
VAX-11 FORTRAN IV-PLUS
User's Guide

Order No. AA-D035A-TE

I I I I 5555555Y.J I I I
I I

I

)

)

" t,

! ------j

August 1978

This manual describes how to compile, link, debug, and execute programs
written in the VAX-ll FORTRAN IV-PLUS language, using the facilities of the
VAX/VMS operating system. It also contains other information of interest to
FORTRAN programmers, such as: error processing, programming efficiency,
compatibility with PDP-ll FORTRAN, and FORTRAN input/output.

VAX-11 FORTRAN IV-PLUS
User's Guide

Order No. AA-0035A-TE

SUPERSESSION/UPDATE INFORMATION: This is a new document for this release.

OPERATING SYSTEM. AND Ve:RSION: VAX/VMS VOl

SOFTWARE VERSION: VAX-ll FORTRAN IV-PLUS VOl

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation · maynard. massachusetts

First Printing, August 1978

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright © 1978 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre­
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DECUS
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM
ASSIST-ll
VAX
DECnet

DECsystem-10
DEC tape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL
INDAC
LAB-8
DECSYSTEM-20
RTS-8
VMS
lAS

MASSBUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET~ll

TMS-ll
ITPS-IO
SBI

)

)

__ I,'

PREFACE

CHAPTER

)

)

CHAPTER

1

1.1
1.1.1
1.1. 2
1.2
1. 2.1
1. 2. 2
1.2.2.1
1.2.2.2
1.2.2.3
1.2.2.4
1.2.2.5
1.2.2.6
1.2.2.7
1.2.2.8
1.2.2.9
1. 2.2.10
1.2.2.11
1.3
1. 3.1
1.3.1.1
1.3.1.2
1.3.1.3
1. 3.2
1.3.2.1
1.3.2.2
1.4
1.5
1. 5.1
1..5.2
1.6
1.7
1. 7.1
1. 7.2
1. 7.3
1. 7.4

2

2.1
2.1.1
2.1. 2
2.1. 3
2.2
2.2.1
2.2.2
2.2.3

CONTENTS

USING VAX-II FORTRAN IV-PLUS

CREATING AND EXECUTING A PROGRAM
File Specifications
Qualifiers

COMPILATION
Specifying Output Files
FORTRAN Qualifiers
CHECK Qualifier
CONTINUATIONS Qualifier
DEBUG Qualifier
D LINES Qualifier
Ii Qualifier
LIST Qualifier
MACHINE_CODE Qualifier
OBJECT Qualifier
OPTIMIZE Qualifier
WARNINGS Qualifier
WORK_FILES Qualifier

LINKING
Linker Command Qualifiers
Image File Qualifiers
Map File Qualifiers
Debugging and Traceback Qualifiers
Linker Input File Qua1ifier~ .
/LIBRARY Qualifier
/INCLUDE Qualifier

EXECUTION
FINDING AND CORRECTING ERRORS

Error-Related Command Qualifiers
SHOW CALLS Command

SAMPLE TERMINAL SESSION
COMPILER LISTING FORMAT

Source Listing Section
Machine Code Listing Section
Storage Map Section
Other Listing Information

DEBUGGING FORTRAN PROGRAMS

OVERVIEW OF THE VAX-II SYMBOLIC DEBUGGER
Sample Debugging Terminal Session
Debugger Command Syntax
Debugger Symbol Table

PREPARING TO DEBUG A PROGRAM
SET, SHOW LANGUAGE Command
SET, SHOW, CANCEL MODULE Commands
SET, SHOW, CANCEL SCOPE Commands

iii

Page

ix

1-1

1-1
1-2
1-4
1-5
1-5
1-6
1-7
1-8
1-8
1-9
1-9
1-9
1-9
1-9
1~10
1~10
1-10
1-10
1-11
1-12
1-13
1-14
1-14
1-14
1-14
1-14
1-15
1-15
1-17
1-17
1-18
1-19
1-19

'1-21
1-23

2-1

2-1
2-1
2-3
2-4
2-5
2-5
2-6
2-6

2.3
2.3.1
2.3.2
2.3.3
2.3.4
2.3.5
2.3.6
2.3.7
2.4
2.4.1
2.4.2
2.4.3
2.5
2.5.1
2.5.2
2.5.3
2.5.4
2.6
2.7
2.8
2.9
2.9.1
2.9.2
2.9.3
2.9.4

CHAPTER 3

3.1
3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.3
3.3.1
3.3.1.1
3.3.1.2
3.3.2
3.3.2.1
3.3.2.2
3.4
3.4.1
3.4.2
3.4.3
3.5
3.5.1
3.5.2
3.5.3
3.5.4
3.5.5
3.5.6
3.5.7
3.5.8
3.5.9
3.6

CONTENTS (Cont.)

CONTROLLING PROG~ EXECUTION
SET, SHOW, CANCEL BREAK Commands
SET, SHOW, CANCEL TRACE Commands
SET, SHOW, CANCEL WATCH Commands
SHOW CALLS Command
GO, STEP Commands
CTRL/Y Command
EXIT Command

EXAMINING AND MODIFYING LOCATIONS
EXAMINE Command
DEPOSIT Command
EVALUATE Command

SPECIFYING ADDRESSES.
Lines, Labels, and Absolute Ad4resses.
Specifying Scope
Previous, Current, and Next Lobations
Defining Addresses Symbolically

CALLING SUBROUTINES FROM THE DEBUGGER.
DEBUGGER COMMAND QUALIFIERS
NUMERIC DATA TYPES
EFFECTS OF OPTIMIZATION ON DEBUGGING

Use of Condition Codes
Register Binding
Control Flow
Effects of /NOOPTIMIZE and /OPTIMIZE

FORTRAN INPUT/OUTPOT

FILE SPECIFICATION
LOGICAL NAMES

FORTRAN Logical Names.
Implied FORTRAN Logical Unit Numbers
OPEN Statement NAME Keyword
Assigning Files to Logical Units
Assigning Logical Names with MOUNT Commands

FILE CHARACTERISTICS
File Organization
Sequential Organization
Relative Organization
Access to Records
Sequential Access
Direct Access

RECORD STRUCTURE
Fixed Length Records
Variable Length Records
Segmented Records

OPEN STATEMENT KEYWORDS
BLOCKSIZE Keyword
BUFFERCOUNT Keyword
INITIALSIZE and EXTENDSIZE Keywords
ORGANIZATION Keyword
READONLY Keyword

_ RECORDSIZEKeyword
RECORDTYPE Keyword
SHARED Keyword .
USE ROPEN Keyword

AUXILIARY I/O OPERATIONS

iv

Page

2-7
2-8
2-9
2-9
2-10
2-11
2-12
2-12
2-12
2~13

2-13
2-14
2-14
2-14
2-15
2-15
2-16
2-16
2-17
2-17
2-18
2-18
2-18
2-19
2-19

3-1

3-2
3-3
3-3
3-4
3-5
3-6
3-6
3-7
3-7
3-7
3-7
3-8
3-8
3-8
3-8
3-9
3-9
3-9
3-10
3-10
3-10
3-10
3-11
3-11
3-11
3-12
3-13
3-13
3-14

)

)

CHAPTER

)

CHAPTER

)

)

CHAPTER

\

3.7
3.7.1
3.7.2
3.8

4

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.8.1
4.8.2
4.8.3
4.8.4
4.9

5

5.1
5.2
5.2.1
5.2.2
5.2.3
5.2.3.1
5.2.3.2
5.2.3.3
5.2.3.4
5.2.4
5.2.5
5.3
5.3.1

5.3.2
5.3.3
5.3.3.1
5.3.3.2
5.3.3.3
5.4
5.4.1
5.4.2
5.4.3

6

6.1
6.1.1
6.1. 2
6.1. 3
6.2

6.2.1
6.2 .• 2

CONTENTS (Cont.)

LOCAL INTERPROCESS COMMUNICATION: MAILBOXES
Crea ting a Mailbox •
Sending and Receiving Data Using Mailboxes

COMMUNICATING WITH REMOTE COMPUTERS: NETWORKS

USING CHARACTER DATA

CHARACTER SUBSTRINGS
BUILDING CHARACTER STRINGS
CHARACTER .CONSTANTS
DECLARING CHARACTER DATA
INITIALIZING CHARACTER VARIABLES
PASSED LENGTH CHARACTER ARGUMENTS
CHARACTER DATA EXAMPLES
CHARACTER LIBRARY FUNCT.IONS

CHAR Function
ICHAR Function
INDEX Function
LEN Function

.CHARACTER I/O

FORTRAN CALL CONVENTIONS

PROCEDURE CALLS
VAX-llPROCEDURE CALLING STANDARD

Argument Lists
Argument Passing Mechanisms
Argument List Built-In Functions
% VAL
%REF
%DESCR
Examples of % VAL , %REF, %DESCR
Function Return Values
%LOC Built-In Function

CALLING VAX/VMS SYSTEM SERVICES
Calling System Services by Function
Reference
Calling System Services as Subroutines
Passing Arguments to System Services
Input and Output Address Arguments
Defaults for Optional Arguments
Passing Character Arguments

MACHINE CODE EXAMPLES
Argument Passing Examples
Argument List Built-In Function Examples
Character Functions

ERROR PROCESSING AND CONDITION HANDLERS

RUN-TIME LIBRARY DEFAULT ERROR PROCESSING
Using ERR= and END= Transfers
Run-Time Library Error Processing Control
Using the ERRSNS Sul::!routine

OVERVIEW OF THE VAX-ll CONDITION HANDLING
FACILITY

Definitions
Condition Signals

v

Page

3-14
3-14
3-15
3-15

4-1

4-1
4-2
4-3
4-3
4-4
4-4
4-5
4-7
4-7
4-8
4-8
4-8
4-8

5-1

5-1
5-1
5-2
5-2
5-2
5-3
5-3
5-3
5-3
5-4
5-4
5-4

5-5
5-5
5-6
5-6
5-7
5-7
5-8
5-8
5-9
5-11

6-1

6-2
6-2
6-3
6-5

6-6
6-6
6-7

6.2.3
6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.3.5
6.4

CHAPTER 7

7.1
7.2
7.2.1
7.2.1.1

7.2.1.2
7.2.1.3
7.2.2
7.3
7.3.1
7.3.2
7.4
7.4.1
7.4.2
7.5
7.6
7.6.1
7.6.2
7.6.3
7.6.3.1
7.6.3.2
7.6.3.3

CHAPTER 8

8.1
8.1.1
8.1. 2
8.1. 3
8.1. 4
8.2
8.2.1
8.2.2
8.2.3
8.2.4
8.2.5
8.2.6
8.3

APPENDIX A

A.1
A.2
A.3
A.3.1
A. 3.2

CONTENTS (Cont.)

Handler Responses
USER-WRITTEN CONDITION HANDLERS

Establishing and Removing Handlers
FORTRAN Condition Handlers
Handler Function Return Values
Condition Values and Symbols
Floating Overflow, Zero Divide Exceptions

CONDITION HANDLER EXAMPLES

FORTRAN SYSTEM ENVIRONMENT

PROGRAM SECTION USAGE
STORAGE ALLOCATION AND FIXED-POINT DATA TYPES

Integer Data Types Supported
Relationship of INTEGER*2 and INTEGER*4 .
Values
Integer Constant Typing
Integer-Valued Processor-Defined Functions
Byte (LOGICAL*l) Data Type

FUNCTIONS SUPPLIED WITH VAX-11 FORTRAN
Generic Functions
Use of the EXTERNAL Statement

ITERATION COUNT MODEL FOR DO LOOPS
Cautions Concerning Program Interchange
Iteration Count Computation

ENTRY STATEMENT ARGUMENTS
FLOATING POINT DATA REPRESENTATION

Sin 11e Precision Floating Point Data
Dou: .1e Precision Floating Point Data
Flo· ting Point Data Characteristics
Reserved Operand Faults
Representation of 0.0
Sign Bit Tests

PROGRAMMING CONSIDERATIONS

CREATING EFFICIENT SOURCE PROGRAMS
PARAMETER Statement
INCLUDE Statement
Allocating Variables in Common Blocks
Conditional Branching

COMPILER OPTIMIZATIONS
Characteristics of Optimized Programs
Compile-Time Operations on Constants
Source Program Blocks
Eliminating Common Subexpressions
Removing Invariant Computations from Loops
Compiler Optimization Example

FORTRAN I/O SYSTEM CHARACTERISTICS

FORTRAN DATA REPRESENTATION

INTEGER*2 FORMAT
INTEGER*4 FORMAT
FLOATING-POINT FORMATS

Real Format (4-Byte Floating Point)
Double Precision Format (8-Byte Floating
Point)

vi

Page

6-8
6-9
6-9
6-9
6-10
6":'11
6-14
6-14

7-1

7-1
7-2
7-3

7-3
7-4
7-4
7-4
7-5
7-5
7-5
7-6
7-6
7-6
7-7
7-8
7-9
7-9
7-10
7-10
7-11
7-11

8-1

8-1
8-1
8-2
8-3
8-3
8-3
8-4
8-5
8-6
8-7
8-9
8-8
8-10

A-1

A-1
A-1
A-1
A-2

A-3

)

)

)

J

)

)

)

,)

A. 3.3
A.4
A.5
A.6
A.7

APPENDIX B

B.l
B.2
B.2.l
B.2.2
B.2.3
B.3
B.3.l

B.3.2

APPENDIX C

C~l
C.2
C.3
C.4
C.5
C.6
C.7

APPENDIX 0

0.1
0.2
0.2.1
0.2.2
0.2.3
0.2.4
0.2.5
0.2.6
0.3
0.3.1
0.3.2
0.3.2.1
D.3.2.2
0.3.2.3
0.3.3
0.4
0.4.1
0.4.2
0.4.3
0.4.4
0.4.5
0.4.6
0.4.7
0.4.8
0.4.9
D. 4 .10
0 .. 4.11

CONTENTS (Con t.)

Complex Format
LOGICAL*l FORMAT
CHARACTER FORMAT
HOLLERITH FORMAT
LOGICAL FORMAT

DIAGNOSTIC MESSAGES

DIAGNOSTIC MESSAGES OVERVIEW
DIAGNOSTIC MESSAGES FROM THE COMPILER

Source Program Diagnostic Messages
Compiler-Fatal Diagnostic Messages
Compiler Limits

RUN-TIME DIAGNOSTIC MESSAGES
Run-Time Library Diagnostic Message
Presentation
Run-Time Library Diagnostic Messages

SYSTEM SUBROUTINES

SYSTEM SUBROUTINE SUMMARY
DATE
I DATE
ERRSNS
EXIT
SECNOS
TIME

COMPATIBILITY ~

COMPATIBILITY: OVERVIEW
LANGUAGE DIFFERENCES

Logical Tests
Floating Point Results
Character and Hollerith Constants
Logical Unit Numbers
Assigned GO TO Label List
OISPOSE='PRINT' Specification

RUN-TIME SUPPORT DIFFERENCES
Run-Time Library Error Numbers
Error Handling and Reporting ,
Continuing After Errors
I/O Errors with ERR= Specified
OPEN/CLOSE Statement Errors
OPEN Statement Keywords

UTILITY SUBROUTINES
ASSIGN Subroutine
CLOSE Subroutine ,
ERRSET Subroutine
ERRTST Subroutine
F,OBSET Subroutine
IRA050 Subroutine
RA050 Functi'on,
RAN ,Function
RANOU Subroutine
R50ASC Subroutine
USEREX Subroutine

vii

Page

A-3
A-4
A-4
A-4
A-5

B-1

B-1
B-1
B-1
B-17
B-19
B-20

B-20
B-20

C-l

C-l
C-l
C-2
C-2
C-3
C-3
C-4

0-1
0-1
0-1
0-2
0-2
0-3
0-3
0-3
0-3
0-4
0-5
0-5
0-5
0-5
0-5
0-5
0-6
0-7
0-7
0-8
0-9
0-10
0-11
0-11
0-12
0-12
0-13

INDEX

FIGURE

TABLE

1-1
1-2
1-3
1-4
1-5
2-1
2-2
4-1
4-2
8-la
8-lb
B-1
B-2

1-1
1-2
1-3
1-4
2-1
2-2
3-1
3-2
3-3
5-1
5-2
6-1
6-2
7'-1
7-2
B-1
B-2
B-3
B-4
D-l

CONTENTS (Cont.)

FIGURES

Program Development Process
Traceback List
Source Listing Section
Machine Co4e Listing Section
storage Map Listing
Sample FORTRAN Program: CIRCLE
Sample Debugging Terminal Dialog
Character Data Program Example
Output Generated by Example Program
RELAX Source Program
RELAX Machine Code (Optimized)
Sample Diagnostic Messages (Terminal Format)
Sample Diagnostic Messages (Listing Format)

TABLES

File Specification Defaults
FORTRAN Command Qualifiers
Linker Qualifiers
/DEBUG and /TRACEBACK Qualifiers
Debugger Commands and Keywords
Debugger Command Qualifiers
Predefined System Logical Names
Implicit FORTRAN Logical Units
RECORDSIZE·Limits
Function Return Values
Variable Data Type Require~ents
Summary of FORTRAN Run-Time Errors
Condition Handler Function Return Values
PSECT Names and Attributes
PSECT Attributes
Source program.Diagnostic Messages
Compiler-Fatal Diagnostic Messages
Compiler Limits
Run-Time Diagnostic Messages
Default Logical Unit Numbers

viii

Page

Index-l

1-2
1-16
1-19
1-20
1-22
2-1
2-2
4-6
4-7
8-8
8-9
B-2
B-3

1-3
1-7
1-11
1-15
2-4
2-17
3-3
3-4
3-12
5-4
5-6
6-4
6-10
7-2
7-3
B-4
B-18
B-19
B-2l
D-3

)

J

)

)

)

)

PREFACE

MANUAL OBJECTIVES

The VAX-II FORTRAN IV-PLUS User's Guide is intended for use in
developing new FORTRAN programs, and compiling and executing existing
FORTRAN programs on VAX/VMS systems. FORTRAN IV-PLUS language
elements supported on VAX-II are described in the VAX-II FORTRAN
IV-PLUS Language .ReferenceManual.

INTENDED AUDIENCE

This manual is designed for programmers whQ have a. working knowledge
of FORTRAN. Detailed knowledge of VAX/VMS is helpful but not
essential,familiarity with the VAX/VMS Primer is recommended. Some
sections of this book, however, (condition handling, for instance)
require more extensive understanding of the operating system. In such
sections, you are directed to the appropriate manual(s) for the
required additional information.,

STRUCTURE OF THIS DOCUMENT

This manual is organized as follows:

• Chapter I contains the information needed to compile, link,
and execute a FORTRAN program.

• Chapter 2 covers the debugging process,
Symbolic Debugger is described.

use of the VAX-II

• Chapter 3 provides
including details
conventions, record
statement keywords.

information about FORTRAN input/output,
on the use of logical names, file
structure, and use of certain OPEN

• Chapter 4 discusses character data, and includes examples of
how character data can be manipulated.

• Chapter 5 discusses the conventions followed in calling
procedures, especially the argument-passing conventions.

• Chapter 6 describes error processing, in particular, the
condition handling facility and how to use it. This chapter
is intended for users with in-depth knowledge of VAX/VMS.

• Chapter 7 describes the relationship. between VAX-II FORTRAN
IV-PLUS and the VAX-II system, with particular emphasis on
program section usage, data types, functions, DO loops, and
floating point data representation.

ix

• Chapter 8 covers programming considerations relevant
typical FORTRAN applications.

to

• Appendfxes A through D summarize internal data representation,
diagnostic messages, system-supplied functions, and
compatibility between VAX-II FORTRAN and PDP-II FORTRAN.

ASSOCIATED DOCUMENTS

The following documents are relevant to VAX-II FORTRAN IV-PLUS
programming:

• VAX/VMS Primer

• VAX-II FORTRAN IV-PLUS Language Reference Manual

• VAX/VMS Command Language User's Guide

• VAX-II Common Run-Time Procedure Library Reference Manual

• VAX-II Linker Reference Manual

• VAX-II Symbolic Debugger Reference Manual

• VAX/VMS System Services Reference Manual

• VAX-II/780 Architecture Handbook

Forla complete list of VAX-II software documents, see the VAX-II
Information Directory.

CONVENTIONS USED IN THIS DOCUMENT

The following conventions are observed in this manual, as in the other
VAX-II documents:

• Uppercase words and letters, used in examples, indicate that
you should type the word or letter exactly as shown

• Lowercase words and letters, used in format examples, indicate
that you are to substitute a word or value of your choice

• Brackets ([]) indicate optional elements

• Braces ({ ~) are used to enclose lists from which one element
is to be chosen

• Ellipses (•••) indicate that the preceding item(s) can be
repeated one or more times

x

,
"

')

)

-j
I

)

)

)

CHAPTER 1

USING VAX-ll FORTRAN IV-PL(3

VAX-II FORTRAN IV-PLUS is based on American National Standard FORTRAN
X3.9-l966. It is also a compatible superset of PDP-II FORTRAN
IV-PLUS. VAX-II FORTRAN IV-PLUS provides the following extensions:

• Symbolic names up to 15 characters, including the underline
and dollar sign characters

• FORTRAN 77 character data type

• FORTRAN 77 block IF constructs

• Relative file organization

• Standard CALL facility

• Hexadecimal constants and field descriptors

• Symbolic debugging facility

• Increased file manipulation facilities

Because VAX-II FORTRAN IV-PLUS is a compatible superset of PDP-II
FORTRAN, you can execute existing PDP-II FORTRAN programs on VAX-II
hardware. (Note that throughout the rest of this manual, unless
explicitly stated otherwise, VAX-II FORTRAN IV-PLUS will usually be
referred to simply as FORTRAN.)

1.1 CREATING AND EXECUTING A PROGRAM

Figure 1-1 shows how a program proceeds from inception to execution.
You specify the steps shown in Figure 1-1 by entering commands to the
VAX-II system. As shown, the commands are:

$ EDIT file-spec
$ FORTRAN file-spec
$ LINK file-spec
$ RUN file-spec

with each command, you include information that further
you want the system to do. Of prime importance
specification, indicating the file to be processed.
specify qualifiers that modify the processing performed

1-1

defines what
is the file

You can also
by the system.

USING VAX-II FORTRAN IV-PLUS

COMMANDS INPUT/OUTPUT FILES

$ EDIT AVERAGE.FOR
Use the file type of FOR to
indicate the file contains a Create a AVERAGE.FOR
VAX·ll FORTRAN IV·PLUS sou rce program
program.

$ FORTRAN AVERAGE
The FORTRAN command
assumes the file type of an
input file is FOR. Compile the ~ AVERAGE.OBJ

~ - (AVERAGE. LIS) source program
(If you use the ILiST
qualifier, the compiler libraries
creates a listing file.)

$ LINK AVERAGE
The LINK command assumes
the file type of an input file

Link the AVERAGE.EXE isOBJ.
object module (AVERAGE.MAP)

(If you use the IMAP qualifier,
the linker creates a map file.)

$ RUN AVERAGE
The RUN command assumes Run the

the file type of an image is executable

EXE. image

Figure 1-1 Program Development Process

1.1.1 File Specifications

A file specification indicates the input file to be processed, or the
output file to be produced. File specifications have the form:

'")

)

)

node::device: [directorY]filename.filetype.version.)

node
Specifies a network node name. This is applicable only to
systems that support VAX-II DECnet.

device
Identifies the device on which a file is stored or is to be
written.

directory
Identifies the name of the directory under which the file is
cataloged, on the device specified. (You can delimit the
directory name with either square brackets, as shown, or angle
brackets < ».

filename
Identifies the file by its name1
characters long.

1-2

filename can be up to 9

)

-1
I

)

)

\
I

)

USING VAX-II FORTRAN IV-PLUS

filetype
Describes the kind of data in the file; filetype can be up to 3
characters long.

version
Defines which version of the file is desired. Versions are
identified by a decimal number, which is incremented by 1 each
time a new version of a file is created. Either a semicolon or a
period can be used to separate filetype and version.

You need not explicitly state all elements of a file specification
each time you compile, link, or execute a program. The only part of
the file specification that is usually required is the file name. If
you omit any other part of the file specification, a default value is
used. Table 1-1 summarizes the default values.

Optional
Element

node

device

directory

filetype

version

Table 1-1
File Specification Defaults

Default
Value

Local network node

User's current default device

User's current default directory

Depends on usage:

Input to compiler
Output from compiler
Input to linker
Output from linker
Input to RUN command
Compiler source listing
Linker map listing
Input to executing program
Output from executing program

FOR
OBJ
OBJ
EXE
EXE
LIS
MAP
DAT
DAT

Input: highest existing version

Output: highest existing version,
plus 1

If you request compilation of a FORTRAN program, and you specify only
a file name, the compiler can process the source program if it finds a
fil~ with the specified file name that:

• Is stored on the default device

• Is cataloged under the default directory name

• Has a file type of FOR

If more than one file meets these conditions, the compiler chooses the
one with the highest version number.

1-3

USING VAX-II FORTRAN IV-PLUS

Fpr example, assume that your default device is DBAO, your default
directory is SMITH, and you supply the following file specification to
the compiler:

CIRCLE

The compiler will search device DBAO, in directory SMITH, seeking the
highest version of CIRCLE.FOR. If you do not specify an output file,
the compiler will generate the file CIRCLE .OBJ, store it on . device
DBAO in directory SMITH, and assign it a version number 1 higher than
any other version of CIRCLE.OBJ currently cataloged in directory SMITH
on DBAO. .

1.1.2 Qualifiers

Qualifiers specify special actions to be performed, and can be either
command qualifiers or file qualifiers. Qualifiers have the form:

/qualifier

Many qualifiers have a corresponding negative form that negates the
action that the qualifier specifies. The negative form is
/NOqualifier. For example, the qualifier /LIST tells the compiler to
produce a listing file; /NOLIST tells the compiler not to produce a
listing file.

Defaults have
actions that
which describe
the defaults.

been established for each qualifier, based on the
are appropriate in most cases •. Sections 1.2.2 and 1.3,
each command's qualifiers, contain tables indicating

You can specify qualifiers so that either all files
command are affected, or only certai.n files are
qualifier immediately follows the command name, it
files.

For example:

$ FORTRAN/LIST ABC,XYZ,RST

included
affected.
applies

in the
If the

to all

If you specify the abd~e~ ·youwill receive listing files for ABC, XYZ,
and RST.

If you include a qualifier as part of a file specification, it will
(with certain exceptions) affect only the file with which it is
associated. For example:

$ FORTR,AN/LIST ABC,XYZ/NOLIST,RST

As a result of this command, listing files are created fqr ABC and
RST, but not for XYZ.

Qualifiers included with file specifications that are Part ot a
concatenated list of input files are exceptions to this rule. See
Example 5 in Sectiori 1.2.1, below.

1-4'

)

)

)

)

)

)

)

USING VAX-II FORTRAN IV-P~US

1.2 COMPILATION

To compile a source program, use the FORTRAN command. The format of
the FORTRAN command is:

$ FORTRAN [/qualifiers] file-spec-list[/qualifiers]

/qualifiers
Codes indicating special actions to be performed by the compiler.

file-spec-list .
Specification of the source file(s) containing the program to be
compiled. You can specify more than one source file. If source
file specifications are separated by commas, the programs are
compiled separately. If source file specifications are separated
by plus signs, the files are concatenated and compiled as one
program.

In interactive mode, you can also enter the file specification on a
separate line by typing a carriage return after $ FORTRAN. The system
responds with the prompt:

Type the file specification immediately after the $_File: prompt.

1. 2.1 Specifying Output FileS

The output produced by the compiler includes object files and listing
files. You can control the production of these files by using the
appropriate qualifiers with the FORTRAN command. If you do not
specify oth~rwise, the compiler generates an object file. In
interactive mode. the compiler generates no listing file, by default.
In interactive mode, you must use the /LIST qualifier to generate a
listing file. In batch mode, however, just the opposite is true: by
default, the compiler will produce a listing file. To suppress the
listing file, you must specify the /NOLIST qualifier.

Our iog the early stages of program development, you may find it
helpful to suppress. the production of object files until your source
program compiles without errors. Use the !NOOBJECT qualifier. If you
do not specify /NOOBJECT, the compiler generates object files as
follows:

• If you specify one source file, one object file is generated

• If you specify multiple source files, separated by plus signs,
the source files are concatenated and compiled, and one object
file is generated

• If you specify multiple source files" separated by commas, each
source file is compiled separately, and an object file is
generated for each source file

• You can use both pluS signs and commas in the same command line
to produce different combinations of concatenated and separate
object files '(see Ex,ample 4 below)

TO produce an object file with an explicit file specification, you
Inus,t ,use the, jOBJECT qualifier., in the form /OBJECT=file-spec (see
Se'ction 1..2.:2.8). Otherwise, the object file will have the name of
its cOrtespondingSQurce .file, and a ,file type of o.BJ. By default,

1-5

USING VAX-II FORTRAN IV-PLUS

the object file
of the first
(node, device,
attributes.

produced from concatenated source files has the name
source file. All other file specification attributes
directory, and version) will assume the default

Examples:

1. $ FORTRAN/LIST AAA,BBB,CCC

Source files AAA.FOR, BBB.FOR,
separate files, producing
BBB.OBJ, and CCC.OBJ; and
BBB.LIS, and CCC.LIS.

2. $ FORTRAN XXX+YYY+ZZZ

and CCC.FOR are compiled as
object files named AAA.OBJ,

listing files named AAA.LIS,

Source files XXX.FOR, YYY.FOR, and ZZZ.FOR are concatenated
and compiled as one file, producing an object file named
XXX.OBJ.

3. $ FORTRAN/OBJECT=SQUARE
$_FILE: CIRCLE

The source file CIRCLE.FOR is compiled, producing an object
file named SQUARE.OBJ, but no listing file. (This example
applies to interactive mode only.)

4. $ FORTRAN AAA+BBB,CCC/LIST

Two object files are produced: AAA.OBJ (comprising AAA.FOR
and BBB.FOR) , and CCC.OBJ (comprising CCC.FOR). One listing
file is produced: CCC.LIS.

5. $ FORTRAN ABC+CIRC/NOOBJECT+XYZ

When you include a qualifier in a list of files that are to
be concatenated, the qualifier affects all files in the list.
Thus, in the command shown, you will completely suppress the
object file. That is, source files ABC.FOR, CIRC.FOR, and
XYZ.FOR will be concatenated and compiled, but no object file
will be produced.

1. 2.2 FORTRAN Qualifiers

In many cases, the simplest form of the FORTRAN command is sufficient
for file processing. In some cases, however, you will need to us.e the
FORTRAN qualifiers that specify special processing.

A FORTRAN qualifier has the form:

/aa[=y]

where aa is the qualifier's name, and y represents a qualifier value.
Note that many qualifiers accept no value; the purpose of these
qualifiers is simply to activate or deactivate a particular form of
processing.

To specify a list of qualifier values, enclose them in parentheses.
For example:

/CHECK=(BOUNDS,OVERFLOW)

1-6

)

)

)

)

)

)

)

)

)

USING VAX-II FORTRAN IV~PLUS

Table 1-2 lists the qualifiers you can use with the FORTRAN command.
Sections 1.2.2.1 through 1.2.2.11 describe each qualifier in detail.

Table 1-2
FORTRAN Command Qualifiers

Qualifier Negative Form Default

rOlOOUNDS 1 /NOCHECK /CHECK=OVERFLOW
/CHECK= [NO]OVERFLOW

ALL
NONE

/CONTINUATIONS=n None /CONTINUATIONS=19

rOlSYMOOLS 1 /NODEBUG /DEBUG=TRACEBACK
/DEBUG= [NO]TRACEBACK

ALL
NONE

/D_LINES /NOD_LINES /NOD_LINES

/14 /N014 /14

/LIST[=file-spec] /NOLIST /NOLIST (interactive)

/LIST (batch) ...
/MACHINE_CODE /NOMACHINE_CODE /NOMACHINE_CODE

/OBJECT[=file-spec] /NOOBJECT /OBJECT

/OPTIMIZE /NOOPTIMIZE /OPTIMIZE
I

/WARNINGS /NOWARNINGS /WARNINGS
/

/WORK_FILES=n None /WORK_FILES=2

1.2.2.1 CHECK Qualifier - At run time, this qualifier causes the
compiler to produce code to check your program for the conditions
indicated. It has the form:

/CHECK ={[NO]BOUNDS }
[NO] OVERFLOW

ALL
NONE

BOUNDS
Array references are checked to ensure that they are within the
array address boundaries specified. Note, however, that array
bound checking is not performed for arrays that are dummy
arguments, and for which the last dimension bound is specified as
1. For example:

DIMENSION A(l)

OVERFLOW
BYTE, INTEGER*2, and INTEGER*4 calculations are checked for
arithmetic overflow.

1-7

USING VAX-ll FORTRAN IV PLUS

ALL
Both OVERFLOW and BOUNDS checks are performed.

NONE
Neither check is performed.

The default is /CHECK=OVERFLOW. Note that /CHECK is the equivalent of
/CHECK=ALL, and /NOCHECK is the equivalent of /CHECK=NONE.

If you specify /CHECK=BOUNDS or /CHECK=OVERFLOW, the other check is
implicitly canceled~

1. 2.2.2 CONTINUATIONS Qualifier - This qualifier specifies the number
of continuation lines allowed in the source program. It has the form:

/CONTINUATIONS=n

You can specify a value from 0 to 99 for n.
/CONTINUATIONS, the default value is 19.

If you omit

1.2.2.3 DEBUG Qualifier- This qualifier specifies that the compiler
is to provide information for use by the VAX-II Symbolic Debugger and
the run-time error traceback mechanism. It has the form:

!DEBUG ={. [NO] SYMBOL.S .1 {NO] TRACEBACK
ALL ,
NONE

SYMBOLS
The compiler provides the debugger with local symbol definitions
for user-defined variables, arrays (including dimension
information), and labels of executable statements.

TRACEBACK

ALL

NONE

The compiler provid'es an address correlation table so the
debugger and the run--tilne error traceback mechanism can translate
absolute addresses into source program routine names .and
compilet-genetij.tedline numbers.

The compiler provid.es both local symbol definitions and an
address correlation tab:le.

The compiler provides no debugging informa~ion.

The default is /DEBUG=TRACEBACK.Note th:at !DEBUG is the equivalent
of /DEBUG=~LL, and. /NODEBUG -is the equivale'ntof /DEBUG=NONE. I-f you
specify eIther /DEaU,G""TRACEBACK 'or /DEBUG=S¥MBOLS, the other is
implic:i tly canceled._

For mor·e. information on debugging and ~ra,ceback, see Scection 1.5 a.nd:
Chapte'r 2 .•

1-8

),

)

)

)

)

)

)

)

)

USING VAX-ll FORTRAN IV-PLUS

1.2.2.4 D LINES Qualifier .- This qualifier specifies that lines with
a D in column 1 are to be compiled. It has the form:

The default is /NOD LINES, which means that lines with.a D in column 1
are treated as comments.

I.

1.2.2.5 14
interprets
specified.

Qualifier - This qualifier, controls how the compiler
INTEGER and LOGICAL declarations for which a length is not
It has the form:

/14,

The default is /14, which causes the compiler to interpret INTEGER and
LOGICAL. declarations as INTEGER*4 and LOGICAL*4. If you specify
/NOI4, the compiler interprets them as INTEGER*2 and LOGICAL*2.

1.2.2.6 LIST Qualifier - This qualifier produces a source listing
file. It has the form:

...

/LIST[=file-spec)

You can include a file specification for the listing file. If you do
not, it defaults to the name of the first source file, and a file type
of LIS. .

The compiler does not produce a listing file in interactive mode
unless you include the /LIST qualifier. In batch mode, the compiler
produces a listing file by default. In either case, the listing file
is not automatically printed. You must use the PRINT command to
obtai~ a line printer copy of the listing file~

See Section 1.7·. for a sample listing.

1. 2.2.7 MACHINE CODE Qualifier - This qualifier specifie.s that the
listing file is to include a listing of the object code generated. by
the compiler. It has the form:

/MACHINE_CODE

This qualifieI; is ignored if no listing file is beltig generated.

The default is /NOMACHINE_CODE.

1.2.2.8 OBJECT Qualifier - This qualifier can be.used when you want
to specify the name of the object file. It has the form:

/OBJECTt=file-spec)

The defaul t is /OBJECT. The negative form, !NOOBJECT, can be used to'
suppress object code~ fOr example, when you only want to test tHe
source program for compilation errors.

If you omit the file specification, tbe object file defaults to the
name of the first source file, and a file type of OBJ.

1-9

USING VAX-II FORTRAN IV-PLUS

1.2.2.9 OPTIMIZE Qualifier - This qualifier tells the compil~r to
produce optimized code. It has the form:

/OPTIMIZE

The. defaul t is /OPTIMIZE. The negative form (/NOOPTIMIZE) should be
used to ensure that the debugger has sufficient informatiOn to help
you locate errors in your source program (see Section 2.9).

1.2.2.10 WARNINGS Qualifier - This 'qualifier specifies
compiler is to generate diagnostic messages in
warning-level (W) errors. It has the form:

/WARNINGS

whether the
response to

The c::6mpiler generates warning (W) diagnostic messages by default. A
warn1ng diagnostic message indicates that the compiler has detected
acceptable but nonstandard syntax, or has performed some corrective
action; in either case, unexpected results may occur. To suppress W
diagnostic messages, specify the negative form of this qualifier
(/NOWARNINGS). The defaul tis /WARNINGS.

Appendix B discusses compiler diagnostic messages.

1.2.2.11 WORK FILES Qualifier -This qualifier changes the number of
work files used by the compiler. It has the form:

The value specified for n can be 1, 2, or 3.

Note that while a value of 1 may increase the sp~ed of compilation, it
restricts the size of programs that can be compiled. A value of 3
allows larger programs to be compiled, but may slow compilation. The
default is /WORK_FILES=2.

1.3 LINKING

Before a compiled program can be executed, you must link the object
file to produce an executable image file. Linking resolves all
references in the object code, and establishes absolute addresses for
symbolic locations. To link an object module, issue the LINK command,
in the following general form:

$ LINK[/command-qualifiers] file-spec[/file-qualifiers] •..

/command-qualifiers
Sp~cify output file options.

file-spec
Specifies the input object file to be linked.

/file-qualifiers
Specify input file options.

1-10

)

)

)

j
I

)

)

USING VAX-II FORTRAN IV-PLUS

In interactive mode you can
accompanying file specification.

issue the LINK command with no
The system responds with the prompt:

The file specification must be typed on the same line as the prompt.
If there are too many file specifications to fit on one line, you can
continue the line by typing a hyphen (-) as the last character of the
line, and continuing on the next line.

You can enter multiple file specifications separated from each other
by commas or plus signs. When used with the LINK command, the comma
has the same effect as the plus sign: no matter which is used, a
single executable image is created from the input files specified. If
no output file is specified, the linker produces an executable image
with the same name as the first object modulp, and a file type of EXE.
Table 1-3 lists the linker qualifiers of particular interest to
FORTRAN users. See the VAX-II Linker Reference Manual for details on
the linker.

Command Qualifiers

/EXECUTE[=file-spec]

/SHAREABLE[=file-spec]

/MAP [=file-spec]

/BRIEF

/FULL

/CROSS_REFERENCE

/DEBUG

/TRACEBACK

Input File Qualifiers

/LIBRARY

/INCLUDE=module-name(s)

Table 1-3
Linker Qualifiers

Negative Form

/NOEXECUTE

/NOSHAREABLE

/NOMAP

None

None

/NOCROSS_REFERENCE

/NODEBUG

/NOTRACEBACK

1.3.1 Linker Command Qualifiers

Default

/EXECUTE

None

/NOMAP (interactive)
/MAP(batch)
.~

Not applicable

Not applicable

/NOCROSS_REFERENCE

/NODEBUG

/TRACEBACK

You can specify qualifiers for the LINK command to modify the output
of the linker. You can also define whether the debugging or the
traceback facility is to be included.

