PDP-11
FORTRAN

Language Reference Manual
DEC-11-LFLRA-B-D

PDP-11
FORTRAN

Language Reference Manual
DEC=-11-LFLRA-B-D

Order additional copies as directed on the Software
Information page at the back of this document.

digital equipment corporation - maynard. massachusetts

First Printing, June 1974

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this manual.

The software described in this document is furnished to the purchaser
under a license for use on a single computer system and can be copied
(with inclusion of DIGITAL's copyright notice) only for use in such
system, except as may otherwise be provided in writing by DIGITAL.

Digital Equipment Corporation assumes no responsibility for the use
or reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright (:) 1974, Digital Equipment Corporation

The HOW TO OBTAIN SOFTWARE INFORMATION page, located at the back of
this document, explains the various services available to DIGITAL
software users.

The postage prepaid READER'S COMMENTS form on the last page of this

document requests the user's critical evaluation to assist us in
preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CDP DIGITAL INDAC PS/8

COMPUTER LAB DNC KAlO0 QUICKPOINT

COMSYST EDGRIN LAB-8 RAD-8

COMTEX EDUSYSTEM LAB-8/e RSTS

DDT FLIP CHIP LAB-K RSX

DEC FOCAL OMNIBUS RTM

DECCOMM GLC-8 . 0s/8 RT-11

DECTAPE IDAC PDP SABR

DIBOL IDACS PHA TYPESET 8
UNIBUS

ii

CHAPTER

CHAPTER

CONTENTS

INTRODUCTION TO PDP-1l FORTRAN

LANGUAGE OVERVIEW

ELEMENTS OF A FORTRAN PROGRAM
Statements

Comments

The FORTRAN Character Set

(T

e o o o

- WWWwwwwwww [SN S] | oad
o o o
W N -

FORMATTING A FORTRAN LINE
Using FORTRAN Coding Forms
Using a Text Editor
Statement Number Field
Comment Indicator

Debug Statement Indicator
Continuation Field
Statement Field

Sequence Number Field

.
o o o
AN WWWN+
* o
N =

* o e o o

HF HHEHERREREEEE
o o L[] e o L[] e o

PROGRAM UNIT STRUCTURE

FORTRAN STATEMENT COMPONENTS

SYMBOLIC NAMES
DATA TYPES .

° o
WWwwww NNONNNNNOMNNONON = o

CONSTANTS

Integer Constants

Real Constants

Double Precision Constants
Complex Constants

Octal Constants

Logical Constants
Hollerith Constants
Alphanumeric Literals
Radix-50 Constants

L)
-

e o6 o o o o o o 0 o
NN AEWN -

VARIABLES

Data Type by Definition

Data Type by Implication

Assigning Hollerith Data to Variables
LOGICAL*1 Variables

[SI S SN SN N [SECHSHNN SR SN SR SN SN S NN N
* o
- W

L] e o o o

iii

-
e
NY- YN

HHHTHHH

v i
o WO NdI

N
!
v

NN
U

HEHWOVWOVOOJIAUIW SN)

CHAPTER

CHAPTER

e o o o o
(S, 5, NS, NS, E, NG, L W N

o o o o o

LSELSE . SH S N N LSJN SI Ol S N
e o o o o o

WN

w

L L W >

o wWwww NN Lol ol ol

-3
.
2} w

LS

ARRAYS

Array Declarators
Array Storage

Data Type of an Array
Subscripts

EXPRESSIONS
Arithmetic Expressions

Use of Parenthaeses

Data Type of an Arithmetic Expression
Relational Expressions

Logical Expressions

ASSIGNMENT STATEMENTS
ARITHMETIC ASSIGNMENT STATEMENT
LOGICAL ASSIGNMENT STATEMENT

ASSIGN STATEMENT

CONTROL STATEMENTS

GO TO STATEMENTS
Unconditional GO TO Statement
Computed GO TO Statement
Assigned GO TO Statement

IF STATEMENTS

Arithmetic IF Statement
Logical IF Statement

DO STATEMENT

Nested DO Loops

Control Transfers in DO Loops
Extended Range

CONTINUE STATEMENT

CALL STATEMENT

RETURN STATEMENT

PAUSE STATEMENT

STOP STATEMENT

END STATEMENT

iv

> X -Au'b-h > b b b
O O N UL W -

L}
[
[

4-11
4-12
4-12
4-13
4-13

(g
=
o
(8

. . e o

e o o
wN -

e o o
o o

o o o

D)
L)
LS N o

e o o o o
e o o o o
(S W SN

o o o o
wWN =

o o o
o o o
N -

oLy UL LLLLL L Ly L uyn
N4 O LU abbhbabd WWW NN M

e o

L]
e o o

ot e wWN -

* 0 o 0
e o [. L L] e o o o ¢ o e o o L]

o uunnunnuunnnn
©0 00 00 00 00 GO 0O ©O 00 0O CO G0 OO GO CO 00 GO ©O GO 00 GO O O

[[] [L] LI] L] e o o 0 . L] e o L] * o

FHHHHHHEOONOU&WN

NouesewhHO

¢ o] L] e o .

INPUT/OUTPUT STATEMENTS

OVERVIEW
Input/Output Devices
Format Specifiers
Input/Output Records

INPUT/OUTPUT LISTS
Simple Lists
Inplied DO Lists

UNFORMATTED SEQUENTIAL INPUT/OUTPUT
Unformatted Sequential READ Statement
Unformatted Sequential WRITE Statement

FORMATTED SEQUENTIAL INPUT/OUTPUT
Formatted Sequential READ Statement
Formatted Sequential WRITE Statement
ACCEPT Statement

TYPE Statement

PRINT Statement

UNFORMATTED DIRECT ACCESS INPUT/OUTPUT
Unformatted Direct Access READ Statement
Unformatted Direct Access WRITE Statement
DEFINE FILE Statement

FORMATTED DIRECT ACCESS INPUT/OUTPUT
Formatted Direct Access READ Statement
Formatted Direct Access WRITE Statement

TRANSFER OF CONTROL ON END-OF-FILE OR ERROR
CONDITIONS

AUXILIARY INPUT/OUTPUT STATEMENTS
REWIND Statement
BACKSPACE Statement
ENDFILE Statement

FIND Statement

OPEN Statement

UNIT Keyword

NAME Keyword

TYPE Keyword

ACCESS Keyword

READONLY Keyword

FORM Keyword

RECORDSIZE Keyword

ERR Keyword

BUFFERCOUNT Keyword
INITIALSIZE Keyword
EXTENDSIZE Keyword
NOSPANBLOCKS Keyword
SHARED Keyword

DISPOSE Keyword
ASSOCIATEVARIABLE Keyword
CARRIAGECONTROL Keyword
MAXREC Keyword

Page

wn
) !
[

oo,
L} 11
wwN =

[}
-0 0o ® NSO o ww

o

-

U'lUIU'lUlUI({I vt o

wn

! !
[w =]
N -

5-12
5-13
5-14

5-15
5-15
5-16

CHAPTER

CHAPTER

5.8.6

wn
)
o

e e o o ¢ o o 0o o o

W & W NNNNNNNNNNNNNNNNNNN
MR OOVOIOU S WN -

.
NONLEWNMHOS.

N AN O AN NANANANANANANANNAARNAANNON O o [-))

N o
.)
~ -,

N d ~< < ~ AN

e

CLOSE Statement

ENCODE AND DECODE STATEMENTS

FORMAT STATEMENTS
OVERVIEW

FIELD DESCRIPTORS
Field Descriptor
Field Descriptor
Field Descriptor
Field Descriptor
Field Descriptor
Field Descriptor
Field Descriptor
Field Descriptor
Field Descriptor
Alphanumeric Literals
X Pield Descriptor
T Field Descriptor
Q Field Descriptor
$ Descriptor
Complex I/0

Scale Factor

ZyPHQOEMOM

Grouping and Group Repeat Specifications

Variable Format Expressions
CARRIAGE CONTROL

FORMAT SPECIFICATION SEPARATORS
EXTERNAL FIELD SEPARATORS
OBJECT TIME FORMAT

FORMAT CONTROL INTERACTION WITH
INPUT/OUTPUT LISTS

SUMMARY OF RULES FOR FORMAT STATEMENTS
General

Input

Output

SPECIFICATION STATEMENTS

IMPLICIT STATEMENT

TYPE DECLARATION STATEMENTS

DIMENSION STATEMENT
Adjustable Dimensions

vi

Page
5-27
5-27

[} U
[

(]
WONANRWNON

-10

0\0\0\0\0\0?\0\0\0\0\0\ <, o

UL}
[Py
[y

6-12
6-12
6-13
6-13
6-14
6-15
6-16
6-17
6-18
6-18

6-19

6-20
6-21
6-21
6-22
6-23
7-1
7-1
7-2

7-4
7-5

7.4 COMMON STATEMENT 7-6
7.4.1 Blank Common and Named Common 7-6
7.4.2 COMMON Statements with Array Declarators 7-8
7.5 EQUIVALENCE STATEMENT 7-8
7.5.1 Making Arrays Equivalent 7-9
7.5.2 EQUIVALENCE and COMMON Interaction 7-11
7.5.3 EQUIVALENCE and LOGICAL*1 Arrays 7-11
7.6 EXTERNAL STATEMENT 7-12
7.7 DATA STATEMENT 7-13
7.8 PARAMETER STATEMENT 7-14
7.9 PROGRAM STATEMENT 7-15
CHAPTER 8 SUBPROGRAMS 8-1
8.1 USER-WRITTEN SUBPROGRAMS 8-1
8.1.1 Arithmetic Statement Function (ASF) 8-1
8.1.2 FUNCTION Subprogram 8-3
8.1.3 SUBROUTINE Subprogram 8-5
8.1.4 ENTRY Statement 8-7
8.1.4.1 ENTRY in Function Subprograms 8-8
8.1.4.2 ENTRY and Array Declarator Interaction 8-8
8.1.5 BLOCK DATA Subprogram 8-10
8.2 FORTRAN LIBRARY FUNCTIONS 8-11
8.2.1 Generic Function References 8-14
8.2.2 Processor-Defined Function References 8-15
8.2.3 Generic and Processor-Defined Function Usage 8-16
APPENDIX A CHARACTER CODES A-1
A.l FORTRAN CHARACTER SET A-1
A.2 ASCII CHARACTER SET A-2
A.3 RADIX-50 CHARACTER SET A-3
APPENDIX B FORTRAN LANGUAGE SUMMARY B-1
B.1 EXPRESSION OPERATORS B-1
B.2 STATEMENTS B-2
B.3 LIBRARY FUNCTIONS B-17

APPENDIX C FORTRAN PROGRAMMING EXAMPLES c-1

vii

PREFACE

FORTRAN (FORmula TRANslation) is a problem oriented language designed
to permit scientists and engineers to express mathematical operations
in a form with which they are familiar. It is also widely used in a
variety of applications including process control, information
retrieval, and commercial data processing.

This document describes the form of the basic elements of the FORTRAN
program, the FORTRAN statements. The document is a reference manual,
and, although it may well be used by an inexperienced FORTRAN
programmer, it is not designed to function as a tutorial manual.

Since this document serves as the FORTRAN Language Reference manual
for several of the operating systems which run on the PDP-1ll Family of
computers, it makes no reference to system dependent information.
Associated with this document, however, should be the FORTRAN User's
Guide containing the necessary information for running a FORTRAN
program on a specific operating system.

DOCUMENTATION CONVENTIONS

Throughout this manual the following notations are used to denote
special non-printing characters:

-~ Tab character (TAB key or .CTRL/I key
combination)

l (delta) Space character (SPACE bar)
FORTRAN IV-PLUS is a superset of FORTRAN IV. Language elements that
are common to both processors are presented without background

shading. Language elements that are available only in FORTRAN IV-PLUS
are printed against a shaded background.

ix

SYNTAX NOTATION

The following conventions are used in the description of FORTRAN
statement syntax.

l.

Upper case words and letters, as well as punctuation marks
other than those described in this section, are written as
shown.

Lower case words indicate that a value is to be substituted.
The accompanying text specifies the nature of the item to be
substituted, e.g., integer variable or statement label.
Square brackets ([]) enclose optional items.

An ellipsis (...) indicates that the preceding item or
bracketed group may be repeated any number of times.

For example, if the description were

CALL sub [(al,a)...)]

then all of the following would be correct:

CALL TIMER
CALL INSPCT (I,J,3.0)
CALL REGRES (A)

CHAPTER 1

INTRODUCTION TO PDP-11 FORTRAN

1.1 LANGUAGE OVERVIEW

The FORTRAN (FORmula TRANslation) language is exceptionally useful in
scientific and mathematical applications. It provides the user with a
means of solving equations and formulas rapidly and easily, and of
performing large numbers of mathematical calculations. PDP-11 FORTRAN
conforms to the specifications for American National Standard FORTRAN
X3.9-1966. The following enhancements to American National Standard
FORTRAN are included in PDP-11 FORTRAN:

1. Any arithmetic expression may be used as an array subscript.
If the value of the expression is not an integer, it is
converted to Integer format.

2. Character literals (character strings bounded by
apostrophes) may be used in place of Hollerith constants.

3. Mixed-mode expressions may contain elements of any data
type, including complex.

4. The statement label list in an assigned GO TO statement is
optional.

5. The following Input/Output statements have been added:

ACCEPT ,

TYPE }Device-oriented 1/0

PRINT

DEFINE FILE

READ (u'r) '

WRITE (u'r) ‘ Unformatted Direct Access I/0
FIND (u'r)

(The letter "u" represents a logical wunit number and the
letter "r" represents a record number.)

INTRODUCTION TO PDP-11 FORTRAN

6.

10.

11.

12.

13.

14.

The specifications END=n and/or ERR=n (where "n" represents
a statement number) may be included in any READ or WRITE
statement to transfer control to the specified statement
upon detection of an end-of-file or error condition,

The following additional data type is provided:
LOGICAL*1

The IMPLICIT statement has been added to permit the user to
redefine the implied data type of symbolic names.

Any FORTRAN statement may be followed, in the same line, by
an explanatory comment that begins with an exclamation
point.

Statements that are included in a program for debugging
purposes may be so designated by the letter D in column 1.
Those statements are compiled only when the associated
compiler option switch is set; they are treated as comments
otherwise.

Undersized input data fields may contain external field
separators to override the FORMAT field width specifications
for those fields (called "short field termination"),

General expressions are permitted for the initial value,
increment, and limit parameters in the DO statement, and as
the control parameter in the computed GO TO statement.

The value of the DO statement increment parameter may be
negative.

General expressions are permitted in I/0 1lists of WRITE,
TYPE, and PRINT statements.

INTRODUCTION TO PDP-11 FORTRAN

1.2 ELEMENTS OF A FORTRAN PROGRAM

A PFORTRAN program consists of FORTRAN statements and optional
comments . The statements are arranged into logical units called
program units (either a main program or a subprogram). One or more

program units (one main program and possibly one or more subprograms)
comprise the executable program.

l.2.1 Statements

Statements are grouped into two general classes: executable and
nonexecutable. Executable statements describe the action of the
program; nonexecutable statements describe data arrangement and
characteristics, and provide editing and data conversion information.

Statements are divided into physical sections called lines. A line is
a string of up to 72 characters. If a statement is too long to be
contained on one line, it may be continued on one or more additional
lines, called continuation. lines. A continuation line is identified
by the presence of a continuation character in the sixth column of
that line. (For further information concerning continuation
characters, see section 1.3.4, Continuation Field.)

INTRODUCTION TO PDP-1l FORTRAN

A statement may be identified by a statement label so that other
statements can refer to it, either for the information it contains or
to transfer control to it. A statement label has the form of an

integer number placed in the first five columns of a statement's
initial 1line.

l.2.2 Comments

Comments do not affect the meaning of the program in any way, but are
a documentation aid to the programmer. They should be used freely to
describe the actions of the program, to identify program sections and
processes, and to provide greater ease in reading the source program
listing. The letter C in the first column of a source line identifies
that line as a comment. Also, if an exclamation point (1) is placed

in the statement portion of a source line, the rest of that line is
treated as a comment,

1.2.3 The FORTRAN Character Set

The FORTRAN character set consists of:
1. The letters A through 2
2. The numerals 0 through 9

3. The following special characters:

Character Name

Space or blank or tab

- Equals

+ Plus

- Minus

* Asterisk
/ Slash

Left Parenthesis

) Right Parenthesis
. Cormma

. Decimal Point

! Apostrophe

INTRODUCTION TO PDP-11 FORTRAN

. Double Quote

$ Dollar Sign

Other printable characters may appear in a FORTRAN statement only as
part of a Hollerith constant or alphanumeric literal. Any printable
character may appear in a comment.

1.3 FORMATTING A FORTRAN LINE

The formatting of a PORTRAN line is the same for programs written on
FORTRAN coding forms and punched into cards or paper tape for
presentation to the compiler and those entered from a terminal using a
text editor. Only the method of formatting differs.

1.3.1 Using FORTRAN Coding Forms

A FORTRAN 1line is divided into fields for statement labels,
continuation indicators, statement text and sequence numbers. Each
column represents a single charactexr. The usage of each type of field
is described in subsequent sections.

INTRODUCTION TO PDP-11 FORTRAN

COooer arg PAGE
Fﬁflﬁﬁ" mowem -
FORTRAN STATEMENT IDENTIFICATION
8 P 0N 121314151617 181920212223 M 232627282930 313233 34 33 36708294041 4243444346 47489 505152151 545330 37 38 9 6061 676204 43 64 6/ 6848 7071 73|73 7 73 7077 787909
THIS PROGRAM CALCULATE S nlwggs JROM 1) TO 50
Q10, =11, 50, 2 N — N +
4=
4, =4+ 2 |
=
A=L/A
=1/1
B=A-L
1 F (8), 5,10, 5
5, lF(J.LYMT(FLQﬂ’ (1)), GQ 1Q 4
TYPE 105, 1

10 CONTINUE

1,05, | FORMAT, (14,15 PRIME' ")

—-——

- + - —— . et e

t—++ A + A+ +—+ M o e e e D R e
B e RSP
i i - P heedbedimmbembedbeedehashendbedeaeadebebebeok ek - Ardeedoecdoecbedeedhnghonk
T 2343(6/7091001121314131617101920212223 26 253627262930 313233 34 28 38 a2 404930 51 fadad
PG-3 OIGITAL EQUIPMENT CORPORATION . MAYNARD, MASSACHUSETTS
.
Figure 1-1

FORTRAN Coding Form

1.3.2 Using a Text Editor

When creating a source program via a terminal, using a text editor,
the user may type the lines on a "character-per-column" basis, as just
described, or the user may use the TAB character to facilitate
formatting the lines.

If a TAB character appears at the beginning of a 1line, possibly
preceded by a statement label or a D in column 1, and the following
character is a digit, the compiler treats the digit as a continuation
indicator. If the following character is not a digit, the compiler
treats it as the first character of the statement text. 1If the 1line
is a continuation line, the statement text begins with the character
following the continuation character. If the continuation character
is a "0", the line is an initial line.

While many text editors and terminals advance the terminal print
carriage to a predefined print position when the TAB character is
typed, this action is not related to the interpretation of the TAB
character described above.

INTRODUCTION TO PDP-11 FORTRAN

Formatting of the following lines can be accomplished in either of the
following ways:

-| 1AHOLD , MOVE , DECODE or AAAAA1AHOLD ,MOVE , DECODE

C <{INITIALIZEAARRAYS or CAAAAAINITIALIZEAARRAYS

10 W=3 or 10AAAAW=3

-{SEL(1)=111200022D0 or AAAAAASEL (1)=111200022D0
where:

-| represents a TAB character (CTRL/I), and
Arepresents a space character (SPACE bar).

The space character may be used in a FORTRAN statement to improve
lagibility of the line; the PORTRAN Compiler ignores all spaces in a
statement field except those within a Hollerith constant or
alphanumeric literal (for example, GO TO and GOTO are equivalent).
The TAB character in a statement field is treated the same as a space
by the compiler. In the source listing produced by the ocompiler, the
TAB causes the character that follows to be printed at the next tab
stop (located at columns 9,17,25,33, etc.).

1.3.3 Statement Number Field

A statement number, or statement label, consists of one to five
decimal digits placed in the first five columns of a statement's

initial line. Spaces and leading zeros are ignored. An all-zero
statement label is prohibited.

Any statement to which reference is made by another statement must

have a label. No two statements within a program unit can have the
same label.

1.3.3.1 Comment Indicator - The letter C may be placed in column 1
of this field to indicate that the line is a commesnt. The Compiler

prints the contents of that line in the source program listing, then
ignores the line.

1.3.3.2 Debug Statement Indicator - Debug statements are designated
by a D in column 1. The initial line of the debug statement may
contain a statement label in columns 2-5. If a debug statement is
continued onto more than one line, then every continuation line must

contain a D in column 1 as well as a continuation character in column
6.

INTRODUCTION TO PDP-11 FORTRAN

The debug statement can be treated either as source text to be
compiled or as a comment, depending on the setting of a compiler
command switch. When the switch is set, debug statements are compiled

as a part of the source program; when it is not set, debug statements
are treated as comments,

l1.3.4 Continuation Field

Column 6 of a FORTRAN line is reserved for a continuation indicator.
Any character except zero or space in this column is recognized as a
continuation indicator. A common practice is to place a zero in
column 6 of a statement's initial line (to indicate that continuation
lines follow) and then to number the continuation lines sequentially,
placing the numbers in column 6 as continuation indicators.

A statement may be divided into distinct 1lines at any point. The
characters beginning in column 7 of a continuation line are considered
to follow the last character of the previous line as if there were no
break at that point.

Comment lines cannot be continued. All comment lines must begin with
the letter C in column 1. Comment lines must not intervene between a
statement's initial line and its continuation line(s), or between
successive continuation lines.

1.3.5 Statement Field

The text of a FORTRAN statement is placed in columns 7 through 72.
Because the compiler ignores the TAB character and spaces (except in
Hollerith constants and alphanumeric literals), the user may space the
text in any way desired for maximum legibility.

1l.3.6 Sequence Number Field

A sequence number or other identifying information may appear in
columns 73-80 of any 1line in a FORTRAN program. The characters in
this field are ignored by the compiler.

CAUTION
Text may be ignored with no warning

message if a line accidentally extends
beyond character position 72.

INTRODUCTION TO PDP-1ll FORTRAN

1.4 PROGRAM UNIT STRUCTURE

Figure 1-2 provides a graphic representation of the rules for
statement ordering. In this figure vertical lines separate statement
types which may be interspersed, such as DATA and executable
statements; horizontal lines indicate statement types that may not be
interspersed, such as DATA and PARAMETER statements.

PROGRAM, FUNCTION, SUBROUTINE, or
BLOCK DATA Statement
IMPLICIT
Statements
PARAMETER
Comment Statements
Lines Other Specification
FORMAT Statements
and
ENTRY
Statements Statemgnt
Function
DATA Definitions
Statements
Executable Statements
END Line
Figure 1-2

Required Order of Statements and Lines

CHAPTER 2

FORTRAN STATEMENT COMPONENTS

The basic components of FORTRAN expressions are:

l.
2.
3.
4.

5.

A brief

l.

2.

3.

Constants
Variables
Arrays
Expressions

Function References

definition of each of these basic components follows.

A constant is a data value that is self-describing and that
cannot change.

A variable is a symbolic name that represents a stored value.

An array is a group of data, stored contiguously, that can be
referred to individually or c._.'ectively. Individual values
are called array elements. A symbolic name is used to refer
to the array.

An expression may be a single constant, variable, array
element reference, or function reference, or it may be a
combination of those components and certain other elements,
called operators, that specify computations to be performed
on the values represented by those components to obtain a
single result.

A reference to the name of a function followed by a 1list of
arguments causes the computation indicated by the function
definition to be performed. The resulting value is used in
place of the function reference. Function references are
treated in detail in Chapter 8.

FORTRAN STATEMENT COMPONENTS

2.0 SYMBOLIC NAMES

Symbolic names are used to identify many entities within a FORTRAN
program unit,

A symbolic name is a string of letters and digits, the first of which
must be a letter. The name may be of any length, but characters after

the sixth are ignored. Examples of valid and invalid symbolic names
are:

Valid Invalid

NUMBER 5Q (Begins with a numeral)

K9 B.4 (Contains a special character)
X

The following types of entities are identified by symbolic names:

Unique in
Entity Typed Executable Program
Variables yes no
Arrays yes no
Arithmetic Statement Functions yes no
Processor-Defined Functions yes yes
Function subprograms yes yes
Subroutine subprograms no yes
Common blocks no yes

Within one program unit, the same symbolic name cannot be used to
identify more than one entity, except as noted. Within an executable
program, the same symbolic name can be used to identify only one of
the entities indicated as "Unique in Executable Program",

Each entity indicated as "Typed" in the above table has a data type.
The means of specifying the data type of a name is discussed in
Sections 7.1 and 7.2.

Within a subprogram, symbolic names are also used as dummy arguments.

A dummy argument can represent a variable, array, array element,
expression, or subprogram name.

2.1 DATA TYPES

Each basic component may represent data of one of several different
types. The data type of a component may be inherent in its

FPORTRAN STATEMENT COMPONENTS
construction, implied by convention, or explicitly declared. The data
types available in FORTRAN, and their definitions, are as follows:

l. Integer - A whole number

2. Real

A decimal number; it may be a whole
number, a decimal fraction, or a
combination of the two

3. Double Precision Similar to real, but with more than
twice the degree of accuracy in its

representation

4. Complex - A pair of real values that represents a
complex number; the first represents
the real part of that number, the second
represents the imaginary part

5. Logical - The logical value "true"” or "false"

An important attribute of each type of data is the amount of computer
memory required to represent a value of that type. Variations on the
basic types affect either the accuracy of the represented value or the
allowed range of values.

Standard FORTRAN specifies that a "storage unit" is the amount of
storage needed to represent a Real, Integer or Logical Value. Double
Precision and Complex values occupy two storage units. In PDP-11

FORTRAN a storage unit corresponds to four bytes (two words) of
memory .

PDP-11 FORTRAN provides additional types of data for optimum selection
of performance and memory requirements.

r~—

FORTRAN STATEMENT COMPONENTS

NOTES:

1.

Table 2-1
Data Type Storage Requirements

DATA TYPE FORTRAN 1V
(Bytes)

INTEGER 2 or 4(Note 1)

INTEGER*2 2

INTEGER*4 4 (Note 3)

REAL 4

DOUBLE PRECISION 8

COMPLEX 8

BYTE 1 (Note 6)

LOGICAL 4

LOGICAL*1 1

LOGICAL*2 Not Available

LOGICAL*4 4

Either two or four bytes are allocated according to a
compiler command specification. Two bytes is the default
allocation. 1In either case only two bytes are used to
represent the integer value. (The 4-byte allocation is
provided to simplify use of programs developed on other
FORTRAN systems, Consult the FORTRAN IV User's Guide for
details .)

Either two or four bytes are allocated depending on a
compiler command specification. Two bytes is the normal
(default) allocation. When four bytes are allocated, all
four bytes are used to represent the integer value. Hence
4-byte integers may be used to store a larger range of values
than 2-byte integers. (4-byte integers also sometimes
simplify the use of programs developed on other FORTRAN
systems.,)

FORTRAN STATEMENT COMPONENTS !

3. Four bytes are allocated but only the first two are used to
represent the integer value. The range of possible values is
therefore the same as for INTEGER*2 variables.

4. Either two or four bytes are allocated depending on a
compiler command specification. Two bytes is the normal
case.

5. LOGICAL*1l variables are also referred to as BYTE variables.

6. The keyword BYTE is not available. However, LOGICAL*1 is
equivalent.

Additional descriptions of these data types and their representations
are presented in the sections that follow.

2.2 CONSTANTS

A constant represents a fixed value. A constant can represent a
numeric value, a logical value, or a character string.

2.2.1 Integer Constants

An integer constant is a whole number with no decimal point. It may
have a leading sign, and is interpreted as a decimal number.

The general form for an integer constant is:
(flnn

where nn is a string of numeric characters. Leading zeros, if any,
are ignored.

