated by MACRO-11l in the context
of the other.

A statement may contain an operator field and no operand field, but
the reverse 1is not true. A statement containing an operand with no
operator does not conform to established MACRO-11 coding conventions;
such a statement is currently interpreted by MACRO-1l1l during assembly
as an implicit .WORD directive (see Section 6.3.2).

2-1

SOURCE PROGRAM FORMAT

MACRO-11 interprets and processes source program statements one by
one, generating one or more binary instructions or data words, or
performing a specified assembly process. Blank lines, although legal,
have no significance in the source program.

An assembly-language statement must be completed on one source line;
no continuation lines are allowed in MACRO-11.

The tab character can be used in the source statement to format the
fields into aligned columns in accordance with DIGITAL's standard
source program format, as shown below:

Label - begins in column 1
Operator - begins in column 9
Operand(s) - begin(s) in column 17
Comment (s) - begin(s) in column 33.

For example, the following statement should be formatted in the source
program into specific columns, increasing its readability in the
assembly listing:

REGTST:BIT#MASK,VALUE; COMPARES BITS IN OPERANDS.
1 9 17 33 (columns)
REGTST: BIT #MASK , VALUE ;COMPARES BITS IN OPERANDS.

The above formatting conventions are not mandatory in coding MACRO-11
programs (free-field coding is permissible). However, it is
recommended that source programs be prepared in accordance with these
conventions for consistency and clarity.

2.2.1 Label Field

A label is a means of symbolically referring to a location in a
program.

A label is a user-defined symbol which is assigned the value of the
current location counter and entered into the user—defined symbol
table. The current location counter is the means by which MACRO-11
assigns memory addresses to the source program statements as they are
encountered during the assembly process. The address value of the
label 1is absolute or relocatable, depending on whether the current
program section being assembled is absolute or relocatable. (The
concept of program sections and the attributes that may be specified
for them are discussed in detail in Section 6.8.)

In the case of an absolute program section, the value of the current
location counter is likewise absolute, i.e., its value references an
absolute virtual memory address (such as location 100). Similarly,
the value of the current location counter in a relocatable program
section is also relocatable; however, a relocation bias calculated at
link time will be added to the apparent value of the current location
counter to establish its effective absolute virtual address at
execution time.

SOURCE PROGRAM FORMAT

If present, a label always appears as the first field in a source
statement and must be terminated by a colon. For example, if the
current location counter value is absolute 100(8), the statement:

ABCD: MOV A,B

assigns the value 100(8) to the label ABCD. Subsequent references to
this label would then yield a value of absolute 100(8). In this
example, if the location counter value were relocatable, the final
value of ABCD would be 100(8)+K, where K represents the relocation

bias of the program section, as calculated by the Task Builder at link
time.

More than one label may appear within a single 1label field. Each
label so specified is assigned the same address value. For example,
if the current location counter value is 100(8), the multiple labels
in the following statement:

ABC: $DD: A7.7: MOV A,B
are each assignet uhe value 100(8).

Multiple labels may also appear on successive lines. For example, the
statements

ABC:
$DD:
A7.7: MOV A,B

likewise cause the same current location counter value to be assigned
to all three labels.

Of the two methods of assigning multiple labels shown above, the
second is preferred, because consistency of field positioning within
the source program improves readability.

A double colon (::) defines the label as a global symbol. Such a
label can be referenced by independently-assembled object modules.
References to this label in other modules will be resolved when the
modules are linked as a composite executable image. For example, the
statement

ABCD:: MOV A,B

establishes the label ABCD as a global symbol. The distinguishing
attribute of a global symbol is that it can be referenced from within
an object module other than the module in which the symbol is defined
(see Section 6.9).

The legal characters for defining labels are:

A through 2

0 through 9

. (Period)

$ (Dollar Sign)

NOTE

By ccnvention, the dollar sign ($) and period (.)
are reserved for use in defining DIGITAL system
software symbols. Therefore these characters
should not be used in defining labels in MACRO-1l1
source programs.

SOURCE PROGRAM FORMAT

A label may be any length; however, only the first six characters are
significant and, therefore, must be unique among all the labels in the
source program. All labels are terminatd by a colon (:), which is not
considered part of the label. It is a mandatory delimiter. An error
code (M) is generated in the assembly listing if the first six
characters in two or more labels are the same (see Appendix D).

A symbol used as a label must not be redefined within the source
program. If the symbol is redefined, a label with a multiple
definition results, causing MACRO-11 to generate an error code (M) in
the assembly listing (see Appendix D). Furthermore, any statement in
the source program which references a multi-defined label results in
an additional diagnostic message; in this case, an error code (D) is
generated in the assembly listing (see Appendix D).

2.2.2 Operator Field

The operator field specifies the action to be performed. It may
consist of an instruction mnemonic (op code), an assembler directive,
or a macro call.

The operator field follows the label field in a source statement.
Chapters 6 and 7 describe these three types of operatcr field entries.

When the operator is an instruction mnemonic, the mnemonic op code
specifies the machine instruction to be generateé. MACRO-1l1l then
continues with the evaluation of the address(es) of the operand(s)
which follow(s). When the operator is a directive, the directive
causes MACRO-11 to perform certain control actions or processing
operations during the assembly of the source program. When the
operator is a macro call, MACRO-11 inserts the code generated by the
macro expansion.

The operator field need not be preceded by a label; but it may be
preceded by one or more labels and followed by one or more operands
and/or a comment. Furthermore, leading and trailing spaces or tabs in
the operator field have no significance; such characters serve only
to separate the operator field from the preceding and following
fields.

An operator is terminated by a space, tab, or any non-RAD50 character,
as in the following examples:

MOV A,B ;THE SPACE TERMINATES THE OPERATOR
;MOV.

MOV A,B ;THE TAB TERMINATES THE OPERATOR MOV.

MOV@A,B ;THE @ CHARACTER TERMINATES THE

;OPERATOR MOV.

Although the statements above are all equivalent in function, the
second statement 1is the recommended form because it conforms to
MACRO-11 coding conventions.

2.2.3 Operand Field

When the operator field contains an instruction mnemonic (op code),
the operand field specifies those program variables that are to be

2-4

SOURCE PROGRAM FORMAT

evaluated/manipulated by the operator. The operand field may also be
used to supply arguments to MACRO-1l1l directives and macro calls, as
described in Chapters 6 and 7, respectively.

Operands may be expressions or symbolic arguments (within the context
of the specified operation). Multiple expressions used in the operand
field of a MACRO-11 statement must be separated by a comma; multiple
symbolic arguments similarly used may be delimited by any legal
separator, i.e., a comma, tab, and/or space. An operand should be
preceded by an operator field; if it is not, the statement is treated
by MACRO-11 as an implicit .WORD directive (see Section 6.3.2).

When the operator field contains an op code, associated operands are
always expressions, as shown in the following statement:

MOV RO,A+2(R1)

On the other hand, when the operator field contains a MACRO-11
directive or a macro call, associated operands are normally symbolic
arguments, as shown in the following statement:

.MACRO ALPHA ARGl ,ARG2

Refer to the description of each MACRO-11l directive to determine the
type and number of operands required in issuing the directive.

The operand field is terminated by a semicolon when the field is
followed by a comment. For example, in the following statement:

LABEL: MOV A,B ;COMMENT FIELD

the tab between MOV and A terminates the operator field and defines
the beginning of the operand field; a comma separates the operands A
and B; and a semicolon terminates the operand field and defines the
beginning of the comment field. When no comment field follows, the
operand field is terminated by the end of the source line.

2.2.4 Comment Field

The comment field normally begins in column 33 and extends through the
end of the line. This field is optional and may contain any ASCII
characters except null, RUBOUT, carriage-return, line-feed,
vertical-tab o¢r form-feed. All other characters appearing in the
comment field, even special characters reserved for use in MACRO-11,
are checked only for ASCII legality and then included in the assembly
listing as they appear in the source text.

All comment fields must begin with the semicolon character(;). When
lengthy comments extend beyond the end of the source line (column 80),
the comment may be resumed in a following line. Such a 1line must
contain a leading semicolon, and it is suggested that the body of the
comment be continued in the same columnar position in which the
comment began. A comment 1line can also be included as an entirely
separate line within the code body.

Comments do not affect assembly processing or program execution.
However, comments are useful in source listings for later analysis,
debugging, or documentation purposes.

SOURCE PROGRAM FORMAT

2.3 FORMAT CONTROL

Horizontal formatting of the source program is controlled by the space
and tab characters. These characters have no effect on the assembly
process unless they are embedded within a symbol, number, or ASCII
text string, or unless they are used as the operator field terminator.
Thus, the space and tab characters can be used to provide an orderly
and readable source program, as reflected by the following statements:

LABEL:MOV (SP) +,TAG; POP VALUE OFF STACK.

No spaces or tabs have been used to separate the fields in this
statement. Note the difficulty in recognizing where one field ends
and the next begins.

LABEL: MOV (SP)+,TAG ;POP VALUE OFF STACK.

This statement conforms to the standard horizontal formatting
conventions, i.e., the statement elements are separated into four
distinct fields and are therefore easily discernible.

Page formatting and assembly listing considerations are discussed in
Chapter 6 in the context of MACRO-11 directives that may be specified
to accomplish desired formatting operations. Appendix E describes the
coding conventions wused in all DIGITAL PDP-11 operating system
software.

PART 1II

PROGRAMMING
IN MACRO-11 ASSEMBLY
LANGUAGE

CHAPTER 3

SYMBOLS AND EXPRESSIONS

This chapter describes the components of MACRO-11 instructions. The

character

set, the conventions observed in constructing symbols, and

the use of numbers, operators, terms and expressions are discussed as

they rela

te to MACRO-1ll programming.

3.1 CHARACTER SET

The following characters are legal in MACRO-11l source programs:

l. The letters A through Z. Both upper- and lower-case letters
are acceptable, although, upon input, lower-case letters are
converted to upper-case (see Section 6.2, .ENABL LC).

2. The digits 0 through 9.

3. The characters . (period) and $ (dollar sign). These
characters are reserved for use as Digital Equipment
Corporation system program symbols.

4. The special characters listed in Table 3-1.

Table 3-1
Special Characters Used in MACRO-11
Character Designation Function AW
: Colon Label terminator.
HH Double colon Label terminator; defines the
label as a global label.
= Equal sign Direct assignment operator;
and macro keyword indicator.
== Double equal Direct assignment operator;
sign defines the symbol as a global
symbol.
$ Percent sign Register term indicator.
Tab Item or field terminator.
Space Item or field terminator.

(Continued on next page)

SYMBOLS AND EXPRESSIONS

Table 3-1 (Cont.)

Special Characters Used in MACRO-11

Character Designation Function

Number sign Immediate expression
indicator.

@ At sign Deferred addressing indicator.

(Left parenthesis Initial register indicator.

) Right parenthesis Terminal register indicator.

. Period Current location counter

’ Comma Operand field separator.

; Semicolon Comment field indicator.

< Left angle Initial argument or expression

bracket indicator.

> Right angle Terminal argument or expres-

bracket sion indicator.

+ Plus sign Arithmetic addition operator
or autoincrement indicator.

- Minus sign Arithmetic subtraction opera-
tor or autodecrement indica-
tor.

* Asterisk Arithmetic multiplication op-
erator.

/ Slash Arithmetic division operator.

& Ampersand Logical AND operator.

! Exclamation point Logical inclusive OR operator.

" Double quote Double ASCII character indica-
tor.

! Single quote Single ASCII character indica-
tor; or concatenation
indicator.

) Up arrow or Universal unary operator or

circumflex argument indicator.

\ Backslash Macro call numeric argument

indicator.

3.1.1 Separating and Delimiting Characters

Legal separating characters and legal argument delimiters are defined
below in Tables 3-2 and 3-3 respectively.

3-2

SYMBOLS AND EXPRESSIONS

Table 3-2

Legal Separating Characters

Character

Definition

Usage

Space

One or more spa
and/or tabs

Comma

ces

A space is a legal separator
between instruction fields and
between symbolic arguments
within the operand field.
Spaces within expressions are
ignored (see Section 3.9).

A comma is a legal separator
between symbolic arguments
within the operand field.
Multiple expressions wused in
the operand field must be
separated by a comma.

Table 3-3

Legal Argument Delimiters

Character

Definition

Usage

Ceve?

"X.e..X

Paired angle br

Up—arrow (unar
ator) constr
where the up-a
followed by a
ment that is br
by any paired p
characters (x).

ackets

y oper-
uction,
rrow is
n argu-
acketed
rinting

Paired angle brackets may be
used anywhere in a program to
enclose an expression for
treatment as a single term.
Paired angle brackets are also
used to enclose a macro
argument, particularly when
that argument contains separ-
ating characters (see Section
7.3).

This construction is equiva-
lent in function to the paired
angle brackets described above
and is generally used only
where the argument itself con-
tains angle brackets.

3.1.2 11

legal Characters

A character is determined to be illegal for one of two reasons:

1. A character is not an
character set. A character of this kind is replaced in the
listing by a question mark, and an error code (I) is printed
in the assembly listing (see Appendix D). The exception to
this is an embedded null which, when detected, terminates the

scan of the current 1

element

ine.

of the recognized MACRO-11

SYMBOLS AND EXPRESSIONS

2. A legal MACRO-11 character is illegal in the context of its
usage within the source statement, i.e., its syntax is
illegal or questionable. Such a character causes an error
code (Q) to be printed in the assembly listing.

3.1.3 Unary and Binary Operators

Legal MACRO-11 unary operators are described in Table 3-4. Unary
operators are used in connection with single terms (arguments or
operands) to indicate an action to be performed on that term during
assembly. A term preceded by a unary operator is considered to
contain that operator. The term so specified thus becomes a value
which can be used alone or as an element of an expression.

Table 3-4
Legal Unary Operators

Unary
Operator Explanation Example Ef fect
+ Plus sign +a Produces the positive
value of A.
- Minus sign -A Produces the negative
(2's complement) value of
A.
~ Up-arrow, univer- ~Cc24 Produces the 1's comple-
sal unary operator. ment value of 24(8).
(This usage is
described in detail “D127 Interprets 127 as a
in Section 6.4.) decimal number.

~034 Interprets 34 as an octal
number.

"B11000111 Interprets 11000111 as a
binary number.

“"RABC Evaluates ABC in Radix-50
form.

Unary operators can be used adjacent to each other or in constructions
involving multiple terms, as shown below:

-"D50 (Equivalent to =-<"D50>)
"C"012 (Equivalent to “C<"012>)

Legal MACRO-11 binary operators are described in Table 3-5. In
contrast to wunary operators, binary operators specify actions to be
performed on multiple items or terms within an expression. Table 3-5
shows the relationships that can be established between expression
terms through the use of binary operators.

SYMBOLS AND EXPRESSIONS

Table 3-5
Legal Binary Operators
Binary
Operator Explanation Example
+ Addition A+B
- Subtraction A-B
* Multiplication A*B (l6-bit product returned)
/ Division A/B (16-bit quotient returned)
& Lcgical AND A&B
! Legical inclusive OR A!B
All binary operators have equal priority. Items or terms can be

grouped for evaluation within an expression by enclosing them within
angle brackets. Terms so enclosed are evaluated first, and remaining
operations are performed from left to right, as shown in the examples
below:

.WORD 1+42*3 ;EQUALS 11(8).
.WORD 1+4<2*3> ;EQUALS 7(8).

3.2 MACRO-1l1] SYMBOLS

Three types of symbols may be defined for use within MACRO-1l source
programs: permanent symbols, user-defined symbols, and macro symbols.
MACRO-11 maintains three types of symbol tables: the Permanent Symbol
Table (PST), the User Symbol Table (UST), and the Macro Symbol Table
(MST). The PST contains all the permanent symbols defined within (and
thus automatically recognized by) MACRO-11 and is part of the MACRO-1ll1
image. The UST and MST are constructed as the source program is
assembled.

3.2.1 Permanent Symbols

Permanent symbols consist of the instruction mnemonics (see Appendix
C) and MACRO-11 directives (see Chapters 6 and 7 and Appendix B).
These symbols are a permanent part of the MACRO-1ll image and need not
be defined before being used in the operator field of a MACRO-11l
source statement (see Section 2.2.2).

3.2.2 User-Defined and Macro Symbols

User-defined symbols are those symbols treated by the programmer as
labels (see Section 2.2.1) or that are equated to a specific value
through a direct assignment statement (see Section 3.3) or appear as
macro names or dummy arguments. These symbols are added to the User
Symbol Table as they are encountered during assembly. Macro symbols
are those symbols used as macro names (see Section 7.1). Similarly,
these symbols are added to the Macro Symbol Table as they are
encountered during assembly.

3-5

SYMBOLS AND EXPRESSIONS

User-defined and macro symbols can be composed of alphanumeric

characters, dollar signs ($), and periods (.) only; any other
character is illegal.

NOTE

The dollar sign ($) and period (.) characters are
reserved for use in defining Digital Equipment
Corporation system software symbols. For example,
READS is a file-processing system macro. The user
is cautioned not to employ these characters in
constructing user-defined symbols or macro symbols
in order to avoid possible conflicts with existing

or future Digital Equipment Corporation system
software symbols.

The following rules govern the creation of user-defined and macro
symbols:

1. The first character of a symbol must not be a number (except
in the case of local symbols; see Section 3.5).

2. The first six characters of a symbol must be unique.

3. A symbol can be written with more than six legal characters,
but the seventh and subsequent characters are checked only

for ASCII 1legality and are not otherwise evaluated or
recognized by MACRO-11.

4. Spaces, tabs, and illegal characters must not be embedded
within a symbol. The legal MACRO-11 character set is defined
in Section 3.1.

The value of a symbol depends upon its use in the program. When a
symbol appears in the operator field, it may be any one of the three
symbol types described above i.e., permanent, user-defined, macro. To

determine the value of an operator-field symbol, MACRO-11 searches the
symbol tables in the following order:

1. Macro Symbol Table
2. Permanent Symbol Table
3. User-Defined Symbol Table

This search order allows redefinition of Permanent Symbol Table
entries as macro symbols. That is, permanent symbols may be used as
macro symbols. But the user must keep in mind the sequence in which
the search for symbols is performed in order to avoid incorrect
interpretation of the symbol's use.

When a symbol appears in the operand field, the User-Defined Symbol
Table is searched first, then the Permanent Symbol Table is searched.

Depending on their use in the source program, user-defined symbols
have either a 1local (internal) attribute or a glecbal (external)
attribute.

Normally, MACRO-11 treats all user-defined symbols as local, that is,
their definition is 1limited to the module in which they appear.
However, symbols can be explicitly declared to be global symbols
through one of three methods:

SYMBOLS AND EXPRESSIONS

1. Use of the .GLOBL directive (see Section 6.9).

2. Use of the double colon (::) in defining a label (see Section
2.2.1).

3. Use of the double equal (== sign in a direct assignment
statement (see Section 3.3).

All symbols within a module that remain undefined at the end of
assembly are treated as default global references.

NOTE

Undefined symbols at the end of assembly are
assigned a value of 0 and placed into the
user-defined symbol table as undefined default
global references. If the .DSABL GBL directive is
in effect, however, (see Section 6.2), the
automatic global reference default function of
MACRO-11 1is inhibited, causing the statement
containing the undefined symbol to be flagged with
an error code (U) in the assembly 1listing (see
Appendix D).

Global symbols provide linkages between independently-assembled object
modules within the task image. A global symbol defined as a label,
for example, may serve as an entry-point address to another section of
code within the image. Such symbols are referenced from other source
modules in order to transfer control throughout execution. These
global symbols are resolved at link time, ensuring that the resulting
image is a logically coherent and complete body of code.

3.3 DIRECT ASSIGNMENT STATEMENTS
A direct assignment statement allows you to equate a symbol to a
specific value. When a direct assignment statement is first used to
define a symbol, that symbol is entered into the User-Defined Symbol
Table. A symbol defined in this manner may be redefined in a
subsequent direct assignment statement by assigning a new value to the
previously-defined symbol.
The general format for a direct assignment statement is:
symbol=expression

or
symbol==expression

where: expression = can have only one level of forward reference
(see 5. below).

- cannot contain an undefined global reference.

A direct assignment statement embodying the double equal (==) sign, as
shown above, defines the symbol as global (see Section 6.9).

SYMBOLS AND EXPRESSIONS

The following examples illustrate the coding of direct assignment
statements:

A=]1 :THE SYMBOL A IS EQUATED TO THE
;VALUE 1.
B=A~1&MASKLOW ;THE SYMBOL B IS EQUATED TO THE

;:VALUE OF THE ENTIRE EXPRESSION
sWHICH FOLLOWS.

;THE SYMBOL D IS EQUATED TO ., AND

MOV #1,ABLE ;THE LABELS C AND E ARE ASSIGNED A
;VALUE THAT IS EQUAL TO THE LOCATION
;OF THE MOV INSTRUCTION.

mon
o || e

The last of the three examples above is provided only to illustrate
the performance of MACRO-11 in such situations. See Section 3.6 for a
description of the period (.) as the current location counter symbol.

The following conventions apply to the coding of direct assignment
statements:

1. An equal sign (=) or double equal sign (==) must separate the
symbol from the expression defining the symbol's value.
Spaces preceding and/or following the direct assignment
operators, although permissible, have no significance in the
resulting value.

2. The symbol being assigned in a direct assignment statement is
placed in the label field.

3. Only one symbol can be defined in a single direct assignment
statement.

4. A direct assignment statement may be followed only by a
comment field.

5. Only one level of forward referencing is allowed, as shown in
the following example:

X=Y (Illegal forward reference)
y=z (Legal forward reference)
z=1

The above example would result in the generation of an error code (U)

in the assembly 1listing on the line containing the illegal forward
reference.

Although one 1level of forward referencing 1is allowed for local
symbols, a global symbol defined in a direct assignment statement must
not contain a forward reference, i.e., the global assignment
expression must not itself contain an undefined reference to another
symbol. Such a forward reference is illegal, causing an error code
(A) to be generated in the assembly listing.

3-8

SYMBOLS AND EXPRESSIONS

3.4 REGISTER SYMBOLS

The eight general registers of the PDP-11 processor are numbered 0
through 7 and can be expressed in the source program in the following
manner:

%0
%1

.

%7

where % indicates a reference to a register rather than a 1location.
The digit specifying the register can be replaced by any legal,
absolute term that can be evaluated during the first assembly pass.
Use standard symbolic names for all register references.

The register definitions listed below are automatically assigned by
MACRO-11, i.e., these definitions are the normal default values and
remain valid for all register references within the source program.

RO=%0 ;REGISTER 0 DEFINITION.
R1l=%1 ;REGISTER 1 DEFINITION.
R2=%2 sREGISTER 2 DEFINITION.
R3=%3 ;REGISTER 3 DEFINITION.
R4=%4 ;REGISTER 4 DEFINITION.
R5=%5 ;REGISTER 5 DEFINITION,
SP=%6 ;STACK POINTER DEFINITION.
PC=%7 ; PROGRAM COUNTER DEFINITION.

Note that registers 6 and 7 are given special names because of their
unique system functions.

A register symbol may be defined in a direct assignment statement
appearing in the program. The defining expression of a register
symbol must be a legal, absolute value. Although you can reassign the
standard register symbols through the use of the .DSABL REG directive
(see Section 6.2), this practice is not recommended. An attempt to
redefine a default register symbol without first specifying the .DSABL
REG directive to override the normal register definitions causes that
assignment statement to be flagged with an error code (R) in the
assembly listing. The symbolic default names assigned to the
registers, as 1listed above, are the conventional names used in all
DIGITAL-supplied PDP-1ll system programs. For this reason, you are
well advised to follow these conventions.

All non-standard register symbols must be defined before they are
referenced in the source program. A register expression less than 0
or greater tharn 7 is flagged with an error code (R) in the assembly
listing.

The % character may be used with any 1legal term or expression to
specify a register. For example, the statement

CLR $3+1
is equivalent in function to the statement
CLR %4

and clears the contents of register 4.

3-9

SYMBOLS AND EXPRESSIONS

In contrast, the statement
CLR 4

clears the contents of virtual memory location 4.

3.5 LOCAL SYMBOLS

Local symbols are specially formatted symbols used as labels within a
block of coding that has been delimited as a local symbol block.
Local symbols are of the form n$, where n is a decimal integer from 1
to 65535, inclusive. Examples of local symbols are:

1$
27$
59$
1048

A local symbol block is delimited in one of three ways:

1. The range of a local symbol block usually consists of those
statements between two normally-constructed symbolic labels
(see Figure 3-1). Note that a statement of the form:

ALPHA=expression

is a direct assignment statement (see Section 3.3), but does
not create a label and thus does not delimit the range of a
local symbol block.

2. The range of a local symbol block is normally terminated upon
encountering a .PSECT, .CSECT, or .ASECT directive in the
source program (see Figure 3-1).

3. The range of a local symbol block is delimited through
MACRO-11 directives, as follows:

Starting delimiter: .ENABL LSB (see Section 6.2)
Ending delimiter: .ENABL LSB
or
.DSABL LSB (see Section 6.2)
followed by one of: Symbolic label

.PSECT (see Section 6.8.1)
.CSECT (see Section 6.8.2)
.ASECT (see Section 6.8.2)

Local symbols provide a convenient means of generating labels for
branch instructions and other such references within a local symbol
block. Using local symbols reduces the possibility of symbols with
multiple definitions appearing within a user program. 1In addition,
the use of local symbols differentiates entry-point labels from 1local
labels, since 1local symbols cannot be referenced from outside their
respective local symbol block. Thus, local symbols of the same name
can appear in other 1local symbol blocks without conflict. Local
symbols do not appear in cross-reference listings.

3-10

SYMBOLS AND EXPRESSIONS

Local symbols require less symbol table space than other types of
symbols. Their use is recommended. When defining local symbols, use
the range from 1$ to 63$ first, then the range from 128§ to 655358$.
Local symbols within the range 64$ through 127$, inclusive, can be
generated automatically as a feature of MACRO-1l1l. Such local symbols
are useful in the expansion of macros during assembly and are
described in detail in this context in Section 7.3.5.

Be sure to avoid multiple definitions of local symbols within the same
local symbol block. For example, if the local symbol 10$ is defined
two or more times within the same 1local symbol block, each symbol
represents a different address value. Such a multi-defined symbol
causes an error code (P) to be generated in the assembly listing.

For examples of local symbols and local symbol blocks as they appear
in a source program, see Figure 3-1.

121)

122 } PROGRAM INITIALIZATION CODE

123)

124

125 000002 JPSECT XCTPRG,GBL

126 Q200200 012702 eed20¢’' XCTPRGLIMOV #IMPURE,RD JIMPURE DATA INITIALIZATION
127 va0eR4a 0@%50A20 181 CLR (RO) e

128 000008 022724 eeoQoe’ (414 NIMPURT,RQ

129 @@eR12 101374 Bml 18

134

131 oo@ene +PSECY XxCTPAS,GBL

132 Qoveod ©127a¢ eren@R! XCTPASTIMOV #IMPPAS,RQ JPASS INITIALIZATION
133 200004 Q05MA20Q 181 CLR (RO)+

134 P00QR6 022740 ¢AR2QQ! cMP NIMPPAT,RQ

135 990012 1921374 BH1 18

136

137 %0000 LPSECT XCTLIN,GBL

138 20003n 012700 cQ2P0¢!' XCTLINZIMOV SIMPLIN,RD JLINE INITIALIZATION
139 2nnmoe 0R5M20 181 CLR (RB)*

142 200006 022702 ¢oReaR! CMP #IMPLIT,RO

141 270012 141374 L 18

142

Figure 3-1 Assembly Listing Showing Local Symbol Block

3.6 CURRENT LOCATION COUNTER

The period (.) is the symbol for the current location counter. When
used in the operand field of an instruction, it represents the address
of the first word of the instruction, as shown in the first example
below. When used in the operand field of a MACRO-11 directive, it
represents the address of the current byte or word, as shown in the
second example below.

A: MOV #.,R0 ;THE PERIOD (.) REFERS TO THE ADDRESS
;OF THE MOV INSTRUCTION.

(The function of the # symbol is explained in Section 5.9.)

SAL=0
.WORD 177535, .+4,SAL ;THE OPERAND .+4 IN THE .WORD
;DIRECTIVE REPRESENTS A VALUE
;THAT IS STORED AS THE SECOND
;OF THREE WORDS DURING
;ASSEMBLY.

Assume that the current value of the location counter is 500. During
assembly, MACRO-11 reserves storage in response to the .WORD directive
(see Section 6.3.2), beginning with 1location 500. The operands
accompanying the .WORD directive determine the values so stored. The

3-11

SYMBOLS AND EXPRESSIONS

value 177535 is thus stored in location 500. The value represented by
-+4 is stored in location 502; this value is derived as the current
value of the location counter (which is now 502), plus the absolute
value 4, thereby depositing the value 506 in location 502. Finally,

the value of SAL, previously equated to 0, is deposited in 1location
504.

Figure 3-2 illustrates the result of the example.

LOCATION CONTENTS
500 177535
502 506
504 0

Figure 3-2 Sample Assembly Results

At the beginning of each assembly pass, MACRO-1l resets the location
counter. Normally, consecutive memory locations are assigned to each
byte of object data generated. However, the value of the location

counter can be changed through a direct assignment statement of the
following form:

.=expression

Similar to other MACRO-11 symbols, the current location counter symbol
(.) has an attribute of relocatability associated with it: it is
either absolute or relocatable, depending on the specific such
attribute of the current program section. (A program section and its
attributes are defined through the use of the .PSECT directive
described in Section 6.8.1.) The existing attribute (or mode) of the
current location counter cannot be changed by specifying a defining
expression having a different attribute.

Furthermore, such a defining expression must not force the location
counter into another program section (.PSECT area), even though the
program sections so involved may both be absolute or relocatable. The
expression defining the 1location counter value must not contain a
forward reference, i.e., the expression must not contain a reference
to a symbol that is not previously defined. Such violations
constitute a general assembly error, resulting in an error code (A) in
the assembly listing.

Thus, the attribute (or mode) of the current location counter takes on
the attribute of the current program section. Therefore, its
attribute from program section to program section can be changed only
through the program sectioning directives (.PSECT, .ASECT, and
.CSECT), as described in Section 6.8.

The following coding illustrates the use of the current 1location
counter:

3-12

SYMBOLS AND EXPRESSIONS

.ASECT
.=500 ;SET LOCATION COUNTER TO
;ABSOLUTE 500 (OCTAL).
FIRST: MOV .+10,COUNT ;THE LABEL "FIRST" HAS THE VALUE

;500 (OCTAL) .
; .+10 EQUALS 510 (OCTAL). THE
; CONTENTS OF THE LOCATION
;510 (OCTAL) WILL BE DEPOSITED
;IN THE LOCATION "COUNT."
.=520 ;THE ASSEMBLY LOCATION COUNTER
;NOw HAS A VALUE OF
;ABSOLUTE 520 (OCTAL).
SECOND: MOV . , INDEX ;THE LABEL SECOND HAS THE
;VALUE 520 (OCTAL).
; THE CONTENTS OF LOCATION
;520 (OCTAL), THAT IS, THE BINARY
;CODE FOR THE INSTRUCTION
; ITSELF, WILL BE DEPOSITED IN THE
; LOCATION "INDEX."
.PSECT
.=.+20 ;SET LOCATION COUNTER TO
;RELOCATABLE 20 OF THE
;UNNAMED PROGRAM SECTION.
THIRD: .WORD 0 ;THE LABEL THIRD HAS THE
;VALUE OF RELOCATABLE 20.

Storage areas may be reserved in the program by advancing the location
counter. For example, if the current value of the location counter is
1000, each of the following statements:

.=.+40
or
.BLKB 4(
or

.BLKW 2(

reserves 40(8) bytes of storage space 1in the source program. The
.BLKB and .BLKW directives, however, are recommended as the preferred
ways to reserve storage space (see Section 6.5.3).

3.7 NUMBERS

MACRO-11 assumes that all numbers in the source program are to be
interpreted in octal radix, unless otherwise specified. An exception
to this is that operands associated with Floating Point Processor
instructions and Floating Point Data directives are treated as decimal
(see Section 6.4.2). This default radix can be altered with the
.RADIX directive (see Section 6.4.1.1). Also, individual numbers can
be designated as decimal, binary, or octal numbers through temporary
radix control operators (see Section 6.4.1.2).

For every statement in the source program that contains a digit that
is not in the current radix, an error code (N) is generated in the
assembly listing. However, MACRO-1ll continues with the scan of the
statement and evaluates each such number encountered as a decimal
value.

SYMBOLS AND EXPRESSIONS

Negative numbers must be preceded by a minus sign; MACRO-11
translates such numbers into two's complement form. Positive numbers
may (but need not) be preceded by a plus sign.

A number containing more than 16 significant bits, i.e., greater than

177777(8), is truncated from the left and flagged with an error code
(T) in the assembly listing.

Numbers are always considered to be absolute values, i.e., they are
not relocatable.

Single-word floating-point numbers may be generated with the °F
operator (see Section 6.4.2.2) and are stored in the following format:

15 14 76 0
Sign 8-bit 7-bit
Bit Exponent Mantissa

Refer to the appropriate PDP-11 Processor Handbook for details of the
floating-point number format.

3.8 TERMS

A term is a component of an expression and may be one of the
following:

1. A number, as defined in Section 3.7, whose 16-bit value is
used.

2. A symbol, as defined in Section 3.2. Symbols are evaluated
as follows:

a. A period (.) specified in an expression causes the value
of the current location counter to be used.

b. A defined symbol is located in the User-Defined Symbol
Table (UST) and its value is used.

C. A permanent symbol's basic value is used, with zero
substituted for the addressing modes. (Appendix C lists
all op codes and their values.)

d. An undefined symbol is assigned a value of zero and
inserted in the User-Defined Symbol Table as an undefined
default global reference. If the .DSABL GBL directive
(see Section 6.2) is in effect, the automatic global
reference default function of MACRO-11 is inhibited, in
which case, the statement containing the undefined symbol

is flagged with an error code (U) in the assembly
listing.

3. A single quote followed by a single ASCII character, or a
double quote followed by two ASCII characters. This type of

expression construction is explained in detail in Section
6.3.3.

