WN-103
24AUG72

UNIVERSITY OF QUEENSLAND

Computer Centre

NEWSLETTER - SPECIAL EDITION

EXTENCED COMMAND SET

WN-103
24AUG72

On VWednesday 9 August a new version of the monitor was implemented on the PDP-~10
system. As well as correcting a number of errors and implementing some
additional internal facilities (e.g. expanded hardware error reporting), this
monitor provides an extended command set. These new commands are an extension
of the existing command set - all previous commands continue to work as they
previously did.

This special edition of the newsletter describes the new facilities and commands
now available on the system.

1. PROGRAM FILES

In the PDP-10 system a program file can exist in any one (or several) of the five
different states described below.

(2) . Source Language File

This is a source language program (e.g. Fortran, Cobol, Macro, Algol etc)
that exists as a text file, generally on disk or in punched cards.

(b) Relocatable File

A relocatable binary program file is produced on disk as the result of a
compilation of a source language file by the appropriate processor.
Relocatable files can be complete programs, individual routines or
subroutines, or libraries of subroutines.

(c) Absolute Files

An absolute binary (or core image) program file is the result of loading one
or more relocatable binary files with the linking loader and then transferring
a copy of the incore program to disk.

The loader loads a program together with its required subprograms into core store,

relocating each one, adjusting addresses as required, and resolving linkﬁ%es
between independently compiled subprograms. This produces, in memory, t

required program ready to commence execution. The absolute file is simply
a copy on disk of the program as it finally resides in core ready to run
(hence 'core image' file).

(d) Incore (dormant) file

This is a copy of the absolute program file in core but not executing. It may be

ready. to commence:execution, ot may have ceasedexecution due to some external
interrupten,
(e) File in execution

This is a program executing in core.

Figure 1 shows the transitions that can be made between these different states,
and indicates the commands required for each transition. It should be noted that
it is not yet possible to go from relocatable binary files directly to absolute
files. To generate an absolute file two steps are involved.

(i) From relocatable files use the LOAD ccommand to produce
‘an incore dormant program file

(ii) Prcduce a copy of the incore file onto disk with the
SAVE command.

[N

i
d

T 80

S

25|
e 5 Z o tn
Y a 0] 2 o)
o o o ﬁ
5 ® & o
ot = o
o = o 5 2
. b (e} ¥ o = [
® : e, 2]
0 4 = o o
g o o (oF &:
s 3] e e
5 @ ~ o -8
< . m o
Fh 4 g Hh
3 = e
) L 54 o
H
)
¢ Compile
PRI . LOAD filename
"¢ ____GET filemame
@entry-point
Interrupt 4C ‘
5%
SAVE filename
}.
. % filename (@ST default)
< R < - - <
e filename (@ST default) or RUN
N 3

filename/(@ST default)

filename (@ST default)

2L90Y%T

£0T-NM

WN-103
2LAUGT2

2o RUN CONTROL COMMANDS

2.1 LOAD. -

MAP
LOAD (NCMAP,DDT) filepamé-1(LIB),..cqfilename-n{(LIB)
SYMBOL- g

Load performs the same functions as the KUY command except that the files loaded
are not actually executed. That is, it loads the relocatable binary file(s)

named in the command (or from the loadlist) and places them in core ready for
exacution.

22 SAVE
SAVE(S) {core}

The SAVE command writes cut an image of the user's current core area onto the
disk with the filename given. This core image file can thenibe reloaded quickly
into memory at any later time with a GET command.
There are in fact three types of user programs with corresponding core image files.
These are (a) one segment non-reentrant programs

(b) two segment non-reentrant programs

(c) reentrant prograns.
Types (b) and (c) are covered in the appendix on ''Segments and Reentrant Programs'.
The one segment non-reentrant program is by far the most generally used type of
program. When SAVEd, it results in a single core image file on disk with the
filename given and the processor program name of /SAV.
The 'core argument is the amount of core in which the program is to be run,
specified in 1K blocks. If omitted the amount of core actually required by the

program is assumed.

The S option is used for saving reentrant programs as explained in the appendix.