A negative integer constant must be preceded by a minus symbol; a
positive constant may optionally be preceded by a plus symbol (an
unsigned constant is presumed to be positive).

Except for a leading algebraic sign, an integer constant cannot
contain any character other than the numerals 0 through 9.

The absolute magnitude of an integer constant cannot be greater than
32767 in FORTRAN IV or 2147483647 in FORTRAN IV-PLUS.

FORTRAN STATEMENT COMPONENTS

Examples
Valid Invalid
Integer Constants Integer Constants
0 99999999999 (Too large)
=127 3.14 (Decimal point and
+32123 32,767 comma not allowed)

2.2.2 Real Constants

A basic real constant is a string of decimal digits with a decimal
point,

A basic real constant appears in one of the forms:
[£].nn OR [tlnn.nn OR [(tlnn.

where nn is a string of numeric characters. The decimal point may
appear anywhere in the string. The number of digits is not limited,
but only the leftmost eight digits are significant. Leading zeros
(zeros to the left of the first non-zero digit) are ignored when
counting the leftmost eight digits. Thus in the constant
0.000012345678 all of the non-zero digits are significant.

A basic real constant must contain a decimal point,

A real constant may appear as a basic real constant, or as a basic

real constant or an integer constant followed by a decimal exponent of
the form:

E[£]nn

where nn is a 1l- or 2-digit integer constant. It represents a power
of ten by which the preceding real or integer constgnt is to be
multiplied (for example, 1E6 represents the value 1.0 x 10°).

A real constant occupies two words of PDP-11 storage and is
interpreted as a real number having a degree of precision slightly
greater than seven decimal digits,

A minus symbol must appear between the letter E and a negative
exponent; a plus symbol is optional for a positive exponent.,

FORTRAN STATEMENT COMPONENTS

Except for algebraic signs, a decimal point, and the letter E (if
used), a real constant cannot contain any character other than the
numerals 0 through 9.

If the letter E appears in a real constant, a 1- or 2-digit integer
constant must follow; the exponent field cannot be omitted, but may
be zero.

38
A real constant cannot be greater in_magnitude than 1.7 x 10 , nor

smaller in magnitude than 0.29 x 10-38,

Examples
valid Invalid
Real Constants Real Constants
3.14159 1,234,567 (Commas not allowed)
621712. 325E-75 (Too small)

-.00127 -47.E47 (Too large)

+5.0E3 100. (Decimal point missing)
2E-3 $25.00 (Special character

not allowed)

2.2.3 Double Precision Constants

A double precision constant is a basic real constant, or an integer
constant, followed by a decimal exponent of the form:

D(t)lnn

where nn is a l- or 2-digit integer constant. The number of digits
that precede the exponent is not limited, but only the leftmost 17
digits are significant.

A double precision constant occupies four words of PDP-1l1 storage and
is interpreted as a real number having a degree of precision
approximately equal to 17 significant digits.

A negative double precision constant must be preceded by a minus
symbol; a positive constant may optionally be preceded by a plus
symbol. Similarly, a minus symbol must appear between the letter D

and a negative exponent; a plus symbol is optional for a positive
exponent.

The exponent field following the letter D cannot be omitted, but may
be zero.

The magnitude of a double precision congtant cannot be smaller than
0.29 x 10-38, nor greater than 1.7 x 1038,

FORTRAN STATEMENT COMPONENTS

Examples

1234567890D+5
+2.71828182846182D00
-72,5D~-15

1D0

2.2.4 Complex Constants

A complex constant is a pair of signed or unsigned real constants
separated by a comma and enclosed in parentheses. The first real
constant represents the real part of that number and the second
represents the imaginary part.
A complex constant takes the form:

(rc,rc)
where "rc" is a real constant. The parentheses and comma are part of

the constant and must be present. The rules for the constituent real
constants are given in Section 2.2.2.

A complex constant occupies four consecutive words of storage and is
interpreted as a complex number.

Examples

(1.70391,-1.70391)
(+12739E3,0.)

2.2.5 Octal Constants

An octal constant is an alternate way of representing an integer
constant and may be used in a like manner. When used in an arithmetic
context, octal constants are treated as integer constants.
The general form for an octal constant is:

"nn
where nn is a string of octal digits.
Except for the leading double quote, which must be present, an octal
constant cannot contain any character other than the numerals 0
through 7.

An octal constant cannot be smaller than zero, nor greater than 177777
in FORTRAN IV and 37777777777 in FORTRAN 1IV-PLUS.

FORTRAN STATEMENT COMPONENTS

Examples
vValid Invalid
Octal Constants Octal Constants
*7213 32767 (Double quote missing)
"1l "184 (Xllegal character)
*17776

2.2,6 Logicai Constants

A logical constant specifies a logical value, "true® or “"false".
Therefore, there are only two possible logical constants. They appear
as:

«TRUE.
and

+FALSE.

The delimiting periods are part of each constant and must be present.

2.2.7 Hollerith Constants

A Hollerith constant is a string of printable ASCII characters
preceded by a character count and the letter H.

Hollerith constants have the following general form:

anl°2c3 e cn

where n is an unsigned, non-zero integer constant stating the number
of characters in the string (including spaces), and each cj is a
printable ASCII character. The maximum number of characters is 255.

Hollerith constants are stored as byte strings, one character per
byte.

FORTRAN STATEMENT COMPONENTS

Examples
Valid Invalid
Hollerith Constants Hollerith Constant
16HTODAY'S DATE IS: 3HABCD (Wrong number of characters)
1HA

2.2.7.1 Alphanumeric Literals - An alphanumeric literal is an
alternate form of Hollerith constant.

The general form for an alphanumeric literal is:
'cjcycs...cp’

where each c¢j; is a printable ASCII character. Both delimiting
apostrophes must be present.

The rules for alphanumeric literals are similar to those for Hollerith
constants, except that no character count is specified. The maximum
number of characters in an alphanumeric literal is 255.

To represent the apostrophe character within an alphanumeric literal,
write it as two consecutive apostrophes.

Examples
'CHANGE PRINTER PAPER TO PREPRINTED FORM NO. 721°

'TODAY''S DATE IS: °

2.2.8 Radix-50 Constants

Radix-50 is a special character data representation in which up to
three characters from the Radix-50 character set (a subset of the
ASCII character set) can be encoded and packed into a single PDP-11
storage word. Radix-50 constants may be used in DATA statements to
initialize real variables and array elements.

A Radix-50 constant has the following form:

nRcycy...cq

where n is an unsigned non-zero integer constant that states the
number of characters to follow, and each c. is a character from the
Radix~50 character set. The maximum number &f characters is six. The
character count must include any spaces that appear in the character
string (the space character is a valid Radix-50 character).

The internal numeric value of any combination of one, two, or three
Radix-50 characters may be found in Appendix A.

FORTRAN STATEMENT COMPONENTS

The Radix~50 characters and their code values are as follows:

Radix-50 Value

Character (Octal)
Space 0
A-12 1-32
$ 33
. 34

(not used) 35
0 -9 36-47

Examples

3RABC

6 RAATONN

4RDKO : (Invalid; the colon is not a Radix-50 character)

2.3 VARIABLES

A variable is a symbolic name that is associated with a storage
location. The value of the variable is the value currently stored in
that location; that value can be changed by altering the contents of
the storage location. (The form of a symbolic name is given in
section 2.0.)

variables are classified by data type, just as are constants. The
data type of a variable indicates the type of data it represents, its
precision, and its storage requirements. When data of any type is
assigned to a variable, it is converted, if necessary, to the data
type of the variable. The data type of a variable may be established
either by declaration or by implication.

Two or more variables are associated when each is associated with the
same storage location; or, partially associated, when part (hut not
all) of the storage associated with one variable is the same as part

or all of the storage associated with another variable. Association
and partial association occur through the use of COMMON statements,
EQUIVALENCE statements, and through the use of actual arguments and

dummy arguments in subprogram references.

A variable is said to be defined if the storage location with which it
is associated contains a datum of the same type as the name. A
variable may be defined prior to program execution by means of a DATA
statement or during execution by means of assigning or input
statements.

FORTRAN STATEMENT COMPONENTS

If variables of differing types are associated (or partially
associated) with the same storage location, then defining the value of
one variable (for example, by assignment) causes the value of the other
variable to become not defined.

2.3.1 Data Type by Definition

Data type declaration statements specify that given variables are to

represent specified data types. For example, consider the following
statements:

COMPLEX VAR1
DOUBLE PRECISION VAR2

These statements indicate that the variable VARl is to be associated
with a 4-word storage location that is to contain complex data, and
that the variable VAR2 is to be associated with a 4-word double
precision storage location.

The IMPLICIT statement has a broader scope: it states that any
variable having a name that begins with a specified letter, or any
letter within a specified range, is to represent a specified data
type, in the absence of an explicit type declaration.

The data type of a variable may be explicitly specified only once. An

explicit type specification takes precedence over the type implied by
an IMPLICIT statement.

2.3.2 Data Type by Implication

In the absence of any IMPLICIT statements, all variables having names
beginning with I, J, K, L, M, or N are presumed to represent integer
data. Variables having names beginning with any other letter are
presumed to be real variables. For example:

Real Variables Integer Variables
ALPHA KOUNT
BETA ITEM
TOTAL NTOTAL

2.3.3 Assigning Hollerith Data to Variables

Hollerith data has no data type. However, Hollerith data can be
assigned to variables of any type by DATA or input statements. Once
assigned, the Hollerith data is treated as though it were data of the
type established for the variable.

FORTRAN STATEMENT COMPONENTS

The amount of Hollerith data that can be assigned to a variable
depends on the data type of that variable. The maximum number of
characters that can be stored for each data type 1is illustrated in
Table 2-1. Each character occupies one byte of storage.

Hollerith data is stored as byte strings. If the number of characters
stored is 1less than the maximum number for a particular type of
variable, the FORTRAN system appends spaces to the end of the string
to fill the variable to its capacity. An attempt to assign more than
the maximum number of characters causes the excess characters to be
losto

2.3.4 LOGICAL*1l Variables

A variable defined as LOGICAL*1l type represents a l-byte storage area
and can therefore contain only the numbers -128 through +127, or a
single Hollerith character. It can also represent a logical value
.TRUE., or .FALSE..

LOGICAL*1 logical and masking operations are performed on one byte of
data at a time.

2.4 ARRAYS

An array is a group of contiguous storage locations associated with a
single symbolic name, the array name. The individual storage
locations, called array elements, are designated by subscripts
appended to the array name. The number of subscripts required to
locate an array element is the number of dimensions in the array.

An array may have from one to seven dimensions. A simple column of
figures is an example of a 1l-dimensional array, requiring one
subscript. To refer to a specific value in the column, say the ninth
entry, we would simply request the ninth entry. If the page contained
several columns of figures, that page would represent a 2-dimensional
array, requiring two subscripts. To refer to a specific value in this
array, we must locate it by both its entry (or row) number and its
column number. If this table of figures covered several pages, we
would have an example of a 3-dimensional array. To locate a value in
this array, we would have to use its row number, its column number,
and its page (or level) number.

The following FORTRAN statements establish arrays:
1. Data type declaration statement (section 7.2),

2. DIMENSION statement (section 7.3), and
3. COMMON statement (section 7.4),

FORTRAN STATEMENT COMPONENTS

These statements, containing array declarators (array declarators are
discussed in the following sub-section), define the name of the array,
the number of dimensions in the array, and the number of elements in
each dimension. The number of subscripts used thereafter to refer to
a given array element must correspond to the number of dimensions
defined by the array declarator for that array. (Subscripts are
discussed in section 2.4.4.)

2.4.1 Array Declarators

An array declarator specifies the symbolic name that identifies an
array within a program unit and indicates the properties of that
array.
An array declarator has the following form:

a (d4f,d] ...)

a is the symbolic name of the array =-- the array name.
(The form of a symbolic name is given in Section 2.0.)

d is the dimension declarator.
The number of dimension declarators indicates the number of dimensions

in the array. The minimum number of dimensions is 1 and the maximum
number is 7.

The value of a dimension declarator specifies the number of elements
in that dimension. For example, a dimension declarator value of 50
indicates that the dimension contains 50 elements. The dimension
declarators may be constant or variable.

2-14

FORTRAN STATEMENT COMPONENTS

2.4.2 Array Storage

As discussed earlier in this section, it is convenient to think of the
dimensions of an array as rows, columns, and 1levels or planes,
However, the FORTRAN system always stores arrays in memory as a linear
sequence of values, A l-dimensional array is stored with its first
element in the first storage location and its last element in the last
storage location of the sequence. A multi-dimensional array is stored
such that the leftmost subscripts vary most rapidly. This is called
the "order of subscript progression", For example, consider the
following array declarators and the arrays that they create:

l1-Dimensional Array ARC(6)

[1] Aarc(1)] 2] ARC(2)[3[ARC(3) [4[ARC(4) [5[ARC(5) |6 |ARC(6) |
Memory Positions

2-Dimensional Array TAN(3,4)

1] TAN(1,1)] 4[TAN(1,2)]| 7| TAN(1,3) |10 [TAN(1,4

2,1) | 5| TAN(2,2)[B|TAN(2,3) |11 |TAN(2,4

3[TART3, 1Y [€[TAN(3,2) | 9| TAN(3,3) |12[TAN(3,4
}

Memory Positions

3-Dimensional Array CO0S(3,3,3)

19]COS (1,1,3)]22]COS(1,2,3)]125]COS(1,3,3)
20/C0S (2,1,3)[23]CO8(2,2,3) [26]COS (2,3,3)
1,1, 3OS (1,2, 3 EB§*If3f!*“E7 cos(3,3,3)
COS (2,1 zy 14|C0S(2,2,2)]17]|c05(2,3,2
Cos (L, T, 1) [+ PR RA e PR ! 18[COS (33,2
1
[

2[0S (2,1,1) [5]C05(2,2,1) [8]CO5(2,3,1
3105 (3,1,1) [6]C05(3,2,1) [9]C05 (3,3,1)

Memory Positions

Figure 2-1
Array Storage

FORTRAN STATEMENT COMPONENTS

2.4.3 Data Type of an Array

The compiler establishes the data type of an array the same way it
establishes data types for variables. 1In the absence of any data type
specification, the data type of an array and its elements is implied
by the initial letter of the array name. The data type may also be
explicitly defined by data type declaration statements.

All of the values in an array are of the same data type. Any value
assigned to any element of an array is converted to the data type of
the array. If an array is named in a DOUBLE PRECISION statement, for
example, the compiler allocates a 4-word storage location for each
element of the array. When a data value of any type is assigned to
any element of that array, it is converted to double precision.

The compiler stores LOGICAL*1l array elements in adjacent bytes,

2.4.4 Subscripts

A subscript qualifies an array name. A subscript is a 1list of
subscript expressions enclosed in parentheses that determines which
element in the array is referenced. The subscript is appended to the
array name it qualifies.

A subscript has the following form:
(8[181000)
s is a subscript expression
In any subscripted array reference, there must be one subscript
expression for each dimension defined for that array (one subscript
expression for each dimension declarator). For example, the following
entry could be used to refer to the element located in the first row,
third column, second level of the array COS in Figure 2-1 (which is
the element occupying memory position 16).
cos(1,3,2)
Each subscript expression may be any valid arithmetic expression. If
the value of a subscript expression is not an integer, it is converted
to integer type before use.

In the following types of statements an array name may appear without
a subhscript:

Type declaration statements
COMMON statement

DATA statement

2-16

FORTRAN STATEMENT COMPONENTS

EQUIVALENCE statement
FUNCTION statement
SUBROUTINE statement
CALL statement

Input/Output statements

when one of these statements refers to an array name without
subscripts, that statement specifies that the entire array is to be
used (or defined). The use of unsubscripted array names (except as

arguments to subprograms) in all other types of statements is
prohibited.

In the EQUIVALENCE statement, a single subscript may follow the name
of a multidimensional array. This usage is described in section 7.5.

2.5 EXPRESSIONS

An expression represents a single value. It may be a s8single basic
component, such as a constant or variable, or it may be a combination
of basic components with one or more operators. Operators specify
computations to be performed, using the values of the basic
components, to obtain a single value.

Expressions may be classified as arithmetic, relational, or logical.

Arithmetic expressions yield numeric values; relational and logical
expressions produce logical values.

2.5.1 Arithmetic Expressions

Arithmetic expressions are formed with arithmetic elements and
arithmetic operators. The evaluation of such an expression yields a
single numeric value.
An arithmetic element may be any of the following:

l. A numeric constant

2. A numeric variable

3. A numeric array element

4. An arithmetic expression enclosed in parentheses

S. An arithmetic function reference (functions and function
references are described in Chapter 8.)

FORTRAN STATEMENT COMPONENTS

Arithmetic operators specify a computation to be performed using the
values of arithmetic elements; they produce a numeric value as a
result. The operators and their meanings are:

Operator Function
** Exponentiation
* Multiplication
/ Division

Addition and Unary Plus
- Subtraction and Unary Minus

The above are called binary operators, because each is used in
conjunction with two elements. The + and - symbols may also be used
as "unary operators" when written immediately preceding an arithmetic
element to denote positive or negative value.

Any arithmetic operator can be used in conjunction with any valid
arithmetic element except for certain restrictions noted below.

A value must be assigned to a variable before its name can be used in
an arithmetic expression.

The following restrictions exist in regard to exponentiation ("No"
indicates that a given combination is illegal):

EXPONENT
BASE
Integer Real Double Comrplex
Integer Yes No No No
Real Yes Yes Yes No
Double Yes Yes Yes No
Complex Yes No No No

FORTRAN STATEMENT COMPONENTS

In addition, a negative element can only be exponentiated by an integer
element; an element having a value of zero cannot be exponentiated by
another zero-value element.

In any valid exponentiation, the result is of the same data type as
the base element, except in the case of a real base and a double
precision exponent; the result in this case is double precision.

Arithmetic expressions are evaluated in an order determined by a
precedence associated with each operator. The precedence of the
operators is as follows:

Operator Precedence
kel First
* and [/ Second
+ and - Third
and

Unary Operators

Whenever two or more operators of equal precedence (such as + and =)
appear, they may be evaluated in any order chosen by the compiler so
long as the actual order of evaluation is algebraically equivalent to
a left to right order of evaluation. Exponentiation, however, is
evaluated right to 1left. For example A**B**C ig evaluated as
AR® (B**C) .

2.5.1.1 Use of Parentheses - Parentheses may be used to override the
normal evaluation order. An expression enclosed in parentheses is
treated as a single arithmetic element. That is, it is evaluated
first to obtain its value, then that value is used in the evaluation
of the remainder of the larger expression of which it is a part. An
example of the effect of the use of parentheses is shown below (the
numbers below the operators indicate the order in which the operations
are performed).

FORTRAN STATEMENT COMPONENTS

4+3%2-6/2=7
t o+t 1
2 1 4 3
(443) * 2 =6 / 2 = 11
t ottt
1 2 4 3

(4 +3*2<-6)/2=2
t t t t
2 1 3 4

((443) * 2 - 6) / 2 = 4
t + t t
1 2 3 4

Evaluation of expressions within parentheses takes place according to
the normal order of precedence.

Nonessential parentheses, such as in the expression
4 + (3*2) - (6/2)
have no effect on the evaluation of the expression.

The use of parentheses to specify the evaluation order is often
important in high accuracy numerical programs where evaluation orders
that are algebraically equivalent might not be computationally
equivalent when carried out on a computer.

2.5.1.2 Data Type of an Arithmetic Expression - If every element in
an arithmetic expression is of the same data type, the value produced
by the expression is also of that type. If elements of different data
types are mixed together in an expression, the evaluation of that
expression and the data type of the resulting value are dependent on a
rank associated with each data type. The rank assigned to each data
type is as follows:

Data Type Rank
Logical 1 (Low)
Integer 2

Real 3
Double Precision 4
Complex 5 (High)

The data type of the value produced by an operation on two arithmetic
elements of differing type is the same as that of the highest-ranked

FORTRAN STATEMENT COMPONENTS

element in the operation. The data type of an expression is the same
as the data type of the result of the last operation in that
expression. The way in which the data type of an expression is
determined is as follows:

1.

2.

3.

Integer operations - Integer operations are performed only on
integer elements. (When used in an arjthmetic context, octal
constants and logical entities are treated as integers.) 1In
integer arithmetic, any fraction that may result from
division is truncated, not rounded. For example, the value
of the expression

1/3 +1/3 + 1/3
is zero, not one.

Real operations - Real operations are performed only on real
elements or a combination of real and integer. elements. Any
integer elements present are converted to real type by giving
each a fractional part equal to zero. The expression is then
evaluated using real arithmetic. Note, however, that in the
statement Y = (I/J)*X, an integer division operation is
performed on I and J and a real multiplication is performed
on the result and on X.

Double Precision operations - Any real or integer element in
a double precision operation is converted to double precision
type by making the existing element the most significant
portion of a double precision datum; the least significant
portion is zero. The expression is then evaluated in double
precision arithmetic.

NOTE

The conversion of a real element to
double precision does not increase its
accuracy. For example, the real number
0.3333333 when converted beaecomes
0.3333333000000000, not
0.3333333333333333. Also note that real
and double precision elements are only
approximate representations of actual
numbers, Values resulting from a real
or double precision expression are only
as accurate as the degree of precision
for that data type.

Complex operations - In an operation’ that contains any
complex element, integer elements are converted to real type
as previously described. Double precision elements are
converted to real type by the rounding of the least
significant portion. The real elements thus obtained are
each designated as the real part of a complex number; the

FORTRAN STATEMENT COMPONENTS

imaginary part is zero. The expression is then evaluated
using complex arithmetic and the resulting value is of type
complex.

2.5.2 Relational Expressions

A relational expression consists of two arithmetic expressions
separated by a relational operator. The value of the expression is

either "true® or "false", depending on whether or not the stated
relationship exists.,

A relational operator tests for a relationship between two arithmetic
expressions. These operators are as follows:

Operator Relationship
- LT, Less than
«LE. Less than or equal to
«EQ. Equal to
.NE, Not equal to
+GT, Greater than
«GE, Greater than or equal to

The enclosing periods are part of each operator and must be present.

Complex expressions can be related by the .EQ. and .NE. operators
only. (If one complex expression is present, the other is converted
to complex type.) Complex entities are equal if their corresponding
real and imaginary parts are both equal.

In a relational expression, the arithmetic expressions are evaluated
first to obtain their values. Those values are then compared to
determine if the relationship stated by the operator exists. For
example, the expression:

APPLE+PEACH .GT. PEAR+ORANGE

states the relationship, "The sum of the real variables APPLE and
PEACH is greater than the sum of the real variables PEAR and ORANGE."
If that relationship does in fact exist, the value of the expression
is true; if not, the expression is false.

All relational operators have the same precedence. Thus, if two or
more relational expressions appear within a logical expression
(relational expressions are a subtype of logical expressions), the
relational operators are evaluated from left to right. Arithmetic
operators have a higher precedence than relational operators.

FORTRAN STATEMENT COMPONENTS

Parentheses may be used to alter the evaluation of the arithmetic
expressions in a relational expression exactly as in any other
arithmetic expression; but since arithmetic operators are avaluated
before relational operators, it is unnecessary to enclose the entire
arithmetic expression in parentheses.

When two expressions of different data types are compared by a
relational expression, the value of the expression having the
lower-ranked data type is converted to the higher-ranked data type
before the comparison is made.

2.5.3 Logical Expressions

A logical expression may be a single logical element, or may be a
combination of 1logical elements and logical operators. A logical
expression yields a single logical value, true or false.
A logical element may be any of the following:

l. An Integer or Logical constant

2. An Integer or Logical variable

3. An Integer or Logical array element

4. A relational expression

5. A logical expression enclosed in parentheses

6. An Integer or Logical function reference (functions and

function references are described in Chapter 8.)

The logical operators are shown below:

Operator Example Meaning
«AND, A .AND. B Logical conjunction. The expression is true

if, and only if, both A and B are true.

.OR. A .OR. B Logical disjunction (inclusive OR). The
expression is true if, and only if, either a
or B, or both, is true.

«XOR. A .XOR. B Exclusive OR. The expression is true if A
is true and B is false, or vice versa, but
is false if both elements have the same
value.

<EQV. A _EQV. B Logical equivalence. The expression is true
if, and only if, both A and B have the same
logical value, whether true or false.

.NOT. .NOT. A Logical negation. The expression is true
if, and only if, A is false.

2-23

FORTRAN STATEMENT COMPONENTS

When a logical operator is used to operate on logical elements, the
resulting value is of type logical. When a logical operator is used
with integer elements, the logical operation is carried out bit-by-bit
on the corresponding bits of the internal (binary) representation of
the integer elements. The resulting value has type integer. When
integer and logical values are combined with a logical operator, the
logical value is first converted to an integer value, then the
operation 1is carried out as for two integer elements. The resulting
type is integer.

Evaluation of a logical expression is performed according to an order
of precedence assigned to its operators. Some logical expressions can
be evaluated without evaluating all sub-expressions; for example, if
A is .FALSE. then the expression A .AND. (F(X,Y) .GT. 2.0) .AND. B
is .FALSE.. The value of the expression can be determined by testing
A without evaluating F(X,Y). With this method of evaluation, the
function subprogram F is not necessarily called and side-effects
resulting from the call may not occur.

A summary of all operators that may appear in a logical expression,
and the order in which they are evaluated follows.

Operator Evaluated
*k First
*,/ Second
+,-
and

Unary Operators Third

Relational

Operators Fourth
«NOT. Fifth
+AND, Sixth
.OR. Seventh

«XOR. , .EQV. Eighth

The delimiting decimal points of logical operators must be present.,
Operators of equal rank are evaluated from left to right. An example
of the sequence in which a logical expression is evaluated is as
follows:

A*B+C*ABC .EQ. X*Y+DM*ZZ .AND. .NOT. K*B .GT. TT

FORTRAN STATEMENT COMPONENTS

is evaluated as:

(((A*B) +(C*ABC)) .EQ. ((X*Y) +(DM*2Z))) .AND. (. NOT. ((K*B) .GT.TT))

Parentheses may be used to alter the normal sequence of evaluation,
just as in arithmetic expressions.

Two logical operators cannot appear consecutively, except where the
second operator is .NOT..

CHAPTER 3

ASSIGNMENT STATEMENTS

Assignment statements establish or alter the value of a variable or
array element, by evaluating an expression and assigning the resulting
value to the variable or array element.
Three types of assignment statements exist:

l. Arithmetic assignment statement

2. Logical assignment statement

3. ASSIGN statement

3.1 ARITHMETIC ASSIGNMENT STATEMENT

The arithmetic assignment statement assigns the value of the
expression on the right of the equal sign to the variable or array
element on the left of the equal sign. The previous value of the
variable, if any, is lost.

The arithmetic assignment statement has the following form:

v =e
v is a numeric variable name or array element name.
e is an expression.

The equal sign does not mean "is equal to", as in mathematics. It
means "is replaced by". Thus, the statement:

KOUNT = KOUNT + 1

means, "Replace the current value of the integer variable KOUNT with
the sum of that current value and the integer constant 1".

ASSIGNMENT STATEMENTS

Although the symbolic name to the 1left of the equal sign may be
initially undefined, values must have been previously assigned to all
symbolic references in the expression.

The expression must yield a value that conforms to the requirements of
the variable or array element to which it is to be assigned (for
example, a real expression that produces a value greater than 32767 is
unacceptable if the entity on the 1left of the equal sign is an
INTEGER*2 variable).

If the data type of the variable or array element on the left of the
equal s8ign is the same as that of the expression on the right, the
statement assigns the value directly. If the data types are
different, the value of the expression is converted to the data type
of the entity on the left of the equal sign before it is assigned. A
summary of data conversions on assignment is shown in Table 3-1.