3-14

SYMBOLS AND EXPRESSIONS

4. A term may also be an expression enclosed in angle brackets
(<>). Any expression so enclosed is evaluated and reduced to
a single term before the remainder of the expression in which
it appears is evaluated. Angle brackets, for example, may be
used to alter the left-to-right evaluation of expressions (as
in A*B+C versus A*<B+C>), or to apply a unary operator to an
entire expression (as in -<A+B>).

5. A unary operator followed by a symbol or number.

3.9 EXPRESSIONS

Expressions are combinations of terms joined together by binary
operators (see Table 3-5) and which reduce to a 16-bit expression
value. The evaluation of an expression includes the determination of
its attributes. A resultant expression value may be any one of four
types (as described later in this section): absolute, relocatable,
external, or complex relocatable.

Expressions are evaluated from left to right with no operator
hierarchy rules, except that unary operators take precedence over
binary operators. A term preceded by a unary operator 1is considered
to contain that operator. (Terms are evaluated, where necessary,
before their use in expressions.) Multiple unary operators are valid
and are treated as follows:

-+-A
is equivalent to:
=<+<=1D>>

A missing term, expression, or external symbol is interpreted as a
zero. A missing or illegal operator terminates the expression
analysis, causing an error code (A) or (Q), or both, to be generated
in the assembly 1listing, depending on the context of the expression
itself. For example, the expression:

TAG ! LA 177777
is evaluated as
TAG ! LA

because the first non-blank character following the symbol LA is not a
legal binary operator, an expression separator (i.e., a comma), or an
operand field terminator (i.e., a semicolon or the end of the source
line). It should be noted that spaces within expressions are ignored.

The value of an external expression is equal to the value of the
absolute part of that expression. For example, the expression
EXTERN+A, where "EXTERN" is an external symbol, has a value at
assembly-time that 1is equal to the value of the internal symbol A.
This expression, however, when evaluated at link time takes on the
resolved value of the symbol EXTERN, plus the value of symbol A.

Expressions, when evaluated by MACRO-11l, are determined to be one of
four types: absolute, relocatable, external (or global), or complex
relocatable. The following distinctions are important:
l. An expression is absolute if its value is Ffixed. An
expression whose terms are numbers and ASCII conversion

3-15

SYMBOLS AND EXPRESSIONS

characters will reduce to an absolute value. A relocatable
expression or term minus a relocatable term, where both
elements being evaluated belong to the same program section,
are also absolute, since such an expression is reduced to a
single term by MACRO-11 upon completion of the expression
scan. For example, the expression TAG2-TAGl, where both TAGl
and TAG2 are defined in the same program section, is an
absolute expression. Terms that contain labels defined in an
absolute section will have an absolute value.

2. An expression is relocatable if its value is fixed relative
to the base address of the program section in which it
appears, but it will have an offset value added at link time.
Terms that contain 1labels defined in relocatable program
sections will have a relocatable value; similarly, a period
(.) in a relocatable program section, representing the value
of the current location counter, will also have a relocatable
value.

3. An expression is external (or global) if it contains a single
global reference (plus or minus an absolute expression value)
that is not defined within the current program. Thus, an
external expression is only partially defined following
assembly and must be resolved at link time.

4. An expression is complex relocatable if any of the following
conditions applies:

= It contains a global reference and a relocatable symbol.
= It contains more than one global reference.

= It contains relocatable terms belonging to different
program sections.

= The value resulting from the expression has more than one
level of relocation. For example, if the relocatable
symbols TAGl and TAG2 associated with the same program
section are specified in an expression construction in the
form TAGl1+TAG2, two levels of relocation would be
introduced, since each symbol is evaluated in terms of the
relocation bias in effect for the program section.

- An operation other than addition is specified on an
undefined global symbol.

= An operation other than addition, subtraction, negation, or
complementation is specified for a relocatable value.

The evaluation of relocatable, external, and complex relocatable
expressions is completed at link time.

3-16

CHAPTER 4

RELOCATION AND LINKING

The output of MACRO-11l is an object module that must be processed or
linked before it can be loaded and executed. Essentially, linking
fixes (i.e., makes absolute) the values of external or relocatable
symbols in the object module, thus transforming the object module, or
several such object modules, into an executable image.

To allow the value of an expression to be fixed at link time, MACRO-11
outputs certain directives in the object file, together with other
required parameters. In the case of relocatable expressions in the
object module, the base of the associated relocatable program section
is added to the value of the relocatable expression provided by
MACRO-11. In the case of external expression values, the value of the
external term in the expression (since the external symbol must be
defined in one of the other object modules being linked together) is
determined and then added to the absolute portion of the external
expression, as provided by MACRO-1l.

All instructions that require modification at link time are flagged in
the assembly listing, as 1illustrated in the example below. The
apostrophe (') following the octal expansion of the instruction
indicates that simple relocation is required; the letter G indicates
that the value of an external symbol must be added to the absolute
portion of an expression; and the letter C indicates that complex
relocation analysis at link time is required in order to fix the value
of the expression.

EXAMPLE:
005065 CLR EXTERN (R5) ;THE VALUE OF THE SYMBOL "EXTERN" IS
000000G ;ASSEMBLED AS ZERO AND IS
;RESOLVED AT LINK TIME.
005065 CLR EXTERN+6 (RS) ;THE VALUE OF THE SYMBOL "EXTERN"
G ;IS RESOLVED AT LINK TIME
;AND ADDED TO THE ABSOLUTE
;PORTION (+6) OF THE EXPRESSION.
005065 CLR RELOC (R5) ;ASSUMING THAT THE VALUE OF THE
000040 ;SYMBOL "RELOC" IS RELOCATABLE
;40, THE RELOCATION BIAS
;WILL BE ADDED TO THIS VALUE.
005065 CLR ~<EXTERN+RELOC> (R5) ;THIS EXPRESSION IS COMPLEX
000000C ;RELOCATABLE BECAUSE IT REQUIRES

;THE NEGATION OF AN EXPRESSION
;THAT CONTAINS A GLOBAL "EXTERN"
;REFERENCE AND A RELOCATABLE TERM.

For a complete description of object records output by MACRO-11, refer
to the applicable system manual (see Section 0.3 in the Preface).

4-1

CHAPTER 5

ADDRESSING MODES

The program counter (PC) always contains the address of the next word
to be fetched, 1i.e., the address of the next instruction to be
executed, or the second or third word of the current instruction.

In order to understand how the address modes operate and how they
assemble, the action of the program counter must be understood. The
key rule to remember is:

"whenever the processor implicitly uses the program counter
(PC) to fetch a word from memory, the program counter is
automatically incremented by 2 after the fetch operation is
completed."

In the case of 2= or 3-word instructions, the processor uses the PC to
fetch the following words as well.

The following symbols are used in describing addressing modes
throughout this chapter:

1. E is any expression, as defined in Chapter 3.
2. R is a register expression, i.e., any expression containing a

term preceded by a percent sign (%) or a symbol previously
equated to such a term, as shown in the examples below:

R0O=%0 ;GENERAL REGISTER 0.
R1=RJ+1 ;GENERAL REGISTER 1.
R2=1+%1 :GENERAL REGISTER 2.

The symbol R may also represent any of the normal default
register definitions (see Section 3.4).

3. ER is a register expression or an absolute expression in the
range 0 to 7, inclusive.

4. A is a general addressing specification which produces a
6-bit mode address field, as described in the PDP-11
Processor Handbooks. The addressing specification, A, is
described in terms of E, R, and ER, as defined above. Each
addressing specification within this section is illustrated
using either the single operand instruction CLR or the double
operand instruction MOV.

5.1 REGISTER MODE

The register itself (R) contains the operand to be manipulated by the
instruction.

5-1

ADDRESSING MODES

Format for A: R

Example:

CLR R3 ;CLEARS REGISTER 3.

5.2 REGISTER DEFERRED MODE

The register (R) contains the address of the operand to be manipulated
by the instruction.

Format for A: @R or (ER)

Examples:
CLR @Rl ;ALL THESE INSTRUCTIONS CLEAR
CLR (R1) ;THE WORD AT THE ADDRESS
CLR (1) ;CONTAINED IN REGISTER ..

5.3 AUTOINCREMENT MODE

The contents of the register (ER) are incremented immediately after
being used as the address of the operand (see Note below).

Format for A: (ER) +

Examples:

CLR (RO)+ ;EACH INSTRUCTION CLEARS

CLR (R4)+ ;THE WORD AT THE ADDRESS

CLR (R2)+ ;CONTAINED IN THE SPECIFIED
sREGISTER AND INCREMENTS
;THAT REGISTER'S CONTENTS
;BY TWO.
NOTE

Certain special instruction/address mode

combinations, which are rarely or never used, do
not operate exactly the same on all PDP-11
processors, as described below.

In the autoincrement mode, both the JMP and JSR
instructions autoincrement the register before its
use on the PDP-11/40, but not on the PDP-11/45 or
11/10,

In double operand instructions having the
addressing form Rn, (Rn)+ or Rn,-(Rn), where the
source and destination registers are the same, the
source operand is evaluated as the autoincremented
or autodecremented value, but the destination
register, at the time it is used, still contains
the originally-intended effective address. 1In the
following example, as executed on the PDP-11/40,
Register 0 originally contains 100(8§):

5-2

ADDRESSING MODES

MOV RO, (RO) + ;THE QUANTITY 102 IS MOVED
;TO LOCATION 100.

MOV RO, - (RO) ; THE QUANTITY 76 IS MOVED
;TO LOCATION 100.

The use of these forms should be avoided, since
they are not compatible with the entire family of
PDP-11 processors.

An error code (2) is printed in the assembly
listing with each instruction which is not
compatible among all members of the PDP-11 family.

5.4 AUTOINCREMENT DEFERRED MODE

The register (ER) contains a pointer to the address of the operand.
The contents of the register are incremented after being used as a
pointer.

Format for A: @ (ER) +
Example:
CLR Q(R3)+ ; THE CONTENTS OF REGISTER 3 POINT
;TO THE ADDRESS OF A WORD TO BE

;CLEARED BEFORE THE CONTENTS OF THE
;REGISTER ARE INCREMENTED BY TWO.

5.5 AUTODECREMENT MODE

The contents of the register (ER) are decremented before being used as
the address of the operand (see Note above in Section 5.3).

Format for A: - (ER)
Examples:
CLR - (RO) ;DECREMENT THE CONTENTS OF THE SPECI-
;FIED REGISTER (0, 3, OR 2) BY TWO
CLR - (R3) ;BEFORE USING ITS CONTENTS
CLR - (R2) :AS THE ADDRESS OF THE WORD TO BE
;s CLEARED.

5.6 AUTODECREMENT DEFERRED MODE

The contents of the register (ER) are decremented before being used as
a pointer to the address of the operand.

Format for A: @- (ER)
Example:

CLR @-(R2) ;DECREMENT THE CONTENTS OF
;REGISTER 2 BY TWO BEFORE
;USING ITS CONTENTS AS A POINTER
;TO THE ADDRESS OF THE WORD TO BE
;CLEARED.

5-3

ADDRESSING MODES

5.7 INDEX MODE

The value of an expression (E) is stored as the second or third word
of the instruction. The effective address of the operand is
calculated as the value of E, plus the contents of register ER. The

value E is the offset of the instruction, and the contents of register
ER form the base.

Format for A: E (ER)
Examples:

CLR X+2 (R1) ;THE EFFECTIVE ADDRESS OF THE WORD
;TO BE CLEARED IS X+2, PLUS THE
;CONTENTS OF REGISTER 1.

MOV RU,-2(R3) ;THE EFFECTIVE ADDRESS OF THE
;DESTINATION LOCATION IS -2, PLUS
;THE CONTENTS OF REGISTER 3.

5.8 INDEX DEFERRED MODE

An expression (E), plus the contents of a register (ER), vyields a
pointer to the address of the operand. As in index mode above, the
value E is the offset of the instruction, and the contents of register
ER form the base.

Format for A: QE (ER)
Example:

CLR @114 (R4) 7 IF REGISTER 4 CONTAINS 100, THIS
iVALUE, PLUS THE OFFSET 114, YIELDS
;THE POINTER 214. IF LOCATION 214
iCONTAINS THE ADDRESS 2000, LOCATION
72000 WOULD BE CLEARED.

5.9 IMMEDIATE MODE

Immediate mode allows the operand itself (E) to be stored as the
second or third word of the instruction. This mode is assembled as an
autoincrement of the PC.

Format for A: #E

Examples:
MOV #100,R0 iMOVE THE VALUE 100 INTO REGISTER 0.
MOV #X,R0O sMOVE THE VALUE OF SYMBOL X INTO

sREGISTER 0.

The number sign (#) in the MACRO-11 character set has special
significance as an addressing mode indicator. When this character
appears in the operand field, as shown above, it specifies the
immediate addressing mode, indicating to MACRO-11 that the operand
itself immediately follows the instruction word.

ADDRESSING MODES

The operation of this mode can be shown through the first example,
MOV #100,R0, which assembles as two words:

Location 20: 01 2 7 00
Location 22: 0 0 0100
Location 24: Next instruction

Note that the source operand (the value 100) is assembled immediately
following the instruction word, i.e., as the second word in the
instruction. Upon execution of the instruction, the processor fetches
the first word (MOV) and increments the PC by 2 so that it points to
location 22 (which contains the source operand).

After the next fetch and increment cycle, the source operand (100) is
moved into register 0, 1leaving the PC pointing to location 24 (the
next instruction).

5.10 ABSOLUTE MODE

Absolute mode is the equivalent of immediate mode deferred. The
address expression @#E specifies an absolute address which is stored
as the second or third word of the instruction. 1In other words, the
value immediately following the instruction word is taken as the
absolute address of the operand. Absolute mode is assembled as an
autoincrement deferred of the PC.

Format for A: Q#E

Examples:
MOV @#100,R0O ;MOVE THE CONTENTS OF ABSOLUTE
; LOCATION 100 INTO REGISTER RO.
CLR Q#X ;CLEAR THE CONTENTS OF THE LOCATION

;WHOSE ADDRESS IS SPECIFIED BY
;THE SYMBOL X.

The operation of this mode can be shown through the first example,
MOV @#100,R0, which assembles as two words:

Location 20 01 37 00
Location 22: 0 0 0100
Location 24: Next instruction

Note that the absolute address 100 is assembled immediately following
the instruction word, i.e., as the second word in the instruction.
Upon execution of the instruction, the processor fetches the first
word (MOV) and increments the PC by 2 so that it points to location 22
(which contains the absolute address of the source operand). After
the next fetch and increment cycle, the contents of absolute address
100 (the source operand) are moved into register 0, 1leaving the PC
pointing to location 24 (the next instruction).

5.11 RELATIVE MODE

Relative mode is the normal mode for memory references within your

program. It is assembled as index mode, using the PC as the index
register.

5-5

ADDRESSING MODES

Format for A: E

Examples:
CLR 100 :CLEAR ABSOLUTE LOCATION 100
MOV RO,Y ;MOVE THE CONTENTS OF REGISTER 0

:TO LOCATION Y

In relative mode, the offset for the address calculation is assembled
as the second or third word of the instruction. This value is added

to the contents of the PC (the base register) to yield the address of
the source operand.

The operation of relative mode can be shown with the statement
MOV 100,R3, which assembles as two words:

Location 20: 016 7 0 3
Location 22: 0 0 0 0 5 4
Location 24: Next instruction

Note that the constant 54 is assembled immediately following the
instruction word, 1i.e., as the second word in the instruction. Upon
execution of the instruction, the processor fetches the first word
(MOV) and increments the PC by 2 so that it points to location 22
(containing the value 54). After the next fetch and increment cycle,
the processor calculates the effective address of the source operand
by taking the contents of location 22 (the offset) and adding it to
the current value of the PC, which now points to location 24 (the next
instruction). Thus, the source operand address is the result of the
calculation OFFSET+PC = 54+24 = 100(8), causing the contents of
location 100 to be moved into register 3.

Since MACRO-11 considers the contents of the current location counter
(.) as the address of the first word of the instruction, an equivalent
index mode statement is shown below:

MOV 100-.-4(PC),R3

This instruction has a relative addressing mode because the operand
address is calculated relative to the current value of the location
counter. The offset is the distance (in bytes) between the operand
and the current value of the location counter.

5.12 RELATIVE DEFERRED MODE

The relative deferred mode is similar in operation to the relative
mode above, except that the expression E is used as a pointer to the
address of the operand. 1In other words, the operand following the
instruction word is added to the contents of the PC to yield a pointer
to the address of the operand.

Format for A: QE
Example:
MOV @Xx,R0 ;RELATIVE TO THE CURRENT VALUE OF
;THE PC, MOVE THE CONTENTS OF THE

; LOCATION WHOSE ADDRESS IS POINTED
;TO BY LOCATION X INTO REGISTER 0.

ADDRESSING MODES

5.13 SUMMARY OF ADDRESSING FORMS

Each PDP-11 instruction takes at least one word. Operands of the form
listed below do not increase the length of an instruction.

Form Meaning

R Register mode

@R or (ER) Register deferred mode (see Note below)
(ER) + Autoincrement mode

@ (ER) + Autoincrement deferred mode

- (ER) Autodecrement mode

@- (ER) Autodecrement deferred mode

Operands of the following forms add one word to the instruction length
for each occurrence of an operand of that form:

Form Meaning

E (ER) Index mode

@QE (ER) Index deferred mode

#E Immediate mode

@#E Absolute mode (see Note below)
E Relative mode

QE Relative deferred mode

The syntax of the addressing modes is summarized in Appendix B.
Additional discussion of addressing modes is provided in the
applicable PDP-11 Processor Handbook.

NOTE

An alternate form for @R is (ER). However, the
form @(ER) 1is only logically, but not physically
equivalent to the expression @0 (ER) . The
addressing form @4E differs from form E in that
the second or third word of the instruction
contains the absolute address of the operand,
rather than the relative distance between the
operand and the PC. Thus, the instruction CLR
@#100 clears absolute location 100, even if the
instruction is moved from the point at which it
was assembled. See the description of the .ENABL
AMA function in Section 6.2, which causes all
relative mode addresses to be assembled as
absolute mode addresses.

ADDRESSING MODES

5.14 BRANCH INSTRUCTION ADDRESSING

The branch instructions are l-word instructions. The high-order byte
contains the operator, and the low-order byte contains an 8-bit signed
offset (seven bits, plus sign), which specifies the branch address
relative to the current value of the PC. The hardware calculates the
branch address as follows:

1. Extends the sign of the offset through bits 8-15.

2. Multiplies the result by 2, creating a byte offset rather
than a word offset.

3. Adds the result to the current value of the PC to form the
effective branch address.

MACRO-11 performs the reverse operation to form the word offset from
the specified address. Remember that when the offset is added to the
current value of the PC, the PC is pointing to the word following the
branch instruction; hence, the factor -2 ir the following
calculation:

Word offset = (E-PC)/2 truncated to eight bits.
Since the value of the PC = .+2, we have:
Word offset = (E-.-2)/2 truncated to eight tits.

In using branch instructions, you must exercise care to avoid the
following error conditions:

1. Branching from one program section to another;

2. Branching to a location that is defined as an external
(global) symbol; or

3. Specifying a branch address that is out of range, i.e., the
branch offset is a value that does not lie within the range
=128 (10) to +127(10).

The above conditions cause an error code (A) to be generated in the
assembly listing for the statement in error.

5.15 USING TRAP INSTRUCTIONS

The EMT and TRAP instructions do not use the low-order byte of the
instruction word, allowing information to be transferred to the trap
handlers in the low-order byte. 1If the EMT or TRAP instruction is
followed by an expression, the value of the expression is stored in
the low-order byte of the word. However, if the expression is greater
than 377(8), it 1is truncated to eight bits and an error code (T) is
generated in the assembly listing.

PART III

MACRO-11 DIRECTIVES

Chapters 6 and 7 describe all the directives used with MACRO-11.
Directives are statements that cause MACRO-11 to perform certain
operations during assembly. Chapter 6 describes several types of
directives, 1including those which control symbol interpretation,
listing header material, program sections, data storage formats, and
assembly listings. Chapter 7 describes those directives concerning
macros, macro arguments, and repetitive coding sequences.

MACRO-11 directives can be preceded by a label (subject to any
restrictions associated with specific directives) and followed by a
comment. A MACRO-11 directive occupies the operator field of a source
statement. Only one directive can be included in any given source
line. The operand field may be occupied by one or more operands or
left blank; legal operands differ with each directive specified.

CHAPTER 6

GENERAL ASSEMBLER DIRECTIVES

This category of directives includes:

1. Listing control

2. Function control

3. Data storage

4, Radix and numeric control

5. Location counter control

6. Terminators

7. Program boundaries

8. Program sectioning

9. Symbol control
10. Conditional assembly

11. PAL-11R conditional assembly.

Each is described in its own section of this chapter.

6.1 LISTING CONTROL DIRECTIVES

Listing control directives control the content, format, and pagination
of all line printer and teleprinter listing output generated during
assembly. Facilities also exist for creating object module names and
other identification information in the listing output.

6.1.1 .LIST and .NLIST Directives

Listing control options can be specified in the text of a MACRO-11
program through the .LIST and .NLIST directives. These directives are
of the form:

.LIST
.LIST arg
.NLIST
.NLIST arg

6-1

GENERAL ASSEMBLER DIRECTIVES

where: arg represents one or more of the optional symbolic
arguments defined in Table 6-1.

As indicated above, the listing control directives may be used without
arguments, in which case the listing directives alter the listing
level count. The listing level count is initialized to zero. At each
occurrence of a .LIST directive, the listing 1level count is
incremented; at each occurrence of an .NLIST directive, the listing
level count is decremented. When the listing level count is negative,
the listing is suppressed (unless the 1line contains an error).
Conversely, when the listing 1level count is greater than zero, the
listing is always generated. Finally, when the count is zero, the
line is either listed or suppressed, contingent upon the other listing
controls currently in effect for the program. For example, the
following macro definition employs the .LIST and .NLIST directives to
selectively list portions of the macro body when the macro is
expanded:

.MACRO LTEST ;LIST TEST
i A-THIS LINE SHOULD LIST ;LISTING LEVEL COUNT IS 0.
.NLIST ;LISTING LEVEL COUNT IS -1.
i B-THIS LINE SHOULD NOT LIST
.NLIST ;LISTING LEVEL COUNT IS -2.
i C-THIS LINE SHOULD NOT LIST
.LIST ;LISTING LEVEL COUNT I3 -1.
i D-THIS LINE SHOULD NOT LIST
.LIST ;LISTING LEVEL COUNT IS 0.
; E-THIS LINE SHOULD LIST s LISTING LEVEL COUNT IS BACK TO 0.
.ENDM
.LIST ME ;LIST MACRO EXPANSION.
LTEST ;CALL THE MACRO
;i A-THIS LINE SHOULD LIST ;LISTING LEVEL COUNT IS 0.
7 E-THIS LINE SHOULD LIST ; LISTING LEVEL COUNT IS BACK TO 0.

An important purpose of the level count is to allow macro expansions
to be listed selectively and yet exit with the listing level count
restored to the value existing prior to the macro call.

When used with arguments, the listing directives do not alter the
listing level count; however, the .LIST and .NLIST directives can be

used to override current listing control, as shown in the example
below:

.MACRO XX
.LIST ;LIST NEXT LINE.
X=,
.NLIST DO NOT LIST REMAINDER OF MACRO
. ;EXPANSION.
. ENDM
.NLIST: ME ;DO NOT LIST MACRO EXPANSIONS.
XX
X=,

The symbolic arguments allowed for use with the listing directives are

described in Table 6-1. These arguments can be used singly or in

combination with each other. 1If multiple arguments are specified in a

listing directive, each argument must be separated by a comma, tab, or
6-2

GENERAL ASSEMBLER DIRECTIVES

space. For any argument not specifically included in a 1listing
control statement, the associated default assumption (List or No list)
is applicable throughout the source program. The default assumptions
for the listing control directives also appear in Table 6-1.

Table 6-1
Symbolic Arguments of Listing Control Directives

Argument Default Function
SEQ* List Controls the 1listing of source line
sequence numbers. MACRO-11 assigns

sequence number 1 to the first source
line in a file, and increments the
sequence number for each additional line
in the file. If this field 1is
suppressed through an .NLIST SEQ
directive, MACRO-11] generates a tab,
effectively allocating space for the
field, but fills the field with blanks.
Thus, the inter-positional relationships
of subsequent fields in the 1listing
remain undisturbed. During the assembly
process, MACRO-11 examines each source
line for possible error conditions. For
any line in error, an appropriate error
flag is printed preceding the line
sequence number field (see Appendix D).
MACRO-11 does not assign sequence
numbers for files that have had sequence
numbers assigned by other programs, such
as an editor.

LOC* List Controls the 1listing of the current
location counter field. Normally, this
field is not suppressed. However, if it
is suppressed through the .NLIST LOC
directive, MACRO-11l does not generate a
tab, nor does it allocate space for the
field, as is the case with the source
line sequence number field (SEQ)
described above. Thus, the suppression
of the current 1location counter (LOC)
field effectively left-justifies all
subsequent fields (while preserving
inter-positional relationships) to that
position otherwise normally occupied by
this field.

BIN* List Controls the listing of generated binary
code. If this field 1is suppressed
through an .NLIST BIN directive,
left-justification of the source code
field occurs in the same manner
described above for the current location
counter (LOC) field.

BEX List Controls the listing of binary
extensions, i.e., the locations and
binary contents beyond those that will
fit on the source statement line. This
is a subset of the BIN argument.

SRC* List Controls the listing of source lines.

(Continued on next page)
6-3

GENERAL ASSEMBLER DIRECTIVES

Table 6-1 (Cont.)
Symbolic Arguments of Listing Control Directives

Argument

Default

Function

CoM

MD

MC

ME

MEB

CND

LD

TOC

SYM

TTM

List

List

List

No list

No list

List

No list

List

List

List

Controls the listing of comments. This
is a subset of the SRC argument. The
.NLIST COM directive reduces listing
time and space when comments are not
desired.

Controls the listing of macro
definitions and repeat range expansions.

Controls the listing of macro calls and
repeat range expansions.

Controls the listing of macro
expansions.

Controls the listing of macro expansion
binary code. A .LIST MEB directive
causes only those macro expansion
statements that generate binary code to
be listed. This is a subset of the ME
argument.

Controls the 1listing of unsatisfied
conditional coding and associated .IF
and .ENDC directives 1in the source
program. This argument permits
conditional assemblies to be listed
without including unsatisfied
conditional coding.

Controls the 1listing of all listing
directives having no arguments, i.e.,
those listing directives that alter the
listing level count.

Controls the listing of the table of
contents during assembly pass 1 (see
Section 6.1.4 describing the .SBTTL
directive). This argument does not
affect the printing of the full assembly
listing during assembly pass 2.

Controls the listing of the symbol table
resulting from the assembly of the
source program.

Controls the listing output format. The
default can be set by the system
manager. If the system manager does not
set a default, it is set to line printer
format. Figure 6-1 illustrates the line
printer output format. Figure 6-2
illustrates the teleorinter output
format.

* If the .NLIST arguments SEQ, LOC, BIN, and SRC are in effect at the

same time, i.e.,
be suppressed,

if all four significant fields in the listing are to

the printing of the resulting blank line is inhibited.

6-4

GENERAL ASSEMBLER DIRECTIVES

An example of an assembly listing, as sent to a 132-column 1line
printer, is shown in Figure 6-1. Note that binary extensions for
statements generating more than one word are formatted horizontally on
the source line.

An example of an assembly listing, as sent to a teleprinter (in the
same format as for an 80-column line printer), is shown in Figure 6-2.
Notice that binary extensions for statements generating more than one
word are printed on subsequent lines. There is no explicit truncation
of output to 80U characters by the assembler.

Any argument specified in a .LIST/.NLIST directive other than those
listed in Table 6-1 causes the directive to be flagged with an error
code (A) in the assembly listing.

The listing control options can also be specified at assembly time
through switches included in the command string to MACRO-11 (see the
appropriate system manual). The use of these switches overrides all
corresponding listing control (.LIST or .NLIST) directives specified
in the source program.

GENERAL ASSEMBLER DIRECTIVES

but3stT ATqWessy I93uTtag aur jo orduexy 1-9 @anb1g

ANLTT ONYWWOD ¥3HAONY L1391¢ 139dwl 48 Zivded 22.1¢@ 692

NYIS LINANT WLiIM 3INNILINOD ‘S34A¢ 3sy8vd] ang 29cied @2 tve gv2

4833d6 INgNT IYNOILIAGAY! (@M)LIVIS*I'NOW*SIN g11e 120000 v2owvde 09.2C7 2Ziltve (v2

3S¥Vd JIUINYWIS 40 SLIN834 31vNIvAIL 8NIvaAl 1v2 96108 92
40uM3 NO dIwst 443262 [el'] LOpERT p@ 300 w2

J3dS LNdNI 38uvdl IalmMEm LNANT ! 11 24 %! 999100 »y2

4€34/77v) 2183 w04 €NIOT LINIE CLINI I7v) t3suvdl 299120 f£ve
39vE83In NVI§ LNGNI aANISI 2r ‘14l W3dAL 9totee 2v2

NYIS INdLINO WIIM INNILINOD *S3At 3SMvd0 FLT] 29C1an rgotleR Ip2
483345 LNdiN0 YNOILIQAVY (BH)LVLIS I H0W SN eile 180Y000 020000 09.2F1 929100 eve

388Yd JIUINYWIS 40 SLINSIN ILVNIVAIL 8NIvA3 v2 2291e0 6c2
HO¥MI NO d4INSH ¥¥32S) 8 IppEat V29100 gge

13dS INdLINO0 ISUVA! 18LIME®’LNdLIN0’ csl1s) 2A9tee (g2

1834/777v) 218 ¥0O4 §NI0OT LINIC ZLINI 1v) tagyvdo 9(Ste0 9c2
39VSE3IW NVIE LiNdLINO ON3SH ev’L1d0 WidAl ZSGted gc2

39v6S3w SNLVYLIS NIIS IvNO3 ON3ISH er’no3 W3dAd 1so1 92gtea ec2

ONNO4 N9IS vNBD3 3ILVIIANI ‘3§73t 4168N03 8IN] 9IP9Ll [92G@1 22ste@ £f2

N33§ LON NI9IS IvNOI 41 dInst set 038 coriee e2slee 2c2

SNAVLIS »I3M30 (@¥)LVIS*I‘ND3I*SON 118 100000 ovoeAVw @9.2€1 2i¢tee ice

ANNO4 LON N9IS vyNO3I 3WNESVI 118N03‘2.» gA0NW CEP9LT ©298R0R (9(21T rOGIOL BF2

INIT IXIN H04 XIVA dINS 7NN 41t N1139 EL] 269100 c2es1e0 622
INIT 40 WAINIT XIINII (P¥)QIWI*) isi 182 2000V0 ©P9LG00 9/P10@ g2

22

340w 404 A¥Lt NIL39 8 GS9000 wviried 922

39YSSIW HONN¥I XVINAS OAN3IS! ov'xLs W3idAL osvrive g2

lyvd 1SvI LNO gnN3st ¥’ (24)QIWI* 2’ (BH)2+0T14") 3dAl reriead p22
l8vd LSV 40 HLI9NIT VIS (6¥)0 w23 (B)A114°2 ans 200000 910009 @9099% 9lvlge c22
ldve LE¥I4 40 WI9NIT LDINQ30T (P4)QIWI* I e (ds) ans 2000080 299291 2iviee 222
ONIYLIS 40 Lwvd LSV 40 ¥QQv IvIH (@n)2+Q714°27(08)014°2 aav 020002 910000 ©90992 p@ptee 122
l4vd ONOJ3S LNO ON3SH $1#°(08)Q714°%2'(0y)2+0114°%) 3dAl 09C100 022
INIMLS 40 L¥vd LS¥I4 LNO AN3ISY $i%'(dS)‘(By)2+0WI°*) 3dAl 9cLt100 612
ldvd L1S¥IJ 40 WL9ONIT 3ILvINITVOL (dS) ‘(BM)2+0WI°2 ang v00000 91991 2£L100 @12
¥1S§ NI 40Qv HO0¥¥3 ININLS LNd! (dS)='(Qy)2+0I4°) AOwW Q20008 9vB91@ 92Ct0e (12
Q03423130 ¥0¥¥3 ON 41 WINVHEL [X4 338 v90¢£0t v2€t00 912
oqxu.cox4m4uu.~¢a4:u.o914m4uu.meHnun IsIsd eoflew ste

INIT LNeNI 3IWL LNO ON3SH Riw’(2¥)AIWI*9‘(2H)2+Q NI 9 3dAl 181 rS2ie0 vi2
1Ix3 *3873¢ SS1Ix3 9veive g12

40843 ON 41 dINSt [228 covcet vpv2toe 212

IWI9 YIA 3INIT 13910 ¥18729# $IWI9 INTLI9 ecztee 112

ote

S3INIT ONVWWOID 384Vd OGNV Av3IN 1418S° 602

S3NIT ONVWWOI 3S¥Vd ANV Qv3y
S 39vd (PIGT PL=IN[=68 LO/VW OHIVW 2IS3 QNV 1187 40 LS3L == LS4I6D

6-6

GENERAL ASSEMBLER DIRECTIVES

CSITST e« TEST OF CSIt1 AND CSI2 MACRO M@707 @9=JUL=7d 15159 PAGE 5
READ AND PARSE COMMAND LINES

209 .SBTTL READ AND PARSE COMMAND LINES
210
211 em1230 GETLNT GCMLS #GCLBLK JGET LINE VIA GCML
212 201244 1030¢03 B8CC 18 JSKIP I1F NO ERROR
213 001246 EXITSS JELSE, EXIT
214 001254 181 TYPE G,CMLDe2(RD),G,CMLD(RO),n'D JSEND OUT THE INPUT LINE
215 P01300 CSIsy #CSIBLK,GCLBLK®G,CMLD*2,GCLBLK®G,CMLD
216 241324 1023064 BCC 23 JBRANCH IF NO ERROR DETECTED
217 201326 016046 MOV C,FILD«2(RQ),~(SP) JPUT STRING ERROR ADDR IN STK
eeee2q
218 901332 166016 sus C,CMLDe2(RD), (8P) JCALCULATE LENGTHW OF FIRST PARTY
(LI I1.L]
219 901336 TYPE C,CMLDe2(RD),(SP),n'S JSEND OUT FIRST PART OF STRING
220 @a1d60 TYPE C.FILD®2(RD),C,FILD(RB),”'S JSEND OUT SECOND PART
221 201404 Q66260 ADD C,FILD(R®),C,FILDe2(RA) JCALC ADDR OF LAST PART OF STRING
000416
230920
222 0A1412 162560 sus (SP)+,C,CMLD(RA) JOEDUCT LENGTH OF FIRSY PART
200002
223 201416 166260 suB C,FILD(RD),C,CMLD(RD) JCALC LENGTW OF LAST PARY
200016
[-F-LELF
224 NO1424 TYPE C,FILD#2(R®),C,CM.D(RD),n40 JSEND OUY LAST PART
225 001450 TYPEM STx,49 JSEND SYNTAX ERROR MESSAGE
226 901474 ©AB555 BR GETLN JTRY FOR MORE
227
228 AA1476 @AA57T6Q 283 87T C.CMLD(RQ) JCHECK LENGTH OF LINE
800202
229 0015m2 01552 BEG GETLN JIF NULL, SKIP BACK FOR NEXT LINE
230 2@15048 112767 MOVB ®'9,EQUBIT J)ASSUME EQUAL SIGN NOT FOUND
200262
176432
231 P01512 132762 BITR #CS,EQU,C,STAT(RA) JCHECK STATUS
200240
220401
232 201520 Q01402 BEQ 108 3SKIP IF EQUAL SIGN NOT SEEN
233 001522 185267 INCB EQuUBILT JELSE, INDICATE EQUAL SIGN FOUND
176416
234 271526 1081 TYPEM EQU, d0 JSEND EQUAL SIGN STATUS MESSAGE
235 0A1852 TYPEM oPT,4d0 JSEND OUTPUT SCAN MESSAGE
236 221576 OPARSES: CALL INIT2 JINIT LOCNS FOR CSI2 CALL/TEST
237 Q21602 csis2 ,OUTPUY,#SWTBL JPARSE OUTPUT SPEC
238 001620 10344y BCS CS2ERR)SKIP ON ERROR
2)9 001622 CALL EvaLUB JEVALUATE RESULTS OF SEMANTIC PARSE
240 201626 132762 B1T8 8CS,MOR,C,STAT(R®) JADDITIONAL OUTPUT SPECS?
Q200292
200001
241 02231634 001360 BNE OPARSE JYES, CONTINUE wWwITH OQUTPUY SCAN
242 221636 TYPEM 1PY, 40 JSEND INPUT SCAN MESSAGE
243 201662 IPARSEL CALL INITR JINIT LOCNS FOR CSI2 CALL/TEST
244 201660 csls2 » INPUT, #3WTBL JPARSE INPUT SPEC
245 2231704 102497 BCS CS2ERR JSKIP ON ERROR
246 001706 CALL EVALUB JEVALUATE RESULTS OF SEMANTIC PARSE
247 801712 1327680 B178 8CS,MOR,C,STAT(RA) JADDITIONAL INPUT SPECS?
Q00020
000001
248 001720 021360 BNE IPARSE JYES, CONTINUE wWITH INPUT SCAN

Figure 6-2 Example of Terminal Assembly Listing

GENERAL ASSEMBLER DIRECTIVES

Figure 6-3 shows a listing, produced in 1line printer format,
reflecting the use of the .LIST and .NLIST directives in the source
program and the effects such directives have on the assembly 1listing
output.

