
Vol. 4, No. 10
4 October 1971

UNIVERSITY OF QUEENSLAND

COMPUTER CENTRE

COMPUTER

CE TRE

Editor:
Mrs Sarah Barry

WORKSHOP ON 'PICTORIAL ORGANIZATION AND SHAPE'

A Workshop will be held at the C.S.I.R.O. Division of Computing Research,
Canberra on the 29-30 November 1971. This date follows the Canberra
Perception Symposium from 26-28 November. The aims of the Workshop are:

1. to discuss viewpoints on what constitutes 'pictorial organization' and
'shape'

2. to compare different algorithmic approaches for recovering pictorial
organization and shape

3. to examine the results of psychological and physiological experiments
which might be relevant to these approaches.

C.S.I.R.O. invites prospective attendees to reply by 5 October stating their
background and interests. Intending speakers should also include a summary
of their topic and be prepared to provide a written paper at the Workshop.

Reply directly to Dr J.F. o 'Callaghan, C.S.I.R.O., Division of Computing
Research, P.O. Box 109, CANBERRA CITY, A.C.T. 2601.

NEW EDITOR

A new version of Editor (version 1.1) became operative on Wednesday 25 August.

Most of the new features are invisible to the user but they result in
improved file handling by the Editor.

Other new features are as follows:

(a) '*' is not suppressed after to.

When contro1-0 is typed the printout from the program is suppressed.
Previously the '*' signalling that the Editor was ready to accept a new
command was also suppressed and users had to assume that the Editor was
ready.

(b) DISK ERROR message

The message 'DISK ERROR' has been expanded to explain the exact nature
of the error.

(c) Lines split across disk blocks

Previously, if a line would not fit into the space left in a disk block
the Editor would null fill the rest of the block and place the line in
a new block. In this version, the Editor makes maximum use of file
storage and will split a line across two blocks in order to fill a block
completely with meaningful data.

137

NEW BATCH SYSTEM

The new batch processing system has now been implemented on the PDP-IO. Full
details of the new Batch were given in last month's Bulletin.

Two errors, detailed below, may occur with the new Batch system. These errors
are being investigated and it is anticipated that they will shortly be fixed.
In the meantime users are asked to check their output carefully and report any
discrepancies to the Computer Centre.

(a) Under some circumstances, input records will not be read correctly. If
the fields read terminate before the end of the card, but additional data
is punched on the card up to column 78 then the error is likely to be
experienced. It will manifest itself by the overprinting of adjacent
lines of output or the absorption of the first column of a successive
card, so that data fields are apparently shifted one place left.

(b) If a run terminates with a monitor detected error, then under some
circumstances, the end of the message may be overwritten by a portion of
some previous input record.

COMPUTER CENTRE MANUALS

(a) DDT-I0

Chapter 3 of Technical Manual No.12 (PDP-IO Utility Programs) has now
been completed. It describes the operation and use of DDT-IO (Dynamic
Debugging Technique) in detail, and is available from the University
Bookshop for $1.65.

(b) Systems User's Guide Revision

The first set of revision pages for the System User's Guide is now
available. These may be obtained from the Computer Centre free of
charge.

CORE STORAGE ALLOCATION FOR THE FORTRAN USER

Following the recent implementation of a new FORTRAN system that affected a
number of users running very large programs, the Centre has received enquiries
about the actual amount of core storage available for a user's FORTRAN
program.

138

I , It is difficult to define a firm figure for the core area available for a
user's programc Of the 24K overall limit, 4K is always required by the basic
FORTRAN operating system. This handles input/output, format control and
character conversion. The remaining 20K of core must contain the user's
program, his data areas and all the other FORTRAN library facilities
requested by his program. As well as the standard library routines of SQRT,
SIN, COS, LOG, etc., various library routines are called for such operations
as double precision or complex arithmetic, exponentiation, and for statements
such as DEFINE FILE, ENCODE, END, etc. Thus, the amount of core required by
FORTRAN is a variable quantity depending upon the particular facilities
requested.

While the Centre will always endeavour to keep the maximum amount of core
storage available to the user, future software releases from manufacturers
may result in variations to the boundaries given above. It is suggested that
users running large programs segment their programs into overlays or arrange
for large data areas to be stored on disk.

FORTRAN VERSION 23

1. Warnings·

Users should be aware of the following points when using FORTRAN.