1-11

USING VAX-II FORTRAN IV-PLUS

Linker output consists of an image file and, optionally, a map file.
The following qualifiers control the image file generated by the
linker:

/EXECUTE=file-spec
/NOEXECUTE
/SHAREABLE=file-spec

These qualifiers are described in Section 1.3.1.1.

Map file qualifiers include:

/MAP [=file-spec]
/BRIEF
/FULL
/CROSS_REFERENCE

These qualifiers are described in Section 1.3.1.2.

The debugger and traceback qualifiers are:

/OEBUG
/TRACEBACK

These qualifiers are described in Section 1.3~1.3.

1.3.1.1 Image File Qualifiers - Image file qualifiers include:

/EXECUTE
/SHAREABLE

If you do not specify an image file qualifier, the
/EXECUTE; the linker produces an executable image.
production of an image, specify the negative form, as:

/NOEXECUTE

For example:

$ LINK/NOEXECUTE CIRCLE

default is
To suppress

The file CIRCLE.OBJ is linked, but no image is generated. The
/NOEXECUTE qualifier is useful if you want to verify the results of
linkinq an object file, without actually.producing the image.

To designate a file specification for an execut~ble image, use the
/eXECUTE qualifier in the form:

/EXECOTE=file-spec

For example:

$ LINK/EXECUTE=1'EST CIRCLE

'The file' CIRCLE-.OBJ is Hnked, and the ~xecutable image generated is
hamed tEST.EXE.

1-12

)

)

)

)

)

'\
J

)

)

)

)

USING VAX-ll FORTRAN IV-PLUS

A shareable image is one that can. be used in a number of different
applications. It may be a private image you use for your own
applications, or it may be installed in the system by the system
manager for use by all users. To create a shareable image, specify
the /SHAREABLEqualifier. For example;

$ LINK/SHAREABLE CIRCLE

To include a shareabLe image as input to the linker, you must use an
options file,and specify the jOPTIONS qualifier in the LINK command.
Refer to the VAX-II Linker. Reference Manual for details.

If you specify /NOSHAREABLE, the effect is similar to /NOEXECUTE. The
linker processes the object code and the input as though it were going
to produce a shareable image, but in fact no image is generated.

1.3.1.2 Map File Qualifiers - The map file qualifiers tell the linker
whether a map file is to be generated, and, if so, the information it
is to include. Map file qualifiers include:

/MAP
/BRIEF
/FULL
/CROSS_REFERENCE

The map qualifiers are specified as follows:

/MAP [=file-spec] D{/BRIEF n ..
B/FULL ~

[/CROSS _REFERENCE]

The linke£ uses defaults to generate or suppress a
interactive mode, the default is to suppress the mapi
the default is to generate the map.

map file & In
in batch mode,

If no file specification is included with /MAP, the map file· has the
name o·f the first input file, and a file type of MAP. It is stored on
the default device, in the default directory.

The qualifiers /BRIEF and /FULL define the amount of inform,ation
included in the map file,as follows:

• /BRIEF produces a summary of the imag.e' s character istics, and
a list .of contributibgmodules.

• /FULL produces a summary of the ima.ge's characteristics and a
list of contributing modules (as produced by /BRIEF) ,i plus a
list of global symbols. and values, in symbol name .ord,eq and
a summary of characteristics of image sections in the linked
image.

By default, if neither /BRIEF nor /FULL is specified (. the map file
contains a summary of the image 1 s characteristics and a list of
contributing modules (as produced by IBRIEF), plus .. a· list of g'lobal
symbols and values, in symbol name order.

The /CROSS REFERENCE qualifier can be u.sed with either the default or
/FULL map- qualifiers, to request cross reference information for
global symbols. This cross reference. inforrnationindica.tes the object

1-13

modules
linking.

USING VAX-II FORTRAN IV-PLUS

that define and/or refer to global symbols encountered during
The default is /NOCROSS_REFERENCE.

1.3.1.3 Debugging and Traceback Qualifiers - The /DEBUG qualifier
indicates that the VAX/VMS debugger (see Chapter 2) is to be included
in the executable image. The default is /NODEBUG.

When the /TRACEBACK qualifier is specified, error messages are
accompanied by a symbolic traceback showing the sequence of calls that
transferred control to the program unit in which the error occurr~d.
If you specify /NOTRACEBACK, this information is not produced. The
default is /TRACEBACK. If you specify /DEBUG, the traceback
capability is automatically included, and the /TRACEBACK qualifier is
ignored. Figure 1-2 illustrates a typical traceback list. (See
Section 1. 5 .1.)

1.3.2 Linker Input File Qualifiers

File qualifiers affect the input file specification. Input files can
be object files; shareable files previously linked; or library
files.

1.3.2.1 /LIBRARY Qualifier - The /LIBRARY qualifier has the form:

/LIBRARY

This qualifier specifies that the input file is an object-module
library that is to be searched to resolve undefined symbols referenced
in other input modules. The default file type is OLB.

1.3.2.2 /INCLUDE Qualifier - The /INCLUDE qualifier has the form:

/INCLUDE=module-name(s)

The qualifier specifies that the input file is an object-module
library, and that the modules named are the only modules in that
library that are to be explicitly included as input. At least one
module name is required. To specify more than one, enclose the module
names in parentheses, and separate them with commas. The default file
type is OLB. The /LIBRARY qualifier can also be used with the same
file specification, to indicate that the same library is also to be
searched for unresolved references.

1.4 EXECUTION

The RUN command initiates execution of your program. It has the form:

$ RUN [jDEBUG] file-spec

The file name must be specified: default values are applied if you
omit optional elements of the file specification. The default file
type is EXE. The /DEBUG qualifier allows you to use the debugger,
even though you omitted this qualifier from the FORTRAN and LINK
commands. See Section 1.5 for details.

1-14

-)

)

)

)

)

)

)

)

USING VAX~ll FORTRAN IV-PLUS

1.5 FINDING AND CORRECTING ERRORS

Both the compiler and the. Run-Time Library include facilities for
detecting and reporting errors. VAX/VMS also provides the debugger,
to help you locate and correc~ errors. In addition to the' debugger,
there is a traceback facility that can also be used to track down
errors that occur during program execution.

1.5.1 Error-Related Command Qualifiers

At each step in compiling, linking, and executing your program, you
can specify command qualifiers that affect how errors are processed.
At compile time, you can use the /DEBUG qualifier to ensure that
symbolic information is created for use by the debugger. At link time
you can also specify the /DEBUG qualifier to make the' symbolic
information available to the debugger. The same qualifier can be
specified with the RUN command, to invoke the debugger.

Table 1-4 summarizes the /DEBUG and /TRACEBACK qualifiers.

Table 1-4
/DEBUG and /TRACEBACK Qualifiers

Qualifier Command Effect Default

/DEBUG FORTRAN The FORTRAN compiler /DEBUG=
creates symbolic data (NOSYMBOLS,
needed by the TRACEBACK)
debugger.

/DEBUG LINK Symbolic data created /NODEBUG
by FORTRAN compiler is
passed to the debugger.

/TRACEBACK LINK Traceback information /TRACEBACK
is passed to the debugger.
Traceback will be produced.

/DEBUG RUN Invokes the debugger. The
DBG> prompt will be displayed.
Not needed if $ LINK/DEBUG
was specified.

/NODEBUG RUN If /DEBUG was specified in
the LINK command, RUN/NODEBUG
suppresses the DBG> prompt.

If you use none of these qualifiers at any point in the
compile-link-eltecute sequence, and an execution error occurs, you will
receive a traceback list by default. However, you will not be able to
invoke the debugger.

To perform symbolic debugging, you must use the /DEBUG qualifier with
both the FORTRAN command and the LINK command. It then becomes
unnecessary to specify it with the RUN command. If you omit /DEBUG
from either the FORTRAN or LINK command, you can use it with the RUN
command, to invoke the debugger. However, any debugging you perform
must then be done by specifying addresses in absolute form, rather
than symbolically.

1-15

USING VAX-II FORTRAN 'IV-PLUS

If you linked your program with the debugger, but wish to execute the
program without intervention by the debugger, specify

RUN/NODE BUG program

If you specify LINK/NOTRACEBACK, you will receive no traceback in the
event of error. An example of a source program and a traceback is
shown in Figure 1-2.

0001 1=1
0002 CONTINUE
0003 J=2
0004 CONTINUE
0005 K=3
0006 CALL SUBI
0007 CONTINUE
0008 END

0001 SUBROUTINE SUBI
0002 1=1
0003 J=2
0004 CALL SUB2
0005 END

0001 SUBROUTINE SUB2
0002 COMPLEX W
0003 COMPLEX Z

0004 DATA W/(O. ,0.)/

0005 Z = LOG (W) .
0006 END

%MTH-F-LOGZERNEG, logarithm of zero or negative value
user PC 00000449

%TRACE-F-TRACEBACK, symbolic stack dump follows

module name routine name

SUB2
SUB 1
Tl$MAIN

line

5
4
6

relative PC

0000074C
0000081C
00000011
00000017
OOOOOOlB

Figure 1-2 . Traceback Liat

The traceback is interpreted as follows:

absolute ',PC

0000074C
0000081C
00000449
00000437
0000041B

When the error condition is detected, you receive the appropriate
message, followed by the traceback information., In this example, a
message is displayed by the Run-Time Library, indicating the nature of
the error, and the address at which the error occurred (user PC).
This is followed by the traceback information"which is presented in
inverse order to the calls. Note that values may be produced for
relative and absolute PC, with no corresponding, values for routine
name and line'. These PC values reflect procedure calls' internal to
the Run-Time Library.

1-16

)

)

)

)

)

)

)

)

)

USING VAX-II FORTRAN IV-PLUS

Of particular interest to you are the values listed under "routine
name" and "line", the first of which shows what routine or subprogram
called the Run-Time Library, which subsequently reported the error.
The value given for "line" corresponds to the compiler-generated line
number in the source program listing (not to be confused with
editor-generated line numbers). using this information, you can
usually isolate the error in a short time.

If you specify either LINK/DEBUG, or RUN/DEBUG, the debugger assumes
control of execution. If an error occurs, you do not receive a
traceback list. To display traceback information, you can use the
debugger command SHOW CALLS, as described in Section 1.5.2.

1.5.2 SHOW CALLS Command

When an error occurs in a program that is executing under the control
of the debugger, no traceback list is produced. To generate a
traceback list, use the SHOW CALLS command, which has the form:

DBG>SHOW CALLS

1.6 SAMPLE TERMINAL SESSION

A typical dialog between you and the system might appear as follows:

@)
Username: SMITH ~
Password: @) (Your password is not displayed)

WELCOME TO VAX/VMS RELEASE 1

$ EDIT CIRCLE.FOR @)
Input:DBA2: [SMITH]CIRCLE.FOR
00100

(enter source program)
*E @) (terminate edit session and write file to disk)
[DBA2: [SMITH]CIRCLE.FOR;l]
$ FORTRAN/NOOPTIMIZE/LIST/DEBUG CIRCLE

$ LINK/DEBUG CIRCLE

$ RUN CIRCLE

USING VAX-II FORTRAN IV-PLUS

1.7 COMPILER LISTING FORMAT

The listing produced by the· compiler consists of two or three
sections, as follows~

• Source listing section

• Machine code listing section (optional)

• Storage map section

Sections 1.7.1 through 1.7.3 describe. the compiler listing sections in
detail.

1.-18

)

)

)

)

)

)

)

USING VAX-II FORTRAN IV~PLUS

1.7.1 Source Listing Section

The source listing section shows the source program as it appears in
the input file with the addition of sequential line numbers generated
by the compiler. Figure 1-3 shows a sample source listing section.

Note that line numbers are generated only for statements that are
compiled; comment lines are not numbered, nor are lines with D in
column 1 unless you specified /D_LINES.

Compiler-generated line numbers appear in the left margin. You can
use them for debugging by using the %LINE specification in debugger
commands (see Chapter 2). If the editor you use to create the ,source
file generates line numbers, these numbers will also a~pear in the
source listing. In this case, the editor-generated line numbers
appear in the left margin, and the compiler-geneLated line numbers are
shifted to the right. The %LINE specification applies to the
compiler-generated line numbers, not the editor-generated line
numbers.

Compile-time and run-time error messages that contain line numbers
refer to the compiler-generated line numbers iri the source listing
section. See Appendix B for a summary of error messages.

011181

1111111112
1111111113
"1"4

lie!

'51'"
11111117
1111111118
lin
IIII11U
I11III11 18

IIIIIIU

leu
11111114

SUBROUTINE RE~AX2eEPS)

PARA~ETER M.4111, N.'0
DIMENSION xeIllIM,0IN)
COMMON)(

~O;lC'L DONE

OONE •• TRUE.

DO 10 J • 1,N-l
DO 10 I • I,M-I

)cNEW • e xeI-t,J)+)((I+l,J)+xel,J-l)+xeI,J+l)) I 4
I~ (ABseXNEW.X(I,J» .GT. EPI) DONE •• FA~SE.
XCI,J) • XNEW

I~ (.NOT. DONE) GO TO 1

RETURN
END

Figure 1-3 Source Listing Section

1.7.2 Machine Code Listing Section

The machine code listing section provides a symbolic representation of
the compiler-generated object code. This representation is similar to
a VAX-II MACRO assembly listing for the generated code and data.

The machine code listing section is optional. To include it in the
listing file, you must specify:

$ FORTRAN/LIST/MACHINE_CODE

Figure 1-4 shows a sample machine code listing section.

1-19

JI ..
1111111111

IIII11eIll
lIlt
111111111
111102

"" eln

IIIIC!1C
III'
111116

111116
1111119
111110

lelO
illIZI
In9
882'
Ins

IUD
111142
11111147
8048
1040
114'

81114'
11053
1057
lIIesB
In,
fIIfIIU

011167
leu

,TITLIE
.• ID!NT

.PaUT
XI

.PSECT
AELUII.

.WORO
"OVAL

.tt
MNUL

MOVL
MOVAL

LIIANEI

MOVL
MULL3

LllAGGI

AOOL3
ADOn .00"
ADDn
MUL'3

,usn
BIew2
CMIIt,
BLIEQ
CLAL

LSIAPIe

MOV'
AOBLEQ
AOBLfIiI
MOVL
MOV'
MOVL

BLBC
AU
.IEND

USING VAX-II FORTRAN IV-PLUS

AIELAIC2
III

IBLANIC

SCOD!

wMCIV,R5,R6,A7,AI,A9,A1I,Rll»
nOCAL, All

*I, DnNE(R 11)

*I, R7
SBLANK, AS

'I, A9
ut, R7, A6

A9, A6, AU
X+4(15)(All1], X-4(R5) (1111),
X-lUCAS) [RUll,
X+16",A5) (AUI],
.-)(3'1111, Re, AI

XCrt5) [AIIII], AI,
'-If8I1I1JII, All
A0, -EIIt'Ullt)
LIUPI
DOIljE(All)

A8, X(AS) (AUI]
n9, A9, LIIAGG
'59,. li7, LIiANE
R7, J(All)
RI, XHEweR1S)
A9, I(All)

DONE(Allh .1

All
Ae

R0

A0

Figure 1-4 Machine Coq .. ~ Listing Section

, 110A8.

, 0009

, 111111111

, 0011.

, 01111C!

The first line of the machine code listing contains a .TITLE assembler
directive, indicating the program unit to which the.machine code
corresponds. For a main program, the title is ~ither as declared iri a
PROGRAM statement, or filename$MAIN, if you did not specify a PROGRAM
statement. For subprograms, the title is the name of the subroutine
or function. For a BLOCK DATA subprogram, the title is either the
name declared in the BLOCK DATA statement, or filename$DATA, if you
did not specify a name in the BLOCK DATA statement.

The lines following .TITLE provide information such as the·contents of
storage initialized for FORMAT statements, DATA statements, constants,
and sUQprogram argument call lists. Machine instructibns are
represented by VAX-II MACRO mnemonics and syntax. Compiler-generated
line numbers corresponding to generated code lines are listed at the
right margin before the machine code generated for the line.

The VAX-II general registers (0 through 12) are represented by RO
through R12. When register 12 is used as the argument pointer, it is
represented by APi the frame pointer (register 13) is FPithe stack
pointer (register 14) is SP, and the program counter (register 15) is

1-20

)

)

)

)

}

)

USING VAX..,.l1 FORTRAN IV-PLUS

pc. Note that the relative pc for each instruction or data item is
listed at the left margin, in hexadecimal.

Variables and arrays defined in the source program are shown in the
machine code listing as they were defined in the source. Offsets from
variables and arrays are shown in decimal.

FORTRAN source labels referred to in the source program are shown in
the machine code listing with a dot (.) prefix. For example, if the
source program refers to label 300, the label appears in the machine
code listing as .300. Labels that appear in the source program, but
that are not referred to or are deleted during compiler optimization,
are ignored and do not appear in the machine code listing, unless you
specified /NOOPTIMIZE.

The compiler may g~fierate labels for its own use. These labels appear
as L$~xxx, where the value of xxxx is unique for each such label in a
program unit.

Inte~e: constants are shown as signed integer values; real, double
preclslon, and complex constants are shown as unsigned hexadecimal
values preceded by ~X.

Addresses are represented by the program section name plus the
hexadecimal offset within that program section. Changes from one
program section to another are indicated by PSECT lines.

1.7.3 Storage Map Section

The storage map section of the compiler listing summarizes the
following information:

• Program sections

• Entry points

• Statement functions

• Variables

• Arrays

• Labels

• . Functions and subroutines

• Total memory allocated

Figure 1-5 shows a sample storage map section.

A summary section heading is not printed if no entries were generated
for that section.

1-21

H.",.
II ICOOE
2 ILOCAL
3 SBLANK

EHTRYPOINTS

VARIABLES

Add~ ...

2-11000011110
2-11900119114

ARRAYS

Add,. ...

]-00110C!'0(IJ0

LABELS

Add"h.

9-9009880'1

TV". N."'.

L*II DONE
Iu J

Ty". N.",.

Ihl! II

Llb.l

USING VAX-II FORTRAN IV-PLUS

Byt.. Att~ibut ••

PIC CON REL LCL SHR EXE
PIC CON REL LCL NOSHA NOEKE
PIC OVR REL GBL SHR NOEXE

Add~... Ty". N.",.

A"-08000004' L*II EPS
2-0008A0AC R*II KNEw

.dd,.... Leb,1

**

Tot.l S".c. Alloc.t.d • 10121 Byt ••

COMPILEA OPTIONS

ICMECK=(NOBOUND8,OVERFLOW)
IDEBUG=(N08YMBOL8,TRACEBACK)
IOPTIMIZE IWARNINGS 1111 INOD.LINES

Figure 1-5 Storage Map Listing

AD NOWAT LONG
AD WAT LONG
AD WRT LONG

Add~... TYD. Ne"',

Sizes are printed as a number of bytes, expressed in decimal. Data
addresses are specified as an offset from the start of a program
section, expressed in hexadecimal. The symbol AP can appear' instead
of a program section; in this case, the address refers to a dummy
argument, expressed as the offset from the argument pointer (AP) .
Indirection is indicated by an at sign (@) following an address field.
In this case, the address specified by the program section (or AP)
plus the offset points to the address of the data, not to the data
itself.

The program section summary describes each program section (PSECT)
generated by the compiler. The descriptions include:

• PSECT number (used by most of the other summaries)

• Name

• Size

• Attributes

1-22

')
/

)

)

)

)

)

USING VAX-II FORTRAN IV-PLUS

Chapter 7 describes PSECT usage and attributes.

The entry point summary lists all entry points and their addresses.
If the program unit is a function, the declared da.ta type of the entry
point is also included.

The statement function summary lists the entry point address and data
type of each statement function.

The variable summary lists all simple variables, with the data type
and address of each.

The array summary is similar to the variable summary. In addition to
data type and address, it gives the total array size and dimensions.
If the array is an adjustable array, the size is shown as double
asterisks (**), and each adjustable dimension bound is shown as a
single asterisk (*).

The label summary lists all user-defined statement labels. FORMAT
statement labels are suffixed with an apostrophe. If the label
address field contains double asterisks (**), then the label was not
used or referred to by the compiled code.

The functions and subroutines summary lists all external routine
references made by the source program.

Following the summaries, the compiler prints the total
allocated for all program sections compiled, in the form:

Total Space Allocated = nnn Bytes

1.7.4 Other L~sting Information

memory

The final entries on. the compiler listing are the compiler qualifiers
in effect for that compilation. For example:

COMPILER OPTIONS

/CHECK=(NOBOUNDS,OVERFLOW)
/DEBUG=(NOSYMBOLS,TRACEBACK)
/OPTIMIZE /WARNINGS /14 /NOD_LINES

1-23

)

)

)
/

)

)

)

)

)

CHAPTER 2

DEBUGGING FORTRAN PROGRAMS

Debugging is the process of finding and correcting errors in
executable programs1 that is, in programs that have been compiled and
linked without diagnostic messages, but that produce invalid results.

This chapter shows you how to use the VAX-II Symbolic Debugger to
debug FORTRAN programs.

2.1 OVERVIEW OF THE VAX-II SYMBOLIC DEBUGGER

The VAX-II Symbolic Debugger Reference Manual
debugger in detail. This section provi~es
debugger, showing a sample debugging seSS10n
debugger command syntax and symbol table.

2.1.1 Sample Debugging Terminal Session

describes the VAX-II
an overview of the
and introducing the

Figure 2-1 illustrates a program that requires debugging. The ~program
has been compiled and linked without diagnostic messages from either
the compiler or the linker. (Appendix B summarizes .compiler
diagnostic messages.) However, the program produces erroneous results
because of the missing asterisk in the exponentiation operator
(RADIUS*2 should be RADIUS**2). This error is so obvious that you
hardly need the services of the debugger to find it. However, for
purposes of illustration, this example will deal with the error as
though it were shrouded in obscurity.

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011

C PROGRAM TO FIND THE AREA
C OF A CIRCLE

PROGRAM CIRCLE
TYPE 5

5 FORMAT (I enter radius value I)
ACCEPT 10,RADIUS

10 FORMAT (F6.2)
PI = 3.1415927
AREA = PI*RAbruS*2
TYPE 15,AREA

15 FORMAT (I area of circle equals I,FIO.3)
STOP
END

Figure 2-1 Sample FORTRAN Program: CIRCLE

2-1

DEBUGGING FORTRAN PROGRAMS

The key to debugging is to find out what happens at critical points in
your program. To do this, you need a way to stop execution at
selected locations, and look at the contents of these locations to see
if they contain the correct values. Points at which execution is
stopped are called breakpoints. The SET BREAK command lets you
specify where you want to stop the program.

To look at the contents of a location, use the EXAMINE command. To
resume execution, use either the GO or STEP command. All DEBUG
commands relevant to FORTRAN are discussed in subsequent sections of
this chapter.

Figure 2-2 is an example of typical terminal dialog for a debugging
session. The circled numbers (for example, ct) are keyed to notes
that follow the figure and explain the dialog .

$ FORTRAN/LIST/NOOPTIHIZE/DEBUG CIRCLE
$ LINK/DEBUG CIRCLE ..
$ RUN CIRCLE

DEBUG Version 0.5-1 28 April 1978

•
:r.DEBUG-I-INITIAL. langu~e is FORTRAN. scope and module set to CIRCl.E
DBG)SET BREAK :r.LINE 7 ~
DBG)GO •
routine start pc is CIRCLE\CIRCLE
enter radius value
24.
break at pc = CI~~E\CIRCLE %line 7 tt
DBG)EXAHINE PI •
CIRCLE\PIf 3.141593
DBG)EXAHINE RADIUS •
CIRCLE\RADIUS: 1~4.00000
DBG)EXAHINE AREA
CIRCLE\AREA: 0.0 00000
DBG)GO •
start pc is CIRCLE\CIRCLE %line 7
area of circle eGuals 150.796

•

FORTRAN STOP
%DEBUG-I-EXITSTATUS. is '%SYSTEM-S-NORHAL. normal successful completion' •
DBG)EXIT •
$

ct

Figure 2-2 Sample Debugging Terminal Dialog

Invo.ke the FORTRAN compiler, specifying the qualifiers shown.
You should include the /NOOPTIMIZE qualifier if you intend to use
symbolic debugging (see Section 2.9).

tt Link your program, including the debugger.

• In response to the RUN command, the debugger displays its
identification, indicating that your program will be executed
under the debugger's control. Following the identification
message, the debugger displays an INITIAL message, telling you
the mode settings it has assumed for the language, scope, and
module. The debugger derives the mode settings from the first
module specified in the LINK command. If this message does not
appear, or if the settings assumed are not appropriate, use the
SET LANGUAGE, SET SCOPE, and SET MODULE commands, as described in
Sections 2.2.1, 2.2.2, and 2.2.3.

2-2

)

)

)

)

)

)

)

•
•
•
•
•
• •

DEBUGGING FORTRAN PROGRAMS

Place a brea~point
point should be
variables. Note:
point specified.

at an appropriate point in the program. This
one at which you will be able to examine key
Breakpoints suspend execution just before the

Begin program execution. The debugger displays the line number
at which execution starts.

The debugger announces that it has suspended execution at the
specified breakpoint.

Check the variable PI tb make sure the correct value is stored
there. The debugger displays the contents of PI, showing that
its scope is in module CIRCLE.

Check the variable RADIUS. The debugger shows that the specified
value has been properly stored.

Examine the variable AREA to make sure its contents are zero.

Resume execution. The debugger displays a message indicating the
point of program resumption.

Successful completion of the program is indicated by this
message. However, as you can see, the result is incorrect.

Gt Exit from the debugger.

By examining the variables PI, RADIUS, and AREA as the program is
executing, you can determine that the correct values are being stored.
It follows, then, that the error is probably in the expression of the
formula for computing the area. To correct the problem, you must edit
and recompile the source program, with the exponentiation operator
properly specified in the formula expression.

2.1.2 Debugger Command Syntax

Debugger commands resemble other VAX/VMS commands. The general form
is:

DBG>command [keyword] [operand [,operand] ••.]

command
Specifies the command name.

keyword
Specifies the qualifiers for SET, SHOW, CANCEL commands.

operand
Specifies the object of the command. The operand may consist of
constants, names of variables or array elements, or expressions.

The command, keyword, and operand fields are separated by one or more
spaces.

The debugger can process integer, real, double precision, and logical
expressions, but not complex or character expressions.

2-3

DEBUGGING FORTRAN PROGRAMS

The FORTRAN operators supported by the debugger are listed .below, in
decreasing order of precedence.

* ,/
+,­
.NOT •
• AND •
• OR •
• XOR., .EQV.

The debugger does not support exponentiation, concatenation, or
relational operators.

The debugger evaluates expressions in the same way as FORTRAN.
However, the syntax of expressions is slightly different. Spaces are
used to separate elements of debugger commands, and are significant to
the debugger~ therefore, variable names and multicharacter operators
(such as .OR.) must contain no embedded spaces.

The debugger accepts constants in the same form used for FORTRAN, with
the following exceptions: Hollerith, Radix-SO, and octal integer
constants (for example "777) are not accepted by the debugger.

Debugger commands observe standard VAX/VMS conventions for abbreviated
forms.

Table 2-1 lists the debugger commands and keywords discussed in this
chapter, and shows their full and abbreviated forms. Abbreviations
are in parentheses next to the full form.

Table 2-1
Debugger Commands and Keywords

--
Comm. nd

Nami s Keywords

SET (SE) LANGUAGE (LA)
SHOW (SH) MODULE (MODU)
CANCEL (CAN) SCOPE (SC)
EXAMINE (E) BREAK (B)
EVALUATE (EV) TRACE (T)
DEPOSIT (D) WATCH (W)
DEFINE (DEF)
EXIT (EXI)
STEP (S)
GO (G)
CALL (CA)

2.1.3 Debugger Symbol Table

The debugge~ maintains a table of symbols defined by the program with
which it ~s linked. This table provides the name of each symbol
defined in the program, its data type, and its address. The table
also provides dimension bound information for arrays, and length
information for character data.

The debugger's
2000 symbols.
defined in the
more than one

active symbol table provides room for approximately
Thus, you should pay heed to the number of symbols

programs you are debugging. If your program contains
program unit, use the SET MODULE command to be sure the

2-4

)

)

)

)

)

)

)

)

DEBUGGING FORTRAN PROGRAMS

symbol table contains symbols from the program units you 'wish to
debug. Use the CANCEL MODULE command to remove symbols defined in
program units that no longer need debugging. The SET MODULE and
CANCEL MODULE commands are defined in Section 2.2.2.

2.2 PREPARING TO DEBUG A PROGRAM

The following sections describe the commands used to establish the
proper environment for debugging FORTRAN programs. These commands
are:

SET LANGUAGE
SHOW LANGUAGE

SET MODULE
SHOW MODULE
CANCEL MODULE

SET SCOPE
SHOW SCOPE
CANCEL SCOPE

These commands can be used if the initial settings assumed by the
debugger are not appropriate.

2.2.1 SET, SHOW LANGUAGE Command

The SET LANGUAGE command tells the debugger that the debugging dialog
is to be conducted according to the conventions of the specified
language. For example, if you specify SET LANGUAGE FORTRAN, the
debugger will accept and display numeric values in decimal radix.

The command has the form:

SET LANGUAGE language

language
Specifies the language to be used.

To determine which language is currently in effect, use the SHOW
LANGUAGE command. This command has the form:

SHOW LANGUAGE

The debugger responds by displaying the language in effect. For
example:

DBG)SHOW LANGUAGE
lahguage: FORTRAN

2-5

DEBUGGING FORTRAN PROGRAMS

2.2.2 SET, SHOW, CANCEL MOPULE Commands

The MODULE commands let you
active symbol table when
multiple program units.
functions:

control the contents of the debugger's
the program you want to debug consists of

These commands perform the following

• SET MODULE places the symbols defined in the specified program
unit into the active symbol table. The debugger initializes
the active symbol table to include all global symbols, and
local symbols of the first program unit specified in the LINK
command. -

• SHOW MODULE displays the names of all program units whose
symbols are potentially available. "Yes" means the symbols
for that module. are set; "no" means they are not set.

• CANCEL MODULE removes the specified program unit's symbols
from the active symbol table.

The SET MODULE command has the form:

SET MODULE { program-unit [,program-unit] ••• }
/ALL -

program-unit

/ALL

Specifies the name of the program unit whose symbols are to be
included in the active symbol table.

Requests the debugger to set the symbols of all known modules.
If there is insufficient space, the debugger displays an error
message.

The SHOW MODULE command has the form:

SHOW MODULE

This command takes no parameters. The debugger responds by displaying
the names of the modules linked with the debugger, indicating the
modules whose symbols are included in the image, and their sizes.
Only those module names marked "Yes" have their symbols in the active
symbol table.

The CANCEL MODULE command has the form:

CANCEL MODULE { program-unit [,program-unit] ••• }
/ALL

program-unit

/ALL

Specifies the name of the program unit for which symbols are to
be removed.

Specifies that all information is to be purged from the active
symbol table.

2.2.3 SET, SHOW, CANCEL SCOPE Commands

The SCOPE commands let you control the default used to resolve
references to symbols. When you use a command such as EXAMINE, you
can either specify or omit the name of the module in which the symbol

2-6

)

)

)

)

)

)

DEBUGGING FORTRAN PROGRAMS

is defined. If you omit the name, the debugger uses a default. If it
cannot find the symbol in the default scope, the debugger creates a
scope, based on the current value of the pc. This indicates the
module or routine in which your program stopped. If that fails, the
debugger attempts to find an unambiguous symbol in the remaining
program units. A message is displayed if the debugger cannot resolve
the reference.

The SCOPE commands perform the following functions:

• SET SCOPE defines the specified program unit to be the default

• SHOW SCOPE displays the current default program unit name

• CANCEL SCOPE revokes the default program unit named previously
in a SET SCOPE command

The SET SCOPE command has the form:

SET SCOPE program-unit

program-unit
Specifies the name of the program unit to be used as the default.

For example:

SET SCOPE MAXI

The SHOW SCOPE command has the form:

SHOW SCOPE

This command takes no parameters. The symbol displayed indicates the
current scope.

The CANCEL SCOPE command has the form:

CANCEL SCOPE

This command takes no parameters. Scope becomes <null>.

2.3 CONTROLLING PROGRAM EXECUTION

To see what happens during execution of your program, you must be able
to\ suspend and resume the program at specific points. The following
commands are available for these purposes:

SET BREAK
SHOW BREAK
CANCEL BREAK

SET TRACE
SHOW TRACE
CANCEL TRAC~

SET WATCH
SHOW WATCH
CANCEL WATCH

SHOW CALLS

GO
STEP

CTRL/Y

EXIT

2-7

DEBUGGING FORTRAN PROGRAMS

2.3.1 SET, SHOW, CANCEL BREAK Commands

The BREAK commands, let you select specified locations for program
suspension, so you can examine and/or modify variables or arrays in
the program. The BREAK commands perform the following functions.

• SET BREAK defines an address or line number at which to
suspend execution

• SHOW BREAK displays all breakpoints currently set in the
program

• CANCEL BREAK removes selected breakpoints

The SET BREAK command has the form:

SET BREAK[/AFTER:n] address [DO(debugger command(s»]

address
Specifies the address at which the breakpoint is to occur. Note
that execution is suspended just before the specified address.
Section 2.5 describes how addresses are specified.

DO(debugger command(s»
Requests that the debugger perform the specified commands, if
any, when the breakpoint is reached.

For example:

SET BREAK %LINE 100 DO(EXAMINE TOTAL~ EXAMINE AREA)

The result is that the variables TOTAL and AREA are examined when the
breakpoint at line 100 is reached.

You can use the /AFTER qualifier to control when a breakpoint takes
effect. Thus, if you set a breakpoint on a line that is in the range
of a DO loop, and you want the breakpoint to be effective the third
time through the loop, then specify the /AFTER switch as shown in the
following example:

DBG>SET BREAK/AFTER:3 %LINE 20

Note that if you use the /AFTER qualifier, the breakpoint is reported
the nth time it is encountered, and every time it is encountered
thereafter.

The SHOW BREAK command has the form:

SHOW BREAK

This command takes no parameters. The debugger responds by displaying
the location of breakpoints.

The CANCEL BREAK command has the form:

CANCEL BREAK { address [,address •••]}
/ALL

address
Removes the b~eakpoint(s) at the specified address(es).

/ALL
Removes all breakpoints in the program.

2-8

)

)

)

)

)

)

)

DEBUGGING FORTRAN PROGRAMS

2.3.2 SET, SHOW, CANCEL TRACE Commands

The TRACE commands let you set, examine, and remove tracepoints in
your program. A tracepoint is similar to a breakpoint in that it
suspends program execution, and displays the address at the point of
suspension. However, program execution resumes immediately. Thus,
tracepoints let you follow the sequence of program execution to ensure
that execution is being carried out in the proper order.

Note that tracepoints and breakpoints are mutually exclusive. That
is, if you set a tracepoint at the same location as a current
breakpoint, the breakpoint will be canceled, and vice versa.

The TRACE commands perform the following functio. s:

• SET TRACE establishes points within the program at which
execution is momentarily suspended

• SHOW TRACE displays the locations in the program at which
tracepoints are currently set

• CANCEL TRACE removes one or more tracepoints currently set in
the program

The SET TRACE command has the furm:

SET TRACE address

address
Specifies the address at which the tracepoint is to occur.

The SHOW TRACE command has the form:

SHOW TRACE

This command takes no parameters.

The CANCEL TRACE command has the form:

CANCEL TRACE { address [,address ••• J}
/ALL

address
Removes the tracepoint(s) at the specified address(es).

/ALL
Removes all tracepoints in the program.

2.3.3 SET, SHOW, CANCEL WATCH Commands

The WATCH commands let you monitor specified locations to determine
when attempts are made to modify their contents, and take the
appropriate actions. These locations are called watchpoints~ When an
attempt is made to change a watchpoint, the debugge~ halts program
execution, displays the address o~ the instruction, and prompts for a
command. Watchpoints are monitored continuously. Thus, you can
determine whether locations are being modified inadvertently during
program execution.

2-9

DEBUGGING FORTRAN PROGRAMS

The WATCH commands perform the following functions:

• SET WATCH defines the location(s) to be monitored

• SHOW WATCH displays the locations currently being monitored

• CANCEL WATCH disables monitoring of specified locations

The SET WATCH command has the form:

SET WATCH var

var
Specifies the location to be monitored. You can monitor scalar
variables and arr.ay elements.

For example:

SET WATCH AREA

Note that watchpoints, tracepoints, and breakpoints are mutually
exclusive.

The SHOW WATCH command has the form:

SHOW WATCH

This command takes no parameters. All watchpoints are displayed.

The CANCEL WATCH command has the form:

var

CANCEL WATCH {var }
/ALL

Specifies the location for which monitoring is to be disabled.

/ALL
Removes all watchpoints from the program.

For example:

CANCEL WATCH AREA

2.3.4 SHOW CALLS Command

This command can be used to produce a traceback of calls, and is
particularly useful when you have returned to the debugger following a
CTRL/Y command. It has the form:

SHOW CALLS [n]

The debugger displays a traceback
leading to the current module.
most recent calls are displayed.
described in Section 1.5.

list, showing the sequence of calls
If you include a value for n, the n

The form of the traceback list is

2-10

)

)

)

)

)

DEBUGGING FORTRAN PROGRAMS

2.3.5 GO, STEP Commands

These commands let you initiate and resume program execution.

• GO initiates execution at a specified location, and continues
to conclusion or to the next breakpoint

• STEP initiates execution from the current location, and
continues for a specified number of statements

The form of the GO command is:

GO [address]

address
Specifies the address at which program execution is to begin.

The address parameter is optional; if you omit it, execution starts
at the current location.

NOTE

You must not restart a program from the
beginning unless you first exit from the
debugger. Unspecified results will be
produced.

The form of the STEP command is:

STEP [/qualifiers] [n]

The value specified for n determines the number of statements to be
executed. If you specify 0, or omit n, a default of I is assumed.
Note, however, that if you issue a STEP command while your program is
stopped in a module whose symbols are not set in the active symbol
table, then n instructions (not statements) will be executed.

You can specify the following qualifiers for the STEP command:

/[NO] SYSTEM
lOVER
/INTO
/LINE
/INSTRUCTION

/[NO] SYSTEM

lOVER

/INTO

/LINE

- If you specify /SYSTEM, you are
debugger to count steps wherever
including system address space. The
/NOSYSTEM. '

telling the
they occur,
default is

- Tells the debugger to ignore calls to subprograms
as it steps through the program. That is, it is
to step over the call. This is the default.

Tells the debugger to recognize calls to
subprograms as it steps through the program. That
is, it is requested to step into the subprogram.

- Tells the debugger to step through the program on
a line-by-line basis (default for FORTRAN).

/INSTRUCTION - Tells the debugger to step through the program on
an instruction-by-instruction basis (default for
VAX-ll MACRO).

2-11

DEBUGGIN.G FORTRANPROGRA..,S

You can specify these qualifiers each time you issue a STEP command~
or you can use a SET STEP command, as shown in the following example:

SET STEP INSTRUCTION, INTO, SYSTEM

This command specifies that all defaults applicable to FORTRAN
programs are to be overridden. When you subsequently issue a STEP
command with no qualifiers, these qualifiers are assumed to be in
effect. You can, however, supersede them by including a qualifier
with a STEP command. Thus,

STEP/LINE 10

tells the debugger to execute 10 lines, regardless of the SET STEP
command.