6.1.2 Page Headings

MACRO-11 prints each assembly Page in the format shown in either
Figure 6-1 or Figure 6-2, depending on the listing mode (see TTM,
Table 6-1). On the first line of each page, MACRO-11 prints the
following (from left to right):

1. Title of the object module, as established through the .TITLE
directive (see next section).

2. Assembler version identification.
3. Date.
4. Time-of-day.
5. Page number.
The second line of each assembly listing page contains the subtitle

text specified 1in the last-encountered .SBTTL directive (see Section
6.1.4).

GENERAL ASSEMBLER DIRECTIVES

S9AT309ITg TOI3U0D DHUTISTT Y3ITM PadNpoid PUT3STT €-9 2InbTJg

IN3WW0D Vv SI SIHi!

1§31 ANVNIB Q3QN3ix3!

INIWWOD Vv ST SINHt

1531 Su38WNN 3IN3INOISH

123443 NI §1 300w ONILSIT MONEVUNI

1§31 AWYNIA G30ON3LX3 ANV S3INIT INIWW0D!

1834 SINIT UIN3WW0OI!

x36‘w0)
crelgrzt
x38°w02
«X39°'w03>

wW0J
g'vig’e’l

w0l
w03

anN3*

X38 1sI11°
S'pigie’y quom*
X398 LISIIN®

x38 JvWisA

03¢ 1817
g'vig’2y quom’
035 LISIIN®

038 JVWiS)

Wil 1819°

t=1 39v4

i1811°
ayom*
LSIIN®
Jvwis?

i1817°

Quom*
1SIIN®
JYWLST

coeQe0

ceoeae

62191 p(=INl=60

2000049

GA00d0
2ede00

1100000

1edeed

Goveea
v00P000
fooeee
Z0en000
100000

1evoes

rvoeeee
1eeeee

ozioed
e21ouve

[A81-1'1
viloee
Ziloee
et1002
901000

9Q1000

LO(Ow OBIVHW

v L2004

vi0R00

dcoeve
41111

Z9oeee

144
[44
114

114
ev
6€

(4%
1€
ot

62
(14
%4

6-9

GENERAL ASSEMBLER DIRECTIVES

SOAT3D9ITQ TOI3u0D HBUTISTT Y3aTM

1831 S3INIT 3dun0ost

INIWWOD v ST SIMLt

1831 A¥VNISE Q3QN3ILXIY

1831 AMVYNIG Q31lvy3INI9C

AN3IWWOD Vv SI SINLS

1831 ¥3LNNOJ NOILVIOT!

AN3IWWO0D v ST SIWLY

SNOISNVdX3 OuIVW L1SITC
433443 NI SI 300w 9NILSIT 30Imt

pa2onpoxd burisIi

PLTY 1817

J¥8 Jdvwis

x38 is11°
s‘vigre’t Quom®
x38 LSIN®

X38 Jvwis

N1B 1s11°
ANIWROD Vv ST SImlt
NI8 Jvwig

3017 is17°
G'vigre’s

201

907 Jvwig"

WaN3*

oy lsI17°*
s‘vigi2t qyom*
98y LSIIN'

94y JVWLIST O¥IVW'

(*3u0d

) €-9 @inbta

GOe0oY vrovR0e 950000
£00200 200000 10Q0000 @S0QCe

050000

£00000 200000 100000 9ceRR0

G‘ri’gre’l quom*

quom*
18IIN®

OMIVW L1S3L TOHINOI ONILSIT ¢

In
wil

L1sI1°
LSTIN®

I 39vd

NI® ASIIN®

9C@o00

vZcoeneo
vZoeero

Geeded veoeoe
£00000 200000 1eeeve

62191 pL=TNr=60

clooce

LOLOW ONIVW

92
°T4
ve

£e
1 X4

ez
61
et

—~NMmINON®O

NIVW®

6-10

GENERAL ASSEMBLER DIRECTIVES

6.1.3 L.TITLE Directive

The .TITLE directive is used to assign a name to the object module as
the first entry in the header of each page in the assembly listing.
The name so assigned is the first six non-blank characters following
the .TITLE directive. This name should be six Radix-50 characters or
less in length; any characters beyond the first six are checked for

ASCII legality, but they are not used as part of the object module
name. For example, the directive:

.TITLE PROGRAM TO PERFORM DAILY ACCOUNTING

causes the assembled object module to be named PROGRA. Note that this
6-character name bears no relationship to the filename of the object
module, as specified in the command string to MACRO-11l. The name of
an object module (specified in the .TITLE directive) appears in the
load map produced at link time. This is also the module name which
the Librarian will recognize.

If the .TITLE directive is not specified, MACRO-11 assigns the default
name .MAIN. to the object module. If more than one .TITLE directive
is specified in the source program, the 1last .TITLE directive
encountered establishes the name for the entire object module.

All spaces and/or tabs up to the first non-space/non-tab character
following the .TITLE directive are ignored by MACRO-11 when evaluating
the text string.

If the .TITLE directive is specified without an object module name, or
if the first non-space/non-tab character in the object module name is
not a Radix-50 character, the directive is flagged with an error code
(A) in the assembly listing.

Section A.2 of Appendix A contains a table of Radix-50 characters.

6.1.4 .SBTTL Directive

The .SBTTL directive is wused to produce a table of contents
immediately preceding the assembly listing and to further identify
each page in the listing. 1In the latter case, the text following the
.SBTTL directive 1is printed as the second line of the header of each
page in the listing, continuing until altered by a subsequent .SBTTL
directive in the program. For example, the directive:

.SBTTL CONDITIONAL ASSEMBLIES
causes the text

CONDITIONAL ASSEMBLIES

to be printed as the second 1line in the header of the assembly
listing.

During assembly pass 1, a table of contents is printed for the
assembly listing, containing the 1line sequence number, the page
number, and the text accompanying each .SBTTL directive. The 1listing
of the table of contents is suppressed whenever an .NLIST TOC
directive is encountered in the source program (see Table 6-1). An
example of a table of contents listing is shown in Figure 6-4.

6-11

GENERAL ASSEMBLER DIRECTIVES

CSITST == TEST OF CSI{ AND CSI2 MACRO M@7@7 09~JUL=74 15147
TABLE OF CONTENTS

2= 55 MACRO DEFINITIONS

3= 74 MESSAGE STRINGS

4-183 MISCELLANEOUS DATA

5-209 READ AND PARSE COMMAND LINES
6-255 EVALUATE THE SEMANTIC ANALYSIS
7=345%5 SUBROUTINES

Figure 6-4 Assembly Listing Table of Contents

6.1.5 L.IDENT Directive

The .IDENT directive provides an additional means of labeling the
object module produced by MACRO-11. 1In addition to the name assigned
to the object module with the .TITLE directive (see Section 6.1.3), a
character string up to six Radix-50 characters can be specified
between paired printing delimiters to label the object module with the
program version number. This directive takes the following form:

.IDENT /string/

where: string represents six or fewer legal Radix-50 characters
which establish the program identification or
version number. This number is included in the
global symbol directory of the object module; the
first four characters are printed in the load map
and librarian listing.

/ / represent delimiting characters. These delimiters
may be any paired printing characters, other than
the equal sign (=), the left angle bracket (<), or
the semicolon (;), as 1long as the delimiting
character is not contained within the text string
itself. If the delimiting characters do not
match, or if an illegal delimiting character is
used, the .IDENT directive is flagged with an
error code (A) in the assembly listing.

An example of the .IDENT directive is shown below:
.IDENT /V05A/

The character string VO5A is converted to Radix-50 representation and
included in the global symbol directory of the object module. This
character string also appears in the load map produced at 1link time
and the Librarian directory listings.

When more than one .IDENT directive is encountered in a given program,

the last such directive encountered establishes the character string
which forms part of the object module identification.

6-12

GENERAL ASSEMBLER DIRECTIVES

6.1.6 .PAGE Directive/Page Ejection
Page ejection is accomplished in one of four ways:

1. After reaching a count of 58 lines in the 1listing, MACRO-11
automatically performs a page eject to skip over page
perforations on 1line printer paper and to formulate

teleprinter output into pages. The page number 1is not
changed.

2. In addition, the .PAGE directive is used within the source
program to perform a page eject at desired points in the
listing. The format of this directive is:

.PAGE

This directive takes no arguments and causes a skip to the
top of the next page when encountered. It also causes the
page number to be incremented and the line sequence counter

to be cleared. The .PAGE directive does not appear in the
listing.

When used within a macro definition, the .PAGE directive is
ignored during the assembly of the macro definition. Rather,
the page eject operation is performed as the macro itself is
expanded. In this case, the page number is also incremented.

3. A page eject is performed when a form-feed character is
encountered. If the form—-feed character appears within a
macro definition, a page eject occurs during the assembly of
the macro definition, but not during the expansion of the
macro itself. A page eject resulting from the use of the
form—-feed character likewise causes the page number to be
incremented and the line sequence counter to be cleared.

4. Encountering a new source file causes the page number to be
incremented and the line sequence count to be reset.

6.2 FUNCTION DIRECTIVES: .ENABL AND .DSABL

Several functior. control options are provided by MACRO-11 through the
.ENABL and .DSABL directives. These directives are included in a
source program to invoke or inhibit certain MACRO-11 functions and
operations incidental to the assembly process itself. These
directives take the following form:

.ENABL arg
.DSABL arg

where: arg represents one or more of the optional symbolic
arguments defined in Table 6-2.

Specifying any argument in an .ENABL/.DSABL directive other than those
listed in Table 6-2 causes that directive to be flagged with an error
code (A) in the assembly listing.

GENERAL ASSEMBLER DIRECTIVES

Table 6-2
Symbolic Arguments of Function Control Directives
Argument Default Function
ABS Disable Enabling this function produces absolute

binary output in FILES-11 format. To
convert this output to Formatted Binary
format (as required by the Absolute
Loader), use the FLX utility.

AMA Disable Enabling this function causes all
relative addresses (address mode 67) to
be assembled as absolute addresses
(address mode 37). This function is
useful during the debugging phase of
program development.

CDR Disable Enabling this function causes source
columns 73 and greater, i.e., to the end
of the line, to be treated as a comment.
The most common use of this feature is
to permit sequence numbers in card
columns 73-80.

CRF Enable Disabling this function inhibits the
generation of cross-reference output.
This function only has meaning if
cross-reference output generation is
specified in the command string.

FPT Disable Enabling this function causes floating-
point truncation; disabling this
function causes floating-point rounding.

LC Disable Enabling this function causes MACRO-11
to accept lower-case ASCII input instead
of converting it to upper-case. If this
function is not enabled, all text is
converted to upper-case.

LSB Disable This argument permits the enabling or
disabling of a local symbol block.
Although a 1local symbol block is
normally established by encountering a
new symbolic label or a .PSECT directive
in the source program, an .ENABL LSB
directive establishes a new local symbol
block which is not terminated until (1)
another .ENABL LSB is encountered, or
(2) another symbolic label or .PSECT
directive 1is encountered following a
paired .DSABL LSB directive.

Although the .ENABL LSB directive
permits a 1local symbol block to cross
-PSECT boundaries, local symbols cannot
be defined in a program section other
than the one that was in effect when the
block was entered. The basic function
of this directive with regard to
.PSECT's 1is 1limited to those instances

(Continued on next page)

6-14

GENERAL ASSEMBLER DIRECTIVES

Table 6-2 (Cont.)

Symbolic Arguments of Function Control Directives

Function

Argument Default
LSB Disable
(Cont.)

PNC Enable

REG Enable

GBL Enable*
—

where it is desirable to leave a program
section temporarily to store data,
followed by a return to the original
program section. Attempts to define
local symbols in an alternate program
section are flagged with an error code
(P) in the assembly listing.

An example of the .ENABL LSB and .DSABL
LSB directives, as typically used in a
source program, is shown in Figure 6-5.

Disabling this function inhibits binary
output until an .ENABL PNC statement is
encountered within the same module.

When specified, the .DSABL REG directive
inhibits the normal MACRO-11 default
register definitions; if not disabled,
the default definitions 1listed below
remain in effect.

RO=%0
Rl=%1
R2=%2
R3=%3
R4=%4
R5=%5
SP=%6
PC=%7

The .ENABL REG statement may be used as
the logical complement of the .DSABL REG
directive. The use of these directives,
however, is not recommended. For
logical consistency, use the normal
default register definitions listed

. above.

i When the .ENABL GBL directive is

specified, MACRO-11 treats all symbol
references that are undefined at the end
of assembly pass 1 as default global
references; when the .DSABL GBL
directive is specified, MACRO-11 treats
all such references as undefined
symbols. In assembly pass 2, if the
.DSABL GBL function is still in effect,
these undefined symbols are flagged with
an error code (U) 1in the assembly
listing; otherwise, they continue to be
regarded by MACRO-11 as global
references.

* The default is Disable for RT-11 MACRO programs.

GENERAL ASSEMBLER DIRECTIVES

t

3¥NTIve 3LVIIANIY

3AV3Y 0L WIONVHEL

$€322N8 34VIIANIIY

Hi9N3T 3INIT 3iNdWOI=3¥¢

LI 18Vd INIOd==d3LIVHVMI MNVIE=NON!
41 3JWONOI ‘0§ 4It

LUNVIG Vv LI SI¢

11 J¥ON9I ‘08 41t

¢Vl Vv HILIVHYHI LSV 3IML ST
3¥NTTIvY WIIM 3AVIT ‘OS 4I¢

LINIT 40 l¥vis 04 INIOd 2¥ §300Q¢
INIT=40~0ON3 LSVd 2¥ LINIOd!

3009 SS3IJIINS NOWWOI VIA IAVIY
INIV=40«0AN3 M3IN LSVd 2B INIOd ‘§3At
ININ00T 3INNILNOD ‘ONt

INOTOIIw3IS MILIVHVHI LSV 3IML SIt
WNTIVY INILVIIONI 3AV3IT ‘08 41
43INIT 40 L¥vViE Ol INIOd €¥ §300¢
INIT NI NMYMI LSV LSVe €¥ INIOd!

€4 NI 3NIT 40 ¥0QV LNd¢

a8

sor

2u’'ly

2y

[{]
NvIge‘(2y)
s01
avim‘(2u)e
L1:]1Y

Ty‘ey

2y’ly

see

2e’'ty

st
JINISH!(En) =
so¢

TH'CN

[¥-RX1]

[X- A T]

8§17

q8vea’
NENL 3N
38

L]

3N
ans
INI
03¢
QdwW)
038
CEL]
034
dW)
qadv

¥e
AOW
INg
9dnd
03e
dW)d
aav
AOW

18VYN3*

1say
1sec

tsee

1501
I%18dXS

151

LIWSANY

? 39vd

(2244 1]

192eee 9l2ceo
1evo00 vi2coe
2000 2Ziz2cee
2aleel otlecee
zazgee oozcee
esL1e0 ve2C00
oveeve (22l eezcue
£LLl08 9/1¢00
110000 (22021 2¢/1C00
Zivioe @/icee
1ezeze 991ce0
2ete92 r9igcee

Ziveeo 29igve
Zocele e9tcee
€4C100 9cice0
€L0000 (2Zcvel Zgigcee
2Zrine eosigue
t1eceze oviche
€ezZe9e vricee
cetete 2Zrvicee

C1IGT pe=Nr=60

LOLOW O¥IVW

S9ATIO9ITQ TAVYSA® pue TgyNd*® Jo o1dwexdy -9 ainbrg

Zec
1e¢
eec
(1.1
062
(62
962
662
(414
(.14
c6e
162
062
682
e8¢
314
982
1114
ree
1Y 14
1113
182
(11
6.2
[734
(e
942
1734
v
[¥24
(X34

3Z233Nn0S

6-16

GENERAL ASSEMBLER DIRECTIVES

6.3 DATA STORAGE DIRECTIVES

A wide range of data and data types can be generated with the

following directives, ASCII conversion characters, and radix-control
operators:

.BYTE
.WORD
]

.ASCII
JASCIZ

These MACRO-11 facilities are described in the following sections.

6.3.1 .BYTE Directive

The .BYTE directive is used to generate successive bytes of binary
data in the object module. The directive is of the form:

.BYTE 2xXp ;STORES THE BINARY VALUE OF THE
;EXPRESSION "EXP" IN THE NEXT BYTE.

.BYTE expl,exp2,expn ;STORES THE BINARY VALUES OF THE LIST
;OF EXPRESSIONS IN SUCCESSIVE BYTES.

A legal expression must reduce to eight bits of data or less. The
operands of a .BYTE directive are evaluated as word expressions before
being truncated to the low-order eight bits. The 16-bit value of the
specified expression must have a high-order byte (which is truncated)
that is either all zeros (0) or all ones (l). Each expression value
is stored in the next byte of the object module. Multiple
expressions, which must be separated by commas, are stored in
successive bytes, as described below:

SAM=5
.=410
.BYTE "D48,SAM ; THE VALUE 060 (OCTAL EQUIVALENT OF 48
;DECIMAL) IS STORED IN LOCATION 410.
;THE VALUE 005 IS STORED IN LOCATION
;411.

If the high-order byte of the expression reduces to a value other than
0 or -1, the value 1is truncated to the low-order eight bits and
flagged with an error code (T) in the assembly listing.

The construction "D in the first operand of the .BYTE directive above
illustrates the wuse of a temporary radix-control operator. The

function of such special unary operators is described 1in Section
6.4.1.2.

At link time, it is likely that a relocatable expression will result
in a value having more than eight bits, in which case the linker

6-17

GENERAL ASSEMBLER DIRECTIVES

issues a truncation diagnostic for the object module in question. For
example, the following statements create such a possibility:

.BYTE 23 ;STORES OCTAL 23 IN NEXT BYTE.
A:
.BYTE A sRELOCATABLE VALUE A WILL PROBABLY
; CAUSE TRUNCATION
;DIAGNOSTIC.

If an expression following the .BYTE directive is null, it is
interpreted as a zero, as described below:

.=420
.BYTE rre ;ZEROS ARE STORED IN BYTES 420, 421,
:422, AND 423,

Note that in the above example, four bytes of storage result from the
.BYTE directive. The three commas in the operand field represent an
implicit declaration of four null values, each separated from the
other by a comma. Hence, four bytes, each containing a value of zero
(0), are reserved in the object module.

6.3.2 .WORD Directive

The .WORD directive is used to generate successive words of data in
the object module. The directive is of the form:

.WORD exp sSTORES THE BINARY EQUIVALENT OF THE
;EXPRESSION EXP IN THE NEXT WORD.

.WORD expl,exp2,expn ;STORES THE BINARY EQUIVALENTS OF THE
;LIST OF EXPRESSIONS IN SUCCESSIVE
;WORDS .

A legal expression must result in 16 bits of data or less. Each
expression is stored in the next word of the object program. Multiple
expressions must be separated by commas and stored in successive
words, as shown in the following example:

SAL=0
.=500
.WORD 177535,.+4,SAL ;STORES THE VALUES 177535, 506, AND
;0 IN WORDS 500, 502, AND 504,
sRESPECTIVELY.

If an expression following the .WORD directive contains a null value,
it is interpreted as a zero, as shown in the following example:

.=500
.WORD 15y ;STORES THE VALUES 0, 5, AND 0 IN
;s LOCATION 500, 502, AND 504,
;RESPECTIVELY.

A statement containing a blank operator field, i.e., a symbol that is
not recognized by MACRO-11 as a macro call, an instruction mnemonic, a
MACRO-11 directive, or a semicolon is interpreted during assembly as
an implicit .WORD directive, as shown in the example below:

.=440

LABEL: 100,LABEL ;STORES THE VALUE 100 IN LOCATION 440
;AND THE VALUE 440 IN LOCATION 442.

6-18

GENERAL ASSEMBLER DIRECTIVES

CAUTION

You should not use this technique to
generate .WORD directives because it may
not be included in future PDP-11
assemblers.

6.3.3 ASCII Conversion Characters

The single quote (') and the double quote (") characters are unary
operators that can appear in any MACRO-11l expression. When so used,
these characters cause a 16-bit expression value to be generated.

When the single quote is used, MACRO-11 takes the next character in
the expression and converts it from its 7-bit ASCII value to a 16-bit
expression value. The 16-bit value is then used as an absolute term
within the expression. For example, the statement:

MOV $#'A,R0

results in the following 16-bit expression value being moved into
register O0:

[00000000 01000001

t—-Binary Value of ASCII A

Thus, in the example above, the expression 'A results in a value of
101(8). Note that the high-order byte is always zero (0) in the
resulting expression value when the single quote unary operator is
used.

The ' character must not be followed by a carriage-return, null,
RUBOUT, 1line-feed, or form-feed character; if it is, an error code
(A) is generated in the assembly listing.

When the double guote is used, MACRO-1l1 takes the next two characters
in the expression and converts them to a 16-bit binary expression
value from their 7-bit ASCII values. This 16-bit value is then used
as an absolute term within the expression. For example, the

statement:
MOV #"AB,RO

results in the following 16-bit expression value being moved into
register O:

01000010|01000001

1—— l——Binary Value of ASCII A

Binary Value of ASCII B

Thus, in the example above, the expression "AB results in a value of
041101 (8).

6-19

GENERAL ASSEMBLER DIRECTIVES

The " character also must not be followed by a carriage-return, null,
RUBOUT, 1line-feed, or form-feed character; if it is, an error code
(A) is likewise generated in the assembly listing.

The ASCII character set is listed in Section A.1l, Appendix A.

6.3.4 .ASCII Directive

The .ASCII directive translates character strings into their 7-bit
ASCII equivalents and stores them in the object module. The format of
the .ASCII directive is as follows:

.ASCII /string 1/.../string n/

where: string is a string of printable ASCII characters. All
printable ASCII characters are legal. The
vertical-tab, null, 1line-feed, RUBOUT, and all
other non-printable ASCII characters, except

carriage-return and form-feed, are illegal
characters. Such an illegal non-printing
character is flagged with an error code (I) in the
assembly listing. The carriage-return and

form-feed characters terminate the scan of the
source line. This premature termination of the
.ASCII statement results in the generation of an
error code (A) in the assembly 1listing, because
MACRO-11 1is wunable to complete the scan of the
matching delimiter at the end of the character
string.

/ / represent delimiting characters. These delimiters
may be any paired printing characters, other than
the equal sign (=), the left angle bracket (<), or
the semicolon (;), as 1long as the delimiting
character is not contained within the text string
itself. If the delimiting characters do not
match, or if an illegal delimiting character is
used, the .ASCII directive 1is flagged with an
error code (A) in the assembly listing.

A non-printing character can be expressed in an .ASCII statement only
by enclosing its equivalent octal value within angle brackets. Each
set of angle brackets so used represents a single character. For
example, in the following statement:

.ASCII <15>/ABC/<A+2>/DEF/<5><4>

the expressions <15>, <A+2>, <5>, and <4> represent the values of
non-printing characters. Furthermore, the expressions must reduce to
eight bits of absolute data or less, subject to the same rules for
generating data as with the .BYTE directive (see Section 6.3.1).

Angle brackets can be embedded between delimiting characters in the
character string, but angle brackets so used do not take on their
usual significance as delimiters for non-printing characters. For
example, the statement:

.ASCII /ABC<expression>DEF/
contains a single ASCII character string, and performs no evaluation

of the embedded, bracketed expression. This use of the angle brackets
is shown in the third example of the .ASCII directive below:

6-20

GENERAL ASSEMBLER DIRECTIVES

.ASCII /HELLO/ ; STORES THE BINARY REPRESENTATION
;OF THE LETTERS HELLO IN FIVE
;CONSECUTIVE BYTES.

LASCII /ABC/<15><12>/DEF/ ;STORES THE BINARY REPRESENTATION
;OF THE CHARACTERS A,B,C,CARRIAGE
;RETURN,LINE FEED,D,E,F IN EIGHT
;CONSECUTIVE BYTES.

.ASCII /A<15>B/ ; STORES THE BINARY REPRESENTATION
;OF THE CHARACTERS A, <, 1, 5, >,
;AND B IN SIX CONSECUTIVE BYTES.

The semicolon (;) and equal sign (=) can be used as delimiting
characters in an ASCII string, but care must be exercised in so doing
because of their significance as a comment indicator and assignment
operator, respectively, as illustrated in the examples below:

.ASCII ;ABC;/DEF/ ;STORES THE BINARY REPRESENTATION OF
;THE CHARACTERS A, B, C, D, E, AND F
;IN SIX CONSECUTIVE BYTES; NOT
;s RECOMMENDED PRACTICE.

.ASCII /ABC/;DEF; ;STORES THE BINARY REPRESENTATIONS OF
; THE CHARACTERS A, B, AND C IN THREE
;CONSECUTIVE BYTES; THE CHARACTERS D,
;E, F, AND ; ARE TREATED AS A COMMENT.

.ASCII /ABC/=DEF= ;STORES THE BINARY REPRESENTATION
;OF THE CHARACTERS A, B, C, D, E, AND
;F IN SIX CONSECUTIVE BYTES; NOT
; RECOMMENDED PRACTICE.

An equal sign is treated as an assignment operator when it appears as
the first character in the ASCII string, as illustrated by the
following example:

.ASCII =DEF= : THE DIRECT ASSIGNMENT OPERATION
; .ASCII=DEF IS PERFORMED, AND A Q
; (SYNTAX) ERROR IS GENERATED UPON
; ENCOUNTERING THE SECOND = SIGN.

6.3.5 .ASCIZ Directive

The .ASCIZ directive is equivalent to the .ASCII directive described
above, except that a zero byte is automatically inserted as the final
character of the string. Thus, when a list or text string has Dbeen
created with an .ASCIZ directive, a search for the null character in
the last byte can effectively determine the end of the string, as
reflected by the coding below:

CR=15

LF=12

HELLO: .ASCIY <CR><LF>/MACRO-11 VO1lA/<CR><LF> ; INTRODUCTORY MESSAGE
.EVEN
MOV #HELLO,R1 :GET ADDRESS OF MESSAGE.
MOV #LINBUF,R2 :GET ADDRESS OF OUTPUT BUFFER.

10$: MOVB (R1)+, (R2)+ ;sMOVE A BYTE TO OUTPUT BUFFER.

BNE 108 ;IF NOT NULL, MOVE ANOTHER BYTE.

GENERAL ASSEMBLER DIRECTIVES

The .ASCIZ directive is subject to the same checks for character
legality and proper character string construction as described above
for the .ASCII directive.

6.3.6 .RAD50 Directive

The .RAD50 directive allows the user to generate data in Radix-50
packed format. Radix-50 form allows three characters to be packed
into sixteen bits (one word); therefore, any 6-character symbol can
be stored in two consecutive words. The form of the directive is:

-RAD50 /string 1/.../string n/

where: string represents a series of characters to be packed
(three characters per word). The string must
consist of the characters A through z, 0 through
9, dollar sign ($), period (.) and space (). An
illegal printing character causes an error flag
(Q) to be printed in the assembly l:isting.

If fewer than three characters are to be packed,
the string 1is packed left-justified within the
word, and trailing spaces are assumed.

As with the .ASCII directive described in Section
6.3.4, the vertical-tab, null, line-feed, RUBOUT,
and all other non-printing characters, except
carriage-return and form-feed, are illegal
characters, resulting in an error cede (I) in the
assembly 1listing. Similarly, the carriage-return
and form-feed characters result in an error code
(A) because these characters end the scan of the
line, preventing MACRO-11 from detecting the
terminating matching delimiter.

/ / represent delimiting characters. These delimiters
may be any paired printing characters, other than
the equal sign (=), the left angle bracket (<), or
the semicolon (;), provided that the delimiting
character is not contained within the text string
itself. If the delimiting characters do not
match, or if an illegal delimiting character is
used, the .RAD50 directive is flagged with an
error code (A) in the assembly listing.

Examples of .RAD50 directives are shown below:

.RAD50 /ABC/ iPACKS ABC INTO ONE WORD.
.RAD50 /AB/ ;PACKS AB (SPACE) INTO ONE WORD.
.RAD50 /ABCD/ ;PACKS ABC INTO FIRST WORD AND

iD (SPACE) (SPACE) INTO SECOND WORD.
.RAD50 /ABCDEF/ i PACKS ABC INTO FIRST WORD, DEF INTO

:SECOND WORD.

6-22

GENERAL ASSEMBLER DIRECTIVES

Each character is translated into its Radix-50 equivalent, as
indicated in the following table:

Character Radix-50 Octal Equivalent
(space:) 0

A-2 1-32

$ 33

. 34
(undefined) 35

0-9 36-47

The Radix-50 equivalents for characters 1 through 3 (Ci,c2,C3) are
combined as follows:

Radix-50 Value = ((C1*50)+C2)*50+C3
For example:
Radix-50 Value of ABC = ((1*50)+2)*50+3 = 3223

Refer to Section A.2 in Appendix A for a table of Radix-50
equivalents.

Angle brackets (<>) must be used in the .RAD50 directive whenever
special codes are to be inserted in the text string, as shown in the
example below:

.RAD50 /AB/<35> ;STORES 3255 IN ONE WORD.

CHR1=1
CHR2=2
CHR3=3

.RAD5U <CHR1><CHR2><CHR3> ;EQUIVALENT TO .RAD50 /ABC/.

~

6.3.7 Temporary Radix-50 Control Operator: R
The "R operator specifies that an argument is to be converted to
Radix-50 format. This allows up to three characters to be stored in
one word. The "R operator is coded as follows:

“"Rccc

where ccc represents a maximum of three characters to be converted to
a 16-bit Radix-50 value. If more than three characters are specified,
any following the third character are ignored. If fewer than 3 are
specified, it is assumed that the trailing characters are blanks. The
following example shows how the "R operator might be used to pack a
3-character file type specifier (MAC) into a single 16-bit word.

MOV # "RMAC,FILEXT ;STORE RAD50 MAC AS FILE EXTENSION

The number sign (#) is used to indicate immediate data, i.e., data to
be assembled directly into object code. "R specifies that the
characters MAC are to be converted to Radix-50. This value 1is then
stored in location FILEXT.

GENERAL ASSEMBLER DIRECTIVES

6.4 RADIX AND NUMERIC CONTROL FACILITIES

6.4.1 Radix Control and Unary Control Operators

The normal default assumption for numeric values or expression values
appearing in a MACRO-11l source program is octal. However, numerous
instances may occur where an alternate radix is useful for portions of
a program or for variables within a given statement. It may be
useful, for example, to declare a given radix for applicability
throughout a program or to specify a numeric value or expression value
in a manner that causes it to be interpreted as a binary, octal, or
decimal value during assembly. In other such instances, it may be
useful to complement numeric values or expression values. These
MACRO-11 facilities are described in the following sections.

NOTE

When two or more unary operators appear together,
modifying the same term, the operators are
applied, from right to left, to the term.

6.4.1.1 .RADIX Directive - Numbers used in a MACRO-11 source program
are initially considered to be octal values; however, vou can declare
any one of the following radices for applicability throughout the
source program or within specific portions of the program:

2, 8, 10
This is accomplished via a .RADIX directive of the form:

.RADIX n

where: n represents one of the three acceptable radices
listed above. If the argument n is not specified,
the octal default radix is assumed.

