
UHIVERSITY OF QUEENSLAND

Computer Centre

NEWSLETTER - SPECIAL EDITION

EXTENuED COMMAND SET

WN-I03
24AUG72

•

l

WN-I03
24AUG72

On Hednesday 9 August a ne"' version of t he monitor was implemented on the PDP-lO
syste~ . As well as correcting a number of errors and implementing some
additional internal facilities (e.g. expanded hardware error reporting), this
monitor provides an extended comn,and set. These new commands are an extension
of the existing command set - all previous commands continue to work as they
previously did .

This special edition of the newsletter describes the new facilities and commands
nO'(r1 available OTt the. systelh.

1 . PROGRAH FILES

In the PDP-lO system a program file can exist in anyone (or several) of the five
different states described below.

(a) . Source Language File

This is a source language program (e.g. Fortran , Cobol, ~·facro, Algol etc)
t hat exists as a text file , generally on disk or in punched cards.

(b) Relocatable File

A relocatable binary program file is produced on disk as the result of a
compilation of a source language file by the appropriate processor.
Relocatable files can be complete programs, individual routines or
subroutines, or libraries of subroutines.

(c) Absolute Files

An absolute binary (or core image) program file is the result of loading one
or more relocatable binary files with the linking loader and then transferring
a copy of the incore program to disk.

The loader loads a program together with its required subprograms into core s tore,

r e locatingcQch one , adjusting addresses as r equired, and r esolving linkS'lges
bet1ileen independently compiled subprograms. Tftis produces, in memory, the
required program ready to commence execution. The absolute file is simply
a copy on disk of the program as it finally resides in core ready to run
(hence 'core image ' fil e).

(d) Incore (dormant) file

This is a copy of the absolute program file in core but not executing. It may be
re~dy _ to commence:.ex.:ecution , · or -may have ceasedexecution due to some external
interrupt.-.", .

(e) File in execution

This is a program executing in core.

Figure 1 shows the tran.sitions that can be made between these different states,
and indicates the commands required for each transition. It should be noted that
it is not yet possible to go from relocatable bina ry files directly to absolute
f iles. To generate an absolute file two steps are involved.

(i) Frorr, relocatable files use the LOAD command to produce
an incore dormant program file

(ii) Produce a copy of the incore file onto disk ~..:rith the
SAVE command.

'')
• L. •

- .
~I. ,.

I;'~

W

... . ,
:=-1
(,"")
'-'<
~ .
.. .. I
~~

r<:l

I-'

::u ;ro-
m

H
if

t-'

h:j

::I
Ul

0

f-J.
n

0
t-'

0 m
n ,.

/-'
rJ

Ii
~

rt
ro

" rt

f-J.
::I

III ro
cT

,.....,

I-'
p..

'. if
ro

ro
0

f-J.
~< g ::I

if

- ro

0-'
f-J.

n
PI

Ii
::l

~
::I

'<:
!ll

rt
rt

Ii

....
'-'

H>
0
t:l

~n f-J. '<
1-" t-'

H> ro
f-J.

~ ..
0

I-'
ro

< Compile

~ _____ _______ LOAD_h:....;·l=-.e::.;[::.;la::.:m::.:e=-. __ --.-_______ _

L- GET filen2me " ----- -----_.

@entry-point .
'\

Interrupt tC
------ ---------~)

SAVE filename
.-, -~

/
filename .(@ST default)

/ -(-'\ . "

filenamp. 'C@ST default) or RUN

" '\.

filename (@ST default)
~ ~ -----------------

filename (@ST default)
.?---===-

(I)

b
~
Ii
n
(U

~
III
t:l

()Q

~
. ilL
" 00 ro-

H>
f-J.
I-' ro

~~
:x>t
QI-'
ClO
-...JW
N

, ';

, " ',

2.

2.1

RUN CONTROL COMMANDS

LOAD '

Ivf ... AP
LOAD(NOHAP,DDT) filename-l (LIB.) ,.; .. ,.~i.1 ~nm. c -n(LIB)

SY!I::BOL '

~TN-103

24AUG72

Load performs the same functions as the RUN command except that the files loaded
are not actually executed. That is , it loads the relocatable tinary file(s)
named in the command (or from the loadlist) and places them in core ready for
execution.