ASSIGNMENT STATEMENTS

Table 3-1

Conversion Rules for Assignment Statements

EXPRESSION (E)

VARIABLE

OR ARRAY

ELEMENT
(V)

INTEGER,
LOGICAL,
HOLLERITH, OR
OCTAL CONSTANT

REAL

DOUBLE
PRECISION

COMPLEX

INTEGER

Assign E to V

Truncate E to
Integer and
assign to Vv

Truncate E to
Integer and
assign to v

Truncate real
part of E to
integer and
assign to Vv;
imaginary part
of F is not used

REAL

Append fraction
(.0) to E and
assign to VvV

Assign E to V

Assign MS
portion of F to
V; LS portion
of E is rounded

Assign real

part of E to V;
imaginarv part
of E is not used

DOUBLE
PRECISION

Append fraction
(.0) to E and
assign to Ms
portion of Vv;
LS portion of
V is zero

Assiagn F to MS
portion of Vv;

LS portion of

V is zero

Assign E to V

Assign real

part of E to

MS portion of

V7; LS portion

of V is zero,
imaginarv part
of E is not used

COMPLEX

Append fraction
(.0) to E and
assign to real
part of Vv;
imaginary part
of V.is 0.0

Assign E to
real part of V;
imaginary part
of V is 0,0

Assign MS
portion of E

to real part of
V; imaginary
part of Vv is
0.0, LS portion
of E is rounded

Assign E to VvV

MS =

Most Significant (high-order)

LS = Least Significant (low-order)

ASSIGNMENT STATEMENTS

Examples

Valid Statements

BETA = =-1./(2.*X)+A*A/(4.*(X*X))
PI = 3.14159

SUM = SUM+1.

Invalid Statements

3.14 = A-B (Entity on the left must be a
variable or array element.)

=J = I**4 (Entity on the left must not be
signed.)

ALPHA = ((X+6)*B*B/(X-Y) (Invalid expression: left and
right parentheses do not balance.)

3.2 LOGICAL ASSIGNMENT STATEMENT

The 1logical assignment statement is similar to the arithmetic
assignment statement, but operates with logical data. The logical
assignment statement evaluates the expression on the right side of the

equal sign and assigns the resulting logical value to the variable or
array element on the left.

The form of the logical assignment statement is shown below:

v =e
v is a variable or array element of type Logical.
e is a logical expression.

The variable or array element on the left of the equal sign must have
been previously defined as being of logical type by a data type
declaration statement or an IMPLICIT statement. Its value may be
initially undefined.
Values, either numeric or logical, must have been previously assigned
to all symbolic references that appear in the expression. The
expression must yield a logical value.
Examples

PAGEND = ,FALSE.,

PRNTOK = LINE .LE. 132 .AND. .NOT. PAGEND

ABIG = A .GT. B .AND. A .GT. C .AND, A .GT. D

ASSIGNMENT STATEMENTS

3.3 ASSIGN STATEMENT

The ASSIGN statement is used to associate a statement label with an
integer variable. The variable may then be used as a transfer
destination in a subsequent assigned GO TO statement (see section
4.1.3).

The form of the ASSIGN statement is shown below:
ASSIGN 8 TO v
8 is a statement label of an executable statement in the same
program unit as the ASSIGN statement. (It must not be the
label of a FORMAT statement.)
v is an integer variable.
The ASSIGN statement assigns the statement number to the variable in a
manner similar to that of an arithmetic assignment statement, with one
exception: the variable becomes defined for use as a statement label
reference and becomes undefined as an integer variable. The variable
must not be used as an integer before being redefined as an integer.
The ASSIGN statement must be executed before the assigned GO TO
statement (8) in which the assigned variable is to be used. The ASSIGN
statement and the assigned GO TO statement(s) must occur in the same
program unit.
Consider the following example. In this example, the statement
ASSIGN 100 TO NUMBER
associates the variable NUMBER with statement 100. The statement
NUMBER = NUMBER+1l
then becomes invalid, since it attempts to alter a statement label.
This kind of error is not detectable by the FORTRAN system and can
result in program failure. The statement:
NUMBER = 10
dissociates NUMBER from statement 100 and returns it to its status as
an ordinary variable. It can no longer be used in an assigned GO TO
statement, however.
Examples
ASSIGN 10 TO NSTART
ASSIGN 99999 TO KSTOP

ASSIGN 250 TO ERROR (ERROR must have been defined as an
integer variable.)

CHAPTER 4

CONTROL STATEMENTS

Statements are normally executed in the order in which they are
written, However, it is frequently desirable to interrupt the normal
program flow by transferring control ("branching®™ or ®"jumping®) to
another section of the program or to a subprogram. Transfer of
control from a given point in the program may occur °*every time that
point 1is reached in the program flow, or may be based on a decision
made at that point.

Transfer of control, whether within a program unit or to another
program unit, is performed by control statements. These statements
also govern repetitive processing ("looping") and program halts and
waits. The various types of control statements are shown below:

GOTO

IF

DO
CONTINUE
CALL
RETURN
PAUSE
STOP
END

4.1 GO TO STATEMENTS

GO TO statements transfer control within a program unit, either to the
same statement every time or to one of a set of statements, based on
the value of an expression.
The three types of GO TO statements are:

1. Unconditional GO TO statement

2. Computed GO TO statement

3. Assigned GO TO statement

CONTROL STATEMENTS

4.1.1 Unconditional GO TO Statement

The unconditional GO TO statement transfers control to the same
statement every time it is executed.

The form of the unconditional GO TO statement is shown below:

GO TO s

s is the label of an executable statement in the same program
unit.

The unconditional GO TO statement transfers control to the statement
identified by the specified label. The statement label must identify

an executable statement in the same program unit as the GO TO
statement. Program execution continues from that point.

Examples
GO TO 7734
GO TO 99999

GO TO 27.5 (Invalid; the statement label is improperly
formed.)

4.1.2 Computed GO TO Statement

The computed GO TO statement permits a choice of transfer
destinations, based on the value of an expression within the
statement.

The form of the computed GO TO statement is as follows:

GO TO (slist)[,] e

slist is a 1list of one or more executable statement labels

separated by commas. The 1list of 1labels is called the
transfer list.

e is an arithmetic expression the value of which falls within

the range 1 to n (where n is the number of statement labels
in the transfer list).

The comma between the transfer list and the expression is optional;
the commas within the list, and the parentheses, are required.

The computed GO TO statement evaluates the expression e and, if
necessary, converts the resulting value to integer type. The GO TO
statement then transfers control to the e'th statement label in the
transfer 1list. That is, if the list contains (30,20,30,40), and the

value of e is 2, the GO TO statement passes control to statement 20,
and so on,

CONTROL STATEMENTS

If the value of the expression is less than 1, or greater than the
number of labels in the transfer list, control passes to the first
executable statement following the computed GO TO.
Examples

GO TO (12,24,36),INCHES

GO TO (320,330,340,350,360) SITU(J,K)+1
In the second example, if the value of the expression is 1 (the value
of array element SITU(J,K) is zero), the GO TO statement transfers

control to statement 320; if the value of the expression is 2,
control passes to statement 330, and so on.

4.1.3 Assigned GO TO Statement

The assigned GO TO statement transfers control to a statement label
that is represented by a variable. Because the relationship between
the variable and a specific statement label must be established by an
ASSIGN statement, the transfer destination may be changed, depending
upon which ASSIGN statement was most recently executed.

The assigned GO TO statement appears in the following form:

GO TO v[,(slist)]

v is an integer variable.

slist (when present) is a 1list of one or more executable
statement labels separated by commas.

The assigned GO TO statement transfers control to the statement whose
label was most recently associated with the variable v by an ASSIGN
statement.

The variable v must be of Integer type and must have been assigned a
statement label by an ASSIGN statement (not an arithmetic assignment
statement) prior to the execution of the GO TO statement.

The assigned GO TO statement and its associated ASSIGN statement (s)
must exist in the same program unit. Statements to which control is
transferred must also exist in the same program unit and must be
executable.

CONTROL STATEMENTS

Examples
GO TO GO

GO TO INDEX, (300,450,1000,25)

Note from the second example that statement labels in the transfer
list need not be in ascending numeric order.

4.2 IF STATEMENTS

An IF statement causes a conditional control transfer or statement
execution. There are two types of IF statements:

1. Arithmetic IF statement
2. Logical IF statement

In either type, the decision to transfer control or to execute the

statement is based on the evaluation of an expression within the IF
statement.

4.2.1 Arithmetic IF Statement

The arithmetic IF statement is used for conditional control transfers.
It can transfer control to one of three statements, based on the value
of an arithmetic expression.

The form of the arithmetic IF statement follows:
IF (e) sl, s2, s3
e is an arithmetic expression.

s is a statement label identifying an executable statement in
the same program unit.

All three labels must be present. They need not refer to three
different statements, however; they all may be the same. If desired,
one or two labels may refer to the statement that immediately follows

the IF statement. A transfer to that statement gives the effect of no
transfer at all.

CONTROL STATEMENTS

The arithmetic IF statement first evaluates the expression in
parentheses and then transfers control to one of the three statement
labels in the transfer list, as follows:

If the Value is: Control Passes to:
Less than 0 Label sl
Equal to 0 Label s2
Greater than 0 Label s3

Examples
IF (THETA-CHI) 50,50,100

This statement transfers control to statement 50 if the real variable
THETA is less than or equal to the real variable CHI (giving a
negative or zero value). Control passes to statement 100 only if
THETA is greater than CHI.

IF (NUMBER/2*2-NUMBER) 20,40,20

In this example, the IF statement transfers control to statement 40 if
the value of the integer variable NUMBER is even and to statement 20
if it is odd (the fraction resulting from division by two is
truncated, giving a lesser value when the quotient is re-multiplied).
In this case, the third statement 1label is not used, since the
expression can have only negative or zero values. The third label
must be present, however.

4.2.2 Logical IF Statement

A logical IF statement causes a conditional statement execution. The
decision to execute the statement is based on the value of a logical
expression within the statement.

The form of the logical IF statement is:
IF (e) st
e is a logical expression.

st is a complete FORTRAN statement. The statement cannot be a
DO statement or another logical IF statement. (Any other
executable statement is permitted.)

The logical IF statement first evaluates the logical expression. If
the value of the expression is true, the IF statement causes the
contained statement to be executed. If the value of the expression is
false, control passes immediately to the next executable statement
following the logical IF.

CONTROL STATEMENTS

Examples
IF (J .GT. 4 .OR. J .LT. 1) GO TO 250
IF (REF(J,K) .NE. HOLD) REF (J,K) = REF(J,K) *(-1D0)
IF (ENDRUN) CALL EXIT

4.3 DO STATEMENT

DO statements are used to simplify the coding of iterative procedures.
The DO statement causes the statements in its range to be repeatedly
executed a specified number of times.

The DO statement appears in the following form:

DO s i=el,e2[,e3]

s is the statement label of an executable statement, The
statement must appear later in the same program unit.

i is an integer variable.

el,e2,e3 are integer expressions,
The variable i is called the control variable of the DO and el,e2,e3
are called the initial, terminal, and increment parameters

respectively. If the increment parameter is omitted, a default
increment value of 1 is used.

The statements that follow the DO statement, up to and including
statement "s", are called the range of the DO loop. Statement "s" is
called the terminal statement of the loop.

The DO statement first evaluates the expressions el, e2, e3 to
determine values for the initial, terminal, and increment parameters.

CONTROL STATEMENTS

The value of the initial parameter is then assigned to the control
variable. The executable statements in the range of the DO loop are
then executed repeatedly.

The number of executions of the DO range (the iteration count) is

given by
e2 - el
[}—33——-] +1

where [X] represents the largest integer whose magnitude does not
exceed the magnitude of X and whose sign is the same as that of X.

If the iteration count is zero or negative, then the loop is executed
once.

For each iteration of the DO loop, following execution of the terminal
statement, the DO iteration control is executed:

l. The value of the increment parameter is algebraically added
to the control variable.

2. If the iteration count is not exhausted, control returns to
the first executable statement following the DO statement for
another iteration of the range.

Exhaustion of the iteration count causes the normal termination of a
DO 1loop. The execution of a DO may also be terminated by a control
statement within the range that transfers control outside the loop
range, The control variable of the DO retains its current value if
the loop is terminated in this way, but becomes undefined if the DO
terminates normally.

If other DO loops share this same terminal statement, control is then
passed to the next most enclosing DO loop in the nesting structure.
In the case of the outermost DO loop in a nested structure, control is
passed to the next executable statement following the terminal
statement. If no other DO loops share the same terminal statement,
control passes to the first executable statement following the
terminal statement of the loop.

If the increment parameter is positive, the value of the terminal
parameter must not be less than that of the initial parameter.
Conversely, if the increment parameter is negative, the value of the
terminal parameter must not be greater than that of the initial
parameter. The value of the increment parameter must not be zero.

The terminal statement of a DO loop is identified by the 1label that
appears in the DO statement. It must not be a GO TO statement of any
type, an arithmetic IF statement, a RETURN statement, or another DO
statement. A logical IF statement is acceptable as the terminal
statement, provided it does not contain any of the above statements.

CONTROL STATEMENTS

The value of the control variable must not be altered within the range
of the DO statement, nor should the values of the terminal and
increment parameters. The control variable is available for reference
as a variable within the range, however. (The control variable is
frequently used as an array subscript to provide sequential
manipulation of array elements.)

The range of a DO loop may contain other DO statements, as 1long as

those "nested"” DO loops conform to certain requirements (see Section
4.3.1).

Control may be transferred out of a DO loop, but cannot be transferred
into a 1loop from elsewhere in the program. Exceptions to this rule
are described in Sections 4.3.2 and 4.3.3.

Examples

DO 100 K=1,50,2 (25 iterations, K=49 during final

iteration)

DO 350 J=50,-2,-2 (27 iterations,J=-2 during final
iteration)

DO 25 IVAR=1,5 (5 iterations, IVAR=S during final
iteration)

DO NUMBER=5,40,4 (invalid; statement label missing)
DO 40 M=2,10 (Invalid; decimal point instead of comma)

The last example illustrates a common clerical error in that it is a
valid arithmetic assignment statement in the FORTRAN lanquage:

DO40M = 2,10

4.3.1 Nested DO Loops

A DO loop may contain one or more complete DO loops. The range of an
inner nested DO must lie completely within the range of the next outer
loop. Nested loops may share the same terminal statement.

CONTROL STATEMENTS

Correctly Nested
DO Loops

Incorrectly Nested
DO Loops

DO 45 K=1,10

DO 35 L=2,50,2

35 CONTINUE

DO 45 M=1,20

DO 15 K=1,10

DO 25 L=1,20

CONTINUE

15

-~ DO 30 M=l,15

[L 45 CONTINUE

- 25 CONTINUE
-30 CONTINUE
Figure 4-1

Nesting of DO Loops

4.3.2 Control Transfers in DO Loops

As stated previously, control cannot be transferred into the range of
a DO loop from outside that loop. However, within a DO loop, control
may be passed from an inner loop to an outer loop. A transfer from an
outer loop to an inner loop is prohibited.

If two or more nested DO loops share the same terminal statement,
control can be transferred to that statement only from within the
range of the innermost loop. Any other transfer to that statement
constitutes a transfer from an outer loop to an inner loop because the
shared statement is part of the range of the innermost loop.

4.3.3 Extended Range

A DO loop is said to have an extended range if it contains a control
statement that transfers control out of the loop and if, after the
execution of one or more statements, another control statement returns
control back into the 1loop. In this way the range of the loop is
extended to include all of the executable statements between the
destination statement of the first transfer and the statement that
returns control to the loop.

CONTROL STATEMENTS

valid Invalid
Control Transfers Control Transfers
S DO 35 K=1,10 GO TO 20 -
DO 15 L=2,20 ™ DO 50 K=1,10
GO TO 20 20 A=B+C
15 CONTINUE DO 35 L=2,20
20 A=B+C 30 D=E/F
DO 35 M=1,15 35 com'mu:.\
GO TO 50 GO TO 40
30 X=A*D DO 45 M=1,15
L 35 CONTINUE 40 X=A*D
. 45 CONTINUE
50 D=E/F .
Extended . L 50 CONTINUE ///
Range . . %
GO TO 30 GO TO 30
Figure 4-2

Control Transfers and Extended Range

CONTROL STATEMENTS

4.4 CONTINUE STATEMENT

The CONTINUE statement simply passes control to the next executable
statement. It is wused primarily as the terminal statement of a DO
loop when that loop would otherwise end with a GO TO, arithmetic IF,
or other prohibited control statement. If every DO loop ends with a
CONTINUE statement, the cange of the loop is clearly visible in the
program listing. (When used as the terminal statement of a DO loop or
as the destination of a control transfer, it must be identified by a
statement label.)

The form of the CONTINUE statement follows:

CONTINUE

4.5 CALL STATEMENT

The CALL statement is used to transfer control from one program unit
to another. It may also be used to transmit data between those
program units.

The form of the CALL statement follows:

CALL s[([al[,[a)])...)]

s is the name of a SUBROUTINE subprogram, a user-written
Assembly Language routine, or a DEC-supplied system
subroutine.

a is an argument by which data is transmitted between the

calling program unit and the subroutine. Arguments to a
subroutine are described fully in Section 8.1.3.

The CALL statement associates the data values in the argument list (if
the 1list is present) with a matching set of dummy arguments in the
subroutine, thereby making the data available to the subroutine, and
transferring control to the subroutine to begin its execution.

The arguments in a CALL statement should agree in number, order, and
data type with the dummy arguments in the subroutine definition. The
CALL statement's arguments (called actual arguments) may be arithmetic
expressions, alphanumeric 1literals, or subprogram names (if those
names have been specified in an EXTERNAL statement, as described in
section 7.6). An unsubscripted array name in the argument list refers
to the entire array.

A CALL statement may contain more, or fewer, arguments than are
specified in the subroutine definition, as long as an indication of
some type (such as an argument that states how many other arguments
are present) is given to the subroutine so that it will make no
attempt to refer to a missing argument.

CONTROL STATEMENTS

Examples
CALL CURVE (BASE,3.14159,X,Y,LIMIT,RESULT)
CALL PNTOUT
CALL EXIT

(EXIT is a system subroutine that terminates the execution of the
program and returns control to the operating system.)

4.6 RETURN STATEMENT

The RETURN statement is used to return control from a subprogram unit
to the calling program unit.

The RETURN statement has the following form:
RETURN

When a RETURN statement appears in a FUNCTION subprogram, it transfers
control to the statement that contains the function reference (see
section 8.1.2) by which control was originally passed to the
subprogram. When a RETURN statement appears in a SUBROUTINE
subprogram, it returns control to the first executable statement
following the CALL statement that transferred control to the
subprogram.

A RETURN statement must not appear in a main program unit.

Example
SUBROUTINE CONVRT (N,ALPH,DATA,PRNT,X)
IF (N .LT. 10) GO TO 100
DATA (K+2) = N-(N/10)*N
N = N/10
DATA(K+1l) = N
PRNT (K+2) = ALPH(DATA (K+2)+1)
PRNT (K+1) = ALPH (DATA(K+1)+1)
RETURN

100 PRNT (K+2) = ALPH(N+1)

RETURN
END

4.7 PAUSE STATEMENT

The PAUSE statement temporarily suspends program execution to permit
some action on the part of the user.

CONTROL STATEMENTS

The PAUSE statement appears in the following form:
PAUSE [disp]

disp is a decimal digit string containing one to five digits, an
alphanumeric literal, or an octal constant.

The PAUSE statement prints the display (if one has been specified) at
the user's terminal, suspends program execution, and waits for user
response. When the user enters the appropriate control command,
program execution resumes with the first executable statement
following the PAUSE.
Examples

PAUSE "13731

PAUSE 'MOUNT TAPE REEL #3'

4.8 STOP STATEMENT

The STOP statement is used to terminate program execution.
The STOP statement appears in the following form:
STOP [disp]
disp is a decimal digit string containing one to five digits, an

alphanumeric literal, or an octal constant.

The STOP statement prints the display (if one has been specified) at
the user's terminal, terminates program execution, and returns control
to the operating system.

Examples
STOP 98
STOP "7777
99999 STOP

STOP 'END OF RUN'

4.9 END STATEMENT

The END statement marks the end of a program unit, The END statement
must be the last source line of every program unit.

The END statement has the following form:

CONTROL STATEMENTS

END

In a main program, if control reaches the END statement, a CALL EXIT

statement is implicitly executed; in a subprogram, a RETURN statement
is implicitly executed.

4-14

CHAPTER 5

INPUT/OUTPUT STATEMENTS

5.1 OVERVIEW

Input of data by a FORTRAN program is performed by READ and ACCEPT
statements. Output is performed by WRITE, TYPE, and PRINT
statements. Some forms of these statements are used in conjunction
with formatting information to translate and edit the data into a
readable form,

Each READ or WRITE statement contains a reference to the logical unit
to or from which data transfer is to take place. A logical unit can
be connected to a device or file. The TYPE and ACCEPT statements have
no such reference, as they cause data transfer between the processor
and an implicit logical unit that is normally associated with the
user's terminal. Similarly, the PRINT statement outputs data to an
implicit logical unit that is normally associated with the 1line
printer.

READ and WRITE statements fall into the following categories:
1. Unformatted Sequential I/0

Unformatted sequential READ and WRITE statements transmit
binary data without translation.

2. Formatted Secuential I/O

Formatted secuential READ and WRITE statements contain
references to FORMAT statements, or to format specifications
in arrays, that cause data to be translated to ASCII code on
output, and to internal format on input.

3. Unformatted Direct Access 1/0
Unformatted direct access READ and WRITE statements perform
input and output of binary data to and from direct access

files. The files must have been defined by a DEFINE FILE
statement or an OPEN statement.

5-1

INPUT/OUTPUT STATEMENTS

Any type of READ or WRITE statement can transfer control to another

statement whenever an error condition or end-of-file condition is
detected.

In addition to the above statements, the auxiliary 1I/0 statements,
REWIND and BACKSPACE, do not perform data transfer, but do file
positioning functions. The ENDFILE statement writes a special form of
record that will cause an end-of-file condition (an END= transfer)
when read by an input statement. Finally, there are the ENCODE and

DECODE statements, which perform data transfer and translation within
memory.

5.1.1 Input/Output Devices

PDP-11 FORTRAN uses the I/0 services of the operating system and thus
supports all peripheral devices that are supported by the operating
system. I/O statements refer to I/O devices by means of logical wunit
numbers, A logical unit number is an integer constant or variable
with a positive value. Refer to the associated FORTRAN User's Guide
for additional information.

INPUT/OUTPUT STATEMENTS

5.1.2 Format Specifiers

Format specifiers are used in formatted I/0 statements. A format
specifier is either the statement label of a FORMAT statement or the
name of an array containing Hollerith data interpretable as a format.
Chapter 6 discusses FORMAT statements in detail.

5.1.3 Input/Output Records

Input/Output statements transmit all data in terms of records. The
amount of information that can be contained in one record, and the way
in which records are separated, depend on the medium involved.

For unformatted I/0O, the amount of data to be transmitted is specified
by the I/O statement. The amount of information to be transmitted by
a formatted I/0 statement is determined jointly by the I/0 statement
and specifications in the associated format specification.

The beginning of execution of an input or output statement initiates
the transmission of a new data record. If an input statement requires
only part of a record, the excess portion of the record is lost. In
the case of formatted sequential input or output, one or more
additional records can be transmitted.

5.2 INPUT/OUTPUT LISTS

An I/0 list specifies the data items to be manipulated by the
statement containing the 1list. The I/O list of an input or output
statement contains the names of variables, arrays, and array elements
whose values are to be transmitted to a unit. In addition, the I1/0
list of an output statement may contain constants and expressions. An
I/0 list may be a single component or a series of such components, and

it may contain an “"implied DO" 1list, which specifies iterative
transmission of values.

5.2.1 Simple Lists

A simple I/O list consists of a single variable, array reference, or
expression, or a series of such components separated by commas. The
I/0 statement assigns input values to, or outputs data from, the 1list
elements in the order in which they appear, from left to right.

INPUT/OUTPUT STATEMENTS

When an unsubscripted array name appears in an I/0 1list, a READ or
ACCEPT statement inputs enough data to fill every element of the
array; a WRITE, TYPE, or PRINT statement outputs all of the values
contained in the array. Data transmission begins with the initial
element of the array and proceeds in the order of subscript
progression, with the left-most subscript varying most rapidly. For

example, if the unsubscripted name of a 2-dimensional array defined
as:

ARRAY (3, 3)

appears in a READ statement, that statement assigns values from the
input record(s) to ARRAY(l,l1), ARRAY(2,1), ARRAY(3,1), ARRAY(1,2),
and so on, through ARRAY(3,3).

In a READ or ACCEPT statement, variables in the I/0O list may be used

as array subscripts elsewhere in the 1list. 1If, for example, the
statement:

READ (1,1250) J,K,ARRAY (J,K)
1250 FORMAT (Il,X,Il,X,F6.2)

was executed and the input record contained the values:

1,3,721.73

the value 721.73 would be assigned to ARRAY(1,3). The first input
value is assigned to J and the second to K, thereby establishing the
actual subscripts for ARRAY(J,K). Variables that are to be used as

subscripts in this way must appear to the left of their use in the
array reference.

Any valid expression can be included in an output statement I/O 1list.
However, the expression must not cause further 1/0 operations to be
attempted. A reference in an output statement I/0 list expression to
a function subprogram that itself performs some form of I/O is an
example of this prohibited case.

An expression must not be included in an input statement I/O 1list
except as a subscript expression in an array reference.

5.2.2 Implied DO Lists

Implied DO lists are used to transmit only part of an array or to
transmit elements in some sequence other than the order of subscript
progression. This type of list element functions as though it were a
part of an I/O statement that resides in a DO loop, and that uses the
control variable of the imaginary DO statement to specify which data

value or values are to be transmitted during each iteration of the
loop.

An implied DO list appears as one or more data references followed by
one or more control variable and parameter definitions, in the same

INPUT/OUTPUT STATEMENTS

form as that used in the DO statement. The data reference(s) and the
first definition are enclosed in parentheses and separated by commas.

Each subsequent definition is separated from the preceding
parenthesized set by a comma and enclosed in parentheses that also
include all of the preceding entries. For example:

WRITE (3,200) (A,B,C, I=1,3)
WRITE (6,15) ((p(I1),Q(1,3), J=1,10), I=1,5)
READ (1,75) (((ARRAY(M,N,I), I=2,8), N=2,8), M=2,8)

The first control variable definition is equivalent to the innermost
DO of a set of nested loops, and therefore varies most rapidly. For
example, the statement:

WRITE (5,150) ((FORM(K,L), L=1,10), K=1,10,2)
150 FORMAT (F10.2)

is similar to:

DO 50 K=1,10,2

DO 50 L=1,10

WRITE (5,150) FORM(K,L)
150 FORMAT (Fl10.2)
50 CONTINUE

Since the inner DO loop is executed ten times for each iteration of
the outer loop, the second subscript, L, advances from one through ten
for each increment of the first subscript. This is the reverse of the
order of subscript progression. Note also that since K is incremented
by two, only the odd-number columns of the array will be output.

When multiple data references appear before the first control variable
definition, data is transmitted to or from those references in the
order in which they appear, before the incrementation of the first
control variable, For example:

READ (3,999) (p(I),(Q(I,J), J=1,10), I=1,5)
assigns input values to the elements of arrays P and Q in the order:

P(1), a(1,1), Q(1,2), ... , Q(1,10),
P(2), Q(2,1), Q(2,2), ... , Q(2,10),

P(5), Q(5,1), Q(5:2), «ee , Q(5,10)

When variables are output under control of an implied DO 1list, the
values of those variables are repeatedly transmitted a number of times
equal to the number of iterations of the implied DO 1loop. For
example:

WRITE (6,800) (A,B,C, I=1,3)

INPUT/OUTPUT STATEMENTS

causes the values of the three variables to be output three times, in
the order A, B, C, a, B, C, A, B, C.

When dealing with multidimensional arrays, it is possible to use a
combination of fixed subscripts and subscripts that vary according to
an implied DO. For example, the following statements:

READ (3,5555) ((BOX(I,J), J=1,10), I=1,1)

READ (3,5555) (BOX(1,J), J=1,10)
both have the same effect of assigning input values to BOX(1,1)
through BOX(1,10), then terminating without affecting any other
element in the first dimension of the array.

