RT-11
FORTRAN Compiler
and Object Time System

User’'s Manual
DEC-11-LRFPA-A-D

RT-11
FORTRAN Compiler
and Object Time System

User’s Manual
DEC-11-LRFPA-A-D

Order additional copies as directed on the Software
Information page at the back of this document.

digital equipment corporation - maynard. massachusetts

First Printing June 1974

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment

Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this manual.

The software described in this document is furnished to the purchaser
under a license for use on a single computer system and can be copied
(with inclusion of DIGITAL's copyright notice) only for use in such
system, except as may otherwise be provided in writing by DIGITAL.

Digital Equipment Corporation assumes no responsibility for the use

or reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright (:) 1974 by pigital Equipment Corporation, Maynard, Mass.

The HOW TO OBTAIN SOFTWARE INFORMATION page, located at the back of
this document, explains the various services available to DIGITAL
software users.

The postage prepaid READER'S COMMENTS form on the last page of this

document requests the user's critical evaluation to assist us in
preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CDP DIGITAL INDAC PS/8
COMPUTER LAB DNC KAl0 QUICKPOINT
COMSYST EDGRIN LAB-8 RAD-8
COMTEX EDUSYSTEM LAB-8/e RSTS

DDT FLIP CHIP LAB-K RSX

DEC FOCAL OMNIBUS RTM
DECCOMM GLC-8 0s/8 RT-11
DECTAPE IDAC PDP SABR
DIBOL IDACS PHA TYPESET 8

UNIBUS

PREFACE

This document provides information necessary to compile, link,
execute, and debug a FORTRAN program under the RT-1l operating system.
Chapter one describes the operational procedures. Chapter two
provides information about the Object Time System, a collection of
routines selectively 1linked to the user's program which perform
certain arithmetic operations, input/output operations, and system
dependent service operations, and detect and report run-time error
conditions. Chapter three describes system dependent information not
included in the PDP-11 FORTRAN Language Reference Manual. The
Appendices provide reference information about internal data

representations, system subroutines, and compiler and OTS error
diagnostics.

This manual should be used only after some competence with the FORTRAN
Language, as implemented on the PDP-11, has been acquired. The
associated document which may be used for this purpose is titled
PDP-11 FORTRAN Language Reference Manual. The user should also be

familiar with RT-11 Operating System as described in the RT-1ll System
Reference Manual.

DOCUMENTATION CONVENTIONS

All RT-1l1l monitor and system program command lines are terminated by a
RETURN, Since this is a non-printing character, at certain places in
the text the notation <(CR> represents the RETURN key.

In all examples text that is typed by the monitor or system program is
underlined, text typed by the user is not underlined.

iii

CHAPTER

CHAPTER

CHAPTER

e o o o
WD (d
e o o o o
v W

B & WWW W NN N = -
w N =

3.7.1
3.7.2

CONTENTS

OPERATING PROCEDURES
USING THE FORTRAN SYSTEM
Filename Specifications
COMPILATION PROCEDURES

Compiler Switches

Listing Formats

Options Listing

Source Listing

Storage Map Listing
Generated Code Listing
Compilation Statistics
Compiler Memory Requirements

LINKING PROCEDURES

Library Usage
Overlay Usage
Stand-Alone FORTRAN

EXECUTION PROCEDURES
DEBUGGING A FORTRAN PROGRAM

FORTRAN OPERATING ENVIRONMENT
FORTRAN OBJECT TIME SYSTEM
OBJECT CODE

SUBROUTINE LINKAGE

SUBPROGRAM REGISTER USAGE
TRACEBACK FEATURE

VECTORED ARRAYS

RUNTIME MEMORY ORGANIZATION

RT-11 FORTRAN SPECIFIC CHARACTERISTICS
VARIABLE NAMES

INITIALIZATION OF COMMON VARIABLES
CONTINUATION LINES

DEFAULT LOGICAL UNIT - DEVICE/FILE
ASSIGNMENTS

MAXIMUM RECORD LENGTHS
STATEMENT ORDERING RESTRICTIONS
DIRECT-ACCESS I/0

DEFINE FILE

Creating Direct-Access Files

H e
T T L
(PR Y S

o o
11 0

HWOWW 0 ooutnuntunutn

N

bk deh'lr Tl ol o]
-
w W

NN NN NN DNDDN
[} |) | [}]] [}
(- TN B C I B -

W w W w
(T
e

3.8. INPUT/OUTPUT FORMATS 3-4
3.8.1 Formatted I/0 3-4
3.8.2 Unformatted I/0 3-4
3.8.3 Direct-Access 1/0 3-4
3.9 MIXED MODE COMPARISONS 3-4
APPENDIX A FORTRAN DATA REPRESENTATION A-1
A.l INTEGER FORMAT A-1
A.2 FLOATING-POINT FORMATS A-1
A.2.1 Real Format (2-Word Floating Point) A-2
A.2.2 Double Precision Format (4-Word Floating
Point) A-2
A.2.3 Complex Format A-3
A.3 LOGICAL*1 FORMAT A-3
A.4 HOLLERITH FORMAT A-4
A.5 LOGICAL FORMAT A-4
APPENDIX B SYSTEM SUBROUTINES B-1
B.1l SYSTEM SUBROUTINE SUMMARY B-1
B.2 ASSIGN B-1
B.3 RANDU, RAN B-4
B.4 EXIT B-4
B.5 USEREX B-4
B.6 DATE B-5
B.7 IDATE B-6
B.8 SETERR B-6
APPENDIX C FORTRAN ERROR DIAGNOSTICS Cc-1
Cc.1l COMPILER ERROR DIAGNOSTICS c-1
c.1l.1 Errors Reported by the Initial Phase of the
Compiler Cc-2
Cc.1l.2 Errors Reported by Secondary Phases of the
Compiler Cc-3
Cc.1l.3 WARNING Diagnostics Cc-8
C.1l.4 FATAL Compiler Error Diagnostics c-9
c.2 OBJECT TIME SYSTEM ERROR DIAGNOSTICS c-10
APPENDIX D COMPILER AND OTS ASSEMBLY AND LINKING
INSTRUCTIONS D-1
D.1l.1 Compiler Assembly D-1
D.1.2 Compiler Linking D-3
D.2 COMMON OTS MODULES ASSEMBLY D-4
D.3 HARDWARE DEPENDENT OTS MODULES ASSEMBLY D-14
D.3.1 Bare Machine OTS Assembly D-15
D.3.2 EIS OTS Assembly D-17

vi

Number
1-1
2-1

2-3

Number
1-1
3-1

D.3.3 FIS OTS Assembly

D.3.4 EAE OTS Assembly

D.3.5 FPU OTS Assembly

D.4 LIBRARY BUILDING PROCEDURES
D.4.1 Building the Bare Machine OTS
D.4.2 Building the EIS OTS

D.4.3 Building the FIS 0TS

D.4.4 Building the EAE OTS

D.4.5 Building the FPU OTS

FIGURES

Steps in Compiling and Executing a FORTRAN Program
The Traceback Feature
Array Vectoring

RT-11 8K System Runtime Memory Organization

TABLES

Filename Extensions

FORTRAN Logical Device Assignments

vii

CHAPTER 1

OPERATING PROCEDURES

1.1 USING THE FORTRAN SYSTEM

Figure 1-1 outlines the steps required to prepare a FORTRAN source
program for execution under the RT-11 Monitor: (1) compilation,
(2) linking, and (3) execution.

oTs
Library

\

Source compiler Object Linker Load Running
= -

Figure 1l-1
Steps in Compiling and Executing
a FORTRAN Program

Step 1 in Figure 1-1 is initiated by running the FORTRAN Compiler,
FORTRAN, accompanied by a command string that describes the input and
output files, and switch options, if desired, to be used by the
Compiler. The Compiler generates an object file which must be linked
by the linker prior to execution.

Step 2 is initiated by running the 1linker, LINK, accompanied by a
similar command string. The linker links all program units and the

necessary routines from the FORTRAN Library, and generates a core
image file.

Step 3 is initiated by the monitor R or RUN commands.

1-1

l.1.1 Filename Specifications

The RT-11 FORTRAN Compiler and the Linker accept a standard RT-11
command string of the form:

outfile(s) = infile(s) /swl/sw2.../swn
Each filename specification is of the form:

dev:filename.ext
where dev: is any legal device specification code. The RT-11 device
specification codes are described in the Monitor chapter (chapter 2)
of the RT-1l System Reference Manual,
Filename may be any 1- to 6~ character alphanumeric filename. The
filename extension may be any 1= to 3- character alphanumeric

sequence. The filename extensions assumed or supplied on default by
the FORTRAN Compiler are shown in Table 1-2,

Table 1-1
Filename Extensions
File Assumed Extension Default Extension
on Input File on Output File
Object file - .OBJ
Listing file - .LST
Source file +FOR -

The optional switches, /swl/sw2.../swn, are used to request certain
functions from the FORTRAN compiler and Linker.

The ,RT-11 command string sequence is described more thoroughly in the
Monitor Chapter of the RT-11 System Reference Manual.

1.2 COMPILATION PROCEDURES

To execute the RT-11 FORTRAN Compiler the command:
aR FORTRAN

is given. The FORTRAN Compiler then prints an * to indicate that it
is ready to accept a command string.

The FORTRAN Compiler can produce two output files: an object file and
a listing file. Up to six FORTRAN source language files are permitted
as input files. If multiple input files are given they are considered
to be 1logically concatenated. However, source lines should not be
broken over file boundaries.

An input file may consist of more than one program unit if that file
resides on a file structured device. The object code for all program
units will be output to the single object file, and will be properly
handled by LINK at link time.

NOTE
In the examples below, characters typed
by the system are underlined to

differentiate them from characters typed
by the user.,

A sample FORTRAN Compiler command sequence is shown below:

+R FORTRAN
*OBJECT, LIST=FILEl

This command string directs the Compiler to take the source file
FILE1l.FOR from the default device, DK:, and output the files LIST.LST
and OBJECT.OBJ to the default device.

Either of the Compiler output files can be eliminated by omitting its
file specification from the command string. For example:

<R FORTRAN
*FILE1=FILEl

produces FILE1.0BJ on the default device but no listing file, while
*,LP:=FILEL

produces a listing on the line printer, but no object module output.

l.2.1 Compiler Switches

The FORTRAN Compiler command strings may contain switch options on the
input and output file specifications. The switches are as follows

(they are initialized to the specified default values for each command
string):

Switch Description
/A Add the compilation statistics to the list file (see

section 1.2.2).

/D Compile lines with a D in column one. These lines are
treated as comment lines by default (see section 1.5).

/E Read a full 80 columns of each record in the source
file, Only the first 72 columns are read by default.

/H Print a list of compiler switches on fhe listing
device specified. If no listing device is specified,
the output will be directed to the console terminal.

/L:n Specify the listing options. The argument n is coded
as follows:

/N:m

/0

/P

/S

/T

/U

/v

/L or /L:0 list diagnostics only

/L:1 list source program only
/L3:2 list storage map only
/L:4 list generated code only

Any combination of the above 1list options may be
specified by summing the argument values for the
desired list options. For example:

/L:7

requests a source listing, a storage map listing, and
a generated code listing. If this switch is omitted
the default list option is 3 (source and storage map).
See section 1.2.2.

Enable specification of the maximum number of logical
units that may be concurrently open at execution time;
m is an octal constant between 1 and 17. Defaults to 6
if switch is not specified. This switch functions
only when one of the input files contains the main
program unit,

Include options-in-effect in 1list file. This 1list
specifies the state of each compiler option, i.e., on
or off. (See section 1.2.2).

Disable the global optimizer. Using this switch may
reduce program storage requirements, but will slightly
increase execution time.

Enable specification of the maximum record size
allowed at execution time; m is an octal constant
between 4 and 7777. Defaults to 136 (decimal) bytes if
this switch is not specified. This switch functions
only when one of the input files contains the main
program unit.

Suppress ISNs (source line number accounting)., This
option reduces storage requirements for generated code
and slightly increases execution speed but disables
line number information during Traceback.

Allocate two words for default length integer
variables. Normally, single storage words will be the
default allocation for integer variables not given an
explicit length specification (i.e. INTEGER*2 or
INTEGER*4) ,

Disable USR (User Service Routines) swapping at
runtime. By default the USR is always swapped. This
switch will function only when one of the input files
contains the main program unit,

Disable all vectoring of arrays (see section 2.6).

Enable compiler warning diagnostics (see section
C.1l.3).

1.2.2 Listing Formats

There are five optional sections that may be included in the list
file. By default the source program and the storage map are included
in the list file. The list of options-in-effect, the generated code,
and the compiler statistics may also be included. Any combination of
these sections can be requested by using switches in the Compiler
command string (see section 1.2.l1). A description of each section is
given below. Figure 1-2 provides a sample of the information included
in each section.

1.2.2.1 Options Listing - The options-in-effect list can be used as a
quick reference to the status of each possible compiler option.
Options in the list preceded by 'NO' are not in effect; those not
preceded by 'NO' are in effect. The maximum number of logical units
that may be concurrently open (NLCHN) and the maximum record length
(LRECL) are given as the default values or the values specified by the
/N and /R switches respectively. Also included are the date and a
copy of the Compiler command string for identification purposes.

1.2.2.2 Source Listing - The source program is listed in this section
just as it appeared in the input file. Internal sequence numbers are
added by the compiler for easier reference. Note that internal
sequence numbers are not always incremental. For example the
statement following a logical IF will have an internal sequence number
2 greater than that of the IF. The IF statement has internally been
assigned 2 sequence numbers: one for the comparison and one for the
associated statement.

l.2.2.3 §£ggggg_gg¥_g;g§igg - This section includes a list of all
symbolic names referenced in the program unit. A relocation offset
from the base of the program unit (subject to relocation at link time)
is given for all local symbols. There is also a description of the

symbolic name including usage, data type, and in the case of COMMON
blocks and array names, the defined size in storage units.

NOTE

Blank COMMON will be described as COMMON
BLOCK / / in the storage map, but will
be located on a LINK map as a CSECT name
.$$8S.

1.2.2.4 Geperated Code Listing - This section of the list file
contains a symbolic representation of the object code generated by the
compiler (see section 2.2) including a location offset from the base
of the program unit, the symbolic Object Time System (OTS) routine
name, and routine arguments. The code generated for each statement is
labeled with the same internal sequence number as that specified in
the source program listing, providing easier cross reference.

1l-5

1.2.2.5 Compilation Statistics - This section includes a report on
core usage during the compilation process and the storage requirements

for the object code generated by the compiler.

1.2.3 Compiler Memory Requirements

During the compilation process, the Resident Monitor (RMON), the
Compiler root segment, one overlay region, the stack, and the required
device handlers (other than the handler for the System Device which is
included in the RMON) must be core resident. The remaining core
memory is used for the Symbol Table and the internal representation of
the program, In a machine with 8K of core memory, this allows the
compilation of a program unit as large as several hundred statements
in length., However, if the compiler runs out of free core during the
compilation process (an error message is typed on the terminal; See
section C.l), the program unit must be divided into two or more
program units, each of which must be small enough to compile in the
available amount of core memory.

Since device handlers and the Symbol Table must be core resident
during the compilation process, minimizing the number of different
physical devices specified in the command string and reducing ' the
number of variable names, increases the amount of free core available
for object code generation.

1.3 LINKING PROCEDURES

The RT-1ll Linker, LINK, links one or more user-written program units
together with selected routines from any user libraries (see section
1.3.1) and the default FORTRAN System Library, FORLIB, LINK also
provides an overlay capability (see section 1.3.2).

LINK generates a single runnable core image file and an optional 1load
map from one or more object files created by an RT-11 assembler or the
RT-11 FORTRAN Compiler. An example of the LINK command format as used
with FORTRAN is given below.

«R LINK
*LOAD,MAP=MAIN,SUB1,SUB2/F

This command string requests LINK to link the object module MAIN,OBJ
together with the object modules SUB1.OBJ and SUB2.OBJ into the single
core image file LOAD.SAV. All files are on the default device, DK:.

Tne switch, /F, specifies that the default FORTRAN Library on the
System Device, SY:FORLIB.OBJ,is to be searched for any routines that are
not found in the other object modules. These include any Library
Functions, System Subroutines, or Object Time System routines. Note
that the switch alone, without the explicit file specification, causes
the default FORTRAN Library to be searched. This switch should be
included if any of the object modules specified in the command string
were created by the FORTRAN Compiler. This switch can be omitted,
however, if the FORTRAN library file specification, SY:FORLIB, is
explicitly included in the command string.

1-6

RTe11 FORTRAN Tv

V01«07 23«MAY=TU4

+LP3/LS37/A/0TESY

OPYIONS IN EFFECT:

RTell FURTRAN Tv

2001
nRne
"eA3
"004
0SS
aene
"3n7
nens
2009
fo1@
fe11l
nete

RTe11 FORTRAN 1v

NAME

INY
REAL
IMAG
DBLE
CMPLYX

1@

SOURCE
MAP
CODE
RT=11
MPTIM
LRECL=M136
STAY
1SNS
NOCOL B8R
JSRSWAP
NONTAG
NOINTEGER«A
NLCHNE G
NONERUG
VECTOR
NOWARN

Val«A7 SOURCE LISTING

INTEGER INTY

REAL REAL

COMPLEY TMAG .

