
u
" " "

"
"

Order No. AA·D601A·TC

DAP

" " " "
"

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754.

(

(

(

(

(
:i-_ ..

DECNET

DIGITAL NETWORK ARCHITECTURE

Data Access Protocol

(DAP)

Functional Specification

Version 4.1

March 1978

digital equipment·corporation· maynard. massachusetts

First Printing, March 1978

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright © 1978 by Digital Equipment Corporation

(

(

(

(

(
"

(

(

(

(

(

ABSTRACT

This document describes the features,
message formats, and operation of the
Data Access Protocol (DAP). DAP
provides standardized formats and
procedures for accessing and passing
data between a user process and a file
system existing in a network
environment. It assumes a controlled
conversation path provided by the
network system. In DECnet, this path is
created by the Network Services Protocol
and its associated interface.

iii

(

(

(i

(

(

(

Table of Contents

Section Title Page

1.0 SCOPE 1

2.0 FUNCTIONAL DESCRIPTION 2
2.1 DAP Functions 2
2.2 Relationship to DECnet 2
2.3 Generic Model 3

3.0 MESSAGE FORMATS 6
3.1 Notation 6
3.2 General Message Format 7

(3.3 Configuration Message 8
3.4 Attributes Message 11
3.5 Access Message 19
3.6 Control Message 22
3.7 Continue Transfer Message 25
3.8 Acknowledge Mes~age 26
3.9 Access Complete Message 26
3.10 Data Message 27
3.11 Status Message 27

(
4.0 FILE ORGANIZATION 37

4.1 Types of Files 37
4.2 Record Formats/Attributes 37
4.3 Data Formats 40

5.0 OPERATION 41
5.1 Setting up the Link 41
5.2 Transferring Data over the Link 46
5.3 Closing a File and Terminating

Data Streams 54
5.4 Terminating a Logical Link 54

(
5.5 File Security and Protection 55

APPENDIX A GLOSSARY 56

APPENDIX B RSX/IAS/RT DECNET IMPLEMENTATIONS 57
B1. 0 FAL 57
B2.0 NFARS 57
B3.0 NFT 59

APPENDIX C REVISION HISTORY 60

(

v

Figure

2-1

5-1
5-2
5-3
B-1

Table

2-1
3-1
3-2

3-3

3-4

4-1
5-1

List of Illustrations

Title

Typical DAP Message Exchange (Sequential
File Retr ieval)
Setup Sequence
File Retrieval Sequence
Sequential File Storage
FAL State Diagram

List of Tables

Title

DAP Messages
MAC CODE Field Values
MICCODE Field Values for Use with MACCODE
Values of 2, 10, and 11 Octal .
MICCODE FieldValu~s for Use with MACCODE
Values of 0, 1, 4, 5 ~nd 7 Octal .
MICCODE Field Values with MACCODE Value
of 12 Octal
Conversion Table.
Responses to Se~up Mes~age Errors

vi

Page

5
44
48
49
58

Page

4
28

29

32

36
38
44

(

(

(

(

(

(

(

(

(

(

1.0 SCOPE

This d6cument describes the functions, characteriStics, capabilities,
~nd operation of the Data Ac~ess Protocol (DAP). It is primarily
intended to assist· developers and implementers in understanding how
DAP functions within a system. The document is not intended to
address specific implementations.

The Data Access Protocol Version 4.1 is specifically designed for
remote file access via a file system such as Record Management
Services. Unit Record Devices and terminals can be accessed if
supported by a file sys'tern. When Uni t Record Devices and terminals
are supported by a file system ina device-independent" manner, the
device control features are not supported by DAP.

1

2.0 FUNCTIONAL DESCRIPTION

The Data Access Protocol is a user level proto901. Its primary
purpose is to permit remote file access wi thin the DECnet environment ,(,
independently of the I/O ,structure of the operating system 'being ,
accessed.

2.1 DAP Functions

Within DECne,t, DIGITAL Operating Systems can employ DAP to provide the
following remote file access functions:

1. Retrieve a file from an input device (e.g., a disk file, card
reader, or terminal);

2. Store a file on an output device (e.g., a disk file, line
printer or terminal);

3. Provide ASCII file transportability between nodes;

4. Provide Error Recovery;

5. Allow multiple data streams to be sent over a logical link;

6. Command file execution and submission;

7. Provide for random access of records in a file;

8. Provide for file deletion;

9. Rename files; and

10. List directories.

2.2 Relationship to DECnet

(

(

DECnet is a family of products that create distributed networks from
DIGITAL computers and their interconnecting data links. DECnet
creates a general mechanism for sharing resources and providing
interprocess communications within a distributed data processing
environment. DECnet implementations adhere to a common network (
architecture that defines the structure and protocols used to .
communicate through the network.

The DIGITAL Network Architecture provides a modular design for DECnet.
Its functional components are defined within three distinct layers:
the Physical Link Control Layer, the Network Service Layer, and the
Application Layer. Each layer performs a well-defined set of network
functions (via network protocols) and presents a level of abstraction
and capability to the layer above it:

2

(

(

(

(

(

(

Physical Link Control Layer - The Physical Link Control Layer controls
the physical link operation to ensure
both data integrity and sequentiality.

Network Service Layer

Application Layer

2.3 Generic Model

- The Network Service Layer provides the
mechanism that permits node-to-node
communications and process-to~process
communications between processes in the
same or different nodes. It performs
the network routing, message handling
and information flow control functions.

- The Application Layer supports the
various user services and programs that
utilize the network facilities. These
services and programs must utilize the
network communication mechanism provided
by the Network Services Layer. DAP
resides within the Application Layer.

As an aid toward under~tanding the Data Access Protocol, a generic
model is presented. This model consists of a summa~y of the DAP
messages and a typical DAP message exchange sequence (illustrating how
DECnet Sequential File Retrieval is accomplished between two dialogue
processes).

For a more detailed description of the DAP. message formats and the
protocol operation, refer to Sections 3.0 and 5.0, respectively.

3

Message
..

Configuration
Message

Attributes
Message

Access
Message

Control
Message

Continue-Transfer
Message

Acknowledge
Message

Access Complete
Message

Data Message

Status
Message

Table 2-1. DAP Messages

Function

Used to exchange system capability and
configuration information between DAP
speaking processes. This message is sent
immediately following link establishment.
It contains information about the operating
system, the file system, protocol version,
and buffering ability.

Provides information on how data is being
structured in the file being accessed. The
message contains information on file
organization, data type, format, record
attributes, record length, size, device
characteristics, and security.

Specifies the file name and type of access
requested.

Used to send control information to a file
system and to establ ish data s.treams.

Allows recovery from errors.
retry, skip, and abort.

Used for

Used to acknowledge access commands and
control connect messages used to establish
data streams.

Denotes Termination of Access.

Transfers the file data over the link.

Used to return status and information on
error conditions.

4

(

(

(

(

(

(

(

(

(

Request to Communicate ..

Configuration Information
(e.g., as, File System
DECnet Phase No., and
DAP Version No.)

Data Information
(e.g., Type, Blk Size
and Hecord Size)

File Information Requested

Send information

Request to terminate

Connect Initiate Message

Connect Confirm Message
4

Configuration Message

Configuration Message ..

Attributes Message

Access Message

Attributes Message ..
Acknowledge Message

4

. Control (Initiate Data Stream)

Acknowledge Message ...

..

4

4

4

Control Get

Record 1

• • •
Record N

Status Message

Access Ccimplete Message

Access Complete Response

•

Request Accepted

Similar information
returned from
distant Node

Information Verified

Starts file transfer
Data Sent in records

End-of-file

Request Accepted

Figure 2-1. Typical DAP Message Exchange (Sequential File Retrieval)

5

3.0 MESSAGE FORMATS

3.1 Notation

The following notation is used to describe the DAP messages:

Field (length) : coding = description of field.

where:

Field the name of the field being described.

length the length of the field, which can be indicated in one of
four ways:

1. A number meaning number of 8-bit bytes (octet).

2. A number followed by a "B" meaning number of bits.

3. The letters "EX" meaning extensible field. Extensible fields
are of variable length consisting of 8-bit bytes in which the
high-order bit of each byte denotes whether the next byte is
part of the same field. A 1 means the next byte is part of
this field and a 0 denotes the last byte. Extensible fields
are for bit maps only. Seven bits from each octet are used
as information bits. The notation EX-n means an extensible
field where the maximum length of the field is n bytes.

4. The letters "I-n" means this is an image field, with n being
a number that specifies the maximum length of 8-bit bytes in
the image. The image is preceded by a I-byte count of the
length of the remainder of the field. Image fields are
variable in length and may be null (count=O). Al18-bits of
each byte are used as information bits. The meaning and
interpretation of each image field is defined with that
specific field.

coding the representation type used. Where:

A
B
BM

7-bit ASCII
binary
bit map (in which each bit has a specific meaning)

The following rules apply to the notation:

1. If length and coding are omitted, Field represents a number
of subfields specified in description.

2. Any bit or field described as "reserved" shall be zero unless
otherwise specified.

3. All fields are presented to the Network Services Protocol
wi th the least-significant byte first. In an ASCII field,
the left-most character is contained in the low-order byte.

4. All numbers are in decimal unless otherwise specified.

6

(

(

(

(

(
\

(

(

(

" /

\

5. When default values are
the values will be used
message. There are two
messages can be omitted

defined for fields in DAP messages,
only if that field is absent from the

ways in which fields within DAP
so the default can be used:

a. A field that appears under a MENU may be omitted by
setting the corresponding MENU bit zero.

b. Trailing fields in DAP messages may be omitted if they
are not needed or if the default value can be used. If a
MENU field is truncated in this way, its value is zero
(which means all the fields controlled by the MENU are
absent, too).

If a field is present with a zero value, the default value is
not used.

3.2 General Message Format

All DAP messages have the following form:

OPERATOR OPERAND

where:

OPERATOR This field describes the characteristics and
type of message. It is divided into four
subfields, TYPE, FLAGS, STREAMID and LENGTH.

TYPE (1) : B

FLAGS (EX-5)

7

The type of DAP message.
These numbers are given
with each DAP message
description. Types 196-255
are reserved for user
extensions to DAP.

BM = The DAP message flags.
Bits in this extensible
field are currently defined
as follows:

Bit(s) Meaning: (when set)

0 Stre,am
identification
field present.

1 Length field
present.

2-6 Reserved.
7 Extension (0) •

STREAMID{l) B = The stream identification
field. This field is
included only if bit 0 of
the FLAGS field is set.
This field is used to allow
a single user to have
multiple data streams in
use for a single open file.
All data streams use the
same logical link (they
multiplex on the STREAMID
number) .

If the STREAMID number is
omitted, it is assumed to
be zero. Not all file
systems are capable of
supporting multiple data
streams.

LENGTH (I) B = Denotes the length of the
OPERAND field (number of
8-bit bytes). This field
is optional. It is
included only if bit 1 of
the FLAGS field is set.
Messages between 1 and 255
bytes long may be blocked.
Lengths greater than 255
bytes are sent unblocked or
as the last part of a
blocked message.

OPERAND = The information field for DAP messages. It is
dependent on the TYPE field.