It is also possible to output the value of the implied DO's control
variable directly, as in the statement:

WRITE (6,1111) (I, I=1,20)
which simply prints the integers one through twenty.
An implied DO list may be one element of a simple list.
The rules for the initial, terminal, and increment parameters, and for
the control variable of an implied-DO list are the same as those for
the DO statement (see section 4.3). An expression may be used for the

initial, terminal, or increment parameter of an implied DO list, as
long as it conforms to the rules in section 4.3,

5.3 UNFORMATTED SEQUENTIAL INPUT/OUTPUT

Unformatted input and output is the bit=-for-bit transfer of binary
data without conversion or editing. Unformatted I/0 is generally used
when data output by a program is to be subsequently input by the same
program (or a similar program). Unformatted I/0 saves execution time
by eliminating the data conversion process, preserves greater accuracy
in the external data, and usually conserves file storage space.

5.3.1 Unformatted Sequential READ Statement

The unformatted sequential READ statement initiates the input of a new
record from the specified logical unit and assigns the data obtained
to the components in the I/O list in the order in which they appear,
from left to right. The amount of data each component receives is
determined by its data type.

An unformatted sequential READ statement reads exactly one binary
record. If the I/O list does not use all of the values in the record,
the remainder of the record is discarded. If the contents of the
record are exhausted before the I/0 1list is satisfied, an error
condition results.

INPUT/OUTPUT STATEMENTS
The unformatted sequential READ statement appears in the following
form:
READ (u[,END=s) [,ERR=8]) [list]

u is a logical unit number.

list is an I/0 list.

8 is an executable statement label.
If an unformatted sequential READ statement contains no I/0 list, it
skips over one full record, positioning the file to read the following

record on the next execution of a READ statement.

The unformatted sequential READ statement must only be used to input
records that were created by unformatted sequential WRITE statements.

Examples
READ (1) FIELDl, FIELD2 (Read one record from logical
unit 1; assign input values to
variables FIELDl1l and FIELD2.)

READ (8) (Advance through the file on
logical unit 8 one record.)

5.3.2 Unformatted Sequential WRITE Statement

The unformatted sequential WRITE statement has the following form:
WRITE (ul,ERR=s]) [list])

u is a logical unit number.

8 is an executable statement label.

list is an I/O list.
The unformatted sequential WRITE statement outputs the values of the
elements in the 1I/0 list to the specified device in binary form, as
one binary record. Therefore, the unit number must refer to a device

capable of accepting binary data.

If an unformatted WRITE statement contains no I/0 list, one null
record is output to the specified device.

Examples
WRITE (1) (LIST(K) ,K=1,5) (Outputs contents of elements 1

through 5 of array LIST to
logical unit 1.)

INPUT/OUTPUT STATEMENTS

WRITE (4) (Writes a null record on logical
unit 4.)

5.4 FORMATTED SEQUENTIAL INPUT/OUTPUT

Formatted input and output statements work in conjunction with FORMAT
statements (or format specifications stored in arrays) to translate
and edit data on output for ease of interpretation, and, on input, ¢to
convert data from external format to internal storage format.

5.4.1 Formatted Sequential READ Statement

The formatted sequential READ statement transfers data from the
specified device and stores the input values in the elements of the
I/0 list in the order in which they appear, from left to right, At
the same time, the format specifications referred to by the READ
statement translate the data from external to internal format.

The formatted sequential READ statement appears in one of the
following forms:

READ f[,list]

READ (u,f[,END=s][,ERR=s]) [1list]

s is an executable statement label.
u is a logical unit number.
f is a format specifier.

list is an I/0 list,
If the FORMAT statement associated with a formatted input statenment
contains a Hollerith constant or literal string, input data will be
read and stored directly into the format specification. For example,
the statements

READ (5,100)
100 FORMAT (5H DATA)

cause five ASCII characters to be read from the terminal and stored in
the Hollerith format descriptor. If the characters were HELLO,
statement 100 would become:

100 FORMAT (S5HHELLO)
A statement of the form:

READ 200, ALPHA,BETA,GAMMA

causes data to be read from a system dependent logical unit.

INPUT/OUTPUT STATEMENTS

If the number of elements in the I/O list is laess than the number of
fields in the input record, the excess portion of the record is
discarded. If the number of list elements exceeds the number of input
fields, an error condition results unless the format specifications
state that one or more additional records are to be read (see Sections
6.4 and 6.8).

If no I/0 list is present in a formatted sequential READ statement,
the associated FORMAT statement or format array must contain at least
one Hollerith field descriptor or alphanumeric literal to accept the
input data. If it does not, no data transfer takes place; all data
from the input record is 1lost and can only be retrieved by
repositioning the file.

Examples
READ (1,300) ARRAY (Reads record from
300 FORMAT (20F8.2) logical unit 1, assigns
fields to ARRAY.)
READ (5,50) (Reads 25 characters

50 FORMAT (25H PAGE HEADING GOES HERE) from logical unit 5
places them
in FORMAT statement.)

5.4.2 Formatted Sequential WRITE Statement

The formatted sequential WRITE statement transmits the contents of the
elements in the I/O 1list to the specified unit, translating and
editing each value according to the specifications in the associated
FORMAT statement or format array.

The formatted sequential WRITE statement appears as:

WRITE (u,f[,ERR=s]) [list]

u is a logical unit number,
f is a format specifier.
s is an executable statement label.

list is an I/0 list.

If no I/0 list is present, data transfer is entirely under the control
of the format. The data to be output is taken from the format.

The data transmitted by a formatted sequential WRITE statement
normally constitutes one formatted record. The FORMAT statement or
format array may, however, specify that additional records are to be
written during the execution of that same WRITE statement.

INPUT/OUTPUT STATEMENTS

Numeric data output wunder format control is rounded during the
conversion to external format. (If such data is subsequently input
for additional calculations, loss of precision may result. In this
case, unformatted output is preferable to formatted output. Note also
that unformatted data usually occupies less space on external devices
than does formatted data.)

The records transmitted by a formatted WRITE statement must not exceed
the 1length that can be accepted by the device. For example, a line
printer typically cannot print a record that is longer than 132
characters.

Examples
WRITE (6, 650) (Outputs contents of FORMAT
650 FORMAT (' HELLO, THERE') statement to 1logical unit 6.)
WRITE (1,95) AYE,BEE,CEE (Writes one record of three
95 FORMAT (F8.5,F8.5,F8.5) fields to logical unit 1.)
WRITE (1,950) AYE,BEE,CEE (Writes three separate records
950 FORMAT (F8.5) of one field each to 1logical

unit 1.)

In the 1last example, format control arrives at the rightmost
parenthesis of the FORMAT statement before all elements of the I/0
list have been output. Each time this occurs, the current record is
terminated and a new record is initiated., Thus, three separate
records are written,

5.4.3 ACCEPT Statement

The function of the ACCEPT statement is identical to that of the
formatted READ statement, except that input is read from a logical
unit normally associated with the terminal keyboard.
The form of the ACCEPT statement is:
ACCEPT f[,list]

£ is a format specifier.

list is an I/0 list.
The rules for the format reference and I/0 list of an ACCEPT statement

are the same as those for the formatted READ statement (Section
5.4.1).

INPUT/OUTPUT STATEMENTS

Examples
ACCEPT 100, NUMBER (Accepts one Integer value from
100 FORMAT (I4) terminal keyboard.)
ACCEPT 200 (Reads 13 characters from
200 FORMAT ('PUT DATA HERE') keyboard, places them in FORMAT
statement,)

5.4.4 TYPE Statement

The TYPE statement functions identically to the formatted WRITE
statement except that output is directed to a logical unit narmally
connected to the terminal printer.
The TYPE statement has the following form:
TYPE f[,list]
£ is a format specifier.
list is an I/0 list.
The rules for the format reference and I/0 1list of a TYPE statement
are the same as those for the formatted WRITE statement (Section
5.4.2).
Examples
TYPE FACE, BOLD (Displays contents of BOLD
on terminal in the format

specified by contents of
array FACE,)

TYPE 400 (Types message from PORMAT
400 FORMAT (' MOUNT NEW TAPE REEL') statement on terminal.)

5.4.5 PRINT Statement

The function of the PRINT statement is the same as that of the
formatted WRITE statement and TYPE statemant, except that output is
directed to a logical unit normally associated with a line printer.
The PRINT statement takes the form:
PRINT f[,list]
£ is a format specifier.

list is an I/0 list.

INPUT/OUTPUT STATEMENTS

The format reference and I/0 list in a PRINT statement follow the same
rules as specified for the formatted sequential WRITE statement
(section 5.4.2).

Examples
PRINT 999, NPAGE (Prints page number in upper
999 FORMAT (1H1,100X,'PAGE ',I3) right-hand corner of new
page.)
PRINT 222 (Prints contents of FORMAT
222 FORMAT (' END OF LISTING') statement on line printer.)

5.5 UNFORMATTED DIRECT ACCESS INPUT/OUTPUT

Unformatted direct access READ and WRITE statements are used to
perform direct access I/O on any directory-structured device. The
DEFINE FILE statement is used to establish the number of records, and
the size of each record, in a file to which direct access I/0 is to be
performed.

5.5.1 Unformatted Direct Access READ Statement

The unformatted direct access READ statement positions the input file
to a record number and transfers the fields in that record to the
elements in the data list in binary form without translation.

The unformatted direct access READ statement is written as follows:

READ (u'r[,ERR=s]) [list]
u is a logical unit number.
r is an integer expression that specifies the record number.
s is an executable statement label.

list is an I/0 list,

NOTE

In this form of READ statement an
apostrophe is used to separate the
logical unit number from the record
number.

INPUT/OUTPUT STATEMENTS

If there are more fields in the input record than elements in the I/0
list, the excess portion of the record is discarded. If there is
insufficient data in the record to satisfy the requirements of the I/0
list, an error condition results.

The unit number in the unformatted direct access READ statement must
refer to a file that has previously been opened for direct access.

The record number in an unformatted direct access READ statement must
not be less than 1 nor greater than the number of records defined for
the file, or an error condition results.

Examples

READ (1'10) LIST(1),LIST(8) (Reads record 10 of a file on
logical unit 1, assigns two
Integer values to specified
elements of array LIST.)

READ (4'58) (RHO(N) ,N=1,5) (Reads record 58 of a file on

logical unit 4, assigns five
Real values to array RHO.)

5.5.2 Unformatted Direct Access WRITE Statement

The unformatted direct access WRITE statement transmits the contents
of the I/0 1list to a particular record number in a file on a
directory-structured device. The data is recorded in binary form with
no translation.

The unformatted direct access WRITE statement appears as follows:

WRITE (u'r[,ERR=s]) [list]

u is a logical unit number.
r is an integer expression that specifies the record number.
8 is an executable statement label.

list is an I/O list.

If the amount of data to be transmitted exceeds the record size, an
error condition results. If the WRITE statement does not completely
fill the record with data, the contents of the unused portion of the
record are zero-filled.

5-13

INPUT/OUTPUT STATEMENTS

Examples

WRITE (2'35) (NUM(K) ,K=1,10) (Outputs ten Integer values
to record 35 of a file on
logical urit 2.)

WRITE (3'J) ARRAY (Outputs entire contents of
ARRAY to a file on logical
unit 3 into the record
indicated by value of J.)

5.5.3 DEFINE FILE Statement

The DEFINE FILE statement establishes the size and structure of a file
upon which direct access I/0 is to be performed.

The DEFINE FILE statement appears as:

DEFINE FILE u (m,n,U,v) [,u(m,n,U,v)]...

is an integer constant or integer variable that specifies the
logical unit number,

is an integer constant or integer variable that specifies the
number of records in the file.

is an integer constant or integer variable that specifies the
length, in words, of each record.

specifies that the file is unformatted (binary). The letter
U is the only acceptable entry in this position.

is an integer variable, called the associated variable of the
file, that, at the conclusion of each direct access I/0
operation, contains the record number of the next sequential
record in the file.

The DEFINE FILE statement specifies that a file containing m
fixed-length records of n words each exists, or is to exist, on
logical unit u. The records in the file are sequentially numbered
from 1 through m.

The DEFINE FILE statement must be executed before the first
direct access I/0 statement that refers to the specified file,

The DEFINE FILE statement also establishes the integer variable v as
the associated variable of the file. At the end of each direct access
I/0 operation, the FORTRAN I/O system places in v the record number of
the record immediately following the one just read or written, Since
the associated variable always points to the next sequential record in

INPUT/OUTPUT STATEMENTS

the file (unless it is redefined by an assignment statement or a FIND
statement), direct access I/0 statements can be used to perform
sequential processing of the file, by using statements such as:

ﬁEAD (1'INDEX) ZETA,ETA,THETA

INDEX is the associated variable of the file in question.

If the file is to be processed by more than one program unit, or in an
overlay environment, the associated variable should be placed in a
resident named COMMON block.

Example
DEFINE FILE 3 (1000,48,U,NREC)

This specifies that logical unit 3 is to refer to a file of 1000
fixed-length records, each record of which is 48 words long. The
records are numbered sequentially from 1 through 1000, and are in
binary format. After each direct access I/0 operation on this file,
the integer variable NREC will contain the record number of the record
immediately following the one just processed.

INPUT/OUTPUT STATEMENTS

5.7 TRANSFER OF CONTROL ON END-OF-FILE OR ERROR CONDITIONS

Any type of READ or WRITE statement may contain a specification that
control is to be transferred to another statement if the I/O statement
encounters an error condition or the end of the file, These
specifications appear as follows:

END=g

and

ERR=sg

s is the statement label of an executable statement to which
control is to be transferred.

5-16

INPUT/OUTPUT STATEMENTS

A READ or WRITE statement may contain either or both of the above
specifications, in either order. Any such specification must follow
the unit number, record number, and/or format specification.

If an end-of-file condition is encountered during an I/O operation,
the READ statement transfers control to the statement named in the
END=s specification. If no such specification is present, an error
condition results.

If a READ or WRITE statement encounters an error condition during an
I/0 operation, it transfers control to the statement whose label
appears in the ERR=s specification, If no ERR=s gspecification is
present, the I/O error causes the program execution to terminate.

The statement label that appears in the END=s or ERR=s specification
must refer to an executable statement that exists within the same
program unit as the I/O statement.

Examples of I/O statements containing END=s and ERR=8 specifications
follow:

READ (8,END=550) (MATRIX(K),K=1,100) (Passes control to statement
550 when end-of-file is
encountered on logical unit
8.)

WRITE (5,50,ERR=390) (Passes control to statement
390 on error.)

READ (1'INDEX,ERR=150) ARRAY (Passes control to statement
150 on error.)

NOTE

An end-of-file condition can not occur
during direct access READ or WRITE
statements. An END=S specification may
be included in direct access READ or
WRITE statements; however, transfer of
control to the label will never occur.
In particular, attempting to READ or
WRITE a record using a record number
greater than the maximum specified for
the unit is an error condition.

5-17

INPUT/OUTPUT STATEMENTS

The FORTRAN User's Guide describes system subroutines that may be used
to control processing of error conditions. These subroutines obtain
information from the I/O system concerning the error and serve as an
aid in determining what corrective action is to be taken.

5.8 AUXILIARY INPUT/OUTPUT STATEMENTS

The statements in this category are used to perform file management
functions.

5.8.1 REWIND Statement

The REWIND statement causes a currently open file to be repositioned
to the beginning of the file.

The form of the REWIND statement follows:
REWIND u
u is a logical unit number.

The wunit number in the REWIND statement nmust refer to a
directory-structured device (e.g., disk). A file must be open on that
device.

Example

REWIND 3 (Repositions logical unit 3 to beginning of
currently open file.)

5.8.2 BACKSPACE Statement

The BACKSPACE statement repositions a currently open file backward one
record and repositions to the beginning of that record. On the
execution of the next I/O statement, that record is available for
processing.
The BACKSPACE statement is written as follows:
BACKSPACE u
u is a logical unit number.

The unit number must refer to a directory=-structured device (e.qg.,
disk). A file must be open on that device.

INPUT/OUTPUT STATEMENTS
Example

BACKSPACE 4 (Repositions open file on logical unit 4 to
beginning of the previous record.)

5.8.3 ENDFILE Statement

The ENDFILE statement writes an end-file record on a currently open
sequential file.

The ENDFILE statement is written as follows:
ENDFILE u
u is a logical unit number.
A file must be open on unit u,
Example
ENDFILE 2

The above statement writes an end-file record to the currently open
file on logical unit two.

5.8.4 FIND Statement

The FIND statement positions a direct access file on a specified unit
to a particular record and sets the associated variable of the file to
that record number. No data transfer takes place.
The form of the FIND statement is:
FIND (u'r)

u is a logical unit number.

r is a record number.
The unit number in the statement must refer to a directory-structured
device, The file that is to be affected by this statement must have
been previously defined for direct access processing.

The record number must not be less than 1 nor greater than the number
of records in the file.

Examples

FIND (1'1)) Positions logical unit 1, and its associated
variable, to the first record of the file.

INPUT/OUTPUT STATEMENTS

to

5-20

e e o~ emesess .. P o <
. e — AT W A v . WY S KR G e P 39

Positions file and associated variable

record identified by contents of INDX.

FIND (4°'INDX)

e F B s
R

INPUT/OUTPUT STATEMENTS

INPUT/OUTPUT STATEMENTS

INPUT/OUTPUT STATEMENTS

INPUT/OUTPUT STATEMENTS

o g - i ook D

5-24

INPUT/OUTPUT STATEMENTS

INPUT/OUTPUT STATEMENTS

L e S ekttt 4s aihe < abemis e 40

B A TS 2 M2 B S AP 8 5

5-26

INPUT/OUTPUT STATEMENTS

5.9 ENCODE AND DECODE STATEMENTS

These two statements perform data transfers according to format
specifications, translating data from internal format to alphanumeric
(ASCII) format, or vice versa. Unlike conventional formatted I/0
statements, however, these data transfers take place entirely within
memory.

The ENCODE and DECODE statements are written as follows:
ENCODE (c, f,b) [list]
DECODE (c, £,b) [1ist]

c is an integer expression representing the number of ASCII
characters mﬁ“)tMtuewbemmumdutMtuem
result from the conversion. (This is analogous to the
length of an external record.)

£ is the statement label of a FORMAT statement or the name of
an array that contains format specifications. Only one
record can be transmitted, that is, the occurrence of a /"
(slash) format specification separator or of format
reversion will cause an error condition.

INPUT/OUTPUT STATEMENTS

b is the name of an array. In the ENCODE statement, this
array receives the encoded ASCII characters, In the DECODE
statement, it contains the ASCII characters that are to be
translated to internal format.

list is an I/0 list. In the ENCODE statement, the I/0 1list
contains the data that is to be converted to ASCII format.
In the DECODE statement, the list receives the data that has
been translated from ASCII to internal format.

The ENCODE statement is analogous to a WRITE statement in the sense
that the I/O 1list contains the data that is to be transmitted. The
ENCODE statement converts that data from the form specified by the
FORMAT statement or format array to ASCII format and stores those
ASCII characters in array b. The data is taken from the elements in
the I/0 list from left to right, converted, and stored in the array in
the order of subscript progression,

The DECODE statement can be likened to a READ statement, because the
internal-format data resulting from the execution of the statement is
assigned to the elements in the I/0O list. The DECODE statement takes
the ASCII characters from array b, processing the array in the order
of subscript progression, converts that data to the form specified by
the FORMAT statement or format array, and assigns the data to the
elements of the I/0 list from left to right.

The number of ASCII characters that can be handled by the ENCODE or
DECODE statement is dependent on the data type of the array b in that
statement. An INTEGER*2 array, for example, can contain up to two
characters per element, so the maximum number of characters is twice
the number of elements in that array.

The interaction between format control and the I/O list is the same as
for a formatted I/0 statement.

Example

DIMENSION A(3) ,K(3)
DATA A /'1234','5678',9012'/
DECODE (12,100,A) K

100 FORMAT (3I4)

Execution of the DECODE statement causes the 12 ASCII characters in
array A to be converted to Integer format (specified by statement 100)
and stored in array K, as follows:

K(1) = 1234
K(2) = 5678
K(3) = ani2

CHAPTER 6

FORMAT STATEMENTS

6.1 OVERVIEW

FORMAT statements are nonexecutable statements used in conjunction
with formatted I/O statements and with ENCODE and DECODE statements.
The FORMAT statement describes the format in which data fields are

transmitted, and the data conversion and editing to be performed to
achieve that format.

The FORMAT statement is written:

where each f is a field descriptor, or a group of field descriptors
enclosed in parentheses, each s is a field separator and each q is
zero or more slash (/) field separators. The entire 1list of field
descriptors and field separators including the parentheses is called
the format specification. The list must be enclosed in parentheses.

A field descriptor in a format specification appears in one of the
following forms:

rCw
or
rCw.d

where C is a format code; w specifies the field width and d (when
present) specifies the number of characters in the field that appear
to the right of the decimal point. The term r represents an optional
repeat count, which specifies that the field descriptor is to be
applied to r successive fields. If the repeat count is omitted, it is

presumed to be 1, See section 6.2.16 for further discussion of field
repetition.

The terms r, w, and 4 must all be unsigned integer constants less than
or equal to 255,

FORMAT STATEMENTS

The most commonly used field separator is a comma. A slash (/) may
also be used; it has the additional function of being a record
terminator. The functions of the field separators are described in
detail in Section 6.4.

The field descriptors used in format specifications are as follows:

l. Integer: Iw, Ow
2, Logical: Lw
3. Real, Double
Precision, Complex: Fw.d, Ew.d, Dw.d, Gw,d
4. Literal and editing: AW, nH, '...', nX, ™, Q

(In the alphanumeric and editing field descriptors, n specifies a
number of characters or character positions.)

Any of the F, E, D, or G field descriptors may be preceded by a scale
factor of the form:

np

where n is an optionally signed integer constant in the range =127 to
+127 that specifies the number of positions the decimal point is to be.

scaled to the left or right. The scale factor is described in Section
6.2,15,

During data transmission, the object program scans the format
specification from 1left to right. Data conversion is performed by
correlating the data values in the I/0 1list with the corresponding
field descriptors. In the case of H field descriptors and
alphanumeric literals, data transmission takes place entirely between
the field descriptor and the external record. The interaction between
the format specification and the I/O list is described in detail in
Section 6.7.

6.2 FIELD DESCRIPTORS

The individual field descriptors that may appear in a format
specification are described in detail in the following sections. The
field descriptors ignore leading spaces in the external field, but
treat embedded and trailing spaces as zeros.

6.2.,1 I Field Descriptor

The I field descriptor governs the translation of integer data. It
appears as:

Iw

6-2

FORMAT STATEMENTS

The I field descriptor causes an input statement to read w characters
from the external record, convert them to an internal format, and
store them in the associated integer element of the 1I/0 1list. The
external data must be an integer; it must not contain a decimal point
or exponent field. The I field descriptor interprets an all-blank
field as a zero value., If the value of the external field exceeds the
range of the corresponding integer list element, an error occurs. If
the first non-blank character of the external field is a minus symbol,
the I field descriptor causes the field to be stored as a negative
value; a field preceded by a plus symbol, or an unsigned field, is
treated as a positive value. For example:

Format External Field Internal Representation
I4 2788 2788
I3 -26 =26
19 AAAAAA3]2 312
19 3.12 not permitted; error

The I field descriptor causes an output statement to transmit the
value of the associated integer I/0 list element to an external field
w characters in length, right justified, replacing any leading zeros
with spaces. If the value of the list element is negative, the field
will have a minus symbol as its leftmost non-blank character. Space
must therefore be included in w for a minus symbol if any are
expected. Plus symbols, on the other hand, are suppressed and need
not be accounted for in w. If w is too small to contain the output
value, the entire external field is filled with asterisks. For
example:

Format Internal Value External Representation
I3 284 284
I4 -284 -284
15 174 88174
12 3244 bkl
13 -473 bl
17 29.812 not permitted; error

6.2.2 O Field Descriptor

The O field descriptor governs the transmission of octal values, It
appears as follows:

Ow

The O field descriptor causes an input statement to read w characters
from the external record, assigning them to the associated I/O list
element as an octal value. The list element must be of integer or
logical type. The external field must contain only the numerals 0
through 7; it must not contain a 8ign, a decimal point, or an
exponent field., For example:

FORMAT STATEMENTS

Internal

Format External Field Octal Representation
05 32767 32767
04 16234 1623
06 13AAAA 130000
03 97A not permitted; error

The O field descriptor causes an output statement to transmit the
value of the associated I/O list element, right justified, to a field
"w" characters long. If the data does not f£fill the field, 1leading
spaces are inserted; if the data exceeds the field width, the entire
field is filled with asterisks. No signs are output; a negative
value is transmitted in its octal (two's complemaent) form. The I/0
list element must be of integer or logical type. For example:

Format Internal (Decimal) Value External Representation

06 32767 477777

06 -32767 100001

02 14261 "

04 27 AA33

05 13.52 not permitted; error

6.2,3 F Field Descriptor

The F field descriptor specifies the data conversion and editing of
real or double precision values, or the real or imaginary parts of
complex values. It is written as shown below. (In all appearances of
the F field descriptor, w must be greater than or equal to d+l.)

N.d

On input, the F field descriptor causes w characters to be read from
the external record and to be assigned as a real value to the related
I/0 list element. If the first non-blank character of the external
field is a minus sign, the field is treated as a negative value; a
field that is preceded by a plus sign, or an unsigned field, is
considered to be positive. An all-blank field is considered to have a
value of zero.

If the field contains neither a decimal point nor an exponent, it is
treated as a real number of w digits, in which the rightmost d digits
are to the right of the decimal point. If the field contains an
explicit decimal point, the location of that decimal point overrides
the location specified by the field descriptor. If the field contains
an exponent (in the same form as described in section 2.2.2 for real
constants or 2.2,3 for double precision constants), that exponent is
used in establishing the magnitude of the value before it is assigned
to the list element. For example:

FORMAT STATEMENTS

Format External Field Internal Representation
F8.5 123456789 123,45678

F8.5 -1234.567 -1234.56

F8.5 24,77E+2 2477.0

F5.2 1234567.89 123,45

On output, the F field descriptor causes the value of the related I/0
list element to be rounded to d decimal positions and transmitted to
an external field w characters in length, right Jjustified. If the
converted data consists of fewer than w characters, leading spaces are
inserted; if the data exceeds w characters, the entire field 1is
filled with asterisks,

The total field width specified must be large enough to accommodate a
minus sign, if any are expected (plus signs are suppressed), at least
one digit to the left of the decimal point, the decimal point itself,
and d digits to the right of the decimal. For this reason, w should
always be greater than or equal to (d+3). Examples follow:

Format Internal Value External Representation
F8.5 2.3547188 A2.35472

F9.3 8789.7361 A8789.736

F2.3 51.44 bkl

F10.4 -23,24352 AA-23,2435

F5,.2 325.013 bbb

F5.2 -.2 -0.20

6.2.4 E Field Descriptor

The E field descriptor handles the transmission of real data in
exponential format. It appears as follows:

Ew.d

The corresponding 1/0 list element must be of real, double precision,
or complex type.

The E field descriptor causes a READ or ACCEPT statement to input w
characters from the external record. It interprets and assigns that
data in exactly the same way as the F field descriptor. For example:

Format External Field Internal Representation
E9.3 734.432E3 734432.0

El2.4 AA1022,43E-6 1022,.43E-6

El5.3 52,3759663A000A 52,3759663
El2,.5 210.5271D+10 210.5271E10

Note that in the last example the E field descriptor disregards the
double precision connotation of a D exponent field indicator and
treats it as though it were an E indicator.

FORMAT STATEMENTS

The E field descriptor causes a WRITE, TYPE, or PRINT statement to
transmit the value of the corresponding list element to an external
field w characters in width, right justified. If the number of
characters in the converted data is less than w, leading spaces are

inserted; if the number of characters exceeds w, the entire field is
filled with asterisks.

