RT-11/RSTS/E

FORTRAN |V User’s Guide
Order No. DEC-11-LRRUA-A-D

RT-11/RSTS/E

FORTRAN [V User’s Guide
Order No. DEC-11-LRRUA-A-D

digital equipment corporation - maynard. massachusetts

First 2rinting, December 1975

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use or

reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright (:) 1975 by Digital Equipmert Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0Ss/8

DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX

COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-10

DECCOMM TYPESET-11

CONTENTS

PACE
PREFACE vii
CHAPTER 1 OPERATING PROCEDURES 1-1
1.1 USING THE FORTRAN IV SYSTEM 1-1
1.1.1 Filename Specifications 1-2
1.1.2 Locating a File 1-5
1.2 RUNNING THE FORTRAN IV COMPILER 1-5
1.2.1 Compiler Switches 1-6
1.2.2 Listing Formats 1-7
1.2.2.1 Options Listing 1-10
1.2.2.2 Source Listing 1-10
1.2.2.3 Storage Map Listing 1-10
1.2.2.4 Generated Code Listing 1-10
1.2.2.5 Compilation Statistics 1-10
1.2.3 Compiler Memory Requirements 1-11
1.2.3.1 Compiler Memory Requirements Under RT-11 1-11
1.2.3.2 Compiler Memory Requirements Under RSTS/E 1-11
1.3 LINKING PROCEDURES 1-12
1.3.1 Library Usage 1-14
1.3.2 Overlay Usage 1-15
1.3.3 Stand-Alone FORTRAN 1-17
1.4 EXECUTION PROCEDURES 1-18
1.4.1 Execution under RT-11 1-18
1.4.2 Execution under RSTS/E 1-19
1.5 DEBUGGING A FORTRAN IV PROGRAM 1-22
CHAPTER 2 FORTRAN IV OPERATING ENVIRONMENT 2-1
2.1 FORTRAN IV OBJECT TIME SYSTEM 2-1
2.2 OBJECT CODE 2-1
2.3 SUBPROGRAM LINKAGE 2-3
2.4 SUBPROGRAM REGISTER USAGE 2-5
2.5 VECTORED ARRAYS 2-5
2.6 TRACEBACK FEATURE 2-8
2.7 RUNTIME MEMORY ORGANIZATION (RT-11 only) 2-9
CHAPTER 3 FORTRAN IV SPECIFIC CHARACTERISTICS 3-1
3.1 SOURCE LINES 3-1

iii

3.2 VARIABLE NAMES 3-2
3.3 INITIALIZATION OF COMMON VARIABLES 3-2
3.4 CONTINUATION LINES 3-2
3.5 STOP AND PAUSE STATEMENTS 3-2
3.6 DEVICE/FILE DEFAULT ASSIGNMENTS 3-3
3.7 STATEMENT ORDERING RESTRICTIONS 3-4
3.8 MAXIMUM RECORD LENGTHS 3-4
3.9 DIRECT-ACCESS I/0 3-4
3.9.1 DEFINE FILE Statement 3-4
3.9.2 Creating Direct-Access Files 3-5
3.10 INPUT/OUTPUT FORMATS 3-5
3.10.1 Formatted I/0 3-5
3.10.2 Unformatted I/0 3-6
3.10.3 Direct-Access I/0 3-6
3.11 MIXED MODE COMPARISONS 3-7
CHAPTER 4 INCREASING FORTRAN IV PROGRAMMING EFFICIENCY 4-1
4.1 FACTORS AFFECTING PROGRAM EFFICIENCY 4-1
4.2 INCREASING COMPILATION EFFECTIVENESS 4-1
4.3 PROGRAMMING TECHNIQUES 4-7
CHAPTER 5 CONCISE COMMAND LANGUAGE OPTION 5-1
5.1 INTRODUCTION TO THE RSTS/E FORTRAN IV CCL
OPTION 5-1
5.2 COMMAND INTERFACE 5-1
5.2.1 CCL Command Restrictions 5-2
5.2.2 CCL Command Comparison 5-2
APPENDIX A FORTRAN DATA REPRESENTATION A-1
A.l INTEGER FORMAT A-1
A.2 FLOATING-POINT FORMATS A-1
A.2.1 REAL Format (2-word Floating Point) A-2
A.2.2 DOUBLE-PRECISION Format (4-word
Floating Point) A-2
A.2.3 COMPLEX Format A-2
A.3 LOGICAL*1 FORMAT A-3
A.4 HOLLERITH FORMAT A-3
A.5 LOGICAL FORMAT A-3
A.6 RADIX-50 FORMAT A-4

iv

APPENDIX B LIBRARY SUBROUTINES

B.1 LIBRARY SUBROUTINE SUMMARY

B.Z ASSIGN

B.3 OPEN (RSTS/E only)

B.4 CLOSE

B.5 DATE

B.6 ICATE

B.7 EXIT

B.8 USEREX

B.9 RANDU, RAN

B.1GC SETERR

APPENDIX C FCRTRAN IV ERROR DIAGNOSTICS

c.1 CCMPILER ERROR DIAGNOSTICS

Cc.1l.1 Errors Reported by the Initial Phase of the
Compiler

Cc.1l.2 Errors Reported by Secondary Phases of the
Compiler

Cc.1.3 Warning Ciagnostics

C.1l.4 Fatal Compiler Error Diagnostics

C.2 OBJECT TIME SYSTEM ERRCR DIAGNOSTICS

APPENDIX D COMPATIBILITY WITH OTHER PDP-11

LANGUAGE PROCESSORS

D.1 FORTRAN IV COMPATIBILITY WITH
FTN v08.04

D.1.1 Lanquage Differences

C.1.2 Implementation Differences

D.2 CIFFERENCES BETWEEN FORTRAN IV-PLUS
ANC FORTPAN IV

C.z.1 Language Differences

D.z.2 Implementation Differences

C.3 RSTS/E FCRTRAN IV FILE COMPATIBILITY

C.3.1 Sequential Stream ASCII Files

D.3.2 Virtual Array Files

D.3.3 BASIC-PLUS Record I/C Files

L.3.4 COBCL Files

C.3.5 IAM Files

[vBwRe)
N =

jlolvivlivivivilNvelv)
NN es Www

Figure

Table

FIGURES

Steps in Compiling and Executing a
FORTRAN IV Program

Sample Compilation Listina

Array Vectoring

The Traceback Feature

RT-11 8K System Runtime Memory
Organization

TABLES

Device Specification

Filename Extensions

Protection Codes (RSTS/E only)
Linker Switches

Pefault Memory Allocation Values
Additional Run-Time Buffer Space
Aédditional Run-Time Record
Buffer Storaaqe

FORTRAN Logical Device
Assignments

ASCII/RADIX-50 Eouivalents

vi

PAGE

PREFACE

This document ocrovides information necessary to compile, link,
execute, and debua a FORTRAN proaram under the RT-11 and RSTS/E
operating systems. Chapter one describes the operating procedures.
Chapter two provides information about the Object Time System (OTS).
This system is a collection of routines, selectively 1linked to the
user's prograr, which perform certain arithmetic, input/output, and
system dependent :zervice operations. It also detects and reports
run-time error <conciiions. <Chapter three describes system dependent
information not included in the PDP-11 FORTRAN Language Reference
Manual. Chapter four contains programming suggestions for increasing
the effectiveness anc efficiency of RT-11/RSTS/E FORTRAN IV. Chapter
five describes tne Concise Command Lanquage option. The Appendices
provide reference information about internal data representations,
system subroutinecs, error diagnostics, and compatibility of FORTRAN 1V
with other PLDP-11 FORTRAN processors.

Intended Audience

This manual shoulc be used only after some knowledge of the FORTRAN
language, as 1implemented on the PCP-11, has been acquired. The
associated dccument which can be used for this purpose is the PDP-11
FORTRAN Language Fkeference Manual. The user should also be familiar
with the operatina system as described 1in either the RT-11 System
Reference Manual or the RSTS/F System User's GCuide. The RSTS/E
Cocumentation Cirectory and the RT-11 Documentation Directory contain
additional informetion on the respective documentation sets.

COCUMENTATION CCNVENTIONS

All monitor ané system program command lines are terminated by
pressing the RETURN key. Since this is a non-printing character, at

certain places in the text the notation <CR> represents the RETURN
key.

In examples of keybcard dieloaue, monitor output and prooram output
are underlined; user input is not.

In format cescripticns, uppercase characters represent information
that must be enterecd exactly as shown; lowercase characters represent
variable inforretior that must be supplied by the user.

Some cspecial keybcard cheracters reauire that the CTRL (control) key

vii

be pressed simultaneously with a second character. These characters
are denoted by + (up arrow); e.g., +2Z (CTRL Z).

Ellipsis marks (...) indicate the omission of one or more words within
2 passage and show that the passage continues in the same vein.

viii

CHAFTER 1

OPERATING PROCEDURES

1.1 USING THE FORTRAN IV SYSTEM

Figure 1-1 outlines the steps required to prepare a FORTRAN IV source
program for execution under the RT-11 or RSTS/E Executive: (1)
compilation, (2) linking, and (3) execution.

LIBRARIES

E OBJECT | MEMORY EXECUTING
Ky ¥ COMPILER MODULE LINK IMAGE PROGRAM

LISTING MAP

Figqure 1-1 Steps in Compiling and Executing a FORTRAN IV Program

Step 1 in Figure 1-1 is initiated by running the FORTRAN IV Compiler,
FORTRAN, accompanied by a command string that describes the input and
output files, and switch options, if desired, to be wused by the
compiler. The compiler generates an object file which must be linked
by the linker prior to execution.

OPERATING PROCEDURES

Step 2 is initiated by running the linker, LINK, accompanied by a
similar command string. The linker combines all program units and the
necessary routines from the FORTRAN Library, and generates a memory
image file.

Step 3 is initiated by the monitor R or RUN command for RT-11 and RUN
SEXEC for RSTS/E.

1.1.1 Filename Specifications

The RT-11/RSTS/E FORTRAN IV Compiler and Linker accept a command
string of the form:

output = input /sw

where
output is the output filename specification(s).
input is the input filename specification(s).
/Sw is one or more optional switches used to request

certain functions from the FORTRAN IV Compiler and
Linker. Switch options are tabulated in Section
1.2.1.

The user should note that imbedded blanks are not permitted in command
string specifications.

Each filename specification has the form:

(RT-11) RSTS/E
dev:filename.ext or dev:[p,pn]lfilename.ext<prot>
where

dev: is an optional 2- to 3-character name specifying a
legal device code as shown in Table 1-1. 1If the
device code is omitted, the default storage 1is
used.

filename is any 1- to 6-character alpharumeric filename.

.ext is any 0- to 3-character alphanumeric extension.
If one 1is not specified, the FORTRAN IV Compiler
supplies, by default, certain extensions as shown
in Table 1-2.

[p,pn] is a RSTS/E project (p), progremmer number (pn)
which is used to identify the cwner of a file.

<prot> is a RSTS/E protection code restricting access to

a file. The degree of restriction is determined
by a code or combination of codes as shown in
Table 1-3. Protection codes have effect only on
output files.

OPERATING PROCEDURES

Table 1-1
Cevice Specifications
Device RT-11 RSTS/E
Card reader CR: CR:
TAll cassette (n=0 cr 1) CTn:
Default storage DK: SY:
RP02 or RPO3 disx (r=0 to 7) DPn: DPn:
RP04 disk (n=0 to 7) DBn:
RS03/4 disk (n=0 tc 7) DSn:
DECtape (n=0 to 7) DTn: DTn:
RX01 floppy disk (n=0 or 1) DXn: DXn:
Line printer (n=0 to 7) LP: LPn:
TUl6 magtape (n=0 to 7) MMn: MMn:
TU10 or TSO03 magtape (n=0 to 7) MTn: MTn:
High speed pnaper tape punch PP: PP:
High speed paper tape reader PR: PR:
RF11 fixed-head disk drive RF: DFO0:
RK11 disk cartridge drive (n=0 to 7) RKn: DKn:
System device SY: SY:
Specified unit from which the system
was bootstrappec. SYn: SY:
Current user TT: KB:
terminal TT: or TI:

For more informatioa on device specifications refer to the
System Reference Manual and the RSTS/E System User's Guide.

-3

RT-11

OPERATING PROCEDURES

Table 1-2
Filename Extensions
File Assumed Extension Default Extension

on Input File on Output File
Object file - .OBJ
Listing file - .LST
Source file .FOR -
Load Map file - .MAP
Save Image file - . SAV
Absolute Binary file - .LDA (/L)
Relocatable Image file - .REL (/R)

i (RT-11 only)

Table 1-3
Protection Codes (RSTS/E only)
Code Meaning
1 read protect against owner
2 write protect against owner
4 read protect against owner's project number
8 write protect against owner's project number
16 read protect against all others who do not
have owner's project number
32 write protect against all others who do
not have owner's project number
64 compiled, run-only files
128 privileged program

These codes can be used singularly, or combined, to provide greater
degrees of protection. For example, a protection code of <60> is a
combination of codes <32>, <16>, <8>, and <4>. This combines the
restrictions offered by each code into one code; that is, only the
owner is allowed to read and write the file. Code <60> 1is the
protection given to files by default under the RSTS/E system. This-
default can be changed by typing the ASSIGN command followed by the
new value in angle brackets. The protection code <2> should not be
specified on output files. For more information on protection codes,
refer to Section 9.1 of the BASIC PLUS Language Manual.

OPERATING PROCEDURES

1.1.2 Locating a File

The FORTRAN IV Compiler uses the filename specification to locate a
file. It begins by searching the specified device for the filename
with the specified extension. If the device is not specified, it
searches default storage. If an extension is not specified, the
extension .FOR is assumed.

Under the RSTS/E operating system, if the [project,programmer] number
is specified, then the file being sought must exist under that account
number. If the [project,programmer] number is not specified, the
compiler searches the current user's directory. If the file is not in
the user's directory, a search is made of the system library [1,2].
After the file is located, the protection code identifies the
privileges granted the user. If a protection code is not specified on
output, the default code of <60> is used.

If the file cannot be lccated or is protected against the wuser, the
following message is printed:

?FIL NOT FNKD?
A similar form of this message appears if a filename specification

given to a utility program (e.g., MACRO, LINK, etc.) references a file
which cannot be found.

1.2 RUNNING THE FORTRAN IV COMPILER

To execute the FORTRAN IV Compiler the command:

(RT-11) (RSTS/E)
.R FORTRAN RUN SFORTRAN
* *

is given. The FORTRAN IV Compiler then prints an asterisk (*) to
indicate that it is ready to accept a command string.

The FORTRAN IV Compiler can produce two output files: an object file
and a listing file. Up to six FORTRAN IV source language files are
permitted as input files. If multiple input files are given, they are
considered to be logically concatenated. However, source lines are
not to be broken over file boundaries.

An input file can contain more than one program unit if that file
resides on a random-access device. The object code for all program

units is sent to the single object file, and is handled by the 1linker
at link time.

A sample FORTRAN IV Compiler command sequence is shown below:

(RT-11) (RSTS/E)
.R FORTRAN RUN SFORTRAN
*OBJECT,LIST=FILEl *OBJECT,LIST=FILE1l

This command string directs the compiler to take the source file
FILE1.FOR from the default device, and output the files LIST.LST and
CBJECT.CBJ to the default device.

Either of the compiler output files can be eliminated by omitting its

OPERATING PROCEDURES

file specification from the command string. For example:

(RT-11) (RSTS/E)
.R FORTRAN RUN SFORTRAN
*FILE1=FILE1l *FILE1=FILE1l

produces FILE1.OBJ on the default device but no listing file, while
*,LP:=FILE1l *,LP:=FILEl

produces a listing on the line printer, but no object module output.

The CCL (Concise Command Language) option provides an alternative

procedure for invoking system programs under RSTS/E. Chapter 5
contains more information on this option.

1.2.1 Compiler Switches

The FORTRAN IV Compiler command strings can contain switch options on
the input and output file specifications. The switch options can use
either octal or decimal values. Any switch of the form /S:n causes n
to be interpreted as an octal value; whereas, /S!n causes n to be
interpreted as a decimal value. The switches are as follows (they are
initialized to the specified default values for each command string):

Switch Description
/A Add the compilation statistics to the 1list file (see

Section 1.2.2).

/D Compile lines with a letter D in column one. These

lines are treated as comment lines by default (see
Section 1.5).

/E Accept a full 80 columns of FORTRAN source input per
line. Columns 73 through 80 are treated as a sequence
field (comments) by default.

/H Print a list of compiler switcaes on the listing device
specified. If no listing device is specified, the
output is directed to the user's terminal.

/L:n Specify the listing options. The arqument n is coded
as follows:

/L:0 or /L list diagnostics only
/L:1 or /L:SRC list source program only
/L:2 or /L:MAP list storage map only
/L:4 or /L:COD list generated code only

Any combination of the above 1list options can be
specified by summing the arqument values for the
desired list options. For example:

/L:7 (or /L:ALL)

requests a source listing, a storage map listing, and a
generated code listing. If this switch is omitted, the

OPERATING PROCEDURES

Switch Description

default list option is 3 (source and storage map). See
Section 1.2.2.

/N:m Enable specification of the maximum number of logical
units that can be concurrently open at execution time;
m is an octal constant between 1 and 16 for RSTS/E and
1 and 17 for RT-11. The default is set to 6 if the
switch is not specified. This switch functions only
when one of the input files contains the main program
unit.

/0 Include options-in-effect in 1list file. This 1list
specifies the state of each compiler option, i.e., on
or off. (See Section 1.2.2).

/P Disable the global optimizer. Using this switch may
reduce program storage requirements, but will slightly
increase execution time.

/R:m Enable specification of the maximum formatted record
size allowed at execution time; m is an octal constant
between 4 and 7777. The default is 136 (decimal) bytes
if this switch is not specified. This switch functions
only when one of the input files contains the main
program unit.

/S Suppress ISNs (Internal Sequence Numbers, for source
line number accounting). This option reduces storage
requirements for generated code and slightly decreases
execution time but disables 1line number information
during Traceback (see Section 2.6).

/T Allccate two words for default length integer
variables. Normally, single storage words are the
default allocation for integer variables not given an
explicit length specification (i.e., INTEGER*2 or
INTEGER*4). When two words are allocated, only the low
address word is used to store the value.

/U Diseble USR (User Service Routines) swapping at
runtime. By default the USR is always swapped. This
switch will function only when one of the input files
contains the main program unit. (This switch has no
meaning under RSTS/E but is included for
compatibility.)

/v Disable all vectoring of arrays (see Section 2.5).
/W Enable compiler warning diagnostics (see Section
C.1.3).

1.2.2 Listing Formats

There are five optional sections that <can be included 1in the
compilation 1listing. By default the source program and the storaae
map are included 1in the compilation listing. The list of
options-in-effect, the generated code, and the compiler statistics can

OPERATING PROCEDURES

also be included. Any combination of these sections can be requested
by wusing switches in the compiler command string (see Section 1.2.1).
A description of each section is given below. Figure 1-2 provides a
sample of the information included in each section.

FORTRAN IV Vo1C-01 THU 13-NOV-75 16:14:06
yEX2/L3ALL/70/7A=EX2
OPTIONS IN EFFECT?

SOURCE
MAP
CODE
NOLEAPYEAR
OPTIM
LRECL=0136
STAT
ISNS
NOcCoL8o
USRSWAF
NODIAG
NOINTEGERX4
NLCHN=04
NODEBUG
VECTOR
NOWARN
FORTRAN IV voi1C-01 THU 13--NOV-75 16:14:06 PAGE 001
0001 INTEGER INT
0002 REAL REAL
0003 COMPLEX IMAG
0004 DOUBLE PRECISION DBLE
0005 DATA INT/100/
0006 REAL = INT/2 + S,
0007 DBLE = REAL/2. + 3.,14159682516D0
0008 IMAG = CMPLX(REAL» 3,21)
0009 WRITE (5,10) IMAG
0010 10 FORMAT(1X92F8.5)
0011 sTOP
0012 END
FORTRAN IV STORAGE MaAF

NAME OFFSET ATTRIBUTES

INT 000006 INTEGER%2 VARIAELE

REAL 000034 REALX4 VARIAELE
IMAG 000040 COMPLEXX8 VARIABLE

DBLE 000050 REAL%8 VARIABLE
CMPLX 000000 COMFLEX%8 PROCEDURE

Figure 1-2 A Sample Compilation Listing

FORTRAN IV

ISN #0006

000060
000064
000070
000074

000076
000102

LSNs
MOISMS
DIISIS
CFIs

ADFS$1S
MOF$SM

ISN #0007

000106
000110
000114
000120
000122
000126

ISNS
MOF $MS
DIFS$IS
CDFs
ADDSMS
MODSSM

ISN #0008

000132
000134

000140
000144

000152

ISNS
REL$

RELS
CALS

MODSRM

ISN #0009

000156
000160
000164
000170
000172
000176
000200

ISNS
RELS
RELS
IFWs
RELS
TVCs
EOLs

ISN #0011

000202
000206

LSNs
STPs

OPERATING PROCEDURES

GENERATED COIE

#000006
000006

#000002

$#040640
000034

000034
$040400

000020
000050

000030

000034
$000002 CMPLX+#000000

000040

000016
000010

000040

$#000013

KEXXkE COMPILATION STATISTICS XXXkXX

Figure 1-2

x X
X X
K- COMPILER TABLES —------X
X SYMBOLS! 00081 WORDS X
X PROGRAM: 00039 WORDS X
% FREE CORE: 21285 WOKDS X
x X
e OBJECT CODE —---=-——=--- X
% IMPURE SECTION: 00024 WORDS X
% PURE SECTION: 00044 WORDS X
X TOTAL: 00068 WORDS X
x X
KEEEERRRRE AKX KK RRRRRR K OOOKORKRK

(Cont.) A Sample Compilation Listing

OPERATING PROCEDURES

1.2.2.1 Options Listing - The options-in-effect list can be used as a
quick reference to the status of each possible compiler option.
Options in the list preceded by 'NO' are not in effect; those not
preceded by 'NO' are in effect. The maximum number of logical units
that can be concurrently open (NLCHN) and the maximum record length
(LRECL) are given as the default values or the values specified by the
/N and /R switches respectively. Also included are the day of the
week, date, and time of compilation and a copy of the compiler command
string for identification purposes.

1.2.2.2 Source Listing - The source program is listed in this section
just as it appeared in the input file. 1Internal sequence numbers are
added by the compiler for easier reference. Note that internal
sequence numbers are not always incremented. For example, the
statement following a logical IF will have an internal sequence number
two greater than that of the IF. The IF statement has internally been
assigned two sequence numbers: one for the comparison and one for the
associated statement.

