dlifgliltlall

|

(N |

| i i i
VAX-11

Linker Reference Manual

Order No. AA-DO19A-TE

VAXII

August 1978

This document describes how the VAX-11 Linker works and how to use it.

VAX-11
Linker Reference Manual

Order No. AA-DO19A-TE g

SUPERSESSION/UPDATE INFORMATION: This is a new document for this release.
OPERATING SYSTEM AND VERSION: VAX/VMS V01

SOFTWARE VERSION: VAX/VMS V01

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard, massachusetts

First Printing, August 1978

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright C) 1978 by Digital Equipment Corporation

The postage~prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8
DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-11
DECCOMM DECSYSTEM-20 TMS-11
ASSIST-11 RTS-8 ITPS-10
VAX VMS SBI
DECnet IAS

/7914

TN

CONTENTS

Page
PREFACE vii
CHAPTER 1 LINKER OVERVIEW 1-1
1.1 REASON FOR A LINKER 1-1
1.1.1 Modular Programming 1-2
1.1.2 Simplifying Compilation and Assembly 1-3
1.1.3 Debug Capability 1-4
1.2 LINKER OPERATION AND FUNCTIONS 1-4
1.2.1 Virtual Memory Allocation 1-4
1.2.2 Resolution of Symbolic References 1-5
1.2.3 Image Initialization 1-5
1.2.4 Image Map 1-5
1.2.5 Symbol Table File 1-5
CHAPTER 2 IMAGE CREATION 2-1
2.1 PROGRAM SECTIONS 2-1
2.2 IMAGE SECTIONS 2-1
2.3 CLUSTERS 2-1
2.4 OBJECT MODULE CONTENTS 2-2
2.5 PROGRAM SECTIONS 2-2
2.5.1 Program Section Name 2-3
2.5.2 Program Section Size 2-3
2.5.3 Program Section Alignment 2-3
2.5.4 Program Section Attributes 2-3
2.6 TYPES OF IMAGES 2-5
2.6.1 Executable Images 2-6
2.6.2 Shareable Images 2-6
2.6.3 System Images 2-7
2.7 GENERATION OF IMAGE SECTIONS 2-7
2.8 COMPRESSION OF UNINITIALIZED IMAGE SECTIONS 2-8
CHAPTER 3 SYMBOLS AND REFERENCES 3-1
3.1 DEFINITIONS: "SYMBOL" AND "REFERENCE" 3-1
3.2 TYPES OF SYMBOLS AND REFERENCES 3-1
3.2.1 Local Symbols 3-3
3.2.2 Global Symbols 3-3
3.2.3 Universal Symbols 3-4
3.3 SYMBOL TABLES 3-4
3.3.1 Global Symbol Table as Separate Output 3-5
CHAPTER 4 LIBRARIES 4-1
4.1 LIBRARY TABLES USED BY THE LINKER 4-1
4.2 LINKER'S USE OF LIBRARIES 4-2
4.3 DEFAULT SYSTEM LIBRARY 4-3
4.3.1 VMSRTL.EXE 4-3
4.3.2 STARLET.OLB 4-4
4.4 EXAMPLE OF USING LIBRARIES 4-4

iii

CONTENTS (Cont.)

w

CHAPTER THE LINK COMMAND

COMMAND FORMAT

COMMAND AND FILE QUALIFIERS
Command Qualifiers
File Qualifiers

EXAMPLES

P
N =

(O G, G, O, NS]
[V SN O3 S

CHAPTER

o

THE /OPTIONS FILE QUALIFIER

USES FOR AN OPTIONS FILE
Entering Frequently Used Input
Specifications
Identifying a Shareable Image as Input
Entering More Input Than the Command
Language Can Handle
Entering Non-Standard Link Instructions
CREATING AND SPECIFYING AN OPTIONS FILE
SPECIAL OPTIONS

oo
e
[

(o

[e)}e)]
. e
w N

.
S

[e)We)We))
o o e
wN -

CHAPTER

~

IMAGE MAP

IMAGE MAP CONTENTS

IMAGE MAP SECTIONS
Object Module Synopsis
Image Section Synopsis
Program Section Synopsis
Symbols by Name
Symbol Cross Reference
Symbols by Value
Image Synopsis
Link Run Statistics

NNNNNNNNNN
e o o s s s e s o
NNMNNMNDNMNDNMDNDNMDNDNDE
e o o e e o o @
OO UTds W

[eo}

CHAPTER SHAREABLE IMAGES
SHAREABLE IMAGES: BENEFITS AND USES
Conserving Physical Memory
Conserving Disk Storage Space
Reducing Paging I/O
Using Shared Memory-Resident Data Bases
Making Software Updates Compatible
CREATION OF SHAREABLE IMAGES
LINK Command and Pertinent Options
UNIVERSAL= Option
GSMATCH= Option
Transfer Vectors
Shareable and Nonshareable Data
Position Independence
Rules for Creating Upward-Compatible
Shareable Images
Example of Transfer Vector and Universal
Symbols
Example of FORTRAN Shared COMMON
USING SHAREABLE IMAGES :

e o o o s e e o o
¢« o e o o
U WN

« e .

©0 00 0O 00 00 CO 00 C0 0O 00 ©O0 0O OO ©O

NNMNMNNMNNMNNNMNNHEFERFRRFERFEF

[ee]

.

N

. e e o o o

o] Noutb W

o
“« e
w N
.
(]

iv

g
i o
(e}
o

oo u
[
H H WVOARNR

(<) B o))

[e)}e) e e o O
[I I ! I
N

~

| T T T T B B |
NP WWNNMNNMNMNOEHEEE [HEHEWOOOUUIWWH [(6,00 \O 3 V]

NN NNNNNIY
oo

[ee]

00 00 0O 00 00 0O 00 OO0 00 00 00 QO QO

«
N =

O o

APPENDIX

>

APPENDIX

APPENDIX |

=

e e o e & v s
“ o e e .
oAU WN -

APLWWWwwwwuwwwwNn ==

e o o o o

O QO o000 O O QN0 a0 6w
~ Noounut ot ur

(o]

.

CONTENTS (Cont.)

CLUSTERING

MECHANICS OF CLUSTERING
USAGE GUIDELINES

LINKER MESSAGES
IMAGE MAP ILLUSTRATIONS
VAX-11 OBJECT LANGUAGE

INTRODUCTION
Summary of Language
GLOBAL AND UNIVERSAL SYMBOLS AND NAME FORMAT
MODULE HEADER RECORDS (HDR)
Header Type
Structure Level OBJS$C_STRLVL
Maximum Record Size OBJ$C_MAXRECSIZ
Module Name
Module Version
Dates and Times
Other Header Records
Header Types 1 through 4 and 6
Maintenance Status Header Record (MTC)
GLOBAL SYMBOL DIRECTORY (GSD) RECORDS
(OBJS$C_GSD)
P-Section Definition (OBJS$C GSD PSC)
Global Symbol Specification OBJSC GSD SYM
Entry Point Symbol and Mask Definition
(OBJSC GSD EPM)
Procedure With Formal Argument Definition
(OBJ$C_GSD_PRO)
TEXT INFORMATION AND RELOCATION (TIR)
RECORDS (OBJSC_TIR)
Commands
Record Length
Differences From RSX-11
Side Effects And Optimization
END OF MODULE (EOM) RECORD (OBJ$C_EOM)
Error Severity
DEBUGGER INFORMATION (DBG) RECORDS
(OBJ$C DBG)
Traceback Information (TBT) Records
(OBJ$C_TBT)
LINK OPTION SPECIFICATION (LNK) RECORDS
(OBJ$C_LNK)

Q <(') [eNoNe! OOOOO(POOOOOOO Q w

Page

O
i
=

O
1

b
| | I

1 1
UL BRBEBRDRBRWWHRH H B

11
O d

1
[
[

1
—
N

O(;)O
N
N OB

Cc-22
c-22
Cc-23
C-23
C-24
C-24

Cc-24

FIGURES

Page
FIGURE 1-1 Modular Programming 1-3
3-1 Local and Global Symbols 3-2
4-1 Library Tables 4-2
7-1 Object Module Synopsis 7-4
7=-2 Image Section Synopsis 7-4
7-3 Program Section Synopsis 7-17
7-4 Symbols by Name Section 7-8
7-5 Symbol Cross Reference 7-9
7-6 Symbols By Value 7-9
7-7 Image Synopsis 7-10
7-8 Link Run Statistics 7-11
8-1 No Transfer Vectors 8-4
8-2 Transfer Vectors 8-5
8-3 Listing of CRF Transfer Vector 8-10
8-4 Command and Files to Create CRFSHR 8-12
8-5 Map of CRFSHR 8-13
8-6 Map Showing FORTRAN Shared Common 8-19
C-1 - General Structure of an Object Module c-2
TABLES
Page
TABLE - Command Qualifiers -

1 5-3
2 File Qualifiers 5-3
-1 Special Options 6-3
1 Image Map Sections 7-2
2 PSECT Attributes 7-6
1 Interpretation of SYM$V WK and SYMSV_DEF c-1

vi

TN

PREFACE

MANUAL OBJECTIVES

The VAX-11 Linker Reference Manual describes how the VAX-11l Linker
works and how to use it. This manual has both an educational and a
reference function: it provides detailed explanations of significant
topics, yet it is also designed for quick look-up of important
information.

INTENDED AUDIENCE

This manual is intended for programming specialists and nonspecialists
alike. In general, the entire manual is intended to be informative
and useful to all readers; however, certain parts are designed
specifically to meet the needs of certain types of readers.

e If you are not yet proficient in programming under the VAX/VMS
system (for example, if you are a trainee programmer), or if
you do not need to become an expert, this manual 1is designed
to teach you the main concepts and techniques of linking as
clearly as possible. Chapters 1, 3 through 7, and Appendixes
A and B are aimed especially at this type of reader.

@ If you are already proficient in programming under the VAX/VMS
system, this manual provides detailed information about some
of the more complex aspects of linking. Chapters 2, 8, 9, and
Appendix C are aimed especially at this type of reader.

STRUCTURE OF THIS DOCUMENT

Chapters 1 and 2 introduce the linker. Chapter 1 defines significant
terms, presents the reasons for the linker's existence, and discusses
in general terms how the linker works. Chapter 2 goes more deeply
into the process by which the linker creates images. Chapter 2 also
introduces new concepts and expands on concepts introduced in Chapter
1.

Chapters 3 and 4 focus on concepts that are important to understanding
the 1linker's operation. The discussion of symbols and references in
Chapter 3 derives from the linker's function of resolving symbolic
references between modules. Chapter 4 explains 1libraries, which
normally contain frequently used modules that the linker can include
in user images.

Chapter 5 discusses the LINK command and its command and file

qualifiers. Chapter 6 focuses on the /OPTIONS file qualifier,
describing how to create and use a linker options file.

vii

Chapter 7 explains the different forms of the image map that the
linker produces on request. This map provides information about the
image that was created and about the linking process itself.

Chapter 8 and 9 present detailed explanations of shareable images and
image clusters. The complex information in these chapters is intended
mainly for more sophisticated programmers and application designers.

The appendixes provide supplementary information. Appendix A 1lists
the error messages that the 1linker can generate. Appendix B
illustrates complete brief, default, and full maps of the same image.
Appendix C 1is a specification of the object language accepted by the
linker; this information is useful to anyone designing a compiler or
assembler whose output must be acceptable to the VAX-11l Linker.

ASSOCIATED DOCUMENTS
The following documents contain information pertinent to linking:

e VAX-1l1l Information Directory

e VAX/VMS Primer

e VAX/VMS Command Language User's Guide

e VAX-11 Symbolic Debugger Reference Manual

e VAX/VMS System Manager's Guide

e VAX-11 MACRO Language Reference Manual

® VAX-1l1l MACRO User's Guide

e VAX-11 FORTRAN IV-PLUS Language Reference Manual

e VAX-11 FORTRAN IV-PLUS User's Guide

CONVENTIONS USED IN THIS DOCUMENT

The following conventions are used in this manual:

e Brackets ([]) enclose optional material, as in the following
examples:
/ [NO] DEBUG

The positive form of the qualifier is /DUBUG, and the negative
form is /NODEBUG.

CLUSTER=cluster-name, [base-address], [pfc], file-spec [,...]

The base address, page fault cluster (pfc), and additional
file specifications are optional entries. Note, however, that
the commas following the base address and page fault cluster
are outside the brackets; therefore, if you omit these
entries, you must still enter the commas. For example:

CLUSTER=AUTHORS, , ,TWAIN,DICKENS

viii

S~

S

Uppercase letters in format illustrations show keywords that
you must enter as shown; lowercase letters show variable
data, with the letter "n" specifying numeric data. Examples:

/EXECUTABLE=file~-spec

/BASE=n
Horizontal ellipses (...) in a format illustration indicate
that the preceding entry can appear several times, as in the
following example:

UNIVERSAL=symbol-name [,...]

You can specify multiple symbol names.

Vertical ellipses indicate that lines of file contents or code
not pertinent to the example are not shown:

ix

CHAPTER 1

LINKER OVERVIEW

The VAX-11 Linker is a programming development tool that takes the
output of language translators, such as the VAX-11 MACRO assembler or
the VAX-11l FORTRAN IV-PLUS compiler, and binds it into a form that can
be executed on the VAX-1ll hardware. The primary outputs of VAX-11
language translators, and the primary inputs to the linker, are files
that contain object modules. The primary output of the linker is a
file called an image.

The linker can produce three types of images. The most common type,
called executable, is activated in response to a command that you
enter (such as RUN). Another type of 1image, called system, is
intended for stand-alone execution on the VAX-1ll hardware. The third
type, called shareable, provides a means for sharing procedures and
data among multiple processes within the system. Shareable images
also provide a way of linking a very large application program in a
number of smaller phases. Chapters 2 and 9 discuss image creation in
detail. Chapter 8 focuses on shareable images.

The linker assigns values and virtual addresses not only to symbols
defined within each module, but also to symbols defined outside the
module that refers to them. If a symbol is not defined in a module
named in the LINK command, the linker searches one or more libraries.
Chapter 3 discusses the different types of symbols (for example, local
and global, strong and weak), and Chapter 4 discusses the use of
libraries.

The linker is activated by the LINK command, which vyou can enter
interactively or within a command procedure. The LINK command permits
many command qualifiers and file qualifiers, most of which have
default values that are suitable for most cases. One input file
qualifier is /OPTIONS, which allows you to convey additional input
file specifications and special instructions for the linker. Chapter
5 explains the LINK command and all its qualifiers. Chapter 6 focuses
on the /OPTIONS qualifier and the special items or options that can
appear in an options file.

In addition to the image itself, the linker can produce a printable
image map. You can control the level of detail provided in various
parts of the map. Chapter 7 explains and illustrates the image map.

1.1 REASON FOR A LINKER

The object modules that a VAX/VMS compiler or assembler creates are
nonexecutable. They must £first be 1linked. The requirement that
object modules be linked contrasts with systems in which the output of
a compiler or assembler is directly executable.

1-1

LINKER OVERVIEW

The VAX-1l native translators require a linker for several reasons:
e Linking simplifies modular programming.

® The linker simplifies the 3job of each native compiler or
assembler.

e The VAX-1l1 Symbolic Debugger and other features can be
accessed easily.

1.1.1 Modular Programming

Modular programming is the process of combining separately compiled or
assembled modules into an executable program or image. Modular
programming has two aspects:

e Automatic modularity because many source language statements
generate calls to common functional routines developed by
DIGITAL

e Deliberate modular design implemented by some user sites

Most programs are automatically modular, because many source language
statements generate calls to routines that perform commonly needed
functions, such as opening and <closing files. Examples of these
routines are the procedures in the VAX-11] Common Run-Time Procedure
Library, which is installed in the system as a shareable image. These
routines can be 1linked into different images regardless of the
programmer's original source language. At run time each routine can
be shared by a number of different processes, because each routine is
relocatable and reentrant. (Reentrant means that the code does not
modify itself, and consequently can be reused by different processes.)

Users can also make their programs deliberately modular. Under this
practice, a single complex program is written as a number of smaller
program modules. The modules are compiled or assembled, and later
linked to create an executable image. Figure 1-1 illustrates program
development in this environment. In this example, two programmers
write two program modules, a main section in VAX-11 FORTRAN IV-PLUS to
perform different calculations, and a second section in VAX-11 MACRO
to handle specific exception conditions.

Modular programming offers several advantages over the traditional
practice of having one programmer write an entire complex program as a
single source module:

e Smaller modules are usually more manageable and easier to
write.

e Different modules of the same program can be written in
different languages. You can select the language that best
suits the nature of the module's function or your own personal
preference.

® Errors are easier to analyze and correct in smaller modules.

LINKER OVERVIEW

\ CALC. XCEPT.
FOR MAR
\
FORTRAN MACRO
Compiler Assembler
\
CALC. XCEPT.
0OBJ oBJ
CALC. CALC.
EXE MAP
Optional

Figure 1-1 Modular Programming

1.1.2 Simplifying Compilation and Assembly

Having a linker perform certain essential functions eliminates the
need for every native compiler and assembler to handle these
functions. For example, the linker contains the 1logic to allocate
virtual memory and to provide the memory management interface between
the program and the operating system.

A program's virtual memory can be allocated efficiently only after all
its constituent modules are known. The linker contains the logic
necessary to group parts of programs according to specific attributes,
with the goal of conserving memory and reducing the amount of paging
activity at run time.

LINKER OVERVIEW

Each program usually interacts with the operating system. For
example, a program may use the stack within its process. The linker
can supply the program logic to access the stack and certain other
areas, rather than require each compiler and assembler to supply this
logic. The linker can also dgenerate the proper program-to-system
interfaces for program modules that call VAX/VMS system services.

1.1.3 Debug Capability

Use of the VAX-1l1l Linker allows you to access the VAX-11 Symbolic
Debugger from the executable image. If you request the debugger, you
can choose whether to activate it at run time. The VAX-11l Symbolic
Debugger Reference Manual explains the capabilities and use of the
debugger. FORTRAN users should refer to the Debugging chapter in the
VAX-11 FORTRAN IV-PLUS User's Guide.

1.2 LINKER OPERATION AND FUNCTIONS
The linker performs the following operations when it creates an image:
® Allocates virtual memory for the image
® Resolves symbolic references among modules
e Initializes the image contents
® Generates the image map, if requested

® Generates a symbol table file, if requested

1.2.1 Virtual Memory Allocation

The language translators that produce object modules do not allocate
addresses for two reasons:

e They do not know how the modules and sections of modules will
be grouped in the final executable image.

® They do not know how much address space is required for many
of the external modules that are called by the module being
assembled or compiled.

The linker, then, must assume the task of allocating virtual memory
for the 1image. Each object file input to the linker consists of one
or more program sections. The linker groups program sections from
different object files according to various section attributes--for
example, whether the program section is concatenated or overlaid, and
what its memory protection requirements are (read-only, read/write,
etc.). For further information on how the linker maps the image, see
Chapter 2.

SN

LINKER OVERVIEW

1.2.2 Resolution of Symbolic References

When a module makes references to symbols outside itself, the linker
searches for these references in other modules explicitly named in the
LINK command. If you specify any libraries, the linker searches them
to resolve references made by preceding files named in the LINK
command. If any references still remain unresolved, the linker
searches the default system library. For a detailed discussion of
libraries, see Chapter 4.

1.2.3 1Image Initialization

After it maps virtual memory and resolves references, the linker fills
in the actual contents of the image. This image initialization
consists mainly of copying the binary data and code that was written
by the compiler or assembler. However, the linker must perform two
additional functions to initialize the image contents:

@ It must insert addresses into instructions that refer to
externally defined fields. For example, if a module contains
an instruction moving FIELDA to FIELDB, and if FIELDB is
defined in another module, the 1linker must determine the
virtual address of FIELDB and insert it into the instruction.

e It must compute values that depend on externally defined
fields. For example, if a module defines X as being equal to
Y plus Zz, and if Y and Z are defined in an external module,

the linker must compute the value of Y plus Z and insert it in
X.

1.2.4 1Image Map
If you so request, the linker generates an image map. The actual
contents of the map depend on the map-related command qualifiers that
you enter with the LINK command; however, entering just the /MAP
qualifier generates a default map with the following sections:

e An object module synopsis

® A program section synopsis

e A list of symbols, with the name and value of each

® An image synopsis

® Statistics of the link run

Chapter 7 discusses the command qualifiers that affect the image map.
It also illustrates the map sections and explains significant items.

1.2.5 Symbol Table File

If you so request, the linker produces a file that records the values
of symbols defined within the image. Section 3.3.1 contains further
information on the symbol table file.

CHAPTER 2

IMAGE CREATION

This chapter discusses the allocation of virtual memory and the
different kinds of images that the linker can produce. The concepts
of clustering, image sections, and program sections are introduced,
along with a description of the way in which the linker builds the
final image.

2.1 PROGRAM SECTIONS

The program section is the vehicle by which a language translator
describes the memory requirements of a particular object module.
Program sections are areas of memory that have a name, a length, and a
series of attributes describing the intended or permitted usage of
that memory. Section 2.5.4 provides a detailed description of these
attributes.

2.2 IMAGE SECTIONS

The image section is the means that the linker uses to describe the
memory requirements of the whole image to the VAX-11l memory management
software. An image section is a named collection of pages which have
the same hardware protection characteristics and the same sharing
nature. An image section is dealt with as a unit when page faults
occur.

The linker creates image sections by collecting program sections that
have similar (but not necessarily identical) attributes. The manner
in which program sections are grouped into image sections depends upon
both the attributes of each program section and the type of image
being produced (see Section 2.7).

2.3 CLUSTERS

Experience with virtual memory systems has shown that 1locality of
reference within large application programs affects their performance.
Clustering provides a way for the designer of an application to
describe that locality. A cluster contains a group of highly-related
object modules that are separable from some other groups of modules
within the application.

For example, a compiler usually goes through a number of distinct
phases during 'a single compilation run. These phases are often
separable into groups of object modules that can be designated as
clusters. The relationship between the groups or clusters is defined
through internal data structures, such as the symbol table.

2-1

IMAGE CREATION

Chapter 9 is devoted to clustering. However, at this point it is
sufficient to describe a cluster as a list of related image sections;
these image sections are produced by sorting the program sections read
in from a collection of related object module files. Every image
consists of at least one cluster. Note, however, that the cluster is
relevant only to the linker itself; it does not appear as a structure
anywhere else (such as in the memory management software of the
executive).

2.4 OBJECT MODULE CONTENTS

Each object module contains several types of records. All object
modules have header records and an end-of-module record. Some also
have other kinds of records, depending on the options specified at
compile time. All object modules also contain the following records
for each of the program sections:

e A global symbol record that includes the program section's
attributes. (A global symbol record is also used to describe
each global symbol defined in the module.)

e A text information and relocation record, containing the
section's binary data or code and certain commands to the
linker.

Appendix C contains a detailed specification of the object 1language
accepted by the linker.

2.5 PROGRAM SECTIONS

A program section is defined to the linker by the following:
® A name
e A size
® An alignment

e A series of single-bit attributes expressing whether the
program section is:

- Relocatable or absolute

- Concatenated or overlaid

- Local to a cluster or global across all clusters
- Executable or not

- Writeable or not

- Readable or not

- Position independent or not

- Potentially shareable or not

- Created by a user program or by the linker for internal use

IMAGE CREATION

2.5.1 Program Section Name

The program section name is an ASCII character string, one to fifteen
characters in length. You can use any printable ASCII character in
the name, but are cautioned against using the dollar sign ($), to
avoid possible naming conflicts with software supplied by DIGITAL.

Program sections with the same name but from different modules
normally must have the same attributes. Any exceptions to this rule
are noted in the discussions of specific attributes.

2.5.2 Program Section Size

The size field of a program section definition record 1is a 32-bit
count of the number of bytes that this module contributes to the
program section.

2.5.3 Program Section Alignment)
The alignment field describes the address boundary at which the
module's contribution to the program section will be placed. The
alignment is expressed as a number from 0 to 9, representing a power
or exponent of the number 2. The base address of the program section
is rounded up to a multiple of that power of two.

In an overlaid program section, all contributing modules must specify
the same alignment; otherwise, the 1linker generates a diagnostic
error. In a concatenated program section, each contributing module
can specify a different alignment. The total allocation of the entire
concatenated program section will be aligned on a boundary which is a
multiple of the highest power of 2 specified by any of the
contributing modules.

2.5.4 Program Section Attributes

The following subsections explain the attributes that a program
section can have. Section 2.7 describes how the linker considers
certain significant attributes as it constructs different types of
images.

2.5.4.1 Relocatability (REL and ABS) - A program section can be
relocatable or absolute. A relocatable program section is one that
the linker can position in virtual memory according to the memory
allocation strategy for the type of image being produced.

Absolute program sections, on the other hand, are not considered 1in
the allocation of virtual memory. They contain no binary data or
code, and all appear as if they were based at a virtual address of
zero. Absolute program sections are used primarily to define global
symbols.

2.5.4.2 Concatenated versus Overlaid (CON and OVR) - This attribute
determines the relationship between the memory allocations when
several modules contribute program sections with the same name.

IMAGE CREATION

A concatenated program section contribution requires its own separate
address space in ‘the image. If two program sections in different
modules have the same name, the sections will be placed 1in separate
yet - contiguous address spaces. For example, if PSECTA in MODULEl and
PSECTA in MODULE2 have the concatenated attribute, PSECTA from MODULEl
will be allocated first, followed by PSECTA from MODULE2. The final
total size of a concatenated program section is the sum of the
individual contributions, plus any padding allowed for the individual
alignments.

An overlaid program section contribution, however, can share an
address space with other program sections that have the same name.
For example, if both PSECTA in MODULEl and PSECTA in MODULE2 have the
overlaid attribute, both program section contributions will be
allocated starting at the same base address in the image. The final
total size of an overlaid program section is that of the largest
contribution.

Note that any module can, 6 initialize the contents of an overlaid
program section. In this situation, the order in which you specified
the input modules is important, because the contents of an overlaid
program section are determined by the last contributing module
specified.

FORTRAN common areas are the most frequent use of overlaid program
sections,

2,5.4.3 Scope - Local versus Global (LCL and GBL) - The 1local or
global attribute is significant for an image that has more than one
cluster. The attribute determines whether program sections with the
same name but from modules in different clusters are finally placed in
separate clusters (LCL attribute) or in the same cluster (GBL
attribute). The memory of a global program section is allocated in
the cluster that contains the first contributing module. This subject
is discussed further in the treatments of shareable images and
clustering (see Chapters 8 and 9).

FORTRAN common is implemented with global program sections.

2.5.4.4 Executability (EXE and NOEXE) - Although the current VAX-11
hardware does not implement any kind of execute protection, this
attribute is reserved for possible future implementation. Another
reason for this attribute is that it permits possible future extension
of link time error detection and of software security protection.

The current version of the linker takes this attribute into account in
only two ways:

® Error checking on an image start address. The linker issues a
diagnostic message if a program transfer -address is defined in
a nonexecutable program section.

e Sorting of program sections into image sections. Executable
program sections in executable and shareable images are placed
in separate image sections from program sections that are not
executable.

/—\\‘

IMAGE CREATION

2.5.4.5 Writeability (WRT and NOWRT) - This attribute determines
whether the program section contents will be protected against
modification when the image is executed. If the program attempts to
modify the contents of a non-writeable program section during
execution, an access violation occurs.

For executable and shareable 1images, writeable and nonwriteable
program sections are placed in different image sections. For system
images, this attribute is ignored, since by definition the VAX/VMS
system is not normally in control of the memory management of a system
image.

2.5.4.6 Readability (RD and NORD) - The current version of the linker
ignores this attribute. It is provided merely to allow the possible
future implementation of a data security system.

2.5.4.7 Position Independence (PIC and NOPIC) - This attribute
.identifies whether the content of a program section depends on where
that program section or something that it refers to 1is allocated in
the virtual address space. For example, the following types of
" program sections are position independent:

e A program section that contains no virtual addresses

® A program section whose references to virtual memory are in

the form of a displacement from itself, if the targets of the

. references must always be at the same displacement from the
calls which refer to them

This attribute applies only to shareable images, which are discussed
in Chapter 8. ’

2.5.4.8 Shareability (SHR and NOSHR) - As its name suggests, this
attribute 1is significant only for shareable image memory allocation
and memory management (see Chapter 8).

2.5.4.9 User versus Library (USR and LIB) - This attribute is
reserved for ©possible future enhancements to the 1linker. It is
ignored for the current release, but should be set to zero to
guarantee future compatibility. :

2.6 TYPES OF IMAGES

The linker creates three types of images: executable, shareable, and
system. Each type has specific uses. System images differ
substantially in content and organization from executable images and
shareable images. The following subsections define each type.

IMAGE CREATION

2.6.1 Executable Images

An executable image is a program that you can activate by the RUN
command. The most common use of the linker is to create executable
images.

An executable image cannot be linked with other images. However, the
same object modules can be linked in different combinations or with
different link options to form different executable images.

2.6.2 Shareable Images
There are two major reasons for shareable images:

e To provide a means of sharing a single physical copy of a set
of procedures and/or data between multiple application
programs

e To facilitate the linking of very large applications (say,
hundreds of modules) in more manageable pieces, rather than as
one monolithic link

As with executable images, when the 1link of a shareable image is

complete, all symbolic references are resolved and memory is allocated
to a group of image sections. A description of each image section is
written to the image header. Unlike an executable image, however, a
shareable image normally has a symbol table appended to it.

A shareable image is not directly runnable. It is intended for
reprocessing by the linker--that is, to be included in a subsequent
image. 1In processing a shareable image, the linker reads the image

header and generates a separate image cluster from the set of image

sections it finds.

After generating the cluster which is the incoming shareable image,
the linker processes the symbol table appended to the image just as if
it were an object module. This allows the shareable image to resolve
symbols (usually routine names) referred to by the modules with which
it is being linked. These symbols are called universal symbols (see
Section 3.2.3).

When you run a program that has been linked with a shareable image,
the VAX-11 image activator checks to see if the shareable image has
been installed by the system manager. If it has been installed, the
image activator sets a pointer that enables the process to use the
shareable image. Thus, whenever multiple processes request an
installed shareable 1image, the operating system makes the same
~physical copy of the shareable image available to each requesting
process. Shareable images can therefore conserve physical memory at
run time.

Chapter 8 discusses shareable images further. At this point, however,
note the following information and conventions pertaining to shareable
images:

® The default common Run-Time Library provided with the VAX/VMS
system is a shareable image.

® You cannot link the VAX-11 Symbolic Debugger with a shareable

image; you must include at least one object module in the
link.

2-6

\v

IMAGE CREATION

® You can request that the linker produce a private copy of a
shareable image in an executable image file. By default,
however, the linker does not do so, thereby saving disk space.

e Chapters 5 and 6 describe LINK command qualifiers and 1link
time options specifically intended for dealing with shareable
images. See the following:

/SYSSHR

qualifiers
/SHAREABLE
UNIVERSAL=

options
GSMATCH=

2.6.3 System Images

A system image is a special type of image intended for stand-alone
operation on the hardware; that is, it does not run under the control
of the VAX/VMS operating system.

