Introduction
to RT-11

AA-5281C-TC

Introduction
to RT-11

AA-5281C-TC

March 1983

This document is an introductory manual for the RT—11 operating sys-
tem. Its purpose is to acquaint new users with the RT-11 commands
that perform common system operations. This manual presents the
background material necessary to understand the system operations. It
also contains a series of command examples and demonstration exer-
cises that complement the text.

This manual supersedes the Introduction to RT-11, ®
AA-5281B-TC. This manual contains Update Notice 1, AD—5281C—T1.

Operating System: RT-11 Version 5.1

To order additional documents from within DIGITAL, contact the Software Distribution
Center, Northboro, Massachusetts 01532.

To order additional documents from outside DIGITAL, refer to the instructions at the back
of this document.

digital equipment corporation - maynard, massachusetts

First Printing, March 1980
Revised, March 1983
Updated, July 1984

The information in this document is subject to change without notice and should not
be construed as a commitment by Digital Equipment Corporation. Digital Equipment

Corporation assumes no responsibility for any errors that may appear in this docu-
ment.

The software described in this document is furnished under a license and may be used
or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by DIGITAL or its affiliated companies.

© Digital Equipment Corporation 1980, 1983, 1984.
All Rights Reserved.

Printed in U.S.A.

A postage-paid READER’S COMMENTS form is included on the last page of this
document. Your comments will assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

dlilg 1ol e

DEC MASSBUS RT-11
DECmate PDP UNIBUS
DECsystem-10 P/OS VAX
DECSYSTEM-20 Professional VMS

DECUS Rainbow VT

DECwriter RSTS Work Processor
DIBOL RSX

UPDATE NOTICE 1

Introduction to RT-11

AD-5281C-T1

July 1984
NEW AND CHANGED INFORMATION

This update contains changes and additions to the Introduction to
RT-11, AA-5281C-TC.

To order additional documents from within DIGITAL, contact the Software Distribution
Center, Northboro, Massachusetts 01532.

To order additional documents from outside DIGITAL, refer to the instructions at the back
of this document.

digital equipment corporation - maynard, massachusetts

INSTRUCTIONS

The enclosed pages are replacements for or additions to current pages of the

Introduction to RT-11. On replacement pages, changes and additions are indicated by vertical
bars (]); deletions are indicated by buliets (e).

Keep this notice in your manual to maintain an up-to-date record of changes.

© Digital Equipment Corporation 1984.
All Rights Reserved.

Printed in U.S.A.

Old page New page
Title/Copyright Title/Copyright
2-3/24 2-3/2-4
4-9/4-10 4-9/4-10
15-7/15-8 15-7/15-8

Reader’'s Comments/Mailer Reader's Comments/Mailer

CONTENTS

Page
PREFACE ix
CHAPTER 1 INTRODUCING THE RT-11
COMPUTER SYSTEM 1-1
SYSTEM HARDWARE 1-1
The Computer. e e e e e e e 1-1
The Terminal 1-3
The Storage Medium 14
Optional Devices 1-6
SYSTEM SOFTWARE 1-7
The RT-11 Operating System 1-8
Language Processors 1-10
Application Packages 1-10
SYSTEM DOCUMENTATION. 1-10
Hardware Manuals 1-10
Software Manuals. 1-11
Source Listings, 1-11
CHAPTER 2 STARTING THE RT-11 COMPUTER
SYSTEM. 2-1
COMPUTERMEMORY 2-1
HARDWARE CONFIGURATION 2-1
Terminal 2-3
Computer 2-3
System Volume 2-3
Storage Volume 24
Optional Devices and Supported Languages 24
BOOTSTRAPPROCEDURE 24
CHAPTER 3 INTERACTING WITH THE RT-11
COMPUTER SYSTEM 3-1
USING THE CONSOLE TERMINAL TO
EXCHANGE INFORMATION 3-1
USING MASS STORAGE VOLUMES 34
FileStorage. 3-7
File Protection 3-7
CHAPTER 4 USING THE MONITOR COMMAND
LANGUAGE. 4-1
ENTERING COMMAND INFORMATION 4-1
General Command Format 4-2
Control Commands 4-3
Re-Creating the Examples. 4-3

iii

INITIAL MONITOR COMMAND OPERATIONS. 4-5
Using VT11 Display Hardware 4-5
Entering the Date and Time-of-Day 4-8
Assigning Logical Names to Devices. 4-9
Listing Volume Directories 4-12
Initializing the Storage Volume 4-15

CHAPTER 5 CREATING AND EDITING TEXT FILES 5-1

THE RT-11EDITOR 5-1

CREATINGATEXTFILE. 5-2

EDITINGATEXTFILE. 54

USING UPPERCASE AND LOWERCASE CHARACTERS. . . 5-12
USING A GRAPHICS DISPLAY TERMINAL

DURINGEDITING 5-15
Normal Use of the Graphics Display. 5-16
Immediate Mode, 5-16

CREATING THE DEMONSTRATION PROGRAMS 5-19

CHAPTER 6 COMPARING TEXT FILES 6-1

PERFORMING A COMPARISON 6-1

CHAPTER 7 PERFORMING FILE MAINTENANCE
OPERATIONS 7-1

FILE DIRECTORY OPERATIONS. 7-1
MULTIPLE FILE OPERATIONS 7-2
FILE COPYING OPERATIONS 7-3
FILE RENAMING OPERATIONS 7-4
FILE DELETION OPERATIONS 7-5
FILE PROTECTION OPERATIONS -7
FILE LISTING OPERATIONS 7-8
CHAPTER 8 CHOOSING A PROGRAMMING
LANGUAGE. 8-1
HIGH-LEVEL VS MACHINE-LEVEL LANGUAGES 8-1
RT-11 PROGRAMMING LANGUAGES 83
CHOOSING A LANGUAGE FOR THE
DEMONSTRATION 84
CHAPTER 9 RUNNING A FORTRAN IV PROGRAM. 9-1

DEVELOPING AN EXECUTABLE FORTRAN IV
PROGRAM 9-1

iv

USING LIBRARYMODULES 9-2

COMPILING THE FORTRAN IV PROGRAM 9-3
LINKING OBJECT MODULES TOGETHER. 9-8
RUNNING THE FORTRAN IV PROGRAM 9-11
COMBINING OPERATIONS. 9-12
ALTERNATE FUNCTIONS 9-13
FILE MAINTENANCE 9-14
CHAPTER 10 RUNNING A BASIC-11 PROGRAM 10-1
DEVELOPING A BASIC-11 PROGRAM. 10-1
USING THE BASIC-11 LANGUAGE PROCESSOR 10-1
USING THE BASIC INTERPRETER. 10-2
Immediate Mode 10-3
Creating and Editing a BASIC-11 Program 104
RUNNING A BASIC-11 PROGRAM. 10-8
FILE MAINTENANCE 10-12
CHAPTER 11 RUNNING A MACRO-11 ASSEMBLY
LANGUAGE PROGRAM 11-1
DEVELOPING A MACRO-11 ASSEMBLY LANGUAGE
PROGRAM e e 11-1
USING THE MACRO-11 LANGUAGE PROCESSOR 11-2
The Program Counter 11-3
The Symbol Table. 114
Machine Language Code 114
ASSEMBLING THE MACRO-11 PROGRAM 11-6
LINKING OBJECT MODULES TOGETHER. 11-13
RUNNING THE MACRO-11 PROGRAM 11-15
COMBINING OPERATIONS. 11-16
FILE MAINTENANCE 11-18
CHAPTER 12 LINKING OBJECT PROGRAMS 12-1
RESOLVING SYMBOLIC AND LIBRARY
REFERENCES. 12-2
PROGRAM RELOCATION AND ADDRESS
ALIGNMENT o o 12-3
Absolute and Relocatable Program Sections 124
The Overlay Feature 12-6
PRODUCING A LOAD MODULE AND
ALOADMAP. e 12-7
CHAPTER 13 CONSTRUCTING LIBRARY FILES 13-1

KINDS OF LIBRARY FILES. 13-1
Macro Libraries

CREATING AND MAINTAINING A LIBRARY FILE 13-2
Creating Object Library Input Files 13-2
Building the Object Library 13-5
Updating the Object Library. | 13-6

FILE MAINTENANCE 13-7

CHAPTER 14 DEBUGGING A USER PROGRAM 14-1

AVOIDING PROGRAMMING ERRORS 14-1

WHEN PROGRAMMING ERRORSOCCUR 14-2

USING THE ON-LINE DEBUGGING TECHNIQUE. 143

FILE MAINTENANCE 14-13

CHAPTER 15 USING THE FOREGROUND/BACKGROUND
MONITOR 15-1

THE FOREGROUND/BACKGROUND

ENVIRONMENT 15-1
Running the Foreground/Background
Programs 15-1
Creating the BackgroundJob 15-2
Editing the Background Job. 15-2
Running the Background Job | 15-2

USINGTHEFBMONITOR 15-3
Communication in a Two-Job Environment 16-3
Creating the Foregrounddob 154
Executing the Foreground and Background Jobs. 15-5

FILE MAINTENANCE 15-8

CHAPTER 16 USING INDIRECT FILES. 16-1

CREATING AN INDIRECTFILE 16-1
Entering Monitor Commands 16-1
Using the Editor to Create an Indirect File 16-2

EXECUTING AN INDIRECTFILE 164

FILE MAINTENANCE 16-8

CHAPTER 17 ADVICETONEWUSERS. 17-1

USING THE HELPFILE 17-2

APPENDIX A MANUAL BOOTSTRAPPING
OPERATIONS. A-1

BOOTSTRAPPING THE SYSTEM. A-1

TYPING THE BOOTSTRAP ON THE

TERMINALKEYBOARD A-3

USING A PUSHBUTTON CONSOLE

TOBOOTSTRAP A4

USING A SWITCH REGISTER

CONSOLE TOBOOTSTRAP. A-5
APPENDIX B SELECTED SYSTEMTOPICS B-1
STOPPING AND STARTING
THE SYSTEM ittt et e e e e e B-1
Stopping the System. B-1
Starting the System. B-1
THE SYSTEM STOPS UNEXPECTEDLY B-2
SUGGESTIONS FOR BOOTSTRAPPING
THE SYSTEM. o i ittt et e e e e e B-2
BACKING UP THE SYSTEM VOLUME. B-3
DIRECTORY- VS NONDIRECTORY-
STRUCTURED VOLUMES B4
ALTERNATE RENAME OPERATION
FORMAGTAPEUSERS. B4
USING THE FORTRAN/BASIC
LANGUAGEVOLUME B-5
SUBSTITUTING VOLUMES DURING
OPERATIONS. e e et et e e e B-6
USINGTHE LINK VOLUME B-8
FORTRAN/LINK FILE MAINTENANCE B-9
GLOSSARY e Glossary-1
INDEX. e e e e e Index-1
FIGURES
FIGURE 1 Flowchart for Selective Reading. xii
1-1 RT-11 Computer System 1-2
1-2 PDP-11Computers 1-3
1-3 Terminal Devices 14

1-4 Randon-Access Storage Media and Their Devices . .1-5

1-5 Peripheral Devices 1-6
1-6 RT-11 System Software. 1-8
1-7 RT-11 Operating System 1-9
2-1 Bootstrap/Computer Relationship 2-2
3-1 LA120/VT100 Terminals 3-2
3-2 LA120/VT100 Keyboard Layouts33
3-3 Mass Storage Volumes 3-6
4-1 VTI11 Display Hardware. 4-6
5-1 EditingwithRT-11. 5-2
5-2 Text WindowFormat 5-16
9-1 Evolution of a FORTRAN IV Program. 9-1
9-2 Function of a FORTRAN IV Compiler. 9-2

TABLES

TABLE

9-3
94

10-1
11-1
11-2
11-3
114
11-5
11-6
12-1
12-2
A-1

A-2

2-1
2-2
3-1
4-1
4-2
4-3
44
5-1
5-2
81
11-1
A-1

Dimensions of FUNX,Y) 9-7
The Link Operation. 9-9
The Result of GRAPH.SAV 9-12
Functions of the BASIC-11 Language Processor. . 10-2
PDP-11 Programming Card. 11-1
Evolution of a MACRO-11 Program. 11-2
Function of a MACRO-11 Assembler 11-2
PDP-11 Computer Memory 11-3
PDP-11Word. 11-5
The Link Operation. 11-14
Link Functions 12-1
Object Module Relocation 124
Pushbutton Console. A4
Switch Register Consoles A-5
Representative System Volumes. 24
Bootstrap Prompts and Responses 2-6
Keyboard Characters 3-5
Keyboard Symbols 44
Physical Device Names 4-9
Special Logical Device Nmaes. 4-10
FileTypes. 4-13
Command Arguments. 5-5
Immediate Mode Commands. 5-17
Language Comparisons 8-2
Decimal/Octal/Binary Conversion 11-6
Binary Conversion _ . A-6

viii

The RT-11 (Real Time-11) computer system is a single-user
computer/operating system that serves the programming needs
of both the beginning and the advanced programmer. RT-11
supports a number of programming languages, including in-
dustry-standard FORTRAN and BASIC: and — for more ad-
vanced users — the PDP-11 assembly language, MACRO-11.
RT-11 also provides a comprehensive set of operating com-
mands for controlling system operations.

The purpose of this introductory manual is to acquaint you with
a number of RT-11 operating commands that are used to per-
form common system operations. The manual first presents in-
formation that you need to understand a particular system op-
eration; then it shows you how to apply the system operation in
a series of operating commands and exercises that you re-
create; finally, it provides a list of reference materials that con-
tain more information about the operation. This approach
makes it possible for you to learn quickly the major features of
the system; at the same time, it eliminates many of the
learning problems encountered by new users.

This manual describes system usage fundamentals. It is not the
intent of this manual to teach you to program the PDP-11 com-
puter. You may already be proficient in one or more of the
available programming languages. Likewise, no attempt has
been made in this manual to cover all the possible applications
for which the RT-11 computer system is suited. You will dis-

cover many applications yourself as you continue to use the
system.

This manual is designed for three categories of RT-11 users:

¢ Inexperienced users: Those having little or no previous
“hands-on” computer experience (including those whose expe-
rience has been limited to batch environments)

¢ Experienced users: Those who are experienced users of a
computer system other than the RT-11 computer system

¢ Experienced RT-11 users: Those who have used previous
versions of the RT-11 computer system but wish a quick in-
troduction to the newest features of the current system (Ver-
sion 5)

The manual contains 17 chapters and 2 appendixes. The de-

scriptions that follow and the chart at the end of this section
will help you determine your own reading path.

ix

PREFACE

MANUAL INTENT

MANUAL DESIGN

Preface

Chapter 1, Introducing the RT-11 Computer System, discusses
general system concepts. It introduces the roles of hardware
and software in a computer system and describes the specific
hardware and software components of the RT-11 computer
system. Chapter 1 is intended for users in the first two catego-
ries.

Chapter 2, Starting the RT-11 Computer System, shows all
users how to start the system.

Chapter 3, Interacting with the RT-11 Computer System, dem-
onstrates how you use the console terminal to control system
operations. Again, this chapter is most helpful to users in the
first two categories.

Chapters 4 through 7 describe system operations that are
useful to all categories of users. Each chapter begins with a
textual explanation of a particular system operation and ex-
pands into computer demonstrations showing the operation in
use. Topics covered are: Using the Monitor Command Lan-
guage; Creating and Editing Text Files; Comparing Text Files;
and Performing File Maintenance Operations. Experienced
RT-11 users may prefer to skip the textual explanations and
review only the computer exercises.

Chapter 8, Choosing a Programming Language, helps you
determine which language to use. Choose BASIC-11,
FORTRAN IV, MACRO-11, or a combination of these three
languages to continue the exercises in this manual (BASIC-11
and FORTRAN 1V are optional products).

Chapters 9, 10, and 11 describe the process of running pro-
grams written in the FORTRAN IV, BASIC-11, and
MACRO-11 languages, respectively. You should read any
chapters that apply to your choice of language.

MACRO-11 and FORTRAN IV users should continue to
Chapter 12, Linking Object Programs, and Chapter 13, Con-
structing Library Files.

Chapter 14, Debugging a User Program, provides some sugges-
tions for finding and fixing errors in user programs; all users
should read this chapter.

Chapter 15, Using the Foreground/Background Monitor, is in-
tended for users who plan to exercise the foreground/back-
ground capability of the RT-11 system.

All users should continue to Chapter 16, Using Indirect Files.
Indirect files allow the system to perform operations unat-
tended.

Chapter 17 gives some advice to new users and includes a de-
scription of the RT-11 HELP file.

Two appendixes are provided for reference. Appendix A
discusses manual bootstrapping procedures and Appendix B
provides some additional information on selected system usage.

A glossary of technical terms appears at the end of the manual
for reference purposes.

The following flowchart will help you plan your reading path
through the manual. Read the chart from top to bottom; answer
the questions and follow the direction of the arrows to see
which chapters you should read.

NOTE

The demonstration portions of this manual are for use
with Version 5 and later releases of RT—11. The exer-
cises are quite lengthy, and you may prefer not to com-
plete them in one sitting. You may pause at the end of
any individual chapter. It is recommended that you stop
only at the end of a chapter since you will otherwise not
complete an exercise and thus may introduce errors that
will affect later exercises. Instructions for pausing and
beginning again are given in Appendix B.

xi

Preface

Preface

READ
CHAPTER 2
READ CHAPTERS
1,2AND 3
READ
CHAPTERS 4
THROUGH 8

FORTRAN
READ READ READ
CHAPTER 10 CHAPTER 9 CHAPTER 11
READ READ
CHAPTERS 12 CHAPTERS 12
AND 13 AND 13
READ READ READ
CHAPTER 14 CHAPTER 14 CHAPTER 14
READ
CHAPTER 15

READ CHAPTERS
16 and 17

=D

Figure 1 Flowchart for Selective Reading

Xii

CHAPTER 1

INTRODUCING THE RT-11 COMPUTER SYSTEM

A computer system is a collection of components that work to-
gether to process data. The purpose of a computer system is to
make it as easy as possible for you to use a computer to solve
problems. A functioning computer system combines hardware
elements with software elements. The hardware elements are
the mechanical devices in the system, the machinery and the
electronics that perform physical functions. The software ele-
ments are the programs written for the system; these programs
perform logical and mathematical operations and provide a
means for you to control the system. Documentation includes
the manuals and listings that tell you how to use the hardware
and software. Collectively, these components provide a com-
plete computer system that allows both layman and expert
alike to use a computer.’

SYSTEM HARDWARE
SYSTEM SOFTWARE
+SYSTEM DOCUMENTATION

COMPUTER SYSTEM

The RT-11 computer system requires three basic hardware
items: the computer, which performs all data processing; a ter-
minal device, used like a typewriter for two-way communica-
tion between the user and the system; and a storage medium,
for storing programs and data. Figure 1-1 illustrates the hard-
ware components of a typical RT-11 computer system.

The computer performs all instruction decoding and data pro-
cessing. The RT-11 computer system is constructed around a
DIGITAL PDP-11 computer, several of which are shown in
Figure 1-2. Any model of PDP-11 can be used in an RT-11
system.

Notice in Figure 1-2 that the front panel, or operator’s console,
of each PDP-11 computer is slightly different. The switches,
buttons, and lights that are on the operator’s console are used
for various kinds of computer operations and applications. In
the RT-11 computer system they are used only to start the
system. Once the system has been started, your interaction
with the computer system occurs through the terminal.

1This chapter attempts to build a working vocabulary that is both meaningful
to the new user and consistent with standard DIGITAL terminology. Some
definitions may appear inconsistent with those you have previously learned
or used.

1-1

SYSTEM
HARDWARE

The Computer

Introducing the RT-11 Computer System

Figure 1-1 RT-11 Computer System

1-2

Introducing the RT-11 Computer System

PDP11/23 PLUS

PDP11/23

PDP 11/44
Figure 1-2 PDP-11 Computers

The terminal allows two-way communication between you (the The Terminal
user) and the computer system. You enter information — opera-

ting commands, for example — from the terminal keyboard,

which is operated much like a typewriter keyboard. The com-

puter, in turn, prints information and messages on the ter-

minal’s printer or screen. Figure 1-3 shows two terminal

devices — the VT100 video terminal and the LA120 hardcopy

terminal — that can be used in an RT-11 computer system.

1-3

Introducing the RT-11 Computer System

The Storage
Medium

Figure 1-3 Terminal Devices

Generally, an RT-11 computer system has only one terminal
through which all system/user interaction takes place. This is
called the console terminal. If the system has more than one
terminal, one of them is still designated the console terminal;
others simply provide auxiliary message-printing capabilities.

The third important hardware device in an RT-11 computer
system is the storage medium (usually a disk). It stores pro-
grams — those that make up the computer system software and
those that you create. It serves as a distribution medium,;
system software is often packaged and distributed on a disk by
the system supplier. Finally, it stores other data, information
that is eventually needed for a computer operation (called
input), the results of a computer operation (called output), or

14

Introducing the RT-11 Computer System

textual information such as a report. Figure 1-4 shows the
random-access storage media (and their specific drive units)
that can be used in an RT-11 computer system. (Random access
means that access time for data is independent of the location of
data. Contrast this concept with sequential access.)

Figure 1-4 Random-Access Storage Media
and Their Devices

1-5

Introducing the RT-11 Computer System

Optional Devices

These three devices — the computer, the terminal, and the
storage medium — are the required hardware components of an
RT-11 computer system. With the exception of the computer,
all hardware devices are called peripheral devices. Peripheral
devices supplement the computer by providing external re-
sources for operations that the computer cannot handle alone.
In addition to the terminal and storage medium (which are re-
quired peripheral devices), other peripheral devices can be used
in an RT-11 computer system.

Optional peripheral devices are added to a computer system
according to the specific needs of the system users. For ex-
ample, computer systems that are used primarily for program
development may have extra storage devices and a high-speed
printing device. Computer systems used in a laboratory envi-
ronment may have graphics display hardware, an oscilloscope
device, and an analog-to-digital converter. Computer systems
that provide (or use) information in conjunction with another
kind of computer system usually have a magtape device, be-
cause magtape is an industry-standard storage device.

Peripheral devices are categorized as input/output (/O) devices
since the functions they perform provide information (input) to
the computer, accept information (output) from the computer,
or do both. Line printers are output devices because they per-
form only output operations. Terminals and storage devices are
input/output devices because they perform both input and
output operations. Figure 1-5 shows several of the optional pe-
ripheral devices that are often added to an RT-11 computer
system.

VT11 Display

Figure 1-5 Peripheral Devices

1-6

Introducing the RT-11 Computer System

Line Printer

Figure 1-5 Peripheral Devices (Cont.)

The hardware configuration of your own RT-11 computer
system includes the computer, the terminal, the storage me-
dium, and any other peripheral devices you choose to add.

System software is an organized set of supplied programs that
effectively transform the system hardware components into us-
able tools. These programs include operations, functions, and
routines that make it easier for you to use the hardware to
solve problems and produce results. For example, some system
programs store and retrieve data among the various peripheral
devices. Others perform difficult or lengthy mathematical cal-
culations. Soime programs allow you to create, edit, and process
application programs of your own. Still others handle entire
applications for you.

As illustrated in Figure 1-6, system software always includes
an operating system, which is the “intelligence” of the com-
puter system. Usually the system software includes one or sev-
eral language processors; it sometimes also includes specific ap-
plications.

1-7

SYSTEM
SOFTWARE

Introducing the RT-11 Computer System

The RT-11
Operating System

OPERATING
SYSTEM

LANGUAGE
PROCESSORS

APPLICATION
PROGRAMS

Figure 1-6 System Software

An operating system is a collection of programs that provides
an environment in which you can create and run programs of
your own. The operating system organizes all the hardware and
software resources of the computer system into a working unit
and gives you control.

The RT-11 operating system comprises four types of programs:
a monitor/executive program for system control and supervi-
sion; several device handlers (programs), one for each of the
supported hardware devices; a variety of utility programs for
program/data creation and manipulation; and finally, the inter-
faces that are necessary to support several programming lan-

guage processors. The operating system is illustrated in Figure
1-7.

The monitor (executive) program is the link between the
system hardware, the system software, and you. Part of the
monitor function is to accept, process, and execute your instruc-
tions for controlling the system. A comprehensive set of monitor
operating commands allows you to direct, from the console ter-
minal keyboard, those system operations that you want to
occur.

Device handlers are routines that provide the interface to the
various hardware devices that are part of the computer system.
A handler exists for every peripheral device that the system
supports.

Utility programs cover a wide range of resources; such pro-
grams allow you to create and edit text, maintain other pro-

1-8

Introducing the RT-11 Computer System

Figure 1-7 The RT-11 Operating System

grams, and locate user-programming errors. Some utility pro-
grams in the RT-11 operating system are the following:

® An editor, which allows you to create and modify textual ma-
terial; this material could be the statements that make up a
computer program, a memo, or any text you wish to create

¢ File maintenance utility programs, which allow you to manip-
ulate and maintain your programs and data — to transfer
them between devices, to update them, and to delete them
when you are done with them

® A debugging program, which helps you uncover and correct
errors in your programs

¢ A librarian, which makes it easy for you to store and retrieve
often-used programming routines

® A linking program, which converts object modules into a
format suitable for loading and execution

® A source comparison program, which is used to compare two
ASCII files and to output any differences to a specified output
device

® A dump program, which outputs to the console or line printer
all or any part of a file in octal words, octal bytes, ASCII
characters, or Radix-50 characters

The RT-11 operating system also provides support for several

programming languages and their respective language proces-
sors.

Introducing the RT-11 Computer System

Language
Processors

Applications
Packages

SYSTEM
DOCUMENTATION

Hardware Manuals

A language processor is a translating program that you use to
process a source program you have created. A language pro-
cessor exists for every programming language supported by the
system, whether it is a high-level language or a machine-level
language.’

High-level languages, such as BASIC-11 and FORTRAN IV,
are relatively easy languages to learn and use. Since a single
language statement often performs a series of intricate com-
puter operations, high-level languages let you direct your at-
tention to solving the problem at hand. They do not require
that you understand how the computer interprets the problem.
In addition to FORTRAN IV and BASIC-11, the RT-11 opera-
ting system supports the high-level language DIBOL, DIG-
ITAL’s interactive commercial language.

Machine-level or assembly languages are available for users
who prefer to work at the instruction level of the computer. At
this level, you have control over such factors as program size
and speed of execution. Machine-level languages do require
that you be familiar with the computer and the hardware de-
vices of the system. RT-11 provides the MACRO-11 assembly

language processor for those who would rather work at this
more intricate level.

The RT-11 operating system supports several applications
packages. These include a laboratory applications package for
the standard functions found in most laboratory environments.
A scientific subroutine package (for FORTRAN IV users) pro-
vides a large selection of mathematical and statistical routines
commonly required in scientific programming. And a graphics
support package for BASIC-11 and FORTRAN IV users pro-
vides display features such as multiple intensity and blinking
vectors (lines), alphanumerics, and points. Because of the spe-
cialized nature of these applications packages, they are not de-
scribed further in this manual.

The third component of a computer system is documentation,
which includes manuals that tell you how to use the software
and hardware of the computer system. Documentation also in-
cludes any source listings of programs that make up the opera-
ting system.

Hardware manuals describe the devices in the computer
system. RT-11 hardware documentation includes a Processor

Language selection is discussed in Chapter 8 of this manual.

1-10

Introducing the RT-11 Computer System

Handbook that describes the PDP-11 computer you are using,
and a User’s Guide or Maintenance Manual for each peripheral
device in your computer system. These manuals tell you how to
operate the devices and give you special programming informa-
tion that you may need if you intend to write device drivers or
special system software involving the devices.

Software manuals' describe the operating system and the lan-
guage processors. RT-11 software documentation falls into
three major categories: introductory or once-only manuals (in-
tended to be used once and then stored away); console manuals
(intended to be used at the computer); and desk/console man-
uals (intended to be used at your desk for reference purposes).

Once-only manuals include this manual and others that are
needed only when your system is initially installed. You may
have little or no occasion to use these manuals once your com-
puter system is in operation and you are familiar with its use.

Console manuals are those manuals that tell you how to use the
computer system. They describe in detail command usage and
syntax, list summaries of system operations, and give the
meanings of system messages. The RT—11 System User’s Guide
is an example of a console manual.

Desk/console manuals are those manuals that you continually
use for reference as you write your own application programs.
These manuals include the general language reference man-
uals and the advanced programming manuals that contain pro-
gramming information specific to the RT-11 computer system.
The RT-11 Software Support Manual is an example of a
desk/console manual.

Source listings are actual listings of the assembly language
code that makes up the RT-11 operating system. These listings
are very detailed and are generally needed only if you intend to
modify the system software. They can be ordered on microfiche
from the DIGITAL Software Distribution Center.

This completes a general introduction to the RT-11 computer
system. Subsequent chapters of this manual describe how you
use the various system components mentioned here to perform
a series of related computer operations. You begin in Chapter 2
by learning how to start the RT-11 computer system.

A1l RT-11-related software manuals are listed and described in the Guide to
RT-11 Documentation. Many of these manuals are provided with your sys-
tem; others can be ordered from the DIGITAL Software Distribution Center.

1-11

Software Manuals

Source Listings

Introducing the RT-11 Computer System

REFERENCES

Digital Equipment Corporation Reference Service, Volume 2: Products and
Services. Maynard, Mass.: Digital Equipment Corporation, 1982,

An overview of the PDP-11 family products and services; includes cap-
sule descriptions of the various PDP-11 computers, peripherals, and

operating systems, and describes the supportive services provided by
DIGITAL.

Eckhouse, Richard H. and Morris, L. Robert, Minicomputer Systems: Organi-
zation, Programming, and Applications (PDP-1]). Englewood Cliffs, N.J.:
Prentice-Hall, 1979.

A guide to programming fundamentals, PDP-11 organization and struc-
ture, and programming techniques. See Chapters 1, 2, and 3.

Guide to RT-11 Documentation (AA-5285G-TC). Maynard, Mass.: Digital
Equipment Corporation, 1983.

A listing and brief summary of current RT-11-related software docu-
mentation.

Katzan, Harry Jr., Information Technology, The Human Use of Computers.
New York: Mason & Lipscomb, Petrocelli Books, 1974.

An introductory textbook covering basic computing concepts, program-

ming languages, and topics in computers and society. See Chapters 1, 2,
4, 5, and 10.

PDP-11 Peripherals Handbook. Maynard, Mass.: Digital Equipment Corpora-
tion, 1981-82.

A technical summary of the PDP-11 peripheral devices; includes de-
scriptions, specifications, programming, and interfacing information for
PDP-11 peripheral devices.

PDP-11 Processor Handbook. Maynard, Mass.: Digital Equipment Corpora-
tion, 1981.

A hardware manual for the owners and users of the PDP-11 family of
computers and for those who will be using the PDP-11 assembly lan-
guage instruction set.

PDP-11 Software Handbook (EB-21759-20). Maynard, Mass.: Digital Equip-
ment Corporation, 1982-83.

A general overview and introduction to available PDP-11 software, op-
erating systems, and language processors.

Spencer, Donald D., Fundamentals of Digital Computers. Indianapolis,
Kansas City, New York: Howard W. Sams, Bobbs-Merrill, 1969.

A discussion of the history and evolution of computers, computer appli-

cations, and fundamentals of computer use. See Chapters 1 through 12
and Chapter 20.

1-12

CHAPTER 2

STARTING THE RT-11 COMPUTER SYSTEM

Before you can use the RT-11 computer system to perform any
operations, you must start it. Starting the system involves
turning on the computer and the various hardware devices and
loading the appropriate software components into computer
memory.

Within every PDP-11 computer is a physical, designated
storage area called memory. Computer memory is where
system information and data are temporarily loaded and stored
for use during the various system operations.

Each time you use the computer system, there may already be
information in computer memory, left by the person who used
the system last. For example, there may be the results or data
of another user’s program; there may be the results of a partic-
ular system operation; there may even be an entirely different
operating system in memory. For your purposes, computer
memory must contain the RT-11 operating system, and specifi-
cally the RT-11 monitor program. Thus, your first operation as
a system user is to transfer the monitor program from the disk
device, where it was stored during system installation, to com-
puter memory, where you can use it. The process of transferring
the RT-11 monitor to memory is called bootstrapping the
system,; it is the only system operation that requires you to use
the operator’s console on the front panel of the computer (see
Figure 2-1).

Starting the RT—-11 computer system requires that you know
how to operate your system’s hardware devices. Since you may
not have had the opportunity to use any of the devices yet, ask
an experienced user to help you the first time. Follow the in-
structions in the section in this chapter entitled “Bootstrap Pro-
cedure.” If necessary, refer to the RT—11 Automatic Installation
Booklet, the RT—11 Installation Guide, or the various hardware
manuals provided with your system.

First read through the following material and fill in the appro-
priate information where requested. You should be able to
determine all responses by checking the RT—11 Automatic In-
stallation Booklet or the RT—11 Installation Guide.

2-1

COMPUTER
MEMORY

HARDWARE
CONFIGURATION

Starting the RT-11 Computer System

RT-11
RESIDENT
MONITOR

i °.

&

HIY

|

=)
8
1]

Figure 2-1 Bootstrap/Computer Relationship

NOTE

If your system device is a diskette, you need to build four
volumes and, when running some of the demonstration
programs, limit the volumes to the components needed
to execute the programs. Also, you need to preserve the
distribution volume you received from DIGITAL by
making backup copies. The RT-11 automatic installation
procedure performs these functions for you. If you did
not use the automatic installation procedure to install
your RT-11 system, the RT-11 Installation Guide will
provide you with the commands you need to copy and
preserve the distribution volume and create the volumes
for use with this manual.

You must have the following materials to start the system and
to perform the exercises in this manual:

® The volume containing the RT-11 operating system (called
the system volume); refer to Section 2.3.6 of the RT—11 Instal-
lation Guide for the list of components you will need on your
system volume to perform the exercises

® The volume containing the FORTRAN IV and/or BASIC-11
language processors if these languages are not stored on the
system volume (available only to FORTRAN IV and
BASIC-11 users)

2-2

Starting the RT-11 Computer System

¢ A volume for program storage (for example, magtape or an-
other disk or diskette); this volume should contain no im-

portant information since all information on it will be erased
during a later computer exercise

e A copy of the RT-11 Automatic Installation Booklet or the
RT-11 Installation Guide

NOTE

You can find hardware configuration information in the
various hardware manuals provided with your system.
Instructions for starting (bootstrapping) your RT-11
system in the RT-11 Automatic Installation
Bookdet and the RT-11 Installation Guide. This informa-
tion should be adequate for you to answer all the ques-
tions asked here. If you have trouble, see Appendix B,
Suggestions for Bootstrapping the System. Do not con-
tinue to any other chapter in this manual until you under-
stand the following configuration information and can
bootstrap the system yourseif.

1. What kind of terminal device are you using (for example, Terminal
LA120 DECwriter ITII, VT100 video terminal)?

2. Is your computer a PDP-11/23-PLUS, PDP-11/24, or Computer
PDP-11/44?

3. Does your computer operator’s console have pushbuttons or
switches?

4. How much memory does your computer have?

5. What kind of system volume are you using (for example, System Volume
RLO2 disk, RX02 diskette)?

6. What is the two-letter mnemonic for this volume (typical
mnemonics are given in Table 2-1; respond with the mne-
monic for your own volume)?

Starting the RT-11 Computer System

Storage Volume

Optional Devices
and Supported
Languages

BOOTSTRAP
PROCEDURE

Version 5.1, July 1984

Table 2-1 Representative System Volumes

Volume Mnemonic
RD50/RD51 Disk (PC350) DW
RXO01 Diskette DX
RX02 Diskette DY
RX50 Diskette (PC325/PC350) DZ
RKO05 Disk RK*
RK06/07 Disk DM
RC25/RD51 Disk, RX50 Diskette DU
RL01/02 Disk DL

*Use DK to bootstrap from an RK05 disk.

10.

What volume are you using for program storage (for ex-
ample, TS11 magtape, RL0O2 disk)?

In which device unit will you use this volume (choose any
available device unit — for example, 0, 1)?

What peripheral devices are part of your system (for ex-
ample, line printer, magtape, VT11 display hardware; list
all devices other than the terminal and the computer)?

What programming languages does your system support
(MACRO-11 or BASIC-11, for example)?

Once you have determined your hardware configuration, you
are ready to bootstrap the system. The purpose of the bootstrap
procedure is to load and start the RT-11 monitor in computer
memory, thus activating the RT-11 computer system for your
use.

NOTE

If your answer to question 2 in the Hardware Configura-
tion section is YES, continue to the next paragraph. Oth-
erwise, read the section entitied Bootstrapping the
System, in Appendix A, for bootstrap instructions.

The bootstrapping procedure for the RT-11 computer system on
a PDP-11/23-PLUS, PDP-11/24, or PDP-11/44 processor con-
sists of the following steps. For more detailed instructions on

Starting the RT-11 Computer System

the bootstrap operation, refer to the RT—11 Automatic Installa-
tion Booklet.

1. Turn the terminal to an on-line condition.

2. Make sure that the computer power is on and that the com-
puter is not already in use.

e If your computer is a PDP-11/23-PLUS, power up the
system by lifting the AUX toggle switch to the ON posi-
tion. The red PWR OK indicator on the front panel will
light up if the system was successfully turned on.

e If your computer is a PDP-11/24 or a PDP-11/44, power
up the system by turning the status selector key to the
LOCAL position. The red DC ON indicator on the front

panel will light up if the system was successfully turned
on.

3. Stop the computer.

o If your computer is a PDP-11/23-PLUS, lift the HALT
toggle switch to the up position. The AUX toggle switch
that you lifted in the previous step and the HALT toggle
switch can be lifted simultaneously.

e If your computer is a PDP-11/24 or a PDP-11/44, push
the HALT/CONT/BOOT horizontal toggle switch to the
HALT position.

4. Load the system volume in its corresponding device unit 0.
Make sure that the system volume is write-protected (for all
except RX01 or RX02 diskettes, which are always write-
enabled).

5. Load the storage volume in the device unit noted in ques-
tion 8 in the Hardware Configuration section. Make sure
that this volume is write-enabled.

6. Boot the system.

o If your computer is a PDP-11/23-PLUS, lift the RE-
START toggle switch on the front control panel. This
switch will not remain in the up position; it will spring
back to the center position.

e If your computer is a PDP-11/24 or a PDP-11/44, push
the HALT/CONT/BOOT horizontal toggle switch to the
BOOT position. This switch will not remain in the right-
most position; it will spring back to the center position.

The red RUN indicator on the front control panel should
now be illuminated.

Starting the RT-11 Computer System

REFERENCES

A series of self-diagnostic routines to check out the system are
then executed. The execution of these routines may take uptoa
minute, depending upon how much memory is installed in your
system. A prompt appears on your console terminal when exe-
cution of the routines is completed. The prompt that appears is
dependent upon the type of processor you are using. Table 2-2
provides the prompts that appear and the corresponding re-
sponses which must be supplied if you are using the
PDP-11/23-PLUS, PDP-11/24, or PDP-11/44 processor.

Table 2-2 Bootstrap Prompts and Responses

Processor Prompt Response
PDP-11/23-PLUS TESTING MEMORY dd(n] @D
wwww. KW
START?
PDP-11/24 bbbbbbbb <none>
PDP-11/44 >>> B dd[n]G®
WWWW. = amount of memory in K-words (decimal)
bbbbbbbb. = amount of memory in K-bytes (octal)
dd[n] = device mnemonic (dd) and unit number (n)

7. Respond to the prompt that appears on your console ter-
minal by typing the appropriate response (refer to Table
2-2) followed by a carriage return.

NOTE

Refer to question 6 in the Hardware Configuration sec-
tion for the two-letter device mnemonic (dd) and refer to
question 8 for the device unit number (n).

You should now direct your attention to the console terminal,
since system interaction continues on this device.

PDP-11 Processor Handbook, Maynard, Mass.: Digital Equipment Corpora-
tion, 1981.

A hardware manual for the owners and users of the PDP-11 family of
computers and for those who will be using the PDP-11 assembly lan-
guage instruction set.

Starting the RT-11 Computer System

RT-11 Automatic Installation Booklet: RX02 Diskettes (AA-M235A~TC),
RT-11 Automatic Installation Booklet: RLO2 Disk (AA-M236A-TC),
RT-11 Automatic Installation Booklet: RC25 Disk (AA-M237A-TC), and
RT-11 Automatic Installation Booklet: MICRO/PDP-11 (AA-M238A-TC).
Maynard, Mass.: Digital Equipment Corporation, 1983.

RT-11-specific software booklets which provide basic instructions for
using the automatic installation process to install and test the RT-11
monitors, system programs, and certain languages.

RT-11 Installation Guide (AA-H376B-TC) and RT-11 System Release Notes
(AA-5286E-TC). Maynard, Mass.: Digital Equipment Corporation, 1983.

Two RT-11-specific software manuals that contain instructions for in-
stalling, customizing, and starting the RT-11 computer system.

RX8/RX11 Floppy Disk System Maintenance Manual
(EK-ORX01-MM-PRE2). Maynard, Mass.: Digital Equipment Corporation,
1975.

A hardware manual for the owners and operators of RX01 diskettes and

for those who will be programming computers to interact with these
devices.

VT100 User Guide (EK-VT100-UG-002). Maynard, Mass.: Digital Equip-
ment Corporation, 1978.

A manual for the owners and operators of the VT'100 video terminal and

for those who will be programming computers to interact with these
devices.

2-7

CHAPTER 3

INTERACTING WITH THE RT-11 COMPUTER SYSTEM

Interaction with the RT-11 computer system involves an ex-
change of information between you (the user) and the software
operating system. The exchange may be active, with you dic-
tating command information from the terminal keyboard and
the system responding immediately; or it may involve the
storing of information on mass storage volumes for later use.

During the bootstrap procedure you activated the RT-11 com-
puter system by loading and starting the monitor program in
computer memory. One of the functions of the monitor program
is to provide you with the capability to use the console ter-
minal. Since the console terminal can perform both input and
output operations, it is used to interface between the system
and the user. With it, you can:

* Type the commands that control system operation

® Receive messages and responses from the system

All console terminals have a keyboard — used to enter informa-
tion — and a paper output device or video screen — used to echo
characters typed at the keyboard and to print system messages
and responses. Figure 3-1 shows two commonly used terminals,
the LA120 and the VT100.

These two terminals differ in their output mechanism. While
the LA120 terminal has a paper printer, the VT100 has a video
screen. The paper printer and the screen serve the same pur-
pose — they show user input and system responses; however,
paper output can be saved for later use.while screen output is
temporary. The keyboards of both terminals are shown in Fig-
ure 3-2.

3-1

USING THE
CONSOLE
TERMINAL TO

EXCHANGE
INFORMATION

Interacting with the RT-11 Computer System

LA120

VT100

Figure 3-1 LA120/VT100 Terminals

3-2

Interacting with the RT-11 Computer System

. —— —
) m g muL g
H e ‘ :m
REL 800132
13 A}
Se——
0

LA120

VT100
Figure 3-2 LA120/VT100 Keyboard Layouts

Using Figure 3-2 as a guide, study your own terminal key-
board. First, notice that the keys for the alphabetic characters
are positioned in the same way as on most standard typewrit-
ers. The SHIFT key allows you to select between numeric and
special characters and between uppercase and lowercase
characters.' The position of the numeric and special characters
varies somewhat among the different terminals, so you may
need to hunt for a particular key until you become familiar
with your own terminal.

Locate the DELETE key. This key is used to correct a typing
mistake. Pressing the key once cancels the last character typed.
Pressing it twice cancels the last two characters, and so on,
back to the beginning of the line.

!With the exception of system messages and one other exception explained in
Chapter 5, the RT-11 computer system uses uppercase characters exclusively.

Interacting with the RT-11 Computer System

USING
MASS STORAGE
VOLUMES

Locate the TAB key. Tab stops on a computer terminal are
positioned every eight spaces across the line, beginning at
column 1. Pressing the TAB key moves the character pointer
(that is, the position on the line where the next character will
be typed) to the beginning of the next tab stop.

The key marked RETURN performs a carriage return; it both
returns the character pointer to the beginning of the line and
advances it to the next line. This key is used to terminate the
line currently being typed and to terminate certain RT-11
system commands.

Locate the ESC key and the LINE FEED key. These are special
command terminators that are described in Chapters 5 and 14.

An important key is the CTRL key. It is always used with an-
other character key to perform one of several system opera-
tions. CTRL commands are explained in detail when you begin
to use them later in the manual.

Table 3-1 reviews the console terminal keyboard characters.
Keys not mentioned are not used by the RT-11 computer
system and can be ignored.

You will have an opportunity to become familiar with your ter-
minal keyboard as you perform the demonstrations in this
manual.

The console terminal also displays messages and responses
from the system. These messages and responses provide or re-
quest information. Error messages are an example of informa-
tional output; they help you detect typing errors, programming
errors, and system malfunctions. If an error message appears
on your console terminal while you are performing the demon-
strations in this manual, refer to the RT-11 System Message
Manual for an explanation of the cause of the message and a
description of the corrective action that should be taken.

Mass storage volumes provide an area (apart from computer
memory) to keep information for later use. The information
may be user application programs, data needed by a program,
the results of a program run, textual information, batch-type
programs, and so on. As an example, the RT-11 operating
system is stored on a mass storage volume called the system
volume. When information is needed, as it was during
bootstrapping, information from the storage volume is trans-
ferred into computer memory.

Interacting with the RT-11 Computer System

Before you can access the information stored on a storage
volume, however, you must first insert the volume (the me-
dium) into its corresponding device unit (drive), the hardware
device connected to the computer. Once a volume has been in-
serted into a device unit, the device unit’s symbol identifies the
volume. There may be more than one device unit for a volume,
each individual device unit is numbered 0, 1, 2, and so on. As
you learned in the bootstrap procedure, the system volume is
inserted in device unit 0 and remains in it as long as you are
using the system. Other storage volumes can be inserted in any
available device units. Figure 3-3 illustrates several mass
storage volumes.

Table 3-1 Keyboard Characters

Key Function

BACK SPACE Ignored during normal system use

BREAK Ignored during normal system use

CTRL Control; part of several two-key command
combinations that perform specific system
functions

DELETE Erase; cancels the last character typed

ESC Command terminator; terminates an editing

command string; transmits the command to
the computer and performs a carriage return

LINE FEED Command terminator; terminates certain
system commands; transmits the command to
the computer and performs a carriage return

REPEAT Ignored during normal system use

RETURN Line terminator, command terminator; termi-
nates the current line; terminates certain
system commands; transmits the command to
the computer and performs a carriage return

SHIFT Selects the uppermost of two characters ap-
pearing on a key

TAB Moves the character pointer ahead to the be-
ginning of the next tab stop

any other Transmits the alphanumeric or special char-

key acter to the computer

Interacting with the RT-11 Computer System

Diskette

Figure 3-3 Mass Storage Volumes

Interacting with the RT-11 Computer System

Mass storage volumes hold large amounts of information. Most
volumes, however, are physically small enough so that you can
transport them from the system, to your desk perhaps, or to
another computer system. In addition to disks (shown earlier in
Figure 1-4), magtapes are also mass storage volumes.

You store information on a mass storage volume in the form of
files. Each file is a logical collection of data. Files may be parts
of programs or entire programs, program input data, or text,
such as a letter or report. Whatever its content, each file is
treated as a unit and occupies a fixed area of the volume.

Every file on a mass storage volume has a unique name that is
composed of a file name and a file type. The file name and file
type identify the file and distinguish it from other files on the
volume. You can instruct the system to print on your terminal
the names of all files on a volume. The resulting list is called
the volume directory listing. By referring to the volume direc-
tory, you can find the name, size, and creation date of each file
on that volume and delete old files that you no longer need.
Whenever you perform an operation that affects the contents of
the volume, a new volume directory reflects the change.

Occasionally, after many files are added to a storage volume,
the volume has no room for new information. A storage volume
may also become damaged, lost, stolen, or worn through use.
For these reasons it is a good idea to have several extra storage
volumes on hand and to protect your more important files
against accidental erasure or loss.

One way to protect a file is to make a copy of it on a second
storage volume. The copy, called a backup file, insures you
against the loss or damage of your original file (or its respective
storage volume).

Some storage volumes provide a mechanism that protects files
against accidental erasure. This mechanism is generally a
switch on the volume itself, or on the device unit, that you can
set to a write-protect or write-enable condition (as you did
during bootstrapping). When the volume is write-protected, in-
formation can be copied only from the volume to computer
memory or to another volume that is write-enabled. A volume
that is write-enabled, on the other hand, also allows informa-
tion to be copied from memory back to the volume.

3-7

File Storage

File Protection

Interacting with the RT-11 Computer System

REFERENCES

The RT-11 operating system itself provides a protection fea-
ture. This optional feature requires that you confirm certain
system commands that might otherwise erase important infor-
mation. The system also issues prompting messages so that you
provide the proper file information when it is needed by a com-
mand.

Chapter 4 and succeeding chapters require you to use the ter-
minal to enter command information and perform file copy and
other system operations. Before you continue, make sure that
there is a backup copy of your system volume. If you cannot
locate one, read Appendix B, Backing Up the System Volume,
before going on.

RT-11 System Message Manual (AA-5284D-TC). Maynard, Mass.: Digital
Equipment Corporation, 1983.

An explanation of system messages that may occur during normal
system use; includes required user actions.

VT100 User Guide (EK-VT100-UG-002). Maynard, Mass.: Digital Equip-
ment Corporation, 1978.

A manual for the owners and operators of the VT100 video terminal and
for those who will be Programming computers to interact with these
devices.

CHAPTER 4

USING THE MONITOR COMMAND LANGUAGE

During the bootstrap operation, the RT-11 monitor was copied
into computer memory and started. The RT-11 monitor is actu-
ally many different components working together to supply
basic system functions. For example, the part of the monitor
called the resident monitor (RMON) provides the console ter-
minal service and central program code necessary for a working
environment for both system and user programs. The resident
monitor is so named because it always remains in computer
memory, regardless of other system operations that may be oc-
curring. Other parts of the monitor are brought into memory
from the system volume as needed. These include the user ser-
vice routine (USR), which provides support for the RT-11 file
system, and the keyboard monitor (KMON), which controls ter-
minal keyboard interaction. From your standpoint, the key-
board monitor is the most visible part of the system software.
Among other services, it supplies the monitor command lan-
guage that you use to control system operations.

The monitor command language is a set of English-like com-
mand words that you type on the terminal keyboard to initiate
and control system operations. You can type a command in one
of two general formats: a long format or a short format. The
long format causes the system to print prompting messages.
These messages ask you to supply specific information, such as
file names and device names. The long format is helpful until
you become familiar with the commands. You will then prob-
ably prefer to use the short format, which allows you to enter
all required information on a single command line and provides
prompts only if you do not supply necessary information. Both
formats are demonstrated throughout this manual.

You terminate all monitor commands with a carriage return.
That is, after you type the required command information, you
press the carriage return key (represented in this manual by
@ED). This instructs the monitor to initiate the command and to
perform the operation.

A prompt character — a period at the left margin of the ter-
minal printer or screen — appears whenever the RT-11 mon-
itor is waiting for you to type a command. The period is your
cue that the system is in the monitor command mode and ready
to accept a monitor command. Check the output on your ter-
minal printer or screen. You should see the following at the left

margin:
RT-11FB V05, xx

.

41

ENTERING
COMMAND
INFORMATION

Using the Monitor Command Language

General Command
Format

RT-11FB identifies the RT-11 monitor called the
foreground/background (FB) monitor. Following this is the ver-
sion (and update) number of the system in use, in this case,
Version 5. The period on the next line indicates that the system
is in the monitor command mode and is waiting for you to type
a monitor command.

Whenever you issue a monitor command, you must supply cer-
tain information to guide command processing. This informa-
tion includes the following (square brackets indicate optional
qualifiers and characters):

COMMAND(/option] First you indicate, by command,
which system operation you want ini-
tiated. Command options are avail-
able to allow you to alter the normal
(default) operation.

INPUT//option] You next indicate, by device and file
name, input information that is to be
used during the operation. The system
volume serves as the default input de-
vice. You must explicitly indicate
other volumes that you want used for
input, and you must usually indicate
the file names and file types of the
input files. Input file options are avail-
able to allow you to alter assumed (de-
fault) input operations.

OUTPUT{/option]* Finally you indicate, by device and file
name, output information that is to be
created as a result of the operation.
The system volume serves as the de-
fault output device. You must expli-
citly indicate other volumes that you
want used for output, and you must
usually indicate the file names and
file types of the output files to be cre-
ated. Output file options are available
to allow you to alter assumed (default)
output operations.

As mentioned earlier, you can type this command information
on the terminal keyboard in one of two formats; illustrations of
both follow:

'OUTPUTY{/option] is not always used; sometimes output must be specified as
COMMAND//option] INPUT/OUTPUT:filespec.

4-2

Using the Monitor Command Language

Long Command Format (system prompts for specific informa-
tion)
+COMMANDL /oPtionl@®

INPUT PROMPT? INPUT[/opPtionl@ED
OUTPUT PROMPT? OUTPUTC/optionlGD

Short Command Format (no prompts)

+COMMAND[/opPtion] INPUT[/option] OUTPUTL/optionlED

Notice that a slash character (/) separates an option from the
portion of the command that it qualifies, and a carriage return
terminates each individual command line. When you have
supplied all the necessary information, the carriage return sig-
nals the monitor to execute the command. You can use either
format; both are demonstrated throughout this manual.

In addition to monitor commands, RT-11 has several special
function commands, called control commands, that you type by
first pressing and holding down the CTRL key on the terminal
keyboard and then typing the letter key of the command. To
execute the CTRL/C command, for example, type the letter C
while holding down the CTRL key. These control commands
require no terminator; the system performs the function as soon
as you type the command.

