
rii~5555555 I I I
I I •
I I • •

VAX-11
Linker Reference Manual

Order No. AA-D019A-TE

I • • I 5555555Y.J • • I
• I

I

(----- . ,

(

(

(

August 1978

This document describes how the VAX-ll Linker works and how to use it.

VAX-11
Linker Reference Manual

Order No. AA-D019A-TE

SUPERSESSION/UPDATE INFORMATION: This is a new document for this release.

OPERATING SYSTEM AND VERSION: VAX!VMS VOl

SOFTWARE VERSION: VAX!VMS VOl

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digita~ equipment corporation · maynard, massachusetts

First Printing, August 1978

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright © 1978 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre­
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DECUS
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM
ASSIST-ll
VAX
DECnet

DECsystem-10
DECtape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL
INDAC
LAB-8
DECSYSTEM-20
RTS-8
VMS
lAS

4/79-14

MASSBUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-B
TYPESET-ll
TMS-ll
ITPS-10
SBI

c

(

(

(

(

(

(

(

c

(

PREFACE

CHAPTER

CHAPTER

1

1.1
1.1.1
1.1. 2
1.1. 3
1.2
1. 2.1
1. 2.2
1. 2.3
1. 2.4
1. 2. 5

2

2.1
2.2
2.3
2.4
2.5
2.5.1
2.5.2
2.5.3
2.5.4
2.6
2.6.1
2.6.2
2.6.3
2.7
2.8

CHAPTER 3

3.1
3.2
3.2.1
3.2.2
3.2.3
3.3
3.3.1

CHAPTER 4

4.1
4.2
4.3
4.3.1
4.3.2
4.4

CONTENTS

LINKER OVERVIEW

REASON FOR A LINKER
Modular Programming
Simplifying Compilation and Assembly
Debug Capability

LINKER OPERATION AND FUNCTIONS
Virtual Memory Allocation
Resolution of Symbolic References
Image Initialization
Image Map
Symbol Table File

IMAGE C~ATION

PROGRAM SECTIONS
IMAGE SECTIONS
CLUSTERS
OBJECT MODULE CONTENTS
PROGRAM SECTIONS

Program Section Name
Program Section Size
Program Section Alignment
Program Section Attributes

TYPES OF IMAGES
Executable Images
Shareable Images
System Images

GENERATION OF IMAGE SECTIONS
COMPRESSION OF UNINITIALIZED IMAGE SECTIONS

SYMBOLS AND REFERENCES

DEFINITIONS: "SYMBOL" AND "REFERENCE"
TYPES OF SYMBOLS AND REFERENCES

Local Symbols
Global Symbols
Universal Symbols

SYMBOL TABLES
Global Symbol Table as Separate Output

LIBRARIES

LIBRARY TABLES USED BY THE LINKER
LINKER'S USE OF LIBRARIES
DEFAULT SYSTEM LIBRARY

VMSRTL.EXE
STARLET.OLB

EXAMPLE OF USING LIBRARIES

iii

Page

vii

1-1

1-1
1-2
1-3
1-4
1-4
1-4
1-5
1-5
1-5
1-5

2-1

2-1
2-1
2-1
2-2
2-2
2-3
2-3
2-3
2-3
2-5
2-6
2-6
2-7
2-7
2-8

3-1

3-1
3-1
3-3
3-3
3-4
3-4
3-5

4-1

4-1
4-2
4-3
4-3
4-4
4-4

CHAPTER 5

5.1
5.2
5.2.1
5.2.2
5.3

CHAPTER 6

6.1
6.1.1

6.1. 2
6.1. 3

6.1. 4
6.2
6.3

CHAPTER 7

7.1
7.2
7.2.1
7.2.2
7.2.3
7.2.4
7.2.5
7.2.6
7.2.7
7.2.8

CHAPTER 8

8.1
8.1.1
8.1. 2
8.1. 3
8.1. 4
8.1. 5
8.2
8.2.1
8.2.2
8.2.3
8.2.4
8.2.5
8.2.6
8.2.7

8.2.8

8.2.9
8.3

CONTENTS (Cant.)

THE LINK COMMAND

COMMAND FORMAT
COMMAND AND FILE QUALIFIERS

Command Qualifiers
File Qualifiers

EXAMPLES

THE /OPTIONS FILE QUALIFIER

USES FOR AN OPTIONS FILE
Entering Frequently Used Input
Specifications
Identifying a Shareable Image as Input
Entering More Input Than the Command
Language Can Handle
Entering Non-Standard Link Instructions

CREATING AND SPECIFYING AN OPTIONS FILE
SPECIAL OPTIONS

IMAGE MAP

IMAGE MAP CONTENTS
IMAGE MAP SECTIONS

Object Module Synopsis
Image Section Synopsis
Program Section Synopsis
Symbols by Name
Symbol Cross Reference
Symbols by Value
Image Synopsis
Link Run Statistics

SHAREABLE IMAGES

SHAREABLE IMAGES: BENEFITS AND USES
Conserving Physical Memory
Conserving Disk Storage Space
Reducing Paging I/O
Using Shared Memory-Resident Data Bases
Making Software Updates Compatible

CREATION OF SHAREABLE IMAGES
LINK Command and Pertinent Options
UNIVERSAL= Option
GSMATCH= Option
Transfer Vectors
Shareable and Nonshareable Data
Position Independence
Rules for Creating Upward-Compatible
Shareable Images
Example of Transfer Vector and Universal
Symbols
Example of FORTRAN Shared COMMON

USING SHAREABLE IMAGES

iv

Page

5-1

5-1
5-2
5-4
5-8
5-9

6-1

6-1

6-1
6-2

6-2
6-2
6-4
6-5

7-1

7-1
7-3
7-3
7-5
7-5
7-8
7-8
7-9
7",:,10
7-10

8-1

8-1
8-1
8-1
8-2
8-2
8-2
8-2
8-2
8-3
8-3
8-4
8-6
8-7

8-8

8-9
8-18
8-30

(

(

(
'-

(

(

c

CHAPTER 9

9.1
9.2

APPENDIX A

APPENDIX B

APPENDIX C

C.l
C.l.l
C.2
C.3
C.3.l
C.3.2
C.3.3
C.3.4
C.3.S
C.3.6
C.3.7
C.3.B
C.3.9
C.4

C.4.l
C.4.2
C.4.3

C.4.4

C.S

C.S.l
C.S.2
C.S.3
C.S.4
C.6
C.6.l
C.7

C.7.l

C.B

CONTENTS (Cont.)

CLUSTERING

MECHANICS OF CLUSTERING
USAGE GUIDELINES

LINKER MESSAGES

IMAGE MAP ILLUSTRATIONS

VAX-ll OBJECT LANGUAGE

INTRODUCTION
Summary of Language

GLOBAL AND UNIVERSAL SYMBOLS AND NAME FORMAT
MODULE HEADER RECORDS (HDR)

Header Type
Structure Level OBJ$C STRLVL
Maximum Record Size OBJ$C MAXRECSIZ
Module Name -
Module Version
Dates and Times
Other Header Records
Header Types 1 through 4 and 6
Maintenance Status Header Record (MTC)

GLOBAL SYMBOL DIRECTORY (GSD) RECORDS
(OBJ$C_GSD)
P~Section Definition (OBJ$C GSD PSC)
Global Symbol Specification-OBJ$C GSD SYM
Entry Point Symbol and Mask DefinTtion
(OBJ$C GSD EPM)
Procedure With Formal Argumen~ Definition
(OBJ$C GSD PRO)

TEXT INFORMATION AND RELOCATION (TIR)
RECORDS (OBJ$C TIR)

Commands -
Record Length
Differences From RSX-ll
Side Effects And Optimization

END OF MODULE (EOM) RECORD (OBJ$C EOH)
Error Severity -

DEBUGGER INFORMATION (DBG) RECORDS
(OBJ$C DBG)

Traceback Information (TBT) Records
(OBJ$C TBT)

LINK OPTION SPECIFICATION (LNK) RECORDS
(OBJ$C_LNK)

v

Page

9-1

9-1
9-1

A-l

B-1

C-l

C-l
C-l
C-3
C-3
C-4
C-4
C-4
C-4
C-4
C-4
C-S
C-S
C-S

C-7
C-7
C-9

C-ll

C-12

C-14
C-14
C-22
C-22
C-22
C-23
C-23

C-24

C-24

C-24

FIGURE

TABLE

1-1
3-1
4-1
7-1
7-2
7-3
7-4
7-5
7-6
7-7
7-8
8-1
8-2
8-3
8-4
8-5
8-6
C-1

5-1
5-2
6-1
7-1
7-2
C-1

FIGURES

Modular Programming
Local and Global Symbols
Library Tables
Object Module Synopsis
Image Section Synops~s
Program Section Synopsis
Symbols by Name Section
Symbol Cross Reference
Symbols By Value
Image Synopsis
Link Run Statistics
No Transfer Vectors
Transfer Vectors
Listing of CRF Transfer Vector
Command and Files to Create CRFSHR
Map of CRFSHR
Map Showing FORTRAN Shared Common
General Structure of an Object Module

Command Qualifiers
File Qualifiers
Special Options
Image Map Sections
PSECT Attributes

TABLES

Interpretation of SYM$V_WK and SYM$V_DEF

vi

Page

1-3
3-2
4-2
7-4
7-4
7-7
7-8
.7-9
7-9
7-10
7-11
8-4
8-5
8-10
8-12
8-13
8-19
C-2

Page

5-3
5-3
6-3
7-2
7-6
C-10

(

(

(

(

(

(

(

(

(

PREFACE

MANUAL OBJECTIVES

The VAX-II Linker Reference Manual describes how the VAX-II Linker
works and how to use it. This manual has both an educational and a
reference function: it provides detailed explanations of significant
topics, yet it is also designed for quick look-up of important
information.

INTENDED AUDIENCE

This manual is intended for programming specialists and nonspecialists
alike. In general, the entire manual is intended to be informative
and useful to all readers; however, certain parts are designed
specifically to meet the needs of certain types of readers.

• If you are not yet proficient in programming under the VAX/VMS
system (for example, if you are a trainee programmer), or if
you do not need to become an expert, this manual is designed
to teach you the main concepts and techniques of linking as
clearly as possible. Chapters 1, 3 through 7, and Appendixes
A and 8 are aimed especially at this type of reader.

• If you are already proficient in programming under the VAX/VMS
system, this manual provides detailed information about some
of the more complex aspects of linking. Chapters 2, 8, 9, and
Appendix C are aimed especially at this type of reader.

STRUCTURE OF THIS DOCUMENT

Chapters 1 and 2 introduce the linker. Chapter 1 defines significant
terms, presents the reasons for the linker's existence, and discusses
in general terms how the linker works. Chapter 2 goes more deeply
into the process by which the linker creates images. Chapter 2 also
introduces new concepts and expands on concepts introduced in Chapter
1.

Chapters 3 and 4 focus on concepts that are important to understanding
the linker's operation. The discussion of symbols and references in
Chapter 3 derives from the linker's function of resolving symbolic
references between modules. Chapter 4 explains libraries, ~hich
normally contain frequently used modules that the linker can include
in user images.

Chapter 5 discusses the LINK command and its command
qualifiers. Chapter 6 focuses on the /OPTIONS file
describing how to create and use a linker options file.

vii

and file
qualifier,

Chapter 7 explains the different forms of the image map that the
linker produces on request. This map provides information about the
image that was created and about the linking process itself.

Chapter 8 and 9 present detailed explanations of shareable images and
image clusters. The complex information in these chapters is intended
mainly for more sophisticated programmers and application designers.

The appendixes provide supplementary information. Appendix A lists
the error messages that the linker can generate. Appendix B
illustrates complete brief, default, and full maps of the same image.
Appendix C is a specification of the object language accepted by the
linker1 this information is useful to anyone designing a compiler or
assembler whose output must be acceptable to the VAX-II Linker.

ASSOCIATED DOCUMENTS

The following documents contain information pertinent to linking:

• VAX-II Information Directory

• VAX/VMS Primer

• VAX/VMS Command Language User's Guide

• VAX-II Symbolic Debugger Reference Manual

• VAX/VMS System Manager's Guide

• VAX-II MACRO Language Reference Manual

• VAX-II MACRO User's Guide

• VAX-II FORTRAN IV-PLUS Language Reference Manual

• VAX-II FORTRAN IV-PLUS User's Guide

CONVENTIONS USED IN THIS DOCUMENT

The following conventions are used in this manual:

• Brackets ([]) enclose optional material, as in the following
examples:

/[NO] DEBUG

The positive form of the qualifier is /DUBUG, and the negative
form is /NODEBUG.

CLUSTER=cluster-name, [base-address], [pfc] , file-spec [, •••]

The base address, page fault cluster (pfc) , and additional
file specifications are optional entries. Note, however, that
the commas following the base address and page fault cluster
are outside the brackets1 therefore, if you omit these
entries, you must still enter the commas. For example:

CLUSTER=AUTHORS",TWAIN,DICKENS

viii

(

(

(

c

(

(

(

(

• Uppercase letters in format illustrations show keywords that
you must enter as shown, lowercase letters show variable
data, with the letter Un" specifying numeric data. Examples:

/EXECUTABLE=file-spec

/BASE=n

• Horizontal ellipses (•.•) in a format illustration indicate
that the preceding entry can appear several times, as in the
following example:

UNIVERSAL=symbol-name [, .••]

You can specify multiple symbol names.

• Vertical ellipses indicate that lines of file contents or code
not pertinent to the example are not shown:

ix

c

(,

(i

(\

(

(
'"

(

(

CHAPTER 1

LINKER OVERVIEW

The VAX-II Linker is a programming development tool that takes the
output of language translators, such as the VAX-II MACRO assembler or
the VAX-II FORTRAN IV-PLUS compiler, and binds it into a form that can
be executed on the VAX-II hardware. The primary outputs of VAX-II
language translators, and the primary inputs to the linker, are files
that contain object modules. The primary output of the linker is a
file called an image.

The linker can produce three types of images. The most common type,
called executable, is activated in response to a command that you
enter (such as RUN). Another type of image, called system, is
intended for stand-alone execution on the VAX-II hardware. The third
type, called shareable, provides a means for sharing procedures and
data among multiple processes within the system. Shareable images
also provide a way of linking a very large application program in a
number of smaller phases. Chapters 2 and 9 discuss image creation in
detail. Chapter 8 focuses on shareable images.

The linker assigns values and virtual addresses not only to symbols
defined within each module, but also to symbols defined outside the
module that refers to them. If a symbol is not defined in ,a module
named in the LINK command, the linker searches one or more libraries.
Chapter 3 discusses the different types of symbols (for example, local
and global, strong and weak)~ and Chapter 4 discusses the use of
libraries.

The linker is activated by the LINK command, which you can enter
interactively or within a command procedur~. The LINK command permits
many command qualifiers and file qualifiers, most of which have
default values that are suitable for most cases. Ofie input file
qualifier is /OPTIONS, which allows you to convey additional input
file specifications and special instructions for the linker. Chapter
5 explains the LINK command and all its qualifiers. Chapter 6 focuses
on the /OPTIONS qualifier and the special items or options that can
appear in an options file.

In addition to the image itself, the linker can produce a printable
image map. You can control the level of detail provided in various
parts of the map. Chapter 7 explains and illustrates the image map.

1.1 REASON FOR A LINKER

The object modules that a VAX/VMS compiler or assembler creates are
nonexecutable. They must first be linked. The requirement that
object modules be linked contrasts with systems in which the output of
a compiler or assembler is directly executable.

1-1

LINKER OVERVIEW

The VAX-II native translators require a linker for several reasons:

• Linking simplifies modular programming.

• The linker simplifies the job of each native compiler or
assembler.

• The VAX-II Symbolic Debugger and other features can be
accessed easily.

1 . .1.1 Modular Programming

Modular programming is the process of combining separately compiled or
assembled modules into an executable program or image. Modular
programming has two aspects:

• Automatic modularity because many source
generate calls to common functional
DIGITAL

language statements
routines developed by

• Deliberate modular design implemented by some user sites

Most programs are automatically modular, because many source language
statements generate calls to routines that perform commonly needed
functions, such as opening and closing files. Examples of these
routines are the procedures in the VAX-II Common Run-Time Procedure
Library, which is installed in the system as a shareable image. These
routines can be linked into different images regardless of the
programmer's original source language. At run time each routine can
be shared by a number of different processes, because ~ach routine is
relocatable and reentrant. (Reentrant means that the code does not
modify itself, and consequently can be reused by different processes.)

Users can also make their programs deliberately modular. Under this
practice, a single complex program is written as a number of smaller
program modules. The modules are compiled or assembled, and later
linked to create an executable image. Figure 1-1 illustrates program
development in this environment. In this example, two programmers
write two program modules, a main section in VAX-II FORTRAN IV-PLUS to
perform different calculations, and a second section in VAX-II MACRO
to handle specific exception conditions.

Modular programming offers several advantages over the traditional
practice of having one programmer write an entire complex program as a
single source module:

• Smaller modules are usually more manageable and easier to
write.

• Different modules of the same program can be written in
different languages. You can select the language that best
suits the nature of the module's function or your own personal
preference.

• Errors are easier to analyze and correct in smaller modules.

1-2

(

(

(

(

(

(

(

(

LINKER OVERVIEW

Optional

Figure 1-1 Modular Programming

1.1.2 Simplifying Compilation and Assembly

Having a linker perform certain essential functions eliminates the
need for every native compiler and assembler to handle these
functions. For example, the linker contains the logic to allocate
virtual memory and to provide the memory management interface between
the program and the operating system.

A program's virtual memory can be allocated efficiently only after all
its constituent modules are known. The linker contains the logic
necessary to group parts of programs according to specific attributes,
with the goal of conserving memory and reducing the amount of paging
activity at run time.

1-3

LINKER OVERVIEW

Each program usually interacts with the operating system. For
example, a program may use the stack within its process. The linker
can supply the program logic to access the stack and certain other
areas, rather than require each compiler and assembler to supply this
logic. The linker can also generate the proper program-to-system
interfaces for program modules that call VAX/VMS system services.

1.1.3 Debug Capability

Use of the VAX-II Linker allows you to access the VAX-II Symbolic
Debugger from the executable image. If you request the debugger, you
can choose whether to activate it at run time. The VAX-II Symbolic
Debugger Reference Manual explains the capabilities and use of the
debugger. FORTRAN users should refer to the Debugging chapter in the
VAX-II FORTRAN IV-PLUS User's Guide.

1.2 LINKER OPERATION AND FUNCTIONS

The linker performs the following operations when it creates an image:

• Allocates virtual memory for the image

• Resolves symbolic references among modules

• Initializes the image contents

• Generates the image map, if requested

• Generates a symbol table file, if requested

1.2.1 Virtual Memory Allocation

The language translators that produce object modules do not allocate
addresses for two reasons:

• They do not know how the modules and sections of modules will
be grouped in the final executable image.

• They do not know how much address space is required for many
of the external modules that are called by the module being
assembled or compiled.

The linker, then, must assume the task of allocating virtual memory
for the image. Each object file input to the linker consists of one
or more program sections. The linker groups program sections from
different object files according to various section attributes--for
example, whether the program section is concatenated or overlaid, and
what its memory protection requirements are (read-only, read/write,
etc.). For further information on how the linker maps the image, see
Chapter 2.

1-4

(

(

(

(

(

(

(
-

LINKER OVERVIEW

1.2.2 Resolution of Symbolic References

When a module makes references to symbols outside itself, the linker
searches for these references in other modules explicitly named in the
LINK command. If you specify any libraries, the linker searches them
to resolve references made by preceding files named in the LINK
command. If any references still remain unresolved, the linker
searches the default system library. For a detailed discussion of
libraries, see Chapter 4.

1.2.3 Image Initialization

After it maps virtual memory and resolves references, the linker fills
in the actual cOntents of the image. This image initialization
consists mainly of copying the binary data and code that was written
by the compiler or assembler. However, the linker must perform two
additional functions to initialize the image contents:

• It must insert addresses into instructions that refer to
externally defined fields. For example, if a module contains
an instruction moving FIELDA to FIELDB, and if FIELDB is
defined in another module, the linker must determine the
virtual address of FIELDB and insert it into the instruction.

• It must compute values that depend on externally defined
fields. For example, if a module defines X as being equal to
Y plus Z, and if Y and Z are defined 1n an external module,
the linker must compute the value of Y plus Z and insert it in
X.

1.2.4 Image Map

If you so
contents
you enter
qualifier

request, the linker generates an image map. The actual
of the map depend on the map-related command qualifiers that
with the LINK command; however, entering just the /MAP
generates a default map with the following sections:

• An object module synopsis

• A program section synopsis

• A list of symbols, with the name and value of each

• An image synopsis

• Statistics of the link run

Chapter 7 discusses the command qualifiers that affect the image map.
It also illustrates the map sections and explains significaQt items.

1.2.5 Symbol Table File

If you so request, the linker produces a file that records the values
of symbols defined within the image. Section 3.3.1 contains further
information on the symbol table file.

1-5

(,

(

(

(

(

(

c

(

CHAPTER 2

IMAGE CREATION

This chapter discusses the allocation of virtual memory and the
different kinds of images that the linker can produce. The concepts
of clustering, image sections, and program sections are introduced,
along with a description of the way in which the linker builds the
final image.

2.1 PROGRAM SECTIONS

The program section is the vehicle by which a language translator
describes the memory requirements of a particular object module.
Program sections are areas of memory that have a name, a length, and a
series of attributes describing the intended or permitted usage of
that memory. Section 2.5.4 provides a detailed description of these
attributes.

2.2 IMAGE SECTIONS

The image section is the means that the linker uses to describe the
memory requirements of the whole image to the VAX-ll memory management
software. An image section is a named collection of pages which have
the same hardware protection characteristics and the same sharing
nature. An image section is dealt with as a unit when page faults
occur.

The linker creates image sections by collecting program sections that
have similar (but not nece.sarily identical) attributes. The manner
in which program sections are grouped into image sections depends upon
both the attributes of each program sectiori and the type of image
being produced (see Section 2.7).

2.3 CLUSTERS

Experience with virtual memory systems has shown that locality of
reference within large application programs affects their performance.
Clustering provides a way for the designer of an application to
describe that locality. A cluster contains a group of highly-related
object modules that are separable from some other groups of modules
within the application.

For example, a compiler usually goes through a number of distinct
phases during a single compilation run. These phases are often
separable into groups of object modules that can be designated as
clusters. The relationship between the groups or clusters is defined
through internal data structures, such as the symbol table.

2-1

IMAGE CREATION

Chapter 9 is devoted to clustering. However, at this point it is
sufficient to describe a cluster as a list of related image sections;
these image sections are produced by sorting the program sections read
in from a collection of related object module files. Every image
consists of at least one cluster. Note, however, that the cluster is
relevant only to the linker itself; it does not appear as a structure
anywhere else (such as in the memory management software of the
executive) .

2.4 OBJECT MODULE CONTENTS

Each object module contains several types of records. All object
modules have header records and an end-of-module record. Some also
have other kinds of records, depending on the options specified at
compile time. All object modules also contain the following records
for each of the program sections:

•

•

A global symbol record that includes the program section's
attributes. (A global symbol record is also used to describe
each global symbol defined in the module.)

A text information and
section's binary data
linker.

relocation record, containing the
or code and certain commands to the

Appendix C contains a detailed specification of the object language
accepted by the linker.

2.5 PROGRAM SECTIONS

A program section is defined to the linker by the following:

• A name

• A size

• An alignment

• A series of single-bit attributes expressing whether the
program section is:

Relocatable or absolute

Concatenated or overlaid

Local to a cluster or global across all clusters

Executable or not

writeable or not

Readable or not

position independent or not

potentially shareable or not

Created by a user program or by the linker for intern~l use

2-2

(~

(

(

(

(

(

(

(,

(,

IMAGE CREATION

2.5.1 Program Section Name

The program section name is an ASCII character string, one to fifteen
characters in length. You can use any printable ASCII character in
the name, but are cautioned against using the dollar sign ($), to
avoid possible naming conflicts with software supplied by DIGITAL.

Program sections with the same name but from different modules
normally must have the same attributes. Any exceptions to this rule
are noted in the discussions of specific attributes.

2.5.2 Program Section Size

The size field of a program section definition record is a 32-bit
count of the number of bytes that this module contributes to the
program section.

2.5.3 Program Section Alignment

The alignment field describes the address boundary at which the
module's contribution to the program section will be placed. The
alignment is expressed as a number from a to 9, representing a power
or exponent of the number 2. The base address of the program section
is rounded up to a multiple of that power of two.

In an overlaid program section, all contributing modules must specify
the same alignment; otherwise, the linker generates a diagnostic
error. In a concatenated program section, each contributing module
can specify a different alignment. The total allocation of the entire
concatenated program section will be aligned on a boundary which is a
multiple of the highest power of 2 specified by any of the
contributing modules.

2.5.4 Program Section Attributes

The following subsections explain the attributes that a program
section can have. Section 2.7 describes how the linker considers
certain significant attributes as it constructs different types of
images.

2.5.4.1 Relocatability (REL and ABS) - A program section can be
relocatable or absolute. A relocatable program section is one that
the linker can position in virtual memory according to the memory
allocation strategy for the type of image being produced.

Absolute program sections, on the other hand, are not considered in
the allocation of virtual memory. They contain no binary data or
code, and all appear as if they were based at a virtual address of
zero. Absolute program sections are used primarily to define global
symbols.

2.5.4.2 Concatenated versus Overlaid (CON and OVR) - This attribute
determines the relationship between the memory allocations when
several modules contribute program sections with the same name.

2-3

IMAGE CREATION

A concatenated program section contribution requires its own separate
address space in the image. If two program sections in different
modules have the same name, the sections will be placed in separate
yet contiguous address spaces. For example, if PSECTA in MODULEI and
PSECTA in MODULE2 have the concatenated attribute, PSECTA from MODULE I
will be allocated first, followed by PSECTA from MODULE2. The final
total size of a concatenated program section is the sum of the
individual contributions, plus any padding allowed for the individual
alignments.

An overlaid program section contribution, however, can share an
address space with other program sections that have the same name.
For example, if both PSECTA in MODULEI and PSECTA in MODULE2 have the
overlaid attribute, both program section contributions will be
allocated starting at the same base address in the image. The final
total size of an overlaid program section is that of the largest
contribution.

Note that any module can initialize the contents of an overlaid
program section. In this situation, the order in which you specified
the input modules is important, because the contents of an overlaid
program section are determined by the last contributing module
specified.

FORTRAN common areas are the most frequent use of overlaid program
sections.

2.5.4.3 Scope - Local versus Global (LCL and GBL) - The local or
global attribute is significant for an image that has more than one
cluster. The attribute deter~ines whether program sections with the
same name but from modules in different clusters are finally placed in
separate clusters (LCL attribute) or in the same cluster (GBL
attribute). The memory of a global program section is allocated in
the cluster that contains the first contributing module. This subject
is discussed further in the treatments of shareable images and
clustering (see Chapters 8 and 9).

FORTRAN common is implemented with global program sections.

2.5.4.4 Executability (EXE and NOEXE) - Although the current VAX-II
hardware does not implement any kind of execute protection, this
attribute is reserved for possible future implementation. Another
reason for this attribute is that it permits possible future extension
of link time error detection and of software security protection.

The curr~nt version of the linker takes this attribute into account in
only two ways:

• Error checking on an image start address. The linker issues a
diagnostic message if a program transfer ·address is defined in
a nonexecutable program section.

• Sorting of program sections into image sections. Executable
program sections in executable and shareable images are placed
in separate image sections from program sections that are not
executable.

(

(

(

(

(

(

(

(

IMAGE CREATION

2.5.4.5 writeability (WRT and NOWRT) - This attribute determines
whether the program section contents will be protected against
modification when the image is executed. If the program attempts to
modify the contents of a non-writeable program section during
execution, an access violation occurs.

For executable and shareable images, writeable and nonwriteable
program sections are placed in different image sections. For system
images, this attribute is ignored, since by definition the VAX/VMS
system is not normally in control of the memory management of a system
image.

2.5.4.6 Readability (RD and NORD) - The current version of the linker
ignores this attribute. It is provided meiely to allow the possible
future implementation of a data security system.

2.5.4.7 position Independence (PIC and NOPIC) - This attribute
ridentifies whether the content of a program section depends on where
that program section or something that it refers to is allocated in
the virtual address space. For example, the following types of
program sections are position independent:

• A program section that contains no virtual addresses

• A program section whose references to virtual memory are in
the form of a displacement from itself, if the targets of the
references must always be at the same displacement from the
calls which refer to them

This attribute applies only to shareable images, which are discussed
in Chapter 8.

2.5.4.8 Shareability (SHR and NOSHR) - As its name suggests, this
attribute is significant only for shareable image memory allocation
and memory management (see Chapter 8).

2.5.4.9 User versus Library (USR and LIB) - Tpis attribute is
reserved for possible future enhancements to the linker. It is
ignored for the current release, but should be set to zero to
guarantee future compatibility.

2.6 TYPES OF IMAGES

The linker creates three types of images: executable, shareable, and
system. Each type has specific uses. System images differ
substantially in content and organization from executable images and
shareable images. The following subsections define each type.

2-5

IMAGE CREATION

2.6.1 Executable Images

An elCecutable image is a program that you can activate by the RUN
command. The most common use of the linker is to create executable
images.

An executable image cannot be linked with other images. However, the
same object modules can be linked in different combinations or with
different link options to form different executable images.

2.6.2 Shareable Images

There are two major reasons for shareable images:

• ~o provide a means of sharing a single physical copY,of a set
of procedures and/or data between multiple application
programs

• To facilitate the linking of very large applications (say,
hundreds of modules) in more manageable pieces, rather than as
one mbnolithiclink

As with executable images, when the link of a shareable image is
complete, all symbolic references are resolved and memory is allocated
to a group of image sections. A description of each image section is
written to the image header. Unlike an executable image, however, a
shareable image normally has a symbol table appended to it.

A shareable image is not directly runnable. It is intended for
reprocessing by the linker--that is, to be included in a subsequent
image. In processing a shareab~e image, the linker reads the image
header and generates a separate image cluster from the set of image
sections it finds.

After generating the cluster which is the incoming shareable image,
the linker processes the symbol table appended to the image just as if
it were an object module. This allows the shareable image to resolve
symbols (usually routine names) referred to by the modules with which
it is being linked. These symbols are called universal symbols (see
Section 3.2.3).

When you run a program that has been linked with a shareable image,
the VAX-II image activator checks to see if the shareable image has
been installed by the system manager. If it has been installed, the
image activator sets a pointer that enables the process to use the
shareable image. Thus, whenever multiple processes request an
installed shareable image, the operating system makes the same
physical copy of the shareable image available to each requesting
process. Shareable images can therefore conserve physical memory at
run time.

Chapter 8 discusses shareable images further. At this point, however,
note the following information and conventions pertaining to shareable
images:

• The qefault common Run-Time Library provided with the VAX/VMS
system is a shareable image.

• You cannot link the VAX-II Symbolic Debugger with a shareable
image; you must include at least one object module in the
link.

2-6

(

(

(

c

(.

(

(

(

(

IMAGE CREATION

• You can request that the linker produce a private copy of a
shareable image in an executable image file. By default,
however, the linker does not do so, thereby saving disk space.

• Chapters 5 and 6 describe LINK command qualifiers and link
time options specifically intended for dealing with shareable
images. See the following:

/SYSSHR }
/SHAREABLE

qualifiers

UNIVERSAL=

} GSMATCH=
options

2.6.3 System Images

A system image is a special type of image intended for stand-alone
operation on the hardware; that is, it does not run under the control
of the VAX/VMS operating system.

The allocation of memory to a system image is much simpler than for
the other two types of images. The linker allocates memory to the
program sections based upon the alphabetical order of the program
section names. The only other factors that the linker considers are
program section size, alignment, and the following attributes:
concatenated or overlaid, and relocatable or absolute. These factors
are treated as described in Section 2.5.

The resulting image is a fixed-length record file, each record being a
512-byte block. A system image has no image header, no debug data,
and no symbol tables. It has no set format. That is to say, it
contains binary data and code just as they would appear in memory.

2.7 GENERATION OF IMAGE SECTIONS

The linker makes two passes over the input object modules. The first
pass builds the symbol table and the program section tables. The
second pass writes the binary contents of the image. Memory
allocation is performed between the two passes; the linker uses the
program section table of each cluster and generates an image section
table for each cluster.

When the first pass is complete, the linker has determined the sizes
of all the relocatable program sections by considering specific
attributes (concatenated versus overlaid, local versus global) and the
alignment, as discussed in Section 2.5. The linker has also
determined relative addresses of each module's contribution to a
particular program section. What remains to be done is to group the
program sections into image sections, and to position the whole image
cluster in the virtual address space.

2-7

IMAGE CREATION

Depending on the type of image being produced, the linker establishes
a mask for the program section attributes that it will consider:

• For an ex-ecutable image, this mask includes only the
writeablity (WRT and NOWRT) and executability (EXE and NOEXE)
attributes.