1.2.2.3 Storage Map Listing - This section includes a 1list of all
symbolic names referenced in the program unit. An offset from the
base of the program unit (subject to relocation at link time) is given
for all 1local symbols. There is also a description of the symbolic
name including usage, data type and, in the case of COMMON blocks and
array names, the defined size in storage units.

NOTE

Blank COMMON is described as COMMON
BLOCK / / in the storage map, but is
located on a LINK map as a CSECT named
.SS$S.

1.2.2.4 Generated Code Listing - This section of the list file
contains a symbolic representation of the object code generated by the
compiler (see Section 2.2) including a location offset from the base
of the program unit, the symbolic Object Time System (OTS) routine
name, and routine arguments. The code generated for each statement is
labeled with the same internal seguence number as that specified in
the source program listing, providing easier cross reference.

1.2.2.5 Compilation Statistics - This section includes a report on
memory usage during the compilation process and the storage
requirements for the object code generated by the compiler. However,
this report does not accurately reflect the amount of storage required
for the executable program. The object code storage requirements
printed on the list must be increased by the size of any COMMON blocks
referenced, plus, any routines required from the FORTRAN library.

OPERATING PROCEDURES

1.2.3 Compiler Memory Requirements

The amount of memory available for compilation and the options
available for obtaining additional space differ between RT-11 and
RSTS/E. Under RT-11, device handlers and the symbol table require a
portion of memory during compilation; if the remaining memory is
insufficient after minimizing the number of different physical devices
and variable names specified, the program unit can be segmented into
program units small enough to compile in the available amount of
memory.

Under RSTS/E, additional space can be acquired by switching from a
non-privileged to a privileged account, increasing the system swap
maximum, or segmenting the program. These options and the amount of
memory available are discussed in more detail in the following
subsections.

1.2.3.1 Compiler Memory Requirements Under RT-11 - During the
compilation process, the RT-11 Resident Monitor (RMON), the compiler
root segment, one overlay region, the stack, and the required device
handlers (other than the handler for the system device which is
included in the RMON) must be core resident. The remaining memory is
used for the symbol table and the internal representation of the
program. In a machine with 8K of memory, this allows the compilation
of a program unit as large as several hundred statements in length.
However, if the compiler runs out of memory during the compilation
process (an error message is typed on the terminal; see Section C.1),
the program unit must be divided into two or more program units, each
of which must be small enough to compile in the available memory.

Since device handlers and the symbol table must be resident during the
compilation process, minimizing the number of different physical
devices specified in the command string and reducing the number of
variable names increases the amount of memory available for object
code generation.

1.2.3.2 Compiler Memory Requirements Under RSTS/E - When the RSTS/E
FORTRAN IV Compiler is invoked, it acquires as much free memory (up to
28K words) as may be permitted to the current user. The private core
maximum for the account under which the user is running determines the
amount of free storage allocated. The amount of storage available
will never exceed the SWAP MAX currently set by the system manager.
In addition, the system manager may restrict the dynamic memory
requested by FORTRAN IV for every user.

Hence, if the compiler runs out of free space during a compilation
(this 1is reported by a "FATAL ERROR T" message typed on the user's

terminal), several actions can be attempted to accommodace the
compilation:

l. If the compilation was attempted by a non-privileged user
whose private core maximum is smaller than the system swap
maximum, the compilation may proceed, if done under a
privileged account; this may allow the compiler to acquire 3
larger memory area. Alternatively, the user can contact the
system manager to have the private core maximum increased as
required.

1-11

OPERATING PROCEDURES

2. If a compilation should terminate with insufficient space
under a privileged account, two courses of action are
available:

a. The user can consult with the system manager to determine
if the FCRTRAN compilation size limit car be increased to
accommodate large compilations, or

b. the user can segment the program unit which will not
compile into two or more smaller program units, and/or
reduce the number of variables, arrays, and constants in
the program unit (to save compiler symbol table space).

1.3 LINKING PROCEDURES

The Linker, LINK, combines one or more user-written program units
together with selected routines from any user libraries (see Section
1.3.1) and the default FORTRAN IV System Library, FORLIB. LINK also
provides an overlay capability (see Section 1.3.2).

LINK generates a single runnable core image file and an optional 1load
map from one or more object files created by the MACRO assembler or
the RT-11/RSTS/E FORTRAN 1V Compiler.

The LINK command has the form:

(RT-11) (RSTS/E)
.R LINK RUN SLINK
*command string *command string

The command string has the following format:
dev:binout,dev:mapout=dev:obj1,dev:oij,.../51/52/53

where:

dev: is a random access device for the save image
output file (binout), and any appropriate
device in all other instances. If dev: is
not specified, the default device is assumed.
If the output is to be LDA format (i.e., the
/L switch was used), the output file need not
be on a random-access device.

binout is the name to be assigned to the 1linker's
save 1image, or LDA format output file. This
file 1is optional; if pot specified, no

binary output is produced. (Save image is
the assumed output format unless the /L
switch is used.)

mapout is the optional load map file.

objl,... are files of one or more object modules to be
input to the 1linker (these may be library
files).

/sl/s2/s3 are optional switches as explained in Table
1-4.

OPERATING PROCEDURES

Table 1-4
Linker Switches

Switch Command
Name Line Meaning

/A 1st Alphabetizes the entries in the 1load
map.

/B:n lst Bottom address of program is indicated
as n. The bottom address determines the
amount of stack (SP) space available to
the program being linked. The default
bottom is 1000 (octal), which provides
approximately 80 words of stack. This
can be increased by specifying the /B
switch with an argument greater than
1000 (octal).

/C any Continues input specification on another
| command line. Used also with /O.

/F 1st Instructs the linker to use the default
FORTRAN library, FORLIB.OBJ. Note that
FORLIB does not have to be specified in
the command line.

/1 lst Includes in the program image, (see
Section 1.3.3), the 1library object
modules that define the specified global
symbols.

/L 1st Produces an output file in LDA format.

/M or 1st Specifies the stack address at the
/M:n terminal keyboard or via n.

/0:n any but Indicates that the program has an

the 1lst overlay structure: n specifies the
overlay region to which the module is
assigned.

/R 1st Produces an output file in relocatable
image format for execution as a
foreground job under RT-11.

/S 1st Allows the maximum amount of space in
memory to be available for the linker's
symbol table. (This switch should only
be used when a particular link stream
causes a symbol table overflow.)

/T or 1st Specifies the transfer address at
/T:n terminal keyboard or via n.

OPERATING PROCEDURES

An example of the LINK command format as used witk FORTRAN IV is given
below.

(RT-11) (RSTS/E)
.R LINK RUN SLINK
*LOAD,MAP=MAIN,SUB1,SUB2/F *LOAD,MAP=MAIN,SUB1,SUB2/F

This command string requests LINK to combine the object module
MAIN.OBJ with the object modules SUB1.0BJ and SUB2.OBJ into the single
core image file LOAD.SAV. A load map file MAP.MAF is also produced.
All files are on the default device.

The switch, /F, specifies that the default FORTRAN Library on the
system device, SY:FORLIB.OBJ, is to be searched for any routines that
are not found in the other object modules. These include any library
functions, system subroutines, or object time system routines. Note
that the switch alone, without the explicit file specification, causes
the default FORTRAN Library to be searched. This switch should be
included if any of the object modules specified in the command string
were created by the FORTRAN Compiler. This switch can be omitted,
however, if the FORTRAN Library file specification, SY:FORLIB, is

explicitly included in the command string as 1illustrated in the
following example.

(RT-11) (RSTS/E)
.R LINK RUN SLINK
*LOAD,MAP=MAIN,SY:FORLIB *LOAD,MAP=MAIN,SY: $FORLIB

The optional load map file specification, if included, regquests the
linker to output a 1list of module names, common blocks and global
symbols together with their absolute memory address assignments.

For a more detailed description of LINK refer to the Linker chapter of
the RT-11 System Reference Manual or the RSTS/E FORTRAN IV Utilities

Manual. For an alternative procedure for invoking LINK under RSTS/E,
read Chapter 5.

1.3.1 Library Usage

The FORTRAN IV programmer may want to create a library of commonly
used assembly language and FORTRAN functions and subroutines. The
system program LIBR provides a library creation and modification
capability. The Librarian chapter of the RT-11 System Reference
Manual or the RSTS/E FORTRAN IV Utilities Manual describes the LIBR
program in detail.

A library file can be included in the LINK command string simply by
adding the file specification to the input file list. LINK recognizes
the file as a library file and links only those routines that are
required. The LINK command string;

*LOAD=MAIN,LIB1/F

requests LINK to combine MAIN.OBJ with any required functions or
subroutines contained in LIB1.OBJ. The default FORTRAN system
library, FORLIB, is then searched for any other regquired - routines.
The entire memory image is output to the file LOAD.SAV.

CPERATING PROCEDURES

If the /F switch is used, all user created libraries are searched
before the default FORTRAN system library, FORLIB.

Under certain circumstances library directories are made memory
resident to speed up library searches. This reduces the amount of
memory available for the symbol table. Directories are made resident
if 12K or more memory is available, there is room for the particular
directory, and the /S linker switch is not included in the command
string. If the linker fails because it ran out of symbol table space
linking object files, one of which was a library file, and the above
conditions were also in effect, another attempt can be made including
the /S linker switch. This slows down the linking process, but allows
the maximum possible symbol table space.

In the interest of maintaining the integrity of the DEC-distributed

FORTRAN Library, the creation of a user library is preferred to the
modification of, or addition to, the FORTRAN Library (FORLIB).

1.3.2 Overlay Usage

The overlay feature of the linker allows segmentation of the memory
image so that the entire program need not be core resident at one
time. This allows the execution of a program that otherwise would not
fit in the available memory.

An overlay structure consists of a root segment and one or more
overlay regions. The root segment contains the FORTRAN IV main
program and blank COMMON. The root segment can also contain some
subroutines and function subprograms. An overlay region is an area of
memory allocated for two or more overlay segments, only one of which
can be core resident at one time. An overlay segment consists of one
or more subroutines or function subprograms.

At runtime, if a call is made to a routine that is contained in an
overlay segment, the overlay handler checks to see if the segment is
resident in its overlay region. If the segment is in memory, control
is passed to the routine. If the segment is not resident, the overlay
handler reads the overlay segment from the memory image file on the
system device (or another device of the same type as the system
device) into the specified overlay region. This destroys the previous
overlay segment in that overlay region. Control is then passed to the
routine.

When dividing a FORTRAN IV program into a root segment and overlay
regions, and subsequently dividing each overlay region into overlay
segments, routine placement should be carefully considered. The user
should always remember that it is illegal to call a routine located in
a different overlay segment in the same overlay region, or an overlay
region with a lower numeric value (as specified by the linker overlay
switch, /O:n), than the calling routine. The user should divide each

overlay region into overlay segments that never need to be resident
simultaneously.

The FORTRAN IV main program unit must be placed in the root segment.

In an overlay environment, subroutine calls and function subprogram
references must refer only to one of the following:

1. A FORTRAN library routine (e.g. ASSIGN, DCOS).

OPERATING PROCEDURES

2. A FORTRAN or assembly language routine contained in the root
segment.

3. A FORTRAN or assembly language routine contained in the same
overlay segment as the calling routine.

4. A FORTRAN or assembly language routine contained in a segment
whose region number is greater than that of the calling
routine.

In an overlay environment, COMMON blocks must be placed so that they
are resident when referenced. Blank COMMON is always resident since
it is always placed in the root segment. All named COMMON must be
placed either in the root segment, or into the segment whose region
number is the lowest of all segments that reference the COMMON block.
A named COMMON block can not be referenced by two segments in the same
region unless the COMMON block appears in a segment of the 1lower
region number. The 1linker automatically places a COMMON block into
the root segment if it is referenced by the FORTRAN IV main program or
a subprogram that is 1located in the root segment. Otherwise, the
linker places a COMMON block in the first segment encountered in the
linker command string that references that COMMON block.

All COMMON blocks that are data initialized (by use of DATA

statements) must be so initialized in the segment in which they are
placed.

The entire overlay initialization process is handled by LINK. The
command format outlined below, (and further explained in the Linker
Chapter of the RT-11 System Reference Manual or the RSTS/E FORTRAN IV
Utilities Manual) 1is used to describe the overlay structure to the
linker. LINK combines the runtime overlay handler with the user
program, making the overlay process completely transparent to the
user's program.

The size of the overlay region is automatically computed to be 1large
enough to contain the largest overlay segment in that overlay region.

The root segment and all overlay segments are contained in the memory
image file generated by LINK.

Two switches are used to specify the overlay structure to LINK. The
overlay switch is of the form:

/0:n

where n is an octal number specifying the overlay region number. The
command continuation switch is of the form:

/C

This switch allows the user to continue long command strings on the
next line of input.

The first line of the LINK overlay structure command string should
contain, as the input list, all object modules that are to be included
in the root segment. This line should be terminated with the /C and
/F switches. The /O:n switch can not appear in the first line of the
command string. If all modules which are to be placed in the root
segment cannot be specified on the first command line, additional
modules can be specified on subsequent command lines, each ending with

OPERATING PROCEDURES

a /C. The entire root segment must be specified before any overlays.

All subsequent lines of the command string should be terminated with
an /O:n switch specifying an overlay region and/or a /C switch. The
presence of only a /C switch specifies that this is a continuation of
the previous 1line and therefore, a continuation of the specification
of that overlay segment. The object modules on each line, or set of
continued lines, constitute an overlay segment and share the specified
overlay region with all other segments in the same numeric value
overlay region. All but the last line of the command string should
contain the /C switch.

For example, given the following overlay structure description:

1. A main program and the object module SUBl are to occupy the
root segment.

2. The object module SUB2 is to share an overlay region with the
object module SUB3 (never co-resident).

3. The object modules SUB4 and SUB5 are to share a second
overlay region with the object modules SUB6 and SUB7.

the following commanc¢ string could be used:

(RT-11) (RSTS/E)

.R LINK RUN SLINK
*LOAD=MAIN,SUBL/F/C *LOAD=MAIN,SUB1/F/C
*SUB2/0:1/C *SUB2/0:1/C
¥SUB3/0:1/C *SuUB3/0:1/C
*SUB4,/0:2/C *SUB4/0:2/C

*SUB5/C *SUB5/C

*SUB6,/0:2/C ¥SUB6/0:2/C

*SUB7 *SUB7

1.3.3 Stand-Alone FORTRAN

FORTRAN programs can be developed under the RT-11 or RSTS/E FORTRAN IV
systems and output in an absolute binary format for execution on a
satellite machine with minimum peripherals. The satellite machine can
have a minimum of 4K words of memory and requires only a paper-tape
reader for program loading.

When operating in the stand-alone environment, the only input/output
device supported by FORTRAN-level input/output is the terminal. Other
devices or equipment interfaces can be supported by appropriate
user-written assemblv language subroutines.

To generate a stand-alone program, the source program units should be
compiled as usual. At 1link time, special options are specified to
generate a stand-alone program. The /L switch must be included in the
LINK command string to cause an absolute binary format (LDA) output
file to be generated. The /I switch must also be given to allow two
special modules to be reguested from the FORTRAN IV Library. These
two modules are:

$SIMRT FORTRAN IV system simulator.

$nkK module which specifies the memory size of the
target machine where n is 4,8,12,16,20,24, or 28.

OPERATING PROCEDURES

Care must be taken to use the proper FORTRAN IV Library, as the
library used must reflect the hardware arithmetic options available on
the satellite machine. Hence, the system default library
(SY:FORLIB.OBJ), which is used when the /F switch is specified to
LINK, may not be appropriate. Consult with the system manager (RSTS/E
users) or the Getting Started with RT-11 FORTRAN document (RT-11
users) for information on the various libraries.

The following command sequence generates a file LOAD.LDA, which can be
punched on paper tape and loaded, using the Absolute Loader, on any
PDP-11 with 8K or more of memory:

(RT-11) (RSTS/E)

.R LINK RUN SLINK
*LOAD,LP:=MAIN,SUBS/F/L/I *LOAD,LP:=MAIN,SUBS/F/L/I
LIBRARY SEARCH: LIBRARY SEARCH:

$SIMRT <CR> SSIMRT <CR>

$8K <CR> $8K <CR>

<CR> <CR>

*4C *4C

. READY

1.4 EXECUTION PROCEDURES

1.4.1 Execution Under RT-11

To start execution of the memory image file generated by LINK, use the
monitor R or RUN commands. The command:

.R FILESPEC

or -RUN DEV:FILESPEC

causes the file on the system device, FILESPEC.SAV, which is the
filename specification as described 1in Section 1.1.1, to be loaded
into memory and executed.

The following example shows how to take three FORTRAN source files
containing a main program and several subroutines through the
procedures necessary to compile, link, and execute that program:

.R FORTRAN
*MAIN,LP:=MAIN,SUB
*SUB1,LP:=SUB1

*1C

-R LINK
*MAIN,LP:=MAIN,SUB1/F
t1C

-R MAIN

1-18

OPERATING PROCEDURES

1.4.2 Execution under RSTS/E

To start execution of the memory image file generated by LINK, the
following command segquence is used:

RUN SEXEC
*filespec/CORE:n
where
filespec is the filename specification described in Section
1.1.1.
/CORE:n is an optional switch specifying the maximum

memory requirements for the executing program; n
represents the number of K words of memory to
allocate for the program.

If /CORE:n is not specified, a default value is used based on the high
limit of the program as established by LINK. The high limit is the
last entry in the link map. The default value is determined from
Table 1-5. The default value allows sufficient memory for the default
size record buffer (136 bytes; controlled by the /R switch to the
compiler) and two file buffers. This allows a maximum of two
non-terminal files to be open concurrently (terminal input/output
requires no file buffer space).

The program to be run must have the compiled program (64 decimal) bit
set in its protection code to be runnable by EXEC. This will happen
automatically if the default extension, .SAV, is wused for the LINK
utiility. This will not be the case if another LINK extension is
specified.

1-19

OPERATING PROCEDURES

Table 1-5
Default Memory Allocation Values
IF HIGH LIMIT IS IN THE RANGE:, THEN THE DEFAULT VALUE FOR N IS:
(octal) (decimal)
000000 - 004000 3
004000 - 010000 4
010000 - 014000 5
014000 - 020000 6
020000 - 024000 7
024000 - 030000 Y
030000 - 034000 9
034000 - 040000 10
040000 - 044000 11
044000 - 050000 2
050000 - 054000 13
054000 - 060000 14
060000 - 064000 15
064000 - 070000 lé
070000 - 074000 17
074000 - 100000 1¢&
100000 - 104000 19
104000 - 110000 20
110000 - 114000 21
114000 - 120000 22
120000 - 124000 23
124000 - 130000 24
130000 - 134000 25
134000 - 140000 26
140000 - 144000 27
144000 - 150000 28

If more than two files are to be open concurrently, or if a record

buffer

larger than the default is needed, the user can explicitly

specify the /CORE:n switch. The value specified in the /CORE:n switch
is determined by:

1.

Establishing the default value.

To establish the default value, ascertain the high 1limit of
the program (this 1is the last entry in the link map), then
search Table 1-5 for the appropriate default value.

Adding any additional space required for concurrently open
files.

If more than two files are to be open concurrently,
additional space is added as illustrated in Table 1-6.

OPERATING PROCEDURES

Table 1-6
Additional Run-Time Buffer Space
OF FILES CONCURRENTLY OPEN VALUE TO ADD TO DEFAULT
(NOT INCLUDING TERMINAL) # FOR /CORE:n
0-2 0
3-6 1
7-10 2
11-14 3
15 4

3. Adding any additional space required for non-standard record
buffers.
If a record buffer larger than the default (136 bytes) has
been allocated with the /R switch to the compiler, additional
space is added as illustrated in Table 1-7.

Table 1-7
Additional Run-Time Record Buffer Storage
VALUE SPECIFIED FOR /R!m VALUE TO ADD TO DEFAULT
AT COMPILATION TIME # FOR /CORE;n
/R!4 - /R11024 0
/R11025 - /R12048 1
/R12049 - /R13072 2
/R13072 - /R14095 3

The value computed for n in this manner is a close approximation to

the minimum value required. The actual minimum may be less than the
value computed, (by 1 or 2K).

The following sequence of commands illustrates the compilation,

linking, and execution of a RSTS/E program (MAIN) contained in three
source files:

RUN $SFORTRAN
*MAIN,LP:=MAIN,SUB
*SUB1,LP:=SUB1

*C

READY

RUN SLINK
*MAIN,LP:=MAIN,SUBL/F
1tc

READY

RUN $EXEC
*MAIN

Chapter 5 describes the CCL (Concise Command Language) option which

OPERATING PROCEDURES

provides an alternative procedure for invoking FORTRAN IV system
programs under RSTS/E.

1.5 DEBUGGING A FORTRAN IV PROGRAM

The debugging program, ODT, usually cannot be effectively used with a
FORTRAN IV program due to the nature of the object code generated by
the FORTRAN IV Compiler (see Section 2.2).

However, in addition to the FORTRAN OTS error diagnostics which
include the Traceback feature (see Section 2.6), there is another
debugging tool available to the FORTRAN programmer. The letter D in
column one of a FORTRAN IV statement allows that statement to be
conditionally compiled. These statements are considered comment lines
by the FORTRAN IV Compiler unless the /D switch is used in the
compiler command string. In this case, the 1lines are compiled as
regular FORTRAN statements. Liberal use of PAUSE statements (see
Section 3.5), and selective variable pPrint out can provide the user
with a method of monitoring program execution. This feature allows
the inclusion of debugging aids that can be compiled in the early
program development stages and later treated as regqular comment lines.

CHAPTER 2

FORTRAN IV OPERATING ENVIRONMENT

2.1 FORTRAN IV OBJECT TIME SYSTEM

The FORTRAN IV Object Time System (OTS) is composed of the following:

1. math routines, including the FORTRAN IV library functions and
other arithmetic routines (e.g., floating-point routines),

2. miscellaneous utility routines (ASSIGN, DATE, SETERR, etc.),
3. routines which handle various types of FORTRAN 1/0,

4. error handling routines which process arithmetic errors, 1I/0
errors, and system errors, and

5. miscellaneous routines required by the compiled code.

The FORTRAN library is designed as a collection of many small modules
so that unnecessary routines can be omitted during linking. For
example, if the user program performs only sequential-access,
formatted I/0, none of the direct-access I/O routines is included in
the executable program.

2.2 OBJECT CODE

Typical FORTRAN IV operations often require common sequences of PDP-11
machine instructions. For example, at the end of any DO-loop, the
index variable must be incremented, compared with the limit value, and
a conditional branch taken. Other standard sequences can be generated
to locate an element of a multi-dimensional array, initialize an
input/output operation, or simulate a floating-point operation not
supported by the hardware configuration.

These common sequences of PDP-11 instructions are contained in a
library known as the Object Time System. The FORTRAN compiler selects
a certain combination of these instruction sequences to implement a

FORTRAN program. During program execution, these sequences are
threaded together and effect the desired result.