NOI'BLE PRECISION DALE

DATA INT/100Q/

REAL = INT/2 +5,

NBLE s REAL/?, + 3,14159682516
IMAG = CMPLXCREAL, 3,21)
WRITF(S,10) TMAG
FORMAT(1YX,”FA,S)

STOP
END

STORAGE MAP

OFFSETY

aPAANG
fon030
noPRvd
nAPNad
nEANNO

ATTRIBHYES

INTEGER®=? VARIABLE
REAL*4 VARIABLE
COMPLEXYxA VARIABLE
REAL*8 VARJIABLE
COMPLEXaR PROCFDI!IRE

PAGE 00y

RTei1y FORTRAN 1V GENERATEN CONE

ISN #0006

f0M0%4 LSNS *0M0006
ARGR6D MOISMS ManEMe

00064 DIISIS somoMQ@?
nomQ@7@ CFIs

M00072 ADFSTS #QuQb4dn
f0MRT76 MOFSSM 0?0230

ISN #0007

A0ML@2 1ISNS

PRM104 MOFSMS npnnlQ
nOP110 DIFSIS #040400
MOA114 ADFSMS onpnoefe
200120 COFS

neN122 MODSSM Manead

1SN #0008

nEML26 ISNS

npm130 RELS neno24d

P2m134 RELS 00n230

neM1a@ CALS *PN0RQ2 CMPLX+#00M0M0N
P20@146 MODSRM MpMN34

ISN #0709

2001%2 ISNS

200154 RELS nePR16
2001608 RELS LI XY
A0M164 IFWS

non166 RELS 0034
nEn1t7e TVCS

000174 FOLS

ISN #0041
200176 LSNS #QNQ01 3
nge2re STPS

ISN #0ni2

A002M4 ISNS
meMene RETS

wwawr COMPILATION STATTSTYICS nrnnn

|] ®
L] *
fpoccvcew COMPILED T‘BLES L XX XX X
« SYMBOLSS 00PQ279 WORDS »
o PROGRAMS 072481 WORNS »
« FREE CORE! 25018 WORDS «
» ®
feeocoweosee OHJECT CONE ewccocsccsan
« IMPURE SECYINN? 0PQ22 WORNS o
* PURE SECTION: 0PQ4a6 WORDS »
* TOTAL? 27068 WNRNS «
» *

(AR AR AR S RRXAZRRRARRZRRREZRRRRR X

The optional Load Map file specification, if included, requests the
Linker to output a list of module names, Common blocks and Global
Symbols together with their absolute memory address assignments.

For a more detailed description of LINK refer to the Linker Chapter of
the RT-11 System Reference Manual.

1.3.1 Library Usage

The FORTRAN programmer may want to create a library of commonly used
Assembly Language and FPORTRAN functions and subroutines. The RT-1ll
system program LIBR provides a 1library creation and modification
capability. The Librarian Chapter of the RT-11 System Reference
Manual describes the LIBR Program in detail.

A library file may be included in the LINK command string simply by
adding the file specification to the input file list, LINK recognizes
the file as a library file and links only those routines that are
required. The LINK command string

*LOAD=MAIN,LIB1l/F

requests LINK to link MAIN.OBJ with any required functions or
subroutines contained in LIBl.OBJ. The default FORTRAN System
Library, FORLIB, is then searched for any other required routines.
The entire core image will be output to the file LOAD.SAV.

All user created libraries are searched before the default FORTRAN
System Library, FORLIB, if the /F switch is used.

Under certain circumstances library directories will be made core
resident to speed up library searches. This will therefore reduce the
amount of core available for the symbol table. Directories will be
made resident if the machine has 12K or more core memory, there is
room for the particular directory, and the /S Linker switch is not
included in the command string. If the Linker fails because it ran
out of symbol table space linking object files, one of which was a
library file, and the above conditions were also in effect, another
attempt may be made including the /S Linker switch. This will slow

down the 1linking process, but will allow the maximum possible symbol
table space.

In the interest of maintaining the integrity of the DEC-distributed
FORTRAN Library, the creation of a user library is preferred to the
modification of, or addition to, the FORTRAN Library (FORLIB).

1l.3.2 Overlay Usage

The overlay feature of the Linker allows segmentation of the core
image so that the entire program need not be core resident at one
time. This allows the execution of a program that otherwise would not
fit in the available core memory.

1-9

An overlay structure consists of a root segment and one or more
overlay regions. The root segment contains the FORTRAN main program
and blank COMMON. The root segment may also contain some subroutines
and function subprograms. An overlay region is an area of core
allocated for two or more overlay segments, only one of which can be
core resident at one time. An overlay segment consists of one or more
subroutines or function subprograms.

At runtime, if a call is made to a routine that is contained in an
overlay segment, the overlay handler checks to see if the segment is
resident in its overlay region. If the segment is in memory, control
is passed to the routine. If the segment is not resident, the overlay
handler reads the overlay segment from the core image file on the
system device (or other device of the same type as the system device)
into the specified overlay region. This destroys the previous overlay

segment in that overlay region. Control is then passed to the
routine,

When dividing a FORTRAN program into a root segment and overlay
regions, and subsequently dividing each overlay region into overlay
segments, routine placement should be carefully considered. The user
should always remember that it is illegal to call a routine located in
a different overlay segment in the same overlay region, or an overlay
region with a lower numeric value (as specified by the Linker overlay
switch, /O:n) from the calling routine. The user should divide each
overlay region into overlay segments which never need to be resident
simultaneously.

The FORTRAN main program unit must be pPlaced in the root segment.

In an overlay environment, Subroutine Calls and Function Subprogram
references may refer only to one of the following:

l. A FORTRAN library routine (e.g. ASSIGN, DCOS)

2. A FORTRAN or Assembly Language routine contained in the root
segment

3. A FORTRAN or Assembly Language routine contained in the same
overlay segment as the calling routine

4. A FORTRAN or Assembly Language routine contained in a segment
whose region number is greater than that of the calling
routine.

In an overlay environment, COMMON blocks must be pPlaced so that they
are resident when referenced. Blank COMMON is always resident since
it is always placed in the root segment. All named COMMON must be
placed either in the root segment, or into the segment whose region
number is lowest of all segments which reference the COMMON block. A
named COMMON block can not be referenced by two segments in the same
region unless the CUMMON block appears in a segment or lower region
number. The linker automatically places a COMMON block into the root
segment if it is referenced by the FORTRAN main program or a
subprogram that is located in the root segment. Otherwise the linker
places a COMMON block in the first segment encountered in the linker
command string that references that COMMON block.

All COMMON blocks which are data initialized (by use of DATA
statements) must be so initialized in the segment in which they are
placed.

The entire overlay initialization process is handled by LINK. The
command format outlined below and further explained in the Linker
Chapter of the RT-11 System Reference Manual is used to describe the
overlay structure to the Linker. LINK 1links the runtime overlay
handler with the user program, making the overlay process completely
transparent to the user's program.

The size of the overlay region is automatically computed to be large
enough to contain the largest overlay segment in that overlay region.

The root segment and all overlay segments are contained in the core
image file generated by LINK.

Two switches are used to specify the overlay structure to LINK. The
overlay switch is of the form:

/0:n

where n is an octal number specifying the overlay region number. The
command Continuation switch is of the form:

/C

This switch allows the user to continue long command strings on the
next line of input.

The first line of the LINK overlay structure command string should
contain as the input list all object modules that are to be included
in the root segment. This line should be terminated with the /C and
/F switches. The /0O:n switch can not appear in the first line of the
command string. If all modules which are to be placed in the root
segment cannot be specified on the first command line, additional
modules may be specified on subsequent command lines each ending with
a /C. The entire root segment must be specified before any overlays.

All subsequent lines of the command string should be terminated with
an /O:n switch specifying an overlay region and/or a /C switch. The
presence of only a /C switch specifies that this is a continuation of
the previous line and therefore, a continuation of the specification
of that overlay segment. The object modules on each line, or set of
continued lines, constitute an overlay segment and share the specified
overlay region with all other segments in the same numeric value

overlay region. All but the last line of the command string should
contain the /C switch,

For example, given the following overlay structure description:

1. a Main program and the object module SUBl are to occupy the
Root Segment

2. the object module SUB2 is to share an overlay region with the
object module SUB3 (never co-resident)

3. the object modules SUB4 and SUB5 are to share a second
overlay region with the object modules SUB6 and SUB7

the following command string could be used:

+R LINK
SLOAD=MAIN,SUB1/F/C
*8UB2/0:1/C
*SUB3/0:1/C
*SUB4/0:2/C

*SUB5/C

*SUB6/0:2/C

*suB?7

1.3.3 Stand-Alone FORTRAN

It is possible to generate a stand-alone FORTRAN program which can be
executed on any PDP-1ll not running RT-1l. It should be noted that the
stand-alone program should not be executed on any system running RT-11
or system failure will almost certainly result., The program functions
as it normally would on an RT-11l system. The only I/0 device which
can be supported with FPORTRAN-level I1/0, however, is the terminal.
Other devices could be supported via appropriate user-written assembly
language routines.

To generate a stand-alone program the source program units should be
compiled as usual. At link time special options must be employed to
generate the stand-alone program. The /L switch must be included in
the LINK command string so that the proper format output file is
generated. The /I switch must also be used so that two special
modules can be requested to be linked to the program from the FORTRAN
library. These two modules are:

SSIMRT sRT=11 simulator

$nkK ;where n=4,8,12,16,20,24
or 28 and specifies the amount
of core available on the target
machine.

The following command sequence generates a file called LOAD.LDA which
may be punched on paper tape and loaded, using the Absolute Loader, on
any PDP-11l with 8K or more core memory:

+R LINK
*LOAD ,LP :=MAIN,SUBS/F/L/1

$SIMRTCCR>
$8K<(CR>
<CR>

*tC

1.4 EXECUTION PROCEDURES

To start execution of the core image file generated by LINK, use the
monitor R or RUN commands. The command:

oR MYPROG
or LRUN DEV:MYPROG

causes the file on the system device (or device DEV:), MYPROG.SAV, to
be loaded into core and executed.

The following shows how to take three FORTRAN source files containing
a main program and several subroutines through the procedures
necessary to Compile, Link, and Execute that program:

4R FORTRAN
*MAIN,LP:=MAIN,SUB
*SUBL,LP :=SUBL

%1C

<R LINK

*MAIN,LP :=MAIN,SUBL/P
*®C

<R MAIN

1.5 DEBUGGING A FORTRAN PROGRAM

The RT-11 debugging program, ODT, usually cannot be effectively used
with a FORTRAN program due to the nature of the object code generated
by the FORTRAN Compiler (see section 2.2).

However, in addition to the FORTRAN OTS error diagnostics which
include the Traceback Feature (see section 2.5), there is another
debugging tool available to the FORTRAN programmer. A D in column one
of a FORTRAN statement allows that statement to be conditionally
compiled. These statements are considered comment 1lines by the
FORTRAN Compiler unless the /D switch is used in the Compiler command
string. In this case the 1lines are compiled as regular FORTRAN
statements, Liberal use of PAUSE statements and selective variable
print out can provide the user with a method of monitoring program
execution, This feature allows the inclusion of debugging aids that

can be compiled in the early program development stages and later
treated as reqular comment lines.

1-13

CHAPTER 2

FORTRAN OPERATING ENVIRONMENT

2.1 [FORIRAN OBJECT TIME SXSTEM
The FORTRAN Object Time System (OTS) is composed of the following:

1) Math routines, including the FORTRAN library functions and
other arithmetic routines (e.g. floating point routines)

2) Miscellaneous utility routines (ASSIGN, DATE, SETERR)
3) Routines which handle various types of FORTRAN I/O

4) Error handling routines which process arithmetic errors, I/0
errors, and system errors

5) Miscellaneous routines required by the compiled code.

The FORTRAN Library is designed as a collection of many small modules
so that unnecessary routines can be omitted at Link time. For
example, if the user program performs only sequential formatted 1I/0,
none of the random access I/0 routines are linked to his program.

The OTS version and edit number should be specified when communicating
with DEC Software Support concerning the OTS. The version and edit
number can be found in the LINK map. They will appear as a symbol and
associated value in the ,ABS. section of the link map listing and
will have the following form:

VO0Oxc = nnnnnn
where x = a decimal digit

c = an alphabetic character
n an octal digit

2.2 OBJECT CODE

Typical FORTRAN operations often require common sequences of PDP-11
machine instructions. For example, at the end of any DO-loop, the
index variable must be incremented, compared with the limit value, and
a conditional branch taken. Other standard sequences might be

2-1

generated to locate an element of a multidimensional array, initialize
an input/output operation, or simulate a floating-point operation not
supported by the hardware configuration.

The common sequences of PDP-1l instructions are contained in a library
known as the Object Time System. The RT-11 FORTRAN Compiler selects a
certain combination of these instruction sequences to implement a
FORTRAN program, During program execution, these sequences are
threaded together and effect the desired result,

The Compiler references a library instruction sequence by generating a
word containing the address of the first instruction in the sequence,
followed by information upon which the sequence is to operate. 1In the
case of the end-of-DO-loop sequence the information required is the
location of the index variable, the limit value, and the address of
the beginning of the loop. At runtime, register 4 is used to thread
together the various references to library instruction sequences; the
last instruction executed by each instruction sequence is JMP Q(R4)+,
which transfers control to the next library instruction sequence.

The mnemonics used for the Library routine names follow a logically
consistent format, The mnemonics are usually six characters in
length. The first two characters specify an operation., The third
character specifies the mode of the operation, i.e. integer, floating,
double precision, complex, or logical. The fourth character is always
a dollar sign ($). The fifth and sixth characters, if present,
specify, respectively, a source and destination for the operation,
The source element for the operation can be a memory location, the
hardware stack, the hardware registers, or an in-line argument which
can be referenced through R4. The destination element for an operation
can be a memory location, the hardware stack, or a location specified
as an in-line argument which can be referenced through R4,

The library routines perform arithmetic operations, compare values,
test values, calculate subscripts, convert from one mode type to
another, and transfer program control. There are special routines to
handle statement line numbers, enabling the FORTRAN Traceback feature,
a routine to handle subprogram control transfer, and a routine to push
the address of variables on the hardware stack. There are also
several routines to handle special FORTRAN runtime operations such as
PAUSE, STOP, I/0 initialization, and I/O data transfers.

For example, the following FORTRAN program:

C

C PROGRAM TO DEMONSTRATE THE CODE GENERATED BY

C THE RT=-11 FORTRAN COMPILER,

C
0001 DIMENSION RARRAY (10,10) ! ALLOCATE A REAL*4 ARRAY
0002 I = (3%*2 - 5) +1I ! ADD ONE TO 1
0003 J = (I+100)*(N**2) ! COMPUTE AN EXPRESSION
0004 A= 2,0 ! ASSIGN A VALUE TO A REAL
0005 RARRAY (2,1) = RARRAY(1,1) + A ! SUM OF TWO REAL VALUES
0006 END

would generate object code that can be symbolically represented as
follows (the storage map is included for reference) :

RT-11 FORTRAN IV

Y

=g

OFFSET

000006
000626
000630
000632
000634

RT-11 FORTRAN IV

ISN #0002

STORAGE MAP
ATTRIBUTES
REAL*4 ARRAY (10,10)
INTEGER¥*2 VARIABLE
INTEGER*2 VARIABLE
INTEGER*2 VARIABLE
REAL*4 VARIABLE

000640 ICISM 000626

ISN #0003

000644
000650
000654
000660
000664
000666

MOISMS
ADISIS
MOISMS
MUIS$MS
MUISSS
MOISSM

ISN #0004

000672

MOF$IM

ISN #0005

000700
000706

MOF $MM
ADFS$MM

ISN #0006

000714

RETS$

000626
#000144
000632
000632

000630

#040400 000634

000006 000012
000634 000012

GENERATED CODE

s+ increment the integer whose address
s is 000626 (I)

add 100 to value on top of stack

and square it (multiply by itself)
multiply (I+100) and (N**2)
store value on top of stack in J

«e W0 “e W V0 %

3 move an immediate floating constant
; (2.0) to A

3 move RARRAY (1,1) to RARRAY (2,1)
s and add A to RARRAY (2,1)

; return to RT=1ll (exit from program)

move the value of integer I onto stack|

move the value of integer N onto stack

2.3 SUBROUTINE LINKAGE

All instances of subprogram linka
including 1linkage of user writ
language subprograms,

following instruction:

JSR PC,routine

ge are performed in the same manner,
ten FORTRAN subprograms, and Assembly
Control is passed to the subprogram with the

Register five points to an arqument list having the following format:

\

undefined # of arguments
address of arg. #1
address of arg. #2
address of arg. #n

Control is returned to the calling program by use of the instruction:

RTS PC

An assembly language subroutine to find the sum of any number of
integers using the following call:

CALL ADD(num,,numz,...,numn,isum)

might look like the following:

+TITLE ADDER
«GLOBL ADD

ADD: MOV (R5) +,R0
CLR Rl
DECB RO

18 ADD @ (R5) +,R1
DECB RO
BNE 1$
MOV R1,8(R5) +
RTS PC

;GET # OF ARGUMENTS
sPREPARE WORKING REG,
sFIND ¢ OF TERMS TO ADD
;ADD NEXT TERM

; DECREMENT COUNTER
;LOOP IF NOT DONE
sRETURN RESULT

i RETURN CONTROL

2.4 SUBPROGRAM REGISTER USAGE

A subprogram that is called by a FORTRAN program need not preserve any
registers. However, the stack must be kept in sync: that is each
‘push' onto the stack must be matched by a 'pop' from the stack prior
to leaving the routine.