2.2 SAVE

SAVE(~) {core}

The SAVE command w'rit,8s out an image of the user's current core area onto the
cisk ~ith the filename given. This core image file can then :be reloaded quickly
into memory at any later time ~l7ith a GET cormnand.

There are in fact three types of user programs with corresponding core image files.

These are (a) one segment non-reentrant programs
(b) two segli1'ent non-reentrant programs
(c) reentrant prograr;ts.

Types (b) and (c) are covered in the appendix on <lSegI'1ents and Reentrant Programs " .

The one segment non-reentrant program is by far the most generally used type of
program. vllien SAVEd, it results in a single core image file on disk with the
filenmlle given and the processor program name of /SAV.

The "core argument is thE:
specified in lK blocks.
program is assumed.

amount of core in which the program is to be run,
If omitted the amount of core actually required by the

The S option is used for saving reentrant programs as explained in the appendix.

, 2.3 GET

GET filename {core}

GET retrieves an absolute binary file from the disk. placing it in core ready for
execution .

filenane

core

is the name of ' the file

is the amount of core to be assigned if different from the minimum
core needed to load the, program, or from the , core argument of the
SAVE command that saved the file.

2.4 @entry-point

5T
RES
REE

@PC
DDT
CST
CPC
octal-'address

This set of commands will begin execution of the incore program at a number of
different entry points. Many of the entry points used are locations discussed in
the Job Data area (see appendix).

.4.

2 . 4 . 1 sg ST

WN-I03
24AUG72

Begins execution of a previously loaded program at its normal starting address.

2 . 4.2 @RES

@RES starts the incore program executing at t he nonnal start address +1. Hany
of t he system programs use this facility when their arguments have been decoded.

2 . 4 . 3 @REE

The @REE cor..IT'.and causes execution of the program to commence (or recommence) at
an alternate entry point called the ' reentry address ' which must have been
specified by the use r or his program.

7. .4. 4 @PC

@PC continues the program execution a t the saved program counter address stored
by a tc ins t ruction.

2.4.5 @DDT

For programs l onded with DDT, t his command commences execution of the program at
t he DDT st ,:nt address. This allows the user t o give DDT commands e.nd follm., the
execution of the program (see the DDT manual HNT-12).

2 .L, .6 @CST

Same as @ST except that the user ' s console is l e ft in monitor mode.

2 .. 4 . 7 . @CPC

Sane as @PC except t hat t he user's console is l e ft in monitor node .
Furt he r ~onitor com~ands can be ente red from the console afte r @CPC or @CST have
been given. No te that tlles e cOP'TIlard.s should not be us€;d when the user ' progrc?!D.
(\vhich is continuing to r un) is also requesting input fron the conso le .

2 . 4 ,8 @octal-address

Thi s comlnand begins execution of a previous l y l oaded program. The octal address
s pecified is the address a t which execution is t o begin.

2 .5 E

E {location}

~ examines a cor e l ocation in the use r's area (high or l ow segment).

. 'location

r e sponses :

OUT OF BOUNDS

If the address is ' specified, the contents of the location are type d
out in half-word (Icta l mode . The address is r equired the first tine
the E or D con~and is used.

If t he address is not specified, the contents of the location
f ollmdng t he previously sp ecified E address, or the location of the
previous D addr ess are typed out.

The specified address is not in the user ' s core a rea, or the user doe s not have
read privileges t o the file that initialized the high s egment.

.5 ..

2.6 D

~1N-l03

24AUG72

D lh rh {loea tiof!J

1) 'd~pos;its :informaiio'n in ' the ' user's core area (high or low segment).

lh "
Irn

location

responses:

OUT OF BOUNDS

The 'octal ~a1~2 " to be deposited in the left half of the location.
'The ' octal value to be deposited in the right half of the location.
The address of the location into which the ~nformation is to be
deposited. If the address is omitted, t he data is deposited in
the ' location following the last D address o~ in the location of
the last E address.

The specified address is not in the user's core are?" or the high segment is write
protected and the us~r does not have write privileges to t~e file that initialised
the high segment .

