
, '

I

,7

(

Vol. 4, No.6.
7 June 1971

UNIVERSITY OF QUEENSLAND

COMPUTER CENTRE

COMPUTER

CENTRE

BULLETIN

Editor:
Mrs Sarah Barry

NOTICE TO COMPUTER CENTRE CLIENTS

BUILDING CHANGES TO THE CENTRE

A number of building modifications have begun in the Computer Centre area and it
is expected that the modifications will take about six weeks to complete.

The modifications will give more space in the machine room which is presently
overcrowded, particularly in the maintenance area behind the installation, and
allow a number of activities in the machine room to be repositioned; for example,
the card reader and line printer will be placed near a new counter/window for
receipt and dispatch of computing work which should streamline the batch operation.

The clients' keypunches will be relocated firstly to a temporary location in the
room opposite the Secretary's Office (in the corridor running to the west off the
vestibule) and later to a room opening directly from the vestibule area. Also, a
work counter will be placed in the vestibule for the convenience of clients.

The main building change will be the erection of a new interior wall parallel to
the existing north-south glass partition separating the vestibule from the
machine room, but six feet further to the west. This wall will have two counter/
windows similar to tellers' windows; one for receipt and dispatch as mentioned
above, the other for general and accounts enquiries.

While the building changes are in progress, the input trays and output racks will
be placed in the vestibule against the western wall and enquiries will be shifted
to the Secretary's Office in the corridor.

There should be no disruption of service during the building changes, but there
may be minor inconveniences due to temporary relocation of activities; the Centre
regrets any inconvenience which may be caused to clients.

RELEASE OF NEW FACILITIES

A new operating system has been implemented during May. This released the LIMIT
command and incorporated a few minor changes to the system.

Ie LIMIT

The general format for this command is:

LIMIT
JOB

(PHASE) {COST=}cost
TASK

LIMIT can be abbreviated to LIM; JOB, PHASE and TASK to J, PH and T
respectively; and COST can be abbreviated to C. The default option is TASK.

This command has been implemented to give users greater flexibility in
controlling their expenditure within a job.

73

(a) Changing the job cost limit

The JOB option allows the cost limit for the complete job to be
reset to the cost specified in the LIMIT c~mmand.

(b) Setting sub-limits within a job

The PHASE option sets a limit for a phase of the job, where a
phase consists of a task or a number,of tasks., The TASK option
sets a limit for an individual task, where a task ,consists of
the processing initiated by a single command. Each new phase
or task limit will reset the previous limit.

example:

.LIMIT(PHASE) C=4.<cr>

.LIM (PH) 2.~¢<cr>

(c) Clearing sub-limits

resets previous limit
whether a task or phase
limit.

The cost limit set for a phase or a task can be cleared by
another phase or task limit command with a cost of zero.

example:

2. ERROR MESSAGES

.LIMIT (T) 5~<cr>

.LIM (ll<cr> clears task or phase limit
depending on which is
presently applicable.

The following error messages have been added to' the system.

(i) PHASE COST LIMIT EXCEEDED

The current task is stopped and no further tasks will be successful
until the limit is cleared.

74

(ii) TASK COST LIMIT EXCEEDED

The task is stopped and the limit cleared.

The following system error messages have been altered.

(i) COST LIMIT EXCEEDED PLEASE LOGOUT

now reads as JOB COST LIMIT EXCEEDED. There is no need to logout
now since the LIMIT command can specify a new limit for the job.

(ii) FILE LIMIT EXCEEDED

now reads as JOB FILE LIMIT EXCEEDED.

3. ERRORS IN COMMAND DECODER

The following errors have been corrected in this version of the operating
system.

(i) Automatic compilation sometimes failed to select the most recent
file for execution

(ii) A garbled error message was given if an illegal processor-program
name was found.

~ PLOTTER AVAILABLE TO BATCH USERS

The digital plotter has now been made available to batch users with the
release of a modified version of the Batch system.

Plotting via Batch is similar to plotting via remote terminals; plotter
subroutines called by the user's program produce plotter output as a named
file on disk. On completion of the program, this file is then transmitted
to the plotter by a PLOT command referring to the file. The attached figure
shows a sample deck for using the plotter via Batch. The PLOT command card
must follow the completion of the user's program and must be followed by a
file separator card. .

Users should note the following arrangements for this initial release of the
plotter via Batch.

(i) Plotter output is not left in the output shelves, but should be
collected from the Operations Supervisor.