Control commands are used to interrupt program execution, to
inhibit terminal output, and to perform other similar special
system operations. They are described in the manual as you
need to use them.

During the course of this chapter, and throughout the re-
mainder of the manual, you will use a number of monitor com-
mands to perform some common system operations. For ex-
ample, you will list the directories of device volumes, copy files
between devices, create files, and execute system and user pro-
grams. You perform these operations by re-creating on the ter-
minal keyboard the examples already provided for you.

You should first read the entire explanation of a command to be
aware of its format, the operation it performs, and the options
that are available. Then type the command on the terminal
keyboard exactly as you see it used. Characters that you type
appear in the demonstrations in red print. Characters that are
system responses are shown in black print.

Table 4-1 lists symbols that you will see used throughout the
demonstrations. These symbols represent various keys on the

Control Commands

Re-Creating the
Examples

Using the Monitor Command Language

CORRECTING
TYPING
MISTAKES

CTRLU

terminal keyboard. When you see one of these symbols in a
command line, type the appropriate key on the keyboard.

Table 4-1 Keyboard Symbols

Symbol Type
®ED carriage return key
line feed key
space bar (once for each time the symbol is shown).

Assume that you should type a single space unless
you are otherwise instructed; the space symbol is
used only if there is doubt about the number of
spaces to type.

TAB key (once for each time the symbol is shown)

DELETE key (once for each time the symbol is
shown)

ESCAPE key (once for each time the symbol is
shown)

CTRL key (hold down CTRL key while typing the
letter character [x])

E@@@

All commands that you give the system are typed on the ter-
minal keyboard. If you make a mistake while typing a com-
mand, you can correct it in one of two ways.

One way to correct a typing error is to use the DELETE key on
the keyboard. Pressing the DELETE key once cancels the char-
acter just typed; pressing it a second time cancels the next to
last character typed, and so on, from right to left, until the
beginning of the line is reached. Then additional DELETES are
ignored.

The second way to correct a typing error is to use CTRL/U , a
special control command. Typing this command once is equiva-
lent to typing as many DELETEs as are needed to cancel every
character in the current line.

Type on the keyboard the letters DABE, followed by two DE-
LETEs, followed by the letters TE, and notice the system’s re-
sponse:

.DABE 0B @B TE

The monitor echoes each deleted character and encloses them
within backslashes. As far as the monitor is concerned, the only
characters you have typed are DATE.

Using the Monitor Command Language

+DABE\EB\TE

Thus, your current line is DATE. Continue by typing a
CTRL/U. Remember to first press and hold down the CTRL key
and then type the U key; no carriage return is necessary.

Notice that CTRL/U echoes on the terminal printer or screen as
“U.

+DABE\EB\TE"U

All characters on the line are canceled, and the character
pointer is moved to the beginning of a new line so that you can
enter another command. You are still in the monitor command
mode even though no prompting period appears at the left
margin.

Once the carriage return or line feed key is pressed, the pre-
vious line cannot be corrected with DELETE or CTRL/U.

These two methods are commonly used to correct typing errors
made at the keyboard. You can choose whichever method seems
most convenient.

The kinds of command operations that you usually perform im-
mediately after the monitor is bootstrapped are those that set
up initial conditions, such as the current date and time of day,
and those that initialize and prepare the system for future oper-
ations such as file transfers. If your system has VT11 display
hardware that you want to use, you should also enable (turn on)
the graphics display screen.

Display hardware on an RT-11 computer system consists of a
cathode ray tube that allows programs to use graphics displays.
If your system has display hardware! (Figure 4-1), you can use
the graphics screen in place of the terminal printer or screen.

NOTE

Check question 9 in the Hardware Configuration section
of Chapter 2 to determine if your system has display
hardware. If you do not have display hardware, goonto
the next section, Entering the Date and Time-of-Day.

Video terminal screens are not considered graphics display hardware.

INITIAL MONITOR
COMMAND
OPERATIONS

Using VT11 Display
Hardware

Using the Monitor Command Language

GT

The monitor command that enables the graphics screen is the
GT command. The GT command is used to change the condition
of the graphics display. In this case, you will use it to activate
the graphics display hardware so that the VT11 display screen
replaces the console terminal printer or screen as the terminal
output device.

Figure 4-1 VT11 Display Hardware

Type the following on your terminal keyboard (if necessary,
refer to Table 4-1 to review the special symbols):

Long and Short Command Format
GT ONGED

If your system does not have display hardware, the monitor
prints a message' on the terminal printer or screen informing
you that the command is invalid for your system configuration:

?KMON-F-Invalid command

Otherwise, the command is accepted. You should notice that all
character-echoing and system responses are now directed to the
graphics screen instead of to the terminal printer or screen.
After the command has been accepted, a period appears on the
graphics screen, indicating that the system is waiting for an-
other command. The character pointer is visible as a blinking
rectangular cursor situated after the period. (In the edit mode,
the cursor is L-shaped.)

'The meanings of all system messages are listed in the RT-11 System Mes-
sage Manual.

Using the Monitor Command Language

Like output on the terminal screen, output that appears on the
graphics screen is temporary. Once the screen is filled, lines are
rolled off the top and are lost to view. However, if your terminal
has a printer, a special control command allows you to control
console terminal output so that it appears on both the graphics
screen and the terminal printer simultaneously. In this
manner, you can direct selected portions of terminal output —
directory listings, for example — to be both displayed and
printed at the same time. The advantage of this is that al-
though the display copy is eventually lost, you have a printed
copy for later use.

The control command that provides this function is CTRL/E,
which is initiated by holding the CTRL key down while typing CTRLE
the E key. No carriage return is necessary. When you type this
command, no characters echo on the graphics screen, but you
should notice that all subsequent characters (both input and
output) appear on both the graphics screen and the terminal
printer.

Thus, if your terminal has a printer and you wish to use the
printer in addition to your VT11 graphics screen, type once:

¢re) (Remember, this command does not echo.)

Now type the following and notice where the characters echo:

+*WRONG COMMAND €TRL/U)

To disable the printer at any time so that character echoing

occurs only on the graphics screen, type another CTRL/E com-
mand:

Finally, to return terminal output control to the terminal, disa-
bling the graphics screen, use the GT OFF command; this
changes the terminal device handler back to its original output
setting:

Long and Short Command Format

+GT OFFGED

Decide now whether to use the graphics screen for the re-
maining demonstrations. If so, use the GT ON command to en-
able the graphics screen, and remember that the CTRL/E com-
mand is available when you wish to produce simultaneous
output.

4-7

Using the Monitor Command Language

Entering the Date
and Time-of-Day

DATE

TIME

Entering the current date and time-of-day helps in record-
keeping for system operations. Later, you can identify when
system operations were performed.

For example, by entering the current date you instruct the
system to assign this date to all files you create. The date will
also appear in volume directories and listings produced by the
various language processors and utility programs. If your
system has a clock, by specifying the current time-of-day you
instruct the system to keep track of time based on the time you
set. The current time is printed on listings when they are pro-
duced, and may also be used to control certain program opera-
tions.

Enter the date by typing the monitor DATE command with the
day, month, and year as follows (there is only one format):

Long and Short Command Format
.DATE 8-JAN-83@D

This sets the date to January 8, 1983. Since this date is not
current, reenter the correct date using the same command
format:

DATE dd-mmm-vy@D

Typing the new date overrides the previous date.

The date that is set is temporary. You must reenter it whenever
you bootstrap the system.

The monitor TIME command is used to set the time-of-day,
specified in 24-hour notation. The system keeps track of time in
hours, minutes, and seconds, based on the initial time that you
enter in the command. Enter the time as follows (there is only
one format):

Long and Short Command Format
JTIME 15:01:00@D ’

If your system does not have a clock, the monitor prints a mes-
sage on the terminal; this message informs you that the com-
mand is not valid for your system configuration:

?KMON-W-No clock

Otherwise, the time is set to 3:01 p.m. If your system has a
clock, reenter the correct time, using the same command
format:

JIME hh:mm:ss@D

4-8

Using the Monitor Command Language

Typing the new time overrides the previous time.

The system’s clock stops when the system stops running. If you
want the time to be kept current, you must reenter it whenever
you bootstrap the system. If your system has a clock and you do
not set the time, the TIME command will return the time
elapsed since the last hardware boot.

To check the time or date at any time while you are using the
system, simply type either the DATE command or the TIME
command, followed by a carriage return only:

Long and Short Command Format
+DATEGD
8-JAN-83

. TIMEGD
15:06:19

The system responds by printing the date or the time, based on
the information you previously entered. If the system responds
to the DATE command with the message 2KMON-W-No date,
the date has not been set since the system was last
bootstrapped.

Each hardware device in the RT-11 system is identified by a
two-letter mnemonic. The mnemonics, listed in Table 4-2, are
defined in the system software and are recognized and used by
the operating system. These are the device names that you gen-
erally use in command input and output lines. However, you
may want to change any of these device names temporarily, for
a variety of reasons. The following paragraphs describe both
using the physical device names shown in Table 4-2 and as-
signing logical (temporary) device names to devices.

Table 4-2 Physical Device Names

Mnemonic Device
DUn: RC25/RD51 Disk, RX50 Diskette
DLn: RLO01/02 Disk
DMn: RKO06/07 Disk
DW: RD50/RD51 Disk (PC350)
DXn: RXO01 Diskette
DYn: RX02 Diskette
DZn: RX50 Diskette (PC325/PC350)
LP: Line Printer
LS: Serial Line Printer
MMn: TJU16 Magtape
MSn: TS11 Magtape
MTn: TM11 Magtape
RKn: RKO05/RK11 Disk
TT: Console Terminal
4-9

Assigning Logical
Names to Devices

Version 5.1, July 1984

Using the Monitor Command Language

Two additional logical device names are used. These special
names are described in Table 4-3.

Table 4-3 Special Logical Device Names

Mnemonic Device

SY: The volume from which the monitor was
bootstrapped; that is, the system volume.

DK: The default storage volume (initially the same
as SY:; that is, the system volume).

You use device names in the input and output portions of a
command line to identify where input information can be found
and where output information will be sent. If a file is involved,
you also include its file name and file type, in the following
format:

devicename:filename.filetvpe

The device name is followed by a colon and is always separated
from any file name and file type by a colon. The device name is
generally one of the mnemonics listed in Tables 4-2 and 4-3.
When you use a device name in any command, you must also
include the device unit number (represented by the letter n in
Table 4-2) unless the number is 0. The system assumes unit 0
of the device if no unit number is given. Thus, diskette unit 0 is
DY: or DYO:; diskette unit 1 is DY1:; RK: disk unit 2 is RK2:;
and so on. Note that, according to Table 4-3, you can use the
device mnemonic SY: or DK: for your system volume in addi-
tion to its standard device name. However, since the system
volume is initially the default storage volume for all operations,
you do not need to use a device name for your system volume.

The names listed in Tables 4-2 and 4-3 are the device names
defined within the system software. However, you can change
any of these name assignments temporarily, either by reas-
signing existing names to different devices or by assigning new
logical names of your own choosing to devices.

You might want, for many reasons, to change a device name
temporarily and assign it a logical name. You may, for ex-
ample, have a program written for a device that is not available
on your system. If you assign the program name to a device that
is available, the program then uses that device instead.!

Since not all RT-11 users have access to the same kind of
storage volume, you are instructed to assign the logical name
VOL: to whatever volume you are using for storage. After you

This is called device independence.

4-10

Using the Monitor Command Language

make this assignment, subsequent command lines can be the
same for everyone using this manual.

Similarly, the special logical device name DK:, presently as-
signed to your system volume, could be assigned to any kind of
storage volume. Not only would DK: signify your storage
volume, regardless of its physical device name, but you could
also avoid typing DK: since it is the default storage volume for
most commands. (Only the R command requires that the file
specified be on the system volume SY:.)

To assign a logical name to your storage volume, first deter-
mine its physical device name. Check questions 7 and 8 in the
Hardware Configuration section of Chapter 2 to see which de-
vice and which device unit you are using for your storage
volume. Translate this into the appropriate name and number
using Table 4-2 as a guide.

Use the monitor ASSIGN command to change this physical
name to a logical name. Substitute for physical-device-name in ASSIGN
the following command lines the physical name and device unit
number for your storage volume (for example, for RK05 disk
unit 1, substitute RK1:).

Long Command Format

+ASSIGNED
Physical device name? Physical-device-name@D
Losical device name? UOL:GD

Short Command Format

+ASSIGN Physical-device-name VOL:GD

Once the assignment is made, the system recognizes the logical
name VOL: as the device name for your storage volume. This is
the only logical assignment you need to make. Since you are
not changing the DK: assignment, the system volume remains
the default device for all I/O operations.

As you continue to use the system, you may well make many
device assignments and deassignments. To check the status of SHOW
all assignments made during a computer session, you can use
the monitor SHOW command to print on your terminal a list of
all the logical assignments currently in effect. Use the SHOW
command now to check the status of the assignment just made:

Long and Short Command Format
+SHOW

4-11

Using the Monitor Command Language

Listing Volume
Directories

DIRECTORY

CTRL/O

Check the list printed on your terminal to make sure that the
code VOL: has been assigned to your storage volume. The let-
ters VOL: should follow the appropriate device name in the list,
as in the following response, in which VOL: represents disk
unit 1:

TT

RK (Resident)
RKO SY » DK
RK1 VoL

13 free slots

Logical device assignments are temporary. Thus, if you want a
logical device assignment to remain in effect, you must reassign
it each time the system is bootstrapped.

Both your system volume and your storage volume have direc-
tories, which are compiled lists of all the files stored on the
volume. You can print a volume directory on your terminal,
using the monitor DIRECTORY command.! To list the direc-
tory of your system volume, type:

Long and Short Command Format

.DIRECTORYE (The system volume is the default device.)

Since the directory of the system volume may be quite long,
after approximately 10 lines have printed on the terminal, type:

This special control command, echoed as “O, inhibits the re-
mainder of the listing output from printing on the terminal,
although the information on the total number of files and
blocks is still given. When control returns to monitor command
mode, look at the directory listing. At the top of the listing is
today’s date, as you entered it earlier in the DATE command.
Following the date is a list of the files on the volume. Notice the
two-column format of each line in the directory.

Users of VT11 display hardware may wish to use the CTRL/E command to
enable both the graphics screen and the terminal printer for the following
exercises.

4-12

Using the Monitor Command Language

08-Jan-83

SWAP .SYS 26 26-Augd-82 RT115J.8YS 73 26-Aug-82
RT11FB.SYS 86 26-Aug-82 RT11BL.SYS 73 26-Aug-82
RT11XM.SYS 94 26-Aug-82 T +SYS 2 26-Ausg-82
DT +8YS 3 26-Aug-82 DP +SYS 3 26-Aug-82
DX +8YS 3 26-Aug-82 DY +8YS 4 26-Aug-82
RF +8YS 3 26-Aug-82 RK +SYS 3 26-Aug-82
DL +SYS 4 26-Aug-82 DU +8YS 4 26-Aug-82
DM +8SYS 5 26-Aug-82 DS +8YS 3 26-Aug-82
DD +8YS 5 26-Aug-82 "0

170 Files» 4264 Blocks
498 Free blocks

First the file name appears, followed by a dot and a file type
that is frequently used to identify the file’s format. For exam-
ple, .SYS represents a system file; other RT-11 file types used
to represent different kinds of files are listed in Table 4—4. Af-
ter the file type is a number that indicates the size of the file.
The size is given in blocks, a term used to designate a standard
amount of information. A file that is 1 to 10 blocks long is fairly
small, while a file over 100 blocks in length is quite large. The
date on which the file was created is shown at the right. This
space is empty if a date was not specified (with the DATE com-

Table 44 File Types
File Type Meaning
.BAC BASIC compiled file
.BAK Editor backup file
.BAS BASIC source file
.BAT BATCH source file
.BUP Backup/restore file
.COM Indirect command file or IND indirect control file
.CTL BATCH control file
.DAT BASIC-11 or FORTRAN 1V data file
.DBL DIBOL source file
.DIF SRCCOM output file
.DIR Directory listing file
.DSK Logical disk file
.FOR FORTRAN IV source file
.LOG Batch log file
.LST Listing file
.MAC MACRO-11 source file
.MAP Linker map file
.MLB MACRO library file
.OBJ MACRO-11, FORTRAN IV, or DIBOL object out-
put file or library file
REL Executable foreground program file or system job
SAV Executable background program file
- .SML System MACRO library
SYS System files and handlers

4-13

Using the Monitor Command Language

DIRECTORY
/BRIEF

CTRL/C CTRLC

DIRECTORY
/PRINTER

mand) on the day the file was created. At the end, you are told
how many files are on the volume, their total length, and the
number of free blocks available for your use.

NOTE

Files furnished on the distribution medium have a pro-
tected status, which means they cannot be deleted. This
is indicated by the letter P after the file size shown when
you print a directory listing. You cannot perform any op-
eration on a protected file if the result is to delete it. You
can change the protected status of a file by using the
RENAME keyboard monitor command with the /PRO-
TECTION or /NOPROTECTION option; you can give a
protected status to a file by using the PROTECT key-
board monitor command; and you can remove a pro-
tected status from a file by using the UNPROTECT key-
board monitor command (see the RT-11 System User’s
Guide).

You can also obtain an abbreviated directory, which omits file
lengths and dates and lists only file names and file types in
five-column format. To do this, you use the DIRECTORY com-
mand with its /BRIEF option. Type the following, and after
several lines have listed, interrupt the directory by typing two
CTRL/C command characters. This double control command
echoes two "Cs and requests the running program to abort im-
mediately, regardless of what the program is doing (one
CTRL/C aborts an executing program waiting for input from
the console terminal). Control returns to monitor command
mode.

Long and Short Command Formats

+DIRECTORY/BRIEFG@ED
08-Jan-83

SWAP .,8YS RT115J.5YS RT11FB.SYS RT11BL.SYS RT11XM.SYS
TT +SYS DT +S5YS D°P +SY8 DX +SYS DY +SYS
RF +8YS RK +SYS DL +S¥YS DU +SYS DM +SYS
DS +SYS DD +8YS LP +SYS LS +8YS CR +SYS

Volume directories can be printed on a line printer if one is
available on your system. Check the answer to question 9 in the
Hardware Configuration section of Chapter 2 to determine if
your system has a line printer. Since listings print faster on a
line printer than on the console terminal, it is to your advan-
tage to use the line printer for large amounts of output. The
/PRINTER option is used with the DIRECTORY command to
cause a directory to be printed on the line printer instead of on
the terminal. Make sure your line printer is turned on, and
then type the DIRECTORY command as shown:

4-14

Using the Monitor Command Language

Long and Short Command Format
.DIRECTORY/PRINTERGT

The listing may be quite long. When the line printer has fin-
ished printing, retrieve the listing.

Initializing a storage volume clears its directory. A new
(unused) volume should always be initialized before it is first
used. In addition, any storage volume that contains files that
are no longer needed can be initialized to recover the storage
space. Note, however, that an initialize operation is used to
remove all file names from the directory. So before you ini-
tialize a volume, make sure that it contains no files that you
might want later.

Since you will use your storage volume to store several new
files (created as a result of the various exercises in this
manual), clear its directory using the monitor INITIALIZE
command. This operation ensures that the volume has room for
new files.

Long Command Format

JINITIALIZEGD

Device? VOL:G@D (VOL: is the assigned logi-
cal device name for your
storage volume.)

RK1:/Initialize’ Are vou sure?YGD

Short Command Format

JINITIALIZE VOL:ED
RK1:/Initialize’ Are vou sure?YGD

The system prompt physical-device-name/lnitialize; Are you
sure? gives you an opportunity to verify the command. Typing a
Y initiates the operation, while N stops the operation and re-
turns control to the monitor command mode. Check your com-
mand line, make sure you are initializing your storage volume,
and then type a Y. Again, list the directory of the storage

volume. It should be empty.
Long and Short Command Formats

«DIRECTORY VOL:ED
8-Jan-83

O Filesy O Blocks
4762 Free blocks

The number of blocks available for use on the volume is printed
at the end of the directory and varies depending on the type of
device you use as your storage volume.

4-15

Initializing the
Storage Volume

INITIALIZE

Using the Monitor Command Language

SUMMARY:
INITIAL
MONITOR
COMMANDS

The commands you have performed in this chapter have pre-
pared the system for major operations that will follow. In
Chapter 5 you begin by using the RT-11 editor to create text
files that you will store on your initialized storage volume.

ASSIGN physical-device-name logical-device-name
Assign a logical device name to a physical device name.

DATE
Print the current date, if previously set.

DATE dd-mmm-yy
Set the current date (day-month-year).

DIRECTORY ddn:
List the volume directory on the terminal (ddn: is the mne-
monic for the device name; the default storage volume, DK:,
is assumed if ddn: is not specified).

DIRECTORY/BRIEF ddn:

List a brief volume directory on the terminal, showing only
file names.

DIRECTORY/PRINTER ddn:
List the volume directory on the line printer.

DIRECTORY/PRINTER/BRIEF ddn:
List a brief volume directory on the line printer.

GT OFF
Disable the VT11 display hardware.

GT ON
Enable the VT11 display hardware so that the graphics

screen replaces the terminal printer/screen as the terminal
output device.

INITIALIZE ddn:
Clear the directory of the indicated volume (ddn: is the mne-
monic for the device name and must be specified).

SHOW

Print the status of all current logical device name assign-
ments.

TIME
Print the current time, if previously set.

TIME hh:mm:ss
Set the current time-of-day (hour:minute:second).

4-16

Using the Monitor Command Language

CTRL/C CTRL/C

Interrupt the current operation or program and return con-
trol to monitor command mode.

CTRL/E
Direct terminal output to both the graphics screen and the
terminal printer simultaneously. Type a second CTRL/E to

return output control to the graphics screen only. (Valid only
when VT11 display hardware is enabled.)

CTRL/O

Inhibit the remainder of output from printing on the termi-
nal.

CTRL/U
Cancel every character in the current line.

DELETE
Cancel the last character typed on the current line.

LP11/LS11 Line Printer Manual (EK-LP11-TM-005). Maynard, Mass.:
Digital Equipment Corporation, 1975.

A hardware manual for the owners and operators of LP11/LS11 line

printers and for those who will be programming computers to interact
with these devices.

RT-11 Mini-Reference Manual (AA-M241A-TC). Maynard, Mass.: Digital
Equipment Corporation, 1983.

A summary of all RT-11 monitor commands, command options, system
utility program operating commands, and programmed requests.

RT-11 System User’s Guide (AA-5279C-TC). Maynard, Mass.: Digital Equip-
ment Corporation, 1983.

A guide to the use of the RT-11 operating system.

4-17

SUMMARY:
SPECIAL
CONTROL

COMMANDS

REFERENCES

CHAPTER 5

CREATING AND EDITING TEXT FILES

The ability to create and edit text files is one of the most useful
features of the RT-11 operating system. Not only can you
create computer programs, data files, memos, and reports on
line (that is, under the control of the system), but you can alter
what you create without retyping the entire file.

You create and edit text files more often than you perform any
other system operation. Therefore it is essential that you be-
come familiar with the editing process as quickly as possible.
Editing should become second nature to you as you learn to use
the RT-11 computer system.

Two RT-11 editor system utility programs, EDIT.SAV and
KED.SAV, are stored as part of the RT-11 operating system on
your system volume. The demonstrations in this manual illus-
trate EDIT, which can be used on a video terminal or a hard-
copy terminal. The use of KED is restricted to video terminals.
For more information about KED, refer to the PDP-11 Keypad
Editor User’s Guide.

Text files that you create with the editor are stored in the com-
puter in ASCII format. ASCII, which stands for the American
Standard Code for Information Interchange, is an industry-
standard code that consists of a numeric representation for each
of the alphabetic characters (A to Z), the numeric characters (0
to 9), the punctuation characters, and some special communica-
tion control characters. When you type text on the terminal
keyboard, the system automatically converts the text to ASCII
codes; when you request listings on the terminal or line printer,
the system converts the ASCII code back to the text characters.

The RT-11 editor uses a specially reserved area of computer
memory to hold the text you are creating or editing. This area
of memory is called the text buffer. When you create text, the
characters that you type on the terminal keyboard are
transmitted directly into the text buffer. When you edit text,
the characters are copied from the input file into the text
buffer, where you can modify them. When you have edited the
text in the buffer to your satisfaction, the characters are moved
out of the text buffer to the output file (Figure 5-1).

5-1

THE RT-11 EDITOR

Creating and Editing Text Files

CREATING A
TEXT FILE

EDIT/CREATE

COMPUTER

OUTPUT

Figure 5-1 Editing with RT-11

Since the text buffer is a limited area of computer memory, you
may at times try to input more text than the buffer can accom-
modate. If this condition becomes apparent to the editor, it
prints a warning message on the terminal telling you that, be-
fore you can input any more text, you must make room in the
buffer, either by transferring text to the output file or by
erasing text already in the buffer.

You can avoid this inconvenience during editing if you make
use of a concept called paging. When you create a large text file,
instead of typing the file as one long stream of text, divide it
into individual pages of approximately 50—60 lines in length,;
this corresponds roughly to the size of a line printer or terminal
listing page. You can copy the text into and out of the buffer
one page at a time. A single page of text is never too large for
the text buffer and also fits on the line printer or terminal
perforated paper when you obtain a listing.

You activate the editing capability by using the monitor EDIT
command. When creating a file, you must use the /CREATE
option followed by the file name and file type you want as-
signed to the new file. The default storage volume (DK:) serves
as the default device, so unless you specify a device using one of
the mnemonics in Table 4-2, the editor creates the new file on

the device DK: (which is the system volume, unless changed via
ASSIGN).

First, if you are using display hardware, disable it with the
monitor GT OFF command; the editor has a special display
capability that is not described until later in this chapter.

Long and Short Command Format
.GT OFF@D

5-2

Creating and Editing Text Files

Next, use the editor to create a text file of five lines. Call the
file DECIND.USA, and use the default storage volume — cur-
rently the same as the system volume — for the file.

Long Command Format

+EDIT/CREATEGD
File? DECIND.USAGED
*

Short Command Format

.EDIT/CREATE DECINL.USAGED
*

Once the output file is open (that is, when the appropriate file
has been established for output operations), the editor prints a
prompting asterisk at the left margin. The asterisk indicates
that the editing command mode is in control. This prompt is
your cue to enter an editing command.

The editing command used to create text is the I (Insert) com-
mand. Type: INSERT

*]

All subsequent characters that you type on the terminal key-
board will now be entered into the text buffer just as you type ESCAPE ESCAPE
them. Enter the following text exactly as shown, including all
spaces and errors. Before you type the RETURN key, check the
line to make sure that it matches what is shown here. Re-
member, if you make a typing mistake that is not intentional,
you can use the DELETE key on the terminal keyboard to erase
individual characters and the CTRL/U command to erase all
characters on the current line. When you have finished typing
the five lines, type the ESCAPE key twice. The ESCAPE key
echoes on the terminal as a $; it is used to execute an editing
command and to return control to editing command mode.

#IWE HOLD THESE TRLTS TO BEE SELF-EVIDENT.,GD
THAT ALL MEN ARE CREATED EQUAL s THAT THEYGD
HAVE UNRELIABLE TENDENCIES OF WHICH THEYG®
AR ENDOWED BY THEIR CREATOR: THAT AMONGGRE
THESE ARE LIFE, LIBERTY AND HAPLENESS.GD
EOED

*

Forget for the moment that this text contains several misspell-
ings and other errors, and assume instead that you are satisfied EXIT
with it and ready to transfer it from the text buffer to the
output file. The EX (Exit) editing command performs this func-
tion. This command terminates editing, transfers all text in the
text buffer to the output file, closes the currently open output

5-3

Creating and Editing Text Files

EDITING A
TEXT FILE

EDIT

READ

BEGINNING

file (making it unavailable for further output operations), and
returns control to monitor command mode, indicated by a dot at

the left margin. Use the EX command to close the file
DECIND.USA:

*EX

You now have a file on your system volume called
DECIND.USA, consisting of the five lines of text you just cre-
ated.

The file DECIND.USA needs editing. To edit a file, you again
use the EDIT command to activate the editor. Next indicate in
the command line the two-letter device mnemonic for the
volume on which the file resides (the default storage volume,
DK:, is assumed). Following this, you indicate the file name
and file type of the file. The editor then opens the file, making
it available for input operations.

Thus, to open the file DECIND.USA for editing, type:

Long Command Format

EDITED
File? DECIND.USAGE
*

Short Command Format

«EDIT DECIND.,USAGE
*

The EDIT command opens the input (and output) files. Use the
R (Read) editing command to read the first page of text from the
input file into the text buffer. No output occurs to the output
file, but the file is available for output at a later time. The
input file itself is not altered in any way.

R EOED
*

Whenever text is read into the text buffer, a pointer is automat-
ically positioned at the beginning of the text. This pointer is an
invisible indicator that serves as a target for editing commands.
The pointer pinpoints the exact location in the file where the
next character will be inserted. For example, when you finished
inserting text earlier (just before using the EX command), the
pointer was positioned at the end of the file. Now that the EDIT
command has been used to read text into the text buffer, the
pointer is positioned at the beginning of the text in the text
buffer. If the pointer is not at the beginning and you want to

Creating and Editing Text Files

move it there, you can use the B (Beginning) command; this
command moves the pointer to the beginning of the text in the
text buffer, no matter where the pointer is currently positioned:

B EOEO
*

With the pointer positioned at the beginning of the text buffer,
you can use the L (List) editing command to list the text cur- LIST
rently in the text buffer on your terminal printer. The List
command lists text, starting at the pointer and continuing to
whatever place you indicate by the command argument.

A command argument is simply a prefix to an editing command
that sets limits on the command’s actions. Command argu-
ments are used frequently and are summarized in Table 5-1.
Study this table for a moment before continuing.

Table 5~-1 Command Arguments

Argument Meaning

n Represents any integer in the range —16383 to
+16383; it may be preceded by a + or —. If no
sign precedes n, it is assumed to be positive.
Whenever an argument is acceptable in a com-
mand, its absence implies an argument of 1 (or
-1 if only the — is present).

0 Refers to the beginning of the current line.
/ Refers to the end of text currently in the text
buffer.

Thus, with the pointer positioned at the beginning of the text,
use the / argument and the L command to list on the terminal
all text in the buffer. The position of the pointer does not
change. List the text and compare your output with the five
lines shown in the following example — they should match ex-
actly.

*/L EOE0

WE HOLD THESE TRUTS TO BEE SELF-EVIDENT,
THAT ALL MEN ARE CREATED EQUAL . THAT THEY
HAVE UNRELIABLE TENDENCIES OF WHICH THEY
AR ENNDOWED BY THEIR CREATOR, THAT AMONG

THESE ARE LIFE,» LIBERTY AND HAPLENESS.
*

If your output and the five lines above do not match exactly,
then you probably typed some unintentional errors into
DECIND.USA.

Creating and Editing Text Files

The remaining EDIT commands in this exercise depend upon
an exact reproduction of DECIND.USA to function properly.
Therefore, since you are not yet familiar with the EDIT com-
mands necessary to correct your file, an existing copy of
DECIND.USA with intentional errors must be substituted.

Prepare the text buffer by erasing it with CTRL/CE0ED. This
unusual command combination is required by the EDIT pro-
gram when you want to exit without creating an output file.
The structure of the command prevents you from accidentally
eliminating a file with a single CTRL/C.

*RIOEOED

The monitor command mode period appears, signaling your de-
parture from the editing command mode. Your system volume
still contains the file DECIND.USA that you created earlier.
However, it also contains the copy provided with the system,
DEMOED.TXT, which you will use for the remainder of the
exercise.

Before going any further, you must rename DEMOED.TXT to
DECIND.USA to avoid confusion. A RENAME operation, ex-
plained fully in the File Copying Operations section of Chapter
7, is the method of choice. Type the following command:

L,RENAME DEMOED.TXT DECIND.USAGED

The contents of DEMOED.TXT are now labeled DECIND.USA.:
Note, however, that if a file labeled DECIND.USA already ex-
ists and you rename another file to DECIND.USA, the system
deletes the first file named DECIND.USA and renames the cur-
rent one. Type EDIT DECIND.USA @D to open the file for
input, and type the R command to read it into the text buffer.

LEDIT DECIND.USAGD
*REDED

Since the pointer automatically returns to the beginning of the
text with an R command, you can type /L to list the entire file.

»/ L EVED

WE HOLD THESE TRUTS TO BEE SELF-EVIDENT,
THAT ALL MEN ARE CREATED EQUAL, THAT THEY
HAVE UNRELIABLE TENDENCIES OF WHICH THEY
AR ENDOWED BY THEIR CREATOR,» THAT AMONG

THESE ARE LIFEs LIBERTY AND HAPLENESS.
*

Creating and Editing Text Files

The text contains errors and misspellings deliberately intro-
duced for the purposes of the exercises in this chapter. To cor- JUMP
rect the errors, reposition the pointer so that it is near the text

you want to change. The J (Jump) command, for instance, in
conjunction with a command argument, moves the pointer ei-
ther backward or forward by the specified number of charac-
ters, including spaces. Type the J command now, using an argu-
ment of 18, to reposition the pointer 18 places ahead®:

» 18 JE0ED

*

Although you cannot see it, the pointer has moved from the
beginning of the text buffer to the right of the 18th character.
You can verify this by using the List command again. The List
command with no argument prints from the pointer to the end
of the current line and thus exposes the location of the pointer:

»L E0ED

S TO BEE SELF-EVIDENT,
*

The characters in the example should match the current line on
your terminal, showing the pointer positioned at the first error
in the text where an H is missing in the word TRUTS. Since the
pointer is positioned between the second T and the S, use the
Insert command to insert an H in the proper place:

* | HEOED

*

Now use the V (Verify) command to verify the line. The V com-
mand, which does not require arguments, prints the entire line VERIFY
containing the pointer (the current line) on the terminal. It
allows you to verify that a correction was properly made. The
pointer is not moved as a result of the V command; its position
remains just to the right of the last inserted character (shown
here by the arrow):

*#V EOED
WE HOLD THESE TRUTHS TO BEE SELF-EVIDENT,
* 1 :

! Anytime you use the Jump command to move the pointer forward (or back-
ward) by enough characters so that it moves to a new line, you must account
for two extra characters in the command argument. This is because the editor
treats the carriage return at the end of each line as two characters — a
return and a line feed.

5-7

Creating and Editing Text Files

CTRUL/X

DELETE

So far you have entered and executed editing commands one at
a time. You can enter multiple commands by separating each
individual command with a single ESCAPE. Typing two ES-
CAPEs then executes all the commands in the entire command
string in consecutive order. For example, combine the J and L
commands as shown in the following command string:

*7 JEOL BOED
E SELF-EVIDENT,
*

The 7J moves the pointer seven positions to the right, and L
then lists the text from the pointer to the end of the line so that
you can see the pointer’s new position.

A special CTRL command is available to erase multiple editing
commands. The CTRL/X command (hold the CTRL key down
and type the X key) causes the editor to ignore an entire com-
mand string that might extend over several lines if the I com-
mand is involved. The editor echoes with “X, issues a carriage
return, and prints an asterisk indicating that you are still in
editing command mode and can enter a new command. For ex-
ample, type:

#70JEDISTART AGED
NEW LINE
%*

In addition to the CTRL/X command, you may still use the
DELETE key to erase individual characters in the command
line one at a time, and the CTRL/U command to erase all char-
acters entered on the current command line.

Since you used the CTRL/X to ignore this last command string,
the pointer is still positioned at the next error in the
file — just before the extra E in the word BEE. You can erase
this extra character by using the D (Delete) command.! The D
command removes one character (or space) to the right of the
pointer for every +1 in its argument and one character to the
left for every —1. Use the D command to erase the extra E and
then verify the line (+1 is assumed if no argument is used):

#DEOV EOED
WE HOLD THESE TRUTHS TO BE SELF-EVIDENT,

*)

'The Delete command should not be confused with the DELETE key on the
terminal keyboard. While both perform the delete function, the D command is
used to erase characters already within a text file; the DELETE key is used to
erase typed characters in a command string or during text creation.

As you can see from the position of the pointer in the example
(shown by the arrow), the D command does not actually move
the pointer, but simply erases characters around the pointer.
Since the extra E was erased, the pointer is now positioned
between the E and the space.

Just as you can use the Jump command to move the pointer by
characters, you can use the A (Advance) command to move the
pointer by entire lines. Again you give the command an argu-
ment that indicates the number of lines, either forward or back-
ward. The pointer is positioned at the beginning of the new
line. Use the A command to move the pointer forward two lines,
and then list the current line:

#2AEOL ESOESD

HAVE UNRELIABLE TENDENCIES OF WHICH THEY
*

This entire line does not belong in the text. To erase it, you
could count the number of characters in the line and use this
number as an argument to the D command; however, there is
an easier way. The K (Kill) command erases the entire line
following the pointer and positions the pointer at the beginning
of the next line in the text. Type:

#K EOL EOES0
AR ENDOWED BY THEIR CREATOR, THAT AMONG
*

The pointer is now at the beginning of the next line in the text.
As you can see, this line also contains an error, the word ARE is
incorrectly spelled as AR. Use the J command to jump over two
characters, and insert the E. Then verify the line:

*#2 JED I EEOVEDED
ARE ENDOWED BY THEIR CREATOR» THAT AMONG
L

The arrow shows where the pointer is now positioned. This line
still contains an error — it is missing the words WITH CER-
TAIN INALIENABLE RIGHTS, which should follow the word
CREATOR. You can count the number of characters from the
pointer to the second R in CREATOR and then jump the pointer
by this number, or you can use the G (Get) command. The G
command searches, from the pointer, for the first occurrence of
a specified character string and leaves the pointer at the end of
that string. Use the G command to search for the string OR (in
CREATOR); then insert the missing words and list the lines
that have changed. Notice how you use the carriage return to

5-9

Creating and Editing Text Files

ADVANCE

KILL

GET

Creating and Editing Text Files

CTRLL

break the line into two parts (the symbol is used to show
where you should insert spaces):

*GOREOIGPWITHEACERTAINGED
INALTENABLEGPRIGHTSED - AGD 2L EOED
ARE ENDOWED BY THEIR CREATOR WITH CERTAIN

INALIENABLE RIGHTS, THAT AMONG
*

To list both lines, it was necessary to move the pointer back to
the beginning of the first line you changed; this was done by the
—A command. The 2L command then listed both lines. Notice
where the pointer is; it was moved by the —A command and was
not repositioned by the L command.

You must be careful when you use the Get command, because
the character string you specify must be unique if you want the
pointer to move to the correct spot. For example, if the charac-
ters OR had occurred anywhere after the pointer and before the
word CREATOR, the pointer would have stopped there instead,
and you would have inserted text in the wrong place.

The final errors in this text occur in the last line. The words
THE PURSUIT OF are missing, and the word HAPLENESS is
a misspelling. Use the Get command to move the pointer to the
word AND and insert the missing text. Move the pointer again
with the Get command to the PLE of HAPLENESS; erase the
LE, and insert PI. Then verify the line:

*GANDEOD ISP THEGPPURSUI TEPOF EDED
#GPLEEO-2DEOIPIEOVEDED

THESE ARE LIFE, LIBERTY AND THE PURSUIT OF HAPPINESS.,
*

Large text files — 50 lines or more — should be delimited
into pages. To do this, insert a form feed into the text at the
place where you want the page to end. A form feed is typed as a
CTRL/L (hold the CTRL key down and type the L key), which
the editor recognizes as a page break.

Since this text file is only five lines long, there is really no need
to delimit it as a page. However, for the sake of practice, insert
a form feed at the end of this file. Then move the pointer to the
beginning of the text buffer and list the entire text. Compare
your text with the following example. If errors remain in your
file, fix them by using the commands described so far.

*G . 1
(CTRL/L echoes as eight line feeds.)

5-10

Creating and Editing Text Files

EOBED / L EOED

WE HOLD THESE TRUTHS TO BE SELF-EVIDENT,

THAT ALL MEN ARE CREATED EQUAL,» THAT THEY

ARE ENDOWED BY THEIR CREATOR WITH CERTAIN

INALIENABLE RIGHTS, THAT AMONG

THESE ARE LIFE, LIBERTY AND THE PURSUIT OF HAPPINESS,

This text is correct in spelling and content, but the last two
lines should be justified to make them easier to read. The
pointer is currently at the beginning of the text. Use the G
command to search for the character string AMONG; then in-
sert and delete text to justify the lines. Finally, list the text
again:

*GAMONGED IDTHESESP AREESOAED 1 0DEDB ED /L EOED
WE HOLD THESE TRUTHS TO BE SELF-EVIDENT,
THAT ALL MEN ARE CREATED EQUAL s THAT THEY
ARE ENDOWED BY THEIR CREATOR WITH CERTAIN
INALIENABLE RIGHTSs THAT AMONG THESE ARE
LIFE, LIBERTY AND THE PURSUIT OF HAPPINESS.

*

Once you are satisfied with your text, you are ready to transfer
it to the output file. You could use the EX command to transfer NEXT
the text, as you did earlier in the section Creating a Text File.
However, suppose your input file has additional pages of text
that require editing. If you use the EX command, all remaining
text in the input file will be read through the text buffer into
the output file, and the files will be closed although you may
want to do more editing. To avoid this, you can use the N (Next)
command. This command transfers the text currently in the
text buffer to the output file, clears the text buffer, and reads in
the next page from the input file. The pointer is positioned at
the beginning of the text buffer.

*NEDED
PEDIT-F-End of input file
* (No text remains in the input file.)

If you use the N command when no text remains in the input
file (as just happened), the editor prints a message on the ter-
minal telling you so. At this point, you can type the EX com-
mand to close the file.

EXEOED

5-11

Creating and Editing Text Files

USING UPPERCASE
AND LOWERCASE

CHARACTERS

Edit Lower

When you close a file after editing, the editor creates a file on
the default storage volume (or system volume). It gives this
new file the file name and file type that you indicated for input.
It then renames the input file so that the file retains its file
name but is assigned a file type of .BAK. This file type identi-
fies a backup file, here an original input file retained in case of
editing mistakes or accidental deletion of the new file. Thus you
now have two versions of the DECIND file on your system
volume: DECIND.USA, which is the edited version, and
DECIND.BAK, which is the unedited (original) input file.
Verify this by using the monitor DIRECTORY command:

Long and Short Command Format

+DIRECTORY DECIND.*GD

08-Jan-83

DECIND.BAK 1 08-Jan-83 DECIND.USA 1 08-Jan-83
2 Filesy 2 Blocks

496 Free blocks

The asterisk (*) following DECIND. is a type of shorthand nota-
tion called wildcard construction. Here it means to list all files
named DECIND, regardless of their file type. Wildcard con-
struction is explained in detail in the Multiple File Operations
section of Chapter 7.

Whenever you edit the same file a number of times, new ver-
sions overwrite old versions. Thus only two versions of the
edited file (filnam.BAK and filnam.typ) ever reside on a volume
at one time.

Later model terminals (for example, LA120 DECwriters and
VT100 videp terminals) have the capability to print in upper-
case and lowercase. Certain line printers also have this capa-
bility. You can use the uppercase/lowercase capability of these
devices if you type the EL (Edit Lower) editing command before
entering the text you want to insert in lowercase. The EL com-
mand instructs the system to accept all characters typed as
they appear on the keyboard. The monitor facility, which con-
verts all alphabetic characters to uppercase, is disabled. In ad-
dition, the characters are echoed on the terminal printer or
screen as uppercase and lowercase characters.

Open the file DECIND.USA again, and type the EL command:

Long and Short Command Format

EDIT DECIND.USAGED
*E | E0E0
*

5-12

Creating and Editing Text Files

Once you have typed the EL command, you can use the SHIFT
key on the terminal to designate uppercase, just as you do on a
typewriter. Editing commands may be entered as either upper-
case or lowercase characters. For example, type the following
commands, which change the characters in the first line of the
file DECIND.USA to uppercase and lowercase:

#rE0b €O 1 ESOED

WE HOLD THESE TRUTHS TO BE SELF-EVIDENT:
#KEDiWe hold these truths to be self-evident @D
€D - a €0 v EOED

We hold these truths to be self-evident
*

The uppercase and lowercase capability is useful for reports,
memos, and other textual material that you list on
uppercase/lowercase devices. However, all characters are
printed as uppercase if you list the file on a line printer or
terminal that does not have the uppercase/lowercase capability.

If at any time you want to revert to strictly uppercase editing,
type the EU (Edit Upper) command:

#e uESOESD

*

Uppercase editing is a default mode. Whenever you open a file
for editing or create a new file, you must enter the EL command
if you want to use the uppercase/lowercase capability.

Close the file DECIND.USA by typing:

*EXEDED

+

EDIT filespec
Activate the editor and open the file for editing.

EDIT/CREATE filespec
Activate the editor and create a new file.

Control Commands

CTRL/L
Insert a form feed. The form feed character is used to delimit

pages of text in a file (introduced as part of text by the Insert
command).

CTRL/X
Ignore all commands in the current editing command string.

5-13

Edit Upper

SUMMARY:
EDITING

COMMANDS

Creating and Editing Text Files

Command Arguments

n(+ or -)
An integer value between —16383 and + 16383 that sets the

range of a command’s actions based on the pointer’s current
position.

0

Beginning of the current line (the line containing the
pointer).

/
End of the text in the text buffer.

Input/Output Commands (pointer is not repositioned)
(x indicates that an argument can be used)

EX
Exit; terminate editing, transfer the contents of the text
buffer and the remainder of input file to the output file; close
input and output files; return to monitor command mode.

xL
List; list, from the pointer, x lines of text.

xN
Next; write the contents of the text buffer to the output file,
clear the text buffer, and read into it the next page from the
input file; perform this write/read sequence x times.

\%
‘Verify; list the current line (the line containing the pointer)
on the terminal.

Pointer Location Commands (pointer is repositioned)
(x indicates that an argument can be used)

xA
Advance; move the pointer to the beginning of the xth line
from the current pointer position.

B
Beginning; move the pointer to the beginning of the text
buffer.

xJ
Jump; move the pointer forward or backward by x characters.

5-14

Creating and Editing Text Files

Text Modification Commands (pointer is repositioned)
(x indicates that an argument can be used)

xD
Delete; erase x characters to the right (or left) of the pointer.

I text
Insert; insert text into the text buffer at the present pointer
position.

xK
Kill; erase x lines of text, beginning at the pointer.

Search Command (pointer is repositioned)
(x indicates that an argument can be used)

xG text
Get; search the text buffer, beginning at the pointer, for the
xth occurrence of the indicated text string and leave the
pointer at the end of the text string.

Uppercase/Lowercase Commands (pointer is not affected)

EL

Edit Lower; accept characters typed at the keyboard as
uppercase/lowercase.

EU
Edit Upper; revert to uppercase editing (after EL).

If your system configuration includes VT11 display hardware,
there are several advantages to your using it during editing.!
First, the graphics screen becomes a window into the text
buffer, exposing twenty lines of text at a time: the current line,
the ten lines preceding it, and the nine lines following it.
Figure 5-2 illustrates this format. As you edit, the lines in view
shift to conform to the current line. In addition, the pointer is
visible and appears as a blinking, L-shaped cursor. Its position
is automatically adjusted as you execute editing commands. Fi-
nally, the four lines at the bottom of the screen display the last
three command lines plus the current command line. Hori-
zontal dashes separate the text of the file from your commands.

If your system does not have VT11 display hardware, skip to the next sec-
tion, entitled Creating the Demonstration Programs.

5-15

USING A
GRAPHICS DISPLAY
TERMINAL

DURING EDITING

Creating and Editing Text Files

Normal Use of the
Graphics Display

Immediate Mode

10 PRECEDING
LINES OF TEXT

CURSOR
(CURRENT LINE)
AND 8

FOLLOWING
LINES OF TEXT

SEPARATION

LINE

3 PRECEDING
COMMAND LINES
CURRENT
COMMAND LINE

WINDOW
INTO THE
TEXT BUFFER

Figure 5-2 Text Window Format

All editing commands and functions described so far can be
used when the graphics screen is enabled. The only difference is
that terminal I/O is rearranged on the screen as shown in
Figure 5-2. Note that the L and V editing commands become
superfluous since the pointer is always displayed on the screen.
Also, since twenty lines of text are always displayed, any List
command within that range is unnecessary.

Currently, your graphics screen is not enabled. To enable it, use
the monitor GT ON command as you did in Chapter 4:

Long and Short Command Format
.GT ONED

Now when you use the EDIT command to activate the editor,
the graphics screen will be rearranged as shown in Figure 5-2.
You can use the CTRL/E command, described in Chapter 4, to
request simultaneous I/O on the terminal printer and graphics
screen.

In addition to the regular editing capability, a quick and easy
method of graphics editing, called immediate mode, is avail-
able. Immediate mode uses a simplified set of editing com-
mands that are limited to pointer relocation and character dele-
tion and insertion. Most of these commands are similar to the
special CTRL commands because to type them you use the
CTRL key in combination with another character key. How-

5-16

ever, the use of these particular control commands is mean-
ingful only in the editor immediate mode. Table 5-2 lists the
commands.

Table 5-2 Immediate Mode Commands

Command Meaning

CTRL/N Advance the cursor to beginning of next line
(equivalent to A).

CTRL/G Move the cursor to the beginning of the previous
line (equivalent to —A).

CTRL/D Move the cursor forward by one character (equiv-
alent to J).

CTRL/V Move the cursor back by one character (equiva-
lent to —J).

DELETE Delete the character immediately preceding the
cursor (equivalent to -D).

ESCAPE Return control to the editing command mode.

double Summon immediate mode.
ESCAPE

Use the editor to open a new file called IMMODE.TXT:

Long and Short Command Format

+EDIT/CREATE IMMODE.TXTGED
*

Now activate immediate mode. You do this by typing the ES-
CAPE key twice in response to the editing command mode as-
terisk. Since there are no other commands in the command line,
the editor recognizes the double ESCAPE as an immediate
mode command.

*EOED

The editor responds by printing an exclamation point in the
command portion of the screen; the exclamation point signifies
that you are using immediate mode.

Character insertion is the default operation and occurs when-

ever you type a character other than one of the immediate mode
commands listed in Table 5-2.

5-17

Creating and Editing Text Files

ESCAPE ESCAPE

Character Insertion

Creating and Editing Text Files

CTRL/G

CTRWV

DELETE

CTRUN

The next several paragraphs demonstrate the use of the imme-
diate mode commands on a selected portion of text. Remember
that all characters you type that are not immediate mode com-
mands are treated as input. Commands do not echo on the

graphics screen, so all you ever see is the current text file. Type
the following:

TO BE,» OR NOT TO BE - THAT IS THE QUESTION: @D

WHETHER ‘TIS NOBLER IN THE MIND AND HEART TO SUFFERGD
THE SLINGS OF OUTRAGEOUS FORTUNEGE

OR TO TAKE ARMS AGAINST A SEA OF TROUBLES »GD

AND BY OPPOSING END THEM?@D

As you can see on the graphics screen, the cursor (pointer) is
positioned at the beginning of a new line. CTRL/G, equivalent
to —A in standard editing, moves the cursor to the beginning of
the previous line; the cursor is repositioned immediately. Type:

The cursor has moved backward three lines, one line for each
CTRL/G command, and is positioned before the line:

THE SLINGS OF OUTRAGEDUS FORTUNE ,

CTRL/V, equivalent to —J, moves the cursor back one character.
Move the cursor back over the carriage return and line feed at
the end of the previous line by typing the CTRL/V command
eleven times (remember, the carriage return and line feed
count as two characters):

(eleven [11] times)

WHETHER ‘TIS NOBLER IN THE MIND AND HEART TO SUFFER
This positions the cursor before the word TO. The command
DELETE, equivalent to —D, deletes the character immediately
preceding the cursor. Type the DELETE key ten times:

(ten [10] times)

WHETHER ‘TIS NOBLER IN THE MIND TO SUFFER

CTRL/N, equivalent to A, advances the cursor to the beginning
of the next line:

THE SLINGS OF OUTRAGEOUS FORTUNE

5-18

Creating and Editing Text Files

CTRL/D, equivalent to J, moves the cursor forward one charac-
ter; type CTRL/D ten times: CTRL/D
(ten [10] times)

THE SLINGS OF OUTRAGEOUS FORTUNE ,

Next type this text (it will be inserted immediately to the left of
the cursor):

GPANDEPARROWS

The text on the screen should now look as follows:

TO BE OR NOT TO BE - THAT IS THE QUESTION;:
WHETHER ‘TIS NOBLER IN THE MIND TO SUFFER
THE SLINGS AND ARROWS OF OUTRAGEOUS FORTUNE
OR TAKE ARMS AGAINST A SEA OF TROUBLES,

AND BY OPPOSING END THEM?

Check your results and correct any other mistakes you may
notice.

To return to the standard editing command mode, type a single
ESCAPE. ESCAPE

€0

*

This ESCAPE command does not echo on the screen. Notice
that the exclamation point immediately disappears and the text
window format returns; an asterisk appears immediately below
the exclamation point on the screen.

You use immediate mode only to create and edit text. Opera-
tions that move text in and out of the text buffer must be done
with standard editing commands.

You do not need to save the text you have just created, so use
the CTRL/C command and two ESCAPEs to return control di- CTRL/C ESCAPE
rectly to monitor command mode. As mentioned before, EDIT ESCAPE

requires this unusual command combination to prevent an acci-
dental CTRL/C from killing your text.

CTRL/C)ESOESO
Following are two demonstration programs. One is written in CREATING THE
the FORTRAN IV programming language and one is written in DEMONSTRATION

the MACRO-11 assembly language. Both programs are used in
later chapters of this manual, and both contain intentional mis-
spellings and errors.