• For a shareable image, this mask includes the writeability,
executability, position independence (PIC and NOPIC), and
shareability (SHR and NOSHR) attributes.

Then, for each possible combination 6f the significant attributes, the
linker searches the progra~ se~tion list of a cluster. If the linker
finds any program section with this combination of attributes, it
generates an image section. Each matching program section in the
image section is assigned an address relative to the base of the image
section, in alphabetical order by program section name.

All combinations of significant attributes are handled in this way,
until the complete set of image sections for the particular cluster is
generated. The next cluster (if there is one) is then treated in the
same way.

At this point, all image sections have cluster-relative base
addresses, and all program sections have image section-relative
addresses. The "next step consists of allocating virtual address space
to the cluster and then relocating all image sections and program
sections within the cluster.

The choice of address space for the cluster is described in Chapter 9.
However, the choice depends on whether you specified an address in the
CLOSTER= option, and whether the cluster contains a shareable image.
It also depends upon the order in which you specified the clusters.

2.8 COMPRESSION OF UNINITIALIZED IMAGE SECTIONS

At the end of its first pass across the object modules, the linker
sorts all the program sections into a group of distinct image
sections. The sorting is determined by program section attributes,
and results in the complete allocation of the user virtual space.

In its second pass, the linker writes the binary contents of the
image. During this image initialization, the linker keeps track of
which program section is being initialized and to which of the image
sections that program section has been allocated. The first attempt
to initialize a part of an image section causes the linker to allocate
a buffer in its own program reg"ion to contain the generated image
binary contents. This allocation is achieved by the expand region
system servicie, and it requires that the linker have available a
virtually contiguous region of its own memory at least as large as the
image section being initialized.

After completing the second pass across the object modules, the linker
scans the list of image sections in an attempt to compress
uninitialized pages from the image, which is about to be written. The
linker attempts to perform this compression by creating demand zero
image sections.

2-8

(

(

(

(

(

(

c

(

(

IMAGE CREATION

If the linker finds an image section that does not have a buffer
allocated, it considers splitting the section into multiple image
sections, some demand zero and others copy on reference. To be
eligible for splitting, the image section must be writeable to the
user and larger than the minimum compression threshold size (see the
DZRO MIN= option in Chapter 6). If the image section can be split,
the Tinker calls a memory management system service, passing it a
description of the image section buffer and the compression threshold
value. By calling this service in a loop, the linker finds out which
segments of the buffer are both larger than the threshold number of
pages and previously unmodified by the linker. This process results
in a single image section being replaced by a potentially large number
of alternating demand zero and copy on reference image sections.

The linker continues this splitting process, scanning the list of
image sections until it reaches the end or until the total number of
image sections reaches the limit specified or defaulted for the
ISO MAX= option (see Chapter 6). During the entire process, the
linker keeps track of the size of the image header (where descriptors
of the image sections will be written) and of the image binary
contents. Thus, at the end of the scan the linker knows the precise
size of the image header and the contents, and it can now create the
image file.

When the image file is successfully created, the linker makes another
scan of the image section descriptor list. During this scan it writes
the contents of all existing image section buffer~ to the image file,
assigning them virtual block numbers as it does so. Finally, the
linker writes the image header, starting at virtual block number I of
the image file.

By default, the linker creates the image with the attribute
"contiguous best try," which becomes a permanent attribute of the
image file. However, you can specify the /CONTIGUOUS qualifier to
fotce the image file to be created contiguously (see Chapter 5).

2-9

(

(,

(

(,

(

(

(

(

(

CHAPTER 3

SYMBOLS AND REFERENCES

One of the linker's functions is to resolve symbolic references
between modules. The linker recognizes different types of symbols,
and follows guidelines for each type when it tries to supply addresses
or values to statements that refer to these symbols.

3.1 DEFINITIONS: "SYMBOL" AND "REFERENCE"

A symbol is a name associated with a coding statement or with a data
area or field. A reference is the use of a symbol in a coding
statement or a data definition. Consider the following examples (not
tied to a specific programming language):

• A coding statement identified as ROUTINEA moves FIELDA to
FIELDB. ROUTINEA is the symbol associated with the coding
statement. FIELDA and FIELDB are references made by the
statement.

• A data definition statement defines FIELDA as being equal to
(A+B)/2. FIELDA is the symbol associated with the computed
value of (A+B)/2. A and B are references.

3.2 TYPES OF SYMBOLS AND REFERENCES

Each symbol is local, global, or universal:

• Local symbols are available for reference only within the
program module that defines them.

• Global symbols can be referred to by modules outside the
module that defines them. A global symbol has a strong or a
weak definition. Another module can make a strong or a weak
refer~nce to a global symbol (regardless of whether the
symbol's definition is weak or strong).

• Universal symbols are a special type of global symbol. You
can specify universal symbols only for shareable images.

Figure 3-1 illustrates references to
modules. (The statements do not
language.) An arrow is drawn between
which it refers.

local and global symbols in three
reflect a specific programming

each reference and the symbol to

3-1

SYMBOLS AND REFERENCES

MODULEA

LOCAL1--
LOCAL2

f--GLOBAL 1
GLOBAL2

~ -----~ I"""

Move LOCAL 1 to LOCAL2
Call GLOBAL3

MODULEB MODULEC

-~LOCALl LOCALl
LOCAL2 LOCAL2

..--. ~

Add GLOBALl f-Subtract GLOBAL2

to LOCALl from LOCAL2_\..

~~- /
Move LOCALl GLOBAL3

to LOCAL2 Move LOCAL2
to LOCAL 1

-- -

Figure 3-1 Local and Global Symbols

Local and global symbols can be designated either automatically by the
language translator or by qualifiers in program statements. You can
specify the local or global symbol type only in certain languages. In
VAX-II MACRO, for example, you can define a symbol as local or global
by using one or two equal signs or colons, as the following statements
show. Note that the term "local symbol" in this context has a
different meaning from the term in the context of a MACRO program (for
example, 10$:).

CRFC MAXREC=292

CRFC MAXREC==292

ERR BRANCH:

ERR BRANCH::

Assigns a value of 292 to the local symbol
CRFC MAXREC

Assigns a value of 292 to the global symbol
CRFC MAXREC

Makes the coding statement label ERR BRANCH a
local symbol

Makes the coding statement label ERR BRANCH a
global symbol

In certain other languages, the compiler determines whether a symbol
is local or global. For example, the FORTRAN compiler makes statement
numbers local symbols, and module entry points and common areas global
symbols. For information about designating symbol type in a specific
programming language, see the appropriate language reference manual.

Universal symbols must be specified by the UNIVERSAL= option in the
linker options file. Chapter 6 explains the use of the /OPTIONS
qualifier with the LINK command.

3-2

(

(,

(

(

(

(

(

(

(

(

SYMBOLS AND REFERENCES

3.2.1 Local Symbols

You can refer to local symbols only within the program module that
defines them. Most symbols in a typical program are local.

The compiler or assembler resolves references to local symbols, and
therefore they are not passed on to the linker.

3.2.2 Global Symbols

Global symbols can be referred to by object modules other than the
module that defines them.

Each global symbol has either a strong or a weak definition. An
external module can make a strong reference or a weak reference to any
global symbol.

3.2.2.1 Strong Definition - A global symbol with a strong definition
is available for reference if the module that defines it is either
explicitly named in the LINK command or contained in a library that is
searched by the linker. Global symbols usually have a strong
definition, and strong is the default if neither weak nor strong is
specified.

The librarian utility makes an entry for each global symbol with a
strong definition in the global symbol table of a library. Libraries
are discussed in Chapter 4.

3.2.2.2 Weak Definition - A global symbol with a weak definition is
available for reference only if the module that defines it is
explicitly included in the linking operation; that is, the module is
listed as an input file, specified with the /INCLUDE qualifier, or
included from a library because another (strong) symbol in the module
is needed.

The librarian utility routine does not make entries for global symbols
with weak definitions in the global symbol table of a library.

3.2.2.3 Strong Reference - A strong reference is one whose resolution
is critical to the linking operation. If the linker cannot resolve
all strong references by searching named input modules and libraries
and the default system library, it reports errors and assumes that the
symbol referred to has a value of zero.

Most references to global symbols are strong, and strong is the
default.

3.2.2.4 Weak Reference - A weak reference is one whose resolution is
not critical to the linking operation. For a weak reference, the
linker searches only named input modules, but not, user libraries or
the default system library. The linker does not treat an unresolved
weak reference as an error, but it does assume that the symbol
referred to has a value of zero.

3-3

SYMBOLS AND REFERENCES

An example of the use of weak references might occur in a program that
you want to link now, but that you want to add to and relink later.
In a particular subroutine you might make a weak reference to a symbol
in an external module that will not be written until later. You can
link the image and run it, as long as it does not try to use the
nonexistent symbol during the run.

3.2.3 Universal Symbols

A universal symbol is a special type of global symbol in a shareable
image. A universal symbol is accessible by other modules when they
link with the shareable image. Universal symbols in a shareable image
contrast with ordinary global symbols in the modules that make up the
shareable image; the ordinary global symbols are available only when
the modules are being linked to create the shareable image.

The VAX-II MACRO assembler language provides the .TRANSFER directive
to identify an important class of universal symbols, namely transfer
vectors. Otherwise, you must identify universal symbols with the
UNIVERSAL= option in a linker options file (see Chapter 6). For
example, the following LINK command shows how to designate A and B as
universal symbols in the shareable image ABBOTT. COSTELLO is an
options file that includes the record UNIVERSAL=A,B.

$ LINK/SHAREABLE ABBOTT,COSTELLO/OPTIONS

COSTELLO.OPT

UNIVERSAL=A,B

An example of the need for universal symbols might occur if you write
an error-handling routine with several modules to be linked as a
shareable image. You define global symbols for references between the
modules. However, you must designate as universal any global symbols
that are to be available when the shareable image is linked with
object files or other shareable images: for example, entry points of
routines and perhaps some constants for defining possible errors.

3.3 SYMBOL TABLES

An image can have none, one, or both of the following symbol tables:

• A debug symbol table

• A global symbol table

The debug symbol table is included only if you specify /DEBUG at link
time. This table normally contains the following types of
information:

• Module names

• Routine names and/or program section names

• All local symbols

3-4

(

(

(-

(,

(

(

(

(

SYMBOLS AND REFERENCES

However, the local symbols are included only if you request debug at
both compilation time and link time.

The global symbol table is included in an executable image whenever
you include debug in the link. The global symbol table is always
included in a shareable image, regardless of the qualifiers you
specify at link time. The global symbol table contains an entry for
each global symbol in an executable image and for each universal
symbol in a shareable image. These symbols are listed in the Symbols
by Name section of the image map.

3.3.1 Global Symbol Table as Separate Output

You can output a copy of the image's global symbol table as a separate
file by using the /SYMBOL_TABLE qualifier at link time. The symbol
table file is a sequential file containing variable-length records.
Its format is identical to that of object modules (Appendix C explains
this format in detail).

You can specify a symbol table file as input to a linking operation.
This makes the global symbols in the symbol table file and their
values available to the object modules being linked, without also
linking in the entire image with which the global symbols are
associated. One primary use for specifying STB files at link time is
to make global symbols in a system image available to a number of
other images without binding the system image into each of the other
images.

3-5

(

(

(

(

(

(

(

(

(

- CHAPTER 4

LIBRARIES

The linker s~arches one or more libraries to resolve references to
global symbols that are not defined in the object files specified
previously in the LINK command. A library contains object modules and
related information, including a list of the names of the modules and
a list of the global symbols contained in the modules. (A library can
also contain macros instead of object modules; however, the linker is
not concerned with macro libraries.)

When the linker matches a global symbol having an unresolved strong
reference with an entry in a library's table of global symbols, it
binds the module that defines the symbol into the image. You can also
explicitly include modules from a library in an image, thus
eliminating the need for the linker to~searchthe global symbol table
of the library. In addition to any libraries that you specify, the
linker automatically searches the default system library for any
unresolved strong references.

To create a library, you must use the LIBRARY command, which is
explained in the VAX/VMS Command Language User's Guide.

4.1 LIBRARY TABLES USED BY THE LINKER

Each object module library contains two lists or tables that the
linker uses to resolve symbolic ieferences:

• A module name table, containing an entry for each object
module in the library. Each eritry includes the name of the
module and its address within the library file.

• A global symbol table, containing an entry for
symbol in the modules in the library. Each entry
name of the symbol and the location of the module
the symbol.

each global­
includes the
that defines

For example, in a hypothetical library named MINE2, one of the modules
is MODULEZ, which contains the global symbols TAGI and TAG2. Although
it is not intended as an exact schematic illustration, Figure 4-1
shows the relationship of the module name table and the global symbol
table to the rest of the library.

4-1

Pointers to
the associated
module

r---

LIBRARIES

MINE2.0LB

LIBRARY
HEADER

MODULE NAME
TABLE

MODULEZ

GLOBAL SYMBOL
TABLE

TAGl

TAG2

MODULEZ

MODULEB

-- _/

\

0 ne entry in the module name table for
ach object module in the library. e

_n ne entry in the global symbol table
or each global symbol in each module.
~

f

0 BJECT MODULES

Figure 4-1 Library Tables

4.2 LINKER'S USE OF LIBRARIES

You can include library modules in the image either implicitly or
explicitly:

• Implicit inclusion occurs when a module specified in the LINK
command refers to a global symbol defined in a library that
the linker searches. For example, an instruction in a module
named MODULEl moves FIELDA to FIELDB, yet FIELDB is defined
only in the module LIBMOD3 in the library BOBLIB.OLB. You can
specify:

$ LINK MODULE1,BOBLIB/LIBRARY

This causes the linker to search BOBLIB for any unresolved
references from MODULE1. When it discovers that FIELDB is
defined in LIBMOD3, the linker includes that module in the
image.

• Explicit inclusion occurs when you name a module with the
/INCLUDE qualifier after the library name. To use the example
in the explanation of implicit inclusion, if you know that
FIELDB is defined in module LIBMOD3 in BOBLIB, you can
simplify the linker's search and explicitly include LIBMOD3 in
the final executable image by specifying:

$ LINK MODULE1,BOBLIB/INCLUDE=LIBMOD3

4-2

(

(

(

(

(

(

(

(
"

LIBRARIES

The linker follows these conventions in using libraries:

• It processes all input
sequence in which you
library for unresolved
named input files.
following command:

files, including libraries, in the
name them. Thus, the linker searches a
strong references only from previously
For example, assume that you enter the

$ LINK A,B,C/LIBRARY,D,E

The linker searches library C for unresolved strong references
from object modules A and B, but not D and E. The search of
library C continues until no more symbols can be resolved.
For example, if module X i~ included from library C and module
X also has some unresolved strong references, the linker makes
another search of library C.

• If you specify both the /LIBRARY and /INCLUDE qualifiers after
a library's file specification, the linker includes the named
modules first and then, if necessary, searches the library.
This is true regardless of the order of the two qualifiers.
For example, the following two commands cause the linker to
perform identical actions:

$ LINK A,B/INCLUDE=(MODl,MOD2)/LIBRARY
:;; LINK A,B/LIBRARY/INCLUDE=(MODl,MOD2)

• The linker searches the default system library for unresolved
strong references after it has processed all named input
files, including user libraries. (See Section 4.3 for a
discussion of the default system library.)

These conventions allow you considerable choice when the same global
symbol name is defined differently in modules in different libraries.
For example, if you know that a particular symbol is defined as you
need it in a particular module, but that the same symbol is defined
differently in another module (in one of your libraries or the default
system library), you can choose the desired definition by specifying
the module with the /INCLUDE qualifier. If you know that your own
library has global symbols that are defined differently in the default
system library, you can include your own symbols by specifying your
library with the /LIBRARY qualifier.

4.3 DEFAULT SYSTEM LIBRARY

If any unresolved strong references remain after the linker has
processed all your input, it begins a search of the default system
library. This "library" is in fact two files: one a shareable image
called VMSRTL.EXE and the other an object library called STARLET.OLB.
Both files reside on the device and directory given by the translation
of SYS$LIBRARY.

4.3.1 VMSRTL.EXE

If the linker needs to search the default system library, it searches
the VMSRTL shareable image first. This shareable image contains most
of the procedures described in the VAX-II Common Run-Time Procedure
Library Reference Manual, including many routines required by almost
all FORTRAN programs.

4-3

LIBRARIES

If the linker finds no symbols that it needs in the shareable image,
it proceeds to search the object library STARLET and does not include
the shareable image VMSRTL in the image being created.

You can use the /NOSYSSHR qualifier to the LINK command to suppress
the linker's search of this shareable image (see Chapter 5).

4.3.2 STARLET.OLB

STARLET.OLB is an object module library in the form discussed in this
chapter. It contains all of the object files that were used to create
the shareable image version of the Run-Time Library, as well as many
less frequently used procedures of the same class. This object
library also contains modules for interfacing to VAX/VMS system
services.

The linker searches SYS$LIBRARY:STARLET.OLB if any unresolved strong
references remain after it has searched SYS$LIBRARY:VMSRTL.EXE.

You can use the /NOSYSLIB qualifier to the LINK command to suppress
the linker's search of both STARLET.OLB and VMSRTL.EXE (see Chapter
5) •

4.4 EXAMPLE OF USING LIBRARIES

The following example shows how you can specify both explicit and
implicit inclusion of modules from libraries. (The file types need
not be entered, but are included here for clarity.)

$ LINK LAUREL.OBJ,HARDY.OBJ,­
MINE2.0LB/INCLUDE=MODULEZ,­
MINE3.0LB/LIBRARY

These statements tell the linker:

1. Link the object modules LAUREL and HARDY.

2. Extract MODULEZ from the library MINE2 and link it with the
object modules LAUREL and HARDY.

3. If any unresolved strong references remain in LAUREL, HARDY,
or MODULEZ, search the library MINE3, and extract and link in
any modules needed to resolve these references.

4. For any strong references that are still unresolved, search
the default system library.

Note that the linker will not search MINE3.0LB and the default system
library if the only unresolved references are weak references. For a
discussion of weak references, see Section 3.2.2.4.

4-4

(

(

(

(

(
'-

(

(

(

CHAPTER 5

THE LINK COMMAND

To invoke the VAX-II Linker, use the DIGITAL Command· Language (DCL)
LINK command. You can enter the LINK command interactively, or you
can include it in a command procedure.

The LINK command recognizes a number of command qualifiers and file
qualifiers. A command qualifier conveys information about the linking
operation and the image to be created for example, whether to
generate an image map, or whether to include a debugger in the image.
A file qualifier specifies information about a file that is input to
the linker for example, identifying the file as a library. Some
qualifiers are valid only if they are used with other qualifiers, and
some qualifiers are incompatible with other .qualifiers.

This chapter discusses the LINK command and its qualifiers~ however,
it is not concerned with command syntax. Syntax deals with the rules
for entering commands, such as how to specify a continuation line, or
the number of characters you must enter before the command interpreter
can recognize the entry. This chapter discusses matters of syntax
only where necessary to avoid errors or misunderstanding, and uses
spellings that most clearly suggest a qualifier's function. For
detailed information ,on command syntax, see the VAX/VMS Command
Language User's Guide.

5.1 COMMAND FORMAT

The LINK command has the following format:

$ LINK/command-qualifier ••• file-spec/file-qualifer, •••

You must enter at least the LINK command name and one input file name.
You can enter multiple command qualifiers and file specifications, and
one or more file qualifiers for each file specification.

Slashes (/) separate qualifiers from each other and from the command
name or file specification with which they are associated. One or
more spaces normally separate the last command qualifier from the
first input file specification. Commas precede the second and
subsequent input file specifications.

5-1

THE LINK COMMAND

The following examples show some acceptable formats of the LINK
command (Section 5.3 explains these examples).

$ LINK PROGA

$ LINK/MAP/DEBUG PAYROLL,FICA,PAYLIB/LIBRARY

$ LINK/MAP/FULL/EXECUTABLE=STOOGES CURLY,-
LARRY,MOE,TVLIB/INCLUDE=OLDIES,­
GOODIES/LIBRARY,SLAPSTICK/OPTIONS

The names assighed to the image file, the map file, and other output
files depend on the first input file name, unless you specify
differently. In ~he second of the preceding examples, the image file
and the map file will be named PAYROLL. In the third example, the
image file will be named STOOGES, because you so specified with the
jEXECUTABLE qualifier, but the map file will be named CURLY. (To name
the map file STOOGES, you must specify /MAP=STOOGES.)

5.2 COMMAND AND FILE QUALIFIERS

You can enter many command and file qualifiers, but normally you will
not need to, because most qualifiers have default values that the
linker uses if you omit the qualifier.

Some qualifiers are incompatible with certain other qualifiers. The
linker takes one of two actions with incompatible qualifiers:

-depending on the specific case, it might display an error message and
invalidate the entire LINK command, or it might ignore or override
certain qualifiers (generally accepting only the last valid one) and
allow the link to continue. For example, if you specify /FULL and
/BRIEF for the map, the linker rejects the entire command. But if you
specify the positive and negative forms of a qualifier (say,
/EXECUTABLE and /NOEXECUTABLE~, the linker accepts the last one
entered.

Tables 5-1 and 5-2 list the command and file qualifiers, the default
value for each, and any incompatible qualifiers. A [NO] indicates
that the qualifier can be negated by prefixing NO (without
brackets) -- for example, /NODEBUG or /NOEXECUTABLE. Any entry -after
the qualifier is valid only for the positive form of the qualifier:
for example, it would be nonsense to enter /NOEXECUTABLE=PAYROLL.

5-2

(

(

(

(

(

(

(

(

Command Qualifier

/BRIEF

/[NO] CONTIGUOUS

/[NO] CROSS_REFERENCE

/[NO]DEBUG[=file-spec]

THE LINK COMMAND

Table 5-1
Command Qualifiers

Incompatible
Default Qualifiers

Default map /NOMAP,/FULL,
/CROSS_REFERENCE

/NOCONTIGUOUS /NOEXECUTABLE

/NOCROSS_REFERENCE /NOMAP,/BRIEF

/NODEBUG /NOTRACEBACK,
/SHAREABLE,/SYSTEM

/[NO] EXECUTABLE [=file-spec] /EXECUTABLE /SHAREABLE

/FULL Default map /NOMAP,/BRIEF

/[NO]MAP [=file-spec]

/[NO] SHAREABLE [=file-spec]

/NOMAP

/NOSHAREABLE

/[NO] SYMBOL_TABLE [=file-spec] /NOSYMBOL_TABLE

/[NO]SYSLIB /SYSLIB

/[NO]SYSSHR

/[NO]SYSTEM[=base-address]

/[NO] TRACEBACK

/SYSSHR

/NOSYSTEM

/TRACEBACK

Table 5-2
File Qualifiers

File Qualifier Default

/SYSTEM,/DEBUG,
/EXECUTABLE

/NOSYSLIB

/DEBUG,/SHAREABLE

Incompatible
Qualifiers

/INCLUDE=module-name[, •••] (Does not apply) All others, except
/LIBRARY

/LIBRARY File is an object All others, except
module. !INCLUDE

/OPTIONS File is an object All others
module.

/SELECTIVE_SEARCH Include all module All others, except
global symbols in /SHAREABLE
the image's global
symbol table.

/SHAREABLE File is an object All others, except
module. /SELECTIVE_SEARCH

5-3

THE LINK COMMAND

Sections 5.2.1 and 5.2.2 discuss
qualifiers individually. within
presented in alphabetical order.

the command qualifiers and file
each section the qualifiers are

5.2.1 Command Qualifiers

/BRIEF

/BRIEF produces a brief form of the image map.
contains only the following .sections:

• Object Module Synopsis

• Image Synopsis

• Link Run Statistics

A brief map

A brief map does not contain the Program Section Synopsis and the
Symbols by Name sections, which are included in the default map.

/BRIEF is valid only if you specified /MAP previously in the LINK
command. /BRIEF is incompatible with /FULL and /CROSS_REFERENCE.

/CONTIGUOUS
/NOCONTIGUOUS

/CONTIGUOUS forces the entire image to be placed in consecutive
disk blocks. If sufficient contiguous space is not available on
the output disk, the linker reports the error and terminates the
link operation without generating an image.

You can use the /CONTIGUOUS qualifier to improve paging
performance for all types of images, because an image usually
runs slower if it is not contiguous. You can also use the
/CONTIGUOUS qualifier to satisfy the requirement of bootstrap
programs for certain system images, since many bootstrap programs
cannot handle discontiguous images.

If you do not specify /CONTIGUOUS, the linker assumes
/NOCONTIGUOUS by default. That is, if sufficient contiguous
space is not available, the image is divided and placed in
different areas on disk. (HoweVer, the operating system still
tries to make the image as contiguous as possible.)

/CROSS REFERENCE
/NOCROSS_REFERENCE

/CROSS REFERENCE causes the Symbols by Name section of the image
map to be replaced by a Symbol Cross Reference section, which
lists global symbols in alphabetical order and the following
information about each symbol:

• Its value

• The name of the first module that defines it

• The name of each module that refers to it

The number of symbols listed in the. cross reference depends on
whether you specified /FULL for the map or accepted the default
map. A full map contains global symbols from all modules in the

5-4

(

(

(

l

(

c

(

(

THE LINK COMMAND

image, including modules extracted from libraries. The default
map generally excludes global symbols that are defined and
referred to only within the default system library.

/CROSS REFERENCE is valid only if you specified MAP previously in
the LINK command. /CROSS_REFERENCE is incompatible with /BRIEF.

If you do not request a cross reference, none is provided: the
map still lists global symbols in alphabetical order, but gives
only the value for each one.

/DEBUG[=file-spec]
/NODEBUG

/DEBUG tells the linker to
image. When the image
first.

bind a debugging module into the
is run, the debugger receives control

If you specify /DEBUG, you can also enter the file specification
of a user-written debug module. If you enter a debugging module
file specification without specifying the file type, the linker
assumes OBJ.

If you specify /DEBUG without entering a file specification, the
linker uses the VAX-II Symbolic Debugger. This debugger includes
a debug symbol table (discussed in Section 4.2) and coding logic
to help in debugging the image at run time. For further
information, see the VAX-II Symbolic Debugger Reference Manual.

/DEBUG automatically includes /TRACEBACK. If you specify /DEBUG
and /NOTRACEBACK, the linker overrides your specification and
includes traceback information.

If you do not specify /DEBUG, the linker assumes /NODEBUG.

/EXECUTABLE[=file-spec]
/NOEXECTABLE

/FULL

/EXECUTABLE tells the linker to create an executable image, as
opposed to a shareable image or a system image. You can also
enter a file specification for the image: however, if you do not
enter one, the linker uses the file name of the first input file
and the file type of EXE.

/NOEXECUTABLE tells the linker to perform all the actions
involved in creating an executable image, but not to output it.
You can use /NOEXECUTABLE to test combinations of files and
qualifiers without actually creating an image.

If you do not specify /NOEXECUTABLE, /SHAREABLE, or /SYSTEM, the
linker assumes /EXECUTABLE.

/FULL produces the most complete map of the image.
contains all the sections found in the default
several sections contain more detailed information.
also contains two sections not found in the default

5-5

The full map
map, although

The full map
map.

THE LINK COMMAND

The following sections of a full map contain
all modules in the image. (In the default
generally omit information about modules from
library.)

• Object Module Synopsis

• Program Section Synopsis

• Symbols by Name

information about
map, these sections
the default system

The following sections are included in a full map, but not in the
default map:

• Image Section Synopsis

• Symbols by Value

For illustrations and explanations of the image map sections, See
Chapter 7.

/FULL is valid only if you specified /MAP previously in the LINK
command. /FULL is incompatible with /BRIEF, but not with
/CROSS_REFERENCE.

/MAP [=file-spec]
/NOMAP

/MAP causes the linker to create an image map as a separate file.
You can enter a file specification for the image map file~
however, if you do not enter one, the linker uses the file name
of the first input file. If you do not enter a file type after
the file name, the linker assumes a file type of MAP.

If you enter /MAP, you can further specify the contents of the
map with the /BRIEF, /FULL, and /CROSS REFERENCE qualifiers. If
you enter /MAP and no related qualifier-; the linker produces a
default map that contains the.following sections:

• Object Module Synopsis

• Program Section Synopsis

• Symbols by Name

• Image Synopsis

• Link Run Statistics

For illustrations and explanations of the image map sections, see
Chapter 7.

If you do not specify /MAP, the default is /NOMAP~ that is, the
linker does not generate an image map.

/SHAREABLE[=file-spec]
/NOSHAREABLE

/SHAREABLE tells the linker to create a shareable image. (For an
explanation of shareable images, see Section 2.6.2 and Chapter
8.) You can also enter a file specification for the shareable
image~ however, if you do not enter one, the linker uses the
file specification of the first input file.

5-6

(

(

(

(

(

(

(

(

THE LINK COMMAND

You cannot run a shareable image, but you can link it with object
modules or other shareable images. (See the explanation of the
/SHAREABLE file qualifier in Section 6.1.2.)

If you specify /SHAREABLE, you cannot specify /EXECUTABLE,
/SYSTEM, or /DEBUG.

If you do not specify /SHAREABLE, the linker assumes
/NOSHAREABLE; that is, the image is not a shareable image. (See
the explanation of the /EXECUTABLE command qualifier in this
section.)

/SYMBOL TABLE[=file-spec]
/NOSYMBOL_TABLE

/SYMBOL TABLE tells the linker to create a separate file, with a
default- file type of STB, containing the image's global symbol
table. This qualifier does not affect the global symbol table in
the image itself; rather, it causes an additional global symbol
table to be created in object module format. You can also enter
a file specification for the global symbol table file; however,
if you dO not make this entry, the linker uses the name of the
first input file. .

You can include the symbol table file as input to future linking
operations, just as if it were an object module. For further
information, see Section 3.3.1.

If you do not
/NOSYMBOL TABLE;
file. -

/SYSLIB
/NOSYSLIB

specify /SYMBOL TABLE, the linker assumes
that is, it does not generate a symbol table

/SYSLIB tells the linker to search the default system library for
unresolved strong references to global symbols after it has
searched any specified user libraries. You will probably want
the linker to search the default system library for almost all
linking operations. If you do not specify /NOSYSLIB, the linker
assumes /SYSLIB by default.

/NOSYSLIB tells the linker ~ot to search the
library. You should specify /NOSYSLIB only
other specified libraries allow the linker
symbolic references, and if you have a
suppressing the system library search.

default system
if you know that
to resolve all

good reason for

/SYSSHR
/NOSYSSHR

/SYSSHR tells the linker to search the default system run time
library shareable image (SYS$LIBRARY:VMSRTL.EXE). If any symbol
within this image resolves an outstanding reference, the
shareable image is included in your program as the
highest-addressed part of the program region.

The primary use of this qualifier, however, is
negative form. /NOSYSSHR tells the linker not
symbolic references by including the default
image. Note, however, that /NOSYSSHR has
search of .the default system
(SYS$LIBRARY:STARLET.OLB).

5-7

to express its
to try to resolve
system shareable

no effect upon the
object library

THE LINK COMMAND

You might specify /NOSYSSHR, for example, when you need only one
library routine for a particular program. Since the shareable
image VMSRTL contains many routines, all of which would be
mapped, it would be inefficient to include all the routines if
you need only one. /NOSYSSHR directs the linker to use only the
default object library, which includes all the routines found in
VMSRTL.

/SYSTEM[=base-address]
/NOSYSTEM

/SYSTEM tells the linker to create a system image. (For an
explanation of system images, see Section 2.6.3.) You can also
specify a base address at which the system image Will be loaded
at run time, and you can express this address in decimal (%D),
hexadecimal (%X), or octal (%0). If you specify /SYSTEM without
a base address, the linker assumes %XSOOOOOOO.

If you specify /SYSTEM, you cannot specify /SHAREABLE or /DEBUG.

If you do not specify /SYSTEM, the linker assumes /NOSYSTEM;
that is, the image -is not a system image. (See the explanation
of the /EXECUTABLE command qualfier i~ this section.)

/TRACEBACK
/NOTRACEBACK

/TRACEBACK tells the linker to include traceback information in
the image. Traceback is a facility that automatically displays
information ftom the call stack .when a fatal program error
occurs. The output shows which modules were called before the
error occurred.

The linker assumes /TRACEBACK unless you exclude the facility by
specifying /NOTRACEBACK. If you enter /DEBUG, the linker
automatically includes traceback also; therefore, if you specify
both /DEBUG and /NOTRACEBACK, you receive a warning that
/NOTRACEBACK has been ignored.

5.2.2 File Qualifiers

/INCLUDE=module-name[, ••.]

/INCLUDE tells the linker to include the named module or modules
from the associated library in the image. (To specify more than
one module, enclose the list in parentheses and separate module
names with commas.} /INCLUDE does not cause the linker to search
the rest of the associated library for unresolved references,
unless you also specify /LIBRARY. For further information on
libraries, see Chapter 4. .

The following two examples show uses of the /INCLUDE qualifier
with a library named REDS that contains many modules, among them
ROSE, MORGAN, and BENCH.