3.3 Configuration Message

The configuration message is used to pass system configuration
information between both operating systems involved in a DAP Message
exchange. This message is sent immediately following link
establishment. The configuration message format is:

CONFIG BUFSIZ

where:

CONFIG

BUFSI.Z (2) B

OSTYPE FILESYS VERSION SYSCAP

= The OPERATOR field with TYPE=l.

= The maximum buffer size (in bytes) of the
sending system allocated for message
exchange. The two cooperating DAP speaking
processes will use the lesser of the two
buffer sizes as the maximum size. If a
system has an unlimited buffer size, it
sends a 0 and the two systems will use the
nonzero buffer size as the maximum.

8

"

(

(

"

(

(

(

OSTYPE(l) B

(

FILESYS(l) B

(

(
VERSION

= Operating. system type (the sending system).
Values in the range 1-127 are reserved for
DIGITAL use~ 128-255 are reserved for
user-specified operating systems.

. Value OS Type

o Illegal
1 RT-ll
2 RSTS
3 RSX-llS
4 RSX-llM
5 RSX-llp
6 lAS
7. VAX/VMS
8 . Reserved for TOPS-20
9 Reserved for TOPS-IO

= File system type (of the file
used by the process sending
Values in the range 1-127 are
DIGITAL use~ 128-255 are
user-specified file systems.

Value System

o Illegal
1 RMS-ll
2 RMS-20
3 RMS-32
4 FCS-ll
5 RT-ll

system being
this message).
reserved for
reserved for

6 No file system supported

= A field identifying the
softwa~e version numbers.
subdivided as follows:

protocol and
This field is

! VERNUM! ECONUM ! USRNUM ! SOFTVER ! USRSOFT

where:

VERNUM (1)

ECONUM(l)

B = DAP version number. This
is the same as the first
digit of the protocol
version number.

B - DAP ECO (Modification)
number. This is the same
as the second digit of the

. protocol version number. --

USRNUM(l) : B - Customer modification level
of DAP.

SOFTVER(l) B = DAP Software version number
in binary. This is the
DIGITAL release number. If
the software is completely
user written, this field
should be O.

9

SYSCAP (EX-12)

USRSOFT(l) B User software version
number in binary. If the
user modifies DIGITAL
software, he should
increment this byte to
reflect his modification
number. Set to 0 by
DIGITAL.

BM = Generic system capabilities.
defined as follows:

These are

Bit Meaning (When Set)

o
1

2
3

4

5
6

7

8

9

10

11

12
13

14
15

16

17

18
19

20
21-22

23

Supports file preallocation.
Supports sequential file
organization.
Supports relative file organization.
Reserved - intended to support
direct file organization.
Reserved - intended to support
indexed file organization.
Supports sequential file access.
Supports random access by record
number.
Extension (0 if subsequent fields
are not needed).
Supports random access by Virtual
Block Number.
Reserved - intended to support
random access by Key.
Reserved - intended to support
random access by user generated hash
code.
Reserved - intended to support
random access by Record File
Address.
Reserved - intended to support ISAM.
Reserved - intended to support
switching access mode.
Supports append to file access.
Extension (0 if subsequent fields
are not needed).
Supports command file submission
and/or execution.
Reserved - intended to support file
compression.
Supports multiple data streams.
Supports status return (See ACCOPT
field in ACCESS message).
Supports blocking of DAP Messages.
Reserved.
Extension (0).

10

(

(

(

(

(

(

(

(

(

(

3.4 Attributes Message·

The Attributes message is used
represented in a file that is
message is sent as a part of the
Message format is:

to describe how
being transferred.
initial setup.

data is being
The Attributes

The Attributes

PROTGRPlpROTWLO

where:

ATTRIB :

NOTE

Symbolic names where supplied, refer to
the corresponding RMS names. They are
included here for ease of reference
only; they have no meaning for OAP.

= The OPERATOR field with TYPE=2.

ATTMENU~EX-6) : BM = The bit map below specifies which of the
indicated fields, groups of fields, or
messages follow. Some groups of attribute
fields can become extremely long. To
resolve the buffering problem (i.e., all
attributes messages must fit into a
256-byte buffer), these groups are split
into separate messages and sent separately.
The following bit map specifies which of
the attributes fields will be present in
the main attributes message (if the
corresponding bit is set):

Bit Meaning (when set)

o
1
2
3
4
5
6
7

11

OATATYPE
ORG
RFM
RAT
BLS
MRS
ALQ
Extension (0 if subsequent fields
are not needed).

Bit Meaning (when set)

8 BKS
9 FSZ /
10 MRN (
11 RUNSYS
12 DEQ
13 FOP
14 Reserved~ intended for BSZ.
15 E~tension (0 if subsequent fields

are not needed).
16 Reserved~ intended for DEV.
17 Reserved~ intended for soc.
18 Reserved~ intended for summary

attributes fields: NOK, NOA and
NOR.

19 Reserved~ intended for Date and
Time attributes fields COT, ROT
and EDT.

20 Reserved~ intended for use with
the Protection attributes fields
OWNER, PROTSYS, PROTOWN, PROTGRP
and PROTWLD.

21 Reserved~ intended for use with
the Access Control List Message.

22 Reserved~ intended for use with
the Key Definition Message.

23 Extension (0 if the following
field is not needed).

24 Reserved~ intended for use with
the Allocation Message.

25 Reserved~ intended for use with
the File Header Characteristics
Message.

26-30 Reserved (0).
31 Extension· (0) •

12

(

(

(

(

DATATYPE (EX-2)

(

,
(
\

(

(

ORG(l) B

(

BM = The type of data being trarisferred~ The
default ,is IMAGE. This field is· very
important for file/record retrieval. Many
file~ystems db not explicitly store with
the file attributes, information as to
whether the file contains ASCII, EBCDIC or
Image data. Therefore, the contents of a
file are interpreted according to the data
type supplied by the user. In many cases,
for DAP remote file access, where
conversions may be necessary on ASCII
files, this field (supplied by the user) is
the only indication of data type.

Bit

0
1
2
3

4
5
6

Meaning (When Set)

ASCII (see Note 1).
IMAGE (see Note 2).
EBCDIC (Reserved).
Compressed Format (Reserved for
future use).
Executable Code.
Privileged Code.
This bit is set if the attributes
of the file (as stored with the
file) ,match those specified in the
accessing ATTRIBUTES message. This
bit is used only in the ATTRIBUTES
message being returned (i.e., by
the accessed DAP process).

7· Extension (0).

Notes:

1.- THis is the 7-bit
defined in the 1968
transmit this within
high-order bit is set

ASCII
ANSI
8-bit

to zero.

code set
Standard.

frames,

as
To

the

2. Image is the ~ode where no code set is
specified. It 1S a format for sending
8~bit quantities in DAP without specifying
any code representation. The actual data
may be ASCII, or binary. It is up to the
user process to determine how to use the
data.

Attributes of the file being accessed.
These attributes are as follows:

Value
(octal)

o
20
40
60

13

Meaning

FB$SEQ~
- FB$REL~
FB$IDX~
FB$DIR~

Sequential (default).
Relative.
Indexed (Reserved).
Direct (Reserved).

RFM (1) B

RAT (EX-3) BM

BLS (2) B

MRS (2) B

= Format of the records being transferred.
These formats are as follows:

Value Meaning

o
1

FB$UDF; Undefined record format.
FB$FIX; Fixed-length records
(default) •

2
3

4

FB$VAR; Variable-length records.
FB$VFC; Variable with fixed
control format (disk only).
FB$STM; ASCII Stream Format
(sequential files only).

5 FB$LSA; Line-sequenced ASCII
format (sequential files only).

= Information about
individual records;

the attributes of

Bit Meaning (When Set)

o FB$FTN; Records contain FORTRAN
carriage control (see Note 1).

1 FB$CR; Records have an implied
LF/CR envelope.

2 Reserved (D)-Intended for COBOL
carriage control.

3 FB$BLK; Records that do not span
blocks (see Note 2).

4 Records have embedded format
control.

5-6 Reserved (0).
7 Extension (0).

Notes:

1. FORTRAN Carriage Control. For line
printers and some terminals, the first
character of each record is to be treated
as a carriage control character according
to the ANSI definition.

2. This bit when set informs the
that the record length should not
the physical device blocking size.
some systems and on some I/O devices
disk and magnetic tape) this may
factor in determining the actual
used on the device.

system
exceed

With
(e.g. ,
be a

format

= Physical block size in bytes. The Default
value is 512. The actual byte size is as
specified by field BSZ.

= The length of each file record in number of
bytes. For variable-length records, this
field specifies the maximum record size.
When the accessed process receives the MRS
(maximum record size), it must check it
against the length of its buffer. If the
buffer will not accommodate this size
record, the accessed process should return
its buffer size.

14

(

(

(

(

(

(

ALQ(I-5) B

(

BKS (1) B

FSZ (1) : B

(MRN (1-5) B

. RUNSYS (1-40)

(
DEQ(2) B

(

A

If the accessed processrec~ives a zero
value, it should do one of the following:

a. If the accessed process has a limited
buffer size, it should return its
maximum buffer size to the accessing
process.

b. If the accessed process has unlimited
buffer space (i.e., dynamic buffering),
it should return a zero value.

= This field specifies the allocation
quantity. For file creation, it specifies
the initial size of the new file. The
actual size of the new file is returned in
this field.

NOTE

On opening existing files, this
value is ignored. This field is
used only to return the file size.

= Bucket size.
relative (not
files with RMS.

Used only for access to
RMS-20), direct and indexed

= Size in bytes of fixed part of variable
length record with fixed control format.

= Maximum record number for
relati ve files only) • If
checking is suppressed .

file (for
set to 0,

= Name of the Run-Time System environment
required to execute the code contained in
the file. This field is useful to
operating systems that can emulate other
operating system environments. The default
value is accessed operating system
dependent.

File extension quantum size in virtual
blocks, which is the amount of space, in
blocks, added to the file each time the
file is implicitly extended. Default will
be the normal default for individual file
systems.

15

FOP (EX-6) BM

BSZ (1) : B
(Reserved for
future use)

= The File Access Options a user requires:

Bit Meaning (when set)

o
1
2
3

4

5
6

7

8

9

10

11
12

13
14

15

16
17
18

19

20

21

22
23.

24
25

26
27-30

31

FB$RWOi rewind on open.
FB$RWCi rewind on close.
reserved (0).
FB$POSi position magnetic tape
just past the most recently
created file.
FB$DLKi do not lock file if not
properly closed.
Reserved (0).
FB$ACKi check attributes
specified for open against those
in file and return error if they
don't match.
Extension (0 if subsequent options
are not needed).
FB$CTGi a contiguous file
extension required.
FB$SUPi supersede existing file
on create.
FB$NEFi do not position to EOF on
opening magnetic tape file for
PUT.
FB$TMPi create temporary file.
FB$MKDi create temporary file and
mark for delete on close.
FB$FIDi open by file ID.
FB$DMOi rewind and dismount
magnetic tape on close.
extension (0 if the following bits
are not used).
FB$WCKi Enable Write checking.
FB$RCKi Enable Read checking.
FB$CIFi create new file if one by
the same name does not exist. If
one does exist, open the file.
Ignore version number.
FB$LKOi Override file lock on
open (reserved).
FB$SQOi Sequential access only
(-reserved) •
Reserved for maximum version
number.
Reserved for spool file on close.
Extension (0 if subsequent fields
not needed).
Reserved for submit command file.
Res~rv~d for delete sub-option on
submit command file.
Reserved for contiguous best try.
Reserved (0).
Extension (0).