User-written assembly language programs that call FORTRAN subprograms
must preserve any pertinent registers before calling the FORTRAN
routine and restore the registers, if necessary, upon return.

Function subprograms return a single result in the registers. The
register assignments for returning the different variable types are
listed below:

Integer, Logical functions - result in RO
Real functions - high order result in RO, low order result in Rl

Double Precision functions - result in R0-R3, lowest order
result in R3

Complex functions - high order real result in RO, low order real
result in Rl, high order imaginary result in R2, low
order imaginary result in R3

2.5 IRACEBACK FEATURE

RT-11 FORTRAN fatal runtime errors provide the traceback feature.
This feature locates the actual program unit and line number of a
runtime error. Immediately following the error message, the error
handler will 1list the line number and program unit name in which the
error occurred, If the program unit is a subroutine or function
subprogram, the error handler will trace back to the calling program
unit and display the name of that program unit and the 1line number
where the call occurred. This process will continue until the calling
sequence has been traced back to a specific line number in the main
program, This allows the exact determination of the location of an
error even if the error occurs in a deeply nested subroutine.

A=0,0

CALL SUBl(A)
CALL EXIT
END

SUBROUTINE SUBI1 (B)
CALL SUB2(B)
RETURN

END

SUBROUTINE SUB2(C)
CALL SUB3(C)
RETURN

END

SUBROUTINE SUB3(D)
E=1,0

F=E/D

RETURN

END

Trace back of Fatal Error:
?ERR 12 FLOATING ZERO DIVIDE

IN ROUTINE "SUB3 * LINE
FROM ROUTINE “suB2 * LINE
FROM ROUTINE *"SuBl " LINE
FROM ROUTINE *®,MAIN," LINE

DNV W

Figure 2-1
The Traceback Feature

Note in Figure 2-1 that the line number in the traceback of routine
'SUB2' is simply a question mark (?). This is because the module was
compiled with the /S switch in effect (see section 1.2.1).

2.6 YECTORED ARRAYS

Array vectoring is a process which decreases the time necessary to
reference elements of a multidimensional array by using some
additional memory to store the array.

Multidimensional arrays, which are actually stored sequentially in
memory, require certain address calculations to determine the location
of individual elements of the array. Typically, a mapping function is
used to perform this calculation. For example to locate the element
LIST(1,2,3) in array dimensioned LIST(4,5,6) a function equivalent to
the following may be used, This function identifies a location as an
offset from the origin of the array storage.

(8,-1) +d, * (s, -1) +d4, *d, * (8y - 1) =
(0) + 4 * (1)+ 4* 5*(2) = 44

where 8, = subscript i

d; = dimension i

Since such a mapping function requires multiplication operation(s),
and since some PDP-1l1 hardware configurations do not have the MUL
instruction, the compiler may ‘'vector' some arrays and thereby reduce
execution time at the expense of memory storage.

If an array is vectored, a particular element in the array can be
located by a simplified mapping function, without the need for
multiplication. Instead, a table lookup is performed to determine the
location of a particular element. For example, a vectored, two
dimensional array B(S5,5) automatically has associated with it a one
dimensional vector that would contain relative pointers to each column
of array B. The location of the element B(m,n), relative to the
beginning of the array, could then be computed as:

Vector(n) + m

using only addition operations., Figure 2-2 graphically depicts the
array vectoring process.

The compiler decides whether to vector a multidimensional array based

on the ratio of the amount of space required to vector the array over

the total storage space required by the array. If this ratio is

greater than 25%, the array is not vectored and a standard mapping

function is used instead. Arrays with adjustable dimensions are never

I:ctored. Vectored arrays are noted as such in the storage map
sting.

The Compiler /V switch can be used to suppress all array vectoring.

The amount of core required to vector an array can be computed as the
sum of all array dimensions except the first. For example, the array
X(50,10,30) requires 10+30=40 words of vector table., Note that the
array V(5,100) requires 100 words of vector storage, whereas the array
¥(100,5) requires 5 words of vector storge. It is therefore
advantageous to place an array's largest dimension first.

37777 37777
RMON RMON
OTS WORK USR
AREA
p
136 BYTE
OTS WORK
LINE BUFFER AREA
CHANNEL TABLES
136 BYTE
DEVICE HANDLERS LINE BUFFER
v CHANNEL TABLES
A DEVICE HANDLERS
~5K I/0 BUFFERS ittt
I/0 BUFFERS
oTS /O BUFFE
__________ _ U OTS
S
R o o e e e o .
PROGRAM
L PROGRAM
//
\ rd
1000 ST;FK 1000 STACK
VECTORS VECTORS
0 0
Swapping System Resident System
Figure 2-3

RT-11 8K System
Runtime Memory Organization

2-1g

CHAPTER 3

RT-11 FORTRAN SPECIFIC CHARACTERISTICS

This chapter deals with information specific to RT-11 FORTRAN that is
omitted from or contradicts information included in the PDP-11 FORTRAN
Language Reference Manual.

It should be noted that deviations from FORTRAN syntax requirements
outlined in the PDP-1l1 FORTRAN Language Reference Manual, even if
acceptable in RT-11 FORTRAN, decrease the portability of the program,
and may prohibit successful execution on another PDP-1ll system,

3.1 VARIABLE NAMES

RT=11 FORTRAN allows variable names t0 extend past six characters in
length, However, only the first six characters are significant and
should be unique among all variable names in the program unit. If the
/W awitch is included in the Compiler command string, a warning

diagnostic is given for each variable name which exceeds six
characters in length.

3.2 INITIALLZATION OF COMMON VARIABLES

RT=11 FORTRAN allows any variables in COMMON, including blank COMMON,
to be initialized in any program unit by use of the DATA statement.

3.3 CONTINUATION LINES

RT=11 FORTRAN does not place any limits on the number of continuation
lines that a statement may contain,

3.4 DEFAULT LOGI UNIT - DEV F SIGNMENTS

Listed in table 3-1 are the default logical unit - device and filename
assignments. The default device assignments may be changed prior to

execution by use of the monitor ASSIGN command. For example the
monitor command:

SsASSIGN LP 7

connects logical unit 7 to the physical device line printer, The
device and/or filename assignments may be changed at execution time by
use of the ASSIGN system subroutine (see section B.2). Valid logical
unit numbers other than those listed below (10-99) are assigned to the
system default device, DK:. The default filename conventions hold for

logical units not 1listed below, i.e. unit number 49 will have a
default filename of FTN49.DAT.

Table 3-1
FORTRAN Logical Device Assignments

Logical Unit Default Device Default Filename
Number
1 System disk, SY: FTN1.DAT
2 System disk, DK: FTN2.DAT
3 System disk, DK: FTN3,DAT
4 System disk, DK: FTN4.DAT
5 Terminal, TT:(Input) FTN5.DAT
6 Line printer, LP: FTN6 .DAT
7 Terminal, TT: (Output) FTN7 .DAT
8 High-speed paper

tape reader, PR: FTN8.DAT
9 High-speed paper

tape punch, PP: FTN9 . DAT

Although any combination of valid logical unit numbers may be used,
there is an imposed maximum number of units which may be
simultaneously active. By default, six 1logical wunits may be
concurrently active, The number may be changed by use of the /N
switch in the Compiler command string while compiling the main program
unit (see section 1.2.1).

A formatted READ statement of the form:

READ f,list
is equivalent to:

READ(1,f)list
For all purposes these two forms function identically. Assigning
logical unit number 1 to the terminal, for example, in both cases
causes input to come from the terminal.
The ACCEPT, TYPE, and PRINT statements also have similar functional

analogies. Assigning devices to logical units 5,7, and 6 affects
respectively the ACCEPT, TYPE, and PRINT statements,

3.5 MAXIMUM RECORD LENGTHS

In RT-11 FORTRAN the line buffer allocated to temporarily store 1I/0
records is by default 136 bytes long. This restricts all I/0 records
in formatted I/0 statements and ENCODE and DECODE statements to a
maximum of 136 characters. The size of this buffer, and consequently
the maximum record length, may be changed by including the /R switch
in the Compiler command string while compiling the main program unit.
The maximum size of the line buffer is 4095 bytes (7777 octal).

3.6 STATEMENT ORDERING RESTRICTIONS

RT-11 FORTRAN does not impose as strict statement ordering
requirements as those outlined in the PDP-1l1l FORTRAN Language
Reference Manual, There are only three statement ordering
requirements that must be met:

1) In a Subprogram, the first non-comment line
must be a FUNCTION, SUBROUTINE or BLOCK DATA
statement.

2) The last line in a program unit must be an
END sentinel.

3) Statement Punctions must be defined
before they are referenced.

However, if the statement ordering requirements as outlined in the
PDP-11 FORTRAN Language Reference Manual are not followed, and if the
/W Compiler switch (enable warning diagnostics) is included in the
Compiler command string, a warning diagnostic will be included with
the source listing.

3.7 DIRECT-ACCESS 1/0

3.7.1 DEFINE FILE

The first parenthesized argument in a DEFINE FILE statement specifies
the length, in records, of the direct-access file being initialized.
However, if the statement is part of a file creation procedure, this
value may not be readily available. RT-11 FORTRAN allows some extra
flexibility in this situation. A file length specification of =zero
records causes a large contiguous file to be allocated initially and
the unused portion to be automatically de-allocated when the file is
closed. The "END=" construction is particularly useful in this
situation for determining the actual length of the file.

3.7.2 Creating Direct-Access Files

The first I/O operation performed on a direct-access file during file
creation must be a WRITE operation. A READ or FIND operation under
such circumstances produces a fatal error condition.

3.8 INPUT/OUTPUT FORMATS

3.8.1 Formatted I/0

Formatted input/output transfers 7 bit ASCII characters packed 1
character per byte. This form of input/output correctly transfers
ASCII files only, An attempt to use formatted input/output to
transfer binary files causes a loss of information.

3.8.,2 Unformatted /0

Unformatted input/output is actually a formatted binary input/output,
Each binary record includes record header and trailer information,
Unformatted input/output transfers full 16 bit words of information,
Generally, unformatted input operations correctly function only on a
file created using FORTRAN unformatted output operations.

3.8.3 Direct-Access 1/0

Direct-access input/output is true unformatted binary input/output.
No record header or trailer information is added on output operations
and none is expected on input operations. Direct-access input/output
transfers fixed 1length unformatted binary records. Direct-access
input/output is the only type of input/output that correctly transfers
information to or from a binary file.

3.9 MIXED MODE CQMPARISONS

When comparing a single precision number to a double precision number,
the double precision number may appear to be greater than the single
precision number in magnitude even if they should be equal, For
examples

DOUBLE PRECISION D

A=55,1

D=55,1D0

IF(A.LT.D) STOP
In the example above A compares less than D. This is due to the fact
that 55.1 is a repeating binary fraction. Before the comparison, the
24 bit fractional (mantissa) part of A is extended with 32 zero bits.

These low order 32 bits are now less than the low order 32 bits of D,
and D therefore compares greater than A.

APPENDIX A

FORTRAN DATA REPRESENTATION

A.l INTEGER FORMAT

SIGN

p=+
1=- binary number

15 14 g

Integers are stored in a two's complement representation. If the /T
compiler switch (see section 1.2,1) is used an integer is assigned two
words, although only the high-order word (i.e., the word having the
lower address) is significant. By default integers will be assigned
to a single storage word. Explicit length integer specifications
(INTEGER*2 and INTEGER*4) will always take precedence over the setting
of the /T switch. Integer constants must lie in the range =32767 to
+32767. For example:

+22 = 000026,
-7 = 177771,

A.2 FLOATING-POINT FORMATS

The exponent for both 2-word and 4-word floating-point formats is
stored in excess 128 (200,) notation. Binary exponents from =128 to
+127 are represented by the binary equivalents of 0 through 255 (0
through 377,). Fractions are represented in sign-magnitude notation
with the binary radix point to the left., Numbers are assumed to be
normalized and, therefore, the most significant bit is not stored
because it is redundant (this is called "hidden bit normalization”).
This bit is assumed to be a 1 unless the exponent is 0 (corresponding
to 27'%2%) in which case it is assumed to be 0., The value 0 is

represented by two or four words of zeros. For example, +1.0 would be
represented by:

40200
0

in the 2-word format, or:

40200
0
0
0

in the 4-word format. -5 would be:

140640
0

in the 2-word format, or:
140640
0
0
0

in the 4-word format.

A.2,1 Real Format (2-Word Floating Point)

SIGN
word n: g=+ Binary excess High-order
1=- 128 exponent mantissa
15 14 76 2
word n+2: Low-order mantissa
15 ']

Since the high-order bit of the mantissa is always 1, it is discarded,
giving an effective precision of 24 bits, or approximately 7 digits of

accuracy. The magnitude range lies between approximately 1.0 x 1¢7*°
and 1.0 x 10°%°,

A.2.2 Double Precision Format (4-Word Floating Point)

SIGN
N 0=+ Binary excess High-order
word n: 1=- 128 exponent mantissa
15 14 76 [}
word n+2: Low-order mantissa
15 "}

word n+4:

word n+6:

Lower-order mantissa

15

Lowest-order mantissa

15

g

The effective precision is 56 bits or approximately 17 decxmal digits
The magnitude range lies between 1.0 x 107°°

of accuracy.

10°

A.2.3 Complex Format

word n:

word n+2:

word n+4:

word n+6

A.3 LOGICAL*1 FORMAT

SIGN
P=+ Binary excess High-order h
1=~ 128 exponent mantissa
15 14 76 "]
Low-order mantissa
p,
15 2
SIGN
g=+ Binary excess High-order A
1l=- 128 exponent mantissa
15 14 76 "] >
Low-order mantissa J
15 g

Data Item

2

and 1.0 x

Real
Part

Imaginary
Part

The range of numbers from +127 to =128 can be represented in LOGICAL*1

Format. LOGICAL*1l array elements are stored in adjacent bytes.

A.4 HOLLERITH FORMAT

CHAR 2 CHAR 1
15 8 7 [
CHAR 4 CHAR 3
15 8 7 2
BLANK = 4¢g CHAR n (ng255)
15 87)

Hollerith constants are stored internally one character per byte.
Hollerith values are padded on the right with blanks to fill the
associated data item if necessary. Hollerith constants can only be
used in DATA, FORMAT, and CALL statements. Only the quoted form of
Hollerith constants can be used in STOP and PAUSE statements.

A.5 LOGICAL FORMAT

TRUE: word n: unspecified 3774
15 8 7 [}
word n+2: unspecified
15 8 7 g
FALSE: word n: unspecified pega
15 8 7 2
word n+2: unspecified
15 8 7 g

Logical (LOGICAL*4) data items are treated as LOGICAL*1 values for use
with arithmetic and logical operators. Any non-sero value in the low
order byte is considered to have a logical value of true when tested
by a logical IF statement.

APPENDIX B

SYSTEM SUBROUTINES

B.l SYSTEM SUBROUTINE SUMMARY

Like the functions intrinsic to the FORTRAN system, there are
subroutines in the FORTRAN library which the user may call in the same
manner as a user-written subroutine. These subroutines are:

ASSIGN Allows specification at run-time of filename or device
and filename to be associated with a FORTRAN logical unit
number,

RANDU Returns a random real number with a uniform distribution

RAN between 0 and 1.

EXIT Terminates the execution of a program and returns control

to the monitor.

USEREX Allows specification of a routine name to which control
widl be passed as part of the exit operation. This
allows the user to disable interrupts enabled by
non=-FORTRAN routines. .

DATE Returns a 9-byte string containing the ASCII
representation of the current date.

IDATE Returns three integer value representing the current
month, day and year.

SETERR Allows the user to set a count specifying the number of
times to ignore a certain error condition.

B.2 ASSIGN

The Assign subroutine allows the association of device and/or filename
information with a logical unit number. The ASSIGN call, if present,
must be executed before the logical unit is opened for I/O operations
(by READ or WRITE) for sequential access files, or before the
associated DEFINE FILE statement for random-access files. The
assignment remains in effect until the end of the program or until the
file is closed by an ENDFILE and a new CALL ASSIGN performed. The
call to ASSIGN has a general form as follows:

CALL ASSIGN(n, name, icnt, mode, control, numbuf)

CALL ASSIGN requires only the first argument, all others are optional,
and if omitted are replaced by the default values as noted in the
argument descriptions. However, if any argument is to be included,
all arguments that precede it must also be included.

A description of the arguments to the ASSIGN routine follows:

n logical unit number expressed as an integer constant or
variable
name Hollerith or literal string containing any standard

RT-11 device/filename specification. If the device is
not specified, then the device remains unchanged from
the default assignments, or the monitor ASSIGN command.
If a filename is not specified, the default names as
described in section 3.4 are used. There are three
switches which may optionally be included in the file
specification. The switches are:

/N Specifies no carriage control translation.
This switch, if present, will override the
value of the 'control' argument.

