
Volume 2, Number 3. 

3rd March, 1969. 

UNIVERSITY OF QUEENSLAND 

COMPUTER CENTRE 

COMPUTER 

CENTRE 

BULLETIN 

Editor: 

H. L. Smythe. 





'.J 

EDITORIAL COMMENT 

It is proposed to introduce in future Bulletins a I~etters to the 

Editor" feature. This could include letters from the various computer users 

regarding interesting or unusual programming difficulties they might have 

.encountered. If desired, the letter would be given to one of the Programmers 

for perusal. Both the letter and his observations would then be published 

in the Bulletin. 

Because the success of a scheme of this kind depends very much on the 

contributions received from the readers, the Editor will sincerely welcome all 

such letters. In this way, it is hoped that the "Letters to the Editor" 

feature will become established as a regular part of the BUlletin. 

Should any reader have an article which he considers to be too long 

for inclusion in the "Letters to the Editor" feature, it could be, published 

in the Bulletin as a separate contribution under the author's name. 

This month's Bulletin contains another in the series of articles on 

the staff of the Computer Centre, introducing two Lecturers in Computing and 

the Technical Writer. The section on Library Accessions is continued, and 

Mr. Oliver has produced an interesting and informative article on multiprocessing. 

STAFF OF THE COMPUTER CENTRE 

INTRODUCING. TWO LECTURERS IN COMPUTING 

Christopher ('Chris') de Voil is a Lecturer in Computing (Systems 

Programming) within the Depa!tment of Computer Science. 

In 1960, Chris graduated from the University of Queensland and spent 

a further year in the Department of Electrical Engineering where he was 

engaged in post-graduate research. In 1961, he joined the Aeronautical Research 

Laboratories, Department of Supply, where he worked as an Engineer and then 

Research Scientist, until 1967. Initially during this period, he was involved 

in the analysis and design of control system elements and allied electronic 

equipment. Later, however, he joined the computer group where he worked in 

the design, development and application of analogue, hybrid and digital 

computing systems. 

31 





Graduate Administrative Assistant, who commenced duty on 2nd January, 1969. 

Helen, who holds a Bachelor of Arts degree from the University of Queensland, 

is now the Technical Writer for the Computer Centre. 

Her duties include the preparation and editing of the Bulletin and 

other Computer Centre publications, and generally assisting the remainder of 

the staff with the production of technical writeups, memoranda, and research 

reports. 

FORTRAN IV SYSTEM MODIFICATION 

TANH SUBROUTINE 

This routine returned an incorrect value and has now been changed to 

work correctly. 

Previously, index registers were stored by TANH in absolute suffix 

locations FSAVE 1 and 2. These locations were subsequently used by EXP 

(called by TANH), resulting in the failure of TANH to return properly to the 

calling program. 

LIBRARY ACCESSIONS 

This section of the Bulletin is an attempt to keep readers informed about 

the books and periodicals, in the computer field, which have recently been 

acquired by the University of Queensland Library. As they are selected from 

the University of Queensland Library Accession List by title only, there is no 

guarantee that the material is of high quality. It is hoped, however, that 

the list may prove to be a useful guide to readers. 

The following list comprises the accessions for the month of September, 

1968. 

Bartee, Thomas C. Theory and Design of Digital Machines. [c 1962] (510.7834 BAR, 

Engin. Lib. ) 

D'Hoop, H. SAHYB (Simulation of Analogue and Hybrid Computers). 1965 (Q 

519.92 DHO, Engin.Lib.) 

33 





Krishnamoorthi, B. Time-Shared Computer Operations With Both Interarrival and 

Service Times Exponential. 1965 (Q 519.92 KRI, Engin. Lib,) 

Smith, Fred W. Estimation of the Laplace-Transfer Function from Sampled Data. 

1965 (Q 517.352 SMI, Engin. Lib.) 

The Australian Computer Journal. 1967/68 and onwards, (519.92 AUS Periodical 

Stack, Main Library) 

Simulation. V. 10,1968, and onwards. (519.8 SIM, Engin. Lib.) 

Mize, Joe H. Essentials of Simulation. 1968. (620.7 MIZ, Engin. Lib.) 

Orr, William D. compo Conversational Computers. 1968. (621.381958 ORR, Engin. 

Lib. ) 

Stewart, Charles A. Basic Analogue Computer Techniques. [c 1967] (621.381957 

STE, Engin. Lib.) 

