WN-46
29Jul71

UNIVERSITY OF QUEENSLAND

Computer Centre

NEWSLETTER -~ SPECIAL EDITION

" Date: 28 July 1971

Authorization: Director of the Computer Centre

NEW FORTRAN SYSTEY

On Monday 2 August, a new FORTRAN system will be implemented on the PDP-10.
This systen comprises 2 new FORTRAN IV compiler, a new FORTRAN execution
package, and 2 rev1sed set of FORTRAN library routlnes.‘

The new FORTRAN has undergone extensive testing and checking in the Computer
Centre over the past few months. Many errors have been found and corrected,
and the Centre now considers the new system to be in a reasopably reliable
state. The possibility of unknown errors always exists and so users are
requested to check results carefully and report any errors via a programming
consultation.

As detailed below, this FORTRAN system provides many new facilities to the
user, including direct access processing of files and improved diagnostics,
and corrects most of the errors reported in the present version of FORTRAN.
However, because of the extended facilities available, the size of the
FORTRAN execution package has increased with the result that some large
programs (i.e., those presently requiring more than 22K of core) may excead
the available user core size of 24K when run under the new system. In order
to mininise this increase in size, the NAMELIST facility has been removed
from the new FORTRAN execution package. Users who have problems because of
the 31ze increase, or because of the removal of NAMELIST, are asked to
contact the Computer Centre. : .
The new FORTRAN will be available to both remote terminal and batch users.
The version numbers for the new system are as follows; the compiler
will be V23-F3, and the execution package and library routines, LIB40, will
be V30. : ;

WN-46
29Jul7l

1. NEW FACILITIES

1.1 Direct Access

The sequential reading and writing of data in FORTRAN programs is familiar
to most users. For direct access; i.e., in order to access a particular
record, it was necessary tc process each record in the file until the
appropriate record was encountered. With the usce of FORTRAN direct access
statements, this is nc longer necessary and a program is ablc to access the
desired record directly.

pvirect access programming allows a programmer to access any record within a
file imdependent of the location of the previously accessed record within
that file. Uirect input/output is desirable when only a few records in a
large file are to be accessed, or when a file is to read or written in a
non-sequential manner, as in scrting.

Direct access applies only to data files with fixed-length records on the
disk. Any fixed-length record file (whether formatted or unformatted) which
has been written with FORTRAN may be read or updated non—sequentially.

To use a file in this manner, the file must first be leflned by a DEFINE FILE
‘statement and then rcccrds accessed by means of direct READ or WRITE®"
“stateéments.

(a) DEPINE FILE

Tbe structure of the file nust be snec1f1ed Ly means of the DEFINE FILE
statement. +.This statement nust appear in the program prior to any READ or
WRITE on. the flle.” The fornat is as follows: '

uEFINE FILE (u, s, v, name, pj)
where Bhe; paraneters u, .8, V, name and pj are as described below.

u. ;4Thls is the logical unit number. It must refer to one ef thﬂ Foruren
[loglcal unit nunbere Ldbely VL 212 eie AL

8 ' This is the size of the fixed length records within the file. For
- ASCII files (i.e., formatted files), the size is specified by the’
number of characters.per record and can vary from 1 to a maxinun of
132 characters. For binary files (i.e., unformatted -files), the size
is spec1f1cd by the number of words per record and can:vary from 1 to
‘any number depending on the limitations of available space.

v This is the associated integer variable. It always contains a value
one greater than the number of the last record read or written.

name This is the namc of the file. If it is zero, then the standard default
name uf FORu (where u is the unit number) is assumed.

2.

WN-46
29Jul71

o} This is the project number of the person whosz disk area is to be
accessed. It is not possible to create a file on another project
area, but only to access an cxisting file for reading or updating,
depending on the permission sct by the owner. If the project number is
zero,or omitted, the user’'s own project number is accessed.