2-1

FORTRAN IV OPERATING ENVIRONMENT

The compiler refers to a library instruction sequence by generating a
word containing the address of the first instruction in the sequence,
followed by information upon which the instructions are to operate.
In the case of the end-of-DO-loop seguence, the information required
is the location of the index variable, the 1limit wvalue, and the
address of the beginning of the loop. At runtime, register R4 is used
to thread together the various references to library instruction
sequences; the last instruction executed by each instruction sequence

is JMP @(R4)+, which transfers control to the next library instruction
sequence.

The mnemonics (global names) used for the library routine names follow
a logically consistent format. The mnemonics are four to six
characters in length. The first two characters specify an operation.
The third character specifies the mode of the operation, i.e.,
integer, floating, double precision, complex, or logical. The fourth
character is always a dollar sign ($). The fifth and sixth
characters, if present, specify a source and destination for the
operation, respectively. The source element for the operation can be
a memory location, the hardware stack, the hardware registers, or an
in-line argument which can be called through R4. The destination
element for an operation can be a memory location, the hardware stack,

or a location specified as an in-line arqument which can be called
through R4.

The library routines perform arithmetic operations, compare values,
test wvalues, calculate subscripts, convert from one mode type to
another, and transfer program control. There are special routines to
handle Internal Statement Numbers (ISNs), enabling the FORTRAN IV
Traceback feature, a routine to handle subprogram control transfer,
and a routine to push the address of variables on the hardware stack.
There are also several routines to handle special FORTRAN runtime
operations such as PAUSE, STOP, 1I/0 initialization, and I/0 data
transfers.

For example, the following FORTRAN program:

FORTRAN IV Vo1C-01 THU 13-NOV-75 16:25:38 PAGE 001
c
c PROGRAM TO DEMONSTRATE THE CODE GENERATED BY THE
Cc FORTRAN IV COMPILER.
c
0001 DIMENSION RARRAY(10,10) I{ALLOCATE A REALS4 ARRAY
0002 DATA N/4/y» 1/2/ TINITIALIZE Ny I
0003 I = (352 - 5) + 1 f{ADD ONE TO I
0004 J = (I+100)X(Nx%x2) 'COMPUTE AN EXPRESSION
0005 A= 2,0 IASSIGN A VALUE TO A
0006 RARRAY(2s1) = RARRAY(1s1) + A ISUM OF TWO REAL VALUES
0007 END

generates object code that can be symbolically represented as follows
(the storage map is included for reference):

FORTRAN IV STORAGE MAP
NAME OFFSET ATTRIBUTES

RARRAY 000006 REALX4 ARRAY (10,10) VECTORED

N 000626 INTEGERX2 VARIABLE
I 000630 INTEGER¥X2 VARIABLE
J 000656 INTEGERX2 VARIABLE
A 000660 REALX4 VARIABLE

FORTRAN IV

ISN 40003
000664 ICISM

ISN #0004

000670 MOISMS
000674 ADISIS
000700 MOISMS
000704 MUISMS
000710 MUISSS
000712 MOISSM

ISN #0005
000716 MOFS$IM

ISN #0006

000724 MOFSMM
000732 ADFS$MM

ISN #0007
000740 RETS

FORTRAN IV OPERATING ENVIRONMENT

GENERATED CODE

000630

000630
$000144
000626
000626

000656

$040400 000660

000660 000012
000006 000012

2.3 SUBPROGRAM LINKAGE

All instances of subprogram linkage are performed in the same

INCREMENT THE INTEGER WHOSE AIDKRESS
$IS 000630 (I)

$MOVE THE VALUE OF INTEGER I ONTO STACK
$ADD 100 TO VALUE ON TOP OF STACK

$MOVE THE VALUE OF INTEGER N ONTO STACK
$AND SQUARE IT (MULTIFLY BY ITSELF)
SMULTIFLY (I+100) BY (NXX%2)

$STORE VALUE ON TOF OF STACK INTO J

IMOVE AN IMMEDIATE FLOATING CONSTANT
$(2.0) TO A

$MOVE RARRAY(1,1) TO RARRAY(2s1)
$AND ADDD A TO RARRAY(2,1)

#RETURN TO OFERATING SYSTEM
$ (EXIT FROM FROGRAM)

manner,

including linkage of user-written FORTRAN IV subprograms, and assembly

language subprograms.

following instruction:

JSR

Register 5 (RS)

PC,routine

following format:

Control is passed to the subprogram via the

contains the address of an argument 1list having the

FORTRAN IV OPERATING ENVIRONMENT

RS *_1

undefined # of arouments

address of argument #1

address of argument #2

address of argument #n

The value -1 is stored in the argument list as the address of any null
arguments. Null arguments in CALL statements appear as successive
commas, e.g., CALL SUB (A,,B)

Control is returned to the calling program via thte instruction:
RTS PC
As an example of argument transmission, an assembly language
subroutine may be written to sum as many integer arguments as it finds
in each parameter list, and transmit the result back to the FORTRAN IV
program as the value of a final, additional argument. The FORTRAN
CALL statements which invoke this routine would bte of the form:
CALL IADD (numl,num2,...,numn,isum)

where numl through numn represent a variable number of integer
quantities to be summed, and isum represents the variable or array
element into which the sum is to be placed.

Given the following MACRO-11 subprogram:

.TITLE ADDER

.GLOBL IADD
IADD: MOV (R5)+,R0 ;GET # OF ARGUMENTS

CLR R1 ;s PREPARE WORKING REG.

DECB RO ;FIND # OF TERMS TO ADD
1s$: ADD @(R5)+,R1 sADD NEXT TERM

DECB RO ;DECREMENT COUNTER

BNE 1s$;LOOP IF NOT DONE

MOV R1,@(R5)+ ;RETURN RESULT

RTS PC sRETURN CONTROL

the sequence of FORTRAN IV calls:

CALL IADD(1,5,7,I)
CALL IADD(15,30,10,20,5,J)

would cause the variable I to be given the value 13, and the variable
J to be assigned the value 80.

FCRTRAN IV OPERATING ENVIRONMENT

2.4 SUBPROGRAM REGISTER USAGE

A subprogram that is called by a FORTRAN IV program need not preserve
any registers. However, the contents of the hardware stack must be
kept such that each 'push' onto the stack is matched by a 'pop' from
the stack prior to exiting from the routine.

User-written assembly lanquage programs that call FORTRAN Iv
subprograms must preserve any pertinent registers before calling the

FORTRAN IV routine and restore the registers, if necessary, upon
return.

Function subprograms return a single result in the hardware registers.

The register assignments for returning the different variable types
are listed below:

Integer and Log:cal functions - result in RO

Real functions - high order result in RO, low order result in Rl

Double Precision functions - result in R0-R3, lowest order
result in R3

Complex functions - high order real result in RO, low order real
result in R1l, high order imaginary result in R2, low
order imaginary result in R3

In addition, assembly language subprograms, which use the FP11
Floating Point unit, may be required to save and restore the FPU
status. FORTRAN IV assumes that the FPU status is set by default to:
. Short Floating mode (SETF)
. Short Integer mode (SETI)

. Floating Truncate mode

If the assembly language routine will modify these defaults, it must
preserve the FPU status on entry by executing the following
instruction:

STFPS - (SP)

and restore the status (prior to returning to the calling program) by
executing the instruction:

LDFPS 'SP) +

2.5 VECTORED ARRAYS

Array vectoring is a process which decreases the time necessary to
reference elements of a multi-dimensional array by using additional
memory to store the array.

Multi-dimensional arrays, which are actually stored sequentially in
memory, require certain address calculations to determine the location
of individual elements of the array. Typically, a mapping function is
used to perform this calculation. For example, to locate the element
LIST(1,2,3) in an array dimensioned LIST(4,5,6), a function equivalent

FORTRAN IV OPERATING ENVIRONMENT
to the following can be used. This function identifies a location as
an offset from the origin of the array storage.

(sl-1) + dl * (s2 - 1) + dl * d2 * (s3 - 1)
(0) + 4 * ¢ 1)+ 4 * 5 * ¢ 2)

W

44

where si = subscript i
di = dimension i

Since such a mapping function requires multiplication operation(s),
and since some PDP-11 hardware confiqurations do not have the MUL
instruction, the compiler may 'vector' some arrays and thereby reduce
execution time at the expense of memory storage.

Since array vectors map only the declared dimensions of the array, the
user must ensure that references to arrays are within their declared
bounds. A reference outside the declared bounds of a vectored array
causes unpredictable results (e.g. a program interrupt). The user
should pay particular attention to arrays passed to subprograms where
the dimensions declared in the subprogram differ from those specified
in the calling program. In such cases, two sets of vectors are
created: one for the calling program and one for the subprogram. The
subprogram vectors map only that portion of the array declared by the
subprogram. (The PDP-11 FORTRAN Language Reference Manual contains
more information on dimensions.)

If an array is vectored, a particular element in the array can be
located by a simplified mapping function, without the need for
multiplication. 1Instead, a table lookup is performed to determine the
location of a particular element. For example, a vectored,
two-dimensional array B(5,5) automatically has associated with it a
one-dimensional vector that would contain relative pointers to each
column of array B. The location of the element B(m,n), relative to
the beginning of the array, could then be computed as:

Vector(n) + m

using only addition operations. Figure 2-1 graphically depicts the
array vectoring process.

2-6

FORTRAN IV GPERATING ENVIRONMENT

Array B Associated
Vector

B(1,1; Pl P1
B(2,1) P2
B(3,1) P3
B(4,1) P4
B(5,1) P5
B(1l,2) P2

B(2,2)

B(3,2)

The location of element B(m,n) =

Vector(n) + m
B(1,5) PS5
B(2,5)
B(3,5)
B(4,5)
B(5,5)

Figure 2-1 Array Vectoring

The compiler decides whether to vector a multi-dimensional array based
on a ratio of the amount of space required to vector the array to the
total storage space required by the array. If this ratio is greater
than 25%, the array is not vectored and a standard mapping function is
used instead. Arrays with adjustable dimensions are never vectored.
Vectored arrays are noted as such in the storage map listing.

The compiler /V switch can be used to suppress all array vectoring.

The amount of memory required to vector an array can be computed as
the sum of all array dimensions except the first. For example, the
array X(50,10,30) requires 10+30=40 words of vector table. Note that
the array V(5,100) requires 100 words of vector storage, whereas the
array Y(100,5) requires only 5 words of vector storage. It 1is
therefore advantageous to place an array's largest dimension first if
it is to be vectored.

Wherever possible, vector tables are shared among several different

arrays. The compiler arranges sharable vectors under the following
conditions:

1. Arrays are in the same program unit.

2. For the ith dimension vector to be
shared by the arrays, dimensions to
the left of the ith dimension must
be equivalent in each array.

For example, given the statement DIMENSION A(10,10),B(10,20), A and B
share a 20 word vector for the second dimension that contains the
values 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140,
150, 160, 170, 180, 190, of which the array A uses only the first ten
elements.

FORTRAN IV OPERATING ENVIRONMENT

2.6 TRACEBACK FEATURE

RT-11/RSTS/E FORTRAN IV fatal runtime errors ircluade a traceback
feature. This feature locates the actual prodgram unit and line number
of a runtime error. Immediately following the error rmessage, the
error handler lists the line number and program unit name in which the
error occurred. If the program unit is a SUBRCUTINE or FUNCTION
subprogram, the error handler traces back to the calling program unit
and displays the name of that program unit and the line number where
the call occurred. This process continues unti. the calling sequence
has been traced back to a specific line number in the main program.
This allows an exact determination of the location of an error even if
the error occurs in a deeply nested subroutine.

0001 A=0.0

0002 CALL SUB1 (A)

0003 CALL EXIT

0004 END

0001 SUBROUTINE SUB1 (B)
0002 CALL SUB2(B)

0003 RETURN

0004 END

0001 SUBROUTINE SUB2(C)
0002 CALL SUB3(C)

0003 RETURN

0004 END

0001 SUBROUTINE SUB3 (D)
0002 E=1.0

0003 F=E/D

0004 RETURN

0005 END

Trace back of Fatal Error:

?ERR 12 FLOATING ZERO DIVIDE

IN ROUTINE "SUuB3 " LINE 3
FROM ROUTINE "SUB2 " LINE ?
FROM ROUTINE "SUB1 " LINE 2
FROM ROUTINE ".MAIN." LINE 2

Figure 2-2 The Traceback Feature

Note in Figure 2-2 that the line number in the traceback of routine
'SUB2' is simply a question mark (?). This is because the module was
compiled with the /S switch in effect (see Section 1.2.1).

FORTRAN IV OPERATING ENVIRONMENT

2.7 RUNTIME MEMORY ORGANIZATICN (RT-11 only)

Figure 2-3 describes the runtime memory organization in both a USR
(User Service Routines) swapping system and a USR resident system. If
user-written interrupt handling routines are linked with a FORTRAN IV
program, care should be taken to avoid USR swapping over the interrupt
routines and any associated data. The USR is swapped in above the
interrupt vectors at location 1000 (octal), and extends about 2K words
from that point (see Fiqure 2-3). Interrupt routines must therefore
be 1loaded above the area wused for USR swapping if the USR will be
actively swapped. The USR 1is actively swapped unless explicitly
disabled by the compiler /U switch.

Some of the runtime memory segments are a fixed size. These include
the resident monitor, the OTS work area, the stack and interrupt

vector areas, and, in the USR resident system, the User Service
Routine area.

Other runtime memory segments may vary in length. The user program,
of course, 1is not always of the same length. The device handlers,
channel tables, and /0 buffers are allocated space dynamically. Only
those handlers that are needed for currently active devices are core
resident, and I/0 buffers are allocated and deallocated as required.

However, there is a maximum total amount of space that can be
allocated to the varying length memory segments. In an 8K swapping
system, approximately 5K words are available for these varying length

segments. In an 8K resident system, approximately 3K words are
available.

If a large FORTRAN 1V program cannot be run in the amount of memory
available, reducing the =size of one of the varying length runtime
memory segments can allow successful program execution. Use of
overlay capabilities (see Section 1.3.2) can help reduce the amount of
core needed for the user program. Minimizing the number of different
physical devices used for I/0 by the program can reduce the number of
handlers that must be core resident. And finally, 1if the ©program
closes a file by use of the CALL CLOSE routine (see Section B.4) as
soon as it has finished 1/0 to that file, the buffer space allocated
for that file can be deallocated and reused if a new file is
subsequently opened.

2-9

37777

-

FORTRAN IV OPERATING ENVIRONMENT

RMON

OTS WORK
AREA

136 BYTE
LINE BUFFER

CHANNEL TABLES

DEVICE HANDLERS

I/0 BUFFERS

OTS
PROGRAM
1000°
STACK
VECTORS
0

Swapping System

377177

1000

RMON

USR

OTS WORK
AREA

136 BYTE
LINE BUFFER

CHANNEL TABLES

DEVICE HANDLERS

I/0 BUFFERS

VECTORS

Resident System

Figure 2-3 RT-11 8K System Runtime Memory Organization

CHAPTER 3

FORTRAN IV SPECIFIC CHARACTERISTICS

This chapter deals with information specific to RT-11 and RSTS/E
FORTRAN IV that is omitted from, or relaxes restrictions included in,
the PDP-11 FORTRAN Language Reference Manual.

It should be noted that deviations from FORTRAN syntax requirements
outlined in the PDP-11 FORTRAN Language Reference Manual, even if
acceptable in RT-11 and RSTS/E FORTRAN 1V, decrease the portability of
the program, and can prohibit successful execution on another system.

3.1 SOURCE LINES
A valid RT-11/RSTS/E FORTRAN 1V source line consists of the following:

1. An optional, one to five character, numeric statement 1label,
followed by

2. sufficient blanks to position the next character at column 7
(if not a continuation line) or column 6 (for continuations;
a continuation signal character will be typed)
or

a tab character followed by any non-alphabetic character to
signal continuation,

or
a tab character, if the line is not a continuation,

3. a valid FORTRAN statement, or the continuation of a
statement, and

4. an optional comment field delimited on the 1left by an
exclamation point (!).

Totally blank records (a source line of only a carriage return-line

feed combination) are ignored on input. If a line is not totally
blank, it must contain some portion of a FORTRAN statement.

3-1

FORTRAN IV SPECIFIC CHARACTERISTICS

3.2 VARIABLE NAMES

RT-11/RSTS/E FORTRAN IV allows variable names to exceed six
characters. However, only the first six characters are significant
and should be unique among all variable names in the program unit. A
warning diagnostic 1is given for each variable name which exceeds six
characters in length. The diagnostic is enabled if /W is included in
the compiler command string.

3.3 INITIALIZATION OF COMMON VARIABLES

RT-11/RSTS/E FORTRAN IV allows any variables in COMMON, including
blank COMMON, to be initialized in any program unit by use of the DATA
statement.

3.4 CONTINUATION LINES

A line is assumed to be a continuation line if the first character,
following a tab on an input line to the compiler, is non-alphabetic.

RT-11/RSTS/E FORTRAN IV does not place any limits on the number of
continuation lines that a statement may contain.

3.5 STOP AND PAUSE STATEMENTS

Execution of a program may be temporarily suspended by the use of the
PAUSE statement. When this occurs, the word PAUSE and the contents of
the text string (if any) are typed on the user's terminal. To
continue program execution, type a carriage return.
For example, use of the FORTRAN statement:

PAUSE 'MOUNT A NEW TAPE'
causes the following line to be printed at the user's terminal:

PAUSE -- MOUNT A NEW TAPE

Execution of the STOP statement closes all files and returns control
to the operating system. To terminate a program execution without
printing the STOP statement, a CALL EXIT routine should be used, (see
Section B.7).
The STOP statement causes the following output to be printed:

STOP -- text

where text is the optional text string from the source statement.

FORTRAN IV SPECIFIC CHARACTERISTICS

3.6 DEVICE/FILE DEFAULT ASSIGNMENTS

Listed in Table 3-1 are the device and filename default assignments.
The default device assignments can be changed prior to execution by
use of the monitor ASSIGN command. For example, the monitor command:

(RT-11) (RSTS/E)
.ASSIGN LP:” ASSIGN LP:7

connects logical unit 7 to a physical device, the line printer. The
device and/or filename assignments can be changed at execution time by
use of the ASSIGN system subroutine (see Section B.2). Valid 1logical
unit numbers other than those listed below (10-99) are assigned to the
system default device. The default filename conventions hold for
logical units not listed below, e.g., unit number 49 will have a
default filename of FTN49.DAT. For more information, the user can
refer to the ET-11 System Reference Manual, Section 2.7.2.4, or the
RSTS/E System User's Guide, Section 2.6.3.

Table 3-1
FORTRAN Logical Device Assignments
Logical Unit Default Device Default Filename
Number !

1 System disk, SY: FTN1.DAT
2 Default Device FTN2.DAT
3 Default Cevice FTN3.DAT
4 Default Device FTN4.DAT
5 Terminal, TT: (Input) FTN5.DAT
6 Line printer, LP: FTN6 .DAT
7 Terminal, TT: (Output) FTN7.DAT
8 High-speed paper

tape reader, PR: FTN8.DAT
9 High-speed paper

tape punch, PP: FTN9.DAT

Although any combination of valid logical unit numbers can be used,
there is an imposed maximum number of units that can be simultaneously
active. By default, six logical units can be concurrently active.
The number can be changed by use of the /N switch in the compiler

command string while compiling the main program unit (see Section
1.2.1).

A formatted READ statement of the form:
READ f,list
is equivalent to:
READ(1,f)1list
For all purposes these two forms function identically. For example,
assigning logical unit number 1 to the terminal, in both cases, causes

input to come from the terminal.

The ACCEPT, TYPE, and PRINT statements also have similar functional

FORTRAN IV SPECIFIC CHARACTERISTICS

analogies. Assigning devices to logical units §, 7, and 6 affects
respectively the ACCEPT, TYPE, and PRINT statements.

3.7 STATEMENT ORDERING RESTRICTIONS

RT-11/RSTS/E FORTRAN IV does not impose as strict statement ordering
requirements as those outlined in the PDP-11 FORTRAN Language
Reference Manual. There are only three statement ordering
requirements that must be met:

1. In a subprogram, the first non-comment line must be a
function, subroutine or block data statement.

2. The last line in a program unit must be an END statement.

3. Statement functions must be defined before they are
referenced.

However, if the statement ordering requirements as outlined in the
PDP-11 FORTRAN Language Reference Manual are not followed and if the
/W compiler switch (enable warning diagnostics) is included 1in the
compiler command string, a warning diagnostic is included with the
source listing.

3.8 MAXIMUM RECORD LENGTHS

The line buffer allocated to temporarily store I/C records is by
default 136 bytes. This restricts all I1/0 records in formatted I/0
statements and ENCODE and DECODE statements to a maximum of 136
characters. The size of this buffer, and consequently the maximum
record length, can be changed by including the /R switch in the
compiler command string while compiling the main program unit. The
maximum size of the line buffer is 4095 bytes (7777 octal).

3.9 DIRECT-ACCESS I/O

RT-11/RSTS/E FORTRAN IV allows creation and modification of
direct-access files.

3.9.1 DEFINE FILE Statement

The first parenthesized argument in a DEFINE FILE statement specifies
the length, in records, of the direct-access file being initialized.
However, if the statement is part of a file creation procedure, this
value may not be readily available. RT-11/RSTS/E FORTRAN IV allows
some extra flexibility in this situation. Under RT-11, a file 1length
specification of zero records causes a large contiguous file to be
allocated initially and the unused portion to be automatically
de-allocated when the file is closed. The "END=" construction is
particularly useful in this situation for determining the actual
length of the file.

Under RSTS/E a file length specification of zero records causes the

FORTRAN IV SPECIFIC CHARACTERISTICS

file to be extended dynamically as required by the highest record
number referenced during program execution, if the record size is an
exact multiple or divisor of 256.

3.9.2 Creating Direct-Access Files

The first I/0 operation performed on a direct-access file during file
creation must be a WRITE operation. A READ or FIND operation under
such circumstances produces a fatal error condition.

3.10 INPUT/OUTPUT FORMATS

RT-11/RSTS/E FORTRAN IV allows formatted input and output for
transferring of ASCII files. Unformatted and direct-access input and
output are available for transferring binary records.

Some run-time errors can be intercepted and control transferred to a
pre-determined program label by use of the ERR= parameter. This
parameter can be specified in the READ, WRITE, ENCODE or DECODE
statements. Note that a count n error will become fatal on the nth
occurrence of the error.