Berkeley, Edmund C. ed. The Programming Language LISP. 1964. (651.8 BER, 

Engin. Lib.) 

Bycer, Bernard B. Digital Magnetic Tape Recording: Principles and Corrrputer 

Applications. [c 1965] (651.263 BYC, Engin. Lib.) 

Gregory, Robert H. Business Data Processing and Programming. 1960. 

(651.8 GRE, Main Lib.) 

International Business Machines Corporation. IBM Data Processing Techniques. 

196-. (Q'658.502 INT, Accountancy Seminar Room) 

Rosen, Saul. ed. Programming Systems and Languages. [1967] (651.8 ROS, 

Engin. Lib.) 

Rosove, Perry E. Developing Computer-Based Information Systems. [1967] 

(658.502 ROS, Main Lib.) 

Schwartz, Jules I. Observations on Time-Shared Systems. 1965. (Q 651.84 SCH, 

Engin. Lib.) 

Sollenberger, Harold M. Major Changes Caused by the Implementation of a 

Management Information System. 1967. (658.502 SOL, Main Lib.) 

Yeomans, Athol. It Figures! An Introduction to Computers for Management. 1966. 

(651.8 YEO, Accountancy Seminar Room) 

The following list specifies the accessions for the month of October, 

1968: 

Singh, Jagjit. Great Ideas in Information Theory~ Language and Cybernetics. 

1966. (001.53 SIN, Engin. Lib.) 

34 





Hays, David G. Computational Linguistics. 1967. (Q 016.41 HAY, Engin.Lib.) 

Advanced Seminar on the Spectral Analysis of Time Series. University of 

Wisconsin, Madison, Wisc. Oct. 3-5, 1966. 1967. (519.1 ADV, Maths. Lib.) 

Barbieri, R. Computer Compiler Organization Studies. 1967. (Q 519.92 BAR, 

Engin. Lib.) 

Bucy, R.S. Optimal Filtering for Correlated Noise. 1966. (Q 519.92 BUC, 

Engin. Lib.) 

Coffman, E.G. Interarrival Statistics for TSS. 1965. (Q 519.92 COF, Engin. Lib.) 

Computing Technology Ing. Survey of Computer-Program Documentation Practices 

at Seven Federal Government Agencies. 1967. (Q 519.92 COM, 

Engin. Lib.) 

Dineley, Jack L. A Manual of KALDAS Programming. 1967. (519.92 DIN, 

Engin. Lib.) 

Funk, James E. "Slash" ALGOL Simulated Hybrid Computer. 1965. (Q 519.92 

FUN, Engin. Lib.) 

Hemmerle, William J. Statistical Computations on a Digital Computer. [c 1967] 

(519 HEM, Soc. and Prevo Med. Dept.) 

Linde, Richard R. Operational Management of Time-Sharing. 1966. (Q 519.92 

LIN, Engin. Lib.) 

McKeeman, William M. An Approach to Computer Language Design. 1966. 

(Q 519.92 MACK, Computer Centre) 

Annual Review of Automatic Programming. 1960. (510.78 ANN, Engin. Lib.) 

Computer Studies in the Humanities and Verbal Behaviour. 1968, and onwards. 

(510.7834 COM, Periodical Stack, Main Lib.) 

Bryan, G.E. JOSS: User Scheduling and Resource Allocation. 1967. (Q 621.38195 

BRY, Engin. Lib.) 

Doncav, Boris. Computer Technology. 1966. (Q 621.38195 DON, Engin. Lib.) 

Enslow, Philip H. Documentation Techniques for Digital Hardware. 1967. 

(Q 621. 381958 ENS, Engin .. Lib.) 

Laver, F.J.M. Some Developments in Computing. 1967. (Q 621.38195 LAV, Main Lib.) 

Stagg, Glenn W. Computer Methods in Power System Analysis. 1968. (621. 31018 

STA, Elect. Engin.) 

Borko, Harold. Automated Language Processing. 1967. (651.8 BOR,Wain Lib.) 

Joint Technical Committee on Terminology. IFIP~ICC Vocabulary of Information 

Processing. 1966. (651.8 JOI, Engin. Lib.) 

35 





U.S. Defense Intelligence Agency. Manual of Data Processing Standards. 1966. 

(Q 651.8 UNI, Engin. Lib.) 

Commonwealth Scientific and Industrial Research Organization. Division of 

Computing Research. Technical Note No. 24. 1968,and onwards. 