IFILE and OFILE are not required to describe further a file defined in the
above manner. DEFINE FILE is sufficient in itself.

examples:
(1) DEFINE FILE (1f, 15, IVAR, 'DATIN')

This statement defines a file assigned to logical unit 10. The nane
of the file is DATIN. If it were an ASCII file, then the records
would be 15 characters long; if a binary file, then the records would
be 15 words long. IVAR is the name of the associated integer
variable.

(ii) NAMFIL = 'FILD'
DEFINE FILE (12, 20§, INO, NAMFIL, 37)

Similarly, this defines a file called FILD assigned to logical unit 12.
The file is a binary file (ASCII files cannot contain reccrds
exceeding 132 characters in length) with records of 200 words. ‘It
. exists on the disk area belonging to project 37.

(b) Direct READ and WRITE Staféments

Direct access READ and WRITE statements are differentiated from sequential
I1/0 statements by the presence ~f the single quecte (') following the logical
unit number. Each must specify alsc the reccord number at which reading or
writing is to start. The following formats are possible:

formatted I/0 unformatted (binary) I/0
READ(u'r,f) list READ(u'r) list
WRITE(u'r,f) list WRITE(u'r) 1list

where u is the logical unit number given in the DEFINE FILE statement,
r is the record number where I/C is to commence. This may be an
integer constant, variable or expression,
f is the FORMAT statement number,. and
list is the I/0 list.

Notice that the logical unit number and the record number are separated by the
quote sign: and not by a comma. :

The associatéd integer variable provides sequential access to records. To
process a file sequentially, the progran simply uses the value of the
associated variable as the record number in the READ and WRITE statements.

WN-46
29Jul7l

DEFINE FILE (14, 29, INT, 'MSTER')

READ (14°'INT)

o
o

examples:

(1) ; ;

To access the kth record of am ASCII file called BDATER, coding might be
DEFINE FILE (11, 25, IV, 'DATER')

REAT L RS ASBie
5 TFORMAT (3A5, 2I5)

°
°

_ Note that the size of the record in DEFINE FILE corresponds to the size
of the FORMAT specifications :

(ii) Random WRITES are used to change every 7th record, beginning with record
number 3 in the file named DATA on the user's disk area. The file is
unformatted, contains 100 records, each 35 words long

DIMENSION LIST (35)
DEFINE FILE (13,35,IVAR, ‘DATA')

°

DO 20 K=3, 1¢0,7
WRITE (13 'K) LIST

20 CONTINUE

°
o

If a direct READ or WRITE statement is followed by 2 sequential READ or WRITE
statement on the same logical unit, then reading or writing begins with the
next sequential record.

Note that it is inadvisable to create a file in the first instance or enlarge
a file further ahead than the next sequential record using direct access
writes. A file to be directly accessed should initially be created by
sequentially writing the full number of blank récords required.

WN-46
29Jul’l

1.2 END and ERRCR

It is ncw possible to specify inra ZEAD statement the desired transfer of
control should an end-of-file or an error cond lition be encountered durlng
a read cperation.

The format of the statement is
READ (u,f, END=n, ERR=m) list

where u,f, and list are defined as usual (i.c., the unit number, the number of
the FORMAT statement and the I/C list of variables),

n and m are the statement numbers to whichk program control is to be
transferred should an end-of-file or error condition, respectively, occur.

example:
READ (5,29,END=999, ERR=525) A,B,C

.
.
.

L - N (ﬂuntrol w111 transfer here should an error condition arise
during the read operation)

999 (control will transfer herc should the end-of-file be
encountered by the read cperation)

The arguments END=n and ERP=m are both opticnal. BEoth cr either may be
included and, if both are present, the order of precedence is unimportant.

If either an end-of-file or an error condition is encountered, then control
will pass to the statement number declared by END=n or ERR=m. Should the
appropriate parameter uoct be specified in the READ statement, then the
execution of the user's program will be terminated and an appropriate error
message will be printed.