The following errors can be intercepted:

ERROR ERROR
NUMBER TYPE MESSAGE
5 Count 3 Input conversion error
23 Fatal Hardware I/0 error
45 Fatal Incompatible variable and
format
46 Fatal Infinite format loop

3.10.1 Formatted I1/0

The formatted input/output routines read or write variable-length,
formatted ASCII records. A record consists of a number of ASCII
characters, transmitted wunder <control of a format specification,
followed by a record separator character (s).

On input, the parity bit of each input character is removed, (set to
zero); only the 7-bit ASCII character is transferred. On output, the
parity bit is written as a zero.

On output to a printing device (KB:, TT:, or LP:), the record
separator appended to each record consists of a carriage return
character. The carriage return can be suppressed by use of the "§$"
format separator character in the FORMAT statement (see Chapter 5 of
the PDP-11 FORTRAN Language Reference Manual). The first character of
each record 1is deleted from the record and 1is interpreted as a
carriage control character.

FORTRAN IV SPECIFIC CHAFACTERILT -

The control characters inserted are:

FIRST CHAPACTEP OF KECORD CONTFOL “BAPACTEFS GUTBUT
‘4! Core
'b' (space) ¢re LF (iine feed)
'0' (zero) twe, LF'e
'l1' (one) cre FF (form feed)

any other character

.\
)
-

I.F

The selected control characters replace the fir-
record.

o

t character of the

On output to a non-printing device (i.e., disk Zile , eech record is
preceeded by a line feed character, and fol.owed Ly & carriage return
character. An additional line feed character i: inserted at the end
of the file when it is cloced (1f the file wae teinc created). No
translation of carriage control inforration occure, fi.e., the first
character of the record is written, as g.ven, to the file). If
translation is desired, the 'CC' argument chould ke <cpecified in an
ASSIGN or OPEN system subroutine call (see Sect:on= B.2 and B.3).

The maximum length of a formatted record fincludine ary leading or
trailing carriage control information) is deterrired by the record

buffer length, which is set by the /R switcr to tnae compiler (see
Section 1.2.1).

3.10.2 Unformatted I/0

The unformatted input/output routines read or write variable-length,
binary records with additional control and pcsitionirg information.
The control information is added to allow file rositioning through the
auxiliary I/0 statements (BACKSPACE, etc.). The internal structure of
these files is unique to FORTRAN. Therefore, if a file is to be read
or written by a program composed in another lana:age, formatted I/0
should be used to convey ASCII data and direct-access I/0 should be
used for binary data.

3.10.3 Direct-Access 1/0

The direct-access input/output routines read or wr.te fixed-length,
binary records. The logical record structure for a direct-access file
is determined by the DEFINE FILE statement. The records contain only

the specified data; no control information or record separators are
used.

The direct-access record structure is independent of the physical
block size of the I/0 device. However, more efficient operation

results if the record size is an exact divisor or rultiple of 256
words.

IOF"'RAN IV SFECIFIC CHARACTERISTICS

3.11 MIXED MCDE COMPARISONS

When comparing a ©ingle precision number to a double precision number,
the double precision number may appear to be greater than the single
precision number in magnitude even if they should be eqgual. For
example:

DOUBLE PRECISION D

A=55.1

D=55.1D0

IF(A.LT.C)STOP
In the example above A compares less than D. This is due to the fact
that 55.1 is a repeating binary fraction. Before the comparison, the
24 bit fractional (mantissa) part of A is extended with 32 zero bits.

These 1low order 32 bits are now less than the low order 32 bits of D,
and D therefore ccrpares greater than A.

CHAPTER 4

INCREASING FORTRAN IV PROGRAMMING EFFICIENCY

4.1 FACTORS AFFECTING PROGRAM EFFICIENCY

The purpose of this chapter is to provide information helpful to the
programmer who is interested in minimizing program execution time or
storage space requirements.

The relative efficiency of an RT-11/RSTS/E FORTRAN IV object program
depends on several factors. These factors fall into two classes:

1. The way in which the programmer codes the source program, and
2. the way in which the compiler treats the source program.

These two factors can be interrelated. The effectiveness of compiler
optimizations can, in some cases, be increased by certain programming
techniques in the source program. Also, awareness on the part of the
programmer of which FORTRAN constructs are handled most efficiently by
the compiler can be utilized when coding the source program.

Section 4.2 deals with the situations in which the compiler generates
the most efficient code. Section 4.3, Programming Techniques,
contains hints on improving programming efficiency.

Each topic discussed in the following section is flagged with one of
the following remarks:

(space) indicates that the primary function of the
discussion is to minimize program memory
regquirements.

(time) indicates that the primary concern is minimization
cf execution time.

A particular topic can have both designations, indicating a savings in
both space and time.

4.2 INCREASING COMPILATION EFFECTIVENESS

The following 12 programming suggestions will increase compilation
effectiveness.

l. Using the Optimizer effectively (space,time)

Avoiding certain programming constructs allows the optimizer

INCRFASING FORTRAN 1V PROGRAMMING EFF . CIENCY

arcater freedom to discover common subexpressions in source
brograms. Specifically, the following s-tuations should be
avoided:

Unnecessary statement labels (late s which are never
referenced) .

Usage of equivalenced and COMMCN variables, and
SUBROUTINE and FUNCTION dummy araurents.

. Usage of arithmetic IF statements which could be logical
IF's. For example:

IF (A - 7.0) 100,20C,100

200 CONTINUE

can be written as an eguivalent loaical IF:
IF (A .NE. 7.0) GOTO 100

and allows the label "200" to &te removed from the
program.

Fassing arguments to subprograms (space, time)

To minimize overhead in FUNCTION and SUBROUTINE calls,
parameters should be passed in COMMCN blocks rather than
standard argument lists. Variables in CCMMON are handled as
efficiently as local variables.

Minimizing the number of elements in the argument list (by
placing others in COMMON) reduces the time required to
execute the transfer of control to the called routine.

Statement functions (time)

Arithmetic and logical statement funct:.ons are implemented as
internal FUNCTION subprograms. Hence, all suggestions
concerning arqument lists apply to statement functions also.

Minimizing array vector table storage ‘space)

The RT-11/RSTS/E FORTRAN IV array vectoring feature is
designed to decrease the time required to compute the address
associated with an element of a multi-dimensional array by
precomputing certain of the multiplication operations
involved. The values precomputed are stored in a table
called the “"vector" for the particular array dimension. It
is desirable to minimize the space allocated to these
vectors.

The following steps can be taken by the programmer to reduce
the space required for array vectors:

. Specify the largest dimensions first in the statement
which allocates the array. This minimizes the number of
vector table entries. as the first dimension 1is never
vectored. For example,

INTEGER A (350,10) requires 10 words to vector

INCREASING FORTRAN IV PROGRAMMING EFFICIENCY

INTEGER A (10,350) requires 350 words to vector

The compiler computes a space tradeoff factor which
relates the number of words required for vector storage
to the number of words required to store the array. If
this tradeoff is favorable (i.e., the vector table is
small compared to the array), the array 1is vectored.
Therefore, the proper ordering of dimensions not only
saves table space for all vectored arrays, but can also
cause other arrays to be made eligible for vectoring.

Try to <eep similar arrays dimensioned in the same order.
This will cause certain arrays to share vector tables.
For example:

INTEGER A(9,4,5), B(9,4,7), C(9,8)

all share the same two vectors, one for the second array
dimension and one for the third. The vector for the
second dimension will have eight elements (@ 1 word each)
because C has the largest second dimension, 8.

Similarly, the vector for the third dimension has seven
elements.

In the general case, two arrays share a vector table for
dimension i if each dimension less than i in each array
is identical to the same dimension for the other array.
In the example given above, arrays A, B, and C share the
vecter for the second dimension because each array has a
first dimension equal to 9.

Vectoring can be disabled completely by specifying the /v
switch in the command string to the compiler. This
causes no vector tables to be generated, but the
resulting program executes slower than with vectoring.
This tradeoff can be made if array usage is not heavy in
speed-critical sections of the program, or if space is
the primary goal.

Multi-Cimensioned array usage (time)

When using multi-dimensional arrays, the number of specified
variable subscripts affects the time required to make the
array reference. Therefore, the following steps can be taken
to optimize array references:

Use arrays with as few dimensions as possible.
Use constant subscripts whenever possible. Constant

subscripts are computed during compilation and regquire no
extra operations at execution time.

Make totally constant array references wherever
appropriate. These references receive the highest level
of optimization. For example,

I =1
A(I) = 0.0

is not as efficient as

4-3

INCREASING FORTRAN IV PROGRAMMING EFFICIENCY

I =1
A(l) = 0.0

The former case requires a runtime subscript operation;
in the latter, the compiler can calculate the address of
the first element of array A at compilation time.

Formatted input/output (space,time)

RT-11/RSTS/E FORTRAN IV precompiles and compacts FORMAT
statements that are presented in the source program. This
affects the space required to store the format at runtime,

and the speed of the input/output operations which make use
of the format.

For this reason, object-time formats (i.e., those formats
that are specified in arrays rather than as FORMAT
statements) are considerably less efficient.

Data type selection (space,time)

Due to the addressing modes of the PDP-11 processors and
various optimization considerations internal to FORTRAN 1v,
more efficient code can be generated for certain data types
than for others. Specifically:

. Use the INTEGER data type wherever possible.
RT-11/RSTS/E FORTRAN IV performs extensive optimizations
on this data type.

. Use REAL*4 rather than DOUBLE PRECISION (REAL*8) wherever
possible. Single-precision operations are significantly
faster than double-precision, and storage space is saved.

. Avoid unnecessary mode-mixing. For example:
A =0.0
is preferable to
A =0
. Use two REAL*4 variables rather than a COMPLEX*8 if usage
of COMPLEX variables in the program is not heavy. REAL*4
operations receive more optimization than COMPLEX
operations.
Testing "flag" variables (space)
Wherever possible, comparisons with zero should be used.
Comparing any data type to a zero value is a special case
which requires less executable code. An example of such a
case is the following:
IF (I .LT. 1) GOTO 100

requires more code than,

IF (I .LE. 0) GOTO 100

10.

INCREASING FORTRAN IV PROGRAMMING EFFICIENCY

*2, **2 Operations (time)

Explicitly specifying *2 when doubling the value of an
expression, or **2 when squaring the value of an expression
can lead to more efficient code. For example:

A = (B + ARRAY(C)) **2
is preferable to
A = (B + ARRAY(C)) * (B + ARRAY(C))

despite the fact that (B + ARRAY(C)) is computed only once in
either case. Note that this applies only to expression
values; I**2 jis as efficient as I*I.

Assigned GOTO usage (time)

The implementation of the assigned GOTO operation in
RT-11/RSTS/E FORTRAN IV is extremely efficient in space and
time.

For instance, internal subroutines can be constructed by
assigning a “"return 1label™ to an integer variable and
executing a GOTO to the first statement in the routine. The
routine returns control to the appropriate point by doing an
assigned GOTO through the previously mentioned integer
variable. However, using this feature may make the program
difficult to debug.

The following usage of an external subroutine with no
arguments can be recoded to use assigned GOTO:

=5 SUBROUTINE SUBR
J=23)

CALL SUBR N=I*SQRT (FLOAT(J))
=18 :

J=409 RETURN

CALL SUBR

When assigned GOTO is used, the statements of the subroutine
are inserted into the body of the program and the CALL
statements are replaced by GOTO statements, as follows:

11.

INCREASING FORTRAN IV PROGRAMMING EFFICIENCY

I=5

J=23

ASSIGN 100 TO IRET !SET RETURN ADDRESS
GOTC 1000 !AND JUMP TO SUBR CODE

100 I =18

J = 409
ASSIGN 200 TO IRET !SET NEW RETURN ADDRESS
GOTO 1000

200 .

1000 . !CODE FROM SUBROUTINE SUBR

N=I*SQRT (FLOAT (J))

.

GOTO IRET !RETURN TO CALLER
Compilation switches (space)

To minimize the space required for program execution, the
following switches should be supplied to the compiler:

/S to suppress line number traceback
/v to suppress all array vectorinag

In addition, the /T (two-word integer default) switch should
not be specified unless required. The specification of the

/P (disable optimizer) switch can reduce storage
requirements, but this is not predictable from a simple
consideration of the source program. Therefore, both

settings of the /P switch should be tried tc¢ determine which
is optimal.

The /U switch should not be specified if it is not required
(i.e., no user-written interrupt or completion routines exist

INCKEASING FORTRAN IV PROGRAMMING EFFICIENCY

in the linked program) .

Also, to conserve Space at execution time, minimal values for
the /N and /R compiler switches should be specified. The /N
switch value should be the number of logical units that can
be concurrently active. The /R switch should be set to the
maximum formatted record length plus two (for the carriage
return-line feed combination which can accompany a record).

12. Compilation switches (time)

When optimizing an object pProgram for execution time, the
following ccmpiler switches should be specified:

/5 to suppress line number traceback

/5 to prevent the USR (RT-11 file service routines)
from swapping at runtime (RT-11 only; ignored
under RSTS/E)

Ir addition, since global optimization and array vectoring

Speed program execution, the following switches should not be
specified:

/P will disable global optimizer
/v will disable array vectoring

4.3 PROGRAMMING TECHNIQUES

In the following eight examples, a comparison is made between
different programming methods. These comparisons show more efficient
programming technigues available to the user. While both methods are
correct for the particular operation, the technique on the right has
been found more efficient than the technique on the left.

1. Make use of -he increment parameter in DO loops:

INEFFICIENT EFFICIENT
DIMENSION A (20) DIMENSION A (20)
DO 100 I=1,10 DO 100 1=2,20,2
A(2*I)=B A(I)=B

100 CONTINUE 100 CONTINUE

In the inefficient eéxample, an additional calculation is
performed (i.e., 2*I) each time through the loop. These
calculations are avoided in the efficient example by having
the count incremented by two.

2. Avoid placinc calculations within loops whenever possible:

INEFFICIENT EFFICIENT
DO 10 1=1,20 TEMP1=B*C
DO 20 J=1,50 DO 10 1I=1,20
20 A(J)=A(J)+I*B*C TEMP2=I*TEMP1
10 CCNTINUE DO 20 J=1,50

20 A(J)=A(J)+TEMP2
10 CONTINUE

INCREASINC FORTRAN IV PROGRAMMING EFFICIENCY

The calculation (B*C) within the 1loop of the inefficient
example 1is evaluated 1000 times. Calculations are handled
more economically when done outside the loop. In the
efficient example, 980 "FLOATS" and 1979 floating multiplies

were saved by performing the (B*C and I) calculations outside
the loop.

Proper nesting of DO loops can increase speed by minimizing
the loop initialization.

INEFFICIENT EFFICIENT
DIMENSION A (100,10) DIMENSION A(100,10)
DO 60 I=1,100 DO 60 J=1,10
DO 60 J=1,10 DO 60 I=1,100
60 A(I,J)=B 60 A(I,J)=B

In the first example, the inner DO loop is initialized 100
times, while in the efficient example it is only initialized
10 times.

The most efficient way to zero a large array, or to set each
element to some value, is to egquivalence it to a
single-dimension array. This technique is even useful for
copying large, multi-dimensional arrays.

INEFFICIENT EFFICIENT
INTEGER A (20,100) INTEGER A (20,100) ,ATEMP (2000)
DO 20 I=1,100 EQUIVALENCE (A,ATEMP)
DO 20 J=1,20 DO 20 I=1,2000
20 A(J,I)=0 20 ATEMP(I)=0

MORE EFFICIENT

INTEGER A (20,100)
REAL*8 ATEMP(500)
EQUIVALENCE (A,ATEMP)
po 20 1=1,500

20 ATEMP(I)=0.0D0

In the efficient example, an EQUIVALENCE is used to place two
arrays at the same point in memory, thus avoiding a subscript
calculation each time through the loop. The more efficient
example makes use of the 8 bytes in REAL*8 and, by
equivalencing, places 4 integers in the array and zeroes them
in one operation, thus gquartering the number of iterations.

Avoid implied data conversions by using constants of the
appropriate type.

INEFFICIENT EFFICIENT
DOUBLE PRECISION D DOUBLE PRECISION D
REAL A REAL A
4 A=A+l 4 A=A+l.
IF (A.EQ.0)GOTO 4 IF (A.EQ.0.0)GOTO 4
D=3.14159 D=3.14159C0

Since a library routine must be called to perform a data
conversion, use of the correct constant improves the size and

INCREASING FORTRAN IV PROGRAMMING EFFICIENCY

execution speed of the program.
Do as much calculation in INTEGER mode as possible.
INEFFICIENT EFFICIENT
A=B+I+J A=B+ (I+J)

Also, do as much calculation in REAL mode when the dominant
mode of an expression is DOUBLE PRECISION or COMPLEX.
Calculation is most efficient in integer mode, less efficient
in REAL mode, and least efficient in DOUBLE PRECISION or
COMPLEX. Remember, in the absence of parentheses, evaluation
generally proceeds from left to right.

Use COMMON to pass arguments and return results of
subprograms whenever possible.

INEFFICIENT EFFICIENT
COMMON/SUBRA/A,B,C,D,E
COMMON/FUNCTA/Y, 2
CALL SUBR(A,B,C,D,E) CALL SUBR
X=FUNCT (Y, 2) X=FUNCT ()
CALL SUBR(A,B,C,D,E) CALL SUBR
END END
SUBROUTINE SUBR(A,B,C,D,E) SUBROUTINE SUBR
. COMMON/SUBRA/A,B,C,D,E
END .
END
FUNCTION FUNCT(Y,2) FUNCTION FUNCT
. COMMON/FUNCTA/Y, 2
END .
END

COMMON is handled more efficiently than formal argument

lists. Generally, it is possible to use COMMON for argument

passage if a subprogram is referenced from only one place, or

if it is always referenced with the same actual arguments.
NOTE

In PDP-11 FORTRAN IV, function subprograms are not
required to have arguments.

Avoid division within programs wherever possible.
INEFFICIENT EFFICIENT
A=B/2. A= B*.,5

Multiplication is faster than division and thus saves
execution time.

4-9

CHAPTER 5

CONCISE COMMAND LANGUAGE OPTION

5.1 INTRODUCTION TO THE RSTS/E FORTRAN IV CCL OPTION

The Concise Command Language (CCL) commands provide an alternative
method for invoking RSTS/E system programs. CCL commands allow a user
to run a system program by specifying a single command for the program
to execute. The user types the CCL command and the program command on
one line and enters it to the system. The system 1loads the program
into the user's job area and writes the program command to the core
common area. This operation destroys the current contents of the
user's job area. The program runs, reads the command from the core
common area, and executes. If an error is encountered, the program
Prints a related message and terminates. CCL options are available
for the following system programs: FORTRAN, LINK, MACRO, and EXEC.

The CCL option must have been installed at the time of RSTS/E System

Generation. RSTS/E wusers should contact the system manager for the
availability of this option.

5.2 COMMAND INTERFACE

The CCL command to invoke the FORTRAN IV Compiler has the form:
FOR command line

where

command line has the form: output = input/sw
The output and input filename specifications
are described in Section 1.1.1; the compiler
switches are described in Section 1.2.1.

The command to invoke the linker, LINK, has the form:
LINK commané line

where

command 1line has the form: output = input/sw
The output and input filename specifications
and switch options are described in Section
1.3.

5-1

CONCISE COMMAND LANGUAGE OPTIOHN

The command to invoke MACRO has the form:
MACRO command line

where

command line has the form: output = 1npuz/sw
The output and input filename specifications
and switch options are described in Section
2.7 of the RSTS/E FORTRAN IV Utilities Manual
and Section 5.7 of the FT-11 System Reference
Manual.

The command to invoke EXEC has the form:
EXEC command line

where

command line has the form: filename specification/switch
The filenazme specification and switch option
are described in Sectior 1.4.2.

5.2.1 CCL Command Restrictions

Several switch options included in the LINK utility are not acceptable
to the LINK CCL command line. These switch option restrictions do not
apply to the "RUN SLINK" invocation of the linker utility but only to

one 1line of input to the LINK CCL command. The restricted switches
are the following:

/C continue input specification on multiple lines
/1 include requested library modules
/M specify stack address as global symbol
(/M:n form is acceptable)
/0 indicate overlay structure
/T specify transfer address as global symbol

(/T:n form is acceptable)

5.2.2 CCL Command Comparison

The following example illustrates the two methods available to the

user for creating a source and assembly program, as well as linking
and execution.

CONCISE COMMAND LANGUAGE OPTION

RSTS/E Command String

RUN SFORTRAN

*MAIN=MAIN,SUBR/S
Tz

READY

RUN $MACRO
*MACSUB=MACSUB
ERRORS DETECTED: 0

FREE CORE: 1024 WORDS
itz

READY

RUN SLINK

*PROG=MAIN,MACSUB/F
*47

READY

RUN SEXEC
*PROG

CCL

FOR MAIN=MAIN,SUBR/S

READY

MACRO MACSUB=MACSUB
ERRORS DETECTED:O0
FREE CORE: 1024 WORDS

READY

LINK PROG=MAIN,MACSUB/F

READY

EXEC PROG

APPENDIX A

FORTRAN DATA REPRESENTATION

A.1 INTEGER FORMAT

Sian
0=+
, Binary number
1=-|
15 14 0

Integers are stored in a two's complement representation. If the /T
compiler switch (see Section 1.2.1) is used, an integer is assigned
two words, although only the high order word (i.e., the word having
the 1lower address) is significant. By default, integers will be
assigned to a single storage word. Explicit length integer
specifications (INTEGER*2 and INTEGER*4) will always take precedence
over the setting of the /T switch. Integer constants must lie in the
range -32767 to +32767. For example:

+22
-7

000026 (octal)
177771 (octal)

A.2 FLOATING-POINT FORMATS

The exponent for both 2-word and 4-word floating-point formats is
stored in excess 128 (200(octal)) notation. Binary exponents from
-128 to +127 are represented by the binary equivalents of 0 through
255 (0 through 377 (octal)). Fractions are represented in
sign-magnitude notation with the binary radix point to the 1left.
Numbers are assumed to be normalized and, therefore, the most
significant bit is not stored because of redundancy (this 1is called
hidden bit normalization). This bit is assumed to be a 1 unless the
exponent is 0 (corresponding to 2-128) in which case it is assumed to
be 0. The value 0 is represented by two or four words of zeros. For
example, +1.0 would be represented by:

40200
0

in the 2-word forrmat, or:

029¢

O OO

FORTRAN DATA REPRESENTATION

in the 4-word format. -5 would be:

140640
0

in the 2-word format, or:
140640
0
0
0

in the 4-word format.