223 T GER

GET filename {core}

GET retrieves an absolute binary file from the disk, placing it in core ready for
execution. e
filename is the name of ‘the file

core is the amount of core to be assigned if different from the minimum
core needed to load the program, or from the.core argument of the
SAVE command that saved the file.

2.4 (@entry-point

ST

RES

REE

@PC

DDT

esT

CRE _
octal-address

This set of commands will begin execution of the incore program at a number of
different entry points. Many of the entry points used are lccations discussed in
the Job Data area (see appendix).

WN-103
24AUG72

2.4,1 @ST
Begins execution of a previcusly loaded program at its normal starting address.
2.4.2 @RES

@RES starts the incore program executing at the normal start address +l1. Many
of the system programs use this facility when their arguments have been decoded.

2.4.3 @REE
The @REE cormand causes execution of the program to commence (or recommence) at

an alternate entry point called the 'reentry address’' which must have been
specified by the user or his program.

@PC continues the program execution at the saved program counter address stored
by a 4C instruction.

2.4.5 @DDT

For programs loaded with DDT, this command commences execution of the program at
the DDT start address. This allows the user to give DDT commands and follow the
execution of the program (see the DDT manual MNT-12).

2.4.6 (WEST

Same as @ST except that the user's console is left in monitor mode.

2547 QCPC

Same as @PC except that the user's conscle is left in monitor node.

Further monitor commands can be entered from the console after @CPC or @CST have
been given. Note that these cormands should not be used when the user program

(which is continuing to run) is also requesting input from the console.

2.4.8 (@octal-address

This command begins execution of a2 previocusly loaded program. The octal address
specified is the address at which execution is to begin.

2.5

|t

E {location}
L examines & core location in the user's area (high or low segment).

""location If the address is:specified, the contents of the location are typed
out in half-word octal mode. The address is required the first time
the E or D command is used.

If the address is not specified, the contents of the location

following the previously specified E address, or the location of the
previous D address are typed out.

responses:

OUT OF BOUNDS

The specified address is not in the user's core area, or the user does not have
read privileges to the file that initialized the high segment. '

WN-103
24AUG72

2.6 D
D 1h rh {locatiocii}
D ddposits 'information in the user's core area (high or low segment).
lh 'i_ "1 'The ‘octal ‘valus to be deposited in the left half of the location.
'¥h ¢ " 'The“octal value to be deposited in the right half of the location.
location The address of the location into which the information is to be
depcsited. If the address is omitted, the data is deposited in

the location following the last D address or in the location of
the last E address.

responses:

OUT OF BOUNDS

The specified address is not in the user's core arez, or the high segment is write
protected and the user does not have write privileges to the file that initialised
the high segment. J :

.LOAD ABC/REL<cr>
LOADING

LOADER 1K CORE

EXIT
{6
.SAVE ABC<cr>

JOB SAVED
+C

GET ARC<cr>

JCB SETUP
G

-B 137<er>
000137/ 000002 000030 .@ST<cr>

;begins exzcution

EXIT
4G

.DIR(F) ABC/ALL<cr>

DIRECTORY PROJECT 46 ; 13:24 12-AUG-72
FILE NAME KWDS XEPT ACCESS CREATED
ABC /REL 025K FH 16-MAR~-72
ABC /SAV C.38 F i 22-AUG-72
TOTAL SIZE 0.63

EXIT

e

WN-103
24AUG72

S FACILITY ALLOCATION COMMANDS

The monitor allocates peripheral devices and core memory to users upon request
and protects these allocated facilities from interference by other users. The
monitor maintains a pool of available facilities from which a user can draw.

A user should never abandon a timesharing conscle without returning his
allocated facilities to the monitor pool. Until a user returns his allocated
facilities to the pool nc cther users may utilize them.

A1l devices controllable by the system have associated with them a physical name,
cousisting of three letters and zero to three numerals to specify the unit number.
A logical device name may also be assigned by the user. This logical name of one
te six alphanumeric characters of the user's choice is used synonymously with a
physical device name in a2ll references to the device. In writing a program, the
user may use arbitrarily selected device names which he assigns to the most
convenient physical devices at runtime. All references to devices in the monitor
pool are made by physical names or by assigned lcgical names. When a device is
assigned toc a job, it is remcved from the monitor's pool of available facilities.
The device is returned to the pool when the user deassigns it or ends his job.

