
, <

J

--r -

UNIVERSITY OF QUEENSLAND

COMPUTER CENTRE

COMPUTER

CENTRE

BULLETIN

'~==~=========================
Volume 2, Number 7.
7th July, 1969.

Editor:
H. L. Smythe.

THIS EDITION

This issue of the Bulletin continues to "inform c:lients of the

Computer Centre about.the discovery of further-PDF.lO.FORTRAN IV errors.

Clients are asked to·report any suspected. errors to"the·Administrative

Officer so that Digital Equipment Australia can be immediately notified.

Readers should 'find our.main article, Some Thoughts on the Construation

of Scientific Programs~ particularly intereeting and instructive. The

Bulletin also lists the library accessions for March,

Readers and external users are encouraged to submit articles on some

aspect of computing relating to their works undertaken either as an individual

or as a member of a group project. Articles up to 2.000 words may be

published. If you are using the computer in a specialised field, be it

commerce, administration, medicine, engineering, or even education, please

write to the Editor about your work.

Helping the Bulletin will help you!

STAFF OF THE COMPUTER CENTRE

RETURNED

After an absence of two months, Systems Programmer John Row is once

more immersed in work at the Computer Centre. As assistant navigator on the

yacht "Kaleena", John took part in the Auckland to Suva race, sailing 1,140

miles in 8~ days. The "Kaleena" had the distinction of being the only

Australian yacht in the race. Now, it's work again as normal, enlivened only

by the occasional sea shanty emitting from the Programmers' Room.

8,

LIBRARY ACCESSIONS

For the benefit of book enthusiasts, the Bulletin continues to

publish the monthly accessions of books and periodicals on computing of

the University Libraries. This month's list details the acquisitions of

March 1969.

Hays, David G.

Allan, D.M.

Introduction to Computational Linguistics.

(410.18 HAY, Engin.Lib.)

Computer Programmes for Distribution AnaZysis and

Assignment in Transportation Studies. 1968.

(Q519.92 ALL, Engin.Lib.)

Cutler, Donald I. Introduction to Computer Programming. 1964.

(519.92 CUT, Architecture Lib.)

Introduction to ALGOL. 1964. (519.92 BAU, Engin.Lib.)

Stuart, Fredric.

Gschwind, Hans W.

Jensen, Randall W.

Harper, Goin Neil, ed.

Smith, John U.

Geck, Elisabeth.

Leed, Jacob, ed.

Engeler, Erwin.

FORTRAN Programming. 1969. (519.92 STU, Pharmacy

Lib.)

Design of Digital Computers. 1961. (621.381958

GSC, Engin.Lib.)

IBM Electronic Circuit Analysis Program. 1968.

(621.381 JEN, Engin.Lib.)

Computer Applications in Architecture and Engineering.

1968. (651.8 HAR, Architecture Lib.)

Computer Simulation Models. 1968. (658.505 SMI,

Agriculture Lib.)

Johannes Gutenberg: From Lead Letter to the Computer.

1968. (655.1 GEC, Main Lib.)

The Computer and Literary Style, 1966. (808 LEE,

Main Lib.)

FormaZ Languages; Automata and Structures. 1968.

(510 ENG, Main Lib.)

88

(PDP 10 FORTRAN. IV ERRORS

With any relatively new computer system, it is likely that software

errors undetected by the manufacturer will occur in released programs.

Unfortunately, this is the situation with the PDP lO,and we ask for your

co-operation in detecting these errors. From problems discovered by users,

several errors in the compiler and the FORTRAN Operating System have been

isolated. These "bugs" have been referred to Digital Equipment Australia

for correction, and, in addition, the Bulletin is publishing them each

month to help Computer Centre clients avoid these trouble areas. In some

cases, it is possible for corrections to be made locally, but very often,

these errors ~nvolve basic functions of the compiler, and it is not feasible

for local changes to be made. Please accept our apologies, and in the

meantime, here are some more traps for unwary players.

1. If a subroutine uses variable dimensioning of arrays in its calling

sequence and also includes arithmetic statement functions, the code

produced by the compiler wiZZ not work.

2. It has been found that a program with a large number of subroutines,

greater than ten in most case·s, may not load properly, and will

probably lead to the message:

ILLEGAL UUO AT LOCATION XXX

This is a LOADER error which the Computer Centre has reported to DEA.

3. Real constants that have more significant digits than can be

expressed in machine word length, will produce incorrect values when

they are converted by the compiler. No error message is produced, and

clients are recommended to use only nine significant digits for real

constants.