PROGRAMS

5-19

Creating and Editing Text Files

Use the editor to create these programs. Type them exactly as
they are shown, including errors. Use tabs and spaces to format
each line as shown (remember that tab stops are positioned
every eight spaces across the terminal page). Make sure that
the FORTRAN IV program is formatted properly so that a
source comparison described in the next chapter will operate
properly. Except for the comment lines (those beginning with a
C) and the lines that begin with a number, begin all lines with
a tab. Use any of the editing commands described in this
chapter. Activate the display editor and immediate mode if you
wish.

When you have finished, check each file carefully. The two files
should match those shown here exactly, including tabs and
spaces. Correct any errors that you find that are not inten-
tional. Obtain a listing of each file by using B €0/L EOES
before closing the file.

Create the FORTRAN 1V file first. Call it GRAPH.FOR and use
the system volume for storage. Then create the MACRO-11
program. Call it SUM.MAC and again use the system volume
for storage.

NOTE

Knowledge of the FORTRAN IV and MACRO-11 lan-
guages is not necessary to create these demonstration
programs.

The following program, GRAPH.FOR, is the FORTRAN IV
demonstration program.

C GRAPH.FOR VERSION 1

C THIS PROGRAM PRODUCES A PLOT ON THE TERMINAL

C OF AN EXTERNAL FUNCTION: FUN(X,Y)

C THE LIMITS OF THE PLOT ARE DETERMINED BY THE DATA STATEMENTS
C "STAB" IS FILLED WITH A TABLE OF WEIGHT FLAGS

C "STRING" IS USED TO BUILD A LINE OF GRAPH FOR PRINTING

SCAL(ZHIN»ZNAX»HAXZ:K)=ZNINOFLDAT(K—1)l(ZH“X-ZHIN)/FLOAT(HAXZ-l)
LOGICAL#1 STRING(13,3),STAB(100)
DATA XMIN,XMAX +MAXX/-5:5,45/
DATA YMIN,YMAX 'MAXY/-5,5,72/
DATA FMIN,FMAX/0.0+1.,0/
CALL SCOPY('- 1 2 3456 7889 +",STAB)
MAXFLEN(STAB)
DO 20 IX=1,MAXX
X=SCAL (XMIN s XMAX sMAXX »IX)
CALL REPEAT('#’,STRING,MAXY)
IF(IX.EQ.1 ,OR, IX.EQ.,MAXX) GOTD 20
DD 10 IY=2,MAXY-1
Y=SCAL(YMIN YMAX yMAXY 1Y)
IFUN=2+INT(FLOAT (MAXF-3)# (FUN(X 1Y) -FMIN) / (FMAX-FMIN))
10 STRING(IY)=STAB(MINO(MAXF yMAXO (1 IFUN)))
30 CALL PUTSTRING(7,STRING,’)
CALL EXIT
END

FUNCTION FUN(X,Y)
R=SQRT (X##2+Y#22)
FUN=X#Y#R#EXP(-R))##2
RETURN

END

5-20

The following program, SUM.MAC, is the MACRO-11 demon-

stration program.

+TITLE SUM.MAC

+MCALL .TTYOUT,

N = 70. iNO.
i ‘E’ = THE SUM OF THE
i 170 + 1/1' + 1/21
EXP: +PRINT ®#MESSAG

MOV #N,RS
FIRST: MOV #N+1,RO

MoV #AR1
SECOND: ASL @r1

MOV @R1,-(SP)

ASL @R1

ASL eRr1

ADD (SP)+,(R1)+

DEC RO

BNE 2ND

L [+1% sN,RO
THIRD: MOV -(R1)R3

MOV #-1/)R2
FOURTH: INC R2

sus ROR3

BCC FOURTH

ADD RO,R3

MOV R3,8R1

ADD R2-2(R1)

DEC RO

BNE THIRD

MOV -(R1) RO
FIFTH: Sus %10, 4RO

BCcC FIFTH

ADD #10+ /0RO

+TTYON

CLR @R1

DEC RS

BNE FIRST

JEXIT
EXP: +REPT N+1

+WORD 1

+ENDR
MESSAG: .ASCII

+EVEN

+ENDEXP

When you have created and checked these two programs, ob-
tained listings, and stored them as files on your system volume,
go on to Chapter 6, Comparing Text Files. Chapter 6 demon-
strates a proofreading aid that helps you evaluate your editing

ability.

RT-11 System User’s Guide (AA-5279C-TC). Maynard, Mass

VERSION 1

JEXIT, JPRINT

OF DIGITS OF ‘E’ TO CALCULATE

RECIPROCALS OF THE FACTORIALS
1/31 + 174! + 1/51 + ,,,

FPRINT INTRODUCTORY TEXT
iNO. OF CHARS OF ‘E’ TO PRINT
iNO. OF DIGITS OF ACCURACY
iADDRESS OF DIGIT VECTOR

iDO MULTIPLY BY 10 (DECIMAL)
iSAVE #2

ixd

i

iNOW #10, POINT TO NEXT DIGIT
AT END OF DIGITS?

iBRANCH IF NOT

iGO THRU ALL PLACES, DIVIDING
iBY THE PLACES INDEX

iINIT QUOTIENT REGISTER
iBUMP QUOTIENT

iSUBTRACT LOOP ISN'T BAD
INUMERATOR IS ALWAYS < 10#N
iFIX REMAINDER

iSAVE REMAINDER AS BASIS
iFOR NEXT DIGIT

iGREATER INTEGER CARRIES

iTO GIVE DIGIT

§AT END OF DIGIT VECTOR?
iBRANCH IF NOT

FGET DIGIT TO OUTPUT

FFIX THE 2.7 TO .7 SO

STHAT IT IS ONLY 1 DIGIT
i(REALLY DIVIDE BY 10)

FiMAKE DIGIT ASC I1I

FOUTPUT THE DIGIT

iCLEAR NEXT DIGIT LOCATION
FMORE DIGITS TO PRINT?
iBRANCH IF YES

iWE ARE DONE

FINIT VECTOR TO ALL ONES

/THE VALUE OF E IS:/ <153<12> /2./ <200>

ment Corporation, 1983.

A guide to the use of the RT-11 operating system.

5-21

.: Digital Equip-

Creating and Editing Text Files

REFERENCE

CHAPTER 6

COMPARING TEXT FILES

The RT-11 operating system provides a proofreading aid, called
a source comparison, to help you quickly establish the differ-
ences between two ASCII text files. During a source compar-
ison, the system compares the two files, character for character,
and prints on the terminal (or line printer) any lines that con-
tain differences.

Usually, you perform a source comparison against two files that
you expect to be the same, or at least similar. For example, if an
individual has copied one of your files to make changes to it,
you can quickly scan the changes by performing a source com-
parison between the new version and your original. Another
use of a source comparison is to check edits you have made to a
file yourself. By comparing the backup file against the edited
version, you can proofread the changes since only the portions
of text that are different are printed.

In this chapter, you will use source comparisons to find editing
errors that may exist in the demonstration programs
(GRAPH.FOR and SUM.MAC) that you created in Chapter 5.
These demonstration programs contain intentional misspell-
ings and misplaced text that you must correct before the pro-
grams can be used in later demonstrations. On your system
volume is a counterpart of each file. These counterparts are
provided as part of the RT-11 operating system so that you can
use them to perform a source comparison against your own ver-
sions. Essentially, the counterpart programs have been carried
one step further in the editing process than your own; they
contain no editing errors. Therefore, when you compare them
against your versions, the printed list of differences will reflect
the typing errors that still exist in your versions — some of
these errors are intentional; others you may have inadvertently
introduced during editing. All must be corrected before you can
use the programs.

The monitor command used to compare two text files is the
DIFFERENCES command. When you type this command on
the terminal, it activates the RT-11 utility program called
SRCCOM.SAV, which is part of the RT-11 operating system
stored on the system volume. The system prompts you for the
input file names. Respond to the input prompts with the names
of the files you want to compare; the default storage volume is
the system volume. The output will be sent to the terminal,
which is the default device for output.

6-1

PERFORMING A
COMPARISON

Comparing Text Files

DIFFERENCES

The programs that you created in Chapter 5, SUM.MAC and
GRAPH.FOR, have their respective counterparts,
DEMOX1.MAC and DEMOF1.FOR, on the system volume. Use
the DIFFERENCES command to compare the MACRO-11
(.MAC) files first. The /MATCH option indicates the number of
lines that determine a “match”, explained in a moment.’

Long Command Format

+DIFFERENCES/MATCH: 1@
File 1? DEMOX1.MACGD
File 27 SUM.MACED

Short Command Format
‘DIFFERENCES/MATCH:1 DEMOX1,MAC SUM.MACGE

The list of differences printed on your console terminal should
be similar to the following example. It will show all the differ-
ences listed here, plus any others that you may have introduced
yourself during editing.

Notice the format of the list. Individual sections are marked
with the letters A, B, C, and D to help you become acquainted
with the format. A description follows the list, and you should
refer to it as you study the list.

A 1) DK:DEMOX1.MAC
A 2) DK:SUM.MAC
ARRRRRRRRN

C 11 +TITLE EXAMP,MAC (VERSION PROVIDED)
1)

D 1) +MCALL .TTYOUT+ EXIT, PRINT

B #%xx

C 2)1 +TITLE SUM.MAC VERSION 1
2)

D 2) +MCALL .TTYOUT, .EXIT, ,PRINT
LTTTTTT T YIS

C 1)1 BNE SECOND iBRANCH IF NOT

D 1) MOV #*N RO iGO THRU ALL PLACES)

iDIVIDING

B #xxsx

C 21 BNE 2ND iBRANCH IF NOT

D 2) MOV #N RO iGO THRU ALL PLACES)

SDIVIDING

ERERRERERS

C 1)1 ADD #10+ /04RO iMAKE DIGIT ASCII

D 1) +TTYON iOUTPUT THE DIGIT

B #%xs

C 2)1 ADD #10+'04RO iMAKE DIGIT ASC I1I

D 2) +TTYON iOUTPUT THE DIGIT
ERERRERENR

C 1)1 +END EXP

B #xxs

C 2)1 +ENDEXP

RERERRRRRE
?SRCCOM-W-Files are different

!Users of display hardware may wish to enable both the graphics screen and
the terminal printer by first typing the CTRL/E command.

6-2

The first two lines identify the two files that are being com-
pared. The file name and the device on which the file resides
are printed. Also, the numbers 1) and 2) are assigned to the
files (see lines labeled A in the example list above).

The first difference that is listed occurs in the title line of the
program. Usually differences that occur in these two lines are
intentional and reflect information that is unique to each file,
such as name and file type, version or edit number, and perhaps
date of creation.

The numbers that appear at the left margin of the list further
identify the files. For example, 1)1 indicates the first page of
the first file and 2)1 indicates the first page of the second file.

The lines of both files are compared character for character.
Blank lines are ignored, but all other characters, including tabs
and spaces, are compared. When two lines are found to be dif-
ferent, the system prepares a difference section, which it subse-
quently prints (see lines labeled B).

The system prepares the difference section as follows. When it
finds two lines that are different, it notes the page number and
records the lines (see lines labeled C). Next it searches for a
match. A match is a certain number of lines in each file that
are exactly the same. Since you specified a match of 1 in the
/MATCH:n option (/MATCH:1), the system in this case searches
for a single line in each file that is exactly the same. When the
system finds a match, it records the last line of the match for
identification purposes (see lines labeled D). Then it prints the
difference section and repeats the process, preparing a subse-
quent difference section if more differences exist. Individual dif-
ference sections are separated from each other by a long row of
asterisks, while the short rows of asterisks separate the lines of
the first file from those of the second.

A message is printed following the comparison. Files are dif-
ferent is printed if differences exist; No differences found is
printed if the files are the same.

Check the list printed on your terminal to find the errors the
system detected. Mark each error on the listing of SUM.MAC
that you obtained in Chapter 5.

Now perform a source comparison between the FORTRAN IV
files, DEMOF1.FOR and GRAPH.FOR.

Long Command Format

DIFFERENCES/MATCH: 16D
File 1?7 DEMOF1.FORGE
File 27 GRAPH.FORGE

Comparing Text Files

DIFFERENCES/
MATCH:n

Comparing Text Files

Short Command Format

+DIFFERENCES/MATCH:1 DEMOF1,FOR GRAPH.FORGE

1) DK:DEMOF1.FOR

2) DK:GRAPH,.FOR

L2 22T T TT Y

1)1 € EXAMP,FOR (VERSION PROVIDED)

1) C THIS PROGRAM PRODUCES A PLOT ON THE TERMINAL
(T2}

2)1 C GRAPH.FOR VERSION 1
2) C THIS PROGRAM PRODUCES A PLOT ON THE TERMINAL
L2 22T T YY)

1)1 C "STAB" IS FILLED WITH A TABLE OF HEIGHT FLAGS

1) C "STRING" IS USED TO BUILD A LINE OF GRAPH FOR PRINTING
*ER

2)1 C "STAB" IS FILLED WITH A TABLE OF WEIGHT FLAGS

2) C "STRING" IS USED TO BUILD A LINE OF GRAPH FOR PRINTING
ERRERRRR NN

11 MAXF=LEN(STAB)

1) DO 20 IX=1,MAXX

(22 1)

2)1 MAXFLEN(STAB)

2) .DO0 20 IX=1,MAXX

RERRERREER

11 30 CALL PUTSTR(7,STRING,’ *)
1) CALL EXIT

L2 21

2)1 30 CALL PUTSTRING(7,STRING,’ ‘)
2) CALL EXIT

LIZZI T TS T

?SRCCOM-W-Files are different

Similarly, mark the errors on the listing of GRAPH.FOR that
you obtained in Chapter 5.

Now return to the section entitled Editing a Text File in
Chapter 5. Review the editing commands described there and
the summary at the end of the section. Use the appropriate
commands to correct the files SUM.MAC and GRAPH.FOR.
When you have finished editing, perform the source compari-
sons again against DEMOX1.MAC and DEMOF1.FOR. If you
have edited the files correctly, the comparison finds differences
only between the first lines of each program. The following
messages should print on your console:

«DIFFERENCES/MATCH: 1 GED
File 1? DEMOF1,FORGE
File 2?7 GRAPH.FORGD

1) DK:DEMOF1.FOR

2) DK:GRAPH.FOR

HERERERRRN

N C EXAMP.FOR (VERSION PROVIDED)

1) C THIS PROGRAM PRODUCES A PLOT ON THE TERMINAL
3 % % ¥

2)1 C GRAPH.FOR VERSION 1

2) C THIS PROGRAM PRODUCES A PLOT ON THE TERMINAL
3 3 3 3 3% % % * # %

?SRCCOM-W-Files are different

and

+DIFFERENCES/MATCH: 1 GED
File 1? DEMOX1.MACGED
File 27 SUM.MACGD

1) DK:DEMOX1.MAC

2) DK:SUM.MAC

3 36 3 3 3 % % ¥ % *

1)1 +TITLE EXAMP,MAC (VERSION PROVIDED)
1)

1) +MCALL .TTYOUT,» LEXIT, +PRINT

L2213

2)1 +TITLE SUM.,MAC VERSION 1

2)

2) +MCALL .TTYOUTs LEXIT, ,PRINT

3 3 3 % 3 % K % N

?SRCCOM-W-Files are different

These messages indicate that a difference exists in the first line
of each program. However, no other differences were found in
the programs during the comparison. Thus, your programs are
ready for use in later demonstrations, and you know how to
create and edit programs.

If differences still exist in your files and you cannot resolve
them by editing, you may continue to the next chapter if you
wish. However, you need practice editing, and it is to your ad-
vantage to rework the examples in both Chapter 5 and this
chapter.

DIFFERENCES
List the differences between two ASCII text files.

DIFFERENCES/MATCH:n

Indicate the number of lines (n) to determine a match; the
default number is 3.

RT-11 System User’s Guide (AA-5279C—~TC). Maynard, Mass.: Digital Equip-
ment Corporation, 1983.

A guide to the use of the RT-11 operating system.

RT-11 System Utilities Manual (AA-M239A-TC). Maynard, Mass.: Digital
Equipment Corporation, 1983.

A guide to the use of the RT-11 system utilities.

6-5

Comparing Text Files

SUMMARY:
COMPARISON
COMMAND

REFERENCES

CHAPTER 7

PERFORMING FILE MAINTENANCE OPERATIONS

The system volume, as it is initially supplied, contains only the
files of the RT-11 operating system — the monitor files, the
system device handlers, the system utility programs, and per-
haps the language processors. Since the system volume serves
as the default storage volume for all system operations (unless
DK: was assigned to another volume), you will discover that it
acquires many additional files during normal use. For example,
files that you create with the editor are written on the system
volume; edited files automatically create backup versions on
the system volume; many utility programs create output and
listing files on the system volume as part of their normal pro-
cessing operations. By the time you finish an average session of
computer operations, several new file names have been added
to the directory of your system volume. Eventually your system
volume may become full and its directory cluttered with the
names of files for which you have no use. To avoid this you
should perform regular housekeeping, or file maintenance, op-
erations as you use the system. You should update and transfer
copies of your important files to other storage volumes for safe-
keeping and later use, and you should delete from your system

and storage volume directories the names of files you no longer
need.

The RT-11 operating system provides a number of monitor
commands for this purpose. These commands activate the
RT-11 utility programs called PIP.SAV, DUP.SAV, and
DIR.SAV, which are part of the RT-11 operating system stored
on your system volume. These utility programs allow you to
transfer and erase files. The commands used in this chapter
show one way to maintain your system and storage volume.
When you become more familiar with system operations and
learn some of the commands not described here, you may prefer
other methods.

Before you perform operations that might move or erase files on
a volume, list a directory of the volume involved. The directory
tells you the full names of files, their sizes, and whether backup
copies exist. A directory of your system volume shows the files
that have been added to it through normal use.

First obtain a directory of your system volume (as you learned
in Chapter 4), using the appropriate command to list it on ei-
ther the terminal or the line printer. The directory is relatively
long; let it list to completion.

FILE DIRECTORY
OPERATIONS

Performing File Maintenance Operations

MULTIPLE FILE
OPERATIONS

Long and Short Command Format

(Line printer)
+DIRECTORY/PRINTERGE
(Terminal)

+DIRECTORYGD

At the end of the system volume directory you should see sev-
eral additional entries. These files are the result of the system
operations you have performed so far:

DECIND.USA 1 B8-JAN-B3
DECIND.BAK 1 B-JAN-B3
GRAPH .FOR 2 B8-JAN-83
GRAPH .BAK 2 8-JAN-83
SUM +MAC 3 8-JAN-83
SUM +BAK 3 8-JAN-83

Next list a brief directory of your storage volume. This direc-
tory should be empty (void of any file names or file types) be-
cause you initialized it in Chapter 4.

Long and Short Command Format

(Line printer)
+DIRECTORY/BRIEF/PRINTER VOL : @D

(Terminal)

+DIRECTORY/BRIEF VOL:G@D

These directories give you the information you need for erasing
and copying files. For example, you know the additional files
that are now on your system volume, and you know that since
the directory of the storage volume is empty, there is ample
room on it for new files.

You often have occasion to perform the same utility operation
on several files. For example, you may copy from one volume to
another all files with the file type .MAC, or you may erase from
a volume all files with the name TEST. Rather than perform
the required operation on the files one at a time, it is easier to
use the wildcard construction, a shorthand method provided by
the RT-11 operating system. Wildcard construction allows you
to substitute an asterisk (*) or percent sign (%) for a portion of
the file name that is variable among all the files you want used

7-2

Performing File Maintenance Operations

in the operation. For example, specifying DECIND.* in a com-
mand causes the operation to act on all files with the file name
DECIND, regardless of their file type; *. BAK causes the system
to act on files with the file type BAK, regardless of their file
name. Specifying TEST%.FOR causes the operation to act on all
files having a type of FOR, starting with the four characters
TEST, and having any fifth character (for example,
TESTA.FOR, TEST1.FOR, etc.).

A special use of the wildcard construction involves substitution
of an asterisk for both file name and file type. *.* implies that
all files, regardless of the file name or file type, are to be used
in the operation.

Exercises in this chapter and throughout the remaind-er of the
manual demonstrate various uses of the wildcard construction.

Storage volumes provide an area where you can store important
files. Since most files are originally created on the default sys-
tem volume, you must copy them from the system volume to the
storage volume. The following exercises show you how to make
backup copies on your storage volume of the two provided dem-
onstration programs (DEMOF1.FOR and DEMOX1.MAC), and
how to copy to the storage volume the two programs you cre-
ated (GRAPH.FOR and SUM.MAC).

The monitor command that copies files between volumes is the
COPY command. This command instructs the system to dupli-
cate the file that you indicate as input, and then gives the new
file the name and file type that you specify as output. The origi-
nal version of the file is unaffected; that is, a copy of the origi-
nal version is made and moved to the new volume.

To copy GRAPH.FOR to your storage volume under the new
name GRAPH.TWO, type:

Long Command Format

+COPYGED .
From? GRAPH.FORGE (System volume is
To ? VOL:GRAPH,TWD®D assumed for input.)

Short Command Format

+COPY GRAPH.FOR VOL:GRAPH.TWOGD

The system makes a copy of the file GRAPH.FOR on the stor-
age volume and gives the copy the name GRAPH.TWO. When
the operation is complete, the monitor prints a period at the left
margin and waits for you to enter the next command. This
time, copy SUM.MAC to the storage volume.

7-3

FILE COPYING
OPERATIONS

COPY

Performing File Maintenance Operations

FILE RENAMING
OPERATIONS

Long Command Format

,COPYG@ED
From? SUM.MACGE
To ? VOL:SUM.MACGD

Short Command Format
,COPY SUM,MAC YOL:SUM.MACHE

The system copies the file SUM.MAC to your storage volume
and gives the copy the name SUM.MAC.

Now, copy the two provided demonstration programs,
DEMOF1.FOR and DEMOX1.MAC, to the storage volume.

Long Command Format

,COPY@ED
From? DEMOF1.FORGED
To 7? VOL:DEMOF!.FORGRD

,COPYGEED
From? DEMOX1.MACGED
To 7? VOL:DEMOX!1.MACGED

Short Command Format
,COPY DEMOF1.,FOR YOL:DEMOF1.FORGED
,COPY DEMDX1.MAC VOL:DEMOX1.MACGED

A directory of your storage volume should verify that it now
contains these four files.!

Long and Short Command Format

+DIRECTORY VOL:@ED

08-Jan-83

GRAPH .THWO 2 08-Jan-83 SUM +MAC 3 08-Jan-83
DEMOF1.FOR 2 26-Aug-82 DEMOX1.MAC 3 26-Aug-82
4 Filesy 10 Blocks

4752 Free blocks

The directory you just listed shows that you copied the GRAPH
demonstration file to your storage volume under a new file
type, . TWO. Assume you did not intend to copy it using a new
file type and now wish that it were assigned its original file

If you are using magtape as your storage volume, read the section entitled
Directory vs Nondirectory-Structured Volumes in Appendix B.

7—4

Performing File Maintenance Operations

type, .FOR. Use the monitor RENAME command to rename the
file already on the storage volume.'

Long Command Format
+ RENAMEGD

From? VOL:GRAPH.TWO@D
To ? VOL:GRAPH.FORGD
Short Command Format

'+ RENAME VOL :GRAPH.TWO VOL:GRAPH.FORGED

The RENAME command simply changes the file name or file
type of a file in the volume directory without altering or mov-
ing the file itself. When you perform a rename operation, the
volume indicated in the input and output portions of the com-
mand must be the same; otherwise a system message is printed.

Rename the file copies DEMOX1.MAC and DEMOF1.FOR
presently on your storage volume to EXAMP.MAC and EX-
AMP.FOR respectively.

+RENAME VOL :DEMOX1.MAC VOL:EXAMP.MACED
+RENAME VOL :DEMOF1.FOR VOL:EXAMP.FORGD

Again list a directory of your storage volume to verify that the
renaming operation occurred.

Long and Short Command Format
+DIRECTORY VOL:@®

08-Jan-83
GRAPH.FOR 2 08-Jan-83 SUM +MAC 3 08-Jan-83
EXAMP,.FOR 2 26-Aug-82 EXAMP .MAC 3 26-Aug-82

4 Filess» 10 Blocks
4752 Free blocks

Once copies of your important files are stored on a storage vol-
ume, you can delete from the system volume — or any other
volume — those files that you no longer need. The file deletion
operation removes information about the file from the volume’s
directory; the space that the file occupies on the volume be-
comes available for reuse. Files that you want to delete gener-
ally include .BAK files created during editing, temporary files
created by utility programs, or any other unnecessary files.

!Magtape users cannot use the RENAME command and should read the sec-
tion entitled Alternate Rename Operation for Magtape Users in Appendix B.

7-5

RENAME

FILE DELETION
OPERATIONS

Performing File Maintenance Operations

DELETE

Now that you have copies of your important files, you can de-
lete several files from your system volume. For example, you
can delete all files with a .BAK file type created as a result of
editing. You can delete the file DECIND.USA, since this was
created only for editing practice. Finally, you can delete the
files GRAPH.FOR and SUM.MAC, since copies of these are now
on VOL.:.

Do not delete DEMOF1.FOR and DEMOX1.MAC from your
system volume, even though copies of these are also on VOL..
You should consider these two files as part of the RT-11 opera-
ting system, and therefore should not erase them from the sys-
tem volume. These copies can serve as additional backups for
the files on the storage volume.

The monitor DELETE command is used to delete file names

from a volume. You can specify as many as six input files for
deletion.

Long Command Format

DELETEGD
Files? DECIND.USA GRAPH.FOR »SUM.MACEED

Short Command Format
\DELETE DECIND.USA GRAPH,FOR)SUM,MACEED

If wildcard construction is used or if the /QUERY option is spec-
ified, the DELETE command requests confirmation from you by
printing each file name on the terminal before it deletes it. If
you type a Y response, the system deletes the file, while an N
response instructs the system to ignore that file and go on to
the next. Notice how you use the wildcard construction in the
input file to delete all files with a .BAK file type.

Long Command Format

LDELETEGED WDELETE/QUERYG®ED

Files? *,BAKGED Files? GRAPH.BAK ySUM.BAK ,DECIND , BAK G
Files deleted: Files deleted:

DK:DECIND.BAK ? YGD DK:DECIND.BAK ? YED

DK :SUM.BAK ? YGD DK : SUM.BAK ? YED

DK:GRAPH.BAK ? YGD DK:GRAPH.BAK ? YGED

Short Command Format

DELETE *,BAKGED DELETE/QUERY GRAPH.EAK »SUM,BAK +DECIND.BAKGED
Files deleted: Files deleted:

DK:DECIND.BAK ? YGED DK:DECIND.BAK ? YGED

DK :SUM.BAK ? YED DK : SUM. BAK ? YGED

DK:GRAPH.BAK ? YGED DK:GRAPH.BAK 7 YED

7-6

Performing File Maintenance Operations

You can give a file a protected status to prevent it from being
deleted from the volume it resides on. A file that has a pro-
tected status cannot be deleted until that status is removed.

The files DEMOF1.FOR and DEMOX1.MAC should still be on
your system volume. These files must not be deleted because
they are part of your RT-11 operating system. You can give
these two files a protected status to ensure that they are not
accidentally deleted.

The monitor PROTECT command is used to give files a pro-
tected status. You can specify up to six input files (separated
with commas) with this command. As with the DELETE com-
mand, if you use the wildcard construction or specify the
/QUERY option, the RT-11 system requests confirmation be-
fore protecting each file.

Use the PROTECT command to give the files DEMOF1.FOR
and DEMOX1.MAC a protected status.

Long Command Format

+PROTECTGD
Files? DEMDFI.FDR;DEﬂDXl.NAC@@

Short Command Format
*PROTECT DEMOF1.FOR ,DEMOX1.MACED

List a directory of these two files and notice the “P” next to the
number of blocks in the second column.

Long and Short Command Format

+DIRECTORY DEMOFI.FDRrDEMDXl.MACC@

08-Jan-83

DEMOX1.MAC 3P 26-Aug-82 DEMOF1.FOR 2P 26-Aug-82
2 Filesy 5 Blocks

921 Free blocks

The UNPROTECT command removes a file’s protected status
80 that the file can be deleted. You can determine whether a file
is protected or not by listing the directory. If a file is protected,
a “P” will appear next to the block size number of the file’s
directory entry. You can specify up to six input files (separated
with commas) with this command. As with the DELETE com-
mand, if wildcard construction is used or if the /QUERY option
is specified the UNPROTECT command requests confirmation
for each file.

Remove the protected status from the files DEMOF1.FOR and
DEMOX1.MAC.

-7

FILE PROTECTION
OPERATIONS

PROTECT

UNPROTECT

Performing File Maintenance Operations

FILE LISTING
OPERATIONS

PRINT

TYPE

Long Command Format

JUNPROTECTG®ED
Files? DEMOF1.FOR DEMOX1.MACGED

Short Command Format
\UNPROTECT DEMOF1.FOR,DEMOX1.MAC@ED

Again list a directory of the two files DEMOF1.FOR and DEM-
OX1.MAC. The “P”’s are removed from the listing, signifying
that the files are no longer protected.

Long and Short Command Formats

,LDIRECTORY DEMOF1.FOR/)DEMOX1.MACRD

08-Jan-83

DEMOX1.MAC 3 26-Aug-82 DEMOF1.FOR 2 26-Aus-82
2 Filess 5 Blocks

921 Free blocks

You sometimes need a listing of a file before you can decide
whether or not to delete it. In Chapter 5, you used the RT-11
editor to get listings of the files you created. You can also use
monitor commands to obtain listings of files. One command
lists a file on the console terminal; another lists a file on the
line printer.' The system volume is the assumed storage volume
for the input file.

Type one of the following sets of commands to obtain listings of
EXAMP.MAC and EXAMP.FOR.

Long Command Format

(Line Printer) (Terminal)

PRINTED JYPEGED

Files? VOL:EXAMP.MACGD Files? VOL:EXAMP.MACGEED
PRINTED JYPEGD

Files? VOL:EXAMP.FORGD Files? VOL:EXAMP.FORGE

Short Command Format

(Line Printer) (Terminal)
WPRINT VOL:EXAMP.MACGEED JYPE VOL:EXAMP.MACGEE
PRINT VOL:EXAMP.FORGED JYPE VOL:EXAMP,FORGED

If a line printer is available on your system, you should always use it for
listings because of its high speed of printing.

7-8

Performing File Maintenance Operations

You should perform file maintenance operations periodically as
you use the system. File maintenance keeps your system and
storage volumes up-to-date and provides maximum free space
on volumes for new files.

COPY
Copy the specified file from one volume to another.

DELETE
Delete the specified file(s) from the volume’s directory. Con-
firmation is required before deleting the file if wildcard con-
struction or the /QUERY option is used.

DIRECTORY
List the volume directory on the terminal.

DIRECTORY/PRINTER
List the volume directory on the line printer.

PRINT
List the contents of the specified file on the line printer.

PROTECT
Give the specified file protected status so it cannot be deleted
until that status is removed. Confirmation is required before
protecting the file if wildcard construction or the /QUERY
option is used.

RENAME
Give a new name to the specified file.

- TYPE
List the contents of the specified file on the terminal.

UNPROTECT
Remove the protected status of the specified file so that the
file can be deleted. Confirmation is required before removing
each file’s protection if wildcard construction or the /IQUERY
option is used.

RT-11 System User’s Guide (AA-5279C-TC). Maynard, Mass.: Digital Equip-
ment Corporation, 1983.

A guide to the use of the RT-11 operating system.

7-9

SUMMARY:
FILE MAINTENANCE
COMMANDS

REFERENCE

CHAPTER 8

CHOOSING A PROGRAMMING LANGUAGE

Programming languages and language processors are aids pro-
vided by the operating system to help you develop programs of
your own. Whenever you plan to write a program, you must
first decide on the programming language that you will use,
since most computer systems support several. After you have
chosen the language, you must design and code your program
using appropriate language statements and being careful to
follow formatting rules and restrictions. Finally, you must use
the corresponding language processor, which is stored on the
system volume or on a volume of its own, to convert your pro-
gram statements into a format suitable for execution.

Hundreds of programming languages have been developed for
computer systems. Some languages can be used only for specific
applications or with a particular computer system. Other lan-
guages are general purpose; they are suitable for a variety of
problem-solving situations and, in addition, are easy to learn
and use. The languages demonstrated in this manual include
two well-known and widely used high-level programming lan-
guages (BASIC-11 and FORTRAN IV) and one RT-11 system-
specific machine-level programming language (MACRO-11).

High-level languages, like BASIC-11 and FORTRAN 1V, are
usually easy to learn and use. You write programs using lan-
guage statements that need not deal with the specifics of the
computer system. The language processor — and perhaps
other utility programs as well — handles all conversions that
are necessary for program execution. Since a single high-level
language statement may perform several computer operations,
and since you need not be concerned or familiar with the struc-
ture of the computer and peripheral devices, you can concen-
trate solely on solving the problem at hand. The language proc-
essor takes care of translating the statements into computer
information.

Thus, high-level languages are considered machine-inde-
pendent languages because language statements are such that
any program written in the language can usually be executed
on an entirely different computer system (that supports the lan-
guage) with few, if any, modifications.

Machine-level languages, on the other hand, such as the as-
sembly language MACRO-11, require that you know about the
computer and the peripheral devices and how they work to-
gether. You write programs in formats that are closer to those

8-1

HIGH-LEVEL VS
MACHINE-LEVEL
LANGUAGES

Choosing a Programming Language

required for execution. Since a single machine-level language
statement usually performs only one computer operation, you
must account in your program for each computer operation that
will be required.

For this reason, machine-level languages are machine-
dependent languages. The program is coded in a format that is
not usually interchangeable among systems. Machine-level lan-
guage programs can be efficient because the knowledgeable
programmer will choose the fastest and most precise instruc-
tions for getting a job done.

Table 8-1 lists a comparison of high-level vs machine-level lan-
guages.

Table 8-1 Language Comparisons

High-Level

Machine-Level

Easy to learn and use; no
experience required

Machine-independent

Many hidden conversions
necessary for program exe-
cution; more computer
memory is used

Slower execution time

Less efficient; the system
makes decisions concerning
computer operations

Easier to debug (find and fix
errors)

Easier to understand pro-
grams; functions added with
less difficulty

More difficult to learn and
use; familiarity with the com-
puter system required

Machine-dependent

Only direct translation is nec-
essary for program execution;
less computer memory is used

Faster execution time

More efficient; the program-
mer makes decisions concern-
ing computer operations

Harder to debug (find and fix
errors)

Harder to understand pro-
grams; functions added with
greater difficulty

Beginning programmers, students, commercial applications
programmers, and the casual computer user prefer high-level
languages because they are less difficult to learn and to use,
and they produce fast results. System programmers, on the
other hand, may prefer machine-level languages for writing
programs (those that make up an operating system, for exam-
ple) that must often be as fast, efficient, and concise as possible.

8-2

Choosing a Programming Language

The designers of a computer system generally select program-
ming languages that will satisfy and suit the current (or per-
haps potential) system user environment. The RT—11 computer
system is designed for use in many environments: education,
business, laboratory, etc. Some of its applications include data
acquisition and analysis, record keeping, control systems, and
learning through computer simulation. RT-11 programmers
and users include both the very knowledgeable and the
student/beginner.

To satisfy the varied requirements of these environments,
RT-11 supports several programming languages:

High-Level Machine-Level
BASIC-11 MACRO-11
FORTRAN IV

DIBOL

Whenever you choose one or more of these programming lan-
guages for your own use, consider the following criteria:

® What is your programming experience? What languages do
you already know?

® How much time do you have to learn a new language?

® For what applications will you use the language? How im-
portant are program speed and efficiency?

® Will you use your program on any other computer systems?

If you are already familiar with a language supported by the
system, you may prefer to continue using that language rather
than spend time learning a new one. However, if you want to
learn a language, consider your application. High-level lan-
guages handle most programming jobs. Unless you plan to
write extremely detailed or time-critical programs, you should
select a high-level language.

If you are a beginning programmer, you may prefer to start
with a language like BASIC-11, which is a conversational, in-
teractive language. Language statements use simple, English-
like words and common mathematical expressions. You can re-
quest immediate answers to problems by using the immediate
modes of the language, or you can create detailed programs by
combining single language statements into larger segments.
BASIC-11 is a superset of the industry-standard BASIC devel-
oped at Dartmouth College. Chapter 10 of this manual de-
scribes BASIC-11 in more detail.

RT-11
PROGRAMMING
LANGUAGES

Choosing a Programming Language

CHOOSING

A LANGUAGE
FOR THE
DEMONSTRATION

REFERENCES

RT-11 FORTRAN 1V is a superset of the industry-standard
FORTRAN IV. This language has long been recognized for its
use in the scientific field; in addition, it is one of the most com-
monly supported languages across systems. You may decide to
choose FORTRAN IV because it is a more powerful language
than BASIC-11 or because you plan to use your programs on

more than one system. Chapter 9 of this manual describes FOR-
TRAN IV in more detail.

Finally, if you are an experienced user, you may select the ma-
chine-level programming language MACRO-11. This is a pow-
erful language that allows user programs to access and utilize
every possible feature available on the RT-11 computer system.
The language requires a considerable amount of computer ex-
perience and knowledge to be used effectively, however. The
MACRO-11 language is best for you if you are a system pro-
grammer or an experienced high-level language programmer.
It is described in more detail in Chapter 11 of this manual.

Three RT-11 programming languages are demonstrated in the
next several chapters of this manual; FORTRAN 1V,
BASIC-11, and MACRO-11. Consider your ability as a pro-
grammer. If you are a beginner, BASIC-11 is probably the best
language for you to start with; FORTRAN 1V is also a good
choice. However, you need not be proficient in any of these

programming languages to perform the exercises provided in
this manual.

Your particular RT-11 computer system may not provide all
three languages. First check question 10 in the Hardware Con-
figuration section of Chapter 2 to find out which languages are
available on your system.

Then select a language to continue the demonstration. If you
choose FORTRAN IV, continue to Chapter 9. If you choose

BASIC-11, go on to Chapter 10. If you choose MACRO-11, go
to Chapter 11.

Digital Equipment Corporation Reference Service, Volume 2: Software and
Services. Maynard, Mass.: Digital Equipment Corporation, 1982.

An overview of the available PDP-11 family products and services.

Katzan, Harry Jr., Information Technology, The Human Use of Computers.
New York: Mason & Lipscomb Publishers Petrocelli Books, 1974.

A textbook covering basic computing concepts, programming languages,
and topics in computers and society. See Part II, Chapters, 7, 8, and 9.

PDP-11 Software Handbook (EB-21759-20). Maynard, Mass.: Digital Equip-
ment Corporation, 1982—-83.

A general overview and introduction to available PDP-11 software, op-
erating systems, and language processors.

84

CHAPTER 9

RUNNING A FORTRAN IV PROGRAM

The FORTRAN IV programming language’ is a machine-inde-
pendent programming language that was originally designed
as a quick and easy aid for solving mathematical equations and
formulas. However, FORTRAN 1V is a powerful language and
not difficult to learn or use, and is also well suited to many
other kinds of applications.

FORTRAN (FORmula TRANSlation) IV is an algebraically ori-
ented language. You write a FORTRAN IV program as a se-
quence of language statements that combine common English
words with quasi-algebraic formulas. You then arrange groups
of the language statements into logical units called program

units. One or more program units make up an entire executable
FORTRAN 1V source program.

When you are satisfied with the logic of your FORTRAN IV
source program, you use the RT-11 editor to create it as a file
(see Chapter 5). You use tabs and spaces to format each line
properly, and you may choose to insert comment statements
throughout the source code to explain what various parts of the
program are doing. When you have finished creating the pro-
gram as a complete, edited file, you next enter it as input to the
FORTRAN 1V language processor, which is stored on your sys-
tem volume or on a separate volume of its own. The FORTRAN
IV language processor processes (compiles) the language state-
ments, converting them into internal machine-language code
called object code. This code is next processed by the system
linker, which combines your program units and necessary sys-
tem-supplied routines to make your program suitable for execu-
tion. The development of an executable FORTRAN IV program
is represented in Figure 9-1.

CREATE EDIT COMPILE LINK RUN

Figure 9-1 Evolution of a FORTRAN IV Program

The FORTRAN IV language processor is a compiler that trans-
lates your source program into a machine language program.

The PDP-11 FORTRAN IV programming language conforms to the specifi-
cations for American National Standard FORTRAN X3.9-1966.

9-1

DEVELOPING AN
EXECUTABLE
FORTRAN IV
PROGRAM

USING THE
FORTRAN IV
LANGUAGE
PROCESSOR

Running a FORTRAN IV Program

USING LIBRARY
MODULES

Since you create a FORTRAN IV source program in ASCII for-
mat, you must next translate the program into a machine for-
mat that the computer can use. The FORTRAN IV compiler
performs the translation, producing as output a new version of
the program, called an object module. You may instruct the
FORTRAN IV compiler to produce a listing of the source pro-

gram at the same time. Figure 9-2 is a diagram of the com-
piler’s function.

SOURCE OBJECT
S | EE—
PROGRAM COMPILE MODULE
LISTING
(OPTIONAL)

Figure 9-2 Function of a FORTRAN IV Compiler

Typical FORTRAN IV programs often require similar opera-
tions. Most programs, for example, use routines and instruc-
tions that calculate square roots, exponentials, and other arith-
metic functions; handle input and output operations; detect cer-
tain kinds of error conditions; test values; calculate subscripts;
and perform conversions. These commonly used operations
have been gathered into a special file called SYSLIB.OBJ (de-
fault System Library), which is provided with the RT-11 opera-
ting system and is stored on your system volume.

During the processing of your source program, the FORTRAN
IV compiler examines each language statement in the program.
If you use operations that are provided in SYSLIB, the compiler
notes them and makes references to SYSLIB. The compiler
translates all the information gathered during processing (your
converted language statements and the references to SYSLIB)
into numerical data called object code that the system linker
can use. The result of the compilation, therefore, is an object
format file, called an object module, which is automatically
Joined with SYSLIB (containing many object modules) and with
any other required object modules at link time. Linking all the
necessary object modules together produces a complete, work-
able FORTRAN IV program.

The FORTRAN IV object time system (OTS) is also needed to
successfully compile a FORTRAN IV program; this system is in

9-2

Running a FORTRAN IV Program

the file FORLIB.OBJ. Whether this file is included in SYSLIB
or not depends on how your system was built.

To link the example FORTRAN IV program, you must either
include FORLIB.OBJ in SYSLIB, or specify SYSLIB before
FORLIB in the link command. For instructions on how to in-
clude FORLIB in SYSLIB, refer to Section 3.4 in the RT-11
FORTRAN IV Installation Guide.

In Chapter 5 you used the RT-11 editor to create a FORTRAN COMPILING THE
IV source program, which you then stored on your storage vol- FORTRAN IV
ume. Since a source program is in ASCII format, the next step PROGRAM

is to use the FORTRAN IV compiler to convert it to object code.

Some RT-11 systems store the FORTRAN IV compiler on a
volume apart from the system volume.! You can quickly deter-
mine whether the FORTRAN IV compiler is on your system
volume by using the DIRECTORY command.

,DIRECTORY SY:FORTRA,SAVGED

In the directory listing that results, if the directory entry for
FORTRA.SAV is included, then the required FORTRAN IV
files are on your system volume. If, however, FORTRA.SAV did
not appear in the directory listing, then the required files are
not part of your system volume. Before you can use the com-
piler, you must make a volume substitution. Read the section in

Appendix B entitled Using the FORTRAN/BASIC Language
Volume.

The next step involves using the monitor COPY command to
copy the FORTRAN IV source program from the storage vol-
ume (where you stored it in Chapter 7) back to the system
volume, which serves as the default volume for input/output
operations.

Remember that on your storage volume are two FORTRAN IV
source programs, the one you created (GRAPH.FOR) and the
one provided as part of the system (EXAMP.FOR). Which of
these you should use depends on the results of the source com-
parison you performed in Chapter 6. If the comparison resulted

in no differences except for the title lines, copy your own pro-
gram (GRAPH.FOR) as follows:

Long Command Format

+COPYGD
From? VOL:GRAPH.FORGE
To ? GRAPH.FORGED

This is true for any RT-11 system volume that does not have enough free
blocks to accommodate the FORTRAN IV system files. RX01 diskette is an
example.

Running a FORTRAN IV Program

FORTRAN

Short Command Format
,COPY VOL:GRAPH.FOR GRAPH.FORGE

However, if differences were printed in addition to the title
lines, use the provided program (EXAMP.FOR) instead, copy-
ing it under the new name GRAPH.FOR:

Long Command Format

.COPYED
From? VOL:EXAMP.FORGE
To 7 GRAPH,FORGED

Short Command Format
.COPY VOL:EXAMP.FOR GRAPH.,FORGH

The FORTRAN 1V source file now resides on your system vol-
ume under the name GRAPH.FOR and is the file that you will
process with the FORTRAN IV compiler. The command used to
compile a FORTRAN IV source program is the monitor FOR-
TRAN command.

Use the FORTRAN command with its /LIST option to compile
your program and produce a listing. The system prompt asks
you to supply the input file name. You can omit typing the
FOR file type since the FORTRAN command assumes this file
type unless you indicate otherwise. The system will assign the
name GRAPH.OBJ to the object module and GRAPH.LST to
the listing file and store both newly created files on your sys-
tem volume, which is the default storage volume for input/out-
put operations.

Long Command Format

JFORTRANGED
Files? GRAPH/LISTGD

Short Command Format
JFORTRAN GRAPH/LISTED

Compilation begins. If the compiler discovers an error during
processing, it prints a message. In this particular case, you
should see the following on your terminal printer or screen:

+MAIN,

?FORTRAN-I-L.MAIN.] Errors: 5, Warninds: 0
FUN

?FORTRAN-I-LFUN] Errors: 1, Warnings: O

This indicates that, during processing, the FORTRAN IV com-
piler found six errors in the source program. It helps at this

94

Running a FORTRAN IV Program

point to look at the listing produced by the compiler, because
more information is shown there. Print the listing on either the
line printer or terminal, using one of the following commands:

Long Command Format

(Line printer) (Terminal)
\PRINTED .TYPEED
Files? GRAPH.LSTE®D Files? GRAPH,LSTED

Short Command Format

(Line printer) (Terminal)

+PRINT GRAPH.LSTGD +TYPE GRAPH.LSTGEE
Your listing should look like the following example.

NOTE

You do not need to understand the FORTRAN IV lan-

guage or the way this program works to successfully
complete the exercises in this chapter.

FORTRAN IV vo2.5 Sat 08-Jan-83 15:52:04 PAGE 001

C GRAPH.FOR VERSION 1

C THIS PROGRAM PRODUCES A PLOT ON THE TERMINAL

C OF AN EXTERNAL FUNCTION, FUN(X,Y)

C THE LIMITS OF THE PLOT ARE DETERMINED BY THE DATA STATEMENTS
C "STAB" 1S FILLED WITH A TABLE OF HEIGHT FLAGS

C “STRING" IS USED TD BUILD A LINE OF GRAPH FOR PRINTING

0001 SCAL (ZMIN/ZMAX yMAXZ)K) =ZMIN+FLOAT (K-1)#(ZMAX-ZMIN) /FLOAT (MAXZ-1)
0002 LOGICAL#1 STRING(13,3),STAB(100)

0003 DATA XMIN XMAX yMAXX/-5,5,45/

0004 DATA YMIN,YMAX sMAXY/-5,5,72/

0005 DATA FMIN,FMAX/0.0,1,0/

0006 CALL SCOPY(’- 1 2 3456 7 89 +',STAB)

0007 MAXF=LEN(STAB)

0008 DO 20 IX=1/+MAXX

0009 X=SCAL (XMIN XMAX yMAXX »IX)

0010 CALL REPEAT(’#’',STRING MAXY)

0011 IF(IX.EQ.1 ,OR. IX.EQ.MAXX) GOTO 20

0013 DO 10 IY=2,MAXY-1

0014 Y=SCAL (YMIN,YMAX MAXY 1Y)

0015 IFUN=2+INT(FLOAT(MAXF-3)#(FUN(X,Y)-FMIN)/(FMAX-FMIN))
0016 10 STRING(IY)=STAB(MINO(MAXF MAX0(1,IFUN)))

0017 30 CALL PUTSTR(7STRING,')

0018 CALL EXIT

0018 END

FORTRAN IV Diasnostics for Prodram Unit MAIN,

In line 0003, Error: Modes of variable "XMIN“ and data item differ
In line 0004, Error: Modes of variable "YMIN" and data item differ
In line 0008, Error: Reference to undefined statement label
In line 0012, Error: Reference to undefined statement label
In line 0016, Error: Wrons number of subscripts for array "STRING"

FORTRAN 1V Storase Maer for Frosram Unit .MAIN.

Local Variables,» .PSECT $DATA, Size = 000334 (110. words)

Name Tyre Offset Name Tvee Offset Name Trre Offset
FMAX R#4 000230 FMIN R#4 000224 IFUN I#2 000312
IX I#2 000274 Iy I#2 000300 K I#2 000256
MAXF I#2 000260 MAXX 1#2 000272 MAXY I#2 000276
MAXZ 1#2 000254 MAXO T#2 000316 MINO 1#2 000314

9-5

Running a FORTRAN IV Program

X R#4 000262 XMAX R4 000266 XMIN R#4 000214
Y R4 000302 YMAX R%4 000306 YMIN R4 000220
ZMAX R#4 000250 ZMIN R#4 000244

Local and COMMON Arravs:

Name Trre Section Offset ----Size---- Dimensions
STAB L#1 $DATA 000047 000144 (S0.) (100)
STRING L#1 Vec $DATA 000000 000047 (20,) (13,3

Subroutines, Functions, Statement and Processor-Defined Functions:

Name Trre Name Tree Name Trere Name Tyre Name Tree
EXIT R%4 FLOAT R#4 FUN R4 INT I%2 LEN 12
PUTSTR R#4 REPEAT R#4 SCAL R#4 SCOPY R#4

FORTRAN IV voz.s Sat 08-Jan-83 15:52:07 PAGE 001

0001 FUNCTION FUN(X,Y)

0002 R=SORT (X##2+Y%22)

0003 FUN=X#Y#R#EXP(-R))#%2

#nnan P

0004 RETURN

0005 END

FORTRAN IV Diagnostics for Prosram Unit FUN

In line 0003, Error: [See source listing)
FORTRAN IV Storase Mar for Prosram Unit FUN

Local Variables, .PSECT $DATA: Size = 000020 (8. words)

Name Tyre Offset Name Trre Offset Name Trre Offset
FUN R*4 000004 Eav R R#a 000010 X R*4 @ 000000
Y R*4 @ 000002

Subroutines, Functions, Statement and Processor-Defined Functions:

Name Trre Name Tree Name Trre Name Trme Name Trre
SQRT R#4

The first part of the listing shows the main program unit and
consists of the language statements up to, but not including,
the function. This is followed by a diagnostics list, then by a
storage map. Next the language statements composing the
function program unit are listed, again followed by a diagnos-
tics list and a storage map.

Before considering the individual sections of the program list-
ing, first examine the program logic to determine what this
program should do. The first few lines of this program are user
comment lines that briefly describe the program. Essentially,
this program produces on the terminal a graph of a “three-
dimensional” function, FUN(X, Y). The graph is plotted using
45 lines down and 72 characters across the terminal page. The
limits of the X and Y axes are +5 and —5. The third dimension,
height, is a real number within the range 0 to 1 and is repre-
sented in the listing as a number within a scale of 1 to 9. These
dimensions are illustrated in Figure 9-3.

The SCAL function determines the value of the next coordinate
on the graph. The statements within the DO loops calculate the
coordinates using the SCAL function and determine the height
value. This is done for an entire line of coordinates across the
terminal page. The entire line is then printed on the terminal,
using thé CALL PUTSTR statement; the number 7 in this
statement is the FORTRAN IV method of naming the terminal

Running a FORTRAN IV Program

N
~N.

- +5 45 Lines

+5

Figure 8-3 Dimensions of FUN(X,Y)

as the output device. This procedure is repeated until all 45
lines of the graph have been printed.

The function to be plotted is shown in the last few lines of the
program. It is compiled as a separate program unit and you can
edit these lines to plot any function of your choice (several al-
ternate functions are suggested later in the chapter).

This program as it stands contains errors. The compiler de-
tected certain error conditions during processing that prevent
the program from working properly. The compiler printed ap-
propriate messages in the diagnostics sections of the program
listing.! Look first at the messages following the main program
unit. Errors were discovered in lines 3, 4, 8,12, and 16.

The messages for lines 3 and 4 indicate that the floating-point
variables “XMIN” and “YMIN” are assigned integer values.
The DATA statements must be changed. (The same error exists
for “XMAX” and “YMAX?”; the compiler, however, lists only the
first error that it discovers in a line. Both “MAXX” and
“MAXY” are integer variable names, so no error exists for
them.) You must correct the DATA statements (lines 3 and 4),
then, as follows:

DATA XMIN XMAX +MAXX/-5.0,5,0,45/
DATA YMIN YMAX +MAXY/-5.0+5.0,72/

The next two messages in the diagnostics section show that
reference has been made from both lines 8 and 12 to an unde-
fined label. (Line 12 is actually the second portion of line 11,
the GO TO statement.) Statement label 20 is referenced in each
case, but only labels 10 and 30 are shown in the program. This
indicates either that a statement is missing or that a typing

'Refer to the RT-11 System Message Manual for greater detail about any
system messages printed.