The argument in the .RADIX directive is always interpreted as a
decimal value. Any alternate radix declared in the source program
through the .RADIX directive remains in effect until altered by the
occurrence of another such directive, i.e., a given radix declaration
is valid throughout a program until changed. For example, the
statement:

.RADIX 10 ;BEGINS A SECTION OF CODE HAVING A
;DECIMAL RADIX.

.

.RADIX ;REVERTS TO OCTAL RADIX.

Any value other than null, 2, 8, or 10 specified as an argument in the
-RADIX directive causes an error code (A) to be generated in the
assembly listing.

In general, macro definitions should not contain or rely on radix
settings established with the .RADIX directive. Rather, temporary
radix control operators should be used within a macro definition.
Where a possible radix conflict exists within a macro definition or in
possible future uses of that code, it is recommended that the user

6-24

GENERAL ASSEMBLER DIRECTIVES

specify numeric or expression values using the temporary radix control
operators described below.

6.4.1.2 Temporary Radix Control Operators: D, "O, and "B - Once the
user has specified a given radix for a section of code or has decided
to use the default octal radix, he may discover a number of cases
where an alternate radix is more convenient or desirable (particularly
within macro definitions). The creation of a mask word, for example,
might best be accomplished through the use of a binary radix.

MACRO-11 has three unary operators that allow the user to establish an
alternate radix, as shown below:

“D"number" ("number" is evaluated as a decimal number)
“0"number" ("number" is evaluated as an octal number)
“B"number" ("number" is evaluated as a binary number)

Thus, an alternate radix can be declared temporarily to meet a
localized requirement in the source program. Such a declaration can
be made at any time, regardless of the existence of the default octal
radix or another specific radix declaration elsewhere in the program.
In other words, the effect of a temporary radix control operator is
limited to the term or expression immediately following the operator.
Any value specified in connection with a temporary radix control
operator is evaluated during assembly as a 16-bit entity. Temporary
radix control declarations can be included in the source program
anywhere a numeric value is legal.

The expressions below are representative of the methods of specifying
temporary radix control operators:

“D12: Decimal radix
"0 47 Octal Radix
"B 00001101 Binary Radix
"0<A+13> Octal Radix

Note that the up-arrow and the radix control operator may not be
separated, but the radix control operator and the following term or
expression can be physically separated by spaces or tabs for
legibility or formatting purposes. A multi-element term or expression
that is to be interpreted in an alternate radix should be enclosed
within angle brackets, as shown in the last of the four temporary
radix control expressions above.

The following example also illustrates the use of angle brackets to
delimit an expression that is to be interpreted in an alternate radix:

.RADIX 10

A=10
.WORD "O<A+10>*10

When the temporary radix expression in the .WORD directive above is
evaluated, it effectively yields the following equivalent statement:

.WORD 180.

MACRO-11 also allows a temporary radix change to decimal by specifying
a number, immediately followed by a decimal point (.), as shown below:

100. Equivalent to 144(8)
1376. Equivalent to 2540(8)
128. Equivalent to 200(8)

6-25

GENERAL ASSEMBLER DIRECTIVES

The above expression forms are equivalent in function to those 1listed
below:

"D100
"D1376
"D128

6.4.2 Numeric Directives and Unary Control Operators

Two storage directives and two numeric control operators are available
to simplify the use of the floating-point hardware on the PDP-11.
These facilities allow floating-point data to be created in the

program, and numeric values to be complemented or treated as
floating-point numbers.

A floating-point number is represented by a string of decimal digits.
The string (which can be a single digit in length) may optionally
contain a decimal point, and may be followed by an optional exponent
indicator in the form of the letter E and a signed decimal integer
exponent. The number may not contain embedded blanks, tabs or angle
brackets and may not be an expression. Such a string will result in
one or more errors (A or Q) in the assembly listing.

The list of numeric representations below contains seven distinct,
valid representations of the same floating-point number:

3
3.
3.0
3.0E0
3E0
.3E1
300E-2

As can be inferred, the list could be extended indefinitely (e.gq.,
3000E-3, .03E2, etc.). A leading plus sign is optional (e.g., 3.0 is
considered to be +3.0). A leading minus sign complements the sign
bit. No other operators are allowed (e.g., 3.04N is illegal).

All floating-point numbers are evaluated as 64 bits in the following
format:

64 63 56 55 0

S EEEEEEEE MMM.....MMM

Mantissa (55 bits)
Exponent (8 bits)
Sign (1 bit)

MACRO-11 returns a value of the appropriate size and precision via one
of the floating-point directives. The values returned may be
truncated or rounded (see Section 6.2).

Floating-point numbers are normally rounded. That is, when a
floating-point number exceeds the limits of the field in which it is
to be stored, the high-order bit of the unretained word is added to
the low-order bit of the retained word, as shown below. For example,
if the number is to be stored in a 2-word field, but more than 32 bits
are needed to express its exact value, the highest bit (32) of the

6-26

GENERAL ASSEMBLER DIRECTIVES

unretained field is added to the least significant bit (0) of the
retained field (see illustration below). The .ENABL FPT directive is
used to enable floating-point truncation; .DSABL FPT 1is wused to
return to floating-point rounding (see Table 6-2).

Bit Bit Bit Bit
32 0 32 31 0

Retained Unretained
field field

Note that all numeric operands associated with Floating Point
Processor instructions are automatically evaluated as single-word,
decimal, floating-point values unless a temporary radix control
operator is specified. For example, to add (floating) the octal
constant 41040 to the contents of floating accumulator zero, the
following instruction must be used:

ADDF $#7041040,F0
where: FU is assumed to represent floating accumulator zero.

Floating-point numbers are described in greater detail in the
applicable PDP-11 Processor Handbook.

~

6.4.2.2 Temporary Numeric Control Operators: “C and “F - The
unary operator allows you to specify an argument that is to be
complemented as it is evaluated during assembly. The °“F unary
operator allows you to specify an argument consisting of a l-word
floating-point number.

C

As with the radix control operators described above, the numeric
control operator ("C) can be used anywhere in the source program that
an expression value is legal. Such a construction is evaluated by
MACRO-11 as a 1l6-bit binary value before being complemented. For
example, the following statement:

TAG4: .WORD “cl51

causes the l's complement of the value 151 (octal) to be stored as a

l6-bit value 1in the program. The resulting value expressed in octal
form is 177626 (&).

GENERAL ASSEMBLER DIRECTIVES

Because the "C construction is a unary operator, the operator and its
argument are regarded as a term. Thus, more than one unary operator
may be applied to a single term. For example, the following

construction:
“C°D25

causes the decimal value 25 to be complemented during assembly. The

resulting binary value, when expressed in octal form, reduces to
177746 (octal).

The term created through the use of the temporary aumeric control
operator thus becomes an entity that can be used alone or in
combination with other expression elements. For example, the
following construction:

“C2+6

is equivalent in function to:

<"C2>+6

This expression is evaluated during assembly as the 1's complement of
2, plus the absolute value of 6. When these terms are combined, the
resulting expression value generates a carry beyond the most
significant bit, leaving 000003 (8) as the reduced value.

As shown above, when the temporary numeric control operator and its
argument are coded as a term within an expression, angle brackets
should be used as delimiters to ensure precise evaluation and
readability.

MACRO-11 also supports a unary operator for numeric control which
allows you to specify an argument consisting of a 1l-word
floating-point number. For example, the following statement:

A: MOV #°F3.7,R0

creates a l-word floating-point number at location A+2 containing the
value 3.7 formatted as shown below.

BIT 15 14 7 6 0
S EEEEEEEE MMMMMMM

Sign (bit 15) Exponent (bits 14-7) Mantissa (2its 6-0)

6-28

GENERAL ASSEMBLER DIRECTIVES

6.5 LOCATION COUNTER CONTROL DIRECTIVES

The directives used in controlling the value of the current 1location
counter and in reserving storage space in the object program are
described in the following sections.

In this connection, it should be noted that several MACRO-11
statements may cause an odd number of bytes to be allocated, as listed
below:

1. .BYTE d:rective
2, .BLKB directive
3. .ASCII or .ASCIZ directive
4. .0ODD directive

5. A direct assignment statement of the form .=.+expression,
which results in the assignment of an odd address value.

In cases that yield an odd address value, the next word-boundaried
instruction automatically forces the location counter to an even
value, but that instruction is flagged with an error code (B) in the
assembly listing.

6.5.1 L.EVEN Directive

The .EVEN directive ensures that the current location counter contains
an even value by adding 1 if the current value is odd. 1If the current
location counter is already even, no action is taken. Any operands
following an .EVEN directive are flagged with an error code (Q) in the
assembly listing.

The .EVEN direct.ve is used as follows:

.ASCIZ ,[THIS IS A TEST/

.EVEN ;ENSURES THAT THE NEXT STATEMENT WILL
;BEGIN ON A WORD BOUNDARY.

. WORD XY2Z

6.5.2 .0ODD Directive

The .ODD directive ensures that the current location counter contains
an odd value by adding 1 if the current value is even. If the current
location counter is already odd, no action is taken. Any operands
following an .ODD directive are also flagged with an error code (Q) in
the assembly listing.

GENERAL ASSEMBLER DIRECTIVES

6.5.3 .BLKB and .BLKW Directives

Blocks of storage can be reserved in the object program by means of
the .BLKB and .BLKW directives. The .BLKB directive is used to
reserve byte blocks; similarly, the .BLKW directive reserves word
blocks. The two directives are of the form:

.BLKB exp
.BLKW exp

where: exp represents the specified number of bytes or words
to be reserved in the object program. If no
argument is present, a default value of 1 is
assumed. These directives should not be used
without arguments. Any expression that is
completely defined at assembly-time and that
reduces to an absolute value is legal. If the
expression specified in either of these directives
is not an absolute value, the statement is flagged
with an error code (A) in the assembly listing.

Figure 6-6 illustrates the use of the .BLKB and .BLKW directives.

166 000000 +PSECY IMPURE,D

167 000000 PASS11 ,BLKNW 1 JPASS FLAG

168 INEXY GROUP MUST STAY TOGETHER
169 000000 «PSECT IMPPAS,D,GBL

170 0000200 SYMBOL s ,BLKW F)SYMBOL ACCUMULATOR

171 020004 MODE 1 JMODE/F|AGS BYTE

172 000004 FLAGSss ,BLKB 1 ’

173 000005 SECTORs1,BLKB I JSYMBOL/EXPRESSION TYPE

174 000006 VALUESS ,BLKW 1 JEXPRESSION VALUE

175 000010 RELLVLET ,BLKW 1 JRELOCAYION LEVEL

176 evee03 «REPT MAXXMTe<c<,=SYMBOL>/2>

177 oBLKW 1

178 +ENDR

179

180 000020 CLCNAMg s BLKW 2 JCURRENT LOCATION COUNTER NAME
181 000024 CLCFGS11,BLKB 1)

182 000025 CLCSEC11,BLKB 1)

183 000026 CLCLOCI: ,,BLKW 1)

184 AQ00Q30 CLCMAXg ,BLKW 1 JEND OF GROUPED DATA

185 020032 CHRPNT S BLKW 1 JCHARACTER POINTER

186 000034 SYMBEGy1 ,BLKW 1 JPOINTER TO START OF SYMBOL
187 002036 ENDFLGEL ,BLKW 1 }

188 Q00000 +PSECY

Figure 6-6 Example of .BLKB and .BLKW Directives

The .BLKB directive in a source program has the same effect as the
following statement:

.=.+expression

which causes the value of the expression to be added to the current
value of the location counter. The .BLKB directive, however, is
easier to interpret in the context of the source code in which it
appears and is therefore recommended.

GENERAL ASSEMBLER DIRECTIVES

6.6 TERMINATING DIRECTIVES

6.6.1 .END Directive

The .END directive indicates the logical end of the source input, and
takes the following form:

.END exp

where: exp represents an optional expression value which, if
present, indicates the program-entry point, i.e.,
the transfer address at which program execution is
to begin.

When MACRO-11 encounters a valid occurrence of the .END directive, it
terminates the current assembly pass. Any additional text beyond this
point in the current source file, as well as in additional source
files identified in the command line, will be ignored.

When creating an image consisting of several object modules, only one
object module may be terminated with an .END exp statement specifying
the starting address. All other object modules must be terminated
with an L.(END statement without an address argument; otherwise, a
diagnostic message will be issued at 1link time. If no starting
address is specified in any of the object modules, image execution
will begin at location 1 of the image and immediately fault because of
an odd addressing error.

The .END statement must not be used within a macro expansion or a
conditional assembly block; if it is so used, it is flagged with an
error code (0) in the assembly listing. The .END statement may be

used, however, in an immediate conditional statement (see Section
6.10.2).

If the source program input is not terminated with an .END directive,
an error code (E) results in the assembly listing.

6.6.2 L.EOT Directive

Under RSX-11, RT-11, and IAS operating systems, the MACRO-11 .EOT
directive is ignored and simply treated as a directive without effect,
i.e., as a no-op.

6.7 PROGRAM BOUNDARIES DIRECTIVE: .LIMIT

It is often desirable to know the upper and lower address boundaries
of the image. When the .LIMIT directive is specified in the source
program, MACRO-11 effectively generates the following instruction:

.BLKW 2

causing two storage words to be reserved in the object module. Later,
at 1link time, the lowest address in the load image is inserted into
the first reserved word, and the address of the first free word
following the image is inserted into the second reserved word.

During linking, the size of the image is rounded upward to the nearest
2-word boundary.

GENERAL ASSEMBLER DIRECTIVES

For a discussion of memory allocation and mapping, refer to the
applicable system manual (see Section 0.3 in the Preface).

6.8 PROGRAM SECTIONING DIRECTIVES

The MACRO-11 program sectioning directives are used to declare names
for program sections and to establish certain program section
attributes essential to the linking processing.

6.8.1 .PSECT Directive

The .PSECT directive allows absolute control over the memory
allocation of a program at link time, because any program attributes
established through this directive are passed to the linker.

For example, if you are writing programs for a multi-user environment,
a program section containing pure code (instructions only) or a
program section containing impure code (data and instructions) may be
explicitly declared through the .PSECT directive. Furthermore, these
program sections may be explicitly declared as read-only code,
qualifying them for use as protected, reentrant programs.

The advantages gained through sectioning programs in this manner
therefore relate primarily to control of memory allocation, program
modularity, and more effective partitioning of memory. Refer to the
applicable system manual for a discussion of memory allocation (see
Section 0.3 in the Preface).

The .PSECT directive is formatted as follows:

.PSECT name,argl,arg2,...argn

where: name represents the symbolic name of the program
section, as described in Table 6-3.
’ represents any legal separator (comma, tab and/or
space).
argl, represent one or more of the legal symbolic
arg2,... arguments defined for use with the .PSECT
argn directive, as described in Table 6-3. The slash

separating each pair of symbolic arguments listed
in the table indicates that these optional
arguments are mutually exclusive, i.e., one or the
other, but not both, may be specified. Multiple
arguments must be separated by a legal separating
character. Any symbolic argument specified in the
.PSECT directive other than those listed in Table
6-3 will cause that statement to be flagged with
an error code (A) in the assembly listing.

GENERAL ASSEMBLER DIRECTIVES

Table 6-3

Symbolic Arguments of .PSECT Directive

Argument

Default

Meaning

NAME

RO/RW

1/D

GBL/LCL

Blank

RW

LCL

Establishes the program section name,
which is specified as one to six
Radix-50 characters. If this argument
is omitted, a comma must appear in place
of the name parameter. The Radix-50
character set 1is listed in Section A.2
of Appendix A.

Defines which type of access is
permitted to the program section:

RO=Read-Only Access
RW=Read/Write Access

NOTE

IAS and RSX-11D set hardware
protection for RO program
sections. RSX-11M and RT-11 do
not provide such protection.

Defines the program section as
containing either instructions (I) or
data (D). These attributes allow the
linker to differentiate global symbols
that are program entry-point
instructions (I) from those that are
data values (D).

Defines the scope of the program
section, as subsequently interpreted at
link time.

In building single-segment nonoverlaid
programs, the GBL/LCL arguments have no
meaning, because the total memory
allocation for the program will go into
the root segment of the image. The
GBL/LCL arguments apply only in the case
of overlays.

If an object module contains a local
program section, then the storage
allocation for that module will occur
within the segment in which the module
resides. Many modules can reference
this same program section, and the
memory allocation for each module is
either concatenated or overlaid within
the segment, depending on the argument
of the program section (.PSECT) defining

(continued on next page)

GENERAL ASSEMBLER DIRECTIVES

Table 6-3 (Cont.)

Symbolic Arguments of .PSECT Directive

Argument

Default

Meaning

GBL/LCL
(cont'd)

ABS/REL

LCL

REL

its allocation requirements (see CON/OVR
below). If an object module contains a
global program section, the
contributions to this program section
are collected across segment boundaries,
and the allocation of memory for that
section will go into the segment nearest
the root in which the first contribution
to this program section appeared. (The
term contribution implies an allocation
of memory to the program section.)

Defines the relocatability attribute of
the program section:

ABS=Absolute (non-relocatable). When
the ABS argument is specified, the
program section is regarded at 1link
time as an absolute module, thus
requiring no relocation. The
program section 1is assembled and
loaded, starting at absolute virtual
address 0.

The location of data in absolute
program sections must fall within
the virtual memory 1limits of the
segment containing the program
section; otherwise, an error
results at link time. For example,
the following code, although valid
at during assembly, may generate an
error message if wvirtual 1location
100000 is outside the segment's
virtual address space:

.PSECT ALPHA,ABS
.=.+100000
.WORD X

The above coding assembles properly,
but the resulting load address may
be outside the respective segment's
boundaries. In such cases, the
linker recognizes this as an attempt
to 1load data outside the image and
responds with an error message.

REL=Relocatable. When the REL
argument 1is specified, the linker
calculates a relocation bias and
adds it to all references to

locations within the program
section, i.e., all references to the
program section must have a

relocation bias added to them to
make them absolute.

(Contiaued on next page)

6-34

GENERAL ASSEMBLER DIRECTIVES

Table 6-3 (Cont.)
Symbolic Arguments of .PSECT Directive

Argument Default Meaning

CON/OVR i CON Defines the allocation requirements of
| the program section:

CON=Concatenated. All program section
contributions are to be concatenated
with other references to this same
program section in order to
determine the total memory
allocation requirement for this
program section.

OVR=Overlaid. All program section
contributions are to be overlaid.
Thus, the total allocation

i requirement for the program section
§ is equal to the largest allocation
{ request made by any individual
| contribution to this program
i section.

The only argument in the .PSECT directive that is position-dependent
is NAME. If it is omitted, a comma must be used in its place. For
example, the directive:
.PSECT ,GBL

shows a .PSECT directive with a blank name argument and the GBL
argument. Default values (see Table 6-3) are assumed for all other
unspecified arguments.

Once the attributes of a program section are declared through a .PSECT
directive, MACRO-1l assumes that these attributes remain in effect for

all subsequent .PSECT directives of the same name that are encountered
within the modul=.

MACRO-11 provides for 256 (10) program sections, as listed below:
1. One default absolute program section (. ABS.)
2. One default unnamed relocatable program section
3. Two-hundred-fifty-four named program sections.
The .PSECT directive enables the user to:
1. Create program sections (see Section 6.8.1.1)

2. share code and data among program sections (see Section
6.8.1.2).

6-35

GENERAL ASSEMBLER DIRECTIVES

For each program section specified or implied, MACRO-11 maintains the
following information:

l. Program section name

2. Contents of the current location counter

3. Maximum location counter value encountered

4. Program section attributes, i.e., the .PSECT arguments
described in Table 6-3 above.

6.8.1.1 Creating Program Sections - MACRO-1l1 automatically begins
assembling source statements at relocatable zero of the unnamed
program section, i.e., the first statement of a source program is
always an implied .PSECT directive.

The first occurrence of a .PSECT directive with a given name assumes
that the current 1location counter is set at relocatable zero. The
scope of this directive then extends until a directive declaring a
different program section is specified. Further occurrences of a
program section name in subsequent .PSECT statements cause the

resumption of assembly where that section previously ended. For
example:

.PSECT ;DECLARES UNNAMED RELOCATABLE PROGRAM
A: .WORD 0 ;SECTION ASSEMBLED AT RELOCATABLE
B: .WORD 0 ;ADDRESSES 0, 2, AND 4.
C: .WORD 0

.PSECT ALPHA ;DECLARES RELOCATABLE PROGRAM SECTION
Xs .WORD 0 ;NAMED ALPHA ASSEMBLED AT RELOCATABLE
Y: .WORD 0 ;ADDRESSES 0 AND 2.

.PSECT ;RETURNS TO UNNAMED RELOCATABLE
D: .WORD 0 ;PROGRAM SECTION AND CONTINUES ASSEM-

;BLY AT RELOCATABLE ADDRESS 6.

A given program section may be defined completely upon encountering
its first .PSECT directive. Thereafter, the section can be referenced
by specifying its name only, or by completely respecifying its
attributes. For example, a program section can be declared through
the directive:

.PSECT ALPHA,ABS,OVR
and later referenced through the equivalent directive:
.PSECT ALPHA
which requires no arguments.
By maintaining separate location counters for each program section,
MACRO-11 allows the user to write statements that are not physically

contiguous within the program, but that can be loaded contiguously
following assembly, as shown in the following example.

6-36

GENERAL ASSEMBLER DIRECTIVES

.PSECT SEC1,REL,RO :START A RELOCATABLE PROGRAM SECTION
A: .WORD 0 ;s NAMED SECl ASSEMBLED AT RELOCATABLE
B: .WORD 0 ;ADDRESSES 0, 2, AND 4.
C: .WORD 0
ST: CLR A ;ASSEMBLE CODE AT RELOCATABLE
CLR B ;ADDRESSES 6 THROUGH 12.
CLR C
.PSECT SECA,ABS :START AN ABSOLUTE PROGRAM SECTION
sNAMED SECA. ASSEMBLE CODE AT
«WORD .+2,A ;ABSOLUTE ADDRESSES 0 AND 2.
.PSECT SEC1 sRESUME RELOCATABLE PROGRAM SECTION
INC A ;SECl. ASSEMBLE CODE AT RELOCATABLE
BR ST ;sADDRESSES 14 AND 16.

All labels in an absolute program section are absolute; 1likewise, all
labels in a relocatable section are relocatable. The current location
counter symbol (.) is also relocatable or absolute when referenced in
a relocatable or absolute program section, respectively.

Any labels appearing on a line containing a .PSECT (or .ASECT or
.CSECT) directive are assigned the value of the current location
counter before the .PSECT (or other) directive takes effect. Thus, if
the first statement of a program is:

A: .PSECT ALT,REL

the label A is assigned to relocatable address zero of the unnamed (or
blank) program section.

It is not known during assembly where relocatable program sections
will be loaded, therefore all references between relocatable sections
in a single assembly are translated by MACRO-11l to references relative
to the base of the referenced section. Thus, MACRO-11l provides the
linker with the necessary information to resolve the linkages between
various program sections. Such information is not necessary, however,
when referencing an absolute program section, because all instructions

in an absolute program section are associated with an absolute virtual
address.

In the following example, references to the symbols X and Y are
translated into references relative to the base of the relocatable
program section named SEN.

.PSECT ENT,ABS

.=.+1000
A: CLR X ;ASSEMBLED AS CLR BASE OF
sRELOCATABLE SECTION + 10.
JMP Y ;ASSEMBLED AS JMP BASE OF
sRELOCATABLE SECTION + 6.
.PSECT SEN,REL
MOV RO,R1
JMP A ;ASSEMBLED AS JMP 1000.
Y: HALT
X: .WORD 0

NOTE

In the preceding example, using a constant 1in conjunction
with the current location counter symbol (.) in the form
.=1000 would result in an error, because constants are
always absolute and are always associated with the program's
.ASECT (. ABS.). If the form .=1000 were used, a program
section incompatibility would be detected. See Section 3.6
for a discussion of the current location counter.

6-37

GENERAL ASSEMBLER DIRECTIVES

6.8.1.2 Code or Data Sharing - Named relocatable program sections
with the arguments GBL and OVR operate in the same manner as FORTRAN
COMMON, i.e., program sections of the same name with the arguments GBL
and OVR from different assemblies are all loaded at the same location
at link time. All other program sections, i.e., those with the
argument CON, are concatenated.

Note that no conflict exists between internal symbolic names and
program section names, i.e., it is legal to use the same symbolic name
for both purposes. Considering FORTRAN again, using the same symbolic
name is necessary to accommodate the following statement:

COMMON /X/ A,B,C,X

where the symbol X represents the base of the program section and also
the fourth element of that section.

6.8.1.3 Memory Allocation Considerations - The assembler does not
generate an error when a module ends at an odd location. This allows
you to place odd length data at the end of a module. However, when
several modules contain object code contributions to the same program
section having the concatenate attribute (see Table 6-3;, odd length
modules (except the last) may cause succeeding modules to be linked
starting at odd locations, thereby making the linked program
unexecutable. To avoid this problem, code and data should be
separated from each other and be placed in separately named program
sections. This permits the linker to automatically begin each program
section on an even address. Refer to the applicable system manual for
further information on memory allocation of tasks (see Section 0.3 in
the Preface).

6.8.2 .ASECT and .CSECT Directives

IAS and RSX-11 assembly-language programs use the .PSECT and .ASECT
directives exclusively, since the .PSECT directive provides all the
capabilities of the .CSECT directive defined for other PDP-11
assemblers. MACRO-11 will accept both .ASECT and .CSECT directives,
but assembles them as though they were .PSECT directives with the
default attributes 1listed in Table 6-4. Also, compatibility exists
between other MACRO-11 programs and the IAS/RSX-11 Task Builders,
since the respective Task Builders recognize the .ASECT and .CSECT
directives that appear in such programs and likewise assign the
default values listed in Table 6-4.

6-38

GENERAL ASSEMBLER DIRECTIVES

Table 6-4
Non-IAS/RSX-11 Program Section Default Values
Default Value

Attribute .ASECT .CSECT (named) .CSECT (unnamed)
Name . ABS. name Blank
Access RW RwW RW
Type I I I
Scope GBL GBL LCL
Relocation ABS REL REL
Allocation OVR OVR CON

The allowable syntactical forms of the .ASECT and .CSECT directives
are:

.ASECT
.CSECT
.CSECT symbol

Note that the statement:
.CSECT JIM

is identical to the statement:
.PSECT JIM,GBL,OVR

because the .CSECT default values GBL and OVR are assumed for the
named program section.

6.9 SYMBOL CONTROL DIRECTIVE: .GLOBL

MACRO-11 produces a relocatable object module and a listing file
containing the assembly 1listing and symbol table. The linker joins
separately-assembled object modules into a single executable image.
During 1linking, object modules are relocated as a program function of
the specified base of the module. The object modules are then 1linked
via global symbols, such that a global symbol in one module, defined
either by a global assignment operator (==), a global label operator
(::), or the .GLOBL directive can be referenced from another module.
Thus, all symbols which will be referenced by other program modules
must be singled out as global symbols in the defining modules.

The .GLOBL directive is provided to define (and thus provide linkage
to) symbols not otherwise defined as global symbols within a module.
For example, if the .DSABL GBL directive is in effect (see Section
6.2), .GLOBL directives might be included 1in a source program to
effect linkage to library routines. For a global symbol definition,
the directive .GLOBL A,B,C is equivalent to:

A==expression (or A::)
B==expression (or B::)
C==expression (or C::)

GENERAL ASSEMBLER DIRECTIVES

Thus, the general form of the .GLOBL directive is:

.GLOBL syml,sym2,...symn

where: syml, represent 1legal symbolic names. When multiple
sym2,... symbols are specified, they are separated by any
symn legal separator (comma, space, and/or tab).

A .GLOBL directive may also embody a label field and/or a comment
field.

At the end of assembly pass 1, MACRO-11 determines whether a given
global symbol is defined within the current program module or whether
it is to be treated as an external symbol. All internal symbols
appearing within a given program must be defined at the end of
assembly pass 1 or they will be assumed to be default global
references. Refer to Section 6.2 for a description of
enabling/disabling of global references.

In the example below, A and B are entry-point symbols. The symbol A
has been explicitly defined as a global symbol by means of the .GLOBL
directive, and the symbol B has been explicitly defined as a global
label by means of the double colon (:2). Since the symbol C is not
defined as a label within the current assembly, it is an external
(global) reference if .ENABL GBL is in effect.

DEFINE A SUBROUTINE WITH 2 ENTRY POINTS WHICH CALLS AN
EXTERNAL SUBROUTINE

~e we we weo

.PSECT ;DECLARE THE UNNAMED PROGRAM SECTION.
.GLOBL A ;DEFINE A AS A GLOBAL SYMBOL.
A: MOV @(R5)+,R0 ;DEFINE ENTRY POINT A.
MOV #X,R1
X JSR PC,C iCALL EXTERNAL SUBROUTINE C.
RTS R5 ;EXIT.
B:: MOV (R5)+,R1 ;DEFINE ENTRY POINT B.
CLR R2
BR X

External symbols can appear in the operand field of an instruction or
MACRO-11 directive as a direct reference, as shown in the examples
below:

CLR EXT
.WORD EXT
CLR @EXT

External symbols may also appear as a term within an expression, as
shown below:

CLR EXT+a
.WORD EXT-2
CLR @EXT+A (R1)

It should be noted that an undefined external symbol cannot be used in
the evaluation of a direct assignment statement or as an argument in a
conditional assembly directive (see Sections 6.10.1 and 6.10.3).

6-40

GENERAL ASSEMBLER DIRECTIVES

6.10 CONDITIONAL ASSEMBLY DIRECTIVES

Conditional assembly directives allow you to include
of source code during the assembly process, based on
stated condition tests within the body of the
capability allows several variations of a program to
the same source code.

6.10.1 Conditional Assembly Block Directives: .IF,

or exclude blocks
the evaluation of
program. This
be generated from

.ENDC

The general form of a conditional assembly block is as follows:

JIF cond, argument (s) ;START CONDITIONAL ASSEMBLY BLOCK.

range ;RANGE OF CONDITIONAL ASSEMBLY BLOCK.

. ENDC ;END OF CONDITIONAL ASSEMBLY BLOCK.
where: cond represents a specified condition that must be met

if the block 1is to be included in the assembly.

The conditions that may be

conditional assembly directives

Table 6-5.

’ represents any legal separator

and/or tab).

argument (s) represent(s) the symbolic
expression(s) of the specified
These arguments are thus a
specified condition to be tested

range represents the body of code

tested by the
are defined in

(comma, space,

argument (s) or
conditional test.

function of the

(see Table 6-5).

that is either

included in the assembly or excluded, depending
upon whether the specified condition is met.

.ENDC terminates the conditional assembly block. This
directive must be present to end the conditional

assembly block.

A condition test other than those listed in Table

6-5, an 1illegal

argument, or a null argument specified in an .IF directive causes that
line to be flagged with an error code (A) in the assembly listing.

Table 6-5
Legal Condition Tests for Conditional Assembly Directives
Conditions
Positive | Complement Arguments Assemble Block If:
EQ NE Expression Expression 1is equal to 0
(or not equal to 0).
GT LL Expression Expression is greater
than 0 (or less than or
equal to 0).

6-41

Table 6-5 (Cont.)

GENERAL ASSEMBLER DIRECTIVES

Legal Condition Tests for Conditional Assembly Directives

Conditions
Positive | Complement Arguments Assemble Block If:
LT GE Expression Expression is less than 0
(or greater than or equal
to 0).
DF NDF Symbolic Symbol is defined (or not
argument defined).
B NB Macro-type Argument is blank (or
argument non-blank) .
IDN DIF Two macro-type Arguments are identical
arguments (or differant).
Z N2z Expression Same as EQ/NE.
G L Expression Same as GT/LT.
NOTE
A macro-type argument (which is a form of symbolic
argument), as shown below, is enclosed within
angle brackets or denoted with an up-arrow
construction (as described in Section 7.3.1).
<A,B,C>
"/124/
An example of a conditional assembly directive follows:
.IF EQ ALPHA+1 ;ASSEMBLE BLOCK IF ALPHA+1=0.
. ENDC
The two operators & and ! have special meaning within DF and NDF

conditions, in that they are allowed in grouping symbolic arguments.
& Logical AND operator
! Logical inclusive OR operator

For example, the conditional assembly statement:

.IF DF SYMl & SYM2

.

.ENDC

results in the assembly of the conditional block if the

symbols SYM1
and SYM2 are both defined.

6-42

GENERAL ASSEMBLER DIRECTIVES

Nested conditional directives take the form:

Conditional Assembly Directive
Conditional Assembly Directive

.

.ENDC
.ENDC

For example, the following conditional directives:

.IF DF SyYMl
.IF DF SYM2

.ENDC
.ENDC

can govern whetner assembly is to occur. In the example above, if the
outermost condition is unsatisfied, no deeper level of evaluation of
nested conditional statements within the program occurs.

Each conditional assembly block must be terminated with an .ENDC
directive. An .ENDC directive encountered outside a conditional
assembly block is flagged with an error code (0) in the assembly
listing.

MACRO-11 permits a nesting depth of 16(10) conditional assembly
levels. Any statement that attempts to exceed this nesting level
depth is flagged with an error code (0O) in the assembly listing.

6.10.2 Subconditional Assembly Block Directives: .IFF, .IFT, .IFTF

Subconditional directives may be placed within conditional assembly
blocks to indicate:

1. The assembly of an alternate body of code when the condition
of the block tests false.

2. The assembly of a non-contiguous body of code within the
conditional assembly block, depending upon the result of the
conditional test in entering the block.

3. The unconditional assembly of a body of code within a
conditional assembly block.

The subconditional directives are described in detail 1in Table 6-6.
If a subconditional directive appears outside a conditional assembly
block, an error code (0) is generated in the assembly listing.

GENERAL ASSEMBLER DIRECTIVES

Table 6-6
Subconditional Assembly Block Directives

Subconditional
Directive Function

.IFF If the condition tested upon entering the
conditional assembly block is false, the code
following this directive, and continuing up to the
next occurrence of a subconditional directive or
to the end of the conditional assembly block, is
to be included in the program.