1.3 ENCODE and BECODE

The ENCODE and DECODE statements transfer information from one data area to
another, converting the data according to a given Format statement.in the
process. DECODE is used to change data in ASCII character format to data in
some other form, and ENCODE changes data from the variocus internal
representations into data in ASCII character form.

The format for these twc statements is as follows:
ENCODE (c,f,r) list
DECCDE (c,f,r,) list

Wil-46

2%Jul’l

where

¢ 1is the number of ASCII characters in the character string,
f 1is the FORMAT statcment number,

‘r 1s the starting address of the ASCII character string referenced, and

1ist dis the T/0 1ldist of variables.

examples:

(1)

Suppose A(1l) contains the binary number 300.45, A(2) the binary numbor
3.0, J a binary integer 1, and B is a four word array. Then the
statements -
D0 3% J=1,2
ENCODE (16,2%,B) J,A(J)
20 TFORMAT (1X, 'A(',I1,')A=A', F8.2)

30 CONTINUE

would cause the array B, after the first iteration of the DO loop, to

rcontain the character string 'AA(1l)A= AAAB%@ 45' That is, the contents

~,of Lach elament of B would be -

(ii)

B(1) 61
B(2) A=AAA Rl E R O
B(3) 309.4 | » TR
B(4) 5 :

after the second iteration of the loop, the array would contain -

B(1) AL (2)

B(2) A=AAA
B(3) AA3 .
B(4)

Suppose also that € contained the ASCII string 35279, then the following
statements -

DECODE (4,15,C) B
15 FORYAT (2F1.8, 1X, 2F1.¢)

would cause the first two characters of C(3 and 5) to be converted to
floating point binary values and stored in B(1) and B(2); tha next
value of C to be skipped; and the last two values cf C(7 and 9) to be
converted and stored in B(3) and B(4).

The following program demonstrates some uses for ENCODE and DECODE.

WN=-46

29Jul7l
DIMENSION UNPK(5) ,FIST(6)
C SOME EXAMPLES OF .ENCODE:AND DECODE -
(Gl ARy : § g .
C *%%%%TQ UNPACK ASCII CHARACTERS¥*#*%%%
PACKED="ABCDE'
DECCDE (5,20,PACKED) UNPK
20 FORMAT(5A1)
.Y PRINT 303PACKED,UNPK"
*30. - FORMAT ('PACKED = ,AS,’UNPACKED v R v [
C %%%%*%T0 SELECT A CHARACTER FROM A WORD#H#k#k%
FLAGS="MBCRF'
. ‘DECODE(5,10,FLAGS) BUSY
10 FORMAT(1X,Al,3X)
PRINT 40,BUSY
40 FORMAT(/' THE BUSY FLAG IS ',31//)
G
sl v‘****TO ‘CHANGE THE SECOND ChAEACTE OF "FLAGS" TC BLANK##%%%
o R) Pl il
ENCDDE(5,10,FLAGS) OFF
DECODE(5,10,FLAGS)BUSY
PRINT 40,BUSY
C

C #%***TQ SET UP A RUN TIME FORMAT ARRAY*#ik
NUMBEPR=9
ENCODE(27,50,FMT) NUMBER

50 FORMAT('('' MOVING ARROW '',',I3,'X""4'")")
PRINT 60,FMNT

60 FORMAT(' THE FORWAT IS ',645)
PRINT Fil¥
END

EXIT
1+C

During execution, the ﬂrwgran prcduces the follnw1ng results.

PACKED = ABCDE UNPACKED TO A B C D E
THE BUSY FLAG IS B

THE BUSY FLAG IS

THE FORMAT IS (' MOVING ARROW ', 9%, 't')
MOVING ARROW 4

WN~-46
29Jul?7l

1.4 Multiple Returns fron Subroutines

In both Function and Subroutine subprograms, it is possible for the
subprogram to return to the main program at an address othpr than that
immediately following the call to the subroutine.