$ LINK TEAM,REDS/INCLUDE=(ROSE,MORGAN,BENCH)

This example tells the linker to extract
and BENCH from the library REDS and
executable image which will be named TEAM
of the first input file).

modules ROSE, MORGAN,
include them in the

(since that is the name

~ LINK TEAM,REDS/LIBRARY/INCLUDE=(ROSE,MORGAN,BENCH)

5-8

(

c

(

(

(~

(

(

(

THE LINK COMMAND

This example also tells the linker to include ROSE, MORGAN, and
BENCH in TEAM. However, the /LIBRARY qualifier tells the linker
to search the rest of the library REDS and link in any other
modules needed to resolve strong symbolic references in TEAM,
ROSE, MORGAN, and BENCH.

/LIBRARY

/LIBRARY identifies a file as a library. The linker searches
libraries that you specify if any unresolved strong symbolic
references between modules remain after it links in the named
input files and any library modules specified with the /INCLUDE
qualif~er. For further information on libraries, see Chapter 4.

/LIBRARY cannot be the only qualifier on the first input file,
since. there are as yet no outstanding references to be resolved
from this library.

/OPTIONS

/OPTIONS identifies a file as a linker options file. This file
can contain input file specifications, as well as special
instructions recognized only by the linker and not by the command
interpreter.

Chapter 6 explains how to create an options file and what it can
contain. Chapter 6 also discusses each of the special
instructions you can include in the options file.

/SELECTIVE_SEARCH

/SELECTIVE SEARCH tells the linker to include in the image's
global symbol table only those global symbols in the associated
file that previously named input files refer to. If you do not
specify /SELECTIVE SEARCH for an input file, all of its global
symbols are included in the global symbol table of the image.

/SHAREABLE

/SHAREABLE as an input file qualifier is valid
linker options file. Section 6.1.2 explains
/SHAREABLE file qualifier.

only within a
the use of the

5.3 EXAMPLES

1. $ LINK PROGA

The linker binds the object module PROGA and creates an
executable image named PROGA. The linker searches only the
default system library for any unresolved strong symbolic
references in PROGA.OBJ. All linker defaults are used.

2. $ LINK/MAP/DEBUG PAYROLL,FICA,PAYLIB/LIBRARY

The linker binds object modules PAYROLL and FICA, searching
the library PAYLIB for unresolved strong references in the
two object modules before searching the default system
library. The linker also includes the VAX-II Symbolic
Debugger in the image.

The name of the executable image is PAYROLL. The linker also
generates an image map (in the default map format) with a
file name of PAYROLL and a file type of MAP.

5-9

THE LINK COMMAND

3. $ LINK/MAP/FULL/EXECUTABLE=STOOGES CURLY,­
LARRY,MOE,TVLIB/INCLUDE=OLDIES,­
GOODIES/LIBRARY,SLAPSTICK/OPTIONS

The linker binds object modules CURLY, LARRY, and MOE, as
well as the module OLDIES from the library TVLIB. The linker
searches the library GOODIES for any unresolved symbolic
references in CURLY, LARRY, MOE, and OLDIES, before searching
the default system library. The linker uses the options file
SLAPSTICK for additional input file specifications or special
instructions.

The linker generates a full map, with the default file name
of CURLY and the file type of MAP. The executable image is
named STOOGES.

5-10

(

c

(

c

(

(

(

CHAPTER 6

THE /OPTIONS FILE QUALIFIER

The /OPTIONS file qualifier identifies a linker options file. You can
include two types of information in this file:

• Input file specifications and associated file qualifiers, in
addition to any that you enter in the LINK command itself

• Special instructions to the linker that are not available
through the standard command language

When you specify an options file at link time, the linker reads the
file before performing the linking operation.

6.1 USES FOR AN OPTIONS FILE

You can create an options file and use the /OPTIONS qualifier for ,a
number of reasons:

• To give the linker a series of file specifications and file
qualifiers that you use frequently in linking operations

• To identify a shareable image as an input file to the link
operation

• To enter a longer list of files and file qualifiers than the
VAX/VMS command interpreter can hold in its command input
buffers

• To specify information that applies only to LINK and' to no
other command

6.1.1 Entering Frequently Used Input Specifications

You can create an options file containing a. group of file
specifications and file qualifiers that you link frequently, and you
can specify this options file as input to the linker. The advantages
of this method are convenience and flexibility. Consider the
following two examples.

1. You want to create an executable image named PAYROLL
containing modules named PAYCALC, FICA, FEDTAX, STATETAX, and
OTHERDED. You also want to be able to make changes to any of
the modules and conveniently relink the image.

6-1

THE /OPTIONS FILE QUALIFIER

To accomplish these goals, you can use the EDIT command to
create the file PAYROLL.OPT containing the file
specifications of the five modules. Then, to link the image
initially or to relink it any time thereafter, you can simply
enter $ LINK PAYROLL/OPTIONS, instead of having to enter the
/EXECUTABLE=PAYROLL qualifier and the file specifications of
all the input modules each time. (Note that using the
options file in this example produces an image named
PAYROLL.) The more file specifications and file qualifiers
you have in an options file, the greater is the convenience
of using it.

2. Two programmers, one writing PROGX and the other PROGY, both
need to include the modules MODA, MODB, and MODC, and to
search the library LIBZ. Someone can create an options file
(say, [G15]GROUP15.OPT) containing the file specifications
for MODA, MODB, and MODC, and the specification for LIBZ
followed by /LIBRARY. At link time, then, each programmer
needs to specify only the name of his or her module and the
options file-- for example:

$ LINK/MAP PROGX,[G15]GROUP15/OPTIONS

6.1.2 Identifying a Shareable Image as Input

To identify a shareable image as an input file to the linker, you must
use the /SHAREABLE file qualifier within an options file. (If you
include /SHAREABLE in the LINK command, the command interpreter
assumes that it is a command qualifier, not an input file qualifier.)

The format for /SHAREABLE as an input file qualifier is as follows:

/SHAREABLE [= [NO] COPY]

• /SHAREABLE identifies the associated input file as a shareable
image.

• You can optionally specify COpy or NOCOPY as keywords. COpy
causes the linker to produce a private copy of the shareable
image in the image being created. NOCOPY, which is the
default, causes the linker not to produce a private copy.

6.1.3 Entering More Input Than the Command Language Can Handle

At times you may need to link a series of input files and file
qualifiers that exceeds the buffer capacity of the command
interpreter. The maximum number of entries depends on the specific
entries themselves and how much of each line you use. However, as a
general guideline, if your LINK command statement exceeds six or seven
lines, the command interpreter may not be able to process it. In this
case, you must put some or all of the input file specifications and
file qualifiers in an options file.

6.1.4 Entering Non-Standard Link Instructions

The linker is more complex than most VAX/VMS utilities; it can
perform a number of optional functions in creating an image. Although
the LINK command could have been designed to accept a very large

6-2

(

(

(

(~

(

(
\

(

(
\

"

(

THE /OPTIONS FILE QUALIFIER

number of command qualifiers, some of these optional functions are not
frequently used and apply only to the linker-- for example, specifying
the image's base address or the number of I/O channels it can use.

Therefore, to keep the size of the command interpreter's internal
tables and code to a manageable level, the /OPTIONS qualifier was
developed. /OPTIONS is recognizable to the command interpreter, but
the special functions that the options file can specify are
recognizable only to the linker. When you specify an options file,
then, the command interpreter passes the file to the linker, which
reads and interprets its contents.

Table 6-1 lists the special functions that you can request only in an
options file, giving the following information for each: its format,
the default value, and a brief explanation. Section 6.3 provides
detailed explanations of each special function.

Format

BASE=n

CHANNELS=n

CLUSTER=cluster-name,-
[base-address] ,-
[pfc] ,file-spec[, ••.]

DZRO MIN=n -

GSMATCH=keyword,-
major-id,minor-id

IOSEGMENT=n,-
[[NO] POBUFS]

ISD MAX=n -

STACK=n

UNIVERSAL=symbol-name
[, ...]

Table 6-1
Special Options

Default

%X200 for executable
and shareable
%X80000000 for
system

At least 32

(See explanation
in Section 6.3 .)

5

LEQUAL,O,O

32, POBUFS

Approximately 96

20

Global symbol
is not universal

6-3

Explanation

Base virtual
address for the
image

Maximum number of
I/O channels the
image can use
during execution

Identifies a
cluster

Minimum number of
initialized pages
before compression
can occur

Sets match control
parameters of a
shareable image

Number of pages for
the image I/O
segment

Maximum number of
image sections

Number of pages for
the user mode stack

Identifies a global
symbol as universal

THE /OPTIONS FILE QUALIFIER

6.2 CREATING AND SPECIFYING AN OPTIONS FILE

To use the /OPTIONS qualifier, you must first create the options file.
Use the EDIT command, specifying any valid file name and a file type
of OPT. (You can use any file type, but the linker uses a default
file type of OPT with the /OPTIONS qualifier.)

The options file can contain input file specifications and associated
file qualifiers, or the special link options out1ined in Table 6-1, or
both types of information. The following rules apply to the contents
of a linker options file:

1. You must enter any input file specifications and associated
file qualifiers before any special options (see Table 6-1 for
the available special options).

2. You cannot enter command qualifiers.

3. You cannot enter the /OPTIONS file qualifier.

4. You can enter /SHAREABLE as an input file qualifier only in
an options file (see Section 6.1.2).

5. You cannot enter more than one special option on a line.

6. You can continue a file specification line or a special
option line.

7. You can enter comments after an exclamation point (!).

8. You can shorten the name of a special option, as long as you
enter at least the first four characters (for example,
CHAN=50 instead of CHANNELS=50) .

The following example shows a file named PROJECT3.0PT that contains
both input file specifications and special options:

PROJECT3.0PT

MODl,MOD7,LIB3/LIBRARY,­
LIB4/LIBRARY/INCLUDE=(MODX,MODY, MODZj,­
MOD12/SELECTIVE SEARCH
CHANNELS=40 !THIS IS A COMMENT.
STACK=75
IOSEG=50

To include all the specifications and options in this example at link
time, you need specify only the file name followed by /OPTIONS. For
example:

$ LINK/MAP/CROSS REFERENCE PROGA, PROGB,­
PROGC, PROJECT3/0PTIONS

If you have enter the SET VERIFY command, the contents of the options
file are displayed as the file is processed.

You can specify one or several options files in a LINK command
statement.

6-4

(

(

(

(

(~

(

(
'\

(

(
\

(

THE /OPTIONS FILE QUALIFIER

6.3 SPECIAL OPTIONS

This section lists the available special options in alphabetical order
and explains each one. Each option has the general format:

option_name=parameter[, •••]

If the parameter is a number (indicated by "n"), you can express it in
decimal (%D, the default radix), hexadecimal (%X), or octal (%0).
However, the default and maximum numeric values in this manual are
usually expressed in decimal, as are the values in any linker error or
warning messages relating to these options.

BASE=n

BASE= specifies the base virtual
cluster. If you do not define any
option, the BASE= option value also
address of the whole image. If you
not divisible by 512, the linker
upward to the next multiple of 512
page boundary).

address of the default
clusters with the CLUSTER=
specifies the base virtual
specify an address that is
automatically adjusts it
(that is, the next highest

The default base address is hexadecimal 200 (decimal 512) for
executable and shareable images, and hexadecimal 80000000 for
system images.

CHANNELS=n

CHANNELS= specifies the maximum number of I/O channels that
the image can use while it is running.

The default number of channels is determined by the operating
system, but it is at least 32. You cannot specify less than
32 or more than 64. If you specify from a to 32, the linker
uses the default; and if you specify more than 64, the linker
uses 64.

CLUSTER=cluster-name, [base-address], [pfc] ,file-spec[, ...]

CLUSTER= defines a
Chapters 2, 8, and
following information:

cluster.
9.) The

(Clusters are discussed in
CLUSTER= option specifies the

• The name the linker will assign to it

• Optionally, the base virtual address of the cluster

• Optionally, the page fault cluster (pfc) -- that is,
the number of pages to be read into memory when a
fault occurs for a page in the cluster

• Specifications for the file or files that the linker
is to use in creating the cluster. Note that you
should not specify in the LINK command itself any
files that you specify with the CLUSTER= option
(unless you want two copies of each file included in
the final image).

If you omit the base address or the
both, you must still enter the
parameter. For example:

CLUSTER=AUTHORS",TWAIN,DICKENS

6-5

page fault cluster. or
comma after each omitted

THE /OPTIONS FILE QUALIFIER

The linker uses the following defaults in connection with the
CLUSTER= option:

DZRO MIN=n

• If you do not use the CLUSTER= option, the linke~
creates a default cluster, as described in Chapter 9.

• If you use the.CLUSTER= option but do not specify a
base address, the linker allocates the cluster
according to the. procedure described in Chapter 9.

• If you use the CLUSTER= option but do not
page fault cluster, VAX/VMS memory
determines the value.

specify a
management

DZRO MIN= is an option that gives you some control over the
linker's compression of uninitialized pages in an executable
image. Before the linker writes the binary data and code of
the image, it attempts to compress certain uninitialized areas
by converting them to demand zero image sections. ("Demand
zero" means that the area does not occupy physical space in
the image on disk; but when the area is accessed during
execution, a portion of memory is allocated for it and
initially filled with binary zeroes.) An uninitialized area is
eligible for this compression if it can be written in by the
user and if its size is equal to or greater than a threshold
value: that is, the DZRO MIN= value. The linker will not,
however, continue creating demand zero sections after the
total number of image sections reaches ~he maximum (see the
ISD_MAX= option in thi,s section).

The default value for DZRO MIN= is 5; that is, an
uninitialized, writeable area-is not eligible for compression
unless it occupies five or more contiguous pages. A DZRO MIN=
value less than 5 might cause the linker to compress-more
sections and create a greater number of image sections,
possibly reducing the image size on disk but decreasing its
paging performance. A value greater than 5 might cause the
linker to compress fewer sections and create a smaller number
of image sections, possibly increasing the image size on disk
but providing better performance during execution.

GSMATCH=keyword,major-id,minor-id

GSMATCH= sets the match control parameters for a shareable
image that you are now creating. After the shareable image
has been linked with an executable image, and when the
executable image is being run, these parameters guide the
VAX/VMS image activator in choosing global sections. For
further information on this process, see Section 8.2.3.

The GSMATCH= option specifies the following information:

• A keyword expressing the match relationship between
the minor identifications in the user shareable image
section and in the installed global section. This
keyword is one of the following:

EQUAL The minor identification of the user
shareable image section must be identical to that
of the installed shareable image section.

6-6

(

(

(~

(

(

(

THE /OPTIONS FILE QUALIFIER

LEQU~L The minor identification of the user
shareable image section must be less than or equal
to that of the installed shareable image section.
LEQUAL is the default, since it permits the creator
of a shareable image to update it (increasing the
minor identification) and install it, and yet avoid
the need for programs using that shareable image to
be relinked. (The minor identification of that
shareable image section in programs that are linked
to it will be less. than the minor identification of
the updated installed shareable image section.)

NEVER The linker is to assume that global sections
will never match (perhaps because the shareable
image will never be installed). Therefore, the
linker will always create a private copy of this
shareable image in any image that links to it.
(This keyword overrides any stated or defaulted
NOCOPY keyword in the /SHAREABLE file qualifier in
any subsequent link operation that names this
shareable image as an input file.)

ALWAYS This keyword causes the image aetivator to
match image sections only by name and to ignore the
major and minor identifications. (However, the
syntax of this option requires that you still enter
major and minor identifications.)

• The major identification of the user shareable image
section, expressed as a number from 0 to 255.

• The minor identification of the user shareable image
section, expressed as a number from 0 to 2**24-1.

The linker uses the following defaults for the GSMATCH=
option:

GSMATCH=LEQUAL,O,O

IOSEGMENT=n[,[NO]POBUFS]

IOSEGMENT= specifies the number of pages for the image I/O
segment, which holds the buffers and VAX-II RMS control
information for all files that the image's process uses. If
the process needs more space than the IOSEGMENT value during
execution, VAX-II RMS adds space for it at the end of the
program (PO) region.

You can also specify POBUFS or NOPOBUFS as parameters.
POBUFS, which is the default, permits RMS to use the program
region (PO) for any additional buffers that it needs.
NOPOBUFS denies RMS the option of using PO space for
additional buffers.

The default value for IOSEGMENT= is 32,POBUFS. The only
reason to- specify a number of pages greater than the default
is to guarantee that the program region will be contiguous if
you need to extend it and if the total size of your program's
buffers and VAX-II RMS control information exceeds 32 pages.
In this case, you would also want to specify NOPOBUFS.

6-7

THE /OPTIONS FILE QUALIFIER

ISO MAX=n

STACK=n

ISO MAX= is an option that gives you some control over the
linker IS compression of un initialized pages in an executable
image. (For an explanation of compression, see the OZRO MIN=
option in this section.) The ISO MAX= value specifies the
maximum number of image sections allowed in the image. If the
linker is compressing the image by creating demand zero
sections and the total number of image sections reaches the
ISO_MAX= value, the compresson ceases at that point.

The default value for ISO MAX= is approximately 96. Note that
any value you specify Is also an approximation. The linker
determines an exact ISO MAX= value based on certain
characteristics of the- image, including the different
combinations of section attributes. The exact value, however,
will be equal to or slightly greater than what you specify;
it will never be less.

STACK= specifies the number of pages to be allocated for the
image's user mode stack area.

The default value is 20. You may need to increase the stack
size if the program fails to run using the default value
for example, if the stack is used for temporary storage of
data that exceeds 20 pages.

UNIVERSAL=symbol-name[, ••.]

UNIVERSAL= identifies one or more global symbols of a
shareable image as universal symbols. For a discussion of
universal symbols, see Section 3.2.3.

6-8

(

(

(

(

(

(

(

\ ,

(

(

(

CHAPTER 7

IMAGE MAP

If you so request,
information about
process itself.

the linker
the contents

produces an image map containing
of the image and about the linking

The map is placed on your output disk and assigned a file type of MAP.
You can specify a file name with the MAP,qualifier, or you can let the
VAX-ll software assign a default. You can print a copy of the map
with the PRINT command.

To obtain a map, you must include the /MAP qualifier in the LINK
command. You can further specify the type of map with the /BRIEF or
/FULL qualifier. If you enter either /MAP alone or /MAP with /FULL,
you can also include a symbol cross reference in the map by specifying
/CROSS REFERENCE. However, if you enter /MAP and no other map-related
qualifIers, the linker generates its default map.

The following examples show the LINK command qualifiers necessary to
produce different types of maps:

Command Qualifiers

$ LINK/MAP/BRIEF

$ LINK/MAP

$ LINK/MAP/CROSS REFERENCE -

$ LINK/MAP/FULL

$ LINK/MAP/FULL/-
CROSS REFERENCE

7.1 IMAGE MAP CONTENTS

Type of Map Produced

Brief map

Default map

Default map with symbol
cross reference

Full map

Full map with symbol
cross reference

A listifig of the image map contains several sections; however, the
number of sections and the contents of certain sections depend on the
qualifiers that you enter.

Table 7-1 lists all the possible section names in the order in which
they can appear, the types of map in which each appears, and a brief
explanation of each section. A section shown as appearing in "all" is
included in all types of image maps; "default" and "full" identify
sections appearing in default and full maps, respectively. A brief
map thus contains only the map sections designated as "all." For
detailed explanations and illustrations of map sections, see Section
7.2.

7-1

IMAGE MAP

Table 7-1
Image Map Sections

Section Name Appears In

Object Module Synopsis All

Image Section Synopsis Full

Program Section Synopsis Default,
Full

Symbols by Name
or

Symbol Cross Reference

Symbols by Value

Image Synopsis

Lihk Run Statistics

Default,
Full

Full

All

All

Explanation

Object modules in the image

Image sections and clusters

Program sections and the
modular contributions

Symbols by Name lists
global symbol names and
values. However, if you
spec ify /CROSS REFERENCE,
Symbol Cross - Reference
appears instead, listing
symbol names, values,
defining modules, and
referring modules.

Hexadecimal symbol values
and names of symbols with
those values

Statistics
information
output image

and other
about the

Statistics about the link
run that created the image

The contents of the following sections vary depending on whether the
map type is default or full:

• Object Module Synopsis

• Program Section Synopsis

• Symbols by Name

• Symbol Cross Reference

The difference between these sections in a default map and in a full
map is in the number of items:

• A default map generally includes only information that applies
to modules and shareable images that you name as input to the
linker or that are extracted from libraries you name. A
default map normally does not list information that applies
only to modules taken from the default system library.

• A full map includes information that applies to all modules
and shareable images, including those extracted from the
default system library.

7-2

(

(

(

(

(

(

(

(

IMAGE MAP

7.2 IMAGE MAP SECTIONS

The rest of this chapter explains and illustrates each available image
map section. The sections are presented in the order in which they
appear in a full map. Brief and default maps do not have all of these
sections, but the sections that they do have are in the order
presented h~re.

The illustrations reflect an image created from a simple FORTRAN
program (similar to the example developed in the VAX/VMS Primer).
Each illustration is from a full map. Headings and items in each
illustration are explained only if they are not self-explanatory.

Appendix B illustrates the complete brief, default, and full forms of
the map whose sections appear in this chapter.

7.2.1 Object Module Synopsis

The Object Module Synopsis lists object modules in the order in which
the linker processed them. This section appears in all types of maps.

The Object Module Synopsis provides the following information about
each module listed:

• Module name

• Module identification as it appears in the module header

• Module length in bytes

• Complete file specification for the module

• Module creation date

• Language translator that created the module

The Object Module Synopsis also lists any errors that the linker
detected when it wrote the binary data and code--for example, a
warning message that a module refers to an undefined symbol. The
message appears immediately below the line that indicates the module
that the linker was processing when the error occurred.

Figure 7-1 illustrates the Object Module Synopsis section.

7-3

.....
I

MODULE NAME

AVERAGESMAIN
DEBUGBOOT
OTSSLINKAGE
SYSVECTOR
VMSRTL

IDENT

01
01
0-3
02
.EXEH4

CLUSTER TYPE PA'GES

DEFAULT_CLUSTER 0 1
0 1
0 1
0 1

253 20

VMSRTL 3 4
3 48
4 2

f'

+------------------------+
! OBJECT MODULE SYNOPSIS !
+------------------------+

BYTES FILE CREATION DATE CREATOR

202
8

DB1:rMURRAYJAVERAGE.OBJ;2
DBB2:rSYSLIBJDEBUG.OBJ;1
DBB2:rSYSLIBJSTARLET.OLB;2
DBB2:rSYSLIBJSTARLET.OLB;2
DBB2:rSYSLIBJVMSRTL.EXE;2

11-Ma~-1978 09:2
02-JUN-1978 10:2
15-JUN-1978 14:3
25-JUN-1978 15:2
10-JUL-1978 00:21

VAX-11 FORTRAN IV-PLUS TO.7-92
VAX-11 MACRO XO.3-10

3 VAX-11 MACRO XO.3-11
0 VAX-11 MACRO XO.3-11
0 LINK-32 X01.17

Figure 7-1 Object Module Synopsis

+------------------------+
! IMAGE SECTION SYNOPSIS !
+~-----------------------+

BASE ADDR DISK VBN PFC PROTECTION AND PAGING GBL. SEC. NAME MATCH MAJORID

00000200 2 o READ ONLY
00000400 3 o READ WRITE COPY ON REF
00000600 4 o READ ONLY
000001300 5 o READ WRITE COPY ON REF
7FFFD800 0 o READ WRITE DEMAND ZERO

OOOOOAOO 0 o READ ONLY VMSRTLOOl LESS/EQUAL 0
00001200 0 o READ ONLY VMSRTL002 LESS/EIlUAL 0
00007200 0 o READ WRITE COPY ON REF VMSRTL_003 LESS/EIlUAL 0

Figure 7-2 Image Section Synopsis

.r--\ I~ ~

1-1

~
t"iI

!
MINORID

99
99
99

?"\
I

(

(

IMAGE MAP

7.2.2 Image Section Synopsis

The Image Section Synopsis lists information about the image sections
in the order in which they are mapped in the image. The Image Section
Synopsis appears only in a full map.

The Image Section Synopsis lists the following information about each
image section:

• Cluster in which the sections were allocated or found

• Type code (used internally by the linker)

• Number of pages

• Base virtual address within the image

• Base virtual block number within the image file on disk

• Page Fault Cluster (PFC) (zero indicates that VAX/VMS memory
management determines the value.)

• Protection characteristic ("read-only" or "read/write") and
paging information ("copy on reference," "demand zero," or
blank for standard handling)

• Global section name if the cluster is a shareable image

• Match control of global sections

• Major and minor identification of global sections

Figure 7-2 illustrates the Image Section Synopsis.

7.2.3 Program Section Synopsis

The Program Section Synopsis lists information about program sections
(PSECTS), including relative addresses within the image and PSECT
attributes. This section appears in default and full maps.

The address information enables you to translate an address from a
program module listing into a virtual address in the image, and vice
versa. This ability can help you isolate errors OE problems in the
image at run time--for example, by allowing you to relate an address
in an error message to a specific location within a specific module.

The attributes of each program section are also listed. The linker
considers certain attributes when it groups PSECTs into image sections
(ISECTS). For further information on this process, see Section 2.7.

The Program Section Synopsis lists the following information about
each program section:

• Program section name, in order of increasing base virtual
addresses

• Name of the module o~ modules that contribute binary data or
code to the program section

• Base and ending virtual addresses, in hexadecimal, of each
module's contribution to the PSECT

7-5

IMAGE MAP

• Alignment for the start of each module that contributes to the
PSECT. The number that follows the alignment description is
the power of 2 that expresses the length in bytes. (For
example, 2 to the power of 2 equals 4, the number of bytes in
a longword.) The alignment column can contain these entries:

BYTE 0 - Byte alignment (1 byte)
WORD 1 - Word alignment (2 bytes)
LONG 2 - Longword alignment (4 bytes)
QUAD 3 - Quadword alignment (8 bytes)
PAGE 9 - Pag~ alignment (512 bytes)

• Attributes of the PSECT. Most attributes are parts of
contrasting pairs~ that is, the PSECT is normally one or the
other. Table 7-2 lists the attribute abbreviations (in
alphanetical order), their meanings, and any contrasting
attributes. Section 2.5.4 explains the attributes.

Abbreviation

ABS

CON

EXE

GBL

LCL

LIB

NOEXE

NOPIC

NORD

NOSHR

NOWRT

OVR

PIC

RD

REL

SHR

USR

WRT

Table 7-2
PSECT Attributes

Meaning

Absolute

Concatenated

Executable

Global

Local

Library (from
shareable image)

Not executable

Not position
independent code

Not readable

Not shareable

Not writeable

Overlaid

position independent
code ,

Readable

Relocatable

Shareable

User

Writeable

Contrasts

REL

OVR

NOEXE

LCL

GBL

USR

EXE

PIC

RD

SHR

WRT

CON

NOPIC

NORD

ABS

NOSHR

LIB

NOWRT

Figure 7-3 illustrates the Program Section Synopsis.

7-6

With

(

(

c

(

l

/-------.

P-SECT NAME MODULE(S)
----------- ---------
$PDATA

AVERAGE$MAIN

$LOCAL
AVERAGESMAIN

$CODE
AVERAGESMAIN

OTS$CODE
-..J OTS$LINKAGE I
-..J

• BLANK •
DEBUGBOOT
OTS$LINKAGE
SYSVECTOR

~,
~

,---...

+--------------------------+
! PROGRAM SECTION SYNOPSIS !
+--------------------------+

BASE END LENGTH ALIGN ATTRIBUTES

00000200 00000233 00000034 52.) LONG 2 PIC,USR,CON,REL,LCL, SHR,NOEXE,
00000200 00000233 00000034 52.) LONG 2

00000400 0000040B OOOOOOOC 12.) LONG 2 PIC,USR,CON,REL,LCL,NOSHR,NOEXE,
00000400 0000040B OOOOOOOC 12.) LONG 2

00000600 00000689 0000008A 138.) LONG 2 PIC,USR,CON,REL,LCL, SHR, EXE,
00000600 00000689 0000008A 138.) LONG 2

0000068C 0000068E 00000003 3.) LONG 2 PIC,USR,CON,REL,LCL, SHR, EXE,
0000068C 0000068E 00000003 3.) LONG 2

00000800 00000807 00000008 8.) BYTE 0 NOPIC,USR,COW,REL,LCL,NOSHR, EXE,
00000800 00000807 00000008 8.) BYTE 0
00000808 00000808 00000000 0.) BYTE 0
00000808 00000808 00000000 0.) BYTE 0

Figure 7-3 Program Sect~on Synopsis

~
I

RD,NOWRT

RD, WRT

RD,NOWRT

RD,NOWRT

RD, WRT

1-1

~
"'"
~
'tI

IMAGE MAP

7.2.4 Symbols by Name

The Symbols by Name section lists global symbols in alphabetical order
and gives the hexadecimal value of each one. The value may have one
of the following suffixes: -R for a relocatable symbol, -U for a
universal symbol, -RU for a relocatable universal symbol, -W for a
weak definition, or -* for an undefined ·symbol. (The linker assigns a
value of zero to undefined global symbols.)

The Symbols by Name section appears only in a default or full map that
does not have a cross reference. If you include /CROSS REFERENCE in
the LINK command, this section is replaced by the ~ymbol Cross
Reference section.

Figure 7-4 illustrates the Symbols by Name section.

SYMBOL

AVERAGE$MAIN
FOR$IO_END
FOR$IO-F_R
FORUO_L_R
FOR$READ_SF
FOR$STOP
FOR$WRITE-SF
LI B$K_ VERS I ON
OTS$LINKAGE
SYSUMGSTA

+-----------------+
! SYMBOLS BY NAME !
+-----------------+

VALUE

00000600-R
00000CA8-RU
OOOOOCBO-RU
OOOOOCDO-RU
00000C50-RU
00000E60-RU
00000C88-RIJ
00000600
0000068C-R
80000168

SYMBOL

Figure 7-4 Symbols by Name Section

VALUE

7.2.5 Symbol Cross Reference

The Symbol Cross Reference section lists global symbols in
alphabetical order and gives the following information about each one:

• Value in hexadecimal. The value can
suffixes: -R for relocatable,-W
for undefined, -U for universal,
universal.

have one of the following
for a weak definition, -*
or RU for relocatable

• Name of the first module that defines the symbol (blank if the
symbol is undefined).

• Name of each module that refers to the symbol. The name has
the prefix WK- if the module makes a weak reference to the
symbol.

The Symbol Cross Reference appears only in a default or full map for
which you specify /CROSS_REFERENCE. It replaces the Symbols by Name
section.

A primary value of the Symbol Cross Reference is that it shows which
modules are affected by each symbol. For example, if you want to
change a symbol definition, the Symbol Cross Reference tells you where
it is defined and what other modules may be affected by the change.

Figure 7-5 illustrates the Symbol Cross Reference section.

7-8

(

(

(

(

(

(

(

(

(

SYMBOL

AVERAGE$HAIN
FOR.IO_END
FOR.IO_F_R
FOR.IO_LR
FOR$READ_SF
FOR$STOP
FOR$WRITE-SF
LIBtK_VERSION
OTS.LINKAGE

·SYS$IHGSTA

IMAGE MAP

+------------------------+
! SYMBOL CROSS REFERENCE !
+------------------------+

VALUE DEFINED BY

00000600-R AVERAGE$MAIN
00000CA8-RU VHSRTL
OOOOOCBO-RU VHSRTl.:'
OOOOOCDO-RU VMSRTL
00000C50-RU VHSRTL
00000E60-RU VHSRTL
00000C88-RU VHSRTL
00000600 OTS$LINKAGE
0000068C-R OTS$LINKAGE
80000168 SYSVECTOR

REFERENCED BY •••

AVERAGHMAIN
AVERAGE$MAIN
AVERAGE$MAIN
AVERAGE$MAIN
AVERAGE$MAIN
AVERAGE$MAIN

AVERAGE$MAIN

Figure 7-5 Symbol Cross Reference

7.2.6 Symbols by Value

The Symbols by Value section lists the hexadecimal values of global
symbols in ascending numeric sequence, with the symbol or symbols that
correspond to each value. An R- prefix to the symbol name indicates
that the symbol is relocatable, and a U- prefix indicates that the
symbol is universal.

This section appears only in a full image map.

Figure 7-6 illustrates the Symbols by Value section~

VALUE

00000600
0000068C
00000C50
00000C88
00000CA8
OOOOOCBO
OOOOOCDO
00000E60
80000168

+------------------+
! SYMBOLS BY VALUE !

+------------------+
SYMBOLS •••

R-AVERAGE$MAIN
R-OTS$LINKAGE

RU-FOR$READ_SF
RU-FOR$WRITE_SF
RU-FOR$lO_END
RU-FOR$IO_F_R
RU-FORSIO_LR
RU-FOR$STOP

LIBSK_VERSION

SYS$IMGSTA

KEY FOR SPECIAL CHARACTERS ABOVE:
+------------------+
! * - UNDEFINED
! U - UNIVERSAL
! R - RELOCATABLE !
! WK - WEAK
+------------------+

Figure 7-6 Symbols By Value

7-9

IMAGE MAP

7.2.7 Image Synopsis

The Image Synopsis, which appears in all maps, gives miscellaneous
information about the output image. The items are self-explanatory.
Numbers are decimal if they are followed by a point (.)1 otherwise,
they are hexadecimal.