The allocation of memory to a system image is much simpler than for
the other two types of images. The linker allocates memory to the
program sections based upon the alphabetical order of the program
section names. The only other factors that the linker considers are
program section size, alignment, and the following attributes:
concatenated or overlaid, and relocatable or absolute. These factors
are treated as described in Section 2.5.

The resulting image is a fixed-length record file, each record being a
512-byte block. A system image has no image header, no debug data,
and no symbol tables. It has no set format. That is to say, it
contains binary data and code just as they would appear in memory.

2.7 GENERATION OF IMAGE SECTIONS

The linker makes two passes over the input object modules. The first
pass builds the symbol table and the program section tables. The
second pass writes the binary contents of the image. Memory
allocation 1is performed between the two passes; the linker uses the
program section table of each cluster and generates an image section
table for each cluster.

When the first pass is complete, the linker has determined the sizes
of all the relocatable program sections by considering specific
attributes (concatenated versus overlaid, local versus global) and the
alignment, as discussed 1in Section 2.5. The linker has also
determined relative addresses of each module's contribution to a
particular program section. What remains to be done is to group the
program sections into image sections, and to position the whole image
cluster in the virtual address space.

IMAGE CREATION

Depending on the type of image being produced, the linker establishes
a mask for the program section attributes that it will consider:

e For an executable image, this mask includes only the
writeablity (WRT and NOWRT) and executability (EXE and NOEXE)
attributes.

@ For a shareable image, this mask includes the writeability,
executability, position independence (PIC and NOPIC), and
shareability (SHR and NOSHR) attributes.

Then, for each possible combination of the significant attributes, the
linker searches the program section list of a cluster. If the linker
finds any program section with this combination of attributes, it
generates an 1image section. Each matching program section in the
image section is assigned an address relative to the base of the image
section, in alphabetical order by program section name.

All combinations of significant attributes are handled in this way,
until the complete set of image sections for the particular cluster is
generated. The next cluster (if there is one) is then treated in the
same way.

At this point, all image sections have cluster-relative base
addresses, and all program sections have image section-relative
addresses. The ‘next step consists of allocating virtual address space
to the cluster and then relocating all image sections and program
sections within the cluster.

The choice of address space for the cluster is described in Chapter 9.
However, the choice depends on whether you specified an address in the
CLUSTER= option, and whether the cluster contains a shareable image.
It also depends upon the order in which you specified the clusters.

2.8 COMPRESSION OF UNINITIALIZED IMAGE SECTIONS

At the end of its first pass across the object modules, the 1linker
sorts all the program sections into a group of distinct image
sections. The sorting is determined by program section attributes,
and results in the complete allocation of the user virtual space.

In its second pass, the linker writes the binary contents of the
image. During this image initialization, the linker keeps track of
which program section is being initialized and to which of the image
sections that program section has been allocated. The first attempt
to initialize a part of an image section causes the linker to allocate
a buffer in its own program region to contain the generated image
binary contents. This allocation is achieved by the expand region
system service, and it requires that the linker have available a
virtually contiguous region of its own memory at least as large as the
image section being initialized.

After completing the second pass across the object modules, the linker
scans the list of 1image sections 1in an attempt to compress
uninitialized pages from the image, which is about to be written. The
linker attempts to perform this compression by creating demand zero
image sections.

TN
\

IMAGE CREATION

If the linker finds an image section that does not have a buffer
allocated, it considers splitting the section into multiple image
sections, some demand zero and others copy on reference. To be
eligible for splitting, the image section must be writeable to the
user and larger than the minimum compression threshold size (see the
DZRO_MIN= option in Chapter 6). If the image section can be split,
the linker calls a memory management system service, passing it a
description of the image section buffer and the compression threshold
value. By calling this service in a loop, the linker finds out which
segments of the buffer are both larger than the threshold number of
pages and previously unmodified by the linker. This process results
in a single image section being replaced by a potentially large number
of alternating demand zero and copy on reference image sections.

The linker continues this splitting process, scanning the 1list of
image sections until it reaches the end or until the total number of
image sections reaches the 1limit specified or defaulted for the
ISD_MAX= option (see Chapter 6). During the entire process, the
linker keeps track of the size of the image header (where descriptors
of the image sections will be written) and of the image binary
contents. Thus, at the end of the scan the linker knows the precise
size of the image header and the contents, and it can now create the
image file.

When the image file is successfully created, the linker makes another
scan of the image section descriptor list. During this scan it writes
the contents of all existing image section buffers to the image file,
assigning them virtual block numbers as it does so. Finally, the
linker writes the image header, starting at virtual block number 1 of
the image file.

By default, the 1linker «creates the image with the attribute
"contiguous best try," which becomes a permanent attribute of the
image file. However, you can specify the /CONTIGUOUS qualifier to
force the image file to be created contiguously (see Chapter 5).

2-9

CHAPTER 3

SYMBOLS AND REFERENCES

One of the 1linker's functions 1is to resolve symbolic references
between modules. The linker recognizes different types of symbols,
and follows guidelines for each type when it tries to supply addresses
or values to statements that refer to these symbols.

3.1 DEFINITIONS: "SYMBOL" AND "REFERENCE"

A symbol is a name associated with a coding statement or with a data
area or field. A reference 1is the use of a symbol in a coding
statement or a data definition. Consider the following examples (not
tied to a specific programming language):

® A coding statement identified as ROUTINEA moves FIELDA to
FIELDB. ROUTINEA 1is the symbol associated with the coding
statement. FIELDA and FIELDB are references made by the
statement.

® A data definition statement defines FIELDA as being equal to
(A+B) /2. FIELDA 1is the symbol associated with the computed
value of (A+B)/2. A and B are references.

3.2 TYPES OF SYMBOLS AND REFERENCES
Each symbol is local, global, or universal:

® Local symbols are available for reference only within the
program module that defines them.

® Global symbols can be referred to by modules outside the
module that defines them. A global symbol has a strong or a
weak definition. Another module can make a strong or a weak
reference to a global symbol (regardless of whether the
symbol's definition is weak or strong).

@ Universal symbols are a special type of global symbol. You
can specify universal symbols only for shareable images.

Figure 3-1 illustrates references to local and global symbols in three
modules. (The statements do not reflect a specific programming
language.) An arrow is drawn between each reference and the symbol to
which it refers.

SYMBOLS AND REFERENCES

‘MODULEA
LOCAL 1=
LOCAL2=
*GLOBAL1

GLOBAL2-=
W—\/‘_——-

Move LOCAL1 to LOCAL2

Call GLOBAL3
N\/\‘_/\/‘v\—

MODULEB MODULEC
LOCAL1 LOCAL1 ==
LOCAL2 - LOCAL2 ==

P —— SN——T /\/\A_N_J
Add GLOBAL1 — Subtract GLOBAL2

Move LOCAL1 ——TGLOBALS /
to LOCAL2 Move LOCAL2

to LOCAL1

— T S———

Figure 3-1 Local and Global Symbols

Local and global symbols can be designated either automatically by the
language translator or by qualifiers in program statements. You can
specify the local or global symbol type only in certain languages. In
VAX-11 MACRO, for example, you can define a symbol as local or global
by using one or two equal signs or colons, as the following statements
show. Note that the term "local symbol" in this context has a
different meaning from the term in the context of a MACRO program (for
example, 10S$:).

CRFC_MAXREC=292 Assigns a value of 292 to the 1local symbol
CRFC_MAXREC

CRFC_MAXREC==292 Assigns a value of 292 to the global symbol
CRFC_MAXREC

ERR_BRANCH: Makes the coding statement label ERR_BRANCH a
: local symbol

ERR_BRANCH:: Makes the coding statement label ERR_BRANCH a
global symbol

In certain other languages, the compiler determines whether a symbol
is local or global. For example, the FORTRAN compiler makes statement
numbers local symbols, and module entry points and common areas global
symbols. For information about designating symbol type in a specific
programming language, see the appropriate language reference manual.

Universal symbols must be specified by the UNIVERSAL= option in the
linker options file. Chapter 6 explains the use of the /OPTIONS
qualifier with the LINK command.

SYMBOLS AND REFERENCES

3.2.1 Local Symbols

You can refer to local symbols only within the program module that
defines them. Most symbols in a typical program are local.

The compiler or assembler resolves references to 1local symbols, and
therefore they are not passed on to the linker.

3.2.2 Global Symbols

Global symbols can be referred to by object modules other than the
module that defines them.

Each global symbol has either a strong or a weak definition. An
external module can make a strong reference or a weak reference to any
global symbol.

3.2.2.1 strong Definition - A global symbol with a strong definition
is available for reference if the module that defines it is either
explicitly named in the LINK command or contained in a library that is
searched by the 1linker. Global symbols wusually have a strong
definition, and strong is the default if neither weak nor strong is
specified.

The librarian utility makes an entry for each global symbol with a
strong definition in the global symbol table of a library. Libraries
are discussed in Chapter 4.

3.2.2.2 Weak Definition - A global symbol with a weak definition is
available for reference only if the module that defines it is
explicitly included in the linking operation; that is, the module is
listed as an input file, specified with the /INCLUDE qualifier, or
included from a library because another (strong) symbol in the module
is needed.

The librarian utility routine does not make entries for global symbols
with weak definitions in the global symbol table of a library.

3.2.2.3 Strong Reference - A strong reference is one whose resolution
is critical to the linking operation. 1If the linker cannot resolve
all strong references by searching named input modules and libraries
and the default system library, it reports errors and assumes that the
symbol referred to has a value of zero.

Most references to global symbols are strong, and strong is the
default.

3.2.2.4 Weak Reference - A weak reference is one whose resolution is
not critical to the 1linking operation. For a weak reference, the
linker searches only named input modules, but not wuser libraries or
the default system library. The linker does not treat an unresolved
weak reference as an error, but it does assume that the symbol
referred to has a value of zero.

SYMBOLS AND REFERENCES

An example of the use of weak references might occur in a program that
you want to 1link now, but that you want to add to and relink later.
In a particular subroutine you might make a weak reference to a symbol
in an external module that will not be written until later. You can
link the image and run it, as long as it does not try to wuse the
nonexistent symbol during the run.

3.2.3 Universal Symbols

A universal symbol is a special type of global symbol in a shareable
image. A universal symbol is accessible by other modules when they
link with the shareable image. Universal symbols in a shareable image
contrast with ordinary global symbols in the modules that make up the
shareable image; the ordinary global symbols are available only when
the modules are being linked to create the shareable image.

The VAX-11 MACRO assembler language provides the .TRANSFER directive
to identify an important class of universal symbols, namely transfer
vectors. Otherwise, you must identify universal symbols with the
UNIVERSAL= option in a 1linker options file (see Chapter 6). For
example, the following LINK command shows how to designate A and B as
universal symbols in the shareable image ABBOTT. COSTELLO is an
options file that includes the record UNIVERSAL=A,B.

$ LINK/SHAREABLE ABBOTT,COSTELLO/OPTIONS

COSTELLO.OPT

UNIVERSAL=A,B

An example of the need for universal symbols might occur if you write
an error-handling routine with several modules to be linked as a
shareable image. You define global symbols for references between the
modules. However, you must designate as universal any global symbols
that are to be available when the shareable image 1is 1linked with
object files or other shareable images: for example, entry points of
routines and perhaps some constants for defining possible errors.

3.3 SYMBOL TABLES

An image can have none, one, or both of the following symbol tables:
e A debug symbol table
e A global symbol table

The debug symbol table is included only if you specify /DEBUG at 1link
time. This table normally contains the following types of
information:

® Module names

® Routine names and/or program section names

e All local symbols

TN

TN

SYMBOLS AND REFERENCES

However, the local symbols are included only if you request debug at
both compilation time and link time.

The global symbol table is included in an executable image whenever
you include debug in the 1link. The global symbol table is always
included in a shareable image, regardless of the qualifiers you
specify at 1link time. The global symbol table contains an entry for
each global symbol in an executable image and for each universal
symbol in a shareable image. These symbols are listed in the Symbols
by Name section of the image map.

3.3.1 Global Symbol Table aé Separate Output

You can output a copy of the image's global symbol table as a separate
file by wusing the /SYMBOL_TABLE qualifier at link time. The symbol
table file is a sequential file containing variable-length records.
Its format is identical to that of object modules (Appendix C explains
this format in detail).

You can specify a symbol table file as input to a 1linking operation.
This makes the global symbols in the symbol table file and their
values available to the object modules being 1linked, without also
linking in the entire image with which the global symbols are
associated. One primary use for specifying STB files at link time is
to make global symbols in a system image available to a number of
other images without binding the system image into each of the other
images.

e \\

TN

- CHAPTER 4

LIBRARIES

The linker searches one or more libraries to resolve references to
global symbols that are not defined in the object files specified
previously in the LINK command. A library contains object modules and
related information, including a list of the names of the modules and
a list of the global symbols contained in the modules. (A library can
also contain macros instead of object modules; however, the linker is
not concerned with macro libraries.)

When the linker matches a global symbol having an unresolved strong
reference with an entry in a library's table of global symbols, it
binds the module that defines the symbol into the image. You can also
explicitly include modules from a library in an image, thus
eliminating the need for the linker to . search the global symbol table
of the 1library. In addition to any libraries that you specify, the
linker automatically searches the default system library for any
unresolved strong references.

To create a library, you must use the LIBRARY command, which is
explained in the VAX/VMS Command Language User's Guide.

4.1 LIBRARY TABLES USED BY THE LINKER

Each object module library contains two lists or tables that the
linker uses to resolve symbolic references:

e A module name table, containing an . entry for each object
module in the 1library. Each entry includes the name of the
module and its address within the library file.

® A global symbol table, containing an entry for each global"

symbol in the modules in the library. Each entry includes the
name of the symbol and the location of the module that defines
the symbol.

For example, in a hypothetical library named MINE2, one of the modules
is MODULEZ, which contains the global symbols TAGl and TAG2. Although
it is not intended as an exact schematic illustration, Figure 4-1
shows the relationship of the module name table and the global symbol
table to the rest of the library.

LIBRARIES

MINE2.0LB
LIBRARY
HEADER
MODULE NAME
TABLE
MODULEZ One entry in the module name table for
each object module in the library.
GLOBAL SYMBOL
Pointers to TABLE
the associated
module TAG1 —One entry in the global symbol table
TAG2 for each global symbol in each module.
MODULEZ
MODULEB OBJECT MODULES

Figure 4-1 Library Tables

4.2 LINKER'S USE OF LIBRARIES

You can include library modules in the image either implicitly or
explicitly:

Implicit inclusion occurs when a module specified in the LINK
command refers to a global symbol defined in a library that
the linker searches. For example, an instruction in a module
named MODULE1l moves FIELDA to FIELDB, yet FIELDB is defined
only in the module LIBMOD3 in the library BOBLIB.OLB. You can
specify:

$ LINK MODULEl,BOBLIB/LIBRARY

This causes the linker to search BOBLIB for any unresolved
references from MODULEL. When it discovers that FIELDB is
defined in LIBMOD3, the linker includes that module in the
image.

Explicit inclusion occurs when you name a module with the
/INCLUDE qualifier after the library name. To use the example
in the explanation of implicit inclusion, if you know that
FIELDB 1is defined in module LIBMOD3 in BOBLIB, you can
simplify the linker's search and explicitly include LIBMOD3 in
the final executable image by specifying:

$ LINK MODULEl ,BOBLIB/INCLUDE=LIBMOD3

TN

LIBRARIES

The linker follows these conventions in using libraries:

@ It processes all input files, including 1libraries, in the
sequence 1in which you name them. Thus, the linker searches a
library for unresolved strong references only from previously
named input files. For example, assume that you enter the
following command:

$ LINK A,B,C/LIBRARY,D,E

The linker searches library C for unresolved strong references
from object modules A and B, but not D and E. The search of
library C continues until no more symbols can be resolved.
For example, if module X is included from library C and module
X also has some unresolved strong references, the linker makes
another search of library C.

e If you specify both the /LIBRARY and /INCLUDE qualifiers after
a library's file specification, the linker includes the named
modules first and then, if necessary, searches the 1library.
This 1is true regardless of the order of the two gqualifiers.
For example, the following two commands cause the 1linker to
perform identical actions:

$ LINK A,B/INCLUDE=(MOD1,MOD2)/LIBRARY
$ LINK A,B/LIBRARY/INCLUDE=(MOD1,MOD2)

® The linker searches the default system library for wunresolved
strong references after it has processed all named input
files, including user libraries. (See Section 4.3 for a
discussion of the default system library.)

These conventions allow you considerable choice when the same global
symbol name is defined differently in modules in different libraries.
For example, if you know that a particular symbol is defined as you
need it 1in a particular module, but that the same symbol is defined
differently in another module (in one of your libraries or the default
system library), you can choose the desired definition by specifying
the module with the /INCLUDE qualifier. If you know that your own
library has global symbols that are defined differently in the default
system library, you can include your own symbols by specifying your
library with the /LIBRARY qualifier.

4.3 DEFAULT SYSTEM LIBRARY

If any unresolved strong references remain after the 1linker has
processed all your input, it begins a search of the default system
library. This "library" is in fact two files: one a shareable image
called VMSRTL.EXE and the other an object library called STARLET.OLB.
Both files reside on the device and directory given by the translation
of SYSSLIBRARY.

4.3.1 VMSRTL.EXE

If the linker needs to search the default system library, it searches
the VMSRTL shareable image first. This shareable image contains most
of the procedures described in the VAX-11 Common Run-Time Procedure
Library Reference Manual, including many routines required by almost
all FORTRAN programs.

LIBRARIES

If the linker finds no symbols that it needs in the shareable image,
it proceeds to search the object library STARLET and does not include
the shareable image VMSRTL in the image being created.

You can use the /NOSYSSHR qualifier to the LINK command to suppress
the linker's search of this shareable image (see Chapter 5).

4.3.2 STARLET.OLB

STARLET.OLB is an object module library in the form discussed in this
chapter. It contains all of the object files that were used to create
the shareable image version of the Run-Time Library, as well as many
less frequently used procedures of the same class. This object
library also contains modules for interfacing to VAX/VMS system
services.

The linker searches SYSSLIBRARY:STARLET.OLB if any unresolved strong
references remain after it has searched SYSSLIBRARY:VMSRTL.EXE.

You can use the /NOSYSLIB qualifier to the LINK command to suppress
the 1linker's search of both STARLET.OLB and VMSRTL.EXE (see Chapter
5).

4.4 EXAMPLE OF USING LIBRARIES

The following example shows how you can specify both explicit and
implicit inclusion of modules from libraries. (The file types need
not be entered, but are included here for clarity.)

$ LINK LAUREL.OBJ,HARDY.OBJ,-
MINE2.0OLB/INCLUDE=MODULEZ ,-
MINE3.OLB/LIBRARY

These statements tell the linker:
1. Link the object modules LAUREL and HARDY.

2. Extract MODULEZ from the library MINE2 and link it with the
object modules LAUREL and HARDY.

3. If any unresolved strong references remain in LAUREL, HARDY,
or MODULEZ, search the library MINE3, and extract and link in
any modules needed to resolve these references.

4, For any strong references that are still unresolved, search
the default system library.

Note that the linker will not search MINE3.0OLB and the default system
library if the only unresolved references are weak references. For a
discussion of weak references, see Section 3.2.2.4.

TN

CHAPTER 5

THE LINK COMMAND

To invoke the VAX-11l Linker, use the DIGITAL Command Language (DCL)
LINK command. You can enter the LINK command interactively, or you
can include it in a command procedure.

The LINK command recognizes a number of command qualifiers and file
qualifiers. A command qualifier conveys information about the linking
operation and the image to be created -- for example, whether to
generate an image map, or whether to include a debugger in the image.
A file qualifier specifies information about a file that is input to
the linker =-- for example, identifying the file as a library. Some
qualifiers are valid only if they are used with other gualifiers, and
some qualifiers are incompatible with other .qualifiers.

This chapter discusses the LINK command and its qualifiers; however,
it is not concerned with command syntax. Syntax deals with the rules
for entering commands, such as how to specify a continuation line, or
the number of characters you must enter before the command interpreter
can recognize the entry. This chapter discusses matters of syntax
only where necessary to avoid errors or misunderstanding, and uses
spellings that most clearly suggest a qualifier's function. For
detailed information .on command syntax, see the VAX/VMS Command
Language User's Guide.

5.1 COMMAND FORMAT
The LINK command has the following format:
$ LINK/command-qualifier... file-spec/file-qualifer,...

You must enter at least the LINK command name and one input file name.
You can enter multiple command qualifiers and file specifications, and
one or more file qualifiers for each file specification.

Slashes (/) separate qualifiers from each other and from the command
name or file specification with which they are associated. One or
more spaces normally separate the 1last command qualifier from the
first 1input file specification. Commas precede the second and
subsequent input file specifications.

5-1

THE LINK COMMAND

The following examples show some acceptable formats of the LINK
command (Section 5.3 explains these examples).

$ LINK PROGA
$ LINK/MAP/DEBUG PAYROLL,FICA,PAYLIB/LIBRARY

$ LINK/MAP/FULL/EXECUTABLE=STOOGES CURLY,-
LARRY ,MOE,TVLIB/INCLUDE=OLDIES, -
GOODIES/LIBRARY ,SLAPSTICK/OPTIONS

The names assigned to the image file, the map file, and other output
files depend on the first input file name, unless you specify
differently. In the second of the preceding examples, the image file
and the map file will be named PAYROLL. In the third example, the
image file will be named STOOGES, because you so specified with the
/EXECUTABLE qualifier, but the map file will be named CURLY. (To name
the map file STOOGES, you must specify /MAP=STOOGES.)

5.2 COMMAND AND FILE QUALIFIERS

You can enter many command and file qualifiers, but normally you will
not need to, because most gqualifiers have default values that the
linker uses if you omit the qualifier.

Some qualifiers are incompatible with certain other qualifiers. The
linker takes one of two actions with incompatible qualifiers;
-depending on the specific case, it might display an error message and
invalidate the entire LINK command, or it might ignore or override
certain qualifiers (generally accepting only the last valid one) and
allow the 1link to continue. For example, if you specify /FULL and
/BRIEF for the map, the linker rejects the entire command. But if you
specify the positive and negative forms of a qualifier (say,
/EXECUTABLE and /NOEXECUTABLE), the 1linker accepts the last one
entered.

Tables 5-1 and 5-2 list the command and file qualifiers, the default
value for each, and any incompatible qualifiers. A [NO] indicates
that the qualifier can be negated by prefixing NO (without
brackets) -- for example, /NODEBUG or /NOEXECUTABLE. Any entry after
the qualifier is valid only for the positive form of the qualifier;
for example, it would be nonsense to enter /NOEXECUTABLE=PAYROLL.

/ AN

THE LINK COMMAND

Table 5-1
Command Qualifiers

Incompatible
Command Qualifier Default Qualifiers
/BRIEF Default map /NOMAP, /FULL,

/ [NO] CONTIGUOUS

/ [NO] CROSS_REFERENCE

/NOCONTIGUOUS

/NOCROSS_REFERENCE

/CROSS_REFERENCE
/NOEXECUTABLE

/NOMAP , /BRIEF

/[NO]DEBUG[=file-spec] /NODEBUG /NOTRACEBACK,
/SHAREABLE, /SYSTEM
/[NO]EXECUTABLE [=file-spec] /EXECUTABLE /SHAREABLE
/FULL Default map /NOMAP , /BRIEF
/[NO]MAP[=file-spec] /NOMAP
/ [NO] SHAREABLE [=file-spec] /NOSHAREABLE /SYSTEM, /DEBUG,
/EXECUTABLE
/[NO] SYMBOL_TABLE[=file-spec] | /NOSYMBOL_TABLE
/[NO] SYSLIB /SYSLIB
/ [NO] SYSSHR /SYSSHR /NOSYSLIB
/[NO] SYSTEM[=base-address] /NOSYSTEM /DEBUG, /SHAREABLE
/ [NO] TRACEBACK /TRACEBACK
Table 5-2
File Qualifiers
Incompatible
File Qualifier Default Qualifiers

/INCLUDE=module-name[,...] (Does not apply)

All others, except

/LIBRARY
/LIBRARY File is an object All others, except
module. /INCLUDE
/OPTIONS File is an object All others

/SELECTIVE_SEARCH

/SHAREABLE

module.

File is an object
module.

Include all module | All others, except
global symbols in
the image's global
symbol table.

/SHAREABLE

All others, except
/SELECTIVE_SEARCH

THE LINK COMMAND

Sections 5.2.1 and 5.2.2 discuss the command qualifiers and file
qualifiers individually. Within each section the qualifiers are
presented in alphabetical order.

5.2.1 Command Qualifiers
/BRIEF

/BRIEF produces a brief form of the image map. A brief map
contains only the following sections:

® Object Module Synopsis
e Image Synopsis
e Link Run Statistics

A brief map does not contain the Program Section Synopsis and the
Symbols by Name sections, which are included in the default map.

/BRIEF is valid only if you specified /MAP previously in the LINK
command. /BRIEF is incompatible with /FULL and /CROSS_REFERENCE.

/CONTIGUOUS
/NOCONTIGUOUS

/CONTIGUOUS forces the entire image to be placed 1in consecutive
disk blocks. If sufficient contiguous space is not available on
the output disk, the linker reports the error and terminates the
link operation without generating an image.

You can use the /CONTIGUOUS qualifier to improve paging
performance for -all types of images, because an image usually
runs slower if it is not contiguous. You can also use the
/CONTIGUOUS qualifier to satisfy the requirement of bootstrap
programs for certain system images, since many bootstrap programs
cannot handle discontiguous images.

If you do not specify /CONTIGUOUS, the linker assumes
/NOCONTIGUOUS by default. That 1is, 1if sufficient contiguous
space is not available, the 1image 1is divided and placed in
different areas on disk. (However, the operating system still
tries to make the image as contiguous as possible.)

/CROSS_REFERENCE
/NOCROSS_REFERENCE

/CROSS_REFERENCE causes the Symbols by Name section of the image
map to be replaced by a Symbol Cross Reference section, which
lists global symbols in alphabetical order and the following
information about each symbol:

e Its value

e The name of the first module that defines it

® The name of each module that refers to it
The number of symbols listed in the cross reference depends on

whether you specified /FULL for the map or accepted the default
map. A full map contains global symbols from all modules in the

SN

THE LINK COMMAND

image, including modules extracted from libraries. The default
map generally excludes global symbols that are defined and
referred to only within the default system library.

/CROSS_REFERENCE is valid only if you specified MAP previously in
the LINK command. /CROSS_REFERENCE is incompatible with /BRIEF.

If you do not request a cross reference, none is provided; the
map still 1lists global symbols in alphabetical order, but gives
only the value for each one.

/DEBUG[=file~-spec]

/NODEBUG
/DEBUG tells the linker to bind a debugging module into the
image. When the image 1is run, the debugger receives control
first.

If you specify /DEBUG, you can also enter the file specification
of a user-written debug module. If you enter a debugging module
file specification without specifying the file type, the linker
assumes OBJ.

If you specify /DEBUG without entering a file specification, the
linker uses the VAX-11l Symbolic Debugger. This debugger includes
a debug symbol table (discussed in Section 4.2) and coding logic
to help 1in debugging the image at run time. For further
information, see the VAX-11l Symbolic Debugger Reference Manual.

/DEBUG automatically includes /TRACEBACK. If you specify /DEBUG
and /NOTRACEBACK, the 1linker overrides your specification and
includes traceback information. '

If you do not specify /DEBUG, the linker assumes /NODEBUG.

/EXECUTABLE[=file-spec]
/NOEXECTABLE

/EXECUTABLE tells the linker to create an executable image, as
opposed to a shareable image or a system image. You can also
enter a file specification for the image; however, if you do not
enter one, the linker uses the file name of the first input file
and the file type of EXE.

/NOEXECUTABLE tells the 1linker to perform all the actions
involved in creating an executable image, but not to output it.
You can use /NOEXECUTABLE to test combinations of files and
qualifiers without actually creating an image.

If you do not specify /NOEXECUTABLE, /SHAREABLE, or /SYSTEM, the
linker assumes /EXECUTABLE.

/FULL

/FULL produces the most complete map of the image. The full map
contains all the sections found in the default map, although
several sections contain more detailed information. The full map
also contains two sections not found in the default map.

THE LINK COMMAND

The following sections of a full map contain information about
all modules in the image. (In the default map, these sections
generally omit information about modules from the default system

library.)
® Object Module Synopsis
® Program Section Synopsis

® Symbols by Name

The following sections are included in a full map, but not in the

default map:
e Image Section Synopsis
e Symbols by Value

For illustrations and explanations of the image map sections,
Chapter 7.

/FULL is valid only if you specified /MAP previously in the
command. /FULL 1is incompatible with /BRIEF, but not
/CROSS_REFERENCE.

/MAP[=file-spec]
/NOMAP

see

LINK
with

/MAP causes the linker to create an image map as a separate file.
You can enter a file specification for the image map file;

however, if you do not enter one, the linker uses the file

name

of the first input file. 1If you do not enter a file type after

the file name, the linker assumes a file type of MAP.

If you enter /MAP, you can further specify the contents of
map with the /BRIEF, /FULL, and /CROSS_REFERENCE qualifiers.

the
If

you enter /MAP and no related qualifier, the 1linker produces a

default map that contains the.following sections:
® Object Module Synopsis
e Program Section Synopsis
e Symbols by Name
e Image Synopsis
e Link Run Statistics

For illustrations and explanations of the image map sections,
Chapter 7.

If you do not specify /MAP, the default is /NOMAP; that is,
linker does not generate an image map.

/SHAREABLE [=file-spec]
/NOSHAREABLE

see

the

/SHAREABLE tells the linker to create a shareable image. (For an
explanation of shareable images, see Section 2.6.2 and Chapter
8.) You can also enter a file specification for the shareable
image; however, if you do not enter one, the linker uses the

file specification of the first input file.

THE LINK COMMAND

You cannot run a shareable image, but you can link it with object
modules or other shareable images. (See the explanation of the
/SHAREABLE file qualifier in Section 6.1.2.)

If you specify /SHAREABLE, vyou cannot specify /EXECUTABLE,
/SYSTEM, or /DEBUG.

If you do not specify /SHAREABLE, the linker assumes
/NOSHAREABLE; that is, the image is not a shareable image. (See
the explanation of the /EXECUTABLE command qualifier in this
section.)

/SYMBOL_TABLE [=file-spec]
/NOSYMBOL_TABLE

/SYMBOL_TABLE tells the linker to create a separate file, with a
default file type of STB, containing the image's global symbol
table. This qualifier does not affect the global symbol table in
the image itself; rather, it causes an additional global symbol
table to be created in object module format. You can also enter
a file specification for the global symbol table file; however,
if you do not make this entry, the linker uses the name of the
first input file. '

You can include the symbol table file as input to future 1linking
operations, Jjust as if it were an object module. For further
information, see Section 3.3.1.

If you do not specify /SYMBOL_TABLE, the linker assumes
/NOSYMBOL_TABLE; that is, it does not generate a symbol table
file.

/SYSLIB
/NOSYSLIB

/SYSLIB tells the linker to search the default system library for
unresolved strong references to global symbols after it has
searched any specified user libraries. You will probably want
the 1linker to search the default system library for almost all
linking operations. If you do not specify /NOSYSLIB, the 1linker
assumes /SYSLIB by default.