This can be done in the following way:

Statement labels can bée specified as arguments to a subroutine by preceding
them in the argument list by an asterisk (%) or a dollar sign (§). The
corresponding dummy argument in the subroutine statement must be either a §
or an * sign.

Within the called subprogram, the return to the pain program is effected by a
new form of the RETURN statement.

RETURN

where i is an integer constant or variable. The value of i must be positive,
and specifies that the return is to the ith argument of the argument list of
the subprogram (where the ith argument is a statement number preceded by a
dollar or asterisk sign). If i=0, the return made is the same as with the
nornal RETUZN statement. y

examples:
(i) CALE AYRE (AL SEO B S20)

.
°

END
SUBZOUTINE TYPE (V1, $, V2, $)

RETUEN NUM s If NUM = 2, return s to statement number

e : 10 in the nain progran,

s If NUM = 4, recturn is to statement number

5 20 in the main program - -

RETURN : This is ithe ncrmal return and will return

END to the statanent following the subprogram
@zl

¢ WN-46

29Jul71
(ii) ;

K = LIST (I, $93, J)

" END
FUNCTION LIST (N, $, i)
RETURN 2 ‘s for an error conditiom, say, returns to

statement. 93 in the calling program

RETURN "3 for normal completion
EID

When a RETURN i is used (where i is not equal to zerc) in a Function
1

subprogram, the value returned in the name of the function is lost.

The use of a dollar sign is preferred since expressions involving the
multiplication sign (*) can be used as arguments.

The modification. to the PLOTI subroutine (section 5.3) provides an
illustration for multiple returns.

1.5 OQutput Field Exceeds Format

With I, F, 0 and D type formats, the operating system will print all asterisks
- in the field when the number to be output exceeds the size of the field
defined in the FORVMAT specification.

example: '
=34

I

J = 9376

A = 126.527
B = 52.35

WRITE (6,10) I,A
1¢ FORMAT ('AAINTEGERAISA',I3,',AREALAISAY,F5.2)

°

WRITE (6,19) J,B

would produce the following results:

AINTEGERAISAAZS , AREALATS ##%&#&*
AINTEGERAISA#%%* AREALAISA52.35

WN=-46
29Jul71

Note that G type formats should be used if there is any uncertainity about
maxinum field width required. '
The execution summary will include a count of ocutput field width overflows

if any cccur,.

1.6 JOBBAL Function

JOBBAL is a FORTEAN IV function that has been added to the library. It
returns to the user program the remaining balance of the job cost limit.

At present, with the usc of the JOB and/or the LIVIT commands, a user
imposes a cost limit on a program. When the limit is exceeded, the program
execution is terminated. With the use of the JOBBAL functicn, a program can
control itself by examining the balance left and terminating itself cleanly
should there be insufficient funds available.

The JOBBAL function returns to the calling program an integer number of units.
The value of a unit is 1 cent for university users, 2 cents for government
departments and 2.5 cents for other users. This means that a given aumber
of units represents a constant amount of computing for each class of user.
example:

IBAL = JOBBAL (%)

IBAL = IBAL * 2

IF (IBAL.LE.2@%) GO TO 999

°
°

1.7 ©New Type Declaration Statement

A new type declaration statement, SUBSCRIPT INTEGER, is now available. This
allows for the declaration of fixed point variables that fall in the
range -227 to 227

1.8 Dollar Sign in Format

A dollar sign ($) as a format field specification code suppresses the carriage
return at the end of the Teletype or lime printer line.

WN-46
29Jul71

1.9 ERRSET Function

ERRSET allows the user to control the printout of execution-time arithmetic
error messages (see section 2. l) ERESET is called with one argument in
integer mode.

CALL EAhSET (N)

Printout of each type of error message is suppressed after N occurrences of
that error message. If ERRSET is not called, the default value of N is 2.