It is advisable to use STEP to execute only a few instructions at a
time. To execute many instructions, and then stop, use a SET BREAK
command to set a breakpoint, and then issue a GO command.

2.3.6 CTRL/Y Command

You can use the CTRL/Y command at any time to return to the system
command level. This command is issued when you press the CTRL key and
the Y key at the same time. The $ prompt will be displayed on the
terminal. To return to the debugger, type DEBUG. You can use the
CTRL/Y command if your program loops or otherwise fails to stop at a
breakpoint. To find out where you were at the instant CTRL/Y was
executed, use the SHOW CALLS command after you return to the debugger.
See Section 2.3.4.

2.3.7 EXIT Command

The EXIT command lets you exit from the debugger when you are ready to
terminate a debugging session. It has the form:

EXIT

This command takes no parameters. You must use the EXIT command when
your program terminates to return to system command level.

2.4 EXAMINING AND MODIFYING LOCATIONS

Once you have set breakpoints and begun program execution, the next
step is to see whether correct values are being generated and,
possibly, to change the contents of locations as execution proceeds.
You may also want to calculate the value of an expression that appears
in your program. The debugger provides the following commands for
these purposes:

EXAM;J:NE

DEPOSIT

EVALUATE

2 12

)

)

)

)

)

)

)

)

DEBUGGING FORTRAN PROGRAMS

2.4.1 EXAMINE Command

The EXAMINE command lets you look at the contents of specified
locations. It has the form:

EXAMINE [address[:address]]

address
Specifies the address whose contents are to be examined; it is
usually given symbolically as a variable name or array element
name.

Examples:

EXAMINE IZZY

The contents of variable IZZY are displayed.

EXAMINE IARR(I)

The contents of the Ith element in array IARR are displayed.

EXAMINE IARR(l) :IARR(lO)

The contents of the first through tenth elements of the array IARR are
examined.

You can also specify that the contents of an absolute address be
displayed. For example:

EXAMINE 600

The contents of absolute address 600 are displayed.

2.4.2 DEPOSIT Command

The DEPOSIT command lets you change the contents of specified
locations. It has the form:

DEPOSIT address=value[,value

address
Specifies the address into which the value is to be deposited.

value
Specifies the value to be deposited.

You can change the contents of a specific location, or of several
consecutive locations, as shown in the following examples.

DEPOSIT IZZY=lOO

This command places the decimal value 100 into the variable IZZY.

DEPOSIT IARR(l) =100 ,150 ,200

This command places the decimal values 100, 150, and 200 into elements
1, 2~ and 3 of array IARR.

2-13

DEBUGGING FORTRAN PROGRAMS

2.4.3 EVALUATE Command

The EVALUATE command lets you use the debugger as a calculator, to
determine the value of expressions. It has the form:

EVALUATE expression

expression
Specifies the expression whose value is to be determined.

For example:

EVALUATE PI*RADIUS

The value of this expression will be displayed. You can also use the
EVALUATE command to determine addresses, as follows:

EVALUATE/ADDRESS expression

For example:

EVALUATE/ADDRESS I

This calculates the address of the variable I, in decimal.

EVALUATE/ADDRESS A(J)

This calculates the address of the Jth element of array A.

You can also use EVALUATE to perform address arithmetic, such as
computing an offset or array element address. For example:

EVALUATE/ADDRESS 1+4

2.5 SPECIFYING ADDRESSES

The debugger allows you to express addresses in symbolic form. Thus,
to examine a location, you need only refer to it by its symbolic name.
You don't have to concern yourself with its location in memory
(unless, of course, you omitted the /DEBUG qualifier from the FORTRAN
and LINK commands). Simply specify the variable, array element, or
function name in the debugger command.

You also need to tell the debugger where to set breakpoints,
watchpoints, and tracepoints. The following sections describe how to
specify line numbers, statement labels, and absolute addresses.

2.5.1 Lines, Labels, and Absolute Addresses

Addresses can be specified by line number, statement label, or
absolute value. To specify a line number or a statement label, use
either a %LINE prefix or a %LABEL prefix, respectively. For example:

SET BREAK %LINE 6

This command sets a breakpoint at line 6, corresponding to the
compiler-generated line numbers shown in the listing. Note that the
debugger does not recognize all line numbers, in particular those
associated with non-executable statements. If you specify such a line
number, the debugger responds with a message indicating that no such

2-14

)

)

)

)

)

)

)

DEBUGGING FORTRAN PROGRAMS

line exists. Simply retry the command, specifying the line number of
an executable statement. To specify a statement label, specify a
command such as:

SET BREAK %LABEL 7

This command sets a breakpoint at statement label 7 in the module
identified by the current scope (see Section 2.2.3).

To specify an absolute address, do not use a prefix. For example:

SET BREAK 700

You can also enter absolute addresses in symbolic form. To do so, you
must have defined them symbolically, by means of the DEFINE command
(see Section 2~5.4).

2.5.2 Specifying Scope

If the program you are debugging consists of more than one program
unit, you must be sure that your symbol references are unambiguous.
For example, if your main program calls a subroutine, and the symbols
from both program units are in the debugger's symbol table, you must
distinguish between duplicate symbols.

For example, assume that you want to set a breakpoint in the
subroutine, and you issue the following command:

SET BREAK %LINE 10

Because you do not specify a program unit name in this command, the
debugger uses a default to decide which line 10 you mean. If you used
a SET SCOPE command, the debugger uses the program unit specified in
the SET SCOPE command (see Section 2.2.3). To override this default,
you must specify a command in the following general form:

SET BREAK %LINE program-unit\lO

For example:

SET BREAK %LINE ARGO\lO

This command specifically calls for a breakpoint to be set at line 10
in the program unit named ARGO.

Unambiguous references are also required when you specify variables.
If there are duplicate variable names (for instance, X) you should
specify which X you want, as in the following example:

EXAMINE SUB3\X

2.5.3 Previous, Current, and Next Locations

The debugger provides a quick method for referring to any of three
locations:

• The previous location

• The current location

• The location at the next higher address (next location)

2-15

',IJ

DEBUGGING FORTRAN PROGRAMS

To specify the previous 'location, type an up-arrow (t) or circumflex
(-). For exampler

EXAMINE

This command displays the contents of the previous location.

To specify the current locatioti, type a dot (.). For~xample:

DEPOSIT .=100

This command puts a decimal value of 100 in the current location.
This method is most useful after you have looked at a location and
decided to change it; or when you want to verify tt),at a DEPOSIT
command has beeri~xecuted as expected.

To specify the next higher location, simply omit the address value
entirely. For example:

EXAMINE

The next location's contents will. be displayed.

2.5.4 Defining Addresses Symbolically

You may occa~ionally need to ~ccess absolute addresses. To help you
do so, the debugger provides the DEFINE command, which creates a
symbolic reference for an absolute address. Then you can refer to the
address by its symbolic name, rather than by its absolute value. The
DEFINE command has the form:

DEFINE name=address

For example:

DEFINE TOP=1036

Subsequent references to this address can be made using the symbol
TOP. For example:

DEPOSIT TOP=256

The contents of address 1036 will be changed to 256.

2.6 CALLING SUBROUTINES FROM THE DEBUGGER

The CALL command lets yo,u calla subroutine from the debugger • It has
the form:

CALL s [(a, •••)]

s
Specifies the subroutine name.

a
Specifies one or more actual arguments.

)

)

)

)

DEBUGGING FORTRAN PROGRAMS

On return from the subroutine, control returns to
point at which the CALL command was issued.
registers, etc.) that existed at the time of
restored.

the debugger, at the
The context (general

the CALL is also

When calling FORTRAN routines, you must adhere to the FORTRAN calling
conventions described in Chapter 5.

2.7 DEBUGGER COMMAND QUALIFIERS

Qualifiers can be used to modify some debugging commands. The general
form in which qualifiers are specified is:

command/qualifier

Qualifiers change the defaults the debugger uses in processing
commands. For example, when you deposit a value, the debugge~ uses
decimal radix by default. You can override the default by specifying
either /BEX or /OCT. Table 2-2 summarizes the command qualifiers of
particular significance in FORTRAN debugging.

Table 2-2
Debugger Command Qualifiers

Qualifier Function Commands

/ADDRESS Indicates that an EVALUATE
address value is
desired

/BEX Override the EVALUATE
/OCT default radix DEPOSIT

(decimal)

Refer to the VAX-II Symbolic Debugger Reference Manual for more
information on qualifiers.

2.8 NUMERIC DATA TYPES

The debugger supports all numeric data types used
IV-PLUS, except complex. (Complex values can
examined, however.) Furthermore, if you attempt to
value into a variable or array element that does
data type, the value is converted to the data type
array element.

in VAX-II FORTRAN
be deposited and

deposit a numeric
not have a matching
of the variable or

To deposit a complex value, specify it in two parts as:

real part, imaginary part

For example:

DEPOSIT CPLX=3.4,-4.7

When you examine a complex variable or array element, the data is
displayed as a complex constant, as (real part, imaginary part).

2-17

DEBUGGING FORTRAN PROGRAMS

When you deposit real numbers, you must specify a decimal point. To
distinguish single precision and double precision numbers, use E and
0, respectively. For example:

Number Data Type

24.1 Single precision (default)

24.1EO Single precision

24.1DO Double precision

241EO Invalid (no decimal point)

2.9 EFFECTS OF OPTIMIZATION ON DEBUGGING

You should include the /NOOPTIMIZE qualifier when you compile a
FORTRAN program that may need to be debugged. This qualifier is
necessary because the VAX-II FORTRAN IV-PLUS compiler performs
optimizations by default; and, while highly desirable for bug-free
programs, optimization is liable to create difficulty in finding and
eliminating bugs from programs in the development stage.

The compiler uses the following optimization techniques:

• Using central processor condition codes

• Binding frequently-used variables to registers

• Assuming that the flow of control proceeds in a certain
sequence, based on source code

These techniques and some of the implications for debugging are
described below.

2.9.1 Use of Condition Codes

This optimization technique takes advantage of the way in whiGh the
central processor's condition codes are set. For example, consider
the following source code:

X = X + 2.5
IF (X .LT. 0) GO TO 20

Rather than test the new value of X to determine whether to branch"
the optimized object code bases its decision on the condition code
settings after 2.5 is added to X. Thus, if you attempt to set a
breakpoint at the second line, and deposit a different value into X,
you will not achieve the intended result, because the condition codes
no longer reflect the value of X. In other words, the decision to
branch is being made without regard to the new value of the variable.

2.9.2 Register Binding

This technique is used to reduce the number of memory references or
load-and-store instructions needed. The values of frequently-used
variables are kept in general registers, and the registers are used,
rather than the variables. Therefore, if you deposit a new value in a

2-18

)

)

)

)

)
/

)

)

DEBUGGING FORTRAN PROGRAMS

variable that has been bound to a register, the new value will have no
effect. Moreover, if you examine the variable, the current value
(which is kept in the register) may not be displayed.

2.9.3 Control Flow

The compiler assumes that statements will be executed in the sequence
in which they appear in source code, if there are no intervening
labels. Optimization of such code sequences will not let you use the
"GO address" version of the GO command.

2.9.4 Effects of /NOOPTIMIZE and /OPTIMIZE

The /NOOPTIMIZE qualifier tells the compiler not to assume that
condition codes are valid~ not to keep the values of variables in
general registers~ and not to optimize across statement boundaries.
In short, the object program directly reflects the source program.
When /NOOPTIMIZE is in effect, you can issue any of the debugging
commands.

When /OPTIMIZE is in effect, you should not use the GO address
command. However, you can set and clear breakpoints and examine
COMMON variables. If you need to debug a program that was compiled
with /OPTIMIZE in effect, you may need a compiler listing of the
generated machine code. Thus, if you do not suppress optimization,
you should specify /LIST and /MACHINE_CODE in the FORTRAN command.

2-19

'\..-

\
(

)

)

)

)

')

/)

)

)

)

CHAPTER 3

FORTRAN INPUT/OUTPUT

This chapter describes FORTRAN input/output (I/O) as implemented for
VAX-II FORTRAN IV-PLUS. In particular, it provides information about
FORTRAN IV-PLUS I/O in relation to VAX-II Record Management Services
(RMS). The topics covered include:

• VAX/VMS file specifications (Section 3.1)

• Logical names as used in FORTRAN (Section 3.2)

• FORTRAN file characteristics (Section 3.3)

• FORTRAN record formats (Section 3.4)

• OPEN statement features (Section 3.5)

• Auxiliary I/O operations (Section 3.6)

• Local interprocess communication by means
(Section 3.7)

of mailboxes

• Remote communication by means of DECnet-VAX (Section 3.8)

The FORTRAN I/O statements are: READ, WRITE, ACCEPT, PRINT, and TYPE.
The device or file to or from which data is transferred is designated
by a logical unit number, specified or implied as part of the I/O
statement. Logical unit numbers are integers from 0 to 99.

For example:

READ (2,100) I,X,Y

This statement specifies that data is to be entered from the device or
file corresponding to logical unit 2, in the format specified by the
FORMAT statement labeled 100.

The association between the logical unit number and the physical
device or file occurs at execution time. You can change this
association at execution time, if necessary, to match the needs of the
program and the available resources. You need not change the logical
unit numbers specified in the program. Thus, FORTRAN programs are
inherently device independent.

You can use standard FORTRAN I/O statements to communicate between
processes on either the same computer or different computers.
Mailboxes permit interprocess communication on the same computer.
DECnet network facilities are used for interprocess communication on
different computers. DECnet can also be used to process files on
different computers.

3-1

FORTRAN INPUT/OUTPUT

3.1 FILE SPECIFICATION

A complete VAX/VMS file specification has the form:

node~:device: [directory]filename.filetype.version

For example:

BOSTON::DBAO: [SMITH]TEST.DAT.2

node
BOSTON

device
DBAO (unit 0 of disk DBA)

directory
SMITH (the file name is cataloged in the disk directory named
SMITH)

filename
TEST

filetype
. DAT

version number
2

If you omit elements of the file specification, the system supplies
default values, as follows. If you omit the node, the local computer
is used; if you omit the device or directory, the current user
default is used; if you omit the file name, the system supplies
FOROnn, where nn is the logical unit number; if you omit the file
type, the system supplies DAT; and if you omit the version number,
the system supplies either the highest current version number (for
input) or the highest current version number plus 1 (for output).

For example, suppose your default device is DBAO:
directory is SMITH, and you specify:

READ (8,100)

The default file specification is:

DBAO: [SMITH] FOR008 .DAT. n

The value of n equals the highest current
FOR008.DAT.

Then, suppose you specify:

WRITE (9,200)

The default file specification is:

DBAO: [SMITH] FOR009.DAT.m

Where m is 1 greater than the highest existing
FOR009.DAT.

3-2

and your default

version number of

version number of

)

)

)

)

)

)

)

)

FORTRAN INPUT/OUTPUT

3.2 . LOGICAL NAMES

The VAX/VMS operating system provides the logical name mechanism as a
means of associating logical units with file specifications~ A
logical name is an alphanumeric string, up to 15 characters long, that
is specified instead of a file specification.

The operating system provides a number of predefined logical names,
already associated with particular file specifications. Table 3-1
lists the logical names of special interest to FORTRAN users.

Table 3-1
Predefined System Logical Names

Name Meaning Default

SYS$DISK Default device and directory As specified by the
user

SYS$INPUT Default input stream User's terminal

SYS$OUTPUT Default output stream

you can create a logical name dynamically, and
file specification by means of the VAX/VMS
before program execution, you can associate the
program with the file specification appropriate

For example:

$ ASSIGN DBAO:[SMITH]TEST.DAT.2 LOGNAM

(interactive), batch
command file (batch)

User's terminal
(interactive), . batch
log file (batch)

associate it with a
ASSIGN command. Thus,
logical names in your
to your needs.

This command creates the logical name LOGNAM and
the file specification DBAO:[SMITH]TEST.DAT.2.
specification used when the logical name LOGNAM
program execution.

associates it with
This will be the file

is encountered during

Logical names provide great flexibility because they can be associated
not only with a complete file specification, but with a device, a
device and a directory, or even another logical name.

3.2.1 FORTRAN Logical Names

Usually, FORTRAN I/O is performed by associating a logical unit number
with a device or file. The VAX/VMS logical name concept allows one
more level of association: a user-specified logical name can be
associated with a logical unit number.

VAX-II FORTRAN IV-PLUS provides predefined logical names, in the form:

FOROnn

The value of nn corresponds to the logical unit number. By ~efault,
each FORTRAN logical name is assoc,iated with a file named FOROnn.DAT,

3-3

FORTRAN INPUT/OUTPUT

which is assumed to be located on your default disk, under your
default directory. For example:

WRITE (17,200)

If you enter this statement, without including an explicit file
specification, the data will be written to your default disk, to a
file named FOR017.DAT, under your def""ult directory.

You can change the file specification associated with a FORTRAN
logical unit number by using the ASSIGN command to change the file
associated with the corresponding FORTRAN logical name. For example:

$ ASSIGN DBAO: [SMITH]TEST.DAT.2 FOR017

This command associates the FORTRAN logical name FOR017 (and therefore
logical unit 17) with file TEST.DAT.2 on device DBAO, in directory
SMITH.

You can also associate the FORTRAN logical names with any of the
predefined system logical names. Two examples follow.

1. $ ASSIGN SYS$INPUT FOROOS

This command associates logical unit S with the default input
device (for example, the batch input stream).

2. $ ASSIGN SYS$OUTPUT FOR006

This command associates logical unit 6 with the default
output device (for example, the batch output stream).

Many VAX-ll
assignments
example.

systems provide system-wide
for logical units Sand 6

default logical name
as shown in the preceding

3.2.2 Implied FORTRAN Logical Unit Numbers

The READ, ACCEPT, PRINT, and
explicit logical unit ·number.
an implicit logical unit number
logical names is, in turn,
predefined logical names, by
relationships.

TYPE .statements do not include an
Each of these FORTRAN statements uses
and logical name. .Each of these

associated with one of the system's
default. Table 3-2 shows these

,Table 3-2
Implicit FORTRAN Logical Units

FORTRAN System
Statement Logical Name Logical Name

READ f, list FOR$READ SYS$INPUT

ACCEPT f, list FOR$ACCEPT SYS$INPUT

PRINT f, list FOR$PRINT SYS$OUTPUT

TYPE f,list FOR$TYPE SYS$OUTPUT

3-4

)

)

)

)

)

)

)

)

))

/

FORTRAN INPUT/OUTPUT

As with any other FORTRAN logical name, you can change the file
specificati~ns associated with these FORTRAN logical names by means of
the ASSIGN command. For example:

$ASSIGN DBAO: [SMITH]TEST.DAT.2 FOR$READ

Following execution of this command, the READ statement's logical name
(FOR$READ) will refer to the file TEST.DAT.2, on device DBAO, in
directory SMITH.

3.2.3 OPEN Statement NAME Keyword

You can use the NAME keyword ofcthe OPEN statement to specify 'the
particular file to be opened on a logical unit. (Section 3.5
describes the OPEN statement in greater detail.) For example:

OPEN (UNIT=4, NAME='DBAO: [SMITH]TEST.DAT.2', TYPE='OLD')

In this example, the file TEST.DAT.2, on device DBAO:, in directory
SMITH, is opened on logical unit 4. Neither the default file
specification (FOR004.DAT) nor the FORTRAN logical name FOR004 is
used. The value of the NAME keyword can be a character
variable, or expression.

constant,

You can also specify a logical name as the value of the NAME keyword,
if the logical name is associated with a file specification. For
example:

$ASSIGN QB,AO: [SMITH]TEST.DAT LOGNAM

This command assigns the logical name LOGNAM to the file specification
DBAO: [SMITH]TEST.DAT. The logical name can then be used in an OPEN
statement, as follows:

OPEN (UNIT=19,NAME='LOGNAM',TYPE='OLD')

When an I/O statement refers to logical unit 19, the system uses the
file specification associated with logical name LOGNAM.

If the value specified for the NAME keyword has no associated file
specification, it is regarded as a true file name rather than as a
logical name. That is, if LOGNAM had not been previously associated
with the file specification DBAO: [SMITH]TEST.DAT by means of an ASSIGN
command, then the following statement would indicate that a file named
LOGNAM.DAT is located on the default device, in the default directory:

OPEN (UNIT=19,NAME='LOGNAM',TYPE='OLD')

A logical name specified in an OPEN' statement must not contain
brackets or periods. The system treats any name containing these
punctuation marks as a file specification, not as a logical name.

3-5

FORTRAN INPUT/OUTPUT

3.2;4 Assigning Files to Logical Units

You can assign files to logical units in any of three ways:

1. By using default logical names~ two examples follow.

READ (7,100)

Logical unit FOR007 is associated with the file FOR007.DAT by
default.

TYPE 100

Logical unit FOR$TYPE is associated with SYS$OUTPUT
default.

2. By specifying a logical name in an OPEN statement.
example:

OPEN (UNIT=7,NAME='LOGNAM ')

3. By supplying a file specification in an OPEN statement.
example:

OPEN (UNIT=7,NAME='LOGNAM.DAT ')

by

For

For

You use the ASSIGN command to change the association of logical names
and file specifications.

A logical name used with the NAME keyword of the OPEN statement must
be associated with a file specification, and the character expression
specified for the ~AME keyword must contain no punctuation marks.
Otherwise, the logical name will be treated as a true file
specification.

Use the VAX/VMS SHOW LOGICAL command to determine the current
associations of logical names and file specifications.

To remove the association of a logical name and a file specification,
use the DEASSIGN command, in the form:

$DEASSIGN logical-name

3.2.5 Assigning Logical Names with MOUNT Commands

You can specify a logical name as a parameter of the MOUNT command.
The MOUNT command has the form:

$ MOUNT device-name, ••• [volume-label, •••] [logical-name[:]]

If your program refers to devices by means of logical names, you can
change the association between the device name and the logical name
when you mount the device. For example:

$ MOUNT MT: TAPE2 MYTAPE

3-6

)

)

)

'.'
,\

)

)

)

FORTRAN INPUT/OUTPUT

This command associates the logical name MYTAPE with device name MT
and volume label TAPE2. Whenever your program refers to logical name
MYTAPE, access will be to the volume labeled TAPE2 mounted on the
default magnetic tape unit. If you subsequently mount a different
tape to be referenced by the logical name MYTAPE, you can change the
logical name association when you issue the MOUNT command. For
example:

$ MOUNT MT: TAPE7 MYTAPE

3.3 FILE CHARACTERISTICS

A clear distinction must be made between the way in which files are
organized and the manner in which records are accessed.

The term "file organization" applies to the way records are physically
arranged on a storage device. "Record acqess" refers to the method
used to read records from or write records to a file, ~egardless of
its organization. A file's organization is specified when the file is
created, and cannot be changed. Record access is specified each time
the file is opened, and can be different each time.

3.3.1 File Organization

VAX-II FORTRAN IV-PLUS supports two file organizations:

• Sequential

• Relative

The organization of a file is specified by mean. of a keyword in the
OPEN statement, as described in Section 3.5.4.

3.3.1.1 Sequential Organization - The default file organization is
sequential.

Sequential files consist of records arranged in the seqtience in which
they are written to the file (the first record written is the first
record in the file, the second record written is the second record in
the file, etc.). As a result, records can be added only at the end of
the file. Sequential file organization is permitted on all devices
supported by the VAX-II FORTRAN system.

3.3.1.2 Relative Organization - Relative files are permitted only on
disk devices. A relative file consists of numbered positions, called
cells. These cells are of fixed, equal length, and are numbered
consecutively from 1 to n, where 1 is the first. ceIl, and n is the
last ~vailable cell in the file.

This arrangement lets you place records into the file according to
cell n~mber: the cell number becomes the record's relative record
number: that is, its location relative to the beginning of the file.
As a result, you can retrieve records directly by specifying their
relative record number, because the actual location of the record is
easily calculated relative to the beginning of the file. You can add
records to, or delete them from, the file regardless of their

3-7

FORTRAN INPUT/OUTPUT

location, as long as you keep track of the relative record numbers of
the records.

3.3.2 Access to Records

Records can be accessed in two ways:

• Sequential access

• Direct access

The access mode chosen is unrelated to the file organization. You can
access records in both relative and sequential files sequentially or
directly (with certain restrictions, described below).

3.3.2.1 Sequential Access - If you select sequential access mode,
records are written to or read from the file, starting at the
beginning and continuing through the file one record after another.

Sequential access to a file means that a particular record can be
retrieved only when all the records preceding it have been read.
Writing records by means of sequential access varies according to the
file organization. New records can be written only at the end of a
sequentially organized file. For a relative -orgarrrza:'t-i'on-- file,
however, a new record can be written at any point, replacing the
existing record in that cell. For example, if two records are read,
and then a record is written, the new record occupies cell 3 of the
file.

3.3.2.2 Direct Access - If you select direct access mode, you
determine the order in which records are read or written. Each READ
or WRITE statement must include the relative record number indicating
the record to be read or written. -----~--..• -. _ .. _._,-

You can access relative files directly, and you can also directly
a~cess a sequential file if it contains fixed length records and
resides on disk. Because direct access uses cell numbers to find
records, you can issue successive READ or WRITE statements requesting
records that either precede or follow previously requested records.

For example:

READ (12'24) - read record 24 in file 12

READ (12'20) - read record 20 in file 12

3.4 RECORD STRUCTURE

Records are stored in one of three formats:

1. Fixed length

2. Variable length

3. Segmented

3-8

1
/

)
I

)

)

)

)

FORTRAN INPUT/OUTPUT

Fixed length and variable "length formats can be used with sequential
or relative file organization. Segmented format is unique to FORTRAN,
and can be used only with sequential file organization, and only for
unfo~matted sequential access. You should not use segmented records
for files that will be read by programs written in languages other
than FORTRAN.

3.4.1 Fixed Length Records

When you specify fixed length records (see Section 3.5.7), you are
specifying that all records in the file contain the same number of
bytes. When you create a file that is to contain fixed length
records, you must specify the record size (see Section 3.5.6). A
sequentially organized file opened for direct access must contain

-t'tYeQ.. length "records, to allow the ""'tecord number to be computed
·correctly. Note that in a relative organization file each fixed
length record contains an extra byte, the deleted-record control byte.

3.4.2 Variable Length Records

Variable lengt~ records can contain any number of bytes, up to a
specified maX1mum. Variable length records are prefixed by a count
field, indicating the number of bytes in the record. The count field
comprises two bytes on a disk device, and four bytes on magnetic tape.
The value stored in the count field indicates the number of data bytes
in the record. Variable length records in relative files are actually
stored in fixed length cells, the size of which must be specified by
means of the RECORDSIZE keyword of the OPEN statement (see Section
3.5.6). This value specifies the largest record that can be stored in
the file. Each variable length record in a relative file contains
three extra bytes, two for the count field and one for deleted record
control.

The count field of a variable length record is available when you read
the record~ issue a READ statement with a Q format descriptor. You
can then use "the count field information to determine how many bytes
should be in an I/O list.

3.4.3 Segmented Records

A segmented record is a single logical record consisting of one or
more variable length records. Each variable length record constitutes
a segment. The length of a segmented record is arbitrary. Segmented
records are useful when you want to write exceptionally long records,
and are especially appropriate to sequentially organized files.
Unformatted sequential records written to sequentially organized files
are, by default, stored as segmented records.

Because there is no set limit on the size of a segment.ed record, each
variable length record in the segmented record contains control
information to indicate that it is one of the following:

• The first segment in the segmented record

• The last segment in the segmented record

• The only segment in the segmented record

• None of the above

3-9

FORTRAN INPUT/OUTPUT

This control information is contained in the first two bytes of each
segment of a segmented record. Thus, when you wish to access an
unformatted sequential file that contains fixed length or variable
length records, you must specify RECORDTYPE='FIXED' or 'VARIABLE' (as
appropriate) when you open the file. Otherwise the first two bytes of
each record will be misinterpreted as control information, and errors
will probably result.

3.S OPEN STATEMENT KEYWORDS

The following sections supplement the OPEN statement description that
appears in the·VAX-ll FORTRAN IV-PLUS Language Reference Manual. In
particular, implementation-dependent and/or system-dependent' aspects
of certain OPEN statement keywords are described as affected by the
VAX-II Record Management Services (RMS) implementation. For more
information refer to the VAX-II Record Management Services Reference
Manual.

3.S.1 BLOCKSIZE Keyword

The BLOCKSIZE keyword specifies the physical I/O transfer size for the
file. It has the form:

BLOCKSIZE = bks

For magnetic tape files, the value of bks specifies the physical
record size in the range 18 to 32767 bytes. The default value is 2048
bytes.

For sequential disk files, the value of bks is rounded up to an
integral number of Sl2-byte blocks and used to specify RMS multiblock
transfers. The number of blocks transferred can be 1 to 127. The
default value is 2048 bytes.

For relative files, the value of bks is rounded up to an integral
number of Sl2-byte blocks and used to specify the RMS bucket size, in
the range 1 to 32 blocks. The default is the smallest value capable
of holding a single record.

3.S.2 BUFFERCOUNT Keyword

The BUFFERCOUNT keyword specifies the number of memory buffers to use.
It has the form:

BUFFERCOUNT = bc

The range of values for bc is from 1 to 2SS.The size of each buffer
is determined by the BLOCKSIZE keyword. Thus, if BUFFERCOUNT=3 and
BLOCKSIZE=2048, the total number of bytes allocated for buffers is
3*2048, or 6144. The default is two buffers for sequential files and
one buffer for relative files.

3.S.3 INITIALSIZE and EXTENDSIZE Keywords

The INITIALSIZE keyword specifies the initial storage allocation for a
disk file, and the EXTENDSIZE keyword specifies the amount by which a
disk file is extended each time more space is needed for the file.

3-10

/

)

)

)

)

)

FORTRAN INPUT/OUTPUT

INITIALSIZE is effective only at the time the file is created. If
EXTENDSIZE is specified when the file is created, the value specified
is the default value used to allocate additional storage for the file.
If you specify EXTENDSIZE when you open an existing file, the value
you specify supersedes any EXTENDSIZE value specified when the file
was created, and remains in effect until you close the file. Unless
specifically overridden, the default EXTENDSIZE value is in effect on
subsequent openings of the file.

The system attempts to allocate contiguous space for INITIALSIZE. If
not enough contiguous space is available, noncontiguous space is
allocated.

3.5.4 ORGANIZATION Keyword

The ORGANIZATION keyword specifies file organization.
form:

ORGANIZATION ={'RELATIVE' }
'SEQUENTIAL'

The default file organization is sequential.

It has the

When an existing file is opened, the actual organization of the file
is used.

The relative file organization is applicable mainly when creating
files to be used in non-FORTRAN applications, or when reading relative
files created by programs written in languages other than FORTRAN.

3.5.5 READONLY Keyword

The READONLY keyword specifies that write operations are not allowed
on the file being opened. The FORTRAN I/O system's default file
access privileges are read-write, which can cause run-time I/O errors
if the file protection does not permit write access. The READONLY
keyword has no effect on the protection specified for a file. Its
main purpose is to allow a file to be read simultaneously by two or
more programs. Thus, if you wish to open a file for the purpose of
reading the file, but do not want to prevent others from being able to
read the same file while you have it open, specify the READONLY
keyword.

3.5.6 RECORDSIZE Keyword

The RECORDSIZE keyword specifies how much data can be contained in a
record. It has the form:

RECORDSIZE = rl

The value specified for rl indicates the length of the logical records
in the file. For files that contain fixed length records, rl
specifies the size of each record; for files that contain variable
length records, rl specifies the maximum length for any record.

3-11

FORTRAN INPUT/OUTPUT

The value of rl does not include the two segment control bytes (if
present), or the bytes that RMS requires for maintaining record length
and deleted-record control information (two or four for sequential
organization, and one or three for relative organization).

The value of rl is interpreted as either bytes or longwords, depending
on whether the records are formatted (bytes) or unformatted
(longwords, that is, 4-byte units). Table 3-3 summarizes the maximum
values that can be specified for rl, based on file organization and
record format.

File Organization

Sequential

Sequential and

Table 3-3
RECORDSIZE Limits

Record

Formatted
(bytes)

32766

9999*
variable length records
on ANSI magnetic tape

Relative 16380

Format

Unformatted
(longwords)

8191

2499*

4095

* Limit imposed by 4-byte ASCII count field.

If you are opening an existing file containing fixed length records or
that has relative organization, and you specify a value for RECORDSIZE
that is different from the actual length of the records in the file,
an error occurs. If you omit RECORDSIZE when opening an existing
file, the record length specified when the file was created is used by
default.

You must specify RECORDSIZE when you create a file that is to contain
fixed length records or that has relative organization.

3.5.7 RECORDTYPE Keyword

The RECORDTYPE keyword specifies the structure of records in a file.
It has the form:

I 'FIXED' 1
RECORDTYPE = 'VARIABLE'

'SEGMENTED'

This keyword is particularly useful when you want to override the
default record structure used to create a file. The default record
structure is:

FIXED - direct access, sequential, and relative

VARIABLE - formatted sequential

SEGMENTED - unformatted sequential

3-12

)
j

)

)

)

)

FORTRAN INPUT/OUTPUT

The default used when accessing an existing file is the record
structure of the file, except for unformatted sequential files
containing fixed or variable length records. In this case, you must
explicitly override the default (SEGMENTED) by specifying the
appropriate RECORDTYPE value in the OPEN statement. You cannot use an
unformatted READ statement to access an unformatted sequentially
organized file that contains fixed length or variable ~ength records,
unless you specify the corresponding RECORDTYPE value in your OPEN
statement. Files containing segmented records can be accessed only by
unformatted sequential FORTRAN I/O statemen~s.

3.5.8 SHARED Keyword

The SHARED keyword specifies that the file can be accessed by more
than one program at a time, or by the same program on more than one
logical unit. The forms of sharing permitted depend on the
organization of the file.

For sequential fileS, both read and write sharing are permitted.
Because RMS does not prevent two or more programs from accessing the
same file simultaneously, however, user programs that share write
access to a file must provide interprocess communication and
coordination to ensure reliable performance. Otherwise, problems may
develop. For example, if two programs write to a shared file that
contains records that cross block boundaries, records containing data
written by two different programs can result. This can happen if the
co-operating programs do not coordinate their read, modify, and
rewrite sequences, which are otherwise asynchronously and
independently performed.

Furthermore, RMS usually tries to mlnlmlze disk activity by postponing
a rewrite in case a subsequent rea.d or write can be performeo using
the program's buffer image. Thus, the file's disk image may be out of
date for arbitrary time intervals. This problem can occur for both
sequential and direct access I/O.

You tan encounter a similar problem involving the logical end-of-file
on disk. When a file is extended, the logical end-of-file in the disk
image is not updated until the file is closed. This means that if a
file is open and program A is adding new records to it, and program B
opens the same file before program A has closed the file, program B
cannot read the new records even after program A finishes and closes
the file. Program B can read the new records only by closing and
reopening the file. Only then will the file's disk image reflect the
updated end-of-file.

Relati~e files permit no write sharing. For shared reading to occur,
all programs that open the file must specify the READONLY keyword.

3.5.9 USEROPEN Keyword

The USEROPEN keyword provides access to RMS features not directly
supported by the FORTRAN I/O system. That is, this keyword allows
access to RMS capabilities, while retaining the ease and convenience
of FORTRAN programming. The USEROPEN keyword is intended for
experienced users.

For the interface- specification for a USEROPEN routine, see the VAX-II
Common Run-Time Procedure Library Reference Manual.

3-13

FORTRAN INPUT/OUTPUT

3.6 AUXILIARY I/O OPERATIONS

This section describes implications of the following I/O statements:

FIND
BACKSPACE
ENDFILE

A FIND statement is similar to a direct access READ statement with no
I/O list, and can result in an existing file being opened. An
associated variable will be set to the specified record number.

A BACKSPACE statement cannot be performed on a file that is opened for
append access, because of the manner in which backspacing is done. A
backspace operation requires that the current record count be
available to the FORTRAN I/O system, because backspacing from record n
is done by rewinding to the start of the file and then performing n-l
successive reads to reach the previous record. If the file is open
for append access, the current record count is not available to the
FORTRAN I/O system.

The ENDFILE statement writes an end-file record. The following
convention has been adopted, since RMS does not support the embedded
end-file concept: an end-file record is a I-byte record that contains
the hexadecimal code lA (CTRL/Z). An end-file record can be written
only to sequentially organized files that are accessed as formatted
sequential or unformatted segmented sequential. End-file records
should not be written in files that will be read by programs written
in a language other than FORTRAN.

3.7 LOCAL INTERPROCESS COMMUNICATION: MAILBOXES

It is often useful to exchange data between processes;
to synchronize execution, or to send messages.

for example,

A mailbox is a record-oriented pseudo I/O device that allows data to
be passed from one process to another. Mailboxes are created by the
Create Mailbox system service. The following sections describe how to
create mailboxes and how to send and receive data using mailboxes.

3.7.1 Creating a Mailbox

Use the Create Mailbox system service to create a mailbox; as follows:

INTEGER*2 ICHAN
INTEGER*4 SYS$CREMBX
MAILBX= SYS$CREMBX(,ICHAN, , , , , I MAILBOX ')

The INTEGER*2 variable ICHAN is used to store the number
mailbox, which is returned by the Create Mailbox and Assign
system services. This argument is required by the Create
systems service, so you must specify an INTEGER*2 variable
ICHAN. However, all subsequent references to the mailbox
logical name.

of the
Channel
Mailbox
such as
are by

For more information about calling system services, see Chapter 5.
For more information about the arguments supplied to the Create
Mailbox system service, see the VAX/VMS System Services Reference
Manual.

3-14

)

)

)

)

)

)

FORTRAN INPUT/OUTPUT

3.7.2 Sending and Receiving Data Using Mailboxes

Sending or receiving data to or from a mailbox is no different from
other forms of FORTRAN I/O. The mailbox is simply treated as a
record-oriented I/O device.

Use FORTRAN formatted sequential I/O statements to send and receive
messages. Use WRITE statements to send data and READ statements to
receive data.

Data transmission by means of mailboxes is performed synchronously, so
that communicating processes can be synchronized. That is, a program
that writes a message to a mailbox waits until the message is read,
and a program that reads messages from a mailbox waits until a message
is written. When the writing program closes the mailbox, an
end-of-file condition is returned to the reading program.

The sample program below reads messages from a mailbox known by the
logical name MAILBOX. The messages comprise file names, which the
program reads. The program then prints the file associated with the
file names.

CHARACTER FILNAM*64,TEXT*133
OPEN(UNIT = 1, NAME = 'MAILBOX', TYPE
READ (1,100,END=12)FILNAM

'OLD')
1
100 FORMAT (A)

2

OPEN(UNIT = 2, NAME = FILNAM, TYPE = 'OLD')
OPEN(UNIT = 3, NAME = 'SYS$OUTPUT')
READ(2,100, END = 10) TEXT
WRITE(3,100) TEXT
GO TO 2

10 CLOSE(UNIT = 2)
CLOSE(UNIT = 3) •
GO TO 1

12 END

3.8 COMMUNICATING WITH REMOTE COMPUTERS: NETWORKS

If your system supports DECnet-VAX facilities, and your computer is
one of the nodes in a DECnet-VAX network, you can communicate with
other nodes in the network by means of standard FORTRAN I/O
statements. These statements let you exchange data with a program at
the remote computer (task-to-task communication), and to access files
at the remote computer (resource sharing).