.IFT If the «condition tested upon entering the
conditional assembly block is true, the code
following this directive, and continuing up to the
next occurrence of a subconditional directive or
to the end of the conditional assembly block, is
to be included in the program.

JIFTF The code following this directive, and continuing
up to the next occurrence of a subconditional
directive or to the end of the conditional
assembly block, is to be included in the program,
regardless of the result of the condition tested
upon entering the conditional assembly block.

The implied argqument of a subconditional directive is the condition
test specified upon entering the conditional assembly block, as
reflected by the initial directive in the conditional coding examples
below. Conditional or subconditional directives in nested conditional
assembly blocks are not evaluated if the previous (or outer) condition
in the block 1is not satisfied. Examples 3 and 4 below illustrate
nested directives that are not evaluated because of previous
unsatisfied conditional coding.

EXAMPLE 1: Assume that symbol SYM is defined.

.IF DF SYM ;TESTS TRUE, SYM IS DEFINED. ASSEMBLE
. ;THE FOLLOWING CODE.

.IFF ;TESTS FALSE. SYM IS DEFINED. DO NOT
. sASSEMBLE THE FOLLOWING CODE.

.IFT ;TESTS TRUE. SYM IS DEFINED. ASSEM-
. sBLE THE FOLLOWING CODE.

.IFTF ;ASSEMBLE FOLLOWING COLCE UNCONDITION-
. ;ALLY.

.IFT ;TESTS TRUE. SYM IS DEFINED. ASSEM-
. ;BLE REMAINDER OF CONDITIONAL ASSEM-
. ;BLY BLOCK.

.ENDC

6-44

EXAMPLE

EXAMPLE

EXAMPLE

GENERAL ASSEMBLER DIRECTIVES

2: Assume that symbol X is defined and that symbol Y is not

defined.
.IF DF X sTESTS TRUE, SYMBOL X IS DEFINED.
.IF DF Y sTESTS FALSE, SYMBOL Y IS NOT DEFINED.
.IFF sTESTS TRUE, SYMBOL Y IS NOT DEFINED,
. sASSEMBLE THE FOLLOWING CODE.
.IFT ;TESTS FALSE, SYMBOL Y IS NOT DEFINED.
. ;DO NOT ASSEMBLE THE FOLLOWING CODE.
.ENDC
.ENDC

3: Assume that symbol A is defined and that symbol B is not

defined.

.IF DF A ;TESTS TRUE. A IS DEFINED.
sASSEMBLE THE FOLLOWING CODE.

MOV A,R1

. IFF sTESTS FALSE. A IS DEFINED. DO NOT
;sASSEMBLE THE FOLLOWING CODE.

MOV R1,RO

.IF NDF B sNESTED CONDITIONAL DIRECTIVE IS NOT

. ;s EVALUATED.
.ENDC
.ENDC

4: Assume that symbol X is not defined and that symbol Y is

defined.
.IF DF X s TESTS FALSE. SYMBOL X IS NOT DEFINED.
;DO NOT ASSEMBLE THE FOLLOWING CODE.

.IF DF Y ;sNESTED CONDITIONAL DIRECTIVE IS NOT
. ;s EVALUATED.

. IFF ;s NESTED SUBCONDITIONAL DIRECTIVE IS
. ;s NOT EVALUATED.

.IFT sNESTED SUBCONDITIONAL DIRECTIVE 1S
. :NOT EVALUATED.

.ENDC

.ENDC

6-45

GENERAL ASSEMBLER DIRECTIVES

6.10.3 Immediate Conditional Assembly Directive: .IIF

An immediate conditional assembly directive provides a means for
writing a l-line conditional assembly block. 1In using this directive,
no terminating .ENDC statement is required, and the condition to be
tested is completely expressed within the line containing the
directive. Immediate conditional assembly directives are of the form:

.IIF cond, arg, statement
where: cond represents one of the 1legal condition tests
defined for conditional assembly blocks in Table
6-5.
’ represents any legal separator (comma, space,
and/or tab).
arg represents the argument associated with the
immediate conditional directive, i.e., an

expression, symbolic argument, or macro-type
argument, as described in Table 6-5.

’ represents the separator between the conditional
argument and the statement field. If the
preceding argument is an expression, then a comma
must be used; otherwise, a comma, space, and/or
tab may be used.

statement represents the specified statement to be assembled
if the condition is satisfied.

For example, the immediate conditional statement:
LIIF DF FOO,BEQ ALPHA
generates the code
BEQ ALPHA
if the symbol FOO is defined within the source program.
As with the .IF directive, a condition test other than those listed in

Table 6-5, an illegal argument, or a null argument specified in an
-1IF directive results in an error code (A) in the assembly listing.

6.10.4 PAL-11R Conditional Assembly Directives

In order to maintain compatibility with programs developed under
PAL-11R, the following conditionals remain permissible under MACRO-11.
It is advisable, however, to develop future programs using the format
for MACRO-11 conditional assembly directives.

Directive Arguments Assemble Block if
.IFZ or .IFEQ expression expression=0
.IFNZ or .IFNE expression expression not equal 0
.IFL or .IFLT expression expression<0
.IFG or .IFGT expression expression>0
.IFLE expression expression is { or =0
.IFDF symbolic argument symbol is defined
.IFNDF symbolic argument symbol is undefined

The rules governing these directives are the same as for the MACRO-11
conditional assembly directives previously described.

6-46

CHAPTER 7

MACRO DIRECTIVES

7.1 DEFINING MACROS

In assembly-language programming, it is often convenient and desirable
to generate a recurring coding sequence by invoking a single statement
within the program. In order to do this, the desired coding sequence
is first established with dummy arguments as a macro definition. Once
a macro has been defined, a single statement calling the macro by name
with a 1list of real arguments (replacing the corresponding dummy
arguments in the macro definition) generates the desired coding
sequence. This sequence is called the macro expansion.

7.1.1 .MACRO Directive

The first statement of a macro definition must be a .MACRO directive.
This directive takes the form:

label: .MACRO name, dummy argument list
where: label represents an optional statement label.
name represents the programmer—-assigned symbolic name

of the macro. This name may be any legal symbol
and may be used as a 1label elsewhere in the
program.

represents any legal separator (comma, space,
and/or tab).

dummy represents a number of 1legal symbols (see 3.2.2)
argument that may appear anywhere in the body of the macro
list definition, even as a label. These dummy symbols

can be used elsewhere in the program with no
conflict of definition. Multiple dummy arguments
specified in this directive may be separated by
any legal separator. The detection of a duplicate
or an illegal symbol in a dummy argument list
terminates the scan and causes an error code to be
generated.

A comment may follow the dummy argument list in a .MACRO directive, as
shown below:

.MACRO ABS A,B ;DEFINES MACRO ABS WITH TWO ARGUMENTS.

MACRO DIRECTIVES

NOTE

Although it is legal for a label to appear on a
-MACRO directive, this practice is discouraged,
especially in the case of nested macro
definitions, because 1invalid labels or labels
constructed with the concatenation character will
cause the macro directive to be ignored. This may
result in improper termination of the macro
definition. This NOTE also applied to .IRP,
.IRPC, and .REPT.

7.1.2 .ENDM Directive

The final statement of every macro definition must be an .ENDM
directive of the form:

.ENDM name

where: name represents an optional argument specifying the
symbolic name of the macro being terminated by the
directive, as shown in the following example:

.ENDM ;TERMINATES THE CURRENT
7MACRO DEFINITION.

.ENDM ABS ;TERMINATES THE CURRENT
iMACRO DEFINITION NAMED ABS.

If specified, the symbolic name in the .ENDM statement must match the
name specified in the corresponding .MACRO directive. Otherwise, the
statement is flagged with an error code (A) in the assembly listing
(see Appendix D). In either case, the current macro definition is
terminated. Specifying the macro name in the .ENDM statement thus
permits MACRO-11 to detect missing .ENDM statements or
improperly-nested macro definitions.

The .ENDM directive may be followed by a comment field, but must not
contain a label, as shown below:

.MACRO TYPMSG MESSGE ;TYPE A MESSAGE.

JSR R5,TYPMSG
.WORD MESSGE
. ENDM 7END OF TYPMSG MACRO.

An .ENDM statement encountered by MACRO-1l outside a macro definition
is flagged with an error code (0) 1in the assembly listing (see
Appendix D).

NOTES

l. Labels on .ENDM directives are ignored.

2. Illegal labels will cause the directive
to be bypassed.

7-2

MACRO DIRECTIVES

7.1.3 .MEXIT Directive

The .MEXIT directive may be used to terminate a macro expansion before
the end of the macro is encountered. This directive is also legal
within repeat blocks (see Sections 7.6 and 7.7). It is most useful in
the context of nested macros. The .MEXIT directive terminates the
current macro as though an .ENDM directive had been encountered.
Using the .MEXIT directive bypasses the complexities of nested
conditional directives and alternate assembly paths, as shown in the
following example:

.MACRO ALTR N,A,B

.IF EQ N ;START CONDITIONAL ASSEMBLY BLOCK.
+MEXIT ; TERMINATE MACRO EXPANSION.

.ENDC ;END CONDITIONAL ASSEMBLY BLOCK.
.ENDM ;NORMAL END OF MACRO.

Considering the above macro, in an assembly where the real argument
for the dummy symbol N is equal to zero (see Table 6-5), the
conditional block would be assembled, and the macro expansion would be
terminated by the .MEXIT directive. When macros are nested, a .MEXIT
directive causes an exit to the next higher level of macro expansion.

A .MEXIT directive encountered outside a macro definition is flagged
with an error code (0) in the assembly listing.

7.1.4 MACRO Definition Formatting

A form-feed character used within a macro definition causes a page
eject during the assembly of the macro definition. A page eject,
however, is not performed when the macro is expanded.

Conversely, when the .PAGE directive is specified within a macro
definition, it is ignored during the assembly of the macro definition,
but a page eject is performed when that macro is expanded.

7.2 CALLING MACROS

A macro definition must be established by means of the .MACRO
directive (see Section 7.1.1) before the macro can be expanded within
the source program. Macro calls are of the general form:

label: name real arguments
where: label represents an optional statement label.
name represents the name of the macro, as specified in

the .MACRO directive (see Section 7.1.1).

MACRO DIRECTIVES

real represent symbolic arguments which replace
arguments the dummy arguments specified in the .MACRO
directive. When multiple arguments are specified,
they are separated by any legal separator.
Arguments to the macro call are treated as
character strings whose usage is determined by the
macro definition. Note that MACRO-11 accepts the
ASCII value of 1lower-case alphabetic characters
when .ENABL LC has been specified.

When a macro name is the same as a user label, the appearance of the
symbol in the operator field designates the symbol as a macro call;
the appearance of the symbol in the operand field designates it as a
label, as shown below:

ABS: MOV (RO),R1 7ABS IS DEFINED AS A LABEL.
BR ABS 7iABS IS CONSIDERED TO BE A LABEL.
ABS #4 ,ENT ,LAR 7ABS IS A MACRO CALL.

7.3 ARGUMENTS IN MACRO DEFINITIONS AND MACRO CALLS

Arguments within a macro definition or macro call are separated from
other arguments by any of the legal separating characters described in
Section 3.1.1.

Macro definition arguments (dummy) and macro call arguments (real)
normally maintain a strict positional relationship. That is, the
first real argument in a macro call corresponds with the first dummy
argument in a macro definition. Only the use of keyword arguments in
a macro call can override this correspondence (see Section 7.3.6).

For example, the following macro definition and its associated macro
expansion contain multiple arguments:

.MACRO REN A,B,C

REN ALPHA,BETA,<C1,C2>
Arguments which themselves contain separating characters must be
enclosed in paired angle brackets, as shown above. For example, the
macro call:

REN <MOV X,Y>,$#44 ,WEV
causes the entire expression

MOV X,Y
to replace all occurrences of the symbol A in the macro definition.

Real arguments within a macro call are considered to be character
strings and are treated as a single entity during the macro expansion.

MACRO DIRECTIVES

The up-arrow (") construction is provided to allow angle brackets to
be passed as part of the argument. This construction, for example,
could have been used in the above macro call, as follows:

REN "/<MOV X,Y>/, #44,WEV

causing the entire character string <MOV X,Y> to be passed as an
argument.

The following macro call:
REN #44,WEV~ /MOV X,Y/

however, contains only two arguments (#44 and WEV"/MOV X,Y/), because
the wup-arrow is a unary operator (see Section 3.1.3) and it is not
preceded by an argument separator.

As shown in the examples above, spaces can be used within bracketed
argument constructions to increase the legibility of such expressions.

7.3.1 Macro Nesting

The nesting of macros, where the expansion of one macro includes a
call to another, causes one set of angle brackets in the macro
definition to be removed from an argument with each nested call. The
depth of nesting allowed is dependent upon the amount of dynamic
memory used by the source program being assembled.

To pass an argument containing legal argument delimiters to nested
macros, the argument in the macro definition should be enclosed within
one set of angle brackets for each level of nesting, as shown in the
coding sequence below. It should be noted that this extra set of
angle brackets for each level of nesting is required in the macro
definition, not in the macro call.

.MACRO LEVEL1l DUM1,DUM2
LEVEL2 <DUM1>
LEVEL2 <DUM2>

.ENDM

-.MACRO LEVEL2 DUM3
DUM3

ADD #10,R0

MOV RO, (R1)+
.ENDM

A call to the LEVELl macro, as shown below, for example:
LEVEL1 <MOV X,R0>, <MOV R2,R0>

causes the following macro expansion to occur:

MOV X,R0

ADD #10,R0
MOV RO, (R1)+
MOV R2,R0
ADD #10,R0
MOV RO, (R1)+

MACRO DIRECTIVES

When macro definitions are nested, i.e., when a macro definition is
contained entirely within the definition of another macro, the inner
definition is not a callable macro until the outer macro has been
called and expanded. For example, in the following coding:

«MACRO LV1 A,B

.MACRO LV2 C

. ENDM
.ENDM

the LV2 macro cannot be called and expanded until the LV1 macro has
been so invoked. Likewise, any macro defined within the LV2 macro

definition cannot be called and expanded until LV2 has also been
invoked.

7.3.2 Special Characters in Macro Arguments

An argument may include special characters without enclosing them in a
bracketed construction if that argument does not contain spaces, tabs,
semicolons, or commas. For example, the macro definition:

.MACRO PUSH ARG
MOV ARG, - (SP)
.ENDM

PUSH X+3(%2)
causes the following code to be generated:

MOV X+3(%2),-(SP)

7.3.3 Passing Numeric Arguments as Symbols

When macro arguments are passed, an absolute symbol value can be
passed which is treated by the macro as a numeric string. An argument
preceded by the unary operator backslash (\) is treated as a numeric
value in the current program radix. The ASCII characters representing
this value are inserted in the macro expansion, and their function is
defined in the context of the resulting code, as shown in the
following example:

.MACRO INC A,B

CON A,\B ;B IS TREATED AS A NUMBER IN CURRENT
B=B+1 ;PROGRAM RADIX.
.ENDM
.MACRO CON A,B
A'B: .WORD 4 ;A'B IS DESCRIBED IN SECTION 7.3.6.
.ENDM
Cc=0 INC X,C

MACRO DIRECTIVES

The above macro call (INC) would thus expand to:

X0: .WORD 4

Note in this expanded code that the label X0: is the result of the
concatenation of two real arguments. The single quote (') character
in the 1label A'B: causes the real arguments X and 0 to be
concatenated as they are passed during the expansion of the macro.
This type of argument construction is described in further detail in
Section 7.3.6.

A subsequent call to the same macro would generate the following code:

X1: .WORD 4

and so on, for later calls. The two macro definitions are necessary
because the symbol associated with dummy argument B (i.e., C) cannot
be updated in the CON macro definition, because its numeric value has
already been substituted for its symbolic name, i.e., the character 0
has replaced C in the argument string. In the CON macro definition,
the number passed is treated as a string argument. (Where the value

of the real argument is 0, only a single 0 character is passed to the
macro expansion.)

Passing numeric values in this manner is useful in identifying source
listings. For example, versions of programs created through
conditional assemblies of a single source program can be identified
through such coding as that shown below. Assume, for example, that
the symbol ID in the macro call (IDT) has been equated elsewhere in
the source program to the value 6.

.MACRO IDT SYM ;ASSUME THAT THE SYMBOL ID TAKES
.IDENT /VO5A'SYM/ ;ON A UNIQUE 2-DIGIT VALUE.
. ENDM ;WHERE VO5A IS THE UPDATE
. ;VERSION OF THE PROGRAM.
IDT ’ \ID

The above macro call would then expand to:

.IDENT /VO5A6/

where 6 is the numeric value of the symbol ID.

7.3.4 Number of Arguments in Macro Calls

If more arguments appear in the macro call than in the macro
definition, an error code (Q) is generated in the assembly listing.
If fewer arguments appear in the macro call than in the macro
definition, missing arguments are assumed to be null values. The
conditional directives .IF B and .IF NB (see Table 6-5) can be used
within the macro to detect missing arguments. The number of arguments
can also be specified using the .NARG directive (Section 7.4.1). Note
that a macro can be defined with no arguments.

7.3.5 Creating Local Symbols Automatically

A label is often required in an expanded macro. In the conventional
macro facilities thus far described, such a label must be explicitly

7-17

MACRO DIRECTIVES

specified as an argument with each macro call. Be careful in issuing
subsequent calls to the same macro, to avoid specifying a duplicate
label as a real argument. This concern can be eliminated through a
feature of MACRO-11 which creates a unique symbol where a label is
required in an expanded macro.

As noted in Section 3.5, MACRO-11 can automatically create 1local
symbols of the form n$, where n is a decimal integer within the range
64 through 127, inclusive. Such local symbols are created by MACRO-11
in numerical order, as shown below:

64$
65$

126$
127$
This automatic facility is invoked on each call of a macro whose

definition contains a dummy argument preceded by the question mark (?)
character, as shown in the macro definition below:

.MACRO ALPHA, A,?B ;CONTAINS DUMMY ARGUMENT B PRECEDED BY
sQUESTION MARK.
TST A
BEQ B
ADD #5,A
B:
.ENDM

A local symbol is generated automatically by MACRO-11 only when a real
argument of the macro call is either null or missing, as shown in
Example 1 below, which reflects the expansion of the ALPHA macro
defined above.

If the real argument is specified in the macro call, however, MACRO-11
inhibits the generation of a local symbol and normal argument
replacement occurs, as shown in Example 2 below.

EXAMPLE 1: Generate a Local Symbol for the Missing Argument:

ALPHA R1 ;SECOND ARGUMENT IS MISSING.
TST R1

BEQ 6453 ;LOCAL SYMBOL IS GENERATED.
ADD #5,R1

64S:

EXAMPLE 2: Do Not Generate a Local Symbol:

ALPHA R2,XYZ ;SECOND ARGUMENT XYZ IS SPECIFIED.
TST R2

BEQ XYZ ;NORMAL ARGUMENT REPLACEMENT OCCURS.
ADD #5,R2

XYZ:

Automatically-generated local symbols are restricted to the first
16 (10) arguments of a macro definition.

Note that automatically-created local symbols resulting from the
expansion of a macro, as described above, do not in any way influence
local symbol block boundaries. In other words, such
automatically-created 1local symbols do not establish a local symbol
block in their own right.

7-8

MACRO DIRECTIVES

However, when a macro has several arguments earmarked for automatic
local symbol generation, substituting a specific label for one such
argument introduces a risk that assembly errors will result. This is
because MACRO-11 constructs its argument substitution list at the
point of macro invocation. Therefore, the appearance of any label,
the .(ENABL LSB directive, or the .PSECT directive, in the macro
expansion will create a new local symbol block. This could leave
local symbol references in the previous block and the symbol
definitions in the new one, resulting in error codes in the assembly
listing (see Appendix D). Furthermore, a subsequent macro expansion
that generates local symbols in the new block may duplicate one of the
symbols in question, resulting in an additional error code (P) in the
assembly listing.

7.3.6 Keyword Arguments

Macros may be defined with and/or invoked with keyword arguments. A
keyword argument has the following form:

name=string
where
name represents the dummy argument,
string represents the real symbolic argument.

The keyword argument may not contain embedded argument separators
unless properly delimited as described in section 7.3.

When a keyword argument appears in the dummy argument list of a macro
definition, the specified string becomes the default real argument at
macro call.

When a keyword argument appears in the real argument list of a macro
call, the specified string becomes the real argument for the dummy
argument that exactly matches the specified name, whether or not the
dummy argument was defined with a keyword. If a match fails, the
entire argument specification is treated as the next positional real
argument. A keyword argument may be specified anywhere in the dummy
argument list of a macro definition and is part of the positional
ordering of argument. On the other hand, a keyword argument may be
specified anywhere in the real argument list of a macro call but does
not affect the positional correspondence of the remaining arguments.

1 .LIST ME
2 ;
3 ; DEFINE A MACRO HAVING KEYWORDS IN DUMMY ARGUMENT LIST
4 ;
5
6 .MACRO TEST CONTRL=1,BLOCK,ADDRES=TEMP
7 .WORD CONTRL
8 .WORD BLOCK
9 .WORD ADDRES
10 . ENDM
11
12
13 :
14 ; NOW INVOKE SEVERAL TIMES
15 H
16

MACRO DIRECTIVES

17 000000 TEST A,B,C
000000 000000G .WORD A
000002 000000G .WORD B
000004 000000G .WORD C
18
19 000006 TEST ADDRES=20,BLOCK=30,CONTRL=40
000006 000040 .WORD 40
000010 000030 .WORD 30
000012 000020 .WORD 20
20
21 000014 TEST BLOCK=5
000014 000001 .WORD 1
000016 000005 .WORD 5
000020 000000G .WORD TEMP
22 '
23 000022 TEST CONTRL=5,ADDRES=VARIAB
000022 000005 .WORD 5
000024 000000 .WORD
000026 000000G .WORD VARIAB
24
25 000030 TEST
000030 000001 .WORD 1
000032 000000 -.WORD
000034 000000G .WORD TEMP
26
27 000036 TEST ADDRES=JACK!JILL
000036 000001 .WORD 1
000040 000000 .WORD
000042 o000000C .WORD JACK!JILL
28
29
30 000001 .END

7.3.7 Concatenation of Macro Arguments

The apostrophe or single quote character (') operates as a legal
delimiting character in macro definitions. A single quote that
precedes and/or follows a dummy argument in a macro definition is
removed, and the substitution of the real argument occurs at that
point. For example, in the following statements:

.MACRO DEF A,B,C

A'B: .ASCIZ /C/
.BYTE ''a,''B
.ENDM

when the macro DEF is called through the statement:
DEF X,Y,<MACRO-11>
it is expanded, as follows:

XY: .ASCIZ /MACRO-11/
.BYTE 'X,'Y

In expanding the first 1line, the scan for the first argument
terminates wupon finding the first ' character. Since A is a dummy
argument, the ' is removed. The scan then resumes with B; B is also
noted as another dummy argument. The two real arguments X and Y are
then concatenated to form the label XY:. The third dummy argument is
noted in the operand field of the .ASCIZ directive, causing the real
argument MACRO-11 to be substituted in this field.

7-10

MACRO DIRECTIVES

When evaluating the arguments to the .BYTE directive during expansion
of the second line, the scan begins with the first ' character. Since
it is neither preceded nor followed by a dummy argument, this '
character remains in the macro expansion. The scan then encounters
the second ' character, which is followed by a dummy argument and is
therefore discarded. The scan of argument A is terminated upon
encountering the comma (,). The third ' character is neither preceded
nor followed by a dummy argument and again remains in the macro
expansion. The fourth (and last) ' character is followed by another
dummy argument and is 1likewise discarded. (Note that four '
characters were necessary in the macro definition to dgenerate two '
characters in the macro expansion.)

7.4 MACRO ATTRIBUTE DIRECTIVES: .NARG, .NCHR, AND .NTYPE

Three directives are available in MACRO-11 which allow the user to
determine certain attributes of macro arguments. The use of these
directives permits selective modifications of a macro expansion,
depending on the nature of the arguments being passed. These
directives are described separately below.

7.4.1 _.NARG Directive

The .NARG directive is used to determine the number of arguments in
the macro call currently being expanded. Hence, the .NARG directive
can appear only within a macro definition; if it does not, an error
code (0) is generated in the assembly listing. This directive takes
the form:

label: .NARG symbol
where: label represents an optional statement label.

symbol represents any legal symbol. This symbol is
equated to the number of arguments in the macro
call currently being expanded. If a symbol is not
specified, the .NARG directive is flagged with an
error code (A) in the assembly listing.

MACRO DIRECTIVES

An example of the .NARG directive follows:
«TITLF NARG

+MACRA NQPP,NUM
«NARG Sy™

o IF ER,SYM
oMEXIT

«IFF

JREPT NUM

NOP

i@ s ENDM

11 «ENDC

12 +ENDM

O®ATNE WN -

1S appgae NOPP
erarpe o« NARG SyYm™m

o IF EQ,SYv
«MEXIT
«1FF
«REPT
NOP
cENDM
sENDC

16

{8 A2%QmQ NOPP 6
AAAAM Y +NARG SYM
o IF EQ,SYw™
JMEXYTT
+TFF
ANQPNPs «REPT &
NOP
o ENDM
00002 Qag247 NOP
AAPAN2 NAPR2UN NOP
ARAABL 0OQ2UA NOP
e20ere e0O242 NOP
202710 @@e2un NOP
e0an12 0a@2u” NOP
+ENDC
19
20
21 0720001 «ENRP

7.4.2 .NCHR Directive

The .NCHR directive, which can appear anywhere in a MACRO-11 program,
is used to determine the number of characters in a specified character
string. This directive, which is useful in calculating the length of
macro arguments, takes the following form:

label: .NCHR symbol,<string>
where: label represents an optional statement label.

symbol represents any 1legal symbol. This symbol is
equated to the number of characters in the
specified character string. If a symbol is not
specified, the .NCHR directive is flagged with an
error code (A) in the assembly 1listing (see
Appendix D).

7-12

MACRO DIRECTIVES

’ represents any legal separator (comma, space,
and/or tab).

<string> represents a string of printable characters. The
character string need be enclosed within angle
brackets (<>) or wup-arrows (") only if the
specified character string contains a legal
separator (comma, space, and/or tab). If the
delimiting characters do not match or if the
ending delimiter cannot be detected because of a
syntactical error in the character string (thus
prematurely terminating its evaluation), the .NCHR
directive is flagged with an error code (A) in the
assembly listing.

An example of the .NCHR directive follows:

1 «TITLF NCHR
2
3 «MACRD CHAR,MESS
u oNCHR SYM,MFSS
s LWORD SYM
6 «ASCII /MESS/
7 <EVEN
R JENDM
9
1o
11 Aarponp MSG11 CHAR <SHELLO>
2007208 «MCHR SYM,HELLO
Pagror acaAns «WNRD SyYm
paprp2 112 «ASCIY /HELLOD/
praaey 108
eranguU 114
APATNSG 114
PRRPR6 117
«EVEN
12
13
14 PAnAR JENR

7.4.3 .NTYPE Directive

The .NTYPE directive is used to determine the addressing mode of a
specified macrc argument. Hence, the .NTYPE directive can appear only
within a macro definition; if it appears elsewhere, it is flagged
with an error code (0) in the assembly listing. This directive takes
the form:

label: .NTYPE symbol,aexp
where: label represents an optional statement label.

symbcl represents any 1legal symbol. This symbol is
equated to the 6-bit addressing mode of the
following argument. If a symbol is not specified,
the .NTYPE directive is flagged with an error code
(A) in the assembly listing.

' represents any legal separator (comma, space,
and/or tab).

MACRO DIRECTIVES

aexp represents any legal address expression, as used
with an opcode. If no argument is specified, the
result will be zero.

An example of the use of an .NTYPE directive in a macro definition is
shown below:

; «TITLE NTYPE
3 «MACRD SAVE, ARG
4 +NTYPE SYM, ARG
S o IF FR,Syme 1o
6 MOV ARG, =(SP) tREGISTER MQDFE
7 «IFF
8 MAV 4ARG,=(SP) tNONeREGISTER MODE
9 +ENDC
1@ e ENRM
11
12
13 Pae2Rr0 aQ@MAm TEMP «WORD 4
14
15
16 202an2 SAVE R1
nepNQay «NTYPE SYM, R
WIF FR,8Yve 70
A0PPR2 A1P1U6 MAY R{,=(SP) tRFEGISTER MODE
.IFF
MAV ¥R{,e(SP) tNONeREGISTFR MODE
«ENNC
17
18
19 PR2004 SAVE TEMP
LY «MNTYPE SYM, TEMP
o IF EQ,SYMR T
MAy TFMP,«(8P) tRESISTER MNOF
o IFF
00QPRd N12746 MAY STEMP,«(SP) INOMNRFGISTFR MODE
PAAIRP P
+ENDC
2e
21
22 neA2RY +FND

For additional information concerning addressing modes, refer to
Chapter 5 and Appendix B, Section B.2.

7.5 .ERROR AND .PRINT DIRECTIVES

The .ERROR directive is used to output messages to the 1listing file
during assembly pass 2. A common use of this directive is to provide
a diagnostic announcement of a rejected or erroneous macro call or to
alert the wuser to the existence of an illegal set of conditions
specified in a conditional assembly. If the 1listing file 1is not
specified, the .ERROR messages are output to the command output
device. The .ERROR directive takes the form:

label: .ERROR expr ;text

7-14

MACRO DIRECTIVES

where: label represents an optional statement label.
expr represents an optional expression whose value is
output when the .ERROR directive is encountered
during assembly.
; denotes the beginning of the text string.

text represents the specified message associated with
the .ERROR directive.

Upon encountering an .ERROR directive anywhere in a source program,
MACRO-11 outputs a single line containing:

1. An error code (P)
2. The sequence number of the .ERROR directive statement
3. The value of the current location counter
4. The value of the expression, if one is specified
5. The source line containing the .ERROR directive.
For example, the following directive:
.ERROR A ; INVALID MACRO ARGUMENT

causes a line in the following form to be output to the listing file:

Seq. Loc. Exp.
No. No. Value Text
P 512 005642 000076 .ERROR A ; INVALID MACRO ARGUMENT

The .PRINT directive is identical in function to the .ERROR directive,
except that it is not flagged with the P error code.

7.6 INDEFINITE REPEAT BLOCK DIRECTIVES: .IRP AND .IRPC

An indefinite repeat block is a structure that is similar to a macro
definition; essentially a macro definition that has only one dummy
argument. At each expansion of the indefinite repeat range, this
dummy argument 1is replaced with successive elements of a specified
real argument list. An indefinite repeat block directive and its
associated repeat range are coded in-line within the source progranm.
This type of macro definition and expansion does not require calling
the macro by name, as required in the expansion of conventional macros
previously described in this section.

An indefinite repeat block can appear either within or outside another
macro definition, indefinite repeat block, or repeat block (see
Section 7.7). The rules for specifying indefinite repeat block
arguments are the same as for specifying macro arguments (see Section
7.3).

7.6.1 L.IRP Directive

The .IRP directive is used to replace a dummy argument with successive
real arguments specified in an argument string. This replacement
process occurs during the expansion of an indefinite repeat block
range. This directive takes the following form:

7-15

MACRO DIRECTIVES

label: .IRP sym,<argument list>

(range of indefinite repeat block)

. ENDM
where: label represents an optional statement label.

sym represents a dummy argument that is successively
replaced with the specified real arguments
enclosed within the angle brackets. If no dummy
argument is specified, the .IRP directive is
flagged with an error code (A) in the assembly
listing.

' represents any legal separator (comma, space,
and/or tab).

<argument list> represents a list of real arguments enclosed
within angle brackets that is to be used in the
expansion of the indefinite repeat range. A real
argument may consist of one or more characters;
multiple arguments must be separated by any legal
separator (comma, space, and/or tab). If no real
arguments are specified, no action is taken.

range represents the block of code to be repeated once
for each occurrence of a real argument in the
list. The range may contain other macro
definitions and repeat ranges. The .MEXIT
directive (see Section 7.1.3) is legal within the
range of an indefinite repeat block.

. ENDM indicates the end of the indefinite repeat block
range.

An example of the use of the .IRP directive is shown in Figure 7-1.

7.6.2 LJIRPC Directive

The .IRPC directive is available to permit single character
substitution, rather than argument substitution. On each iteration of
the indefinite repeat range, the dummy argument is replaced with each
successive character in the specified string. The .IRPC directive is
specified as follows:

label: .IRPC sym,<string>

(range of indefinite repeat block)

. ENDM

where: label represents an optional statement label.

7-16

sym

<string>

range

.ENDM

MACRO DIRECTIVES

represents a dummy argument that is successively
replaced with the specified real arguments
enclosed within the angle brackets. If no dummy
argument is specified, the .IRPC directive is
flagged with an error code (A) in the assembly
listing.

represents any legal separator (comma, space,
and/or tab).

represents a list of characters enclosed within
angle brackets to be used in the expansion of the
indefinite repeat range. Although the angle
brackets are required only when the string
contains separating characters, their use is
recommended for legibility.

represents the block of code to be repeated once
for each occurrence of a character in the list.
The range may contain macro definitions and repeat
ranges. The .MEXIT directive (see Section 7.1.3)
is legal within the range of an indefinite repeat
block.

indicates the end of the indefinite repeat block
range.

An example of the use of the .IRPC directive is shown in Figure 7-1.

® O P o WA -

10
11
12
13

14
15
16

«TITLFE IRPTST
WLIST ME
. IRP X,<AA,BB,CC,DD,EE,FF>
MOV X, (RQ)e
+ENDM
200000 216720 ANQPARAG MOV AA, (RQ)+
2N0AB4 216720 0POPROG MOV BR, (RA)+
AA0N10 216720 2002006 MOV CC, (RO
220014 216722 pRRR0QG MOV DD, (RA)e
fAA220 216720 Q2PARMAG MOV EE, (RB)
020024 216723 PPORO26 MOV FF,(RO)e
+IRPC X,<ABCODEF>
MOov8 #'X,=(RY)
+ENDM
LI L)) 112741 QAPRANAG MOvVB #A,=(RY)
040034 112741 Q000206 MOVB 8B,=(RY)
000048 112741 Q20000R06 Move #C,=(R1)
290044 112741 PQQVOQG MOV8B #D,=(RY)
020050 112741 2000006 MOV8 BE,=(RY)
200954 (12741 0QPORAQAG MOve 8F,=(R})
Jle0ey!’ +END

Figure 7-1 Example of .IRP and .IRPC Directives

7.7 REPEAT BLOCK DIRECTIVE: .REPT, .ENDR

It is sometimes useful to duplicate a block of code a number of times
. with other source code. This duplication of code is
accomplished by creating a repeat block, using a directive in the

in-line

form:

MACRO DIRECTIVES

label: ,REPT exp

(range of repeat block)

.