3.1 ASSIGN REPL
ASSIGN S$dev{=log-dev}

ASSIGN allocates an I/0 device to the user's job for the duration of the job, or
until a DEASSIGHN command is given. ASSIGN may be abbreviated to AS.

Scev Device DSK or TTY. This argument is required.
log-dev A logical name assigned by the user (optional argument).

responses:

dev: ASSIGHED

The device has been successfully assigned tc the job.

O SUCH DEVICE

Device nama does not exist.

ALREADY ASSIGNED TC JCB n

The device has already been assigned to another user's job.

LOGICAL NAME ALREADY IN USE DEVICE dev: The user has previously assigned this
logical name to another device, This is a useful command in allocating logical
device numbers to devices for Fortran programs. For example,

AE SDSK=6. will send output to the disk (as filename FOR@A) instead of the
job output device,

AS STTY=1¢ will receive/send data via the teletype instead of the disk.
3.2 DEASSIGN
DEASSIGN {$dev}

DEASSIGN returns one or more devices currently assigned to the user's job to the
monitor's pool of available devices. DEASSIGN may be abbreviated to DEAS.

$dev If this argument is not specified, all devices assigned to the user's
job are deassigned.

If this argument is specified, it can be either the logical or physical
device name.

WN-103
24Aug72

responses:

NO SUCH DEVICE

Device name does not exist.

DEVICE WASN'T ASSIGNED

The:device isn't currently assigned to this job.
3.3 EOF
EOF $dev
EOF terminates any input or output currently in progress on the device.

Sdev The logical or physical name of the device cn which I/0 is to be
terminated.

If no name is specified, I/0 is terminated on all devices assigned
to the job. - : '

responses:

NO SUCH DEVICE

Either the device does not exist or it was not assigned to this job.
3.4 CORE

CORE {corel
CORE is used to modify the amount of core assigﬁé& to tﬁe.user‘s Job.

core = 0 The low and high segments disappear from the job's virtual
addressing space.

core > o Total number of 1K blocks of core to be assigned to the job from
this point on.
If this argument is omitted, the monitor types out the same response
as when an error occurs, but does not change core assignment.

The response is

mtn/p CORE
VIR.CORE LEFTI=v
where m=number of 1K
blocks in low segment
n>number of 1 blocks in high segment
p=maximur ¥ per job (max. physical user -core)
v=number of K unassigned in core and swapping device.
3.5 RESOURCES
RESOURCES
RESOURCES will print out all the available devices in the system device pool
(except teletypes) and the number of free blocks on the public disk packs.
RESOURCES may be abbreviatei to RES.

4. ADMINISTRATION COMMAND:Z

4.1 PJOB

The monitor responds by typing the job number to which the user's comsole is
attached. If the console is not attached to a job, the monitor responds with

wile

WiN~-103
24AUG72

'LOGIN PLEASE'. PJOB may be abbreviated to PJ.
4.2 N SYSTAT
SYSTAT {option job-no}

SYSTAT types out the status of the system: the system name, time of day, date,
uptime, percent null time. It also gives:

Status of each job: job number, project number, TTY number, program name being
run, size of low segment, state of program (RN=runable, TT=TTY input wait, 4+C =

monitor command mode) and run time.

Status of high segments being used: name, directory name, size, number of users
in core or on disk.

Status of each assigned device: name, job number, how assigned (AS = ASSIGN
command, INIT = INIT uuo).

The arguments are optional; if omitted a full systat will be given.
The options specify various phases of the systat.

gives busy devices

D dormant segments
3f job status

N non—-job status

S short job status

job-no gives the job status relevant to a particular job

SYSTAT may be abbreviated to SYS.
4.3 EELP
EELP {name}

The EELP command prints out helpful documentation on various Computer Centre
facilities.