/C Specifies carriage control translation. This
switch, if present, will override the value
of the ‘control' argument.

/B:n Specifies the number of buffers, n, to use
for 1I/0 operations. The single argument, n,
should be of value 1 or 2. This switch, if
present, will override the value of the
'numbuf' argument,

If name is simply a device specification e.g. 'DK:',
the device will be opened with an RT-11 non-file
structured Lookup, and the device will be treated in a
non-file structured manner. Indescriminate use of this
feature on directory devices such as disk or Dectape
can be dangerous. See the RT-1l1 system Reference
Manual, Monitor chapter.

icnt specifies the number of characters in the string
'name'. If ‘icnt' is zero, the string 'name' will be
processed until the first Dblank character is
encountered, If 'icnt' is negative, program execution
will be temporarily suspended, a prompt character (*)
will be sent to the terminal, and a device and/or
filename specification, with the same form as 'name'
above, terminated by a carriage return, will be
accepted from the keyboard.

mode specifies the method of opening the file on this unit,
This argument should be one of the following:

'RDO' the file will be read only. A fatal error
occurs if a FORTRAN WRITE is attempted on
this unit. The file is opened with an RT-11
LOOKUP,

'NEW' the file is being created. The file is
opened with an RT-11 ENTER.

'oLDp! the file already exists, The file is opened
with an RT-11 LOOKUP,.

'SCR' the file is only to be used temporarily and
will be deleted when it is closed.

If this argument is omitted the default is determined
by the first I/0 operation performed on that unit. If
a WRITE operation is the first I/0 operation performed
on that unit, 'NEW' is assumed. If a READ operation is
the first I1/0 operation performed on that unit, 'OLD'
is assumed.

control specifies whether carriage control translation is to
occur. This argument should be one of the following:
'NC! all characters are output exactly as
specified.
‘cc! the character in column one of all output

records is treated as a carriage control
character. (see section 6.2.16 of the PDP-11
FORTRAN Language Reference Manual)

Note that if not specifically changed by the CALL
ASSIGN subroutines, by default, the terminal and line
printer assume °‘CC', and all other devices assume 'NC',

numbuf specifies the number of internal buffers to be used for
the I/0 operation. A value of 1 is appropriate under
normal circumstances. If this argument is omitted, one
internal buffer is used.

If only the unit number argument is specified, all previously
specified device and/or filename information concerning that unit is
dissociated from the unit number, and the default conditions become
effective.

For example in the following situation:

CALL ASSIGN(6,°'TT:')
WRITE(G"") eeoeoe
ENDFILE 6

WRITE(G,-) XXX

both WRITE operations will be performed on the terminal., However, in
the following situation:

CALL ASSIGN(6,'TT:')
WRITE(G'-) ccoe
ENDFILE 6

CALL ASSIGN(6)
WRITE(G'-) eoceo e

will cause theé first WRITE operation to be performed on the terminal,
and the second on the line printer.

B-3

B.3 RANDU , RAN

The random number generator can be called as a subroutine, RANDU, or

as an intrinsic function, RAN. The subroutine call is performed as
follows:

CALL RANDU (i, ,i, ,x)

where i, and i, are previously defined integer variables and x is the
real variable name in which is returned a random number between 0 and
l. i, and i, should be initially set to 0. I, and i, are updated to a
hew generator base during each call. Resetting i, and i, to 0 repeats
the random number sequence. The values of i, and i, have a special

form; only 0 or saved values of i, and i, should be stored in these
variables,

Use of the random number subroutines is similar to the use of the RAN
function where:

is the functional form of the random number generator,

B.4 EXIT

A call to the EXIT subroutine, in the form:
CALL EXIT

is equivalent to the STOP statement. It causes program termination,
closes all files, and returns to the RT=-11 monitor,

B.5 USEREX

USEREX is a subroutine which allows specification of a routine to
which control will be passed as part of program termination. This
allows disabling of interrupts enabled in non-FORTRAN routines, If
these interrupts are not disabled prior to program exit the integrity
of the RT-1ll operating system cannot be assured. The form of the
subroutine call is:

CALL USEREX (name)
Where 'name' is the routine to which control will be passed and should

appear in an EXTERNAL statement somewhere in the program unit.
Control is transferred with a JMP instruction after all procedures

required for FORTRAN program termination have been completed. The
transfer of control takes place instead of the normal return to the
RT=-11 monitor, so if the user desires to have control passed back to
the RT-11 Monitor, the routine specified by USEREX must perform the
proper exit procedures itself.

B.6 DATE

The DATE subroutine can be used in a FORTRAN program to obtain the

current date as set within the system. The DATE subroutine is called
as follows:

CALL DATE (array)

where array is a predefined array able to contain a 9-byte string.,
The array specification in the call may be expressed as the array name
alone:

CALL DATE (a)

in which the first three elements of the real array a are used to hold
the date string, or a':

CALL DATE (a(i))

which causes the 9-byte string to begin at the i(th) element of the
array a.

The date is returned as a 9-byte (9-character) string in the form:
dd-mmm-yy
where:

dd is the 2-digit date
mm is the 3-letter month specification
yy is the last two digits of the year

For example:
15-NOV=75

In the case where the array is a real array, 4-1/2 words are used to
contain the data string with the remaining array storage being
untouched. Therefore, the date string is stored in the first nine
bytes in the elements a(i), a(i+l), and a(i+2). The last three bytes
of a(i+2) are untouched and should be made blank by the user if he
intends to print the date with a 3A4 format.

B.7 IDATE

IDATE returns three integer values representing the current month,
day, and year. The call has the form:

CALL IDATE(i,j,k)

If the current date were March 19,1975 the values of the integer
variables upon return would be:

~N - W

.
[]
wn o

B.8 SETERR

SETERR allows the user to specify the disposition of certain oTS
detected error conditions. Only OTS error diagnostics 1 - 16 should
be changed from their default error classification (see section C,2).
If errors 0 or 20 - 63 are changed from the default classification of
FATAL, execution will continue but in an undetermined state. The form
of the call is:

CALL SETERR (number, ncount)
Where 'number' is an integer variable or expression specifying the OTS

error number (see section C.2), and 'ncount' is an integer variable or
expression with one of the following values:

value meaning

0 ignore all occurrences of the error

1 first occurrence will be fatal

2-127 the nth occurrence will be fatal
the first n-1 will be logged on the user terminal

255 Ignore all occurrences after logging them on the user
terminal

APPENDIX C

FORTRAN ERROR DIAGNOSTICS

C.1 COMPILER ERROR DIAGNOSTICS

The RT-11 FORTRAN Compiler, while reading and processing the FORTRAN
source program, can detect syntax errors (or errors in general form)
such as unmatched parentheses, illegal characters, unrecognizable key
words, missing or illegal statement parameters.

The error diagnostics are generally clear in specifying the exact
nature of the error. In most cases, a check of the general form of
the statement in question as described in the PDP-11 FORTRAN Language
Reference Manual will help determine the location of the error.

Some of the most common causes of syntax errors, however, are typing
mistakes., A typing mistake can sometimes cause the Compiler to give
very misleading error diagnostics. The user should be careful of the
following common typing mistakes:

l. Missing commas or parentheses in a complicated expression or
FORMAT Statement.

2. Misspelling of particular instances of variable names. If
the Compiler does not detect this error (it usually cannot),
execution may also be affected.

3. An inadvertent line continuation signal on the line following
the statement in error.

4, If the user terminal does not clearly differentiate between 0
(zexro) and O, what may appear to be identical spellings of
variable names may not appear so to the Compiler, and what

may appear to be a constant expression may not appear so to
the Compiler.

If any errors were detected in a compilation, the message:
ERRORS DETECTED: n

will be printed on the console terminal; n is the number of errors,
not including warnings, detected by the compiler.

The next three sections describe the initial phase and secondary phase
error diagnostics and the fatal FORTRAN Compiler error diagnostics.

c-1

C.l.1 Errors Reported by the Initial Phase of the Compiler

Some of the easily recognizable FORTRAN syntax errors are detected by
the initial phase of the Compiler. These errors are reported in the

source program listing. They are not reported if a source listing is
not requested.

The error diagnostics are printed after the source statement to which

they apply (the L error diagnostic is an exception). The general form
of the diagnostic is as follows:

ARRRE o

Where c is a code letter whose meaning is described below:

INITIAL PHASE ERROR DIAGNOSTICS

Code Letter Descrigtion
B Columns 1-5 of continuation 1line not blank.

Columns 1-5 of a continuation line must be blank
except for a possible 'D' in column 1,

c Illegal continuation. Comments cannot be
continued and the first line of any program unit
cannot be a continuation line.

E Missing END statement. An END statement is
supplied by the Compiler if end-of-file is
encountered.

H Hollerith string or quoted literal string longer

than 255 characters or longer than the remainder
of the statement.

I Non-FORTRAN character used, The line contains a
character that is not in the FORTRAN character set
and is not in a Hollerith string or comment line.

K Illegal statement label definition. Illegal
(non-numeric) character in statement label.

L Line too long. There are more than 80 characters
in a 1line. Note: this diagnostic is issued
before the line containing too many characters.

M Multiply defined label.

Statement contains unbalanced parentheses.

S Syntax error. Multiple equal signs, etc.
Statement not of the general FORTRAN statement
form,

u Statement could not be identified as any legal

FORTRAN statement.

C.l.2 Errors Reported by Secondary Phases of the Compiler

Those Compiler error diagnostics not reported by the initial phase of
the Compiler will appear immediately after the source listing and
immediately before the storage map. Since the diagnostics appear
after the entire source program has been listed, they must reference
the statement to which they apply by using the internal sequence
numbers assigned by the Compiler.

The general form of the diagnostic is:

IN LINE nnnn MSG#m text
Where nnnn is the internal sequence number of the statement in
question, m is an integer constant specifying the error number, and
text is a short description of the error.
Below, listed alphabetically, are the error diagnostics. Included
with each diagnostic is a brief explanation, and in most cases, a
reference to the PDP-11 FORTRAN Language Reference Manual section that
contains information to help correct the error.
The notation **#** gignifies that a particular variable name or
statement label will appear at that place in the text.

SECONDARY PHASE ERROR DIAGNOSTICS

ADJUSTABLE DIMENSIONS ILLEGAL FOR ARRAY *###

All arrays must be dimensioned with integer constants
except as specified in section 7.3.1.

ARRAY **#** HAS TOO MANY DIMENSIONS

An array can have up to seven dimensions. See
section 7.3.

ATTEMPT TO EXTEND COMMON BACKWARDS
wWhile attempting to equivalence arrays in COMMON, an
attempt was made to extend COMMON past the recognized
beginning of COMMON storage. See section 7.5.2.

COMMON BLOCK EXCEEDS MAXIMUM SIZE

An attempt was made to allocate more space to COMMON
than is physically addressable ()>32k words).

DANGLING OPERATOR

An operator (+,-,*,/, etc.) is missing an operand.
Examplae: I=J+,

DEFECTIVE DOTTED KEYWORD

A dotted relational operator was not recognized. Also,
possible misuse of decimal point. See section 2.5.2.

DO TERMINATOR *#*#* PRECEDES DO STATEMENT
The statement specified as the terminator of a DO 1loop
must come after the DO statement. See section 4.3,

EXPECTING LEFT PARENTHESES AFTER *#*##

An array name or Function name reference is not
followed by a left parenthesis.

c-3

EXTRA CHARACTERS AT END OF STATEMENT

All the necessary information for a syntactically
correct FORTRAN statement has been found on this line,
but more information exists. Possibly due to
inadvertent continuation signal on next line, or a
missing comma,

FLOATING CONSTANT TOO SMALL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

INTEGER

INVALID

INVALID

INVALID

INVALID

A floating constant in an expression is too close to
zero to be represented in the internal format. Use
zero if possible. See section 2.2.2.

ADJACENT OPERATOR
Two operators (*,/, logical operators, etc,) are
illegally placed next to each other. Example: 1I/*J,
See sections 2.5.1.2, 2.5.2.1, and 2.5.3.2.

ELEMENT IN I/O LIST

An item, expression, or implied DO specifier in an 1I/0
list is of illegal syntax.

DO TERMINATOR STATEMENT ##*#&#
A DO statement terminator must not be a GO TO,
arithmetic IF, RETURN, or DO statement or logical 1IF
containing one of these statements. See section 4.3,

STATEMENT ON LOGICAL IF
The statement contained in a logical IF must not be
another logical IF or DO statement. See section 4.2.2,

TYPE FOR OPERATOR
An illegal variable type has been used with an

exponentiation or 1logical operator. See sections
2.5.1.5, and 2.5.2.3.

USAGE OF OR MISSING LEFT PARENTHESIS
A left parenthesis was required but not found, or a
variable reference or constant is illegally followed by
a left parenthesis.,

OVERFLOW
An integer constant or expression value must not fall
outside the range -32767 to +32767. See section 2.2.1.
COMPLEX CONSTANT

A complex constant has been improperly formed. See
section 2,2.4,

DIMENSIONS FOR ARRAY
An attempt was made while dimensioning an array to
explicitly specify zero as one of the dimensions. See
section 7,3,

DO TERMINATOR ORDERING AT LABEL **##%
Do loops are incorrectly nested. See section 4.3.1.

EQUIVALENCE
Illegal equivalence, or equivalence that is
contradictory to a previous equivalence. See section
7.5.

INVALID

INVALID

INVALID

INVALID

INVALID

INVALID

INVALID

INVALID

INVALID

INVALID

INVALID

INVALID

INVALID

INVALID

FORMAT SPECIFIER
A format specifier is not the label of a FORMAT
statement or an array name. See section 5.1.

IMPLICIT RANGE SPECIFIER
Illegal implicit range specifier, i.e. non-alphabetic
specifier, or specifier range is in reverse alphabetic
order., See section 7.1,

LOGICAL UNIT
A logical unit reference must be an integer variable or
constant in the range 1 to 99. See section 5.1.1.

OCTAL CONSTANT
An octal constant is too large or contains a digit
other than 0-7. See section 2.2.S5.

OPTIONAL LENGTH SPECIFIER
A data type declaration optional length specifier is
illegal. For example, REAL*4 and REAL*8 are legal, but
REAL*6 is not. See section 7.2.

RADIX50 CONSTANT

Illegal character detected in a RADIX50 constant. See
section 2.2.8,

RECORD FORMAT
The third parenthetical argument in a DEFINE FILE

statement must be the single character U. See section
5.5.3.

STATEMENT IN BLOCK DATA
It is illegal to have any executable or FORMAT

statements in a BLOCK DATA Subprogram. See section
8.1.4,

STATEMENT LABEL REFERENCE
Reference has been made to a statement number that is
of illegal construction. GO TO 999999 is illegal since
the statement number is too long. See section 1.5.3.

SUBROUTINE OR FUNCTION NAME
A name used in a CALL statement or function reference
is not valid. Example: use of an array name in a CALL
statement routine name reference.

TARGET FOR ASSIGNMENT
The left side of an arithmetic assignment statement is

not a variable name or array element reference. See
section 3,1,

TYPE SPECIFIER
An unrecognizable data type was used., See section 7.1.

USAGE OF FUNCTION OR SUBROUTINE NAME
a function name cannot appear in a DIMENSION, COMMON,

DATA, EQUIVALENCE, or Data Type Declaration statement.
See section 8.,1,.,2.

VARIABLE NAME
A variable name contains an illegal character. See
section 2.3,

C-5

LABEL ON DECLARATIVE STATEMENT

It is illegal to place a label on a declarative
statement. See section 7.2.

MISSING ASSIGNMENT OPERATOR
The first operator seen in an arithmetic assignment
statement was not an equal sign (=), Example: I+J=K,
See section 3.1.

MISSING COMMA
The comma delimiter was expected but was not found,
See the section of the FORTRAN Reference Manual that
describes the general form of the statement in
question,

MISSING DELIMITER IN EXPRESSION

Two operands have been placed next to each other in an
expression with no operator between them.

MISSING LABEL

Expecting a statement label but one was not found.
Example: ASSIGN J TO I. A valid statement label
reference should precede 'TO' but does not.

MISSING RIGHT PARENTHESIS
Expecting a right parenthesis but one was not found.
Example: READ(5,100,). The first non-blank character
after the format reference should be a right
parenthesis but is not.

MISSING QUOTATION MARK

In a FIND statement, the logical unit number and record
number must be separated by a single quotation mark.
See section 5.5.4.

MISSING VARIABLE

Expecting a variable, but one was not found. Example:
ASSIGN 100 TO 1. A variable name should follow the *‘TO'
but one does not,

MISSING VARIABLE OR CONSTANT
Looking for an operator (variable or constant) but
found a delimiter (comma, parenthesis, etc.). Example:
WRITE(). A unit number should follow the open
parenthesis, but a delimiter (close parenthesis) is
encountered instead.

MODES OF VARIABLE ***#* AND DATA ITEM DIFFER
The data type of each variable and its associated data

list item must agree in a DATA Statement. See
section 7.7,

MULTIPLE DECLARATION FOR VARIABLE *###

A variable cannot appear in more than one data type
declaration statement or dimensioning statement. See
section 7.2.

