
, GENERAL ELECTRIC

COMPUTERS

CPB_IIDa

>

G E -200 Series
G-ECOM-II

Reference Manual

GENERAL _ ELECTRIC

GE-200 SERIES

GECOM-II

COBOL COMPATIBLE

REFERENCE MANUAL

Program Number

CD225H1.005

September 1965

GENERAL. ELECTRIC
COMPUTER DEPARTMENT

PREFACE

This Reference Manual (together with the GE-200 Series GECOM-II Operations Manual, CPB-
1109) covers the COBOL Compatible version of GECOM-II, Program ~o. CD225Hl. 005. This
manual was previously issued with the program number serving also as thp publication identi­
fication number. The current edition, which supersedes all earlier editions, is identified with
the new publication number, CPB-ll08, on the clOver. The program number remains unchanged.

Comments on this publication may be addressed to Technical Publications, C)mputer Department,
General Electric Company, P. O. Box 2961, Phoenix, Arizona, 85002.

cS) 1965 by General Electrk' Company

CECCIM - II

REFEZENCF :1ANUAL

Page

1. INTRODUCTION

Machine Requirements . 2
Organization of Manual . 2
Acknowledgment. 3

2. GLOSSARY

3. LANGUAGE STRUCTURE

Characters
Words
Data Names
Procedure Nameb
Constants
Conditional Nanles•..
True- False Fields
Qualifiers
Arrays

Homogeneous Arrays
Nonhomogeneous Arrays

Subscripts.
Expressions .. .

4. USING THE GENERAL COMPILER FORMS

Conventions ...
Data Division Form

5 . DA T A DIVISION

Basic Concept~;
Physical Characteristics ..
Comma-Separated Fields ..
Justification
Nonstandard Data.
Tape Labels

5

9
10
10
11
11
12
13
13
15
16
16
17
18

23
24

29
32
34
35
35
36

@ ~ 0 ~ (0)(0) ~~ [ffi ~ ~~ --·-------------...,...,RE=FE---R...::E~=~~:...:.:O~.;..-~-u~=-~
i.ii

File Section
File Description
Record
*Group
Group
Terminate
Field
Element
Conditional Names
Literal•............
Field Literal

Data Image Entries•..........................
Array Section .
Constant Section
Integer Section
True-False Section
Working-Storage Section
Common-Storage Section
*Common-Storage Section
Overflow Condition

6. PROCEDURE DIVISION

Purpose
Organization
Section •........•.................................
Segments•......................•...........
Overlay Segmentation•............
Segment and Subroutine Table Description
Notations in Sentence Formats•...................
Verb Formats•...........................

ADD
ADVANCE ..•.............................
ALTER
ASSIGNMENT
CHAIN
CLOSE
DIVIDE
ENTER
EXCHANGE•......................
GO
IF
LOAD•...........................
MOVE
MULTIPLY
NOTE
OPEN•....•.....................
PERFORM
READ

Page

40
43
45
47
50
51
54
55
57
59
62
67
68
69
70
71
73
75
76

79
79
79
81
84
88
90
91
92
93
94
95
96
98
99

100
105
:06
108
111
112
115
116
117
119
120

@[E c ~illXID ~[E [ffi ~ [E~ -------------- -R-EF-ER.......;E~;";O";~~~~"---UA-'=-I~
iv

Page

READY. 125
RELEASE•..............•••. , 127
STOP. • • . 128
SUBTRACT. • 131
VARY. • • • • • • • 132
WRITE. • . . • . • . . . 135

7. ENVIRONMENT DIVISION

Purpose. • • • • . . • • 139
Organization " • • 139
Environment Sentences•..••.. '. . . . • • . • . • 139

OBJECT~COMPUTER 140
I~O-CONTROL. 145
FILE-CONTROL. • . • . . . • • • 149
DSU-CONTROL•.....•.....•..... 151
COMPUTATION-MODE. • • • 153

8. IDENTIFICATION DIVISION

Purpose
Organization.
Conventions ..

9. DATA MANIPULATION

155
155
155

Object Program Data Storage and Manipulation. • 157
Data Storage - General. • . 157
Numeric Fields. • • . . • • 157
Alphanumeric (or Alphabetic) Fields and Elements. 157
Procedure Division Numeric Constants . . • 157
Procedure Division Literal Constants . • . 158
Figurative Constants. • . 158
Process Storage. • • . • 158
Working Storage. • • . . • . . . • . . • 159
Elements of Alphanumeric Fields . • . 159
Object Program Action in Executing a READ Sentence. 159
Object Program Action in Executing a WRITE Sentence. 159
Dating . 160

Binary Scaling. • • . • 160
Use of Scaling Factor. 161
Use of 1 or 2 in the Format Column. 162
Integer Arithmetic•.•. " • . 163

Using K in Data Descriptions. • 163
K Conventions " . 164
Multiplication. 165
DiviSion . 166
Summary . • • 166

Repeated Groups . 166

@~ a ~@@ ~~[ffi ~ ~~ ---------------~RE--FE-R-.:::E~~~~~O~~--u~:::.=.~
v

10. USING GECOM TO OBTAIN EFFICIENT OBJECT PROGRAMS

11. TABSOL

Intr odu ction.
GECOM/TABSOL
Decision Table Format .. .
Table Entries

Formation of Conditions
Relational Operators .. .
Condition Formats
Condition Column Rules
Formation of Actions.
Verbs in Action Columns
Logical Expressions
The Skip and Repeat Operations

Tables in Programs ...
Table Conventions
Block Conventions
External Control of Tables

12. REPORT WRITER

The Report Writer in GECOM.
Method of Report Description.
Line Description
Line Spacing on the Page
Page Overflow Testing
Tabulation Logic
Report Writer Line Control
Execution of User Procedures at Line Time
Data Division--Report Section

Report File Definition Entry. .
Report Layout Header
Line Image Entry
Report Definition Header.
Report Definition Entries ..
Line Definition Entry . .
Line Control Entries
Line Section Entry
Accumulation and Count Names ..
Control Break Condition Names
Page Control Entries- - Page Overflow.
Page Control Entries- - Line Number

Procedure Division--Report Writer Verbs
GENERATE
TERMINATE

Environment Division--Report Section.
Report Description Form Conventions

Programming Conventions.
Keypunching Conventions

Page

171

175
175
175
175
176
177
177
179
180
185
186
187
187
188
190
191

193
194
195
196
196
197
197
198
199
200
201
202
206
207
208
210
212
213
216
217
219
220
221
222
223
224
224
225

@~c~@@ ~[E[ffi~[E~-----------------RE-FE-RE~~=~~=O~:""'~-u~:"="~
vi.

··1

APPENDIC ES

Page

A. Compiler Vocabulary .. 245

B.

C.

D.

E.

F.

G.

H.

1.

J.

Order of Source Program

Object Program Relocatable Deck Formats

Object Program Constants

Object Program Typing Subroutines

Input/Output SymboliC Name Assignment ...

File Tables .. .

Object Programs for 16k Memories

GECOM Relocatable Object Programs

Object Programs Using Disc Storage Units (DSU's)

246

247

251

253

255

281

291

295

309

@~a~~~ ~~~~~~ ___________________________ G~EC~~~-~II
~~ ~~ ~ ~ REFERENCE MANUAL

vii

Figure

1
2
3
4
5

6
7
8
9

10

11
12
13
14
15

16
17
18

19
20

21
22
23
24
25

26
27
28
29
30

31
32
33
34
35

Special GECOM Characters
A Three Dimensional Array
Priority of Arithmetic Operators
Available Functions ...
Relational Expressions

Truth Values
GECOM Sentence Form.
GECOM Data Division Form.
Levels of Data
Formats for Tape Labels ..

Binary Scale Assignment ..
External and Internal Storage.
Decision Table Format
Rules for Condition Columns .
Rules for Action Columns

Sample Decision Table ..
Sample Report 1, Report Section.
Sample Report 1, Identification, Envi.ronment,

Data Divisions
Sample Report 1, Procedure Division
Sample Report 2, Report Section.

Sample Report 2, Data Division.
Sample Report 2, Procedure Division
Sample Report 2, Report Section
Sample Report 3, Data Division
Sample Report :3, Procedure Division.

Sample Report 4, Report Section
Sample Report 4, Data Division
Sample Report 4, Procedure Division
Report Data Image Symbols .
Header Card Format.

Third Character for I/O Symbolic Name Assignment
Input Card Files ..
Output Card Files.
Printer Files.
Tape Files

ix

Page

9
16
18
19
20

21
26
27
30
37

161
162
175
179
184

192
226

227
228
229

230
232
234
235
237

239
240
242
244
249

255
257
259
260
262

Figure

36
37
38
39
40

41
42
43
44
45
46

Control Key Analysis
Read Until or Read Copy Until
DSU Files
File Table Format for Input Card Files
File Table Format for Output Card Files

File Table Format for Printer Files
File Table Format for Input Tape Files
File Table Format for Output Tape Files
File Table Format for Input DSU Files.
File Table Format for Output DSU Fi.les
Example of 16k Memory Allocation

Page

273
274
275
284
284

284
28!i
287
289
290
293

@~o~(QXQ) ~~[ffi~~~-----'----------R-EF-ERE-~;;';;;;'~~;;';;';~;;;"'--~~~
x

1. INTRODUCTION

This manual is intended to familiarize the programmer, who has a working knowledge of com­
pilers, with the language of the GECOM-II system. Two supporting manuals about the GECOM
system are available: InLroduction to GECOM, CPS-230, which provides a broad description of
the GECOM system, and the GECOM-II Operations Manual, CPS-l109, which covers the opera­
ting instructions for th£' I'ompiler.

The GECOM system translates a source language into a machine language program. GECOM is
composed of two element,,: the source language or the language in which the program is written,
and the compiler which translates the source language into an object program ready for execu­
tion on the GE-200 Serie'i. This manual is primarily concerned with the source language. How­
ever, mention of the cc-tl'piler is necessary in certain cases because, to a large extent, the
specifications of the language determine the broad area of the compiler.

GECOM source' languap: is :>ased primarily on COBOL (Common Business Oriented Language)
and ALGOL (International Algorithmic Language). Of theSe two, COBOL was selected ;]s a base
language hecause it achi, ves a "nearly natural" language which satisfies the needs of a hroad
spectrum of data procesf-,ing applications. Boolean expressions, floating point arithmetic, and
tlte ability to express co:nplex equations were taken from ALGOL and incorporated into the lan­
guage structure of COnOL to accommodate the needs of more technical applications. Therefore,
with the present version of GECOM, the programmer may state his problem in one, two, or a
combination of two, lallg"lag'es.

In concept, a COBOL source program facilitates the statement of a problem for computer solu­
ti.on. Recognizing that there are four levels of program preparation, the GECOM source pro­
gram is correspondingly divided into four parts, or divisions. Each division represents a
separate and indepe nde n' levd of program prepara.tion. For example:

1. Identificaticll of program
2. Description of computer configuration
3. Description of data
4. Steps or sel (If procedures

GECOM Division

Identification
Environment
Data
Procedure

The Identification DivisLm labels the source program. The programmer may include the date
written, the program tille, his own name, and any other information necessary for computer
program documentatio 1,

The Environment Divlbi',n indicates the equipment being used to run the object program. Among
the many items thai m I:. l){ mentioned for a particular computer are: memory size, number of
Ltpe units, hat'dware lOW tehes, printers, etc. Also described here are those aspects of a file
relating direl'Hy to ;;~t!'l " l' 1', Because this divisi.on deals entirely with the specifications of the:
computer bein'~' lisee!, h ;argely computer-dependent.

GECOM - I r
REFERENCE M'\~iL',\ i,

-1-

The Data Division uses file and record descriptions to describe the files of data that the object
program is to manipulate or create, together with the individual logical records which comprise
these files. The characteristics or properties of the data are dese ribed in relation to a standard
data format rather than an equipment-oriented format. Therefore, this djvision is to a large
extent computer-independent.

The Procedure Division indicates the steps that the programmer wishes tt.e computer to follow.
These steps are expressed in terms of meaningful English words and sentences. This aspect of
the overall system is often referred to as the "program"; in reality it is only part of the total
specification of the problem solution (the program), and is insuffiCient, by itself, to describe the
entire problem. This is true because repeated references must be mad£'- -either explicitly or
implicitly- -to information appearing in the other divisions. Concepts of verbs to denote action,
and sentences to describe procedures, are basic, as is the use of conditional statements to pro­
vide alternative paths of action.

MACHINE REQUIREMENTS

The source computer configuration for GECOM is as follows:

1. GE-200 Series central processor with 8192-word memory and typewriter

2. Card reader

3. Card punch

4. On-line high-speed printer

5. Four to six tape units, depending on needs of. the user

6. One to six tape controllers

Object computer configuration--The GECOM-II compiler will compile aI, object program for any
standard GE-200 Series configuration.

ORGANIZATION OF MANUAL

This manual is organized to give a logical presentation of GECOM II. The four Divisions are
discussed in the order in which they may be most meaningful to the reader. The reference guide
below outlines the contents of each chapter.

1. INTRODUCTION

2. GLOSSARY--defines certain words as to their usage in the GECOM System.

3. LANGUAGE STRUCTURE--describes how words are formed > GECOM and how they
may be combined to form sentences.

4. USING THE GENERAL COMPILER FORMS--tells how to enter le:ters or symbols on
the GECOM forms.

5. DATA DIVISION--explains how to describe the input/output in'orm,\tion whiC'h is con­
tained in files and used in the processing of a problem.

GECOM - II
TH_:F'ORENCE MANUAL

-2-

6. PROCEDURE DIVISION--describes the verbs used to carry out the procedures in a
given problem.

7. ENVIRONMENT DIVISION--describes the functions centralizing the aspects of a pro­
blem which .lre dependent upon the physical characteristics of the GE-200 Series.

8. IDENTIFICATION DIVISION--shows how to label the source program.

9. DATA MA'l"IPULATION--gives the programmer a better understanding of his object
program so he may write a more efficient data description in his source program.

10. THE USE OF GECOM TO OBTAIN EFFICIENT OBJECT PROGRAMS--gives rules and
techniques independent of the compiler itself which should be followed to produce
efficient programs.

ACKNOWLEDGMENT

"This publication is based 'in part' on the COBOL System developed in 1959 by a committee com­
posed of government Ilsers and computer manufaeturers. The organizations participating in the
original development were:

Air Materiel Command, United states Air Force
Bureau of Standards, Department of Commerce
David Taylor Model Basin, Bureau of Ships, U. S. Navy
Electronic Data Processing Division, Minneapolis-Honeywell Regulator Company
Burroughs Corporation
International Business Machines Corporation
Radio Corporation of America
Sylvania Electric Products, Inc.
Univac Division of Sperry-Rand Corporation

"In addition to the organizations listed above, the following other organizations participated in the
work of the Maintenance Group:

Allstate Insurance Company
Bendix Corporation, Computer Division
Control Data Corporation
DuPont Corporation
General Electric Company
General Motors Corporation

Lockheed Aircraft Corporation
National Cash Register Company
Philco Corporation
Standard Oil Company (N. J.)
United States Steel Corporation

"This COBOL-61 manual is the result of contributions made by all of the above-mentioned or­
ganizations. No warranty, expressed or impiled, is made by any contributor or by the commit­
tee as to the accuracy and functioning of the programming system and language. Moreover, no
responsibility is assumed by any contributor, or by the committee, in connection therewith.

"It is reasonable to assume that a number of improvements and additions will be made to COBOL.
Every effort will be made to insure that the improvements and corrections will be made in an or­
derly fashion, with due recognition of existing users' investments in programming. However,
this protection can bE positively assured only by individual implementors.

@~ D ~@@ ~~rnl[: [~~ -----------------RE=FE-R....;;E~=..::.~~;.;::;.~:-~~u~=~

-3-

"Procedures have been established for the maintenance of COBOL. Inqui! if' s (0ncerning the
procedures and the methods for proposing changes should be directed L) Up Executive Committee
of the Conference on Data Systems Languages.

"The authors and copyright holders of the copyri.ghted material used hf fl' >~FLOW- MATTC
(Trade- mark of Sperry-Rand Corporation), Programming for the UNIV AC <~' I and II, Data
Automation Systems (;) 1958, 1959, Sperry-Rand Corporation; IBM Comn f·:'eul Translator,
Form No. F 28-8013, copyrighted 1959 by IBM, FACT, DSI27A5260-2760. sopyrighted 1960
by Minneapolis-Honeywell, have specifically authorized the use of this marerial, in whole or in
part, in the COBOL specifications. Such authorization extends to the repll),luction a nd use of
COBOL specifications in programming manuals or similar publications.

"Any organization interested in reproducing the COBOL report and initial specifications in whole
or in part, using ideas taken from this report or utilizing this report as tl~p basis for an instruc­
tion manual or any other purpose is free to do so. However, all such org,tnizations are l'equested
to reproduce this section as part of the introduction to the document. ThoSE using a short
passage, as in a book review, are requested to mention 'COBOL' in acknowledgment of the source,
but need not quote this entire section. "

GECOM - II
REFERENCE MANUAL

·-4·-

2. GLOSSARY

The definitions in this glossary pertain to the usage of these words in this manual.

Array

Array Name

BCD

Beginning- File Label

Binary Numeric:
(external)

Binary Numerie
(internal)

Block

Block Size

Buffer

Common Storage

*Common Storage

Element

End of File

End-of-file Label

End-of-tape Label

Expression (arithme:k)

A list of values.

Name representing all values in an array.

Binary Coded Decimal--a system of representing any
character of the character set of the computer by a group of
binary digits.

A label block which identifies the contents of each file of a
multifile tape. It is block 0, the first block of the file.

Any numerie that exists in one- or two-word binary form.

Any numerie used in an arithmetic operation or an IF
statement.

A group of logical records read from, or written on, tape
as one physical tape record.

The number of words in a block.

Storage locations (set aside in memory) used to compensate
for a difference in rate of flow of information when trans­
mitting information from one device to another.

Memory allocated for data required for processing during
execution of more than one segment of a program.

Upper 8k memory allocated to repeated numeric fields.

A subordinate section of a BCD field. May be of any size
not to exceE!d field length.

The pOint following reading or writing of the last physical
data record of a file.

A unique set of characters that follows every end-of-file
mark.

A unique set of characters that follows the mark of every
intermediate reel (all but the last) of a multireel file.

A sequence of variables, numbers and/or mathematical
functions connected by symbols of arithmetic operations.

GECDM - II

,.
-.)-

REFERENCE MANUAL ,

Expressions (logical)

Expressions (relational)

Field

Field Literal

Figurative Constant

File

Fixed Point

Floating Point

Generated Field

Group (of fields)

*Group (of fields)

Integer (as used in
this manual)

Key Words

Literal

Logical Record

Multifile Tape

Multireel File

Multitape File

Nonstandard Data

Numeric Constant

Object Program

A combination of conditional name".) i· ."l,l)n:d expressions
and arithmetic expressions connecTed iN the logical AND,
OR (Inclusive), and NOT (Exclusive).

Any expressed or implied comparison of two Held names,
element names, literals, or arithmet'c expressions.

Units of data.

A literal used only for input. Working Storage, and Common
storage.

A name representing specific values.

A set of logical records.

A number including an actual or assumed decimal point
either between digits or following them (1. 23, 123. or 123. 0).

A number expressed as a whole number and fraction, and a
power of ten (1. 287*10-'2).

A field which is generated as a result of calculations and is
not input to the program.

A named set: of data similar to a record but beneath it in
rank.

Equivalent to a logical record for input/output purposes.

Indicates a number of not more than five digits which does
not contain an actual deCimal point.

A vocabulary which has special meaning for GEneral
COMpiler and, therefore, should not be used as data names
by the programmer.

A string of eharacters forming a constant made up from the
character set of the GE-200 Series.

Any consecutive set of related information within a physical
record.

A tape containing more than one file.

A file that extends over more than one tape reel.

Same as multireel file.

Data not conforming to GECOM internal binary scaling.

May consist of numerals 0-9; the plus sign (+), the minus
sign (-) and the letter E, delineating the exponent in floating
point.

A program in machine language (output from the compiler).

@ ~ 0 ~ (Q)(Q) ~~ [ffi ~ ~ ~ ------------------,,-RE--FE-RE...::::~C!:.::E~~O~!.-~-u~:.=.~

-6··

Packed Data (BCD)

Physical Tape Record

Procedure

Qualifier

Record

Record Size

Section

Segment

Sentence

Source Program

Subscript

Tape Mark

Throughput Fields

Truncation

Unpacked Data (BCD~

Word (as applied to
computers)

'iNorking Storage

Zero Suppression

Data entered into the computer without regard to the GE-200
Series word length into which it will be placed.

Information contained between successive tape gaps.

An action which the programmer desires the computer to
carry out.

Data names used in conjunction with other nonunique data
names to make them unique.

A logical record.

The number of words in a record.

Ordered sets of sentences having a common function.

Subprograms which are compiled and tested independently.
Two or more are subsequently loaded together and executed
as a total program.

Describes a eomputer procedure to be followed.

The English llanguage program written for the General
Compiler (GECOM).

Method of identifying or selecting a particular value in an
array of values.

A special character (001111) that Signifies either end of file,
or end of tape, depending upon the label block following it.

Fields which are not referenced or operated on in the Pro­
cedure Division but are moved from input to output.

The dropping: of either least-significant or most-significant
characters. This occurs when forcing a field to conform to
the receiving image.

Data so arranged that it may be read into integral GE-200
Series word lengths.

A set of characters which is moved as a unit by the computer.
A word may be data or instructions.

That part of computer memory set aside by the programmer
for intermediate processing of data.

Special editing performed only on numeric fields when
leading characters become zero.

GECOM - II
REFERENCE MANUAL

-7 -

3. LANGUAGE STRUCTURE

The GECOM language. like most languages, is a body of words with a set of conventions for com­
bining these words to express meanings. Its structure or syntax closely resembles English
grammar, and its body of words may be appropriately termed a vocabulary. This section shows
how words are formed and how they may be combIned to express a computational process.

CHARACTERS

The basic units of the language are the characters used to form words and symbols. The GECOM
character set includes:

Alphabetics
Numerals

A, B, C,
0, 1, 2,

... , Z

... , 9

and the special chara'3ters shown in Figure 1. Special characters are presented in more detail
as their use is encountered.

Character Meaning Hollerith GE-200 HSP

L Space or Blank Space Space
Period and Decimal Point 12-3-8

, Comma 0-3-8 ,
" Quotation Mark 3-8 #
~ Hyphen 5-8 (underscore)
(Left Parenthesis 0-5-8 T
) Right Parenthesis 0-6-8)
-r Addition and Plus Sign 12 +
- Subtraction and Minus Sign 11 -
* Multiplication 11-4-8 *
! Division 0-1 /
= Assignment 6-8 =

Decision Table Column
Delimiter 12-4-8 Space

Figure 1. Special GECOM Characters

-9-

WORDS

Words fall into one of two vocabulary categories:

1. Words used by the compiler
2. Vlords used by the programmer

The programmer's vocabulary consists mostly of arbitrary names given to his data.

The compiler's vocabulary, on the other hand, is predetermined and is used only to form sentences
and descriptive phrases.

These two categories of words are illustrated by the following sentence:

GET~RECORD. READ MASTER~FILE RECORD.

Here, the words READ and RECORD belong to the vocabulary of the compiler. The words GET~
RECORD and MASTER~ FILE belong to that of the programmer since he has freedom to choose
names of sentences and data files.

Appendix A lists the compiler vocabulary; the programmer should avoid using these words when
choosing names of sentences and data.

DATA NAMES

Data names are words representing data (files, records, fields, constants, Etc.) and are
arbitrarily assigned by the programmer. They are formed from the following characters:

Letters
Numerals
Hyphen

The programmer should choose data names that

1. Do not exceed 12 characters.
2. Do not begin or end with a hyphen.
3. Do not contain imbedded spaces.
4. Do contain at least one letter.

A, B, C,
0, 1, 2,

••• , Z
... , 9

5. Do not consist of all numerals or c ontain the letter E, since tht l~tter E is used La

to indicate the exponent in floating point notation.

Since data names represent or stand for data, they must be defined in the [);c' a Divi.si.Hl. It is
here that the physical characteristics of data are completely described.

EXAMPLES:

A276B
27AB6
SIGMA
GROSS~PAY

-10-

GECOM - II

,EFERfNCE MANUAL

PROCEDURE NAMES

In addition to data names, the programmer may name sentences and sections of sentences. These
names or words are c.illed procedure names. Procedure names are formed from the character
set uSing the same rule~ used to form data names. However, unlike data names, procedure names
may be wholly composed of the numerals. A procedure name consisting only of numerals does not
have numeric value, fJr example, 26 and 026 are not the same procedure name. In this case,
leading zeros are sigLificant, and a part of the name.

EXAMPLES:

S~44

SENTENCE~ 44
A26
ABC
26

CONSTANTS

Values associated with data names generally change during the actual running of the compiled
program. It is for this reason that they are sometimes called variables. A constant, as opposed
to a variable, is a specified value and does not change within the scope of a program. A constant
may be one of three kinds: literal, numeric, or figurative.

A literal constant is a string of characters made up from the character set of the GE-200 Series.
Literals must be enclosed in quotation marks to set them apart from data names and other words
of the source language. All spaces within a literal are interpreted as part of the literal.

Literal constants do not have numeric value and eannot be used in arithmetic calculations.

When a literal is use:! in the Procedure Division, it must not contain more than 30 characters or
include an imbedded quotation mark. Literals described in the Data Division may be 120
characters long.

Numeric constants may be written as:

Integers
Fixed Point
Floating Point

230
230.1, 0.08
2.301E+2

A numeric may consist of the numerals 0-9, the plus sign (+), the minus sign (-), the decimal
point(.). and the letter E, which in the floating point notation delimits the exponent.

Excluding the plus and minus signs and decimal point, fixed point numbers must not exceed 11
digits, and integers must not exceed 5 digits.

@j~ 0 ~LQ)(ID ~~[ffi ~ ~~ -----·---------RE-F-ER--:E~=~~=O~~-UA=I~

-11-

A numeric written in the floating point notation may be used only in floatinf,: point eomputation.
Its exponent must not exceed ::: 75 in value and its mantissa may consist of 9 or fewer digits,
one of which is to the left of the decimal point. The plus or minus sign, the decimal point, and
the delimitor E are not considered digits.

Numerics enclosed in quotation marks lose numeric value and are treated as -iteral constants.

Figurative constants are special names which represent specific values. They are:

ZERO(S)
ZEROES
SPACES

ONE(S)
TWO(S)
THREE(S)

FOUR(S)
FIVE(S)
SIX(ES)

SEVEN(S)
EIGHT(S)
NlNE(S)

and their values are 0, 6, 1, 2, ... , 9. The actual value of a figurative constant depends on the
manner in which it is used in the Procedure Division. Their plurals do not represent more than
one character. Rules governing their use are given in Chapter 9, "Data M:wipulation. "

The characters designated by Hollerith 2 - 8, 0 - 2 - 8, and 0 - 7 - 8 (octal 12, 72, and 77 re­
spectively) are prohibitive in literals due to their special use by the compiler in the scan of
source language statements.

CONDITIONAL NAMES

Conditional names are names assigned to each possible value of a numeric oj' alphanumeric
field or element. For example, an employee's type of pay may be represented on a punched card
as 1 if the employee is salaried, or 0 if the employee is paid hourly.

If the programmer wishes to use the PAY field as a conditional field, he would describe it in the
Data Division as follows:

Type

F
C
C

Data Name

PAY
SALARIED

HOURLY

Data Image

9
1
o

To the compiler this means the data name PAY is a field (Type Code - F) and it is numeric and
consists only of a single character (Data Image - 9). The data names SALARIED and HOURLY
are conditional names of the PAY field (Type Code - C) and stand for the values 1 and 0 listed
under Data Image.

The programmer is now free to use the conditional names SALARIED and HOURLY in procedure
sentences. For example, the sentence

IF SALARIED GO TO

instructs the compiler to provide the coding for testing the PAY field to determine if it equals
the numeral 1. If the PAY field does contain a 1, the GO TO path will be followed. If it does not,

@~ 0 ~@@ ~~[ffi ~ ~~ -----------------RE-FE-RE....::.~=~~=O~=---u~=-=.~

the sentence after the IF sentence will be executed next. The same effect can be accomplished by

IF PAY EQUALS 1 GO TO ... ,

Conditional names in reality are a convenient means for stating relational expressions (see
Expressions) and may be used only in sentences which permit the use of relational expressions.

Conditional names mlst conform to the rules governing the formation of data names.

TRUE-FALSE FIELDS

There is a class of variables which, either through usage or definition, may assume only the
numerals 1 or D. The value 1 is said to be their true state and the value 0 their false state. The
words END FILE of the READ sentence (see Chapter 6 "Procedure Division") is such a variable.
When the OPEN sentence is executed, the END FILE clause is set to its false state and remains
set until the file's end-file condition is encountered. When the end file is encountered, the END
FILE clause is then set to its true state.

The programmer is lOW free to interrogate the state of the END FILE clause by

IF END FILE OF MASTER GO TO

Variables having tru:h values are termed True- False variables. The END FILE variable is a
convenience provided by the compiler; the programmer may also formulate his own true-false
variables by merely listing them under the headi.ng True- False Section in the Data Division.
These variables may be named according to the rules given for data names and used only in
conditional expressions and assignment.

True-false variableb may not be mixed with floating point variables on the right side of an ex­
pression.

QUALIFIERS

Qualifiers are data !lames used in conjunction with other nonunique data names to make them
unique. Every namE' in a source program must be unique. Either the name itself is unique, or
the name exists within a hierarchy of names, su.ch that the name can be made unique by mention­
ing one or more names in the hierarchy. When used in this way, the higher names are called
qualifiers, and the process is called qualification. With each use of a name, enough qualification
should be mentioned to make the use unambiguolls, but it is not necessary to mention all possible
levels of qualificaticn unless they are needed for uniqueness. Note, however, that a name-­
except a record or a star group (*G.) name--which is unique within all sections except the
output files need not be qualified in the output filles. This absence of qualification is permitted in
the Procedure Division and in the output record description, because output data other than
records are not refErenced in the Procedure Division. For faster compilations, it is recom­
mended that the minimum necessary amount of qualification be used. A file name is the highest
level qualifier available for a data name, but need not be used if a qualifier at a lower level is
sufficient for uniqueness.

@ffi 0 ~~ @@ ~ffi~: Q l~ ~ --,---·----------RE-F--ER-.::E~.::.;;~~=O~~-=u~=-::~

-13-

In order to minimize the creation of otherwise unnecessary qualifiers, the foUowirig abbreviations
may be used to qualify data assigned to storage as indicated below:

Abbreviation

CONSTANT
CS

WS

Storage Assignment

Constant Section
Common Storage or
*Common Storage Section
Working Storage Section

Note that the words CONSTANT~SECTION, COMMON~STORAGE, *COMMON~
STORAGE and WORKIN~STORAGE may not be used as qualifiers. Four basic
rules should be used for qualification:

1. A qualifier should exist outside (above) the same it is qualifying. It should
be preceded by the word OF in the Procedure Division.

2. A name may not appear at two levels in a hierarchy so that it would appear
to qualify itself.

3. If a data or condition name appears moOre than once in the Data Division of
a program, it must be qualified in all references occurring in the Procedure
Division (except as noted above).

4. All file names must be unique.

EXAMPLES:

Two Input files might be described as:

FD FILE~A

R RECOR~A
F TAX
F EARNINGS

FD FILE~B

R RECORD~B

F TAX
F PAY

If a reference is made to the name TAX in the Procedure Division, TAX must be qualified. If
the user wishes to specify the TAX field in FILE-A, the qualification may be any of the following
forms:

TAX OF RECORD~A •.•

TAX OF FILE~A ...

TAX OF RECORD~A OF FILE~A •••

Tax of FILE-B would be qualified in a similar manner. Since the file name is the highest level
of qualification, and file names are unique names, it becomes convenient to use file names as
qualifiers in order to avoid possible errors.

@ffic~®® ~ffi[ffiOffi~------'---------RE-FE-RE"";;'~;;;';;~~=O~~-~u~:;;::'~

-14··

ARRAYS

A list of values Xl' X2 , X:3 , ••• XlO may be given a name, for example, X. This name is the
array name and represents all values in the array. The values are consecutive and each value
may be referenced by a subscript; in the case of x, a subscript ranging from 1 through 10. The
array name is a field .:lame which has an entry in the repeat columns.

The physical description of the values of X might appear in the File Section of the Data Division
as:

Type Data Name Repeat Data Image

F x 10 999V99

To reference a value <)f X, the list is described as

Xl (which would appear as X(I) on the Sentence Form)

where:

x =, name given to the 10 values of the list.

=, subscript name denoting the relative position of each value of the list.

If i = 1 and the value Xi is referenced, the first value of the list is used. If i = 7 when Xi is
referenced, the seventh value of the list is used. The above array of values may be thought of
either as a list or as an array with a single subscript. An array may be multidimensional; it may
have more than one subscript.

A list of values, such as the following

Al'l ~'2 ~'3 Al , 4

~ll ~,c A,cJ3 ~'4

A3 , I ~'C As, 3 A3 '4

may be given a name; for example, A. In this case the array would be referenced as

where:

A = name giver_ to the 12 values of the array.

= subscript Lame denoting the row of the array.

= subscript name denoting the column of the array.

If i = 1 and j = 4, ane! the value Ai' j is referenced, the fourth value in the first row will be used
(AI' 4)' If i = :3 and, 2, the second value in the third row will be used (A3 , 2)'

@ ~ 0 ~ (ID(ID ~[E [~] ~ ~ -----------------RE-F-ER.-::E~~~~::;::O~::...-=-U~=-=.~

-15-

In no case mayan array extend beyond three dimensions; that is, it may nolt have more than three
subscripts. Array names, when defined in the array Section as one, two. Ol' three dimensional,
must be referenced with one, two, or three subscripts, respectively. The exceptions to this
appear in the MOVE and EXCHANGE verbs explained in the Procedure Division.

A three-dimensional array of three rows, four columns, and three planes (3,4.3) may be thought
of as the above two dimensional array repeated three times. See Figure 2.

A(I.I.31_1
.... 1------- plane :i ! ! 3

A(1, 1,2) ~~l I ~! I
... 41------plane 2(The third subscript is 2.)

A(1, 1, 1) -+-~I I I I
..... --- plane 1 (Same as 2-dimensional array

shown above with an additional subscript
of 1 for the first plane.)

Figure 2. A Three··Dimensional Array

Here, the data name A is an array name and fields of the array would be referenced as A I ,J ,K

All two- and three-dimensional arrays must be listed in the Array Section as:

ARRAY SECTION. A(3, 4) for the two dimensional array, or
ARRAY SECTION. A(3, 4,3) for the three dimensional array.

There are two types of arrays allowable in GECOM.

Homogeneous Arrays

Homogeneous arrays are lists of data as described above. The list consists of a finite number of
items with identical data descriptions. The items are stored consecutively in the File Section,
Working Storage, Common Storage and/or *Common Storage.

Nonhomogeneous Arrays

Nonhomogeneous arrays are lists of data described in a nonhomogeneous, or repeated grouping,
manner. In this case, a number of data items (numeric and/or alphanumeric -- in any mix)
are described as a group. The group is then repeated a finite number of ti 'TIe s. An example of
this array as a repeated group is shown on the following page.

@j[E c ~(o)(OJ ~[E [ffi ~ [E~ ----------------RE-F-ER.....:E~=~~=O:m.:.....--u~=~

-Ui-

· ···'1

EXAMPLE:

G
F
F
F

Data Name Format

INVOICE U
NUMBER
QTY
UNIT~PRICE

Repeat

100

Data Image

XXXXX
999
999V99

This repeated group may be pictured as:

NUMBER:

NUMBER

NUMBER 100

QTY 1

QTY 2

QTY 100

UNIT~ PRICE 1

UNIT~ PRICE 2

UNIT~ PRICE 100

For use in procedure sentences, the object program processes the repeated group as a set of
homogeneous one-dimensional arrays: NUMBER, QTY, UNIT~PRICE, each consisting of a list
of 100 values.

The reference to a field within the nonhomogeneous group is a reference to the field-name quali­
fied by the subscripted group-name.

In the above example, the quantity of the fifth listed invoice would be obtained by referring to

QTY of INVOICE (5) ...

If a group is repeatecl, none of the fields within a group may be repeated. (See Chapter 9, "Data
Manipulation" for a more detailed discussion on the use of repeated groups.)

SUBSCRIPTS

Subscripts are a met1.od of identifying or selecting a particular value in an array of values. To
subscript an array, the array must be defined in the Array Section of the Data Division except
for a field in a one-dimensional array with fixed point computation mode. The values must be
described as having heen repeated in the File, Working Storage, Common Storage, or *Common
Storage Sections.

Subscripts may be w::itten as arithmetic expressions containing other subscripted arrays. They
may be nested to a maximum depth of 10 in anyone sentence.

The mode of a set of subscripts (within parentheses) must remain constant, except that fixed
point numbers and integers may be mixed.

(Q! ~ [j~; ,l f§ ~~ ___________________________ ..;:.G:;.EC:;.O;,.:;M"----..,;;;..;:.II

~~U~ J ~ REFERENCE MANUAL

-17-

EXAMPLES:

ABC(R + L)
K (A - B * C, L(I, J), X)
RA TE (T + L, D - 4)
A(I(N + M(J * K(B/C))), X(D * E * F), P)

In the second example, I and J must be in the same mode of arithmetic as (A - B * C), L, and X
because they are all parts of the subscript of K.

In the third example, (T + L) and (D - 4) must both be either floating point (,r one may be fixed
point and one an integer.

In the last example, as in the second, all parts of the subscript of the arr.!y name, A, must be
in the same mode. All of the first subscript; I, N, M, J, K, B/ C; as we 11 as all of the second
subscript; X, D * E * F; and the third subscript P must be in the same mode of arithmetic. If
the above subscripted A were added to:

Q(G, H(R * S), T(W + V))

the Q must be the same mode as A, but the subscript of Q may be in a different mode than the
subscript of A.

EXPRESSIONS

An arithmetic expression is a sequence of variables (data names), numbers (numeric literals),
and/ or mathematical functions connected by symbols representing the arithmetic operations add,
subtract, multiply, divide, and exponentiation. Arithmetic expressions are evaluated from left
to right, and indicated operations are performed in the order given in Figure 3.

Operation Symbol

{FunCtiOn and SIN, COS, etc.
Exponentiation **

{MUltiPliCatiOn and *
Division /

{AdditiOn and +
Subtraction -

Figure 3. Priority of Arithmetic Operations

When parentheses are used, this priority may be overridden.
the innermost to the outermost set of parentheses.

The expression is evaluated from

@~D~@@ ~~[ffi~~~----------------RE-F-ER-"E~..;;.;~~;...;;O~~---UA-:-,,-I~

-18-

Conventions

I = A**B. may be used as stated.

1. If B is an integer from 2 to 9, then A may be anything.

2. If A is a single nonsubscripted variable, then B may be anything.

3. If A is not a single, nonsubscripted variable, then B must be an integer from 2 to 9.

If any of the above three cases do not hold, then the exponentiation must be expressed as:

I = EXP(LN A*B).

The available functions appear in Figure 4.

Function Symbol

Sine SIN
Cosine COS
Arctangent ATAN
Square Root SQRT
Exponential EXP
Common Logarithm LOG
Natural Logarithm LN
Absolute Value ABS

Figure 4. Available Functions

All functions are alway5 calculated in floating point arithmetic (even though the mode of compu­
tation is fixed pOint). If the AAU is indicated in the Environment Division, the floating point of
the AAU will be used to calculate functions. Otherwise the floating point package will be called
in.

The arguments for sine and cosine must be expressed in radians. The results of arc tangent
will be in radians.

EXAMPLES:

FED~TAX = (GROSS~PAY - (NUM~DEP * 13.0)) * 0.18.

The valu~' of FED~TAX is obtained when data is substituted for the variables (data
names).

YTD~ FICA = YTD~ FICA + (CURR- FICA = GROS~ PAY * 0.3).

GROSS- PA Y is multiplied by O. 3, stored in CURR- FICA and added to YTD- FICA to
complete the computation.

@ ~ ,,~@@ ~~ IT~ 11 ~~ ----------------::-::RE::::FE:::-:RE=~.::::~~~O~~~-:::UA=7-I~

-19-

Relational expressions are any expressed or implied comparison of two field names, element
'names, literals, or arithmetic expressions. Relational expressions are connected by any of
the relations shown in Figure 5 and are evaluated from left to right.

Relation

Exceeds

Greater than

Not Greater than

Less than

Not less than

Equal to
Equals

Not Equal to
Unequal to

NOT POSITIVE

NOT NEGATIVE

NOT ZERO

Abbreviation
--

} GR

NGR

LS

NIB

'} EQ

} NEQ

) No Abbreviations

Figure 5. Relational Expressions

Logical expressions provide a convenient method for obtaining truth values. They are formed by
combining true-false variables and relational expressions with the logical operators AND, OR
(Inclusive), and NOT (Exclusive). For instance, if P and Q are a combination of

• True-false variables

• Relational expressions

• Logical expressions

their truth value is obtained according to Figure 13 shown on the following page.

-20-

P Q Not P P and Q P or Q

T T F T T
,----

T F F F T
--

F T T F T -.
F F T F F

Figure 6. Truth Values

EXAMPLES:

1. IF PAY NeT GREATER THAN 4800 •••

2. IF Kl + K2 EQUAUl K3 ..•

Note the c(,nlbination of arithmetic expression (Kl + K2) and the relational
expression (EQUALS).

3. IF TIME OF EXP~ FILE NOT LESS THAN 40 •..

A logical expressioll 1<, any combination of conditional names and relational expressions con­
nected by the logical AND, OR (Inelusive), and NOT (Exelusive) and may be an arithmetic
expression. Logical expressions are evaluated from left to right with the logical AND having
[Jrecedence over the lcglcal OR. Parentheses may be used to establish precedence. There is
no limit on the number, f logical operators in a logical expression. Nine or less levels of
parentheses may be u::oe'l.

EXAMPLES:

1. IF A - B 1'OT LESS THAN 50.0 AND R * G EXCEEDS 272.0 ...
2. IF EXPEHIFNCED OR GRADUATE ...
3. IF NOT l\lAHRlED AND AGE GR 30 OR CODE~3 " •
4. IF AGE GH 30 Ai'm (GRADUATE OR EXPERIENCE EXCEEDS 10) AND

LEVELS 1\L5 7 AND CLASS NOT EQUAL K ...

>~ote the logic al cxpre ~'" ion in Example 4 may be an employee benefits test. The parentheses
establish pre('e::lcllcc ,;u,~h that the logic of the expression would be:

1. Ii the employee's age is greater than :30, and
he is a graduate, or
his experieltCe exceeds 10, and
his level is not less than 7. and

2. If his class (c!:.tssification) does not equal K, then:
3. The emplc.y,>p has met all the requirements of the logical expression.

_~ote: the NOT j,ll ExanJples 1 and 4 is part of a relational expression; the NOT in Example 3 is
a logical expression.

GECOM - II
REFERENCE MANUAL

-21-

4. USING THE GENERAL COMPILER FORMS

This chapter describes the sentence form and the Data Division form and indicates the letters and
symbols which may be entered on these forms. Both of these forms are organized to facilitate
the writing of the program, and the keypunching of the source deck cards. Samples of these forms
are included at the end of this chapter.

Each line of both forms represents the 80-column eard into which the information contained on
each line is punched.

Both forms reserve columns 1-6 for sequence numbers. However, when writing General Assem­
bly Program instructions (see ENTER verb), sequence numbers should be written in columns
75-80. Use of sequence numbers is optional. When they are used, a sequence check of the
source program may be obtained during compilation by depressing console switch 18. Sequence
numbers should be in ascending numerical sequence from Identification Division through Pro­
cedure Division. Numbers should be zero filled, if necessary, instead of blank filled. Blank
columns are assumed to be greater than zero.

The sentence form (Figure 7) on which iswritten the Identification, Environment, and Procedure
Divisions has heavy lineb at columns 12 and 16 to facilitate indentation of sentences that are con­
tinued onto the following line (and consequently punched in another card). It is suggested that:

1. Sentence-names start in column 8.
2. Unnamed sentences start in column 12.
3. Continuation lines should be indented to column 16.

Observing these conventions for indentation of continued sentences makes it easier to follow a
program both on the form itself and on the Edited List.

The Data Division (Figure 8) form, on which is written all sections of the Data Division, is
blocked into several columns to aid the user in pla.cing the numbers and characters necessary for
describing data in the '~orrect position on the form so they will appear in the correct card column
when keypunched.