2. EXECUTICON DIAGHOSTICS AND SUMIARY

2.1 Execution Diagnostics

These error messages are diagnostics produced by thg FORTRAN operatlng system
during execution of a program.

(a) These messages are all followed by a second message 'LAST FORTRAN I/OC
AT USER LOC adr'.

DEVICE dev: NOT AVAILABLE

The operating system tried to initialize a deviece which either does not
or has been assigned to another job.

DEVICE NUMBER n IS ILLEGAL

A non-existent device number was selected.

END OF FILE ON dev:
A premature end-of-file has occurred on an input device.

FILE NAHE_filename NOT ON DEVICE dev:
The file cannot be found in the directbry of the specified device.

ILLEGAL CHARACTER, x,IN FORVAT
The tllegal character x is not valid for a FORMAT .statement.

INPUT DEVICE ERKCE ON dev:

A data transmission error has been detected in the imput from a device.

e

WN-46
290ul/

ILLEGAL CHARACTER, x,IN INPUT STRING

The illegal character x is not valid for this type of input.

NO ROOM FOR FILE filename ON DEVICE dev:

There 1s no room for the file in the directory of the named device or
no room on the device.

program name OT LOADED

A dummy - routinc was loaded instead of the real one. Generally, this
error occurs when a loaded program is patched to inelude a call to a
Library program which was not called by the original program at load
time.

OUTPUT DEVICE EREOE ON dev:

A data transmission crror has been detected during output to a device.

PARITY ERROR ON dev:

A parity error has been detected.

REREAD EXECUTED BEFORE FIRST READ

A reread was attempted before initializing the first imput device.
dev: WRITE PROTECTED
The device is WRITE locked.

(b) These messages are all followaed by a second message 'LOADING OVEELAY name
FROM LOCATION adr’.

OVERLAY NUMBER INCORRECT

A call to overlay with a number 0 or greater than 20.

OVERLAY NOT IN TABLE
The name in the overlay call doecs not exist.
ERROR READIMNG OVERLAY FILE
OVERLAY WILL OVERWRITE CALLER
FILE NOT FOUND

12.

WN~46
29Jul?71l

(c) These messages are not follhwcA by another message.

ACOS OF ARG > 1.0 TN MAGNITUDE
ASIN OF ARG > 1.0 IN MAGNITUDE
ATTEIPT TO TAKE SQRT OF NEGATIVE ARG
CLOSE FAILURE FOR PLOTTER FILE

* FLOATING DIVIDE CHECK PC=nnnnnn

% FLOATING OVERFLOW PC=nnnnnn

% FLOATING UNDEXFLOW PC=nnnnnn

% INTEGER DIVIDE CHECK PC=nnnnon

* INTEGEX OVERFLOW PC=nnnnnn
OPEN FATLURE FOP PLOTTER FILE

X COORDINATE OUT OF BOUNDS
Thzs is a plotting error. The y coordtnate may also be out of bounds

Y COORDINATE OUT OF BOUNLS
The x coordinate will have been tested first, and is, therefore,
within bounds.

* These error mbssagos are typed for each occurrence of the appropriate
error for a maximum number of times. This maximum number 1is sat by
default to 2, but can be changed by means of the ERRSET function
(sece section 1.8).

2.2 Execcution Summary

At the end of execution of a program, a summary will be printed that lists
the actual number of timcs cach error message occurrad. The execution time
and total elapsed time for the run are also given.

The possible errcrs accounted for in the summary are:

ACOS OF ARG > 1.0 IN MAGNITUDE
ASIN OF ARG > 1.0 IN MAGNITUDE
ATTEMPT TO TAKE SQRT OF NECGATIVE ALG
FATAL I/0 ERLOR

FLOATING DIVIDE CHECK
FLOATING OVERFLOW

FLOATING UNDERFLOW

INTEGER DIVIDE CHECK

INTEGER OVERFLOW

OUTPUT FIELD WIDTH OVERFLOW
OVERLAY ERROR

PLOTTER ERROR

Il o

Wii-46

29Jul7l

examples:

(1)

i)

(a)

EXECUTION TIME: #.16 SEC.