Figure 7-7 illustrates the Image Synopsis section.

+----------------+
! IMAGE SYNOPSIS !
+----------------+

VIRTUAL MEMORY ALLOCATED: 00000200 000075FF 00007400 (29696. BYTES, 58. PAGES)
STACK SIZE: 20. PAGES
IMAGE HEADER VIRTUAL BLOCK LIMITS: 1.
IMAGE BINARY VIRTUAL BLOCK LIMITS: 2.

1.(
5. (

1. BLOCK)
4. BLOCKS).

IMAGE NAME AND IDENTIFICATION:
NUMBER OF FILES:
NUMBER OF MODULES:
NUMBER OF PROGRAM SECTIONS:
NUMBER OF GLOBAL SYMBOLS:
NUMBER OF IMAGE SECTIONS:
USER TRANSFER ADDRESS:
DEBUGGER TRANSFER ADDRESS:
IMAGE TYPE:

AVERAGE 01
4.
5.
9.

10.
8.

00000600
00000800
EXECUTABLE.

MAP FORMAT: FULL IN FILE "DB1:[MURRAYJAVERAGE.MAP;3"
ESTIMATED MAP LENGTH: 26. BLOCKS

Figure 7-7 Image Synopsis

7.2.8 Link Run Statistics

The Link Run Statistics section, which appears in all
statistics of the link run that produced the image.
self-explanatory.

Figure 7-8 illustrates the Link Run Statistics section.

7-10

maps, gives
The items are

(

(

(

(

-.J
I
I-'
I-'

,~ I~"

PERFORMANCE INDICATORS

COMMAND PROCESSING:­
PASS 1:­
ALLOCATION/RELOCATION:­
PASS 2:-

r----,

MAP DATA AFTER OBJECT MODULE SYNOPSIS:­
SYMBOL TABLE OUTPUT:-

TOTAL RUN VALUES:-

,~,

+---------------------+
! LINK RUN STATISTICS !
+---------------------+

PAGE FAULTS CPU TIME
--- ----

15 00:00:00.07
48 00:00:00.47

2 00:00:00.03
7 00:00:00.21

11 00:00:00.15
0 00:00:00.00

83 00:00:00.93

ELAPSED TIME

00:00:00.13
00:00:01.13
00:00:00.32
00:00:00.88
00:00:00.14
00:00:00.12
00:00:02.77

USING A WORKING SET LIMITED TO 180 PAGES AND 30 PAGES OF DATA STORAGE (EXCLUDING IMAGE)

TOTAL NUMBER OBJECT RECORDS READ (BOTH PASSES): 179
OF WHICH 62 WERE IN LIBRARIES AND 8 WERE DEBUG DATA RECORDS CONTAINING 294 BYTES

267 BYTES OF DEBUG DATA WERE WRITTEN, STARTING AT VBN 6 WITH 1 BLOCKS ALLOCATED

THERE WERE 10 LIBRARY BLOCK READ OPERATIONS
WHICH ENCOMPASSED A TOTAL OF 91 BLOCKS
USING A WINDOW OF 10 BLOCKS

NUMBER OF MODULES EXTRACTED EXPLICITLY 0
WITH 2 EXTRACTED TO RESOLVE UNDEFINED SYMBOLS

o LIBRARY SEARCHES WERE FOR SYMBOLS NOT IN THE LIBRARY SEARCHED

A TOTAL OF 0 GLOBAL ~YMBOL TABLE RECORDS WAS WRITTEN

Figure 7-8 Link Run S~atistics

)

f-I

~
t2J

~

(

(,

(

(

(

(~

CHAPTER 8

SHAREABLE IMAGES

This chapter describes in detail the nature and use of shareable
images. The material in this chapter is more complex than much of the
earlier material. Therefore, you are presumed to be familiar with the
earlier chapters of this manual, and particularly with Chapter 2.

8.1 SHAREABLE IMAGES: BENEFITS AND USES

The following subsections expand on and add to the discussion in
Section 2.6 of the benefits you can obtain from the use of shareable
images. These subsections also discuss the conceptual nature of
shareable images.

B.l.l Conserving Physical Memory

Main physical memory is one of the prime resources that any operating
system has to control. The installation of shareable images produces
a set of global sections of memory--one for each image section built
in the shareable image. These global sections are the mechanism by
which sharing is realized, for they can be mapped into the address
space of many processes. The fact that the same physical pages of a
global section are mapped into many processes means that the
requirements for physical memory are reduced.

8.1.2 Conserving Disk Storage Space

All programs that are executed under the VAX/VMS system must- be disk
resident. The use of shareable images, however, provides a way of
reducing the amount of disk space required. .

When a shareable image is linked into an executable image, it is not
necessary to copy the physical content of the shareable image. The
installation of a shareable image causes the location of that image on
disk to be recorded in the global section data base. The subsequent
running of a program which uses that shareable image causes the
VAX/VMS memory management software to load the copy from the separate
shareable image file. Thus, many programs can reside on disk and be
bound with a particular shareable image, and only one physical copy of
that shareable image file need exist on disk.

8-1

SHAREABLE IMAGES

8.1.3 Reducing Paging I/O

Paging occurs when a process attempts to access a virtual address
which is not in the process working set. When the fault occurs, the
page either is in a disk file (in which case paging I/O is required)
or is already in physical memory. One of the causes for a page to be
resident when a fault occurs is that it is a shared page, already
faulted by some other process which is sharing it. In this case, no
I/O operation is required before mapping the page into the working
sets of subsequent processes. Thus, if many processes are using a
shareable image, it is very likely that its pages are already
physically resident.

8.1.4 Using Shared Memory-Resident Data Bases

There are many applications, particularly in data acquisition and
control systems, in which response times are so critical that control
variables and data readings must remain in central memory.
Frequently, many programs must make use of this data.

Shareable images help to simplify the implementation of such
applications. The shared data base may be a named FORTRAN common area
built into a shareable image. The shareable image may also include
routines to synchronize access to such data. When programs of the
application bind with the shareable image, they have easy access to
the data (and routines) at the FORTRAN level.

It is possible, moreover, for such data bases to contain initial
values, and for the most recent values to be written back to disk on
system shutdown or at regular intervals. Recording the values at
regular intervals makes it possible for a system restart to use the
most recent values of the variables of an online process.

8.1.5 Making Software Updates Compatible

A major problem in maintaining a large software installation is how to
incorporate a new version of a piece of software in all programs that
use it. Packaging software facilities as shareable images can help
alleviate the problem.

By carefully
independent
enhancements
the need for

organizing a shareable image and by using position
coding techniques, you can make significant changes and
to the content of the shareable image and yet eliminate
all images bound with it to be relinked.

8.2 CREATION OF SHAREABLE IMAGES

The previous section described some features of shareable images and
some reasons for their development. This section deals with how to
produce a shareable image.

8.2.1 LINK Command and Pertinent Options

The LINK command for creating a shareable image is similar to that for
any other type of image, except that you must use the
/SHAREABLE[=file-spec] qualifier, which is described in ChapterS.

8-2

(

(

(

(

(

(

(

(

(

(

SHAREABLE IMAGES

The UNIVERSAL= and GSMATCH= options are provided specifically to
control characteristics of shareable images. Chapter 6 describes the
syntax of these options. Sections 8.2.2 and 8.2.3 describe their
purpose.

8.2.2 UNIVERSAL= Option

Universal symbols are the global symbols of a shareable image which
are of use to the programs that subsequently link with the shareable
image. It is possible for none or all of the global symbols of a
shareable image to be universal symbols. However, typically a very
small set of the global symbols of the image are universal, since
these are all that are of use outside the shareable image. Universal
symbols are the only symbols written to the symbol table of a
shareable image.

Most programming languages provide no way of characterizing a symbol
as universal. (VAX-II MACRO, however, has a declaration for building
transfer vectors--see Section 8.2.4.) Thus, to tell the linker which
symbols are to be universal, the option UNIVERSAL= is provided.

Normally, all the entry points (routine names) provided in a shareable
image are universal symbols. Sometimes, however, other constants are
of interest to users of the facility, and these can also be declared
as universal symbols. Section 8.2.8 contains an example showing the
declaration of several such constants in the Cross Reference Facility
as universal symbols.

8.2.3 GSMATCH= Option

When a shareable image is bound into a user executable image, its
image sections are promoted to global sections. (The VAX/VMS system
uses the same algorithm when a shareable image is installed.) When the
user image is activated, a search is made of the global section data
base for each of the global sections described in the user image
header.

Associated with the global section name, and forming a part of the
name for the search, is a two-part identification field containing a
major identification and a minor identification. During the search
for a global section at image activation time, the global section name
and the major part of the identification must match exactly. The
behavior of the comparison with the minor part of the identification
is determine~ by a control code which has the following possibilities:

• The minor identifications must match.

• The minor identification of the global section in the user
image must be less thari or equal to that in the global data
base.

The GSMATCH= option is provided to set these parameters when the
shareable image is being linked. See Chapter 6 for the format of the
GSMATCH= option.

Another match control available with the GSMATCH= option is "NEVER".
The purpose of this is to specify that the linker must always produce
a private copy of the shareable image in each user image file.

8-3

SHAREABLE IMAGES

8.2.4 Transfer Vectors

In its simplest form, a transfer vector is a labeled virtual memory
location that contains an address of, or a displacement to, a second
location in virtual memory. This second location is the start of the
instruction stream that is of actual interest. In the use of
shareable images under VAX/VMS, such transfer vectors are normally
displacements rather than actual virtual addresses, for reasons of
position independence.

There are two main reasons for transfer vectors in shareable images:

• They make it easy to modify and enhance the contents of the
shareable image.

• They allow you to avoid relinking other programs that are
bound to the shareable image.

In Figure 8-1, the two routines A
image, which is then bound into
are used. The user program calls
program contains a representation

Routine A
is expanded

Routine A

r--------
Routine B

and B are bound into a shareable
a user program. No transfer vectors

both A and B. Thus, the user
of the addresses of both A and B.

User Program

CALL A

· ·
CALL B · ·

I
I
IN' . f I ew position 0

I Routine B for
I larger A
I
I

I I
'"'-_ - - - - - - - _--.I

Shareable Image

Figure 8-1 No Transfer Vectors

Using the example in Figure 8-1, assume that it becomes necessary to
alter routine A, adding more code to it. When the shareable image is
relinked, routine A will have the same address; but because it has
increased in size, routine B must be given a "higher" address--higher
by the amount of code added to A. If the user program is not
relinked, it can successfully call A, since its address has not
changed. However, the call to B would result in a transfer of control
to the old address of B (which is now somewhere in the enlarged
routine A), and the desired result would not occur.

In Figure 8-2, the same routines are built into a shareable image, but
this time with transfer vectors at the beginning.

8-4

(

(

(

(

(

(

(

(

SHAREABLE IMAGES

BRW A-X X

~--------

BRW B-Y Y -
A

Routine A

B

Routine B

Shareable Image

User Program

CALL A .
CALL B

.
The transfer vector contains
a branch instruction which
uses a displacement from
vector address to actual
routine.

The user program -actually
calls the appropriate vector
instruction.

Figure 8-2 Transfer Vector~

In the case of Figure 8-2, if routine A is expanded and the shareable
image is relinked, the contents of the vector will change with no
adverse effect on the user program. This is true so long as the user
program calls the appropriate vector and the vector addresses do not
change.

The use of transfer vectors also allows you to .add new routines to a
shareable image without needing to relink programs that use existing
routines. If a third routine (C) were to be added, it would be
desirable not to have to reI ink a user program that used only A and B.
without a vector, you would need to link the three routines in the
address sequence A,B,C; for otherwise A or B may be in a different
place and all user programs linked to the shareable image would need
to be relinked. If you use a transfer vector, however, you can
allocate a new vector location to C (after those for A and B). You
can then link the three routines in any order.

Although you cannot create transfer vectors with FORTRAN, you can do
so easily with VAX-II MACRO. However, before you can build transfer
vectors, you must define or permit the compiler to define entry
points. with FORTRAN, the definition of entry points is done
automatically, but with VAX-II MACRO, you must explicitly define them.
As an illustration, assume in the example above that routines A and B
are written in FORTRAN. In this case, the two global symbols A and B
are defined as entry points, and the definitions given to the linker
include a description of the registers to be saved by the call
instruction. (You can achieve the same effect by the MACRO directive
.ENTRY. See the VAX-II MACRO Language Reference Manual.)

To create the transfer vector, you must use the VAX-II MACRO assembler
language. Consider the fol_lowing fragment of MACRO code:

.TRANSFER

. MASK
BRW

A
A
A+2

;Begin transfer vector to A
;Store register save mask
;BR to routine, beyond the

register save mask

8-5

SHAREABLE IMAGES

As the example suggests, register save masks (required at the target
of a CALL instruction) occupy two bytes of memory. Thus, since it is
the vector that you actually call, the ~egister save mask is stored in
the vector. The .MASK directive in the above example allocates the
two bytes and directs the linker to (1) find the register save mask
accompanying symbol A, and (2) write the word as the first two bytes
of the vector. This mask is followed by a branch instruction that
transfers control to the routine A, at the instruction beyond the
entry mask. (This example assumes that A ~s within 32K bytes of the
vector; otherwise a JMP instruction would be required.)

The .TRANSFER directive has two purposes:

• It is an implicit universal declaration of symbol A if you are
building a shareable image~

• It causes the linker to assign the universal symbol A the
address of the vector, rather than the address of the routine
within the image. This occurs after all uses of A within the
shareable image have been given the value within the image.

Thus, all entry points of a shareable image are universal when
vectored in this way. The user program outside the shareable image
can call the routine A in the same way as it would an ordinary object
module.

8.2.5 Shareable and Nonshareable Data

The sharing of routines between two or more processes must address the
issue of whether each process has access to data that one or more
other processes are using. Sometimes this sharing is a requirement,
as in the case of industrial data acquisition applications. However,
if a piece of data used by a routine is, say, a loop counter, each
process must have a separate counter, or the routine cannot be shared
simultaneously. Users familiar with this situation recognize this as
part of the problem referred to as reentrancy.

It is for this situation that the shareable (SHR) attribute of program
sections was introduced. As was mentioned in Chapter 2, the linker
allocates program sections with the SHR attribute in separate image
sections from program sections with the NaSHR attribute.

The image activator also treats image sections containing SHR program
sections differently from image sections containing NaSHR program
sections. The linker indicates this difference by an image section
attribute called "copy on reference" in the case of writeable NaSHR
program sections. (If the program section is not writeable, all
processes can use the same copy regardless of SHR/NaSHR, since no form
of data privacy or security is currently implemented.)

A copy on reference image section is thus one whose initial contents
are established from the copy contained in the shareable image file,
but which from then on during program execution is treated just like a
user private image section. For each user, completely separate
physical copies are produced for the copy on reference image sections
contained in shareable images, and the system paging file is used to
contain the pages of such sections when they are removed from the
working set.

8-6

(

(

(

(

(

(

/

(

(

SHAREABLE IMAGES

On the other hand, if an image section is not copy on reference, each
user has access to the same physical copy of its pages. In addition,
when a page of such an image is removed from all user working sets, it
is eventually written back into the shareablle image file on disk.
This last aspect makes it possible to rerun such applications as data
acquisition or transaction processing with the most recent values of
shareable, modifiable data.

Note that the cooperating user programs in such applications are
responsible for synchronizing access to such data. Note further that
should it be necessary to revert to the initial values of such data,
you must have made a separate copy before running the application the
first time.

The FORTRAN example in Section 8.2.9 shows both of these kinds of
data: variables generated by the compiler and the program are in copy
on reference image sections, whereas the common areas are in shared
data regions.

8.2.6 Position Independence

A position independent piece of code will execute correctly no matter
where it is placed in the virtual address space after it is linked.
That is, it can ~xecute at an address different from that at which the
linker placed it. This section deals with position independence only
as it concerns shareable images.

A shareable image is position independent if all of the following
conditions are true:

• The only addresses that appear in the image are known to be
fixed in the virtual address space (for example, the system
service vectors of VAX/VMS).

• All instruction stream references to such addresses use
absolute addressing mode (auto increment deferred off the PC).

• All data references to such fixed addresses contain the
complete actual virtual address.

• All references to any other location inside or outside the
image are relative to some base that is added to the address
computation at execution time. For example, in the
instruction stream, PC relative (or displacement from the PC)
addressing mode would be used.

• There is no possibility that, after linking, the relationship
between the target of a reference and the base to which it was
made relative can be changed.

The current version of the linker is unable to verify that all of the
above conditions have been met. Therefore, the following strategy has
been adopted:

• If any base address has been specified, the
shareable image is not position independent.

8-7

resultant

SHAREABLE IMAGES

• The state of the position independence attribute of the
program sections is left to the user, and is considered only
in gathering program sections into image sections. That is,
the linker simply places PIC program sections in separate
image sections from NOPIC program sections.

• with assistance from the compiler or assembler, the linker
produces position independent instruction stream references.
(Refer to the discussion of the general addressing mode in the
VAX-II MACRO Language Reference Manual.) Basically, this means
that the linker wlll choose the addressing mode (if so
directed) based on the relocatability of the target of th~
reference.

• A shareable image that is not position independent is placed
at its link time base address when it is subsequently bound
into a user image.

•

•

A shareable image that is position independent is allocated
the first (lowest addressed) space sufficient to contain it
when it is subsequently bound into a user image.

Shareable images that are not position independent are
considered first by the linker.

If shareable images are to be most useful among many processes, they
should be position independent. The VAX-II instruction set and
addressing .modes lend themselves to convenient generation position
independent code. Much of the code generated by the FORTRAN IV-PLUS
compiler is position independent. However, if there are addresses in
data regions (for example, precompiled argument lists), the VAX-II
FORTRAN IV-PLUS compiler indicates the existence of such NOPIC data,
and the linker produces a NOPIC shareable image. The only problem
area in MACRO assembler coding is the initalization of a data
structure with an address; you are advised to use a self-relative
technique in such cases.

8.2.7 Rules for Creating Upward-Compatible Shareable Images

To be able to make changes to shareable images and not have to reI ink
users of that shareable image, you must observe the following rules:

• Transfer vectors must not be rearranged or removed.

• The new shareable image must have exactly the same number of
image sections.

8-8

(

(-

(

(

(

c

(

(

(

SHAREABLE IMAGES

8.2.8 Example of Transfer vector and Universal Symbols

Figure 8-3 is a listing of the source for the module whic.h is the
transfer vector for the Cross Reference Facility. Figure 8-4 shows
the LINK command and options files used to create the shareable image
C~FSHR on the logical device EXEC$:. Figure 8-5 shows the map that
resulted from this link operation.

Note that of the 27 global symbols in the image, only 14 are of
interest outside the image-- 3 vectored entry points and 11 constants.
Note also that the transfer vector is placed in its own cluster. As
you can see from the example, explicitly defined clusters are
allocated first in the address space. The reason for putting the
transfer vector in its own cluster is to ensure that it is allocated
at the low-addressed end of the address space.

As was discussed in Section 8.2.4, the values of the
symbols retain the values of the routine addresses.
of the relocatable universal symbols in the map.)

transfer vector
(See the listing

An example of copy on reference data (described in Section 8.2.5) is
contained in the program section CRF$DATA.

8-9

co
I
o

/'0..
(

FFFO"

FFFS"

FFFl'

~~P0 bP .S8TTl TRANSFER. VECTORS
IcIiP.... 1>1 ,U
~0~~ b2 FUNCTIONAL DESCRIPTIONI
"0~'" b3 .
~0~~ b4 I THIS ~OOUlE DEFINES THE TRANSFER VECTOHS FOR THE ENTRY POINTS CALLED
~"'~0 b5 RY A USER OF CRF. THIS ~ODUlE ENABLES ~RF TO SE lIN~EO AS A SHARABLE IMAGE.
~101/11i1 6b
P0~~ b7 CAllING SEQUENCE I
\).01"'0 til.!
n000 bq NONE
""'''fit 7i1l r0fi1fi1 71 INPUT PARA~ETERSI
,",4'11'11'1 72
f11000 73 NONE
"0001 74
301£'10 75 IMPLICIT INPUTS:
1111101/1 76
1\000 77 NONE
tWfil0 78
1-10"~ 7q OUTPUT PARA~ETERS:

;<160"- @fiI

1'11111" 81
"01/,'.. ~2

".,111'" 83
~~0~

1i1000
~0P'"
~"'1iI0

000fit

iii 0"''''
~000

114
85
l!tI
87
81!
eq :
'1~

'11
q2 I
93
94

NONE

I~PlICIT OUTPUTS:

NONE

COMPLETION CODES,

,"ONE

SIDF. EFFECTS:

"'ONE

~fIIP0

~~~~ 

~~~~ 

~0~1iI

~fII00

1-1000
~"'fllfil

95 :-­
<16
q7

.00001\.0~
1\001/,'
~000

q8 ,PSECf ~.vECTOR.I'I.C~F,PIC,S~R.NO~HT,£xE
qq

00""'" 1'0\!l'"
II "'1"<12

fII{'I~5

~1005

'''1111(6 • .HHl5
31 jiI\1n

"~PA
'~I1It>.A.

(.10(.10' ~HI;/' A
31 r·,!~c

01 1.'\1 F

,TRANSFER
,MASO(
eR'"

,TRANSFER
,".SK
B~1o

,TRANSFER
,MASK
6RW

CRF$INSRT~EY INSERTS A CROSS ~EFERENCE KEY
CRF5INSRTKEY
CRF$INSRTKEV+2

CRFUNSRTREF
CRFJINSRTREF
CPFU~JSRTREF+2

CRFiOUT
CRFtOUT
CRI'SCUTti!

INSERTS A REFERE~CE TO A KEY

OUTPUTS .CROSS REFERENCE SU~MARV

!ol000"'i!01" "1'1;,1'

I iii"
1"1
1~2

tin
1"l4
1~5

1"'6
1~7

1"'8
10q
110
111
\12
\13

,8lKS 497
.END

ROOM FOR FUTURE ENTR, POINTS
>.'21:11'1

Figure 8-3 Listing of CRF Transfer Vector

/'0.. /'0..\ .. ~

til
I2l
>0
SiI'
ta:I
>0
III
I:'"
ta:I

1-1

~
ta:I
til

\

(Xl

I
.....
.....

,~,

CRI"UNSRTHY
CRFUNSRT~EF
CRF$OUT

/~"'.

.*******

.****.*.

PROGRAM SECTION SyNUPSIS

. ASS ~lIHl~0\H""i
• ~LANI< • ~1 Ql "I.li i(1!>" ,,!
SSVECTOR ... " ... CRF C11II"N)2i(1~

x
J(

0<'
~<'

"2

~'A

ill
02

THERE ~ERE NO ERRoRS OR ~ARNINGS,

,~

NOPIC iJSR
1·01' t c USR

PIC USFI

26522. BYTES LEFT IN FREE MEMURY POOL,
OSJSICRFTFR~EC,LIS\ICRFTFRVEC/-SP=SRC':CRFTFRVfC

COl. ASS
COIJ FlEL
enN "EL

o MLB DIR RDS - ~ GtTS TO DEFINE H ~ACROS, 1 INTER, FILl .~ITES,

/-".

LCL MOSHR NQEXE NORD
LCt "OSHR Ex~ "0
LCL SHR EXE I'D

Figure 8-3 (Cant.) Listing of CRF Transfer Vector

,~,

'IOWiCT BYTE
w~T BYTE

NO~I(T ~VTE

til = >
~
>
III
t"'
til

1-1

~
til
til

(Xl

I
I-'
tv

1'.

SI
SI [C R F • COM 1 C ~ F S H R L N K • C Q M
II
II CO~MANO FILl TO PRODUCE THE 5HAREARLf I~AGE CF THE
II C~OSS REFERENCE UTILTTY.
51
SLINK/NOS'SSHRISHARE=EXE'ICkFSHR/HAP=MAPiICRFSrl~/FULLIC~OSS COM$ICRFSHRLNK/OPTIQNS

I
I [C R F • C 0 H J C R F S H R L N K • 0 P T
I
I
I

OPTIO~S FILl'TO LINK CROSS REF~RENCE FACTLTTY AS A SHAREA~LE I~AGE
CALLED "EXE'ICRFSHR.EXE".

I
I
~
I

THE ONLY KNUWN USER AT PRESENT IS THE LINKER. NOTE THAT
THIS SHAREA8LE IMAGE HUST BE LINKED BEFORE A~Y USING
IMAGE ATTEMPTS TO LINK JT IN.

I
08J$ICRF/INCLUOEI(C~FINSREF,CRFINSKE'.CRFG~L,SRCHI~S~T,-

I

INSRTKEy,GETNEXT,SRCHNOOE,BVILD~ODE,CRFDUT,­
FINOKEY,AL8LK)

I CREATE A SEPARATE CLUSTER AT LO~ ADDRESSED E~D FOR THE
I TRANSFER VECTO~S. '
I
CLUSTER=TRANSFER.VELTOR",OijJSICRF/INCLUDE=CRF~TRANSFER

I
GSMATCH=LEQUAL,0,2 SF.T HATCH CONT"OL AND

MAJOR I~ = 0, MIN~R = 2

UNIVERSAL=CRFSK.ASClt,-
CRF$K~eI" ... U32,­
CRF$K.DEF,CRF'K ... REF,~
CRF~K.VALUES,-
CRFiK ... VALS ... REFS,-
CRFSK ... DEFS ... REFS.-
C~FSK ... DELETf.,CRFSK ... SAVE,-
CRFjK ... NOOSIZE,- '
CRFlIK ... ENTSIZE

UNIVE~SALIZE THE NON ENT~Y
POI~T SYMBOLS THAT USERS
HAY NEfr).

Figure 8-4 Command and Files to Create CRFSHR

/--.., (--..
, \, ,~

i

~

fn
tEl
>'
~
>'
til
t"'
l'!I

....
~
l'!I
fn

(Xl

I
W

('

EXES.CRFSHR

MODULE NAME

CRF .. TRANSFER
CRFINSREf
CRFINSI<EY
CRFGBL
SRCHINSRT
INSRTKEY
GETNEn
SRCHNODE
BUILDNODE
CRfOUT
FINDKFY
4LBLK
SYSVECTOR

IOEPiT -.--.
XI'II.I'II'I
X0t.1II1
X~H .01
XIIII.iil1
)(1'11.00
X01.00
1(1'11.1110
)(01.1'10
)(1'11.1'10
X01.01
X~I.(!I'"
)(01.00
P!2

DBAUI[CRF.DeJ1CRFSH~.EXEII

CLUSTER TyPE:: PAGES
-.--

TRANSFER ... VECTOR 2 ~

l

DEFAULT ... CLUSTER C (II

3 6
<I 1

r---. ,~. ~

4-AUG-1978 08:17 LINKER X~I.19

+-•• _--_._._-------------+
I 08JECT ~nDULE SYNOPSIS I
+---------------.--------+

BYTES FILE CREATION nAT~ CREATOR ------_._._-- ._-----
SlZ OBA41[CRF.C~JJC~F.OL8't ~a-AUG-1978 ~b:15 ~AX-Il ~ACRO XV.3-11
275 OBA"'rcRF.cRJ]C~F.OL8'1 04-~uG-197~ ~b:15 VAX-II ~ACRn X~.3-11
2~8 ORA",(CRF.OBJ)CRF.OL8'1 ~"-AUG-1978 ~6115 VAX-II ~ACRO xe.3-11

~ 08Aal[CRF.OPJJCRF.OL~11 ~U-AUG-1978 P6:15 VAX-II MACRO X0.3-ll
23a DRAal (CRF.08J]CRF.OL~:1 la-AUG-1978 ~h116 VA_-II ~ACRO X0.3-11
393DB A4 1[CRF.C8J]CRF.OLR:I 0a-AUG-1978 ~b:\6 VAX-II MACRO X0.3-ll
223 OBAa: [CRF.CBJ)CRf.OLo:1 ~4-AUG-1978 ~b:17 VAX-II MACRO X0.3-ll

81 OBA4, (CRF.C~JJCRF.OLB'I ~4-AUG-lq7~ ~b116 VAX-II ~ACRO X~.3-ll
109DBAal(CRF.OBJ)CRF.OLM,t ~a-AUG-1978 ~~:16 VAX-II MACRO X0.3-11

1363 D~A":(CRF.CAJ]CRF.OLBII H4-AUG-1978 Cbllb VAX-II MACHO X0.3-~1
13b QBA4:(CRF.CRJ)CRF.OLSII ~U-AUG-I'I7~ ~bll~ VAX-II MACRO X~.3-11
?'I3 DBAa:[CRF.OBJ1CRF.OL8,1 ~a-AUG-197A 0b:17 VAX-II MACRO XP..3-11

'" DHAa:{SYSLIBJ5TA~LET.OL~11 ~~-AUG-IQ78 21111 VAX-II MACRO X~.3-11

<I-AUG·j'l78 "6117 LlNKtP Xl!ll.1'1

+----------------------.. +
I IMiGE ·~ECTIO~ SY~OPSIS I

+------------------------+
BAS~ ADDP DISK VHN PFC PROTECTION ANn PAGI~G G!:lL. SEC. NA~F. MATCH "AJORID

~~(110"02r,! ~ ;J READ NI<ITE COpy ON ~EF

1'I~"',H120>' 2 ~ REAl) Or-LV

l!l.l0IiH!U0" t~ ~ READ .. RITE COPV ON REF
""I fI! (II 1'1"0" 3 21 RE~D Ot-lLV
01'10~10I1t' 'I " REA" ;.;~ IfE COpy ON ~EF

Figure 8-5 Map of CRFSHR

PAGE

PAGE

MINORID

,/-....

2

til
::a

~
>'
tJI
t'"
tIJ

t-I

~
tIJ
til

DBA41[CRF,OBJ]CRFSHH,EXEll 4-AUG-!978 111:1117 LI~~ER XP1,19 PAGE 3
t---.----------------------+
1 PROGRA~SECTION SY~OPSIS I
t--------------------------+

P .. SECT NAME MODULE(S) BASf. END LENGTH ALIG~ ATTRIBUTES --.---_ -.. -.---- --~-------
SSVECTOR .. 0 .. CRF 0~~0~2~~ 00~0~3FF 0~~~02~~ 512,) RVTE 0 PIC,US~,CON,RtL,LCL, SHR, EXE, !lo,NOWRT

CRF ... TRHISFER 0~~002~~ ~0~0~3FF ~?~~~2~~ 512,) FlYTE 0

, BLANK , 0~0002~~ 00~0~2~~ ~0e0P~~~ ~,) 8YTE ~ NOPIC,USR,CON,R~L,LCL,NOSHR, EX!':, RD, WRT
CRF .. TRANSFER 000002~~ 0~~0~2~0 0~~0~~0~ ",) BYTE e

, BLANK , 0000~U~0 ~~0~~U~~ ~~00~~~~ "',) BYTE e ~OPJC,USR,CON,REL,LCL,NOSHR, EXE, RO, IoiIiT
CRFINSREF 00~~0U00 0~~~0U0~ 000~~~0~ ~,) 8YTE \I
CRFlNSKEY 00000U~0 00~0~U~0 ~000~~~r ",) flYTE ~

CRFGBL 00~~.U0~ ~0e~~U~0 00e0~~~~ ~,) BYTE e fJl
SRCMI~SRT 00000u~~ ~~P~~40~ ~p~~~prm ~,) BYTE: ~ ::c
hlSHTKEV 0~0~~U~~ 000~~a~p 0~~0~0P~ 0,) eYrE. e >0

=:tI GETNEXT 00000U~1 0~~P~U~~ ~~~~~0~~ P,) 8YTE ~ t".I
SRCIiNDDE 0~~~~~~~ ~0~~pa~0 ~P0~~~0~ ~,) Byn ~ >0

OD BuILONOOE ~P000U~~ ~~~~04~~ 0.~~pn~~ ",) ~YTf. e IJI
I CRFOUT 000~0U00 ~~~~0U~0 ~~~fP~~P 0.) ~YtE ~ t"'

I-' t".I
>I>- FINDKEY 0000eU0~ 0~~~0a~~ 0~0r~~~~ ~,) BYTE P

~LBLK 00~0rUP0 0P~0~U~~ 0P~0~P0~ "',) BYTE 0 I-f
SySYlCTDR 00~0~4~~ ~0~~0U0~ 000~0P~0 .,\,) 6YH ~ ~

CRF$CODE 0~~~0U0~ ~0~~~F2E ~000~82F 28&3,) f'\YTE ~ PIC,U5R,CON,REL,LCL, SIiR, EXE, RO,NO~RT t".I
CRFlNSREF 000~0u0~ 0.~~~~12 ~~00~113 275,) 6YTE ~ fJl
CRF!NSI<EY 000~~513 ~0~~P592 000~~08A 128,) BYTE 0
SRCMINSRT ~00005q3 0~~~~b0C ~0~~A~7A 122,) BYTE ~
!NSF/TKEY ~000~&~n ~0~0076U ~~~00178 376,) BYTE i>,
GET NEXT 00~0~7135 ~~0~~8&3 00~~~~OF 223,) IIYTE ~
SIICMNOOE 000~~8bQ ~0000884 ~00~~B51 IH,) SYTE 0
BuILoNOoE ~00~~8B5 ~~r~0911 000~~~50 93,) BYTE. 0
CRFOUT A~00~912 .~~~~o91 0~00Pij8P 1152,) "HE ~
FINDKEY ~~0~~D92 ~00~~Elq 0~00~~8B 13&,) 8YTE 0
ALBlK ~00~~E1A ~0~~'F2E ~0~00115 277,) bYTE I!