.ENDM
where: label represents an optional statement label.

exp represents any legal expression whose value
controls the number of times the block of code is
to be assembled within the progranm. When the
expression value is 1less than or equal to zero
(0), the repeat block is not assembled. If this
expression is not an absolute value, the .REPT
statement is flagged with an error code (A) in the
assembly listing.

range represents the block of code to be repeated the
number of times determined by the specified
expression value. The repeat block may contain
macro definitions, indefinite repeat blocks, or
other repeat blocks. The .MEXIT directive is
legal within the range of a repeat block.

. ENDM indicates the end of the repeat block range. The
or terminating statement in a repeat block can be
.ENDR either an .ENDM directive or an .ENDR directive.

7.8 MACRO LIBRARY DIRECTIVE: .MCALL

The .MCALL directive allows you to indicate in advance those system
and/or user-defined macro definitions that are required in the
assembly of the source program. The .MCALL directive allows you to
specify the names of all system or user macro definitions not defined
within the source program but which are required to assemble the
program. The .MCALL directive must appear before the first occurrence

of a call to any externally-defined macro. The .MCALL directive is of
the form:

.MCALL argl,arg2,...argn

where: arql, represent the symbolic names of the macro
arg2,... definitions required in the assembly of the source
argn program. The symbolic macro names may be

separated by any legal separator (comma, space,
and/or tab).

The .MCALL directive thus provides the means to access both
user-defined and system macro libraries during assembly.

The /ML switch under RSX-11 and the /LIBRARY qualifier under IAS and
RT-11, specified in connection with an input file specification,
indicate to MACRO-11 that the file is a macro library. When a macro
call is encountered in the source program, MACRO-11 first searches the
user macro library for the named macro definitions, and, if necessary,
continues the search with the system macro library.

7-18

MACRO DIRECTIVES

Any number of such user-supplied macro files may be designated. In
cases of multiple library files, the search for the named macros
begins with the last such file specified. The search continues in
reverse order until the required macro definitions are found,
terminating again, if necessary, with a search of the system macro
library.

If any named macro is not found upon completion of the search, i.e.,
if the macro is not defined, the .MCALL statement is flagged with an
error code (U) in the assembly listing. Furthermore, a statement
elsewhere in the source program which attempts to expand such an
undefined macro is flagged with an error code (0) in the assembly
listing.

The command strings to MACRO-11, through which file specifications are
supplied, are described in detail in the appropriate system manual
(see Section 0.3 in the Preface).

APPENDIX A

MACRO-11 CHARACTER SETS

A.l1 ASCII CHARACTER SET

EVEN 7-BIT

PARITY OCTAL

BIT CODE CHARACTER REMARKS

0 000 NUL Null, tape feed, CONTROL/SHIFT/P.

1 0ol SOH Start of heading; also SOM, start
of message, CONTROL/A.

1 002 STX Start of text; also EOA, end of
address, CONTROL/B.

0)03 ETX End of text; also EOM, end of
message, CONTROL/C.

1 204 EOT End of transmission (END); shuts
off TWX machines, CONTROL/D.

0 JO05 ENQ Enquiry (ENQRY) ; also WRU,
CONTROL/E.

0 J06 ACK Acknowledge; also RU, CONTROL/F.

1 207 BEL Rings the bell. CONTROL/G.

1 910 BS Backspace; also FEO, format
effector. backspaces some
machines, CONTROL/H.

0 011 HT Horizontal tab. CONTROL/I.

0 012 LF Line feed or Line space (new line);
advances paper to next line,
duplicated by CONTROL/J.

1 013 VT Vertical tab (VTAB). CONTROL/K.

0 014 FF Form Feed to top of next page
(PAGE). CONTROL/L.

1 015 CR Carriage return to beginning of
line; duplicated by CONTROL/M.

1 016 sO Sshift out; changes ribbon color to
red. CONTROL/N.

0 017 SI shift in; changes ribbon color to
black. CONTROL/O.

1 020 DLE Data link escape. CONTROL/P (DCO).

0 021 DC1 Device control 1; turns
transmitter (READER) on, CONTROL/Q
(X ON). 0 022 DC2 Device control
2; turns punch or auxiliary on.
CONTROL/R (TAPE, AUX ON).

1 023 DC3 Device control 3; turns
transmitter (READER)
off, CONTROL/S (X OFF).

0 024 DC4 Device control 4; turns punch or

auxiliary off. CONTROL/T (AUX
OFF).

EVEN
PARITY
BIT

7-BIT
OCTAL
CODE

MACRO-11 CHARACTER SETS

CHARACTER

REMARKS

1

CCOrFHKHFHFCOCHOOHCHHOFCOCOHFHMHCORCHHOHCOCOHOHKFHOONFCOCHCOFHOORORKMO

025

026

027

030
031
032
033
034
035
036
037
040
041
042
043
044
045
046
047
050
051
052
053
054
055
056
057
060
06l
062
063
064
065
066
067
070
071
072

074
075
076
077
100
101
102
103
104
105
106
107
110
111

NAK

SYN

ETB

CAN

+ =~ =N

I~

HIQEUEBUOQOEWP® IOV Il A v OOJO U & WN HON

Negative acknowledge; also ERR,
ERROR. CONTROL/U.

Synchronous file (SYNC).
CONTROL/V.

End of transmission block; also
LEM, logical end of medium.
CONTROL/W.

Cancel (CANCL). CONTROL/X.

End of medium. CONTROL/Y.
Substitute. CONTROL/Z.

Escape. CONTROL/SHIFT/K.

File separator. CONTROL/SHIFT/L.
Group separator. CONTROL/SHIFT/M.
Record separator. CONTROL/SHIFT/N.
Unit separator. CONTROL/SHIFT/O.
Space.

Accent acute or apostrophe.

EVEN 7-BIT
PARITY OCTAL
BIT CODE

MACRO-11 CHARACTER SETS

CHARACTER

REMARKS

112
113
114
115
116

142
143
144
145
146
147
150
151
152
153
154
155
156
157
160
l6l
l62
163
l64
165
166
167
170
171
172
173
174
175
176

- OOI—-‘CI—'}—'OOO—‘l—‘OP—'OOD—'CP—')—'OI—'OOl—'l—‘OOl—‘Cl‘-‘H CO!—“—‘OD—'OOO—‘D—‘OOI—‘OD—"—'OD—‘OQI—‘OO—‘

177

* ~ Appears as # or °

** « Aprears as

e S NKXE<SCHNDWONWOZICRA

-4

QTN XELCSCHNRAQTOD SHAXURTAQHRO QAQ TR

DEL

SHIFT/K.
SHIFT/L.
SHIFT/M.
*

* %
Accent grave.

This code generated by ALTMODE.
This code generated by PREFIX Kkey
(if present).

DELETE, RUBOUT.

on some machines.

_ on some machines.

A-3

MACRO-11 CHARACTER SETS

A.2 RADIX-50 CHARACTER SET

Character _ASCII Octal Equivalent Radix-50 Equivalent
space 40 0
A-2Z 101-132 1-32
$ 44 33
56 34
unused 35
0-9 60-71 36-47

The maximum Radix-50 value is, thus,

47*50% +47%50+47=174777

The following table provides a convenient means of translating between
the ASCII character set and its Radix-50 equivalents. For example,
given the ASCII string X2B, the Radix-50 equivalent is farithmetic is
performed in octal):

X=113000
2=002400
B=000002
X2B=115402

SINGLE CHAR.
OR SECOND THIRD

FIRST CHAR. CHARACTER CHARACTER
Space 000000 Space 000000 Space 000000
A 003100 A 000050 A 000001
B 006200 B 000120 B 000002
C 011300 C 000170 c 000003
D 014400 D 000240 D 000004
E 017500 E 000310 E 000005
F 022600 F 000360 F 000006
G 025700 G 000430 G 000007
H 031000 H 000500 H 000010
I 034100 I 000550 I 000011
J 037200 J 000620 J 000012
K 042300 K 000670 K 000013
L 045400 L 000740 L 000014
M 050500 M 001010 M 000015
N 053600 N 001060 N 000016
0 056700 0 001130 0 000017
P 062000 P 001200 P 000020
Q 065100 Q 001250 Q 000021
R 070200 R 001320 R 000022
S 073300 S 001370 S 000023
T 076400 T 001440 T 000024
U 101500 U 001510 4] 000025
v 104600 v 001560 v 000026
W 107700 W 001630 W 000027
X 113000 X 001700 X 000030
Y 116100 Y 001750 Y 000031
Z 121200 Z 002020 Z 000032
$ 124300 $ 002070 $ 000933

A-4

MACRO-11 CHARACTER SETS

SINGLE CHAR.

OR SECOND THIRD
FIRST CHAR. CHARACTER CHARACTER

127400 . 002140 . 000034
Unused 132500 Unused 002210 Unused 000035
0 135600 0 002260 0 000036
1 "140700 1 002330 1 000037
2 144000 2 002400 2 000040
3 147100 3 002450 3 000041
4 152200 4 002520 4 000042
5 155300 5 002570 5 000043
6 160400 6 002640 6 000044
7 163500 7 002710 7 000045
8 166600 8 002760 8 000046
9 171700 9 003030 9 000047

APPENDIX B

MACRO-11 ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

B.1l SPECIAL CHARACTERS

Character

Function

oe i e

space

(comma)

1 dNe S —m D™

ST ee= N ®

YV A

\

vertical tab

(apostrophe)

Label terminator

Direct assignment operator

Register term indicator

Item terminator or field terminator

Item terminator or field terminator

Immediate expression indicator

Deferred addressing indicator

Initial register indicator

Terminal register indicator

Operand field separator

Comment field indicator

Arithmetic addition operator or auto
increment indicator

Arithmetic subtraction operator or auto
decrement indicator

Arithmetic multiplication operator

Arithmetic division operator

Logical AND operator

Logical OR operator

Double ASCII character indicator

Single ASCII character indicator or
concatenation indicator

Assembly location counter

Initial argument indicator

Terminal argument indicator

Universal unary operator or argument
indicator

Macro call numeric argument indicator

Source line terminator

B.2 SUMMARY OF ADDRESS MODE SYNTAX

Address mode syntax is

following

register number;

symbols:

n

expressed in the summary below using the

is

an integer between 0 and 7 representing a
R is a register expression; E 1is an expression;

and ER is either a register expression or an expression in the range 0

to 7.

B-1

MACRO-11 ASSEMBLY LANGUAGE AND

ASSEMBLER DIRECTIVES

Address Address
Mode Mode

Format Name Number Meaning

R Register On Register R contains the
operand.

@R or Register 1n Register R contains the ad-

(ER) deferred dress of the operand.

(ER) + Autoincrement 2n The contents of the register
specified as (ER) are
incremented after being used
as the address of the operand.

@(ER)+ Autoincrement 3n The register specified as (ER)

Deferred contains the pointer to the
address of the operand; the
register (ER) is incremented
after use.

- (ER) Autodecrement 4n The contents of the register
specified as (ER) are
decremented before being used
as the address of the operand.

@-(ER) Autodecrement 5n The contents of the register

Deferred specified as (ER) are
decremented before being used
as the pointer to the address
of the operand.

E (ER) Index 6n The expression E, plus the
contents of the register
specified as (ER), form the
address of the operand.

@E (ER) Index Deferred 7n The expression E, plus the
contents of the register
specified as (ER), yield a
pointer to the address of the
operand.

#E Immediate 27 The expression E is the
operand itself.

Q#E Absolute 37 The expression E is the
address of the operand.

E Relative 67 The address of the operand E,
relative to the instruction,
follows the instruction.

QE Relative 77 The address of the operand is

Deferred pointed to by E whose address,
relative to the instruction,
follows the instruction.

B.3 ASSEMBLER DIRECTIVES

The MACRO-11 assembler directives

table.

are

For a detailed description

B-2

summarized in the
of each directive,

following
the table

MACRO-11 ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

contains references to the appropriate sections in the body of the

manual.

Form

Section
Reference

Operation

~

Bn

“Cexpr

~

Dn
“Fn

"On

"Rcce

.ASCII /string/

.
ww
. .
o w

6.3.3

6.4.1.2

6.4.2.2

6.4.1.2

6.4.2.2

6.4.1.2

6.3.7

- 6.3.4

A single quote (apostrophe)
followed by one ASCII character
generates a word which contains the
7-bit ASCII representation of the
character in the low-order byte and
zero in the high-order byte. This
character is also used as a
concatenation indicator in the
expansion of macro arguments (see
Section 7.3.6).

A double quote followed by two
ASCII characters generates a word
which contains the 7-bit ASCII
representation of the two
characters. The first character is
stored in the low-order byte; the
second character is stored in the
high-order byte.

Temporary radix controlj; causes
the value n to be treated as a
binary number.

Temporary numeric control; causes
the expression's value to be ones-
complemented.

Temporary radix control; causes
the value n to be treated as a
decimal number.

Temporary numeric control; causes
the value n to be treated as a
sixteen-bit floating-point number.

Temporary radix control; causes
the value n to be treated as an
octal number.

Convert ccc to Radix-50 form.

Generates a block of data
containing the ASCII equivalent of
the character string (enclosed in
delimiting characters), one
character per byte.

MACRO-11 ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

Form

Section
Reference

Operation

.ASCIZz /string/

.ASECT

.BLKB exp

.BLKW exp

.BYTE expl,exp2,..

.CSECT [name]

.DSABL arg

.ENABL arg

.END [exp]

.ENDC

.ENDM [name]

.ENDR

.EOT

6.3.5

6.6.1

6.10.1

7.1.2

Generates a block of data
containing the ASCII equivalent of
the character string (enclosed in
delimiting characters), one
character per byte, with a zero
byte terminating the specified
string.

Begin or resume the absolute
program section.

Reserves a block of storage space
whose length in bytes is determined
by the specified expression.

Reserves a block of storage space
whose length in words is determined
by the specified expression.

Generates successive bytes of data;
each byte contains the value of the
corresponding specified expression.

Begin or resume named or unnamed
relocatable program section. This
directive is provided for
compatibility with other PDP-11
assemblers.

Disables the function specified by
the argument.

Enables (invokes) the function
specified by the argument.

Indicates the logical end of the
source program. The optional
argument specifies the transfer
address where program execution is
to begin.

Indicates the end of a conditional
assembly block.

Indicates the end of the current
repeat block, indefinite repeat
block, or macro definition. The
optional name, if wused, must be
identical to the name specified in
the macro definition.

Indicates the end of the current
repeat block. This directive is
provided for compatibility with
other PDP-11 assemblers.

Ignored; indicates end-of-tape
(which is detected automatically by
the hardware). It is included for
compatibility with earlier
assemblers.

B-4

MACRO-11 ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

Section
Form Reference Operation

.ERROR exp;text 7.5 User-invoked error directive;
causes output to the listing file
or the command output device
containing the optional expression
and the statement containing the
directive.

.EVEN 6.5.1 Ensures that the current location
counter contains an even address by
adding 1 if it is odd.

.GLOBL syml,sym:,... 6.9 Defines the symbol(s) specified as
global symbol(s).

.IDENT /string/ 6.1.5 Provides a means of 1labeling the
object module with the program
version number. The version number
is the Radix-50 string appearing
between the paired delimiting
characters.

.IF cond,argl 6.10.1 Begins a conditional assembly block
of source code which is included in
the assembly only if the stated
condition is met with respect to
the argument(s) specified.

.IFF 6.10.2 Appears only within a conditional
assembly block, indicating the
beginning of a section of code to
be assembled if the condition upon
entering the block tests false.

JIFT 6.10.2 Appears only within a conditional
assembly block, indicating the
beginning of a section of code to
be assembled if the condition upon
entering the block tests true.

.IFTF 6.10.2 Appears only within a conditional
assembly block, indicating the
beginning of a section of code to
be assembled unconditionally.

.IIF cond,argq, 6.10.3 Acts as a 1l-line conditional
statement assembly block where the condition
is tested for the argument
specified. The statement is

assembled only if the condition
tests true.

B-5

MACRO-11 ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

Form

Section
Reference

Operation

.IRP sym,
<argl,arg2,...>

-IRPC sym,<string>

.LIMIT

.LIST [arg]

.MACRO name,argl,
arg2,...

.MCALL argl,arg2,...

.MEXIT

.NARG symbol

-NCHR symbol,<string>

.NLIST [arg]

7.6.1

6.1.1

6.1.1

Indicates the deginning of an
indefinite repeat block in which
the symbol specified is replaced
with successive clements of the
real argument list enclosed within
angle brackets.

Indicates the beginning of an
indefinite repeat block in which
the specified symbol takes on the
value of successive characters,
optionally enclosed within angle
brackets.

Reserves two words into which the
Task Builder inserts the low and
high addresses of the task image.

Without an argument, the .LIST
directive increments the listing
level count by 1. With an
argument, this directive does not
alter the listing level count, but
formats the assembly listing
according to the argument
specified.

Indicates the start of a macro
definition having the specified
name and the following dummy
arguments.

Specifies the symbolic names of the
user or system macro definitions
required in the assembly of the
current user program, but which are
not defined within the program.

Causes an exit from the current
macro expansion or indefinite
repeat block.

Can appear only within a macro
definition; equates the specified
symbol to the number of arguments
in the macro call currently being
expanded.

Can appear anywhere in a source
program; equates the symbol
specified to the number of
characters in the specified string.

Without an argument, the .NLIST
directive decrements the listing
level count by 1. With an
argument, this directive suppresses
that portion of the listing
specified by the argument.

B-6

MACRO-11 ASSEMBLY LANGUAGE AND ASSEMBLER DIRECTIVES

Form

Section
Reference

Operation

.NTYPE symbol,aexp

.0ODD

. PAGE

.PRINT exp;text

.PSECT name,attl,.
attn

.RADIX n

.RAD50 /string/

.REPT exp

.SBTTL string

.TITLE string

.WORD expl,exp2,..

6.3.2

Can appear only within a macro
definition; equates the symbol to
the 6-bit addressing mode of the
specified address expression.

Ensures that the current 1location
counter contains an odd address by
adding 1 if it is even.

Causes the assembly listing to skip
to the top of the next page, and to
increment the page count.

User-invoked message directive;
causes output to the listing file
or the command output device
containing the optional expression
and the statement containing the
directive.

Begin or resume a named or unnamed
program section having the
specified attributes.

Alters the current program radix to
n, where n is 2, 8, or 10.

Generates a block of data
containing the Radix-50 equivalent
of the character string enclosed
within delimiting characters.

Begins a repeat block; causes the
section of code up to the next
.ENDM or .ENDR directive to be
repeated the number of times
specified as exp.

Causes the specified string to be
printed as part of the assembly
listing page header. The string
component of each .SBTTL directive
is collected into a table of
contents at the beginning of the
assembly listing.

Assigns the first six Radix-50
characters in the string as an
object module name and causes the
string to appear on each page of
the assembly listing.

Generates successive words of data;
each word contains the value of the
corresponding specified expression.

APPENDIX C

PERMANENT SYMBOL TABLE (PST)

The permanent symbol table (PST) contains those symbols which are
automatically recognized by MACRO-11l. These symbols consist of both
op codes and assembler directives. The op codes (i.e., the
instruction set) are listed first, followed by the directives which
cause specific actions during assembly.

For a detailed description of the instruction set, see the appropriate
PDP-11 Processor Handbook.

C.1 OP CODES

OCTAL
MNEMONIC VALUE FUNCTIONAL NAME
ADC 005500 Add Carry
ADCB : 105500 Add Carry (Byte)
ADD 060000 Add Source To Destination
ASH 072000 Shift Arithmetically
ASHC 073000 Arithmetic Shift Combined
ASL 006300 Arithmetic Shift Left
ASLB 106300 Arithmetic Shift Left (Byte)
ASR 006200 Arithmetic Shift Right
ASRB 106200 Arithmetic Shift Right (Byte)
BCC 103000 Branch If Carry Is Clear
BCS 103400 Branch If Carry Is Set
BEQ 001400 Branch If Equal
BGE 002000 Branch If Greater Than Or Equal
BGT 003000 Branch If Greater Than
BHI 101000 Branch If Higher
BHIS 103000 Branch If Higher Or Same
BIC 040000 Bit Clear
BICB 140000 Bit Clear (Byte)
BIS 050000 Bit Set
BISB 150000 Bit Set (Byte)
BIT 030000 Bit Test
BITB 130000 Bit Test (Byte)
BLE 003400 Branch If Less Than Or Equal
BLO 103400 Branch If Lower
BLOS 101400 Branch If Lower Or Same
BLT 002400 Branch If Less Than

PERMANENT SYMBOL TABLE (PST)

OCTAL
MNEMONIC VALUE FUNCTIONAL NAME
BMI 100400 Branch If Minus
BNE 001000 Branch If Not Equal
BPL 100000 Branch If Plus
BPT 0v0003 Breakpoint Trap
BR 000400 Branch Unconditional
BVC 102000 Branch If Overflow Is Clear
BVS 102400 Branch If Overflow Is Set
CALL 004700 Jump To Subroutine (JSR PC,xxx)
ccc 000257 Clear All Condition Codes
CLC 000241 Clear C Condition Code Bit
CLN 000250 Clear N Condition Code Bit
CLR 005000 Clear Destination
CLRB 105000 Clear Destination (Byte)
CLV 000242 Clear V Condition Code Bit
CLZ 000244 Clear 2 Condition Code Bit
CMP 020000 Compare Source To
Destination
CMPB 120000 Compare Source To
Destination (Byte)
COM 005100 Complement Destination
COMB 105100 Complement Destination
(Byte)
DEC 005300 Decrement Destination
DECB 105300 Decrement Destination
(Byte)
DIV 071000 Divide
EMT 104000 Emulator Trap
FADD 075000 Floating Add
FDIV 075030 Floating Divide
FMUL 075020 Floating Multiply
FSUB 075010 Floating Subtract
HALT 000000 Halt
INC 005200 Increment Destination
INCB 105200 Increment Destination
(Byte)
I0T 0v0004 Input/Output Trap
JIMP 000100 Jump
JSR 004000 Jump To Subroutine
MARK 006400 Mark
MFPI 006500 Move From Previous
Instruction Space
MFPS 106700 Move from PS
(LSI-11)
MOV 010000 Move Source To Destination
MOVB 110000 Move Source To Destination
(Byte)
MTPI 006600 Move To Previous
Instruction Space
MTPS 106400 Move to PS
(LSI-11)
MUL 070000 Multiply
NEG 005400 Negate Destination
NEGB 105400 Negate Destination (Byte)
NOP 000240 No Operation
RESET 000005 Reset External Bus
RETURN 000207 Return From Subroutine (RTS PC)
ROL 006100 Rotate Left
ROLB 106100 Rotate Left (Byte)
ROR 000000 Rotate Right

PERMANENT SYMBOL TABLE (PST)

OCTAL
MNEMONIC VALUE FUNCTIONAL NAME
RORB 106000 Rotate Right (Byte)
RTI 000002 Return From Interrupt
(Permits a trace
trap)
RTS 000200 Return From Subroutine
RTT 000006 Return From Interrupt
(inhibits trace trap)
SBC 005600 Subtract Carry
SBCB 105600 Subtract Carry (Byte)
ScC 000277 Set All Condition Code Bits
SEC 000261 Set C Condition Code Bit
SEN 00V270 Set N Condition Code Bit
SEV 000262 Set V Condition Code Bit
SEZ 000264 Set Z Condition Code Bit
sSOB 077000 Subtract One And Branch
SUB 160000 Subtract Source From
Destination
SWAB 000300 Swap Bytes
SXT 006700 Sign Extend
TRAP 104400 Trap
TST 005700 Test Destination
TSTB 105700 Test Destination (Byte)
WAIT 000001 Wait For Interrupt
XOR 074000 Exclusive OR

OP CODES FLOATING POINT PROCESSOR ONLY

T
' OCTAL
MNEMONIC : VALUE FUNCTIONAL NAME
i
ABSD 170600 Make Absolute Double
ABSF 170600 Make Absolute Floating
ADDD 172000 Add Double
ADDF 172000 Add Floating
CFCC 170000 Copy Floating Condition
Codes
CLRD 170400 Clear Double
CLRF 170400 Clear Floating
CMPD 173400 Compare Double
CMPF 173400 Compare Floating
DIVD 174400 Divide Double
DIVF 174400 Divide Floating
LDCDF 177400 Load And Convert From
Double To Floating
LDCFD 177400 Load And Convert From
Floating To Double
LDCID 177000 Load And Convert Integer To
Double
LDCIF - 177000 Load And Convert Integer To
} Floating
LDCLD 177000 Load And Convert Long
integer To Double
LDCLF 177000 Load And Convert Long
Integer To Floating
LDD 172400 Load Double
LDEXP 176400 Load Exponent

PERMANENT SYMBOL TABLE (PST)

OCTAL
MNEMONIC VALUE FUNCTIONAL NAME

LDF 172400 Load Floating

LDFPS 170100 Load FPPs Program Status

MFPD 106500 Move From Previous Data
Space

MODD 171400 Multiply And Integerize
Double

MODF 171400 Multiply And Integerize
Floating

MTPD 106600 Move To Previous Data Space

MULD 171000 Multiply Double

MULF 171000 Multiply Floating

NEGD 170700 Negate Double

NEGF 170700 Negate Floating

SETD 170011 Set Double Mode

SETF 170001 Set Floating Mode

SETI 170002 Set Integer Mode

SETL 170012 Set Long Integer Mode

SPL 000230 Set Priority Level

STCDF 176000 Store And Convert Fron
Double To Floating

STCDI 175400 Store And Convert Fron
Double To Integer

STCDL 175400 Store And Convert From
Double To Long Integer

STCFD 176000 Store And Convert Fror
Floating To Double

STCFI 175400 Store And Convert From
Floating To Integer

STCFL 175400 Store And Convert From
Floating To Long Integer

STD 174000 Store Double

STEXP 175000 Store Exponent

STF 174000 Store Floating

STFPS 170200 Store FPPs Program Status

STST 170300 Store FPPs Status

SUBD 173000 Subtract Double

SUBF 173000 Subtract Floating

TSTD 170500 Test Double

TSTF 170500 Test Floating

C.2 MACRO-11 DIRECTIVES

DIRECTIVE FUNCTIONAL SIGNIFICANZE

.ASCII Translates character string to ASCII equivalents.

.ASCIZ Translates character string to ASCII equivalents;
inserts zero byte as last character.

.ASECT Begins absolute program section (provided for
compatibility with other PDP-11 assembliers).

.BLKB Reserves byte block in accordance with value of
specified argument.

. BLKW Reserves word block in accordance with value of
specified argument.

.BYTE Generates successive byte data in accordance with
specified arguments.

.CSECT Begins relocatable program section (provided for

compatibility with other PDP-11 assemblers).

C-4

PERMANENT SYMBOL TABLE (PST)

DIRECTIVE FUNCTIONAL SIGNIFICANCE

.DSABL Disables specified function.

.ENABL Enables specified function.

.END Defines logical end of source program.

.ENDC Defines end of conditional assembly block.

.ENDM Defines end of macro definition, repeat block, or
indefinite repeat block.

.ENDR Defines end of current repeat block (provided for
compatibility with other PDP-11 assemblers).

.EOT Define End of Tape condition (ignored).

.ERROR Outputs diagnostic message to listing file or

.EVEN

LIFTF
LIIF

.IRP

.IRPC

.LIMIT

.LIST

.MCALL
.MEXIT
.NARG
.NCHR
.NLIST
.NTYPE
.0ODD
.PAGE
.PRINT
.PSECT

.RADIX
.RADSU

.REPT

command output device.
Word-aligns the current_lqcation counter.

9
Labels object module

version number.

Begins conditional assembly block.

Begins subconditional assembly block (if
conditional assembly block test is false).

Begins subconditional assembly block (if
conditional assembly block test is true).

Begins subconditional assembly block (whether
conditional assembly block test is true or false).
Assembles immediate conditional assembly statement
(if specified condition is satisfied).

Begins indefinite repeat block; replaces
specified symbol with specified successive real
arguments.

Begins indefinite repeat block; replaces
specified symbol with value of successive
characters in specified string.

Reserves two words of storage for high and low
addresses of task image.

Controls 1listing 1level count and format of
assembly listing. .MACRO Denotes start of macro
definition.

Identifies required macro
assembly.

Exit from current macro definition or indefinite
repeat block.

Equates specified symbol to the number of
arguments in the macro expansion.

Equates specified symbol to the number of
characters in the specified character string.
Controls 1listing 1level count and suppresses
specified portions of the assembly listing.
Equates specified symbols to the addressing mode
of the specified argument.

Byte-aligns the current location counter.

Advances form to top of next page.

Prints specified message on command output device.
Begins specified program section having specified
attributes.

Changes current program radix to specified radix.
Generates data block having Radix-50 equivalents
of specified character string.

Begins repeat block and replicates it according to
the value of the specified expression.

symbo
program

with specified

definition(s) for

C-5

PERMANENT SYMBOL TABLE (PST)

DIRECTIVE FUNCTIONAL SIGNIFICANCH

.SBTTL Prints specified subtitle text as the second line
of the assembly listing page header.

.TITLE Prints specified title text as object module name
in the first 1line of the assembly listing page
header.

.WORD Generates successive word data in accordance with

specified arquments.

The MACRO-11 directives listed above are summarized in greater detail

in Appendix B.

APPENDIX D

DIAGNOSTIC ERROR MESSAGE SUMMARY

D.1 MACRO-11 ERROR CODES

A diagnostic error code is printed as the first character in a source
line which contains an error detected by MACRO-11l. This error code
identifies a syntactical problem or some other type of error condition
detected during the processing of a source line. An example of such a
source line is shown below:

Q 26 000236 010102 MOV R1,R2,A

The extraneous argument A in the MOV instruction above causes the line
to be flagged with a Q (syntax) error.

Error Code Meaning

A Assembly error. Because many different types of
error conditions produce this diagnostic message,
all the possible directives which may vyield a
general assembly error have been categorized below
to reflect specific classes of error conditions:

CATEGORY 1l: ILLEGAL ARGUMENT SPECIFIED.

.RADIX -- A value other than 2, 8, or 10 is
specified as a new radix.

.LIST/.NLIST -- Other than a 1legally defined
argument (see Table 6-1) is specified with the
directive.

.ENABL/.DSABL -- Other than a 1legally defined

argument (see Table 6-2) is specified with the
directive.

.PSECT -- Other than a legally-defined argument
(see Table 6-3) is specified with the
directive.

.IF/.IIF -- Other than a legally defined
conditional test (see Table 6-5) or an illegal

argument expression value is specified with the
directive.

.MACRO -- An illegal or duplicate symbol found
in dummy argument list.

DIAGNOSTIC ERROR MESSAGE SUMMARY

Error Code

Meaning

Phase error. A label's definition of value varies
from one assembly pass to another or a multiple
definition of a local symbol has occurred within a
local symbol block. Also, when in a local symbol
block defined by the .ENABL LSB directive, an
attempt has occurred to define a local symbol in a
program section other than that which was in
effect when the block was entered. A P error code
also appears if an .ERROR directive is assembled.

Questionable syntax. Arguments are missing, too
many arguments are specified, or the instruction
scan was not completed.

Register-type error. An invalid use of or
reference to a register has been made, or an
attempt has been made to redefine a standard
register symbol without first issuing the .DSABL
REG directive.

Truncation error. A number generated more than 16
bits in a word, or an expression generated more
than 8 significant bits during the use of the
-BYTE directive or trap (EMT or TRAP) instruction.

Undefined symbol. An undefined symbol was
encountered during the evaluation of an
expression; such an undefined symbol is assigned
a value of zero. Other possible conditions which
result in this error code include unsatisfied
macro names in the list of .MCALL arguments and a
direct assigment (symbol=expression) statement
which contains a forward reference to a symbol
whose definition also contains a forward
reference; also, a 1local symbol may have been
referenced that does not exist in the current
local symbol block.

Instruction error. The instruction so flagged is
not compatible among all members of the PDP-11
family. See Section 5.3 for details.

APPENDIX E

SAMPLE CODING STANDARD

E.1 INTRODUCTION

Standards eliminate variability and the requirement to make a
decision. Much of the difficulty in establishing standards stems from
the notion that they should be optimal. However, to be successfully
applied, standards must represent an agreement on certain aspects of
the programming process.

This Appendix contains DIGITAL's PDP-11 Program Coding Standard. It
is suggested that this be used as a model to assist users in preparing
standards for their own installations.

E.2 LINE FORMAT

All source lires shall consist of from one to a maximum of eighty
characters (not including the audit trail added by SLIPR (SLP in
RSX~11M) editor. This program is described in the applicable RSX-11M
or RSX-11D Utilities Manual or in the IAS Editing Utilities Reference
Manual (see Section 0.3 in the Preface).

Assembly language code lines shall have the following format:

1. Label Field - if present, the label shall start at tab stop 0
(column 1).

2. Operation field - the operation field shall start at tab stop
1 (cclumn 9).

3. Operand field - the operand field shall start at tab stop 2
(column 17).

4. Comments field - the comments field shall start at tab stop 4
(column 33) and may continue to column 80.

Comment lines that are included in the code body shall be delimited by
a line containing only a 1leading semicolon. The comment itself

contains a leading semicolon and starts in column 3. Indents shall be
1 tab.

If the operanc field extends beyond tab stop 4 (column 33) simply
leave a space and start the comment. Comments which apply to an
instruction but require continuation should always line up with the
character position which started the comment.

SAMPLE CODING STANDARD

E.3 COMMENTS

Comment all coding to convey the global role of an instruction, rather
than simply a literal translation of the instruction into English. 1In
general this will consist of a comment per line of code. If a
particularly difficult, obscure, or elegant instruction sequence is

used, a paragraph of comments must immediately precede that section of
code.

Preface text, which describes formats, algorithms, program-local
variables, etc., will be delimited by the character sequence :+ at the
start of the text and ;- at the end; these delimiters facilitate
automated extraction of narrative commentary. The comment itself will
start in column 3.