Both task-to-task communication and file access between
transparent. That is, there is no apparent difference
intersystem exchanges, and local interprocess and
exchanges.

systems are
between these
file access

To invoke network communication, specify a, node name as the first
element of a file specification. For example:

BOSTON::DBAO:[SMITH]TEST.DAT.2

For remote task-to-task communication, you must use a special form of
file specification: you must use TASK in place of the device name,
and use the task name in place of the file name. For example:

BOSTON::TASK_:UPDATE

3-15

FORTRAN INPUT/OUTPUT

The following example shows how messages can be sent to and received
from a remote program by means of standard FORTRAN I/O statements.

OPEN (UNIT=7,NAME='BOSTON::TASK:UNA',ERR=200)
READ (7,100)IARRAY -

100 FORMAT (2018)
CALL STATS(IARRAY)
WRITE (7,100)IARRAY

200 CLOSE (UNIT=7)
END

The effect of these statements is to establish a link with a job
(task) named UNA at the node BOSTON, and receive data from the logical
unit (7) associated with the remote program. The data is stored in a
20-element array, and a call is issued to the subroutine STATS, which
processes the data. The results are then sent back to BOSTON, and the
link is broken.

The following example shows how a remote file can be updated by means
of standard FORTRAN I/O statements.

CHARACTER*64 DATA
OPEN(UNIT = 2, NAME = 'DENVER::MASTER.DAT',
1 ACCESS = 'DIRECT', TYPE = 'OLD')

1 READ(l,lOO,END = 2) IREC, DATA
100 FORMAT(IIO, A)

2

WRITE(2'IREC) DATA
GOTO 1

CLOSE(UNIT = 1)
CLOSE (mIT = 2)
END

This program reads loc •. l data describing transactions, and writes the
new records into the remote file.

If you use logical names in your program, you can equate the logical
names with either local or remote files. Thus, if your program
normally accesses a remote file, and the remote node becomes
unavailable, you can bring the volume set containing the file to the
local site. You can then mount the volume set, and assign the
appropriate logical name. For example:

Remote Access

$ ASSIGN REM::APPLIC SET:file-name LOGIC

Local Access

$ MOUNT device-name APPLIC SET
$ ASSIGN APPLIC SET:file-name LOGIC

The MOUNT and ASSIGN commands are described in detail in the VAX/VMS
Command Language User's Guide.

DECnet facilities are described fully in the DECnet-VAX Reference
Manual.

3-16

)

)

)

)

)

)

)

CHAPTER 4

USING CHARACTER DATA

The FORTRAN character data type allows you to easily manipulate
alphanumeric data. You can use character data in the form of
character variables, arrays, constants, and expressions. A character
operator (II) is available to form character strings by concatenating
the character elements in a character expression. See Section 4.2.

4.1 CHARACTER SUBSTRINGS

You can select certain segments (substrings) from a character variable
or array element by specifying the variable name, followed by
delimiter values indicating the leftmost andlor rightmost characters
in the substring. For example, if the character string NAME
contained:

ROBERT~WILLIAM~BOB~JACKSON

and you wished to extract the substring BOB, you would specify the
following:

NAME(16:18)

If you omit the first value, you are indicating that the first
character of the substring is the first character in the variable.
For example, if you specify

NAME (: 18)

) the resulting substring is

ROBERT~WILLIAM~BOB

If you omit the second value, you are specifying the rightmost
character to be the last character in the variable. For example:

NAME(16:)
encompasses BOB~JACKSON

4-1

USING CHARACTER DATA

4.2 BUILDING CHARACTER STRINGS

It is sometimes useful to create strings from two or more separate
strings. This is done by means of the concatenation operator; the
double slash (II). For example, you might wish to create a variable
called NAME, consisting of the following strings:

FIRSTNAME
MIDDLENAME
NICKNAME
LASTNAME

To do so, define each as a character variable of a specified length.
For example:

CHARACTER*42 NAME
CHARACTER*l2 FIRSTNAME,MIDDLENAME,LASTNAME
CHARACTER*6 NICKNAME

Concatenation is accomplished as follows:

NAME = FIRSTNAMEIIMIDDLENAMEIINICKNAMEIILASTNAME

Thus, if the strings contained the values:

FIRSTNAME = I ROBERT I
MIDDLENAME = IWILLIAM I
NICKNAME = IBOB I
LASTNAME = I JACKSON I

which are stored individually as

ROBERTb.b.b.Mb.
WILLIAMb.b.b.M
BOBb.M
JACKSONb.b.b.M

then, when concatenated and stored in NAME, they become the string:

ROBERTb.b.b.b.b.b.WILLIAMb.b.b.b.b.BOBb.b.b.JACKSONb.b.b.b.b.

Applying the substring extraction facility, you can get the stored
nickname by specifying:

NAME (25:30)

which picks up the 6-character NICKNAME substring (including
blanks). Thus BOBb.b.b. is retrieved as the substring.

4-2

trailing

)

)

)

)

-)

)

USING CHARACTER DATA

4.3 CHARACTER CONSTANTS

Strings of alphanumeric characters enclosed in apostrophes are
character constants. You can assign a character value to a character
variable in much the same way as you would assign a numeric value to a
real or integer variable. For example:

XYZ = 'ABC '

As a result of this statement, the characters ABC are stored in
location XYZ. Note that if XYZls length is less than three bytes, the
character string will be truncated on the right. Thus if you
specified

CHARACTER*2 XYZ

XYZ = 'ABC '

The result is AB. If, on the other hand, the variable is longer than
the constant, it is padded on the right with blanks. For example:

CHARACTER*6 XYZ

XYZ = 'ABC '

results in

ABCM!:J.

being stored in XYZ. If the previous contents of XYZ were CBSNBC, the
result would still be ABC!:J.!:J.!:J.: the previous contents are overwritten.

You can give character constants symbolic names by using the PARAMETER
statement. For example:

PARAMETER TITLE = 'THE METAMORPHOSIS I

The symbolic name TITLE can then be used anywhere a character constant
is allowed.

Note that an apostrophe can be included as part of the constant. To
do so, specify two consecutive apostrophes. For example:

PARAMETER TITLE = I FINNEGAN I IS WAKE I

results in the character constant FINNEGAN'S WAKE.

4.4 DECLARING CHARACTER DATA

To declare variables or arrays as character type, use the CHARACTER
type declaration statement, as shown in the following example:

CHARACTER*lO TEAM(12) ,PLAYER

This statement defines a 12-element character array (TEAM), each
element of which is 10 bytes longl and a character variable (PLAYER),
which is also 10 bytes long.

4-3

USING CHARACTER DATA

You can specify different
statement by including a
example:

lengths for variables in a CHARACTER
length value for specific variables. For

CHARACTER*6 NAME,AGE*2,DEPT

In this example, NAME and DEPT are defined to be 6-byte variables,
while AGE is defined to be a 2-byte variable.

4.5 INITIALIZING CHARACTER VARIABLES

Use the DATA statement to preset the value of a character variable.
For example:

CHARACTER*lO NAME,TEAM(5)
DATA NAME/' '/,TEAM/'SMITH', 'JONES',

'DOE','BROWN','GREEN'/

Note that NAME will contain 10 blanks, while each array element in
TEAM will contain the corresponding character value, right-padded with
blanks.

To initialize an array so that each of its elements contains the same
value, use a DATA statement of the following type:

CHARACTER*5 TEAM(lO)
DATA TEAM/IO*'WHITE'/

The result is a 10-element array in which each element contains WHITE.

4.6 PASSED LENGTH CHARACTER ARGUMENTS

Subprograms that manipulate character data can be written to accept
character actual arguments of any length by specifying the length of
the dummy argument as passed length. To indicate a passed length
dummy argument, use an asterisk (*) as follows:

SUBROUTINE REVERSE(S)
CHARACTER*(*) S

The passed length notation indicates that the length of the actual
argument is used when processing the dummy argument string. This
length can change from one invocation of the subprogram to the next.
For example:

CHARACTER A*20,B*53

CALL REVERSE(A)
CALL REVERSE(B)

In the first call to REVERSE, the length of S will be 20;
second call, its length will be 53.

in the

The FORTRAN function LEN can be used to determine the actual length of
the string (see Section 4.8.4).

4-4

)

)

)

)

)

)

)

)

USING CHARACTER DATA

4.7 CHARACTER DATA EXAMPLES

An example of character data usage is shown below. The example
(Figure 4-1) is a program that manipulates the letters of the
alphabet. The results are shown in Figure 4-2.

4-5

C
C
C
C
C
C

USING CHARACTER DATA

CHAMEXMPL OR

CHAMACTER DATA TVPE EXAMPLE PROGRAM ... OR VAX 'ORTRAN IY-PLUI

CHAMACTER C, ALPHABET_a.

DATA ALPHABET/'ABCDE'GHIJKLMNOPQRITUYWXVZ'I

WRITEC?,,,)
•• 'OR~ATC'l CHARACTER EXAMPLE PROGRAM OUTPUT'/)

DO 1111 I-l,a.

WRITEC7,11l) ALPHABET
111 'DR~ATC1X, A)

A~P~ABET _ ALPHABET(21) II ALPHABETClll)

UI CONTINUE

CALL REYERIECALPHABET)
WItITEC?,ll) ALPHABET

CALL REVERIECALPHABETCl.ll))
WRITEC7,111) ALPHABET

CALL 'INO.SUBITRINGIC·UYW', ALPHABET)
CALL "'IND.IUBITAINGIC'A', 'DAJHDHAJDAHDJA4E CEUEBCUEIAW,AWQLQ')

WRITECT,")
.8 'DR~ATe'lI END 0' CHARACTER EXAMPLE PROGRAM OUTPUT')

I'D"
END

,uBROUTINE AEYERSEeS'
CHAMACTER T, S-C-)

J • LEN(S)
IF [J .GT. 1) THEN

DO 111 I-I, JIZ
T • lUlU
SCIIJ) • SCJIJ)
SCJIJ) • T
J - J-l CONTINUE

ENOl'

RnuRN
END

IUBROUTINE 'IND.IUBSTRINGSCSUB, I)
CHARACTER-C_) IUB,I
CHARACTER-Ill MARKI

I • 1
K • 1
MARl'S • ' ,

11 J • INDEXeSCII), SUB)
IF (J .NE. I) THEN

I - I + C Je 1) MARKSCIII) _ ,.,
I(• I
I • 1+1
IF Cl .LE. LENCS)) GO TO 11
ENOl'

WItITEe7,111l) S, MARKS(IK)
1111 'OR~AT(leI lX, A))

END

Figure 4-1 Character 'Data Program Example

4-6

\

)

)

)

)

)

)

USING CHARACTER DATA

CHARACTER EXAMP~F PROGRAM OUTPUT

A8CDE~GHIJKLMNOPQRSTUVWXYZ
8CDEFGHIJKLMNOPQRSTUVWXYZA
CDE'GHIJK~MNOPQRSTUvWXYZ.a
OEFGHIJIC~MNOPQRSTtJVwXYUBC
E'GHIJICLMNOPQRSTUVWlYZABCD
FGHIJICLMNOPQRSTUv wXTZA8COE
GHIJICLMNOPQRSTUVwxYZAeCDEF
HIJICLMNOPQASTUVwXVz·eCDfFG
IJICLMNOPQRSTUVWXVIA~CDE'GH
JICLMNOPQRSTUVWXYZABCDEFGMI
KLMNOPQR'TUVwXYZAeCDE~GHIJ
LMNOPQRSTUVWXYZABtDtFGHIJIC
MNOPQRSTUVwXYZAeCDE~GHIJICL
NOPQRSTUVWXYZABCD!FGHIJKLM
OPQRSTUVWXYZABCDEFG~IJICLMN
PQRSTUVWXYZABCDEFGHIJKLMNO
QRSTUVWXYZABCDEFGHIJKLMNOP
RSTUVWXYZA8CDEFGHrJ~LMNOPQ
STUVWXYZABCDEFGHIJKLMNOPQR
TUVwXYZAeCDEFGHIJKL~NOPQRS
UVWXYZABCDEFGHIJKlM~OPQRST
VWXYZABCDE'GHIJICL~NOPQASTU
WXYZABCD!FGHIJKLM~OPQRSTUV
XYZABCDE'GHIJIC~MNOP~RSTUVW
YZAeCDEFGHIJKLMNOPQwSTUVWX
Z'8CD!FGHIJICLMNOP~R~TUVWXY
ZYXWVUTSRQPONM~KJIHGFEDC8A
NOPQASTUVWXYZM~ICJIHG'EDCIA

NOPQRSTUVWXYZMLKJIHGFE~CBA

"
DAJHOHAJDAHDJA4E rEuEBCUEIAWSAWQLQ

* *" " " --
END OF CHARACTER E.AMPLE PROGRAM OUTPUT

Figure 4-2 Output Generated by Example Program

4.8 CHARACTER LIBRARY FUNCTIONS

The VAX-II FORTRAN IV-PLUS system provides four character functions:

• CHAR
• ICHAR
• INDEX
• LEN

4.8.1 CHAR Function

The CHAR function returns ~ I-byte character value equivalent to the
integer ASCII value passed as its argument. It has the form:

CHAR(i)

i
An integer expression equivalent to an ASCII code.

4-7

USING CHARACTER DATA

4.8.2 ICHAR Function

'The iCHAR function returns an integer ASCII
character expression passed as its argument.

ICHAR(c)

o

code equivalent
It has the form:

to the

A character expression. If c is longer than one byte, the ASCII
code equivalent to the first byte is returned, and the remaining
bytes are ignored.

4.8.3 INDEX Function

The INDEX function i~ tised to determine the starting position of a
substring: it has the form:

01

02

INDEX(cl,c2)

A character expression that specifies the string that is to be
searc~ed for a match with the value of c2.

A character expression representing the substring for which a
match is desired.

If INDEX finds an inst$hce of the specified substring (e2), it returns
an integer value corresponding to the starting location in the string
(cl). For example, if the substring sought is CAT, and the string
that is searched contains DOGCATFISH, the return value of INDEX is 4.

If INDEX cannot find the. specified substring, it returns the value O.

4.8.4 LEN Function

The LEN function returns an integer value that indicates the length of
a character expression. It has the form:

LEN (c)

c
A character expression

4.9 CHARACTER I/O

The character data type simplifies the transmission of alphanumeric
data. You can read and write character strings of any length frqrn 1
to 32767 characters. For example:

CHARACTER*24

READ(12,100)
100 FORMAT (A)

TITLE

TITLE

4-8

')

)

)

)

)

)

)

)

)

USING CHARACTER DATA

These statements cause 24 characters read from logical unit 12 to be
stored in the 24-byte character variable TITLE. Compare this with the
code necessary if you used Hollerith data stored in numeric variables
or arrays:

INTEGER*4 TITLE(6)

READ(12,100) TITLE
100 FORMAT (6A4)

Note that you must divide the data into lengths suitable for real or
(in this case) integer data, and specify I/O and FORMAT statements to
match. In this example, a I-dimensional array comprising six 4-byte
elements is filled with 24 characters from logical unit 12.

4-9

)

)

)

)

)

)
)

)
i

)

CHAPTER 5

FORTRAN CALL CONVENTIONS

VAX-II FORTRAN IV-PLUS provides a mechanism you can use to gain access
to services external to your FORTRAN programs. By including CALL
statements or function references in your source program, you can use
procedures such as mathematical functions, VAX/VMS system services,
and procedures written in languages other than FORTRAN.

Refer to the VAX-II Common Run-Time Procedure Library Reference Manual
for descriptions of the procedures included in the Run-Time Library,
and information on how they are called.

5.1 PROCEDURE CALLS

A procedure is a program, such as a FORTRAN function or subroutine,
that performs one or more computations for other programs. In many
cases, procedures perform calculations that are used widely and
repeatedly in many FORTRAN applications. It is more efficient to
write these procedures (subprograms) once, and make them available to
other programs, than to reinvent them every time the need arises.

Subprograms can be either functions or subroutines. A function is a
subprogram that returns a value to the calling program, by assigning
the value to the function's name. A subroutine may return values, but
a value is not associated with the subroutine name. Functions and
subroutines can return values by storing values in elements of the
argument list, or in COMMON blocks. See the VAX-II FORTRAN IV-PLUS
Language Reference Manual for information on defining and invoking
subprograms.

5.2 VAX-II PROCEDURE CALLING STANDARD

Programs compiled by the VAX-II FORTRAN IV-PLUS compiler conform to
the standard defined for VAX-II procedure calls (see Appendix C of the
VAX-II Architecture Handbook, Vol. 1). This standard prescribes how
arguments are passed, how function values are returned, and how
procedures (such as subprograms) receive and return control. VAX-II
FORTRAN IV-PLUS also provides features that allow FORTRAN programs to
call system services and procedures written in other native-mode
languages supported- in VAX/VMS.

The information in this section pertains to calling system service
routines from FORTRAN. If you want to write routines that can be
called from FORTRAN programs, you should pay particular attention to
the argument list descriptions and to the machine code format
description in Section 5.4.

5-1

FORTRAN CALL CONVENTIONS

5.2.1 Argument Lists

The VAX-II procedure calling standard defines an argument list as a
sequence of longword (4-byte) entries, the first of which is an
argument count. The argument count is the first byte in the first
entry in the list. It indicates how many arguments follow in the
list.

Memory for FORTRAN argument lists and VAX-II standard descriptors is
usually allocated statically. To optimize space and time, the
argument lists are pooled and argument list entries are initialized at
compile time, when possible. Sometimes several calls can use the same
argument list. For example:

X = DIZ(Y)
Z = DIZ(Y) * DIZ(Z)
A = X+ Z + DIZ(Y)

All of these DIZ(Y) references will use the same argument list.

Omitted arguments (for example CALL X(A"B» are represented by an
argument list ~ntry that has a value of O.

See Section 5.4.1 for examples of machine code generated for FORTRAN
argument lists.

5.2.2 Argument Passing Mechanisms

The VAX-II procedure calling standard defines three mechanisms by
which arguments are passed to procedures:

1. Call-by-value - the argument list entry is the value

2. Call-by-reference - the argument list entry is the address of
the value

3. Call-by-descriptor - the argument list entry is the address
of a descriptor of the value

By default, VAX-ll FORTRAN IV-PLUS uses the call-by-reference and
call-by-descriptor mechanisms. The call-by-reference mechanism is
used to pass all numeric actual arguments: logical, integer, real,
double precision, and complex. 'The call-by-descriptor mechanism is
used to pass all character actual arguments.

5.2.3 Argument List Built-In Functions

By default, FORTRAN uses the call-by-reference orcall-by-descriptor
mechanism for passing arguments, depending on the argument's data
type. In some cases, however',·a fuh,cti'on reference or call to a
non-FORTRAN IV-PLUS procedure may rE'quir-e that you supply arguments in
a different form. Calls to VAX/VMS syst-em services are such a case.
Therefore, FORTRAN provides three built-in functi'ons for passing.
arguments when you cannot use the FOR'I'RAN default mechanism. These
built-in functions are:

% VAL
%REF
~DESCR

5-2

}

)

)

J

)

)

)

I.)

FORTRAN CALL CONVENTIONS

These functions can appear only in actual argument lists.

The following sections describe the use of these functions. Note that
the argument list built-in functions are never used to call a
procedure written in FORTRAN.

5.2.3.1 %VAL - This function forces the argument list entry to use
the call-by-value mechanism. It has the form:

%VAL(arg)

The argument list entry (arg) is the value of the entry. Because
argument list entries are longwords, the argument value must be an
integer, logical, or real constant, variable, array element, or
expression.

5.2.3.2 %REF - This function forces the argument list entry to use
the call-by-reference mechanism. It has the form:

%REF(arg)

The argument list entry (arg) is the address of the
argument value can be a numeric or character expression,
element, or procedure name. This is the default FORTRAN
passing all numeric values.

value. The
array, array
method for

5.2.3.3 %DESCR - This function forces the argument list entry to use
the call-by-descriptor mechanism. It has the form:

%DESCR(arg)

The argument list entry (arg) is th~ address of a descriptor of the
value. The argument value can be any type of FORTRAN expression. The
compiler can generate VAX-II descriptors for all FORTRAN data types.

Call-by-descriptor is the default FORTRAN mechanism for passing
character arguments, because the subprogram may need to know the
length of the character argument. In particular, FORTRAN always
generates code to refer to character dummy arguments through the
addtesses in their descriptor~.

5.2.3.4 Examples of %VAL~ %REF, %DESCR - The following examples
illustrate the use of the argument list built-in functions.

CALL SUB(2,%VAL(2»

The first constant is passed by reference.
passed by v<;llue.

CHARACT.ER*IO A,B
CALL SUB (A, %REF (B))

The second constant is

FORTRAN CALL CONVENTIONS

The first character variable is passed by descriptor.
character variable is passed by reference.

INTEGER IARY(20), JARY(20)
CALL SUB(IARY,%DESCR(JARY))

The second

The first array is passed by reference. The second array is passed by
descriptor.

See Section 5.4.2 for examples that include the generated machine
code.

5.2.4 Function Return Values

The method of returning function procedure values depends on the data
type of the value, as summarized in Table 5-1.

Table 5-1)
Function Return Values

Data Type

Logical
Integer
Real

Double Precision

Complex

Character

Return Method

General register RO

RO: High-order result
Rl: Low-order result

RO: Real part
Rl: Imaginary part

An extra entry is added as the first entry
of the argument list. This new first
argument entry points to a character string
descriptor. At run time, storage is
allocated to contain the value of the
result, and the proper address is stored in
the descriptor.

5.2.5 %LOC Built-In Function

The %LOC built-in function computes the address of a storage element,
as an INTEGER*4 value. This value can be used in an arithmetic
expr~ssion. This has particular applicability for certain system
serV1ces or non-FORTRAN procedures that may require arguments that
contain the addresses of storage elements.

5.3 CALLING VAX/VMS SYSTEM SERVICES

The VAX/VMS operating system provides a number of service
you can call from FORTRAN programs. The follow~ng
describe the methods you can use to call system serV1ce
and to ensure that you pass and receive information in
form.

5-4

procedures
sUbsections
procedures,
the correct

)

I

)

)

)

)

FORTRAN CALL CONVENTIONS

You can invoke system services from a FORTRAN program by including a
function reference or a subroutine CALL statement in your program,
specifying the system service you want to use. To specify a system
service, use the form:

SYS$service-name (a, ••. ,a)

You pass arguments to the system services according to the
requirements of the particular service you are calling: a value, an
address, or the address of a descriptor may be needed, as described in
Section 5.3.3, below. See the VAX/VMS System Services Reference
Manual for a full definition of all services.

5.3.1 Calling System Services by Function Reference

In most cases, you should check the return status after calling a
system service. Therefore, you should call system services by
function reference rather than by issuing a subroutine CALL.

NOTE

System service functions must
declared as INTEGER*4 functions.

For example:

INTEGER*4 SYS$CREMBX
INTEGER*2 ICHAN
MBX = SYS$CREMBX(,ICHAN"",'MAILBOX')
IF (.NOT. MBX) GO TO 100

be

In this example, the system service referred to is the Create Mailbox
service. First, the system service name is declared, then an
INTEGER*2 variable (ICHAN) is declared, to receive the channel number.

The function reference allows a return status value to be stored in
the variable MBX, which can then be checked for .TRUE. or .FALSE. on
return. If the function's return status is .FALSE., indicating
failure, control transfers to statement 100, at which point some form
of error processing can be undertaken. You can also check for a
particular return status, such as an access violation, by comparing
the return status to one of the status codes defined by the system.
For example:

IF (MBX .EQ. SS$_ACCVIO) THEN

Refer to the VAX/VMS System Services Reference Manual for information
concerning return status codes. The return status codes are included
in the description of each system service.

5.3.2 Calling System Services as Subroutines

Subroutine calls to system services are made in the same way that
calls are made to any other subroutine. For example, to call the
Create Mailbox system service, issue a CALL to SYS$CREMBX, passing to
it the appropriate arguments, as:

CALL SYS$CREMBX(,ICHAN"",'MAILBOX')

5-5

FORTRAN CALL CONVENTIONS

This CALL corresponds to the function reference shown ~bove. The main
difference is that the status code returned by the system service is
not tested. For this reason, you should avoid this method of calling
system services.

5.3.3 Passing Arguments to System Services

Generally, system services require input arguments to be passed by
value, and output arguments to be passed by reference. Therefore, you
must use the %VAL built-in function when passlng input arguments to
certain system services, to' make sure they are passed the correct
data. Some system services require character arguments (see Section
5.3.3.3) • To determine the argument requirements for a system
service, see the VAX/VMS System Services Reference Manual.

5.3.3.1 Input and Output Address Arguments - You will often need to
tell the system service where to ~ind input values and where to store
output values. Thus, you must determine the hardware data type of the
argumen~: byte, word, longword, or quadword.

For input arguments that refer to byte, word, or longword values, you
can specify either constants or variables. If you specify a variable,
you must declare it to be equal to or longer than the data type
required. Table 5-2 lists the variable data type requirements.

For output arguments you must declare a variable of exactly the length
required, to avoid including extraneous data. If, for example, the
system returns a byte value in a word-length variable, the leftmost
eight bits of the variable will not be overwritten on output7 thus,
the variable will not contain the data you expect.

Table 5-2
Variable Data Type Requirements

VAX/VMS Input Argument Output Argument
Type Required Declaration Declaration

Byte BYTE, INTEGER*2, INTEGER*4 BYTE

Word INTEGER*2, IN'rEGER*4 INTEGER*2

Longword INTEGER*4 INTEGER*4

Quadword Properly dimensioned array Properly dimensioned
array

Indicator LOGICAL
•.. " .

For arguments def;lcribed as "address of an entry' mask" or "address of a
routitie/" deetare the argument value as an external procedure. For
example, if a systeIll s.ervice requires tbe address of a routine and you
,want to spec:i:ty ~he to"utitie PROGA, Slpecify

EXTERNAL PROGA

in fhe decl~:tations portion of tbe FORTRAN program to" define the
addfess of the routine for use a.s an input argument.

5-6

\

)

)

)

)

)

)

)

\
)

FORTRAN CALL CONVENTIONS

To store output produced by system services, you must allocate
sufficient space to contain the output. You do this by declaring
variables of the proper size. For example, the Create Mailbox system
service produces a two-byte value. Thus, you set up space as follows:

INTEGER*2 ICHAN
INTEGER*4 SYS$CREMBX

MBX = SYS$CREMBX (, ICHAN, , , , , 'MAILBOX')

If the output is a quadword value, you must
proper dimensions. For example, the
(SYS$GETTIM) returns the time as a quadword
would need to specify the following:

declare an array of the
Get Time system service
binary value. Thus, you

INTEGER*4 SYSTIM(2)
INTEGER*4 SYS$GETTIM

! DECLARE ARRAY

ISTAT = SYS$GETTIM(SYSTIM) ! GET TIME

The type declaration INTEGER*4 SYSTIM(2) sets up a vector consisting
of two longwords, into which the time value will be stored.

5.3.3.2 Defaults for Optional Arguments - All optional arguments have
default values. You must use commas in place of omitted arguments.
For example, the Translate Logical Name (SYS$TRNLOG) system service
takes five arguments. If you omit the last two arguments you must
include two commas in their place, as follows:

ISTAT = SYS$TRNLOG('LOGNAM',LENGTH,BUFFA,,)

An invalid reference would result if you specified:

ISTAT = SYS$TRNLOG (' LOGNAM' ,LENGTH ,BUFFA)

This reference provides only three arguments, not the requisite five.

5.3.3.3 Passing Character Arguments - Some VAX/VMS system services
(for example, the Translate Logical Name system service) require
character arguments for either input or output. The Translate Logical
Name system service (SYS$TRNLOG) accepts a logical name as1ltput, and
returns the associated logical name or file specification, if any, as
output. VAX/VMS system services that process character data require
that arguments be passed by descriptor. FORTRAN passes all character
data by descriptor. On input, a character constant, variable, array
element, or expression is passed to the system service by descriptor.
On output, two arguments are needed: the character variable or array
element to hold the output string, and an INTEGER*2 variable, which is
set to the actual length of the output string. For example:

CHARACTER*64 BUFFA
INTEGER*2 LENGTH
INTEGER*4 SYS$TRNLOG

ISTAT = SYS$TRNLOG('LOGNAM',LENGTH,BUFFA,,)

5-7

FORTRAN CALL CONVENTIONS

The logical name LOGNAM is translated to its associated name or file
specification, and the output values, length and associated name or
file specification, are stored in the locations you
specified -- LENGTH and BUFFA, respectively.

5.4 MACHINE CODE EXAMPLES

The following sections present examples of FORTRAN calls and their
corresponding machine code.

5.4.1 Argument Passing Examples

The format used in the following examples shows FORTRAN source
followed by generated object code argument lists.

Example 1:

FORTRAN Source Code

REAL X
INTEGER J (10)
CHARACTER*15 C
CALL SUB (X,J(3),C)

Object Code.

ARGLST:

L$l:

.LONG 3

.ADDR X

.ADDR J+8

.ADDR L$l

.WORD 15

.BYTE 14

.BYTE 1

.ADDR C

COUNT
ADDRESS OF X
ADDRESS OF J(3)
C DESCRIPTOR ADDRESS

LENGTH OF C
CHARACTER TYPE CODE
SCALAR CLASS CODE
ADDRESS OF C

lines,

This example shows how the compiler generates an argument list for the
arguments specified in the CALL statement. The compiler can
initialize the addresses of real variable X and array element J(3)
because these are explicitly specified in the CALL statement.
Similarly, the compiler has enough information to generate an
initialized descriptor for the character string C.

5-8

)

)

)

)

)

)

)

FORTRAN CALL CONVENTIONS

Example 2:

FORTRAN Source Code

REAL X (10)
CHARACTER*15 C
CALL SUB (X(I) ,C(J:K»

Object Code

ARGLST:

L$l:

.LONG 2

.LONG 0

.ADDR L$l

.WORD 0

.BYTE 14

.BYTE 1

.LONG 0

COUNT
X(I) INITIALIZED AT RUN TIME
C(J:K) DESCRIPTOR ADDRESS

C(J:K) LENGTH, SET AT RUN TIME
CHARACTER TYPE CODE
SCALAR CLASS CODE
BASE ADDRESS OF C(J:K), SET AT RUN
TIME

Run-time argument list initialization code

MOVL
MOVAF
SUBL3
SUBL3
MOVW

MOVAB

CALLG

I,RO
X-4[RO] ,ARGLST+4
#l,J,RO
RO,K,Rl
Rl,L$l

C[RO] ,L$1+4

ARGLST,SUB

COMPUTE ADDRESS OF X(I) AND
STORE IT IN THE ARGUMENT LIST
COMPUTE THE LENGTH OF C(J:K)

STORE LENGTH OF C(J:K) IN ARGUMENT
LIST
STORE BASE ADDRESS OF C(J:K) IN
ARGUMENT LIST
CALL SUBROUTINE SUB

In this example, the FORTRAN source lines define a real array X,
comprising 10 elements~ and a character variable C, comprising 15
elements. The actual arguments passed to subroutine SUB are the I-th
element of array X, and the substring of C from the J-th to the K-th
character. The compiler generates an argument list consisting of
three longwords~ the first is the count, and the next two are
(respectively) the address of the I-th element of X and the address of
the descriptor of substring C(J:K). Note that the address of XCI) and
C(J:K), and the length of C(J:K) are initialized to 0, because at
compile time these valuea are unknown.

5.4.2 Argument List Built-In Function Examples

In the following examples, the FORTRAN source code is shown first,
followed by the generated object code.

5-9

FORTRAN CALL CONVENTIONS

Example 1: %VAL

FORTRAN Source Code

CALL SUB (4, %VAL(6»

Object Code

ARGLST:

CON4:

.LONG 2

.ADDR CON4

.LONG 6

.LONG 4

COUNT
ADDRESS OF CONSTANT
VALUE

As shown, the compiler generates an address for the constant 4 in the
first entry, but generates the actual value (6) in the following
entry.

Example 2: %REF

FORTRAN Source Code

CHARACTER*lO C,D
CALL SUB (C, %REF(D»

Object Code

ARGLST:

L$l:

.LONG 2

.ADDR L$l

.ADDR D

.WORD 10

.BYTE 14

.BYTE 1

.ADDR C

COUNT
ADDRESS OF C DESCRIPTOR
ADDRESS OF D

LENGTH
TYPE CODE
CLASS CODE
ADDRESS

As shown, the argument list entry for D is the address of D. The
compiler does not generate a descriptor for D, as it does for C, even
though C and D are both specified in the source program as character
variables.

Example 3: %DESCR

FORTRAN Source Code

CALL SUB (X, %DESCR(X»

Object Code

ARGLST: .LONG 2 COUNT
.ADDR X ADDRESS OF X
.ADDR L$l ADDRESS OF X DESCRIPTOR

L$l: • WORD 4 LENGTH
.BYTE 10 TYPE CODE
.BYTE 1 CLASS CODE
.ADDR X ADDRESS

In this example, the first argument list entry contains an address,·
while the second entry contains a pointer to a descriptor.

5-10

)

)

)

)

)

)

)

FORTRAN CALL CONVENTIONS

5.4.3 Character Functions

The following example illustrates how character function argument
lists are generated.

FORTRAN Source Code

CHARACTER*lO C,D
D = C(I,J)

Object Code

ARGLST: .LONG 3
.ADDR L$l
.ADDR I
.ADDR J

L$l: • WORD 10
.BYTE 14
.BYTE 1
. LONG 0

SUBL2 UO,sp
MOVL SP,L$1+4
CALLG ARGLST,C
MOVC3 UO, (SP) ,D
MOVL Rl,SP

In this example, an additional
descriptor of the return value

COUNT
ADDRESS OF FUNCTION DESCRIPTOR
ADDRESS OF I
ADDRESS OF J

LENGTH
TYPE CODE
CLASS CODE
ADDRESS

ALLOCATE SPACE FOR 10 CHARACTERS
SET ADDRESS
CALL FUNCTION C
MOVE RESULT TO D
REMOVE RESULT FROM STACK

argument list entry is allocated1 the
of the character function C.

5-11

)

)

)

)

)

)

)

CHAPTER 6

ERROR PROCESSING AND CONDITION HANDLERS

During program execution, your program may occasionally encounter
errors or exception conditions. These conditions may result from
errors that occur during I/O operations, invalid input data, argument
errors in calls to the mathematical library, arithmetic errors, or
system-detected errors. VAX-II FORTRAN IV-PLUS provides three methods
of controlling and recovering from errors:

1. Run-Time Library default error-processing procedures

2. ERR= and END= specifications in I/O statements

3. VAX-II Condition Handling Facility (including user-written
condition handlers)

These error-processing methods are complementary, and can be used
together in the same program. Thus, you have a number of options to
choose from in dealing with errors. You can, of course, allow the
Run-Time Library to handle errors for you. This is the default case.
Or, you can use ERR= and/or END= specifications in I/O statements to
provide special processing if an error or end-of-file occurs while the
I/O statement is being executed. Or, you can provide condition
handlers to tailor error processing to the special requirements of
your applications. Note: This option should be undertaken only by
more experienced users, in particular those familiar with the VAX-II
Condition Handling Facility.

The Run-Time Library provides default processing for all exception
conditions that occur during FORTRAN program execution. It generates
appropriate messages, and takes action to recover from errors where
possible. Section 6.1 describes FORTRAN-specific Run-Time Library
error processing. Appendix B describes FORTRAN-specific Run-Time
Library error messages.

The VAX-II Condition Handling Facility provides all error processing
in the Run-Time Library. You can also use it directly to provide
procedures (user-written condition handlers) for processing exception
conditions that occur during your program's execution. For example,
you can include code to respond to certain kinds of errors in a way
that is more appropriate to a particular application than the
processing performed by the Run-Time Library. The use of condition
handlers requires considerable experience: it is not appropriate for
novice users. You should be familiar with the condition handling.
description in the VAX-II Common Run~Time Procedure Library Reference
Manual, and in the VAX-ll/780 Architecture Handbook befo.re you attempt
to write a condition handler.

6-1

ERROR PROCESSING AND CONDITION HANDLERS

6.1 RUN-TIME LIBRARY DEFAULT ERROR PROCESSING

The Run-Time Library contains condition handlers that process a number
of errors that may occur during FORTRAN program execution. A default
action is defined for each FORTRAN-specific exception condition that
the Run-Time Library recognizes~ Table 6-1 lists these actions.
These default actions occur unless overridden by a user-written
condition handler (see Section 6.2).

Some errors result in recovery action. For example, you can use the
ERR= specification to code an error statement label in an I/O
statement. In so~e ca~es, the error may be ignored and execution will
continue. Or, recovery may be initiated based on the nature of the
error. You can use the ERRSNS system subroutine to determine which
error occurred. ERRSNS returns a FORTRAN-specific error number and
system status codes for the last error that occurred~ see Table 6-1.
The ERRSNS routine is described in Appendix C.

6.1.1 Using ERR= and END= Transfers

By including an ERR=label or END=label specification in an I/O
statement, you can transfer control to error processing code in your
program. If you use an END= or ERR= transfer to process an I/O error,
no error message is printed and execution continues at the designated
statement. However, if a severe error occurs while an I/O statement
is being processed, and you did not specify an ERR= transfer, the
default action is to print an error message and terminate execution.

If you specify ERR=label in an I/O statement and an error occurs
during I/O statement execution, the Run-Time Library transfers program
control to the statement at the label specified. For example:

WRITE(8,50,ERR=400)

If an error occurs during the write operation, control transfers to
the statement at label 400.

You can also specify ERR=label as a keyword in an OPEN or CLOSE
statement. For example:

OPEN(UNIT=INFILE,TYPE='OLD',ERR=lOO,NAME=FILN)

If errors are detected during OPEN statement execution, control
transfers to statement 100.

The END=label specification can be used to handle an end-of-file
condition, as follows:

READ (12,70,END=550)

If an end-of-file is detected while this I/O statement is being
executed, control transfers to statement 550.

If an end-of-file·· is detected ~hile a READ statement is being
executed, and you did not specify END=label, an error condition
occurs. If you specified ERR=label, control is transferred to the
specified statement.

6-2

)

)

\
\

)

)

)

)

ERROR PROCESSING AND CONDITION HANDLERS

6.1.2 Run-Time Library Error Processing Control

The Run-Time Library's error processing depends on three factors: the
severity of the error; whether the error permits continuation; and
whether an ERR= transfer was provided in the case of an I/O error.

Table 6-1 lists the FORTRAN-specific errors processed by the Run-Time
Library. For each error, the table shows the error message text, the
symbolic condition name, the FORTRAN-specific error code, the severity
code of the error, and the type of recovery action.

A severity code is included as part of the error code that is
generated when an error condition is detected. All FORTRAN-specific
errors have severity codes of either error (E) or severe error (F).
As shown in Table 6-1, most FORTRAN-specific errors are severe. If no
recovery action is specified for a severe error, program execution
terminates by default.

Two types of recovery are possible: ERR= and RETURN. Most I/O errors
include ERR= recovery. However, if you specified no ERR= transfer,
and the error severity was F, your program terminates with an error
message, and an exit status of severe error. If you did specify an
ERR= transfer, the message will not be displayed. Thus, if you
receive one of the severe error messages, the implication is that no
ERR= transfer was specified. You can circumvent the error, and the
resulting program termination, by including an ERR= transfer for this
error in your source program.

A recovery type of RET means that recovery and continuation are
possible only if you establish a condition handler for that error.
User-written condition handlers are described in Section 6.3.

The letter C in the "Sev" column means that you can continue execution
immediately after the error if a user-written condition handler has
changed the severity code to error (E) or warning (W). If there is no
letter C in the "Sev" column, you cannot continue execution
immediately after the error. If you attempt to do so, program
execution will be terminated.