(ii) No charges will be made for the use of the plotter via Batch until
further notice~

(iii) Plotter output from this version of Batch is not automatically
identified by the user's project number. Users are therefore
requested to plot their own project number as follows:

75

Include the following two statements immediately after the
CALL to the PLOTI subroutine (which initializes the plotter
file on disk).

CALL SYMBOL «(ll.5,6.(Il,(Il.5,'P-nnn' ,27(1l.(Ilo5)

CALL PLOT (1. (Il ,(Il. Ql, -3)

where 'nnn' is the user's three digit project number.

If, for example, the user's project number is 362, then

CALL SYMBOL«(Ilo5,6.(Il,(Il.5,'P-362' ,27(1l.(Il,5)

will plot the identification P-362 on the user's output.

The following CALL to PLOT simply resets the origin of the plot
one inch beyond this identification.

The revised Batch, currently being written, will automatically identify
output.

Sample Batch Deck for Using the Plotter

This command sends the plotter
file produced by the user's
program to the plotter
symbiont 0

For example, if the
filename was PTOUT the
command would be PLOT
PTOUT.

JOB ID card

76

.EOJ

card

card

}
User's data
(if required)

User's FORTRAN program
whicQ uses the plotter

. subroutines to output
a plotter file, with a
filename assigned by
user, to disk.

For example, a file
could be created named
PTOUT.

FORTRAN IV ERROR

The error reported in the Bulletin, vol. 4 p. 31 on restoration of variables in
a calling sequence appears to occur with DOUBLE PRECISION variables as well as
COMPLEX variables. The solution is to put both DOUBLE PRECISION and COMPLEX
variables at the beginning of any calling sequence.

BATCH ERROR

Since question marks have special significance to Batch, users are advised to
use this character with caution in their programs. Some users have reported
NO EXECUTION messages with error-free programs. This can usually be traced
back to the use of I?' in their programs.

A collection of all the Batch, FORTRAN compiler and operating system errors
that, still exist has been culled from past Bulletins and Newsletters. It will
be placed at the front of the blue binder containing past Bulletins, which is
presently kept on the desk in the foyer of the Computer Centre. This has been
done to aid users in tracking down causes for compilations and execution errors.
The collection will be kept as up to date as possible.

CHESS

CHESS was obtained as an unsupported demonstration program in core image form
and originally with word of mouth instructions only a Subsequently, the
following brief instructions were located and they are listed in case any users
may be interested in using CHESS. It is worth noting that a considerable amount
of core and computations is required by CHESS and hence it will not be cheap to
use.

1. To get CHESS from the system type

.CftESS<cr>

2. Commands to CHESS Program

Four commands exist for instructing the computer which side(s) it is to
play. They are:

PS Play self Machine plays for both sides.

PW Play white Machine plays white; moves for black
typed in.

Pl3 Play black Machine plays black; moves for white
typed in.

PN· Play neither Machine plays for neither side; moves
for both may be typed in.

77

are

are

If the machine is playing the side whose
automatically proceed and make its move,
instructed to make move anyway by typing

M

turn it is to move~ it will
If not~ machine may be

If it is desired to take back the last move made, the command is

u

This automatically enters 'play neither' mode as described above. The U
command may be used repeatedly,

The machine may be instructed to produce various forms of printout as
follows:

BD Produces a diagram of current board position,

PG Produces score of current game,

3, !yping in Moves

The machine accepts input in a form very similar to standard chess notation,
The major differences are summarized,

(a) Check is not announced to the computer.

(b) The character 'X' or '*' is used to denote captures, '_I or space to denote
moves,

(c) En passant captures are denoted by PXG (where G stands for ghost which is
located one square behind pawn which advanced two ranks).

(d) Promotion is only to Queen and is not announced.

(e) For ambiguous moves the following options may be used to specify the move:

(i) Specifying the piece as K or Q (e.g. KN~B3)o

(ii) Giving original square of piece moving (e.g. N(KNl)-B3).

and so on as in chess notation the only restriction being that each syllable
must be a piece name or a complete square name, i,e. N/I-B3 is illegal.

The characters '(I > ')', I_I and space are identical in effect when used
in a move,

If you type in an ambiguous move. the computer will tell you so, then
retype the move, If you type an impossible move the computer will also
tell you and will be ready to accept the corrected move. If the move is
illegal because you are in check at the end of it, the computer will type
illegal and be ready to accept the corrected move, If you type a legal
move which was not the one you wanted. do the following:

78

(
I

(i) Type bell to suspend computation on unwanted move (computer
will respond with QUIT).