97

Running a FORTRAN IV Program

LINKING OBJECT
MODULES TOGETHER

error exists. Examination of the program logic shows a typing
error in line 17. Label 30 should actually be 20. Correct line 17
as follows:

20 CALL PUTSTR(7+STRING,’ ‘)

The last message in this diagnostics section states that an in-
correct number of subscripts was given for the array “STRING”.
Again, examination of program logic shows that the error is
actually in line 1. “STRING” is really a vector (a one-dimension
array), not a matrix (a two-dimension array). Thus the comma
is a typing error and line 2 should be changed as follows:

LOGICAL*1 STRING(133),STAB(100)

Skip next to the diagnostics section for the FUN program unit.
The message printed there refers you to the source listing, to
line 3. A letter “P” appears next to this line. The RT—11 System
Message Manual describes a P error as an indication of unbal-
anced parentheses. Notice that the parentheses are not prop-
erly matched in this line. Thus, line 3 should be corrected as
follows:

FUN=(X*Y*R*¥EXP(-R))%%2

This explains the errors flagged by the compiler in the diagnos-
tics sections. Other sections of the program listing (storage
map, for example) simply provide additional information that is
helpful to programmers who wish to check the data types of
various symbols and later make sure that object modules have
been appropriately linked.

Before you can continue the exercises in this chapter, you must
edit, in the source program, those statements that contain er-
rors. If necessary, review the editing commands in Chapter 5.
Then use the RT-11 editor to edit the file GRAPH.FOR on your
system volume so that the five lines are error-free. Do not re-
name the file. When you are ready, recompile the program,
using the FORTRAN command, and obtain a new object module
and a new listing. This time the program should compile with-
out error (that is, no diagnostics should list). The compiler will
indicate two warnings, but you can ignore them. If diagnostics
occur, you have not edited the program correctly. Compare list-
ings and try to correct your errors, or go back to the beginning
of this chapter and repeat the demonstration.

The object module produced by the FORTRAN command is in
itself incomplete. As mentioned earlier, it needs parts of the

Running a FORTRAN IV Program

system library, SYSLIB, and perhaps other object modules and
libraries as well, to form a complete functioning program.' All
required object modules must be joined, or linked together, be-
fore the program can work.

Even if your program does not require any other object mod-
ules, you must still link it. In addition to joining object modules
together, the link operation adjusts the object code to account
for many program units being placed one after the other. The
result of the link operation is a memory image load module,
which is actually a picture of what computer memory looks like
just before program execution. Figure 94 is a diagram of the
link operation.

SYSLIB
Other OBJ's
OBJECT - LINK »| LOAD
MODULE MODULE

Figure 94 The Link Operation

To link the object modules, use the monitor LINK command.
The system prompts you to enter the names of the input mod- LINK
ules and any libraries other than the system library to be joined
together. You can omit typing the .OBJ file types in the com-
mand line, since the LINK command assumes this file type for
input. The system automatically assigns the file name of the
first input file and a file type of .SAV to the output file. The
linker will scan the SYSLIB library if it is present on the sys-
tem volume.

Some RT-11 systems store the linker (LINK.SAV) and the de-
fault system library (SYSLIB.OBJ) on a volume apart from the

!For more information on linking files and using library files, see Chapters 12
and 13, respectively.

9-9

Running a FORTRAN IV Program

system volume or the FORTRAN/BASIC language volume.’
You can quickly determine whether the system library is on
your system volume by using the DIRECTORY command.

+DIRECTORY SY:SYSLIB.0BJ@D

If SYSLIB.OBJ did not appear in the directory listing on your
terminal, the required files are not part of your system volume.
Before you can link GRAPH.OBJ, you must make a volume

substitution. Read the section entitled Using the LINK Volume
in Appendix B.

If you have not included the FORTRAN IV library FOR-
LIB.OBJ in SYSLIB, use the DIRECTORY command to see if
the library is on your system volume. Type:

+DIRECTORY SY:FORLIB,0BJGED

If FORLIB.OBJ did not appear in the directory, the required
files are not part of your system volume. Before you can link
GRAPH.OBJ, you must make a volume substitution. Read the
section entitled Using the LINK Volume in Appendix B.

Long Command Format
FORLIB not included in SYSLIB:

L INKGD
Files? GRAPH,SYSLIB ,FORLIBGD

FORLIB included in SYSLIB:

L INK@ED
Files? GRAPHED

Short Command Format
FORLIB not included in SYSLIB:

+LINK GRAPH,SYSLIB ,FORL IBGE

FORLIB included in SYSLIB:

'L INK GRAPHED

Any messages printed on the terminal identify error conditions
discovered by the system during the link operation (for exam-

'This is true for any RT-11 system volume that does not have enough free
blocks to accommodate the files required for linking. The RX01 diskette is an
example.

9-10

Running a FORTRAN 1V Program

ple, you may not have specified all the object modules that are
needed as input). However, assuming that you edited your
source program correctly and that it compiled without error, it
should also now link without error.

A load module is one that you can run on the system. Unless
your program contains logic errors that prevent it from running
properly (errors that the system cannot always detect), running
the .SAV version of your file should produce the results you
intended. However, if logic errors exist within your program,
running the program will produce either erroneous results or
none at all. If this is the case, you must study the source pro-
gram, rework it, reedit it, and perform the compile and link
operations again.

If your FORTRAN IV program is error-free, running the .SAV
version should produce the expected results. In this demonstra-
tion, running the GRAPH.SAYV file should produce a graph on
the terminal printer or screen.

Before you run GRAPH.SAV, you have the option of changing
the output device from the terminal printer or screen to the line
printer by using the monitor ASSIGN command to assign de-
vice names (see Chapter 4, Assigning Logical Names to De-
vices). If you prefer to print the graph on the line printer, sim-
ply assign the logical device name 7 (which is the FORTRAN
IV code for the terminal) to the line printer code (LP:). You
have designated a new output device without altering the
source program. To change the device assignment to the line
printer, type:

Long Command Format
+ASSIGNEED

Physical device name? LP:GED
Losical device name? 7@

Short Command Format

+ASSIGN LP: 7D

This assignment remains in effect until you deassign the names
or reboot the monitor.

Now, to execute the FORTRAN IV demonstration program, use
the monitor RUN command. You can omit typing the .SAYV file
type since it is assumed within the RUN command.

Long and Short Command Format

+RUN GRAPHGED

9-11

RUNNING THE
FORTRAN IV
PROGRAM

RUN

Running a FORTRAN IV Program

After a brief pause, the graph begins to print on the terminal
(or line printer) and should look like the graph shown in Figure

9-5.

AOKK KKK KKK K K AR K A K KK KKK KKK RN AARRAXAA AR KKK KKK KKK K KK K KKK
X 111111111111111111 111111111111111111 X
X 111111111111111111111 111111111111111111111 x
X 11111111 11111 11111 11111111 x
X 1111111 1111 1111 1111111 %
x 111111 22222222222 111 111 22222222222 111111 x
x11111 22222 2222 111 111 2222 22222 11111x%
*x1111 2222 3 22 11 11 22 3 2222 1111%
*x1111 222 333333333 22 11 11 22 333333333 222 1111%
x111 22 333 333 22 11 11 22 333 333 22 111x
X111 222 333 4444 332 1 1 233 4444 333 222 111x
X111 222 33 4444444 3 2 11 11 2 3 4444444 33 222 111x
x111 222 33 4444 444 33 2 11 11 2 33 444 4444 33 222 111%
X111 222 33 4444 444 3 2 14 11 2 3 444 4444 33 222 111%
x1111 222 33 44444444 33 2 11 11 2 33 44444444 33 222 1111%
*x11111 222 33 444 3 211 112 3 444 33 222 11111x%x
X 1111 22 3333 333 2 1 1 2 333 3333 22 1111 x
X 11111 222 22 11 11 22 222 11111 x
X 11111 222222222 111 111 222222222 11111 3
X 11111111 1111 1111 11111111 X
x 1111 1111 x
X X
X b
x X
X 1111 1111 X
X 11111111 1111 1111 11111111 b 3
X 11111 222222222 111 111 2222022222 11111 X
X 11111 222 22 11 11 22 222 11111 X
X 1111 22 3333 333 2 1 1 2 333 3333 22 1111 x
x11111 222 33 444 3 211 112 3 444 33 222 11111x%
*1111 222 33 44444444 33 2 11 11 2 33 44444444 33 222 1111%
x111 222 33 4444 444 3 2 131 11 2 3 444 4444 33 222 111%
*111 222 33 4444 444 33 2 11 11 2 33 444 4444 33 222 111x
x111 222 33 4444444 3 2 11 11 2 3 4444444 33 222 111x%
x111 222 333 4444 332 1 1 2 33 4444 333 222 111x
x111 22 333 333 22 11 11 22 333 333 22 111x
x1111 222 333333333 22 11 11 22 333333333 222 1111x%
x1111 2222 3 22 11 11 22 3 2222 1111x%
x11111 22222 2222 111 111 2222 22222 11111x%
*x 111111 22222222222 111 111 22222222222 111111 %
X 1111111 1111 1111 1111111 x%
X 11111111 11111 11111 11111111 x
X 111111111111111111111 111111111111111111111 x
3 111111111111111111 1111111111111211111

3
t*t#**X*##*#*#tttttt*x#t***t#t*tt#*t#tt*ttt#t*ll*t*t!t*t!tl*l#*t#*k*

Figure 9-5 The Result of GRAPH.SAV

COMBINING To produce these results, you first compiled the FORTRAN IV
OPERATIONS source program (GRAPH.FOR), then linked it with the default
library (SYSLIB.OBJ), and finally ran the resulting .SAV file
(GRAPH.SAYV). You can combine these three operations using
one monitor command, the EXECUTE command.

NOTE

The use of the EXECUTE command requires the follow-
ing files on your system volume:

FORTRA.SAV LINK.SAV GRAPH.FOR
SYSLIB.OBJ FORLIB.OBJ (if not included in SYS-
LIB)

If you have substituted the special LINK volume for your
system volume, you do not have the necessary files to
use the EXECUTE command. Proceed to the next sec-
tion, entitied Alternate Functions.

EXECUTE

9-12

Running a FORTRAN IV Program

The EXECUTE command instructs the system to select the lan-
guage processor, then process, link, and run the program. There
are several ways to establish which language processor the EX-
ECUTE command invokes. One way is to specify a language-
name option, such as /MACRO, which invokes the MACRO as-
sembler. Another way is to omit the language-name option and
specify the file type for the source files. The EXECUTE com-
mand then invokes the language processor that corresponds to
that file type. Specifying the file GRAPH.FOR, for example,
invokes the FORTRAN IV compiler. A third way to establish
the language processor is to let the system choose a file type of
.-MAC, .DBL, or .FOR for the source file you name. If, for exam-
ple, you specify the file GRAPH, the monitor searches device
SY: (your system device) for the files GRAPH.MAC,
GRAPH.DBL, and GRAPH.FOR, in that order. If the monitor
finds neither GRAPH.MAC nor GRAPH.DBL, it invokes the

FORTRAN IV language processor to compile GRAPH.FOR. For

example, to combine the compile-link-run operations that you
performed in this chapter, you would use the following com-
mand (do not actually type this command until you have read
the next section, Alternate Functions):

Long and Short Command Format

FORLIB not included in SYSLIB:
{EXECUTE GRAPH/FORTRAN/LIST/LINKLIB:SYSLIB/LINKLIB:FORL IB@ED

FORLIB included in SYSLIB:
EXECUTE GRAPH/FORTRAN/LISTED

The following are some alternate functions that you can substi-
tute in your FORTRAN IV source program to produce different
graphs. Simply reedit the program (GRAPH.FOR) so that lines
1-5 in the function portion at the end contain one of the follow-
ing alternate functions. Then compile, link, and run the pro-
grams as described in the previous sections. If the necessary
files are available on your system volume (see the previous sec-
tion, Combining Operations), use the EXECUTE command to
run the program. The source program compiles, links, and runs,
and the new graph prints on the terminal (or line printer).

Function 1

FUNCTION FUN(X,Y)
FUN=EXP(-SQRT(X*%2+Y%*%2))
RETURN

END

Function 2

FUNCTION FUN(X,Y)

R=SQORT (X#%#2+Y%%2)
FUN=X*Y*(R-3.)/(1.+EXP(3.*(R-3.5)))
RETURN i

END

9-13

ALTERNATE
FUNCTIONS

Running a FORTRAN IV Program

SUMMARY:
COMMANDS TO
RUN FORTRAN
PROGRAMS

FILE MAINTENANCE

Function 3

FUNCTION FUN(X,Y)
FUN=EXP(+SORT (X% #2+Y##2))/1177.4
RETURN

END

EXECUTE
Combine the compile-link-run operations into one command.

EXECUTE file
Combine the compile-link-run operations into one command.
Specify the libraries to be used during linking.

EXECUTE file/FORTRAN
Combine the compile-link-run operations into one command,
and specify the input file to be a FORTRAN file.

EXECUTE/LIST
Combine the compile-link-run operations into one command.
Obtain a listing file of the source program and print on line
printer.

FORTRAN
Compile the FORTRAN IV source program and produce an
object module.

FORTRAN/LIST
Compile the FORTRAN IV source program and produce both
an object module and a listing file.

LINK
Link individual object modules together to form a complete
program and produce a load module.

RUN
Run the indicated load module.

Before continuing further you should perform the necessary file
maintenance operations.

NOTE

If you used a special LINK volume to perform this dem-
onstration, turn now to the section entitted FOR-
TRAN/LINK File Maintenance in Appendix B.

Obtain a directory of all files on your system volume that have
the name GRAPH regardless of file type; these files were cre-
ated as a result of the exercises in this chapter.

9-14

Running a FORTRAN IV Program

Long and Short Command Format

+DIRECTORY GRAPH. &

08-Jan-83

GRAPH .,SAV 21 08-Jan-83 GRAPH ,LST 8 08-Jan-83
GRAPH .BAK 2 08-Jan-83 GRAPH .FOR 2 08-Jan-83
GRAPH .0BJ 16 08-Jan-83

S Filess» 49 Blocks

447 Free blocks

The fact that you have corrected errors in the source file
GRAPH.FOR makes the version of that file on your storage
volume obsolete. Therefore, transfer the updated copy from
your system volume to VOL: replacing the copy of
GRAPH.FOR on the storage volume with the new version.

Long Command Format

+COPYGRED
From? GRAPH.FORG@E
To ? VOL : GRAPH ., FOREE)

Short Command Format

+COPY GRAPH.FDR YOL :GRAPH.FORGE

Similarly, transfer GRAPH.LST, GRAPH.OBJ , and
GRAPH.SAV to your storage volume. This allows you to exam-
ine a listing or rerun the FORTRAN IV program without re-
compiling and relinking the source.

Long Command Format

+COPYGRED)

From? GRAPH.LST'GRAQH.DBJ’GRAPH.SAUG@
To ? VOL:ED

Files copied:
DK:GRAPH.LST to YOL:GRAPH.LST
DK:GRAPH.0BJ to VOL:GRAPH.OBJ

DK :GRAPH,.SAY to VOL:GRAPH.SAV

Short Command Format

+COPY GRAPH.LST.GRAPH.DBJ.GRAPH.SAU VoL : GD
Files copied:

DK:GRAPH,.LST to VOL:GRAPH.LST
DK:GRAPH.0BJ to VOL:GRAPH.0BJ

DK :GRAPH,SAY to VUOL:GRAPH.SAY

Once you have transferred all files of value to your storage
volume, delete the useless files — that is, all the GRAPH
files — from the system volume.

9-15

Running a FORTRAN IV Program

REFERENCES

Long Command Format

+DELETERE

Files? GRAPH.#*@D
Files deleted:
DK:GRAPH.BAK ? Y@

DK:GRAPH.SAV ? YGD
DK:GRAPH.FOR ? YGD
DK:GRAPH.LST ? Y@
DK:GRAPH.O0BJ 7 Y@

Short Command Format

«DELETE GRAPH.*ED
Files deleted:
DK:GRAPH.BAK ? Y@

DK:GRAPH.SAV 7 Y@
DK:GRAPH.FOR 7 YGD
DK:GRAPH.LST ? YGD
DK:GRAPH.0BJ ? YGD

Finally, obtain an up-to-date directory listing of your storage
volume so that you can see its current status.

Long and Short Command Format

+DIRECTORY VOL:@D

08-Jan-83

SUM +MAC 3 08-Jan-83 EXAMP ,FOR 2 26-Aug-82
EXAMP .MAC 3 26-Aug-82 GRAPH .FOR 2 08-Jan-83
GRAPH .LST 8 08-Jan-83 GRAPH .,0BJ 18 08-Jan-83
GRAPH .SAV 21 08-Jan-83

7 Filessy 55 blocks

4707 Free blocks

This completes the FORTRAN IV demonstration. Continue to
Chapter 12 to read about the linking process. If you followed
the special instructions in Appendix B to load the language
volume, leave this volume in device unit 0 until you have fin-
ished Chapter 12.

McCracken, Daniel D., A Simplified Guide to FORTRAN Programming. New
York: Wiley, 1974.

An introduction to programming in the FORTRAN language.

PDP-11 FORTRAN Language Reference Manual (AA-1855D-TC). Maynard,
Mass.: Digital Equipment Corporation, 1980.

A reference manual and guide to programming in the PDP-11 FOR-
TRAN IV language.

RT-11 FORTRAN 1V Installation Guide (AA-5240E-TC). Maynard, Mass.:
Digital Equipment Corporation, 1980.

An RT-11-specific manual that contains instructions for installing the
RT-11 FORTRAN IV language processor, and describes known prob-
lems and differences between versions.

RT-11 RSTS-E FORTRAN IV User's Guide (AA-5749B-TC). Maynard,
Mass.: Digital Equipment Corporation, 1980.

An RT-11-specific manual that contains information necessary to com-
pile, link, run, and debug a FORTRAN IV program.

9-16

CHAPTER 10

RUNNING A BASIC-11 PROGRAM

The BASIC-11 program language' is a machine-independent
programming language that is one of the easiest languages for
the beginning programmer to learn. It has both elementary lan-
guage features that you use to write simple programs, and more
advanced operations that allow you to produce complex and effi-
cient programs. In addition, a special “immediate mode” lets
you use BASIC-11 like a calculator to obtain instant answers
to mathematical problems.

BASIC (Beginner’s All-purpose Symbolic Instruction Code) —11
is conversational in nature. It uses simple English keywords
and common mathematical expressions to form easily under-
stood language statements.

You write a BASIC-11 program as a series of one or more pro-
gram lines. You begin each program line with a number that
both identifies the line and indicates the order in which the line
will be processed. Individual program lines contain one or more
BASIC-11 language statements that define the operations to be
performed.

When you are satisfied with the logic of your BASIC-11 source
program, you create it as a file. However, unlike your methods
under other programming languages, you create the file under
the control of the BASIC-11 language processor, which is part
of the RT-11 operating system and is stored on your system
volume or on a separate volume of its own. Thus, you use com-
mands that are part of the BASIC-11 language processor to
create and edit the program, list it, run it, and save it for later
use.

The BASIC-11 language processor is an interactive interpreter.
It allows you to create and execute a program in its entirety or
a few lines at a time. The interpreter examines each program
language statement, interprets it, and executes it before going
on to the next. If it discovers an error that prevents further
processing, it prints on the terminal a message informing you of
the error condition and stops. You correct the error so that exe-
cution can continue past that point, and then rerun the pro-

gram.

1BASIC-11 is a superset of the standard BASIC language developed at Dart-
mouth College.

10-1

DEVELOPING
A BASIC-11
PROGRAM

USING THE
BASIC-11
LANGUAGE
PROCESSOR

Running a BASIC-11 Program

USING THE
BASIC-11
INTERPRETER

BASIC

C— — C— — —— —— a— T — — —— — — — c—— — o—— —

CREATE > EDIT — RUN

S,

Figure 10-1 Functions of the BASIC-11
Language Processor

The functions of program creation, editing, processing, and exe-
cution are all handled by the BASIC-11 language processor.
Some RT-11 systems store the BASIC—11 interpreter (language
Processor) on a volume apart from the system volume.' You can
quickly determine whether the BASIC—11 interpreter is on
your system volume by typing the monitor DIRECTORY com-
mand and specifying the BASIC.SAV program.

DIRECTORY BASIC.SAVED

In the directory listing that results, if the directory entry for
BASIC.SAV is listed on your terminal, then the required
BASIC-11 files are on your system volume and you are ready to
use the interpreter. However, if BASIC.SAV did not appear in
your listing, then the required files are not part of your system
volume. Before you can use the interpreter, you must make a
volume substitution. Read the section in Appendix B entitled
Using the FORTRAN/BASIC Language Volume.

Now use the monitor BASIC command to activate the
BASIC-11 interpreter:

Long and Short Command Format

1/RT-11 V2,1
L FUNCTIONS (ALL: NONE, OR INDIVIDUAL)?

pting message is printed by BASIC-11. You must re-
with an A, N, or I and a carriage return to indicate
wheth@r you want to preserve all, none, or some of the arithme-
tic furftions initially provided by BASIC-11. BASIC-~11’s func-
clude operations that calculate random numbers, deter-

'This iftrue for any RT-11 system volume that does not have enough free
accommodate the BASIC-11 system files. RX01 diskette is an

10-2

mine absolute values, convert octal and binary numbers to deci-
mal, and s0 on. You can conserve memory space by saving only
those functions that your program needs. For now, however,
instruct BASIC-11 to save all the functions.

AGED
READY

BASIC-11 prints the READY message to indicate that it is
ready to accept a BASIC-11 command. Any text that you type
that is not preceded by a BASIC-11 command is accepted as
program (or immediate mode) input. If at any time you wish to
return to the monitor command mode, simply type the BYE
command following the READY message. READY appears
after any BASIC-11 execution that is completed or interrupted
by a double CTRL/C, or after any BASIC-11 wait condition that
is terminated by a single CTRL/C.

NOTE

You do not need to understand the BASIC-11 language
or the way the examples work to perform successfully
the exercises in this chapter.

Immediate mode allows you to use the BASIC-11 interpreter
like a calculator to obtain immediate answers to arithmetic
problems. You enter the appropriate BASIC—11 statement key-
word and any necessary mathematical formula. When you
press the carriage return key, BASIC-11 immediately calcu-
lates and prints the results. (Use the terminal DELETE key
and the CTRL/U command to correct any typing errors.)

PRINT (128+75)*3ED
6089

BASIC-11 adds the two numbers in parentheses, multiplies
them by 3, and prints the answer. The PRINT statement causes
the answer to be printed on the terminal. The following com-
mand provides another example:

PRINT INT(34.67)GD
34

READY

The greatest integer less than or equal to 34.67 is printed.

You can combine several statements on a single line, or on
several lines, including variable names, arithmetic equations,
and data. Individual statements are separated from one an-
other by a backslash (\) character. BASIC-11 considers all the

10-3

Running a BASIC-11 Program

BYE

Immediate Mode

PRINT

Running a BASIC-11 Program

Creating and Editing
a BASIC-11 Program

SuB

information, calculates the answer and prints it on the ter-
minal, as illustrated in the following example:

A=5\B=14\C=.,3729GD

READY

PRINT "THE HEIGHT IS"iA*SIN(C)+B3i"METERS" @D
THE HEIGHT IS 15,8216 METERS

READY

The first statement equates variable names with values; the
second statement introduces a formula for calculating a result
and prints it.

You can use immediate mode to solve fairly lengthy and com-
plicated mathematical problems by combining statements and
printing identifying messages. However, immediate mode infor-
mation is temporary. You cannot save it, and you can change it
only by retyping every statement line. If your needs are more
complex, or if you want to save your statements, you should
create a BASIC-11 program.

To create a BASIC-11 program, assign line numbers to lan-

guage statements and then type the numbered statements on
the terminal keyboard.

Now your program lines are saved in memory and you can
transfer program control to specific lines within the program,
repeat parts of the program any number of times, store the
entire program for later use, and perform other similar opera-
tions that are not possible in immediate mode.

Once you have created the program, you use BASIC-11 editing
commands to list lines, change lines, add and erase lines, and
correct typing errors. In addition to the DELETE key and the
CTRL/U command, BASIC-11 provides a SUB command (SUB-
STITUTE) for correcting typing errors. This command allows
you to substitute new characters for existing ones in a line. For
example, type:

10 PRINT "THIS IS A BADIC PROGRAM"®D
SUB 10 BBADEBASRGD
10 PRINT "THIS IS A BASIC PROGRAM"

READY

The SUB command substitutes the letters BAS for BAD in line
10. Use a delimiting character (shown here as @) to separate
the old text from the new. The delimiter can be any character
as long as it is unique in the line. The corrected line is automat-
ically printed by BASIC-11 after you use the command. As
another example, type:

104

15 B=10\C=5@6D
20 LET A-B+C\PRINT CGED

There are two typing errors in line 20; the — should be an =
and the C at the end of the line should be A. These errors can be
corrected with the SUB command, as follows:

SUB 20 @-e=RGD
20 LET A=B+C \ PRINT C

READY
SUB 20 BCRARZEED
20 LET A=B+C \ PRINT A

READY

The second SUB command changes the second occurrence (spec-
ified by the 2 after the last @) of C to A.

You can erase an entire line by typing the line number followed
by a carriage return:

106

You can also use BASIC-11’s DEL command'. Use the DEL
command (DELETE) to erase a single line or several:

DEL 15-20G6D

This erases all statements with line numbers between and in-
cluding 15 and 20.

To list lines of a program, BASIC-11 provides the LIST com-
mand. First, create a few program lines:

5 FOR I=1 TO 10GD

20 INPUT JGBD

25 LET T=T+JGD

50 NEXT 1@

55 PRINT “"THE TOTAL IS"iTED
88 ENDGED

List individual lines by specifying the line number. For ex-
ample, type:

LIST S@

NONAME 08-JAN-83 00:18:49

5 FOR I=1 TO 10

READY

'Do not confuse the BASIC-11 DEL command with the DELETE key on the
terminal keyboard.

10-5

Running a BASIC-11 Program

DEL

LIST

Running a BASIC-11 Program

LISTNH

SCR

SUMMARY:
BASIC-11 EDITING
COMMANDS

Notice that BASIC-11 prints a header line. Since you have not
as yet assigned a name to your program, BASIC-11 assigns it
the name NONAME and prints this name, along with the date
(which is only correct if previously entered via the DATE mon-
itor command) and the time when you use the LIST command.
You can omit the header line by using the LISTNH command
instead of the LIST command.

LISTNH S50-88G6D

S50 NEXT 1
55 PRINT "THE TOTAL IS";T
88 END

READY

By typing the LIST or LISTNH commands without indicating
any line numbers, you can print on the terminal a listing of
your entire program. Terminate the command with a carriage
return.

L ISTNHGE

5 FOR I=1 |TO 10

20 INPUT

25 LET T=T+J

S50 NEXT I

S5 PRINT "THE TOTAL IS";T
88 END

READY

Finally, to erase the entire program, which you must do before
typing a new program, use the SCR (SCRATCH) command.

SCREED

READY

All program lines are erased from memory.

line #
Erase the indicated program lines.

DEL line #
Erase the indicated program lines.

LIST
List the entire program and print a header that includes the
program name, date, and time.

LIST line #
List the indicated lines and print a header that includes the
program name, date, and time.

10-6

LISTNH
List the entire program but do not print a header.

LISTNH line #
List the indicated lines but do not print a header.

SCR

Erase all program lines from memory and change the name
to NONAME.

SUB line #@FIRST@SECOND@n
Replace the nth occurrence of the FIRST character(s) with
the SECOND character(s) in the indicated line (default is
n=1).

Create the following demonstration program’, using the appro-
priate BASIC-11 editing commands, exactly as it appears here.
If you forget to insert a line, type it at the end or when you
notice the omission; BASIC-11 sorts and arranges lines by
number before execution, regardless of the order in which they
are typed. When you have finished, list the entire program and
make a final check for typing errors.

100 REM THE PROGRAM 23 MATCHES

101 REM

110 PRINT "WE BEGIN WITH 23 MATCHES. YOU MOVE FIRST. YOU"
115 PRINT "MAY TAKE 1, 2, OR 3 MATCHES. TYPE YOUR CHOICE"
120 PRINT "FOLLOWED BY A CARRIAGE RETURN., THEN THE COM-"
125 PRINT "PUTER CHOOSES :» 2y OF 3 MATCHES. YDU CHDOSE"
130 PRINT "AGAIN, AND SO ON. WHOEVER MUST TAKE THE LAST"
135 PRINT "MATCH, LOSEES."

140 PRINT \ LET M=23

200 REM THE HUMAN MOVEES

201 REM

210 PRINT \ PRINT "THERE ARE NOW"3iM3i“MATCHES,"

215 PRINT \ PRINT "HOW MANY DO YOU TAKE"}

230 INPUT H

240 IF H>M THEN 510

250 IF H<{>INT(H THEN S1C

260 IF H<=0 THEN 510

270 IF H>=4 THEN 510

280 LET M=M-H

290 IF M=0 THEN 410

300 REM THE COMPUTER MCUES

301 REM

305 IF M=1 THEN 440

310 LET R=M-4*%INT(M/4:

320 IF R<>1 THEN 350

330 LET C=INT(3%*RND)+1 \ GO TO 360

350 LET C=(R+3)-4%INT((R+3)/4)

360 LET M=M-C

370 IF M=0 THEN 440

380 PRINT \ PRINT "THE COMPUTER TOOK"3iC3i"veus"3$

390 GO TO 310

400 REM SOMEBODY WON

401 REM

410 PRINT \ PRINT "THE COMPUTER WON." \ GO TO 999

440 PRINT \ PRINT "YOU WON.," \ GO TO 999

500 REM BAD INPUT

501 REM

510 PRINT "ENTER ONLY 1, 2, OFR 3." \ GO TO 215

999 END

123 Matches, 101 BASIC Computer Games, Maynard, Mass.: Digital Equip-
ment Corporation, 1975.

10-7

Running a BASIC-11 Program

Running a BASIC-11 Program

RUNNING A
BASIC-11 PROGRAM

RUN

As you can see from the first few lines of the listing, this pro-
gram is a mathematical game where you match your logic
against the program logic. The PRINT statements in the pro-
gram print messages, game instructions, results, and so forth,
on the terminal. The REM statements identify comment
lines — remarks that provide general information about the
program, but that are ignored by BASIC-11 during processing.
The INPUT statement in line 230 allows you to supply data
from the terminal. Depending on the value you enter, program
control transfers to various other parts of the program. For ex-
ample, if you type an invalid value, program control skips
ahead to a PRINT statement in line 510 informing you of your
mistake and then returns to line 215 to ask for a value again.
The mathematical algorithms of this program are in lines 310
through 350, which determine the number of matches the com-
puter will select based on your choice.

Once you have typed the program and checked the listing to be
sure that it corresponds to the example, you are ready to run it.
The BASIC-11 RUN command initiates program execution.
This command prints a header that includes the program name,
date, and time. If you want to omit the header line, type the
RUNNH command instead.

RUNNHGED

If you typed the program correctly, you will see this text print
on your terminal:

WE BEGIN WITH 23 MATCHES. YOU MOVE FIRST. You
MAY TAKE 1, 2, OR 3 MATCHES. TYPE YOUR CHOICE
FOLLOWED BY A CARRIAGE RETURN. THEN THE COM-

PUTER CHOOSES 1, 2, OR 3 MATCHES. YOU CHOOSE

AGAIN, AND SO ON. WHOEVER MUST TAKE THE LAST

MATCH, LOSES.

THERE ARE NOW 23 MATCHES.

HOW MANY DO YOU TAKE?

NOTE

If this response does not appear, you have not entered
the program correctly. Compare your listing very care-
fully against the one provided earlier. Spacing does not
matter, but all other characters must match. To correct
your errors type CTRL/C, which, under control of
BASIC-11 only, returns you to BASIC-11 command
mode, indicated by the READY message. Correct the
program and then rerun it.

10-8

When the program pauses and asks you a question, you must
supply data, in this case a 1, 2, or 3. Type your choice (repre-
sented here by n), followed by a carriage return:

n @D

PSYNTAX ERROR AT LINE 250

READY

BASIC-11 discovered an error! in line 250 that prevents fur-
ther processing. Check line 250 in your listing or list it on the
terminal:

LISTNH 250@D)

250 IF H<>INT(H THEN 510

READY

Note that a right parenthesis is missing after the second H in
this line. Correct the line using the SUBSTITUTE command:

SUB 250 B(HE(H)EGEE
250 IF H<>INT(H) THEN 510

READY

You are ready to run the program again.

RUNNHG@®ED

BASIC-11 begins processing at the start of the program.

WE BEGIN WITH 23 MATCHES. YOU MOVE FIRST. YOU
MAY TAKE 1, 2, OR 3 MATCHES. TYPE YOUR CHOICE
FOLLOWED BY A CARRIAGE RETURN. THEN THE COM-

PUTER CHOOSES 1, 2, OR 3 MATCHES, YOU CHOOSE

AGAIN,» AND SO ON. WHOEVER MUST TAKE THE LAST

MATCH,» LOSES.

THERE ARE NOW 23 MATCHES.

HOW MANY DO YOU TAKE?

Type your choice again. But notice this time that a different
kind of error is detected. The BASIC-11 interpreter has entered
an infinite loop, a series of commands that it repeats endlessly.
After several lines have printed, type a double CTRL/C; this
interrupts execution and returns control to BASIC-11 com-
mand mode.

Refer to the RT-11 System Message Manual for greater detail about any
messages printed during normal system use.

10-9

Running a BASIC-11 Program

CTRL/C CTRL/C

Running a BASIC-11 Program

n GED

THE COMPUTER TOOK
THE COMPUTER TODOK
THE COMPUTER TOOK
THE COMPUTER TOOK
THE COMPUTER TOOK
THE COMPUTER TOOK
THE COMPUTER TODOK
THE COMPUTER TOOK
THE COMPUTER TOOK
THE COMPUTER TOOK
THE COMPUTER TOOK
CTRLC) ERLC)

STOP AT LINE 380

e

e

L

L

LK IR AN)

L N

LRI AYY

¢ e

LR AN)

L I

W W= WNN W -

L

READY

An infinite loop is a programming logic error. However, since
the error does not prevent processing, BASIC—11 does not print
an error message. Instead BASIC-11 is caught in a loop of in-
structions and executes them endlessly. This particular loop is
obvious because it prints a line of text; other kinds of loops may
not be so evident. At this point you must examine the program
logic to determine why these instructions are being repeated.

Look at your listing of this program. The problem in this case is
in line 390. This line instructs program control to return to line
310; therefore lines 310 through 390 are repeated endlessly
without ever obtaining your next value choice. Program control
should really return to line 210. Correct line 390 as follows:

SUB 390 B310R210@GED
390 GO TO 210

READY

Now you are ready to run the program again. This time the
entire program should execute without error. Enter your value
choices when requested. (A hint to playing the game: your first
value choice determines whether you can win; if your first
choice is wrong, the program has the advantage throughout.) A
sample run follows.

RUNNHG@ED

WE BEGIN WITH 23 MATCHES. YOU MOVE FIRST. YOU
MAY TAKE 1, 2, OR 3 MATCHES. TYPE YOUR CHOICE
FOLLOWED BY A CARRIAGE RETURN. THEN THE COM-

PUTER CHOOSES 1+ 2, OR 3 MATCHES. YOU CHOOSE

AGAIN,» AND SO ON. WHOEVER MUST TAKE THE LAST

MATCH, LOSES.

THERE ARE NOW 23 MATCHES.

10-10

HOW MANY DO YOU TAKE? 1@ED

THE COMPUTER TOOK 1 ...
THERE ARE NOW 21 MATCHES.
HOW MANY DO YOU TAKE? 1G@ED

THE COMPUTER TOOK 3 ...,
THERE ARE NOW 17 MATCHES.

HOW MANY DO YOU TAKE? 2GD

e

THE COMPUTER TOOK 2
THERE ARE NOW 13 MATCHES,

HOW MANY DO YOU TAKE? 1@

THE COMPUTER TOOK 3
THERE ARE NOW 9 MATCHES.

HOW MANY DO YOU TAKE? 1@

THE COMPUTER TOOK 3
THERE ARE NOW 5 MATCHES.

HOW MANY DO YOU TAKE? 3@

THE COMPUTER TOOK 1 ...,
THERE ARE NOW 1 MATCHES,

HOW MANY DO YOU TAKE?
ENTER ONLY 1, 2, OR 3.

O®ED

HOW MANY DO YOU TAKE? 1@
THE COMPUTER WON.

READY

RUN
Execute the BASIC-11 program currently in memory; print a
header line including the program name, date, and version
number.

RUNNH

Execute the BASIC-11 program currently in memory; omit
the header line.

CTRL/C
Under control of BASIC-11 only, interrupt execution of the

BASIC-11 program and return control to BASIC-11 com-
mand mode.

BYE

Return control to monitor command mode (only when using
BASIC-11).

10-11

Running a BASIC-11 Program

SUMMARY:
BASIC-11
EXECUTION
COMMANDS

Running a BASIC-11 Program

FILE MAINTENANCE

SAVE

NEW

OLD

You can transfer the BASIC-11 program currently in memory
to a storage volume by using the SAVE command of BASIC.
The SAVE command copies the program to the storage volume
and gives the program the file name and file type that you
indicate in the command line. A file type of .BAS is assigned
automatically unless you indicate otherwise.

Use the SAVE command to store this BASIC-11 program as
MATCH.BAS on the storage volume (VOL:) as follows:

SAVE VOL :MATCHGEE

READY

After you save a BASIC-11 program on a storage volume, you
can create a new program in memory by typing the BASIC-11
NEW command. This command erases the current memory con-
tents and asks you for a new program name:

NEWGED
NEW FILE NAME--

You can type any file name you wish and BASIC-11 assigns it
to the file you create. Or you can respond by typing only a
carriage return; BASIC-11 then assigns the file name NO-
NAME.

Another way to create a new program in memory is to type the
BASIC-11 SCR command. This command simply erases the
current memory contents. It assigns the name NONAME:

SCRGED
READY

To use an existing BASIC-11 program, one that you have pre-
viously stored on a storage volume, type the BASIC-11 OLD
command:

OLDG@ED
OLD FILE NAME--

Reply by typing the device name, file name, and file type of the
file that you want to use. If you omit an explicit device name,
BASIC-11 assumes DK: (the default volume); if you omit an
explicit file type, BASIC-11 assumes .BAS. BASIC-11 erases
memory and then copies the program from the volume into
memory. For example, type:

VOL :MATCHGED
READY
This copies VOL:MATCH.BAS back into memory.

Assume that you have edited or changed the MATCH.BAS file
and now want to transfer it back to VOL:. Since the file already

10-12

Running a BASIC-11 Program

exists as MATCH.BAS on that volume, you must use the
BASIC-11 REPLACE command:

REPLACE VOL :MATCHGEE!
READY

The REPLACE command replaces an existing file with a new
version.

The SAVE and REPLACE commands copy a BASIC-11 pro-
gram from computer memory to a storage volume. As these
commands copy the program, they convert it from the internal
format used by BASIC-11 to ASCII format. Thus, you can, if
you prefer, use the RT-11 editor to create and edit BASIC-11
programs, since the editor also uses ASCII format. However,
many users would rather use BASIC-11 to create and edit a
BASIC-11 program, since they can then run the program,
reedit it, rerun it, and save the new version — all in BA-
SIC-11 command mode — rather than perform the several cor-
responding monitor commands.

The last file maintenance operation that you should perform is
to obtain an up-to-date directory of your storage volume so that
you can see its current status; however, you must return to
monitor command mode to do this. Type the BYE command;
this BASIC-11 command (rather than CTRL/C) returns control
to monitor command mode. Next use the DIRECTORY monitor
command to check the status of your storage volume.

BYEGD

+DIRECTORY/BRIEF VOL:

08-Jan-83

SUM +MAC EXAMP .FOR EXAMP ,MAC GRAPH .FDR GRAPH +LST
GRAPH .0BJ GRAPH .SAV MATCH .BAS

8 Files,» 58 Blocks

4704 Free blocks

NEW
Create a new BASIC-11 program, assigning the file name
indicated.

OLD
Copy into memory an existing BASIC-11 program (for use
under BASIC-11).

REPLACE
Copy the BASIC-11 program currently in memory to the in-
dicated storage volume, replacing the version that already
exists on that volume.

SAVE

Copy the BASIC-11 program currently in memory to the in-
dicated storage volume.

10-13

REPLACE

SUMMARY:
BASIC-11 FILE
MAINTENANCE

COMMANDS

Running a BASIC-11 Program

REFERENCES

This completes the BASIC-11 demonstration. Before you con-
tinue to Chapter 14 to learn about program debugging, make
sure that the main system volume is loaded in device unit 0. If
you followed the special instructions in Appendix B to load the
language volume, you should now stop the system, unload that
volume, load the main system volume, and rebootstrap the
system.

BASIC-11 Language Reference Manual (AA-1908A-TC). Maynard, Mass.:
Digital Equipment Corporation, 1976.

A reference manual and guide to programming in the BASIC-11 lan-
guage.

BASIC-11/RT-11 Installation Guide and Release Notes (AA-K724B-TC).
Maynard, Mass.: Digital Equipment Corporation, 1983.

An RT-11-specific manual that contains instructions for installing the
RT-11 BASIC-11 language processor and lists known problems and
differences between versions.

BASIC-11/RT-11 User's Guide (AA-5071B-TC). Maynard, Mass.: Digital
Equipment Corporation, 1983.

An RT-11-specific manual that contains information necessary to
create, edit, run, and debug a BASIC-11 program.

10-14

CHAPTER 11

RUNNING A MACRO-11 ASSEMBLY LANGUAGE PROGRAM

The MACRO-11 programming language is a machine-depend-
ent programming language developed for the PDP-11 program-
mer, or for the FORTRAN IV programmer who intends to com-
bine assembly language routines and FORTRAN IV routines.
The MACRO-11 language enables the knowledgeable program-
mer to access all the features of the RT-11 computer system
using a precise and efficient programming code.

The MACRO-11 assembly language uses the PDP-11 instruc-
tion set, a list of mnemonic instructions that correspond to vari-
ous PDP-11 computer operations. These instructions allow you
to add, compare, increment, complement, and perform many
other manipulations on numerical data. The instructions are
summarized in a pocket-sized folding card, called the PDP-11
Programming Card (Figure 11-1), and are described in detail
in the PDP-11 Processor Handbook. By choosing the appropri-
ate instructions and by providing any additional data needed,
you can create a complete program.

R pd
ey Cond

i

"
il

'n'
‘
{

T
fl

14
$
*
1

* “

h

Figure 11-1 PDP-11 Programming Card

You write the MACRO-11 program as a sequence of lines, each
a single assembly language statement in the following format:

LABEL: OPERATOR OPERAND(S) COMMENTS

The operator and/or operand are instructions selected from the
PDP-11 instruction set, data needed by the instructions, or as-
sembler directives (instructions to the assembler to guide the
assembly process). The optional statement label identifies the
statement line so that you can refer to the instructions or data
on that line from other parts of the program. Optional com-
ments describe generally what operations are being done.
Sequences of language statements constitute a routine (to per-
form a specific function); groups of routines and data compose
the entire executable program.

11-1

DEVELOPING
A MACRO-11
ASSEMBLY
LANGUAGE
PROGRAM

Running a MACRO-11 Assembly Language Program

USING THE
MACRO-11
LANGUAGE
PROCESSOR

When you are satisfied with the logic of your MACRO-11
source program, you use the RT-11 editor to create it as a file
(see Chapter 5). You use tabs and spaces to make the program
more readable. When you have finished creating the program
as a complete, edited file, you next enter it as input to the
MACRO-11 language processor, which is part of the RT-11
operating system and is stored on your system volume. The
MACRO-11 language processor processes (assembles) the lan-
guage statements, converting them into an internal machine
language code called object code. This code is next processed by
the system linker, which combines your program units and
makes the program suitable for execution. Figure 11-2 repre-
sents the development of an executable MACRO-11 program.

CREATE EDIT ASSEMBLE LINK RUN

Figure 11-2 Evolution of a MACRO-11 Program

The MACRO-11 language processor is an assembler that ac-
cepts information in one format (that is, your source program)
and translates it into another format (that is, a machine lan-
guage program). The assembler interprets and processes the
assembly language statements, one at a time, and generates
one or more computer instructions or data items. Since you
originally use the editor to create a MACRO-11 program in
ASCII format, you must next translate it into a machine format
that the computer can use. The MACRO-11 assembler per-
forms this conversion, producing as output a new version of the
program, in object format, called an object module. You may
request the MACRO assembler to produce a listing of the
source program at the same time. The role of the assembler is
represented below in Figure 11-3.

SOURCE OBJECT
PROGRAM ™1 ASSEMBLE MODULE
LISTING

(OPTIONAL)

Figure 11-3 Function of a MACRO-11 Assembler

11-2

Running a MACRO-11 Assembly Language Program

During assembly processing, the MACRO-11 assembler:

® Accounts for all instructions used within the source program
and determines their relative positions in computer memory;
it does this by means of a storage location (program) counter.

® Keeps track of all user-defined symbols and their respective
values in a symbol table. ‘

* Converts assembly language mnemonics, user-defined sym-
bols, and data values into their respective machine language
(object code) equivalents.

The program counter keeps track of addresses in computer
memory where instructions and data will be stored.

PDP-11 computer memories are composed of physical storage
locations that can hold numerical data. These locations are
numbered consecutively from 0 up to the highest memory loca-
tion, which varies according to the amount of memory acquired
with the computer system (Figure 11-4). PDP-11 computers
used in an RT-11 system have at least 32,768 bytes (16,384
words).

CONVERTED INSTRUCTION

CONVERTED INSTRUCTION 1000

CONVERTED INSTRUCTION

Figure 114 PDP-11 Computer Memory

11-3

The Program
Counter

Running a MACRO-11 Assembly Language Program

The Symbol Table

Machine Language
Code

During processing, the assembler converts each program lan-
guage statement into numerical data (the object code) and as-
signs the data a relative storage location. The system linker
will convert the relative storage locations assigned by the as-
sembler to absolute storage locations in the computer memory.!
The location’s associated number is called its address. As the
assembler translates and assigns each statement, it updates the
value of the program counter accordingly.

Since you may not know which locations, or how many loca-
tions, the program needs, you use symbolic names (variables,
constants, and labels) to represent individual locations and
their contents. As the assembler processes the source program,
it constructs a symbol table, which is a compiled list of all the
symbolic names and labels that you have used within the pro-
gram. The MACRO-11 assembler defines each symbolic name
by assigning an address or data value, as appropriate, and adds
the symbol definition to the symbol table. After assembly, you
can refer to the symbol table, which is printed at the end of the
assembly listing, to find all symbol definitions.

The third function of the assembler is to convert your
MACRO-11 source language statements into machine lan-
guage code (the object module).

NOTE

The following information will help you understand the
assembly listing used later in this chapter.

Machine language code is numerical data in the form of binary
numbers (numbers composed of only the digits 0 and 1). Binary
numbers are appropriate because the digits 0 and 1 can be eas-
ily manipulated by the two-state electronic logic of the com-
puter.

For example, a typical assembled instruction in PDP-11 com-
puter memory looks like this:

location location
address contents
01000 11000000
01001 11100101

The system linker is discussed in Chapter 12.

114

Running a MACRO-11 Assembly Language Program

Since a single instruction requires two (or more) consecutive
memory locations, the instruction is actually put together in
memory in the following manner:

high-order byte low-order byte
01001 11100101 11000000 01000

Each individual digit of the instruction is called a bit (binary
digit). A single memory location, called a byte, contains 8 bits;
two memory locations, called a PDP-11 word, contain 16 bits.

The byte in the even-numbered memory address is called the
low-order byte and is stored first; the byte in the odd-numbered
memory address is called the high-order byte and is stored next.
Both bytes together form one PDP-11 16-bit word (Figure

11-5).
PDP-11 Word
gt01y 171 1 0 0 1t 0O 1|11 1 0 O O O O O] 01000
‘\\\T etc.
bit
High-order byte Low-order byte

Figure 11-5 PDP-11 Word

The computer works in terms of 8-bit bytes and 16-bit words of
binary data. However, binary numbers are generally too long
and cumbersome to be used effectively by a programmer. But
binary numbers can be easily represented as octal numbers
(numbers composed of digits within the range 0 to 7). Since
octal numbers are closer to the familiar decimal number system
and are much more readable than binary numbers, the pro-
grammer more often uses octal numbers than binary numbers.

Table 11-1 shows the decimal numbers 0 through 10 and their

respective octal and binary equivalents. Tables and formulas
are available to calculate higher conversions.

Thus, you can think of the binary instruction shown earlier in
terms of its octal equivalent as follows (conversion is done from
low-order to high-order byte in groups of three bits):

high-order byte low-order byte
01001 11100101 11000000 01000

1 6 2 7 0 0 = 162700(8)

11-5

Running a MACRO-11 Assembly Language Program

ASSEMBLING
THE MACRO-11
PROGRAM

A MACRO-11 assembly listing shows the addresses of memory
locations and their contents as octal numbers. The octal num-

bers represent the respective binary machine language code
that makes up the object module.

Table 11-1 Decimal/Octal/Binary Conversion
Decimal Octal Binary

000
001
010
011
100
101
110
111
10 1 000
11 1 001
12 1 010

COXVTIDANNh W O
N0 W -=O

[u—y

In Chapter 5 you used the RT-11 editor to create a MACRO-11
source program; you then stored it on your storage volume.
Since a source program is in ASCII format, the next step is to
use the MACRO-11 assembler to convert the source program to
object code.

Copy the MACRO-11 source program from the storage volume
back to the system volume (which is the default volume for
input/output operations).

On your storage volume are two MACRO-11 source programs,
the one you created, SUM.MAC, and the one provided for you,
DEMOX1.MAC, which was renamed to EXAMP.MAC in Chap-
ter 7. Which of these you should copy depends on the results of
the source comparison you performed in Chapter 6. If the com-
parison resulted in no differences except for the title lines, copy
your own program (SUM.MAC) as follows:

Long Command Format
{COPYED

From? VOL:SUM.MACGE

To ? SUM.MACGEED

Short Command Format
.COPY VOL:SUM.MAC SUM.,MACGED

However, if differences were listed in addition to the title lines,
substitute the program EXAMP.MAC:

11-6

Running a MACRO-11 Assembly Language Program

Long Command Format

+COPYGRD
From? VOL:EXAMP,MACGET
To ? SUM.MACGD

Short Command Format

+COPY VOL:EXAMP.MAC SUM.,MACRD

Whichever source file you copied now resides on your system
volume under the name SUM.MAC and is the file that you will
process with the MACRO-11 assembler. The command used to
assemble a MACRO-11 source program is the monitor MACRO
command.

Use the MACRO command with its /LIST and /CROSSREFER-
ENCE options to assemble your source program and produce a MACRO
cross-referenced assembly listing. The system prompt asks you
to supply the input file name. You can omit typing the .MAC
file type, since the MACRO command assumes this file type
unless you indicate otherwise. The system will automatically
assign the name SUM.OBJ to the object module and SUM.LST
to the listing file, and store both newly created files on the
system volume. (The system volume is the default storage vol-
ume for input/output operations.)

Long Command Format

+MACROGED

Files? SUM/LIST/CROSSREFERENCEG
Short Command Format

+MACRO SUM/LIST/CROSSREFERENCEGE

Assembly begins. When it is finished, a message similar to the
following prints on the terminal printer or screen:

?MACRO-W-Errors detected: 6
DK:SUM/DK:SUM/C=DK : SUM

This message indicates that the assembler detected errors in six
lines of the source program during processing. It helps at this

point to look at the listing produced by the assembler for infor-
mation.

Long Command Format

(Line Printer) (Terminal)
WPRINTED TYPEGE
Files? SUM,LSTED Files? SUM,LSTGED

11-7

Running a MACRO-11 Assembly Language Program

Short Command Format
(Line Printer) (Terminal)

+PRINT SUM.LSTGED

+TYPE SUM.LSTED

Your listing should look like the following example. An expla-
nation of this listing follows. You should refer to the listing as

you read the accompanying explanation.

NOTE

You do not need to understand the MACRO-11 lan-
guage or the way this program works to successfully

complete the exercises in this chapter.