When errors occur for which no recovery type is specified, the program
exits; that is, execution of the program is terminated, and an error
message is printed. To prevent program termination, include a
condition handler that performs an unwind (see Section 6.3).

6-3

'11 ..-?" I

ERROR PROCESSING ANDCQNDITION HANDLERS ..) ..

(A (ir~l''t< l] I C 2,-e-
Table 6.",.1

Summary of FORTRAN Run-Time Errors ~
J

FORTRAN
Condition Err Rec.

Symbol # Sev Type Message Text

FOR$ NOTFORSPE 1 F NOT A FORTRAN-SPECIFIC ERROR
FOR$-REWERR 20 F ERR= REWIND ERROR
FOR$-DUPFILSPE 21 F ERR= DUPLICATE FILE SPECIFICATIONS
FOR$-INPRECTOO 22 F ERR= INPUT RECORD TOO LONG
FOR$-BACERR 23 F ERR= BACKSPACE ERROR
FOR$-ENDDURREA 24 F ERR= END-OF-FILE DURING READ
FOR$-RECNUMOUT 25 F ERR= RECORD NUMBER OUTSIDE RANGE
FOR$-OPEDEFREQ 26 F ERR= OPEN OR DEFINEFILE REQUIRED •••
FOR$-MORONEREC 27 F ERR= MORE THAN ONE RECORD IN I/O STATEMENT
FOR$-CLOERR 28 F ERR= CLOSE ERROR
FOR$-FILNOTFOU 29 F ERR= FILE NOT FOUND
FOR$-OPEFAI 30 F ERR= OPEN FAILURE
FOR$-MIXFILACC 31 F ERR= MIXED FILE ACCESS MODES

)
FOR$-INVLOGUNI 32 F ERR= INVALID LOGICAL UNIT NUMBER
FOR$-ENDFILERR 33 F ERR= ENDFILE ERROR
FOR$-UNIALROPE 34 F ERR= UNIT ALREADY OPEN
FOR$-SEGRECFOR 35 F ERR= SEGMENTED RECORD FORMAT ERROR
FOR$-ATTREANON 36 F ERR= ATTEMPT TO READ NON-EXISTENT RECORD
FOR$-INCRECLEN 37 F ERR= INCONSISTENT RECORD LENGTH
FOR$-ERRDURWRI 38 F ERR= ERROR DURING WRITE
FOR$-ERRDURREA 39 F ERR= ERROR DURING READ
FOR$-RECIO OPE 40 F ERR= RECURSIVE I/O OPERATION
FOR$-INSVIRMEM 41 F ERR= INSUFFICIENT VIRTUAL MEMORY
FOR$-NO SUCDEV 42 F ERR= NO SUCH DEVICE
FOR$-FILNAMSPE 43 F ERR= FILE NAME SPECIFICATION ERROR

)
FOR$-RECSPEERR 44 F ERR= RECORD SPECIFICATION ERROR
FOR$-KEYVALERR 45 F ERR= KEYWORD VALUE ERROR IN OPEN STATEMENT
FOR$-INCOPECLO 46 F ERR= INCONSISTENT OPEN/CLOSE PARAMETERS
FOR$=:WRIREAFIL 47 F ERR= WRITE TO READONLY FILE
FOR$ INVARGFOR 48 F ERR= INVALID ARGUMENT TO FORTRAN I/O LIBRARY
FOR$-LISIO SYN 59 F,C ERR= LIST-DIRECTED I/O SYNTAX ERROR
FOR$-INFFORLOO 60 F ERR= INFINITE FORMAT LOOP
FOR$-FORVARMIS 61 F,C ERR= FORMAT/VARIABLE-TYPE MISMATCH
FOR$-SYNERRFOR 62 F ERR= SYNTAX ERROR IN FORMAT
FOR$-OUTCONERR 63 E,C ERR= OUTPUT CONVERSION ERROR
FOR$-INPCONERR 64 F,C ERR= INPUT CONVERSION ERROR

)
FOR$-OUTSTAOVE 66 F ERR= OUTPUT STATEMENT OVERFLOWS RECORD
FOR$-INPSTAREQ 67 F ERR= INPUT STATEMENT REQUIRES TOO MUCH DATA
FOR$-VFEVALERR 68 F,C ERR= VARIABLE FORMAT EXPRESSION VALUE ERROR
SS$ INTOVF 70 F,C RET INTEGER OVERFLOW
SS$-INTDIV 71 F,C RET INTEGER ZERO DIVIDE
SS$-FLTOVF 72 F,C RET FLOATING OVERFLOW
SS$-FLTDIV 73 F,C RET FLOATING ZERO DIVIDE
SS$-FLTUND 74 F,C RET FLOATING UNDERFLOW
SS$-SUBRNG 77 F,C RET SUBSCRIPT OUT OF RANGE
MTH$ WRONUMARG 80 F WRONG NUMBER OF ARGUMENTS
MTH$-INVARGMAT 81 F INVALID ARGUMENT TO MATH LIBRARY
MTH$-UNDEXP 82 F,C RET UNDEFINED EXPONENTIATION
MTH$-LOGZERNEG 83 F,C RET LOGARITHM OF ZERO OR NEGATIVE VALUE
MTH$-SQUROONEG 84 F,C RET SQUARE ROOT OF NEGATIVE VALUE
MTH$-SINCOSSIG 87 F,C RET SINE OR COSINE SIGNIFICANCE LOST
MTH$-FLOOVEMAT 88 F,C RET FLOATING OVERFLOW IN MATH LIBRARY
MTH$-FLOUNDMAT 89 F/C RET FLOATING UNDERFLOW IN MATH LIBRARY
FOR$=:ADJARRDIM 93 F ADJUSTABLE ARRAY DIMENSION ERROR

6-4

)

)

)

)

)

ERROR PROCESSING AND CONDITION HANDLERS

NOTES:

1. The ERR= transfer is taken after completion of the I/O
statement for continuable errors numbered 59, 61, 63, 64, and
68; the resulting file status and record position are the
same as if no error had occurred. However, other I/O errors
take the ERR= transfer as soon as the error is detected;
thus, file status and record position are undefined.

2. If no ERR= address has been d€fined for error 63, the program
continues after the error message is printed. The entire
overflowed field is filled with asterisks, to indicate the
error in the output record.

3. Function return values for errors numbered 82, 83, 84, 87,
88, and 89 can be modified by means of user-written condition
handlers. See Section 6.4.

4. Error number 1 (FOR$ NOTFORSPE) indicates that an error was
detected that was not a FORTRAN-specific error; that is, it
was not reportable through any other message in the table.
If you call ERRSNS, an error of this kind returns a value of
1. To obtain the unique system condition value that
identifies the error, use the fifth argument of the call to
ERRSNS (condval). See Section C.4.

6.1.3 Using the ERRSNS Subroutine

You can use the ERRSNS system subroutine to process errors. ERRSNS
lets you determine the exact nature of the error and take action
accordingly. Table 6-1 contains a FORTRAN-specific integer error
number for each of the errors in the table. This error number can be
obtained by calling ERRSNS after an error occurs. In many situations
you can provide code to react to specific I/O errors, once you know
which error occurred. To get this information, use the ERRSNS
routine, as shown in the following example.

10

100

CHARACTER*40 FILN
ACCEPT *, FILN
OPEN(UNIT=INFILE,TYPE='OLD',ERR=lOO,NAME=FILN)

(process input file)

CALL ERRSNS (IERR)
IF (IERR .EQ. 29) THEN

TYPE *, 'FILE:', FILN, 'DOES NOT EXIST, ENTER NEW FILENAME'
ELSE IF (IERR .EQ. 43) THEN

TYPE *, 'FILENAME:', FILN, 'WAS BAD, ENTER NEW FILENAME'
ELSE

TYPE *, 'FAILURE ON INPUT FILE, I/O ERROR CODE=', IERR
STOP

ENDIF
GO TO 10
END

As shown, the OPEN statement contains an ERR=lOO keyword, causing a
branch to the ERRSNS subroutine if an error occurs during execution of
the OPEN. The ERRSNS subroutine returns an error number value in the
integer variable IERR. The program then uses the value of IERR either
to print a message indicating the nature of the error and continue, or
to print a message indicating that the error was too severe to allow
the program to continue.

6-5

ERROR PROCESSING AND CONDITION HANDLERS

See Appendix C for more information about the ERRSNS subroutine.

6.2 OVERVIEW OF THE VAX-II CONDITION HANDLING FACILITY

A condition handler is a procedure that is invoked when an exception
condition occurs. The exception con<ilitionmay be either hardware or
software related. Hardware exceptions include floating overflows,
memory access violations, and the use of reserved operands. Software
exceptions include output conversion errors, end-of-file conditions,
and invalid arguments to mathematical procedures.

When the VAX/VMS system creates a user process, it establishes a
system-defined condition handler that will, in the absence of any
user-written condition handler, process errors that occur during
execution of the user image. Thus, by default, run-time errors will
cause this condition handler to print one of the standard error
messages and terminate or continue execution, depending on the
severity code associated with the error.

This default condition hqndler is the ~ast condition handler reached
when a search is undertaken to find a condition handler to respond to
an error. If no lower-level procedure has established a handler. or
if all lower-level handlers have resignaled (see the list of
definitions below), the default condition handler responds to the
error. The default handler calls the system's message output routine,
to send the appropriate message to the user. Messages are sent to the
SYS$OUTPUT file, and to the SYS$ERROR file, if these files are both
present. If the condition was one that permits continuation, program
execution continues. Otherwise, the default handler forces program
termination; and the condition value (see Table 6-1) becomes the
program exit status.

You can create and establish your own condition handlers to
accommodate the needs of your applications. For example, you can
create and 'display messages that specifically describe conditions
encountered during execution of an application program, instead of
relying on the standard system error messages.

6.2.1 Definitions

Before reading further, you should become familiar with the following
terms:

• Condition value - an INTEGER*4
particular exception condition.

value that identifies
See Section 6.3.4.

a

• Procedure - an executable program unit;
subroutine, or function.

a main program,

• Procedure activation - the environment in which a procedure
executes. This environment includes a unique stack frame on
the run-time stack; the stack frame contains the address of a
condition handler for the procedure activation. A new
procedure activation is created every time a procedure is
called; the procedure activation is deleted when the
procedure returns.

• Condition handler - a function
specifies as the procedure
condition occurs.

6-6

that a procedure activation
to be called when an exception

)

)

)

)

)

)

)

ERROR PROCESSING AND CONDITION HANDLERS

• Establish - the process of placing the address of a condition
handler in the stack frame for the current procedure
activation. A condition handler established for a procedure
is called automatically when an exception condition occurs.
In FORTRAN, condition handlers are established by means of the
LIB$ESTABLISH procedure. See Section 6.4.2.

• Signal - the means by which the occurrence of an exception
condition is made known; signals are initiated by a call to a
signal procedure, which then calls a condition handler. There
are two signal procedures:

LIB$SIGNAL - signal a condition and possibly continue program
execution;

LIB$STOP - signal a severe error and do not continue program
execution, unless a condition handler performs an unwind.

See Section 6.2.2.

• Resignal - the means by which a condition handler indicates
that the signal procedure is to continue searching for a
condition handler to process a previously signaled error. To
resignal, a condition handler returns the SS$_RESIGNAL value.
See Section 6.3.3.

• Condition symbol - a symbol used to specify a condition value,
in the form:

where fac is a facility name prefix and symbol identifies a
specific condition.

Table 6-1 lists FORTRAN-related condition symbols.

• Unwind - the act of returning control to a particular
procedure activation, bypassing any intermediate procedure
activations. For example, if X calls Y and Y calls Z; and Z
detects an error; then a condition handler associated with Z
can unwind to X, bypassing Y. Control returns to X
immediately following the point at which X called Y.

6.2.2 Condition Signals

A condition signal consists of a call to one of the two
system-supplied signal procedures, in either of the following forms:

CALL LIB$SIGNAL (condition-value, arg, ••.)

CALL LIB$STOP (condition-value, arg, •••)

You can use a condition signal when you do not want to handle a
condition in the routine in which it was detected, but wish to pass
the information to a higher-level routine. If the current procedure
can continue after the signal is made, call LIB$SIGNAL. A
higher-level procedure can the~ determine whether program execution is
continued. If the condition will not allow the current procedure to
continue, call LIB$STOP.

6-7

ERROR PROCESSING AND CONDITION HANDLERS

To. pass the condition value, you must use the %VAL argument list
built-in function (see Section 5.2.3.1). Condition values are usually
expressed as co~dition symbols. For example:

CALL LIB$SIGNAL (%VAL(MTH$_FLOOVEMAT))

Additional arguments may be included to
information about the error.

provide supplementary

When called, a
examlnlng the
procedure that
is reached.

signal procedure searches for a condition handler by
preceding stack frames in order, until it finds a

handles the condition, or the default condition handler

6.2.3 Handler Responses

A condition handler responds to an exception by taking action in three
major areas: 1) condition correction, 2) condition reporting, and 3)
execution control.

First, the handler may determine whether it can correct the condition.
If it can, the handler will take the appropriate action, and execution
will continue. If it cannot correct the condition, the handler may
resignal the condition. That is, it may request that another
condition handler process the exception.

Condition reporting performed by handlers can involve one of the
following actions:

• Maintaining a count of exceptions encountered during program
execution

• Resignaling the same condition to send the appropriate message
to your terminal or log file

• Changing the severity field of the condition value and
resignaling the condition

• Signaling a different condition,for example, to produce a
message oriented to a specific application

Execution can be affected in a number of ways. Among them are:

• Continuing from the signal. If the signal was issued through
a call to LIB$STOP, the program will exit.

• Unwinding to the establisher at the point of the call that
resulted in the exception. The handler specifies the called
procedure's function value to be returned.

• Unwinding to the establisher's caller (the procedure
called the procedure that established the handler).
handler specifies the called procedure's function value to
returned.

6-8

that
The

be

~)

)

)

ERROR PROCESSING AND CONDITION HANDLERS

6.3 USER-WRITTEN CONDITION HANDLERS

) The following sections describe how to code and establish a condition
handler, and provide some simple examples. See Appendix C of the
VAX-ll/780 Architecture Handbook, and the VAX-II Common Run-Time
Procedure Library Reference Manual for more details on condition
handlers.

)

)
/

)

)

6.3.1 Establishing and Removing Handlers

When a procedure is called, no condition handler is initially
established. If you want to use a condition handler, you must

'establish it by calling the Run-Time Library procedure LIB$ESTABLISH
and including in the call such code as the following:

EXTERNAL HANDLER
CALL LIB$ESTABLISH (HANDLER)

To remove an established handler, call the Run-Time Library procedure
LIB$REVERT, as follows:

CALL LIB$REVERT

As a result of this call, the condition handler established in the
current procedure activation is removed. When a procedure returns,
the condition handler established by the procedure is automatically
removed.

6.3.2 FORTRAN Condition Handlers

A FORTRAN condition handler is an INTEGER*4 function that
when an exception condition occurs. You must define
arguments for a condition handler:

1. An integer array to refer to the argument list from
to the signal procedure (the "signal arguments").
the list of arguments included in CALL LIB$SIGNAL
LIB$STOP (see Section 6.2.2).

is called
two dummy

the call
That is,
or CALL

2. An integer array to refer to information concerning the
procedure activation that established the condition handler
(the "mechanism arguments") .

For example, you can define a condition handler as follows:

INTEGER*4 FUNCTION HANDLER(SIGARGS,MECHARGS)
INTEGER*4 SIGARGS(6) ,MECHARGS(5)

6-9

ERROR PROCESSING AND CONDITION HANDLERS

The array SIGARGS is used to obtain information from the signal
procedure. The values from the signal procedure are listed below.

Value Meaning

SIGARGS(l) Indicates how many arguments are being passed in
this vector (argument count).

SIGARGS(2) Indicates the condition being signaled
(condition value). See Section 6.3.4 for a
discussion of condition values.

SIGARGS(3 to n) Indicates optional arguments as specified by the
call to LIB$SIGNAL or LIB$STOP~ note that the
dimension bounds for the SIGARGS array should
specify as many entries as necessary to refer to
the optional arguments

The array MECHARGS is used to obtain information about the procedure
activation status of the procedure that established the condition
handler. MECHARGS is a S-element array in the form:

MECHARGS(l)
MECHARGS(2)
MECHARGS(3)
MECHARGS(4)
MECHARGS(S)

4
FRAME
DEPTH
RO
Rl

The first element (MECHARGS(l» is the argument count of this vector
(4) •

FRAME (MECHARGS(2» contains the address of the procedure activation
stack frame that established the handler.

DEPTH (MECHARGS(3» co: tains the depth (number of calls) that have
been made from the pr' ·cedure activation, up to the point at which the
exception occurred.

MECHARGS(4) and MECHARGS(S) contain the values of registers RO and Rl
at the time of the signal.

6.3.3 Handler Function Return Values

Condition handlers specify function return values to control
subsequent execution. Function return values and their effects are
defined in Table 6-2.

Table 6-2
Condition Handler Function Return Values

Value Effect

SS$ CONTINUE Continue execution from the signal. If the - signal was issued by a call to LIB$STOP,
however, the program exits.

SS$ RESIGNAL Resignal, to continue the search for a condition - handler to process the condition.

6-10

)

)

)

)

)

)

ERROR PROCESSING AND CONDITION HANDLERS

A condition handler can also request a stack unwind, by calling
SYS$UNWIND before returning. If SYS$UNWIND is called, the function
return value is ignored. The handler modifies the saved registers RO
and Rl in the mechanism arguments to specify the called procedure's
function value.

A stack unwind can be made to one of two places:

• Unwind to the establisher, at the point of the call that
resulted in the exception. Specify:

CALL SYS$UNWIND(%VAL(MECHARGS(3» ,%VAL(O»

• Unwind to the procedure that called the establisher. Specify:

CALL SYS$UNWIND(%VAL(O) ,%VAL(O»

6.3.4 Condition Values and Symbols

Condition values are used by VAX-II to. indicate that a called
procedure has either executed successfully or failed, and to report
exception conditions. Condition values are INTEGER*4 values,
consisting of fields that indicate which system component generated
the value; the reason the~value was generated; and the severity of
the condition. A condition value has the form:

31 28 27 16 15 3 2 0

C FACILITY MESSAGE SEV

C field (31:28) -control bits

Facility (27:16) - identifies the software component - that
generated the condition value. Bit 27 1 to
indicate a customer facility. Bit 27 = 0 to
indicate a DIGITAL facility.

Message (15:3)

Sev (2:0)

- describes the condition that occurred. Bit
15 = 1 to indicate the message is specific to
a single facility. Bit 15 = 0 to indicate a
system wide message.

- severity code, as follows:

0 - warning
1 - success
2 - error
3 - information
4 - severe error

5, 6, 7 - reserved

A warning severity code (0) indicates that output was produced, but
the results might not be what you expected. An error severity code
(2) indicates that output was produced even though an error was
detected. Execution can continue, but the results will not all be
correct. A severe error code (4) indicates that the error was of such
severity that output was not produced. One of the functions that can
be performed by a condition handler is altering the severity code of a
condition value, to allow execution to continue or to force an exit,
depending on the circumstances.

6-11

ERROR PROCESSING AND CONDITION HANDLERS

The condition value is passed as the second element of the array
SIGARGS. There are times when you may require that a particular
condition be identified by an exact match. That is, each bit of the
condition value (31:0) must match the specified condition. For
example, you may want to process a floating overflow condition only if
its severity code is still 4 (that is, if no previous handler has
changed the severity code). As noted above, a typical handler
response is to change the severity code and resignal.

In many cases, however, you may want to respond to a condition,
regardless of the value of the severity code. To ignore the severity
and control fields of a condition value, use the LIB$MATCH_COND
function, as follows:

index = LIB$MATCH_COND (SIGARGS(2) ,con-l,con-2, ••• con-n)

This function compares bits 27:3 of the value in SIGARGS(2) with each
of the condition values that follow (con-l through con-n). If it
finds a match, the index value is assigned according to the position
of the matching condition value in the list. That is~ if the match is
with the third condition value following SIGARGS(2), then index = 3.
If no match is found, index = O. The value of the index can then be
used to transfer control, as in the following example:

INTEGER*4 FUNCTION HANDL(SIGARGS,MECHARGS)
INCLUDE 'SYS$LIBRARY:FORDEF' .
INTEGER*4 SIGARGS(6) ,MECHARGS(5)

INDEX=LIB$MATCH COND(SIGARGS(2) ,FOR$ FILNOTFOU,
1 FOR$_NO_SUCDEV,FOR$_FILNAMSPE,FOR$_OPEFAI)

GO TO (100,200,300,400) ,INDEX
HANDL=SS$ RESIGNAL
RETURN -

If no match is found between the condition value in SIGARGS(2) and any
of the values in the list, INDEX=O, and control is transferred to the
next executable state~ent after the computed GO TO. A match with any
of the values in the list transfers control to the corresponding
statement in the GO TO list. Thus, if SIGARGS(2) matches FOR$ OPEFAI,
control is transferred to sta-tement 400. Note the use of condition
symbols to represent condition values •. Table 6-1 lists the FORTRAN
condition symbols and their values.

The system provides parameter files compr1s1ng condition symbol
definitions. When you write a condition handler, you must specify one
of the following parameter files, as appropriate, in an INCLUDE
statement:

SYS$LIBRARY:FORDEF.FOR

This file contains definitions for all condition symbols from the
FORTRAN-specific Run-Time Library. These symbols have the form:

FOR$_xyz

For example:

F'OR$~INPCONERR

6-12

\
)

)

)

)

)

)

)

)

ERROR PROCESSING AND CONDITION HANDLERS

SYS$LIBRARY:MTHDEF.FOR

This file contains definitions for all condition symbols from the
mathematical procedures library. These symbols have the form:

For example:

MTH$_SQUROONEG

SYS$LIBRARY:SIGDEF.FOR

This file contains miscellaneous symbol definitions used in
FORTRAN condition handlers. These symbols have the form:

For example:

You can obtain a listing of the condition symbols for any facility and
their corresponding hexadecimal values by means of the following
procedure:

1. Create a file that contains the lines

$xxDEF
.END

GLOBAL

To simplify the procedure, make sure the file type is MAR.

Specify a value for xx according to the set of condition
symbols you're concerned with. For example:

$SSDEF
.END

GLOBAL

2. Enter the command:

3.

Example:

$ MACRO file-spec

where file-spec specifies the file you created in step 1. If
you specified a file type of MAR, you need to enter only the
fi~e name with this command.

Enter the command:

$ LINK/MAP/FULL/NOEXE file-spec

Following execution of this command, you will have a file
(file-name MAP) that contains all the symbols defined in
xxDEF, in numeric and alphabetic order.

$ EDIT DEF.MAR
(create file)

$ MACRO DEF

$ LINK/MAP/FULL/NOEXE DEF

6-13

ERROR PROCESSING AND CONDITION HANDLERS

6.3.5 Floating Overflow, Zero Divide Exceptions

Some conditions involving floating point operations require that you
take special action if you wish to continue execution. Operations
that involve floating overflow, divide by 0, computing the square root
of a negative number, etc. store a unique result known as a floating
reserved operand. If a subsequent floating point operation accesses
this result, a hardware reserved operand fault is generated and
signaled. This may continue indefinitely if the reserved operand is
not changed and is accessed by each subsequent attempt to perform the
computation.

To allow computation to continue, you must change the reserved operand
by calling the Run-Time Library routine LIB$FIXUP_FLT, as shown in
this example:

CALL LIB$FIXUP_FLT(SIGARGS,MECHARGS,1.7D38)

The third argument is optional. If you omit it, the reserved operand
is changed to +0.0. However, you should include the argument, and
specify it as a double precision value. This ensures that the
reserved operand will be changed correctly regardless of its
precision. For more information on LIB$FIXUP FLT, see the VAX-II
Common Run-Time Procedure Library Reference Manual.

6.4 CONDITION HANDLER EXAMPLES

The examples in this section illustrate condition handlers that
to typical FORTRAN procedures.

Example 1:

apply

The following example shows a matrix inversion procedure, using the
logical function INVERT to indicate success or failure. That is, if the
matrix can be inverted, INVERT returns the logical value .TRUE. If
the matrix is singular, INVERT returns the logical value .FALSE. As
the matrix inversion procedure is being executed, a floating overflow
or divide-by-zero exception may occur. A condition handler (HANDL) is
provided to recover from these exceptions and return the value .FALSE.
to the calling program. Note that the condition handler is defined as
an INTEGER*4 function.

6-14

)

)

)

)

)

)

)

ERROR PROCESSING AND CONDITION HANDLERS

LOGICAL FUNCTION INVERT (A,N)
DIMENSION A(N,N)
EXTERNAL HANDL
CALL LIB$ESTABLISH (HANDL) ESTABLISH HANDLER
INVERT = • TRUE.. ASSUME SUCCESS

(INVERT THE MATRIX)

RETURN
END

INTEGER*4 FUNCTION HANDL (SIGARGS, MECHiRGS)
INTEGER*4 SIGARGS(3) , MECHARGS(5)
INCLUDE 'SYS$LIBRARY:SIGDEF'
HANDL = SS$_RESIGNAL ! ASSUME RESI(NAL

IF (SIGARGS(2) .EQ. SS$ FLTOVF .OR.
1 SIGARGS(2) .EQ. SS$:7LTDIV) THEN

MECHARGS(4) = .FALSE.
CALL SYS$UNWIND(%VAL(O) ,%VAL(O»
ENDIF

RETURN
END

If an exception occurs during the execution of INVERT, the condition
handler (HANDL) is called. The handler must first determine whether
it can deal with the condition being signaled. Thus, the condition
handler tests the condition value (SIGARGS(2». If the condition is
floating overflow or floating division by 0, the condition handler
causes a return from INVERT with the value .FALSE.

The condition handler uses the unwind procedure to force a return to
the procedure that called INVERT. The logical value .FALSE. is
stored in the saved RO element of the mechanism vector (MECHARGS(4».
This value is used as the function value for INVERT when the 'unwind
occurs. The handler calls SYS$UNWIND and returns; the condition
handling facility then gets control and actually performs the unwind
operation. Note that the function value from the user condition
handler (HANDL = SS$_RESIGNAL) is ignored if SYS$UNWIND is called.

If the exception condition is not a floating overflow or division by
0, the condition handler returns a value of SS$ RESIGNAL, indicating
that it is not able to deal directly with the condition. The
immediately preceding procedure activation will then be checked fora
condition handler; continuing until an established coridition· haridler
or the default condition handler is reached.

6-;I.5

ERROR PROCESSING AND CONDITION HANDLERS

Example 2:

The following example illustrates a condition handler that processes
the Run-Time Library conditions MTH$ FLOOVEMAT and MTH$ FLOUNDMAT. The
purpose of the condition handler is to modify the value returned by
the Run-Time Library from the default value (reserved operand -0.0) to
0.0, and to suppress the printin.g of an error message.

C MAIN PROGRAM
EXTERNAL HDLR
CALL LIB$ESTABLISH (HDLR)

I

X = EXP(Y)

END

INTEGER*4 FUNCTION HDLR (SIGARGS,MECHARGS)
INTEGER*4 SIGARGS(2) , MECHARGS(5)
INCLUDE 'SYS$LIBRARY:SIGDEF'
INCLUDE 'SYS$LIBRARY:MTHDEF'

IF (SIGARGS(2) .EQ. MTH$ FLOOVEMAT .OR.
I SIGARGS(2) .EQ. MTH$:FLOUNDMAT) THEN

MECHARGS(4) = 0
MECHARGS(5) = 0
HDLR = SS$ CONTINUE

ELSE -
HDLR = SS$_RESIGNAL

ENDIF

RETURN
END

When an exception condition occurs, HDLR is called, and the contents
of the second element of the signal vector are compared with
MTH$ FLOOVEMAT and MTH$ FLOUNDMAT. If either of the specified
conditions is detected, OTS are placed in the saved RO and Rl elements
of array MECHARGS, the value SS$ CONTINUE is returned in HDLR, and
execution continues in the math library and no error message is
printed. RO and RI are returned. If the condition is not one of
those specified, SS$ RESIGNAL is returned, and the preceding procedure
activations are searched for an established condition handler.

6-16

')
/

)

)

)

)

CHAPTER 7

FORTRAN SYSTEM ENVIRONMENT

This chapter discusses aspects of the relationship between VAX-II
FORTRAN. IV-PLUS and the VAX-II system. The purpose is to provide
insights that will permit you to use VAX-II FORTRAN IV-PLUS in a way
that makes best use of its features. The following subjects are
discussed:

• Program sections

• Storage allocation

• FORTRAN-supplied functions

• DO loops

• ENTRY statement arguments

• Floating point data representation

7.1 PROGRAM SECTION USAGE

The storage required by a VAX-II FORTRAN IV-PLUS program unit is
allocated in contiguous areas called program sections (PSECTs). The
VAX-II FORTRAN IV-PLUS compiler implicitly declares three PSECTs,
named:

$CODE - This program section contains all executable code.

$PDATA - This program section contains read-only data (e.g.,
constants and FORMAT statements).

$LOCAL - This program section contains read/write data local to
the program unit.

In addition, each COMMON block you declare causes allocation of a
PSECT with the same name as the COMMON block. (The unnamed COMMON
block PSECT is named $BLANK.)

The linker controls memory allocation and sharing according to the
attributes of each PSECT.See Table 7-1.

Each module comprised by your program is named according to the name
specified in the PROGRAM, BLOCK DATA, FUNCTION, or SUBROUTINE
statement used in creating the module. You can use the module name to
qualify the PSECT name specified in LINK commands. Refer to the
VAX-II Linker Reference Manual.

7-1

FORTRAN SYSTEM ENVIRONMENT

Defaults are applied to PROGRAM and BLOCK DATA statements. They are:

PSECT
Name

PROGRAM default - source-file-name$MAIN
BLOCK DATA default - source-file-name$DATA

Table 7-1
PSECT Names and Attributes

Use Attributes

$CODE

$PDATA

Executable code. PIC,CON,REL,LCL,SHR,EXE,RD,NOWRT,LONG

Read-only data:
literals, read-only
FORMAT statements

PIC,CON,REL,LCL,SHR,NOEXE,RD,NOWRT,LONG

$LOCAL Read/write data local
to the program unit:
user local symbols,
compiler temporary
symbols, argument
lists, and descriptors

PIC,CON,REL,LCL,NOSHR,NOEXE,RD,WRT,LONG*

$BLANK Blank COMMON block. PIC,OVR,REL,GBL,SHR,NOEXE,RD,WRT,LONG

name (s) Named COMMON block(s). PIC,OVR,REL,GBL,SHR,NOEXE,RD,WRT,LONG

* Program section $LOCAL is aligned on quadword boundaries if it
contains any double precision or complex data.

Table 7-2 describes the meanings of the attributes. Refer also to the
VAX-II Linker Reference Manual.

When the VAX/VMS linker constructs an executable image, it divides the
executable image into sections. Each image section contains PSECTs
that have the same attributes. By arranging image sections according
to PSECT attributes, the linker is able to control memory allocation.
The linker allows you to allocate memory to your own specification, by
means of commands you include in an options file that is input to the
linker. The options file is described in the VAX-II Linker. Reference
Manual.

7.2 STORAGE ALLOCATION AND FIXED--POIN'l' DATA TYPES

The default storage unit for VAX-II FORTRAN IV-PLUS is the
(four bytes). A storage unit is the amount of memory needed
a real, logical, or integer value. Double precision and
values are stored in two successive storage units. These
sizes must be taken into account when you associate two
variables through an EQUIVALENCE or COMMON statement, or by
association.

longword
to store

complex
relative
or more
argument

You can, however, declare integer and logical variables as 2-byte
values to save space or to be compatible with PDP-II FORTRAN. Either
specify the /NOI4 qualifier in the FORTRAN command, or explicitly
declare a variable as INTEGER*2 or LOGICAL*2 type. This allowE/ yoti to
take advantage of VAX-II's ability to manipulate both l6-bi.b data and
32-bit data efficiently.

7-2

)

)

)

)

>',

)

)

)

)

FORTRAN SYSTEM ENVIRONMENT

Table 7-2
PSECT Attributes

Attr ibute Meaning

PIC/NOPIC Position-independent or position-dependent.

CON/OVR Concatenated or overlaid

REL/ABS Relocatable or absolute

GBL/LCL Global or local scope

SHR/NOSHR Shareable or non-shareable

EXE/NOEXE Executable or non-executable

RD/NORD Readable or non-readable

WRT/NOWRT writeable or non-writeable

LONG/QUAD Longword or quadword alignment
-I'

7.2.1 Integer Data Types Supported

VAX-II FORTRAN IV-PLUS supports INTEGER*2 and INTEGER*4 data types,
which occupy two and four ;bytes of storage respectively. Both types
can be mixed in computations; such mixed type computations are
carried out to 32 bits of significance, and produce INTEGER*4 results.

If you do not override the default storage allocation, then four bytes
are allocated for inte~er values.

7.2.1.1 Relationship of INTEGER*2ahd INTEGER*4 Values - INTEGER*2
values are stored as two's complement signed binary numbers, and
occupy two bytes of stora'ge. INTEGER*4 values are also stored as
two's complement s.igned binary numbers, but occupy four bytes of
storage. The lower addressed word of an INTEGER*4 value contains the
low-order part of the· value.

IN'l'EGER*2 values are a subset of INTEGER*4 values. That is, an
INTEGER*4 value in the range -32768 to 32767 can be treated as an
INTEGER*2 value. Conversion fr·om INTEGER*4 to INTEGER*2 (without
checks for overflow) consists of simply ignoring the high-order 1-6
bits of the INTEGER*4 value. This type of conver'sion provides an
impo,rtant FORTRAN usage t as; Ulustrated in the following example.
Given:

CALL SUB(2)

shoulcl t.heargumeht (2) be treated as an INTEGER*2 va:lue or as
INTEGER*4? By providing an INTEGER*4 constant as the actual argument,
SUB executes 'correctly even if its dummy argument is typed INTEGER*2.

FORTRAN SYSTEM ENVIRONMENT

7.2.1.2 Integer Constant Typing - Integer constants are generally
typed according to the magnitude of the constant. In most contexts,
INTEGER*2 and INTEGER*4 variables and integer constants can be freely
mixed. You are responsible, however, for ensuring that integer
overflow conditions do not occur, as happens in the following example.

INTEGER*2 I
INTEGER*4 J
I = 32767
J = I + 3

In this example, I and 3 are INTEGER*2 values, and an INTEGER*2 result
will be computed. The 16-bit addition, however, will overflow the
valid INTEGER*2 range and be treated as -32766. This value will be
converted to INTEGER*4 type and assigned to J. The overflow will be
detected and reported if the program unit was compiled with the
default /CHECK=OVERFLOW qualifier specified.

Contrast the preceding example with the following
equivalent program, which produces different results.

PARAMETER I = 32767
INTEGER*4 J
J = I + 3

apparently

In this case the compiler performs the addition of the constant 3 and
the parameter constant 32767, producing a constant result of 32770.
The compiler recognizes this as an INTEGER*4 value. Thus, J will be
assigned the value 32770.

7.2.1.3 Integer-Valued Processor-Defined Functions - A number of the
processor-defined functions provided by FORTRAN (see Section 7.3)
produce integer results from real or double precision arguments; for
example, INT. In order to support such functions in a manner
compatible with both INTEGER*2 and INTEGER*4 modes, two versions of
these integer-valued processor-defined functions are supplied. The
compiler chooses the version that matches the compiler /14 qualifier
setting (/14 or /NOI4). This is similar to generic function selection
(described in Section 7.3.1), except that the selection is based on
the mode of the compiler, rather than on the argument data type.

In some cases, you may need to use the version of an iriteger-valued
processor-defined function that is the opposite of the compile~
qualifier setting. For this reason, a pair of additional
processor-defined function names are provided for ~ach standard
integer-valued processor-defined function. The names of the INTEGER*2
versions are prefixed with I, and the names of the INTEGER*4 versions
with J (for example, IIABS and JIABS). See Appendix B of the VAX-II
FORTRAN IV-PLUS Language Reference Manual for a complete list of
processor-defined functions.

7.2.2 Byte (LOGICAL*l) Data Type

The FORTRAN IV-PLUS byte data type lets you take advantage of the byte
processing capabilities of VAX-II. Actually, BYTE or LOGICAL*l is a
signed integer data type, and is useful for storing and manipulating
Hollerith data.

In general, when
operation, the

data of different types are used in a binary
lower-ranked type is converted to the higher-ranked

7-4

)
/

)

)

)

)

)

)

)

FORTRAN SYSTEM ENVIRONMENT

type prior to computation. (Data type rank is discussed in the VAX-II
FORTRAN IV-PLUS Language Reference Manual.) However, in the case of a
byte variable and an integer constant in the range representable as a
byte variable (-128 to 127), the integer constant is treated as a byte
constant; and the result is also of byte data type.

7.3 FUNCTIONS SUPPLIED WITH VAX-II FORTRAN

VAX-II FORTRAN IV-PLUS includes a number of processor-defined
functions. These are listed in Appendix B of the VAX-II FORTRAN.
IV-PLUS Language Reference Manual. For descriptions of the algorithms
used to generate processor-defined functions, refer to the VAX-II
Common Run-Time Procedure Library Reference Manual.

Processor-defined functions include routines provided by VAX-II
FORTRAN IV-PLUS to perform commonly-used mathematical functions (such
as COS and EXP) and utility services (such as DATE and TIME). The
data type of a processor-defined function is unaffected by the use of
the IMPLICIT statement to change the default data type, Some of these
processor-defined functions are generic functions; that is, you can
refer to a set of similar routines by one common name.

7.3.1 Generic Functions

Many of the functions supplied with VAX-II FORTRAN IV-PLUS are generic
functions, which means that you refer to them by a common name, to
perform much the same function. For example, there are three
processor-defined functions that calculate cosines, all of which are
(or can be) referred to by the generic name COS; their names are COS,
DCOS, and CCOS. They differ in that they return single precision,
double precision, or complex values, respectively. If you request
that the cosine function be invoked, you need only refer to it
genericallYI as COS. The compiler selects the appropriate routine
based on the arguments you specify. If the argument is single
precision, COS is selected; if it is double precision, DCOS is
selected; and if complex, CCOS is selected.

Note, however, that you can explicitly refer to a particular routine
if you wish. Thus, to obtain the double precision cosine function,
you could specify DCOS, rather than using the generic name.

The compiler provides the names of processor-defined functions it
selects by listing them by their internal names in the "FONCTIONS AND
SUBROUTINES REFERENCED" section of the listing.

7.3.2 Use of the EXTERNAL Statement

The EXTERNAL statement has special applicability in conjunction with
processor-defined functions. If you refer to a subprogram by means of
one of the processor-defined function names, the compiler assumes that
you intend that the processor-defined function be used. Thus, if one
of your own subprograms has the same name as a system-supplied
function or subroutine, you must distinguish your routine's name from
the processor-defined function name.

To do so, specify the name in an EXTERNAL statement as follows:

EXTERNAL *name

7-5

FORTRAN SYSTEM ENVIRONMENT

The compiler interprets any name listed in an EXTERNAL statement, that
is prefixed by an asterisk, as the name of a user-supplied subprogram.

The EXTERNAL statement is described in the VAX-ll FORTRAN IV-PLUS
Language Reference Manual.

7.4 ITERATION COUNT MODEL FOR DO LOOPS

VAX-II FORTRAN IV-PLUS provides an extended form of the DO statement,
with the following features:

• The control variable can be an integer, real, or double
precision variable.

• The initial value, step size, and final value of the control
variable can be any expression that produces an integer, real,
or double precision result.