= Number of bits per byte in the file data.
The default value is 8. Zero is invalid
value.

16

(

(

(

(

(

(

(

(

(

DJ::V(EX-6) : BM
(Reserved for
future use)

= For attributes sent to the accessing node.
This field . contains the generic
characteristics of the device on which a
file resides.

Bit Meaning (When Set)

o FB$REC
1 FB$CCL
2 FB$TRM
3 ·FB$MDI
4 FB$SDI
5 FB$SQD

6
7

8 FB$FOD

9 FB$SHR
10 FB$SPL
;11 FB$MNT

12 FB$DMT

13 FB$ALL
14 FB$IDV

15

16 FB$ODV

17 FB$SWL

l8FB$AVL

19 FB$ELG

20 FB$MBX
21 FB$RTM

22 FB$RAD
23

24

25

26

27
28

29-30
31

17

record oriented.
carriage control device.
terminal.
directory structured.
single directory only.
sequential - block
oriented (e.g., magnetic
tape).
Reserved.

- extension (0 if
subsequent bits are not
set) •
a file~oriented device
(e.g. a disk or magnetic

can be shared.
is being spooled.

tape) •
device
device
device
mounted.
device is
dismount.

is currently

marked

device is allocated.
device is capable
providing input.
extension (0

for

of

if
subsequent bits are not
set) •
device is capable
providing output.

of

device is software
write-locked.
device is available for
use.
device has error logging
enabled.
device is a mailbox.
device is realtime in
nature, not suitable for
RMS use.
a random access device.
extension (0 if
subsequent bits are not
set) •

- device has read checking
enabled.

- device has write checking
enabled.

- device is foreign, (i. e. ,
not F iles-11) •

- network device.
- generic device.
- Reserved (0).
- Extension (0).

SDC(EX-6) : BM
(Reserved for
future use)

NOK (1) : B
(Reserved for
future use)

NOA (1) : B
(Reserved for
future use)

NOR (1) : B
(Reserved for
future use).

CDT (18) : A
(Reserved for
future use)

RDT (18) : A
(Reserved for
future use)

EDT (18) : A
(Reserved for
future use)

OWNER(I-40) : A
(Reserved for
future use)

= Spooling device characteristi~s~ SDC uses
the same bit definitions as in the DEV
field.

= Number of keys defined in file. (

= Number of areas defined in file.

= Number of record descriptors in file.

= Date and time file created in GMT.

= Date and time file last updated in GMT.

= Date and time file may be deleted in GMT.

The· preceding three fields should be in the
following format:

dd-mon-yybhh:mm:ss

where:

dd is the day
mon is a 3-1etter abbreviation for the

month
yy is the year
b is blank (space)
hh is the hour
mm is the minutes
ss is the seconds

= The name or user code (e.g., a UIC such as
240,220) of the file owner. This field is
used only when returning the file's
attributes. When creating a file, the file
owner information is taken from the user
identification information which comes with
the connect.

18

(

(

(

(

(

(

(

(

(

PROTSYS(EX-3)
(Reserved for
future use)

PROTOWN (EX-3)
(Reserved for
future use)

PROTGRP (EX-3)
(Reserved for
future use)

PROTWLD (EX-3)
(Reserved for
future use)

3.5 Access Message

BM = File protection for system access rights.

Bit M,eaning (When Set)

o XB$RDV ; deny read access.
1 XB$WRV ; deny write access.
2 XB$EXE ; deny execute access.
3 XB$DLE ; deny delete access.
4 deny append access.
5 deny list access.
6 deny update access.
7 extension (0 if bits 8 and 9 are

not used).
8 deny change access protection

attribute.
9 deny extend access.

BM = File protection for file owner access
rights. Refer to the bit map used for
PROTSYS above.

BM = File protection for group access rights.
Refer to the bit map used for PROTSYS
above.

BM = File protection for general (world) access.
Refer to the bit map used for PROTSYS
above.

The access message specifies the file name and type of access
requested. This message is followed by a Control Message if data
transfer over the link is requested. The optional FILESPEC in the
message definition below is used only with file rename. The format
for the access message is:

J ACCESS J ACCFUNC J ACCOPT I FILESPEC I (FILESPEC) I FAC I SHR I

where:

ACCESS •

NOTE

Symbolic names where supplied, refer to
the corresponding RMS names. They are
included here for ease of reference
only - they have no meaning for DAP.

The OPERATOR field with TYPE=3.

19

ACCFUNC(I) B The request code specifying the operation to be
performed is as follows:

I - $OPEN;
2 - $CREATE;
3 - Rename a
4 - $ERASE;
5 - Reserved.

Open existing file.
Open new file.

file (Reserved).
Delete a file.

6 - Directory List (Reserved).
7 - Submit as a command (batch) file.
8 - Execute command (batch) file.

In the case of ACCESS code 3
specifications are present.
old file specification and the
file specification.

above, two file
The first is the

second is the new

If $CREATE is specified, but a file of that name
already exists, the rules of the remote node for
file creation will be followed. For example,
the file system may create a new file whose
version number is one greater than the current
highest version number.

NOTE

The Data Access Protocol (DAP) is not concerned
with functions beyond remote data access. DAP
should not be extended to attempt to cover RJE,
Spooling, etc., which, while they involve file
transfer, are also concerned with command
processing, parameter passing, job queueing,
etc. The two command file submission commands
are here for historical reasons. They have
already been implemented in the first release of
DAP-based software. However, their
functionality will not be extended.

20

(

(

(

(

ACCOPT (EX-S)

(

FILESPEC
(VAR-128) A

(FAC(EX-3) BM

(

BM= The access options are as ·follows:

=

=

Bit Meaning (When Set)

o - I/O errors. A record may be skipped
or repeated as specified by the
Continue Message. I/O errors are not
fatal.

1 - If set (1), a status message will be

2

3-6

returned following each record sent
to the accessed process in the record
access mode.

- If set (1), return a status message
with each record retrieved from an
accessed system. The status message
should precede the data message so
that it is always possible to block
the two into one NSP message. When a
user requires a record file address
to be returned, this option is used.

- Reserved.

7 - Extension (0).

The file specification in the format required
by the remote node. This ASCII field is
treated as a quoted string by DAP software.
It is delivered, as is, to the file system at
the remote node.

The file access operations a user requires:

Bit Meaning (When Set)

o
1
2
3
4
S
6
7

FB$PUTr Put access.
FB$GET, Get access (default).
FB$DEL, Delete access.
FB$UPD, Update access.
FB$TRN, Truncate access.
FB$BIO, Block I/O access (see Note).
Reserved.
Extension (0).

NOTE

FB$REA = FB$BIO !FB$GET, Block I/O Read ac,cess.
FB$WRT = FB$BIO!FB$PUT, Block I/O Write

access.

21

SHR (EX-3) BM

3.6 Control Message

= Operations shared with other users:

Bit Meaning (When Set)

o
I
2
3
4
5
6
7

FB$PUT~ Put access.
FB$GET~ Get access (default).
FB$DEL~ Delete access.
FB$UPD~ Update access.
FB$TRN~ Truncate access.
FB$BIO~ Block I/O access.
FB$NIL~ No access by other users.
Extension (0).

(

The control message is used to send control type information to a file
system. The control message format is as follows:

I CONTROLlcTLFUNclCTLMENulRACIKEylKRFIRoplHSHIDISPLAY

where:

CONTROL

CTLFUNC(I) B

(
= The OPERATOR field with TYPE=4.

= Specific control information:

Value Meaning

I - $GET or $READ~ get record. If random
access to a relative file is made, the
key field contains the record number.
If a random access to an indexed file is (
made, KEY contains the key. If '
sequential access is employed, get the
next record.

2 - $CONNECT~ initiate data stream. If
multiple data streams are used, they are
multiplexed on the STREAMID number. The
STREAMID number in the CONTROL message
is used to initiate a data stream. If
the STREAMID number is omitted, a
default of zero is assumed. (

3 - $UPDATE~ update current record.
Indicates to the accessed system the
intent of the accessing system to update
the currently positioned record with the
next data transmission.

4 - $PUT or $WRITE~ indicates to the
accessed system, that the information to
follow should be written into the file.

22

(

(

(

(

(

(

Value Meaning

5 - $DELETE~ delete current record.

6 - $REWIND~ rewind file.
future use.

Reserved for

7 - $TRUNCATE~ truncate file. writes
End-of-file at current position. Used
with sequential files only. Reserved
for future use.

8 - Reserved for future use.

9 - $RELEASE~ unlock record specified by
Record File Address in KEY field.
Reserved for future use.

10 - $FREE~ unlock all locked records for
this data stream. Reserved for future
use.

11 - $SPACE~ forward or backward space the
file by the number of blocks specified
in KEY below. Reserved for future use.

12 -

13 -

14 -

15 -

NOTE

KEY contains a two's complement number
which is positive for forward spacing
and negative for backward.

$FLUSH~ write out all modified I/O
buffers and attributes for this data
stream. Reserved for future use.

$NXTVOL~ perform end-of-volume and
start-of-next-volume processing.
Reserved for future use.

$FIND~ find record. Same as 1, but the
data is not transferred. Reserved for
future use.

$EXTEND~ extend this file by the amount
specified in the following allocation
attributes extension message. Reserved
for future use.

16 - $DISPLAY~ retrieve this file's
attributes as defined by the field
DISPLAY. Reserved for future use.

23

CTLMENU(EX-4):BM = The following bits when set,
optional fields are pres~nt:

indicate

RAC (1) B

KEY(I-255) B

KRF(l) : B
(Reserved for
future use)

Bit

o
1
2
3
4
5
6
7

Field

RAC
KEY
KRF (Reserved)
ROP
HSH (Reserved)
DISPLAY (Reserved)
Reserved (0)
Extension (0)

(

= Sets the access mode:

Value Meaning

=

=

o - RB$SEQ; sequential record access.
1 - RB$KEY; keyed access.
2 - RB$RFA; access by Record File Address

(an RMS specific access mode).
3 - sequential file access (the remainder of ('

the file is transferred sequentially .
from the current file position).

4 - block mode; access by Virtual Block
Number. For retrieval, each block must
be requested by a Control message as in
the record access mode.

5 - block mode file transfer. Blocks are
transferred sequentially to end-of-file
without need for a Control message
preceding each block transferred. An
explicit Control GET or PUT is required (
to start data moving. .

File or Mode ~

Relative Files Record Number
Indexed Files Record Key
Direct Files Record Key
Record File Address
Access Mode Record File Address
Block Mode Access Virtual Block Number

(binary, range 1 to n) (
Key of reference. If this field is not
present, the key of refefence is not changed.
Default is primary if never set.

o - primary key
1 - 255-secondary key indicator

24

(

(

(

(

(

ROP(EX-6) BM = Optional record processing fe·atures. If this
field is not present, the options in force
for the last access are retained.