(ii) Type U to take back unwanted move 0

(iii) Type in desired move.

(iv) Type PW or PB as appropriate so that the computer will resume
play,

Moves and commands are followed with a carriage return. Moves may also
be followed by a tab. The computer types out '+' to acknowledge
accepting a command.

4. Setting Computer Lookahead Parameters

Three basic parameters can be set from the Teletype and these affect the
speed and strength of play.

SETW Takes a list of numeric arguments which specify how
many moves wide the computer is to look. The first
number is effective at play one, the second at play
two and so on, the last being effective at all
deeper plays.

SETD Sets basic depth of search in analysis of moves.

SETF Specifies maximum number of feedovers allowed along
any line in analysis. (Feedover is when computer
deci4es whether the position is worthy of deeper
analysis than that specified by SETD above).

In tournament play (where a 2 2/5 minute per,move average is required)
common setting is

SETW 15 15 9 9 7

SETD 4

SETF 2

The computer will average about thirty seconds a move at settings of

SETW 6

SETD 4

SETF 2

this is the setting when the program is initially loaded. For blitz
play the following settings are good:

SETW 6

SETD 2

SETF 11

79

t

The current setting may.be typed out by typing the command as above,
followed by '=' For example, SETW=,

At the end of the game, the command

RESET

reinitializes the game to the starting position, resets the clocks, and
reverts to 'play neither' mode 0

If a typing error is made partway through a command or move, it may be
erased by using RUBOUT, Then retype the command or move in question.

A DYNAMIC STORAGE MANAGEMENT PROCEDURE

Mr, Whiten is a Research Officer in the Department of Mining and Metallurgical
Engineering. He has contributed previously to the Bulletin with an article on
'The Simulation of Mineral Treatment Processes',

INTRODUCTION

A method is described for dynamically allocating and de-allocating arbitrarily
sized blocks of consecutive words which will be referred to as vectors. No
restraint is placed on the order of allocations and de-allocationso The aim was.
to provide a general purpose system and hence simplifications based on special
properties, which are often possible, were not used, However this system is
capable of providing a basis for the support of systems which take advantage of
special properties. .

This method differs from Ross (1967) in being designed for a small computer where
it is not practical to provide a large number of options and from Knuth (1968) in
being able to handle both requests for exact amounts of storage and not placing a
lower limit on the size of vectors in the system.

DESIGN CRITERIA

The method was designed to satisfy the following criteria:

(a) The storage allocated must be provided as one continuous vector,

(b) Requests for storage allocation and de-allocation may be made in any
order.

(c) Both large and small vectors are to be handled. The case of a large
number of small vectors can occur,

80

(d) Storage is to be requested by words and the number of words is to be
saved for future reference a

(e) Allocated vectors cannot be movedo

(f) Storage fragmentation (the reduction of unused storage to small pieces)
is to be minimised. Ways of reducing storage fragmentation in
particular cases are required.

(g) Efficiency with regard to speed and storage overhead is required.

It is clear that any system with the above characteristics can be made to fail,
i.e. reach a condition where a request for storage cannot be satisfied. The aim
was to implement a system that could handle most cases efficiently and with some
assistance from the programmer would be able to handle the more difficult.

From the design criteria the following decisions .were made:

1. The maintenance of any form of segregation by size was expected to increase
the complexity of the system and very likely have other undesirable
properties. Hence identical treatment was required for all vector sizes.

2. A word containing the length of the vector and some ~ontrol information
was required to be associated with each vector. Each vector was lengthened
so that a control word called the header word, could be placed at the front
of the vector. The implicit location of this header word meant that no
additional storage was required for its access and li~king to its vector.

3. The allocation and de-allocation of vectors should as far as possible take
a constant time, i.e. not be affected by the number of vectors currently
in the system.

4. No vector should be allocated with free storage on both sides of it, i.e.
de-allocated vectors needed to be recombined before storage is reused.

5. Storage fragmentation could be reduced by keeping recently all0cated
vectors as close together as possible. This may allow larger free regions
to develop in the other parts of the available storage,

6, Storage fragmentation could be reduced by allowing the programmer, if he
desires, to use several storage blocks (which may if desired be nested).
Hence each storage block required all the data for its operation associated
with it.

7. The de-allocation of a vector needs to be independent of the storage block
which contains the vectoro Thus the de-allocation routine will require
only the address of the vector to be de-allocated. This eliminated the
need to save (implicitly) th~ address of the storage block associated with
each vector.