CONVENTIONS

1. Each division title and each section title (in the Data Division) is contained on a
separate line and is terminated by a period. The titles start in Column 8.

2. All sentenees are terminated by a period followed by at least one space.

3. Commas an' optional EXCEPT in subscripts of multidimensional arrays.

GECOM - II
REFERENCE MANUAL

-2~~-

4. Words are separated by at least one space. This space is om (Jnd ·when words are
bound by +, -, *, /, **, 0, =, and,.

5, A hyphen (~) is placed in column 7 whenever a word is .,]. lit :1'. ;:: olumn 80, Jl' when
more than one qualifier is used in output files. A letter L il (olumfl 7 (in the Pro­
cedure Division and Data Division) indicates a comment care. tht' contents of which
will be printed on the Edited List.

6. A decimal point followed by a blank is illegal. The expressi,)[12. ~ -j- A * 4. is
illegal because the compiler interprets the decimal points followed by blanks as
ending the sentence.

7. All senten;; e- names are terminated by a period, and followec (on the same line) by
the sentence itself.

8. Subscripts (including arithmetic expressions used as subscripts) must be enclosed in
parentheses, and must be separated by commas when a multidunensional subscript is
used. The parentheses may be immediately adjacent to the a rray name or may be
separated from the array name by a space.

DATA DIVISION FORM

The entries for the various columns are as follows:

Heading

Type

Data Name

Qualifier

Format

Columns Entries
Manual
Chapter

8-9 FD

11-22

24-35

37

llR
*G
llG
llF
llC
liE
FL
llL
M

any legal data name

blanks (for literals)
FILL

any data-name needed
for uniqueness in the
output files

P (or blank)

} U
S
1
2

5
5
5
5
5
5
5
5
5
5

3

5

3

5

Heference
I·[eading

File Description
Record
* Group
Group
Field
Conditional
Element
Field Literal
Literal
FILL, Constant Section,
Common~Storage, and
*Common~Storage

Data Names

Physical Characteristics

Qualifiers

See Specific Level

Manual Reference
Heading Columns Entries Chapter Heading

Repeat 39-41
maximum of 3 } numeric
blank 5 See Specific Level
(If number is greater
than 999, col. 42 may
be used.)

Binary 43 B (or any character) } 5 See Specific Level
blank

Justify 45 L } R 5 See Specific Level
blank

MS and LS 49-53 numerics 5 Elements

Data Image 55-80 5 Data Image Entries

-25-

~
u

::l:
II:

~ ~
UJ
U
Z
UJ
t­
Z
UJ
(/)

II:
UJ
...J

a:
::l:
o
U
...J
«
II:
UJ
Z
UJ
(!)

• ,
i
I

c

U
z ...
<:>

.-~
1

I
I I

- I

1 i

I

1 I ~ ..

Iii ~ i
I '

I i I.
1 i j
i : I

T 1
i : i I I

_ L _L

t I I I ! rr···- I

: .--. i

I L~r
Figure 7. GECOM Sentence Form

@~ 0 ~@@ ~~[ffi ~ ~~ ----------------RE---F-FR-.::E~::::.:~~~O~~--U~~~

-26-

@~ 0 ~@(ID ~~[ffi [] ~~ ------------------RE-FE-RE....::~.::..::~~;.:.:O~.:....~-U.=..::.~~

5. DATA DIVISION

BASIC CONCEPTS

The Data Division cortains the information which relates to the files. This information may be
the input to or output from internal memory as well as that information which is generated during
the processing of the input data. In addition, the constants used during the processing are defined.
Data may be in the fO:·.'Dl of lists, tables, or arrays.

Sets of data pertaining to a subject are called "files" because the data contained in a file (section)
of a source program '.S analogous to the data contained in an office file cabinet. For example,
one cabinet might hold .1 set of invoices. As the l3abinet may be labeled, so maya data file be
labeled. The label of tlle data file, however, contains more information about the contents of the
file. Eal3h invoi.ce m.ght be considered one complete record within the file, but portions of the
invoice might be groUIJf'd within the record. Two groups might be considered in this case; cus­
tomer illfornlaLon, .11e' the transaction itself. The specific items within these groups are called
fields: Lame, addl'e~s, city, state; and date, stock number, quantity, item price, total. In
some circumstances :: may be expedient further to divide the data into subfields which >,1'e called
element:". Thus, an ltl'm such as data consisting of three elements--day, month, and year-­
may be contained in OIl!' field.

Levels of data are mure completely described in Figure 9, starting with the highest level.

@rc:oCi))to'rn.J'.'::QlIr';[OI:C;:O.·Q:GECOM-II
\..l{] L£ ~ \Jd)~l ~ l'; lJYl ~ l~~) -------------------------R-EF-E-R-E-=.:N.::.C=-E:::MA-=--N-U.::.A.::.L

-29-

FILE An overall description of many sets of
data. It is the quantity of data rf'ferenced
by READ.

RECORD A named set of data described by the in-
dividual items below it. It is the quantity
of data that is referenced in WRITE, and
made available by READ.

--
*GROUP A group, which may be referenced by
(of fields) WRITE and made available by READ.

Its name may be used as a qualifier.

GROUP Similar to a record but beneath it in
(of fields) rank, the data is described by thp fields

below it.

FIELD Units of data which constitute a record or
group. It is described in the Data Image
columns.

ELEMENT A positi.on within a field. (Its description
is contained within that of the field.)

Figure 9. Levels of Data

This structure may be illustrated on the following page.

GEUIM - II
,----------,~--'. ,

-30-

TRANSACTIONS

INVOICE

Customer Information

Name

Address

City

State

Date

Day

Month

Year

Quantity

Stock Number

Item Price

Total

X!!&.
RECORD

Group

Field

"

"

"
Group

Field

Element

"

"

Field

"

"

"

After organizing the data into usable groupings, it is sometimes advantageous to consider many
of these records as an entity. This is accomplished by specifying a given number of words as a
block. The compiler then recognizes that these records are to be treated as a unit under specified
circumstances.

A block is a physical record that contains more than one logical record. A block is treated as an
entity by the READ sentence. Grouping many logical records into one physical record (for read
purposes) is called blocking records and is accomplished by a notation in the file description of
the File Section of the Data Division. Blocking permits reading into memory many short records
with one READ sentence, thereby saving tape reading time. (The start/stop time of tape move­
ment is a considerable portion of tape reading time.)

If records are not blocked, a logical record is equivalent to a physical record. However, when
blocks are utilized, a physical record becomes a group of logical records and a READ sentence
causes the next logic al record to be made available to the programmer.

-,31-

PHYSICAL CHARACTERISTICS

The Data Division describes the physical and conceptual charact,!"·[dks cf (i,lta dS thpy ,'ppear on
the exterual media. Physical characteristics include tbe mode iI, \\ h;, Lei.! a is recorded, the
grouping of logical records, the indication of data with specialized fure! Vb, etc. Cr)Jlceptual
characteristics entail the specific description of 12ach item of the data.

The recording mode of data refers to the mode (binary or decimal) of the d,ltl as it exists on the
external media.

Computation mode must not be confused with recording mode which refers to mode of data ex­
ternally. Internally, the computation may proceed in either fixed point or fIe,aUng point.

A control-key is a field within a record or a *group containing a (literal) vall.e which is used to
identify the data description of that record or *group. The compiler must be able to identify
the record or *group to assign it to the correct memory location according Ie the data images
given by the programmer. The control-key is needed when there is more th3n one record (of
*group) of different data descriptions within one fUe. The READ verb, thoug'} it refers to a file,
actually makes available only the next logical record or group; therefore, the control-key is
needed to indicate the record with which it is working.

Packed data is data that is entered into the computer without regard to the GE-200 Series word
length into which it will be placed. The compiler will unpack the data before it is used.

Unpacked data is data that is so arranged that it may be read directly into integral GE-200 Series
word lengths. The alphanumeric fields are left-justified and space filled, and numeric fields are
right-justified and zero filled.

Data Name

F
Q
X
Y

Data Image

9(2)
A(3)
X(2)
9

Packed data as entered on a card:

1 2 3 4 567 8

F F Q Q Q X X Y

Unpacked data on the card:

(Numeric field)
(Alphabetic field)
(Alphanumeric field)
(Numeric field)

r-_l_~_F_F_3 ______ 4_~_Q_Q_6 ______ 7~_X __ : ______ l_~6_~'2 I

(Three BCD characters will occupy one GE-200 Series word.)

-32··

GECOM - II

,:l'FERV:-:CE ,IANUAL

When fields are ::noved f rom an unpacked input area to an output area, the moves are done as
full words. Therefore, cautIOn should be used in laying out an output record which requires data
from unpacked input to ensure that the data can be moved as full words.

The data-name FIL L i Ilcicates to the compiler that the number of digits shown in the Data Image
columns of the Data D' v,sion are not used in the Procedure Division and may be ignored by the
compiler. This allow:,; ,.;xisting data tapes to be read and those portions not pertinent to the pro­
gram to be disregardecl. The pertinent items of data may be named and described (as alpha­
numeric, alphabetic. lumeric, or blanks) as they appear.

EXAMPLE 1. Record on Tape:

TYPE

R
F
F
F
F
F
F
F

DATA NAME

ACCTS~REC

NAME
NUMBER
STREET
QTY~ORDERED

ITEM
SUB~TOTAL

TOTAL

DATA IMAGE

X(30)
9(6)
X(20)
9(3)
X(20)
999V99
99999V99

If the same file were used to check the inventory, (that is, only the items and quantities sold are
needed) the same record of the file might have the following description:

EXAMPLE 2. Record in Data Division of Program:

R

F
F

ACCTS~REC

FILL
QTY~ORDERED

ITEM
FILL

X(56)
9(3)
X(20)
X(12)

In Example 2, the second name, FILL, replaces the NAME and ADDRESS fields of Example l:
The NAME and ADDRESS fields occupy 56 digits (30 + 6+ 20) and are alphanumeric; therefore,
the FILL of Example 2 is described as 56 alphanumeric characters, X(56). The same reasoning
applies to the fourth field in Example 2 which replaces the SUB-TOTAL and TOTAL fields of
Example 1.

The actual data which was read in and described as FILL in a record or group of the input files
is not supplied to the record or group of the output files unless only the incoming record is listed
with qualifications (no fields are described), in output files.

EXAMPLE 3:

OUTPUT FILES
FD OUTl

R INA INl

-33-

INPUT FILES
FD INl ••••

F INA
FIA

FILL
F2A

FILL
F 3A

9(5)
X(lO)
X(3)
A(20)
X(4)

In Example 3, the actual data read in from tape and described as FILL is m:JVed to the output
files.

EXAMPLE 4:

OUTPUT FILES
FD OUTl

R OUTA
F lA

FILL
F 2A

FILL
F 3A

INPUT FILES
FD INl

R INA
F lA

FILL
F 2A

FILL
F 3A

B(lO)

B(20)

9(5)
X(lO)
X(3)
A(20)
X(4)

In Example 4, new FILL (blanks) is supplied.

COMMA-SEPARATED FIELDS

A comma in Column 37 at the record or *group level indicates that the input card fields are
separated by commas. The data image columns for these fields are written normally with the
following exceptions:

1. The scaling factor, P, may not be used.

2. All type-of-sign indicators (+, -, T, I, R) should be leading signs.

3. A description using E (a number in floating point) must contain an actual decimal in
the fraction portion. The assumed dE!cimal, V, is illegal.

4. The data description is limited to eight characters described as FILL preceding the
first field of the record.

If a control-key is used, it must be of fixed length and must always appear as the first field of
the *group or record. If another record type is introduced in another file, a new starting column
may be used.

If the record requires more than one card, the control-key field (followed by a comma) must be
in each card. However, the control-key fields after the one on the first card of a record are not
placed in Process Storage and no description should be given for them in the Data Division.

@~ c ~@@ ~~[ffi 0 ~~ ------·----------RE-FE-R....:;:E~.:;:;;~~;.:;:.:O~.:-.~-UA=.=..I~
-34-

A field may not be split between cards; the last field on the card must be followed by a comma.
The unused columns must be left blank, and the next field on the following card started in the same
column as the first field of the record.

Each data card must have at least one field. This necessitates at least one comma which delimits
the field. There are as many commas as there are fields; that is, the last field of a record (or
*group) must be followed by a comma.

The starting columns of the intermediate cards must be the same as that on the first card. The
starting column may be any column from 1-9. If a FILL field appears before the first data field,
the starting column is determined by the number of FILL characters. For example, if the data
description is FILL 9(6), field-name 9(8), the data must start in Column 7 of all data cards.
(FILL in this example might account for a six-digit sequence number on the data cards.)

If data in the field is to remain the same as previ.ously read in, a comma following the comma de­
limiting the preceding field is all that is necessary.

For example:

XXXX, , YYYY,

causes XXXX to be rt:=ad into field-I, field-2 remains the same, and YYYY is read into field-3.

JUSTIFICATION

Justification as indicated in the Justify column refers to justification of unpacked fields (as des­
cribed by data image) including zeros and blanks and not the justification of the most significant
characters of the fields. Therefore, a field described as X(2) and appearing on the input medium
as 2LL is right-justifi.ed to L2L because the field is2L, the third blank being the FILL which
causes it to be unpacked.

Unpacked alphanume rit: and alphabetic data are assumed left- justified and unpacked numeric data
are assumed right-justified.

NONSTANDARD DATA

The numbers 1 and 2 (used in conjunction with bi.nary data) are means of indicating to the com­
piler that the data or the input/output media are not standard GECOM data and exist in another
form. The 1 and 2 indicate the word length is one or two binary words, respectively. Once
inside the computer, the word is represented in the standard binary form (two word lengths).

The letter S for scale must be included in the data image if a 1 or 2 appears in column 37. (For
example, 99V99S5 ill the data image columns with a 1 in the column 37 would indicate that the
field is contained in olle word with a binary point of 5.) Note that when S is used in this manner,
it describes the input lr output or external binary scale. Once involved in a computing process,
the field is carried in standard binary scale (internal scale).

((\liC ®iQIiQ1 (ci2 fc: [oJ II rr:: (Q! __ . ___ . __________::G=Ec=m..:....-1 -_I:.;;.I
\l]L£ 0 i~\.\!J\.\!J ~)L£!f~ U 15~c~ REFERENCE MANUAL

-35-

Disc storage unit (DSU) addresses use bits 2-18 of the address word. The (iecimal equivalent of
the higher DSU addresses is six characters in length. A special symbol, M, ,lS the first charac­
ter of a Data Image allows the DSU address fields to be at a scalt->f 18 and to have a data des­
cription of 9(6).

Absolute DSU address fields are described as I3im~, 1 word, with a dab c!l's,~rilltion of M 9(6).
The address field remains at a scale of 18 throughout the object program.])ecimal DSU addresses
have a description of M9(1) to M9(6). The field is converted to a binary nun\b·~r with a scale of
18.

The letter, M, precedi"g the image of a BCD numeric input field forces ,en intel'llal c;cale uf 18.
An M preceding the image of an input binary field without the letter, S, assumes an external
",cale of 18 and assigns an internal scale of 18. S can be used with M to ass g I lWl1stal\dard in­
ternal scales. An M image on a BCD input field description along with an S \'alue forces an inter­
nal scale equal to the S value. For example, the description M9999. 9S13 fo'!. BCD field would
indicate that the internal binary scale is to be set at 13.

If an input field is binary (one or two words) and S is used with M, then the (Xl ('rnal scale is
assumed to be at the S value and the internal binary scale is set to the S value. en output, M is
meaningful only if the field is binary, in which case the binary scale is assumed co be 18 unless
overridden by S.

TAPE LABELS

Labels are records for tape files only. Card files, DSU files, and printer output cannot have
label records. Note that label record descriptions but not data record descriptions may be given
for a JOURNAL~TAPE file, (See Environment DiviSion, DSU~CONTROL sentence.) The tape
label records are 24-word records the contents of which identify a tape (or filE, in the case of a
multifile tape).

If no label records appear on tape, the LABEL RECORDS ARE OMITTED clause must be included
in the FD sentence. If this clause does not appear, the compiler expects the first record under
the FD entry to be a beginning-tape-label or a biginning-file-label record.

There are four types of labesl: (See Figure 10 for formats.)

1. Beginning-tape label (BTL) is the first record on any tape except a multifile tape.

2. Beginning-file label (BFL) is a record which precedes the file of ,"~.ch multifile tape.

3. End-tape label (END REEL) is a record which follows the last valid data record (and
the tape mark) on intermediate reels of a multireel file. This is nl)t used LE multi­
file tapes.

4. End-of-file label (END FILE) is a record which appears once only after the last data
record (and the tape mark(on the last reel of a file. On a multifi If tape, this record
appears after each file.

The recording mode of tape labels is always binary regardless of the recording mode clause.

GECOM - II

"FFRENCF: MANUAL

-36-

The formats of these records are:

.-----------------.----------------.--------------------------------~

TYPE

Bes;innins; File

lIR
M.
M

lIA

End Ta2e Label

lIR
lit.

M.

M.

End File Label

lIR
lit.

lit.

M.

DATA NAME

Label
BGN- TAP - LABL
REEL_ NUMBER
LABEL- !DENT

Di'.TF- CREATED

Rules of Input
or Output records
must be applied to
arcy entries

Label

BC,N- FIL- LABL
F1LE_ NUMBER
LP.BEL- !DENT

DP.TE- CREATED

Rules of Input
or Output records
must be applied to
any entries

END_TAP_LABL
SENTINEL

RECORD_ COUNT

BLOCK_ COUNT

Rules of Input
0:0 ,Jut put records
must be applied tc
any entries

END_ FIL- LABL
SENTINEL

FE CORD_ COUNT

ELOCK_ COUNT

F.u; es of Input
rr Output records
nrust be applied to
<.nv entries

DATA IMAGE

"FILE NAME"

$MODYR

"FILE NAME"

$MODYR

Tape Image

WORD

a BTL 3 BCD characters
1 001 3 BCD characters
2 FIL
3 E_N 9 BCD characters
4 AME
5 $MO 6 BCD characters
6 DYR
7 Any entries

~
allowable for a
normal record

23

a BFL 3 BCD characters
1 001 3 BCD characters
2 FIL
3 E- N 9 BCD characters
4 AME
5 $MO 6 BCD characters
6 DYR
7 Any entries

~
allowable for a
normal record

23

a END 3 BCD characters
1 liRE 6 BCD characters
2 ELli
3 2 Binary words
4 000
5 2 Binary words
6 000
7 Any entries

~
allowable for a
normal record

23

a END 3 BCD characters
1 AFI 6 BCD characters
2 LEA
3 2 Binary words
4 000
5 2 Binary words
6 000
7 Any entries

~ allowable for a
normal record

23

Figure 10. Formats for Tape Labels

@~D~@@ ~~~~~~-----------------------------~GE~CO~M~-~II
REFERENCE MANUAL

-:17-

All beginning and ending label records must immediately follow the File Description.

The use of a beginning label necessitates the presence of an ending label.

The ending labels are supplied by the object program.

The ending label (or labels) may be described if access to the contents is required.

The following combinations of labels are always used:

1. If a beginning-tape label is used, all intermediate reels will have an end- tape
label and the last reel will have and end-file label.

2. A beginning-file label is used only on multifile tapes. Each file is terminated
by an end-file label.

3. The last label appearing on a multifile tape is the end-file label of the last
file on the tape. (A multifile tape consists of one reel.)

A tape mark precedes every ending label.

All that is necessary for any label record entry is an R in column 9, and the assigned name of the
label n,cord. No other entry is necessary unless access to the contents of tre label is required.
If the standard fields within the label record are used, the names are enterC:'c in the data name
field without an entry in the type columns.

REEL~ NUMBER, automatically started with the number 1, is generally no! used, and therefore
is not listed. If it is to be referenced, it must be listed directly beneath the tape label record
entry. The name, REEL~NUMBER, is entered in the data-name columns. Type and data image
columns are left blank.

LABEL~IDENT is normally entered within the record to allow comparison oj the LABELr-IDENT
in the Object Program file table to the LABEL~]])ENT on the tape. The data image columns
contain a maximum of nine BCD characters (in quotation marks).

If DATE~CREATED is not entered in the record, the date is automatically ';1Iered il'to the label
from the GECOM generated Object Program.

If date symbols are not used, the Object Program expects to find the six BCT date ch.tracters in
locations (1076)9 and (1077)9.

If DATE~CREATED is entered on the Data Division form, it must be f~nter', in the Leginning­
tape label of all tape files using label records. The entry in the data imagE (olumns is a $
[ollo\v~;d by a maximum of five characters. The entry may be in quotation :11.1rks but they are not
needed.

GECOM - II

-38-

Field names represent words 7 -23 of the label record and may contain any information the pro­
grammer wants in the label record. Only those standard names of fields to which access is re­
quired need be lIsted under the label record except in the case of DATE~CREATED which must
be listed in all label records if listed in any. These standard names must appear in the record
prior to any nonstandard (programmer assigned) names. Nonstandard names follow the last
mentioned standard name.

The standard names lJl the end label records generally are not listed, but may be entered if the
programmer wishes to ('onsult the contents of any word of the label. If used for comparison to
another number, it must be remembered that RECORD~COUNT and BLOCK~COUNT are re­
tained as binary numb·ers and must be compared to binary numbers. If these standard names
are entered in the rec Jrd, the type and data image columns are left blank.

Additional informatioL may be added to the end labels in the same manner as described for the
beginning labels.

EXAMPLE 1:

FD
R

TAPE~ FILE 1, RECORDING MODE IS BINARY.
BGN~TAPr- LABL
LABE~IDENT
DA TE~ CREA TED

F RUN~- FOR
F PURGE~ DA TE
R END~TAP~ LABL
F HASH~COUNT
R END~ FIL~- LABL
F GRAN~HASH
R NORMAL1
F A

EXAMPLE 2:

"FILE~ KAME"
$MODYR
A(23)
X(6)

9(5)

9(1l)

X(5)

FD TAPE~FILE 2, BLOCK SIZE IS 270 WORDS.
R BGN~TAP~LABL
LABE~IDENT "FILE~NAME"

R NORMAL2
F A 9(5)

Example 1 illustrates the File Section of a program that uses a dating routine to produce a dated
program.

In Example 2, the GECOM Systems Tape date is supplied.

The various levels oi data description are described on the following pages.

-:19-

[
FILE SECTION

FILE DESCRIPTION

FUNCTION

The function of the file description is to identify the physical and conceptual characteristics of the
data contained in the input and output files which are used in the object program. The file des­
cription describes the physical structure of the named file; the mode of the incoming and outgoing
data, the size of blocks when the data is blocked, information pertaining to the label records, and
the name of the control-key when records of different types are involved.

SENTENCE FORMAT

FD file-name-I, [RECORDING MODE IS ~8~BlTJ BINARY J
[BLOCK (~I~:T~INS) integer-I WORDS]

G LABEL RECORD(S) (~E) OMITTED]

G lID END OF BLOCK SENTINEL]

CONTROL-- KEY IS field-name- ~ (NO~SET)
ZERO~SET

BUFFER] E

~ SEQUENCED ON field-name-2, field-name-3 ...] G PROCESS FILE]

CONVENTIONS :

1.

2.

3.

The RECORDING MODE clause indicates th'4 data on the external media
are not in the decimal mode. The [18~BITJ BINARY option may be
specified only for tape files. It is used to permit reading and writing of
tapes in the I8-bit binary mode. If the data are both binary and decimal,
the binary mode must be indicated. The RECORDING MODE of a JOURNAL~
TAPE file (see Environment Division, DSU~CONTROL sentence:' is always
binary. Consequently, the RECORDING MODE need not be specified for
a JOURNAL--TAPE file.

The BLOCK SIZE clause indicates the number of words contained in the
block. When the physical record (tha.t data existing between tape gaps) is
a logical record, there is no need for the BLOCK SIZE clause; it will, in
fact, produce additional coding which will unnecessarily increasl' object
running time. If a BLOCK SIZE clause is included in a progra:n and the
actual block size of an input tape does not agree with the stated block size.
difficulties may be encountered. See Chapter 9, "Data Manipula'ion, ,.
for conventions relative to this situation.

The LABEL RECORD clause is used only when label records ct,) wt appear.
Note that label record descriptions may be given for a JOURNAL ~ TAPE
file (see Environment Division, DSU~-CONTROL sentence), bU1 clata re­
cord descriptions may not be given for a JOURNAL- TAPE file. The
clause may be omitted when describing files not assigned to mag letic tape.

GECOM - II

~EFERENCE MANUAL

-40-

FILE SECTION
FILE DESCRIPTION

(continued)

4. The CONTHOL-KEY clause applies only to input files. The control-key of
each record must be identified by the same name, regardless of its position
within the record. It is mentioned only for input files.

It is recon~mended that the control-key field appear in the same position re-
lative to the beginning of each record or *group and that it have the same
data descr~ption but a different literal value as the control-key in the other
records or *groups within the file. The literal value will appear in quote marks in
the data ima,-ic column., Do not qualify a control~ key field when using it in
PROCEDURE sentence if the contro~ key field is assigned to process storage.

If there are multiple record formats in a file and no CONTROL~KEY clause
is given:

a. The cl1mpiler will print an error message.
b. Unpc.cking coding will be generated for all record types.
c. Whe1 .t READ is executed, the first record type unpacking will be executed.

There is no path to the other record type unpackings except via the ENTER
GAP sentence.

If there .. \1 e multiple record formats in a file and a CONTROL~ KEY clause is
pven. but rot all record types have a control-key:

a. The '. Jmpiler will print an error message for each record type that does
not ha ve it control- key.

IJ. Unp;lc ~'1l1f-i coding will be generated for all record types.
c. ClUX Jl<,ey coding (entered on each READ) can only reach the unpacking

f()r .11)se records which have control-keys. There is no path to the other
rec()r 1 type unpackings except via the ENTER GAP sentence.

5. A hyphl?I: ..) is placed in column 7 when a word of the file description is split
at column 80.

6. The fieln- ll.une-2 in the SEQUENCED clause represents the major key, field­
name- 3 .c. 'Pre sents the next lower key, etc. This clause is used for documen­
tation purpl lse only.

7. The ZER\) ·SET buffer option applies to output files only. This is used to
clear the entire buffer to zeros. All character positions (FILL) will be zero.

The ~()·,:'iE T buffer option applies to output files only. This is used to pre­
vent clea:.'iag the output buffer. All undescribed character positions (FILL)
will be absumcd to contain miscellaneous characters. Process files assume
~O·~SET.

If neither buffer setting option is used, the entire buffer will be cleared to
blanks. Al~ undescribed character positions (FILL) will be blank.

8. The ~O ... SENTINEL clause is used when end-of-block sentinels are not to
,le added tl bloeked output reeords when the buffer is released to the DSU.
Ordinarily sentinels would not be desired when a DSU bloeked output file
is release" and the buffer is being shared with a blocked input file of the
same def,e ription. For example, if there are five reeords to a block, the

GECOM - II
REFERENCE MANUAL

-41-

FILE EECTION
FILE DESCRlPTION

(continued)

third record is updated, and the block is ready to be released. (that is.
no updating is done for the fourth and fifth records), a RELEAEE may be
given without giving READS and WRITES for the fourth and fifth records.
However, no sentinel is desired on the RELEASE since it would destroy
the first word of the fourth record. Any sentinel following the fifth record
would, of course, be recorded on the DSU when the buffer is]'(lEased.

When the NO ... SENTIr-.'EL clause is used, the programmer call write
his own sentinel by writing a one-word record of all 1 bits if he wishes
to override the NO SENTINEL indication. This would be done when a
new output block (additions) is being ereated.

9. An output file may be designated as a Process file. This ability is now
included in GECOM for the COBOL Translator to give the user the same
output file philosophy that COBOL provides. The user is responsible for
building the output records through the use of MOVE, ARITHMETIC. or
ASSIGNMENT statements. He may MOVE to output fields, groups, or
assigned statements. A field that has been placed in the output record
area may still be used in procedure statements; that is, the output area
is used as working storage. At WRITE time, any fields that have been
assigned Process storage will be automatically moved to the outrut area.

When a DSU file is designated as a Process file, the programmer must
ready that file before causing its data to be moved to output. (~e.;) READY
verb.)

EXAMPLES

1. FD FILE~ A, RECORDING MODE 1S BINARY.

2. FD FILE~77, BLOCK CONTAINS 200 WORDS.

3. FD PAY~FILE, LABEL RECORDS ARE OMITTED, CONTROL ~KEY 1S FLAG.

4. FD MASTER~FILE, RECORDING MODE IS BINARY, BLOCK CONTAINS 500 WORDS,
CONTROL~ KEY 1S INDICATOR.

5. FD TRANS~ FILE, BLOCK CONTAINS 700 WORDS, CONTROL-- KEY 1S REC~CODE.

6. FD PRINT~ FILE, RECORDING MODE IS 18~ BIT BINARY, BLOCK CONTAINS 336
WORDS.

7. FD TAPE~FILE RECORDING MODE IS BINARY ZERO~SET BUFFER.

8. FD OUTTER, PROCESS, BLOCK CONTAINS 157 WORDS.

@~c~@@ ~~~~~~-----------------------------R-EF-ER-E~-~~~~--~~~~

-42-

INPUT AND PROCESS OUTPUT ENTRIES

TYPE - R

DATA NAME

Any legal data-;lame.

QUALIFIER - not used.

FORMAT

P

U

REPEAT - not used.

BINARY

B or any
character

JUSTIFY

L

R

Assumes all levels below (within this record) to be packed
with the exception of binary numerics.

Assumes all levels below (within this record) to be unpacked.

File is on cards. AU fields are delimited by commas.

Assumes data to be packed. An entry at a lower level takes
precedence.

Assumes all levels within the record having numeric des­
criptions (9) to be in the standard GECOM binary form un­
less format column entry at a field level indicates non­
standard binary data. This does not alter nonnumeric data.

Assumes BCD data. Entries at lower levels take precedence.

Assumes unpacked BCD numeric data to be left justified and
zero filled.

Assumes all alphanume ric and alphabetic unpacked data to
be right justified and blank: filled.

Assumes all BCD numeric data to be right justified and zero
filled, all alphabetic and alphanumeric data to be left justi­
fied and blank filled. An entry at a lower level takes pre­
cedence.

DATA IMAGE - not used.

NONPROCESS OUTPUT ENTRIES

TYPE - R

DATA NAME

Any legal data- name.

-43-

FILE SECTION
RECORD

FILE SECTION
RECORD

(continued)

QUALIFIER - the file name of this record name to force implied move of entire record to output.
An output record which is a direct reflection of a. working- storage record must be qualified by
WS even when the name is unique.

FORMAT

Used only if description of data differs from that in Input Files, Working-8torage, or Common­
Storage.

P

U

REPEA T - not used.

BINARY

B or any
character

Forces all levels below (Within this record) to be packed with the excep­
tion of binary numerics ..

Forces all levels below (within this record) to be unpacked.

Assumes the entry from which the implied move is made.

Forces all lower levels of the record having a numeric data description
(9) to be in the standard binary form unless the format column entry at
the field level indicates nonstandard binary data. This does not alter
nonnumeric data.

Assumes the entry from which the implied move is made.

JUSTIFY - used only when output format differs.

L

R

DATA IMAGE - not used.

Forces unpacked BCD numeric data to be left justified and zero filled.

Forces unpacked alphanumeric and alphabetic data to be right justified
and blank filled.

Assumes the entry from which the implied move is made.

CEeOM - II
REFERENCE MANUAL

-44-

INPUT ENTRIES

TYPE - *G

FILE SECTION
* GROUP

The group of fields must be followed by another * group or be the last entry in the record in order
to delimit the group. This entry must be preceded by a record entry.

DATA NAME

Any legal data- name.

QUALIFIER - not uSE,d.

FORMAT

P

U

REPEA T - not used.

BINARY

B or any
character

Assumes all levels below (within this *group) to be packed with the
exception of binary numerics. This entry takes precedence over
any entry at record level.

Assumes all levels below (within this *group) to be unpacked. This
entry takes precedence over any entry at the record level.

Assumes data to be packed. This entry takes precedence over any
entry at the record level.

Assumes all levels within the group having a numeric description (9)
to be in the standard GECOM binary form unless format column en­
try at a field level indicates nonstandard binary data. This does not
alter nonnumeric data.

Assumes BCD data. An entry at a lower level takes precedence.

Any entry at the *group level takes precedence over any entry at the record level.

JUSTIFY

L

R

Assumes unpacked BCD numeric data to be left justified and zero filled.

Assumes all alphanumeric and alphabetic unpacked data to be right
justified and blank filled.

Assumes all BCD numeric data to be right justified and zero filled, and
all alphabetic and alphanumeric data to be left justified and blank filled.
An entry at a lower level takes precedence.

Any entry at *group level takes precedence over any entry at the record level.

ELEMENT POSITIO]", - not used.

DATA IMAGE - not used.

@~ a ~@@ ~[EGh II ~~ -----------------RE-FE-R...:;E~~~~:.::;;:~~-U~~~
-4:5-

FILE SECTION
*GROUP
(continued)

PROCESS OUTPUT ENTRIES

*Groups are not allowed in Process output files.

NON PROCESS OUTPUT ENTRIES

TYPE - *G

DATA NAME - Any legal data-name.

QUALIFIER - The name of the file which is the source of the *group in order to force implied
movement of the entire *group to output.

FORMAT

P

U

REPEAT - not used.

BINARY

B or any
character

Forces all levels below (within this *group) to be packed with the excep­
tion of binary numerics. The group entry takes precedence over any
entry at the record level.

Forces all levels below (within this *group) to be unpacked with the
exception of binary numerics. This entry takes precedence over any
entry at the record level.

Assumes the entry from which the implied move is made.

Forces all lower levels of the group having a numeric data description
(9) to be in the standard binary form unless the format column entry at
the field level indicates nonstandard binary data. This does not alter
nonnumeric data.

Assumes the entry from which the implied move is made.

Any entry at this level takes precedence over any entry at the record level.

JUSTIFY

L

R

Forces BCD numeric data to be left justified and zero filled.

Forces alphanumeric and alphabetic data to be ri[ht justified and blank
filled.

Assumes the entry from which the implied move is made.

Any entry at this (*G) level takes precedence over any entry at the record level.

ELEMENT POSITION - not used.

DATA IMAGE - not used.

@~o~@@ ~~[ffi~~~-----------------RE-FE-R""::E:'::":~~~O~=-~-..,;u~:":"~

-46-

FILE SECTION
GROUP

INPUT AND PROCESS OUTPUT ENTRIES

TYPE - G

A group may be delimited in one of two ways:

1. The group of fields may be followed by another group or may be the last entry in the
record.

2. The terminate (type T) may be used.

DATA NAME - any legal data-name.

QUALIFIER - not used.

FORMAT

P

U

Assumes this group to be packed if there are 110 conflicting entries at a
higher level. This is meaningless for binary numerics.

Assumes all levels below (within this group) to be unpacked if no con­
flicting entry appears at a higher level.

Assumes data to be packed.

Any nonblank entry at this level takes precedence over a blank at a higher level.

Any nonblank entry at a higher level takes precedence over any entry at this level.

REPEAT

The repeat field may '2 ontain blanks or one to three numerics indicating the number of times the
group is repeated. H a fourth numeric is required, column 42 may be used. Repeated groups are
restricted to a maximum of seven computer words per group.

BINARY

B or any
character

Assumes all levels with:in the group having a numeric description (9) to
be in the standard GECOM binary form unless format column entry at a
field level indicates nonstandard binary data. This does not alter non­
numeric data.

Assumes BCD data. En.tries at lower levels take precedence.

Any nonblank entry at this level takes precedence over a blank at a higher level.

Any nonblank entry at a higher level takes precedence over any entry at this level.

JUSTIFY

L

R

Assumes unpacked BCD numeric data to be left justified and zero filled.

Assumes all alphanumeric and alphabetic unpacked data to be right
justified and blank filled.

Assumes all BCD numeric data to be right justified and zero filled, all
alphabetic and alphanumeric data to be left justified and blank filled.
An entry at a lower level takes precedence.

@[E 0 ~@@ ~~~~ I] ~~ -----------------RE-FE-R....;.E~=~~~:.;....~-UA=-I~

-4:7-

I FILE SECI'IONl
GROUP

(continued)

Any nonblank entry at this level takes precedence over a blank at a higher level.

Any nonblank entry at a higher level takes precedence over any entry at thi.3 level.

ELEMENT POSITION - not used.

DATA IMAGE - not used.

NONPROCESS OUTPUT ENTRIES

TYPE - G must be present in the type columns.

Note: Use of G in output forces implied movement of all fields in the source group to output.
If the source fields are listed under the group in the output description, the fields will be
repeated in output.

DATA NAME - Any legal data-name.

QUALIFIER - A record name if necessary for uniqueness.

FORMAT

P

u

Forces all levels below (within this group) to be packed with the excep­
tion of binary numerics.

Forces all levels below (within this group) to be ur.packed with the
exception of binary numerics. This entry takes precedence over any
entry at the record level.

Assumes the entry from which the implied move is made.

Any nonblank entry at this level takes precedence over a blank at a higher level.

Any nonblank entry at a higher level takes precedence over any entry at this leveL

REPEA T - not used.

BINARY

B or any
character

Forces all lower levels of the group having a numeric data description
(9) to be in the standard binary form unless the format column entry at
the field level indicates nonstandard binary data. This does not alter
nonnumeric data.

Forces BCD data output. Entries at lower levelE ta.ke precedence.
Any entry at record or group level takes precedence over the blank.

Any nonblank entry at this level takes precedence over a blank at a higher level,

Any nonblank entry at a higher level takes precedence over any entry at thlS level.

JUSTIFY

L

R

Forces unpacked BCD l1Lumeric data to be left just.ified and zero filled.

Forces unpacked alphanumeric and alphabetic data to be right justified
and blank filled.

GECOM - II
REFERENCE MANUAL

-48-

L\ Assumes the entry from which the implied move is made.

Any nonblank entry at this level takes precedence over a blank at a higher level.

Any nonblank entry at .L higher level takes precedence over any entry at this level.

ELEMENT POSITION - not used.

DATA IMAGE - not llsed.

-49-

FILE SECTION
, GROUP
(continued)

~;-'E SECTION
L_:EHMINA TE

INPUT AND PROCESS OUTPUT ENTRIES

TYPE - T

DATA NAME

Name corresponding to a previous group name. The T entry delimits the specified group. Groups
may be nested and overlapped by use of the type T entry.

Note: In Working Storage, type T may be used in the same manner to define overlapping or nested
group.

Type T cards may only be used in programs generated by the COBOL Translator.

QUALIFIER - not used.

FORMA T - not used.

BINARY - not used.

JUSTIFY - not used.

ELEMENT POSITION - not used.

DATA IMAGE - not used.

-50-

GECOM - II

REFf:F"NCE '·l\NUAL

FILE SECTION
FIELD

INPUT AND PROCESS OUTPUT ENTRIES

TYPE - F (or blank when FILL is used.)

DATA NAME - any legal data-name or FILL.

QUALIFIER - not used.

FORMAT

P

U

1

2

S

Assumes this field to be packed if there is no conflicting entry at a higher
level. This is meaningless for binary numerics.

Assumes this field to be unpacked if there is no conflicting entry at a
higher level.

Assumes one-word binary numeric data. A scaling factor must be
supplied in the data image columns.

Assumes nonstandard tW'o-word binary numeric data. A scaling factor
must be supplied in the data image columns.

The preceding image is to be repeated for this entry. S cannot be used
when the preceding image contains a 1 or 2.

Assumes data to be packed.

Any nonblank entry at this level takes precedence over a blank at a higher level.

Any nonblank entry at .l higher level takes precedence over any entry at this level.

REPEAT

The repeat entry may be blanks or one to three numerics indicating the number of times the field
is repeated. If a fourth numeric is required, column 42 may be used.

BINARY

B or any
character

Assumes the field to have a numeric description (9) and to have standard
GECOM binary form unless the format column indicates nonstandard
binary. This does not alter nonnumeric data.

Assumes BCD data. Entries at higher levels take precedence over a
blank.

Any entry at this level takes precedence over a blank at a higher level.

JUSTIFY

L

R

Assumes unpacked BCD numeric data to be left justified and zero filled.

Assumes aU alphanumeric and alphabetic unpacked data to be right justi­
fied and blank filled.

Assumes all BCD numeric data to be right justified and zero filled, all
alphabetic and alphanumeric data to be left justified and blank filled.

-51-

FILE SECTION
FIELD

(continued)

Any nonblank entry at this level takes precedence over a blank at a higher level.

Any nonblank entry at a higher level takes precedence over any entry at this level.

DATA IMAGE

A data image must be entered for every field. Output fields are limited to 127 characters each.
(See "Data Image Entries. ")

NONPROCESS OUTPUT ENTRIES

TYPE - F

DATA NAME - Any legal data-name.

QUALIFIER

Qualification as necessary for uniqueness: record name and/or file name; for more than one level
of qualification, a hyphen (~) must be in column 7 of the continued qualifier e:ltry; and the type
must be blank, and the qualifier entry must be in columns 24-35.

FORMAT

Not necessary unless different from Input or Working-Storage files.

P

U

1

2

S

Forces this field to be packed if there is no conflicting entry at a higher
level. This is meaningless for binary numerics.

Forces this field to be unpacked if there is no conflicting entry at a
higher level. This is meaningless for binary numerics.

Assumes the entry from which the implied move is made.

Assumes one-word binary numeric data. A scaling factor must be sup­
plied in the data image columns.

Assumes nonstandard two-word binary numeric data. A scaling factor
must be supplied in the data image columns.

The preceding image is to be repeated for this entry. S cannot be used
when the preceding image contains a 1 or 2.

Any nonblank entry at this level takes precedence over a blank at a higher level.

Any nonblank entry at a higher level takes precedence over any entry at this level.

REPEA T - not used.

BINARY

B or any
character

Forces field (which has numeric description (9)) t(l be in the standard
GECOM binary form.

Forces BCD data output. Entries at higher levels take precedence over
the blank.

@ ~ 0 ~@@ ~~ [ffi ~ ~~ ----------------....... RE=FE--R....;;;~.;;.;;~~=O~;;...~.....;u~=:

Any nonblank entry at this level takes precedence over a blank at a higher level.

Any nonblank entry elt a higher level takes precedence over any entry at this level.

JUSTIFY

L Forces BCD numeric data to be left justified and zero filled.

FILE SECTION
FIELD

(continued)

R Forces alphanumeric and alphabetic data to be right justified and blank
filled.

Assumes the entry from which the implied move is made.

Any nonblank entry at this level takes precedence over a blank at a higher level.

Any nonblank entry ;It a higher level takes precedence over any entry at this level.

ELEMENT POSITIOK - not used.

DATA IMAGE

Not necessary unless different from input entries. Output fields are limited to 127 characters
each. (See "Data Image Entries. ")

GECOM - II
REFERENCE MANUAL

-53-

FILE SECTION
ELEMENT

INPUT AND PROCESS OUTPUT ENTRIES

TYPE - E

DA T A NAME - any legal data- name.

ELEMENT POSITION

MS The position of the most significant digit of the element within the alpha­
numeric field.

LS The position of the least significant digit of the element within the alpha­
numeric field.

NO OTHER ENTRIES are made for elements.

NONPROCESS OUTPUT ENTRIES

TYPE - E (for documentation purposes only).

DATA NAME - any legal data-name (for documentation purposes only).

NO OTHER ENTRIES are made for elements.

1. The element is ignored and appears only in the field in which it is I~ontained.

2. If the element itself is required, it must be renamed a field in the output files (the
type column may be M or 6F).

Note: An element must be alphanumeric.

~;ECO~l - II

-54··

INPUT AND PROCESS OUTPUT ENTRIES

TYPE - C

DATA NAME - any legal data-name.

DATA IMAGE

1. The value of the conditional may be described as:

literal constant
fixed point
integer
floating point

"230"
230.1
230

+ 2. 301E + 2

FILE SECTION
CONDITIONAL NAMES

2. The value aSSigned to the conditional name must be consistent with the description of
the field or element containing the conditional value.

3. The field may not be a repeated entry or part of a repeated group.

NO OTHER ENTRIES are made for conditional names.

NONPROCESS OUTPUT ENTRIES

Conditional names may not be used in nonprocess output files.

EXAMPLES OF CONDITIONAL NAMES

GENERAL. ELECTRIC GENERAL COMPILER DATA DIVISION FORM

r-;;7-jITI~ t ELEMENT

r,-,T,-.~>~.~.r,~.r+------------- '~~~"--'~----'-"-"-'+'+"4"~'-"-"-"~"+'+"+"4'-"-"-"r"~"+>+"_"~'~"_»_"_"_"_'_"_"_'_"_"_"_"_'_"_"_"_'_"_"_"_"_'_"_"_' __ ~

F PAY.