HSH(I-5) B
(Reserved for
future use)

OISPLAY(EX-4)
(Reserved for
future use)

Bit Meaning (When Set)

o· , RB$EOF; position to EOF.
1-2 Reserved (0) •

3 RB$HSH; use hash code in HSH
(Reserved) •

4 RB$LOA; follow fill quantities
(Reserved) •

5 RB$ULK; manual locking/unlocking
(Reserved).

6 Reserved (0) •
7 extension (0 if following not

needed) •
8 RB$RAH; read ahead (Reserved) •
9 RB$WBH; write behind (Reserved) •

10 RB$KGE; key is >= (Reserved) •
11 RB$KGT; key is > (Reser.ved).

= Hash code if keyed access on direct file is
employed and the user is doing hashing.

BM= Attributes messages which are to be returned
in response to a request to retrieve the
~ile's attributes ~re:

Bit Meaning (When Set)

o
1
2
3
4

main attributes message.
key definition attributes.

. ar~a definition attributes.
access control list.
file header characteristics message.

3.7 Continue Transfer Message

The continue transfer message is used when an error is detected in the
I/O transfer and the user process wishes to continue OAP transfer.
Th~ normal use of this message would be ~o receive an error message,
take appropriate action, and then send a continue transfer to allow
the OAP link to resume operation. The format of the continue transfer
message is:

CONTRAN CONFUNC

where: .

CONTRAN

CONFUNC(l)

= The OPERATOR field with TYPE=5.

B = This field is used to specify the recovery
action to be taken:

25

Value Meaning

I -Try again.
2 - Skip this record and continue. (
3 - Abort transfer (i. e., discard all records

in the pipeline until an access complete
message is found indicating the pipeline is
clear).

3.8 Acknowledge Message

The acknowledge message is used to acknowledge access commands and
control connects. Its format is as follows:

I ACKNOWLEDGE I
where ACKNOWLEDGE: = The OPERATOR field with TYPE=6.

3.9 Access Complete Message

The Access Complete Message is used either to terminate access or to
acknowledge a request to terminate access. The Access Complete
Message format is as follows:

I ACCOMP I CMPFUNC FOP

where:

ACCOMP

CMPFUNC(I)

= The OPERATOR field with TYPE=7.

B = The access completion functions are:

Value Meaning

I - command. Terminate access. Close a file
that is currently open. When multiple data
streams are in use, they are all closed-out
($CLOSE). .

(

(

2 - response. Serit by the accessed process in
response to an Access Complete Command or a (,
purge from the accessing process. '.

3 - purge. A file is to be purged. That is,
closed and deleted ($CLOSE + $ERASE).

4 - end-of-stream. Terminate the data stream
associated with this STREAMID number but do
not close the file ($DISCONNECT).

NOTE

The Access Complete (EOS) does not
require a response nor is the file
closed. However, the accessed
process should be in a state
wherein it can accept another
Control (Connect) to open another
stream.

26

(

(

(

(

(

(

FOP (EX-6) BM

3.10 D~t~ Me~sage

The file access options a user requires.
to Section 3.4 for option values.

Refer

The Data message is used to transfer the file data over a DAP link.
When data messages are longer than the maximum NSP message size, the
message should be sent using NSP segmentation. The Data message
format is a~fol16ws:

1 DATA· 1 RECNUM 1 FILEDATA

. where:

DATA :

RECNUM (1-8) B

FILEDATA

3.11 Status Message

= The OPERATOR field with TYPE=8

= This field is used to send the record number
when accessing relative files (or in some
cases sequential files in a relative manner).
For random store, this field will contain the
record number (for relative files) or hash
code (if the user i& generating his own hash
codes with direct files). When RECNUM is not
used, the byte count is zero. When in the
block mode, this field will contain the VBN
instead of the record number.

The file data being transferred. This field
is totally transparent and uses all 8-bits of
each byte.

The status message is used to return information on the status of DAP
messages or data transfers. It is sent synchronously in response to
another message or an error during data transfer. The format is:

.1 STATUS I STSCODEI RFA I RECNUM 1 STV I

where:

STATUS

STSCODE

= The OPERATOR field with TYPE=9

= A 2-byte status field (16 bits) subdivided
as:

15 12 11 0
!MACCODE! MICCODE I

where:

MACCODE(4B):B = The macro or functional group
reason for the error. Values
for this field are specified
in Table 3-1.

MICCODE(12B):B= The specific reason for the
error (by MAC CODE type).
Values for this field are
specified in Tables 3-2, 3-3
and 3-4.

27

RFA(I-8) B = Used to return the record file address of the
re.cord to which this status message applies.
If the ACCESS message field ACCOPT indicates
a return of status after each record is
stored, then this field contains the record
file address of the record in the destination
file.

RECNUM(I-8) B = Used to return the record number for relative
files when a status message is returned after
each record is transferred (as specified in
the ACCOPT field of the ACCESS message).
Null for non-relative files.

STV(I-8) B = Secondary status. Used to return secondary
status information where required (e.g., RMS
uses it for device error codes).

Value
(Octal)

o

1

2-

3

4

5

6

7

10

11

12

13-17

Table 3-1. MACCOOE Field Values

Name

I>ending

Successful

Unsupported

File Open

Transfer

Access
Termination

Format

Invalid

Sync

Meaning

Operation in progress.

Returns
success.

information that indicates

This implementation of OAP does not
support specified request. For example,
this is used when an unsupported
bit/field or a field/value is
encountered which a particular
implementation does not support.

Reserved.

Errors that occur before a file is
successfully opened.

Errors that occur after opening a file
and before closing that file.

Reserved.

Errors associated
access to a file.

with

Error in parsing a message.
not correct.

terminating

Format is

Field of message is invalid (e.g., bits
that are meant to be mutually exclusive
are set, an undefined bit is set, a
field value is out of range or an
illegal string is in a field).

OAP message received out of
synchronization.

Reserved.

28

(

(

(

(

(

(

Table 3-2. MICCODE Field Values for Use
with MACCODE Values of 2, 10, and 11 Octal

Type of Error

Miscellaneous

Configuration
Message
errors by field

Attributes
Message
errors by field

Code
(Octal)

00 00
00 10

01 00

01 10
01 11

01 12

01 20
01 21
01 22
01 23
01 24
01 25

01 26

01 27

01 30

02 00

02 10
02 11

02 12

02 20
02 21
02 22
02 23
02 24
02 25
02 26
02 27
02 30
02 31
02 32
02 33
02 34
02 35
02 36
02 37

Reason

NOTE

MICCODE Format: Bits 0-5 specify the DAP
message field number. Bits 6-11 specify
the DAP message type number.

Unspecified DAP message error.
DAP message type field (TYPE) error.

Unknown field.

DAP message flags field (FLAGS).
Data stream identification
(STREAMID) •
Length field (LENGTH).

Buffer size field (BUFSIZ).
Operating system type field (OSTYPE).
File system type field (FILESYS).
nAP version number field (VERNUM).
ECOversion number field (ECONUM).

field

USER protocol version number field
(USRNUM) .

DEC software release number field
(SOFTVER) •
User software release number field
(USRSOFT) .
System capabilities field (SYSCAP).

Unknown field.

DAP message flags field (FLAGS).
Data stream identification
(STREAMID) •
Length field (LENGTH).

Attributes menu field (ATTMENU).
Data type field (DATATYPE).
File organization field (ORG).
Record format field (RFM).
Record attributes field (RAT).
Block size field (BLS).
Maximum record size field (MRS).
Allocation qtiantity field (ALQ).
Bucket size field (BKS).
Fixed control area size field (FSZ).
Maximum record number field (MRN).
Run-time system field (RUNSYS).

field

Default extension quantity field (DEQ).
File options field (FOP).
Byte size field (BSZ).: Reserved.
Device characteristics field
(DEV): Reserved.

29

Table 3-2. MICCODEField Values for Use
with MACCODE Values of 2, 10, and 11 Octal (Cont.)

Type of Error

Access
Message
errors by field

Control
Message
errors by field

Code
(Octal)

Reason

02 40 Spooling device characteristics field
(SDC); Reserved.

02 41 Number of keys in file field
(NOK); Reserved.

02 42 Number of areas in file field
(NOA); Reserved.

02 43 Number of record descriptors in file field
(NOR); Reserved.

02 44 File creation date and time field
(CDT); Reserved.

02 45 File reV1Slon date and time field
(RDT); Reserved.

02 46 File expiration date and time field
(EDT); Reserved.

02 47 File owner identification field
(OWNER); Reserved.

02 50 System access file protection field
(PROTSYS); Reserved.

02 51 Owner access file protection field
(PROTOWN); Reserved.

02 52 Group access file protection field
(PROTGRP) ; Reserved.

02 53 World access file protection field
(PROTWLD); Reserved.

03 00

03 10
03 11

03 12

03 20
03 21
03 22
03 23
03 24

04 00

04 10
04 11

04 12

04 20
04 21
04 22
04 23
04 24
04 25

Unknown field.

DAP message flags field (FLAGS).
Data stream identification
(STREAMID) •.

Length field (LENGTH).

Access function field (ACCFUNC).
Access options field (ACCOPT).
File specification field (FILESPEC).
File access field (FAC).
File sharing field (SHR).

Unknown field.

DAP message flags field (FLAGS).
Data stream identification
(STREAMID) •
Length field (LENGTH).

Control function field (CTLFUNC).
Control menu field (CTLMENU).
Record access field (RAC).
Key field (KEY).

field

field

Key of reference field (KRF); Reserved.
Record options field (ROP).

30

(

(

(

(

(

(

(

(

Table 3-2. MICCODE Field Values for Use
with MACCODE Values of 2, 10, and 11 Octal (Cont.)

Type of Error

Continue
Message
errors by field

Acknowledge
Message
errors by field

Access Complete
Message
errors by field

Data Message
errors by field

Status Message
errors by field

Code
(Octal)

04 26

04 27

05 00

05 10
05 11

05 12

05 20

06 00

06 10
06 11

06 12

07 00

07 10
07 11

07 12

07 20
07 21

10 00

10 10
10 11

10 12

10 20
10 21

11 00

11 10
11 11

11 12

11 20
11 21
11 22
11 23
11 24

Reason

Hash code field (HSH); Reserved for future
use.
Display attributes request
(DISPLAY); Reserved.

Unknown field.

DAP message flags field (FLAGS).
Data stream identification
(STREAMID) .
Length field (LENGTH).

Continue transfer function
(CONFUNC) .

Unknown field.

DAP message flags field (FLAGS).
Data stream identification
(STREAMID) •
Length field (LENGTH).

Unknown field.

DAP message flags field (FLAGS).
Data stream identification
(STREAMID) •
Length field (LENGTH).

field

field

field

field

field

Access complete function field (CMPFUNC).
File options field (FOP).

Unknown field.

DAP message flags field (FLAGS).
Data stream identification
(STREAMID) •
Length field (LENGTH).

Record number field (RECNUM).
File data field (FILEDATA).

Unknown field.

DAP message flags field (FLAGS).
Data stream identifidation
(STREAMID) .
Length field (LENGTH).

·Macro status code field (MACCODE).
Micro status code field (MICCODE).
Record file address field (RFA).
Record number field (RECNUM).
Secondary status field (STV).

31

field

field

Value
(Octal)

o
1
2
3
4
5
6
7

10
11
12
13
14
15
16
17
20
21
22
23
24

25
26
27
30
31

32
33
34
35
36
37
40
41
42
43
44
45
46
47
50
51
52
53

Table 3-3. MICCODE Field Values for Use
with MACCODE Values of 0, 1, 4, 5, and 7 Octal

Error/Reason

NOTE

MICCODE Format: Bits 0-11 contain the error code
number. Symbolic status codes, where supplied,
refe~ to the corresponding RMS status codes. They
are included here for ease of reference
only -- they have no meaning forDAP.