80 A free region of one word can occur and hence accounting for free regions
must allow for this caseo

81

90 A linked list of free storage would require searching operations to satisfy
5 and also free storage would be divided into two types (on the list or too
short), Hence it was decided not to link free regions but to search memory
moving away from the most recently allocated region.

DETAILED DESIGN

The final design is:

Both allocated vectors and free regions (free vectors) are started by a header
word which contains:

I, A free-vector indicator which is set if the vector is a free region •.

2. A free-before indicator which is set if the preceding vector is free.

3. The number of words in the vector including the header word.

In addition to the header at the beginning, the free vector contains a copy of the
header in the last free word. However in free vectors longer than one word the
last free word sometimes has the free before bit, set.

The storage block contains two control words as follows:

10 At the beginning of the block a pointer word gives the location immediately
after the last vector to be a~located.

2. The end of the storage block is marked by a header word with the free vector
bit not set and a zero word count 0 The free-before indicator is used as in the
other header words.

The rest of the storage block is always filled with vectors, No two free vectors
can be adjacent as they are combined as they occur. Figure I shows the typical
contents of a storage block,

STORAGE ALLOCATION

This routine requires the address of the storage block to be used and the number
of words required.

The word at the beginning of the storage block gives the location immediately after
the last allocated vector, This location may, due to subsequent de-allocations,
not be the start of a vectoro If the free before bit is set in this location the
preceding word contains a decrement to update the word at the beginning of the
storage block. A location with the free before bit not set marks the end of this
update chain and is always the start of a vector.

This vector is tested to determine if it is free and large enough, if it is not the
program indexes forward over the vectors until such a free vector is found. Should
the end of the storage block be encountered for the first time the search continues
from the start of the storage block. If the end of the storage block is found a
second time the allocation procedure has failed.

82

When a suitable free vector is found the requested vector is taken from the left
portion and the remainder if any is made into a free vector. An exact fit causes
the free-before bit of the following vector to be cleared.

Finally the pointer in the first word of the storage block is set to the vector
immediately following the one just allocated.

STORAGE DE-ALLOCATION

The de-allocation routine requires only the address of the vector to be
de-allocated. This routine is responsible for combining adjacent free vectors
as they form. " In the case where the vector given by the pointer word at the
start of the storage block qnd the vector before it are combined enough
information must be left for the start of the new vector to be found later by
the allocation routine. The procedure for de-allocation is:

I. If the vector before is free combine the two vectors.

2. Set the free-vector bit in the header word and copy the header word into
the last word of the new free vector. Set the free-before bit in the
header of the following vector.

3. If the vector following is free combine the two vectors to give a free
vector with copies of the header word at botb ends .. Then set the free­
before bit in the last word of this free vector. (This is necessary if
the second vector is both referenced by the pointer at the beginning of
the storage block and it is one word in length).

SUMMARY OF STORAGE ROUTINES

The effect of the allocate and de-allocate routines is:

I. All adjacent free regions are combined as they are formed.

2. The search for sufficient free memory starts at the boundary of the most
recently allocated storage and the least recently searched storage.
Advantage is taken of any adjacent de-al10cations and then if necessary
a search is made moving into the least recently searched storage.

DISCUSSION

Of the original seven design criteria the first five are satisfied and so we
now examine the remaining qualitative criteria.

Storage Fragmentation: As the search start; and hence the allocations,
tends to move cyclically around the available memory the normal case is for
the least recently searched storage to be also the least recently used for
allocations and hence most likely to be free, i.e. the tendency is for new
allocations to be made immediately to the right of the previous allocation

83

hence keeping recently allocated vectors in the same region. Should the
performance be unsatisfactory the programmer may be able to get better
performance by dividing his storage requests among several storage blocks. The
programmer is able to predict his needs and hence may be able to take advantage
of these predictions to get better storage organisation,

Storage-overhead: One word of control information is required for each vector.
This word contains two indicators plus the length of the vector. In many cases
the vector length is required by the user and hence may save a storage word
elsewhere. The storage block uses only two control words. Both the allocate
and de-allocate routines are quite short. The loss of storage due to fragmentation
is dealt with above.