4 . Many users have reported that the use of a slash within a FORMAT

statement, sometimes produces incorrect results. This has been

traced to an error in BATCH, the program which runs the batch

processing jobs, and is not a fault of the FORTRAN compiler.

One main cause of this error has been. detected and corrected.

Users, however, are asked to report any further occurrences of this

problem.

5. No check is made for overflow and underflow in complex arithmetic.

Thus (1 + j 0) * (1 + j e:) where 0 and e:+0 will lead to an improper

value of the real part of the product because of underflow in the

evaluation of o*e: as part of the real component.

It is recommended that, at this stage, a check should be made of

the significance of both parts of complex numbers involved in complex

arithmetic so that this situation may be avoided.

The staff are planning to implement a general procedure for the

overall handling of overflow and underflow conditions. However,

progress is presently halted by lack of information on a parallel

scheme currently proposed by DEA.

6. Complex or Double Precision quantities raised to real powers, generate

calls to CEXP.3 or DEXP.3 which pass the real exponent without a low

order word.

For example:

DOUBLE PRECISION C,CC

COMPLEX A

CC = C**5.1

AA = A**7.9

Change the exponent type explicitly, thus:

**DBLE(5.i) or 5.1D~

**CMPLX(7.9,~) or (7.9,~)

90

7. In last month's Bulletin, we reported that the function ATAN returns

an incorrect value (0.0) for an argument of~. It has since been

found that the error lies not in ATAN but in SINGL. The problem

is being further investigated.

Users are urged to report any errors they have discovered to the

Administrative Officer (Mr. John Jauncey, ~xtension 8471), including

evidence such as listings and card decks. This will greatly assist staff

members in their investigation of the problem.

SOME THOUGHTS ON THE CONSTRUCTION OF SCIENTIFIC PROGRAMS

Dr. J. L. Meek

This article describes some of the more common characteristics of
scientific programs, and discusses the ways by which program organization
can become more efficient.

The author, Dr. J.L. Meek, B.E., B.Sc., M.S. (Cal.), Ph.D., was
one of the original "Gap" programmers on the GE 225. He worked on
Structural Dynamics and Finite Element Theory with Professor Clough at
the University of California, Berkeley. At present, Dr. Meek holds the
position of Reader in Civil Engineering at the UniVersity of Queensland.
His research interests are in Finite Element Applications in Structural
Mechanics.

Scientific programs, at least those that we have encountered in the

analysis of structures and the elasto-plastic continuum, have certain

common characteristics. These are summarized as follows:

(1) The input data can be arranged in a well-organ~zed, tabular form.

(2) The basic core of the program consists of the solution of a large

number of simultaneous equations. If the problem is non-linear

in nature, the solution may involve many passes through the

equation complex.

91

(3) Result output may be copious in extent, and yet, in the main, may be

of little use except for a few salient values.

(4) The complete program may be so long and complex that it consumes

core storage and defies complete visualization as a coded whole.

These features can lead to programs that are very demanding in cOre

storage and difficult to code in an optimum way. They have led not only

to a study of the nature of the equations involved, but also to an

examination of the structure of the program. Thus, our first exercise was

concerned with the nature of the simultaneous equations to be solved. A study

of population density in the coefficient matrix showed that the iteration

methods such as Gauss-Seidel could be useful to save storage, while a study

of the structure of the equations has led to band width minimization and the

use of efficient band solvers. A banded structure of equations is sho"Wll in

Figure 1 in which non-zero terms are arranged along the forward diagonal of

the matrix. In this case, each term shown is a (6x6) submatrix, this dimension

(6) corresponding to the six equilibrium equations at each joint of a

3-dimensional framed structure.

•
/each term=6x6 sub matrix
~ . Istepsize= 6

x x . ' x
x x

x • x I x
all zeros

.!. ~_~ x
x x x • x

x • x
x • x

x • x
x • x x x

all zeros x • x x
x x • x
x x x •

L 4~ band width

FIGURE 1

92

(To further reduce the use of the core store, it is necessary to

segment the program into its basic functions, and to describe the desired

outcome of each concisely. Each segment will then become a self-contained

unit (overlay) that may be checked and coded independently of the remaining

portions, except, of course, through connecting labelled common store.