(651.8 COM, Engin. Lib.) 

Kjaer, Jorgen. Calculation of Ammonia Converters on an Electronic Digital 

Computer. 1963. (660.283 KJA, Engin. Lib.) 

Symposium on Cost Control of Projects, London, 1966. Cost Control of Projects. 

1966. (Q 660.28 SYM, Engin. Lib.) 

MULTIPROCESSING CONCEPTS 

I. Oliver 

MUltiprocessing may be defined as the operation of a computer system 

which has more than one central processing unit (processor). Until recently, 

computer systems had only one processor which meant that only one stream of 

calculation could be processed at a time. Now it is possible to link processors 

together so that multiple streams of computation can occur simultaneously. 

This results in an overall increase in service to the user by reducing 

turnaround time. As a simple example, one processor may process a long 

compute-bound job while another may service a sequence of debug runs. 

Multiprocessing creates some new difficulties for systems programmers. 

The scheduling of jobs and the allocation of other resources such as card 

readers and printers require a considerable amount of machine language code. 

The PDP 10 computer at the University of Queensland has two processors and, 

when multiprocessing is fully operational, more storage capacity than the entire 

GE 225 computer memory will be reserved for the operating system programs. 

To understand what multiprocessing involves, let us consider the "ancient" 

computers of the 1950's, taking as·an example a very simple program which merely 

re~ds some numbers from cards and prints them on a printer, thus: 

DO 10 I = 1, 00 

READ, A, B, C 

10 PRINT, A, B, C 

36 





When executing this program, the computer alternately operates the reader and 

the printer to read a card or print a line. 

Although this arrangement is attractively simple, there are two maj or 

problems of efficiency in these old computers: 

(i) the processor must wait for the peripheral device (such as card reader 

or printer) to complete its task before it can proceed to the next 

instruction in the program; 

(ii) the peripherals cannot run at full speed since only one peripheral can 

be operating at anyone time. 

We then ask the question - can the computer be built to read the next 

card while the processor works on the last card, and to print the last 

line while the processor works on the next? 

In the old system the computer is organized like this: 

d d 

READER PROCESSOR PRINTER 
L l 

d l 

MEMORY 
d ::: data 
L ::: instructions 

Figure 1 

Note that the processor is central to the whole operation. It can do only one 

thing at once, i.e. read, print, or compute. It must store each column of 

the card in memory and must send each character to the printer since the 

peripherals have no direct access to memory. 

A major advance was the introduction of device controllers which have 

direct access to memory. A computer with controllers may have a structure 

such as: 

37 





l PROCESSOR i 

l d 

READER d d PRINTER 
MEMORY 

CONTROLLER CONTROLLER 

d d 

READER PRINTER 

Figure 2 

Now the system is more complicated, and more difficult to program. But the 

processor can execute instructions white cards are being read directly into 

memory by the reader controller, and white lines are being printed by the 

printer controller. Note that the processor merely initiates reading and 

printing. The controllers take over and carry out the actual data transfer. 

By proper programming, the card reader may be made to read cards 

continuously into a number of blocks of memory called buffers. The processor 

waits only for the first card to be read. It initiates -the reading of the 

next card and then carries out the desired computations on the first card. 

Similarly, the printer can lag behind the processor, autonomously printing 

from another string of buffers being filled by the processor. 

Two problems arise. Suppose the processor has very little computing 

to do on each card. It will therefore try to get ahead of the reader. The 

program must give an instruction which tests the status of the reader and makes 

the processor wait until the next card has been read. 

Alternatively, the processor may have a considerable amount of computing to 

do so that the reader may tend to get ahead of the processor. In this case, 

the reader must be stopped by the processor when all of the available buffers are 

full. At some later time when the processor has used the information in some of 

the buffers, the reader can be restarted. A similar situation occurs with the 

printer. 





Operation of the peripherals in this manner is called concurrent or 

asynchronous. Nearly all modern computers have concurrent operation of 

peripherals which brings a great increase in efficiency. 

If a batch stream running on such a computer is observed, it is clear 

that further economies may be achieved. Some of the jobs require a large amount 

of processor time and use the peripherals scarcely at all, while others may 

process large masses of data with relatively little computation involved. While 

the first type of program is being run, the processor is being used at optimum 

efficiency (disregarding the ability of the programmer to write programs), 

but the peripherals are being used most inefficiently. The reverse is true 

in the second case. 

The technique of multiprogramming may help to improve the efficiency. 