. LOAD ABC/REL<cr>

LOADING

LOADER lK CORE

EXIT
tc

.SAVE ABC<cr>

JOB SAVED
tC

.GET ABC<cr>

JOB SETUP
tc

.E l37<cr>
000137/ 000002 000030

;begins eXecution

EXIT
tc

.DIR(F) ABC/ALL<cr>

.@ST<cr>

DIRECTORY PROJECT 1~6

FILE N.M1E KWDS KEPT

ABC /REL 0.25 K
ABC /SAV 0.38

TOTAL SIZE 0.6 3

EXIT
tc

, ,
.' 'I

.6.

13 : 24

ACCESS

F H
F N

l2-AUG-72

CREATED

l6-MAR-72
22-AUG-72

.:J. FACILITY ALLOCATION COMJI1ANDS

~m-l03

24AUG72

The monitor allocates peripheral devices and core memory to users upon request
and protects these allocated facilities from interference by other users. The
monitor maintains a pool of available facilities from which a user can draw.

~ user should never abandon . a timesharing console without returning his
allocated facilities to the monitor pool. Until a user returns his allocated
facilities to the pool no ether users may utilize them.

All devices controllable by the system have associnted with them a physical nar.e,
consisting of three letters and zero to three numerals to specify the unit number.
A logical device name may also be assigned by the user. This logical name of on~
to six alphanumeric characters of the user's choice is used synonymously with a
physical device name in all references to the device. In writing a program, the
user may use arbitrarily selected device names ~hich he assigns to the most
convenient physical devices at runtime. All references to devices in the monitor
pool are made by physical names or by assigned ' logical names. t·!hen a device is
assigned to a job,it is remcved from t be monitor's pool of available ' facilities.
The device is returned to the pool vJhen the user deassigns it or ends his job.

3.1 ASSIGN

ASSIGN $dev{=log-d2v}

ASSIGN allocates an I/O device to the user's job for the duration of the job, or
until a DEASSIGN conmanc is given. ASSIGN may be abbreviated to AS.

$dev Device DSK or TTY. This argument is required.

l og·-dev A logical name assigned by the user (optional argument).

responses :

dev : AS SIGHED

The device has been successfully assigned to the job.

no SUCH DEVICE

Device name does no t exist.

ALRE.ADY ASSIGNED TO JOB n

Th2 device has already been assigned t o anothe r user's job.

LOGICAL NAHE ALREADY IN USE DEVICE dev: The user has previously assigned this
l ogical name to another device . This is a useful command in allocating logical
device numbers to devices for Fortran prograns. For example 9

A2 $DSK=6 .

i~S $TTY=l~

3.2 DEASSIGN

DEAS SIGN

will send output to the disk (as filename FOR~h) instead of the
job output device,

will receive/send data via the teletype instead of the disk.

{$dev}

DEASSIGN returns one or more devices currently assigned to the user's job to the
monitor's pool of available devices. DEASSIGN may be abbreviated to DEAS.

$dev If this argum8nt is not specified, all devices assigned to the tiser's
job are deassigned.

If this argument is specifi£0, it can be e ither the logical or physical
device nRme.

.7.

-

responses :

NO SUCH DEVICE

Device name does not exist.

DEVICE WASN'T P_SSIGNED

The device isn't currently assigned to this job.

3.3 EOF

EOF $dev

t<lN-103
24Aug72

EOF terminates any input or output currently in progress on the device.

$dev The logical or physical name of the device on .. ,hich ·1/0 is to be
terminated.

responses:

If no name is specified s I/O is terminated on all devices aSdigned
to the job.

NO SUCH DEVICE

Either the device does not exist or it was not assigned to this joh.

3.4 CORE

CORE {core}

CORE is used to modify the amount of core assigned to the useris job.

core = 0

core > 0

The low and high segments disappear from the j ob' s virtual
addressing space .

Total number of II<. blocks of core to be assigned to the job from
this point on.
If ~his argument is omitted, the Ronitor types out the sare response
as ,,,hen 1m error occurs , but doe s not change · core assignment.

The response is

where

m+n/p CORE

VIR; CORE LEFT=v

m=nuober of lK

blocks in lov segment

n:::·number o f l V. blocks in high segt!lent

p=rr.aximutc l<- per job (max. physical user core)

v=number of K unassigned in core and swapping device.