A.2.1 REAL Format (2-Word Floating Point)

Sign

0=+ Binary excess|[High-order
word 1: 1=-] 128 exponent [mantissa

15 14 76 0
word 2: [Low-order mantissa]

15 0

Since the high-order bit of the mantissa is always 1, it is discarded,
giving an effective precision of 24 bits (or approximately 7 digits 3f
accuracy). The magnitude range lies between approximately .29 X 10~ 8
and .17 x 1039,

A.2.2 DOUBLE PRECISION Format (4-Word Floating Point)

Sign
word 1: Binary excess |[High-order
l=-| 128 exponent |mantissa
15 14 7 6 0
word 2:
[Low=-order mantissa]
word 3: 15 0
[Lower-order mantissa |
15 0
word 4:
L;, Lowest-order mantissa l
15 0
The effective precision is 56 bits (or approximately 17 decimal digits
of39accuracy). The magnitude range lies between .29 X 10~ and .17 X
10°7,

A.2.3 COMPLEX Format

Sign
0=+ Binary excess High~order
word 1: l=-| 128 exponent mantissa
15 14 7 6 0
Real
Part

FORTRAN DATA REPRESENTATION

word 2: [Low-order mantissa]
15 0
Sign
=+ Bilnary excess High-order
word 3: l=- 128 exponent mantissa
15 14 7 6 0
Imaginary
Part
word 4: | Low-order mantissa]
15 0

A.3 LOGICAL*1 FORMAT

[Data item |
7 0

Any non-zero value is considered to have a logical wvalue of .TRUE.
The range of numbers from +127 to -128 can be represented in LOGICAL*1
format. LOGICAL*1 array elements are stored in adjacent bytes.

A.4 HOLLERITH FORMAT

word 1: [char 2 [char 1]
15 8 7 0
word 2: | char 4 | char 3 |

15 8 7 0

[_blank=40 (octal)[char n (n<255)]
15 8 7 0

Hollerith constants are stored internally, one character per byte.
Hollerith values are padded on the right with blanks to fill the
associated data item, if necessary. Hollerith constants can only be
used in DATA, FORMAT, and CALL statements. Only the quoted form of
Hollerith constants can be used in STOP and PAUSE statements.

A.5 LOGICAL FORMAT

True: 1% 8 7 P
word 1 unspecified | 377]

15 ?

word 2 | unspecified |

False: 15 8 7 P
word 1 [unspecified |]]

15 @

word 2 | unspecified]

Logical (LOGICAL*4) data items are treated as LOGICAL*]1 values for use

FORTRAN DATA REPRESENTATION

with arithmetic and logical operators.

order byte is considered to have a logica

expressions.

A.6 RADIX-50 FORMAT

Radix-50 character set

Any non-zero value in the low
1 value of true in

Character Octal Fadix-50
ASCII Equivalent Ecuivalent
space 40 0

A-Z 101-132 1-32
$ 44 33
. 56 34
unused 35
0-9 60-71 36-47

The following table

the ASCII character

X =113000
2 =002400
B=000002
X2B=115402

provides a convenient means of translating between
set and its Radix-50 equivalents.
given the ASCII string X2B, the Radix-50 equivalent is
performed in octal):

For example,
(arithmetic

Table A-1
ASCII/Radix-50 Equivalents

FORTRAN DATA REPRESENTATION

Single Char.

or Second Third
First cChar. Character Character
space 000000 space 000000 space 000000
A 003100 A 000050 A 000001
B 006200 B 000120 B 000002
C 011300 C 000170 C 000003
D 014400 D 000240 D 000004
E 017500 E 000310 E 000005
F 022600 F 000360 F 000006
G 025700 G 000430 G 000007
H 031000 H 000500 H 000010
I 034100 I 000550 I 000011
J 037200 J 000620 J 000012
K 042300 K 000670 K 000013
L 045400 L 000740 L 000014
M 050500 M 001010 M 000015
N 053600 N 001060 N 000016
O 056700 O 001130 O 000017
P 062000 P 001200 P 000020
Q 065100 Q 001250 Q 000021
R 070200 R 001320 R 000022
S 073300 S 001370 S 000023
T 076400 T 001440 T 000024
U 101500 U 001510 U 000025
V 104600 vV 001560 vV 000026
W 107700 W 001630 W 000027
x 113000 x 001700 x 000030
y 116100 y 001750 y 000031
z 121200 z 002020 z 000032
$ 124300 $ 002070 $ 000033
. 127400 . 002140 . 000034
unused 132500 unused 002210 unused 000035
0 135600 0 002260 0 000036
1 140700 1 002330 1 000037
2 144000 2 002400 2 000040
3 147100 3 002450 3 000041
4 152200 4 002520 4 000042
5 155300 5 002570 5 000043
6 160400 6 002640 6 000044
7 163500 7 002710 7 000045
8 166600 8 002760 8 000046
9 171700 9 003030 9 000047

APPENDIX B

LIBRARY SUBROUTINES

B.1 LIBRARY SUBROUTINE SUMMARY

In addition to the functions intrinsic to the FORTRAN IV system, there
are subroutines in the FORTRAN library which the user can call in the
same manner as a user-written subroutine. These subroutines are:

ASSIGN allows specification at run-time of the filename or
device and filename to be associated with a FORTRAN IV
logical unit number.

OPEN causes the specified file to be opened and associated
with a particular FORTRAN IV logical unit (RSTS/E only).

CLOSE closes the specified 1logical unit after writing any
active buffers to the file.

DATE returns a 9-byte string containing the ASCII
representation of the current date.

IDATE returns three integer values representing the current
month, day, and year.

EXIT terminates the execution of a program and returns control
to the executive.

USEREX allows specification of a routine to be invoked as part
of program termination.

RANDU, returns a pseudo random-real number with a uniform

RAN distribution between 0 and 1.

SETERR allows the user to set a count specifying the number of

times to ignore a certain error condition.

B.2 ASSIGN

The ASSIGN subroutine allows the association of device and/or filename
information with a logical unit number. The ASSIGN call, if present,
must be executed before the logical unit is opened for I/0 operations
(by READ or WRITE) for sequential-access files, or before the
associated DEFINE FILE statement for random-access files. The
assignment remains in effect until the end of the program or until the
file is closed by CALL CLOSE, and a new CALL ASSIGN performed. The
call to ASSIGN has the general form:

LIBRARY SUBROUTINES

CALL ASSIGN(n, name, icnt, mode, control, numbuf)

CALL ASSIGN requires only the first argument, all others are optional,
and if omitted, are replaced by the default values as noted in the

argument descriptions. However, if any argument is to

be

included,

all arguments that precede it must also be included.

NOTE

Under RSTS/E, any project-programmer
number or protection code information
supplied to CALL ASSIGN is ignored. If
the ability to supply such information
is desired, CALL OPEN should be used.

A description of the arguments to the ASSIGN routine follows:

name

icnt

logical unit number expressed as an integer constant or
variable.

Hollerith or literal string containing any standard
RT-11 or RSTS/E filename specification. If the device
is not specified, then the device remains unchanged
from the default assignments. If a filename is not
specified, the default names, as described in Section
3.6, are used. There are three switches which can be
included in the file specification. The switches are:

/N specifies no carriage control translation.
This switch, if present, will override the
value of the ‘'control' argument.

/C specifies carriage control translation. This
switch, if ©present, will override the value
of the 'control' argument.

/B:n specifies the number of buffers, n, to use
for 1I/0 operations. The single argument, n,
should be of value 1 or 2. This switch, if
present, will override the wvalue of the
'‘numbuf' argument. Multi-buffering is not
supported under RSTS/E.

If 'name' is simply a device specification, the device
is opened in a non-file structured manner, and the
device 1is treated in a non-file structured manner.
Indiscriminate use of this feature on directory devices
such as disk or DECtape can be dangerous (i.e., damage
the directory structure).

specifies the number of characters in the string
'name’. If ‘'icnt' 1is zero, the string ‘'name' is
processed until the first blank or null character is
encountered. If 'icnt' is negative, program execution
is temporarily suspended. A prompt character (*) is
sent to the terminal, and a filename specification,
with the same form as 'name' above, terminated by a
carriage return, is accepted from the keyboard.

LIBRARY SUBRGUTINES

mode specifies the method of opening the file on this unit.
This argument can be one of the following:

'RDO’ the file is read only. A fatal error occurs
if a FORTRAN WRITE is attempted on this unit.
If the specified file does not exist, runtime
error 28 (OPEN FAILED FOR FILE) is reported.

'NEW' a new file of the specified name is created;
this file does not become permanent until the
associated logical unit 1is <closed via the
CALL CLOSE routine or program termination.
If execution is aborted by typing CTRL C, the
file is not preserved.

'OLD! the file already exists. If the specified
file does not exist, runtime error 28 (OPEN
FAILED FOR FILE) is reported.

'SCR' the file is only to be used temporarily and
is deleted when it is closed.

If this arqument is omitted, the default is determined
by the first I/0 operation performed on that unit. If
a WRITE operation is the first I/O operation performed
on that unit, 'NEW' is assumed. If a READ operation is
first, 'OLD' is assumed.

control specifies whether carriage control translation is to
occur. This argument can be one of the following:

'NC' all characters are output exactly as
specified. The record is preceeded by a line
feed character and followed by a carriage
return character.

rcee the character in column one of all output
records is treated as a carriage control
character. (See the PDP-11 FORTRAN Language
Reference Manual.)

If not specifically changed by the CALL ASSIGN
subroutines, the terminal and line printer assume by
default 'CC', and all other devices assume 'NC'.

numbuf specifies the number of internal buffers to be used for
the 1I/0 operation. A value of 1 is appropriate under
normal circumstances. If this argument is omitted, one
internal buffer is wused. Multi-buffering 1is not
supported under RSTS/E.

B.3 OPEN (RSTS/E only)

The subroutine OPEN is an extension of the ASSIGN routine for RSTS/E.
OPEN allows a specified file to be opened and associated with a
particular FORTRAN logical unit. In the OPEN call, all arguments

(except 'n' and ‘'name') are optional and will default if not
specified.

LIBRARY SUBROUTINES

A description of the arguments to the OPEN subroutine follows:

CALL OPEN (n, name, icnt, disp, control, numbuf, iotype, p, pn, prot,

mode, cluster)

where

n

name

icnt

disp

control

is the integer specification of the logical unit to be
associated with the file.

is a variable, array, or guoted string, whose contents
specify the name (and possibly the project-programmer
number and protection code) of the file to be opened.

is an integer value which controls tre interpretation
of the 'name' argument. If icnt 1is positive, it
specifies the number of characters to be taken from the
‘name' argument as the filename string. If 'icnt' is
zero, 'name' is scanned until the first blank or null
character is encountered. If a negative value is given
for 'icnt', program execution is temporarily suspended,
a prompt character (*) is sent to the terminal, and a
filename specification, terminated by a carriage
return, is accepted from the keyboard.

is a string specification of the disposition of the
file on this unit. This argument can be one of the
following:

'RDO' the file is read only. A fatal error occurs if a
FORTRAN WRITE is attempted on this unit. The
file is assumed to have the 'OLLC' attribute.

'NEW' the file is to be created. If a file of the same
name already exists in the directory, it will be
superseded by the new file when it is closed.

'OLD' the file is assumed to exist. If the file is not
found in the specified directory, or is protected
against access by the wuser, a fatal error
results.

'SCR' the file is only to be used temporarily and will
be deleted when it is closed.

If this arqgument is not given, the default is set to
'NEW'.

is a string argument which specifies whether carriage
control translation is to occur. This argument can be
one of the following:

'NC' all characters are output exactly as specified.

'CC' the character in column one of all output records
(formatted) 1is treated as a carriage control
character (see the PDP-11 FORTRAN Language
Reference Manual.)

If not specifically changed by the OPEN routine, the
user's terminal and the line printer assume by default
'CC', and all other devices assume 'NC'.

LIBRARY SUBROUTINES

numbuf retained for arqument list compatibility with the RT-11
ASSIGN system subroutine; has no function under RSTS/E
and should be omitted.

iotype is a string argument which specifies the type 'of
input/output operations to be performed on a unit.
This argument can be one of the following:

'FOR' the unit 1is to be opened for formatted

input/output.
'UNF' the wunit is to be opened for unformatted
input/output.
'RAN' the unit 1is to be opened for random-access
input/output.
If this argument is not specified, it defaults to
'FOR'.
p is an integer value giving the default project code to

be used (in conjunction with the "pn" argument) if no
project-programmer number specification 1is found in
'name’.

pn is an integer value giving the default programmer code
to be assumed if no project-programmer specification
appears in 'name'.

prot is an integer value specifying the protection code to
be assigned by default if no protection code indication
occurs in 'name'. This argument only takes effect on
output files.

mode is an integer specification of the RSTS/E mode to be
used on opening the file (refer to the RSTS/E
Programming Manual for device-specific mode

information).

cluster is an integer specification of the cluster size to be
assigned to the file to be opened. This argument only
takes effect on output files (i.e., files with the
'NEW' or 'SCR' attribute).

B.4 CLOSE

The CLOSE routine is used to explicitly close any file open on the
specified 1logical unit. If the file was open for output, any
partially filled buffers are written to the file before closing it.
After the execution of CALL CLOSE, any buffers associated with the
logical unit are freed for reuse and all information supplied in any
previous CALL ASSIGN for the logical unit is deleted. The logical
unit is thus free to be associated with another file.

An implicit CLOSE operation is performed on all open logical units
when a program terminates (due to a fatal error condition, or the
execution of STOP or CALL EXIT).

The format of the call is:

CALL CLOSE (ilun)

LIBRARY SUBROUTINES

where ilun is an integer constant, variable, array element, or
expression specifying the logical unit to be closed.

B.5 DATE

The DATE subroutine can be used in a FORTRAN program to obtain the

current date as set within the system. The DATE subroutine is called
as follows:

CALL DATE (array)

where array is a predefined array able to contain a 9-byte string.
The array specification in the call can be expressed as the array name
alone:

CALL DATE (a)

in which the first three elements of the real array a are used to hold
the date string, or:

CALL DATE (a(i))

which causes the 9-byte string to begin at the i(th) element of the
array a.

The date is returned as a 9-byte (9-character) string in the form:
dd-mmm-yy
where:

dd is the 2-digit date

mmm is the 3-letter month specification

YY is the last two digits of the year
For example:

25-DEC-76

B.6 IDATE

IDATE returns three integer values representing the current month,
day, and year. The call has the form:

CALL IDATE (i,]j,k)

If the current date were March 19, 1976 the values of the integer
variables upon return would be:

i=3
j = 19
k = 76

LIBRARY SUBROUTINES

A call to the EXIT suosroutine, in the form:
CALL EXIT

is equivalent to the STOP statement. It causes program termination,
closes all files, and returns to the monitor.

B.8 USEREX

USEREX is a subroutine which allows specification of a routine to
which control 1is passed as part of program termination. This allows
disabling of interrupts enabled in non-FORTRAN routines. If these
interrupts are not disabled prior to program exit the integrity of the

operating system cannot be assured. The form of the subroutine call
is:

CALL USEREX (name)

where 'name' is the routine to which control is passed and should
appear in an EXTERNAL statement somewhere in the program unit.
Control is transferred with a JMP instruction after all procedures
required for FORTRAN IV program termination have been completed. The
transfer of control takes place instead of the normal return to the
monitor. Thus, i1f the user desires to have control passed back to the

monitor, the routine specified by USEREX must perform the proper exit
procedures.

B.9 RANDU,RAN

The random number generator can be called as a subroutine, RANDU, or

as an intrinsic function, RAN. The subroutine call is performed as
follows:

CALL RANDU (i(1l) ,i(2) ,x)

where i(l) and i(2) are previously defined integer variables and x is
the real variable name, in which a random number between 0 and 1 is
returned. 1i(l) and i(2) should be initially set to 0. i(l) and 1i(2)
are updated to a new generator base during each call. Resetting i(1)
and i(2) to 0 repeats the random number sequence. The values of i(l)
and i(2) have a special form; only 0 or saved values of i(l) and i (2)
should be stored in these variables.

Use of the random number subroutines is similar to the use of the RAN
function where:

Xx=RAN (i (1) ,1(2))

is the functional form of the random number generator.

LIBRARY SUBROUTINES

B.10 SETERR

SETERR allows the user to specify the disposition of certain OTS
detected error conditions. Only OTS error diagnostics 1 - 16 should
be changed from their default error classificaticn (see Section C.2).
If errors 0 or 20 - 63 are changed from the default classification of

FATAL, execution continues but in an undetermined state. The form of
the call is:

CALL SETERR (number,ncount)
where 'number' is an integer variable or expression specifying the OTS

error number (see Section C.2), and 'ncount' is an 1integer variable or
expression with one of the following values:

Value Meaning

0 Ignore all occurrences after logging them on the user
terminal.

1 First occurrence of the error will be fatal.

2-127 The nth occurrence of the error will be fatal; the
first n-1 occurrences will be logaed on the user
terminal.

255 Ignore all occurrences of the error.

APPENDIX C

FORTRAN IV ERROR DIAGNOSTICS

C.1 COMPILER ERROR DIAGNOSTICS

The FORTRAN IV Compiler, while reading and processing the FORTRAN
source program, can detect syntax errors (or errors in general form)
such as unmatched parentheses, illegal characters, unrecognizable key
words, missing or illegal statement parameters.

The error diagnostics are generally clear in specifying the exact
nature of the error. In most cases, a check of the general form of
the statement in question as described in the PDP-11 FORTRAN Language
Reference Manual will help determine the location of the error.

Some of the most cormon causes of syntax errors, however, are typing
mistakes. A typing mistake can sometimes cause the compiler to give
very misleading error diagnostics. The user should note, and take
care to avoid, the following common typing mistakes:

l. Missing commas or parentheses in a complicated expression or
FORMAT statement.

2. Misspelling of particular instances of variable names. If
the compiler does not detect this error (it usually cannot),
execution may also be affected.

3. An inadvertent line continuation signal on the line following
the statement in error.

4. 1If the user terminal does not clearly differentiate between 0
(zero) and the letter O, what appear to be identical
spellings of variable names may not appear so to the
compiler, and what appears to be a constant expression may
not appear so to the compiler.

If any error or warning conditions are detected in a compilation, the
following message is printed on the initiating terminal:

[name] ERRORS: n, WARNINGS: m

where:

[name] is the 6-character name of the program unit being
compiled; .MAIN. indicates the main program or the
program unit name as specified in the SUBROUTINE
FUNCTION or PROGRAM statement.

n represents the number of error-class messages (i.e.,

FORTRAN IV ERROR DIAGNOSTICS

those messages that cause the staterent in guestion to
be deleted).

m represents the number of warning-class messages (i.e.,
those messages indicating conditions that can be
ignored or corrected, such as missing END statements or
questionable programming practices . Note that some
warning conditions will only be detected if the /W
switch is specified, (see Section C.l.3.).

The next three sections describe the initial phase and secondary phase
error diagnostics and the fatal FORTRAN IV Compiler error diagnostics.

The following is an example of a FORTRAN IV prograr with diagnostics
issued by the compiler.

FORTRAN IV Vvo1C-01 THU 13-NOV-75 16:24:16 PAGE 001
0001 DOUBLE PRECISION DBLEsy DELE2

0002 DATA INT/100/s DBLE/S00/

0003 DELE2 = INT/2 + S. + DELE

0004 WRITE»(6910) DBLE,DERLEZ2

0005 10 FORMAT (1X92F12,6)
0006 10 STOF

KKKKK M

0007 INTEGER INT
0008 END

FORTRAN IV DIAGNOSTICS

IN LINE 0002 MSG #0346 MODES OF VARIABLE *DELE" ANDI DATA ITEM DIFFER
IN LINE 0004 MSG #050 SYNTAX ERKROR

I WARNING 1 MSG $095 NON--STANDARD! STATEMENT ORDERING

FORTRAN IV STORAGE MAF
NAME OFFSET ATTRIBUTES

IRLE 000010 KREALXS VARIAELE

DELE2 000026 REALXH VARIARLE
INT 000006 INTEGER%X2 VARIAELE

FORTRAN IV ERROR DIAGNOSTICS

C.1.1 Errors Reported By The Initial Phase Of The Compiler

Some of the easily recognizable FORTRAN syntax errors are detected by
the initial phase of the compiler. Errors that cause the statement in
question to be aborted are tabulated in the ERROR count, whereas those
that are correctable by the compiler are counted as WARNINGS.

The error diagnostics are printed after the source statement to which
they apply (the L error diagnostic is an exception). The general form
of the diagnostic is as follows:

* Kk k k k c

Where c is a code letter whose meaning is described below:

Code Letter

B

INITIAL PHASE ERROR DIAGNOSTICS

Description

Columns 1-5 of a continuation line are not blank.
Columns 1-5 of a continuation line must be blank
except for a possible 'D' in column 1; the
columns are ignored (WARNING).

Illegal continuation. Comments cannot be
continued and the first line of any program unit
cannot be a continuation line. If a line consists
only of a carriage return-line feed combination,
then it is considered to be a blank line. If it
has a 1label field then it must have a statement
field. The line is ignored (WARNING).

Missing END statement. An END statement is
supplied by the compiler if end-of-file is
encountered (WARNING).

Hollerith string or quoted 1literal string is
longer than 255 characters or longer than the
remainder of the statement; the statement is
aborted.

Non-FORTRAN character used. The line contains a
character that is not in the FORTRAN character set
and is not used in a Hollerith string or comment
line. The character is ignored (WARNING).

Illegal statement 1label definition. Illegal
(non-numeric) character in statement label; the
illegal statement label is ignored (WARNING).

Line too long to print. There are more than 80
characters (including spaces and tabs) in a line.
Note: this diagnostic is issued preceding the
line containing too many characters. The line is
truncated to 80 characters (WARNING).

Multiply defined 1label. The 1label 1is ignored
(WARNING) .

FORTRAN IV ERROR DIAGNOSTICS

Code Letter Description

P Statement contains unbalanced parentheses. The
statement is aborted.

S Syntax error. Multiple equal signs, etc. The
statement is not of the gereral FORTRAN statement
form; the statement is aborted.

U Statement could not be icentified as a legal
FORTRAN statement. The statement is aborted.

C.1.2 Errors Reported By Secondary Phases Of Tre Compiler

Those compiler error diagnostics not reported by tne initial phase of
the compiler appear immediately after the source 1listing and
immediately before the storage map. Since the diagnostics appear
after the entire source program has been listed, they must designate
the statement to which they apply by using the internal sequence
numbers assigned by the compiler.

The general form of the diagnostic is:
IN LINE nnnn MSG#m text

Where nnnn is the internal sequence number of the statement in

question, m specifies an internal error number, and text is a short
description of the error.

Below, listed alphabetically, are the error <ciagnostics. Included
with each diagnostic is a brief explanation. Refer to the PDP-11

FORTRAN Language Reference Manual for informaticn to help correct the
error.

The notation **** gsjgnifies that a particular variable name or
statement label appears at that place in the text.