TOTAL ELAPSED TIME: 17.89 SEC.
NO EXECUTION ERRORS DETECTED.
EXECUTION TIME: $.24 SEC.
TCTAL ELAPSED TIHME: 3 MIN. 26.64 SEC.
NO. OF ERRORS ERROR TYPE
1 : INTEGEZ OVELFLOW
4 OUTPUT FIELD WIDTH OVEIFLOW

3. REPORTED ERROZS CORRECTER IN THE NEW VERSION OF FORTRAN

Expressions involving a nixture of variable types are better handled by the
compiler.

. In the error reported in the Bulletin Vol. 3, P 4900 T0E.

A = Z#*(11-I24+13)

the sub-expression is now evaluated as an integer and the real-integer
exponentiation routine used.

I the Bulletin Vol. 4, p. 94,‘fhe exprcssidn

(b)- &

(c)

Do BADS(2¥1-1)

is reported to be tramslated incecrrectly. ' The correct code is now
produced. i

Implicit conversion from double precision to real whem the number is

almost a power of 2 is now accurate (see Bulletin Vol. 2, p. 106).

Octal constants greater than 235 may be defined in assigﬁment statenents,
B = "777777000000
(gee Bulletin Vol. 2, p. 128).

Correct code is produced when a function is used in the index expressicn
for double precision or complex arrays (sec Bulletin Vol. 2, p. 128).

The complex expression
z = 21/2

is also handled correctly (see Bulletin Veol. 3, p. 38).

14.

WN-46
22Jul7l

(£) The use of a variable name as both a simple integer and as a function
name now produces a compilation error:message. I

TJIK = 92
TRt IJY(Z 3)

(See Bu;letln Vol. 3 Piael)

(g) Qﬂ-logical»IF may not compare a complex and a real variable. For
example,

IF (C(J).6T.1.5) GO TC 19¢

will now produce an error message. (See Bulletin Vol. 3, p. 93.)

(h) A literal constant may not consist solely of two adjacent single
quotes ('), for example, B = '’

This will proaucb a compilation errcr (SLL Bullutln Vol 283D 179)

(i) The differences between the truncation of negative real values in
PDP-10 FORTRAN and GE-225 FORTRAN, reported in Vol.-3, pp. 49-50 of
the Bulletin, no longer apply. The routine IFIX, and all implicit
fixing of real variables now use the INT method of trunecation towards
zero instead of towards minus infinity. See section 5.1 of this
Newsletter. ’

(j) The compiler generates code to restore the 3O loop, indéx when
statements could extend the range of the DO loor. ~This corrects errors
reportedsinetheMBuliie Gint Vol 3 a7 3Nandt Vol aa G S e p 935

(k) Double precision output has been corrected, and the comment on valucs
outside the range 0.1%10716 to 0.1%108 given in the Bulletin Vol. 3,
pP. 54 no longer applies. i

(1) A mixture of H type and single quote (') type Hollerith strings in
FORMAT statements is now allewable (sce Vol. 4, pp. 38-40).

(f1) The 026 character ‘)’ which was not accépted is now converted to the’
029 ")' on input, as are the other 026 characters correspondingly
ccnverted (see Bulletin Vel. 4, p. 63).

f -

(n) - Further efforts have been madc t- solwve the problems causcd by Batch
suppressing trailing blenks. Some imprevement has been made, but A
type format Stlll appears to have uroLles (Vol. 3, pp. 39-40).

15,

WN-46
29Jul71

(o) Some additicnal errors corrected are:
(i) RELEASE now clears all the flags it should.

(it Backspacing records in blnury and ASCII disk files now works
properly.