3.5 RESOURCES

RESOURCES

RESOURCES will print out a':'l the available devices in the syster:l device pool
(except teletypes) and the number of free blocks on the public disk packs.
RESOURCES may be abbreviate1 to RES.

4. ADJvIINISTRATION COMMP.NPS

4.1 PJOB

The IT.cnitor responds by typing the jab number t o ~.'hich the user 1 s console is
attached. If the console is not attached t o a j ob, the monitor responds with

. 8 .

'LOGIN PLEASE'. PJOB may be abbreviated to fJ.

i f .2 SYSTAT

SYSTAT {option job-no}

~Tn-103

2 I+AUG 72

SYSTAT types out the status of thE! system: the system name, time of day, date,
uptirr.e. percent null time. It also gives:

Status of each job; job rrumber, project number, TTY number. program name being
run . size of 1m·, segment, state of program (FN=runable. TT=TTY input wait, tC =
monitor command mode) and run time.

Status of high segments being used: naITle, directory name, size, number of users
in core or on disk.

Status of each assigned device: name, job number, how assigned (AS = ASSIGN
cormuand. naT = INIT UUO).

The arguments are optional; if omitted a full systat will be given.

The options specify various phases of the systat.

B gives busy device s

D dorn'ant segments

J job status

N non-job status

S short job status

job-no gives the job status relevant to a particular job

SYST.l\.T may be abbr(~viC\te d to SYS.

4.3 HELP

HELP { name}

The. l !ELP command prints ' out helpful documentation on various Computer Centre
facilities.

If a name is spe·cjficd,. I'ELF t\lilY':look for, and print out the information about
the. facility n?T' led in til e ~oTPI!land. .;~o~ :.f.t.:l£~l]lpl~~. l1 .r.L~ .MANUAL :tdl+, 'print , m~~
.th ...:. cur-n.:n t st <~tus ~f the C0rrp."':l,t;.~1' .. l2e~.v:r~.:~gt!:.u;}1~. . . •• 1' •

HELP ALL will give a list of all currently available information. Only the first
six characters of the argument are looked at. They must consist of the
characters 1,··Z, 0-9.

He lp is initially available for the following :

NEHS

HP.NUAL

LOGIH

the latest weekly new~letter

the up to date status of the Centre's manuals

how to login into the s~stem.

.9.

APPENDIX

1 . SEGHENTS and REENTRANT PR0GRlIJ.'fS

l'IN- l03
24AUG72

In a n on-reent r ant sy.st':TII. eAch u s e:: n a.s a s epar a t e copy of a program even though
a large part of it i s ti1e. saF18 a s for other use r s, I n a r eentrant system, hardware
al l ows a user area t o be divided into t "\w logical s egments l.Jh ich nay occupy .
n on-conti8uouS <3.reas ir, c or e . The moni t or a llows one of the s egments of each
use r a r ea to be the s amE: a s one or ,-:o r e other user rJ. so that only one copy of a
s h a red s egment need exist nO ,.la t ter nmv m<1ny us e r s are using i t .

1.1 Segment ::.:

A s e gment i s a con~ lnuous r egion of the use r ' s core area ma i n tained in core or
on the swapping de v i ce. , A progr 3.m or us e r job i s composed o f one or two segments.
A s egment may com:ai n in'3 t r'l ':: tio~LS and / or da t a, The Bonitor de t e rmines the
allocation and rnovenent of s ~gments 11, core and on t he swapping device.

1.2 Sharab l e ':'eg!::e n t s

A s har able segr.lent i s a segment ,'Thich is -::he s c;.me for many users. The monitor keeps
only on e copy i n co r e and /o~ on th~ swapping de vice, no matte r how many users are
using it. A norL-sharab~_ E: s egment is a segment wh ich is diffe r ent f o r each user
i n co r e and / or on t he swapp ing device .