C SALARIED

_C H 0 U R L Y

F T Y P F

eSPECIAL

C ALTFRNATF

ESt! B 1 Y P E :::-_~_

C \1 S E

C N 0 U 5 F.

,E SUB~YPE_.

eYE S

C N 0

F VALl E

C CON:1_1

C COND-2

C CONn 3

I

o 1 0 2

o 3 0 4

x x x x
" A A A A "

" c c c c "

" 0 1 "

"02"

" F 3 "

" NO"

I 9 V 9 9

1 0 0 5

- 1 0 . a 5

__ '_" '_'" _' "_" "_,,,_. "_" "_'''' __ ' "_" "_" '_" _" ,,_. ~_'~' 0_,. ;._~, ~_." '_' "_" ._ •• '_"' ___ ,,,d j

@j~ c ~@@ ~~rn: u ~~ ---------------..""RE=F=ER....;;E~~~~=O~.;....~-U~::.;;.~

GENERAL. ELECTRIC

F __ I._O}: ~ _:-' !
fLP.T.CONO-l

FLPTCOND-2

FLPTCOND-)

GENERAL COMP'LEr~ DATA DIVISION FORM

-56-

-------~-;---

I I- 9.99 E q 9

+ . .2." 3 0 E () 2

,0 . U 1 E () 2

+ 0 . 0 4 E n 2

INPUT AND PROCESS OUTPUT ENTRIES

Literals are not used in input files or process output files.

NONPROCESS OUTPUT ENTRIES

TYPE - L

DATA NAME - not used.

REPEAT - not used.

OTHER COLUMNS

The same rules that apply to fields apply to literals.

DATA IMAGE

FILE SECTION
LITERAL

1. When writing literals which are continued to the next line of the data image columns,
the literal must start on the succeeding lines in column 55, a hyphen (~) must be
placed in ,~ol. 7.

2. Literals are used in output fields to generate Hollerith characters for headings. The
most efficient method of writing literal headings entails writing "one" literal consis­
ting of 120 characters. The literal may be continued on as many succeeding lines as
are neeessary. A hyphen must appear in eolumn 7 of the continuing lines. Quotation
marks m\]st precede the first character and follow the last character only.

3. Literals may be described as:

literal COlstant
fixed pOint
integer
floating p)int

"230"
230. 1
230

+ 2. 301E + 2

4. Literals enclosed in quotation marks are in BCD mode. Numerics are eonverted to
bina,ry. Thus, it is more efficient to use quotation marks if practical.

-S7-

EXAMPLES OF LITERALS:

FILE SECTION
L}:TER4L

(Cont. J

--·------·----l
I :E:~':~ ~ ~~~~:,~:,~ "'""""' COM""" om_D_IV_IS_'O_N_-_F(::~~--_-_-_-~~~-

I
, [;:;;'c, I I: ,I, I PH ••• ' rr---:- -; ~]:::.;~' ~----
I
~~-~'---'-'-++'-+F~c...::c.' ce', ~:.:' ",' t~i"~~~:""""" ,,",," ",I",,·,.,., .. ., "on,:' ",I,_±_.'-: -H~~~0;~~:;-:o:~'-,-"-"-'--'-~

0" REPORT

---=~=== I

I ",12345t~!'~C;23"'5b789012345

i

:~:::~~~:):~:::~~:~~~::~01
+ 2 3 0

_L -2 130

-I- 2 . 3 0 1 F .. ''1)

I ABC D E F '" H B G H I J " L 1'1 " B B " N 0 P

QRST"BB"t' ,'WXYZ"

GECOM - II

R~FERENCE MANUAL

-58-

INPUT ENTRIES

TYPE - FL

FILE SECTION
FIELD LITERAL

DATA NAME - any legal data-name.

QUALIFIER - not used.

FORMAT

P

U

1

2

S

Assumes this field to be packed if there is not conflicting entry at a
higher level. This is meaningless for binary numerics.

Assumes this field to be unpacked if there is no conflicting entry at a
higher level.

Assumes one-word binary numeric data. A scaling factor must be
supplied in the data image columns.

Assumes nonstandard two-word binary numeric data. A scaling factor
must be supplied in the data image columns.

May not be used.

Assumes data to be packed.

Any nonblank entry at this level takes precedence over a blank at a higher level.

Any nonblank entry at a higher level takes precedence over any entry at this level.

REPEAT

The repeat field may contain blanks or one to three numerics indicating the number of times the
field literal is repeated. If a fourth numeric is required, column 42 may be used.

BINARY

B or any
character

Assumes the field to have a numeric description (9) and to have standard
GECOM binary form unless the format column indicates nonstandard
binary. This does not alter nonnumeric data.

Assumes BCD data. Entries at higher levels take precedence over a
blank.

Any entry at this level takes precedence over a blank at a higher level.

JUSTIFY

L

R

Assumes unpacked BCD numeric data to be left justified and zero filled.

Assumes all alphanumeric and alphabetic unpacked data to be right justi­
fied and blank filled.

Assumes all BCD numeric data to be right justified and zero filled, all
alphabetic and alphanumeric data to be left justified and blank filled.

@ ~ c ~(Q)(Q) ~~ [ffi ~ ~~ ---------------RE-F-ER.....::E~=~~=O~.:.---"'u~=~
-59-

TILE SECTION
FIELD LITERAL

(continued)

Any nonblank entry at this level takes precedence over a blank at a higher level.

Any nonblank entry at a higher level takes precedence over any entry at this level.

DATA IMAGE

1. The field literal may be described as:

literal constant
fixed point
integer
floating point
integer

"230"
230.1
230

+ 2. 301E + 2
230Kl

When described as a literal constant, it may not be used in arithmetic statements.

2. The field literal is ordinarily used only for a control-key field. When used for this
purpose, the contents of the input field are compared to the literal entered in the data
image columns to determine the type of the incoming record. A control-key field
may not be repeated.

3. If a field literal is used in any input field other than the control-key field, the descrip­
tion listed in the data image columns will be treated as an image and the data in the
incoming field will be used according to the image. A field literal may not be more
than 83 characters in length, when enclosed in quotation marks.

4. Except as indicated above, the compiler processes field literal entries as field
entries.

PROCESS AND NONPROCESS OUTPUT ENTRIES

Field literals are not used in output.

EXAMPLES OF FIELD LITERALS:

DATA NAME REPEAT DATA IMAGE ,

A field literal described as:

FL "ABCD"

is treated as a field and assumes an image of:

F FIELD-l xxxx

A field literal described as:

FL 230. 1

is treated as a field and assumes an image of:

F FIELD-2 999.9

GECOM - II
REFERENCE MANUAL

-60-

FILE SECTION
FIELD LITERAL

(continued)

A repeated field literal is described as follows:

GENERAL. ELECTRIC

. , . ~ . d II II

F L FIELD-A

F L

F L

F L F I F. L D - B

F L

F. L

F L FIELD~C

F L

F L

F L F I r: L D ~ D

F L

F. L

F L FIE L D _ t:

F L

F L

GENERAL COMPILER DATA DIVISION FORM

i COM PUT E ~

ELE.EIIT

f-;';'-'" P-;;-

o 0 3

" ABC D "

",E F G H "

" I J K L "

+ 2 3 0 . 2

+ 2 3 0 .

- 2 3 0

- 2 3 1

- 2 3 2

jPAGE

+2.301E+2

+2 302E+2

+2.3.03.E+.2

2 3 0 K 1

2 3 0 K 2

2 3 0 K 3

',,,,,,,,,1,,,,,,,,,,,,,,,,,,,,""":""""""1"""1"""'''' """ "1""""'''""·,'· .. ",,,,'-
.. - - __ ... _____________________________ --.l

GECOM - II
REFERENCE MANUAL

-61-

FUNCTION

The function of data image entries is to show a detailed picture ,';.(1 the ~"'lenl ;:h,H'acteristics of
data.

CONVENTIONS

1. The data image consists of any allowable combination of symbols r"'1uired to describe data.

2. USE codes have been assigned to symbols to show in which parts of t'le Data Division the
various symbols may be used in data images. USE codes with the :(rresponding parts of
the Data Division are as follows:

CODE

1
2
3
4
5
6
7

MEANING

NONPROCESS OUTPUT FILES
PROCESS OUTPUT FILE:S
INPUT FILES
WORKING-STORAGE SECTION
COMMON~STORAGE SECTION
*COMMON~STORAGE SECTION
CONSTANT SECTION

3. The following operational symbols do not represent character positions of the data:

Symbol

E

K

M

P

S
(followed by
an integer)

v

(n)

See Conven-
Meaning tion Number USE Code

Indicates the point of separation of the
mantissa from the characteristic of a
floating point number.

May be used instead of symbol for actual
or assumed decimal point. Numeric data
described with a K are interpreted as in­
tegers for all manipulations. See Data
Manipulation, using K in Data Descriptions.

May be used as leading (:haracter of image
only. See explanation under Data Division,
Nonstandard Data.

Indicates zeros to be applied to the data to
obtain the true value of the data. May be
used to indicate right or left scaling (99PPP
or. PPP99).

Indicates the binary point location. See Data
Division, Nonstandard Data. See Data Mani­
pulation, Use of Scaling Factor.

Assumed decimal point position.

An integer enclosed in parentheses following
a symbol indicates the number of consecutive
occurrences of the symbol (for example,
A(3)X(2) and AAAXX are equivalent.)

5 1,2,3,4, 5,6,7

7 1,3,4,5,6,7

7 1,2,3,4, 5,6,7

7 1,2,3

7 1,2,3,4,5,6,7

6 1,2,3,4,5,6,7

1,2,3,4,5,6

@J[E c ~(QXID ~[E[ffi ~ [E~ ------------------RE=FE:-R~E~.!::.::~~~O~!....:-~u~!:.!.~
-62-

DATA IMAGE
ENTRlES
(continued)

4. The following symbols represent character positions of the data:

Symbol

A

x

9

I

R

T

-I-

Meaning
See Conven­
tion Number USE Code

Corresponding data position contains an alpha­
betic character, A- Z or blank. (This is not
meant to indicate leading and/or trailing blanks
adjacent to numeric data.)

Corresponding data position contains one of the
characters comprising the character set. (May
be used to reflect data containing a combination
of alphabetic and numeric chara(:ters.)

Corresponding data position contains a numeric
character, 0-9. The data image of a numeric
field may never exceed 11 numeric symbols.

Corresponding data position contains a numeric
character (0-9), with a 12-row overpunch (+)
when the data is positive, or an 11-row over­
punch (-) when the data is negative. If no over­
punc h, the data is assumed positive. May only
appe l.r as the leading or trailing symbol of the
data image.

Corresponding data position contains a numeric
character (0-9), with a l1-row overpunch (-)
when the data is negative or no overpunch when
the data is positive. May only appear as the
leading or trailing symbol of the data image.

Corresponding data position contains a minus
sign (-) when the data is negative or the most
significant character of the data when positive.
May only appear as the leading symbol of the
data image. See Data Division, Comma Sepa­
rated Fields.

Corresponding data position contains a plus sign
(-I-) when data is positive or a minus sign (-)
when data is negative. If no sign, data is as­
sumed positive. May only appear as the leading
or trailing symbol of the data image.

1,2,3,4,5,6

1,2,3,4,5,6

7 1,2, 3,4, 5,6
8
9

7,10 1,2,3

7.101,2,3

7 3

7,~9 1,2,3,4,5,6,7

Corresponding data position contains a minus sign 7,8,9 1,2,3,4,5,6,7
(-) when data is negative and blank when positive.
May only appear as the leading or trailing symbol
of the data image.

Corresponding data position contains an actual 6 1,2,3,4, 5,6,7
decimal point.

Corresponding data position contains a comma. 9,10 1,2,3

-6:3-

DATA IMAGE
ENTRIES

(continued)

Symbol
See ConvEn-

Meaning tion ~umber USE Code ._------
$ Corresponding data position contains a dollar 9. 10

*

$$

++

CR

DB

sign. May only appear as the leading symbol
of the data image.

Zero suppression; represents a numeric data
position the contents of which will be suppressed
(replaced by a blar.k) when the value is zero.

Asterisk fill; represents a numeric data position
the contents of which will be replaced by an
asterisk when the value is zero.

}
Floating Dollar Sign

or
Floating Report Sign.
A sequence of two or more $'8, or two or more
+'s, or two or more -'s represents numeric data
positions in which the least significant (rightmost)
leading zero is replaced by the indicated sign, and
preceding zeros (if any) are replaced by blanks.

Credit sign; represents two data positions, the
contents of which are CR when the data value is
negative, or blank otherwise.

Debit sign; represents two data positions, the
contents of which are DB when the data value is
negative, or blank otherwise.

5. A floating point data image must be in the form:

9 (8)
E (~) 9

(2)

The 8 and 2 indicate the maximum number of digits.

9, :0

9, to

9, 10

8, 10

8, 10

1,2,3

1,2,3

1,2,3

1,2,3

1,2,3

1,2,3

6. A numeric data image may contain only one decimal point position (assumed or actual).
Numeric data which contains an actual decimal point may be used in computations.

7. The image of numeric data to be used in computations may contain the symbols:

+ I R (T) 9 v E p M s K

8. The image of numeric data not to be used in computations may contain the symbols $, *, ~
CR, and DB in addition to those shown in Convention 7.

@~o~®® ~~[ffi~~~-----------------RE-FE-R~E~'::":~~~O~!...:-:......;u~~~

-64-

9. Only one type of suppression may be specified in a data image.

a. The data positions to which suppression applies are represented by:

One or more Z symbols (zero suppression)
One or more * symbols (asterisk fill)
Two or more $ signs (floating dollar sign)
Two or more + signs (floating plus sign)
Two or more - signs (floating minus si.gn)

DATA IMAGE
ENTRIES
(continued)

b. Numeric: data positions to the right of the decimal point pOSition (must be actual
decimal point) in a "suppressed" data i.mage, may be represented by the symbols 9
or Z but not a mixture. Any Z to the right of the decimal point indicates that all data
positions must be set to blank when the data value is zero.

c. If thE' data image contains floating signs ($$, or ++, or - -), one sign is to be inserted,
even if no suppression takes place. For this reason, the total number of symbols
shown must be one greater than the maximum number of numeric data positions. The
appropriatl? sign is placed in the rightmost position actually suppressed.

d. Zero suppression (Z) or asterisk fill (*) may be specified in a data image with a
dollar sign ($) in the leading pOSition, for example, $*** or $ ~ZZ. Otherwise, the
sequence of suppression symbols must occupy the leftmost positions of the data image.

e. CUl111l1.l sy,nlJuls may optionally appear within the sequence of suppression symbols,
but no othe 1 symbols may intervene. Commas are used to set off the integral portion
into threc-dlar.lcter sequences, counting to the left from the decimal position. The
object prognm spreads the adjacent data digits apart one position and insert~, a
comma. If leading zeros are suppressed up to or beyond a comma position, the
comma is suppressed, and its position receives the appropriate suppression character.
If any l'1)ml1),ts ,lre used, the proper number must be supplied in the correct position
in the data description field.

@~ 0 ~@@ ~~[ffi ~ ~~ ----------------RE-FE-RE...';;,~C~E~.:::;:O~!...:~:..,;u~~~
-6!j-

IDATA IMAGE L EI~TRIES (continued)

DATA IMAGE

9 (5)
9 (3) V99
9 (3) V99
9 (3) V99
9 (5)
V9 (5)
9 (5)
9 (5)
9(5)V99
9(5)V99
9 (5)
9 (3) V99
9 (5)
9 (5) V99
9 (5) V99
V9 (5)
9 (5) V
9 (5)
9 (5)
9 (5)
99V9 (3)
9 (5) V99
9 (5)
9 (5)
S' (5)
$99,999.99
99,99CR
1!1l~1!1l1l

--

SOURCE AREA

--~-

EDITING EXAMPLES

DATA VALUE
IN MEMORY

45678
15678
U0067
00004
00000
12345
12345
00045

(-)0000003
0000000

67890
67890
00000

(-)0000003
0000000

67890
(-) 56 789
(+)56789
(+)56789
(-)56789
(-)56789

(+)0056789
(-)00567
(-)56789
(+)56789

$00,123.45
098.76CR

3 21

--~--.~

~\.c(: S
~-.~"

DATA IMAGE
--

$~1!,~~9_99

$~~,~~9_99

$~ll,~~9.99

$~1!,1l1!1l.99

$lll!, 1l1!1!. I! I!
$1l~,1l1l9.99

$'-"', *'~9. 99
$'~'-', **'1<.99
$*'~, **,~ .llIlCR
$*'-' , *1,,-, . IlI!CR
$$$,$$9.99
$$;;, $$9.99
$$$,$$9.99
$$$,$$$.Il~DB
$$$,$$$.lll!
$$$i, $'19.99

l'i1l1li!9.99-
".1l~1!9 . 99-
".~1!~9. 99+
!1.I!I!I!C) _ 99-1

------.9')
+++,+++.99

"~~I!~.99-

$$$$$S.99CR
$$$$$$.99CR

$~I!,~1l1!.99CR

*,~. 99DB
ll!lllllllil

IVU'; AREA

ETlITED DATA

?45,678.00
456.78

(1.67
.04

D.12
812,31·5.00
S*'~'-"~+5 .00
S1'**~"h" . 0 3CR

~6 -; _ 8'10. 1)0
$678.90

SO .00
S.D3DB

SO. 67
567S9.()()-
56789.00
56789.00+
56i89.0(j-

":'6.78
+)67.89

5(;7.00-
$56789.00CR
$56739.00

SOl), 123 .45
O'!8.76CR
321

10. Editing is not allowed in the Working-Storage, Common-Storagt, cr *Cummon-Storage
except in GECOM source programs that have been generated by the COBOL Translator.

--~ .. --- _.
1 ! r::NCF ~,f/-\t\llA 1

--66-

ARRAY SECTION

FUNCTION

The function of the array Section is to define the size and number of the subscripts. The actual
number of times a data-name is to appear is noted in the repeat columns after the data-name. A
description of the subscripts in the Array Section reflects the arrangement of the array (as
pictured by the programmer). Thus, A(10), B(5,10), C(2, 4,3) indicates A is a list of 10 items,
B is a matrix of 50 items arranged in 5 rows with 10 items to each row, and that C is a three­
dimensional matrix consisting of 2 rows of 4 columns each, repeated on 3 planes.

CONVENTIONS

1. Array names (and their subscripts) of one-dimensional arrays (lists) need not be
described in the Array Section, but may be included for reference purposes. Arrays
of two and three dimensions must be described.

2. The names should be qualified if necessary.

3. No more than three dimensions may be ascribed to any homogeneous array.

Data namE s listed in the Array Section with their dimensions are described
as repeated fields elsewhere in the Data Division or may be "tacit" entries
if computa.tion mode is floating point. (See GECOM II Operations Manual,
Edited List, Tacit Data Division Entries.)

4. Only one subscript may be ascribed to a nonhomogeneous array, (a repeated
group of Eelds).

GECOM - II
REFERENCE MANUAL

-6'7 -

CONSTANT SEC'TION J

FUNCTION

A constant is any data whose value does not change within the Pl"'g ... ':lm, Any such value may be
listed in the Constant Section and named so that it may be referred to by Lame rather than writing
out its value each time it is used. The other advantage of naming and listill,; the values of constants
is that in case of a change of aSSigned value, only the entry in the Consta;.t 3ection need be changed;
the necessity of changing the actual value sever2J times within the Procedure Division is eliminated.

CONVENTIONS

1. The only permissible entry in the Type columns is FL. (See File Section, Field
Literal, Input Entries). If no entry is made in the Type columns, FL is assumed.

2. Repeated field literals may be included in the Constant Section.

3. The use of the Format, Binary, and Justify columns is necessary only when the
entry is to be used in an output record with no change to be appEed.

4. The mode of computation is implied by the data image.

5. The actual value of the constant is entered in the Data Image columns. Assumed
(V) decimal pOints may not be shown in constant data images. The symbol M may
be used as the first character in data images. See explanatior under "Nonstandard
Data. "

EXAMPLES OF CONSTANTS

r--
GENERAL. ELECTRIC GENERAL COMPILER DATA DIVISION FORM

~=--=l
,,,' I -~-- - ~-----------,---, 1 ---- --------------l

SEGTIO

" A "

CONSTANT

F L CON 1 I

I
F L

F L

F L

F L

F L

F L

CON 2

CONARAY

CONHEADS

CON 3

CON 4

CON 5

FL CON6

o C 5

o (3

lor

c· A jl INC

FO~ PC'RT ONE

H I' A n I

P () R T T 'W I'

~iF~:N FUR REPlRT

123_ , ')

- 3 . '

3 3 3 ,', J '

12-

CON8 -10 b'J FL CON7 +10

CON9 I "A,ECI'Eo'

, _ _ F L cor; 1 (1 -----H-----------,-------t--H---t-----IH-H-+--------j~-t_t-+)-"," 11._1_'_ .' __ I _' _:: ~ __ ~...:~ __ ._~ __ O_'_S_T_~_~ T S "
, ~ ____ ' '----"..:.1' .,." , "," "I" ,., _ _ ____________ .

~~--~--

I

I

GECOM - II
REFERENCE MANUAL

-68-

INTEGER SECTION

FUNCTION

The function of the Integer Section is to identify fields (such as subscripts) referred to in the
Procedure Division which may have integral values, and to identify fields to be carried internally
as integers.

CONVENTIONS

1. This section is necessary only when the computation mode is floating point to
identify fields to be carried internally as integers. Regardless of computation
mode, fields in Common Storage and *Common Storage which are to function
as integers must be declared in this section.

2. Fields described as integers in the Working Storage and Constant Sections
need not be mentioned in the Integer Section. The data image defines the
internal storage mode in these sections.

3. When computation mode is floating point, input file fields requiring process
storage wi.ll be stored internally as floating point numbers unless names in
the Integer Section.

-69-

TRUE _ FALSE
SECTION

FUNCTION

This section specifies those fields that assume only two values: the ctecimal value 1 which rep­
resents a TRUE condition, and the decimal value 0 which represents a FALSE condition.

CONVENTIONS

1. These data-names mayor may not appear elsewhere in the Data Division. Con­
tained in the true-false section are those data- names which are used to direct
the logical flow, or which are used as a two-way switch. A true-false field
must be numeric and only one character in length.

2. A true-false data-name may be used in any procedure having data-names as
operands, and may be a field with qualification if necessary.

3. Care must be exercised in the ProcE!dure Division that the value of the true­
false data-name is set before it is tested. When tested with an IF sentence,
a value of 1 causes control to be passed to the sentence indicatej in the IF
sentence; if the value if 0, control passes to the sentence following.

4. When setting or resetting the value of true-false data-names, multiple assign­
ment is permissible. However, do not mix assignments of true-false data­
names and data-names. (See Example No.3).

5. List all control console switches that appear in the Procedure Division READ,
Option 1, statments. The control console switches are to be listed in order
from console switch number 1 through switch N, where N is the highest num­
bered console switch referenced in the READ statements.

EXAMPLES

1. TRUE~FALSE SECTION. FLAG---l, SWITCH~B.
IF FLAG---l GO TO SENTENCE~22.

When FLAG - 1 = 1, control is transferred to Sentence - 22.
When FLAG - 1 = 0, the next sentence is executed.

2. NEW~GROSS = GROSS - SWITCH~B*FICA.

When SWITCH - B = 0, no deduction will be made from GROSS.

3. Flag - 1 = Flag - 2 = Flag - 3 = O. (Correct)
Flag - 1 = Flag - 2 = Data-Name - 1 = Data-Name - 2 = O. (Incorrect)

-70-

FUNCTION

WORKING _ STORAGE
SECTION

The Working-Storage Section provides for the allocation of memory to data required for inter­
mediate processing during execution of a segment of a program; that is, data saved from one
record to another, or intermediate results.

CONVENTIONS

1. When computation mode is fixed point, any intermediate results generated in the
Procedure Division as well as any conditional names or field literals which are not
described in the Input, Common Storage, *Common Storage, or Constant Sections
must be described so the storage location of the appropriate size may be assigned
at compilUion time. This is accomplished by a Working Storage Section.

2. When the ,;(.mputation mode is floatin{~ point, it is not necessary to describe (inter­
mediate) calculated data with a Working-Storage Section. The compiler generates
the Worki:lt; Storage for this data as standard (double-length) floating point fields.
Working Storage in this case is used to store any incoming data that must be available
fur use throughout the program. When the computation mode is floating point, the
compiler lbsumes that any field without a data image has a floating point description.
~o error messages are printed.

3. L'ata in the Working-Storage Section need not be grouped into records and files, but
n.ay be when it is convenient to do so (as when moving input to a holding area record­
by-recorc :'.

4. FolloWlllf, are types of data which may be described in the Working-Storage Section:

R - See Flk Section, Record, Input and Process Output Entries,
*G - See Fil,) Section, * Group, Input Entries,

C - Set F:l,~ Section, Group, Input and Process Output Entries,
r - See Fil,3 Section, Field, Input and Process Output Entries,
E - See Fil.] Section, Element, Input and Process Output Entries,

SeE' Fik Section, Conditional Names, Input and Process Output Entries,
FL - See Fil'3 Section, Field Literal, Input Entries,

1 - See F il3 Section, Terminate, Input and Process Output Entries.

5. The u~.~ (the Format, Binary, and ,rustify columns is necessary only when the entry
is to be U:3t d i:l an output record with no change to be applied.

6. The WurULg-Storage abbreviation WS must be used as a qualifier when necessary for
uniqueneb s, An output record which is a direct reflection of a Working-Storage record
must be qU~llified by WS even when the name is unique.

7. "I-hi:' m,)ctt (,f c amputation is implied by the data image.

6. A field H'p :al in the Working-Storage Section causes the field to be initially set to the
,'alue bhow 1 in the data image. The value may be changed by placing a new value in
the field during processing.

9. Pegardle:;:, of computation mode, any alphabetic or alphanumeric data must be de­
scribed.

10. The sym\lul M may be used as the first character of a data image. See explanation
under "'i,mstandard Data. "

GECOM - II
REFERENCE MANUAL

-11-

WORKING ~ STORAGE
SECTION
(continued)

EXAMPLES OF WORKING-STORAGE

GENERAL. ELECTRIC GENERAL COMPILER DATA DIVISION FORM

F L FIELD_l

F L F I E L D, A o 0 J

F L

F L

FIELD_4 o 0 .~

f. __ J E L D 5

GROUP_l

F I EL_D"-' 6

FIELD_7
- "

GROUP,,-,2

FIELD_8

F I_ELD_9 o 0 <I

WSREC_l

F 1ELD_1 0

FIELD_l 1

FIELD,....,.l 2

F 1ELD_l 3 , I E L D 1 4

RED

-,
C _P.I.NK

"

G R E E N

F I E L D -1 5

COPPER

LEA D

,

ABC D '

" ABC o "
E F G H "

" I J K ~

9 9 9

9 9,9

X X

9 9 9

A (2 0

9 (9 1

9 9

x (1 0

9 (5)

A (1 3

xx
" C p ,

" L D '

~;--:-;--;-;----Ll-----L-"---____ ...L.L __ ' '_' "-,--""_" ,,--'---',,-'--"U'J' _" '_' '-,--' "U"J' -"----'-'----J--'-'I'--'---'--'L-___________ ~',~'_~ " " """,

GECOM - II
REFEEENCE HANUAL

-n-

FUNCTION

COMMON _ STORAGE
SECTION

To provide for the allocation of memory to data required for processing during execution of more
than one segment of a program.

CONVENTIONS

1. Data are described in the same manner as in the Working-Storage Section.

2. Data described in the Common-Storage Section will be assigned memory addresses
relative to the fixed address specified :in the "Begin Common~Storage" clause in the
Environment Division. If this address is not specified, the initial address will be
4063 for a 4k memory or 8159 for 8k and 16k memories. The assignment takes place
in descending orderwith entries assigned to even locations. The number of words
assigned to a data name is dependent on its description.

3. When two or more relocatable segments share Common Storage, the data image
entries in each Common-Storage section must be identical and in the same sequence.
It is suggested that data names be identical for clearness and documentation.

L Following "r.; types of data which may be described in the Common-Storage Section:

R - See File Section, Record, Input Entries,
*G - See File Section, *Group, Input Entries,

G - See File Section, Group, Input Entries,
F - See File Section, Field, Input Entries,
C - See File Section, Conditional Names, Input Entries,

FL - See File Section, Field Literal, Input Entries.

NOTE: Elements may not be used in Common Storage.

5. The u;;c of the Format, Binary, and Justify columns is necessary only when the entry
is to be used in an output record with no change to be applied.

6. The COmmJL-Storage abbreviation CS must be used as a qualifier when necessary
for uniqueress.

7. The mode of computation is implied by the data image.

8. A field literal entry in the Common-Storage Section will cause the field to be initially set
to the value shown in the data image. The value may be changed by placing a new value
in the field during proceSSing.

9. Common <lnd "'Common Storage are n01: preblanked for alphanumeric or prezeroed for
binary dahL. For the purpose of comparisons, it is necessary to insure that any
unused character positions in Common Storage words are preset to the value (blank or
zero) desil ed. This may be accomplished by moving SPACES as explained by con­
vention 8 of ihe MOVE verb. The move of SPACES is done as full words.

,-) 0:
::' ----_._------ GECOM - II

REFERENCE MANUAL

--73··

rOMMON ~ STORAGE
SECTION

, (continued)
l

EXAMPLES OF COMMON~STORAGE

GENERAL. ELECTRIC GENERAL COMPILER DATA DIVISION FORM

3" " , I 1) I) " II 16 17 Ii 11 10 '1111 13 14 H 10'11 10 H l(II 11 l1 14 II H II 11 jO lOi41 n H" ., H" .. H l(II ,) \l " I' 10"-

C.O M M.9 N.- ~ T O.R.A .. G.E ~ E.C T,I 0 N

FL F1,E,LO-1

FL FIELD-A

F L

F L

F1E.LD-4

.F LL~_~ __ D.- 5

GROUP l

.F.1 E ~~ D_.'"'":..6 ..

FIE L D 7.

GROUP 2.

FIELD __ ~

.F F.L~_L.p.::- 9.

.R CSREC 1

,F F1,ELO 10

F I E.1:-.0 l . .!.
F I,E L,0:::,.1,2

.F FI,E,LD-13,

.F F,I E.L,D.- 1,4,

RED

_C P.I.N K

.C G R.E,E,N

F I.E.L.D_,:,::,~1,5

.C C D.P.P,t.R

LEA D

..

OJ.}.

o) 4

--

,-

-74-

" ABC l'

" ABC ~'

" E F G H "

" I J K :

9 9 9

- 9 9 9

x X

999

A (Z)

9 (9

9 9

x (1)

9. (5)

A (I j)

x x

" c p

" L D "

..

______ ("';~ECOH - II

RFH< "0:(,1 ,l"'NUAL

FUNCTION

*COMMON STORAGE
SECTION

The *Common-Storage Section provides for the allocation of upper Sk memory to data required
for processing during execution of one or more segments of a program.

CONVENTIONS

1. Object Computer memory size must be 4 modules (16k).

2. Data descr ibed in the *Common-Storage Section is assigned memory addresses re­
lative to the fixed address specified in the BEGIN *COMMON~STORAGE clause in
the Environment Division. * If this address is not specified, the initial address will
be S190 of upper Sk memory. The assignment takes place in descending order with
entries assigned to even locations.

3. When two or more relocatable segments share *Common Storage, the data image
entri.es ill each *Common-Storage Section must be identical and in the same sequence.
It is suggested that data names be identical for clearness and documentation.

4. Repeated llumeric fields are the only type of data that may be described. See File
Section, Field, Input Entries.

5. The use of the Format, Binary and Justify columns is necessary only when the entry
is to be used in an output record with no change to be applied.

6. The *Common-Storage abbreviation CS must be used as a qualifier when necessary
for unique!1ess.

7. The mode of computation is implied by the data image.

EXAMPLES OF *COMMON~STORAGE

~ Data Name Repeat Data Image

F Field~l 003 999

F Field~2 003 999V99

F Field~3 003 + 999. 99

F F1eld~4 003 + 999K99

F Field~5 003 + 9. 99999999E + 99

* !he lower bank of S192 words is referred to as "lower Sk, " and the upper bank of S192 words
1S referred to as "upper Sk. "

GECOM - II

REFERENCE MANUAL

-75-

OVERFLOW CONDITION

In pr0c<essing the Data Division a data-name table is created. This table cOllsists of data-name in
the Report Array, True-False, Integer, File, Working-Storage, Comrnon-S1orage. *Common­
Storage, and Constant Sections. The data-name table is used to match 'laLilames referenced
in the Procedure Division with those described in the Data Division. Since the ,able is fixed in
memory, its capacity may be exceeded before all data-names in the Da-,.l [ivision are processed.
When this occurs, the table is considered to be in an "overflow" state. The overflow limit is
reached when the compiler processes approximately 200 data-names. The ",'quenee for processing
and entering data-names in the table is as follows:

1. File and record-names from the Report Section, and special fidd names (such
as ACC. COUNT) created.

2. The file-names and record-names in the output files portion of tt,€, File Section.

3. All the data-names in the input files portion of the File Section.

4. All the data-names in the Working-Storage Section.

5. All the data-names in the Common-Storage Section.

6. All the data-names in the *Common-Storage Section.

7. All the data-names in the Constant Section.

8. All the data-names in the Array Section that do not appear in olher sections of the
Data Division and then only if mode of computation is floatinC(' p :tint.

9. All the data-names in the True- False Section that are not descriwd in other sections
of the Data Division.

O. All the data-names in the Integer Section that are not describ('(. '[other sections
of the Data Division.

Overl_ .·,'i is indicated with a typewriter message of WTV and a printer mes :i'e c of 017 with an
indicatkn ·-)f where in the Data Division the overflow occurred. Indication is ao follows:

Data DivisL,. C::pction

FILE

WORKING~ STORAGE
COMMON~STORAGE

*COMMON~STORAGE

CONSTANT
REPORT SECTIO::\

Relative Position

+XXX

+xxx
+XXX
+XXX
+XXX

Indicator

File-name being prucesbed, record­
name being processed.
WS, record-name, :£ ale:',
CS, record-name, if .my.
CS
CONSTANT
Report-name or reports filE' name.

To anticipate and tn avail i overflow, the programmer may indicate overflow l)oin1.s bl inserting
parameter cards in lh· Data Division prior to compilation. These parameter or Typ.· D cards
cause the compiler to l.erm,nate the data-name table, write it on tape and be,.;in bul1c'.lg a new
table from the data- n,)nW following the Type D card. The Type D card must contair; D in
columns 7, 8, and 9. It may have a sequence number in columns 1 through ti and con ments in
columns 11 through 80. Comments may not be continued on next card.

@ ~ a ~ (Q)(Q) ~~ [ffi ~ ~ ~ ____________ ---.::.:GE=C()}~I -....:::.:.,1I
REFERENCE MANUAL

-7t3-

Since Type D cards terminate entries in the data-name table and avoid the overflow error halt,
they must be inserted after approximately every 250 data-names appearing in the Data Division.
Their exact place of insertion is determined by counting the data-names in the Data Division
and inserting a Type]) card every 250 data-names (approx.) at the following points:

DATA DIVISION SECTION

File

Working Sto:r:age

Common Storage

*Common Storage

Constant

Procedure Division

INSERTION POINT

Immediately prior to an FD statement.

Immediately prior to a record or group where the group is
not part of a record or immediately prior to a field when
there are no records or groups.

Same as Working Storage.

Immediately prior to a field.

Immediately before any field literal that is not part of an
array.

Immediately prior to the Procedure Division sentence if the
Computation Mode is floating point and the data- names in the
Array, True-False, and Integer Sections are not described
in the File, Working-Storage, Common-Storage, *Common­
Storage, or the Constant Section.

Inserting Type D cards does not appreciably increase compilation time.

REPORT SECTION Type D cards are not allowed in the Report Section.

If the overflow occurred on a single report, inspect the
number and length of unique ACC and COUNT names. A limit
of 30 names is allowed. Shortening of these names (in­
cluding FOR clauses) may allow more than fifty names and
eliminate the overflow.

If the overflow occurred on a file of several reports for
deferred printing, the reports may be assigned to two or
more output tapes instead of one. This requires only the
addition of an RID entry in the Report Section and an assign
clause in the Environment Division. ACC or COUNT names
may also influence the overflow of combined reports in the
manner described above for a Single report.

If these solutions do not solve the problem, please forward
documentation of the source program to the Computer De­
partment for analysis.

-7'1_

6. PROCEDURE DIVISION

PURPOSE

The Procedure Division specifies the steps the programmer wishes the computer to follow.
These steps are exprE'ssed in meaningful English words and sentences using ordinary verbs to
denote the actions to be taken in the sentences.

ORGANIZATION

The Procedure Division is written on the GECOM Sentence Form and is identified by the heading:

PROCEDURE DIVISION.

The heading is written beginning in Column 8 and is terminated by a period. No other information
may appear on the line containing the heading.

The Procedure Divisioll is composed of two parts: a body of sentences called the main program
and sentences grouped into Sections, which act lilke subroutines or subprograms. In preparing
the Procedure DiviSion for compilation, Sections, if used, are to precede the main program.

SECTIONS

Sections are ordered sets of sentences having a c·ommon function and needing to be executed from
more than one place in the main program. The programmer is free to partition a program into
sections as he chooses When doing so, however, he must prepare them as follows:

(section- name)s ECTION .

[
INPUT data-name-Il ctata-name-I2 ...

Head OUTPUT data-name-O! ctata-name-02
NOTE... . J

BEGIN.

[One or more procedure sentences'].
Body

END section-name SECTION.

The "section-name" 1S used to identify and to make reference to the section. It is like a sentence
name and may be formed from the characters and conventions used to form sentence names. The
word SECTION alertf the compiler of the section's presence.

-7H-

The information following the section's name is partitioned into a "head" alld a "body."

The body of a section is treated as a "closed procedure" or 5ubrouLne and may be executed only
by the Perform sentence. A GO TO sentence or elause cannot be used as a transfer to a section.
The word BEGIN acts as the entrance point to the section and the word El' f' "s its exit point.
Since a section results in a closed body of coding, no GO TO sentence or 'Llt se (as a result of
the IF sentence) may transfer control to sentences or other sections outsid!' of a section. To
provide a common exit point, the word END may be given a sentence name for transferring from
within the section to a sentence in the main program which is always the sentence following the
executing Perform sentence.

However, a section may contain Perform sentences which execute other sections. This effect is
referred to as "nested" sections or subroutines.

Since subroutines often require input data before execution and yield output data as a result of
their execution, the section head serves to accommodate this function. Tht, elata-names following
the word INPUT are data-names used in the sentences of the section body requiring values before
the section can be executed. Those data-names following the word OUTPUT indicate the results
of executing the section. To get data to and from a section, the programmE'r may use the follow­
ing option of the Perform sentence:

PERFORM{section-name)SECTION ~

data-name-l data-name-2 '" GIVING

data-name-nl data-name-n2 ...

In uSing this option, the value of data-name-l is moved to data-name-Il of the section, data­
name-2 to data-name-I2, etc., before the section body is executed. When th., data transfer is
completed, the body of the section is then "performed." After the sentences of the body are
executed, for example, upon reaching the exit END, but before transferring ('(!ntroI to the main
program, data-name-Ol is moved to data-name-nl of the Perform sentenct, data-name-02 to
data-name-n2, etc. It is only when this latter data transfer is completed tbat control reverts to
the main program.

The data descriptions of the data-names appearing in the Perform sentence must be compatible
to those given for the input/output data-names in the section. The data-names of Perform,
Section, Common Storage, and *Common Storage may be:

Record names
Group names
Field names

Array names
Element names
True- False variable,.;

described in either input files or working storage. Data names of the {TSIN(; ~lause a .ct those
listed as output in the section may be constants. In no case can any of tte data nd,!118S listed as
input or output of a section be subscripted elements of an array. Howev{I'. t;!' LiSI~G and
GIVING clauses of the Perform may contain subscripted fields.

When a section is executed by the PERFORM ... USING ... GIVING option, th" ,eelioa lllUSt appear
before the PERFORM sentence in the Procedure Division.

GECOM - II
~EFERENCE MANUAL

-80-

SEGMENTS

Segments are subprograms which are compiled and tested independently and subsequently loaded
together and executed as a total program. Thus, a user may decide to break up a large complex
program into several parts or segments, write each one as a separate source program, and
compile and test each sf'gment independently, thereby overlapping programming and checkout
time. Another use of segments is to facilitate the writing of common subroutines (installation
oriented) in sour ce lar guage to be compiled and tested once and then included in many programs.

All source programs l,rucessed by the GECOM-ll system and later systems are compiled as
segments. However, a total program can still be compiled and executed as a complete entity.

Segments are executed trom other segments by means of the PERFORM verb with the following
format:

PERFORM {segment- name)SEG MENT .

The PROGRAM-ill cOlltained in the performed segment's Identification Division is used as the
segment- name.

A segment's END PROGRAM sentence is treated as the exit of the segment. The END PROGRAM
sentence may be namfd so that control may be tra.nsferred to the exit point from within the
segment. When a segment is executed, the exit is set and control is transferred to that part of
the object program corresponding to the first sentence in the segment's Procedure Division. If
there are no logical c'llltrol transfers within the segment, sentences are executed in sequence
down through the exit, Only the main segment may contain the logical end of the program (see
STOP verb).

Segments may contain Sections. Segments may be nested in the same manner as Sections. How­
ever, Se ctions contailled within a Segment may not be performed from outside of the Segment.

At times, it may Ot' desired to perform a set of procedures embedded within the main (con­
trol) segment or wIthin some other segment from outside of the segment containing the
procedures. ThE procedurNt'io be performed may be written much like a section. However,
instead of being Feceded by section~name SECTION

and followed by:
END (section---name)SECTION.

such a set of prOI:edures should be preceded by

(procedure--name)SEGMENT.

and followed by:
END(procedur~name)SEGMENT.

Note that the procEdure~name specified should not be the PROGRAM-ID (which is used when
it is desired to el{Ecute an entire segment). All of the rules for sections apply except that
the USING ... GIVING options may not be employed. The set of procedures is compiled as a
section, but the]Jr,)cedur~name may be specified in a PERFORM sentence in the main
segment or any ether segment.

(ri) ~ em ®® (Q) Ic' 'D' 'I ~ (" CECOM - I I ~ l£ c ~ ®® c~)LS lIt) J ls ~0 ------------------------~R--EF--E-R--E~,N~C:.:E~MA'-N-U-A;:.::.L

-81-

Communication from segment to segment can be accomplished by data 111 Cummon and/or
*Common Storage. The descriptions of Common and/or *Common Storag.> :;hould be identical
for all segments in total program. It should also be kept in mim1 that WorLng Storage and other
Process Storage areas are compiled separately for each segment and only Common and *Common
Storage may be shared by two segments.

The continuity of the object program depends upon procedures contained in ttle main segment.
The main segment should contain the input/output housekeeping routines alld the logic to determinE'
when data should be read or written. Certain input/output procedures ma\ ~i(llnetimes be included
in individual functional segments rather than in the main segment; exampl!>s are high-speed
printer and punched card output routines. Usually, however, the buffers aId housekeeping rou­
tines for input/output files should be in the main segment, particularly for Cla~>netic tape and
DSU files.

Suppose, for example, that segment A reads a file from tape controller ph\,C I, and segment B
writes a file on tape plug 1. Both files are buffered to overlap input/output 'Nith computing.
Whenever A starts a read, it resumes processing in parallel with the tape operation. If the con­
troller should detect a tape error or end of file, the signal must be comnllmlcated to the input
routine in A. But if B needs to issue a write before the next read from A, t.1e1, B will detect the
error indications. They are of no use to B, and it is impractical to have B pass them back to A.
Thus A loses information it requires, while B receives information it call1lol, interprd.

The solution is to have a single input/output supervisory routine in thE' ~na,n sE':;ment, and let
both A and B call to it through transfer vectors. Not only is the error l:ont1'ol problE'm thereby
eliminated, but a memory saving also results; it is unnecessary to have tv. 0 or morE' copies of a
sizablE> input/output package in memory at once. The conclusions would lw t he same whether A
reads and B writes or both read or write; and the equivalent problem with 'v. 0 files both open on
the same disc storage unit or plug is even more serious.

The problem just discussed may be termed that of shared peripheral dE'\'ic\~E. Another type of
problem results from shared logical files. Suppose, for example, that se~~n,ents A and B jointly
process a card input file, and that either A or B may determine when anothef read is needed.
It is clearly desirable to have a centralized card input subroutine to which both A and B have
access. The solution is either to include the subroutine in the main segmE'nt, Of else to make it
a segment in itself, and in either case to permit A and B to call it through transfer \'ectors.