For example:

<+

THE INVERT ROUTINE ACCEPTS

A LIST OF RANDOM NUMBERS AND
APPLIES THE KOLMOGOROV ALGORITHM
TO ALPHABETIZE THEM.

~e Ne we wo we wo

E.4 NAMING STANDARDS

E.4.1 Register Standards

E.4.1.1 General Purpose Registers - Only the following names are
permitted as register names; and may not be used for any other
purpose:

RU=%0 sREG 0

R1=%1 sREG 1

R2=%2 ;REG 2

R3=%3 ;REG 3

R4=%4 ;REG 4

R5=%5 ;REG 5

SP=%6 ;STACK POINTER (REG 6)

PC=%7 ;PROGRAM COUNTER (REG 7)

E.4.1.2 Hardware Registers - These registers must be named

identically to the hardware definition. For example, FS and SWR.

E.4.1.3 Device Registers - These are symbolically named identically
to the hardware notation. For example, the control status register
for the RK disk is RKCS. Only this symbolic name may be used to refer
to this register.

SAMPLE CODING STANDARD

E.4.2 Processor Priority

Testing or altering the processor priority is done using the symbols

PRU, PRl, PR2,PR7

which are equated to their corresponding priority bit pattern.

E.4.3 Other Symbols

Frequently-used bit patterns such as CR and LF will be
conventional symbolics on an as-needed basis.

E.4.4 Using the Standard Symbolics

The register standards will be defined within the assembler.

made

All

other standard symbols will appear in a file and will be linked prior

to program execution.

E.4.5 Symbols*

E.4.5.1 Global Symbols - Global symbols should be easily recognized
by their format. The following standards apply and completely define

symbol standards for PDP-11 Medium/Large software products.

symbol pos-1 pos-2 pos-3 pos-4 pos-5 pos-6 length

non-glbl-sym letter| a-num/| a-num/| a-num/| a-num/| a-num/| >=1
null null null null null

glbl-sym $/. a-num/| a-num/| a-num/| a-num/| a-num/| >=1
null null null null null

glbl-offset letter| $/. a-num | a-num/| a-num/[a-num/| >=3
null null null

glbl-bit-ptrn letter| a-num s/. a-num/| a-num/| a-num/| >=4
null null

local-sym number | ¢ >=2

*
* Ssymbols that ;;; branch targets are also called labels, but we will

always use the term "symbol".

** Number is in the range 0<number<65535.

*** The use of 3 or . for global names is reserved for DEC-supplied

software.

SAMPLE CODING STANDARD

where:

a-num is an alphanumeric character.

non-glbl-sym are non-global symbols.

local-sym local symbols, as defined by
MACRO-11.

glbl-sym are global symbols (addresses).

glbl-offset are global offsets (absolute
quantities).

glbl-bit-ptrn are global bit patterns.

A program never contains a .GLOBL statement without showing cause.

E.4.5.2 Symbol Examples
Non-Global Symbols
AlB
ZXCJ1
INSRT
Global Address Symbols
$JIM
.VECTR
$SEC
Global Absolute Offset Symbols
ASJIM
ASXT
A.ENT
Global Bit Pattern Symbols
Al1$20
B3.6
JI.M
Local Symbols
378
2718
6$

E.4.5.3 Program-Local Symbols - Self-relative address arithmetic
(.+n) is absolutely forbidden in branch instructions; its use in
other contexts must be avoided if at all possible and practical.

SAMPLE CODING STANDARD

Target symbols for branches that exist solely for positional reference
will use local symbols of the form

<num>3:

Use of non-local symbols is restricted, within reason, to those cases
where reference to the code occurs external to the code.
Local-symbols are formatted such that the numbers proceed sequentially
down the page and from page to page.

E.4.5.4 Macro Names - The last two characters (with the last
character possibly being null) have special significance. The next to
last character is a $, the last, a character specifying the mode of
the macro.

For example, in the three macro forms in-line, stack, and p-section,
the in-line form has no suffix, the stack has an <S>, and the

p-section a <C>. Thus the RSX Queue I/0 macro can be written as any
of

QIOS
QIOSS
QIOSC

depending on the form required. These are not reserved letters. Only
the form of the name is standard.

E.5 PROGRAM MODULES

E.5.1 General Comments on Programs

In our software, a program provides a single distinct function. No
limits exist on size, but the single function limitation should make
modules larger than 1K a rarity. Since any software may eventually
exploit the virtual memory capacity of the 11/40 and 11/45, programs
should make every attempt to maintain a dense reference locus (do not

promiscuously branch over page boundaries or over a large absolute
address distance).

All code is read-only. Code and data areas are distinct and each

contains explanatory text. Read-only data should be segregated from
read-write data.

E.5.2 The Module Preface

Each program module in the system shall exist as a separate file. The
file name will reflect the name of the module and the file type shall
be of the form 'NNN'. The 'NNN' signifies the edit number or the
version number. The version number shall be changed only when a new
base level is created. Furthermore, if no corrections are made to a
file from one base level to the next, the version number will not be
changed. The availability of File Control Services and File Control
Primitives will greatly simplify version number maintenance. Program
modules adhere to a strict format. This format adds to the
readability and understandability of the module. The following
sections are included in each module:

E-5

SAMPLE CODING STANDARD

For the Code Section:

1.

10.

11.

A .TITLE statement that specifies the name of the module. 1If

a module contains more than one routine, subtitles may be
used.

An .IDENT statement specifying the version number. The
PDP-11 version number standard appears in section E.10.

A .PSECT statement that defines the program section in which
the module resides.

A copyright statement, and the disclaimer.

COPYRIGHT (C) 1976
DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE FOR USE
ONLY ON A SINGLE COMPUTER SYSTEM AND MAY BE COPIED
ONLY WITH THE INCLUSION OF THE ABOVE COPYRIGHT
NOTICE. THIS SOFTWARE, OR ANY OTHER COPIES THEREOF,
MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO
ANY OTHER PERSON EXCEPT FOR USE ON SUCH SYSTEM AND TO
ONE WHO AGREES TO THESE LICENSE TERMS. TITLE TO AND
OWNERSHIP OF THE SOFTWARE SHALL AT ALL TIMES REMAIN
IN DEC.

THE INFORMATION IN THIS DOCUMENT IS SUBJECT TO CHANGE
WITHOUT NOTICE AND SHOULD NOT BE CONSTRUED AS A
COMMITMENT BY DIGITAL EQUIPMENT CORPORATION.

DEC ASSUMES NO RESPONSIBILITY FOR THE USE OR
RELIABLILITY OF ITS SOFTWARE ON EQUIPMENT WHICH IS
NOT SUPPLIED BY DEC.

The version number of the file.

The PDP-11 version number standard is described in section
E.10.

The name of the principal author and the date on which the
module was first created.

The name of each modifying author and the date of
modification. Names and modification dates appear one per
line and in chronological order.

A brief statement of the function of the module.

Note: 1Items 1-8 should appear on the same page.

A list of the definitions of all equated local symbols used
in the module. These definitions appear one per line and in
alphabetical order.

All local macro definitions, preferably in alphabetical order
by name.

All local data. The data should indicate
a. Description of each element (type, size, etc.)

b. Organization (functional, alpha, adjacent, etc.)
c. Adjacency requirements

E-6

SAMPLE CODING STANDARD

12. A more detailed definition of the function of the module.

13. A list of the inputs expected by the module. This includes

the calling sequence if non-standard, condition
settings, and global data settings.

1l4. A list of the outputs produced as a result of entering

code

this

module. These include delivered results, condition code

settings, but not side effects. (All these outputs
visible to the caller.)

15. A list of all effects (including side effects) produced as

are

a

result of entering this module. Effects include alterations

in the state of the system not explicitly expected 1in

calling sequence, or those not visible to the caller.

16. The module code.

E.5.3 Formatting the Module Preface

Rules:

1. The first eight items appear on the same page and will

the

not

have explicit headings. Item 3 may be omitted if the blank

p-section is being used.

2, Headings start at the 1left margin¥; descriptive text

indented 1 tab position.

is

3. Items 7-14 will have headings which start at the left margin,
preceded and followed by lines containing only a leading <;>.

Items which do not apply may be omitted.

A template for the module preface follows.

FILE-EXAMPL.S01

O SO NE N We Ne W NE Ne W We Ne W e we wo “o

.TITLE EXAMPLE
.IDENT /01/
.PSECT KERNEL

COPYRIGHT (C) 1976
DIGITAL EQUIPMENT COPORATION, MAYNARD, MASS.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE FOR USE ONLY ON A
SINGLE COMPUTER SYSTEM AND MAY BE COPIED ONLY WITH THE
INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE, OR
ANY OTHER COPIES THEREOF, MAY NOT BE PROVIDED OR OTHERWISE
MADE AVAILABLE TO ANY OTHER PERSON EXCEPT FOR USE ON SUCH
SYSTEM AND TC ONE WHO AGREES TO THESE LICENSE TERMS. TITLE
TO AND OWNERSHIP OF THE SOFTWARE SHALL AT ALL TIMES REMAIN
IN DEC.

THE INFORMATION IN THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT
NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL
EQUIPMENT CORPORATION.

*The left margin consists of a <;> a <space> then the heading, so
text of the heading begins in column 3.

E-7

the

SAMPLE CODING STANDARD

DEC ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF
ITS SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DEC.
VERSION 01
JOE PASCUSNIK 1-JAN-72
MODIFIED BY:

RICHARD DOE 21-JAN-73

SPENCER THOMAS 12-JUN-73

Brief statement of the module's function

EQUATED SYMBOLS

O Ne Ne Ne N NE Ne N N Ne N0 Ne N6 Ne we we we

List equated symbols

LOCAL MACROS

~e e weo

Local Macros

LOCAL DATA

~e weo o

Local data

1}
Module function-details

INPUTS:

Description of inputs

OUTPUTS:

Description of outputs

EFFECTS:

Description of effects

WO Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne we we wo wo

Begin Module Code

E.5.4 Modularity

No other characteristic has more impact on the ultimate engineering
success of a system than does modularity. Modularity for PDP-11
Software Engineering's products consists of the application of the
single-function philosophy described in section E.5.1, and adherence
to a set of calling and return conventions.

E.5.4.1 Calling Conventions (Inter-Module) - The following calling
conventions must be observed.

SAMPLE CODING STANDARD

Transfer of Control

Macros will exist for call and return. The actual transfer will
be wvia a JSR PC instruction. For register save routines, a
JSR Rn,SAVE will be permitted.
The CALL macro is:
CALL subr-name
The RETURN macro is:
RETURN
Register Conventions
On entry, a subroutine minimally saves all registers it intends
to alter except result registers. On exit it restores these

registers. (State preservation is assumed across calls.)

Argument Passing

Any registers may be used, but their use should follow a coherent
pattern. For example, if passing three arguments, pass them in
RU, Rl and R2 rather than RO, R2, R5. Saving and restoring
occurs in one place.

E.5.4.2 Exiting - All subroutine exits occur through a single RETURN
macro.
E.5.4.3 Intra-Module Calling Conventions - Designer optional, but

consistency favors a calling sequence identical to that of the
inter-module seqguence.

E.5.4.4 Success/Failure Indication - The C bit will be used to
return the success/failure indicator, where success equals 0, and
failure equals 1. The argument registers can be used to return values
or additional success/failure data.

E.5.4.5 Module Checking Routines - Modules are responsible for
verifying the wvalidity of arguments passed to them. The design of a
module's calling sequence should aim at minimizing the validity checks
by minimizing invalid combinations. Programmers may add test code to
perform additional checks during checkout. All code should aim at
discovering an error as close (in terms of instruction executions) to
its occurrence as possible.

E.6 FORMATTING STANDARDS

E.6.1 Program Flow

Programs will be organized on the listing such that they flow down the
page, even at the cost of an extra branch or jump.

E-9

For example:

BBB

SAMPLE CODING STANDARD

PROCESS

AAA

COMMON

shall appear on the listing as:

AAA:

BBB:

CMN:

TST
BNE

BR

LEC Y

Rather than:

AAA:

CMN:

BBB:

TST
BNE

s s
s s
oo
s oo
o
v oo
s e
s e e
e e
c e
s s e

BR

BBB

CECEE Y
LY
CEC AN

CMN

DAY
DR
LRI
c oo
oo

BBB

DECRT Y
“ o0
DI
s o e
D
e s
s oo
s oo
e e
e oo e
o e

CMN

E.6.2 Common Exits

A common exit appears as the last code sequence on the listing.
the flow chart:

SAMPLE CODING STANDARD

EXIT

will appear on the listing as:

PR1:

PR2:

PR3:

PR4:

EXIT:

And not

PR1:

EXIT:

PR2:

PR3:

PR4:

e o oo

e s oo
LECECINY

e s s o

BR

e s o @
.o

EXIT

« o 0

EXIT

Thus

SAMPLE CODING STANDARD

E.6.3 Code with Interrupts Inhibited
Code that is executed with interrupts inhibited, shall be flagged by a
three semicolon (;;;) comment delimiter. For example:

..ERTZ: ;ENABLE BY RETURNING
iBY SYSTEM SUBROUTINES,

BIS #PR7,PS ;77 INHIBIT INTERRUPTS
BIT #PR7,+2(SP) i1 C
BEQ 10s i:: O
RTT HHH M
A M
108: I E
ceee ceee N N
cone ee s HHH T
i S

E.7 PROGRAM SOURCE FILES

Source creation and maintenance shall be done in base levels. A base
level 1is defined as a point at which the program source files have
been frozen. From the freeze point to the next base level,
corrections will not be made directly to the base level itself.
Rather a file of corrections shall be accumulated for each file in the
base level. Whenever an updated source file is desired, the
correction file will be applied to the base file.

The accumulation of corrections shall proceed until a logical breaking
point has occurred (i.e. a milestone or significant implementation
point has been reached). At this time all accumulated corrections
shall be applied to the previous base level to create a new base
level. Correction files will then be started for the new base level.

E.8 FORBIDDEN INSTRUCTION USAGE

1. The use of instructions or index words as literals of the
previous instruction. For example:

MOV @PC,Register
BIC Src,Dst

uses the bit clear instruction as a literal. This may seem
to be a very "neat" way to save a word but what about
maintaining a program using this trick? To compound the
problem, it will not execute properly if I/D space is enabled
on the 11/45. 1In this case @PC is a D bank reference.

2. The use of the MOV instruction instead of a JMF instruction
to transfer program control to another lccation. For
example:

MOV #ALPHA, PC
transfers control to location ALPHA. Besides taking 1longer
to execute (2.3 microseconds for MOV vs. 1.2 for JMP) the

use of MOV instead of JMP makes it nearly impossible to pick
up someone else's program and tell where transfers of control

E-12

SAMPLE CODING STANDARD

take place. What if one would like to get a Jjump trace of
the execution of a program (a move trace is unheard of)? As
a more general issue, perhaps even other operations such as
ADD and SUB from PC should be discouraged. Possibly one or
two words can be saved by using these operations but how many
such occurrences are there?

3. The seemingly "neat" use of all single word instructions
where one double-word instruction could be used and would
execute faster and would not consume additional memory.
Consider the following instruction sequence:

CMP -(R1), (-R1)
CMP -(R1),-(R1)

The intent of this instruction sequence is to subtract 8 from
register Rl (not to set condition codes). This can be
accomplished in approximately 1/3 the time via a SUB
instruction (9.4 vs. 3.8 microseconds) at no additional cost
in memory space. Another question here is also, what if Rl
is o0dd? SUB always wins since it will always execute
properly and is always faster!

E.9 RECOMMENDED CODING PRACTICE

E.9.1 Conditional Branches

When using the PDP-11 conditional branch instructions, it is

imperative that the correct choice be made between the signed and the
unsigned branches.

SIGNED UNSIGNED
BGE BHIS (BCC)
BLT BLO
BGT BHI
BLE BLOS (BCS)

A common pitfall is to use a signed branch (e.g. BGT) when comparing
two memory addresses. All goes well until the two addresses have
opposite signs; that is, one of them goes across the 16K (100000(8))
bound. This type of coding error usually shows itself as a result of
re-linking at different addresses and/or a change in size of the
program.

E.10 PDP-11 VERSION NUMBER STANDARD

The PDP-11 Version Number Standard applies to all modules, parameter
files, complete programs, and libraries which are written or caused to
be written, as part of the PDP-11 Software Development effort. It is
used to provide unique identification of all released, pre-released,
and in-house software.

It is limited :n that, as currently specified, only six characters of

identification are used. Future implementations of the Macro
Assembler, linker, and librarian should provide for at least nine

E-13

SAMPLE CODING STANDARD

characters, and possibly twelve. It is expected that this standard

will be enhanced as the need arises.

Version Identifier = <form> <version> <edit> <patch>

<form> Used to identify a particular form of a module or

program, where applicable, as

in the case of

LINK-11l. One alphabetic character, if used, and
null (i.e., a binary 0) if not used.

<version> Used to identify the release, or generation, of a
program. Two decimal digits, starting at 00, and

incremented at the discretion of

order to reflect what, in
major change.

the project in

their opinion, is a

<edit> Used to identify the level to which a particular
release, or generation, of a program or module has
been edited. An edit 1is defined to be an
alteration to the source form. Two decimal
digits, beginning at 01, and incremented with each

edit; null if no edits.

<patch> Used to identify the level to which a particular
release, or generation, of a program or module has
been patched. A patch is defined as an alteration
to a binary form. One alphabetic character,
starting at B, and running sequentially toward 2,
each time a set of patches is released; null if

no patches.

These fields are interrelated. When <version>

is changed, then

<patch> and <edit> must be reset to nulls. It is intended that when

<edit> is incremented, then <patch> will be re-set
the various bugs have been fixed.

E.10.1 Displaying the Version Identifier

to null, because

The visible output of the version identifier should appear as:

<key=letter> <form> <version> - <edit> <patch>,

where the following Key Letters have been identified:

\ released or frozen version
X in-house experimental version
Y field test, pre-release, or in-house release version

Note that 'X' corresponds roughly to individual support, 'Y' to group

support, and 'V' to company support.

The dash which separates <version> from <edit> is used only if <edit>
and/or <patch> is not null. When a version identifier is displayed as

part of program identification, then the format is:

Program

<space><key-letter><form><version>-<edit><patch>

Name

SAMPLE CODING STANDARD

Examples:

PIP X03
LINK VB04-C
MACRO Y05-01

E.10.2 Use of the Version Number in the Program

All sources must contain the version number in an .IDENT directive.
For programs (or 1libraries) which consist of more than one module,
each individual module will follow this version number standard. The
version number of the program or library is not necessarily related to
the version numbers of the constituent modules; it is perfectly
reasonable, for example, that the first version of a new FORTRAN
library, V00, contain an existing SIN routine, say V05-01.

Parameter filesc are also required to contain the version number in an
-IDENT dicective. Because the assembler records the last .IDENT seen,
parameter files must precede the program.

Entities which consist of a collection of modules or programs, e.g.,
the FORTRAN Library, will have an identification module in the first
position. An identification module exists solely to provide
identification, and normally consists of something like:

;OTS IDENTIFICATION
.TITLE FTNLIB
.IDENT /003010/
.END

APPENDIX F

ALLOCATING VIRTUAL MEMORY

This appendix is intended for the MACRO-11l user who wants to avoid the
problem of thrashing, by optimizing the allocation of virtual memory.
Users of smaller systems, particularly those with the 8K subset
version of MACRO-11, should become thoroughly familiar with the
conventions discussed herein. In this regard, Appendix F addresses
the following topics:

1. General hints and space-saving guidelines

2. Macro definitions and expansions

3. Operational techniques.
The user is assumed to have pursued a policy of modular programming,
as advised 1in Appendix E. In addition to the obvious advantages
accruing from small, distinct, highly-functional bodies of code, one
can usually avoid the problem of insufficient dynamic memory during

assembly by practicing such a policy. Other suggestions as to how

available memory can be best utilized are discussed in the following
sections.

F.1l GENERAL HINTS AND SPACE-SAVING GUIDELINES
Work-file memory is shared by a number of MACRO-1ll's tables, each of
which 1is allocated space on demand (64K words of dynamically pageable

storage are available to the assembler). The tables and their
corresponding entry sizes are as follows:

1. User-defined symbols - five words.
2. Local symbols - four words.

3. Program sections - six words.

4. Macro names - four words.

5. Macro text - nine words.

6. Source files - six words.

In addition, several scratch pad tables are used during the assembly
process, as follows:

1. Expression analysis - five words.

2. Object code generation - five words.

F-1

ALLOCATING VIRTUAL MEMORY

3. Macro argument processing - three words.
4. .MCALL argument processing - five words.

The above information can serve as a guide for estimating dynamic

storage requirements and for determining ways to reduce such
requirements.

For example, the use of local symbols whenever possible is highly
encouraged, since their internal representation requires 25% less
dynamic storage than that required for regular user-defined symbols.
The usage of 1local symbols can often be maximized by extending the
scope of 1local symbol blocks through the .ENABL LSB/.DSABL LSB
MACRO-11 directives (see Sections 3.5 and 6.2).

Since MACRO-11 does not support a purge function, once a symbol is
defined, it permanently occupies its dynamic memory allocation.
Numerous instances occur during conditional assemblies and repeat
loops when a temporarily assigned symbol is used as a count or offset
indicator. If possible, the symbols so used should be re-used.

In keeping with the same principle, special treatment should be given
to the definition of commonly-used symbols. Instead of simply
appending a prefix file which defines all possibly-used symbols for
each assembly, users are encouraged to group symbols into logical
classes. Each class so grouped can then become a shortened prefix
file or a macro in a library (see Section F.2 below). In either case,
selective definition of symbolic assignments is achieved, resulting in
fewer defined (but unreferenced) symbols.

An appropriate example of this idea is seen in the definition of
standard symbols. The system macro library, for example, supplies
several macros used to define distinct classes of symbols. These
groupings and associated macro names are, as follows:

DRERRS$ - Directive return status codes

IOERRS - I/0 return status codes

FILIO$ - File-related I/O function codes

SPCIOS

Special I/0O function codes

F.2 MACRO DEFINITIONS AND EXPANSIONS

By far, dynamic storage is used most heavily for the storage of macro
text. Upon macro definition or the issuance of an .MCALL directive,
the entire macro body is stored, including all comments appearing in
the macro definition. For this reason, comments should not be
included as part of the macro text. An RSX-11 utility program (called
SQZ for RSX-1llD only) and a Librarian function switch (/SZ) are
available to compress macro source text by removing all trailing
blanks and tabs, blank lines, and comments. The system macro library
(RSXMAC.SML) has already been compressed. User-supplied macro
libraries (.MLB) and macro definition prefix files should also be
compressed. For additional information regarding these two utility
tasks, consult the applicable RSX-11M or RSX-11D Utilities Manual (see
Section 0.3 in the Preface).

It often seems expedient to append a macro definition prefix file to
each assembly to provide commonly-used macros. This practice,
however, may produce the undesirable allocation of valuable dynamic

F=2

ALLOCATING VIRTUAL MEMORY

storage for unnecessary macros. This side effect can be avoided by
specifying that the prefix file containing the macros is a
user-supplied macro library file (see Table 8-1). This action imposes
the stipulation that the names of all desired macros must be listed as
arguments in the .MCALL directive (see Section 7.8).

Storage for macro text can be re-used effectively by redefining
certain types of macros to null after they have been invoked. This
practice releases their dynamic memory for the storage of later macro
text and also eliminates the overhead and the need for dynamic memory
which would otherwise be required during the subsequent invocation and
expansion of such non-redefined macros. The practice of redefining
macros to null applies mainly to those that only define symbolic
assignments, as shown in the example below. The redefinition process
may be accomplished as follows:

.MACRO DEFIN

SYM1 = vaALl ;DEFINE SYMBOLIC ASSIGNMENTS.
SYM2 = VAL2
OFF1 = SYMBOL ;DEFINE SYMBOLIC OFFSETS.
OFF2 = OFF1+S1z1
OFF3 = OFF2+S17:2
OFFN = OFFM+SIZM
.MACRO DEFIN 7MACRO NULL REDEFINITION.
.ENDM

.ENDM DEFIN
Macros exhibiting this redefinition property should be defined (or
read via the .MCALL directive) and invoked before all other macro
definition and/or .MCALL processing. So doing ensures more efficient
use of dynamic memory.

The following system macros have the automatic null redefinition
property after once being invoked:

DRERRS$ - Directive return status codes

IOERRS - I/J return status codes

FILIOS$ - File-related I/0 function codes

SPCIOS$ - Special I/0 function codes

CSsIs$ ~- Command String Interpreter codes and offsets
GCMLD$ - Get Command Line codes and offsets

BDOFFS$ - FCS buffer descriptor offsets

FCSBT$ - FCS bit value codes

FDOFF$ - FCS file descriptor block offsets

FSROF$ - FC3S file storage region (FSR) offsets

NBOFF$ - FC3 filename block offsets
F-3

ALLOCATING VIRTUAL MEMORY

F.3 OPERATIONAL TECHNIQUES

When, despite adhering to the guidelines discussed above, performance

still falls below expectations, several additional measures may be
taken to improve performance.

The first measure involves shifting the burden of symbol definition
from MACRO-11 to the linker. In most cases, the definition of system
I/0 and FCS symbols (and user-defined symbols of the same nature) is
not necessary during the assembly process, since such symbols are
defaulted to global references (see Section 3.9 and Section D.1,
category 4 of error code A). The linker attempts to resolve all
global references from user-specified default libraries and/or the
system object library (SYSLIB). Furthermore, by applying the
selective search option for object modules consisting only of global
symbol definitions, the actual additional burden to the linker is
minimal.

A second way of making more dynamic memory available is to produce
only one output file (either object or listing), as opposed to two.
The additional file descriptor block (FDB) and file storage region
(FSR) required to support the second output file are allocated from
available dynamic memory at the start of each assembly. Furthermore,
the size of the file storage region allocated is the minimum required
for the second (listing) output file. For disk files, this is 264 (10)
words, and for direct line printer output, it is 74(10) words.

The final way of increasing available dynamic memory is related only
to the operating environment. Under RSX-11M, MACRO-11 allocates all
storage between its highest address and the end of its partition as
dynamic memory. Consequently, the amount of working storage can be
increased by installing and running MACRO-11 in a larger partition.

In IAS and RSX-11lD, the assembler's dynamic memory is fixed at 1link
time. If a larger assembler is not available, you may build one by
increasing the size of the task's stack. This is accomplished by
altering the STACK= option in the command file to build MACRO-11.

APPENDIX G

WRITING POSITION INDEPENDENT CODE

G.1 INTRODUCTION TO POSITION INDEPENDENT CODE

The output of a MACRO-1l1l assembly is a relocatable object module. The
Task Builder bkinds one or more modules together to create an
executable task image. Once built, a task can generally be loaded and
executed only at the virtual address specified at link time. This is
because the linker has had to modify some instructions to reflect the
memory locations in which the program is to run. Such a body of code
is considered position-dependent (i.e., dependent on the virtual
addresses to which it was bound).

All PDP-11 processors offer addressing modes that make it possible to
write instructions that are not dependent on the virtual addresses to
which they are bound. A body of such code is termed
position-independent and can be 1loaded and executed at any virtual
address. Position-independent code can improve system efficiency,
both in wuse of virtual address space and in conservation of physical
memory.

In multiprogramming systems like IAS, RSX-11D and RSX-1l1lM, it is
important that many tasks be able to share a single physical copy of
common code; for example a library routine. To make the optimum use
of a task's virtual address space, shared code should be
position-independent. Code that is not position-independent can also
be shared, but it must appear in the same virtual locations in every
task using it. This restricts the placement of such code by the Task
Builder and can result in the loss of virtual addressing space.

The construction of position-independent code is closely linked to the
proper usage of PDP-1l1l addressing modes. The remainder of this

Appendix assumes you are familiar with the addressing modes described
in Chapter 5.

All addressing modes involving only register references are
position-independent. These modes are as follows:

R register mode
(R) deferred register mode
(R)+ autoincrement mode
@(R)+ deferred autoincrement mode
-(R) autodecrement mode
@-(R) deferred autodecrement mode
When using these addressing modes, you are guaranteed

position-independence, providing the contents of the registers have
been supplied such that they are not dependent upon a particular
virtual memory location.

WRITING POSITION INDEPENDENT CODE

The relative addressing modes are position-independent when a
relocatable address is referenced from a relocatable instruction.
These modes are as follows:

A relative mode
()N relative deferred mode

Relative modes are not position-independent when an absolute address
(that is a non-relocatable address) is referenced from a relocatable
instruction. 1In this case, absolute addressing (i.e., @#A) may be
employed to make the reference position-independent.

Index modes can be either position-independent or position-dependent,
according to their use in the program. These modes are as follows:

X (R) index mode
@X (R) index deferred mode

If the base, X, is an absolute value (e.g., a control block offset),
the reference is position-independent. For example:

MOV 2(SP),RO ;POSITION-INDEPENDENT
N=4

MOV N(SP),RO ;s POSITION-INDEPENDENT

If, however, X 1is a relocatable address, the reference is
position-dependent. For example:

CLR ADDR (R1) ;s POSITION-DEPENDENT

Immediate mode can be either position-independent or not, according to
its usage. Immediate mode references are formatted as follows:

#N immediate mode

When an absolute expression defines the value of N, the code is
position-independent. When a relocatable expression defines N, the
code is position-dependent. That is, immediate mode references are
position-independent only when N is an absolute value.

Absolute mode addressing is position-independent only in those cases
where an absolute virtual location is being referenced. Absolute mode
addressing references are formatted as follows:

Q#A absolute mode

An example of a position-independent absolute reference is a reference
to the directive status word ($DSW) from a relocatable instruction.
For example:

MOV @#$DSW,RO ;RETRIEVE DIRECTIVE STATUS

G.2 EXAMPLES

The RSX-11 library routine, PWRUP, is a FORTRAN callable subroutine to
establish or remove a user power failure AST entry point address.
Imbedded within the routine is the actual AST entry point which saves
all registers, effects a call to the user-specified entry point,
restores all registers on return, and executes an AST exit directive.
The following examples are excerpts from this routine. The first
example has been modified to illustrate position-dependent references,
(see Figure G-1). The second example, Figure G-2, is the
position-independent version.

G-2

WRITING POSITION INDEPENDENT CODE

PWRUP: :
CLR -(SP) ;ASSUME SUCCESS
CALL .X.PAA ;PUSH (SAVE) ARGUMENT ADDRESSES ONTO
;s STACK
.WORD 1.,$DSW ;CLEAR DSW, AND SET R1=R2=SP
MOV $OTSV,R4 ;GET OTS IMPURE AREA POINTER
MOV (SP)+,R2 ;GET AST ENTRY POINT ADDRESS
BNE 108 ;IF NONE SPECIFIED, SPECIFY NO POWER
CLR - (SP) ;RECOVERY AST SERVICE
BR 208 i
10s: ;
MOV R2,F.PF (R4) ;SET AST ENTRY POINT
MOV #BA, - (SP) ;PUSH AST SERVICE ADDRESS
208: ;
CALL .X.EXT ; ISSUE DIRECTIVE, EXIT.
.BYTE 109.,2. ;
BA: MOV RO,-(SP) ;PUSH (SAVE) RO
MOV R1l,-(SP) ;PUSH (SAVE) R1
MOV R2,-(SP) ;PUSH (SAVE) R2
Figure G-1 Position-Dependent Code
PWRUP::
CLR - (SP) ;ASSUME SUCCESS
CALL .X.PAA ;PUSH ARGUMENT ADDRESSES ONTO STACK
.WORD 1.,$DSW ;CLEAR DSW, AND SET R1=R2=SP.
MOV Q#SOTSV,R4 ;GET OTS IMPURE AREA POINTER
MOV (SP)+,R2 ;GET AST ENTRY POINT ADDRESS
BNE 108 ; IF NONE SPECIFIED, SPECIFY NO POWER
CLR - (Sp) ; RECOVERY AST SERVICE
BR 208
10S: H
MOV R2,F.PF (R4) ;SET AST ENTRY POINT
MOV PC,-(SP) ; PUSH CURRENT LOCATION
ADD #BA-., (SP) ; COMPUTE ACTUAL LOCATION OF AST
208:
CALL .X.EXT ; ISSUE DIRECTIVE, EXIT.
.BYTE 109.,2.

ACTUAL AST SERVICE ROUTINE:

1) SAVE REGISTERS
2) EFFECT A CALL TO SPECIFIED SUBROUTINE

RESTORE REGISTERS

4) ISSUE AST EXIT DIRECTIVE

00 e ~e ~e ~o we we we wo
w
~

Az MOV RO, - (SP) ;PUSH (SAVE) RO
MOV R1l,-(SP) ;PUSH (SAVE) Rl
MOV R2,-(SP) ;PUSH (SAVE) R2

Figure G-2 Position-Independent Code

The position-dependent version of the subroutine contains a relative
reference to an absolute symbol ($OTSV) and a literal reference to a
relocatable symbol (BA). Both references are bound by the Task
Builder to fixed memory locations. Therefore, the routine will not
execute properly as part of a resident 1library if its 1location 1in
virtual memory is not the same as the location specified at link time.

WRITING POSITION INDEPENDENT CODE

In the position-independent version, the reference to $OTSV has been
changed to an absolute reference. 1In addition, the necessary code has
been added to compute the virtual location of BA based upon the value
of the program counter. In this case, the value is obtained by adding
the value of the program counter to the fixed displacement between the
current location and the specified symbol. Thus, execution of the

modified routine is not affected by its location in the image's
virtual address space.

The MACRO-11 Assembler provides a way of checking the
position-independence of code. In an assembly 1listing, MACRO-11

inserts a ' character following the contents of any word which
requires the linker to perform a relocation operation. In some cases
this character indicates a position-dependent instruction; in other

cases, it merely draws the user's attention to the use of a symbol
which may or may not be position-independent. The cases which cause a
' character to be inserted in the assembly listing ar= as follows:

1. Absolute mode references are flagged with a ' character when
the reference 1is relocatable. References are not flagged
when they are position-independent (i.e., absolute). For
example:

MOV @#ADDR,R1 ;PIC ONLY IF ADDR IS ABSOLUTE.