Th(~ PDP--IO! s hardwar e pe r mits a user p rogram t o be composed. o f one or two segments
at any point in t i me . The lequir ed l ow s egment s t a rts a t us e r location O. The
opt i on a l 11i(';h segll ent starts C.t user l oca tion 400000 o r at t he end of t he lm.J se g!11ent.
1JThichever addre s s i s g-rea t er. The 10't-J s €gmen t contains the user's a ccumu l ators .
J ob Data area, i:ls t r nct ions and/or da t a , I / O b u ffe r s, and DDT symb ols. A user's
core i r;;sge is c orr:pos ed o f e low se~IT'ent, i n multiples of l K (lK=1024~0 words),
an d a h i ;;h s egEe:l.t als o ir:. multiples of lK . A high s e gment may be s arable or
non- shar able , whe r eas a 10,,1 segmer., t is alw2Ys non-sharab l e ,

1.3 P.eentra~t Programs

i~ r eentran t prograr.l is alw'ays COf.'lp used of two segments - a low s egment which usua lly
contains j u s t dat i.l 9 an~ a.high{sharnble) segment ,,]hich usual ly contains
ins t r uctions and c on s tani.:s . 1'1,e ImJ ·seg,r.en t is s ODe t i me s r e f e rre d t o as the impure
segment. The s harable h igh segment, if wr ite-pr o t e ct e d , i s refe rre d t o as the
pur e s egment .

,;. one-segment nO:1-rcen t ran t p::-ograr;, is .composed o f a sing le l ow segment containing
ins t r uctions an d ciata . A two-s e gn,en t non-reentrant program i s c omposed o f a lO~J

· segment and a non- shar able high se8men t .

The S.I\VE command s upp lie s standa r d p roce ssor program name s to the
s egme n ts i t crea t es . 11. one segment ron-r eentrant p rogram h a s a proce ssor program
naT,1e /SAV. Fo r two s egrr.2n t prograJ118 the 1m-: s egraent has the p rocessor prog ram
/LOFJ. . The high segr.lent ::.S naee d IrGH o r / SUf-:. depend i ng on wh e t her o r not it is
a s har ab l e segment. ,

Th .:~ S o'p tion i n t he SAVE c omma nd is ' 'Sed to m2.ke the high s egQent sha rable when it
is l oaded . 1:1 i th t he GET commcnc. To indica t e thi s sharabili ty , the high segment
is writte n \vith proc ess c:· r p roE.r am / snT\.. inste ad o f / EGH. A sub s e que nt GET will
cause the h i gh s egment tp b e shc.rab le. TIAcause an e r ror message is not give n i f
t he prog r am does not he.ve a high ceg:!lent, a us e r can us e this command t o s a ve
u i thout' having to kn ml which o r e sbar able .

1. 4 Us e r ' s Core St or a ge
------'-~-

A user ' s co r e storage cons i sts o f block s o f memory \-;hose size s are an integral
multiple of 102 /-1

10
(2000

8
) ,voLds . Ther e a r e t va oe t hods ava ilable to the user

fo r l oading his core area. The s implest W2.y i s to l oad a c o r e i mage sto red on
disk (s ee GET) . The other me t hod is to us e t he reloc a t able binary loader to
link-1 6ad b i nary fi les. The m;er lTIC!Y the n write t he core image on disk f o r
future us e (see LOAD an (1 SAVEY~ ~

.10 .

)

1.5 Job Data Area

vJN-l03
24AUG72

•

The Job Data area provides storage for specific information of interest to both
the monitor end the user. The first 140 (Octa l) locations of the user's core
area alwAYs are allocated to the Job Data area. Locations in this area have
been given wnemonicas$ignmentswhose first three characters are .JB (or JOB).
The refore , all nnemonics r e ferred to with a .JB (or JOB) prE:fix refer to
locations in .the Job Ddta area . It is planned eventually to replace the JOB
prefix by . JB. but in the weant ime e ither prefix is acceptable.

i jf..lfE

.JBUUO

.JB41

.JBERR

.JBREL

.JEDDT

. JBHEL

. J BSYH

. J BUSY

CCTt,L
LOCATION

40

41

42

44

74

115

116

117

TABLE 1

J ob Da ta Area Locations

(for user-program reference)

DESCRIPTION

User's loc&tion 40
8

, Used for processing user
UUO' s (001 through 037). Op code and effective
address are stored here.

User's location 4l p • Contains the beginning ·
address of t he use¥'s programmed operator service
r outine (W:'1ually a JSR or PUSEJ).

Left half: Unused at t~e present.
Right half : Accu~ulated error count from one
prograF to the next. Programs should be written
to look at the right half only.

Left half: O.
Right half: The highest relative core location
available to the user (i.e .• the contents of t he
memory protection register when this is running).