If a name is spécified,. UELP will-look for, and print out the information about
the facility nered in the command. For example, EFLP MANUAL w11l prlnt out,
the curre nt st itus of the (oulu*gr qurre,mdnhals

e
R3es

<7

HELP ALL will give a list of all currently available information. Only the first
six characters of the argument are looked at. They must consist of the
characters A-Z, 0-5.

Help is initizally available for the following:

NEWS : the latest weekly newsletter
MANUAL 5 the up to date status of the Centre's manuals
LOGIN 3 how to login into the s3ystem.

R TR D TR N b E e e e — i W — e — = = M T

Wi~103
24LAUGT72
APPENDIX

1. SEGMENTS and REENTRANT FROGRAMS

In a non-reentrant systam, each user has a separate copy of a program even though

a large part of it is the same as for other users, In a reentrant system, hardware
allows a userx area to be divided into two logical segments which may occupy
non-contiguous areas in core, The monitor allows one of the segments of each

user area to be the same as one or more other users, so that only one copy of a
shared segment need exist no watter how many users are using it.

1.1 Segments
A segment is a continuous region of the user's core area maintained in core or
on the swapping device. A program or user job is composed of one or two segments.

4 segment may contain instructions and/or data. The monitor determines the
allocation and movement of segments in core and on the swapping device.

1.2 Sharable Segments

A sharable segment is a segment which is the same for many users. The monitor keeps
only one copy in core and/cxr on the swapping device, no matter how many users are
using it. A nomn-sharable segment is 2 segment which is different for each user

in core and/or on the swapping device.

The PDP-10's hardware permits a user program to be composed of one or two segments

at any point in time. The required low segment starts at user location 0. The
optional high segment starts at user location 400000 or at the end of the low segment,
whichever address is greater. The low segment contains the user's accumulators,

Job Data area, instructions and/or data, I/0 buffers, and DDT symbols. A user's

core image is composed of z low segment, in multiples of 1K (1K=10624. words),

and a high segment also.in multiples of 1K. A high segment may be s%arable or
non-sharable, whereas a low segment is aiways non-sharablie.

1.3 Reentrant Programs

e

A reentrant progran is always composed of two segments - a low segment which usually
contains just data, and a high (sharable) segment which usually contains
instructions and const an; . The low segment is sometimes referred to as the impure
segnment. The sharable high segment, if write-protected, is referred to as the

pure segment. :

A one-segment non-reentrant *ograﬁ iz composed of a single low segment containing
.instructicns and data. A two-seguent non-reentrant program is composed of a low
segment and a non-sharable hlgL segment.

1, 2. The SAVE command supplies standard processor program names to the
segments it creates, A one segment non-reentrant program has a processor program
nane /SAV, For two segment programs the low segment has the processor program
/LOW. . The high segment Is named /HGH or /SHR depending on whether or not it is
a sharable segment..

The S8 option in the SAVE command is ~'ced to meke the high segment sharable when it
is loaded with the GET command. To indicate this sharability, the high segment

is written with processer program /SER instead of /HGH. A subsequent GET will
cause the high segment to be shzrable. Because an error message is not given if
the program does not have a high cegment, a user can use this command to save
without having to know which are sharable.

1.4 User's Core Storage

A user's core storage consists of blocks of memory whose sizes are an integral
multiple of 1024 0 (2000,) words. There are two methods available to the user
for loading his Core area. The simplest way is to load a core image stored on
disk (see GET). The other method is.to use the relocatable binary loader tc
link-load bimary files. The user mey then write the core image on disk for
future use (see LOAD and SAVEX.

1.5 Job Data Area

WN-103
24AUG72

The Job Data area provides storage for specific information of interest to both
the monitor and the user.
area always are allocated to the Job Data area. Locations in this area have
been given mnemonic assignments whose first three characters are .JB (or JOR).
Therefore, all mnemonics referred to with a .JBR (or JOB) prefix refer to
locations in .the Job Data area. It is planned eventually to replace the JOB
prefix by .JB, but in the meantime either prefix is acceptable.