Multiprogramming consists of the operation of a computer system in which one 

or more independent programs are run simultaneously. Ideally, programs which 

are compute-bound should be run with one or more programs which require little 

processor time and make extensive use of the peripherals. There are two 

main requirements: 

(i) both programs must fit into core memory together; 

(ii) the programs must not use the same input/output devices at the same time. 

Even if these requirements are met, there is another problem. The 

processor can service only one of the programs at a time. Although the compute­

bound job requires most of the processor time, the other jobs must use it 

occasionally to initiate input/output and to carry out a small amount of 

processing. 

Multiprogramming computers enable the processor to be switched from one 

program to another in core so that all programs are serviced. One technique is 

to let the input/output-bound jobs have the processor long enough to drive the 

peripherals as fast as possible. The remaining time can be used by the compute­

bound jobs. 

We see then that the compute-bound jobs must be interrupted whenever 

any input/output must be carried. Special hardware must be available to enable 

these interrupts to occur automatically. 

Even with multiprogramming, the programs in core are not run in a 

completely simultaneous and asynchronous mode. The processor is capable of 

39 





processing only one job ata time. The main point is that the processor 

advances a number of programs in successive time slices so that, at the macro 

level, it is not necessary for one job to be complete before another can be 

commenced. 

If multiprogramming is to be a viable proposition for a computer service 

bureau, several oth.er requirements must be met: 

(i) Independence of preparation of programs. A programmer should not be 

required to know which programs will be run concurrently with his 

program and to take special action to enable it to be so run. 

(ii) Minimum information from the programmer. A programmer should not be 

required to supply any additional information to allow his program to 

be multiprogrammed with other jobs. However, an exception may be made 

if such additional information allows the system to process his job 

more efficiently. 

(iii) Non-interference. No program should be permitted to introduce errors 

into other programs. For example, a program should not be able to access 

any of the files or core memory of any other job. Since instructions in a 

program may modify themselves during execution, dynamic memory protection 

is required. Special hardware is necessary to check the address of 

every instruction prior to the execution of that instruction. In 

addition, if a program is stuck in a loop, it should be removed from 

the system automatically when its time limit expires. 

How is it possible to multiprogram two jobs which require the same 

peripheral devices for input/output? The input/output well is the technique 

normally used for overcoming this problem. A program known as a symhiont is 

used to read all of the input for a given job onto a backup storage device such 

as a magnetic disk or drum. The whole file is transferred in this way before 

the program is executed. An input statement in the program then causes the disk 

or drum to be accessed rather than the original input device. Similarly, 

symbionts allow output to be stacked up on disk or drum. The sole purpose of 

the symbiont technique is to drive the peripherals as fast as possible. 

The PDP 10 is capable of multiprogramming more jobs than can be fitted 

into core at one time. Jobs can be swapped out of core for a time onto the 

fixed-head disks and replaced by other jobs, all of them only partially executed. 

In general, swapping is a costly overhead, i.e. it wastes system resources. 

40 





But it does not allow more users to access the system than would otherwise be 

the case, and, in a less than fully loaded system, may not significantly affect 

service to individual users, 

It would appear that, in a multiprocessor system with, say, two processors, 

the throughput could be in.creased by a factor of two. However, the actual factor 

is somewhat less than two due to certain overheads. A more complicated program is 

required in the operating system to schedule the resources of a multiprocessor 

system so that more processor time is used in executing code that is unproductive 

(from a user's point of view.) . In addition, both processors must access core 

memory. A finite time called the cycle time (approximately one microsecond on 

the PDP 10) is required to read or store a word. Processors requiring access to 

memory at frequent interva~s may be held up for a fraction of a microsecond 

by other processors also accessing memory. 

Time-sharing is the simultaneous interactive access to a computer by a 

number of independent users. Given a multiprogramming system, it is possible for 

users to have immediate access to the computer facilities through remote terminals 

such as teletypewriters or cathode ray displays. Each user can initiate programs 

and can_have almost immediate respons~ on his terminal to its execution. The 

main point is that the access is interactive. 

to nearly all of the facilities of the machine 

console. If there are n users, each user sees 

as the actual machine. The figure is somewhat 

time used in scheduling operations. But large 

Each user apparently has access 

as if he were suituated at its 
1 . 

a machine roughly =th as fast 
1 n 

less than - due to the processor 
n 

time-sharing computers are so fast 

that the effective user speed is usually more than adequate. 

41 