In general, a functional segment should not include the buffers and housekf epill!:', routine for any
file unless--

1. It is opened, processed, and closed exclusively within the segJ~lel t>
2. Other segments do not need access to its buffers.
3> It does not share a magnetic tape controller or a disc storage unil . r ('ontrolle t' with a

file processed by another segment.

In a segmented GECOM program, all magnetic tape and/or DSU files Sh01., Ll bt le~'cribed in the
Data and Environment Divisions of the main segment, and all OPEN, HEAl), '''-'HITE, CHAIN,
H.EADY, H.ELEASE, and CLOSE sentences referring to these files shc·uld :j:)E,:;r in its Procedure
DiviSion. Isolated punched card or high- speed PJ~inter files may be pro('p" sl'd ,n i!ldl\'idual
functional segments.

GECOM - II

RF:FERENCE MANUAL

- 82:-

To test a particular segment, it is necessary to execute its object coding in conjunction with the
object coding of the main segment or a dummy segment written only for test purposes to make
input test data available to the segment and to produce output test results.

During compilation of any segment, object program subroutines can be punched out optionally by
the Editor phase. If this option is exercised for more than one segment, duplicate subroutines
would be included in the total program. However" most of the subroutines required by the total
object program are n,<!uired by the segment containing the input/output functions. It is therefore
recommended that objelt program subroutines be punched out only with the main segment (or with
a dummy segment for t£'st purposes). The names of subroutines required in each segment (con­
tained in the Edited L .. s1 of each segment) can then be checked against those in the main segment
to determine if there are any omissions. If any additional subroutines are required, they can be
selected from the library and placed in the object program deck.

After testing all segmellts and obtaining any required additional subroutines, the total object
program should be consolidated as follows:

1. Remove the constant cards and transfer card from the end of each segment object deck.

2. Place segme 1t object decks behind main segment object deck and subroutines in any
order. If des ired, subroutines could be placed between or behind segments. Order is
important only when overlay segments have been compiled. (See OVERLAY SEGMEN­
TATION.)

3. Place anyone of the constant decks and transfer cards at the end of the complete deck.

4. Depending on the object program loading medium and format, perform one of the
following:

a. To be loaded from cards--place Multicapability Modular Loader II (MCML II),
CD225Bl.006R, with a type 1 card in front of complete deck, and two blank cards
at end of complete deck.

b. To be loaded from magnetic tape in relocatable format--place MCML II Loader with
a type 1 card in front of complete deck. Prepare BRIDGE II control cards and make
a BRIDGE II run to place program on magnetic tape. (See CD225J1. 001.)

c. To be loaded from magnetic tape in absolute format--perform a BRIDGE II RAB
run on the deck. The RAB control eard indicates whether the user is supplying an
absolute loader, or wishes one to be emitted by RAB. (See BRIDGE II, RAB function,
CD225J1. 001.)

When the object program is loaded, control is transferred to the first (main) segment.

@~ c ~@@ ~~[ffi ~ ~~ --------------RE-F-ER.....::E~:.:::.:~~:..::!~.!....--u~:::..=.~

-83-

OVERLAY SEGMENTATION

An object program segmented for overlays consi.sts of a "Control Load" plus one or more "over­
lay segments" (overlays). The Control Segment (main segment) is brought :.nto memory at the
beginning of the program execution, and it remains in memory throughout execution of the entire
object program. The Control Segment consists of one or more ordinary ;:<'fments and the sub­
routines they require. The overlays are not brought into memory with thl Control Segment:
instead, they are brought in individually, under control of explicit LOAD sentences in the Control
Segment. Each overlay consists of one or more ordinary segments.

The object of overlay segmentation is to use the same memory area for t\\ 0 or more sets of
procedures which are not needed at the same time. In this way, it is possible to subdivide very
large programs so that all of the procedures needed at a given time can bE contained in memory,
even though the entire program might greatly exceed memory if it all had to be contained at once.

The following conditions characterize the simplest application of overlay se!~mentation:

1. The Control Segment:

a. Contains all input and output procedures
b. Contains all subroutines it requires, plus all other subroutineE: shared by the over-

lays
c. Contains logical procedures to determine when each overlay is needed
d. Loads each overlay into memory when it is needed
e. Performs each overlay as required

2. The overlays:

a. Contain all procedures except those just described in the Control Segments
b. Communicate only with the Control Segment and Common and I)r *Common Storage,

not with each other
c. Occupy memory only one at a time (when another is needed, it is loaded over the

old one)
d. Are located in memory immediately after the Control Segment and thus may use all

of memory up to the beginning of Common or *Common Storage.

In a more complicated application, it might be desired to hold two or mor,' oVErlays in memory
at once and to replace them selectively with other overlays as required, and to let overlays
perform each other. To accomplish this, the programmer may use an En vironment Division
option to relocate each overlay an arbitrary number of words away from t:1e end of the Control
Segment. For example, assume overlays A and B are to be in memory to,;ptlwr, and that A
requires 600 (or fewer) words of memory. (The amount of memory requi"ed by A is determined
from an early compilation of it, or else estimated on the basis of the progrz.mmer's experience
with object program memory requirements,) The programmer should instruct GECOM to
RELOCATE B BY 600 WORDS. This causes B to be positioned 600 words altpl' the last],)cation
used by the Control Segment, so that A can fit in between. It is then entirEly arbitrary whether
A or B is loaded first, or whether one is actually loaded immediately afte " 'he other, Assuming

GECOM - II
REFERENCE MANUAL

-84-

that C is another overlay, and that it, like A, requires no more than 600 words, and must be in
memory with B but not with A, C can replace A when it enters memory, as follows: The
programmer RELOCATES B BY 600 WORDS, but does not RELOCATE A or C; and the processing
sequence in the Control Segment might be:

LOADA.

LOAD B.
NOTE A AND B ARE BOTH IN MEMORY.

(use A and B with PERFORM sentences)

LOAD C.
NOTE A HAS NOW BEEN REPLACED BY C.

(use C and B with PERFORM sentences)

This framework can b02 extended to permit several overlay segments to be held in memory at
once. In effect, the Control Segment is automatically given exactly the amount of memory it
requires; and the remaining memory is divided into portions of fixed size by suitable RELOCATE
clauses. The general rule is that if two overlays must be in memory at the same time, then one
of them must be relocated by enough words to contain the other. If!!. overlays must be in memory
at the same time, the second must be relocated by enough words to hold the first, the third
relocated by enough words to hold the first two, and so forth.

When the object program is operated, the Control Segment will be loaded into memory at the
beginning, but no overlays will be loaded with it. Thus, the Control Segment must load each
overlay before performing it the first time. Should an overlay be performed before it is loaded
(or after another has been loaded over it), unpredictable results will occur. It is, therefore,
necessary for the programmer to plan the dispatching of the overlays very carefully.

The Control Segment is in memory throughout execution of the overlay segmented program, but
each overlay is in memory only part of the time. Each time an overlay is reloaded, it enters
memory with all of its initial conditions restored.. Thus, any GO statements previously altered
(within the overlay) are reset to their initial values; and all storage areas other than Common or
*Common are reset to initial values for Field Literals and contain unpredictable data for every­
thing except Field Literals. Common and *Common Storage area contents are preserved except
that Field Literals are reset to initial values.

-85-

Similarly, any data file processed in an overlay must be opened, completely processed, and
closed by sentences in the overlay before the overlay is replaced by anothH LOAD sentence. It
is not possible to open a file in an overlay, process part of it, replace the overlay with a differ­
ent overlay, and then load the original overlay back into memory to finish processing and close
the file, because all of the information about the file is lost when the merlay is reloaded, and it
is assumed that the file is not yet opened. If a nle is needed again after .:'doading th€' overlay,
it must be opened again. It is recommended that: the user define all files and do all opens and
closes in the Control Segment. Files processed in overlays are subject to the same rules as
files processed in segments. (See Segments.)

In programs utilizing 16k memories, the PLACE clause in the Environment Division permits the
main procedural portion of the object program and *Common Storage to be stored in ~
memory, while common constants, file tables, subroutines, and buffers are stored in ~
memory. Normally, the compiler assumes that the lower and upper portions of the object
program should be started at standard beginning locations in memory (576 .C ,wd 8192 10, respec­
tively). For overlays, the normal assumption is that the lower and upper portions should follow
immediately after the Control Segment in memory. However, as described above, the program­
mer may utilize the RELOCATE clause of the Environment Division to override the standard
assumptions. The following example illustrates how to use this option to permit more than one
overlay to be in memory at once:

Assume that the memory requirements of a Control Segment and its overlays correspond to the
following table.

________ p~ro~g~r~a~m~ _________________ L~O_~_E_R __ ~ __ e_m_o~r~y~ __________ U~P_P_ER Memory

Control Segment 3024 10 2008 10

OVERLAY-A 50010 1000 10

OVERLAY-B 600 10 1500 10

OVERLAY-C 500 10 1000 10

1. When the execution of the object program begins, memory will be used as follows:

Location 576 - 3599 -- Control Segment (Lower)
Location 8192 - 10199 -- Control Segment (Upper)
All other -- Not in use

2. When the Control Segment has executed a LOAD OVERLAY-A sentence, memory will
be used as follows:

Location 576 - 3599 -- Control Segment (Lower)
Location 3600 - 4099 -- Overlay-A (Lower)
Location 8192 - 10199 -- Control Segment (Upper)
Location 10200 - 11199 -- Overlay-A (Upper)
All other - - Not in use

@~ c ~@@ ~~[ffi ~ ~~ -----------------Rf-:FE-RE..;;;~=~~~o::-.~-UA:.:.I~

-80-

3. Assume that the Environment Division for Overlay-B said, RELOCATE BY 500 WORDS
IN LOWER MEMORY, RELOCATE BY 1000 WORDS IN UPPER. Then, after the Control
Segment has loaded Overlay-A and also has loaded Overlay-B, memory will be used as
follows:

Location 576 - 3599 -- Control Segment (Lower)
Location 360C - 4099 -- Overlay-A (Lower)
Location 410C' - 4699 -- Overlay-B (Lower)
Location 8192 - 10199 -- Control Segment (Upper)
Location 10200 - 11199 -- Overlay-A (Upper)
Location 11200 - 12699 -- Overlay-B (Upper)
All other - - Not in use

4. Assume that Oyerlay-B has been relocated as above, and that the Control Segment has
loaded Overlay-A, then loaded Overlay-B, and then loaded Overlay-C. Memory will be
used as follows:

Location 576 - 3599 - - Control Segment (Lower)
Location 3600 - 4099 -- Overlay-C (Lower)
Location 4100 - 4699 -- Overlay-B (Lower)
Location 8192 - 10199 -- Control Segment (Upper)
Location 10200 - 11199 -- Overlay-C (Upper)
Location 11200 - 12699 -- Overlay-B (Upper)
All other -- Not in use

The main use of the RELOCATE option is to permit overlays to share memory, as the above
example shows. In addition, it could be used on the Control Segment to set aside memory for an
external executive rodine, or for other purposes of similar nature. Individual overlays can be
placed entirely in lower memory if desired, even though a 16k memory is in use. The program­
mer has explicit contI 0 lover all such placing and relocating, and with the control goes the
responsibility to arrange things so as never to destroy needed information or procedures.

Despite the fact that they are compiled separately, each overlay shares the subroutines of the
Control Segment. If thp overlay includes subroutines which already appear in the Control
Segment, they will automatically be dropped, instead of entering memory. The opposite is not
true; the Control Segment must contain all of its own subroutines. Overlays which are in memory
together can share common subroutines--and thus save memory--if and only if the common sub­
routines are contained in the Control Segment. The programmer can enhance this economic
effect by deliberately plaCing all common subroutines in the Control Segment, even though they
might not be used by it.

To understand how du)licate subroutines are automatically dropped instead of being loaded into
memory, it is necessary to consider the steps involved in preparing an overlay segmented object
program. The progral1lmer writes separate GECOM source programs for the Control Segment
and each overlay, and compiles and perhaps even tests them separately. Finally, he collects
them all together, following the instructions in the BRIDGE II Manual (CD225J1. 001). In doing
so, he may take care t(1 place all common subroutines with the Control Segment. Now the entire
object program is prcC'Pssed by the BRIDGE II RAB (Relocatable to Absolute) converter, which
supplies linkage between the Control Segment and all of its overlays, and writes the final version
to a specified magneti C' tape handler. As it processes the program, RAB checks the subroutines
included with each ovprlay against those included with the Control Segment. When RAB finds

@j ~ c ~LD)(m ~~ [ffi ~ ~~ -------------..,....---RE-F-ER...:;E~~~~~:.:.....~-u~~~
-87-

duplicates, it links the overlay to the Control Segment subroutines and skips past the duplicate
copy without writing it out. Thus, even though duplicate subroutines might be present in the
input to RAB (that is, in the collection of Control Load and overlav object programs), they will
not be physically present in the output from RAB, which represents the actual running program.
RAB does not eliminate duplicate subroutines between overlays, since it cannot assure that
Overlay-A and its subroutines will necessarily be in memory when On'rla::-B needs the subroutine.
As has been mentioned above, the programmer may accomplish this economy by including all
common subroutines with the Control Segment.

The BRIDGE- to-DSU Absolute Load Translator (BRAT), CD225E2. 005R, Il1ccy be used to trans­
form the overlay segmented object program from the output magnetic tape onto disc storage.
When the overlays have been assigned to disc storage, the Control Segment Edited List will show
the overlay segment names in the order in which they must be introduced to BRAT. Each overlay
is also aSSigned a directory table address. At object time the DSU address of an overlay to be
loaded will be found in that overlay's directory table pOSition.

When the overlays segments are on magnetic tape, each LOAD procedure begins with a search
for the named segment. The programmer can optimize tape searching time by arranging the
segments in ascending sequence by name. The LOAD routine reads the next segment name from
tape. If the desired segment name is less than the one read, searching begins in a backward
direction; otherwise searching proceeds in a forward direction. If either end of the program is
reached, the direction of searching is reversed and searching continues.

Communications between an overlay and the Control Segment are always a,:complished by
PERFORM sentences and by data in Common or *Common Storage. The descriptions of Common
and *Common Storage should be identical for the source programs of the ('oi1trol Load and all of
the overlays. One overlay can perform another only if the Control Load also performs it. How­
ever, the PERFORM sentence from the Control Load need never be executed. It is only necessary
that the PERFORM sentence appear in the Control Load Procedure Division to establish the
necessary transfer vector linkage.

A set of procedures contained within a Control Segment or within an overl~ty segment may be
performed from outside of the segment containing the procedures in the same manner as
described under "Segments." However, one overlay cannot perform a set of procedures contained
in another overlay unless the Control Segment contains a perform (not necessarily executed) of
the same procedures in order to establish the necessary linkage.

SEGMENT AND SUBROUTINE TABLE DESCRIPTION

This table is comprised of three parts.

1. The count for the Segment portion entries and the count for the Subroutine portion entries.

2. Five-word Segment names, not to exceed fifty, left in memory fo' the Reformer Over­
lay of the Reformer Phase. The first word is the internal symbC! c sSlgned by the
compiler and attached to the four-word name aSSigned by the SOUl (" programmer.

3. One word Subroutine names, not to exceed fifteen if fifty Segment 11;1111es were used,
placed into the table by direction of the Generator Overlays duri:l"; 1 he Reformer Phase.

GECOH - II

'\i'FERENCE HANUAL

-8B-

MEMORY
LOCATION

5464

5465

5466

Discussion of Table Item Entries

Count of Segments, Overlays, a.nd Multiple Entry Points contained in the table.
Maximum number of names allowed is fifty. Over fifty will cause typed
meEsages to occur at beginning of Reformer Overlay specifying, XXX SEG TBL
OVF. Look for SEG * TOO MANY on printer listing for error notice.

Count of Subroutines names called by this compilation and placed in table
entEred here during Reformer Phase.

ThrN' types of entries, five words each, may be made to the Segment table
begmning at this location.

(a) Perform Program-ill Segment

The names used for Program-ID are always entered to the table first.
These names will be used in generating vectors for executing the Segment.
The first word left of the four-word Program-ID name is the assigned
internal symbol. The sign and one bit of this word will be off to indicate
Perform type entries.

(b) Procedure-Name Segment

These names are always entered in the table after Perform types. They
are known as Embedded Segments and represent multiple entry points into
their containing Segment. Their internal symbol word will have the one
bit on.

(c) Load Program-ID Segment

These names, known as Overlays, always enter in the table after the
Perform and/or Embedded Segment type entries. Their internal symbol
word will have the sign bit on.

6060 ThE CON Subroutine name is inserted into the first available word adjacent to
the last word of the last Segment, Multiple Entry, or Overlay name placed into
the table. The Reformer will a.lways make this entry to the table during the
Reformer Phase. All other Subroutine names entered to the table by the
Reformer are directed by the generators. If fifty Segment Table names are
used, only fifteen subroutines may be generated; otherwise, compilation will
give unpredictable results.

-8H-

NOTATIONS IN SENTENCE FORMATS

The following notations are used in this manual to facilitate presentation of the sentence formats.

KEYWORDS are underlined, upper case words

Key words are required to com-
plete the meaning of the sentence.
They must be correctly spelled.

NOISE WORDS are upper case words (not under-
lined) .

Noise words are optional. If they
are used they must be correctly
spelled.

Operands are lower case words.

They indicate the types of operands
supplied by the user.

{Choices J are enclosed in braces.

The programmer should select
one entry from those shown within
a set of braces.

[oPtions] are enclosed in brackets.

The programmer may include or
omit these entries. In some cases,
options have been separated into
individual numbered formats.

GECOM - II
REFERENCE MANUAL

-90-

VERB FORMATS

The GECOM verb formats are described in alphabetical order on the following pages. The list
below groups the verbs into their respective categories.

ARITHMETIC

INPUT - OUTPUT

PROCEDURE- BRANCHING

DATA MOVEMENT

CONDITIONAL

ENDING

COMPILER DIRECTING
VERBS

EXPLANATORY
(not compiled)

-91-

ADD
SUBTRACT
MULTIPLY
DIVIDE
ASSIGNMENT

ADVANCE
READ
WRITE
OPEN
CLOSE
CHAIN
LOAD
READY
RELEASE

GO
ALTER
PERFORM

MOVE
EXCHANGE

IF
VARY

STOP

ENTER

NOTE

FUNCTION

The ADD verb adds two quantities and stores the sum in either the last- named field or the
specified field.

SENTENCE FORMAT

{
numeric-2 }

field-name-2

[GIVING field-name-3] ~ROUNDED]

UF SIZE ERROR GO TO sentence-name-1].

CONVENTIONS

1. If the GIVING option is not present, the last-named field receives the result.

2. Decimal points do not appear in stored fields, and are used only to properly align data
before execution of an arithmetic operation.

3. Only a numeric may be used. If a sign (+ or -) is included, it must appear as the most
significant character of the numeric.

4. ROUNDED may be used to round off the result before it is stored ill the receiving field.
If the receiving field is in floating point mode or if the operands are all integers, then
rounding is ignored.

5. The SIZE ERROR option may be used to truncate the most significant digits of a number.

EXAMPLES

1. ADD 0.5, RATE OF PAY-FILE GIVING TOTAL.

2. ADD TOTIr--RECVD, ON-HAND--QTY. (The result is stored in 0'; HANI>--QTY.)

3. ADD VALUE-1 OF FILE-A, VALUE--2 OF FILE-B GIVING VALI;E ~:3 OF FILE~C IF
SIZE ERROR GO TO ERROR~"RTN.

)(IF' "ENCE MANI?AL

-92-

ADVANCE

FUNCTION

The ADVANCE verb !;lews the printer paper.

SENTENCE FORMAT

ADV ANC E file- name [~integer LINES }~
field-name LINES
TO TOP OF PAGE

CONVENTIONS

1. Field-name must contain an integer less than or equal to 128. If it is greater than 128,
only 128 lines will be advanced.

2. If the options are omitted, the printer page is advanced one line. Therefore, the
number of lines specified should be greater than one.

3. When a printer is used, the compiler automatically generates a Line-Count field. The
programmer is free to use this field name to interrogate the position of the printer page.

4. TOP OF PAGE clause is defined as "Line-Count equals zero."

5. TOP OF PAGE clause may be used as a conditional name of Line-Count. For example,

IF TOP OF P AG E OF file- name GO ...

is the same as

IF LINE--COUNT OF file-name EQUALS 0 GO ...

If only one printer is used, it is not necessary to qualify LINE-COUNT or TOP OF
PAGE.

6. The WRITE verb automatically slews the printer page one line after writing the print
line and increases the Line- Count field by one. Any ADVANCE sentence causes
additional slewing.

7. LINE-COUNT and TOP OF PAGE clauses must not be described in the Data Division.

8. The OPEN verb does not advance a printer file to TOP OF PAGE.

EXAMPLES

1. ADVANCE PAY-REGISTER 20 LINES.

2. ADVANCE TRANS-FILE X LINES.

Note that the value contained in field X must be an integer.

3. ADVANCE OrTPUT~FILE TO TOP OF PAGE.

@~c~@@ ~~~~[I~~---------------RE-F-ER""":E~::.;;::~~:;:;;::O~~-UA~I~

-9:3-

FUNCTION

The ALTER verb modifies a predetermined sequence of oper3t:, ,1'8"

SENTENCE FORMAT

ALTER sentence-name-l TO PROCEED TO sentence-name-2

G sentence-name-l TO PROCEED TO sentence-name-4 .. .]

CONVENTIONS

1. Sentence-name-l and sentence-name-:3 are names of GO senten(€'3 as defined under
Option 1 of the GO verb.

2. After a GO sentence has been altered, it will continue to go to thE' changed destination
on every execution until it is altered again.

EXAMPLES

1. ALTER SENT~25 TO PROCEED TO SENT~33.

Effect of SENT-25 before execution of the ALTER sentence:

SENT~25. GO TO ERROR~RTN.

Effect of SENT-25 after the execution Df the ALTER sentence:

SENT~25. GO TO SENT~33.

2. ALTER 777 TO PROCEED TO ~8, SENTENCE~52 TO PROCEED TO SENT~.

Effect of sentences 777 and SENTENCE-52 before the execution of the ALTER sentence:

777. GO TO SENT-7 A2.

SENTENCE~52. GO. (Object program will halt in a loop at this r::oint if this sentence
has not been altered prior to execution.)

Effect of sentences 777 and SENTENCE-52 after the execution of tle ALTER sentence:

777. GO TO ~8.
SENTENCE~52. GO TO SENT-A..

-9'4-

GECOM - II

REP"RENCE MANUAL

ASSIGNMENT

FUNCTION

The ASSIGNMENT verb evaluates an arithmetic expression and assigns the result of the evalu­
ation to a specified fiEld.

SENTENCE FORMAT

true-false variab_e {
true-false variable }
~rithmetiC expression

field-name-t[ROUNDED J=r~~~~~~~~e~~ressi.o~ ~F SIZE ERROR GO TO sentence-name-~
tfl ~UmerlC-1 j

CONVENTIONS

~t'IV/)(: T!"'- II\, r- Xl'

1. An arithmetic expression is a sequence of variables (fields), numbers and functions
connected by symbols representing the arithmetic operations add, subtract, multiply,
divide and exp<mentiation.

2. In fixed poil11 {'valuations, decimal points are aligned according to the data description
of the result v~lriable.

3. The ROUNDED option may be used to round off the result before it is stored in the left­
most receiving field only. If the receiving field is in floating point mode or if the
operands are all integers, then rounding: is ignored. Note: Operands cannot be all
integer.

4. Equal signs may be placed in any pOSition in an expression (except a subscript) providing
the receiYing field is a single variable (not an expression). Equal signs cannot appear
in a subscript (See Examples 6 and 9.»

5. The size en o· option may be used to truncate the most significant digits of a number.

EXAMPLES

1. GROS~PAY OF PAY~FILE ROUNDED =, HR~WORKED * RATE - WEEKLY~TAX.

2. QTY~ON~HAND = OLD--QTY + Ncr-RECVD - QTY~SHIPPED.

3. AVG--INCREASE ,= (EN~PAY - START~"PAY) / EN~PAY.

4. X = A + B - (C * 54.5) * SIN (A - R23) / 22.35.

5. Z ROUNDED ABS (RATE * R - SQRT (B2-K))-M ** 3.

-9fi-

ASSIGNMENT
(cont.)

6. YT~F1CA = YT~FICA + (CURR~FICA = GROS~PAY *0.03).

7. X = Y = Z = A + B * C/E + SIN (ALPHA).

8. A ROUNDED = B = C = SIGMA (I) + pm (J).

NOTE: Only the result stored in field A may be rounded.

9. X= A+ B+ (C (X) = D+ F) is legal

X = A + B = (C + D) is illegal (an expression equals an expression).

10. W=A+B*C IF SIZE ERROR GO TO OUT'~RANGE.

CHAIN

FUNCTION

The CHAIN verb searches an input chained file assigned to disc storage forI record or block
which satisfies a specified relation.

SENTENCE FORMAT

CHAIN fil~nam~l UNTIL ~field--name"-i }
element~nam~ 1
constant~l

IS [NOT] GREATER THAN
IS I}l"OTJ LESS THAN
IS [NOT]EQUAL TO
IS UNEQUAL TO
EQUALS
EXCEEDS

{field--nam~2 }
element~nam~2

constant~l

[USING field~nam{~'3 FOR CHAINING]

[, IF END OF CHAIN GO TO sentence name 1J .

CONVENTIONS

1. A READY sentence for fil~nam~l must be issued before the C d ~'!\ ... U\,TIL
sentence.

2. The Procedure Diyision may not contain more than four CHA e-: c ,:TII S'lltl'lH·e.s per
file. Note that only one constant may be used in an U::JTIL claus, rhE' .. nput file field
or element being compared must be in the same position relatl\":' i th' beg;nning of each
logical record assigned to the file; it must be the Slme size and 1 l(de :ts th" field,
element, or constant with which it is being compared. If recordE- ,ln' bluck, d, '.he con­
dition of the first logical record of the block determines whether 'jl' hlock is accepted,
or whether a chain is made to another record blocJ:,

GECON - II

rr:FFEENCE HANUAL

- 9U-

CHAIN
(Cant.)

3. If a file has C 11<' or more CHAIN sentences referencing it, the USING clause must be
specified in at least one of the CHAIN sentences for that file. If more than one CHAIN
sentence for :1 file has a USING clause, 8.11 CHAIN sentences for that file must have a
USING claus(.

4. If a file has (;ll'~ or more CHAIN sentences referencing it, the END OF CHAIN clause
must be specifled in at least one of the CHAIN sentences for that file. Transfer is made
to the senten·:e named when an end of chain is reached and the specified relation is not
satisfied. If dlfferent sentence names are employed in END OF CHAIN clauses for the
same file. p\el CHAIN sentence for that file must have an END OF CHAIN clause.

5. The field nal1ll d in the USING clause must contain an absolute DSU address at object
time. The fJeid-llame may not be subscripted. The field must be an input field contained
in all record3)f the file being chained. The mode and size of the field must be the same
in each record deseription and the field must be in the same pOSition relative to the
beginning of ?a eh logical record assigned to the file.

6. The abbreviat i)lls for relations may be used instead of the English words shown in the
sentence form;t1.

7. If bit ..Q. of thE field named in the USING clause is.h the record block is considered as
vacant. The contents of the field are ne!~ated to develop the address of the next record
block w hene\ e!" bit ~ is.l: No comparison is made in the vacant record.

8. If bit s 0- 18 (f the field named in the USING clause are all zero, the record block is
assumed to I 'f' the last one in the chain. If the record block does not satisfy the relation,
a transfer is made to sentenee---name---1. If bits 0-18 of the field named in the USING
clause arE' a 1 1- bits, it is assumed that the record block is vacant and that the end of
chain has be'.'n reaehed; a transfer is made to sentence---name---1. Note: Bit 19 is not
checked, but it must not be a.l: bit unless bits 0-18 are also 1.-bits-. -

9. The contents of the field named in the USING clause of the READY sentence preeeding
the CHAIN sentenee is updated each time a chaining operation is done. When the relation
is satisfied, the address of the record block which satisfied the relation is in the field
named in the READY USING clause. A read of the file obtains the first logical record.
If the file is not blocked, a READY clause must precede the READ sentence.

10. The CHAIN sentenee may not be issued for files described by a SEQUENTIAL clause.

11. One of the fields or elements named in the UNTIL clause must be contained in the chained
file. Both fields or elements named in the UNTIL clause should not be in the chained file.

EXAMPLE:

1. FILE NOT BLOCKED:
READY DSU-IN FOR READING USING DSU~ADDR FOR ADDRESSING.
CHAIN DSU~IN UNTIL STOCK-NO EQUALS TRAN-8TOCK USING FIEL~INDIC FOR
CHAINING, IF END OF CHAIN GO TO ERROR-CHAIN.

READY DSU~IN FOR READING USING DSU~ADDR
FOR ADDRESSING.
READ DSU~~N .

2. BLOCKED FILE:
READY DSU-IN FOR READING USING DSU~ADDR FOR ADDRESSING.
CHAIN DSU--IN UNTIL
READ DSU'-I~ .

@j~ c ~@@ ~[E[ffi ~ ~~ ----------------RE-FE-R...;;:E~.::.::~~;.::;:;O:.:.....~-UA.:.:..I~

-9'1-

CLOSE

FUNCTION

The CLOSE verb terminates the processing of both input and output reels and files, with optional
rewind and/or lock.

SENTENCE FORMAT

CLOSE file-name-l WITH [NO LOC~ ~O HEWIN~ ~file-name-2 .. .]

CONVENTIONS

1. A CLOSE file-name sentence must be executed only once for a given file unless the file
has been reopened. A CLOSE file-name sentence will initiate the final closing con­
ventions for the specified file and release its data area.

2. If the NO LOCK option is used on a tape file, the tape will be rewound.

3. If the NO REWIND option is used on an output tape file, the tape w ill be positioned at the
end of the file after the end-of-file conventions are executed.

4. If the NO REWIND option is used on an input tape file, the tape will remain at its current
pOSition whether that pOSition is the end of the file or not, unless it is a multifile tape in
which case it is advanced to end-of-file.

5. If neither a NO LOCK nor NO REWIND option is specified for a tape file, the tape will be
rewound and locked to prevent the tape from being read or written UpOIl. LOCK is
accomplished by programming, not hardware.

6. If the same tape file is opened or closed more than once, the NO LOCK option should be
used.

7. When an input card file is closed, the current card count will be typed whether the end­
of-file card has been detected or not. Any remaining cards in the reader will not be
read.

8. When an output card file is closed, the card count will be typed. No end-of-file card is
punched.

9. The NO LOCK and NO REWIND options may not be used for DSU flIps.

10. A JOURNAlr-TAPE file (See Environment Division, DSU~CONTROL sentence) need not
be closed. If it is not closed, no label or tape mark is written.

EXAMPLE

1. CLOSE PAYROlr-FILE WITH NO LOCK, MASTER~FILE WITH NO REWIND, EMPLOY~
FILE.

Note: PAYROL-FILE is rewound (if a tape file) with no lock, MASTER-FILE is closed
but remains pOSitioned at its present point and EMPLOY-FILE is rewound and locked.

-98-

DIVIDE

FUNCTION

The DIVIDE verb divides one number into another and stores the result in the last-named field
or the specified field.

SENTENCE FORMAT

DIVIDE {;::~':::~_.} INTO {::7d~:~:-,}
[GIVING field-name-3] hROUNDEDJ

[IF S [Z E ERROR GO TO sentence- name-I] .

CONVENTIONS

1. If the GIVING option is not present, the last-named field receives the result.

2. Decimal points do not appear in stored fields, and are used only to properly align data
before execution of an arithmetic operation.

3. Only a numeric may be used. If a sign (+ or -) is included, it must appear as the most
significant character of the numeric.

4. The ROUNDED option may be used to round off the result before it is stored in the
receiving field. If the receiving field is in floating point mode or if the operands are all
integers, then rounding is ignored.

5. The SIZE ERROR option may be used to truncate the most significant digits of a number.

6. The SIZE EHHOR option does not check for division by zero.

EXAMPLES

1. DIVIDE NUMBER INTO TOTAL GIVING AVERAGE.

2. DIVIDE 100.0 INTO K2H GIVING VALUE OF FILE~16 ROUNDED.

3. DIVIDE A26 I~TO R17K.

NOTE: The contents of R17K will be divided by the contents of A26, and the result will
be stored in R 17K.

-99-

FUNCTION

The ENTER verb allows the programmer to insert General ASSf'l'-,\,jV Pro~rzm coding into a
GECOM source program. It is envisioned that General Assf'l11bly Pl'o~ran coding within GECOM
source programs will be used primarily for functions more of a machilh'-(,riented le\"el than
GECOM sentences. For example, the use of the ENTER verb might al hw G"'1c'a 1 Assembly
Program coding to sense or manipulate bits, or to tailor GECOM-producc(! ("ding to a particular
need. (In the latter case, the user must be thoroughly familiar with GECOM object coding and
obj e ct data organization.)

The ENTER verb specifies departure from the normal sequence of procedurE'" in order to execute
General Assembly Program (GAP) coding appearing elsewhere in the Procpdure Division.

SENTENCE FORMAT

ENTER GAP [AT GAP-Symbol].

(A set of General Assembly Program instructions)

END [-J

CONVENTIONS

1. General Assembly Program coding may appear anywhere in the G ECOM Procedure
Division. It may be preceded and/or followed by GECOM procedurE s(mtences. GECOM
does not change the relative pOSition of General Assembly Program coding within the
Procedure Division. A given GECOM source program may contah 1111,' number of
ENTER sentences.

2. The AT option indicates execution of General Assembly Program jtl~;trclctions appearing
elsewhere in the Procedure Division. The General Assembly Pro~ram instructions must
not follow an ENTER sentence USing the AT option. The GAP symbol must appear in
Columns 1 to 6 of a line of General Assembly Program coding under another ENTER
sentence.

When the AT option is used, an SPB (using index registpr 1) to the des 19nated symbol
is generated. Index register-1 may be used as an exit parameter. The END instruction
should not appear after an ENTER sentence with the AT option.

3. If the ENTER sentence is referenced by a GO statement, the ENTEr'. sentence must be
named. When the GO verb is used to execute an ENTER sentence, c\ BRU to the first
General Assembly Program instruction under the ENTER sentenc(is generated.

4. An ENTER sentence is executed in line if it is not logically skipped 1 ly a preceding
GECOM procedure sentence or ENTER sentence.

5. The source program name of the ENTER. sentence, if present, is \'om'erted to a three­
character symbolic name. This name is aSSigned to the first General Assembly Program
instruction under the ENTER sentence. The first instruction may also ha ve a Symbol,
and in this case an EQU is generated in order to make the assignment,

(r\l ~ em rmrm ~ ~ rID n ~ ~ GECOM - II ~~D~@@ ~~~U~~-----------------------------RE-FE-REN~CE~"~~N-UA-L

-100-

ENTER
(Cont.)

6. General Ass(,lllbly Program instructions must be punched in the follow ing card format
and may be wrttten on the General Compiler Sentence Form:

Columns 1 to 6 are reserved for the Symbol.
Colun.ns 8 to 10 are reserved for the GAP operation code.
Column 11 has a special purpose under ENTER (see below).
Columns 12 to 74 are reserved for the operand and index register designation.
Columns 75 to 80 are reserved for sequence numbers.

7. The Symbol is written using conventions described in the GE- 200 Series Programming
Reference M.lnual, with the exception that it must not begin with a numeric (0 to 9) and
may be sLx characters or less but must not be three as this is reserved for GECOM
three- charader symbolic names.

8. The OPERATION is written using convert ions described in the G E- 200 Series Program­
ming Reference Manual.

9. Column 11 of the instruction format denotes the type of operand which follows in Columns
12 to 74.

• A P in Column 11 deSignates a GECOM sentence-name as an operand. The sentence­
name is written following the normal rules for GECOM sentence-names. It is
cOllvertEd to a three- character symbolic name, and this name is used as the operand
in the ObjHt program symbolic coding.

• A D in Column 11 denotes a GECOM data-name in Columns 12 to 74. The data-name
must be =lualified if necessary and must appear in the GECOM Data Division. The
data-name is written following the normal rules for GECOM data-names. It is
converted to a three- character symbolic name, and this name is used as the
operand in the object program symbolic coding. No edit is performed on the oper­
ation code to insure proper manipulation or use of the data. The conventions
governing storage of GECOM object program data are described in Chapter 9, Data
Manipulc.tlOn.

• An L in C. Jlumn 11 denotes a library subroutine name in Columns 12 to 19. All the
suiJroutints available from the GECOM library are described in the GECOM-Il
OPERAr'IO:-.!S MANUAL. The unique name assigned to a particular library sub­
ruutine nlst be used when referring to that subroutine. No edit is performed on
the instnl'ti(lIlS followin:; the L-type operand to insure a proper calling sequence
to the cit'S Ign"ted subroutine. The subroutine name is replaced with a relative
addnss t" .1 transfer \ector tabie. The subroutine name is included in a program
card prlld II'cd by the compiler for object program loading, and is also included in
t]1<" list II suhroutinE's printed by the EDITOR. Comments may appear in Columns
32-74. Subroutine names may not be longer than 3 BCD characters in length.

• A blank (l' ,lilY other character in Column 11 denotes a General Assembly Program
operand ill Culumns 12 to 19. The operand is written USing conventions described
ill the G t: 200 Series Programming Reference Manual. It is transferred intact to
thl' ohject program symbolic coding. Comments may appear in Columns 32-74.

10. Indr-x l"Pg,Scl'l' ~ llla~' be deSignated in thE General Assembly Program instructions, For
P- and])-t\'])(' (Ipcrands, the index register preceded by a blank or comma (,) must
follow tilE' l:1';t character of the operand, For L-type and General Assembly Program
operands, tl'l' index register must be in Column 20, If no index register is specified,
Column 20 nlust be blank, The index register is transferred to the object program
symbo lie codillg with no edit.

-101-

GECOM - II

REFERENCE l>lANUA L

ENTER
(Cant.)

11. Instructions with P- or D-type operands must not contain comments.

12. P- and D-type operands do not terminate with a period (.).

13. P- and D-type operands must not be subscripted.

14. The last General Assembly Program instruction under an ENTE R sentence must be an
END card. END must appear in Co]!umns 8 to 10. No coding is produced for an END
instruction; therefore, all exits from the General Assembly Program coding must
precede the END instruction. A possible exit is to "fall througt.'· to the next ENTER
sentence or GECOM procedure sentence.

15. Symbols must be unique in all General Assembly Program coding present in a GECOM
source program.

16. A list and description of constants and work areas always preselt in GECOM-produced
object programs is included in Appendix D to this manual. These constant and work
area names may be used in General Assembly Program instructions as operands.
Constants must not be altered, since GECOM-produced routines rely on their exact
content. Work areas may be used but only as temporary stor~!ge. Upon exiting from
General Assembly Program coding to GECOM procedure sentE'n,~es or library sub­
routines, the contents of work areas will undoubtedly be destrllved.

17. Card read and punch areas are available to entered General Assembly Program coding
if these areas are not being used by the GECOM-produced codlll~~. The card areas used
by GECOM-produced coding are forty-one (41) words long. If A PI hardware is not
specified in the Environment Division, the card read areas star1 at locations 128 10 and
256 10. (The latter area is used only if reading is buffered.) If API hardware is not
specified in the Environment Division, the card punch areas s1art at locations 38410 and
512 10. (The latter area is used only if punching is buffered.) If API hardware is
specified in the Environment Division, the card read areas start at 256 10 and 384 10 and
the card punch areas at 512 10 and 640 10.

18. Magnetic tape commands should not appear in General Assembly Program coding if the
tape controller is used in the coding produced from source language sentences. When a
select is given in the General Assembly Program coding, error conditions are reset.
Therefore, certain error conditions could be reset prior to detedion by the compiler­
produced coding.

19. REM cards may be used as in General Assembly Program. The contents of REM cards
are not scanned. Any combination of input characters is permissible. The contents
will be printed on the Edited List.

20. General Assembly Program symbolie names may not be equated (EQU) to GECOM
source data names.

21. General Assembly Program symbolic: names may be equated (F:QU) to the GECOM
common constants but not to GECOM input/output symbolie names (see Appendix F).
If General Assembly Program symbolic names are equated to (~ECOM input/output
symbolic names, an EQU error message will be typed by the AS~;Plllbler (General
Assembly Program) phase of the compiler.

-102-

ENTER
(Cont.)

22. The following pseudo- instructions and mnemonic operations codes may not be used under
ENTER GAP:

EJT (Pseudo)
*LAC
*LCA

LST (Pseudo)
MAL (Pseudo)
NAM (Pseudo)
NLS (Pseudo)
PAL (Pseudo)

PLD (Pseudo)
RAW
RCM
RRD
SEQ (Pseudo)
WRD

Eject Printer Paper
Load A Register from C Register
Load C Register from A Register
List
Multiple Alphanumeric
Print Name or Title on Each Page
No List
Multiple Alphanumeric for Printer with

Print Line Indicator
Punch Loader Cards
Read After Write Check (DSU)
Read Cards Mixed
Read from Disc Storage Unit
Check Card Sequence Numbers
Write on Disc Storage Unit

*This instruction is an optional feature.

In addition, instructions for certain hardware, such as the DATANET and 300-lpm
printer may not be used.

Although the mnemonic codes listed above are not recognized by the compiler, the
programmer may utilize the listed functions through the pseudo- instruction OCT (octal).

(ill re c Ui)([jIIQ'@lerD)fl c; ~ ______________ --::=~GE~CO~M ~-..:.=.II
~ l£ ~ l!!J\!:!J ~~U; lffi 1I ~,~) REFERENCE MANUAL

-10:1-

ENTER
(Cont.)

EXAMPLE 1:

CENERAL. ELECTRIC
GENERAL COMPILER SENTENCE FORM

E"'---
,''''' ------------------------

LOA XYZW'

S TAD CAL C 0 F_,_.~_:__.!.!.L E
r-------~-

LOA NOWRD
------,~---~~----_4-------- ------

:~ __ S __ T_~ ~L~A~N~Dt__'~O~F-~B-----'-F-,''"L=--'E'I_------~+_---~-~ ______ ~ .. _____ .. __

S 1I BON E
B Z E -~-+---- --- 1------- --- - ---

I--'--~~+If"--"--"-....r_~__I_~~- ---- ---~---~t__--------____I-------
BRUPHERE

Is AND 2 L D X ONE '. ---1----------
f---~___1f_pL- P A DEN TRY ~--- -, -~ c-------- r------ __
f~ -S!~ A ~R R...J,"'A"'Y"--"-D_-'---_"-_+ ________ I--________ ~ ____ __

BRU *+2

L~_,~~"_ !-S~-f2,____+ ____ ~ ____ _

i NOW ROD E C 3 7 -'5---It---~-~--___j------_"_tt__-------___It__--
s_~ :l£.Y.Z_~W

END.

GO TO EVERB

-~--~--- --.-

EXAMPLE 2:

CENERAL. ELECTRIC
GENERAL COMPILER SENTENCE FORM

',-,;'~_ll!~Fll! '6!,n~,!I~.,11116127!ZI.2.!lOI11111lll,Hlu ll:ll.~!'n~.~--~.1:.;~I~:;r~~~~~~·;lFI-,7js I'~!;-!!!~ t ,,---.L-L.Ll....LLL~r----___ ~L..L,___~-'--..lL---'---r----'-----" '-

f--'--~____t+-~j -­
i--'-'~---++ ,--,-,_I

TOM V E D N 0 "'--+-----~--"__t-.-----+--~------__ ~ ___ ~_
.. - f----"-~--- -- ------------- f-------~---,~f__'_~----___+--

i~~~_+_I- ~-'---- -- :------____1-------- ----- ----_1__--
MVEDNO. ENTER GAP.