CRF$OATA ~0~~100~ ~~.~IIC3 000~~ICU 1152,) BYTE 0 PIC,USR,CON,REL,LCL.NOSHR,NOEXE, flO, wRT
CRFINSKEY 0~~~IP~0 00M0104F ~0~0~M5~ 110,) ~YTE 0
SRCMlt;SRT 00001850 0~~~10BF ~~~0~M7~ 112,) tlYlE iii
INSI'ITKEY 00~~10C~ ~~~'1~D0 000~~Ml1 17,) BYTE ,e
BulLONDOE 0~~01001 0.~01~E0 .00M~~\n lb,) 8YTE 0
CRFOUT 0~~~I~El ~~~01183 00000~D3 211,) RYTE ~
ALGLK 000~1184 ~~~~IIC3 00~0.~1~ 1 &,) ~YTE. ~

Figure 8-5 (Cont.) Map of CRFSHR

r ~, 1',
'I' ,,\

('

DBA41(CRF.OBJ1CRFs~R.EXEII

SV~BOL VALUE -.--.
BUILD.NODE lII\lpnJIII8A5-R
CRFSALBLK 1II\l0 1d 0E1A-R
CRFSDEAL.BLI< 1II1111110l0ECjE-F/
CRFSlNSRtKEY 1110101'''1'1513-RU
CRFSINSRTREF 000004111111-RU
CRFSK.ASC IC IIII11 P11d 1!'00111-U
CRFSK ... BIN ... U32 1II1111'10001111-U
CRFSk ... OEF 0,;H'l~00'" I-U
CRFSI(... OEFS ... ~EFS 1II~"'\l1ll002-U
CRFS.K ... DELETE 0'!0ld0000-U
CRF$K ... ENTSIZE 01110"'002e-U
CRFSII ... NODS I.ZE 1110f/1i1101F0-U
CRFSK ... REF· 001'11!l0000-U
CRFSK ... SAVE 0p0.!l00f<H-U

eo CRFSK ... VALS ... REFS 0\l0~010101-U
I CRFSK ... VALUES 01'!0.!l1ll1ll101i.1-U

I-' CRFSL ... OYiIIME~ 0(jrllJllBC-R VI
CRFSL ... TEMPKE Y 000<1101110-R
CRnOUT 000<JIIICjI2-RU
CRF ... HISTORV 000~1050·~
CRF ... INSRT ... FLAG 11101.""1 ~De-I:I
CRF ... TE"p ... INSRT. 0",fIIll \ IilC(1I-1:1
FINO ... IIIEXT ... I(EY 00,""0DU-~
FIND ... IIITH ... I<EV "'~0"IIICCj2-~
GET ... IIIXT ... PRV lII'I~\!J'lH5-R
I NSFIT ... KEY "'OIfHJlllb'lO-R
LOG ... DEL.ETE ... KEV 000111il7F2-R
LOG ... INSRT ... KEV 1IIf1l01J07CF-R
~OVE ... ENTRY 0M'\!J082E-R
~OVE ... ENTRV ... t IilQlI.HlI!'83F-R
NEIoISL ... BLKS 1il\j0l111134-F1
REL ... SPACE 0~fIIld"7eCj-R
RE~ ... SPACE .hHf.<l07At- R
SRCH ... INSRT 01-\,h105Cj3->I
SRCH ... IIIODE 0Pl\l<1P18b4-R
SYSHXPREG 800i<l~\118
SYSSFAO 80O"O150
TRANS ... EIliTIlV 00111 1/1 11181'E-R

r''' /~\

/i-AUG-lenS ~1!117

+--.---------------------+
I SY~ROL CROSS REFERENCE I

+------------------------+
DEFINED BY REFERENCED &V ,., ------_._. ._----_._--------

RUILONODE INSI;>TJ(EY
AL.RL.K ElUILONOO[CRFlNSREF
ALBL.K CRFINSREF C'<FOUT
CRFII'.SkEV CRF ... TRANSFER
CRFINSREF CPI' ... TRANSFEI'I
CRFG8L BUJL()NOl)f S'lCI'H.ODE
CRFGBL
CI'IFG~L
CRFG~L CRFOUT
CRFGPL
CRFG8L
CRFGIlL
CRFGBL
CRFGBL CRF[1Ur
CRFGBL
CRFGeL CRFOUT
AL8Lk
CRFIp.,SKEV CRI'I'IlSPEF
CRI'OUT CIo''' ... TRAII/SFER
SRCH!"'SFOT C~FI'lSKEV CRFINSREF
IlliSRHEv CioIFP'JT FI';OKEV
INSRHtY GEHJEXT
FINDKEV CRFOUT
FINDKEV CIIFOUT
GETN~xT C«FeUT ~I"I)KEV
IiIISFlTI<EV ell I' PISKEY C~fINSilEF
GUr.E Xl
GETN~xT Ir.SRTKEY
GEHiEn I"SI'ITKEV
GETNEXT I~SI1TKty

ALRLIo,
GETIIoEXT
GET"DT I 11151:1 TKEY
SIOCHlr.SRT CRFI'JSKEV CRFI t-<SIlEf
SIlCHI<OnE SFiCHliIISRT
SVSHCT(1R ALI'ILK
SYSVECTnR CRI'[)UT
GETiII~ Xl I~,SI'lTKEV

Figure 8-5 (Cont.) Map of CRFSHR

/~'-

LINKEP X01.1Cj

CRFOUT

CRFOUT
GETNOT

INS~TKEY

PAGE

.~
I

1.1

rn
tc
:r-
~
t'!!
:r-
IJI
t"'
t'!!

1-1
3:

~
t'!!
rn

(xl
I

......
0'1

('

OB&II[CRF,ObJ1CRFSHN,E~E'1 ~-AUG-197(1 1t81\7 LWICEJI Xltll,19

VALUE

IlHIl 111 111111111 00
11lI1l001lflf.l 1
0000001112
0UI1l0028
a'e-11l0flF0
0111000100
11110"0511
00000593
1001'18blO
11""000785
00f11l11!17Al
00000789
11l10007CF
11I0001'17F2
lala0008laE
0000082E
0000083F
1IJ00Q108bll
0001!10885
0001110912
00000092
01111111'1f110U
001111<'0E1 A
001111'11'1EQE
01'11'll1llllJl'Il'I
1IJ1!1'I01050
000f1110C0
001110100111
000011BI
0000118C
8000"'118
80111(110150

+.-._--------------+
I SYMBOLS ~V VALUE I
+-------------.----+

SYMBOLS •••

U-CRFSK SCIC U-CRF$I\ ... DHE TE U-CHF$K~RFF
U-CRFSK ... 5AVE U-CRFSII ... 8 I "' ... U32 U-CRFSI< ... OEF

U-CRFSK ... OEFS ... REFS
U-CRFSK ... E"'TSllE
U-CRFSI(... "'O·OS 1 ZE
R-CRFSlhSRTR~F
R-CRFSl"'SRTKEY
R-SRCH.INSRT
R-INSRt ... KEY
P-GET ... NXT ... PRV
P-REQ ... SPAt~
R-REL ... ltPACE
R-LOG ... 1NSRT ... KEv
II-LOG ... OELETE ... KEY
R-TRANS ... E.",TRY
R .. MDvE ... ENTRY
F1-MOVE~ENTRY ... 1
r.-SRCH~NOnE
R-fllJILU ... NOOE
R-CRFSOUT
R-FINO ... t.ITH ... KEY
R_FlIoIO ... NEXT ... Kt.V
P-CPF$AL8ll<
R-CRFSLJEALflLK
F1-t RFSL ... TEMPKEY
R-CRF ... HISTOAY
F1-CRF ... TEMP ... INSRT
R-CRF ... iNSRT ... FLAG
II-NEw$L ... 8LICS
R-CRFSl ... DyN"1EM

SYSSEXPREG
SYS$FAO

KEY FOR SPECIAL CHARACTERS A~OVE:

+.-----------------. * - UNDEFINED (
U - UNIVERSAL I
II - RELOCATABLE I
wI(- wEAK I

+-.---.--~-.-.-----+

~
! "

Figure 8-5 (Cont.)

(.... \

ll-CAFSM ... VALUES
U-C~F$K ... VAlS ... REFS

Map of CRFSHR

o
I

PAGE 5

'\

02
12:

~
t"
till

lot

~
till
02

<Xl
I

t-'
-...J

~

DBA4:(CRF,OBJ]CRFSMR,EXE,1

VIRTUAL ~EMORY ALLOCATED,
STACK SIZE, .
IMAGE MEADER VIRTUAL BLOCK LIMITS,
I~AGE BINARY VIRTUAL BLOCK LIMITS,
IMAG~ NAME AND IDENTIFICATION:
NUMBER OF FILES,
NUMBER OF MODULES,
NUMBER OF PROGRA~ S~CTIONSI
NUMBER OF GLOBAL SYMBOLS,
NUMBER OF CROSS REF~RENCES:

~ (. ~. ~\

a.AlJG·l'Hll eSlt7 LINKER X"I.I Q

+----._----------+
I IMAGE SV~OPSIS I

+----------------+
J~~P~2B~ ~~~PllFF ~0~010~0 C40Q&. PYTES, 8. PAGES)

121. PAGES
1. 1. I. BLOCK)
2. 'I. (8. BLOCKS)

CRFSHR .EXEJI
3.

13.
Q,

27.
77.
5.

PAGE

NUMBER OF IMAGE SECTIONS,
I~AGE TYPE,
MAP FOR~AT,

PIC. S~ARE~RLE. GLOBAL SECTION MATCH = "LESS/EQUAL", G.S. IDENT, ~'JOR=0, MINOR=2
FULL wITH CROSS REFERENCE IN FILE "DBAa'[CRF.LIS1CRFSHR.~APJI"

ESTIMATED MAP LE~GTH, H. BLOCKS

PERFORMANCE INDICATORS ______ ._._. • •. __ .w_._
COMMAND PROCESSING,.
PASS I'·
ALLOCjTIDN/RELOCATrO~:·
PASS 2,·
MAP DATA AFTER OBJECT MODULE SY~OPSISI.
SYM80L .TABLE OUTPUT,.

TOTAL RUN VALUES,.

+--.------------------+ I LI~K ~U~ STATISTICS I
+ ••••••••••••••••••••• +

PAGE FAULTS CPU TI"'.I:
--- ,----

j'l V}~:\f~e:tH~.23

21 p,",: ~"0: ~~. 51
12 '11'1,,,,,,,,,,,,,.118
12 G'I>l,0I0'~i.!.1I1

13 I'H·,>!I0:'>V1.37
ill ..v.:"'-H~"'.·Aj

'17 1-l~10nIlJI.I>\I

ELAPSED TIME -.--_.- _._.
130:iD~:~1."3
i"'l:~lllil2.jJ

~"'''Ii!:~'''.IHl
""'~~11l2.ll
ItlIiII 01l:t!."7'1
"'~'l'Ie:Ide,.I&
I'o\;;:0101",7.j&

USING A WORKI~G SET LI~ITEO TO 700 PAGES AND 33 PA~ES OF ~ATA STORAGE (EXCLUDING IMAGE)

TOTAL NU~HF~ OBJECT RECORDS READ rBDTH PASSES): 5~q
DF WHICH 252 wE~E IN LIARARIES AND ~Q ~ERE DEBUG DATA RECURDS CONTAJNI~G 1137 BYTES

THERE WERE 14 LIBRA~V BLOCK READ OPERATIONS
wHICH ENCOMPASS~D A TOTAL OF 104 RLOCKS
USING A WINDOw OF I~ 8LOCKS

NU~BER OF MODULES EXTRACTED EXPLICITLV = 12
WITH I EXTRACTED TO RESOLvE UNDE~lNEn SYMBOLS

o LIBRA~Y SEARCHES WERE FD~ SYMROLS NOT IN THE LI8~ARV SEARCHED

A TOTAL OF 4 G~OBAL SYMBOL TA8LE RECO~DS ~AS ~RITTEN

Figure 8-5 (Cont.) Map of CRFSHR

,c~-'\

(,

til
1:11

E
~
t"'
t.'!I

1-1

~
t.'!I
til

SHAREABLE IMAGES

8.2.9 Example of FORTRAN Shared COMMON

Figure 8-6 shows a global common (FORTRAN BLOCKDATA subprogram) linked
with a routine that modifies it (CHANGE) and one that displays its
contents (DISPLAY). There are actually three common areas, 'shown by
the program sections $BLANK, NAMEDCOMNI, and NAMEDCOMN2, which
correspond to blank common of FORTRAN and two named common areas.
Note the attrib~tes of such program sections-- in particUlar, GBL,
OVR, and SHR:

• The GBL attribute causes the program section to be recorded in
the symbol table of' this shareable image for later use by a
subsequent program.

• The OVR attribute ensures that all modules contributing to the
program sect~on contribute (or in this case, map) to the same
address space.

• The SHR attribute indicates that only one copy of this
writeable data is to appear in memory.

8-18

(

(

(

l

Q)

I
......
\0

('

GL08ALCOlol

MODULE ~AHE IOfNT
~ ... --.-.. --. -.--.
GL086I.COlol 01
CHANGE I1It
DISPLAY 1111
OTSSLINKAGE 0_4
VMSRTL .EXt.,1

DB11(150,10)GLOBALCOM.f.XE,14

CLUSTER TyPt PAGES -.--
OEFAULT.CLUSTER ~ .,

3 1
5 1
5 I
I! ~

VMSRTL 5 II
3 ·lCl
Q 2

/-,
/ " .~ /1""\

4-lUG-ICl711 12:'57 LINKER X~I.20 PAGE
+--_._-------------------+
I OBJECT ~OOULE SY~OPSIS I t----·_--·.-·_---_. ___ .. _.

IHTES FILE CIIEATlo~ OATE CREIoTOR
------------. -------

12 DBI:{1'50,10)GLOSloLCQM.OBJ:1 \4-Jul-1C178 17144 VAX-tt FORTRAN IV-PLUS T0.8-14
25~ OBII[IS~,10}CHA~GECOH.08JII 1~-Ju'-t978 17136 VAX-II FORTI/ioN IV-PLUS T0.8-IU
2~2 0811(IS~,1P.1OISPL4COH.ORJII 14-Jul-ICl7. 17138 VAX-II FORTIIA~ lV-PLUS T0.~-I~

3 D~S2:ISYSlIB)STARLET.OLBII 03-AuG_ICl78 1'1143 VAX-II ~ACRO)(0.3-11
~ D!!~21[SVSLI8)V~SRTL.EXEll lI-AUG·ICl7"; ~811'15 LINK-52 Ul.19

4-AUG-I'I78 12157 LI'JKEP. XI"1.2~ PAGE
+------------------------+ I I~AGE 5t.CTI~~ SY~QPSIS I +---._---............ _-_.+

BASE ADDR DISK VRN PFC PROT~tl(Oh4~O PAGING GHL. SEC. :,AME I"HCH ~AJORID I1INORIO
____ we_e. • _______ --_._-----------_._-- -----_.------- ----... -_._ .. -
0!~"'tI,i2"'" ~ ~ REAl) "'1<1 TE copy Or.. I<I'.F

~'~\'I"Vl2"(' 2 !(' !'IEAO I)~'LV

"'''Il'''',!(!''' 3 " READ "R1TI'.
00,l;.'l'IbP,) jj 7' Rt::AO ONLY
1?-(l"II!"Ill';' 0 ('I REAl) ");JTE COpy ON REF

;1',''''01111\(.... ' ~ I R£AO I)NLV vl"SFiTL ... "iol1 LESS/EQUAL 0 110
0,1~'" PI'f' .. iI R~AD O"'LV VMSRT L ... iIl"l2 LESS/~(lUAL 0· 110
,,<'1'1\'172(>1. f\ " REAf) iIIRIT£ copy ON REF VI"SRTL ... P1;!3 lESS/EQUAL " 110

Figure 8-6 Map Showing FORTRAN Shared Common

.~
I

2

fIl
til
>'
Iltt
l'!I
>'
b:J
t'"
l'!I

....
3:

~
l'!I
fIl

DB11[150,10)GLOBALCUM.EXE,14 II-AUG-\q78 12157 LINK~R X01,20 PAGE 3
+._--------------------_ .. -.
I PROGRA~ SECTIO~ SYNOPSIS I
+-------._-----------------+

P-SECT NAME "Of:l\jLE(S) BASE ~NO Lf.IIIGTH ALIGtIi A TTH IBUTES .---_ -.--.-_.- .---... _--
SPDAT, "'~0002"'~ 00~0~2B~ 00~00~aF I'll.) LONG 2 PIC,USR,CON,REL,LCL, SHR,toIOEX~, RO,NO"RT

CH'NG~ "'00"'~2"'0 ~00"'02&C 00~~~~bO I~q.) LO"'G 2
DISPLAY 0"'00027~ 00~0~2~f ~~00~~IIF 7'1,) LO~JG 2

• BLANK • 0000e2~0 0~~0"'2~0 0~P.0000~ ',) ~YTE ~ ~OPIC,USR,CON,REL,LCL,NOSHP, ElIE, NO, OiRT
OTSSLlNKAG-E "'P.00"'2"'~ 00000200 00~0~~~0 '3,) BYTE (01

til
SBLANK 0~00eIl0'" 0~0~~401 "''''0000~1I 4,) L.ONG 2 PIC,USH,OV~,REL,GBL, SHR.toIOEXE, HD, WRT 1:1:1

GLO~ALCO'" 0"'00"'1I0~ ~0~0~1I~1 000~~",~a 4,) LONG 2 !:
CHANGE ~00~V.4~~ ~~~0011~3 000~00"'4 II.) LONG <1 1.'11
DISPLAY 0~000110M 00~~04~3 000000011 II.) LONG 2 :r-

eo III
I

NA04EDCOMNl '" 0000011~1I 00~P'04~7 00~00~011 II.) LONG 2 PIC,USR,OVR,REL,GBL, SHR,NOEXE, I'D, ;oRT
I:'"
1.'11

0 GLO~ALCOM ~~A~0a~Q ~~~~~a~7 ~~0~~~0Q II.) LONG 2
CHAi~GE 0000011~a A0~.~a~7 A0"'~~~P~ II.) LO"'G 2 1-1

DISPLAY 000~0a~a ~00~~Q~7 ~~~.~AP~ II~) LO~G 2 ~
~AMEDCO"'N2 ~00~PQ~8 ~00~~4~B ~A~0000Q ".) LONG 2 PIC,U5R,OVR,REL,G~L, SHR, NOEXE, RD, .. IH 1.'11

GLnBALCOM 0000PII~8 0~~A0aAB 0P0P~~PU II.) lO"'G 2 til
CHANGE ~0~0040ij ~0000a16 0~~~P00Q 4.) LONG 2
OISPLAY P~P0~Q~~ ~0P~~1I0B 00~~000a a.) LOt'G 2

SCODE 0000Pb0~ ~~A~~bF2 00~000Fl 2113,) LD"'G 2 PIC,USR.CO~,.EL,LCL, SHR, EXE', RD,NO~RT
CHANGE P0000b~~ ~0~0~660 00000081 120;.) LONG 2
DISPLAY P.~~~~b84 ~~~~0~F~ ~P~0PAbF 111.) LO"'G 2

DTSSCODE 0~0~06FQ ~0~00bFb 000~~003 3.) LONG 2 PIC,U5R,CON,REL,LCL, SHR, EX~, RD,NOWRT
OTS;)LliliKAGE 0~0~'bFII 00~P06F6 ~00AA~B3 5.) LO~IG 2

SLOCAL 00AA~8~~ ~000080~ ~~00~0~~ 0.) LONG 2 PIC,USR,CON,REL,LCL,NOSHR,NOEXE, I'D, WRT
CHANGE ~000~600 0A0~~e~~ 00~~00~~ .~.) LONG 2
DISPLAY 0000~8~~ r~~00e0~ 0~~~0~~~ 0,) LONG 2

Figure 8-6 (Cont.) Map Showing FORTRAN Shared Common

f' ~" ,~, if'" ~I
I

DBli[t50,10JGLOBALCOH I EXE'14

SYHBOL VALUE . ~.-..
CtiANGE IiJAllllllll1!b1!0-RU
DISPLAY 001'l00b811-AU
'ORUCB ... GET 1iJ01'10P!E20-RU
'ORUCB ... POP 001/100~10-RU
FORSSCB~PUSH 0000\iJEI'I8-HU
'ORnCB ... RET 00000E18-RU
FORSfERRSNS ... SAV 11!0011110E28-RU
'OR5UCKSPACE 000160980-AU
'OASCLOSE 00000800-RU
FORSC~V ... IN ... DEFG 0011100A00-AU
FOASCNV ... IN ... I 00""'0610-RU
,OASCNV ... IN ... L 0001c!I'I At8-AU
,OA5CNY ... IN ... 0 1'101'100420-RU
f'ORSCNV~IN.l 00610 111 428-RU
FORSCNV .. OUT ... D 01110111109A8-RU
FOASCNV":OUT .. E 00",,,,,,,980-AU
FORICNV ... OUT ... F 11116l/1io!0988-AU
FORICNV ... OUT ... G 0000109C0-RU
FORSCNV ... OUT ... I 0011100988-AU

CD "ORICNV.OU'T .. L 11I011111111/1990-IIU
I 'ORICNV ... OUT .. O 0,1/1 11I1III1'1998-R U

'" 'OASCNV.OUT.Z 01!11'IIIIA9A\iJ-RU 'OAS OECODE F 1110",161/18B8-AU
FOASDECODE.MO 0111MklllB1 I'I-AU
'OUDEF ... FILE I1Il11f,106,,9CB-IIU
'OASDEF ... FILE ... w 11I!1101~0900-RU
FOASENCOOE.MF I1IlHH'0818-AU
FOASENCODE.MO 01/11'100820-AU
FORSLNDFILE 0111" .. ",908-AU
F,OASERASNS 0",016",9E0-RU
'ORSEAASNS.W 00 1111l 09Fl\-AU
'OAHlCIT 000UI'l9FI'I-RU
'OASEX IT 011111111111\9F8-RU
f'OASFINO 1'I111'1110A08-AU
FOASINI..,OES1.R2 1'100J0430-RU
FOA$INI.DES2~R3 01'10i10A38-AU
'OAIINI.OESC.R& 00011111.4~-AU
FOASIO.8 ... A 001i11608E'0-AU
FOASID ... 8..,Y I1IflI0"0f1f8-RU
"OA510..,0 ... 1I 01l1,h11'18CflI-RU
FORSIO.O ... V 1Il01'1"'1'I8C8-RU
FORSIO.ENO 1'10 11"''''868-IIU
"OASIO ... FC ... " 1'100009110-AU
FORSIO.FC.V ''''11'I00948-I1U
'OA '1 0.' ... 11 001'1l1i08B0-IIU
FOASIO ... F.Y 0",0 "'1/IlHI 8-RU
'OASIO.LU.A 01'10"'1/I950-AU
FOASI O.LU ... Y 0",1'I'l0958-RU
f'OA$lO.L ... 1I 11I0">;0800-Atj
FORUO.L ... \/ 001''''I(00l808-IIU
'ORUO.T.OS 001'!i?11I8FI'I-AU
FORSlO.T ... V ... DS 1/I0/111111'938-IIU

/--,
I '

DEFINED flV .-.--_
CI<IA~GE
DISPllV
"MSATL
VHSRTl
VMSRTl
VMSIlTl
Vr.SRTL
V"ISIlTl
YMSRTl
YMSRTL
YMSHTl
VMSkTl
VHSRTl
Y"SRTl
YMSRT l
VMSRTl
VHSRTl
VMSIITL
VMS~Tl
yMSRTL
YMSRTl
VMSATl
YMSRTl
V"SRTl
VHSIHl
VMSRTl
yMSRTl
VHSRTl
VMSRTl
VMSI1TL
YMSRTL
Y"SIITL
YMSIlTl
VMSRTL
VMSliTL
V"ISRll
Y"SRTL
YMSATL
VMSRTl
YMSATL
YMSRTL
YMSRTl
YMSRTl
\/MSRTl
YMSATl
V"ISRTL
v"ISI<TL
\/MSi'lTL
\/MSI1TL
VMS/Ht
\/MSATL
\/MSRTl

Figure 8-6

~c, '~'. "~,

11-6UG-1'1711 12:57 LINI<EIl X<l1 1 20 PAGE II
+-••• ---------_ •• _-------.
I SV M80L C~OSS REFERENCE I
+------------------------+

REFERENCED BV I •• _._ .. -._._-------

til
iii: :.-
!II:I
1.'11 :.-
bJ
I:"'
1.'11

....
~
1.'11
til

CHA"'GE DISPLAV

CHANGE DISPLAY

(Cont.) Map Showing FORTRAN Shared Common

DB11[150,101GLOB·LCUM.EXE,IU U-AUG-1'176 12:57 LI"'KER X01.20 PAGE 5

SYMBOL \lALUE DEFINED BV REFERENCED BY ••• -.--.. ------.--- ----------------. FDRSID ... kOU ... R 0,,000'1b0-RU \I~SRTL
FORSIO ... IIU ... V 00~"QI'Ib8-RU \lMSI1TL
FORSlO ... W ... R 000008F8-RU \lMSI1TL
FORSIO ... I'I ... V 0",000'101/1-RU \l MSI1TL
FORSIO ... X ... DA 1'10",0I/1'170-I1U \/MSRTL
FORSOPEN 0Q1",00978-RU VMSIHL
FORSPAUSE 00016I11AU8- IW VMSIITL
FORSREAD ... DF 00 111 ""'838-RU yMSRTL
FORSREAD ... DO 001t1"084",-RU VMSRTL
FOR5READ ... OlJ 00~Hl08U8-P.U 1j'151HL
FORSREAD ... SF 001£10111850-I1U VMSIHL
FORSREAD ... SL 00''''''0858-RU VMSRTL
FORSREAD ... 50 011!0id08b0-RU VMSRTL
FORSREAD ... SU I!'Iil0008b8-RU VMSRTL
FORSREwIND 0001010 450-RU VMSRTL
FORSSECNDS 11I011H~I!IA58-RU VMSRTL
FORSSTOP 000"'Ql Af>k1-RU IIMSRTL
FORSIoiR ITE ... OF 001'H'11I87 111-11 U VMSRTL til FORSWRlTE ... DO 0f1101d0876-RLJ V,,"SRTL ::a
FORSWR ITE ... OU 11100"'~880-RU VMSF<TL)00

!;C FORSIolRITE ... SF ~011100886-RU VMSRTL CI-i''''GE PlSPL.AY I;I:J FORSIoiR I TE ... SL 11!0'!'0069i11-RU V'1SRTL)00 (Xl FORSIoiRITE ... SO 011100",898-RU VMSRTL IXI I FORSwRITE ... SU 0011!~08A0-RU VMSRTL t"'
"" I;I:J

"" LIBSA5T ... IN ... PROG 000~~CB0-RU yMSRTL
LIBSCRC 011!0011!C8S-RU VMSRTL I-t
LIBSCRC ... TABLE 000"0CCI1!-~U VMSIITL

~ LIBSOEC ... OVER 00000CCS-RU VMSF<TL
LIBHSTABLIS~ I1IfII0i1l0COrll-RU VMSRTL

I;I:J LI8SEXTV 01111111i!1",COS-RU VIo1SRTL til LIBSEXTZV 0""~0CEI1I-RU VMSIITL
LIBSFFC 11100liI1lCEB-IIU 'IMSI<TL
LI8SFFS 01l11l"",CF0-RU VMSI1TL
LIBSFIXUP ... FLT 01110",,,,CFS-RU vMS1HL
LIBSFLT ... UNOER f1I0e1llfllD0f1!-RU VMSRTL
LI8SF~EE ... VM 0I11f11"'fIIDFI1I-IlU V~SRTL

LI8SGET.COMMANO 00~~0010-RU VMSRTL
LIBSGET .I"'PUT fIII/I0i<J0DIiI8-RU VMSRTL
LIBSGET ... V,", 11I0!/l"'!'!OFS-RU VMSRTL
L18$lNDEX. 01110id(/lD18-RU VMSRTL
LIBSlNSV 000111I1'D20-IIU VMSRTL
LI8SINT ... OVER 00,,'''''02S-RU "MSRTL
U!ULOte 0111"'"0030-RU V'1SRTL
LI8SMATC~C 000idAD3S-RU VMSRTL
LIBSI'IATCH ... COND 00111~0D40·RU Vi'!SRTL
LIBSMO\lTC 0f11f11"'0DII8-RU VMSRTL
LIBSMOVTUC "'11I0000513-RU VMSRTL
·LIBSPUT ... OUTPUT 0,,000D58- RU VMSRTL
I.IBSREVERT 01l000Dbf1l-RU V"SFHL
UF3SSCANC 0111 f11 1'l00bS- RU VI'ISRTL
UBSSCOPY ... OXOX Il001cl11l070-RU VMSRTL
LIBSSCOPY.OXDXb "'11I11I16eD78-RU VMSRTL
LIBSSCOPV ... R ... OX 00",1:1,,080-RU VMSF<TL
LIBISCOPY ... R ... OXb 00111~0D88-RU VI'ISRTL
LIBUFREE1 ... 00 00f1100DAIil-RU VI'ISRTL

Figure 8-6 (Cant.) Map Showing FORTRAN Shared Common

("- ~ f"\ ~. ,r__""
I
I ,

~

DB11[IS0,10JGLOBALCO~.EXEII~

SV~BOL VAL.UE -.. -.
LIBS5FR~El ... DDb 12IL')1'l\!!I2IDAB-RU
LIBSSFRHN ... DD 0L')L')id0DB0-RU
LIBSSFREEN ... DDI> (lIIilIilI<lI'lDBB-RU
LIBSSGET1 ... DD 000kl00C10-RU
LIBSSGET1 ... DD ... Rb 01il~0I'lDC1B-RU
LIBSS IGNAL 0001il0DCS-RU
LIBSSIG ... TD ... RET 000"'BDDS-RU
LI85SI<PC 0001<l1ilDE0-RU
LIBSSPANC 01'l11'i<lI'lDES-RU
LIBSSTOP Bl/liH:l0DOIiI-RU
IofTHSACOS 01'l0<l0AbS-RU
MTHUCOS ... RS 000""" A 71!-RU
MTHUlOG 01!000A7B-RU
MTHSALOGIIII 001<lilQlAB0-RU
MTHSALOG11il ... RS 01'1f'l00ASB-RU
MTHSALOG ... RS 00Q1"'BAC1f<-RU
MTHSASIN 00""'I'lAC16-~U
"'THUS IN ... RS PI"II1I11L')AAiJ-RU
IofTHUTAN Iillill'l ".111 A AS-flU

. MTHUTA N2 001HlI'IABIil-RU

00
MTHSlTAN ... RII 1l1'l1l1ll0ABS-RU

I MTHSCABS 1l00'J0C3S- RU
N MTHltCCOS "fl000C5S-RU
W MTHSCEXP 001il"'f1CIlil!-IW

MTioUCLOG. 1i1Q10~0CII6"RlI
MTHSCOS 001'l0'l",BbS- RU
MTHSCOSH 1il0eill(!C5t:l-RU
MTH$COS ... RII 00t:l"lilll7i1!-RU
MTHSCSIN 0~11!"0CbiJ-RU
MTHSCSQRT 11!~0"QlCI>B-RU
MTHSDACOS 1il",0\:lI/lACe-RU
MTHSOACOS.RC1 11!t:l0l 0I1!AC8-RU
MTHSOASIN 0i/1QHJ0AO,,·RU
MTHSOASIN ... R'I 0~0"I'IA08·RLJ
MTHSDATA" 0<1"~0AE",-RU
MTHSDATAN2 0,'0~IlAE8-RU
MT HSDATAN.R7 11I~",v)I'AF0-RU
MTHSDCOS 0(.l"'~0fl2P,-IlU
MTH$OCOSH 0(J0i<l~C7"'-RU
MTHSDCOS ... R7 0(1"~'(183111-RU
MTHSDOP 0(1l~~JtJAr8·RU
MTHSDEXP ... R7 11'\l""08~0-RU
MTH5DLOG ",,0"i1IB0l8-RU
MTHSDLOG1C!' 0Q1~110810-RU
MTH\DLOGI0 ... R8 ~0Q1~I1'BI8-RU
MTHSOLOG ... R8 0",rIJ082,,·RU
MTHSOSIN 00lPlIJI'B3S·RU
MTHSDSINH 0i!1~,""'C78-RU
MTHSOSIN ... R7 011!11!100Bu\iI-RU
MTHSDSQRT . QlfI"~PlBua-RU
MTHSDSQRT .. R'; 0f\00flB5111-IIU
MTHSDTAN (1I~Ili<lPlC80-RU
MTHSDTAIliH 0V\IHJ\ilC8S-RU
MTH$EXP I1IQli!I!l~B58-RU
MTH$EXP ... 1'111 000V'0Bb0·~U

/...---:-~

DEFINED BV .._-------
VMSRTL
VMSIHL
VMSRTL
VMSRTL .
VMSRTL
VMSR.TL
VMSRTL
VMSRTL
VMSRTL
VMSRTL
VMSRTL
VMSRTL
VI"SRTL
VMSRTL
VMSRTL
VMSRTL
V~SRTL

VMSRTL
VMSRTL
VMSRTL
VMSRTL
VMSRTL
V~SRTL

VMSRTL
VMSIHL
VMS~TL.

