GE-200 Series

GENERAL ELECTRIC
COMPUTERS

]

GECOM:-I|

Reference Manual

GENERAL @B ELECTRIC

cPB-1108

GE-200 SERIES
GECOM-II

COBOL COMPATIBLE

REFERENCE MANUAL

Program Number
CD225H1.005

September 1965

GENERAL B ELECTRIC

COMPUTER DEPARTMENT

PREFACE

This Reference Manual (together with the GE-200 Series GECOM-II Operations Manual, CPB-
1109) covers the COBOL Compatible version of GECOM-II, Program No. CD225H1.005. This
manual was previously issued with the program number serving also as the publication identi-
fication number. The current edition, which supersedes all earlier editions, is identified with
the new publication number, CPB-1108, on the cover. The program number remains unchanged.

Comments on this publication may be addressed to Technical Publications, Computer Department,
General Electric Company, P. O. Box 2961, Phoenix, Arizona, 85002.

CQ 1965 by General Electric Company

GE-200 SERIES R TG ST

CONTENTS

1. INTRODUCTION

Machine Requirements
Organization of Manual ittt ettt eeneneeeenas
Acknowledgment.

2. GLOSSARY

3. LANGUAGE STRUCTURE

Characterso ev ... e e e e e e e
1703 s =Y
Data Names. e e et e e .
Procedure Names. v v v v v v v v v v v e e e e et e e e e e e
Constants i i it ittt e e e e e e e e e e e e e e e
Conditional Namies . . v v v v vttt it e et st e ettt s ot anneas e e
True-False Fields i i i i i it ittt ettt et i e o e st e s ian e
Qualifiers. i i i it i e e e e e e e e .
Arrays. e e e e e e e e e e e

HOomoOogeNeouS ATTAYS & v v v v v v vt ettt ettt e et ot oo n e

Nonhomogeneous Arrays
Subscripts. . . . o e e e e e e e e e
EXpressions . . .o i i i e e e e e s e e e e e

...................

................

................................

4. USING THE GENERAL COMPILER FORMS

Conventions. i i i i e e e e e e e et e e e e e e e e
Data Division Form

.........................

5. DATA DIVISION

Basic ConcCepts . . . v v v i it i i e e e e e e e e e e e e e
Physical Characteristics
Comma-Separated Fields
Justification L e e e e e e e e e e
Nonstandard Data
Tape Labels

....................................

....................................

...

w DN DN

23
24

GECOM - II

@E ° 2@@ SE[P& U E$ REFERENCE MANUAL

iii

File Section

File Description. o i v it ittt e e e e 40
Record. . . i i e e e e e 43
a5 0 1 ¥ ' T 45

(5 o710 o 47
Terminate, i it e e e e e e e e e e 50
0 = e N 51
Element e e e e e e e e e e e e e 54
Conditional Namesot ittt ittt e et et e et e e e 55

05 = o~ 1 OO 57
Field Literal.o i it it it e ettt e e 59

Data Image Entries. ittt ittt e e e 62
Array Section it i e e e e e 67
Constant Section. i it i i e e e e e e e e 68
Integer Section. i i it ittt i e e 69
True~False Sectiono it ittt ittt i i et e e e e e e 70
Working~Storage Section.t ii i e e eee 71
Common~Storage Section ittt e e 73
*Common~Storage Section. e e e e e e 75
Overflow Condition. i e e e e e e e 76

6. PROCEDURE DIVISION

PUIPOSE & . e e e e e e e e e e e e e e e e e 79
Organization e e e e e e e e e e e e e 79
=T 10 L) + OO 79
Segments e e e e e e e 81
Overlay Segmentation e e e e e e e 84
Segment and Subroutine Table Description 88
Notations in Sentence Formats 0 ... 90
VerbFormats eeen.. e e e e e e e e e 91
ADD. . i e e e e e e e e e e e e e e e e e e 92
ADVANCE. it iiienn e e e e e e e 93
ALTER.......... e et e e e e e e e e e e 94
ASSIGNMENT . . . e e e e e e e e e e e 95

(0] 2 7. 5. O 96
CLOSE.......... e e e e e e e e e e e e e 98

DIVIDE. . ..ttt e it e e e e e e e e e e e e 99

ENTER. . .. ittt it ittt e et et et ettt e e 100
EXCHANGE. . . . ittt ittt ittt et e e te e e e 105

[T 106

5 O 108

LOAD. e 111

MOVE e e e e e e e e e e e e 112
MULTIPLY......... e e e e e e e e e 115

0 25 0 116
OPEN........ e e e e et et e e e 117

PERFORM i it ittt vt i eten iy e 119

READ. . . it it i et e e e e e e e e e 120

GE-200 SERIES

REFERENCE MANUAL
iv

READY, e e et 125
RELEASE.,ttt itiitinnneneennnnenannenas 127
O 128
SUBTRACT ittt it ittt iennnnneneseannaas 131
VARY, ettt it et 132
WRITE ., | .. it it iie i ittt it tieannanan 135

Purpose, e e et et ettt ettt e e e 139
Organization , e e ettt e e 139
Environment Sentences , ,......... e ettt e e 139
OBJECT~COMPUTER e et et et e 140
I~O~CONTROL. . .. ittt et ittt e e eneoeeaenooenaens 145
FILE~CONTROL........ C et e e e e e e e et et et 149
DSU~CONTROL.t ittt ittt i teeoneoeeenaeaeenas 151
COMPUTATION~MODE .,ttt ittt eeeneennnns 153

8. IDENTIFICATION DIVISION

PULPOSE . v i v i ettt et et et ae et 155
Organization v ittt ittt i it e e e et i et e e 155
ConVentionS. ittt i it e e st e e et e 155

9. DATA MANIPULATION

Object Program Data Storage and Manipulation. 157
Data Storage - Generalttt ittt tnectenennennns 157
Numeric Fieldsottt i it ittt it e enennn et e e 157
Alphanumeric (or Alphabetic) Fields and Elements. 157
Procedure Division Numeric Constants00 ue.. 157
Procedure Division LiteralConstants - 158
Figurative Constants. ittt it ittt tieeeeenens 158
Process StOrage. . & v v v it ittt ittt et e e e e 158
Working Storage. . & v v v v vttt ittt ettt et 159
Elements of Alphanumeric Fields0ttt enn. 159
Object Program Action in Executing a READ Sentence 159
Object Program Action in Executing a WRITE Sentence. 159
Dating . . .ttt i i i et et et i et et e e e 160

Binary SCaling . & v vttt it et e et et ettt 160
Useof Scaling Factorttt ittt it it i et ettt eneennn 161
Useof 1 or 2inthe Format Column, 0.0t ennenn 162
Integer Arithmetic it it ittt ittt i ittt it eenennn 163

Using K in Data Descriptions . . . v vt i v vttt v ettt e eetteeennnns 163
KConventions et ettt et e e 164
Multiplication et et et ettt e e e 165
084 = U) ¢ 166
UMY L . ittt it ittt ettt et ettt et e nne ettt 166

Repeated GroupPS . & v it ittt ittt et et ettt et e e 166

BE-200 SERIES

REFERENCE MANUAL

Page

10. USING GECOM TO OBTAIN EFFICIENT OBJECT PROGRAMS 171
11. TABSOL
Introduction. i i i i it et e e e e e e e e e e e e e e e e e e 175
GECOM/ TABSOL . . . it ittt ettt et e et et e et ettt et e 175
Decision Table Format0 o0 it e i et e e e 175
Table Entries i i e e e e e e e e e e e e 175
Formation of Conditions 176
Relational Operators. ¢ o ittt it ittt i e e 177
Condition Formats i i i it it ittt e e e i e e e e e 177
Condition Column Rules. i i it it ittt et e ettt e 179
Formation of Actions. i i ittt i i it e e e 180
Verbs in Action Columns vt v it it it et e e e e 185
Logical EXpresSsions. v v v v vt it ittt it i et e 186
The Skip and Repeat Operations 187
Tables in Programs v v vt ittt it et e et e et e et et e e e 187
Table Conventions i i i i it i ittt it et e e et e 188
Block Conventions ¢ ittt ittt it ittt i e i 190
External Control of Tables. o v v v i it i it ittt ettt it i 191
12. REPORT WRITER
The Report Writer in GECOM. ittt it ittt e 193
Method of Report Description. 194
Line Description ., ittt it i e e e e e e 195
Line Spacingonthe Page.ttt ittt it 196
Page Overflow Testing ittt i 196
Tabulation LogiC i it ittt it e e e e e e e e e 197

Report Writer Line Control it it i e iie 197

Execution of User Procedures at Line Time 198
Data Division--Report Section e e e 199
Report File Definition Entry. e e e e e e e 200
Report Layout Header e e e e e e e e e e e 201
LineImage Entry. it ittt 202
Report Definition Header 206
Report Definition Entries. 207

Line Definition Entry o 208

Line Control Entries. it 210

Line Section Entry e e 212
Accumulation and Count Names., 213
Control Break Condition Names, 216

Page Control Entries--Page Overflow 217

Page Control Entries--Line Number 219
Procedure Division--Report Writer Verbs 220
GENERATE. e e e e 221
TERMINATEttt et et et e e 222
Environment Division--Report Section. 223
Report Description Form Conventions 224
Programming Conventions 224
Keypunching Conventions 225

GE-200 SERIES crcon - 11

REFERENCE MANUAL
vi

APPENDICES

Page
A, Compiler Vocabulary ¢ ittt ittt eennenneennsenos 245
B. Order of Source Programo v i e tnenenonenennnsnss 246
C. Object Program Relocatable Deck Formats., 247
D. Object Program Constants. i it ittt ittt ineeennn 251
E. Object Program Typing Subroutines. 253
F. Input/Output Symbolic Name Assignment0uu... 255
G. FileTables. ittt i it i ittt ie et 281
H. Object Programs for 16k Memories.ot i vt vt v v ennn 291
I. GECOM Relocatable Object Programs v v v v v v ot v v v v v nvnnn 295
J. Object Programs Using Disc Storage Units (DSU's). 309

BE-200 SERIES e

REFERENCE MANUAL

vii

ILLUSTRATIONS

Figure Page
1 Special GECOM Characters v vt ittt ittt it eene e e 9
2 A Three Dimensional Arrayo it it v vttt v nmueeennn 16
3 Priority of Arithmetic Operators v 18
4 Available Functions ittt it i e e e e 19
5 Relational EXpressions v i it it it it i e e e 20
6 TruthValues. 0 i i e e ettt e et i it e e 21
7 GECOM Sentence FOrm v v vt vt it ittt e ittt e v e ieae o 26
8 GECOM Data Division Form. 27
9 Levelsof Data. oo v v ittt it et it e it e e e 30

10 Formats for Tape Labels. it i, 37
11 Binary Scale Assignment. e e e e e 161
12 External and Internal Storage. 162
13 Decision Table Format 0 ittt it it e 175
14 Rules for Condition Columns o0 iv ittt it i, 179
15 Rules for Action Columns e e e e e e e e e e e e e 184
16 Sample Decision Table i, 192
17 Sample Report 1, Report Section. 226
18 Sample Report 1, Identification, Environment,

Data DiviSionS. o o i v v v ittt i e i e e e e e 2217
19 Sample Report 1, Procedure Division 228
20 Sample Report 2, Report Section. 229
21 Sample Report 2, Data Division., 230
22 Sample Report 2, Procedure Division 232
23 Sample Report 2, Report Section., 234
24 Sample Report 3, Data Division, 235
25 Sample Report 3, Procedure Division 237
26 Sample Report 4, Report Section., 239
27 Sample Report 4, Data Division it enn. 240
28 Sample Report 4, Procedure Division, 242
29 Report Data Image Symbols ittt it 244
30 Header Card Format. i it it i i 249
31 Third Character for I/O Symbolic Name Assignment 255
32 Input Card Files. N . 257
33 Output Card Files. v it i ittt e e et e e e et et e e ee 259
34 Printer Files. i it it it i i e e e e e e e e 260
35 0 N T - 262

GECOM - II

GE-200 SERIES

ix

REFERENCE MANUAL

36 Control Key Analysist 273
37 Read Untilor Read Copy Until, 274
38 DSU FileS . . v v v ittt e e et e e e et e e e e e e e e 275
39 File Table Format for Input Card Files 284
40 File Table Format for Output Card Files 284
41 File Table Format for Printer Files 284
42 File Table Format for Input Tape Files 285
43 File Table Format for Output Tape Files 2817
44 File Table Format for Input DSU Files. 289
45 File Table Format for Output DSU Files. 290
46 Example of 16k Memory Allocation 293

GE-200 SERIES s vaoaL

REFERENCE MANUAL
X

1. INTRODUCTION

This manual is intended to familiarize the programmer, who has a working knowledge of com-
pilers, with the language of the GECOM-II system. Two supporting manuals about the GECOM
system are available: Introduction to GECOM, CPB-230, which provides a broad description of
the GECOM system, and the GECOM-II Operations Manual, CPB-1109, which covers the opera-
ting instructions for the compiler.

The GECOM system trunslates a source language into a machine language program. GECOM is
composed of two elements: the source language or the language in which the program is written,
and the compiler which translates the source language into an object program ready for execu-
tion on the GE-200 Series. This manual is primarily concerned with the source language. How-
ever, mention of the ccnpiler is necessary in certain cases because, to a large extent, the
specifications of the language determine the broad area of the compiler.

GECOM source language is based primarily on COBOL (Common Business Oriented Language)
and ALGOI. (International Algorithmic Language). Of these two, COBOL was selecfed ns a base
language because it ackicves a ''nearly natural' language which sat1sf1es the needs of a hroad
spectrum of diata processing applications. Boolean expressions, floating point arithmetic, and
tle ability to express coraplex equations were taken from ALGOL and incorporated into the lan-
guage structure of COBCL to accommodate the needs of more technical applications. Therefore,
with the present version of GECOM, the programmer may state his problem in one, two, or a
combination of two, languiages.

In concept, a COBOL source program facilitates the statement of a problem for computer solu-
tion. Recognizing that there are four levels of program preparation, the GECOM source pro-
gram is correspondingly divided into four parts, or divisions. Each division represents a
separate and independen: level of program preparation. For example:

Progrum Preparation GECOM Division
1. Identificaticn of program = Identification
2. Description of computer configuration = Environment
3. Description of data = Data
4, Steps or set of procedures = Procedure

The Identification Division labels the source program. The programmer may include the date
written, the program ti'le, his own name, and any other information necessary for computer
program documentatio .

The Environment Divisicn indicates the equipment being used to run the object program. Among
the many items that m . he mentioned for a particular computer are: memory size, number of
tipe units, hardware v tehes, printers, etc. Also described here are those aspects of a file
relating directly fo b dw v e, Because this division deals entirely with the specifications of the
computer beiny usced. i is largely computer-dependent.

E Z/rﬁr_\‘\ @0 s GICON-I'
Y F\c f d REFERENCE MANUAY

The Data Division uses file and record descriptions to describe the files of data that the object
program is to manipulate or create, together with the individual logical records which comprise
these files. The characteristics or properties of the data are described in relation to a standard
data format rather than an equipment-oriented format. Therefore, this division is to a large
extent computer-independent.

The Procedure Division indicates the steps that the programmer wishes the computer to follow.
These steps are expressed in terms of meaningful English words and sentences. This aspect of
the overall system is often referred to as the "program'’; in reality it is only part of the total
specification of the problem solution (the program), and is insufficient, by itself, to describe the
entire problem. This is true because repeated references must be made- -either explicitly or
implicitly--to information appearing in the other divisions. Concepts of verbs to denote action,
and sentences to describe procedures, are basic, as is the use of conditional statements to pro-
vide alternative paths of action.

MACHINE REQUIREMENTS

The source computer configuration for GECOM is as follows:

1. GE-200 Series central processor with 8192-word memory and typewriter
2. Card reader

3. Card punch

4. On-line high-speed printer

5. Four to six tape units, depending on needs of the user

6. One to six tape controllers

Object computer configuration--The GECOM-II compiler will compile ai. object program for any
standard GE-200 Series configuration.

ORGANIZATION OF MANUAL

This manual is organized to give a logical presentation of GECOM II. The four Divisions are
discussed in the order in which they may be most meaningful to the reader. The reference guide
below outlines the contents of each chapter.

1. INTRODUCTION

2. GLOSSARY--defines certain words as to their usage in the GI'COM Systeni.

3. LANGUAGE STRUCTURE--describes how words are formed - GECOM and how they
may be combined to form sentences.

4. USING THE GENERAL COMPILER FORMS--tells how to enter leiters or svmbols on
the GECOM forms.

5. DATA DIVISION--explains how to describe the input/output ir’orrmation which is con-
tained in files and used in the processing of a problem.

@ E ° 2@@ Q%E ‘}38 B Eg "V-t?-"iRErC\;EgOSLA.\—JLIiI)i

6. PROCEDURE DIVISION--describes the verbs used to carry out the procedures in a
given problem.

7. ENVIRONMENT DIVISION--describes the functions centralizing the aspects of a pro-
blem which are dependent upon the physical characteristics of the GE-200 Series.

8. IDENTIFICATION DIVISION--shows how to label the source program.

9. DATA MANIPULATION--gives the programmer a better understanding of his object
program so he may write a more efficient data description in his source program.

10. THE USE OF GECOM TO OBTAIN EFFICIENT OBJECT PROGRAMS--gives rules and
techniques independent of the compiler itself which should be followed to produce
efficient programs.

ACKNOWLEDGMENT

"This publication is based 'in part' on the COBOL System developed in 1959 by a committee com-
posed of government users and computer manufacturers. The organizations participating in the
original development were:

Air Materiel Command, United States Air Force

Bureau of Standards, Department of Commerce

David Taylor Model Basin, Bureau of Ships, U. S. Navy

Electronic Data Processing Division, Minneapolis- Honeywell Regulator Company
Burroughs Corporation

International Business Machines Corporation

Radio Corporation of America

Sylvania Electric Products, Inc.

Univac Division of Sperry-Rand Corporation

"In addition to the organizations listed above, the following other organizations participated in the
work of the Maintenance Group:

Allstate Insurance Company Lockheed Aircraft Corporation
Bendix Corporation, Computer Division National Cash Register Company
Control Data Corporation Philco Corporation

DuPont Corporation Standard Oil Company (N. J.)
General Electric Company United States Steel Corporation

General Motors Corporation

"This COBOL-61 manual is the result of contributions made by all of the above-mentioned or-
ganizations. No warranty, expressed or impiled, is made by any contributor or by the commit-
tee as to the accuracy and functioning of the programming system and language. Moreover, no
responsibility is assumed by any contributor, or by the committee, in connection therewith.

"It is reasonable toassume that a number of improvements and additions will be made to COBOL.
Every effort will be rnade to insure that the improvements and corrections will be made in an or-
derly fashion, with due recognition of existing users' investments in programming. However,
this protection can be positively assured only by individual implementors.

GE-200 SERIES EFERECE VAT

"Procedures have been established for the maintenance of COBOL. Inqguirics ¢oncerning the
procedures and the methods for proposing changes should be directed to the Executive Committee
of the Conference on Data Systems Languages.

""The wuthors and copyright holders of the copyrighted material used here. [FLOW- MATIC
(Trade- mark of Sperry-Rand Corporation), Programming for the UNIVAC {})7 and II, Data
Automation Systems 1958, 1959, Sperry-Rand Corporation; IBM Comun ¢ 7cial Translator,
Form No. F 28-8013, copyrighted 1959 by IBM, FACT, DSI 27A5260-276C. sopyrighted 1960
by Minneapolis-Honeywell, have specifically authorized the use of this marterial, in whole or in
part, in the COBOL specifications. Such authorization extends to the repioduction and use of
COBOL specifications in programming manuals or similar publications.

"Any organization interested in reproducing the COBOL report and initial specifications in whole
or in part, using ideas taken from this report or utilizing this report as :I'e basis for an instruc-
tion manual or any other purpose is free to do so. However, all such org.wnizations are requested
to reproduce this section as part of the introduction to the document. Those using a short
passage, as in a book review, are requested to mention 'COBOL' in acknowledgment of the source,
but need not quote this entire section, "

GE-200 SERIES T ANTAL

2. GLOSSARY

The definitions in this glossary pertain to the usage of these words in this manual.

Array

Array Name

BCD

Beginning- File Label
Binary Numeric

(external)

Binary Numeric
(internal)

Block

Block Size

Buffer

Common Storage

*Common Storage

Element

End of File
End-of-file Label
End-of-tape Label

Expression (arithmer:ic)

GE-200 SERIE

G

A list of values.

Name representing all values in an array.

Binary Coded Decimal--a system of representing any
character of the character set of the computer by a group of

binary digits.

A label block which identifies the contents of each file of a
multifile tape. It is block 0, the first block of the file.

Any numeric that exists inone- or two-word binary form.
Any numeric used in an arithmetic operation or an IF
statement.

A group of logical records read from, or written on, tape
as one physical tape record.

The number of words in a block.
Storage locations (set aside in memory) used to compensate
for a difference in rate of flow of information when trans-

mitting information from one device to another.

Memory allocated for data required for processing during
execution of more than one segment of a program.

Upper 8k memory allocated to repeated numeric fields.

A subordinate section of a BCD field. May be of any size
not to exceed field length.

The point following reading or writing of the last physical
data record of a file.

A unique set of characters that follows every end-of-file
mark,

A unique set of characters that follows the mark of every
intermediate reel (all but the last) of a multireel file.

A sequence of variables, numbers and/or mathematical
functions connected by symbols of arithmetic operations.

GECOM - II

REFERENCE MANUAT,

Expressions (logical)

Expressions (relational)

Field

Field Literal

Figurative Constant
File

Fixed Point

Floating Point

Generated Field

Group (of fields)

*Group (of fields)

Integer (as used in
this manual)

Key Words

Literal

Logical Record

Multifile Tape
Multireel File
Multitape File
Nonstandard Data

Numeric Constant

Object Program

GE-200 SERIES

A combination of conditional names, e :tional expressions
and arithmetic expressions connected iy the logical AND,
OR (Inclusive), and NOT (Exclusive).

Any expressed or implied comparison of two field names,
element names, literals, or arithmet:c expressions.

Units of data.

A literal used only for input, Working Storage, and Common
Storage.

A name representing specific values.
A set of logical records.

A number including an actual or assumed decimal point
either between digits or following them (1.23, 123. or 123. 0).

A number expressed as a whole number and fraction, and a
power of ten (1.287*107°),

A field which is generated as a result of calculations and is
not input to the program.

A named set of data similar to a record but beneath it in
rank.

Equivalent to a logical record for input/output purposes.

Indicates a number of not more than five digits which does
not contain an actual decimal point.

A vocabulary which has special meaning for GEneral
COMpiler and, therefore, should not be used as data names
by the programmer.

A string of characters forming a constant made up from the
character set of the GE-200 Series.

Any consecutive set of related information within a physical
record.

A tape containing more than one file.

A file that extends over more than one tape reel.

Same as multireel file.

Data not conforming to GECOM internal binary scaling.
May consist of numerals 0-9; the plus sign (+), the minus
sign (-) and the letter E, delineating the exponent in floating

point.

A program in machine language (output from the compiler).

GECOM - II

REFERENCE MANUAL

Packed Data (BCD)

Physical Tape Record

Procedure

Qualifier

Record
Record Size
Section

Segment

Sentence

Source Program

Subscript

Tape Mark

Throughput Fields

Truncation

Unpacked Data (BCD®
Word (as applied to
computers)

Working Storage

Zero Suppression

GE-200 SER:

Data entered into the computer without regard to the GE-200
Series word length into which it will be placed.

Information contained between successive tape gaps.

An action which the programmer desires the computer to
carry out.

Data names used in conjunction with other nonunique data
names to make them unique.

A logical record.

The number of words in a record.

Ordered sets of sentences having a common function.
Subprograms which are compiled and tested independently.
Two or more are subsequently loaded together and executed
as a total program.

Describes a computer procedure to be followed.

The English language program written for the General
Compiler (GECOM).

Method of identifying or selecting a particular value in an
array of values.

A special character (001111) that signifies either end of file,
or end of tape, depending upon the label block following it.

Fields which are not referenced or operated on in the Pro-
cedure Division but are moved from input to output.

The dropping of either least-significant or most-significant
characters. This occurs when forcing a field to conform to
the receiving image.

Data so arranged that it may be read into integral GE-200
Series word lengths.

A set of characters which is moved as a unit by the computer.
A word may be data or instructions.

That part of computer memory set aside by the programmer
for intermediate processing of data.

Special editing performed only on numeric fields when
leading characters become zero.

GECOM - II

REFERENCE MANUAL

3. LANGUAGE STRUCTURE

The GECOM language. like most languages, is a body of words with a set of conventions for com-
bining these words to express meanings. Its structure or syntax closely resembles English
grammar, and its body of words may be appropriately termed a vocabulary. This section shows
how words are formed and how they may be combined to express a computational process.

CHARACTERS

The basic units of the language are the characters used to form words and symbols. The GECOM
character set includes:

Alphabetics A B C, ..., Z
Numerals 0,1,2, ..., 9

and the special characters shown in Figure 1. Special characters are presented in more detail
as their use is encountered.

Character Meaning Hollerith GE-200 HSP

Space or Blank Space Space
Period and Decimal Point 12-3-8 .

. Comma 0-3-8 s

" Quotation Mark 3-8 #

~ Hyphen 5-8 (underscore)

(Left Parenthesis 0-5-8 e

) Right Parenthesis 0-6-8)

+ Addition and Plus Sign 12 +

- Subtraction and Minus Sign | 11 -

* Multiplication 11-4-8 *

/ Division 0-1 /

= Assignment 6-8 =
Decision Table Column

Delimiter 12-4-8 Space

Figure 1. Special GECOM Characters

GE-200 SERIES EFERRCE VAL

WORDS

Words fall into one of two vocabulary categories:

1. Words used by the compiler
2. Words used by the programmer

The programmer's vocabulary consists mostly of arbitrary names given to his data.

The compiler's vocabulary, on the other hand, is predetermined and is used only to form sentences

and descriptive phrases.

These two categories of words are illustrated by the following sentence:

GET~RECORD. READ MASTER~ FILE RECORD.

Here, the words READ and RECORD belong to the vocabulary of the compiler. The words GET~
RECORD and MASTER~FILE belong to that of the programmer since he has freedom to choose
names of sentences and data files.

Appendix A lists the compiler vocabulary; the programmer should avoid using these words when
choosing names of sentences and data.

DATA NAMES

Data names are words representing data (files, records, fields, constants, etc.) and are
arbitrarily assigned by the programmer. They are formed from the following characters:

Letters A B C, ..., Z
Numerals 0, 1,2, ..., 9
Hyphen ~

The programmer should choose data names that

Do not exceed 12 characters.

Do not begin or end with a hyphen.

Do not contain imbedded spaces.

Do contain at least one letter.

Do not consist of all numerals or contain the letter E, since the latter E is used to
to indicate the exponent in floating point notation.

1 o 2o

B

Since data names represent or stand for data, they must be defined in the Dara Division, It is
here that the physical characteristics of data are completely described.

EXAMPLES:

A276B
27AB6
SIGMA
GROSS~PAY

GE-200 SERIES SEFERTRCE AOAL

-10-

PROCEDURE NAMES

In addition to data names, the programmer may name sentences and sections of sentences. These
names or words are called procedure names. Procedure names are formed from the character
set using the same rules used to form data names. However, unlike data names, procedure names
may be wholly composed of the numerals. A procedure name consisting only of numerals does not
have numeric value, for example, 26 and 026 are not the same procedure name. In this case,
leading zeros are sigrificant, and a part of the name.

EXAMPLES:

S~44
SENTENCE ~ 44
A26

ABC

26

CONSTANTS

Values associated with data names generally change during the actual running of the compiled
program,. It is for this reason that they are sometimes called variables. A constant, as opposed
to a variable, is a specified value and does not change within the scope of a program. A constant
may be one of three kinds: literal, numeric, or figurative.

A literal constant is a string of characters made up from the character set of the GE-200 Series.
Literals must be enclosed in quotation marks to set them apart from data names and other words
of the source language. All spaces within a literal are interpreted as part of the literal.

Literal constants do not have numeric value and cannot be used in arithmetic calculations.

When a literal is used in the Procedure Division, it must not contain more than 30 characters or
include an imbedded quotation mark. Literals described in the Data Division may be 120
characters long.

Numeric constants may be written as:
Integers 230

Fixed Point 230.1, 0.08
Floating Point 2,301E+2

A numeric may consist of the numerals 0-9, the plus sign (+), the minus sign (-), the decimal
point(.), and the letter E, which in the floating point notation delimits the exponent.

Excluding the plus and minus signs and decimal point, fixed point numbers must not exceed 11
digits, and integers must not exceed 5 digits.

GE-200 SERIES FEFERENGE WAL

-11-

A numeric written in the floating point notation may be used only in floating point computation.
Its exponent must not exceed = 75 in value and its mantissa may consist of 9 or fewer digits,
one of which is to the left of the decimal point. The plus or minus sign, the decimal point, and
the delimitor E are not considered digits.

Numerics enclosed in quotationmarks lose numeric value and are treated as 'iteral constants.

Figurative constants are special names which represent specific values. They are:

ZERO(S) ONE(S) FOUR(S) SEVEN(S)
ZEROES TWO(S) FIVE(S) EIGHT(S)
SPACES THREE(S) SIX(ES) NINE(S)
and their values are 0, A, 1, 2, ..., 9. The actual value of a figurative constant depends on the

manner in which it is used in the Procedure Division. Their plurals do not represent more than
one character. Rules governing their use are given in Chapter 9, '"Data Marnipulation. "

The characters designated by Hollerith2 - 8, 0-2 - 8, and 0 - 7 - 8 (octal 12, 72, and 77 re-
spectively) are prohibitive in literals due to their special use by the compiler in the scan of
source language statements.

CONDITIONAL NAMES

Conditional names are names assigned to each possible value of a numeric or alphanumeric
field or element. For example, an employee's type of pay may be represented on a punched card
as 1 if the employee is salaried, or 0 if the employee is paid hourly.

If the programmer wishes to use the PAY field as a conditional field, he would describe it in the
Data Division as follows:

Type Data Name Data Image

F PAY 9
C SALARIED 1
C HOURLY 0

To the compiler this means the data name PAY is a field (Type Code - F) and it is numeric and
consists only of a single character (Data Image - 9). The data names SALARIED and HOURLY
are conditional names of the PAY field (Type Code - C) and stand for the values 1 and 0 listed
under Data Image.

The programmer is now free to use the conditional names SALARIED and HOURLY in procedure
sentences. For example, the sentence
IF SALARIED GO TO

instructs the compiler to provide the coding for testing the PAY field to determine if it equals
the numeral 1. I the PAY field does contain a 1, the GO TO path will be followed. If it does not,

@IE ° 2@@ SE @ U Eg REFEREE(EJEOSAL-IUE

-12-

the sentence after the IF sentence will be executed next. The same effect can be accomplished by

IF PAY EQUALIS 1 GO TO....

Conditional names in reality are a convenient means for stating relational expressions (see
Expressions) and may be used only in sentences which permit the use of relational expressions.

Conditional names must conform to the rules governing the formation of data names.

TRUE-FALSE FIELDS

There is a class of variables which, either through usage or definition, may assume only the
numerals 1 or 0. The value 1 is said to be their true state and the value O their false state. The
words END FILE of the READ sentence (see Chapter 6 "Procedure Division") is such a variable.
When the OPEN sentence is executed, the END FILE clause is set to its false state and remains
set until the file's end-file condition is encountered. When the end file is encountered, the END
FILE clause is then set to its true state,

The programmer is aow free to interrogate the state of the END FILE clause by

IF END FILE OF MASTER GO TO

Variables having truth values are termed True- False variables. The END FILE variable is a
convenience provided by the compiler; the programmer may also formulate his own true-false
variables by merely listing them under the heading True-False Section in the Data Division.
These variables may be named according to the rules given for data names and used only in
conditional expressions and assignment.

True-false variables may not be mixed with floating point variables on the right side of an ex-
pression.

QUALIFIERS

Qualifiers are data names used in conjunction with other nonunique data names to make them
unique. Every name in a source program must be unique. Either the name itself is unique, or
the name exists within a hierarchy of names, such that the name can be made unique by mention-
ing one or more names in thehierarchy. When used in this way, the higher names are called
qualifiers, and the process is called qualification. With each use of a name, enough qualification
should be mentioned to make the use unambiguous, but it is not necessary to mention all possible
levels of qualificaticn unless they are needed for uniqueness. Note, however, that a name--
except a record or a star group (*G.) name--which is unique within all sections except the

output files need not be qualified in the output files. This absence of qualification is permitted in
the Procedure Division and in the output record description, because output data other than
records are not referenced in the Procedure Division. For faster compilations, it is recom-
mended that the minimum necessary amount of qualification be used. A file name is the highest
level qualifier available for a data name, but need not be used if a qualifier at a lower level is
sufficient for uniqueness.

BE-200 SERIES TEFERENCE WNTAL

-13-

In order to minimize the creation of otherwise unnecessary qualifiers, the following abbreviations
may be used to qualify data assigned to storage as indicated below:

Abbreviation Storage Assignment

CONSTANT Constant Section

CS Common Storage or
*Common Storage Section

WS Working Storage Section

Note that the words CONSTANT~SECTION, COMMON~STORAGE, *COMMON~
STORAGE and WORKING~STORAGE may not be used as qualifiers. Four basic
rules should be used for qualification:

1. A qualifier should exist outside (above) the same it is qualifying. It should
be preceded by the word OF in the Procedure Division.

2. A name may not appear at two levels in a hierarchy so that it would appear
to qualify itself.

3. If a data or condition name appears more than once in the Data Division of
a program, it must be qualified in all references occurring in the Procedure
Division (except as noted above).

4, All file names must be unique.

EXAMPLES:
Two Input files might be described as:

FD FILE~A
R RECORD~A
F TAX
F EARNINGS

FILE~B
RECORD~B
TAX

PAY

"-‘_1"1:150@-

If a reference is made to the name TAX in the Procedure Division, TAX must be qualified. If
the user wishes to specify the TAX field in FILE-A, the qualification may be any of the following
forms:

TAX OF RECORD~A ...

TAX OF FILE~A ...

TAX OF RECORD~A OF FILE~A ...
Tax of FILE-B would be qualified in a similar manner. Since the file name is the highest level

of qualification, and file names are unique names, it becomes convenient to use file names as
qualifiers in order to avoid possible errors.

@ IE ° 2@@ SE @ U ES REFEREI(;(};;O:AI;U;E

-14-

ARRAYS

A list of values x,, X, X3, ... X, may be given a name, for example, X. This name is the
array name and represents all values in the array. The values are consecutive and each value
may be referenced by a subscript; in the case of x, a subscript ranging from 1 through 10. The
array name is a field name which has an entry in the repeat columns.

The physical description of the values of X might appear in the File Section of the Data Division
as:
Type Data Name Repeat Data Image

F X 10 999v99

To reference a value of X, the list is described as

X, (which would appear as X(I) on the Sentence Form)
where:

X = name given to the 10 values of the list.

i = subscript name denoting the relative position of each value of the list.
If i =1 and the value x, is referenced, the first value of the list is used. I i =7 when x, is
referenced, the seventh value of the list is used. The above array of values may be thought of
either as a list or as an array with a single subscript. An array may be multidimensional; it may
have more than one subscript.
A list of values, such as the following

A,y A ALs Ay

Ay A A Ay,

Ay As,e As,s Agy,
may be given a name; for example, A, In this case the array would be referenced as

Ay,
where:

A

name giver. to the 12 values of the array.

i = subscript rame denoting the row of the array.

subscript rame denoting the column of the array.

—
1

Ifi=1and]j =4, andthe value A,,, is referenced, the fourth value in the first row will be used
i =3 and : = 2, the second value in the third row will be used (A;,).

GE-200 SERIES FEFERENGE MAOAL

-15-

In no case may an array extend beyond three dimensions; that is, it may not have more than three
subscripts. Array names, when defined in the array Section as one, two, or three dimensional,
must be referenced with one, two, or three subscripts, respectively. The exceptions to this
appear in the MOVE and EXCHANGE verbs explained in the Procedure Division.

A three-dimensional array of three rows, four columns, and three planes (3.4, 3) may be thought
of as the above two dimensional array repeated three times. See Figure 2.

A1, 1,3) —

«————— plane 3

A(ly 1’ 2) _—

<«— plane 2(The third subscript is 2.)

A, 1,1) —»

plane 1 (Same as 2-dimensional array
shown above with an additional subscript
of 1 for the first plane.)

Figure 2. A Three-Dimensional Array
Here, the data name A is an array name and fields of the array would be referenced as A | «

All two- and three-dimensional arrays must be listed in the Array Section as:

ARRAY SECTION. A(3,4) for the two dimensional array, or
ARRAY SECTION. A(3,4,3) for the three dimensional array.

There are two types of arrays allowable in GECOM.

Homogeneous Arrays

Homogeneous arrays are lists of data as described above. The list consists of a finite number of
items with identical data descriptions. The items are stored consecutively in the File Section,
Working Storage, Common Storage and/or *Common Storage.

Nonhomogeneous Arrays

Nonhomogeneous arrays are lists of data described in a nonhomogeneous, or repeated grouping,
manner. In this case, a number of data items (numeric and/or alphanumeric -- in any mix)
are described as a group. The group is then repeated a finite number of times. An example of
this array as a repeated group is shown onthe following page.

@E ° 2@@ SE@ H Eg REFEREIC;EEO:AI;U;I\E

-16-

EXAMPLE:

Type Data Name Format Repeat Data Image
G INVOICE U 100
F NUMBER XXXXX
F QTY 999
F UNIT~PRICE 999Vv99

This repeated group may be pictured as:

NUMBER, QTY, UNIT~PRICE,
NUMBER., QTY, UNIT~ PRICE,
NUMBER QTY, 00 UNIT~PRICE, o,

For use in procedure sentences, the object program processes the repeated group as a set of

homogeneous one-dimensional arrays: NUMBER, QTY, UNIT~PRICE, each consisting of a list
of 100 values.

The reference to a field within the nonhomogeneous group is a reference to the field-name quali-
fied by the subscripted group-name.

In the above example, the quantity of the fifth listed invoice would be obtained by referring to

QTY of INVOICE (5) ...

If a group is repeatec, none of the fields within a group may be repeated. (See Chapter 9, "Data
Manipulation' for a more detailed discussion on the use of repeated groups.)

SUBSCRIPTS

Subscripts are a method of identifying or selecting a particular value in an array of values. To
subscript an array, the array must be defined in the Array Section of the Data Division except
for a field in a one-dimensional array with fixed point computation mode. The values must be

described as having been repeated in the File, Working Storage, Common Storage, or *Common
Storage Sections.

Subscripts may be written as arithmetic expressions containing other subscripted arrays. They
may be nested to a maximum depth of 10 in any one sentence.

The mode of a set of subscripts (within parentheses) must remain constant, except that fixed
point numbers and integers may be mixed.

GE-200 SERIES FEFERENGE WAVIAL

-17-

EXAMPLES:

ABC(R + L)

K(A-B*C, L({I1J), X)

RATE (T + L, D - 4)

A(I(N + M(J * K(B/C))), X(D *E * F), P)

In the second example, I and J must be in the same mode of arithmetic as (A - B* C), L, and X
because they are all parts of the subscript of K.

In the third example, (T + L) and (D - 4) must both be either floating point cr one may be fixed
point and one an integer.,

In the last example, as in the second, all parts of the subscript of the array name, A, must be
in the same mode. All of the first subscript; I, N, M, J, K, B/C; as well as all of the second
subscript; X, D * E * F; and the third subscript P must be in the same mode of arithmetic. If
the above subscripted A were added to:

Q(G, H(R *8), T(W +V))

the Q must be the same mode as A, but the subscript of Q may be in a different mode than the
subscript of A.

EXPRESSIONS

An arithmetic expression is a sequence of variables (data names), numbers (numeric literals),
and/or mathematical functions connected by symbols representing the arithrnetic operations add,
subtract, multiply, divide, and exponentiation. Arithmetic expressions are evaluated from left
to right, and indicated operations are performed in the order given in Figure 3.

Operation Symbol

{Function and SIN, COS, etc.
Exponentiation **
{Multiplication and
Division
{Addition and
Subtraction

o4+ N ¥

Figure 3. Priority of Arithmetic Operations

When parentheses are used, this priority may be overridden. The expression is evaluated from
the innermost to the outermost set of parentheses.

BE-200 SERIES FEFERENCE WAL

-18-

Conventions
I = A**B. may be usec as stated.
1. If B is an integer from 2 to 9, then A may be anything.
2. If A is a single nonsubscripted variable, then B may be anything.

3. If A is not a single, nonsubscripted variable, then B must be an integer from 2 to 9.

If any of the above three cases do not hold, then the exponentiation must be expressed as:

I = EXP(LN A*B).

The available functions appear in Figure 4.

Function . Symbol
Sine SIN
Cosine COS
Arctangent ATAN
Square Root SQRT
Exponential EXP
Common Logarithm LOG
Natural Logarithm LN
Absolute Value ABS

Figure 4. Available Functions

All functions are always calculated in floating point arithmetic (even though the mode of compu-
tation is fixed point). If the AAU is indicated in the Environment Division, the floating point of
the AAU will be used tc calculate functions. Otherwise the floating point package will be called
in.

The arguments for sine and cosine must be expressed in radians. The results of arc tangent
will be in radians.
EXAMPLES:

FED~TAX = (GROSS~PAY - (NUM~DEP * 13. 0)) * 0. 18.

The value of FED~TAX is obtained when data is substituted for the variables (data
names).

YTD~FICA = YITD~FICA + (CURR~ FICA = GROSS~PAY * 0. 3).

GROSS-PAY is multiplied by 0. 3, stored in CURR- FICA and added to YTD- FICA to
complete the computation.

GE-200 SERIES REFERENCE HANAL

-19-

Relational expressions are any expressed or implied comparison of two field names, element
names, literals, or arithmetic expressions. Relational expressions are connected by any of
the relations shown in Figure 5 and are evaluated from left to right.

Relation Abbreviation

—_——

Exceeds

GR
Greater than

Not Greater than NGR

Less than LS

Not less than NLS

Equal to)

Equals } EQ

—_— <

Not Equal to

Unequal to NEQ
=\

NOT POSITIVE

NOT NEGATIVE > No Abbreviations

NOT ZERO

Figure 5. Relational Expressions

Logical expressions provide a convenient method for obtaining truth values. They are formed by
combining true-false variables and relational expressions with the logical operators AND, OR
(Inclusive), and NOT (Exclusive). For instance, if P and Q are a combination of

e True-false variables

e Relational expressions

e Logical expressions

their truth value is obtained according to Figure 6 shown on the following page.

GE-200 SERIES FFERERGE WNTAL

-20-

P Q Not P P and Q PorQ

T o T A I
Lo B T e T
o I T e I e
Lo T I T e T
T I T I I

Figure 6. Truth Values

EXAMPLES:
1. IF PAY NCT GREATER THAN 4800...
2. IF K1 + K2 EQUALS K3 ...

Note the ccmbination of arithmetic expression (K1 + K2) and the relational
expression (EQUALS).

3. IF TIME OF EXP~FILE NOT LESS THAN 40 ...

A logical expression is uny combination of conditional names and relational expressions con-
rected by the logical AND, OR (Inclusive), and NCT (Exclusive) and may be an arithmetic
expression. Logical expressions are evaluated from left to right with the logical AND having
precedence over the lcgical OR. Parentheses may be used to establish precedence. There is
no limit on the number <f logical operators in a logical expression. Nine or less levels of
parentheses may be used.

EXAMPLES:
1. IF A - BNOT LESS THAN 50.0 AND R * G EXCEEDS 272.0 ...
2. IF EXPERIENCED OR GRADUATE ...
3. IF NOT MARRIED AND AGE GR 30 OR CODE~3 ...
4. IF AGE GR 30 AND (GRADUATE OR EXPERIENCE EXCEEDS 10) AND

LEVELS NIS 7 AND CLASS NOT EQUALK...

Note the logical expression in Example 4 may be an employee benefits test. The parentheses
establish precedence such that the logic of the expression would be:

1. If the employee's age is greater than 30, and

he is a graduate, or

his experience exceeds 10, and

his level is not less than 7. and

If his class (classification) does not equal K, then:

3. The emplcyee has met all the requirements of the logical expression.

DO

Note: the NOT in Examples 1 and 4 is part of a relational expression; the NOT in Example 3 is
a logical expression.

BE-200 SER. ¢ 2

REFERENCE MANUAL

-21-

4. USING THE GENERAL COMPILER FORMS

This chapter describes the sentence form and the Data Division form and indicates the letters and
symbols which may be entered on these forms. Both of these forms are organized to facilitate

the writing of the program, and the keypunching of the source deck cards. Samples of these forms
are included at the end of this chapter.

Each line of both forms represents the 80-column card into which the information contained on
each line is punched.

Both forms reserve columns 1-6 for sequence numbers. However, when writing General Assem-
bly Program instructions (see ENTER verb), sequence numbers should be written in columns
75-80. Use of sequence numbers is optional. When they are used, a sequence check of the
source program may be obtained during compilation by depressing console switch 18. Sequence
numbers should be in ascending numerical sequence from Identification Division through Pro-
cedure Division. Numbers should be zero filled, if necessary, instead of blank filled. Blank
columns are assumed to be greater than zero.

The sentence form (Figure 7) on which iswritten the Identification, Environment, and Procedure
Divisions has heavy lines at columns 12 and 16 to facilitate indentation of sentences that are con-
tinued onto the following line (and consequently punched in another card). It is suggested that:

1. Sentence-names start in column 8.
2. Unnamed sentences start in column 12,
3. Continuation lines should be indented to column 16.

Observing these conventions for indentation of continued sentences makes it easier to follow a
program both on the form itself and on the Edited List.

The Data Division (Figure 8) form, on which is written all sections of the Data Division, is
blocked into several columns to aid the user in placing the numbers and characters necessary for
describing data in the correct position on the form so they will appear in the correct card column
when keypunched.

CONVENTIONS

1. Each division title and each section title (in the Data Division) is contained on a
separate line and is terminated by a period. The titles start in Column 8.

2. All sentences are terminated by a period followed by at least one space.

3. Commas are optional EXCEPT in subscripts of multidimensional arrays.

EE 2]@ («ﬂrPrﬁ \E(_) GECOM - II
Q“JLFU“ UG REFERENCE MANUAL

L
-~

Words are separated by at least one space. This space is opi:onel when words are
bound by Ty T *y /) **a ()’ = anc. ’ .

A hyphen (~) is placed in column 7 whenever a word is =i'1it @t column 80, or when
more than one qualifier is used in output files. A letter C i1 «olumn 7 (in the Pro-
cedure Division and Data Division) indicates a comment carc. the contents of which
will be printed on the Edited List.

A decimal point followed by a blank is illegal. The expressior 12.2 + A * 4, is
illegal because the compiler interprets the decimal points followed by blanks as
ending the sentence.

All sentence-names are terminated by a period, and followec (on the same line) by
the sentence itself.

Subscripts (including arithmetic expressions used as subscripts) must be enclosed in
parentheses, and must be separated by commas when a multidimensional subscript is
used. The parentheses may be immediately adjacent to the array name or may be
separated from the array name by a space.

DATA DIVISION FORM

The entries for the various columns are as follows:

Manual Reference

Heading Columns Entries Chapter Heading
Type 8-9 FD 5 File Description

AR 5 Record

*G 5 *Group

AG 5 Group

AF 5 Field

AC 5 Conditional

AE 5 Element

FL 5 Field Literal

AL 5 Literal

AA 5 FILL, Constant Section,

Common~Storage, and
*Common~Storage

Data Name 11-22 any legal data name 3 Data Names

blanks (for literals) 5 Physical Characteristics

FILL
Qualifier 24-35 any data-name needed 3 Qualifiers

for uniqueness in the

output files
Format 37 P (or blank) ’

See Specific Level

=0
3]

GE-200 SERIES EFERECE WAL

-24-

Heading Columns
Repeat 39-41
Binary 43
Justify 45
MS and LS 49-53
Data Image 55-80
o

GE-20C0 S

=SIARY

ES

Manual

Entries Chapter

maximum of 3

numeric

blank 5
(If number is greater

than 999, col. 42 may

be used.)

B (or any character) 5

blank

L

R 5

blank

numerics 5
5

Reference
Heading

See Specific Level

See Specific Level

See Specific Level

Elements

Data Image Entries

GECOM - II

-25-

REFERENCE MANUAL

“11,,.‘. T NIV Tor « I < BB N Ve € .q;..: G ¥ 7 v
i L | ! | | ! L
H T T
i
T
i
e — ——r —1- g -
I - SN B " e
i - T
- i
— e — -t — - — - 4
]
i
|
[T T]
! !
t e et S -
; |
s —
T T T
T T — G
T - g B T T
T - T T
_ T - T T
7 ™ T T T T (] I PR T 7T i1 T T T T | DN I T T T T Tl T T Y T
08764 B L {SLISLIVL L 1L 0L 698949 99 7129119 05 65|85 L5 9 {¥S g5 121505 6v @y :H: svlvv v [2p 1y oy 86 8€. s 96| se|ve €€ fze ie | 08 62 82|29z fseivz 12 2z 1z oz 6t st silsn fsiirieiaifiion]s s fef v sl jejt
SR S I T h PR R A o i F N N N A [: ' P i RSN N RS Rl Al i Rtd o i FaE RS
| FECLOM
_ ERNERLER
39vd «w.:zscu_ ¥INAYHI0¥d
aLva e S »xr“\\m<kooxn

VNOZI¥Y ‘XIN3OHd ‘INIWLYV4IA ¥31NJWOD

WHO4 3ONILNIS YITJWOD TVHINID
91419213 B 1vHINI9

GECOM - II
FFRENCE MANUAL

R

GECOM Sentence Form
-26-

Figure 7.

GE-200 SERIES

GECOM - II

(z9 1) vLYD

T 17 T T] . T T T T
08]6s ff;i:;l_:T:,:T;ITJZ,_Ir:lMLITL:TL: :TL: Z:Tm:f{fTva selpvlevlevlisiov|es]es 31 ::,i,ﬁ_::2:,3,2,:_: ot s fclofsty N_Nn_
1! H i | | {
T T +———t— T T — t - - L

T

- . S e e S - S e e

REFERENCE MANUAL

- « - S _ Lo ﬂl\W‘!Ji \\
I e e T T T T R — vv - I o 1 P
S B Lo] . B -]
I SR — |- . I - — -
R — T
e T T L S ™ - 1 I L e e S B S T
-
— R - — S R SEE S S 4]
— S N - - s - - - — b - .
- Rl - Tt T T e
e = - 1 ' d 1 - T - - r - 1 e —
4+ + 4 ; P
L - o - . ' e S
- et R B : : - :

ISR T 1 T T..T T T I
189:£9199 59 79, €929 1Y 0965 BS1LS[¥S SSIFSIE5 25115 oLﬁ gricvioviovfryienizy _L:: aslaelrelocfseve’enizelielos

[£1

UBies iy seviEL L

S X 5 A .)
Svvwl vivd oIS i Y Tv343 M ¥31417v00 viva : ¥ruwan
M ¥ ¥ IWVN
H A
IEEERE! a ' g 3ON3N03S
— .
40 39vd BALlid iy EELEAR-Bs)

iLvy WY490Hd

VNOZI¥Y XIN3OHd 'IN3WLAVd3Q ¥ILNAWOD

WHO4 NOISIAIQ VIVA ¥3ITdNOD TVHIANIO 91419313 @ L ELED

-27-

GECOM Data Division Form

Figure 8.

GE-200 SERIES

5. DATA DIVISION

BASIC CONCEPTS

The Data Division cortains the information which relates to the files. This information may be
the input to or output from internal memory as well as that information which is generated during
the processing of the input data. In addition, the constants used during the processing are defined.
Data may be in the form of lists, tables, or arrays.

Sets of data pertaining to a subject are called "files' because the data contained in a file (section)
of a source program :s analogous to the data contained in an office file cabinet. For example,
one cabinet might hold 1 set of invoices. As the cabinet may be labeled, so may a data file be
labeled. The label of the data file, however, contains more information about the contents of the
file. Each invoice m.ght be considered one complete record within the file, but portions of the
invoice might be grouped within the record. Two groups might be considered in this case; cus-
tomer information, aic the transaction itself. The specific items within these groups are called
fields: name, address, city, state; and date, stock number, quantity, item price, total. In
some circumstances @ may be expedient further to divide the data into subfields which wre called
elements. Thus, an item such as data consisting of three elements--day, month, and year--
may be contained in one field.

Levels of data are more completely described in Figure 9, starting with the highest level.

BE-200 SERI(ES
LMt Lv, REFERENCE MANUAL

-99-

FILE An overall description of many sets of
data. It is the quantity of data referenced
by READ.

RECORD A named set of data described by the in-
dividual items below it., It is the quantity
of data that is referenced in WRITE, and
made available by READ.

*GROUP A group, which may be referenced by
(of fields) WRITE and made available by READ.
Its name may be used as a qualifier.

GROUP Similar to a record but beneath it in

(of fields) rank, the data is described by the fields
below it.

FIELD Units of data which constitute a record or
group. It is described in the Data Image
columns.

ELEMENT A position within a field. (Its description

is contained within that of the field.)

Figure 9. Levels of Data

This structure may be illustratedon the following page.

BE-200 SERIES R ETTNGE WAL

-30-

TRANSACTIONS

INVOICE

Customer Information

Name
Address
City
State
Sales
Date
Day
Month
Year
Quantity
Stock Number
Item Price

Total

FILE
RECORD
Group

Field

Group
Field

Element

After organizing the data into usable groupings, it is sometimes advantageous to consider many
of these records as an entity. This is accomplished by specifying a given number of words as a
block. The compiler then recognizes that these records are to be treated as a unit under specified

circumstances.

A block is a physical record that contains more than one logical record. A block is treated as an
entity by the READ sentence. Grouping many logical records into one physical record (for read
purposes) is called blocking records and is accomplished by a notation in the file description of
the File Section of the Data Division. Blocking permits reading into memory many short records
with one READ sentence, thereby saving tape reading time. (The start/stop time of tape move-

ment is a considerable portion of tape reading time.)

If records are not blocked, a logical record is equivalent to a physical record. However, when
blocks are utilized, a physical record becomes a group of logical records and a READ sentence
causes the next logical record to be made available to the programmer.

GE-200 SERIES

GECOM - 11

REFERENCE MANUAL

PHYSICAL CHARACTERISTICS

The Data Division describes the physical and conceptual characteristics of data as they appear on
the external media. Physical characteristics include the mecde in which da a is recorded, the
grouping of logical records, the indication of data with specialized furct:cns, ete. Conceptual
characteristics entail the specific description of cach item of the data.

The recording mode of data refers to the mode (binary or decimal) of the d.ita as it exists on the
external media.

Computation mode must not be confused with recording mode which refers to mode of data ex-
ternally. Internally, the computation may proceed in either fixed point or floating point.

A control-key is a field within a record or a *group containing a (literal) value which is used to
identify the data description of that record or *group. The compiler must be able to identify

the record or *group to assign it to the correct memory location according tc the data images
given by the programmer. The control-key is needed when there is more than one record (of
*group) of different data descriptions within one file, The READ verb, though it refers to a file,
actually makes available only the next logical record or group; therefore, the control-key is
needed to indicate the record with which it is working.

Packed data is data that is entered into the computer without regard to the GE-200 Series word
length into which it will be placed. The compiler will unpack the data before it is used.

Unpacked data is data that is so arranged that it may be read directly into integral GE-200 Series
word lengths. The alphanumeric fields are left-justified and space filled, and numeric fields are
right-justified and zero filled.

Data Name Data Image
F 9(2) (Numeric field)
Q A(3) (Alphabetic field)
X X(2) (Alphanumeric field)
Y 9 (Numeric field)

Packed data as entered on a card:

1 2 3 4 5 6 7 8

F F Q Q Q X X Y

Unpacked data on the card:

1—»3 4—6 T—»9 10 =12

~FF QARQ XX ANY

(Three BCD characters will occupy one GE-200 Series word.)

@E ° 2@@ @ER U Eg - REFERF?‘E;OEAI;Uii

-32.

When fields are moved {rom an unpacked input area to an output area, the moves are done as
full words. Therefore, caution should be used in laying out an output record which requires data
from unpacked input to ensure that the data can be moved as full words.

The data-name FILL incicates to the compiler that the number of digits shown in the Data Image
columns of the Data D:vision are not used in the Procedure Division and may be ignored by the
compiler. This allow: oxisting data tapes to be read and those portions not pertinent to the pro-
gram to be disregarded. The pertinent items of data may be named and described (as alpha-
numeric, alphabetic., jumeric, or blanks) as they appear.

EXAMPLE 1. Record on Tape:

TYPE DATA NAME DATA IMAGE
R ACCTS~REC
F NAME X(30)
F NUMBER 9(6)
F STREET X(20)
F QTY~ORDERED 9(3)
F ITEM X(20)
F SUB~TOTAL 999Vv99
F TOTAL 99999V 99

If the same file were used to check the inventory, (that is, only the items and quantities sold are
needed) the same record of the file might have the following description:

EXAMPLE 2. Record in Data Division of Program:

R ACCTS~REC
FILL X(56)
F QTY~ORDERED 9(3)
F ITEM X(20)
FILL X(12)

In Example 2, the second name, FILL, replaces the NAME and ADDRESS fields of Example 1:
The NAME and ADDRESS fields occupy 56 digits (30 + 6+ 20) and are alphanumeric; therefore,
the FILL of Example 2 is described as 56 alphanumeric characters, X(56). The same reasoning
applies to the fourth field in Example 2 which replaces the SUB-TOTAL and TOTAL fields of

Example 1.

The actual data which was read in and described as FILL in a record or group of the input files
is not supplied to the record or group of the output files unless only the incoming record is listed
with qualifications (no fields are described), in output files.

EXAMPLE 3:
OUTPUT FILES INPUT FILES
FD OUT1... . FDIN1....
R INA IN1 F INA
FIA 9(5)
FILL X(10)
F 2A X(3)
FILL A(20)
F 3A X(4)

GE-200 SERIES

GECOM - 1II

-33-

REFERENCE MANUAL

In Example 3, the actual data read in from tape and described as FILL is moved to the output
files.

EXAMPLE 4:

OUTPUT FILES

OUT1

OUTA

1A

FILL B(10)
2A

FILL B(20)
3A

e I "11939

INPUT FILES

FD IN1

R INA

F 1A 9(5)
FILL X(10)

F 2A X(3)
FILL A(20)

F 3A X(4)

In Example 4, new FILL (blanks) is supplied.

COMMA-SEPARATED FIELDS

A comma in Column 37 at the record or *group level indicates that the input card fields are
separated by commas. The data image columns for these fields are written normally with the
following exceptions:

1. The scaling factor, P, may not be used.
2. All type-of-sign indicators (+, -, T, I, R) should be leading signs.

3. A description using E (a number in floating point) must contain an actual decimal in
the fraction portion. The assumed decimal, V, is illegal.

4, The data description is limited to eight characters described as FILL preceding the
first field of the record.

If a control-key is used, it must be of fixed length and must always appear as the first field of
the *group or record. If another record type is introduced in another file, a new starting column
may be used.

If the record requires more than one card, the control-key field (followed by a comma) must be
in each card. However, the control-key fields after the one on the first card of a record are not
placed in Process Storage and no description should be given for them in the Data Division.

@ E ° 2@@ gE@ l] Eg REFEREEiEOSlAI;Ui:’

-34-

A field may not be split between cards; the last field on the card must be followed by a comma.
The unused columns must be left blank, and the next field on the following card started in the same
column as the first field of the record.

Each data card must have at least one field. This necessitates at least one comma which delimits
the field. There are as many commas as there are fields; that is, the last field of a record (or
*group) must be followed by a comma.

The starting columns of the intermediate cards must be the same as that on the first card. The
starting column may be any column from 1-9. If a FILL field appears before the first data field,
the starting column is determined by the number of FILL characters. For example, if the data
description is FILL 9(6), field-name 9(8), the data must start in Column 7 of all data cards.
(FILL in this example might account for a six-digit sequence number on the data cards.)

If data in the field is to remain the same as previously read in, a comma following the comma de-
limiting the preceding field is all that is necessary.

For example:
XXXX,,YYYY,

causes XXXX to be read into field-1, field-2 remains the same, and YYYY is read into field-3.

JUSTIFICATION

Justification as indicated in the Justify column refers to justification of unpacked fields (as des-
cribed by data image) including zeros and blanks and not the justification of the most significant
characters of the fields. Therefore, a field described as X(2) and appearing on the input medium
as 2p4 is right-justified to 22A because the field is2p, the third blank being the FILL which
causes it to be unpacked.

Unpacked alphanumeric and alphabetic data are assumed left-justified and unpacked numeric data
are assumed right-justified.

NONSTANDARD DATA

The numbers 1 and 2 (used in conjunction with binary data) are means of indicating to the com-
piler that the data or. the input/output media are not standard GECOM data and exist in another
form. The 1 and 2 indicate the word length is one or two binary words, respectively. Once
inside the computer, the word is represented in the standard binary form (two word lengths).

The letter S for scale must be included in the data image if a 1 or 2 appears in column 37. (For
example, 99V99S5 in the data image columns with a 1 in the column 37 would indicate that the
field is contained in one word with a binary point of 5.) Note that when S is used in this manner,
it describes the input Hr output or external binary scale. Once involved in a computing process,
the field is carried in standard binary scale (internal scale).

GE-200 SER!

r@g) GECOM - II
L REFERENCE MANUAL

-35-

Disc storage unit (DSU) addresses use bits 2-18 of the address word. The cdecimal equivalent of
the higher DSU addresses is six characters in length. A special symbol, M, as the first charac-
ter of a Data Image allows the DSU address fields to be at a scale =f 18 and to have a data des-
cription of 9(6).

Absolute DSU address fields are described as Binary, 1 word, with a datu deseription of M 9(6).
The address field remains at a scale of 18 throughout the object program. Decimal DSU addresses

have a description of M9(1) to M9(€). The field is converted to a binary number with a scale of
18.

The letter, M, preceding the image of a BCD numeric input field forces «wn internal scale of 18.
An M preceding the image of an input binary field without the letter, S, assumes an external

scale of 18 and assigns an internal scale of 18. S can be used with M to ass:g1 nonstardard in-
ternal scales. An M image on a BCD input field description along with an S value forces an inter-
nal scale equal to the S value. For example, the description M9999. 9513 fo~ . BCD field would
indicate that the internal binary scale is to be set at 13.

If an input field is binary (one or two words) and S is used with M, then the external scale is
assumed to be at the S value and the internal binary scale is set to the S value. Cn output, M is
meaningful only if the field is binary, in which case the binary scale is assumed Lo be 18 unless
overridden by S.