Data output under control of the E field descriptor is transmitted in
a standard form, consisting of a minus sign if the value is negative
(plus signs are suppressed), a zero, a decimal point, 4 digits to the
right of the decimal, and a 4-character exponent of the form:

EAnn

or
E=nn

where nn is a 2-digit integer constant. The d digits to the right of

the decimal point represent the entire value, scaled to a decimal
fraction.,

Because w must be large enough to include a minus sign (if any are
expected), a zero, a decimal point, and an exponent, in addition to 4
digits, w should always be equal to or greater than (d+7). Some
examples are:

Format Internal Value External Representation
E9.2 475867.222 AO.48EA06

El2,.5 475867.222 AO.47587EA06
El2.3 0.00069 AAAO.690E~03
E1l0.3 -0.5555 -0.556EA00

E5.3 56,12 bdabd A

6.2.5 D Field Descriptor

The D field descriptor governs the transmission of real or double
precision data. It appears as follows:

Dw.d

On input, the D field descriptor functions exactly as an equivalent E
field descriptor, except that the input data is converted and assigned
as a double precision entity, as in the following examples:

Format External Field Internal Representation
D10.2 12345AAAAA 12345000.0D0

D10.2 AAL123.45AA 123.45D0

D15.3 367.4981763D+04 3.674981763D+06

FORMAT STATEMENTS

On output the effect of the D field descriptor is identical to that of
the E field descriptor, except that the D exponent field indicator is
used in place of the E indicator. For example:

Format Internal Value External Representation
D14.3 0.0363 AAAAAO.363D=01
D23.12 5413.87625793 AAAAA0.541387625793DA04
D9.6 1.2 KRR ARRR

6.2.6 G Field Descriptor

The G field descriptor transmits real, double precision, or complex

data in a form that is in effect a combination of the F and E field
descriptors. It appears as follows:

Gw.d

On input, the G field descriptor functions identically to the F field
descriptor (see Section 6.2.3).

On output, the G field descriptor causes the value of the associated
I/0 1list element to be transmitted to an external field w characters
in length, right justified. The form in which the data is output is a

function of the magnitude of the data itself, as described in Table
6"10

Table 6-1
Effect of Data Magnitude on G Format Conversions

Data Magnitude Effective Conversion
m< 0.1 _ Bw.d
1.0 ¢ m < 10.0 F(w-4),.(d-1), 4X
108=-2 ¢ m < 104-1 F(w-4).1, 4X
10d-1 < m < 10d F(w-4).0, 4X
m > 104 BEw.d

FORMAT STATEMENTS

The 4X field descriptor, which is (in effect) inserted by the G field
descriptor for values within its range, specifies that four spaces are
to follow the numeric data representation. The X field descriptor is
described in Section 6.2.10.

The field width, w, must include space for a minus sign, if any are
expected (plus signs are suppressed) , at least one digit to the left
of the decimal point, the decimal point itself, d digits to the right
of the decimal, and (for values that are outside the effective range
of the G field descriptor) a 4-character exponent. Therefore, w
should always be equal to or greater than (d+7). Examples of G output
conversions are:

Format Internal Value External Representation
Gl3.6 0.01234567 A0.123457E~-01
Gl3.6 ~-0.12345678 =0.123457AAAA
Gl3.6 1.23456789 AA1.23457AAMMA
Gl3.6 12.34567890 AA12,3457AAAA
Gl3.6 123.45678901 AA123,457AAAA
Gl3.6 -1234.56789012 A=1234,57AAA0A
Gl3.6 12345.67890123 AA12345,7AA0A
Gl3,6 123456.78901234 AA123457.AA0A
Gl3.6 -1234567.89012345 -0.123457EA07

For comparison, consider the following le of the same values
output under the control of an equivalent P field descriptor.

Format Internal Values External Representation
F13.6 0.01234567 AAAAA0.012346
F13.6 -0.12345678 AAAA=-0,.123457
F13.6 1.23456789 AAAAAL.234568
Fl13.6 12,.34567890 AAAAY2,345679
Fl13.6 123.45678901 AAA123,856789
F13.6 -1234.56789012 4-1234.567890
Fl13.6 12345.67890123 412345.678901
Fl13.6 123456.78901234 123456.789012
Fl13.6 -1234567.89012345 ARERRARAAARRNS

6.2.7 L Field Descriptor

The L field descriptor governs the transmission of logical data. It
appears ass

Lw
The corresponding I/0 list element must be of logical type.
The L field descriptor causes an input statement to read w characters
from the external record. If the first non-blank character of that

field is the letter T, the value .TRUE. is assigned to the associated
I/0O 1list element. If the first non-blank character of the field is

FORMAT STATEMENTS

the letter F, or if the entire field is blank, the value ,FALSE. is

assigned. Any other value in the external field causes an error
condition.

The L field descriptor causes an output statement to transmit either
the letter T, if the value of the related list element is .TRUE., or
the letter F, if the value is .FALSE., to an external field w
characters wide. The letter T or F is in the rightmost position of
the field, preceded by w-1 spaces. For example:

Format Internal Value External Representation
L5 +.TRUE. AAAAT
Ll .FALSE, F

6.2.8 A Field Descriptor

The A field descriptor controls the transmission of alphanumeric data.
It is written as shown below. (The corresponding I/0 list element may
be of any data type.)

Aw

On input, the A field descriptor causes w characters to be read from
the external record and stored in ASCII format in the associated I/O
list element., The maximum number of characters that can be stored in
a variable or array element depends on the data type of that element,
as follows:

I/0 List Maximum Number

Element of Characters

Logical*l 1l

Logical*2 2 (FORTRAN IV-PLUS only)
Logical*4 4

Integer*2 2

Integer*4 4

Real 4

Double Precision 8

Complex 8

If w is greater than the maximum number of characters that can be
stored in the corresponding 1I/0 list element, onlv the rightmost one,
two, four, or eight characters (depending on the data type of the
variable or array element) are assigned to that entity; the leftmost
excess characters are lost. If w is 1less than the number of
characters that can be stored, w characters are assigned to the list
element, left justified, and trailing spaces are added to £ill the
variable or array element. For example:

FORMAT STATEMENTS

Format External Pield Internal Representation
A6 PAGEA# # (Logical*l)
A6 PAGEA# Ad (Integert*2)
A6 PAGEA# GEA# (Real)
A6 PAGEA# PAGEA#AA (Double Precision,
Complex)

On output, the A field descriptor causes the contents of the related
I/0 1list element to be transmitted to an external field w characters
wide. If the list element contains fewer than w characters, the data
appears in the field right-justified with leading spaces. If the list
element contains more than w characters, only the leftmost w
characters are transmitted. For examples

Format Internal Value External Representation
AS OHMS AOHMS
AS VOLTSAAA VOLTS
AS AMPERESA AMPER

6.2.9 H Field Descriptor

The H field descriptor takes the form of a Hollerith constant:

nHcycpcy ... cp

n specifies the number of characters that are to be
transmitted
c is an ASCII character.

When the H field descriptor appears in a format specification, data
transmission takes place between the external record and the field
descriptor itself.

The H field descriptor causes an input statement to read n characters
from the external record and to place them in the fielqd descriptor,
with the first character appearing immediately after the letter H.
Any characters that had been in the field descriptor prior to input
are replaced by the input characters.

The H field descriptor causes an output statement to transmit the n
Ccharacters in the field descriptor following the letter H to the
external record in ASCII form. An example of the use of H field
descriptors for input and output follows:

TYPE 100

100 FORMAT (GIHAENTERAPROGRAHATITLB,AUPATOAzoACHARACTBRS)
ACCEPT 200

200 FORMAT (20HAATITLEAGOESAHEREAAA)

FORMAT STATEMENTS

The TYPE statement transmits the characters from the H field
descriptor in statement 100 to the wuser's terminal. The ACCEPT
statement accepts the response from the keyboard, placing the input
data in the H field descriptor in statement 200. The new characters
replace the words TITLE GOES HERE; if the user enters fewer than 20
characters, the remainder of the H field descriptor is filled with
spaces to the right.

6.2.9.1 Alphanumeric Literals - An alphanumeric 1literal (an ASCII
character string enclosed in apostrophes) can be used in place of an H

field descriptor. Both types of format specifiers function
identically.

The apostrophe character is written within an alphanumeric literal as
two apostrophes. For example:

50 FORMAT ('TODAY''SADATEAIS:A',I2,'/',12,'/',12)

A pair of apostrophes used in this manner is considered to be a single
character.

6.2.10 X Field Descriptor

The X field descriptor is written:

nX

The X field descriptor causes an input statement to skip over the next
n characters in the input record.

The X field descriptor causes an output statement to transmit n spaces
to the external record. For example:

WRITE (5,90) NPAGE
90 FORMAT (13H1PAGEANUMBERA,I2,16X,23HGRAPHICAANALYSIS,ACONT.)

The WRITE statement prints a record similar to:

PAGE NUMBER nn GRAPHIC ANALYSIS, CONT.
where "nn" is the current value of the variable NPAGE., The numeral 1
in the first H field descriptor is not printed, but is used to advance

the printer paper to the top of a new page. Printer carriage control
is explained in Section 6.3.

FORMAT STATEMENTS

6.2.11 T Field Descriptor

The T field descriptor, which appears as follows:

Tn

is a tabulation specifier, The value of n must be greater than or
equal to one, but not greater than the number of characters allowed in
the external record.

On input, the T field descriptor causes the external record to be
positioned to its nth character position. For example, if a READ
statement input a record containing:
ABCAAAXYZ
under control of the FORMAT statement:
10 FORMAT (T7,A3,T1,A3)

the READ statement would input the characters XYZ first, then the
characters ABC,

On output to devices other than the line printer or terminal, the T
field descriptor states that subsequent data transfer is to begin at
the nth character position of the external record., For output to a
printing device, data transfer begins at position (n-1). The first
position of a printed record is reserved for a carriage control
character (see Section 6.3) which is never printed. For example the
statements:

PRINT 25
25 FORMAT (T51,'COLUMNA2',T21,"'COLUMNALl"')

would cause the following line to be printed:
Position 20 Position 50

OLUMN 1 COLUMN 2

6.2.12 Q Field Descriptor

The Q field descriptor, which is simply the letter Q, is used to
obtain the number of characters in the input record remaining to be
transmitted during a READ operation. It is ignored on output, The
I/0 1list element associated with the Q field descriptor must be of
integer type.

As an example, the statements:

READ (4,1000) XRAY,YANKEE,ZULU,NCHARS
1000 FORMAT (3F10.5,Q)

FORMAT STATEMENTS

read three fields of ten characters each, assigning them as Real
values to the variables XRAY, YANKEE, and ZULU. However, any or all
of those fields may be terminated before ten characters have been read
if one or more external field separators appears in the input record.
The Q field descriptor causes the number of characters remaining in
the input record to be assigned to the variable NCHARS. By placing
the Q descriptor first in the format specification, the actual 1length
of the input record may be determined.

When the Q field descriptor is used with a WRITE statement it has no
effect except that the corresponding list item is skipped.

6.2.13 § Descriptor

The character § (dollar sign) appearing in a format specification
modifies the carriage control specified by the first character of the
record. The $ descriptor is intended primarily for interactive 1I/0
and causes the terminal print position to be left at the end of the
text written (rather than returned to the left margin) so that a typed
response will appear on the same line following the output.

6.2.14 Complex I/0

Since a complex value is an ordered pair of real values, input or
output of a complex entity is governed by two real field descriptors,
using any combination of the forms Fw.d, Ew.d, Dw.d or Gw.d.

on input, two successive fields are read and assigned to a complex I/O
list element as its real and imaginary parts, respectively. For
example

Format External Fields Internal Representation
F8.5,F8.5 1234567812345.67 123.45678,12345.67
E9.1,F9.3 734.43218123456709 734.432E8,12345.678

On output, the constituent parts of a complex value are transmitted
under the control of repeated or successive field descriptors.
Nothing intervenes between those parts unless explicitly stated by the
format specification. For example:

Format Internal Values External Representation
2F8.5 2,3547188,3.456732 A2.35472A3.,45673
E%9.2,' , ',E5.3 47587.222,56.123 A0.48EAQ6A ARh*krn

6-13

FORMAT STATEMENTS

6.2.15 Scale Factor

The location of the decimal point in real and double precision values,
and in the constituent parts of complex values, can be altered during

input or output through the use of a scale factor, which takes the
form:

np

where n is a signed or unsigned integer constant in the range -127 to
+127 specifying the number of positions the decimal point is to be
moved to the right or left.

A scale factor may appear anywhere in a format specification, but must
precede the field descriptors with which it is to be associated. It
is normally written as follows:

nPFw.d nPEw.d nPDw.d nPGw.d

Data input under_control of one of the above field descriptors is
multiplied by 10™" before it is assigned to the corresponding I/0 list
element. For example, a 2P scale factor multiplies an input value by
.01, moving the decimal point two places to the left; a -2P scale
factor multiplies an input value by 100, moving the decimal point two
places to the right, If the external field contains an explicit
exponent, however, the scale factor has no effect. For example:

Format External Field Internal Representation
3PE10.5 AAA37.614A .037614
3PE10.5 AA37.614E2 3761.4
-3PE10.5 AAAA37.614 37614.0

The effect of the scale factor on output depends on the type of field
descriptor with which it is associated. For the F field descriptor,
the value of the I/0 list element is multiplied by 10 " before being
transmitted to the external record. Thus, a positive scale factor
moves the decimal point to the right; a negative scale factor moves
the decimal point to the left.

Values output under control of an E or D field descriptor with scale
factor are adjusted by multiplying the basic real constant portion of
each value by 10 ® and subtracting n from the exponent. Thus a
positive scale factor moves the decimal point to the right and
decreases the exponent; a negative scale factor moves the decimal
point to the left and increases the exponent,

The effect of the scale factor is suspended while the magnitude of the
data to be output is within the effective range of the G field
descriptor, since it supplies its own scaling function. The G field
descriptor functions as an E field descriptor when the magnitude of
the data value is outside its range; the effect of the scale factor
is therefore the same as described for that field descriptor.

FORMAT STATEMENTS

Note that on input, and on output under control of an F field
descriptor, a scale factor actually alters the magnitude of the data;
on output, a scale factor attached to an E, D, or G field descriptor
merely alters the form in which the data is transmitted. Note also
that on input a positive scale factor moves the decimal point to the
left and a negative scale factor moves the decimal point to the right,
while on output the effect is just the reverse,

If no scale factor is attached to a field descriptor, a scale factor
of zero is assumed. Once a scale factor has been specified, however,
it applies to all subsequent real and double precision field
descriptors in the same format specification, unless another scale
factor appears; that scale factor then assumes control. A scale
factor of zero can only be reinstated by an explicit OP specification.

Some examples of scale factor effect on output are:

Format Internal Value External Representation
3PEl2.3 -270.139 -270,139EA00
1PEl2.3 -270.,139 AA=2,701EA02
1PEl12.2 -270.139 AAA-2,70EA02
-1PEl12.2 -270.139 AAA-0,03EAQ4

6.2.16 Grouping and Group Repeat Specifications

Any field descriptor (except H, T or X) may be applied to a number of
successive data fields by preceding that field descriptor with an
unsigned integer constant, called a repeat count, that specifies the
number of repetitions. For example, the statements:

20 FORMAT (El12.4,E12.4,E12.4,15,15,1I5,15)

20 FORMAT (3El2.4,415)
have the same effect.
Similarly, a group of field descriptors may be repeatedly applied to
data fields by enclosing those field descriptors in parentheses, with
an unsigned integer constant, called a group repeat count, preceding
the opening left parenthesis. For example:

50 FORMAT (218,3(F8.3,E15.7))
is equivalent to:

50 FORMAT (I18,18,F8.3,E15.7,F8.3,E15.7,F8.3,E15.7)
___\r J \— JA — Wy

1 2 3

FORMAT STATEMENTS

An H or X field descriptor, which could not otherwise be repeated, may
be enclosed in parentheses and treated as a group repeat

specification, thus allowing it to be repeated a desired number of
times,

If a group repeat count is omitted, it is presumed to be 1.

FORMAT STATEMENTS

6.3 CARRIAGE CONTROL

The first character of every record transmitted to a printing device
is never printed; instead, it is interpreted as a carriage control
character. The FORTRAN I/0 system recognizes certain characters for
this purpose; the effects of those characters are shown in Table 6-2.

Table 6-2
Carriage Control Characters

Character Effect
A space Advances one line
0 zero Advances two lines
1 one Advances to top of
next page
+ plus Does not advance

(allows overprinting)

$ dollar sign Advances one line before printing
and suppresses carriage

return at the end of the

record

FORMAT STATEMENTS

Any character other than those described in Table 6-2 is treated as
though it were a space, and is deleted from the print line.

6.4 FORMAT SPECIFICATION SEPARATORS

Field descriptors in a format specification are generally separated
from one another by commas. Slashes (/) may also be used to separate
field descriptors. A slash has the additional effect of being a
record terminator, causing the input or output of the current record
to be terminated and a new record to be initiated. Por example:

WRITE (5,40) K,L,M,N,O,P
40 FORMAT (306/16,2F8.4)

is equivalent to:

WRITE (5,40) K,L,M
40 FORMAT (306)

WRITE (5,50) N,O,P
50 PORMAT (I6,2F8.4)

It is possible to bypass input records or to output blank records by
the use of multiple slashes. If n consecutive slashes appear between
two field descriptors, they cause (n-1) records to be skipped on input
or (n-1l) blank records to be output. (The first slash terminates the
current record; the second slash terminates the first skipped or
blank record, and so on.) If n slashes appear at the beginning or end
of a format specification, however, they result in n skipped or blank
records, because the initial and terminal parentheses of the format
specification are themselves a record initiator and record terminator,

respectively. An example of the use of multiple record terminators is
as follows:

WRITE (5,99)
99 PORMAT (°1°'TS51'HEADING LINE'//T51°'SUBHEADING LINE'//)

The above statements output the following:
Column 50, top of page
HEADING LINE
(blank line)
SUBHEADING LINE

(blank line)
(blank line)

6.5 EXTERNAL FIELD SEPARATORS

A field descriptor such as Fw.d specifies that an Input statement is
to read w characters from the external record. If the data field in
question contains fewer than w characters, the Input statement would

FORMAT STATEMENTS

read some characters from the following field unless the short field
were padded with leading zeros or spaces. To avoid the necessity of
doing so, an input field containing fewer than w characters may be
terminated by a comma, which overrides the field descriptor's field
width specification. This practice, called short field termination,
is particularly useful when entering data from a terminal keyboard.
It may be used in conjunction with I, O, F, E, D, G, and L field
descriptors. For example:

READ (6,100) I,J,A,B
100 FORMAT (2I6,2F10.2)

If the external record input by the above statements contains:
1,-2,1.0,35
Then the following assignments take place:
I =1
J = =2
A=1,0
B = 0.35

Note that the physical end of the record also serves as a field
terminator. Note also that the d part of a w.d specification is not
affected as illustrated by the assignment to B,

Only fields of fewer than w characters may be terminated by a comma,
If a field of w characters or greater is followed by a comma, the
comma will be considered to be part of the following field.

Two successive commas, or a comma following a field of exactly w
characters, constitutes a null (zero-length) field. Depending on the
field descriptor in question, the resulting value assigned is 0, 0.0,
0D0, or .FALSE,.

A comma cannot be used to terminate a field that is to be read under
control of an A, H, or alphanumeric literal field descriptor. If the
physical end of the record is encountered before w characters have
been read, however, short field termination is accomplished and the
characters that were input are assigned successfully. Trailing spaces

are appended to those characters to fill the associated I/0 list
element or the field descriptor.

6.6 OBJECT TIME FORMAT

Format specifications may be stored in arrays. Such a format
specification (termed an object time format) can be constructed or
altered during program execution. The form of a format specification
in an array is identical to a FORMAT statement, except that the word

FORMAT STATEMENTS

FORMAT and the statement label are not present. The initial and

terminal parentheses must appear, however. An examnple of object time
format is as follows:

DOUBLEPRECISION FNRRAY(6),RPAR,FBIG,FMED,FSML
DATA FOQRAY(l);PPAR.FRIGoFNED'FSNL/‘(',')'.'FB.2';'F9.4'.‘F9.6'/
L]

.
00 20 Jsy,5

o0 {8 1sy,5
IF (TABLE(I,J) ,GE, 1WA, ,OR, TABLE(I,J) LE, 0,1)
1 G0 T0 fa
FORRAY(141) 8 FMED
GO TN 18
14 IF (TABLE(I,J) ,GE, 108,) GO TO 16
FORKAY(1+¢1) s FSML"
GO T0 8
16 FORRAY(1+1) & FpBIG
18 CONTINUE
WRITE(S,FORRAY) (TABLE(K,J),Ks1,5)
eV CONT INUF

In this example, the DATA statement assigns a left parenthesis to the
first element of FORRAY and assigns a right parenthesis and three
field descriptors to variables for later use. The proper field
descriptors are then selected for inclusion in the format
specification, based on the magnitude of the individual elements of
array TABLE, A right parenthesis is then added to the format
specification just before its use by the WRITE statement. Thus, the
format specification changes with each iteration of the DO loop.

6.7 FORMAT CONTROL INTERACTION WITH INPUT/OUTPUT LISTS

Format control is initiated with the beginning of execution of a
formatted I/O statement. Each action of format control depends on
information provided jointly by the next element of the I/0 1list (if
one exists) and the next field descriptor of the FORMAT statement or
format array. Both the I/O list and the format specification, except
for the effects of repeat counts, are interpreted from left to right,

If the I/0 statement contains an I/0 1list, at least one field
descriptor of a type other than H, X, T or P must exist in the format
specification. An execution error occurs if this condition is not
met.,

When a formatted input statement is executed, it reads one record from
the specified device and initiates format control; thereafter,
additional records may be read as indicated by the format
specification. Format control demands that a new record be input
whenever a slash is encountered in the format specification, or when
the last outer right parenthesis of the format specification is

FORMAT STATEMENTS

reached and I/0 list elements remain to be filled. Any remaining
characters in the current record are discarded at the time the new
record is read.

When a formatted output statement is executed, it transmits a record
to the specified device as format control terminates. Records may
also be output during format control if a slash appears in the format
specification or if the last outer right parenthesis is reached and
more I/0 list elements remain to be transmitted.

Each field descriptor of types I, O, F, E, D, G, L, A, and Q
corresponds to one element in the I/0 list. No 1list element
corresponds to an H, X, T, or alphanumeric literal field descriptor.
In the case of H and alphanumeric literal field descriptors, data

transfer takes place directly between the external record and the
format specification.

When format control encounters an I, O, F, E, D, G, L, A, or Q field
descriptor, it determines if a corresponding element exists in the I/O
‘list. If so, format control transmits data, appropriately converted
to or from external format, between the record and the list element,
then proceeds to the next field descriptor (unless the current one is

to be repeated). If there is no associated list element, format
control terminates.

When the last outer right parenthesis of the format specification is
reached, format control determines whether or not there are more I/0
list elements to be processed. If not, format control terminates. If
additional 1list elements remain, however, the current record is
terminated, a new one initiated, and format control reverts to the
rightmost top-level group repeat specification (the one whose left
parenthesis matches the next-to-last right parenthesis of the format
specification). If no group repeat specification exists in the FORMAT
statement or format array, format control returns to the initial left
parenthesis of the format specification. Data transfer continues from
that point.

6.8 SUMMARY OF RULES FOR FORMAT STATEMENTS

The following is a summary of the rules pertaining to the construction
and use of the FORMAT statement or format array and its components,
and to the construction of the external fields and records with which
a format specification communicates.

6.8.1 General
1. A FORMAT statement must always be labeled.

2. In a field descriptor such as rIw or nX, the terms r, w, and
n must be unsigned integer constants greater than zero. The

repeat count may be omitted; the field width specification
must be present.

FORMAT STATEMENTS

3.

5.

6.8,2
1.

In a field descriptor such as Fw.d, the term d must be an
unsigned integer constant. It must be present in F, E, D,
and G field descriptors even if it is zero. The decimal
point must also be present. The field width specification,
w, must be greater than or equal to 4.

In a field descriptor such as nHclc2 ... cn, exactly n
characters must be present. Any printable ASCII character

may appear in this field descriptor (an alphanumeric literal
field descriptor follows the same rule).

In a scale factor of the form nP, n must be a signed or
unsigned integer constant in the range =127 to 127
inclusive. Use of the scale factor applies to F, E, D, and
G field descriptors only. Once a scale factor has been
specified, it applies to all subsequent real or double
precision field descriptors in that format specification
until another scale factor appears; an explicit op

specification is required to reinstate a scale factor of
zero.

No repeat count is permitted in H, X, T or character
constant descriptors unless those field descriptors are
enclosed in parentheses and treated as a group repeat
specification,

If an I/0 list is present in the associated I/0 statement,
the format specification must contain at least one field
descriptor of a type other than H, X, T or alphanumeric
literal.

A format specification in an array must be constructed
identically to a format specification in a FORMAT statement,
including the initial and terminal parentheses. When a
format array name is used in place of a FORMAT statement
label in an I/0O statement, that name must not be
subscripted.

Input

An external input field with a negative value must be
preceded by a minus symbol; a positive-value field may
optionally be preceded by a plus sign,

An external field whose input conversion is governed by an I
field descriptor must have the form of an integer constant.
An external field input under control of an O field
descriptor must have the form of an octal constant (Section
2.2.5), without a leading double quote. Neither may contain
a decimal point or an exponent,

FORMAT STATEMENTS

3.

5.

6.8.3

1.

An external field whose input conversion is handled by an F,
E, or G field descriptor must have the form of an integer
constant or a real or double precision constant (see Section
2.2.2). It may contain a decimal point and/or an E or D
exponent field.

If an external field contains a decimal point, the actual
size of the fractional part of the field, as indicated by
that decimal point, overrides the d specification of the
associated real or double precision field descriptor.

If an external field contains an exponent, it causes the
scale factor (if any) of the associated field descriptor to
be inoperative for the conversion of that field.

The field width specification must be large enough to
accommodate, in addition to the numeric character string of
the external field, any other characters that may be present
(algebraic sign, decimal point, and/or exponent).

A comma is the only character that is acceptable for use as
an external field separator. It is used to terminate input
of fields that are shorter than the number of characters
expected, or to designate null (zero-length) fields.

Output

A format specification must not demand the output of more
characters than can be contained in the external record (for
example, a line printer record cannot contain more than 133
characters including the carriage control character).

The field width specification, w, must be large enough to
accommodate all characters that may be generated by the
output conversion, including an algebraic sign, decimal
point, and exponent (the field width specification in an E
field descriptor, for example, should be large enough to
contain (d+7) characters).

The first character of a record output to a line printer or
terminal is used for carriage control; it is never printed.
The first character of such a record should be a space, 0,1,
$, or +. Any other character is treated as a space and is
deleted from the record.

CHAPTER 7

SPECIFICATION STATEMENTS

This chapter discusses the FORTRAN specification statements.
Specification statements are nonexecutable. They provide the
information necessary for the proper allocation and initialization of
variables and arrays, and define other characteristics of the symbolic

names used in the program, but have no function during the execution
of the program.

7.1 IMPLICIT STATEMENT

The IMPLICIT statement permits the programmer to override the implied
data type of symbolic names, in which all names that begin with the
letters I, J, K, L, M, or N are presumed to represent integer data and
all names beginning with any other letter are presumed to be of real
type, in the absence of an explicit type declaration.

The IMPLICIT statement appears in the following form:
IMPLICIT typ(al,al...)[,typ(al,alece)].ce.
typ is one of the following data type names:

INTEGER
INTEGER*2
INTEGER*4
REAL
REAL*4
REAL*8
DOUBLE PRECISION
COMPLEX
COMPLEX*8
LOGICAL
LOGICAL*1
LOGICAL*4

SPECIFICATION STATEMENTS

and each a is an alphabetic specification in either of the following
general forms:

a
or
al-a2
a is an alphabetic character.

The latter form specifies a range of letters, from al through a2,
which must occur in alphabetical order.

The IMPLICIT statement assigns the data storage and precision
characteristics specified by "typ" to all symbolic names that begin

with any specified letter, or any letter within a specified range.
For example, the statements:

IMPLICIT INTEGER (I,J,K,L,M,N) or IMPLICIT INTEGER (I-N)
IMPLICIT REAL (A~H, 0-32)

represent the default in the absence of any data type specifications.
IMPLICIT statements must not be labeled.
Examples

IMPLICIT DOUBLE PRECISION D
IMPLICIT COMPLEX (S,Y), LOGICAL*l (L,A-C)

7.2 TYPE DECLARATION STATEMENTS

Type declaration statements explicitly define the data type of
specified symbolic names.