NUMBER IN FORMAT STATEMENT NOT IN RANGE

An integer constant in a FORMAT statement is greater
than 255 or is zero. See section 6.1,

C-6

PARENTHESES NESTED TOO DEEPLY
Group repeats in a FORMAT Statement have been nested
too deeply. See section 6,2,15,

P-SCALE FACTOR NOT IN RANGE =127 TO +127
P-gscale factors must fall in the range =127 to +127.
See section 6.2,.14,

REFERENCE TO INCORRECT TYPE OF LABEL *##%%
A statement label reference that should be a label on a
FORMAT statement is not such a label, or a statement
label reference that should be a label on an executable
statement is not such a label.

REFERENCE TO UNDEFINED STATEMENT LABEL
A reference has been made to a statement number that
has not been defined anywhere in the program unit.

STATEMENT MUST BE UNLABELED
A DATA, SUBROUTINE, FUNCTION, BLOCK DATA, arithmetic
statement function definition, or declarative statement
must not be labeled.

STATEMENT TOO COMPLEX
An arithmetic statement function has more than 10 dummy
arguments, Or the statement is too long to compile.

Break it up into 2 or more smaller statements. See
section 8.1.1.

SUBROUTINE OR FUNCTION STATEMENT MUST BE FIRST
A SUBROUTINE, FUNCTION or BLOCK DATA Statement, if
present, must be the first statement in a program unit.
See section 8.1.2,

SUBSCRIPT OF ARRAY **#** NOT IN RANGE
Array subscripts that are constants or constant
expressions are checked to see if they are within the
bounds of the array's dimensions,

SYNTAX ERROR

Check the general form of the statement with the
general form outlined in the Language Reference Manual
section that describes that type of statement.

TARGET MUST BE ARRAY

The third argument in an ENCODE or DECODE statement
must be an array name. See section 5.8.

SYNTAX ERROR IN INTEGER OR FLOATING CONSTANT
An integer or floating constant has been incorrectly
formed. For example, 1.23.,4 is an illegal floating
constant because it contains two decimal points. See
section 2,2,

UNLABELED FORMAT STATEMENT

All FORMAT Statements must be labeled. See
section 6.1.

USAGE OF VARIABLE **** INVALID
An attempt was made to EXTERNAL a common variable, an
array variable, or a dummy argument. Or an attempt was
made to place in COMMON a dummy argument or external
name. See sections 7.4 and 7.6.

VARIABLE *#*** INVALID IN ADJUSTABLE DIMENSION
A variable used as an adjustable dimension must be an
integer dummy argument in the subprogram unit, See
section 7.3.1.

WRONG NUMBER OF SUBSCRIPTS FOR ARRAY **##
An array reference does not have the same number of
subscripts as specified when the array was dimensioned.

C.l.3 Warning Diagnostics

Warning diagnostics report conditions which are not true error
conditions, but which may be potentially dangerous at execution time,
or which may present compatibility problems with FORTRAN Compilers
running on other PDP-11 Operating Systems. The warning diagnostics
are normally suppressed, but may be enabled by use of the /W Compiler
switch, The form and placement of the warning diagnostics are the
same as those for the secondary phase error diagnostics (see section
C.l.2) except that the 1line number reference is replaced with
'SWARNINGS'. A listing of the warning diagnostics follows:

ADJUSTABLE DIMENSIONS ILLEGAL FOR ARRAY *##%
Adjustable arrays must be parameter arrays in a
subprogram, and the adjustable dimensions must be
integer dummy arguments in the subprogram, Any
variation from this rule will cause a dimension of 1 to
be used and this warning message to be issued.

NON=-STANDARD STATEMENT ORDERING
Although the RT-11 FORTRAN Compiler has less-severe
statement ordering requirements than those outlined in
chapter 7 of the PDP-11 FORTRAN Language Reference
Manual, non-adherence to the stricter requirements may
cause error conditions on other FORTRAN Compilers. See
section 3.6 of this document.

VARIABLE **** IS NOT WORD ALIGNED

Placing a non-LOGICAL*1 variable or array after a
LOGICAL*1 variable or array in COMMON or equivalencing
non-LOGICAL*1 variables or arrays to logical*l
variables or arrays may cause this condition. An
attempt to reference the variable at runtime will cause
an error condition. See sections 7.4.1 and 7.5.3 of
the PDP-11 FORTRAN Language Manual.

VARIABLE **** NAME EXCEEDS SIX CHARACTERS
A variable name of more than six characters was
specified., The first six characters were used as the
true variable name., Other FORTRAN Compilers may treat
this as an error condition. See section 3.1 of this
document.

C.l.4 Fatal Compiler Error Diagnostics

Listed below are the fatal Compiler error diagnostics. These
diagnostics, which are sent directly to the terminal, report hardware
error conditions, conditions which may require rewriting of the source
program, and conditions which may require attention from DEC Software
Support. The form of the diagnostic is:

FATAL ERROR n

where n is an error code having one of the following values:

Code Meaning
(o Constant subscript overflow. Too many constant

subscripts have been employed in a statement.
SOLUTION - simplify the statement

(o] Unrecoverable error occurred while the Compiler was
writing the object file (.0BJ). Possibly, output file
space is not large enough,

SOLUTION - rectify hardware problem, or make more space
for output,

P Optimizer push down overflow - statement too complex,
or too many common subexpressions occurred in one basic
block of a program.

SOLUTION - simplify complex statements; report the
error to your local software support representative.

R Unrecoverable hardware error occurred while the
Compiler was reading source file,

SOLUTION - rectify hardware problem,

S Subexpression stack overflow - statement too complex
Attempt to compile a statement which would overflow the
runtime stack at execution time.

SOLUTION - simplify complex statements.

T Core Overflow

SOLUTION - break up program into subprograms or compile
on larger machine,

W Unrecoverable error occurred while the Compiler was
writing listing file. Possibly, listing file space is
not large enough.

SOLUTION - rectify hardware problem, or make more space
for listing file,

Y Code generation stack overflow - statement too complex.,

SOLUTION - simplify complex statements.

Z Compiler error

SOLUTION = report this error to your local software

support representative, Please include program
listing.

C.2 OBJECT TIME SYSTEM ERROR DIAGNOSTICS

The Object Time System detects certain 1/0, arithmetic, and system
failure error conditions and reports them on the user terminal. These
error diagnostics are printed in either a long or short form.

The short form of the message appears as:

?ERR nn
where nn is a decimal error identification number.
The long form of the message appears as:

?ERR nn text

where nn is a decimal error identification number and
text is a short error description.

The default message length is long. The short message error module
may be linked to the program instead by using the /I Linker switch
(see the Linker chapter of the RT-1ll1 System Reference Manual). The
module named $SHORT should be included from the PORTRAN library.

There are four classes of OTS error conditions. Each error condition
is assigned to one of these classes. An error condition
classification for the error codes 1-16 can be changed by wusing the
System Subroutine SETERR. (See section B.8). Error codes 0 and 20-63
should not be changed from their FATAL classification or
undeterminable results will occur. The classifications are:

IGNORE The error is detected but no error message is
sent to the terminal., Execution continues.

WARNING The error message is sent to the terminal and
execution continues.

FATAL The error message is sent to the terminal and
execution is terminated,

COUNT:n The error message is sent to the terminal and
execution continues until the nth occurrence of
the error, at which time the error will be
treated as FATAL.,

If a program is terminated by a fatal error condition active files are
not closed. When control is returned to the RT-11 monitor a CLOSE
command may be given to close all active files, although some of the
output to these active files may have been lost.

The OTS error diagnostics are listed below along with the error type
and a brief explanation where necessary.

Error
number

10

11

Exror
type

FATAL

FATAL

FATAL

FATAL

WARNING

COUNT:3

IGNORE

COUNT:3

IGNORE

Message

NON=-FORTRAN ERROR CALL
A TRAP has occurred with an unrecognizable
error code.

INTEGER OVERFLOW

During an arithmetic operation an
integer's value has exceeded 32767 in
magnitude.

INTEGER ZERO DIVIDE

During an integer mode arithmetic
operation an attempt was made to divide by
zZero,

COMPILER GENERATED ERROR

If an attempt is made to Link and run an
object file generated by the FORTRAN
Compiler, when the Compiler detected and
reported error conditions, this diagnostic
will be given if the statement in error is
ever executed.

COMPUTED GO TO OUT OF RANGE

The integer variable or expression in a
computed GO TO statement was less than 1
or greater than the number of statement
label references in the list. Control is
passed to the next executable statement
(See section 4.1.2 of the PDP-11 FORTRAN
Language Reference Manual).

INPUT CONVERSION ERROR

During a formatted input operation an
illegal character was detected in an input
field. The value of the field is set to
zero,

OUTPUT CONVERSION ERROR

During a formatted output operation the
value of a particular number could not be
output in the specified field length
without 1loss of significant digits. The
field is filled with *'s,

FLOATING OVERFLOW

During an arithmetic operation a real
value has exceeded the largest
representable real number. The result of
the operation is set to zero.

FLOATING UNDERFLOW

During an arithmetic operation a real
value has become less than the smallest
representable real number, and has been
replaced with a value of zero.

c-11

12

13

14

15

16

FATAL

COUNT:3

FATAL

FATAL

FATAL

FLOATING ZERO DIVIDE

During a real mode arithmetic operation an
attempt was made to divide by zero. The
result of the operation is set to zero.

SQRT OF NEGATIVE NUMBER

An attempt was made to take the square
root of a negative number. The result
returned is zero.

UNDEFINED EXPONENTIATION OPERATION

An attempt was made to perform an illegal
exponentiation operation, For example
=3.**,5 is illegal because the result
would be an imaginary number., The result
of the operation is set to zero.

LOG OF NEGATIVE NUMBER

An attempt was made to take the logarithm
of a negative number. The result returned
is zero.

WRONG NUMBER OF ARGUMENTS

One of the FORTRAN Library functions or
System Subroutines which checks for such
an occurrence, has been called with an
improper number of arguments. See section
8.2 of the PDP-11 FORTRAN Language
Reference Manual or Appendix B of this
document.

The following error diagnostics should not be changed from the FATAL
classification by use of the System Subroutine SETERR:

20

21

22

23

24

FATAL

FATAL

FATAL

FATAL

FATAL

INVALID LOGICAL UNIT NUMBER

An illegal logical unit number has been
specified in an I/0 statement. A logical
unit number must be an integer between 1
and 99.

OUT OF AVAILABLE LOGICAL UNITS

An attempt was made to have too many
devices simultaneously open for I/0. The
maximum number of active channels is s8ix
by default. This may be changed by use of
the /N switch when the main program is
compi led.

INPUT RECORD TOO LONG

During an input operation a record was
encountered that was 1longer than the
maximum record length, The default
maximum record length is 136 bytes., This
may be changed by use of the /R switch
when the main program is compiled,

HARDWARE I/O ERROR
A hardware error has been detected during
an I/0 operation.

ATTEMPT TO READ OR WRITE PAST END OF FILE

25

26

27
28

23

30

31

32

33

34

35
36

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

ATTEMPT TO READ AFTER WRITE

An attempt was made to read after writing
on a magnetic device, A WRITE must be
followed by a REWIND or BACKSPACE before a
read operation can be performed.

RECURSIVE I/0O NOT ALLOWED

An expression in the I/0O list of a WRITE
statement has caused initiation of another
READ or WRITE operation. This can happen
if a FUNCTION that performs I/0 is
referenced in an expression in a WRITE
statement I/O list,

ATTEMPT TO USE DEVICE NOT IN SYSTEM

OPEN FAILED FOR FILE
A file could not be found.

NO ROOM FOR DEVICE HANDLER
There is not enough free core 1left to
accommodate a specific device handler,

NO ROOM FOR BUFFERS
There is not enough free core left to set
up required I/0 buffers.

NO AVAILABLE RT-11 CHANNEL

More than the maximum number of RT-11
channels, 15, were requested to be opened
for 1/0.

FMTD=-UNFMTD~-RANDOM I/0 TO SAME FILE
An attempt was made to perform any
combination of formatted, unformatted, or
random access I/0 to the same file.

ATTEMPT TO READ PAST END OF RECORD
An attempt was made to read a larger
record than actually existed in a file.

UNFMTD I/0 TO TTY OR LPT

An attempt was made to perfornm an
unformatted write operation on the
terminal or line printer.

ATTEMPT TO OUTPUT TO READ ONLY FILE

BAD FILE SPECIFICATION STRING

37

38

39

40

41

42

43

44

45

46

60

61

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

PATAL

FATAL

FATAL

FATAL

FATAL

FATAL

RANDOM ACCESS READ/WRITE BEFORE DEFINE FILE
A random access READ or WRITE operation
was attempted before a DEFINE FILE was
performed,

RANDOM I/0 NOT ALLOWED ON TTY OR LPT
Random acoess I/0 was illegally attempted
on the terminal or line printer.

RECORD LARGER THAN RECORD SIZE IN DEFINE FILE

A record was encountered that was larger
than that specified in the DEFINE PILE
statement for a random access file.

REQUEST FOR A BLOCK LARGER THAN 65535

An attempt was made to reference an
absolute disk block address greater than
65535,

DEFINE FILE ATTEMPTED ON AN OPEN UNIT

An open file must be closed by an ENDFILE
before another DEFINE PILE can be
performed on that unit,

MEMORY OVERPLOW COMPILING OBJECT TIME FORMAT
The OT8 has run out of free core while
scanning an array format that was
generated at run time,

SYNTAX ERROR IN OBJECT TIME FORMAT

A syntax error was encountered while the
OTS was scanning an array format that was
generated at run time,

2ND RECORD REBQUEST IN ENCODE/DECODE
ENCODE and DECODE will operate only on a
single record at a time.

INCOMPATIBLE VARIABLE AND FORMAT TYPES

An attempt was made to output a real
variable with an integer field descriptor
or an integer variable with a real field
descriptor,

INFINITE FORMAT LOOP

The format associated with an I/0
statement that includes an I/0 list has no
field descriptors to use in transferring
those variables.

STACK OVERFLOWED
The hardware stack has overflowed. Proper
Traceback may be impaired.

ILLEGAL MEMORY REFERENCE

This may be any type of BUS error, most
probably an illegal memnory address
reference.

Cc-14

62

63

FATAL

FATAL

FORTRAN START FAIL

The program has been loaded into core but
there was not enough free core remaining
for the OTS to initialize work space and
buffers.

ILLEGAL INSTRUCTION

The program has attempted to execute an
illegal instruction, e.g. floating point
arithmetic instruction on a machine with
no floating point hardware.

C-15

APPENDIX D
COMPILER AND OTS ASSEMBLY AND LINKING INSTRUCTIONS

This appendix provides assembly and linking instructions for the
RT-11 FORTRAN Compiler and Object Time System libraries for each
of the different hardware configurations. This information applies

only to those customers who received the source versions of the
Compiler and OTS.

Section D.l describes the assembly and linking of the RT-11 FORTRAN
Compiler. Section D.2 describes the assembly of those modules
common to all OTS libraries. Section D.3 describes assembly of

the hardware dependent modules for the different hardware support

OTS libraries. Section D.4 describes the building of each of the
different OTS libraries.

In all examples of assembler command strings, a request is made
for the list file to be generated. If no listing is desired, the
list file specification may be omitted. 1In all examples, files
are assumed to reside on the default device (DK:). If desired an
explicit device specification may be included.

All assemblies require that the system macro file SYSMAC.SML be

present on the system device.

D.l1 COMPILER ASSEMBLY AND LINKING INSTRUCTIONS
D.1l.1 Compiler Assembly
Below is an example of the Compiler assembly procedures.

Underlined text is typed by the system; other text is typed
by the user.

~R MACRO
*FROOT, FROOT=FORTHD, FROGT

ERRORS DETECTED: o
EREE CORE: 5669, WORDS

*F@, FO=FORTHD, Fo

,QRE : 4541 . WOR

*F1, F1=FORTHD, F1, FLS
JECTED: o
. 4749, WORDS
*F2, F2=FORTHD, Fe

TECTED: @
FREE CORE: 4822 WURDS

*F3,F3=FORTHD, F3, F3S

ERRORS DETECTED: ®
FREE CORE:. 4290 WORDS

*F4,F4=FORTHD, F4, F2S

ERRORS DETECTED: &
FKREE CORE: d4736. WORDS

*F5,FS=FORTHD, F5, F3S
RRORS DSTECTEQ: g

REE CORE: 4758. WORDS
*F6, F6=FQRTHD, F6

R TECTED:
FREE CORE: 4957. WORDS

n|m

*F?,F7=F?
ERRORS DETECTED: ©
RE. 4863 WORDS

*F8, FE=F8

ERRQRS DETECTED: o
FREE CORE: 4753 WORDS

*F9, F9=F9
ERRORS DETECTED: @
FR RE. 4889 WORD

*F10, F10=F10
ERRORS DETECTED: &
FREE CORE. 5733 MWORDS

*F11,F11=F11
ERRORS DETECTED: @
,ORE: 5544 WORDS

*F12,F12=F12FP. FEEGIN, F12
ERRORS DETECTED: ©
FREE CORE: 12408. WORDS

AF13,F13=F13P, FEEGIN, F13
ERRORS DETECTED: 6
FREE CORE: 1455. WORDS

D'l.z

*F14,F14=F14F, FEEGIN, FORIVE, FNRT, F14A, F14E
EKRORS DETECTED: @
FREE CORE: 2818 WORDS

XF15,F15=F15F, FEEGIN, FDRIVE, F15, FWRT, FCODE
ERRQORS DETECTED: @
FREE CORE: 1282 WORDS

XF16, F16=F16F, FEEGIN, FORIVE, F1&, FURT, FCODE
RRORS DETECTED: ®
EREE CORE: 1174 WORDS

*F17,F1?=F17F, FEEGIN, FORIVE, FL7R, FATE, FCODE
ERRORS DETECTED: o
FREE CORE. 10810 WORDS

27C

Compiler Linking

Below is an example of the Compiler linking procedures.
text is typed by the system; other text is typed by the user.