TAPE LABELS

Labels are records for tape files only. Card files, DSU files, and printer output cannot have
label records. Note that label record descriptions but not data record descriptions may be given
for a JOURNAL~TAPE file, (See Environment Division, DSU~CONTROL sentence.) The tape
label records are 24-word records the contents of which identify a tape (or file, in the case of a
multifile tape).

If no label records appear on tape, the LABEL RECORDS ARE OMITTED clause must be included
in the FD sentence. If this clause does not appear, the compiler expects the first record under
the FD entry to be a beginning-tape-label or a biginning-file-label record.
There are four types of labesl: (See Figure 10 for formats.)
1. Beginning-tape label (BTL) is the first record on any tape except a multifile tape.
2. Beginning-file label (BFL) is a record which precedes the file of 2:.ch multifile tape.
3. End-tape label (END REEL) is a record which follows the last valicd data record (and
the tape mark) on intermediate reels of a multireel file. This is not used c¢n multi-
file tapes.
4, End-of-file label (END FILE) is a record which appears once only after the last data

record (and the tape mark(on the last reel of a file. On a muitifile tape, this record
appears after each file.

The recording mode of tape labels is always binary regardless of the recording mode clause.

GE-200 SERIES ST TR ERGR WAL

-36-

The formats of these records are:

Tape Image
TYPE DATA NAME DATA IMAGE WORD
Beginning Tape Label
AR BGN~ TAP ~ LABL 0 BTL |3 BCD characters
AA REEL ~. NUMBER 1 001 |3 BCD characters
AA LABEL~ IDENT "FILE NAME" 2 FIL
3 E~ N|9 BCD characters
4 | AME
JaYaY DATE~ CREATED $MODYR 5 $MO |6 BCD characters
6 DYR
Rules of Input 7 Any entries
or Output records allowable for a
must be applied to l normal record
any entries
23
Beginning File Lsbel
AR BGN~ FIL~ LABL 0 BFL |3 BCD characters
AA FILE~ NUMBER 1 001 |3 BCD characters
aA LABEL~ IDENT "FILE NAME" 2 FIL
3 E~ N|9 BCD characters
4 | AME
Aj DATE~ CREATED $MODYR 5 $MO |6 BCD characters
6 DYR
Rules of Input 7 Any entries
or Output records allowable for a
must be applied to l normal record
any entries
23
End Tape Label
AR END~ TAP~ LABL 0 END |3 BCD characters
Ad SENTINEL 1 ARE |6 BCD characters
2 | ELA
ad RECORD~. COUNT 3 2 Binary words
4 000 Y
AA BL.OCK~ COUNT 5 2 Binary words
6 000 Y
Rules of Input 7 Any entries
oz OJutput records allowable for a
must be applied to l normal record
any entries
23
End File Label
AR END~ FIL~ LABL 0 END | 3 BCD characters
AA SENTINEL 1 | AFI | 6 BCD characters
2 LEA
aa EECORD~. COUNT 3 J 2 Binary words
4 | 000Y
[aYA} ELOCK ~. COUNT 5 2 Binary words
6 000y
Fules of Input 7 Any entries
cr Output records ‘ allowable for a
must be applied to normal record
env entries 23

Figure 10. Formats for Tape Labels

GECOM - II
REFERENCE MANUAL

GE-200 SERIES

-37-

All beginning and ending label records must immediately follow the File Description.

The use of a beginning label necessitates the presence of an ending label.

The ending labels are supplied by the object program.

The ending label (or labels) may be described if access to the contents is required.

The following combinations of labels are always used:

1. If a beginning-tape label is used, all intermediate reels will have an end-tape
label and the last reel will have and end-file label.

2. A beginning-file label is used only on multifile tapes. Each file is terminated
by an end-file label.

3. The last label appearing on a multifile tape is the end-file label of the last
file on the tape. (A multifile tape consists of one reel.)

A tape mark precedes every ending label.

All that is necessary for any label record entry is an R in column 9, and the assigned name of the
label record. No other entry is necessary unless access to the contents of the label is required.
If the standard fields within the label record are used, the names are enterec in the data name
field without an entry in the type columns.

REEL~NUMBER, automatically started with the number 1, is generally no: used, and therefore
is not listed. If it is to be referenced, it must be listed directly beneath the tape label record
entry. The name, REEL~NUMBER, is entered in the data-name columns. Type and data image
columns are left blank.

LABEL~IDENT is normally entered within the record to allow comparison of the LABEL~IDENT
in the Object Program file table to the LABEL~IDENT on the tape. The data image columns
contain a maximum of nine BCD characters (in quotation marks).

If DATE~CREATED is not entered in the record, the date is automatically ~iatered irto the label
from the GECOM generated Object Program.

If date symbols are not used, the Object Program expects to find the six BCT date chiracters in
locations (1076)s and (1077)s.

If DATE~CREATED is entered on the Data Division form, it must be enter=¢ in the Leginning-
tape label of all tape files using label records. The entry in the data image <olumns is a $
followed by a maximum of five characters. The entry may be in quotation :narks but they are not
needed.

BE-200 SERIES FTERENGE WAL

-38-

Field names represent words 7-23 of the label record and may contain any information the pro-
grammer wants in the label record. Only those standard names of fields to which access is re-
quired need be listed under the label record except in the case of DATE~CREATED which must
be listed in all label records if listed in any. These standard names must appear in the record
prior to any nonstandard (programmer assigned) names. Nonstandard names follow the last
mentioned standard name.

The standard names in the end label records generally are not listed, but may be entered if the
programmer wishes to consult the contents of any word of the label. If used for comparison to
another number, it must be remembered that RECORD~COUNT and BLOCK~COUNT are re-
tained as binary numbers and must be compared to binary numbers. If these standard names
are entered in the record, the type and data image columns are left blank.

Additional informatiorn: may be added to the end labels in the same manner as described for the
beginning labels.
EXAMPLE 1:

FD TAPE~FILE 1, RECORDING MODE IS BINARY.
R BGN~TAP-~LABL

LABEL~IDENT "FILE~NAME"
DATE~CREATED $MODYR

F RUN~ FOR A(23)

F PURGE~DATE X(6)

R END~TAP~LABL

F HASH~COUNT 9(5)

R END~FIL~LABL

F GRAND~HASH 9(11)

R NORMAL1

F A X(5)

EXAMPLE 2:

FD TAPE~FILE 2, BLOCK SIZE IS 270 WORDS.
R BGN~TAP~LABL

LABEL~IDENT "FILE~NAME"
R NORMAL2

F A 9(5)
Example 1 illustrates the File Section of a program that uses a dating routine to produce a dated
program.
In Example 2, the GECOM Systems Tape date is supplied.

The various levels o data description are described on the following pages.

@ E ° 2@@ SE E\? H Eg REFEREI?:;EO:AI;Uii

-39-

FILE SECTION
FILE DESCRIPTION

FUNCTION

The function of the file description is to identify the physical and conceptuai characteristics of the
data contained in the input and output files which are used in the object program. The file des-
cription describes the physical structure of the named file; the mode of the incoming and outgoing
data, the size of blocks when the data is blocked, information pertaining to the label records, and
the name of the control-key when records of different types are involved.

SENTENCE FORMAT

FD file-name-1, [RECORDING MODE IS [18~BIT] BINARY]
L

—

)

b

SIZE IS ,
BLOCK]
{CONTAINS} integer-1 WORDS]

LABEL RECORD(S IS OMITTED
a3,) e

NO END OF BLOCK SENTINEL]

CONTROLrvKEY]Sfield-name—l] [{ggg—gfg—m} BUFFER]

SEQUENCED ON field-name-2, field-name-3...] L PROCESS FILE]

CONVENTIONS:

1.

The RECORDING MODE clause indicates that data on the external media

are not in the decimal mode. The [18~ BIT | BINARY option may be
specified only for tape files. It is used to permit reading and writing of
tapes in the 18-bit binary mode. If the data are both binary and decimal,

the binary mode must be indicated. The RECORDING MODE of a JOURNAL~
TAPE file (see Environment Division, DSU~CONTROL sentence) is always
binary. Consequently, the RECORDING MODE need not be specified for

a JOURNAL~TAPE file.

The BLOCK SIZE clause indicates the number of words containect in the
block. When the physical record (that data existing between tape gaps) is
a logical record, there is no need for the BLOCK SIZE clause; it will, in
fact, produce additional coding which will unnecessarily increase¢ object
running time. If a BLOCK SIZE clause is included in a progra:n and the
actual block size of an input tape does not agree with the stated block size.
difficulties may be encountered. See Chapter 9, ""Data Manipulstion, "
for conventions relative to this situation.

The LABEL RECORD clause is used only when label records do 1wt appear.
Note that label record descriptions may be given for a JOURNAIL. ~ TAPE
file (see Environment Division, DSU~CONTROL sentence), but data re-
cord descriptions may not be given for a JOURNAL~ TAPE file. The
clause may be omitted when describing files not assigned to magetic tape.

GE-200 SERIES FEFEREnCe AL

-40-

FILE SECTION
FILE DESCRIPTION
(continued)

4, The CONTRCGL-KEY clause applies only to input files. The control-key of
each record must be identified by the same name, regardless of its position
within the record. It is mentioned only for input files.

It is recommmended that the control-key field appear in the same position re-
lative to the beginning of each record or *group and that it have the same

data description but a different literal value as the control-key in the other
records or *groups within the file. The literal value will appear in quote marks in
the data image column. Do not qualify a control~key field when using it in
PROCEDURE sentence if the control~key field is assigned to process storage.

If there are multiple record formats in a file and no CONTROL~KEY clause

is given:
a. The compiler will print an error message.
b. Unpecking coding will be generated for all record types.

c. When 1 READ is executed, the first record type unpacking will be executed.
There is no path to the other record type unpackings except via the ENTER
GAP sentence.

If there a1¢ multiple record formats in a file and a CONTROL~KEY clause is
given. but rot all record types have a control-key:

a. The < »mpiler will print an error message for each record type that does
not have a control-key.
. Unpacking coding will be generated for all record types.
C. Coun.rol-key coding (entered on each READ) can only reach the unpacking
for :hose records which have control-keys. There is no path to the other
recorl type unpackings except via the ENTER GAP sentence.

5. A hypher |-) is placed in column 7 when a word of the file description is split
at column 80.

6. The fiela- nume-2 in the SEQUENCED clause represents the major key, field-
name-3 represents the next lower key, etc. This clause is used for documen-
tation purpose only.

7. The ZERO -SET buffer option applies to output files only. This is used to
clear the entire buffer to zeros. All character positions (FILL) will be zero.

The NO--SET buffer option applies to output files only. This is used to pre-
vent clearing the output buffer. All undescribed character positions (FILL)
will be assumed to contain miscellanecous characters. Process files assume
NO~SET.

I neither buffer setting option is used, the entire buffer will be cleared to
blanks. All undescribed character positions (FILL) will be blank.

8. The NO...SENTINEL clause is used when end-of-block sentinels are not to
ve added tc blocked output records when the buffer is released to the DSU.
Ordinarilv. sentinels would not be desired when a DSU blocked output file
is released and the buffer is being shared with a blocked input file of the
same description. For example, if there are five records to a block, the

GE-200 SERIES EFERENCE WAL

-41-

I

[— FILE SECTION
FILE DESCRIPTION

Y

{continued)

third record is updated, and the block is ready to be released. (that is.

no updating is done for the fourth and fifth records), a RELEASE may be
given without giving READS and WRITES for the fouri} and fifth records.
However, no sentinel is desired on the RELEASE since it would destroy
the first word of the fourth record. Any sentinel following the fifth record
would, of course, be recorded on the DSU when the buffer is :¢leased.

When the NO...SENTINEL clause is used, the programmer cain write
his own sentinel by writing a one-word record of all 1 bits if he wishes
to override the NO SENTINEL indication. This would be done when a
new output block (additions) is being created.

An output file may be designated as a Process file. This ability is now
included in GECOM for the COBOL Translator to give the user the same
output file philosophy that COBOL provides. The user is responsible for
building the output records through the use of MOVE, ARITHMETIC. or
ASSIGNMENT statements., He may MOVE to output fields, groups, or
assigned statements. A field that has been placed in the output record
area may still be used in procedure statements; that is, the output area
is used as working storage. At WRITE time, any fields that have been
assigned Process storage will be automatically moved to the output area.

When a DSU file is designated as a Process file, the programmer must
ready that file before causing its data to be moved to output. (Ses READY
verb.)

EXAMPLES

FD FILE~A, RECORDING MODE IS BINARY.
FD FILE~T77, BLOCK CONTAINS 200 WORDS.
FD PAY~FILE, LABEL RECORDS ARE OMITTED, CONTROL~KEY IS FLAG.

FD MASTER~ FILE, RECORDING MODE IS BINARY, BLOCK CONTAINS 500 WORDS,
CONTROL~KEY IS INDICATOR.

FD TRANS~FILE, BLOCK CONTAINS 700 WORDS, CONTROL~KEY IS REC~ CODE.

FD PRINT~ FILE, RECORDING MODE IS 18~ BIT BINARY, BLOCK CONTAINS 336
WORDS.

FD TAPE~FILE RECORDING MODE IS BINARY ZERO~SET BUFFER.

FD OUTTER, PROCESS, BLOCK CONTAINS 157 WORDS.

@ E ° 2@@ gER U ES REFEREIC‘;J?];O:AI:JUII\II,

-42-

FILE SECTION
RECORD

INPUT AND PROCESS OUTPUT ENTRIES

TYPE - R

DATA NAME

Any legal data-name.

QUALIFIER - not used.

FORMAT

P

REPEAT - not used.
BINARY

B or any
character

A

JUSTIFY

L

R

Assumes all levels below (within this record) to be packed
with the exception of binary numerics.

Assumes all levels below (within this record) to be unpacked.
File is on cards. All fields are delimited by commas.

Assumes data to be packed. An entry at a lower level takes
precedence,

Assumes all levels within the record having numeric des-
criptions (9) to be in the standard GECOM binary form un-
less format column entry at a field level indicates non-
standard binary data. This does not alter nonnumeric data.

Assumes BCD data. Entries at lower levels take precedence.

Assumes unpacked BCD numeric data to be left justified and
zero filled.

Assumes all alphanume ric and alphabetic unpacked data to
be right justified and blank filled.

Assumes all BCD numeric data to be right justified and zero
filled, all alphabetic and alphanumeric data to be left justi-
fied and blank filled. An entry at a lower level takes pre-
cedence.

DATA IMAGE - not used.

NONPROCESS OUTPUT ENTRIES

TYPE - R

DATA NAME

Any legal data- name,

GE-200 SERIES

REFERENCE MANUAL

-43-

FILE SECTION
RECORD
(continued)

QUALIFIER - the file name of this record name to force implied move of entire record to output.
An output record which is a direct reflection of a working-storage record must be qualified by
WS even when the name is unique.

FORMAT

Used only if description of data differs from that in Input Files, Working-Storage, or Common-

Storage.

p

U

A
REPEAT - not used.
BINARY

B or any
character

A

Forces all levels below (within this record) to be packed with the excep-
tion of binary numerics.

Forces all levels below (within this record) to be unpacked.

Assumes the entry from which the implied move is made.

Forces all lower levels of the record having a numeric data description
(9) to be in the standard binary form unless the format column entry at
the field level indicates nonstandard binary data. This does not alter
nonnumeric data.

Assumes the entry from which the implied move is made.

JUSTIFY - used only when output format differs.

L

R

A

DATA IMAGE - not used.

Forces unpacked BCD numeric data to be left justified and zero filled.

Forces unpacked alphanumeric and alphabetic data to be right justified
and blank filled.

Assumes the entry from which the implied move is made.

@ E ° 2@@ @E@ B Eg REJFFREI(\;IEEOEAI:IU;II,

-44-

FILE SECTION
* GROUP

INPUT ENTRIES

TYPE - *G

The group of fields must be followed by another *group or be the last entry in the record in order
to delimit the group. This entry must be preceded by a record entry.

DATA NAME
Any legal data-name,

QUALIFIER - not used.

FORMAT
P Assumes all levels below (within this *group) to be packed with the
exception of binary numerics. This entry takes precedence over
any entry at record level.
U Assumes all levels below (within this *group) to be unpacked. This
entry takes precedence over any entry at the record level.
A Assumes data to be packed. This entry takes precedence over any

entry at the record level.

REPEAT - not used.

BINARY
B or any Assumes all levels within the group having a numeric description (9)
character to be in the standard GECOM binary form unless format column en-
try at a field level indicates nonstandard binary data. This does not
alter nonnumeric data.
A Assumes BCD data. An entry at a lower level takes precedence.

Any entry at the *group level takes precedence over any entry at the record level.

JUSTIFY
L Assumes unpacked BCD numeric data to be left justified and zero filled.
R Assumes all alphanumeric and alphabetic unpacked data to be right
justified and blank filled.
A Assumes all BCD numeric data to be right justified and zero filled, and

all alphabetic and alphanumeric data to be left justified and blank filled.
An entry at a lower level takes precedence.

Any entry at *group level takes precedence over any entry at the record level.
ELEMENT POSITION - not used.

DATA IMAGE - not used.

GE-200 SERIES cECoM - 11

REFERENCE MANUAL

-45-

FILE SECTION
*GROUP

(continued)

PROCESS OUTPUT ENTRIES

*Groups are not allowed in Process output files.

NONPROCESS OUTPUT ENTRIES

TYPE - *G

DATA NAME - Any legal data-name.

QUALIFIER - The name of the file which is the source of the *group in order to force implied
movement of the entire *group to output.

FORMAT

P

i3

REPEAT - not used.

BINARY

B or any
character

Y

Forces all levels below (within this *group) to be packed with the excep-
tion of binary numerics. The group entry takes precedence over any
entry at the record level.

Forces all levels below (within this *group) to be unpacked with the
exception of binary numerics. This entry takes precedence over any
entry at the record level.

Assumes the entry from which the implied move is made.

Forces all lower levels of the group having a numeric data description
(9) to be in the standard binary form unless the format column entry at
the field level indicates nonstandard binary data. This does not alter
nonnumeric data.

Assumes the entry from which the implied move is made.

Any entry at this level takes precedence over any entry at the record level.

JUSTIFY
L

R

A

Forces BCD numeric data to be left justified and zero filled.

Forces alphanumeric and alphabetic data to be right justified and blank
filled.

Assumes the entry from which the implied move is made.

Any entry at this (*G) level takes precedence over any entry at the record level.

ELEMENT POSITION - not used.

DATA IMAGE - not used.

GE-200 SERIES

GECOM - II
REFERENCE MANUAL

-46-

FILE SECTION
GROUP

INPUT AND PROCESS OUTPUT ENTRIES

TYPE - G
A group may be delimited in one of two ways:

1. The group of fields may be followed by another group or may be the last entry in the
record.

2. The terminate (type T) may be used.
DATA NAME - any legal data-name.

QUALIFIER - not used.

FORMAT
P Assumes this group tobe packed if there are no conflicting entries at a
higher level. This is meaningless for binary numerics.
U Assumes all levels below (within this group) to be unpacked if no con-
flicting entry appears at a higher level.
A Assumes data to be packed.

Any nonblank entry at this level takes precedence over a blank at a higher level.

Any nonblank entry at a higher level takes precedence over any entry at this level.

REPEAT

The repeat field may contain blanks or one to three numerics indicating the number of times the

group is repeated. If a fourth numeric is required, column 42 may be used. Repeated groups are
restricted to a maximum of seven computer words per group.

BINARY
B or any Assumes all levels within the group having a numeric description (9) to
character be in the standard GECOM binary form unless format column entry at a
field level indicates nonstandard binary data. This does not alter non-
numeric data.
A Assumes BCD data. Entries at lower levels take precedence.

Any nonblank entry at this level takes precedence over a blank at a higher level.

Any nonblank entry at a higher level takes precedence over any entry at this level.

JUSTIFY
L Assumes unpacked BCD numeric data to be left justified and zero filled.
R Assumes all alphanumeric and alphabetic unpacked data to be right
justified and blank filled.
r Assumes all BCD numeric data to be right justified and zero filled, all

alphabetic and alphanumeric data to be left justified and blank filled.
An entry at a lower level takes precedence.

GE-200 SEKIES SEFERENCE WAL

-47-

FILE SECTION
GROUP
(continued)

Any nonblank entry at this level takes precedence over a blank at a higher level.
Any nonblank entry at a higher level takes precedence over any entry at this level.
ELEMENT POSITION - not used.

DATA IMAGE - not used.

NONPROCESS OUTPUT ENTRIES

TYPE - G must be present in the type columns.

Note: Use of G in output forces implied movement of all fields in the source group to output.
If the source fields are listed under the group in the output description, the fields will be
repeated in output.

DATA NAME - Any legal data-name.

QUALIFIER - A record name if necessary for uniqueness.

FORMAT

P Forces all levels below (within this group) to be nacked with the excep-
tion of binary numerics.

U Forces all levels below (within this group) to be urpacked with the
exception of binary numerics. This entry takes precedence over any
entry at the record level.

A Assumes the entry from which the implied move is made.

Any nonblank entry at this level takes precedence over a blank at a higher level.
Any nonblank entry at a higher level takes precedence over any entry at this level.

REPEAT - not used.

BINARY
B or any Forces all lower levels of the group having a numeric data description
character (9) to be in the standard binary form unless the format column entry at
the field level indicates nonstandard binary data. This does not alter
nonnumeric data.
" Forces BCD data output. Entries at lower levels take precedence.

Any entry at record or group level takes precedence over the blank.
Any nonblank entry at this level takes precedence over a blank at a higher level.

Any nonblank entry at a higher level takes precedence over any entry at this level.

JUSTIFY
L Forces unpacked BCD numeric data to be left justified and zero filled.
R Forces unpacked alphanumeric and alphabetic data to be right justified

and blank filled.

@l IE ° 2@@ g[E Rg ﬂ ES REFEREgEiO:AI;Uii

-48-

FILE SECTION
> GROUP
(continued)

A Assumes the entry from which the implied move is made.
Any nonblank entry at this level takes precedence over a blank at a higher level.
Any nonblank entry at a higher level takes precedence over any entry at this level.
ELEMENT POSITION - not used.

DATA IMAGE - not used.

GE-200 SERIES o

REFERENCE MANUAL

-49._

FILE SECTION
TERMINATE

INPUT AND PROCESS OUTPUT ENTRIES

TYPE - T
DATA NAME

Name corresponding to a previous group name. The T entry delimits the specified group. Groups
may be nested and overlapped by use of the type T entry.

Note: In Working Storage, type T may be used in the same manner to define overlapping or nested
group.

Type T cards may only be used in programs generated by the COBOL Translator.
QUALIFIER - not used.
FORMAT - not used.
BINARY - not used.
JUSTIFY - not used.
ELEMENT POSITION - not used.

DATA IMAGE - not used.

REFEESNCE MANUAL

-50-

FILE SECTION

FIELD
INPUT AND PROCESS OUTPUT ENTRIES
TYPE - F (or blank when FILL is used.)
DATA NAME - any legal data-name or FILL.
QUALIFIER - not used.
FORMAT
P Assumes this field to be packed if there is no conflicting entry at a higher
level. This is meaningless for binary numerics.
U Assumes this field to be unpacked if there is no conflicting entry at a
higher level.
1 Assumes one-word binary numeric data. A scaling factor must be
supplied in the data image columns.
2 Assumes nonstandard two-word binary numeric data. A scaling factor
must be supplied in the data image columns.
S The preceding image is to be repeated for this entry. S cannot be used
when the preceding image contains a 1 or 2.
L Assumes data to be packed.

Any nonblank entry at this level takes precedence over a blank at a higher level.
Any nonblank entry at . higher level takes precedence over any entry at this level.
REPEAT

The repeat entry may be blanks or one to three numerics indicating the number of times the field
is repeated. If a fourth numeric is required, column 42 may be used.

BINARY
B or any Assumes the field to have a numeric description (9) and to have standard
character GECOM binary form unless the format column indicates nonstandard
binary. This does not alter nonnumeric data.
A Assumes BCD data. Entries at higher levels take precedence over a

blank.

Any entry at this level takes precedence over a blank at a higher level.

JUSTIFY
L Assumes unpacked BCD numeric data to be left justified and zero filled.
R Assumes all alphanumeric and alphabetic unpacked data to be right justi-
fied and blank filled.
A Assumes all BCD numeric data to be right justified and zero filled, all

alphabetic and alphanumeric data to be left justified and blank filled.

GE-200 SERIES EFERECE NNAT

-51-

FILE SECTICN
FIELD
(continued)

Any nonblank entry at this level takes precedence over a blank at a higher level.
Any nonblank entry at a higher level takes precedence over any entry at this level,

DATA IMAGE

A data image must be entered for every field. Output fields are limited to 127 characters each.
(See "Data Image Entries. ")

NONPROCESS OUTPUT ENTRIES

TYPE - F

DATA NAME - Any legal data-name.

QUALIFIER

Qualification as necessary for uniqueness: record name and/or file name; for more than one level
of qualification, a hyphen (~) must be in column 7 of the continued qualifier eatry; and the type

must be blank, and the qualifier entry must be in columns 24-35.

FORMAT

Not necessary unless different from Input or Working-Storage files.

P Forces this field to be packed if there is no conflicting entry at a higher
level. This is meaningless for binary numerics.

U Forces this field to be unpacked if there is no conflicting entry at a
higher level. This is meaningless for binary numerics.

A Assumes the entry from which the implied move is made.

1 Assumes one-word binary numeric data. A scaling factor must be sup-

plied in the data image columns.

2 Assumes nonstandard two-word binary numeric data. A scaling factor
must be supplied in the data image columns.

S The preceding image is to be repeated for this entry. S cannot be used
when the preceding image contains a 1 or 2.

Any nonblank entry at this level takes precedence over a blank at a higher level,
Any nonblank entry at a higher level takes precedence over any entry at this level.

REPEAT - not used.

BINARY
B or any Forces field (which has numeric description (9)) tc be in the standard
character GECOM binary form.
A Forces BCD data output. Entries at higher levels take precedence over

the blank.

GE-200 SERIES EFERENCE HANAL

FILE SECTION

FIELD
(continued)

Any nonblank entry at this level takes precedence over a blank at a higher level.
Any nonblank entry at a higher level takes precedence over any entry at this level.
JUSTIFY

L Forces BCD numeric data to be left justified and zero filled.

R Forces alphanumeric and alphabetic data to be right justified and blank

filled.
A Assumes the entry from which the implied move is made.

Any nonblank entry at this level takes precedence over a blank at a higher level.
Any nonblank entry at a higher level takes precedence over any entry at this level.
ELEMENT POSITION - not used.

DATA IMAGE

Not necessary unless different from input entries. Output fields are limited to 127 characters
each. (See 'Data Image Entries. ')

MM @TE
GUR T L

IR

§ — GECOM - II
) REFERENCE MANUAL

-53-

FILE SECTION
ELEMENT

INPUT AND PROCESS OUTPUT ENTRIES

TYPE - E
DATA NAME - any legal data-name.

ELEMENT POSITION

MS The position of the most significant digit of the element within the alpha-
numeric field.

LS The position of the least significant digit of the element within the alpha-
numeric field.

NO OTHER ENTRIES are made for elements.

NONPROCESS OUTPUT ENTRIES

TYPE - E (for documentation purposes only).
DATA NAME - any legal data-name (for documentation purposes only).
NO OTHER ENTRIES are made for elements.
1. The element is ignored and appears only in the field in which it is contained.

2. If the element itself is required, it must be renamed a field in the output files (the
type column may be ap or pF).

Note: An element must be alphanumeric.

BE-200 SERIES e S

FFFPRFNCE MANUAL

-54..

INPUT AND PROCESS OUTPUT ENTRIES

TYPE - C

DATA NAME - any legal data-name.

DATA IMAGE

1. The value of the conditional may be described as:

FILE SECTION
CONDITIONAL NAMES

literal constant "230"
fixed point 230.1
integer 230
floating point +2.301E +2
2. The value assigned to the conditional name must be consistent with the description of

the field or element containing the conditional value.

3. The field may not be a repeated entry or part of a repeated group.

NO OTHER ENTRIES are made for conditional names.

NONPROCESS OUTPUT ENTRIES

Conditional names may not be used in nonprocess output files.

EXAMPLES OF CONDITIONAL NAMES

GENERAL @ eLecTRIC

COMPU"ER DEPARTMENT. PHOENIX ARIZO

GENERAL COMPILER DATA DIVISION FORM

T TTENERT
t rosiTion

ATA iwacE

PAY
C SALARIED
HOURLY

TYPE
SPECTAL
ALTFRNATE
SUBTYPE~
USE
NOUEE
SUBTYPE ~
YES

N O

00 m o omaom

VALUE
COND~1

COND~2

03 04

XX XX
"AAAA"
"cecccec"

I19Vv99
10.05
-10.05

o0 am

COND~3

+ 00 .00

GE-200 SERLES

GECOM - II

-55-

REFERENCE MANUAL

FILE SECTION
CONDI}[‘IONAL NAMES
Cont.)

GENERAL @ ELECTRIC GENERAL COMPILER DATA DIVISION FORM

COMPUTER DEPARTMENT, PHOENIX, ARIZONA

TrocRAY
Feaocanuna e conpures " or
T R . 14 ELENENT - -
seouence : oATA WANE QuaLiFiER i feeeend 1 Fositron bata e
h r ‘ . i 3 _ : i L s L . i
[o e o o T e) T o o o o i e B O T PO R e T I
F| |F o D . i] +9.99E 99
_ cllFrrpTcoND~1 | +2.30E 02
c/]lFLPTCOND~2 L B PFO.01E-02
c/]|[FLpTCcOND~3 +0.04E-02

@E ° 2@@ gE@ U Eg REFE’REEEEOSAI;UE

-56-

FILE SECTION
LITERAL

INPUT AND PROCESS OUTPUT ENTRIES

Literals are not used in input files or process output files.

NONPROCESS OUTPUT ENTRIES

TYPE - L
DATA NAME - not used.
REPEAT - not used.
OTHER COLUMNS
The same rules that apply to fields apply to literals.
DATA IMAGE
1. When writing literals which are continued to the next line of the data image columns,
the literal must start on the succeeding lines in column 55, a hyphen (~) must be
placed in col. 7.
2. Literals are used in output fields to generate Hollerith characters for headings. The
most efficient method of writing literal headings entails writing ""one'" literal consis-
ting of 120 characters. The literal may be continued on as many succeeding lines as

are necessary. A hyphen must appear in column 7 of the continuing lines. Quotation
marks must precede the first character and follow the last character only.

3. Literals may be described as:
literal coastant "230"
fixed point 230.1
integer 230
floating point +2.301E + 2
4. Literals enclosed in quotation marks are in BCD mode. Numerics are converted to

binary. Thus, it is more efficient to use quotation marks if practical.

GE-200 SERIES crcon - 11

REFERENCE MANUAL

-57-

EXAMPLES OF LITERALS:

FILE SECTION

LITERAL
(Cont.)

GENERAL@ ELECTRIC GENERAL COMPILER DATA DIVISION FORM
CONPUTER GEPUR THENT. PHOEWIX, ARIZONA
Fentean ——
PROGRAMMER o COMPUTER e TF
E : B T3 FUENENT
’53:;::‘ : DATA Nawe BUALLFIER i REPE AT ; : :!uxn n:) B A AT
L ~ ~) " HREADI
~| . 0F REPORT "
L B - "12345¢°8 o122 456789012345
~ 678901234567 89012345678901
~l | . 2‘3_456789“'231456789017.36"
L X . +230 .1 .
Y . . - Z‘J 0 .
L 2301 R e .
L . . ' "A(BCDEF'B ‘GHIJKLM"BB:‘NOP
I~ ~] 11 . 1 1) QRST"BB"U wxyz"
A B .
R o En L I I
I I B I T T B e e e seieo alarolados]adorafons flsalaafsdfosfeefsrsose s : R Hspe e e
TYTRIT

GE-200 SERIES

GECOM - II

-58-

REFERENCE MANUAL

FILE SECTION
FIELD LITERAL

INPUT ENTRIES

TYPE - FL
DATA NAME - any legal data-name.

QUALIFIER - not used.

FORMAT

P Assumes this field to be packed if there is not conflicting entry at a
higher level. This is meaningless for binary numerics.

U Assumes this field to be unpacked if there is no conflicting entry at a
higher level.

1 Assumes one-word binary numeric data. A scaling factor must be
supplied in the data image columns.

2 Assumes nonstandard two-word binary numeric data. A scaling factor
must be supplied in the data image columns.

S May not be used.

A Assumes data to be packed.

Any nonblank entry at this level takes precedence over a blank at a higher level.
Any nonblank entry at a higher level takes precedence over any entry at this level.
REPEAT

The repeat field may contain blanks or one to three numerics indicating the number of times the
field literal is repeated. If a fourth numeric is required, column 42 may be used.

BINARY
B or any Assumes the field to have a numeric description (9) and to have standard
character GECOM binary form unless the format column indicates nonstandard

binary. This does not alter nonnumeric data.

[

Assumes BCD data. Entries at higher levels take precedence over a
blank.

Any entry at this level takes precedence over a blank at a higher level.

JUSTIFY
L Assumes unpacked BCD numeric data to be left justified and zero filled.
R Assumes all alphanumeric and alphabetic unpacked data to be right justi-
fied and blank filled.
A Assumes all BCD numeric data to be right justified and zero filled, all

alphabetic and alphanumeric data to be left justified and blank filled.

@ E ° 2@@ gE [% B !Eg REFEREﬁ(EI;O:A]:lU;I]i

-59-

FILE SECTION
FIELD LITERAL
(continued)

Any nonblank entry at this level takes precedence over a blank at a higher level.
Any nonblank entry at a higher level takes precedence over any entry at this level.
DATA IMAGE

1. The field literal may be described as:

literal constant ""230"

fixed point 230.1
integer 230
floating point +2.301E +2
integer 230K1

When described as a literal constant, it may not be used in arithmetic statements.

2. The field literal is ordinarily used only for a control-key field. When used for this
purpose, the contents of the input field are compared to the literal entered in the data
image columns to determine the type of the incoming record. A control-key field
may not be repeated.

3. If a field literal is used in any input field other than the control-key field, the descrip-
tion listed in the data image columns will be treated as an image and the data in the
incoming field will be used according to the image. A field literal may not be more
than 83 characters in length, when enclosed in quotation marks.

4, Except as indicated above, the compiler processes field literal entries as field
entries.

PROCESS AND NONPROCESS OUTPUT ENTRIES

Field literals are not used in output.

EXAMPLES OF FIELD LITERALS:

TYPE DATA NAME REPEAT DATA IMAGE

A field literal described as:

FL FIELD~1 "ABCD"
is treated as a field and assumes an image of:

F FIELD~1 XXXX
A field literal described as:

FL FIELD~2 230.1
is treated as a field and assumes an image of:

F FIELD~2 999.9

@ E ° 2@@ gE @ u Eg REFEREEEEO::AI;U;;,

-60-

A repeated field literal is described as follows:

FILE SECTION
FIELD LITERAL
(continued)

GE-200 SEx =€

GENERALG ELECTRIC GENERAL COMPILER DATA DIVISION FORM
COnPUTER DEPARTAENT PHOEKIT ARIZINA
Focan TETE
PRoGRARNER conruren [pace or
— . L
stovence ; oaTa et austirien HEEIE R FosiTion oata mace
d MEHEE P IS ‘ :
vieladeistel e o] e e I T S e I O Y e I O D O I O Y D S Y S T e e s e T e e e e e e e e
L L b L H L ! i L i
FLl [FIELD~A 003 "ABCD"
' FL "EFGH"
1 FL "IJKL"
FLl{FIELD~® 003 . 230. 1
F L +230.2
F 230.3
FLl JFIELD~C N 003 -230
FL ~ -231
FL | -232
|
i R N I . .
FL |JFIELD~D i 003 +2.301E+2
FL i +2.302E+2
F.L | N +2.303E+2
FL [FIELD ¢ ‘ 003 230K1
F 1 230K2
F 230K3
—_ i
Al s T -

GECOM - II

-61-

REFERENCE MANUAL

DATA IMAGE |
ENTRIES

FUNCTION

The function of data image entries is to show a detailed picture ¢od the rnernl characteristics of
data.

CONVENTIONS

1. The data image consists of any allowable combination of symbols roquired to describe data.

2. USE codes have been assigned to symbols to show in which parts of the Data Division the
various symbols may be used in data images. USE codes with the ‘:rresponding parts of
the Data Divisicn are as follows:

CODE MEANING
1 NONPROCESS OUTPUT FILES
2 PROCESS OUTPUT FILES
3 INPUT FILES
4 WORKING~STORAGE SECTION
5 COMMON~STORAGE SECTION
6 *COMMON~STORAGE SECTION
7 CONSTANT SECTION

3. The following operational symbols do not represent character positions of the data:

See Conven-
Symbol Meaning tion Number USE Code
E Indicates the point of separation of the 5 1,2,3,4,5,6,7
mantissa from the characteristic of a
floating point number.
K May be used instead of symbol for actual 7 1,3,4,5,6,7

or assumed decimal point. Numeric data
described with a K are interpreted as in-
tegers for all manipulations. See Data
Manipulation, using K in Data Descriptions.

M May be used as leading character of image 7 1,2,3,4,5,6,7
only. See explanation under Data Division,
Nonstandard Data.

P Indicates zeros to be applied to the data to 7 1,2.3
obtain the true value of the data. May be
used to indicate right or left scaling (99PPP

or . PPP99).
S Indicates the binary point location. See Data 7 1,2,3,4.5.6,7
(followed by Division, Nonstandard Data. See Data Mani-
an integer) pulation, Use of Scaling Factor.
vV Assumed decimal point position. € 1,2,3,4,5,6,7
(n) An integer enclosed in parentheses following 1,2,3,4,5,6

a symbol indicates the number of consecutive
occurrences of the symbol (for example,
A(3)X(2) and AAAXX are equivalent.)

GE-200 SERIES

REFERENCE MANUAL

-62-

4, The following symbols represent character positions of the data:

Symbol

See Conven-
Meaning tion Number

DATA IMAGE
ENTRIES
(continued)

USE Code

A

GE-200 SERIES

Corresponding data position contains an alpha-
betic character, A-Z or blank. (This is not
meant to indicate leading and/or trailing blanks
adjacent to numeric data.)

Corresponding data position contains one of the
characters comprising the character set. (May
be used to reflect data containing a combination
of alphabetic and numeric characters.)

Corresponding data position contains a numeric
character, 0-9. The data image of a numeric
field may never exceed 11 numeric symbols.

Corresponding data position contains a numeric
character (0-9), with a 12-row cverpunch (+)
when the data is positive, or an 11-row over-
punch (-) when the data is negative. If no over-
punch, the data is assumed positive. May only
appear as the leading or trailing symbol of the
data image,

Corresponding data position contains a numeric
character (0-9), with a 11-row overpunch (-)
when the data is negative or no overpunch when
the data is positive. May only appear as the
leading or trailing symbol of the data image.

Corresponding data position contains a minus
sign (-) when the data is negative or the most
significant character of the data when positive.
May only appear as the leading symbol of the
data image. See Data Division, Comma Sepa-
rated Fields.

Corresponding data position contains a plus sign
(+) when data is positive or a minus sign (-)
wher. data is negative. If no sign, data is as-
sumed positive. May only appear as the leading
or trailing symbol of the data image.

Corresponding data position contains a minus sign

(-) when data is negative and blank when positive.

May only appear as the leading or trailing symbol

of the data image.

Corresponding data position contains an actual
decimal point.

Corresponding data position contains a comma.

© oo

7,10

7.10

7,8,9

7,8,9

9,10

1,2,3,4,5,6

1,2,3,4,5,6

1,2,3,4,5,6

1,2,3

1,2,3

1,2,3,4,5,6,7

1,2,3,4,5,6,7

1,2,3,4,5,6,7

1,2,3

GECOM - II

-63-

REFERENCE MANUAL

DATA IMAGE
ENTRIES
(continued)

See Conven-
Symbol Meaning tion Number USE Code

$ Corresponding data position contains a dollar 9,10 1,2,3
sign. May only appear as the leading symbol
of the data image.

4 Zero suppression; represents a numeric data 9,10 1,2,3
position the contents of which will be suppressed
(replaced by a blank) when the value is zero.
* Asterisk fill; represents a numeric data position 9,10 1,2,3
the contents of which will be replaced by an
asterisk when the value is zero.

3

33 Floating Dollar Sign 9,10 1,2,3
or
++ Floating Report Sign.
-- A sequence of two or more $'s, or two or more
+'s, or two or more -'s represents numeric data
positions in which the least significant (rightmost)
leading zero is replaced by the indicated sign, and
preceding zeros (if any) are replaced by blanks.

CR Credit sign; represents two data positions, the 8, 10 1,2,3
contents of which are CR when the data value is
negative, or blank otherwise.

DB Debit sign; represents two data positions, the 8, 10 1,2,3
contents of which are DB when the data value is
negative, or blank otherwise.

A floating point data image must be in the form:

oRo” = Qe

The 8 and 2 indicate the maximum number of digits.

A numeric data image may contain only one decimal point position (assumed or actual).
Numeric data which contains an actual decimal point may be used in computations.

The image of numeric data to be used in computations may contain the symbols:
+ - I R (T) 9 . A E P M S K

The image of numeric data not to be used in computations may contain the symbols $, *, 2
CR, and DB in addition to those shown in Convention 7.

GE-200 SERIES

REFERENCE MANUAL

-64-

DATA IMAGE
ENTRIES
(continued)

9. Only one type of suppression may be specified in a data image.

a.

The data positions to which suppression applies are represented by:

One or more Z symbols (zero suppression)
One or more * symbols (asterisk fill)

Two or more $ signs (floating dollar sign)
Two or more + signs (floating plus sign)
Two or more - signs (floating minus sign)

Numeric data positions to the right of the decimal point position (must be actual
decimal point) in a "suppressed' data image, may be represented by the symbols 9
or Z but nct a mixture. Any Z to the right of the decimal point indicates that all data
positions must be set to blank when the data value is zero.

If the data image contains floating signs($$, or ++, or --), one sign is to be inserted,
even if no suppression takes place. For this reason, the total number of symbols
shown must be one greater than the maximum number of numeric data positions. The
appropriate sign is placed in the rightmost position actually suppressed.

Zero suppression (Z) or asterisk fill (*) may be specified in a data image with a
dollar sign ($) in the leading position, for example, $*** or $ZZZ. Otherwise, the
sequence of suppression symbols must occupy the leftmost positions of the data image.

Comma sy.ubols may optionally appear within the sequence of suppression symbols,
but no other symbols may intervene. Commas are used to set off the integral portion
into three-character sequences, counting to the left from the decimal position. The
object program spreads the adjacent data digits apart one position and inserts a
comma. If leading zeros are suppressed up to or beyond a comma position, the
comma is suppressed, and its position receives the appropriate suppression character.
I any commas are used, the proper number must be supplied in the correct position

in the data description field.

@EDZ@(@ @EE%BE@ GECOM - II

REFERENCE MANUAL
-65-

DATA IMAGE

ENTRIES
(continued)
EDITING EXAMPLES
SOURCE AREA XETEBIVING AREA
-
DATA VALUE
DATA IMAGE IN MEMORY DATA IMAGE EDITED DATA
9(5) 45678 $&%,B29.99 345 ,678.00
9(3) V99 45678 $ZZ,%Z9.99 S 456.78
9(3) V99 00067 $23&,229.99 5 0.67
9(3) V99 00004 SEZ,ZZZ.99 3 .04
9(5) 00000 $27 277 . R%
v (5) 12345 $E%,229.99 3 0.12
a(5) 12345 S *%0 .90 $12,345.00
9 (5) 00045 $>'v=': s *%% 99 }\;**7‘:*}(;5 .00
9(5) V99 (=)0000003 $¥xk Kk ZZCR Skkdddk ()3CR
9(5) V99 0000000 $kde | Kk BRCR
9(5) 67890 $$5,$$9.99 $67,890 .00
9(3) V99 67890 $$$,8%9.99 $678.90
9(5) 00000 9,8$9.99 $0.00
9(5) V99 (-)0000003 $$$,$$S.22DB $.03DB
9(5)Vv99 0000000 8,885.38
V9 (5) 67890 $$9,889.99 50.67
9(5)V (-)56789 #Z%29.99- 56789.00-
9(5) (+) 56789 #2229 .99~ 56789 .60
9(5) (+)56789 2ERES .99+ 56789.00+
9(5) (-)56739 ZBEZQ .99+ 56789.00-
99V9(3) (-)56789 | = =-e=-- .99 ~56.78
9(5) V99 (+)0056789 4, +++.99 +567.89
9(5) (-)00567 2EEZE.99- 567.00-
9(5) (-)56789 $$5888.99CR $56789.00CR
a(5) (+) 56789 $5$$$5.99CR $56789.00
$99,999.99 $00,123.45 $2%,8%%.99CR $00,123.45
99,99CR 098.76CR *%% 99DB 098.76CR
RREZEZ 321 BRERZEZ 321
10. Editing is not allowed in the Working-Storage, Common-Storage, cr *Common- Storage

except in GECOM source programs that have been generated by the COBOL Translator.

GECOM - 11

-66-

P URENCE

MANUAL

ARRAY SECTION

FUNCTION

The function of the array Section is to define the size and number of the subscripts. The actual
number of times a data-name is to appear is noted in the repeat columns after the data-name. A
description of the subscripts in the Array Section reflects the arrangement of the array (as
pictured by the programmer). Thus, A(10), B(5, 10), C(2,4, 3) indicates A is a list of 10 items,
B is a matrix of 50 items arranged in 5 rows with 10 items to each row, and that C is a three-
dimensional matrix consisting of 2 rows of 4 columns each, repeated on 3 planes.

CONVENTIONS

1. Array names (and their subscripts) of one-dimensional arrays (lists) need not be
described in the Array Section, but may be included for reference purposes. Arrays
of two and three dimensions must be described.

2. The names should be qualified if necessary.

3. No more than three dimensions may be ascribed to any homogeneous array.
Data names listed in the Array Section with their dimensions are described
as repeated fields elsewhere in the Data Division or may be ''tacit" entries
if computation mode is floating point. (See GECOM II Operations Manual,
Edited List, Tacit Data Division Entries.)

4, Only one subscript may be ascribed to a nonhomogeneous array, (a repeated
group of fields).

@ E ° 2@@ gE l[R ‘r [E.?‘ REFEREEEEOSAI;Uii

-6'7-

CONSTANT SECTION

FUNCTION

A constant is any data whose value does not change within the programn.

Any such value may be

listed in the Constant Section and named so that it may be referred to by rame rather than writing

out its value each time it is used. The other advantage of naming and listiny the values of constants
is that in case of a change of assigned value, only the entry in the Constart Section need be changed;
the necessity of changing the actual value several times within the Procedure Division is eliminated.

CONVENTIONS

The only permissible entry in the Type columns is FL.

(See File Section, Field
Literal, Input Entries).

If no entry is made in the Type columns, FL is assumed.
Repeated field literals may be included in the Constant Section.

The use of the Format, Binary, and Justify columns is necessary only when the
entry is to be used in an output record with no change to be applied.

5. The actual value of the constant is entered in the Data Image columns.
(V) decimal points may not be shown in constant data images.
be used as the first character in data images.

Data."

EXAMPLES OF CONSTANTS

The mode of computation is implied by the data image.

Assumed
The symbol M may

See explanatior under '""Nonstandard

GENERAL @ ELECTRIC GENERAL COMPILER DATA DIVISION FORM
COMPUTER DEPARTAENT, PHOENIX, ARIZONA
TRaTRAY _ _
ocarnne cowruten
ESTSI L I I I VS P ausLitier were | boriion h
C OINISTANT SECTIO
FL C ON1 oA
FL CON2 10¢C
FL CONARAY 0CS5 1
FL 2
FL 3
F L 4
FL 5
CONHEADS B 0cC3 “ADING
-~ FOR TPORT ONF
HEADI
~ | R REPORT TWwo"
K E & TN C FOR REPCRT
-~ THRETF
coN3 123..5
coné 3.
CONS 333K 3
FL CONG6 122 . 45
F 1] CON7 +10
CONS8 -10
CONS9 "ABCDE®# [SR
FL CON1O "ALL Kil,,:),i,A\F CONSTANTS™"™
FSTRIEE -

GE-200 SERIES

GECOM - II

-68-

REFERENCE MANUAL

INTEGER SECTION

FUNCTION

The function of the Integer Section is to identify fields (such as subscripts) referred to in the
Procedure Division which may have integral values, and to identify fields to be carried internally
as integers.

CONVENTIONS

1. This section is necessary only when the computation mode is floating point to
identify fields to be carried internally as integers. Regardless of computation
mode, fields in Common Storage and *Common Storage which are to function
as integers must be declared in this section.

2. Fields described as integers in the Working Storage and Constant Sections
need not be mentioned in the Integer Section. The data image defines the
internal storage mode in these sections.

3. When computation mode is floating point, input file fields requiring process
storage will be stored internally as floating point numbers unless names in
the Integer Section.

@E ° 2@@ g {R:: E Eg REFEREI(\;IEEO:IIAI:IU;IIJ

-69-

TRUE ~ FALSE
SECTION

FUNCTION

This section specifies those fields that assume only two values: the decimal value 1 which rep-
resents a TRUE condition, and the decimal value 0 which represents a FALSE condition.

CONVENTIONS

1. These data-names may or may not appear elsewhere in the Data Division. Con-
tained in the true-false section are those data- names which are used to direct
the logical flow, or which are used as a two-way switch. A true-false field
must be numeric and only one character in length.

2. A true-false data-name may be used in any procedure having data-names as
operands, and may be a field with qualification if necessary.

3. Care must be exercised in the Procedure Division that the value of the true-
false data-name is set before it is tested. When tested with an I[F sentence,
a value of 1 causes control to be passed to the sentence indicated in the IF
sentence; if the value if 0, control passes to the sentence following.

4, When setting or resetting the value of true-false data-names, multiple assign-
ment is permissible. However, do not mix assignments of true-false data-
names and data-names. (See Example No. 3).

5. List all control console switches that appear in the Procedure Division READ,
Option 1, statments. The control console switches are to be listed in order

from console switch number 1 through switch N, where N is the highest num-
bered console switch referenced in the READ statements.

EXAMPLES
1. TRUE~FALSE SECTION. FLAG~1, SWITCH~B.

IF FLAG~1 GO TO SENTENCE~22.

When FLAG - 1 =1, control is transferred to Sentence - 22,
When FLAG - 1 = 0, the next sentence is executed.

2. NEW~GROSS = GROSS - SWITCH~B*FICA.
When SWITCH - B = 0, no deduction will be made from GROSS.

3. Flag - 1
Flag - 1

Flag - 2 = Flag - 3 = 0. (Correct)
Flag - 2 = Data-Name - 1 = Data-Name - 2 = 0. (Incorrect)

mnn

@l [E ° 2@@ @E[P@ [] Eg RIZFERESIE(I;OEAI;UE.:,

-70-

WORKING ~ STORAGE
SECTION

FUNCTION

The Working-Storage Section provides for the allocation of memory to data required for inter-
mediate processing during execution of a segment of a program; that is, data saved from one
record to another, or intermediate results.

CONVENTIONS

-

. When computation mode is fixed point, any intermediate results generated in the
Procedure Division as well as any conditional names or field literals which are not
described in the Input, Common Storage, *Common Storage, or Constant Sections
must be described so the storage location of the appropriate size may be assigned
at compili.tion time. This is accomplished by a Working Storage Section.

2. When the cmiputation mode is floating point, it is not necessary to describe (inter-
mediate) calculated data with a Working-Storage Section. The compiler generates
the Working Storage for this data as standard (double-length) floating point fields.
Working Storage in this case is used to store any incoming data that must be available
for use throughout the program. When the computation mode is floating point, the
compiler issumes that any field withcut a data image has a floating point description.
No error messages are printed.

3. rata in th> Working-Storage Section rneed not be grouped into records and files, but
niay be when it is convenient to do so (as when moving input to a holding area record-
bv-recorc;.

4. Following are types of data which may be described in the Working-Storage Section:

R - Sec File Section, Record, Input and Process Output Entries,
*G - See File Section, *Group, Input Entries,

G - Sec¢ File Section, Group, Input and Process Output Entries,

I' - See File Section, Field, Input and Process Output Entries,

E - See File Section, Element, Input and Process Output Entries,

. - See File Section, Conditional Names, Input and Process Output Entries,
FL - See¢ Fil: Section, Field Literal, Input Entries,

T - See Fil» Section, Terminate, Input and Process Output Entries.

5. The ust <1 he Format, Binary, and Justify columns is necessary only when the entry
1s to be us¢d in an output record with no change to be applied.

6. The Workiig-5Storage abbreviation WS must be used as a qualifier when necessary for
uniqueness. An output record which is a direct reflection of a Working-Storage record
must be cualified by WS even when the name is unique.

7. The moac of computation is implied by the data image.
8. 4 field 1i'e cal in the Working-Storage Section causes the field tc be initially set to the

value shown in the data image. The value may be changed by placing a new value in
the field during processing.

9. Fegardless of computation mode, any alphabetic or alphanumeric data must be de-
scribed .
10. The symbol M may be used as the first character of a data image. See explanation

under "'Nonstandard Data. "

GECOM - II
REFERENCE MANUAL

yiru
o)

-T1-

WORKING ~ STORAGE
SECTION
(continued)

EXAMPLES OF WORKING-STORAGE

GENERAL @D ELECTRIC

COMPUTEW DEPARTNENT. PHOENIX, ARIZONA

GENERAL COMPILER

DATA DIVISION FORM

PROGRAN

PROGRAMKER

seunEnce
NuwsER

M DATA NAME

QuaLiFizs

—
[REREREINEES FY P I

BRERD

Vs 14T s 19 20 20 22

22303102 33 34003

[RN PR P R TR T

WOIRIK ING
EL
EL

EECEERE]
I s
EEE]
S -
S
e

...
ot
GGG GG ECE

i i

com alo o mmom oy m e mm o me o
GG EEEEEEEE GRS

—
=
O oo m R

~STORAGE

D~1
D~A

D~
D~
P~
D~
D~
P~
D~
D~
c~
D~
D~
D~
D~
D~

[L B SRV N ORI

D ~1
E R

P

SECTION.

")

W'~ — w© > 0 X o

3

.
© v U MW oW
- " @ a o

3

~ A~~~ v
o

cp

wLp"

oM oo o

©

SRR ERES 1 NP

Rl I T LI L T R FI FPR T}

o5 ce 750

GE-200 SERIES

GECOM - II

REFERENCE MANUAL

COMMON -. STORAGE
SECTION

FUNCTION

To provide for the allocation of memory to data required for processing during execution of more
than one segment of a program,

CONVENTIONS

P
iE-

Data are described in the same manner as in the Working-Storage Section.

Data described in the Common-Storage Section will be assigned memory addresses
relative to the fixed address specified in the ""Begin Common~Storage' clause in the
Environment Division. If this address is not specified, the initial address will be
4063 for a 4k memory or 8159 for 8k and 16k memories. The assignment takes place
in descending order with entries assigned to even locations. The number of words
assigned to a data name is dependent on its description.

When two or more relocatable segments share Common Storage, the data image
entries in each Common-Storage section must be identical and in the same sequence.
It is suggested that data names be identical for clearness and documentation.

Following «re types of data which may be described in the Common-Storage Section:

R - See File Section, Record, Input Entries,
*G - See File Section, *Group, Input Entries,

G - See File Section, Group, Input Entries,

F - See File Section, Field, Input Entries,

C - See File Section, Conditional Names, Input Entries,
FL - See File Section, Field Literal, Input Entries.

NOTE: Elements may not be used in Common Storage.

The use of the Format, Binary, and Justify columns is necessary only when the entry
is to be used in an output record with no change to be applied.

The Commorn-Storage abbreviation CS must be used as a qualifier when necessary
for uniqueress.

The mode of computation is implied by the data image.

A field literal entry in the Common-Storage Section will cause the field to be initially set
to the value shown in the data image. The value may be changed by placing a new value
in the field during processing.

Common and *Common Storage are not preblanked for alphanumeric or prezeroed for
binary data. For the purpose of comparisons, it is necessary to insure that any
unused character positions in Common Storage words are preset to the value (blank or
zero) desired. This may be accomplished by moving SPACES as explained by con-
vention 8 of the MOVE verb. The move of SPACES is done as full words.

)@ %@}:”CE @{ e GECOM - II

3 Y REFERENCE MANUAL

-73.

COMMON ~ STORAGE
SECTION
(continued)

EXAMPLES OF COMMON~STORAGE

GENERAL @ ELECTRIC GENERAL COMPILER DATA DIVISION FORM
CORPUTER DEPARTUENT. PHOEMIX, ARIZONA
m S
GRannen coumuten .
soreree [Teemed] TETTE e] T
COMMON~STORAGE SIECTION. . .
FL FIELD~I1 "ABCOD"
F L FIELD~A . 0923 " ABC !
F L "EFG
FL "TJK
F FIELD~U4 04 999 .
F| [FTELD~S -999 .9
G GROUP~1
F| [FIELD~6 . X X
F FIELD~?7 ~ 999
G GROUP~2
F| [FIELD~38) o B A (2
F| [FIELD~9 009 9(9)
Rl |[cSREC~1
JF| [FIELD~10 o 99
L F| [FIELD~ 11 . B X (19
F FIELD~12 9 (5
F| [FIELD~13 A1
F| FIELD~14 9
C RED 1
Cl [PINK 1 2
¢l [cREEN 3
Pl [F1ELD~15 e - XX
¢l |[corPER . . "CP™
cl JLEaD "Lo” .
BRI D T e, ;nxvu”l_\‘”“xv ye3olan arlealesfaees]|cslar| anfes sosafsalsafsalssise srise o ae - R B IRERENDRC
AETRINT

@E ° 2@@ SE[PB ﬂ ES T RETF r(\}(:O:i\.\:UiTI

-74-

FUNCTION

*COMMON STORAGE
SECTION

The *Common-Storage Section provides for the allocation of upper 8k memory to data required
for processing during execution of one or more segments of a program.

CONVENTIONS

1. Object Cornputer memory size must be 4 modules (16k).

2. Data described in the *Common-Storage Section is assigned memory addresses re-
lative to tke fixed address specified in the BEGIN *COMMON~STORAGE clause in
the Environment Division. * If this address is not specified, the initial address will
be 8190 of upper 8k memory. The assignment takes place in descending order with
entries assigned to even locations.

3. When two or more relocatable segments share *Common Storage, the data image
entries in each *Common-Storage Section must be identical and in the same sequence.
It is suggested that data names be identical for clearness and documentation.

4. Repeated numeric fields are the only type of data that may be described. See File
Section, Field, Input Entries.

5. The use of the Format, Binary and Justify columns is necessary only when the entry
is to be used in an output record with no change to be applied.

6. The *Common-Storage abbreviation CS must be used as a qualifier when necessary
for uniqueness.

7. The mode of computation is implied by the data image.

EXAMPLES OF *COMMON~STORAGE

‘Type Data Name Repeat Data Image
F Field~1 003 999
F Field~2 003 999Vv99
F Field~3 003 +999. 99
F Field~4 003 + 999K99
F Field~5 003 +9.99999999E + 99

* The lower bank of 8192 words is referred to as "lower 8k, ' and the upper bank of 8192 words
is referred to as "upper 8k."

E @I) (@f—;’:'o :"{E(&v GECOM - II

MR
= REFERENCE MANUAL

_75-

OVERFLOW CONDITION

In processing the Data Division a data-name table is created. This table consists of data-name in
the Report Array, True-False, Integer, File, Working-Storage, Common-Sicrage, *Common-
Storage, and Constant Sections. The data-name table is used to match ‘lata names referenced
in the Procedure Division with those described in the Data Division. Rince the table is fixed in
memory, its capacity may be exceeded before all data-names in the Daza [ivision are processed.
When this occurs, the table is considered to be in an "overflow' state. The overflow limit is
reached when the compiler processes approximately 200 data-names. The sequence for processing
and entering data-names in the table is as follows:
1. File and record-names from the Report Section, and special ficld names {such

as ACC. COUNT) created.

2. The file-names and record-names in the output files portion of the File Section.
3. All the data-names in the input files portion of the File Section.

4, All the data-names in the Working-Storage Section.

5. All the data-names in the Common-Storage Section,

6. All the data-names in the *Common-Storage Section.

T. All the data-names in the Constant Section.

8. All the data-names in the Array Section that do not appear in other sections of the
Data Division and then only if mode of computation is floating print.

9. All the data-names in the True-False Section that are not descr:bed in other sections
‘ of the Data Division.

0. All the data-names in the Integer Section that are not describec i+ other sections
of the Data Division.

Overi. .w is indicated with a typewriter message of WTV and a printer mess.;¢ of 017 with an
indicativn of where in the Data Division the overflow occurred. Indication is as follows:

Data Divisi.... Section Relative Position Indicator
FILE +XXX File-name being processed, record-
name being processed.

WORKING~STORAGE +XXX WS, record-name, :if aiy.
COMMON~STORAGE +XXX CS, record-name, if any.
*COMMON~STORAGE XXX Cs

CONSTANT +XXX CONSTANT
REPORT SECTION Report-name or reports file name.

To anticipate and io avoid overflow, the programmer may indicate overflow points by inserting
parameter cards in the Data Division prior to compilation. These parameter or Tvp~ D cards
cause the compiler te terminate the data-name table, write it on tape and begin build:1g a new
table from the data-name following the Type D card. The Type D card must contain D in
columns 7, 8, and 9. I' may have a sequence number in columns 1 through 6 and comments in
columns 11 through 80. Comments may not be continued on next card.

GE-200 SERIES EFERNCE ST

-76-

Since Type D cards terminate entries in the data-name table and avoid the overflow error halt,
they must be inserted after approximately every 250 data-names appearing in the Data Division.
Their exact place of insertion is determined by counting the data-names in the Data Division
and inserting a Type D card every 250 data-names (approx.) at the following points:

DATA DIVISION SECTION INSERTION POINT
File Immediately prior to an FD statement.
Working Storage Immediately prior to a record or group where the group is

not part of a record or immediately prior to a field when
there are no records or groups.

Common Storage Same as Working Storage.

*Common Storage Immediately prior to a field.

Constant Immediately before any field literal that is not part of an
array.

Procedure Division Immediately prior to the Procedure Division sentence if the

Computation Mode is floating point and the data-names in the
Array, True-False, and Integer Sections are not described
in the File, Working-Storage, Common-Storage, *Common-
Storage, or the Constant Section.

Inserting Type D cards does not appreciably increase compilation time.

REPORT SECTION Type D cards are not allowed in the Report Section.

If the overflow occurred on a single report, inspect the
number and length of unique ACC and COUNT names. A limit
of 30 names is allowed. Shortening of these names (in-
cluding FOR clauses) may allow more than fifty names and
eliminate the overflow.