VMSRIL
VMSRTL
VMSRTL
VMSRTL
VMSRTL
VMSRTL
VMSRTL
Vi'<SIITL
Vi'<SRTL
VMSRTL
Vi'<SRTL
VMSRTL
VMSRTL
V"ISRTL
VMSRTL
V"'S~TL

V"SRTL
VMSRTL
VMSRTL
VMSRTL
VMSRTL
VMSRTL
VMS~TL

V'ISRTL
VMSIlTI.
VMSRTL
V "Sf< T L
VMSRTL
VMSRTL

Figure 8-6 (Cant.)

. ..---., ,c~,

II-AUG-I978 12:'57 LINKEP xcq.2C1' PAGE

REFERENCED BY •••

Map Showing FORTRAN Shared Common

~,

b

m
tc
)00

~
)00
!XI
t"'
tzl

t-I

~
tzl
m

DB11[150,10IGLOBALCOM,EXEI14

SYMBOL VALUE -.. -.
"TioiSRANDOM 1/I1/I1'I00C90-RU
I4TIoISSIN 011~01187S-RU
MTHUINH 1/!1I1/I0li1C98-RU
I4TtlSS I N ... RII ""lIoJI/ISSIII-RU
MTHSSQRT 00111"0BS8-~U
MTHSSQRT ... 1I2 1/1000089111-I1U
I4THSTAN !!I011101/1CA0-RU
MTHSTANH 01'1(!hlI/lCA8-RU
OTUDIVC 00,'00898-IIU
OTSSLINKAGE 1/100"'06FII-R
OTSSPowCJ 00000BA0-IIU
OTSSPOWOO 0I00 11 1/18A8-RU

(Xl OTSSPowOJ 00000BC0-IIU
I OTSSPOWOR 0",0110880-RU

to.) OTSSPOiJIlI "'01'1008C8-RU
OTSSPowJJ 111001(10801'l-RU
OTSSPOWRO 11l1l1'100886-RU
OTSSPowRJ 1/10001!'8D8-IIU
OTSSPDWRR 1/I1III!1il1/l8E0-RU
OTSSSCOPY .. DXOX 01/1I1lklI/l8ES-RU
OTSSSCOPY ... OXDX6 000~1'I8FI/I-RU
OTSSSCOPY ... R ... DX 00",,,,,,,BF8-RU
OTSSSCOPY ... R .. DX6 1II1'I0011lC00-RU
OTSSSFREE1 ... DO 0",,,,!1I0CI8-RU
OTSSSFREE 1 ... 0(\6 01/11110111C20-RU
OTSSSFREEN ... DD 01/1111140C28-RU
OTSSSFREEN ... D06 "000",C10-RU
OTSSSGET 1 ... 00 00011I11C",8-RU
OTSSSGE T1 ... DO ... 1I6 00"'''0CI0-IIU

r

DEFINED 6Y _._----_.-
V>4SIITL
VMSRTL
VMSRTL
'!MSRTL
'!MSRTL
VI15RTL
"'''I5I1Tl
V>4SIITL
VMSRTL
OTSSLIt.lI(AGE.
VHSRTl
VMSRTl
V"SRTl
V>45RTL
VM511TL
YMSRTL
VMSRTL
VMSRTl
VMSRTl
VMSRTL
VMSIITL
VMSkTl
VMSRTL
VMSRTL
ilMSI'TL
V>4SRTl
Y"ISIITl
VMSRTl
V>4SflTL

Figure 8-6 (Cont.)

r\

4-AUG-I978 12157 LINKER Xill.20

R£FEIIENCED RY , ••

CI1At.GE DI5PLAY

Map Showing FORTRAN Shared Common

I~' I

PAGE 7

~

til = E
)0
01
I:'"
til

1-1

~
til
til

00
I

N
VI

/~

DB11[IS0,10JGlOBALCUM,EXE,14

VALUE

00000600
000006811
0000P16F4
00000800
00000808
0001'10810
00000818
00000820
00000838
U000840
000008118
000008S0
000008S8
1!101!100860
000008108
00000870
00001'1878
01!11!111'0880
00000886
000008'1~

000008'18
00001'1840
000008A8
00011'08BI1'
00011'0888
0011'006CI1I
0011'008C8
00000600
0011'00808
lil00008E0
000006E8
000006F0
000008F8
00000'100
"0""0onS
1!I"1!I"1!I911l-'
1!11!I01il09U8
001!11110950
0001/1095S
00011109&0
000009108
0011111'0970
00000918
11'0000980
"000(!1988
"0111011199Q1
0""11109'18
0"00(Il'U0
00000'1'6
00111009B0
00000'1e8
000009C0

RU-CHANGE
RU-OISPLAY

R-OTSSLINKAGE
RU-FOR$CLOSE
RU-FORSOECOOE ... MF
RU-FORSOECOOE ... MO
RU-FOR$ENCOOE ... MF
RU-FOR$ENCOOE ... MO
RU-FORS~EAO ... OF
RU-FORSREAO ... OO
RU-FORS~EAD ... DU
RU-FORS"EAD ... SF
RU-FORSt;EAD ... SL
RU-FOR'~EAD ... SO
RU-FORSREAD ... SU
RU-FOR$~RITE ... DF
RU-FORSWRITE ... DO
RU-FORSWRITE ... DU
RU-FOra~R I TE ... SF
RU·FOIU~R I TE ... SL
RU-FORS~R IT E ... S 0
RU-FOR$WR ITE ... SU
RU-FORUO ... E~D
RU-FOR$IO ... F ... R
RU-FORSIO ... F ... V
RU-FOR$lO ... O .. R
RU-FORSIO ... D ... V
RU-FORSlll ... L ... R
RU-FORSIO ... L ... V
RU-FOP$lO ... B ... R
RU-FOPSlO ... B ... V
RU-FOR$lO. T ... DS
I'IU-FORU O ... W .. R
RU-FORSIO .. IoI ... V
RU-FORIIO.T ... V.DS
RU-FORUO ... FC ... R
I'IU-FORU O.FC .. V
RU-F 01'/$ IO.LU.R
RU-F{)R$lO ... LU ... V
~U-FOR$IO .. ,"U ... R
RU-FORSIO ... IOU ... V
RU-FORSIO.X ... DA
RU-FOR$O~E~

QU-FOR$~ACkSPACE

RU-FORSCI>;V ... OUT ... 1
RU-FOR$~NV ... OUT ... L
RU-FORSCNV ... OUT ... O
RU-FORSCNV.OUT ... Z
RU-FORSCNV ... OUT ... O
RU-FOQSCNV ... OUT ... E
RU-FORSCNV ... OUT ... F
RU-F~R'~NV ... OUT ... G

,/---",
~, "'----''''--,

1I-AUG-t918 12:S7 LINKER XV'I.20
t-------.----.-----+
I Sy~aOLS Bf VALUE I +----_._-_._----.--+

SYMBOLS •••

Figure 8-6 (Cant.) Map Showing FORTRAN Shared Cornman

,~,

PAGE 8

til
tc

~
:roo
01
t"'
t<:I

1-1

~
t<:I
til

00
I

tv
0\

D811[150,10lGL08 ALCOM.EXE,IQ

VAL.UE

00001119C8
0001"0900
81/11/10111908
011J1'l01/19E0
001111111119E8
81110111 1"9 F III
08811'09F8
01/101"0'00
UPlIIIIIIA08
01111110111 A 10
011100111618
0P1111111111 A 2111
o III III III IlIA 28
000 III I1IA31/1
1/1001111/1438
01110I/I1II A Ql/l
1/11/10111111 All 8
00000650
0000111A58
01/111100A&0
1!101/101/1A&8
1/101111/10 A 71'
0001"0A78
01111"1/I0A80
01/1011'I/IA88
00001/1A90
00000A98
00000AA0
01/111100 AA 8
0001110AB;1I
00000A88
1'101!00AC0
1'1001!'0AC8
PlI'I000A00
1il001'11/!A08
1'1 111 001'1 AE. 0
11I11101il0AE8
1'1I1I11I0111AF0
1'11'I00"'AF8
1'111I11I1'Ii1' BI'I 0
111001'10808
1/11'100111'110
0001'1"618
001'100B20
00001'1B28
1110111001:311:
0011100E'38
01'11'1>'0 B 1.1 11'

001'11111'181.18
1'10111111<'650
001110[11858
0000086</'
00000B&8
00I/JQl08711!
0111111001'178

/"

RU-FOIUIlEF ... F IL.E
RU-~ORSDEF ... FILE ... W
RU-FOIUtNOF ILE
I1U-FORStRI1SNS
RU-FORSERRSNS ... 101

RU-FOIUEX IT
RU-FOIISEx IT ... w
RU-FORSCNV ... I~ ... OEFG
RU-FOR5 F INO
RU-FORSCNV ... IN ... I
RU-FORSCNV ... IN;..L
RU-FORSCNV ... IN ... O
RU-FORSCNV ... IN ... Z
RU-FORSINI ... OES1 ... R2
RU-FOR,INI ... OES2 ... R3
RU-FOR$INI ... OESC ... Rb
RU-FORSI'AUSE
RU-"ORSI(E~tNO

RU-FORSSECNOS
RU-FOR$IHOP
RU-MTH$ACOS
RU-MTH~ACOS ... R5
RU-MTHSALOG
RU-"THSALOG1111
RU-MTH$ALOGI13 ... R5
RU-"THSALOG ... R5
RU-MhISASIN
RU-"'THSAS HJ,~R5
RU-MTHSATAN
RU-MTHSATA"2
RU-MTH$ATAN ... RI.I
RU-MTH$llACOS
RU_MTH$OACOS ... R9
RU-"TH$IJASIN
RU-Io1TI-!,DA5IN ... R9
RU-MTI-!,DA TAN
I1U-"ITHSllAT A"2
RU-MTI-!SDATAN ... R7
RU-MTI-!$llEXP
RU-MTHSIlEU ... R7
RU-MTIoI~IlLOG

RU-MTH$llL.OG10
RU-~TH$llL.OG1~ ... R8
RU_MTH$IJLOG ... R6
RU-MTIoI\DCOS
RU-MTIoI~l>COS ... R7
RU-MTI-!$DS I ~J
RU-"T 101$1)5 I "' ... Ii 7
RU-MTIoI$llSGlRT
FlU. MT 101$ DSGHIT ... RS
RU-Io1TH$t:.XP
RU."TH!d::XP .. R4
RU-"TH$COS
F>U-MTH$COS .. R4
RU-MTH$SIN

SYMBOLS •••

Figure 8-6 (Cont.)

"~,

tI-AUG-1'178 12157 LINKER XfOl.211 PAGE

Map Showing FORTRAN Shared Common

.~. ~"

9

/'------

(Jl
=: :.:­
l:C
tzJ
:.:-
'" t"'
tzJ

I-t

~
tzJ
(Jl

co
1

N
--.J

/-',

OB11[150,I~lGLOBALCOM.fXE'lQ

VALUE

1Il000 111 BB 111
1Ill1ll1l1ll0B88
00001118'10
01111111110898
000008A0
00000B68
00000880
000008B8
00000BC0
1Il00008CB
1Il000080111
1Il0000B08
00"0008£0
00000BEB
11I011100BF0
1Il011l00BFB
11101il01ilC00
001110111C08
1Il00l'!0C10
1il0000C18
00111011lC21il
0000111C28
001il00C3i11
00000C38
0011100C40
0011l1lll1lC48
01110111111C5"
11I1110111111C58
011100111C&11I
111001:10C&8
11I00"0C111'
11I11l11100C78
1lJ011l11l0C8~
11I11l1ll11l!!1C88
011l11l11l0C9~
011l11l11l0C 'I 8
1lJ11I000CA0
1I'0000C68
1Il000111C80
11I1Il1ll1ll!!1CB8
001il1l'0CC0
1lII1I111I1IIilCCB
0011l11l0C00
011l000(08
1il0l1l011JCE0
011111100C£8
000P0CFI1I
1il0000CF8
11101110[1100"
0011100008
0000001111
000011'1)18
000011102111
11I111011111102B
I1I0P00031!1

RU.MTHISIN ... RQ
RU·MTHSSQRT
RU-MTH$5QRT ... R2
RU·OTS$DIVC
RU·o.TS$~OwCJ
RU·OTS~I'OINOD
RU·OTS$I'OWDR
RU·OTSSI'OWRD
RU·OTs~~owDJ
RU·OTS30 POW!l
RU·OTS$~O"JJ
RU·OTS~POWRJ
RU·OTs,I'OWRR
RU-OTS~SCO~Y ... DXDX
RU·OTS$SCOPY ... DXOX&
RU-OTSSSCOPY ... R ... DX
RU.OTSSSCOPY ... R ... OXb
RU·OTSSSGE1I ... OO
RU-OTSSSGET1 ... DD ... R&
RU-OTS~5FRfE I.DO
RU·OTSSSFREEt ... DD&
RU-OTS$5FREEN .. DD
RU·OTSSSFREEN ... DDb
RU·MTHSCABS
RU-..,THSeEXP
RU-MTH$CLOG
RU·MTHSCOSH
RU-MTHSeCOS
RU·MTHSCSIN
RU·MTH$CSQRT
IIU THSLlCOSH
RU·MT~'DSINH
RU·MTioISi.lTAN
~U-MTHSllTANH

RU·"THSt<ANDOM
RU·MTHSSIN~
RU-MTHSTAN
~U-MT"'SlA"'H
~U·LIASAST ... I~ ... PROG
RU·LIBSCRC
RU·LIA$CRC ... TA8LE
~U·LI 1'1$ DF.C ... OV £11
RU·U ASl:S TA BL I 8H
IIU-UFlSI:.XTV
RU·URSt.nZv
RU·LlRSf'FC
RU·URSFFS
RU·LIBS~ IXUP .. FL T
RU·LIRSFLT ... UNDER
RU-U B$I.El ... I "PUT
RU-LIB$GET ... COMMAND
RU·U8l1iINDEX
RU·LIIl'I~SV
IIU-URSlNT.OVER
RU·LIRSLQCC

,~,

SYMt>OLS •••

Figure 8-6 (Cant.)

"~
~,

4-AUG·197A 12157 LINKER X01.20

Map Showing FORTRAN Shared Common

~

PAGE 10

til

;:
!lI:I
t'!I

~
t"'
t'!I

1-1

~
t'!I
til

co
I

N
co

('

DB11[150.10]G~OBA~eUM.EXE'14

VA~UE

11111111100D3B
01111110004111
1110000D48
o III III IIHII 050
111111080058
0000111D&0
11100000118
0111000010
00000078
00000D8I!I
00000088
00000Dq0
000111110Q8
0000(!10U
000000'8
00000DB0
0001110088
01110111110e8
000011100111
1IJ0011100D8
00000DE0
11100000E8
000011DF0
111000110F8
111000111E08
0001!11!lE 10
00000E18
00000E2111
I!I0f/lP10E28

RU-LI8SMATCMe
RU-~lBSMATCH.CONO
RU-LIBS"OVTe
RU-LI8SMOVTUC
RU-~I8S~UT~OUTPUT
RU-~IB$REVERT
RU-LIBSSCANC
RU.~I8SSCOPY.~XOX
RU-~IeSSCOPY.OXDX&
RU-LIBSSCOPY.R.OX
RU-~IBSSCOPY.R.OXb
RU-~ I IISliGE T l~DO
RU.~IBS~GET1.00.RII
RU-L I B_ISFREE 1.00
RU-~IBSSFREE1.0011
RU-~ I BS~FRHN .. OD
RU-~IBS~FREEN.OOII
RU-~ HISS 1 G~A~
RU·~IBS5TOP
RU.~IBS~IG~TO.RET
RU-~IBSSICPC
RU-~lBS5PANC
RU-LIB$FREE~VM
RU-LIBSfOH.VH
RU-FORUeB.PIJSH
RU-FORSSCB.POP
RU-FORS$CB~RET
RU-FOR$lCB~GET
RU~FORSSERRSNS.SAV

SYHBO~S •••

KE' FOR S~ECI'L CHARACTERS ABoVEI
+ •• ----------------+
I * - UNDEFINED
I U • UNIVERSAL
I R - RE~OCATABL£
I IoIK - IoEAK

+.--.--------------+

a-AUG-1Q78 12157 ~INKER x01.20

Figure 8-6 (font.) Map Showing FORTRAN Shared Common

/~ ('\. I'

PAGE 11

/\

I'll = >0
~
>0
lJJ
I:'"
t"iI

....

~
t"iI
I'll

00
I

N
\0

/--', ~,
~

.""---'''"-,

DB11[150,10JG~OBAlCOM.EXEJI4 "-AuG-l'nS 12157 I.lNKER X01.2e + _____ u __________ +

I IMAGE SYNOPSIS I
+----------------+

VIRTUA~ MEMORy '~LOCATEDI
ST4CK SIZEI -

~0ee~2e~ ~0e375FF g~0~74~0 C29b96. 8YTES, 5B. ~AGtSI
0. PAGES

IMAGE HEADER VIRTUAL BLOCK ~IMITS.
IMAGE BINARY VIRTUAL BLOCK ~IMITSI
IMAGE NAME AND IDENTIFICATION.
NUMBER OF FI~ES. .
NUMBER OF MODULES,
NUMBER OF pROGRAM stCTIONS.
NUMBER OF G~OBAL SYMBOLS.
NUMBER OF CROSS REFtRENCES,
NUMBER OF IMAGE SECTIONS.

1. I. 1. BLOCK)
2. 4. 3. BLOC~S)

GL08A~COM .ExE114
5.
5.

10.
159.
19'1.

B.
IMAGE TYPE: -
MAP FORMAT.
ESTIMATlD MAp LENGTH I

PIC, SHAREABLE. GLOBAL SECTION MATCH = "LESS/EQUAL", G.S, IDENT,
FULL ~ITH CROSS NEFERENCE I~ FILE "D~II(I~~,10JGLOBALCOM.MAPI9"
55. BLOCKS

PERFORMANCE INDICATURS
----------- -----.--.-COMMAND PROCESSING:­

PASS 11-
ALLOCATION/RELOCATIO~:­
PASS 21-
MAP DATA AFTER OBJECT MODULE SY~OPSIS:­
SYMBOL. TAALE oUTPUTI-

TOTAL RUN VALUESI_ .

+---------------------+
I LINK RIIN STATISTICS I

+---------------------+
PAGE FAIIL TS

32
S.l
22

'5
IS

'" 12~

CPU Tl'"E

~f): .'0: ~r.. "'I
;\;'100:0"'.57
"~nli1:~0.2"
(.:hq-.?",:e~.17

"'0:~?::~0.qb

"'~:~0:0<1.l'!7

'-"':<'I":il2.106

ELAPSED TIME

~"101311'11.02

"L1:"~I\H.12
~1~'1:~0:i!lvi.5LJ

0~:00HH"'. 71J
~0:"e:131.3b
\'l1j:"01~V!.2!!
t~0: ~~": es. ~"3

USING A wO~KING SET LI~ITED TO 60~ PAGFS A~O 42 PAGES OF DATA STnRAGE (EXCLUDING IMAGE)

TOTAL NUMBER OBJECT RECO~~S REAO (80T~ PASSES): qa
OF WHICH IS wf~~ l~ LIBRARIES AND B ~r.RE D~BUG ~ATA ~ErORDS CONTAl~ING 221 RYTES

T~ERE wERE 8 LIBRARY BLOCK READ OPERATIONS
~HICH ENCOMPASS~D A TOTAL OF 71 BLOC~5
USING A WINDO~ OF I~ BLOCKS

NUMBER OF MODULES EXTRACTED EXPLICITLY = U
wITH 1 EXTRACTED TO RESOLVE UNDEFINED SYMBOLS

o LIBRARy SEARCHES ~ERE FOR SYMADLS NOT IN THE LI8~ARY SfAPC~ED

A TOTAL OF 12 GLOBAL SYMBOL TABLE RECORDS wAS WRITTE~

Figure 8-6 (Cont.) Map Showing FORTRAN Shared Common

.~.

PAGE 12

MAJO!l=I~, MINOR=0
{Jl
t:c
>'
~
g;
I:'"
tz:I

1-1

~
tz:I
til

SHAREABLE IMAGES

8.3 USING SHAREABLE IMAGES

To be of use,shareable images are normally linked into another image.
Usually shareable images are also installed by the system manager, to
make them available to the cooperating users at run time.
Installation of shareable images is dealt with in the VAX/VMS System
Manager's Guide.

You must use an options file (see Chapter 6) to specify a shareable
image as input to the linker. In an options file the /SHAREABLE
qualifier becomes a legal input file qualifier., identifying the
associated file as a shareable image. The /SHAREABLE qualifier
optionally accepts the keywords COpy or NOCOPY, specifying whether the
linker is to create a private copy of the shareable image in the user
image. The default value is that no copy is produced.

When an image containing a shareable image is activated, a search is.
made for .the global section match, as described in Section 8.2.3. If
that match fails, one of two things occurs, depending on whether the
executable image has a private copy of the shareable image:

• If the executable image has a private copy, that copy is used
instead of the global sections.

• If the executable image does not have a private copy, an error
message is issued indicating that the required global sections
are not available.

8-30

~-

(

(

(

(

(

CHAPTER 9

CLUSTERING

The concept and main uses of image clustering were introduced in
Chapter 2. The present chapter expands on the earlier material,
describing the mechanics of clustering and some guidelines for usage.

9.1 MECHANICS OF CLUSTERING

Chapter 6 describes the CLUSTER= option, which is used to define the
position, character, and content of clusters. The cluster name is
merely for convenience in reading the Image Section Synopsis of the
image map.

Every image produced by the linker is automatically given a default
cluster. This cluster contains any object modules not explicitly
positioned in other clusters. The BASE= option serves to position the
default cluster in the address space.

Clusters are allocated virtual address space in the order in which you
specify them, unless you specify base addresses. In allocating
virtual address space, the linker first deals with clusters to which
you gave base addresses, and it considers them in the order of
specification. The linker reports an error if it detects any overlap.

A shareable image is treated as a cluster. If the image is not
position independent (NOPIC), it has a base address already assigned
and is treated in the same manner as 'a user-specified cluster that has
a base address.

After the linker has allocated virtual space to all user-specified
clusters and shareable images, it allocates space to the default
cluster, if it contains any modules. Finally, the linker allocates
address space to the Run-Time Library shareable image, if it has been
automatically acquired.

9.2 USAGE GUIDELINES

Clustering is not likely to have any performance advantage for
applications smaller than 200K bytes. The reason is that each cluster
contains a group of image sections, and thus the address space is more
fragmented. Fragmentation can reduce program performance under
certain circumstances.

9-1

(

l:

(

c--

(

(

APPENDIX A

LINKER MESSAGES

This appendix lists the code and text portions of messages that the
linker can issue. The messages are listed in alphabetical order by
code.

The messages are designed to give yo~ all the necessary information
about the error. Brief explanations are included for a few messages
that are not self-explanatory.

BADCCC, Module "[name]" has bad compilation completion code = [code]

BADIMGHDR, Bad shareable image header in file "[file-spec]"

BADPSC, Module "[name]" has transfer address in unknown P-section
"[number]"

BASESYM, Base address symbol "[name]" i's undefined· or relocatable

CLOSERR, Close failure on "[file-spec]" code = %X[error code]

CONFMEM, Conflicting virtual memory requirement at %X[address] for
[number of] pages for cluster "[name]"

CRE8ERR, Failed to create file "[file-spec]"

CRFERR, Erroz code %X[error code] received from Cross Reference
Facility

DBGTFR, Image "[file-spec]" has no Debugger transfer address

DIAGSISUED, Completed but with diagnostics

EMPTYFILE, File "[file-spec]" contains tio modules

ENDPRS, Parameter parse completion error, code = %X[error code]

EOMFTL, Module "[name]" specifies Linker abort

EOMSTK, Module "[name]" leaves [number of] items on Linker internal
stack

ERRORS, Module "[name]" has compilation errors - image deleted

EXCPSC, Module "[name]" defines more than 256 P-sections

EXCSPAR, Too many parameters in option:
"[file-spec]"

FAOBUG, FAO failure

A-l

[option name] of file

LINKER MESSAGES

FATALERROR, Fatal error message issued

FIRSTMOD, First input being a. library requires module extraction

FORMAT, File "[file-spec]" has illegal format

GSDTYP, File· "[file-spec] " has an illegal GSD record (type = [type
. code])

ILLFMLCNT, Min. argo count of [number] exceeds max.
formal spec. of "[routine name]"

([number]) in

ILLKEY, Unrecognized keyword in parameter of option file "[file-spec]"

ILLQUALVAL, Illegal qualifier value

ILLREP, Module "[name]" has store repeated count [number] greater than
[number]

ILLTIR, Module "[name]" has illE!gal relocation command = [number]

ILLVAL, Illegal parameter value in option file" [file-spec]"

INITPRS, Parameter parse initialization error, code = %X[error code]

INSVIRMEM, Insufficient virtual memory for [number of] pages for
cluster "[nanie]"

INTSTKOV, Linker internal stack of [number of] items overflowed by
module "[name]"

INTSTKUN, Linker internal stack of [number of] items underflows in
module "[namel"

IVCHAR, Invalid character in parameter - option file "[file-spec]"

LIBFIND, Failed to find valid lib. mod. or shr. image STB. at RFA
%X[address] %X[address]

LtBFM~, Library "[name]" (format = [bad format]) has incorrect for~at
(not =[correct .format]) for this Linker

• Might be caused by a corrupt library or an attempt to use an
RSX-llM library.

LIBNAMLNG, Library module name length ([number of characters]) is
illegal

LINERR, Command line segment in error

\[error]\

MATCHID, Global section match ident ([number])
([number])

exceeds

MAXCHANS, [number of] channels exceeds ·maximum allowed of 64

maximum

MAXIOSEG, [number of] I/O segment pages exceeds maximum allowed of
65535

MAXISDS, [number of] I-sections exceeds maximum allowed of 65535

MAXPFC, Page fault cluster factor of [number] exceeds maximum (255)

A-2

(

(

r

(

c

LINKER MESSAGES

MAXSTACK, [number of] stack pages exceeds maximum allowed of 65535

MEMBUG, Memory (de)allocation bug [description] %X[address]

• Internal linker error

MEMFUL, Linker virtual address space insufficient to complete this
link

MINDZRO, [number of pages] as minimum I-section size exceeds maximum
allowed of 65535

• DZRO_MIN option value too high

MODNAM, Illegal module name of [number of] chars. - not 1 to [number
of] chars.

MSGERR, Linker has error message bug [hex data]

MULDEF, Symbol "[name]" multiply defined by module "[name]"

• The named module defines a symbol that another module has
already defined.

MULPSC, Module "[name]" has conflicting specifications for P-section
"[name]"

• A previously encountered module has already defined the
program section with other attributes.

MULTFR, Module "[name]" multiply defines transfer address

• The named module defines the image transfer address (starting
point), but a previously processed module has already defined
the transfer address.

SPN~MLNG, Illegal symbol/P-section name of [number of] chars. - not 1
to [number of] chars.

NOEOM, Module "[name]" not terminated with EOM record

NOEPM, Module "[name]" references undefined entry mask of symbol
"[name]"

NONBTAB, Non blank/tab between continuation and comment or end of
record in "[file-spec]"

NOMODS, No input modules specified (or found)

NOPSCTS, No P-sections ~efined in module "[name]"

NOSUCHMOD, Library "[name]" does not contain module "[name]"

NOTPSECT, Module "[name]" sets relocation base to other than a
P-section base

NOVALU Values not allowed in qualifier - option file "[file-spec]"

NUDFSYMS, "[number]" undefined symbol(s)

NULFIL, Null parameter in option file "[file-spec]"

NULPAR, Missing required parameter in option line [erroneous lihel of
file "[file-spec]"

A-3

LINKER MESSAGES

OPIDERR, Pass [number] failed to open file "[file-spec]h

OPTREDERR, Read error
"[file-spec]"

(code=%X[error code]) on .option file

OUTSIMG, Attempted store location %X[address] is outside h[region]"
(%X[base address] to %X[ending' address])

• "Region" is expressed as either "image binary" or "Debug
Symbol Table."

OVRALI, Module "[name]" has conflicting alignment
P-section "[name]"

on overlayed

PARMDEL, Invalid parameter delimiter in option file "[file-spec]"

PRIMIN, Input parameter parse error, code = %X[error code]

PRIMOUT, Image file specification error, code = %X[error code]

PSCALI, Illegal P-section alignment [number of bytes] - exceeds a page

PSCNXR, Transfer address in "[module-name]" not in EXE/REL P-section

• The transfer address is normally in a program section with the
executable and relocatable attributes.

PSCOVFLO, P-section "[name]" overflows region to %X[address]

RECLNG, File "[file-spec]" contains record of illegal length ([number
of] bytes)

RECTYP, File "[file-spec]" has an illegal record (type = [type code])

REDERR, Read failure in pass [number] on file "[file-spec]"

SECOUT, Map file specification error, code = %X[error code]

SEQNCE, Illegal record sequence

SHRINSYS, Shareabl~ image(s) cannot be linked into a system image

STRLVL, LINK [version] does not implement OBJ level [structure level]
- only to [structure level]

• The version of the object language is not compatible with the
current version of the linker.

STKOVFLO, Stack of [number of] pages falls below control region to
%X [address]

TFRSYS, Transfer address in system image "[file-spec]" ignored

TIRLNG, Module "[name]" has relocation command data ([number of]
bytes) overflowing record

TIRNYI, TIR command [number or name] not yet implemented (module
" [name] ")

TRACIGN, Suppression of traceback overidden by DEBUG specification

• Occurs when you specify /NOTRACEBACK and /DEBUG.

A-4

c

(--

(

(

(

(

(

(

(

LINKER MSSSAGES

TRIOUT, Symbol table file specification error, code ~ lX[error cod~]

TRUNC, Trunc. error in module "[name]", P-section "[name]", offset
%X[hex value]

TRUNCDAT, Computed value = %X[hex value], value written = %X[hex
value] at %X[address]

UDEFPSC, Attempt to reference P-section no.
"[module name]"

• Undefined program section

UDFSYM, "[symbol name]"

• Undefined symbol

[number] undefined in

UNMCOD, Initial file name was" [file-spec]", RMS error code = %X[error
code]

UN~ECOPT, Unrecognized option in file "[file-spec]"

UNRECQUAL, Unrecognized qualifier in option tile "[file-spec]"

USEUNDEF, Module "[name]" references undefined symbol "[name]"

USRTFR, Image "[file-spec]" has no user transfer address

WRNERS, Module "[name]" has compilation warnings

WRTERR, write failure on file "[file-spec]", code = %X[error code]

VALREQ, Value required in qualifier - option file "[file-spec]"

A-5

(

(

(.. '

(

~-

c

(

(

APPENDIX B

IMAGE MAP ILLUSTRATIONS

This appendix illustrates the complete brief, default, and full forms
of a map of the same image. These illustrations do not include a
Symbol Cross Reference map section; however, this section does appear
in Chapter 7 (Figure 7-5).

The illustrations in this app~ndix are forms of the map used in
Chapter 7.

B-1

aJ
I

N

AVERAGE

MODULE NAME

AVERAGESM'IN
DEBUGBOOT

r

IoE"T

0t
1111

lS-JUL-1IJ78 13111 LINKrR X01.17 PAGE
•••••••••• ---•• __ ._--•••• +
I OBJECT MODULE SVNOPS IS I
+ •••••••••••• _

SYTES FILE

202 DB11[MURRAYIAVERAGE.08J.2
8DA821[SYSLIB)DEBUG.OBJ,l

r-\ (~

CREATION DAlE _------..
ll-May-U78
IIJ2-JUN-11J78

I'

III' III! r-
lMle

CRUTOR

VAX-ll FORTAAN IV-PLUS TI.7-1J2
VAX-l1 "ACAO X0.3-1111

~

III
:II
iii
'TI

I:
:J>
-a

~

~
t'!I

t
~
t'"
t'" c:::
til
t-i

~
~

i
til

IX!
I

W

I
~ /''--''', .~.