/NOSYSLIB tells the linker not to search the default system
library. You should specify /NOSYSLIB only if you know that
other specified 1libraries allow the linker to resolve all
symbolic references, and if you have a good reason for
suppressing the system library search.

/SYSSHR
/NOSYSSHR

/SYSSHR tells the linker to search the default system run time
library shareable image (SYSSLIBRARY:VMSRTL.EXE). If any symbol
within this image resolves an outstanding . reference, the
shareable image is included in your program as the
highest-addressed part of the program region.

The primary use of this qualifier, however, 1is to express its
negative form. /NOSYSSHR tells the linker not to try to resolve
symbolic references by including the default system shareable
image. Note, however, that /NOSYSSHR has no effect upon the
search of the default system object library
(SYSSLIBRARY:STARLET.OLB).

THE LINK COMMAND

You might specify /NOSYSSHR, for example, when you need only one
library routine for a particular program. Since the shareable
image VMSRTL contains many routines, all of which would be
mapped, it would be inefficient to include all the routines if
you need only one. /NOSYSSHR directs the linker to use only the
default object library, which includes all the routines found in
VMSRTL.

/SYSTEM[=base-address]
/NOSYSTEM

/SYSTEM tells the linker to create a system image. (For an
explanation of system images, see Section 2.6.3.) You can also
specify a base address at which the system image will be loaded
at run time, and you can express this address in decimal (%D),
hexadecimal (%X), or octal (%0). If you specify /SYSTEM without
a base address, the linker assumes %X80000000.

If you specify /SYSTEM, you cannot specify /SHAREABLE or /DEBUG.

If you do not specify /SYSTEM, the 1linker assumes /NOSYSTEM;
that 1is, the image is not a system image. (See the explanation
of the /EXECUTABLE command qualfier in this section.)

/TRACEBACK
/NOTRACEBACK

/TRACEBACK tells the linker to include traceback information 1in
the image. Traceback is a facility that automatically displays
information from the «call stack when a fatal program error
occurs. The - output shows which modules were called before the
error occurred.

The linker assumes /TRACEBACK unless you exclude the facility by
specifying /NOTRACEBACK. If you enter /DEBUG, the 1linker
automatically includes traceback also; therefore, if you specify
both /DEBUG and /NOTRACEBACK, you receive a warning that
/NOTRACEBACK has been ignored.

5.2.2 File Qualifiers
/INCLUDE=module-namel[,...]

/INCLUDE tells the linker to include the named module or modules
from the associated library in the image. (To specify more than
one module, enclose the list in parentheses and separate module
names with commas.) /INCLUDE does not cause the linker to search
the rest of the associated 1library for wunresolved references,
unless you also specify /LIBRARY. For further information on
libraries, see Chapter 4. ‘

The following two examples show uses of the /INCLUDE gqualifier
with a library named REDS that contains many modules, among them
ROSE, MORGAN, and BENCH.
$ LINK TEAM,REDS/INCLUDE=(ROSE,MORGAN,BENCH)

This example tells the linker to extract modules ROSE, MORGAN,
and BENCH from the 1library REDS and include them in the
executable image which will be named TEAM (since that is the name
of the first input file).

$ LINK TEAM,REDS/LIBRARY/INCLUDE= (ROSE ,MORGAN ,BENCH)

5-8

THE LINK COMMAND

This example also tells the linker to include ROSE, MORGAN, and
BENCH in TEAM. However, the /LIBRARY qualifier tells the linker
to search the rest of the library REDS and 1link in any other
modules needed to resolve strong symbolic references in TEAM,
ROSE, MORGAN, and BENCH.

/LIBRARY

/LIBRARY identifies a file as a library. The linker searches
libraries that you specify if any unresolved strong symbolic
references between modules remain after it 1links in the named
input files and any library modules specified with the /INCLUDE
qualifier. For further information on libraries, see Chapter 4.

/LIBRARY cannot be the only qualifier on the first input file,
since there are as yet no outstanding references to be resolved
from this library.

/OPTIONS

/OPTIONS identifies a file as a linker options file. This file
can contain input file specifications, as well as special
instructions recognized only by the linker and not by the command
interpreter.

Chapter 6 explains how to create an options file and what it can
contain. Chapter 6 also discusses each of the special
instructions you can include in the options file.

/SELECTIVE_SEARCH

/SELECTIVE_SEARCH tells the linker to include in the image's
global symbol table only those global symbols in the associated
file that previously named input files refer to. If you do not
specify /SELECTIVE SEARCH for an input file, all of its global
symbols are included in the global symbol table of the image.

/SHAREABLE

/SHAREABLE as an input file qualifier is wvalid only within a
linker options file. Section 6.1.2 explains the use of the
/SHAREABLE file qualifier.

EXAMPLES
1. $ LINK PROGA

The linker binds the object module PROGA and creates an
executable image named PROGA. The linker searches only the
default system library for any unresolved strong symbolic
references in PROGA.OBJ. All linker defaults are used.

2. $ LINK/MAP/DEBUG PAYROLL,FICA,PAYLIB/LIBRARY

The linker binds object modules PAYROLL and FICA, searching
the 1library PAYLIB for unresolved strong references in the
two object modules before searching the default system
library. The 1linker also includes the VAX-11 Symbolic
Debugger in the image.

The name of the executable image is PAYROLL. The linker also

generates an 1image map (in the default map format) with a
file name of PAYROLL and a file type of MAP.

5-9

3.

THE LINK COMMAND

$ LINK/MAP/FULL/EXECUTABLE=STOOGES CURLY,-
LARRY ,MOE,TVLIB/INCLUDE=OLDIES,-
GOODIES/LIBRARY ,SLAPSTICK/OPTIONS

The linker binds object modules CURLY, LARRY, and MOE, as
well as the module OLDIES from the library TVLIB. The linker
searches the library GOODIES for any unresolved symbolic
references in CURLY, LARRY, MOE, and OLDIES, before searching
the default system library. The linker uses the options file
SLAPSTICK for additional input file specifications or special
instructions.

The linker generates a full map, with the default file name
of CURLY and the file type of MAP. The executable image is
named STOOGES.

CHAPTER 6

THE /OPTIONS FILE QUALIFIER

The /OPTIONS file gqualifier identifies a linker options file. You can
include two types of information in this file:

e Input file specifications and associated file qualifiers, in
addition to any that you enter in the LINK command itself

® Special instructions to the 1linker that are not available
through the standard command language

When you specify an options file at link time, the 1linker reads the
file before performing the linking operation.

6.1 USES FOR AN OPTIONS FILE

You can create an options file and use the /OPTIONS qualifier for .a
number of reasons:

® To give the linker a series of file specifications and file
qualifiers that you use frequently in linking operations

e To identify a shareable image as an input file to the 1link
operation

® To enter a longer list of files and file qualifiers than the
VAX/VMS command interpreter can hold 1in its command input
buffers

® To specify information that applies only to LINK and' to no
other command

6.1.1 Entering Frequently Used Input Specifications

You <can create an options file containing a group of file
specifications and file qualifiers that you link frequently, and you
can specify this options file as input to the linker. The advantages
of this method are convenience and flexibility. Consider the
following two examples.

1. You want to <create an executable image named PAYROLL
containing modules named PAYCALC, FICA, FEDTAX, STATETAX, and
OTHERDED. You also want to be able to make changes to any of
the modules and conveniently relink the image.

THE /OPTIONS FILE QUALIFIER

To accomplish these goals, you can use the EDIT command to
create the file PAYROLL.OPT containing the file
specifications of the five modules. Then, to link the image
initially or to relink it any time thereafter, you can simply
enter $ LINK PAYROLL/OPTIONS, instead of having to enter the
/EXECUTABLE=PAYROLL qualifier and the file specifications of
all the input modules each time. (Note that wusing the
options file in this example produces an image named
PAYROLL.) The more file specifications and file qualifiers
you have in an options file, the greater is the convenience
of using it.

2. Two programmers, one writing PROGX and the other PROGY, both
need to include the modules MODA, MODB, and MODC, and to
search the library LIBZ. Someone can create an options file
(say, [G1l5]GROUP15.0PT) containing the file specifications
for MODA, MODB, and MODC, and the specification for LIBZ
followed by /LIBRARY. At link time, then, each programmer
needs to specify only the name of his or her module and the
options file-- for example:

$ LINK/MAP PROGX, [G15] GROUP15/0OPTIONS

6.1.2 Identifying a Shareable Image as Input

To identify a shareable image as an input file to the linker, you must
use the /SHAREABLE file qualifier within an options file. (If you
include /SHAREABLE in the LINK command, the command interpreter
assumes that it is a command qualifier, not an input file qualifier.)

The format for /SHAREABLE as an input file qualifier is as follows:
/SHAREABLE [=[NO] COPY]

e /SHAREABLE identifies the associated input file as a shareable
image.

@ You can optionally specify COPY or NOCOPY as keywords. COPY
causes the 1linker to produce a private copy of the shareable
image in the 1image being created. NOCOPY, which 1is the
default, causes the linker not to produce a private copy.

6.1.3 Entering More Input Than the Command Language Can Handle

At times you may need to 1link a series of input files and file
qgualifiers that exceeds the buffer capacity of the command
interpreter. The maximum number of entries depends on the specific
entries themselves and how much of each line you use. However, as a
general guideline, if your LINK command statement exceeds six or seven
lines, the command interpreter may not be able to process it. In this
case, you must put some or all of the input file specifications and
file qualifiers in an options file.

6.1.4 Entering Non-Standard Link Instructions

The linker is more complex than most VAX/VMS utilities; it can
perform a number of optional functions in creating an image. Although
the LINK command could have been designed to accept a very large

oY

S

THE /OPTIONS FILE QUALIFIER

number of command qualifiers, some of these optional functions are not
frequently used and apply only to the linker-- for example, specifying
the image's base address or the number of I/0 channels it can use.

Therefore, to keep the size of the command interpreter's internal
tables and code to a manageable level, the /OPTIONS qualifier was
developed. /OPTIONS is recognizable to the command interpreter, but
the special functions that the options file can specify are
recognizable only to the linker. When you specify an options file,
then, the command interpreter passes the file to the linker, which
reads and interprets its contents.

Table 6-1 lists the special functions that you can request only in an
options file, giving the following information for each: its format,
the default value, and a brief explanation. Section 6.3 provides
detailed explanations of each special function.

Table 6-1
Special Options

Format Default Explanation
BASE=n %$X200 for executable Base virtual
and shareable address for the
$X80000000 for image
system
CHANNELS=n At least 32 Maximum number of

I/0 channels the
image can use
during execution

CLUSTER=cluster-name,- | (See explanation Identifies a
[base~address] , - in Section 6.3.) cluster
[pfc]l,file-spec[,...]

DZRO_MIN=n 5 Minimum number of
initialized pages
before compression
can occur

GSMATCH=keyword, - LEQUAL,O0,0 Sets match control
major-id,minor-id parameters of a -
shareable image

IOSEGMENT=n, - 32, POBUFS Number of pages for
[[NO] POBUFS] the image I/0
segment
ISD_MAX=n Approximately 96 Maximum number of
image sections
STACK=n 20 Number of pages for
the user mode stack
UNIVERSAL=symbol-name Global symbol Identifies a global
[,e00]) is not universal symbol as universal

- THE /OPTIONS FILE QUALIFIER

6.2 CREATING AND SPECIFYING AN OPTIONS FILE

To use the /OPTIONS qualifier, you must first create the options file.
Use the EDIT command, specifying any valid file name and a file type
of OPT. (You can use any file type, but the 1linker uses a default
file type of OPT with the /OPTIONS qualifier.)

The options file can contain input file specifications and associated
file qualifiers, or the special link options outlined in Table 6-1, or
both types of information. The following rules apply to the contents
of a linker options file:

1. You must enter any input file specifications and associated
file qualifiers before any special options (see Table 6-1 for
the available special options).

2. You cannot enter command qualifiers.

3. You cannot enter the /OPTIONS file qualifier.

4. You can enter /SHAREABLE as an input file qualifier only in
an options file (see Section 6.1.2).

5. You cannot enter more than one special option on a line.

6. You can continue a file specification 1line or a special
option line.

7. You can enter comments after an exclamation point (!).
8. You can shorten the name of a special option, as long as you
enter at least the first four characters (for example,
CHAN=50 instead of CHANNELS=50).
The following example shows a file named PROJECT3.0PT that contains
both input file specifications and special options:

PROJECT3.0PT

MOD1,MOD7 ,LIB3/LIBRARY,-
LIB4/LIBRARY/INCLUDE=(MODX ,MODY, MODZ) ,-
MOD12/SELECTIVE_SEARCH

CHANNELS=40 !THIS IS A COMMENT.

STACK=75

IOSEG=50

To include all the specifications and options in this example at 1link
time, you need specify only the file name followed by /OPTIONS. For
example:

$ LINK/MAP/CROSS_REFERENCE PROGA, PROGB,-
PROGC, PROJECT3/OPTIONS

If you have enter the SET VERIFY command, the contents of the options
file are displayed as the file is processed.

You can specify one or several options files in a LINK command
statement.

THE /OPTIONS FILE QUALIFIER

6.3 SPECIAL OPTIONS

This section lists the available special options in alphabetical order
and explains each one. Each option has the general format:

option_name=parameter[,...]

If the parameter is a number (indicated by "n"), you can express it in
decimal (%D, the default radix), hexadecimal (%X), or octal (%0).
However, the default and maximum numeric values in this manual are
usually expressed in decimal, as are the values in any linker error or
warning messages relating to these options.

'BASE=n

BASE= sgpecifies the base virtual address of the default
cluster. If you do not define any clusters with the CLUSTER=
option, the BASE= option value also specifies the base virtual
address of the whole image. If you specify an address that is
not divisible by 512, the 1linker automatically adjusts it
upward to the next multiple of 512 (that is, the next highest
page boundary).

The default base address is hexadecimal 200 (decimal 512) for
executable and shareable images, and hexadecimal 80000000 for
system images.

CHANNELS=n

CHANNELS= specifies the maximum number of I/O channels that
the image can use while it is running.

The default number of channels is determined by the operating
system, but it is at least 32. You cannot specify less than
32 or more than 64. If you specify from 0 to 32, the linker
uses the default; and if you specify more than 64, the linker
uses 64.

CLUSTER=cluster—-name, [base—-address], [pfc] ,file-spec|[,...]

CLUSTER= defines a cluster. (Clusters are discussed 1in
Chapters 2, 8, and 9.) The CLUSTER= option specifies the
following information:

e The name the linker will assign to it
e Optionally, the base virtual address of the cluster

e Optionally, the page fault cluster (pfc) -- that |is,
the number of pages to be read into memory when-a
fault occurs for a page in the cluster

® Specifications for the file or files that the 1linker
is to wuse 1in creating the cluster. ©Note that you
should not specify in the LINK command itself any
files that you specify with the CLUSTER= option
(unless you want two copies of each file included 1in
the final image).

If you omit the base address or the page fault cluster, or
both, you must still enter the comma after each omitted
parameter. For example:

CLUSTER=AUTHORS,, ,TWAIN,DICKENS

THE /OPTIONS FILE QUALIFIER

The linker uses the following defaults in connection with the
CLUSTER= option:

e If you do not use the CLUSTER= option, the linker
creates a default cluster, as described in Chapter 9.

e If you use the CLUSTER= option but do not specify a
base address, the 1linker allocates the cluster
according to the procedure described in Chapter 9.

e If you use the CLUSTER= option but do not specify a
page fault cluster, VAX/VMS memory management
determines the value.

DZRO_MIN=n

DZRO_MIN= is an option that gives you some control over the
linker's compression of uninitialized pages in an executable
image. Before the linker writes the binary data and code of
the image, it attempts to compress certain uninitialized areas
by converting them to demand zero image sections. ("Demand
zero" means that the area does not occupy physical space in
the image on disk; but when the area 1is accessed during
execution, a portion of memory 1is allocated for it and
initially filled with binary zeroes.) An uninitialized area is
eligible for this compression if it can be written in by the
user and if its size is equal to or greater than a threshold
value: that 1is, the DZRO MIN= value. The linker will not,
however, continue creating demand zero sections after the
total number of image sections reaches the maximum (see the
ISD_MAX= option in this section).

The default value for DZRO_MIN= 1is 5; that is, an
uninitialized, writeable area is not eligible for compression
unless it occupies five or more contiguous pages. A DZRO_MIN=
value 1less than 5 might cause the linker to compress more
sections and create a greater number of image sections,
possibly reducing the image size on disk but decreasing its
paging performance. A value greater than 5 might cause the
linker to compress fewer sections and create a smaller number
of image sections,. possibly increasing the image size on disk
but providing better performance during execution.

GSMATCH=keyword,major-id,minor-id

GSMATCH= sets the match control parameters for a shareable
image that you are now creating. After the shareable image
-has been 1linked with an executable image, and when the
executable 1image 1is being run, these parameters guide the
VAX/VMS image activator in choosing global sections. For
further information on this process, see Section 8.2.3.

The GSMATCH= option specifies the following information:

® A keyword expressing the match relationship between
the minor identifications in the user shareable image
section and in the installed global section. This
keyword is one of the following:

- EQUAL The minor identification of the user
shareable 1image section must be identical to that
of the installed shareable image section.

THE /OPTIONS FILE QUALIFIER

- LEQUAL The minor identification of the user
shareable image section must be less than or equal
to that of the installed shareable image section.
LEQUAL is the default, since it permits the creator
of a shareable image to update it (increasing the
minor identification) and install it, and yet avoid
the need for programs using that shareable image to
be relinked. (The minor identification of that
shareable image section in programs that are linked
to it will be less than the minor identification of
the updated installed shareable image section.)

- NEVER The linker is to assume that global sections
will never match (perhaps because the shareable
image will never be installed). Therefore, the
linker will always create a private copy of this
shareable image in any image -that links to it.
(This keyword overrides any stated or defaulted
NOCOPY keyword in the /SHAREABLE file qualifier in
any subsequent 1link operation that names this
shareable image as an input file.)

- ALWAYS This keyword causes the image activator to
match image sections only by name and to ignore the
major and minor identifications. (However, the
syntax of this option requires that you still enter
‘major and minor identifications.)

® The major identification of the user shareable image
section, expressed as a number from 0 to 255.

® The minor identification of the user shareable image
section, expressed as a number from 0 to 2%*24-1.

The linker uses the following defaults for the GSMATCH=
option:

GSMATCH=LEQUAL,0,0

IOSEGMENT=n[, [NO] POBUFS]

IOSEGMENT= specifies the number of pages for the image 1I/0
segment, which holds the buffers and VAX-11 RMS control
information for all files that the image's process uses. If
the process needs more space than the IOSEGMENT value during
execution, VAX-11l RMS adds space for it at the end of the
program (P0) region.

You can also specify POBUFS or NOPOBUFS as parameters.
POBUFS, which 1is the default, permits RMS to use the program
region (P0) £for any additional buffers that it needs.
NOPOBUFS denies RMS the option of using PO space for
additional buffers.

The default value for IOSEGMENT= is 32,P0BUFS. The only
reason to specify a number of pages greater than the default
is to guarantee that the program region will be contiguous 1if
you need to extend it and if the total size of your program's
buffers and VAX-11] RMS control information exceeds 32 pages.
In this case, you would also want to specify NOPOBUFS.

ISD_MAX=

STACK=n

THE /OPTIONS FILE QUALIFIER

n

ISD_MAX= is an option that gives you some control over the
linker's compression of uninitialized pages in an executable
image. (For an explanation of compression, see the DZRO_MIN=
option in this section.) The ISD MAX= value specifies the
maximum number of image sections allowed in the image. If the
linker is compressing the 1image by .creating demand zero
sections and the total number of image sections reaches the
ISD_MAX= value, the compresson ceases at that point.

The default value for ISD MAX= is approximately 96. Note that
any value you specify 1s also an approximation. The linker
determines an exact ISD_MAX= value based on certain
characteristics of the image, 1including the different
combinations of section attributes. The exact value, however,
will be equal to or slightly greater than what you specify;
it will never be less.

STACK= specifies the number of pages to be allocated for the
image's user mode stack area.

The default value is 20. You may need to increase the stack
size 1if the program fails to run using the default value --
for example, if the stack is used for temporary storage of
data that exceeds 20 pages.

UNIVERSAL=symbol-name[,...]

UNIVERSAL= identifies one or more global symbols of a
shareable image as universal symbols. For a discussion of
universal symbols, see Section 3.2.3.

/ N

CHAPTER 7

IMAGE MAP

If you so request, the linker produces an 1image map containing
information about the contents of the image and about the linking
process itself.

The map is placed on your output disk and assigned a file type of MAP.

- You can specify a file name with the MAP qualifier, or you can let the

VAX-11 software assign a default. You can print a copy of the map
with the PRINT command.

To obtain a map, you must include the /MAP qualifier in the LINK
command. You <can further specify the type of map with the /BRIEF or
/FULL qualifier. 1If you enter either /MAP alone or /MAP with /FULL,
you can also include a symbol cross reference in the map by specifying
/CROSS REFERENCE. However, if you enter /MAP and no other map-related
qualifiers, the linker generates its default map.

The following examples show the LINK command qualifiers necessary to
produce different types of maps:

Command Qualifiers Type of Map Produced
$ LINK/MAP/BRIEF Brief map
$ LINK/MAP Default map

$ LINK/MAP/CROSS_REFERENCE Default map with symbol
cross reference

$ LINK/MAP/FULL Full map
$ LINK/MAP/FULL/- Full map with symbol
CROSS_REFERENCE cross reference

7.1 1IMAGE MAP CONTENTS

A listing of the image map contains several sections; however, the
number of sections and the contents of certain sections depend on the
qualifiers that you enter.

Table 7-1 lists all the possible section names in the order in which
they can appear, the types of map in which each appears, and a brief
explanation of each section. A section shown as appearing in "all" is
included in all types of image maps; "default" and "full" identify
sections appearing in default and full maps, respectively. A Dbrief
map thus contains only the map sections designated as "all." For
detailed explanations and illustrations of map sections, see Section
7.2,

IMAGE MAP

Table 7-1
Image Map Sections

Section Name Appears In Explanation
Object Module Synopsis All Object modules in the image
Image Section Synopsis Full Image sections and clusters
Program Section Synopsis | Default, Program sections and the

Full modular contributions

Symbols by Name Default, Symbols by Name lists
or Full global symbol names and
Symbol Cross Reference . values. However, 1if vyou
specify /CROSS_REFERENCE,
Symbol Cross Reference
appears instead, 1listing
symbol names, values,
defining modules, and

referring modules.

Symbols by Value Full Hexadecimal symbol values

and names of symbols with
those values

Image Synopsis All Statistics and other

information about the
output image

Link Run Statistics All Statistics about the 1link

run that created the image

The contents of the following sections vary depending on whether the
map type is default or full:

Object Module Synopsis
Program Section Synopsis
Symbols by Name

Symbol Cross Reference

The difference between these sections in a default map and in a full
map is in the number of items:

A default map generally includes only information that applies
to modules and shareable images that you name as input to the
linker or that are extracted from 1libraries you name. A
default map normally does not list information that applies
only to modules taken from the default system library.

A full map includes information that applies to all modules
and shareable images, 1including those extracted from the
default system library.

TN

/ \

IMAGE MAP

7.2 IMAGE MAP SECTIONS

The rest of this chapter explains and illustrates each available image
map section. The sections are presented in the order in which they
appear in a full map. Brief and default maps do not have all of these
sections, but the sections that they do have are in the order
presented here.

The illustrations reflect an 1image <created from a simple FORTRAN
program (similar to the example developed in the VAX/VMS Primer).
Each illustration is from a full map. Headings and items in each
illustration are explained only if they are not self-explanatory.

Appendix B illustrates the complete brief, default, and full forms of
the map whose sections appear in this chapter.

7.2.1 Object Module Synopsis

The Object Module Synopsis lists object modules in the order in which
the linker processed them. This section appears in all types of maps.

The Object Module Synopsis provides the following information about
each module listed:

® Module name

® Module identification as it appears in the module header

e Module length in bytes

® Complete file specification for the module

® Module creation date

e Language translator that created the module
The Object Module Synopsis also 1lists any errors that the 1linker
detected when it wrote the binary data and code--for example, a
warning message that a module refers to an undefined symbol. The
message appears immediately below the line that indicates the module

that the linker was processing when the error occurred.

Figure 7-1 illustrates the Object Module Synopsis section.

P-L

MODULE NAME

IDENT RYTES

$————

! OBJECT MODULE SYNOFSIS

4
T
!

+ -

FILE

CREATION DATE

CREATOR

AVERAGE$MAIN 01 202 DER1!:CMURRAYJAVERAGE.DEJ; 2 11-Mau-1978 09:2 VAX-11 FORTRAN IV-FLUS T0,7-92
DEBRUGBOOT o1 8 DEE2:[SYSLIRIDERUG.ORJ;1 02-JUN-1978 1032 VAX-11 MACRO X0.3-10
OTS$LINKAGE 0-3 3 DEB2ILSYSLIBISTARLET.OLE3;2 15-JUN-1978 14!3 VAX-11 MACRO X0.3-11
SYSVECTOR 02 0 DBB2ICSYSLIRISTARLET.OLE;2 25-JUN-1978 152 VAX-11 MACRO X0.3-11
UMSRTL +EXE$14 0 DEB2:CSYSLIBIVMSRTL .EXE;2 10-JUL~1978 00:21 LINK-32 X01.,17
Figure 7-1 Object Module Synopsis
e +
! IMAGE SECTION SYNOFSIS !
+- +
CLUSTER TYFE FAGES RASE ADDR DISK VEN FFC FROTECTION AND FAGING GEL. SEC. NAME MATCH MAJORID MINORID
DEFAULT_CLUSTER 0 1 00000200 2 0 READ ONLY
0 1 00000400 3 0 READ WRITE COFY ON REF
0 1 00000600 4 0 READ ONLY
0 1 00000800 5 0 READ WRITE COFY ON REF
253 20 7FFF0I800 0 0 READ WRITE DEMAND ZERO
© UMSRTL 3 4 00000A00 0 O READ ONLY UMSRTL-001 LESS/EQUAL 0 99
3 48 00001200 0 0 READ ONLY UMSRTL.002 LESS/EQUAL 0 99
4 2 00007200 0 O READ WRITE COFY ON REF UMSRTL.003 LESS/EQUAL. 0 99
Figure 7-2 Image Section Synopsis
P /,/—\\ o PN

dVW JOVWI

IMAGE MAP

7.2.2 1Image Section Synopsis

The Image Section Synopsis lists information about the image sections
in the order in which they are mapped in the image. The Image Section
Synopsis appears only in a full map.

The Image Section Synopsis lists the following information about each
image section:

® Cluster in which the sections were allocated or found

e Type code (used internally by the linker)

e Number of pages

® Base virtual address within the image

@ Base virtual block number within the image file on disk

® Page Fault Cluster (PFC) (Zero indicates that VAX/VMS memory
management determines the value.)

e Protection characteristic ("read-only" or "read/write") and
paging information ("copy on reference," "demand zero," or
blank for standard handling)

® Global section name if the cluster is a shareable image
® Match control of global sections
® Major and minor identification of global sections

Figure 7-2 illustrates the Image Section Synopsis.

7.2.3 Program Section Synopsis

The Program Section Synopsis lists information about program sections
(PSECTs), including relative addresses within the image and PSECT
attributes. This section appears in default and full maps.

The address information enables you to translate an address from a
program module 1listing into a virtual address in the image, and vice
versa. This ability can help you isolate errors or problems in the
image at run time--for example, by allowing you to relate an address
in an error message to a specific location within a specific module.

The attributes of each program section are also 1listed. The linker
considers certain attributes when it groups PSECTs into image sections
(ISECTs). For further information on this process, see Section 2.7.

The Program Section Synopsis lists the following information about
each program section:

® Program section name, in order of increasing base virtual
addresses

e Name of the module or modules that contribute binary data or
code to the program section

® Base and ending virtual addresses, in hexadecimal, of each
module's contribution to the PSECT

IMAGE MAP

Alignment for the start of each module that contributes to the
PSECT. The number that follows the alignment description is
the power of 2 that expresses the 1length in bytes. (For
example, 2 to the power of 2 equals 4, the number of bytes in
a longword.) The alignment column can contain these entries:

- BYTE 0 - Byte alignment (1 byte)

- WORD 1 - Word alignment (2 bytes)

- LONG 2 - Longword alignment (4 bytes)
- QUAD 3 - Quadword alignment (8 bytes)
- PAGE 9 - Page alignment (512 bytes)

Attributes of the PSECT. Most attributes are parts of
contrasting pairs; that is, the PSECT is normally one or the
other. Table 7-2 1lists the attribute abbreviations (in
alphabetical order), their meanings, and any contrasting
attributes. Section 2.5.4 explains the attributes.

Table 7-2
PSECT Attributes
Abbreviation Meaning Contrasts With

ABS Absolute REL
CON Concatenated OVR
EXE Executable NOEXE
GBL Global LCL
LCL Local GBL
LIB Library (from USR

shareable image)
NOEXE Not executable EXE
NOPIC Not position PIC

independent code
NORD Not readable RD
NOSHR Not shareable SHR
NOWRT Not writeable WRT
OVR Overlaid CON
PIC Position independent NOPIC

code ‘ ‘
RD Readable NORD
REL Relocétable ABS
SHR Shareable NOSHR
USR User LIB
WRT Writeable NOWRT

Figure 7-3 illustrates the Program Section Synopsis.

7-6

N

L-L

— +
! FROGRAM SECTION SYNOFSIS !
+- +
P-SECT NAME MODULE(S) BASE END LENGTH ALIGN . ATTRIBUTES
$FDATA 00000200 00000233 00000034 (52.) LONG 2 FICsUSRsCONsRELsLCLs SHRsNOEXE, RDsNOWRT
AVERAGESMAIN 00000200 00000233 00000034 (52.) LONG 2
$LOCAL 00000400 0000040E 0000000C (12,) LONG 2 PIC,USRsCONsRELsLCLyNOSHRyNOEXEs RDs WRT
AVERAGE$MAIN 00000400 0000040E 0000000C (12.) LONG 2
$CODE 00000600 00000689 0000008A (138.) LONG 2 FIC,USRsCONsRELsLCLs SHR» EXEs RDsNOWRT
AVERAGE$MAIN 00000600 00000689 0000008A (138.) LONG 2
OTS$CODE 0000068C 0000048E 00000003 (3.) LONG 2 FIC,USRsCONsRELsLCLy SHRy EXEs RDsNOWRT
OTS$LINKAGE ~ 0000048C 000004BE 00000003 (3.) LONG 2
+ BLANK . 00000800 00000807 00000008 (8.) BYTE O NOPIC,USR»CONsRELsLCLsyNOSHRy EXEs RDs WRT
DERUGEOOT 00000800 00000807 00000008 (8.) BYTE 0
OTS$LINKAGE 00000808 00000808 00000000 (0.)> BYTE 0
SYSVECTOR 00000808 00000808 00000000 (0.) BYTE 0

Figure 7-3 Program Section Synopsis

dVH JOVUNWI

IMAGE MAP

7.2.4 Symbols by Name

The Symbols by Name section lists global symbols in alphabetical order
and gives the hexadecimal value of each one. The value may have one

of the following suffixes: -R for a relocatable symbol, -U for a
universal symbol, -RU for a relocatable universal symbol, -W for a
weak definition, or -* for an undefined symbol. (The linker assigns a

value of zero to undefined global symbols.)