If the overflow occurred on a file of several reports for
deferred printing, the reports may be assigned to two or
more output tapes instead of one. This requires only the
addition of an RFD entry in the Report Section and an assign
clause in the Environment Division. ACC or COUNT names
may also influence the overflow of combined reports in the
manner described above for a single report.

If these solutions do not solve the problem, please forward
documentation of the source program to the Computer De-
partment for analysis.

@ IE ° 2@@ SE @3 U ES REFEREzggo::AI:IUiII.

-71-

6. PROCEDURE DIVISION

PURPOSE

The Procedure Division specifies the steps the programmer wishes the computer to follow.
These steps are expressed in meaningful English words and sentences using ordinary verbs to
denote the actions to be taken in the sentences.

ORGANIZATION

The Procedure Division is written on the GECOM Sentence Form and is identified by the heading:
PROCEDURE DIVISION.

The heading is written beginning in Column 8 and is terminated by a period. No other information

may appear on the line containing the heading.

The Procedure Division is composed of two parts: a body of sentences called the main program
and sentences grouped into Sections, which act like subroutines or subprograms. In preparing
the Procedure Division for compilation, Sections, if used, are to precede the main program.

SECTIONS

Sections are ordered sets of sentences having a common function and needing to be executed from
more than one place in the main program. The programmer is free to partition a program into
sections as he chooses When doing so, however, he must prepare them as follows:

(section—name)SECTION.
INPUT data-name-I1 data-name-12
Head OUTPUT data-name-0O1 data-name-02 ...
NOTE . .

BEGIN.

One or more procedure sentences.
Body

END section-name SECTION.

The ""section-name" :s used to identify and to make reference to the section. It is like a sentence

name and may be formed from the characters and conventions used to form sentence names. The
word SECTION alerts the compiler of the section's presence.

GE-200 SERIES Ecou - 11

REFERENCE MANUAL
-79-

The information following the section's name is partitioned into a ""head” and a "body."

The body of a section is treated as a '"closed procedure' or subroutine and may be executed only
by the Perform sentence. A GO TO sentence or clause cannot be used as a transfer to a section.
The word BEGIN acts as the entrance point to the section and the word END as its exit point.
Since a section results in a closed body of coding, nc GO TO sentence or clatse (as a result of
the IF sentence) may transfer control to sentences or other sections cutside of a section. To
provide a common exit point, the word END may be given a sentence name for transferring from
within the section to a sentence in the main program which is always the sentence following the
executing Perform sentence.

However, a section may contain Perform sentences which execute other sections. This effect is
referred to as 'nested'" sections or subroutines.

Since subroutines often require input data before execution and yield output data as a result of
their execution, the section head serves to accommodate this function. The data-names following
the word INPUT are data-names used in the sentences of the section body requiring values before
the section can be executed. Those data-names following the word OUTPUT indicate the results
of executing the section. To get data to and from a section, the programmer may use the follow-
ing option of the Perform sentence:

PERFORM {section-name ySECTION USING
data-name-1 data-name-2 ... GIVING

data-name-nl data-name-n2 ...

In using this option, the value of data-name-1 is moved to data-name-I1 of the section, data-
name-2 to data-name-I2, etc., before the section body is executed. When the data transfer is
completed, the body of the section is then "performed." After the sentences of the body are
executed, for example, upon reaching the exit END, but before transferring control to the main
program, data-name-Ol1 is moved to data-name-nl of the Perform sentence, data-name-O2 to
data-name-n2, etc. It is only when this latter data transfer is completed that control reverts to
the main program.

The data descriptions of the data-names appearing in the Perform sentence must be compatible
to those given for the input/output data-names in the section. The data-names of Perform,
Section, Common Storage, and *Common Storage may be:

Record names Array names
Group names Element names
Field names True-False variables

described in either input files or working storage. Data names of the USING clause a .d those
listed as output in the section may be constants. In no case can any of the data names listed as
input or output of a section be subscripted elements of an array. However, tie USING and
GIVING clauses of the Perform may contain subscripted fields.

When a section is executed by the PERFORM. .. USING. . .GIVING option, the section must appear
before the PERFORM sentence in the Procedure Division.

GE-200 SERIES FERECE SN

-80-

SEGMENTS

Segments are subprograms which are compiled and tested independently and subsequently loaded
together and executed as a total program. Thus, a user may decide to break up a large complex
program into several parts or segments, write each one as a separate source program, and
compile and test each segment independently, thereby overlapping programming and checkout
time. Another use of segments is to facilitate the writing of common subroutines (installation
oriented) in source larguage to be compiled and tested once and then included in many programs.

All source programs processed by the GECOM-II system and later systems are compiled as
segments. However, a total program can still be compiled and executed as a complete entity.

Segments are executed trom other segments by means of the PERFORM verb with the following
format:

PERFORM {segment-name)SEGMENT.

The PROGRAM-ID contained in the performed segment's Identification Division is used as the
segment-name.

A segment's END PROGRAM sentence is treated as the exit of the segment. The END PROGRAM
sentence may be named so that control may be transferred to the exit point from within the
segment. When a segment is executed, the exit is set and control is transferred to that part of
the object program corresponding to the first sentence in the segment's Procedure Division. If
there are no logical control transfers within the segment, sentences are executed in sequence
down through the exit. Only the main segment may contain the logical end of the program (see
STOP verb).

Segments may contain Sections. Segments may be nested in the same manner as Sections. How-
ever, Sections contained within a Segment may nct be performed from outside of the Segment.

At times, it may be desired to perform a set of procedures embedded within the main (con-
trol) segment or within some other segment from outside of the segment containing the
procedures. The procedures to be performed may be written much like a section. However,
instead of being rreceded by section~name SECTION

and followed byv:
END {sectiom»name}S_ECTION.

such a set of procedures should be preceded by

(procedur e~name> SEGMENT,

and followed by:
END {pro cedur ewname}SEGMENT.

No_te thag the procedure~name specified should not be the PROGRAM-ID (which is used when
it is desired to execute an entire segment). All of the rules for sections apply except that
the USING. ..GIVING options may not be employed. The set of procedures is compiled as a

section, but the procedure~name may be specified in a PERFORM sentence in the main
segment or any cther segment.

A

BE-200 SERIES

REFERENCE MANUAL

_81-

Communication from segment to segment can be accomplished by data in Common and/or
*Common Storage. The descriptions of Common and/or *Common Storage should be identical
for all segments in total program. It should also be kept in mind that Work:ng Storage and other
Process Storage areas are compiled separately for each segment and cnly Common and *Common
Storage may be shared by two segments.

The continuity of the object program depends upon procedures contained in the main segment.

The main segment should contain the input/output housekeeping routines and the logic to determine
when data should be read or written. Certain input/output procedures may sometimes be included
in individual functional segments rather than in the main segment; examples are high-speed
printer and punched card output routines. Usually, however, the buffers «nd housekeeping rou-
tines for input/output files should be in the main segment, particularly for magnetic tape and

DSU files.

Suppose, for example, that segment A reads a file from tape controller plug 1, and segment B
writes a file on tape plug 1. Both files are buffered to overlap input/output with computing.
Whenever A starts a read, it resumes processing in parallel with the tape operation. If the con-
troller should detect a tape error or end of file, the signal must be communicated to the input
routine in A. But if B needs to issue a write before the next read from A, ther B will detect the
error indications. They are of no use to B, and it is impractical to have B pass them back to A.
Thus A loses information it requires, while B receives information it cannot interpret.

The solution is to have a single input/output supervisory routine in the ma.n segment, and let
both A and B call to it through transfer vectors. Not only is the error control problem thereby
eliminated, but a memory saving also results; it is unnecessary to have two or more copies of a
sizable input/output package in memory at once. The conclusions would be the same whether A
reads and B writes or both read or write; and the equivalent problem with two files koth open on
the same disc storage unit or plug is even more serious.

The problem just discussed may be termed that of shared peripheral devices. Another type of
problem results from shared logical files. Suppose, for example, that segments A and B jointly
process a card input file, and that either A or B may determine when another read is needed.

It is clearly desirable to have a centralized card input subroutine to which both A and B have
access. The solution is either to include the subroutine in the main segment, or else to make it
a segment in itself, and in either case to permit A and B to call it through transfer vectors.

In general, a functional segment should not include the buffers and houseke eping routine for any
file unless--

1. It is opened, processed, and closed exclusively within the segmert.

2. Other segments do not need access to its buffers.

3. It does not share a magnetic tape controller or a disc storage unit « r controller with a
file processed by another segment.

In a segmented GECOM program, all magnetic tape and/or DSU files shou d b+ lescribed in the
Data and Environment Divisions of the main segment, and all OPEN, REAl}, WRITE, CHAIN,
READY, RELEASE, and CLOSE sentences referring to these files shcuid «:pyear in its Procedure

ivision. Isolated punched card or high-speed printer files may be prccessed in individual
functional segments.

BE-200 SERIES FERENGE WAL

-82-

To test a particular segment, it is necessary to execute its object coding in conjunction with the
object coding of the main segment or a dummy segment written only for test purposes to make
input test data available to the segment and to produce output test results.

During compilation of any segment, object program subroutines can be punched out optionally by
the Editor phase. If this option is exercised for more than one segment, duplicate subroutines
would be included in the total program. However, most of the subroutines required by the total
object program are required by the segment containing the input/output functions. It is therefore
recommended that object program subroutines be punched out only with the main segment (or with
a dummy segment for test purposes). The names of subroutines required in each segment (con-
tained in the Edited L st of each segment) can then be checked against those in the main segment
to determine if there are any omissions. If any additional subroutines are required, they can be
selected from the library and placed in the object program deck.

After testing all segments and obtaining any required additional subroutines, the total object
program should be consolidated as follows:

1. Remove the constant cards and transfer card from the end of each segment object deck.

2. Place segme1t object decks behind main segment object deck and subroutines in any
order. If desired, subroutines could be placed between or behind segments. Order is
important only when overlay segments have been compiled. (See OVERLAY SEGMEN-
TATION.)

3. Place any on2= of the constant decks and transfer cards at the end of the complete deck.

4. Depending on the object program loading medium and format, perform one of the
following:

a. To be loaded from cards--place Multicapability Modular Loader II (MCML II),
CD225B1.006R, with a type 1 card in front of complete deck, and two blank cards
at end of complete deck.

b. To be loaded from magnetic tape in relocatable format--place MCML II Loader with
a type 1 card in front of complete deck. Prepare BRIDGE II control cards and make
a BRIDGE II run to place program on magnetic tape. (See CD225J1.001.)

c. To be loaded from magnetic tape in absolute format--perform a BRIDGE II RAB
run on the deck. The RAB control card indicates whether the user is supplying an
absolute loader, or wishes one to be emitted by RAB. (See BRIDGE II, RAB function,
CD225J1.001.)

When the object program is loaded, control is transferred to the first (main) segment.

GE-200 SERIES TEFERENGE WAL

-83-

OVERLAY SEGMENTATION

An object program segmented for overlays consists of a ""Contro! Load' plus one or more ""over-
lay segments' (overlays). The Control Segment (main segment) is brought :nto memory at the
beginning of the program execution, and it remains in memory throughout execution of the entire
object program. The Control Segment consists of one or more ordinary s=¢ments and the sub-
routines they require. The overlays are not brought into memory with the Control Segment:
instead, they are brought in individually, under control of explicit LOAD sentences in the Control
Segment. Each overlay consists of one or more ordinary segments.

The object of overlay segmentation is to use the same memory area for two or more sets of
procedures which are not needed at the same time. In this way, it is possible to subdivide very
large programs so that all of the procedures needed at a given time can be contained in memory,
even though the entire program might greatly exceed memory if it all had to be contained at once.

The following conditions characterize the simplest application of overlay segmentation:
1. The Control Segment:

a. Contains all input and output procedures

b. Contains all subroutines it requires, plus all other subroutines shared by the over-
lays

c. Contains logical procedures to determine when each overlay is needed

d. Loads each overlay into memory when it is needed

e. Performs each overlay as required

2. The overlays:

a. Contain all procedures except those just described in the Control Segments

b. Communicate only with the Control Segment and Common and, or *Common Storage,
not with each other

c¢. Occupy memory only one at a time (when another is needed, it is loaded over the
old one)

d. Are located in memory immediately after the Control Segment and thus may use all
of memory up to the beginning of Common or *Common Storage.

In a more complicated application, it might be desired to hold two or more overlays in memory
at once and to replace them selectively with other overlays as required, and to let overlays
perform each other. To accomplish this, the programmer may use an Environment Division
option to relocate each overlay an arbitrary number of words away from the end of the Control
Segment. For example, assume overlays A and B are to be in memory together, and that A
requires 600 (or fewer) words of memory. (The amount of memory required by A is determined
from an early compilation of it, or else estimated on the basis of the progrcmmer's experience
with object program memory requirements.) The programmer should insiruct GECOM to
RELOCATE B BY 600 WORDS. This causes B to be positioned 600 words after the last location
used by the Control Segment, so that A can fit in between. It is then entirely arbitrary whether
A or B is loaded first, or whether one is actually loaded immediately afte~ the other. Assuming

GE-200 SERIES Nor VAL

REFERENCE MANUAL

-84-

that C is another overlay, and that it, like A, requires no more than 600 words, and must be in
memory with B but not with A, C can replace A when it enters memory, as follows: The
programmer RELOCATES B BY 600 WORDS, but does not RELOCATE A or C; and the processing
sequence in the Control Segment might be:

LOAD A,

LOAD B,
NOTE A AND B ARE BOTH IN MEMORY.

(use A and B with PERFORM sentences)

LOAD C.
NOTE A HAS NOW BEEN REPLACED BY C.

(use C and B with PERFORM sentences)

This framework can b2 extended to permit several overlay segments to be held in memory at
once. In effect, the Control Segment is automatically given exactly the amount of memory it
requires; and the remaining memory is divided into portions of fixed size by suitable RELOCATE
clauses. The general rule is that if two overlays must be in memory at the same time, then one
of them must be relocated by enough words to contain the other. If n overlays must be in memory
at the same time, the second must be relocated by enough words to hold the first, the third
relocated by enough words to hold the first two, and so forth.

When the object program is operated, the Control Segment will be loaded into memory at the
beginning, but no overlays will be loaded with it. Thus, the Control Segment must load each
overlay before performing it the first time. Should an overlay be performed before it is loaded
(or after another has been loaded over it), unpredictable results will occur. It is, therefore,
necessary for the programmer to plan the dispatching of the overlays very carefully.

The Control Segment is in memory throughout execution of the overlay segmented program, but
each overlay is in memory only part of the time. Each time an overlay is reloaded, it enters
memory with all of its initial conditions restored. Thus, any GO statements previously altered
(within the overlay) are reset to their initial values; and all storage areas other than Common or
*Common are reset to initial values for Field Literals and contain unpredictable data for every-
thing except Field Literals. Common and *Common Storage area contents are preserved except
that Field Literals are reset to initial values.

@EDQ@@ SEE%DES GECOM - II

REFERENCE MANUAL
-85-

Similarly, any data file processed in an overlay must be opened, completely processed, and
closed by sentences in the overlay before the overlay is replaced by another LOAD sentence. It
is not possible to open a file in an overlay, process part of it, replace the overlay with a differ-
ent overlay, and then load the original overlay back into memory (o finish processing and close
the file, because all of the information about the file is lost when the ¢ierlay is reloaded, and it
is assumed that the file is not yet opened. If a file is needed again after r.:loading the overlay,
it must be opened again. It is recommended that the user define all files and do all opens and
closes in the Control Segment. Files processed in overlays are subject to the same rules as
files processed in segments. (See Segments.)

In programs utilizing 16k memories, the PLACE clause in the Environment Division permits the
main procedural portion of the object program and *Common Storage to be stored in upper
memory, while common constants, file tables, subroutines, and buffers are stored in lower
memory. Normally, the compiler assumes that the lower and upper portions of the object
program should be started at standard beginning locations in memory (576 . and 8192, respec-
tively). For overlays, the normal assumption is that the lower and upper pcrtions should follow
immediately after the Control Segment in memory. However, as described above, the program-
mer may utilize the RELOCATE clause of the Environment Division to override the standard
assumptions. The following example illustrates how to use this option to permit more than one
overlay to be in memory at once:

Assume that the memory requirements of a Control Segment and its overlays correspond to the
following table.

Program LOWER Memory UPPER Memory
Control Segment 3024 1 2008 1
OVERLAY-A 500 10 1000 1
OVERLAY-B 600 1,0 1500 16
OVERLAY-C 500 10 1000 1

1. When the execution of the object program begins, memory will be used as follows:

Location 576 - 3599 -- Control Segment (Lower)
Location 8192 - 10199 -- Control Segment (Upper)
All other -- Not in use

2. When the Control Segment has executed a LOAD OVERLAY~A sentence, memory will
be used as follows:

Location 576 - 3599 -- Control Segment (Lower)
Location 3600 - 4099 -- Overlay-A (Lower)
Location 8192 - 10199 -- Control Segment (Upper)
Location 10200 - 11199 -- Overlay-A (Upper)

All other -- Not in use

GE-200 SERIES CETERENCE NANUAL

-86-

3. Assume that the Environment Division for Overlay-B said, RELOCATE BY 500 WORDS
IN LOWER MEMORY, RELOCATE BY 1000 WORDS IN UPPER. Then, after the Control
Segment has loaded Overlay-A and also has loaded Overlay-B, memory will be used as
follows:

Location 576 - 3599 -- Control Segment (Lower)
Location 360C - 4099 -- Overlay-A (Lower)
Location 410C - 4699 -- Overlay-B (Lower)
Location 8192 - 10199 -- Control Segment (Upper)
Location 10200 - 11199 -- Overlay-A (Upper)
Location 11200 - 12699 -- Overlay-B (Upper)

All other -- Not in use

4. Assume that Overlay-B has been relocated as above, and that the Control Segment has
loaded Overlzy-A, then loaded Overlay-B, and then loaded Overlay-C. Memory will be
used as follows:

Location 576 - 3599 -- Control Segment (Lower)
Location 3600 - 4099 -- Overlay-C (Lcwer)
Location 4100 - 4699 -- Overlay-B (Lower)
Location 8192 10199 -- Control Segment (Upper)
Location 10200 - 11199 -- Overlay-C (Upper)
Location 11200 - 12699 -- Overlay-B (Upper)

All other -- Not in use

The main use of the RELOCATE option is to permit overlays to share memory, as the above
example shows. In addition, it could be used on the Control Segment to set aside memory for an
external executive rottine, or for other purposes of similar nature. Individual overlays can be
placed entirely in lower memory if desired, even though a 16k memory is in use. The program-
mer has explicit conti1oi over all such placing and relocating, and with the control goes the
responsibility to arrange things so as never to destroy needed information or procedures.

Despite the fact that they are compiled separately, each overlay shares the subroutines of the
Control Segment. If the overlay includes subroutines which already appear in the Control
Segment, they will automatically be dropped, instead of entering memory. The opposite is not
true; the Control Segment must contain all of its own subroutines. Overlays which are in memory
together can share common subroutines--and thus save memory--if and only if the common sub-
routines are contained in the Control Segment. The programmer can enhance this economic
effect by deliberately placing all common subroutines in the Control Segment, even though they
might not be used by it.

To understand how duslicate subroutines are automatically dropped instead of being loaded into
memory, it is necessary to consider the steps involved in preparing an overlay segmented object
program. The progranimer writes separate GECOM source programs for the Control Segment
and each overlay, and compiles and perhaps even tests them separately. Finally, he collects
them all together, following the instructions in the BRIDGE II Manual (CD225J1.001). In doing
so, he may take care tc place all common subroutines with the Control Segment. Now the entire
object program is prccessed by the BRIDGE II RAB (Relocatable to Absolute) converter, which
supplies linkage between the Control Segment and all of its overlays, and writes the final version
to a specified magnetic tape handler. As it processes the program, RAB checks the subroutines
included with each overlay against those included with the Control Segment. When RAB finds

BE-200 SERIES f

REFERENCE MANUAL

-81-

duplicates, it links the overlay to the Control Segment subroutines and skips past the duplicate
copy without writing it out. Thus, even though duplicate subroutines might be present in the

input to RAB (that is, in the collection of Control Load and overlav object programs), they will

not be physically present in the output from RAB, which represents the actual running program.
RAB does not eliminate duplicate subroutines between overlays, since it cannot assure that
Overlay-A and its subroutines will necessarily be in memory when Overlav-B needs the subroutine.
As has been mentioned above, the programmer may accomplish this economy by including all
common subroutines with the Control Segment.

The BRIDGE-to-DSU Absolute Load Translator (BRAT), CD225E2.005R, mzy be used to trans-
form the overlay segmented object program from the output magnetic tape onto disc storage.
When the overlays have been assigned to disc storage, the Control Segment Edited List will show
the overlay segment names in the order in which they must be introduced to BRAT. Each overlay
is also assigned a directory table address. At object time the DSU address of an overlay to be
loaded will be found in that overlay's directory table position.

When the overlays segments are on magnetic tape, each LOAD procedure begins with a search
for the named segment. The programmer can optimize tape searching time by arranging the
segments in ascending sequence by name. The LOAD routine reads the next segment name from
tape. If the desired segment name is less than the one read, searching begins in a backward
direction; otherwise searching proceeds in a forward direction. If either e¢nd of the program is
reached, the direction of searching is reversed and searching continues.

Communications between an overlay and the Control Segment are always a.'complished by
PERFORM sentences and by data in Common or *Common Storage. The descriptions of Common
and *Common Storage should be identical for the source programs of the Control Load and all of
the overlays. One overlay can perform another only if the Control Load aiso performs it. How-
ever, the PERFORM sentence from the Control Load need never be executed. It is only necessary
that the PERFORM sentence appear in the Control Load Procedure Division to establish the
necessary transfer vector linkage.

A set of procedures contained within a Control Segment or within an overlay segment may be
performed from outside of the segment containing the procedures in the same manner as
described under ""Segments.'" However, one overlay cannot perform a set of procedures contained
in another overlay unless the Control Segment contains a perform (not necessarily executed) of
the same procedures in order to establish the necessary linkage.

SEGMENT AND SUBROUTINE TABLE DESCRIPTION

This table is comprised of three parts.
1. The count for the Segment portion entries and the count for the Subroutine portion entries.
2. Five-word Segment names, not to exceed fifty, left in memory fo: the Reformer Over-
lay of the Reformer Phase. The first word is the internal symbo :ssigned by the

compiler and attached to the four-word name assigned by the soui ¢ programmer.

3. One word Subroutine names, not to exceed fifteen if fifty Segment nianies were used,
placed into the table by direction of the Generator Overlays durin; the Reformer Phase.

BE-200 SERIES SEEETTY

-88-

MEMORY
LOCATION Discussion of Table Item Entries

5464 Count of Segments, Overlays, and Multiple Entry Points contained in the table.
Maximum number of names allcwed is fifty. Over fifty will cause typed
messages to occur at beginning of Reformer Overlay specifying, XXX SEG TBL
OVF. Look for SEG * TOO MANY on printer listing for error notice.

5465 Count of Subroutines names called by this compilation and placed in table
entered here during Reformer Phase.

5466 Three types of entries, five words each, may be made to the Segment table
begnning at this location.

(a) Perform Program-ID Segment

The names used for Program-ID are always entered to the table first.
These names will be used in generating vectors for executing the Segment.
The first word left of the four-word Program-ID name is the assigned
internal symbol. The sign and one bit of this word will be off to indicate
Perform type entries.

(b) Procedure-Name Segment

These names are always entered in the table after Perform types. They
are known as Embedded Segments and represent multiple entry points into
their containing Segment. Their internal symbol word will have the one
bit on.

(c) Load Program-ID Segment

These names, known as Overlays, always enter in the table after the
Perform and/or Embedded Segment type entries. Their internal symbol
word will have the sign bit on.

6060 The CON Subroutine name is inserted into the first available word adjacent to
the last word of the last Segment, Multiple Entry, or Overlay name placed into
the table. The Reformer will always make this entry to the table during the
Reformer Phase. All other Subroutine names entered to the table by the
Reformer are directed by the generators. If fifty Segment Table names are
used, only fifteen subroutines may be generated; otherwise, compilation will
give unpredictable results.

GE-200 SERIES e

REFERENCE MANUAL

-89-

NOTATIONS IN SENTENCE FORMATS

The following notations are used in this manual to facilitate presentation of the sentence formats.

KEY WORDS are underlined, upper case words

Key words are required to com-
plete the meaning of the sentence.
They must be correctly spelled.

NOISE WORDS are upper case words (not under-
lined).

Noise words are optional. If they
are used they must be correctly
spelled.

Operands are lower case words.

They indicate the types of operands
supplied by the user.

{Choices} are enclosed in braces.

The programmer should select
one entry from those shown within
a set of braces.

[:Options] are enclosed in brackets.

The programmer may include or
omit these entries. In some cases,
options have been separated into
individual numbered formats.

GE-200 SERIES

FEEFERENCE MANUAL

-90-

VERB FORMATS

The GECOM verb formats are described in alphabetical order on the following pages. The list

below groups the verbs into their respective categories.

ARITHMETIC

INPUT-OUTPUT

PROCEDURE-BRANCHING

DATA MOVEMENT

CONDITIONAL

ENDING

COMPILER DIRECTING
VERBS

EXPLANATORY
(not compiled)

ADD
SUBTRACT
MULTIPLY
DIVIDE
ASSIGNMENT

ADVANCE
READ
WRITE
OPEN
CLOSE
CHAIN
LOAD
READY
RELEASE

GO
ALTER
PERFORM

MOVE
EXCHANGE

IF
VARY

STOP

ENTER

NOTE

GECOM - II

GE-200 SERIES

-91-

REFERENCE MANUAL

ADD

FUNCTION

The ADD verb adds two quantities and stores the sum in either the last-named field or the
specified field.

SENTENCE FORMAT

numeric-1 TO numeric-2
ADD ,
field-name-1 AND field-name-2
[GIVING field- name-3] [ROUNDED]
[IF SIZE ERROR GO TO sentence-name- 1] .
CONVENTIONS

If the GIVING option is not present, the last-named field receives the result.

Decimal points do not appear in stored fields, and are used only to properly align data
before execution of an arithmetic operation.

Only a numeric may be used. If a sign (+ or -) is included, it must appear as the most
significant character of the numeric.

ROUNDED may be used to round off the result before it is stored in the receiving field.
If the receiving field is in floating point mode or if the operands are all integers, then
rounding is ignored.

The SIZE ERROR option may be used to truncate the most significant digits of a number.

EXAMPLES

ADD 0.5, RATE OF PAY~FILE GIVING TOTAL.
ADD TOTL~RECVD, ON~HAND~QTY. (The result is stored in ON-HAND~QTY.)

ADD VALUE~1 OF FILE~A, VALUE~2 OF FILE~B GIVING VALUE--3 OF FILE~C, IF
SIZE ERROR GO TO ERROR~RTN.

‘E E ° 2@@ g@[ﬁg U Egj - REF* z-EfzigogAx;U;i

-92-

ADVANCE

FUNCTION

The ADVANCE verb slews the printer paper.

SENTENCE FORMAT

integer LINES

ADVANCE file-name field-name LINES

TO TOP OF PAGE

CONVENTIONS

1.

Field-name must contain an integer less than or equal to 128. If it is greater than 128,
only 128 lines will be advanced.

2. If the options are omitted, the printer page is advanced one line. Therefore, the
number of lines specified should be greater than one.

3. When a printer is used, the compiler automatically generates a Line-Count field. The
programmer is free to use this field narne to interrogate the position of the printer page.

4. TOP OF PAGE clause is defined as '"Line-Count equals zero."

5. TOP OF PAGE clause may be used as a conditional name of Line-Count. For example,

IF TOP OF PAGE OF file-name GO ...
is the same as

IF LINE~COUNT OF file-name EQUALS 0 GO ...
If only one printer is used, it is not necessary to qualify LINE-COUNT or TOP OF
PAGE.

6. The WRITE verb automatically slews the printer page one line after writing the print
line and increases the Line-Count field by one. Any ADVANCE sentence causes
additional slewing.

7. LINE-COUNT and TOP OF PAGE clauses must not be described in the Data Division.

8. The OPEN verb does not advance a printer file to TOP OF PAGE.

EXAMPLES

1. ADVANCE PAY~REGISTER 20 LINES,

2. ADVANCE TRANS~FILE X LINES,

Note that the value contained in field X must be an integer.

3. ADVANCE OUTPUT~FILE TO TOP OF PAGE.

GE-200 SERIES cEco - 11

REFERENCE MANUAL
-93-

| ALTEE

 ——

FUNCTION

The ALTER verb modifies a predetermined sequence of operat:ons.

SENTENCE FORMAT

ALTER sentence-name-1 TO PROCEED TO sentence-name-2

E sentence-name-1 TO PROCEED TO sentence-name-4.. :] .

CONVENTIONS

1.

Sentence-name-1 and sentence-name-3 are names of GO sentences as defined under
Option 1 of the GO verb.

After a GO sentence has been altered, it will continue to go to the changed destination
on every execution until it is altered again.

EXAMPLES

1.

ALTER SENT~25 TO PROCEED TO SENT~33.

Effect of SENT-25 before execution of the ALTER sentence:

SENT~25. GO TO ERROR~RTN.

Effect of SENT-25 after the execution of the ALTER sentence:

SENT~25. GO TO SENT~33.

ALTER 777 TO PROCEED TO S~8, SENTENCE~52 TO PROCEED TO SENT-A.

Effect of sentences 777 and SENTENCIE-52 before the execution of the ALTER sentence:
777. GO TO SENT~TA2.

SENTENCE~52. GO. (Object program will halt in a loop at this point if this sentence
has not been altered prior to execution.)

Effect of sentences 777 and SENTENCE-52 after the execution of the ALTER sentence:

777. GO TO S~8.
SENTENCE~52. GO TO SENTA.

GE-200 SERIES FTFTENCE WAL

-94-

ASSIGNMENT

FUNCTION

The ASSIGNMENT verb evaluates an arithmetic expression and assigns the result of the evalu-
ation to a specified field.

SENTENCE FORMAT

true-false variable
arithmetic expression
0

1

true-false variab e =

field-name-2
field-name-l[ROUNDED] =(arithmetic expression EF SIZE ERROR GO TO sentence-name-l] .
,f, numeric-1

W ns 1 FXS
CONVENTIONS

1. An arithmetic expression is a sequence of variables (fields), numbers and functions
connected by symbols representing the arithmetic operations add, subtract, multiply,
divide and exponentiation.

2. In fixed point evaluations, decimal points are aligned according to the data description
of the result variable.

3. The ROUNDED option may be used to round off the result before it is stored in the left-

most receiving field only. If the receiving field is in floating point mode or if the

operands are all integers, then rounding is ignored. Note: Operands cannot be all
integer.

4. Equal signs may be placed in any position in an expression (except a subscript) providing
the receiving field is a single variable (not an expression). Equal signs cannot appear
in a subscript (See Examples 6 and 9.)

5. The size er10: option may be used to truncate the most significant digits of a number.

EXAMPLES

1. GROSS~PAY OF PAY~FILE ROUNDED = HRS~“WORKED * RATE - WEEKLY~TAX.
2. QTY~ON~HAND = OLD~QTY + NO~RECVD - QTY~SHIPPED.

3. AVG~INCREASE = (END~PAY - START~PAY) / END~PAY.

4. X=A+B- (C *54.5) * SIN (A - R23) / 22.35.

5. Z ROUNDED :: ABS (RATE * R - SQRT (B2-K))-M ** 3,

@EDQ@@ @E[’%UE‘@% GECOM - II

REFERENCE MANUAL

-95-

ASSIGNMENT
(cont.)

6. YTD~FICA = YTD~FICA + (CURR~FICA = GROSS~PAY *0.03).
7. X=Y=Z=A+B*C/E+ SIN (ALPHA).
8. A ROUNDED = B = C = SIGMA (I) + PHI (J).
NOTE: Only the result stored in field A may be rounded.
9. X=A+B+ (C(X)=D+ F) is legal
X =A+ B=(C+ D) is illegal (an expression equals an expression).

10. W=A+B*C IF SIZE ERROR GO TO OUT-~RANGE.

CHAIN

FUNCTION

The CHAIN verb searches an input chained file assigned to disc storage for a record or block
which satisfies a specified relation.

SENTENCE FORMAT

1S [NOT] GREATER THAN

; IS [NOT] LESS THAN
field~name~1 —_—
CHAIN file~name~1 UNTIL element~name~1 IS [NOT]% TO
constant~1 s UN_EQE‘ALE TO
EQUALS
EXCEEDS
field~name~2
element~name~2 |USING field~name~3 FOR CHAINING]
constant~1

[, IF END OF CHAIN GO TO sentence name 1] .

CONVENTIONS
1. A READY sentence for fileename~1 must be issued before the CHd 4N ... UNTIL
sentence.

2. The Procedure Division may not contain more than four CHAIN UNTIL sentences per
file. Note that only one constant may be used in an UNTIL clause T'he ‘nput file field
or element being compared must be in the same position relative t+ the Leginning of each
logical record assigned to the file; it must be the same size and t1icde as the field,
element, or constant with which it is being compared. If records are blocksd, the con-
dition of the first logical record of the block determines whether 'he block is accepted,
or whether a chain is made to ancther record block.

GE-200 SERIES NE MAvAL

REFERENCE MANUAL

-96-

CHAIN
(Cont.)

3. If a file has (n» or more CHAIN sentences referencing it, the USING clause must be
specified in at least one of the CHAIN sentences for that file. If more than one CHAIN
sentence for a file has a USING clause, all CHAIN sentences for that file must have a
USING clausec .

4. 1If afile has 1 or more CHAIN sentences referencing it, the END OF CHAIN clause
must be specified in at least one of the CHAIN sentences for that file. Transfer is made
to the senten:e named when an end of chain is reached and the specified relation is not
satisfied. If different sentence names are employed in END OF CHAIN clauses for the
same file, eve1 CHAIN sentence for that file must have an END OF CHAIN clause.

5. The field named in the USING clause must contain an absolute DSU address at object
time. The field-name may not be subscripted. The field must be an input field contained
in all records >f the file being chained. The mode and size of the field must be the same
in each record description and the field must be in the same position relative to the
beginning of =ach logical record assigned to the file.

6. The abbreviatioms for relations may be used instead of the English words shown in the
sentence formutt.

7. [If bit 0 of the field named in the USING clause is 1, the record block is considered as
vacant. The contents of the field are negated to develop the address of the next record
block whenever bit 0 is 1. No comparison is made in the vacant record.

8. If bits 0-18 (f the field named in the USING clause are all zero, the record block is
assumed to Le the last one in the chain. If the record block does not satisfy the relation,
a transfer is made to sentence~name~1. If bits 0-18 of the field named in the USING
clause are a'l 1-bits, it is assumed that the record block is vacant and that the end of
chain has been reached; a transfer is made to sentence~name~1. Note: Bit 19 is not
checked, but it must not be a_1-bit unless bits 0-18 are also 1-bits.

9. The contents of the field named in the USING clause of the READY sentence preceding
the CHAIN sentence is updated each time a chaining operation is done. When the relation
is satisfied, the address of the record block which satisfied the relation is in the field
named in the READY USING clause. A read of the file obtains the first logical record.

If the file is not blocked, a READY clause must precede the READ sentence.

10. The CHAIN sentence may not be issued for files described by a SEQUENTIAL clause.

11. One of the fields or elements named in the UNTIL clause must be contained in the chained
file. Both fields or elements named in the UNTIL clause should not be in the chained file.

EXAMPLE;
1. FILE NOT BELOCKED:
READY DSU~IN FOR READING USING DSU~ADDR FOR ADDRESSING.
CHAIN DSU~IN UNTIL STOCK~NO EQUALS TRAN~STOCK USING FIELD~INDIC FOR
CHAINING, IF END OF CHAIN GO TO ERROR~CHAIN.

READY DSU~IN FOR READING USING DSU~ADDR
FOR ADDRESSING.
READ DSU-IN,

2. BLOCKED FILE:
READY DSU~IN FOR READING USING DSU~ADDR FOR ADDRESSING.
CHAIN DSU~IN UNTIL. ...
READ DSU~IN,

GE-200 SERIES crcon - 11

REFERENCE MANUAL

-97-

CLOSE

FUNCTION

The CLOSE verb terminates the processing of both input and output reels and files, with optional
rewind and/or lock.

SENTENCE FORMAT

CLOSE file-name-1 WITH [NO LOCK] E\IO REWINI% Efile-name-z] .

CONVENTIONS

1.

A CLOSE file-name sentence must be executed only once for a giver file unless the file
has been reopened. A CLOSE file-name sentence will initiate the final closing con-
ventions for the specified file and release its data area.

2. If the NO LOCK option is used on a tape file, the tape will be rewound.

3. If the NO REWIND option is used on an cutput tape file, the tape will be positioned at the
end of the file after the end-of-file conventions are executed.

4. If the NO REWIND option is used on an input tape file, the tape will remain at its current
position whether that position is the end of the file or not, unless it is a multifile tape in
which case it is advanced to end-of-file.

5. If neither a NO LOCK nor NO REWIND cption is specified for a tape file, the tape will be
rewound and locked to prevent the tape from being read or written upon. LOCK is
accomplished by programming, not hardware.

6. If the same tape file is opened or closed more than once, the NO I.OCK option should be
used.

7. When an input card file is closed, the current card count will be tvped whether the end-
of-file card has been detected or not. Any remaining cards in the reader will not be
read.

8. When an output card file is closed, the card count will be typed. No end-of-file card is
punched.

9. The NO LOCK and NO REWIND options may not be used for DSU files.

10. A JOURNAL~TAPE file (See Environment Division, DSU~CONTROL sentence) need not
be closed. If it is not closed, no label or tape mark is written.
EXAMPLE
1. CLOSE PAYROL~FILE WITH NO LOCK, MASTER~FILE WITH NO REWIND, EMPLOY~

FILE.

Note: PAYROL-FILE is rewound (if a tape file) with no lock, MASTER-FILE is closed
but remains positioned at its present point and EMPLOY-FILE is rewound and locked.

GE-200 SERIES ccon - 11

REFERENCE MANUAL

-98-

DIVIDE

FUNCTION

The DIVIDE verb divides one number into another and stores the result in the last-named field
or the specified field.

SENTENCE FORMAT

numeric-1 numeric-2
DIVIDE INTO
field-name-1 field-name-2

[GIV]NG field- name-s] [ROUNDED I

[IF SIZE ERROR GO TO sentence-name- 1] .

CONVENTIONS

1. If the GIVING option is not present, the last-named field receives the result.

2. Decimal points do not appear in stored fields, and are used only to properly align data
before execution of an arithmetic operation.

3. Only a numeric may be used. If a sign (+ or -) is included, it must appear as the most
significant character of the numeric.

4. The ROUNDED option may be used to round off the result before it is stored in the
receiving field. If the receiving field is in floating point mode or if the operands are all
integers, then rounding is ignored.

5. The SIZE ERROR option may be used to truncate the most significant digits of a number.

6. The SIZE ERROR option does not check for division by zero.

EXAMPLES
1. DIVIDE NUMBER INTO TOTAL GIVING AVERAGE.
2. DIVIDE 100.0 INTO K2H GIVING VALUE OF FILE~16 ROUNDED.

3. DIVIDE A26 INTO R17K.

NOTE: The contents of R17TK will be divided by the contents of A26, and the result will
be stored in R17K.

@IE"Z@@J gER‘UE@ GECOM - 11

REFERENCE MANUAL

-99-

EMTER

FUNCTION

The ENTER verb allows the programmer to insert General Assem:bly Progrem coding into a
GECOM source program. It is envisioned that General Assembly Progran coding within GECOM
source programs will be used primarily for functions more of a machine-coriented level than
GECOM sentences. For example, the use of the ENTER verb might allow Goneral Assembly
Program coding to sense or manipulate bits, or to tailor GECOM-produced coding to a particular
need. (In the latter case, the user must be thoroughly familiar with GECOM object coding and
object data organization.)

The ENTER verb specifies departure from the normal sequence of procedures in order to execute
General Assembly Program (GAP) coding appearing elsewhere in the Procedure Division.

SENTENCE FORMAT

ENTER GAP [AI GAP-symbol] .

(A set of General Assembly Program instructions)

me (]

CONVENTIONS

1. General Assembly Program coding may appear anywhere in the Gi2COM Procedure
Division. It may be preceded and/or followed by GECOM procedure sentences. GECOM
does not change the relative position of General Assembly Program coding within the
Procedure Division. A given GECOM source program may contain any number of
ENTER sentences.

2. The AT option indicates execution of General Assembly Program instractions appearing
elsewhere in the Procedure Division. The General Assembly Program instructions must
not follow an ENTER sentence using the AT option. The GAP symbol must appear in
Columns 1 to 6 of a line of General Assembly Program coding under another ENTER
sentence.

When the AT option is used, an SPB (using index register 1) to the designated symbol
is generated. Index register-1 may be used as an exit parameter. The END instruction
should not appear after an ENTER sentence with the AT option.

3. If the ENTER sentence is referenced by a GO statement, the ENTEL sentence must be
named. When the GO verb is used to execute an ENTER sentence, @ BRU to the first
General Assembly Program instruction under the ENTER sentence is generated.

4. An ENTER sentence is executed in line if it is not logically skipped by a preceding
GECOM procedure sentence or ENTER sentence.

5. The source program name of the ENTER sentence, if present, is vonverted to a three-
character symbolic name. This name is assigned to the first General Assembly Program
instruction under the ENTER sentence. The first instruction may also have a Symbol,
and in this case an EQU is generated in order to make the assignment.

GE-200 SERIES FETERENGE AIAL

-100-

ENTER
(Cont.)

6. General Assembly Program instructions must be punched in the following card format
and may be written on the General Compiler Sentence Form:

Columns 1 to 6 are reserved for the Symbol.

Columns 8 to 10 are reserved for the GAP operation code.

Column 11 has a special purpose under ENTER (see below).

Columns 12 to 74 are reserved for the operand and index register designation.
Columns 75 to 80 are reserved for sequence numbers.

7. The Symbol is written using conventions described in the GE-200 Series Programming
Reference Manual, with the exception that it must not begin with a numeric (0 to 9) and
may be six characters or less but must not be three as this is reserved for GECOM
three-character symbolic names.

8. The OPERATION is written using conventions described in the GE-200 Series Program-
ming Reference Manual.

9. Column 11 of the instruction format denotes the type of operand which follows in Columns
12 to 74.

e A Pin Column 11 designates a GECOM sentence-name as an operand. The sentence-
name is written following the normal rules for GECOM sentence-names. It is
converted to a three- character symbolic name, and this name is used as the operand
in the object program symbolic coding.

e A D inColumn 11 denotes a GECOM data-name in Columns 12 to 74. The data-name
must be qualified if necessary and must appear in the GECOM Data Division. The
data-name is written following the normal rules for GECOM data-names. It is
converted to a three-character symbolic name, and this name is used as the
operand in the object program symbolic coding. No edit is performed on the oper-
ation code to insure proper manipulation or use of the data. The conventions

governiny storage of GECOM object program data are described in Chapter 9, Data
Manipuletion.

e An L in Colurnn 11 denotes a library subroutine name in Columns 12 to 19. All the
subroutines available from the GECOM library are described in the GECOM-II
OPERATIONS MANUAL. The unique name assigned to a particular library sub-
routine st be used when referring to that subroutine. No edit is performed on
the instru-tions following the L-type operand to insure a proper calling sequence
to the designited subroutine. The subroutine name is replaced with a relative
address to a transfer vector table. The subroutine name is included in a program
card prodiced by the compiler for object program loading, and is also included in
the list >f subroutines printed by the EDITOR. Comments may appear in Columns
32-74. Subroutine names may not be longer than 3 BCD characters in length.

e A blank o any other character in Column 11 denotes a General Assembly Program
operand in Columns 12 to 19. The operand is written using conventions described
in the GE- 200 Series Programming Reference Manual. It is transferred intact to
the object program symbolic coding. Comments may appear in Columns 32-74.

10. Index registers may be designated in the General Assembly Program instructions. For
P- and D-tvpe operands, the index register preceded by a blank or comma (,) must
follow the last character of the operand. For L-type and General Assembly Program
operands, the index register must be in Column 20. If no index register is specified,
Column 20 must be blank. The index register is transferred to the object program
symbolic coding with no edit.

REFERENCE MANUAL

-101-

ENTER
(Cont.)

11.

12.

13.

14.

15.

16.

117.

18.

19.

20.

21.

Instructions with P- or D-type operands must not contain comments.
P- and D-type operands do not terminate with a period (.).
P- and D-type operands must not be subscripted.

The last General Assembly Program instruction under an ENTER sentence must be an
END card. END must appear in Columns 8 to 10. No coding is produced for an END
instruction; therefore, all exits from the General Assembly Program coding must
precede the END instruction. A possible exit is to ""fall througl'" to the next ENTER
sentence or GECOM procedure sentence.

Symbols must be unique in all General Assembly Program coding present in a GECOM
source program.

A list and description of constants and work areas always prese1t in GECOM-produced
object programs is included in Appendix D to this manual. These constant and work
area names may be used in General Assembly Program instructions as operands.
Constants must not be altered, since GECOM-produced routines rely on their exact
content. Work areas may be used but only as temporary storazge. Upon exiting from
General Assembly Program coding to GECOM procedure sentences or library sub-
routines, the contents of work areas will undoubtedly be destroved.

Card read and punch areas are available to entered General Assembly Program coding
if these areas are not being used by the GECOM-produced coding;. The card areas used
by GECOM-produced coding are forty-one (41) words long. If API hardware is not
specified in the Environment Division, the card read areas start at locations 128, and
256 0. (The latter area is used only if reading is buffered.) If API hardware is not
specified in the Environment Division, the card punch areas start at locations 384, and
512 1. (The latter area is used only if punching is buffered.) [API hardware is
specified in the Environment Division, the card read areas start at 256,. and 384, and
the card punch areas at 5123, and 640 1.

Magnetic tape commands should not appear in General Assembly Program coding if the
tape controller is used in the coding produced from source language sentences. When a
select is given in the General Assembly Program coding, error conditions are reset.
Therefore, certain error conditions could be reset prior to detection by the compiler-
produced coding.

REM cards may be used as in General Assembly Program. The contents of REM cards
are not scanned. Any combination of input characters is permissible. The contents
will be printed on the Edited List.

General Assembly Program symbolic names may not be equated (EQU) to GECOM
source data names.

General Assembly Program symbolic names may be equated (EQU) to the GECOM
common constants but not to GECOM input/output symbolic names (see Appendix F).
If General Assembly Program symbolic names are equated to GECOM input/output
symbolic names, an EQU error message will be typed by the Assembler (General
Assembly Program) phase of the compiler.

GE-200 SERIES o

REFERENCE MANUAL

-102-

ENTER
(Cont.)

22. The following pseudo-instructions and mnemonic operations codes may not be used under

ENTER GAP:

EJT (Pseudo)
*LAC

*LCA

LST (Pseudo)
MAL (Pseudo)
NAM (Pseudo)
NLS (Pseudo)
PAL (Pseudo)

PLD (Pseudo)
RAW
RCM
RRD
SEQ (Pseudo)
WRD

Eject Printer Paper

Load A Register from C Register

Load C Register from A Register

List

Multiple Alphanumeric

Print Name or Title on Each Page

No List

Multiple Alphanumeric for Printer with
Print Line Indicator

Punch Loader Cards

Read After Write Check (DSU)

Read Cards Mixed

Read from Disc Storage Unit

Check Card Sequence Numbers

Write on Disc Storage Unit

*This instruction is an optional feature.

In addition, instructions for certain hardware, such as the DATANET and 300-1pm

printer may not be used.

Although the mnemonic codes listed above are not recognized by the compiler, the
programmer may utilize the listed functions through the pseudo- instruction OCT (octal).

GE-200 SER!

e

S

AN

GECOM - II

REFERENCE MANUAL

-103-

ENTER
(Cont.)

EXAMPLE 1:

GENERAL @D ELECTRIC
COMPUTER DEPARTMENT PHOEMIX. ARIZONA GENERAL COMPILER SENTENCE FORM
J— —— e
!PNO‘ER"'I!{I‘ 0 Tcouruter A e -
; : B
| seovence
bt e .
N LpaA |XxyYzw . o
- — e}
[sTaD|cALC] OF A ~FILE R
| . Lpa fNowr|D
s AND sTAD[LAND] OF B~FILE|
SUB ONE B
B ZE
BRUPIHERE
SAND?2 L DX ONE 1 N i
L DADIENTRJY I |
- — N S .
s R i
. - — — - - e |
. ;
B |
. - b
. .
. .
—_— PR -~ T — e — - - - - SENRUSEY S W S— |
. co tlo, EVERB . | ,
[SSPRUR I ISR S . —a- T - . . ————
S : " S S S —— R ——— VIS U - -
B ENTER GAP AT s|laND2 . e i
——— I W 1 t— i f M I]
Lo opebs bl] o] ool Lol o s]l vl] o] e oo s e o et oo ool Lol bk seon L o it el o] eshor oo L s e osLes ool a2 sl

EXAMPLE 2:

GENERAL & ELECTRIC
CONPUTES ©F“ARTAENT. PHOENIX. ARIZONA GENERAL COMPILER SENTENCE FORM
TPﬁn“ R o
L .
PROGRAvuL € conpurer
[eaence B
wnscn
."EE";’,‘E:.'?" P T ey AT |
1 R
T 1 BT S B
MV EDINO . ENTER GAP.
START INX 1 1
| Lpa |1 B
STO EX I
L DX ZER -
L DA DID R‘A
STA S AV [|
i INX 1
‘ BxLl |5 e I
I LB RU [*- JRNER SR U — R - — —
DL DDIPA L U - ——
DST S A
fb L fRST . SR RS S e e
EXIT BRU * .
isavpNo| [Bss |s
AvVDNoOlIBSs |5 ; R - b
EALV_PNO B S S 2 T , . | L —
E N D .
e MU SRR SR PR . " SR PR ———
— : I —— i - L -_—— -
— . R — SV T E—— T DU —
E N‘TIE R GAP A I S{T ART N N
1 V- f f ' =t = T i ‘
DLl T I IRt LI T ool el Lsadss] s srt st 30] [P R |] o]

GE-200 SERIES T

-104-

EXCEANGE

FUNCTION

The EXCHANGE verb transposes the contents of two fields.

SENTENCE FORMAT

field-name-1 field-name-2
EXCHANGE
array-name-1 array-name-2

CONVENTIONS
1. The data images of field-name-1 and field-name-2 must be identical.
2. Field-name-1 and/or field-name-2 may be subscripted.
3. Two arrays may be exchanged by using the array field names without subscripts. The
arrays must have the same size, number of fields, and the corresponding fields must

have identical data images.

4. Element names are not permitted in an EXCHANGE statement.

EXAMPLES
1. EXCHANGE VELOCITY (I), VELOCITY (J).
2. EXCHANGE CODE-~A, CODE-B.
3. EXCHANGE OLD~TAX, NEW~TAX.

4. EXCHANGE ARRAY~A, ARRAY~B.

BE-200 SERIES T

REFERENCE MANUAL
-105-

GO

FUNCTION

The GO verb enables the program to depart from the normal sequence of procedures.

SENTENCE FORMAT

Option 1:
GO TO sentence-name]
Option 2:
GO TO sentence-name-1, sentence-name-2, [sentence—name-3 c. sontence-name-n]
field-name

DEPENDING ON
RECORD OF file-name

CONVENTIONS

1. In Option 1, if a GO sentence is to be altered, it may be named. The name of the GO
sentence is referred to by the ALTER verb in order to modify the sequence of execution
of the program. If the destination sentence name is omitted, the compiler will insert a
halt loop in the object program. Therefore, a GO sentence without a destination should
be referenced by an ALTER sentence before the first execution of such a GO sentence.
After a GO sentence has been altered, it will continue to go to the changed destination
until it is altered again.

2. In Option 2, the field name must have a positive integral value. The branch will be the
1st, 2nd, ..., 30th sentence name as the value of the field is 1, 2. ..., 30. If the value
is zero, or exceeds 30 (that is, the number of sentences named) the next sentence in
normal sequence will be executed. Field-name may be subscripted.

3. In Option 2, using RECORD OF file-name, control is transferred 1o sentence-name-1 if
the current record of the specified file is the type described in the first record descrip-
tion after the FD entry for that file; control is transferred to sentence-name-2 if the

current record is the type described in the second record description, etc. The type
record is determined by testing the control-key.

EXAMPLES
1. SENT~18. GO.

(Note if this sentence is not referenced by the ALTER verb before it is executed, the
object program will halt in a loop.)

2. GO TO SENTENCE~T.

3. GO TO SENT~B, SENT~77, SENT~A, SENT~64 DEPENDING ON CODE.

GE-200 SERIES FEreREE AL

-106-

(Cont.)

4. GO TO SENT--1, SENT~2, SENT~3, DEPENDING ON RECORD OF TRANS~FILE.

NOTE: If the records in TRANS~FILE in the preceding example are described in the
following order:

FD TRANS~FILE.
R RECORD~0.
R RECORD~1.
R RECORD~2.

Control will be transferred as indicated below:

CURRENT RECORD CONTROL TRANSFERRED TO
RECORD - 0 SENT-1
RECORD - 1 SENT-2
RECORD - 2 SENT-3

@ E ° 2@@ gg E’B ﬂ [E S REFEREEEEOEAI:IUii

-107-

IF

FUNCTION

The IF verb transfers control to the specified sentence if the stated condition is satisfied (true)
or to the next sentence if the stated condition is not satisfied (false).

SENTENCE FORMAT

Option 1:

record-name

conditional-name

[NOT| { END OF FILE OF file-name-1
TOP OF PAGE[OF]file-name-2
true~false date-name

GO TO sentence-name-1.

Option 2 (relational expressions):

\
(tield-name-1 Y (1s [NOT GREATER THAN
element-name- 1 1s [NOT] LESS THAN “field-name-2
IF ﬁ constant-1 > ﬁ Is [HQﬂ EQUAL TO > element-name-2
arithmetic-expression-1 IS UNEQUAL TO constant-2
EQUALS arithmetic-expression-2
EXCEEDS -
. Joo(FaxRas J

GO TO sentence-name-1.

-

(" [NOT GREATER THAN)

NQ’IE' LESS THAN field-name-3
‘ element-name-3
’ I—< N—’I:] EQUAL TO > constant-3
NgAEA TO arithmetic-expression-3
EXCEEDS
| /
GO TO sentence-name-2 [-, IF..] .

Option 3 (logical expressions):

IF conditional-name-1 AND conditional-name- 2
- relational-expression-1 relational-expression-2

GE-200 SERIES

REFERENCE MANUAL

-108-

IF
(Cont.)

AND conditional-name-3 . AND conditional-name-20
relational-expression-3 relational-expression-20

, GO TO senzence-name-1.

Option 4 (Tests):

. POSITIVE
IF field-name- 1 . 1S [NOT (NEGATIVE
- arithmetic-expression-1 ZERO

,GO TO sentence-name-1.

CONVENTIONS

1. The abbreviations for relations may be used instead of the English words shown in the
above formats,

2. A quantity is positive only if it is greater than zero. A quantity is negative only if it is
less than zero. The value zero is considered neither positive nor negative.

3. Fields muay be subscripted.

4. Alphanumeric [ields that are being compared must have the same data description.

5. In Option 1, tie named record must be an input record with a control key. It must be
qualified by a file-name unless the record-name is unique. If the current record is of

the type corresponding to the named record (as determined by testing the control key),
control will be transferred to sentence-name-1.

EXAMPLES
Option |
1. IF MALE, GO TO 789.
2. IF NOT END OF FILE OF MASTER~FILE, GO TO SENTENCE~4.
3. IF TOP OF PAGE OF STOCK~FILE, GO TO PRINT~HEAD.
4. IF SHIP~RECORD OF TRANS~FILE, GO TO SHIPMENT.

5. IF FLAG-~1 GO TO SENTENCE~22.

@ E ° 2 @@ SE EB H Eg REFEREIC\;IEEO:AI:IU:i

-109-

IF
(Cont.)

Option 2

1.
2.

IF LINE~COUNT EQ 58 GO TO ADVANCE~PAGE.

IF PART~NUMBER OF MSTR~INVNTRY IS LESS THAN PART~-NUMBER OF
TRANSACTIONS GO TO WRITE~MASTER, IF EQUAL GO TO UPDAT~MASTER, IF
GREATER GO TO NEW~RECORD.

IF WEEKLY~FICA OF MASTR~PAYROL + ANNUAI~FICA OF MASTR~PAYROL
EXCEEDS 144.00 GO TO COMP~WK~FICA.

IF TRANSACT~COD EQUALS 1 GO TC SHIPMENT, EQUALS 2 GO TO RECEIPT,
EQUALS 3 GO TO CHANGE, EQUALS 4 GO TO ADDITION, EQUALS 5 GO TO DELETE.

Option 3

1.

2.

IF SHIPMENT AND QTY~ON~HAND OF MSTR~INVNTRY IS LESS THAN QTY~SOLD
OF TRANSACTIONS, GO TO BACK~ORDER.

IfA+B-CEQZ*YANDPGR QGO TO XYZ.

Option 4.

1.

2.

IF ADJUSTED~PAY OF MASTR~PAYROL IS NEGATIVE, GO TO ADJUSTMENT.

IF QTY~ON~HAND OF MSTR~INVNTRY IS ZERO GO TO REORDER.

GE-200 SERIES FEFERENCE HATAL

-110-

LOAD

FUNCTION

The LOAD verb brings a designated overlay segment into the central processor memory for
subsequent execution.

SENTENCE FORMAT

LOAD segment-name SEGMENT.

CONVENTIONS

1.

The overlay segment to be loaded must be in absolute form on magnetic tape or disc
storage at object time. The input hardware name assigned in the Environment Division
for the specified segment must be the same as that assigned for the main segment.
(See the RAB function of BRIDGE II, CD225J1.001, and BRAT, CD225E2.005R.)

LOAD senter.ces may be given only in the main segment.

The overlay segment-name given in the LOAD sentence must be identical to the name
given when the segment is converted from relocatable to absolute by RAB.

Communications between a loaded segment and the main segment and other loaded
segments are always accomplished by PERFORM sentences and by data in Common or
*Common Storage. (See Overlay Segmentation and the PERFORM verb.)

GE-200 SERIES EFERENCE MAVTAL

-111-

MOVE

FUNCTION

The MOVE verb transfers a constant or the contents of an element, field, group, or record to
one or more other elements, fields, groups, or records.

SENTENCE FORMAT

MOVE

I
—J

constant-1 element-name-2 element-name-3
element-name-1 field-name-2 field-name-3
field-name-1 TO group-name-2 group-name-3
group-name-1 record-name-2 record-name-3
record-name-1 array-name-2 arrayv-iame-3

array-name-1

r
L

CONVENTIONS

1.

A numeric constant or numeric field being moved is aligned in accordance with the
decimal point of the destination field with truncation or zero fill cn either end as required.
(See Example 1.)

A nonnumeric element or nonnumeric field being moved is left justified with space fill
on the right if the destination element or field is larger than the source data. (See
Example 2.)

A nonnumeric element or nonnumeric field, or a literal being moved will be left justified
and truncated on the right if the destination element or field is smaller than the source
data. The compiler gives a warning unless the source is a literal. (See Example 3.)

A numeric constant or numeric field being moved to a nonnumeric element or nonnumeric
field must have the same number of characters in its data image is the destination
element or field. (See Example 4.)

A nonnumeric element or nonnumeric field or a literal being movad to a numerid field
must have the same number of characters in its data image as the destination field.
(See Example 5.)

A literal consisting of a single character being moved to a nonnumeric element or non-
numeric field fills the destination with the character specified. (See Example 6.)

A literal consisting of more than one character being moved to @ wnnumeric element or
nonnumeric field is placed repeatedly in the destination position (starting at the leftmost
character position). If the literal does not fit the destinatior position an integral number
of times, it is truncated on the right for the last placement. (Sce Example 7.)

A figurative constant except "SPACE (S)" being moved to a num: 11 field 1ills the
destination positions described by nines (9's) in the data ima.je. 'Vhen the figurative
constant "SPACES(S)" is moved to a numeric field, the destinat:on pusitions described
by nines (9's) in the data image are filled with zeros. Spaces wuld violate the data
description of numerics. (See Example 8.)

A figurative constant being moved to a nonnumeric element or nornumeric field fills
each position of the destination. (See Example 9.)

GE-200 SERIES FEFTRECE MAVUAT

-112-

10.

11.

12.

13.

14.

15.

16.

MOVE
(Cont.)

If a constant is moved to a record or group, the receiving area cannot contain more
than fifty (50) fields.

Fields may be subscripted.

Movement of numerics, literals, figurative constants, or fields to groups or records is

treated as separate MOVE sentences--one for each field present in the group or record.
Therefore, the group or record fields must satisfy the above rules for moving numerics,
literals, figurative constants, or fields to fields.

The compiler provides for the movement of only one record or group of fields to other
records or groups of fields of the same size and format. Any other movement can be
accomplished by moving elements and/or fields, and/or the implied movement under
the WRITE verb. Note that it is unnecessary to specify data movement to output.

A numeric field may be moved to a Working Storage or input field with editing. If an
edited field is moved to a numeric field, all editing characters are ignored except that
the sign and decimal scale of the source field influence the conversion process. If a
field containing editing characters is moved to a field containing editing characters, it
is treated as a BCD alphanumeric move.

Arrays may be referenced by using the array field name without a subscript. In this
case, the arrav is treated as a string of fields and may be used as a source and/or
destination. If the source is an array, the destination must be an array. The compiler
provides for moving a literal, a numeric, a figurative constant, or a field to an array.
The array is filled under the conventions governing literals, numerics, figurative
constants, or field to field movement. In moving an array to an array, the source
array is moved to the destination array under the conventions governing field-to-field
movement.

See Chapter 9 - Data Manipulation for a detailed discussion of movement of repeated
groups.

EXAMPLES

The following fields are assumed to have the indicated images in the examples below:

FIELD NAME DATA IMAGE
TOTAL 999999V
FACTOR 9999V99
PART~NUMBER A(10)
SAVE~AREA A(6)
MULTIPLIER 999V9
PT~NUMBER A(10)

1. MOVE 1000 TO FACTOR.
RESULTS: 1000V00

MOVE 300 TO FACTOR.
RESULTS: 0300V00

MOVE 1.235 TO FACTOR.
RESULTS: 0001Vv23

BE-200 SERIES s

REFERENCE MANUAL

-113-

MOVE
(Cont.)

GE-200 SERIES

MOVE MULTIPLIER TO FACTOR.
RESULTS: 024V5 0024V50

MOVE FACTOR TO MULTIPLIER.
RESULTS: 1234V56 234V5

MOVE PT~NUMBER TO PART~NUMBER.
RESULTS: AA1673BBCC AA1673BBCC

MOVE SAVE~AREA TO PT~NUMBER.
RESULTS: AA1673 AA1673c02.