,~,

DB1.[MURRAY]AVERAijE.EXE,b te-JUL-lq78 13.11 LINKt.A XI1Jl.17
+ •• -.~ ••• --•••••• +
I IMAGE SYNOPSIS I +.-_ ••••••••••••••

VIRTUAL MEMORY AL~OCATED.
STACk SIZE.

00000Z01 111175FF 11117410 (ZQ6Q6. BYTES, 5B. PAGES)
21. PAGES

IMAGE HEADER VIRTuAL BLOCk LIMITS.
IMAGE BINARY VIRTUAL BLOCK LIMITS.
IMAGE NAME AND ID!N1IFICATION.
NUMBER OF FILES.
NUMBER OF MODULES,
NUMBER OF PROGRAM StCTIONS.
NUMBER OF GLOBAL ~Y~BOLS.
NUMBER OF IMAGE StC1IONS.
USER TRANSFER AOD~E~S.
DEBUGGER TRANSFER ADDRESS.
IMAGE TYPE.

1. 1. (1. BLOCk)
2. 5. (4. BLOCkS)

AVERAGE U
II.
5.
Q.

U.
8.

eeeeeul
01010801
EXECUTABLE.

MAP FORMAT.
ESTIMATED MAP LENGT"'.

BRIEF IN FILE "DB1.[MURRAY]AVERAGE.MAP,b"
8. BL.OCkS

+ •••••••••••• _ •••••••••
I LINk RUN STATISTICS ,
+ ••• --.-.~.-•• - •••• - •• +

'PERFORMANCE INDICaTORS PAGE FAULTS CPU TIM~ ELAPSED TIME ----._.-........ __ -.-. _._.
COMMANO PROCESSTNG.- 20 0UI,I.00.07 00100101.11
PASS 1'- 25 00.10.10.112 II,. IIHI1Jl. 02
ALLOCATION/RE~OCATION.- 2 00.11!J.1!J0.1!J5 01100UlIil.2b
PASS 2.- 6 10.10.11'1.22 01.1110.00.87
MAP DATA AFTE~ oBJECT MODULE SYNOPSIS.- I 0Iil1l!Jl!J.ee.0111 011100'1'10.00
SYMBOL TABLE ~UIPUT •• 0 1!J0'00101.00 00'01101.07

TOTAL RUN VALUES.- 53 00.0111.11I1i1.76 1i10.01.IZ.37

USING A ~ORkING S~T LIMITED TO 180 PAGES AND 31 PAGES OF DATA STORAGE (EXCLUDING IMAGE)

TOTAL NUMBER OBJEcT RECORDS READ (BOTH PASSESl. 17q
OF WHICH 62 WFR~ IN LIBRARIES AND 8 WERE DEBUG DATA RECORDS CONTAINING 2Q" BYTES

2b7 BYTES OF DEBU~ DATA WERE WRITTEN, STARTING AT VBN 6 WITH 1 BLOCkS ALLOCATED

THERE WERE 11 LIB~AWY BLOCk READ OPERATIONS
wHICH ENCOMPASStD A TOTAL OF q1 BLOCkS
USING A WINDOw of 10 BLOCKS

NUMBER OF MODULES E-TRACTED EXPLICITLY • 0
wITH 2 EXTRACTEu TO RESOLVE UNDEFINED SYMBOLS

I!J LIBRARY SEARCHEs ~ERE FOR SYMBOLS NOT IN THE LIBRARY SEARCHED

A TOTAL OF 0 GLOBAL SYMBOL TABLE RECORDS WAS WRITTEN

'\

PAGE 2

m
:D -m
."

!:
:I>
"'U

I-t

~
t:IiI

e
I-t
t"'
t"' c::: rn

~
I-t

~ rn

c:J
I

,c..

AYEAAGE

MODULE NAME

AVERAGES"'AIN
DE8UG800T

P-SECT NAME . -.--_.-.--
SPDATA

'LOCAL

SCODE

• BLANK •

SVM80L
AYERAGESMAIN

II'E"T

II
01

H!1DULE(S) _._ .. -...
AYEHAGESM'IN

AYEHAGES",AIN

AYEwAGESHAIN

DF.SUG800T

V'LuE

!ilC!l01J10b00-R

l1-JUL-1978 13110 LINKtR Ul.17 PAGE ••.•................•..•.•
I 08JECT MODULE SYNOPSIS I
t···_--.• ·.· .. ·· .. ···· .• ·•

BYTES FILE

8ASE

2020Bll[MURRAYJAVERAGE.OBJ,2
8 DBB21[SYSLIB]DEBUG.OBJ,l

+ •••••••• ~.-.-.-.-.-•• - •••• +
I PAOGRA~ SECTION SYNOPSIS I •.....•...........•.•••...••

END LENGTH ALIGIi

00000200 00000233 00000~34 52.) LONG 2
00000200 00000233 00000034 52.) LONG 2
00000400 00000408 0000000C 12.) LONG 2
00000400 00000408 0000000C 12.) LONG 2
0000Rb00 00000b89 0000008A 138.) LONG 2
00000b00 00000ba9 0000008A 138.) LONG 2

CREATION DAlE CREATOR

ll-H.V-1978 I:J~ VAX-ll FORTRAN IY-PLUS TI.7-92
02-JUN-1978 l~Jc VAX-~l MACRO X0.3-11

A,TRIBUTES
_ -

~IC,USR,CON,~tL,LCL, SHR, NOEXE, RD,NOWRT

PIC,USR,CON,RtL,LCL,NDSHR,NOEXE, RO, wRT

PIC,USR,CON,RtL,LCL, SHR, EXE, RD,NOWRT

0000080~ 00000807 00000008 8.) BYTE 0 NOPIC,USR,CON,RtL,LCL,NOSHR, EXE, RD, WRT
00000800 00000807 00000008 8.) IlYlE 0

+ •• ---•• - ••••••••••
I SY"'BOLS BY NAHE I
+ •• --•••••••••••• -.

SYMBOL VALUE SYMBOL YALUE SYHBOL VALUE .-... -

~EV FOR SPEtIAL CHARACTERS ABOYEI

(~

+ ••• --._---.--_ ••• _+
I * - UNDEFINED
I U - UNIVERSAL
I R • RELOCATABLE
I W" - WEAK + •••••••••••••••••••

.f" /', .f\ i~ ,

o m
."
:I>
C
r­
-I
!:
:I>
'1J

1-1

~
t"iI

~
'tI

1-1
t"'
t"'
C
til
t-3

~
1-1

~
til

III
I

VI

,~ /~ ~. /~'\

DB11(MURRAY]AVERAGE.EXE,5 10~JUL-1978 13110 LINK~R X01.17
••••••••••••••••• +
I I~AGE SYNOPSIS I
+ •••••••••••••••• +

VIRTUAL MEMORY AL~O~ATEDI
STAC~ SlZEI

00000200 010175FF 11017411 (29a9a. BVTES, 58. PAGES)
20. PAGES

IMAGE HEADER VIRTUAL BlOC~ LIMITSI
IMAGE BINARY VIRTUAL BLOC~ LIMITS 1
IMAGE NAME AND ID~NTIFICATIONI
NUMBER OF FILESI
NUMBER OF MODULESt
NUMBER OF PROGRAM S~CTIONSI
NUMBER OF GLOBAL SY~BOLSI
NUMBER OF IMAGE StC1IONSI
USER TRANSFER ADD~E~SI
DEBUGGER TRANSfER AuDRESSI
IMAGE TYPEI

t. 1. (t. BLOCK)
2. 5. (II. BLOCKS)

AVERAGE 01
4.
5.
q.

10.
8.

01AQl9601l
00009800
EXECUTABLE.

MAP FORMAT,
ESTIMATED MAP LENGT~I

DEFAULT IN FILE ·DB11[MURRAYJAVERAGE.MAP,5"
H. BLOCKS

+_ •••••••••••••• _._ •• _+
I LINK RUN STATISTICS I
+ ••• --~.-•••• - •••••••.• +

PERFORMANCE INDICATcRS PAGE FAULTS CPU TIME ELAPSED TIME .. --~---.-. _-... - ... _ -.... .._.
COMMAND PROCE5SrNGI- 211 001 10 II!IIII. 1111 011100110.12
PASS 11- 43 11010111111.43 01111111!ll.17
ALLOCATION/RE~OtATIONI- 2 1101001111.04 1lIllallra.Z5
PASS 21- 0; 00 1li10 11!111I. 27 "011111110.86
MAP DATA AFTE~ reJECT MODULE SYNOPSISI- 5 01100100.05 01111111100.0a
SYMBOL TABLE OUTPUTt- 0 I III 100 11!10. III I 0151 o III 11110 .11

TOTAL RUN VALUESI- 75 00110111111.83 0010111102.a·2

USING A WORKING SfT LIMITED TO lB0 PAGES·.ND 30 PAGES OF DATA STDRAGE (EXCLUDI~G IMAGE)

TOTAL NUMBER OBJEcT RECORDS READ (BOTH PASSES)I 179
OF WHICH a2 WFR~ IN LIBRARIES AND 8 WERE DEBUG DATA RECOROS CONTAINING 2q4 BYTES

2a7 BYTES OF DEBUb OAT A WERE WRITTEN, STARTING AT VBN a WITH 1 BLOCKS ALLOCATED

THERE WERE 10 LIB~A~Y BLOCK READ OPERATIONS
WHICH ENCOMPASStD A TOTAL OF ql BLOCKS
USING A WINDOw rF 10 BLOCKS

NUMBER OF MODULES ExTRACTED EXPLICITLY • III
WITH 2 EXTRACTEu TO RESOLVE UNnEFINED SYMBOLS

III LIBRARY SEARCHEs "ERE FOR SYMBOLS NOT IN THE LIBRARY SEARCHED

A TOTAL OF 0 GLOBAL SYMBOL TABLE RECORDS WAS WRITTEN

~\

PAGE i!

c m
." »
c:
r
-I
3: »
'1J

H .r:
til
t'!I

r:
'tI

H
I:'"
I:'"
C
til
t-3 1:.
t-3
H

i
til

III
I

O'l

r',

AVERAGE

MODULE NAME

AVERAGES"'AIN
DEBUG800T
OTSSLINKAGE
SYSVECTOR
V"'SRTL

IOENT

01
01
0-3
eO!'
.FX' ,111

le-JUL-1978 13109 LINKtR)(fIl.17 PAGE
+ ••••• --•••• ~ •••••••••••• +
I OBJECT MODULE SYNOPSIS I
+-••••••••••••••••••• ---.+

8YTES FILE

202 DB11[MURRAY]AVERAGE.OBJ,2
8DB821[SYSLIB]DEBUG.OBJ,1
3 D8821[SYSLI8)STARLET.OLB,2
o OB~21[SYSLIB]STARLET.OLB'2
o DBB21[SYSLIB]VMSRTL.EXE,2

f\. ./"\.

CREATION DAlE .. -----_._.-.
11-"'ay-1978
02-JUN-1978
1~-JUN-1978
2S-JUN-1978
U-JUL-1978

/~

0~11!
l"l~
1"11
l'll!

00!21

CREATOR
VAX-II FORTRAN IV-PLUS TI.7-92
VAX-II MACRO XI.3-11
VAX-II MACRO lIe.3-11
VAX-II MACRO)(0.3-11
LINK-32 U1.17

o

."
c:
r
r

== »
."

1-1

~
to:I

e
1-1
t'"
t'"
C
til
t-3

e
1-1

i
til

~.

DB11[~URRAY1AVERAGE.EXE,3

CLUSTER TYPf. PAGES
DEFAULT ... CLUSTER It I

~ 1
II! 1
~ 1

,,53 20

VMSRTL] 4: 3
tx:J /I 2 I
--.J

"'-------. ~. '~"

le-JUL-1918 13109 LINKtR X81.17
+ •••••••••••••••••••••••••
, IMAGE SECTION SYNOPSIS I
•••••• -_. __ ••••••••••••• -+

BASE ADDR DISK VBN PFC PROTECTION AND PAGING GBL. SEC. NAME MATCH '•..........••..
.BB"'GlZ00 Z e READ ONLY
I1JU.Gl4G1'" 3 GI READ wRITE COpy ON RF.F
.ee0BU0 /I B READ ONLY
001300800 5 o READ WRITE COpy ON REF
7FFFD800 0 o READ W~ITE DEMAND ZERO

00B1tBA00 '" B READ ONLY VMSItTL.B01 LESS/EQUAL
0000121110 'Ill '" READ ONLY yMSRTL eZ LfSS/EQUAL
00007211'0 II III READ lriRITE COpy ON REF VHSRTL ... 0e3 LESS/EQUAL

PAGE

M,AJORID MIHORID --.

0 99
0 99
e 99

~

2

'TI
c:
r­
r-
iC
~
"1J

1-4

~
I!!I

~
'U

1-4
t"'
t"'
C
fn
~

e
1-4
0
2l
fn

DB11[MURRAY]AVERAGE.EXE,3

"-SECT NAME MODULECS) . ----... _-- ----.-._' .
SPDATA

AYEHAGESMAIN

SLOCAL
AYEwAGE'MAlN

SCODE
!Xl AYEw"GESMAIN
I

co
OTSSCDDE

OTULINI<AGE

• BLANK •
DtBuGBOOT
01 SsUNI<AGE
STSvECTOR

('

10-JUL-1Q78 1310Q LINK ... R Xll.17
+ •• ~.-••••• - ••••••• --•••••• +
I PROGRAM SECTION SYNOPSIS ,
+ •••••••••••••••••••••••••••

BASE END LENGTH ALIGN AITRIBUTES .-.. ---~-.
00000Z00 00000Z33 00000034 5Z.) LONG 2 PIC,USR,CON,R~L,LCL, SHR,NOEXE,
00000200 00000233 0000~034 52.) LONG 2

00000400 0000040B 000~000C 12.) LONG 2 PIC,USR,CON,RtL,LCL,NOSHR,NOEXE.
00000400 0000040A 0000000C 12.) LONG 2

00000&00 00~006e9 00000084 U8.) LONG 2 PIC,USR,CON,R~L,LCL, SHR, EXE,
00000&00 00000&eQ 0000008A ue.) LONG 2

00000&ec 00000&8E 00000003 3.) LONG 2 PIC,USR,CON,RtL.LCL, SHR, EXE,
00000b8C 00000beE 0000000]].) LONG 2

00000800 00000801 00000008 e.) BYTE 0 NDPIC,USR,CON,RtL,LCL,NOSHR, EXE,
00000e00 00000B01 00000008 8.) BYTE iii
00000808 00000808 00000000 0.) BYTE 0
00000808 00000808 00000000 0.) BYTE 0

r,r-, ,~ ~'

PAGE

RD,NOWRT

RD, WRT

RD,NOWRT

RD,NOHRT

I'D, WRT

3

o

"TI
C r­r-
~
:J>
."

1-1

~
t"iI

3:
>0
'tI

1-1
t"'
t"'
0
til
1-3

~
1-3
1-1
0
Z
til

to
I

\0

/~

DBll rMU~RAYl AVERA('E,EXE,3

SYMBOL

AVE~AGESMAIN

FORUO.ENO
FORSIO ... F ... 1'1
FORSIO.L ... R
FORSREAO ... SF
FORSSTOP
FOR$WR ITE.SF
LIBSK.VERSION
OTSSLINKAGE
SYS$lMGSTA

V-LuE

11!"'l1! ao 01!11'!0-R
I'!"'I'II'I1!CA8-RU
011'011'11!CB0-RU
0"'1'II'0COI1!-RU
0vo011'0C50-RU
01'1IH'I'IEt>0-RU
01'1011'0C6B-RU
01'1l1!fl0b00
I'I1'II'II'l'Ib8C-R
8V001'1'Il1!18

'~'" ~,

10·JUL·l~78 1310~
+ ••••••••••••••••••
I SY~BOLS BY NAME I
+_ ••• -.-_._._-_ •• _+

SYMBOL VALUE SY"'BOL

LINKtR)(01017 PAGE

VALUE 51''''BOL VALUE

~,

4

"TI
C
r­
r-
i: »
."

H

~
til

~
H
t'"
t'"
C
00
t-3

~
H
o
Z
00

01
I

I-'
o

('"

OB1t[MURRAY]AVERAGE.EXE,3 1e-JUL-1978 13109

VALUE

00000600
00000f18C
0000eC50
000e0C88
00e0eCA8
0000eCB0
l1Ie000C00
00e0eEfl0
8902101&8

R-AV"RaGE$MAlN
R-OT!5SLINKAGE

RU-FO"S~EAO ... SF
RU-FO"S"R ITE .. SF
RU-FO~S'O.END
RU-FORUO.F ... R
RU-FO""O.L.R
RU-FORSIITOP

SYSSll'GSTA

••• ---••••••••••••• +
~ SYMBOLSBV VALUE I
+ ••••••• -.-._ ••••• -.

SYMBOLS ••• .•.•......
LIBSK.VERSIOII

~EV FOR SPEtIAL CHARACTERS ABOVE I +-_ •• -.-•••• -.•••• -.
* - UNOEFINED
U - UNIVERSAL
R - RELOCATABLE
101M - WEA~

+-••• -._._---------+

/~ (~'\

LINKtR)(01.17 PAG[5

'T" ~,

"11
c: r­
r-
iC
~
"1J

1-1

~
I.'iI

~
'tI

1-1
t'"
t'" o
til
1-3

~
1-1

~
til

tl:I
I

......

......

r-"
(~ /---"''. '~"

DB11[MURRAYlAVERAGE.E~E,3 10-JUL-191B 13109 LINKtR Kal.U •............•...•
,I IM'GE SYNOPSIS 1
+ •••••••••••••••• +

VIRTU'L MEMORY 'L~OtATEDI
STACK SIZE I

00000200 000015FF 00801480 (29696. BYTES, 5B. PAGES)
20. PAGES

IMAGE HEADER VIRTuAL BLOCK,LIMITSI
IMAGE BINARY VIRTUAL BLOCK LIMITS I
IMAGE NAME AND ID~N'IFICATIONI
NUMBER OF FILESI '
NUMBER OF MODULES,
NUMBER OF PROGRAM StCTlONSI
NUMBER OF GLOBAL 8Y~BOLSI
NUMBER OF IMAGE StCTIONSI
USER TRANSFER 'DD~EaSI
DEBUGGER T~ANSFER ADDRESS I
IMAGE TYPEI

1. .1. (1. BLOCK)
2. 5. (4. BLOCKS)

AVERAGE 01
4.
5.
9.

10.
B.

081111110600
00000800
EXECUTABLE.

M.P FORMATI
ESTIM.TED MAP LENGT~'

FULL IN FILE BDB1,[MURRAYl.VERAGE.M.P,3"
26. BLOCKS

+_ •••••••••••••••••••••
1 LINK RUN STATISTICS 1
+ ••••••••••••••••••••• +

PERFORMANCE INDIC.T~RS PAGE FAULTS CPU TIME ELAPSED TIME -.... --
COMMAND PROCESSINGI- 15 00100U0.07 "080080e,. 13
P'SS 11- 48 0e 100 101i1J. 41 0018'''' 01.13
.LLOC.TION/RE~OtATIONI- 2 001111111100.1113 1110,00100.32
PASS 2,- 1 01i1J 180100.21 0010010".88
MAP DATA AFTE~ ~BJECT MODULE SYNOPSIS,- 11 00180100.15 111080111100.14
SYMBOL T'BLE OUTPUTI- 0 00UB100.e0 80100100.12

TOTAL RUN VALUES,- 83 01".,,,,) 100. 93 11101110102.17

USING' WORKING SFT LIMITED TO lB0 P.GES AfliD 30 P'GE.'S OF DATA STORAGE (EXCLUDING IM.GE)

TOTAL NUMBER OBJECT RECORDS READ (BOTH PASSES), 119
OF WHICH ~2 WFRp IN LIBR.RIES .ND 8 WERE DEBUG DATA RECORDS CONT'INING 294 BYTES

267 BYTES OF DEBUb DATA WERE WRITTEN, STARTING AT VBN 6 WITH 1 BLOCKS ALLOCATED

THERE WERE 10 LIB~AWY BLOCK READ OPERATIONS
WHICH ENCOMPASStD A TOT'L OF 91 BLOCKS
USING A WINDOw cF 18 BLOCKS

NUMBER OF MODULES ExTR.CTED EXPLICITLY • 8
WITH 2 EXTRACTEu TO RESOLVE UNDEFINED SYMBOLS

o LIBRARY SEARCHES "ERE FOR SYMBOLS NOT IN THE LIBRARY SEARCH~O

A TOTAL OF 0 GLOBAL SYMBOL TABLE RECORDS W~S WRITTEN

-----\

PAGE 6

."
c:
r­
r-
3!: »
"D

1-1

~
'Cil

tIJ

~
"CI

1-1
t"'
t"'
c:::
til
~

e
1-1

~
til

(

()

(

(;

(

(

(,

APPENDIX C

VAX-II OBJECT LANGUAGE

The object language description in this appendix is taken from· DIGITAL
software specifications.

C.I INTRODUCTION

This document is a specification of the Object Language accepted by
VAX~11 Linkers, Object Module Librarians, and Object Patch utilities.

The Object Language specified herein is for use by all VAX-II family
software i.e., no subsetting will occur. All language processors
which produce code for execution in native mode are free to use any or
all of the described functionality.

C.I.I Summary of Language

Object modules are the input to the Linker and are obtained from the
various language processors as individual files or as object library
files. All symbol table files created by the Linker are also in the
format specified here.

An object module consists of an ordered set of variable-length
records, of which the following types are defined:

OBJ$C_HDR = 0 - Header Record (HDR)

OBJ$C_GSD = 1 - Global Symbol Directory Record (GSD)

OBJ$C_TIR = 2 - Text Information and Relocation Record (TIR)

OBJ$C_EOM 3 - End of Module Record (EOM)

OBJ$C_DBG = 4 - Debugger Information Record (DBG)

OBJ$C_TBT =

OBJ$C_LNK =

5 - Traceback Information Record (TBT)

~ - Link Option Specification Record (LNK) (Ignored
by Release I of VMS Linker)

Refer to Figure C-l for an illustrati~n of the order in which record
types appear in the object module.

It is mandatory that there be at least two HDR records and exactly one
EOM Record. These records must begin and end the module,
respectively. Within the moduie, there must be -at least one GSD
record and there may be any number of TIR, DBG, TBK and LNK records.

C-l

VAX-ll OBJECT LANGUAGE

As is described below, some ordering is implicit within the set of GSD
records.

In this document, the term "reserved" implies that the item must not
be present, as 'it is reserved for possible future use by the Linker
and DEC. If the particular implementation of the Linker does not have
a specification of use of such items, an error will be produced if
such an item is encountered.

All unused and ignored fields of records must be padded to conform to
the block lengths specified herein. The content of such fields will
be completely ignored by the Linker, and any other processors.

The remaining possible language record types are allocated as follows
but not defined in this specification:

Type 7-100

Type 101-200

Type 201-255

MHD

GSDi

TIR

TIR

GSD

· · ·
DBG

TBT

TIR

GSD

TIR

EM

Reser~ed for future use by Linker

Ignored always and completely

Reserved for CSS and customer use
(Ignored by initial implementation)

Module Header Record

Global Symbol Directory Record

Text Information and Relocation

Records

Additional Global Symbol Directory

Debugger Information Record

Traceback Information Record

More Text Information and Relocation

More global symbol information

More text

End of Module

Figure C-l
General Structure of an Object Module

This language is a development from RSX-ll systems. The reader who is
not familiar with the Rsx-ll Task Builders is referred to the
documents listed.

(

(

(

(

(

(

c

VAX-II OBJECT LANGUAGE

C.2 GLOBAL AND UNIVERSAL SYMBOLS AND NAME FORMAT

The Linker deals with two types of symbols, global and universal.

Global symbols are those symbols which are accessible to more than one
module of the set being linked. Universal symbols are a subset of the
global symbols. They are ones which the Linker retains when linking
an image to which another set of object modules and/or images will
subsequently be bound.

As well as the names of symbols, the Object Language deals with the
names of p-sections and object modules and may contain the names of
language pr6cessors and utilities. All such names are represented by
a I-byte character count followed by the ASCII character string.

The first customer ship (FCS) implementation of the Linker limit.s such
name strings to 15 characters, except in the case of header record
types 1-255 (see below). The size of symbols and names, etc., is
given by the parameter OBJ$C_SYMSIZ.

C.3 MODULE HEADER RECORDS (HDR)

This is a new type of record that is additional to the language used
in RSX-ll. Its purposes are to collect in one place all module-wide
information, to include information never included by RSX-ll, to
permit more functionality in the Librarian and Patch utilities, and to
permit extensibility of the language.

The MHD (Main Header Record) record contains the following information
in the format shown:

RECORD TYPE 0

HEADER TYPE 0

STRUCTURE LEVEL

MAX RECORD SIZE

MODULE
NAME

MODULE
VERSION

CREATION
TIME

AND DATE

TIME AND
DATE OF

LAST PATCH

1 byte

1 byte

1 byte

2 bytes

Variable (2-16 for FCS)

Variable (2-16 for FCS)

17 bytes

17 bytes

All entries are required. Detailed descriptions of the fields follow.

VAX-II OBJECT LANGUAGE

C.3.1 Header Type

The language defines a general class of header records. Type 0
(OBJ$C HDR MHO) is the record depicted above and is required in every
object-module. Other types are described below.

C.3.2 Structure Level OBJ$C_STRLVL

I t is intended that the format of the MHO recor'd remain fixed from
first implementation onward. The structure level is provided such
that extensions to the language, which require changes to other record
formats, can be dealt with without requiring recompilation of every
module which conforms to the previous format. The structure level is
zero FCS.

C.3.3 Maximum Record Size OBJ$C_MAXRECSIZ

The size in bytes of the longest record that can occur within this
object module. Limited by file system only. The FCS implementation
sets a practical limit of 512 bytes.

C.3.4 Module Name

The module name conforms to the format of all other
length contained in a byte followed by an ASCII string.
is a symbol table created by the Linker, the name will
name assigned at link time.

C.3.5 Module Version

names, i.e.,
If the module

be the image

The module version conforms to the format of all names in the object
language.

C.3.6 Dates And Times

There are two date and time fields - that for module creation and that
of the last modification to the module (e.g., by an object module
patch utility). The format is a fixed 17-character ASCII string:

dd-mmm-yyyy hh:mm

where:

dd = day of month

mmm = standard 3-character abbreviation of month.

yyyy = year. Note the space that follows.

hh hour of day 00 to 23.

mm minute of hour 00 to 59.

C-4

(

(

(

(

(

c

(

VAX-II OBJECT LANGUAGE

C.3.7 Other Header Records

The purpose of sub-header records is primarily to contain
textual information in printable form. Each record consists
which is zero to indicate a header record, followed by a
byte. The following sub-types are defined.

optional
of a byte

sub-type

I - Language Processor (LNM) Name and Version.

2 -

One record is required and limited for FCS
implementation to 35 characters. The content
of- this record appears on the link map
output.

List of file-specifications for
files from which object module
Multiple records are permitted.
FCS)

the source
was created.
(Ignored by

OBJ$C_HDR_TTL = 3 - Title text (e.g., brief module description).
Only one record permitted. (Ignored by FCS)

4 - A copyright statement. Only one
permitted. (Ignored by FCS)

record

5 - Maintenance Status. (MTC) Multiple records
permitted. (Ignored by FCS)

6 - General Text. Multiple records permitted.
(Ignored by FCS)

Types 7-100 are reserved.

(Types 101-255 always ignored.

(

(

C.3.8 Header Types I through 4 And 6

The purpose of these records is to allow the language processors to
provide printable information within the object modules for
documentation purposes. The only format definition is that the record
contain printing ASCII characters. Types 4 and 6 may be generated by
users, whereas types 1 through 3 are restricted to the language
processors.

C.3.9 Maintenance Status Header Record (MTC)

This record is of concern only to the object module patch utility. It
is ignored by the Librarian and the Linker.

C-5

VAX-II OBJECT LANGUAGE

The format is as follows:

RECORD TYPE 0 1 byte

HEADER TYPE 5 1 byte

PATCH variable
UTILITY NAME 2-16 bytes

UTILITY variable
VERSION 2-16 bytes

UIC 2 bytes

INPUT FILE variable
SPECIFICATION 2-42 bytes

CORRECTION FILE variable
SPECIFICATION 2-42 bytes

DATE + TIME 17 bytes

SEQUENTIAL PATCH 1 byte

C.3.9.1 Record Type - Zero signifies a header record.

C.3.9.2 Header Type - The type is 5 signifying a maintenance status
record.

C.3.9.3 Patch Utility ~ame - This name identifies the patch utility
used to perform this patch on the module.

C.3.9.4 Utility Version - The patch utility is further identified by
its version number.

C.3.9.5 U.I.C. - This is the user identification code under which the
patch was made.

C.3.9.6 Inut File Specification - This filename identifies the input
file for this patch.

C.3.9.7 Correction File Specification - This filename identifies the
correction file for this patch.

C-6

C

(

(

(

(

(

(

(

(

(

VAX-II OBJECT LANGUAGE

C.3.9.8 Date & Time - This 17-byte field contains the date and time
that this patch was performed. Format is as described above.

C.3.9.9 Sequential Patch.Number - This number is a sequential count
of the patches made to this module.

C.4 GLOBAL SYMBOL DIRECTORY (GSD) RECORDS (OBJ$C_GSD)

Global symbol directory records contain all the information necessary
to allocate virtual address space and to combine all the program
sections into the separately protectable sections (image sections) of
the image being created.

GSD records are of the following types:

OBJ$C GSD PSC
OBJ$C-GSD-SYM
OBJ$(::GSD:=EPM

OBJ$C_GSD_PRO

o - P-section definition.
1 - Global Symbol Specification.
2 - Entry Point Symbol and Mask

Definition.
3 - Procedure and Formal Argument

Definition.

within any GSD record, there may be
a single record appears as the
omission of the byte containing the
value OBJ$C_GSD) .

many entry types. In such cases,
concatenation of many, with the

Object Language record type (the

C.4.1 P-Section Definition (OBJ$C_GSD_PSC)

The format of a p-section definition is as follows:

RECORD TYPE 1

GSD TYPE 0

ALIGNMENT

FLAGS

ALLOCATION

P-SECTION

NAME

1 byte

1 byte

1 byte

2 bytes

4 bytes

variable

2-16 bytes

C.4.1.1 P-Section Name - This name has same format as all other
symbol names.

C-7

VAX-II OBJECT LANGUAGE

C.4.l.2 Alignment - This field specifies the virtual address boundary
at which the p-section will be placed.

o BYTE
1 WORD
2 LONGWORD
3 QUADWORD
i.e., n 2**N BYTES

Where n=O to 9

Nine indicates page alignment and is the limit for
alignment.

p-section

Each module contributing to a p-section can specify its own local
alignment with the restriction that p-sections whose contributions
overlay each other must all have the same alignment. It should also
be noted that an alignment specified within a p-section (e.g.,
assembler .ALIGN directive) must be less than or equal to the
p-section alignment to be guaranteed. For example, byte alignment of
the p-section mayor may not cause longword aligned elements within
the p-section •

C.4.l.3 . Flags -

Bit Name

0 PSC$V_PIC

1 PSC$V_LIB

2 PSC$V_OVL

3 PSC$V_REL

4 PSC$V_GBL

5 PSC$V_SHR

6 PSC$V_EXE

7 PSC$V_RD

8 PCS$V_WRT

9-15

Use (meaning if set)

P-section defined as position independent.

The p-section was defined in the symbol table
of a shareable image, to which this image is
bound. .

Contributions to the same p-section are
overlaid. (The complement is concatenation).

P-section requires relocation (complement,
i.e., bit=O, means absolute and contains only
symbol definitions, thus the allocation of an
absolute p-section is zero).

Scope of p-section is global. (Complement is
local) •

P-section is potentially shareable between
two or more active processes.

The content of p-section is executable.

The content of the p-section may be read.

The content of the p-section may be written.

Reserved.

Discussions of p-section attributes may be found in the related
documents. [See also Section 2.5.4 of this manual.]

C-8

c

(

(

(

(

(

(

(

VAX-II OBJECT LANGUAGE

C.4.1.4 Allocation Field - The allocation field contains the length
contribution to the p-section in bytes. It must be zero for an
absolute p-section.

P-sections are assigned an identifying sequence number as their
respective GSD records are encountered. The p-section number ranges
from 0 through 255 within any single module. Note, however, that the
total number of p-sections in a single link operation is bounded only
by the Linker's virtual memory requirements. This p-section number is
used as an index in all references to the p-section. Note that this
permits any mixture of GSD records, as long as p-sections are defined
to the Linker in the same order as the index used by symbol
definitions.

C.4.2 Global Symbol Specification OBJ$C_GSD_SYM

Global symbol specification records may appear anywhere between the
MHD and EQM records and in any order.