Unspecified error.
ER$ABO; operation aborted.
ER$ACC; FII-ACP could not access file.
ER$ACT; "FILE" activity precludes operation~
ER$AID; bad area ID.
ER$ALN; alignment options error.
ER$ALQ; allocation quantity too large.
ER$ANI; not ANSI "D" format.
ER$AOP; allocation options error.
ER$AST; invalid (i.e., synch) operation at AST level.
ER$ATR; attribute read error.
ER$ATW; attribute write e~ror.
ER$BKS; bucket size too large.
ER$BKZ; bucket siz~ too large.
ER$BLN; "BLN" length error.
ER$BOF; beginning of file detected.
ER$BPA; private pool address not multiple of "4".
ER$BPS; private pool size not multiple of "4".
ER$BUG; internal RMS error condition detected.
ER$CCR; cannot connect RAB.
ER$CHG; $UPDATE changed a key without having attribute of

XB$CHG set.
ER$CHK; bucket format check-byte failure.
ER$CLS; RSTS/E close function failed.
ER$COD; invalid or unsupported "COD" field.
ER$CRE; FII-ACP could not create file (STV=sys err code).
ER$CUR; no current record (oper~tion not preceded by

GET/FIND) •
ER$DAC; FII-ACP deaccess error during "CLOSE".
ER$DAN; data "AREA" number invalid.
ER$DEL; RFA-Accessed record was deleted.
ER$DEV; bad device, or inappropriate device type.
ER$DIRJ error in directory name.
ER$DME; dynamic memory exhausted.
ER$DNF; directory not found.
ER$DNR; device not ready.
ER$DPE; device has positioning error.
ER$DTP; "DTP" field invalid.
ER$DUP; duplicate key detected, XB$OUP not set.
ER$ENT; RSX-FIIACP enter function failed.
ER$ENV; operation not selected in "ORG$" macro.
ER$EOF; end-of-file.
ER$ESS; expanded string area too short.
ER$EXP; file expiration date not yet reached.
ER$E~T; file extend fail~re.
ER$FAB; not a valid FAB ("BID" NOT = FB$BID).

32

(

(

(

(

(

(

(

(

Table 3-3. MICCODE Field Values for Use with MAC CODE
Values of 0, 1, 4, 5, and 7 Octal (Cont.)

Value
(Octal)

54

55
56
57
60
61
62
63
64
65
66
67
70
71
72
73

74
75
76
77

100
101
102
103
104
105
106
107
110
111
112

113

114
115
116
117
120
121
122
123
124
125
126
127
130
131

132
133
134
135

Error/Reason

ER$FAC~ illegal FAC for REC-OP,O, or FB$PUT hot set for
"CREATE" •

ER$FEX~ file already exists.
ER$FID~ invalid file I.D~
ER$FLG~ invalid flag-bits combination.
ER$FLK~ file is locked by other user.
ER$FND~ RSX-FIIACP "FIND" function failed.
ER$FNF~ file not found.
ER$FNM~ error in fil~ name.
ER$FOP~ invalid file options.
ER$FUL~ DEVICE/FIL& full.
ER$IAN~ index "AREA" number invalid.
ER$IFI~ invalid IFI value or unopened file.
ER$IMX~ maximum NUM(254) areas/key XABS exceeded.
ER$INI~ $INIT macro never issued.
ER$IOP~ operation illegal or invalid for file organization.
ER$IRC~ illegal record encountered (with sequential files

only) •
ER$ISI ~ invalid lSI value, on unconnected RAB •.
ER$KBF~ bad KEY buffer address (KBF=O).
ER$KEY~ invalid KEY field (KEY=O/neg).
ER$KRF~ ihvalid key-of-reference ($GET/$FIND).
ER$KSZ~ KEY size too large.
ER$LAN~ lowest-level-index "AREA" number invalid.
ER$LBL~ not ANSI labeled tape.
ER$LBY~ logical channel busy.
ER$LCH; logical channel number too large.
ER$LEXi logical extend error, prior extend still valid.
ER$LOC~ "LaC" field invalid.
ER$MAP~ buffer mapping error.
ER$MKD~ FII-ACP could not mark file for deletion.
ER$MRN~ MRN value=neg or relative key>MRN.
ER$MRS~ MRS value=O for fixed length records. Also O. for

relative files.
ER$NAM~"NAM" block address invalid (NAM=O, or not

accessible).
ER$NEF~ not positioned to EOF (sequential files only).
ER$NID~ cannot allocate internal index descriptor.
ER$NPK~ indexed file~ no primary key defined.
ER$OPN~ RSTS/E open function failed.
ER$ORD~ XAB'S not in correct order.
ER$ORG~ invalid file organization value.
ER$PLG~ error in file's prologue (reconstruct file).
ER$POS~ "pas" field invalid (POS>MRS,STV=XAB indicator).
ER$PRM~ bad file date field retrieved.
ER$PRV~ privilege violation (aS denies access)~
ER$RAB~ not a valid RAB ("BID" NOT=RB$BID).
ER$RAC~ illegal RAC value.
ER$RAT~ illegal record attributes.
ER$RBF~ invalid record buffer address ("ODD", or not

word~aligned if BLK-IO).
ER$RER~ file read error.
ER$REXi rec6rd already exists.
ER$RFA~ bad RFA value (RFA=O).
ER$RFM~ invalid record format.

33

Table 3-3. MICCODE Field Values for Use with MACCODE
Values of 0, 1, 4, 5, and 7 Octal

Value
(Octal)

136
137
140
141
142
143
144
145
146

147
150
151

152
153
154
155
156
157

160
161
162
163
164
165
166
167
170
171
172
173
174
175
176
177
200
201
202
203
204
205
206
207
210
211
212
213

214
215
216
217
220

ER$RLKi
ER$RMVi
ER$RNFi
ER$RNLi
ER$ROPi
ER$RPLi
ER$RRVi
ER$RSA;
ER$RSZi

ER$RTBi
ER$SEQi
ER$SHRi

ER$SIZi
ER$STKi
ER$SYSi
ER$TREi
ER$TYPi
ER$UBFi

ER$USZ;
ER$VERi
ER$VOLi
ER$WERi
ER$WLKi
ER$WPLi
ER$XAB;
BUGDDI;
CAA i
CCF i
CDA i
CHN ;
CNTRLO;
CNTRLY;
DNA ;
DVI ;
ESA ;
FNA ;
FSZ i
IAL ;
KFF ;
LNE ;
NOD ;
NORMAL;
OK DUPi
OK-IDX;
OK-RLK;
OK:=RRVi

CREATE;
PBF ;
PNDING;
QUO i
RHB i

Error/Reason

target bucket locked by another stream.
RSX-Fll ACP remove function failed.
record not found.
record not locked.
invalid record options.
error while reading prologue.
invalid RRV record encountered.
RAB stream currently active.
bad record size (RSZ)MRS, or NOT=MRS if fixed
length records).
record too big for user's buffer.
primary key out of sequence (RAC=RB$SEQ for $put).
"SHR" field invalid for file (cannot share
sequential files).
"SIZ field invalid.
stack too big for save area.
system directive error.
index tree error.
error in file type extension on FNS too big.
invalid user buffer addr (0, odd, or if BLK-IO not
word aligned).
invalid user buffer size (USZ=O).
error in version number.
invalid volume number.
file write error (STV=sys err code).
device is write locked.
error while writing prologue.
not a valid XAB (@XAB=ODD,STV=XAB indicator).
default directory invalid.
cannot access argument list.
cannot close file.
cannot deliver AST.
channel assignment failure (STV=sys err code).
terminal output ignored due to (CNTRL) O.
terminal input aborted due to (CNTRL) Y.
default filename string address error.
invalid device I.D. field.
expanded string address error.
filename string address error.
FSZ field invalid.
invalid argument list.
known file found.
logical name error.
node name error.
operation successful.
record inserted had duplicate key.
index update error occurred-record inserted.
record locked but read anyway.
record inserted in primary o.k.i may not be
accessible by secondary keys or RFA.
file was created, but not opened.
bad prompt buffer address.
async. operation pending completion.
quoted string error.
record header buffer invalid.

34

(

(

(

(

(

(

(

(

(

t

Table 3~3. MICCODE Field Values for Use with MAC CODE
Values of 0, 1, 4, 5, and 1 Octal (Cont.)

Value
(Octal)

221
222
223
224
225
226
227
230
231
232
233
234
235
236
237
240
241

242
243
244
245
246
247
250
251
252
253
254
255
256
257
260
261
262
263
264
265
266
267
270
271
272
273
274
275
276
277
300
301
302
303
304
305
306
307

RLF
RSS
RST
SQO
SUC

Error/Reason

; invalid related file.
; invalid resultant string size.
; invalid resultant string address.
i operation not sequential.
; operation successful.

SPRSED; created file superseded existing version.
SYN ; filename syntax error.
TMO ; time-out period expired.
ER$BLK; FB$BLK record attribute not supported.
ER$BSZ; bad byte size.
ER$CDR; cannot disconnect RAB.
ER$CGJ; cannot get JFNfor file.
ER$COFi cannot open file.
ER$JFNi bad JFN value.
ER$PEF; cannot position to end-of-file.
ER$TRU; cannot truncate file.
ER$UDF; file is currently in an undefined state; access

denied.
ER$XCL; file must be opened for exclusive access.

; directory full.
; handler not in system.
; fatal hardware error.
i attempt to write beyond EOF.
; hardware option not present.
; device not attached.
; device already attached.
; device not attachable.
; sharable resource in use.
; illegal overlay request.
; block check or CRC error.
; caller's nodes exhausted.
; index file full.
i file header full.
; accessed for write.
; file header checksum failure.
; attribute control list error.
; file already accessed on LUN.
; bad tape format.
; illegal operation on file descriptor block.
; rename; 2 different devices.
i rename; new filename already in use.
; cannot rename old file system.
i file already open.
; parity error on device.
; end of volume detected.
; data over-run.
; bad block on device.
; end of tape detected.
; no buffer space for file.
; file exceeds allocated space -- no blks.
; specified task not installed.
; unlock error.
; no file accessed on LUN.
; send/receive failure.
; cannot submit command file.

NMF ; no more files.

35

is

Value
(Octal)

o
1
2
3
4
5
6
7

10
11

Table 3-4. MICCODE Field Values
(with MACCODE Value of 12 Octal}

Error/Reason

NOTE

MICCODE Format: Bits 0-11 contain the message
type number.

Unknown Message Type
Configuration Message
Attributes Message
Access.Message
Control Message
Continue Transfer Message
Acknowledge Message
Access Complete Message
Data Message
Status Message

36

(

(

(

(

(

(

(

(

~

4.0 FILE ORGANIZATION

4.1 Types of Files

The following types of files are addressed by this specification:

1. Sequential - Each record's position depends on the position
of the previous record. Records may not be processed in any
other order.

2. Relative - Each record in the file has a unique identifying
number, its record number. Records may be accessed randomly
by specifying their record number in a Control message.