SECONDARY PHASE ERROR DIAGNOSTICS

ADJUSTABLE DIMENSIONS ILLEGAL FOR ARRAY **#*x
An adjustable array was not a dummy argument in a
subprogram or the adjustable dimensions were not
integer dummy arguments in the stbprogram. A dimension
of one is used. Correct the source program.

ARRAY EXCEEDS MAXIMUM SIZE or

ARRAY **** EXCEEDS MAXIMUM SIZE
The storage required for a single array or for all
arrays 1in total is more than is physically addressable
(>32K words). This particular error may reference
either the actual statement containing the array in
question, or the first statement in the program unit.
Correct the statement in errcr or reduce the space
necessary for array storage.

ARRAY **** HAS TOO MANY DIMENSIONS
An array has more than seven dimensions. Correct the
program. The 1legal range for dimensions is one to
seven.

FORTRAN IV ERROR DIAGNOSTICS

ATTEMPT TO EXTEND COMMON BACKWARDS
While attempting to EQUIVALENCE arrays in COMMON, an
attempt was made to extend COMMON past the recognized

beginning of COMMON storage. Correct the program
logic.

COMMON BLOCK EXCEEDS MAXIMUM SIZE
An attempt was made to allocate more space to COMMON
than 1is physically addressable (>32k words). Correct
the statement in error.

CONSTANT IN FORMAT STATEMENT NOT IN RANGE
An integer constant in a FORMAT statement was not 1in
the proper range. Check that all integer constants are
within the legal range (1 to 255).

DANGLING OPERATCR

An operator (+,-,*,/, etc.) 1is missing an operand.
Example: 1I=J+. Correct the statement in error.

DEFECTIVE DOTTELC KEYWORD
A dotted relational operator was not recognized or
there is a possible misuse of decimal point. Check the
format for relational operators; correct the statement
in error.

DO TERMINATOR **** PRECEDES DO STATEMENT
The statement specified as the terminator of a DO 1loop

did not appear after the DO statement. Correct the
program logic.

EXPECTING LEFT FARENTHESIS AFTER ***x
An array name or function name reference 1is not
followed by a left parenthesis. Correct the statement
so that the left parenthesis is included.

EXTRA CHARACTERS AT END OF STATEMENT
All the necessary information for a syntactically
correct FORTRAN statement has been found on this line,
but more information exists. Check that a comma is not
missing from the 1line or that an unintentional
continuation signal does not appear on the next line.

FLOATING CONSTANT NOT IN RANGE

A floating constant in an expression is too close to
zero to be represented 1in the internal format. Use
zero if possible.

ILLEGAL ADJACENT OPERATOR

Two operators (*,/, 1logical operators, etc.) are
illegally placed next to each other. Example: I/*J.
Correct the statement in error.

ILLEGAL DO TERMINATOR ORDERING AT LABEL ***#

DO loops are nested improperly. Verify that the range

of each DO loop lies completely within the range of the
next outer loop.

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

INTEGER

INVALID

INVALID

INVALID

INVALID

INVALID

FORTRAN IV ERROR DIAGNOSTICS

DO TERMINATOR STATEMENT ***x
A DO statement terminator was not val.d. Verify that
the DO statement terminator is not a GGTG, arithmetic
IF, RETURN, another DO statement, or logical IF
containing one of these statementc.

ELEMENT IN I/O LIST
An item, expression, or implied DO specifier in an 1/0
list is of illegal syntax. Correct the 1/0 list.

STATEMENT IN BLOCK DATA
An illegal statement was found :n a BLOCK DATA
subprogram. Verify that a FORMAT or executable
statement does not occur in a BLOCK DATA subprogram.

STATEMENT ON LOGICAL IF
The statement contained in a logical IF was not valid.

Verify that the statement is not another logical IF or
DO statement.

TYPE FOR OPERATOR
An illegal wvariable type has been used with an
exponentiation or 1logical operator. Check that the
variable type is valid for the operation in guestion.

USAGE OF OR MISSING LEFT PARENTHESIS
A left parenthesis was required but not found, or a
variable reference or constant is illegally followed by
a left parenthesis. Correct the format of the
statement in error.

OVERFLOW
An integer constant or expression value is outside the
range -32767 to +32767. Correct the value of the
integer constant or expression so that it falls within
the legal range (-32767 to +32767).

COMPLEX CONSTANT

A complex constant has been improperly formed. Correct
the statement in error.

DIMENSIONS FOR ARRAY **#*x*
An attempt was made, while dimensionirg an array, to
explicitly specify zero as one of the dimensions.
Verify that zero is not used as a dimension.

EQUIVALENCE
An 1illegal EQUIVALENCE, or EQUIVALENCE that is
contradictory to a previous EQUIVALENCE, was
encountered. Correct the program logic.

FORMAT SPECIFIER

A format specifier was 1illegally used. Correct the
statement so that the format specifier is the label of
a FORMAT statement or an array name.

IMPLICIT RANGE SPECIFIER
An illegal implicit range specifier, (i.e.,
non-alphabetic specifier, or specifier range in reverse
alphabetic order), was encountered. Verify that the
implicit range specifier indicates alphabetic
characters in alphabetic order.

INVALID

INVALID

INVALID

INVALID

INVALID

INVALID

INVALID

INVALID

INVALID

INVALID

INVALID

FORTRAN IV ERROR DIAGNOSTICS

LCGG1CAL INIT
A logical unit reference was incorrect. Correct the
logical wunit reference so that it is an integer
variable or constant in the range 1 to 99.

OCTAL CONSTANT
An octal constant is too large or contains a digit
other than 0-7. Correct the constant so that it
contains only legal digits that fall within the octal
range 0 to 177777.

OPTIONAL LENGTH SPECIFIER
A data type declaration optional 1length specifier is
illegal. For example, REAL*4 and REAL*8 are legal, but
REAL*6 is not. Correct the statement so that it
contains only a valid data type declaration length.

RADIX~-50 CONSTANT
An illegal <character was detected in a RADIX-50
constant. Verify that only characters from the
RADIX-50 character set are used in a RADIX-50 constant.

RECORD FORMAT
The third parenthetical argument 1in a DEFINE FILE
statement was not the single character U. Correct the
DEFINE FILE statement.

STATEMENT LABEL REFERENCE

Reference has been made to a statement number that is
of illegal construction. For example, GOTO 999999 is
illegal since the statement number is too long. Check
that the statement number consists of one to five
decimal digits placed in the first five columns of a
statement's initial 1line and that it does not contain
only zeroes.

SUBROUTINE OR FUNCTION NAME
A name used in a CALL statement or function reference
is not wvalid. For example, use of an array name in a
CALL statement routine name reference 1is 1illegal.
Verify that the name specified 1in the statement is
spelled correctly.

TARGET FOR ASSIGNMENT
The left side of an arithmetic assignment statement is

not a variable name or array element reference.
Correct the statement in error.

TYPE SPECIFIER

An unrecognizable data type was used. Verify that the
data type indicated is valid.

USAGE OF SUBROUTINE OR FUNCTION NAME
A function name appeared in a DIMENSION, COMMON, DATA,

or EQUIVALENCE or data type declaration statement.
Correct the statement in error.

VARIABLE NAME
A variable name contains an illeqgal character, is
missing, or does not begin with an alphabetic
character. Correct the statement in error.

FORTRAN IV ERROR DIAGNOSTICS

LABEL ON DECLARATIVE STATEMENT

MISSING

MISSING

MISSING

MISSING

MISSING

MISSING

MISSING

MISSING

A label was found on a declarative statement. Correct
the program so that declarative statements do not have
labels.

ASSIGNMENT CPERATOR
The first operator seen in an arithmetic assignment
statement was not an egual <sign (=). For example,
I+J=K. Correct the arithmetic assignment statement in
error.

COMMA
The comma delimiter was expected but not found.
Correct the format of the statement in error.

DELIMITER IN EXPRESSION

Two operands have been placed next to each other in an
expression with no operator between them. Correct the
statement in error.

LABEL
A statement label was expected but not found. For
example, ASSIGN J TO I is illegal; a valid statement
label reference should precede 'TC' but does not.
Verify that the reference preceding 'TO' is a valid
statement label of an executable statement in the same
program unit as the ASSIGN statement.

RIGHT PARENTHESIS

A right parenthesis was expected but not found. For
example, READ(5,100,) is illegal; the first non-blank
character after the format reference should be a right
parenthesis but is not. Correct the format of the
statement in error.

QUOTATION MARK
In a FIND statement, the logical unit number and record
number were not separated by a single guotation mark.
Correct the statement in error.

VARIABLE
A variable was expected, but not found. For example,
ASSIGN 100 TO 1 is illegal; a variable name should
follow the 'TO' but does not. Verify that the
reference following 'TO' is a valid integer variable
name.

VARIABLE OR CONSTANT

An operand (variable or constant) was expected but a
delimiter (comma, parenthesis, etc.) was found. For
example, WRITE() is 1illegal; & unit number should
follow the open parenthesis, but a delimiter (close
parenthesis) is encountered instead. Correct the
format of the statement in error.

MODES OF VARIABLE **** AND DATA ITEM DIFFEF

The data type of each variable ard its associated data
list item must agree in a DATA statement. Correct the
format of the items in the DATA statement.

FORTRAN IV ERROR DIACNOSTICS

MULTIPLE DECLARATION FOR VARIABLE ****
A variable appeared in more than one data type
declaration statement or dimensioning statement.
Subsequent declarations are ignored. Correct the
program logic.

NUMBER IN FORMAT STATEMENT NOT IN RANGE
An integer constant in a FORMAT statement is greater
than 255 or is zero. Correct the statement so that the
integer constant falls within the legal range (one to
255).

PARENTHESES NESTED TOO DEEPLY
Group repeats in a FORMAT statement have been nested

too ceeply. Limit group repeats to eight levels of
nestirg.

P-SCALE FACTOR NOT IN RANGE -127 TO +127
P-scale factors were not in the range =-127 to +127.
Correct the statement in error.

REFERENCE TO INCORRECT TYPE OF LABEL *#***
A statement label reference that should be a label on a
FORMAT statement is not such a label, or a statement
label reference that should be a label on an executable
statement is not such a label. Correct the program
logic.

REFERENCE TO UNDEFINED STATEMENT LABEL
A reference has been made to a statement label that has

not been defined anywhere in the program unit. Correct
the program logic.

STATEMENT MUST BE UNLABELED
A DATA, SUBROUTINE, FUNCTION, BLOCK DATA, arithmetic
statement function definition, or declarative statement
was labeled. Correct the statement in error.

STATEMENT TOO COMPLEX
An arithmetic statement function has more than ten
dummy arguments or the statement is too long to
compile. Verify that the number of dummy arguments in
an arithmetic statement does not exceed ten; break
lona statements into two or more smaller statements.

SUBROUTINE OR FUNCTION STATEMENT MUST BE FIRST
A SUBROUTINE, FUNCTION or BLOCK DATA statement is not
the first statement in a program unit. Ensure that, if

present, these statements appear first in a program
unit.

SUBSCRIPT OF ARRAY ***x* NOT IN RANGE
Array subscripts that are constants or constant
expressions are found to be outside the bounds of the
array's dimensions. The operation in question is
aborted. Correct the program.

FORTRAN IV ERKOR DIAGHNOSTICS

SYNTAX ERROR
The general form of the <statercnt wo.. not formatted
correctly. Check the general formis of trne ztatement
in error and correct the program.

SYNTAX ERROR IN INTEGER OR FLOATING CONSTANLT
An integer or floating constant he&s teen incorrectly
formed. For example, 1.23.4 1i:c an illeqal floating
constant because it contains twn decimal points.
Correct the format of the integer or tloating constant
in guestion.

UNLABELED FORMAT STATEMENT

A FORMAT statement was not labeled. Correct the FORMAT
statement in error by assigning it “~e proper label.

USAGE OF VARIABLE **** INVALID
An attempt was made to EATERNAL a corron variable, an
array variable, or a dummy argument. Or an attempt was
made to place in COMMON a dummy argumrent or external
name. Correct the program logic.

VALUE OF CONSTANT NOT IN RANGE
An integer constant in the designated source program
line exceeds the maximum unsigned wvalue (65535). This
error is also printed if an irvalid dimension is
specified for an array or if the exponent of a floating
point constant is too large. Correct the statement in
error.

VARIABLE **** INVALID IN ADJUSTABLE DIMENSICN
A variable used as an adjustable dimension was not an
integer dummy argument in the subprogram unit. Correct
the program.

WRONG NUMBER OF SUBSCRIPTS FOR ARRAY **x*

An array reference does not have the same number of
subscripts as specified when the array was dimensioned.
Correct the statement in error.

C.1.3 Warning Diagnostics

Warning diagnostics report conditions which are not true error
conditions, but which can be potentially dangercus at execution time,
or can present compatibility problems with FORTRAN compilers running
on other DEC operating systems. The warning diagnostics are normally
suppressed, but can be enabled by use of the /W compiler switch. The
form and placement of the warning diagnostics are the same as those
for the secondary phase error diagnostics (see Section C.1.2) except
that the 1line number reference 1is replaced with '[WARNING]'. A
listing of the warning diagnostics follows:

ADJUSTABLE DIMENSIONS ILLEGAL FOR ARRAY ***%*
Adjustable arrays must be parameter arrays in a
subprogram, and the adjustable dimensions must be
integer dummy arguments in the subprogram. Any
variation from this rule will cause a dimension of 1 to
be used and this warning message to be issued.

FPORTKAN 1V ERRCR DIAGNOSTICS

NON-STANDARL STATEMENT ORDERING
Although the FORTRAN IV Compiler has less-restrictive
statement ordering requirements than those outlined in
Chapter 7 of the PDP-11 FORTRAN Language Reference
Manual, non-adherence to the stricter requirements may
cause error conditions on other FORTRAN compilers. See
Section 3.7 of this document.

VARIABLE **** IS5 NOT WORD ALIGNED
Flacing a non-LOGICAL*1 variable or array after a
LOGICAL*1 wvariable or array in COMMON or equivalencing
non-LOGICAL*1 variables or arrays to LOGICAL*1
variables or arrays can cause this condition. An

attempt to reference the variable at runtime will cause
an error condition.

VARIABLE **** NAME EXCEEDS SIX CHARACTERS
A variable name of more than six characters was
specified. The first six characters were used as the
true variable name. Other FORTRAN compilers may treat

this as an error condition. See Section 3.2 of this
document.

C.1.4 Fatal Compiler Error Diagnostics

Listed below are the fatal compiler error diagnostics. These
diagnostics, which are sent directly to the initiating terminal,
report hardware error conditions, conditions which may reguire

rewriting of the source program, and compiler errors which may reguire

attention from your Software Support Representative. The form of the
diagnostic is:

FATAL ERRCR n

where n is an error code having one of the following values:

FORTRAN IV ERROR DIAGNOSTICS

Code Meaning
C Constant subscript overflow. Too many constant

subscripts have been employed in a statement. Simplify
the statement

0 Unrecoverable error occurred while the compiler was
writing the object file (.OBJ). Possibly, insufficient
output file space. Rectify hardware problem, or make
more space available for output by deleting unnecessary
files.

P Optimizer push down overflow - statement too complex,
or too many common subexpressions occurred in one basic
block of a program. Simplify complex statements.

R Unrecoverable hardware error occurred while the
compiler was reading source file. Rectify hardware
problem.

S Subexpression stack overflow - statement too complex.

An attempt was made to compile a statement which would
overflow the runtime stack at execution time. Simplify
complex statements.

T Core Overflow. Break up program into subprograms or
compile on a larger machine.

W Unrecoverable error occurred while the compiler was
writing listing file. Possibly, listing file space is
not large enough. Rectify hardware problem, or make
more space available for 1list:ng file by deleting
unnecessary files.

Y Code generation stack overflow - statement too complex.
Simplify complex statements.

2z Compiler error - Report this error to the local
Software Performance Report (SPR) Center listed in the
DIGITAL SOFTWARE NEWS. Use an SPR form to report the
error and include a program listing (made with the
/L:ALL option, see Section 1.2.1) and a machine
readable source program, if possible.

C.2 OBJECT TIME SYSTEM ERROR DIAGNOSTICS

The Object Time System detects certain 1I/0, arithmetic, and system
failure error conditions and reports them on the user terminal. These
error diagnostics are printed in either a long or short form.
The short form of the message appears as:

?ERR nn
where nn is a decimal error identification number.

The long form of the message appears as:

?ERR nn text

FIRTRAN IV ERROR DIAGNOSTICS
where nn is a decimrai error identification number and text is a short
error descriptiorn.
The default messauc “orm is long. The short message error module can
be linked to ‘the program by using the /I linker switch. The module
named $SHORT should be included from the FORTRAN library.

There are four ciasses of OTS error conditions. Each error condition

is assigned to one of these <classes. An error condition
classification for the error codes 1-16 can be changed by using the
system subroutine SETERR. (See Section B.10). Error codes 0 and

20-63 should not be changed from their FATAL classification or
indeterminable results will occur. The classifications are:

IGNORE the error is detected but no error message is sent
to the terminal. Execution continues.

WARNING the error message is sent to the terminal and
execution continues.

FATAL the error message is sent to the terminal and
execution is terminated.

COUNT:n the error message is sent to the terminal and
execution continues until the nth occurrence of
the error, at which time the error will be treated
as FATAL.

If a program is terminated by a fatal error condition, active files
are not closed. Under RT-11, when control is returned to the Monitor,
a CLOSE command car be given to close all active files, although some
of the output to these active files may have been lost.

The OTS error diagrostics are listed below along with the error type
and a brief explanation, where necessary.

Error Error Message
number type
0 FATAL NON-FORTRAN ERROR CALL

Tnis message indicates an error condition (not
internal to the FORTRAN run-time system) that may
have been caused by one of four situations:

(RT-11 only)

1. A foreground job wusing SYSLIB completion
routines was not allocated enough space (using
the FRUN /N switch) for the initial call to a
completion routine.

Check Appendix G (Section G.l) and Appendix O
(Section 0.1.4) of the RT-11 System Reference
Manual for the formula used to allocate more
space.

Error Error
number type
1 FATAL
2 FATAL
3 FATAL
4 WARNING
5 COUNT:3

FORTRAN IV ERROR DIAGNOSTICS

Message

(RT-11 only)
2. There was not sufficieat Temory for the
background job.

Make more memory available by unloading
unnecessary handlers, deletirg unwanted files,
compressing the device.

(RT-11 only)

3. Under the single-job ronitor, a SYSLIB
completion routine interrupted another
completion routine.

Use the F/B Monitor to allcw more than one
active completion routine.

4. An assembly language module linked with a
FORTRAN program issued a TRAP instruction with
an error code that was not recognized by the
FORTRAN error handler.

Check the program logic.

INTEGER OVERFLOW

During an integer multiplication, division, or
exponentiation operation, the value of the result
exceeded 32767 in magnitude.

Correct the program logic.

INTEGER ZERO DIVIDE
During an integer mode arithmetic operation, an
attempt was made to divide by zero.

Correct the program logic.

COMPILER DETECTED ERROR

An attempt was made to execute a FORTRAN statement
in which the compiler had previously detected
errors.

Consult the program 1listing generated by the
compiler (if one was requested) and correct the
program for the errors detected at compile time.

COMPUTED GOTO OUT OF RANGE

The value of the integer variable or expression in
a computed GOTO statement was less than 1 or
greater than the number of statement label
references in the 1list.

Control 1is passed to the next executable
statement. Examine the source program and correct
the program logic.

INPUT CONVERSION ERROR
During a formatted input operation, an illegal
character was detected in an input field.

A value of zero is returned. Examine the input
data and correct the invalid record.

C-14

Error Error

number type
6 IGNORE
10 COUNT: 3
11 IGNORE
12 FATAL
13 COUNT: 3
14 FATAL
15 FATAL

FEORTRAN IV ERROR DIAGNOSTICS

Message

OUTPUT CONVERSION ERROR

During a formatted output operation, the value of
a particular number could not be output in the
specified field length without loss of significant
digits.

The field is filled with asterisks ('*'). Correct
the FORMAT statement to allow a greater field
length.

FLOATING OVERFLOW .

Puring an arithmetic operation, the absolute value
of a floating-point expression exceeded the
largest representable real number.

A value of zero is returned. Correct the program
logic.

FLOATING UNDERFLOW

During an arithmetic operation, the absolute value
of a floating-point expression became less than
the smallest representable real number.

The real number is replaced with a value of zero.
Correct the program logic.

FLOATING ZERO DIVIDE
During a REAL mode arithmetic operation an attempt
was made to divide by zero.

The result of the operation 1is set to zero.
Correct the program logic.

SQRT OF NEGATIVE NUMBER
An attempt was made to take the square root of a
negative number.

The result 1is replaced by =zero. Correct the
program logic.

UNDEFINED EXPONENTIATION OPERATION

An attempt was made to perform an illegal
exponentiation operation. (For example -3.**.5 is
illegal because the result would be an imaginary
number.)

The result of the operation 1is set to zero.
Correct the program logic.

LOG OF NEGATIVE NUMBER

An attempt was made to take the 1logarithm of a
negative number or zero.

The result of the operation is set to zero.
Correct the program logic.

Error

number

16

Error

type

FATAL

FORTRAN IV ERROR DIAGNOSTICS

Messigg

WRONG NUMBER OF ARGUMENTS

One of the FORTRAN Library functions, or one of
the system subroutines which checks for such an
occurrence, was called with 3n imrproper number of
arguments.

Check the format of the particular library
function or system subrou-ine call, and correct
the call.

The following error diagnostics should not be changed from the FATAL
classification by use of the system subroutine SETERR:

20

21

22

23

24

FATAL

FATAL

FATAL

FATAL

FATAL

INVALID LOGICAL UNIT NUMBER
An illegal logical unit number was specified in an
I/0 statement.

A logical unit number must be an integer within
the range 1 to 99. Correct the statement in
error.

OUT OF AVAILABLE LOGICAL UNITS
An attempt was made to have too many logical units
simultaneously open for I/0.

The maximum number of active logical units is six
by default. To increase the maximum, recompile
the main program using the /N switch to specify a
larger number of available channels.

INPUT RECORD TOO LONG

During an input operaticn, a record was
encountered that was longer than the maximum
record length.

The default maximum record length is 136 (decimal)
bytes. To 1increase the rwaximum, recompile the
main program using the /R switch to specify a
larger run-time record buffer (the legal range is
4 to 4095).

HARDWARE I/0 ERROR
A hardware error was detected during an 1I/0
operation.

Check the volume for an off-line or write-locked
condition, and retry the operation. Try another
unit or drive if possible, or use another device.

ATTEMPT TO READ/WRITE PAST END OF FILE

During a sequential read operatior, an attempt was
made to read beyond the last record of the file.
During a random-access read, this message
indicates that an attempt was made to reference a
record number that was not within the bounds of
the file.