(a) A format specifier in say a read, write, encode or decode statement
can only refer to a format statement or an array which at the time
of execution will contain a legitimate format. string, If other than
these 2 possibilities occur, the error will not be detected until an
attempt is made to execute the statement, At present, the FORTRAN
operating system attempts to output the character in the format
string which is illegal (not output correctly at present) and also
the format string which contained it. If the format specifier
referred to say the statement ending a DO loop, then the execution
pac.kage will attempt to output locations of the user's program as a
character string. with generally unuseful results. A change is in
the process of being implemented that will list properly the
character discovered as being in error, and subsequently a more
meaningful message will be output if the string pointed at is found
not to be a legitimate character string.

(b) Subprogram names may not be used as dummy arguments or appear in
any non-executable statement in a program other than as a scalar
variable in a type statement, It must appear as· a scalar variable
and be assigned a value during execution of the subprogram which
is the function value,

engo SUBROUTINE A(A) is incorrect.

139

(c) A number of FORTRAN compiler diagnostics are either not detected or
not flagged correctly

e,g, 1-2 ARRAY NAME ALREADY IN USE is flagged as S-l SYNTAX

M~12 NON INTEGER PARAMETER is flagged as S-10 ILLEGAL
CHARACTER

When the compiler detects an error it records the error and the
continuation card and column at which the error occurred. The
compiler then returns to the statement recognition scan routine.
Depending on the nature of the initial error. it may be that other
error situations will be induced. The compiler assumes the last
error is the correct one and ignores previous ones. In practice,
this means that the diagnostic message may not be very meaningful,
although it does indicate an error of some sort exists in the
statement.

Cd) When using free field input users should be careful not to use a
mixture of delimiter characters between adjacent fields, Blanks or
any non-standard character can be used as field delimiters, but
combinations of these will result in input variables being set to
zero as the input routines treat a change in delimiter character as
a null field,

example:

The following program:
2 WRITE (6,1)
1 FORMAT (' 2 REAL & 2 INTS'/)

READ (5,5) A.B,J,K
5 FORMAT (2F,2I)

WRITE (6,10) A,B,J,K
1(lJ FORMAT (' I ,2F. 2I)

GO TO 2
END

provides the following results:

2 REAL + 2 INTS
1,562,664678

1,50(IJQJ{1)0{lJ

2 REAL + 2 INTS
23,,5,M7<tab>8{ll

23, (iHMHlJQJ0(IJ

2 REAL + 2 INTS
12.56,64,596663,2

12,50000fllQJ
2 REAL + 2 INTS
tC

2.6000000

5.6000000

140

4 78

7 80

4 59

(e) Users should beware of specifying constants as the arguments of a
call to a routine when that routine involves the exchange of the
values of its arguments.

example:

Main program -

Function -

x = SOM (2.0,3.0,z)

FUNCTION SOM (A,B,M)
IMPLICIT - - -
IF (A.LE.B) GO TO 10
C = A
A = B
B = C

The result of the call to SOM from.the main program will exchange
the actual values of the constants 2.0 and 3.0. And thereafter
2.0 will have a 'value' of 3 and 3.0 will have a 'value' of 2.

2. These errors have been reported to Digital for correction.

(a) Users should not use repeats with slashes in FORMAT statements.

e.g. SF4.0 will work correctly

but (2(/), SF4.0) will cause values to be lost, in this example
every sixth output.value is lost.

(b) In the following example the output list contained 3 implied DO
loops with an overall fourth DO loop. The outer two have their
first index as a variable (J), but the middle one has a constant
index (1). Wrong code is produced for the third implied DO
loop.

141

IMPLICIT INTEGER (A-Z)

DIMENSION THEM (9,300)

WRITE (6,305) FMT, (THEM(J,I),J=2,7),THEM(1,I),(THEM(J,I),J=8,

lITMSIZ), I=INDEX,MOST,LINES)

FORMAT (Al,20X,6A5,2X,Al,lX,2A5,20x,6A5,2X,Al,lX,2A5)

END

The cure is to rearrange the data so that the same first index is
used for the three internal implied DO loops.

3. These errors have been corrected, but the patches have not yet been
implemented into the system.

(a) Users are warned not to use mixed mode expressions that involve
subexpressions of integer, real and double precision type. If
integer expressions are avoided, results are satisfactory. However,
if integer expressions are involved, the compiler in some
circumstances fails to take note of the 'type' of the variables when
converting from integer to real to double.

(b) Statements involving logical IFs followed by subroutine CALLS result
in an illegal UUO.

e.g. IF (IC.GT.0) CALL PUTOUT (')')

results in two arguments being generated and the program will crash
with an illegal DUO.

(c) Recursive statements are not flagged as illegal by the FORTRAN
compiler. However the code generated by the statement will cause
the program to enter a loop from which it cannot exit.'

e,g. FUNC (I,J,K)=I+J+FUNC(I,J,K)

(d) The compiler generates incorrect subroutine exit code when some of
the dummy arguments are double precision or complex arrays.