3. Direct/Indexed - These files have records organized according
to some classification method~ usually an access key. Within
a particular key, the records are assumed to be sequential.

4.2 Record Formats and Attributes

There are two ways in which ASCII records are stored in DIGITAL file
systems:

1. Byte Count. A byte count associated with the record in the
file indicates how long the record is and· is used to
determine record boundaries.

2. Stream.
record
effector
(VT) , or

The ASCII record is stored exactly
is assumed to be terminated with a

(VFE) , which is one of line feed (LF),
form feed (FF).

as is. The
vertical form
vertical tab

Files using ASCII stream usually do not have record attributes stored
with the file.

DAP supports five ASCII record formats:

1. Fixed length records,

2. Variable length records,

3. Variable with fixed control,

4. Line sequential ASCII records, and

5. ASCII stream

In addition, DAP supports the following attributes:

1. FORTRAN carriage control,

2. COBOL carriage control,

3. Implied LF/CR envelope for printing,

4. Embedded carriage control, or

5. None of the above.

37

4.2.1 Conversions - Not all systems support all the above record
formats and attributes. Transferring ASCII data between systems with
different record formats and attributes sometimes require conversions.

If a conversion is n~cessary in transferring ASCII data between
systems, the converSlon must always be done by the accessing (user)
process, not by the accessed (esse'ntially passive server) process. In
other words, all intelligence resides with the user. The remote
server process does only as it.istold and exhibits no intelligence.

Thus the accessed process will return an error when creating a file
whose type, as specified in the ATTRIBUTES'and ACCESS messages, is not
supported by the remote system. Also, when accessing an existing
file, data is transferred according to the attributes of the existing
file at the remote node. That is, when retrieving data from an
existing file, the data is sent with the attributes of the remote
file. When updating or appending data to an existing file, the data
sent by the user process must· have the attributes of the existing
file. Noconv~rsions will be performed by the accessed process.

Where conversions are necessary, they can be reduced to those shown in
Table 4-1. For purposes of this table, variable length records,
variable length records with fixed control, and line sequential ASCII
records can all be considered as variable length records.

Table 4-1. Conversion Table

~ Implied No Attributes
From LF/CR (Attr ibutes) Stream

~mplied LF /CR 1 N 2 C 3 C

No Attributes 4 X 5 N 6 C

Stream 7 C 8 N 9 N

FORTRAN/COBOL
Carriage Control 10 X 11 C 12 C

where:

N = no conversion necessary.

C = conversion.

X = no conversion allowed (error) •

38

(

,.

(

(

(

(

(

(

(

Table 4-1 lists six situations in which conversions are allowed. They
are:

2. A LF/CR envelope is placed around each record by the
accessing process.

3. A CR/LF is appended to each record by the accessing process
if the final character of the record is not already a VFE.

6. Same as 3.

7.

11.

The receiving node collects and concatenates
records until a VFE is encountered. If the
preceded by a CR, the CR/LF is stripped and
st'ored. Otherwise the record is stored as is.

successive
VFE is aLF
the record

FORTRAN or COBOL
CR follbwed by
before or after
interpreting the
discarded.

carriage control characters cause an FF or a
the appropriate numbers of LFs to be placed
the record depending on the rules for

control character. The control character is

12. Same as 11.

4.2.2 Conversion Rules and R~strictions-The following three rules
should be observed when conversions are performed:

1. Any conversion of variable to fixed-length ASCII records
should be done by the accessing process.

2. No attempt should be made to convert any file format into
FORTRAN or COBOL carriage control form.

3. No attempt should be made to convert image files except
between fixed and variable length records.

The~e techniques have the following effe6ts and restrictions:

1. A file transferred from a system having the implied LF/CR
envelope for records when transferred to a stream system will
list without the initial LF.

2. Records transferred from a byte count system to a stream
system containing embedded vertical form effectors (VFE's)
will be subdivided on retrieval from the stream system by the
VFE's. However, such files will list properly, regardless of
the system listing them.

Any attributes other than ASCII or image data types or fixed/variable
length records are useful only for local file system attribute
storage. No translation or processing is mandatory. Thus, if a file
is stored as EBCDIC, but an ASCII retrieval is done, it is not
required, or even desirable, to translate the data. Some systems may
choose to do so, but it is currently outside the scope of this
document to detail that type of operation.

39

4.3 Data Formats

4.3.1 Fixed-Length Records - All records are of the fixed
specified in the MRS field. They are delimited by physical
blocks (that is, the last byte in a data message is the end
record).

length
message
of the

4.3.2 Variable-Length Records - These records are like the
fixed-length ones except the maximum length is that specified in the
MRS field.

4.3.3 Variable with Fixed-Control Format Records - These records are
normal variable-length ones with an associated fixed-length field used
for control purposes. In DAP data messages, this fixed-length control
field immediately precedes and is contiguous with the variable part of
the record. The length of the fixed field is found in the FSZ field

(

in the attributes message. MRS contains the maximum length of the (
variable portion only. FSZ + MRS = total maximum record length.
Regardless of the type of the data in the variable portion of the
record, the data in the fixed portion is always sent as a binary field
contained in an integral number of 8-bit bytes.

4.3.4 LSA Records (Line Sequential ASCII Records) - These records are
variable-length ones that have as their first five characters a
5-digit ASCII line number. This line number is in binary at the RMS
interface. It is sent across the network as three bytes of binary (
data preceding the ASCII data. '

4.3.5 ASCII Stream - Here a file contains just a stream of ASCII
characters with no real concept of records. However, Vertical Field
Effectors are used to delimit "records" for purposes of reading and
writing the file.

40

(

(

(

(

(

(

(

5.0 OPERATION

The Data Access Protocol (DAP) is a user level protocol that resides
within the Application Layer of the DIGITAL Network Architecture
(DNA). Its purpose is to transfer data to and from I/O devices and
mass storage files independent of the I/O structure of the system
being accessed. This transfer is accomplished by communication with a
DAP process that accepts DAP requests on the network side and
translates them into equivalent requests to the local I/O system.
From the network it appears as if DECnet systems support DAP messages
directly within their file systems.

DAP provides the mechanism for setting up the conversation path for
remote file access, transferring data over the link, and terminating
the logical link.

5.1 Setting up the Link

Processes that implement the DAP protocol operate at the user level
within a DECnet system. They use the Network Service Protocol and the
network facilities for the creation and flow control of the data path
(logical link) between the processes exchanging messages within the

DAP environment. The originating process issues a Connect Initiate
command requesting the creation of a logical link to the DAP process
at the destination node. This request may specify an actual process
name or the generic DAP object type. All systems must support
connection to the generic DAP object type as a minimum, if
device-independent file access is to be performed. The destination
DAP process completes the connection by returning a Connect Confirm
command. Once the link is established, the processes may now exchange
DAP messages over the link.

A separate logical link is used for each remote
means a single user can not access more than one
single logical link. It also means several users
same file over a single logical link.

file access. This
file at a time over a

cannot access the

During link establishment, the identity of the user is obtained from
the Connect Initiate Message.

Following link establishment, the DAP-speaking processes exchange
configuration messages for four purposes:

1. ~o establish the maximum buffer size for exchanging NSP
messages.

2. To identify system type to each other~

3. To enable the other DAP process to know which version of the
protocol this process speaks~ and

4. To inform the opposite process of the generic capabilities of
the system sending the message.

41

The system type is used when it is necessary to know the type of both
the operating system and the file system on the other end of the link.
This is helpful in deciding if block mode file transfer can be used
when transferring files between like systems or multiple data streams ('
can be initiated as is possible between RMS-basedsystems.

The capabilities field of the configuration message indicates to each
of the. DAP processes the gener ic capabilities of the other DAP process
with which it is communicating. It is used to determine the type of
file support offered by a remote system without resorting to trial and
error techniques. It can be used to help produce more positive,
useful error messages.

The node where the file or device resides is the accessed node while
the node where the user process is located is the accessing node. The
accessing process is the one that initiates the connection. For each
DAP message sent over the link, a transmit request and corresponding
receive request must be issued to NSP. This discussion is concerned
with the DAP messages only and assumes that the necessary receives and
transmits are issued by the processes involved.

After link creation and the exchange of Configuration Messages, the
accessing process sends an attributes message specifying the desired
mode and format of the data. This is then followed by an access
message specifying the desired operation. The Attributes and Access
messages may be blocked and. sent together in one transmission if
buffer space is available (th~ LENGTH field must be used) and blocking
is supported as indicated by the Configuration message. Data messages
are the only messages whose length can exceed 256 bytes.

Systems not.retaining the file attributes use the Attributes Message
to set the attr ibutes for. the transfer. When creating a new file, the
Attributes Message sent by the accessing process specifies the
attributes the new file should have. When storing records with
systems retaining attributes, the accessed system uses the attributes
message sent by the accessing process to indicate the attributes of
the records being sent by the. accessing process. For .record retr ieval
with systems retaining attributes, records are transferred with the
attributes of the attributes message returned by the accessed process.
File systems that store attributes often have no information as to the
type of data stored in the file. When this is the case, the
user-supplied data type in the attributes message is used to determine
whether any conversion is necessary when transferring records from one
type of system to another.

After the initial set-up messages are sent, the accessing system will
receive a response from the accessed processs. If the access
specified opens a file, an Attributes Message followed by an
Acknowledge Message will be sent from the accessed system containing
the actual attributes of the accessed file. If the operation
specified in the Access Message deletes or renames a file, no
Attributes Message or Acknowledge Message is returned. The response
is an Access Complete Message.

To minimize the tying up of network resources (e.g., logical links and
buffers), the Configuration, Attributes, and Access messages should be
sent in a "timely" manner. A timer may be set for each message and if
it does not arrive in a reasonable time the link may be disconnected.
After the Acknowledge Message has been received, the file is open and
the accessing process sets the pace for access of the file.

If there are errors in the setup procedure, a status message will be
returned.

42

(

(

(

(

(

(

NOTE

A receive must always be outstanding in
order to accept both expected and
unexpected Status Messages. Status
Messages are always sent as ordinary
(not interrupt) DAP messages.

Errors in exchanging configuration messages should be very rare since
the information in configuration messages will generally be "canned"
and of an informative nature. If the accessed system detects an error
in the configuration message it returns a status message and the
accessing system can either retry or disconnect. If the accessing
system detects an error, it just disconnects. If, however, a
configuration message appears to be in error because the SYSCAP field
is too long and the DAP version number is greater than that to which
the current software is written, it should be assumed that the SYSCAP
field has been extended in the future version of DAP. This error
should be ignored. This is the only time when an error is ignored.
The assumption is that the more sophisticated DAP process will use
only a subset of the protocol and thus both sets of software will be
able to work together. This standard specifies the DAP for version
4.1.

5.1.1 Errors in the Setup Sequence - Errors in the Configuration
Message, Attributes Message, and Access Message, all return a Status
Message. On receiving an error in response to one of these messages,
there are three possibilities open to the accessing DAP process:

1. Disconnect the link.

2. Send the corrected message responsible for the error. There
is no point in sending the original message unless there is
sufficient doubt that the message was delivered properly or
that the error indicated was of a temporary nature (e.g., an
attempt to open a file already open by another process).

3. Start a different access. A new access will usually start
with an Attributes Message, but it could start with an Access
Message (where the type of access does not require attributes
such as ERASE) or even a Configuration Message.