Contains the starting addr2ss of DDT. If contents
are O~ DDT has not been loa ded.

Left half . First relative free location in the
high s egnent (re lative to the high segment origin
so it is the same as the high segment length). Se t
by the LOf~ER and subsequent GETs. even if there is
no fil e to initia lize the l ow segment . . The left
half is a relative quantity because the high segment
can appear at different use r origins at the same
time. The SAVE comrn~nd uses this quantity to know
how nuch to write from the high s e gwent.
Right hAlf; Hi ghest l ega l use r address in the higb
segment. Se t by the Donitor every tirr.e the use r
starts t o run. 'lb2. word is > 401777 u.nless there is
no high seg~ent, in which case it will be zero.
The proper way to test if a high segment exists
is to test this word f or a non-zero value .

Contains a pointe r to the symbol table created by
Linkin g Loadt=·r.
Le ft half: Negative count of the length of the
syrr.bcl ta.bl~ .

Right half; Lowest register used •

Contains a pointer to the undefined symbol table
created by Linking Loade r.

(J
-------------_ .. _- --'

.11.

TABLE 1 (Cont)

t , Joh Data Area Locations

(for user-program reference)

vlN-103
24AUG72

------------~--------------~-----------------------

.JEFF

. JBREN

. JBOPC

.JJ3CHN

.JBCOR

.JBVER

.JBDA

OCTAL
LOCATION

120

121

124

130

131

133

137

140

DESCRIPTION

Left half. First free location in l ow s egment
(se t by Loader).
Right half : Starting address of the user's
program.

Lef t: half : 0
Right half : Address of the first free location
follmN'ing t he l ow segr.:.ent.

Left half : Unus~d a t present.
Right half: The reentry starting address. Set by
us er or by Linking Loader and used by @REE comlTland
as an alterna t e entry point .

The previous contents of t he us e r ' s program counter
are stored he re by Honitor upon exe cution of an
@DDT, @REE, @ST , or @C8T cor~and .

Le ft half; 0 addre s s of first location after fir st
FORTRAN IV loaded progra!'l .
Righ t half : Ad dress cf f irst location afte r first
FORTP.AN IV Block Data.

Left ha lf : ili ghest location in low segment loaded
with non--ze ro dat a . Ho 1m.; file written on SAVE
if less than 140.
Set by the l oad pr .
Right ha lf: Use r argU!TIF:nt on last SAVE or GET

comriland . Se t by the t10ni to r .

Left half :] f; :: (, ..:. [" ~- r':rr~ G Ents HOO last edited,
progr.mn" , n '~x t:, 3 . ,1 :i,. g i t s g ive, TI10j or ve:ts;i'onr~nu.mb~~r,

.1,.a-s,t ,2' digits f:i. ve s f:1 ir,o r n:umber (alpha) .
~ight half : j,i:' ::,f;crr ;:n tal e.(; i t r..urnt er. , !: .~ >~

The number is neve r converted to decimal •
Afte r a GET :, com..TTIand, an F command can be used t o
find the versinn numb e r.

The value of this symb 01 is the first location
ava ilable to the us er.

NOTE

Only those JOBl-AT locations of significant irrportance t o the
user are given in this Table . JOBDAT loca tions not listed
include those which are use d by the Honitor and those t"rhich
are unused at the present time . User progra~s should not refer
to any locations no t listed above since such locations are
subject to change without notice .

. 12.

-, ------,or

\-IN--I03
24AUG72

Some locations in the Job Data ar.ea, such as .J3SA and . JBDDT , are set by the
user's program for use by the monitor. Others, such as . JBREL , a.re set by the
IT:onitor for use by the user 1 s program . In pal:ticular, the right hA.lf of '. 'JEREL
contains the high (~ st legal address set l:y the monitor whenever the user's core.
allocation changes.

JOBDAT exists in binary form in the Systel;is LibTary for loading with user programs
that refer to Job Data area locations symbolically. User macro programs must
reference locC'.tions by means of the assigned mnemonics, which are declared as
EXTERNAL references to the assenililer. JOBDAT is loaded automatically, if needed,
during the LoaderYs library search for undefined global references, and the
values are assigned to the mnemonics.

,.13.