One such suitable breakdown is as follows:

(1) Input Function

Basic data for a particular problem is read into store, and checked

as far as possible for accuracy. Error messages are printed,

together with an echo print-out of data. The detection of an error

will activate a flag that terminates the program at the end of this

segment. Such an input program may be quite complex, and include

checking of data for incorrect character and format punching in

addition to simple numeric accuracy.

(2) Setup Function

At this stage, the coefficient matrix for the linear equations is

generated, and further checks-are applied to the data. Again, an

error will cause a flag to be set that terminates the program at the

end of the segment.

(3) Decomposition Function

This includes .the formation of the right-hand sides to the equations

(load vectors), and the modification of the whole system for

boundary conditions, such as prescribed displacements. Finally,

the decomposition of the band matrix ready for back-substitution, is

performed.

(4) Solution Function

Here, the back-substitution is carried out. For large scale systems,

it is important that iteration on residuals be included as an option,

since many problems are not well-conditioned and need this

93

refinement. The iteration on residuals requires some double precision

arithmetic in the calculation of the residuals. Our experience shows

that 2 or 3 iterations are generally sufficient.

If the problem is non-linear, this segment may contain many other

features. The analysis may then be contained here, or may have to

return to (2) after passing this overlay, depending on the method of

analysis employed, (i.e. incremental or iterative, or both).

(5) Result Interpretation Function

A primitive scheme will produce a blanket print-out of all results.

A refinement may include a search for maxima or minima. The most

suitable form for result presentation will generally be graphical;

for example, contour plots for stress values in the analysis of the

stressed continuum, or bending moment and shear force envelopes for

members of framed structures.

If several load cases are incorporated, this feature may select

prescribed load combinations and also plot influence functions.

In the programs we have produced, not all these features have been

written in, but we have sufficient experience to know that most of them will

be of great benefit to the ultimate program user. A feature of such a scheme

is that once input-output overlays have been written for one class of problem,

they may be easily modified for similar problems.

In the program organization, efficient use should be made of function

subprograms, subroutines and data statements. In fact, a study should be

made as to the coding efficiency (in machine language) of commonly occurring

operations (particularly in matrix algebra work).

For example, clearing the array A(50,50) requires the coding:

DQ 100 1=1,50

DQ 100 J=1,50

100 A(I,J)=O.O

94

whereas the subroutine for the same operation may be:

SUBR9UTINE CLEAR(A,N)

DIMENSI9N A(l)

D9 100 I=l~N

100 A(I)=O.O

RETURN

END

Note that the use of the one-dimensional array A(l) in the subroutine allows

its use for arrays of one or more dimensions. The call then would be:

CALL CLEAR (A,2500)

When such an operation is repeated many ti~es, it is significant to note

that not only is the absolute coding shortened, but also the FORTRAN

source program. Similar use can be made of matrix operations using

subroutines with variable dimension statements. Subroutines common to all

segments can be then stored permanently along with the main calling program.

Preset data should be organized in data statements, (written in the

main program if used in more than one segment).

For example, if A(2,2) is used as IT·O 1,00
1 0 2 0 it is generated as:
.' , '

DATA A/2.0, 1.0, 1.0, 2.0/

The data statement may be used also in the presetting of a sequence of

operations on the rows and columns of a matrix. For example, suppose that

A(12,12) is to have rows interchanged and columns interchanged to give the

rearranged sequence (1~7,2,8,3,9,4,10,5,11,6,12). The coding is as follows:

95

DIMENSIQN A(12,12), B(12,12),ICH(12)

DATA ICH/l,7,2,8,3,9,4,10,5,11,6,12/

DQ 100 J=1,12

L=ICH(J)

DQ 100 1=1,12

100 B(J,I)=A(L,I)

DQ 110 J=1,12

L=ICH(J)

DQ 110 1=1,12

110 A(I,J)=B(I,L)

Finally, care should be taken to avoid elaborate recurrence relationships

when generating locations in arrays when a simple 1=1+1, type of statement in a

loop will suffice.

It must also be mentioned that these programs require efficient

organization of backing stores (tape and/or disc) .. For example, in the

program setup, data may be generated for members in sequential form and stored

on disc. If the coefficient matrix is generated in block form (rather than all

being in core at once), this data will have to be obtained in random access

fashion. Again, partial information calculated and stored at (2) will

generally be needed for recall in the result function (5).