Is TAR TIN X _'_.__ _~_--'-"-_~ __ _I__------~+__-------- ~ ____ 1-----"-"----
I,-,-~ _ ___+-~L,-,,-D ,,-A~ f--- -,f----~-~+_-------+-~----~ 1--------- __ _
~--~~+_I~S~T~0_tE~=X---',~T _____ ~ ___ _

r---~~_+I-'L,-,D -"-- f---L"-- -~--.~~"--"__t--.---- --~+- -~--~--t__-------~ 1---------- .. - --
~~~__'__1f_~L"-"'D-"'A-D D_~L~"W ~N 0 0 F I N,P U T_._:-_~~_~~~ _ .. ___ .. _+_~ ___ _ 

5 T A 5 A V "I N __ O, ___ -"--_~_t____ ______ ~+_---.---+---------+_-.-

~- '--~ -'---~--~---"-----_t---~----__I~--.~--_4---~ 
B x L 5 1 . - r-.----~--~_"__t--~~-___+----~--+~--~~-- ---
cL!J1_ ._ -.4 ~--~-~~--~ -- -.~--~--t_ .. ---~----
D L D D PAil T ~N J O-'F'-----"c!N,,-,-oPfU'--'-T.:-:cF'-"".c'L"-"E_~+__-----~-+__--~~----+__--- __ _ 

I~_--,-_ ~2".-,- S_._A_ Y LP N.O 
IEXIT BRU 

I~LA_"Y~L~---L-0 B_~~'_l 

I 
----- --~-----I 

I 

-------~ 
---~ 

.--~-~-~---j 

rS.LA=V-"P,-,,-N-,-,O+lrBLS'-'-'-S-'--l_2~~t-'-_~~_~,_ +-~-~-~~+----'--~'---'--~+-'--'--~--~-+------ - .. ~ ---"---~-~-1 
END - __ ~_~~_-'--\ ___ ~~ 1------ --- ____ 1----_________ ~_~_I 

"_~~~~+_---,-L-~~~~~-~+_--~--~ ______ ~~___I 

"----I---------------~~'--I 

-104-



FUNCTION 

The EXCHANGE verb transposes the contents of two fields. 

SENTENCE FORMAT 

EXCHANGE {ield_name_1} 

array-name-1 

CONVENTIONS 

{
ield_name_2l 

[ , ] anay- name- 2J 

1. The data imag;es of field-name-1 and field-name- 2 must be identical. 

2. Field-name-] and/or field-name- 2 may be subscripted. 

EXCliANGE 

3. Two arrays may be exchanged by uSing the array field names without subscripts. The 
arrays must have the same size, number of fields, and the corresponding fields must 
have identical data images. 

4. Element names are not permitted in an EXCHANGE statement. 

EXAMPLES 

1. EXCHANGE VELOCITY (I), VELOCITY (J). 

2. EXCHANGE CODE~A, CODEc~B. 

3. EXCHANGE OL~TAX, NEW~TAX. 

4. EXCHANGE ARRAY~A, ARRAY~B. 

GECOM - II 

REFERENCE MANUAL 

-10(;-



FUNCTION 

The GO verb enables the program to depart from the normal sequence of procedures. 

SENTENCE FORMAT 

Option 1: 

GO TO ~entence-nameJ 

Option 2: 

GO TO sentence-name-1, sentence-name-~!, ~entence-name-3 ... spmence-name-~ 

DEPENDING ON {=:l;~:::F /He-name} 

CONVENTIONS 

1. In Option 1, if a GO sentence is to be altered, it may be named. The name of the GO 
sentence is referred to by the ALTER verb in order to modify the sequence of execution 
of the program. If the destination sentence name is omitted, th~' compiler will insert a 
halt loop in the object program. Therefore, a GO sentence without a destination should 
be referenced by an ALTER sentence before the first execution [If such a GO sentence. 
After a GO sentence has been altered, it will continue to go to the changed destination 
until it is altered again. 

2. In Option 2, the field name must have a positive integral value. The branch will be the 
1 st, 2nd, ... , 30th sentence name as the value of the field is 1, 2, ... , 30. If the value 
is zero, or exceeds 30 (that is, the number of sentences named) the next sentence in 
normal sequence will be executed. Field-name may be subscripted. 

3. In Option 2, using RECORD OF file-name, control is transferred to sentence-name-1 if 
the current record of the specified file is the type described in the first record descrip­
tion after the FD entry for that file; control is transferred to sentence-name-2 if the 
current record is the type described in the second record description, etc. The type 
record is determined by testing the control-key. 

EXAMPLES 

1. SENT-lB. GO. 

(Note if this sentence is not referenced by the ALTER verb befon' it is executed, the 
object program will halt in a loop.) 

2. GO TO SENTENCE~7 . 

3. GO TO SENT-B, SENT-77, SENT~A, SENT-64 DEPENDING ON CODE. 

@~ c ~(Q)(m ~~[ffi ~ ~~ --------------·--RE-FE-"RE-~C-E~-O:-~-u~-~ 

-106-



4. GO TO SENT-·l, SENT~2, SENT~3, DEPENDING ON RECORD OF TRANS~FILE. 

NOTE: If the records in TRAN~FILE in the preceding example are described in the 
following order: 

FD TRANS~FILE. 

R RECORl}-.{}. 

R RECORI>---l. 

R RECORI>---2. 

Control will be transferred as indicated below: 

CURRENT RECORD 

RECORD - 0 
RECORD - 1 
RECORD - 2 

-107-

CONTROL TRANSFERRED TO 

SENT-1 
SENT-2 
SENT-3 



IF 

FUNCTION 

The IF verb transfers control to the specified sentence if the stated condition is satisfied (true) 
or to the next sentence if the stated condition is not satisfied (false). 

,SENTENCE FORMAT 

Option 1: 

IF treCord_name } 
conditional- name 
END OF FILE OF file- name-l 
T.Qg OF PAGE~file-name-2 
true--false date-name 

GO TO sentence-name-l. 

Option 2 (relational expressions): 

field- name-l 

element-name-l 

Jl: constant-l 
arithmetic- expression-l 

GO TO sentence-name-l. 

IS ~ GREATER THAN 

IS ~ !&§§. THAN 

IS ~ EQUAL TO 
IS UNEQUAL TO 
EQUALS 
EXCEEDS 

{~field_name_2 J 
element-name-2 
constant-2 

.... arithmetic-expression-2 

~ GREATER THAN 

~~THAN 
,IF ~ EQUAL TO 

UNEQUAL TO 
EQUALS 
EXCEEDS 

{
ield- name- 3 J 

element-name-3 
constant-3 
arithmetic- expression -3 

GO TO sentence-name-2 

Option 3 (logical expressions): 

(conditional-name-l I. 
\':elational- expression-I) 

[, IF .. J 

[conditional-name- 2 } 
telational- expreShlf '11- 2 

GECOM - II 
RfFERENCE ~NUAL 

-·108-



[rAND} (eondltiOnal-name-3 ) 
l OR reLltwnal-expresslOn-3 

,GO TO sen:enee-name-l. 

Option 4 (Tests): 

( field-name-1 ) 
l ar ithmetic- expression-1 

• GO TO sentence-name-1. 

CONVENTIONS 

(AND} ( conditional-name-20 } ] 
. .. l OR lrelational- expression- 20 

{
POSITIVE} 

IS kNO:ij NEGA TIVE 
ZERO 

IF 
(Cont. ) 

1. l'Iw abbrevLltions for relations may be used instead of the English words shown in the 
above forma t". 

3, A (IUantitv i:i j)(Jsitive only if it is greater than zero. A quantity is negative only if it is 
l"';:-i than I.el'". The value zero is considered neither positive nor negative. 

3. l"ields may bl' subscripted. 

4. Aiphanullleri( fiplds that are being compared must have the same data description. 

5. In Option 1, t!\e Ilallled record lllUst be an input record with a control key. It must be 
qualified by a fUp-name unless the record-name is unique. If the current reeord is of 
tllt' type ('lll'l't'Spunding to the named reeord (as determined by testing the control key), 
control will be transferred to sentence-name-1. 

EXAMPL~S 

Option I 

1. IF MALE, GO TO 789. 

2. IF NOT END OF FILE OF MASTER-FILE, GO TO SENTENCE-4. 

3. IF TOP OF PAGE OF STOCK-FILE, GO TO PRINT-HEAD. 

4. IF SHIP~RECORD OF TRANS-FILE, GO TO SHIPMENT. 

5. IF FLAG--1 GO TO SENTENCE-22. 

@~ D ~®® ~~G8l1 ~~ ---------------RE-F-ER-.:E~=~~=O~~--UA=I~ 

-109-



r 
IF 

(Cant. ) 

Option 2 

1. IF LINE--COUNT EQ 58 GO TOADVANCE~PAGE. 

2. IF PART~NUMBER OF MSTR~INVNTRY IS LESS THAN PART~!'';TMBER OF 
TRANSACTIONS GO TO WRITE~MASTER, IF EQUAL GO TO UPDAT~MASTER, IF 
GREATER GO TO NEW~RECORD. 

3. IF WEEKLY~FICA OF MASTR~PAYROL + ANNUA~FICA OF MASTR~PAYROL 
EXCEEDS 144.00 GO TO COMP--WK~FICA. 

4. IF TRANSACT--COD EQUALS 1 GO TO SHIPMENT, EQUALS 2 GO TO RECEIPT, 
EQUALS 3 GO TO CHANGE, EQUALS 4 GO TO ADDITION, EQUALS 5 GO TO DELETE. 

Option 3 

1. IF SHIPMENT AND QTY~N~HAND OF MSTR~INVNTRY IS LESS THAN QTY~OLD 
OF TRANSACTIONS, GO TO BACK~RDER. 

2. If A + B- C EQ Z * Y AND P GR Q GO TO XYZ. 

Option 4. 

1. IF ADJUSTED-PAY OF MASTR~PAYR.OL IS NEGATIVE, GO TO ADJUSTMENT. 

2. IF QTY~N~HAND OF MSTR~INVNTRY IS ZERO GO TO REORDER. 

(ill ~ <~2 @@ ~~ [ffi ~ ~~ ------------------RE-FE-RE....;;;~=~~=O~;...~-U~=.~ 

-110-



LOAD 

FUNCTION 

The LOAD verb brings a designated overlay segment into the central processor memory for 
subsequent execution. 

SENTENCE FORMAT 

LOAD segment-name SEGMENT. 

CONVENTIONS 

1. The overlay segment to be loaded must be in absolute form on magnetic tape or disc 
storage at object time. The input hardware name assigned in the Environment Division 
for the specified segment must be the same as that assigned for the main segment. 
(See the RAB function of BRIDGE II, CD:~25J1. 001, and BRAT, CD225E2. 005R.) 

2. LOAD senter,ces may be given only in the main segment. 

3. The overlay segment-name given in the LOAD sentence must be identical to the name 
given when the segment is converted from relocatable to absolute by RAB. 

4. Communicat.lons between a loaded segment and the main segment and other loaded 
segments are always accomplished by PERFORM sentences and by data in Common or 
*Common Storage. (See Overlay Segmentation and the PERFORM verb.) 

-111-



l\IOVE J 

FUNCTION 

The MOVE verb transfers a constant or the contents of an element, field, group, or record to 
one or more other elements, fields, groups, or records. 

SENTENCE FORMAT 

constant-1 
element- name-1 
field- name-1 
group- name-1 
record- name-1 
array - name-1 

CONVENTIONS 

TO 

element- name- 2 
field-· name- 2 
group- name- 2 
record-name- 2 
array-name-2 

element- name- 3 
field- n . .l.me- 3 
group-lame-3 
record-name-3 
arra\ - lame- 3 

1. A numeric constant or numeric field being moved is aligned in accordance with the 
decimal point of the destination field with truncation or zero fill e,n either end as required. 
(See Example 1.) 

2. A nonnumeric element or nonnumeric field being moved is left Ju:;tified with space fill 
on the right if the destination element or field is larger than thE ~ource data. (See 
Example 2.) 

3. A nonnumeric element or nonnumeric field, or a literal being moved will be left justified 
and truncated on the right if the destination element or field is smaller than the source 
data. The compiler gives a warning unless the source is a liteJ'al. (See Example 3.) 

4. A numeric constant or numeric field being moved to a nonnumeric' element or nonnumeric 
field must have the same number of characters in its data image 1S the destination 
element or field. (See Example 4.) 

5. A nonnumeric element or nonnumeric field or a Llteral being m(ly·"d to a numerid field 
must have the same number of characters in its data image as the destination field. 
(See Example 5.) 

6. A literal conSisting of a single character being moved to a nonnclmenc element or non­
numeric field fills the destination with the character specified. (SeE' Example 6.) 

7. A literal consisting of more than one eharacter being moved to.) l,mllullleric element or 
nonnumeric field is placed repeatedly in the destination posit ion (.;larting at the leftmost 
character position). If the literal does not fit the destinatioL pOSltiOIl an illtegral number 
of times, it is truncated on the right for the last placement. (S,·(' Example 7.) 

8. A figurative constant except "SPACE (S)" being moved to a n~lr:: '! 1 field 1lils the 
destination positions described by nines (9's) in the data ima:~( '\ iH'1l thE figurative 
constant "SPACES(S)" is moved to a numeric field, the destinaL( l" !l lSitioIlS described 
by nines (9's) in the data image are filled with zeros. Spaces \\ lL lei nolatl' the data 
description of numerics. (See Example 8.) 

9. A figurative constant being moved to a nonnumeric element ur n'llillilleric field fills 
each position of the destination. (See Example 9.) 

GECOM - II 
@~o~@@ ~~~~~~-------------------------~RE=.Fl~:RE=NC~f~~=NU~AI 

-1.12-



MOVE 
(Cont. ) 

10. If a constant is moved to a record or group, the receiving area cannot contain more 
than fifty (50) fields. 

11. Fields may b£ subscripted. 

12. Movement of numerics, literals, figurative constants, or fields to groups or records is 
treated as separate MOVE sentences--one for each field present in the group or record. 
Therefore, the group or record fields must satisfy the above rules for moving numerics, 
literals, figul'ative constants, or fields to fields. 

13. The compiler provides for the movement of only one record or group of fields to other 
records or groups of fields of the same size and format. Any other movement can be 
accomplished bv moving elements and/or fields, and/or the implied movement under 
the WRITE Hrb. Note that it is unnecessary to specify data movement to output. 

14. A numeric fide! may be moved to a WorkIng Storage or input field with editing. If an 
edited field iE, moved to a numeric field, all editing characters are ignored except that 
the sign and decimal scale of the source Held influence the conversion process. If a 
field containing editing characters is moved to a field containing editing characters, it 
is treated as a BCD alphanumeric move. 

15. Arrays may be referenced by using the array field name without a subscript. In this 
case, the array is treated as a string of fields and may be used as a source and/or 
destination. If the source is an array, the destination must be an array. The compiler 
provides for moving a literal, a numeric, a figurative constant, or a field to an array. 
The array is filled under the conventions governing literals, numerics, figurative 
constants, or field to Held movement. In moving an array to an array, the source 
array is moved to the destination array under the conventions governing field-to-field 
movement. 

16. See Chapter 9 . Data Manipulation for a detailed discussion of movement of repeated 
groups. 

EXAMPLES 

The following fields ar£' assumed to have the indieated images in the examples below: 

FIELD NAME 

TOTAL 
FACTOR 
PART~NUMBER 
SAVE~AREA 

MULTIPLIER 
PT~NUMBER 

DATA IMAGE 

999999V 
9999V99 
A(10) 
A(6) 
999V9 
A(10) 

1. MOVE 1000 TO FACTOR. 
RESULTS: 1000VOO 

MOVE 300 TO FACTOR. 
RESULTS: 0300VOO 

MOVE 1. 235 TO FACTOR. 
RESULTS: 0001V23 

r1U rc ® ©~\ (Qlic [OJ r [;:O,~ GECOM - II 
~l£ 0 ~®lJ:I; ~)LC;lI'll ;~) -------------------------:::RE:::F::E:::R~E:7NC::::E~MA~N::UA~L 

-113-



MOVE 
(Cont. ) 

MOVE MULTIPLIER TO FACTOR. 
RESULTS: 024V5 0024V50 

MOVE FACTOR TO MUL TlPLIER. 
RESULTS: 1234V56 234V5 

2. MOVE PT~l'mMBER TO PART~NUMBER. 
RESULTS: AA1673BBCC AA1673BBCC 

MOVE SA VE~AREA TO PT~NUMBER. 
RESULTS: AA1673 AA1673U.~ 

3. MOVE PART~NUMBER TO SAVE~AREA. 
RESULTS: AA1673BBCC AA1673 

MOVE "12345678" TO SAVE~AREA. 
RESULTS: 123456 

4. MOVE 12341>6 TO SAVE~AREA. 
RESULTS: 123456 

MOVE TOTAL TO SAVE~AREA. 
RESULTS: 007340V 007340 

5. MOVE SAVE~AREA TO TOTAL. 
RESULTS: 653000 653000V 

MOVE "1231>" TO MULTIPLIER. 
RESULTS: 123V5 

6. MOVE "Z" TO PART~NUMBER. 
RESULTS: ZZZZZZZZZZ 

7. MOVE "XY" TO PART~NUMBER. 
RESULTS: XYXYXYXYXY 

MOVE "XYZ" TO PART~NUMBER. 
RESULTS: XYZXYZXYZX 

8. MOVE ZEROS TO MULTIPLIER. 
RESULTS: OOOVO 

9. MOVE SPACES TO PART~NUMBER. 
RESULTS: M!cMMt!!cL 

- J.14-

GECOM - II 
REFERENCE MANUAL 



MOVE 
(Cant. ) 

10. If a constant is moved to a record or group, the receiving area cannot contain more 
than fifty (50) fields. 

11. Fields may b(' subscripted. 

12. Movement of numerics, literals, figurative constants, or fields to groups or records is 
treated as sellarate MOVE sentences--one for each field present in the group or record. 
Therefore, the group or record fields must satisfy the above rules for moving numerics, 
literals, figurative constants, or fields to fields. 

13. The compiler jJl'mides for the movement of only one record or group of fields to other 
records or groups of fields of the same size and format. Any other movement can be 
accomplished bv moving elements and/or fields, and/or the implied movement under 
the WRITE \'E I'll. Note that it is unnecessary to specify data movement to output. 

14. A numeric fidc! may be moved to a W orkmg Storage or input field with editing. If an 
edited field if, moved to a numeric field, all editing characters are ignored except that 
the sign and decimal scale of the source field influence the conversion process. If a 
field containing editing charaeters is moved to a field containing editing characters, it 
is treated as a BC D alphanumeric move. 

15. Arrays may lie referenced by USing the array field name without a subscript. In this 
ease, the array is treated as a string of fields and may be used as a source and/or 
destination. If the souree is an array, the destination must be an array. The compiler 
provides for moving a literal, a numeric, a figurative constant, or a field to an array. 
The array is filled under the conventions governing literals, numerics, figurative 
eonstants, or field to field movement. In moving an array to an array, the source 
array is movec\ to the destination array under the conventions governing field-to-field 
movement. 

16. See Chapter 'l - Data Manipulation for a detailed discussion of movement of repeated 
groups. 

EXAMPLES 

The following fields art' assumed to have the indicated images in the examples below: 

FIELD NAME 

TOTAL 
FACTOR 
PART~NUMBER 

SAVE~-AREA 

MULTIPLIER 
PT~NUMBER 

DATA IMAGE 

999999V 
9999V99 
A(10) 
A(6) 
999V9 
A(10) 

1. MOVE 1000 TO FACTOR. 
RESULTS: 1000VOO 

MOVE 300 TO FACTOR. 
RESULTS: 0300VOO 

MOVE 1. 235 TO FACTOR. 
RESULTS: 0001V23 

-11:3-

GECOM - II 
REFERENCE MANUAL 



MOVE 
(Cont. ) 

MOVE MULTIPLIER TO FACTOR. 
RESULTS: 024V5 0024V50 

MOVE FACTOR TO MULTIPLIER. 
RESULTS: 1234V56 234V5 

2. MOVE PT~NUMBER TO PART~NuMBER. 
RESULTS: AA1673BBCC AA1673BBCC 

MOVE SAVE~AREA TO PT-~NUMBER. 
RESULTS: AA1673 AA1673L66' 

3. MOVE PART~NUMBER TO SAVE~AREA. 
RESULTS: AA1673BBCC AA1673 

MOVE "12345678" TO SAVE~AREA. 
RESULTS: 123456 

4. MOVE 123456 TO SAVE~AREA. 
RESULTS: 123456 

MOVE TOTAL TO SAVE~AREA. 
RESULTS: 007340V 007340 

5. MOVE SAV1~~AREA TO TOTAL. 
RESULTS: 653000 653000V 

MOVE "1235" TO MULTIPLIER. 
RESULTS: 123V5 

6. MOVE "Z" TO PART-NUMBER. 
RESULTS: ZZZZZZZZZZ 

7. MOVE "xy" TO PART~NUMBER. 
RESULTS: XYXYXYXYXY 

MOVE "XYZ" TO PART-NUMBER. 
RESULTS: XYZXYZXYZX 

8. MOVE ZEROS TO MULTIPLIER. 
RESULTS: OOOVO 

9. MOVE SPACES TO PART-NUMBER. 
RESULTS: 6~.66MMc!':J' 

@~ 0 ~m)(m ~~~ ~ ~~ --------------------RE-FE-RE...;;.~C::.;;;E~..:.:.;O~:-.-~....;u~:.::.:: 

-114-



MULTIPLY 

FUNCTION 

The MULTIPLY verb multiplies two quantities and stores the result in the last-named field or 
the specified field. 

SENTENCE FORMAT 

MULTIPLY ( numeric-l ""\ 
fie ld- name-I) 

~IVING field-name-3] 

BY ( numeric- 2 ) 
field-name-2 

CROUNDED ] 

~F SIZE ERROR GO TO sentence-name-l ] . 

CONVENTIONS 

1. If the GIVING option is not present, the last-named field receives the result. 

2. Decimal points do not appear in stored fields, and are used only to properly align data 
before execution of an arithmetic operation. 

3. Only a numeric may be used. If a sign (+ or -) is included, it must appear as the most 
Significant character of the numeric. 

4. The ROUNDED option may be used to round off the result before it is stored in the 
receiving field. If the receiving field is :In floating point mode or if the operands are all 
integers, then rounding is ignored. 

5. The SIZE ERROR option may be used to truncate the most significant digits of a number. 

6. The result of multiplying two numbers, each 11 digits long, may not result in a number 
22 digits long. Only 11 digits are significant and only 11 digits may be saved. 

EXAMPLES 

1. MULTIPLY 0.18 BY PAY GIVING TAX, IF SIZE ERROR GO TO ERROR---8ENT. 

2. MULTIPLY A OF FILE-l BY B OF FILE-2 GIVING C OF FILE-3. 

3. MULTIPLY 3.1416 BY R1. (Note the contents of Rl is multiplied by 3.1416 and the 
result is stored in Rl. ) 

-IH>-



FUNCTION 

The NOTE verb allows the programmer to write explanatory material in his program which will 
be produced on the listing but not compiled. 

SENTENCE FORMAT 

NOTE ... 

CONVENTIONS 

1. Any sentence may follow the word NOTE if the rules for sentence structure are followed. 

2. The NOTE sentence must not be named. 

3. The effect of a NOTE sentence can also be achieved by punching the letter C in Column 
7 of a Procedure Division card. The contents of such a card will be printed in the 
Edited List, but no corresponding coding is produced. This optior. may not be used 
between a card on which a sentence begins and a continuation card on which it ends. 
Furthermore, it may not be used on ca.rds within the bounds of ENTER GAP ... END 
statements. However, it may be used anywhere in a TABSOL table. 

EXAMPLES 

1. NOTE THIS SENTENCE IS NOT NAMED BECAUSE REFEREr-;CE IS NOT MADE TO IT. 

2. NOTE THIS SENTENCE IS USED FOR CLARITY. 

3. NOTE THAT THIS SENTENCE DOES NOT STATE COMPILER OR OBJECT PROGRAM 
ACTION. 

-116-

G!:COM - II 

F:!:F'"HENCE MANUAL 



EJ 
FUNCTION 

The OPEN verb il1ltiatf's the processing of both input and output files and performs checking or 
writing of labels and )ther i.nput/output functions. 

SENTENCE FORMAT 

Option 1: 

OPEN INPUT file- name-1 

G file- name- 2 

OUTPUT file-name-3 

t file- name- 4 

Option 2: 

[WITH NO REWIND J 
[WITH NO REWINDJ .. J 

[WITH !::!2 REWIND J 
[WITH NO REWIND J .. .J 

OPEN {INPUT } file-name-1 
OUTPUT . 

[WITH NO REWIND J 

[ file- Eame- 2 [WITH NO REWIND] ... ] . 

Option 3: 

OPEN ALL 
'

{INPUT }l 
~ OUTPUT ~ 

FILES [WITH NO REWIND]. 

CONVENTIONS 

1. All input and output files except JOURNAL-TAPE files (See Environment Division, 
DSU--CONTROL sentence) must be referred to in an OPEN sentence which should be 
executed before the first READ or WRITE sentence of a file. If a JOURNAL-TAPE 
file is not opened, no label is written even though a label description may be given 
for the JOUHNAL,TAPE file in the Data Division. If not opened, the JOURNAL­
TAPE file remains in position; it is not rewound before recording is done. 

2. A second OPEN sentence of a file cannot be executed before the execution of a CLOSE 
sentence of the file. 

@[E 0 ~ (Q)(ID ~~ [ffi ~ ~~ ----------------RE-FE-R-=::E~.=.;;~~;.:;.:.O~.:..---u~:..:.~ 

-117-



OPEN 
(Cont. ) 

3. The OPEN sentence does not obtain or release the first data recorj. A READ or 
WRITE sentence must be executed to obtain or release the first data record. For 
DSU files, a READY sentence must be executed prior to the REA D or WRITE 
sentences to obtain or release the first data record. 

4. When checking or writing the first label, the user's beginnir.g laheL procedure will 
be executed if specified by the USE clause. (See Chapter 8, Envlnnment Division.) 

5. If an input file has been designated as optional in the Environment Division. the 
object program will cause an interrogation for the presence or absence of this file. 
If the reply to the interrogation is negative (that is, the file is net present) the file 
will not be opened. A printout indicatillg the absence of the file ()(curs, and an end­
of-file signal is sent to the input/output control system of the objed program. Thus, 
when the first READ sentence for this :file is met, the end-of-file path for this 
sentence will be taken. Files aSSigned. to DSU's may not be deSignated as optional. 

6. OPEN rewinds a tape file unless the NO REWIND option is stated. 

7. Only one file of a multiple file tape may be in OPEN status at any given time. The 
ALL option should not be used if a multiple file tape exists in the program. 

8. More than one DSU file assigned to the same area (See Environment Division, 
I--<r--CONTROL sentence) may be open at the same time. It is the programmer's 
responsibility to know which file occupies the area at any given time. A DSU file 
described as buffered cannot share the same area with an unbuffered file if they are 
open at the same time. When DSU files are sharing the same area and are open at 
the same time, they must be aSSigned to the same plug. 

9. The OPEN sentence does not advance a printer file to top- of- page. 

EXAMPLES 

1. OPEN INPUT MASTR~PAYROL WITH NO REWIND, EM~FILE, TAX~FILE OUTPUT 
U~DT~PAYROL, NEW~TAX-FILE. 

2. OPEN INPUT FILE~A, FILE~B, FILK~ OUTPUT FIL~l, FIl.E~2, FILE~3. 

3. OPEN ALL INPUT FILES. 

4. OPEN ALL FILES. 

GECOM - II 
R.EFERENCE MANUAL 

-118-



FUNCTION 

The PERFORM verb eXt'cutes a section or a segment or a set of procedures within a segment. 
Upon completion of tht' tipecified procedures, control reverts to the sentence following the 
PERFORM sentence'. 

SENTENCE FORMAT 

Option 1: 

PERFORM section- name SECTION 

[ USlNl. 
{constant- 1 } 

lfield-name-1 1 

~constant-2 } 

l!ield- name- 2 1 

..J 

[ mv o;G fie fd· name· 10 • fie fd. name· 2 0 • • • ] 1 
Option 2: 

PERFORM ( prucedure-name) SEGMENT, 
set;l1lent- name 

CONVENTIONS 

1. When the USING-GIVING option is used, field-name- it, field-name-2 I, ••. and field­
name-Io, field- name- 2 0, ... are considered to be assignment variables. Fields may 
be subscripted. 

To have meanmg, the section head must have a corresponding set of defined input and 
output variablps. The assignment takes place in accordance with the MOVE specifications. 

The section ',0 be executed must appear before the PERFORM ... USING ... GIVING 
sentence in tllt' Procedure Division. 

2. In Option 2. the USING and GIVING statements may not be used. The segment-name is 
the PROGRAM-ID of the segment to be executed. Procedure-name is the name of a set 
of procedurE s within a segment to be performed from outside the segment. 

3. An overlay ~,el~mellt must be loaded before any portion of it can be performed. 

4. See Sections. Segments, and Overlay Segmentation, starting on Page 79 of this manual. 

@ ~ a ~®@ ~ [E [% [] ~~ _______________ ---...:G::.:;:,:EC~OM"_-_I::.=.I 
~ ~/ REFERENCE MANUAL 

-119-



FUNCTION 

The READ verb has the following options: 

Option 1 allows a limited amount of input data to be entered from the C01:t !'d console switches. 

Option 2 makes available for processing the next logical record or group fr Jm an input file and 
transfers control to the specified sentence when the end-of-file is reached. 

Option 3 advances an input tape file, (or copies records or groups from an input tape file onto an 
output tape file), until the specified condition is satisfied. Then the currl~nt logical input record 
or group is made available for processing and control is transferred to the next sentence. In 
addition, it transfers control to the specified sentence when the end of thf input tape file is 
reached without satisfaction of the specified condition. 

Option 4 makes available for processing the ne}!i logical record or group from a DSU input buffer 
and transfers control to the specified sentence when the buffer is empty. 

Option 5 scans a buffer of blocked DSU input records until the specified clll1dition is satisfied. 
Then the current logical input record or group ilS made available for processing and control is 
transferred to the next sentence; steps (COPY) output records as input rt'cords are being passed 
over when blocked DSU input and output files are sharing the same area; transfers control to the 
specified sentence when the end of the buffer is reached without satisfactioll of the specified 
condition. 

SENTENCE FORMAT 

Option 1: 

~ field- name-1 [, field-name-2, ... , field-name-19] 

FROM CONTROL SWITCHES. 

Option 2: 

~file-name 
[{RECORD!] 

L GROUP jJ [ IF END OF FILE GO TO sentence- name- ~ . 

-120-



Option 3: 

READ file-name-l [COPYING ON file-name-2] 

UNTIL { 
field- name-l } 
element-name-l 
constant-l 

IS ~NOTJ GREATER THAN 

IS bNO~ ~ THAN 

IS bN011 EQUAL TO 

IS UNEQUAL TO 

EQUALS 

EXCEEDS 

READ 
(Cant. ) 

{ 
field- name-2 } 
element-name-2 
constant-l 

C IF ~ OF FILE GO TO sentence- name-I] . 

Option 4: 

READ file-name-l [{RECORDl.l L GROUP jJ [ IF END OF BLOCK GO TO sentence- mme-l] . 

Option 5: 

READ file- name- 1 GCOPYING ON file- name- 2J 

IS ~O'I] GREA TER THAN 

IS ~otl LESS THAN 

IS ~oil EQUAL TO 

IS UNEQUAL TO 

EQUALS 

EXCEEDS 

{
field- name- 2 } 
element-name-2 [ IF END OF BLOCK GO TO sentence-

constant- 1 name- ~ . 

@ [~> (j)) ro'to) ~ [~WI) 'L Lr~ (Q! _________________ ....:::.G~EC:;;::.OM!_-_I=.=.I 
~ WJ\.1L ~ Jl ~ ~ REFERENCE MANUAL 

-121-



READ 
(Cant. ) 

CONVENTIONS 

1. An OPEN sentence must be executed before the first READ sentnl.·e is given for the 
particular file. A file must not be reopened unless it has prE'ViOllsly been closed. 

2. The filling of the input area, tape movement, flow of cards, etl·,. is controlled entirely 
by routines generated by the compiler. 

3. After recognition of the end-of-reel of a tape file, the READ sentence performs the 
following operations: 

• The standard ending-reel label procedure and the user's ending-reel label 
procedure (if specified by the USE clause in the INPUT-OUTPUT CONTROL 
sentence) . 

• A tape unit swap if more than one tape unit is assigned to the file. [f one unit is 
assigned to a multiple reel file, the object program will type Jut a request to 
mount the next reel. 

• The standard beginning reel label procedure and the user's beginning reel label 
procedure (if specified by the USE clause in the INPUT-OUTPUT CONTROL 
sentence) . 

• Makes the next logical record available. 

4. Any number of READ sentences may be stated for the same fll,·. At least one END 
clause must be specified for each input file. If more than one E,\]) l'lause is given for 
a particular file, it is not required that each END clause go to thE same sentence. If 
the END clauses for a particular file go to different sentences ;lIid the END clause is nol 
stated in every READ sentence for that file, the compiler will g \ t' a warning. If all 
END clauses for a particular file go to the same sentence, the E:\D !'lau.se need be 
stated only once, preferably in the first READ sentence executed le'l' that file. 

5. If an optional file is not present in a gi.ven running of the ob.; e cl )n"r~ur .. t he END 
clause will be executed on the first READ sentence. 

l:, Wl1('11 a file consists of more than Olle type of data l'elu]'(l or ,1 C.li (If s.Ic1~roups are 
refllrenced by READ sentences), each type may be of ;, diffel'el'i ~L'. ],,,t le]'v record 
or group of the same type ll1ut31. be of the same sizp. When a Rr:\D ,;en!.(?I('c is 
''.l·(·uLE·d, the nt''it logical lcc·,rd or group is made a\;ul:lble,ol i, U"f', II ! to its h'l 
OI;lv the data in the current l't','()]c) '~r f.roujJ is accesslble, 

Tilt prog:l'allll1lPl' should E'nll)L\~ an IT' 'ocntEli('(' t() cipj(lll1in,· l1.\ 1 ,1 ,,' I rl'('ord OJ' 

',up after it has been read, ("; .' r'()ntrol~'Key ill ChJl,jpl'" ') t' I ' ",l~](',) 

I,. C: j :!.ULl '. fitJld--llallH:'--llI!l't)lij;Jl fit'ld+n: ;}1t"-J9 L~'~< !H tJ 
: __ .('1'.1::'( ,._l :\t ! h(. DaL~ Dl\-i~;i!!ll F j~ ~_d-ll{ln1!'--1 t _d :'1_ SP(\ ,~ 

l,\,\\,lCh 2. f'll'"i"naml-3 ],' ltd', ::', etl. TIle dl,I'1 :"Sil1 
(0"1. IllJ.llhc Il"'llllill jJosll](,,\ l'fjll'l.'Cocnts ill( Lls·' "L1U' (0:: 
ll::· C(.;lln·l COllH)lt' is retaiilcd fur us(' ill COli'. (,tlt i'it," er]'( : , 
d,'I,;: t'd lu H'lld uilly switch N. it if, lleCeSSal\ to l'cLl ;ill It\' ' 
CI\utt!J N: that is, READ field-name- L fielc!-name-2. '~" f , 
CO~TROL SWITCHES. 

-122-

. 1,) f ~ ( , 1 ' 1. - 11 ~l . j \ ' 

'·;·.'I:l~,~11·tn]( tat ( 

~. t!ll1 ~ 11(':: 0 'T1 

:' 1'11'( U 11 is 
, (: ~ _l~ ( he~- pret 'cd];!g 

I( ~ .~ ~HO!\l 

GECOM - II 
REFERENCE MANUAL 



READ 
(Cant. ) 

8. When Option 1 ,)f the READ verb is used, it should be preceded by a WRITE (Option 1) 
sentence in which a literal is typed out. The user must provide the operator with 
instructions fo!' switch settings when the appropriate literal is typed out. When a READ 
\'eriJ. Option 1, is executed, the object program enters a "read control switch loop" to 
allow the operator to set the appropri.ate switches as explained in the operating 
lJIstrudillns 1l1Pntioned above for the previously typed literal. Toggling switch zero 
then causes til( sw itches to be read and processing to resume at the next sentenee. 

If switch 19 is used under Option 1, all switches (1-19) must be described in the Data 
Division, If ,uS other switch is used, all switches through the switch used must be 
desl'I'ibt'd, 

9, in U,'ii(lIl 'i, !I,' ~lbbre\'iatiOlls for relations may be used instead of th(-~ English words 
,,;110',111 111 til" ;,"Iit< lice f01'l1lat. For faster object programs, Option 3 is I"('cornluenc\ed 
\V/Wl'C thl' fl'l([llPncy of satisfaction of the specified condition is low, 

10. III OiJt!(,n :i, ill'Ll-i1:lllle-2, element-llame-2, or constant-llllust be in the same mode 
dH1I., ': ('I I';l" 'i :llid ha\'(; the same size as field-name-I, elelllcnl.-lIallH-'.l, or constant .. 1. 
[[ fil '. n:t1Il(' I t:.IllLiiIl3 lllore than one type of record, then field-name-1 or element-
I:t!!, I IL'\,',t i:' il: (lie ,;'lIlH' position relatiy{' to the beginning of each n~eord. The 
i-'rut ;.'''11' I)" ",i(ln lllay Hot contain morE' than four READ UNTIL sentences per file. 
':,;L t:idt ',I,' "It lonst~lllt may be lwed ill un UNTIL clause. One of the fields or 
"i,.,,,,,'I>I,, :t1", d lilllst bf' contained i,l thE' lil,~ read. Both fields or elpments named 
,;"(luld 111l! h, I I tb, file read. 

11. \ )pt i,IIlS Jllld " Ill.tv be used with rnultirecol'd files. 

U. lJpti!I!}:;\ IIld " nn'! be used [or DSU fields ouly. 

1:1. C:J11\ l!llti(1 It ,; ' I, 10, alld 11 above :lppl<r to DSU files ,ll; wdl as other files. Conventions 
1 through :-'. 7 and 8 ,lblJ\'l~ do lIot apply to nsu files. 

H. 1"01' HJ!I';i''111t'nti.ll DSU files, a READY H.'I'b must be given to obtain a physical record. 
HE:.\D ' ':1'1);; ,!I'e used tu make available for proees<;ing the: next logical record or group 
'Nitl'lIl a l"lYf·llall't~cord. 

15. In (Jpli{)ll~' ·1 _ttlU [j. til(' END OF BLOCK clause lllay be specified only for DSU files 
Llesi:;natf'cl a:; \Ilockdi. The normal end of block sentillel (all 1 hits in the first word 
[(lllo',\, iw~ Lilt hst \'alid data word) for partial blocks is used, The END OF BLOCK 
Jljlti, '!I sihHlld I,{' used when the number of records in a block are unknown and the 
lJro~,nlllltll'l' tlf'c:ds ~Ul indication to issue another READY selltence for the file. 

16. In Optu,ll:i, lhr E[,D OF BLOCK clause is required for DSU files not described by the 
c;equt'ilti;d (Lust' ill the Environment Division. If the relation is not satisfied before the 
end .Jf bl,_,d~ i':> I't.'acited, transfer is made to sentence-·'name >1. 

17, In OlltiOIli'i '1 ,llld J, when the END OF BLOCK clause is used and different sentence 
tl<LmPb MI' u-;ul in the END OF BLOCK dauses for the same DSU file, every READ (or 
HEAD. , . UNTIL) sentence for that file must have an END OF BLOCK clause. 

r lr··· I Ir:l 
. ir 

-123-

GECOM - II 
REFERENCE MANUAL 



HI AD 
(Con!. ) 

III Option :i. ',\ ht"1 blocked DSU input and output filpo. :lrc sh" j, 

COpyn,;(; "ption must be ext r('ised to stcp the ('utput rt"'fll," " 

Lcilltl JJa~'''l'd OVI'l'. A subsl'qu('nt wrilc of the output l'\'('U <i 
illlm! n'(,()l'd that sat isfil'd t IIp HEAD ... UNTIL :~"Ilt ('))(,( . 

: ,., '-':111" :1)' :1. thl' 
1, 1 lJH1~ 1! ('{ Td!~ drl l 

'l·~!1(' tl ,. ''') respond;J1:~ 

1:1. Us!' I)f Optiun 5 for DSU filf's described as sl'qul'lllial in thl EIl\ II (.',Illl'nl Di".isi()11 ('~IUS('!-: 

records to Iw interrogated until the I'elat iun spcc ifil'd is sat isf ii, i, \dd it in!dl record 
blocks arc brought into ml'mor~' frulll (h(' DSU as rl'qlliJ'(~d: <lild II ·ld Ill! nti'''ll'd in the 
USING eiause of the READY sentence for thl' filp is updated. SI (, READY SI'lltl'IlCe, 

COllvention 7. 

The COPYING option may not be specified for sequential DSU filps. 

EXAMPLES 

Option 1: 

l. READ VALUE~1, VALUE~2 FROM CONTROL SWITCHES. 

Option 2: 

1. READ TIME~ARD RECORD. 

2. READ MASTR~PAYROL, IF END GO TO FINAL-STOP. 

Option 3: 

1. READ IN·-MASTER COPYING ON OUT~MASTER UNTIL MASTEH -STOCK EQUALS 
TRAN~STOCK, IF END OF FILE GO TO CLOSEOUT. 

Option 4: 

1. READ MASTER RECORD, IF END OF BLOCK GO TO GET-NEXT. 

1 . Assume INFILE and OUTFILE are blocked and share thp sam" ~)llffer. 
READY INFILE FOR READING. 
READY OUTFILE. 
READY INFILE COPYING ON OUTFILE UNTIL IN~STOCK LQllA LS TRAN STOCK 

IF END OF BLOCK GO TO TRAN EHROR. 

Procedure',s to update IN FILE RECORD-
WHITE AND RELEASE OUTFILE REC. 

l, EC\l~l - II . __ .--_._, 
RLrERENCE MANUAL 

-124-



FUNCTION 

The READY verb initiates or tables a seek on a disc storage unit in preparation for a physical 
read or write. 

SENTENCE FORMAT 

file--name---1 FOR {
READING""\. 

WRITING} 

~USING fielcr--name---1 FOR ADDRESSING] . 

CONVENTIONS 

(INP1T ) 
1. The \':OUTPUT 

output file name. 

option must be used when file---name---1 is both an input and an 

2. When the RE.\DING option is used, physical data movements to the input buffer begins 
immediately after the seek is completed. The next READ request for file-name---1 
encountered 111 the object program is considered as a demand read, that is, processing 
is delayed until the data is in memory. No data is available to the program un~il the 
demand READ sentence is given. 

3. If the READING option is not specified for an input file, the seek is performed, but no 
data enters rHl1lory until a READ sentence is issued for the file. Thus the READ entry 
is a demand rE-ad: processing is delayed until the data is in memory. The programmer 
must ensure that no demand read or no HELEASE sentence for the disc storage unit is 
given for an) (,ther file until the demand read for file---name---1 is given. 

4. When the WHITING option is used on nonsequential files, the seek is initiated, but no 
recording is done until a RELEASE sentence is given for file---name~1. The programmer 
must insure that no demand read or no RELEASE sentence (for the disc storage unit 
involved) is :;iven for any other file before the RELEASE sentence is given for file--­
name---1. On output files described as sequential, the seek is always issued just before 
a buffer is written onto the DSU. The optional word WRITING is ignored. 

5. If the WHITl'lG option is not specified for a nonsequential output file, the seek is not 
initiated until J. HE LEASE or WRITE/RELEASE sentence is given for the file. Recording 
then starts immediately after the seek is completed. 

6. A USING claJse must be specified in at l.east one READY sentence for each file aSSigned 
to disc storage. If different field names are employed in USING clauses for the same 
file, every READY sentence for that file must have a USING clause. The contents of the 
USING field at object time must contain the absolute DSU address desired. The USING 
field~name clause may be subscripted. 

@[E [J ~@@ ~[Ern: ~ [E~ ----------------RE-F-ER..;:E~:.:::!~~:.::!O~::.....-:.....UA!..!:.I~ 

-1 ~!5-



READY 
(Cont. ) 

7. Files described as sequential in the Environment Division must U,3e the READY sentence 
to initialize or origin the seek address. The DSU address is in,Teased by the number of 
frames in the record block to develop the next DSU address to bl' used. Each time a new 
seek address is developed, the new address replaceR the prC\'iollf; address contained in 
the field named in the USING clause. If an illegal address iR de\doped (frames 96-127), 
a decimal 32 is added to the address to make it legal. No furtlk r test of the developed 
address is made. 

READY sentences may be issued to establish new origins for sequential files, but the 
file must first be closed and then re- opened before issuing the HEADY sentence. 

8. Every READY sentence for a file"' .. name must be followed by a READ sentence for the file 
named if input, or a WRITE sentence for a record of the file nanwd if output, before 
another READY sentence for the same file is issued. 

EXAMPLES 

1. READY OUT~FILE USING FLD---A FOR ADDRESSING. 
WRITE BLANK~REC. 
READY OUT~FILE FOR WRITING. 
WRITE AND RELEASE OUT~FILE~REC. 

Note that the first WRITE verb is used to blank the output buffer. The second READY 
verb initializes to the beginning of the buffer and starts the seek. The second WRITE 
verb fills the buffer and releases it for recording on the DSU. 

2. READY MASTR~IN FOR READING USING ADDR~FLD FOR ADDRESSING. 

@[E a ~@@ ~[E~ ~ [E~ ----------------RE-FE-RE....:;.~~;;;..:~..:..:.O~'-~.-;u~=~ 

-126-



FUNCTION 

The RE LEASE verb starts the physical recording of output data onto the DSU. 

Note: Blocked sequential process files are not automatically released. If used, record count 
should be kept by user and a WRITE RELEASE sentence issued when block is full. 

SENTENCE FORMAT 

RELEASE file~name. 

CONVENTIONS 

1. Only output files can be released. 

2. On SEQUENTIAL files, the RELEASE causes the buffer to be emptied onto the DSU. 
However, the RELEASE is not required since the buffer is automatically dumped when 
full. 

3. If a SEQUENTIAL output file is sharing the same area with a non-SEQUENTIAL blocked 
input file. the output file must be RELEASED when the input file reaches end of block. 

EXAMPLE 

1. RELEASE INVENTORY. 

@~ 0 ~lID([: :~l~rn: [~~I ______________ ---::--~G::.:::EC~OM:::......::....-::..=,II 
- REFERENCE MANUAL 

-127-



FUNCTION 

The STOP verb halts the object program either permanently or temporarily. 

SENTENCE FORMAT 

STOP [:::'ITCH mteger_l] Eiteral-1J . 

CONVENTIONS 

1. The STOP verb may be used as the last logical command to stop an object program, as 
a means of typing error stop indicators, or to allow the operator to halt the object 
program under console switch control. 

2. If the STOP verb is used without the RUN, SWITCH, or literal options, the object 
program will enter a "read control switch loop." The operator may toggle switch zero 
to resume processing at the next sentence. Prior to this type of STOP sentence, the 
user should provide a message (by means of the WRITE verb, Option 1) containing some 
explanation for the STOP and any necessary operating instruction. 

3. When the SWITCH option is used, the object program will enter a "read control switch 
loop" whenever the STOP is encountered and the switch integer-1 is down. The operator 
may raise switch integer-1 to resume processing at the next sentence. The integer-1 
corresponds to the control switches and may be any of the numbeJ.'s 0-19 inclusive. 

If the switch specified is not down when the STOP-generated coding is encountered in the 
object program, processing continues with the coding produced for the next sentence. 

If the literal option is used with the SWITCH option, the literal is typed regardless of the 
condition of the switch specified. 

4. If the STOP verb is used with the literal option only, the literal \\ ill be typed out, and 
the object program will then enter :l. "read control switch loop." The operator may 
toggle switch zero to resume processing at the next sentence. The literal must be 
enclosed in quotation marks. The literal should be composed of typewriter characters 
and/or typewriter control symbols only. The user should preparp a list of such typeouts 
showing the appropriate literals with their corresponding explanations and operating 
instructions. 

5. The RUN option may be specified only once in any given segmel1t. 

When the RUN option is used, the word END will be typed out fdlowed by the literal, if 
one is specified. It is suggested that the PROGRAM-ID shown in the Identification 
Division be used as the literal. In any case, the literal must bt· Pl1closed in quotation 
marks. The literal should be composed of typewriter characters and, or typewriter 
control symbols only. 

-128-



STOP 
(Cont. ) 

If the object program has been assigned to the card reader or the DSU in the OBJECT~ 
COMPUTER sentence, the next program is assumed to be in the card reader. In this 
case, after th£' typeout occurs, the objeet program enters a "read control switch loop. " 
If the operator toggles switch zero, the program will attempt to read a binary card into 
absolute zero and branch to zero. The binary card read is assumed to be the loader for 
the next pro~:ram. 

6. When the RUN option is used and the object program has not been assigned to an input 
hardware name or has been assigned to a magnetic tape unit in the OBJECT~OMPUTER 
sentence, the llext program is assumed to be on tape. The tape unit and plug number of 
the next pro~:ram are assumed to be the same as those from which the current program 
was loaded. The loader for the object program passes the tape unit and plug number 
used to the main segment for use in its run completion. If the program was not loaded 
from tape (being tested from cards), its run completion routine recognizes this condition 
and enters a hJ.lt loop instead of searching for a sequential run locator to load the next 
program. 

7. The run completion calling sequence produced for the STOP RUN option takes two forms: 

a. NO NEXT ~PROGRAM clause specifiLed in the Identification Division: 

FR2 

Coding Produced 

SPB 
ALF 
A::"'F 
ALF 
ALF 
SI:1. 

ZI)O 

DEC 
ALF 
ALF 
ALF 
SEL 
Z,)O 
DEC 

*RC 1 
RUN 
XXX 
XXX 
XXX 

a 

-1 
000 
000 
000 

a 

-2 

Comments 

Run completion routine is *RC 

X represents the name of this program 
(from PROGRAM'~ID) 

The plug number from which the main 
segment was loaded is stored in bits 
10-13 at object time. 
The tape unit code from which the main 
segment was loaded is stored in bits 
S-4 at object time. This location be­
comes zero if the main segment was 
loaded from cards. 
No NEXT~PROGRAM 

GECOH - II 
REFERENCE HANUAL 

-129-



STOP 
(Cont. ) 

b. NEXT~PROGRAM clause is spec.ified in Identification Division: 

FR2 

Coding Produced 

SPB 
ALF 
ALF 
ALF 
ALF 
SEL 

zoo 

ALF 
ALF 
ALF 
ALF 
SEL 
ZOO 
DEC 

*RC 1 
RUN 
XXX 
XXX 
XXX 

o 

RUN 
YYY 
YYY 
YYY 

0 

-2 

Comments 

Run completion routine is *RC 

X represents the name of this 
program (from PROGRAM ID) 

The plug number from which the main 
segment was loaded is stored in bits 
10-13 at object time. 
The tape unit code from which the 
main segment was loaded is stored in 
bits S-4 at object time. This location 
becomes zero if the main segment 
was loaded from cards. 

Y represents the name of the NEXT­
PROGRAM from the Identification 
Division 

The compiler automatically generates a field named NEXT-RUN with an assumed 
description of X(12). The programmer is free to use this field name to move a literal 
RUNYYYYYYYYY into the run completion calling sequence, where Y represents the 
name of the desired run. Thus, the programmer is able to choose the next run to be 
executed on the basis of his input data. The name NEXT-RUN is given the symbolic 
name FR2 at compile time. Presently, the next run in sequence on tape can be obtained 
by moving the literal NEXMMMLlL6 to the NEXT-RUN field. 

EXAMPLES 

1. STOP. 
2. STOP "999". 
3. STOP RUN. 
4. STOP RUN "PAYROLL 13". 
5. STOP ON SWITCH 7 . 
6. STOP ON SWITCH 6 "BREAKPOINT". 

-130-



SUBTRACT 

FUNCTION 

The SUBTRACT verb subtracts one quantity from another and stores the result in the last-named 
field or the specified field. 

SENTENCE FORMAT 

SUBTRACT 

CONVENTIONS 

{ numeric-1 } 
field- name-1 

FROM 

[?IVING field- name- 3J 

( numeric- 2 ) 
field- name- 2 

~F SIZE ERROR QQ.. TO sentence-name- ~ . 

1. If the GIVING option is not present, the last-named field receives the result. 

2. A numeric constant may not be used to receive the result. 

3. Decimal point s do not appear in stored !ilelds, and are used only to properly align data 
before execution of an arithmetic operation. 

4. Only a numer it: may be used. If a + or - is included, it must appear as the most 
significant character of the numeric. If the receiving field is in floating point mode 
ur if the operands are all integers, then rounding is ignored. 

5. The ROUNDED option may be used to round off the result before it is stored in the 
receiving field. 

6. The SIZE ERROR option may be used to truncate the most significant digits of a number. 

EXAMPLES 

1. SUBTRACT I)~~ION DUES OF MASTR~PA YROL FROM ADJUSTED PAY OF MASTR~' 
PAYROL. 

2. SUBTRACT m;CFIPTS OF TRANSAC~FILE FROM ON~RDER~QTY OF ORDER~FILE 
GIVING AD,J OHDH-~TY, IF SIZE ERROR GO TO ZER~RTN. 

3. SUBTRACT.\ FROM B. (Note the quantity in A is subtracted from the quantity in B, 
.wd the res\d is "tored in B.) 

.:i.' ~ .. :. il .• ,J. r,"lL , 
r ' GECOM - II 

REFERENCE MANUAL 

-131-



VARY 

FUNCTION 

The VARY verb initiates and controls the repeated execution of the sentences it precedes. 

SENTENCE FORMAT 

Sentence- name-l. VARY field- name- l, 

FROM 

BY 

{
field- name- 2 1 
arithm.etic- expression-l 
numenc-l 

{
field-name-3 } 
arithm.etic- expression- 2 
numenc-2 

UNTIL field-name-l ( relational expressioril. 
logical expression· I J 

r---

(A set of one or more sentences) ~ ------ :::. ----..-E1QI sentence- name-l. ~ 

CONVENTIONS 

1. When the VARY sentence is first executed: 

[01< 

• The FROM parameter is assigned to field- name-l (the control variable). 

• The expression in the UNTIL phrase is evaluated. 

• If the evaluation results in a true truth- value, the sentence following the EXIT 
sentence is executed. 

• If a false value is obtained, the sentences following the VARY sentence are 
performed. 

2. When the EXIT sentence that has the same sentence name (as an operand) as the VARY 
sentence name has been reached: 

• The BY parameter is added to field- name-I. 

• The expression in the UNTIL phrase is evaluated again. 

• The true or false value of truth- value in the UNTIL phrase causes the sentence 
following the EXIT sentence, or the sentences followint,; the VARY sentence 
(respectively), to be executed as indicated in 1 above. 

@~ 0 ~(ID@ ~~[ffi ~ ~~ -----·-----------RE-FE-RE...;:.~C::..:;E~.:.:.O~:-!A~-UA=-=-I:. 

-132-



VARY 
(Cont. ) 

3. The EXIT sentence may be named. Caution should be exercised in transferring control 
to it, since it causes the BY parameter to be added to field-name-l. (Execution of the 
VARY sentence proceeds as under 2 above.) 

4. A transfer of control from outside the VARY range into the range is undefined. 

5. Any number c,f VARY-EXIT sentences ma.y be imbedded within the sentences of a VARY­
EXIT range. 

6. Fields may be subscripted. 

7. Standard rules for arithmetic expressions apply to the FROM and BY parameters and 
standard rules for relational and logical expressions apply to the UNTIL parameter. 
(See Chapter 3.) 

EXAMPLES 

1. SENT~5. VARY J FROM 1 BY 1 UNTIL.J IS GREATER THAN 3. 
LIST (J) = LIST (J) * 16.2. 
EXIT SENT~E •. 

Explanation: 

LIST has bee.l defined in the Data Division as a field, and is the first location of a set of 
numbers (in this case a table of 3 numbers). The programmer desires to multiply each 
of the 3 numbers by 16.2 and store each result back into the table. Below is the sequence 