(iii) Tabs in format statements are treated as spaces. Previously,
tabs were illegal unless they were within a Hollerith string.

-

(iv) Backpointing of T format type on input is now correctly handled.

(p) Other changes in the FORTRAN cperating system are:
¥ 8 op A

(i) A negative argument to SQRT now returns the square root of the
absclute value instead of zero as well as giving the error message.

(ii) Fleoating vpeint underflow and overflow, integer underflow, overflow
and dividing by zero produce error messages. For floating point
operations, the result produced is zero for underflow and
.17x1039% for overflow and divide checks.

'(iii)«-The FORTRAN cperating system now uscs FRECHN UUO to allocate
channels. Any user-written :ACRO I/Q routines should alsc use this
“UUO ‘to avoid clashes in channel allccations.

Users are reminded that a list of all current errors is kept in one of the blue
binders in the Cliemnts’ LKoom. This 1list is kept wp to date and is intended

to provide quicker reference on. errors tban searching thrﬁugh all the latest
Bulletlns ‘and Newsletters.

DO

4. ENOWH ELuO“S IN THE NEW FCRTRANV

(a) Double precision primary to integer primary conversion may cause problems.
Precision of the result is limited to 8 ¢ LClﬂ?l digits.

(b) IFIY may cause truncation errors for very large numbers.

(c) Oversize formats containing slash, and all ovcrsized integer fornmats,
cause records to be skipned.

(d) Oversize format for ENCOBE statement causes '?ILL MEM REF' error message.

(¢) -Specifying a character count ‘too long or toc short in ENCODE or HECODE is
not.diagnCSud as an error.

(£) he last digit of § and F-type output with a negative scaling factor is
cftcn incorrect.
16.

WN-46
29Jul?71

5. FURTHER ITEMS OF INTEREST

5.1 1IFIX, INTIER and ENTIER Functions

The result of an IFIY function is now the same as INT. That is, it converts
a real number to an integer and the result given is

sign of arg % largest integer < |arg]

Users who might still wish to usec IFIX as it was previously defined, can use
INTIER instead. This converts a real number to ar integer and the result
given is

largest integer < arg

There is a new function ENTIER which performs in much the same way as INTIER,
except that the result is real and not integer. That is, it converts a real
nunber to real and the result given is

largest real < arg

exanple:
The results of IFIX, INTIER, ENTIER for a group of arguments are as
follows:
argunent IFIX INTIEL. ENTIER
2.0 £ 2 2.8
I 5 1 il 1.9
1.9 il 1 1.9
#.5 ? (/ g.0
p.9 /) 9.0
-@.5 ? -1 =-1.0
~1.0 -1 -1 ~1.¢
-1.5 -1 ~2 -2.0
-2.0 S = -2.¢

5.2 REWIND Statement

If a REWIND is used on a disk file, then any prior assignment of a named disk
file to a logical unit number will be broken. If the file is a scratch file, an
automatic reassignment will be made to the file by using the same unit number.
If a namad data file that has been assigned with IFILE or OFILE is reweund,

then the file must be assigned by a further call toc IFILE or OFILE after the
REWIND.

Users are recomannded to use ENDFILE rather than REWIND.

17.

WN-46 :
29Jul7l -

5.3 HModification. to PLOTI Subroutine

An additional optional argument has been:added to the calling sequence of
PLOTI. This argument, if present, is in the form of $n where n is a
statement number to which control will pass if any of ‘the subsequent plotting
routines fail. Thus, -'¥ COORDINATE OUT OF BOUNDS' need not be'a fatal ‘error
for the program, although that plot file is closed and a new call to PLOTI
should be the next plotting operation. (For this purrose, a call to WHERE

is not regarded as a plotting operation.)

example:“i,.- : : N e T ,
CALL PLOTI ('GRAPH', 1§.0, $209)

280 - - - , returns here on any plotting error