_Kk LINKVZ
*FORTRA=FROOT/C
*»FB/0:1./C
*1/0:1,/C
*Fes0:1/,C
*F3/0:1/C
*F4/0:1,C
*F5/0:1/C
»F6/0:1/C
*F7/0:1/C
*F8/0:1/C

RDDITIVE KEF OF WRNENS

*
n
-
N
~
o
MHINM = = R

K
ADDITIVE REF OF WRNERS
RDDITIVE REF OF NRNERS

RDDITIVE KREF OF WRNERS
ADDITIV [WhNEH

*°C

Underlined

D.2 COMMON OTS MODULES ASSEMBLY

Certain OTS library modules are hardware independent and are
therefore common to all OTS libraries. Below is an example of the
assembly procedures for the common OTS library modules. Underlined
text is typed by the system; other text is typed by the user.

.R FIF

EF.NRC=FINIT.PRE,OTSNH‘PEE,FBLOCK,PQE,ERRORS4PREﬂH
xnc

_k MACRO
*ABS. ALL, AES=F, AES
ERRORS DETECTED: @
FREE CORE: 2794, WORDS

*IABS. ALL, IAES=F, IRES
ERRORS DETECTEDL: 6
FREE CORE: 2594. WORDS

*DABS5. ALL, DAES=F, DAES
ERRORS DETECTED: @
FREE CORE: 2794. WORDS

*CABS. ALL, CRES=F, CARES
TECTED: 6
FREE CORE: 273§ WORDS

*FLOAT. ALL, FLOAT=F, FLOAT

ERRORS DETECTED: @
EREE CORE: ¢?8¢. WORDS

*DIM. ALL. DIM=F, ['IM
ERRORS DETECTED: @&
EREE CORE: 2778 WORDS

%IDIM ALL, IDIM=F, IDIM
ERRORS DETECTED: @
FREE CORE: 2586. WORDS

*CEXP. ALL, CEXF=F, CEXF
ERRORS DETECTED: @&
EREE CORE: c754. WORDS

*CSIN. ALL, CSIN=F, CSIN
ERRQORS DETECTED: @
FREE CORE: 2706. WORDS

*THNH. ALL, TANH=F, TANH

ERRORS DETECTEL: @

FREE CORE: c¢69& WORDS

*CONJG. ALL, CONJG=F, CONJG
ERKORS DETECTECL: @
FREE CORE: 2796. WORDS

*IFIX ALL, IFIX=F, IFI¥X
ERRORS DETECTED: @

FREE CORE. 2782, WORDS

*DBLE. ALL. DBLE=F, DELE
ERRORS DETECTED: @
FREE CORE . 2794. WORDS

*REAL. ALL, REAL=F, REAL
ERRORS DETECTED: @
FREE CORE. 2754, WORDS

*AIMAG ALL, AIMAG=F, AIMAG
ERRORS DETECTED: ®©
CORE: 2794. WORDS

*CMPLX. ALL, CMFLX=F, CMPLX
TECTED: @
FREE CORE 2794. MWORDS

*INT ALL, INT=F, INT
ERRORS DETECTED: @
FREE CORE: 2782. WORDS

X*RMOD. ALL., AMOD=F, AMOD
ERRORS DETECTED: @
FREE CORE: 2758. WORDS

*DMOD. ALL, DMOU=F, DMOD
ERRORS DETECTED: @
FREE CORE: 2758 WORDS

A*MOD. ALL, MOD=F, MOD
ERRORS DETECTED: @
FREE CORE: 2778. WORDS

ANAXO. ALL, MAXO=F, MAXO
ERRORS DETECTED: @

FREE CORE: 2782 WORDS

*AMING. ALL, AMING=F, AMIN®
ERRORS DETECTED: @
FREE CORE: 2754. WORDS

*MING ALL, MINO=F, MINO@
ERRORS DETECTED: o
FREE CORE: 278Z. WORDS

*DMINL ALL.OMIN1=F, OCMIN1
ERRORS DETECTED: @
FREE CORE: 2755. WORDS

*51GN. ALL, SIGN=F, SIGN
ERRORS DETECTED: @&
FREE CORE: 2794. WORDS

*ISIGN ALL. ISIGN=F, ISIGN
ERRORS DETECTED: @
.FREE CORE: 259@. WORDS

*DSIGN. ALL, DSIGN=F, DSIGN
ERRORS DETECTED: @
FREE CORE: 2794. WORDS

*CSQRT. ALL, CSGRT=F, CSORT
ERRORS DETECTED: @
: DS

#SNGL. ALL, SNGL=F, SNGL
ERRORS DETECTED: @
FREE CORE: 2598 WORDS

*ENDERR. ALL, ENDERR=F, ENDERK
ERRORS DETECTED: @
FREE CORE: 2436. WORDS

*CONVS5. ALL, CONYS=F, CONVS
ERRORS DETECTED: @
T 2¢770. WORDS

*WAIT. ALL, WAIT=F, WAIT
ERRORS DETECTED: @
FREE CORE: 2743 WORDS

*EQF. ALL, EOF=F, EOF
ERRORS DETECTED: @
FREE CORE: 2428. WORDS

*FNEG. RLL. FNEG=F, FNEG
ERRORS DETECTED: ©
CORE: 2758. WORDS

*XC1. ALL, XCI=F, XCI
ERRORS DETECTED: @
FREE CORE: 2536. WORDS

*RETD. RLL, RETD=F, RETD
ERRORS DETECTED: @
FREE CORE: 2575. MWORDS

*IFRN. RLL, IFRW=F, IFRNW
ERRORS DETECTED: @
FREE CORE: 2779. WORDS

#FCHNL ALL, FCHNL=F, FCHNL

ERRORS DETECTED: @
FREE CORE: 2382 WORDS

*CHPF. ALL, CMPF=F, CMPF

ERRORS DETECTED: @
FREE CORE: 2696. WORDS

XCHMPD. ALL, CHFD=F, CMPD
ERROGRS DETECTED: @
FREE COKE: 2694. WORDS

*INITIO. ALL, INITIO=F, INITIO
ERRORS DETECTED: @
FREE CORE: 2214. WORDS

*U10. ALL, UI0=F, UIO
ERRORS DETECTED: @
FREE CORE: 2138 WORDS

*REWIND. ALL, RENIND=F, REWIND
ERRORS DETECTED: @
FREE CORE: 2432. WORDS

XDUMFLA. ALL. DUMPLA=F, DUMPLA

EKRORS DETECTED: @
FREE CORE _2618. WORDS

*CLUSE. ALL, CLUSE=F, CLOSE
ERRORS DETECTED: @
FREE CORE. 2336. WORDS

*VTREAN. ALL, VTRAN=F, YTRAN
ERRORS DETECTED (]
WURDS

*GETFIL ALL, GETFIL=F, GETFIL
ERRORS DETECTED: @
FREE CORE. 2254, WORDS

*EOL. ALL, EOL=F, EOL
ERRORS DETECTED: @
FREE CORE . 2438. WORDS

*CRLL ALL, CALL=F, CALL
ERRORS DETECTED: @
FREE CORE: 2794, WORDS

*ISNLSN ALL, ISNLSN=F, ISNLSN
ERRORS DET

ERRORS DETECTED: @
FREE CORE: 2551. WORDS

XIPMOVE. ALL, IFMOVS=F, IFMOVS
ROR

ERRQRS DETECTED: @
FREE CORE 2762 MWORDS

#1RDDS. ALL, IARDDS=F, IADLS

—

ERRORS DETECTED: @

XIPRDDS ALL, IFADDSSF, IFRDDS
ERRORS DETECTED: @
FREE CORE. 2774, _WORDS

*1SUBS. ALL, ISUBS=F, ISUES
ERRORS DETECTED: #
FREE CORE: 277@. WORDS

*1PSUBS. RLL,IF‘UBC=F,IPSUBS
RS DETECTED:
FREE CORE. £774. HO&DS

*INCR. ALL., INCR=F, INCR
ERRORS DETECTED: ©
FREE CORE 2774. WORDS

XINEG ALL, INEG=F, INEG
ERRORS DETECTED: @
FREE CORE: 2798. WORDS

XTESTS ALL. TESTS=F, TESTS
ERRORS DETECTED:
FREE CORE: 2758 MWORDS

*ICMFS. ALL, ICMFS=F, ICHFS
ERRORS DETECTED: o
FREE CORE: 277@. WORDS

2IPCMPS. ALL, IFCMFS=F, IFCMFS
ERRORS DETECTED: @
FREE CORE: 2774. WORDS

*IVEC. ALL, IVEC=F, IVEC
ERRORS DETECTED: &
FREE CORE: 2782. WORDS

*IVECP. RLL, IVECF=F, IVECP
ERRORS DETECTED: ®
FREE CORE: 27?82 WORDS

*IPVEC. ALL., IPVEC=F, IFVEC
ERRORS DETECTED: ©
FREE CORE: 2798. WORDS

*BRAS. ALL, BRARS=F, BRAS
ERRORS DETECTED: &
FREE CORE: 2?59. WORDS

*NXT1. ALL, NXT1=F, NXT1
ERRORS DETECTED: @
FREE CORE: 2750. WORDS

BNXT2. RLL, NXTZ2=F, NXTZ
ERRORS DETECTED: @
FREE CORE: 2?750. WORDS

ANXT3. ALL, NXT3=F, NXTX
ERRORS DETECTED: @
FREE CORE: 2756. WORDS

*NXT4. ALL, NXT4=F, NXT4
ERRORS DETECTED: @
FREE CORE: 2778. MWORDS

*AIF. ALL, AIF=F, AIF
ERRORS DETECTED: ®
FREE CORE: 2795. WORDS

*FVEC. ALL, FVEC=F., FVEC
ERRORS DETECTED: @
FREE CORE: 27?70. WORDS

*FVECF. ARLL, FYECF=F, FVECF
ERRORS DETECTED: @
FREE CORE: 2770. WOKDS

*FPYEC. ALL, FPYEC=F, FFVEC
ERRORS DETECTED: @
FREE CORE: 2778. MWORDS

*DVEC. ALL, DVEC=F, DVEC
ERRORS DETECTED: &
FREE CORE: 2?778. WORDS

*DVECFP. ALL, DVECF=F, DVECF
ERRORS DETECTED: @
FREE CORE: 2778. WORDS

*DFVEC. ALL, DPVEC=F, DFVEC
ERRORS DETECTED: @
FREE CORE: 2782. WORDS

AFMOYR. ALL, FNOVR=F, FMOVE
ERRORS DETECTED: @
FREE CORE: 2782. WORCS

*FMOVL. ALL, FMOV1=F.FMOVL
ERRORS DETECTED: ®
FREE CORE: 2794. WORDS

*FMOY2 ALL, FMOVZ=F, FMOVZ
ERRORS DETECTECDL: @
FREE CORE: 279%8. WORDS

*FMOV3. ALL, FMOYZ=F, FMOVZ
ERRORS DETECTEC:, @
FREE CORE: 2786. WORLS

*FMOV4. ALL, FMOV4=F, FNOV4
ERRORS DETECTED: ©
FREE CORE: 2794. WORDS

*FMOVYS. ALL, FMOV5=F, FMOVS
ERRORS DETECTEL: ®©
FREE CORE: 2802 WORDS

*FMOVE. ARLL. FMOVeE=F. FMOVE
ERRORS DETECTED: @
FREE CORE: 2794 WORDS

*FMOVY?7. ALL, FMOVT=F, FMOV?
R . .
FREE CORE: 2794. WORDS

*FMOVE. ALL, FMOVE=F, FNOVS
ERRORS OETECTED: @
FREE CQRE: 2786. WORDS

*FMOV9. ALL, FMOVS=F, FMOVY

ERRQRS DETECTE[L: @
FREE CORE 2762 WORDS

*LOADS. ALL, LORDS=F, LOADS
ERRORS DETECTED: @
FREE CORE: 2764. MWORDS

*OMOVR. ALL, DMOVE=F, DMOVE
ERRORS DETECTED: @
FREE CORE: 279@0. WORDS

*[MOVL. ALL, DMOV1=F, DMOV1L
ERRORS DETECTED: @
FREE CORE: 28@2. WORDS

*DMOVZ ALL, DMOVZ=F, DMOVZ
ERRORS UDETECTED: @
FREE CORE: 2803 WORDS

*DMOV3 ALL, DMOVZ=F, DMOVZ
ERRORS DETECTED: &
FREE CORE: 2766. WOR[DS

*DMOV4. ALL, DMOV4=F, DMOV4
ERRORS DETECTED: @
FREE CORE: 2794. WORDS

*DMOVYS. ALL, DMOVS=F, DMOVS
ERRORS DETECTED: @
FREE CORE: 2778. WORDS

*DMOV6. RLL, DMOVE=F, DMOVE
ERRORS DETECTED: @
FREE CORE: 2762. WORDS

«DMOV?. ALL, DMOV?=F, DMOV?
ERRORS DETECTED: o
FREE CORE: z794. WORDS

*LMOVS. ALL, LMOVYS=F, LMOVS
ERRORS DETECTED: @
FREE CORE: 2742. WORDS

*BITOID. ALL, BITDID=F, BITDID
ERRORS DETECTED: @
FREE CORE: 27&2. WORDS

*LTEST. ALL, LTEST=F, LTEST
ERRORS DETECTED: @
FREE CORE: 2796. WORDS

#*LNOTS. ALL, LNOTS=F, LNOTS
ERRORS DETECTED: @
FREE CORE: 27&86. WOKRDS

*LCMPS. ALL. LCMFS=F, LCMFS
ERRORS DETECTED: @
FREE CORE: 2782. WORDS

*LCMFSP. ALL, LCMPSP=F, LCMPSF
ERRORS DETECTED: @
FREE CORE: 2796. WORDS

*LPCMPS. ALL, LFCMFPS=F, LFCMPS
ERRORS DETECTED: @
FREE CORE: 279%94. WORDS

*QVEC. ALL, QVEC=F, QVEC
ERRORS DETECTED: ®
FREE CORE: 2754. MWORDS

*QVECF. ALL, QVECFP=F, QVECF
ERRORS DETECTED: ®
FREE CORE: 2794. MWORDS

*QPYEC. ALL, QFVEC=F, QFVEC
ERRORS DETECTED: 6

FREE CORE: 27%8. WORDS

*SUBR. ALL, SUER=F, SUBR
ERRORS DETECTED: ©
FREE CORE: 2574. WORDS

*LCMFPSI. ALL, LCMPSI=F, LCMFSI

ERRORS T
FREE CORE: 2798 MWORDS

*CONV6. ALL, CONVE=F, CONVE
ERRORS DETECTED: @
FREE CORE: 277S5. WORDS

D-10

*XFF. ALL. XFF=F, XFF
ERRORS DETECTED @
FREE CORE: 2534. WORDS

XDl ALL. XDO F, XDC
ERRORS R
FREE CORE: 2514. WOEDS

*RETS AL., RETS=F, RETS
ERRORS DETECTED: @
FREE CORE: 2562. WORDS

*ASFRET. ALL, HSFPET F, ASFRET
ERRORS DETECTED:
FREE CORE: 2r82. OﬁDS

*RETDSF. ALL, RETU'SF=F, RETDSF
ERRORS DETECTED: @
FREE CORE: 2583 WORDS

*TCMPLX. ALL, TCMPLX=F, TCHFLX
ERRORS DETECTED: @
FREE CORE: 2558. WORDS

*TRARY. ALL, TRARY=F, TRARY
ERRORS DETECTED: @
FREE COKE: 2538 WORDS

*FUD. RLL, FUD=F, FUD
ERRORS DETECTED: @
FREE CORE: 2602. MWORDS

*IMOVS. ALL, IMOVS=F, IMOVS
ERRORS DETECTED: ©
FREE CORE: 27x@. WORDS

*IMOVE. ALL, IMOVR=F, IMOVR
ERRORS DETECTED: ®
FREE CORE: 2786. MWORDS

*LMOVFK. ALL, LMOVRE=F, LMOVR
ERRORS DETECTED: @
FREE CORE: 2794 MWORDS

*GOTO0. ALL, GOTO=F, GOTO
ERRORS DETECTED: @
FREE CORE: 259@6. WORCS

*PUTREC. ALL, FUTREC=F, FUTREC
ERRORS DETECTED @
FREE CORE: 2158 MWORDS

*RAN. ALL, RAN=F, RAN
ERRORS DETECTED: @
FREE LOKE. 2574. WORDS

*RANDU. ALL, RANDU=F, RANDU
ERRORS DETECTEDL: ©
FREE CCRE: 2574. MWORDS

*FIND ALL, FIND=F, FIND
ERRORS DETECTED: @
FREE CORE: 2230 MWORDS

D-11

X0PEN. ALL, OFEN=F, OFEN
ERRORS DETECTED: o