logic which 02(UrS during the execution of the VARY sentence to accomplish the above 
hypothetical ex~mple: 

~. The first execution of the VARY sentence: 

1) J is assigned the value 1. 
2) J is immediately tested to determine if it is greater than 3. 
3) Sll1ce J is less than 3, control is transferred to the next sentence 

in sequence. 
4) LIST (J) (meaning the first value of the table since J equals 1) is 

multiplied by 16.2, and the result is stored back into the first 
location of the table. 

5) Upon reaching the EXIT sentence, J is increased by 1 and now 
equals 2. 

6) ,} is tested again for a greater than 3 value. 
7) Sll1ce J is not greater than:3, control is transferred to the VARY 

sentence. 

b. Sec(.nd execution of VARY sentence: 

1) LIST (J) (meaning the second value of the table since J equals 2) 
is multiplied by 16.2, and the result is stored back into the second 
10 cation of the table. 

2) Control again reaches the EXIT sentence where J is again increased 
bv 1 making J equal to 3. 

3) J is again tested to see if J is greater than 3. 
4) Sll1ce J is not greater than .3, control is transferred to the VARY 

sentence. 

-13:3-



VARY 
(Cant. ) 

c. Third execution of VARY sentence: 

1) LIST (J) (the third value of the table) is multiplied by 16.2 and the 
result is stored back into the third position of the table. 

2) J is increased by 1 making J equal to 4. 
3) J is tested for a greater than 3 value. 
4) Since J is now greater than 3, control is transferred to the sentence 

following the EXIT sentence. 

2. SENT~14. VARY I FROM 1 BY 1 UNTIL I GR 5. 
SENT~15. VARY J FROM 1 BY 1 UNTIL J GR 7. 
C (I, J) = A(I, J) + B(I, J). 
EXIT SENT~15. 
EXIT SENT~14. 

Explanation: 

The above example is the basic coding required to add two matr ices together. Each 
matrix occupies 5 rows and 7 columns. Each value of matrix A will be added to the 
corresponding value of matrix B. The result of the addition will be stored in the 
corresponding position of matrix C. 

It is interesting to note that SENT-15 and its corresponding EXIT are executed 7 times 
to every 1 time for SENT -14 and its corresponding EXIT. 

@~D~@@ ~~[ffi~~~-----.--------.--RE-FE-RE..,:;:~.:.:..::~~~O:~~-UA::..::..I~ 

-134-



WRITE 

FUNCTION 

The WRITE verb has the following options: 

Option 1 displays a limited amount of information on the typewriter. 

Option 2 releases a logical record or *group to an output file. 

Option 3 releases a logical record or *group to an output printer file and slews the printer paper. 

Option 4 releases a logical record or group to a DSU output buffer, and optionally releases the 
enhre bUffer for recording onto the DSU. 

SENTENCE FORMAT 

Option 1: 

{
field-name-l ~ 

WRITE element- name-l 
literal-l 

ON TYPEWRITER. 

Option 2: 

[, ~ield- name- 2 1 
element- name- 2 
literal-2 

WRITE ( record- name) 
*group- name [ rRECORD\] 

\.GROUP) . 

Option 3: 

{
field-name-n j] 
element- name- n 
literal-n 

WRITE ( record-Immel 
*group- name) 

frRECORDi/ L\. GROUP ..lJ ADVANCING field- name- LINES ~~.nteger LINES ~J 

Option 4: 

WRITE ( record-'name} 
*group-1lame 

-135-

TO~OF PAGE 

fCJRECORD}U 
~ GROUP ~ 



'VRITE 
(Cont. ) 

CONVENTIONS 

In Option 1: 

1. Literals may be used to identify the contents of the data fklds )r clements displayed in 
order to give meaning to the display or to identify subsequeJit . ]'('ad control switch 
loops" caused by STOP sentences or READ (Option 1) sentence;. (See explanations 
under STOP and READ verbs. ) 

2. The obj ect program assumes that the typewriter carriage has 1 r" illusly been returned 
to the left margin. Normally, all of the data specified in the s"nte!~ce is typed 84 
characters to a line. The carriage is automatically returned aft,"r the 84th character 
on a line ann/or after the last character of the specified data has been typed. 

There is no keypunch character available for a carriage return pun dl. Each installation 
must choose some set of characters such as c/r which will signal a 12--7 - 8 punch to the 
keypunch operator. These characters may then be inserted as the first character of a 
literal to be displayed on the typewriter when a new line is to be started. For exampl£': 

55 56 57 

c/r START NEW LINE". 

3. Additional typewriter action symbols may be included in literals so that the user may 
edit his own typeouts. Literals should be composed of typewriter characters and/or 
typewriter control symbols only, excluding the quotation mark character. The quotation 
mark identifies the beginning and end:ing of a literal and, therefore, cannot be part of a 
literal. 

In Option 2: 

1. An OPEN sentence must be executed before the first WRITE is given for a particular 
file. 

2. If a record or *group is to be printed, it will be edited as specified on the Data Division 
form. 

3. The data description of the output records or *groups must contain a list of all data 
intended for output. When a WRITE is executed, only the data listed in the record or 
group description are moved to the output file. The move is automatic and implied with 
each execution of the WRITE. 

4. The actual writing on tapes, punching of cards, etc., is controlled by routines which 
are generated by the compiler. 

5. After recognition of the end-of-reel oJ a tape file, the WRITE performs the following 
operations: 

• The standard ending- reel label procedure and the user's ending- ree 1 label 
procedure (if specified by the USE clause in the INPUT-OUTPUT CONTROL 
sentence) . 

• A tape handler swap if more than one handler is assigned to the file. If one handler 
is assigned to a multiple reel file" the object program will wait for a blank reel to 
be mounted. 

-136-



WRITE 
(Cant. ) 

• The standard beginning reel label procedure and the user's beginning reel label 
procedure (if specified by the USE clause in the INPUT-OUTPUT CONTROL 
sentence) . 

• Writes the record or *group on the new reel. 

In Option 3: 

1. See Conventiom; 1, 3, 4, 5, 7, and 8 for the ADVANCE verb and Conventions 1 through 
4 for the WRITE (Option 2) sentence. 

2. The printer is slewed the specified number of lines after the WRITE sentence. The 
amount of the advance is added to the LINE--COUNT entry for the specified file. Note 
that ADVANCING 1 LINE is redundant since the WRITE (Option 2) sentence would do 
the same thiIl!2;. An ADVANCING 0 LINES is legitimate, and causes no slewing after 
printing. 

In Option 4: 

1. An OPEN sentence and a READY sentence must be executed before the first WRITE 
sentence is givpn for a particular DSU file. 

2. A WRITE Senle!lCe without the RELEASE option is used to build an output record in the 
output buffer. In this case a RELEASE or WRITE RELEASE sentence must be given 
before recording is done on nonsequential files. 

3. A WRITE sentence with the RELEASE option is used to build an output record in the 
output buffer and then start the physical recording on the DSU. This option is ordinarily 
used for writin~: records of nonblocked files, and for writing the last record of a block 
in blocked filE'S See the conventions for the RELEASE verb. 

4. The object pro~ram will stop if a WRITE sentence is given for a nonsequential file and 
there is not rool11 for the record in the buffer. The programmer must insure that the 
RELEASE option is given at the proper time. 

EXAMPLE~ 

Option 1: 

1. WRITE ··UNMATCHED.i\,'· CLOCK~NUMBE:R OF TIME--CARD ON TYPEWRITER. 

Note that this s{'ntence will cause the literal UNMATCHED to be typed out, followed by 
the ('ontents 0: the CLOCK~NUMBER field. For example, if the CLOCK~NUMBER field 
contained the .'alue 727313, the following line would be printed on the typewriter: 

UNMATCHED 727313. 

@~ D ~@@ ~[Elffi ~ J'~~ ________ . _____________ ~G.!:.:EC::..::O~M_-=___:.I.:..I 
REFERENCE MANUAL 

-137-



WRITE 
(Cont. ) 

Option 2: 

1. WRITE RECORD--1 OF FILE.--...6. 

2. WRITE INVENTORY~l RECORD. 

3. WRITE XYZ GROUP. 

4. WRITE PAY~ROUP OF PAY~REC OF PAY~FILE GROUP. 

Option 3: 

1. WRITE SHIPMENT RECORD ADVANCING 
5 LINES. 

2. WRITE SHIPMENT ADVANCING 5. 

3. WRITE SHIPMENT ADVANCING COUNTER~l LINES. 

4. WRITE SHIPMENT ADVANCING TOP. 

5. WRITE SHIPMENT RECORD ADVANCING 
TO TOP OF PAGE. 

Option 4: 

1. WRITE INVENTORY~l RECORD. 

2. WRITE AND RELEASE INVENTORY~l RECORD. 

-1:38-



7. ENVIRONMENT DIVISION 

PURPOSE 

The Environment DivisioIl centralizes those aspects of the total data processing problem which 
are depenrient upon the physical characteristics of the GE-200 Series computer. It provides a 
linkage between the data described in the Data Division and the peripheral hardware devices on 
which the data is storpd. 

ORGANIZATION 

The Environment Di\isi'JIl consists of four sentenees, and its presence is indicated by the words: 

ENVIRONMENT DIVISION. 

These worcls followed by a period are written on the GECOM Sentence Form beginning in Column 
8. No other information may be written after the period. 

ENVIRONMENT SENTENCES 

The 5 sentenc es comp r ising the E nvironme nt Division are: 

OBJECT~CCMPUTER. '.225 MEMORY SIZE 

I~O~CONTROL. RERUN ON . 

FILE~CO~TROL. SELECT. 

DSU~CONTROL. SELECT. 

COMPUTA TIO'l"~ MODE. USE. 

Each of these sentplll'(,s is written on the GECOM Sentence Form and may begin in Column 8 or 
may be indented any nJIilbel' of spaces to the right of Column 8. All indentation columns must 
be blank. 

The remainder of this section explains the function of these sentences and the conventions which 
must be followed to cc nlplpte the Environment Division portion of a GECOM source program. 

-13H-

GFCON - If 

REFERFNCr: ~t\NUA L 



OBJECT -COMPUTER 

FUNCTION 

The OBJECT-COMPUTER sentence describes the computer system upon which the object program 
is to be run. 

SENTENCE FORMAT 

{ 215j 
OBJECT~COMPUTER 225 

. 235 
[MEMORY SIZE integer-l MODULE [S] ] 

[[integer-2J hardware- name-l [integer-3] hardwar£'-Iame-2 ..•. J 

CAS SIGN [OVERLAY~SEGMENTEDJ OBJECT~PROGRAM TO input-hardware-name 

unteger-4 [ON PLUG integer-~]] 

PLACE [MAIN] {~ } UPPER 
SEGMENT IN MEMGRY 

LOWER 

[RELOCATE BY integer-6 WORDS IN LOWER MEMORY] 

[RELOCATE BY integer-7 WORDS IN UPPER MEMORY] 

GAPI OPEN IS xxxxx CAPI CLOSE IS xxxxxJ] 

bMIO ENTRANCE IS ~ 

COMMON~STORAGE A 1: xxxxx] 

~EGIN *COMMON~STORAGE N[ xxxxx ] 

CONVENTIONS 

1. An OBJECT~COMPUTER sentence is required in the source program. Within the 
OBJECT~COMPUTER sentence, a PLACE clause is required. IF PLACE IN UPPER 
clause is specified, a MEMORY SIZE 4 MODULES option must be specified. 

2. When giving the memory size, one module of memory is 4096 20-bit words. The 
entry for integer~l may be the numerals 1, 2, or 4. An error message will occur 
during compilation if the specified memory size is less than til£' size needed to run the 
compiled object program. 

@~" ~m)(ID ~~[ffi ~ ~~ __________ -----:::G=ECO:.:..:........M ---.:..:..II 
REFERENCE MANUAL 

-140-



OBJECT~-COMPUTER 
(Cont. ) 

3. The wordE> "hardware-name-n ... " are used to name hardware devices of the object 
computer. When applicable, integer-n is used to give the quantity of a particular 
hardware device. "Hardware-name-" may be any of the following standard names or 
their abbreviations. 

A UTOMA TIC PRIORITY INTERRUPT API 

CARD PUNCH CP 

CARD READER CR 

Ql§£ STORAGE UNIT(S) DSU(S) 

FLOA TING POINT HARDWARE FLPT 

RIGF SPEED (PRINTER} 
i PRINTERS HSP 

MAGNETIC (~~~~S) MT 

MOVE MOVE ----
PLl'G PL 

4. If the MOVE option is listed as a hardware name, the compiler will select ?_ppropriate 
object proc>;ram subroutines which employ the optional MOVE command durIng word 
moves. 

5. The ASSIGN clause is intended primarily for MAIN segments. Its usage determines 
which run--completion subroutine is included in the object program at the STOP RUN 
entry and 11so the output medium on which the object program is produced. The 
BRll)GE Il ('ompatible run'-completion subroutine (*RC) is produced whenever the 
complete object program is to be run from magnetic tape (options 1, 3, and 4 below); 
otherwise. the run-completion subroutine (RLC or RL*) is produced. RLC and RL* 
assume thlt the next program is in the card reader. RL* is produced when API is 
present. 

Option ASSIGN to: OVERLAY~ OUTPUT Run-Completion 
SEGMENTED Medium Subroutine 

1 No ASSIGN ~' Cards *RC 
2 CR N Cards RLC or RL* 
3 MT No MT *RC 
4 MT Yes Cards *RC 
5 DSU No Cards RLC or RL* 
6 DSU Yes Cards RLC or RL* 

# - illegal combination 

Option :1 nl"-y be used only when the total object program contains no independently 
compiled ~ie:;mcnts. Even if the total object program contains no independently com­
piled segnlcills. the user may prefer to use Option 1. In this case, the object program 
can be checked out from cards and thEn put onto magnetic tape via the BRIDGE IT 
Operating Sl'rvice System, CD225J1. 001. 

[' ~' GECOM - II 
~,~) -------------------·----------------------------RE-.F-F-,R-E~N~CE~_~MA~N-U~AL~ 

-141-



OBJECT~COMPUTER 

(Cont. ) 

If the total object program contains segments and is eventually to be run from mag­
netic tape, Option 1 or 4 should be used. After each segment deck is checked out, 
all segments can be consolidated onto magnetic tape via BRIDGE II. 

If the total object program is to be run from disc storage, Opl icon 5 or 6 should be 
used. After all decks are checked out, the total object progr;\JL can be put onto 
magnetic tape via BRIDGE II. The BRIDGE-to-DSU Absolutl' L'anslator (BRAT) 
programming routine, CD225E2.005R, is then used to place the program onto DSU. 

The OVER LA Y~SEGMENTED option should be specified in tht: \t1AIN segment ASSIGN 
clause whenever the total object program contains overlay se!,:'ments. Note that 
OVERLAY~SEGMENTED object programs cannot be assigned to) the card reader. 
They must be run from magnetic tape or disc storage. 

If a segment other than a MAIN segment is being compiled, the ASSIGN clause need 
not be given. If it is given, it serves as documentation only. 

6. Magnetic tape and plug numbers may be given using the words zero, one, ... , seven 
or the numerals 0, 1, ... ,7. 

7. The PLACE ... IN UPPER MEMORY option causes the compi!!'r to assign the body of 
object coding to the upper Bk words of a 16k memory. This d.)es not include common 
constants, file tables, COMMON~STORAGE subroutines, etc. The PLACE. .. LOWER 
option causes the compiler to assign the entire segment (exce:lt *COMMON~ STORAGE) 
to lower Bk memory. 

MAIN must be specified for a MAIN segment of for a total PI'( sram produced in one 
compilation (no independently compiled segments). If the MAI'\ option is not specified, 
the segment is assumed to be other than the MAIN segment. (Sf'e Procedure Division, 
Segments. ) 

B. To specify that an object program may be interrupted, the user must indicate the 
presence of Automatic Priority Interrupt (API) in the list of lUI (iware names. In­
clusion of the API hardware name or its abbreviation causes :lw \.»mpilation of an 
object program which can be interrupted by a priority program. It does not cause 
compilation of a priority program. API must be specified whellew'r DSU files are 
aSSigned. If any segments of a complete object program specLy A~in their 
OBJECT~COMPUTER sentence, all of the segments should lis' AI'J..as a hardware 
:iame. 

9. An interruptable object program turns API off before any typin~; and !.urns API on 
after completing any typing. The object program input/output l'outi:ws turn API off 
whenever functions must be executed which cannot be interrupted and turn API on 
after such functions are completed. 

10. The RELOCATE clauses cause the object program (main control load or overlay 
segments) to be displaced by the specified number of words from the nflrmal position 
in lower memory and by the specified number of words from the norm,'.: position in 
upper memory. The UPPER option may be used only when the PLACE .'lause 
specifies upper memory. See Procedure Division, Overlay Segmentation. 

An alternative method of displacing the object program does not requin' the RE­
LOCATE clauses. The user may manually punch the lower and upper relocation 
amounts into the type 1 card required by the Multicapability Modular Loadl'r II (MCML 
II Loader), CD225Bl. 006R. 

@ ~ 0 ~ m)(m ~[E [ffi ~ [E ~ ----------------RE-FE-R...::::E~~~~:.::::O~.!....IA~-UA.:.!.I~ 
-142-



OBJECT---COMPUTER 
(Cont. ) 

11. When API is specified for a MAIN segment, the object program card read areas be­
come 00400" and 006009 , The object :program or priority program card punch areas 
are 01000e and 012008 , The MCML n loader, depending on the modules used, can 
load with <'. relocation constant as low as 011169 for object programs with API. If 
buffered card punching is required at object time, either in the total object program 
or in a priority program, the main segment's relocation constant must be adjusted 
accordingly. The RELOCATE option ean be used to do this. Alternatively, the user 
may wish to punch the relocation amount into the type 1 card required by MCML II. 

Example: Normal loading starts at 011169 , Card punch buffering is required. 

RELOCATE BY 00092 WORDS IN LOWER MEMORY 

This causes the lower relocation constant to become 012528 , leaving 
enough room for the second punch buffer at 012008 • 

12. In the RELOCATE clauses, integer-6 and integer-7 must be 5-digit decimal numbers, 
zero filled on the left if necessary. 

13. The following conventions apply if API is included in the list of hardware names and 
the MAIN option is specified in the PLACE clause: 

• If neither API OPEN nor API CLOSE clauses are given, the compiler provides 
the Automatic Program Interrupt (API) Executive, CD225J4.000R, as an object 
program subroutine and sets up the API open and close linkage via the loader 
so that the object program will transfer control to the API Executive to initialize 
the API function at the start of the program and to perform the close function at 
at the STOP RUN sentence. 

• If th~ API OPEN clause is given without an API CLOSE clause, the compiler will 
not include the API Executive among the object program subroutines, but the 
obje.:;t program will transfer to the specified absolute decimal address to ini­
tialize the API function at the start of the program. However, no API close 
function is performed at the STOP RUN sentence. 

• If beth API OPEN and API CLOSE clauses are given, the compiler will not in­
clude the API Executive among the object program subroutines but the object 
program will transfer to the absolute decimal address specified for the OPEN 
clause to initialize the API function at the start of the program and to the ab­
solute decimal address specified for the CLOSE clause to perform the close 
function at the STOP RUN sentence. 

• Whenever the API OPEN entrance is given, it is assumed that prior to the load­
ing of the object program the API Executive will have been loaded into its fixed 
memory area as part of a priorIty control program. 

Linkage subroutines AP2 and/or MI2 are required in the object program when­
ever th~ API OPEN clause is given. To obtain the variable AP2 and/or MI2 
subroutmes, the user should put console switch 1 down for the compilation 
whenever the object program is punched on cards. 

• The API CLOSE clause may be given only if the API OPEN clause is given. The 
API CLOSE clause need not be I?;iven, however, if the object program is to be 
one in a string of main programs which are loaded while a priority program is 
operating. In this case, only the last main program of the string would have the 
API CLOSE clause. 

-143-



IoBJE'CT~COMPUTER L_ (Cont. ) 

14. If DSU files are to be processed, the SIOS (MIO), CD225E8.000, will be supplied by 
the compiler as an object program subroutines unless an MIO ENTRANCE clause is 
given. The MIO ENTRANCE clause must never be given unkss the API OPEN en­
trance is also given. When the MIO ENTRANCE clause is gin'l, the compiler will not 
include SIOS (MIO) in the object program subroutines. Instead, the object program 
will transfer control to the entrance to call SIOS (MIO). SIOS (VIIO) is ~lssumed to 
have been loaded into its fixed memory area as part of a prio "i.y ,'ontrul program. 

Note: The address to be given should be an absolute, even decilllainumber. The 
-- actual entrance to MIO will be that number plus one, 

15. The BEGIN COMMON~STORAGE clause causes the compiler tu assign the designated 
lower 8k memory location as the upper limit of the COMMO~' STORAGE area. 

16. The BEGIN *COMMON~STORAGE clause causes assignmentlf tll(' d,?signated upper 
8k memory location as the upper limit of the *COMMON~ :~T('HAGE .,r("L 

17. In the clauses where xxxxx appears, xxxxx represents a 5-dil',it decimal address, zero 
filled on the left if necessary. For *COMMON'~STORAGE, i1 this address is 08191 
or less, it is assumed to be relative to upper 8k memory. 

18. An error message will occur during compilation if no 10catiOl! is specified in a BEGI~ 
*COMMON~STORAGE or BEGIN COMMON~STORAGE claus", 

19. When a MAIN segment has been assigned to disc storage, BR.'>"" assigns a directory 
table to the object program. The table contains the DSU addl ,'sses of any overlay 
segments required at object time. The table is placed below 'Common~ Storage if 
one has been specified. If there is no *Common~Storage, th,' 'able is placed in lower 
memory. Thus, the user may wish to assign a *Common~ St'Jr':lge address (even 
though it is not required by the objeet program) to force the directory table into upper 
memory. 

EXAMPLES 

1. OBJECT~COMPUTER. 225, MEMORY SIZE 2 MODULES, 8 1\L\G~TIC TAPES, 1 
HIGH SPEED PRINTER, ASSIGN OBJECT~PROGRAM TO MAG~FTIC TAPE FIVE 
ON PLUG ONE. 

2. OBJECT~COMPUTER. 225 8 MT 1 HSP ASSIGN OBJECT~ PHO,;HAM MT 1 PL 1. 

3. OBJECT~COMPUTER. 2256 MT, 1 CR, 1 CP, 1 HIGH SPEED PHI\iTER, ASSIGN 
OBJECT~ PROGRAM TO MT TWO ON PL 1. 

4. OBJECT~COMPUTER. 225 MEMORY 4, HSP CR CP 6 MT FLPT ASSIGN OBJECT~­
PROGRAM CR, PLACE SEGMENT IN UPPER MEMORY, BEGIK 'C'01\TMON~ 
STORAGE AT 16000. 

5. OBJECT~COMPUTER. 225 MEMORY 4, HSP, CR, CP, 6 MT DSt;S, c'LPT, API, 
ASSIGN OVERLAY~SEGMENTED OBJECT'~PROGRAM TO DSU :3 PUG 0, PLACE 
MAIN IN UPPER, RELOCATE BY 00092 LOWER, API OPE~ IE, 08020, ':,[>1 CLOSE 
IS 08009, BEGIN COMMON~STORAGE AT 08000. 

6. OBJECT~COMPUTER. 225 MEMORY 4, HSP, CP, API, CR, MOVE, 6 MT, FLPT, 
1 DSU, PLACE MAIN IN UPPER MEMORY RELOCATE BY 02000 LOWER, RELOCATE 
BY 04172 UPPER MEMORY, API OPEN IS 07116, API CLOSE IS 07127, MH, EN­
TRANCE IS 06924, BEGIN COMMON~STORAGE AT 06900, BEGI~ *COMT\iON~ 
STORAGE AT 16300. 

-144-



I ~·O-CONTROL I 
FUNCTION 

The I~o-CONTROL sentence is used to indicate nonstandard label checking, rerun information, 
those tapes which contlin more than one file, and assignment of more than one DSU file to the 
same buffer area. 

SENTENCE FORMAT 

I~o-CONTROL:. [RERUN 

EVERY 

[ON output-hardware-name integer-l .QN PLUG integer-~ 

{
END OF REEL J ] 
END OF REEL OF file-name-l 
integer-3RECORDS OF file-name-l 

~ULTIPLE !ILE C~~;;UT} TAPE CONTAINS file-name-4 

~OSITION integer-4] 

[~OSITION integer-5 ] 

[file-name-5 

.. J] [MULTIPLE FILE .. J 
r J1NPUT } 
lSAME AREA \PUTPUT 

r 

[ {iNPUT} 
\':OUTPUT 

file-name-2 AND 

.. ~ [SAME 

(INPUT ). 
\.:OUTPUTJ 

.. J 
file-name-3 

tUSE ,ection-name-l AFTER STANDARD ERROR PROCEDURE ON INPUT ~file- name- 6 ] 

DSU OUTPUT 

.1!§!! section-name-2 AFTER STANDARD 

LABEL PROCEDU.RE ON file-name-J' 

@~ c ~@@ ~~[ffi ~ ~~ __________ ~G~ECOM!:!.....:.-...=.=..II 
REFERENCE MANUAL 

-14Ei-



I~O-CONTROL 

(Cont. ) 

CONVENTIONS 

1. This sentence is optional and is required only when one of the above clauses is needed 
for completing a source program. 

2. If the RERUN option is specified, it is necessary to indicate the rerun point and 
where the rerun memory dump is to be written. 

Memory dumps are written either at the end of each reel of an output file or on a 
separate rerun tape. 

If the memory dump is to be on a tape other than the output file tape, the tape number 
must be specified as the hardware-name after the rerun is indicated: 

RERUN ~ON output-hardware-name integer-I ~PLUG integer-2] 

Rerun points may be established at: 

• Every end of reel of file-name-I, where file-name-I is a particular 
output file, and the memory dump is to be placed at the end of each 
reel after the end-of-tape reflector. In this case hardware-name is 
not required. For example, RERUN EVERY END OF REEL OF 
UPD~ INVNTRY. 

• Every end of reel of file-name-I; where file-name-I is Ul input or 
output file and the memory dump is to be placed on a separate rerun 
tape. In this case, the hardware-name must be specifif'd, 

• A number of records (integer-3) of an input or output file have been 
processed. In this case hardware-name should be specliied. Integer-3 
records is the physical record (block) count and not the logical 
record count. 

• Every end of reel; this pertains to all output files in the ~;,)ur'~e pro­
gram. Hardware-name must be specified. 

RERUN EVERY integer-3 RECORDS and RERUN EVERY END OF 
REEL clauses must not both be stated for the same file. 

3. The MULTIPLE FILE option is requ.ired when mar e than one file silares the same 
physical reel of tape. Regardless of the number of files on a Sing-Ie r0el, only those 
files which are used in the object program should be specified. If all file names 
have been listed in consecutive order, the POSITION option lwed not be ~iven. How­
ever, if there are any intervening files on the tape not referellc,~d by th •. program, 
then position must be given for each file referenced. All labels must be' either pre­
sent ur omitted on a multiple file tape. If labels are present, the positi)lls for output 
multiple file tapes are placed into the labels of the individual tiles. ThlTf' can be any 
number of multiple file input or output tapes. However, all files listed hI' each tape 
must be contained on a single reel. Optional files are not per mitted on l:lultiple file 
tapes. Note that not more than one file on a multiple file tape can be proe,ossed at 
the same time, that is, a file must be closed before another file on the SaDle tape can 
be opened. 

@~ 0 ~@@ ~~[ffi ~ ~~ ----------------RE-FE-cRE...:;:~~~~~O~~1 ~=-UA=.:..I~ 

-146-



I~O-CONTROL 

(Cont. ) 

4. There are two types of USE clauses for files not assigned to the DSUS. The first, 
USE ... AFTER. .. ERROR procedure, applies to input files. If a tape error occurs 
during reading, a standard error procedure attempts to successfully perform the 
read five times. When it is impossible to successfully read the block, the data from 
the first logical record is unpacked and made available to the programmer for use in 
the AFTEH section. He may type the key fields or any message. A transfer of con­
trol is made to the AFTER ..•. ERROR section for each logical record in the block so 
that all key fields in the bad block may be recorded. The next block is then read and 
processing continues. 

The second USE clause, USE ... AFTER ..• LABEL, allows the programmer to enter 
a section in which he may access the contents of an input label record, or calculate 
values for an output label. When this clause is used on input, the contents of the label 
record arc unpacked and available for use by the AFTER Section. In the USE clause, 
section- name-2 is executed as follows: 

• After the standard input label check. 

• Aftel: :l standard output label is ereated but before it is written. 

• When both beginning and ending labels are being checked, do not specify 
BEGINNING and ENDING clauses. 

5. The USE ... AFTER ... ERROR clause may be specified for files assigned to DSUS. 
After an e::ror is detected (see SIOS (MIO), CD225E8.000), control is transferred to 
the sectiOlI Hamed so that the program can be brought to an orderly halt. In the case 
of an input file error, a return from the section causes the program to accept the data 
in the input buffer; in the case of an output file, a return from the section allows the 
program to (:ontinue. Under no circumstances should the section attempt to use the 
DSU. 

6. USE claus.~s may not be specified for a Journal Tape file. 

7. The SAME AREA option may be used to assign more than one DSlJ file on the same 
buffer area. More than one of the files aSSigned to the same area may be open at the 
same time. It is the programmer's responsibility to know which file occupies the area 
at any gin'n time. When an input file is being read, updated, and written as an output 
file from thl' same area, the description of the output file should be the same, field by 
field, as t'1e description of the shared input file. A file described as buffered cannot 
share the same area with an unbuffered file if they are open at the same time. When 
DSU filesue sharing the same area a.nd are open at the same time, they must be 
aSSigned L) the same plug. 

EXAMPLES 

1. I~O---COl\TROL. RERUN ON TAPE '7 ON PLUG 1 EVERY END OF REEL OF 
MASTER FILE. 

2. I~O~COl\TROL. RERUN ON TAPE I) ON PLUG 1 EVERY 1000 RECORDS OF 
MASTER~·PLCY, USE LABElr--RTN AFTER STANDARD ENDING REEL LABEL 
PROCED1.:RE ON TRANS~ FILE. 

3. I~ O~ COl\ TROL. MULTIPLE FILE INPUT TAPE CONTAINS EMP~ FILE POSITION 
6, PAYROL~FILE POSITION 8, TAX~FILE POSITION 11. 

@ ~ 0 Ci)) rm~rrr C~ IC r5H c: (~ CECOM - II \~L£ ~\\:U\0 ~~~Jlrl~! l,-\:.~) -------------------------::.::.!~:....:...-=-=­
REFERENCE MANUAL 

-14'7-



I -O-CONTROL 
(Cant. ) 

4. I~o-CONTROL. SAME AREA INPUT STK~MASTER OUTPUT OUT~STOCK, 
SAME AREA INPUT TRAN~FILE, INPUT INQUIRY, AND INPUT SCRATCH~PAD. 

5. I~o-CONTROL. SAME AREA INPUT STK~MASTER AND OUTPUT OUT~STOCK, 
INPUT FIN~FILE OUTPUT FINAN, SAME AREA OUTPUT WORKING----FILE, 
OUTPUT RECAP. 

-148-



FIL E-CONTR OL 

FUNCTION 

The FILE~CONTROL sentence identifies the input/output files and provides for their assignment 
to specific input/output hardware units. 

SENTENCE FORMAT 

FILE~CONTROL. [OPTIONAL] file-name-l ASSIGN TO 

integer-l [ON £!&.Q..integer-~ rOR QE.I. LINE PRIN~ hardware - name - 1 

SELECT 

Garcware-name-2 .. J CBUFFE~ [FOR MULTIPLE REEL] ~ELECT .. J. 
CONVENTIONS 

1. The FILE~ CONTROL sentence is optional if the source program does not process 
input/ output. 

2. The word OPTIONAL is required for input files which are not necessarily present each 
time the object program is run. Optional files may not be contained on multiple file 
tapes, output tapes, or aSSigned to the card reader or DSUS. 

3. All input alld output files used in the program must be aSSigned to an input 0" output 
unit (hardware-name). If plugs are not specified, plug 1 is assumed for magnetic 
tapes and plug 6 for printer. 

4. The MULT[PLE REEL option must be included when a magnetic tape file exceeds one 
reel of tape. All reels of a multiple reel file must be mounted on tape units associated 
with the sanw tape controller. A single magnetic tape unit is also permissible for a 
multiple reel file. All multiple reel input files must contain the standard magnetic 
tape labels. 

5. The same tape unit must be assigned to all files existing on the same reel. It is not 
necessary to mention every file-name on a multifile reel. Only those file-names used 
and their reLltive position (in ascending order) on the reel are needed. 

6. Buffering is supplied for those files fo:r whi ch the BUFFER option is stated. It is 
recommended that short files such as error files and tables not be buffered, making 
more efficient use of storage in the ob:iect program. 

7. The OF F LINE phrase must be specified for report tapes to be created by the Report 
Writer for deferred printing. This applies whether the off-line printer or Peripheral 
Package (PIP), CD225E1. 009, for on-line printing is employed. In this case, file­
name-l is the name specified in the Report File Definition entry in the Report Section. 
(See Report -Nriter Section. ) 

@ ~ 0 ~(ID(ID ~r~ [~l [:~;~ ________________ .....:G:.::.::EC:..::::OM~-:.....:I:.=..I 
REFERENCE MANUAL 

-149-



F1LE--CONTROL 
(Cant. ) 

EXAMPLES 

1. FILE~CONTROL. SELECT MASTR~PAYROL, ASSIGN TO TAPE 1 PL 1, 
MULTIPLE REEL, SELECT TIME~-CARDS, ASSIGN TO MT 4 PL 1, SELECT 
NEW~ MST~ PR, ASSIGN TO MT 1 ON PLUG ONE, TAPE 2 PL 1, MT 3 ON PLUG 
1 BUFFER FOR MULTIPLE REEL, SELECT PAYROL~RGSTR, ASSIGN TO TAPE 
4 ON PLUG ONE TAPE FIVE ON PLUG ONE BUFFER MULTIPLE, SELECT 
UNION~DUES ASSIGN TO MT 6 PL 1, SELECT BOND-REGISTR, ASSIGN TO MT 
7 PL 1 BUFFER. 

2. FILE~CONTROL. SELECT MASTH~PAYROL ASSIGN MT 1 MT 2 MULTIPLE 
SELECT TIME~CARDS ASSIGN MT 3 SELECT NEW~MST~PAYR ASSIGN MT 
4 MT 5 MULTIPLE SELECT PAYR()L~RGSTR ASSIGN MT 6 MT 7 MULTIPLE 
SELECT UNION~DUES ASSIGN MT 1 PL 2 SELECT BOND~REGISTR ASSIGN 
MT 2 PL 2. 

-150-

___ ...;;.G~FCOM - II 

REF ':RENeE :l".NUAL 



I DSU - cONTROLI 

FUNCTION 

The DSU~CONTROL sentence identifies the input/output files assigned to the DSUS and describes 
their usage. 

SENTENCE FORMAT 

DSU-CONTROL. [SELECT JOURNAIr-TAPE ASSIGN TO MT integer-l [Q!!~ integer-2~ 

SELECT ~EQUENTIALJ WLOCKED ] file"'~name-1 

ASSIGN TO lJT A~ DSU integer~3 ~N PLUG integer~~~su ••. J 
~READ AFTER WRIT~ ~SE field-name-1 FOR UNIT NUMBE~ ~ESERVE ALTERNATE ARE~ 

~ELECT ... .J 

CONVENTIONS 

1. The DSU~,CONTROL sentence follows the FILE~CONTROL sentence. 

2. The SELECT JOURNA~TAPE option is used to assign the Journal Tape to a 
magnetic tape unit. (See Appendix J. ) 

3. The JOUIi:NAL TAPE (JT) option may be exercised by output file~name assignments 
to indicate that each time a record or block of the file is recorded on the DSUS, the 
same information plus two words is tD be written on the Journal Tape. The first 
additional word contains the disc storage unit code in bits 5-7 and the plug number in 
bits 11-13. The second additional word contains the DSU address where the recording 
was done. (See Tape-to-DSU routine (TAPER), CD225E8. 003. ) 

4. The recording mode of the Journal Tape is always binary. Label information should 
be given in the Data Division under the fixed file name JOURNAL~TAPE. 

5. The Journal Tape may be opened or closed as any other tape file. However, unlike 
other files, it does not have to be opened or closed. (Beginning-tape label will not 
be written on the Journal Tape and it will not rewind if it is not opened. ) 

6. A file may oe assigned to more than one disc storage unit, but all of the disc storage 
units used by the file must be on the same plug. DSU files should be assigned to 
plugJLor,L If no plug is specified, plugJLis assumed. 

7. The USE fil'ld~ name option should be included only when a file is assigned to more 
than one disc storage unit. The field named must be a Working-Storage or Common­
Stroage field of description 9 (n) where n is less than or equal to 5. The contents of 
the field at object time determines which disc storage unit is being addressed. The 
field must contain a 0, 1, 2, or 3. The programmer must ensure that the field 
contains tht~ proper unit number at object time. 

@ ~ a P2©~ ~~[~ [~ U [~~~ ________________ ....:::G~EC~OM:!.....:-:_.I:.=..I 
REFERENCE MANUAL 

-151-



DSU - CONTROL 
(Cant. ) 

8. Output files may use the READ AFTER WRITE option. When u~ed, the information is 
parity checked with a special read after it has been written on the DSU. This requires 
an additional disc revolution for the read back. 

9. The SEQUENTIAL option is specified when it is desired to prucpss the file in a se­
quential manner starting at some DSU address. Only one HEAI= Y sentence needs to 
be issued to assign the initial DSU address. Thereafter, when additional input blocks 
are needed from the DSU or an output buffer is full, a new DSIJ address is developed 
by the object program. The number of frames required for the block is added to the 
DSU address to develop a new DSU address. If the new address is illegal (frames 96--
127) a decimal 32 added to the address to make it legal. 

10. The RESERVE option may be used only with files described bJ the SEQUENTIAL 
option, and allows the assignment of a second buffer area. 

11. If the records of a file are blocked, the BLOCKED option must be specified. 

EXAMPLES 

1. DSU~CONTROL. SELECT JOURNAL~TAPE ASSIGN TO MT 6 PLUG 1, SELECT 
MASTER ASSIGN TO JT AND DSU ° PLUG 0, SELECT SCRATCH~PAD ASSIGN TO 
DSU ° PLUG 0, SELECT TRAILER ASSIGN TO JT AND DSU ] PLLJG 0. 

2. DSU~CONTROL. SELECT SEQUENTIAL, BLOCKED SEARCHc~DSUS ASSIGN TO 
DSU ° PLUG 0, DSU 1 PLUG 0, DSU 2 PLUG 0, DSU 3 PLUG), USE CURRENT FOR 
UNIT NUMBER, RESERVE ALTERNATE AREA. 

3. DSU~CONTROL. SELECT STOCK~-FILE ASSIGN TO DSU 3 1'1. 0, DSU 2 PL 0, USE 
STOCKUN FOR UNIT NUMBER, SELECT OUT~STOCK ASSIG:---i TO DSU 3 PL 0, DSU 
2 PL 0, READ AFTER WRITE, USE STOCKUN FOR UNIT NlMBER. 

@j~ 0 ~(QXQ) ~~[ffi~ ~~ ___________ ----..::;G~ECllM:..:.__-_=_=_1I 
REF>~RENCr MANUAL 

-1:52-



COMPUT ATION~MODE 

FUNCTION 

The COMPUTATION~MODE sentence is used to indicate that data is to be in floating point format 
and that calculations are to be performed using floating point arithmetic. 

SENTENCE FORMAT 

COMPUTATION- MODE. USE (HARDWARE 1 (FLOATING POINT) • 
lPROGRAMMEDj FLPT 

CONVENTIONS 

1. This sentence is optional. 

2. Hardware floating point calculations are done in the Auxiliary Arithmetic Unit. 

3. All data is stored in floating point format except that which is described as integer, 
fixed point, and true-false in the Integer, Working-Storage, Common-Storage, and 
True~ False Sections of the Data Division. 

-153-





8. IDENTIFICATION DIVISION 

PURPOSE 

The Identification Division enables the programmer to label the source program as well as the 
outputs of a compilation. 

ORGANIZATION 

The Identification Division may consists of one or more sentences. The division is indicated on 
the sentence form by the following heading which st.arts in Column 8: 

IDENTIFICATION DIVISION. 

The heading is followed by a period but no other information is entered on the same line. 

The sentences which may be entered in the division are: 

PROGRAM - ID. 
NEXT~ PROGRAM. 
AUTHOR. 
DATE~COMPILED. 

INSTALLATION. 
SECURITY. 
REMARKS. 

Each sentence is written on the GECOM sentence form beginning in Column 8 or indented any 
number of columns. Each of the above sentence names is followed by a period and at least one 
space before the sentence itself. 

CONVENTIONS 

1. The PROGHAM~ ID sentence is required and may consist of nine or less BCD type­
writer characters as the name of the program. A space (blank), comma (,), or 
period(. ) is interpreted as the end of the name. 

The compiler inserts the run name left justified into the header card of the object 
program. If the *RC run-completion subroutine (see STOP verb) is required, the 
run name is placed into the *RC calling sequence. The run name is also inserted 
in the headi.ng on each page of the Edited List. 

2. The NEXT~-l'ROGRAM sentence is optional and may consist of nine or less BCD 
typewriter characters representing the name of the next run to be executed at object 
time. The name must be terminated by a period. If the *RC run-completion sub­
routine is l'c\[uired, the next run name is inserted into the *RC calling sequence. 

(riJ rc: (ij) nC':" In1 I'Q? Ic' iri', l Ii:" '~ GECOM ~ II 
~Lr:; 0 (6©~~) ~lc::,Li'~.J!e (0) -------------------------........:~~-=-...!..!.. 

REFERENCE MANUAL 

-155-



3. The AUTHOR sentence is optional. The sentence itself may contain 30 or less BCD 
characters followed by a period. 

If given, the author's name will appear in the heading on each page of the Edited List. 

4. The DATE COMPILED sentence is optional. The sentence may consist of 30 or less 
characters followed by a period. 

If given, the date of compilation will appear in the heading on each page of the Edited 
List. 

5. The above four sentences may be written in any order. They may be followed by any 
other sentences which the compiler simply reproduces on the Edited List. 

6. The INSTALLATION, SECURITY, and REMARKS sentences are all optional, and if 
used, may contain any information the programmer requires to be reproduced on the 
Edited List. 

EXAMPLE 

IDENTIFICATION DIVISION. 
PROGRAM-ID. PAYROLL 13. 
NEXT~PROGRAM. PAYROLL 14. 
AUTHOR. GEORGE GECOM. 
DATE~COMPILED. APRIL 25, 1961. 
INSTALLATION. GENERAL ELECTRIC. 
SECURITY. CLASSIFIED. 
REMARKS. GROSS TO NET RUN. 

-156-



9. DATA MANIPULATION 

OBJECT PROGRAM DATA STORAGE AND MANIPULATION 

Data Storage-General 

The following explanations and descriptions are presented to assist the GECOM user in under­
standing his object program and improving its efficiency. The compiler uses the field data 
descriptions to determine storage mode. The data images directly affect the coding produced for 
object data manipulation. Carefully written data descriptions are necessary to enable the compiler 
to produce an accurate and efficient object program. 

Numeric Fields 

A numeric field has a value in relation to other numeric fields or zero. The data image of a 
numeric field represents the maximum range of its value. A numeric field must be described 
using only the symbols \), " -, T, I, K, R, ., V" P, E, $, comma(,), Z, and *. 
The data image of a numeric field is used by the compiler to determine the range and decimal 
point alignment when used in conjunction with other numeric fields. A field should be described 
as numeric only when the compiler must know its range and decimal point alignment. 

Numeric constants appearing in the Constant Section are stored as numeric fields. 

Alphanumeric (or Alphabetic) Fields and Elements 

An alphanumeric fielc ur element consists of any mixture of characters comprising the computer's 
character set. This type of field or element should be thought of as a string of characters. It 
has no "value" as associated with a numeric field. An alphanumeric field must be described using 
only the symbols A and lor X. 

Literal constants appearing in the Constant Section are stored as alphanumeric fields. 

Procedure Division Numeric Constants 

Numeric constants mol) appear in procedure sentences in conjunction with numeric fields. The 
compiler produces a numeric field from the numeric constant as written. The numeric constant 
is stored in the mode Il1dicated in the data description of the numeric field. Numeric constants 
must be written with the same care as numeric filelds are described, since the compiler must, in 
effect, create a data image for the numeric constant. 

The only sentence in which a numeric constant may appear without an accompanying numeric field 
is in an ADVANCE S('nLence. 

GECOM - II 

REFERENCE MANDA L 

-157 -



Procedure Division Literal Constants 

Literal constants may appear in procedure sentences in conjunction with a.lphanumeric (or alpha­
betic) fields or elements. An alphanumeric field is produced by the compilf~r from the literal 
constant as written. Literal constants always appear as strings of charactErs and should be 
thought of as alphanumeric fields. Literal constants may appear without ;1l1 accompanying alpha­
numeric field or element in the STOP and WRITE, Option 1, sentences. 

Figurative Constants 

Figurative constants may be used in procedure sentences to imply strings 0:: characters. 

Figurative constants may be used in conjunction with either alphanumeric 01' numeric fields. If 
used with an alphanumeric field or element, a string of characters as reprEsented by the figurative 
constant is created as an alpahnumeric field. If used with a numeric field, the figurative constant 
is stored according to the data image of the numeric field (for example, "ones" used with a numeric 
field data image of 999V999 yields 111 Vl11 as a numeric constant). The created numeric constant 
is stored in the same mode as the numeric field. 

Figurative constants should be used only as a convenience for implying strings of characters. 

Process Storage 

The compiler analyzes the Procedure Division to decide when an input field or element should be 
stored outside of the input record for more efficient Procedure Division 1l".a'lipulation. This 
storage area (outside of input, Working Storage, and output areas) is called~~rocess Storage since 
it contains the fields and elements being processed by the Procedure Divisic,n. Process Storage 
is a compiler generated extension of Working Storage. 

Any laput field or element referenced by a procedure sentence other than \1OVE, EXCHANGE, or 
WRITf<~, Option 1, sentences is placed in Process Storage in a format comlMtiI.le with data mani­
pulation techniques and the computer instruction repertoire. 

All numeric fields placed in Process Storage are stored in either fixed or fl:JaJing point binary 
mode, depending on the COMPUTATION MODE sentence in the Environment Division and the 
True-False and Integer declarative sections. If the computation mode is fleating point, all 
numerics other than integers and true-false variables are stored in floating point binary mode. If 
the COMPUTATION MODE sentence is absent from the Environment Division, all numerics are 
stored in fixed point binary mode. Integers and true-false variables are always stored in fixed 
point binary mode at a binary scale of 19. 

All alphanumeric fields placed in Process Storage are stored in BCD mode, left justified with no 
significance as to fill on the right. Alphanumeric fields in Process Storage are always unpacked. 

Array fields appearing in Process Storage are stored consecutively. Numeric arrays are stored 
under the same conventions that determine numeric field storage. Alphanumeric arrays are 
stored unpacked in an integral number of words. 

@[E 0 ~ (Q)(Q) ~[E [ffi ~ [E ~ ---------------RE-F-ER-.:;E~~~~:.::.:.O~~~-u~:.:..~ 

-Hi8-



Working Storage 

Fields and arrays named in Working Storage are stored under the same conventions as Process 
Storage fields and arrays. 

The compiler analyzes the Procedure Division to determine if a Working Storage field is referenced. 
All fields described under the Working Storage Seetion are assigned memory space if referenced 
in any procedure sentence. If a Working Storage field is never referenced, it is never assigned 
a storage area. 

Elements of Alphanumeric Fields 

An element when used in procedure sentences, other than the EXCHANGE, MOVE, and WRITE, 
Option 1, sentences is stored separate from its parent field as an alphanumeric field. When the 
element is a destination under the MOVE sentence, the compiler provides for updating the parent 
field. Also, the compiler provides for updating any elements that overlap the original element via 
character position. When the parent field is a destination under MOVE or EXCHANGE sentences, 
the compiler provides for updating all elements of the parent field. 

Object Program Action in Executing a READ Sentence 

The following actions rake place when the object program executes the coding corresponding to a 
READ, Option 2, sentence: 

1. The next logical record (or *group) from the specified file is made available to the 
Procedure Division. 

2. All fields and elements that have been assigned to Process Storage by the compiler 
are moved from the input record to their assigned locations in Process Storage. An 
input array is moved to consecutive storage locations. 

3. BCD numeric input fields being moved to Process Storage are converted to fixed or 
floating point binary mode depending upon the mode assigned by the compiler. 

4. Alphanumeric fields are moved and unpacked to integral word storage. When necessary, 
elements are unpacked from their parent fields to separate storage. Mter the READ 
sentence is executed, any fields or elements from the previous input record of the same 
type have oeen destroyed. The user should "save" input fields (if required for later 
use) by moving them to Working Storage before executing the READ sentence for the 
next record. 

Object Program Action in Executing a WRITE Sentence 

The following actions take place when the object program executes the coding corresponding to a 
WRITE, Option 2, sentence: 

1. The output record (or *group) is assembled from the first described field to the last 
described field. 

2. The WRITE sentence acts as a gather move from input records, Process Storage, 
and Working Storage depending upon output qualifiers and the storage assignments 
for the output fields. 

@~c~WJ(Q) ~~[ffi~~~---------------RE-F-ER"'::E~:'::;:~~:":::'~~--':u~:":"~ 

-15\}-



3. When necessary, numeric fields are converted from fixed or floating point binary to 
BCD numeric with editing if specified in the output field data image. 

4. Alphanumeric fields are moved to the output reeord or group 'vith truncation or 
space fill to conform to the output field data images. 

5. If no data image appears in the output record description for 1 Ill: field, the field is 
moved without alteration to the output record or group. 

The WRITE sentence does not destroy the fields described under the output record or group. 
These fields or elements are still available at their sources (not in the output record or *group) 
for Procedure Division manipulation. 

Where fields named in output are in an input record, the compiler determines the most efficient 
type of move to make (if the field has an associated Process Storage area. 

1. If the output field is alphanumeric and has been assigned a Process Storage area, it 
is always moved from Process Storage. 

2. If the output field is numeric and binary, it is always moved from Process Storage. 

3. If the output field is numeric and BCD, it is moved from the input area unless the 
output field has ever been a receiving field, in which case it is moved from Process 
Storage. 

Dating 

If date symbols are not used the object program expects to find the six BCD date characters in 
locations 1076a and 1077e • 

BINARY SCALING 

The compiler stores all data that is numerically described into two GE-200 Series words. In­
tegers and true-false variables are stored with a fixed binary scale of 19, with the second GE-200 
Series word zero filled. 

Fixed point numbers, which are represented as decimal numbers on extern2.l media, are read into 