If the user process tiies to recover by sending a corrected message or
starting a new access, the accessed DAP process should be capable of
accepting any of the three setup messages in response to a Status
Message. Table 5-1 provides a list of responses to setup message
errors.

43

Table 5-1. Responses to Setup Message Errors

Respc:mses

Configuration Attr ibutes Access
Error Message Message lMessage

Configuration Message 1 0 0

Attributes Message 1 1 2

Access Message 1 1 1

where:

0 = invalid response.
1 = valid response.
2 = valid response only for accesses requiring no

attributes message.

5.1.2 Setup Sequence - If a timer is being used between setup
messages, this same timer should be set by the accessed process after
an error during setup. If the timer expires, a disconnect should be
ini tiated.

Accessing Process Accessed Process

1. Establish link:

issue connect------)
<------complete connect

2. Configuration information exchange:

CONFIGURATION------)
Message

<------CONFIGURATION
Message

3. Setup for access:

ATTRIBUTES------)
Message

ACCESS
Message

------)

<------ATTRIBUTES
Message

<------ACKNOWLEDGE
Message

An Attributes Message is
Message specifies the
command file. For these
Attributes Message nor
returned by the accessed

NOTE

not required when the Access
ERASE, RENAME, or EXECUTE
types of access, neither the
the Acknowledge Message is

process.

Figure 5.1. Set-up Sequence

44

(

(

(

(

(

(

(

(

4. Error in configuration messages:

(a) CONFIGURATION------>(received in error)
Message

<------STATUS Message

disconnect -~-->

or

(b) CONFIGURATION------>(received in error)
Message

<------STATUS Message

CONFIGURATION------>
Message

or

(c) if the error is in the returned message

CONFIGURATION------>
Message

(in error)

disconnect

<------CONFIGURATION
Message

------>
5. Error in Attributes Message:

(a) ATTRIBUTES------>(received in error)
Message

<------STATUS Message

disconnect---~-->

or

(b) ATTRIBUTES------>(received in error)
Message

<------STATUS Message

ATTRIBUTES------>
Message

or

(c) ATTRIBUTES------>(received in error)
Message·

ACCESS
Message

<------STATUS Message

------>

Figure 5-1 (Cont.). Set-up Sequence

45

6. Error in access messag~:

(a) ATTRIBUTES------>
Message

ACCESS
Message

. ------> (received in error)

<------STATUS Message

disconnect------>

or

(b) ATTRIBUTES------>
Message

ACCESS
Message

------>(received in error)

<------STATUS Message

ATTRIBUTES------>
Message

or

(c) ATTRIBUTES------)
Message

ACCESS
Message

ACCESS
Message

------>(received in error)

<------STATUS Message

------>

Figure 5-1 (Cont.). Set-up Sequence

5.2 Transferring Data over.the Link

(

(

(

The message exchange sequence for transferring data over the link (
depends on the direction of data flow with respect to the accessing -
and accessed systems. Data may be sent to the accessing node as in a
retrieve operation or from it as in a store operation.

Before data transfer can start, however, a data stream must be
initiated by sending a control message after the file is open. With
file systems that support multiple data streams, additional data
streams can be initJated with more control messages. Multiple data
streams are differentiated by using the STREAMID number. Data
messages for a particular data stream must have the same STREAMID
number as the control message that initiated the data stream. If the
STREAMID number i~ omitted, a default of 0 is used.

The sequence for initiating a data stream is as follows:

46

(

(

(

(

Accessing Process Accessed Process

CONTROL(connect)~--->

<----ACKNOWLEDGE

If an error occurs, a Status Message will be returned instead of an
ACK. A new data stream can be initiated any time the file is open by
using the above message sequence.

NOTE

Multiple data streams cannot be used if
file transfer mode is specified in the
RAC field of the control message. The
file transfer mode implies a single data
stream with only data (no control
messages) flowing over the link. By
eliminating control messages, efficiency
is gained.

5.2.1 Sequential File Retrieval - For sequential file retrieval, data
records are sent from fhe accessed system. Once the initial startup
sequence is completed and the data stream initiated, a single Control
(GET) Message is sent to start data records flowing. Thereafter, the
file records are transmitted without waiting for any further DAP
messages to control s~nding messages. All flow c6ntrol is performed
implicitly by the Network Service PrOtocol.

To specify sequential file retrieval the accessing process specifies
sequential file access or virtual block number file transfer in the
Control (GET) Message. The access~d process will then send file
records without waiting for any further DAP control messages. In
contrast to sequential file retrieval, if sequential record access is
specified, the accessing process must se~d ~ contiol message for each
record retrieved.

Data messages will continue to arrive until: a) the end-of-file is
reached on the accessed system7 b) an error occurs in accessing the
file7 or c) the accessing system decides it has completed its access.

In the fir~t ca~e, the last ~ecord sent in a data message is followed
by a Status M~ssage with end-of-file detected set. In the second
case, a status message will be sent when an error occurs in accessing
the original file. If the accessing system receives a Status Message
with end-of-file, it sends an Access Complete Command and waits for an
Access Complete Response. It then either disconnects or initiates
another access by sending a setup sequence. If the accessing system
receives an error, it may either send an Access Complete Command and
wait for an Access Complete Response or try to recover with a continue
transfer.

If the accessing system decides to terminate access prior to
end-of-file, it sends an access complete command and waits for an
access complete response in return. In such cases, an accessing
system issuing an access complete command may still receive one or
more records of the file or everi an end-of~file indication or an error
indication due to the pipelining delay in the system. It should pass
over these records until an access complete response is received. It
may then disconnect or access another file.

47

Accessing Precess Accessed Precess

1. Retrieval until End-ef-File (EOF):

CONTROL -(GET) ------>
(------[STATUS,] RECORD 1

NOTE
Transfer centinues until •
End-ef-File er errer

[STATUS,] RECORD n

<------STATUS (End-ef-File)

ACCOMP (COMMAND)------>
(------ACCOMP (RESPONSE)

The accessing prec;ess may now issue anether access er
discennect the link.

NOTE

The Status Messages in square brackets
are eptienal, depending en whether they
are asked fer in the ACCOPT field .ef the
Access Message. If they are required,
they sheuld immediately precede the data
message in a Slingle NSP message. The
eptienal status message precedes the
data message (recerd) so. that it is
always pessible to. bleck the two. DAP
messages fer transmissien as a single
unit even if the data message is lenger
than 255 bytes.

2., Retrieval until errer:

(a) Accessing Precess Accessed Precess

(------RECORD n
(..,.-----STATUS

(

(

E--)

When an errer is received, the Accessing Precess can request ('
link terminatien.

ACCOMP (COMMAND)------>
(------ACCOMP (RESPONSE)

er

(b) request the infermatien be sent again

CONTINUE (Try again)------>
(------R~CORD n

er

(c) skip that recerd and centinue

CONTINUE (SKIP)~--..,.-->

(~-----RECORD n+l

Figure 5-2. File Retrieval Sequence

48

(

(

(

(

3. Retrieval with access termination:

<.----RECORD .. m
ACCOMP (COMMAN.D)---->

.<----ACCOMP (RESPONSE)

The accessed process may set a timer following sending ACCOMP
and if neither a disconnect or another ,message is received
within the time int~rval it may disconnec~ the link.

Figure 5-2 (Cont.). File Retrieval Sequence

5.2.2 Sequential File Storage/Append - In the store case, data is
sent to the accessed system. Following the initialization of the data
stream the accessing system sends a Control (PUT) Message to tell the
accessed process what to do~ The control message is followed by file
records using the data message. These messages will be accepted by
the accessed system and will continue until the accessing system sends
an Access Complete Command. This procedure will cause a corresponding
Access Complete Response to be returned following successful file
closure, or a Status Message to occur if an error is incurred in
closing the file. In either case,the access is concluded and another
access may start or the link may be disconnected.

To specify sequential file storage, the accessing process specifies
sequential file access in the Control Message together with PUT. To
specify sequential file append, the operations are the same except in
the Control Message where "position to EOF" is also specified. As
with sequential file retrieval, sequential file storage implies the
use of only one data stream. If optional status messages are desired,
the ACCOPT field of the access message must be used .to request them.

If an error occurs during tecord transfer, the accessed system will
return a Status Message. This must always be replied to with a
Continue Message sent as an interrupt message (because of possible
pipelining). In addition, if it is desired to terminate the access,
an Access Complete Message should be sent.

Accessing Process Accessed Process

1. Store with no errors:

CONTROL (PUT)------>
RECORD 1· ---....;-->

[<---""--STATUSl
NOTE

Transfer continues •
until access
complete or error

RECORD n ------>
[< ... ----~STATUS]

ACCOMP (COMMAND) ------>
<-""----ACCOMP (RESPONSE)

Figure 5-3. Sequential File Storage

49

NOTE

The Status Messages (in square brackets)
are optional depending on whether they
are asked for in the ACCEPT field of the
Access Message. They are not used to
indicate an er~or· condition. An error
will be contained in a Status Message
without brackets (see Step 2).

2. Error during transfer:

(a) Purge the new file and terminate

RECORD n

ACCOMP (PURGE)
CONTINUE (ABORT)

.------)
(------STATUS
------)
------) (INTERRUPT)

NOTE

The accessed system will di~card records
until ACCOMP (PURGE) is received.

Purge incomplete file (------ACCOMP (RESPONSE)

.. or

(b) close the new file and terminate

ACCOMP (COMMAND) ...,--~--)

CONTINUE (ABORT) ------) (INTERRUPT)

NOTE

The accessed system discards records ~ntil
ACCOMP (COMMAND) is received.

close incomplete file (------ACCOMP (RESPONSE)

or

(c) retry - the accessed system still has the record which
caused the error in its buffer.

CONTINUE (Try again)------)INTERRUPT
RECORD n+l ------)

or

(d) skip the record and continue

CONTINUE (SKIP)------)INTERRUPT
RECORD n+l ------)

Figure 5-3 (Cont.). Sequential File Storage

50

(

(

(

(

(

(

(

(

3.

NOTE

On an error, the accessed process does
not issue any more receives after
sending the Status Message and before
receiving the Continue Message, which
tells it what to do. If the accessing
process responds to the error by sending
an interrupt continue message and the
retry is successful, the accessed
process will post a receive and carryon
with the data transfer.

If the retry fails, another status
message is sent. A Continue Message
with skip always posts a receive and
tries to carryon having skipped the
record which caused the original error.
Continue messages must be sent in
interrupt mode as there may be data in
the pipeline.

If the accessing system wants
storage operation before it
incomplete file on the accessed
follows:

to stop a
is complete
system, the

sequential
and purge

sequence is

Accessing Process Accessed Process

RECORD n--------------->

ACCOMP (PURGE) ------->

purge incomplete file<----ACCOMP (RESPONSE)
on accessed system

file
the

as

To save an incomplete file on the accessed system, the
6perations ~re as in Step 1.

Figure 5-3 (Cont.). Sequential File Storage

5.l.3 Record Retrieval - Record retrieval is similar to sequential
file ietrieval except that a control message (with a record key for
random retrieval) must be sent by the accessing process for each
record accessed. Record retrieval is specified by the accessing
process setting sequential record access, Keyed access or Record File
Address access in the Control Message. Block mode transfer is similar
to record retrieval and is specified by setting Virtual Block Number
access."