• The number of times the loop is executed (the iteration
count) is determined at the initialization of the DO
statement, and is not re-evaluated during successive
executions of the loop. Thus, the number of times the loop is
executed is not affected by changing the values of the
parameter variables used in the DO statement.

7.4.1 Cautions Concerning Program Interchange

Some common practices associated with the use of DO statements on
other FORTRAN systems may not have the intended effects when used with
VAX-II FORTRAN IV-PLUS. For example:

• -Assigning a value to the control variable within the body of
the loop that is greater than the final value, in order to
cause early termination of the loop.

• Similarly modifying either a step size variable or a final
value variable to either modify the loop behavior or terminate
the loop.

• Using a negative or zero step size to cause an arbitrarily
long loop that is terminated by a conditional control transfer
wi,thin the lQop.

7.4.2 Iteration CountComputaUon

Given t·he followtn~, sample DO statement

'DO label, V=ml ~1tI2 ,'1Jl.3

(whereinl,m2, and m3 ate any ~xpressiohs), the iteration count is
computeoas follow'S:

cQunt"" :MAX (1, INl' («m2-ml) 1m3) + 1))

This c'OmputatH>n:

• Provides thiitth'e b~.yof the DO loop is always executed at
lea$t once

7-6

)

)

)

)

)

)

)

)

FORTRAN SYSTEM ENVIRONMENT

• Permits the step size (m3) to be negative or positive, but not
zero

• Gives a well-defined and predictable count value for
expressions resulting from any combination of the allowed
result types. Note, however, that the effects of round-off
error inherent in any floating point computation may cause the
count to be greater or less than desired when real or double
precision values are used.

Under certain conditions it is not ne~essary to compute the iteration
count explicitly. For example, if all of the parameters are of type
integer and if the parameter values are not modified in the loop, then
the FORTRAN IV-PLUS generated code controls the number of iterations
of the loop by comparing the control variable directly with the final
value.

7.5 ENTRY STATEMENT ARGUMENTS

The association ofactll8l and dummy arguments is described in Chapter
6 of the VAX-ll FORTRAN IV-PLUS Lal1guage Reference Manual. In
general, that description suffices for most case~. However, the
implementation of argument association in ENTRY statements varies from
the way this is done on some other FORTRAN systems.

As described previously in this manual (Chapter 5), VAX-ll FORTRAN
uses the call-by~reference and call-by-descriptor methods to pass
ar~uments to called procedures (for numeric and character arguments,
re~pectively) • Some other FORTRAN implementations use the
call-by-value/result method. This. distinction becomes crucial when
reference is made to dummy arguments in ENTRY statements.

While standard FORTRAN allows you to use the same dummy arguments in
diifferent ENTRY statements, it permits you to refer only to those
dummy arguments that are defined for the ENTRY point being called.
For example:

SUBROUTINE SUBl(X,y,Z)

ENTRY ENTl(X,A)

ENTRY ENT2(B,Z,Y)

Given this, you ~an make th~ follo~ing references:

CI\;LL Yalid . References

SUBl X Y Z
ENTl X A
ENT2 B Z f

FORTRAN SYSTEM ENVIRONMENT

FORTRAN implementations that use the call-by~value/result method,
however, permit you to refer to dummy arguments that are not defined
in the ENTRY statement being called. For example:

SUBROUTINE INIT(A,B,C)
RETURN
ENTRY CALC(Y,X)
Y = (A*X+B)/C
END

You can use this non-standard d~vice in call-by-value/result
implementations, because a separate internal variable is allocated for
each dummy argument in the called procedure. When the procedure is
called, each scalar actual argument value is~ assigned to the
corresponding internal variable, and these variables are then used
whenever there is a reference to a dummy argument within the
procedure. On return from the called procedure, modified dummy
arguments are copied back to the corresponding actual argument
variables.

When an entry point is referenced, all its dummy arguments are defined
with the values of the corresponding actual arguments, and may be
referenced on subsequent calls to the subprogram. However, you are
advised not to attempt to do this in programs that are to be-executed
on VAX-II FORTRAN. Such references will not have the intended effect
on VAX-II, and will produce programs that are not transportable to
other systems that use the call-by-reference (descriptor) method.

VAX-II creates associations between dummy and actual arguments by
passing the address of each actual argument, or descriptor, to the
called procedure. Each reference to a dummy argument generates an
indirect address reference through the actual argument add~ess. When
control returns from the called procedure, the association between
actual and dummy arguments ends. The dummy arguments do not retain
their values, and therefore cannot be referenced on subsequent calls.
Thus, to perform the sort of non-standard references shown in the
previous example, the subprogram must copy the values of the dummy
arguments. For example:

SUBROUTINE INIT(AI,BI,CI)
A = Al
B = BI
C = CI
RETURN
ENTRY CALC(Y,X)
Y = (A*X+B)/C
END

This will work on VAX-II, and on systems that use the
call-by-value/result method. However, this method should also be
avoided, because it is also non-standard. The success of this example
depends on the storage for A, B, and C being statically allocated so
they will retain their values from one call to the next.

7.6 FLOATING POINT DATA REPRESENTATION

The following sections describe how floating point data is represented
internally.

7-8

)

)

)

)

)

)

)

)

FORTRAN SYSTEM ENVIRONMENT

7.6.1 Single Precision Floating Point Data

A single preclslon floating point value is represented by four
contiguous bytes. The bits are numbered from the right 0 through 31.

1514 7 6 o

S EXPONENT FRACTION :A

FRACTION

31 16

A single preclslon floating point value is specified by its address A,
the address of the byte containing bit O. The form of the value is
sign magnitude with bit 15 the sign bit, bits 14:7 an excess 128
binary exponent, and bits 6:0 and 31:16 a normalized 24-bit fraction
with the redundant most significant fraction bit not represented.
Within the fraction, bits of increasing significance go from 16
through 31 and 0 through 6.

The 8-bi~'exponent field encodes the values 0 through 255. An
exponent value of 0 together with a sign bit of 0, indicates that the
floating point value has a value of O. Exponent values of 1 through
255 indicate binary exponents of -127 through +127. An exponent value
of 0, together with a sign bit of l,is taken as a reserved operand.
Floating point instructions processing a reserved operand take a
reserved operand fault (see Section 7.6.3.1).

The value of a floating point value is in the approximate range of
.29*10**-38 through 1.7*10**38. The precision of a floating point
value is approximately one part in 2**23, i.e., typically 7 decimal
digits.

7.6.2 Double Precision Floating Point Data

A double precision
contiguous bytes.

floating point value is represented by eight
The bits are numbered from the right 0 through 63.

15 14 7 6 o

S EXPONENT FRACTION :A

FRACTION
I~

FRACTION

FRACTION

63 48

7-9

FORTRAN SYSTEM ENVIRONMENT

A double prec1s10n floating point value is specified by its address A,
the address of the byte containing bit O. The form of a double
precision floating point value is identical to a single preC1S10n
floating point value except for an additional 32 low significance
fraction bits. Within the fraction, bits of increasing significance
go 48 through 63, 32 through 47, 16 through 31, and 0 through 6.

The exponent conventions and approximate range of values are the same
for double precision floating point values as single precision
floating point values. The precision of a double precision floating
point value is approximately one part in 2**55, i.e., typically 16
decimal digits.

7.6.3 Floating Point Data Characteristics

Certain FORTRAN programming practices that are commonly used, though
not permitted under the rules for standard FORTRAN, may not produce
the expected behavior when attempted in VAX-II FORTRAN. These are
described below.

7.6.3.1 Reserved Operand Faults - Floating point variables that
contain invalid floating point values (-0.0), indicated by an exponent
field of 0 and a sign bit of 1, cause a reserved operand fault. in the
VAX-II hardware. An error is reported, and, by default, your program
terminates.

There are three ways to create reserved operand values:

• The VAX-II hardware stores a reserved operand value as the
result of the floating point arithmetic exceptions, floating
overflow and floating zero divide.

• The mathematical function library returns a reserved operand
value if the function is called incorrectly or if the argument
is invalid. For example,

SQRT (-1. 0)

These retarn values can be modified by providing a condition
handler (see Chapter .6).

• Integer arithmetic and logical ,operations can create reserved
operand bit patterns in floatin'g point var iables and arrays
asso:ciated with integers. Associations of this kind can occur
throug.f't EQUIVALENCE;, C'OMMON, or arguxne'nt association. For
example:

E.QUIVA(,ENCE ;(X, J;)
I = 32768
X ::: X+1.0

Adding 1.0 to .x will ca,use .a reserved operand fault, because
the integer Venue 32768 i$ a reserved operand when interpreted
_s a floating point value.

i'he first- two cases occur when inVc;llidprograms or data are used. The
iast Cas. can odcur inadvertently in a program, and not be detected by
pj::her' F021Mij sVste]lJs.

7 ... 10

)

)

)

)

)

)

)

)

FORTRAN SYSTEM ENVIRONMENT

7.6.3.2 Representation of 0.0 - The VAX-ll hardware defines 0.0 as
any bit pattern that has an exponent field and sign bit of O~
regardless of the value of the fraction. When a bit pattern that is
defined as 0.0 is used in a floating point operation, the VAX-II
hardware sets the fraction field to O. One possible ·effect is that
non-zero integers that are equivalenced to floating point values may
be interpreted as O.

Logical operations can have a similar effect, as shown in the
following example:

EQUIVALENCE (X,I)
I = 64
IF (X .EQ. 0) GO TO 10

The branch will always be taken because the bit pattern that
represents the integer value is equivalent to 0 when interpreted as a
floating point value.

7.6.3.3 Sign Bit Tests - The bit used as the sign bit of a floating
point value is not the same bit as the sign bit of an equivalenced
INTEGER*4 value. Consequently, you must test the sign of a value by
testing the correct data type. For example:

EQUIVALENCE (X,I)
I = 40000
IF (X .GT. 0) GO TO 10

The branch will not be taken, because the bit pattern that represents
the integer value 40000 is negative (bit 15 is set) when interpreted
as a floating point value.

7-11

)

)
I

)

)

)

)

CHAPTER 8

PROGRAMMING CONSIDERATIONS

This chapter discusses methods you can use to write efficient source
programs. Topics covered are:

• Creating efficient source programs

• Compiler optimization

• I/O system characteristics

8.1 CREATING EFFICIENT SOURCE PROGRAMS

You can reduce the time and memory required for your source programs
by taking advantage of features included in the FORTRAN IV-PLUS
language, as described below.

8.1.1 PARAMETER Statement

The PARAMETER statement allows you to assign a symbolic name to a
constant. For example:

PARAMETER PI=3.1415927

You can then use the symbolic name (PI) to represent the constant
(3.1415927) anywhere a constant is valid (such as in expressions).

Using the PARAMETER statement promotes more efficient object code by
allowing constants to be used instead of variables, while permitting
easy program modification. Constants can generally be compiled . into
more efficient code. (See Section 8.2.2.) Therefore, parametric
variables should be defined by means of PARAMETER statements, rather
than by means of DATA or assignment statements. The source code
illustrated in Example A will produce more efficient code than either
Example B or Example C.

Example A

PARAMETER M = 50, N = 100
DIMENSION X(M), YIN)
DO 5, I = 1, M
DO 5, J = 1, N

5 XII) = X(I)*Y(J) + X(M)*Y(N)

8-1

PROGRAMMING CONSIDERATIONS

Example B

5

DIMENSION X(50), Y(100)
DATA M, N/50,100/
DO 5, I = 1, M
DO 5, J =.1, N
XCI) = X(I)*Y(J) + X(M)*Y(N)

Example C

DIMENSION X (50) , Y(100)
M = 50
N = 100
DO 5, I = 1, M
DO 5, J = 1, N

5 X (I) = X(I)*Y(J) + X(M)*Y(N)

8.1.2 INCLUDE Statement

The INCLUDE statement is used to incorporate a file into your source
program. This allows you to avoid duplicating redundant code in
source programs. For example, there may be several lines of source
code, such as a COMMON block specification, that appear in several
program units. Rather than repeat this code in each program unit, you
can create a separate file that consists of the code; then specify an
INCLUDE statement in each program unit that requires the code.

Example

In this example, a COMMON block specification is required in a program
as well as in a subroutine called by the program. The COMMON block
specification is put into a file (COMMON.FOR), and an INCLUDE
statement is used in ooth the program and the subroutine, to reference
the code. The file, COMMON. FOR, consists of the following text:

PARAMETER M = 100
COMMON X(M), Y(M)

Main Program

5

INCLUDE 'COMMON.FOR'
DIMENSION Z(M)
CALL CUBE
DO 5 I = I,M
Z (I) = X (I) + SQRT (Y (I))

SUBROUTINE CUBE
INCLUDE 'COMMON.FOR'
DO 10 I = I,M

10 X(I) = Y(I)**3
RETURN
END

The file COMMON.FOR defines the size of the COMMON block and the sizes
of the arrays X, Y, and Z. Any changes to the COMMON block will be
reflected automatically after recompilation.

8-2

)

)

)

)
/

)

)

)

)

PROGRAMMING CONSIDERATIONS

8.1.3 Allocating Variables in Common Blocks

When you allocate variables in a common block, you should do so in
such a way that they are aligned on natural boundaries in memory. One
simple method to accomplish this is to allocate variables in order,
according to data type. First allocate INTEGER*4, LOGICAL*4, REAL,
and DOUBLE PRECISION variables; then INTEGER*2, LOGICAL*2 variables;
and finally BYTE and CHARACTER variables.

8.1.4 Conditional Branching

You will generally produce
IF ••• THEN ••• ELSE statements
IF ••• GO TO statements.

8.2 COMPILER OPTIMIZATIONS

more efficient programs if you use
to control program flow than if you use

Optimization refers to techniques used to produce the greatest amount
of processing with the least amount of time and memory. The aim is to
create programs that are efficient in speed and size. Optimum
efficiency results from carefully designed and written programs, and
from compilation techniques that take advantage of the machine
architecture. You can produce optimum source programs by being aware
of, and using, certain features provided by the VAX-II FORTRAN IV-PLUS
language; the VAX-II FORTRAN IV-PLUS compiler produces efficient code
by deriving maximum benefit from the VAX-II hardware.

The primary goal of VAX-II FORTRAN IV-PLUS optimizations is to produce
an object program that executes faster than ~n unoptimized version of
the same source program. A secondary goal is to reduce the size of
the object program.

The language elements you use in the source program directly affect
the compiler's ability to optimize the object program. Therefore, you
should be aware of the ways in which you can assist compiler
optimization. The VAX-II FORTRAN IV-PLUS compiler performs the
following optimizations:

• Evaluation at compile time of integer, real, and double
preclslon constant expressions involving addition,
subtraction, multiplication, or "division (this technique is
called "constant folding").

• Compile-time constant conversion.

• Compile-time evaluation of constant subscript expressions in
array element references.

• Argument-list merging. If two subprogram references have the
same arguments, a single copy of the argument list is
generated.

• Branch instruction optimizations for arithmetic, logical and
block IF statements.

• Elimination of unreachable code. An optional warning message
is issued to indicate unreachable statements in the source
program.

8-3

PROGRAMMING CONSIDERATIONS

• Recognition and replacement of common subexpressions.

• Removal of invariant computations from DO loops.

• Local register assignment. Frequently-referenced variables
are retained (if possible) in registers to reduce the number
of memory references needed.

• Assignment of frequently-used variables and expressions to
registers across DO loops.

• Assignment of base registers, to provide shorter address
references to COMMON blocks.

• Constant pooling. Storage is allocated for only one copy of a
constant in the compiled program. Constants used as
immediate-mode operands are not allocated storage. This
includes most numeric constants.

• In-line code expansion for some processor-defined functions.

• Fast calling sequences for the real and double precision
versions of some processor-defined functions.

• Reordering the evaluation of expressions, to minimize the
number of temporary values required.

• Delaying unary minus and .NOT. operations to eliminate unary
negation/complement operations.

• Partial evaluation of Boolean expressions. For example, if el
in the following expression has the value .FALSE., e2 is not
evaluated:

IF(el.AND.e2) GO TO 20

• Optimization of control transfers.

• Peep~o~e optimization of instruction sequences: i.e.,
examlnlng code on an instruction-by-instruction basis to find
operations that can be replaced by shorter, faster equivalent
operations.

8.2.1 Characteristics of Optimized Programs

Optimized programs produce results and run-time diagnostic messages
identical to those produced by an equivalent unoptimized program. An
optimized program may produce fewer run-time diagnostics, however, and
the diagnostics may occur at different source program statements. For
example:

10

Unoptimized Program

A = X/Y
B = X/Y
DO 10, I = 1,10
C(I) = C(I)*(X/Y)

8-4

10

Optimized Program

t = X/Y
A = t
B = t
DO 10, I = 1,10
C(I) = C(I)*t

)

)

)

)

)

)

)

PROGRAMMING CONSIDERATIONS

In the example above, if Y has the value 0.0, the unoptimized program
produces 12· zero-divide errors at run time; the optimized program
produces 1. (Note that tis a temporary variable created by the
compiler.) Eliminating redundant calculations and moving invariant
calculations otit of loops can affect detection of such arithmetic
errors, and should be kept in mind when you include error-detecting
routines irt your program.

8.2.2 Compile-Time Operations on Constants

The compiler performs the following computations on expressions
involving constants (including PARAMETER constants) at compile time.

• Negation of Constants: Constants preceded by unary minus
signs are negated at compile time.

For example:

x = -10.0

is compiled as a single move instruction.

• Type Conversion of
converted to the
compile time.

For example:

X= 10*Y

is compiled as

x = 10.0*Y

Constants: Lower ranked constants are
data type of the higher ranked operand at

• Arithmetic on Integer, Real, and Double Precision Constants:
Expressions involving +, -, *, or I operators are evaluated at
compile time.

For example:

PARAMETER NN = 27
I = 2*NN+J

is compiled as

I = 54+J

Array subscript calculations involving constants are simplified at
compile time wherever possible.

For example:

DIMENSION 1(10,10)
1(1,2) = 1(4,5)

is compiled as a single move instruction.

8-5

PROGRAMMING CONSIDERATIONS

8..2.3 Source Program Blocks

Some optimizations are performed within the confines of a single block
of the source program, where ~ block consists of a sequence of one or
more FORTRAN source statements. The start of a block is generally
defined by a labeled statement that is the target of a control
transfer from another statement (GO ~O, arithmetic IF, ERR=option),
or by an ENTRY statement. The following kinds of statement labels,
however, do NOT generally define the start of a new block:

• unreferenced statement labels

• a label terminating a DO loop, if the only references to the
label occur in DO statements

• labels of FORMAT statements; FORMAT statements must be
labeled, but control cannot be transferred to a FORMAT
statement

• labels with a single reference that precedes the label.
example:

For

IF (I.EQ.O) GO TO 40

40 CONTINUE

• labels for which the only reference is in
preceding arithmetic or logical IF statement.

10
IF (A) 10,20,20
X = 1

an immediately
For example:

A block can contain one or more DO loops, as long as none of the
labels within the loops defines the start of a new block. Thus the
following examples are considered single blocks and are optimized as
complete units:

Example 1

10

20

Example 2

X = B*C
DO 10, I=l,N
A(I) = A(I)/(B*C)
DO 20, J=l,N
Y(J) = Y(J)+B*C

DO 20, I=l,N
DO 20, J=l,N
SUM = 0.0
DO 10, K=l,.N

10 SUM = SUM+A(I,K}*B(K,J)
20 C(I,J) = SUM

A more thoroughly optimized object program is produced if the number
of separate blocks is minimized. Common subexpression, code motion,
and register .allocation optimizations are performed within single
blocks.

8-6

)

)

)

)

)

)

PROGRAMMING CONSIDERATIONS

8.2.4 Eliminating Common Subexpressions

The same subexpression often appears in more than one computation
within a program. For example:

A = B*C+E*F

H = A+G-B*C

IF ((B*C)-H)IO,20,30

In this code sequence, the common subexpression B*C appears three
times. If the values of the operands of this subexpression do not
change between computations, its value can be computed once and the
result can be used in place of the subexpression. Thus, the sequence
shown above is compiled as follows:

t = B*C
A = t+E*F

H = A+G-t

IF ((t)-H)IO,20,30

) As you can see, two computations of B*C have been eliminated.

)

)

Of course, you could have optimized the source program itself to
preclude the redundant calculation of B*C. The following example
shows a more significant application of this kind of compiler
optimization, in which you could not reasonably modify the source code
to achieve the same effect. Without optimization, the statements

DIMENSION A(25,25), B(25,25)
A(I,J) = B(I,J)

can be compiled as

tl = J*2.5+1
t2 = J*25+I
A (tl) =B (t2)

Variables tl and t2 represent equivalent expressions. The compiler
eliminates this redundancy by producing the following optimization:

t = J*25+I
A(t)=B(t)

8-7

PROGRAMMING CONSIDERATIONS

8.2.5 Removing Invariant Computations from Loops

Execution speed is enhanced by taking invariant computations out of
loops. For example, if the compiler detected the following sequence

DO 10, I = 1,100
10 F = 3.0*Q*A(I)+F

it would recognize that the subexpression 3.0*Q has the same value
each time the loop is executed. Thus, it would change the sequence to

t = 3.0*Q
DO 10, I = 1,100

10 F = t*A(I)+F

This moves the calculation of 3.0*Q out of the loop, and saves 99
multiply operations.

8.2.6 Compiler Optimization Example

Figure 8-1 illustrates many of the optimization techniques used by the
VAX-II FORTRAN IV-PLUS compiler. The first part (Figure 8-la) shows a
complete VAX-II FORTRAN subroutine, a relaxation function often used
in engineering applications. This subroutine is a 2-dimensional
function used to obtain the values of a variable at coordinates on a
surface; for example, temperatures distributed across a metal plate.

The second part (Figure 8-lb) shows the VAX-II machine code generated
by the FORTRAN compiler. Several compiler optimizations are
illustrated, as noted by circled numbers next to the generated code
lines. These are described in the notes that follow the figure.

0001

0002
0003
0004

0005

0006

0007
0008
0009
0010
OOll

0012

0013
0014

1

10

SUBROUTINE RELAX2(EPS)

PARAMETER M=40, N=60
DIMENSION X(O:M,O:N)
COMMON X

LOGICAL DONE

DONE = .TRUE.

DO 10 J = 1,N-l
DO 10 I = 1,M-l

XNEW = (X(I-l,J)+X(I+1,J)+X(I,J-l)+X(I,J+l)) / 4
IF (ABS(XNEW-X(I,J» .GT. EPS) DONE = .FALSE.
X(I,J) = XNEW

IF (.NOT. DONE) GO TO 1

RETURN
END

Figure 8-1a RELAX Source Program

8-8

)

)

)

)

)

PROGRAMMING CONSIDERATIONS

.TITLE RELAX2
• !DENT 01

0000
0000 X:

.PSECT $BLANK

0000
0000
0000
0002

.PSECT
RELAX2: :

• WORD
MOVAL

0009 .1:
0009 MNEGL

OOOC
OOOF
0016

0016
0019
OOID

OOID
0021
0029
002F
0035

003D
0042
0047
004B
004D
004F

004F
0053
0057
005B
005F
0063

0067
006A

MOVL
MOVAL

L$IANE:

MOVL
MULL3

L$IAGG:

ADDL3
ADDF3
ADDF2
ADDF2
MULF3

SUBF3
BICW2
CMPF
BLEQ
CLRL

L$IAPI:

MOVL
AOBLEQ
AOBLEQ
MOVL
MOVL
MOVL

BLBC
RET
.END

$CODE

AM(IV,R5,R6,R7,R8,R9,RIO,Rll>
$LOCAL, Rll

#1, DONE (Rll)

#1, R7
$BLANK, R5 • •
#1, R9 •
#41, R7, R6.

R9, R6, RIO"
X+4 (R5) [RIO], X-4 (R5) [RIO], RO
X-164 (R5) [RIO], RO
X+l64 (R5) [RIO], RO
#AX3F80, RO, R8 Ct
X (R5) [RIO], R8, RO
#AX8000, RO ..
RO, @EPS(AP)
L$IAPI
DONE (Rll)

R8, X (R5) [RIO]
#39, R9, L$IAGG •
#59, R7, L$IANE
R7, J(Rll)
R8, XNEW (Rll)
R9, I (Rll)

DONE (Rll), .1

Figure 8-lb RELAX Machine Code (Optimized)

Notes for Figure 8-1

Register assignment for J

0006

0007

0008

0009

0010

0011

0012

• • • • ..
Register assignment for a base register for blank COMMON

Register assignment for I

Invariant computation (J*41) removed from the inner loop and
assigned to a register

Common subexpression evaluation and
assignment; 6 uses are made of the value

8-9

local register

PROGRAMMING CONSIDERATIONS

Notes for Figure 8-1 (Cont.)

• Peephole optimization;
multiply by 0.25.

tt Inline ABS function

a divide by 4.0 is replaced by a

• DO loop control using the Add One and Branch Less Than or
Equal (AOBLE0) instruction

8.3 FORTRAN I/O SYSTEM CHARACTERISTICS

You can often reduce the execution time of your FORTRAN
making use of the following facts relevant to the
subsystem.

programs by
FORTRAN I/O

• Unformatted I/O is substantially faster and more accurate than
formatted I/O. The unformatted data representation usually
occupies less file storage space as well. Thus unformatted
I/O should be used for storing intermediate results on
secondary storage.

• Specifying an array name in an I/O list is more efficient than
using an equivalent implied DO list. A single I/O
transmission call passes an entire array, while an implied DO
list can pass only a single array element per I/O call.

•

•

The implementation of the BACKSPACE statement involves
repositioning the file and scanning previously processed
records. If a reread capability is required, it is more
efficient to read the record into a temporary array
the array several times than to read and backspace

To obtain minimum I/O processing, the record length
access sequential organization files should be a
multiple of the device block size of 512 bytes
bytes, 64 bytes, etc.). For relative organization
adds one overhead byte for fixed length records
overhead bytes for variable length records.

and DECODE
the record.

of direct
divisor or
(e.g., 32
files, RMS
and three

• If the approximate size of the file is known, it is more
efficient to allocate disk space when a file is opened than to
incrementally extend the file as records are written.

• The use of run-time formats should be minimized. The compiler
preprocesses FORMAT statements into an efficient internal
form. Run-time formats must be converted into this internal
form at run time. In many cases, using variable format
expressions will allow the format to vary at run time.

• The BLOCKSIZE keyword can be used in an OPEN statement to
obtain large amounts of data with each physical I/O operation,
thereby greatly improving the processing of sequentially
accessed files. For example, specifying a BLOCKSIZE of 4096
bytes results in the transfer of 8 disk blocks for each I/O
operation.

8-10

)

'\
)

)

)

)

)

)

PROGRAMMING CONSIDERATIONS

The OPEN and CLOSE
devices and files.
help create efficient
examples.

statements provide explicit control over I/O
Using these statements in the proper manner can

source programs, as illustrated in the following

• OPEN (UNIT=l, TYPE='NEW', INITIALSIZE=200)

This statement allocates space for a file when the file is
opened, which is more efficient than extending the size of the
file dynamically.

• OPEN (UNIT=3, TYPE='NEW', BLOCKSIZE=8192)

•

This statement specifies a large blocking factor for I/O
transfers. If the file is on magnetic tape, the physical tape
blocks are 8192 bytes long; if the file is on disk, 16 disk
blocks are transferred by each I/O operation, thus enhancing
I/O performance, though requiring more memory.

OPEN (UNIT=J, TYPE='NEW'~ •.•)

IF (IERR) CLOSE(UNIT=J, DISP='DELETE')

CLOSE (UNIT=J, DISP='SAVE')

A file is created. However, if an error occurs that makes the
file invalid or useless, it is deleted.

• OPEN (UNIT=2, FORM='FORMATTED', CARRIAGECONTROL='LIST')

•

This statement creates a file with implicit carriage control.
The first character of each record is NOT used for carriage
control, thus it can contain actual data.

1
100

101

CHARACTER*64 FILNAM
TYPE 100
FORMAT ('$INPUT FILE?')
ACCEPT 101,FILNAM
FORMAT (A)
OPEN (UNIT=3, NAME=FILNAM, TYPE='OLD', ERR=9)

9 TYPE 102, FILNAM
102 FORMAT (' ERROR OPENING FILE ',A)

GO TO 1

This program reads a file specification into the character
variable FILNAM. The file is then opened for processing.
This permits you to specify the input file name at run time.

8-11

)

)

/)

)

)

)

)

)

2-

ts'

J(
If

APPENDIX A

FORTRAN DATA REPRESENTATION

A.l INTEGER*2 FORMAT

15 14 o

BINARY NUMBER

S(sign) 0(+),1(-)

Integers are stored in a two's complement representation. INTEGER*2
values lie in the range -32768 to +32767, and are stored in two
contiguous bytes aligned on an arbitrary byte boundary. For example:

+22 0016(hex)
-7 = FFF9(hex)

A.2 INTEGER*4 FORMAT

31 30

S (sign) =0 (+), 1 (-)

INTEGER*4 values are
INTEGER*4 values lie
value is stored in four
boundary. Note that
value; i.e., -32768 to
as an INTEGER*2 value.

o

BINARY NUMBER

stored in two's complement fep~esentation.
in the range -2147483648 to ~47 83 47. The
contiguous bytes, aligned on an, ar' it~ary byte
if the value is in the range of an INTEGER*2
+32767, then the first word can be referenced

A.3 FLOATING-POINTFORMATS

The exponent for both floating-point formats is stored in excess 128
notation. Binary exponents from -128 to +127 are represented by the
binary equivalents of 0 through 255. Fractions are represented in
sign-magnitude notation with the binary radix point to the left.
Numbers are assumed to be normalized and, therefore, the most
significant bit is not stored, because it is redundant (this is called
"hidden bit normalization").

A-I

0

3
.,J6

FORTRAN DATA REPRESENTATION

This bit is assumed to be a 1 unless the exponent is 0 (corresponding
to 2**-128) in which case it is assumed to be O. The value 0.0 is
represented by an exponent field of 0 and a sign bit of O. For
example, +1.0 would be represented in hexadecimal by:

4080
o

in the 4-byte format, or:

4080
o
o
o

in the 8-byte format. The decimal number -5.0 is:

COAO
o

in the 4-byte format, or:

COAO
o
o
o

in the 8-byte format.

A.3.1 Real Format (4-Byte Floating Point)

A single precision real number is four contiguous bytes starting on an
arbitrary byte boundary. Bits are labeled from the right, 0 through
31.

15 14 7 6 o

S EXPONENT FRACTION

FRACTION

31 16

S (sign) =0 (+), 1 (-)

The form of a single precision real number is sign magnitude, with bit
15 the sign bit, bits 14:7 an excess 128 binary exponent, and bits 6:0
and 31:16 a normalized 24-bit fraction with the redundant most
significant fraction bit not represented. The value of a single
precision real number is in the approximate range: .29*10**-38
through 1.7*10**38. The precision is approximately one part in 2**23,
i.e., typically 7 decimal digits.

A-2

)

)

)

)

)

)

FORTRAN DATA REPRESENTATION

A.3.2 Double Precision Format (a-Byte Floating Point)

A double precision real number is eight contiguous bytes, starting on
an arbitrary byte boundary. Bits are labeled from the right, 0
through 63.

15 14 7 6 o
G __ .,s:,-

S EXPONENT FRACTION
'1,- I

Jr IL
FRACTION

t{ 3

1
1'1 1"'"

FRACTION
l S""

FRACTION .-'! ,<,",

j{

63 48

S (sign) =0 (+), I (~)

The form of a double precision real number is identical to a single
precision real number except for an additional 32 low significance
fraction bits. The exponent conventions, and approximate range of
values are the same as single precision. The precision is
approximately one part in 2**55, i.e., typically 16 decimal digits.

A.3.3 Complex Format

A complex number is eight contiguous bytes, aligned on an arbi~r~ry
byte boundary. The low-ord~r four bytes contain a single precIsion
real number that represents the real part of the complex number. The
high-order four bytes contain a single precision real number that
represents the imaginary part of the complex number.

15 14 7 6 o

S BINARY EXCESS 128 EXP FRACTION

REAL PART

FRACTION

S BINARY EXCESS 128 EXP FRACTION

IMAGINARY PART

FRACTION

63 48

A-3

FORTRAN DATA REPRESENTATION

A.4 LOGICAL*l FORMAT

7 o

DATA ITEM

The range of numbers from +127 to -128 can be represented in LOGICAL*l
format.

A.5 CHARACTER FORMAT

Character data is stored as one character per byte, padded with blanks
if necessary, to fill the data item.

15 8 7 o

CHAR 2 CHAR 1

CHAR 4 CHAR 3

CHAR N (N<255).

A.6 HOLLERITH FORMAT

15 8 7 o

CHAR 2 CHAR 1

CHAR 4 CHAR 3

BLANK = 40 CHAR N (N<255)

Hollerith constants are stored internally one character per byte.
Hollerith values are padded ori the right with blanks to fill the
associated data item if necessary.

A-4

/

)

)

)

)

\

)

FORTRAN DATA REPRESENTATION

A.7 LOGICAL FORMAT

Logical values are stored in
an arbitary byte boundary.
value. If bit 0 is set, the
value is .FALSE ••

LOGICAL*2

15

TRUE:

two or four contiguous bytes, starting on
The low-order bit (bit 0) determines the

value is .TRUE •• If bit 0 is clear, the

1 0

UNDEFINED BITS

A-5

)

)

)

)

)

)

)

)

)

APPENDIX B

DIAGNOSTIC MESSAGES

B.l DIAGNOSTIC MESSAGES OVERVIEW

Diagnostic messages related to a VAX-II FORTRAN IV-PLUS program· can
come from the compiler, the linker, or the Run-Time Library. The
compiler det~cts syntax errors in the source program, such as
unmatched parentheses, illegal characters, misspelled keywords, and
missing or illegal parameters. The Run-Time Library reports errors

. that occur during execution. (Linker messages are summarized in the
VAX-II Linker Reference Manual.)

B.2 DIAGNOSTIC MESSAGES FROM THE COMPILER

The diagnostic messages issued by the compiler describe the error that
has been detected, and in some cases contain an indication of the
action taken by the compiler in response to the error.

Besides reportin~ errors detected in source program syntax, the
compiler will lssue messages indicating errors that involve the
compiler itself, such as I/O errors, stack overflow, etc.

B.2.1 Source Program Diagnostic Messages

Three classes of source program errors are recognized, based on the
severity of the error. These are (from greatest to least severity):

F Fatal; must be corrected before the program can be
compiled. No object file is produced if an F~class error is
detected during compilation.

E Error; not fatal but should be corrected. An object file
is produced in spite of the presence of an E-class error,
but the program will probably not execute properly.

W Warning; issued for statements that use acceptable, but
non-standard syntax, and for statements corrected by the
compiler. An object file is pioduced but you should check
the statements to which a W-class diagnostic message
applies, to make sure the program will produce the correct
result. Note that W-class messages are produced unless the
/NOWARNINGS qualifier is set in the FORTRAN command.

B-1

DIAGNOSTIC MESSAGES

Typing mistakes are a likely cause of syntax errors, and can cause the
compiler to generate misleading diagnostic messages. Beware
especially of the following:

1. Missing comma or parenthesis in a complic~ted expression or
FORMAT statement.

2. Misspelled variable names. The compiler may not detect this
error, so execution can be affected.

3. Inadvertent line continuation mark. This can cause a
diagnostic messaga for the preceding line.

4. Confusion between the digit zero (0) and the upper-case
letter 0, which can result in variable names that appear
identical to you, but not to the compiler.

Another source of diagnostic messages is the inclusion of inva1id
ASCII characters in the source program. With the exception of the
tab, space, and form-feed characters, non-printing ASCII control
characters are not valid in a FORTRAN source program. As the source
program is scanned, such invalid chi3,racters are replaced by -a question
mark (?). However, because? cannot occur in a FORTRAN statement, a
syntax error usually results.

Thus, because the message indicates only the immediate cause, you
should always check the entire source statement carefully.

Figure B-1 shows the form of source program diagnostic messages as
they are displayed at your terminal, in interactive mode. Figure B-2
shows how these messages appear in listings.

%FORT-W-ERROR 83, Extra comma in format list
[FORMAT (13,)] in module MORTGAGE at line 9

%FORT-F-ERROR 69, Undefined statement label
[66] in module MORTGAGE at line 14

%FORT-I-ERRSUM, 2 Errors MORT.FOR.IO

Figure B-1 Sample Diagnostic Messages (Terminal Format)

B-2

)

)

)

)

-)

)

DIAGNOSTIC MESSAGES

C PROGRAM TO CALCULATE MONTHLY MORTGAGE PAYMENTS

0001

0002
0003
0004
0005

10

20

PROGRAM MORTGAGE

TYPE 10
FORMAT (I ENTER AMOUNT OF MORTGAGE I)
ACCEPT 20,IPV
FORMAT (16)

0006 TYPE 30
0007 30 FORMAT (I ENTER LENGTH OF MORTGAGE IN MONTHS I)
0008 ACCEPT 40,IMON
0009 40 FORMAT (13,)
%FORT-W-ERROR 83, Extra comma in format list

[FORMAT (13,)] in module MORTGAGE at line 9

0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021

0022

50

60

65

0023 70
0024
0025
%FORT-F-ERROR

[66]

Figure B-2

TYPE 50
FORMAT (I ENTER ANNUAL INTEREST RATE I)
ACCEPT 60,YINT
FORMAT (F6.4)
GO TO 66
YI = YINT/12 !GET MONTHLY RATE
IMON =-IMON
FIPV = IPV*V,I
YI = YI + 1
FIMON = YI ** IMON
FIMON = I-FIMON
FMNTHLY = FIPV/FIMON

TYPE 70,FMNTHLY
FORMAT (I MONTHLY PAY~ENT EQUALS I, F7.3)
STOP
END

69, Undefined statement label
in module MORTGAGE at line 14

Sample Diagnostic M~ssages (Listing Format)

B-3

DIAGNOSTIC MESSAGES

Table B-1
Source Program Diagnostic Messages

Message
Number Text/Meaning

1 F Statement too complex

A statement is too complex to be compiled. It must be
subdivided into two or more statements.

2 F Compiler expression stack overflow

3

An expression is too complex or there are
actual arguments in a subprogram reference.
of 60 actual arguments can be compiled.
subdivide a complex expression, or reduce the
arguments.

F Too many named COMMON blocks

Reduce the number of named COMMON blocks.

too many
A maximum

You can
number of

4 F Source line too long, compilation terminated

5

A source line longer than 88 characters was encountered.
NOTE: The compiler examines only the first. 72
characters on a line.

E Too many continuation lines, remainder ignored

Up to 99 continuation lines are permitted, as determined
by the /CONTINUATIONS=n qualifier (default, 19).

6 F Syntax error in INCLUDE file specification

Th~ file name string is not acceptable (invalid syntax,
invalid qualifier, undefined device, etc.).

7 F Open failure on INCLUDE file

The specified file could not be opened, possibly due to
an incorrect file specification, non-existent file,
unmounted volume, or a protection violation.

8 F INCLUDE files nested too deeply

Reduce the level of INCLUDE nesting or
number of continuation lines permitted.
file requires space equivalent to two
lines.

9 W Invalid statement label ignored

increase the
Each INCLUDE
continuation

An improperly formed statement label (e.g., containing
letters) has been detected in columns 1 - 5 of an
initial line. The statement label is ignored.

(continued on next page)

8-4

)

)

)

)

)

)

)

)

)
/

Message
Number

10

DIAGNOSTIC MESSAGES

Table 8-1 (Cont.)
Source Program Diagnostic Messages

Text/Meaning,

W Redundant continuation mark ignored

A continuation mark was detected where an initial line
is required. The continuation mark ~s ignored.