(e) The compiler does not always handle complex arithmetic correctly,
e.g. in the case of division of a complex number the imaginary part
is not divided.

(f) The file separator character is not detected by the operating system
when reading under any format other than type A.

(g) OFILE sometimes produces the wrong extension to a data file.

e.g. FOR10/Z$C

142

(h) Inputting a Hollerith string into a format statement containing
single quotes has an error in that the next character to be input
is ignored, .

e.g. input under ('~~~~~' ,14)

ABCDE1234

is then output as

ABCDE234QJ

Users should note also that inputting a single quote character into
a format statement or array will result in the character translated
on input to the double quote character. This may seem anomalous
but is a reasonable action if single quotes are not to be illegal
in this situation.

Programmers are advised. to use H type rather than single quotes
for inputting Hollerith strings to avoid both these problems,

e.g. ('~~M~' ,14)

should be replaced by

(5HMM~,I4)

if this is to be used as an input format statement. The same
remarks apply to formats in arrays.

example:

The following program

1 PRINT lQJ
lQJ FORMAT(' INPUT UNDER (' 'sssss" ,14)' /)

READ 11,INT
11 FORMAT('SSSSS' ,14)

PRINTl1,INT
GO TO 1
END

produces the following results:

INPUT UNDER ('SSSSS' ,14)
..•.• 1234
.... 234QJ
INPUT UNDER ('SSSSS' ,14)
.. ' .. 12345
." .. 2345
INPUT UNDER ('SSSSS' ,14)
, , , , , 12345 .
""""2345

143

BASIC VERSION 15

An illegal statement, such as

1~ A=I, B=~

is not detected and is not flagged with a diagnostic message. Instead some
kind of execution is attempted, usually giving erroneous results. In PDP-IO
BASIC it is incorrect to write two LET statements on one line, but the
compiler has failed to recognize the error and the program results in an
execution error. Users should check the syntax of their programs as well in
these cases if they feel that there is no error in.their program logic.

MACRO VERSION 43

Macro expansion fails when an IRP is contained inside a REPEAT within a Macro.

PLOTTING

The problem reported in WN-43 concerning plotter coordinates close to the.
plotting boundary appears to have been solved. The Computer Centre would
appreciate any users still having trouble with this problem to contact the
Administrative Officer.

FUNCTION SUBPROGRAM FOR BYTE MANIPULATION

A real function subprogram called BYTE and an integer function subprogram
called IBYTE are now available in the FORTRAN library. BYTE and IBYTE allow
the user to manipulate bytes in a FORTRAN program.

A byte on the PDP-I0 is a collection of consecutive bits, from 1 to 36 bits
long, Bits are numbered from 0 to 35.

o 35

,, ____________ --;~------------JI
- V

36 bits

144

This function allows the programmer to 'lift' a byte of any length from any
position in a source word. The value of the result of the function is the
value of the destination word with the specified byte from the source word
inserted in the required position. The values of all the arguments are
unchanged.

The call to the function is as follows:

VALUE
{ IVALUE} =

BYTE
{IBYTE} (SOURCE, LENGTH, IS, DEST, ID)

SOURCE is the source word containing the byte

LENGTH is the length of the byte in bits

IS is the leftmost bit of the byte in SOURCE
VALUE .

{IVALUE} 1S the result of the call. It contains the value of the word

DEST with the byte inserted. ID is the leftmost.bit where the byte is placed.

LENGTH, IS and ID are integers.

examples:

(i) If we wished to obtain a result with the value of B containing a byte
of 12 bits obtained from A, the call would be:

.'~

ANS BYTE (A, 12, 8, B, 0)

0 7 8 19 20 35

A: .- source

-
12 bits

35

B: destination

o II 12 35

ANS: result

145

~,.

(ii) If we wished to obtain the third character in a word and deposit it
right justified with zero filling in IRES, the call would be

IRES = IBYTE (IGHAR5, 7, 14, (/), 29)

P 6 7 13 14 20 21 27 28

ICHAR5: ~

ICHAR1: ~
IRES: ~ 2:1 29

The following non-fatal error messages could occur.

(i) LENGTH < 0 or LENGTH > 36

(ii)

returns the result as DEST and gives the message
BYTE ARGUMENT OUT OF RANGE

< 0 or > 35

returns the result as DEST and gives the message
BYTE ARGUMENT OUT OF RANGE

(iii) LENGTH + ID > 35
returns the result as DEST and gives the message
BYTE CROSSES WORD BOUNDARY

146

34 35

source

3: I
destination

35

1
result