The Symbols by Name section appears only in a default or full map that
does not have a cross reference. If you include /CROSS_REFERENCE in
the LINK command, this section is replaced by the Symbol Cross
Reference section.

Figure 7-4 illustrates the Symbols by Name section.

SYMBOLS EY NAME

+ -+

+ -+

SYMBOL VALUE SYMROL VALUE
AVERAGES$MAIN 00000600-R

FOR$IO_END 00000CAB~RU

FOR$IO_F_.R 00000CRO~-RU

FOR$IO_L.R 00000C0O~-RU

FOR$REAL._SF 00000C50-RU

FOR$STOF 00000E40-RU

FORSWRITE_SF 00000C88-RU
LIB$K_VERSION 00000600
OTS$LINKAGE 0000068C~R
SYS$IMGSTA 80000168

Figure 7-4 Symbols by Name Section

7.2.5 Symbol Cross Reference

The Symbol Cross Reference section lists global symbols in
alphabetical order and gives the following information about each one:

® Value in hexadecimal. The value can have one of the following
suffixes: -R for relocatable, -W for a weak definition, -%
for undefined, -U for wuniversal, or RU for relocatable
universal.

e Name of the first module that defines the symbol (blank if the
symbol is undefined). ’

e Name of each module that refers to the symbol. The name has
the prefix WK- if the module makes a weak reference to the
symbol.

The Symbol Cross Reference appears only in a default or full map for
which you specify /CROSS_REFERENCE. It replaces the Symbols by Name
section.

A primary value of the Symbol Cross Reference is that it shows which
modules are affected by each symbol. For example, if you want to
change a symbol definition, the Symbol Cross Reference tells you where
it is defined and what other modules may be affected by the change.

Figure 7-5 illustrates the Symbol Cross Reference section.

IMAGE MAP

SYMROL CROSS REFERENCE

-+ - 4
+ -+

SYMBOL VALUE DEFINED RY REFERENCED BY ...
AVERAGE$MAIN 00000600-R AVERAGE$MAIN

FOR$IO_END 00000CAB-RU UMSRTL AVERAGE$MAIN
FOR$IO.F_.R 00000CEO-RU UMSRTL: AVERAGE$MAIN
FOR$IO.L.R 00000CII0-RU UMSRTL AVERAGE$MAIN
FOR$READ._SF 00000CS0~RU UMSRTL AVERAGE$MAIN
FOR$STOF 00000E&0-RU UMSRTL AVERAGESMAIN
FOR$SWRITE.SF 00000C88~-RU UMSRTL AVERAGESMAIN
LIB$K_VERSION 00000600 OTS$LINKAGE

OTS$LINKAGE 0000068C-R OTS$LINKAGE AVERAGE$MAIN
-SYS$IMGSTA 800001468 SYSVECTOR

Figure 7-5 Symbol Cross Reference

7.2.6 Symbols by Value

The Symbols by Value section lists the hexadecimal values of global
symbols in ascending numeric sequence, with the symbol or symbols that
correspond to each value. An R- prefix to the symbol name indicates
that the symbol is relocatable, and a U- prefix indicates that the
symbol is universal. :

This section appears only in a full image map.

Figure 7-6 illustrates the Symbols by Value section.

SYMEOLS RY VALUE

-+ -+
+ -+

VALUE SYMEOLS...
00000600 R-AVERAGE$MAIN LIR$K_VERSION
0000068C R-0TS$L INKAGE

00000C50 RU-FOR$READ..SF

00000C88 RU~FOR$WRITE.SF

00000CA8 RU-FOR$IO.END

Q0000CRO RU-FOR$IO.F_R

00000CD0 RU-FOR$IO0O..L.R

00000E&0 RU-FOR$STOF

800001468 SYS$IMGSTA

KEY FOR SFECIAL CHARACTERS AROVE:

! % - UNDEFINED !
! U - UNIVERSAL !
! R - RELOCATAEBLE !
! WK - WEAK !

Figure 7-6 Symbols By Value

7.2.7 Image Synopsis

IMAGE MAP

The Image Synopsis, which appears in all maps, gives miscellaneous
information about the output image. The items are self-explanatory.
Numbers are decimal if they are followed by a point (.); otherwise,

they are hexadecimal.

Figure 7-7 illustrates the Image Synopsis section.

VIRTUAL MEMORY ALLOCATED?

STACK SIZE:

IMAGE HEADER VIRTUAL ELOCK LIMITS?
IMAGE BINARY VIRTUAL EBLOCK LIMITS?
IMAGE NAME AND IDENTIFICATION:?
NUMBER OF FILES?

NUMBER OF MODULES?

NUMBER OF FROGRAM SECTIONS:

NUMEBER OF GLORAL SYMEOLS:

NUMBER OF IMAGE SECTIONS?

USER TRANSFER ADDRESS?

DEBUGGER TRANSFER ADDRESS:

IMAGE TYPE?

MAF FORMAT!

ESTIMATED MAF LENGTH?

00000200 00007S5FF 00007400 (294946. RYTES, 58. FAGES)
20. PAGES
1. 1. ¢ 1. BLOCK)
2. Se (4, RBLOCKS)
AVERAGE 01
40
50
9‘
10.
80
00000600
00000800
EXECUTAELE.,
FULL IN FILE "DR1?!LCMURRAYIAVERAGE.MAF3;3*®
26. BLOCKS

Figure 7-7 1Image Synopsis

7.2.8 Link Run Statistics

The Link Run Statistics section, which appears in all maps, gives

statistics of the 1link
self-explanatory.

run that produced the image. The items are

Figure 7-8 illustrates the Link Run Statistics section.

T1-L

LINK RUN STATISTICS

+ -+

PERFORMANCE INDICATORS FAGE FAULTS
COMMAND FROCESSING:- 15
PASS 18- : 48
ALLOCATION/RELOCATION: - 2
PASS 21— 7
MAF DATA AFTER ORJECT MODULE SYNOFSIS:- 11
SYMBOL TABLE OQUTFUT!- 0

TOTAL RUN VALUES:- 83

-+ -

CFU TIME

00:00:00.07
00:00:00.47
00:00:00.03
00:00:00.21
00:00:00.15
00:00:00.,00
002:00:00.923

ELAFSED TIME
00:00:00.13
00:00201.,13
00:00200.32
00:00:00.88
00:00:00.14
00:00:00.12
00:00:02.77

USING A WORKING SET LIMITED TO 180 FAGES ANII 30 FAGES OF DATA STORAGE (EXCLUDING IMAGE)

TOTAL NUMBRER ORJECT RECORDS REAL (BOTH FASSES)! 179

OF WHICH 62 WERE IN LIERRARIES AND 8 WERE DERUG DIATA RECORDS CONTAINING 294 RYTES

267 BYTES OF DEBUG DATA WERE WRITTEN» STARTING AT VEN 6 WITH 1 RLOCKS ALLOCATED

THERE WERE 10 LIERRARY RLOCK READI OFERATIONS
WHICH ENCOMPASSED A TOTAL OF 91 BLOCKS
USING A WINDOW OF 10 BLOCKS

NUMEBER OF MODULES EXTRACTED EXFLICITLY = 0
WITH 2 EXTRACTED TO RESOLVE UNDEFINED SYMEOLS

O LIBRARY SEARCHES WERE FOR SYMROLS NOT IN THE LIBRARY SEARCHELD

A TOTAL OF O GLORAL SYMEOL TARLE RECORDS WAS WRITTEN

Figure 7-8 Link Run Statistics

dVW JOVNWI

™

/ ~

™,

CHAPTER 8

SHAREABLE IMAGES

This chapter describes in detail the nature and use of shareable
images. The material in this chapter is more complex than much of the
earlier material. Therefore, you are presumed to be familiar with the
earlier chapters of this manual, and particularly with Chapter 2.

8.1 SHAREABLE IMAGES: BENEFITS AND USES

The following subsections expand on and add to the discussion in
Section 2.6 of the benefits you can obtain from the use of shareable
images. These subsections also discuss the conceptual nature of
shareable images.

8.1.1 Conserving Physical Memory

Main physical memory is one of the prime resources that any operating
system has to control. The installation of shareable images produces
a set of global sections of memory--one for each image section built
in the shareable image. These global sections are the mechanism by
which sharing is realized, for they can be mapped into the address
space of many processes. The fact that the same physical pages of a
global < section are mapped into many processes means that the
requirements for physical memory are reduced.

8.1.2 Conserving Disk Storage Space

All programs that are executed under the VAX/VMS system must be disk
resident. The use of shareable images, however, provides a way of
reducing the amount of disk space required.

When a shareable image is linked into an executable image, it 1is not
necessary to copy the physical content of the shareable image. The
installation of a shareable image causes the location of that image on
disk to be recorded in the global section data base. The subsequent
running of a program which uses that shareable image causes the
VAX/VMS memory management software to load the copy from the separate
shareable image file. Thus, many programs can reside on disk and be
bound with a particular shareable image, and only one physical copy of
that shareable image file need exist on disk.

SHAREABLE IMAGES

8.1.3 Reducing Paging I/0

Paging occurs when a process attempts to access a virtual address
which 1is not in the process working set. When the fault occurs, the
page either is in a disk file (in which case paging I/0 1is required)
or 1is already in physical memory. One of the causes for a page to be
resident when a fault occurs is that it 1is a shared page, already
faulted by some other process which is sharing it. In this case, no
I/0 operation is required before mapping the page into the working
sets of subsequent processes. Thus, if many processes are using a
shareable image, it 1is very 1likely that 1its pages are already
physically resident.

8.1.4 Using Shared Memory-Resident Data Bases

There are many applications, particularly in data acquisition and
control systems, in which response times are so critical that control
variables and data readings must remain in central memory.
Frequently, many programs must make use of this data.

Shareable images help to simplify the implementation of such
applications. The shared data base may be a named FORTRAN common area
built into a shareable image. The shareable image may also include
routines to synchronize access to such data. When programs of the
application bind with the shareable image, they have easy access to
the data (and routines) at the FORTRAN level.

It is possible, moreover, for such data bases to contain initial
values, and for the most recent values to be written back to disk on
system shutdown or at regular intervals. Recording the values at
regular intervals makes it possible for a system restart to use the
most recent values of the variables of an online process.

8.1.5 Making Software Updates Compatible

A major problem in maintaining a large software installation is how to
incorporate a new version of a piece of software in all programs that
use it. Packaging software facilities as shareable 1images can help
alleviate the problem.

By carefully organizing a shareable image and by using position
independent coding techniques, you can make significant changes and
enhancements to the content of the shareable image and yet eliminate
the need for all images bound with it to be relinked.

8.2 CREATION OF SHAREABLE IMAGES

The previous section described some features of shareable images and
some reasons for their development. This section deals with how to
produce a shareable image.

8.2.1 LINK Command and Pertinent Options

The LINK command for creating a shareable image is similar to that for
any other type of image, except that you must use the
/SHAREABLE [=file-spec] qualifier, which is described in Chapter 5.

Ve .

SHAREABLE IMAGES

The UNIVERSAL= and GSMATCH= options are provided specifically to
control characteristics of shareable images. Chapter 6 describes the
syntax of these options. Sections 8.2.2 and 8.2.3 describe their
purpose.

8.2.2 UNIVERSAL= Option

Universal symbols are the global symbols of a shareable image which
are of use to the programs that subsequently link with the shareable
image. It is possible for none or all of the global symbols of a
shareable 1image to be universal symbols. However, typically a very
small set of the global symbols of the image are universal, since
these -are all that are of use outside the shareable image. Universal
symbols are the only symbols written to the symbol table of a
shareable image.

Most programming languages provide no way of characterizing a symbol

-as universal. (VAX-11 MACRO, however, has a declaration for building

transfer vectors--see Section 8.2.4.) Thus, to tell the 1linker which
symbols are to be universal, the option UNIVERSAL= is provided.

Normally, all the entry points (routine names) provided in a shareable
image are universal symbols. Sometimes, however, other constants are
of interest to users of the facility, and these can also be declared
as universal symbols. Section 8.2.8 contains an example showing the
declaration of several such constants in the Cross Reference Facility
as universal symbols.

8.2.3 GSMATCH= Option

When a shareable image is bound into a user executable image, its
image sections are promoted to global sections. (The VAX/VMS system
uses the same algorithm when a shareable image is installed.) When the
user 1image 1is activated, a search is made of the global section data
base for each of the global sections described in the wuser image
header.

Associated with the global section name, and forming a part of the
name for the search, is a two-part identification field containing a
major identification and a minor identification. During the search
for a global section at image activation time, the global section name
and the major part of the identification must match exactly. The
behavior of the comparison with the minor part of the identification
is determined by a control code which has the following possibilities:

® The minor identifications must match.

@ The minor identification of the global section in the user
image must be less than or equal to that in the global data
base.

The GSMATCH= option is provided to set these parameters when the
shareable 1image is being linked. See Chapter 6 for the format of the
GSMATCH= option.

Another match control available with the GSMATCH= option is "NEVER".
The purpose of this is to specify that the linker must always produce
a private copy of the shareable image in each user image file.

SHAREABLE IMAGES

8.2.4 Transfer Vectors

In its simplest form, a transfer vector is a 1labeled virtual memory
location that contains an address of, or a displacement to, a second
location in virtual memory. This second location is the start of the
instruction stream that 1is of actual interest. In the use of
shareable images under VAX/VMS, such transfer vectors are normally
displacements rather than actual virtual addresses, for reasons of
position independence.

There are two main reasons for transfer vectors in shareable images:

e They make it easy to modify and enhance the contents of the
shareable image.

e They allow you to avoid relinking other programs that are
bound to the shareable image.

In Figure 8-1, the two routines A and B are bound into a shareable
image, which 1is then bound into a user program. No transfer vectors
are used. The user program calls both A and B. Thus, the user
program contains a representation of the addresses of both A and B.

User Program
Routine A
Routine A CALL A
is expanded .
CALL B
---------- |
|
|
Routine B | .
| New position of
| Routine B for
: larger A
1
]]
[A U —

Shareable Image

Figure 8-1 No Transfer Vectors

Using the example in Figure 8-1, assume that it becomes necessary to
alter routine A, adding more code to it. When the shareable image is
relinked, routine A will have the same address; but because it has
increased in size, routine B must be given a "higher" address--higher
by the amount of code added to A. If the wuser program 1is not
relinked, it can successfully call A, since its address has not
changed. However, the call to B would result in a transfer of control
to the o0ld address of B (which 1is now somewhere in the enlarged
routine A), and the desired result would not occur.

In Figure 8-2, the same routines are built into a shareable image, but
this time with transfer vectors at the beginning.

SHAREABLE IMAGES

BRW A-X X —— User Program
Transfer Vectors { | — — — — — — — —
BRW B-Y Y -
CALL A
A :
CALL B
Routine A :

The transfer vector contains
a branch instruction which

B uses a displacement from
vector address to actual
routine.

Routine B The user program -actually
calls the appropriate vector
instruction.

Shareable Image

Figure 8-2 Transfer Vectors

In the case of Figure 8-2, if routine A is expanded and the shareable
image 1is relinked, the contents of the vector will change with no
adverse effect on the user program. This is true so long as the user
program calls the appropriate vector and the vector addresses do not
change.

The use of transfer vectors also allows you to .add new routines to a
shareable 1image without needing to relink programs that use existing
routines. If a third routine (C) were to be added, it would be
desirable not to have to relink a user program that used only A and B.
Without a vector, you would need to link the three routines 1in the

address sequence A,B,C; for otherwise A or B may be in a different
place and all user programs. linked to the shareable image would need
to be relinkea. If you use a transfer vector, however, you can

allocate a new vector location to C (after those for A and B). You
can then link the three routines in any order.

Although you cannot create transfer vectors with FORTRAN, you can do
so easily with VAX-11 MACRO. However, before you can build transfer
vectors, you must define or permit the compiler to define entry
points. With FORTRAN, the definition of entry points is done
automatically, but with VAX-11 MACRO, you must explicitly define them.
As an illustration, assume in the example above that routines A and B
are written in FORTRAN. 1In this case, the two global symbols A and B
are defined as entry points, and the definitions given to the linker
include a description of the registers to be saved by the call
instruction. (You can achieve the same effect by the MACRO directive
.ENTRY. See the VAX-11l MACRO Language Reference Manual.)

To create the transfer vector, you must use the VAX-1l MACRO assembler
language. Consider the following fragment of MACRO code:

.TRANSFER A ;Begin transfer vector to A
.MASK A ;Store register save mask
BRW A+2 ;BR to routine, beyond the

; register save mask

SHAREABLE IMAGES

As the example suggests, register save masks (required at the target
of a CALL instruction) occupy two bytes of memory. Thus, since it is
the vector that you actually call, the register save mask is stored in
the vector. The .MASK directive in the above example allocates the
two bytes and directs the linker to (1) find the register save mask
accompanying symbol A, and (2) write the word as the first two bytes
of the vector. This mask is followed by a branch instruction that
transfers control to the routine A, at the instruction beyond the
entry mask. (This example assumes that A is within 32K bytes of the
vector; otherwise a JMP instruction would be required.)

The .TRANSFER directive has two purposes:

@ It is an implicit universal declaration of symbol A if you are
building a shareable image.

@ It causes the linker to assign the universal symbol A the
address of the vector, rather than the address of the routine
within the image. This occurs after all uses of A within the
shareable image have been given the value within the image.

Thus, all entry points of a shareable image are universal when
vectored in this way. The user program outside the shareable image
can call the routine A in the same way as it would an ordinary object
module.

8.2.5 Shareable and Nonshareable Data

The sharing of routines between two or more processes must address the
issue of whether each process has access to data that one or more
other processes are using. Sometimes this sharing is a requirement,
as 1in the case of industrial data acquisition applications. However,
if a piece of data used by a routine is, say, a loop counter, each
process must have a separate counter, or the routine cannot be shared
simultaneously. Users familiar with this situation recognize this as
part of the problem referred to as reentrancy.

It is for this situation that the shareable (SHR) attribute of program
sections was introduced. As was mentioned in Chapter 2, the linker
allocates program sections with the SHR attribute in separate image
sections from program sections with the NOSHR attribute.

The image activator also treats image sections containing SHR program
sections differently from image sections containing NOSHR program
sections. The linker indicates this difference by an image section
attribute called "copy on reference" in the case of writeable NOSHR
program sections. (If the program section 1is not writeable, all
processes can use the same copy regardless of SHR/NOSHR, since no form
of data privacy or security is currently implemented.)

A copy on reference image section is thus one whose initial contents
are established from the copy contained in the shareable image file,
but which from then on during program execution is treated just like a
user private image section. For each user, completely separate
physical copies are produced for the copy on reference image sections
contained in shareable images, and the system paging file is used to
contain the pages of such sections when they are removed from the
working set.

8-6

SN

e N,

SHAREABLE IMAGES

On the other hand, if an image section is not copy on reference, each
user has access to the same physical copy of its pages. In addition,
when a page of such an image is removed from all user working sets, it
is eventually written back into the shareablle image file on disk.
This last aspect makes it possible to rerun such applications as data
acquisition or transaction processing with the most recent values of
shareable, modifiable data.

Note that the cooperating user programs in such . applications are
responsible for synchronizing access to such data. Note further that
should it be necessary to revert to the initial values c¢f such data,
you must have made a separate copy before running the application the
first time.

The FORTRAN example in Section 8.2.9 shows both of these kinds of
data: variables generated by the compiler and the program are in copy
on reference image sections, whereas the common areas are 1in shared
data regions.’

8.2.6 Position Independence

A position independent piece of code will execute correctly no matter
where it 1is placed in the virtual address space after it is linked.
That is, it can éxecute at an address different from that at which the
linker placed it. This section deals with position independence only
as it concerns shareable images.

A shareable image is position independent if all of the following
conditions are true:

® The only addresses that appear in the image are known to be
fixed in the virtual address space (for example, the system
service vectors of VAX/VMS).

@ All instruction stream references to such addresses use
absolute addressing mode (autoincrement deferred off the PC).

@ All data references to such fixed addresses contain the
complete actual virtual address.

e All references to any other location inside or outside the
image are relative to some base that is added to the address
computation at execution time. For example, in the
instruction stream, PC relative (or displacement from the PC)
addressing mode would be used.

e There is no possibility that, after linking, the relationship
between the target of a reference and the base to which it was
made relative can be changed.

The current version of the linker is unable to verify that all of the
above conditions have been met. Therefore, the following strategy has
been adopted:

e If any base address has been specified, the resultant
shareable image is not position independent.

SHAREABLE IMAGES

® The state of the position independence attribute of the
program sections 1is left to the user, and is considered only
in gathering program sections into image sections. That is,
the linker simply places PIC program sections in separate
image sections from WOPIC program sections.

@ With assistance from the compiler or assembler, the 1linker
produces position independent instruction stream references.
(Refer to the discussion of the general addressing mode in the
VAX-11 MACRO Language Reference Manual.) Basically, this means
that the 1linker will choose the addressing mode (if so
directed) based on the relocatability of the target of the
reference.

e A shareable image that is not position independent is placed
at its 1link time base address when it is subsequently bound
into a user image.

® A shareable image that is position independent 1is allocated
the first (lowest addressed) space sufficient to contain it
when it is subsequently bound into a user image.

® Shareable images that are not position independent are
considered first by the linker.

If shareable images are to be most useful among many processes, they
should be position independent. The VAX-11l instruction set and
addressing modes lend themselves to convenient generation position
independent code. Much of the code generated by the FORTRAN IV-PLUS
compiler is position independent. However, if there are addresses in
data regions (for example, precompiled argument lists), the VAX-11
FORTRAN IV-PLUS compiler indicates the existence of such NOPIC data,
and the 1linker produces a NOPIC shareable image. The only problem
area in MACRO assembler coding 1is the initalization of a data
structure with an address; you are advised to use a self-relative
technique in such cases.

8.2.7 Rules for Creating Upward-Compatible Shareable Images

To be able to make changes to shareable images and not have to relink
users of that shareable image, you must observe the following rules:

e Transfer vectors must not be rearranged or removed.

® The new shareable image must have exactly the same number of
image sections.

8-8

—

N

P

SHAREABLE IMAGES

8.2.8 Example of Transfer Vector and Universal Symbols

Figure 8-3 is a listing of the source for the module which 1is the
transfer vector for the Cross Reference Facility. Figure 8-4 shows
the LINK command and options files used to create the shareable image
CRFSHR on the logical device EXEC$:. Figure 8-5 shows the map that
resulted from this link operation.

Note that of the 27 global symbols in the image, only 14 are of
interest outside the image-- 3 vectored entry points and 11 constants.
Note also that the transfer vector is placed in its own cluster. As
you can see from the example, explicitly defined clusters are
allocated first in the address space. The reason for putting the
transfer vector in its own cluster is to ensure that it is allocated
at the low—-addressed end of the address space.

As was discussed in Section 8.2.4, the values of the transfer vector
symbols retain the values of the routine addresses. (See the listing
of the relocatable universal symbols in the map.)

An example of copy on reference data (described in Section 8.2.5) is
contained in the program section CRF$DATA.

0T-8

ld

zase

RE 1o

(R

agpea

"naa

npan

paee

[S15F.1"]

Hape

anan

5110

HAAR

AR

AR

114

WARKN

uane

LANG

nann

wean

nuaa

AR

AEAn

Haen

NAQR

‘~pan

AARA

anaw

AARG

mQae

ANAA

BHaAn

napa

“pan

e

Waae

MAAA
Agavnnve
anae

tpan

2040° 0Ann
FFFD* 31 we32
wens

veas

aeaa’ wens
FFF8° 31 neay
eOMA

VAGA

Agua’ unpa
FFF3* 31 ad4C
ARVF
vagascen NanF
Hene

61 s+

~
®
e ¢ %5 %o 5 %6 %6 6 %6 %o %a %6 %6 % e V-6 W W6 W e %6 ¢ 48 N8 W Ve W o e W & e we

«SBTTL TRANSFER_VECTORS

FUNCTIONAL DESCRIPTIONZ

THIS MODULE DEFINES THE TRANSFER VECTORS FOR THE ENTRY POINTS CALLED
RY A USER OF CRF, THIS MODULE ENABLES CRF 70 BE LIMNKED AS A SHARABLE IMAGE,

CALLING SEQUENCE?R

NONE

INPUT PARAMETERS:

NONE

IMPLICIT INPUTS:

NONE

QUTPUT PARAMETERS:

NONE

IMPLICIT QUTPUTS:

NONE

COMPLETION CODES:

NONE

SIDFE EFFECTS:

NONE

«PSECT SIVECTOR, A ,CRF,PIC,SHR,NOKRT,EXE

« TRANSFER v CRFSINSRTKEY 3 INSERTS A CROSS REFERENCE KEY
o MASK CRFSINSRTKEY '

BRW CRFIINSRTKEY+?2

. TRANSFER CRFSINSRTREF ; INSERTS A REFERENCE TD A KEY
T MASK CRFFINSRTREF

BRw CRFSINSRTREF+2

. TRANSFER CRFS0UT : OUTPUTS CROSS REFERENCE SUMMARY
. MASK CRFSCUT

BRW CRF3CUT+2

WBLKB 497 : RONDM FOR FUTURE ENTRY POINTS
JEND

8-3 Listing of CRF Transfer Vector

SHDVWI JTIVIYVHS

T1-8

7N
CRFSINSRTREY Wk hek X @2
CRFSINSRTREF ARR RNk X n2
CRFSOUT 322132 X e2
PROGRAM SECTION SYNUPSIS
. ABS . JAIARAAA a0 NOPIC
« BLANK pednuee a1 ~NOPTC
$SVECTOR 2, CRF anued2a9 de PIC

THERE wERE NO ERRQRS OR WARNINGS,
28522, BYTES LEFT IN FREE MEMURY PONL,

USR
USR
USR

0BJSsCRFTFRVEC,LISSSCRFTFRVEC/=SP=SRCH:CRFTFRVEC

@ MLB DIR RDS = 0 GEYS T0 DEFINE @ MACRODS,

Figure 8-3 (Cont.) Listing

1 INTER,

CON ABS LCL NOSHMR NQEXE NORD NOWKT RYTE
con REL LCL NOSHR EXE 2] WRT BYTE
cON KEL LCL SHR EXE RO NOWKRT RYTE

FILE wRITES,

of CRF Transfer Vector

SIOVWI JATVIAIVHS

¢I-8

L} [CRF ,COM]CRFSHRLNK,CGHM

LY

sl COMMAND FILE TO PRODUCE THE SHAREABLE IMAGE GF THE
S CROSS REFERENCE UTILTTY,

5!