The format of a global symbol specification is as follows:

RECORD TYPE 1 1 byte

GSD TYPE 1 1 byte

DATA TYPE 1 byte

FLAGS 2 bytes

PSECT INDEX

VALUE

1 byte

l
5 bytes omitted
for a reference

4 bytes (Le. when
SYM$V_DEF=O)

SYMBOL Variable
NAME 2-16 bytes

C.4.2.1 Data Type - The data type record is encoded as described in
Appendix C of the VAX-ll/780 Architecture Handbook.

NOTE

The first implementation of the Linker
ignores the data type field.

C-9

C.4.2.2 Flags-

Bit Name

o

1

2

3

4-15

VAX-II OBJECT LANGUAGE

Use

o for strong resolution.
I for weak resolution.
Table C-I describes the
in conjunction with
(SYM$V_DEF) •

o for reference
1 for definition

o for within facility
1 for universal symbol

usage of SYM$V WEAK
the definition - bi.t

This bit is only of significance on a
definition w It indicates the symbol is to
be retained if this facility is shareable.

o for absolute symbol value
1 for relative symbol and the value is

augmented by the indexed p-section base
address (of this module's contribution)

Reserved.

Table C-l
Interpretation of SYM$V~WK and SYM$V_DEF

SYM$V_DEF

o o

1 o

o 1

1 1

Interpretation

Strong Reference
resolved

symbol must be

Weak Reference - only resolved if the
symbol is defined for some reason
other than this reference. Does not
incur any searches or module loads.
Has the value zero if undefined, with
no error report.

Strong definition - will remain in all
required symbol tables/maps.

Weak definition - will be discarded
from all symbol tables/maps unless
there was a reference. will also not
appear in the global symbol table
index of an object module library.

C.4.2.3 P-Section index - The p-section index is a number between 0
and 255 to be used as an index into the sequence of p-section
definition records. This field exists only for symbol definition
records (SYM$V DEF=l) and identifies the p-section in which the symbol
was defined. The index is also used in TIR commands (see Section
5.1.1) for reference to p-section base addresses.

C-lO

(

(

(

l

(

(

(

(

(

VAX-II OBJECT LANGUAGE

All symbols encountered must be defined within a p-section,
independently of the relocatability of p-sections or symbols. For
example, the Linker does not require the base address of the "owning"
p-section if the symbol is absolute. However, for the purposes of
generating a readable map, it is very useful to maintain the hierarchy
of symbol within p-section within module within file.

C.4.2.4 Value - This field contains the value assigned to the symbol
by the language processor. This field does not exist if the record is
a symbol reference (SYM$V_DEF=O).

C.4.3 Entry Point\Symbol and Mask Definition (OBJ$C_GSD_EPM)

This format is an extended version of the global symbol definition
format above. Following the symbol value (which will be an entry
point address) is a two-byte field for the procedure's register save
mask (as used by CALL instructions). The format is as shown below.

RECORD TYPE 3 1 byte

GSD TYPE 2 1 byte

DATA TYPE 1 byte

FLAGS 2 bytes

PSECT INDEX 1 byte

VALUE 4 bytes

ENTRY MASK 2 bytes

SYMBOL variable
NAME 2-16 bytes

C.4.3.1 Entry Mask - The entry mask is written at the entry point of
a procedure entered via a CALLS or CALLG instruction, and in some
cases also is used in transfer vectors to such procedures. A TIR
command (see Section 5 of this appendix) is provided for the language
processor to direct the Linker to insert the mask at the procedure
entry point or at the transfer vector.

C-ll

VAX-II OBJECT LANGUAGE

C.4.4 Procedure With Formal Argument Definiton (OBJ$C_GSD PRO)

This GSD format is an extension of the entry point and mask definition
format to define the formal arguments of the procedure. The format is
as shown below.

RECORD TYPE 1

GSD TYPE 3

DATA TYPE

FLAGS

PSECT INDEX

VALUE

ENTRY MASK

SYMBOL
NAME

MIN ACTUAL ARGS.

MAX ACTUAL ARGS.

FORMAL ARG 1
DESCRIPTOR

FORMAL ARG n
DESCRIPTOR

1 byte

1 byte

1 byte

2 bytes

1 byte

4 bytes

2 bytes

variable
2-16 bytes

1 byte

I byte

variable length
(2-256 byte)
descriptors of
formal arguments
arg n is optionally
function return
value.

Following is a description of the fields of a procedure definition
which are in addition to other GSD records.

C.4.4.1 Minimum and Maximum Actual Argument Counts - Permissible
values are 0 to 255 and specify, respectively, the minimum number and
the maximum number of arguments required for a valid call to this
procedure. The counts must include function return value if such
exists.

The FCS implementation does not validate procedure calls. However,
for its own integrity it validates that minimum number of actuals is
less than or equal to the maximum number of arguments. The maximum
number of actuals field is then used to process the formal argument
descriptors.

C-12

(

(

(

(

(

(

(

(

VAX-II OBJECT LANGUAGE

C.4.4.2 Formal Argument Descriptors -

Each of the formal argument descriptors of the record shown above has
the following format:

ARG. VAL. CTL.

REM. BYTE CNT.

DETAILED

ARGUMENT

DESCRIPTION

1 byte ARG$BVALCTL

1 byte ARG$BBYTECNT

variable
0-255 bytes

ignored by FCS
implementation

C.4.4.2.l Argument Validation Control Byte - This (the first) byte of
each formal description is used to control the validation of the
argument. The only field of this control byte used by the linker is
as follows:

Bits 0:1 ARG$VPASSMECH - Describes the mechanism by which the
argument of a valid call must be passed.

Bits 2:7 Reserved - Ignored by the FCS implementation.

The following argument passing mechanisms are defined:

ARG$K UNKNOWN
ARG$K-VALUE
ARG$ K-REF
ARG$()ESC

= 0 Unspecified
= 1 By value

2 By reference
3 By descriptor

C.4.4.2.2 Remaining Byte Count - This field gives the length of the
remainder of this argument descriptor. For FCS implementation, it is
used as a count of bytes to be ignored by the linker. The content of
these remaining bytes is of a format not specified here and reserved
for possible future implementations.

NOTE: Any usage of formal argument descriptors in which

bits 2:7 NEQ 0

and/or

ARG$B_BYTECNT NEQ 0

means that, should argument validation be implemented in a future
VAX-II linker, re-compilation of all such objects may be necessary.

C-13

VAX-II OBJECT LANGUAGE

C.5 TEXT INFORMATION AND RELOCATION (TIR) RECORDS (OBJ$C_TIR)

Text information and relocation records contain a sequential series of
commands and data for the Linker to compute and record the contents of
the image. The general form of a TIR record is as follows:

RECORD TYPE

COMMAND 1

DATA 1

COMMAND 2

DATA 2

· · · · · ·
COMMAND N

DATA N

C.5.l Commands

2 1 byte

1 byte

1 byte

1 byte

byte
count
implied
by command.

The Linker's creation of the binary content of an image
completely driven by the language processor via the commands
in TIR records. To achieve this, the Linker maintains an
stack.

file is
contained
internal

The commands available allow values to be placed on the stack and
operations to be performed on the items on top of the stack. These
commands also permit the writing of values from the stack to the
output image. Other commands permit the storing of a sequence of
bytes from object module to output image without alteration by the
Linker. They also provide for control of the relocation of the
position currently being written in the image.

In commands which refer to p-sections, the names are identified by the
sequence numbers assigned to them as described above. The p-section
indices are in the range 0 through 255.

The command byte has two formats:

7 6 o

-COUNT FORMAT 1

7 6 o

COMMAND FORMAT 2

C-14

(

(

(

(

(

(

(

(

VAX-II OBJECT LANGUAGE

The only command with FORMAT 1 is the Store Immediate (STOIM), which
merely causes the copying of the following bytes (given by the
negative count in the range -1 to -128) into the output image.

All other commands are described by the second format. There are four
groups of commands:

Stack Group
Store Group
Operator Group
Control Group

The stack upon which these commands operate is longword
times. Furthermore, it must be completely collapsed at
but is retained between all other record types. The
spabe available will be not less than 25 longwords.

aligned at all
end of module,
minimum stack

C.5.1.l Stack Group - The stack group of commands provides the
capability to store bytes, words, and longwords on the stack. The
value placed on the stack may follow the command in the TIR record1
it may be found from a global symbol 1 or it may be computed from the
base address of a p-section. Except for stacking the value of global
symbols or stacking addresses (calculated from p-sections), both
signed extension to longword and zero extension to longword are
provided for byte and word stack operations.

Code

o.

1.

2.

3.

4.

Command

Stack Global
(TIR$C_STA_GBL)

Stack Signed Byte
(TIR$C_STA_SB)

stack Signed Word
(TIR$C_STA_SW)

Stack Longword
(TIR$C_STA_LW)

Stack PSECT base
plus byte offset
(TIR$C_STA_PB)

C-15

Description/Interpretation

Symbol specification follows. As
with all other names, it consists
of the symbol length in a byte
followed by the ASCII string
defining the symbol:

LENGTH

SYMBOL

1 byte

variable
1-15 bytes

The value found from the symbol
table is a 32-bit quantity.

Single signed
follows. Value
to 32 bits.

byte
is sign

constant
extended

Single signed word constant
follows. Value is sign extended
to 32 bits.

Single longword constant follows.

I-byte p-section number followed
by single signed byte offset.
A 32-bit quantity is computed by
addition of p-section base
address and the .byte offset.

VAX-II OBJECT LANGUAGE

Code

5.

6.

7.

8.

Command

Stack PSECT base
plus word offset
TIR$C_STA_PW)

Stack PSECT base
plus long word offset
(TIR$C_STA_PL)

Stack Unsigned Byte
(TIR$C_STA_UB)

Stack Unsigned Word
(TIR$C_STA_UW)

9. Stack Byte From Image
(TIR$C_STA_BFI)

10.

11.

12.

Stack Word From Image
(TIR$C_STA_WFI)

Stack Longword From
Image (TIR$C_STA_LFI)

Stack Entry Point Mask
(TIR$C_STA_EPM)

C-16

Description/Interpretation

I-byte p-section number followed
by single signed word offset. A
32-bit quantity is computed by
addition of p-section base
address and the word offset.

I-byte p-section number followed
by signed longword offset. A
offset. A 32-bit quantity is
computed by addition of p-section
base address and the longword
offset.

Note that although the offsets in
the above three commands are
signed, negative values are very
rarely correct. Note also that
the base address is that of this
module's contribution to the
p-section.

As for TIR$C STA SB except that
the value is zero-extended to 32
bits.

As for TIR$CSTASW except that the
value is zero extended to 32
bits.

The longword on top of the stack
is used as an address, in the
image, from which to retrieve a
byte. The byte is zero extended
and replaces top longword of
stack.

The word variant of
command.

Analogous to above.

previous

This command has the same format
as TIR$C STA GBL. However,
instead of-stacking the value of
the symbol, the entry point mask
(unsigned word) which accompanies
the symbol definition is stacked.
An error is produced if the
symbol referenced is not an entry
point.

(

(

(
,

(

(

(

(

(

c

Code

13.

14-19

VAX-II OBJECT LANGUAGE

Command

Compare procedure
arguments and stack
TRUE or FALSE.
(TIR$C_STA_CKARG)

Reserved Commands

Description/Interpretation

The format of the command is as
follows:

COMMAND CODE

SYMBOL
NAME

ARG INDEX

ACTUAL
ARGUMENT

DESCRIPTOR

The purpose of this command is to
compare an actual argument
descriptor with a formal
descriptor for· a particular
procedure, stacking an indicator
based upon match or mismatch of
arguments. This indicator is
TRUE if match is found or ~f
there is no formal argument
description. The indicator is
FALSE if (and only if) the
specified formal is described by
a procedure definition but the
description does not match the
accompanying actual argument
description.

The argument that is checked is
given by the index, and is thus
number 0 through 255. The format
of the actual argument descriptor
is identical to that of the
procedure definition GSD record
described in sectiori 4.4.2 above.
The FCS linker compares only the
fields ARG$VPASSMECH, stacking
the TRUE indicator if they agree,
FALSE iL they do not.

C.5.1.2 Store Group - All commands of the store group pop the top
longword from the stack upon completion of the command. Several of
the commands provide validation of the quantity being stored, with the
possibility of issuing truncation errors during the operation. Upon
completion of the command, the location counter is pointing to the
next byte in the output image.

C-17

Code

20.

21.

22.

23.

24.

25.

26.

27.

2B.

VAX-II OBJECT LANGUAGE

Command

Store Signed byte
(TIR$C_STO_SB)

Store Signed Word
(TIR$C_STO_SW)

Store Longword
(TIR$C_STO_LW)

Store Byte Displaced
(TIR$C_STO_BD)

Store Word Displaced
(TIR$C_STO_WD)

Store Longword
Displaced
(TIR$C_STO_LD)

Store Short Literal
(TIR$C_STO_LI)

Store position
Independent Data
Reference
(TIR$C_STO_PIDR)

Store position
Independent Code
Reference
(TIR$C_STO_PICR)

C-IB

Description/Interpretation

Bits 31:7 must be identical. Low
byte written to image.

Bits 31:15 must be identical.
Lower word written to image.

One longword written to image.

Location counter subtracted from
top of stack. Decrement value.
Bits 31:7 must b'e identical.
Byte is then written to image.

Location counter plus 2
subtracted from top
Bits 31:15 must be
Word written to image.

of stack.
identical.

Location counter plus
subtracted from top of stack.
Longword written to image.

4

One longword from stack, bits
31:6 MBZ. Single byte written to
image.

The longword pn top of stack is
assumed to be the address of a
data item. It occurs in a
non-executable p-section. If the
address is absolute, command
behaves as store longword. If
address is relocatable, command
behaves as store longword
displaced and in addition
provides information in the image
header for subsequent Linker
processing.

The longword on top of the stack
is assumed to be the address of
address of an item to which a
a position independent
instruction makes reference. The
purpose of the command is to
generate a position independent
reference. If the top of stack
is absolute, the byte "9F" (hex)
is wr itten (which is
auto increment deferred addressing
mode on the PC and therefore
absolute) followed by the top as
for store longword. If, however,
top of stack is relocatable, the
byte "EF" (hex) is written (which
is longword displacement mode off
PC and therefore relative
addressing). Location counter is
incremented. Then the longword
is written just as for store
longword displaced.

(

c

(

c

(

(

(

(

(

(

Code

28.
(Cont.)

29.

30.

31.

32.

33.

34.

35.

36.

37.

VAX-II OBJECT LANGUAGE

Command

Store Position
Independent Code
Reference
(TIR$C_STO_PICR)

Store Repeated
Signed Byte
(TIR$C_STO_RSB)

Store Repeated
Signed Word
(TIR$C_STO_RSW)

Store Repeated
Longword (TIR$CSTORL)

Store Arbitrary
Field (TIR$CSTOVPS)

Store Unsigned Byte
(TIR$C_STO_USB)

Store Unsigned Word
(TIR$C_STO_USW)

Store Repeated
Unsigned Byte
(TIR$C_STO_RUB)

Store Repeated
Unsigned Word
(TIR$C_STO_RUW)

Store Byte
(TIR$C_STO_B)

Description/Interpretation

This and the previous command are
discussed further in the
references on generation of
position independent images.

The longword on top of the stack
is used as the repeat count. The
low order byte of next longword
on the stack is written to the
image the indicated number of
times. Both longwords are
cleaned off stack on completion.

As above except that words are
written.

Analogous to above.

The bits 0 to (s-l) of the top
longword are written to image
starting at bit p of the current
location. The command byte in
the object module is followed by
p and s (respectively) which are
unsigned bytes such that 0 LEQ
p+s LEQ 32. Only the specified
bits of the image are altered.
After the operation the location
counter is the ~ddress of the
byte containing bit (p+s) of the
location modified.

Same as TIR$C STO SB except that
bits 31:8 must be-zero.

Analogous to above (Bits 31:16
(Bits 31:16 MBZ).

Analogous to above.

Analogous to above.

If top longword on stack is
is negative, then bits 31:7 must
be 1. Else, bits 31:8 must be
zero. Low order byte is written
to image. This command permits
any 8 bit value from-128 to 255
to be written to the image.

C-19

Code

38.

39.

40.

41-49.

VAX-ll OBJECT LANGUAGE

Command

Store Word
(TIR$C_STO_W)

Store Repeated Byte
(TIR$C_STO_RB)

Store Repeated Word
(TIR$C_STO RW)

Reserved Commands

Description/Interpretation

If top longword is negative, bits
bits 31:15 must be 1. Else bits
31:16 MBZ. One word is longword
is popped from stack. This
command permits any 16 bit value
from -32768 to 65535 to be
written to the image.

The repeated version of store
byte. See TIR$C STO RSB for
description of repeat count.

Analogous to above.

C.5.l.3 Operator Group - The Linker evaluates expressions in Post Fix
Polish form. All arithmetic ope~ations are performed in signed 32-bit
two's complement integers. There is no provision for floating point,
string or quadword computation.

The commands of the operator group take as operands the top one or two
longwords on the stack. Upon completion of the operation, the result
is the top longword on the stack. Attempts to divide by zero produce
a zero result, and a nonfatal diagnostic is issued.

Code Command Description/Interpretation

50. No-operation
(TIR$C_OPR_NOP)

51. Add. (TIR$C_OPR_ADD) Top two longwords are added.

52. Subtract Top longword is subtracted from
(TIR$C_OPR_SUB) next.

53. Multiply Top two longwords are multiplied.
(TIR$C_OPR_MUL)

54. Divide Divisor is top longword.
(TIR$C_OPR_DIVl

55. Logical AND Logical AND of top two longwords.
(TIR$C_OPR_AND)

56. Logical Inclusive OR Inclusive OR of top two
(TIR$C_OPR_IOR) longwords.

57. Logical Exclusive OR Exclusive OR of top two
(TIR$C_OPR_EOR) longwords.

58. Negate Top longword is negated.
(TIR$C_OPR_NEG)

59. Complement Top longword is complemented.
(TIR$C_OPR_COM)

C-20

c

(

(

(

l

Code

(60.

61.

(62.

63.

c 64.

(
65.

66-79.

VAX-II OBJECT LANGUAGE

Command

Insert field
(TIR$C_OPR_INSV)

Arithmetic Shift
(TIR$C_OPR_ASH)

Unsigned Shift
(TIR$C_OPR_USH)

Rotate
(TIR$C OPR ROT)

- T"

Select
(TIR$C_OPR SEL)

Re-define Symbol to
current location.
(TIR$C_OPR_REDEF)

Reserved Commands

C-2l

Description/Interpretation

This command is analogous to the
store of arbitrary bit field
above. The only difference is
that the target for bits from top
of stack is the next longword on
the stack, and location counter
is therefore unaffected. Note
that top longword is popped and
that p,sare bytes following
command in the TIR record.

The longword on top of stack is
stack is the shift count to apply
to next longword. Negative
quantity causes a right shift
(with replication of sign bit).
positive causes left shift with
zeroes moved into low order bits.

As above except that zeroes are
moved into high aod low order.

Rotate count is top longword to
apply in a rotate (left if
positive,_ else right) of
long word on stack. Rotate
must have an absolute
between 0 and 32.

next
count
value

Remove the top longword from the
stack. If it has the value TRUE
(low bit set) remove and discard
the next longword on the stack.
If the first longword removed has
the value FALSE (low bit clear)
copy the next longword on the
stack to the one that- follows.
Thus, the command presumes there
are three longwords on the stack.
These are collapsed to a single
longword which is the value of
the second or third based on the
value of the first.

The command has the same format
as the TIR$CSTAGBL command.
Causes the symbol to be
re-defined on output of symbol
table(s) to have the value of the
location counter' when this
command is processed. The
re-definition does not occur
until after all image binary is
written. If no binary is
generated (or is aborted) the
re-definition does not occur.

VAX-II OBJECT LANGUAGE

C.S.l.4 Control Group - The control group of commands is provided for
manipulation o£ the location counter.

Code

80.

81.

Command

Set Relocation Base
(TIR$C_CTL_SETRB)

Augment Relocation
Base (TIR$C_CTL_AUGRB)

Description/Interpretation

The value on top of the stack is
popped into the location counter.

Signed longword which
increment to location
follows the command.

is an
counter

82-127. Reserved Commands

C.S.2 Record Length

TIR records may be quite long. There is an implementation limit
defined by OBJ$C MAXRECSIZ. The maximum record size of the module is
recorded in the header word.

C.S.3 Differences From RSX-ll

Note that TIR Records combine the information and capabilities of two
types (TXT and RLD) of record used by the RSX-ll Task Builder. The
result is a sequential writing of the output image and a more
efficient object language. Note also the omission of the End GSD
Record, the addition of Module Header Record, and the placement of
Tr~nsfer Address at the end of the module.

In this specification there is also no mechanism for handling the
RSX-ll assembler directive to obtain program limits. The usefulness
of the LIMIT directive in VAX systems is questionable, and no proposal
is made to deal with it in the Linker.

C.S.4 Side Effects And Optimization

In the interest of performance of the Linker a few implementation
decisions and their possible side effects should be noted.

1. For all store repeated commands, if the quantity being stored
is zero, the linker does not write the zeroes into the bytes.
The reason for this is that the pages of an image are
guaranteed to be zero 'unless otherwise initialized by the
compiler. To achieve this, demand zero pages are used within
the linker and were the linker to attempt to write zeroes, the
fact that these are still empty pages of the image is lost.
Thus, it becomes very difficult to compress from the image all
empty pages.

There is, however, a side effect to this behavior, in that if
a cell of an image had been previously initialized, it will
not be zeroed by any repeated store commands. This can occur
in multiple modules contributing to and attempting to
initialize the content of overlayed p-sections. Notice,
however, that the results of such multiple initialization are
then dependent on the order of processing of object modules.
This side effect is therefore considered to be acceptable.

C-22

(

(

(

(

(

(

(

(
"'-

(

VAX-II OBJECT LANGUAGE

2. The Linker is a two-pass processor of object modules. The
content of TIR records is completely ignored on the first pass
but verified and acted upon on the second pass. However~ if,
either due to the command or some Link time error, no image is
being produced, all TIR records (as well as DBG and TBT
records) are ignored. A side effect, considered quite
acceptable, is that errors (user or compiler) potentially
detectable on pass two will not be detected. Truncation
errors are the most likely example of such undetected
situations.

C.6 END OF MODULE (EOM) RECORD (OBJ$C_EOM)

This record declares the end of a module. It declares the severity of
errors encountered by language processor, and, optionally, it declares
a transfer address within a p-section iri this module. The format is
as follows:

RECORD TYPE 3 1 byte

ERROR SEVERITY 1 byte

P-SECT INDEX 1 byte

TRANSFER 4 bytes
ADDRESS

This record will be two or seven bytes, depending on existence of a
transfer address. Note that the p-section specification is by its
index within the module, as used above. The transfer address is an
offset from the base of this module's contribution to the specified
.p-section.

C.6.l Error Severity

The error sev€rity byte specifies to the Linker whether errors were
encountered in the source code. It also indicates the severity of any
errors encountered.

Value

o

1

2

3

4-10

11-255

Interpretation by Linker

No errors

Warnings were generated by language processor. Proceed
with link b~t issue warning message.

Errors were severe, proceed with link, but do not
produce an executable image.

Abort the link.

Reserved.

Ignored.

C-23

VAX-II OBJECT LANGUAGE

C.7 DEBUGGER INFORMATION (DBG) RECORDS (OBJ$C_DBG)

The purpose of debugger information records is to allow the language
processors to pass information concerning local variables, etc., of
the compilation to the debugger. The transmission of this information
may make use of all the functions (commands) available in the TIR set.

The command stream in DGB records generates what is referred to as the
debug symbol table (DST). The DST follows immed~ately the binary of
the user image and the image header contains a descriptor of where in
the file such data has been written~ The production of the DST in
memory makes use of a separate location counter within the Linker.
This location counter is initialized as if the DST were the highest
addressed part of the program region of the image. Note, however, the
DST is not in fact mapped into the user image.

The linker produces a DST only if the debugging qualifier was
specified at link time and only if an executable image is being
produced. If either of these is not true, DBG records are ignored.
See the above discussion of the side effects in TIR record processing.

C.7.1 Traceback Information (TBT) Records (OBJ$C_TBT)

Traceback information records are the means by which language
processors pass information to the facility which produces a traceback
of the call stack. From the point of view of the Linker and its
processing of these records, they are identical to DBG records. That
is, they may be mixed with DBG records and all data generated goes
into the DST as if they were in fact DBG records.

The purpose of separating this information from that contain~d ih DBG
records is to allow inclusion of a DST containing only traceback data
when no debugging is requested at link time. If the production of
traceback information is desabled at link time then these records are
ignored. See the above section on side effects in processing TIR
records.

C.s LINK OPTION SPECIFICATION (LNK) RECORDS (OBJ$C_LNK)

The link option specification records are defined for the purpose of
allowing the compiler to provide the Linker with default parameters
which are used if none were given by the user at link time. Such
options of interest are libraries to be searched to resolve undefined
symbols, modules to be included in the link, adjustment of stack and
bUffer region sizes.

The exact set of commands allowable will be supplied later, along with
the interaction of conflicting object module LNK records and user
commands. The general philosophy is to use the most recently
specified parameters unless there are good reasons to the contrary~
These records are ignored by the FCS Linker.

C-24

(

c

(

(
'--.

(

(

(

(

(

A
Attributes of program sections,

2-3 to 2-5, 7-6
concatenated (CON), 2-3 to

2-4
overlaid (OVR) , 2-3 to 2-4
position independent code

(PIC), 2-5, 8-7 to 8-8
relocatable (REL), 2-3
shareable (SHR), 2-5, 8-6 to

8-7

B
BASE= option, 6-3, 6-5
/BRIEF command qualifier, 5-3,

5-4

c
CHANNELS= option, 6-3, 6-5
CLUSTER= option, 6-3, 6-5 to

6-6, 9-1
Clusters, 2-1 to 2-2, 6-5 to

6-6, 9-1
Command qualifiers, 5-1 to 5-8

/BRIEF, 5-3, 5-4
/CONTIGUOUS, 5-3, 5-4
/CROSS_REFERENCE, 5-3, 5-4

to 5-5
/DEBUG, 5-3, 5-5
/EXECUTABLE, 5-3, 5-5
/FULL, 5-3, 5-5 to 5-6
/MAP, 5-3, 5-6
/SHAREABLE, 5~3, 5-6 to 5-7
/SYMBOL_TABLE, 5-3, 5-7
/SYSLIB, 5-3, 5-7
/SYSSHR, 5-3, 5-7 to 5-8
/SYSTEM, 5-3, 5-8
/TRACEBACK, 5-3, 5-8

Compression, 2-8 to 2-9, 6-6
Copy on reference image sections,

2-9, 8-6 to 8-7
Concatenated attribute, 2-3 to

2-4
/CONTIGUOUS command qualifier,

5-3, 5-4
Cross reference, 7-8 to 7-9
/CROSS_REFERENCE command quali­

fier, 5-3, 5-4 to 5-5

INDEX

o
Debug capabilities, 1-4, 5-5,

C-24
/DEBUG command qualifier, 5-3,

5-5
Default system library, 4-3

to 4-4, 5-7 to 5-8
Demand zero image sections,

2-9
DZRO_MIN= option, 2-9, 6-3,

6-6

E
Error messages, A-I to A-5
/EXECUTABLE command qualifier,

5-3, 5-5
Executable images, 2-6, 5-5

F
File qualifiers, 5-1 to 5-3,

5-8 to 5-9
/INCLUDE, 4-2 to 4-3, 5-3,

5-8 to 5-9
/LIBRARY, 4-2 to 4-3, 5-3,

5-9
/OPTIONS, 5-3, 5-9, 6-1, 6-4
/SELECTIVE_SEARCH, 5-3, 5-9
/SHAREABLE, 5--3, 6-2

/FULL command qualifier, 5-3,
5-5 to 5-6

G
Global symbols, 3-1 to 3-4,

C-3, C-7 to C-13
GSMATCH= option, 6-3, 6-6 to

6-7, 8-3

I
Image map, 1-5, 7-1 to 7-11,

B-1 to B-ll
Images, 1-1

types of, 2-5 to 2-7
Image sections, 2-1, 2-7 to

2-8

Index-l

INDEX (Cont.)

/INCLUDE file qualifier, 4-2
to 4-3, 5-3, 5-8 to 5-9

Initialization of image, 1-5,
2-7 to 2-9

IOSEGMENT= option, 6-3, 6-7
ISD_MAX= option, 2-9, 6-3, 6-8

L
Libraries, 4-1 to 4-4

default system library,
4-3 to 4-4, 5-7 to 5-8

/LIBRARY file qualifier, 4-2
to 4-3, 5-3, 5-9

LINK command, 5-1 to 5-10
examples, 5-9 to 5-10
format, 5-1 to 5-2

Local symbols, 3-1 to 3-3

M
Map, 1-5, 7-1 to 7-11, B-1

to B-ll
/MAP command qualifier, 5-3,

5-6
Memory allocation, 1-4, 2-7

to 2-8, 9-1
Messages, A-I to A-5
Modular programming, 1-2

o
Object language, 2-2, C-l to

C-24
Options,

BASE=, 6-3, 6-5
CHANNELS=, 6-3, 6-5
CLUSTER=, 6-3, 6-5 to 6-6,

9-1
DZRO_MIN=, 2-9, 6-3, 6-6
GSMATCH=, 6-3, 6-6 to 6-7,

8-3
IOSEGMENT=, 6-3, 6-7
ISD_MAX=, 2-9, 6-3, 6-8
STACK=, 6-3, 6-8
UN IVERSAL=, 3-4, 6-3, 6-8,

8-3
/OPTIONS file qualifier, 5-3,

5-9, 6-1, 6-4
Options files, 6-1 to 6-8

rules for creating, 6-4
uses, 6-1 to 6-3

Overlaid attribute, 2-3 to 2-4

p

position independent code, 2-5,
8-7 to 8-8

Program sections, 2-1, 2-2 to
2-5

alignment, 2-3
attributes, 2-3 to 2-5
name, 2-3
size, 2-3

Q

Qualifiers - See "Command
qualifiers" and "File
qualifiers."

R
References, 3-1

strong, 3-3
weak, 3-3 to 3-4

Relocatable attribute, 2-3

s
/SELECTIVE_SEARCH file qualifier,

5-3, 5-9
Shareable attribute, 2-5, 8-6

to 8-7
/SHAREABLE command qualifier,

5-3, 5-6 to 5-7
/SHAREABLE file qualifier, 5-3,

6-2
Shareable images, 2-6 to 2-7,

8-1 to 8-30
benefits and uses of, 8-1

to 8-2
creating, 8-2 to 8-3
using, 8-30

STACK= option, 6-3, 6-8
STARLET.OLB, 4-4
Strong reference, 3-3
Symbol cross reference, 7-8

to 7-9
/SYMBOL_TABLE command qualifier,

5-3, 5-7
Symbol tables, 3-4 to 3-5, 5-7
Symbols, 3-1

global, 3-1 to 3-4, C-3, C-7
to C-13

local, 3-1 to 3-3
universal, 3-4, 8-3, C-3

Index-2

(

(

(

(

(

(

(

INDEX (Cont.)

/SYSLIB command qualifier, 5-3, 5-7
/SYSSHR command qualifier, 5-3,

5-7 to 5-8
/SYSTEM command qualifier, 5-3, 5-8
System images, 2-7

T
/TRACEBACK command qualifier,

5-3, 5-8
Transfer ·vectors, 8-4 to 8-6

u
UNIVERSAL= option, 3-4, 6-3,

6-8, 8-3

Universal symbols, 3-4, 8-3,
C-3

v
VAX-II object language, 2-2,

C-I to C-24
VAX-II Symbolic Debugger, 1~4
VMSRTL.EXE, 4-3 to 4-4

w
Weak reference, 3-3 to 3-4

Index-3

(

E

(

(

(

(

(

(

.
Q)
c

...c -
0>
C
o
c -::l
U

Q)

'" c
Q)

a..

NOTE:

READER'S COMMENTS

VAX-ll
Linker Reference Manual
AA-DOl9A-TE

This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. If you require a written reply and are
eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Did you find errors in this manual? If· so, specify the error and the
page number.

Please indicate the type of reader that you most nearly represent.

o Assembly language programmer

o Higher-level language programmer

o Occasional programmer (experienced)

o User with litt'ie programming experience.

o Student programmer
O· Other (please specify) ____________________________________ ___

Name Date ______________ ~---------

Organi za tion ______________________________________ -'-____________________ _

Street ________________________ ~ ________________________________ ~ ________ _

Ci ty ______________ --_________ S ta te ____________ Zip Code ___________ _

or
Country

---Fold lIere--

---------------------,.-------------------------- Do Not Tear - Fold lIere and Staple ---

BUSINESS REPLY MAIL
NO POS\AGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Software Documentation
146 Main Street MLS-S/E39
Maynard, Massachusetts 01754

FIRST CLASS

PERMIT NO. 33

MAYNARD, MASS.

(

(

(

(