Type declaration statements appear in the form shown below:
typ vi,v]...
typ is one of the following data type names:

LOGICAL
LOGICAL*1
LOGICAL*4
INTEGER
INTEGER*2
INTEGER*4
REAL

SPECIFICATION STATEMENTS

REAL*4

DOUBLE PRECISION
REAL*8

COMPLEX
COMPLEX*8

v is the symbolic name of a variable, array, or FUNCTION
subprogram, or an array declarator.

A type declaration statement causes the specified symbolic names to
have the specified data type.

A type declaration statement may also be used to define arrays,
provided those arrays have not been previously defined, by including
array declarators (see Section 2.4) in the list.

A type declaration overrides the data type implied by a symbolic
name's initial 1letter, whether by default or by specification in an
IMPLICIT statement.

Also, a symbolic name may be followed by an optional length
specification of the form *s, where s is one of the acceptable lengths
for the data type being declared. Such a specification overrides, for
the item with which it was specified, the length attribute implied by
the statement. For example;

INTEGER*2 I,J,K,M12*4,Q,IVEC*4(10)
REAL*®*8 WX1,WXZ,WX3*4 ,WX5,WX6*8

Note that REAL*8 is the same as DOUBLE PRECISION,
Type declaratiop statements should precede all executable statements
and all specification statements except the IMPLICIT statement. It
must precede the first use of any symbolic name it defines.
The data type of a symbolic name may be explicitly declared only once.
Type declaration statements must be used to define names that are to
represent any data type for which there is no implied definition,
either by default or by specification in an IMPLICIT statement.
Type declaration statements must not be labeled.
Examples

INTEGER COUNT, MATRIX(4,4), SUM

REAL MAN, IABS
LOGICAL SWITCH

SPECIFICATION STATEMENTS

7.3 DIMENSION STATEMENT

The DIMENSION statement defines the number of dimensions in an array
and the number of elements in each dimension.

The form of the DIMENSION statement is:

DIMENSION a(d)[,a(d)]...
a is the symbolic name of an array
d is a dimension declarator.

Each a(d) is an array declarator as described in Section 2.4,

The DIMENSION statement allocates a number of storage locations, one
for each element in each dimension, to each array named in the
statement. Each storage location is one, two, four or eight bytes in
length, as determined by the data type of the array. The total number
of locations assigned to an array is equal to the product of all
dimension declarators in the array declarator for that array. For

example:
DIMENSION ARRAY(4,4), MATRIX(5,5,5)

defines ARRAY as having 16 real elements of two words each, and MATRIX
as having 125 integer elements of one word each.

For further information concerning arrays and the storage of array
elements, see section 2.4.

The dimensions of an array may be defined by a type declaration
statement. If an array has been so defined, it must not be
redimensioned by a DIMENSION statement, and it must not be redefined
by any other dimensioning statement.
Once the number of dimensions in an array has been defined, the same
number of subscripts (or none) must appear in every reference to- that
array. The only exception to this rule is in the EQUIVALENCE
statement, as described in Section 7.5.1.
DIMENSION statements must not be labeled.
Examples

DIMENSION BUD(12,24,10)

DIMENSION X(5,5,5),Y(4,85),Z(100)

DIMENSION MARK(4,4,4,4)

SPECIFICATION STATEMENTS

7.3.1 Adjustable Dimensions

The DIMENSION statement allows a subprogram to process more than one
set of array data with a single definition through the use of integer
variables as dimension declarators rather than unsigned integer
constants.

To use adjustable dimensions, the user must first define one or more
arrays explicitly in the main program unit. Then, when control is
transferred to the subprogram containing the adjustable DIMENSION
statement, the actual array name and the actual number of elements per
dimension (for that execution of the subprogram) are passed to the
subprogram as arguments in the function reference or CALL statement.
The subprogram replaces the array name and adjustable dimensions in
its DIMENSION statement(s) with those actual values to create the
proper array definition for that execution. For example:

Main Program Subprogram

DIMENSION A(10), B (20) SUBROUTINE SUB (X,N,R)

. DIMENSION X(N)

. DO 20 K=1,N
CALL SUB (A,10,RESULT) .
CALL SUB (B,20,ANSWER) .

o RETURN

. END

Each CALL statement in the main program supplies the subprogram with a
different array name and number of elements, which are then associated
with array name X and adjustable dimension N in the subprogram's
DIMENSION statement. Thus, the subprogram processes a different set
of data with each execution (note also that the value of N is used to
determine the number of iterations of the DO loop).

Adjustable dimensions may only be used in subprograms; DIMENSION
statements in the main program unit must use fixed dimension
declarators.

Every call to a subprogram that contains an adjustable DIMENSION
statement must pass an array name and actual dimension declarators as
arguments to that subprogram. A dimension declarator passed as an
argument may differ from the corresponding fixed dimension declarator
for the array in question. However, the size of the adjustable array
(the product of all dimensions) must not exceed the size of the array
as declared when it was given fixed dimensions.

The value of dummy argument which is used in an array declarator must
not change during the execution of the subprogram, For example, in
the sample above, an assignment to the dummy argument N would be in
error,

SPECIFICATION STATEMENTS

7.4 COMMON STATEMENT

A COMMON statement defines one or more contiguous areas (blocks) of
storage. Each block is identified by a symbolic name; in addition,
one common block is also called the blank common block. A COMMON
statement also defines the order of variables and arrays that are part
of each common block.

Data in COMMON can be referenced from different program units by the
same block name,

7.4.1 Blank Common and Named Common

There can be only one blank common block in an entire executable
program, COMMON statements can be used to establish any number of
named common blocks.

A COMMON statement has the following form:

COMMON [/[cb]/] nlist [/[cb]/nlist]...

SPECIFICATION STATEMENTS

cb is a symbolic name (of the same form as a variable name),
called a common block name, or is blank. If the first cb is
blank, the first pair of slashes may be omitted.

nlist is a list of variable names, array names, and array
declarators separated by commas.

A common block name may be the same as a variable or array name;
however, it may not be the same as the name of a function or a
subroutine, or a function or subroutine entry, in the executable
program,

Common blocks with the same name that are declared in different
program units all share the same storage area when those program units
are combined into an executable program.

Because assignment of components to common is on a one-for-one storage
basis, components assigned by a COMMON statement in one program unit
should agree in data type with those placed in common by another

program unit. For example, if one program unit contains the
statement:

COMMON CENTS
and another program unit contains the statement:
COMMON MONEY

unpredictable results may occur since the Jl-word integer variable

MONEY is made to correspond to the high-order word of the real
variable CENTS.,

Care must be taken when LOGICAL*1l elements are assigned to common, to
ensure that any data of other types, assigned following the LOGICAL*1
data, is allocated on a word boundary. All common blocks start on a
word (even) boundary.

Example
Main Program Subprogram

COMMON HEAT,X/BLK1/KILO,Q SUBROUTINE FIGURE

. COMMON /BLK1/LIMA,R/ /ALFA,BET
CALL FIGURE
. RETURN
. END

The COMMON statement in the main program places HEAT and X in blank
common and places KILO and Q in a labeled common block, BLKl. The

SPECIFICATION STATEMENTS

COMMON statement in the subroutine causes ALFA and BET to correspond

to HEAT and X in blank common and makes LIMA and R correspond to KILO
and Q in BLK1,

7.4.2 COMMON Statements with Array Declarators

Array declarators in the COMMON statement define the dimensions of an
array in the same manner as a DIMENSION statement. Array names must
not be otherwise subscripted (individual array elements cannot be
assigned to common). A symbolic name that is intended to represent an
array must be so defined at its first appearance in the program, It
must not be redefined thereafter. Therefore, if an array has been
defined in a DIMENSION or type declaration statement, it must not be
redimensioned by a COMMON statement. Similarly, if an array is
defined in a COMMON statement, it must not be subsequently redefined
by any other dimensioning statement.

7.5 EQUIVALENCE STATEMENT

The EQUIVALENCE statement declares two or more entities to be
associated (either totally or partially) with the same storage
location. The EQUIVALENCE statement works with components that exist
in the same program unit.,

The general form of the EQUIVALENCE statement is:
EQUIVALENCE (nlist) [,(nlist)])...

nlist is a list of variables and array elements, separated by
commas . At least two components must be present in each
list.

The EQUIVALENCE statement causes all of the variables or array
elements in one parenthesized list to be allocated beginning in the
same storage location. Note that an Integer variable made equivalent
to a Real variable shares storage with the high-order word of that
variable. Mixing of data types in this way is permissible. Multiple
components of one data type can share the storage of a single
component of a higher-ranked data type. For example:

DOUBLE PRECISION DVAR
INTEGER*2 IARR(4)
EQUIVALENCE (DVAR,IARR(1l))

The EQUIVALENCE statement causes the four elements of the integer

array IARR to occupy the same storage as the double precision variable
DVAR.

The EQUIVALENCE statement can also be used to equate variable names.
For example, the statement

SPECIFICATION STATEMENTS

EQUIVALENCE (FLTLEN, FLENTH, FLIGHT)

causes FLTLEN, FLENTH and FLIGHT to have the same definition provided
they are also of the same data type.

An EQUIVALENCE statement in a subprogram must not contain dummy
arguments.

Examples

EQUIVALENCE (A,B), (B,C) (has the same effect as
EQUIVALENCE (A,B,C))

EQUIVALENCE (A(l),X), (A(2),Y), (A(3),2)

7.5.1 Making Arrays Equivalent

When an element of an array is made equivalent to an element of
another array, the EQUIVALENCE statement also sets equivalences
between the corresponding elements that are adjacent to those named in
the statement. Thus, if the first elements of two equal-sized arrays
are made equivalent, both entire arrays are made to share the same
storage space. If the third element of a S5-element array is made
equivalent to the first element of another array, the last three
elements of the first array overlap the first three elements of the
sacond array.

The EQUIVALENCE statement must not attempt to assign the same storage
location to two or more elements of the same array, nor to assign
memory locations in any way that is inconsistent with the normal
linear storage of array elements (for example, making the first
element of an array equivalent with the first element of another
array, then attempting to set an equivalence between the second
element of the first array and the sixth element of the other).

In the EQUIVALENCE statement only, it is possible to identify an array
element with a single subscript, the 1linear element number, even
though the array has been defined as a multi-dimensional array.

For example, the statements:

DIMENSION TABLE (2,2), TRIPLE (2,2,2)
EQUIVALENCE (TABLE(4), TRIPLE(7))

result in the entire array TABLE sharing a portion of the storage
space allocated to array TRIPLE as illustrated in Figure 7-3.

SPECIFICATION STATEMENTS

Array TRIPLE Array TABLE

Array Element Array Element
Element Number Element Number
TRIPLE(1,1,1) 1l

TRIPLE(2,1,1) 2

TRIPLE(1,2,1) 3

TRIPLE(2,2,1) 4 TABLE (1,1) 1
TRIPLE(1,1,2) 5 TABLE (2,1) 2
TRIPLE(2,1,2) 6 TABLE(1,2) 3
TRIPLE(1,2,2) 7 TABLE (2,2) 4
TRIPLE(2,2,2) 8

Figqure 7-3

Equivalence of Array Storage
Figure 7-3 also illustrates that the statements

EQUIVALENCE (TABLE(l),TRIPLE(4))

EQUIVALENCE (TRIPLE(1,2,2), TABLE(4))

result in the same alignment of the two arrays.

SPECIFICATION STATEMENTS

7.5.2 EQUIVALENCE and COMMON Interaction

When components are made equivalent to entities stored in common, the
common block may be extended beyond its original boundaries. An
EQUIVALENCE statement can only extend common beyond the last element
of the previously established common block. It must not attempt to
increase the size of common in such a way as to place the extended
portion before the first element of existing common. For example:

vValid Extension of Common

DIMENSION A(4) ,B(6) A(l) | A(2) | A(3) | A(4)
COMMON A
EQUIVALENCE (A(2),B(l)) B(1) | B(2) | B(3) | B(4) | B(5) | B(#6)
AN \— _/
Existing Extended
Common Portion

Illegal Extension of Common

DIMENSION A(4) ,B(6) A(l) | A(2) | A(3) | A(4)
COMMON A
EQUIVALENCE (A(2),B(3)) B(l) | B(2) | B(3) | B(4) | B(5) | B(6)
A _—
Extended Existing Common Extended
Portion Portion

If two components are assigned to the same or different common blocks,
they must not be made equivalent to each other.

7.5.3 EQUIVALENCE and LOGICAL*1l Arrays

If an element of a LOGICAL*1l array that is not aligned on a word
boundary is equivalenced to an array or variable of another data type,
it may cause that variable or all elements of that array not to be
aligned on word boundaries. If this occurs, an attempt to reference
that variable or those array elements will cause an error during
execution of the program.

SPECIFICATION STATEMENTS

7.6 EXTERNAL STATEMENT

The EXTERNAL statement permits the use of external procedure names
(functions, subroutines, and FORTRAN Library functions) as actual
arguments to other subprograms.

The EXTERNAL statement appears in the following form:

EXTERNAL v[,V]...

v is the symbolic name of a subprogram or the name of a dunmy
argument which is associated with a subprogram name.

The EXTERNAL statement declares each name in its list to be the name
of an external procedure. Such a name may then appear as an actual
argrument to a subprogram. The subprogram may then use the associated
dummy argument name in a function reference or a CALL statement.

Note, however, that a complete function reference used as an argument
(such as CALL SUBR(A,SQRT(B),C), for example) represents a data value,
not a subprogram name; the function name need not be defined in an
EXTERNAL statement.

Example
Main Program Subprograms
EXTERNAL SIN,COS,TAN SUBROUTINE TRIG (X,F,Y)
o Y = F(X)
o RETURN
CALL TRIG (ANGLE,SIN,SINE) END

CALL TRIG (ANGLE,COS,COSINE)

FUNCTION TAN (X)

CALL TRIG (ANGLE,TAN,TANGNT) TAN = SIN(X) / COS(X)
. RETURN
. END

The CALL statements pass the name of a function to the subroutine
TRIG, which is subsequently invoked by the function reference F(X) in

the second statement of TRIG. Thus, the second statement becomes in
effect:

SIN(X),
COS (X), or
TAN (X)

Y
Y
Y

depending upon which CALL statement invoked TRIG (the functions SIN
and COS are examples of trigonometric functions supplied in the
FORTRAN Library.)

SPECIFICATION STATEMENTS

7.7 DATA STATEMENT

The DATA initialization statement permits the assignment of initial
values to variables and array elements prior to program execution.

The DATA statement appears in the form:

DATA nlist/clist/[,nlist/clist/]...

nlist is a list of one or more variable names, array names, or
array element names separated by commas. Subscript
expressions must be constant.
clist is a list of constants.
Constants in a clist may be written in either of the forms:
value
or
n * value
n is a nonzero unsigned integer constant that specifies the
number of times the same value is to be assigned to successive
entities in the associated nlist.
The DATA statement causes the constant values in each clist to be
assigned to the entities in the preceding nlist. Values are assigned

in a one-to-one manner in the order in which they appear, from left to
right,

SPECIFICATION STATEMENTS

When an unsubscripted array name appears in a DATA statement, values
are assigned to every element of that array. The associated constant
list must therefore contain enough values to fill the array. Array
elements are filled in the order of subscript progression.

When Hollerith data is assigned to a variable or array element, the
number of characters that can be assigned depends on the data type of
that component, as described in Sections 2.3.3 and 2.3.4. If the
number of characters in a Hollerith constant or alphanumeric literal
is less than the capacity of the variable or array element, the
constant is extended to the right with spaces. If the number of
characters in the constant is greater than the maximum number that can
be stored, the rightmost excess characters are not used.

The number of constants in a constant list must correspond exactly to
the number of entities specified in the preceding name list. The data
types of the data elements and their corresponding symbolic names
should also agree (except in the case of alphanumeric data).

Radix-50 constants may be used to initialize Real variables only.
Example

INTEGER A(10) ,BELL
DATA A,BELL,STARS/10%0,,7, '***&!/

The DATA statement assigns zero to all ten elements of array A, the
value 7 to the variable BELL, and four asterisks to the real variable
STARS.

SPECIFICATION STATEMENTS

CHAPTER 8

SUBPROGRAMS

FORTRAN subprograms are divided into two general classes: those that
are written by the user and those that are supplied by the FORTRAN
system, User-written subprograms are grouped into the categories of
functions, which includes both arithmetic statement functions and
FUNCTION subprograms, and subroutines,

8.1 USER-WRITTEN SUBPROGRAMS

One difference between functions and subroutines is that control is
transferred to a function by means of a function reference while
control is passed to a subroutine by a CALL statement. A function
reference is simply the name of the function, together with its
arguments, appearing in an expression.

A second difference is that a function always returns a value to the
calling program., Both functions and subroutines may return additional
values via assignment to their arguments.

Arguments are represented in two ways: as dummy arguments and as
actual arguments. Dummy arguments appear in the FUNCTION statement,
SUBROUTINE statement, or arithmetic statement function definition and
are used to represent the value of the corresponding actual argument.
Actual arquments appear in the function reference or CALL statement
and provide actual values to be used for computation. The actual and
dummy arguments become associated at the time control is transferred
to the subprogran. Actual arguments may be constants, variables,
array names, array elements, subprogram names, or expressions.,

8.1.1 Arithmetic Statement Function (ASF)

An arithmetic statement function is a computing procedure defined by a
single statement, similar in form to an arithmetic assignment
statement. The appearance of a reference to the function within the

SUBPROGRAMS

same program unit causes the computation to be performed and the
resulting value made available to the expression in which the ASF
reference appears.

The statement that defines an arithmetic statement function appears in
the following general form:

£ (lpl,ple.s])=e
£ is a symbolic name.
P is a symbolic name,
is an expression.
f is the name of the ASF, in the same form as a variable name.

Each p is a dummy argument, which must be a valid variable name. The
expression is an arithmetic expression that defines the computation to
be performed by the ASF,

A function reference to an ASF takes the form:
£ (lpl,pPl.c.])

where f is the name of the ASF, and each p is an actual argument. An
actual argument may be any arithmetic expression.

When a reference to an arithmetic statement function appears in an
expression, the values of the actual arguments are associated with the
dummy arguments in the ASF definition. The expression in the defining
statement is then evaluated and the resulting value is used to
complete the evaluation of the expression containing the function
reference.

The data type of an ASF is determined either implicitly by the initial
letter of the name or explicitly by appearance in a data type
declaration statement,

Dummy arguments in an ASF definition serve only to indicate the
number, order, and data type of the actual arguments. The same names
may be used to represent other entities elsewhere in the program unit.
Any dimensioning information associated with the dummy argument name
will be ignored in the ASF. The name of the ASF, however, cannot be
used to represent any other entity within the same program unit.

The expression in an ASF definition may contain function references.
If a reference to another ASF appears in the expression, that function
must have been defined previously. The definition of an arithmetic
statement function must not contain a reference to itself.

Any reference to an ASF must appear in the same program unit as the
definition of that function,

An ASF reference must appear as, or be part of, an expression; it
must not be used as a variable or array name on the left of an equal
sign.

SUBPROGRAMS

Actual arguments must agree in number, order, and data type with their
corresponding dummy arguments. Values must have been assigned to them
before control is transferred to the arithmetic statement function.
Examples

ASF Definitions

VOLUME (RADIUS) = 4,189*RADIUS**3
SINH(X) = (EXP(X)=EXP(~-X))*0.5

AVG(A,B,C,3.) = (A+B+C)/3. (Invalid; constant as d
argument not permitted)

In the second example, the function EXP is an exponential function
supplied in the FORTRAN Library. It raises the value of the
mathematical constant e (approximately 2.71828) to the power of the
argument.

ASF References

AVG(A,B,C) = (A+B+C)/3, (Definition)

GRADE = AVG (TEST1,TEST2,XLAB)
IF (AVG(P,D.Q).LT.AVG(X,Y,Z)) GO TO 300
FINAL = AVG(TEST3,TEST4,LAB2) (Invalid; data type of third

argument does not agree with
dummy argument)

8.1.2 FUNCTION Subprogram

A FUNCTION subprogram is a program unit that consists of a FUNCTION
statement followed by a series of statements that define a computing
procedure. Control is transferred to a FUNCTION subprogram by a
function reference and returned to the calling program unit by a
RETURN statement.

A FUNCTION subprogram returns a single value to the calling program
unit by assigning that value to the function's name. The data type of
the value returned is determined by the function's name.

The FUNCTION statement appears in the following general form:

SUBPROGRAMS

[typ] FUNCTION nam[*n] [([p(,Ple..])]
typ is a type specifier.
nam is a symbolic name.
*n is a type override.
P is a symbolic name.

nam is the symbolic name of the function, in the same form as a
variable name; typ is the name of a data type, *n is optional and is
any legal length specifier for the type of the function, and each p is

an optional dummy argument, which must be an unsubscripted symbolic
name.

A function reference that transfers control to a FUNCTION subprogran
takes the general form:

nam ([p[lp]ooo])

where nam is the symbolic name of the function to receive control, and
each p is an actual argument, which may be any valid expression.

When control is transferred to a FUNCTION subprogram, the values
supplied by the actual arguments are associated with the dummy
arguments in the FUNCTION statement. The statements in the subprogram
are then executed, using those values. The name of the function must
be assigned a value before a RETURN statement is executed in that
function. When control is returned to the calling program unit, the
value thus assigned to the function's name is made available to the
expression that contains the function reference, and is used to
complete the evaluation of that expression.

The type of a function name may be specified implicitly, explicitly in
the FUNCTION statement, or explicitly in a type declaration statement.

The FUNCTION statement must be the first statement of a function
subprogram. It must not be labeled.

Dummy arguments must not appear in EQUIVALENCE, COMMON, or DATA
statements within the subprogram.

A FUNCTION subprogram must not contain a SUBROUTINE statement, a BLOCK
DATA statement, or a FUNCTION statement other than the initial
statement of the subprogram,

If an actual argument is a constant or expression, the function must
not attempt to alter the value of the corresponding dummy argument.

A FUNCTION subprogram may contain references to other subprograms, but
recursion is not allowed.

Actual arguments must agree in number, order, and data type with the
dummy arguments of the function. The type of the function name as
defined in the FUNCTION subprogram must be the same as the type of the
function name in the calling program unit.

SUBPROGRAMS

Example

FUNCTION ROOT (A)
X=1,0
2 EX = EXP(X)
EMINX = 1./EX
ROOT = ((FX+EMINX) *,5+COS (X)=-A)/((EX - EMINX) *,5=-SIN(X))
IF (ABS(X-ROOT).LT.*1E-6) RETURN
X = ROOT
GO TO 2
END

The function in this example uses the Newton-Raphson iteration method
to obtain the root of the function:

F(X) = cosh(X) + cos(X) - A= 0

where the value of A is passed as an argument. The iteration formula
for this root is:

cosh (Xi) +cos (Xi)=-A
Xi+l = Xi -

sinh (Xi)=-sin (Xi)
which is repeatedly calculateg until the difference between Xi and

Xi+l is 1less than 1 x 10~ The function makes use of the FORTRAN
Library functions EXP, SIN, COS, and ABS.

8.1.3 SUBROUTINE Subprogram

Control is transferred to a subroutine by a CALL statement and
returned to the calling program unit by a RETURN statement.
The SUBROUTINE statement appears in the following form:

SUBROUTINE nam [([p[,pl...1)]

nam is the symbolic name of the subroutine, of the same form as a
variable name.

P is a dummy argument, which must be an unsubscripted symbolic
name.

The body of the SUBROUTINE subprogram is similar to any other program
unit except that it must contain at least one RETURN statement.

The form of the CALL statement is described in Section 4.5.

SUBPROGRAMS

When control is transferred to the subroutine, the values supplied by
the actual arguments (if any) in the CALL statement are associated
with the corresponding dummy arguments (if any) in the SUBROUTINE
statement, making those values available to the subprogram.

The SUBROUTINE statement must be the first statement of a subroutine;
it must not have a statement label.

The argument list in a SUBROUTINE statement may contain any number of

dummy arguments, or none. Dummy arguments must not appear in a
COMMON, DATA, or EQUIVALENCE statement within the subprogram,

A subroutine cannot contain a FUNCTION statement, a BLOCK DATA
statement, or a SUBROUTINE statement other than the initial statement
of the subprogram. A CALL statement in a subroutine may transfer
control to other subroutines but must not transfer control to the
subroutine of which it is a part.

The name of the subroutine must not be used as a variable in the
calling program unit.

Statements in a subroutine may establish or redefine values for any
argument whose associated actual argument is not a constant,
expression or subprogram name.

Actual arguments in a CALL statement must agree in number, order, and
data type with the dummy arguments in the corresponding SUBROUTINE
statement.

Example

Main Program

e XaNal

.

.

.

COMMON NFACES,EDGE, VOLUME
.

.

.

(a N NaNaNeNel

READ (5,65) NFACES,EDGE
5 FORMAT(12,F8,5)
CaLL PLYVOL

>

(aNaNaNeNaNel
e o o o

STOP
END

SUBPROGRAMS

SUBROUTINE Subprogram

SUBROUTINE PLYVOL

COMMON NFACES,EDGE, VOLUME

CUBED » ENGEee«]

G0 10 (6,6,6,1,6,2,6,3,6,6,6,4,6,6,6,6,6,6,6,5,6), NFACES

1 VOLUME s CUBED « B2,11785
RETURN

2 VOLUME = CUBED
RETURN

3 VOLUME = CUBFD » ¥4,47140
RETURN

4 VOLUME s CUBED » 7,66312
RETURN

5 VOLUME s CUBEND » 2,18170
RETURN

6 WRITE (7,10@) NFACES

100 FORMAT(! NO REGULAR POLYMEDRON MAS ', 13,' FACES,!'/)
RETURN
END

The subroutine in this example computes the volume of a regular
polyhedron, given the number of faces and the length of one edge., It
uses the computed GO TO statement to determine whether the polyhedron
is a tetrahedron, cube, octahedron, dodecahedron, or icosahedron, and
to transfer control the proper procedure for calculating the volume.
If the number of faces of the body is other than 4,6,8,12, or 20, the
subroutine displays an error message on the user's terminal.

]
Q
+4
&y
m
o]
]

:
g
x
g

SUBPROGRAMS

8.1.5 BLOCK DATA Subprogram

The BLOCK DATA subprogram is used to assign initial values to entities
in labeled common blocks, at the same time establishing and defining
those blocks. It consists of a BLOCK DATA statement followed by a
series of nonexecutable statements (specification statements).

The BLOCK DATA statement appears in the form:

BLOCK DATA

The statements allowed in a BLOCK DATA subprogram ares Type
Declaration, IMPLICIT, DIMENSION, COMMON, EQUIVALENCE, and DATA
statements,

The BLOCK DATA subprogram functions at compilation time only. The
specification statements in the subprogram establish and define common

blocks, assign variables and arrays to those blocks, and place initial
data in those components.

The BLOCK DATA subprogram is the only way in which components in
labeled common blocks can be initialized. Components in blank common
can never be initialized.

A BILOCK DATA statement must be the first statement of a BLOCK DATA
subprogram. It must not be labeled.

A BLOCK DATA subprogram must not contain any executable statements.

If any entity in a labeled common block is initialized in a BLOCK DATA
subprogram, a complete set of specification statements to establish
the entire block must be present, even though some of the components
in the block do not appear in a DATA statement. Initial values may be
entered into more than one block by the same subprogram.

Example

BLOCK DATA

INTEGER S5,X

LOGICAL T ,W

DOUBLE PRECISION U

DIMENSION R(3)

COMMON /AREAl/R,S,T,U/AREA2/W,X,Y

DATA R/1.0,2*2.0/,T/.FALSE./,U/0.214537D-7/,W/.TRUE./,Y/3.5/
END

8-10

SUBPROGRAMS

8.2 FORTRAN LIBRARY FUNCTIONS

The FORTRAN library functions are listed in Table 8~-1. In order to
use a library function in any PORTRAN program, it is only necessary to
use the symbolic name of the function, together with the required data
references (arguments) upon which the function is to act. The value
obtained from the execution of the function is made available to the
containing expression. Por example,

R = 3.14159 * ABS(X-1)

causes the absolute value of X-1 to be calculated, multiplied by the
constant 3,14159, and assigned to the variable R.