FREE CORE: 2121. WORDS

XVCTRAN. ALL, VCTRAN=F, YCTRAN
ERRORS DETECTED: @
FREE CORE: 2562. WORDS

#*CONVL. ALL, CONVL=F, CONVL
ERRORS DETECTED: ®
FREE CORE: 2778. WORDS

*IDATE. ALL, IDARTE=F, IDATE
ERRORS DETECTED: @
FREE CORE: 2539. WORDS

*SETERR. ALL, SETERR=F, SETERFK
ERRORS DETECTED: @
FREE CORE: 2386. MWORDS

*ASSIGN. ALL, ASSIGN=F, ASSIGN
ERRORS DETECTED: @
FREE CORE: 2180. WORDS

*ERRS. ALL, ERRS=F, ERRS
ERRORS DETECTED: @
ORE: 2235. WORDS

*R10. ALL, R10=F,RIO
ERRORS DETECTED: @
FREE CORE: 2146. WORDS

*AMAXL. ALL, AMAXL=F, AMAXL
ERRORS DETECTED: @
FREE CORE: 2726. WORDS

*4K. S12, 4K=F, 4K
ERRORS DETECTED: @
— 2503. WORDS

*8K. S1Z, 8K=F, 8K
ERRORS DETECTED: @
FREE CORE: 2863, MWORDS

*12K. SI12,12K=F, 12K

—

ERRORS DETECTED:
FREE CORE: 2863 WORDS

*16K. S12Z, 16K=F, 16K
ERRORS DETECTED: @
FREE CORE: 2803 WORDS

*20K. S12, 20K=F, 20K
ERRORS DETECTED: @
FREE CORE: 2883. WORDS

*24K.S12, 24K=F, 24K
ERRORS DETECTED: @
FREE CORE: 2805 WORDS

*28K. S12, 28K=F, 28K
ERRORS DETECTED: @
FREE CORE: 286X WORDS

D-12

*SIMRT. UNI, SIMRT=F, SIMRT
ERRORS DETECTED: @
FREE CORE. 2216, WOLRDS

*FOFR. ALL, POFR=F, FOPR
ERRORS DETECTED: @
FREE CORE 2794. WORDS

*CNEG. ALL, CNEG=F, CNEG
ERRORS DETECTED: @
FREE CORE: 2774. WORDS

*COFY ALL, COFY=F, COPY
ERRORS DETECTED: @
FREE CORE: 2786. MWORDS

*GETREC RALL, GETREC=F, GETREC
ERRORS DETECTELD: @
FREE CORE: 2115. MWORDS

*LVEC ALL, LVEC=F, LVEC
ERRORS DETECTED: @
FREE CORE: 27&82. WORDS

*LVECF. ALL, LVECF=F, LVECF
ERRORS DETECTED: ®
FREE CORE: 278Z2. WORDS

*LFVEC. ALL, LFVEC=F, LFVEC
ERRORS DETECTED:
FREE CORE: 2796. WORDS

*FCALL. ALL, FCALL=F, FCALL
ERRORS DETECTED: @

FREE CORE: 2798 WORDS

*FRUSE. ALL, PAUSE=F, FAUSE
ERKORS DETECTED: w»
FREE CORE: 2679. WORDS

*BRCKSF. ALL, BACKSF=F, BACKSP
ERRORS DETECTED: &
FREE CORE: 2388. WORDS

*DBJFMT ALL, OBJFMT=F, OBJFMT
ERRORS DETECTED: ®
FREE CORE 2603. WORDS

+RWBLK. ALL, RWELK=F, RWBLK
ERRORS DETECTED: ®
FREE CORE 2198 WORDS

*CLOG. ALL, CLOG=F, CLOG
ERRORS DETECTED: @
FREE CORE: 2778, WOEDS

*STOF. ALL, STOF=F, STOF
ERRORS DETECTED: @
FREE CORE: 2487 WORDS

D-13

XENCODE. ALL, ENCODE=F, ENCODE
ERRORS DETECTEC: @
FREE CORE: 22%6. WORDS

*DECODE. ALL, DECODE=F, DECODE

ERRORS DETECTED: @
FREE CORE: 2396. WORDS

*0BJDEC. ALL, OBJDEC=F, OBJDEC

ERRORS DETECTED: @
FREE CORE: 2396. WORDS

XOUBJENC. ARLL, OBJENC=F, OBJENC
ERRORS DETECTEL: @
FREE CORE. 22%0. WORDS

*FUDGE. ALL, FUDGE=F, FUDGE
R TECTED: ©
FREE CORE: 279%. MWORDS

*USEREX. ALL, USEREX=F, USEREX
ERRORS DETECTED: @
FREE CORE: 239&. WORDS

*FI10. ALL, F10=F, FIC

ERRORS DETECTED: @
FREE CORE: 2026. WORDS

*SHORT. UNI, SHORT=F, SHORT
ERRORS DETECTED: @

FREE CORE: 2411 . WORDS

*TESTC. ALL, TESTC=F, TESTC
ERRORS DETECTED: @
FREE CORE: 2782. WORDS

*~C

_R FORTRA
*DATE. ALI., DATE=DATE
*~C

D.3 HARDWARE DEPENDENT OTS MODULES ASSEMBLY

Certain OTS library modules are hardware dependent and therefore
need to be selectively assembled. Use the following table to
determine which section to refer to for final OTS module assembly.

Section Hardware Configuration
D.3.1 bare machine

D.3.2 EIS

D.3.3 FIS

D.3.4 EAE

D.3.5 FPU

D-14

D.3.1 Bare Machine OTS Assembly

Below is an example of the assembly procedures for the hardware
dependent modules on a machine with none of the optional arith-
metic hardware extensions. Underlined text is typed by the system;
other text is typed by the user.

R FIF
*F. MRC=FINIT. FRE, OTSKA. FRE, FBLOCK. FRE, ERRORS. FRE/A
e

11

_R MACRO
*ATAN. BAR. RTAN=F, ATAN
ERRORS DETECTED: ®
FREE CORE 2673 WORDS

#X11 BAR, Xx11=F, X11
ERRORS DETECTED. @&
FREE CORE:. 2538 WORDS

*CONY. BAK, CONV=F, CONV
ERRORS DETECTED: @
FREE CORE: 2338 WOKDS

*CONVYZ. BAR, CONV2=F, CONVYZ2
ERRORS DETECTED: @
FREE CORE: 2542 WORDS

*CMUL. BAR, CMUL=F, CHUL
ERRORS DETECTED: ©
FREE CORE: 2725. WORDS

*CDIV. BAR, COIV=F, CLIY
ERRORS DETECTED: 8
EREE CORE: 2496 WORDS

*DNUL. BAR, DMUL=F., DMUL
ERRORS DETECTED: @
EREE CORE: 2474 WORDS

*DADD. BAR, DACD=F, DRDD
ERRORS DETECTED: @
FREE CORE: 2386 WORDS

*00IY. BRR, DDIV=F.DDIV
ERRQRS DETECTED: @
FREE CORE: 2482. WORDS

#7010 BAR, XDI=F, X01
ERRORS DETECTED: @
FREE CORE 2538. WORDS.

*CONVY1. BAK&, CONVL=F, CONVL
ERRORS DETECTED: @
FREE CORE: 2782 WORDS

D-15

*CONVX. BAR, CONVI=F, CONVZ
ERRORS DETECTED: &
FREE CORE. Z75&. WORDS

*CADD. BAR, CAUD=F, CADD
ERRORS DETECTED: &
FREE CORE: 2734. WORDS

*ALOG. BAR, ALOG=F, ALOG
ERROKRS DETECTED: @
FREE CORE: 2498. WORDS

XDEXP. BAE, DEXP=F, DEXF
ERRORS DETECTED: @
FREE CORE: 2462. WORDS

*EXP. BAR, EXF=F, EXF
ETECTED: @
FREE CORE: 251&. WORDS

ADSQRT. BAR, DSGRT=F, GSGRT
ERRORS DETECTED: @
FREE CORE: 2562. WORDS

*SIN. BAR, SIN=F, SIN
ERRORS DETECTED: @
FREE CORE: 2709. WORDS

*DSIN. BAR, USIN=F, DSIN
ERRORS DETECTED: @&
FREE CORE: 2669. WORDS

f

2DATHN. BAR, DATAN=F, DATAN
ERRORS DETECTED: @
FREE CORE: 2669. WORDS

I

*RINT. BAR, AINT=F, AINT
RRORS DETECTED: ©
FREE CORE: 2764. WORDS

ADINT. BAR, DINT=F, DINT
ERRORS DETECTED: @
FREE CORE: 2764. WORDS

*ADDA. BAR, ADDA=F, ADDA
ERRORS DETECTED: @
FREE CORE: 2746 WORDS

X5QRT. BAR, SGRT=F, SERT
ERRORS DETECTED: @
FREE CORE: 2558 WORDS

*0T1. BAR, OTI=F, 0TI
ERRORS DETECTED: @&
FREE CORE: 1867. WORDS

*FNUL. BAR, FMUL=F, FMUL
ERRORS DETECTED: &
FREE CORE. 2526 WORDS

*FOIV. BAR, FOIV=F, FDIV
ERRORS DETECTED: ©
FREE CORE: 2582 WORDS

D-16

*HODM. BAR, ACDM=F, AUDM
ERRORS DETECTED: @
FREE CORE: 2746 WORDS

*AR0ODF. BAK, RODF =F, ADCF
ERRORS DETECTED: @
FREE CORE: 2746. WORDS

*DLOG. BAR, DLOG=F, DLOG
ERRORS DETECTED: @
FREE CORE: 2496. WORDS

*FAR0D. BAR, FAUD=F, FROD
ERRORS DETECTED: @
FREE CORE: 2462 WORDS

*sF1. BAR, KFI=F, xF1
ERRORS DETECTED: @
FREE CORE: 2538. WURDS

*CONY4 BAR, CONV4=F, CONV4Y
ERRORS DETECTED: @
FREE CORE: 25908. WORDS

*IMUL. BARE, ITMUL=F, IMUL
ERKORS DETECTED: o
FREE CORE: 2554 WORDS

*101VY. BAK, IOIV=F, IC1IY
ERRORS DETECTED: @
FREE CORE: 2546. WORDS

L

D.3.2 EIS OTS Assembly

Below is an example of the assembly procedures for the hardware depend-
ent modules on a machine with the EIS hardware option. Underlined
text is typed by the system; other text is typed by the user.

R FIF
*F. MAC=FINIT EIS. OTSWA. FRE, FELOCK. PRE, ERRORS. FRE/A
~c

TACL

-k MACRO
XATAN. EL1S, ATAN=F, ATAN
ERRORS DETECTEU: @
FREE CORE - 2665. WOFRLS

*X11. EIS, X11=F, %11
ERRORS DETECTEDL: @
FREE CORE 2546. WORDS

*CONV. EIS. CONV=F, CONY
ERRORS DETECTEL: @
FREE CORE 2338 WORDS

D-17

*CONV2. EIS, CONVZ=F, CONVZ
ERRORS DETECTED: @
FREE CORE: 2526. WORDS

*CMUL. EIS, CMUL=F, CMUL

ERRORS DETECTED: 8
FREE CORE: 2717 WORDS

*CDIV. EIS, CUIV=F,CDIV
ERRORS DETECTED: @
FREE CORE: 2482. WORDS

*DNUL. EIS, DMUL=F, DMUL
ERRORS DETECTED: @
FREE CORE. 2462 WORDS

*DADD. EIS, DADD=F, DRDD
ERRORS DETECTED: ©
FREE CORE: 2382. WORLS

#DDIV. EIS, DDIV=F, DDIV
ERRORS DETECTED: @
FREE CORE. 2474__WORDS

*XDI1. EI1S, XDI=F, XDI

ERRORS DETECTED: @
FREE CORE: 2530@. WORDS

*CONV1. EIS, CONVL=F, CONVL

ERRORS DETECTED: @
FREE CORE: 2774. MWORDS

*CONV3. EIS, CONVI=F, CONV3
ERRORS DETECTED: ©
FREE CORE: 275@8. WORDS

*CARDD. E1S, CADD=F, CALD
ERRORS DETECTED: ©
FREE CORE: 2726. WORDS

*RLOG. EIS, ALOG=F, ALOG
ERRORS DETECTED: ©
FREE CORE: 24906. WORDS

*DEXP. EIS, DEXF=F, DEXP
ERRORS DETECTED: ©
FREE CORE: 2454. WORDS

2EXP. EIS, EXF=F, EXF
ERRORS DETECTED: @

FREE CORE: &51@. WORDS

*DSQRT. EIS, DSORT=F, DSQRT
ERRORS DETECTED: @
FREE CORE: 2554. WORDS

*5IN. EIS, SIN=F, SIN
ERRORS DETECTED: ©
FREE CORE. 2701 WORDS

*DSIN. EIS, DSIN=F, DSIN

ERRORS DETECTED: @
FREE CORE: 26€61. WORDS

D-18

*DATAN EIS, DATAN=F, DATAN
ERRORS DETECTED: ©
FREE CORE: 2661. WORDS

*AINT. EIS, RAINT=F, RINT

RROR TECTED: ©
64. WORDS

*DINT EIS,DINT=F.DINT

ERRORS DETECTED: @
FREE CORE: 2764. WORDS

*RDDA. EIS, RODA=F. RDDA
ERRORS DETECTED: 8
FREE CORE: 2738 MWORDS

*SERT. EIS, SGRT=F, SGRT
ERRORS DETECTED: @&
FREE CORE: 2550. WOKDS

*«0T1. EIS, OTI=F, 0TI
ERRORS DETECTED: ©
FREE CORE. 18%9. WORDS

AFMUL. E1S, FMUL=F, FMUL
_ERRORS DETECTED: @
FREE CORE: 2490. MWORDS

*FOIVY EIS, FOIV=F,FDIV
ERRORS DETECTED: ©
FREE CORE. 2486, WORDS

*ADCM. EIS, RDDM=F, ADDN
ERRORS DETECTED: ©
' CORE: 2738 MWOURDS

*A0DP. E1S, RADDF=F, ADDF

ERRORS DETECTED: ©
FREE CORE: 2738. WORDS

*DLOG. EIS, DLOG=F, DLOG
RRORS DETECTED: @
FREE CORE: 2482 WORDS

2FADD. EIS, FROD=F, FRULD

ERRORS DETECTED: @
FREE CORE: 2454 WOKDS

#XF1 EIS, XFI=F, KF1
ERRORS DETECTED @

FR c ; .__WORDS
*CONV4. EIS, CONVa=F, CONV4
ER

RQRS DETECTED: @
FR : . WORDS

£INUL. EIS, TMUL=F, IMUL

ERRORS DETECTED: @
ER RE : 2@.__WORDS

»IDIY EIS, IDIV=F, IDIV
ERRORS DETECTED: @
FREE CORE: 2570. MWORDS

* L

D-19

*ADDP. F1S, ADDP=F, ADDF
ERRQRS DETECTED: @

FREE CORE: 2746. WORDS
*DLOG. FIS, DLOG=F, DLOG

ERRQRS OQETECTED: @

*FADD. F1S, FADD=F, FADD

ERRQRS DETECTED: 9
EREE CORE: 2554, MWORDS

2XF1. FI1S, XFI=F, XF1
ETECTEC :
FREE CORE: 2534. WORDS

*CONVY4. FIS, CONV4=F, CONV4

ERRQRS DETECTED: @
FREE COQRE: 2586. WORDS

*IMUL. FIS, IMUL=F, TMUL
ERR; ETECTED:

FREE CORE: 2574. WORDS

*IDIVY. F1S, IDIV=F, IDIV
ERRQRS QETECTED: @
FREE CORE: 2574. WORDS

27C

D.3.4 EAE OTS Assembly

Below is an example of the assembly procedures for the hardware
dependent modules on a machine with the EAE hardware option. Under-
lined text is typed by the system; other text is typed by the user.