The first 140 (Octal) locations of the user's core

TAELE 1

Job Data Arca Locations

(for user-program reference)

HAME

CCTAL
LOCATION

DESCRIPTIOCH

.JBUUO

.JB41

.JBERR

+JBREL

~JBDDT

«JBHEL

.JBSYM

.JBUSY

40

41

42

44

74

115

11€

117

User's location 4C,. Used for processing user
UU0's (001 through C37). Op code and effective
address are stored here.

User's location 41,. Contains the beginning:
address of the uset's programmed operator service
routine (usually a JSR or PUSHJ).

Left half: Unused at the present.

Right half: Accumulated error count from cne
program to the next. Programs should be written
to loock at the right half only.

Left half: O.

Pight half: The highest relative core location
available to the user (i.e., the contents of the
memory protection register when this is running).

Contains the starting address of DDT. If contents
are O, DDTI has not been loaded.

Left half. First relative free location in the

high segment (relative to the high segment origin

so it is the same as the high segment length). Set
by the LOADER and subsequent GETs, even if there is
no file tc initizlize the low segment.. . The left
half is a relative quantity because the high segment
can appear at different user origins at the same
time. The SAVE command uses this quantity to know
how much to write from the high segment.

Right half: FEighest legal user address in the high
segment. Set by the monitor every time the user
starts to run. The word is > 401777 unless there is
no high segment, in which case it will be zero.

The proper way tc test if a high segment exists

is toc test this word for a non-zero value.

Contains a pointer to the symbol table created by
Linking Loader.

Left half: Negative count of the length of the
symbcl table.

Right half: Lowest register used.

Contains a pointer to the undefined symbol table
created by Linking Loader.

A B R e DL R

L

WN-103
24AUG72

TABLE 1 (Cont)

Job Data Area Locations

(for user-program reference)

‘HAME

OCTAL
LOCATION

DESCRIPTION

.JBSA

. JRFF

-JBREN

.JBOPC

- JBCHN

.JBCOR

.JBVER

.JBDA

120

121

124

130

131

138

153

140

Left half: First free location in low segment
(set by Loader).

Right half: Starting address of the user's
program.

Left half: O
Right half: Address of the first free location
following the low segment.

Left half: Unustd at present.

Right half: The reentry starting address. Set by
user or by Linking Loader and used by &REE command
as an alternate entry point.

The previcus contents of the user's program counter
are stored here by Monitor upcn execution of an
@DDT, @REE, @ST, or @CST command.

Left half: O address of first location after first
FORTRAN IV loaded program,

Right half: Address of first location after first
FORTRAN IV Block Data.

Left half: IHighest location in low segment loaded
with non-zero data. Ulo low file written on SAVE
if less than 14C.

Set by the loader.

Right half: User argument on last SAVE or GET
command. Set by the Monitor.

Left half: 1lst <iIc’* reprosents who last edited

program, nnrxt. 3:1igits give major versionrnumber,
last 2-digits gives mirnor number (alpha).

Right half: diffcremental.edit npumber. .. 22 ;2

The number is never converted to decimal .

After a GETL:. command, an F command can be used to

find the version number.

The value of this symbol is the first location
available to the user.

HOTE

Only those JOBLAT locations of significant importance to the
user are given in this Table. JOBDAT locations not listed
include those which are used by the Monitor and these which

are unused at the present time. User programs should not refer
to any locations not listed above since such locations are
subject to change without notice.

L2

WN-103
244UG72

Some locatioms in the Job Data area., such as .J3SA and .JBDDT, are set by the
user's program for use by the monitor. Others, such as .JBREL, are set by the
monitor for use by the user’'s program. In particular, the right half of .JUBREL
contains the highest legal address set Ly the monitor whenever the user's cors
allocaticn changes.

JOEDAT exists in binary form in the Systeuws Library for lcading with user programs
that refer to Job Data area locations symbolically. User macro programs must
reference locations by means of the assigned mmemcnics, which are declared as
EXTERNAL references to the assembler. JOBDAT is loaded automatically, if needed,
during the Loader's library search for undefined global references, and the
values are assigned to the mnemonics.

SRt