The data type of each library function is predefined as described in
Table 8-1, Arguments passed to these functions may consist of
subscripted or simple variable names, expressions, constants,
arithmetic functions. Arguments to these functions must correspond to
the type indicated in Table 8-1,

SUBPROGRAMS

Table 8-1

FORTRAN Library Punctions

ARGUMENT RESULT
FORM DEFINITION TYPE TYPE
ABS (X) Real absolute value Real Real
IABS(I) Integer absolute value Integer Integer
DABS (X) Double precision absolute value Double Double
CABS (2) Complex to Real, absolute value
where 2=(x,y)
CABS (Z) = (x2+y2)1/2 Complex Real
FLOAT(I) Integer to Real conversion Integer Real
IFIX(X) Real to Integer conversion
IFIX(X) is equivalent to INT(X) Real Integer
SNGL (X) Double to Real conversion Double Real
DBLE (X) Real to Double conversion Real Double
REAL (Z) Complex to Real conversion,
obtain real part Complex Real
AIMAG(Z) Complex to Real conversion,
obtain imaginary part Complex Real
CMPLX (X,Y) Real to Complex conversion
CMPLX (X, Y)=X+i*Y Real Complex
Truncation functions return the sign of
the argument * largest integer < |arq|
AINT (X) Real to Real truncation Real Real
INT(X) Real to Integer truncation Real Integer
IDINT (X) Double to Integer truncation Double Integer
Remainder functions return the remainder
when the first argument is divided by
the second.
AMOD (X, Y) Real remainder Real Real
MOD(I,J) Integer remainder Integer Integer
DMOD (X, Y) Double precision remainder Double Double
Maximum value functions return the
largest value from among the arqument
list; 2 2 argquments.
AMAX@(I,J,...) Real maximum from Integer list Integer Real
AMAX1 (X,Y,...) Real maximum from Real list Real Real
MAX@(I,J,...) Integer maximum from Integer list Integer Integer
MAX1 (X,Y,...) Integer maximum from Real list Real Integer
DMAX1(X,Y,...) Double maximum from Double list Double Double
Minimum value functions return the small-
est value from among the argument list;
2 2 arguments.
AMING(I,J,...) Real minimum of Integer list Integer Real
AMIN1(X,Y,...) Real minimum of Real list Real Real
MING(I,J,...) Integer minimum of Integer list Integer Integer
MIN1 (X,Y,...) Integer minimum of Real list Real Integer
DMIN1(X,Y,...) Double minimum of Double list Double Double

8-12

SUBPROGRAMS

Table 8-1 (Cont.)
TORTRAN Library Functions

bution over the range @ to 1.

tially to #. Resetting I and J to @ re-
generates the random number sequence.

Alternate starting values for I and J will
generate different random number sequences.

See also Appendix C.3.

I and J must
be integer variables and should be set ini-

ARGUMENT RESULT
FORM DEFINITION TYPE TYPE
The transfer of sign functions return
(sign of the second argument) * (absolute
value of first argument).
SIGN (X,Y) Real transfer of sign Real Real
ISIGN(I,J) Integer transfer of sign Integer Integer
DSIGN (X,Y) Double precision transfer of sign Double Double
Positive difference functions return the
first argument minus the minimum of the
two arguments.
DIM(X,Y) Real positive difference Real Real
IDIM(I,J) Integer pcsitive difference Integer Integer
Exponential functions return the value
of e raised to the argument power.
EXP (X) e; Real Real
DEXP (X) e, Double Double
CEXP(2) e Complex Complex
ALOG (X) Returns loge(x) Real Real
ALOG1f (X) Returns logjg(X) Real Real
DLOG (X) Returns log, (X) Double Double
DLOG1g (X) Returns loglg(x) Double Double
CLOG (Z) Returns log, of complex argument Complex Complex
SQRT (X) Square root of Real argument Real Real
DSQRT (X) Square root of Double precision argument Double Double
CSQRT (2) Square root of Complex argument Complex Complex
SIN(X) Rea. sine Real Real
DSIN (X) Double precision sine Double Double
CSIN(Z) Complex sine Complex Complex
COS (X) Rea. cosine Real Real
DCOS (X) Double precision cosine Double Double
CCOS (2) Complex cosine Complex Complex
TANH (X) Hyperbolic tangent Real Real
ATAN (X) Rea. arc tangent Real Real
DATAN (X) Double precision arc tangent Double Double
ATAN2 (X,Y) Real arc tangent of (X/Y) Real Real
DATAN2 (X,Y) Double »recision arc tangent of (X/Y) Double Double
CONJG (2) Complex conjugate, if Z=X+i*Y
COMJIG (Z2)=Z-i+y Complex Complex
RAN(I,J) Returns a random number of uniform distri- Integer Real

SUBPROGRAMS

:
-
:

SUBPROGRAMS

SUBPROGRAMS

SUBPROGRAMS

SUBPROGRAMS

8-19

APPENDIX A
CHARACTER CODES

A.l FORTRAN CHARACTER SET

The FORTRAN character set consists of:
l. The letters A through 2z
2. The numerals 0 through 9

3. The following special characters:

Character Name
a Space or blank or tab
= Equals
+ Plus
- Minus
* Asterisk
/ Slash
(Left Parenthesis

) Right Parenthesis

' Comma

. Decimal Point
' Apostrophe

" Double Quote
$ Dollar Sign

APPENDIX A

Other printable characters may appear in a FORTRAN statement only as
part of a Hollerith constant or alphanumeric literal. Any printable
character may appear in a comment.

A.2 ASCII CHARACTER CODE

PARITY PARITY

CHARACTER ASCII DEC@29 DEC@26 | CHARACTER ASCII DEC#29 DEC@26
{ 173 12 # 12 7
} 175 11 ¢ 11 g

SPACE 249 NONE NONE A 399 8 4 8 4

! g41 1287 12 8 7 A 7 12 1 12 1
" g42 8 7 g8s B ~g2 12 2 12 2
243 8 3 g 86 (o 373 12 3 12 3
$ fa4 11 83 11 8 3 D 194 12 4 12 4
] 245 g 8 4 #8717 E 395 12 5 12 5
& 246 12 11 8 7 F 396 12 6 12 6
! g47 8 5 8 6 G g7 12 7 12 7
(gs59 1285 @84 H 19 12 8 12 8
) 251 11 85 12 8 4 I 311 12 9 12 9
* 252 11 84 11 8 4 J 312 111 111
+ #53 12 8 6 12 K 13 11 2 11 2
P 254 g 8 3 783 L 314 11 3 11 3
- g55 11 11 M *15 11 4 11 4
. g56 1283 12 8 3 N ~16 11 5 11 5
/ 257 g1 g1 o 317 11 6 11 6
g geg 4 '] P l2g 11 7 11 7
1 261 1 1 Q 321 11 8 11 8
2 262 2 2 R 322 11 9 11 9
3 #63 3 3 S 223 g2 g 2
4 264 4 4 T 324 73 g3
5 fA65 5 5 U 225 g 4 g 4
6 g66 6 6 v 126 g s gs
7 267 7 7 W 327 g e g6
8 27¢ 8 8 X 339 g7 g7
9 771 9 9 v 31 g8 g 8
: g72 8 2 11 8 2 Z 32 g9 #o
; 273 1186 @g82 [333 1282 11 85
< g74 12 84 12 8 6 \ 34 g8 2 8 7
= 275 8 6 8 3] 335 1182 12 8 5
> 276 # 86 11 8 € + or © 336 1187 85
? A17 g 87 12 8 2 « or 137 g 85 8 2

APPENDIX A

A.3 RADIX-50 CHARACTER CODE

Radix-50 is a special character data representation in which wup to
three characters from the Radix-50 character set (a subset of the
ASCII character set) can be encoded and packed into a single PDP-11
storage word.

The Radix-50 characters and their corresponding code values are as
follows:

ASCII Octal Radix-50 Value
Character Equivalent (Octal)
Space 40 0
A -2 101 - 132 1l - 32
S 44 33
. 56 34
(Unassigned) 35
0 -9 60 - 71 36 - 47

Radix-50 values are stored, up to three characters per word, by
packing them into single numeric values according to the formula:

((1 * 50 + j) * 50 + k)

where "i", "j", and "k" represent the code values of three Radix-50
characters.

The maximum Radix-50 value is, thus,

47*50%50 + 47*50 + 47 = 174777
The following table provides a convenient means of translating between
the ASCII character set and its Radix-50 equivalents. For example,

given the ASCII string X2B, the Radix-50 equivalent is (arithmetic is
performed in octal):

X = 113000
2 = 002400
B = 000002

X2B = 115402

APPENDIX A

Radix-50 Character/Position Table

Single Char.

or Second Third
First Char. Character Character
Blank 000000 Blank 000000 Blank 000000
A 003100 A 000050 A 000001
B 006200 B 000120 B 000002
C 011300 C 000170 C 000003
D 014400 D 000240 D 000004
E 017500 E 000310 E 000005
F 022600 F 000360 F 000006
G 025700 G 000430 G 000007
H 031000 H 000500 H onnnio
I 034100 I 000550 I 000011
J 037200 J 000620 J 000012
K 042300 K N0N670 K 000013
L 045400 L nnn740 L 000014
M 050500 M 001010 M 000015
N 053600 N 001060 N 000016
0 056700 (o] 001130 0o 000017
P 062000 P 001200 P 000020
Q 065100 Q 001250 Q 000021
R 070200 R 001320 R 000022
S 073300 [001370 s 000023
T 076400 T 001440 T 000024
U 101500 4] 001510 U 000025
\'4 104600 v 001560 \'4 000026
W 107700 W 001630 W 000027
X 113000 X nn1700 X 000030
Y 116100 Y 001750 Y 000031
A 121200 Z 002020 Z 000032
$ 124300 $ 002070 $ 000033
o 127400 . 002140 o 000034
UNUSED 132500 UNUSED 002210 UNUSED 000035
0 135600 0 002260 0 000036
1 140700 1 002330 1 000037
2 144000 2 002400 2 000040
3 147100 3 002450 3 000041
4 152200 4 002520 4 000042
5 155300 5 002570 5 000043
6 160400 6 002640 6 000044
7 163500 7 002710 7 000045
8 166600 8 002760 8 000046
9 171700 9 003030 9 000047

APPENDIX B

FORTRAN LANGUAGE SUMMARY

B.1l EXPRESSION OPERATORS

Operators in each type are shown in order of descending precedence.

Type Operator Operates Upon
Arithmetic % exponentiation arithmetic or logical
*,/ nmultiplication, constants,
division variables, and
+,- addition, subtraction expressions
unary plus and minus
Relational «GT. greater than arithmetic or logical
.GE. greater than or constants, variables,
equal to and expressions
.LT. less than (all
.LE, less than or relational operators
equal to have equal priority)
+EQ. equal to
+NE. not equal to
Logical .NOT. «NOT.A is true if and logical or integer
only if A is false constants, variables,
and expressions
«AND, A.AND.B is true if
and only if A and B
are both true
«OR. A.OR.B is true if and
only if either A or
B or both are true
.EQV. A.EQV.B is true if and (precedence same
only if A and B as .XOR,)
are both true or a
and B are both false.
+«XOR. A.XOR.B is true if and (precedence same

only if A is true and
B is false or B is
true and A is false.

as .EQV.)

B-1

APPENDIX B

B.2 STATEMENTS

The following summary of statements available in the PDP-11 FORTRAN
language defines the general format for the statement. If more
detailed information is needed, the reader is referred to the
Section(s) in the manual dealing with that particular statement.

Manual
Statement Formats Effect Section
ACCEPT See READ, formatted 5.4.3
Arithmetic/Logical Assignment
v=e 3.1
v is a variable name or an array element name
e is an expression
The value of the arithmetic or logical
expression is assigned to the variable.
Arithmetic Statement Function
f(lpl,plec.])=e 8.1.1
£ is a symbolic name
P is a symbolic name
e is an expression
Creates a user-defined function having
the variables p as dummy arguments.
When referenced, the expression is
evaluated using the actual arguments in
the function call.
ASSIGN s TO v 3.3
s is an executable statement label
v is an integer variable name

Associate the statement number s with
the integer variable v for later use in
an assigned GO TO statement.

APPENDIX B

BACKSPACE u 5.8.2
u is an integer variable or constant
The currently open file on logical unit
number u is backspaced one record.
BLOCK DATA 8.1.5
nam is a symbolic name
Specifies the subprogram which follows
as a BLOCK DATA subprogram,
CALL s(([a)l[,[a)]...)] 4.5
8 is a subprogram name
a is an expression, a procedure name, or an array name

Calls the SUBROUTINE subprogram with the
name specified by s, passing the actual
arguments a to replace the durmy
arguments in the SUBROUTINE definition,

APPENDIX B

COMMON [/[cb]l/] nlist [/[cb]l/ nlist]. 7.4
cb is a common block name
nlist is a list of one or more variable names, array names, Or
array declarators separated by commas.
reserves one or more blocks of storage
space under the name specified to
contain the variables associated with
that block nane.
CONTINUE 4.4
Causes no processing.
DATA nlist/clist/[,nlist/clist/]...
| 7.7
nlist is a list of one or more variable names, array names, Or

array element names separated by commas, Subscript
expressions must be constant.

clist is a list of one or more constants separated by commas,
each optionally preceded by j*, where j is a nonzero,
unsigned integer constant.

Causes elements in the list of values to
be initially stored in the corresponding
elements of the list of variable names.

DECODE (c,£f,b) [1ist] 5.9
c is an integer expression
£ is a FORMAT statement label or array name
b is a variable name, an array name, or an array element
name
‘
list is an 1/0 list

Changes the elements in the I/0 1list
from ASCII into the desired internal
format; c specifies the number of
characters, f specifies the format, and
b is the name of an array containing the
ASCII characters to be converted.

APPENDIX B

DEFINE FILE u(m,n,i,v) [,u(m,n,U,v)]... 5.5.3
u is an integer variable name or integer constant
m is an integer variable name or integer constant
n is an integer variable name or integer constant
v is an integer variable name

Defines the record structure of a
direct access file where u 1is the
logical unit number, m is the number of
fixed length records in the file, n is
the length in words of a single record,
U is a fixed argument, and v is the
associated variable.

DIMENSION a(d) [,a(d)]... 7.3
a(d) is an array declarator

Specifies storage space requirements for
arrays.

DO s i = el,e2[,e3] 4.3

s is the label of an executable statement
i is a variable name
ei are integer expressions

1. Set i = el

2. Execute statements through
statement number s

3. Evaluate i = i+e3

4. Repeat 2 through 3 for
MAX (1, INT((e2 - el)/e3) + 1)
iterations

B-5

APPENDIX B

ENCODE (c,f,b) [list] 5.9
c is an integer expression
f is a FORMAT statement label or an array name
b is a variable name, array name, or array element name
list is an I/0 list

Changes the elements in the 1list of
variables into ASCII format; c
specifies the number of characters in
the buffer, f specifies the format
statement number, and b is the name of
the array to be used as a buffer.

END 4.9
Delimits a program unit,
END FILE u 5.8.3

u is an integer variable or constant

An end-file record is written on logical
unit u.

8.1.4
EQUIVALENCE (nlist)([,(nlist)]... 7.5
nlist is a list of two or more variable names, array names, or

array element names separated by commas. Subscript
expressions must be constant.

B-6

APPENDIX B

Each of the names (nlist) within a set
of parentheses is assigned the same
storage location.

EXTERNAL v[,v]... 7.6
v is a procedure name
Informs the system that the names

specified are those of FUNCTION or
SUBROUTINE programs.,

FIND (u'r) 5.8.4

u is an integer variable name or integer constant
r is an integer expression
Positions the file on logical unit

number u to record r and sets associated
variable to record number r.

FORMAT (field specification,...) 6.1 - 6.8

Describes the format in which one or
more records are to be transmitted; a
statement label must be present.

APPENDIX B

[typ] FUNCTION nam([*n] [((p[,ples.])] 8.1.2
typ is a type specifier
nam is a symbolic name
*n is a type override
P is a symbolic name
Begins a FUNCTION subprogram, indicating
the program name and any dummy argument
names, P. An optional type
specification can be included.
GO TO s 4.1.1
s is an executable statement label
(Unconditional GO TO) Transfers control
to statement number s.
GO TO (slist)[,] e 4.1.2
slist is a list of one or more executable statement labels
separated by commas.
e is an integer expression

(Computed GO TO) Transfers control to
the statement 1label specified by the
value of expression e. (If e=1 control
transfers to the first statement label.
If e=2 it transfers to the second
statement 1label. etc.) If e is less
than 1 or greater than the number of
statement labels present, no transfer
takes place.

GO TO v[,(slist)]

v

slist

4.1.3

is an integer variable name

is a list of one or more executable statement labels
separated by commas

APPENDIX B

(Assigned GO TO) Transfers control to
the statement most recently associated
with v by an ASSIGN statement.

IF (e) sl,s82,s3 4.2.1
e is an expression
si are executable statement labels

(Arithmetic IF) Transfers control to
statement number 8i depending upon the
value of the expression. If the value
of the expression is 1less than zero,
transfer to sl; if the value of the
expression is equal to zero, transfer to
82; if the value of the expression is
greater than zero, transfer to s3.

IF (e) st 4.2.2
e is an expression
st is any executable statement except a DO or a logical IF
statement

(Logical IF) Executes the statement if
the logical expression is true.

IMPLICIT typ (al,al...)[,typ(al,aleee)]ees 7.1
typ is a data type specifier
a is either a single letter, or two letters in alphabetical

order separated by a dash (i.e., x-y)

The elements a represent single (or a
range of) 1letter(s) whose presence as
the initial letter of a variable
specifies the variable to be of that

type.

APPENDIX B

PAUSE [disp]

4.7
disp is a decimal digit string containing one to five digits,
an alphanumeric literal, or an octal constant
Suspends program execution and prints
the display, if one is specified.
PRINT See WRITE, formatted

READ f[,list]

READ (u,f[,END=s][,ERR=s]) [list]

ACCEPT f[,list]

u is an integer variable or constant

£ is a FORMAT statement label or an array name
s is an executable statement label

list is an I/0 list

APPENDIX B

(Formatted Sequential) Reads at least
one logical record from device u
according to format specification f and

assigns values to the variables in the
optional list,

READ(u[,END=s][,ERR=s])[1ist]

u
8

list

READ (u'r[,ERR=8]) [1ist]

u
r
8

list

is an integer variable or constant
is an executable statement label
is an I/0 list

(Unformatted Sequential READ) Reads one
unformatted record from device u,

assigning values to the variables in the
optional list,

5.5.1

is an integer variable or constant
is an integer expression
is an executable statement label

is an I/0 list

(Unformatted Direct Access READ) Reads
record r from logical unit u, assigning

values to the variables in the optional
list,

B-11

APPENDIX B

RETURN 4.6
Returns control to the calling program
from the current subprogram.
REWIND u 5.8.1
u is an integer variable or constant
Repositions logical unit number u to the
beginning of the currently opened file.
STOP (disp] 4.8
disp is a decimal digit string containing one to five digits,
an alphanumeric literal, or an octal constant
Terminate program execution and print
the display, if one is specified.
SUBROUTINE BMI([p['p]ooo])] 8.1.3
nam is a symbolic name
p is a symbolic name
Begins a SUBROUTINE subprogram,
indicating the program name and any
dummy argument names, p.
TYPE See WRITE, formatted 5.4.4
Type Declaration
typ v['v]... 7.2
typ is a data type specifier
v is a variable name, an array name, a function or function

entry name, or an array declarator. The name can

optionally be followed by a length modifier (*n).

(Type Declarations) The symbolic names,
vV, are assigned the specified data type
in the program unit,

Typ is one of:

DOUBLE PRECISION
COMPLEX
COMPLEX*8

REAL

REAL*4

REAL*8

B-12

APPENDIX B

LOGICAL*4

INTEGER
INTEGER*2
INTEGER*4
LOGICAL
LOGICAL*1

WRITE (u,f[,ERR=s]}) [1ist]
PRINT f£[,list]
TYPE f£f[,list]

u
£
s

list

is
is
is
is

an integer variable or constant
a FORMAT statement label or an array name
an executable statement label

an I/0 list

(Formatted Sequential WRITE) Causes one
or more logical records containing the
values of the variables in the optional
list to be written onto device u,
according to the format specification f£.

B-13

APPENDIX B '\\
a\\\
WRITE (ul[,ERR=s]) [list]) “
u is an integer variable or constant.
8 is an executable statement label

list is an I/0 list

(Unformatted Sequential WRITE) Causes
one unformatted record containing the
values of the variables in the optional
list to be written onto device u,

WRITE (u'r([,ERR=8]) [list]

u is an integer variable or constant
r is an integer expression

8 is an executable statement label
list is an I/0 1list

(Unformatted Direct Access WRITE) Causes
a record containing the values of the
variables in the list to be written onto
record r of logical unit u.

END=8 ,ERR=g

(Transfer of Control on end-of-file or
error condition) Is an optional element
in each type of I/0 statement allowing
the program to transfer to statement
number s on an end-of-file (END=) or
error (ERR=) condition.

B-14

5.3.2

5.5.2

5.7

APPENDIX B

Table B-1

FORTRAN Library Functions

ARGUMENT RESULT
FORM DEFINITION TYPE TYPE
ABS (X) Real absolute value Real Real
IABS (I) Integer absolute value Integer Integer
DABS (X) Double precision absolute value Double Double
CABS (2) Complex to Real, absolute value
where Z=(x,y)
CABS (Z) = (x2+y2)1/2 Complex Real
FLOAT (1) Integer to Real conversion Integer Real
IFIX(X) Real to Integer conversion
IFIX(X) is equivalent to INT(X) Real Integer
SNGL (X) Double to Real conversion Double Real
DBLE (X) Real to Double conversion Real Double
REAL (2) Complex to Real conversion,
obtain real part Complex Real
AIMAG(2) Complex to Real conversion,
obtain imaginary part Complex Real
CMPLX (X, Y) Real to Complex conversion
CMPLX (X,Y)=X+i*Y Real Complex
Truncation functions return the sign of
the argument * largest integer < |arg
AINT (X) Real to Real truncation Real Real
INT (X) Real to Integer truncation Real Integer
IDINT (X) Double to Integer truncation Double Integer
Remainder functions return the remainder
when the first arqument is divided by
the second.
AMOD (X, Y) Real remainder Real Real
MOD (I,J) Integer remainder Integer Integer
DMOD (X, Y) Double precision remainder Double Double
Maximum value functions return the
largest value from among the argument
list; > 2 arguments.
AMAX@(I,J,...) Real maximum from Integer list Integer Real
AMAX1 (X,Y,...) Real maximum from Real list Real Real
MAX@(I,J,...) Integer maximum from Integer list Integer Integer
MAX1(X,Y,...) Integer maximum from Real list Real Integer
DMAX1(X,Y,...) Double maximum from Double list Double Double
Minimum value functions return the small-
est value from among the argument list;
2 2 arguments.
AMIN@(I,J,...) Real minimum of Integer list Integer Real
AMIN1(X,Y,...) Real minimum of Real list Real Real
MING(I,J,...) Integer minimum of Integer list Integer Integer
MIN1(X,Y,...) Integer minimum of Real list Real Integer
DMIN1(X,Y,...) Double minimum of Double list Double Double

B-15

APPENDIX B

Table RBR-1 (Cont.)
FTORTRAN Library Functions

bution over the range @ to 1.

tially to @#. Resetting I and J to @ re-
generates the random number sequence.

Alternate starting values for I and J will
generate different random number sequences.

See also Appendix C.3.

I and J must
be integer variables and should be set iri-

ARGUMENT RESULT
FORM DEFINITION TYPE TYPE
The transfer of sign functions return
(sign of the second argument) * (absolute
value of first argument).
SIGN (X,Y) Real transfer of sign Real Real
ISIGN(I,J) Integer transfer of sign Integer Integer
DSIGN (X,Y) Double precision transfer of sign Double Double
Positive difference functions return the
first argument minus the minimum of the
two arguments.
DIM(X,Y) Real positive difference Real Real
IDIM(I,J) Integer positive difference Integer Integer
Exponential functions return the value
of e raised to the argument power.
EXP (X) e:: Real Real
DEXP (X) e, Double Double
CEXP (Z) e Complex Complex
ALOG (X) Returns loge(x) Real Real
ALOG18(X) Returns logjg(X) Real Real
DLOG (X) Returns log, (X) Double Double
DLOG1@ (X) Returns loglﬂ(x) Double Double
CLOG (Z) Returns log, of complex argument Complex Complex
SQRT (X) Square root of Real argument Real Real
DSQRT (X) Square root of Double precision argument Double Double
CSQRT (2) Square root of Complex argument Complex Complex
SIN(X) Real sine Real Real
DSIN (X) Double precision sine Double Double
CSIN(Z) Complex sine Complex Complex
COS (X) Real cosine Real Real
DCOS (X) Double precision cosine Double Double
CCOSs (2) Complex cosine Complex Complex
TANH (X) Hyperbolic tangent Real Real
ATAN (X) Real arc tangent Real Real
DATAN (X) Double precision arc tangent Double Double
ATAN2 (X,Y) Real arc tangent of (X/Y) Real Real
DATAN2 (X, Y) Double precision arc tangent of (X/Y) Double Double
CONJG (2) Complex conjugate, if Z=X+itY
COMIG (2) =Z2-i+y Complex Complex
RAN(I,J) Returns a random number of uniform distri- Integer Real

Aeve o

[

e

2
g
5

BT T L e

TN e AR (M & Wi dan L VKA A ¢
cae [t S FRVIN

L AR A et 0 S SO T M e

-

APPENDIX B
Result Generic

m
>3
()
a
=
K
B
<

Result Generic

]

e e e B e

Lo
i)

APPENDIX B

APPENDIX C

FORTRAN PROGRAMMING EXAMPLES

Four examples of FORTRAN programs are given below. These examples are
intended to show possible methods of handling Input/Output, iterative
calculations, the FORTRAN Library functions, and subprogram usage in
the context of problems likely to face a FORTRAN programmer. These
particular programs should not be considered as the correct or optimal
approach to the specified problems since many other methods are
possible in each case.