SLINK/NOSYSSHR/SHARE=ZEXESSCRFSHR/MAP=MAPSSCRFSHR/FULL/CROSS COMESCRFSHRLNK/UPTINNS

[CRF,COM]}CRFSHRLNK,OPT

OPTIONS FILE TGO LINK CROSS REFERENCE FACTLTTY AS A SHAREABLE IMAGE
CALLED "EXES:CRFSHR,EXE",

THE ONLY KNUWN USER AT PRESENT 1S THE LINKER, NOTE THaT
THIS SHAREABLE IMAGE MUST BE LINKED BEFORE ANY USING
IMAGE ATTEMPTS TO LINK TT IN,

O = o= = 0= 2w b= o= 2= 2w e

BJSICRF/INCLUDES (CRFINSREF, CRFINSKEY,CRFGAL,SRCHINSRT, =
INSRTKEY,GETNEXT,SRCHNODE, RUILDNONE, CRFCUT, =
FINOKEY,ALBLK)

—— e

CREATE A SEPARATE CLUSYEﬁ AT LOw ADDRESSED END FOR THE
TRANSFER VECTORS, E

1

CLUSTER=TRANSFER_ VECTOR,,,0BJS:CRF/INCLUDE=CRF,TRANSFER

!
GSMATCH=LEQUAL, 2,2 ! SET MATCH CONTROL AND
| MAJOR IR = 2, MINNR = 2

UNIVERSAL=CRF8§K_ASCIC,-
CRF¥K, BIN_U32,=
CRF3K, DEF,CRFSK_REF,=
CRFIK, VALUES,=
CRFIK VALS REFS,=
CRFOK, DEFS, REFS, =
CRF3K,DELETE,CRFSK _SAVE,=
CRFEK _NODSIZE, =~
CRFIK,ENTSIZE

-—

UNIVERKSALIZE THE NOM ENTRY
POINT SYMROLS THAT USERS
MAY NEED,

-——

Figure 8-4 Command and Files to Create CRFSHR

SIOVWI JTAVIAIVHS

£T-8

EXESICRFSHR

MODULE NAME
CRF_TRANSFER
CRFINSREF
CRFINSKEY
CRFGBL
SRCHINSRY
INSRTKEY
GETNEXT
SRCHNODE
BUILDNODE
CRFOUT
FINDKFY
ALBLK
SYSVECTOR

IDENT
Xpni.00
Xplenl
le-ui
Xaledl
Xpl.20
Xgi.00
Xg1.00
Xal.n@
Xgl.2Q
Xat.al
Xp1.00
Xatle0d
n2

DBAY; [CRF,0BJ]CRFSHR,EXEs 1

CLUSTER

meeweme

TRANSFER,VECTOR

DEFAULT,CLUSTER

TyPE PAGES
2 2
3 1
e 4
3 6
4 1

4=alG=1978 28217

D LT Ty e pppapppp—y

! OBJECT MNDULE SYNOPSIS !

toevennsvswrransrevnsenawd

BYTES FILE CREATION DATF
512 DBA43 [CRF,CRJ)CRF,OLBst AUmAlG=1978 6115
275 DBAUS[CRF,CRJJCRF,DOLRS1 BU4=aUG=197R 26315
228 0OBAUI[CRF,C0BJ)CRF, OLB)Y AU=AUG=1978 6115

A DRAUE [CRF,ORJICRF,QOLR:1 Ad=AYG=1978 ¢6315S
234 DRA4: [CRF,CRJICRF,OLB:1 A4eAlUG=1978 26216
3193 NBAU: (CRF,CBJ)CRF,OLRs VideAlUG=1978 “6216
223 DBA4: [CRF,CBJICRF,OLB;1 AU=AUG=1978 v6317

B1 DBAds [CRF,CRJICRF,OLBs1 Ad=AUG=197R roi16
149 DBAU: [CRF,CBJ)CRF,OLH:Y WUwAUG=1978 ¢h3i16
1363 DBAUL[CRF,CBJ)CRF,O0LBsY BU=AUG=1978 Coi116
136 DBAL4I[CRF,CRJJCRF,OLBs1 VU=AlG=1978 verte
293 DBAU: [CRF,Q0BJICRF,CLB31 AU=AUG=1978 (6217
@ DBAU:[SYSLIB]STARLET,OLR; WI=AUG=1978 21111

4=AUG=1978 83117

e msvsrcrnsncea T n e et

L IMAGE SECTION SYNODPSIS |

femmmecesammecensenn et

BASE ADDR NDISK VBN PF(C

ANARY20P Y <] 2 READ wRITE COPY OM REF
2AAAR2pHiM 2 A READ ONLY

20204 @ A READ wRITE COPY ON KREF
BUIRAALRE

anpaiage

3 ? READ OMNLY
9 3 READ WRITE

PROTECTION AND PAGING

COPY OM REF

GBL. SEC, NAME

Figure 8-5 Map of CRFSHR

LINKER X1,19

CREATOR
VAX=11 MACRO
VAX=11 MACRO
VAXe{] MACRO
VAX=11 MACRO
VAXe{] MACRO
VAX=11 MACRO
VAXe1{ MACRD
VAX=11 MACRO
VAX=11 MACRO
VAX=11 MACRO
VAX=11 MACRO
VAX={1 MACRO
VAXe11 MACRO

LINKEP X#1,19

MATCH

XC,3=11
XPg3wl]
X2,3=11
XP,3=11
X0,3=11
XB,3=11
X0e3=11
XPe3e1
X0,3=11
X0,3=11
Xe3=11
XPe3=11
X6,3=11

MAJORID

PAGE

PAGE

MINORID

1

2

SIOVWI ATIVIIVHS

v1-8

DBA43 [CRF,0BJICRFSHR,EXEs1

P=SECT NAME
$SVECTOR, 2, CRF

. BLANK ,

. BLANK ,

CRFS$CODE

CRFSDATA

MODULE(S)

CRFLTRANSFER

CRFLTRANSFER

CRFINSREF
CRFINSKEY
CRFGBL
SRCHINSRT
INSRTKEY
GETNEXT
SRCHNODE
BiyILDNODE
CrRFOUTY
FINDKEY
ALBLK
SYSVECTOR

CRFINSREF
CRFINSKEY
SRCHINSRT
INSRTKEY
GETNEXT
SRCHNODE
By ILDNQDE
CRFOUT

F INDKEY
ALBLK

CRFINSKEY
SRCHINSRT
INSRTKEY
BUILDNODE
CrRFOUT
ALBLK

BASE

aAAae2an
naenae2?n

avoeelen
aagae2en

anngeuan
aueagLna
ag9ae40n
aeeagden
4292400
QRAA2A4AN
edQoedan
genacden
bweaReUdAn
QUN2RURA
angaedan
aAneaeurn
AAAQQLUOR

AANAAUAQ
NAAABUAR
neRURS13
ANANRS93
AVeRA6AD
AARAPTARS
@320086Y
NOR2INBBS
24200912
nRAARDY2
ABAVRELA

aganinew
@2A221¢@)
2QuR11SA
AAAALCC
AAJA1 DY
A3PA1EY
P2an1184

4u=AlG=1978 @8317

P L T T L Y T

| PROGRAM SECTION SYNOPSIS |

feeeneevernescevrnsnarnannet

END

2A0MRR3FF
P2@uAN3FF

20200220
zaneuv20e

eaceeURR
QAavAnden
NArQ2420
ZaeaudAn
AARRALAG
2000PU4RAR
Ve20udan
aanendar
229024020
LTl
wanendae
P2AUAALAR
?avaedne

AOOUEF2E
BAQRNS]2
BONANS92
20002063C
rANANTAY
AAONNABED
ANUARBRRY
AACRN911
eareeD9L
VRAPAELS
2APANF2E

warm{1C3
VARPIAYF
PARP\ABF
23201000
WARpAER
Parn1183
YRApm11C3

LENGTH

pRaaNR2AR
eeaan2ne

ABRAPARA
2PRGANAY

aagaunnn
aeeenan
naeanuner
eaearupa
reganirna
aagenany
20000200
A0QPA1AL
AGRRrNRR
2Q2020ARM
A2APARAY
20R0ANRR
QA0

AQRLCBF
200A0113
AQ2VANBG
A0RANATA
2202178
ABR2ANDF
LELL AR
PARNNASD
ANERCURD
ANAZANRE
2302 A1 15

ave2p1Cy
AArNPANSA
a23NATN
288U 1
A4gAALY QA
angeeeD3
arg2anaye

(
(

ALIGN

CE T

,) RYTE

«) BYTE

.) BYTE
.) BYTE

.) BYTE
) BYTE
) BRYTE
«) RYTE
) BYTE
) BYTE
.) BYTE
.) BYTE
) RYTE
o) BYTE
.) BYTE
) BYTE
.) BYTE

.) RYTE
) BYTE
.) BYTE
W) BYTE
«) BYTE
) RYTE
o) BYTE
«) BYTE
W) RYTE
) BYTE
W) BYTE

) BYTE
«) BYTE
o) BYTE

«) BYTE

«) BYTE
«) RYTE
) BYTE

]
2

<

VENVWIVISERNCERTST S

EESERVANE BN

TS

LINKER Xi11,19 PAGE 3

ATTRIBUTES

PIC,USR,CON,REL,LCL, SHR, EXE, RD,NOWRT
NOPIC,USR,CON,REL,LCL,NOSHR, EXE, RD, WRT

NOPIC,USR,CON,REL,LCL,NOSHR, EXE, RD, WKT

PIC,USR,CON,REL,LCL, SHR, EXE, RD,NOWRT

PIC,USR,CON,REL,LCL,NOSHR,NOEXE, RD, WRT

CRFSHR

SUDVWI JTIVIIVHS

ST-8

DBA4 [CRF,0BJ)CRFSHR EXESL

SYMBOL
BUILD,NODE
CRFSALBLK
CRF$DEALBLK
CRFSINSRTKEY
CRFSINSRTREF
CRFS$K, ASCIC
CRFSK,BIN,U32
CRF$K, DEF
CRFSK, DEFS,REFS
CRFSK DELETE
CRFSK,ENTSTZE
CRFSK _NODSIZE
CRFSK_ REF
CRFSK,SAVE
CRFSK,VALS REFS
CRFSK, VALUES
CRFSL_ _DYNMEM
CRFSL_TEMPKEY
CRFSOUT
CRF_HISTORY
CRF_INSRT FLAG
CRF,TEMP, INSRT
FIND,NEXT KEY
FINDLNTH, KEY
GET, NXT PRV
INSRT,KEY
LOG,DELETE KEY
LOG, INSRT_ KEY
MOVE ENTRY
MOVE L ENTRY, 1
NEWSL,BLKS
REL,SPACE
REJ,SPACE
SRCH, INSRT
SRCH,NODE
SYSSEXPREG
SYSSFAO

TRANS ENTRY

VALUE
PYPIABRS=R
PURUREL A=R
CQRUAEQE=R
QanonS13=RUY
vardpdpe=kRU
2naPveURRe=-U
RaPIRRA =U
dpeleeQ =U
Auevode2-uU
PnRdveee=-U
Apndan28-U
2aQV@1F@=U
PeAYRARAR=U
2p@20001=U
Byrlgnaley
2aRdN0Nney
PpPJ11BC=R
2pA01¥RA=R
Apevn912«RY
AP0V R50=R
2pruiiDe=-R
2008 10ACA=R
2anipDAA=R
duevalez=R
RQuUALATAS=R
2ned06AD=R
AaRdQATF2eR
QpAYRTCF=R
GPRYABRE=R
VP8 3F =R
ApAid 1RY=R
QaVVATBY=R
QuEIATAL=R
2pIRS93=R
PAvIA86eU=R
8prdnius
apndnise
RARYNBRE=R

DEFINED BY
BUILDNADE
ALBLK
ALBLK
CRFINSKEY
CRFINSREF
CRFGEL
CRFGRBL
CRFGRL
CRFGAL
CRFGRL
CRFGERL
CRFGRL
CRFGRL
CRFGBL
CRFGBL
CRFGRL
ALBLK
CRFINSKEY
CRFOUT
SRCHINSFT
INSRTKEY
INSRTKEY
FINDKEY
FINDKEY
GETNEXT
INSRTKEY
GETNEXT
GETNEXT
GETNEXT
GETNEXT
ALRLK
GETNEXT
GETNEXT
SKCHINSRT
SRCHNODE
SYSVECTCR
SYSVECTNR
GETNEXT

4eAUG=1978 8117

REFERENCED BY

D T T T T T T

| SYMBOL CROSS REFERENCE !

teemmecceencscncererevaman

INSRTKEY
RUILDNODE
CRF INSREF
CRF,TRANSFER
CRF, TRANSFER
BUTLDNODF

CRFOUT

CRFOUT
CRFOUT

CRFINSFREF
CHF,_TRANSFER
CRFINSKEY
CRFOUT
GETNEXT
CRFOUT
CRFOUT
CRFCUT
CRFINSKEY

INSRTKEY
INSRTKEY
INSRTKEY

INSRTKEY
CRF INSKEY
SRCHINSRT
ALRLK
CRFOUT
INSRTKEY

Figure 8-5 (Cont.)

CRFINSREF
CRFCUT

SRCHNODE

CRFINSREF
FINDKEY

FINDKEY
CRFINSREF

CRFINSKEF

Map of CRFSHR

LINKER X@1,19

CRFOUT

CRFOUT
GETNEXT

INSRTKEY

PAGE

4

SHOVWI JTIVIIVHS

9T-8

DBAU: [CRF,OBJ)CRFSHR,EXEs 1

VALUE

n0000000 U=CRFS$K_ ASCIC
0000vanl UeCRFSK, BIN_ U32
eeovuvnee U=CRF$K_DEFS_REFS
00000028 U=CRFSK_ENTSIZE
oeeeR1F2 U=CRFSK_NODSIZE
99200400 ReCRFSINSRTREF
0020RS13 R=CRFSINSRTKEY
30200593 ReSRCHLINSRT
200703600 R=INSRT_KEY
04000785 ReGET NXT, PRV
320007A1Y R=REQ SPACE
0300789 ReRE| SPACE
@0RQaTICF R=LOG_INSRT_KEY
@e20n7F2 Re NG, DELETE KEY
200P080E ReTRANS_ENTRY
0000082E ReMOVELENTRY
000008 3F R=MOVELENTRY, 1
peoen8ed k=SRCHLNCNE
00002885 R=BUILD_NODE
eeave9le ReCRFSOUT
@eepnD92 R=FIND . NTH KEY
@@N@ADAA ReFINDLNEXT KEY
00@QRQELA ReCRF$ALBLK

Q0N RESE ReCRFSVEALRLK
neraiee@ ReCRFSL_TEMPKEY
20e@1050 R=CRF_ _HISTORY
eoan12Co ReCRF, TEMP_ INSRT
202@t009 ReCRF_INSRT FLAG
00001184 ReNEWSL BLKS
eece@118C R=CRFSL, DYNMEM
8Qouve14s SYSSEXPREG
seargise SYS$FAQ

KEY FOR SPECIAL CHARACTE
terTevocsecrunea
1 * = UNDEFINED
1 U = UNIVERSAL
! R = RELOCATAB
| WK = WEAK

tesecascacnennee

4=AUG=1978 ¢8117

deccccncsncnccsonnny}

| SYMBOLS BY VALUE |

4esncnncnscncnnvane}

SYMBOLSsas
U=CRFS$K, DELETE
UsCRFSK, DEF

U=CRFSK,REF
U=CRF$K, SAVE

RS ABGVE:

-y
!
i
LE !
1

wea4

Figure 8-5 (Cont.)

LINKER X21,19

U=CRFSK,VALUES
U=CRF$K, VALS_ REFS

Map of CRFSHR

PAGE

S

SIODVWI ITIVAIVHS

o)
[

L1

DBAY: [CRF,0BJ]CRFSHR,EXEs1

VIRTUAL MEMORY ALL_OCATED:

STACK SIZE:

IMAGE HEADER VIRTUAL BLOCK LIMITS:
IMAGE BINARY VIRTyYAL BLOCK LIMITS:
IMAGE NAME AND IDENTIFICATION:
NUMBER OF FILES;

NUMBER OF MODULES;

NUMBER OF PROGRAM SECTIONS:

NUMBER OF GLOBAL SYMBOLS:

NUMBER OF CROSS REFERENCES:

NUMBER OF IMAGE SECTIONS:

IMAGE TYPE:

MAP FORMAT:

ESTIMATED MAP LENGTHS

PERFORMANCE INDICATORS

4eplyG=1978 28217
P L P T Ty
! IMAGE SYNOPSIS !

L L X {

ARaeu2er aAPP{1FF 22281080 (4296, RYTES, 8,
@, PAGES
1. 1. (1. BLOCK)
2. 9, (8. BLOCKS)
CRFSHR LEXE3l
3'
13,
°I
27,
7.
5.

LINKER X©1,19 PAGE

PAGES)

PIC, SHAREARLE, GLOBAL SECTION MATCH = "LESS/EqULAL", G,S, IDENT, MAJOR=@, MINOR=2
FULL WITH CROSS REFERENCE IN FILE "DBa4: [CRF,LIS]CRFSHR,maAP; 1"

33, BLNCKS

temvescnccrcrennnsncnn)

! LINK RUN STATISTICS 1

fernsrarsercn e unenern}

PAGE FAULTS CPU TIME

ELAPSED TIME

COMMAND PROCESSINGse 39

PASS 13- 21

ALLOCATION/RELOCATION:= 12 AR AN, @R

PASS 21- 12 nA1AB0A, 41

MAP DATA AFTER OBJECT MODULE SYNOPSIS:= 13 easapsna, 37

SYMBOL TABLE nUTPUT ;e 2 wreAdtan, A3
TOTAL RUN VALUESt= 97 naseatl, 09

©8P30301,43
Mengde, 33
waru2tda, 48
vatune2, 11
Waraae, 79
eAIReIYE, 16
ArsARIRT, 36

USING A WORKING SET LIMITED TO 700 PAGES AND 33 PAGES OF PATA STORAGE (EXCLUDING IMAGE)

TOTAL NUMBFR OBJECT RECORDOS READ (BOTH PASSES):

OF WHICH 252 WwERE IN LIRRARIES AND 24 WERE DFBUG DATA RECURDS CONTAINING {137 BYTES

THERE WERE 14 LIBRARY BLOCK READ OPERATIONS
WHICH ENCOMPASSED A TOTAL OF 124 RLNCKS
USING A WINDOW OF 1@ BLOCKS

NUMBER OF MODULES EXTRACTED EXPLICITLY

WITH | EXTRACTED TO RESOLVE UNDEFINED SYMBGLS

@ LIBRARY SEARCHES WERE FOUR SYMROLS NCT IN THE LIBRARY SEARCHED

A TOTAL OF 4 GLOBaAL SYMBOL TABLE RECOKDS wAS WRITTEN

Figure 8-5 (Cont.) Map of CRFSHR

TN

SIOVHI JATIVAIVHS

SHAREABLE IMAGES

8.2.9 Example of FORTRAN Shared COMMON

Figure 8-6 shows a global common (FORTRAN BLOCKDATA subprogram) linked
with a routine that modifies it (CHANGE) and one that displays its
contents (DISPLAY). There are actually three common areas, ‘shown by
the program sections $BLANK, NAMEDCOMNl, and NAMEDCOMN2, which
correspond to blank common of FORTRAN and two named common areas.
Note the attributes of such program sections-- in particular, GBL,
OVR, and SHR:

e The GBL attribute causes the program section to be recorded in
the symbol table of this shareable image for later use by a
subsequent program.

® The OVR attribute ensures that all modules contributing to the
program section contribute (or in this case, map) to the same
address space.

e The SHR attribute indicates that only one copy of this
writeable data is to appear in memory.

TN

N

61-8

GLOBALCOM

MODULE NAME
GLOBALCOM
CHANGE
DISPLAY
OTSSLINKAGE
VMSRTL

DB13[150,12)GLOBALCOM,EXEs 14

CLUSTER

DEFAULT,CLUSTER

VMSRTL

IDENT
21

(3}

21

Qud
«EXEsY

TYPE PAGES
2 2
3 1
3 1
3 1
4)
3 4
3 49
4 2

HYT

BASE ADDR

3N0aa202
2a0avn2a0
BARRALR A
LELELI
eaNAnREn

2A00n8RR
2402100
Aa0a720y

4=aUG=1978 12:57

B T T T T

| ORJECT MODULE SYNOPS]S !

Y

ES FILE

12 DB13(150,1¢)GLOBALCOM, 081
254 DB13[152,12)CHANGECOM, 0831
2a2 DB13(152,12)DISPLACOM, 0B

3 DBB2:(SYSLIB)STARLET,NLBs1
@ DRR2: [SYSLIBIVMSRTL,EXEsl

4=dUG=1978 12157

tecemevavancensrresavanand

!

IMAGE SECTION SYANOPSIS !

e

NISK VBN PFC

VEWNS

A

b BRSERA TSI

e

PROTECTIQN -aND PAGING

L L LY T T L)

READ
READ
READ
READ
READ

READ
READ
READ

wKITE
orLY
wRITE
ONLY
“RITE

COPY ON KEF

COPY QM REF

ONLY
ONLY

WRITE COPY ON REF

LINKER

CREATION DATE
fd=Jul=1978 17344
1d=Jul=1978 17:38
{4=Jul=1978 17338
B3eaUG=1978 {9143

d=AlUG=1978 PB3IAS

LINKER

GBL, SEC, WNAME

VMSKTL 441
VMSRT| A2
VMSRTL 703

Figure 8-6 Map Showing FORTRAN Shared Common

X41,2@

CREATOR

PAGE

VAXe1] FORTRAN IVePLUS T@,8=14
VAX=1{ FORTRAN IV=PLUS T@,8=14
VAX=1{ FORTRAN IVePLUS T@,B=14
VAX=11 MACRO X@,3«1l

LINK=32 X21,19

X¢1,20 PAGE

MATCH MAJORID MINORID
LESS/EQUAL ? ue
LESS/EQUAL @ ue
LESS/EQUAL ° 40

SIOVHI ITIVIAIVHS

0Z-8

DB1:[150,10)GLOBALCUM,EXE 14

P=SECT NAME

SPDATA

o BLANK ,

$BLANK

NAMEDCOMN]

NAMEDCOMNZ

SCODE

0TS$CODE

SLOCAL

MODULE(S)

CHANGE
DISPLAY

OTSSLINKAGE

GLOBALCOM
CHANGE
DISPLAY

GLOBALCOM

CHANGE
DISPLAY

GLOBALCOM
CHANGE
DISPLAY

CHANGE
DISPLAY

OTS2LINKAGE

CHANGE
DISPLAY

Figure 8-6 (Cont.)

BASE

rYaee2an
anpee200
anAne27n

eeRAe2un
araae2ne

pAragunn
@ngaednn
ARANELUAA
dgdvvdny

ARRAAUAY
alaReLnd
aAgRpaeund
greredsd

nARAPUAs
VABRRUAE
naineuay
PACRALAR

areecrenn
fQ2206n?
r2AANR6RY

AAPUR6F U
220AR6Fd

RRAAACBIY
AAGY28AQ
AORABBANA

4=AUG=1978 12:57

tracmeccmeuscanccesnensncnve}

| PROGRAM SECTION SYNOPSIS |

freracsrerenevennssnnanane}

END

PAeAY2BE
?3ePa26C
QAuRn2RE

Anen2nn
29000220

2UeEANUA3
A0r04e3
aavnednl
poreedal

A02e 0407
Aderada7
aereadar
warpzae?

PAARL44B
ANRANUAR
baj@eadus
2802 AURR

QAHRA6F 2
22000680
2ANRAGF 2

AAIAR6F 6
QANPREF 6

“araa8a0
2AnRABAQ
cARAARAR

LENGTH ALIGN
ANAORABF (191,) LONG 2
20aa296D (129,) LONG 2
PAARATUF (79,) LONG 2
aneaanae (a,) RYTE @
ageanana (N,) 8YTE @
puavaned (4,) LONG 2
2neenand (4,) LNNG 2
20202004 (4,) LONG 2
223400vd (4,) LONG 2
agagarnd (4,) LONG 2
dgaennnod (d,) LONG 2
NRABRARL (4,) LONG 2
waganang (4,) LONG 2
AARQDANY (4,) LOnNG 2
araanary (4,) LONG 2
AreArard (4,) LONG 2
aeganepnd (d4,) LONG 2
A0RARRAF I (243,) LONG 2
a2e2068Y (129,) LONG 2
araapneF (111.) LONG 2
eeaennnl (3,) LONG 2
angranel (3,) LonMG 2
AOJRNGERY (2,) LONG 2
agnnnrnn (M.) LONG 2
eeargepe (#y) LONG 2

Map

LINKER X21,20

ATTRIBUT

PIC,USR,CON,REL,LCL,

NOPIC,USR,CON,REL,LCL,NO

PIC,USR,OVK,REL,GHL,

PIC,USR,OVR,REL,GBL,

PIC,USR,CVR,REL,GRL,

PIC,USR,CON,REL,LCL,

PIC,USR,COM,REL,LCL,

PIC,USR,CON,REL,LCL,NC

Showing FORTRAN Shared Common

ES

SHR, NOEXE,

SHR, EXE,

SHR, NOEXE,

SHR, NOEXE,

SHR, NOEXE,

SHR, EXE,

SHR, EXt,

SHR, NOEXE,

RD, NOWRT
RD, WRT
RD, WRT
RD, WRT
RD, wRT
RD, NO#WRT
RD, NOWRT
RD, HWRT

PAGE

3

SIDVHWI J'TEVIIVHS

12-8

Dali[lSﬂplﬂlﬁLOBALCUN.EXElla 4=AUG=1978 12:57 LINKER Xi11,20 PAGE 4

LI L LY T Y P R L T Y T Y

{ SYMBOL CROSS REFERENCE !

tecececssacronusnransnenat

SHOVHI JATIVIIVHS

SYMBOL VaLVE DEFINED RY REFERENCED BY .44
CHANGE 2aRdaer@=RU CHAMGE
DISPLAY 2pAvebB8U=RU DISPLaY
FOR$SCB, GEY QpROrE2@=RU VMSRTL
FORSSCB, POP Qp0ORE1A=RU VMSRTL
FORSS$CB,_PUSH ApOVRERB=RU VMSRT(
FORSSCB,RET 2A@VQE18=RU VMSRTL
FORSSERRSNS, SAV Q@@YRE28=RU VMSRTL
FORSBACKSPACE 2gnVe980=RU VMSRT|
FORSCLOSE 2pvdpBae=RU VMSRTL
FORSCNV, IN_DEFG ppndoA@2=RyU VMSRTL
FORSCNV, IN,I PePYBA1Q=RU VMSRY(
FORSCNVLIN,L ?p0dpA18=RU VMSKTL
FORSCNV,IN,O PARVRA2Q=RY VMSRTL
FORSCNV, IN_Z 2pn2dnA28=RU VMSRTL
FORSCNV,O0UT.D P0QYE9AB=RY VMSRTL
FORSCNV_ OUT E 2pnJA9BA=RU VMSRTL
FORSCNV_ OUT,F Qayeda9Rg8=RU VMSRTL
FORSCNV,OUT,G @p0dR9CA=RU VMSRT(
FORSCNV,OUT,1 @pudn988=RU VMSRTL
FORSCNV OUT L 2p0YRe990=RY VMSRTL
FORSCNV, OUT,O 21NV A998=RU VMSRT{
FORSCNV,_ OUT, 2 2aPYN9AQ=RY VMSRT
FORSDECODE MF ApAYA8AB=RY VMSRTL
FORSDECODE MO Cpnen81@=RU VMSRTL
FORSDEF FILE Aanov9CB=RU VMSRTL
FORSDEF,FILE # @Ra@l@9Na=RU VMSRTL
FORSENCODE MF Ppeu@B18=RY VMSRTL
FORSENCODE MO PpAY@AB2G=RU VMSRTL
FORSENDFILE 2pPVA9068=RU VMSRTL
FORSERRSNS PUEYA9ER=RY VMSRTL
FORSERRSNS W 2AAYAIFB=RU VMSRT|
FORSEXIT 2pe0N9F@eRU VMSRT|
FORSEXIT w PRAYA9IFB=RU VMSRT|
FORSF IND PPAYEANBeRU VMSRTL
FORSINI,DES1_R2 QpBleA3a=RU VMSRTL
FORSINI DES2,R3 #nRURA38=RY VMSRTL
FORSINI,DESC,Ré6 @0aVRALA=RU VMSRT|
FORSIO,B, R QYIVEBER=RU VMSRT|
FORS IO, B,V AACVARER=RY VMSRTL
FORSIO, DO R QuUVEBCA=RY VMSRTL
FORS10,D_V 2p2YABCA=RUY VMSRTL
FORSIO_END ApAYABARRY VMSRTL CHANGE DISPLAY
FORSIO FC_R 2000994@=RU VMSRTL
FORSIO_FC_V dnPIA9UB=RU VMSRTL
FORSJIO,F_ R PnPva8BA=RY VMSRT|
FORS IO F_ Vv ANAVAARB=RY VMSRTL
FORSIO, LU_R 0nAlR9Sg=RU VMSKTL
FORSIO LU,V aANE9SBeRY VMSRTL
FORSIO L R APAERBNR=RY VMSRTL CHANGE DISPLAY
FORSIO, L,V 20?uABD8=RU VMSRT{
FORS10,T,DS 2nR2A8FA=RY VMSRTL
FORSI0,T V. DS 2pAYe938=RU VMSRTL

Figure 8-6 (Cont.)

Map Showing FORTRAN Shared Common

ce-8

DB1:[150,18) GLOBALCUM,EXEs 14

U=alJG=1978 12:57

LINKER X@1,20

SUDVHI JTIVIIVHS

SYMBOL VaLUE DEFINED BY REFERENCED BY ,,,
veessw egu®e . meeseseses TeswcseenrTeceseTeee
FORSIO, WU_R 2g00@960=RU VMSRT|
FORSIO, wWU_V PpAY@968=RU VMSRTL
FORSIO, W, R 2p@VABFB=RU VMSRTL
FORSIO_W_V 2n00A90RA=RU VMSRTL
FORSIO X DA 2pn2@970=RU VMSRTL
FORSOPEN Pand@978=RU VMSRTL
FORSPAUSE PPAY@AAUB=RU VMSRTL
FORSREAD,DF PPALMB3IB=RU VMSRTL
FORSREAD_DO Qpuv@aBup=RU VMSRT(
FORSREAD_ DU Poed0BuUB=RU VMSRTL
FORSREAD,_SF 290YABS2=RU VMSRTL
FORSREAD_ SL 2pRPYP858=RU VMSRTL
FORSREAD_SO Ap0VRBeRA=RU VMSRTL
FORSREAD_SU 2pQeV@ABe8=RU VMSRTL
FORSREWIND Pp0URASA=RU VMSRTL
FORSSECNDS APe?YASBeRU VMSRTL
FORSSTOP 000YnAsi=RU VMSRTL
FORSWRITE,DF 2pRdR87@=RU VMSRT(
FORSWRITE, DO 2nBUEBTB=RL VMSRTL
FORSWRITE_ DU agnin8ae=RU VMSRTL
FORSWRITE_SF PpAd@BRB=RY VMSRTL CHANGE DISPLAY
FORSWRITE,SL 2p10p892=RU VMSRTL
FORSWRITE, SO PAAYABGB=RU VMSRTL
FORSWRITE, SU 2p@YR8AR=RU VMSRT(
LIBSAST IN_PROG @paveCBG=RU VMSRTL
LIBSCRC 209ACR8=RU VMSRTL
LIBSCRC_TABLE PaMINCCRA=RU VMSRTL
LIBSDEC_OVER ap@veCC8=RU VMSRTL
LIBSESTABLISH 2p02aCDA=RU VMSRTL
LIBSEXTV 2pAYACD8=RU VMSRTL
LIBSEXTZV 201¥20CER@=RU VMSRTL
LIBSFFC AQRUACER=RY VMSRTL
LIBSFFS 2aPVACFa=RU VMSRTL
LIBSFIXUP_FLT 2pAYUCF8=RU VMSRTL
LIBSFLT_UNDER 2020aDQRA=RU VMSRTL
LIBSFREE_ VM @pQYADF@=RU VMSRTL
LIBSGET, COMMAND Q@0Ya01d=RU VMSRTL
LIBSGET, INPUT AprdRDA8=RU VMSRTL
LIBSGET VM @pVYRDF8=RU VMSRTL
LIBSINDEX QnAYAD1R=RY VMSRTL
LIBSINSY 2aRYeN20=RU VMSRTL
LIBSINT_ OVER ApAvaD28=RU VMSRTL
LIssLocC 2anveD3z=RU VMSRTL
LIBSMATCHC Pp0YAD3IB=RU VMSRTL
LIBSMATCH, COND @pednD4@=RU VMSRTL
LIBSMOVTC 2p@VRDUB=RU VMSRT|
LIBSMOVTUC AnRYADSG=RU VMSRTL
LIBSPUT_QUTPUT @povalbs8=RU VMSRTL
LIBSREVERT apBYnRD6e@=RU VMSRTL
LIBSSCANC 2pPYD6B=RU VMSRTL
LIBSSCOPY _ DXDX 0Qp@adnD7@=RU VMSRTL
LIBSSCOPY_DXDX6 Ap@deD78«RU VMSRTL
LIBSSCOPY_R.DX Q@@urDRQ=RU VMSRTL
LIBSSCOPY _R_DX6 @pRP4aDRB=RU VMSRTL
LIBSSFREE]1 DD 2aP0aDAP=RU VMSRTL

Figure 8-6 (Cont.) Map Showing FORTRAN Shared Common

€C-8

Figure 8-6 (Cont.)