a GECOM program and converted, if necessary, to binary numbers. At compilation time, the 
data image of the decimal number is examined to determine if the position of the decimal point 
permits a binary point of 19. The number is stored in two GE-200 Series words, if possible, 
with a binary point of 19. This is standard GECOM scaling. 

If the number of digits to the left or right of the decimal point (or assumed decimal pOint) in the 
data image is too large (exceeds 5) to allow a binary scale of 19, the scale as shown in Figure 11 
is assigned. 

-HiO-



DATA DESCRIPTION OF 
DECIMAL NUMBER 

Number of Number of 
Integer Digits Fraction Digits 

o to ') o to 5 
1 to 5 0 
0 1 to 5 
0 11 
0 to 1 10 
0 to 2 9 
0 to 3 8 
0 to 4 7 
0 to 5 6 
6 1 to 5 
7 1 to 4 
8 1 to 3 
9 1 to 2 
10 1 
6 to 11 0 

Figure 11. Binary Scale Assignment 

EXAMPLE: 

If the data image is: 2 words of memory are: 

999V99 

99999V99 

99999999V9 

Use of Scaling Factor 

word1: 999 
word2: 99 

word1: 99999 
word2: 99 

word1: 99999 
word2: 9999 

GECOM BINARY POINT 

19 
19 
19 
1 
5 
8 
11 
15 
18 
21 
2S 
28 
31 
3S 
38 

and binary scale is: 

19 

19 

28 

The GECOM scaling factor, S, is used in conjunction with fixed point data images which exist 
on external media as nonstandard binary numbers. The number is nonstandard if: 

• It is only one word length, or 

• It is two word lengths, but its scaling does not follow the above table. 

@ ~ 0 ~(Q)(ID ~[E [ffi ~ [E~ ----------------RE-FE-R~E~.::.:~~::;::::!.....:~:....,;u~~~ 
-161-



The binary scaling factor for nonstandard input data must be known and described in the Data 
Division: 

• A 1 or 2 in the format column to indicate the nonstandard data <ere one or two 
word lengths, and 

• An S and the binary scale of the nonstandard data must follow the data image: 
999V99S28 

The data may be written from a GECOM program by indicating the binary scale in the same 
manner. For instance, 99999V99 would ordinarily have a binary scale of 19. If the data is to go 
to tape with a nonstandard scale, for instance 15, it must be indicated in the data image column 
as 99999V99S15. 

The S can also be used in conjunction with M on input files to force a given internal scale, for 
example, M99K9S38 forces a scale of 38 instead of 19 in process storage. This technique may 
be used on card or tape files. 

Use of 1 or 2 in the Format Column 

When the 1 is used, the binary scale will not exeeed 19. 

The scaling faetor and the 1 and 2 in the format column may now appear in output files in addition 
to input files and Working Storage. 

Regardless of the binary scale of the data on the external media, the data ,u'e stored internally 
in two GE-200 Series words with the binary seale as indicated in the abov(, table. The scaling 
factor, S, is not intended as a tool for manipulating the internal binary Selle. Figure 12 gives 
examples of external and internal storage. 

--
Table 9. External and Internal Storage 

Storage 
Format 
Column Data Image External Internal 

1 99V99S5 I =:J I ] [ I 
Sl 5/\ 19 8 19' S20 38 

1 9V9S4 I =:J I ] [ I 
Sl 4/\ 19 8 19' 820 38 

1 999V99816 I I I ] I I 
81 16/\ 19 81 19 820 38 

2 999V99828 I I [ ] I ] L I 
81 19 820 28/\ 38 81 19, 820 38 

2 999999V9S 'u I I [ I I ] [ I 
81 19 820 24/\ 38 81 19 82° 21 " 38 

Figure 12. External and Internal Storage 

@ Ie ® rRIrRI (ci? Ie rID n Ie (ci? GECOH - II ~~D6®® ~~@U~~----------·------------------R-EF-,q-'EN~C~El~~N-U~AL 

-162-



Integer Arithmetic 

Though the scaling factor may not be used to indicate internal scaling, it is possible to force a 
binary point of 38 when necessary for accuracy in decimal representation of a binary numeric. 

The loss of accuracy in decimal places is due to conversion of decimal fractions to binary fractions 
in binary computers. In this conversion, representations of decimal fractions become endless 
binary numbers. Bec<l.use this binary fraction is limited by the binary scale assigned to the field, 
it must be truncated. Therefore, for accuracy, the data must be described as integer and the 
fractional part must appear to the left of the decimal point. For example, instead of an image of 
9(9)V99, an image of 9(1l)V could be used. The 9(1l)V image forces a binary point of 38 to be 
carried internally resulting in all arithmetic operations being carried out in integer arithmetic. 

If the field is to be corverted to BCD at output time, it must be divided by 100 and described in 
Working Storage with a decimal point. The field (qualified, if necessary) may then be named in 
the output files. 

When using integer arHhmetic, alignment of (understood) decimal points is the responsibility of 
the programmer. Therefore, when carrying all numeric fields as integers, carry the maximum 
necessary understood decimal places in all data. For example, a payroll program dealing 
primarily in dollars a.:ld cents may have constants requiring three decimal places (as 1. 5% = .015). 
It is advisable under such circumstances to carryall data with three understood decimal places; 
for example, an amount field 25.02 should be set equal to the integer 25020. 

USING K IN DATA DESCRIPTIONS 

As a convenience for users doing computations using integer arithmetic, conventions have been 
extended to allow the msertion of actual decimal points in output fields that were described in 
input, Working Storage, Common Storage, *Common Storage, or Constant Sections as integers. 
This extension pertains only to numeric fields. 

Input, Working Storage, Common Storage, *Common Storage, or Constant Section numeric fields 
may be described with a K in place of an actual or assumed decimal point. The K is not a charac­
ter of the field, but merely designates decimal point placement with respect to output. Input, 
Working Storage, Common Storage, *Common Storage, or Constant Section fields described with 
a K are interpreted as integers for all internal manipulations. 

Fields which are described with a K in input, Working Storage, Common Storage, *Common 
Storage, or Constant Sections, if named in output, may be described in output with an actual 
decimal point. The combination of K in input, Working Storage, Common Storage, *Common 
Storage, or Constant Sections and an actual decimal point in output causes the insertion of a 
decimal pOint in output data without scaling. 

@~D~@@ ~[~[ft~~~ ______________ ~G.:::.:::.ECO::::.:.M_-...!..!;.II 
REFERENCE MANUAL 

-163-



EXAMPLES: 

BINARY DATA IMAGE ACTUAL INPUT AND OUTPUT 

INPUT-FIELD 999K99 12345 
OUTPUT-FIELD + 999. 99 + 12il. 45 

INPUT-FIELD 99999K9 123456 
OUTPUT- FIE LD 99999.9 + 12345.6 + 

INPUT-FIELD B 999K9S19 0000173 0000000 (Octal) 
OUTPUT- FIE LD ZZ9.9 12.3 

INPUT- FIE LD 99K9 123 
OUTPUT-FIELD 999 123 

K Conventions 

• Output fields must be designated as BCD for the decimal point insertion to have 
meaning. 

• Input fields described with K must be integers, that is, without a decimal point. 

• K may be used as a means of documentation in problems using integer computations. 
Constant Section, Working Storage, Common Storage, and *Common Storage field 
data images may contain K even though the fields are not named in output. 

• AU other editing features are available for output fields where the decimal point 
is being inserted from a K position. 

• A source field, with K in its description, and a receiving field with V in its 
description results in aU zeros being added to the right of the V and the entire 
sending field (which is an integer) to the left of the V. Conversely, the fractional 
part of a source V field is lost if the receiving field is a K field. It is recommended 
that K and V not be used at different places to describe the samE ci,:ta. If data are 
integers, the V is not needed and adds confusion. 

EXAMPLE: AU are input or Working Storage fields. 

DATA NAME 

TOT~1 

TOT~2 

FACTOR 
FACT 

IMAGE 

9(5)K9 
9(4)V99 
99V999 
999K999 

The actual value result is: 345600. 

SENT~2. MOVE FACTOR TO FACT .. 

The actual value result is: 000012. 

-164-

ACTUAL YALUE 

123456 

12345 



When using integer arithmetic, with or without K in the data image, the user maintains the decimal 
point alignment, or scaling. In integer arithmetic the decimal point is assumed at the right of the 
number. The followinf: examples should be studied before using K in data images. 

EXAMPLES: 

DATA NAME 

INPUT ITE M ~ A 
INPUT ITEM~ B 
WORKlN~ STORAGE TOTAL 

IMAGE 

999K999 
9K999 

999K999 

ACTUAL VALUE 

123456 
1234 

SENT~1. ADD ITEM~A TO ITEM~B GIVING TOTAL. 
123456 1234 124690 

In this case alignment causes no problem, but if the following images were used, the result 
124690 might not be desired. 

DATA NAME 

ITEM~C 

ITEM~D 

TOTA~l 

IMAGE 

99K9999 
999K9 
999K999 

ACTUAL VALUE 

123456 
1234 

SENT~2. ADD ITEM~C AND ITEM~ D GIVING TOTAL~1. 

The execution of SE NT~ 2 still gives the integer 124690 as the total. 

In arithmetic operatiolls the scaling of ITEM~C, ITEM~D and TOTA~ 1 should be aligned by 
multiplication. 

Multiplication 

If ITEM~A and ITEM~-B above are multiplied, the receiving field should have six 9's to the right 
of K, for the field remains an integer regardless of the position of K. 

If the following scaling (as denoted by K) were desired, the product should be divided by 100. 

MULTIPLIER 
MULTIPLICAN1) 
PRODUCT 
PRODUCT~VlS 

99K99 
999K99 
9(5)K99 
9(5)K9999 

SENT~3. MULTIPLY MULTIPLICAND BY MULTIPLIER GIVING PRODUCT~WS. 

DIVIDE 100 INTO PRODUCT~WS GIVING PRODUCT. 

-16Ei-



Division 

The principles of integer arithmetic apply to division, for example: 

DNIDE Y' INTO X GIVING :;?;. 

where, 

IMAGE ACTUAL VALUE 

X 
Y 
Z 

99K99 
9K99 
9K9 

333 
222 

The result will be equal to 1 since an integer is specified as the receiving field. The actual 
result is 1. 5 which may be obtained by: 

SENT~4. MULTIPLY 10 BY X. 
DNIDE Y INTO X GNING g, 

Summary 

The K is used in input, Working Storage, Common Storage, *Common Storage, or Constant 
Sections to aid the programmer who is using integer arithmetic. The use of K accomplishes two 
things: 

1. It is a visual aid in the program listing for keeping track of assumed decimal points. 

2. When a field with K is moved to output via the implied move and output is described 
with a It. It (actual decimal point), the actual decimal point is inserted in the K 
position. 

~1. A field with K may be moved only to an edited field in output via an implied move. 

REPEATED GROUPS 

Data described in a repeated group (see Language Structure, Arrays) may have identical or 
different data descriptions. Nonrepeated groups may not be described after repeated groups for 
a given file in the Data Division. 

For greater program efficiency it is recommended that: 

1. Homogeneous data in output files be described as arrays. 

2. Repeated groups only be used to describe nonhomogeneous data in input files. 

~,~ [8 [ :IT~ ------------- --------------~......:...'L~\-':·-,·.,~,.I 

-166-



3. Repeated groups not be used in output files. However, if a repeated group is used 
in output, the group name must appear in the output record description. For example: 

Correct Method 

OUTPUT FILES 
FD OUTPUT1 
R OUTREC 
F AA 
F BB 
G GROUP1 
INPUT FILES 
FD INPUT1 
R RECORD1 
F AA 
F BB 
G GROUP1 
F CC 
F DD 

Incorrect Method 

OUTPUT FILES 
FD OUTPUT1 
R RECORD1 
INPUT FILES 
FD INPUT1 
R RECORD1 
F AA 
F BB 
G GROUP1 
F CC 
F DD 

For purposes of discussion and examples, consider the following sample Data Division: 

GENERAL. ELECTRIC 

OUTPUT .FIL -:5_. 

F D F I L. E - 2 . 

R RECORD-

F F1E1.0-D 

F FIELO ..... F. 

F FIELD-I-' 

INPUT FILE 

! 0 F.1 L, E - I . 

R RECORD_ 

G GROtP ..... A 

F FIELD-A 

F F1E1.0 .... B 

F FIELD-C 

F F1ELO .... 0 

F FIELD-!': 

F F1E1.0-F 

F FIELD-.BP.-WS 

_G GROlP ..... A-WS 

GENERAL COMPILER DATA DIVISION FORM 

+-

3 

-' 

1---' 

X, ( 4 ) 

9,(3) 

X"( 7-' 

~L X.C4) 

~ "-.( 3). 

'-(7 -' 

'-.(.3 -" 

F F I.E L D ....... A ~.w.s ~(~.) 

_F FIE L 0 - B ~ W S I---- f-----.- 9 ( 3 ) 

1-t-..,....,.--,-+-l---"F++Fc.,.I,-,,-E -"..L -".0...c- c - w s ~. ( . 7 ) 
~'~'t: I't i' 'ji' '::' =' =' :::"::::" " " " " " "" n." "P," nl "1"1".+.,,,,, " " ","'"'' " .. " "1"1" "I" " "I" ""1"1"1"1" +,1 .. :"' .. : .... 1": .. 1 .. '· ","" " " ",",'';'' 

-167-



To facilitate data manipulation by the Procedure Division, the compiler allocates memory to the 
repeated group entries as shown below: 

TYPE 

(PROCESS STORAGE) 

F 
F 
F 

(WORKING~S TORAGE) 

F 
F 
F 

DATA NAME 

FIElD~-A' 

FIElD~-B' 

FIElD~-C' 

FIElD~-A~WS' 

FIE lD~-~ WS' 
FIElD~-C~WS' 

REPEAT 

3 
3 
3 

3 
3 
3 

DATA IMAGE 

X(4) 
9(3) 
X(7) 

X(4) 
9(3) 
X(7) 

The user need not consider the memory allocation when referencing items listed in the repeated 
group. However, the repeated group may be thought of as a two-dimensional ar.ray where each 
single group is a row, and each field described as a column. Pictorially, the above input repeated 
group could be represented as: 

GROUP~A(l): 
GROUP~A(2): 
GROUP~A(3): 

FIElD~A 

FIElD~A 

FIElD~A 

FIElD~B 

FIElD~B 

FIElD~B 

FIElD~C 

FIElD~C 

FIELD~C 

To clarify the repeated group technique, the following examples are offeree.: 

(In each example, the second GECOM sentence, or set of GECOM sentenceE, is intended to 
illustrate how the compiler interprets the user sentence for implementation. ) 

1. To move the entire repeated group to another repeated group of thE' same Size, use 
the group names with no subscripting: 

GROUP~TO GROUP: MOVE GROUP~A TO GROUP~A~ WS. 

is interpreted as: 

MOVE FIElD~A' TO FIElD,~A~WS' 
MOVE FIElD~B' TO FIELD~~WS' 
MOVE FIElD~C' TO FIElD'~C~WS' 

2. To move a column of the group to a one-dimensional array, giVE the field name and 
the qualifying group name with no subscripts: 

is interpreted as: 

@[~> ~@@ ~~[ffi ~ ~~ ------------------RE-FF-:l\E-~C-E~-O~-lA~-UA-I~ 

-Hi8-



3. T0 mUd ,( Slll[!;ie field of the group to a field, use the field name and the qualifying 
"roup mUll!' with subs(' ripting: 

FIE LD~ '1'0··- FIELD. MOVE FIELD~A OF GROUP~A(2) TO FIELD--D. 

is interprelPd as: 

MOVE FIELD~A'(2) TO FIELD~D. 

4. To ()utvt1t i It· '.'l1iire repeated group, the group name only is entered in the output 
descriptil)l without listing the fields under the group name: 

TYPE ---
OUTI'UT 
R 
G 

DATA NAME 

RECORD~A 

GROUP~A 

The avo'; .. ' '!lltry would output the entire repeated group as it appeared in the input 
file record. 

If the field tlJ.lllt'S were also listed, the group would appear in the output record 
twice; firs I, as it appearpd on input and, next, as the three columns. 

5. To output .t ('OlUIl111 from the group, the field name and the qualifying group name is 
listed ill output. 

OUTPUT 
R 
F 

DATA NAME 

RECORD~A 

FIELD~A 

QUALIFIER 

GROUP'~A 

The aboYo' mtry would output FIELD~A of GROUP~A(l), FIELD~A of GROUP~A(2) 
ami FIELD~A of GROUP~A(3) when RECORD~'A is written. 

6. To output ~t row, the individual fields must be moved to Working Storage and those 
Workillg-Stora~f' fields are listed in output. 

The nece:,sary procedure sentences to output a row would be: 

MOVE FIELD~A OF GROUP~A(1) TO FIEL~D. 
MOVE FIELD-B OF GROUP~A(1) TO FIEI.D~E. 
MOVE FIElJ)'~C OF GROUP~A(l) TO FIELD~ F. 
WRITE RECORD~2. 

7. If the fielcl~. listed in the repeated group have different data descriptions, certain 
conventions 11111st be followed. 

Repeatt,d g 'IIU;'S may contain alphanumeric data (image A or X) and numeric data 
(inhlge 9; f·t lli" in BCD o:r binary. However, any alphanumeric field that precedes 
a mam rj, L~J; recGrded in hinary must be a multiple of 3 characters or must be 
unpacl-:,·d 

Only t, P< , i.! J PL fic-lds may be us(~d in a group which is rr'peated. 

.~. ';, ._._ .. _______ . ______________ --:==:7G:.::E:::C..::.OM:-:-:-:--:::=I~I 

REFERENCE MANUAL 

-169-



EXAMPLE: 

All fields are packed, none of the numeric fields are carried as binary. 

GENERAL. ElECTRIC GENERAL COMPILEH DATA DIVISION FORM 

ca.puTEe • ~ ''0". 

''"'',. 
';"ce' •• " 

N'.' " I RFPI'" 
: 

~~ _ ••• ee, 

'''1, l' <ill"" ,·1;" "'., " ," !H '0)'41:"" ""0 " 
r, GROUP-I , 

i P C 0 5 

" I~ : I I! : Ix ( 

11 

F I I ii, G 

F C c I 

Ii W P D /J 

1 F E E 

-

All fields are unpacked, all numeric fields are carried as binary. 

GENERAL. ElECTRIC 

GROUP~2 

F A A 

B B 

C C 

D D 

E E 

- -

GENERAL COMPILE!": OAT A DIVISION FORM 

o 0 5 

x ( 2 ) 

9 ( <. ) V q 

A ( 2 ) 

9 9 v 9 

____ ,1 

All fields are packed, all numeric fields are carried as binary. Note the fill used on the alpha­
numeric. 

GENERAL. ElECTRIC 

-

GROUP~3 

F A A 

B B 

C C 

D D 

E E 

f--- -~-

GENERAL COMPILER DATA DIVISION FORM 

,,' 

-170-

x ( 2 ) B 

9 ( 4 ) V q L 

A, ( 2 ) B 

9 9 V 9 

x B B 



10. USING GECOM TO OBTAIN 
EFFICIENT OBJECT PROGRAMS 

For any compiler to produce efficient programs, there are certain rules and techniques to follow 
which are independent of the compiler itself. 

The user should first analyze the problem from an input/output point of view, looking for the most 
efficient way to layout his input and output with respect to data movement. In doing this, the 
following rules should be considered to reduce execution time and the number of instructions 
generated. 

1. An incoming decimal number must be eonverted to binary before it can be operated 
on. Therefore, all fields which will be used arithmetically must be described as 9-
type fields in the Data Division. Also, these fields should be kept in binary from 
run to run to eliminate repeated conversions until they are required as a decimal field 
in output. Repeated conversions only add unnecessarily to each object-program's 
execution time. Fields not used arithmetically should be described as alphanumeric. 

2. Fields which are not referenced or operated on in the Procedure Division but are 
moved fror.1 input to output are defined as throughput fields. Throughput fields should 
be combined into strings of characters. A string may not exceed 83 characters in 
length. Each string must then be described as an alphanumeric field. Arranging 
the referenced fields separately from the unreferenced fields provides stringing 
capabilities. Strings of characters (up to 83 each) result in fewer instructions being 
generated and faster execution time than the same number of characters in shorter 
fields. 

3. Fields of high activity should be maintained as unpacked from run to run. Unpacking 
may be accomplished either by the compiler at object time or by the arrangement of 
output data. Input data is assumed to be packed unless stated as unpacked in the 
format column. 

Fill may be used to force the fields to form an integral number of GE-200 Series words. 
Character manipulation of fields causes more instructions to be generated and exe­
cuted as opposed to word manipulation.. 

4. Advantage should be taken of an output record that is a direct reflection of an input 
record. The input record name should be used as the output record name with the 
corresponding input file name as its qualifier. This is sufficient description for the 
output record. 

When only the record name is used in output, the entire input record is moved to 
output rather than a field by field move to the output area. The record movement is 
made by words without regard to field positioning, resulting in fewer instructions 
and faster execution. 

5. Files aSSigned to the card reader and/or the card punch should be buffered. Memory 
space is allocated to provide for buffering of these files whether or not used. Files 
assigned to the high- speed printer and magnetic tape units should also be buffered if 

@ ~ c ~(Q1(Q) ~~ [ffi I][~~ ---------------RE-F-ER.-:E~::.:;:;~~::..::!°:m:!---u~==.~ 

-171-



memory space permits it. Also, blocking of logical records should be used where 
memory space is available. Through blocking and/or buffering of files, faster exe­
cution time will result from fewer actual reads or writes per file. A balance must 
be struck by the user between execution time and memory spare. 

6. Fields used arithmetically should be kept at the same decimal or binary scale. Con­
stants should be compatible scale even at the cost of additional constants. Fields 
which have the same scale require fewer instructions to perform the arithmetic 
functions which result in faster execution. 

The primary contribution to efficiency in the Procedure Division is through the use of fields as 
they have been described in the Data Division and through judicious of the various verb options. 

1. Use the ADD, SUBTRACT, MULTIPLY and DIVIDE verbs when performing arithmetic 
operations. A more extensive analysiS is made of the data deseriptions for these 
verbs as opposed to the assignment sentence. Use of the ASSIGNMENT verb may be 
an easier method of writing expressions but is to be used for complex arithmetic 
expressions involving operations that cannot be done with the ADD, SUBTRACT, 
MULTIPLY, and DIVIDE verbs. 

2. The MOVE verb should be used in preference to the ASSIGNMENT verb to move one 
field to another. Fewer instructions result from using the MOVE verb. 

Example: MOVE A TO B. instead of B == A. 

3. Under the MOVE verb, multiple receiving (TO) fields should he used rather than 
many MOVE sentences. 

Example: 

MOVE A TO B, C, D. 
instead of 

MOVE ATOB. 
MOVE A TO C. 
MOVE A TO D. 

The compiler automatically provides for the initializing of elements when they are 
affected by a MOVE sentence. The user should not initialize these elements 
individually. 

Example: 

DATA DIVISION 

F A 
E B 
E C 

0103 
0207 

A(10) 

MOVE SPACES TO A. is sufficient. 

It is not necessary to: 

MOVE SPACES TO A, B, C. 

-172-



4. Option 4 of the IF verb should be used to test the value (in relation to zero, positive, 
negative) of a single numeric field. 

Example: 

lF A IS ZERO GO TO SENT~1 
instead of 

lF A EQ 0 GO TO SENT~1. 

Using Option 4 will eliminate instructions and their execution. 

5. The "GO TO sentence-name1 , sentence-name2 ••• DEPENDING ON field-name" 
sentence should be used for a series of sequential tests rather than multiple IF 
statements or a series of IF statements. The field does not have to start with the 
numeric value of one. The arithmetic verbs ADD and SUBTRACT may be used to 
adjust the field prior to using the GO TO •.• DEPENDING ON option. 

Example: 

A series of values begins with 51 and ends with 56. 
SUBTRACT FIFTY FROM A GIVING B. 
GO TO SENT~1, SENT~2, SENT~3, SENT~4, SENT~5, SENT~6, 

DEPENDING ON B. 

Fewer instructions and faster execution time results in using the GO TO ... 
DEPENDING ON option rather than a series of IF statements which must be executed 
sequentially. 

6. Sections should be used to conserve memory for sets of common sentences that 
appear in two or more areas of the program. The use of section results in a saving 
of memory space. 

7. Program loops that have the same duration and are executed in a logical chain should 
be controlled by one VARY statement. Fewer instructions are generated to control a 
single loop as opposed to many loops resulting in faster execution time. Also, memory 
storage is saved by one VARY statement. 

8. Numeric L_elds referenced in a single ASSIGNMENT, ADD, SUBTRACT, MULTIPLY, 
DIVIDE, or IF sentence should have like integer and fraction portions in their data 
images. This also includes any numeric constants used in the statement. Data 
images for constants may be manipulated by leading or trailing zeros. Also, 
Working-Storage fields may be manipulated by increasing size descriptions. 

Example: 

ADD A to B GIVING C. 
999V99 +999.99 999.99-

ADD A to 001. 00 GIVING C. 
999V99 999.99-

IF AS EQ BX GO TO SENT~1. 
999999V9 $999999.9+ 

IFAX2 EQ 0000010.0 GO TO SENT~2. 
Z999999V9 

Note: Different editing and sign features are not significant-­
only 9-type characters. 

-173-



9. Two and three dimensional subscripts, if used repeatedly in the ADD, SUBTRACT, 
MULTIPLY, and DIVIDE statements, should be computed by the user and stored in 
an integer field. The computed subscript can then be used as a single subscript. 

Example: 

ARRAY SECTION. 
A(3, 5-, 7) 
B(10, 10). 

SSl = «I-l)*5+(J)+(K-l)*3*5). 
~::: «(I-l)*lO+(J». 
ADD A(SSl) TO B(SS2). 
IF A(SSl) EQ B(SS2) GO TO SENT~l. 

instead of 
ADD A(l, J, K) TO B(5, J). 
IF A(I, J, K) EQ B(5, J) GO TO SENT~ 1. 

The general formula for computing two and three dimensional subscripts is as follows: 

ARRA Y SECTION. 

A(I, J, K) 

A subscript = «I-l)~+(J)+(K-l)*Dl *D2 ). 

B(I, J) 

B subscript = (I-l)*D5 +(J). 

Since the subscript is computed only once, ·fewer instructions are generated and a 
faster execution time results. 

The following subroutines (which are described in the GECOM Operations Manual) have been 
modified with respect to object program efficiency: 

1. The subroutine, ZUA, which performs word moves, also handles fields with one 
or two characters preceding and/or following the full words to be moved. 

2. The subroutine, ZIP, moves a source field to a destination field of the same 
starting character position and the same number of characters whenever ZUA 
cannot be used because there is not a full word to move. 

3. Because these two subroutines improve execution time, the use of the subroutine 
ZAM should be avoided whenever possible. ZAM is slower because it must 
handle cases where the destination field is larger than the soure e, and/ur where 
starting character positions are not the same. 

Use of the two subroutines, ZUA and ZIP, should influence file deSign. 
the object program is able to take advantage of data layout. 

-174-

With these improvements, 



11. TASSOL 

INTRODUCTION 

This section describes TABSOL (TABular Systems Language), a structuring technique in which 
the step-by-step decision logic of a problem is described in table form. Tables provide a graphic 
representation of decision procedures showing alternatives and exceptions explicitly. Relation­
ships between variables are shown clearly, and the sequence of conditions and actions is depicted 
unambiguously. 

6ECOM/T ABSOL 

With GECOM, tables can be written in an easily readable language which can be keypunched 
directly for computer input, GECOM conventions (see Language Structure, Chapter 3 of this 
manual) apply to TABSOL except as specifically noted in this section. The rules for formation 
and usage of words, data names, constants, subscripts, true-false variables, arithmetic ex­
preSSions, condition ::lames, and qualifiers are the same. A knowledge of GECOM is required to 
use TABSOL. 

DECISION TABLE FORMAT 

The format for a decision table is an array of blocks divided into four quadrants by a pair of 
double lines. The vertical double line separates the decisions or conditions on the left from the 
actions on the right. The horizontal double line isolates variables from associated operands which 
appear in the blocks and rows below. This format is illustrated in Figure 13. 

PRIMARY { 
ROW 

SECONDARY 
ROWS 

T 
A A A H 

INN N E 
F 1 D 2 D --- D k N 1 2 n 

AGE EQ AGE 

26 26 

~ _______ ~, ________ J' ,' ________ ~~,---------J, 

Conditions Actions 

Figure 13. Decision Table Format 

1 

2 

3 

4 

m 

@~ 0 ~@@ ~[E[ffi ~ ~~ ----------------RE-FE-RE....:::.~.:::.::~~:.::!:O~!....~-u~:!:..!;.~ 

-175-



A condition is a relation between a variable appearing in a primary block and an operand appearing 
in a corresponding secondary block. For example, AGE may be written in primary block 1 and 
EQ 26 may be written in secondary block 1. In this way a condition is stated and the question 
"if age equals 26" is asked. 

An action is a statement of what is to be done. By writing AGE in a primary action block and 26 
in its associated secondary block, it is stated that "the value of '26' is to bE' assigned to AGE. " 

The vertical lines in the table may be interpreted as follows. The leftmost line may be thought 
of as representing the word IF. Those lines to the left of the vertical double line may be taken 
to mean AND; the vertical double line itself the word THEN. Since actions are sequential 
entities, the lines separating them may be interpreted as semicolons and the rightmost line, 
which actually terminates the actions, as a period. With this in mind, each secondary row becomes 
an English sentence. For example, each row now reads: 

IF condition-1 is satisfied AND condition-:~ is satisfied AND ... AND condition-k is 
satisfied THE N perform action-I; action-2; .... action n. 

If any condition within a row is not satisfied, the next row is evaluated and so on until all the rows 
are depleted. When this happens the table is sai.d to have "no solution." The table is considered 
"solved" when all the conditions of a row are satisfied and their associated actions performed. 
Figure 16 on page illustrates a sample Decision Table. 

TABLE ENTRIES 

Formation of Conditions 

By def;nition, a condition is a relation between a primary block entry and sc me corresponding 
seconclaTY block entry. A condition, like a relational expression, may be either true or false. 
From:,]s definition, a condition may be either a relational expression, a lcgie.ll expression, or 
a true-iaLse variable since these are the only elements that yield a truth-valuE' .. 

The formats on following pages show how these expressions may be split between primary and 
secondary blocks to form conditions. In these examples, the word operand stands for either a 
variable (data name or subscripted data name) a constant (literal, numeric, figurative, or named 
constant), or an arithmetic expression. The word relation signifies one of the relational operators 
(see next paragraph). Since arithmetic expressions may be operands of relational expressions 
and relational expressions operands of logical expressions, it necessarily follows that arithmetic 
expressions may appear in logical expressions. 

-176-



Relational Operators 

The only permissible relational operators in a decision table are listed below. Only the symbol 
for the relation is allowable. 

Symbol 

EQ 
GR 
LS 
NEQ 
NGR 
NLS 

Condition Formats 

Format 

Relation 

Equal to 
Greater than 
Less than 
Not equal to 
Not greater than 
Not less than 

l-_o_p_e_ra_n_d_-_l_R'.~ 
Operand-2 ~ 

Operand-l ~ 
Relation Op,rand-2 

L..-____ ;.... 

Operand-l R"lation 

Operand-2 OR Uperand-3 

Operand-l 

Relation-l lip, rand2 OR 
Relation-2 (lp,rand-3 ... 

No Entry 

Condit iOn-neTIH 

Example 

LEVEL EQ 

10 

EXPERIENCE 

GR 4 

TOTAL (I) NLS 

PT(l) OR PT(2) OR PT(3) 

(X+Y)**3 

GR P+l OR LS Q(I) 

PROGRAMMER 

@ ~ 0 ~ UJXID ~~ lm '] l~~: ______________ ---::=~G~EC~OM~-=-I:..:.I 
REFERENCE MANUAL 

-177-



NOT 

Condition-name 

No Entry 

NOT Condition-name 

No Entry 

True-False Variable 

NOT 

True-False Variable 

No Entry 

Logical Expression 

NOT 

Logical Expression 

-178-

Example 

NOT 

OF FILE OF INVENTORY I END 

FROGMMMER OR ,~ 
NOT ~ 

XCRY ORXLS~ 



Condition Column Rules 

Figure 14 illustrates some of the rules for condition columns. 

N = Prohtbited Y = Permissible 

~--
Operand Operand- Operand- Blank "Not" 

Entry Relational Logical 
Secondary Operator Operator-
Row Entry Operand 

Operand N Y N Y Y 

Operand-
Relational N N N N N 
Operator 

Operand-Logical 
Operator- N Y N Y Y 
Operand 

Blank N N N N N 

"Not" Operand N N N Y Y 

Relational 
Operator- Y N N N N 
Operand 

Operand-Relat-
ional N N N Y Y 
Operator-Operand 

Figure 14. Rules for Condition Columns 

The above table is not all inclusive. It shows only the basic combinations. However, from this 
basic table, the more complex combinations may be determined. 

Certain combinations Ln the above table are permi.ssible for only certain types of operands. For 
example, a blank column in the primary row and an operand in the secondary row column would 
be permissible only if the Operand-2 is a condition name or true-false variable. 

@[D~(Q)(Q) ~~[ffiJ[~~ ___________ ....!::..:GE~COM:!.....:..-"':":'II 
REFERENCE MANUAL 

-179-



Formation of Actions 

Actions are statements of the things to be done when all the conditions of a row are satisfied. 
The scope of an action may be one of three kinds: implied assignment, procedural, or input/ 
output. 

Value Assignment is an implied function between associated primary and secondary block entries. 
Placing a data name in a primary block and some number in a secondary block, for example, I 
and 1, causes the compiler to produce coding to assign the number to the data name. In our 
example, 1 is assigned to the subscript I. other examples of value assignment are given on the 
following page. In these formats the word variable implies either a data name or a subscripted 
data name and the word constant either a literal, numeric, figurative, or named constant. 

@j~ a ~@@ ~~[ffi ~ ~~ __________ ---...:::G=ECO~M --=-=.II 
REFERENCE MANUAL 

-180-



Value Assignment Action Formats 

r-v_aria_ble_~ 
Constant ~ 

Constant 

Variable 

Variable 

Arithmetic Expression 

Arithmetic :':xpress ion 

Variable 

VARIABLE (Destination FIELD) 

VARIABLE (Source FIELD) 

True-False Variable 

Truth-Value 1 or 0 

Truth-Value I or 0 

True-FalsE' \'a'-iable 

Example 

I 

1 

"COPPER" 

MATERIAL 

ALPHA (I,J,K) 

SIN THETA + (X/P) **2 

PI*R**2 

FIELJ)-...2 

1 

o 

BETA~REQ 

rrB~ 0 ~@@ ~)~~~ l [:~.~ -----------------------:::'R::-:EF::-:E-::R::-:E~~~::-:~-O:-~:-~=u-:-!=-~ 
-181--



Procedural Actions provide the means for interrupting the normal execution sequence of a table. 
Any of the following compiler verbs may be used for this purpose. 

GO 
PERFORM 
STOP 

The GO verb stipulates an unconditional transfer to a specified part of the cable or program. Its 
destination may be a sentence name or a table name. Note that table names must be unique. 
Secondary rows are numbered consecutively starting at 1. 

GO Verb Action Formats 

GO TO GO TO 

Sentence~Name TYPE~UT 

.QQ.. TO 

TABLE table-name TABLE ~-:-:-B-:-:-2-3---_-~-

The PERFu;:,~r verb specifies a transfer to some destination, the execution of ~1 section outside 
of a table, tll<' execution of a closed table, or the execution of a set of sentences in the heading of 
a table at tte spt;,ified destination, and then a return to the action block followir[2: the PERFORM 
verb. The sentences or tables acted upon are by definition a "closed procedure" -- that is, they 
have a single entrance point and a defined exit point. Conventions for writing closed procedures 
are given on subsequent pages. 

@~ 0 ~Ul)(Q) ~~[ffi ~ ~~ ______ . _____ ------.:::G~EC():.::.:....::}~ -:...-=-=-II 
RfFERt.NCE }lAl'IUAL 

-182-



PERFORM Verb Action Formats 

Format Example 

PERFORM PERFORM 

Sentence -NamE 

PERFORM PERFORM 

section-name SECTION FICA SECTION 

PERFORM PERFORM 

TABLE table---r..ame TABLE ERROR TABLE 

The STOP verb may be used as an action. It may be placed in either a primary or secondary 
block. When it is used, no other action may appear with it in the same action column. 

STOP Verb Action Formats 

1--~-:-:-:,-a-lJ-.. -_§ 
'------ ------~ ~~-

STOP 

Example 

STOP 

"999" 

STOP 

Input-OiltPllt Adiol', ,il -' represented by verbs that control the flow of data to and from the com­
puter. They callS!:' fE'a ling and writing of data and validation of the tape labels of data files 
assigned to peripheral, nput/output devices. When data files are referred to from an actiun 
block, they must b(' dpfined ac(~ording to the Environment and Data Division requirements listed 
in Chapters 7 and ::; of this manual. 

Input-Output Action Formats 

I----READ_ ~ 
Fi.le .... '1ame ====1 

-183-

Example 

READ 

MASTER"'-FILE 

CECOM - II 
REFERENCE MANUAL 



Format 

{ INPUT .} 
OPEN .Q!I1!!1l 

File"Name 

CLOSE 

Fi Ie "Name 

File~ame 

gQg 
{INPUT} ~ OUTPUT 

READ 

WRITE 

{ recOrd"'flame) 
~'group"'flame 

{ reCord"1lame ) 
*group"-Oame 

Action Column Rules 

Example 

t-_O_PE_N_I_N_P_U_T __ ~ 
MASTER~FILE ~ 

~CLOSE ~ 
MASTER--FILE ~ 

MASTER-FILE ~ 

READ 
~ 

t=========WRITE ~ 

DETAIL~LINE ~ 

I-T_RAN __ S_A_CT_I_O_N __ ~ 
WRITE ====J 

Figure 15 illustrates some of the rules for action columns. 

N = Prohibited Y .. Permissible 
--

~ Entry Operand Verb Blank 
Secondary 
Row Entry 

Operand Y Y N 

Verb Y N N 

Operand-Verb N N N 

Logical or ReIa-
N N N tional Operator 

Repeat or Skip 
Operator Y Y N 

Figure 15. Rules for Action Columns 

@ ~ 0 ~ (Q)(Q) ~[E [ffi ~ ~~ -----·-----------RE-~FE-R..-:;E~=~~;..:..;O~~-UA=I~ 

-184-



Verbs in Action Columns 

Only the GECOl\! verbs indicated in the list below may be used within the action columns of a 
T ABSOL Table. ThesE' permissible verbs are restricted to the formats and options shown on the 
preceding pages and i 1 'he list below. However, GECOM sentences, with aU of the extensive 
verb options, may be written within a table, outside the action columns. This is explained 
further on page 187. 'I'll,' verb (in GECOM sentences) is then executed from the confines of the 
action columns by me.lIs of the PERFORM verb. The NOTE verb may never be used in a table. 

The list below showsJl<lSe verbs which have been implemented for use in action columns. The 
user should consult Cl~1pter 6 of this manual for additional information on the functions provided 
by and the rules for U 3(' of the following verb options. 

1. C LOSE file name 

2. 

3. 

4. 

See pagE' gR. FuNCTION and CONVENTIONS 1, 5, 7, and 8. 

GO TO ( senten c~name ) 
TABLE table~name TABLE 

This format is functionally equivalent to Option 1 of the GO verb, (See page 106.) 
Note, huwt'\er, that it us not permissible to use the GO verb in an action column 
without a ,:kstination. 

{
r INPUT } 
'- OUTPUT fil~name 

S,,'e page 117, FUNCTION, and CONVENTIONS 1 through 4 and page 118, CONVENTIONS 
5 through 8. It should be noted that a tape file cannot be reopened if it has been closed 
from an adlOn column because it will be considered locked. 

PERFORl\1 ( 
sentence~name ) 
section~name SECTION 
TABLEtahl~nameTABLE 

5. READ file !lame 

6. 

7. 

See page 120, FUNCTION and Option :~, page 122, CONVENTIONS 1, 2, 3, and 6. 

Note thal tht IF END-OF-FILE clause is prohibited in an action block but that an end­
of-file 1e5: may be executed in a condition block (see IF, Option 1, page 108). Although 
reads and ellcl- nf-file tests can be executed from table rows, it is recommended that 
these [ulle: it lllS be included in sentences outside of the table rows and executed there­
from by means of the PERFORM verb. Use of these functions in table rows can 
cause inn:rrect end-of-file processing under many conditions which are dependent 
upon the order of the source statements, the sequence of execution, the logic of the 
program c.r even the nature of the data. For additional information on READ and END­
OF - FILE C'ilUses, see CONVENTIONS 4 and 5 on page 122. 

See page 128, FUNCTION, and CONVENTIONS 1, 2, and 4. 

WRITE [ recorct-.name} 
*grou~name 

See page 13'), FUNCTION, Option 2; page 136, CONVENTIONS 1 through 5. 

(Q2ic rDl I [C: C§. ________________________ G:::.:E::.::C:.::O::..:.M_---.:.I~I 
Q:1..l LS LffiJ S Q:.' REFERENCE MANUAL 

-185-



Logical Expressions 

The object coding produced for logical expressions is optimum 1'; the Sl'nS( that only the minimum 
number of variables are tested, assuming that the expressions are e\alUal ed from left to right. 
This is not to say that redundant variables are eliminated by the compiler. but rather that an 
entire expression need not always be evaluated to determ inE' whether It i;,; 'rue or fa lse. 

Example: 

In the expression, A AND ((B or C) AND D), if A is false. the entin (xpression is 
false and only A will be tested. 

A NOT in a primary block pertains to the entire entry in a corresponding .;econdary block. 

Example: 

is the same as--

~~ 
~~ 

A NOT in TABSOL may be used only to negate Boolean variables. Any other use of NOT is 
treated as an error. 

Example: 

A NOT GR B is prohibited. 
This must be written as A NGR B. 

The effect of NOT in a logical expression is determined according to DeMorgan's Theorem. 

Example: 

NOT (A OR B) equals NOT A AND NOT B 

The validity of this may be demonstrated by the following truth table: 

A B A or B Naf (A or B) Naf A and NOT B 

0 0 0 1 1 
--

0 1 1 0 0 

1 0 1 0 0 

1 1 1 0 0 

@j[E 0 ~m)(ID ~[E[ffi ~ [E~ __________ ~G~ECO~M -~II 
REFERENCE MANUAL 

-186-



The relational operator in a negated relational expression is reversed. 

Example: 

NOT (A GR B) is changed to (A NGR B) 

A NOT is prohibited within a relational expression. 

Example: 

(A GR NOT B) is prohibited; however, if A and B are both Boolean 
variables, this may be written as (A AND NOT B). 

NOT (A GR B) is permitted because the relational expression always 
has only two values no matter what the values of A and B may be. 

The NOT operator is rrohibited in an action block .. 

The Skip and Repeat Operators 

The skip operator makes it possible to show that a condition or action is not to take part in the 
evaluation of a row. This is done by placing a hyphen (-) in the condition or action block. 

The repeat operator if a shorthand method of indieating that a condition or action in the block 
above is repeated. This is shown by entering a ditto or quotation mark (") in the block below the 
one that is to be repeated. 

TABLES IN PROGRAMS 

Thus far these specifi<:ations have been concerned primarily with table entries within condition 
and action columns. G ECOM source language sentences may be used to support the conditions 
and actions of tables. A source program may be written without tables, with tables only, or with 
tables and sections and or sentences. 

There are two types of tables: 

1. Open tables which are executed in line. Open tables may be interspersed among 
source language sentences in the Procedure Division. Open tables may contain 
sentences following the table heading. 

2. Closed tables which may be executed only by the PERFORM verb. Closed tables 
may be interspersed among sections at the beginning of the Procedure Division, 
but must prpcede the main body of the Procedure Division; that is, all closed tables 
and/or sections must appear immediately after the Procedure Division heading. 
Closed tables may contain sentences in three places: 

a. Between the table header and the word BEGIN. 
b. Between the word BEGIN and the first row of the table. 
c. Bet\\'een the last row of the table and the words END TABLE. 

Note that when closed tables and/or sections are used, object program execution begins at 
the first sentence following the closed tables or sections. 

@[E 0 ~@@ ~~[RHl 'E~ ----------------RE-F-ER...:;E~:=:.;;~~:;:::;O~.:...--u~=~ 

-187-



OPEN TABLE FORMAT 

(table--name TABLE} r; ;] [ J 
\lABLE table-nam~ I9PE~ integer-l CONDITIONS integer- 2 ACTIONS 

integer--.'3 ROWS. 

[Sentences which may be performed only from the confines of the ta b:~~ 

[BEGIN] 

I-------~--==:J 
DECISION TABLE ~ 

CLOSED TABLE FORMAT 

(table-name TABLE I. 
\}'ABLE table-name) 

CLOSED integer-l CONDITIONS integer-2 ACTIONS 

integer~ ROWS. 

[Sentences which may be performed only from the confines of the tabl~ 

BEGIN. 

[sentences which are executed in line prior to executing the decision table] 

r----------D-E-C-IS-I-O-N---------+---------TA--B-L-E------~~ 

[sentences which are executed in line following execution of the decision tabl~ 

END TABLE table--name. 

END table--name TABLE. 

END TABLE. 

Table Conventions 

1. Tables should be written on the General Compiler Sentence Form. The Conventions 
shown in Chapter 4 apply to tables except as shown in the preceding formats and 
noted below. 

2. A table without actions is prohibited. A table without conditions is permissible. Thus 
the number .of conditions (integer-I) may be zero or omitted. otherwise, conditions, 
actions, and rows are numbered sequentially starting at 1. The primary row is not 
counted in the row count. Row 1 is the first secondary row. 

@ ~ 0 ~ @@ ~~ [ffi ~ ~ ~ -----------------RE-FE-_RE....::.~=~~=O:~~-u~::..=.~ 
-188-



3. If the words CONDITIONS, ACTIONS, and ROWS are omitted from the table heading, 
the size may be stated with or without parentheses in any of the following formats: 

integer-1 integer-2 integer-3. 
(integer-1 integer-2 integer-3). 
(inte~:er-1) (integer-2) (integer-3). 

integer-2 integer-3. 
(integer-2 integer-3). 
(integer-2) (integer-3). 

Note that if only two numbers are given, they are interpreted as the number of actions 
and rows in t hat order. 

4. It is most important that the number of conditions, actions, and rows, as specified by 
the programmer, be correct. If these numbers do not agree with the number of blocks 
as delimited by vertical lines, the compiler will mismatch the secondary and primary 
blocks. 

5. A period Should always follow the table Size, the word BEGIN, and the table name at 
the end of a table. However, the period should not be used after the table name or the 
word TABLE in the heading of a table. 

6. A ma.ximum of 76 table columns is allowable in a table. 

7. If the table contains less than 20 columns, a maximum of 1000 rows is permiSSible; 
if it contains more than 19 columns, a maximum of 250 rows is permissible. 

TABLE SIZE 

TOTAL NUMBER MAXIMUM NUMBER 
OF COLUMNS OF ROWS 

NGR 19 1000 

GR 19 250 

8. There is n·) limit on the number of tables in a program except as imposed by other 
consideratlOl1s such as memory Size, symbol table limits, etc. 

9. If all the c()nditions in a row are satisfied and there is not a GO verb in the action 
columns of that row, the next lower row is evaluated. . 

10. Nested closed tables are permitted, that is, a closed table may be performed from 
another tahlp. 

11. A closed table has only one entrance and one exit, and, therefore, a GO statement to 
a destination outside of the table is prohibited. 

-189-



12. Sentences written between the table header and the word BEGIN are treated as 
sections. A sentence name signals the start of a section. Another sentence name 
signifies the end of the section and the beginning of the next section. 

For example: 

Table-name TABLE CLOSED 5 CONDITIONS, 5 ACTIONS, 5 ROWS. 

Ex-I. 

Ex-2. 

BEGIN. 

WSR39198=R49595+R49595. 
Move WSAI to WSA2. 

Exchange WSA2 WSA2X 
Exchange WSA9 WSA9X 
Exchange WSA12 WSAI2X. 

The above procedures produce two sections. The first section contains two sentences 
beginning with EX-I. The second section contains three sentences beginning with EX-2. 

Block Conventions 

1. All columns must be bound by the vertical table line (12- 4- 8 pun ch) . The omission of 
a vertical line (12-4-8 punch) not only causes an error where the omission occurred, 
but may also cause all succeeding entries to be mismatched. 

2. Conditions should be separated from actions by a double vertical line (two 12-4-8 
punches), but a single vertical line will suffice. 

3. The size of each block may vary from column to column and I' )V' to row. 

4. A table column may not be split across cards. The maximum size of a block is 
therefore 71 characters since the first card column in which a table column may start 
is column 8 and each table column is bounded by vertical lines. 

5. When the repeat and skip operators are used they should be the Jnly characters in a 
blOCh. other than spaces. The skip and repeat characters may appear in any pOSition 
within the block. 

@[E D ~m)(Q) ~[E[ffi ~ [E~ __________ ~G=ECOM~--=-=-II 
REFERENCE MANUAL 

-HIO-



External Control of Tables 

Tables may be executed by source language sentences placed outside of the tables through use of 
the following verb formats: 

GOTO 
rtable~name-1 TABLE\. 
\.. TABLE table-name-1) 

rtable~name-3 TABLE} 
\.. TAB LE table-name-3 

[ , (table-name-2 T ABLE\. 
\..TABLE table-name-2) 

[table-name-n TABLE} ] 
... \..TABLE table-name-n 

DEPENDING ON ( field-name }] 
RECORD of file-l1ame 

PERFORM 

Conventions: 

{table-name TABLE} 
\..TABLE table-name 

1. Control may be transferred to an open table by means of the GO verb. Open tables 
may not be performed; they may be executed in line. 

2. Closed tables may only be executed by means of the PERFORM verb, and ar2 per­
formed from another table. 

3. For additional information on GO verb conventions, see page 106, CONVENTIONS 2 
and 3. 

Figure 16 illustrating a sample decision table follows. 

-191--



@) 
[Nil 

0 

~ 
§ 
§ GENERAL. ELECTRIC 

GENERAL COMPILER SENTENCE FORM 
COMPUTER DEPARTMENT, PHOENIX, ARIZOtU. 

@/2) 
[Nil PROGRAM IDATE 

Sample Decision Table 

a§ PROGRAilMER ICOMPUTER I PAGE 

= SEQUENCE 

[Nil 

®2l 
NUMBER 

112 j 31 4 1 5 1 6 7 81911°111 121lJil41U 16 17118)19120!21121123124125 26127128129130131132/))134115 36137138i3914014'142143144145 46[47148149150151)52153 54155 56157158159160161T103164165 66167i68!69170l71t~1717~~17617717817'~ 

I 
"%j ..... 

f-'-'----'----'----'---51_ P~R ° C E D U, RED I V I S ION. 

1 ° OPE N I N PUT MAS T E R ~ F I L E • 

C§ 
'1 
(1) 

1 5 GET ~ R E COR D. REA D M·A S T E R ~ F I L ERE COR D I FEN D F I LEG ° TOE N D ~ RUN. , , ~ .. ~~~--t-'~~~~--'--"'--t-~~~~~-'-t-'-'--'-~--'---'--'-t--"-~-~-'--~---'--'--'---i 
20 IF FE,MAL,E, ,G,O TO GET~RECORD. , 

..... 
:n 25 EXPERIENCE ~ CURRENT~YR - YR~EMPLOYED + PREV~EXP. 

1-L-JL.l--'--'--f- f--... ' , 
, 

CIl 

, III 

..... 8 
~ 

't:l 
t..:) 

,..... 
(1) 

f-'-,--,-,-3~O+-+T._A~BLE EXAMPLE ,3, CONDITIONS 2 ACTIONS 5 ROWS. ~ 

i---"--'---+-I+' -. -.--I~-'-r.---'-""--'~+~~-'-~~-'-+--If-'-~~~~-'-'r'-+-""'~~-'---'-'-~-'-I-,;r"-'---'~-'-~~-'-~-'--'-1 
3 5 LEV E L E Q E X PER lEN C E . __ ~ _ TIT .~E __ E3____ ____ ~ . __ .~ __ ~_:.:..? __ 

, 
t::l 
(1) 

n ..... 
00 ..... 
0 
::l 

>-:3 
III 
c' ,..... 
(1) 

t-~~---"4,--,,,0 1-.- 6 E Q 2 . __ " _fL PRO G_~ A M M E ~II. ~ ___ T~_~-:"_O.:......:U+,T--t~~~-'-~~~-'--'-~--j 
457 E Q 3 # PRO G RAM MER # 0 R # A N A L Y S T # 2 " 

~-'--'--- ~.~ ___ L...L_ ' •. - .. ------..••... -.---.. -.-----f--_. ----.---- -.-t"--~~~~-'-......... ~_I 
f-'--'----'---"'-5_0'-t-_!+-'- 8 G R, 3~A_.N_~_~~. S '!-_I! _____ _ .. __ .. _. _. _____ .. _ 3" 

1_-'-.L_,_5,~ _L...L.'._ ~~ ,G,RL~ _ .... !I A N A L Y S T II 0 R II S R- A N A L Y S T II f·-·~- .. -"-------. -- _ , I 
60 10 GR 4 IlsR-ANALYSTII 5 " .. 