SUM.MAC VERSION 1

MACRO V05,00 Saturdaw 08-Jan-83 09:21 Fade
1 \TITLE SUM.MAC VERSION 1
2
3 WMCALL .TTYQUT. .EXIT, .FRINT
4
5
&
7 000106 N = 70, iNO. OF DIGITS OF ‘E’ TO CALCULATE
8 i ‘E’ = THE SUM OF THE RECIFROCALS OF THE FACTORIALS
9 i 1700 + 1710 4 1720 4 1030 4 1/40 4 1/50 4 ..,
10
L] 11 000000 EXP? FRINT 8MESSAG #FRINT INTRODUCTORY TEXT
12 000006 012705 000106 MOV BNIRS #iNO. OF CHARS OF ‘E’ TO PRINT
13 000012 012700 000107 FIRST: MOV SN+1+RO iNO. OF DIGITS OF ACCURACY
u 14 000016 012701 000000 MOV #ArR1 ADDRESS OF DIGIT VECTOR
15 000022 006311 SECOND: ASL er1 DO MULTIFLY BY 10 (DECIMAL)
16 000024 011146 L @R1,-(5P) iSAVE ¥2
17 000026 006311 ASL @r1 x4
18 000030 006311 ASL eR1 21
19 000032 062621 ADD (SF)+y(R1)+ 7NOW %10, FOINT TO NEXT DIGIT
20 000034 005300 DEC RO AT END OF DIGITS?
21 000036 001371 BNE SECOND BRANCH IF NOT
22 000040 012700 000106 MOV $NIRO #G0 THRU ALL PLACES,» DIVIDING
23 000044 014103 THIRD: MOV ~(R1)sR3 iBY THE PLACES INDEX
24 000046 012702 177777 MOV #-1,R2 #INIT QUOTIENT REGISTER
25 000052 005202 FOURTH: INC R2 ¥ BUMF QUOTIENT
26
27 000054 160003 SUB ROYR3 7SUBTRACT LOOP ISN‘T BAD
28 000056 103375 BCC FOURTH NUMERATOR IS ALWAYS < 10%N
29 000060 060003 ADD ROYR3 iFIX REMAINDER
30 000062 010311 MOV R3,@R1 FSAVE REMAINDER AS BASIS
31 #FOR NEXT DIGIT
AR 32 000064 064167 000000 000000 ADD R2-2(R1) GREATEST INTEGER CARRIES
33 70 GIVE DIGIT
34 000072 005300 DEC RO #AT END OF DIGIT VECTOR?
35 000074 0013463 BNE THIRD +BRANCH IF NOT
36 000076 014100 MOV ~(R1)»KO #GET DIGIT TO OUTPUT
37 000100 162700 000012 FIFTH: SuB #10.,RO #FIX THE 2.7 TO .7 SO
38 FTHAT IT IS ONMLY 1 DIGIT
39 000104 103375 BCC FIFTH 7 (REALLY DIVIDE BY 10)
40 000106 062700 000072 ADD #10.+/0sRO 7MAKE DIGIT ASCII
u 41 000112 000000 .TTYON iOUTPUT THE DIGIT
42 000114 005011 CLR (3% #CLEAR MNEXT DIGIT LOCATION
43 000116 005305 DEC RS #MORE DIGITS TO PRINT?
44 000120 001334 BNE FIRST #BRANCH IF YES
45 000122 JEXIT iWE ARE DONE
46
L] 47 000124 000107 EXP3 +REFT N+1
48 +WORD 1 PINIT VECTOR TO ALL ONES
49 +ENDR
50
51 000342 124 110 105 MESSAG: .ASCII /THE VALUE OF E 18!/ <15><12> /2./ <200>
000345 040 126 101
000350 114 125 105
000353 040 117 106
000356 040 105 040
000361 111 123 072
000364 015 012 062
SUM.MAC VERSION 1 MACRO V05.00 Saturdaw 08-Jan-83 09:21 Pase 1-1
000347 056 200
52 +EVEN
53
D S4 000000 +END EXF
SUM.MAC VERSION 1 MACRO V0S.00 Saturdaw 0B-Jan-83 09:21 Pase 1-
Swmbol table
A = KEXKRK FIFTH 000100R FOURTH 000052K N = 000106 THIRD 000044R
EXP 000000R FIRST 000012R MESSAG 000342F SECOND' 000022R <TTYON= 288388
+ ABS. 000000 000 (RW»I,GBL»ABSs0OUR)
000372 001 (RW» I+LCLsREL »CON)

Errors detected: &

XXX Assembler statistics

Work file reads: O

Work file writes: O

Size of work file! 8222 Words (33 Pases)
Size of core pool! 15872 Words (62 P. $)
Orerating sustem! RT-11

11-8

Running a MACRO-11 Assembly Language Program

Elarsed time! 00:00:04.34
DK 3 SUM» DK $ SUM/C=DK $ SUM

8UM.MAC VERSION 1 MACRO V05.00 Satirday 08-Jan-83 09:21 Fase S-1
Cross reference table (CREF V05.00)

JTTYON 1-41
A 1-14
EXP 1-11¢ 1-47¢ 1-54

FIFTH 1-37¢ 1-39

FIRST 1-13¢ 1-44

FOURTH 1-25¢ 1-28

MESSAG 1-11 1-51%

N 1-7¢ 1-12 1-13 1-22 L-47

SECOND 1-15¢ 1-21

THIRD 1-23¢ 1-35

SUM.MAC VERSION 1 MACRO V05.00 Sat.raay 08-Jan-83 09:21 Fage M-1
Cross reference table (CREF V05.00)

SJEXIT 1-3¢ 1-45

+PRINT 1-3¢ 1-11

+TTYOU 1-3¢

SUM.MAC VERSION 1 MACRO V05.00 Sstiruay 08- Jan-83 09:21 Fade E-1

Cross reference table (CREF V05.00)

1-32
1-54
1-11 1-47
1-32
1-14 1-41

crTxOD>

The first part of the listing has four logical sections, as follows:

line octal octal statement line
number memory instruction
address value(s)

The assembler assigns consecutive decimal line numbers to
each line of the source program, including blank lines and com-
ment lines. These numbers are used for reference purposes. The
next column to the right shows the relative' even-numbered
octal memory (byte) addresses of storage locations assigned by
the program counter to each instruction in the program. This
program has been assigned relative memory addresses 0
through 370. The third column (and possibly fourth and fifth)
shows the octal equivalent of the assembled instruction or data
value. An apostrophe following an octal value indicates a rela-
tive value that must be modified before it can be used (the
actual value is determined during linking). Finally, the source
program as you created it appears in the right-hand portion of
the listing.

For example, look at line 18 of the listing:

18 000030 006311 ASL eRr1 ;48
The instruction ASL @R1 is stored in relative memory loca-
tions 30 and 31 as binary data (the comment, ;*8, is ignored):
31 00001100 11001001 30
0 0 6 3 1 1

The assembler assigns relative memory addresses to instructions. Actual
addresses are not determined until the link operation is performed. Linking
and address relocation are discussed in Chapter 12.

11-9

Running a MACRO-11 Assembly Language Program

Some instructions require more than two memory locations; for
example, those at lines 13 and 14. The number of memory loca-
tions required depends upon the operation.

Following the assembled code in the listing is the symbeol table,
an alphabetical listing of user-defined symbols and labels in the
program and their respective definitions. Symbols are defined
as values. For example, the symbolic variable name N is de-
fined (in line 7) as 000106(octal) or 70(decimal), an absolute
value. Labels are defined as addresses. The symbolic label
FIRST is defined (in line 14) as 000012, a relocatable address
(the R following 000012 in the symbol table indicates that the
address will be relocated or modified during linking). A row of
asterisks next to any symbolic name in the table indicates that
for some reason — possibly a programming error — the as-
sembler could not define the symbol.

At the very end of the symbol table (where the . ABS. occurs) is
the program’s size information (or synopsis) in terms of the to-
tal number of octal storage locations it requires (in this case,
372). Following is the number of errors detected, and the
amount of free and used memory pages (statistics provided by
the assembler).

Following the symbol table is the cross reference (CREF) list-
ing. The CREF listing is optional — as is the assembly
listing — but provides you with useful reference and debug-
ging information, especially if the program is large. The CREF
listing can contain several kinds of tables of reference informa-
tion, each beginning on a new page. The default tables are the
three shown here.

Every reference in a CREF table shows the page number of the
listing (in the preceding example, all references are on page 1),
followed by the appropriate line number. A number sign follow-
ing a line number indicates that this line is where a label or
symbol definition occurs.

The first CREF table shown here lists alphabetically all user-
defined symbol and label references.

The second CREF table lists alphabetically all macro symbol
references. (Macro symbols are a special feature of the
MACRO-11 assembly language; they are described shortly.)

The third CREF table lists alphabetically the codes of the er-
rors detected during assembly. These errors must be corrected
before you can run the program.

Now that you are familiar with the format of an assembly list-
ing, go back to the beginning of the example listing to deter-
mine what this program should do.

11-10

Running a MACRO-11 Assembly Language Program

The first two comment lines (preceded by semicolons) indicate
that the program calculates the value of ‘E’, which is the sum of
the inverse of the factorials between 1 and infinity. The algo-
rithm used in this program is somewhat complicated (this was
necessary to keep the program reasonably short). ‘E’ is calcu-
lated one digit at a time by using a difference function between
its actual value and the current approximation for each new
digit. The program forms:

I+(1+1Q+...+ 1+ 1+ 1/N)Y(N=-1))/(N=2))..../2)/1)

and is 2.11111... in the inverse factorial base system, which is
the first sum shown in the program listing.

The statements between lines 1 through 7 define initial states
to the assemblers, such as the value of N , and designate the
macros that will be used throughout the program.

Macros, from which the MACRO-11 language processor derives
its name, are a useful feature of the MACRO-11 assembly lan-
guage. You can define as a macro any recurring sequence of
coding instructions. By giving the macro a name, you can there-
after call it from any other part of the program by using a
single language statement.

In addition to the macros you define yourself, the RT-11 system
provides system macros that your programs can access. System
macros are defined in a special system library file called SYS-
MAC.SML (SML stands for System Macro Library). SYS-
MAC.SML is part of the RT-11 operating system and is stored
on the system volume. If you request a system macro from your
source program, the MACRO-11 assembler automatically
searches SYSMAC.SML for the required information.

The system macros defined in SYSMAC.SML are calls to cer-
tain services performed by the RT-11 monitor, such as terminal
handling, input and output operations, program termination,
file capabilities, and so on. The portion of the monitor that per-
forms these services, or that is capable of getting the necessary
program code to perform these services, is always in memory
and is therefore called the resident monitor. Thus, whenever
your source program is in memory and is to be executed, the
resident monitor is also there with its services,

You communicate the need for a monitor service by issuing a
programmed request in your source program. A programmed
request consists simply of a macro call to a specific macro de-
fined in SYSMAC.SML. The macro expands into the appropri-
ate machine language code, which, during program execution,
makes a request to the resident monitor to supply the desired
service.

11-11

Running a MACRO-11 Assembly Language Program

You specify all programmed requests that you intend to use in
your source program in an .MCALL statement, like the one
shown at line 3 in the listing. For example, the programmed
request .TTYOUT requests the monitor to print an ASCII char-
acter on the console terminal. During assembly, the TTYOUT
macro in SYSMAC.SML is expanded into machine language
code. During program execution this code requests the resident
monitor to take the indicated ASCII character and send it to
the console terminal.

Line 12 in the program uses another programmed request,
.PRINT, to print a message on the terminal.

Lines 13 through 15 are initialization instructions: they set ini-
tial values in three of the special registers. Lines 16 through 22
represent a routine that does a multiplication by 10. Lines 23
and 24 are setup instructions for the division routine of lines 25
through 28. Lines 29 through 35 save the quotient and remain-
der. Lines 36 through 40 print the digits of E. Lines 43 and 44
count the number of digits.

The statements at lines 47 through 49 reserve a buffer area (a
series of locations in memory) to be used by the program and
therefore not to be assigned to other instructions. The state-
ment at line 51 provides the data for printing the ASCII text
message THE VALUE OF E IS: 2.

This program, however, contains errors. The assembler discov-
ered six lines with errors that prevent the program from assem-
bling properly. The assembler flags (points out) errors by print-
ing a code letter in the assembly listing or on the terminal if no
listing is requested.’

The first error occurs at line 12 and is an M error. This means a
label was defined more than once. You can refer to a label any
number of times, but you may define it only once. By looking at
the CREF user symbol table, you can see that the label is de-
fined at line 12 and again at line 47; one of these definitions is
wrong. Examination of the program logic reveals that the defi-
nition at line 12 is correct. Before deciding how to change line
47, though, check the other errors to see if one of them indicates
what should be done. In fact, the next error encountered (line
15) shows what is wrong. A U error identifies an undefined
symbol. The label A is referenced in line 15, but is never de-
fined within the program. It should be defined logically at line
47. Therefore, line 47 should be changed to read:

A: +REPT N+1

'Refer to the RT-11 System Message Manual for greater detail about any
system messages printed during normal system use.

11-12

Running a MACRO-11 Assembly Language Program

Thus, this one change eliminates three errors flagged by the
assembler; those at lines 12, 15, and 47.

The next error occurs at line 32. Actually, the assembler
flagged two errors here. An A error indicates an addressing
problem and an R error indicates a register error (invalid use of
a register, a special PDP-11 storage feature). If you look at the
language statement in line 32, you can see that the ADD opera-
tor is followed by one operand. However, ADD is an instruction
that requires two operands (two values to be added together)
separated by a comma. This statement simply contains a typing
error, which can be corrected by inserting a comma between the
R2 and the -2(R1). Thus, changing the line as follows both
corrects the addressing problem and eliminates the invalid reg-
ister expression:

ADD R2,-2(R1)

At line 41 is another undefined symbol, the macro symbol
.TTYON. Since the program designated the macro symbol
TTYOUT in line 3, this error indicates a misspelling. Correct
line 41 to read:

+TTYOUT

Finally, a D error occurs in line 54. This indicates that refer-
ence was made to a symbol that is defined more than once. This
error has already been eliminated as a result of the correction
made to line 47.

Thus, by changing the three lines indicated, you can correct all
the errors flagged during assembly. So the next step is to edit
the appropriate lines in the source program. If necessary, re-
view the editing commands in Chapter 5, and then edit the file
SUM.MAC on your system volume so that the three lines indi-
cated are error-free. Do not rename the file. When you are
ready, reassemble the program, using the MACRO command,
and obtain a new object module and a new listing. This time the
program should assemble without error. If errors occur, you
have not edited the program correctly. Compare listings and try
to correct your errors, or go back to the beginning of this chap-
ter and repeat the demonstration.

The object module produced by the MACRO command may in
itself be incomplete. It may need to be joined with other object
modules or library files to form a complete functioning
program,’ since all required object modules must be Joined be-
fore the program can work.

'Chapters 12 and 13 give more information on linking files and using library
files, respectively.

11-13

LINKING OBJECT
MODULES
TOGETHER

Running a MACRO-11 Assembly Language Program

LINK

Thus, you must next link the SUM object module with any
other object modules it requires. However, the only file used by
this program was the macro library file SYSMAC.SML, and it
was used during assembly. So in this case, you do not need to
Join the SUM object module with any other modules.

NOTE

Some other MACRO-11 programs that you write later
may reference system subroutines supplied in the sys-
tem subroutine library, SYSLIB.OBJ. Programs that ref-
erence these routines must be linked with the system
subroutine library to satisfy external references. If SYS-
LIB.OBJ is not present on your system volume, follow
the guidelines in the section of Appendix B entitled Using
the LINK Volume.

Even though SYSLIB is not required for SUM.OBJ, you must
still link the file. The link operation, in addition to Jjoining ob-
ject modules together, also assigns absolute memory addresses
to the relative addresses calculated by the MACRO-11 assem-
bler. Since the memory addresses of one object module must be
relocated to accommodate addresses used in another object
module, the link operation serves to resolve all address
changes. The result of the link is a memory image load module,
with all module links resolved and all absolute memory ad-
dresses and storage information assigned (Figure 11-6). The
memory image module, then, is actually a picture of what com-
puter memory looks like just before program execution.

OTHER
OBJECTS
OBJECT LINK LOAD
MODULE MODULE

Figure 11-6 The Link Operation

To link the object modules, use the LINK command. The system
prompts you to enter the names of the input object modules to
be linked together. You can omit typing the .OBJ file type in
the command line since the LINK command assumes this file
type for input. After you have entered the input information,
the system begins linking the object module. You do not have to

11-14

Running a MACRO-11 Assembly Language Program

specify an output file, since the system automatically assigns
the file name of the first input file and a file type of .SAV to the
output file.

Long Command Format

,LINKGD
Files? SUMGD

Short Command Format
LINK SUMGD

Any messages printed inform you of error conditions discovered
during the link operation (for example, if you fail to specify all
the necessary input object modules). However, assuming you
edited your source program correctly and that it assembled
without error, it should also now link without error.

A load module is one that you can run on the system. Unless
your program contains logic errors that prevent it from running
properly (errors that the system cannot always detect), running
the .SAV version of your program should produce the results
you intended. However, if logic errors exist within your pro-
gram, running the program will produce either erroneous re-
sults or none at all. If this is the case, you must study the
Source program, rework it, reedit it, then perform the assembly
and link operations again.

If your MACRO-11 program is error-free, running the .SAV
version should produce the expected results. In this demonstra-
tion, running the SUM.SAYV file should produce a value on the
terminal that is the constant E (2 followed by 70 digits).

To execute the MACRO-11 demonstration program, use the
monitor RUN command. You can omit typing the .SAV file
type, since the RUN command assumes this file type. Type the
following, and note the results printed on the terminal:

Long and Short Command Format

JRUN SUMGD
THE VALUE OF E IS:

2.5/606/606237.2301314,06525/ 130440275535025., 71477737352744745405502,544
.

You can see that something is wrong. Slashes and periods ap-
pear in the result, indicating that an error still exists some-
where in the program.

Programming errors, called “bugs,” can be difficult to find and
fix. A debugging aid called ODT (On-line Debugging Tech-
nique) is described in Chapter 14. You will use it to correct the
program’s final error and to rerun the program. For now, how-
ever, the error will be pointed out and explained.

11-15

RUNNING THE
MACRO-11
PROGRAM

Running a MACRO-11 Assembly Language Program

COMBINING
OPERATIONS

EXECUTE

Look at line 40 in the assembly listing. Notice that the instruc-
tion in this line converts a digit into the appropriate ASCII code
before printing it on the terminal. To do this, the constant 10 is
added into the value of the digit already stored in memory, and
then the value is converted — via ’0, the ASCII code for
0 — to an ASCII code that can be printed. Unless you ex-
plicitly designate a value as decimal, however, the assembler
assumes all values used in the program are octal. Therefore, it
interprets the constant as 10(octal) or 8(decimal), and adds the
wrong value every time. The conversion consequently causes
the codes of the ASCII characters / and . to be used as results in
some cases. The codes of other digits, while representing nu-
meric values, are also off by two. To correct this error, you must
insert a period after the 10 in line 40. The period instructs the
assembler to accept the constant value 10 as a decimal value.

To produce program results, you first assembled the
MACRO-11 source program, SUM.MAC, then linked it, and
finally ran the resulting .SAV file, SUM.SAV. You can combine
these three operations using one monitor command, the EXE-
CUTE command.

NOTE

In order to use the EXECUTE command, the following
files must be present on your system volume:

SUM.MAC
MACRO.SAV
LINK.SAV
SYSLIB.OBJ

The last file, SYSLIB.OBJ, is required only if the
MACRO-11 program you need to link refers to routines
that are contained in the system library. The program
used in this demonstration, SUM.MAC, does not require
SYSLIB.OBJ.

The EXECUTE command instructs the system to select the ap-
propriate language processor, then process, link, and run the
program. There are several ways to establish which language
processor the EXECUTE command invokes. One way is to spec-
ify a language-name option, such as /MACRO, which invokes
the MACRO-11 assembler. Another way is to omit the lan-
guage-name option and explicitly specify the file type for the
source file. The EXECUTE command then invokes the lan-
guage processor that corresponds to that file type. Specifying
the file SUM.MAC, for example, invokes the MACRO-11 as-
sembler. A third way to establish the language processor is to
let the system choose a file type of . MAC, .DBL, or .FOR for the
source file you name. If, for example, you specify the file SUM,

11-16

Running a MACRO-11 Assembly Language Program

the monitor searches device SY: (your system device) for the
files SUM.MAC, SUM.DBL, and SUM.FOR, in that order. If it
finds a file named SUM.MAC, it invokes the MACRO-11 as-
sembler to process the file. For example, to combine the assem-
ble-link-run operations you performed in this chapter, you use
the following command:

Long Command Format

+EXECUTEGD
Files? SUM/LIST/CROSSREFERENCE®ED

Short Command Format

+EXECUTE SUM/LIST/CROSSRIFERENCEGE
THE VALUE OF E IS:

2.5/608/306237.2301314.06525/130440275535025.71477737352744745405502.544

Notice how you use the /LIST and /CROSSREFERENCE op-
tions following the file name to request both an assembly and a
cross-referenced listing.

EXECUTE

Combine the assemble-link-run operations into one com-
mand.

EXECUTE fileeMACRO
Combine the process-link-run operations into one command,
and specify the input file to be a MACRO-11 file.

EXECUTE/CROSSREFERENCE
Produce a cross-referenced listing file.

EXECUTE/LIST
Produce a listing file of the source program.

LINK
Link individual object modules together to form a complete
program and produce a load module.

MACRO
Assemble the MACRO-11 source program, and produce an
object module.

MACRO/CROSSREFERENCE
Assemble the MACRO-11 source program, and produce both
an object module and a cross-referenced listing file.

MACRO/LIST
Assemble the MACRO-11 source program, and produce both
a listing on the line printer and an object module.

RUN
Run the indicated load module.

11-17

SUMMARY:
COMMANDS TO
RUN MACRO-11

PROGRAMS

Running a MACRO-11 Assembly Language Program

FILE MAINTENANCE

Before continuing, you should perform the necessary file main-
tenance operations. Obtain a directory of all files on your sys-
tem volume that have the name SUM, regardless of file type;
these files were created as a result of the exercises in this chap-
ter.

Long and Short Command Format

+DIRECTORY SUM. *@D

08-Jan-83

SUM +BAK 3 08-Jan-83 SUM +SAV
SUM +LST 9 08-Jan-83 SUM +MAC
SUM .0BJ 1 08-Jan-83

S Filess 18 Blocks

480 Free blocks

2 08-Jan-83
3 08-Jan-83

The fact that you have corrected errors in the source file of
SUM.MAC makes the version of that file on your storage vol-
ume obsolete. Therefore, transfer the updated copy from your

system volume back to VOL:, replacing the copy of SUM.MAC
on the storage volume with the new version.

Long Command Format

+COPY@ED
From? SUM.MACGD
To 7? VOL:SUM.MACGD

Short Command Format
.COPY SUM,MAC VOL:SUM.MACGH

Similarly, transfer SUM.SAV and SUM.OBJ to your storage
volume. This allows you to rerun the MACRO-11 program
without reassembling and relinking the source.

Long Command Format

.COPYREDD
From? SUM.SAV,SUM,. 0B JGRD
To 7 VOL:E@D
Files copied:
DK:SUM.SAV
DK:SUM.0BJ

to VOL:SUM.SAV
to VOL:SUM.0BJ

Short Command Format

,COPY SUM.SAV,SUM.0BJ VOL:GD
Files corpied:
DK:SUM.SAV
DK:SUM.0BJ

to VOL:SUM.SAV
to VOL:SUM.0BJ

Once you have transferred to your storage volume the files you
want saved, delete from the system volume those you no longer
need (that is, all the SUM files).

11-18

Running a MACRO-11 Assembly Language Program

Long Command Format
+DELETE/NOQUERYE®
Files? SUM,+@ED

Short Command Format
+DELETE/NOQUERY SUM, *@

Notice that the /NOQUERY option suppresses confirmation
when wildcard construction is used.

Finally, obtain an up-to-date directory listing of your storage
volume so that you can see its current status.

Long and Short Command Formats
.DIRECTORY VOL:@D

08-Jan-83

SUM +SAV 2 08-Jan-83 SUM .0BJ 1 08-Jan-83
EXAMP ,FOR 2 2B-Aug-82 EXAMP .MAC 3 26-Aug-82
GRAPH .FOR 2 08-Jan-83 GRAPH .LST 8 08-Jan-83
GRAPH .,0BJ 16 08-Jan-83 GRAPH .S5AV 21 08-Jan-83
SUM +MAC 3 08-Jan-83 MATCH .BAS 3 08-Jan-83

10 Filess 61 Blocks
4701 Free blockKs

This completes the MACRO-11 demonstration. Continue now
to Chapter 12 to learn more about the link operation.

PDP-11 MACRO-11 Language Reference Manual (AA-5075C-TC). Maynard, REFERENCES
Mass.: Digital Equipment Corporation, 1983.

A reference manual for the PDP-11 programmer using the MACRO-11
assembly language.

PDP-11 Peripherals Handbook. Maynard, Mass.: Digital Equipment Corpora-
tion, 1981-82.

A technical description of the PDP-11 peripheral devices, including nec-
essary programming information.

PDP-11 Processor Handbook. Maynard, Mass.: Digital Equipment Corpora-
tion, 1981.

A technical description of the various PDP-11 processors, including
complete information concerning the PDP-11 instruction set.

PDP-11 Programming Card. Maynard, Mass.: Digital Equipment Corpora-
tion, 1975.

A pocket-sized folding card summary of PDP-11 machine instructions
used by the various PDP-11 assembly language processors.

PDP-11 Software Handbook (EB-21759-20). Maynard, Mass.: Digital Equip-
ment Corporation, 1982-83.

A general overview and introduction to available PDP-11 software, op-
eration systems, and language processors.

11-19

Running a MACRO-11 Assembly Language Program

RT-11 Programmer’s Reference Manual (AA-H378B-TC). Maynard, Mass.:
Digital Equipment Corporation, 1983.

An RT-11 system-specific programming manual for the MACRO-11
programmer.

RT-11 System User’s Guide (AA-5279C-TC). Maynard, Mass.: Digital Equip-
ment Corporation, 1983.

A guide to the use of the RT-11 operating system.

RT-11 System Utilities Manual (AA-M239A-TC). Maynard, Mass.: Digital
Equipment Corporation, 1983.

A guide to the use of the RT-11 System Utilities.

11-20

CHAPTER 12

LINKING OBJECT PROGRAMS

Programs that you write in the MACRO-11 and FORTRAN IV
programming languages require additional processing after
their conversion to object format. Before you can run these pro-
grams on the system, you must link them. The link operation:

* Joins together the object modules that use a symbol with the
object module that defines it.

* Relocates individual object modules as necessary and assigns
absolute (permanent) memory addresses; it can also define an
overlay structure.

® Produces a load module and an optional load map (Figure
12-1).

OBJECT LOAD

MODULE(S) - LINK — "1 moDuULE
LOAD MAP
(OPTIONAL)

Figure 12-1 Link Functions

Program linking gives you the advantage of a modular ap-
proach to programming. You can create an entire program as a
series of smaller, independent subprograms. One of these is
written as the main, or controlling, program, and the rest as
subordinate subprograms and subroutines. You use a language
processor to translate each part of the program into an object
module. Then you use the linker to join all the object modules
together into a complete, functioning unit.

Modular programming makes program creation and debugging
easier. For example, several programmers can simultaneously
work on a single program, each creating a portion of it. The
individual portions, or subprograms, can be processed and
linked with test programs and debugged for logic errors sepa-
rately. Then all the object modules can be joined together to
form a complete program that can be tested as a whole. If errors
occur at this stage, only those object modules with errors need
be debugged and changed.

12-1

Linking Object Programs

RESOLVING
SYMBOLIC AND
LIBRARY

REFERENCES

In addition, modular programming allows you to make use of
library files. These are files containing subprograms and sub-
routines that have been debugged. After you join library files
with your program at link-time, their routines can be used by
your program as needed.

The linker reads through all the object modules that you indi-
cate as input to the LINK command. It gathers and evaluates
information (provided to the modules by the language proc-
essor) that is necessary for program linking. For each input
module, this information includes the object code, information
needed for relocation, the relative address of the first instruc-
tion, the global symbols used, and the absolute length of each
program and program section.

One of the linker’s first functions is to resolve all user-defined
symbolic references and library references in the Jjoined
routines. There are two types of user-defined symbols — in-
ternal symbols and global symbols.

Internal symbols are limited to the object module in which they
appear; thus, they cannot be referenced from or defined in any
other module. A program containing only internal symbolic
references — like those in the demonstration program in
Chapter 11 — is complete in itself and does not need to be
joined with any other object programs at link-time. Thus, in-
ternal symbols are not resolved at link-time because they have
already been resolved by the language processor.

Global symbols, on the other hand, are the key to modular pro-
gramming. Global symbols provide the communication between
object modules. Such symbols may be symbolic labels to instruc-
tions, symbolic labels to data, or symbols that are equated to a
value or constant. Global symbols are defined in one object
module and referenced from other object modules that have
been separately assembled or compiled. Such symbols must be
designated as global in the source code. The following segment
of MACRO-11 assembly language code illustrates the use of
global symbols:

«MAIN. MACRO V05,00 SATURDAY 08-JAN-83 08:42 PAGE

1 +GLOBL A C/VALUE FDECLARE A, C/+ AND VALUE
2 iAS GLOBAL SYMBOLS
kl 000000 013500 A: LY ®(RS)+,RO iGLOBAL SYMBOL A IS DEFINED
a iHERE AND CAN BE REFERENCED
s iFROM OTHER MDDULES,» PROBABLY
6 iBY A SUBROUTINE CALL
7 000002 016701 000016 LY LOCAL yR1 fLOCAL IS AN INTERNAL SYMBOL
8 FOEFINED AND REFERENCED ONLY
9 FWITHIN THIS MODULE
AU 10 000006 000000 000007 000000G USR PC.C 3CALL TO GLOBAL ROUTINE C.
11 iDEFINED IN ANOTHER MODULE
12 000014 0133501 nov Q(RS)+,R1
13 000016 0035003 CLR R3
14 000020 000207 RTS PC
13 000022 000011 VALUE : +WORD 11 FGLOBAL SYMBOL VALUE IS USED TO
16 FREFERENCE THIS DATA LOCATION
17 000024 177777 LOCAL ¢ +WORD 177777 FINTERNAL SYMBOL USED FOR DATA
18 000001 +END

12-2

While internal symbolic references, such as LOCAL in the ex-
ample, can be resolved by the assembler or compiler within the
single program unit, global references, such as C, cannot. They
require other object modules. During translation, the language
processor notes in the object module those symbols that are
global. During linking, the linker keeps track of the global ref-
erences and definitions found in all the object modules. As
linking proceeds, it makes the appropriate correlations and
modifies instructions or data as necessary. After linking, the
linker prints on the terminal a list of all symbolic references
that were not resolved (undefined globals), either because of a
programming error or because all necessary object modules
were not included in the linking process.

References to library files also involve the use of global sym-
bols. You access the routines in a library by naming a routine
as a global symbol in the source code of your program. You then
link your program with the appropriate library file, and the
linker resolves the library references Just as it does any global

symbol. Library usage is discussed in greater detail in Chapter
13.

A second important function of the linker is to “fix” the relative
memory addresses so that they are absolute.! The object module
represents translated source instructions that have been as-
signed memory addresses relative to a base address of 0.

Look back at the assembly listing in Chapter 11. Note the
second column; these addresses are relative to a base address of
0. Thus the first instruction is assembled at relative address 0,
the second at relative address 6, and so on. A program cannot
actually be stored and run in memory using locations relative
to address 0, however, because system information is already
stored in some of these locations. For example, the RT-11 oper-
ating system uses byte addresses 40 through 57 to store infor-
mation about the program currently executing. In addition, the
RT-11 operating system uses locations in the upper range of
memory for storing the resident monitor. Thus, the linker must
assign memory addresses to your program that are not already
in use or that will not be used during program execution. It
must, therefore, assign absolute memory addresses to the rela-
tive addresses assigned by the language processor.

The linker normally starts assigning memory addresses at ad-
dress 1000, since this begins a large section of free memory

'FORTRAN IV and BASIC-11 users who have not performed the demonstra-
tion in Chapter 11 may wish to read the section in that chapter entitled The
MACRO-11 Language Processor. That section explains the concept of con-
verting and storing instructions in computer memory.

12-3

Linking Object Programs

PROGRAM
RELOCATION
AND ADDRESS
ASSIGNMENT

Linking Object Programs

ABSOLUTE AND
RELOCATABLE
PROGRAM SECTIONS

space. So, to obtain the actual addresses used for program
loading, you must add the relocation constant 1000 to each rela-
tive address shown in the assembly listing.

A conflict arises when several individually processed object
modules are linked together. The linker cannot assign memory
addresses starting at 1000 to every module, since address as-
signments of one would then override those of another. How-
ever, part of the information that the language processor calcu-
lates and passes to the linker is the size of each program section
in each module. So the linker simply adds this size into the
relocation constant for each module and assigns higher ad-
dresses, appropriately modifying the relative location of all in-
structions and data as necessary to account for the relocation of
each individual module. Figure 12-2 illustrates the relocation

that must occur to accommodate object modules linked
together.’

0 (1]
372 (octal)
PROG bytes RESERVED
370 1000
1] PROG
42 (octal)
SUBONE bytes 1370
40 1372
SUBONE
1432
0 1434
170 (octal)
SUBTWO bytes SUBTWO
166 1622
1624
Relative addresses of three
assembled/compiled programs =
L]
Absolute addresses of three
linked programs

Figure 12-2 Object Module Relocation

Just as global symbols allow you to create an entire program,
using several individual object modules, program sections allow
you to create an object module as a series of individual sections.
The advantages gained through the sectioning of programs re-
late primarily to control of memory allocation, program modu-

'A load map for this relocation example is shown later in the chapter.

124

larity, and more effective partitioning of memory. The linker
processes the program section information in the object mod-
ules as directions on how to create the executable program
image.

The FORTRAN IV and MACRO-11 language processors insert
program sectioning information into the object module. The
FORTRAN IV language processor does this automatically when
program sectioning is implied by the source language state-
ments in a user program. For example, FUNCTION, SUBROU-
TINE, and COMMON statements result in the production of
program section directives. In MACRO-11 assembly language,
you are responsible for explicitly directing the assembler to
output program section information for the linker. You do this
through the .PSECT (or .CSECT and .ASECT) MACRO-11 as-
sembly language statement.

Some of the basic functions associated with program sections
are:

1. Instructions or data can be placed in absolute locations in
memory. The named absolute program section (. ABS.) al-
lows you to instruct the linker as to exactly where to place
program code or data. Declaring a section as part of the
absolute program section instructs the assembler or com-
piler to use the internal value of the program counter as the
physical memory address to be assigned after linking. This
section is processed relative to absolute memory address 0
and is not relocated at link time.

2. Named relocatable program sections are used to group data
or instructions into logical portions of memory. The FOR-
TRAN IV COMMON statement invokes this construct to
allow access to named data areas from many separate
routines. Declaring a section as part of a named relocatable
program section causes the section to be processed at relo-
catable address 0. Such sections are relocated by the linker.

3. If you do not care about having exact control over where a
portion (section) of a program will be placed in memory, use
the blank program section — a special program section that
the linker treats as relocatable. The linker decides where to
place this program section in the loadable memory image.
The blank program section is the default for a MACRO-11
source program and remains in effect until an explicit pro-
gram section is identified (the program example in Chapter
11 used the blank program section).

4. A program section can be identified as an instruction sec-
tion. The linker, using this information, can provide auto-
matic loading of declared overlay code when needed by the
executing program (this will be discussed in more detail).

12-5

Linking Object Programs

Linking Object Programs

The Overlay Feature

The language processor, then, actually maintains several pro-
gram counters — one for the absolute program section, one for
the unnamed relocatable program section, and as many as
needed (maximum is 254) for named relocatable program sec-
tions. The assembled example that follows helps explain this
concept.

+MAIN. MACRO V0S.00 SATURDAY 08-JAN-83 08104 PAGE

TUNNANED RELOCATABLE PROGRAM
ISECTION IS DECLARED (BY DEFAULT)
(", PSECT" 18 ASSUMED)

000000 005000 START: CLR RO

CODIDADWN -

000002 012701 000034 mov ®BEG/R1
000006 062100 LOOP: ADD (R1)+.RO
000010 022701 000048 o 14 ®BEC+10/R1
000014 100374 BPL LooP
000016 012767 002000 000020 mov #2000. ADDR
10 000024 005003 CLR R3
11 000000 +PSECT CLEAR INAMED RELOCATABLE PROGRAM
12 000000 012703 000100 mnov ®100.R3 FSECTION IS DECLARED (VIA *.PSECT NAME")
13 000004 012701 000044 MoV ®ADDR ,R1
14 000010 005021 AGAIN: CLR (R1)+
15 000012 005303 DEC R3
18 000014 001375 BNE AGAIN
17 000000 +ASECT FABSOLUTE PROGRAM SECTION
18 000042 =42 FDECLARED (VIA “,ASECT")
19 000042 001000 -WORD 1000 FTHE VALUE 1000 WILL BE
20 iSTORED IN ABSOLUTE MEMORY LOCATIN a2
21 INHEN THE PROGRAM 18 EXECUTED
22 000026 «PSECT §BACK TO UNNAMED RELOCATABLE
23 000026 005267 000012 INC ADDR §PROGRAM SECTION
2a 000032 000000 HALT
235 000034 000001 000002 000003 BEG: - WORD 1424348
000042 000004
26 000044 000000 ADDR: +WORD ©
27 INOTE THAT YOU CAN WRITE LANGUAGE STATEMENTS THAT WILL BE LOADED
28 FCONTIGUOUSLY IN MEMORY, BUT DO NOT NECESSARILY OCCUR CONTIGUOUSLY
29 $IN THE SOURCE PROGRAM (1.E., THE CODE AT LINES 1-10 AND 22-29)
30 000001 +END

Since the system does not know at assembly (or compile) time
into which actual memory locations each relocatable section
goes, all references among sections (see line 18) are relative to
the base of the section. This information is then passed to the
linker so that it can make the appropriate adjustments at link-
time. :

The RT-11 linker is also capable of handling the special reloca-
tion and address assignments that are required whenever you
indicate that an overlay structure is needed. An overlay struc-
ture is necessary when you write a program that is too large to
fit in the available memory of your system. You write the pro-
gram in discrete parts (some programming restrictions must be
observed) so that your program can subsequently be executed in
parts. Some of these parts, or segments, are allowed to share
memory with other segments, thus reducing the overall
memory requirements of the program. One segment of the pro-
gram is called the root segment and must remain in memory at
all times. The root segment contains the necessary information
for use by the other segments of the program, called overlay
segments. Overlay segments are stored on storage volumes and
brought into memory as needed. The purpose of the overlay
structure is for parts of the program to share the available
memory in such a way that when one part is complete, it is
overlaid (and therefore erased) by another.

You indicate how to plan to overlay your program by using the
/PROMPT option in the LINK command line. The linker then

12-6

creates a load module that contains the necessary information
for loading the appropriate segments as needed during execu-
tion. The RT-11 System Utilities Manual explains the overlay
feature in more detail. You need not specify an overlay struc-
ture for the examples demonstrated in this chapter.

The load module is the result of the linking processes described
so far: joining object modules, resolving symbolic and library
references, relocating object modules, assigning absolute ad-
dresses, and creating an overlay structure if required. The load
map is essentially a synopsis of the load module — that is, what
memory looks like when the program is loaded and ready to be
executed.

In Chapters 9 and 11, you produced load modules, but you did
not request load maps. You obtain a load map by using the
/MAP option with the LINK (or EXECUTE) command. At this
time, relink the FORTRAN IV or MACRO-11 object module
that you stored on VOL: and use the /MAP option to produce a
load map.! The load map is created as a file on the system
volume, which is the default storage volume for input/output
operations. The load map has the name of the first input
module and a file type of .MAP.

Long Command Format
MACRO-11 object module:

+L INKGED
Files? VOL:SUM/MAPGE)

FORTRAN IV object module, if FORLIB is not included in
SYSLIB:

+L INK@ED
Files? SYSLIB,FORLIE +VOL : GRAPH/MAPGED

FORTRAN IV object module, if FORLIB is included in SYSLIB:

+LINKGD
Files? VOL:GRAPH/MAPED

Short Command Format
MACRO-11 object module:

+LINK VOL :SUM/MAPGD

'FORTRAN IV users who followed the special instructions in Appendix B for
loading the LINK volume should check that this volume is loaded in device
unit 0. FORTRAN IV users who have a special FORTRAN IV language vol-
ume, but not a LINK volume, should make sure that the FORTRAN IV vol-
ume is now loaded in device unit 0.

12-7

Linking Object Programs

PRODUCING
A LOAD MODULE
AND A LOAD MAP

/MAP

Linking Object Programs

FORTRAN IV object module, if FORLIB is not included in
SYSLIB:

+LINK SYSLIB/FORLIB»VOL:GRAPH/MAP®ED

FORTRAN IV object module, if FORLIB is included in SYSLIB:

+LINK VOL:GRAPH/MAPGD

Now list the .MAP file on either the line printer or terminal,
choosing the appropriate command:

Long Command Format
(Line printer) (Terminal)

MACRO-11 object module:

+PRINTGED +TYPEGD

Files? SUM.MAPGED Files? SUM.MAPGED
FORTRAN IV object module:

+PRINTGRED +TYPEGRD

Files? GRAPH.MAPGD Files? GRAPH.MAPGD

Short Command Format
(Line printer) (Terminal)
MACRO-11 object module:

+PRINT SUM.MAPGD "TYPE SUM.,MAPED
FORTRAN IV object module:
+PRINT GRAPH.MAPGD TYPE GRAPH.MAPEED

For your convenience, both maps are provided here. In addition,
a load map of the relocation example used in Figure 12-2 is also

provided.
RT-11 LINK V08.00 Load Mar Saturdaw 08-Jan-83 10:00 Pasde 1
SUM +SAV Title!: SUM.MA Ident:

Section Addr Size Global Value Global Value Global Value

+ ABS. 000000 001000 = 256. words (RW,IsGBL»ABSyOVR)
001000 000372 = 125, words (RWsI»LCLYRELYCON)

Transfer address = 001000y High limit = 001370 = 380. words

RT-11 LINK V08,00 Load Mar Saturday 08-Jan-83 10311 Page 1
SYSLIB.SAV Title: (MAIN. Ident: FORVO2
Section Addr Size Global Vaslue Global Value Global Value

+« ABS., 000000 001000 = 256. words (RWsIyGBLyABSyOVR)
SUSRSW 000000 $RF2A1 000000 S$HRDWR 000000
VIR 000000 $NLCHN 000006 $SYSVU$ 000012
SWASIZ 000152 S$LRECL. 000210 S$TRACE 004737

12-8

Linking Object Programs

0TSsI 001000 017722 = 4073. words (RWy1sLCLYRELsCON)
$$0TSI 001000 $CVTIF 001000 $CVUTIC 001014
$CUTID 001014 CCI$ 001026 CDI$ 001026
$IC 001026 $ID 001026 CFI$ 001042
$IR 001042 EXF 001126 ADF$IS 001466
ADF$FS 001474 SUF$FS 001500 SUF$MS 001504
ADF$MS 001516 SUF$IS 001526 $ADDF 001534
$SUBF 001550 SUF$SS 001562 $SER 001562
ADF$SS 001566 $ADR 001566 ADDS 001602
DIF$FS 002226 DIFSMS 002232 DIF$IS 002242
$DIVF 002250 DIF$SS 002262 $DUK 002262
MUF$FS 002550 MUF$MS 002554 MUF$IS 002564
S$MULF 002572 MUF$SS 002604 $HMLR 002604
$0T1I 003142 $$0TI 003144 $SETOF 003354
$$SET 005026 SORT 005322 STRS$L 005516
STK$I 005522 STK$F 005526 I0R$ 005536
AND$ 005542 EQU$ 005550 XOR$ 005552
NMIS1M 005566 NMI$1I 005600 BELE$ 005610
BEQ$ 005612 EGT$ 005620 BGES$ 005622
BRAS 005624 ENES$ 0054630 BLTS 005632
CAIs 005642 CALS 005650 END$ 005700

ERR$ 005712 S$END 005724 $ERR 005742
SOPNER 005744 $CHKER 006022 $I0EXI 006046
SEOL 006114 EOLS 006116 EXIT 006232

MOF$SS 006234 MOFSMS 006250 MOF$FS 006262
MOF$SM 006266 MOF$SF 006276 MOF$MM 006302
MOFSMA 006314 MOFSMF 006322 MOF$FM 006330
MOFSPA 006334 MOFSFF 006340 MOF$RS 006344
MOF$RM 006352 MOFSRA 006362 MOF$RF 006366
NGD$S 006372 NGF$S 006372 NGD$M 006404
NGF $M 006404 NGDSF 006420 NGF$F 006420
NGD$A 006424 NGFS$A 006424 ADI$SS 006430
ADI$SA 006434 ADISSM 006440 ADISIS 006444
ADISIA 006450 ADISIM 006454 ADISMS 006460
ADISMA 004464 ADISMM 006470 CMI$SS 006474
CMISSI 006500 CMISSM 006504 CMI$IS 006510
CMISII 006514 CMISIM 0048520 CMISMS 006524
CMISMI 006530 CMISMM 006534 IFUWs 006540
SIFW 006544 $SIFW 006550 IFUWs$ 006606
MOISRS 006656 MOLSRS 006656 MOISRM 006662
MOISRF 006666 MOISRA 0064670 MOI$SS 006674
MOL$SS 0064674 MOISSM 006700 MOI$SA 006704
MOIS$IS 006710 MOL$IS 006710 RELS 006710
MOISIM 006714 MOISIA 006720 MOISMS 006724
MOISMM 006730 MOISMA 006734 MOIS$OS 006740
MOISOM 006744 MOISOA 006750 MOIS$1S 006754
MOIS1M 006762 MOIS1A 006770 ICI$S 006776
ICISM 007002 ICISP 007006 ICI$A 007010
DCIsS 007014 DCISM 007020 DCISF 007024
DCIsA 007026 IDINT 007032 INT 007032
MOISIP 007060 MOISSP 007062 MOISPP 007070

RT-11 LINK V08.00 Load Mar Saturdaw 08-Jan-83 10:11 Fade 2
SYSLIB.SAV Title: .MAIN. Ident! FORVO2

MOISMF 007074 MOISPS 007104 MOISFM 007112
MOISPA 007120 MOISOP 007126 MOI$1P 007134
ISNS 007144 $1SNTR 007150 LSN$ 007164
SLSNTR 007170 SUISSS 007324 SUI$SA 007330
SUISSM 007334 SUISIS 007340 SUISIA 007344
SUISIMN 007350 SUISMS 007354 SUIsMA 007360
SUISMM 007364 MOL$SSM 007370 MOL$SA 007374
MOLSMS 007400 MOLSMM 007410 MOL$MA 007414
MOLSSP 007420 MOLSPP 007426 MOLS$MF 007432
MOLSFM 007442 MOLSFS 007450 MOL$FA 007454
MOLSIM 007462 MOLSIA 007470 MOLS$IF 007476
LLES 007506 LEQGS 007510 LGT$ 007516
LGES 007520 LNES$ 007530 LLT$ 007532
TSL$S 007536 TEL$M 007542 TSL$I 007546
TSL$F 007554 MAXO 007562 MINO 007606
RETSL 007632 RETSF 007636 RETSI 0074644
RETS 007646 $0TIS 007702 $$0TIS 007704
TULS 010024 $TUL 010024 TUF$ 010032
$TVF 010032 TVD$ 010040 $TVD 010040
VA 010046 $TVQ 010046 TVF$ 010054
$TVUFP 010054 TVIS 010062 $TVI 010062
SALSIM 010216 SALSSM 010220 SULSIM 010224
SUL$SM 010226 SALSMM 010234 SULSMM 010240
SALSIF 010244 SALSSP 010246 SVULSIP 010252
GULSSP 010254 SALSMFP 010262 SUL$MP 010266
SCUTFB 010272 S$CVUTFI 010272 $CVTCB 010306
$CUTCI 010306 S$CVUTDE 010306 $CVUTDI 010306
CICs 010320 CIDs 010320 CLC$ 010320
CLDS 010320 $DI 010320 CIF$ 010330
CLFs$ 010330 $RI 010330 CILS 010442
CLIs$ 010446 S$INITI 010450 $CLOSE 010566
$ERRTE 011344 $ERRS 011451 S$FCHNL 015212

12-9

Linking Object Programs

$FI0 016054 $$FI0 016060 S$FUTRE 017224
$SFUTBL 017532 $GETEL 017742 $EOFIL 020124
$EOF2 020142 SAVRG$ 020162 THRD$ 020340
$STFS 020342 STF$ 020350 $STFP 020350
FOOos 020354 $EXIT 020374 SWAIT 020520
SURINT 020562 S$DUMFL 020574

0TSSP 020722 000054 = 22, words (RWeD»GELyREL »OVR)

SYS$I 020776 000244 = 82, words (RWsI»LCL,REL»CON)

EN 020776 REPEAT 021014 SCOPY 021146
USER$I 021242 000000 = 0, words (RWsIsL.CLyRELsCON)
$COLE 021242 001316 = 359, words (RWsIyLCLyRELCON)

$$0TSC 021242 FUN 022120 FUTSTR 022266

0TS$0 022560 0010346 = 271, words (RWyIysL.CLsREL,CON)
$$0TSO 022560 SOPEN 022560

SYS$0 023616 000000 = 0, words (RWsIsLCLyRELsCON)

$SDATAF 023416 000106 = 35, words (RWsDyLCL/REL »CON)

0TS$D 023724 000006 = 3, words (RWsDyL.CLyREL »CON)
NHCLN$ 023730

0TSsS 023732 000002 = 1, words (RW»D»L.CL,yREL yCON)
$A0TS 023732

SYSsS 023734 000004 = 2, words (RWyDsLCLyREL yCON)

$SYSLE 023734 s$LOCK 023736 S$CRASH 023737

$DATA 023740 000536 175. words (RWyDsL.CLyREL»CON)

USERSD 024476 000000 = O, words (RWsDsLCLyREL»CON)

+$888, 024476 000000 = 0. words (RWsD[s»GEL»yREL » OVR)
RT-11 LINK V08.00 Load Mar Saturday 08-Jarn-83 1011 FPade 3
SYSLIB,.SAV Title! J.MAIN. Ident: FORVO?

Transfer address = 021242, High limit = 024474 = 5278. words

RT-11 LINK Vv08.00 Load Mar Saturday 08-Jar-83 10:16 FPage 1
TEST .SAv Title! .MAIN. Ident:

Section Addr Size Global Value Global Value Global Value

+ ABS, 000000 001000 = 256, words (RW»IsGELyAERS,0VUR)
001000 000626 = 203, words (RWsIyLCLyREL»CON)

PROG 001000 SUBONE 001372 SUBTWO 001434

Transfer address = 001000y Hish limit = 001624 = 458, words

The second line has the name and file type of the load module
created. Next, the absolute section and each named and un-
named section are listed under the SECTION column. To the
right are abbreviated codes designating whether the section
contains Instructions or Data, is Read/Write or Read Only, is a
Local or Global section, is Relocatable or Absolute, is Concat-
enated or Overlaid. Below this falls a listing of all the global
symbols (GLOBAL) and their values (VALUE). Finally, at the
end of the map is the transfer address where the program actu-
ally starts when executed, followed by the high limit — the
total number of bytes used by all the individual program sec-
tions.

Look first at the MACRO-11 load map. The default absolute
section starts at absolute location 0; its size is 1000 bytes. Thus,
it extends from absolute memory location 0 through absolute
memory location 777, The unnamed program section (there
were no named program sections in this program) starts at ab-
solute 1000; its size is 372 bytes. Thus it extends from absolute
location 1000 to absolute location 1370. The high limit of this
program (total bytes) is therefore 1370. Since this program is
not linked to any other object modules, there are no global sym-
bols and the rest of the map is blank.

Look now at the FORTRAN IV load map, remembering that it
reflects the appropriate expansions into machine language code
provided by the FORTRAN IV compiler. Again, the absolute

12-10

section extends from absolute O through absolute 777. Globals
listed in the absolute section show the global variable names
that the program uses as constants throughout the program.

The unnamed relocatable program section begins at absolute
location 1000. Some of the named relocatable sections that are
declared are OTSP, SYSI, and $CODE. Global symbols and
their respective addresses appear to the right of all sections.
The total number of bytes used is 24474, or 5278(decimal)
words.

The third load map is for the program illustrated in Figure
12-2. First, the map shows the absolute program section, la-
beled .ABS. It extends from location 0 through location 777.
Next, the map shows the unnamed program section, which be-
gins at location 1000 and is 1624 bytes long. This program sec-
tion consists of a main program, called PROG, and the sub-
routines SUBONE and SUBTWO that were linked with PROG.
Look again at Figure 12-2 to see how these routines fit into
memory. The transfer, or starting, address is 1000, and the
total number of bytes the program occupies is 1624, or 458(dec-
imal) words.

Load maps are most helpful when used in debugging to locate
and correct assembly language programming errors. Load maps
are not generally obtained or used for FORTRAN IV programs,
except to determine program size. In Chapter 14 you will see
how a load map is used to debug the one remaining error in the
MACRO-11 demonstration program.

LINK
Link individual object modules together to form a complete
program and to produce a load module.

LINK/MAP
Link individual object modules, and produce a load map
showing all address assignments made during linking.

NOTE

FORTRAN IV users who followed the special instruc-
tions in Appendix B to load the language or LINK volume
should now stop the system, unload that volume, load
the main system volume, and rebootstrap the system
before going on to Chapter 13.

RT-11 System Utilities Manual (AA-M239A-TC). Maynard, Mass.: Digital
Equipment Corporation, 1983.

A guide to the use of the RT-11 system utilities.

12-11

Linking Object Programs

SUMMARY:
COMMANDS
FOR LINKING
PROGRAMS

REFERENCE

CHAPTER 13

CONSTRUCTING LIBRARY FILES

A library is a specially constructed file consisting of one or
more programming routines. Generally, these routines provide
services that you are apt to need repeatedly, or services that are
related and so have been gathered together for ease in use and
storage. You use the routines in a library by joining the library
file with your source program. Usually this occurs at link-time:
but in the case of assembly language programs, it may also
occur at assembly-time.

The RT-11 operating system provides several library files;
SYSLIB and VTLIB for example. These libraries supply the
monitor services, input and output routines, conversion
routines, and other programming services that user programs
may need. You can create other library files yourself. Thus you
can construct libraries that contain routines specific to your
programming needs or to the combined needs of those using
your RT-11 system.

There are two kinds of library files — macro libraries and ob-
ject libraries.

Macro libraries, such as SYSMAC.SML, are used by
MACRO-11 source programs at assembly-time and consist en-
tirely of macros. A macro is described in Chapter 11 as a recur-
ring sequence of coding instructions, which, when defined in a
.MACRO statement, can then be called and used anywhere in
your program. A macro library is merely several macro defini-
tions gathered together into a single file. To use the macros in a
macro library, you simply name those macros you plan to use in
a .MCALL statement. When the assembler encounters the
.MCALL statement during processing, it searches the appropri-
ate macro library (SYSMAC.SML is default) for the definitions.
It takes the definitions from the library and inserts them in a
special table called the macro symbol table where they become
available for use during assembly.