MOVE PART~NUMBER TO SAVE~AREA.
RESULTS: AA1673BBCC AA16T3

MOVE "12345678" TO SAVE~AREA.
RESULTS: 123456

MOVE 123456 TO SAVE~AREA
RESULTS: 123456

MOVE TOTAL TO SAVE~AREA.
RESULTS: 007340V 007340

MOVE SAVE~AREA TO TOTAL.
RESULTS: 653000 653000V

MOVE '1235" TO MULTIPLIER.
RESULTS: 123v5

MOVE "Z" TO PART~NUMBER.
RESULTS: 2277727277277

MOVE "XY" TO PART~NUMBER.
RESULTS: XYXYXYXYXY

MOVE "XYZ" TO PART~NUMBER.
RESULTS: XYZXYZXYZX

MOVE ZEROS TO MULTIPLIER.
RESULTS: 00ovo

MOVE SPACES TO PART~-NUMBER.
RESULTS: JAYAYAYAVAYAVAYARAYA

GECOM - II

REFERENCE MANUAL

-114-

10.

11.

12.

13.

14.

15.

16.

MOVE
(Cont.)

If a constant is moved to a record or group, the receiving area cannot contain more
than fifty (50) fields.

Fields may be subscripted.

Movement of humerics, literals, figurative constants, or fields to groups or records is
treated as separate MOVE sentences--one for each field present in the group or record.
Therefore, the group or record fields must satisfy the above rules for moving numerics,
literals, figurative constants, or fields to fields.

The compiler provides for the movement of only one record or group of fields to other
records or groups of fields of the same size and format. Any other movement can be
accomplished by moving elements and/or fields, and/or the implied movement under
the WRITE verb. Note that it is unnecessary to specify data movement to output.

A numeric field may be moved to a Working Storage or input field with editing. If an
edited field is moved to a numeric field, all editing characters are ignored except that
the sign and decimal scale of the source field influence the conversion process. If a
field containing editing characters is moved to a field containing editing characters, it
is treated as a BCD alphanumeric move.

Arrays may be referenced by using the array field name without a subscript. In this
case, the array is treated as a string of fields and may be used as a source and/or
destination. If the source is an array, the destination must be an array. The compiler
provides for moving a literal, a numeric, a figurative constant, or a field to an array.
The array is filled under the conventions governing literals, numerics, figurative
constants, or field to field movement. In moving an array to an array, the source
array is moved to the destination array under the conventions governing field-to-field
movement.

See Chapter 9 - Data Manipulation for a detailed discussion of movement of repeated
groups.

EXAMPLES

The following fields are assumed to have the indicated images in the examples below:

GE-200 SERL

FIELD NAME DATA IMAGE
TOTAL 999999V
FACTOR 9999V99
PART~NUMBER A(10)
SAVE~AREA A(6)
MULTIPLIER 999V9
PT~NUMBER A(10)

1. MOVE 1000 TO FACTOR.
RESULTS: 1000VO00

MOVE 300 TO FACTOR.
RESULTS: 0300V00

MOVE 1.235 TO FACTOR.
RESULTS: 0001Vv23

i

GECOM - II
REFERENCE MANUAL

Uvuu
(G2

~

-113-

MOVE
(Cont.)

GE-200 SERIES

MOVE MULTIPLIER TO FACTOR.
RESULTS: 024V5 0024V50

MOVE FACTOR TO MULTIPLIER.
RESULTS: 1234V56 234V5

MOVE PT~NUMBER TO PART~NUMBER.
RESULTS: AA1673BBCC AA1673BBCC

MOVE SAVE~AREA TO PT~-NUMBER.
RESULTS: AA1673 AA1673c847

MOVE PART~NUMBER TO SAVE~AREA.
RESULTS: AA1673BBCC AA1673

MOVE 12345678 TO SAVE~AREA.
RESULTS: 123456

MOVE 123456 TO SAVE~AREA.
RESULTS: 123456

MOVE TOTAL TO SAVE~AREA,
RESULTS: 007340V 007340

MOVE SAVE~AREA TO TOTAL.
RESULTS: 653000 653000V

MOVE "1235" TO MULTIPLIER.
RESULTS: 123V5

MOVE "Z" TO PART~NUMBER.
RESULTS: 2227277277727

MOVE "XY'" TO PART~-NUMBER.
RESULTS: XYXYXYXYXY

MOVE "XYZ" TO PART~NUMBER.
RESULTS: XYZXYZXYZX

MOVE ZEROS TO MULTIPLIER.
RESULTS: 000vo

MOVE SPACES TO PART~NUMBER.
RESULTS: ARAAANBL AL

GECOM - II

-114-

REFERENCE MANUAL

MULTIPLY

FUNCTION

The MULTIPLY verb multiplies two quantities and stores the result in the last-named field or
the specified field.

SENTENCE FORMAT

MULTIPLY {numeric-l } BY {numeric-z }
1

field-name- field-name-2
[GIVING field-name-3:| [ROUNDED]

[IF SIZE ERROR GO TO sentence-name-l] .

CONVENTIONS
1. If the GIVING option is not present, the last-named field receives the result.

2. Decimal points do not appear in stored fields, and are used only to properly align data
before execution of an arithmetic operation.

3. Only a numeric may be used. If a sign (+ or -) is included, it must appear as the most
significant character of the numeric.

4. The ROUNDED option may be used to round off the result before it is stored in the
receiving field. If the receiving field is in floating point mode or if the operands are all
integers, then rounding is ignored.

5. The SIZE ERROR option may be used to truncate the most significant digits of a number.

6. The result of multiplying two numbers, each 11 digits long, may not result in a number
22 digits long. Only 11 digits are significant and only 11 digits may be saved.

EXAMPLES
1. MULTIPLY (.18 BY PAY GIVING TAX, IF SIZE ERROR GO TO ERROR~SENT.
2. MULTIPLY A OF FILE~1 BY B OF FILE~2 GIVING C OF FILE~3.

3. MULTIPLY 2.1416 BY R1. (Note the contents of R1 is multiplied by 3.1416 and the
result is stored in R1.)

BE-200 SERIES EFERENCE MANAL

-115-

NOTE

FUNCTION

The NOTE verb allows the programmer to write explanatory material in his program which will
be produced on the listing but not compiled.

SENTENCE FORMAT

NOTE ...

CONVENTIONS

Any sentence may follow the word NOTE if the rules for sentence structure are followed.

2. The NOTE sentence must not be named.
3. The effect of a NOTE sentence can also be achieved by punching the letter C in Column
7 of a Procedure Division card. The contents of such a card will be printed in the
Edited List, but no corresponding coding is produced. This optior. may not be used
between a card on which a sentence begins and a continuation card on which it ends.
Furthermore, it may not be used on cards within the bounds of ENTER GAP ... END
statements. However, it may be used anywhere in a TABSOL table.
EXAMPLES
1. NOTE THIS SENTENCE IS NOT NAMED BECAUSE REFERENCE IS NOT MADE TO IT.
2. NOTE THIS SENTENCE IS USED FOR CLARITY.
3. NOTE THAT THIS SENTENCE DOES NOT STATE COMPILER OR OBJECT PROGRAM
ACTION.
NG 1
(L=t

v © @ N e GECOM - TII
OSINVES) EFFiRENCE MANUAL

-116-

OPEN

FUNCTION

The OPEN verb initiates the processing of both input and output files and performs checking or
writing of labels and other input/output functions.

SENTENCE FORMAT

Option 1:
OPEN INPUT file-name-1 EIVITH NO REWIND]
I: file-name-2 [WITH NO REWIND] ..]
OUTPUT file-name-3 [WITH NO REWIND]
E file-name-4 [WITH& REWIND] ..] .
Option 2:
INPUT
OPEN file-name-1 [WITH NO REWIND]
OUTPUT :
[, file-rame-2 [WITH NO REWIND] .] :
Option 3:

INPUT
OPEN ALL FILES [WITH NO REWIND I
OUTPUT -

CONVENTIONS

1. All input and output files except JOURNAL~TAPE files (See Environment Division,
DSU~CONTROL sentence) must be referred to in an OPEN sentence which should be
executed before the first READ or WRITE sentence of a file. If a JOURNAL~TAPE
file is not opened, no label is written even though a label description may be given
for the JOURNAL~TAPE file in the Data Division. If not opened, the JOURNAL~
TAPE file remains in position; it is not rewound before recording is done.

2. A second OPEN sentence of a file cannot be executed before the execution of a CLOSE
sentence of the file.

@IE"Q@@ SE@UES GECOM - IT

REFERENCE MANUAL

-117-

OPEN
(Cont.)

3. The OPEN sentence does not obtain or release the first data record. A READ or
WRITE sentence must be executed to obtain or release the first data record. For
DSU files, a READY sentence must be executed prior toc the READ or WRITE
sentences to obtain or release the first data record.

4. When checking or writing the first label, the user's beginning lahel procedure will
be executed if specified by the USE clause. (See Chapter 8, Envirsnment Division.)

5. If an input file has been designated as optional in the Environment Division, the
object program will cause an interrogation for the presence or absence of this file.
If the reply to the interrogation is negative (that is, the file is nct present) the file
will not be opened. A printout indicating the absence of the file nccurs, and an end-
of-file signal is sent to the input/output control system of the object program. Thus,
when the first READ sentence for this file is met, the end-of-file path for this
sentence will be taken. Files assigned to DSU's may not be designated as optional.

6. OPEN rewinds a tape file unless the NO REWIND option is stated.

7. Only one file of a multiple file tape may be in OPEN status at any given time. The
ALL option should not be used if a multiple file tape exists in the program.

8. More than one DSU file assigned to the same area (See Environment Division,
I~O~CONTROL sentence) may be open at the same time. It is the programmer's
responsibility to know which file occupies the area at any given time. A DSU file
described as buffered cannot share the same area with an unbuffered file if they are
open at the same time. When DSU files are sharing the same area and are open at
the same time, they must be assigned to the same plug.

9. The OPEN sentence does not advance a printer file to top-of-page.

EXAMPLES

1. OPEN INPUT MASTR~PAYROL WITH NO REWIND, EMP~FILE, TAX~FILE OUTPUT
UP~DT~PAYROL, NEW~TAX~FILE.

2. OPEN INPUT FILE~A, FILE~B, FILE~C OUTPUT FILE~1, FILE~2, FILE~3.
3. OPEN ALL INPUT FILES.

4. OPEN ALL FILES.

GE-200 SERIES RN ML

-118-

PERFORM

FUNCTION

The PERFORM verb executes a section or a segment or a set of procedures within a segment.
Upon completion of the specified procedures, control reverts to the sentence following the
PERFORM sentence.

SENTENCE FORMAT

Option 1:

PERFORM section-name SECTION

constant-1 constant-2

USING I: .]
field-name-1; field-name-2;
[GIV NG field-name-1,, field-name-2,,
Option 2:

PERFORM {P"“Ced“re‘“ame} SEGMENT.
==————— | seument-name —_—

CONVENTIONS
1. When the USING-GIVING option is used, field-name-1,, field-name-2:, ... and field-
name-1,, field-name-2,, ... are considered to be assignment variables. Fields may

be subscripted.

To have meaning, the section head must have a corresponding set of defined input and
output variables. The assignment takes place in accordance with the MOVE specifications.

The section -0 be executed must appear before the PERFORM. . . USING. . .GIVING
sentence in the Procedure Division.

2. In Option 2, the USING and GIVING statements may not be used. The segment-name is
the PROGRAM-ID of the segment to be executed. Procedure-name is the name of a set
of procedures within a segment to be performed from outside the segment.

3. Anoverlay seument must be loaded before any portion of it can be performed.

4. See Sections, Segments, and Overlay Segmentation, starting on Page 79 of this manual.

@E 2@@ g[ﬁ HE§ GECOM - IT

REFERENCE MANUAL

-119-

READ

FUNCTION

The READ verb has the following options:
Option 1 allows a limited amount of input data to be entered from the contrcl console switches.

Option 2 makes available for processing the next logical record or group f{rom an input file and
transfers control to the specified sentence when the end-of-file is reached.

Option 3 advances an input tape file, (or copies records or groups from an input tape file onto an
output tape file), until the specified condition is satisfied. Then the current logical input record
or group is made available for processing and control is transferred to the next sentence. In
addition, it transfers control to the specified sentence when the end of the input tape file is
reached without satisfaction of the specified condition.

Option 4 makes available for processing the next logical record or group from a DSU input buffer
and transfers control to the specified sentence when the buffer is empty.

Option 5 scans a buffer of blocked DSU input records until the specified condition is satisfied.
Then the current logical input record or group is made available for processing and control is
transferred to the next sentence; steps (COPY) output records as input records are being passed
over when blocked DSU input and output files are sharing the same area; transfers control to the
specified sentence when the end of the buffer is reached without satisfaction of the specified
condition.

SENTENCE FORMAT

Option 1:
READ field-name-1 l:, field-name-2, ..., field-name- 19]

FROM CONTROL SWITCHES.

Option 2:
RECORD
READ file-name [, IF END OF FILE GO TC sentence-name—l]
GROUP

GE-200 SERIES CEFERERCE WAL

-120-

READ

(Cont.)
Option 3:
READ file-name-1 [COPYING ON file- name-2:|
(1s [NOT| GREATER THAN)
15 [NOT| LESS THAN
field- name-1
1S NOTl EQUAL TO
UNTIL element-name-1 ﬁ [
constant-1 IS UNEQUAL TO
EQUALS
EXCEEDS
. J
field-name-2
element-name-2 [, IF END OF FILE GO TO sentence-name- 1] .
constant-1
Option 4:
RECORD
READ file-name-1 [, IF END OF BLOCK g)_ TO sentence-name- 1] .
GROUP
Option 5:

field-name-1
READ file-name-1 [COPYING ON file-name- 2] UNTIL element-name-1
constant-1

(15 [NOT| GREATER THAN)
IS l-NOT] LESS THAN
1S E\Iorﬂ EQUAL TO field-name-2

element-name-2 [:, IF END OF BLOCK GO TO sentence-
IS UNEQUAL TO constant-1 name-1
EQUALS

EXCEEDS
- J

NG

BE-200 SER!

E"\S GECOM - II
=) REFERENCE MANUAL

N

-121-

READ
(Cont.)

CONVENTIONS

1.

An OPEN sentence must be executed before the first READ sentence is given for the
particular file. A file must not be reopened unless it has previcusly been closed.

The filling of the input area, tape movement, flow of cards, etc.. is controlled entirely
by routines generated by the compiler.

After recognition of the end-of-reel of a tape file, the READ sentence performs the
following operations:

e The standard ending-reel label procedure and the user's ending-reel label
procedure (if specified by the USE clause in the INPUT-OUTPUT CONTROL
sentence).

e A tape unit swap if more than one tape unit is assigned to the file. If one unit is
assigned to a multiple reel file, the object program will type »ut a request to
mount the next reel.

e The standard beginning reel label procedure and the user's beginning reel label
procedure (if specified by the USE clause in the INPUT-OUTFUT CONTROL
sentence).

e Makes the next logical record available.

Any number of READ sentences may be stated for the same file¢. At least one END
clause must be specified for each input file. If more than one END clause is given for
a particular file, it is not required that each END clause go to the same sentence. If
the END clauses for a particular file go to different sentences and the END clause is not
stated in every READ sentence for that file, the compiler will g:ve a warning. If all
END clauses for a particular file go tc the same sentence, the END clause need be
stated only once, preferably in the first READ sentence execute: fcr that file.

If an optional file is not present in a given running of the obiect nrograni. the END
clause will be executed on the first READ sentence.

When a file consists of more than one type of data record or srcw {if suct zroups are
referenced by READ sentences), each type may be of & different =iz¢ but ~verv record
or group of the same type must be of the same size, When a RFEAD senterce is
executed, the next logical vecord or group is made available without rewvir Lo its type.
Only the data in the current record or g roup is accessible.

The programmer should employ an 1T centence to determine the + -0 ol & record or
wicup after it has been read. (%2 Tontrol~Key in Chapter 3 Do Unvisicr)

o wn o, fleld-name- 1 through field nome-18 woest be tro S CnUst b
oo seripea o the Data Davision Fioid-name-1 corvespones o o o febdenanng - 2
(o switch 2, flebd-name-3 to svitel o0 eter The dews: posite s vosente the true - tare
(0N, and the novrmal positicn represents the fulse stute (OF™ 70 e that s iteh § on
the Control Console is retained for use in conventicns’ error v colare Lt is
desired to read only switch N, it is necessary to read all Iowo de o v irches preceding
switch N: that is, READ field-name-1, field-name-2. ... t«¢ vie- N FROM

CONTROL SWITCHES.

BE-200 SERIES

REFERENCE MANUAL

-122-

10.

L1,

12.

16.

17.

READ
(Cont.)

When Option 1 of the READ verb is used, it should be preceded by a WRITE (Option 1)
sentence in which a literal is typed out. The user must provide the operator with
instructions for switch settings when the appropriate literal is typed out. When a READ
verb, Option 1. is executed, the object program enters a "read control switch loop" to
allow the operator to set the appropriate switches as explained in the operating
structions mentioned above for the previously typed literal. Toggling switch zero
then causes the switches to be read and processing to resume at the next sentence.

If switch 19 is used under Option 1, all switches (1-19) must be described in the Data
Division. If ary other switch is used, all switches through the switch used must be
described.

in Option 3. 1o abbreviations for relations may be used instead of the English words
shown i the crntence format. For faster object programs, Option 3 is recommended
where the trequency of satisfuction of the specified condition is low.

W Option G, eld-name- 2, element-name-2, or constant-1 must be in the same mode

B oo o BU G and have the same size as field-name-1, element-name-1, or constant-1.

i fit ne T ocontains morve than one type of record, then field-name-1 or element-

st Doweasl o dn the some position relative to the beginning of each record. The
i'rocodurs Doowion may not contain more than four READ UNTIL sentences per file.

sty that oo e constant may be used inoun UNTIL clause. One of the fields or
fercents e d must be contained ia the [ile read. DBoth fields or elements named

should vot be oy the file read,

)

Options 3 and o may be used with multirecord files.
Options b oond & may be used for DU fields only.

Conventions 5. 0, 10, andl 11 above apply to DSU tiles as well as other files. Conventions
I through 50 7 and 3 above do not apply te DSU files.

For wonsequential DSU files, a READY verb must e given to obtain a physical record.
READ “erbs are used to make available for processing the next logical record or group

witlhin a phyeical record.

in Options 4 aud 8, the END OF BLOCK clause may be specified only for DSU files
desinated as blocked. The normal end of block sentinel (all 1 bits in the first word
{ollowiny the last valid data word) for partial blocks is used. The END OF BLOCK
opticn stould be used when the number of records in a block are unknown and the
programmer needs an indication to issue another READY sentence for the file.

In Optwn 5, the END OF BLOCK clause is required for DSU files not described by the
sequentiat (louse in the Environment Division. If the relation is not satisfied before the
end of block s reached, transfer is made to sentence~name -1.

In Options 4 aud 8, when the END OF BILOCK clause is used and different sentence
names are used in the END OF BLOCK clauses for the same DSU file, every READ (or
READ. .. UNTIL) sentence for that file must have an END OF BLOCK clause.

J GECOM - II
REFERENCE MANUAL

-123-

RI'AD
(Cont.)

I Optior 3. when blocked DSU input and output files are she it cane nen, the
COPYING option must be exercised to step the catput recorc o 1 igput 1 covde are
Leing passed over. A subsequent write of the output record t g lite the oy responding
iniput record that satisfied the READ. .. UNTIL =entence .

19, Use of Option 5 for DSU files described as sequential in the Bnvitcoament Division causes
records to be interrogated until the relation specified is satisficdi. Additionnl record
blocks are brought into memory from the DSU as required: aad i :ld mentioned in the
USING clause of the READY sentence for the file is updated. Scc¢ READY sentence,
Convention 7.

The COPYING option may not be specified for sequential DSU fites.

EXAMPLES

Option 1:

1. READ VALUE~1, VALUE~2 FROM CONTROL SWITCHES.

Option 2:
1. READ TIME~CARD RECORD.

2. READ MASTR~PAYROL, IF END GO TO FINAL~STOP.

Option 3:
1. READ IN-MASTER COPYING ON OUT-~MASTER UNTIL MASTER -STOCK EQUALS
TRAN--STOCK, IF END OF FILE GO TO CLOSEOUT.
Option 4:

1. READ MASTER RECORD, IF END OF BLOCK GO TO GET~NEXT.

Option 8:

1. Assume INFILE and OUTFILE are blocked and share the sam~ buffer.
READY INFILE FOR READING.
READY OUTFILE.
READY INFILE COPYING ON OUTFILE UNTIL IN~STOQOCK THQUALS TRAN STOCK
IF END OF BLOCK GO TO TRAN ERROR.

Procedures to update INFILE RECORD-
WRITE AND RELEASE OUTFILE REC.

”3(53 N . eBcoM - TII
(S RI.FERENCE MANUAL

e
—=
(PR
[

-124-

READY

FUNCTION

The READY verb initiates or tables a seek on a disc storage unit in preparation for a physical
read or write.

SENTENCE FORMAT

INPUT READING
READY filername~1 FOR
OUTPUT WRITING

USING field~name~1 FOR ADDRESSING

CONVENTIONS

1.

The OUTEUT option must be used when file~name~1 is both an input and an
output file name.

When the READING option is used, physical data movements to the input buffer begins
immediately after the seek is completed. The next READ request for file~name~1
encountered in the object program is considered as a demand read, that is, processing
is delayed until the data is in memory. No data is available to the program until the
demand READ sentence is given.

If the READING option is not specified for an input file, the seek is performed, but no
data enters rmemory until a READ sentence is issued for the file. Thus the READ entry
is a demand read: processing is delayed until the data is in memory. The programmer
must ensure that no demand read or no RELEASE sentence for the disc storage unit is
eiven for any other file until the demand read for file~name~1 is given.

When the WRITING option is used on nonsequential files, the seek is initiated, but no
recording is done until a RELEASE sentence is given for file~name~1. The programmer
must insure that no demand read or no RELEASE sentence (for the disc storage unit
involved) is given for any other file before the RELEASE sentence is given for file~
name~1. On output files described as sequential, the seek is always issued just before
a buffer is written onto the DSU. The optional word WRITING is ignored.

If the WRITING option is not specified for a nonsequential output file, the seek is not
initiated until 2 RELEASE or WRITE/RELEASE sentence is given for the file. Recording
then starts immediately after the seek is completed.

A USING claise must be specified in at least one READY sentence for each file assigned
to disc storage. If different field names are employed in USING clauses for the same
file, every READY sentence for that file must have a USING clause. The contents of the

USING field at object time must contain the absolute DSU address desired. The USING
field~name clause may be subscripted.

@EDZ@@ @ER;BE@ GECOM - II

REFERENCE MANUAL

-125-

READY

(Cont.)

7. Files described as sequential in the Environment Division must use the READY sentence
to initialize or origin the seek address. The DSU address is increased by the number of
frames in the record block to develop the next DSU address to be used. Each time a new
seek address is developed, the new address replaces the previous address contained in
the field named in the USING clause. If an illegal address is developed (frames 96-127),
a decimal 32 is added to the address to make it legal. No further test of the developed
address is made.

READY sentences may be issued to establish new origins for sequential files, but the
file must first be closed and then re-opened before issuing the READY sentence.

8. Every READY sentence for a file~name must be followed by a READ sentence for the file
named if input, or a WRITE sentence for a record of the file named if output, before
another READY sentence for the same file is issued.

EXAMPLES
1. READY OUT~FILE USING FLD~A FOR ADDRESSING.
WRITE BLANK~REC.
READY OUT~FILE FOR WRITING.
WRITE AND RELEASE OUT~FILE~REC.
Note that the first WRITE verb is used to blank the output buffer. The second READY
verb initializes to the beginning of the buffer and starts the seek. The second WRITE
verb fills the buffer and releases it for recording on the DSU.
2. READY MASTR~IN FOR READING USING ADDR~FLD FOR ADDRESSING.

GE-200 SERIES FEFERENCE WANTAL

-126-

RELEASE

FUNCTION

The RELEASE verb starts the physical recording of output data onto the DSU.

Note: Blocked sequential process files are not automatically released. If used, record count
should be kept by user and a WRITE RELEASE sentence issued when block is full.

SENTENCE FORMAT

RELEASE file~name.

CONVENTIONS
1. Only output files can be released.

2. On SEQUENTIAL files, the RELEASE causes the buffer to be emptied onto the DSU.
However, the RELEASE is not required since the buffer is automatically dumped when
full.

3. If a SEQUENTIAL output file is sharing the same area with a non-SEQUENTIAL blocked
input file, the output file must be RELEASED when the input file reaches end of block.

EXAMPLE

1. RELEASE INVENTORY.

GE-200 SERIES e

REFERENCE MANUAL

-127-

STOP

FUNCTION

The STOP verb halts the object program either permanently or temporarily.

SENTENCE FORMAT

RUN

STOP [literal- 1] .

ON SWITCH integer-1

CONVENTIONS

1.

The STOP verb may be used as the last logical command to stop an object program, as
a means of typing error stop indicators, or to allow the operator to halt the object
program under console switch control.

If the STOP verb is used without the RUN, SWITCH, or literal options, the object
program will enter a ''read control switch loop.'" The operator may toggle switch zero
to resume processing at the next sentence. Prior to this type of STOP sentence, the
user should provide a message (by means of the WRITE verb, Option 1) containing some
explanation for the STOP and any necessary operating instruction.

When the SWITCH option is used, the object program will enter a ""read control switch
loop" whenever the STOP is encountered and the switch integer-1 is down. The operator
may raise switch integer-1 to resume processing at the next sentence. The integer-1
corresponds to the control switches and may be any of the numbers 0-19 inclusive.

If the switch specified is not down when the STOP-generated coding is encountered in the
object program, processing continues with the coding produced fcr the next sentence.

If the literal option is used with the SWITCH option, the literal is typed regardless of the
condition of the switch specified.

If the STOP verb is used with the literal option only, the literal will be typed out, and
the object program will then enter a "read control switch loop.”” The operator may
toggle switch zero to resume processing at the next sentence. The literal must be
enclosed in quotation marks. The literal should be composed of typewriter characters
and/or typewriter control symbols only. The user should prepare a list of such typeouts
showing the appropriate literals with their corresponding explanations and operating
instructions.

The RUN option may be specified only once in any given segment.

When the RUN option is used, the word END will be typed out fcllowed by the literal, if
one is specified. It is suggested that the PROGRAM-ID shown in the Identification
Division be used as the literal. In any case, the literal must be enclosed in quotation
marks. The literal should be composed of typewriter characters and, or typewriter
control symbols only.

GE-200 SERIES cecon - 11

REFERENCE MANUAL

-128-

STOP
(Cont.)

If the object program has been assigned to the card reader or the DSU in the OBJECT~
COMPUTER sentence, the next program is assumed to be in the card reader. In this
case, after the typeout occurs, the object program enters a ''read control switch loop."
If the operator toggles switch zero, the program will attempt to read a binary card into
absolute zero and branch to zero. The binary card read is assumed to be the loader for
the next program.

6. When the RUN option is used and the object program has not been assigned to an input
hardware name or has been assigned to 2 magnetic tape unit in the OBJECT~COMPUTER
sentence, the next program is assumed to be on tape. The tape unit and plug number of
the next program are assumed to be the same as those from which the current program
was loaded. The loader for the object program passes the tape unit and plug number
used to the main segment for use in its run completion. If the program was not loaded
from tape (being tested from cards), its run completion routine recognizes this condition
and enters a halt loop instead of searching for a sequential run locator to load the next
program.

7. The run completion calling sequence produced for the STOP RUN option takes two forms:

a. NO NEXT-PROGRAM clause specified in the Identification Division:

Coding Produced Comments

SPB *RC 1 Run completion routine is *RC

ALF RUN

ALF XXX X represents the name of this program
ALF XXX (from PROGRAM-~ID)

ALF XXX

SEL 0 The plug number from which the main

segment was loaded is stored in bits
10-13 at object time.

Z00 The tape unit code from which the main
segment was loaded is stored in bits
S-4 at object time. This location be-
comes zero if the main segment was
loaded from cards.

FR2 DEC -1 No NEXT~PROGRAM

ALK 000

ALK 000

ALK 000

Sk L. 0

20

DEC -2
@Fc(ﬁwr?.« BRI G R R G GECOM - II
(I SO QY E s REFERENCE MANUAL

-129-

STOP

(Cont.)
b. NEXT~PROGRAM clause is specified in Identification Division:
Coding Produced Comments
SPB *RC 1 Run completion routine is *RC
ALF RUN
ALF XXX X represents the name of this
ALF XXX program (from PROGRAM ID)
ALF XXX
SEL 0 The plug number from which the main
segment was loaded is stored in bits
10-13 at object time.
Z00 The tape unit code from which the
main segment was loaded is stored in
bits S-4 at object time. This location
becomes zero if the main segment
was loaded from cards.
FR2 ALF RUN
ALF YYY Y represents the name of the NEXT-
ALF YYY PROGRAM from the Identification
ALF YYY Division
SEL 0
Z00
DEC -2
The compiler automatically generates a field named NEXT~RUN with an assumed
description of X(12). The programmer is free to use this field name to move a literal
RUNYYYYYYYYY into the run completion calling sequence, where Y represents the
name of the desired run. Thus, the programmer is able to choose the next run to be
executed on the basis of his input data. The name NEXT~RUN is given the symbolic
name FR2 at compile time. Presently, the next run in sequence on tape can be obtained
by moving the literal NEXAAAAAAALA to the NEXT-RUN field.
EXAMPLES
1. STOP.
2. STOP "999".
3. STOP RUN.
4. STOP RUN "PAYROLL 13".
5. STOP ON SWITCH 7.
6. STOP ON SWITCH 6 "BREAKPOINT"".

@ [E ° 2@@ @E@ U Eg REFEREI(:"E(E:OEAI:IUiII;

-130-

SUBTRACT

FUNCTION

The SUBTRACT verb subtracts one quantity from another and stores the result in the last-named
field or the specified field.

SENTENCE FORMAT

numeric-1 numeric-2
SUBTRACT {f ield-name- 1} FROM {f ield-name- 2}
LGIVING field- name-3] I:ROUNDED:!

EF SIZE ERROR GO TO sentence-name-l] .

CONVENTIONS

1. If the GIVING option is not present, the last-named field receives the result.
2. A numeric constant may not be used to receive the result.

3. Decimal points do not appear in stored fields, and are used only to properly align data
before execution of an arithmetic operation.

4. Only a numeric may be used. If a + or - is included, it must appear as the most
significant character of the numeric. If the receiving field is in floating point mode
or if the operands are all integers, then rounding is ignored.

5. The ROUNDED option may be used to round off the result before it is stored in the
receiving field.

6. The SIZE ERROR option may be used to truncate the most significant digits of a number.

EXAMPLES

1. SUBTRACT NION DUES OF MASTR~PAYROL FROM ADJUSTED PAY OF MASTR~
PAYROL.

2. SUBTRACT RLCFEIPTS OF TRANSAC~FILE FROM ON~ORDER-QTY OF ORDER~FILE
GIVING ADJ ORDR-QTY, IF SIZE ERROR GO TO ZERO~RTN.

3. SUBTRACT \ FROM B. (Note the quantity in A is subtracted from the quantity in B,
and the resu't is stored in B.)

RE LG @ien s GECOM - TI
Be Tz Sy
,,,,, . S REFERENCE MANUAL

-131-

VARY

FUNCTION

The VARY verb initiates and controls the repeated execution of the sentences it precedes.

SENTENCE FORMAT

Sentence-name-1. VARY field-name-1,

(A set of one or more sentences) P
VR J . \
\\\\E:::_V A T
EXIT sentence-name-1. —>

field-name-2
FROM arithmetic-expression-1
numeric-1

field-name-3
arithmetic- expression-2
numeric-2

|

CONVENTIONS

1.

GE-200 SERIES

When the VARY sentence is first executed:

-
: relational expression . D
UNTIL field-name-1 {logical expression ° :} ‘ OK \ '

e The FROM parameter is assigned to field-name-1 (the control variable).

e The expression in the UNTIL phrase is evaluated.
sentence is executed.

performed.

If the evaluation results in a true truth-value, the sentence following the EXIT

If a false value is obtained, the sentences following the VARY sentence are

When the EXIT sentence that has the same sentence name (as an operand) as the VARY

sentence name has been reached:
e The BY parameter is added to field-name-1.

e The expression in the UNTIL phrase is evaluated again.

The true or false value of truth-value in the UNTIL phrase¢ causes the sentence

following the EXIT sentence, or the sentences following the VARY sentence

(respectively), to be executed as indicated in 1 above.

GECOM - TI

-132-

REFERENCE MANUAL

VARY
(Cont.)

3. The EXIT sentence may be named. Caution should be exercised in transferring control
to it, since it causes the BY parameter to be added to field-name-1. (Execution of the
VARY sentence proceeds as under 2 above.)

4. A transfer of control from outside the VARY range into the range is undefined.

5. Any number of VARY-EXIT sentences may be imbedded within the sentences of a VARY-
EXIT range.

6. Fields may be subscripted.

7. Standard rules for arithmetic expressions apply to the FROM and BY parameters and
standard rules for relational and logical expressions apply to the UNTIL parameter.
(See Chapter 3.)

EXAMPLES

1. SENT~5. VARY J FROM 1 BY 1 UNTIL J IS GREATER THAN 3.
LIST (J) = LIST (J) * 16.2.
EXIT SENT~6.

Explanation:

LIST has been defined in the Data Division as a field, and is the first location of a set of
numbers (in this case a table of 3 numbers). The programmer desires to multiply each
of the 3 numbers by 16.2 and store each result back into the table. Below is the sequence
logic which occurs during the execution cf the VARY sentence to accomplish the above
hypothetical example:

a. The first execution of the VARY sentence:

1) J is assigned the value 1.

2) J is immediately tested to determine if it is greater than 3.

3) SinceJ is less than 3, control is transferred to the next sentence
in sequence.

4) LIST (J) (meaning the first value of the table since J equals 1) is
multiplied by 16.2, and the result is stored back into the first
location of the table.

5) Upon reaching the EXIT sentence, J is increased by 1 and now
equals 2.

6) J is tested again for a greater than 3 value.

7) Since J is not greater than 3, control is transferred to the VARY
sentence.

b. Second execution of VARY sentence:

1) LIST (J) (meaning the second value of the table since J equals 2)
is multiplied by 16.2, and the result is stored back into the second
location of the table.

2) Control again reaches the EXIT sentence where J is again increased
bv 1 making J equal to 3.

3) J is again tested to see if J is greater than 3.

4) Since J is not greater than 3, control is transferred to the VARY
sentence.

BE-200 SERIES

REFERENCE MANUAL

-133-

VARY
(Cont.)

c. Third execution of VARY senfence:

1) LIST (J) (the third value of the table) is multiplied by 16.2 and the
result is stored back into the third position of the table.

2) J is increased by 1 making J equal to 4.

3) J is tested for a greater than 3 value.

4) Since J is now greater than 3, control is transferred to the sentence
following the EXIT sentence.

2. SENT~14. VARY I FROM 1 BY 1 UNTIL I GR 5.
SENT~15. VARY J FROM 1 BY 1 UNTIL J GR 7.
c@, J) = AQ, J) + B({, J).

EXIT SENT~15.
EXIT SENT~14.

Explanation:

The above example is the basic coding required to add two matrices together. Each
matrix occupies 5 rows and 7 columns. Each value of matrix A will be added to the
corresponding value of matrix B. The result of the addition will be stored in the
corresponding position of matrix C.

It is interesting to note that SENT-15 and its corresponding EXIT are executed 7 times
to every 1 time for SENT-14 and its corresponding EXIT.

GE-200 SERIES creon - 11

REFERENCE MANUAL
-134-

WRITE

FUNCTION

The WRITE verb has the following options:

Option 1 displays a limited amount of information on the typewriter.

Option 2 releases a logical record or *group to an output file.

Option 3 releases a logical record or *group to an output printer file and slews the printer paper.

Option 4 releases a logical record or group to a DSU output buffer, and optionally releases the
entire buffer for recording onto the DSU.

SENTENCE FORMAT

Option 1:
field-name-1 field-name-2 field-name-n
WRITE element-name-1 , element-name-2 . element-name-n
literal-1 literal-2 literal-n
ON TYPEWRITER.
Option 2:
recorcd-name RECORD
WRITE {*group-name} {GROUP }
Option 3:
i (o integer LINES
wure {rgorenn) (e apavene ([e s
yroup-1 -
| TO TOP OF PAGE

Option 4:
record~name RECORD
WRITE I:AND RE LEASEE] {*grou}r-rlame} {GROUP }

(@ E ° 2@@ gE Rg H [gg REFEREEEEOEAI:IUi;

-135-

WRITE
(Cont.)

CONVENTIONS

In Option 1:

1.

Literals may be used to identify the contents of the data fields or elements displayed in
order to give meaning to the display or to identify subsequent ' read control switch
loops" caused by STOP sentences or READ (Option 1) sentences. (See explanations
under STOP and READ verbs.)

The object program assumes that the typewriter carriage has jroviously been returned
to the left margin. Normally, all of the data specified in the scntence is typed 84
characters to a line. The carriage is automatically returned after the 84th character
on a line and/or after the last character of the specified datu hias been typed.

There is no keypunch character available for a carriage return punch. Each installation
must choose some set of characters such as ¢/r which will signal a 12-7-8 punch to the
keypunch operator. These characters may then be inserted as the first character of a
literal to be displayed on the typewriter when a new line is to be started. For example:

55 56 57 80

" c/r START NEW LINE".

Additional typewriter action symbols may be included in literals so that the user may
edit his own typeouts. Literals should be composed of typewriter characters and/or
typewriter control symbols only, excluding the quotation mark character. The quotation
mark identifies the beginning and ending of a literal and, therefore, cannot be part of a
literal.

In Option 2:

1.

An OPEN sentence must be executed before the first WRITE is given for a particular
file.

If a record or *group is to be printed, it will be edited as specified on the Data Division
form.

The data description of the output records or *groups must contain a list of all data
intended for output. When a WRITE is executed, only the data listed in the record or
group description are moved to the output file. The move is automatic and implied with
each execution of the WRITE.

The actual writing on tapes, punching of cards, etc., is controlled by routines which
are generated by the compiler.

After recognition of the end-of-reel of a tape file, the WRITE performs the following
operations:

e The standard ending-reel label procedure and the user's ending-reel label
procedure (if specified by the USE clause in the INPUT-OUTPUT CONTROL
sentence).

e A tape handler swap if more than one handler is assigned to the file. If one handler
is assigned to a multiple reel file, the object program will wait for a blank reel to
be mounted.

@ E ° 2@@ gE [R H Eg REFBRE%EO}}:M;U;

-136-

WRITE
(Cont.)

e The standard beginning reel label procedure and the user's beginning reel label
procedure (if specified by the USE clause in the INPUT-OUTPUT CONTROL
sentence).

e Writes the record or *group on the new reel.

In Option 3:

1. See Conventions 1, 3, 4, 5, 7, and 8 for the ADVANCE verb and Conventions 1 through
4 for the WRITE (Option 2) sentence.

2. The printer is slewed the specified number of lines after the WRITE sentence. The
amount of the advance is added to the LINE~COUNT entry for the specified file. Note
that ADVANCING 1 LINE is redundant since the WRITE (Option 2) sentence would do
the same thinz. An ADVANCING 0 LINES is legitimate, and causes no slewing after
printing.

In Option 4:

1. An OPEN sentence and a READY sentence must be executed before the first WRITE
sentence is given for a particular DSU file.

2. A WRITE sentence without the RELEASE option is used to build an output record in the
output buffer. In this case a RELEASE or WRITE RELEASE sentence must be given
before recording is done on nonsequential files.

3. A WRITE sentence with the RELEASE option is used to build an output record in the
output buffer and then start the physical recording on the DSU. This option is ordinarily
used for writing, records of nonblocked files, and for writing the last record of a block
in blocked files. See the conventions for the RELEASE verb.

4. The object program will stop if a WRITE sentence is given for a nonsequential file and

there is not room for the record in the buffer. The programmer must insure that the
RELEASE option is given at the proper time.

EXAMPLES
Option 1:
1. WRITE "UNMATCHED." CLOCK~NUMBER OF TIME~CARD ON TYPEWRITER.
Note that this sentence will cause the literal UNMATCHED to be typed out, followed by
the contents ol the CLOCK~NUMBER field. For example, if the CLOCK~NUMBER field

contained the value 727313, the following line would be printed on the typewriter:

UNMATCHED 727313.

REFERENCE MANUAL
-137-

WRITE
(Cont.)

Option 2:

1.
2.
3.
4.

WRITE RECORD~1 OF FILE~6.
WRITE INVENTORY~1 RECORD.

WRITE XYZ GROUP.

WRITE PAY~GROUP OF PAY~REC OF PAY~FILE GROUP.

Option 3:

1.

WRITE SHIPMENT RECORD ADVANCING
5 LINES.

WRITE SHIPMENT ADVANCING 5.
WRITE SHIPMENT ADVANCING COUNTER~1 LINES.
WRITE SHIPMENT ADVANCING TOP.

WRITE SHIPMENT RECORD ADVANCING
TO TOP OF PAGE.

Option 4:

1.

2.

BGE-200 SERIES

WRITE INVENTORY~1 RECORD.

WRITE AND RELEASE INVENTORY~1 RECORD.

ChC:

M - II

-138-

REFCRENCE

MANUAL

7. ENVIRONMENT DIVISION

PURPOSE
The Environment Division centralizes those aspects of the total data processing problem which
are dependent upon the physical characteristics of the GE-200 Series computer. It provides a

linkage between the data described in the Data Division and the peripheral hardware devices on
which the data is stored.

ORGANIZATION
The Environment Division consists of four sentences, and its presence is indicated by the words:
ENVIRONMENT DIVISION,

These words followed by a period are written on the GECOM Sentence Form beginning in Column
8. No other information may be written after the period.

ENVIRONMENT SENTENCES
The 5 sentences comprising the Environment Division are:
OBJECT~CCMPUTER. »225 MEMORY SIZE .
I~O~CONTROL. RERUNOCN. .
FILE~CONTROL. SELECT.
DSU~CONTROL. SELECT .
COMPUTATION~MODE, USE .
Each of these sentences is written on the GECOM Sentence Form and may begin in Column 8 or

may be indented any namber of spaces to the right of Column 8. All indentation columns must
be blank.

The remainder of this section explains the function of these sentences and the conventions which
must be followed to ccmplete the Environment Division portion of a GECOM source program.

@ GECOM - IL
[\ REFERENCE MANUAL

-139-

@ED mm Qreo
A WU oL ot

OBJECT~-COMPUTER

FUNCTION

The OBJECT-COMPUTER sentence describes the computer system upon which the object program
is to be run.

SENTENCE FORMAT

215
OBJECT~COMPUTER{ 225 [MEMORY SIZE integer-1 MODULE [s]:l
235 ~

[[integer—Z] hardware-name-1 [integer-3] hardware-1ame-2 ...]

[ASSIGN B)VERLAY~SEGMEN’I‘@] OBJECT~PROGRAM TO input-hardware-name

[integer-4 [ONPLUG integer-3]]]

"UPPER
PLACE |MAIN] SEGMENT IN MEMCRY
LOWER

r-RELOCAJ;E BY integer-6 WORDS IN LOWER MEMORY]
r.RE LOCATE BY integer-7 WORDS IN UPPER MEMORY]

API OPENTIS xxxxx [API CLOSE IS xxxxx_]]

|MIC ENTRANCE IS xxxx{l

EBEGIN COMMON~STORAGE AT xxxxx]

[BEGIN *COMMON~STORAGE AT xxxxx] .
|

CONVENTIONS

1. An CBJECT~COMPUTER sentence is required in the source program. Within the
OBJECT~COMPUTER sentence, a PLACE clause is required. IF PLACE IN UPPER
clause is specified, a MEMORY SIZE 4 MODULES option must be specified.

2. When giving the memory size, one module of memory is 4096 20-bit words. The
entry for integer~1 may be the numerals 1, 2, or 4. An error message will occur
during compilation if the specified memory size is less than the size needed to run the
compiled object program.

GE-200 SERIES crcon - 11

REFERENCFE. MANUAL

-140-

OBJECT~COMPUTER
(Cont.)

The words "hardware-name-n..." are used to name hardware devices of the object
computer. When applicable, integer-n is used to give the quantity of a particular
hardware device. ''Hardware-name-'' may be any of the following standard names or
their abbreviations.

AUTOMATIC PRIORITY INTERRUPT API
CARD PUNCH Cp
CARD READER CR
DISC STORAGE UNIT(S) DSU(S)
FLOATING POINT HARDWARE FLPT
PRINTER
HIGH SPEED {PRINTERS} P
: TAPE_
MAGNETIC { TAPES} MT
MOVE_ MOVE
PLLG PL

If the MOVE option is listed as a hardware name, the compiler will select appropriate
object program subroutines which employ the optional MOVE command during word
moves.

The ASSIGNclause is intended primarily for MAIN segments. Its usage determines
which run-completion subroutine is included in the object program at the STOP RUN
entry and also the output medium on which the object program is produced. The
BRIDGE Il compatible run-completion subroutine (*RC) is produced whenever the
complete object program is to be run from magnetic tape (options 1, 3, and 4 below);
otherwise, the run-completion subroutine (RLC or RL*) is produced. RLC and RL*
assume thit the next program is in the card reader. RL* is produced when API is
present.

Option ASSIGN to: OVERLAY~ OUTPUT Run-Completion

SEGMENTED Medium Subroutine

1 No ASSIGN # Cards *RC

2 CR # Cards RLC or RL*

3 MT No MT *RC

4 MT Yes Cards *RC

5 DSU No Cards RLC or RL*

6 DSU Yes Cards RLC or RL*

- illegal combination

Option 3 nway be used only when the total object program contains no independently
compiled segments. Even if the total object program contains no independently com-
piled segnients, the user may prefer to use Option 1. In this case, the object program
can be checked out from cards and then put onto magnetic tape via the BRIDGE I
Operating Service System, CD225J1. 001.

GECOM - II
REFERENCE MANUAL

=)
GO
! (_‘ﬁ]‘

w
nint|
e

-141-

OBJECT-COMPUTER

(Cont.)

10.

If the total object program contains segments and is eventually {o be run from mag-
netic tape, Option 1 or 4 should be used. After each segment deck is checked out,
all segments can be consolidated onto magnetic tape via BRIDGE II.

If the total object program is to be run from disc storage, Opiion 5 or 6 should be
used. After all decks are checked cut, the total object progrun. can be put onto
magnetic tape via BRIDGE II. The BRIDGE-to-DSU Absolute T:ranslator (BRAT)
programming routine, CD225E2.005R, is then used to place the program onto DSU.

The OVERLAY~SEGMENTED option should be specified in the MAIN segment ASSIGN
clause whenever the total object program contains overlay segments. Note that
OVERLAY~SEGMENTED object programs cannot be assigned to the card reader.
They must be run from magnetic tape or disc storage.

If a segment other than a MAIN segment is being compiled, the ASSIGN clause need
not be given. If it is given, it serves as documentation only.

Magnetic tape and plug numbers may be given using the words zero, one,..., seven
or the numerals 0, 1,...,7.

The PLACE...IN UPPER MEMORY option causes the compiler to assign the body of
object coding to the upper 8k words of a 16k memory. This does not include common
constants, file tables, COMMON~STORAGE subroutines, etc. The PLACE... LOWER
option causes the compiler to assign the entire segment (excest *COMMON~ STORAGE)
to lower 8k memory.

MAIN must be specified for a MAIN segment of for a total prcgram produced in one
compilation (no independently compiled segments). If the MAIN option is not specified,
the segment is assumed to be other than the MAIN segment. (See Procedure Division,
Segments.)

To specify that an object program may be interrupted, the user must indicate the
presence of Automatic Priority Interrupt (API) in the list of h::cdware names. In-
clusion of the API hardware name or its abbreviation causes ‘he compilation of an
object program which can be interrupted by a priority program. it does not cause
compilation of a priority program. API must be specified whenever DSU files are
assigned. If any segments of a complete object program speci'v APl in their
OBJECT~COMPUTER sentence, all of the segments should lis* APT as a hardware
iame,

An iunterruptable object program turns API off before any typing and rurns API on
after completing any typing. The object program input/output routines turn API off
whenever functions must be executed which cannot be interrupted and turn API on
after such functions are completed.

The RELOCATE clauses cause the object program (main control load or overlay
segments) to be displaced by the specified number of words from the ncrmal position
in lower memory and by the specified number of words from the norme. position in
upper memory. The UPPER option may be used only when the PLLACE ~lause
specifies upper memory. See Procedure Division, Overlay Segmentation.

An alternative method of displacing the object program does not requir¢ the RE-
LOCATE clauses. The user may manually punch the lower and upper relocation
amounts into the type 1 card required by the Multicapability Mcdular Loader II (MCML
II Loader), CD225B1. 006R.

@IEDZ@@ SERDE@ GECOM - IT

REFERENCE MANUAL
-142-

OBJECT~COMPUTER
(Cont.)

11. When API is specified for a MAIN segment, the object program card read areas be-
come 00400, and 00600,. The object program or priority program card punch areas
are 01000 and 01200,. The MCML II loader, depending on the modules used, can
load with ¢ relocation constant as low as 01116, for object programs with API. If
buffered card punching is required at object time, either in the total object program
or in a priority program, the main segment's relocation constant must be adjusted
accordingly. The RELOCATE option can be used to do this. Alternatively, the user
may wish ro punch the relocation amount into the type 1 card required by MCML IL

Example: Normal loading starts at 01116,. Card punch buffering is required.
RELOCATE BY 00092 WORDS IN LOWER MEMORY

This causes the lower relocation constant to become 012525, leaving
enough room for the second punch buffer at 012005 .

12. In the RELOCATE clauses, integer-6 and integer-7 must be 5-digit decimal numbers,
zero filled on the left if necessary.

13. The following conventions apply if API is included in the list of hardware names and
the MAIN option is specified in the PLACE clause:

° If neither API OPEN nor API CLOSE clauses are given, the compiler provides
the Automatic Program Interrupt (API) Executive, CD225J4. 000R, as an object
program subroutine and sets up the API open and close linkage via the loader
so that the object program will transfer control to the API Executive to initialize
the API function at the start of the program and to perform the close function at
at the STOP RUN sentence.

° If the API OPEN clause is given without an API CLOSE clause, the compiler will
not include the API Executive among the object program subroutines, but the
object program will transfer to the specified absolute decimal address to ini-
tialize the API function at the start of the program. However, no API close
function is performed at the STOP RUN sentence.

° If bcth APIGPENand API CLOSE clauses are given, the compiler will not in-
clude the API Executive among the object program subroutines but the object
program will transfer to the absolute decimal address specified for the OPEN
clause to initialize the API function at the start of the program and to the ab-
solute decimal address specified for the CLOSE clause to perform the close
function at the STOP RUN sentence.

° Whenever the API OPEN entrance is given, it is assumed that prior to the load-
ing of the object program the API Executive will have been loaded into its fixed
memory area as part of a priority control program.

Linkage subroutines AP2 and/or MI2 are required in the object program when-
ever the API OPEN clause is given. To obtain the variable AP2 and/or MI2
subroutines, the user should put console switch 1 down for the compilation
whenever the object program is punched on cards.

° The API CLOSE clause may be given only if the API OPEN clause is given. The
API CLOSE clause need not be given, however, if the object program is to be
one in a string of main programs which are loaded while a priority program is
operating. In this case, only the last main program of the string would have the
API CLOSE clause.

GE-200 SERIES GECOM - 11

REFERENCE MANUAL
-143-

OBJECT~COMPUTER

(Cont.)

14.

15,

16.

17.

18.

19.

If DSU files are to be processed, the SIOS (MIC), CD225E8. 000, will be supplied by
the compiler as an object program subroutines unless an MIC ENTRANCE clause is
given. The MIO ENTRANCE clause must never be given unless the API OPEN en-
trance is also given. When the MIG ENTRANCE clause is given, the compiler will not
include SIOS (MIO) in the object program subroutines. Instead. the object program
will transfer control to the entrance to call SIOS (MIO). SIOS {MIO) is issumed to
have been loaded into its fixed memory area as part of a priori.y control program.

Note: The address to be given should be an absolute, even decimal number. The
actual entrance to MIC will be that number plus one.

The BEGIN COMMON~STORAGE clause causes the compiler to assign the designated
lower 8k memory location as the upper limit of the COMMON ~ STORAGE area.

The BEGIN *COMMON~STORAGE clause causes assignment of the designated upper
8k memory location as the upper limit of the *COMMON~ STCRAGE area.

In the clauses where xxxxx appears, Xxxxx represents a 5-digit decimal address, zero
filled on the left if necessary. For *COMMON~STORAGE, if this address is 08191
or less, it is assumed to be relative to upper 8k memory.

An error message will occur during compilation if no location is specified in a BEGIN
*COMMON~STORAGE or BEGIN COMMON~STORAGE clause.

When a MAIN segment has been assigned to disc storage, BR.*™ assigns a directory
table to the object program. The table contains the DSU addresses of any overlay
segments required at object time. The table is placed below *CCommon~ Storage if
one has been specified. If there is no *Common~ Storage, the :able is placed in lower
memory. Thus, the user may wish to assign a *Common~ Storage address (even
though it is not required by the object program) to force the directory table into upper
memory.

EXAMPLES

1.

OBJECT~COMPUTER. 225, MEMORY SIZE 2 MODULES, 8 MAGNETIC TAPES, 1
HIGH SPEED PRINTER, ASSIGN OBJECT~PROGRAM TO MACGNITIC TAPE FIVE
ON PLUG ONE.

OBJECT~COMPUTER. 225 8 MT 1 HSP ASSIGN OBJECT~ PROUGRAM MT 1 PL 1.

OBJECT~COMPUTER. 2256 MT, 1 CR, 1 CP, 1 HIGH SPEED PRINTER, ASSIGN
OBJECT~PROGRAM TO MT TWO ON PL 1.

OBJECT~COMPUTER. 225 MEMCRY 4, HSP CR CP 6 MT FLPT ASSIGN OBJECT~
PROGRAM CR, PLACE SEGMENT IN UPPER MEMORY, BEGIN “COMMON~
STORAGE AT 16000.

OBJECT~COMPUTER. 225 MEMORY 4, HSP, CR, CP, 6 MT DSUS, “LPT, APIL
ASSIGN CVERLAY~SEGMENTED OBJECT~PROGRAM TO DSU 3 PLUG 0, PLACE
MAIN IN UPPER, RELOCATE BY 00092 LOWER, API OPEN I¢t 08020, 4PI CLOSE
IS 08009, BEGIN COMMON~STORAGE AT 08000.

OBJECT~COMPUTER. 225 MEMCRY 4, HSP, CP, API, CR, MOVE, 6 MT, FLPT,

1 DSU, PLACE MAIN IN UPPER MEMORY RELOCATE BY 02000 LOWER, RELOCATE
BY 04172 UPPER MEMORY, API OPEN IS 07116, API CLOSE IS 07127, MIG EN-
TRANCE IS 06924, BEGIN COMMON~STORAGE AT 06900, BEGIN *CCMNM OGN~
STORAGE AT 16300,

GE-200 SERIES ST

REFERENCE MANUAL
-144-

I..O~-CONTROL

FUNCTION

The I~O~CONTROL sentence is used to indicate nonstandard label checking, rerun information,
those tapes which contiiin more than one file, and assignment of more than one DSU file to the
same buffer area.

SENTENCE FORMAT

I~O~CONTROL. I:RERUN [O_I\l output-hardware-name integer-1 ON PLUG integer-Z]

EVERY { END OF REEL OF file-name-1

END OF REEL]
integer-3 RECORDS OF file-name-1

INPUT
d {J : - —4
E\/IULTIPLE FILE {OUTPUT} TAPE CONTAINS file-name

[_POSITION integer—4] [file-name- 5

[POSITION integer-5] . :I] [MULTIPLE FILE ..]

\
-3 p INPUT
[SAME AREA @%TUPTUT} file-name-2 AND OUTPUT} file-name-3

-
file-name-6
USE section-name-1 AFTER STANDARD ERROR PROCEDURE ON { INPUT

DSU OUTPUT
USE section-name-2 AFTER STANDARD
BE GINNING REEL . .
{ENDING } _FILE} LABEL PROCEDURE ON file-name-T|.

GE-200 SERIES cEcor - 11

REFERENCE MANUAL
-145-

I~O~-CONTROL

(Cont.)
CONVENTIONS
1. This sentence is optional and is required only when one of the above clauses is needed

for completing a source program.

2. If the RERUN option is specified, it is necessary to indicate the rerun point and
where the rerun memory dump is to be written.

Memory dumps are written either at the end of each reel of an cutput file or on a
separate rerun tape.

If the memory dump is to be on a tape other than the output file tape, the tape number
must be specified as the hardware-name after the rerun is indicated:

RERUN [ON output-hardware-name integer-1 ON PLUG integer—?]

Rerun points may be established at:

° Every end of reel of file-name-1, where file-name-1 is a particular
output file, and the memory dump is to be placed at the end of each
reel after the end-of-tape reflector. In this case hardware-name is
not required. For example, RERUN EVERY END OF REEL OF
UPD~INVNTRY.

° Every end of reel of file-name-1; where file-name-1 is an input or
output file and the memory dump is to be placed on a separate rerun
tape. In this case, the hardware-name must be specified.

° A number of records (integer-3) of an input or output file have been
processed. In this case hardware-name should be specitied. Integer-3
records is the physical record (block) count and not the logical
record count.

° Every end of reel; this pertains to all output files in the source pro-
gram. Hardware-name must be specified.

RERUN EVERY integer-3 RECORDS and RERUN EVERY END OF
REEL clauses must not both be stated for the same file.

3. The MULTIPLE FILE option is required when mor e than one {ile shares the same
physical reel of tape. Regardless of the number of files on a single reel, only those
files which are used in the object program should be specified. I all file names
have been listed in consecutive order, the POSITION option need not be given. How-
ever, if there are any intervening files on the tape not referenced by the program,
then position must be given for each file referenced. All labels must be either pre-
sent ur omitted on a multiple file tape. If labels are present, the posiiions for output
multiple file tapes are placed into the labels of the individual tiles. There can be any
number of multiple file input or output tapes. However, all files listed for each tape
must be contained on a single reel. Optional files are not permitted on multiple file
tapes. Note that not more than one file on a multiple file tape can be processed at
the same time, that is, a file must be closed before another file on the samie tape can
be opened.

@EDQ@@ §EE}HE§ GECOM - II

REFERENCE MANUAL

-146-

I.O~CONTROL
(Cont.)

4, There are two types of USE clauses for files not assigned to the DSUS. The first,
USE ...AFTER...ERROR procedure, applies to input files. If a tape error occurs
during reading, a standard error procedure attempts to successfully perform the
read five times. When it is impossible to successfully read the block, the data from
the first logical record is unpacked and made available to the programmer for use in
the AFTER. section. He may type the key fields or any message. A transfer of con-
trol is made to the AFTER.... ERROR section for each logical record in the block so
that all kev tields in the bad block may be recorded. The next block is then read and
processing continues.

The second USE clause, USE...AFTER...LABEL, allows the programmer to enter

a section in which he may access the contents of an input label record, or calculate
values for an output label. When this clause is used on input, the contents of the label
record are unpacked and available for use by the AFTER Section. In the USE clause,
section-name-2 is executed as follows:

° After the standard input label check.
° Afterr a standard output label is created but before it is written.
° When both beginning and ending labels are being checked, do not specify

BEGINNING and ENDING clauses.

5. The USE...AFTER...ERROR clause may be specified for files assigned to DSUS.
After an error is detected (see SIOS (MIO), CD225E8. 000), control is transferred to
the section named so that the program can be brought to an orderly halt. In the case
of an input file error, a return from the section causes the program to accept the data
in the input buffer; in the case of an output file, a return from the section aliows the
program to continue. Under no circumstances should the section attempt to use the
DSU.

6. USE clauses may not be specified for a Journal Tape file.

7. The SAME AREA option may be used to assign more than one DSU file on the same
buffer area. More than one of the files assigned to the same area may be open at the
same time. It is the programmer's responsibility to know which file occupies the area
at any given time. When an input file is being read, updated, and written as an output
file from the same area, the description of the output file should be the same, field by
field, as the description of the shared input file. A file described as buffered cannot
share the same area with an unbuffered file if they are open at the same time. When
DSU files are sharing the same area and are open at the same time, they must be
assigned to the same plug.

EXAMPLES

1. I~O0~CONTROL. RERUN ON TAPE 7 ON PLUG 1 EVERY END OF REEL OF
MASTER FILE.

2. I~O~CONTROL. RERUN ON TAPE 0 ON PLUG 1 EVERY 1000 RECORDS OF
MASTER~PLCY, USE LABEL~RTN AFTER STANDARD ENDING REEL LABEL
PROCEDURE ON TRANS~ FILE,

3. I~ O~CONTROL. MULTIPLE FILE INPUT TAPE CONTAINS EMP~FILE POSITION
6. PAYRCL~ FILE POSITION 8, TAX~FILE POSITION 11.

@E ZKJC S)LFEW | [—&Q)) : GECOM - II

REFERENCE MANUAL

-147-

I~O~CONTROL
(Cont.)

4, I~O~CONTROL. SAME AREA INPUT STK~MASTER OUTPUT OUT~STOCK,
SAME AREA INPUT TRAN~FILE, INPUT INQUIRY, AND INPUT SCRATCH~PAD,

5. I~O~CONTROL. SAME AREA INPUT STK~MASTER AND OUTPUT OUT~STOCK,
INPUT FIN~FILE OUTPUT FINAN, SAME AREA OUTPUT WORKING~ FILE,
OUTPUT RECAP.

BE-200 SERIES

REFTKENCE MANUAL

-148-

FUNCTION

FILE~-CONTROL

The FILE~CONTROL sentence identifies the input/output files and provides for their assignment
to specific input/output hardware units.

SENTENCE FORMAT

FILE~CONTROL. SELECT [OPTIONAL] file-name-1 ASSIGN TO

hardware-name-1 integer-1 [ON PLUG integer-Z] E’OR OFF LINE PRIN'I]

Emrc’ware-name—Z :I [_BUFFEI{' [FOR MULTIPLE REEL:I EELECT .]

CONVENTIONS

1.

2.

The FILE~ CONTROL sentence is optional if the source program does not process
input/output.

The word OPTIONAL is required for input files which are not necessarily present each
time the object program is run. Optional files may not be contained on multiple file
tapes, output tapes, or assigned to the card reader or DSUS.

All input and output files used in the program must be assigned to an input o= output
unit (hardware-name). If plugs are not specified, plug 1 is assumed for magnetic
tapes and plug 6 for printer.