Execution time: The de-allocation routine takes less than a fixed maximum time.
The allocation includes two searches: Firstly for the start of a vector which at
worst contains one step for each de-allocate since the proceeding allocate.
Secondly for a free region which is large enough. As this search is always into
the least recently searched and usually least recently allocated region the
average length is normally short. In some cases it may be possible to shorten the
searches for free vectors by defining additional storage blocks within the
original block.

The two special cases of last allocated first de-allocated (working storage for
subroutines) and first allocated first de-allocated (delay line) are both handled
so that a free vector of adequate size is readily available and unnecessary
storage fragmentation does not occur. In both these cases the time taken is
proportional to the number of allocations and de-allocations. A valid
comparison with other methods.of storage management can be made only for
particular cases- usually requiring stimulation using the storage requirements
of the particular case.

The main disadvantage of the system is the proximity of critical control
information to the data. Should any of the vector headers be over-written by
data the system cannot recover, This may increase the difficulty of debugging
programs using this system.

CONCLUSION ,

This method of storage management was developed and implemented as part of a
continuing project to add dynamic data structures to a fortran system
operating on a relatively small computer, Considerable effort has been put into
maki~g this method as simple as possible. This has made implementation and
testing much easier. The use of very few alternative paths through the program
means that is soon thoroughly checked and then considerable confidence can be
placed in the correct operation of the storage management procedures.

REFERENCES

ROSS, D.To The AED Free Storage Package. Communications of the ACM, .10,
8(August 1967), 481-4920

KNUTH, D.E. The Art of Computer Programming, Volume 1. Addison Wesley,
Reading, Massachusetts, 1968. 435-455.

84

17.

I 18.

Header word for storage block

Pointer to next ,location after last allocated
vector

Header word

Copy of Header word

Header word, free ,before bit set

Header word,

l19. Copy of·header word

20. End of storage block indicator
(free before bit,set).

Figure 10 Typical Contents of a Storage Block

85

AUSTRALIAN COMPUTERf'SOCTETY (ACS'):'OVERSEAS VISITORS PROGRAMME

The first distinguished visitor to be brought to Australian under the ACS Overseas
Visitors Programme will be Professor M.V. Wilkes, Professor of Computer Technology
and Head of the Computer Laboratory in the University of Cambridge, England.
Professor Wilkes was responsible; for" the construction of EDSAC 1, which was
working early in May 1949. He'was·the first President of the British Computer
Society and helped to found the'International Federation of Information Processing
Societies. With two colleagues, Prafes,sor Wilkes published the first book on
computer programming: 'this"'appeared in 1951.'

Professor Wilkes will.deliver a_public lecture .and_conduct a .. one.,.day,seminar,,,thi$
month.

LECTURE

SEMINAR

Tuesday 22 June' 8.00-p~m.· The lecture will be entitled "Twenty years
of computer progress" and is designed to appeal to a general audience.
Hawken Auditorium, The Insitute of Engineers, 447 Upper Edward Street:

Wednesday 23 June .9.30.a.m. to 4.30p.m~ (Location to be announc.ed} ..

The general topic .aEthe seniinar will be' lI1'he development of'timesharing
(or mUltiple-access) computer systems". Professor Wilkes writes, . "'the-'
seminar is intended as a professional development seminar, and is '
designed to help people concerned in one way or other with the ope:ration
of large-scale computer systems to upgrade their technical knowledge,
particularly on the software side. I have in mind the requirements of
systems programmers and people who aspire to become systems progra1llltlers,
and also those who have some"knowledge of programming and of the
operation of large systems, and who wish to obtain an insight into the
working of operating systems. Iaiso have in mind managers of
multiple-access computerfaci1ities who wish to develop their
technical knowledge, and to understand the management aids that
advanced systems are beginning to provide. I shall assume that thos'e
attending the seminars'have had some experience of computers and have
a thorough understanding of the principles of programming. Documentation
for the seminar would be provided by my book on "Time-sharing computer
systems" (Macdonald 1968)~

There will be a fee of $1 for the lecture'which includes supper and a nominal
contribution to assist the Programme's' expenses. For' the' seminar" the fee will
be $11 for ACS members and $16 for others, including a ,buffet lunch and drinks
at the conclusion of the day-. Persons wishing to attend the seminar are requested
to complete an application form available from the Hon. Secretary, ACS (Qld. Branch),
G.P.O. Box 1484, BRISBANE,' 4001':

A second distinguished visitor will be Professor B.A. Galler, Professor of Computer
and Communication Sciences and Mathematics, University of Michigan who will visit
Brisbane on 29 July 1971. Details will be announced in the .next Bulletin.

86