Object libraries, such as SYSLIB, are used by assembled
MACRO-11 source programs and/or by compiled FORTRAN IV
source programs at link-time. These libraries consist of object
modules that contain global routines; such routines have been
defined with global entry points and then named as global sym-
bols in the source program. During the link operation, the
linker searches the object libraries to determine if they provide

13-1

KINDS OF
LIBRARY FILES

Macro Libraries

Object Libraries

Constructing Library Files

CREATING AND
MAINTAINING
A LIBRARY FILE

Creating Object
Library Input Files

definitions for any undefined globals. If the linker finds defini-
tions, it takes those object modules containing the definition
from the library and includes them in the link.

A special table, called the global symbol table, lists each global
in a given object library. You can print this list on the terminal
or the line printer and thus keep track of an object library’s
current contents.

You create a library file by combining several macro routines,
or several object modules, into a single larger file using the
monitor LIBRARY command. ‘

To build a macro library, first use the editor to create an ASCII
text file that contains all the macro definitions. Then process
this file using the LIBRARY command in combination with its
/MACRO option. To update a macro library (that is, to add or
delete macro definitions), simply edit the ASCII text file and
then reprocess the file with the LIBRARY command.

To build an object library, use the editor to create an ASCII text
file. The file contains the routines and functions written as
complete program segments in either the MACRO-11 assembly
language or the FORTRAN IV programming language. Then
process the file, producing an object module. Next, use the LI-
BRARY command in combination with its /CREATE option.
Once the library file is created, update it (add and delete
routines) by means of various other options to the LIBRARY
command.

In the following exercises, you create an object library that con-
tains three input object modules. The routines in two of these
modules can be used by both MACRO-11 and FORTRAN IV
programs; the routine in the third module can be used only by
FORTRAN IV programs.

To build the library file, first use the editor to create the three
ASCII text files. Then convert the ASCII text files to object
format. Finally, process the object files with the LIBRARY com-
mand. Once you create the library files, use LIBRARY com-
mand operations and options to add and delete modules and
globals and to obtain a listing of the library file contents.

The first step in building an object library is to prepare the
source code of the routines and functions that you choose to
include in the library. Use the editor to create the following
three text files, calling them FIRST MAC, SECOND.MAC, and
THIRD.FOR, respectively. FORTRAN IV users should create
all three files; MACRO-11 users (who do not use FORTRAN
IV) should create only the first two files.

13-2

FIRST.MAC

+TITLE
+MCALL
I=LEN(A)
+GLOBL
LEN: TST
MOV
1%: TSTB
BNE
DEC
suB
RTS

CALL
+GLOBL
PRINT: MOV
+PRINT
RTS
+END

SECOND.MAC

+TITLE

CcomMB
+PRINT

LEN

(RS)+ iSKIP & OF ARGS
@R5,RO IGET STRING POINTER
(RO)+ iFIND END OF STRING
1% SLOOP UNTIL NULL BYTE
RO iBACK UP

@R5 /RO SCALC ® OF CHARS IN STRING
PC

PRINT(ISTRNG)

PRINT

2(RS) sRO SADDR OF ISTRNG
i+PRINT

PC §AND RETURN

ITTOUR

I=ITTOUR(ICHAR)

i
i I=0 CHARACTER HAS BEEN OUTPUT
i =1 RING BUFFER IS FULL
+MCALL +TTOUTR
+GLOBL ITTOUR
ITTOUR:MOVB 2(R5) sRO iGET CHARACTER
+TTOUTR i+ TTOUTR
BIC RORO iCLEAR ERROR FLAG
ADC RO
RTS PC iRETURN
+END
THIRD.FOR
c CALL PUTSTR(LUN:AREA,CC)

SUBROUTINE PUTSTR(LUN,AREA,CC)
LOGICAL*1 AREA(250),CC

IF(CC) GOTO 1

WRITE (LUN,99) (AREA(I) »I=1,LEN(AREA))

RETURN
1 WRITE (LUN,»99)CC,»(AREA(I) I=1,LEN(AREA))
99 FORMAT (250A1)

END

The routines in these files are representative of the kinds of
services generally provided in a library file. They are, in fact,

taken from the RT-11 system subroutine library, SYSLIB.

13-3

Constructing Library Files

Constructing Library Files

FIRST.MAC contains two global routines, LEN and PRINT.
The LEN routine returns the number of characters in a string.
PRINT outputs an ASCII string terminated with a zero byte to
the terminal (it is the FORTRAN IV equivalent of the system
macro .PRINT, used in the demonstration program in Chapter
11). SECOND.MAC contains one global routine, ITTOUR,
which transfers a character to the console terminal.
THIRD.FOR also contains one global routine, PUTSTR. This
routine can be used only by FORTRAN IV programs and writes
a variable-length character string on a specified FORTRAN IV
logical unit (see GRAPH example).

Once you create these text files, the next step is to convert them
from ASCII format to object format. Assemble or compile the
text files as appropriate, first assembling FIRST.MAC and ob-
taining an object module (a listing is not necessary). FORTRAN
IV users who are not familiar with the assembly process simply
type the MACRO commands as shown.

Long Command Format
+MACROGED

Files? FIRSTED

Short Command Format
‘MACRO FIRSTG®ED

The command creates an object module called FIRST.OBJ on
the system volume. If errors occur, the assembler prints a mes-
sage on the terminal, indicating the number of errors encoun-
tered during assembly. No errors should occur.

In the same way, assemble SECOND.MAC. Again, no errors
should occur.
Long Command Format

‘MACROGD
Files? SECONDGH

Short Command Format
"MACRO SECONDED
If any errors occur during the assembly operations, you have

typed the source files incorrectly. Find and correct the typing
errors, and reassemble.

If you are a FORTRAN IV user, continue by compiling
THIRD.FOR.

134

Constructing Library Files

NOTE

If in Chapter 9 you needed to load the special
FORTRAN/BASIC language volume, you must again
load that volume before you can compile THIRD.FOR.
Read Appendix B, Substituting Volumes During Opera-
tions, before continuing.

Long Command Format

FORTRANGED
Files? THIRDGE
PUTSTR

Short Command Format

+FORTRAN THIRDGE
PUTSTR

Notice that the compiler prints the name of the global
(PUTSTR) generated. If any errors occur during the compile
operation, you have typed the source file incorrectly. Find and
correct the typing errrors, and recompile.

Once you have produced the object modules, you are ready to
build the object library file.

Use the LIBRARY command in combination with its CREATE Building the
option to construct a library file. You must indicate in the com- Object Library
mand the name of the library file and the names of the input
object modules. Call the library file LIBRA and specify as input
the two object modules, FIRST and SECOND. The LIBRARY
command assumes that the input modules have the .OBJ file
type (unless you indicate otherwise) and automatically assigns

.OBJ to the library file.
Long Command Format
LIBRARY/
{LIBRARY/CREATEGD
Library? LIBRAGD CREATE

Files ? FIRST,SECONDGD

Short Command Format

+LIBRARY/CREATE LIBRA FIRST,SECONDGD

Once the CREATE operation is complete, obtain a listing of the
library file’s contents, using the LIBRARY command with its
LIST operation. The line printer is the assumed output device
for the list file, although you may indicate a different output
device by adding the two-letter device mnemonic to the LIST
option that follows.

13-5

Constructing Library Files

LIBRARY/LIST

Updating the
Object Library

LIBRARY/
INSERT

Long Command Format

(Line printer) (Terminal)
+LIBRARY/LISTED +LIBRARY/LIST:TT:GD
Library? LIBRAGH Library? LIBRAGH

Short Command Format
(Line printer) (Terminal)
+LIBRARY/LIST LIBRAGD +LIBRARY/LIST:TT: LIBRAGH

The listing produced shows the library file’s current contents.

This library has three entry points: LEN and PRINT in the first
module, and ITTOUR in the second module.

RT-11 LIBRARIAN V05,00 SAT 8-JAN-83 11:03:29

DK:LIBRA.DBJ SAT B-JAN-83 10:59:43
MODULE GLOBALS GLOBALS GLOBALS
LEN PRINT
ITTOUR

Once you have created an object library, you use various LI-
BRARY command operations to update and maintain it by
adding and deleting modules and globals.

If you created the THIRD.OBJ object module, you can add it to
the library file using the INSERT option. If you did not create
this module, read through this section anyway; the command
steps apply to any object module you wish to insert.

Long Command Format
+LIBRARY/INSERTGE

Library? LIBRAGD
Files ? THIRDGE

Short Command Format

*LIBRARY/INSERT LIBRA THIRDGH

This operation inserts the object module contained in the file
THIRD.OBJ, including all its globals, into the library file
LIBRA. Obtain a listing of the library contents, using the LIST
option, to verify that the new globals have been added. The
listing should look like this:

RT-11 LIBRARIAN V05,00 SAT B-JAN-B3 11:05:1

DK:LIBRA.OBJ SAT B-UAN-B83 11:04:21
MODULE GLOBALS GLOBALS GLOBALS
LEN PRINT
ITTOUR
PUTSTR

13-6

Constructing Library Files

This listing shows the complete library file containing the glo-
bals from all three modules.

You can remove individual globals by using the REMOVE op-
tion. For example, to remove the global ITTOUR, type: LIBRARY/
REMOVE

Long Command Format

+LIBRARY/REMOVEGD
Library? LIBRAGD
Global? ITTOURGD
Global?@®

Short Command Format

+LIBRARY/REMOVE LIBRAGE
Global? ITTOURGED
Global?@®

The library file’s contents now look like this:

RT-11 LIBRARIAN V05,00 SAT B8-JAN-83 11:10:22
DK:LIBRA.,0BJ SAT B8-JAN-B3 11:10:05

MODULE GLOBALS GLOBALS GLOBALS

LEN PRINT
PUTSTR

These are some of the library maintenance operations that you
can perform by using the LIBRARY command. Other library
operations are available and are explained in the RT-11
System Utilities Manual.

LIBRARY/MACRO SUMMARY:
Create a macro library. COMMANDS FOR
MAINTAINING

LIBRARY/CREATE
Create an object library. LIBRARY FILES

LIBRARY/INSERT
Insert object modules into the object library.

LIBRARY/LIST!:filespec]
List the current contents of an object library on the line
printer; [:filespec] is an optional output file and/or device.

LIBRARY/REMOVE
Remove globals from the object library.

Since all the object modules used in this chapter already exist FILE MAINTENANCE
as modules within the provided system library SYSLIB, there is
no need to save them or the LIBRA library file. You can delete
these object modules and their source files from your system

13-7

Constructing Library Files

REFERENCE

volume by using the DELETE command as follows (exclude
THIRD.* from the command line if you did not create this file):

Long Command Format

\DELETE/NOQUERY®E

Files? FIRST.#,SECOND,#,THIRD,*,L1BRA. 0B JGD

Short Command Format

+DELETE/NOQUERY FIRST.*,SECOND.*,THIRD.*,LIBRA. 0B JG

FORTRAN 1V users who performed the special instructions
given in Appendix B should also delete the THIRD files from
the storage volume.

Long Command Format
\DELETE/NOQUERY@®

Files? VOL:THIRD, *@

Short Command Format
\DELETE/NOQUERY VOL:THIRD.*@

RT-11 System Utilities Manual (AA-M239A-TC). Maynard, Mass.: Digital
Equipment Corporation, 1983.

A guide to the use of the RT-11 system utilities.

13-8

CHAPTER 14

DEBUGGING A USER PROGRAM

Debugging is the process of finding and fixing the programming
errors that almost every user program initially contains. From
your experience in Chapters 9, 10, and 11, you already know
about some of the kinds of programming errors that can pre-
vent a program from working properly when you run it on the
system.

Frequently, debugging a program requires more time and per-
sistence than writing the program code requires. Therefore, you
should anticipate the debugging process throughout the entire
program development cycle. That is, you should follow some
common programming practices that help you first to make as
few programming errors as possible. When errors become ap-
parent during the various phases of development, correct them
immediately. Test the validity of any algorithms used within
your program. Finally, even though the program appears to be
working properly, check it thoroughly with test data.

You can take several steps to decrease the likelihood of intro-
ducing errors into your program and to make debugging easier.

First, always use a high-level language if one will suit your
programming needs. High-level language programs tend to use
fewer statements. English-like words and phrases in the lan-
guage statements make the program logic easier to follow.

Design the program. The technique of flowcharting the pro-
gram and then correlating it with the program coding simpli-
fies tracking the program logic and module interrelationships.

Use modular programming. Create the program as a series of
smaller, self-contained subprograms. Debug the program in
parts.

For frequently used functions, maximize the use of subroutines,
subprograms, and — in the case of assembly language pro-
grams — macros. These help to structure the program and
make it easier to alter or to add features that may be required
in the future.

Make use of any software provided by the system, such as li-
brary routines and functions. System software has already been

debugged and can save you the trouble of re-creating the ser-
vices.

Make the general flow of a program proceed down the page.
Avoid nonstructured branching and convoluted logic, as these

14-1

AVOIDING
PROGRAMMING
ERRORS

Debugging a User Program

WHEN
PROGRAMMING
ERRORS OCCUR

tend to produce programs that are difficult to debug. Finally,
use comments liberally throughout the program to show what
individual statements or groups of statements do. Use spaces
and tabs in the program code to make it easier to read.

Following these preventative steps eliminates many common
programming errors and helps to create a programming style.
However, even the most careful programmer may overlook a
small detail: a typing error during program creation, an unde-
fined label in the code, or some other programming bug. When
something is overlooked, debugging becomes necessary.

There are three general types of programming errors — syntax,
clerical, and logical.

Syntax errors are errors in the physical coding, such as omit-
ting necessary portions of the statement (delimiters for ex-
ample), reversing the order of information within the state-
ment, or misspelling keywords or instructions.

Clerical errors are non-syntax errors in the physical coding,
such as mistyped letters or digits in data. Clerical errors may
result in valid statements that do not reflect correct program-
ming logic.

Logical errors are errors made in program development.

The translating program (compiler/assembler/interpreter) gen-
erally catches syntax errors and flags them as such in the pro-
gram listing or on the terminal. On the other hand, you must
locate clerical and logical errors by reexamining the program
code and logic, using one or more debugging techniques.

Some debugging techniques involve insertion of special debug-
ging code within the program. For example, one way to locate
logical errors is to write out intermediate results of a program.
You can insert WRITE or PRINT statements at strategic points
in the program logic to show the intermediate state of values
being calculated. When debugging is complete, you can remove
these statements or change them to comments.

You may also find it useful to write a special debugging subrou-
tine that writes out values, particularly if the same variables
must be examined in several places or many times.

Another method for finding logic errors — unit testing — is to
break the program into smaller parts and test each part sepa-
rately with artificial data. After you test all parts individually,
you can test routine and module linkage — system testing — to
see that all related code fits together properly.

Check the program with test data. A standard method for
checking out modules is to write a test program that calls the

14-2

program with possible options. The test should cause the pro-
gram to execute all steps in all algorithms. Check programs
first with representative data, then with improper data (data
that is not in the correct range or size). You should also do
volume testing to see that the program works successfully with
a representative amount of data.

Each programming language has special debugging aids for ex-
amining immediate states. For example, BASIC-11 has a
STOP statement that you can insert at strategic points in the
program. When the program arrives at a STOP statement, it
pauses so that you can use BASIC-11’s immediate mode to ex-
amine variables, values, and so on. Use an immediate mode GO
TO statement pointing to the appropriate line number to con-
tinue execution.

FORTRAN IV has a special DEBUG statement indicator, a D
in the first column of a statement line. Operations in state-
ments marked with a D can perform useful debugging func-
tions, such as printing intermediate results. You can treat such
statements as source text (and thus execute them) or as com-
ments (and thus ignore them), depending on whether you use a
special compiler command option. In addition, FORTRAN IV
has a traceback feature that locates the actual program unit
and line number of a run-time error. If the program unit is a
subroutine or function subprogram, the error handler traces
back to the calling program unit and displays the name of that
program unit and the line number where the call occurred. This
process continues until the calling sequence has been traced
back to a specific line number in the main program unit. Fi-
nally, FORTRAN IV has an optional interactive debugger
called FDT (FORTRAN DEBUGGING TECHNIQUE) that can
be linked with a user program.

For MACRO-11 users, RT-11 provides a special on-line debug-
ging tool called ODT (On-line Debugging Technique). This is
provided as part of the RT-11 operating system and is an object
program on your system volume. It is used exclusively for de-
bugging assembled MACRO-11 programs.

The use of ODT is described next for MACRO-11 users and for
those FORTRAN IV users who will be combining MACRO-11
and FORTRAN IV program code. Other users can continue to
Chapter 15, or go back and perform one of the other language
demonstrations. Refer to the reading path outlined in the
Preface.

ODT is an interactive debugging tool that allows you to mon-
itor program execution from the console terminal. ODT is pro-
vided as the object module ODT.OBJ on your system volume.
To use it, you link ODT.OBJ with the assembled MACRO-11

14-3

Debugging a User Program

USING THE ON-LINE
DEBUGGING
TECHNIQUE

Debugging a User Program

program that needs debugging. You then start execution of the
resulting load module, not at the transfer address of your pro-
gram, but at the entry point of the ODT module (shown on the
linker load map as the global symbol O.0ODT). Once ODT is
started, you can use its special debugging commands to control
the execution of your assembled machine language program
from the console terminal, to examine memory locations, to

change their contents, and to stop and continue program execu-
tion.

The MACRO demonstration program in Chapter 11 still con-
tains one error, which you can locate and correct using ODT.
Several ODT debugging commands are demonstrated in the
process.

Throughout the examples in this chapter you need to refer to
the program assembly listing of SUM.MAC. The listing that
was produced in Chapter 11 was deleted, so you must create a
new program assembly listing. Assemble your source program
and produce a cross-referenced assembly listing as you did in
Chapter 11. (Remember that SUM.MAC is now on your storage
volume.)

Long Command Format

\MACROGED
Files? VOL:SUM/LIST/CROSSREFERENCEGH

Short Command Format
\MACRO VOL:SUM/LIST/CROSSREFERENCEGED

Print the listing on either the terminal or the line printer:

Long Command Format

(Line printer) (Terminal)

JPRINTEED
Files? SUM,LSTGE

JTYPERED
Files? SUM.LSTED

Short Command Format

(Line printer) (Terminal)

LPRINT SUM.LSTGED JYPE SUM.LSTGED

SUM.MAC VERSION 1 MACRO V05.00 Saturdas 08-.1an-83 09:38 Fage 1

+TITLE SUM.MAC VERSION 1

<HCALL TTYOUT» .EXiTs (FRINT

000106 N = 70, #NO. OF DIGITS OF ‘E‘ TO CALCULATE
‘E’ = THE SUM OF THE RECIPROCALS OF THE FACTORIALS
i 170 #1710 4 1/2) + 1/31 & 1/4) ¢ 1/5) 4

VDN UD WM

10

11 000000 EXP? +FRINT #MESSAG #PRINT INTRODUCTORY TEXT

144

12 000006 012705 000106 L #NIRS #NO. OF CHARS OF ‘E’ TO FRINT
13 000012 012700 000107 FIKST: MOV #N+1,RO #NO. OF DIGITS OF ACCURACY
14 000016 012701 000124 MOV $ArR1 $ADDRESS OF DIGIT VECTOR
15 000022 006311 SECOND'! ASL @RrR1 D0 MULTIPLY BY 10 (DECIMAL)
16 000024 011146 MOV @R1,-(SP) 1SAVE %2
17 000026 006311 ASL eRr1 x4
18 000030 006311 ASL @R1 is8
19 000032 062621 ADD (SF)Y++(R1)+ #NOW %10, POINT TO NEXT DIGIT
20 000034 005300 DEC RO AT END OF DIGITS?
21 000034 001371 BNE SECOND BRANCH IF NOT
22 000040 012700 000104 MOV Ny RO $60 THRU ALL PLACES, DIVIDING
23 000044 014103 THIRD: MOV -(R1)sR3 #BY THE PLACES INDEX
24 000046 012702 177777 MoV #-1,R2 #INIT QUOTIENT REGISTER
25 000052 005202 FOURTH: INC R2 $BUMP QUOTIENT
26
27 000054 160003 SUB RO/R3 $SUBTRACT LOOP ISN’'T BAD
28 000054 103375 BCC FOURTH INUMERATOR IS ALWAYS < 10%N
29 000060 060003 ADD ROsR3 #FIX REMAINDER
30 000042 010311 MOV R3,@R1 #SAVE REMAINDER AS BASIS
31 JFOR NEXT DIGIT
32 000064 060261 177776 ADD R2,-2(R1) JGREATEST INTEGER CARRIES
33 #TO GIVE DIGIT
34 000070 005300 DEC RO $AT END OF DIGIT VECTOR?
35 000072 001344 BNE THIRD $BRANCH IF NOT
36 000074 014100 MOV -(R1)»RO #GET DIGIT TO OUTPUT
37 000076 162700 000012 FIFTH: SUB #10.+RO FIX THE 2.7 TO .7 SO
38 JTHAT IT IS ONLY t DIGIT
39 000102 103375 BCC FIFTH # (REALLY DIVIDE BY 10)
40 000104 062700 000072 ADD #10.+°0/RO IMAKE DIGIT ASCII
41 000110 LTTYOUT JOUTPUT THE DIGIT
42 000114 005011 CLR @R1 #CLEAR NEXT DIGIT LOCATION
43 000116 005305 DEC RS #MORE DIGITS TO PRINT?
44 000120 001334 BNE FIRST IBRANCH IF YES
435 000122 JEXIT iWE ARE DONE
46
47 000124 000107 Al +REPT N+1
48 +WORD 1 #INIT VECTOR TO ALL ONES
49 +ENDR
50
51 000342 124 110 105 MESSAG: .ASCII /THE VALUE OF E I8!/ <15><12> /2./ <200>
000345 040 126 101
000330 114 128 105
0003353 040 117 106
000336 040 105 04C
000361 111 123 077
000364 015 012 062
SUM.MAC VERSION 1 MACRO V05.00 Saturcas 08-Jan-83 09:38 FPase 1-1
000347 056 200
52 <EVEN
s3
S4 000000 +END EXF

Debugging a User Program

SUM.MAC VERSION 1
Swabol table

MACRO V05,00 Saturdaw 08-Jan-83 09:38 Pase 1-2

000124R

A FIFTH
EXP 000000R

FIRST

000074k
000012k

FOURTH
MESSAG

000052k N
000342R

= 000104
SECOND 000022R

THIRD 000044R

+ ABS. 000000 000
000372 001

Errors detected: O

(RW»1+GBL s AKS» OUR)
(RW»I+LCLYRELsCON)

#5% Assembler statistics

Work file r t o0

Work file writes: O

Size of work file: 8222 Words (33 Fages)
Size of core rool! 15872 Words (62 Fases)
Orerasting swustem: RT-11

Elarsed time!: 00:00:04.31
DK $8UM/, DK SUM/C=DK : SUN

SUM.MAC VERSION 1 MACRO V05.00 Saturdas 08-Jan-83 09:38 Fage S-1

Cross reference table (CREF V05.00)

A 1-14 1-47¢

EXP 1-11¢ 1-54

FIFTH 1-37¢ 1-39

FIRST 1-13¢ 1-44

FOURTH 1-25¢ 1-28

MESSAG 1-11 1-51¢

N 1-7¢ 1-12 1-13 1-22 1-47
SECOND 1-156¢ 1-21

THIRD 1-23¢ 1-35

SUM.MAC VERSION 1
Cross reference table (CREF V05.00)

+EXIT 1-3¢ 1-45
+PRINT 1-3¢ 1-11
<TTYOU 1-3¢ 1-41

MACRO V05.00 Saturday 0B-Jan-83

09:38 Fase M-1

Now link the MACRO-11 program object module (SUM.OBJ)
stored on the storage volume (VOL:) with ODT.OBJ by using
the /DEBUG option, and print a load map directly on the ter-
minal or the line printer, choosing one of the following com-
mands:

LINK/DEBUG

Long Command Format

(Line printer) (Terminal)

+LINK/MAP/DEBUGED

+LINK/MAP:TT:/DEBUGRD
Files? VOL:SUMGED

Files? YOL:SUMGD

14-5

Debugging a User Program

Short Command Format
(Line printer) (Terminal)

JLINK/MAP/DEBUG VOL : SUMGED JLINK/MAP:TT:/DEBUG VOL : SUMED

RT-11 LINK V08.00 Load Mar Saturdar 08-Jan-83 10:06 Pase 1
SUM +SAY Title: 0ODT Ident: V05,00

Section Addr Size Global Value Global Value Global Value
« ABS., 000000 001000

001000 000372
$0DTs 001372 006152

256+ words (RW,I,GBL +ABS,0VR)

125, words (RW,I,LCL,RELCON)

1589, words (RW:I,LCL,REL CON)
0.0DT 001624

Transfer address = 001624, Hish limit = 007542 = 1969, words

Look at the load map, and note that ODT starts at address
1372. The two modules together, ODT and SUM, reside in
memory up to location 7542, the high limit. Look at the symbol
table listing for the MACRO-11 program. This shows that the
program is 372(octal) bytes long and starts at location 1000.

To load and start execution of the load module, use the monitor
RUN command. The RUN command brings the entire load
module, called SUM.SAV, into the absolute (physical) memory
locations shown in the load map and begins execution automat-
ically at the starting, or transfer, address of the first module in
memory, which is ODT. Type:

Long and Short Command Format
LRUN SUMGE

0DT Vvo0S5.00
*

ODT prints an identifying message on the terminal and an as-
terisk indicating that you are in ODT command mode and can
enter an ODT command. You are now using ODT to control the
execution of your program.’ ODT commands let you execute the
entire program or just portions of it, examine individual loca-
tions, examine the contents of the PDP-11 general registers,
and change the contents of any locations in your program you
wish. If you make a mistake while you are typing any com-
mands, type the DELETE key; ODT responds with a question
mark (?) and an asterisk (*), allowing you to enter another
command.

!Be sure to read the chapter on ODT in the RT-11 System Utilities Manual
before you use ODT with any of your own programs. You must observe certain
precautions when you write your program and when you load it with ODT.
For example, you should make sure that ODT is not loaded into memory

locations used by your program. Follow the precautions described in the
RT-11 System Utilities Manual.

14-6

Look at locations 6 through 16 in the assembly listing. With
ODT, you can examine these locations in memory as follows (all
ODT commands use octal numbers, as does the assembly
listing):

#1006/0127050

001010 /0001060
001012 /0127000
001014 /000107@
001016 /012701

By typing a location address and a slash, you open that location
for examination and possible modification. A line feed closes
that location and opens the next sequential location for exami-
nation. A carriage return simply closes the currently open loca-
tion.

Note that since the MACRO-11 program was linked to begin at
address 1000, you must add the constant 1000 to each address
shown in the assembly listing to obtain the actual address used
during loading. ODT can do this for you by using special in-
ternal locations called relocation registers. Each register can be
set to a relocation constant. Thus, if you have linked several
modules together, you can set various relocation registers to the
corresponding relocation constants of the individual modules.
You then indicate in your command which register to use, and
ODT automatically adds the constant in that register to the
address specified in your command. For example, set relocation
register 0 to 1000:

#100030R

Now, to examine locations 0 through 10 in the assembly listing,
type:

#0,0/ 01270000

0,000002 /00134209
0,000004 /10435109
0,000006 /0127050
0,000010 /00010660

In your commands, indicate the number of the relocation reg-
ister (followed by a comma), since generally you will have more
than one register set at a time.

Execute the MACRO-11 program now, using the ODT ;G com-
mand, indicating in the command where you wish execution to
start. In this case, the program’s start (transfer) address is
1000, so type:

01036
THE VALUE OF E 1IS:

2.,5/606/606237.2301314.06525/130440275535025. 71477737352744745405502.,544

14-7

Debugging a User Program

Debugging a User Program

As you discovered in Chapter 11, these program results are
incorrect. Note that a period has printed, indicating that you
are back in monitor command mode. This particular
MACRO-11 program returns to the monitor after execution.
Therefore, to continue using ODT, you must RUN the load
module again:

Long and Short Command Format

+RUN SUMGED

0DT V05,00
*

Changes that you make to a program while using ODT, and
ODT register assignments that you make, are temporary. Thus,
when you restart ODT, you must reenter any commands, such
as relocation register commands, that you want to remain in
effect. Reset relocation register 0:

*100030R

To help you find programming errors, ODT provides a break-
point feature. Setting one or more breakpoints in a program
causes program control to pause at those locations during exe-
cution. When control pauses, ODT prints a short message on
the terminal, informing you that a breakpoint has occurred and
showing the location at which execution has stopped. This
pause returns control to ODT and gives you the opportunity to
examine and possibly modify variables or data. Breakpoints are
numbered from 0 to 7, so that you can have a total of eight
breakpoints set at various instructions in the program at one
time.

For example, set breakpoint 0 at location 22 (line 16 in the
assembly listing) and breakpoint 1 at location 40 (line 23):

*0,223508
*0,40318B

Now when you run the program, control pauses first at location
22. Since the breakpoint was set at the instruction at location
22, that instruction has not yet been executed, but all preceding
instructions have:

%0,03G :
TB030,000022

Note the message that ODT prints when execution reaches the
breakpoint. Normally when execution encounters a breakpoint,
only the breakpoint number and location are printed on the

14-8

terminal. In this case, the letter T precedes the breakpoint mes-
sage. This happens because of the way the ODT program uses
the console terminal. The assembly instruction .PRINT at line
12 of the assembly listing requests the monitor to print a pro-
gram message at the same time that ODT needs to print the
breakpoint message. ODT, however, has higher priority. By the
time the .PRINT request starts to print the program message,
execution reaches the breakpoint and gives control to ODT. The
.PRINT request has time to print only one character of its mes-
sage before ODT takes over and prints the breakpoint message.
When the program regains control, its message will continue
printing from the second character.

Program control has paused at location 22 in the MACRO-11
program. Look in the assembly listing at the instructions that
occur there. The instruction at location 16 (line 15) stores the
address of the digit vector (at label A) in register 1 (R1). Exam-
ine the contents of register 1 to discover what this address is;
then open the address and examine its contents and the con-
tents of several addresses following it by using two new ODT
commands, $ and @:

#1/001124 @

0,000124 /0000011D
0,000126 /0000010
0,000130 /0000010
0,000132 /000001GED

The $ command opens for examination the contents of one of
the general PDP-11 registers 0 through 7. The @ command
uses the contents of the currently open location as an address
and opens that location for examination. Notice that the digit
vector A, which begins at location 124, has been initialized to
the value 1, the precise value indicated by the comments at line
48 of the program listing.

If you were to continue program execution now, the branch in-
struction at line 22 of the assembly listing would cause pro-
gram control to loop back to the instruction at line 16 where
breakpoint 0 is set, again causing execution to pause. Since you
wanted to continue to the next breakpoint (set at location 40),
you must first cancel the breakpoint at location 22. To do this,

type:

0B

This removes the breakpoint at location 22. The number (in
this case 0) indicates which breakpoint is to be removed. Now
continue program execution using the ;P command (proceed
from breakpoint). Execution progresses through the loop and
continues until it reaches the breakpoint set at location 40:

14-9

Debugging a User Program

Debugging a User Program

*3Pp
HB130,000040

(Note that the monitor has time to print the second character,
and perhaps additional characters, of the program message be-
fore ODT gains control.) Now examine the contents of several of
the program vector locations beginning at location 124:

*0,124/000012@

0,000126 /000012@
0,000130 /000012@
0,000132 /00001260

The instructions prior to the breakpoint at location 40 consti-
tute a multiplication routine. This routine multiplies the vector
contents by 10 (12 octal), as you have Just verified.

You can see how the breakpoint feature is a very useful debug-
ging aid. It allows you to execute selected portions of a program
and verify that data and variables are being used correctly
during execution. You can use the breakpoint feature to locate
the error that is in this program.

First, clear all previously set breakpoints (in this case, there is
only the one at location 40) by typing the ;B command with no
argument.

*5B

Now set a breakpoint at location 110 (line 41 of the assembly
listing). You want to verify the data that is being passed to the
monitor in register 0 in the ADD instruction in line 40.

*0,+110508B
*iP
EB03j0,000110

Now examine the contents of register 0.

*$0/ 000065 \ 065 =5@D

At this point in execution, register 0 contains 000065. The
backslash (\) command prints the low-order byte of the opened
location on the console terminal and also converts this to an
ASCII character (if it is a valid ASCII code) and prints the
character. In this case, the number 5 prints. If you look back at
the program results printed earlier in this chapter, you can see
that 5 is the first digit of the tabulated result (following the
message THE VALUE OF E IS 2). If you are experienced in
mathematics, you know this result is incorrect because the ap-
proximate value of E is 2.718. And you now also know that the

14-10

program error is not in the interface to the monitor service used
to print the result (TTYOUT), but that it occurs somewhere
before location 110. So the next step in debugging this program
is to set a breakpoint at some earlier point in the program logic
and to rerun the program. You must restart ODT to do this.
Return to monitor mode by typing CTRL/C. The remainder of
the program message prints on the terminal; then the monitor
period appears, indicating that you are in monitor mode.

*CRIO)
VALUE OF E IS:
2.

+

Restart ODT and reset relocation register 0.

+RUN SUMGED

oot Vo5.00
#1000350R

Set a breakpoint at location 76 (line 37 in the assembly listing),
and start program execution at its beginning.

#0,7630B
#0,03G
TB03§0,000076

Again, examine register 0 to verify its contents.

#$0/ 00003360

By following the program logic in the assembly listing, you
know that the value in register 0 should at this point be
33(octal) (2.7, previously multiplied by 10, = 27[decimal] =
33[octal]). So the value in register 0 is correct. From this, you
can deduce that the error must occur somewhere between loca-
tions 76 and 110. The proper step now is to check the assembly
listing, where you find the error at line 40. The decimal point
that should follow the 10, identifying it as a decimal 10, is
missing. Therefore the program treats the 10 as an octal 10, or
8(decimal), making each digit in the result off by an additive
factor of 2. The data in location 106, then, should be 72, not 70.
Since this data has not yet been used, you can change it now
with ODT and continue program execution; if it had been used,
you would need to restart ODT and then change the data. To
change the contents of a location, simply open the location, type
in the new contents, and close the location, using a carriage
return.

#0106/ 000070 72@E

14-11

Debugging a User Program

Debugging a User Program

SUMMARY:
COMMANDS FOR
DEBUGGING
PROGRAMS

Now eliminate all breakpoints.

*3iB

Continue program execution; the correct results should print.

#3P

THE VALUE OF E IS:
2.7182918284590452353502974713528824977572470938999595749869678277240788
‘

To Start ODT

LINK/DEBUG

Link the assembled program (the program to be debugged)
with the ODT object module.

To Use ODT!

Close the currently open location and open the next sequen-
tial location for examination and possible modification.

GED

Close the currently open location.

addr/
Open the location indicated (addr) for examination and pos-

sible modification.
addr;G
Begin program execution at the indicated address (addr).
;P
Continue program execution from a previous breakpoint.
addr;nB
Set one of the eight available breakpoints (n) at the indicated
address (addr).
;nB
Cancel the indicated breakpoint (n).
;B
Cancel all breakpoints.
addr;nR

Set one of the eight available relocation registers (n) to the
relocation constant value indicated by addr.

!0nly a very few of the available debugging commands have been demon-
strated in this chapter. Consult the RT-11 System Utilities Manual for all
ODT commands.

14-12

$n
Open one of the eight general registers (n) for examination
and possible modification.

@
Use the contents of the currently open location as an address;
close the currently open location; go to the new address, and
open it for examination and possible modification.

Print on the console terminal the low-order byte of the cur-
rently open location; if possible, convert the value to an
ASCII code and print the corresponding character on the ter-
minal.

Changes you make with ODT are temporary. Therefore you
should now use the editor to correct the source program
SUM.MAC. You should edit line 40 so that it reads:

ADD #10,+'0,4RO iMAKE DIGIT ASCII

The file SUM.MAC is currently stored on the storage volume
VOL:. Edit this file, then reassemble, relink, and rerun it to
verify that it is correct. When you have done this, store the
updated version of the source file on the storage volume under
the same name (SUM.MAC), including the files SUM.OBJ and
SUM.SAV.

After you have corrected and rerun the program, continue on to
Chapter 15, or go back and perform one of the other language

demonstrations. Refer to the reading path outlined in the
Preface.

RT-11 System Utilities Manual (AA-M239A-TC). Maynard, Mass.: Digital
Equipment Corporation, 1983.

A guide to the use of the RT-11 system utilities.

14-13

Debugging a User Program

FILE MAINTENANCE

REFERENCE

CHAPTER 15

USING THE FOREGROUND/BACKGROUND MONITOR

A special feature of the RT-11 operating system is that it pro-
vides a choice of operating environments. You are using its
foreground/background environment. This environment allows
two independent programs to reside in memory at the same
time and to execute concurrently.

You have used the foreground/background (FB) monitor to con-
trol the system and to perform the various exercises in this
manual.

The foreground/background environment is designed so that
two programs can — but need not — share memory and run
concurrently. One of these programs you designate as the fore-
ground program. The system gives priority to the foreground
program (or job, as it is usually called) and allows it to run until
some condition, perhaps waiting for an I/O completion, causes it
to relinquish control to the other program (the background job).
The system then allows the background job to run until the
foreground job again requires control, and so on. In this way,
the two programs share system resources. Whenever the fore-
ground program is idle, the background program runs. Yet
whenever the foreground program requires service, its requests
are immediately satisfied. To the user at the terminal, the two
programs appear to run simultaneously.

Foreground priority programs are generally time-critical. For
example, you may want to designate as the foreground job a
program that collects and analyzes data. Background programs
are usually non-time-critical. Thus, you can continue to do pro-
gram development as the background job by using monitor com-
mands to run the editor, the FORTRAN IV compiler, the linker,
and so forth.

In order to perform the following exercises your system must
have a clock. Verify whether your system has a clock by en-
tering the TIME command twice. If the time displayed changes,
your system has a clock. If your system does not have a clock
you should skip ahead to Chapter 16.

Two programs are provided for you to run a foreground/back-
ground demonstration. These programs reside on your system
volume. The background job is called DEMOBG, and the fore-
ground job DEMOFG. The function of the foreground job is to
send messages every two seconds to the background job, telling
it to ring the terminal bell. The background job recognizes

15-1

THE
FOREGROUND/
BACKGROUND
ENVIRONMENT

RUNNING THE
FOREGROUND/
BACKGROUND
PROGRAMS

Using the Foreground/Background Monitor

Creating the
Background Job

Editing the
Background Job

Running the
Background Job

these messages and rings the bell once for each message sent by
the foreground job.

Although the foreground job is always active, sending messages
to the background job every two seconds, other programs be-
sides DEMOBG can be executed in the background. Only when
DEMOBG is active, however, is the circuit complete so that
messages can be successfully received and honored. During the
periods when DEMOBG is not running, the foreground pro-
gram enters the messages in the monitor message queue. Once
you restart DEMOBG in the background, the system immedi-
ately dequeues all the messages since the last exit of DEMOBG,
resulting in many successive bell rings. When the queue is
empty, the normal send/receive cycle resumes, and the bell
rings every two seconds as each current message is sent and
honored.

The background program DEMOBG.MAC is an assembly lan-
guage source file and must be assembled and linked before you
can use it. When you execute DEMOBG, it displays a message
on the terminal. It is assumed that you have set the date.

Use the text editor to modify the background job,
DEMOBG.MAC. One of the lines of the message that is output
by the program has a semicolon character preceding it, which
makes the line a comment field. This will prevent the line from

being printed as part of the message. Thus, the semicolon must
be deleted from that line.

Change the line

i +ASCII /WELL DONE./

to

+ASCII /WELL DONE./

If you performed the demonstration in Chapter 11, you are al-
ready familiar with assembly/link operations, and the following
command explanations can serve as a review. If you did not
read Chapter 11, simply type the command lines as shown.

Assemble the background job.
Long Command Format

MACROGED
Files? DEMOBG/LISTGEE

15-2

Using the Foreground/Background Monitor

Short Command Format
+MACRO DEMOBG/LIST@D

Link the .OBJ file produced by the assembler to create a run-
nable job.

Long Command Format

+LINKGED
Files? DEMOBGGRD

Short Command Format

+LINK DEMOBGEE

Now run the background job and check the results.

+RUN DEMOBGGE

RT-11 DEMONSTRATION PROGRAM

IF INCORRECTLY EDITED: THIS IS THE LAST LINE.
WELL DONE.

If you did not delete the semicolon character, the last line will

not be output. Return to the monitor by typing two successive
CTRL/Cs.

CTRL/C)
CTRL/C)

“C
“C

+

The FB monitor provides you with commands that allow you to USING THE
control the two-job environment. They let you interact with the FB MONITOR
two jobs and let the two jobs interact with one another.

When two jobs run simultaneously, you must have some means Communication
of indicating the job to which you are directing commands. in a Two-Job
Likewise, the two jobs must have the means to identify them- Environment
selves when they have messages to print. The following are
some conventions that apply to system communication in a two-
job environment.

1. The foreground job has priority. If both the foreground and
the background job are ready to print output at the same
time, the foreground job prints first. The foreground job
prints a complete line, then the background job prints a
complete line, and so on.

15-3

Using the Foreground/Background Monitor

Creating the
Foreground Job

LINK/
FOREGROUND

2. Either job can interrupt your input at the terminal if it has
a message to print.

3. Messages printed by the background Jjob are preceded by the
characters B>.

4. Messages printed by the foreground job are preceded by the
characters F>.

5. Typed commands are initially directed to the background
job. You can redirect control alternately to the foreground
and background jobs by using the CTRL/F and CTRL/B
commands.

To direct typed input to the foreground Jjob, type CTRL/F.
This command instructs the monitor that all subsequent
terminal input — commands and text — is directed to the
foreground job. Typing this command causes the system to
print an F> on the terminal, unless output is already
coming from the foreground job. Command input remains
directed to the foreground job until the foreground job ter-
minates, or until it is redirected to the background job
through CTRL/B.

To direct typed input to the background job, type CTRL/B.
This command instructs the monitor that all subsequent
terminal input — commands and text — is directed to the
background job. Typing this command causes the system to
print a B> on the terminal, unless output is already coming
from the background job. Command input remains directed
to the background job until redirected to the foreground job
through CTRL/F.

The foreground program DEMOFG is an assembly language
source file; it must be assembled and linked before you can use
it.

Long Command Format

MACROGD
Files? DEMOFG/LISTRD

Short Command Format
MACRO DEMOFG/LISTG®

The output resulting from this MACRO command includes an
object file called DEMOFG.OBJ and a listing file called
DEMOFG.LST. The command creates both files on your system
volume. You must link the .OBJ file to produce a runnable
foreground program. You use the LINK command, Jjust as you
have in earlier chapters, but you also use the FOREGROUND

154

Using the Foreground/Background Monitor

option.! This option produces a load module with a .REL file
type which signifies to the system that the file is a foreground
program and is to be run as the priority job.

Long Command Format

+LINK/FOREGROUNDGED
Files? DEMOFGGED

Short Command Format

+LINK/FOREGROUND DEMOFGGED

Now you are ready to operate the two-job environment. Many Executing the
times, you have to consider the devices that are used for output Foreground and
in a foreground/background environment. For example, if your Background Jobs

program assumes that the output device is a line printer, and
you do not have a line printer or you want to output to another
device, use the ASSIGN command. Type this command in the
following way, substituting the two-letter mnemonic from
Table 4-2 for the storage volume in place of dd.

Long Command Format

+ASS I GNEED
Physical device name? dd: @D
Lodical device name” LP: @D

Short Command Format

+ASSIGN dd: LP:@D

You do not have to consider the above information for the dem-
onstration programs that are provided, since the foreground job
communicates with the background job, and both Jobs send
their output to the terminal.

When you use the FB monitor, you must always load into
memory the peripheral device handlers needed by the fore- LOAD
ground job. You use the monitor LOAD command to make a
device handler permanently resident in memory. For example,
if your foreground job requires the use of the line printer, you
must load the LP device handler. You must specify the jobtype
with the command. For a foreground job, the jobtype is F; for a
background job, the jobtype is B. If you have assigned the code
LP: to another device, the system automatically loads the as-
signed handler and you need not enter a LOAD command. If
you are using the line printer, type:

'This command option also applies to compiled FORTRAN IV programs that
are to be linked as a foreground job.

15-5

Using the Foreground/Background Monitor

FRUN

Long Command Format

,LOADED
Device? LP:=FGED

Short Command Format
LDAD LP:=FGD

The command to load and start execution of the foreground job
is FRUN, which is similar to the RUN command except that
the system automatically loads and starts the execution of the
foreground .REL program. (To execute a FORTRAN IV fore-
ground job, you must use the /BUFFER:n option with the
FRUN command. The argument n represents, in octal, the
number of words of memory to allocate.) Use this command to
start the execution of DEMOFG.REL.

Long and Short Command Format
JFRUN DEMOFG@ED

F>

FOREGROUND DEMONSTRATION PROGRAM

SENDS A MESSAGE TO THE BACKGROUND PROGRAM "DEMOBG"
EVERY 2 SECONDSs TELLING IT TO RING THE BELL.,

B>

The foreground program DEMOFG is now running and
queuing the message for the background program every two
seconds. You now execute the background program DEMOBG
to allow it to receive the messages that were queued and to ring
the bell.

/RUN DEMOBGED

RT-11 DEMONSTRATION PROGRAM

IF INCORRECTLY EDITED, THIS 1S THE LAST LINE.
WELL DONE.

The bell rings several times in rapid succession as the monitor
dequeues the messages, and then every two seconds as the fore-
ground job sends its message to the background job.

You can run other jobs in the background. First, terminate the
background job DEMOBG, using the double CTRL/C command.

CRIS)
CmLC)

+

Execute a DIRECTORY command in the background to get a
listing of all the .OBJ files on the system volume by typing:

DIRECTORY #.0BJGD

15-6

Using the Foreground/Background Monitor

The foreground job is still running and queuing its messages to
the monitor. Rerun the background program to collect all the
foreground messages while the background job was stopped and
the directory was printing.

+ RUN DEMOBGGRE)

RT-11 DEMONSTRATION PROGRAM

IF INCORRECTLY EDITED, THIS IS THE LAST LINE,
WELL DONE.

The bell again rings several times in succession and then rings
once every two seconds. Stop the background job by using the
double CTRL/C command.

.

Now stop the foreground job and remove it from memory. To do
this, you must first use the CTRL/F command to direct terminal
input to the foreground. Type:

+ CRIF)
F>

The system prints the characters F> to remind you that you
are now directing command input to the foreground job. Use the
double CTRL/C command to interrupt and terminate the execu-
tion of the foreground job, and return control to the background
job.

RIS)
B>

You should unload the foreground Job to reclaim memory space
for background use. Use the monitor UNLOAD command as UNLOAD
follows:

Long and Short Command Format
UNLOAD FED

*

F represents the foreground job; you should use this code when-
ever you want to unload the foreground job. To unload any
loaded device handlers, you must use their two-letter device
mnemonics.

Check to see if the .LST files were produced as a result of this
demonstration.

15-7

Using the Foreground/Background Monitor

SUMMARY:
COMMANDS USED
IN AN FB
ENVIRONMENT

FILE MAINTENANCE

Version 5.1, July 1984

Long and Short Command Format

+DIRECTORY #.LST

08-Jan-83

DEMOBG.LST 4 08-Jan-83 DEMOFG.LST 6 08-Jan-83
2 Filessy 10 Blocks

406 Free blocks

The foreground program has access to all the system features
available to a background program — opening and closing
files, reading and writing data, and so on. However, before you
begin to write and use programs in the foreground, read the
RT-11 Software Support Manual for coding restrictions.

CTRL/B

Direct all keyboard input to the background job (until
CTRL/F).

CTRL/F

Direct all keyboard input to the foreground job (until
CTRL/B).

FRUN
Load and start execution of the foreground job.

LOAD dd
Bring the indicated device handler into memory; the handler
becomes resident in memory.

UNLOAD dd
Take the indicated device handler out of memory, reclaiming
its memory space; the handler becomes nonresident in
memory.

UNLOAD F
Reclaim the memory space used by the foreground job.

You assembled the source file DEMOFG.MAC and produced an
.OBJ file, linking it to produce DEMOFG.REL. You also cre-
ated a .LST file named DEMOFG.LST on your system volume.
You should save on your storage volume the files
DEMOFG.REL and DEMOFG.MAC, and delete from your
system volume the files DEMOFG.OBJ and DEMOFG.LST. Do
not delete DEMOFG.MAC, since this file was distributed as
part of the RT-11 operating system. Do the same for the file
DEMOBG, which you created as a .SAYV file instead of a .REL
file.

15-8

Using the Foreground/Background Monitor

Long Command Format
+COPYGRED
From? DEMOFG.MAC :DEMOFG.RELGD
To ? VOL:*,*@D
Files coprpied:
DK : DEMOFG . MAC to YOL:DEMOFG.MAC
DK : DEMOFG.REL to VOL:DEMOFG.REL

+DELETEGD

Files? DEMOFG.0OBJ/DEMOFG.,LSTGRE

Short Command Format

+COPY DEMOFG.MAC DEMOFG.,REL VOL:#*,*ED
Files coprpied:

DK : DEMOFG.MAC to YOL:DEMOFG.MAC
DK :DEMOFG.REL to VOL:DEMOFG.REL

+DELETE DEMOFG.0BJ,DEMOFG.LSTGEED

Finally, obtain a brief directory listing of your storage volume
so that you can see its current status:

Long and Short Command Format
+DIRECTORY/BRIEF VOL:GD

RT-11 Software Support Manual (AA-H379B-TC). Maynard, Mass.: Digital
Equipment Corporation, 1983.

A technical manual providing RT-11 programming concepts.

RT-11 System User’s Guide (AA-5279C-TC). Maynard, Mass.: Digital Equip-
ment Corporation, 1983.

A guide to the use of the RT-11 operating system.

15-9

REFERENCES

CHAPTER 16

USING INDIRECT FILES

The RT-11 system provides an operational aid called an indi-
rect file, which allows the system to run unattended. An indi-
rect file is a file composed entirely of monitor operating com-
mands. When you start the execution of the indirect file, the
monitor processes these commands in consecutive order. So
once you have created an indirect file and started its execution,
you can direct your attention to other tasks or even physically
leave the system, since the monitor executes the commands au-
tomatically and consecutively.

The kinds of operations that RT-11 can best perform in an
indirect file are those that involve much computer processing
but that do not require your supervision or intervention. For
example, multiple assemblies, compilations, and data transfer
operations are ideal operations for indirect file processing. Also,
any series of commands that you are likely to type often can
easily run as an indirect file.

Use the editor to create an indirect file as a text file. You can
call the file by any file name you wish, but you should give it a

file type of .COM, since this file type is the default used by the
monitor to locate the file.

You structure the lines of text that make up an indirect file just
like keyboard input. Thus, if you were to list the indirect file it
would look like terminal keyboard text without any monitor
prompts.

You enter monitor commands into the indirect file as you would
on the terminal. As an example, both of the following accom-

plish the same operation when executed as part of an indirect
file:

COPYED
INFIL .MACGD
OUTFIL.MACGD

COPY INFIL.MAC OUTFIL,MACGEE

Since monitor prompts are not included in the indirect file,
using the long command format requires that you anticipate

The indirect file concept is similar to BATCH processing. Although indirect
files lack many of the BATCH capabilities, they are easier to use than
BATCH. (The RT-11 computer system also supports a BATCH processor, as
described in the RT-11 System Utilities Manual.)

16-1

CREATING AN
INDIRECT FILE

Entering Monitor
Commands

Using Indirect Files

Using the Editor
to Create an
Indirect File

each prompt and its proper response. It is suggested that you
use the short command format and enter the command as a
single line of text. Terminate each command line with a car-
riage return.

The indirect file that you will now create incorporates several
of the commands previously demonstrated in this manual. Thus
it serves both as an example of the format of indirect file input
and as a brief review of the monitor commands used to copy,
process, and delete files. In addition, one new command, DEAS-
SIGN, is demonstrated.

List a directory of your storage volume. The only files that
should appear in the listing are GRAPH.FOR, SUM.MAC, and
MATCH.BAS. All three files will be in the directory only if you
performed the exercises for all three languages (FORTRAN IV,
MACRO-11, and BASIC-11).

Long and Short Command Format

+DIRECTORY VOL:ED

08-JAN-83

SUM +MAC 3 08-JAN-83 MATCH .BAS 3 08-JAN-83
GRAPH .FOR 2 08-JAN-83

3 Filess 8 Blocks

4754 Free blocks

If any other files are listed, delete them using the DELETE
command before you create the indirect file.

Use the EDIT/CREATE monitor command to create a file called
INDCT.COM, inserting the commands according to the direc-
tions in the right-hand column. When you have finished cre-
ating the file, list it and check for typing errors. Correct any
errors you find, and then close the file, using the EX editing
command.

Long and Short Command Format
VEDIT/CREATE INDCT.COMED

*IDATE B8-JAN-83E Enter a hypothetical date

TIME 8:00:008D and time (if your system has
a clock).

DATEED Print the date.

DEASSIGNED Deassign all previous device

assignments and set new
ones as follows:

ASSIGN TT: LP:@ Assign the logical name LP:
to the terminal.

ASSIGN ddn VOL:ED Assign the logical name
VOL: to the storage volume
(dd). '

16-2

DIRECTORY/BRIEF vOL:@D

COPY VOL:GRAPH.FOR GRAPH.FORGE

COPY VOL:SUM,MAC SUM.MACGEE

COPY VOL:MATCH.BAS MATCH,BASED

FORTRAN/LIST GRAPHED
LINK/MAP GRAPH,SYSLIB .FORLIBGED

MACRO/LIST/CROSSREFERENCE SUMED
LINK/MAP SUMGE

RENAME MATCH.BAS MATCH.MAPRED

List an abbreviated direc-
tory of VOL.:.

FORTRAN 1V users insert
this command to copy the
FORTRAN IV demo pro-
gram to the system volume.