11 E Extra characters following a valid s :~tement

12

Superfluous text was found at the en] of a syntactically
correct statement. Check for typing or syntax errors.

E Overflow
expression

while converting constant or constant

The specified value of a constant is too large or too
small to be represented.

13 E Missing exponent afcer E or D

A flo~ting point constant was specified in E or D
notation, but the exponent was omitted •.

14 E Missing apostrophe in character constant

15

A character constant must be enclosed by apostrophes.

E Zero-length string

The length specified for a character, Hollerith,
. hexadecimal, octal or Radix~50 constant must not be

zero.

16 E String constant truncated to maximum length

17

A character or Hollerith constant can contain up to 255
charactets. A Radix-50 constant can contain up to 12
characters.

E Count of Hollerith or Radix50 constant too large,
reduced

The value specified by the integer preceding the H or R
is greater than the. number of characters remaining in
the source statement.

(continued on next page)

8-5

DIAGNOSTIC MESSAGES

Table B-1 (Cont.)
Source Program Diagnostic Messages

Message
Number Text/Meaning

18 E Invalid character used in constant

20

An invalid character was detected in a constant.
characters are:

Hexadecimal:
Octal:

o - 9, A - F, a- f
0-7

Valid

Radix-50: A - Z, 0 - 9, $~ period, or space

For Radix-50, a space is substituted for
character. For hexadecimal and octal,
constant is set to zero.

F Missing variable or subprogram name

the
the

invalid
entire

A required variable name or subprogtaa name was not
found.

21 F Missing constant

A required constant was not found.

22 F Missing variable or constant

An expression, or a term of an expression, has been
omitted. Examples:

WRITE ()
DIST = .*TIME

23 F Missing operator or delimiter symbol

Two terms of an expression are not separated by an
operator, or a punctuation mark (such as a comma) has
been omitted. Examples:

CIRCUM
IF (I

= 3.14 DIAM
10,20,30

24 F Missing statement label

A required statement label reference was omitted.

25 F Missing keyword

A required keyword, such as TO, was omitted from a
statement such as ASSIGN 10 TO I.

26 F Non-integer expression where integer value required

An expression that must be of type INTEGER was another
data type.

(continued on next page)

)

)

)

)

)

)

)

'Message
Number

DIAGNOSTIC MESSAGES

Table B-1 (Cont.)
Source 'Program Diagnostic Messages

Text/Meaning

27 F N6n-logical expression where logical value required

An expression that mu.t be of type LOGICAL was another
data type.

28 F Arithmetic expression where character value required

29

An expression that must be of type CHARACTER was another
data type.

F Character expression where arithmetic value required

An expression that must be arithmetic (INTEGER, REAL,
LOGICAL, DOUBLE ,PRECISION, or COMPLEX) was of type
CHARACTER.

30 F Variable name, constant, or expression invalid in this

31

32

33

context

A quantity has been used incorrectly: for exampl~, the
name of a subprogram was used 'where an arithmetic
expression is required.

F Operation not permissible on these data types

An invalid operation was specified, such as .AND.
two real var iables.'

E Arguments incompatible with function, assumed
supplied

of

user

A function reference was made, using a processor-defined
function name, but the argument list does not agree in
order, number, or type with the processor-defined
function requirements. The function is assumed to be
supplied by you as an EXTERNAL function.

F Subscripted reference to non-array variable

A variable that is not defined as an array cannot appear
with subscripts. ~

34 E Substring reference used in invalid context

A substr ing reference has beE!n detected to a v,ar iable or
array that is not of type CHARACTER. Example:

REAL X(lO)
Y = X(J:K)

35 F Number of subscripts does not match array declaration

More or fewer dimensions are referenced than were
declared for the array.

(continued on next page)

B-7

Message
Number

DIAGNOSTIC MESSAGES

Table 8-1 (Cont.)
Source Program Diagnostic Messages

Text/Meaning

36 E More than 7 dimensions specified, remainder ignored

An array can be defined as having up
dimensions.

to seven

37 F Non-constartt stlbsczipt where constant required

Subscript a.nd substring expressions used in DATA and
EQUIVALENCE statements must be constants.

38 E Adjustable array bounds must be dummy arguments or in
COMMON

Variables specified in dimension declarator expressions
must either be subprogram dummy arg'uments or appear in
COMMON.

39 F Adju~table array ~sed in invalid context

A reference was made to an adjustable array in a context
where such a reference is not allowed.

40 F Passed length char~cter name used in invalid context

41

42

A reference was made to a passed length character array
or variable in a context where such reference fg nat
allowed.

E Subscrip1: or substring expression value out of bounds

An array eleme'nt beyond the specified dimensions, o,r a
character substring outside the specified bounds, has
been refe~enced.

'E Lower bound greater than upper
declaration

bound in

, The' upper bou'I'1d ota dimension declarator must be
to or greater than the lower bound.

array

equal

43 F Chara'cter substring limits out ,of order

The firs'f.· character positio'n of a s'ubstr ing
is g.reater than the last character positio'l'l:.

, C(5: 3)

elCpression
Example:

(continued on next page)

,8-8

)

)

)

)

/

)

)

)

)

)

DIAGNOSTIC MESSAGES

Table B-1 (Cont.)
Source Program Diagnostic Messages

Message
Number Text/Meaning

44 , F Invalid use of FUNCTION name in CALL statement

A CALL statement referred to a subprogram name that was
used as a character function; or a CALL statement that
included alternate return specifiers referred to a name
that was defined as a data type other than INTEGER*4.

Examples.;

1. IMPLICIT CHARACTER*lO(C)
CSCAL = CFUNC(X)
CALL CFUNC(X)

2. REAL*4 TCB
CALL TCB(Y,&lOO)

45 E %VAL, %REF, or %DESCR used in invalid context

46

The argument list built-in functions (%VAL, %REF,
%DESCR) cannot be used outside an actual argument list.
Example:

x = %REF (Y)

F Invalid argument to %VAL, %REF, %DESCR, or %LOC

The ar'gument spe'cified for one of the built-in functions
is not valid. For example:

%VAL (3.5DO) - argument cannot be double precision,
character, or complex.

%LOC (X+Y) -argument must not be an expression.

47 F Alternate return label used in invalid context

An alternate returq argument was used in a function
reference.

50 W Name longer than 15 characters

A symbolic name has been trunc.ated to 15 characters.

51 F Multiple declaration of name

A name appears in two or more inconsistent declaration
statements.

52 E Multiple declaration of data type for variable, first
used

A variable
declaration
used.

appears in
!;ltatement.

B....;9

more than one data type
The first type declaration is

(continued on next page)

DIAGNOSTIC MESSAGES

Table B-1 (Cont.)
Source Program Diagnostic Messages

Message
Number Text/Meaning

53 E Syntax error in IMPLICIT statement

Improper syntax was used in an IMPLICIT statement.
Refer to the VAX-II FORTRAN IV-PLUS Language Reference
Manual for the syntax rules.

54 E Letter mentioned twice in IMPLICIT statement, last used

A letter has been given an implicit data type more than
once. The last data type given is used.

55 F Incorrect length modifier in declaration

An unacceptable length has been specified in a data type
declaration (see "Type Declaration" in the VAX-II
FORTRAN IV-PLUS Language Reference Manual). Example:

INTEGER PIPES*8

56 F Left side of assignment must be variable or array

57

58

element

The symbolic name to which the value of an expression is
assigned must be a variable, array element, or character
substring reference.

E Length specified
declaration

must match character function

The length specifications for all ENTRY names
character function subprogram must be the
Example:

CHARACTER*15 FUNCTION F
CHARACTER*20 G
ENTRY G

F Inconsistent function data types

in a
same.

All entry names in a function subprogram must be either
character or numeric. Example:

CHARACTER*15 FUNCTION F
REAL X
ENTRY X

60 F Undimensioned array or function definition out of order

Either a statement function definition has been found
among executable statements, or an assignment statement
has been detected involving an array for which
dimensions have not been given.

(continued on next page)

B-IO

)

)

)

)

)

)

)

)

DIAGNOSTIC MESSAGES

Table B-1 {Cont.)
Source Program Diagnostic Messages

Message
Number Text/Meaning

61 E Statement out of order, statement ignQred

The order of statements was not as specified in the
VAX-II FORTRAN IV-PLUS Language Reference Manual. The
statement found out of order is ignored.

62 E Statement not valid in this program unit, statement

63

ignored

A program unit contains a statement that is not allowed;
for example, a BLOCK DATA subprogram contains an
executable statement.

F Statement cannot appear in logical IF statement

A logical IF statement must not contain a DO statement
or another logical IF, IF THEN, ELSEIF, ELSE, ENDIF, or
END statement.

64 WNo path to this statement

Program control cannot reach this statement. The
statement is deleted.

Example:

10 1=1+1
GO TO 10
STOP

65 E Missing END statement, END is assumed

66

An END statement was missing at the end of the last
input file, and has been inserted.

W Statement cannot be labeled, label ignored

A label was placed on a statement that does not permit
labels. The label is ignored.

67 E Inconsistent usage of statement label

Labels of executable statements have been confused with
labels of FORMAT statements.

Example:

GO TO 10
10 FORMAT (IS)

68 E Multiple definition of a statement label, second ignored

The same label appears on more than one statement. The
first occurrence of the label is used.

(continued on next page)

B-11

DIAGNOSTIC MESSAGES

Table 8-1 (Cont.}
Source Program Diagnostic Messages

Message
Number Text/Meaning

69 F Undefined statement label

Reference has been made to a statement label that is not
defined in the program unit.

70 F DO and IF statements nested too deeply

DO loops and block IF statements cannot be nested beyond
20 levels.

71 F DO or IF statement incorrectly nested

One of the following conditions was found:

1. A statement label specified in a DO statement has
been used previously.

Example:

10 1=1+1
J=J+l
DO 10 K=l,lO

· · ·
2. A DO loop contains an incomplete DO loop or IF

block.

Examples:

DO 10 1=1,10
J=J+l
DO 20 K=l,lO

J=J+K
10 CONTINUE

The start of the incomplete IF block can bea
IF~ ELSEIF or ELSE statement.

DO 10 1=1,10
J=J+I
IF (J.GT.20) THEN

·J'=J"-l
ELSE

J=J+l
10 CONTINUE

ENDIF

block

(con:tinued on next page)

8-12

\

)

)

)

)

)

)

)

)

)

)

DIAGNOSTIC MESSAGES

Table 8-1 (Cont.)
Source Program Diagnostic Messages

Message
Number Text/Meaning

72 F Invalid control structure using ELSE IF; ELSE, or ENDIF

The order of ELSEIF, ELSE, or ENDIF statements is
incorrect.

ELSEIF, ELSE, and ENDIF statements cannot stand alone.
ELSEIF and ELSE must be preceded by either a block IF
statement or an ELSEIF statement. ENDIF must be
preceded by either a block IF, ELSEIF, or ELSE
statement.

Examples:

DO 10 1=1,10
J=J+I
ELSEIF (J.LE.K) THEN

Error: ELSEIF preceded by a DO statement.

IF (J.LT.K) THEN
J=I+J

ELSE
J=I-J

ELSEIF (J.EQ.K) THEN
ENDIF

Error: ELSElF preceded by an ELSE statement.

73 F Unclosed DO loop or IF block

74

The terminal statement of a DO loop or the ENDIF
statement of an IF block was not found.

Example:

DO 20 1=1,10
X=Y
END

W Statement cannot terminate a DO loop

The terminal statement of a DO loop cannot be a GO TO,
arithmetic IF, RETURN, block IF, ELSE, ELSEIF, ENDIF, DO
or END state~ent.

75 E ENTRY Within pO J,.oqp or IF block, statement ign:ored

An ENT.RYstatement is not allowed within' the range of a'
DO loop o.r;rF block,.

76 . W Assigmnent to~Oi va:r:i!able within loop

The controil! .var,iable of a DO loop nas bee,n alter.ed
within ther~n§}eo:f tbe DOstate~ent.

.(continl;!ed on ne)Ct page)

Message
Number

77

DIAGNOSTIC ME'SSAGES

'Table 8-1 (Cont.)
Source Progra~ Diagnostic Messages

Text/Meaning

F Alternate return
subprogram

specifier invalid in FUNCTION

The argument list of a FUNCTION declaration contains an
asterisk, or a RETURN statement in a function subprogram
~pec~fies an alternate return. .

Examples:

1. INTEGER FUNCTION TC8(ARG,*,X)

2. FUNCTION IMAX

RETURN I+J
END

78 E Alternate return omitted in ·SUBROUTINE or ENTRY statement

An asterisk is missing in the argument list of
subroutine for which an alternate return is specified.

For example:

SUBROUTINE XYZ(A,B)

RETURN 1

Or:

ENTRY MIN(Q,R)

. RETURN 1+4

80 E Format groups nested too deeply

Format groups cannot be nested beyond eight levels.

81 E Unbalanced parentheses in format list

a

The number of right parentheses does not match the number
of left parentheses.

82 E Missing separator between format items

A required separator character has been omitted between
fields in a FORMAT statement.

(continued on next page)

8-14

)

)

)

)

)

)

)

)

)

Message
Number

83

DIAGNOSTIC MESSAGES

Table B-1 (Cont.)
Source Program Diagnostic Messages

Text/Meaning

W Extra comma in format list

Example: FORMAT (14,)

84 E Constant in format item out of range

85

86

A numeric value in a FORMAT statement exceeds the
allowable range. Refer to the VAX-II FORTRAN IV-PLUS
Language Reference Manual.

E Format item contains meaningless character

An invalid character or a syntax error was detected in a
FORMAT statement.

E Format item cannot be signed

A signed constant is valid only with the P format code.

87 E Missing number in format list

Example: FORMAT (F6.)

88 E Extra number in format list

Example: FORMAT (14,3)

89 F Invalid I/O specification for this type of I/O statement

90

A syntax error was found in the portion of an I/O
statement that precedes the I/O list.

Examples:

TYPE (6),J
WRITE 100,J

F Format specifier in error

The format specifier in an I/O statement is invalid. It
must be one of the following:

• label of a FORMAT statement

• * (list directed)

• a run-time format specifier: variable, array
element, or character substring reference.

91 E END= or ERR= specification given twice, first used

Two instances of either END= or ERR= were found.
Control is transferred to the location specified in the
first occurrence.

(continued on next page)

B-15

'Message
Number

92

93

94

95

96

97

100

101

F

F

F

DIAGNOSTIC MESSAGES

Table 8-1 (Cont.)
Source Program Diagnostic Messages

Text/Meaning

Syntax error in I/O list

Improper syntax was detected in an I/O list.

Missing I/O list

An I/O list was not present where required.

Invalid I/O list element for input statement

An input statement I/O list contains an invalid element,
such as an expression or a constant.

F Duplicated keyword in OPEN/CLOSE statement

F

F

E

Each keyword subparameter in an OPEN or CLOSE statement
can be specified only once.

UNIT= keyword missing in OPEN/CLOSE statement

An OPEN or CLOSE statement must include the UNIT=
subparameter.

Incorrect keyword in CLOSE statement

A CLOSE statement contains a keyword that is valid only
in an OPEN statement.

\

Number of names exceeds number of values in DATA
statement

The number of constants specified in a DATA statement
must match the number of variables or array elements to
be initialized. The remaining variables and/or array
elements are not initialized.

E Number of values exce'eds number of names in DATA
st_9temen1:

The number of vat iables oc qrtay elements t·o be
initialized must match the number of constants specified
in a DAT~~tatement. Tlre remai-ning cons!;,qnt values are
i90-ored •

102 E .Inyalid re;pe.at. cOllnt in DATA statement, count ignored

.; ',J1he repe§t C'ouritin (t- DATA statement i~ not an unsigned,
non2,ero integer COfista'nt. It i.s ignoredr

103' I' E totisttlnt si..ze e~ce~ds varfable size in DATA statement ,

If sonst.4fi.t in' ~ r:I~Tl¥ statement is 1~irger than its
c!or-responding var iable.

(continued on ne~t page)

$-16

)

)

)

)

)

)

)

)

)

\

Message
Number

DIAGNOSTIC MESSAGES

Table B-1 (Corit.)
Source Program Diagnostic Messages

Text/Meaning

104 E Character name incorrectly initialized with numeric

105

106

107

value

Character data with
initialized with a
Example:

a length greater than 1 was
numeric value in a DATA statement.

CHARACTER*4 A
DATA A/H/

F Program storage requirements exceed addressable memory

The storage space allocated to the variables and arrays
of the program unit exceeds the addressing range of the
machine.

F Variable inconsistently equivalenced to itself

EQUIVALENCE
relationships
Example:

statements specify
between variables or

EQUIVALENCE (A (1) ,A (2))

inconsistent
array elements.

F Invalid equivalence of two variables in COMMON

Variables in COMMON cannot be equivalenced to each
other.

108 F EQUIVALENCE statement incorrectly expands a COMMON block

A COMMON block cannot be extended beyond its beginning
by an EQUIVALENCE statement.

109 W Mixed numeric and character elements in COMMON

A COMMON block must not contain both numeric and
character data.

110 W Mixed numer ic and character elements in EQUIVAL.ENCE

Numeric and character variable and array elements cannot
be equivalenced to each other.

III E Invalid initialization of variable not in COMMON

An attempt was made, ina BLOCK DATA subprogram, to
initialize a variable that is not in a common block.

B.2.2 Compiler-Fatal Diagnostic Messages

Conditions can be encountered of such severity that compilation must
be terminated at once. These conditions are caused by hardware
errors, software errors, and errors that require changing the source
program. Table B-2 lists the diagnostic messages that report the
occurrence of such compiler-fatal errors.

B-17

Message

DIAGNOSTIC MESSAGES

Table B-2
Compiler-Fatal Diagnostic Messages

Number Text/Meaning

201 F Open error on work file on WKO:

202 F Open error on temp file on WKO:

203

204

205

206

207

208

F

F

F

F

F

FORTRAN IV-PLUS creates a temporary work file and zero,
one, or two temporary scratch files during the
compilation process. The compiler was unable to open
these required files. Possibly the volume was not
mounted, space was not available on the volume, or a
protection violation occurred.

I/O error on work file on WKO:

I/O error on temp file on WKO:

I/O error on source file

I/O error on object file

I/O error on listing file

I/O errors report either hardware I/O errors, or
software error conditions such as an attempt to write on
a write-protected volume.

F Compiler dynamic memory overflow

Reduce the number of continuation lines allowed or
reduce the INCLUDE file nesting depth.

209 F Compiler work file overflow

210

A single program unit is too large to be compiled.
Specify /WORK FILES=3 or divide the program into smaller
units. -

F Compiler internal consistency check

An internal consistency check has failed. This error
should be reported to DIGITAL in a Software Performance
Report.

211 F Compiler control stack overflow

The compiler's control stack overflowed. Simplifying
the FORTRAN source program will correct the problem.

212 F Branch displacement out of range

A label referenced by a GO TO statement is beyond the
displacement limits of a branch in the generated code.
Modify the source program to reduce the distance between
the GO TO and its reference. (See "Compiler Limits,"
Section B.2.3.)

B-18

)

)

)

)

)

)

)

)

DIAGNOSTIC MESSAGES

B.2.3 Compiler Limits

There are limits to the size and complexity of a single VAX-II FORTRAN
IV-PLUS program unit. There are also limits on the complexity of
FORTRAN statements. In some cases, the limits are readily described;
see Table B-3. In other cases, however, the limits are not so easily
defined.

For example, the compiler uses external work files to store the symbol
table and a compressed representation of the source program.
number of work files is controlled by the /WORK FILES qualifier:
maximum is 3, which provides space for approximately 2000 or
lines of source code in a typical FORTRAN program unit. If you
out of work file space, error 209 occurs.

The
the

more
run

In some cases, the limits can be adjusted by re-linking the compiler
and modifying the limits to suit your needs. Table B-3 shows two
values for such limits, in the form m(n), where m is the default limit
and n is the maximum. Limits for which only one value is shown are
not adjustable.

Table B-3
Compiler Limits

Language Element

DO and block-IF statement nesting
(combined)

Actual arguments per CALL or function
reference

Named COMMON blocks

Format group nesting

Labels in computed or assigned
GO TO list

Parentheses nesting in expressions

INCLUDE file nesting

Continuation lines

FORTRAN source line length

Symbolic name length

Constants
Character, Hollerith
Radix-50

Array dimensions

B-19

Limit

20 (many)

60

44 (250)

8

250

40 (many)

10

99

88 characters

15 characters

255 characters
12 characters

7

DIAGNOSTIC MESSAGES

Error 212 occurs if a branch instruction and its target statement are
too far apart. The compiler generates references to executable code
within a single program unit by means of 8-bit and 16-bit relative
displacements. Thus, a jump must not cross more than 32K bytes.

You will not reach this limit if a program unit results in no more
than 32K bytes of generated code. You are more likely to reach the
work file limit first.

The amount of data storage, the size of arrays, and the total size of
executable programs are limited only by the amount of process virtual
address space available, as determined at system generation.

B.3 RUN-TIME DIAGNOSTIC MESSAGES

Errors that occur during execution of your FORTRAN program are
reported by diagnostic messages from the Run-Time Library. These
messages may result from: hardware conditions~ file system errors;
errors detected by RMS; errors that occur during transfer of data
between the progr~m and an internal record; computations that cause
overflow or underflow; incorrect calls to the Run-Time Library; and
problems in array descriptions and conditions detected by the
operating system. Refer to the VAX~ll Common Run-Time Procedure
Library Reference Manual for more information.

B.3.1 Run-Time Library Diagnostic Message Presentation

Run-Time Library diagnostic messages are usually sent to either your
terminal (interactive mode) or the log file (batch mode) •

B.3.2 Run-Time Library Diagnostic Messages

Table B-4 lists the Run-Time library messages.

There is a HELP file available, which contains these error messages
and descriptive text. Thus you can print the descriptive text at your
terminal, on-line. For example, to print the text for a file system
error (such as a rewind error), type in the following:

HELP ERROR FOR$_REWERR

The condition symbols corresponding to the message numbers are listed
in Table 6-1. For more information about the run-time HELP file, see
the VAX-II Common Run-Time Procedure Library Reference Manual.

B-20

)

)

)

)

\

!

)

)

DIAGNOSTIC MESSAGES

Table B-4
Run-Time Diagnostic Messages

Messages 20 through 48 indicate errors related to the file system.
(No message numbers from 2 to 19 are used.)

Message
Number

1

20

21

22

23

24

Text/Meaning

NOT A FORTRAN-SPECIFIC ERROR

This message indicates that the Run-Time Library
encountered an error that was not caused by a
condition peculiar to FORTRAN. That is, it was a
condition not described by any other message in this
table.

REWIND ERROR

An error condition was
RMS$REWIND operation
beginning.

detected by RMS during an
used to position a file at its

DUPLICATE FILE SPECIFICATIONS

Multiple attempts were made to specify file
attributes without an intervening close operationr
i.e., DEFINEFILE followed by an OPEN statement or
DEFINEFILE followed by DEFINEFILE.

INPUT RECORD TOO LONG

Your program tried to read a record longer than the
maximum record size. To read the file, use an OPEN
statement with a RECORDSIZE value of the appropriate
size.

BACKSPACE ERROR

One of the following has occurred:

1. BACKSPACE was attempted on a file opened for
appending

2. RMS detected an error condition during the
RMS$REWIND operation used to rewind the file

3. RMS detected an error condition while reading
forwa~d to the desired record.

END-OF-FILE DURING READ

Either an end-file record produced by the ENDFILE
statement or the RMS end-of-file condition was
encountered during a READ statement and no END=
transfer specification was provided.

(continued on next page)

B-21

DIAGNOSTIC MESSAGES

Table B-4 (Cont.)
Run-Time Diagnostic Messages

Messages 20 through 48 indicate errors related to the file system.
(No message numbers from 2 to 19 are used.)

Message
Number

25

26

27

28

29

30

31

32

Text/Meaning

RECORD NUMBER OUTSIDE RANGE

A direct access READ,
specified a record number
in a DEFINEFILE statement
the OPEN statement.

WRITE, or FIND statement
outside the range specified
or in the MAXREC keyword of

OPEN OR DEFINEFILE REQUIRED TO SPECIFY DIRECT ACCESS

A direct access READ, WRITE or FIND operation was
attempted before an OPEN statement specifying
ACCESS='DIRECT', or DEFINEFILE statement was
performed.

MORE THAN ONE RECORD IN I/O STATEMENT

An attempt was made to read or write more than a
single record in a direct access READ or WRITE
statement, or an ENCODE or DECODE statement.

CLOSE ERROR

An error was detected
RMS$DELETE, or RMS$SPOOL
attempted to close the file.

FILE NOT FOUND

during an
operation,

RMS$CLOSE,
when RMS

A file with the specified name could not be found
during an open operation.

OPEN FAILURE

RMS detected an error condition during an open
operation. (This message is used when the error
condition is not one of the more common conditions
for which specific error messages are provided.)

MIXED FILE ACCESS MODES

An attempt was made to use both formatted and
unformatted operations, or both sequential and direct
access operations, on the same unit.

INVALID LOGICAL UNIT NUMBER

A logical unit number greater than 99 or less than 0
was used.

(continued on next page)

B-22

)

)

)

DIAGNOSTIC MESSAGES

Table B-4 (Cont.)
Run-Time Diagnostic Messages

Messages 20 through 48 indicate errors related to the file system.
(No message numbers from 2 to 19 are used.)

Message
Number

33

34

35

36

37

38

39

Text/Meaning ..

ENDFILE ERROR

An end-file record may not be writt~n to a direct
access file, a relative file, or to an unformatted
sequential file that does not contain segmented
records.

UNIT ALREADY OPEN

An OPEN statement or DEFINEFILE statement was
attempted that specified a logical unit already
opened for input/output.

SEGMENTED RECORD FORMAT ERROR

Invalid segmented record control data was detected in
an unformatted sequential file. The file wa~
probably either created with RECORDTYPE='FIXED' or
'VARIABLE' in effect, or written by a language other
than FORTRAN.

ATTEMPT TO READ NON-EXISTENT RECORD

One of the following has. occurred: .

• A direct access read to a relative file has been
attempted, specifying a record that was either
never written, or deleted.

• A direct access read has been attempted,
specifying a record beyond end-of-file.

INCONSISTENT RECORD LENGTH

An existing direct access file was opened whose
record length attribute is not the same as specified
in the OPEN or DEFINEFILE statement.. It is possible
the file was not created as a direct access file.

ERROR DURING WRITE

RMS detected an error condition while writing.

ERROR DURING REAO

RMS detected an error condition while reading.

(continued on next page)

B-23

DIAGNOSTIC MESSAGES

Table B-4 (Cont.)
Run-Time Diagnostic Messages

Messages 20 through 48 indicate errors related to the file system.
(No message numbers from 2 to 19 are used.)

Message
Number

40

41

42

43

44

45

Text/Meaning

RECURSIVE I/O OPERATION

I/O was attempted on a logical unit while that unit
was involved in a precedingljO operation. This can
happen if a function that performs I/O to the same
logical unit is referenced in an expression in an I/O
list; or if a condition handler executes an I/O
statement in response to an exception from an I/O
statement for the same logical unit. Note that I/O
can be performed to a different logical unit.

INSUFFICIENT VIRTUAL MEMORY

The FORTRAN I/O library attempted to exceed its
virtual page limit while dynamically allocating space
for an I/O statement.

NO SUCH DEVICE

A filename specification included an invalid device
name when an open operation was attempted.

FILE NAME SPECIFICATION ERROR

The filename string used in an OPEN statement is
syntactically invalid, or is otherwise not acceptable
to the operatinq system.

RECORD SPECIFICATION ERROR

The RECORDSIZE value in an OPEN statement or the
record size parameter in a DE,FINEFILE statement is
invalid (0 or negative) or is missing on an attempt
to create a relative file or a file with fixed length
records.

KEYWORD VALUE ERROR IN OPEN STATEMENT

An OPEN statement keyword that requires a value has
an invalid value. The following values are accepted:

a. BLOCKSI.ZE:
b. EXTENDSIZE:
c. INITIALSIZE:
d. MAXREC
e. BUFFERCOUNT
f. RECORDSIZE

B-24

o to 65535
o to 65535
o to 2**31~1
o to 2**31-1
o to 127
32766 for sequential

organization
16380 for relative

organization
9999 for variable

length records
on magnetic tape

(continued on next page)

)

)

)

)

/

)

)

)

)

)

DIAGNOSTIC MESSAGES

Table B-4 (Cont.)
Run-Time Diagnostic Messages

Messages 20 through 48 indicate errors related to the file system.
(NO message numbers from 2 to 19 are used.)

Message
Number

46

47

48

Text/Meaning

INCONSISTENT OPEN/CLOSE PARAMETERS

The specifications in an OPEN and/or subsequent CLOSE
statement indicated one or more of the following:

a. A 'NEW' or 'SCRATCH' file which is
'READONLY'

b. 'APPEND' to a 'NEW' , 'SCRATCH' , or
'READONLY' file

c. 'SAVE' or 'PRINT' on a 'SCRATCH' file
d. 'DELETE' or 'PRINT' on a 'READONLY' file.

WRITE TO READONLY FILE

A write operation was attempted to a file declared to
be READONLY by currently active OPEN.

INVALID ARGUMENT TO FORTRAN I/O LIBRARY

A coded argument is not one of the defined set of
codes on a call to the FORTRAN I/O library. This
cannot occur in a FORTRAN I/O statement unless the
version of the compiler is newer than the version of
the Run-Time Library.

The following messages indicate errors in transmitting data between
a FORTRAN program and an internal record.

59

60

LIST-DIRECTED I/O SYNTAX ERROR

The data in a list-directed input
invalid format, or the type of
incompatible with the corresponding
value of the variable is unchanged.

INFINITE FORMAT LOOP

record has an
the constant is
variable. The

The format associated with an I/O statement that
includes an I/O list has no field descriptors to use
in transferring those variables.

For example:

WRTTE(l,l)X
1 FORMAT (, X= ')

(continued on next page)

B-25

DIAGNOSTIC MESSAGES

Table B-4 (Cont.)
Run-Time Diagnostic Messages

The following messages indicate errors in transmitting data
a FORTRAN program and an internal record.

between

Message
Number

61

62

63

64

66

67

68

Text/Meaning

FORMAT/VARIABLE-TYPE MISMATCH

An attempt was made to input or output a real
variable with an integer field descriptor (I, 0, Z;
or L), or an integer orlogical.variable with a real
field descriptor (0, E, F, or G).

SYNTAX ERROR IN FORMAT

A syntax error was encountered while the Run-Time
Library was processing a format stored in an array.

OUTPUT CONVERSION ERROR

During a formatted output operation the value of a
particular number could not be output in the
specified field length without loss of significant
digits. The field is filled with asterisks.

INPUT CONVERSION ERROR

During a formatted input operation an invalid
character was detected in an input field, or the
input value overflowed the range representable in the
input variable. The value of the variable is set to
zero.

OUTPUT STATEMENT OVERFLOWS RECORD

An output statement specified an I/O list that
exceeds the maximum record size specified. The
record size is specified by the RECORDSIZE keyword of
the OPEN statement, or by the record length attribute
of an existing file.

INPUT STATEMENT REQUIRES TOO MUCH DATA

A READ statement attempted to input more data than
existed in the record being read. For example, the
I/O list might have too many elements.

VARIABLE FORMAT EXPRESSION VALUE ERROR

The value of
within the
for example,
zero.

a variable format expression is not
range acceptable for its intended use;
a field width less than or equal to

(continued on next page)

B-26

)

)

)

)

)

)

)

)

DIAGNOSTIC MESSAGES

Table B-4 (Cont.)
Run-Time Diagnostic Messages

The following messages indicate arithmetic overflow and underflow
conditions.

Message
Number

70

71

72

73

74

77

Text/Meaning

INTEGER OVERFLOW

During an arithmetic operation an integer value
exceeded BYTE, INTEGER*2 or INTEGER*4 range. The
result of the operation is the correct low order
part. This error will occur only for program units
compiled with the /CHECK=OVERFLOW qualifier in
effect.

INTEGER ZERO DIVIDE

During an integer mode arithmetic operation an
attempt was made to divide by zero. The result is
set to the dividend, which is equivalent to division
by 1.

FLOATING OVERFLOW

During an arithmetic operation a value exceeded the
largest representable real number. The result of the
operation is set to minus 0.0.

FLOATING ZERO DIVIDE

During' a floating point arithmetic operation an
attempt was made to divide by zero. The result of
the operation is set to minus 0.0.

FLOATING UNDERFLOW

During an arithmetic operation a floating point value
has become less than the smallest representable real
number, and has been replaced with a value of zero.
This error is normally disabled. It may be enabled
by callingLIB$FLT_UNDER.

SUBSCRIPT OUT OF RANGE

An array reference has been detected that is outside
the array as described by the array declarator. This
checking is performed only for program units compiled
with the /CHECK=BOUNDS qualifier in effect.

(continued on next page)

B-27

DIAGNOSTIC MESSAGES

TableB-4 (Cont.)
Run-Time Diagnostic Messages

The following messages result from incorrect
Mathematical Procedures Library.

calls to the

Message
Number

80

81

82

83

84

87

88

89

Text/Meaning

WRONG NUMBER OF ARGUMENTS

A library function was called with an improper number
of arguments.

INVALID ARGUMENT TO MATH LIBRARY

A math library function detect~d an invalid argument
value.

UNDEFINED EXPONENTIATION

Exponentiation was attempted that is mathematically
undefined, e.g., 0.**0. The result is set to minus
0.0 for floating point operations,and 0 for integer
operations.

LOGARITHM OF ZERO OR NEGATIVE VALUE

An attempt was made to take the logarithm of zero or
a negative number. The res~lt is set to minus 0.0.

SQUARE ROOT OF NEGATIVE VALUE

An argument required the
root of a negative value.
0.0.

evaluation of the square
The result is set to minus

SINE OR COSINE SIGNIFICANCE LOST

The magnitude of an argument to SIN or COS, or DSIN
or DCOS was greater than 2**31 or 2**63 respectively,
so that all significance was lost. The result is set
to minus 0.0.

FLOATING OVERFLOW IN MATH LIBRARY

An overflow condition was detected during execution
of a mathematical library procedure. The result is
set to minus 0.0.

FLOATING. UNDERFLOW IN MATH LIBRARY

An underflow condition was detected during execution
of a mathematical library procedure. The result is
set to minus 0.0.

(continued on next page)

B-28

)

)

)

)

)

)

)

)

DIAGNOSTIC MESSAGES

Table B-4 (Cont.)
Run-Time Diagnostic Messages

The following message may be 4isplayed if the dimensions of an
adjustable array are inappropriately defined.

Message
Number Text/Meaning

93 ADJUSTABLE ARRAY DIMENSION ERROR

Upon entry to a subprogram, the evaluation of
dimensioning information has detected an array in
which:

• an upper dimension bound is less than a lower
dimension bound, or

• the dimensions imply an array that exceeds the
addressable memory.

-". ,,"'

B-29

..)

)

)

:>

)

)

APPENDIX C

SYST~M SUBROUTINES

C.I SYSTEM SUBROUTINE SUMMARY

The VAX-II FORTRAN IV-PLUS system provides subroutines you call in the
same manner as a user-written subroutine. These subroutines are
described in this Appendix.

The subroutines supplied are:

DATE

IDATE

ERRSNS

EXIT

SECNDS

TIME

Returns a 9-byte string containing the ASCII
representation of the current date.

Returns three integer values representing the current
month, day and year.

Returns information about the most recently detected
error condition.

Terminates the execution of a program and returns
control to the operating system.

Pr~vides system time of day or elapsed time as a
floating point value in seconds.

Returns an 8-byte
representation of
and seconds.

string containing the ASCII
the current time in hours, minutes

References to integer argum"ents in the following subroutine
descriptions refer to arguments of either type INTEGER*4 or type
INTEGER*2. However, the arguments must be either all INTEGER*4 or all
INTEGER*2. In general, INTEGER*4 variables or array elements may be
used as input values to these subroutines if their value is within the
INTEGER*2 range.

C.2 DATE

The DATE subroutine obtains the current date as set within the system.
The call to DATE has the form:

CALL DATE(buf)

where buf is a 9-byte variable, array, array element or character
substring.

C-l

SYSTEM SUBROUTINES

The date is returned as a 9-byte ASCII character string of the form:

where

dd-mmm-yy

dd is the 2-digit date
mmm is the 3-letter month specification
yy is the last two digits of the year

C.3 IDATE

The IDATE subroutine returns three integer values representing the
current month, day, and year. The call to IDATE has the form:

CALL IDATE(i,j,k)

If the current date were October 9, 1979 the values of the integer
variables upon return would be:

i =
j =
'k =

10
9
79

C.4 ERRSNS

The ERRSNS subroutine returns information about the most recent error
that has occurred during program execution. The call to ERRSNS has
the form:

where

CALL ERRSNS(fnum,rmssts,rmsstv~jlnit,condval)

fnum

is an integer variable or array element into which is stored the
most recent FORTRAN error number.

A 0 is returned if no error has occurred since the last call to
ERRSNS or if no error has occurred since the start of execution.

rmssts

is an integer variable or array element into which is stored the
RMS completion status code if the last error was an RMS I/O
error.

rmsstv

is an integer variable or array element into which is stored the
RMS status value if the last error was an RMS I/O error. This
status value provides additional status information.

iunit

is an integer variable or array element into which is stored the
logical unit number if the last error was an I/O error.

C-2

)

)

)

)

)

)

)

SYSTEM SUBROUTINES

condval

is an integer variable or array element into which is stored the
actual VAX-II condition value. See Chapter 6 for a description
of condition values.

Any of the arguments may be nUll. If the arguments are of INTEGER*2
type, only the low-order 16 bits of information are returned. The
saved error information is set to zero after each call to ERRSNS.

C.S EXIT

The EXIT subroutine causes program termination, closes all files, and
returns control to the operating system. A call to EXIT has the form:

CALL EXIT [(exit-status)]

where (exit-status) is an optional integer argument you can use to
specify the image exit status value.

C.6 SECNDS

The SECNDS function subprogram returns the system time in seconds as a
single precision floating point value less the value of its single
precision floating point argument. The call to SECNDS has the form:

y = SECNDS(x)

where y is set equal to the time in seconds since midnight minus the
user-supplied value of x.

The SECNDS function can be used to perform elapsed time computations.
For example:

C START OF TIMED SEQUENCE
Tl = SECNDS(O.O)

C
C
C

CODE TO BE TIMED

DELTA = SECNDS(Tl)

where DELTA will give the elapsed time.

The value of SECNDS is accurate to 0.01 seconds, which is the
resolution of the system clock.

Notes:

1. The time is computed from midnight. SECNDS also produces
correct results for time intervals that span midnight.

2. The 24 bits of precision provides accuracy to the resolution
of the system clock for about one day. However, loss of
significance can occur if you attempt to compute very small
elapsed times late in the day.

C-3

SYSTEM SUBROUTINES

C.7 TIME

The TIME subroutine returns the current system time as an ASCII
string. The call to TIME has the form:

CALL TIME(buf)

where buf is an8-byte variable, array, array element, or character
substring.

The TIME call returns the time as an 8-byte ASCII character string of
the form:

where

hh:mm:ss

hh is the 2-digit hour indication
mm is the 2-digit minute indication
ss is the 2-digit second indication

For example:

10:45:23

A 24-hour clock is used.