The MULTIPLE REEL option must be included when a magnetic tape file exceeds one
reel of tape. All reels of a multiple reel file must be mounted on tape units associated
with the same tape controller. A single magnetic tape unit is also permissible for a
multiple reel file, All multiple reel input files must contain the standard magnetic
tape labels.

The same tape unit must be assigned to all files existing on the same reel. It is not
necessary to mention every file-name on a multifile reel. Only those file-names used
and their relative position (in ascending order) on the reel are needed.

Buffering is supplied for those files for which the BUFFER option is stated. It is
recommended that short files such as error files and tables not be buffered, making
more efficient use of storage in the object program.

The OFF LINE phrase must be specified for report tapes to be created by the Report
Writer for deferred printing. This applies whether the off-line printer or Peripheral
Package (FIP), CD225E1. 009, for on-line printing is employed. In this case, file-
name-1 is the name specified in the Report File Definition entry in the Report Section.
(See Report "Nriter Section.)

GE-200 SERIES e 1

REFERENCE MANUAL

-149-

FILE~CONTROL
(Cont.)

EXAMPLES

1. FILE~CONTROL. SELECT MASTR~PAYROL, ASSIGN TO TAPE 1 PL 1,
MULTIPLE REEL, SELECT TIME~CARDS, ASSIGN TO MT 4 PL 1, SELECT
NEW~MST~PR, ASSIGN TO MT 1 ON PLUG ONE, TAPE 2 PL 1, MT 3 ON PLUG
1 BUFFER FOR MULTIPLE REEL, SELECT PAYROL~RGSTR, ASSIGN TO TAPE
4 ON PLUG ONE TAPE FIVE ON PLUG ONE BUFFER MULTIPLE, SELECT
UNION~DUES ASSIGN TO MT 6 PL 1, SELECT BOND~REGISTR, ASSIGN TO MT
7 PL 1 BUFFER.

2. FILE~CONTROL. SELECT MASTR~PAYROL ASSIGN MT 1 MT 2 MULTIPLE
SELECT TIME~CARDS ASSIGN MT 3 SELECT NEW~MST~PAYR ASSIGN MT
4 MT 5 MULTIPLE SELECT PAYROL~RGSTR ASSIGN MT 6 MT 7 MULTIPLE
SELECT UNION~DUES ASSIGN MT 1 PL 2 SELECT BOND~REGISTR ASSIGN
MT 2 PL 2.

BE-200 SERIES Ry s

-150-

DSU ~ CONTROL

FUNCTION

The DSU~CONTROL sentence identifies the input/output files assigned to the DSUS and describes
their usage.

SENTENCE FORMAT

DSU~CONTROL. [SE LECT JOURNAL~TAPE ASSIGN TO MT integer~1 [CE PLUG integer~2r]l

SELECT [_SEQUENTL’-\L] EBLOCKED] file~~name ~1
| by A

ASSIGN TO l:ﬂ AN'D:| DSU integer~3 IE)_N PLUG integer~4:| DSU .. :I

[READ AFTER WRITEJ IEISE field~name~1 FOR UNIT NUMBERJ RESERVE ALTERNATE AREA:]

EELECT .]

CONVENTIONS
1. The DSU~ CCGNTROL sentence follows the FILE~CONTROL sentence.

2. The SELECT JOURNAL~ TAPE option is used to assign the Journal Tape to a
magnetic tape unit. (See Appendix J.)

3. The JOGUENAL TAPE (JT) option may be exercised by output file~name assignments
to indicate that each time a record or block of the file is recorded on the DSUS, the
same information plus two words is to be written on the Journal Tape. The first
additional word contains the disc storage unit code in bits 5-7 and the plug number in
bits 11-13. The second additional word contains the DSU address where the recording
was done. (See Tape-to-DSU routine (TAPER), CD225E8. 003.)

4. The recording mode of the Journal Tape is always binary. Label information should
be given in the Data Division under the fixed file name JOURNAL~TAPE.

5. The Journal Tape may be opened or closed as any other tape file. However, unlike
other files, it does not have to be opened or closed. (Beginning-tape label will not
be written on the Journal Tape and it will not rewind if it is not opened.)

6. A file may ve assigned to more than one disc storage unit, but all of the disc storage
units used by the file must be on the same plug. DSU files should be assigned to
plug 0 or 1. If no plug is specified, plug 0 is assumed.

7. The USE {icld~name option should be included only when a file is assigned to more
than one disc storage unit. The field named must be a Working-Storage or Common-
Stroage field of description 9 (n) where n is less than or equal to 5. The contents of
the field it object time determines which disc storage unit is being addressed. The
field must containa 0, 1, 2, or 3. The programmer must ensure that the field
contains the proper unit number at object time.

BE-200 SEFIES

REFERENCE MANUAL

-151-

DSU - CONTROL

(Cont.)

8. Output files may use the READ AFTER WRITE option. When used, the information is
parity checked with a special read after it has been written on the DSU. This requires
an additional disc revolution for the read back.

9. The SEQUENTIAL option is specified when it is desired to process the file in a se-
quential manner starting at some DSU address. Only one REALY sentence needs to
be issued to assign the initial DSU address. Thereafter, when udditional input blocks
are needed from the DSU or an output buffer is full, a new DSU address is developed
by the object program. The number of frames required for the block is added to the
DSU address to develop a new DSU address. If the new address is illegal (frames 96-
127) a decimal 32 added to the address to make it legal.

10. The RESERVE option may be used only with files described by the SEQUENTIAL
option, and allows the assignment of a second buffer area.
11, If the records of a file are blocked, the BLOCKED option must be specified.
EXAMPLES

1. DSU~CONTROL. SELECT JOURNAL~TAPE ASSIGN TO MT 6 PLUG 1, SELECT
MASTER ASSIGN TO JT AND DSU 0 PLUG 0, SELECT SCRATCH~ PAD ASSIGN TO
DSU 0 PLUG 0, SELECT TRAILER ASSIGN TO JT AND DSU 1 PLUG 0.

2. DSU~CONTROL. SELECT SEQUENTIAL, BLOCKED SEARCH~DSUS ASSIGN TO
DSU 0 PLUG 0, DSU 1 PLUG 0, DSU 2 PLUG 0, DSU 3 PLUG), USE CURRENT FOR
UNIT NUMBER, RESERVE ALTERNATE AREA.

3. DSU~CONTROL. SELECT STOCK~FILE ASSIGN TO DSU 3 P’[. 0, DSU 2 PL 0, USE

STOCKUN FOR UNIT NUMBER, SELECT OUT~STOCK ASSIGN TO DSU 3 PL 0, DSU
2 PL 0, READ AFTER WRITE, USE STOCKUN FOR UNIT NUMBER.

GE-200 SERIES Gren - 11

REFYRENCFE MANUAL

COMPUTATION~MODE

FUNCTION

The COMPUTATION~ MODE sentence is used to indicate that data is to be in floating point format
and that calculations are to be performed using floating point arithmetic.

SENTENCE FORMAT

COMPUTATION~MODE, USE { pro tiol oo FLPT

HARDWARE } {FLOATIHQ POINT
D

CONVENTIONS

1. This sentence is optional.
2. Hardware floating point calculations are done in the Auxiliary Arithmetic Unit.

3. All data is stored in floating point format except that which is described as integer,
fixed point, and true-false in the Integer, Working~Storage, Common~Storage, and
True~ False Sections of the Data Division.

@E ° 2@@ gER U IIES REFERESIE:E:O:AI:IU;II.

-153-

8. IDENTIFICATION DIVISION

PURPOSE

The Identification Division enables the programmer to label the source program as well as the
outputs of a compilation.

ORGANIZATION

The Identification Division may consists of one or more sentences. The division is indicated on
the sentence form by the following heading which starts in Column 8:

IDENTIFICATION DIVISION.
The heading is followed by a period but no other information is entered on the same line.

The sentences which may be entered in the division are:

PROGRAM ~1ID. oo
NEXT~PROGRAM. e
AUTHOR. ces
DATE~COMPILED. ...
INSTALLATION. ces
SECURITY. cos
REMARKS. cee

Each sentence is written on the GECOM sentence form beginning in Column 8 or indented any
number of columns. Each of the above sentence names is followed by a period and at least one
space before the sentence itself.

CONVENTIONS

1. The PROGRAM~ID sentence is required and may consist of nine or less BCD type-
writer characters as the name of the program. A space (blank), comma (,), or
period(.) is interpreted as the end of the name.

The compiler inserts the run name left justified into the header card of the object
program. If the *RC run-completion subroutine (see STOP verb) is required, the
run name is placed into the *RC calling sequence. The run name is also inserted
in the heading on each page of the Edited List.

2. The NEXT-- PROGRAM sentence is optional and may consist of nine or less BCD
typewriter charucters representing the name of the next run to be executed at object
time. The name must be terminated by a period. If the *RC run-completion sub-
routine is required, the next run name is inserted into the *RC calling sequence.

mm RIEm I -
L =TUUNE REFERENCE MANUAL

-155-

3. The AUTHOR sentence is optional. The sentence itself may contain 30 or less BCD
characters followed by a period.

If given, the author's name will appear in the heading on each page of the Edited List.

4. The DATE COMPILED sentence is optional. The sentence mayv consist of 30 or less
characters followed by a period.

If given, the date of compilation will appear in the heading on each page of the Edited
List.

5. The above four sentences may be written in any order. They may be followed by any
other sentences which the compiler simply reproduces on the Edited List.

6. The INSTALLATION, SECURITY, and REMARKS sentences wre all optional, and if
used, may contain any information the programmer requires to be reproduced on the
Edited List.

EXAMPLE

IDENTIFICATION DIVISION.
PROGRAM~ID. PAYROLL 13.
NEXT~PROGRAM. PAYROLL 14,
AUTHOR. GEORGE GECOM.
DATE~COMPILED. APRIL 25, 1961.
INSTALLATION. GENERAL ELECTRIC.
SECURITY. CLASSIFIED.

REMARKS. GROSS TO NET RUN.

@ E ° 2@@ @E [% n Eg REFERESEEOT!AI:!ULIJ

-156-

9. DATA MANIPULATION

OBJECT PROGRAM DATA STORAGE AND MANIPULATION

Data Storage-General

The following explanations and descriptions are presented to assist the GECOM user in under-
standing his object program and improving its efficiency. The compiler uses the field data
descriptions to determine storage mode. The data images directly affect the coding produced for
object data manipulation. Carefully written data descriptions are necessary to enable the compiler
to produce an accurate and efficient object program.

Numeric Fields

A numeric field has a value in relation to other numeric fields or zero. The data image of a
numeric field represents the maximum range of its value. A numeric field must be described
using only the symbols 9, +, -, T, , K, R, ., V, P, E, §, comma(,), Z, and *,

The data image of a numeric field is used by the compiler to determine the range and decimal
point alignment when used in conjunction with other numeric fields. A field should be described
as numeric only when the compiler must know its range and decimal point alignment.

Numeric constants appearing in the Constant Section are stored as numeric fields.

Alphanumeric (or Alphabetic) Fields and Elements

An alphanumeric fielc or element consists of any mixture of characters comprising the computer's
character set. This type of field or element should be thought of as a string of characters. It

has no "value' as associated with a numeric field. An alphanumeric field must be described using
only the symbols A and ‘or X.

Literal constants appearing in the Constant Section are stored as alphanumeric fields.

Procedure Division Numeric Constants

Numeric constants may appear in procedure sentences in conjunction with numeric fields. The
compiler produces a numeric field from the numeric constant as written. The numeric constant
is stored in the mode indicated in the data description of the numeric field., Numeric constants
must be written with the same care as numeric fields are described, since the compiler must, in
effect, create a data image for the numeric constant.

The only sentence in which a numeric constant may appear without an accompanying numeric field
is in an ADVANCE sentence.

ME. QMM @EH T[22 -
(Gl 2@)@ g;ﬁl%\ 5 TR
. R R REFERENCE MANUAL

-157-

Procedure Division Literal Constants

Literal constants may appear in procedure sentences in conjunction with alphanumeric (or alpha-
betic) fields or elements. An alphanumeric field is produced by the compiler from the literal
constant as written. Literal constants always appear as strings of characters and should be
thought of as alphanumeric fields. Literal constants may appear without :1n accompanying alpha-
numeric field or element in the STOP and WRITE, Option 1, sentences.

Figurative Constants

Figurative constants may be used in procedure sentences to imply strings of characters.

Figurative constants may be used in conjunction with either alphanumeric or numeric fields. If
used with an alphanumeric field or element, a siring of characters as represented by the figurative
constant is created as an alpahnumeric field. If used with a numeric field. the figurative constant
is stored according to the data image of the numeric field (for example, "'ones' used with a numeric
field data image of 999V999 yields 111V111 as a numeric constant). The cr2ated numeric constant
is stored in the same mode as the numeric field.

Figurative constants should be used only as a convenience for implying strings of characters.

Process Storage

The compiler analyzes the Procedure Division to decide when an input field or element should be
stored outside of the input record for more efficient Procedure Division manipulation. This
storage area (outside of input, Working Storage, and output areas) is called Process Storage since
it contains the fields and elements being processed by the Procedure Divisicn. Process Storage
is a compiler generated extension of Working Storage.

Any i:aput field or element referenced by a procedure sentence other than MOVE, EXCHANGE, or
WRITF, Option 1, sentences is placed in Process Storage in a format compatille with data mani-
pulaticn techniques and the computer instruction repertoire.

All numeric fields placed in Process Storage are stored in either fixed or {l»ating point binary
mode, depending on the COMPUTATION MODE sentence in the Environment Division and the
True-False and integer declarative sections. If the computation mode is flcating point, all
numerics other than integers and true-false variables are stored in floating point binary mode. If
the COMPUTATICN MODE sentence is absent from the Environment Division, all numerics are
stored in fixed point binary mode. Integers and true-false variables are always stored in fixed
point binary mode at a binary scale of 19.

All alphanumeric fields placed in Process Storage are stored in BCD mode, left justified with no
significance as to fill on the right. Alphanumeric fields in Process Storage are always unpacked.

Array fields appearing in Process Storage are stored consecutively. Numeric arrays are stored
under the same conventions that determine numeric field storage. Alphanumeric arrays are
stored unpacked in an integral number of words.

@1 E ° 2@@ ggﬂ% U ES REFEREEEIC-;OS[AI:JUL{

-168-

Working Storage

Fields and arrays named in Working Storage are stored under the same conventions as Process
Storage fields and arrays.

The compiler analyzes the Procedure Division to determine if a Working Storage field is referenced.
All fields described under the Working Storage Section are assigned memory space if referenced

in any procedure sentence. If a Working Storage field is never referenced, it is never assigned

a storage area.

Elements of Alphanumeric Fields

An element when used in procedure sentences, other than the EXCHANGE, MOVE, and WRITE,
Option 1, sentences is stored separate from its parent field as an alphanumeric field. When the
element is a destination under the MOVE sentence, the compiler provides for updating the parent
field. Also, the compiler provides for updating any elements that overlap the original element via
character position. When the parent field is a destination under MOVE or EXCHANGE sentences,
the compiler provides for updating all elements of the parent field.

Object Program Action in Executing a READ Sentence

The following actions take place when the object program executes the coding corresponding to a
READ, Option 2, sentence:

1. The next logical record (or *group) from the specified file is made available to the
Procedure Division.

2. All fields and elements that have been assigned to Process Storage by the compiler
are moved from the input record to their assigned locations in Process Storage. An
input array is moved to consecutive storage locations.

3. BCD numeric input fields being moved to Process Storage are converted to fixed or
floating point binary mode depending upon the mode assigned by the compiler.

4. Alphanumeric fields are moved and unpacked to integral word storage. When necessary,
elements are unpacked from their parent fields to separate storage. After the READ
sentence is executed, any fields or elements from the previous input record of the same
type have oeen destroyed. The user should ""save' input fields (if required for later
use) by moving them to Working Storage before executing the READ sentence for the
next record.

Object Program Action in Executing a WRITE Sentence

The following actions take place when the object program executes the coding corresponding to a
WRITE, Option 2, sertence:

1. The output record (or *group) is assembled from the first described field to the last
described field.

2. The WRITE sentence acts as a gather move from input records, Process Storage,
and Working Storage depending upon output qualifiers and the storage assignments
for the output fields.

BE-200 SERIES TEFERce WAL

-159-

3. When necessary, numeric fields are converted from fixed or floating point binary to
BCD numeric with editing if specified in the output field data image.

4. Alphanumeric fields are moved to the output record or group with truncation or
space fill to conform to the output field data images.

5. If no data image appears in the output record description for ine field, the field is
moved without alteration to the output record or group.

The WRITE sentence does not destroy the fields described under the output record or group.
These fields or elements are still available at their sources (not in the output record or *group)
for Procedure Division manipulation.

Wherefields named in output are in an input record, the compiler determines the most efficient
type of move to make (if the field has an associated Process Storage area .

1. If the output field is alphanumeric and has been assigned a Process Storage area, it
is always moved from Process Storage.

2. If the output field is numeric and binary, it is always moved from Process Storage.

3. If the output field is numeric and BCD, it is moved from the input area unless the
output field has ever been a receiving field, in which case it is moved from Process
Storage.
Dating

If date symbols are not used the object program expects to find the six BCD date characters in
locations 1076; and 1077,.

BINARY SCALING

The compiler stores all data that is numerically described into two GE-200 Series words. In-
tegers and true-false variables are stored with a fixed binary scale of 19, with the second GE-200
Series word zero filled.

Fixed point numbers, which are represented as decimal numbers on externcl media, are read into
a GECOM program and converted, if necessary, to binary numbers. At compilation time, the
data image of the decimal number is examined to determine if the position of the decimal point
permits a binary point of 19. The number is stored in two GE-200 Series words, if possible,

with a binary point of 19. This is standard GECOM scaling.

If the number of digits to the left or right of the decimal point (or assumed cdecimal point) in the
data image is too large (exceeds 5) to allow a binary scale of 19, the scale as shown in Figure 11
is assigned.

GE-200 SERIES o

REFERENCE MANUAL

-160-

DATA DESCRIPTION OF
DECIMAL NUMBER GECOM BINARY POINT
Number of Number of
Integer Digits Fraction Digits
0 to 5 0 to 5 19
1 to 5 0 19
0 1 to5 19
0 11 1
0tol 10 5
0 to 2 9 8
0 to 3 8 11
0 to 4 7 15
0 to 5 6 18
6 1to5 21
7 1 to 4 25
8 1 to 3 28
9 1 to 2 31
10 1 35
6 to 11 0 38
Figure 11. Binary Scale Assignment
EXAMPLE:
If the data image is: 2 words of memory are: and binary scale is:
999v99 wordl: 999
word2: 99 19
99999Vv99 wordl: 99999
word2: 99 19
99999999V9 wordl: 99999 28

word2: 9999

Use of Scaling Factor

The GECOM scaling factor, S, is used in conjunction with fixed point data images which exist
on external media as nonstandard binary numbers. The number is nonstandard if:

° It is only one word length, or

° It is two word lengths, but its scaling does not follow the above table.

GE-200 SERIES e

REFERENCE MANUAL
-161-

The binary scaling factor for nonstandard input data must be known and described in the Data
Division:

° A 1 or 2 in the format column to indicate the nonstandard data zre one or two
word lengths, and

. An S and the binary scale of the nonstandard data must follow the data image:
999v99528

The data may be written from a GECOM program by indicating the binary scale in the same
manner. For instance, 99999V99 would ordinarily have a binary scale of 19. If the data is to go
to tape with a nonstandard scale, for instance 15, it must be indicated in the data image column
as 99999V99S15.

The S can also be used in conjunction with M on input files to force a given internal scale, for
example, M99K9S38 forces a scale of 38 instead of 19 in process storage. This technique may
be used on card or tape files.

Use of 1or 2 in the Format Column

When the 1 is used, the binary scale will not exceed 19.

The scaling factor and the 1 and 2 in the format column may now appear in output files in addition
to input files and Working Storage.

Regardless of the binary scale of the data on the external media, the data are stored internally
in two GE-200 Series words with the binary scale as indicated in the above table. The scaling
factor, S, is not intended as a tool for manipulating the internal binary scale. Figure 12 gives
examples of external and internal storage.

Table 9. External and Internal Storage

Storage
Format

Column Data Image External Internal
1 99Vv99Ss5 I :’ [|]
S1 5A 19 S 19~ 820 38
1 9984 I | | 11 |
S1 4n 19 S 19 S20 38
1 999V99516 l l] L I
s1 16A 19 S1 19. S20 38
2 999v99s528 I l l l [l L I
S1 19 s20 28a 38| s1 19~ 820 38
2 999999V9s ‘u I | I I I J L J
s1 19 S20 24a 38| s1 19 SZO21A 38

Figure 12, External and Internal Storage

GE-200 SERIES SRR L

-162-

Integer Arithmetic

Though the scaling factor may not be used to indicate internal scaling, it is possible to forcg a
binary point of 38 when necessary for accuracy in decimal representation of a binary numeric.

The loss of accuracy in decimal places is due to conversion of decimal fractions to binary fractions
in binary computers. In this conversion, representations of decimal fractions become endless
binary numbers. Because this binary fraction is limited by the binary scale assigned to the field,
it must be truncated. Therefore, for accuracy, the data must be described as integer and the
fractional part must appear to the left of the decimal point. For example, instead of an image of
9(9)V99, an image of 9(11)V could be used. The 9(11)V image forces a binary point of 38 to be
carried internally resulting in all arithmetic operations being carried out in integer arithmetic.

If the field is to be converted to BCD at output time, it must be divided by 100 and described in
Working Storage with a decimal point. The field (qualified, if necessary) may then be named in
the output files.

When using integer arithmetic, alignment of (understood) decimal points is the responsibility of
the programmer. Therefore, when carrying all numeric fields as integers, carry the maximum
necessary understood decimal places in all data. For example, a payroll program dealing
primarily in dollars aad cents may have constants requiring three decimal places (as 1.5% = . 015).
It is advisable under such circumstances to carry all data with three understood decimal places;
for example, an amount field 25, 02 should be set equal to the integer 25020.

USING K IN DATA DESCRIPTIONS

As a convenience for users doing computations using integer arithmetic, conventions have been
extended to allow the insertion of actual decimal points in output fields that were described in
input, Working Storage, Common Storage, *Common Storage, or Constant Sections as integers.
This extension pertains only to numeric fields.

Input, Working Storage, Common Storage, *Common Storage, or Constant Section numeric fields
may be described with a K in place of an actual or assumed decimal point. The K is not a charac-
ter of the field, but merely designates decimal point placement with respect to output. Input,
Working Storage, Cornmon Storage, *Common Storage, or Constant Section fields described with
a K are interpreted as integers for all internal manipulations.

Fields which are described with a K in input, Working Storage, Common Storage, *Common
Storage, or Constant Sections, if named in output, may be described in output with an actual
decimal point. The combination of K in input, Working Storage, Common Storage, *Common
Storage, or Constant Sections and an actual decimal point in output causes the insertion of a
decimal point in output data without scaling.

BE-200 SERIES e WAL

-163-

EXAMPLES:

INPUT-FIELD
OUTPUT-FIELD

INPUT-FIELD
OUTPUT-FIELD

INPUT-FIELD
OUTPUT-FIEID

INPUT-FIELD
OUTPUT-FIELD

K Conventions

EXAMPLE: All are input or Working Storage fields.

GE-200 SERIES

DATA IMAGE ACTUAL INPUT AND OUTPUT
999K99 12345
+ 999, 99 +123.45
99999K9 123456
99999.9 + 12345.6 +
999K9S19 0000173 0000000 (Octal)
Z79.9 12,3
99K9 123
999 123

Output fields must be designated as BCD for the decimal point insertion to have

meaning.

Input fields described with K must be integers, that is, without a decimal point.

K may be used as a means of documentation in problems using integer computations.
Constant Section, Working Storage, Common Storage, and *Common Storage field
data images may contain K even though the fields are not named in output.

All other editing features are available for output fields where the decimal point
is being inserted from a K position.

A source field, with K in its description, and a receiving field with V in its
description results in all zeros being added to the right of the V and the entire
sending field (which is an integer) to the left of the V. Conversely, the fractional
part of a source V field is lost if the receiving field is a K field.
that K and V not be used at different places to describe the same data. If data are

integers, the V is not needed and adds confusion.

DATA NAME

TOT~1
TOT~2
FACTOR
FACT

SENT~1.

The actual value result is:

IMAGE

9(5)K9
9(4)v99
99Vv999
999K999

MOVE TOT~1 TO TOT~2,

345600.

SENT~2. MOVE FACTOR TO FACT.

The actual value result is:

000012.

It is recommended

ACTUAL VALUE

123456

12345

GECOM - II

-164-

REFERENCE MANUAL

When using integer arithmetic, with or without K in the data image, the user maintains the decimal
point alignment, or scaling. In integer arithmetic the decimal point is assumed at the right of the
number. The following examples should be studied before using K in data images.

EXAMPLES:
DATA NAME IMAGE ACTUAL VALUE
INPUT ITEM~A 999K999 123456
INPUT ITEM~B 9K999 1234

WORKING~STORAGE TOTAL 999K999
SENT~1. ADD ITEM~A TOITEM~B GIVING TOTAL.
123456 1234 124690

In this case alignment causes no problem, but if the following images were used, the result
124690 might not be desired.

DATA NAME IMAGE ACTUAL VALUE
ITEM~C 99K 9999 123456
ITEM~D 999K9 1234
TOTAL~1 999K999

SENT~2. ADD ITEM~C AND ITEM~ D GIVING TOTAL~1,

The execution of SENT~2 still gives the integer 124690 as the total.

In arithmetic operations the scaling of ITEM~C, ITEM~D and TOTAL~1 should be aligned by
multiplication.

Multiplication

If ITEM~A and ITEM~ B above are multiplied, the receiving field should have six 9's to the right
of K, for the field remains an integer regardless of the position of K.

If the following scaling (as denoted by K) were desired, the product should be divided by 100.

MULTIPLIER 99K99
MULTIP LICAND 999K99
PRODUCT 9(5)K99
PRODUCT~WS 9(5)K9999

SENT~3. MULTIPLY MULTIPLICAND BY MULTIPLIER GIVING PRODUCT~WS.

DIVIDE 100 INTO PRODUCT~WS GIVING PRODUCT.

GE-200 SERIES REFERENCE WAL

-165-

Division
The principles of integer-arithmetic apply to division, for example:

SENT~4. DIVIDE Y INTO X GIVING Z.

where,
IMAGE ACTUAL VALUE
X 99K99 333
Y 9K99 222
Z 9K9

The result will be equal to 1 since an integer is specified as the receiving field. The actual
result is 1.5 which may be obtained by:

SENT~4. MULTIPLY 10 BY X.
DIVIDE Y INTO X GIVING Z.

Summary

The K is used in input, Working Storage, Common Storage, *Common Storage, or Constant
Sections to aid the programmer who is using integer arithmetic. The use of K accomplishes two

things:

1. It is a visual aid in the program listing for keeping track of assumed decimal points.

2. When a field with K is moved to output via the implied move and output is described
with a "."" (actual decimal point), the actual decimal point is inserted in the K
position.

3. A field with K may be moved only to an edited field in output via an implied move.

REPEATED GROUPS

Data described in a repeated group (see Language Structure, Arrays) may have identical or
different data descriptions. Nonrepeated groups may not be described after repeated groups for

a given file in the Data Division.

For greater program efficiency it is recommended that:
1. Homogeneous data in output files be described as arrays.

2. Repeated groups only be used to describe nonhomogeneous data in input files.

@ [© . D @EQ‘F' S CFOOM - 11
R AR RRE SIS FUFPRINCT MANT AL

ESRCRNY Toit

-166-

3. Repeated groups not be used in output files.

in output, the group name must appear in the

Correct Method

OUTPUT FILES
FD OUTPUT1

R OUTREC
F AA

F BB

G GROUP1
INPUT FILES
FD INPUT1
R RECORDI1
F AA

F BB

G GROUP1
F CC

F DD

However, if a repeated group is used
output record description. For example:

Incorrect Method

OUTPUT FILES
FD OUTPUT1
R RECORDI1
INPUT FILES
FD INPUT1
RECORD1
AA

BB
GROUP1
CcC

DD

o QD

For purposes of discussion and examples, consider the following sample Data Division:

GENERAL 0 ELECTRIC GENERAL COMPILER DATA DIVISION FORM
COMPUTER DEPARTHENT PHOENIX ARIZONA
FRoGRAN TERTE
[Procraunern T [conpureR Prace or
|
OU|T{PUT FIL:S. N
FD| [FILE~2. i
_ R| |RECORD-~ ~ R
Fl [FIELD~D ||
Fl| |[FIELD~E | ~ L
F| [FIELD~F R 1 - [
B INP[UT FILE - 11 N -~
FD| [FILE~1 .
R RECORD~ S
. Gl [cROUP~a4 - 3 I R A I R I
Fl |[FTELD~aA - R X, (4)
F| [FIELD~B N | 9,(A57)7) . T
Fl|[FTIELD~C 1 X7, N
e el 1 | - .
| WORIKING~ST)IRAGE| |SECTION,- _ 8 L ~
| F| [FIELD~D ~ . . | | .] X (4)
Fl [FIELD~E o 9.(3).
F| [FIELD~F X (7)
e Fl| [FIELD~B?~WS 3 . , _ 9.(3). -
Gl [GROUP~A~WS _ e 3] R o
Fl FIELD~2a WS . "{{&)V o
AAAAAA F| [FIELD~B ~Ws$S R O 9(3) o
- FJ/[FIELD~C ~WS X (7)) .
TRTRERT -
GECOM - IT

GE-200 SERIES

-167-

REFERENCE MANUAL

To facilitate data manipulation by the Procedure Division, the compiler allocates memory to the
repeated group entries as shown below:

TYPE DATA NAME REPEAT DATA IMAGE

(PROCESS STORAGE)

F FIELD~A' 3 X(4)
F FIELD~ B! 3 9(3)
F FIELD~C' 3 X(7)
(WORKING~STORAGE)

F FIELD~A~WS' 3 X(4)
F ; FIELD~ B~WS' 3 9(3)
F FIELD~C~WS' 3 X(7)

The user need not consider the memory allocation when referencing items listed in the repeated
group. However, the repeated group may be thought of as a two-dimensional array where each
single group is a row, and each field described as a column. Pictorially, the above input repeated
group could be represented as:

GROUP~A(1): FIELD~A FIELD~B FIELD~C
GROUP~A(2): FIELD~A FIELD~B FIELD~C
GROUP~A(3): FIELD~A FIELD~B FIELD~C

To clarify the repeated group technique, the following examples are offerec:
(In each example, the second GECOM sentence, or set of GECOM sentences, is intended to
illustrate how the compiler interprets the user sentence for implementation.)

1. To move the entire repeated group to another repeated group of the same size, use
the group names with no subscripting:

GROUP~TO GROUP: MOVE GROUP~A TO GROUP~A~WS.
is interpreted as:

MOVE FIEID~A' TO FIELD~A~WS'

MOVE FIELD~B' TO FIELD~B~WS'

MOVE FIELD~C' TO FIELD~C~WS'

2. To move a column of the group to a one-dimensional array, give the field name and
the qualifying group name with no subscripts:

COLUMN~TO~ARRAY. MOVE FIELD~B OF GROUP~A TO FIELD~BP~WS.
is interpreted as:

MOVE FIEID~B' TO FIELD~BP~WS.

@E ° 2@@ gE[Rg ﬂ Eg REFERE;EEO:AI:JUS

-168-

™R

g

o

6.

[N

to move o single field of the group to a field, use the field name and the qualifying
roup name with subscripting:

FIE LD~ TO~FIELD, MOVE FIELD~A OF GROUP~A(2) TO FIELD~D.
is interpreted as:
MOVE FIELD~A'2) TO FIELD~D,

To vutput ¢ entire repeated group, the group name only is entered in the output
descriptior without listing the fields under the group name:

TYDE DATA NAME
OUTPUT

R RECORD~A
G GROUP~ A

The above eutry would output the entire repeated group as it appeared in the input
tile record.

It the field aames were also listed, the group would appear in the output record
twice; first, as it appeared on input and, next, as the three columns.

To output « column from the group, the field name and the qualifying group name is
listed in ouiput.

TYPH DATA NAME QUALIFIER
OUTPUT

R RECORD~A

F FIELD~A GROUP~A

The above ntry would output FIELD~A of GROUP~A(1), FIELD~A of GROUP~A(2)
and FIELD ~A of GROUP~ A(3) when RECORD~A is written.

To output « row, the individual fields must be moved to Working Storage and those
Working-Storage fields are listed in output.

The necessary procedure sentences to output a row would be:

MOVE FIELD~A OF GROUP~A(1) TO FIELD~D.
MOVE FIELD~RB OF GROUP~A(1) TO FIELD~E,
MOVE FIELD~C OF GROUP~A(1) TO FIELD~F,
WRITE RECORD~2,

It the tield: listed in the repeated group have different data descriptions, certain
conventions must be followed.

Repeated g ouns may contain alphanumeric data (image A or X) and numeric data
(image 9;¢ the » in BCD or binary. However, any alphanumeric field that precedes
a nunye vl ielt recorded in hinary must be a multiple of 3 characters or must be
unpack:d

Only typc o i FL ficlds may be used in a group which is repeated.

GECOM - IT
REFERENCE MANUAL

-169-

EXAMPLE:

All fields are packed, none of the numeric fields are carried as binary.

All fields are unpacked, all numeric fields are carried as binary,

GENERAL @ ELECTRIC GENERAL COMPILER DATA DIVISION FORM
COMPUTER DEPARTWENT, PHOENIX, ARIZONA
“rocere
PiOGRANNER Coururen ar
seovence ‘ oaTa manE SuaLiFier HEOER EOEE Fosition .
s o R
13 t‘vé dle e ey r2 vy va bs s e 1R 19 26 2122|2324 25 26,27,2¢ 29 30 31 32 43 34 35f36 EEISREFE PRI PRI PRI P PR ERSERAFES EEBES] FRY EERER] B EEE 5 s u -
G GROUP~1 P ¢ 035
F| {AA X (-
F BB 9 < v
F cc A
F DD 9 ¢
F EE X H
. . |
~.. S A g e

GENERAL@ ELECTRIC GENERAL COMPILER DATA DIVISION FORM
CoNFUTER DERARTHENT, PHOENIE, ARIZONA
TroTRAY
PROGRANNER compurER ar
TR
seaurnce 4 bata Name ousieier HEEDR Fosition
= o
[N T O I T T T) T e T P e Ve e ol . et asasti e
Gl [erROUR~2 u| joos| |B
Fl |aa X (2)
F| [B B 9(s)va
F| |cc A(2)
F| |pD 99vs
F| |[EE X
I | I |

All fields are packed, all numeric fields are carried as binary. Note the fill used on the alpha-

numeric.

GEN ERAL@ ELECTRIC GENERAL COMPILER DATA DIVISION FORM
CONPUTER DERARTHENT, PHOENIX, ARIZONA
T
| PrOGRANKER COWPUTER IF
seovence ! saTa wane avaLirier HE Fosition | Fata eaor
» . S Lt
D LT LD o] lals s velalie voho o aafssfoadas ve 72 P O A N N o ottt s e s e e
I Ll i i ol il i el ! |
| lerRouP~3 - p| [0o5] |B)
F| |a A X (2)8B
F| |8 B 9 (L) Ve
F| |cc A(C2)B
_FL DD B L _ 99V 9
Pl [. _ X B B
- R I I .
Qs S A E | L o

GECOM - II

BE-200 SERIES

-170-

REFERENCE MANUAL

10. USING GECOM TO OBTAIN
EFFICIENT OBJECT PROGRAMS

For any compiler to produce efficient programs, there are certain rules and techniques to follow
which are independent of the compiler itself.

The user should first analyze the problem from an input/output point of view, looking for the most
efficient way to lay out his input and output with respect to data movement. In doing this, the
following rules should be considered to reduce execution time and the number of instructions
generated.

1. An incoming decimal number must be converted to binary before it can be operated
on. Therefore, all fields which will be used arithmetically must be described as 9-
type fields in the Data Division. Also, these fields should be kept in binary from
run to run to eliminate repeated conversions until they are required as a decimal field
in output. Repeated conversions only add unnecessarily to each object-program's
execution time. Fields not used arithrnetically should be described as alphanumeric.

2. Fields which are not referenced or operated on in the Procedure Division but are
moved frora input to output are defined as throughput fields. Throughput fieids should
be combined into strings of characters. A string may not exceed 83 characters in
length. Each string must then be described as an alphanumeric field. Arranging
the referenced fields separately from the unreferenced fields provides stringing
capabilities. Strings of characters (up to 83 each) result in fewer instructions being
generated and faster execution time than the same number of characters in shorter
fields.

3. Fields of high activity should be maintained as unpacked from run to run. Unpacking
may be accomplished either by the compiler at object time or by the arrangement of
output data. Input data is assumed to be packed unless stated as unpacked in the
format column.

Fill may be used to force the fields to form an integral number of GE-200 Series words.
Character manipulation of fields causes more instructions to be generated and exe-
cuted as opposed to word manipulation.

4. Advantage should be taken of an output record that is a direct reflection of an input
record. The input record name should be used as the output record name with the
corresponding input file name as its qualifier. This is sufficient description for the
output reccrd.

When only the record name is used in output, the entire input record is moved to
output rather than a field by field move to the output area. The record movement is
made by words without regard to field positioning, resulting in fewer instructions
and faster execution.

5. Files assigned to the card reader and/or the card punch should be buffered. Memory
space is allocated to provide for buffering of these files whether or not used. Files
assigned tc the high-speed printer and magnetic tape units should also be buffered if

GE-200 SERIES TEFERENGE WAL

-171-

memory space permits it. Also, blocking of logical records should be used where

memory space is available. Through blocking and/or buffering of files, faster exe-
cution time will result from fewer actual reads or writes per file. A balance must
be struck by the user between execution time and memory space.

Fields used arithmetically should be kept at the same decimal or binary scale. Con-
stants should be compatible scale even at the cost of additional constants. Fields
which have the same scale require fewer instructions to perform the arithmetic
functions which result in faster execution.

The primary contribution to efficiency in the Procedure Division is through the use of fields as
they have been described in the Data Division and through judicious of the various verb options.

1.

Use the ADD, SUBTRACT, MULTIPLY and DIVIDE verbs when performing arithmetic
operations. A more extensive analysis is made of the data descriptions for these
verbs as opposed to the assignment sentence. Use of the ASSIGNMENT verb may be
an easier method of writing expressions but is to be used for complex arithmetic
expressions involving operations that cannot be done with the ADD, SUBTRACT,
MULTIPLY, and DIVIDE verbs.

The MOVE verb should be used in preference to the ASSIGNMENT verb to move one
field to another. Fewer instructions result from using the MOVE verb.

Example: MOVE A TO B. instead of B = A.

Under the MOVE verb, multiple receiving (TO) fields should be used rather than
many MOVE sentences.

Example:

MOVE A TO B, C, D.
instead of
MOVE A TO B.
MOVE A TO C.
MOVE A TO D.

The compiler automatically provides for the initializing of elements when they are

affected by a MOVE sentence. The user should not initialize these elements
individually.

Example:

DATA DIVISION

F A A(10)
E B 0103
E C 0207

MOVE SPACES TO A. is sufficient.
It is not necessary to:

MOVE SPACES TO A, B, C.

GE-200 SERIES

REFERENCE MANUAL

-172-

4, Option 4 of the IF verb should be used to test the value (in relation to zero, positive,
negative) of a single numeric field.

Example:

1F A IS ZERO GO TO SENT~1
instead of
1IF A EQ 0 GO TO SENT~1.

Using Option 4 will eliminate instructions and their execution.

5. The "GO TO sentence-name,, sentence-name, ... DEPENDING ON field-name"
sentence should be used for a series of sequential tests rather than multiple IF
statements or a series of IF statements. The field does not have to start with the
numeric value of one. The arithmetic verbs ADD and SUBTRACT may be used to
adjust the field prior to using the GO TO ... DEPENDING ON option.

Example:

A series of values begins with 51 and ends with 56.

SUBTRACT FIFTY FROM A GIVING B.

GO TO SENT~1, SENT~2, SENT~3, SENT~4, SENT~5, SENT~6,
DEPENDING ON B.

Fewer instructions and faster execution time results in using the GO TO...
DEPENDING ON option rather than a series of IF statements which must be executed
sequentially.

6. Sections should be used to conserve memory for sets of common sentences that
appear in two or more areas of the program. The use of section results in a saving
of memory space.

1. Program loops that have the same duration and are executed in a logical chain should
be controlled by one VARY statement. Fewer instructions are generated to control a
single loop as opposed to many loops resulting in faster execution time. Also, memory
storage is saved by one VARY statement.

8. Numeric f:elds referenced in a single ASSIGNMENT, ADD, SUBTRACT, MULTIPLY,
DIVIDE, or IF sentence should have like integer and fraction portions in their data
images. This also includes any numeric constants used in the statement. Data
images for constants may be manipulated by leading or trailing zeros. Also,
Working-Storage fields may be manipulated by increasing size descriptions.

Example:
ADD A to B GIVING C.

999v99 +999.99 999.99-
ADD A to 001. 00 GIVING C.

999Vv99 999.99-

IF AS EQ BX GO TO SENT~1,
999999V9 $999999. 9+

IF AX2 EQ 0000010. 0 GO TO SENT~2,
Z2999999V9

Note: Different editing and sign features are not significant--
only 9-type characters.

GE-200 SERIES e

REFERENCE MANUAL

-173-

9. Two and three dimensional subscripts, if used repeatedly in the ADD, SUBTRACT,
MULTIPLY, and DIVIDE statements, should be computed by the user and stored in
an integer field. The computed subscript can then be used as a single subscript.
Example:

ARRAY SECTION,

A3, 5,7)
B(lO, 10).
SS1 = ((I-1)*5+(J)+(K-1)%3%5).
((F-1)*10+(J)).

D A(SS1) TO B(SSZ)
IF A(SSl) EQ B(SS2) GO TO SENT~1.
instead of
ADD A(l, J,K) TO B(5, J).
IF A(L J,K) EQ B(5,J) GO TO SENT~1.
The general formula for computing two and three dimensional subscripts is as follows:
ARRAY SECTION.
A(D,, D;, Dy). B(D,, Dg).
A(l, J,K)
A subscript = ((I-1) *Da+ +HK-1)*D, *D,).
B(1, J)
B subscript = (I-1)*Dg +(J).

Since the subscript is computed only once, -fewer instructions are generated and a
faster execution time results.

The following subroutines (which are described in the GECOM Operations Manual) have been
modified with respect to object program efficiency:

1. The subroutine, ZUA, which performs word moves, also handles fields with one
or two characters preceding and/or following the full words to be moved.

2. The subroutine, ZIP, moves a source field to a destination field of the same
starting character position and the same number of characters whenever ZUA
cannot be used because there is not a full word to move.

3. Because these two subroutines improve execution time, the use of the subroutine
ZAM should be avoided whenever possible. ZAM is slower because it must
handle cases where the destination field is larger than the source, and/cr where
starting character positions are not the same.

Use of the two subroutines, ZUA and ZIP, should influence file design. With these improvements,
the object program is able to take advantage of data layout.

@ E ° 2@@ gEB@g “ Eg RFFFREEEEO:AI:IU;i

-174-

11. TABSOL

INTRODUCTION

This section describes TABSOL (TABular Systems Language), a structuring technique in which
the step-by-step decision logic of a problem is described in table form. Tables provide a graphic
representation of decision procedures showing alternatives and exceptions explicitly. Relation-
ships between variables are shown clearly, and the sequence of conditions and actions is depicted
unambiguously.

GECOM/TABSOL

With GECOM, tables can be written in an easily readable language which can be keypunched
directly for computer input, GECOM ccnventions (see Language Structure, Chapter 3 of this
manual) apply to TABSOL except as specifically noted in this section. The rules for formation
and usage of words, data names, constants, subscripts, true-false variables, arithmetic ex-
pressions, condition names, and qualifiers are the same. A knowledge of GECOM is required to
use TABSOL.

DECISION TABLE FORMAT

The format for a decision table is an array of blocks divided into four quadrants by a pair of
double lines. The vertical double line separates the decisions or conditions on the left from the
actions on the right. The horizontal double line isolates variables from associated operands which
appear in the blocks and rows below. This format is illustrated in Figure 13.

T
A A A H 5 5 5
I N N N E
F 1 D 2 D---D k N 1 2 -—- n
PRIMARY
ROW AGE EQ AGE
C | 26 26 1
2
SECONDARY
ROWS ﬁ 3
4
- m
—)\ J
N I
Conditions Actions

Figure 13. Decision Table Format

@ E ° 2@@ [LE E)a \] E§ REFERE(I\;JE(};OEAI;UiIIJ

-175-

A condition is a relation between a variable appearing in a primary block and an operand appearing
inacorresponding secondary block. For example, AGE may be written in primary block 1 and

EQ 26 may be written in secondary block 1. In this way a condition is stated and the question

"if age equals 26" is asked.

An action is a statement of what is to be done. By writing AGE in a primary action block and 26
in its associated secondary block, it is stated that '"the value of '26' is to be assigned to AGE. "

The vertical lines in the table may be interpreted as follows. The leftmost line may be thought

of as representing the word IF. Those lines to the left of the vertical double line may be taken

to mean AND; the vertical double line itself the word THEN, Since actions are sequential

entities, the lines separating them may be interpreted as semicolons and the rightmost line,

which actually terminates the actions, as a period. With this in mind, each secondary row becomes
an English sentence. For example, each row now reads:

IF condition-1 is satisfied AND condition-2 is satisfied AND ... AND condition-k is
satisfied THEN perform action-1; action-2;.... action n.

If any condition within a row is not satisfied, the next row is evaluated and so on until all the rows
are depleted. When this happens the table is said to have '"'no solution.' The table is considered
"solved' when all the conditions of a row are satisfied and their associated actions performed.
Figure 16 on page illustrates a sample Decision Table.

TABLE ENTRIES

Formation of Conditions

By definition, a condition is a relation between a primary block entry and scme corresponding
secondary block entry. A condition, like a relational expression, may be either true or false.
From :iiis definition, a condition may be either a relational expression, a lcgical expression, or
a true-false variable since these are the only elements that yield a truth-value.

The formats on following pages show how these expressions may be split between primary and
secondary blocks to form conditions. In these examples, the word operand stands for either a
variable (data name or subscripted data name) a constant (literal, numeric, figurative, or named
constant), or an arithmetic expression. The word relation signifies one of the relational operators
(see next paragraph). Since arithmetic expressions may be operands of relational expressions

and relational expressions operands of logical expressions, it necessarily follows that arithmetic
expressions may appear in logical expressions.

GE-200 SERIES FFERENCE HANAL

-176-

Relational Operators

The only permissible relational operators in a decision table are listed below. Only the symbol
for the relation is allowable.

Symbol Relation
EQ Equal to
GR Greater than
LS Less than
NEQ Not equal to
NGR Not greater than
NLS Not less than

Condition Formats

Format Example
Operand-1 Relation LEVEL EQ
Operand-2 10
Operand-1 EXPERIENCE
Relation Operand-2 GR &4

Operand-1 Relation

Operand-2 OR Operand-3

Operand~-1

Relation-1 Operandy OR

Relation-2 Ope¢rand-3 ...

No Entry

Condition-neame

GE-200

TOTAL (I) NLS

PT(1) OR PT(2) OR PT(3)

(X+Y)**3

GR P+1 OR LS Q(I)

PROGRAMMER

GECOM

- I1

!

o
&z

|

@
(N

-177-

REFERENCE MANUAL

Format Example

NOT NOT

Condition-name FEMALE

No Entry

NOT Condition-name NOT FEMALE

No Entry

True-False Variable REQ~1

NOT NOT

True-False Variable END OF FILE OF INVENTORY
No Entry

Logical Expression PROGRAMMER OR ANALYST
NOT NOT

Logical Expression X GRY OR X LS (z+1)

BE-200 SERIES

REFERENCE MANUAL
-178-

Condition Column Rules

Figure 14 illustrates some of the rules for condition columns.

N = Prohibited Y = Permissible

Primary Row Operand Operand- Operand- Blank "Not"

Entry Relational Logical
Secondary — Operator Operator-
Row Entry Operand
Operand N Y N Y Y
Operand-
Relational N N N N N
Operator
Operand-Logical
Operator- N Y N Y Y
Operand
Blank N N N N N
""Not" Operand N N N Y Y
Relational
Operator- Y N N N N
Operand
Operand-Relat-
ional N N N Y Y
Operator-Operand

Figure 14. Rules for Condition Columns

The above table is not all inclusive. It shows only the basic combinations. However, from this
basic table, the more complex combinations may be determined.

Certain combinations in the above table are permissible for only certain types of operands. For
example, a blank column in the primary row and an operand in the secondary row column would
be permissible only if the Operand-2 is a condition name or true-false variable.

BE-200 SERIES

REFERENCE MANUAL

-179-

Formation of Actions

Actions are statements of the things to be done when all the conditions of a row are satisfied.
The scope of an action may be one of three kinds: implied assignment, procedural, or input/
output.

Value Assignment is an implied function between associated primary and secondary block entries.
Placing a data name in a primary block and some number in a secondary block, for example, I
and 1, causes the compiler to produce coding to assign the number to the data name. In our
example, 1 is assigned to the subscript I. Other examples of value assignment are given on the
following page. In these formats the word variable implies either a data name or a subscripted
data name and the word constant either a literal, numeric, figurative, or named constant.

GE-200 SERIES EFFRENCE MANAL

-180-

Value Assignment Action Formats

Format Example
Variable 1
Constant 1
Constant ""COPPER"
Variable MATERIAL
Variable ALPHA (I,J,K)
Arithmetic Expression SIN THETA + (X/P) *%*2
Arithmetic Zxpression PI*R¥%*2
Variable AREA~1
VARIABLE (Destination FIELD) FIELD~2
VARIABLE (Source FIELD) FIELD~1
True-False Variable SWITCH~7
Truth-Value 1 or 0O 1
Truth-Value 1 or O 0
True~False Variable BETA~REQ

@] E ° 2@ g)E [LR [IL 1 @,a REFEREEEEO::AI:IUi;

-181-

Procedural Actions provide the means for interrupting the normal execution sequence of a table.
Any of the following compiler verbs may be used for this purpose.

GO
PERFORM
STOP

The GO verb stipulates an unconditional transfer to a specified part of the table or program. Its

destination may be a sentence name or a table name. Note that table names must be unique.
Secondary rows are numbered consecutively starting at 1.

GO Verb Action Formats

Format Example
_Gg TO GO TO
Sentence~Name TYPE~OUT
GO TO GO TO
TABLE table~name TABLE TABLE 23

The PERFuUDM verb specifies a transfer to some destination, the executicn of 2 section outside
of a table, th. execution of a closed table, or the execution of a set of sentences in the heading of
a table at the specified destination, and then a return to the action block fcllowirg the PERFORM
verb. The sentences or tables acted upon are by definition a "closed procedure’ -- that is, they
have a single entrance point and a defined exit point. Conventions for writing closed procedures
are given on subsequent pages.

GE-200 SERIES FRRRCE SNAT

-182-

PERFORM Verb Action Formats

Format Example
PERFORM PERFORM
Sentence ~Name GROSS~PAY
PERFORM PERFORM
section~name SECTION FICA SECTION
PERFORM PERFORM
TABLE table~name TABLE ERROR TABLE

The STOP verb may be used as an action. It may be placed in either a primary or secondary
block. When it is used, no other action may appear with it in the same action column,

STOP Verb Action Formats

Format Example

STOP STOP

[Literal] 1ggg

[Litera 1]

STOP STOP

Input-Output Actiors ar > represented by verbs that control the flow of data to and from the com -
puter. They cause rea ling and writing of data and validation of the tape labels of data files
assigned to peripheral nput ‘output devices. When data files are referred to from an action
block, they must be defined according to the Environment and Data Division requirements listed
in Chapters 7 and § of this manual,

Input-Output Action Formats

Format Example
READ READ
File-Name MASTER~FILE
; G\@(ﬂ @e N2 GECOM - II
@JE AU SRR REFERENCE MANUAL

-183-

Format Example

INPUT

OPEN OUTPUT OPEN INPUT

File~Name MASTER~FILE

CLOSE CLOSE

File~Name MASTER~FILE

File~Name MASTER~FILE

CLOSE INPUT

OP;EI\I OUTPUT

READ —_— READ

WRITE WRITE
{record'mame }

*group~name DETAIL~LINE
{recordmame }

*group~name TRANSACTION

WRITE WRITE

Action Column Rules

Figure 15 illustrates some of the rules for action columns.

N = Prohibited Y = Permissible

Primary Row
Entry Operand Verb Blank

Secondary

Row Entry

Operand Y Y N
Verb Y N N
Operand~-Verb N N N
Logical or Rela-

tional Operator N N N
Repeat or Skip

Operator Y Y N

Figure 15. Rules for Action Columns

GE-200 SERIES REFERENCE WANAL

-184-

Verbs in Action Columns

Only the GECOM verbs indicated in the list below may be used within the action columns of a
TABSOL Table. These permissible verbs are restricted to the formats and options shown on the
preceding pages and i1 the list below. However, GECOM sentences, with all of the extensive
verb options, may be written within a table, outside the action columns. This is explained
further on page 187. The verb (in GECOM sentences) is then executed from the confines of the
action columns by means of the PERFORM verb. The NOTE verb may never be used in a table.

The list below shows “hose verbs which have been implemented for use in action columns. The
user should consult Chapter 6 of this manual for additional information on the functions provided
by and the rules for use of the following verb options,

1. CLOSE file name

See page 98, FUNCTION and CONVENTIONS 1, 5, 7, and 8.
TO sentence~name
TABLE table~name TABLE
This format is functionally equivalent to Option 1 of the GO verb, (See page 106.)

Note, however, that it us not permissible to use the GO verb in an action column
without a destination.

" INPUT
3. OPEN { WT} file~name

[\
g

See page 117, FUNCTION, and CONVENTIONS 1 through 4 and page 118, CONVENTIONS
5 through 8. It should be noted that a tape file cannot be reopened if it has been closed
from an action column because it will be considered locked.

sentence~name
4, PERFORM section~name SECTION }
: TABLE table~name TABLE

5. READ file- name
See page 120, FUNCTION and Option 2, page 122, CONVENTIONS 1, 2, 3, and 6.

Note that the IF END-OF-FILE clause is prohibited in an action block but that an end-
of-file tes: may be executed in a condition block (see IF, Option 1, page 108). Although
reads and end-of-file tests can be executed from table rows, it is recommended that
these func:ions be included in sentences outside of the table rows and executed there-
from by means of the PERFORM verb. Use of these functions in table rows can

cause inccerrect end-of-file processing under many conditions which are dependent

upon the order of the source statements, the sequence of execution, the logic of the
program cr even the nature of the data. For additional information on READ and END-
OF-FILE clauses, see CONVENTIONS 4 and 5 on page 122,

6. STOP [literal]

See page 128, FUNCTION, and CONVENTIONS 1, 2, and 4.

record~name
7. WRITE {*grouwame}

See page 135, FUNCTION, Option 2; page 136, CONVENTIONS 1 through 5.

@ E ° 2@@ ng % 1' E§ REFEREEE(];Oh:IAI:Iuii

-185-

Logical Expressions

The object coding produced for logical expressicns is optimum in the sense that only the minimum
number of variables are tested, assuming that the expressions are evaluated from left to right.
This is not to say that redundant variables are eliminated by the compiler. but rather that an
entire expression need not always be evaluated to determine whether it is 'rue or false.

Example:

In the expression, A AND ((B or C) AND D), if A is false, the entire ¢xpression is
false and only A will be tested.

A NOT in a primary block pertains to the entire entry in a corresponding secondary block.

Example:

NOT

is the same as--

NOT (A OR B)

A NOT in TABSOL may be used only to negate Boolean variables. Any other use of NOT is
treated as an error.

Example:

A NOT GR B is prohibited.
This must be written as A NGR B.

The effect of NOT in a logical expression is determined according to DeMorgan's Theorem.

Example:

NOT (A OR B) equals NOT A AND NOT B

The validity of this may be demonstrated by the following truth table:

A B A or B NOT (A or B) NOT A and NOT B
0 0 0 1 1
0 1 1 0 0
1 0 1 0 0
1 1 1 0 0

GE-200 SERIES

REFERENCE MANUAL

-186-

The relational operator in a negated relational expression is reversed.
Example:
NOT (A GR B) is changed to (A NGR B)
A NOT is prohibited within a relational expression.
Example:

(A GR NOT B) is prohibited; however, if A and B are both Boolean
variables, this may be written as (A AND NOT B).

NOT (A GR B) is permitted because the relational expression always
has only two values no matter what the values of A and B may be.

The NOT operator is prohibited in an action block.

The Skip and Repeat Operators

The skip operator makes it possible to show that a. condition or action is not to take part in the
evaluation of a row. This is done by placing a hyphen (~) in the condition or action block.

The repeat operator is a shorthand method of indicating that a condition or action in the block
above is repeated. This is shown by entering a ditto or quotation mark (") in the block kelow the
one that is to be repeated.

TABLES IN PROGRAMS

Thus far these specifications have been concerned primarily with table entries within condition
and action columns. GECOM source language sentences may be used to support the conditions
and actions of tables. A source program may be written without tables, with tables only, or with
tables and sections and or sentences.

There are two types of tables:

1. Open tables which are executed in line. Open tables may be interspersed among
source language sentences in the Procedure Division. Open tables may contain
sentences following the table heading.

2. Closed tables which may be executed only by the PERFORM verb. Closed tables
may be interspersed among sections at the beginning of the Procedure Division,
but must precede the main body of the Procedure Division; that is, all closed tables
and,/or sections must appear immediately after the Procedure Division heading.
Closed tables may contain sentences in three places:

a. Between the table header and the word BEGIN.
b. Between the word BEGIN and the first row of the table.
c. Between the last row of the table and the words END TABLE.

Note that when closed tables and/or sections are used, object program execution begins at
the first sentence following the closed tables or sections.

GE-200 SERIES T

REFERENCE MANUAL

-187-

™

(

OPEN TABLE FORMAT

le-name TABLE
R oername IABLEY [OPEN] [integer~1 CONDITIONS] integer-2 ACTIONS

integer~3 ROWS.

[Sentences which may be performed only from the confines of the tab;e:l

[BEGIN]

DECISION TABLE

able~name TABLE

f

TABLE table~name

CLOSED TABLE FORMAT
} CLOSED integer~1 CONDITIONS integer~2 ACTIONS

integer~3 ROWS.

[Sentences which may be performed only from the confines of the tab:.e]

BEGIN.

[Sentences which are executed in line prior to executing the decision table{l

DECISION TABLE

[_Sentences which are executed in line following execution of the decision table_]
END TABLE table~name.
END table~name TABLE.

END TABLE.

Table Conventions

1.

Tables should be written on the General Compiler Sentence Form. The Conventions

shown in Chapter 4 apply to tables except as shown in the preceding formats and
noted below.

A table without actions is prohibited. A table without conditions is permissible. Thus
the number .of conditions (integer~1) may be zero or omitted. Otherwise, conditions,
actions, and rows are numbered sequentially starting at 1. The primary row is not
counted in the row count. Row 1 is the first secondary row.

GE-200 SERIES crcon - 11

REFERENCE MANUAL

-188-

10.

11.

If the words CONDITIONS, ACTIONS, and ROWS are omitted from the table heading,
the size may be stated with or without parentheses in any of the following formats:

integer~1 integer~2 integer~3.
(integer~1 integer~2 integer~3).
(integer~1) (integer~2) (integer~3).
integer~2 integer-~3.
(integer~2 integer-~3).
(integer~2) (integer-~3).

Note that if only two numbers are given, they are interpreted as the number of actions
and rows in that order.

It is most important that the number of conditions, actions, and rows, as specified by
the programmer, be correct. If these numbers do not agree with the number of blocks
as delimited by vertical lines, the compiler will mismatch the secondary and primary
blocks.

A period should always follow the table size, the word BEGIN, and the table name at
the end of a table. However, the period should not be used after the table name or the
word TABLE in the heading of a table.

A maximura of 76 table columns is allowable in a table.

If the table contains less than 20 columns, a maximum of 1000 rows is permissible;
if it contains more than 19 columns, a maximum of 250 rows is permissible.

TABLE SIZE
TOTAL NUMBER MAXIMUM NUMBER
OF COLUMNS OF ROWS
NGR 19 1000
GR 19 250

There is no limit on the number of tables in a program except as imposed by other
considerations such as memory size, symbol table limits, etc.

If all the conditions in a row are satisfied and there is not a GO verb in the action
columns of that row, the next lower row is evaluated.

Nested closed tables are permitted, that is, a closed table may be performed from
another table,

A closed table has only one entrance and one exit, and, therefore, a GO statement to
a destination outside of the table is prohibited.

GE-200 SERES cecon - 11

REFERENCE MANUAL
-189-

12.

Sentences written between the table header and the word BEGIN are treated as
sections. A sentence name signals the start of a section. Another sentence name
signifies the end of the section and the beginning of the next section.

For example:
Table~name TABLE CLOSED 5 CONDITIONS, 5 ACTIONS, 5 ROWS.

Ex~1. WSR39198=R49595+R49595.
Move WSA1 to WSA2.

Ex~2. Exchange WSA2 WSA2X
Exchange WSA9 WSA9X
Exchange WSA12 WSA12X.

BEGIN.

The above procedures produce two sections. The first section contains two sentences
beginning with EX~1. The second section contains three sentences beginning with EX~2.

Block Conventions

1.

All columns must be bound by the vertical table line (12-4-8 punch). The omission of
a vertical line (12-4-8 punch) not only causes an error where the omission occurred,
but may also cause all succeeding entries to be mismatched.

Conditions should be separated from actions by a double vertical line (two 12-4-8
punches), but a single vertical line will suffice.

The size of each block may vary from column to column and r>w to row.

A table column may not be split across cards. The maximum size of a block is
therefore 71 characters since the first card column in which a tabie column may start
is column 8 and each table column is bounded by vertical lines.

When the repeat and skip operators are used they should be the only characters in a
block, other than spaces. The skip and repeat characters may appear in any position
within the block.

@E”Q@@ gE@UE@ GECOM - II

REFERENCE MANUAL

-190-

External Control of Tables

Tables may be executed by source language sentences placed outside of the tables through use of
the following verb formats:

T table~name~1 TABLE , table~name~2 TABLE
GOTO | TABLE table~name~1 TABLE table~name~2

table~name~3 TABLE table~name~n TABLE
[’ TABLE table~name~3 TABLE table~name~n

! field~name
DEPENDING ON {RECORD of fﬂemame}:l

PERFORM {

table~name TABLE
TABLE table~name

Conventions:

1. Control may be transferred to an open table by means of the GO verb. Open tables
may not be performed; they may be executed in line.