MACRO-11 wusers insert
this command to copy the
MACRO-11 demo program
to the system volume.

BASIC-11 users insert this
command to copy the BA-
SIC-11 demo program to
the system volume.

FORTRAN 1V users who do
not need to load the lan-
guage volume include these
commands to compile and
link the FORTRAN IV
demo program.

All users assemble and link
the demo program.

BASIC-11 users simply re-
name the demo program.

MACRO/LIST/CROSSREFERENCE DEMOFGED

LINK/FOREGROUND/MAP

DEMOF GG

DIRECTORY #*.0BJGED

DELETE/NOQUERY GRAPH,*ED

DELETE/NDQUERY SUM. %@

DELETE MATCH.MAPGED

DEASSIGNGE)

TIMEGD

#B /L E0ED
DATE 8-JAN-83
TIME 8:00:00

All users assemble and link
the DEMOFG file.

List a directory of object
files.

FORTRAN IV users delete
the GRAPH files.

MACRO-11 wusers delete
the SUM files.

BASIC-11 users delete the
MATCH file.

Deassign all device assign-
ments.

If your system has a clock,
print the time to show how
long total processing took.

Terminate the insert com-
mand and list the indirect
file to check for errors. (Ex-
ample input is shown here.)

16-3

Using Indirect Files

Using Indirect Files

EXECUTING AN
INDIRECT FILE

DATE

DEASSIGN

ASSIGN TT: LP:

ASSIGN RK1: VvOL:
DIRECTORY/BRIEF vOL:

COPY VOL:GRAPH.FOR GRAPH.FOR
COPY VDL :SUM.MAC SUM.MAC
COPY VOL:MATCH.BAS MATCH.BAS
FORTRAN/LIST GRAPH

LINK/MAP GRAPH,SYSLIB,FORLIB
MACRO/LIST/CROSSREFERENCE SUM
LINK/MAP SUM

RENAME MATCH.BAS MATCH.MAP
MACRO/LIST/CROSSREFERENCE DEMOFG
LINK/FOREGROUND/MAP DEMOFG
DIRECTORY #.08J
DELETE/NOQUERY GRAPH.#
DELETE/NOQUERY SUM.#

DELETE MATCH.MAP

DEASSIGN

TIME

*EXEDED Close the file INDCT.COM.

Once you have created an indirect file and checked it for errors,
you are ready to start its execution. The command to start exe-
cution of an indirect file is the at sign (@) followed by the
appropriate file name (the file type .COM is assumed unless
you indicate otherwise). Execution starts immediately, and the
system processes commands in the indirect file in consecutive
order. Each command is echoed on the terminal as it is pro-
cessed. If an error within the indirect file affects the processing
of a command, the system prints a system message on the ter-
minal and stops execution of the entire file. Therefore, it is
particularly important that you check your indirect file for er-
rors before you start it and then leave the area. You can stop

execution of an indirect file at any time by typing two
CTRL/Cs.

Run the indirect file that you have just created by typing:

+BINDCTGE

It takes a minute or two for the commands in this file to be
processed and for the listings to print. If your system has a
clock, the time printed at the end of execution tells you exactly
how long command processing has taken. Following is an ex-
ample run.

<@INDCT
-DATE 8-JAN-83
+TIME B:00:00

DATE
8-Jan-83

+DEASSIGN

LASSIGN TT: LF:

VASSIGN RK1: VOL:

+DIRECTORY/BRIEF VOL:

08-Jan-83

GRAFH .FOR SUM .MAC MATCH .BAS
3 Filess 8 Blocks

4754 Free blocks

+COFY VOL:GRAFH.FOR GRAFH.FOR

.COPY VDL :SUM.MAC SUM.MNAC

164

Using Indirect Files

+COPY VOL:MATCH.BAS MATCH.BAS
.'GVRM/LIOV BRAPH
FOR’

vo2.5 Sat 08-Jan-83 08:00:16 PAGE 001
C GRAPH.FOR VERSION 1
€ THIS PROORAM PRODUCES A PLOT ou 1‘»(TERMINAL
C OF AN EXTERNAL FUNCTION, FUN(X,
C THE LIMITS OF THE PLOT ARE nc\‘uvun:n BY THE DATA STATEMENTS
C *STAB® IS FILLED WITH A TABLE OF MEIGHT FLAGS
C *STRING® 1S USED TO BUILD A LINE OF GKAFH FOR PRINTING
0001 SCAL (ZNIN+ ZWAX s MAXZ K) sZNIN4FLOAT (K- 1) 8 (ZNAX - ININ)IFI.OA'(MXZ 1
0002 LOGICALS1 SYRING(133),8TAB(100)
0003 DATA XMIN:XMAX » MAXX/~S5.0,5.0,4%/
0004 DATA YHIN: YMAX s MAXY/~S5.0,5.0,72/
0003 DATA FHINIFMAX/0.0+1.0/
0004 CALL SCOPY('-~ 1 2 3456789+ +STAB)
0007 MAXF=LEN(STAB)
0008 DO 20 IX=1,MAXX
0009 X=SCAL (XMIN s XMAX » MAXX » IX)
0010 CALL REPEAT (3’ ,STRING, MAXY)
0011 IF(IX EQ.1 .OR. IX.EQ.MAXX) GO'O 20
0013 10 1Y=2,MAXY-1
0014 Y=SCAL (YMIN, YMAX s HAXY, 1Y)
0013 IFUNS2+ INT(FLOAT (MAXF-3) 8 (FUN(X+Y) ~FMIN) / (FHAX-FHIN))
0016 10 IVIIW(IY)-!Y“(N]M(M!"MXO(l-!ﬂhﬂ) »
0017 20 CALL PUTSTR(7,STRING, *
0018 CALL EXIT
0017 END

"FOIY!M—I C.MAIN.] Errors: O, Warnin:
FORTRAN IV Storase Mar for Frosras u'.n. MAIN.

Local Varisbless .PSECT $DATA: Size = 000470 156. words)

Name Ture Offset Name Ture Offset Nane Ture Offset
FHAX R24 000402 FMIN R&4 000376 IFUN =2 000450
Ix 182 000434 Iy 182 000442 L3 122 000430
MAXF 182 000432 MAXX 182 000362 MAXY 1%2 000374
MAXZ 182 000424 x R34 000434 XNAX RE4 000356
XNIN R4 000352 M Re4 000444 YHAX Re4 000370
YNIN R34 000344 ZMAX R34 000422 ZHIN Re4 000414

Local and COMMON Arravs:

Nane Twre Section Offset ------Size--- - Dimensions

STAD Ly SDATA 000205 000144 ($0.) (100)

STRING L1 SDATA 000000 000205 « 47 (13

Subrouti Functions, Stat t and P ined Functions:
Nane Ture Nane Ture Nome Ture None Ture Nane Ture
EXIT R34 FLOAT R34 FuN Re4 INT 182 LEN 182
MAXO 182 HINO 152 PUTSTR R34 REPEAT R34 SCAL R34
SCoPY R34

FORTRAN 1V v02.5 Sat 08-Jan-83 08: PAGE 001
0001 FUNCTION FUNCX,Y)

0002 R=SORT (X8824Y882)

0003 FUN=(XSYSRSEXP (~R)) 882

0004 RETURN

0008 END

FUN

FORTRAN IV Storase Msr for Prasraa Unit FUN

Local Varisbles: .PSECT SDATA: Size = 000024 - 10. words)

Noae Twre Offset Nome Ture Offset Name Ture Offset
Fun RE4 000004 Eav R Re4 000010 X RE4 @ 000000
A R34 @ 000002

Subroutiness Functionss Statesent and Processor-Defined Functions:

Naae Ture Name Ture Name Ture Name Ture Name Ture

ExP Re4 SORT RS

SLINK/MAP ORAPH,SYSLIB:FORLID

RY-11 LINK V08.00 Load Mar Saturdsas 08-Jar-83 08:02 Page 1
ORAPH . 8AV Title! .MAIN. Ident: FORVO:

Section Addr Size Globsl Value Global Value Global Value

+ ABS. 000000 001000 = 254. words (RW,I,GBL»ABS,OVR)
000000 SRF2AL 000000 SMRDWR 000000
VIR 000000 SMLCHN 000006 $SYSVS 000012
SUASIZ 000152 SLRECL 000210 $TRACE 004737
orssI 001000 017722 = 4073.
480781

001014

nOISIA
MOISHA 004734 MOISOS 006740

nor
MOIS1A 004770 ICIeS 004776
ICIeP 007006 ICISA 007010

RT-11 LINK V08.00
ORAPH . SAV Titlet
NOISPS 007104 MOESPH 007112

MDISOP 007124 WMOISIP 007134
SIBNTR 607130 LONG 007144
IR 00 7330

oL
MOLSIA 007470 NOLSIP 007476

16-5

Using Indirect Files

007516
007532
007546
007606
007644
007704
010032
010040
010054
010062
010224
010240
010252
010266
010306
010306
010320
010330
010442
010566
015212
017224
020126
020340
020350
020520
SDUNPL
0TSSP 020722 000054 = 22. (RWyDyBBL s REL 1 OUR)
SYS$I 020776 000244 = 82. (RW¢ I+LCL/REL +CON)
LEN REPEAT 021014 SCOPY 021146
USER$I 021242 000000 = 0. CRWs IsLCLREL +CON)
SCODE 021242 001316 = 359, CRWy T+LCLREL »CON)
+0TSC FUN 022120 PUTSTR 022266
0TS$0 022560 001036 = 271. (RWs I 4LCLYREL »CON)
. +30TS0 SOPEN 022540
SYS$0 023416 000000 = 0. CRW+ I+LCL yREL »CON)
SDATAP 023616 000106 = 35, (RWsDsLCL/REL »CON)
0TS$D 023724 000006 = 3, CRWDsLCL REL »CON)
NHCLNS
0TS$S 023732 000002 = 1. ds_ (RWsDLCLIREL »CON)
$A0TS 2
SYS$S 023734 000004 = 2. (RWsDsLCLREL »CON)
+SYSLB SLOCK 023736 $CRASH 023737
SDATA 023740 000536 = 175. (RWsDsLCLyREL »CON)
USERSD 024476 000000 = 0. (RWsDyLCL/REL »CON)
. . 024476 000000 = 0. wo! (RW/DsGBLREL »OVR)
RT-11 LINK v08.00 Load Mar Saturdaw 08-Jar-83 08:02 Fase 3
GRAPH ,SAV Title: .MAIN. Ident: FORVO2
Transfer address = 021242, Hish limit = 024474 = S278. words
+WACRO/L 1ST/CROSSREFERENCE SUM
SUM.MAC VERSION 1 MACRD V05.00 Saturdaw 08-Jan-83 08:07 Pase 1
1 «TITLE SUM.MAC VERSION 1
2
3 WMCALL .TTYOUT, .EXIT, .PRINT
a
s
6
7 000106 N = 70, #NO. OF DIGITS OF TO CALCULATE
8 [‘E’ = THE SUM OF THE RECIPROCALS OF THE FACTORIALS
9 ' 1700 4 1710 4 1720 4 1/30 4 1,40 4 1/80 4 ..,
10
11 000000 Exp: LPRINT #MESSAG IPRINT INTRODUCTORY TEXT
12 000006 012705 000104 NV NSRS N0, OF OF ‘E‘ TO PRINT
13 000012 012700 000107 FIRST: MOV ON41IRO INO. OF DIGITS OF ACCURACY
14 000016 012701 000124° oy AR JADDRESS OF DIGIT VECTOR
1S 000022 006311 SECOND: ABL ar1 D0 WULTIPLY BY 10 (DECINAL)
16 24 011146 oy ®R1,-(SP) 1SAVE %2
17 000026 006311 ASL oRr1 ina
18 000030 004311 ASL ®R1 18
19 000032 062621 ADD (SPY 45 (R1)4 INOW 810, POINT TO MEXT DIGIT
20 000034 005300 DEC RO IAT END OF DIBITS?
21 000036 001371 BNE iBRANCH IF NOT
22 000040 012700 000104 oV 100 THRU ALL PLACES, DIVIDING
23 000044 014103 THIRD: WOV IBY THE PL 1
24 000046 012702 177777 Hov JINIT QUOTIENT REGISTER
25 000052 005202 FOURTH: INC iBUMP QUOTIENT
26
27 000054 160003 ‘sup ISUBTRACT LOOP ISN'T BAD
28 000056 103375 BCC INUMERATOR IS ALWAYS < 108N
29 000060 040003 ADD SFIX RENAINDER
30 000062 010311 Hov IBAVE REMAINDER AS BASIS
31 SFOR NEXT DIGIT
32 000064 060261 177776 ADD R2y-2(R1) JOREATEST INTEGER CARRIES
33 #T0 GIVE DIGIT
34 000070 005300 DEC RO #AT END OF DIGIT VECTOR?
35 000072 001364 BNE THIRD SBRANCH IF MOT
36 000074 014100 MOV -(R1) RO PGET DIGIT TO OUTPUT
37 000076 142700 000012 FIFTH: SUB #10.,R0 #FIX THE 2.7 TO .7 SO
38 #THAT 1T IS OMLY 1 DISIT
39 000102 103375 BCC FIFTH #(REALLY DIVIDE BY 10)
40 000104 062700 000072 AL #10.4°0,R0 SMAKE DIGIT ASCII
41 000110 JTTYoUT SOUTPUT THE DIGIT
42 000114 005011 CLR oK1 FCLEAR MEXT DIGIT LOCATION
43 000116 005305 DEC RS #MORE DIGITS TO PRINT?
44 000120 001334 BNE FIRST FBRANCH IF YES
45 000122 JEXTT IWE ARE
a6
47 000124 000107 Y CREPT N1
48 JWORD 1 FINIT VECTOR TO ALL ONES
49 JENDR
s0
S1 000342 124 110 105 MESSAG: .ASCII /THE UALUE OF E IS:/ 15 12 /2./ 200>
000345 040 126 101
000350 114 125 105
000353 040 117 106
000356 040 1035 040
000361 111 123 072
000344 015 012 062
SUM.MAC VERSION 1 HACRO V03.00 Saturdas 08-Jan-83 08:07 Pase 1-1
000347 056 200
2 JEVEN
53
54 000000° .E CEXF
SUM.MAC VERSION 1 MACKO V05.00 Saturdaw 08-Jar-83 08107 Pase 1-2
Swmbol table
a 000124R FIFTH 000076k FOURTH 000052R N 000106 THIRD
EXP 000000k FIRST 000012R MESSAG 000342K SECOND 000022R
« ABS. 000000 000 (RW»I,GBL»ABSsOUVR)
000372 001 (RW»I,LCLyREL»CON)
Errors detected: 0
XXX Assembler statistics
Work file reads: O
Work file writes: 0
Size of work file! 8222 Words (33 Pases)
Size of core rool! 15616 Words (61 Fases)
Operating sustem: RT-11
Elarsed time: 00:02:55.03
DK:SUMLF : SUM=DK : SUM/C
SUM.MAC VERSION 1 MACRO V05.00 Saturday 08-Jan-83 08107 Pase §-1
Cross refererce table (CREF V05.00)
A 1-14 1-47¢
EXP 1-11e 1-54
FIFTH 1-37¢ 1-39
FIRST 1-13¢ 1-44
FOURTH 1-25# 1-28
MESSAG 1-11 1-51¢
1-7¢ 1-12 1-13 1-22 1-47
SECOND 1-15¢ 1-21
THIRD 1-23¢ 1-35

16-6

000044R

SUM.MAC VERSION 1
Cross reference table (CREF V05.00)

JEXIT 1-3¢ 1-45
+<PRINT 1-3¢ 1-11
«TTYOU 1-38 1-41

<LINK/HAP BSUM
RT-11 LINK V08.00
SuM

Load Mar
-2 Title: SUM.MA

Ident:
Section Addr Size Global Value Global

MACRO V05.00 Saturday 08-Jar-83 08:07 “age M-1

Saturdaw 08-Jan-83 0811: Pase 1

Value Global Value

+ ABS. 000000 001000 = 2%6. words (RW» 1+GBLsABS,OVR)
001000 000372 = 125. words (RWs I+LCLsRELCON)

Transfer address = 001000, Hish limit = 001370 = 380. words

+RENAME MATCH.BAS MATCH.MAP

+MACRO/L IST/CROSSREFERENCE DEMOFG
MOFG MACRO V05.00 Saturdaw 08-Jan-83 08 11

Pase 1

TO BACKGROUND, THEN

A MESSAGE EVERY 2 SECONDS FOR THE BACKGROUND TO RING THE BELL.

#PRINT INTRODUCTORY MESSAGE

#SET ASIDE 100 Q ELEMENTS FOR MESSAGES
$SET UP MKTIM FOR 2 SECONDS FROM NOW
$SUSPEND THE FG TILL MKTIM SATISFIED

1 +TITLE DEMOFG

2 +IDENT /V05.00/

3 } FOREGROUND DENONSTRATION PROGRAM TO PRINT MESSAGE
4 | QUEUE

S

6 +MCALL .SDATC,.PRINT,.MRKT,.GSET,.SPND
7

8 000000 START:: PRINT #MSG

9 000006 +G8ET SQUEUE,#100.

10 000020 « MRKT SAREA§TIME, $MKTC, 01

11 000054 +SPND

12

13 i MKTIN COMPLETION ROUTINE

14

15 000042 024727 000314 000132 MATC:
16 000070 003020

18 000126 005267 000250

19 000132 MRTOL:
20 000166 000207

22 P

24 000170 005367 000206 SnATC!
25 000174 000207

27 P

30 000176 106 117 122 M8G:

32 000324 108 126 108

35 000402 000000 MSGUNT !
6

38 000404 000000 TIME:

39 000406 000170

41 000410 AREA?
43 000424 BUFFER:
4

&l
46 001424 QUEUE:
7

48 000000
DEMOFG MACRO v05.00 Saturdaw 08-Jan-83 08:11
Swabol table

AREA 000410R MKTC1 000132R
BUFFER 000424R M8G 000176R
MKTC 000062R MSGCNT 000402R

« ABS. 000000 000 (RW» I+GBLsABS/OUR)
005344 001 (RWs 1+LCLIRELCON)
Errors detected: 0O

58 A bler statistics

Work file reads! O

Work file writes: O

Bize of work file! 9384 Words (37 Pases)
8ize of c're rool! 15616 Words (41 Pages)
Orerating swstem! RT-11

Elarsed time: 00102:27.42
DK :DEMOF G+ LP : DEMOF G=DK : DEMOF G/ C

CcHe MSGCNT»490.

BGT MKTC1

+SDATC @AREA,#BUFFER,#1,8SDATC
L

INC
JMRKT SAREA,#TIME,#MKTCy 81
RETURN

SDAT COMPLETION ROUTINE

DEC MSGCNT
RETURN

ASCII1 MESSAGES
+NLIST BEX

90 MESSAGES QUEUED YET?

$YES-NO SENSE QUEUEING ANOTHER
1SEND MESSAGE TO BG

iBUMP MESSAGE COUNTER

#SET UP ANOTHER MKTIM FOR 2 SECONDS
RETURN FROM COMPLETION ROUTINE

FONE OF THE MESSAGES HAS BEEN RECIEVED
IRETURN(RTS FPC)

+ASCII /FOREGROUND DEMONSTRATION PROGRAM/<153><12>

+ASCII /SENDS A MESSAGE TO THE

BACKGROUND PROGRAM °DEMOBG* /<1512

+ASCIZ /EVERY 2 SECONDS, TELLING IT TO RING THE BELL../

+EVEN

+WORD o
+WORD o
(WORD 60.x2
VBLKW &

«BLKW 400

«BLKW 100.%10.

END START

Pase 1-1
QUEUE 001424R sTART
SDATC 000170R TN

DEMOFG MACRO V05,00 Saturdaw 08-Jan-83 08!:1 Fase S 1

Cross reference table (CREF V05.00)

eVt 1-9 1-10 1-17 1-19
eeV2 1-17 1-17 1-17¢ 1-174
AREA 1-10 1-17 1-19 1-41¢
BUFFER 1-17 1-43¢

MKTC 1-10 1-15¢ 1-19

MKTC1 1-16 1-19¢

MSG 1-8 1-304

MSBCNT 1-15 1-18% 1-24% 1-35¢
QUEUE 1-9 1-46¢

SDATC 1-17 1-240

START 1-8¢ 1-48

TINE 1-10 1-19 1-38¢

DEMOFG MACRO V05.00 Saturdaw 08-Jan-83 08: 1 Fage M- 1

Cross reference table (CREF V05.00)

1-9
1-17
1-10 1-10 1-10 1-17 117 117 117 1-19
1-17
1-9 1-10 1-17 1-19
1-10 1-19
1-6¢ 1-10 1-19
1-68 1-8
1-6¢ 1-9
1-6¢ 1-17
1-6¢ 1-11
+LINK/FOREGROUND/MAF DEMOFG
RT-11 LINK V08.00 Load Mar Savu day 03-Jsn-83 0B:1% Page 1
DEMOFG. REL Title: DEMOFG Ident: V0%5.c0
Section Addr Size Global Value Glob:l Value Global talue

+ ABS. 000000 001000 = 256. words (RW:I.GELsARS,0UR)
001000 005344 = 1394. words (RW»I.(CLRELCON)

START 001000
Transfer address = 001000, Hish limit = 00a3a2
+DIRECTORY %.0BJ

8 22-0ct-82 VDT .0BJ
8 22-0ct-82 SYSLIB.OB.
15 22-0ct-82
1 08-Jan-83 SUM .OKJ
1 08-Jan-83 GRAPH 0B .
10 Files» 245 Blocks

354 Free blocks

+DELETE/NOQUERY GRAPH. %
+DELETE/NOQUERY SUM.¥%
<DELETE MATCH.MAP

1549, words

8 22-0ct-82
46 22-0ct-82

FORLIE.OB. 161 12-May-80
08

1 3n-83
16 08-Jan-83

$MESSAGE COUNTER

STIME CONSTANT

#HIGH ORDER

#60 TICKS A SECOND,2 SECONDS
SEMT ARGUMENT AREA

IBUFFER FOR MESSAGES

FOUEUE AREA
$10. WORDS PER QUEUE ELEMENT FOR THE XM MONITOR

000000RG ++4V1 = 000003
000404R ++eV2 = 000027
1-19 1-19

16-7

Using Indirect Files

Using Indirect Files

SUMMARY:
COMMANDS TO
START AN
INDIRECT FILE

FILE MAINTENANCE

REFERENCE

+DEASSIGN

<TINE
08:15144

@filnam.COM
Start the execution of the specified indirect file
(filnam.COM).

CTRL/C CTRL/C

Halt execution of the indirect command file (use with cau-.
tion).

DEASSIGN
Remove logical device assignments.

Indirect file INDCT.COM contains commands that perform the
appropriate copy and delete file maintenance operations. If the
commands were not already part of the file, you would need to
perform the appropriate file maintenance commands, in mon-
itor command mode, after execution.

RT-11 System User’s Guide (AA-5279C-TC). Maynard, Mass.: Digital Equip-
ment Corporation, 1983.

A guide to the use of the RT-11 operating system.

16-8

CHAPTER 17

ADVICE TO NEW USERS

This manual introduces several common RT-11 functions but is
neither exhaustive nor comprehensive in its treatment of
system features, commands, or their options. For many users,
this manual’s description of these fundamental system opera-
tions is sufficient; other users, however, may need or want fur-
ther description of a programming language, extended system
features, or the internal workings of the RT-11 system. These
people should consult the references at the end of each chapter,
the Guide to RT-11 Documentation, RT-11 System User’s
Guide, or the RT-11 System Ultilities Manual. The Guide to
RT-11 Documentation lists all RT-11-related material avail-
able from DIGITAL; the RT-11 System User’s Guide explains
in detail monitor commands and command options; the RT—11
System Utilities Manual describes the use of the RT-11 system
utilities to develop programs, execute programs, and maintain
files and storage media.

The Introduction to RT—-11 has shown you the right way to use
some important system features and their associated monitor
commands. This information, combined with the following basic
guidelines for using the system, can help you to avoid pitfalls
common to new users:

® Do not become dependent on a single copy of a file. Always
make a backup copy of any useful file.

® When using the editor, close files periodically to preserve
edits. Divide long editing sessions into short ones so that
user — or hardware — errors do not lose the efforts of long
hours of editing. Close the file with the EX command and
begin editing again from where you left off.

® Avoid careless use of wildcard operations that manipulate
multiple files. Use the /QUERY option to verify the operation
to be performed.

® When using indirect files or BATCH streams, avoid opera-
tions that manipulate any of the system (.SYS) files or the
indirect file in use. Check the indirect file carefully for errors
before you use it. Once the command stream is initiated, you
may be unable to detect and prevent possibly serious errors.

¢ If you run two jobs under the control of the foreground/back-
ground monitor, be sure there is no conflict of nondirectory-
structured devices (LP:, MT:, TT:) used by the two jobs.

17-1

Advice to New Users

USING THE A HELP file containing information about the keyboard mon-
HELP FILE itor commands and how to use them is distributed with the
RT-11 system. A list of keyboard monitor commands and a de-
scription of their functions can be displayed at the terminal by
typing:

HELP

HELP +G@D

To get a detailed description of the use of the HELP command
itself, type only HELP.

WHELPED

The following information is displayed on your terminal.

HELP Lists helpful information
SYNTAX
HELP[/ortions]l torpicl subtorpicl:items,sodoeoss]]
or HELP #
SEMANTICS

HELP # lists the items for which help is
available.

HELP lists the HELP text (of which this is a
Part).

HELP toric lists information on the specific
toric onlvy.

HELP topic subtorpic lists information on the
specific subtopic only (for example,

HELP HELP SEMANTICS lists the parasrarh of
which this text is a part).

HELP toric subtopic:item lists only the text
associated with the specific item.

HELP topic/item lists the text associated with
the specific item under the subtorpic OPTIONS.
Valid topics are the Kevboard monitor commands.
Subtorics are "SYNTAX", "SEMANTICS", "OPTIONS",

and "EXAMPLES".
Items are specific command oPtions.

OPTIONS
PRINTER
Prints the HELP text on the line Printer
TERMINAL (default)
Trrpes the HELP text on the terminal
EXAMPLES
HELP COPY 'Lists information about
ICOPY command
HELP/PRINTER EXECUTE 'Prints information
'about EXECUTE command
HELP PRINT OPTION:COPIES !Describes the COPIES
'ortion for PRINT
HELP COPY/BOOT/DEVICE !Describes the listed

loptions for COPY

In the command syntax shown above, topic represents a specific
keyboard monitor command about which you need information.
The subtopic represents a specific category within a topic; the
subtopics are syntax, semantics, options, and examples. The

17-2

item represents one of the members within the subtopic group.

You can specify more than one item in the command line if you
separate the items with a colon (:).

The only two options you can use with the HELP command are
/PRINTER and /TERMINAL. The option /PRINTER sends the
help information to a printer if one is available. The option
/TERMINAL (the default mode) sends the information to the
terminal.

To get all the information in the help file about the keyboard
monitor command ASSIGN, type the following command:

+HELP ASSIGNGD

You have used this command in examples in the other chapters.
The following information is displayed at your terminal:

ASSIGN Associates a logical device name with a
Physical device

SYNTAX
ASSIGN Physical-device-name logical-device-name

SEMANTICS
Physical-device-name is the RT-11 standard
Permanent name for the device.
Losical-device-name is one to three alphanumeric
characters lons with no intervenins spPaces or tabs,
The physical name and losical name must be
serparated by a srace.

OPTIONS
None

EXAMPLES
ASSIGN RK1: DK:

When you want specific information for a keyboard monitor
command, such as the syntax, semantics, options, or examples,
include that subtopic in the command. For example, the fol-
lowing command lists all the options that are available for use
with the DIRECTORY keyboard monitor command:

+HELP DIRECTORY OPTIONSGED

If you need information only about a specific item in a list of
options, type the item in the command line.

+HELP DIRECTORY OPTIONS:ORDERGED

ORDER[:catesory]
Orders the directory listing according to the category
specifyi same as /SORT. Catesories are:
NAME- orders alehabetically by file name
TYPE- orders alphabetically by file type
SIZE- orders by file size
DATE- orders by creation date
POSITION- orders by file Position on the device

17-3

Aduvice to New Users

APPENDIX A

MANUAL BOOTSTRAPPING OPERATIONS

PDP-11 computers that do not have the automatic bootstrap-
ping capability described in Chapter 2 require manual
bootstrapping. This appendix’s first section, Bootstrapping the
System, provides information that you will need to bootstrap
the system manually. Follow the procedure described in this
section; you will be referred — if appropriate for your
system — to one of the other sections, which describe using a
pushbutton console to bootstrap, using a switch register console
to bootstrap, and typing the bootstrap.

Once you have identified your hardware configuration, you are
ready to bootstrap the system. The purpose of the bootstrap
procedure is to load and start the RT-11 monitor in computer
memory, activating the RT-11 operating system for your use.

1. Set the terminal to an on-line condition.

2. Make sure that the computer power is on and that the com-
puter is not already in use. Stop the computer, following
one of two procedures:

* If your operator’s console has switches, set the switches to
HALT, then ENABLE.

* If your operator’s console has pushbuttons, locate the
button labeled CNTRL; hold it down and push the button
labeled HLT/SS; then release both.

3. Place the system volume in device unit 0. Make sure that

the system volume is write-protected (for all except RX01 or
RXO02 diskettes, which are always write-enabled).

4. Place the storage volume in the device unit you identified
for question 8 in the Hardware Configuration section of
Chapter 2. Make sure that this volume is write-enabled.

5. If your operator’s console has pushbuttons, continue to step
6. Otherwise, go to step 8.

6. Locate the pushbutton labeled CNTRL, hold it down and
push the button labeled BOOT. Check the terminal printer
or screen. If there is no response, read the Using a Push-
button Console to Bootstrap section of this appendix; other-
wise, continue to step 7.

7. Your terminal printer or screen should show several num-
bers and then a dollar sign ($).

A-1

BOOTSTRAPPING
THE SYSTEM

Manual Bootstrapping Operations

10.

11.

Type on the terminal keyboard the two-letter mnemonic
that represents your system volume (from question 6 in the
Hardware Configuration section') followed by a carriage re-
turn. Be sure to use the SHIFT key so that you type upper-
case characters. For example, for RX02 diskette, type:

$DYGD
Continue to step 11.

Check your switch console. If it has a three-way dial labeled
DC OFF, DC ON, and STAND BY, go to step 9. If it has
three individual switches labeled DC ON/OFF, EN-
ABLE/HALT, and LTC ON/OFF, go to step 10. If it has a
row of switches across the entire console, read the Using a
Switch Register Console to Bootstrap section of this appen-
dix.

Set the three-way dial to DC ON. Then locate the BOOT
switch (to the left of the dial) and raise it. Go to step 11.

Put all three switches in the up position; then move the DC
ON/OFF switch down and up and check the terminal re-
sponse.

o If the terminal displays the dollar sign ($), type on the
keyboard the two-letter mnemonic that represents your
system volume (from question 6 in the Hardware Configu-
ration section) followed by a carriage return. Be sure to
use the SHIFT key so that you type uppercase characters.
For example, for RX02 diskette, type:

$DYGEED
Continue to step 11.

® Any other response indicates that you must type the boot-
strap on the terminal keyboard. Read the Typing the

~ Bootstrap on the Terminal Keyboard section of this ap-

pendix.

If your system has been successfully bootstrapped, a mes-
sage like the following prints on the console terminal.

RT-11FB V0S.xx (the xx’s represent numbers that have
significance only for DIGITAL’s soft-
ware development; you can ignore
these numbers)

'The RKO05 disk is an exception. Hardware bootstraps use DK, not RK, for
RKO5.

Manual Bootstrapping Operations

If the message indicating RT-11FB V05 does not appear,
refer to Appendix B and read the section entitled Sugges-
tions for Bootstrapping the System.

The message indicates that the foreground/background
monitor component of the RT-11 Version 5.0 operating
system is active. Set the system volume to a write-enabled
condition (for all except RX01 and RX02 diskettes, which
are always write-enabled).

You should now direct your attention to the console terminal,
since system interaction continues on this device. Continue to
Chapter 3.

The bootstrap for your RT-11 computer system consists of a
series of six-digit numbers that you must type on the terminal
keyboard. First, obtain the bootstrap from the RT-11 Installa-
tion Guide, and copy the numbers into the space below:

Now, follow the instructions below to type, on your terminal
keyboard, the bootstrap (if you make a mistake, type the DE-
LETE key on the terminal keyboard, once for each typing error
and then type the correct digit[s]):

’

Type 001000.

Type slash (/).

Type the first number in the bootstrap column.
Type the LINE FEED key.

Type the next number in the bootstrap column.

I s

Repeat steps 4 and 5 until you have typed all the numbers
in the column.

Type the RETURN key.
8. Type 1000G.

N

9. Continue to step 11 in the section entitled Bootstrapping
the System in this appendix.

A-3

TYPING THE
BOOTSTRAP

ON THE TERMINAL
KEYBOARD

Manual Bootstrapping Operations

USING A If your computer has a pushbutton console similar to the one
PUSHBUTTON shown in Figure A-1, you can use the buttons to manually give
CONSOLE TO the computer the information it needs to bootstrap the system.
BOOTSTRAP S

Figure A-1 Pushbutton Console

The bootstrap for your RT-11 computer system consists of a
series of six-digit numbers that you must load into the com-
puter using the pushbutton console. First, obtain the bootstrap
of your system device from the RT-11 Installation Guide, and
copy the numbers into the space provided below. If your system
has a hardware bootstrap,' the bootstrap will consist of only two
numbers, which you should copy into the left-hand space; other-
wise, the bootstrap will consist of two columns of numbers la-
beled Location and Contents, which you should copy into the
right-hand space:

Hardware Bootstrap Other Bootstraps

Load Address =
Start Address =

To activate the hardware bootstrap, use the pushbuttons to set
the numbers as described in the following steps (if you make a
mistake, push the button labeled CLR, then reenter the
number):

1. Push the appropriate buttons for the load address (read the
number from left to right).

2. Push LAD.

3. Push the appropriate buttons for the start address (read the
number from left to right).

4. Push the button labeled CNTRL, and, while holding it
down, push the button labeled START.

5. Continue to step 11 in the Bootstrapping the System section
of this appendix.

!A hardware bootstrap is bootstrapping information that is already in com-
puter memory but that you must activate by entering a load address and a
start address, each a six-digit number.

A4

Manual Bootstrapping Operations

To activate other bootstraps, use the pushbuttons to set the
numbers as described in the following steps (if you make a mis-
take, push the button labeled CLR, then reenter the number):

1. Push 1000 (read the number from left to right).
2. Push LAD.

3. Push the appropriate buttons for the first number in the
Contents column (read the number from left to right).

4. Push DEP; push CLR.

Push the appropriate buttons for the next number in the
Contents column (read the number from left to right).

6. Repeat steps 4 and 5 until all numbers in the column have
been used.

7. Push 1000.
Push LAD.

Push the button labeled CNTRL, and, while holding it
down, push the button labeled START.

10. Continue to step 11 in the Bootstrapping the System section
of this appendix.

If your computer has a switch register console similar to the USING A
one shown in Figure A-2, you can use the switches to manually SWITCH REGISTER
give the computer the bootstrapping information it needs to CONSOLE
start the system.

TO BOOTSTRAP

O v s e v Vo o o e v e e e i e

Figure A-2 Switch Register Consoles

Several switches on the console are spring-loaded. This means
that the switch moves in only one direction and returns to its
initial position after you use it. You must set the remaining
switches either up or down as instructed.

A-5

Manual Bootstrapping Operations

The bootstrap for your RT-11 computer system consists of a
series of six-digit numbers that you must load into the com-
puter using the switch register console. First, obtain the boot-
strap of your system device from the RT-11 Installation Guide,
and copy the numbers into the space provided below. If your
system has a hardware bootstrap,' the bootstrap consists of only
two numbers, which you should copy into the left-hand space;
otherwise, the bootstrap consists of two columns of numbers,
labeled Location and Contents, which you should copy into the
right-hand space:

Hardware Bootstrap Other Bootstraps

Load Address =
Start Address =

Next, convert the numbers in the column to binary numbers,
using the conversion process shown in Table A-1.

Table A-1 Binary Conversion
Octal Binary

000
001
010
011
100
101
110
111

I | A (A

SO0 WN-=O

For example, the number 173100 is converted to 001 111 011
001 000 000. You set this 18-digit binary number into the
switch register by placing each individual switch in an up posi-
tion for a 1 or a down position for a 0. The number 173100 is set
into the switch register as follows:

2 2 N N I N 2 A A A R

The number 012700 is converted to 000 001 010 111 000 000
and is set into the switch register as follows:

2 2 2 2 25 N 2 N A A A A A A

'A hardware bootstrap is bootstrapping information that is already in com-
puter memory but that you must activate by entering a load address and a
start address, each a six-digit number.

A6

Manual Bootstrapping Operations

NOTE

The switch register is the group of switches appearing on
the left of the console. Your switch register may have
only 16 switches rather than 18; in this case you can
ignore the left-hand two digits of the binary number when
you set the switches.

To activate the hardware bootstrap:

1. Set the switch register to the appropriate positions for the
load address.

2. Press the spring-loaded LOAD ADDR switch.

3. Set the switch register to the appropriate positions for the
start address.

4. Press the spring-loaded START switch.

Continue to step 11 in the Bootstrapping the System section
of this appendix.

To activate other bootstraps, set the numbers into the switch
register using the following method:

1. Set the switch register to the appropriate positions for the
number 001000.

2. Press the spring-loaded LOAD ADDR switch.

3. Set the switch register to the appropriate positions for the
first number in the Contents column.

4. Press the spring-loaded DEP switch.

Set the switch register to the appropriate positions for the
next number in the Contents column.

6. Repeat steps 4 and 5 until all the numbers in the column
have been used.

7. Set the switch register to the appropriate positions for the
number 001000.

Press the spring-loaded LOAD ADDR switch.
9. Press the spring-loaded START switch.

10. Continue to step 11 in the Bootstrapping the System section
of this appendix.

APPENDIX B

SELECTED SYSTEM TOPICS

The remarks in this appendix cover a variety of topics that
should prove helpful to you as you perform the demonstrations
in the manual. Included, for example, are instructions for
starting and stopping the system, alternate methods for per-
forming some system operations, and directions for using the
language volume. The sections are listed here in the order in
which they are referenced from within the text of the manual.

You can plan to take a break at the end of any individual
chapter in this manual. If you intend to be away from the com-
puter system for any length of time, you should halt the system
and remove your system and storage volumes.

Perform the following steps in order:
1. Stop the computer.

® If your computer is a PDP-11/23-PLUS, lift the HALT
toggle switch to the up position.

® If your computer is a PDP-11/24 or a PDP-11/44, push
the HALT/CONT/BOOT horizontal toggle switch to the
HALT position.

¢ If your computer operator’s console has switches, press the
HALT switch.

® If your computer operator’s console has pushbuttons, hold
the CNTRL button down and push the HLT/SS button.

2. Unload the system volume. Set the device unit to an off-line
condition, and remove the system volume.

3. Unload the storage volume. Set the device unit to an off-
line condition, and remove the storage volume.

4. Remove and save all terminal and line printer output list-
ings.

Perform the following steps in order:

1. Follow the bootstrap procedure, as described in Chapter 2 or
Appendix A.

STOPPING AND
STARTING THE
SYSTEM

Stopping the
System

Starting the
System

Selected System Topics

THE SYSTEM STOPS
UNEXPECTEDLY

SUGGESTIONS FOR

BOOTSTRAPPING
THE SYSTEM

2. Enter the current date and time-of-day (Chapter 4).

3. Make any necessary logical device assignments. For the ex-
amples in this manual, you must assign the logical name
VOL: to your storage volume (Chapter 4).

If for any reason the computer system stops unexpectedly, re-
quest help from an experienced user if possible. The problem
may be accompanied by an error message (see the R7T-11
System Message Manual); the problem may be in the hardware,
in the software, or in your program. Once the problem is diag-
nosed and corrected, try to bootstrap the system again.

You must be able to bootstrap your RT-11 system before you
can perform the demonstrations in this manual. Three common

bootstrapping problems and suggestions for their correction
follow.

1. You cannot remember how to bootstrap your system.

Ask an experienced RT-11 user to help you. If no one is
available, read the bootstrapping instructions in the RT-11
Automatic Installation Booklet or the RT-11 Installation
Guide. If necessary consult the appropriate hardware man-
uals for the devices that are part of your system; these man-
uals provide a description of the device and operating proce-
dures. Then try the bootstrap procedures again.

2. You have followed the bootstrapping instructions correctly,
but your system printed a message other than what you
expected.

a. The message can be one of the following:

?BOOT-F-No boot on volume
?BO0OT-U-Conflicting SYSGEN ortions
?BO0OT-U-Handler file not found
?BOOT-U-Insufficient memory
?BO0OT-U-I/0error

?BO0OT-U-Monitor file not found
?BO0OT-U-No KT11

?BO0OT-U-Swap file too small

?BOOT-U-SWAP.5YS not found

B-2

?BO0OT-W-Error reading handler

?BO0OT-W-Invalid or missing TT.SYS

These are bootstrap error messages, indicating that a
problem in the system is preventing bootstrapping.
These eleven messages are fully explained in the RT-11
System Message Manual, but you should not try to cor-
rect the problem yourself if an experienced user is avail-
able to help.

b. The message can be one of the following:

RT-118J VOS-xx
RT-11XM VOS-xx

These indicate that a valid RT-11 V5 monitor program
has been bootstrapped, but it is not the one you should
be using. Reboot the correct monitor program by typing
the following commands on the terminal:

+BOOTEED
Deviceor file? RT11FB,SYSED

c. Any other message indicates that an old version of
RT-11 (V1, V2, V2B, V2C, V3, V3B, or V4) has been
bootstrapped. Only Version 5 of RT-11 can be used to
perform the demonstrations in this manual.

3. You followed the bootstrapping instructions correctly, but
nothing happened, that is, there was no terminal response
at all.

Repeat the bootstrap procedure from the beginning. Before
you begin, make sure that the system volume is properly
mounted in device unit 0. The computer should be on but
not running (the light labeled RUN should not be on); if the
computer is running, stop it as described above. Make sure
that the terminal is on line and that its baud rate is set to
300. If you are using a display terminal, make sure that the
screen is bright enough for you to read. If your terminal

uses a paper printer, make sure that the paper is properly
loaded.

A copy of the RT-11 Version 5 system volume, as distributed by
DIGITAL, should be stored away for safekeeping as a backup
copy. If you do not have a backup copy of your system volume,
create one before you continue. Manual backup instructions are
in the RT-11 Installation Guide; an experienced user should
perform the backup operation.

B-3

Selected System Topics

BACKING UP THE
SYSTEM VOLUME

Selected System Topics

DIRECTORY- VS
NONDIRECTORY-
STRUCTURED
VOLUMES

ALTERNATE
RENAME
OPERATION FOR
MAGTAPE USERS

Storage volumes are called file-structured volumes because
they are capable of physically storing files. These volumes can
be further categorized as directory-structured and nondirectory-
structured; the distinction is based on the method of directory
information storage, collection, and printing.

Directory information includes file names and types, dates of
creation, and (in most cases) file lengths. When you type the
DIRECTORY command, this directory information prints on
your terminal. Volumes such as disks and diskettes keep this
information in a single place at the beginning of the volume.
Each time you add or delete a file, the directory information is
updated. These volumes, which maintain a directory separately
from the files described, are said to be directory-structured.
Magtape volumes, on the other hand, do not keep directory in-
formation in any single, separate place on the tape but rather
with each individual file. For these volumes the directory infor-
mation is collected for printing as each file is encountered
during a sequential reading of all files on the tape. Thus, these
volumes are said to be nondirectory-structured.

You can list the directory from either type of volume in com-
plete or abbreviated format. Complete directories include the
file name, file type, file length, and date of creation (if the
DATE command was used before the file’s creation). For most
volumes, the directory format is as follows:

8-Jan-83
FILE ,TYP 26 21-Feb-80

Abbreviated directories include only the file name and file type,
and are printed in five columns. For more information about
directory-structured and nondirectory-structured volumes, see
the RT-11 System User’s Guide.

You cannot use the RENAME monitor command if your volume
is a magtape because of the magtape’s sequential (nondirectory-
structured) nature. To perform the RENAME operation, you

must first copy the file, using the new file name, and then de-
lete the old file.

For example, to change the name of the GRAPH.TWO file, lo-
cated on your storage volume, to GRAPH.FOR, first make a
copy of GRAPH.TWO, giving the new file the name
GRAPH.FOR.

Long Command Format

LCOPYED
From? VOL:GRAPH. TWOGE
To 7 GRAPH.FORED

Selected System Topics

Short Command Format
.COPY VDL:GRAPH.TWO GRAPH.FORED

You now have two copies of the GRAPH file. Delete the one not
wanted, using the monitor DELETE command. (This command
is described in Chapter 7 in the section entitled File Delete
Operations.)

Long Command Format
\DELETEGD

Files? VOL:GRAPH,TWOGD

Short Command Format
\DELETE VOL:GRAPH. TWOG®ED

A single copy of GRAPH.FOR now resides on your system
volume. Copy the file onto your storage volume.

Long Command Format
.COPYGEE

From? GRAPH.FORGD

To ? VOL:GRAPH.FORGD
Short Command Format

+COPY GRAPH.FOR YOL:GRAPH.FOREED
Delete the original file.

Long Command Format
«DELETEGD

Files? GRAPH.FORGD

Short Command Format
DELETE GRAPH,FORGD

The combined effect of these four commands is to “rename”

GRAPH.TWO to GRAPH.FOR.
The FORTRAN/BASIC language volume was created during USING THE
system installation specifically for your use with this manual. FORTRAN/BASIC

This volume contains the FORTRAN IV and/or BASIC-11 lan-
guage processors and the monitor files required to use these

language processors. Before you can perform the FORTRAN IV
or BASIC-11 demonstrations, you must substitute this

LANGUAGE VOLUME

Selected System Topics

SUBSTITUTING
VOLUMES
DURING
OPERATIONS

FORTRAN/BASIC language volume for the system volume cur-
rently mounted in device unit 0. The language volume then
serves as the system volume during the course of the FOR-
TRAN IV and BASIC-11 demonstrations.

Make sure that no system operations are in progress (the mon-
itor prompt, the period, should appear at the left margin of the
terminal printer), and stop the system (see Stopping and
Starting the System, this appendix). Now remove the system
volume currently loaded in device unit 0, and insert and write-
protect the language volume. Bootstrap the system (see Stop-
ping and Starting the System, this appendix). The following
monitor message should appear:

RT-11FB VOS5 xx

Write-enable the volume. Then enter the current date and
time-of-day, and assign the logical name VOL: to your storage
volume, just as you did in Chapter 4. When you have done this,
you are ready to run the language demonstration. Return to the
main text of this manual.

Users of FORTRAN 1V on diskette who have the FORTRAN IV
language processor on a volume apart from their system
volume must occasionally copy files and substitute volumes.
These operations are necessary when files needed are not stored
on a currently mounted volume. The appropriate volume, con-
taining needed files, must be substituted for a currently
mounted volume. If the volume to be dismounted contains nec-
essary files, these files must be copied to a volume that will
remain mounted.

For example, before you can compile the FORTRAN IV file
THIRD.FOR, you must substitute the language volume con-
taining the FORTRAN IV compiler for the system volume cur-
rently loaded in device unit 0. First, however, you must copy
the file THIRD.FOR to your storage volume so that it will be
available for use.

Long Command Format
«COPY@D

From? THIRD.FORGED
To 7 VOL:THIRD.FORGED

Short Command Format

+COPY THIRD.FOR VOL:THIRD.FORGD

When the copy operation is finished, stop the system, remove
the system volume currently loaded in unit 0, and insert and
write-protect the language volume. See Stopping and Starting
the System (this appendix) if necessary. The following message
appears when the language volume is bootstrapped.

RT-11FB VOS . xx

Write-enable the volume. Then enter the current date and

time-of-day, and assign logical name VOL: to your storage
volume, as described in Chapter 4.

Next, compile the FORTRAN IV program THIRD.FOR, which
is now on VOL.:.

Long Command Format

,FORTRANGD
Files? VOL:THIRD,FORGEE
PUTSTR

Short Command Format

+FORTRAN VOL:THIRDGE)
PUTSTR

The FORTRAN command causes the object module to be cre-
ated on the default storage volume, which is presently the
system volume (that is, the language volume). Any errors that
occur during the compile operation indicate that the source file,
THIRD.FOR, contains typographical errors. You must edit the
file to correct any errors, recompile, and then copy the file to
VOL:. Once you have an object module compiled without error
and stored on VOL:, reload the main system volume in unit 0.
Follow the directions in Stopping and Starting the System.
Bootstrap and write-enable the system volume, enter the cur-

rent date and time-of-day, and assign the logical name VOL: to
your storage volume.

Now copy the object module on VOL: back to the system
volume.
Long Command Format

,COPYGD

From? VOL:THIRD OBJGE)
To ? THIRD.OBJE®
Short Command Format

+COPY VOL:THIRD.OBJ THIRD.ODBJ@ED

Continue to Chapter 13, to the section entitled Building the
Object Library.

Selected System Topics

Selected System Topics

USING THE
LINK VOLUME

The LINK volume was created during system installation for
you to use with this manual. This volume contains the linker,
LINK.SAV, and the system subroutine library, SYSLIB.OBJ.
Before you can perform the linking demonstrations in Chapters
9 and 12, you must substitute this LINK volume for your cur-
rent system volume, which is mounted in device unit 0. The
LINK volume then serves as the system volume during the
course of the linking demonstration.

First, transfer the object file you need to link to the storage
volume.

Long Command Format

.COPYED
From? GRAPH.0BJGD
To ? VYOL:GRAPH.O0BJED

Short Command Format
.COPY GRAPH.DBJ YOL:GRAPH,DBJGD

Make sure that no system operations are in progress (the mon-
itor prompt, the period, should appear at the left margin of the
terminal printer), and stop the system (see Stopping and
Starting the System, this appendix). Now remove the system
volume currently loaded in device unit 0, and insert and write-
protect the LINK volume. Bootstrap the system. The following
monitor message should appear:

RT-11FB VOS5 . xx

Write-enable the volume. Then enter the current date and time,
and assign the logical name VOL: to your storage volume, just
as you did in Chapter 4.

Finally, transfer the object file from the storage volume to the
system volume.

Long Command Format
.COPYG@ED

From? VOL:GRAPH.0BJED
To 7 GRAPH.OBJE

Short Command Format

«COPY VOL:GRAPH.0BJ GRAPH.0BJGEE

When you have done this, you are ready to run the linking
demonstration. Return to the main text of this manual.

Follow the file maintenance operations outlined in this section
if you substituted both a FORTRAN IV language volume and a
LINK volume to perform the demonstrations in Chapter 9.

First, mount the FORTRAN IV language volume in device unit
0. If you do not remember how to do this, follow the instructions

in the section of this appendix entitled Using the FORTRAN/
BASIC Language Volume.

Next, obtain a directory listing of all the files on your FOR-
TRAN IV volume that have the name GRAPH, regardless of

file type; these files were generated as a result of the exercises
in Chapter 9.

Long and Short Command Formats

*DIRECTORY GRAPH ., *ED

8-Jan-83

GRAPH .BAK 2 08-Jan-83 GRAPH .FOR 2 08-Jan-83
GRAPH .0BJ 16 08-Jan-83 GRAPH ,LST 8 08-Jan-83
4 Filess» 28 Blocks

48 Free blocks

Since you have corrected errors in the source file GRAPH.FOR,
the version on your storage volume is obsolete. Transfer the
corrected GRAPH.FOR file from your system volume to VOL;,
thus replacing the obsolete file.

Long Command Format

+COPYE®

From? GRAPH,FORGD
To ? YOL:GRAPH,FORED

Short Command Format

*COPY GRAPH.FOR VOL:GRAPH,FORGE

Next, transfer GRAPH.LST to your storage volume. This en-
ables you to examine the listing without having to recompile
the program.

Long Command Format

COPYEED

From? GRAPH.LSTED
To ? YOL:GRAPH,.LST&ED

Short Command Format

*COPY GRAPH.LST VOL:GRAPH.LSTE

Once you have transferred all valuable files to your storage
volume, delete the unnecessary files from the system volume.

B-9

Selected System Topics

FORTRAN/LINK
FILE MAINTENANCE

Selected System Topics

Long Command Format

DELETEGD

Files? GRAPH.*@
Files deleted:
DK+GRAPH.BAK ? YGD
DK.GRAPH.FOR 7? Y@
DK.GRAPH.0BJ 7 YED
DK.GRAPH.LST ~» YGD

Short Command Format

,DELETE GRAPH,.*ED
Files deleted:
DK.GRAPH.,BAK 7? YED
DK.GRAPH.FOR 7 YGD
DK+GRAPH.0BJ » Y&
DK.GRAPH,LST 7? YED

Make sure that no system operations are in progress (the mon-
itor prompt, the period, should appear at the left margin of the
terminal printer), and stop the system (see Stopping and
Starting the System, this appendix). Now remove the system
volume currently loaded in device unit 0, and insert and write-
protect the LINK volume. Bootstrap the system (see Stopping
and Starting the System, this appendix). The following monitor
message should appear:

RT-11FB VO3S xx

Write-enable the volume. Then enter the current date and time,
and assign the logical name VOL: to your storage volume, just
as you did in Chapter 4.

Obtain a directory of all files on the system volume that have
the name GRAPH, regardless of file type; these files were cre-
ated as a result of the linking demonstrations in Chapter 9.

Long and Short Command Formats

,LDIRECTORY GRAPH.*ED

8-Jan-83

GRAPH .0BJ 14 08-Jan-83 GRAPH .SAV 19 08-Jan-83
2 Files» 33 Blocks

80 Free blocks

Transfer GRAPH.SAV to your storage volume. Because
GRAPH.SAV is an executable file, you can run the program
without relinking it.