Error Error

number type
25 FATAL
26 FATAL
27 FATAL
28 FATAL
29 FATAL

FORTRAN IV ERROR DIAGNOSTICS

Message

Use the "END=" parameter to detect this condition,
or correct the program logic so that no request is
rade for a record outside the bounds of the file.

Curing a WRITE operation, this message indicates
that the space available for the file is
insufficient.

(RT-11 action)

Try to make more file space available by deleting
unnecessary files and compressing the device, or
ty using another device.

(RSTS/E action)

This condition is equivalent to the "NO ROOM FOR
USER ON DEVICE"™ system error. Make more space
available by deleting files from the current
account, or use another device.

ATTEMPT TO READ AFTER WRITE

An attempt was made to read after writing on a
sequential file located on a file-structured
device.

A write operation must be followed by a REWIND or
BACKSPACE before a read operation can be
rerformed. Correct the program logic.

RECURSIVE I/0 NOT ALLOWED

An expression in the I/0 list of a WRITE statement
caused initiation of another READ or WRITE
cperation. (This can happen if a FUNCTION that
performs I/0 is referenced within an expression in
an I/O list.)

Correct the program logic.

ATTEMPT TO USE DEVICE NOT IN SYSTEM
An attempt was made to access a device that was
not legal for the system in use.

Use the system ASSIGN command to create the
required logical device name, or change the
statement in error.

CPEN FAILED FOR FILE
The file specified was not found, or there was no
room on the device.

Verify that the file exists as specified. Delete
unnecessary files from the device, or use another
device.

NO ROOM FOR DEVICE HANDLER (RT-11 only)
There was not enough free memory left to
accommodate a specific device handler.

Move the file to the system device or to a device
whose handler 1is resident. Make more memory
available by unloading unnecessary handlers,
unloading the foreground job, using the single-job
Monitor, or SET USR SWAP, if possible.

c-17

Error Error

number type
30 FATAL
31 FATAL
32 FATAL
33 FATAL
34 FATAL
35 FATAL

FORTRAN IV ERROR DIAGNOSTICS

Message

NO ROOM FOR BUFFERS

There was not enough free memory left to set up
required I/0 buffers.

(RT-11 only)

Reduce the number of logical units that are open
simultaneously at the time of the error. If using
double buffering or if another file is currently
open, use single buffering. Make more memory
available by unloading unnecessary handlers,
unloading the foreground job, using the single-job
Monitor, or SET USR SWAP, if possible.

(RSTS/E only)

Increase the space available for buffering by
specifying the appropriate value for the /CORE
switch to EXEC, or reduce the number of logical

units that are open simultaneously at the time of
the error.

NO AVAILABLE I/0 CHANNEL

More than the maximum number of channels available
to the FORTRAN IV run-time system (15 for RT-11;
14 for RSTS/E, exclusive of the terminal) were
requested to be simultaneously opened for I1/0.

Close any logical wunits previously opened that
need not be open at this time.

FMTD-UNFMTD-RANDOM I/O TO SAME FILE

An attempt was made to perform any combination of
formatted, unformatted, or random access I/0 to
the same file.

Correct the program logic.

ATTEMPT TO READ PAST END OF RECORD
An attempt was made to read & larger record than
actually existed in a file.

Check the construction of the data file; correct
the program logic.

UNFMTD I/O TO TTY OR LPT

An attempt was made to perform an unformatted
write operation on the terminal or line printer.

Assign the 1logical wunit in Gquestion to the
appropriate device using the ASSIGN system
command, the ASSIGN or OPEN FORTRAN library
routine, or (RT-11 only) the IASIGN SYSLIB
routine.

ATTEMPT TO OUTPUT TO READ ONLY FILE
An attempt was made to write on a file designated
as read-only.

Check the CALL ASSIGN or OPEN system subroutine or
(RT-11 only) IASIGN SYSLIB function to ensure that
the correct arguments were used. Check for a
possible programming error.

C-18

Error Error

number type
36 FATAL
37 FATAL
38 FATAL
39 FATAL
40 FATAL
41 FATAL
42 FATAL

FORTRAN IV ERROR DIAGNOSTICS

Message

BAD FILE SPECIFICATION STRING

“he Hollerith or 1literal string specifying the
device/filename in the CALL ASSIGN or CALL OPEN
system subroutine could not be interpreted.

Check the format of the CALL ASSIGN or CALL OPEN
statement.

RANDOM ACCESS READ/WRITE BEFORE DEFINE FILE
A random-access read or write operation was
attempted before a DEFINE FILE was performed.

Correct the program so that the DEFINE FILE
operation is executed before any random-access
read or write operation.

RANDOM I/O NOT ALLOWED ON TTY OR LPT
Random-access I/O was illegally attempted on the
terminal or line printer.

Assign the 1logical wunit in gquestion to the
appropriate device using the ASSIGN keyboard
monitor command, the ASSIGN or OPEN FORTRAN
library routine, or (RT-11 only) the IASIGN SYSLIB
routine.

RECORD LARGER THAN RECORD SIZE IN DEFINE FILE

A record was encountered that was larger than that
specified in the DEFINE FILE statement for a
random-access file.

Shorten the I/0 1list or redefine the file
specifying larger records.

REQUEST FOR A BLOCK LARGER THAN 65535
An attempt was made to reference an absolute disk
block address greater than 65535.

Correct the program logic.

DEFINE FILE ATTEMPTED ON AN OPEN UNIT

A file was open on a unit and another DEFINE FILE
was attempted on that unit.

Close the open file using CALL CLOSE before
attempting another DEFINE FILE.

MEMORY OVERFLOW COMPILING OBJECT TIME FORMAT
The OTS ran out of free memory while scanning an
array format generated at run-time.

(RT-11 only)

Use a FORMAT statement specification at
compile-time rather than object-time formatting,
or make more memory available by unloading
unnecessary handlers, unloading the foreground job,
using the single-job Monitor, or SET USR SWAP, if
possible.

Error Error
number type
43 FATAL
44 FATAL
45 FATAL
46 FATAL
47 FATAL
48 FATAL
49 FATAL

FORTRAN IV ERROR DIAGNOSTICS

Message

(RSTS/E only)

Use a FORMAT statement specification at
compile-time rather than object-time formatting,
or allocate more space by using the /CORE switch
to EXEC.

SYNTAX ERROR IN OBJECT TIME FORMAT
A syntax error was encountered while the OTS was
scanning an array format generated at run-time.

Correct the programming error.

2ND RECORD REQUEST IN ENCODE/DECODE .
An attempt was made to use ENCODE and DECODE on
more than one record.

Correct the FORMAT statement associated with the
ENCODE or DECODE so that it specifies only one
record.

INCOMPATIBLE VARIABLE AND FORMAT TYPES

An attempt was made to output a real variable with
an integer field descriptor or an integer variable
with a real field descriptor.

Correct the FORMAT statement associated with the
READ or WRITE, ENCODE or DECODE.

INFINITE FORMAT LOOP

The format associated with an I/0 statement, which
includes an I/O list, had no field descriptors to
use in transferring those variables.

Correct the FORMAT statement in error.

ATTEMPT TO STORE OUTSIDE PARTITION (RT-11 only)

In an attempt to store data into a subscripted
variable, the address calculated for the array
element in question did not lie within the section
of memory allocated to the job. The subscript in
question was out-of-bounds. (This message is
issued only when bounds checking modules have been
installed in FORLIB.)

Correct the program logic.

UNIT ALREADY OPEN
An attempt was made to perform an illegal
operation on an open file.

ENDFILE ON RANDOM IFLE
An ENDFILE statement contains a unit number of a
file which is open as a random-access file.

Error Error
number type
59 WARNING
60 FATAL
61 FATAL
62 FATAL
63 FATAL

FORTRAN IV ERROR DIAGNOSTICS

Message

USR NOT LOCKED (RT-11 only)

This message is issued when the FORTRAN program is
started. If the program was running 1in the
foreground, the /U switch was used during
compilation, and the USR was swapping (i.e., a SET
USR NOSWAP command has not been done).

Re-examine the intent of the /U switch at compile
time and either compile without /U or issue a SET
USR NOSWAP command.

STACK OVERFLOWED

The hardware stack overflowed. More stack space
may be required for subprogram calls and opening
of file. Proper traceback is impaired. This
message occurs in the background only.

Allocate additional space by using the /B switch
at link-time. Check for a programming error.

ILLEGAL MEMORY REFERENCE
Some type of bus error occurred, most probably an
illegal memory address reference.

1f an assembly language routine was called, check
for a coding error in the routine. Otherwise,
insure that the «correct FORTRAN 1library was
called.

FORTRAN START FAIL

The program was loaded into memory but there was
not enough free memory remaining for the OTS to
initialize work space and buffers.

(RT-11 only)

If running a background job, make more memory
available by unloading unnecessary handlers, using
the single-job Monitor. If running a foreground
job, specify a 1larger value using the FRUN /N
switch. Refer to the formulas in Appendix G
(Section G.1l) and Appendix O (Section 0.1.4) of
the RT-11 System Reference Manual.

(RSTS/E only)
Allocate more space by using the /CORE switch to
EXEC.

ILLEGAL INSTRUCTION

The program attempted to execute an illegal
instruction (e.g., floating-point arithmetic
instruction on a machine with no floating-point
hardware).

It an assembly language routine was called, check
for a coding error in the routine. Otherwise,
ensure that the correct FORTRAN library was
called.

APPENDIX D

COMPATIBILITY WITH OTHER PDP-11 LANGUAGE PROCESSORS

FORTRAN IV is a new implementation of FORTRAN for the PDP-11,
available wunder RT-11, RSTS/E, RSX-11M, RSX-11D and IAS. It has been
designed to be upward compatible with FORTRAN IV PLUS (F4P) and
compatible with the earlier FORTRAN (FTN) on DOS-11 and RSX-11D V4A.
However, some differences exist as a result of:

1. correcting deficiencies in FTN FORTRAN.

2. language specification decisions necessary to promote the
goal of an upward compatible line of FORTRANS, and

3. providing significant extensions to FTN FORTRAN in a manner

consistent with the FORTRAN language, the ANSI FORTRAN
Standard and existing FORTRANs.

D.1 FORTRAN IV COMPATIBILITY WITH FTN V08.04

This section summarizes differences which may affect conversion from
FTN to FORTRAN 1IV.

Items marked with an asterisk (*) denote differences from FTN which
are common to both FORTRAN IV PLUS (F4P) and FORTRAN 1V.

D.1.1 Language Differences

*1. FTN permits transfer of control to FORMAT statements, which
execute as CONTINUE statements. FORTRAN IV does not, and
issues compile-time error messages.

*2. FTN V07.14 provided an uncounted form for Radix-50 constants
used in DATA statements. V08.04 added the counted form and
promised de-support of the uncounted form. Only the counted
form is provided in FORTRAN 1IV.

3. In FORTRAN IV, the syntax of the IMPLICIT statement is
different from that required by FTN.

4. FTN provides expressions in FORMAT statements (called
variable format expressions); FORTRAN IV does not.

5. FTN permits Hollerith constants containing one or two
characters to be used in expressions (as integer type).

COMPATIBILITY WITH OTHER PDP-11 LANGUAG3E PFOCESSORS

FORTRAN IV permits Hollerith constants in DATA, CALL, FORMAT,
STOP, and PAUSE statements only. Data iritialized variables
may be used equivalently elsewhere.

D.1.2 1Implementation Differences

*l. FTN allows both formatted and unformatteé records in the same
file by means of the MXDFUF subroutine call. This feature is
not supported in FORTRAN 1IV.

*2. The FTN service subroutines PDUMP and SETEDU are not provided
in FORTRAN 1IV. Similar but more flexible debugging output
may be obtained by using WRITE statements in debug lines.

*3. The TRCLIB library for statement level execution tracing is
not available in FORTRAN 1IV.

*4. Under FTN, Q format returns the number of characters in the
input record (i.e., the record length) independent of the
current scan position. Under FORTRAN IV, Q format returns
the number of characters remaining in the input record
following the scan position. The record length may be
obtained by using the Q format first in the format
specification.

*5. FTN performs the following actions when opening a unit for
direct access I/0: first it checks if a file already exists;
if so, it usec it, if not, it creates a new file for use.

In FORTRAN IV, the type of open depends on whether a READ or
WRITE statement 1is causing the open operation. If it is a
READ, then the file must already exist or an error results.
If it is a WRITE, then a new file is created.

*6. The implementation of error handling in FORTRAN IV is
significantly different from that in FTN. In particular, the
use of error classes for controlling error handling is
replaced by control over each individual error condition.

*7. FTN does not compile format specifications for use at
run-time, whereas FORTRAN IV does. One difference results:

Format specifications stored in arrays are recompiled at
run-time each time they are used. If an H format is used
in a READ statement to read data into the format itself,
that data does not get copied back into the original
array. Hence, it will not be available on a subsequent
use of that array as a format specification. This is in
accord with the ANSI FORTRAN language specification.

This consideration does not apply to format specifications
defined in FORMAT statements.

*8. FTN implements the ENDFILE statement as a close operation.
FORTRAN IV implements the ENDFILE statement by writing an end
of file record in a file.

9. FORTRAN IV checks that the labels used in an assigned GOTO
are valid labels in the program unit, but it does not check

COMPAU1BILITY WITH OTHER PDP-11 LANGUAGE PROCESSORS

at run-time whether an assigned label is in the list in the
GOTO statement. FTN checks at run-time.

10. The FTN /-ON compiler option switch causes two-word
allocation (instead of one-word allocation) of all INTEGER
and LOGICAL variables. The similar FORTRAN IV /T compiler
option switch affects allocation of unspecified size INTEGER
variables orly; unspecified LOGICAL variables are always
allocated two words in FORTRAN 1IV.

11. The FTN and F4P implementations of adjustable dummy arrays
copy dummy argument dimension variables into an internal
array descriptor upon entry to a subprogram. A subsequent
assignment to a dummy argument dimension variable within that
subprogram coes not affect the array subscript calculation.

FORTRAN 1V coes not use array descriptor blocks but rather
references cummy argument dimension variables directly during
subscript calculations. Hence, an assignment to a dummy
argument dimension variable will affect array subscript
calculations.

D.2 DIFFERENCES BETWEEN FORTRAN IV-PLUS AND FORTRAN IV

This section summarizes differences that may affect conversion from
FORTRAN IV to FORTRAN IV PLUS.

D.2.1 Language DJifferences

1. F4P transforms FORTRAN defined function name references into
a special kind of internal calling form, while FORTRAN IV
does not. If a user supplies a routine to replace the F4P
FORTRAN defined routine (for example, writes a SIN routine)
it will generally be necessary to include EXTERNAL state-
ments (with the user name prefixed by an asterisk,
'*') to cause that routine to be referenced. This is
not necessary in FORTRAN IV.

D.2.2 Implementation Differences

1. FORTRAN IV logical tests treat any non-zero bit pattern in
the low-order byte of a LOGICAL variable as .TRUE., and an
all-zero bit pattern as .FALSE.

F4P tests only the highest-order bit of the value and treats
a one as .TRUE. and a zero as .FALSE.

2. FORTRAN IV, like FTN, does not enforce the restrictions
stated in the PDP-11 Language Reference Manual concerning
modifying the control variable and/or the parameters of a DO
loop within the body of the loop.

3. FORTRAN IV, like FTN, defines named COMMON blocks in terms of
named .CSECTs.

COMPATIBILITY WITH OTHER PDP-11 LANGUAGE PROCESSORS

4. In FORTRAN IV, INTEGER*4 causes 32-bit allocation (4 bytes),
but only 16 bits are used for computation. In F4P, INTEGER*4
causes both 32-bit allocation and 32-bit computation.

5. FORTRAN IV checks that the labels used in an assigned GOTO
are valid 1labels in the program unit, but it does not check
at run-time whether an assigned label is in the list in the
GOTO statement. F4P does check at run-time.

6. FORTRAN IV permits an unlimited number of continuation lines.
In F4P, up to 5 continuation lines are permitted by default,
and up to 99 may be obtained by means of the compiler /CO
switch.

7. For unformatted input/output operations, both sequential and
direct-access, FORTRAN IV reads/writes four bytes of data if
the variable is allocated four bytes of storage. F4P does
also. However, since INTEGER*4 values in FORTRAN IV
generally have an undefined high-order part, they generally
may not be read as INTEGER*4 values by F4P. Similarly, since
FORTRAN IV and F4P logical tests are different (see item 1
above), care must be taken when interchanging logical values.

8. For random-access input/output operations, FORTRAN IV takes
the END= exit on an end-file condition and the ERR= exit only
for hardware I/0 errors. F4P ignores any END= specification
and takes the ERR= exit for both.

D.3 RSTS/E FORTRAN IV FILE COMPATIBILITY

RSTS/E FORTRAN IV can read and write files compatible with the other
language processors available on the RSTS/E operating system
(BASIC-PLUS and COBOL). Certain file formats, hLowever, are not
supported under FORTRAN 1IV. Also, care must be taken when creating
files with FORTRAN if they are to be processed by a program written in
another language.

D.3.1 Sequential Stream ASCII Files

All three language processors available on RSTS/E share the concept of
sequential stream files composed of ASCII data. In FORTRAN, this type
of file 1is accessed with formatted READ and WRITE statements.
BASIC-PLUS processes stream files through the INPUT, INPUT LINE, and
PRINT statements. COBOL sequential stream files, which do not contain
any binary data, also fall into this category.

A stream ASCII file consists of variable-lenath data records
terminated by a carriage control sequence, usually CR - LF. No
extraneous formatting information (such as byte counts or checksums)
is included in the file.

BASIC-PLUS programs create this type of file by default. The COBOL
language processor will «create compatible files if no binary data
(e.g., COMPUTATIONAL variable type) is written. COBCL data of type
DISPLAY 1is wusually acceptable in a stream ASCII file. FORTRAN will
accept files structured in this fashion in formatted READ statements.

COMPATIBILITY WITH OTHER PDP-11 LANGUAGE PROCESSORS

To create compatible files with the FORTRAN formatted WRITE statement,
care must be taken to assure proper positioning of carriage control
information. By default, FORTRAN records begin with the vertical
forms control characters required for the record to be written,
followed by the data record itself, and terminated by a carriage
return character. For example, the statements:

TYPE 100
100 FORMAT (' HELLO')

will create the follcwing record:

<LF>HELLO<CF>

where <LF> represents the line feed character and <CR> denotes the
carriage return claracter. It 1is desirable to «create records
terminated by the carriage return-line feed sequence for
compatibility. The previous example may be rewritten to achieve this:

TYPE 200
200 FORMAT (' +HELLO'/)

The '+' character suppresses the 1initial 1line feed generated by
default, and the '/' record terminator causes the line feed to be
generated at the 2nd of the record, as desired.

Note that the above technique applies only to files which have been
created with the 'CC' attribute in CALL ASSIGN or CALL OPEN. By
default, files output to non-printing devices have carriage control
translation suporessed. Such files consist of an initial line feed
character, followed ty records in the standard stream ASCII format
(i.e., terminated by CR-LF seguences).

D.3.2 Virtual Array Files

The BASIC-PLUS language provides the capability to create files which
are accessed from the program as arrays of data elements. All
'records' in the file are of a fixed length, usually one integer or
floating-point value. String virtual arrays are also provided.

FORTRAN programs can read and write virtual array files in a very
straightforward fashion. For example, consider the integer virtual
array referenced by the following BASIC-PLUS dimension statement:

DIM #chan,I1%(9999%)

To read this array file from FORTRAN, the programmer would first
describe the file format with the DEFINE FILE statement as follows:

DEFINE FILE unit (10000,1,U,ivar)
Note that this statement establishes the size of each record as one
word (the second argument inside parentheses), and indicates that the

number of such records in the file is 10000. The file may now be
accessed by the statement:

READ (unit'index)ivalue

where index represents the subscript to be used (note that FORTRAN

COMPATIBILITY WITH OTHER PDP-11 LANGUAGE FROCESSORS

subscripts begin at one, whereas BRASIC-P.US uses zero-origin
indexing). The value of the selected element will be read into the
integer variable specified by ivalue. To handle virtual arrays of
floating point values, the same format for the DEFINE FILE statement
is used, replacing the size of the record in words with the value
appropriate to the math package used by the BASIC-PLUS program in
question. (If the two-word math package was used to create the file,
the value 2 should be specified as the second arqument inside
parentheses; 4 is appropriate to the four-word math package.)

To handle two-dimensional virtual arrays, the DEFINE FILE statement
must be coded to account for the total number of elements in the
array. For example, the following BASIC-PLUS dimension statement
allocates a two-dimensional integer array:

DIM #chan,I%(m,n)

where m and n specify the array dimensions (remember that indexing
starts at zero in BASIC). The equivalent DEFINE FILE statement is:

DEFINE FILE unit ((m+l)*(n+l),1,U,ivar)
The expression (m+1l)*(n+l) computes the number of array elements
specified by the previous DIM statement. To access this array as done
in the following BASIC-PLUS line:

I1% = I%(J%,K%)
the FORTRAN programmer must compute the vector index as:

READ (unit'(J*(n+l) + K + 1))I1
To access a string virtual array, the DEFINE FILE statement should
specify the maximum string size divided by two (as element sizes are
specified in words). For example, the BASIC-PLUS statement:

DIM #chan,AS$(100%) = 128%
would be equivalent to the DEFINE FILE statement:

DEFINE FILE unit (101,64, U, ivar)
The strings may be stored in the FORTRAN program in LOGICAL*1 arrays
of the appropriate length. The following FORTRAN code will read one

element of the virtual string array specified in the above example:

LOGICAL*1 STRING(128)
READ (unit'index) STRING

Strings stored in virtual array files are padded on the right with
null characters (000 octal) to the specified record length.

For more information on string array refer to the BASIC-PLUS Language
Reference Manual, Chapter five.

COMPAT [(L2TY WITH OTHER PDP-11 LANGUAGE PROCESSORS

D.3.3 BASIC-PLLS Record I1/0 Files

BASIC-PLUS record I,0 files may be accessed from FORTRAN programs
using the direct-access 1I/C facility. The DEFINE FILE statement
should specify the number of words in each logical record of the file
as the size. FORTRAN direct-access I1/0 demands that all records of
the file have the same length. If this is true of the record I/0 file
in guestion, the FORTRAN system will do all record blocking/deblocking
for the user. If the file 1in question has records of several
different sizes, the programmer should read the file on a
block-by-block tasis.

To read the file on a block-by-block basis, the DEFINE FILE statement
specifies 256 as the record size. Each record is read into a 256-word
array area (usually an INTEGER*2 array of 256 elements). The
programmer must then find the records desired in each block by
indexing through the buffer array.