2. Closed tables may only be executed by means of the PERFORM verb, and are per-
formed from another table.

3. For additicnal information on GO verb conventions, see page 106, CONVENTIONS 2
and 3.

Figure 16 illustrating a sample decision table follows.

GE-200 SERIES cecoy - 11

REFERENCE MANUAL
-191-

4%

TVANVW HONIYTALY

SIEIS 006-39

- WODdD

II

91 ean3rg

*91qeL, uorstoag ardweg

GENERAL @D ELECTRIC

COMPUTER DEPARTMENT, PHOENIX, ARIZONA

GENERAL COMPILER SENTENCE FORM

[Pnocku DATE
L Sample Decision Table
PROGRAMNER jcouruun PAGE
L
‘ SEQUENCE
NUMBER
|Yil{¢—Is-‘e 7 s;v]—lnlll 12 3'14 lsllé'”[lu[n'n n n| ulu ulzs z1|zn zv|:n :\Ia ; sfssfal o xs'ilv'mjﬂ:niu wles E[:lu'n‘so:nlszlssisn 55 snsr|ss\sv wm|u|ulu 65 u!u%ulu]m] Tu ”T"I"'" 79(80
L] I I [! i L il (el Ll |
|
L S — 5 P R O C E D U El D I V I s I o N 1 1 — 1 1 1 i — — el T S S S U S W W —
..., ., JOPEN I‘NPLUT‘MASTER’\'FILE.) ‘) N 1 X))
L, s GET~RECOIRD . READ ‘_k_‘_lilil»S”'I_‘__E__R"-FIALE RECORD IF END FILE GO TO END~RUN.
20 IF FIEMALE GO T{0O GET~RECOIRD .
) " plal el il . M Tt I n - L L . P - L L
L, 25 EXPEIRIENCE = Cl[URRENT~Y R - YR~EMPLOIYED + PREV~EXP.)
. N ‘ . L I
30 T A B LJE EX]AMPLE 3 CIONDITIONS 2 ACTIONS 5 ROWS.
PR i . L s . " . NS . L
: . L L - L
X 35 LEVIEL E|Q EXPERTIEN|CE } TITLE EQ I GO TO
40 6 EQ .2 . _ffAPbROG_RAMME_R#i_ 1 TYPE~OU|T
.(.4.5 7) EQ 3 #PROGRAMMER# 0 R #ANALYST# 2 "
L 50 8 SR 3 GFANALYSITH . : 3 . .
! 5.5 9 GR 4 #ANALYS|T# OR #SR~JANALYSTG# 4 i
L NS W R i okt) | s ' R . —— BN S - - - — L L
L. 60 10 __GR 4 #SR~ANAJLYST# 5 "
| ST - [PR n voea |) - L L I
! 6 5 GO T|0O GET~RECOIRD.
L . . n . S L fatit - P P i . . L T L .
. 7 -, T}., WRITE DEIPARTMENT LON JTYPEWRITER,.
1.5 ToTrTAlL (L), = TOTIAL(CI) + L. N
N G N TN noT-Rr o0 O0lRD,
Vo o N . — — e —
o Of fr N L ~KUN . CLUSE MAS|IIER~FLLE.))
9.0 W R I TJE T(.)TAI.(!)_'_T_OT_AL(Z).'IULAL(J)~TUIAL(10‘) T,OJT AL (5) ,0ON TYPEWRTITER.
i 95 STOP " END RUN"Y. N L
[[RPN RN EERR NNy MNNE NN ERN MR r | f T =T
IREESRIRIRN R B4 I3 BN EEARENL] RE SRR KRR IRSIR L] RIE 1233734735036 37738,39 40, 41 42, 43 44 a5 46 47148 49 50 s1| 5253 sa|ss] se} 7 58 59| 60) 6] 82) 636a |85] 66l 67 6k | 69 70{71 |72 75, 78177 78] 7980

12. REPORT WRITER

THE REPORT WRITER IN GECOM

The Report Writer is ¢n extension of GECOM which simplifies the programming of routines to
produce reports. It provides readily understandable program documentation in business report
oriented language. The source language consists of report descriptions in the Report Section of
the Data Division, and Report Writer verbs in the Procedure Division. The formats of the reports
are described completzly in the Report Section and are not mentioned in the File Section of the
source program. Assignment of a report may be made in the Environment Division to the on-line
printer or to a magnetic tape file containing one or more reports for selective deferred printing.

Report Writer programs are executed in the Procedure Division by using the Report Writer verbs,
GENERATE and TERMINATE. These verbs perform standard reporting procedures which have
been tailored by the Report Writer to the individual specifications supplied by the programmer in
the Report Section.

Throughout this writeup references are made to figures found at the end of the section. These
examples illustrate the various portions of the Report Writer.

The creation of a report or reports may be the primary or secondary purpose of the program.
Master-file updating, calculation, and build-up of data arrays are common functions performed
along with or prior to reporting. Usually the source program prepares a Process Storage of
detail report line scur:e data by reading of successive logical input records. At each record,
control is passed to the Report Writer generated procedure so that detail printing can be per-
formed in addition to any other reporting functions necessary at that execution. In brief, the
Report Writer perfornis the following functions:

1. Prints repsrt headings once at the beginning of the report.

2. Prints report footings once at the end of the report.

3. Maintains nage control by line count and/or skips to a new page at specified
line printings.

4. Maintains line spacing on the page.

5. Prints page headings at the top of each report page.

6. Prints page footings at the bottom of each report page.

7. Numbers pages.

8. Issues detail or body lines of the report.

GE-200 SERIES croon - 11

REFERENCE MANUAL

-193-

9. Accumulates detail field values conditionally or unconditionally to one or
more levels of total.

10. Counts detail lines and/or detail conditions to one or more levels of total.
11. Detects control breaks at one or more levels so as to:

° Control the tabulation procedure.

° Issue logical control totals.

° Issue logical control headings.
12. Edit data fields for reporting (that is, suppress leading zeros, insert

decimal points, dollar signs).

All conventions outside of the Report Section in the Data Division and the Report Writer verbs in

the Procedure Division apply to the source program as specified throughout the GECOM II Refer-
ence Manual.

METHOD OF REPORT DESCRIPTION

The General Compiler Report Description Form (, see Figure 17) is provided for all

entry types in the Report Section. There are two parts of any report description, the layout and
the definition.

The first entry for a single report is the Report Layout header which gives the report identification
and the keyword, LAYOUT, to distinguish this portion of report description. Under LAYOUT, all

unique line structures are laid out by giving a pictorial image of the report as it will appear on the
final printed page. Ahead of each line structure of up to 120 print positions, the line identification
and any preprint or postprint slewing requirements are entered. The entire entry is called a Line

Image entry. No other types of entries are made in the LAYOUT portion of the report description.
Figure 17 shows a sample layout.

The DEFINITION portion, or second half of the report description, starts out with a Report Defini-
tion header, corresponding in form to the Report Layout header. Under DEFINITION, four main
sections are allowed: Line Definitions, Line Control, Page Control, and Line Sections. These
sections may appear in any order convenient to the programmer. Usually -he programmer will
want the Line Definitions Section to be first or second to aid visual associazion of Line Image
entries and Line Definition entries. See Figure 20, line 01090. The other three sections, Line
Control, Line Sections and Page Control, are optional. Line Control is necessary to specify
Report Writer control of logical control totals and headings. Line Sections specify sections of the
Procedure Division to be performed at line preparation time. Page Control specifies any page
overflow testing and fixed line numbers which function in page slewing. All sections must be
headed by their appropriate header entry giving the section name. See Figares 17, 20, 23, and
26 at the end of this Chapter.

The key feature of the GECOM Report Writer method of description is that the layout of line
images is separate from line definition. A Line Definition entry is associated with a Line Image
entry by line code. Data names are associated with data images by listing the data names, along
with the literal identifier L for any constants on the line, in the order of data image appearance on
the line image above. This technique allows the programmer to describe the report without
recording detailed columnar print position numbers under the report definition portion.

@E”Z@@ @EE‘%UE@ GECOM - II

REFERENCE MANUAL

-194-

The Report Writer allows the programmer to give one name to each unique detail field accumula-
tion, using the form, ACC OF detail-field-name. A variation on this name is ACC OF detail-
field-name FOR condition-name, used to specify conditional accumulation. With this specification,
the detail field is accurnulated only on true status of the condition. The same accumulation name
must be used on the Line Definition entries at all levels of total lines whenever that accumulation
is to be printed. At total printing time, the correct level of accumulation is obtained by the
Report Writer, and may be referenced by the user.

One or more successive report descriptions in the Report Section must be headed by a Reports

File Definition (RFD) entry when reports are being sent to a magnetic tape file for deferred
printing.

The Report Section must be the first section in the Data Division and is identified by the words
REPORTASECTION. starting in Column 8. No more than seven reports may be described per
source program.

LINE DESCRIPTION

The following types of lines may be described to the Report Writer. (Detailed conventions are
covered under Line Image Entry.)

RH Report headings
RF Report footings
PH Page headings
PF Page footings

D Detail

T Total

H Heading

D
S { T } A series of lines
. H

A report line description requires a Line Image entry showing the literal values and/or the
structural characteristics of the data fields. A line which is all literal, such as a page heading,
is described completely by a Line Image entry. To associate data and definition names with their
images on the Line Image entry, a Line Definition entry is made under the LINE DEFINITIONS
entry. This entry identifies all components of the line in order. The programmer must list the
Line Definition entries in the same order as the Line Image entries. Approximately 30 line types

may be defined per report by the programmer. No more than 99 line types may be defined per
report file on magnetic tape.

BE-200 SERIES U

REFERENCE MANUAL

-195-

If report lines of the same type have the same structure with only minor differences in content,
it may be advisable to define a single line rather than to define separate line images and line
definitions for each case. A common situation is several levels of totals containing the same
accumulated fields, with level 1 showing the literal "UNIT', level 2 the literal "SUBSECTION",
etc. The field images can be made large enough to accommodate the highest level of total, so
that one line image suffices for all levels. The literal values "UNIT", etc., can be assigned to
a field titled ORG-NAME, for example, in a section of the Procedure Divicion (see Line Section
entry) executed at line preparation time. On detail lines, a similar example is a file processing
problem where a separate line image can be written for each type of input record reject. The
lines are identical in content except for the literal which spells out reject reason. This again
may be handled by one line image and associated definition to achieve a saving in object program
space.

A series of lines functions as a single '"folded" line, and can be defined for D, T, or H line types
by means of a series header ahead of the individual Line Image entries.

LINE SPACING ON THE PAGE

The normal and most efficient method of achieving line spacing on the page is to associate paper
slew requirements with individual line types. The pre and post positions in the Line Image entry
are used to indicate a slew of a fixed relative number of lines before and, or after a particular
line issue. The integers '"1" through ""9'" and the letter "E', meaning eject to a new page, are
allowed. Wherever possible, a postslew should be used in preference to a preslew to gain
object efficiency. This allows the print and slew to be performed with one printer command.

In special circumstances a slew to a fixed line number from the top of the page can be specified.
An alphabetic character is adopted as a preslew symbol and a fixed line number is assigned to
this symbol by means of the Line Number entry under PAGE CONTROL heading.

PAGE OVERFLOW TESTING

Page overflow testing is an optional reporting feature. Standard tabulated reports usually require
a statement of page overflow conditions in addition to any line slewing parameters because of the
unknown quantity of details making up a logical control group and the high probability of exceeding
a page with any one group. The page overflow specification by the user allows the Report Writer
to control the report format in a desirable manner. At control total printing, the total lines are
not printed on the current page unless space is available for all lines at the level of break detected.
Similarly, control headings are not started unless there is space for at least one detail after the
headings at that level. Detail lines overflow whenever the current issue cannot be fitted on the
page.

The page overflow entry under PAGE CONTROL heading may take two forms: LINES/PAGE NN
or LAST-DETAIL NN, where NN is a constant value representing a line number relative to the
top of the page. Only one entry is allowed. The Report Writer uses this line number in conjunc-
tion with other report specifications to calculate the overflow line numbers to operate at object
time.

GE-200 SERIES EFERENGE WANGAT

-196-

TABULATION LOGIC

Tabulation is the process of accumulating certain detail field values until a control break is
reached. At control break time the appropriate level of accumulated values may be issued on a
total line or series which is defined to operate at that level under LINE CONTROL.

A CONTROL BREAK aierarchy statement is made by means of a CONTROL BREAKS entry
immediately following the LINE CONTROL header. This statement lists the logical control fields
in order of lowest to highest level of break. A break (change in value) for any of the fields listed
automatically defines that level of control break and any lower levels. Control break fields
usually represent file sequence key fields (for example, organization code, date)

The fields to be accumulated and the counts to be made at the detail level are defined by special
Accumulation and Count Names in Line Definition entries. Fields for accumulation may be input
or calculated values.

Whenever a GENERATE sentence is executed by the programmer, the detail values are accumu-
lated to the lowest level of total accumulation. At GENERATE detail-name entry, the accumu-
lation takes place immediately after line printing of the named detail. At execution of the
GENERATE report-name entry, which means no detail lines are defined, the accumulation occurs
at this same juncture in the object program with the standard detail line preparation and printing
omitted.

At detection of the first level of control break, any total lines at that level are printed. Then
first level accumulated values are 'rolled forward'" (added to the second level and reset to zero
for the next build-up). This process is extended to all levels of control break defined by the
programmer. The printing requirements of the accumulated values on the various levels of total
lines has no influence on the tabulation procedure. In this way users may reference accumulated
values at total time even if the value is not to be printed at that level of total.

REPORT WRITER LINE CONTROL

Line control is implied by line code for the fixed headings and footings: RH, RF, PH, PF. Line
control must be specified by a Line Control entry for all control heading (H), and control
total (T) lines. A series of control headings or totals may be controlled only at the series level.
Only the body lines of the report (D or SD) are controlled by GENERATE detail-name sentences.
However, at every GENERATE detail-name sentence, the programmer must expect that any or
all Report Writer controlled lines may appear ahead of the detail, if appropriate conditions are
satisfied. Page overflow forces page heading and/or page footing lines, and control breaks
forces control total and or control heading lines.

A GENERATE report-name sentence must be employed when no detail line types are defined on
the report. All of the automatic reporting functions available in the GENERATE detail-name
mode of operation are also available in the GENERATE report-name mode. Printing occurs only
at total, heading, or footing time.

GE-200 SERIES REFERECE MV

-197-

The last control break level defined must consist of the key word FINAL when final levels of
accumulations are required for the report. See Figure 23, line 01190. A final control break is
determined by end-of-report, or execution of a TERMINATE report-name sentence. Standard
business reports usually contain control break totals of one or more levels, in addition to a
single detail type. Figures 17 through 28 illustrate the use of control brezk totals.

EXECUTION OF USER PROCEDURES AT LINE TIME

Standard reports often require some additional calculation or field value assignment within the
reporting procedure. The Line Section entry provides a method of executing a section of the
Procedure Division in the line preparation procedure. At detail time, the user may prefer to
carry out these procedures prior to report program execution, before the GENERATE detail-
name sentence execution. At all other line types, which are controlled by the Report Writer, he
must use the Line Section entry.

One Line Section entry is allowed for any type of line, including the fixed types of headings and
footings. The section is always executed immediately before line printing (including preslew).
Tabulation procedures occur after line printing on detail lines as well as control totals; this
allows detail accumulation values to be calculated in a Line Section entry at detail time. At
control total time, Accumulation and Count Names can be referenced for calculation (that is,
crossfooting) by the same name given to the field on the control total Line Definition entry.
Control break level may also be interrogated by means of a control break condition name.

A logical control group is a group of detail lines plus any control headings and control totals.
User reference to control break data names during the span of these lines yields the value for
that control group, as a result of appropriate handling of control break data names by the Report
Writer.

GE-200 SERIES EFERENCE MR

-198-

DATA DIVISION--REPORT SECTION

The REPORT SECTION of Data Division consists of
several entries which are discussed on the following

pages.

@E“@@@ gERHE@ RHM&g%QJE

-199-

REPORT FILE
DEFINITION ENTRY

FUNCTION

The Report File Definition entry (RFD) specifies a magnetic tape file of stacked reports for
deferred printing.

FORMAT
RFD in columns 8-11.

File-name in columns 13-24.

SIZE IS . o
BLOCK {CONTAINS} integer-1 WORDS . in columns 28, etc.
CONVENTIONS
1. The RFD entry must immediately precede report descriptions for the file named.

One to seven reports may be defined per file, provided the total number of reports
in the Report Section does not exceed seven.

2. The file-name must be used for all references to that file in the Environment
Division. (See Chapter 7, File~Control.)

3. Reports going directly to the printer must not have an RFD entry.

4, Each report belonging to the file must have a report format code supplied under
the format column in the Report Layout header. This becomes the report select
number at printing time.

5. A reports file description is terminated only by another RFD entry or the end of
the Report Section.

6. The tape files are formatted according to the conventions for the GE-200 Series
Off-Line Printer (see GE-200 Series High-Speed Off- Line,/On- Line Printer Reference
Manual (CPB-1075)) and the generalized GE-200 Series peripheral-to-peripheral
program, Peripheral Package (PIP), CD225E1.009 designed to accept the same
format for tape-to-printer with or without Automatic Priority Interrupt hardware.

7. If the BLOCK clause is omitted, a standard of 341 words (maximum acceptable
for off-line printing) is assumed.

8. The RFD entry is also required when a single report is assigned to a tape file. In
this case the file-name in the RFD entry and the report name in the Report Descrip-
tion (RD) entry must be different.

@I E ° 2@@ gE II_DIg D ES REFERES?;O:AI:IUII\IT

-200-

REPCRT LAYOUT
HEADER

FUNCTION

The Report Layout header (RD) indicates the start of a report layout, assigns a name to a report,
and assigns a report format code for use in deferred printing of a reports file magnetic tape.

FORMAT

Report code, RD [integer] in columns 8-11.
Report-name in columns 13-24.
[Report-formatm code| in column 27.

LAYOUT. starting in column 28.

CONVENTIONS

1. RD initiates a report description, analogous to the FD for a file description in the
File Secticn. The integer position may contain a number 1-9 for user documen-
tation only.

2. A report name of up to twelve characters must be entered under data-name on the
Report Description form. The programmer must use this report name wher: report
name is czlled for in Procedure Division and Environment Division references
to the report.

3. Report format code is valid only when the report is assigned to magnetic tape for
deferred printing (see Report File Definition Entry, page). The integers 1-7
are allowed in this position for report identification and selection at printing time.

GE-200 SERIES croov - 11

REFERENCE MANUAL

-201-

LINE IMAGE
ENTRY

FUNCTION

The Line Image entry displays the structure of a line and certain key information about a line as
a whole.

FORMAT
Line identification:
Line or line series code in columns 8-11.
Line or series name in columns 13-24.
Page slewing:
Preprint slew in column 25.

[literal]

Postprint slew in column 26.

[literal]

Line image in columns 28, etc. (See Report Description Form Conventions, page)
1 to 120 print positions of any combination of:

Data image entries

Literal image entries
Space fill (no entry made)

CONVENTIONS

1. Line Identification

Line code is required for every Line Image entry and supplies the necessary line
identification to be used in referencing the line under the Report Definition portion.
This code must be unique within a single report.

Line identifications consist of functional symbols suffixed by integers (or alphabetics)
to achieve uniqueness. The Report Writer allows one to four positions for this
designation under line code. The symbols which are valid in the leading positions of
the line code to designate line function or type are as follows:

RH, RF Report headings and footings, respectively. These are printed
once, at the beginning or the ending of the ent.re report, in the
order of their appearance in the source program. A common
use of report headings is a cover page for the report to inform
operating personnel about report identificatior. and certain
instructions for preparing and distributing the report.

GE-200 SERIES FRFTRANCE SANOIT

-202-

LINE IMAGE
ENTRY
(Cont.)

PH, PF Page headings and page footings, respectively, follow the
same principles as RH and RF, with printing at the beginning
and ending of each page in the report. Multiple page
headings are common to most reports. (See Figures 17
through 28.)

D Detail line--a body line of the report. The Report Writer
procedure which prepares and writes a detail line is
controlled by means of the GENERATE detail-name sentence
(see Report Writer verbs). Figures 17, 20 and 26 show
typical detail line types.

T A logical control total line. This line normally contains
accumulated values of tabulated detail fields and is issued
automatically by the Report Writer as control breaks occur.
Total lines may be defined with or without printing of any
detail lines of the values being accumulated. A good total
line practice is to allow the second character of total line
type to indicate the total control-break level number. Thus,
T1 is a level one total, T2 a level two total, etc. A Line
Control entry under Report Definition defines the total level
of the line; thus, the use of a level number in line code is a
documentation aid only. Whenever a control break occurs,
total lines are printed in order of low-to-high control-break
level. The number of lines printed reflects the current level
of control break.

H A logical control heading line. This line functions similarly
to control totals but heads rather than follows the detail
lines associated with it. Again, a Line Control entry speci-
fies the level of the line. In the case of control headings,
the lines are printed in high-to-low order of control break,
or the reverse of control totals.

S Series of lines. Any series of D, T, or H lines may be de-
scribed by a series header. This header identifies a number
of consecutive lines which function essentially as an entity;
that is, all lines in the series are to be printed consecutively
whenever the first one is printed. The series line code
begins with an S and is followed by one to three characters
which are duplicated in the leading positions of every line code
within the series. Thus, a series can contain only one line
type. The Line Image entries for a particular series must
follow the header for that series. A series of associated lines
at a total control break level is shown in Figure 23. A series
header is meaningless for any of the fixed lines, RH, RF, PH,
PF, and is recognized as an error.

Line name may be written under data name on the form and serves as user documen-
tation on all line types except detail. If the detail-name (line or series) is written,
it must be used in the GENERATE detail-name sentences in the Procedure Division.

@l E ° 2 @@ gE (P\i [E§ REFERES(];:I(E:OEAI:IUii

-203-

LINE IMAGE
ENTRY
(Cont.)

Pre- and Postslew

Pre- and postprint line spacing, to occur in conjunction with the printing of a given
line, is specified in columns 25 and 26 respectively. The literal value can only be
one character in length. An integer (1-9) is entered to show a fixed number of lines
of spacing to appear on the report before and/or after the printed line every time it
is printed. The normal case can be described with a pre or post entry alone, but in
certain situations it is advantageous to be able to specify both. For object program
efficiency, a post entry alone is recommended.

The letter E may be entered in the pre and post columns to specify ejection to a new
page to whatever has been set as top-of-page by a channel punch in channel 8 of the
printer paper tape loop. This slew resets the line counter to zero.

E need not be entered in post of the last page footing or pre of the first page heading.
this slew is automatic at page overflow or page skip (E) time. If entered in either of
these positions, the designation will be ignored by the Report Writer.

E is invalid within a series except as an initial preslew or a final postslew on the
individual Line Image entries.

Any alphabetic character other than E defines a pre- or postslew to a fixed line
number relative to the top of the page. These symbols should be used only where the
desired line spacing cannot be achieved by slewing a fixed number of lines relative to
the current line being printed. At object time, a slew to a fixed line-number less
than the current line- count results in a page skip, with printing of PF, PH lines,
followed by a slew to that line number. The fixed line number associated with each
alphabetic symbol is specified in the Line Number entry (see Page Control Entries,
page

Line Images

The line image or physical structure of the line as it will appear on the printed page
is entered beginning in column 28. Each unique line is described with respect to its
data image, literal image and space fill content.

Data Images

A data image defines the format of a single report field. In addition to the
standard data format symbols A, 9, X, field data can be displayed with a
wide range of report editing features. The most common editing features
pertain to reporting of numeric quantities, where decimal points, commas,
zero character suppressions, floating dollar signs, and check protection
symbols are desired. Figure 29 presents a concise summary of the allow-
able data format symbols. The Report Writer adheres to the conventions
for output format symbols in GECOM with extensions to include the options
of floating leading sign, complete zero suppression, and CR, DB credit and
debit symbols.

GE-200 SERIES REFERENCE MANTAL

-204-

LINE IMAGE
ENTRY
(Cont.)

The parenthesis allowed in the data image of a File Section entry as short-
hand to show a repeated symbol is not permissible on the Report Form.
Each data character position on the report must contain its format symbol
in the appropriate column on the line image.

To accommodate the Report Writer group-indicate function, the symbol G
has also been added to the valid data image symbols. It is only allowed in
the Report Section. It is placed in the leading character of any data image
contained on a detail line. It means that the value for that field is to appear
only on the first detail line printed for consecutive lines that contain dupli-
cate values for that field. Group indication occurs on the first line of con-
secutive detail lines starting on a new page or after a total control break.
Usually file sequence key fields (which are also control break fields) are in
this category. It is assumed that the data symbol replaced by the G is the
same as the symbol immediately after the G. If the field is length 1, an
alphanumeric (X) is assumed as the data format symbol. See Figure 20.

Literal Images

Literals are shown exactly as is, with no surrounding quotation marks. A
literal image cannot contain a blank. Blanks (space fill) separate literal
and field images on the Line Image entry and by definition are not counted
as part of the literal or field image.

A series header cannot have a pre, post, or a line image portion in the Line Image
entry.

On a single report, the Report Writer allows no more than thirty unique line struc-
tures, or this number of Line Image entries.

GE-200 SERIES e

REFERENCE MANUAL
-205-

REPORT DEFINITION
HEADER

FUNCTION

The Report Definition header (RD) indicates the start of the Report Definition entries.

FORMAT

RD Entegex] in columns 8-11.
[Report-name] in columns 13-24.

DEFINITION. in columns 28, etc.

CONVENTIONS
1. The portion of a report description headed by this entry must follow the report
layout portion identified by the same RD (integer) code in the Report Layout
header.
2. It is not necessary to repeat the report name in columns 13-24 of this entry.

GE-200 SERIES FEFRENCE WAL

-206-

REPORT
DE FINITION ENTRIES

FUNCTION

The Report Definition entries are:
Line Definition entry
Line Control entries

Line Section entry
Page Control entries

FORMAT (All options selected)

LINE DEFINITIONS. starting in column 8.
(Line Definition entries)

LINE CONTROL.. starting in column 8.
(Line Control entries)

LINE SECTIONS. starting in column 8.
(Line Section entries)

PAGE CONTROL. starting in column 8.
(Page Control entries)

CONVENTIONS

1. The report definition must contain at a minimum a LINE DEFINITIONS section
unless the report is composed entirely of all-literal lines. Within this section
one Line Definition entry is required for each Line Image entry that is not entirely
literal. See Line Definition entry, page

2. The LINE CONTROL, LINE SECTIONS, and PAGE CONTROL sections are all
optional. Their functions are described on the following pages by entry name.

3. Each section must be headed by a header entry (as shown under FORMAT) naming
the section. See Figures 17, 20, 23, and 26.

4, Only one section of each type may be contained under a single report definition.

5. The sections may appear in any order under Report Definition.

GE-200 SERIES creon - 11

REFERENCE MANUAL

-207-

LINE DE FINITION
ENTRY

FUNCTION

The Line Definition entry associates data names with the images appearing on the corresponding
Line Image entry and specifies Accumulation and Count fields.

FORMAT
Line-code in columns 8-11.
Line definition in columns 28, etc:

Image-1-name [, image-2-name, image-3-name, - --]

CONVENTIONS

1. The Line Definitions must be preceded by the LINE DEFINITIONS. header.

2. Line code must match a line code for a line defined in a Line Image entry of the
report layout portion.

3. A Line Definition entry may use up to two full lines on the Report Description
form. If more than one line is used, the line code must not be repeated on the
second line. The second line is started in column 28 or after. A word may not
be split over two lines on the form. (See Report Description Form Conventions,
page .)

4, A Line Definition entry consists of a list of names in order of corresponding
image (data or literal) appearance in the Line Image entry.

5. The Line Definition entries must appear under the LINE DEFINITION header in
order of corresponding Line Image entries under Layout header.

6. Lines composed entirely of literals and space fill, as is common in headings,
are not described under definition, and are skipped by the programmer in his
order of Line Definition entries.

7. The image names within a definition list can be separated by one or more spaces,
a comma, or a comma and one or more spaces. Each list must be terminated by
a period.

8. As defined under Line Image entry, an image is a data image or a literal image.

These two types of images along with blanks, or space fill, make up a line image.
The two classes of image names are as follows:

Literal identifier
Data image-name

9. A literal identifier by definition is the letter L. A series of N consecutive
separated literal images can be identified by L(N) or LA(N) or by separate literal
identifiers, L, L, L.

GE-200 SERIES EFERENCE MANTAL

-208-

LINE DE FINITION
ENTRY
(Cont.)

The L(N) or LA(N) causes the series of literals and the encompassed spaces to be
created as one literal string by the Report Writer. This notation is recommended
for object efficiency whenever the consecutive literals are not widely separated.

10. Adjacent images on a report line occur occasionally, when it is necessary to lay out
data and literals so that one image appears for the combination. Adjacent data
images are shown by slash separators between the data image names in place of the
normal spaces and/or comma in Line Definition. (See Figure 20.) In this case,
the data image under the Layout header is for user documentation only and the Report
Writer obtains the individual data descriptions from the input file, Working-Storage,
or Constant Sections. Literal portions of adjacent images must be specified as
field literals defined outside of the Report Section.

11. A data image name can be the name of a field, element, or group defined elsewhere
in the Data Division or an Accumulation or Count field-name. The latter fields are
set up and rnaintained automatically by the Report Writer as described in the section
titled Accuraulation and Count Names.

12. The Line Definition entry for a control total or heading line may contain a control-
break-data-name for any level. At total time, the data-name value for the previous
details is moved by the Report Writer to the field named as control break for that
level. The move is made prior to execution of a line section. After total printing,
the value is set to the next detail value; or the one which forced the total. This value
may be appropriately printed on any control headings to follow, by using the same
data-name on the Line Definition entry as used at total line definition.

13. In keeping with the GECOM conventions for output data-names, subscripts are not
allowed on data-names in the Line Definition entry.

GE-200 SERIES EFERENCE WAL

-209-

LINE CONTROL
ENTRIES

FUNCTION

The Line Control entries specify the control break hierarchy and associated control line printing.

FORMAT

Control Breaks Entry:

CONTROL~BREAK [SJ ON control-break-data-name,, [control- break-

data-name-2, ----, control-break-data-name-n [FINAL |:l)

starting in column 13 or after.

Line Control Entry:

Line- code in columns 8-11.

ALL

{Control- break-data-name

} starting in column 13 or after.

CONVENTIONS

1.

Line Control entries must follow the LINE CONTROL. header under Report
Definition.

Only one Control Breaks entry is allowed. It must immediately follow the LINE
CONTROL. header.

The Control Breaks entry defines any control breaks to be detected by the object
program. One (to fifteen, at the most) control-break-data-names (element or
field) may be listed. These are usually file sequence key data names, such as
organization, pay number, name, etc. Qualifiers are written when needed for
uniqueness. (See Figures 17, 20, and 23.)

When more than one control break level exists, the data names must be listed in
order of minor to major level. The order of listing establishes the hierarchy of
control breaks. By definition, a control break at any level (other than lowest)
assumes all lower level breaks automatically without testing.

The Control Breaks entry supplies the Report Writer with the number of levels

of accumulations (see Accumulation and Count Names) to be set up and ma\intained
automatically. When final or report totals are required in addition to those for
control-break-data-names, the key word FINAL must be written as the highest
level of control-break-data-name. FINAL may be the only level given.

A Line Control entry associates a control-break data-name with a line (or series),
thus defining the level of control break that determines issue of the line or series.
The line or series code must match one supplied in a Line Image entry. The
control-break data-name must match one of the names given in the Control Breaks
entry. (See Convention 13.)

GE-200 SERIES EFERENGE WAL

-210-

LINE CONTROL
ENTRIES
(Cont.)

7. A Line Control entry is valid only for an H or T line or line series code. Line
Control is implied by definition for the RH, RF, PH, PF line codes and cannot
be stated. D lines are controlled by the programmer.

8. Lines within a series cannot have a Line Control entry. The line control must
be given at the series level.

9. Only one heading line or series and one total line or series can function at each
control break level.

10. A heading type (H or SH) cannot be associated with the FINAL control break
name. A total (T or ST) may have the FINAL name, and is printed after all
lower levels of totals which are forced automatically at end of report (FINAL
condition true).

11. The same or different control break levels can be associated with T and H lines.
At a control break of level 3, where all three levels are associated with T and H
lines, the lines appear on the report as follows:

(detail lines)

(level 1)

(level 2)

(level 3)

(level 3) (start of new logical group)
(level 2)

(level 1)

(detail lines)

mmmHaa4

12. In many cases one T line (or H) can be defined to operate at all control break
levels, at a saving in object program space. This is true when the same or
nearly the same line format applies at all levels. (See Figures 20 and 23.) In
this case, the ALL option may be used to avoid writing multiple Line Control
entries.

13. The issue of lines at control breaks is independent of the overall control break
procedure of detection, roll forward, and resetting of specified accumulation
and count field values. A control break can be defined and have no line issue
associated with it; or, it may have an H line and no T line, etc.

GE-200 SERJES NG NATAL

-211-

LINE SECTION
ENTRY

FUNCTION

The Line Section entry identifies a section of the Procedure Division to be performed at line
printing time.

FORMAT
1. Line code in columns 8-11.
2. Section-name starting in column 2€& or after.
CONVENTIONS
1. Section-name identifies a section of the source program in the Procedure Division.
Line code establishes the line time at which the section will be performed under
control of the Report Writer.
2. All entries must be placed under the LINE SECTIONS header. No ordering require-
ments are imposed.
3. A Line Section entry cannot be given for a series code.
4, No more than one entry of this type may be made for each line defined by a Line
Image entry.
5.> The section is performed immediately prior to line formation and printing.
Accumulation of detail values is performed after detail line printing; hence, values
to be accumulated can be calculated in the section.
6. The same section name may be given for two or more lines.
7. See Accumulation and Count Names on page to obtain the conventions for use

of these special names in a section of the Procedure Division.

GE-200 SERIES e AT

REFERENCE MANUAL
-212-

ACCUMULATION AND
COUNT NAMES

FUNCTION

The Accumulation and Count Names specify page numbering of a report and detail accumulation
and counting requirements of the report.

FORMAT
Page numbering:
PAGE~COUNT

Detail Accumulation and Counting:

(" DETAIL~COUNT N
C condition-name
COUNT FOR true-false data-name >
ACC : condition-name

{ACCUMULATION} OF field-name FOR {true-false data-name}
" J
CONVENTIONS
1. The Accumulation and Count Names of the formats above operate as data image

names on the Line Definition entry. In addition to naming the corresponding data
image on the Line Image entry, each type of name implies an accumulation or
count action to be performed by the Report Writer.

2. The PAGE~ COUNT clause requests that the pages of the report be consecutively
numbered and that the current page nurnber appear in the associated image position
on each page of the report.

3. The DETAIL--COUNT clause specifies automatic counting of detail lines. The
DETAIL~COUNT field is incremented by 1 every time a detail line or series is
printed.

4. To obtain an automatic accumulation of detail field values into one or more total
levels, one of the above forms of accumulation definition names in a Line Definition
entry is used. Figures 17, 20, and 23 show examples of the use of this name type.

5. The same detail accumulation or counting field name (formats above) may appear
on any or all total line definitions, where separate lines are defined for separate

levels of control break. One appearance of a given name suffices to specify the
desired action at detail time.

GE-200 SERI

[@g GECOM - II
5 REFERENCE MANUAL

-213-

ACCUMULATICN AND
COUNT NAMES
(Cont.)

10.

11.

12.

Knowledge of the control break hierarchy of levels gained from the Control Breaks
entry under the LINE CONTROL header determines the exact manner of ""roll
forward" of counts and accumulated values. At each occurrence of a control break
the current accumulated amount for that level is rolled forward or accumulated

to the next higher level, and then reset to zero. It is not necessary that a total
line be printed at every level of accumulation. At each detail reporting cycle (line
or series), the current values of the designated fields are accumulated to the
lowest level of accumulation. At control break time, appropriate roll forward and
reset occurs with or without associated total line printing.

The FOR--- phrase is used to specify conditional accumulat.o1 or counting. The
accumulation or count is performed at detail time only at true status of the condition
or data name. Condition names and true-false data-names are defined in the File
or Working-Storage Section to suit the needs of the programiner. Where a condition
name is not appropriate, any complexity of logical expressic: can be examined in

a Procedure Division sentence and a true-false data-name set for interrogation by
the Report Writer. Once a detail value is accumulated (or a count incremented by
1) to the lowest level, that value automatically carries forward to all higher levels
of accumulation or count. The condition name or true-false data-name must not
have a qualifier.

The control-break level associated with the total line or line series is the implied
level of accumulation to be printed for all of the accumulation and counts contained
on the Line Definition entry. The current level of accumulation is made available
for printing (and user reference) at object time by the Report Writer object program.

At detail time, a series of lines operates in exactly the same manner as an
individual detail line. The values for accumulation and count fields are added once
per series to the lowest level of accumulation. The field names do not need to
appear in the detail line or series Line Definition entry. The detail field values to
be accumulated may be calculated in a section of the Procedure Division at line
printing time. See Line Section Entry, page

Accumulation and Count Names may be referenced in a section of the Procedure
Division executed at line preparation time. (See Line Section Entry, page .)
The names shown under the formats above may be used as field names for this
purpose. The following conventions apply to the accumulated values obtained:

° At total line time, the value referenced is the current accumulated
value for the level of line about to be printed.

° At detail, heading, or footing time, the value referenced is the
accumulated value printed on the last previous total time.

Field name may be qualified in accordance with the General Compiler language
conventions. The qualifier data names (group, record, and, or file name) are
written as "OF data-name' after the original field name and before any additional
clauses. A given source field should always be written 1-ith the same qualifiers.
Report name is not needed as a final qualifier in the Report Section Line Definition
entries for that report. However, if the same Accumulation or Count Name is
defined on more than one report, the report name must be used as a qualifier in
all Procedure Division references to that field.

The programmer must not enter Accumulation and Count Names into the Working-
Storage Section. Internal Process Storage is set up by the Report Writer.

BE-200 SERIES

REFERENCE MANUAL
-214-

ACCUMULATION AND
CCUNT NAMES
(Cont.)

13. The internal storage mode for Report Writer Accumulations is determined by the
source data description of the item to be accumulated. The programmer may
describe an Input (or Working-Storage) field as integer, fixed point, or floating
point. Integer arithmetic retains decimal accuracy which may be lost in fixed
point calculations as a result of the binary mode of computation. For this reason
the programmer is urged to define fields for accumulation as integers with the K
symbol to show implied decimal scaling rather than the V symbol. If the scaling
of the input {ield in Process Storage will not also accommodate the accumulation,
another scaling can be set by the programmer with the M data image convention
on the input field. The leading character of the image must be M and the trailing
character S followed by the scale desired. For example, an input field of size
9(4) can be ussigned 38 rather than 19 scaling internally by describing the field
as M9(4)S38, or M999K9S38. Count fields are given an internal scaling of 19 by
the Report Writer. The decimal scaling shown by the K symbol is assumed at
report format time for decimal alignment purposes when accumulation fields are
printed. Count fields in Process Storage are always set up by the Report Writer
as integer with a binary scale of 38.

14. At present, floating point numbers cannot be described on the Report Description
form for printing other than in fixed form.

15. Approximately 30 unique Accumulation Names may be defined per report.

16. Accumulation and Count names may be included in the output files section. The
qualifier area is used for the field names and any additional qualifiers or FOR
names. The key words ACC, COUNT, etc. will appear under data name. The
current level of accumulation or count will be moved to output.

@E:@mm Sl

NN SRR GECOM - II
AU NG D)

REFERENCE MANUAL

-215-

CCONTROL BREAK
CONDITICN NAMES

FUNCTION

Control Break Condition Names allow interrogation of control break status in Procedure Division

sentences.

FORMAT

CONTROL~BREAK integer]

CONVENTIONS

1.

True-false data-names are set up automatically by the Report Writer for each
level of break defined under LINE CONTROL. header. These fields are <et to true
at detection of a break and remain set to true until completion of the printing of any
total control break lines at that level.

These true-false data-names may be interrogated but not alte "ed by the program-
mer. A common use is in a section of the Procedure Division for a control line
operating at more than one level of break. Knowledge of the level may influence
the assignment of certain field values to be printed. See Figures 22 and 25.

If more than one control-break level (other than FINAL) is defined, an array of
true-false fields is set up by the Report Writer. The integer 1s the subscript value
necessary to interrogate the correct level of break. Subscript values 1, 2, ---
are level numbers assigned to control-break data-name-1, contrcl-break data-
name-2 --- respectively (See Control Breaks Entry).

The key word FINAL is used as a condition name to interrogate final reporting
condition.

Unless control break fields are used in calculations by the programmer outside

of the Report Section, they should be described as alphanumeric (X) to avoid
unnecessary conversion to internal binary form. The Report W:iter sets up an
auxiliary field for each control-break data-name to hold previns data-name values
for comparison purposes.

BE-200 SERIES

REFERENCE MANUAL
-216-

PAGE CONTROL
ENTRIES

The two Page Control entries, Page Overflow and Line Number follow.

FUNCTION--PAGE OVERFLOW _ENTRY

The Page Overflow entry specifies requirements for page overflow testing at line printing time.

FORMAT
LINES/ PAGE ARE integer-1 starting in column 13 or after.
LAST ~ DETAIL IS

CONVENTIONS

1. The Page Overflow entry must be made under the PAGE CONTROL. header.

2, Page overflow causes the page break procedure of page footing print (if any),
slew to top of next page, and page heading print, before printing of the intended
line or lines. The page overflow test consists of a comparison of current line
count on the page with an overflow line number calculated at report program
generatio) time, Depending on the Page Overflow entry type and the lines
defined for the report, an overflow line number may be calculated for use with
each given line or series of type H, D, or T.

3. Either LINES, PAGE or LAST~DETAIL entry but not both, may be specified. The
integer-1 value may not exceed 99.

4. If neither LINES, PAGE or LAST~DETAIL entry is specified, the Report Writer
assumes that no page overflow testing is required in the object program in this
case all page control and line spacing is accomplished by the pre- and postslew
parameters in the Line Image entries.

5. A fixed line number (see Line Number entry), or E under the PRE column obviates
any page overflow testing for that line type or series when a Page Overflow entry
has been made.

6. LAST~DETAIL entry means that page overflow is tested only on detail (D) and any
control heading (H) line types. LINES/PAGE entry means that page overflow is

tested on these types as well as on the only other variable line type, control totals
(T).

-3

LAST~DETAIL is the normal parameter for specifying page overflow where both
detail and total lines exist. The programmer specifies the LAST~DETAIL line

uaiibe s relative to the top of page (line number 0) that may contain a detail line
type. Thi- lire number should allow room on the bottom of the page for all possible
levels of tctals and aiy page footings. To obtain a last detail line number for page

overflow testing, the LAST~DETAIL line number is adjusted by the number of lines
required for printing the detail line cr series.

AT 2D -
@EHQ@” SUSISIRESS GECOM - II

QNS Le) REFERENCE MANUAL

-217-

PAGE CONTROL
ENTRIES
(Cont.)

8. Page overflow line number for control headings (H) is calculated so that overflow
occurs whenever the current level of heading lines plus at least one detail issue
will not fit on the page.

9. The LINES/PAGE entry specifies the line number counting from the top of page on
which the last line of printing on the page may occur. To obtain a last line number
for page overflow test, the specified line number is first adjusted by the number
of lines (including pre- and postslewing) required by any page footings, and second
by the number of lines required by the current issue. On detail and control
headings the conventions given in notes 4 and 5 apply to this latter adjustment. On
control totals, the calculation is made so that overflow occurs whenever the number
of lines needed for all total lines at the current level of contrel Hreak will not fit
on the page.

10. The object program does not test for page overflow within 4 series of lines, as
the method of calculation of page overflow line number has protected a series frem
being broken across a page.

GE-200 SERIES REFERENCE WAL

-218-

PAGE CONTROL
ENTRIES
(Cont.)

FUNCTION--LINE NUMBER ENTRY

The Line Number entry assigns fixed line numbers to report lines where the desired line spacing
cannot be achieved by relative line spacing from other print lines.

FORMAT
LiNE~-NuMBER[s] {2 literal-1 (integer-1) [literal-2 (integer-z)]
ARE ‘
_——— [11teral-n (integer-n)] . starting in column 13
CONVENTIONS

1. This entry must be made under the PAGE CONTROL. header.

2. The LINE~-NUMBER [S] parameter entries assign fixed line numbers, relative to
the top of the page, to one or more report lines of a given report. A common use
of this parameter is to force the control-break total lines to a line number past
the LAST~ DETAIL line number. In this way the start of a new page with every
new logical control group may be achieved.

3. The literal- 1, literal-2, etc., values must be alphabetic characters shown in the
PRE columns of Line Image entries. The integer-1, integer-2, etc., values must
not exceed 99.

4, For purposes of object program efficiency, the LINE~NUMBER [S] parameter
should not b used where the desired results can be obtained by slewing a fixed
number of lines (or to top of page) before and/or after the printing of a given line.
With the exception of the case outlined in convention 2 above and occasionally in
the use of »reprinted forms, spacing and page control can be maintained easily
without use of this parameter,

5. The top of the page is defined by the channel punch in channel 8 of the printer paper
tape loop.

6. The line nuniber values integer-1, integer-2, etc., cannot exceed the LINES/PAGE
value, if given.

7. A fixed linz wumber can only be assigned to a pre-slew of an individual line or the
initial line of a series, including RH, PH, PF, RF, lines.

8. When a fix:d line number is assigned, the line or series will not be given a page
overflow test,

9. At object tunie, a slew to a fixed line number less than the current line count
results in hage overflow followed by a slew to the fixed line number on the page.

GECOM - II
REFERENCE MANUAL

GE-200 SE

-219-

PROCEDURE DIVISION--REPORT WRITER VERBS

The Report Writer uses two verbs in the Procedure
Division, GENERATE and TERMINATE, which are

discussed on the following pages.

GE-200 SERIES FEFERENGE WAL

-220-

GENERATE

FUNCTION

The GENERATE verb releases data for printing according to specifications given for report
preparation.

FORMAT
[detail-name LINE[S] [OF report-name REPORT]
GENERATE
Lreport-name REPORT
CONVENTIONS
1. GENERATE detail-name causes execution of the Report Writer procedure which
controls a.l report lines and the subprocedure for the detail named. After
execution, control is returned to the next source sentence.
2. The line or series identified by detail-name must be described in the Report

Section.

3. Detail-name is the name shown under the DATA NAME entry in the Line Image
entry unless these positions were left blank. If blank, the designation under the
LINE CODE entry is used. On a series of lines these are taken from the series

header.
4, Any number of GENERATE sentences may appear in the Procedure Division.
5. The first GENERATE sentence executed for a report causes appropriate initial-

ization of the report; this includes an initial slew to top-of-page. The programmer
must open the report file in the Procedure Division, before the first GENERATE
sentence.

6. At GENERATE detail-name, more than one type of line may be printed, depending
on the outcome of evaluation of explicit and implied line control conditions. The
intent of the GENERATE sentence is to produce a single body (detail) line or line
series from current process values. However, if page break and/or control break
conditims are satisfied, any or all of the line types, T, PF, PH, H may be printed
before the current detail information going to the D or SD lines is printed. All
Report Writer functions requested in the Report Section may be performed at any
one GENERATE verb execution.

7. If multiple reports are defined, and the same detail name is given to details on
separate 1eports, the OF report-name phrase must be included in the GENERATE
sentence to identify the correct report. If it is missing, the first detail of that
name: 1 e Report Section will be referenced. The phrase may be written for

documentation purposes even when not required for uniqueness.

8. GENERATE report-name phrase is valid only where no details have been defined
for the veport. All functions except detail printing are performed at each execution
of the GENERATE verb. Lines are issued only at the occurrence of page break or
control break conditions,

9. Once a4 report s terminated by a TERMINATE verb, a GENERATE sentence cannot
be executed for that report.

[) i}{E(".\J GECOM - II
AUHU Ll e REFERENCE MANUAL

-221-

TERMINATE

FUNCTION

The TERMINATE verb concludes preparation of a specified report.

FORMAT

TERMINATE report-name REPORT.

CONVENTIONS

1. A TERMINATE sentence causes execution of report closing functions. Return is
to the source sentence immediately following the TERMINATE s-atement.

2. Only one TERMINATE sentence can be executed for each report.

3. Entrance to the final reporting procedure commonly is associated with an end-of-
file detection on read-in.

4, A TERMINATE verb cannot be executed prior to a GENERATE verb on the same
report.

5. A TERMINATE report-name phrase causes the FINAL condition to be set to true.

6. After the TERMINATE report-name phrase, no further GENERATE sentences can
be executed for that report.

7. The programmer must close the report file in the Procedure Division after termi-
nation of the one or more reports assigned to that file.

8. If a report consists of only final report totals, a single GENERATE report-name
sentence followed by a single TERMINATE report-name sentence may be executed
to achieve the desired results.

GE-200 SERIES S

REFERENCE MANUAL

-222-

ENVIRONMENT DIVISION--REPORT SECTION

(Refer to File-Control, page 149.)

The following phrase in the FILE~CONTROLsentence is used as described below:

FORMAT

[FOR OFF LINE PRINT]

CONVENTIONS

1. The OFF LINE phrase must be specified for report tapes to be created by the
Report Writer for deferred printing. This applies whether the off-line printer or
the generalized peripheral program (PIP) for on-line printing is employed. When
printing is deferred file-name-1 is the name specified in the Report File Definition
entry in the Report Section.

[:2 @i 2 GECOM - II
VG WL Qi&i i) REFERENCE MANUAL

-223-

REPORT DESCRIPTION FORM CONVENTIONS

Programming Conventions

The Report Description form reserves columns 1-6 for sequence number, in conformance with
other General Compiler forms. The programmer may request a sequence check for the source
program as a whole. (See Chapter 4.)

The programmer may prefer to enter the Data Division header on the Pep :rt Description form
rather than the Data Division form since the Report Section immediateiy ‘ollows this header in
the source program input to the Compiler.

The following conventions apply to entries on the Report Description form
. Colurans 7 and 12 must always be left blank by the programmer.

° Entries written in columns 8-11 (LINE CODE) that do not require the allotted
number of columns may be entered in any consecutive subset of these column
numbers.

° The RFD entry must contain RFD under LINE CODE and the file name in
columns 13-24. The file name may start anywhere in these columns. The
optional BLOCK CONTAINS clause must begin in column 28 or after and must
be terminated by a period before the last column of the form.

° Report Layout portion:

1. The word LAYOUT in the Report Layout header must star: in column
28 or after and must be terminated before column 80 of the form.

2. On Line Image entries, an entry in columns 13-24 (DATA NAME)
may be contained in any consecutive subset of these column numbers.
With the exception of detail line types (D or SD), these columns are
ignored by the Report Writer.

° Report Definition portion:

1. The word DEFINITION in the Report Definition header must start in
column 28 or after and must terminate before column 80 cf the form.

2. The main section headers, LINEADEFINITIONS, LINEACONTROL,
LINE\SECTIONS, PAGEACONTROL, must start in column 8.

3. In Line Definition entries, columns 13-27 are ignored by the Report
Writer. An entry may exceed one line on the form. The second line
is started in column 28 or after and must be blank in columns 8-11
(LINE CODE). A word may not be split across these two lines. No
other entries under DEFINITION may exceed one line on the form.

4, The Control Breaks entry must be the first entry under LINEACONTROL.
The entry must start in column 13 or after.

BE-200 SERIES

REFFRENCE MANUAL

-224-

5. Except for line code, when required under columns 8-11, all other
specifications in the definition portion must start in column 13 or
after.

6. All entries should be terminated by a period.

The Report Section is terminated by any of the following section headers starting
in column §&:

ARRAYASECTION,
TRUE~FALSEASECTION.
INTEGERASECTION.
FILEASECTION.

Keypunching Conventions

Each line entry on the Report Description form is keypunched according to the following
conventions:

1.

3

Columns 1 through 80, terminating with print position 53, are keypunched in
columns 1 through 80 of card 1.

A repeat of columns 1 through 6 and cclumns 8-11 is keypunched in these
columns of card 2,

A hyphen (--) is keypunched in column 7 of card 2.

Columns 8. through 158, labeled 12 through 78 on the form and starting in
print position 54, are keypunched in columns 12-78 of card 2.

If ho mforriation is contained past column 80 of card 1, or print position 53,
card 2 of the line need not be keypunched.

g GECOM - 11
S REFERENCE MANUAL

-225-

GENERAL COMPILER
REPORT DESCRIPTION FORM

GENERAL @D ELECTRIC

COMPUTER DEPARTMENT

Fas B
=] M:
= (= 15
mE IS 2
Bhin I
wlEime z
o7 =

y BB

[CRREL

2 B R

o =
lo[w
T =
= =
[CRNEN
e
5

w =

=

< =

S s

«

&

S

5

[

z

o

)

! = b T =

EREREE £ :

I . :

i ..’l T \

o . T —t H

[R) R ﬁ " T

" .

O E= (=] T

T 5 1= HeSHBSY N

IR T BN TY B =i

P o Ruu }

e :

2 2= Z =] .

g = 0=

e} < L= B

3 = =

o S| S

R m .

|oE = =

R =

| et £

I E OmEa B
3 E =

LOELE EE

i = =

e 3 B N

[3 o : :

L Ela 00 B ;
IR - 5555
" 2 TS OGRS S S S A SO S SV - S E | Zz== :
[EIRR L SimeT £
[E3 Ry B = R WY :

o Q \MNHM .

ST : f =) B
=T Y =035T ¢
[E3 gy G R N
S 3 S =< O N | o~ S SO S 3 S U N STl

Mw - .%., ‘Z360¢
Tl t R

CH g T 1 IRgudY e

b : LEEOdd0 -

90 =] W’ FES<< N

,_&L AR I
5 ! - S

£ Hoo s S -

§ 2 .8 TasGa -

O T =

C e [HLL.L.L P

O [Ereso s !

| B — !

L i aciit

P Cr-Tn ! E AR o

".\,‘WNFI;E;_ a ol E

RABERCE L R H

,mﬁl ER = I A .

e lE = :

L fE & C - IRl

i b Ly —+ 1+

g lat -ERERS

[o o

=P N

| & z8

L islss

2 ‘Wan,m EINS)] 2

& 1288919 15 <

e Hs3aatd o 3

& pEgEioeiefe 4

Figure 17.

GE-200 SERIES

Sample Report 1, Report Section

GECOM - II

-226-

REFERENCE MANUAL

-68¢-

73S 006-39

0
g

Sall

ROJ4D

TVONVW dONII T

11

JUAERUEIE |

uot30ag jx0day ‘g 3xodey ardureg

GENERAL §B ELECTRIC

COMPUTER DEPARTMENT

LAYo

PEF LT,

|
|
|
i
|
|
|
|
|
o
lon uity
H I P
L=
L(R) M
WG . %

v 11.

t

9009 .]

L

1l Lq‘r\i EE
T, cues =, rEeT.

PGk count. | o

6/DASKH/ DO/
avANO L tT

NLT L

N

e DETAT L YCQUMNT]

REVOR

n

GENERAL COMPILER

TEMIL

(NIFRIEEY

LEx

VRN

i
I

DESCRIPTTON FORN

5

deala 0 ate i ik

Rt

i i
799999
i

CHELL

b .. ACS

PR

O
Wik

4T

i

DAt
o o
8
04 iasars'e

Prom 2ob

0L

e
CIEARNINGS]

o ! 10
B IR R |
i
1 i
X
|
I
+ [
i P |
t .
I
S
e
i
b
cieat

ez

[SIIY
1
11667

-0€¢

TYONVI JONIYdAdd

SINWIS 00G-38

- WOD4D

II

*1g oandrg

uorstalg ®yeq ‘g yrodey ardweg

GENERAL &3 ELECTRIC

COMPUTER DEPARTMENT PHOENIX ARIZONA

GENERAL COMPILER DATA DIVISION FORM

T SAMPLE QT Z | TR DIVISTON o E B
_ 2 5
T 14 S
01230 FI|LlE SECTION. i
01240 [INPUT FILES., .
o\ 2S0| [Fb| [EMPY MASTER , RBILOCK 300 woRREI| RELCIORDIING BENARN, CONTROUL~KEY RECOAL . 7w s
0\ 260 LABEL QECORPE OMITITEDLD.
012729 | Rl [EMP ~RECORD
1280 [FL |RECORDVTYPE 1
o290/ | ¥ ORG XXX X
O\ 300 ol bhEeT QAL I
Qo310] g |[SECT . 02 o2
QV320] | H pues >3 (O
00329 | H jUNIT) 04 LA .
ovz4ao | FlPAVY~YNS] L 1L _ XX KX
0| 2350/ | Fl [PAY~STATUS A A
O\ IGO0 Fl [LST~INITTIAL, A
03900 | F [LAST ~NAME AL 8)
| 01380 | H [SEX X
T"O"S‘So c| [MALE 1
OLA 00 <] [FEMALE v
o141 0 H lctAassS | P Xy
Crevp) Wb AT E i R R R
ova 2ol H M6 D1l 02y
ciagol | € [oa R Ehs e O
Voais e sis s e o]z va s s s v e a0 21 22| 23)2e02s 26 27028029 sei3r3ziasfsarssfsafsr)aafseian srfarfasfaefasfasiarianfaocofsipe ypsafee e ocrosei e i % 207172 T3 T4 TC 1A 17 ve glun

Cale o1 820

lilez

Z29[1/1 e
oelscwecevs sovdlecieringozes walzolesiseinsivalzaliafosias asiusiosisslesfes isfislos solorferfinoree]scfeefse|seivefeseciicioesdloriaive seivefefer ve veen i cn s v e anio e le fefops e e e
= B CRUGRRE!
,, NOTLDAS INVISNGD [os 910
X . SVL H | floeb9in
(2)X AWYNAX3S[|3 [pbs9lo
GENEEGEES ' N¥va~ssOodal 4 Thzahg
o SNOT LO3G A9YIOLS~oONI N oM [0V 910
1AL 3
66 \N66S Vo34~ ATl B | foos o
GGEA666 NYOHLTm~AEAM | oG \O
XX 3QO0>~ 12043 [} 01O
GANEGS ‘1 SAIN~LIAG A | |9/ vio
Ghes Copx Sy H~2an (4 | 12947
0| |90 _ WA 2] Joa o
et] 1]
I UL AN vod T 80g e DTV asonn |

WHO4 NQOISIAIGQ viLvd

HIANAWNOD TVHINIO

Figure 21 (cont.)

11

GECOM -
REFERENCE MANUAL

-231-

Bl L w ST _,: PETAFTIFTE FEARTI PR ITI PAET FEPT ST TN PPN PR PR) Vo e Te B
o T 1 N - 0 SEEN RN B EEER
o MR ERER B PR
i . v ifasEy forg
) T livas oL T w>0|.m | pssao
CriEsEd ol oo T () d[2¥e N oYlNgh AT 078170
T T o TEIFISSEY 0L p9oT T TZOWVRY¥/IW YO INgo AT olR 10
R S o Uino oL PE < CrooANRYA Y ToR AINgD Ay Joog 197
B PCER TN AN
— T - . TNOITLoES VLol [erlio
T TNOT YRS "1 vizZT [ANZ [N [0cc o
- 1 A A R AV N = SR N A=W "7 WENE W] (%) N CEVCEY I R A RN
- T T T Finc oL o9 SEUNK N
HWVN X3S 64 ,3OVWSa . [IROR CESREKCM
o 1 eI T 55 TEAVW BT CEXSW [0S0 10
- I “BlyL oL , ¥ . |FAON o7 L To
TIXAN O L 09 |90 00 v RON WIVE ~=5 03B Y1 oL 1o |
s - i "BHYIf oL 2 oV3S |3 rowW oo'LTO™ |
b e . FUSIHAIAOXES T F SR -H3E)%3 Vs = NAII~ S0 SIS
" B TaNfToIE[feas e
— TNOL 153 Ui sqal [aL 9o
- MO TTYAVAE 2ZPNAFYO0YY o9y 7o
.:. frﬂ l. ; ' 115,5 :.., v o 85 F w-l.wwn\.ﬂ‘: 9-4:45.‘%)@, m‘z we o9z fse :.w: IR T T e Al I :.ﬁ N E _ L
. T Cannamor]) C ieeveions
ol MOTSIATA =T A2508s T 7 _a03%~ 27awvs

WHO4 3ON3LN3S HITNJWCO TVHINIO

VROZINY

Jl

& IN3INLEV4IC ¥ILNANCD

419313 {3 1vHINIg

Sample Report 2, Procedure Division

Figure 22.

I

GECOM -
REFERENCE MANUAL

GE-200 SERIES

32-

-2

29l 1|1 s
=._: _:A:T Mr _: #.;N;_%NE:_:T ﬂ%._:mﬁﬁ.%_:_:_a ._: :MH_J: _:w:_z ».ﬂ:_: v :_:_ﬂ. _: _2 _ .;_: w:_: :_:_: W__HW.H: 1=4_~ch~ s _.;_:__rzwzwﬁ 44,@: w:_: :E: _z _.1=_JA\._. Ay _ s M;_rn __HNJ« |
- . T T [i T —r L

- T T T T T T T L T 1l
T | ’ , | T T T T AT INF| oy e\ O m
T T ' ! T T ! i <U ' ' TNIY BO1S 0s6 10
' HIJVINT TAYATNWIWT 3T ST Q261 o
T 1 R ' T TIAJ[~ AT FTIVNIMNFZL "V o Teg1 B’
T ' ' ") ' Y A L 0% T dog 1o’
, _ ' TJdI~IWRZ 30 IVIZQA~ AV ' EG) eg 1o
o ! AR AN %@ QNI 3T IR ISVWVIWT [QVIY *7Y] 08 TH
' Ba3NTA AV NI4T0 oL VO
e T ol oo oo s o o oo o o o e T o o fe o LT T
! su
. <, & - _ T
= 40 g Jove ¥31n4wod| PETTTTIS
-] WOISIATY ~ S30Q35034 Ty imoaax a4anus '
3 i R _ N R o - - oron ldxookhg

VROZI¥Y A:N30md ANINIEV4I0 HIIAAWOD

WS04 3ON3ILNIS H3TJWOD TVH3INIO
ITTRERER- RATELEE

GECOM - II
REFERENCE MANUAL

Figure 22(cont.)
-233-

GE-200 SERIES

-v€e-

TVANVIW dONAYdA4d

SINAIS 006-30

WODdD

I1

*€g 9andrg

uoroag jroday ‘g jrodoy ardweg

GENERAL @B ELECTRIC

COMPUTER DEPARTMENT

GENERAL COMPILER
REPORT DESCRIPTION FORM

PROGRAMMER ' COMPUTER ToRTE

PROGRAM « (¢ = .. 4= 72 Voo S=c o
IO D B O b O T J RN
RN [COR R, . 32

SEQUENCE | | LINE 51815 o _

NUMBER coDE DATA NAME BEk J23[e]s 6]708]8
o0 [REFORMT égcu‘awi TSN

) REE T T uTi e Rl e

o v'zlo) Rp R HbT IINEEE

IEREIDE N

rowaLs | !
PCEITIS o,
e b gy
Cedad

Pl

NCE

WEEK..,
oM TTH .