EXAMPLES

(1) In this example, the effect of ill-conditioning of equations is

demonstrated and the result given of the iteration on the residuals. The

cantilever beam of uniform EI=~, shown in Figure 2, is loaded with a force at

the free end. For a length 'of beam 100 units, the theoretical value of the

deflection (v) at the free end for unit load is:

v = 6.6 x 105 (1)

96

(EI constant ~P.I

1
(l.l ,l a;,

'2
~ 13 ~ 1 t-I

I· t . 1. t . 1 . t ./ . t ./4
. EI·' f

(a)

6Et , GEl} V) -zr Joint. forces for

12EI 12EI VI -I
tr tr

1fI(~1!~ ---: 'ZP Joint forces for L !ft~ }
W t '12t~I tift 9.-1

FIGURE 2

Development of Stiffness Matrix for Cantilever Beam

If the beam is subdivided (as shown in Figure 2) into the segments

(1) to (4) with nodes 1 to 4, the calculation in finite form requires the

deflection and rotation at each node so that 8 equations must be solved.

In this case, the deflection at the end will be still substantially that

given in Example 1. However, when a large number of subdivisions is made

(100 for example), the value for the end deflection is in considerable error.

This is because a rotation term near the left hand end has a big (or

magnified) influence on the deflection at the free end. That is, a

round-off error in a rotation term there will cause a much greater error in

t4e end deflection. The analysis of the beam was carried out using 50 and

100 intervals of subdivision. The successive values of the end deflection

for the 100 intervals are given below as the iteration is carried out on

residuals.

97

6.433 x 10 5 Initial Solution

6.55877 x 10 5 1
6.66629 x 10 5 2
6.666557 x 10 5 3
6.66656700 x 105 4
6.66656731 x 10 5 5
6.66656732 x 10 5 6

It is seen that all significant improvement has been reached on the

3rd iteration. This is shown pictorially in Figure 3 in which plots have

been given for the sum of squaresof residuals against number of cycles of

iteration for both 50 and 100 segments.

U"I
...J «
:;:)
0
VI
LAJ
0::

10-3
L&..
0

\'

\~
1.",200 Equations 1\ \

11'1 \ \
U.I
0:
<Ii(
;::)
0-
U"I

\
\ , j ~

\ \ V \
u...
0

\ \ V J \
~
:J
VI \ V \

1 ~ i--"'" -.. r-.....
I\.

\ V' I" 100 Equations

2 J 4 567
NUMBER OF CYCLES OF ITERATION

FIGURE.J.

98

(2) In this example, the solution is given to an elasticity problem

using the finite element method of analysis. The problem is to calculate

the stresses in, and displacement of, a semi-infinite continuum subjected

to a free P=lOOOO kips perpendicular to the free surface (see Figure 4).

P - -10,000 Kips

ELEMENT LAYOUT
BOUSSINESQ PROBLEM. LINEAR STRAIN TRIANGLE.

FIGURE 4

In Figure 4, the setup tor the prep$if'ation of <lata. hshown. Each

node represented by a "dot" at the apices And mid-points of sides of the

triangles, will havedi!!lpla.cements (u, v). and hence to Jolve the systew,

the number of linear simultaneous equations will be tviee the n'1.Ullher of

nodes. It should be evident that the problem will require a coordinate

99

array (only values at apices need be input since the remainder may be

calculated), and an element array giving the node numbers of each element.

If (NUM) is the total number of nodes, and the node numbers for the

triangles are contained in the array NQDES(200,6), it is clear that a check

of data should be made such that no node number is less than zero nor

greater than (NUM). That is, if (NUMEL) is the number of elements, the

check is as follows:

IFLAG=O

DQ 100 I=l,NUMEL

DQ 100 J=1,6

IF(NQDES(I,J).GT.O.AND.LE.NUMEL) GQ TQ 100

PRINT 20,1

20 FQRMAT(17H ERRQR ELEMENT NQ!I5)

IFLAG=l

100 CQNTINUE

A graphical presentation of output is shown in Figure 5. In this

figure, the left-hand drawing is the output produced by the computer plotter,

whereas the right-hand drawing is the result of smoothing these curves.

The contour lines have been drawn from the stress values at the apices and

mid-points of sides of the triangles in Figure 4, assuming linear variation

between nodes. To do this, each main triangle in Figure 4 is subdivided

into 4 subtriangles, and each of these treated separately. The blocked-out

portions in the figures show how contour spacing may be altered in zones of

high stress gradient.

100

.,..:
Ul
..J -~ :I - L&J en ...J en all

LIJ 0
x x

0:: Q: Il.
Ul ~

H
11l

...Jd
~Ul
-La.! Oz
~-
I:r.:~

;:)
0 m

101