2. 1Index and index deferred mode references are flagged with a '
character when the offset is relocatable. For example:

MOV ADDR(R1l),R5 iNON-PIC IF ADDR IS RELOCATABLE.
MOV @ADDR(R1l),R5 ;NON-PIC IF ADDR IS RELOCATABLE.

3. Relative and relative deferred mode references are flagged
with a ' character when the address specified is relocatable
with respect to another program section. For example:

MOV ADDR1,R1 iNON-PIC WHEN ADDR1 IS BOUND
MOV @ADDRI1,R1 :TO ANOTHER PROGRAM SECTION

4. Immediate mode references to relocatable addresses are always
flagged with a ' character.

MOV #3,R0O sALWAYS POSITION-INDEPENDENT.
MOV #ADDR,R1 iNON-PIC WHEN ADDR IS RELOCATABLE.

There is one case in which the MACRO-11 assembler does not flag a
potential position-dependent reference. This occurs where a relative
reference is made to an absolute virtual location from a relocatable
instruction (i.e., MOV $OTSV,R4 in Figure F-1).

Those references requiring more than simple relocation at 1link time
are also indicated in the assembly listing. Simple global references
are flagged with the letter G. Those which contain multiple global
references or complex relocation, are flagged with the letter C (see
Section 3.9 and Chapter 4). In such cases, it 1s difficult to
positively state which are or are not position-independent. However,
in general, it is safe to apply the guidelines discussed earlier in
this Appendix to the resulting address value produced at link time.

- - s Gt s bt e s s s
OB®NOARAEWN- SO® NG AEWN —

APPENDIX H

SAMPLE ASSEMBLY AND CROSS REFERENCE LISTING

«TITLE P3PRE

+IDENT /0S/
COPYRIGHT 1976, DIGITAL EQUIPMENT CORP,, MAYNARD, MASS,
THIS SOFTWARE 18 FURNISHED TO PURCHASER UNDER A LICENSE FOR USE
ON A SINGLE COMPUTER SYSTEM AND CAN BE COPIED (WITH INCLUSION
OF DEC’S COPYRIGMT NOTICE) ONLY FOR USE IN SUCH SYSTEM, EXCEPT
AS MAY OTHERWISE BE PROVIDED IN WRITING BY DEC,
THE INFORMATION IN THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT
NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL
EQUIPMENY CORPORATION,

DEC ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY
OF ITS SOFTWARE ON EQUIPMENT WwMICH IS NOT SUPPLIED BY DEC,

VERSION B5%

Cs MONIA PSeFEB=76

PERFORM PRELIMINARY SyMBOL TABLE PROCESSING
LOCAL MACROS

DEFINE CANNED SECTION TABLE ENTRIES

SECTN NAME,FLAGS,SEG

WHERE 1

NAMESSECTION NAME

OFFSETsQFFSET IN SEGMENT DESCRIPTOR To RECEIVE SECTION ADDRESS,

BLANK IF NONE,
FLAGSSSECTION FLAGS BYTE CONTENTS
SEGs*ROOT* IF SECTION IS DEFINED IN ROOT SEGMENT ONLY

+MACRO SECTN NAME,FLAGS,OFFSET,SEG

8,02
$$0sm,
«WORD -]
+WORD [
$8$8s,
Y
+RADSQ® /NAME/
«8888$
+BYTE FLAGS
JIF B SEG
+BYTE -]
«IFF
«BYTE -y
+ENDC

«IF NB OFFSET
+WORD OFFSEY
JIFF

SAMPLE ASSEMBLY AND CROSS REFERENCE LISTING

s8% JLON »»»

H01dI¥I830 LN3W93S 40 $S3¥AQY IVNLYIASISANIS

(¥0LdI¥383U IN3W3T3 INIYYND 40 $§380AY TVNLHEIA) P=13AY¥IS
401dI1¥3830 AIN3W9O3IS 40 SS¥QAY TvIys93SUIS

4014182830 IN3IW3ITI AWwNQ 40 $S340AVEWIINIS

03883J08d 9NI38 INIWO93IS 40 IWYNENQOW

(3WNLIS ¥O 3IWNLSd AB dNLI3S) viva NOILIIS ANIHUNISLISHD
¥01dl¥383Q IN3WO3IS 40 SS3INQQVY TvIysSy

401418230 IN3IW3T3 AWnNG 40 $E330QVYSNHY

(WAS727) d¥0LdINIS830 N08WAS VIO 40 S8340QVSTY
4010183830 INIWO3S 40 $S35AQV YIwspy

1S1NaNI

1aNL138 38 L18NW INIMDII04

3HL ‘SINIOd A¥INI 3S3HL 30 ANV 04 VI 3NILNQNENS v ININSSI
0. ¥0l¥d °S3dAL QUOI3I¥ 069 0314123dS SS3J08d LVHL «wIJ¥de
37NQ0W NIHLIM SINILNOYENS 40 $S3¥AAY IHL SNIVINOI 3718VL SIHL

378v1 ¥04J3A HILV4SIA Q89

13384’
$9v14 0uwAS ANIFNEND ¢ 1 My18°
$834QAY A¥IN3 T08WAS ¢ 1 mx18°

9v74 NOILINIZ3Q 08WAS ¢ 1 mxnle°

IN3W938 WIuv3IS 40 $S3¥AQV TvNLYIA T omx1e°’
9V1d Hivd HIY¥V3S ¢ 1 mxlg°®

39vY¥018 109wAS vI0T ¢ ‘v LY RN

3WYN 31NA0W 40 4IVH LSul4d ¢ 1 Mm@’

ANILNOY QYO IVANYW 40 3InWN § /av01$/ ©Savy*
IN3W93S ININEND 40 S§3¥AQY vnidla ¢ 1 m¥ig°
YAVQ NOILIIS AINIHEND ‘et mMy18°

¥A0‘0°Q87Jd8d 43384°

“eWI3d8ds 3INAOW NI QIT4133dS SAINILNOI NOILIIS 3WL
HILYW LSNW M0T38 A3NI1430 NOILI3S 3WL 40 SANILNOI 3HL

#¥% 3JI0ON ww¥y

en1J¥ds ITNA0OW HLIIM Q3 4YHE 39VHO0LS NOWWOI
viva v301

WAN3®
8 quom*

L e e e e e L L R T STS

197448
LINIAS
1432048
198ANS
13dJ48
('TS A PR

INQOW

IWwNQv01
138A82
1108¥)

o memm e -

08S$="849713%

JAN3*
2 Qquow*

ongLee
Ls2sel

2eeuvo0

n908e0
290000
090000
9500080
nseene
nfoBoe
2sevee
ofoeee
920000
n20000
Qo000

000000

£l
2t
11
(23]
6ol
(T2
Lol
901
sel

SAMPLE ASSEMBLY AND CROSS REFERENCE LISTING

SHOLdI¥IS30 MOONIM ¢ 1008‘2+QNMOSS‘<€dALSSIT13088I> ‘SANMSS NLJ3$§

S¥0Ld1¥3530 IN3W93S ¥04 NO14J3S ONILIWIT3Q ¢ 1008’ <dALi86217134882101v8SI>2q98ss N1J3S

S¥0LdI¥IS30 ANIWO3S ¢ L00H'2+935985/<dAL88I1713498)>/1Q98SS N1J38

$378V. IN3IW93IS 804 NOILI3IS ONILIWITIQ ¢ 1008 /<dAL$8I17138$S21071v$8I>‘@Q9888 NL1J3S

INIOd N¥N13¥ LIN3IW93S veQ19 ¢ <1388631749863101v882>/81usS N1J3IS 12dSLY
¥01dI¥9830 NOI93H § 100y‘2+493u988/<dALsSI1T1INESI>SQ9u8S NL1J3S
3IVdS ¥0423A QVOI0LNY ¢ 241NVOSE‘<dALESIITIIBESI>IATVES NII3S

378v.l 40 LyviS Lv 0¥3Z AwWnwNQ ¢ [} QyoM*® SWNLIJS

¢
*HSVL 3WL
40 AN3IW9D3S HIVI NI G3ANIINI 33V SUIHL0 1TV *AINO ANINO3S L0OY ¢

NIVW 3HL NI Q30NIINI 3uY , 1008, SY Q31VYNOIS3O SNOILIIE 3HL “

L1817 AuiIN3 NOI4L338 “

aasnnn ¢ 3 3iae’

s$9v4 ¢ ! ax1e’

3WYN 40 47vH AONOJ3S ¢ I My18°
IWYN 40 4VH 1Syld ¢ /VWS/ OSAVY® ISHYVW

3NILNOY T0¥INOI AVIN3A0 ¥0d AuMIN3 T0BWAS ¢
[

378vL IWd 40 SS3¥QQV vNi¥IA ¢ 0 quom®
LN] . Q OCOI.
IWNYN 37NQ0wW 4 8 Quom*
tet 4 Quom®
NOILVIIJILN3AQI 37NA0W '] quom®
QWOM MILIMS AINIW3T3 ¢ [} quom*
Y3IEWNN NOILIIS LSINOIN ¢ i PR
379vl LW) 40 $s3saQQv ¢ 1 (L RN
1X3N 04 ¥NIT ¢ [’} quomM® tAWWNQ

]
4014183630 INIW3TI AWwNd "

43384°

MY18° VIWNLSA
Mu18° SLINIAIA
M¥18° 13WNiSe
LER BRI LT
MX18° 1uQvudx
MN18° TWASLIND
mu19° $3IWNLIS
MYNTE° S IWNAOW

INYN AVEUY TVNLEIA
NOILVIISILIN3AI NOISHIA
3WYN NOILI3S wWYEOONd
NOILVYYVII3Q T06BWAS
$$38QQY uI4SNVYEL
J08wAS TYNEFINID

InVYN NOILJ3S

IWYN 3TNAOKW

e e e e e
et et et e et e e

¥AD‘Q‘0USAQS9 1J384°

*NIFYIH 03193743y 36 18nw IINAOW LVYHL NI 3IONVHI ANV §
*,W1J8d, 3INA0W A8 QIWSITBVLIS3 3¥v 378V SINL 40 SINIINOD 3WL 4

eoe

rigset

(L 11.1]]

211000
201000
2Lod0ee
290000
250000
2noeee
2gt0000

250000

L20000

220000

oLl
691
991
191
991
$91
not
£91
291
191
891
(1
(1))
LS1
91
$S1
nst
€S
ast
1St
est
ont
ol
int
n

900000

910000
niodee
212900

SAMPLE ASSEMBLY AND CROSS REFERENCE LISTING

378VL NI 06WAS 434N3
8014189830 IN3IW93I§ 40 §5340QvV Ag0d

¥01dI¥J630 IvI07 340 ss3wddy 139

130wASe
2y'sSy

Te'wAg12n

ON3°*

¥17v)
AOW

AOwW
SWwASNI

dN13§ 3% L1Snw NOILI3I§ INIwANI ONY ¥0LdINJ$3Q 108WA§ V30T ¢

*ININ93§ NI T094AS TVH0T9 v 1y3ASND ¢
1]

A¥AINT Lx3N 0L 3INVAQY 43I y¥v371D

$83400QY NOILI3S 3¥0LS

dNi3$ 38 04 138440 ON 03 41

¢138440 ON

40.dI¥IS30 N1 107§ ¥3¢0¥d 0L 1383440
40.dI¥J§30 AIN3W93S 40 $6340AV 139
§378vL NI NOILIIS ¥3IUN3

40141423630 vJ01 40 $$3¥0Qv 439
IN3W938 40 $§3300Y V3N AdOI

IN3QIS3u=%SvL Sv NOIL23S 9vy4
ON 83 41

¢ANY¥EIT INICIS3¥ 9NIQTIING
31A8 §9Y14 HOIW ¥V3II

ON 3N 41

4100y Lv

oN 03 41

LAINO IN3W93S 00w
Hi9N3T ¥v3TI

$9vi4 AdOI

3WVYN 40 4VYH QNOJ3S AdOD
4817 40 ON3 Lv 03 41
3WYN NOILI3S A0

¥01dI¥I83Q vI01 0L iNIOd

- o e e = - e em - - o o -

o= o on e em e e

+(fy)

(0u) ‘28AMD
$02

Su‘oy

vy’ (gy)
Qu'Sy
3nNLSde

LR TS RERT
2u'Sy

(BY) ‘sS3u882n
$s1

MENSLHNSMEHN
(ey)

soe

936148°98A8IS
sot

(Bu)=

(Qy)

+(0y) ‘+(5¥)
+(0y) '+ (8y)
sos
+(0y) '+ (Sy)

Qu’'2+WA8TI S

NENL3Y
[E1'2%

181
1s02

AOW
038
dwd
aav
AOW
1

AOW
AOw
1851
BAONW
03
118
CER P

ne

i1sel

diWd
03¢
eisd
LR b)
AOW
AOW
038
AOW

AOW

1eee00

oesete
NEBRA0
tec2te

feLs500

+N200080
21,910
2ontiev
sa0e20
20g190
edsate

ni0000
Telete
eesete

90vop0e
el
2oniea
9IsLLY
ov20000
L9Lese
atleset

220100
d0d0a00
9geeeee

L9l920

nontioe

onisel
e18s00
e2g2ie
o2g2te
ngnioe
pegete
980000
eaL2ta

259000
059000

nneeee
LLLT T]

an9eve
2n9vee
en9gaee
[LL] '])

n$9008
259000
age0ee
929008
n29000
929000

niedne
219000
219000

969000
na9vee

9.5000
niS000
L3111
2iS000

n9seae
295000
0950
955000
nsseee
2550080
855000
Inse0d

2nseee

1131
(141
1£€
(131

(141
(141
425
92¢
(141
(114
149
228
12¢
(144
ol
(231
L8

91
(331
nig
(33
(331
11g

(231
[
L1421

Lot
908

1111
(L1
fog
L{'14

1eg
(117
(114
[11
Le2
962
1114
ne2

1114

H-4

SAMPLE ASSEMBLY AND CROSS REFERENCE LISTING

FLARYS)

6282

6912

991=2

gL2=2 Li2=2
2122
L91e2p 99T ecn
gnde=2
arg=2 fod=2
n@ee2
891=2 L91=2
191=2 991e2
691=2

10A 4389

982=2

292=2
0§2=2
6L2=2
1gg=2

S8§=2

g92=2
OLl=2n
S9le2n
2L2=2
gl2=2»
[1g=2
2922
9222
922

92i=2»
16224

£92=-2
§91=2

oL1=e
§91=2

4912
91g=2

nie=2
L22=2
§91e2
S91e=2
192e2
n9tle2
Lie=2
eL2=2
0g2=2
ol2=2
netle2n
98=2»
S8=2»
nee2»
§82-2
£8=2»
20=2»
Lol=in
ni2=2
t21=2»
291=2»
691=2n
n9leln
ng=ts»
991e2s
6822
§2l=2n
221 =2»
92
onledsn
6L
Let=1n
1g=2#
221e2n
1922
oL2=2
Loleln
Loteln
9022
§92-2»
n9=2s
SEle=2n
2it=2
n9te?
Leg=2
091=2
LLALT
991=2
991 =2
SLi=2»
Li=2»
Let=1in

$3INFNI4IY

X9

X9

X9
X9
X9

x9
X9

X9
X9
X9

roaxxax x @ @ a oo

sansns
sunsns
T TY YL
LYTT Y
[TIYY Y
sxsnay
[TIY Y
sssnns
[TYEY Y
senens
J10000
n90000
290000
290000
XYY Y]
950000
nsoeev
gneaen
seyans
200000
ofe000

210000
200000
250000
niioeo
210000
000000
259000
220000

susoay
oeo0e0

8088
508858

ssanen
syp888
YYYIL)
n204900
de0000
siooe¥

INTvA

$1598§
818988
93898¢
939988
ANNOSS
invoss
HMEAS
134848
169848
430848
TI0WAS
914A8
IN3AS
43048
HNSMS
98AYS
4448
vds
189898
INNLIS
WN1JS

H91128
witssy
Jdsiv
Judid
INNLGd
IWNQOW
NQOW
SNUYN

dAL88I
s3u88)

134883
199883
0vesd
I8ANI
43842
L]

T08KAS

3INF¥I4IY §80UI T0EWAS

SAMPLE ASSEMBLY AND CROSS REFERENCE LISTING

0§L=2 nig=2 21§
60g=2 8L2=2 Li2=2 ni2=2 292=2
1922 252=2 922=2 £22=2» 6122

992=2 §92-2 n92=2 1922+

9ig=22 £1g=2

Lo2=2» 962=2» n62e» 2L2=2 99220
6n2=2 en2e=2s
Ln2=2» Sn2e=2» 6822 LE2=2» 2g2=2»
62€=2»

0lge=2» 2nde2» 6122 s LT 622-2
9222+ ne2=2 122=2» L0220 ne2e2s
0Ef=2% 9t1g=2 nig=2 Lige2s 21g=2s
60§ =2» Log-2 nog=2 662=2» 9622
L62=2» 9622+ hol2e2s §62-2» ne2=2s
282=2 6l2=2% 8i2=2» Li2=2n 9L2-2»
2922 1922+ 0922+ 9522+ §§2=2»
082=2 oende=e gnd=2» in2e2s 9ndeds
nne=2 L22=2% 922=2» 602e2s 902=2
021=2+ 11ge2s 182=2% 0L2=2»
9522 LS2e2% the=2» one=2» 222e2»
022=2» 212«2» B12e2» g02=2» SP2=2s
$3IN3u343y

1]
ny

1]
2y

1y

od
08nAS

1A 43¥) FINIYIL3Y SS0Y¥) T0GWAS ¥3ILSI9FN

SAMPLE ASSEMBLY AND CROSS REFERENCE LISTING

Qile=2n
$9Te2n

¥2s =2

Lol=1n
1£g=2s
11g=2
En2e=2
9022

691=2n
n9lels

6122
21228

Lol=ln
$922»
1922
on2e2
se2e2

vo=in
Sileln
89120
[121}
9911w
95leln
Leteln
snieln
f2leln
£0=1I»
Sietn
0422
2R
9pels

$3IINFNI4TY

13380°
90§

NLJ3E
YAAVS
OUAVS
NuNL N

[0r
suONNE

430
1)

hhlk]
IWNYN OUIVW

3INFYWI434 SSOWI Q¥IVN

SAMPLE ASSEMBLY AND CROSS REFERENCE LISTING

L82=2
£nid=2
en2=2
222=2
o12=2
9022
S02=2
6912
9912

891=2

691=2
991 =2

9t le2
22i=2
£8=2

91g=2
nede=2
9L22
1922
sn2e2
922<2

1gd=2
222e2

nige2

9852

Ls2=2
gne=2
on2=2
022-2
812-2
q02=2
$02=2
8912
$91=2

L91=2
9912
§91e2
L2i=2

1212
4 LT

2ige2
f62e2
¥9¢=2
0922
nnée=2
§£22=2

0L2=2
0222

1oge2
96l=2

0es=2

10A 43482

L82=2
fne=2
222=2
pe2=2
212=2
90¢=2
$92=2
8912
§91e2

L91e=2
991=2
$91=2
9212

021=2
1g=2

oif=2
ngde2
992=2
§62=2
2n2=2
122=2

952-2
6l2e2
2Le=2
gge=2
20§=2

S62=2

Ls2=2
one=2
222=2
d2eé=e
812=2
982-2
di=2
L1912
n9le2

ULl=2
991=¢

oll=2
L9112
n9l=2
9L1=2
§2l1e2

99=2

gg=2

Log=2
605=2
6lL2=2
§92-2
one=2
fg2=2
6082=2
L§2=2
B12=2
1§22
L9e=2

£L2-2

S§L2=2

fIg=2

gne=2
oneg=2
eeid=2
02Z=2
012-2
$02-2
oL1=2
L91=2
n9le2

=2
69%=2
S91e2

8Ll=2
L91=2
n9leg
ogle=2
LIAR T
§9-2
eL=2

9lg-2

e2§=2
6£2=2
[I{ LTS
Le2=2
9422
£92=2
en2e2
6222
902=2

Ende2
e02=2
1€g=2
£52=2
n22e2
n9ge=2
1522
hie=2
s0§=2
9g2=2

9s2=2

fne=2
onde=2
2222
8222
0082-2
§02-2
691=2
991 =2
nitl=l

£e1
6912
Y30
fi€-2
6912
9912
2812
LE1e2
f21=2
L4 B4
Li=2
1812
6622
9nee=2
262=2
2122
2§22
62€2
9622
LL2=2
2922
Lne=2
9222
no2=2
I1g=2
on2e=2
§02-2
§92=2
2sd=2
202-2
nege2
LB2=2
292-2
§22-2
ef2=2
8§2=2
§€2=2
LE2=2
Sig=2
£02=2
1L2=2
In2=2
L22=2

§3IN3¥343Y

41°
iN3QI°

J0N3*
OoN3*

EFPY M

mx19°
e’
aisi
181
d3s
[JR]
8A0KW

AOW

usr
dnl
INI
diWd
e¥1d
412
e
NG
018
elle
i1e
esle

0160
838
308
aqyv

08KAS

3IN3Y¥I43Y $508) 376VL 108WAS ININVWEId

Absolute address=s, 6-14

Absolute binary output, 6-14

Absolute expression, 3-16

Absolute mode, 5-5, 5-7

Absolute module, 6-34

Absolute program section, 6-37

Address boundaries, 6-31

Address mode syntax, B-1

Address modes, 5-1

Addressing forms, summary, 5-7

Allocating byte data, 6-17

Allocating dynamic memory, F-1

Allocating word data, 6-18

Allocation requirements, 6-35

Alternate radix, 6-25

Ampersand, 3-1

Angle brackets, 3-3, 3-15,
6-4, 6-25, €-28, 7-4 to
7-5, 7-16 tc 7-17

Apostrophe, 7-1C

Argument substitution, 7-16

Arithmetic addition operator
or autoincrement indicator
3-1

Arithmetic division operator
3-1

Arithmetic multiplication
operator, 3-1

Arithmetic subtraction
operator or autodecrement
indicator, :-1

ASCII character set, A-1

ASCII conversior, 3-14

ASCII conversior characters
6-19

.ASCII directive, 6-20

.ASCIZ directive, 6-21

.ASECT directive, 6-38

Assembler directives, 6-1,
B-1, B-2

Assembler versicn, 6-8

Assembly languace, B-1

Assembly listinc, 2-6

Assembly pass 1, 1-1

Asterisk, 3-1

At sign, 3-1

Attribute of the current
location counter, 3-12

Autodecrement deferred
mode, 5-3, %-7

Autodecrement mode, 5-7

Autoincrement deferred
mode, 5-3, H-7

Autoincrement mode, 5-2, 5-7

INDEX

B operator, 6-25

Backslash, 3-1

Binary operators, 3-15

Blank lines, 2-2

Blocks of storage, reserving,
6-30

.BLKB directive, 6-30

.BLKW directive, 6-30

Branch instruction addressing,
5-8

.BYTE directive, 6-17

“C operator, 6-27

Calling conventions, E-8

Calling macros, 7-3

Changing default radix, 3-13

Changing value of location
counter, 3-12

Character set, 3-1

Character substitution, 7-16

Code and data separation, 6-38

Code or data sharing, 6-38

Coding standard, E-1

Colon, 3-1

Comma, 3-1

Comment, 6-14, E-2

Comment field, 2-5

Comment field indicator, 3-1

Complementing an
argument, 6-27

Complex relocatable
expression, 3-16

Complex relocation, 4-1

Concatenated, 6-35

Concatenation of macro
arguments, 7-10

Conditional assembly block,
6-41

Conditional assembly
directive, 6-41, 6-42

Conditional branches, E-13

Continuation lines, 2-2

Creating local symbols
automatically, 7-7

Creating program sections,
6-36

Cross~reference listing
(CREF), H-5

.CSECT directive, 6-17

Current location counter, 2-2,
3-11, 3-14, 5-6, 6-29

Index-1

INDEX (CONT.)

"D operator, 6-25

Data storage directives, 6-17

Date, 6-8

Default object module name,
6-11

Default register
definitions, 6-15

Deferred addressing
indicator, 3-1

Defining macros, 7-1

Device registers, E-2

Diagnostic, 7-14

Diagnostic error message
summary, D-1

Direct assignment operator,
3-1

Direct assignment statements,
3-7

Directives, 2-5, 5-9, 6-1

Double ASCII character
indicator, 3-1

Double colon, 3-1, 3-7

Double equal sign, 3-1, 3-7

Double quote, 3-1, 3-14, 6-19

.DSABL directive, 3-7, 3-9
6-13 to 6-15, 6-27

Duplication of code, 7-17

EMT, 5-8

.ENABL directive, 5-7, 6-13,
6-15, 6-27

.END directive, 6-31

.ENDC directive, 6-41

.ENDM directive, 7-2

End of the source input, 6-31

.ENDR directive, 7-17

Entry-point instructions, 6-33

.EOT directive, 6-31

Equal sign, 3-1

Error codes, D-1

.ERROR directive, 7-14

Evaluation of expressions,
3-15

.EVEN, 6-29

Exclamation point, 3-1

Executable task image, 4-1

Exiting, E-9

Expressions, 3-14, 3-15

External expression, 3-15,
3-16

External symbols, 6-40

Externally-defined macro, 7-18

“F operator, 3-14, 6-27
Finding address mode of macro
arguments, 7-13

Finding number of characters
in strings, 7-.2
Floating-point
data, 6-26
number, 6-28
number specification, 6-27
rounding, 6-15, 6-27
storage directives, 6-27
truncation, 6-14, 6-27
.FLT2 directive, 6-27
.FLT4 directive 6-27
Forbidden instruct:ion
usage, E-12
Form-feed, 6-13, 7-3
Format control, 2-6
Formatting standards, E-9
Forward referencing, 3-8
Function control switches, 8-6
Function directives, 6-13

General purpose registers, E-2
General registers, 3-9
Global

label, 6-40

references, 6-15

symbol, 2-3, 6-40

symbol directory, 1-2
.GLOBL directive, 3-7, 6-39
GSD, 1-2

Hardware registers, E-2
Horizontal formatting, 2-6

.IF directive, 6-4]

.IFF directive, 6-43, 6-44

.IFT directive, 6-43

.IFTF directive, 6-43

.IIF directive, 6-46

Illegal characters, 3-3

Immediate conditioral
assembly, 6-46

Immediate expressicn
indicator, 3-1

Immediate mode, 5-4, 5-7

Immediate mode deferred, 5-5

Implicit .WORD directive, 2-5,
6-18

Indefinite repeat klock
directives, 7-15

Index deferred mode, 5-4, 5-7

Index mode, 5-4, 5-7

Initial argument or expression
indicator, 3-1

Initial register irdicator, 3-1

Index-2

INDEX (CONT.)

Instruction set, C-1

.IRP directive, 7-15

.IRPC directive, 7-15, 7-16
Item or field terminator, 3-1

Keyword arguments, 7-4, 7-9

Label field, 2-2

Label terminator, 3-1

Left angle bracket, 3-1

Left parenthesis, 3-1

.LIMIT directive, 6-31

Line format, E-1

Linker, 2-2, 4-1

Linking, 4-1, 4-39

.LIST directive, 6-1

Listing conditional
assemblies, 5-4

Listing control
directives, 5-1

Listing level count, 6-2

Listing of binary extensions,
6-3

Listing of comments, 6-4

Listing of generated
binary code, 6-3

Listing of macro class, 6-4

Listing of macro definitions,
6-4

Listing of macro expansion
binary code, 6-4

Listing of repeat range
expansions, 6-4

Listing of source lines, 6-3

Listing of the current
location counter, 6-3

Listing of the symbol table,
6-4

Local symbol block, 6-14

Local symbol block delimiters,
3-10

Local symbols, 3-6, 3-10, 3-11

Location counter, 6-36

Location counter control
directives, 6-29

Logical AND operator, 3-1,
6-42

Logical inclusive OR
operator, 3-1, 6-42

Lower-case ASCII, 6-14

Macro arguments, 7-6

Macro attritube directives,
7-11

Macro call, 2-5, 7-3, 7-5

Macro call arguments, 7-4

Macro call numeric argument
indicator, 3-1

Macro definition, 7-1, 7-15

Macro definition arguments,
7-4

Macro definition formatting,
7-3

Macro definition termination,
7-2

Macro definitions and
expansions, F-2

Macro directives, 7-1

Macro expansion termination,
7-3

Macro library directive, 7-18

Macro name, 7-1, 7-4

Macro names, E-5

Macro nesting, 7-5

Macro symbol table, 3-5

MACRO-11 character sets, A-1

MACRO-11 directives, 5-9, C-4

MACRO-11 symbols, 3-5

.MCALL directive, 7-18

Memory allocation, 6-32, 6-33,
6-38

Memory allocation and mapping,
6-32

.MEXIT directive, 7-18

Minus sign, 3-1

Modularity, E-8

Module checking routines, E-9

Module preface, E-5

Multi-defined label, 2-4

Multiple definitions of local
symbols, 3-11

Multiple labels, 2-4

Naming standards, E-2
.NARG directive, 7-11
.NCHR directive, 7-11, 7-12
Negative numbers, 3-14
Nested conditional directives,
6-43
Nested macros, 7-3, 7-5
.NLIST directive, 6-1, 6-11
.NTYPE directive, 7-11, 7-13
Number of arguments in
macro calls, 7-7, 7-11
Number sign, 3-1, 5-4
Numbers, 3-13
Numeric control, 6-24
Numeric control operators,
6-26, 6-27
Numeric directives, 6-26

"0 operator, 6-25
Object module, 4-1
Object module name, 6-11

Index-3

INDEX (CONT.)

Octal radix, 3-13
.ODD directive, 6-29
Op codes, 2-4, C-1
Operand field, 2-4
Operand field separator, 3-1
Operator field, 2-4
Order of symbol table
search, 3-6
Other symbols, E-3
Overlaid, 6-35
Overlays, 6-33

.PAGE directive, 6-13

Page eject, 7-3

Page ejection, 6-13

Page formatting, 2-6

Page headings, 6-8

Page number, 6-8

PAL-11R conditional assembly,
6-46

Passing numeric arguments
as symbols, 6-46

Percent sign, 3-1

Permanent symbol table, 3-5,
c-1

Plus sign, 3-1

Position independent code, G-1

.PRINT directive, 7-14

Processor priority, E-3

Program boundaries directive,
6-31

Program counter, 3-9, 5-1

Program modules, E-5

Program section access, 6-33

Program section name, 6-33

Program sections, 3-12, 6-32

Program source files, E-12

Program-local symbols, E-4

Programming standards and
conventions, 2-1

.PSECT directive, 3-12, 6-32,
6-35

R operator, 6-23

.RAD50 directive, 3-13, 6-24
Radix control, 6-24
Radix control operators, 6-25
Radix-50 character set, A-4
Radix-50 control operator,

6-23

Radix-50 data, 6-22

.RADIX directive, 3-13, 6-24
Read-only access, 6-33
Read/write access, 6-33
Register deferred mode, 5-2
Register expression, 5-1

Register, mode, 5-1, 5-7

Register standards, E-2

Register symbols, 3-9

Register term indicator, 3-1

Relative addresses, 6-14

Relative addressing mode, 5-6

Relative deferred mode, 5-6,
5-7

Relative mode, 5-%, 5-7

Relocatability, 6-34

Relocatable expressions, 3-16,
4-1

Relocatable module, 6-34

Relocatable program sections,
6-37

Relocation, 4-1

Relocation bias, -2, 6-34

Repeat block directive, 7-17

.REPT directive, 7-17

Reserving storage, 6-30

Reserving storage space, 3-13,
6-29

Right parenthesis, 3-1

.SBTTL directive, 6-8, 6-11

Scope of the program section,
6-33

Semicolon, 3-1

Sending messages to listing
file, 7-14

Separating and delimiting
characters, 3-2

Single ASCII character
indicator, 3-1

Single quote, 3-1, 3-14, 6-19,
7-10

Slash, 3-1

Source line sequerce numbers,
6-3

Space, 3-1

Special characters, B-1

Special characters in macro
arguments, 7-¢

Stack pointer, 3-¢

Statement format, 2-1

Storing Radix-50 data, 6-23

Subconditional assembly, 6-43

subtitle, 6-8

Success/failure irdication,
E-9

Symbol control directive, 6-39

Symbol examples, E-4

Symbol table listing, 1-2

Symbolic arguments of listing

control directives, 6-3, 6-4

Symbols, E-3
Symbols and expressions, 3-1
System macro libreries, 7-18

Index-4

INDEX (CONT.)

Tab, 3-1 Unary operator ordering, 6-28

Tab character, z-2 Unary operators, 3-15

Table of contents, 6-4, 6-11 Unconditional assembly, 6-43

Teleprinter mode, 6-4 Undefined symbols, 3-7, 3-14

Terminal argument or Universal unary operator
expression indicator, 3-1 or argument indicator, 3-1

Terminal register indicator, Up arrow or circumflex, 3-1
3-1 Up-arrow, 3-3

Terminating directives, 6-31 Up-arrow (~) construction, 7-5

Terms, 3-14 User symbol table, 3-5

Time-of-day, 6-¢ User-defined and macro

.TITLE directive, 6-11 symbols, 3-5

Title of the object module, User-defined macro libraries,
6-8 7-18

Translating to 2SCII, Using the standard symbolics,
6-20, 6-21 E-3

Translating to kadix-50,
6-22

Trap instructiors, 5-8
Version number, 6-12
Version number standard, E-13

Unary and binary operators,

3-4
Unary control, €-24 .WORD directive, 3-11, 6-18

Index-5

PDP-11 MACRO-11
Language Reference
Manual

AA-5075A-TC

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. Problems with software should be reported
on a Software Performance Report (SPR) form. If you
require a written reply and are eligible to receive
one under SPR service, submit your comments on an SPR
forn.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience
Student programmer

000000

Non-programmer interested in computer concepts and capabilities

Name Date

Organization

Street

City State Zip Code
or
Country

— — — DoNot Tear- Fold Hereand Tapg — — — — — — — — — — _—

=~ — — Do Not Tear - Fold Here

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

RT/C SOFTWARE PUBLICATIONS ML 5-5/E45
DIGITAL EQUIPMENT CORPORATION

146 MAIN STREET

MAYNARD, MASSACHUSETTS 01754

No Postage
Necessary
if Mailed in the
United States

C T T T T T T 7 Cut Along Dotted Line

dlilgliltiall

digital equipment corporation

Printed in U.S.A.