GEYY

b
AINTENANCE

. Acc joF TIME FloR

5. ACC OF TIHE FoOR . .

i

o
PRV B
t
[il
I e
s

2 5/n

EE
3 O S Liorjerfic R RARARARAANITAN] i) K 1 M REANRA S
A T 2T % Tttty o i e I v e
T T XXX IEEPNSIIE] QL»\0
A - WA B 1 oo TRV IOG Y Y] A SO O
T T Y) I Y i | I) BWT LA N0 Sy K| (SRR AN
o R Y BEERE | T T T EWT LY Y T A ab 0]
o T o XXX XXX B CEAWnNrAoD |4 | jens
i o €e¢6s ALV 0 A SEA
o) : . el R | =Rl I vl <
’ ; - R > T N f‘u DRV Z AN LYH P e
") AN T yal cCmvr
- T I { T . 1 0% o SRz
X ! = J0o~Y 39D A Lz 0
I & , , R AREE) a9z N
! VA 2 AN A g A=S-R R
- X WS ReR | BN bty
) | 11T)) cirzal 1 o 0)
*AVQ ‘s\apm MiNo i No| U3pPNFNdIS oy AT [y o zvo
. . - : THEIa 0 v N [oveo
TNMUTATAT A foee e
ooy yldy Yy oo o
 ee 8r fq el l vt Tiiar Av e 79 ae ce va e e B N 1 P P
P - Nlr — - - L1 12 - -
. I S S e ‘- I

WYHO4 NOISIAIQ

viva ¥3INdWOD TVvH3INIO u_z._.um._wg.::_uzwu

Sample Report 3, Data Division

Figure 24.

IL

GECOM -
REFERENCE MANUAL

-235-

-9¢¢-

TVANVI JONAY I

SYAS 006-39

- WODID

11

(*ju092)pg 9andrg

GENERAL @B ELECTRIC

COMPLTER DEPARTMENT PHOENIX ARIZONA

GENERAL COMPILER DATA DIVISION FORM

— Ep——
SAMPLE REPORY T, DNTA DL/ISION (ConT’R)
PROGRAMMER - COMPUTER PAGE = oF =
; : ARE TR
SEAUENCE M DATA NAME QUALIFIER H REPEAT| " 3 POSITION DATA I1MAGE
NUNBER M h H .
Voroaiastelade e hofin e s e venr vsie a0 2vzz|asfae s 25 27 28 20130 3013233 34l 3sfaslsafse|39 a0 arfazes|eafasfas a7 ienfagsofsufszinafsafssise saisnise 0 er a3 edinsiesinties eajroinilr2irs'raizs;ze 1778 7050

014.90 BRIKIMNG~STORAGE

k<

.

U\ s0© | [TTME

SRR PRCT ~J08&
013520 PRCT ~FATIL
vis5z0 PRCTYT YPRENVT

PRCT ~TOLE
TOTA L~ T IME
YPAY~ NAME
STANT SECTIO
NA ME

C1540
1550
01560
015170
01580
015 9¢

rPAamMagaTo

u

clé ©
()\(»\Oir¥__’A7*A
| OV6 v I

ol62

| G\613%

SECTION.

S9K99
K999
K999

k999

K999
XXX

VMO N"
“TUE”
CWED”
R O X
SERT”

NSATY

“SU NII

99 KSS.

PP B P P R e P TR I PIR A SR E)

PEIPPIPTIETIPRIEFIRRIEPIEES PPY A FP) EELREIPR] PRI PRY FIFY P FRARRS

Cate (1 62

N

E R N PNt P RS PEEE)

/t/e2

raize se
e

mm 92 Js2 |72 |62 |22] 12]0L |69 |89] 29 199 [so]*91e9 [29 |19 [09 |65 |85 | s [os fss]vs [es] cs [is|os[av oo [cn on [57 o0 2_: Uy Jov | se|0c 26]9 : i.t: afpe]selreleJeiehoe o T O WlaTe s Jofsls v T 710
i G 42 4 O A G | A
' T T I T TRITO IR [ALY
_ — —— RN TLS T T IR S LTS R i
" ‘ T — _‘ oo e Tl sy vy and| fierio |
— , ; RO LS IS IW T L = iS5 08y WOl 93d L rSrAR R A
T T T e e e e W NS oAy swEN A ew o e |
4 _ AR T _ T N R RIS :‘_a_w
N AR " ™ e e e e e e g e T Y IS [TE [[eR L e
T T MR _ , T NI _w.rz;rumwn. TNI[[OFTT 7T
— A — T T IWIL= TV IO /3T g9 IWIT 40 33V = ITTTRE o VR L e
N j AWITIL~TYHLO L /7I7NVY TRNTYW g0 3WIL 30" DRV ="LTAITYd ~[L S5 Y4 (SR AR
' T TT=TVI0L /[0 TT7d 03 FWI'L IO [000 =TIVI~IodTd | [PTL77T ,
j T ' " " TAWITL~TVLOL /J0 Jodm IWITL 47 POV = S0 T~[I094 (AR
T T T IWVLISIFETTEUYY WA IG TTLT
I i TATETTE ST
T) T I B 7 j ! T ARSI TS FRVANE| IIE O] B R AR
TPNOTLOAET TIW T~ SOHD TA3TIVIT U
i T TT T Y01 IWTL J0 OOV ¥ JIOoNYRNIGNTITH Y0 1 IWII 40 79[RACACEER AR
FI3YOTYva god IW[TL 30 0T Y [+ 800 804 |[FATL LT DU = INTIOWWIT 39 7%
—_— — . . S S e Ty s |
T T T T THNOITTLOTTS ERTIRY B D) B R
") N T ' AR TR S U1 IVHREIE] BN EARGE
T e e oo Tl A R A |
* 3ova s T
— ; 305308 TETEE . e R

WHO4 IONILNIS HINUJWOD IVHINIO ‘ e o
31819313 @B 1vHINI9

IT

GECOM -
REFERENCE MANUAL

Sample Report 3, Procedure Division
-237-

Figure 25.

(5
2@
IS

20
.} ﬂ\

[

3L

o

E-2

&

e felrteTo T TuuTe s OO0 EEE
_ - — - 41
4 S s] - S
S . - 1 SER P . —
e e b b et — e
e T T T T T T T T KR QNI JOFTET T
! T : " " T T T T T T T TN Y 30T T UTETU |
r AR S " 1 i T T USRS B 5P 20" ML A SN SEQ U | v oo SRLERMELEN B (VAN 2C SRRV
— _ 1 , _ T Iy TT I [TIVNTIRI T Y~TRI[UTE T
A , T ._ SRR RS R 40 S M) AL ETETe
_ ™ R T [T T Ly I LT I IV I NI DX TR [T
| ,. TRV + IWTL F[IWTL TTETO
| . . T .. LY TN qrp THCIATLIST S ST IWIIT IY T | [TEETO
, — _ B TIWTYSIEE LS - W TL~dT1% =[WTT RN
i WIE~TRI o4 V9 TT7 3 A0 INT 3T [STICI~HI0N TV Iy~ O vI~TTIR [TLs Ty
, _ R Y (-3 N 1P 4P S M i 3o TIgTY
T T _ DR AR 98 SSHE S I Vi A IR I AR
. N _ T _ TIWEN~RTT 0L R T[~IT5[78T
T i i TETIMT QL [T FTAOCW T~ I IS [9EeTor
_ 1 T TR INUW UL T Y g [TATW TR
T — i S " TXALTS O US E E Y SN Y[IE g~ TS LN O[T I oTgTT”
T o e B3 BaEaoamnT: enaanERanm AhNA RS A SRAR SHE 1 aaaana
| uanoss |
h 39vd kw»:miou_ ra PELLAZEDLT]
[NOTSTATT FINTIITYL & 18943% TTEWES

YNOZI¥Y XINIOHd “LNIWNL¥YJ3Q ¥ILNIWOD

WHOH 3ON3LN3IS ¥INUJWOD TVHINIO
21919313 @@ 1veaNa9

GECOM - II
REFERENCE MANUAL

Figure 25(cont.)
-238-

BE-200 SERIES

S2183S 006-39

Qg 2an3tg

-6€¢-

uorjoag jrodey ‘p 3xoday srdwreg

WODd9

TVANV HONJYTITY

I1

GENERA[@ELEGT“'C GENERAL COMPILER
KoK DESCKIPTHION TOKM
COMPUTER DEPARTMENT

TAMPLE KEVORT cECT o PROGHAMMEK PRISET I LAt Sani

9 |
i9]oj1i2,3]¢[s:6.7.8 3]0 112 3.4 576,/ 89001 25306 1890123456 /8901 2sd i -41n 123456789

RIT i

........... CMAReH 19591961

DIFECTI XK XA X

|
|
i
|-
-
|
|
|
|
{
|

U

wvernr9)

SNYIS 006-3I

-0ve-
uotsTAI(g BIRq ‘p jtodey ordwies °Lg 2aIndrg

- WOD4D

TVANVA dONI¥d 439

11

GENERAL@ ELECTRIC GENERAL COMPILER DATA DIVISION FORM
COMPUTER DEPARTMENT, PHOENIX. ARIZONA
| FroeTe SAMPLE REPOWT 4, DATA DIV T1 ot oere
PROGRAMMER icnuutsw jPA(‘»F 2 oF s
s:g:;:EE é DATA NAME QUALIFIER % REPEAT| % g i;fl“vﬁ‘ja DATA IMAGE
'ﬁlﬁSM'35'“wﬂH“”H““HWWHH”HVWMWWWﬁﬁTHH”H“W“““”Smg“ﬂ““”1Huw”M“wwﬂwwwwruwwﬂwnnww”ﬂwv
Qlrool DATIA LIVISION. .
sitvo| [AeEln seEcTIOoN. | WINL L, 12).
ol 20| [FILLEE sEcTIioMN,
O3B0 NPT FILES, . . : . -
ol (40| Fp| WNDA~YQTR.2, S .) L o I
ol'lso R WIND~DATA o . - S]
o1 166 Fl [SUe STATION XX
o1170 Fl IYEAR EN)
a1l go Fl monTN) s B
o1y o0 | ¢ MARGCH , L A4] I 3 .
orquol| ¢ hPRIL ‘ , o 4
oV21o ¢l MaY)) IRE . | 5
Cl2g0 Fl T.IME . 2999
G12zo] |l hrTenT o . . 1199
01240/ ¥ [virECTTOM v L o9
O l2sol | Y |SrEEY . . - 09
EA(, {2en] | Fl PeciNIcIAN . L A (gD .
ozt libAY ‘ £ 9
Lot [| (X (45N
O WGP ING T s e AGT CEL T Lo R | |
O Tl wWwINUL V%2 | ! 99D
e aldles

-1vc-

1838 00639

|

SH

- WODJ4dD

TVANV JONIYII9Y

11

(*ju09) 1z oan31 g

GENERAL B ELECTRIC

COMFUTER DFPARTMENT PHOEKIX ARIZONG

GENERAL COMPILER DATA

DIVISION FORM

[e o eh f A . \ 0 AR .
PROCRANMER - : CANPUTER PAnE B 0F =
‘::‘,:;:‘;‘ ,' DATA NAKE QUALIFIFR é REPEAT ; % ;;::Y“;Lﬁ OATA IMAGE
: i HEH s s
[BRUEAAES) E J 9
013To| | F| [oPEER~cLATY 099959
74O Pt ~A 55999
crzed | F [sprrt oz 05999
ot zan| | fl|seort ez 09992 : -
orzio| | H sProivg 99999 . DR |
orzgol | Fllsprrob~5 . 09999, . SR
orznel | Kl serevu~g 09939,
ordgool | Hswreue, G 99999 .
oA ol | F| |speEDNE | 199930 . o
o \A20 | F sPr et~ | - _.|f9%999 . . .
otazo | Fl lgpeuveconma || - . 999992 . .
ola-tol | H segTuL ANG 99999, . . ‘
o 14 = FlleowmLALEL, | .) R L o CLIXCSD _—
e [colNfeTaNT. < T 0. X S . .
o1q70f [FLL LABEL. i oo L IaALWAAA LY
AR . . | 1. S ROAANWALAZR L
¢ 142 . e] I M EAAANABAT” .]
01412 , | J | [CAAANE ALY]
et a M TAMLELL LS
v1a%e : Phoes 4358260
eI » R A T i :
c1a9s - N ‘ M . S ALNALLAVG” 1 - A
53 3 33 R e e) o O 0 0 5 .) e) R A D R D
CA 4 () 62)

11tfez

o
]

44

TVOANVI dONIYHITY
IT - WODID

SEAS 006-39

'8¢ 2an3drg

UOTSTATIQ 8anpadold ‘p jroday ardureg

GENERAL &3 ELECTRIC

COMPUTER DEPARTMENT PHOENIY ARIZONA

GENERAL COMPILER SENTENCE FORM

[reais SAMPLE RECORT 4. PROCEDURE DIVISTON -
PROGRAMMER JeoupuTer -‘ PAGE 4 A =
L |

evtn
J"”,[g: A ai”‘v” 1203 14018 !‘I”’w 19 zvizz!.ﬂ‘zx]A?fj“ %iﬂﬁtv?;?”qi”i17;'3![" 38 “i 1713'j”i‘".“1‘?:“%“‘;“ ‘Al”i?‘i‘:r;“rr“::'”r:’“‘“7” s ”j”r”“mf"“j“l:'“ “ﬁ“i“:“;w ‘I.”‘”: ,:,{,{,,'mrmvmi

ci4eol PROCEDURE DLIV.ISTOW.

ola9v L JoPEN ALL, T ILED]. .

QO\50C ModEl ZEEDES. TOl MIND. .

1.5 ¢ (QE(\\LMV‘L_E o RTAD WUDAVQTRZ2 IE END OV FILE Go T CALS SO . .]
[LaisZo LY NoT MAECH 6o _To REAMETLE . ‘ B
Lo\ 5Z0 T=voIRECTIOMN- B .)

0140 secelvrcLATSS =09 . - . T

olssollclsFly voPlEEL . vARY I FeoM L BN 1 uNTTIL T EQ O

0O\'5850 1Y SiPECD NOGR SFREEL~C '_Asi.) GO, 1O, WINDSAYDO. L
LOlE70 SPEEID~vCLASS = SPEZU~CLASIS + 10,. ;
0 1LSHol IEXTT] CLSIF(~ SPEED. -,] L , R

01290 WINDI|»DO. WINL (T . Ip=wiNLCT ID+ 1.
oneont | L lwinplTited =wInb (T o0 x Al L
S OLGLn wWIndICT . 12)=wIN (T, 12> + [bIRECTION, . PV R

OlGeo) o WINDICO s T) EWINDKS. To, + 4., e DU
L0 16Zo WINDIC UL Ty =WIND (Il .)+ slpeed. . R o

Ctédo C 6o T EEALNFILVE. L L i RV o |
_olesol learclvo.] Winb (9. 1o =wWint (O 4 +WINDCO ., 2D+ WIND (9 .3) + wIND (9, 4D twTMD(D, 5 +

Cl66 0) WIND (O, GO +WINDCO, T)HWINTG(9,8) HNINV(2,9) , e

ool lap T ~AVGS,. VERY T FJROM L BY (] UNTIL I Gr 8.

viegol] WIND[CL,ff) RouMDEY = wiNd(T 12y Awrnn(T o), b

c1690] [Exzt] cenfaiGs.. | .| DR | .

‘ Lot soo) WL EXTBENUENAY RSN R RIS) 7"'"‘-"‘\‘"”“";" IR L RO SRCRL ERRLINT “}“n«wb",un ‘—\Z:’ ‘«"]L"I"l“ eferfaifey LI RN IR R S U SR

11l1fez

-€¥¢-

GENERAL §B ELECTRIC
v e e . GENERAL COMPILER SENTENCE FORM

-y - —— g a , H
- Yoo - s ~ I
- JE—
| R R e L BT A N L I L A TR TR TN TR TR CRP TR YR T A PRPTINTY PSR T R TIFUIT R TR VI FRVINTY RYSEVERT RNV ISR CRPETRITY FYSS PR T LRSS T 1N N DT R T R LI TN
| i
i L . S o . PR N L e

cionnof IorRafayes) vary o fleon 4 ey sl unTio T e 9.
Lo 2 WINDICIG , d) EOUDED = WwINL (11 J/wilnp (O, T3 . |
WL EXTT] DIQMAYGS.. , |

(]

CoTzof PINEIVDD | YARY T TROM 1 by 4 JuNTiL I Gel 104 -]

oA Moyrf WwIND QL (] To weETLA, S - !
- L1350 Mov e waint (. 23] To .SPTCh MR, _
ﬁ DA ED MoyEl WiIND (T, 23] To SPEES~|G. PR
= SN Y Mo VE] WIND (T,4) SPrELAM., J
® oI ED Mo VE] WIND {Ta S0 S o 3
® 01190 CMovE]l woins (6] i _
e sowroll MoVEl WINN(Z, T U R R
=3 : Moy C] WIND (T,8 ‘
o MoV Bl WIND (1,90 |

MOVE] wind (L.\0) To SPEED|MCOUNT. I B S .

MOVEL WiNbL (T, A\lp. To SPEELIANG. .} oo by
g MOVE] LAREL (1 |Te RoOWrLAFIEL,, . . o :
okl L JGENERATE pIREC|TLoM~MT NIMEL oo b
LYY EXIT LiNE~ DO
Lodeeol b 0 ITERMTINATE. WINDW RPT .)
RS cwg'@ﬁwmowmaz WINDARIPT .. :
O 1909 ST 0P RUN, N . . , i S |
OV O9VOL END [PROGIRAM.. . ., . N N , ‘
BBUNNY I BB e ERE RN RN E RN AR RN R RN BERNRNNANS R RRERE AN RN R e

|
—— 14/t oz

t

IVOANVA JONI¥dd99
I1 - WOD3D

L P 1 P T P Z S F S
E 0 N 0 R 0 E U L F Y
A S T S A S R P 0 M
D I E I 1 I 0 P A M B
I T R T L T R T U 0
N 1 M I I I E I L L MEANING
G 0 E 0 N 0 S N T
N D N G N S G I
I i P !
A 0 L i
T E
E
N P X A Alphabetic (4--7, blank)
X X X X Alphabetic, numeric or any of
comput e s -t
X 9 Nuneric (0--49)
X Decimal point
s Comma
X X z Zero suppression
X X Dollar sign
X X * Check protection
X X + Plus sign if oositive
Minus sign if nagative
X . X X X - Blank if positive
Minus sign if n2gative
X CR Blank if positive
CR if negative
X DB Blank if positive
DB if negative
G Group indicate (1 only)
X I 12 row overpunch if positive
11 row overpunch if negative
X X R No overpunch 1f positive
11 row overpunch if negative

Complete zero suppression requires the Z symbol in all numeric positions,
both left and right of the decimal point.

Figure 29. Report Data Image Symbols

GE-200 SERIES EFERENCE HANOAT

-244-

APPENDIX A
COMPILER VOCABULARY

The vocabulary of the General Compiler consists of the following words. These words always
must be spelled correctly and cannot be used as data or procedure names. Key letters after each
word (IEDPR) denote the division in which that word is most commonly used. (I=Identification,
E=Environment, D=Data, P=Procedure, and R=Report writer.

P FOUR(S) E P PRINT E
: R FROM P PRINTER(S) E
ACCUMULATIO R PRIORITY E
ACTIONS P GAP P PROCEDURE E P
\DD P GENERATE P PROCEED P
ADDRESSIN P GIVING P PROCESS D
ADVANCE P GO P PROGRAM I E P
ADVANCING P GR P PROGRAM~ID 1
AFTER E GREATER P PROGRAMMED E
ALL R GROUP D P PTP E
ALTER P PTR E
ALTERNATF E HARDWARE E PUNCH E
P HIGH E
E HSP E READ P
D READING P
E IDENTIFICATION 1 D READER E
D IF P READY P
E IN E RECORD(S) E D P
P INPUT EDP RECORDING D
P INTEGER D REEL ED
[INTERRUPT E RELEASE P
E INTO P RELOCATABLE P
I~O~CONTROL E RELOCATE E
h E P 18 D P REPLACING
BEGINNING E REPORT R
BGN ~FIL-LABL D JOURNAL TAPE E D RERUN E
BGN -TAP-LAB . D JT E D RESERVE E
BINARY D REWIND P
BLOCK E D P L D R ROUNDED P
BLOCKED E LABEL ED ROW(S) P
BUFFER E LAST~DETAIL R RUN P
BY P LAYOUT R
LESS P SAME E
CARD E LINE(S) P SECTION D P R
CHAIN P LINE~COUNT P SEE
CHAINING P LINE~NUMBER(S) R SEGMENT E P
CLOSE(D) P LINES, PAGE R SELECT E
COBOL-MODE 1 LN P SENTINEL D
COMMON~STOF AGE E D LOAD P SEQUENCED D
“COMMON STORAGE E D LOCK P SEQUENTIAL E
COMPUTATION-MODE E LOG P SEVEN(S) E P
CONDITIONS P LOWER E SIN P
P LS P SIX(ES) E P
D SIZE EDP
E D MAGNETIC E SPACE(S) P
. P MAIN E SPEED E
LBREAK S R MEMORY E SQRT P
L KEY D MIO E STANDARD E
P MODE D STOP P
P MODULE(S) E STORAGE D
P MOVE P SUBTRACT P
R MT E SWITCH(ES) P
E MULTIPLE E
E MULTIPLY P TABLE P
D P TAPE(S) E
NEGATIVE P TERMINATE D
DATA D NE! P THAN P
DATE-COMPII ED 1 NEXT~PROGRAM 1 THREE(S) E P
DEFINITION(S) R NGR P TO E P
DEPENDING P NINE(S) E P TOP P
DETAIL-COUNT R NLS P TRUE~FALSE D
DISC E NO P TWO(S) E P
DIVIDE P NONE TYPEWRITER P
DIVISION I EDP NOT P
DSU-CONTROL E NOTE P UNEQUAL
DSU(S) E NO-SET D UNIT E
NUMBER E UNTIL P
E P UPPER E
ED P OBJECT~COMPUTER E USE E
E OBJECT~PROGRAM E USING P
D OF E PR
D OFF E VARY P
P OMITTED D
E ON EDP WITH P
D E ONE(S) E P WORDS D
EQ 13 OPEN P WORKING~STORAGE D P
EQUAL(S P OPTIONAL E WRITE P
ERROR E P OR P WRITING P
k; E OUTPUT ED P WS D P
P OVERLAY~SEGMENTATION E
P ZERO(S) E P
P PAGE P ZEROES E P
P PAGE-COUNT R ZERO~SET D
PAPER E
FILES! ED P PERFORM P 18~BIT D
FILE-CONTRC | E PL E
FINAL R PLACE E 215 E
FIVE(S E P PLUG(S) E 225 E
FLOATING E POINT E 235 E
FLPT E POSITION E
FOR i R POSITIVE p
GE-200 SERIES L
S5 E

REFERENCE MANUAL
-245-

APPENDIX B
ORDER OF SOURCE PROGRAM

IDENTIFICATION DIVISION Mandatory
PROGRAM~ID. Mandatory
NEXT~ PROGRAM. Optional
AUTHOR. Optional
DATE~ COMPILED. Cptional
{:ISTALLATION, Optic..a
SECURITY. Optiona:
REMARKS. Optional
ENVIRONMENT DIVISION Mandatory
OBJECT~COMPUTER. Optional
I~O~CONTROL. - Optional
FILE~ CONTROL., Optional
DSU~ CONTROL. Optional
COMPUTATION~MODE. Optional
DATA DIVISION Mandatory
REPORT SECTION., Optional
ARRAY SECTION. Optional
TRUE~ FALSE SECTION, Optional
INTEGER SECTION, Optional
FILE SECTION., Optional
OUTPUT FILES. Optional
INPUT FILES., Optional
WORKING~STORAGE SECTION. Optional
COMMON~STORAGE SECTION., Optional
*COMMON~STORAGE SECTION, Optional
CONSTANT SECTION., Optional
PROCEDURE DIVISION Mandatory
Sections and closed decision tables Placement
(may be intermixed) mandatory
if used

Master program (including open Mandatory
decision tables if used)

END PROGRAM. Mandatory

GlE-200 SERIES REFERENGE WAL

-246-

APPENDIX C
OBJECT PROGRAM RELOCATABLE DECK FORMATS

All binary instruction decks (segments or subroutines) are preceded by one or more cards called
Header cards. These cards contain information for the loader. They indicate the names of all
subprograms (segments or subroutines) referenced by the particular routine, all entrances to the
routine plus other infcrmation required in loading.

HEADER CARD FORMAT
1. The contents of words 0 through 6 are explained in Figure 30.

2. Entrance name blocks are five words in length. The first entrance name block starts
in word 7. The first four words of each block contain a left-justified BCD name of
twelve or less characters of an entrance to the routine. The fifth word of each block
specifies, in binary, the relative position of the entrance. The entrance to the first
instruction of a routine is position zero. (An entrance ten locations down from the
first instruction would be position ten.) There are as many five word blocks as
specified by the count in word 6.

3. Subprogram name blocks follow the entrance name blocks and are four words in length.
Each block contains a left-justified BCD name of a required subprogram. There are
as many four word blocks as are specified in word 5.

4. Additional Header cards contain the first two words of basic information followed by
the continuation of the previous card.

5. Checksums are only thirteen bits long. They are computed first as twenty-bit check-
sums and rhen broken down into seven and thirteen-bit groups which are added
together, overflow checked, and stored as a thirteen-bit checksum.

INSTRUCTION CARD FORMAT

Instructions are in relocatable binary format. Each group of nine or less words to be loaded is
preceded by a control word. Bits 2-3 of the word control the loading of the first word of the group;
bits 4-5 control the loading of the second word of the group; and so on, until bits 18-19 control the
loading of the ninth word of the group if that many words are required.

@ IE ° 2 @@ SE [R} H E g REFEREgzgogAI;U;.E

-247-

Control Bits

The control bits have the following meaning:

00 - relocate the word with respect to the origin assigned to the first instruction by the
loader.

01 - relocate the word as for 00 above, and increment the address portion of the word by
the origin assigned to the first instruction of the routine.

10 - relocate the word as for 00 above, and develop the address as for 01 above, then
complement the address developed.,

Full Instruction Card
A full Instructicn card has the following format:
Word 0 Bits S, 1, 2, 3: Type (0011)

Bit 4: Same meaning as C in Header card (Figure 30).
Bits 5-19: Same meaning as Origin in Header card (Figure 30).

Word 1 Bits S-6: Same meaning as Size in Header card (Figure 30).
Bits 7-19: Checksum.

Word 2 Control word for first nine words to be loaded.

Words 3-11 Nine words to be loaded.

Word 12 Control word for next nine words.

Words 13-21 Nine words to be loaded.

Word 22 Control word for next nine words.

Words 23-31 Nine words to be loaded.

Word 32 Control word for next seven words.

Words 33-39 Seven words to be loaded.

Partial Instruction Card

If an Instruction card is not full, only the control words or bits necessary are used.

GE-200 SERIES REFERENGE WANOAT

-248-

S 1 2 3 ¢ 5 6

7 8 9 10 11 12 13 14 15 16 17 18 19

These two words

Word 0 | Type —-—-—.' (’4__-L0cation >
1 |e—size ——-——>|¢1 —Check Sum .
2]I " _ Lower Range — >
3 |= _ Upper Range -
4 |- Origin
5 Number of subprograms >

Number of entrances to following binary deck ——p

5-word

Entrance Name Blccks

4-word

Subprogram Name Elccks

Legend.

Type: Binary 1000 in bits S, 1, 2, 3.

C: Always C when produced by compiler.

checksum.

Location: Address to begin Vector Table.

Size: Number of words used on this card, =~ !

N

I: 1 means to load up to lower range into upper 8k.
0 means tc load up to lower range into lower 8k.

repeated if more
\ than one Header
1 card used.

These words ap-
pear only on first
Header card.

) These blocks may
be continued onto
other Header cards.

Can be changed to 1 to override

Lower Range: Relocatable origin of first location of input file tables (if
present), 8177 if not present.

Upper Range: Relocatable address of last location of constant area (if
present), 8191 if not.

Origin: Beginning relocatable address of following binary deck.

Figure 30. Header Card Format

GECOM - II

GE-200 SERIES

249-

REFERENCE MANUAL

APPENDIX D

OBJECT PROGRAM CONSTANTS

The references to constants used by a GECOM-produced object program and the library routines
are equated to absolute memory locations. The constants themselves are included in the object

program whenever the subroutines are punched. These constants may be referenced by name in
General Assembly Program coding written by the programmer in the source program. The

values of the constants are given below:

Name

ZER
Z00
Z01
Z02
Z03
704
Z05
Z06
Z07
Z08
Z09
Z10
Z11
Z12
z17
Z18
Z19
Z20
724
725
726
Z30
Z31
732
233"
734
737
738
Z40
Z41
Z42
743
744
745
746
747
748
749

D
<
)}

GE-200 SERTES

Constant

DDC
EQU
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
ALF
ALF
ocT
ALF
ALF
DEC
DEC
ocT
OoCT
oCT
ocT
ocT
ocT
oCT
oCT
ocT
oCT

=
=)

CO-TRN B WN = NO

3777717
3606060
2777777
3777760
3776077
3607777
3000077+
3770000
3777700
3007777 -

Y
“*e

Remarks

Always even location

GECOM - II

-251-

REFERENCE MANUAL

APPENDIX D - GECOM OBJECT PROGRAM CONSTANTS (CONT.)

Name

Z50
Z51
Z52

730
Z81
Z82
Z83
784
Z85
786
Z87
Z88
BLK

FCA
FCB
FCC
FCD
FLB

Z*
z$

GE-200 SERIES

Constant

0000000
0000013
0006000
0000000
0022400
0000000
0037100
0000000
0053720
0000000
0072342
0000000
0107032
1000000
2000000
3700000
0100000
3777001
3571717
0000066
0006600
0077777
1B38

0167000
0000000
0164000
0000002
0173000
0000000
0170000
0000001
0006060

00*
00$

Remarks
Always even location

Floating powers of 10

Double Length Blanks

GECOM - II

REFERENCE MANUAL

APPENDIX E
OBJECT PROGRAM TYPING SUBROUTINES

The following typing subroutines produced in GECOM object programs are also available to the
programmer writing General Assembly Program coding in a GECOM source program, if the
General Assembly cod.inyg is not a part of a separate relocatable segment.

1. TYI
CALL - SPB TY1, 3
PURPOSE: TAB ONCE, SET RED, TYPE

2. TY1 + 2
CALL - SPB TY1 + 2, 3
PURPOSE: TAB TWICE, SET RED, TYPE

3. TYl+4
CALL - SPB TY1+ 4, 3
PURPOSE: TAB ONCE, SET BLACK, TYPE

4, TY1 + 6
CALL - SPBTY1+ 6, 3
PURPOSE: TAB TWICE, SET BLACK, TYPE

5. TY1+ 8
CALL - SPB TY1 + 8, 3
PURPOSE: SET RED, TYPE

6. TY1+ 10
CALL - SPB TY1 + 10, 3
PURPOSE: SET BLACK, TYPE

In all of the TY1-type entries, a second word in the calling sequence indicates the following:
a
Sign Bit ON - Type #,list of words.
The address portion specifies the number of
words to type. A third word is required in
the calling sequence and gives the beginning
address of the list.

Sign Bit OFF - Type the 3 BCD characters in positions 2-19
of this word.

Position 1 Bit

ON - No carriage return after typing.
Position 1 Bit
OFF - Carriage return after typing.
mm REMITE GECOM - II
GE-200 SERIES

REFERENCE MANUAL
-253-

Examples:

1. SPB TY1+6, 3
ALF ERR

2. SPB TY1, 3
OCT 2000006
LDA MESS

3. SPB TY1+6, 3
OCT 1255151

4. SPB TY1+10, 3
OCT 3000007
LDA LIST

One word, Carriage return.

Type 6 words starting at MESS
and Carriage Return

One word, no carriage return.

Type 7 words starting at LIST.
No carriage return.

GL-200 SERIES

-254-

GECOM - II

"TREFERENCE, MANUAL

APPENDIX F
INPUT/OUTPUT SYMBOLIC NAME ASSIGNMENT

FILE NUMBERS
Each file is assigned a 2-digit BCD file number starting with 00 and continuing to a possible 99.

Numbers are assigned ir order. The first output file described in the Data Division is assigned
number 00.

The file number appears as the first two characters of every name associated with coding for that
file and is referred to in examples as fn.

SPECIAL CHARACTERS

The third character of the name depends on the routine or area in which a name is used as shown
in Figure 31.

Character Related Routine or Area
S Entries of file table
o 1/O Control
U Open
v Close
W Read, Write Entrance
X 1/O Area 1
¢ 1/O Area 2
Z Unpacking or Packing#*

READ AND COPY UNTIL

* Unpacking is the move/convert of input fields mentioned in the
procedures. Packing is the move/convert to output buffer.

Figure 31. Third Character for I/O Symbolic Name Assignment

BE-200 SERIES FEFERENGE WAL

-255-

RECORD NUMBERS
Record numbers are assigned to each data record of a file starting with 00 and continuing to a

possible 98. Label records are assigned BT (Beginning Tape), BF (Beginning File), ET (End
Tape), or EF (End File), if they contain ncnstandard portions.

Record numbers (referred to as _r_rl) are used in the names of the packing and unpacking routines.

Examples:
01Z02 If 01 is an input file number, this is the name of the v ine that unpacks
record number 02 defined for file 01.
If 01 is an output file number, this is the name given t; he ~oatine that
packs record number 02,
C3ZET Name of routine that unpacks or packs added information: in the END~TAP~

LABL of file 03.

@3 E ° 2@ gER B Eg - REFEREI?EEO};AI;US

-256-

SYMBOLIC 1I/O0 ENTRANCES AND FUNCTIONS PERFORMED

The symbols are described in the order they will appear for that file in the input/output coding
portion of the Edited Listing.

Name Description
fnU Open File Entrance
Functions:
a. Set read switch (fnW) to process.
b. Set end-of-file indicator to off.
c. Test open/close indicator; if file open, type error
message.
d. Set open/close indicator to open.
e. Clear record count to zero.
f. If buffered file, initialize read command and
end-of -file test.
g. If buffered file, prime first buffer.
h. Exit to procedure coding.
fnW Read File Entrance.

(This is the open/close switch. It is set to go to TER
when closed and set to go to fnW+2 when open.)
Functions:

a.
b.
c.
d.
€.

h.

If not buffered, read a card into input buffer.
Delay until last card read is in the input buffer.
Check sychronization word for card read error.
If read error go to fnTEC.

Check for end-of-file card. If end-of-file, set
indicator in the first word of the file table and
transfer control to fnT.

Update card count.

If a buffered file:

1. Execute read command to fill next input buffer.

2. Exchange buffers and modify read command,
synch. test, and end-of-file test.

3. Set input area pointer fnTCP.

If no control keys or read until, go to unpacking

(fnZ00).

If control keys or read until, go to fnZCK.

GE-200 SERIES

Figure 32. Input Card Files

GECOM - II

-257-

REFERENCE MANUAL

Name

Description

fnTS3

fnT SO

fnTS2

finTEC

fnv

fnZrn

TER

TCT

fnS

fInTXT

fnTCP

fnT

fnTLL

fnTMW

Card Read Error Check (this name presently only on
buffered files.)

End-of-File Test (This name is present only on baffered
files.)

Read Command (This name present only on buif 1 ed files.)

Card Reader Error Recovery

Functions:

a. Type error message.

b Wait for operator to reposition the file.

c. If not buffered, return to read card again.

d If buffered, read card and go to wait for cad
reader ready.

Close File Entrance

Functions:

a. Set read switch (faW) to error.

Test file closed; if closed, type error messagse.
Set open/close indicator to close.

Type record count.

Return to procedure coding.

o Q0T

Entrance to Input Unpacking for Record Number rn.

Type error message when programmer tries to read
file before opening it.

Type Count

a. Type card count on closing.

b. Type record count on control~key error.

First word of file table.

Temporary storage for exit to Procedure coding.
Input Area Pointer.

End-of-File Transfer Address to Procedure codirg,

Length of Record just Read.

End-of-File Image.

GE-200 SERIES

Figure 32. (Cont.)

GECOM - II

-258-

REFERENCE MANUAL

Name Description

inU Open File Entrance
Functions:
a. Set write switch (fnW) to Process.

b. Test open/close indicator; if file open, type
error message.
¢. Set open/close indicator to open.

(. Clear record count to zero.
. Exit to procedure coding.

W \Urite File Entrance (This is the open/close switch.
[the file is closed, it is set to go to TER and
tvpes an error message. If the file is open, it is
set to go to fnW+2.)
Functions:
a. Set output buffer packing transfer.
th. Save exit to procedure coding.
¢. If buffered:

l. Go to TBP to clear the output area unless

no~set option used or if a Process File,

2. Go to packing.

3. Wait for punch to come ready.

4. Iixecute punch command.

5. Update record count.

6. Bxchange output buffers in the file table.

~1

. Set punch command to next output buffer.

Set output area pointer (fnTCP), to next

buffer.

9. Return control to procedure coding.

If not buffered:

L. Wait for punch to come rveudy if not Process File,

2 Clear the output buffer unless no.-set option
was used or if a Process File,

3 Go to packing.

1. Issue punch command.

D Update record count.

6, Mait for punch to come ready if a Process File,

‘. Return control to procedure coding.

<]

SRR U= 1 os symebol for making modifications when buffered,
rel entrance to control point from packing, thru fnWEe.,

i\ Close Entrance
Functions:
Set write switch to errov,
Test if file closed; it closed, type an error message.
set open/close indicator to close.
. Type record count.
Exir to procedire codin.g,

Figure 33. Output Card Files

\ . N . et L e oot AR A S S A . 48 . i . o

KEFFRENCE MANUAL

-259-

Name

Description

fnWrn

fnZrn

TER

THP

TRK

fnS

fnTXT

fnTCP

ImMWE

Write Record Entrance

Functions:

a. Pass record packing address to write file ¢nrance.
(After output area has been prepared for puc<ing,
control is transfered to fnZrn which packs the
record and returns to fnWE.)

b. Transfer ccuteol to Write File Tuiran:

Fntrance to cutput packing for record numb .o e

See Input Card Files.

Entrance to TBK.

Store blanks or zeros in output area before pac. i g.

First word of file table.

Temporary Storage for Exit to Procedui« '« din

Output Area Pointer

Entrance to Control Routine from Packing Codur v
Always branches to fnWT.

Figure 33. (Cont.)

Name

Description

fnU

fnW

Open File Entrance

Functions:

a. Set write switch (fnW).

b. Test open/close indicator; if open, type an
error message.

c. Set open/close indicator to open.
Clear record count. -

e. Exit to procedure coding.

Write File Entrance

(This is the open/close switch. If the file is closed,
the switch is set to go to TER to type an error
message. If the file is open, the switch is set to go
to fnW+2.)

Functions:

a. Set packing transfer

b. Save exit to procedure coding.

GE-200 SERIES

Figure 34. Printer Files

GECOM - II

-260-

REFERENCE MANUAL

Name Description

c¢. If any advancing, other than normal one line,

execute SPL.
d. Clear line counter (PC6) if "top-of-page' option

used on this write.
¢. I: buffered:

1. Goto TBP to clear the output area unless rio~se:
option used,or if an advance only, orif & Process File.
o to packing routine unless an advance oni: .

3. Wait for printer to come ready.
4. Execute print or slew command.
5 Update line count.

6.

Exchange buffers.
Reset print comrand.
8. Reset line count indicator.
4. Check for advance complete and if not, go
back to finish advancing.
1u. Exit to Procedure Coding.
{. If not buffered:
1. Walit for printer to come ready if not a Frocess File.
2 Go to TBP to clear the output area unless no.set
option used,or an advance only,or if a Proc
3 Go to packing unless an advance only.
4. Execute print command or slew command.
b) Update line count.
6. Reset print command.
7. Reset line count indicator.
8. Wait for printer to come ready if & Process File.
9., Cneck for advancing. Completed; if not go back
to finish advancing.
10. Exit to procedure coding.

-1

fnWT Use as symbol for making modifications to control
coding, and entrance to control coding from packing
thru fnWE

tnVv Close Entrance

Functions:

a. Set write switch to error.

b. Test if file closed; if closed, type an error
message.

:. Set open/close indicator to close.

d. Type count.

=. Exit to procedure coding.

fnWi Entrance to control routine fi-om packing coding.
Always branches to fnWT.

fnADYV Advance Printer Entrance

Function:

Set write instruction to "advance only" and go to
rrite file entrance.

Figure 34. (Cont.)

GECOM - II

-261-

REFERENCE MANUAL

Name Description

finWrn Write Record Intrance

Functions:

a. Pass record packing address to write file ent-ance.
(After output buffer has been prepared for picking
and write instruction developed, control is trans-
frred to fnZrn. After packing is finished conrol is
returned to fnWE.)

b. Transfer cont:rol to write file entronce.

Zrn Iintrance to output packing for recoia van o

SPL. Printer Advanrcing Setup. Builds printes fusie o s
TER See Input Card Files.

e Tintrance to TBK

TBK Store blanks or zeros to clear an output area be o
packing.

fns First word of file table.

fnTXT Temporary storage fo: exit to procedure coding

fnTCP Output Area Pointer.

Figure 34. (Cont.)

Name Description

fni? Performs the open functions.
a. 1If optional file exocute OPT.
b. I'xecute OPN.

fnv Performs the close functions.
a. i input execute ICL.
b. 1f output execute OCL.

W Read/Write Entrance (This is a switch whicl .« 1t i
the OPPN routine to go to TWR on index 3.)

a. D the file is not open, execute TER.

b. TWR used this call to obtiin the file table «diress.

MWrn Writc Record Fntrance.
Load A and Q registers with record packing «:ddi 'ss

(fnZrn) and record length, transfer control to 11, .

fmnZrn Entrance for unpacking or packing of record nu e m.

Figure 35. Tape Files

@IED@@@ @E@UE(@? . GECOM - II

RIFFERFNCE MANUAL
-262-

Name

Description

CFO

Y1

TY3

TY2

TER

ucv

THIL

TBK

TCT

WSsp

Ready for Overlay Load.

a. If tape overlay, check last tape instruction and
branch to overlay load subroutine.

b. If disc storage unit overlay:

Go to MIO to hold all disc storage instructions.

Save first word of punch buffer.

Execute overlay load subroutine.

Restore punch buffer.

Return to procedure coding.

Q1 B> W B

Type Control.

a. To type one word or a list of words after perform-
ing one of the following:

Set black, no tab.

Set red, no tab.

Set black, tab once.

Set red, tab once.

Set black, tab twice.
6. Set red, tab twice.

b. To return or not return the carriage depending on
the call word.

U W N

Return Carriage.

Type tape and plug number in the form PxTy.
a. If output file referenced, tab twice.

b. If input file referenced, tab once.

c. If an error call, type in red.

Type error message when programmer tries to read or
write a file which has not been opened.

Add one in BCD to a number in the A —register. Used
to update reel number and multifile tape position.

Read console switches. Calls on RCS subroutine. Used
for operator decisions.

Store blanks or zeros to clear an output area before
packing.

Type Count.
a. Type record on control~key error.
b. Type block count on input tape error.

Tape Swap.
a. Initialize first tape assign during open.
b. Swap tapes at the end of a reel.

GE-200 SERI

yuu
2

Figure 35. (Cont.)

/%)

GECOM - II

S

-263-

REFERENCE MANUAL

Description

ULM

WDH

WDT

WRL

WBR

WRT

WRO

WTM

Open Tape File.

a. Set read/write switch (fnW) to open (SPB T VR, 3).

b. Set exit to procedure coding (uses TSI).
c. Initialize buffer synchronization.
d. Initialize E of indicator.
Check open/close indicator.
f. Type error message if closed.
g. Check lock/no-lock indicator.
h. Type error message if locked.

i. Execute WSP if muliiple tnoes assigrnec,

i Initialize tape mark indicator,

k. Initialize tape error indicato:.

1. Initialize reel count to zero.

m. Rewind tape if indicated in the call.

n. If output execute TBK and transfer contro! . OL.C.

o. If input multifile file execute UFP to poscitic: tare,

p. If a blocked input file set InTCP to end ¢! = ock to
force a tape read on the first procedure veod canll,

q. If input go to ILC.

Label Move.

Moves an input label from the buffer to the labe ¢rea
(CLA) for label checking. Buffer address is se i}
WST.

Tape Alert Halt Check.
a. Set plug number if more than one tape plug.
b. Loop counting until controller becomes ready ov
count becomes zero.
c. If controller comes ready, return normal
(BRU1, 3).
d. If count becomes zero:
1. Type E7 error.
2. Go to error return (other functions using this
routine takes care of recovery).

Wait on tape Rewinding.

Rewind Tape.

Read or Write of Label Record.
Backspace Tape.

Read or Write Tape.

Read Zero Words (To space 1 block.)

Write Tape Mark.

GE-200 SERLES

Figure 35. (Cont.)

GECOM - II

-264-

REFERENCE MANUAL

Name Description
YIN I’ntered from one of the above six entries to execute
the tape function.
. Execute command.
b. Execute YPC.
. Repeat command if YPC indicates an alert halt.
WsST set tape, plug, read or write, buffer address, and
number of words where needed for WDT, WRL, WBR,
WRT, WRO, WTM, YIN, and ULM. This routine and
the above seven entries are used for tape movement
other than normal read/write, such as label read or
write, error recovery, multifile positioning, rewinding,
and priming a buffered input file.
WX1I lIsed as exit for the above nine routines.
(PYWT Srror check and recovery for plug P. The file table
address for the last tape used for a normal read or
write is stored in (P)UB. Before any other tape action
can take place, a pass thru this routine is necessary.
Check (P)UB for zero, if zero exit.
b. If non-zero:
1. Execute YPC.
2. Repeat command if YPC indicates an alert halt.
3. Check for any error, if yes go to 1TX to recover.
4. If input, check for end-of-file mark and set
end-of-file indicator in the file table.
5. If output, check for end-of-res] and set
indicator in the file table.
1TX “rror recovery. If a two tape plug system, error re-
covery for second plug starts at 2TX. Each of these is
« switch. When an error is detected, the switch is set
to go to TRY and transfers control to TX9.
TX9 srror Recovery Initialization.
‘. Set exit to error check (PWT).
bh. Execute WST.
¢. Set error counters.
d. If two controllers, set plug number in test in-
structions.
~. Execute TRY.
If error is corrected, check for end-of-reel detected
and set end-of-reel indicator in the file table; then exit.
TRY I“rror Recovery Instructions.
‘t.. Decrease error counter by one.
Figure 35. (Cont.)
m EeCmlce GECOM - II
Y @)E}”AJ{S@) REFERENCE MANUAL

-265-

Name

Description

TCR

If error counter is nonzero:

1.

o)

He W

Check for end of reel and set indicator.
Backspace the tape (WBR).

Reread or rewrite the tape block.

Re-enter (P)WT at 1WK (2WK for second con-
troller). The routine will return by the¢ 1TX
switch if still in error.

If error counter zero:

1.

Input

a) Type error message.

b) Wait for operator action.

c) If operator sets switch 19 down, - -l crres
counter and go to TRY.

d) If operator does not set switch 19, sct - rror
indicator in the file table and exit.

Output

a) Backspace the tape.

b) Write two tape marks if non-pucke: pocket,
one if pucker pocket.

¢c) Check for error on writing tape mari. If
any error skip note e4.

d) If skip counter non-zero:

1) Backspace the tape. (This shou:ld skip
3 inches of tape.)

2) Set error counter. Go to repeut five
more times.

e) If unrecoverable error on output:

1) Type error message.

2) Wait for operator decision.

3) If operator sets switch 19, it is assumed
that another tape has been mounted, and
exit is made to repeat write.

4) If operator does not set 19, it is
assumed that he wishes to tr'y again on
the same tape.

Write Rerun Dump
On end of reel:

a.

0 1D U W

Set plug number if two controllers.

Set tape number.

If two controllers, wait for both to be recady.
Wait for card reader ready.

Update rerun count.

Type rerun number,

Write memory in one record.

If it cannot be written correctly in five trys,
type NO after rerun number and exit.

On separate rerun tape:

W N =

Do 3 thru 6 above.

Write rerun label.

Write rerun dump.

If error, type NO and repeat the write until
a good dump is executed; then exit.

GE-200 SERIES

Figure 35. (Cont.)

GECOM - 11

REFERENCE MANUAL

-266-

Name

Description

OCL

orTc

OTR

()utput Tape File Close

(S8

f.

o
g.

Set write switch (fnW) to SPB TER, 2 and save exit
to procedure coding (uses TSI).

Check for file closed. If closed, type an error
message. Set close indicator (uses TZQ).

Check lock indicator of call and set to lock if indicated.

If two controller system, set error bucket address
(PUB) and error check address (PWT) in control
routine (TWR).

If a blocked file go to write last block after setting
return in XWT.

Error check last record.

Write an end-of-file mark and go to OTC.

Output Ending Label Create

a.
b.

Executes TYZ2,
If labeled file:
1. Type beginning label information.
Execute TBP for label area.
Create ending tape or file label.
If end-of-file:
a) Execute after end-of-file label section, if
any (uses TAS).
b) Execute end-of-file label packing for non-
standard fields, if any (users TAS).
5. If end-of-tape:
a) Execute after end-of-tape label section, if
any (uses TAS).
b) Execute end-of-tape label packing for non-
standard fields, if any (uses TAS).
6. Execute OLW (Output Label Write).
If nonlabel file, execute TY3.
Go to OTR

M- W IS

Output end-of-tape or -file close out.

a.

If end-of-file:

1. Rewind tape, if indicated.

Return to exit.

f end-of-tape:

Execute TCR if rerun indicated.

Rewind tape.

Execute WSP if multiple tape units assigned to
this file. Otherwise, wait for operator to
mount blank tape on this handler.

4. Go to OLC.

[l V)

W

GE-200 SER

Figure 35. (Cont.)

GECOM

- 11

REFERENCE MANUAL

-267-

Name

Description

OLC

OLW

UFP

ICL

Output beginning label create.

a. Update reel number through UCV.

b. If labeled file:
1. Execute TBP for label area.
2. Create beginning tape or file label.
3. If a multifile tape:

a) Execute after beginning file label scction,

if any (uses TAS).

b) Execute beginning file label pacting ¢ n
nonstandard fields, if any {use:- T 1),

4. If other than multifile:

a) Execute after beginning tape labil =+ tion,

if any (uses TAS).

b) Execute beginning tape label packing ‘ot
nonstandard fields, if any (uses T.\%).

5. Execute OLW.
c. If executed from open go to exit.
d. If executed from write, return to TWR routiic.

Output Label Write
a. Execute LRR.
b. If label write errox:
1. Type error message.
2. Operator action:
a) Skip and try again, or
b) Skip label write.

Multifile input tape position.
a. Check open/close multifile indicator.
b. If a file on this multifile is open:
1. Type error message.
2. Ask operator if it is desired to proceed.
c. Position tape to file indicated by file table.

Input tape file close.
a. Set exit to procedure coding (uses TSI).

b. Check open/close indicator for open (uses T2 Q).

c. If closed:
1. Type error message.
2. Ask operator if it is desired to proceed.
d. Set lock/no lock indicator as desired.
e. If not a file or multifile tape:
1. Rewind if indicated
2. Go to exit (uses TSF).
f. If a file of a multifile tape:
1. Rewind if indicated or position to next file
if no rewind.

2. Set multifile open/close indicator to closed.

w

Update multifile position indicator.
4. Go to exit (TSF).

GE-200 SERIES

Figure 35. (Cont.)

GECOM - II

-268-

REFERENCE MANUAL

Name Description
ILC Input beginning label check.
a. Update reel number in file table.
b. Execute TYZ2.
c. If labeled file:
1. Execute LRR.
2. If label read error:
a) Type error message.
b) Operator action:
1) Repeat read, or
2) Skip label check.
3. If no label read error:
a) Execute ULM.
b) Type label.
c) Check label information against file table
information.
1) If label information error:

-Type error message.

-Type file table information.

-Ask operator if it is desired to mount
correct tape, or accept label as is and
move label information to file table.

2) Execute TY3.
4. Execute beginning label unpacking for non-
standard fields, if any (uses TAS).
5. Execute after beginning label section, if any
(uses TAS).
d. If buffered file, read first block.
If executed from OPN, go to exit (TFS).
f. If executed from TWR, return to execute read thru
TSO.
ITC Input ending tape or file label check.
a. If labeled file:
1. Execute LRR.
a) If label read error (go to VER).
1) Type error message.
2) Ask operator if it is end-of-tape or
end-of-file.
b) If no label read error:
1) Execute ULM.
2) Check record count.
3) Check block count.
4) If count error type error message (at
T X 2), and ask operator if it is desired
to continue.
2 If end of tape:
a) Execute TCR if rerun indicated.
b) Rewind tape.
c¢) Execute end-of-tape label unpacking for
non-standard fields, if any (uses TAS).

Figure 35. (Cont.)

GECOM - II

GE-200 SERIES

REFERENCE MANUAL

-269-

Name

Description

LRR

TAS

TSI

OPT

d) Execute after end-of-tape label sect.on, if
any (uses TAS).

e) If multiple tape units indicated, execute WSP.

f) If one tape unit only, type MT and wait for
operator to signal to continue.
g) Go to ILC.
b. If end-of-file (nonlabeled files always go to ond-of-
file transfer address.)
1. Execute end-of-file label unpacking {or n . -
standard fields, if any (uses TAS).
2. Execute after end-of-file label sectior, i.:uiy
(uses TAS).
3. Set end-of-file indicator in file table.
4. Go to end-of-file transfer address set by
procedure coding in word 17 of file table

Label read/write
a. Execute WST.
b. Execute WRL.
c. Check for tape error.
1) If no error, return.
2) If error, repeat up to five times.
3) If error persists after five attempts, go to
return plus one.

Label After Section or label pack/unpack execute.

a. If execute address equal zero, return.

b. If execute address not equal to zero, execute
section or pack/unpack then return.

Set exit

a. Set index register one to indicate first location
of file table of file beging operated on.

b. Set exit in file table.

Optional file
Type OPT.
Type the first word of the file table.
Set end-of-file indicator in the file table.
Set end-of-file transfer address into read entrance.
Ask operator if this file present.
1) If not present
a) Type FD.
b) Return to main program.
2) If present
a) Execute TY3.
b) Go to open this file.

o Q0 TP

GE-200 SERIES

Figure 35. (Cont.)

GECOM - II

-270-

REFERENCE MANUAL

Name Description
TWR Input/Output Control
In each file table there is a seven word branch table which
is used to control the path of the program through this
routine once the initial conditions are set. This method is
used to eliminate as many tests for file conditions as
possible. The initial conditions which are set are as
follows:
a. Store record length and packing address for an output
file.
b. Set exit.
c. If more than one plug, set error check address and
bucket address.
The actual read or write is executed in the file table start-
ing at word 21 and control is returned to this routine at
word 24.
i The individual routines as described below are entered
. from one of the following:
a. In line.
b. From the branch table.
¢c. From one of the other service routines.
d. From one of the other sections of TWR.
e. From the file table.
TSO a. [Execute error delay and check on previous READ/
WRITE.
b. Set file table location in the error check bucket.
TS1 a. Test for end-of-tape.
b. Test for tape error on input.
TS2 a. Execute delay and error check.
' b. Update block count.
TBC ! Update block count.
|
['s3 | Change buffer areas.
TSZ Update record count.
TS4 Change end of block address.
TS5 a. Update rerun counter.
b. Execute rerun if counter is equal to rerun count
of file table.
TS7 f a. Test for end-of-block.
| b. Update block process address.
i

GE-200 SERIES

Figure 35. (Cont.)

GECOM

- 11

-271-

REFERENCE MANUAL

Name Description
TCC Update record count
TS8 a. Test for block overflow, if not go to TSG.
b. Test for full block.
c. Store end of block sentinel, if not a full block.
d. Go to TSO.
TS9 Execute TBK for output area.
TSA a. Update output block process address.
b. Update intermediate record count.
c. Update record count.
d. If Process File, goto TS8
TEC Execute input error procedure.
TSG Transfer control to packing
TDS Execute delay and error check routine (for Process Kiles),
TSEF Exit to procedure coding
TSB End-of-tape test for input and go to ITC or output
go to OTC,
TRN Used by the control key analysis section (from ZCK) to
type message if control key error is detected.

GE-200 SERIES

Figure 35. (Cont.)

GECOM - II

-272-

REFERENCE MANUAL

Name Description

mZCK Start of control key analysis.
Unpack control key field and compare it to the literals.
When a match is found, branch to fnFND.

mEND Control key match found.

a. If records are of different length, the length of the re-
cord found is picked up from fmCLL and stored in fnTLL.

b. If no UNTILs on this file, control is transferred to the
appropriate record unpacking (which is obtained from
fnREC table).

c. If any UNTILs,examines contents of SRU.

1) If SRU is zero, go to unpack.
2) If SRU is nonzero, store unpacking transfer at fn$Z
and branch to SRU.

nCILL Table of record lengths.

‘mREC Table of record numbers.

UPA Table of record umpacking addresses.

mTAR Table of addresses for the literals to which the control

key field is compared.

nZ Location into which the matching record's record is
stored.

Figure 36. Control Key Analysis

BE-200 SERMES T

REFERENCE MANUAL
-273-

Name Description

fn# Entrance for first read until statement if input file.

fn@ Entrance for second read until statement.

fn* Entrance for third read until statement.

fn% Entrance for fourth read until statement.

fnUTL Created only if more than one until statement o th s
file

a. Initializes read until switch (SRU).
b. If copy, initializes the transfer to the copy fii
c. Go to the read entrance.

fn/ Unsatisfied return from procedure test of until fie .

a. If copy, executes copy function by going to
entrance at fn#.

b. Go to read next record.

fn$ Satisfied return from procedure tests of until field.
a. Reset read until switch (SRU) to zero.
b. Go to unpacking.

fn%Z Unpacking transfer switch for read until. Set by cor-
trol key analysis.

n# Entrance for copy function if output file. Save record
length and input buffer pointer.

fn#UP Unpacking of until field for first read until statement.
fn@ UP Unpacking of until field for second read until statement.
fn*UP Unpacking of until field for third read until statemen:.
fn%UP Unpacking of until field for fourth read until staten.ent.
SRU Read until switch.

a. If zero, no READ UNTIL is in process.
b. If non-zero, contains branch to until field unpacking.

fn#CP Temporary storage for input file record length and input
area address when there is a copy function on this file.

Figure 37. Read Until or Read Copy Until

GE-200 SERIES ErERmNGE

-274-

Name Description
RDY Entrance from procedure coding to DSU I/O for ready statement
n input files.
a. Execute STX to store exit and setup call to MIO subroutine.
iv. Check for overriding ready and type error message if yes.
<. Get DSU record address from using field and store in file
table.
d. If more than one D3U used get DSU number from unit field
and store in file tadle.
¢. Set ready given indicator.
f. Set first read or write indicator (used on blocked files).
o, If blocked or buffered file, set beginning of buffer
pointer.
h. Go to open/close switch for next function (word 29 of
File Table).
ROT Entrance to control routine from word 29 of output file table.
a. If sequential file go to EXT to return to procedure section.
b, If non-sequential file store the indication of whether or
not the seek is given on the ready.
1. If seek is indicated by the calling sequence execute
RRW to stack the seek in MIO DSU command table.
2. Return to procedure section.
RIT Entrance to control routine from word 29 of input file table.
a. Execute RRW to stack the seek in MIO DSU command table.
If calling sequence from procedure section specifies
"ready for reading'' the read will also be stacked.
b. Return to procedure section.
FXT Return control to procedure section.
STX Control initialization
a. Save exit to procedure section in word 19 of the file table.
b. Set index 1 to file table address.
c. Setup calling sequence to MIL.
RRW Execute call to MIO
a. Execute call to MIO
b. Restore file table address in index 1.
c¢. Check for error return and if so, go to type error message.
RDS Entrance from procedure section to DSU I/O for ready statements
on output files.
a. If nonsequential file go to RDY.
b. If sequential file check for last operation complete.
1. If completed go to RDY.

Figure 38. DSU Files

@E”Z@@ gEEUE@ GECOM - IT

REFERENCE MANUAL
-275-

Name

Description

RDS (Cont.)

UDA

RFD

SDM

SDD
TEB

SSW

SRD

TF2

TFS

RFL

TRL
DSW
TBX

TRG

2. If not completed execute TJT if any journal tape and
execute demand call to MIO.
3. Go to RDY.

Update DSU record address for sequential files.

Entrance to DSU control to execute read or write .
a. Execute STX.

b. Check for readv given and if rot, tvpe crici e=sage.
Reset ready given indicator for non-sequential {.ios.
a. If sequential blocked file and read compl: te:c co 0 TED to

start unblocking.

b. If sequential blocked file and read not compl«ied go to MIO
to complete the read and set the buffer pcinter.

Execute demand of input and set the buffer pointec:

Unblocking for blocked files.

Set seek started indicator for not blocked buffered sequential
file.

Update DSU address and start seek/read.

End of block action on input files.

a. If nonsequential go to "if end of block' statement.

b. If sequential and cross buffer sharing,release the output
buffer and write back on the file.

c. If this file is assigned to a journal tape go tc error check
TJT.

Reset ready indicator on non-sequential files.

Entrance for release statement to release an outout buffer to
be written onto the DSU.

Check if write statement indicated a release alsc.
Set up a seek and write call to MIO.
Set buffer pointer.

Check if preset of buffer is required. Execute TBK if yes
and go to packing routines

Figure 38. (Cont.)

GECOM - II

rrd
R

-276-

REFERENCE MANUAL

Name Description

RSG If 16k program, used to go to packing routine.
TRP
TIP Blocking and end of block test for output file.
TAP
TOP Indicate buffer sharing on blocked sequential output.
TFD . . .
End of block action on sequential output files.
TFP
TDM Used for blocked sequential input with cross buffer sharing.
WSQ Used to control action of not-buffered not-blocked sequential

output files.

WTQ Used to control action of buffered not-blocked sequential output.

DRW To write not-blocked sequential output.

TXA Reset buffer pointer for blocked sequential output.

DFM Check write complete and update DSU record address for
sequential output.

RUT Used to perform copy function on DSU files.

WCP Used to perform copy function on DSU files.

TRU Entrance for until-files to set until-switch on.

/CU Entrance for unsatisfied UNTIL to get next record.

3Cs Entrance for satisfied UNTIL to set until switch off and go
to unpack this record.

3UP Unpacking address of record on until-statement being examined.