When accessing values stored using the CVT%$ and CVTF$ functions, or
when creating files which will be read by BASIC-PLUS programs which
will use the CVT$3% and CVTSF functions to retrieve values, special
care must be taken. The CVT$$ and CVTF$ functions store the binary
values byte-reversed from the normal orientation expected by FORTRAN
(and the representation in wvirtual array files). For example, the
function call CVT%#$(13%) returns the value 000,015 as octal byte
values, (with 000 as the low-order byte and 015 as the high-order
byte). Hence, the FORTRAN programmer must reverse the bytes of each
word of a wvalue written by a BASIC-PLUS program which uses these
functions. To perform the required byte-reversal operation on a
floating-point value which has been read into the variable A, the
following code can be used:

REAL*4 A

LOGICAL*1 TEMP(4),T
EQUIVALENCE (A,TEMP)
T = TEMP (1)

TEMP (1) = TEMP(2)
TEMP(2) = T

T = TEMP(3)

TEMP (3) = TEMP (4)
TEMP(4) = T

When writing files which are to be read by BASIC-PLUS, the
byte-reversal must also be performed.

D.3.4 COBOL Files

As noted above, sequential stream ASCII files produced by COBOL can be
processed by FORTRAN IV using formatted I/0. These files must not,
however, contain any binary data, as a special format 1is used to
represent COBOL records containing such values. Accessing files with
the COBOL relative organization is not supported from FORTRAN IV due
to the complex internal structure of such files.

D.3.5 1IAM Files

The IAM (Indexed Access Method) file organization available under
BASIC-PLUS is not currently supported in the FORTRAN IV environment.

INDEX

Page numbers are underlined, in some cases, to point the user to the
major or definitive occurrence of an indexed item.

/A (Add) Assigned GOTO (cont.),
compiler switch, 1-6 see also Subroutine
see also Switches, Compiler
/A (Alphabetize)
linker switch, 1-13

see also Switches, Linker /B:n (Buffers)
Absolute binary format (LDA), compiler switch, B-2
1-17 see also Switches, Compiler
output file, 1-17 /B:n (Bottom address)
ACCEPT statement, 3-33 linker switch, 1-13
see also Statements program default, 1-13
Argument see also Switches, Linker
passing using COMMON, 4-9 BASIC-PLUS files, D-7
transmission of, 2--4 Binary
Arguments, conveying data, 3-6
ASSIGN routine, B-2 exponents, A-1
Arrays, output file (binout), 1-12
multi-dimensional, 2-5, 2-7 records, 3-6
use of, 4-3 Blank COMMON, 1-10, 1-16
passed to subprograms, 2-6 Blank records, 3-1
references to, 2-6 Blanks,
optimizing, 4-3 imbedded in command string,
storage space, 2-7 1-2
two-dimensional, 2-6 Blocks, COMMON, 1-16
vector maps, 2-¢€ data initialized, 1-16
vectoring, 2-5 DATA statements, 1-16
illustration of, 2-7 Buffers,
memory required, 2-7 internal, B-3
sharing, 2-7 table of additional space, 1-21

suppression, 2-7
table stecrage reduction, 4-2
zeroing large, 4-8

ASCII /C (Continuation)
character transfer, 3-5 linker switch, 1-13, 1-16
conveying data, 3-6 see also Switches, Linker
parity bit, 3-5 Carriage control
RADIX~-50 equivalents, argument, B-3
table of, A-5 table of characters, 3-5
records, 3-5 translation of, 3-6, B-3, B-4
transfer of files, 3-5 Carriage return, 3-5
Assembler, MACRO, 1-12 <CR>, RETURN key, vii
see also MACRO CALL statements, 2-4
Assembly language subroutines, library subroutines, B-1
1-17 Calling program,
see also Subroutines returning control to, 2-4
ASSIGN subroutine, B-1 CCL (Concise Command Language),
call 5-1
format, B-1 command line
for random access files, B-1 compiler, 5-1
for sequential access files, EXEC, 5-2
B-1 LINK, 5-1
command, 1-4, 3-3 MACRO, 5-2
example, of, 3-3 comparison, 5-2
routine arguments, 3-2 format, 5-1
see also Subroutine installation, 5-1
Assigned GOTO, 4-5 invoking system programs, 1-6
use of, 4-5 restricted switches, 5-2

Index-1

INDEX (Cont.:

Character,
ASCII, A-5
see also ASCII
line feed, 3-6
lowercase, vii
RADIX-50, A-4
see also RADIX-50
uppercase, Vvii
CLOSE subroutine, B-1, B-5
CALL CLOSE, 2-9 "“
format, B-5
see also Subroutine
COBOL files, D-7
Code
object, 2-1
see also Object code
Command string, 1-14
compiler, 1-2
imbedded blanks in, 1-2
linker, 1-2, 1-12
switch options in, 1-6
COMMON,
blank, 1-16
block, 1-10, 1-16
data initialized, 1-16
DATA statements, 1-'16
using to pass arguments, 4-9
variables,
initialization of, 3-2
Compiler
command sequence, 1-5
command string, 1-2
error diagnostics, C-1
fatal, C-11
listing of, C-12
warning, C-10
listing of, C-10
errors
initial phase, C-3
summary of, C-3
secondary phase, C-4
summary of, C-4
execution command, 1-5
input files, 1-5
memory requirements, 1-11
under RSTS/E, 1-11
under RT-11, 1-11
object code, 1-10
output files
listing, 1-5
object, 1-5
referencing library instruc-
tion, 2-2
running the, 1-5
switches
see also Switches, Compiler
table of, 1-6, 1-7
Compiling a program,
steps in, 1-1
Compilation
conditional (/D) switch, 1-22

Compilation (cont.),
see also Switches, Compiler
example of
RSTS/E, 1-21
PT-11, 1-18
increasing effectiveness of,
4-1
sample listing, 1-9
statistics listing, 1-10
COMPLEX format, A-2
COMPLEX*8, 4-4
see also Data type
Concise Command l.anguage (CCL),
1-5
see CCL
Continued lines, 1-17, 3-2
format, 3-2 —
Conventions, documentation, vii
/CORE:n (Specification) switch,
1-19, 1-20
see also Switch, RSTS/E
Core image file LOAD.SAV, 1-12,
1-14
CSECT .§$$$, 1-10
CTRL (control) key, vii

/D (Comment)
compiler switch, 1-6
conditional compilation, 1-22
see also Switches, Compiler
DATA statement, 3-2
see also Statements
Data
conversions, 4-8
conveying ASCII, 3-6
see also ASCII
conveying binary, 3-6
see also Binary
representation, A-1
Data type
comparing to zero, 4-4
COMPLEX*8, 4-4
DOUBLE PRECISION, 4-4
INTEGER, 4-4
REAL*4, 4-4
selection of, 4-4
DATE subroutine, B-1, B-6
format of, B-6 -
see also Subroutine
Debugging FORTRAN IV, 1-22
DECODE statement
see also Statements
Default
device assignments, 3-3
filename assignments, 3-3
listing, 1-7
memory
establishment of, 1-20
LINK value, 1-19

Index-2

INDEX

Default (cont.),

memory
table of, 1-20
protection codes, _-4

setting of FPU status, 2-5
storage, 1-2
DEFINE FILE statement.,, 3-4, 3-6
see also Statements™
Device
changing defaults, 3-3
code, 1-2
random access, 1-12
specifications, 1-3
Diagnostics, error
compiler, C-1
fatal, c-11
list of, C-12
warning, C-10
list of, C-10
list of errors, C-¢
long format, C-12
Object Time System, C-12
list of, C-13
short format, C-12
Direct access files, 3-4
creation of, 3-5
efficient operatior of, 3-6
initialization, 3-4
input/output, 3-6
Directory, user's, 1-5
Dividing a program, 1-15
DO loops,
increment parameter in, 4-7
nesting of, 4-3
Documentation
conventions, vii
obtaining additional, vii
Dollar sign ($)
format separator, 3-5
DOUBLE PRECISION
data type, 4-4
format, A-2
see also Data type

/E (Accept)
compiler switch, 1-6
see also Switches, Compiler
Ellipsis marks (...), viii
ENCODE statement, 3-4
see also Statements
END statement, 3-4
see also Statements
Equivalents, ASCII/Radix-50
table of, A-5
ERR= parameter, 3-%
Errors
compiler, C-1
initial phese, -3

(Cont.)

Errors (cont.),
compiler
initial phase
summary, C-3
secondary phase, C-4
summary, C-4
see also Compiler
diagnostics, C-1
example of, C-2
list of, C-4
long format, C-12
short format, C-12
see also Diagnostics
intercepting at runtime, 3-5
locating runtime, 2-8
message format, C-1
Object Time System, C-12
OTS conditions, C-13
listing of, C-12, C-13
program termination, C-13
Execution procedures, 1-18
on a satellite machine, 1-17
under RSTS/E, 1-19
example of, 1-21
under RT-11, 1-18
example of, 1-18
EXIT subroutine, B-1, B-7
format, B-7
see also Subroutine
Exponents, binary, A-1
.ext (extension), 1-2
filename, 1-2
table of, 1-4
input file, 1-4
output file, 1-4
External subroutine,
assigned GOTO, 4-5
see also Subroutine

/F (default library)

linker switch, 1-13, 1-14, 1-15

see also Switches, Linker
Fatal error condition
see Diagnostics
see Errors
?FIL NOT FND? message, 1-5
File
ASCII, 3-5
sequential stream, D-4
transfer of, 3-5
BASIC-PLUS, D-7
binary (binout), 1-12
COBOL, D-7
compatibility, D-4
compiler output
listing, 1-5
object, 1-5
core image, 1-12

Index-23

INDEX (Cont.)

File (cont.), Fractions, A-1
core image Function
LOAD.SAV, 1-14 mappin¢, 2-5
determining length of, 3-4 statement, 4-2
direct access, 3-4 subproqrams, 2-5
creation of, 3-5
initialization of, 3-4
IAM, D-7
library Generatec code
in command string, 1-14 listinc, 1-1C
load map (mapout), 1-12 see &lso Object code
locating, 1-5 Global names, 2-2
mode GOTO statements,
'NEW', B-3, B-4 example of, 4-5
'‘oLp', B-3, B-4 see alsc Statements
'RDO', B=3, B-4
'SCR', B-3, B-4
multiple input, 1-5
source /H (Print)
FILE1.FOR, 1-5 compiler switch, 1-6
LIST.LST, 1-5 see also Switches, Compiler
OBJECT.OBJ, 1-5 Hardware registers, 2-5
specification, load map, 1-14 contents of stack, 2-5
virtual array, D-5 Hollerith constants,
Filename format, a-3
default assignments, 3-3 storage of, A-3

extensions, table of, 1-4
specifications, 1-2
use of, 1-5

FILEl1.FOR source file, 1-5 /I (Include)
FIND statement, 3-5 linker switch, 1-13, 1-17, Cc-13
see also Statements restriction on CCL, 5-2
Floating-point format, A-1 see also Switches, Linker
'FOR' (formatted input/output), IAM files, D-7
B-5 (Indexed Access Method)
FORLIB (FORTRAN IV System Library), IDATE subroutine, B-1, B-6
1-12 format, B-6 -
FORMAT statement, 3-5, 4-4 see also Subroutine
see also Statements Increment parameter
Format separator ($), 3-5 in DO loops, 4-7
Formatted input/output, 3-5, 4-4 see also DO loops
FORTRAN statement, 3-1 Initial phase errors,
see also Statement compiler, C-3
FORTRAN IV summary, C-3
compatibility see also Errors
RSTS/E file, D-4 Input file,
with FTN v08.04, D-1 assumed extension, 1-4
debugging, 1-22 filename specification, 1-2
differences (1IV and IV-PLUS), multiple, 1-5
D-3 see also File
operating environment, 2-1 Input/outout,
stand-alone, 1-17 direct-access, 3-6
system library (FORLIB), 1-12 efficient operation of, 3-6
using the system, 1-1 'FOR' (formatted), B-5
FPU (floating point unit), 2-5 format of, 3-5
default setting, 2-5 formatted rcutines, 3-5, 3-6,
preservation, 2-5 4-4
status, 2-5 'RAN' (random-access), B-5
restoring, 2-5 'UNF" (unformatted), B-5

Index-4

INDEX (Cont.)

Input/output (cont.),
unformatted routines, 3-6
INTEGER mode,
calculations in, 4-9
data type, 4-4
see also Data type
see also Mode
Integers,
format of, A-1
storage, A-1
Internal buffers, B-3
see also Buffers
Internal sequence numbers, 1-10
Internal subroutines, 4-5
see also Subroutines

ISN (internal statement numbers) ,

2-2

$nK (memory size) module, 1-17
see also Module
Key,
CTRL (control), vii
<CR> RETURN, vii

/L (LDA),
linker switch, 1-13, 1-17
see also Switches, Linker
/L:n (Listing option),
compiler switch, 1-6
see also Switches, Compiler
LDA output file,
absolute binary format, 1-17
save image format, 1-12
Library
creation, 1-14
file, 1-14
instruction
compiler referencing, 2-2
modification of, 1-14
routines, 2-2
subroutine summary, B-1
system, 1-5
usage, 1-14
Line feed character, 3-6
see also Character
Linker (LINK), 1-12
command, 1-12
example of, 1-14
command string, 1-2
linking procedures, 1-12
for subprograms, 2-3
memory default value, 1-19
object module, 1-12
overlay
capability, 1-12
handler, 1-15

Linker (LINK) (cont.),
overlay
region, 1-15
segment, 1-15
structure, 1-15
usage, 1-15
root segment, 1-15
RSTS/E linking
example, 1-21
RT-11 linking
example, 1-18
switches, 1-12, 1-13
table of, 1-13
see also Switches, Linker
Listing
compilation statistics, 1-10
default, 1-7
format, 1-7
generated code, 1-10
optional sections, 1-7
options, 1-10
sample compilation, 1-9
source, 1-10
storage map, 1-10
LIST.LST source file, 1-5
LOAD.LDA command sequence, 1-18
Load map (mapout) file, 1-12
specification, 1-14
LOAD.SAV core image file, 1-14
LOGICAL format, A-3
LOGICAL*1 format, A-3
Logical units,
maximum open (NLCHN), 1-10
numbers (LUNs), 3-3
table of assignments, 3-3
Long format
error diagnostics, C-12
Object Time System, C-12
see also Errors
Loop,
calculations outside, 4-8
calculations within, 4-7
Lowercase characters, vii
see also Character
LRECL (maximum record length)
1-10

/M or /M:n (Stack address)
linker switch, 1-13
restriction with ccL, 5-2

see also Switches, Linker

MACRO assembler, 1-12

see also Assembler

Main program
placement of, 1-15

Maps,
array vector, 2-6
load (mapout) file, 1-12

Index-5

INDEX (Cont.)

Maps (cont.),
mapping function, 2-5
subprogram vector, 2-6
Memory
adding, 1-20
compiler requirements, 1-11
under RSTS/E, 1-11
under RT-11, 1-11
default value, 1-19, 1-20
establishing default, 1-20
obtaining additional, 1-11
organization (RT-11l), 2-9
runtime graph, 2-10
runtime segments, 2-9
maximum space, 2-9
size of, 2-9
size module ($nkK), 1-17
Message, ?FIL NOT FND?, 1-5
Mnemonics, 2-2
format of, 2-2
Mode
calculation in INTEGER, 4-9
comparison in mixed mode, 3-7
file
'NEW' (new file), B-3, B-4
'OLD' (existing file), B-3,
B-4
'RDO' (read only), B-3, B-
, B

—

'SCR' (temporary), B-3 -

4
4
Modules

linker object, 1-12
memory size ($nkK), 1-17

system simulator ($SIMRT), 1-17

Multi-buffering, B-3
Multi-dimensional arrays, 2-5,
2-7
use of, 4-3
see also Array

/N:m (Enable units)
compiler switch, 1-7, B-2
under RT-11, 3-3 ~—
see also Switches, Compiler
Nesting
of DO loops, 4-8
see also DO loops
'NEW' (new file) mode, B-3, B-4
see also File
see also Mode
NLCHN (maximum open logical
units), 1-10
Numbers, A-1

/0 (Include options)
compiler switch, 1-7
see also Switches, Compiler

/0:n (Overlay)

linker switch, 1-13, 1-15, 1-16

restriction with CCL, 5-2
see also Switches, Linker
Object
program efficiency, 4-1
time format, 4-4
Object code, 2-1
compiler, 1-10
generated listing, 1-10
see also Code
Object modules, linker, 1-12
see also Modules
OBJECT.OBJ source file, 1-5
Object Time System (OTS), 2-1
see OTS
'OLD' (exists), file mode, B-3,
B-4 -
see also File
see also Mode
OPEN subroutine, B-1l, B-3
see also Subroutine
Operations (*2, **2),6 4-5
Optimizer,
effective use of, 4-1
Optional listirg sections, 1-7,
1-10
see also Listing
OTS (Object Time System), 2-1
diagnostics, C-12
summary of, C-13
error conditions, C-13
listing, C-13
long format, C-12
short format, C-12
Output file,
absolute binary format, 1-17
compiler
listing, 1-5
object, 1-%
default extension, 1-4
Output filename
specification, 1-2
Output format, 3-5
see Input/output
Overlay
capability, 1-12
handler, 1-15
initialization, 1-16
region, 1-15
segment, 1-1°¢
size, 1-16
structure, 1-15
use of, 1-15
see also Linker

/P (Disable optimizer)
compiler switch, 1-7

Index-6

INDEX (Cont.)

/P (Disah'e optimizer) (cont.),
see also Switches, Compiler
Parameter, ERR=, 2-5
see also ERR=
Parity bit, ASCII, 3-5
See also ASCII
PAUSE statement, 1-22, 3-2
example of, 3-2 -
See also Statements
PRINT statement, 3-3
see also Statements
Program
calling, 2-4
returning control to, 2-4
compiled
protection code, 1-19
division of, 1-15
main
pPlacement of, 1-15
pPreparing source, 1-]
steps in executing, 1-1
storage required, 1-10
Programming techniques,
efficient, 4-7
for division in programs, 4-9,
4-10 ‘——
minimizing éxecution space,
4-6
Program termination,
fatal error condition, C-13

Project, programmer number [p,pn],

1-2

Protection code (<prot>), 1-2, 1-4

changing, 1-4
combining, 1-2, 1-4
compiled program, 1-19
default, 1-4

meaning, 1-4

table of, 1-4

/R (Relocatable)
linker switch, 1-13, 1-19
See also Switches, Linker
/R:m (Enable Tecord size)
compiler switch, 1-7, 3-¢
See also Switches, Compiler
RADIX-SO,
character set, A-4
format, a-4
Random access device, 1-12
RANDU, RAN Subroutine, B-1, B-5,
B-7
format of, B-7
see also Subroutine
'RDO’' (read only) file mode,
B-3, B-

See also Mode

READ Statement, 3-3, 3-5
See also Statements
KREAL format, A-2
see also Data type
REAL*4 data type, 4-4
see also Data type
Record,
ASCII, 3-5
binary, 3-¢
changing length, 3-4
maximum length, 1-10, 3-4
formatted, 3-6 ___
see also LRECE,
Record buffer
adding storage, 1-21
for non-standard, 1-23
table of additional storage,
1-21
Register
assignments, 2-5
hardware, 2-5
subprogram usage, 2-5
Register 5 (R5), 2-3
format, 2-3
Root segment, linker, 1-15
Routine,
CALL CLOSE, 2-9
CALL EXIT, 3-2
formatted, 3-5
input/output, 3-5
RSTS/E,
compilation, 1-21
compiler memory requirements,
1-11
execution, 1-19, 1-21
linking, 1-2
switch
/CORE:n, 1-19
see also Switch, RSTS/E
RT-11,
compilation, 1-18
compiler memory requirements,
1-11
eéxecution, 1-18
linking, 1-18
Runtime errors,
interception, 3-5
locating, 2-8
see also Errors
Runtime memory,
graph of, 2-1¢
organization, 2-9
Segments, 2-9
maximum Space, 2-9
size of, 2-9
Satellite machine, 1-17
execution, 1-17
Save image LDA format, 1-12
'SCR' (temporary) file mode, B-3,
B-4 -

Index-~7

1 ITUIC LU WIVNYy 1T 1INe,

RT-11/RSTS/E FORTRAN IV
User's Guide

DEC-11-LRRUA-A-D
READER'S COMMENTS

NOTE: This form is for document comments only. Problems
with software should be reported on a Software
Problem Repcrt (SPR) form.

Did you find errors in this manual? 1If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience
Student programmer

000000

Non-programmer interested in computer concepts and capabilities

Name Date
Organization
Street
City State Zip Code
or
Country

If you require a written reply, please check here. []

Fold Here

Do Not Tear - Fold Here and Staple

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

dlilgliltlall

Software Communications
P. O. Box F
Maynard, Massachusetts 01754

DIGITAL EQUIPMENT CORPORATION
MAYNARD, MASSACHUSETTS 01754

	A_Page_001.tif
	A_Page_002.tif
	A003.tif
	A004.tif
	A005.tif
	A006.tif
	A007.tif
	A008.tif
	A009.tif
	A010.tif
	A011.tif
	A012.tif
	A013.tif
	A014.tif
	A015.tif
	A016.tif
	A017.tif
	A018.tif
	A019.tif
	A020.tif
	A021.tif
	A022.tif
	A023.tif
	A024.tif
	A025.tif
	A026.tif
	A027.tif
	A028.tif
	A029.tif
	A030.tif
	A031.tif
	A032.tif
	A033.tif
	A034.tif
	A035.tif
	A036.tif
	A037.tif
	A038.tif
	A039.tif
	A040.tif
	A041.tif
	A042.tif
	A043.tif
	A044.tif
	A045.tif
	A046.tif
	A047.tif
	A048.tif
	A049.tif
	A050.tif
	A051.tif
	A052.tif
	A053.tif
	A054.tif
	A055.tif
	A056.tif
	A057.tif
	A058.tif
	A059.tif
	A060.tif
	A061.tif
	A062.tif
	A063.tif
	A064.tif
	A065.tif
	A066.tif
	A067.tif
	A068.tif
	A069.tif
	A070.tif
	A071.tif
	A072.tif
	A073.tif
	A074.tif
	A075.tif
	A076.tif
	A077.tif
	A078.tif
	A079.tif
	A080.tif
	A081.tif
	A082.tif
	A083.tif
	A084.tif
	A085.tif
	A086.tif
	A087.tif
	A088.tif
	A089.tif
	A090.tif
	A091.tif
	A092.tif
	A093.tif
	A094.tif
	A095.tif
	A096.tif
	A097.tif
	A098.tif
	A099.tif
	A100.tif
	A101.tif
	A102.tif
	A103.tif
	A104.tif
	A105.tif
	A106.tif
	A107.tif
	A108.tif
	A109.tif
	A110.tif
	A111.tif
	A112.tif
	A113.tif
	A114.tif
	A115.tif
	A116.tif
	A117.tif
	A118.tif