Map Showing FORTRAN Shared Common

DB18 (150, 10)GLOBALCOM EXEs14 4=AUG=1978 12157 LINKER X01,20 PAGE 6
SYMBOL VALUE DEFINED BY REFERENCED BY 4,
LL L LI 1] e TeoewTowsee=mw LE L LY R R L LR L Y]
LIBSSFREE1,0D6 @pnleDAB=RU VMSRTL
LIBSSFREEN,DD = 0pn0QDB@=RU VMSRTL
LIBSSFREEN,DD6 @pavdaDBB=RU VMSRT|,
LIBSSGET1_DD 2p2Ye09n=RU VMSRTL
LIBSSGET{_ DD, R6 @@RYnD9B=RU VMSRTL
LIBSSIGNAL PpoYADCB=RU VMSRTL
LIBSSIG,.TO,RET @poupDDB=RU VMSRTL
LIBSSKPC 2prY@DE@=RU VMSRTL
LIBSSPANC AnAYADEB=RU VMSRT|
LIBSSTOP BgrYadDA=RU VMSRTL
MTHSACOS PnPJRAL8=RU VMSRTL
MTH$ACOS_RS A0AUAATP=RU VMSRT(
MTHSALOG PUBONATB=RU VMSRTL
MTHSALOGi@ QuUAnABA=RU VMSRTL
MTH$ALOG1@_ RS AnAYYABB=RU VMSRT(
MTHSALOG, RS QuPdBA9E=RY VMSRTL
MTHSASIN PpRUNA9B=RU VMSRT|
MTHSASIN_ RS NAUUBAAQ=RU VMSRTL
MTHSATAN AaAYAAAB=RY VMSRTL
. MTHSATANZ ApROMABM=RU VMSRT|
MTHSATAN_ RU ANVBYAARB=RU VMSRTY(
MTHSCABS 0pIac3e«ry VMSRT|
MTHSCCOS 2nOVBCS58=RY YMSRTL
MTHSCEXP ApndaCu2=RU VMSRTL
MTHSCLOG Ape0ACU8=RU VMSRT|
MTHSCOS PEP0NBeB=RU VMSRT(
MTHSCOSH Pe00ACSA=RU VMSRTL
MTHSCOS R4 PRAYABT2=RU VMSRTL
MTHSCSIN A2V RCHI=RU VMSRT(
MTHSCSQRT AAeURCeB=RU VMSRTL
MTHSDACOS Bn@AVUAACE=RU VMSRTL
MTHSDACOS R9 BEAY@AACB=RU VMSRTL
MTHSDASIN PuAdeADPeRU VMSRTL
MTHSDASIN_ R9 0aRIAADB=RL VMSRTL
MTHSDATAN QURAVQAER=RY VMSRTL
MTHSDATAN2 Q0NJYAAEB=RU VMSRTL
MTHSDATAN,R7 DUNGNAF@=RU VMSRT(
MTHS$DCOS QnadpB2ReRU VMSRTL
- MTH$DCOSH 2aaVnC7v=RU VMSRT|
MTHSDCOS_R7 2aAYAB3Q=RY VMSRTL
MTHSDEXP ANPINAFB=RU VMSRTL
MTHSDEXP_ R7 2pPYeBaAd=RY VMSRTL
MTHEDLOG 0a0YABA8=RU VMSRT|
MTHSDLOG1 @ QarPAB12=RY VMSRTL
MTHSDLOG1Q R8 NpAdeB18=RU VMSRTL
MTH$DLOG_R8 2pevaB2a=Ry VMSRTL
MTHSDSIN 2nP0PB3IB=RU VMSRTL
MTHSDS INH BavwpC78=RU VMSRT{
MTHSDSIN_ RY An@¢aBuUR=RU VMSRTL
MTH$DSQRT " Aau0aBUB=RU VMSRTL
MTHSDSQRT RS QnevaBSO=RU VMSRTL
MTHSDTAN AnndnCBQ=RU VMSRT
MTHSDTANH PpnveCag=RU VMSRT
MTHSEXP A9AYABSB=RU VMSRTL
MTHSEXP R4 PpAVAB6O=RU VMSRTL

SIDVWI ATIVAIVHS

vZz-8

DB11(150,10] GLOBALCOM EXEr14
ISYMBOL

MTHSRANDOM
MTHSSIN
MTHESINKH
MTHSSIN R4
MTH$SQRT
MTHSSQRT,R2
MTHSTAN
MTHSTANH
0TSSDIVC
OTSSLINKAGE
OTSSPOWCY
0TSSPONDD
OTSSPOWDY
OTSSPOWDR
0TSSPOWII
0TSSPOWJJ
DTSSPOWRD
0TSSPOWRY
OTSSPOWRR

OTSSSCOPY,DXDX
0TSSSCOPY, DXDX6
OTSSSCOPY R, DX
OTSSSCOPY,R,DX6
OTSSSFREE], DD
OTSSSFREE]LDDS
OTSSSFREEN, DD
OTSSSFREEN,DD6

OTS$SGET1,DD

VALUE
2pAYAC90=RY
@pAY@BT8=RU
2902aC98<RU
PpVYOBBA=RY
PyoveBa8=RU
2p20RB9R~RU
00000CARB=RU
2n0dACAB=RU
2pRdeBoa=RU
PA0YN6FU=R
NARYABAQ=RU
AAGJIPBAB=RUY
Q@RYABCA=RY
Pe0Y0BBA=RY
ApAd@ABC8=RU
ApeYaBoa=RU
2pRoeBBA=RU
@pe0eBD8=RU
2)pNVABEA=RU
2pPYBBE8<RU
2004ABF a=RUY
Bp0YRBF 8=RU
enadaCan=RU
AnAAACL8=RU
agaveCae<rRy
ApelaC28=RU
AAunClg=RY
AgaJdaCes=-RU

NTSSSGETY, DD, R6 2pAYQC1n=RU

CEFINED BY
VMSRT|
VMSRTL
VMSKTL
VMSRTL
VMSRTL
VMSRTL
VMSRTL
VMSRTL
VMSRTL
OTSSLINKAGE
VMSRTL
VMSRTL
VMSRTL
VMSRTL
VMSRTL
VMSRTL
VMSRTL
VMSRTL
VMSRTL
VMSRTL
VMSRTL
VMSKTL
VMSRTL
VMSRTL
VMSKTL
VMSRTL
VMSRTL
VMSRTL
VMSRTL

Figure 8-6 (Cont.)

4=AUG=1978 12157

REFERENCED BRY ,,,

CHANGE DISPLAY

LINKER X21,20

Map Showing FORTRAN Shared Common

PAGE

7

SIOVWI JTIVIYVHS

SZ-8

DB11 (152,101 GLOBALCUMEXE) 14

VALUE

LU L AL]

008000600
00000684
P000R6FY
20000800
feo00808
egonesio
00000818
00000820
oooen83e
20000840
Q0000848
20008850
00000858
20000860
00000868
o00e0870
ooeor878
Aeoe08s0
00000888
feen@89e
20020898
2000A8A0
00000848
ogoeesBe
20a0M8B8
002MABCA
P0eMQBCS
20000800
0000808
A0BAUBER
00000BES
neeoRAFO
000078F8
aopea9pa
Q0000938
20000944
20000948
200029590
P@0n8958
00000960
00077968
oaneesTe
200002978
202300980
2000R988
Qerna99e
Aearn998
20000942
20000948
00000980
000069B8
2000@9C0O

RU=CHANGE
RU=DISPLAY
R=0TSSLINKAGE
RU=FORSCLOSE
RU=FORSVECODE MF
RU=FORSDPECODE, MO
RU=FORSENCODE MF
RU=FORSENCODE_ MO
RU=FORS$READ DF
RU=FORSREAD,DO
RU«FORSREAD, DU
RU=FORSREAD,SF
RU=FORSKEAD,SL
RU=FORSREAD,SO
RU=FORSREAD, SU
RU=FORSWRITE,OF
RU=FORSWRITE,DO
RU=FORSWRITE_ OU
RU=FORSWRITE,SF
RU=FORSWRITE,SL
RU=FORSWRITE, SO
RU=FORSWRITE SU
RU=FOR$ IO _END
RUFORSIO,F R
RU=FORSIO F,V
RU=FORSIN D R
RU=FOR$10,D,V
RU=FORSIO, L R
RU=FORSIO, L,V
RU=FORS$10_ B, R
RU=FORS$10,B,V
RU=FORS$10,T,DS
RU=FORSIO W R
RU=FOR$IO W,V
RU=FORS$IO,T,V,DS
RU=FOR$10,FC R
RU=FORSIO,FC,V
RU=FORSIO, LU,R
RU=FORSIO LU,V
RU=FORSIO, WU, R
RU«FORSIO WU,V
RU«FORSIO, X, DA
RU=FORSOPEN
RU=FORSBACKSPACE
RU=FORSCNV_ OUT,I
RU=FORSCNV,OUT, L
RU=FORSCNV_ OUT 0
RU=FORSCNV,OUT, 2
RU=FORSCNV,OUT, D
RU«FORSCNV, QUT_E
RU=FORSCNV, OUT F
RU=FNRSCNV_ OUT G

TN TN

4=AUG=1978 12:57 LINKER Xil,20

jenensscanensasnnant

| SYMBOLS BY VALUE !

femcmrccnceconnnnnet

SYMBOLS,.4s

Figure 8-6 (Cont.) Map Showing FORTRAN Shared Common

PAGE

8

SIOVHI JTIVIIVHS

9¢-8

DB13[150,10]1GLOBALCOM,EXEs14

VALUE

000009C8
oaeee9D@
20090908
000009EY
0PRGO9ES
20R0R9F 0
A00VASF 8
eA0AQAQ0
00nP0AQ8
?0000A12
Qeo00AL8

0MOA0A20

20000428
pACRRA3D
AOGROA3S
P0@00AUD
00000AU8
90000A5¢
PAQOAASSE
00000A6R
PA0VDALS
00AR0ATER
000P3A78
20P002A80
207P@A88
PABRRA92
00000RA98
00000AAD
Q00PQAAS
002R0AB2
2020QABS
oe@eeAce
P00QRACS
nARANBADD
2000@AD8
00000AEQ
P00NBAES
GODQQAFQ
Q0Q0RAFS
f2eeeBRQ

20002808 .

20000R1Q
npeeeB1s
PeP@REB2Y
ageerp2s
nBARBE3C
20A0BR3E
000vEB4Q

2000RB4S8 .

aoneeBse
29nBRRS8
AooeeR6R
0000868
20020870
20002878

SYMBOLS,,

RU=FORSVEF_ FILE
RU=FORSDEF_ FILE W
RU=FORSENDFILE
RU=FORSERRSNS
RU=FORSERRSNS W
RU=FORSEXIT
RU=FORSEXIT W
RU=FORSCNV_ IN_DEFG
RU=FORSF IND
RU=FORSCNV, IN_I
RU=FORSCNV IN, L
RU=FORSCNV_IN_O
RU=FORSCNV, IN,Z
RU«FORSINI,DES{,R2
RU=FORSINI_ DES2,R3
RU-FORSINI, DESC_R6
RU=FORSPAUSE
RU=FORSKEWIND
RU=FORSSECNDS
RU=FOR$STOP
RU=MTHSACOS
RU=MTHSACOS RS
RU=MTHSALOG
RU*MTHSAL0G1Q
RU=MTHSALOG1d RS
RU*MTHSALOG_ RS
RU=MTHSASIN
RUsMTHSASIN, RS
RU=MTHEATAN
RU=MTH$ATAN2
RU=MTH$ATAN RU
RU=MTHSVACOS
RU=MTHSUACOS R9
RU«MTHSDASIN
RU=MTH$DASIN,R9
RUeMTHSDATAN
RU=MTHSUATAN?
RU=MTHSDATAN,R7
RUsMTHSDEXP
RU=MTHSVEXP R7
RU=MTHRDLOG
RU=MTHSDLOG1
RU=MTHS$DLOG1IA R8
RU=MTHSULOG_RA
RUeMTHEDCOS
RU=MTHSDCOS,RT
RU=MTHEDSIN
RU=MTHSDSIN,RT
RU=MTHSUSQRT
RU*MTHSODSQRT RS
RU=MTHSEXP
RU=MTHSEXP RY
RU=MTH$COS
RUeMTHSCOS R4
RUMTHSESIN

Figure 8-6

(Cont.)

4=AUG=1978 12157 LINKER X01,20

Map Showing FORTRAN Shared Common

TN TN

SIOVWI IJATIVIAIVHS

LT-8

DB11(150,1P)GLOBALCOM EXEy14 4=AUG=1978 12357 LINKER X01,20
VALUE SYMBOLS,. .4
.-.-.‘ Teeeweoeeess
20020880 RU=MTHSSIN_R4Y
peP00B8S RU=MTHS$SQRT
P020@B9Q RU=MTH$SQRT R2
20000898 RU=0Ts$DIVC
P0000BAQ RU«QTS$PONWCJ
03000BA8 RU=0TS$POWDD
pageeBBR RU=0TS$POWDR
poe0eBBA8 RU=0OTSSPOWRD
@oponBCe RU=QOTSSPOWDJ
peAP@eBCS RU=QTS$PONWTI]
2000080V RU=0TS$POWJIJ
eeeeeBD8 RU=0TS$POWRYJ
P0P0QRREQ RU=0TSSPONRR
@02P@BES RU=0TS$SCOPY_DXDX
200QQBFQ@ RU=DTS$SCOPY_DXDX6
P0G0QBFS RU=0TS$SCOPY_ R DX
neoeacCoe RU=0NTS$SCOPY_ R DXé
o0R0eCo8 RU=NDTS$SGET1,0D
eoareCi1n RU=0TS$SGET1_ DD R6
Pe0v0C18 RU=0TSSSFREE] DD
gomenc22 RU=OTSSSFREE1,DD6
Aopoec2e RU=QTSESFREEN,DD
20000C32 RU=OTSSSFREEN,DD6
20000C38 RU=MTHSCABS
2002RC40 RU«MTHSCEXP
P0000C48 RU=MTHSCLOG
A0000CS0 RU=MTHS$COSH
P2200CS8 RU=MTH$CCOS
200002C60 RU=MTHSCSIN
AB000ACHS RUeMTHSCSQRT
@oeeecTe RU=MTHSDCOSH
eoavecre RU=MTHSDSINH
naooecae RU=MTHSDTAN
A0Q0PACA8 RU=MTHSDTANH
eeeeeCcov RU=MTHSRANDOM
P0000C98 RUeMTHES INK
noaencae RU=MTHSTAN
20000ACA8 RU=MTHS1ANH
@230eCB? RU=LTIRSAST, IN,PROG
e0002CBS8 RU=LIRSCRC
200e0CCO RU=LIRSCRC_ TABLE
n0enaccs RU=| IRSPEC_OVER
aagaecpe RU=LIRSESTABLISH
eaeeecos RUel IRSEXTY
P020uUCER RU=LIRSEXTZV
A0@GNCES RUeLIRSFFC
G00rRCFQ RU=LIRSFFS
PBROOCF8 RU=LIg$FIXUP FLT
o0eenDO? RU=LIRSFLT UNDER
(1.1 oL 1] RU=LIBSGET INPUT
20000010 RU-LIBSGET_ COMMAND
peoneD18 RUe | IBS INDEX
paevedD20e RU=LIRSINSV
eAeeRD28 RU=_IRSINT_ OVER
20030030 Rye=LIRSLOCC

Figure 8-6 (Cont.) Map Showing FORTRAN Shared Common

SIDVWI JTIVIIVHS

8C-8

DB13 (150,101 GLOBALCUMEXEy14

VALUE

220008038
e000e04P
20002048
n@e0RD50
20000058
00000060
70000068
oeoecaD7@
002008078
002080
20000088
22000092
20000098
00200DA2
20000DAS
[-LILTLDLET
2a@epeDB8
2000a0CE
228000008
eeoeedD8
70@GRDEQ
200@0DEB
00000DF0O
202Q@0F8
o00A0CEQS
00Q0RE1Q
DPQORELSE
9000A0E20
P00MQER28

RU=LIBSMATCHC
RU=LIRSMATCH,_COND
RU=LIBSMOVTC
RU=LIBS$MOVTUC
RU=(I1BSPUT_OUTPUT
RU«_IBSREVERT
RU=LIRSSCANC
RU=LIBSSCOPY, DXDX
RU=LIR$SCOPY_DXDX6
RU=_IR$SCOPY_ R, DX
RU=LIBSSCOPY R DX6
RU«_IR$SGET1_DD
RU«_ IRSSGET1,DD Re
RU=LIBSSFREE], DD
RU-LIRSSFREE1_ DD
RU=LIRSSFREEN,DD
RU=_IBSSFREEN,DDs
RU=LIRSSIGNAL
RU=LIB$STOP
RU=LIR$SIG,TORET
RU=L1IBSSKPC
RU=LIRSSPANC

RU=L IRSFREE, VM
RU=LIRSGET VM
RU=FORSSCB_PUSH
RU=FORSSCB,POP
RU=FORSSCB_ RET
RU=FOR$SCB, GET
RU=FORSSERRSNS, SAV

I * = UNDEFINED
1 U = UNIVERSAL

I R = RELOCATABLE

| WK = WEAK

tartetcnansencnnsund

Figure 8-6 (Cont.)

!
!
!
!

SYMBOLS.4s

KEY FOR SpECIAL CHARACTERS ABOVES

terecncensennsonsed

4=AUG=1978 12157 LINKER Xx@1,20

Map Showing FORTRAN Shared Common

PAGE

11

SIOVHWI JTIVIYVYHS

6C-8

DB1:[15@,10)GLOBALCOM, EXE14

VIRTUAL MEMORY ALLOCATED:

STACK SIZEs

IMAGE HEADER VIRTyUAL BLOCK LIMITS:
IMAGE BINARY VIRTyAL BLOCK LIMITS:
IMAGE NAME AND IDENTIFICATION:
NUMBER OF FILES:

NUMBER OF MODULES;

NUMBER OF PROGRAM SECTIONSt

NUMBER OF GLOBAL SYMBOLS:

NUMBER OF CROSS REFERENCESS

NUMBER OF IMAGE SECTIONS!

IMAGE TYPE:

MAP FORMAT:

ESTIMATED MAP LENGTH:

PERFORMANCE INDICATURS

4=AUG=1978 12157 LINKER X¢1.,28 PAGE

jonevsnacwsceneney
| IMAGE SYNOPSIS |

jevecnonsncssnenn

202002020 ARRATSFF 23047442 (29696, BYTES, 58, PAGES)
@, PAGES
1. 1. 1, BLOCK)

4, (3, BLOCKS)

2,
GLOBALCOM LEXEj14
S
Se

10,
159,
199,

Ba

PIC, SHAREABLE, GLOBAL SECTION MATCH = "LESS/EQUAL", G,5, IDENT, MAJOR=0, MINOR=@

FULL WITH CROSS KEFERENCE IN FILE "DB1:([15¢,10)GLOBALCOM,MAP Q"

55, BLOCKS

L R T R P T Y s

! LINK RUN STATISTICS |

tesceccosnoncesnsanneen

PAGE FAULTS

CPU TIME

ELAPSED TIME

COMMAND PRNCESSING:= 32 AvtARsAC, 29 vage@Iny, 22
PASS 11= 54 AAsQ00P,S7 wusvagng, 12
ALLOCATION/RE|LOCATION:= 22 waiangee,2y9 dALANsAG,SU
PASS 23« S avsageen, 17 PusaY AN, 7Y
MAP DATA AFTER OBJECT MODULE SYNOPSIS:= 15 PAr3tpian, %6 ?2Qsees01,36
SYMBOL. TARLE QUTPUT:e ? 223120100 ,07 wAtYndn, 2
TOTAL RUN VALUES:= 124 ANTARLR2,. 16 AAIRAIRS, N3

USING A WORKING SET LIMITED TO 640 PAGFS AND 42

TOTAL NUMBER OBJECT RECORNDS READ (BOTH PASSES): 94
OF WHICH 15 WERE IN LIBRARIES AND 8 WERE DERUG DATA RECORNDS CONTAINING 221 BYTES

THERE WERE 8 LIBRARY BLOCK READ OPERATIONS
WHICH ENCOMPASSED A TOTAL OF 71 BLOCkKS

USING A WINDOWw OF 1@ BLOCKS

NUMBER OF MODULES EXTRACTED EXPLICITLY

WITH § EXTRACTED TO RESOLVE UNDEFINED SYMBOLS

? LIBRARY SEARCHES WERE FOR SYMAROLS NOT

IN THE LIBRARY SFARCMED

A TOTAL OF 12 GLOBAL SYMBOL TABLE RECORDS wAS WRITTEN

Figure 8-6 (Cont.)

PAGES OF DATA STNRAGE (EXCLUDING IMAGE)

Map Showing FORTRAN Shared Common

12

SEDVHI HTIVAYVHS

SHAREABLE IMAGES

8.3 USING SHAREABLE IMAGES

To be of use, shareable images are normally linked into another image.
Usually shareable images are also installed by the system manager, to
make them available to the cooperating users at run time.
Installation of shareable images is dealt with in the VAX/VMS System

Manager's Guide.

You must use an options file (see Chapter 6) to specify a shareable
image as input to the linker. In an options file the /SHAREABLE
qualifier becomes a 1legal input file qualifier, identifying the
associated file as a shareable image. The /SHAREABLE qualifier
optionally accepts the keywords COPY or NOCOPY, specifying whether the
linker 1is to create a private copy of the shareable image in the user
image. The default value is that no copy is produced.

When an image containing a shareable image is activated, a search Iis

made - for the global section match, as described in Section 8.2.3. 1If
that match fails, one of two things occurs, depending on whether the
executable image has a private copy of the shareable image:

@ If the executable image has a private copy, that copy is used
instead of the global sections.

e If the executable image does not have a private copy, an error
message is issued indicating that the required global sections
are not available.

s \.

CHAPTER 9

CLUSTERING

The concept and main uses of image clustering were introduced in
Chapter 2. The present chapter expands on the earlier material,
describing the mechanics of clustering and some guidelines for usage.

9.1 MECHANICS OF CLUSTERING

Chapter 6 describes the CLUSTER= option, which is used to define the
position, character, and content of clusters. The cluster name is
merely for convenience in reading the Image Section Synopsis of the
image map.

Every image produced by the linker is automatically given a default
cluster. This cluster contains any object modules not explicitly
positioned in other clusters. The BASE= option serves to position the
default cluster in the address space.

Clusters are allocated virtual address space in the order in which you
specify them, wunless you specify base addresses. In allocating
virtual address space, the linker first deals with clusters to which
you gave base addresses, and it considers them in the order of
specification. The linker reports an error if it detects any overlap.

A shareable image is treated as a cluster. If the image 1is not
position independent (NOPIC), it has a base address already assigned
and is treated in the same manner as 'a user-specified cluster that has
a base address.

After the linker has allocated virtual space to all wuser-specified
clusters and shareable 1images, it allocates space to the default
cluster, if it contains any modules. Finally, the linker allocates
address space to the Run-Time Library shareable image, if it has been
automatically acquired.

9.2 USAGE GUIDELINES

Clustering is not 1likely to have any performance advantage for
applications smaller than 200K bytes. The reason is that each cluster
contains a group of image sections, and thus the address space is more
fragmented. Fragmentation can reduce program performance under
certain circumstances.

N

APPENDIX A

LINKER MESSAGES

This appendix lists the code and text portions of messages that the
linker can issue. The messages are listed in alphabetical order by
code.

The messages are designed to give you all the necessary information
about the error. Brief explanations are included for a few messages
that are not self-explanatory.

BADCCC, Module "[name]" has bad compilation completion code = [code]
BADIMGHDR, Bad shareable image header in file "[file-spec]"

BADPSC, Module "[name]" has transfer address in unknbwn P-section
" [number]"

BASESYM, Base address symbol "[name]" is undefined or relocatable
CLOSERR, Close failure on "[file-specl" code = %X[error code]

CONFMEM, Conflicting virtual memory requirement at %X[address] for
[number of] pages for cluster "[name]"

CREBERR, Failed to create file "[file-spec]"

CRFERR, Error code %X[error <code] received from Cross Reference
Facility

DBGTFR, Image "[file-spec]" has no Debugger transfer address
DIAGSISUED, Completed but Qith diagnostics

EMPTYFILE, File "[file-spec]" contains no modules

ENDPRS, Parameter parse completion error, code = %X[error code]
EOMFTL, Module "[name]" specifies Linker abort

EOMSTK, Module "[name]" leaves [number of] items on Linker internal
stack

ERRORS, Module "[name]" has compilation errors - image deleted
EXCPSC, Module "[name]" defines more than 256 P-sections

EXCSPAR, Too many parameters in option: [option name] of file
"[file-spec]"

FAOBUG, FAO failure

LINKER MESSAGES

FATALERROR, Fatal error message issued
FIRSTMOD, First input being a library requires module extraction

FORMAT, File "[file-spec]" has illegal format

GSDTYP, File "[file-spec]" has an illegal GSD record (type = [type
code])
ILLFMLCNT, Min. arg. count of [number] exceeds max. ([number]) in

formal spec. of "[routine name]"”
ILLKEY, Unrecognized keyword in parameter of option file "[file-spec]"
ILLQUALVAL, Illegal qualifier value

ILLREP, Module "[name]" has store repeated count [number] greater than
[number]

ILLTIR, Module "[name]" has illegal relocation command = [number]
ILLVAL, Illegal parameter value in option file "[file-spec]"
INITPRS, Parameter parse initialization error, code = %X[error code]

INSVIRMEM, Insufficient virtual memory for [number of] pages for
cluster "[name]"

INTSTKOV, Linker internal stack of [number of] items overflowed by
module "[name]"

INTSTKUN, Linker internal stack of [number of] items underflows 1in
module "[name]"

IVCHAR, Invalid character in parameter - option file "[file-spec]"

LIBFIND, Failed to find valid l1lib. mod. or shr. image STB. at RFA
$X [address] %X[address]

LIBFMT, Library "[name]" (format = [bad format]) has incorrect format
(not =[correct format]) for this Linker

® Might be caused by a corrupt library or an attempt to use an
RSX-11M library.

LIBNAMLNG, Library module name length ([number of characters]) is
illegal

LINERR, Command line segment in error

\[error]\

MATCHID, Global section match ident ([number]) exceeds maximum
([number])

MAXCHANS, [number of] channels exceeds maximum allowed of 64

MAXIOSEG, [number of] I/O segment pages exceeds maximum allowed of
65535 '

MAXISDS, [number of] I-sections exceeds maximum allowed of 65535

MAXPFC, Page fault cluster factor of [number] exceeds maximum (255)

AN

TN

LINKER MESSAGES

MAXSTACK, [number of] stack pages exceeds maximum allowed of 65535
MEMBUG, Memory (de)allocation bug [description] %X[address]
e Internal linker error

MEMFUL, Linker virtual address space insufficient to complete this
link

MINDZRO, [number of pages] as minimum I-section size exceeds maximum
allowed of 65535

e DZRO_MIN option value too high

MODNAM, Illegal module name of [number of] chars. = not 1 to [number
of] chars.

MSGERR, Linker has error message bug [hex data]
MULDEF, Symbol "[name]" multiply defined by module "[name]"

® The named module defines a symbol that another module has
already defined.

MULPSC, Module "[name]" has conflicting specifications for P-section
u[name]n

e A previously encountered module has already defined the
program section with other attributes.

MULTFR, Module "[name]" multiply defines transfer address
® The named module defines the image transfer address (starting
point), but a previously processed module has already defined
the transfer address.

SPNAMLNG, Illegal symbol/P-section name of [number of] chars. - not 1
to [number of] chars.

NOEOM, Module "[namel" not terminated with EOM record

NOEPM, Module "[name]" references wundefined entry mask of symbol
n[name]n

NONBTAB, Non blank/tab between continuation and comment or end of
record in "[file-spec]"

NOMODS, No input modules specified (or found)
NOPSCTS, No P-sections defined in module "[name]"
NOSUCHMOD, Library "[name]" does not contain module "[name]"

NOTPSECT, Module "[name]" sets relocation base to other than a
P-section base v

NOVALU Values not allowed in qualifier - option file "[file-spec]"
NUDFSYMS, "[number]" undefined symbol (s)
NULFIL, Null parameter in option file "[file-spec]"

NULPAR, Missing required parameter in option line [erroneous line] of
file "[file-spec]"

LINKER MESSAGES

OPIDERR, Pass [number] failed to open file "[file-spec]"

OPTREDERR, Read error (code=%X[error code]) on .option file
"[file-spec]"

OUTSIMG, Attempted store location %X[address] is outside "[region]"
($X[base address] to %X[ending address])

® "Region" is expressed as either "image binary" or "Debug
Symbol Table."

OVRALI, Module "[name]" has conflicting alignment on overlayed
P-section "[name]"

.PARMDEL, Invalid parameter delimiter in option file "[file-spec]"”
PRIMIN, Input parameter parse error, code = %X[error code]

PRIMOUT, Image file specification error, code = %X[error code]

PSCALI, Illegal P-section alignment [number of bytes] - exceeds a page
PSCNXR, Transfer address in "[module-namel" not in EXE/REL P-section

e The transfer address is normally in a program section with the
executable and relocatable attributes.

PSCOVFLO, P-section "[name]" overflows region to %X[address]

RECLNG, File "[file-spec]" contains record of illegal length ([number
of] bytes)

RECTYP, File "[file-spec]" has an illegal record (type = [type code])
REDERR, Read failure in pass [number] on file "[file-spec]"

SECOUT, Map file specification error, code = %X[error code]

SEQNCE, Illegal record sequence

SHRINSYS, Shareable image(s) cannot be linked into a system image

STRLVL, LINK [version] does not implement OBJ level [structure level]
- only to [structure level]

e The version of the object language is not compatible with the
current version of the linker.

STKOVFLO, Stack of [number of] pages falls below control region to
$X [address]

TFRSYS, Transfer address in system image "[file-spec]" ignored

TIRLNG, Module "[name]" has relocation command data ([number of]
bytes) overflowing record

TIRNYI, TIR command [number or name] not yet implemented (module
n [name] ll)

TRACIGN, Suppression of traceback overidden by DEBUG specification

® Occurs when you specify /NOTRACEBACK and /DEBUG.

TN

LINKER MESSAGES

TRIOUT, Symbol table file specification error, code = %X[error code]

TRUNC, Trunc. error in module "[name]", P-section "[name]", offset
$X[hex value]

TRUNCDAT, Computed value = %X[hex value], value written = %X[hex
value] at %X[address]-

UDEFPSC, Attempt to reference P-section no. [number] undefined in
" [module name]"

e Undefined program section
UDFSYM, "[symbol name]"
e Undefined symbol

UNMCOD, Initial file name was "[file-spec]", RMS error code = $X[error
code]

UNRECOPT, Unrecognized option in file "[file-spec]"

UNRECQUAL, Unrecognized qualifier in option file "[file-spec]"
USEUNDEF, Module "[name]" references undefined symbol "[name]"
USRTFR, Image "[file-spec]" has no user transfer address

WRNERS, Module "[name]" has compilation warnings

WRTERR, Write failure on file "[file-spec]", code = $X[error code]

VALREQ, Value required in qualifier - option file "[file-spec]"

S

PN

APPENDIX B

IMAGE MAP ILLUSTRATIONS

This appendix illustrates the complete brief, default, and full forms
of a map of the same image. These illustrations do not include a
Symbol Cross Reference map section; however, this section does appear
in Chapter 7 (Figure 7-5).

The illustrations in this appendix are forms of the map used in
Chapter 7.

AVERAGE

MODULE NAME
AVERAGESMAIN
DEBUGROOT

IDENT
21
21

18=JUL=1978 13111 LINKeR Xx01,17 PAGE

¢Penccesseensssnsnseseese$

| OBJECT MODULE SYNOPSIS !