The program in example one performs linear regression on a set of X,Y
coordinates. The program uses standard formulae to calculate the
slope and intercept of the 1line which best £its the data points
entered. The program listing and a sample run follow:

EXAMPLE 1 LISTING:

TYPE 5§
s FORMAY (//' THIS PROGRAM PERFQORMS LINEAR REGRESSION!/
{ ' THE L INE WHICH REST FITS A SET OF X,Y PAIRS IS CALCULATED'/)
{é TYPE 22
29 FARMAT (/' TYPE IN THF NUMBER OF X,Y PAIRS: ',$)
ACLEPY 52,
50 FORMATY (12)
IF (N LLE, ¥) STOP
TYPE AA,N
(X% FORMaAT (' TYPE IN 1,12,' LINES OF X,Y PAIRS!'/)
SIGMYY 8 (
SIGHMXY & 2
SIGMY s 2
SIGMYX & ¢
DO 13@& Jsy,N
ACCEPT 720,X,Y
70 FORMAT (2F8,3)

STGMXY 8 SIGMXY ¢ XxeoV
RIGMX & SIGMX & X
SIGMY = SIGMY & Y
tuev SIGMXX 3 SIGMYX ¢ XeX
YA BN

A 3 (SIGYXY=SIGMX#SIGMY/IN) / (SIGMXX=SIGMX®SIGMX/ZIN)
F 8 (QIGMY=wAeSIGMX)/IN
wRITE (H,3¢0) A,B

APPENDIX C

3N FORMAT (/' THE BEST FIT IS va!,F8,3,! Xs',F8,3)
GO TO 1@
END

EXAMPLE 1 SAMPLE RUN:

TmIS PEIGRAM FERFORMS LINEAR REGRESSIOMN
T=c LIME WHICH EBEST FITS H SET GF #. Y FAIRS 15 CALCULRTED
TTFE It THE MHUMEER GOF H. Y FAIRS 1a
TYFE IM 18 LINES OF ®.¥ FRIRS

1.4 7

| .4

o .1

4.8]

3.9 ba)

e .2

18, 4 V.8

12.8 56 4

13,8 »51.1

24,8 5S4 4

THE BEST FIT I

Y= 4. 7H8 K= 9. doo

TYFE IN THE HWUMBER OF ¥.Y¥ FAIRS @

APPENDIX C

Example four demonstrates a simple way to generate random numbers in a
given range using the FPORTRAN Library function RAN. A program listing
and sample run follow:

EXAMPLE 4 LISTING:

REAL MAX,MIN

TYPE 10
10 FORMAT({X,'THIS 18 A PROGRAM T0 GENERATE A FILE OF!,
1 ' RANDOM #''S IN A GIVEN RANGE,'/)
TYPE 20
v FORMAT(1x, 'ENTER THE NUMBER OF RANDOM #'!'8 TO GENERATES ',$)
ACCEPT 30,y
30 FORMAT(I3)
TYPE 4@
I FORMAT(1X, 'ENTER THE MINIMUM VALUE ',$)
ACCEPY 6v, MIN
TYPE 49
50 FORMAT(1X,'ENTER THE MAXIMIM VALUE !,$)
ACLEPY Aun, MaX
6 FORMAT(F1¢,4)
L =@
M B A

00 109 K=y,
X 8 RAN(L,M) o (MAX=MIN) & MIN
wRITEC(L,62) X
10e CONTTIMNUE
REWIND
0O 121 =y,
READ (1,68) X
TYPE EQ,X
141 CONTINUE
sT0P
END

APPENDIX C

EXAMP

ks

4 SAMPLE RUN:
THI> I5 A PROGRAM TO GENERATE A FILE OF RANDOM #°S5 IN R GIVEN RANGE.

ENTER THE MNUMBER OF RANDOM #°S TO GENERATE 2@
ENTER THE MINIMUM WALUE 11.
ENTER THE MRAXIMIM VALUE 35

11 8983

11. @84¢

11. 82498

11. 8324

11. 3838

12. 1124

14. 8333

24. 3435

Z1. 8518

11. 1781

31. 5518

32. 3354

X1. 3835

15. 2823
2. 993Z

(]

[N S
[P IR I VO (W)

APPENDIX C

The program in example two manipulates data representing test scores.
The scores are read from the source file, placed in descending order,
and sent to an output file. Then the absolute total and histogram of
the test scores in each 10-point interval are output on the terminal.
The program listing and a sample run follow:

EXAMPLE 2 LISTING:

LOGICAL®] STARS(80)
INTEGER ARRAY(2P0),HI1ST(10)
NDATA STARS/80e'e!/
D0 1@ lsy,2¢@
READ(1,20,ENDs1P@) ARRAY(I)

29 FORMAY (13)
1A CONTINUE
10a ISIZE = ley

0O 122 Jsy,1812E~}
DO 110 KsJsi,I81ZE
IF (ARRAY(J) ,GE, ARRAY(K)) GO 1O i@
ITMP » ARRAY(J)
ARRAY(J) ® ARRAY(K)
ARRAY(K) s ITMP

1o CONTINUE

129 CONTINUE
N0 12% Key,18IZE

1258 WRITE(2,2R) ARRAY(K)
DD 126 xs§,10

126 HIST(K) s @

NO 130 Ksy,1812E
N 3 ARRAY(K) / 10 + |

130 HIST(N) s HIST(N) +i
WRITE(S5,135)
135 FORMAT (1X,!'THE NUMBER OF TEST SCORES AND A MISTOGRAM!/
1 ' IN EACH 1@ POINT INTERVAL FOLLOWS3'/)
fO 154 x812,1208,10
J s K = {2
wRITE(S,140) HIST(K/1R), J, K
14¢ FORMAT (/71%X,13,"' IN THE RANGE ',13,!' 7O !,13,%)

IF (=18T(K/iv) ,EQ, @) GO TO 150
wRITE(S,145) (STARS(M),M81,HIST(K/12))

145 FORMAT (1He,2X,80A1)

15¢ CONTINUE
“RITECS,160) ISIZE

162 FORMAT (//)' THE TOTAL NUMBER OF TEST SCORES s !,13)
STOP
ENOD

APPENDIX C

EXAMPLE 2 SAMPLE RUN:

TEST ZLORES AND 4 HISTOGRAN
IHT INTERWAL FOLLUWS:

m

THE HUM
1 :

ER !
ACH L

m

2 IMN THE RANGE g 7O 19

<IN THE RANGE 18 TO 28 #=*
1 IN THE RANGE 28 TO za
1y IN THE RANGE 28 TO 90 exwsktsbrs
12 IN THE RANGE 98 TO 30 Feksdskmdorses
11 IN THE RANGE 58 Td S8 skkdwdksrses
12 IN THE RANGE B8 TO 7R #obskok v b vn o ¢ oo v s
33 Ix THE FRHANGE TeTO 28 FHEERRE R R RS F R 61 5 R Y o E N E e e
4 1M THE FEHNGE s TO 4t MR R S R TR T I R R R e R T Y R R R R R R
L7 IN THE RAMIE 33 TO 180 #ht e kvt aob e tms
e TOTRL NuMESR OF TEST SCORES = 155

Example three shows a method of calculating the prime factors of an
integer. A simple table look-up method was used to determine the
necessary primes. Note the unusual use of FORTRAN carriage control to
facilitate the prime factor output. MOD is a Library function and is

described in section 8.2. The program listing and a sample run
follow:

EXAMPLE 3 LISTING:

INTEGER P,HOLD
TYPE 52
50 FORMAT (1X,'THIS IS A PROGRAM TO FIND THE PRIME FACYORS OF',
1 ' AN INTEGER < 32768,'/' ENTERING A NEGATIVE OR ZERD!,
2 ' NUMBER TERMINATES EXECUTION,'/)

8u TYPE (a2

{oQ FORMAT (/' ENTER # ', 8)
ACCEPT {v&,NUMBER

178 FORMAT (15)

IF (NUMBER LE, A) STOP
JSWRY = SORT(FLOAT(NUIMBER)Y)
P s
IFLAG 8 ¢
HOLD s NUMRER
IF (HOLD ,LE, 3) GO TO 240
20 P ® NPRIME(P)
2u5 IPEM & MOD(HOLD,P)

APPENDIX C

240
2%e

Jee
3se

ave

a5@

1F (IREM EQ, ¥) GO TO 400

IF (P ,LE, ISQRT) GO Y0 200

1F (IFLAG ,NE, P) GO YO 30@
TYPE 25@,NUMBER

FORMAY (1X,15,' IS A PRIME NUMBER!'/)
GO TO 8@

1F (WOLD ,G6T, 1) TYPE 35@,HOLD
FORMAT (tH ,15)

GO T0 80

1IFLAG s |

HOLD = HOLD/P

IF (WOLD ,EG, 1) GO YO 5@0
TYPE 450,P

FORMAT (1K ,I5,'#1)

GO T0 205

TYPE 350,°F

GO TN 8@

END

FUNCTION NPRIME(OLD)

DIMENSION MPRIME(46)

INTEGER OLD

DATA MPRIME/2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,
1 53,59,61,67,74,73,79,83,89,97,101,103,107,109,113,
2 127,131,137,139,149,151,157,163,167,173,179,181,

3 101,193,197,199/

IF (OLD LEQ, 1) N s @

N 8 N & |

NPRIME s MPRIME(N)

RETURN

END

APPENDIX C

EXAMPLE 3 SAMPLE RUN:

FING TRHE PRIME FACTORS OF
OR ZERD NUMBER TEFMINFTES

E I R I T R N K N

[O ORI OVIR OV VI VIR COUR O N O

*
L
b
[t
o

RYI (S

[N
LS U S R

5 Gd

e

A FRIME NUMEER

£

ENTER #
3 1

-4
[{%)
1
(WX

ENTER # 9

INDEX

ACCEPT statement, 5-1)
ACCESS keyword, 5-23,
Actual arguments, 8-1

Adjustable array, 8-8

Adjustable dimensions, 7-5

A field descriptor, 6-9

Alphanumeric literals, 2-10, 6-11

American National Standard FORTRAN,
enhancements to, 1-1

Apostrophe character within an
alphanumeric literal, 6-11

Auxiliary input/output statements,
5-18

Arguments, 8-1

Arguments, actual, 8-1

Arguments, dummy, 8-1

Arguments in a CALL statement,

4-11

Arithmetic assignment statement,
3-1

Arithmetic expression, data type
of an, 2-20

Arithmetic expressions, 2-17

Arithmetic IF statement, 4-4

Arithmetic operators, 2-18

Arithmetic operators, precedence
of, 2-19

Arithmetic statement functior
(ASF) ’ 8'1

Array, adjustable, 8-8

Array, data types of an, 2-16

Array declarator interaction,
ENTRY and, 8-8

Array declarators, 2-14

Array declarators, COMMON state-
ments with, 7-8

Array dimensions, 2-1:

Array storage, 2-15

Array elements, 2-13

Array name, 2-13

Array names, unsubscripted, 2-16
2-17

Arrays, 2-13

Arrays, EQUIVALENCE ard LOGICAL*]1,
7-11

ASCII character code, A-2

ASF reference, 8-2

Assigned GO TO statement, 4-3

Assigning Hollerith data to
variables, 2-12

ASSIGN statement, 3-5

Assignment statement, logical, 3-4

Assignment statements, 3-1

Assignment statements, conversion
rules for, 3-3

ASSOCIATEVARIABLE keyword, 5-26

BACKSPACE statement, 5-18
Basic external functions, 8-15
Basic real constant, 2-6
Binary operators, 2-18

Blank common block, 7-6

BLOCK DATA statement, 8-10
BLOCK DATA subprogram, 8-10
BUFFERCOUNT keyword, 5-24

CALL statement, 4-11, 7-5
CALL statement, arguments in a,
.4-11
Carriage control, 6-17
Carriage control characters, 6-17
CARRIAGECONTROL keyword, 5-26
Categories of READ and WRITE
statements, 5-1
Character set, FORTRAN, 1-4, A-1
CLOSE statement, 5-27
Coding forms, FORTRAN, 1-5
Comment indicator, 1-7
Comment lines, 1-4
Common block, blank, 7-6
Common block, named, 7-6
COMMON statement, 7-6
COMMON statements with array
declarators, 7-8
Complex, 2-3
Complex constants, 2-8
Complex I/O, 6-13
Computed GO TO statement, 4-2
Constant, basic real, 2-6
Constants, 2<5
complex, 2-8
double precision, 2-7
Hollerith, 2-9
logical, 2-9
octal, 2-8 .
Continuation field, 1-8
Continuation indicator, 1-8
Continuation line, 1-3
CONTINUE statement, 4-11
Control statements, 4-1
Control transfers in DO loops, 4-9
Control variable, 4-6
Conversion rules for assignment
statements, 3-3

DATA
Data
Data
Data

statement, 7-13

type by definition, 2-11
type by implication, 2-12
type of an arithmetic
expression, 2-20
Data type of an array, 2-16

INDEX-1

Data type storage requirements,
2-4
Data types, 2-2
Debug statement indicator, 1-7
DEFINE FILE statement, 5-14
D field descriptor, 6-6
Difference between functions and
subroutines, 8-1
Dimension declarators,
expressions as, 7-6
upper and lower bound, 2-14
Dimensions, adjustable, 7-5
DIMENSION statement, 7-4, 7-5
DISPOSE keyword, 5-26
DO lists, implied, 5-4
$ descriptor, 6-13
DO loop,
extended range of, 4-9
termination of a, 4-7
DO loops,
control transfers in,
nested, 4-8
DO statement, 4-6
Double precision, 2-3
Double precision constants, 2-7
Dummy arguments, 2-2, 8-1

2-14

4-9

E field descriptor, 6-5

Elements of a FORTRAN program, 1-3

ENCODE and DECODE statements, 5-27

ENDFILE statement, 5-19

END=S specification, 5-17

END statement, 4-13

Enhancements to American National
Standard FORTRAN, 1-1

ENTRY and array declarator inter-
action, 7-11

ENTRY in function subprograms, 8-8

Entry names, 8-8

ENTRY statement, 8-7

EQUIVALENCE and COMMON interaction,
7-11

EQUIVALENCE and LOGICAL*1
arrays, 7-11

EQUIVALENCE statement, 7-8

Equivalent, making arrays, 7-9

ERR keyword, 5-24

Evaluation of parenthesized
arithmetic expressions, 2-23

Examples, FORTRAN programming, C-1

Executable statements, 1-3

EXIT, 4-12

Exponentiation, 2-18

Expression operators, B-1

Expressions, 2-17

logical, 2-23
relational, 2-22

Expressions as dimension declara-
tors, 7-6

Extended range of a DO loop, 4-9

EXTENDSIZE keyword, 5-25

External field separators, 6-18

EXTERNAL statement, 7-12

Field descr:.ptor, 6-1

A, 6-9
D, 6-6
E, 6-5
F, 6-4
G, 6-7
H, 6-10
I, 6-2
L, 6-8
0, 6-3
QI 6‘12
T, 6-12
X, 6-11

“d g
Field descriptors, 6-2
Field separator, 6-1
Field separators, external, 6-18
FIND statement, 5-19
Format control, 6-20
Format specification, 6-1
Format specification separators,
6-18
Format specifiers, 5-3
FORMAT statement, 6-1
Format statements, summary of rules
for, 6-21
Formatted direct access input/
output, 5-15
Formatted directed access READ
statement, 5-15
Formatted direct access WRITE
statement, 5-16
Formatted sequential input/output,
5-8
Formatted sequential READ state-
ment, 5-8
Formatted sequential WRITE state-
ment, 5-9
Formatting a FORTRAN line, 1-5
Formatting a line with a TAB
character, 1-6
FORM keyword, 5-23
FORTRAN character set, 1-4, A-1
FORTRAN, enhancements to American
National Standard, 1-1
FORTRAN language summary, B-1
FORTRAN library functions, 8-11
FORTRAN library function (table),
8-12
FORTRAN programming examples, C-1
FORTRAN statement components, 2-1
Function references, processor-
defined, g-15
Functions and subroutines,
difference between, 8-1
Functions,
basic external,
intrinsic, 8-15
Functions (table),
FORTRAN library, B-15
generic and processor-defined,
B-17
FUNCTION statement, 8-4
FUNCTION subprogram, 8-3
Function subprograms, ENTRY in,
8-8

8-15

INDEX-2

Generic and processor-defined
functions (table), B-17

Generic and processor-defined
function usage, 8-16

Generic function names, g8-14

Generic function name summary, 8-15
Generic function references, 8-14

G field descriptor, 6-7
GO TO statement,
assigned, 4-3
computed, 4-2
unconditional, 4-2
GO TO statements, 4-1
Grouping and group repeat
specifications, 6 15
Group repeat count, 6-15

H field descriptor, 6-10
Hollerith constants, Z-9

I field descriptor, 6-2
IF statement,

arithmetic, 4-4

logical, 4-5
IF statements, 4-4
IMPLICIT statement, 2-12, 7-1
Implied DO lists, 5-4
Increment parameter, 4-6, 4-7
Indicator,

comment, 1-7

continuation, 1-8
Initial parameter, 4-7
INITIALSIZE keyword, 5-25
Input/output,

devices, 5-2

lists, 5-3

records, 5-3

statements, 5-1
. Integer, 2-3

Integer constant, negative, 2-5

Integer constants, 2-5
Intrinsic functions, g8-15
Iteration count, 4-7

Keyword,
ACCESS, 5-23
ASSOCIATEVARIABLE, 5-26
BUFFERCOUNT, 5-24
CARRIAGECONTROL, 5-26
DISPOSE, 5-26
ERR, 5-24
EXTENDSIZE, 5-25
FORM, 5-23
INITIALSIZE, 5-25
MAXREC, 5-26
NAME, 5-22
NOSPANBLOCKS, 5-25
READONLY, 5-23

RECORDSIZE, 5-24
SHARED, 5-25
TYPE, 5-22
UNIT, 5-22
Keywords in the OPEN statement, 5-21

Label, statement, 1-4, 1-7
L field descriptor, 6-8
Library functions, B-17
FORTRAN, 8-11
Library functions (table), FORTRAN,
8-12
Line, continuation, 1-3
Line (definition), 1-3
Literals, alphanumeric, 2-10
Logical, 2-3
Logical assignment statement, 3-4
Logical constants, 2-9
Logical expressions, 2-23
Logical IF statement, 4-5
Logical operators, 2-23
Logical unit number, 5-2
LOGICAL*1 variables, 2-13

Making arrays equivalent, 7-9
MAXREC keyword, 5-26

Named common block, 7-6
NAME keyword, 5-22
Names,

entry, 8-8

generic function, g8-14
Negative integer constant, 2-5
Nested DO loops, 4-8
NOSPANBLOCKS keyword, 5-25
Number, statement, 1-7

Object time format, 6-19
Octal constants, 2-8
O field descriptor, 6-3
OPEN statement, 5-20
OPEN statement, keywords in the,
5-21
Operators,
arithmetic, 2-18
binary, 2-18

PARAMETER statement, 7-14

Parentheses, use of, 2-19

Parenthesized arithmetic expressions,
evaluation of, 2-23

PAUSE statement, 4-12

PDF (processor defined functions),
8-15

Precedence of arithmetic operators,
2-19

INDEX-3

PRINT statement, 5-11

Processor-defined function
references, 8-15

Processor-defined functions

(table), generic and, 8-17
Processor-defined function usage,

generic and, 8-16
PROGRAM statement, 7-15
Program unit structure, 1-9

Q field descriptor, 6-12

RADIX-50 character code, A-3
Radix-50 constants, 2-10
READ and WRITE statements,
categories of, 5-1
READONLY keyword, 5-23
READ statement,
formatted direct access, 5-15
formatted sequential, 5-8
unformatted direct access, 5-12
unformatted sequential, 5-6
Real, 2-3
Real constant, basic, 2-6
Records, input/output, 5-3
RCCORDSIZE keyword, 5-24
Relational expressions, 2-22
Relational operator, 2-22
Required order of statements and
lines, 1-9
KETURN statement, 4-12
REWIND statement, 5-18

Scale factor, 6-14,
Separators, format specification,
6-18
Sequence number field, 1-8
SHARED keyword, 5-25
Short field termination, 6-19
Simple I/O lists, 5-3
Space character in a FORTRAN
statement, 1-7

Specification statements, 7-1
Statement,

ACCEPT, 5-10

arithmetic assignment, 3-1

arithmetic IF, 4-4

ASSIGN, 3-5

assigned GO TO, 4-3

BACKSPACE, 5-18

BLOCK DATA, 8-10

CALL, 4-11, 7-5

CLOSE, 5-27

COMMON, 7-6

computed GO TO, 4-2

CONTINUE, 4-11

DATA, 7-13

DEFINE FILE, 5-14

DIMENSION, 7-4, 7-5

DO, 4-6

END, 4-13

ENDFILE, 5-19

ENTRY, 8-7

EQUIVALENCE, 7-8

EXTERNAL, 7-12
FIND, 5-19
FORMAT, 6-1
formatted direct access READ, 5-15
formatted sequential READ, 5-8
formatted sequential WRITE, 5-9
FUNCTION, 8-4

IMPLICIT, 7-1

logical assignment, 3-4

logical IF, 4-5

OPEN, 5-20

PARAMETER, 7-14

PAUSE, 4-12

PRINT, 5-11

PROGRAM, 7-15

RETURN, 4-12

REWIND, 5-18

STOP, 4-13
SUBROUTINE, 8-5
TYPE, 5-11

unconditional GO TO, 4-2
unformatted direct access READ,
5-12
unformatted direct access WRITE,
5-13
unformatted sequential READ, 5-6
unformatted sequential WRITE, 5-6
Statement components, FORTRAN, 2-1
Statement field, 1-8
Statement label, 1-4, 1-7
Statement number, 1-7
Statements, 1-3
executable, 1-3
summary of, B-2
type declaration, 7-2
Statements and lines, required
order of, 1-9
STOP statement, 4-13
Storage requirements, data type,
2-4
Storage unit, 2-3
Subprogram,
BLOCK DATA, 8-10
FUNCTION, 8-3
Subprograms, 8-1
Subroutines, difference between
functions and, 8-1
SUBROUTINE statement, 8-5
SUBROUTINE subprogram, 8-5
Subscripts, 2-13, 2-16
Summary of rules for format state-
ments, 6-21
Summary of statements, B-2
Symbolic names, 2-2

TAB character, formatting a line
with a, 1-6

Terminal statement, 4-7

Termination of a DO loop, 4-7

Text editor, using a, 1-6

INDEX-4

T field descriptor, 6-12

Transfer of control, 4-1

Transfer of control on end-of-file
or error conditions, 5-16

Type declaration statements, 7-2

TYPE keyword, 5-22

TYPE statement, 5-11

Unconditional GO TO statement,

4-2

Unformatted direct access
input/output, 5-12

Unformatted direct access READ
statement, 5-12

Unformatted direct access WRITE
statement, 5-13

Unformatted sequential input/output,
5-6

Unformatted sequential READ
statement, 5-6

Unformatted sequential WRITE
statement, 5-6

UNIT keyword, 5-22

Unsubscripted array name in an
I/0 list, 5-4

Unsubscripted array names,
2-17

Upper and lower bound dimension
declarators, 2-14

Use of parentheses, 2-19

User-written subprograms, 8-1

Using FORTRAN coding forms, 1-5

2-16,

vVariable format expressions, 6-16
Variable names, 2-11
Variables, 2-11
assigning Hollerith data to, 2-12
LOGICAL*1l, 2-13

WRITE statement,
formatted direct access,
formatted sequential, 5-9

unformatted direct access,
unformatted sequential, 5-6

5-16

5-13

X field descriptor, 6-11

INDEX-5

HOW TO OBTAIN SOFTWARE INFORMATION

SOFTWARE NEWSLETTERS, MAILING LIST

The Software Communications Group, located at corporate headquarters in
Maynard, publishes newsletters and Software Performance Summaries (SPS)
for the various Digital products. Newsletters are published monthly,
and contain announcements of new and revised software, programming
notes, software problems and solutions, and documentation corrections.
Software Performance Summaries are a collection of existing problems
and solutions for a given software system, and are published periodi-
cally. For information on the distribution of these documents and how
to get on the software newsletter mailing list, write to:

Software Communications
P. O. Box F
Maynard, Massachusetts 01754

SOFTWARE PROBLEMS

Questions or problems relating to Digital's software should be reported
to a Software Support Specialist. A specialist is located in each
Digital Sales Office in the United States. 1In Europe, software problem
reporting centers are in the following cities.

Reading, England Milan, Italy

Paris, France Solna, Sweden

The Hague, Holland Geneva, Switzerland
Tel Aviv, Israel Munich, West Germany

Software Problem Report (SPR) forms are available from the specialists
or from the Software Distribution Centers cited below.

PROGRAMS AND MANUALS

Software and manuals should be ordered by title and order number. 1In
the United States, send orders to the nearest distribution center.

Digital Equipment Corporation Digital Equipment Corporation
Software Distribution Center Software Distribution Center

146 Main Street 1400 Terra Bella

Maynard, Massachusetts 01754 Mountain View, California 94043

Outside of the United States, orders should be directed to the nearest
Digital Field Sales Office or representative.

USERS SOCIETY

DECUS, Digital Equipment Computer Users Society, maintains a user ex-

change center for user-written programs and technical application in-

formation. A catalog of existing programs is available. The society

publishes a periodical, DECUSCOPE, and holds technical seminars in the
United States, Canada, Europe, and Australia. For information on the

society and membership application forms, write to:

DECUS DECUS EUROPE
Digital Equipment Corporation Digital Equipment Corp. International
146 Main Street (Europe)

Maynard, Massachusetts 01754 P.O. Box 340
1211 Geneva 26
Switzerland

PDP-11 FORTRAN
Language Reference Manual
DEC-11-LFLRA-B-D

READER'S COMMENTS
NOTE: This form is for document comments only. Problems
with software should be reported on a Software

Problem Repcrt (SPR) form (see the HOW TO OBTAIN
SOFTWARE INFORMATION page) .

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
requireéd for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience
Student programmer

000000

Non-programmer interested in computer concepts and capabilities

Name Date
Organization
Street
City State Zip Code
or
Country

If you do not require a written reply, please check here. []

Fold Here

Do Not Tear - Fold Here and Staple

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

dlilgliltiall

Software Communications
P. O. Box F
Maynard, Massachusetts 01754

DIGITAL EQUIPMENT CORPORATION
MAYNARD, MASSACHUSETTS 01754

	A001.tif
	A002.tif
	A003.tif
	A004.tif
	A005.tif
	A006.tif
	A007.tif
	A008.tif
	A009.tif
	A010.tif
	A011.tif
	A012.tif
	A013.tif
	A014.tif
	A015.tif
	A016.tif
	A017.tif
	A018.tif
	A019.tif
	A020.tif
	A021.tif
	A022.tif
	A023.tif
	A024.tif
	A025.tif
	A026.tif
	A027.tif
	A028.tif
	A029.tif
	A030.tif
	A031.tif
	A032.tif
	A033.tif
	A034.tif
	A035.tif
	A036.tif
	A037.tif
	A038.tif
	A039.tif
	A040.tif
	A041.tif
	A042.tif
	A043.tif
	A044.tif
	A045.tif
	A046.tif
	A047.tif
	A048.tif
	A049.tif
	A050.tif
	A051.tif
	A052.tif
	A053.tif
	A054.tif
	A055.tif
	A056.tif
	A057.tif
	A058.tif
	A059.tif
	A060.tif
	A061.tif
	A062.tif
	A063.tif
	A064.tif
	A065.tif
	A066.tif
	A067.tif
	A068.tif
	A069.tif
	A070.tif
	A071.tif
	A072.tif
	A073.tif
	A074.tif
	A075.tif
	A076.tif
	A077.tif
	A078.tif
	A079.tif
	A080.tif
	A081.tif
	A082.tif
	A083.tif
	A084.tif
	A085.tif
	A086.tif
	A087.tif
	A088.tif
	A089.tif
	A090.tif
	A091.tif
	A092.tif
	A093.tif
	A094.tif
	A095.tif
	A096.tif
	A097.tif
	A098.tif
	A099.tif
	A100.tif
	A101.tif
	A102.tif
	A103.tif
	A104.tif
	A105.tif
	A106.tif
	A107.tif
	A108.tif
	A109.tif
	A110.tif
	A111.tif
	A112.tif
	A113.tif
	A114.tif
	A115.tif
	A116.tif
	A117.tif
	A118.tif
	A119.tif
	A120.tif
	A121.tif
	A122.tif
	A123.tif
	A124.tif
	A125.tif
	A126.tif
	A127.tif
	A128.tif
	A129.tif
	A130.tif
	A131.tif
	A132.tif
	A133.tif
	A134.tif
	A135.tif
	A136.tif
	A137.tif
	A138.tif
	A139.tif
	A140.tif
	A141.tif
	A142.tif
	A143.tif
	A144.tif
	A145.tif
	A146.tif
	A147.tif
	A148.tif
	A149.tif
	A150.tif
	A151.tif
	A152.tif
	A153.tif
	A154.tif
	A155.tif
	A156.tif
	A157.tif
	A158.tif
	A159.tif
	A160.tif
	A161.tif
	A162.tif
	A163.tif
	A164.tif
	A165.tif
	A166.tif
	A167.tif
	A168.tif
	A169.tif
	A170.tif
	A171.tif
	A172.tif
	A173.tif
	A174.tif
	A175.tif
	A176.tif
	A177.tif
	A178.tif
	A179.tif
	A180.tif
	A181.tif
	A182.tif
	A183.tif
	A184.tif
	A185.tif
	A186.tif
	A187.tif
	A188.tif
	A189.tif
	A190.tif
	A191.tif
	A192.tif
	A193.tif
	A194.tif
	A195.tif
	A196.tif
	A197.tif
	A198.tif