ROP DSU open file entrance.

a. Check open/close indicator.

b. Type error message if already open.

c. Set open switch in word 29 of the file table.
d Return to procedure coding.

Figure 38. (Cont.)

GE-200 SERIES cecon - 11

REFERENCE MANUAL
=277~

Name Description

RCL DSU close file entrance.
a. Check open/close indicator.
b. Type error message if already closed.
c. Set close switch in word 29 of the file table.
d. Check for any action to be completed on records in buffers.
e. Return to procedure coding.
RR1 Type RFR for instruction sequence error discovered on ready.
RR2 Type CFS for instruction sequence errcr discove ~-c¢ on read/write.
RR3 DSU read or write error.
RR4 Type OCE for open/close error.
RR5 Type FNO for file not open message.
WJT Write journal tape.

1. Check to see if this file is to be written on jcurnal tape,
unless all DSU output is to be on journal tape.

2. If there are no other tape files present, codiag will be
provided to perform delay and error check anc¢ writing on the
journal tape. Otherwise, these functions will >e performed
by utilizing the I/O coding already present.

TJT Test journal tape.

1. Check to see if this file is to be written on journal tape,
unless all DSU output is to be on journal tape.

2. Check status of journal tape.

JTX Restore indexes and exit.
JTW Coding to perform journal tape write, delay and c¢rror check,
etc. Not generated if there are other tape files besides

journal tape.

JTE Journal tape error.
1. Attempt to recover from error on journal tape.

WJR Write journal tape record.

1. Update record count.

Rewind journal tape using JTZ
Write labels, if present, using JTZ.
Write EOF using JTZ.

> W N

Figure 38. (Cont.)

> L @)/ LT Q GECOM - II
53 1C © 12 @@ gE[R [‘ LE_'S REFFRENCE MANUAL
-278-

Name Description

JTZ Used by WJR.

JTL Journal tape label and type-outs.
1. Error type-out.

2 Record count.

3. Journal tape label.

JTC Journal tape commands.

Rewind.

Backspace.

Write end-of-file.

Write journal tape record file number of DSU file.
Write label record.

G o W N =
PR

RET DSU error table.

RFR - Ready followed by ready.

CFS - Command followed by same command.
MRE - DSU error.

OCE - Open/Close error.

FNO - File not open.

(S O B N

Figure 38. (Cont.)

REFERENCE MANUAL
-279-

APPENDIX G
FILE TABLES

File tables are the communication link between GECOM's 1/0 service routine and other I/O
coding. I O service routines, which eliminate the necessity of in-line coding, perform the
following functions:

Opening and closing input and output files
Checkiny input and output file labels
Creating and writing output labels
Setting optional file indicators

Rewinding output tapes

Checkinyz for controller errors
Positioning multifile input tapes
Swappiny tapes.

File tables are built in lower memory in accordance with the relocation constant for the program.
Two types of file tables are created. Tables for input files are listed first, and may be up to 48
words long. Output file tables follow and may be up to 44 words long. When a file table is set

up for the first file of a multifile tape, the last two words of the file table are used for information
pertinent to multifile tapes. Otherwise, there is no need for these words, and the file table is
two words shorter.

Card reader, card punch and printer file tables are created using eight words. These eight
words contain the sarae information as words 0-7 of the tape file tables. Figures 39 thru 43 show
the format for input and output file tables.

Each file is given a synibolic name: Three BCD characters consisting of a 2-digit number
(represented as fn in the diagrams) followed by S. The first file is 00S, the second 018, etc.
This file name, fnS, appears in word 0, bits 1-19, of every file table. The sign bit is the EOF
indicator. (See Figures 39 and 42).

Word 1 of the table irdicates the length of the table which is always an even number.

Words 2 and 3 contain read commands (bits S-4) which contain the address of incoming data
(bits 5-19). If the file is not buffered, word 2 will always equal word 3. Word 3 always shows
the location into which data was last read.

Words 4 and 5 contain indicators only.

Words 6 and 7 contain the block count and record count of the tape (not the file).

mie _omnm @ET
E=T00 S

mfc Tl GECOM - 11
IS =paat D

REFERENCE MANUAL
-281-

Word 8 contains the address of the starting location of the delay and error check service routine

for the tape plug to which the file is assigned. This word is only used if the two tape plugs are
specified.

Word 9 contains the address of the location used by the delay and error check service routine to
obtain the file table starting location of the last file operated on for the tape plug to which the file
is assigned. This is only used if two tape plugs are specified.

Word 10 contains a BCD reel or file number.
Bits 2-19, of words 11, 12 and 13, contain the LABEL ID,

fnCD 1s the address of the creation date. Words 14 and 15 are reserved for the actual date. This

date 1s taken fror: the first label of the input tape, or from locations 1076 and 1077 for an
output file if dating symbols are not specified.

Word 16 is used only when the file is part of a multifile tape or when more than one tape unit is
assigned to this file. If part of a multifile tape, word 16 contains the position (in BCD) of this
file on the tape. If more than one tape unit is assigned, bits 0-4 contain the tape code of the
starting tape.

fnT, the file number followed by T to indicate control section, at word 17 contains the address to
which control reverts when the EOF is encountered on input. Word 17 on output is used as an
intermediate record count for blocked files.

fnTCP, word 18, contains the address of the record which is currently being processed. It will
be assigned an "EQO;" consequently, all buffer areas (except card) will now be absolute rather
than relocatable and will be located in Common Storage.

fnTXT, word 19, contains the exit location from the READ, WRITE, OPEN or CLOSE sentence.

fnTLL contains the length of the record being processed if the table is an input file table. In an
output file table, this word (20) contains a branch into the I/O control section from the packing
section.

Words 21-23 contain the general select instruction for this file followed bv “he READ or WRITE
command which was last executed.

Word 24 contains a branch to the I/O control section which is executed after a READ or WRITE
sentence.

Word 25 is used only when more than one tape is assigned to this file. in this case, it contains
the tape codes for each tape unit. (No more than four tapes are allowed for each file.)

L E_amn QEm|EY GECOM - II
S mllee REFERENCE MANUAL

-282-

fnTEB, words 26 and 27, are present only when records are blocked. They contain the address
of the end of the block for each input area. These are zero when blocking is not used. Word 27
is zero 1if record is blocked but not buffered.

Words 28 through 30 in input file tables and word 44 in output file tables are addresses used to
execute USE AFTER LABEL sections.

Words 31-37 control sranches through the I/O control section.

Word 38 contains the end of block literal, which is $%$ for BCD, 3777777 for binary and 0777777
for special binary. On output files 0401700 is used for off line print files.

Word 39 contains the number of records between rerun points.
Word 40 contains the record counter for rerun.

Words 42-43 show the end-of-tape and end-of-file label unpacking or packing addresses for fields
on the label that are referenced by the user.

Word 44 contains the address of the AFTER STANDARD ERROR PROCEDURE section, if any.

Words 45-47 contain multifile tape information. If this is not a file of a multifile tape, word 45
1s zero; otherwise, this word gives the address of the location containing the current tape
position. Words 46 and 47 are present only on the first file table produced for a given multifile
tape. All files described as multifile and assigned to the same tape handler are considered part
of the same multifile svstem.

: e N GFCOM - I1
v g : fo o REFERENCE MANUAL

rnr
g

-283-

Word Symbol Description

0 fnS Sign bit = BEOF indicator
3 BCD file name (file no. plus S)
1 Length of this file table (number of words uscd)
2 Read command plus address of input area 1
3 Read command plus address of input area 2 (if not

buffered, area 1)

4 Sign bit = open/close indicator;on=closedv,ot‘1‘=‘:->—pen

B Not used

6 Record count o

7 Not used T

Figure 39. File Table Format for Input Card Files
Word Symbol Description
fnS Three BCD file name (file no. plus S)

1 Bit one on = preblank the output area before pa:i-
ing length of this file table (number of words used)

2 Punch command plus address of output area 1

3 Punch command plus address of output arca @ (if
not buffered, area 1)

4 Sign bit = open/close indicator;on=closed,off=<->imn

5 Not used

6 Record count -

7 Not used

Figure 40. File Table Format for Output Card Files
Word Symbol Description
fnS Three BCD file name (file no. plus S)

1 Bit 1 on = preblank the output area before packing
length of this file table (number of words used)

2 Second word of print command for area 1

3 Second word of print command for area 2 (if act
buffered, same as 2)

4 Sign bit = open/close indicator;on=closed,off=open

5 Not used

6 Record count

7 Advance counter

Figure 41. File Table Format for Printer Files

GECOM - II
REFERENCE MANUAL

=

LSt
(rvv
/p)

(o

/%
)
o)

-284-

Word Svmboll

Description

fr.S

Sign bit = EOF indicator, 3 BCD file name (file no. plus #S#)

Length of this file table (number of words used)

Tape command and input area 1

W= O

Tape command and input area 2 (if not buffered,
same as word 2)

Sign bit = open/close indicator;on=closed, off=open
Bit 19 = lock/no lock indicator;on=not locked,
off=locked

Sign bit = unrecoverable tape error if bit on
Bit 19 = end of tape characters encounterd if bit
on

Block count

Record count

Sign bit on = rerun at end of reel
Address of delay and error check routine for
this plug

Sign bit on = this file is buffered
Address of delay and error check file table bucket

BCD reel number if not multifile
BCD file number if multifile

Sign bit on = no labels
Literal ID word 1 (3 BCD characters)

Literal ID word 2 (3 BCD characters)

Literal ID word 3 (3 BCD characters)

Created date word 1

Created date word 2

Bits 0 thru 4 = tape code of 1st tape assigned to
this file. Position of this file in BCD if multifile

17 T

End of file transfer address

18 fTCP

Current record address

19 mTXT

Exit to procedure coding

20 fmTLL

Length of current record

General select command

Words 21, 22, and 23 are actual tape command sequence

1
2

23 -3
1

Executed to read the data block into memory

Branch to control routine after executing tape command

|_Bits U thru 4 = first tape code (used for tape swapping)

Bits 5 thru 9 = second tape code (used for tape swapping)
Bits 10 thru 14 = third tape code (used for tape swapping)

Bits 15 thru 19 = fourth tape code (used for tape swapping)

End of block address for area 1 (if blocked file).

Ul BN B RV
=1 <o

End of block address for area 2 (if not buffered, zero)

Address of beginning tape or file label section

e
il

Address of end-oi-tape label section

Address of end-of-file label section

Sign bit = I/ O indicator; on=output file,off=input file

Figure 42. File Table Format for Input Tape Files

GE-200 SERIES

GECOM - II

-285-

REFERENCE MANUAL

T)
Word Symbol Description
31 Branch table used to direct the execution <1 the
32 control routine for this particulai type of nput
33 file. Includes words 31 thru 37.
38 End of block literal $%$ for BCD, all bits o1 for
binary bits 2 thru 19 for special binary
39 Number of records between rerun points
40 Rerun record counter T
41 Beginning label unpacking address ‘ —_:__:—:::
12 End-of-tape lebel unpacking address
43 End-of-file label unpacking address 1: o
14 Address of # after standard error procedt v #secticn
(Sign on = NO "after standard error procedire ' section,)
Zero if not multifile
45 If part of a multifile tape, this word will contain
the address of the multifile position counter.
46 Multifile position counter
Sign bit = open/close indicator of multifile tz pe;
O=open, 1=closed
Note--word 46 and 47 will be present only or: the
47 first file table produced for a given multifile
tape. All files described as multifile and assigned
to the same tape unit are considered pait of the
same multifile system.

GE-200 SERIES

Figure 42. (Cont.)

GECOM - II

-266-

REFERENCE MANUAL

Word

Sy nmbol

Description

wm

3 BCD file name (file no. plus S)

Length of this file table (number of words used)

Tape command and output area 1

Cof L] m=

Tape command and output area 2 (If not buffered,
same as 2)

Sign bit - = open/close indicator;on=closed,
off= locked. Bit 19 = lock/no lock indicator;
on= not,locked off= locked

Bit 19 on = end-of-tape encountered

Block count

Record count

Sign bit on = rerun at end-of-reel
Address of delay and error check routine for this
plug

Sign bit on = this file is buffered
Address of delay and error check file table bucket

10

BCD reel number if not multifile
BCD file number if multifile

11

Sign bit on = no labels
Literal ID word 1 (3 BCD characters)

12

Literal ID word 2 (3 BCD characters)

13

Literal ID word 3 (3 BCD characters)

14

fnCD

Creation date word 1

15

Creation date word 2

—_

Bits 0 thru 4 = tape code of first tape assigned to
this file. Position of this file if multifile
(in BCD)

-1

Intermediate record count for buffered blocked files

tihTCP

Current record address

ftnTXT

Exit to procedure coding

tn\WE

Entrance from packing to tape control routine

General select command

[SVII V) I Ol e I
| —| S|l

Words 21, 22, and 23 are the actual tape command
sequence

tnT >3

Executed to write the data blocks on tape.

Branch to control routine after executing tape
command

Bits 0 thru 4 = first tape code (used for tape swapping)

Bits 5 thru 9 = second tape code (used for tape swapping)
Bits 10 thru 14 = third tape code (used for tape swapping)
Bits 15 thru 19 = fourth tape code (used for tape swappii g)

(8

finTEB

End of block address for area 1 (if blocked file)

(8]
-1

End of block address for area 2 (if not buffered, same
as 26)

Sign Bit = present/no set indicator;on=present off=no set.

Bit 1 on = present output area to blanks. Bit 1off = present

output area to zeros. Address of beginning tape or file
label section

Address of end-of-tape label section
(Sign bit on = Process File.)

Address of end-of-file label section
Sign bit on = this is an output file table

GE-200 SERIE

Figure 43. File Table Format for Output Tape Files

I
C

@

Q

\
J

GECOM

- IT

REFERENCE MANUAL

-287-

Word Symbol
31 Branch table used to direct the execution of the
32 control routine for this particular output filc.
33 Includes words 31 thru 37
End of block literal $%$ for BCD, all bits fcr
38 binary bits 2 thru 19 for special binary, 04(1700
for off-line print
39 Number of records between rerun points o
40 Rerun record counter " "/ L _j:__»:
11 Beginning label packing address B o
42 Fnd tape labcel packing address o
13 Fnd-of-file label pachking address o - T

Figure 43. (Cont.)

@ E ° 2@@ gE @ U ES REFEREI(\;IE(};O:{'IAI:IUiII,

-288-

BE-200 SE

Word Symbol Description

0 frs 3 BCD file name (file no. plus S).

1 - Seek status indicator.

2 _ Read status indicator.

3 Buffer availability indicator.

4 o Error counter.

5 - DSU plug number.

6 B DSU unit number.

7 - Input/output indicator. O=input

8 Number of frames.

9 B Power mode indicator O=on l=off

10 Not used on input files, must be zero.

11 - DSU record address.

12 o Input area 1.

13 - Input area 2 (same as 12, if not buffered).

14 - Priority indicator (always zero for GECOM).

15 - Used by MIO.

16 - Sign Bit=reacy given indicator (used to check

sequence of operations).
Bit 19=open/close indicator O=open l=close.
17 - Bit 18 on=ncn-buffered sequential file.
Bit 19 on=sequential file.

18 frTCP Current record address.

19 frTXT Exit to procedure coding.

20 frTLL Length of current record.
21 Exit of procedure coding if end of block.

22 - Address of DSU error section.

23 Word position of chaining address relative to

. beginning of record, if present.

24 Address of field containing DSU address.

25 - Address of field containing unit number.

26 . End of input area 2.

27) End of input area 1 (same as 26 if not buffered).
28 B Exit to procedure coding if end of chain.

29 _ Open/close switch.
30 N o Branch table used to direct the execution of the
31 \ control rcutine for this particular input file.
3 —
33 o
Figure 44. File Table Format for Input DSU Files

GECOM - 11

REFERENCE MANUAL

-289-

Word Symbol Description

0 fnS 3 BCD file name (file no. plus S).

1 Seek status indicator.

2 Write status indicator.

3 Buffer availability indicator.

4 Error Counter. o

5 DSU plug number.

6 DSU unit number.

7 Input/output indicator l=output.

8 Number of frames.

9 Power mode indicator. O=on 1=off T]
10 Read after write indicator. T

11 DSU record address.
12 Output area 1. T T
13 Output area 2 (same as 12 if not bufferec;
14 Priority indicator (always zero for ECOM)

15 Used by MIO.)
16 Sign bit = ready given indicator (used to check proper

sequence of operations)
Bit 19 = open/close indicator. O=open 1l=closed
17 Sign on = write on journal tape.
Bit 17 on=blocked sequential process file or not
block not buffered sequential process file.

18 £nTCP Current output area address.
19 fnTXT Exit to procedure coding.
20 End of block sentinel if any needed.
21 fnWE Entry to DSU control coding from the packing output
coding.
22 After error section name if any. B
23 Sign bit used for demand indicator.
Largest word size less 1.
24 Address of field containing DSU recorc address.
25 Address of field containing unit number if more than
one unit.
26 End of area 2 (same as 27 if not buffered).
27 End of area 1.
28 Sign Bit = Set/no set. 1l=set O=no set
Bit 1 = preblank/prezero. 1l=blanks (=zeros
29 Open/close switch. -
30 Branch table used to direct the execution of the
31 control routine for this particular output file.
32
33 Buffer length plus 2 (used to write journal tape if

required.)

Figure 45. File Table Format for Qutput DSU Files

BE-200 SERIES

REFERENCE MANUAL

-290-

APPENDIX H
OBJECT PROGRAMS FOR 16K MEMORIES

A GE-200 Series 16, 334 word memory consists of four modules of 4,096 words each. However,
the total memory may be considered as consisting of two banks of 8,192 words each.

To access data or constants stored in upper 8k, GE-200 Series instructions require the use of an
index register. To process information in lower 8k, an index register is not required. Branch
mstructions from and to upper 8k locations require no special provisions, and a string of
mstructions without intcrvening branches behaves the same way in upper 8k as in lower 8k. Thus,
jower 8k is the more naturil part of memory to store data and constants, while upper 8k is better
suited to store program instructions. Because arrays of data are processed using an index
register, they coulid als)y be conveniently stored in upper 8k.

Subroutines may coutan. their own constants and working storage areas. If they were located in
upper 8k, they would require indexing to refer to such information, but this is unnecessary in

lower 8k. Therefore, fewer instructions need be stored and executed when subroutines ure
located in lower 8Kk.

UTILIZATION OF MEMORY IN GECOM 16K OBJECT PROGRAMS

In accordance with the above, common constants, file tables, Common Storage, Working Storage,
and subrouatines are always assigned to lower 8k locations in GECOM object programs. However,
the compilor allows the programmer to indicate that the body of coding for the segment to be
compiled (see "Secments™ in Chapter 6 of this manual) and/or certain repeated numeric fields

are to be assigned to apper 8k, To provide these options, the following features have been added
to the source language:

1. *COMMON STORAGE Section of the Data Division. (See Chapter 5.)

2. BEGIN *COMMON~STORAGE AT xxxxx clause in the Environment Division. (See
OBJECT- COMPUTER sentence in Chapter 7.)

3. PLACE SEGMENT IN UPPER MEMORY clause in the Environment Division.
(See OBJECT COMPUTER sentence in Chapter 7.)

The *Common-5torage Section allows for the description of repeated numeric fields which are to
be stored in upper 8k. Ordinarily, memory addresses for *Common-Storage fields are assigned
in descending order from 8190 of upper 8k. If the BEGIN *COMMON-STORAGE clause is used,
the address specified in that clause will be used instead as the upper limit of *Common Storage.
If the *Common-Storage Section is used in more than one segment of a program, the fields must
be described identicallv and in the same sequence in each segment. In this case, if the BEGIN
*COMMON - STORAGE clause is used in one segment, it must be used in all segments, and the
beginning address must be the same in all clauses.

GECOM - II
REFERENCE MANUAT

-291-

The PLACE SEGMENT clause directs the compiler to assign the body of object coding for the
segment to upper 8k. As indicated previously, this does not include common constants, file
tables, Common Storage, Working Storage, or subroutines which are always assigned to lower
8k. If the PLACE SEGMENT clause is not used, the compiler assumes that the entire segment
(except *Common Storage, if any) is to be assigned to lower 8k.

HARDWARE REQUIREMENTS

In addition to the four modules of memory, a GECOM 16k object progrim assumes the presence
of the normally optional extra index groups. The object program vecter linkage issumes
complete use of index group 1. In addition, compiled object coding also riakes use of these
locations, and their contents should not be changed if and when the user -uters sections of
General Assembly Program coding.

EXAMPLE OF MEMORY ALLOCATION
IN A GECOM 16K OBJECT PROGRAM

In the following example it is assumed that the total program consists of a main segment plus
five other segments:

1. The main segment is to be placed in upper 8k. It employs a magnetic tape input file
and a magnetic tape output file.

2. Segment~1 is to be placed in upper 8k. It employs a card input file and references
subroutine~1 and subroutine~2.

3. Segment~2 is to be placed in upper 8k. It employs a card outpu: file.
4. Segment~3 is to be placed in lower 8k.

5. Segment~4 is to be placed in upper 8k. It employs a printer file and references
subroutine~3 and subroutine~4.

6. Segment~5 is to be placed in upper 8k.
7. *Common Storage consists of numeric fields A, B, and C each of which is repeated
500 times. Note that 1000 words of memory are required for each repeated field

because two words are assigned to each field.

Figure 41 shows the memory allocation for the above described example.

GE-200 SERIES TR

REFERENCE MANUAL

-292-

576 ~ Loader, Common Constants

Main Segment Tape Input File Table
Main Segment Tape Output File Table
Main Segment Constant Area

Segment~1 Card Input File Table
Segment~1 Constant Area

Subroutine~1

Subroutine~2

Segment~2 Card Output File Table) LOWER 8k
Segment~2 Constant Area

Segment~3 Constant Area and Body

Segment~4 Printer File Table
Segment~4 Constant Area

Subroutine~3

Subroutine~4

Segment~5 Constant Area

Common~Storage etc.
510]——» ~

Main Segment Body

Segment~1 Body

Segment~2 Body

Segment~ 4 Body

Segment~5 Body

UPPER 8k

“Common~Storage Field C

“Common~Storage Field B

'

“Common~Storage Field A

Figure 46. Example of 16k Memory Allocation

GECOM - IT
REFERENCYT MANUA!

)
)

-293-

APPENDIX |
GECOM RELOCATABLE OBJECT PROGRAMS

INTRODUCTION

This appendix was originally prepared for programmers writing GE-200 Series relocatable
routines to be assembled by the General Assembly Program II. Most of the original content was
also applicable to GECOM relocatable object programs. The document has been edited to be
somewhat more specific toc GECOM object programs and especially to reflect the use of the
MCML II Loader (CDZ25B1.006R) and *Common Storage in GECOM object programs.

Thus the following text reads as if the programmer were hand- coding routines for assembly by
General Assembly Program II in relocatable format for loading by MCML II. The text refers to
an MCML Header Card Writer routine (CD225B6.003R) which the programmer would need to use
if hand- coding his routines. However, the reader should keep in mind that GECOM automatically
produces General Assembiy Program symbolic coding, assembles it into relocatable format, and
supplies the necessary header cards to be utilized by MCML 1II in the loading process.

It is felt that this appendix will aid the GECOM user in obtaining a better understanding of the
method by which GECOM object programs are relocated in either or both banks of memory and
of the concept of establishing linkage between segments and subroutines, etc.

Relocatable routines are assembled programs, subroutines, etc. that are coded to operate in any
assigned area of men.ory without being reassembled for execution in specifically assigned
memory locations. A major advantage of using relocatable routines is that once a commonly
used subroutine has been assembled in relocatable form it is available for use in other programs
without paying the price of reassembly each time the subroutine is needed in a new program.

Relocatable programs also provide a great deal of flexibility. The user may organize a large
program into many small independent subroutines. Each relocatable subroutine may be
assembled independently of the main routine. Changes to a relocatable subroutine may be made
by correcting symbolic coding and reassembling only the subroutine found to be in error. If the
corrections change the size or the storage allocation of this relocatable subroutine, storage
assignments in the main program with which the subroutine is used will not be affected.
Conversely, indepencent changes in the size and storage assignments of a relocatable main
program do not affect the use of the relocatable subroutines called upon by the main program.

Conflict in the use of common symbolic names in two or more subroutines is eliminated when
the subroutines are assembled independently in relocatable form. The assembly operation
converts all symbolic addresses to relative machine addresses. In this way there can be no
duplicate symbols when two or more relocatable routines are tied together into a common pro-
gram.

GE-200 SERIES crcon - 11

REFERENCE MANUAL

-295-

The Multicapability Modular Loader (MCML II) CD225B1.006R, in addition to the MCML Header
Card Writer (CD225B6.003R) needed in hand- coding routines are referencec. Other helpful
information may be found in Appendix C, Object Program Relocatable Deck Formats, and
Appendix H, Object Programs for 16k Memories, of this manual. In addition the reader should
refer to the GECOM Operations Manual, Chapter 6, Object Program Operating Instructions.

PREPARING HAND-CODED ROUTINES FOR LOADING WITH MCML i

Coded Instructions

Much the same method is used in coding a routine in General Assembly Program symkbkolic
language for assembly in relocatable form as is used in coding for assemi.iv in aisolute forin.
Special rules needed in coding for relocatable form are presented in a later section of this
appendix.

The output of instructions for General Assembly Program in relocatable form differs from the
output in absolute form. Each relocatable instruction has an associated fiag to indicate the nature
of the operand address. This address may be one of three types.

1. Constant or absolute address
2. Relative address
3. Two's complement of a relative address

To produce a machine language program stored in the computer, three steps are followed.
These steps are illustrated below:

1. Symbolic 2. Relocatable 3. Absolute

Programmer r—- —~Assembly operation r— —Loading operation
writes in-

|
| | converts symbolic | converts relative
| structions | addresses to rela- addresses to fixed
. .]
) which are | tive addresses. addresses.
I key punched | |
into cards. !
| ! |
| — —
L General Assembly L Instructions _Y_J Instructions loaded
Program Symbolic assembled relative into arbitrary se-
Instructions to memory location quence of memory
000 with all rela- locations with all
tive operand addresses relative addresses
flagged. modified for proper
execution from
assigned locations.

@ E ° 2@@ gE [l[% ” Eg REFEREgigonAr:mii

-296-

In the illustration below, addresses are modified from symbolic, to relocatable, to absolute in a
specific set of GE-200 Series instructions. It is assumed that the loading routine has been
instructed to store the relocatable instructions in memory starting at location 200. For ease of
reading, operation codes are shown as mnemonics, addresses are shown as decimal numbers,
and indexed instructions are indicated by , 2.

1. Symbolic 2. Relocatable 3. Absolute
— —_ — — — —
ORG O REL * ABS
IDX TA y 2 000 | LDX 198 , 2 Rel. 200 IDX 398 , 2
DLD ZERO 001 | DLD 098 Rel. 201 DLD 298
LOOP DAD O y 2 002 DAD 000 , 2 Abs. 202 DAD 000 , 2
INX 2 y 2 003 | INX 002 , 2 Abs. 203 INX 002 , 2
BXL T+98 , 2 o0k | BXL (198) , 2 (Rel) 204 BXL (398) , 2
BRU LOOP) 005 | BRU 002 Rel. 205 BRU 202
ZERO DDC O 098 | 0000000 Abs. 298 0000000
T BSs 98 099 | 0000000 Abs. 299 0000000
LTA DEC T 100 .
197 397
198 L0000100 Rel. B98 0000300
* Operand Address Flag: - -
Rel. - Relative Address
Abs. - Absolute Address

(Rel) - Two's complement of relative address. This type of operand address is reserved
for BX1 and BXL instructions.

Linking Relocatable Routines

The following example shows how to code a relocatable routine containing references to other
independently coded relocatable routines. Assume you are coding Routine A which calls upon
Routine B and Routine C. B and C are already coded and assembled in relocatable form. The
technique for calling upon other routines from Routine A is to assume there is a list of branch
instructions at the head of Routine A, one branch instruction for each subroutine entrance needed
by Routine A. Memory space must be provided by symbolic coding in A for this list of branch
instructions. Two words must be reserved for each referenced subroutine.

7@ GECOM - I1I
S REFERENCE MANUAL

-297-

BE-200 SER

The format for Routine A would be- -

Branch Table, ""Linkage, ' or Vector Table

Body of Routine

If Routines B and C each have one entrance, then the symbolic coding for Routine A would be

written as follows:

—
Four words
reserved for SUB~ B
"y nkage"

SUB~. C
Body of START
Routine A

S

ORG

BSS

BSS

SUB~B ,

suB~C ,

START

Relocatable Routines nust
start at ZERO

Loader will supply Irench to
Routine B

Loader will supply Branch to
Routine C

Relative 1locaticn of
this word is 00l
CALL on Routine E

CALL on Routine C

END of Routine A

When Routine A is assembled in relocatable form the assembled output is punched into binary

cards in Standard Binary Format Type 3.

(See MCML II, CD225B1.006R.) The first binary

card in the Routine A relocatable deck has an origin of 004. The last card of the output deck is

a Type-3 transfer card.

A Type-3 transfer card indicates to a Loader Routine that this is the last card to be loaded into
memory before transferring to the routine just loaded.

GECOM - II

GE-200 SERIES

-298-

REFERENCE MANUAL

Routine A is translated from symbolic form to relocatable form by the assembly operation as
shown in the following example.

Symbolic Relocatable
ORG (V] This assembly output is actually in
binary form but is shown below in
SuB~ B BSS 2 same form for ease of reading.
SUB~ C BSS 2
— -
START LDA - ook LDA -
SPB SUBaB , 1 SPB 0O , 1 Rel.
SPE SUB~C , 1 SPB 2 4 1 Rel.
ENL! START
[] L |
TYPE 3 TRANSFER CARD1
L —

Before Routine A is lcaded, a header card is prepared for A, giving the Loading Routine
information needed to supply branch instructions connecting Routine A to B and C. The Loading
Routine assigns absolute memory addresses to the instructions in Routine A, and supplies the
missing Linkage between A and Routines B and C. Routines B and C are then loaded with
Routine A.

Preparation of Header Cards
After General Assembly Program II assembles a routine in relocatable form, a header card
must be prepared to precede each independently assembled relocatable binary deck. Header

card information is punched into header description cards. The MCML Header Card Writer
Routine, CD225B6.003, then translates the header cards into binary format.

Partial formats for Header description cards are shown below. (For more complete information,
see MCML Header Card Writer Routine.)

1. Card One

Columns Field Description

1-6 Relative location (octal number) of the first instruction word or
constant in the body of the relocatable routine. Space for subroutine
linkage starts at relative location 000000. Allow two words for each
subroutine entrance called by this routine. First word in body of
routine follows last location reserved for linkage.

BEE-200 SERIES . T

REFERENCE MANUAL
-299-

Columns Field Description

7-12 Number of external subroutine entrances called to by this routine.
(Decimal number.)

13-18 Number of entrances to this routine. (Decimal number.)

2. Card Two One of these cards must be included for each entrance to this routine.
If this is the main routine it must have at least cne named entrance.

Columns Field Description
1-12 Alphanumeric name for an entrance to this routiie.
13-18 Word number of this entrance (octal) relative to the first program

word in this routine. Do not count linkage words. First program
word is word number 0.

3. Card Three One of these cards must be included for each external subroutine
entrance called by this routine. These entrance names must be in
the same order as assigned in the linkage table at the head of this

routine.
Columns Field Description
1-12 Alphanumeric name of subroutine entrance external to this routine.

Note: The numeric fields (octal or decimal numbers) in all header description cards
must be right justified.

Example of Header Card Preparation
The preparation of header cards for the example where Routine A calls upon Routine B and C
follows. Routine A is a relocatable main routine which is stored for execution in the lower 8k
memory bank. Routine B and Routine C each has a single entrance.

Name of entrance to Routine A: START~RTN~A

Name of entrance to Routine B: OLD~AGE~TAX

Name of entrance to Routine C: INSURANCE~C3
Assume Routines B and C with their own header cards are on file in a library of commonly used

relocatable routines. Header description cards used to produce the header card for Routine A
follow.

GE-200 SERIES REFERENGE WAL

-300-

Header Description Cards

Columns Field Contents
Card One: 1-6 000004 First location of Routine A
7-12 000002 Number of external references

13-18 000001 Number of entrances to Routine A
Card Two: 1-12 START~RTN~A Name of Entrance

13-18 000000 Word number of entrance
1st Card Three: 1-12 OLD~AGE~TAX Subroutine Entrance Name
2nd Card Three. 1-12 INSURANCE~C3 Subroutine Entrance Name

The above three header description cards used as input to the MCML Header Card Writer Routine
(CD225B6.003R) would produce a single binary header card that must be placed as the first card
of the Routine A relocatable binary instruction card deck.

Arrangement of Card Decks for Relocatable Loading

Using the example described in the previous sections (a2 main routine with two relocatable
subroutines) the complete sequential arrangement of card decks for relocatable loading would be
as follows:

This card —

terminates the

~———————— Type 3 Transfer card

loading operation
} Body of Routine C
[——rr————c— !

—————— 4 ~4——————— _ Routine C Header card

l' Body of Routine B

~4——————— Routine B Header card

y } Body of Routine A

~4¢—————————Routine A Header card

GE-200 SERIES NS

REFERENCE MANUAL
-301-

The Type-3 transfer card was produced by General Assembly Program II when Routine A was
assembled in relocatable form. It is the last output card from the assembly. The Type-3 card
has a 2, 3 punch in column 1. (A Type-5 transfer card was also producec and must be discarded.
A Type-5 card has a 1, 3 punch in column 1.)

When subroutines A and B were assembled in relocatable form, the transfer cards produced for
these routines (both Types 3 and 5) were removed before the subroutines were filed in the
subroutine library. The header cards for Routines A and B were produced and filed with their
respective routines in the library.

8K MEMORY ALLOCATION FOR RELOCATABLE LOADING

The header card of the first relocatable routine to be loaded indicates MCMI. II W-rking-Storage
area high address is location 8191. Working area required for MCML I is 6N+2 words where N
is the total number of relocatable routine entrances named in all the header cards to be loaded.

Start Loading End of Loading
Object Program Object Program
0 0
MCMI. 11 is overlaid by
temporary storage, perma-
MCML IT nent storage,card I/0
areas, and common constants,
704 704
~
? Object Program
6N+2
words >
Comnor: Storage overlays
MM.II A most cf working area if
Working Area commor storage is used.
8191

GE-200 SERIES FEFERENCE ML

-302-

RELOCATING ROUTINES IN UPPER 8K OF A 16K MEMORY

If the body of a relocatable routine is to be stored in the upper 8k bank of a 16k memory, all of
the constants used by this routine should be stored in the lower 8k memory bank. Constants
stored in the lower 8k bank can be referenced by an instruction stored in the upper bank without
indexing that instruction. Relocating the program words of a single routine into two memory
banks calls for Dual Relocation.

The routine's header card must contain information necessary for MCML II to load and relocate
the body of a routine in the upper 8k memory bank and also to load and relocate the constants
used by that routine ir the lower 8k memory bank.

The routine itself must be coded in two parts:
1. The first part contains the instructions that are stored in the upper bank.

2. The second part contains all the constants that must be stored for direct addressing
in the lower 8k memory bank.

To perform Dual Relccation, MCML II maintains two separate location counters, one for the
lower 8k memory bank and one for the upper 8k memory bank. The initial value of the lower 8k
counter depends on the MCML II modules used. The initial value of the upper 8k counter is 8192.
MCML II automatically increases the proper location counter each time it stores a program word
in memory. The value of each location counter is stored as a relocation constant at the start of
the loading operation of each relocatable routine. If a location counter happens to be an odd
number at the start ol a new relocatable routine it is increased by one to make it an even
numbered address before being sorted as a current relocation constant.

In the following example a symbolic routine coded for Dual Relocation (body in upper 8k, constants
in lower 8k) 1s shown translated first to relocatable form, then to absolute form. It is assumed
at the time this routine is loaded, the upper 8k lccation counter equals 9000, and the lower 8k
location counter equa.s 2000... The header card for this routine has a field indicating that the
starting address of the lower 8k constants for this routine is relative address 500, . This field
is called the lower lirait and is supplied to the MCML Header Card Writer Routine on header
description card one. The header card for this routine also indicates that the routine is to be
relocated in the upper 6tk memory bank. The header card field specifying memory bank assign-
ment is called the Memory Bank Indicator and is supplied to the MCML Header Card Writer
Routine on header description card one. (For preparation of header cards refer to MCML Header
Card Writer Routine, CD225B6.003R.) The body of the routine in the example is assumed to be
less than 500 words iicluding the six words reserved for linkage at the head of the routine.

When any part of a program is relocated into upper memory it is necessary to use two extra
instructions in the linkage in each subroutine. MCML II provides this linkage and no provision
for these words need be made in the source program. At load time, MCML II will save two cells
in each program entrance in front of the program itself. The effect is to relocate the program
upward by the extra cells. For instance, a program with one entrance, would be relocated two
cells upward. The example that follows these two cells would be cells 9000 and 9001 causing the
upper range of this program to relocate to 9002.

/e

@[&;2@@ gE[P{ [E(GECOM - 1T

REFERENCE MANUAL

&

-303-

Example of Symbolic Routine Coded for Dual Relocation

Symbolic Relocatable Absolute
ABS
ORG ©] 0000]
S1 BSS 2 .
s2 BSS 2 .
S3 BSS 2 REL — _ .
START LDA C1 006 | LDA 500 REL 2000 YES LOWER 8k
STA C2 STA 501 REL 2001 AAA
. . 2002 000
SsPB S3 , 1 SPB 004 , 1 REL
° ° L pu—
DX C3 , 2 IDX 502 , 2 REL 8192
INX 1, 2 INX 1 , 2 ABS
. . 9008 | Lpa 2000
. . 9009 | sTA 2001 UPPER 8k
BRU START BRU 006 REL .
PE 8 *
ORG 500 500 YES ABS SPE 0812 , 1
Cl ALF YES 501 AAA ABS .
C2 ALF 502 000 ABS .
— - LDX 2002 , 2
C3 DEC O ’
1
END START Nx 0001, 1
_BRU 0814 *ok

* The effective address of this SPB instruction when executed in the upper Ck
memory bank is 900h10 (3192 + 812).

** The effective address of this nonindexed BRU instruction when executed in
upper 3k memory bank is 9006lo (8192 + 814).

GECOM - TII
REFERENCE MANUAL

GE-200 SERIE

CR)

-304-

MCML II compares each relative operand address against the "lower limit" and upper limit
relative addresses given in the relocatable routine header card. If a relative operand address
is equal to or greater than the "lower limit'"" that address is changed to an absolute address in
lower 8k memory where the constant referred to is to be relocated. If the relative location of
a program word is equa! to or greater than the ""lower limit" (but less than the upper limit) that
program word is stored in an absolute location in the lower 8k memory bank. The program is
then relocated with respect to the lower 8k relocation constant. (An address greater than or
equal to the upper limit is not relocated.) The logic for computing absolute memory addresses
for a relocatable routine being stored in upper 8k memory is shown below:

Address 1is
Absolute

Is Operand Is Operand
Address Equal to
or Greater Than the
"Lower Limit'' ?

Is Operand
Address Relative?

Upper Limit ?
Yes

Operand Address
= (Oper. Add. =
Lower Limit) + .
Lower 8k Reloca-

tion Constant

Operand Address =

Operand Address +

Upper 8k Reloca-
tion Constant

This same logic is used to convert relocatable program word location addresses into the absolute
locations in which the program words are stored.

ASSIGNING COMMON STORAGE TO RELOCATABLE ROUTINES

All addresses defined as octal or decimal numbers in a General Assembly Program symbolic
coded routine are flagged as absolute addresses. During the loading operation, MCML II does not
alter absolute addresses. In this way Routine A can communicate with relocatable Routine B.
Commonly agreed upon absolute memory locations are used. These locations are external to both
A and B after these routines are loaded. In some programs it may be useful if a set of constants
supplied by Routine A can be used directly by other relocatable routines.

Routine A's header card contains the control for loading constants from a relocatable routine into
Common Storage. Whenr a program word in a relocatable routine has an origin (storage location)
greater than the "upper limit" in that routine's header card, MCML II does not relocate that word
but stores it in the location given on the binary instruction card. The Common Storage area must
be in the lower 8k merncry bank, regardless of whether or not the body of the relocatable routine
is stored in the lower 8k bank.

BE-2N0 SER! £ GECOM - 1T
BE LU OE Lo REFERENCE MANUAL

-305-

An example of a symbolic routine containing both relocatable constants and constants to be stored

in Common Storage follows.

1.

2.
3.

1.
Linkage
Space
Body

Lower
Limit

Constants 4

Upper
Limit

Common
Constants {

L

The relocatable coding resulting from assembly and the absolute
coding produced by loading the routine is governed by the following assumptions:

At time of loading MCML II lower 8k location counter = 4000. upper 8k location
counter = 8192,

Body of routine is less than 100 words.
Header card contains:

Lower Limit = 200

Upper Limit = 7999

Memory Bank Indicator

Symbolic

R

Cl

ORG
BSS

ORG
DEC

ORG
DEC

= 1 (Upper 8k)

2. Relocatable

0
2 REL

c1] 002 | IDA 200

8001 003 | STA 8001
-

200

99 200 0099

8000

100 8000 0100
— |

ABS

ABS

ABS

ABS
0000

Looo

8000
8001

8192
8193
8194

8195

3. Absolute

—

STA

L

. -T LOWER

0099 | gk

0100

4000 | UPPER
8k

8001

Note that the program constant C1 is loaded into the lower bank absolute lccation 4000 and the
operation address of the upper bank instruction (LDA C1) is changed by the loader to absolute
address 4000. The Common Storage constant (DEC 100) is loaded into the absolute address
indicated by the ORG 8000 card in the symbolic program since this address is greater than the
"'upper limit" given on the header card.

LINKAGE ACROSS MEMORY BANKS OF A 16K MEMORY

Four types of linkage between relocatable routines are automatically provided by MCML II.

GE-200 SERIES

W DN

Upper Bank to Lower Bank
Lower Bank to Upper Bank
Lower Bank to Lower Bank
Upper Bank to Upper Bank

GECOM - II1

-306-

REFERENCE MANUAL

The type used depends upon the location of the routines being linked.

The technique for providing linkage requires that only index group zero be used by relocatable
routines to make subroutine calls. Also, index group one must not be destroyed by any of the
relocatable routines. The linkage logic uses two constants placed by MCML II in index words

1 and 2 of index group 1. Index word 1, group 1 (absolute location 005), contains zeros. Index
word 2, group 1 (absclute location 006) contains the value 8192. To branch across memory banks
in the generated linkaze instructions, the branch instruction is indexed by the appropriate
constant.

In creating the linkage between Routine A stored in one memory bank and Routine B stored in the
other 8k bank, MCML I generates four instruction words. The first two instructions are placed
in the linkage space at the head of Routine A. The second two are generated and stored in the
opposite memory bank. These four instructions are--

At the head of Routine A:
1. SXG 1
2. BRU X, 1 (if going from upper to lower) or
BRU X, 2 (if going from lower to upper)
At location X:

3. SXG 0
4, BRU Y (Y is entrance of Routine B)

In creating the linkage between two routines stored in the same memory bank MCML II generates:

At the head of Routine A:

BRU X
BRU X

At location X:

SXG 0
BRU Y

ASSIGNING *COMMON STORAGE

*Common Storage is merely Common Storage placed in the upper 8k memory bank with the
following restrictions:

1. Only numeric arrays may be placed into *Common Storage

2. *Commor Storage arrays may not be constant arrays. The loader never places
values into *Common Storage. The only way to place a value in a *Common
Storage field is to make it a receiving field in the object program.

*Common Storage is shown in the GECOM Edited List under Object Listing Storage Reservations,
by ""Equal Cards" with lower 8k memory assignments. However, when used in the object
program, *Common Storage addresses are always indexed with the locations shown in the listing
plus 8192.

@E ° 2@@ SE[% LP ES REFEREI(\;IE;OEA;IU;.II,

-307-

CONVENTIONS WHEN ASSEMBLING WITH
GENERAL ASSEMBLY PROGRAM AND LOADING WITH MCMLI

1. Relocatable Routines coded in General Assembly Program symbolic form are
assembled by General Assembly Program II using the relocatable output option.

2. Symbolic relocatable routines must be assembled with all internal addresses
relative to memory location zero. (ORG = 0)

3. Two words must be reserved at the head of a relocatable routine for each external
subroutine entrance called to from within the routine.

4. The maximum size of a relocatable routine is 8192 words including the space
reserved for linkage at the head of the routine.

5. The body of a relocatable routine after loading must be conta:inad witnin one 8k
memory bank. It cannot extend from the lower 8k bank into the upper 8k bank.

6. The MCML II Loader is the routine that performs the loading, relocating, and
linking function,

7. The MCML Header Card Writer Routine (CD225B6.003R) is available to prepare
required binary header cards for relocatable routines.

8. Dual Relocation of relocatable routines (body in upper 8k, constants in lower 8k)
is controlled by the memory bank indicator and the "lower limit" field in the
routine's header card.

9. Placing constants from a relocatable routine into Common Storage is controlled
by the "upper limit" field in the routine's header card.

10. When two routines are stored in opposite memory banks, four instruction words
are generated by MCML II for linkage.

11. Names of relocatable routine entrances may be as large as twelve alphanumeric

characters.
12. All relocatable routine entrance names must be unique.
13. Index Group zero must be set in a relocatable routine when a call is made to an

independent subroutine.
14. Relocatable routines must not destroy the words in index group one.

15. In order for a General Assembly Program language routine to be translatable into
relocatable form, most of the address references within the routine must be
symbolic references. If an address is given in the General Assembly Program
language routine as an octal or decimal number, that address must be a fixed
machine address external to the routine. This address is independent of the
memory locations in which the routine itself is to be stored for execution.

16. References from a relocatable routine to Common Storage must be coded in General
Assembly Program as octal or decimal addresses.

GE-200 SERIES EFERECE MANOAT

-308-

APPENDIX J
OBJECT PROGRAMS USING DISC STORAGE UNITS
(DSUS)

INTRODUCTION

This appendix pertains to object programs which read data from and/or write data on DSU's. It
does not apply to the recording of object program instructions on DSU's or the loading of object
program instructions into memory from DSU's,

GECOM produced DSU object programs conform to GET Programming Standards and Conventions.
The reader should refer to Input/Output Standards, DSU Files, DSU Error Control and the disc
storage glossary contained in the GET Reference Manual.

The user should also be familiar with the SIOS (MIO) package, CD225E8.000, which is employed
for DSU input/output functions in GECOM produced object programs.

After reading the remainder of this appendix, the user should consult the following sections of the
GECOM Reference Manual for more detailed information on source language functions, formats,
and conventions for the compilation of DSU object programs:

1. Data Division, Nonstandard Data.

2, Data Division, File Section, File Description: Recording Mode, Label Records,
and NO. ..SENTINEL clauses.

3. Data Divison, Data Image Input and Output Entries: M.

4, Procedure Divison: CHAIN, CLOSE, OPEN, READ (Options 4 and 5), READY,
RELEASE, and WRITE (Option 4) verbs.

5. Environment Division: OBJECT~COMPUTER, I~O~CONTROL, and DSU~CONTROL
sentences.

DSU ADDRESSES

In the source program, the desired DSU address is supplied by the user before each seek
operation (see Procedure Division, READY verb). The process involved in developing the DSU
address depends on the organization of the DSU data files.

GE-200 SERIES FEFEREncs WL

-309-

DSU FILE ORGANIZATION
Some types of file organization and addressing schemes are discussed below.

1. Records of the same size (same number of frames) can be assigned to the same DSU
area. The advantage of this is that one indicator on the first frame of a record can
indicate whether the record slot is occupied or is vacant. When it is desired to add
a record of N frames, a single test determines if an N frame record slot is vacant.
On the other hand, if records of different sizes are assigned to the same storage
area, in order to add an N frame record, a test for N consecutive vacant frames
would have to be made.

When records of the same size are assigned to the same DSU urea, it is advantageous
if the frame number (0-95) of their DSU address is a multiple »f the number of frames
required for each record. This simplifies the randomizing i1 ycess 1o develop the
desired address (which must be the address of the first frame of a reccord). With the
rule "frame number of the DSU address must be a multiple ¢f the record length (in
frames)" it is easy to develop a beginning-of-record address. Thus, 4 record
requiring three frames would have frame number 0, 3, 6,...., 90, or 93 in the frame
portion of its DSU address. The recommended record length :s 1, 2, 3, 4, 6, 8, 12,
or 16 frames since these all divide evenly into 96, the total number of frames avail-
able in one arm position. If a size is selected which does nct evenly divide into 96,
developed addresses must be checked by the user to avoid "wrap around.' Thus,
frame number 95 is divisible by 5, but five frames cannot be read or written without
wrapping around through frames 0, 1, 2, and 3 of the same arm position.

2. When randomizing techniques are used to determine DSU addresses, the possibility
of more than one record randomizing to the same DSU address must be provided for.
Records whose keys randomize to a DSU address which is already occupied are
assigned to some "overflow areas.'" One method for linking the records which
randomize to the same DSU address is a form of chaining. The record occupying the
address to which other records randomize has a chaining word which contains a new
DSU address in an overflow area. If the record at the randomized address is not the
desired record, the chaining word is interrogated to determine the overflow area
address of the next record which randomized to the same address. Many records
can be chained in this manner. The last record of a chain always has an end-of-chain
indicator.

Usually word 0 of the first frame of a record is used as the chaining word and
indicator word. Bits 2-18 contain the chaining address. Bit 0 is the vacant/occupied
indicator. If it is 1 (minus) the record slot is vacant. Note that chaining can be
accomplished through a vacant record area. The chaining address is in negated form,
however. If bits 0-18 are zero, this record is the end of a chain. If bits 0-18 are all
1 bits, the record is vacant and there is no more chain; that is, the record which
pointed to this position was really the last of a chain. Bit 19 is never checked, but

it must not contain a 1 bit unless bits 0-18 are also_1 bits,

3. The user may wish to retain some order or sequence to a file which is not in order
or sequence on the DSU. Chaining is used to accomplish this; the first record of the
file chains or points to the second record, the second record chains to a third, etc.

GE-200 SERIES cecon - 11

REFERENCE MANUAL
-310-

In this type of chaining it is not always possible to use word 0 of the first frame of a
record as the chain word. A record might have several chaining words implying
different sequences depending on the file application. The record might belong to
more than one file. Note that care must be exercised when a record contains more
than one chain word. A record might be deleted from file A (its chain word negated)
but still be required for file B; file A must know about file B records to avoid over-
laying the record unless it is vacant to all files of which it is a member.

4, Records may be stored and processed sequentially on the DSU's. After an initial
positioning, record addresses are developed by adding the frames required for the
record to the previous DSU address. The developed address must be checked to
avoid the possibility of an illegal address (frames 96-127). On files described as
sequential, the GECOM object program checks and adjusts for illegal addresses.

5. Either direct or index table addressing schemes provide an absolute DSU address
without inzervening address calculations. The DSU address of a desired record
might be obtained from a table cross referencing the record keys with DSU addresses.
An absolute address might be obtained from another record--a master record
providing the address of its trailers, for example.

6. A single frame (64 words) may be able to accommodate several records of different
files. A record of file A might occupy words 0-37 of a frame while a record of file B_
occupies words 38-60. When records of different files are sharing the same frames,
only one cf the files may be in the open condition. Also, only the file at the "top"
(starting in word 0 of the frame) can have blocked records.

The data descriptions for frame-sharing files are conventional, except that the frame
area not occupied by the file being described must be designated as FILL.

When a frame-sharing file is read, updated, and written out, the input file name and
output file name must share the same buffer area. In this way any data belonging to
other files "'tags along."

JOURNAL TAPES

Output DSU files may be assigned to a Journal Tape. Each time data for one of these files is
recorded on the DSU, the same data with two additional words is written onto the Journal Tape.
The first added word contains the disc storage unit and plug number for the DSU referenced.
The disc storage unit code is in bits 5-7, and the plug number is in bits 11-13. The second
additional word contains the DSU address.

The purpose of the Journal Tape is to keep a record of data written on the DSU's. When the
Journal Tape option is used all output files assigned to DSU's should also be assigned to the

Journal Tape. A possible exception to this is a DSU file which is used as temporary storage for
intermediate results.

If some program destroys DSU data, the appropriate Journal Tapes can be processed by TAPER,
CD225E8.003, to restore the DSU data. The DSU's must first be reloaded from the last complete
DSU dump; then, the Journal Tapes that were created between the dump and the errant program
can be processed.

GE-200 SERIES TEFeRmcs vaoaL

-311-

LIST OF ENTRIES TO DSU CODING

Because of the variety of verbs used in referencing files assigned to the DSU--OPEN, READY,
READ, WRITE, CHAIN ... UNTIL, READ ... UNTIL, READ ... COPY ... UNTIL, etc.--and
the necessity for issuing these commands in the proper sequence for any given file, an ENTER
GAP routine may be compiled with a source program to aid in detecting the cause of errors
arising from failure to issue these commands in the required order.

The function of the routine is to build a table, LLP, which is a List of Last_Procedure addresses
where transfers (SPB's) to the DSU coding have been performed. The table is eight locations in
length and a pointer, PNT, indicates which value in the table (LLP + PNT) contains the address
of the last SPB executed.

Because of the option of assigning the main program to upper or lower merory, two versions of
the routine are required. The version for programs with ""main assigned t» lower' is described
in Example 1 which follows. The version for programs with '"main assigned to upper' appears
in Example 2. The described coding is to be executed as an initialization routine and, therefore,
should be placed before any OPEN statements in the source deck.

@E ° Q@@ gE@ ﬂ ES REFEREIC\;IEEO:AI;Uii

-312-

Example 1

GENERAL & ELECTRIC

COMPUTER DEPARTWENT PHOEWIX ARIZCNA

PROGRAN

[PROGRANNER

GENERAL COMPILER SENTENCE FORM

DATE

Tcaururen

| FAGE

seauence
f
jj" 1 IRIY SISt ",,'L B _‘,J!',;' o e ;}u‘l,; :.L.:[i.l..[,n"i,‘lwfn:,.},s BE ";f‘ﬁzxftz]?,[.qrg% s.ju}.fi.l,.i o
R S - .
Kkl rodlr el - For PROGRAMS wiTH| MAI N ASsIBNED T ¢ "LlpwEr' - 10 |BUILD
[© A LL ST @F BDDRESSE VHERE " SPBE". T@ THE IDSU C®DI NG
| . . _JARE PERF®RMED .
[. R o s . e
! AP .) 1
S B | SIrX+3 T@® BRMANCH T@ "PATCH" EACH| TI ME
_ sfrx 1s EXEC|UTED
ND~LLP~ GNP
PATCH> o L R —a
T _... LNCREIMENT PQILNT|ER —
- — |
. I ENT .=} 0. THRU 7 I
[- ADDREIS S @F SPB._| . o
11X 1 .
el IR S SR S — _
R >T\+ -1 PUT A|DDRESS IN |TABLE B o
11X 1 . R R
,,,,,,, I RN SRS SER— R
BR.U |1 3 RET UR|N 1706 Dsu Q®DING . - B
BRU [t CH- , _ - .
lécr I3 7 SR SRR U R
DCT jo) Lo : . b
BSs |8 | i
. END | 1
b e [ISR Ll Lo . .
L A coxlriaule .PRQCEDUR|E ST ATEVMENTS . . B)
lAA_;,,A_C LR NEE (PO — — - L
“ ENDALLLI Hcar L . i
] ; .)
i 1 ! 1 i T 1 i)
! DR R L R e W s se s sy sass]se n‘u’”,‘.nmulu‘u I T R T R LR LT
GECOM - II

GE-200 SERIES

=313~

REFERENCE MANUAL

Example 2

GENERAL @D ELECTRIC
COMPUTER DEPARTMENT, PHOENIX, ARIZONA GENERAL COMPILER SENTENCE FORM
[PROGRAN T T a7E
T e “{ e T
SEQUENCE T
wuxsER
PLLL L B b A B S el el
L L3 EX . B S — -
- RAUTI N -, FQR, PRQb_&.A,Mi WITH] MAIN ASSI 1 BUILD
voewa b oo A nisT OF JADDRESS ES. WHERE " SPB Y \RE
c _PERFORMED o SR - -
EURNTTE o B S e ~-= . R, I
ENTER GAlP. o])))
6 "1 alcTor (0}
BRUPJA T 2 ANCH "Pla Ton VO
STX +#|la . 2 | UTED o
END~ LLP~GAP S
PN 2 R o 009) _ B
Fol 1. . ER . .
P sk o 2 B . . . —— - e
et o2 PNT =| 0o THRU 7 |} .
6 o . ADD UPPER MEM¢H B
STA |2 . . I
G LDA: {1. ADDRE
STA_JLLP 2 PUT A -
f PR LDX RXT 1
| Lpx |s 2 N I _ e S
Lo fdsTtAa o 1. - n - .
i 3
(oL JBRU JU o o) . e
BRUPAT] JBRU |PATCIHS e
LLPMSK] J@CT 377747 7,0
PNT. . léeT Joo oL . [V
Lip BSS_ |8
s pJENDOY AR —
C] ok Bk I S
‘ R
[cl coNfTI.NUE ,PROCEDURIE, STATEMENITS . _ .}
| C) ex x| X
|
: END~|LLP~GAP e
. . . .
Ean N RIENGT EEERE o 3300 36 e 3 e o s

GE-200 SERIES FEFERENCE WAL

-314-

sl

-9

ACCUMULATION
ADD verb
ADVANCE verb
ALTER verb
Alphanumeric fields, storage of
Arithmetic Expression
Array
definition
homogeneous
nonhomogeneous
section
ASSIGNMENT verb
AUTHOR sentence
Automatic Priority Interrupt (API)

BEGIN COMMON STORAGE clause
Binary Scaling
Block
definition
size clause
Blocked records

CHAIN verb
Characters, special

CLOSE verb

Comma-separated fields
Common-Storage Section
*Common-Storage Section
Computation mode
definition
sentence
Conditional name
Constant
figurative
literal
numeric
section
Control Breaks
Control-key
Data Division ertry
definition
in FD entry

with Comma-separated fields

IN

Pag

213
92
93
94

159
18

15
16
16
67
95
155

142

79
160

31

40
31

96

98
34
73
75

32

153
12

11
11
11
68
210

60
32
40
34

DEX

e

Data Division
definitions of levels of data
order of section entries
Data Image
symbols used
zero suppress symbols
DSU CONTROL
Entries
element
field
input
output
field literal
group
input
output
*group
input
output
literal
record level
input
output
Data names
character used
illegal
size
Dating, internal
Decimal point
DIVIDE verb

Editorial conventions
Element
definition
entries for

manipulation
ENTER verb
Environment Division

order of sentences
EXCHANGE verb
Expression
arithmetic
logical
relational
abbreviations for

Page

29

29
246

62
65
151

54

51
52
59

47
48

45
46
57

43
43

10
245

160
24
99

23

29
54
158
100
139

246
105

18

20
20
20

GECOM - II

GE-200 SERIES

REFERENCE MANUAL

-315-

Page Page
Field 1/0
comma-separated 34 record numbers 255
definition 30 service routine entries 258
group of 31 storage areas and indicetors 260
input entries 51 symbolic name assignments 255
literal 57
output entries 52 JOURNAL TAPE (JT) 151
Field literal 59 Justification 35
Figurative constant
definition 12 pabel
storage and use in Procedure record clause 40
division 158 tape 36
File-Control sentence 149 Label record
File Description sentence 40 clause in FD 40
File Tables 281 Literal
FILL 33 field literal, entries 59
Fixed point literal, entries 57
size limit 11 numeric constant 11
arrays 67 Literal Constant 11
Floating point size limit 11
size limits 64 storage and use in Procedure
Format Division 158
column 37 entries 24 LOAD verb 111
object program relocatable 247 Logical expression 20
Functions 19
General Compiler (GECOM) K, use of 163
sentence form 26
Data Division form 27 MOVE verb 112
GENERATE verb 221 yitiple File 145
GO verb 106 MULTIPLY verb 115
Group
level 30 Nested sections 81
of fields, entries 47 Next-Program sentence 155
*Group Nonstandard data 35
Llevel 30 Notations in sentence formats 90
of fields, entries 45 NOTE verb 116
Hardware Numeric constant 11
abbreviations for 141 rules and storage of 157
floating point 153 Numeric fields
storage 157
Hyphen
in column 7 24 Object-Computer sentence 140
in sentence name 10 oObject Program
constants 157
Identification Division 155 relocatable deck formats 247
Order of Sentences 246 typing subroutines 253
IF verb 108 for 16k memories 291
Integer OPEN verb 117
section 69 Order of Division and Section entries 246
size 11
I O Control 145
Input-Output Control sentence 145
GE-200 SERIES GECOM - 11

REFERENCE MANUAL

-316-

Packed data
PERFORM verb

use within sections
PLACE SEGMENT clause
Procedure Division

Procedure names
Process Storage

Program Identification sentence

Qualifier
column entry on ‘orm
definition

Quotation marks
with literals

with numeric constant

READ
object program action
verb
READY verb
RELEASE verb
Record
description
entries for
label
Recording mode
definition
clause
Rclational expression
abbreviations for
Relocatable deck formate
Repeat
column entry on form
Repeated groups
RERUN
Rounding
with ADD
with ASSIGNMENT
with DIVIDE
with MULTIPLY
with SUBTIRACT
Sections
of Data Division
definition
input to
nested
Segments
names
structure
Sequence columns
Sequence check ol source
]>r01_;raln

Sequenced clause

e

Page

32
119
79
140
79
11

158
155

24
13

57
12

159
120
125
127

30
43
40

32
40
20

20
247

25
166

145

92

95
99

115
131

246
79
80
80
81
10
81
23

23
40

Size error
with ADD
with ASSIGNMENT
with DIVIDE
with MULTIPLY
with SUBTRACT
Source Program
order for compilation
Spacing
of symbols
of words
3TOP verb
Subscripts
in Data Division
mode
spacing of
SUBTRACT verb
Symbolic name assignments
in input/output
Symbols
in Data Image columns
operational
in type columns
zero suppression

Open and Closed Table Format

Tape labels
TERMINATE verb
Tilde

see hyphen
True-false

fields

size of fields
Truncation

of significant digits
Truth values
Typing subroutines

Unpacked data

Unused portions of records
see FILL

Jse of GECOM to obtain efficient

object programs

Use of K in GECOM descriptions

VARY verb

Working Storage
Section
Storage

WRITE

object program action
verb

Zero suppression

Page

92

95
99

115
131

246

24
24

128

67
17
24
131

255

62
18
24
65

188

36
222

10

13
70

92

21
253

32

33

171
163

132
71
159

159
135

65

GECOM - II

317

REFERENCE MANUAL

ELECTRIC

Z .\
(ep
ot

ARIZONA

"

COMPUTER DEPARTMENT e PHOENIX

LITHO U.S.A.