$oosvecevnanssccvonacsscva}

BYTES FILE

2062 DB1s [MURRAY]AVERAGE,0BJy2
8 DRB23[SYSLIB)DEBUG,O0BJs1

CREATION DAE CREATOR

LA A L L L L L Ll] sooowes
1ieMay=1978 @/3¢ VAXei] FORTRAN IV=PLUS T8,7=92
02=JUN=1978 1inte VAX=1] MACRO X0,3-10

dVIN 43148

SNOILWILSOTII dYW FOVWI

DB1: [MURRAY]AVERAGE.EXE)6 10=JUL=1978 13311 LINKeR X21,17

¢evcvnenescessered

| IMAGE SYNOPSIS |

Poresneceenseenoed

VIRTUAL MEMORY ALLOCATED: 20400200 BBRQTSFF A@DAT40A (29696, BYTES, 58, PAGES)

STACK SIZE: 20, PAGES

IMAGE HEADER VIRTUAL BLOCK LIMITS: 1, 1, (1, BLOCK)
IMAGE BINARY VIRTUAL BLOCK LIMITS: 2, S. ¢ 4, BLOCKS)
IMAGE NAME AND IDENTIFICATIONG AVERAGE @i

NUMBER OF FILES: 4,

NUMBER OF MODULES: Se

NUMBER OF PROGRAM SECTIONS: 9,

NUMBER OF GLOBAL SYBOLS: 10,

NUMBER OF IMAGE SeC1IONSt 8,

USER TRANSFER ADDRENSS: 00000600

DERUGGER TRANSFER ADDRESS: 200008020

IMAGE TYPE: } EXECUTABLE,

MAP FORMAT: BRIEF IN FILE "DB13: [MURRAY]AVERAGE,MAPj6"
ESTIMATED MAP LENGTHg 8, BLOCKS

Poseovssensrosensonnsveend

I LINK RUN STATISTICS |

dosevcesnessevwsnounvend

‘PERFORMANCE INDICATURS PAGE FAULTS CPU TIME ELAPSED TIME

STOOOUPTOOT SenTaoeeaw oeaw "-SeBee e Swew _TwSeoeaee owew
COMMAND PROCESSTNGi= 20 201001Q0,07 00:00100,11
PASS {i= 25 2031203 @0,42 pe:Anta1,02
ALLOCATION/RE~OCATIONt= 2 0A33023020,05 PA100:00,26
PASS 23= 6 e0:100300@,22 #0100:00,87
MAP DATA AFTE® CBJECT MODULE SYNOPSISt= Q Agi1neie0,00 AR:100:00,00
SYMBOL TABLE 0OUIPUT:= [*] @2:100:00,00 PR:00100,07

TOTAL RUN VALUES:= s3 PA100300,76 A2:100:02,37

USING A WORKING SET LIMITED TO 180 PAGES AND 3@ PAGES OF DATA STORAGE (EXCLUDING IMAGE)
TOTAL NUMBER OBJECT RECORDS READ (BOTH PASSES)t 179

OF WHICH 62 WFRF IN LIBRARIES AND 8 WERE DEBUG DATA RECORNDS CONTAINING 294 BYTES
267 BYTES OF DEBUG DATA WERE WRITTEN,STARTING AT VBN 6 WITH | BLOCKS ALLOCATED
THERE WERE 1@ LIBRAWY BLOCK READ OPERATIONS

WHICH ENCOMPASSED A TOTAL OF 91 BLOCKS

USING A WINDOwW CF 1@ BLOCKS

NUMBER OF MODULES EXTRACTED EXPLICITLY = 0
WITH 2 EXTRACTEU TO RESOLVE UNDEFINED SYMBOLS

2 LIBRARY SEARCHES "ERE FOR SYMBOLS NOT IN THE LIBRARY SEARCHED
A TOTAL OF @ GLOBAL SYMBOL TABLE RECORDS WAS WRITTEN

dVIN 43149

SNOILVILSNTII dVW IOVHWI

AVERAGE

MODULE NAME

AVERAGESMAIN
DEBUGBOOT

P=SECT NAME
SPOATA
SLOCAL
$CODE

« BLANK ,

SYMBOL

AVERAGESMAIN

KEY FOR

18=JUL=1978 13110

¢toevesnernvsoreasesernseed

{ OBJECT MODULE SYNOPSIS |

éoomoeonsonsssrsensveevsassewed

IPENT BYTES FILE
sense cesew seene
01 202 DB13[MURRAY]AVERAGE,08J)2
21 8 DBB21(SYSLIB]IDEBUG,0BJsY
’ bovevsvesnensrnecosunsenseved
| PROGRAM SECTION SYNOPSIS |
¢ovevansesssvrrsvescevnnevoeaveP
MODULE(S) BASE END LENGTH ALIGN
csesmeranw eses reoe mecenw ensew
20000200 PP0PO233 PARAAA3Y (52.) LONG 2
AVEMAGESMAIN 202002739 @@een233 PARRAA34 (52,) LONG 2
P00004073 APRVAUPB PRREAARARC (12,) LONG 2
AVERAGESMAIN 22000400 AAPAPLUAB RAGAAABC (12,) LONG 2
P000R602 2ARNV689 J20PBNABA (138,) LONG 2
AVEWAGESMAIN 20020600 GOENN689 PRRRARBA (138,) LONG 2
20000807 00NP082T B2AAARAS (8,) BYTE @2
DFBUGBOOT 0700837 0RVLNBRT PRARAGBS (8.) RYTE @
¢sesuvsessnesavwand
} SYMBOLS BY NAME |
beverevenssesvewunad
VeLUE SYMBOL VALUE ‘SYMBOL
20070600=R
SPECIAL CHARACTERS ABOVE:
¢esoorcvrvcwnvenswnowd
I « = UNDEFINED 1
I U = UNIVERSAL i
! R = RELOCATABLE !
| Wk e WEAK i
¢esreverseresrevsound
~ /R

LINKeR X01,17 PAGE 1
CREATION DAE CREATOR
EToeReEseGSews L L LA Xl 2]
{i=May=1978 @3¢ VAXeli FORTRAN IVePLUS TOQ,7=92
P2=JUN=1978. jute VAX={] MACRO X@,3ei{0
AITRIBUTES
PIC,USR,CON,REL.LCL, sHR,NOEXE) RD,NU“RT
PIC'USR,CON'RELJLCL'NOSHR,NOEXE' RD' WRT
PIC,USR,CON,ReL,LCL, SHR, EXE, RD,NOWRT
NOPIC,USR,CON,ReL,LCL,NOSHR, EXE, RD, WRT
VALUE SYMBOL VALUE
LA A L 2] LA AL A 4] weowen

dVW 1INv43a

SNOILVILSNTII dVW HOVWI

(84

DB13 [MURRAY]AVERAGEEXE)S

VIRTUAL MEMORY ALLOCATED:

STACK SIZE3

IMAGE HEADER VIRTUAL BLOCK LIMITS
IMAGE BINARY VIRTUAL BLOCK LIMITS:
IMAGE NAME AND IDENTIFICATIONG
NUMBER OF FILES:

NUMBER OF MODULES?

NUMBER OF PROGRAM SeCTIONS:

NUMBER OF GLOBAL SYMBOLS3

NUMBER OF TIMAGE SECTIONS:

USER TRANSFER ADDRESSH

DEBUGGER TRANSFER AUDRESS:

IMAGE TYPE:

MAP FORMAT:

ESTIMATED MAP LENGTHg

PERFORMANCE INDICATCRS

COMMAND PROCESSTNGi=

TN

10=JUL=1978 13110

bovnesoonwerenenwend

| IMAGE SYNOPSIS |

bocvoamcsenvessceond

00200200 @0CR7SFF 420QT40N (29696, BYTES,

20, PAGES

1. 1, 1., BLOCK)

2,
AVERAGE 21

paanneee
reapagen
EXECUTABLE,

(
S, (4, BLOCKS)

DEFAULT IN FILE “DB13[MURRAY)AVERAGE,MAP)S"

17, BLOCKS

¢$onpessvsnsensnencsens$

I LINK RUN STATISTICS !

T T L T

PAGE FAULTS CPU TIME

20 20:1001020,04

PASS 3= 43 001203100,43
ALLOCATION/RE-OCATIONS= 2 20:120100,04
PASS 21= S 00:00100,27
MAP DATA AFTER nBJECT MODULE SYNOPSISte 5 20:00100,025

SYMBOL TABLE OUTPUT:e
TOTAL RUN VALUES:~

2 aesensea,00
75 P0:100:002,83

ELAPSED TIME
20:00300,12
20:100101,17
P0:100100,25
po:1A0120,86
20100100,06
AA100:00,11
Pa:0N302,62

USING A WORKING SET LIMITED TO 180 PAGES AND 37 PAGES OF DATA STORAGE (EXCLUDING IMAGE)

TOTAL NUMBER OBJECT RECORDS READ (BOTH PASSES): 179
OF WHICH 62 WFRr IN LIBRARIES AND 8 WERE DEBUG DATA RECORDS CONTAINING 294 BYTES

267 BYTES OF DEBUG DATA WERE WRITTEN,STARTING AT VBN 6 WITH 1 BLOCKS ALLOCATED

THERE WERE 1@ LIBRArWY BLOCK READ OPERATIONS
WHICH ENCOMPASSED 4 TOTAL OF 91 BLOCKS

USING A WINDOwW CF 1@ BLOCKS

NUMBER OF MODULES EXTRACTED EXPLICITLY

WITH 2 EXTRACTEU TO RESOLVE UNDEFINED SYMBOLS

@ LIBRARY SEARCHES "ERE FOR SYMBOLS NOT IN THE LIBRARY SEARCHED

A TOTAL OF @ GLOBAL SYMBOL TABLE RECORDS WAS WRITTEN

LINKER X01,17

58, PAGES)

dVW 11Nnv43ad

SNOILVYLSNTII dVW IDVWI

o

AVERAGE

MODULE NAME
AVERAGESMAIN
DEBUGBOOT
OTSSLINKAGE
SYSVECTOR
VMSRTL

IDENT
21

21

@=3

g2
+JEXFsid

10=JUL=1978 13109 LINKeR X@1,17 PAGE

Povenvnssesssswveseenessened

| OBJECT MODULE SYNOPSIS !

jenwencsesnnerresssvewesnd

BYTES FILE CREATION DAIE CREATOR

woe®e owewe. L L L L L L L L L] LA L4 LA 1 J
202 DB131[MURRAY]AVERAGE,0BJj2 1i=May=1978 B:1¢2 VAXeil FORTRAN IV=PLUS 78,792
8 0BB2:([SYSLIB]DEBUG,OBJ)Y @2=JUN=1978 1vie VAX=11 MACRO X0,3=10
3 DBB21[SYSLIB)STARLET,O0LB)2 1S=JUN® 1978 14ts VAXeil MACRO X@,3=11}
@ DBR21 [SYSLIB]STARLET,O0LBj2 25«JUN=1978 131¢ VAXei{l MACRO XB,3=11
? DBB2: [SYSLIB)VMSRTL,EXEj2 10=JUL=1978 00121 LINK=32 X01,17

dVIN 11Nnd

SNOILVILSNTII dVW JDVWI

DB13 [MURRAY])AVERAGE,EXE}3

CLUSTER TYPE PAGES
DEFAULT_CLUSTER ¢ 1
v 1

[1

v 1

253 20

VMSRTL 3 '
3 48

[} 2

BASE ADDR

2eena200
20000400
enees60@
genensee
TFFFD8OY

20ageAeed
aeen1200
poear2en

10=JULe1978 13109

docsssesncsonerroscssscenesd

I IMAGE SECTION SYNOPSIS |

$ovnsnvescscheccsssvesennnd

DISK VBN PFC PROTECTION AND PAGING

READ
READ
READ
READ
READ

PABEWNN

READ
READ
READ

a8 [CR-N.E-R.-J

29

ONLY

WRITE COPY ON REF
ONLY

WRITE COPY ON REF
WRITE DEMAND ZERO
ONLY

ONLY

WRITE COPY ON REF

GBL, SEC, NAME

VMSRTL 001
VMSRTL 002
VMSRTL, 203

LINKeR X01,17

MATCH

LESS/EQUAL
LESS/EQUAL
LESS/EQUAL

MAJORID

PAGE

MINORID

99.
99
99

dVIN T71Nd

SNOILWYLSNTIII dVW FOVWI

DB13 [MURRAY)AVERAGE,EXE)3 10=JUL=1978 13109 LINKER Xx01,17 PAGE 3

¢nonconsessersreesvocavesaRRd

| PROGRAM SECTION SYNOPSIS |

¢vsesencesrenePvcCYPRNRTOYITR P

PeSECT NAME MODULE(S) BASE END LENGTH ALIGN A1 TRIBUTES

LA A 4 2 LA L 4 J ToewTeSnew aoees sew LA A LA L "Teowew Teweeseseew

SPDATA 00000200 00020233 e0PUAR34 (S2,) LONG 2 PIC,USR,CON,Rel,LCL, SHR,/NOEXE, RD,NOWRT
AVERAGESMAIN 00030200 2M0PR233 QGAPAMA3L (52,) LONG 2

SLOCAL P002PUAR 000ARL0B acRdarac (12,) LONG 2 PIC,USR,CON,ReL,LCL,NOSHR,NOEXE, RD, WRT
AVEWAGESMAIN 0000R4PR PAPNAUER A%AenAAC (12.) LONG 2

$CODE 20000670 2P0RP689 QARENNBA (138,) LONG 2 PIC,USR,CON,ReL,LCL, SHR, EXE, RD,NOWRT
AVERAGESMAIN 20000607 B0NNP689 AACRRR8A (138,) LONG 2

0TS$CODE P03R068C 000QR6BE 202000P3 (3.) LONG 2 PIC,USR,CON,ReL,LCL, SHR, EXE, RD,NOWRT
OTSSLINKAGE NA0AVLBC 2AMON6BE A2BVAAAB3 (3.) LONG 2

« BLANK ANepNaAe PANNP8NT AARAANNB (8,) BYTE @ NOPIC,USR,CON,RelL,LCL,NOSHR, EXE, RD, WRT
DeBUGBNOT P2A00B00 20PAR8AT ARRAABAR (8,) BYTE 2
01SsLINKAGE 20002808 2ANNGBN8 PRARANARD (2,) BYTE @
SYSVECTOR 20MN080A8 GANPABE8 BRQABAANR (2.,) BYTE @

2 N TN , —

dVIN 11Nnd

SNOILVILSOTII dVW IODVHWI

.//\

DB1: [MURRAY]AVERAGE EXE}3

SYMBOL
AVERAGESMAIN
FORSIO,END
FORSIO,F_ R
FORSIO, L R
FORSREAD,SF
FORSSTOP
FORSWRITE,SF
LIBSK, _VERSION
OTSSLINKAGE
SYSSIMGSTA

VALUE
PPAPR6AB=R
AeAvaCAB=RU
ArArACBE=RU
PPAVACDA=RU
@rareCS@=RU
PPRPAE6O=RU
27@7pCB8=RU
enerA6an
ANArA6BCR
8rArA168

10=JUL=1978 13109

dewvoorsposenesennsd

| SYMBOLS BY NAME |

tevenwscrenssusnca}

SYMBOL VALUE SYMBOL

AT

LINKeR X01,17

VALUE

SYMBOL

PAGE

VALUE

4

dVIN 11nd

SNOILVILSATII dVW HODVWI

0T-d

D813 [MUR

VALUE

20000600
2000068C
20000CSe
fegeaces
A000BCAB
29000CB0
ne00aCDO
A0NPRE6D
8000@168

RAYJAVERAGE,EXE3

ReAVERAGESMAIN
R=0TSSLINKAGE
RU=FQORSKEAD,SF
RU=FORS™RITE, SF
RU=FQR$:0_END
RU=FORS L0, F R
RU=FORS$40, L R
RU=FORSSTOP
SYS$IMGSTA

10=JUL=1978 133109

boencsvesevcvssenvad

I SYMBOLS BY VALUE |

YesennoerrreseseNES$

SYMBOLS .44

LIBSK _VERSION

KEY FOR SPECIAL CHARACTERS ABOVE:

$renovenwenesssssen

| * = UNDEFINED
1 U = UNIVERSAL

]
)

| R = RELOCATABLE |

I Wr = WEAK

!

decnnonsnencesnsnnad

LINKeR Xx01,17

PAGE

E)

dVIN T11Nd

SNOILVALSNTII dVW HOVWI

11-9

DB11 [MURRAY]AVERAGE,EXE}3

VIRTUAL MEMORY ALLOCATED:

STACK SIZE: 20, PAGES

IMAGE HEADER VIRTUAL BLOCK LIMITS: 1. 1 1. BLOCK)
IMAGE BINARY VIRTUAL BLOCK LIMITS: 2, S, 4, BLOCKS)
IMAGE NAME AND IDENTIFICATION: AVERAGE @1

NUMBER OF FILES:) 4,

NUMBER OF MODULES: S,

NUMBER OF PROGRAM SECTIONS!: 9,

NUMBER OF GLOBAL SYMBOLS: i@,

NUMBER OF IMAGE StCT1IONS: 8,

USER TRANSFER ADDRESS3 po00R600

DEBUGGER TRANSFER AUDRESS1 f0Q00800

IMAGE TYPE: EXECUTABLE,

MAP FORMAT}
ESTIMATED MAP LENGT™:

10=JUL=1978 13109

jeovessessswnenead

-4 IMAGE SYNOPSIS |

juocenvevevevevend

P0000200 QORO7SFF 00007408 (29696, BYTES,

FULL IN FILE "DB{i3[MURRAY]AVERAGE,MAPjy3"

26, BLOCKS

$oacsnvennsscseserusesed

! LINK RUN STATISTICS |

¢vovscevoanscrsssnsanwed

PERFORMANCE INDICATURS PAGE FAULTS CPU TIME ELAPSED TIME
TN SRNTERT FTETENEPEeP PeEe "W mee sees LA L L L L L I L1 L J
COMMAND PROCESSINGg= 15 AQ@100100,07 00100100,13
PASS {1= 48 e0:1001@0,47 2010M301,13
ALLOCATION/RELOCATIONS~ 2 00:17n100,73 nA1e0190,32
PASS 23- 7 20300100,21 PP3AG100,88
MAP DAYTA AFTER CBJECT MODULE SYNOPSISie 1 20100100,15 Po102100,14
SYMBOL TABLE OUTPUTi=-] 20:100100,00 00300100,12
TOTAL RUN VALUESt=- 83 20:20:00,93 n010A0102,77

USING A WORKING SFT LIMITED TO 188 PAGES AND 37 PAGEf OF DATA STORAGE (EXCLUDING IMAGE)

TOTAL NUMBER QOBJECT RECORDS READ (BOTH PASSES)1: 179
OF WHICH .62 WERF IN LIBRARIES AND 8 WERE DEBUG DATA RECORDS CONTAINING 294 BYTES

267 BYTES OF DEBUL CATA WERE WRITTEN,STARTING AT VBN 6 WITH { BLOCKS ALLOCATED

THERE WEREviﬂ LIBRARY BLOCK READ OPERATIONS
WHICH ENCOMPASSED A TOTAL OF 91 BLOCKS

USING A WINDOw CF 1@ BLOCKS

NUMBER OF MODULES ExTRACTED EXPLICITLY s 0

LINKeR XP1,17

58, PAGES)

WITH 2 EXTRACTEU TO RESOLVE UNDEFINED SYMBOLS
@ LIBRARY SEARCHES mERE FOR SYMBOLS NOT IN THE LIBRARY SEARCHED
A TOTAL OF @ GLOBAL SYMBOL TABLE RECORDS WAS WRITTEN

dVI T11n4d

SNOILVILSATII dVW 3§VWI

APPENDIX C

VAX-11 OBJECT LANGUAGE

The object language description in this appendix is taken from DIGITAL
software specifications.

C.1 INTRODUCTION

This document is a specification of the Object Language accepted by
VAX-11 Linkers, Object Module Librarians, and Object Patch Utilities.

The Object Language specified herein is for use by all VAX-11l family
software -~ i.e., no subsetting will occur. All language processors
which produce code for execution in native mode are free to use any or
all of the described functionality.

C.l1.1 Summary of Language

Object modules are the input to the Linker and are obtained from the
various language processors as individual files or as object library
files. All symbol table files created by the Linker are also in the
format specified here.

An object module consists of an ordered set of variable-length
records, of which the following types are defined:

OBJ$SC_HDR = 0 - Header Record (HDR)

OBJ$C_GSD = 1 - Global Symbol Directory Record (GSD)
OBJSC_TIR = 2 - Text Information and Relocation Record (TIR)
OBJ$SC_EOM = 3 - End of Module Record (EOM)

OBJSC_DBG = 4 - Debugger Information Record (DBG)

OBJSC_TBT = 5 - Traceback Information Record (TBT)

OBJSC_LNK = 6 — Link Option Specification Record (LNK) (Ignored
by Release 1 of VMS Linker)

Refer to Figure C-1 for an illustration of the order in which record
types appear in the object module.

It is mandatory that there be at least two HDR records and exactly one
EOM Record. These records must begin and end the module,
respectively. Within the module, there must be .at least one GSD
record and there may be any number of TIR, DBG, TBK and LNK records.

VAX-11 OBJECT LANGUAGE

As 1is described below, some ordering is implicit within the set of GSD
records.

In this document, the term "reserved" implies that the item must not
be present, as 'it is reserved for possible future use by the Linker
and DEC. If the particular implementation of the Linker does not have
a specification of wuse of such items, an error will be produced if
such an item is encountered.

All unused and ignored fields of records must be padded to conform to
the block 1lengths specified herein. The content of such fields will
be completely ignored by the Linker, and any other processors.

The remaining possible language record types are allocated as follows
but not defined in this specification:

Type 7-100 Reserved for future use by Linker
Type 101-200 Ignored always and completely
Type 201-255 Reserved for CSS and customer use

(Ignored by initial implementation)

MHD Module Header Record
GSDi Global Symbol Directory Record
TIR Text Information and Relocation
TIR \ Records
GSD Additional Global Symbol Directory
DBG Debugger Information Record
TBT Traceback Information Record
TIR More Text Information and Relocation
GSD More global symhol information
TIR More text
EM End of Module
Figure C-1

General Structure of an Object Module

This language is a development from RSX-11l systems. The reader who is
not familiar with the RSX-11] Task Builders 1is referred to the
documents listed.

VAX-11 OBJECT LANGUAGE

C.2 GLOBAL AND UNIVERSAL SYMBOLS AND NAME FORMAT
The Linker deals with two types of symbols, global and universal.

Global symbols are those symbols which are accessible to more than one
module of the set being linked. Universal symbols are a subset of the
global symbols. They are ones which the Linker retains when 1linking
an image to which another set of object modules and/or images will
subsequently be bound.

As well as the names of symbols, the Object Language deals with the
names of p-sections and object modules and may contain the names of
language processors and utilities. All such names are represented by
a l-byte character count followed by the ASCII character string.

The first customer ship (FCS) implementation of the Linker limits such
name strings to 15 characters, except in the case of header record
types 1-255 (see below). The size of symbols and names, etc., is
given by the parameter OBJ$C_SYMSIZ.

C.3 MODULE HEADER RECORDS (HDR)

This is a new type of record that is additional to the language used
in RSX-11. Its purposes are to collect in one place all module-wide
information, to include information never included by RSX-11, to
permit more functionality in the Librarian and Patch utilities, and to
permit extensibility of the language.

The MHD (Main Header Record) record contains the following information
in the format shown:

RECORD TYPE 0 1 byte
HEADER TYPE 0 1 byte
STRUCTURE LEVEL 1 byte
MAX RECORD SIZE 2 bytes
MODULE
NAME Variable (2-16 for FCS)
MODULE
VERSION . Variable (2-16 for FCS)
CREATION
TIME 17 bytes
AND DATE
TIME AND
DATE OF 17 bytes
LAST PATCH

All entries are required. Detailed descriptions of the fields follow.

VAX-11 OBJECT LANGUAGE

C.3.1 Header Type
The language defines a general class of header records. Type O

(OBJ$C_HDR_MHD) 1is the record depicted above and is required in every
object module. Other types are described below.

C.3.2 Structure Level OBJSC_STRLVL

It is intended that the format of the MHD record remain fixed from
first implementation onward. The structure level is provided such
that extensions to the language, which require changes to other record
formats, can be dealt with without requiring recompilation of every

module which conforms to the previous format. The structure level is
zero FCS. :

C.3.3 Maximum Record Size OBJ$C_MAXRECSIZ
The size in bytes of the longest record that can occur within this

object module. Limited by file system only. The FCS implementation
sets a practical limit of 512 bytes.

C.3.4 Module Name
The module name conforms to the format of all other names, i.e.,
length contained in a byte followed by an ASCII string. If the module

is a symbol table created by the Linker, the name will be the image
name assigned at link time.

C.3.5 Module Version

The module version conforms to the format of all names in the object
language.

C.3.6 Dates And Times
There are two date and time fields - that for module creation and that
of the 1last modification to the module (e.g., by an object module
patch utility). The format is a fixed l7-character ASCII string:
dd-mmm-yyyy hh:mm
where:
dd = day of month
mmm = standard 3-character abbreviation of month.

yyyy = year. Note the space that follows.

hh

hour of day 00 to 23.

mm minute of hour 00 to 59.

o~

VAX-11 OBJECT LANGUAGE

C.3.7- Other Header Records

The purpose of sub-header records is primarily to contain optional
textual information in printable form. Each record consists of a byte
which is zero to indicate a header record, followed by a sub-type
byte. The following sub-types are defined.

OBJSC_HDR_LNM = 1 - Language Processor (LNM) Name and Version.
One record 1is required and limited for FCS
implementation to 35 characters. The content

of this record appears on the 1link map

output.

OBJSC_HDR _SRC = 2 - List of file-specifications for the source
files from which object module was created.
Multiple records are permitted. (Ignored by
FCS)

OBJSC_HDR_TTL = 3 - Title text (e.g., brief module description).
Only one record permitted. (Ignored by FCS)

OBJSC_HDR CPR = 4 - A copyright statement. Only one record
permitted. (Ignored by FCS)

OBJSC_HDR_MTC = 5 - Maintenance Status. (MTC) Multiple records
permitted. (Ignored by FCS)

OBJSC_HDR_GTX = 6 - General Text. Multiple records permitted.

(Ignored by FCS)
Types 7-100 are reserved.

Types 101-255 always ignored.

C.3.8 Header Types 1 through 4 And 6

The purpose of these records is to allow the 1language processors to
provide printable information within the object modules for
documentation purposes. The only format definition is that the record
contain printing ASCII characters. Types 4 and 6 may be generated by
users, whereas types 1 through 3 are restricted to the 1language
processors.

C.3.9 Maintenance Status Header Record (MTC)

This record is of concern only to the object module patch utility. It
is ignored by the Librarian and the Linker.

VAX-11l OBJECT LANGUAGE

The format is as follows:

RECORD TYPE 0 1 byte
HEADER TYPE 5 1 byte
PATCH variable
UTILITY NAME 2-16 bytes
UTILITY variable
VERSION 2-16 bytes
UIC 2 bytes
INPUT FILE variable
SPECIFICATION 2-42 bytes
CORRECTION FILE variable
SPECIFICATION 2-42 bytes
DATE + TIME 17 bytes
SEQUENTIAL PATCH 1 byte

C.3.9.1 Record Type - Zero signifies a header record.

C.3.9.2 Header Type - The type is 5 signifying a maintenance status
record.

C.3.9.3 Patch Utility Name - This name identifies the patch utility
used to perform this patch on the module.

C.3.9.4 Utility Version - The patch utility is further identified by
its version number.

C.3.9.5 U.I.C. - This is the user identification code under which the
patch was made.

C.3.9.6 Inut File Specification - This filename identifies the input
file for this patch.

C.3.9.7 Correction File Specification - This filename identifies the
correction file for this patch.

TN

VAX-11 OBJECT LANGUAGE

C.3.9.8 Date & Time - This 17-byte field contains the date and time
that this patch was performed. Format is as described above.

C.3.9.9 Sequential Patch Number - This number is a sequential count
of the patches made to this module.

C.4 GLOBAL SYMBOL DIRECTORY (GSD) RECORDS (OBJ$C_GSD)

Global symbol directory records contain all the information necessary
to allocate virtual address space and to combine all the program
sections into the separately protectable sections (image sections) of
the image being created.

GSD records are of the following types:
OBJ$SC_GSD_PSC

OBJ$C_GSD_SYM
OBJ$C_GSD_EPM

0 - P-section definition.

1 - Global Symbol Specification.

2 - Entry Point Symbol and Mask
Definition.

3 - Procedure and Formal Argument
Definition.

OBJ$C_GSD_PRO

Within any GSD record, there may be many entry types. In such cases,
a single record appears as the concatenation of many, with the
omission of the byte containing the Object Language record type (the
value OBJS$SC_GSD).

C.4.1 P-Section Definition (OBJ$C_GSD_PSC)

The format of a p-section definition is as follows:

RECORD TYPE 1 1 byte
GSD TYPE 0 1 byte
ALIGNMENT 1 byte
FLAGS 2 bytes
ALLOCATION 4 bytes
P-SECTION Variable
NAME 2-16 bytes

C.4.1.1 P-Section Name - This name has same format as all other
symbol names.

VAX-11 OBJECT LANGUAGE

C.4.1.2 Alignment - This field specifies the virtual address boundary
at which the p-section will be placed.

0 BYTE

1 WORD

2 LONGWORD

3 QUADWORD

i.e., n 2**N BYTES

Where n=0 to 9

Nine 1indicates ©page alignment and is the 1limit for p-section
alignment.

Each module contributing to a p-section can specify its own local
alignment with the restriction that p-sections whose contributions
overlay each other must all have the same alignment. It should also
be noted that an alignment specified within a p-section (e.g.,
assembler .ALIGN directive) must be 1less than or equal to the
p-section alignment to be guaranteed. For example, byte alignment of
the p-section may or may not cause longword aligned elements within
the p-section.

C.4.1.3 -Flags -

Bit Name Use (meaning if set)

0 PSCS$V_PIC P-section defined as position independent.

1 PSC$V_LIB The p-section was defined in the symbol table
of a shareable image, to which this image is
bound.

2 PSC$V_OVL Contributions to the same p-section are

overlaid. (The complement is concatenation).

3 PSCS$V_REL P-section requires relocation (complement,
i.e., bit=0, means absolute and contains only
symbol definitions, thus the allocation of an
absolute p-section is zero).

4 PSCSV_GBL Scope of p-section is global. (Complement is
local).

5 : PSCS$SV_SHR P-section is potentially shareable between
two or more active processes.

6 PSC$V_EXE The content of p-section is executable.

7 PSCS$V_RD The content of the p-section may be read.

8 PCS$V_WRT The content of the p-section may be written.

9-15 Reserved.

Discussions of p-section attributes may be found in the related
documents. [See also Section 2.5.4 of this manual.]

TN

\
(\7 }

/ - \

VAX-11 OBJECT LANGUAGE

C.4.1.4 Allocation Field - The allocation field contains the length
contribution to the p-section 1in bytes. It must be zero for an
absolute p-section.

P-sections are assigned an identifying sequence number as their
respective GSD records are encountered. The p-section number ranges
from 0 through 255 within any single module. Note, however, that the
total number of p-sections in a single link operation is bounded only
by the Linker's virtual memory requirements. This p-section number is
used as an index in all references to the p-section. Note that this
permits any mixture of GSD records, as long as p-sections are defined
to the Linker in the same order as the index used by symbol
definitions.

C.4.2 Global Symbol Specification OBJ$C_GSD_SYM

Global symbol specification records may appear anywhere between the
MHD and EOM records and in any order.

The format of a global symbol specification is as follows:

RECORD TYPE 1 1 byte
GSD TYPE 1 1 byte
DATA TYPE 1 byte

FLAGS 2 bytes
PSECT INDEX 1 byte

5 bytes omitted
for a reference
VALUE 4 bytes (i.e. when
SYM$V_DEF=0)

SYMBOL Variable
NAME 2-16 bytes

C.4.2.1 Data Type - The data type record is encoded as described 1in
Appendix C of the VAX-11/780 Architecture Handbook.

NOTE

The first implementation of the Linker
ignores the data type field.

VAX-11 OBJECT LANGUAGE

C.4.2.2 Flags -

Bit Name Use

0 SYM$V_WEAK 0 for strong resolution.
1 for weak resolution.
Table C-1 describes the usage of SYM$V_WEAK
in conjunction with the definition bit
(SYM$V_DEF) .