For keyed or Record File Address access, the sequence is as follows:

CONTROL (get record with Key n)---->
<----[STATUS,] RECORD n

CONTROL (get record with Key m)---->
<----[STATUS,] RECORD m

51

For sequential record access, the state operation is as follows:

CONTROL (get sequential)--------->
<----[STATUS,] RECORD k

CONTROL (get sequential)-------->
<----[STATUS,] RECORD k+l

Once the location of a particular record in a file is found using
random access, the user frequently wants to get subsequent records
sequentially. This can be done by switching the access mode from
keyed or Record File Address to sequential in the Control Message and
issuing a GET. (WithRMS systems, the user is free to switch access
modes according to the RMS rules.)

CONTROL (get record with Key r)---->
<----[STATUS,]RECORD r

CONTROL (get sequential) -------->
<----[STATUS,]RECORD r+l

Once a particular record in a file is found, it is possible to
transfer the remainder of. the file in sequential file access mode.

CONTROL (get record with key t)---->
<----[STATUS,]RECORD t

CONTROL (sequential file access, get)----->
<----[STATUS,]RECORD t+l
<----[STATUS,]RECORD t+2, t+3,

..• to end-of-file

Error handling for sequential record retrieval is similar to error
handling for sequential file retrieval. When an EOF is reached while
accessing a file sequentially, the accessed process sends the Status
Message "end-of-file-detected." This prevents automatic file closure
and control is retained by the accessing process.

Error handling for random record retrieval is similar to that for
sequential file retrieval. However, the continue (skip) recovery
option which is valid for sequential retrieval is not valid for random
retrieval. When a control request specifies a nonexistent record
while doing random record retrieval, the accessed process will return
an appropriate error message (e.g., record number out of range or
record not found).

5.2.4 Record Store - This is similar to sequential file store in
messages exchanged. For relative files, the data messages must
include the relative record number field specifying the number of the
record (RECNUM). For direct files where the user is supplying his own
hash code (RB$HSH set in the Rap field of a Control Message), RECNUM
contains the hash code. For indexed files, RECNUM is null. For
sequential files, records are written starting at the current position
wi thin the file.

52

(

(

(

(

(

(

(

The access message specifies whether to open an existing file or
create and open a new file. PUT access must have been specified in
the Control Message. For record storage, the accessing process may
specify sequential record access, or keyed access. Optionally, VBN
access may also be used.

The sequence of records to be stored may be preceded by a Control
(PUT) Message if it is necessary to change record options or access
mode from the current value. Optionally, each record to be stored may
be preceded by a Control (PUT) Message. This procedure is inefficient
since it doubles the number of DAP messages transmitted. When storing
a record, if the Data Message is preceded by a Control Message that
contains a record number in the key field and the Data Message also
contains a record number in the RECNUMField, then the record number
in the RECNUM Field will be used.

When an accessed RMS system must return Record File Addresses to the
accessing RMS system (bit 1 of ACCOPT in the Access Message set), the
sequence for record storage with return of status is as follows:

RECORD n -------->

<-------- STATUS

RECORD n+l ------>

<-------- STATUS

Errors are handled as indicated in Section 5.2.2 except for the use of
continue skip.

5.2.5 Append to Existing File - The append operation is identical to
sequential store and applies only to sequential files. The records
are placed at the logical end of the file by the accessed syste~:

RECORD 1-------->

RECORD 2-------->

If it is necessary to return Record File Addresses, the sequence is
the same as that described for Record Store (see Section 5.2.4).

5.2.6 Deleting a File - The delete operation does not cause any file
data to be transferred, but does manipulate file structures. Deleting
a file does not require an Attributes Message in the setup sequence.

The message sequence for the delete operation is as follows:

[ATTRIBUTES---------->]

ACCESS (ERASE)----->

<-----ACCOMP (RESPONSE)
or

<-----STATUS

53

5.2.7 Command/Batch Execution Files - The Data Access Protocol
includes commands for the transfer and submission of files to a batch
processing facility or command interpreter. The
"submit.,.-as-comma.nd-file" request in the Access Message requests that a
store operation be done on the data that follows in a temporary file
and that this file be submitted to a batch-type facility upon access
completion (closing of the file). The .. file will be deleted following
execution by the batch facility. DAP does nothing with regard to any
feedback from the batch facility and does not guarantee that the file
actually executes in the batch monitor. The file is transferred using
sequential £ile storage.

The "execute-as-command~file" requests that the specified file be only
submitted to the batch facility. No data follows this command (the
specified file having been previously established on the accessed
system). The file is not deleted following execution by the batch
facility, so that the sequence "store, and execute command file" will
transfer a file, submit it and retain the file for later use. The
sequence for "submit-as"'command-file" is identical to "store", while
the "execute command file" is identical to ERASE.

NOTE

Since errors are not returned to the
originating node automatically, a test
for errors might be included in indirect
command files. Upon error or
completion, a suitable message can be
returned to the originating node.

5.3 Closing a File· and Terminating Data Streams

The ACCOMPEnd of Stream (EOS) command is used to terminate a data
stream. When the accessing process wishes to terminate a data stream,
it may do so by sending it the appropriate STREAMID number to
terminate. This is particulary useful when multiple data streams are
employed. This will not close the file even if it terminates the last
active data stream.

An ACCOMP (COMMAND) is used to close the file and terminate the
access, which includes closing out all remaining active data streams.

5~4 Terminating a Logical Link

The logical link is terminated by issuing a disconnect request.
During the setup of the link, this may be done by the accessed process
if optional timers indicate delay by the accessing process in
supplying the required information. Once setup is complete, the
accesslng process controls the rate of access of the file.
Disconnection at this point will usually follow access completion.
The accessing process may disconnect at any time~ however, different
systems may handle file closing and disposition differently if
disconnection occurs during transfers.

54

(

{,

(

(

(

(

(

(

(

The accessing process is not required to disconnect and reconnect
following each access. However, if a new access is to be started, it
must be initiated in a timely manner. If a timer is being used
between setup messages, it should also be set by the accessed process
following an Access Complete Message. Disconnection will normally
occur only at the end of a group of transfers.

5.5 File Security and Protection

DAP attempts to provide approximately the same degree of file security
and protection over the network as is available locally. To do this,
a DAP user must be a registered user of each system holding files he
wishes to access. Embedded in the connect message sent by the
accessing process is sufficient information for the user to be logged
onto the system whose files he wishes to access. User access is first
verified (not necessarily actually logged-on) and then file access is
allowed to proceed under the normal rules for file aCcess applicable
to a local user.

If the user wants to change the account under which he is running at
the remote node, he must disconnect the logical link and reconnect
specifying the new account in the connect.

55

ISAM

JFN

Key

Key field

Key of
reference

Octets

Object Type

RFA

RMS

URD

VBN

APPENDIX A

GLOSSARY

Indexed Sequential Access Method. This access method
is a combination of random and sequential access.
Random access is used to locate a sequence of records
and then access is switched to sequential to read the
remaining records in the series.

Job File Number. The JFN is the job's global handle on
a file.

A data item used to locate a record in a random access
file system.

For direct and indexed files, the position of the key
within the record.

The particular key field of the record for which the
key applies.

Octets in this document are bytes of 8 bits, with bit 0
the rightmost (low-order, least-significant) bit and
bit 7 the leftmost (high-order, most-significant) bit.
Fields and bytes of other lengths are numbered
similarly.

Numeric value that may be used for process addressing
by DECnet processes instead of a process name. See the
NSP specification for further details. DAP server
processes are object type number 21 (octal).

Record File Address. The unique address of a record
within a file. This method of addressing can be used
explicitly with RMS.

Record Management Services. This file system will be
used on all major DIGITAL systems except where space is
limited (e.g., RT-ll). In addition to access modes
provided by previous file systems, RMS provides random
access for direct and indexed files and ISAM.

Unit Record Device.

Virtual Block Number. This number is in the range 1 to
n where n is the highest numbered block allocated to
the file.

56

(

(

(

"

(

(

(

(

(

(

APPENDIX B

RSX/IAS/RT DECNET IMPLEMENTATIONS

DECnet remote file access (and transfer) is implemented via three
distinct pieces of software: a File Access Listener (FAL), a set of
user callable subroutines (Network File Access Routines) called NFARS
and a Network File Transfer utility (NFT). A. brief description of
each is provided below.

B1.0 FAL

FAL is the mechanism which maps DAP protocol
file system. FAL accomplishes this by
requests from the user on the network side
equivalent requests to the local file and/or
B-1 is the FAL State Diagram.

messages to the local
accepting DAP file access

and mapping them into
operating system. Figure

FAL is a user level process, resident on every node whose file system
is to be accessed via the network. It is a passive elemefit in that it
s~rvices requests for rem~te access to the local file systems, it does
not generate activity by itself, and is idle (suspended) when no such
re~uests are in progress. Requesting processes are connected to~_PAL
through the network provided communication mechanism. The Data Access
Protocol (DAP) is used for exchanging commands and data between FAL
and the accessing process. A single FAL process can handle multiple
accesses and logical links simultaneously.

B2.0 NFARS

To simplify remote file access a set of FORTRAN callable subroutines,
NFAR's are provided. The routines build, send, and interpret DAP
me~sages for the user. The basic functions provided by the user
interface are reflected in the NFAR's to effect remote file access.
The NFAR's accomplish this functionality by communicating with the
cooperating remote task FAL over the network using DAP messages.

57

DELETE FILE
OR EXECUTE
COMMAND FILE
& RETURN
ACCDMP (RESPONSE)

OPEN FILE
& RETURN
ATTRIBUTES

REPEAT
OR ABORT
TRANSFER

Figure B-1. FAL State Diagram

58

WRITE
DATA
TO FILE

FOR CONTROL
I3ET, START
SENDING DATA
MESSAGES TO
USER PROCESS

(

(

(

\'

t'

(

(

(

(

(

l

B3.0 NFT

NFT is an internode file manipulation utility which allows a user to:

a) transfer files to a remote node~
b) retrieve files from a remote node~
c) delete a file at a remote node~
d) execute command files at a remote node~ and
e) submit command files to a remote node for execution there.

NFT calls the NFAR's directly, as user programs do, to perform the
requested operations. It maps commands entered by the user, into NFAR
calls which are interpreted by the FAL process on the remote node.
For example in a network with nodes A, B, and C, a user on node A
c~uld transfer files between: A and B, A and C, or Band C using NFT.

59

APPENDIX C

REVISION HISTORY

A number of significant changes have been ~ade to the Data A~cess
Protocol since its first release. The major differences between DAP
Version 4.1 are:

a. DAP Version 1.0 could not adequately support indexed and ISAM
file access;

b. The format of the operator field has been expanded;

c. The USERID message has been eliminated;

d. The status and error message have been combined;

e. The ACCESS COMPLETE Message has been added;

f. The CONFIGURATION Message has been added; and

(

(

g. The two types of DATA Messages employed in Version 1.0 have
been merged into one DATA Message in Version 4.1. t

While a definite incompatibility exists between Versions 1.0 and 4.1,
numerous steps have been taken to build a more flexible architecture.
DAP Version 4.1 is flexible enough to allow new file access functions
to be added to the protocol framework.

60

(

(!
/

!i

digital equipment corporation

Printed in U.S.A.