C-4

)

)

)

)

)

)

)

APPENDIX 0

COMPATIBILITY

0.1 COMPATIBILITY: OVERVIEW

VAX-II FORTRAN IV-PLUS is a compatible superset of PDP-II FORTRAN IV
and PDP-ll FORTRAN IV-PLUS. Generally speaking, any PDP-I! FORTRAN
program will run correctly on VAX-II. Execution may be affected in
some cases, however, because of differences in the hardware
architecture of PDP-II and VAX-II computers, and differences between
the IAS/RSX-ll and VAX/VMS operating environments.

The issues discussed in this ap~endix concern differences in language,
run-time support, and utilities provided in the form of subroutines.

0.2 LANGUAGE DIFFERENCES

Differences related to language involve:

1. Logical tests

2. Floating point results

3. Character and Hollerith constants

4. Logical unit numbers

5. Assigned GO TO label list

6. Effect of DISPOSE='PRINT' specification

0.2.1 Logical Tests

The logical constants .TRUE. and .FALSE. are defined, respectively,
as alII's and all O's by both VAX-II FORTRAN IV-PLUS and PDP-II
FORTRAN. The test for .TRUE. and .FALSE. differs, however.

VAX-II FORTRAN IV-PLUS tests the low-order bit (bit 0) of a logical
value. This is the system~wide VAX-II convention for testing logical
values.

PDP-II FORTRAN IV-PLUS tests the sign bit of a logical value; bit 7
for LOGICAL*l, bit 15 for LOGICAL*2, and bit 31 for LOGICAL*4.

PDP-II FORTRAN IV tests the low-order byte of a logical value;
O's is .FALSE., while any non-zero bit pattern is .TRUE.

0-1

all

COMPATIBILITY

In most cases, this difference will have no effect.
significant only for non-standard FORTRAN programs
arithmetic operations on logical values, and then make
on the result.

Example:

LOGICAL*1 BA
BA=3
IF (BA) GO TO 10

It will be
that perform

logical tests

VAX-II FORTRAN IV-PLUS will produce a value of .TRUE., while PDP-II
FORTRAN IV-PLUS will produce .FALSE. PDP-II FORTRAN IV will produce
.TRUE.

0.2.2 Floating Point Results

Differences in math library routine results may occur because of new
implementations of these routines, exploiting the VAX-II instructions.
The VAX-II functions produce results of an accuracy equal to or
greater than the corresponding PDP-II functions, but there may be
differences.

0.2.3 Character and Hollerith Constants

VAX-II FORTRAN IV-PLUS supports both Hollerith and character
constants, with the notations nHa ••• a and 'aaaa' respectively. In
PDP-II FORTRAN IV-PLUS, both notations are used for Hollerith
constants. (Note that Hollerith constants have no data type, but
assume a data type consistent with their use.)

In most cases, the conflicting use of the 'aaaa' notation is not a
problem: VAX-II FORTRAN IV-PLUS can determine from the program
context whether a character or a Hollerith constant is intended.
There is, however, one case in which this is not so. In an actual
argument list for a CALL or function reference, where the subprogram
called is a dummy argument, a constant in the 'aaaa' notation is
always passed as a character constant, never as Hollerith. For
example, given

SUBROUTINE S(F)

CALL F('ABCD')

if the ~ubroutine referenced by F expects a Hollerith constant (i.e.,
the dummy argument is numeric data type), execution will not be
correct. The actual and dummy arguments must agree in data type.
This will not be the case in the example shown. To avoid this
problem, you must change to the nHaaa notation; as:

SUBROUTINE S(F)

CALL F(4HABCD)

0-2

)

)

.~

)

)

)

)

COMPATIBILITY

D.2.4 Logical Unit Numbers

If you do not specify a logical unit number in an I/O statement, a
default unit number will be used. The defaults used by VAX-II FORTRAN
IV-PLUS differ from those used by PDP-ll FORTRAN IV-PLUS, as shown in
Table D-l.

Table D-l
Default Logical Unit Numbers

I/O Statement PDP ·11 Unit VAX-ll Unit

READ 1 -4

PRINT 6 -1

TYPE 5 -2

ACCEPT 5 -3

Note that PDP-II FORTRAN IV-PLUd uses normal logical unit numberS, but
VAX-II FORTRAN IV-PLUS uses unit numbers that are not available to
users. This prevents conflicts between these I/O statements and I/O
statements that use explicit logical unit numbers. This should have
no visible effect on program execution.

0.2.5 Assigned GO TO Label List

The labels specified in an assigned GO TO label list are checked by
the VAX-II FORTRAN IV-PLUS compiler to ensure their validity in the
program unit. However, VAX-II FORTRAN IV-PLUS does not p7rf<;>rm a
check at run time to ensure that a label actually assigned 1S 1n the
list. PDP-II FORTRAN IV-PLUS does perform this check at run time, but
PDP-ll FORTRAN IV does not.

D.2~6 DISPOSE='PRINT r Specification

On some PDP-II systems, the file is deleted after being printed if you
spe-cify DISPOSE= I PRINT I in an OPEN or CLOSE statement. On VAX-II
FORTRAN IV-PLUS, the file is retained after being printed.

D.3 RUN-TIME SUPPORT DIFFERENCES

Differences in run-time support between VAX-II FORTRAN IV-PLUS and
PDP-II FORTRAN are reflected in run-time error numbers, run-time error
reporting, and in some OPEN statement keyword values.

D-3

COMPATIBILITY

D.3.1 Run-Time Library Error Numbers

Programs that use the ERRSNS
because certain PDP-II FORTRAN
deleted from, or redefined in,
numbers affected are:

2 through 14

37 (INCONSISTENT RECORD LENGTH)

subrotitine may need to be modified
run-time error numbers have been either
the VAX-II Run-Time Library. The error

deleted~ these error numbers
reported fatal PDP-II hardware
conditions.

redefined~
allowed.

continuation is not

65 (FORMAT TOO BIG FOR 'FMTBUF') deleted~ this error cannot occur,
because space is acquired
dynamically for run-time formats.

72, 73, 82, 83, 84

75 (FPP FLOATING TO INTEGER
CONVERSION OVERFLOW)

86 (INVALID ERROR NUMBER)

91 (COMPUTED GOTO OUT OF RANGE)

92 (ASSIGNED LABEL NOT IN LIST)

redefined~ floating point
arithmetic errors and math library
errors return -0.0 (a hardware
reserved operand) rather than +0.0.

deleted~ error number
reported instead.

deleted~ error number
reported instead.

70

48

is

is

deleted~ no error is generated by
the VAX-II hardware when this
condition occurs. Program
execution continues in line.

deleted~ as described in Section
D.2.5, VAX-II FORTRAN IV-PLUS does
not perform this check at run-time.

94 (ARRAY REFERENCE OUTSIDE ARRAY) deleted~ error number
reported instead.

77 is

95 through 101 deleted; these error numbers
reported PDP-II FORTRAN errors that
cannot occur in VAX-II FORTRAN
IV-PLUS.

The following error numbers have been added:

35 (SEGMENTED RECORD FORMAT ERROR)

36 (ATTEMPT TO READ NON-EXISTENT RECORD)

48 (INVALID ARGUMENT TO FORTRAN I/O LIBRARY)

77 (SUBSCRIPT OUT OF RANGE)

87 (SINE OR COSINE SIGNIFICANCE LOST)

88 (FLOATING OVERFLOW IN MATH LIBRARY)

89 (FLOATING UNDERFLOW IN MATH LIBRARY)

See Table B-4 for descriptions of these error messages.

D-4

)

)

)

)

)

)

)

)

COMPATIBILITY

D.3.2 Error Handling and Reporting

VAX-II FORTRAN IV-PLUS differs from PDP-II FORTRAN IV-PLUS in the way
it treats error· continuation, I/O errors, and OPEN/CLOSE statement
errors. Chapter 6 describes Run-Time Library error handling.

D.3.2.l Continuing After Errors - In PDP-II FORTRAN, program
execution normally continues after errors such as floating overflow,
until 15 such errors~ have occurred, at which point execution is
terminated. VAX-II FORTRAN IV-PLUS, however,sets a limit of 1 such
error, program execution normally terminates when the first such
error occurs. To change this behavior, you can take one of the
following steps:

• Include a condition handler in your program to change the
severity level of the error. Severity levels of Warning and
Error permit continuation. See Chapter 6.

• Include the ERRSET subroutine (see Section D.4.3). ERRSET
alters the Run-Time Library's default error processing to
match the behavior of PDP-II FORTRAN IV-PLUS.

D.3.2.2 I/O Errors with ERR= Specified

VAX-II FORTRAN IV-PLUS neither generates an error message nor
increments the image error count when an I/O error occurs, if an ERR=
specification was included in the I/O statement. PDP-II FORTRAN both
reports the error and increments the task error count.

D.3.2.3 OPEN/CLOSE Statement Errors

Unlike PDP-ll FORTRAN, VAX-ll FORTRAN IV-PLUS reports only the first
error encountered in an OPEN or CLOSE statement. PDP-II FORTRAN
reports all errors detected in processing the statement.

D.3.3 OPEN Statement Keywords

The space allocation for the INITIALSIZE keyword is contiguous
best-try for VAX-ll FORTRAN IV-PLUS. That is, if you specify an
INITIALSIZE value, and sufficient contiguous space is available,
allocation will be contiguous. If there is not sufficient contiguous
space, allocation will be non-contiguous. In PDP-II FORTRAN IV-PLUS,
allocation of contiguous or non-contiguous space depends on the sign
of the value specified for the INITIALSIZE and EXTENDSIZE keywords.
To be compatible with PDP-ll FORTRAN, VAX-ll FORTRAN IV-PLUS uses the
absolute value of the user-supplied value.

D.4 UTILITY SUBROUTINES

There are a number of utility subroutines available for use with
PDP-II FORTRAN IV-PLUS. All are supplied as part of PDP-II FORTRAN
IV-PLUS, as described in the PDP-II FORTRAN IV-PLUS User's Guide.

D-5

COMPATIBILITY

Six of these subroutines are supplied as a standard part of VAX-II
FORTRAN IV-PLUS (see Appendix C). These subroutines are:

DATE
ERRSNS
EXIT
IDATE
SECNDS
TIME

A new random number generator function is inc'luded in the Run-Tjane
Library. For a description of this function, refer to the VAX-II
Common Run-Time Procedure Library Reference Manual.

The remaining subroutines are provided for purposes of compatibility:
most have been superseded by features included in VAX-II FORTRAN
IV-PLUS, while others are of little applicability on VAX-II syst~ms.
Sections D.4.1 through D.4.I1 describe these routines.

The remainin~ utility subroutines are:

ASSIGN
CLOSE
ERRSET
ERRTST
FDBSET
IRAD50
RAD50
RAN
RANDU
R50ASC
USEREX

D.4.1 ASSIGN Subroutine

The ASSIGN subroutine is used to supply device or file name
information for a logical unit. That is, it allows a device or file
to be assigned to a logical unit. The assignment remains in effect
until the program terminates or until the logical unit is closed by a
CLOSE statement.

The ASSIGN subroutine must be called before the first I/O statement is
issued for that logical unit.

The CALL FDBSET, CALL ASSIGN, and DEFINE FILE statements can be used
together, but none carr be used in conjunction with the OPEN statement
for the same unit.

There are two other ways to assign a device or a file name to a
logical unit number: specify the NAME keywotd in an OPEN statement,
or use the ASSIGN system command.

Format:

CALL ASSIGN (n [,name] [, icnt])

Arguments:

n
an integer value specifying the logical unit number

D-6

)

)

)

)

)

)

\

)

name

icnt

Note:

COMPATIBILITY

a variable, array, array element, or
containing any standard file specification

character constant

an INTEGER*2 value that specifies the number of characters
contained in the string name

If only the unit number is specified, all previously specified
file/device associations pertaining to that unit are nullified,
and the defaults become effective. If icnt is omitted (or
specified as zero), the file specification (if specified) is read
until the first ASCII null character is encountered. If the icnt
argument is specified, then the name argument must also be
specified.

0.4.2 CLOSE Subroutine

The CLOSE subroutine closes the file currently open on a logical unit.

Format:

CALL CLOSE(n)

Argument:

n
an integer value specifying the logical unit

After the file is closed, the logical unit again assumes the default
file name specification.

0.4.3 ERRSET Subroutine

The ERRSET subroutine determines the action taken in response to an
error detected by the Run-Time Library. The VAX-II Condition Handling
Facility provides a more general method of defining actions to be
taken when errors are detected (see Chapter 6).

Format:

CALL ERRSET(number, contin, count, type, log, maxlim)

Arguments:

number
an integer value specifying the error number

contin
a logical value:

.TRUE. - continue after error is detected

.FALSE. - exit after error is detected

0-7

count

type

log

COMPATIBILITY

a logical value:

.TRUE. - count the error against the maximum error limit

.FALSE. - do not count the error against the maximum error
limit

a logical value:

.TRUE. - control passed to ERR=
specified

transfer label, if

.FALSE. - return to routine that detected the error, for
default error recovery

NOTE

PDP-II FORTRAN and VAX-II FORTRAN differ
in this respect: On PDP-II, this value
takes precedence over an ERR=
specification in the I/O statement; on
VAX-II, the specification or omission of
ERR= takes precedence over this value.
That is, if ERR= was specified, control
is transferred on any error, regardless
of the value of type.

a logical value:

.TRUE. - produce an error message for this error

.FALSE. - do not produce an error message for this error

maxlim
positive INTEGER*2 value specifying the maximum error limit. The
default is set to 15 at program initialization.

Notes~

1. The error action specified for each error is independent of
other errors.

2. Null arguments are legal for all arguments except number, and
have no effect on the current state of that argument.

3. An external reference to ERRSET or ERRTST causes a special
PDP-II FORTRAN compatibility error handler to be established
before the main program is called. This special error
handler transforms the executing environment to approximate
that of PDP-II FORTRAN.

0.4.4 ERRTST Subroutine

The ERRTST subroutine checks for a specific error. To perform
appropriate actions in response to errors, you should establish a
condition handler, as described in Chapter 6.

0-8

)

)

)

)

)

)

)

COMPATIBILITY

Format:

CALL ERRTST(i,j)

Arguments:

i

j

an integer value specifying the error number

a variable used for return value of error check

j = 1:
j 2:

error i has occurred
error i has not occurred

Notes:

1. ERRTST resets the error flag for the specified error.

2. ERRTST is independent of the ERRSET subroutine.
subroutine has any direct effect on the other.

Neither

See also Note 3 under ERRSET.

Example:

CALL ERRTST(43,J)
GO TO (10,20)J

20 CONTINUE

If error 43 is detected, a branch is taken to statement 10 (J=l);
error 43 is not detected, control passes to statement 20 (J=2).

D.4.5 FDBSET Subroutine

if

The FDBSET subroutine is used to specify special I/O options. The
recommended method of specifying I/O options is the OPEN statement.

Format:

CALL FDBSET(unit,acc,share,numbuf,initsz,extend)

Arguments:

unit

acc

share

an integer value specifying the logical unit

a character constant specifying the access mode to be used:

'READONLY'
'NEW'
'OLD'
'APPEND'
'UNKNOWN'

read-only access
create a new file
access an existing file
extend an existing sequential file
try 'OLD'; if no such file exists, use 'NEW'

a character constant 'SHARE' indicating that shared access is
allowed

D-9

COMPATIBILITY

numbuf
an INTEGER*2 value specifying the number of buffers to be used
for multibuffered I/O

initsz
an INTEGER*2 value specifying the number of blocks initially
allocated for a new file

extend
an INTEGER*2 value specifying the number of blocks by which to
extend a file

Notes:

1. FOBSET can be used only before issuing the first I/O
statement for the unit.

2. CALL FOBSET, CALL ASSIGN, and the OEFINEFILE statement can be
used together, but none can be used in conjunction with the
OPEN statement for the same unit.

3. The unit argument must be specified. All other arguments are
optional.

0.4.6 IRADSO Subroutine

The IRAOSO subroutine is used to convert Hollerith data to Radix-50
form. IRA050 may be called as a function subprogram if the return
value is desired (format 1, below), or as a subroutine if the return
value is not desired (format 2,below).

Formats:

1. n = IRA050 (icnt,input,output)

2. CALL IRAOSO(icnt,input,output)

Arguments:

n

ient

input

(for function) an INTEGER*~ value indicating how many characters
are converted

an INTEGER*2 value specifying the maximum number of characters to
be converted

a Hollerith string to be converted to Ra-dix-50

l-utput
a numeric Vaciable or array e,.il.em'e·nt.wherethe Radix.:..S0 results
are stored

0-10

- ~,

)

)

)

)

)

COMPATtSILITY

Notes:

1. Three Hollerith characters are packed into each output word.
The number of output words is computed by the expression:

(ICNT+2)/3

Thus if a value of 4 is specified for icnt, two oU:'tput words
will result, even if an input string of only one character is
converted.

2. Scanning of the input characters terminates on the first
non-Radix-SO character in the input string.

D.4.7 RADSO Function

The RADSO function subprogram provides a simplified way to encode six
Hollerith characters as two words of Radix-50 data.

Format:

RADSO(name)

Argument:

name
a numeric variable name or array element corresponding to a
Hollerith string

Note: The RA050 function is equivalent to:

FUNCTION RADSO(A)
CALL IRADSO(6,A,RADSO)
RETURN
END

D.4.S RAN Function

The RAN function subprogtam returns a pseudo-random number as the
function V'alue.

Format:

RAN(il,i2)

Arguments:

i1,i2
INTEGER*2 variables ox array elements .that contain the seed for
comput.ingthe ral}dom Qumber.

Notes:

1. The values of il.and i2 }iXe updated' duri.ng the computationt6
contain the upda'tedse,ed. .

2. The aicjorithm.for computil'lg t.he qmdom .,nu.mber value is
iden:ticalt!o"t:;I;1;e alg9~ri-th!tt u~9' .1..n tl<le ,AA~Iia$illprQ1.lt~ne .(s.e~
Section D. 4 • 9).'

COMPATIBILITY

3. The RAN function is equivalent to:

FUNCTION RAN (11,12)
CALL RANDU (II, 12 ,RAN)
RETURN
END

D.4 .9 RANDU Subroutine

The RANDU subroutine computes a pseudo-random number; as a single
precision value uniformly distributed in the range:

0.0 .LE. value .LT. 1.0

Format:

CALL RANDU(il,i2,x)

Arguments:

i1,i2

x

INTEGER*2 variables or array elements that contain the seed for
computing the random number.

a real variable or array element where the computed random number
,is stored.

Notes:

1. The values of il and i2 are updated during the computation to
contain the updated seed.

2. The algorithm for computing the random number value is as
follows:

If 11=0, 12=0, set generator base

X(n+l) = 2**16 + 3

otherwise

X(n+l) = (2**16+3) * X(n)mod 2**32

Store generator base X(n+l) in 11,12.

Result is X(n+l) scaled to a real value Y{n+l), for 0.0 .LE.
Y (n+!) .LT. 1.

D.4.10 R50ASC Subroutine

The R50ASC subprogram converts Radix-50 values to Hollerith strings.

Format:

CALL R50ASC(icnt,input,output)

D-12

\

)

)

)

)

)

)

)

)

COMPATIBILITY

Arguments:

icnt

input

INTEGER*2 value specifying the number of ASCII characters to be
produced

numeric variable or array element containing the Radix-50 data

output
numeric variable or array element where the Hollerith characters
are to be stored

Notes:

1. The number of words of input equals (icnt+2)/3.

2. If the undefined Radix-50 code is detected, or the Radix-50
word exceeds 174777 (octal), then question marks will be
placed in the output location.

0.4.11 USEREX Subroutine

The USEREX subroutine specifies a routine to be called as part of the
program termination process. This allows clean-up operations in
non-FORTRAN routines.

You can establish a termination handler directly by calling the system
service routine SYS$OCLEXH.

Format:

CALL USEREX(name)

Argument:

name
specifies the routine to be called

Notes:

1. The routine name must appear in an EXTERNAL statement in the
program unit.

2. The user exit subroutine is called as a VAX/VMS termination
handler. See the VAX/VMS System Services Reference Manual
for information regarding termination handlers.

0-13

)

)

)

)

)

)

)

A
Access,

direct, 3-8
record, 3-8
sequential, 3-8

Access privileges, file, 3-11
Addresses, defining, 2-16

specifying when debugging,
2-14

Argument lists, 5-2
Argument list built-in

functions, 5-2
Argument passing, 5-2
Arguments,

condition handler, 6-9
defaults for optional, 5-7
ENTRY statement, 7-7
input address, 5-6
lists, machine code, 5-8
lists, object code, 5-8
output, 5-6
passed length character, 4-4
passing, 5-6, 5-7

ASCII value, 4-7, 4-8
Assigning files to logical

units, 3-6
Assigning logical names with

MOUNT command, 3-6
ASSIGN subroutine, D-6
Attributes, program section,

7-2
Auxiliary I/O, 3-14

B
BACKSPACE statement, 3-14, 8-10
BLOCK DATA statement, 1-20, 7-2
Blocks, common, 8-3

source program, 8-6
BLOCKSIZE keyword, 3-10, 8-10
Bounds checking, 1-7
Branching, conditional, 8-3
Breakpoints, 2-2, 2-8
BRIEF qualifier, 1-13
BUFFERCOUNT keyword, 3-10
Built-in functions, argument

list, 5-2
Byte data, 7-4

c
Call by descriptor, 5-2, 7-7
Call by reference, 5-2, 7-7
Call by value, 5-2, 7-7

INDEX

Call conventions, FORTRAN, 5-1
Calling standard, procedure,

5-1
Calling subroutines from

debugger, 2-16
Calling system services, 5-4,

5-5
Calls, procedure, 5-1
CANCEL BREAK command, 2-8
CANCEL MODULE command, 2-6
CANCEL SCOPE command, 2-6
CANCEL TRACE command, 2-9
CANCEL WATCH command, 2-9
CHAR function, 4-7
Character arguments, passed

length, 4-4
passing, 5-7

Character constants, 4-3, D-2
Character data, 4-1
Character expression length,

finding, 4-8
Character format, A-4
Character function argument

list, 5-11
Character I/O, 4-8
Character library functions,

4-7
Character strings, 4-2
Character substrings, 4-1
Character variables, initializ-

ing, 4-4
CHECK qualifier, 1-7
Checking, bounds, 1-7
CLOSE stat.ement, 8-11
CLOSE subroutine, D-7
Commands,

CANCEL BREAK, 2-8
CANCEL MODULE, 2-6
CANCEL SCOPE, 2-6
CANCEL TRACE, 2-9
CANCEL WATCH, 2-9
CTRL/Y, 2-12
Debugger, 2-3
DEPOSIT, 2-13
EDIT, 1-1
EVALUATE, 2-14
EXAMINE, 2-13
EXIT, 2-12
GO, 2-11
LINK, 1-1
MOUNT, 3-6
RUN, 1-1, 1-14
SET BREAK, 2-8
SET LANGUAGE, 2-5
SET MODULE, 2-6
SET SCOPE, 2-6
SET STEP, 2-12

Index-l

INDEX (Cont.)

Commands (Cont.),
SET TRACE, 2-9
SET WATCH, 2-9
SHOW BREAK, 2-8
SHOW CALLS, 1-17, 2-10
SHOW LANGUAGE, 2-5
SHOW MODULE, 2-6
SHOW SCOPE, 2-6
SHOW TRACE, 2-9
SHOW WATCH, 2-9
STEP, 2-11

Common blocks, 8-3
Common subexpressions, 8-7
Communication,

interprocess, 3-14
remote, 3-15

Compatibility, 0-1
Compiler-fatal diagnostic

messages, B-17, B-18
Compiler limits, B-19
Compiler listing, 1-18
Compiler optimization, 8-3
Compile-time operations on
. constants, 8-5
Compiling a program, 1-5
Complex format, A-3 .
Concatenating source files, 1-5
Concatenation operator, 4-2
Conditional branching, 8-3
Condition codes, 2-18
Condition handlers, 6-1, 6-6

arguments, 6-9
establish, 6-7, 6-9
function return values, 6-10
removing, 6-9
responses, 6-8
user-written, 6-9

Condition signals, 6-7
Condition symbol files, 6-12
Condition sYmbol, 6-4, 6-7, 6-11
Condition value, 6-6, 6-11
Constants, 1-21

character, 4-3, 0-2
compile time operatio~s on,

8-5
Hollerith, 0-2
integer, 7-4

CONTINUATIONS qualifier, 1-8
Control flow, 2-19
Conventions, FORTRAN call, 5-1
Creating and executing a

program, 1-1
Creating efficient source

programs, 8-1
CROSS_REFERENCE qualifier, 1-13
CTRL/Y command, 2-12
Current location, 2-15

o
Data,

byte, 7-4
character, 4-1, 4-3
fixed-point, 7-2
floating point, 7-8, 7-9,

7-10
integer, 7-3
LOGICAL*l, 7-4
numeric, 2-17

Data representation, A-I
DATE subroutine, C-l
DEBUG qualifier, 1-8, 1-14, 1-15
Debugger, 2-1

calling subroutine from, 2-16
commands, 2-3
qualifiers, 2-17
symbol table, 2-4

Debugger, optimization effects
on, 2-18

Declaring character data, 4-3
DECODE statement, 8-10
Defaults for optional arguments,

5-7
Defining addresses, 2-16
Deleted-record control, 3-12
DEPOSIT command, 2-13
%DESCR function, 5-2, 5-3, 5-10
Descriptor, call by, 5-2, 7-7
Device, 1-2
Diagnostic messages, B-1
Direct access, 3-8
Directory, 1-2
Disk file allocation, 3-10
DISPOSE=' PRINT' , 0-3
Divide, zero, 6-14
D_LINES qualifier, 1-9
DO loops, 7-6
Double precision format, A-3

E
EDIT command, 1-1
ENP specification, 6-1, 6-2
ENDFILE statement, 3-14
ENTRY statement arguments, 7-7
Environment, FORTRAN system,

7-1
ERR specification, 6-1, 6-2
Error,

correction, 1-15
messages, B-1
numbers, 0-4 .
processing, 6-1, 0-5
run,:",tirne, 6-4
severity code, 6-3, 6-11

Index-2

')

)

)

)

)

)

)

INDEX (Cont.)

ERRSET subroutine, D-7
ERRSNS subroutine, 6-2, 6-5,

C-2, D-4
ERRTST subroutine, D-8
Establish a condition handler,

6-7, 6-9
EVALUATE command, 2-14
EXAMINE command, 2-13
Examining locations, 2-12
Executable image, 1-12, 7-2
EXECUTE qualifier, 1-12
Executing a program, 1-1, 1-14
EXIT command, 2-12
EXIT subroutine, C-3
EXTENDSIZE keyword, 3-10
EXTERNAL statement, 7-5

F
Fault, reserved operand, 7-10
FDBSET subroutine, D-9
File,

access privileges, 3-11
listing, 1-5, 1-9
map, 1-13
object, 1-5, 1-9
organization, 3-7, 3-11
source, 1-5
specification, 1-2, 3-2

File allocation, disk, 3-10
File specification defaults,

1-3
Filename, 1-2
Filetype, 1-3
Files, concatenating source,

1-5
Files, condition symbol, 6-12
Files to logical units,

assigning, 3-6
FIND statement, 3-14
Finding character expression

length, 4-8
Fixed length records, 3-9
Fixed-point data, 7-2
Floating point data, 7-8, 7-9,

7-10
Floating point format, A-I
Floating point results, D-2
Floating overflow, 6-14
Format,

character, A-4
complex, A-3
double precision, A-3
floating point, A-I
Hollerith, A-4
integer, A-I
logical, \ A-5
LOGICAL*l, A-4
real, A-2
run-time, 8-10

FORMAT statement, 8-10
FORTRAN call conventions,5-1
FORTRAN command, 1-1
FORTRAN command qualifiers,

1-6
FORTRAN I/O system, 8-10
FORTRAN run-time errors, 6-4
FORTRAN system environment,

7-1
FULL qualifier, 1-13
Function, 5-1

CHAR, 4-7
character library, 4-7
%DESCR, 5-2, 5-3, 5-10
generic, 7-5
ICHAR, 4-8
INDEX, 4-8
LEN, 4-8
%LOC, 5-4
processor-defined, 7-4, 7-5
RAD50, D-ll
RAN, D-ll
% REF , 5-2, 5-3, 5-10
return values, 5-4
% VAL , 5-2, 5-3, 5-10, 6-8

G
Generic functions, 7-5
GO command, 2-11

H

Hollerith constants, D-2
Hollerith format, A-4

ICHAR function, 4-8
IDATE subroutine, C-2
14 qualifier, 1-9
Image,

executable, 1-2, 7-2
shareable, 1-13

INCLUDE qualifier, 1-14
INCLUDE statement, 6-12, 8-2
INDEX function, 4-8
Initializing character

variables, 4-4
INITIALSIZE keyword, 3-10, D-5
Input address arguments, 5-6
Input/output, 3-1
Integer constant, 7-4
Integer data, 7-3
INTEGER declaration, 1-9
INTEGER*2 and INTEGER*4, 7-3
,INTEGER*4 format, A-I
Interprocess communication, 3-14

Index-3

INDEX (Cont.)

Invariant computations in
loops, 8-8

I/O,
auxiliary, 3-14
character, 4-8
FORTRAN system, 8-10
statements, 3-1
transfer size, 3-10

lRAD50 subroutine, D-IO
Iteration count, 7-6

K
Keyword,
. BLOCKSIZE, 3-10, 8-10

BUFFERCOUNT, 3-10
EXTENDSIZE, 3-10
INITIALSIZE, 3-10, D-5
NAME,3-5
OPEN statement, 3-10
ORGANIZATION, 3-11
READONLY, 3-11
RECORDSIZE, 3-11
RECORDTYPE, 3-12
SHARED, 3-13
USEROPEN, 3-13

L
Labels, 1-21
Language differences, D-l
LEN function, 4-8
Length, finding character

expression, 4-8
LIB$ESTABLISH, 6-9
LIB$REVERT, 6-9
LIB$SIGNAL, 6-7
LIB$STOP, 6-7
LIBRARY qualifier, 1-14
Limi ts , compile.r, B-19
LINK command, 1-1
Linker input file qualifiers,

1-14
. Linker qualifiers, 1-11
Linking, 1-10
List built-in functions,

argument, 5-2
LIST qualifier, 1-9
Listing,

compiler, 1-18
machine code, 1~19
object code, 1-9
source, 1-19

Listing file, 1-5, 1-9
Lists,

argument, 5-2, 5-11
%LOC function, 5-4
Locating a substring~ 4-8

Location,
current, 2-15
examining a, 2-12
modifying a, 2-12
next, 2-15
previous, 2-15

LOGICAL declaration, 1-9
Logical format, A-5
Logical names, 3-3

assigning with MOUNT command,
3-6

Logical tests, D-l
Logical unit numbers, 3-4, D-3
Logical units, assigning files

to, 3-6
LOGlCAL*l data, 7-4
LOGICAL*l format, A-4
Loops, 8-8

M
Machine code argument lists,

5-8
Machine code listing, 1-19
MACHINE_CODE qualifier, 1-9
Mailbox, 3-14
Map file, 1-13
MAP qualifier, 1-13
Map, storage, 1-21
Messages, B-1

compiler-fatal, B-17
run-time', B-20
source program, B-4

Modifying locations, 2-12
MOUNT command, assigning

logical names with, 3-6

N
Names,

logical, 3-3
program section, 7-2

Network, 3-15
Next location, 2-15
Node, 1-2
NOOPTIMIZE qualifier, 2-19
Numeric data types, 2-17

o
Object code argument lists, 5-8
Object code listing, 1-9
Object file, 1-5, 1-9
OBJECT qualifier, 1-9
OPEN statement, 3-5, 3-10,

8-10, 8-11
OPEN statement keywords, 3-10

Index-4

)

)

)

)

)

)

)

)

INDEX (Cont.)

OPEN statement NAME keyword,
3-5

Operator, concatenation, 4-2
Optimization, compiler, 8-3

effects on debugger, 2-18
OPTIMIZE qualifier, 1-10, 2-19
ORGANIZATION keyword, 3-11
Output address arguments, 5-6
OVerflow,

checking, 1-7
floating, 6-14

p

PARAMETER statement, 8-1
Passed length character

arguments, 4-4
Passing arguments to system

services, 5-6
Passing character arguments,

5-7
Previous location, 2-15
Procedure activation, 6-6
Procedure calling standard,

5-1
Procedure calls, 5-1
Processor-defined functions,

7-4, 7-5
Program interchange, 7-6
Program section, 1-21, 7-1

attributes, 7-2
names, 7-2

PROGRAM statement, 1-20, 7-2
PSECT, 7-1

(see Program section)

Q

Qualifiers, 1-1
BRIEF, 1-13
CHECK, 1-7
CONTINUATIONS, 1-8
CROSS_REFERENCE, 1-13
DEBUG, 1-8, 1-14, 1-15
Debugger, 2-17
D_LINES, 1-9
EXECUTE, 1-12
FULL, 1-13
14, 1-9
INCLUDE, 1-14
LIBRARY, 1-14
Linker, 1-11, 1-14
LIST, 1-9
MACHINE_CODE, 1-9
MAP, 1-13
NOOPTIMIZE, 2-19
OBJECT, 1-9
OPTIMIZE, 1-10, 2-19

Qualifiers (Cont.),
SHAREABLE, 1-12
TRACEBACK, 1-14,1-15
WARNINGS, 1-10
WORK_FILES, 1-10

R
RAD50 function, D-11
RAN function, D-11
RANDU subroutine, D-12
READONLY keyword, 3-11
Real format, A-2
Record access, 3-8
RECORDSIZE keyword, 3-11
Record,

fixed length, 3-9
segmented, 3-9
structure, 3-8, 3-12
variable length, 3-9

RECORDTYPE keyword, 3-12
%REF function, 5-2, 5-3, 5-10
Reference, call by, 5-2
Registers, 1-20
Register binding, 2-18
Relative file organization,

3-7, 3-11
Remote communication, 3-15
Removing condition handlers,

6-9
Representation of 0.0, 7-11
Reserved operand fault, 7-10
Resignal, 6-7
Responses, condition handler,

6-8
RSOASC subroutine, D-12
RUN command, 1-1, 1-14
Run-time diagnostic messages,

B-20 to B-29
Run-time format, 8-10
Run-time library, 6-1, 6-2,

6-3
Run-time support, D-3

s
Scope, specifying when debug-

ging, 2-15
SECNDS subroutine, C-3
Segmented records, 3-9
Sequential access, 3-8
Sequential file organization,

3-7, 3-11
SET BREAK command, 2-8
S,ET LANGUAGE command, 2-5
SET MODULE command, 2-6
SET SCOPE command, 2-6
SET STEP command, 2-12

Index-5

INDEX (Cont.)

SET TRACE command, 2-9
SET WATCH command, 2-9
Shareable image, 1-13
SHAREABLE qualifier, 1-12
SHARED keyword, 3-13
SHOW BREAK command, 2-8
SHOW CALLS command, 1-17, 2-10
SHOW LANGUAGE command, 2-5
SHOW MODULE command, 2-6
SHOW SCOPE command, 2-6
SHOW TRACE command, 2-9
SHOW WATCH command, 2-9
Sign bit tests, 7-11
Signals, condition, 6-7
Signal procedure values, 6-10
Source files, concatenating,

1-5
Source listing, 1-19
Source program diagnostic

messages, B-1, B-4 to B-17
Source program blocks, 8-6
Source programs, creating

efficient,8-l
Specifying addresses when

debugging, 2-14
Specifying scope when

debugging, 2-15
Specifying output files, 1-5
SS$_CONTINUE, 6-10
SS$ RESIGNAL, 6-10
Standard, procedure calling, 5-1
Statement,

BACKSPACE, 3-14, 8-10
BLOCK DATA, 1-20, 7-2
CLOSE, 8-11
DECODE, 8-10
ENDFILE, 3-14
ENTRY, 7-7
EXTERNAL, 7-5
FIND, 3-14
FORMAT, 8-10
FORTRAN, 1-1
INCLUDE, 6-12, 8-2
I/O, 3-1
OPEN, 8-10, 8-11
PARAMETER, 8-1
PROGRAM, 1-20, 7-2

STEP command, 2-11
Storage allocation, 7-2
Storage map, 1-21
Storage unit, 7-2
Strings, character, 4-2
Subexpressions, common, 8-7
Subprograms, 5-1
Subroutines, 5-1
Subroutine, system,

ASSIGN, D-6
calling from debugger, 2-16
CLOSE, D-7
DATE, C-l

Subroutine, system (Cont.),
ERRSET, D-7
ERRSNS, 6-2, 6-5, C-2, D-4
ERRTST, D-8
EXIT, C-3
FDBSET, D-9
I DATE , C 2
lRAD50, D-10
RANDU, D-12
R50ASC, D-12
SECNDS, C-3
USEREX, D-13

Substrings, character, 4-1
locating, 4-8

Symbol definitions, 1-8
Symbol table, debugger, 2-4
Symbol files, condition, 6-12
Symbols, condition, 6-7, 6-11
System services, calling, 5-4,

5-5
System subroutine,

ASSIGN, D-6
calling from debugger, 2-16
CLOSE, D-7
DATE, C-l
ERRSET, D-7
ERRSNS, 6-2, 6-5, C-2, D-4
ERRTST, D-8
EXIT, C-3
FDBSET, D-9
IDATE, C-2
lRAD50, D-10
RANDU, D-12
R50ASC, D-12
SECNDS, C-3
USEREX, D-13

SYS$UNWIND, 6-11

T
TIME subroutine, C-4
Traceback, 1-8
TRACEBACK qualifier, 1-14, 1-15

u
Unit numbers, logical, 3-4, D-3
Unwind, 6-7, 6-8, 6-11
USEREX subroutine, D-13
USEROPEN keyword, 3-13
User-written condition

handlers, 6-9
Utility subroutines, D-5

ASSIGN, D-6
CLOSE, D-7
ERRSET, D-7
ERRTST, D-8
FDBSET, D-9

Index-6

\

)

)

)

)

)

)

)

)

INDEX (Cont.)

Utility subroutines (Cont.),
IRA050, 0-10
RA050, 0-11
RAN, 0-11
RANOU, 0-12
RSOASC, 0-12
USEREX, 0-l3

v
%VAL function, 5-2, 5-3, 5-10,

6-8
Value, call by, 5-2, 7-7
Values, signal procedure, 6-10

Variable length records, 3-9
Version, 1-3

w
WARNINGS qualifier, 1-10
WORK_FILES qualifier, 1-10

z
Zero divide, 6-14

0.0, representation of, 7-11

Index-7

-
)

')
/

)

)
/

)

)

)

)

NOTE:

READER'S COMMENTS

VAX-ll
FORTRAN IV-PLUS
User's Guide
AA-D035A-TE .

This form is for document comments only. DIGITAL will
use comments submit·ted on this form at the company's
discretion. If you require a written reply and are
eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well-organized?
,Please make. suggestions for improvement.

Did you find errors in this manual.? If so, specify the error and the
page number.

Please indicate the type of reader that you mo,st nearly represent.

D' Assembly language programmer

[] Higher-level. language programmer

[] Occasional programmer (experienced)

[] User with little programming experience

[] Student programmer
[] Other (pleasespecify) ________ --'-_________ _

Name __ Date ______________________ __

Organization __ ___

Street __ __

City. ___________________________ State _____________ Zip Code ____________ _
or

Country

- - Do Not Tear - Fold Here and Tape

Do Not Te~/Fold Here

IIIIII

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BEPAID BY ADDRESSEE

RT/C SOFTWARE PUBLICATIONS TW/A14

DIGITAL EQUIPMENT CORPORATION

1925 ANDOVER STREET

TEWKSBURY, MASSACHUSETTS 01876

No Postage
Necessary

if Mailed in the
United States

-I

-I

1

I

I

)

)

)

)

)