1 SYM$V_DEF 0 for reference
1 for definition
2 SYM$V_UNI 0 for within facility
1 for universal symbol
This bit 1is only of significance on a
definition. It indicates the symbol is to
be retained if this facility is shareable.
3 SYMSV_REL 0 for absolute symbol value
1 for relative symbol and the value is
augmented by the indexed p-section base
address (of this module's contribution)
4-15 Reserved.

Table C-1
Interpretation of SYM$V WK and SYM$V_DEF

SYM$V_WEAK SYM$V_DEF - Interpretation.
0 0 Strong Reference - symbol must be
resolved
1 0 Weak Reference - only resolved if the

symbol 1is defined for some reason
other than this reference. Does not
incur any searches or module loads.
Has the value zero if undefined, with
no error report.

0 1 strong definition - will remain in all
required symbol tables/maps.

1 1 Weak definition - will - be discarded
from all symbol tables/maps unless
there was a reference. Will also not
appear 1in the global symbol table
index of an object module library.

C.4.2.3 P-Section index - The p-section index is a number between 0
and 255 to be used as an index into the sequence of p-section
definition records. This field exists only for symbol definition
records (SYMSV_DEF=1) and identifies the p-section in which the symbol
was defined. The index is also used in TIR commands (see Section
5.1.1) for reference to p-section base addresses.

/7 N

AN

‘i

VAX-11 OBJECT LANGUAGE

All symbols encountered must be defined within a p-section,
independently of the relocatability of p-sections or symbols. For
example, the Linker does not require the base address of the "owning"
p-section if the symbol is absolute. However, for the purposes of
generating a readable map, it is very useful to maintain the hierarchy
of symbol within p-section within module within file.

C.4.2.4 Value - This field contains the value assigned to the symbol
by the language processor. This field does not exist if the record is
a symbol reference (SYM$V_DEF=0).

C.4.3 Entry Point Symbol and Mask Definition (OBJ$C_GSD_EPM)

This format is an extended version of the global symbol definition
format above. Following the symbol value (which will be an entry
point address) is a two-byte field for the procedure's register save
mask (as used by CALL instructions). The format is as shown below.

RECORD TYPE 3 1 byte
GSD TYPE 2 1 byte
DATA TYPE 1 byte
FLAGS 2 bytes
PSECT INDEX 1 byte
VALUE 4 bytes
ENTRY MASK 2 bytes
SYMBOL variable
NAME 2-16 bytes

C.4.3.1 Entry Mask - The entry mask is written at the entry point of
a procedure entered via a CALLS or CALLG instruction, and in some
cases also is used in transfer vectors to such procedures. A TIR
command (see Section 5 of this appendix) is provided for the language
processor to direct the Linker to insert the mask at the procedure
entry point or at the transfer vector.

VAX-11 OBJECT LANGUAGE

C.4.4 Procedure With Formal Argument Definiton (OBJ$C_GSD_PRO)

This GSD format is an extension of the entry point and mask definition
format to define the formal arguments of the procedure. The format is
as shown below.

RECORD TYPE 1 1 byte
GSD TYPE 3 1 byte
DATA TYPE 1 byte
FLAGS 2 bytes
PSECT INDEX 1 byte
VALUE 4 bytes
ENTRY MASK 2 bytes
SYMBOL variable
NAME 2-16 bytes
MIN ACTUAL ARGS. 1 byte
MAX ACTUAL ARGS. 1 byte
FORMAL ARG 1)

DESCRIPTOR variable length
(2-256 byte)
descriptors of

> formal arguments
arg n is optionally
function return
FORMAL ARG n value.
DESCRIPTOR y,

Following is a description of the fields of a procedure definition
which are in addition to other GSD records.

C.4.4.1 Minimum and Maximum Actual Argument Counts - Permissible
values are 0 to 255 and specify, respectively, the minimum number and
the maximum number of arguments required for a wvalid call to this
procedure. The counts must include function return value if such
exists.

The FCS implementation does not validate procedure calls. However,
for its own integrity it validates that minimum number of actuals is
less than or equal to the maximum number of arguments. The maximum
number of actuals field is then used to process the formal argument
descriptors.

VAX-11 OBJECT LANGUAGE

C.4.4.2 Formal Argument Descriptors -

Each of the formal argument descriptors of the record shown above has
the following format:

ARG. VAL. CTL. 1 byte ARGSBVALCTL
REM. BYTE CNT. 1 byte ARGSBBYTECNT
DETAILED variable
0-255 bytes
ARGUMENT
ignored by FCS
DESCRIPTION implementation

C.4.4.2.1 Argument Validation Control Byte - This (the first) byte of
each formal description is wused to control the validation of the
argument. The only field of this control byte used by the 1linker is
as follows:

Bits 0:1 ARGSVPASSMECH - Describes the mechanism by which the
argument of a valid call must be passed.

Bits 2:7 Reserved - Ignored by the FCS impleméntation.

The following argument passing mechanisms are defined:

ARGSK_UNKNOWN = 0 Unspecified
ARGSK_VALUE = 1 By value
ARGSK_REF = 2 By reference
ARGSK_DESC = 3 By descriptor

C.4.4.2.2 Remaining Byte Count - This field gives the length of the
remainder of this argument descriptor. For FCS implementation, it is
used as a count of bytes to be ignored by the linker. The content of
these remaining bytes is of a format not specified here and reserved
for possible future implementations.
NOTE: Any usage of formal argument descriptors in which

ARG$B_VALCTL bits 2:7 NEQ 0
and/or

ARGSB_BYTECNT NEQ 0

means that, should argument validation be implemented in a future
VAX-11l linker, re-compilation of all such objects may be necessary.

VAX-11 OBJECT LANGUAGE

C.5 TEXT INFORMATION AND RELOCATION (TIR) RECORDS (OBJ$C_TIR)

Text information and relocation records contain a sequential series of
commands and data for the Linker to compute and record the contents of
the image. The general form of a TIR record is as follows:

RECORD TYPE 2 1 byte
COMMAND 1 1 byte
DATA 1 —
COMMAND 2 1 byte
byte
DATA 2 . count
implied
by command.
COMMAND N 1 byte
DATA N ~

C.5.1 Commands

The Linker's creation of the binary content of an image file is
completely driven by the language processor via the commands contained
in TIR records. To achieve this, the Linker maintains an internal
stack.

The commands available allow values to be placed on the stack and
operations to be performed on the items on top of the stack. These
commands also permit the writing of values from the stack to the
output image. Other commands permit the storing of a sequence of
bytes from object module to output image without alteration by the
Linker. They also provide for control of the relocation of the
position currently being written in the image.

In commands which refer to p-sections, the names are identified by the
sequence numbers assigned to them as described above. The p-section
indices are in the range 0 through 255.

The command byte has two formats:

76 0
1 -COUNT FORMAT 1
7 6 0
0 COMMAND FORMAT 2

(-

{ \

-
N

VAX-11 OBJECT LANGUAGE

The only command with FORMAT 1 is the Store Immediate (STOIM), which
merely causes the copying of the following bytes (given by the
negative count in the range -1 to -128) into the output image.

All other commands are described by the second format. There are four
groups of commands:

Stack Group
Store Group
Operator Group
Control Group

The stack upon which these commands operate is longword aligned at all
times. Furthermore, it must be completely collapsed at end of module,
but is retained between all other record types. The minimum stack
space available will be not less than 25 longwords.

C.5.1.1 Sstack Group - The stack group of commands provides the
capability to store bytes, words, and longwords on the stack. The
value placed on the stack may follow the command in the TIR record;
it may be found from a global symbol; or it may be computed from the
base address of a p-section. Except for stacking the value of global
symbols or stacking addresses (calculated from p-sections), both
signed extension to longword and zero extension to 1longword are
provided for byte and word stack operations.

Code Command Description/Interpretation
0. Stack Global Symbol specification follows. As
(TIRSC_STA_GBL) with all other names, it consists

of the symbol 1length in a byte
followed by the ASCII string
defining the symbol:

LENGTH 1 byte

SYMBOL Variable
1-15 bytes

The value found from the symbol
table is a 32-bit quantity.

1. Stack Signed Byte Single signed byte constant
(TIRSC_STA_SB) follows. Value 1is sign extended

to 32 bits.

2. Stack Signed Word Single signed word constant
(TIR$C_STA_SW) follows. Value is sign extended

to 32 bits.

3. Stack Longword Single longword constant follows.
(TIR$C_STA_LW)

4. Stack PSECT base l-byte p-section number followed
plus byte offset by single signed byte offset.
(TIRSC_STA_PB) A 32-bit quantity is computed by

addition of p-section base

address and the byte offset.

Code

5.

10.

11.

12.

VAX-11 OBJECT LANGUAGE

Command

Stack PSECT base
plus word offset
TIRS$C_STA_PW)

Stack PSECT base
plus long word offset
(TIR$SC_STA_PL)

Stack Unsigned Byte
(TIR$C_STA_UB)

Stack Unsigned Word
(TIR$C_STA_UW)

Stack Byte From Image
(TIR$C_STA_BFI)

Stack Word From Image
(TIR$C_STA_WFI)

Stack Longword From
Image (TIRSC_STA LFI)

Stack Entry Point Mask
(TIR$C_STA_EPM)

Description/Interpretation

l-byte p-section number followed
by single signed word offset. A
32-bit quantity 1is computed by
addition of p-section base
address and the word offset.

l1-byte p-section number followed
by signed longword offset. A
offset. A 32-bit quantity is
computed by addition of p-section
base address and the longword
offset.

Note that although the offsets in
the above three commands are
signed, negative values are very
rarely correct. Note also that
the base address is that of this
module's contribution to the
p-section.

As for TIRSC_STA_SB except that
the value is zero extended to 32
bits.

As for TIRSCSTASW except that the
value 1is zero extended to 32
bits.

The longword on top of the stack
is used as an address, in the
image, from which to retrieve a
byte. The byte is zero extended
and replaces top longword of
stack.

The word variant of previous
command. ‘

Analogous to above.

This command has the same format
as TIRSC_STA_ GBL. However,
instead of stacking the value of
the symbol, the entry point mask
(unsigned word) which accompanies
the symbol definition is stacked.
An error 1is produced 1if the
symbol referenced is not an entry
point.

VAX-11 OBJECT LANGUAGE

Code . Command Description/Interpretation
13. Compare procedure The format of the command is as
arguments and stack follows:
TRUE or FALSE.
(TIRSC_STA_CKARG) COMMAND CODE
SYMBOL
NAME
ARG INDEX
ACTUAL
ARGUMENT
DESCRIPTOR

The purpose of this command is to
compare an actual ~ argument
descriptor with a formal
descriptor for a particular
procedure, stacking an indicator
based upon match or mismatch of
arguments. This indicator is
TRUE if match 1is found or if
there is no formal argument
description. The indicator is
FALSE if (and only if) the
specified formal is described by
a procedure definition but the
description does not match the
accompanying actual argument
description.

The argument that is checked is
given by the index, and is thus
number 0 through 255. The format
of the actual argument descriptor
is identical to that of the
procedure definition GSD record
described in section 4.4.2 above.
The FCS linker compares only the
fields ARGSVPASSMECH, stacking
the TRUE indicator if they agree,
FALSE if they do not.

14-19 Reserved Commands

C.5.1.2 Store Group - All commands of the store group pop the top
longword from the stack upon completion of the command. Several of
the commands provide validation of the quantity being stored, with the
possibility of issuing truncation errors during the operation. Upon
completion of the command, the location counter 'is pointing to the
next byte in the output image.

c-17

VAX-11l OBJECT LANGUAGE

Code Command

20. Store Signed byte
(TIRSC_STO_SB)

21. Store Signed Word
(TIR$C_STO_SW)

22, Store Longword
(TIRSC_STO_LW)

23. Store Byte Displaced
(TIR$C_STO_BD)

24, Store Word Displaced
(TIR$C_STO_WD)

25. Store Longword
Displaced
(TIRSC_STO_LD)

26. Store Short Literal
(TIR$SC_STO_LI)

27. Store Position
Independent Data
Reference
(TIR$C_STO_PIDR)

28. Store Position
Independent Code
Reference
(TIR$C_STO_PICR)

Cc-18

Description/Interpretation

Bits 31:7 must be identical. Low
byte written to image.

Bits 31:15 must be identical.
Lower word written to image.

One longword written to image.

Location counter subtracted from
top of stack. Decrement value.
Bits 31:7 must be identical.
Byte is then written to image.

Location counter plus 2
subtracted from top of stack.
Bits 31:15 must be identical.
Word written to image.

Location counter plus 4
subtracted from top of stack.
Longword written to image.

One 1longword from stack, bits
31:6 MBZ. Single byte written to
image.

The longword on top of stack is
assumed to be the address of a
data item. It occurs in a
non-executable p-section. If the
address is absolute, command
behaves as store longword. If
address 1is relocatable, command
behaves as store longword
displaced and in addition
provides information in the image
header for subsequent Linker
processing.

The longword on top of the stack
is assumed to be the address of
address of an item to which a
a position independent
instruction makes reference. The
purpose of the command is to
generate a position independent
reference. If the top of stack
is absolute, the byte "9F" (hex)
is written (which is
autoincrement deferred addressing
mode on the PC and therefore
absolute) followed by the top as
for store longword. 1If, however,
top of stack is relocatable, the
byte "EF" (hex) is written (which
is longword displacement mode off
PC and therefore relative
addressing). Location counter is
incremented. Then the longword
is written 3just as for store
longword displaced. '

Code

28.
(Cont.)

29.

30.

31.

32.

33.

34.

35.

36.

37.

VAX-11 OBJECT LANGUAGE

Command

Store Position
Independent Code
Reference
(TIR$C_STO_PICR)

Store Repeated
Signed Byte
(TIR$C_STO_RSB)

Store Repeated
Signed Word
(TIR$C_STO_RSW)

Store Repeated

Longword (TIRSCSTORL)

Store Arbitrary
Field (TIRSCSTOVPS)

Store Unsigned Byte
(TIR$C_STO_USB)

Store Unsigned Word
(TIR$C_STO_USW)

Store Repeated
Unsigned Byte
(TIRSC_STO_RUB)

Store Repeated
Unsigned Word
(TIR$C_STO_RUW)

Store Byte
(TIR$C_STO_B)

Description/Interpretation

This and the previous command are
discussed further in the
references on generation of
position independent images.

The 1longword on top of the stack
is used as the repeat count. The
low order byte of next 1longword
on the stack is written to the
image the indicated number of
times. Both longwords are
cleaned off stack on completion.

As above except that words are
written.

Analogous to above.

The bits 0 to (s-1) of the top
longword are written to image
starting at bit p of the current
location. The command byte in
the object module is followed by
p and s (respectively) which are
unsigned bytes such that 0 LEQ
p+s LEQ 32. Only the specified
bits of the image are altered.
After the operation the location
counter is the address of the
byte containing bit (p+s) of the
location modified.

Same as TIR$C_STO_SB except that
bits 31:8 must be zero.

Analogous to above (Bits 31:16
(Bits 31:16 MBZ).

Analogous to above.

Analogous to above.

If top. 1longword on stack is
is negative, then bits 31:7 must
be 1. Else, bits 31:8 must be
zero. Low order byte is written
to image. This command permits
any 8 bit value from -128 to 255
to be written to the image.

VAX-11l OBJECT LANGUAGE

Code Command Description/Interpretation
38. Store Word If top longword is negative, bits
(TIRSC_STO_W) bits 31:15 must be 1. Else bits
31:16 MBZ. One word is longword
is popped from stack. This

command permits any 16 bit value
from -32768 to 65535 to be
written to the image.

39. Store Repeated Byte The repeated version of store
(TIR$SC_STO_RB) byte. See TIR$C_STO_RSB for
description of repeat count.

40. Store Repeated Word Analogous to above.
' (TIR$C_STO_RW)

41-49. Reserved Commands

C.5.1.3 Operator Group - The Linker evaluates expressions in Post Fix
Polish form. All arithmetic operations are performed in signed 32-bit
two's complement integers. There is no provision for floating point,
string or quadword computation.

The commands of the operator group take as operands the top one or two
longwords on the stack. Upon completion of the operation, the result
is the top longword on the stack. Attempts to divide by zero produce
a zero result, and a nonfatal diagnostic is issued.

Code Command Description/Interpretation

- 50. No-operation
(TIRSC_OPR_NOP)

51. Add. (TIRSC_OPR_ADD) Top two longwords are added.

52. Subtract Top longword is. subtracted from
(TIR$C_OPR_SUB) next. »

53. Multiply Top two longwords are multiplied.
(TIR$C_OPR_MUL)

54. Divide Divisor is top longword.
(TIR$C_OPR_DIV)

55. Logical AND Logical AND of top two longwords.
(TIR$C_OPR_AND)

56. Logical Inclusive OR Inclusive OR of top two
(TIRSC_OPR_IOR) longwords.

57. Logical Exclusive OR ' Exclﬁsive OR of top two
(TIRSC_OPR_EOR) longwords.

58. Negate Top longword is negated.

(TIRSC_OPR_NEG)

59. Complement Top longword is complemented.
(TIR$SC_OPR_COM)

C-20

VAX-11 OBJECT LANGUAGE

Code Command
60. Insert field

(TIR$C_OPR_INSV)

61. Arithmetic Shift
(TIR$C_OPR_ASH)

62, Unsigned Shift
' (TIR$C_OPR_USH)

63. Rotate
(TIR$C_OPR_ROT)

64. Select
(TIR$C_OPR_SEL)

65. Re-define Symbol to
current location.
(TIR$C_OPR_REDEF)

66-79. Reserved Commands

Description/Interpretation

This command is analogous to the
store of arbitrary bit field
above. The only difference is
that the target for bits from top
of stack is the next longword on
the stack, and 1location counter
is therefore unaffected. Note
that top longword is popped and
that p,s +are bytes following
command in the TIR record.

The longword on top of stack is
stack is the shift count to apply
to next longword. Negative
quantity causes a right shift
(with replication of sign bit).
Positive causes left shift with
zeroes moved into low order bits.

As above except that zeroes are
moved into high and low order.

Rotate count 1is top longword to
apply in a rotate (left if
positive,. else right) of next
long word on stack. Rotate count
must have an absolute value
between 0 and 32.

Remove the top longword from the
stack. If it has the value TRUE
(low bit set) remove and discard
the next longword on the stack.
If the first longword removed has
the value FALSE (low bit clear)
copy the next 1longword on the
stack to the one that follows.
Thus, the command presumes there
are three longwords on the stack.
These are collapsed to a single
longword which is the value of
the second or third based on the
value of the first.

The command -has the same format
as the TIRSCSTAGBL command.
Causes the symbol to be
re-defined on output of symbol
table(s) to have the value of the
location counter ™ when this
command is processed. The
re-definition does not occur
until after all image binary is
written. If no binary is
generated (or is aborted) the
re-definition does not occur.

VAX-11 OBJECT LANGUAGE

C.5.1.4 Control Group - The control group of commands is provided for
manipulation of the location counter.

Code Command Description/Interpretation

80. Set Relocation Base The value on top of the stack is
(TIR$SC_CTL_SETRB) popped into the location counter.

8l. Augment Relocation Signed longword which is an

Base (TIRSC_CTL_AUGRB) increment to location counter
follows the command.

82-127. Reserved Commands

C.5.2 Record Length

TIR records may be quite 1long. There 1is an implementation 1limit
defined by OBJSC_MAXRECSIZ. The maximum record size of the module is
recorded in ‘the header word.

C.5.3 Differences From RSX-11

Note that TIR Records combine the information and capabilities of two
types (TXT and RLD) of record used by the RSX-11 Task Builder. The
result is a sequential writing of the output image and a more
efficient object language. Note also the omission of the End GSD
Record, the addition of Module Header Record, and the placement of
Transfer Address at the end of the module,

In this specification there is also no mechanism for handling the
RSX-11 assembler directive to obtain program limits. The usefulness
of the LIMIT directive in VAX systems is questionable, and no proposal
is made to deal with it in the Linker.

C.5.4 Side Effects And Optimization

In the interest of performance of the Linker a few implementation
decisions and their possible side effects should be noted.

1. For all store repeated commands, if the guantity being stored
is zero, the linker does not write the zeroes into the bytes.
The reason for this 1is that the pages of an image are
guaranteed to be zero ‘unless otherwise initialized by the
compiler. To achieve this, demand zero pages are used within
the linker and were the linker to attempt to write zeroes, the
fact that these are still empty pages of the image 1is 1lost.
Thus, it becomes very difficult to compress from the image all
empty pages.

There is, however, a side effect to this behavior, in that if
a cell of an image had been previously initialized, it will
not be zeroed by any repeated store commands. This can occur
in multiple modules contributing to and attempting to
initialize the content of overlayed p-sections. Notice,
however, that the results of such multiple initialization are
then dependent on the order of processing of object modules.
This side effect is therefore considered to be acceptable.

Cc-22

/"\\‘

VAX-11 OBJECT LANGUAGE

2. The Linker is a two-pass processor of object modules. The
content of TIR records is completely ignored on the first pass
but verified and acted upon on the second pass. However, 1if,
either due to the command or some Link time error, no image is
being produced, all TIR records (as well as DBG and TBT
records) are ignored. A side effect, considered quite
acceptable, is that errors (user or compiler) potentially
detectable on pass two will not be detected. Truncation
errors are the most 1likely example of such undetected
situations.

C.6 END OF MODULE (EOM) RECORD (OBJ$C_EOM)

This record declares the end of a module. It declares the severity of
errors encountered by language processor, and, optionally, it declares
a transfer address within a p-section in this module. The format is
as follows:

RECORD TYPE 3 1 byte

ERROR SEVERITY 1 byte

P-SECT INDEX 1 byte
TRANSFER 4 bytes
ADDRESS

This record will be two or seven bytes, depending on existence of a
transfer address. Note that the p-section specification is by its
index within the module, as used above. The transfer address 1is an
offset from the base of this module's contribution to the specified
p-section.

C.6.1 Error Severity

The error severity byte specifies to the Linker whether errors were
encountered in the source code. It also indicates the severity of any
errors encountered.

Value Interpretation by Linker
0 No errors
1 Warnings were generated by language processor. Proceed
with link but issue warning message.
2 Errors were severe, proceed with 1link, but do not
produce an executable image.
3 Abort the link.
4-10 ‘Reserved.
11-255 Ignored.

VAX-11 OBJECT LANGUAGE

C.7 DEBUGGER INFORMATION (DBG) RECORDS (OBJ$C_DBG)

The purpose of debugger information records is to allow the language
processors to pass information concerning local variables, etc., of
the compilation. to the debugger. The transmission of this information
may make use of all the functions (commands) available in the TIR set.

The command stream in DGB records generates what is referred to as the
debug symbol table (DST). The DST follows immedjiately the binary of
the user image and the image header contains a descriptor of where 1in
the file such data has been written. The production of the DST in
memory makes use of a separate location counter within the Linker.
This location counter 1is initialized as if the DST were the highest
addressed part of the program region of the image. Note, however, the
DST is not in fact mapped into the user image.

The linker produces a DST only if the debugging qualifier was
specified at 1link time and only if an executable image is being
produced. If either of these is not true, DBG records are ignored.
See the above discussion of the side effects in TIR record processing.

C.7.1 Traceback Information (TBT) Records (OBJ$C_TBT)

Traceback information records are the means by which language
processors pass information to the facility which produces a traceback
of the call stack. From the point of view of the Linker and its
processing of these records, they are identical to DBG records. That
is, they may be mixed with DBG records and all data generated goes
into the DST as if they were in fact DBG records.

The purpose of separating this information from that contained inh DBG
records 1is to allow inclusion of a DST containing only traceback data
when no debugging is requested at link time. If the production of
traceback information is desabled at link time then these records are
ignored. See the above section on side effects in processing TIR
records.

C.8 LINK OPTION SPECIFICATION (LNK) RECORDS (OBJS$C_LNK)

The link option specification records are defined for the purpose of
allowing the compiler to provide the Linker with default parameters
which are used if none were given by the wuser at 1link time. Such
options < of interest are libraries to be searched to resolve undefined
symbols, modules to be included in the link, adjustment of stack and
buffer region sizes. -

The exact set of commands allowable will be supplied later, along with
the interaction of conflicting object module LNK records and user
commands. The general philosophy is to use the most recently
specified parameters unless there are good reasons to the contrary.
These records are ignored by the FCS Linker.

TN .

A

Attributes of program sections,

2-3 to 2-5, 7-6

concatenated (CON), 2-3 to
2-4

overlaid (OVR), 2-3 to 2-4

position independent code
(pIC), 2-5, 8-7 to 8-8

relocatable (REL), 2-3

shareable (SHR), 2-5, 8-6 to
8-7

BASE= option, 6-3, 6-5
/BRIEF command qualifier, 5-3,
5-4

C

CHANNELS= option, 6-3, 6-5
CLUSTER= option, 6-3, 6-5 to
6-6, 9-1
Clusters, 2-1 to 2-2, 6-5 to
6-6, 9-1
Command qualifiers, 5-1 to 5-8
/BRIEF, 5-3, 5-4
/CONTIGUOUS, 5-3, 5-4
/CROSS_REFERENCE, 5-3, 5-4
to 5-5
/DEBUG, 5-3, 5-5
/EXECUTABLE, 5-3, 5-5
/FULL, 5-3, 5-5 to 5-6
/MAP, 5-3, 5-6
/SHAREABLE, 5-3, 5-6 to 5-7
/SYMBOL_TABLE, 5-3, 5-7
/SYSLIB, 5-3, 5-7
/SYSSHR, 5-3, 5-7 to 5-8
/SYSTEM, 5-3, 5-8
/TRACEBACK, 5-3, 5-8
Compression, 2-8 to 2-9, 6-6
Copy on reference image sections,
2-9, 8-6 to 8-7
Concatenated attribute, 2-3 to
2-4
/CONTIGUOUS command qualifier,
5-3, 5-4
Cross reference, 7-8 to 7-9
/CROSS_REFERENCE command quali-
fier, 5-3, 5-4 to 5-5

INDEX
D
Debug capabilities, 1-4, 5-5,
C-24
/DEBUG command qualifier, 5-3,
5-5

Default system library, 4-3
to 4-4, 5-7 to 5-8
Demand zero image sections,

2-9
DZRO_MIN= option, 2-9, 6-3,
6-6

Error messages, A-1l to A-5
/EXECUTABLE command. qualifier,

5-3, 5-5
Executable images, 2-6, 5-5
F:
File qualifiers, 5-1 to 5-3,
5-8 to 5-9
/INCLUDE, 4-2 to 4-3, 5-3,
5-8 to 5-9
/LIBRARY, 4-2 to 4-3, 5-3,
5-9

/OPTIONS, 5-3, 5-9, 6-1, 6-4
/SELECTIVE_SEARCH, 5-3, 5-9
/SHAREABLE, 5-3, 6-2
/FULL command qualifier, 5-3,
5-5 to 5-6

G

Global symbols, 3-1 to 3-4,
C-3, C-7 to C-13

GSMATCH= option, 6-3, 6-6 to
6-7, 8-3

Image map, 1-5, 7-1 to 7-11,
B-1 to B-1l1
Images, 1-1
types of, 2-5 to 2-7
Image sections, 2-1, 2-7 to
2-8

Index-1

INDEX (Cont.)

/INCLUDE file qualifier, 4-2
to 4-3, 5-3, 5-8 to 5-9

Initialization of image, 1-5,
2-7 to 2-9

IOSEGMENT= option, 6-3, 6-7

ISD_MAX= option, 2-9, 6-3, 6-8

L

Libraries, 4-1 to 4-4
default system library,
4-3 to 4-4, 5-7 to 5-8
/LIBRARY file qualifier, 4-2
to 4-3, 5-3, 5-9
LINK command, 5-1 to 5-10
examples, 5-9 to 5-10
format, 5-1 to 5-2
Local symbols, 3-1 to 3-3

Map, 1-5, 7-1 to 7-11, B-1
to B-11

/MAP command qualifier, 5-3,
5-6

Memory allocation, 1-4, 2-7
to 2-8, 9-1

Messages, A-1 to A-5

Modular programming, 1-2

Object language, 2-2, C-1 to
Cc-24
Options,

BASE=, 6-3, 6-5
CHANNELS=, 6-3, 6-5
CLUSTER=, 6-3, 6-5 to 6-6,
9-1
DZRO_MIN=, 2-9, 6-3, 6-6
GSMATCH=, 6-3, 6-6 to 6-7,
8-3
IOSEGMENT=, 6-3, 6-7
ISD_MAX=, 2-9, 6-3, 6-8
STACK=, 6-3, 6-8
UNIVERSAL=, 3-4, 6-3, 6-8,
8-3
/OPTIONS file qualifier, 5-3,
5-9, 6-1, 6-4
Options files, 6-1 to 6-8
rules for creating, 6-4
uses, 6-1 to 6-3
Overlaid attribute, 2-3 to 2-4

Position independent code, 2-5,
8~-7 to 8-8

Program sections, 2-1, 2-2 to
2-5

alignment, 2-3
attributes, 2-3 to 2-5
name, 2-3

size, 2-3

Q

Qualifiers - See "Command
qualifiers" and "File
qualifiers."

References, 3-1

strong, 3-3

weak, 3-3 to 3-4
Relocatable attribute, 2-3

S
/SELECTIVE_SEARCH file qualifier,
5-3, 5-9
Shareable attribute, 2-5, 8-6
to 8-7

/SHAREABLE command qualifier,
5-3, 5-6 to 5-7
/SHAREABLE file qualifier, 5-3,
6-2
Shareable images, 2-6 to 2-7,
8-1 to 8-30
benefits and uses of, 8-1
to 8-2
creating, 8-2 to 8-3
using, 8-30
STACK= option, 6-3, 6-8
STARLET.OLB, 4-4
Strong reference, 3-3
Symbol cross reference, 7-8
to 7-9
/SYMBOL_TABLE command qualifier,
5-3, 5-7
Symbol tables, 3-4 to 3-5, 5-7
Symbols, 3-1
global, 3-1 to 3-4, C-3, C-7
to C-13
local, 3-1 to 3-3
universal, 3-4, 8-3, C-3

Index-2

e ~,

s

INDEX (Cont.)

/SYSLIB command qualifier, 5-3, 5-7 Universal symbols, 3-4, 8-3,

/SYSSHR command qualifier, 5-3, c-3
5-7 to 5-8
/SYSTEM command qualifier, 5-3, 5-8
System images, 2-7 V
T VAX-1l object language, 2-2,
L. C-1 to C-24
/TRACEBACK command qualifier, VAX-11 Symbolic Debugger, 1-4
5-3, 5-8 VMSRTL.EXE, 4-3 to 4-4
Transfer vectors, 8-4 to 8-6
U
w
UNIVERSAL= option, 3-4, 6-3,
6-8, 8-3 Weak reference, 3-3 to 3-4

Index-3

o

TN

Please cut along this line.

VAX-11
Linker Reference Manual
AA-DO19A-TE

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. If you require a written reply and are
eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well—drganized?
Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the
page number.

Please indicate the type of reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience.
Student programmer

Dooood

Other (please specify)

Name Date

Organization

Street

City. - _ State Zip Code
or
Country

Fold Here

‘Do Not Tear - Fold Here and Staple

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

Postage will be paid by:

Software Documentation
- 146 Main Street ML5-5/E39
Maynard, Massachusetts 01754

i \

dlilgliltlall

PRINTED IN USA