_R PIP

*F. MAC=FINIT. EARE, OTSWA. PRE, FBLOCK. FRE, ERRORS. FRE/A
*~C

R MACRO
*RATAN. ERE, ATAN=F, ATAN
ERRORS DETECTED: ©

#X11. ERE, KT 1=F, XI1
R TECTED: @
FR ORE . 2534._WORDS
*CONV. ERE, CONV=F, CONV
RRORS DETECTED:
FREE CORE. 2334. WORDS

3CONV2. ERE, CONVZ2=F, CONV2
ERRORS DETECTED: ©
FREE CORE: 2522. WORDS

D-22

*CMUL ERE, CMUL=F, CMUL
) TECTED . @
EEEE QQEE. 2ﬂ21 HQEES

#C01V ERE, COIV=F, DIV
EREQRS QETEFIEQ. Q
EREE CORE: 2486 WOR[DS

*0MUL EAE, DMUL=F, I'MUL

ERRQRS DETECTED: ©
FREE CORE: 2486. WORDS

*DADD ERE, DROD=F, DADL
ERRORS DETECTED: @
FREE CORE: 2386 WORDS

*00IV ERE. OUI
TED
FREE CORE. 2478 WORDS

V=F, DOTY

*0D1. ERE, K0'I=F, XU'1
ERRORS UETECTED: @
FREE CORE: 25X4. WORDS

*CONV1 ERE, CONV1=F, CONV1
ERKORS UETECTEL: @&
FREE CORE: 2778 WORDS

*LONVI ERE, CONV3=F, CONVX
ERRORS LETECTEDL: o

FREE CORE: 2746. WORDS

*LARD0. EHE, CROD=F, CALD
ERRORS DETECTED: ®
EREE CORE: 2738 WORDS

*HLOG. ERE, ALOG=F, ALOG
RORS DETECTED: @
CORE: 2494. WOE

*DEXF. ERE, DEXF=F. DEXF
ERRORS DETECTED: @
3 . _2458. WORDS

*EXF ERE, EXF=F, EXP
ERRQRS DETECTED: ©
FREE CORE: 2514 WORDS

*DSQRT. EAE, DSGRT=F, DSORT
TECTED: @
FREE CORE: 2558. WORDS

*SIN ERE, SIN=F, SIN
ERROKS DETECTED: @
FREE CORE 27085 WOKDS

*0SIN. ERE, CSIN=F. DSIN
ERRORS DETECTED: @
FREE CORE: 2665. WORDS

*xUATAN ERE, CATAN=F, DATAN
ERRORS DETECTED: ®@
FREE CORE: 2665. HWORDS

D-23

*AINT. ERE, RINT=F, AINT
ERRORS DETECTED: ®©
FREE CORE: 27€@. WORDS

*DINT. EAE, DINT=F, DINT
ERRORS DETECTEL: @
FREE CORE: 2768. WOEDS

*ADDA. EAE, ADDA=F, ADDHA
FREE CQRE: 2742 WORDS

*SQRT. EAE, SORT=F, SQRT
RRORS DETECTED: @

FREE CORE: 2554. WORDS

*0T1. EAE, OTI=F, 0TI
ERRORS DETECTED: @
FREE CORE: 1863. WORDS

*FMUL. ERE, FMUL=F, FMUL
ERRORS DETECTED: @
FREE CORE: 2482. WORDS

*FDIV. ERE, FDIV=F, FDIV
ERRORS DETECTED: @
FREE CORE: 2494. WORDS

*ARODM. ERE, RODM=F, ADDM
ERRORS DETECTED: @
FREE CORE: 2742 WORDS

*ADDP. EAE, ADDF=F, ADDF
ERRORS DETECTED: @
FREE CORE: 2742. WORDS

*DLOG. ERE, DLOG=F, DLOG

ERRORS DETECTED:
FREE CORE: 2486. WORDS

*FADD. ERE, FADD=F, FADD
ERRORS DETECTED: @
FREE CORE: 2458. WORDS

*XF1. EARE, XFI=F, XF1
ERRORS DETECTED: @
FREE CORE: 2534. WORDS

*CONVY4. EAE, CONV4=F, CONV4
ERRORS DETECTED: @&
FREE CORE: 25&6. WORDS

xIMUL. EAE, IMUL=F, IMUL

ERRORS DETECTED: @
FREE CORE: 2562. WORDS

xIDIV. ERE, ICIV=F, IDIV
ERRORS DETECTED: @
FREE CORE: 257@. WORDS

x7C

D-24

D.3.5 FPU OTS Assembly

Below is an example of the assembly procedures for the hardware
dependent modules on a machine with the FPU hardware option. Under-
lined text is typed by the system; other text is typed by the user.

.k IR
EF.MRC=FINIT.FPU,OTSHR.PRE,FBLDCK.PkL,ER&ORS.PRE/ﬂ
*

_F MACRO
*ATAN. FPU, ATAN=F, ATAN
ERRORS DETECTED: &
FREE CORE: 2669. WORDS

*X11 FFU, XI1=F, XII
ERRORS DETECTED: @&
FREE CORE: 2534. WORDS

A*CONY. FPU, CONV=F, CONV
ERRORS DETECTED: @
FREE CORE: 2342. WORDS

*CONVZ. FPU, CONV2=F, CONVZ

ERRORS DETECTED: @

FREE CORE: 2538. WORDS

*CMUL. FPU, CMUL=F, CMUL
ERROURS DETECTED: ©
FREE CORE: 2r21. MWORDS

*COIV. FRPU,CDIV=F,CODIV
QRE: 2486. WOR
*0MUL. FFU, DMUL=F, DMUL

RRORS DETECTED: @
FREE CORE: 2476. WORDS

*CROD. FFU, DADD=F, DALD
ERRQRS DETECTED: @
FREE CORE: 2382 WORDS

*COIV. FFU, DDIV=F, DDIV
ERRORS DETECTEL: o
FREE CORE: 2478. WORDS

AX01. FFU, XU1=F, X01

EEKRQRS DETECTED: 6
FREE CORE: 25%4. WORDS

*CONVL. FFU, CONVL=F, CONVL
TECTED: ©
EREE CORE:. 27278 WNORDS

ALONVI. FPU, CONY3=F, CONV3
ERRORS DETECTED: @
FREE CORE: 2754. WORDS

D-25

*CADD. FFU, CADL=F, CADD
ERRORS DETECTED: ©
FREE CORE: 2736. WORDS

*ALOG. FPU, ALOG=F, ALOG
ERRORS DETECTED: @
EREE CORE: 2494. WORDS

*CEXF. FFPU, DEXF=F, DEXP
R ETECTED: @
EREE CORE: 2458&. WORDS

*EXP. FPU, EXP=F, EXP
ERRORS DETECTED: @
FREE CORE: 2514. MWORDS

*0USQRT. FFU, DSGRT=F, DSQRT
ERRORS DETECTED: o
FREE CORE: 2558. WORDS

2SIN. FPU, SIN=F, SIN
R ETECTED: @
FREE CORE: 27605 WORDS

A*DSIN. FPU, DSIN=F, DSIN
ERRORS DETECTED: @
FREE CORE: 2665. WORDS

*DATAN. FFU, DATAN=F, DATAN
ERRORS DETECTED: o
FREE CORE: 2665. WORDS

XRINT. FPU, AINT=F, AINT
ERRORS DETECTED: @
FREE CORE: 2766. WORDS

*CINT. FPU, DINT=F, DINT
ERROKS DETECTED: 8
FREE CORE: 2760. WOKRDS

*ADDA. FPU, ADDA=F, ALDA
ERRORS DETECTED: ®
FREE CORE: 2738. WORDS

*SGRT. FPU, SGRT=F, SGFRT
ERRORS DETECTED: @
FREE CORE: 2558. WORDS

*CTI. FPU,OTI=F, 0TI

ERRORS DETECTED:
FREE CORE: 1847. WORDS

AFMUL. FPU, FMUL=F, FMUL
ERRORS DETECTEDL: @
FREE CORE: 257&. MWORLDS

XFDIVY. FFU, FDIY=F, FIV

ERRORS DETECTED. ®©
FREE CORE: 257&. HWORDS

*ADDM. FFU, ADDM=F, ADDM
ERRORS DETECTED:. @
FREE CORE: c746. WOEDS

D-26

AFUDF FFU, ALDF=F, RDDF
ERRORS GETECTED: @
FREE CORE: 2746 WORDS

*LLOG FFRU.DLOG=F, D'LOG
ERROFS CETECTED: @
FREE CORE: 2486 WORDS

#FADD FRU, FADD=F, FROD
ERRORS UDETECTED. @
FREE COKE. 2554 WORDS

¥xF1 FPU.XFI=F. JFI
ERRORS DETECTELD @&
i REE CORE: &S24 WORDS

LCONYY FRU, CONVY=F, CONVS
ERRORS DETECTED: ©
FREE CORE - 2S&F. WORDS

XIMUL FFRU, IMUL=F, IMUL
ERRORS DETELCTED: @
[REE CORE: 2574 WORDS

FICIY FRU. IDIW=F, ICIY

ERRORS UETECTED: @

FREE CORE: 2574 MWORDS

¥ 70
-

D.4 LIBRARY BUILDING PROCEDURES

For final OTS library preparation refer to the appropriate section
as listed below.

Section Hardware Configuration
D.4.1 bare machine

D.4.2 EIS

D.4.3 FIS

D.4.4 EAE

D.4.5 FPU

D.4.1 Building the Bare Machine OTS

Below is an example of the building procedures for the OTS library
on a machine with none of the optional arithmetic hardware
extensions. Underlined text is typed by the system; other text

is typed by the user.

D-27

K PIF
*0TS. OBJ=+ ALL, *. EAR/E

#UNI OBJ=+ UNI. * SIZ/B
R
.k LIBR

*FORLIB=UNI. 0TS/

ENTRY FOINT:
$ERRS
$ERRTE

x7C

D.4.2 Building the EIS OTS

Below is an example of the building procedures for the OTS library
on a machine with the EIS hardware option. Underlined text is
typed by the system; other text is typed by the user.

R FIF
XEIS. OEJ=# ALL.* EIS/E
UNI. OEJ=# UNI. SI1Z/E
®C

_F LIER

*FORLIE=LNI, EI5.G

ENTRY FOINT:
$ERRS
$ERRTE

*"C

D.4.3 Building the FIS OTS
Below is an example of the building procedures for the OTS library

on a machine with the FIS hardware option. Underlined text is
typed by the system; other text is typed by the user.

D-28

_R PIF
AFI1S. OBJ=+ ALL. * FIS/E
AUNI. OEJ=* UNI, * SIZ/E
2oC
R LIBF

AFORLIE=UNI. FIS/ /5

ENTRY FOINT:
$ERRS
$ERRTE

x"C
D.4.4 Building the EAE OTS

Below is an example of the building procedures for the OTS library
on a machine with the EAE hardware option. Underlined text is
typed by the system; other text is typed by the user.

K FIF
AERE. DB.=* ALL. % ERE/E
XUNI. OEJ=w UNI, % SIZ/E
*»C

kK LIBR
*FORLIE=UNI. ERE~G

ENTRY PCINT
$ERRS
$ERRTE

*7C

D.4.5 Building the FPU OTS
Below is an example of the building procedures for the OTS library

on a machine with the FPU hardware option. Underlined text is
typed by the system; other text is typed by the user.

D-29

_R FIF

HFPU. OBJ=% ALL, *. FFU/E
#UNT. OBJ=w UMI, % SI1Z/E
x°C

.k LIER
*FORLIEB=UNI, FFU G

ENTRY POINT:
$ERRS

$ERRTE

inc

D-30

INDEX

Array vectoring, 2-7
Argument passing, 2-4
ASSIGN subroutine, B-1

Compilation procedures, 1-2
Compiler command string, 1-2
Compiler error diagnostics, C-1
Compiler memory requirements, 1-6
Compiler switches, 1-3

Compiler warning diagnostics, C-8
Continuation lines, 3-1

Creating Direct-Access files, 3-4

Data representations, A-1

DATE subroutine, B-5

Debugging techniques, 1-11

Default filename extensions, 1-2

Default FORTRAN library, 1-7

Default logical unit assignments,
3-2

DEFINE FILE, 3-3

Device assignments, 3-2

Direct-Access I1/0, 3-3

Error diagnostics, C-1
Fatal Compiler, C-9
Initial phase, C-2
Object Time System, C-10
Secondary phase, C-3

Error traceback, 2-5

Execution procedures, 1-10

EXIT subroutine, B-4

Fatal Compiler error diagnostics,
c-9

Filename specifications, 1-2

Formatted I/0, 3-4

FORTRAN Library, 1-7

FORTRAN Library version number,
2-1

FORTRAN Object Time System, 2-1

IDATE subroutine, B-6
Initial phase error diagnostics,
C-2

Initialization of COMMON variables,

3-1.
I/0 formats, 3-4

Library usage, 1-7

LINK command string, 1-6, 1-8, 1-9
Linking procedures, 1-6

Listing formats, 1-5

Logical units, 3-1

Maximum record lengths, 3-3
Mixed mode comparisons, 3-4

Object code, 2-1
Object Time System, 2-1
Object Time System, error diagnostics,
c-10
Overlay environment,
Routine placement, 1-8
COMMON placement, 1-8
Overlay usage, 1-7

RAN function subprogram, B-4
Random number generation, B-4
RANDU subroutine, B-4

Runtime memory organization, 2-9

Secondary phase error diagnostics,
c-3

SETERR subroutine, B-6

Stand-alone FORTRAN, 1-10

Statement ordering, 3-3

Subroutine linkage, 2-4

System subroutines, B-1

Traceback, fatal error, 2-5

Unformatted 1I/0, 3-4

User libraries, 1-7

USEREX subroutine, B-4

User Service Routines (USR)
swapping, 2-9

Variable Names, 3-1
Vectoring of arrays, 2-7

Warning diagnostics, C-8
Word formats, A-1

INDEX-1

HOW TO OBTAIN SOFTWARE INFORMATION

SOFTWARE NEWSLETTERS, MAILING LIST

The Software Communications Group, located at corporate headquarters in
Maynard, publishes newsletters and Software Performance Summaries (sps)
for the various Digital products. Newsletters are published monthly,
and contain announcements of new and revised software, programming
notes, software problems and solutions, and documentation corrections.
Software Performance Summaries are a collection of existing problems
and solutions for a given software system, and are published periodi-
cally. For information on the distribution of these documents and how
to get on the software newsletter mailing list, write to:

Software Communications
P. O. Box F
Maynard, Massachusetts 01754

SOFTWARE PROBLEMS

Questions or problems relating to Digital's software should be reported
to a Software Support Specialist. A specialist is located in each
Digital Sales Office in the United States. 1In Europe, software problem
reporting centers are in the following cities.

Reading, England Milan, Italy

Paris, France Solna, Sweden

The Hague, Holland Geneva, Switzerland
Tel Aviv, Israel Munich, West Germany

Software Problem Report (SPR) forms are available from the specialists
or from the Software Distribution Centers cited below.

PROGRAMS AND MANUALS

Software and manuals should be ordered by title and order number. In
the United States, send orders to the nearest distribution center.

Digital Equipment Corporation Digital Equipment Corporation
Software Distribution Center Software Distribution Center

146 Main Street 1400 Terra Bella

Maynard, Massachusetts 01754 Mountain View, California 94043

Outside of the United States, orders should be directed to the nearest
Digital Field Sales Office or representative.

USERS SOCIETY

DECUS,-Digital Equipment Computer Users Society, maintains a user ex-

change center for user-written programs and technical application in-

formation. A catalog of existing programs is available. The society

publishes a periodical, DECUSCOPE, and holds technical seminars in the
United States, Canada, Europe, and Australia. For information on the

society and membership application forms, write to:

DECUS DECUS

Digital Equipment Corporation Digital Equipment, S.A.
146 Main Street 81 Route de l'Aire
Maynard, Massachusetts 01754 1211 Geneva 26

Switzerland

RT-11 FORTRAN Compiler
and Object Time System
User's Manual
DEC-11-LRFPA-A-D

READER'S COMMENTS

NOTE: This form is for document comments only. Problems
with software should be reported on a Software
Problem Repcrt (SPR) form (see the HOW TO OBTAIN
SOFTWARE INFORMATION page).

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer

User with little programming experience
Student programmer

O
O
E] Occasional programmer (experienced)
O
O
O

Non-programmer interested in computer concepts and capabilities

Name Date
Organization
Street
City State Zip Code
or
Country

If you do not require a written reply, please check here. [j

Fold Here

Do Not Tear - Fold Here and Staple

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

dlilgliltlall

Software Communications
P. 0. Box F
Maynard, Massachusetts 01754

DIGITAL EQUIPMENT CORPORATION
MAYNARD, MASSACHUSETTS 01754

	A_Page_01.tif
	A_Page_02.tif
	A03.tif
	A04.tif
	A05.tif
	A06.tif
	A07.tif
	A08.tif
	A09.tif
	A10.tif
	A11.tif
	A12.tif
	A13.tif
	A14.tif
	A15.tif
	A16.tif
	A17.tif
	A18.tif
	A19.tif
	A20.tif
	A21.tif
	A22.tif
	A23.tif
	A24.tif
	A25.tif
	A26.tif
	A27.tif
	A28.tif
	A29.tif
	A30.tif
	A31.tif
	A32.tif
	A33.tif
	A34.tif
	A35.tif
	A36.tif
	A37.tif
	A38.tif
	A39.tif
	A40.tif
	A41.tif
	A42.tif
	A43.tif
	A44.tif
	A45.tif
	A46.tif
	A47.tif
	A48.tif
	A49.tif
	A50.tif
	A51.tif
	A52.tif
	A53.tif
	A54.tif
	A55.tif
	A56.tif
	A57.tif
	A58.tif
	A59.tif
	A60.tif
	A61.tif
	A62.tif
	A63.tif
	A64.tif
	A65.tif
	A66.tif
	A67.tif
	A68.tif
	A69.tif
	A70.tif
	A71.tif
	A72.tif
	A73.tif
	A74.tif
	A75.tif
	A76.tif
	A77.tif
	A78.tif
	A79.tif
	A80.tif
	A81.tif
	A82.tif
	A83.tif
	A84.tif
	A85.tif
	A86.tif
	A87.tif
	A88.tif
	A89.tif
	A90.tif
	A91.tif
	A92.tif
	A93.tif
	A94.tif
	A95.tif
	A96.tif