Long Command Format

.COPYGED
From? GRAPH.SAVED
To 7 VOL:GRAPH,SAVED

B-10

Short Command Format

+COPY GRAPH.SAY UOL:GRAPH,SAVED
Next, delete the unnecessary files from your system volume.

Long Command Format

+DELETEGD
Files? GRAPH.0BJ,GRAPH.SAVED

Short Command Format
+DELETE GRAPH.0BJ GRAPH,SAVED

Finally, list the up-to-date directory of your storage volume so
that you can see its current status.

+DIRECTORY VOL:G@D

Leave the LINK volume mounted in device unit 0, and proceed
to Chapter 12, Linking Object Programs.

B-11

Selected System Topics

Absolute address

The binary number that is assigned as the address of a
physical memory storage location.

Absolute section

The portion of a program in which the programmer has
specified physical memory locations of data items.

Access time

The interval between the instant at which data is re-
quested from or for a storage device and the instant at
which the data actually begins moving to or from the
device.

ADC (Analog to Digital Converter)

A circuit that converts analog (voltage) signals to binary
data.

Address

A label, name, or number that designates a location in
memory where information is stored.

Algorithm

A prescribed set of well-defined rules or processes for the
solution of a problem in a finite number of steps.

Alphanumeric

The subset of ASCII characters including the 26 alpha-
betic characters and the 10 numeric characters.

ANSI
~ American National Standards Institute.

Application program (or package)
A program that performs a function specific to the needs
of a particular end-user or class of end-users. An applica-
tion program can be any program that is not part of the
basic operating system.

Argument

A variable or constant value supplied with a command
that controls the command’s action, specifically its loca-
tion, direction, or range.

Array
An ordered arrangement of subscripted variables.

Glossary-1

Glossary

Glossary

ASCII

The American Standard Code for Information Inter-
change; a standard code consisting of eight-bit coded
characters for upper- and lower-case letters, numbers,
punctuation, and special communication control charac-
ters.

Assembler

A program that translates symbolic source code into ma-
chine instructions. This program replaces symbolic oper-
ation codes with binary operation codes and symbolic
addresses with absolute or relocatable addresses.

Assembly language

A symbolic programming language that can be trans-
lated directly into machine language instructions and is
specific to a given type of control processing unit.

Assembly listing

A listing, produced by an assembler, that shows the
symbolic code written by a programmer next to a repre-
sentation of the actual machine instructions generated.

Asynchronous

The type of operation that is triggered by another event,
as opposed to synchronous, or occurring at set time in-
tervals.

Background program

A program that runs at a low priority, that is, when a
higher priority (foreground) program is not using system
resources.

Backup file

A copy of a file, created as a precaution against loss of
the primary file.

Base address

An address used as the basis for computing the value of
some other relative address; the address of the first loca-
tion of a program or data area.

BASIC-11 (Beginner’s All-purpose Symbolic Instruction Code)
An interactive, algebraic computer language that com-
bines English words and decimal numbers. It is a widely
available, standardized, simple beginner’s language ca-
pable of handling industry and business applications.

Batch processing

A processing method in which programs are run consec-
utively without operator intervention.

Glossary-2

Baud

A unit of measurement of transmission speed; bits per
second.

Binary

The number system with a base of two; used by the in-
ternal logic of all digital computers.

Binary code

A code that uses two distinct characters, usually the
numbers 0 and 1.

Bit
A binary digit. The smallest unit of information in a
binary system of notation. It corresponds to a 1 or 0 and
to one digit position in a physical memory word.

Block

A group of physically adjacent words or bytes of a size
that is specific to a device. For input/output operations,
the smallest addressable unit on a mass storage device.

Bootstrap

A technique or routine whose first instructions are suffi-
cient to start a system of programs that bring an opera-
ting system into memory.

BOT (Beginning Of Tape)

A reflective marker that is applied to the backside of

magtape and identifies the beginning of the magtape’s
recordable surface.

Bottom address

The lowest memory address into which a program is
loaded.

Breakpoint
A location at which program operation is suspended to
allow operator investigation.

Buffer

A storage area used to temporarily hold information
being transferred between two devices or between a de-
vice and memory. A buffer is often a special register or a
designated area of memory.

Bug

A flaw in the design or implementation of a program; a
problem that can cause erroneous results.

Glossary-3

Glossary

Glossary

A flat, flexible cable consisting of many transmission
lines, or wires. It interconnects computer system compo-
nents to provide communication paths for addresses,
data, and control information.

Byte

The smallest memory-addressable unit of information.
In a PDP-11 computer system, a byte is equivalent to
eight bits.

Call

A transfer from one part of a program to another with
the ability to return to the original program at the point
of the call.

Calling sequence

A specified arrangement of the instructions and data
necessary to pass parameters and control to a given sub-
routine.

Central processing unit (CPU)

A hardware unit of a computer that includes main
memory and the registers and circuits that control the
interpretation and execution of instructions.

Character

A single letter, numeral, or symbol used to represent
information.

Character pointer

The place where the next character typed will be en-
tered. During editing, the character pointer indicates
the place in an ASCII text file where the next character
typed will be entered into the file.

Clear

To delete the contents of a storage location by replacing
the contents, usually with 0s or spaces.

Clock

A device within & computer system that keeps time,
counts pulses, measures frequency, or generates regular
periodic signals for synchronization.

Code

A system of symbols used to represent data or instruc-
tions that are executed by a computer.

Glossary—4

Coding

The writing of instructions for a computer, using a
system of symbols that is meaningful to a computer, an
assembler, a compiler, or a language processor.

Command

A word, mnemonic, or character that, by virtue of its
syntax in an input line, causes a computer system to
perform a predefined operation.

Command language

The vocabulary used by a program or set of programs
that directs the computer system to perform predefined
operations.

Command language interpreter

The program that translates a predefined set of com-
mands into instructions that a computer system can in-
terpret.

Command string

A line of input entered into a computer system that gen-
erally includes a command, one or more file specifica-
tions, and optional qualifiers.

Compile

To produce binary code from the symbolic instructions of
a high-level source language.

Compilier

A program that translates a high-level source language
into machine instructions.

Computer

A machine that can be programmed to execute a set of
instructions.

Computer program
A plan or routine for solving a problem on a computer.
Computer system

A data processing system that consists of hardware de-
vices, software programs, and documentation that de-
scribes the operation of the system.

Concatenation

The joining of two or more strings of characters to pro-
duce a single string.

Glossary-5

Glossary

Glossary

Conditional assembly

The assembly of certain parts of a symbolic program
that occurs only when certain conditions are met during
the assembly process.

Contiguration

A selection of hardware devices, software routines, or
programs that function together.
Console terminal

A keyboard terminal that acts as the primary interface
between the computer operator and the computer
system. The console terminal is used to initiate and di-
rect system operations by running software on the com-
puter.

Constant

A value that remains the same throughout a distinct
operation. (Compare with Variable.)

Context switching

The saving of key registers and other memory areas be-
fore switching between jobs with different modes of exe-
cution. An example of context switching is the use of
foreground/background programming.

Conversational

See Interactive.

CPU
See Central processing unit.

Crash

A hardware crash is the failure of a particular device to
operate; the operation of an entire computer system may
be affected. A software crash is the result of an opera-
ting system malfunctioning; the system’s protection
mechanisms may have failed or the software may not
have executed correctly.

Create
To open, write data to, and close a file for the first time.

Cross-reference listing

A printed listing that identifies all references in a pro-
gram to each specific symbol in a program. It includes a
list of all the symbols used in a source program and the
statements where the symbols are defined or used.

Glossary-6

Current location counter
A counter kept by an assembler to determine the ad-
dress assigned to an instruction or constant being as-
sembled.

Data
A term used to denote facts, numbers, letters, and sym-
bols. Data are the basic elements of information that can
be processed by a computer.

Data base

An organized collection of interrelated data items that
allow one or more applications to process the items,
while disregarding physical storage locations.

Data collection

To bring data from one or more locations to a central
location for eventual processing.

Debug

To detect, locate, and correct coding or logic errors in a
computer program.

Default

The value of an argument, operand, or field assumed by
a program if not specifically supplied by the user.

Define
To assign a value to a variable or constant.

Delimiter

A character that separates, terminates, or organizes ele-
ments of a character string, statement, or program.

Device
A hardware unit such as an I/O peripheral, magnetic
tape drive, or line printer.

Device control unit

A hardware unit that electronically supervises one or
more of the same type of devices. It acts as the link
between the computer and the I/O devices.

Device handler

A routine that services and controls the hardware activi-
ties of an I/0 device.

Device independence

The ability to program 1/0 operations independently of
the device for which the I/O is intended.

Glossary-7

Glossary

Glossary

Device name

A unique name that identifies each device unit on a
system. It consists of a two-letter device mnemonic fol-
lowed by an optional device unit number and a colon.
For example, the common device name for RL02 disk
drive unit 1 is DL1:.

Device unit

One of a set of similar peripheral devices. An example of
a device unit is disk unit 0. It may be used synony-
mously with volume.

Diagnostics

A set of procedures used to detect and isolate malfunc-
tions and mistakes.

Digit
A character used to represent one of the non-negative
integers smaller than the radix (for example, in decimal
notation, one of the characters 0 to 9; in octal notation,

one of the characters 0 to 7; in binary notation, one of
the characters 0 and 1).

Direct access

See Random access.

Directive
Assembler directives are mnemonics in an assembly lan-
guage source program that are recognized by the assem-
bler as commands to control a specific assembly process.
Directory
A file in the form of a table containing the names of and
pointers to files on a mass storage volume.
Directory-structured

A storage volume is directory structured if the directory
at the beginning of the volume contains information (file
name, file type, length, and date-of-creation) about all
the files on the volume. Such volumes include all disks,
diskettes, and DECtapes.

Disk device

An auxiliary storage device on which information can be
read or written.

Display

~ A peripheral device used to represent data graphically;
normally refers to some type of cathode-ray tube system.

Glossary—8

Downtime

The time interval during which a device or system is
inoperative.

Echo

The printing of characters typed by the programmer on
an I/O device such as a terminal.

Edit

To arrange and/or modify the format of data; for ex-
ample, to insert or delete characters.

Editor

A program that allows the user to enter text into the
computer and edit it. Editors are language-independent
and will edit anything in character representation.

Effective address

The address used in the execution of a computer instruc-
tion.

Emulator

A hardware device that permits a program written for a
specific computer system to be run on a different type of
computer system.

Entry point

A location in a subroutine to which program control is
transferred when the subroutine is called.

EOT (End Of Tape)

A reflective marker applied to the backside of magtape,
which precedes the end of the reel.

Error

Any discrepancy between a computed, observed, or
measured quantity and the specified value or condition.

Execute

To perform an instruction or run a program on the com-
puter.

Expression

A combination of operands and operators that can be
evaluated to a distinct result by a computing system.

Extension
The synonym used for file type.

Glossary-9

Glossary

Glossary

External storage

A storage medium other than main memory, for ex-
ample, a disk or tape.

Field

A specified area of a record used for a particular cate-
gory of data.

FIFO (First In/First Out)

A data manipulation method in which the first item
stored is the first item processed.

File

A logical collection of data that is treated as a unit, occu-
pies one or more blocks on a mass storage volume, and
has an associated file name and type.

File maintenance

The activity of keeping a mass storage volume and its
directory up to date by adding, changing, or deleting
files.

File name

The alphanumeric character string assigned by a user to
identify a file. It can be read by both an operating
system and a user. A file name has a fixed maximum
length that is system-dependent. (The maximum length
in an RT-11 operating system is six characters, the first
of which must be alphabetic. Spaces are not allowed.)

File specification

A name that uniquely identifies a file maintained in any
operating system. A file specification generally consists
of at least three components: a device name, a file name,
and a file type.

Flle-structured device

A device on which data is organized into files. The de-
vice usually contains a directory of the files stored on
the volume. (For example, a disk is a file-structured de-
vice, but a line printer is not.)

File type

The alphanumeric character string assigned to a file ei-
ther by an operating system or a user. It can be read by
both the operating system and the user. System-recog-
nizable file types are used to identify files having the
same format or type. If present in a file specification, a
file type follows the file name in a file specification, sep-
arated from the file name by a period. A file type has a

Glossary-10

fixed maximum length that is system-dependent. The
maximum in an RT-11 operating system is three char-
acters, not including any spaces and excluding the pre-
ceding period.

Flag

A variable or register used to record the status of a pro-
gram or device; the detection of errors by a translating
program.

Floating point

A number system in which the position of the radix
point is indicated by the exponent part of a number and
another part represents the significant digits or frac-
tional portion of a number (for example, 5.39 X 10° —
Decimal; 137.3 X 8* — Octal; 101.10 X 2 — Binary).

Flowchart

A graphical representation for the definition, analysis,

or solution of a problem, in which symbols are used to

represent operations, data, flow, and equipment.
Foreground

The area in memory designated for use by a high-
priority program. The program that gains the use of ma-
chine facilities immediately upon request.

FORTRAN IV (FORmula TRANSslation)

A problem-oriented language designed to permit scien-
tists and engineers to express mathematical operations
in a form with which they are familiar. It is also used in
a variety of applications, including process control, in-
formation retrieval, and commercial data processing.

Full duplex

In communication, pertaining to a simultaneous, two-
way, independent, asynchronous transmission.

Function

An algorithm, accessible by name and contained in the
system software, that performs commonly used opera-
tions. For example, the square root calculation function.

General register

One of eight 16-bit internal registers in the PDP-11
computer. These are used for temporary storage of data.

Global

A value defined in one program module and used in
others. Globals are often referred to as entry points in

Glossary-11

Glossary

Glossary

the module in which they are defined and as externals in
the other modules that use them.

Half duplex

Pertaining to a communication system in which two-
way communication is possible, but only one way at a
time.

Handler
See Device handler.
Hardware

The physical equipment components of a computer
system.

Hardware bootstrap

A bootstrap that is inherent in the hardware and need
only be activated by specifying the appropriate load and
start address.

High-level language

A programming language whose statements are trans-
lated into more than one machine language instruction.
Examples.are BASIC-11 and FORTRAN IV.

High-order byte

The most significant byte in a word. The high-order byte
occupies bit positions 8 through 15 of a PDP-11 word
and is always an odd address.

Image mode

A mode of data transfer in which each byte of data is
transferred without any interpretation or data changes.

Iindirect address

An address that specifies a storage location containing
either a direct (effective) address or another indirect
(pointer) address.

Indirect file

A file containing commands that are processed sequen-
tially, and that could have been entered interactively at
a terminal.

Initialize

To set counters, switches, or addresses to starting values
at prescribed points in the execution of a program, par-
ticularly in preparation for re-execution of a sequence of
code. To format a volume in a particular file-structured
format in preparation for use by an operating system.

Glossary-12

input

The data to be processed; the process of transferring data
from external storage to internal storage.

Input/Output device

A device attached to a computer that makes it possible
to bring information into the computer or get informa-
tion out.

instruction

A coded command that tells the computer what to do and
where to find the values it is to work with. A symbolic
instruction looks like ordinary language. Symbolic in-
structions must be changed into machine instructions
before they can be executed by the computer.

Interactive processing

A technique of user/system communication in which the
operating system immediately acknowledges and acts
upon requests entered by the user at a terminal. Com-
pare with batch processing.

Interface

A shared boundary. An interface might be a hardware
component to link two devices, or it might be a portion of
storage or registers accessed by two or more computer
programs.

Internal storage

The storage facilities that form an integral physical part
of the computer and that are directly controlled by the
computer; for example, the registers of the machine and
main memory.

Iinterpreter
A computer program that translates and executes a
source language statement before translating and exe-
cuting the next statement.

interrupt

A signal that, when activated, causes a transfer of con-
trol to a specific location in memory and breaks the nor-
mal flow of control of the routine being executed.

interrupt-driven

Software that uses the interrupt facility of a computer to
handle I/O and responds to user requests: RT-11 is such
a system.

Glossary-13

Glossary

Glossary

Interrupt vector

Two words containing the address of an interrupt ser-
vice routine and the processor state at which that rou-
tine is to execute.

‘Reration

Repetition of a group of instructions.
Job

A group of data and control statements that does a unit
of work. A program and all of its related subroutines,
data, and control statements is an example; also, a batch
control file.

Label

One or more characters used to identify a source lan-
guage statement or line.

Latency

The time from the initiation of a transfer operation to
the beginning of actual transfer; that is, verification
plus search time. The delay while waiting for a rotating
memory to reach a given location.

Library

A file containing one or more macro definitions or one or
more relocatable object modules that are routines that
can be incorporated into other programs.

LIFO (Last In/First Out)

A data manipulation method in which the last item
stored is the first item processed; a push-down stack.

Light pen

A device, resembling a pencil or stylus, that can detect a
fluorescent cathode-ray tube (CRT) screen. The pen is
used to input information to a CRT display system.

Linkage

The code that connects two separately coded routines
and passes values and/or control between them.

Linked file

A file whose blocks are joined together by references
rather than by consecutive locations.

Linker

A program that combines many relocatable object mod-
ules into an executable module. It satisfies global refer-
ences and combines program sections.

Glossary-14

Listing
The printed copy generated by a line printer or terminal.
Load

To store a program or data in memory. To place a vol-
ume on a device unit and put the unit on line.

Load map

A table, produced by a linker, that provides information
about a load module’s characteristics; for example, the
transfer address, the global symbol values, and the low
and high limits of the relocatable code.

Load module

A program in a format that is ready for loading and
executing.

Location

An address in storage or memory where a unit of data or
an instruction can be stored.

Locked

Pertaining to routines in memory that presently cannot
be swapped or transferred.

Logical device name

An alphanumeric name assigned by the user to repre-
sent a physical device. The name can then be used syn-
onymously with the physical device name in all refer-
ences to the device. Logical device names are used in
device-independent systems to enable a program to refer
to a logical device name assigned to a physical device at
run-time.

A sequence of instructions that is executed repeatedly
until a terminal condition prevails.

Low-order byte

The least significant byte in a word. The low-order byte
occupies bit positions 0 through 7 in a PDP-11 word and
is always an even address.

Machine language

The language used by the computer when performing
operations.

Macro

An instruction in a source language that is equivalent to
a specified sequence of assembler instructions, or a com-

Glossary-15

Glossary

Glossary

mand in a command language that is equivalent to a
specified sequence of commands.

Main program

The module of a program that contains the instructions
at which program execution begins. The main program
usually exercises primary control over the operations
performed; it also calls subroutines or subprograms to
perform specific functions.

Mask

A combination of bits that is used to manipulate selected
portions of any word, character, byte, or register while
retaining other parts for use.

Mass storage

Pertaining to a device that can store large amounts of
data that are readily accessible to the computer.

Matrix

A rectangular array of elements. Any matrix can be con-
sidered an array.

Memory

Any form of data storage, including main memory and
mass storage, in which data can be read and written.
Memory usually refers to main memory.

Memory image

A replication of the contents of a portion of memory,
usually in a file.

Mnemonic

An alphabetic easy-to-remember representation of a
function or machine instruction.

Monitor

The master control program that observes, supervises,
controls or verifies the operation of a computer system.
The collection of routines that controls the operation of
user and system programs, schedules operations, allo-
cates resources, performs I/O, and so forth.

Monitor command
An instruction or command issued directly to a monitor
from a user.

Monitor command mode

The state of the operating system — indicated by a pe-
riod at the left margin — that allows monitor com-
mands to be entered from the terminal.

Glossary-16

Mount a volume

To logically associate a physical mass storage medium
with a physical device unit. To place a volume on a
physical device unit; for example, to place a magtape on
a magtape drive and put the drive on line.

Multiprocessing

Simultaneous execution of two or more computer pro-
grams by a computer which contains more than one cen-
tral processor.

Multiprogramming

A processing method in which more than one task is in
an executable state at any one time, even with one CPU.

Nondirectory-structured

Refers to a storage volume that is sequential in struc-
ture and therefore has no volume directory at its begin-
ning. File information (file name, file type, length, and
date-of-creation) is provided with each file on the vol-
ume. Such volumes include magtape and cassette.

Non-file-structured device

A device, such as a line printer or terminal, in which
data cannot be organized as multiple files.

Object code
Relocatable machine language code.
Object module

The primary output of an assembler or compiler, which
can be linked with other object modules and loaded into
memory as a runnable program. The object module is
composed of the relocatable machine language code, re-
location information, and the corresponding global sym-
bol table defining the use of symbols within the module.

Object Time System (OTS)

The collection of modules that is called by compiled code
in order to perform various utility or supervisory opera-
tions; for example, FORTRAN IV Object Time System.

Octal

Pertaining to the number system with a radix of eight;
for example, octal 100 is decimal 64.

oDT

On-line Debugging Technique: an interactive program
for finding and correcting errors in programs.

Off-line

Pertaining to equipment or devices not currently under
direct control of the computer.

Glossary-17

Glossary

Glossary

Offset
The difference between a base location and the location
of an element related to the base location. The number
of locations relative to the base of an array, string, or
block.

One’s complement
A number formed by interchanging the bit polarities in
a binary number; for example, 1s become 0s; 0s become
1s.

On-line

Pertaining to equipment or devices directly connected to
and under control of the computer.

Op-code (operation code)

The part of a machine language instruction that identi-
fies the operation the CPU is to perform.

Operand

The data that an instruction operates upon. An operand
is usually identified by an address part of an instruction.

Operating system
The collection of programs, including a monitor and sys-
tem programs, that organizes a central processor and
peripheral devices into a working unit for the develop-
ment and execution of application programs.

Operation

The act specified by a single computer instruction. A
program step undertaken or executed by a computer; for
example, addition, multiplication, comparison. The oper-
ation is usually specified by the operator part of an in-
struction.

Operation code
See Op-code.

Operator’s console

The set of switches and display lights used by an oper-
ator or a programmer to determine the status of the
computer system and to start the computer.

Option

An element of a command or command string that en-
ables the user to select alternatives associated with the
command. In the RT-11 operating system, an option
consists of a slash character (/) followed by the option
name and, optionally, a colon, and an option value.

Glossary-18

Output

The result of a process; the transferring of data from
internal storage to external storage.

Overfiow

A condition that occurs when a mathematical operation
yields a result whose magnitude is larger than the hard-
ware is capable of handling.

Overlay segment

A section of code treated as a unit that can overlay code
already in memory and be overlaid by other overlay seg-
ments when called from the root segment or another res-
ident overlay segment.

Overlay structure

A program overlay system consisﬁng of a root segment
and optionally one or more overlay segments.

Page
That portion of a text file delimited by form feed charac-
ters and generally 50 to 60 lines long. Corresponds ap-
proximately to a physical page of a program listing.
Parameter

A variable that is given a constant value for a specific
purpose or process.

Parity

A binary digit appended to an array of binary digits to
make the sum of all bits always odd or always even. It is
used to check the validity of data.

Patch

To modify a routine in a rough or expedient way, usually
by modifying the binary code rather than by assembling

it again. ‘
PC

See Program counter.
PDP

Programmable data processor.
Peripheral device

Any device distinct from the computer that can provide
input and/or accept output from the computer.

Physical device

An I/O or peripheral storage device connected to or asso-
ciated with a computer.

Glossary-19

Glossary

Glossary

Priority

A number, associated with a task, that determines the
order in which the monitor will process the request for
service by that task, relative to other tasks requesting
service.

Process
A set of related procedures and data that are executed
and manipulated by a computer.

Processor

In hardware, a data processor. In software, a computer
program that includes the compiler, assembler, trans-
lator, and related functions for a specific programming
language (for example, FORTRAN IV processor).

Processor status word (PSW)
A register in the PDP-11 that indicates the current pri-
ority of the processor, the condition of the previous oper-
ation, and other basic control items.

Program
A set of machine instructions or symbolic statements
combined to perform some task.

Program counter (PC)

A register used by the central processor unit to record
the addresses of the instructions to be executed. The PC
(register 7 of the eight general registers) always con-
tains the address of the next instruction to be executed,
or the second or third word of the current instruction.

Program development
The process of writing, entering, translating, and debug-
ging source programs.

Programmed request
A set of instructions (available only to programs) that is
used to invoke a monitor service.

Program section

A named, contiguous unit of code (instructions or data)
that is considered as an entity and that can be relocated
separately without destroying the logic of the program.

Protocol

A formal set of conventions governing the format and
relative timing of information exchange between two
communicating processes.

Glossary-20

PSW
See Processor status word.

Queue
Any dynamic list of items; for example, items waiting to
be scheduled or processed according to system- or user-
assigned priorities.

Radix
The base of a number system; the number of digit sym-
bols required by a number system.

RAM (Random-Access Memory)

Memory that is accessed in such a way that the next
location from which data is to be obtained is not de-
pendent on the location of the previously obtained data.

Random access

Access to data in which the next location from which
data is to be obtained is not dependent on the location of
the previously obtained data. Contrast Sequential ac-
cess.

Read-only memory (ROM)
Memory whose contents are not alterable by computer
instructions.

Real-time processing

The computation performed while a related or controlled
physical activity is occurring. The results of the compu-
tation can be used for guiding the process.

Record

A collection of related items of data treated as a unit; for
example, a line of source code or a person’s name, rank,
and serial number.

Recursive

Pertaining to a repetitive process in which the result of
each process is dependent upon the result of the previous
one.

Re-entrant

Pertaining to a program composed of a shareable seg-
ment of pure code and a nonshareable segment that is
the data area.

Register
See General register.

Glossary-21

Glossary

Glossary

Relative address

The number that specifies the difference between the
actual address and a base address.

Relocate

In programming, to move a routine from one portion of
storage to another and to adjust the necessary address
references so that the routine, in its new location, can be
executed.

Resident

Pertaining to data or instructions that are permanently
located in main memory.

Resource

Any means available to users, such as computational
power, programs, data files, storage capacity, or a combi-
nation of these.

Restart
To resume execution of a program.

ROM
See Read-only memory.

Root segment

The segment of an overlay structure that, when loaded,
remains resident in memory during the execution of a
program.

Routine

A set of instructions arranged in proper sequence to
cause a computer to perform a desired operation.

Run
A single, continuous execution of a program.

Sector
A physical portion of a mass storage device.

Segment
See Overlay segment.

Sequential access

A method of data access in which the next location from
which data is to be obtained immediately follows the
location of the previously obtained data. Contrast
Random access.

Glossary—22

Software

The collection of programs and routines associated with
a computer. Compilers and library routines are exam-
ples.

Software bootstrap

A bootstrap that is activated by loading the instructions
of the bootstrap and specifying the appropriate load and
start address.

Source code

Text, usually in the form of an ASCII format file, that
represents a program. Such a file can be processed by an
appropriate system program.

Source language

The system of symbols and syntax used to describe a
procedure that a computer can execute.

Spooling

The technique by which I/O with slow devices is placed
on mass storage devices to await processing.

Storage

Pertaining to a device into which data can be entered, in
which it can be held, and from which it can be retrieved
at a later time.

String

A connected sequence of entities, such as a line of char-
acters.

Subprogram

A program or a sequence of instructions that can be
called to perform the same task (though perhaps on dif-
ferent data) at different points in a program, or in dif-
ferent programs.

Subroutine
See Subprogram.
Subscript

A numeric valued expression or expression element that
is appended to a variable name to uniquely identify spe-
cific elements of an array. Subscripts are enclosed in
parentheses. There is a subscript for each dimension of
an array. Multiple subscripts must be separated by
commas. For example, a two-dimensional subscript
might be (2,5).

Glossary—23

Glossary

Glossary

Supervisory programs

Computer programs that have the primary function of
scheduling, allocating, and controlling system resources.

Swapping

The process of moving data from memory to a mass
storage device, temporarily using the empty memory
area for another purpose, and then restoring the original
data to memory.

Synchronous

Pertaining to related events where all changes occur si-
multaneously or in definite timed intervals.

Syntax

The structure of expressions in a language and the rules
governing the structure of a language.

System program
A program that performs system-level functions. A pro-
gram that is part of the basic operating system (for ex-
ample, a system utility program) is a system program.
System volume
The volume on which the operating system is stored.

Table
A collection of data in a well-defined list.

Terminal

An IO device, such as an LA120 terminal, that includes
a keyboard and a display mechanism. In PDP-11 sys-
tems, a terminal is used as the primary communication
device between a computer system and a user.

Time sharing

A method of allocating resources to multiple users so
that the computer processes a number of programs con-
currently.

Toggle

To use switches on the computer operator’s console to
enter data into the computer memory.

Translate
To convert from one language to another.

Trap

A conditional jump to a known memory location per-
formed automatically by hardware as a side effect of exe-
cuting a processor instruction. The address location from

Glossary—-24

which the jump occurs is recorded. It is distinguished
from an interrupt, which is caused by an external event.

Truncation

The reduction of precision by ignoring one or more of the
least significant digits; for example, 3.141597 truncated
to four decimal digits is 3.141.

Turnkey

Pertaining to a computer system sold in a ready-to-use
state.

Two’s complement
A number used to represent the negative of a given
value in many computers. This number is formed from
the given binary value by changing all 1s to Os and all
Os to 1s and then adding 1.

Underfiow

A condition that occurs when a mathematical operation
yields a result whose magnitude is smaller than the
smallest amount the hardware can handle.

User program
An application program.

Utility program

Any general-purpose program included in an operating
system to perform common functions.

Variable

The symbolic representation of a logical storage location
that can contain a value that changes during a pro-
cessing operation.

Vector
A consecutive list of associated data.
Volume

A mass storage medium that can be used for file-struc-
tured data storage.

Wildcard

A valid substitute for characters in a file specification.
Used to perform operations on multiple files. Can be as-
terisks to represent entire file names or file types, or
percent signs to represent single characters in file
names or file types.

Wildcard operation

A shorthand method of referring to all files with a spe-
cific characteristic in their name.

Glossary-25

Glossary

Glossary

Word

Sixteen binary digits treated as a unit in PDP-11 com-
puter memory.

Write-enabled

The condition of a volume that allows information to be
written on it.

Write-protected

The condition of a volume that protects the volume
against information being written on it.

Glossary-26

INDEX

Absolute program sections, 12—4 demonstration program, 10-7
Addresses errors, 10-9
assignment by LINK, 12-3 running, 10-1
Advance (A) command (EDIT), 5-9 exiting, 10-3
Application packages, 1-10 immediate mode, 10-3
Assembler, 11-2 interpreter, 10-2
Assembler errors, 11-7 language processor, 10-1
Assembly language programming language, 10-1
See Machine-level language BASIC-11 program
Assembly listings, 11-8 creating, 104, 10-12
ASSIGN keyboard command editing, 104
assigning logical device names, 4-11 maintaining files, 10-12
changing the output device, 9-11, 15-5 replacing, 10-13
running, 10-8
Background job saving, 10-12
creating, 15-2 using, 10-12
directing input to, 154 BASIC-11 programming language, 1-10,
editing, 15-2 8-3
executing, 15-5 BASIC keyboard command, 10-2
running, 15-2 BATCH
terminating, 15-6 stream, 17-1
Background program Beginning (B) command (EDIT), 54
running, 15-1 Bit
Backup copy definition of, 11-5
files, 17-1 Bootstrap
system volume, B-3 manual operations, A-1
BASIC-11 procedure, 2—4
commands, 10-3 to 10-13 prompts and responses (table), 2—6
command summary pushbutton console, A-1, A4
edit, 10-6 relationship with computer (figure),
execution, 10-11 2-2
file maintenance, 10-13 suggestions for bootstrapping, B-2

Index-1

Bootstrap (cont.)
switch register console, A-1, A-5
terminal keyboard, A-3
typing, A-3
Breakpoints
clearing, 14-9
clearing all, 14-10
setting, 14-8
/BRIEF
DIRECTORY option, 4-14
BYE command
BASIC-11, 10-3
Byte
definition of, 11-5

Character insertion
immediate mode, 5-17
Character search (EDIT), 5-9
Command arguments (EDIT)
table of, 5-5
Commands
BASIC
See BASIC-11
control
format of, 4-3
correcting typing errors, 44
EDIT
See EDIT
keyboard
See Keyboard commands
format of, 4-2
ODT
See ODT
Compiler, 9-2
Computer
hardware configuration, 2-3
memory, 2-1
PDP-11 (figure), 1-3
Console, 14, 3—1
See also Terminals
COPY keyboard command, 7-3
/CREATE
EDIT option, 5-2
LIBRARY option, 13-2, 13-5
CREF table, 11-10
/CROSSREFERENCE
MACRO option, 11-7
Cross-reference (CREF) listing, 11-10
Cross-reference (CREF) table
See CREF table
CTRL/B, 154
CTRL/C CTRL/C
aborting program execution, 4-14
returning to BASIC-11 command mode,
10-9

Index-2

terminating background job, 15-6
terminating indirect file execution,
164
CTRL/C ESCAPE ESCAPE (EDIT), 5-6
5-19

CTRL/D, 5-19

CTRL/E, 4-7

CTRL/F, 154

CTRL/G, 5-18

CTRL/L, 5-10

CTRL/N, 5-18

CTRL/O, 4-12

CTRL/U, 44

CTRL/U (EDIT), 5-3, 5-8

CTRL/V, 5-18

CTRL/X, 5-8

CTRL key, 34

b

Date
See also Time
displaying, 4-9
entering, 4-8
DATE keyboard command, 4-8
/DEBUG
LINK option, 14-5
Debugging a program, 1-9
See also ODT
techniques, 14-2
Decimal/octal/binary conversion, 11-6
Delete (D) command (EDIT), 5-8
DELETE (DEL) command
BASIC-11, 10-5
DELETE key
correcting typing errors, 4—4
editing, 5-3, 5-8
function, 3-3
immediate mode, 5-18
ODT, 14-6
DELETE keyboard command, 7-6
Demonstration programs
BASIC-11, 10-7
creating, 5-19
FORTRAN, 5-20
library files, 13—-3
load maps, 12-8
MACRO, 5-21
Device assignments
changing, 9-11
Device handlers, 1-8
Device names, 4-9
Devices
random-access, 1-5
random-access (figure), 1-5
Device unit, 3-5, 4-10

DIFFERENCES keyboard command, 6-2
DIRECTORY keyboard command, 4-12
Directory listings, 3-7, 4-12
generating, 7-1
Directory-structured volumes, B—4
Documentation, 1-10
hardware manuals, 1-10
software manuals, 1-11
source listings, 1-11
Drive
See Device unit
DUMP, 1-9

EDIT
command arguments (table), 5-5
commands
summary of, 5-13
exiting, 5-19
EDIT commands, 5-3 to 5-13
Editing command mode, 5-3
Editing commands
ESCAPE
returning to editing command mode,
5-19
Editing commands, multiple
entering, 5-8
erasing, 5-8
EDIT keyboard command
creating a file, 5-2
editing a file, 54
Edit lower (EL) command (EDIT), 5-12
Editors
EDIT
See EDIT
Edit upper (EU) command (EDIT), 5-13
Errors
avoiding programming, 141
types of
assembler, 11-7
clerical, 14-2
compiler, 94
logical, 14-2
syntax, 14-2
ESC
See ESCAPE key
ESCAPE command
entering multiple commands, 5-8
returning to editing command mode,
5-19
ESCAPE ESCAPE command
activating immediate mode, 5-17
executing editing commands, 5-3

executing multiple editing commands,
5-8

ESCAPE key, 34, 5-3
See also ESCAPE command and
ESCAPE ESCAPE command
Examples
re-creating, 4-3
EXECUTE keyboard command, 9-12,
11-16
Exit (EX) command (EDIT), 5-3

FB monitor, 15-3
File maintenance
BASIC-11, 10-12
programs, 1-9
See also File maintenance commands
File maintenance commands
summary, 7-9
File maintenance operations, 7—1
File names, 3—7
changing, 7-5
Files
backup copy, 5-12, 17-1
closing, 5-3, 5-11
comparing, 6-1, 6-2
copying, 7-3
creating, 5-2
deleting, 7-5
editing, 54
editing (figure), 5-2
indirect
See Indirect command files
paging, 5-2
protecting, 3-7, 7-7
removing protection from, 7-7
renaming, 5-6, 74
storing, 37
transferring, 7-3
File types, 3-7
changing, 7-5
File types (table), 4-13
Foreground/background environment,
15-1
Foreground/background monitor
See FB monitor
Foreground/background program
communication, 15-3
/FOREGROUND/LINK option, 154
Foreground job
creating, 154
directing input to, 154
executing, 15-5
linking, 154
loading device handlers, 15-5
terminating, 15-7
unloading, 15-7

Index-3

Foreground program
running, 15-1
FORLIB.OBJ, 9-3, 12-7
FORTRAN
compiler, 9-2
demonstration program, 5-20
running, 9-1
library modules, 92
object time system (OTS), 9-2
programming language, 1-10, 8-3
FORTRAN/BASIC language volume, B-5
FORTRAN demonstration program
errors, 9-7
FORTRAN keyboard command, 9-4
FORTRAN language processor, 9-1
FORTRAN program
compiling, 9-3
execution commands
summary, 9-14
linking, 9-8, 9-9, 12-7
producing a load map, 12-7
producing a load module, 12-7
running, 9-11
sectioning, 12-5
FORTRAN programming language, 9-1
FRUN keyboard command, 15-6

Get (G) command (EDIT), 5-9
Global symbols, 12-2
Graphics display terminal
See VT11 display hardware
GT keyboard command, 4-6
GT OFF keyboard command, 4-7, 5-2
GT ON keyboard command, 4-6, 5-16

Hardware, 1-1
computer, 1-1
storage medium, 14
terminal, 1-3
Hardware configuration, 2—1
computer, 2-3
languages, 2-4
optional devices, 2—4
storage volume, 2—4
system volume, 2-3
terminal, 2-3
Hardware manuals, 1-10
HELP file, 17-2
HELP keyboard command, 17-2
High-level languages, 1-10, 8-1
See also BASIC-11 and FORTRAN

Immediate mode
BASIC-11, 10-3

Index—4

Immediate mode (EDIT)

character insertion, 5-17

VT11 display hardware, 5-16
Immediate mode (EDIT) commands,

5-17 to 5-19

VT11 display hardware (table), 5-17
Indirect command files, 16-1, 171

creating, 16-1

entering monitor commands, 16-1

executing, 16-4

using, 16-1

using the editor to create, 16-2
INITIALIZE keyboard command, 4-15
Initializing volumes, 4-15
Input/output devices

See Peripheral devices
/INSERT

LIBRARY option, 13-6
Insert (I) command (EDIT), 5-3
Internal symbols, 12-2
Interpreter

description of, 10-2

Jobs
background, 15-2
foreground, 154

Jump (J) command (EDIT), 5-7

Keyboard commands, 4-1
Keyboard layouts (figure), 3—-3
Keyboard monitor

See KMON
Keyboard symbols (table), 44
Kill (K) command (EDIT), 5-9
KMON, 4-1

Language comparisons (table), 8-2
Language processors, 1-10, 8-1
BASIC-11, 10-1

FORTRAN, 9-1
MACRO, 11-2
Languages

See Programming languages
Language volume

FORTRAN/BASIC, B-5
Librarian, 1-9

See also Library files
Library files

creating, 13-2

demonstration programs, 13-3

macro, 13-1

maintaining, 13—-2

maintenance commands for

summary, 13-7

Library files (cont.)
object libraries, 13-1
LIBRARY keyboard command, 13-2,
13-5
Library modules, 9-2
Library references
resolving, 12-2
LINE FEED key, 34
ODT, 14-7
Linking a program, 1-9
See also LINK keyboard command and
Link operation
LINK keyboard command, 9-9
linking a foreground program, 154
linking a MACRO program, 11-14
linking ODT, 14-5
Link operations, 12-1
address assignment, 12-3
overlay feature, 12-6
producing a load map, 12-7
producing a load module, 12-7
program relocation, 12-3
program sections, 12—4
resolving library references, 12-2
resolving symbolic references, 12-2
summary of commands, 12-11
Link volume, B-8
/LIST
FORTRAN option, 94
LIBRARY option, 13-6
MACRO option, 11-7
List (L) command (EDIT), 5-5
LIST command
BASIC-11, 10-5
LISTNH command
BASIC-11, 10-6
LOAD keyboard command, 15-5
Load maps
demonstration programs, 12-8
producing, 12-7
Load modules
producing, 12-7
Logical device names
assigning, 4-9
special (table), 4-10
Lowercase characters
EDIT, 5-12

Machine language code, 114
Machine-level language, 1-10, 8-1
See also MACRO
/MACRO
LIBRARY option, 13-2
MACRO
assembly listing, 11-8

demonstration program, 5-21
errors, 11-12
running, 11-1
programming language, 8-3, 11-1
MACRO assembler, 11-2
running, 11-15
MACRO keyboard command, 11-7
MACRO language processor, 11-2
Macro library files, 13-1
MACRO programs
assembling, 11-6
developing, 11-1
linking, 11-13, 11-14, 12-7
producing a load map, 12-7
producing a load module, 127
sectioning, 12-5
summary of execution commands,
11-17
Macros, 11-11
/MAP
LINK option, 12-7
/MATCH
DIFFERENCES option, 6-3
Memory, 2-1, 11-3
Memory image load module, 11-14
Monitor
description of, 1-8
Monitor command format, 4-2
Monitor command language
See Keyboard commands
Monitor program, 3—-1

NEW command

BASIC-11, 10-12
Next (N) command (EDIT), 5-11
Nondirectory-structured volumes, B—4

Object libraries, 13-1
building, 13-2
creating input files, 13-2
listing, 13-6
updating, 13-6
Object module relocation (figure), 12—4
Object modules, 12-1
linking
FORTRAN, 9-8
MACRO, 11-13
linking (figure), 9-9
Object programs
linking, 12-1
Object time system (OTS), 9-2
ODT, 14-3
accessing general registers, 14-9
clearing breakpoints, 14-9

Index-5

ODT (cont.)
closing the currently open location
address, 14-7
commands
summary, 14-12
continuing execution, 14-9
executing MACRO programs, 14-7
linking with a program, 14-5
location addresses, 14-7
opening addressed locations, 14—9
opening bytes, 14-10
opening location addresses, 14—7
opening sequential location addresses,
14-7
relocation registers, 14—7
removing a breakpoint, 14-9
removing all breakpoints, 14-10
running, 14-6
running a program with, 14-8
setting breakpoints, 14-8
setting relocation registers, 14—7
ODT commands, 14-6 to 14-10
OLD command
BASIC-11, 10-12
On-line debugging technique
See ODT
Operating system
applications packages, 1-10
description of, 1-8
device handlers, 1-8
language processors, 1-10
monitor program, 1-8
utility programs, 1-8
Operating system (figure), 1-9
Optional devices, 1-6
hardware configuration, 2—4
Output device
changing, 9-11, 15-5
Overlay feature
See Overlay segments
Overlay segments, 12—6

Peripheral devices, 1-6
Peripheral devices (figure), 1-6
Physical device names (table), 4-9
/PRINTER

DIRECTORY option, 4-14
Printer

enabling, 4-7
PRINT keyboard command, 7-8
Processor

stopping the, B-1
Program counter, 11-3
Programmed requests, 11-11
Programming languages, 8-1

Index—6

BASIC-11, 8-3, 10-1
choosing, 8-1
comparing (table), 8-2
DIBOL, 8-3
FORTRAN, 8-3, 9-1
hardware configuration, 2—4
MACRO, 8-3, 11-1
Program relocation, 12-3
Programs
See also FORTRAN program,
BASIC-11 program, and MACRO
programs
debugging, 14-1
Program sections
absolute, 124
blank, 12-5
instruction, 12-5
named relocatable, 12—4
/PROMPT
LINK option, 12-6
Prompts
bootstrap, 2-6
EDIT, 5-3
monitor, 4-1
PROTECT keyboard command, 7-7
Pushbutton console
using to bootstrap, A—4
Pushbutton console (figure), A—4

/QUERY
DELETE option, 7-6

Radix

conversion table, 11-6
Random-access devices

See Devices
Read (R) command (EDIT), 54
Relocatable program sections, 12—4
Relocation registers

ODT, 14-7
/REMOVE

LIBRARY option, 13-7
RENAME keyboard command, 5-6, 7-5
Renaming files

cassette users, B4

magtape users, B4
REPLACE command

BASIC-11, 10-13
Resident monitor

See RMON
RETURN key

executing commands, 4-1, 4-3

function, 3—4

ODT, 14-7

RMON, 4-1

RT-11 computer system
description of, 1-1

RT-11 computer system (figure), 1-2

RT-11 operating system
See Operating system

RUN command
BASIC-11, 10-8
ODT, 14-8

RUN keyboard command
background job, 15-3

RUNNH command
BASIC-11, 10-8

SAVE command
BASIC-11, 10-12
SCRATCH (SCR) command
BASIC-11, 10-6
SHIFT key, 3-3
SHOW keyboard commands, 4-11
Software
defined, 1-7
operating system, 1-8
Software (figure), 1-8
Software manuals, 1-11
Source comparison program, 1-9
See also Source comparison
Source files
comparing, 6-1
Source listings, 1-11
Storage medium
definition of, 14
random-access
See Devices
Storage volumes
hardware configuration, 2—4
initializing, 4-15
loading, 2-5
protecting files, 3-7
using, 34, 3-7
Storage volumes (figure), 3—6
SUBSTITUTE (SUB) command
BASIC-11, 104
Switch register console
using to bootstrap, A-5
Switch register console (figure), A-5
Symbolic references
resolving, 12-2
Symbols
global, 12-2
internal, 12-2
Symbol table, 114, 11-10
SYSLIB.OBJ, 9-2, 12-7

System macro library, 11-11
System volume, 2-2
backing up, B-3

hardware configuration, 2-3
loading, 2-5
System volume (table), 2—4

TAB key, 34
Terminal

hardware configuration, 2-3
Terminal (figure), 3-2
Terminal devices (figure), 14
Terminals, 1-3, 3-1

console, 14
Text buffer, 5-1

pointer, 5—4

Time

See also Date

displaying, 4-9

entering, 4-8
TIME keyboard command, 4-8
TYPE keyboard command, 7—-8

UNLOAD keyboard command, 157
UNPROTECT keyboard command, 7-7
User service routine

See USR
USR, 4-1
Utility programs, 1-8

Verify (V) command (EDIT), 5-7
Volume directory
file storage, 3—7
listing, 4-12
operations, 7-1
Volume structures
comparing, B—4
Volume substitution during operations,
B-6
VT11 display hardware
commands, 4-6, 4-7
enabling, 4-6
enabling the printer, 4-7
immediate mode, 5-16
using, 4-5, 5-15
VT11 display hardware (figure), 4-6

Wildcards
using
with DELETE keyboard command,
7-6
with DIRECTORY keyboard
command, 5-12
Word
definition of, 11-5
Write enable

file protection, 3-7
Write protect
file protection, 3-7

Index-7

HOW TO ORDER
ADDITIONAL DOCUMENTATION

From Call Write
Chicago 312-640-5612 Digital Equipment Corporation
8:15 AM. to 5:00 PM. CT Accessories & Supplies Center
1050 East Remington Road
Schaumburg, IL 60195
San Francisco 408-734-4915 Digital Equipment Corporation
8:15am. to 5:00 P.M. PT Accessories & Supplies Center
632 Caribbean Drive
Alaska, Hawaii 603—-884-6660
8:30 AM. t0 6:00 PM.ET Sunnyvale, CA 94086
or 408-734-4915

8:15 AM. to 5:00 P.M. PT

New Hampshire

Rest of U.S.A.,
Puerto Rico*

603—-884—-6660
8:30 AM. t0 6:00 PM. ET

1-800-258-1710
8:30 AM. t0 6:00 PM. ET

Digital Equipment Corporation

Accessories & Supplies Center

P.O. Box CS2008
Nashua, NH 03061

“Prepaid orders from Puerto Rico must be placed with the local DIGITAL subsidiary (call 809-754-7575)

Canada
British Columbia 1-800-267-6146 Digital Equipment of Canada Ltd
8:00 AM. t0 5:00 PM. ET 940 Belfast Road
Ottawa, Ontario K1G 4C2
Ottawa—Hull 613-234-7726 Attn: A&SG Business Manager
8:00 AM.10 5:00 PM. ET
Elsewhere 112-800-267—6146
8:00 Am. t0 5:00 PM. ET
Elsewhere

Digital Equipment Corporation
A&SG Business Manager*

“c/o DIGITAL's local subsidiary or approved distributor

Introduction
to RT-11
AD-5281C-T1

READER’S COMMENTS

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the

company’s discretion. If you require a written reply and are eligible to receive one under Software
Performance Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well organized? Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

— Assembly language programmer

— Higher-level language programmer

— Occasional programmer (experienced)

— User with little programming experience
— Student programmer
— Other (please specify)

Name Date

Organization Telephone

Street

City State Zip Code

or Country

— — Do Not Tear — Fold Here and Tape

dlilgliltlall

—_ - Do Not Tear — Fold Here

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SSG/ML PUBLICATIONS, MLO5-5/E45
DIGITAL EQUIPMENT CORPORATION
146 MAIN STREET

MAYNARD, MA 01754-2571

No Postage
Necessary
if Mailed in the
United States

T T T T T T T 7 Cut Along Dotted Line

Printed in U.S.A.

	A_Page_001.tif
	A_Page_002.tif
	A003.tif
	A004.tif
	A005.tif
	A006.tif
	A007.tif
	A008.tif
	A009.tif
	A010.tif
	A011.tif
	A012.tif
	A013.tif
	A014.tif
	A015.tif
	A016.tif
	A017.tif
	A018.tif
	A019.tif
	A020.tif
	A021.tif
	A022.tif
	A023.tif
	A024.tif
	A025.tif
	A026.tif
	A027.tif
	A028.tif
	A029.tif
	A030.tif
	A031.tif
	A032.tif
	A033.tif
	A034.tif
	A035.tif
	A036.tif
	A037.tif
	A038.tif
	A039.tif
	A040.tif
	A041.tif
	A042.tif
	A043.tif
	A044.tif
	A045.tif
	A046.tif
	A047.tif
	A048.tif
	A049.tif
	A050.tif
	A051.tif
	A052.tif
	A053.tif
	A054.tif
	A055.tif
	A056.tif
	A057.tif
	A058.tif
	A059.tif
	A060.tif
	A061.tif
	A062.tif
	A063.tif
	A064.tif
	A065.tif
	A066.tif
	A067.tif
	A068.tif
	A069.tif
	A070.tif
	A071.tif
	A072.tif
	A073.tif
	A074.tif
	A075.tif
	A076.tif
	A077.tif
	A078.tif
	A079.tif
	A080.tif
	A081.tif
	A082.tif
	A083.tif
	A084.tif
	A085.tif
	A086.tif
	A087.tif
	A088.tif
	A089.tif
	A090.tif
	A091.tif
	A092.tif
	A093.tif
	A094.tif
	A095.tif
	A096.tif
	A097.tif
	A098.tif
	A099.tif
	A100.tif
	A101.tif
	A102.tif
	A103.tif
	A104.tif
	A105.tif
	A106.tif
	A107.tif
	A108.tif
	A109.tif
	A110.tif
	A111.tif
	A112.tif
	A113.tif
	A114.tif
	A115.tif
	A116.tif
	A117.tif
	A118.tif
	A119.tif
	A120.tif
	A121.tif
	A122.tif
	A123.tif
	A124.tif
	A125.tif
	A126.tif
	A127.tif
	A128.tif
	A129.tif
	A130.tif
	A131.tif
	A132.tif
	A133.tif
	A134.tif
	A135.tif
	A136.tif
	A137.tif
	A138.tif
	A139.tif
	A140.tif
	A141.tif
	A142.tif
	A143.tif
	A144.tif
	A145.tif
	A146.tif
	A147.tif
	A148.tif
	A149.tif
	A150.tif
	A151.tif
	A152.tif
	A153.tif
	A154.tif
	A155.tif
	A156.tif
	A157.tif
	A158.tif
	A159.tif
	A160.tif
	A161.tif
	A162.tif
	A163.tif
	A164.tif
	A165.tif
	A166.tif
	A167.tif
	A168.tif
	A169.tif
	A170.tif
	A171.tif
	A172.tif
	A173.tif
	A174.tif
	A175.tif
	A176.tif
	A177.tif
	A178.tif
	A179.tif
	A180.tif
	A181.tif
	A182.tif
	A183.tif
	A184.tif
	A185.tif
	A186.tif
	A187.tif
	A188.tif
	A189.tif
	A190.tif
	A191.tif
	A192.tif
	A193.tif
	A194.tif
	A195.tif
	A196.tif
	A197.tif
	A198.tif
	A199.tif
	A200.tif
	A201.tif
	A202.tif
	A203.tif
	A204.tif
	A205.tif
	A206.tif
	A207.tif
	A208.tif
	A209.tif
	A210.tif
	A211.tif
	A212.tif
	A213.tif
	A214.tif
	A215.tif
	A216.tif
	A217.tif
	A218.tif
	A219.tif
	A220.tif
	A221.tif
	A222.tif
	A223.tif
	A224.tif
	A225.tif
	A226.tif
	A227.tif
	A228.tif
	A229.tif
	A230.tif
	A231.tif
	A232.tif
	A233.tif
	A234.tif
	A235.tif
	A236.tif
	A237.tif
	A238.tif
	A239.tif
	A240.tif
	A241.tif
	A242.tif
	A243.tif
	A244.tif
	A245.tif
	A246.tif
	A247.tif
	A248.tif
	A249.tif
	A250.tif
	A251.tif
	A252.tif
	A253.tif
	A254.tif
	A255.tif
	A256.tif
	A257.tif
	A258.tif
	A259.tif
	A260.tif
	A261.tif
	A262.tif
	A263.tif
	A264.tif
	A265.tif
	A266.tif
	A267.tif
	A268.tif