~~~6'i -- d' 0 TOG E' T~ _ "R ':Co R" D' ~_.-'---L ~~~ ~__ - .. -.-- ._- '-- + - -.~ ------+- J I 

~~Q. v-~it"~Q_u,'I" •. H,R,I,T,E, ,D,E.P,AR,T,M,ll..LN~T __ 21~M...E.L-2--L~LE LEVEL EXPER~ll.J'..sE'-L0,N, T,Y,PEW,R,I,T,E,R" •. ,,_ I
~~~-,-,,7~,.=:5+-1- TOT A L ( 1) ~ TOT A, L. U_)~,_~:_ 1 • ~ 

~ n G n T n r. r. T P r. ~ 0 R n. 
~f--- .~-~.-.. - .. - -_ .. ----~~ -.----~.--t--------~--

a 3 h ~ U - K ~ N. L L U ~ ~ M A ~ T ~ K- ~ 1 L h • , , 

~ 
rT1 

L....... 9 0 W KIT E TOT A L ( 1,] _LOT,A L ( 2 )_'- T~OJ-,-J\.~.,LL) TO 1A L ( 4) 1...2 TAL ( 5.) 0 N T Y PEW R 11 E R • I· 

I 95 S T D,P II END ,R U Nil. 

!, 1,1 ,! .i.'16 'l.."J.'l"i" "I"i"" "I ,,1,,1) "I ,,!;'ti,t :~;"i,.!,c!"i"l"j"l" "I"I"!,,I .. ! <II ,,! " i.'!" .. j"I .. I .. I"I,,1 "I"!"I,, .. 1,,1,,1 .. 1,,1,,1 "1,,1 .. 1,, .. !"I .. I"!"I"I"I"I,,! "I "1,,[,,i,,!""1 
"'l 
t'l 
~ 

~10 (") t'l 
t'l (") 

~ ~ 
z c:: 
~i~ 



1 2. REPORT WRITER 

THE REPORT WRITER IN GECOM 

The Report Writer is ,.n extension of GECOM which simplifies the programming of routines to 
produce reports. It provides readily understandable program documentation in business report 
oriented language. The source language consists of report descriptions in the Report Section of 
the Data Division, and Report Writer verbs in the Procedure Division. The formats of the reports 
are described complet'21y in the Report Section and are not mentioned in the File Section of the 
source program. A SS.lg:lment of a report may be made in the Environment Division to the on-line 
printer or to a magnetlc tape file containing one or more reports for selective deferred printing. 

Report Writer programs are executed in the Procedure Division by using the Report Writer verbs, 
GENERATE and TERMINATE. These verbs perform standard reporting procedures which have 
been tailored by the Rpport Writer to the individual specifications supplied by the programmer in 
the Report Section. 

Throughout this writeup references are made to figures found at the end of the section. These 
examples illustrate the Yarious portions of the Report Writer. 

The creation of a repo l't or reports may be the primary or secondary purpose of the program. 
Master-file updating, :.:alculation, and build-up of data arrays are common functions performed 
along with or prior to l'E'porting. Usually the source program prepares a Process Storage of 
detail report line sour:e data by reading of successive logical input records. At each record, 
control is passed to the Report Writer generated procedure so that detail printing can be per­
formed in addition to any other reporting functions. necessary at that execution. In brief, the 
Report Writer perfornls the following functions: 

1. Prints rep·)rt headings once at the beginning of the report. 

2. Prints rep.)rt footings once at the end of the report. 

3. Maintains .Jage control by line count and/or skips to a new page at specified 
line printings. 

4. Maintains line spacing on the page. 

5. Prints page headings at the top of each report page. 

6. Prints page footings at the bottom of each report page. 

7. Numbers pages. 

8. Issues detail or body lines of the report. 

-193-



9. Accumulates detail field values conditionally or unconditionally to one or 
more levels of total. 

10. Counts detail lines and/or detail conditions to one or more levels of total. 

11. Detects control breaks at one or more levels so as to: 

• Control the tabulation procedure. 
• Issue logical control totals. 
• Issue logical control headings. 

12. Edit data fields for reporting (that is, suppress leading zeros, insert 
decimal points, dollar signs). 

All conventions outside of the Report Section in the Data Division and the Report Writer verbs in 
the Procedure Division apply to the source program as specified throughout: the GECOM II Refer­
ence Manual. 

METHOD OF REPORT DESCRIPTION 

The General Compiler Report Description Form ( , see Figure 17) is provided for all 
entry types in the Report Section. There are two parts of any report description, the layout and 
the definition. 

The first entry for a single report is the Report Layout header which givE'S the report identification 
and the keyword, LAYOUT, to distinguish this portion of report description. Under LAYOUT, all 
unique line structures are laid out by giving a pictorial image of the report as it will appear on the 
final printed page. Ahead of each line structure of up to 120 print positions, the line identification 
and any preprint or postprint slewing requirements are entered. The entire entry is called a Line 
Image entry. No other types of entries are made in the LAYOUT portion of the report description. 
Figure 17 shows a sample layout. 

The DEFINITION portion, or second half of the report description, starts out with a Report Defini­
tion header, corresponding in form to the Report Layout header. Under DEFINITION, four main 
sections are allowed: Line Definitions, Line Control, Page Control, and Line Sections. These 
sections may appear in any order convenient to the programmer. Usuall:v ':he programmer will 
want the Line Definitions Section to be first or second to aid visual assoc la':ion of Line Image 
entries and Line Definition entries. See Figure 20, line 01090. The oth('r three sections, Line 
Control, Line Sections and Page Control, are optional. Line Control is J\e cessary to specify 
Report Writer control of logical control totals a,nd headings. Line Sectiolls specify sections of the 
Procedure Division to be performed at line preparation time. Page Control specifies any page 
overflow testing and fixed line numbers which function in page slewing. All sections must be 
headed by their appropriate header entry giving the section name. See F 19lres 17, 20, 23, and 
26 at the end of this Chapter. 

The key feature of the GECOM Report Writer method of description is that the layout of line 
images is separate from line definition. A Line Definition entry is associated with a Line Image 
entry by line code. Data names are associated with data images by listing the data names, along 
with the literal identifier L for any constants on the line, in the order of data image appearance on 
the line image above. This technique allows the programmer to describe the report without 
recording detailed columnar print pOSition numbers under the report definition portion. 

@~ 0 ;92(QXffi ~~[ffi ~ [E~ ------------------RE-FE-RE....:::~.::..::~~~O~.:....~-u:::...:..~~. 

-194-



The Report Writer allows the programmer to give one name to each unique detail field accumula­
tion, uSing the form, ACC OF detail-field-name. A variation on this name is ACC OF detail­
field-name FOR conditlOll-name, used to specify conditional accumulation. With this specification, 
the detail field is accumulated only on true status of the condition. The same accumulation name 
must be used on the Line Definition entries at all levels of total lines whenever that accumulation 
is to be printed. At to1al printing time, the correc:t level of accumulation is obtained by the 
Report Writer, and may be referenced by the user. 

One or more successive report descriptions in the Report Section must be headed by a Reports 
File Definition (RFD) entry when reports are being sent to a magnetic tape file for deferred 
printing. 

The Report Section must be the first section in the Data Division and is identified by the words 
REPORT 6SECTION. st arting in Column 8. No more than seven reports may be described per 
source program. 

LINE DESCRIPTION 

The following types of lines may be described to the Report Writer. (Detailed conventions are 
covered under Line Image Entry.) 

RH Report headings 

RF Report footings 

PH Page headings 

PF Page footings 

D Detail 

T Total 

H Heading 

S (~ ) A series of lines 
.H 

A report line description requires a Line Image entry showing the literal values and/or the 
structural characteristics of the data fields. A line which is all literal, such as a page heading, 
is described completely by a Line Image entry. To associate data and definition names with their 
images on the Line Image entry, a Line Definition entry is made under the LINE DEFINITIONS 
entry. This entry identifies all components of the line in order. The programmer must list the 
Line Definition entries in the same order as the Line Image entries. Approximately 30 line types 
may be defined per report by the programmer. No more than 99 line types may be defined per 
report file on magnetic tape. 

-195-



If report lines of the same type have the same structure with only minor differences in content, 
it may be advisable to define a single line rather than to define separate line images and line 
definitions for each case. A common situation is several levels of totals containing the same 
accumulated fields, with level 1 showing the literal "UNIT", level 2 the literal "SUBSECTION", 
etc. The field images can be made large enough to accommodate the highest level of total, so 
that one line image suffices for all levels. The literal values "UNIT", et c., can be assigned to 
a field titled ORG-NAME, for example, in a section of the Procedure DiviEion (see Line Section 
entry) executed at line preparation time. On detail lines, a similar example is a file processing 
problem where a separate line image can be written for each type of input record reject. The 
lines are identical in content except for the literal which spells out reject reason. This again 
may be handled by one line image and associated definition to achieve a sa\ing in object program 
space. 

A series of lines functions as a single "folded" line, and can be defined for D, T, or H line types 
by means of a series header ahead of the individual Line Image entries. 

LINE SPACING ON THE PAGE 

The normal and most efficient method of achieving line spacing on the pagE is to associate paper 
slew requirements with individual line types. The pre and post positions in the Line Image entry 
are used to indicate a slew of a fixed relative number of lines before and, 'or after a particular 
line issue. The integers "1" through "9" and the letter "E", meaning eject to a new page, are 
allowed. Wherever possible, a posts lew should be used in preference to a preslew to gain 
object efficiency. This allows the print and slew to be performed with one printer command. 

In special circumstances a slew to a fixed line number from the top of the page can be specified. 
An alphabetic character is adopted as a preslew symbol and a fixed line number is assigned to 
this symbol by means of the Line Number entry under PAGE CONTROL heading. 

PAGE OVERFLOW TESTING 

Page overflow testing is an optional reporting feature. Standard tabulated reports usually require 
a statement of page overflow conditions in addition to any line slewing parameters because of the 
unknown quantity of details making up a logical control group and the high probability of exceeding 
a page with anyone group. The page overflow specification by the user allows the Report Writer 
to control the report format in a desirable manner. At control total printing, the total lines are 
not printed on the current page unless space is available for all lines at th£' level of break detected. 
Similarly, control headings are not started unless there is space for at least one detail after the 
headings at that level. Detail lines overflow whenever the current issue cannot be fitted on the 
page. 

The page overflow entry under PAGE CONTROL heading may take two forms: LINES/PAGE NN 
or LAST-DETAIL NN, where NN is a constant value representing a line number relative to the 
top of the page. Only one entry is allowed. The Report Writer uses this Ime number in conjunc­
tion with other report specifications to calculate the overflow line numbers to operate at object 
time. 

@[~>~@@ ~~[ffi~~~---------------RE-FE-RE"':::'~C::.;:E~..:.:.O~:...-~-u~:":"~ 

-196-



TABULATION LOGIC 

Tabulation is the process of accumulating certain detail field values until a control break is 
reached. At control break time the appropriate level of accumulated values may be issued on a 
total line or series which is defined to operate at that level under LINE CONTROL. 

A CONTROL BREAK ,lierarchy statement is made by means of a CONTROL BREAKS entry 
immediately following the LINE CONTROL header. This statement lists the logical control fields 
in order of lowest to highest level of break. A break (change in value) for any of the fields listed 
automatically defines that level of control break and any lower levels. Control break fields 
usually represent file sequence key fields (for example, organization code, date ) 

The fields to be accumulated and the counts to be made at the detail level are defined by special 
Accumulation and Count Names in Line Definition entries. Fields for accumulation may be input 
or calculated values. 

Whenever a GENERATE sentence is executed by the programmer, the detail values are accumu­
lated to the lowest level of total accumulation. At GENERATE detail-name entry, the accumu­
lation takes place immediately after line printing of the named detail. At execution of the 
GENERATE report- mcme entry, which means no detail lines are defined, the accumulation occurs 
at this same juncture in the object program with the standard detail line preparation and printing 
omitted. 

At detection of the first level of control break, any total lines at that level are printed. Then 
first level accumulated values are "rolled forward" (added to the second level and reset to zero 
for the next build-up). This process is extended to all levels of control break defined by the 
programmer. The printing requirements of the accumulated values on the various levels of total 
lines has no influence on the tabulation procedure. In this way users may reference accumulated 
values at total time eyel if the value is not to be printed at that level of total. 

REPORT WRITER LINE CONTROL 

Line control is implied by line code for the fixed headings and footings: RH, RF, PH, PF. Line 
control must be specifiE'd by a Line Control entry for all control heading (H), and control 
total (T) lines. A ser itS of control headings or totals may be controlled only at the series level. 
Only the body l1nes of the report (D or SD) are controlled by GENERATE detail- name sentences. 
However, at every GENERATE detail-name sentence, the programmer must expect that any or 
all Report Writer cOlllr'llled lines may appear ahead of the detail, if appropriate conditions are 
satisfied. Page overflow forces page heading and/or page footing lines, and control breaks 
forces control total alld or control heading lines. 

A GENERA TE report- neuue sentence must be employed when no detail line types are defined on 
the report. All of the automatic reporting functions available in the GENERATE detail-name 
mode of operation are also available in the GENERATE report-name mode. Printing occurs only 
at total, heading, or footing time. 

-197-



The last control break level defined must conS:lst of the key word FINAL when final levels of 
accumulations are required for the report. See Figure 23, line 01190. A final control break is 
determined by end-of-report, or execution of 3. TERMINATE report-name sentence. Standard 
business reports usually contain control break totals of one or more levelS, in addition to a 
single detail type. Figures 17 through 28 illustrate the use of control break totals. 

EXECUTION OF USER PROCEDURES AT LINE TIME 

Standard reports often require some additional calculation or field value assignment within the 
reporting procedure. The Line Section entry provides a method of executing a section of the 
Procedure Division in the line preparation proeedure. At detail time, the user may prefer to 
carry out these procedures prior to report program execution, before the GENERATE detail­
name sentence execution. At all other line types, which are controlled by the Report Writer, he 
must use the Line Section entry. 

One Line Section entry is allowed for any type of line, including the fixed types of headings and 
footings. The section is always executed immediately before line printing (including preslew). 
Tabulation procedures occur after line printing on detail lines as well as control totals; this 
allows detail accumulation values to be calculated in a Line Section entry at detail time. At 
control total time, Accumulation and Count Names can be referenced for calculation (that is, 
crossfooting) by the same name given to the field on the control total Line Definition entry. 
Control break level may also be interrogated by means of a control break <30ndition name. 

A logical control group is a group of detail lines plus any control headings and control totals. 
User reference to control break data names during the span of these lines yields the value for 
that control group, as a result of appropriate handling of control break data names by the Report 
Writer. 

GECOM - II 
REFERENCE MANUAL 

-198-



DATA DIVISION--REPORT SECTION 

The REPORT SECTION of Data Division consists of 

several entries which are discussed on the following 

pages. 

-199-



REPORT FiLE 
DEFiNITION ENTRY 

FUNCTION 

The Report File Definition entry (RFD) specifies a magnetic tape file of sta cked reports for 
deferred printing. 

FORMAT 

RFD in columns 8-11. 

File-name in columns 13-24. 

mteger-l WORDS J in columns 28, etc. 

CONVENTIONS 

1. The RFD entry must immediately precede report descriptions for the file named. 
One to seven reports may be defined per file, provided the total number of reports 
in the Report Section does not exceed seven. 

2. The file-name must be used for all references to that file in the Environment 
Division. (See Chapter 7, File-Control.) 

3. Reports going directly to the printer must not have an RFD entry. 

4. Each report belonging to the file must have a report format coae supplied under 
the format column in the Report Layout header. This becomes the report select 
number at printing time. 

5. A reports file description is terminated only by another RFD entry or the end of 
the Report Section. 

6. The tape files are formatted according to the conventions for the GE-200 Series 
Off-Line Printer (see GE-200 Series High-Speed Off-Line/On-Line Printer Reference 
Manual (CPB-I075» and the generalized GE-200 Series peripheral-to-peripheral 
program, Peripheral Package (PIP), CD225El. 009 designed to accept the same 
format for tape-to-printer with or without Automatic Priority Interrupt hardware. 

7. If the BLOCK clause is omitted, a standard of 341 words (maximum acceptable 
for off-line printing) is assumed. 

8. The RFD entry is also required when a single report is assigned to a tape file. In 
this case the file-name in the RFD entry and the report name in the Report Descrip­
tion (RD) entry must be different. 

@[E 0 ~ @@ ~[E [ffi ~ [E ~ ---------------RE-FE-RE....::;~;:.::~~~~:......~.....;u~:..:.~ 
-200-



FUNCTION 

REPORT LAYOUT 
HEADER 

The Report Layout header (RD) indicates the start of a report layout, assigns a name to a report, 
and assigns a report format code for use in deferred printing of a reports file magnetic tape. 

FORMAT 

Report code, Bl2 [integer] in columns 8-11. 

Report-name in::olumns 13-24. 

[Report-format- cOde] in column 27. 

LA YOUT. starting in column 28. 

CONVENTIONS 

1. RD initiates a report description, analogous to the FD for a file description in the 
File Section. The integer position may contain a number 1-9 for user documen­
tation only. 

2. A report name of up to twelve characters must be entered under data-name on the 
Report Description form. The programmer must use this report name wheT' report 
name is c2Jled for in Procedure Division and Environment Division references 
to the repClrt. 

3. Report format code is valid only when the report is assigned to magnetic tape for 
deferred printing (see Report File Definition Entry, page ). The integers 1-7 
are allowed in this position for report identification and selection at printing time. 

-201-



LINE IMAGE 
ENTRY 

FUNCTION 

The Line Image entry displays the structure of a line and certain key information about a line as 
a whole. 

FORMAT 

Line identification: 

Line or line series code in columns 8-11. 
Line or series name in columns 13-24. 

Page slewing: 

Preprint slew in column 25. 

EiteralJ 

Postprint slew in column 26. 

~iteralJ 
Line image in columns 28, etc. (See Report Description Form Conventions, page .) 
1 to 120 print positions of any combination of: 

Data image entries 
Literal image entries 
Space fill (no entry made) 

CONVENTIONS 

1. Line Identification 

Line code is required for every Line Image entry and supplies the necessary line 
identification to be used in referencing the line under the Report Definition portion. 
This code must be unique within a single report. 

Line identifications consist of functional symbols suffixed by integers (or alphabetics) 
to achieve uniqueness. The Report Writer allows one to four positions for this 
designation under line code. The symbols which are valid in the leading positions of 
the line code to designate line function or type are as follows: 

RH, RF Report headings and footings, respectively. These are printed 
once, at the beginning or the ending of the ellt.re report, in the 
order of their appearance in the source program. A common 
use of report headings is a cover page for the report to inform 
operating personnel about report identificatit II". and certain 
instructions for preparing and distributing the report. 

GECOM - II 
REFERENCE MANUAL 

-202-



PH, PF 

D 

T 

H 

s 

LINE IlVI AG E 
ENTRY 
(Cont. ) 

Page headings and page footings, respectively, follow the 
same principles as RH and RF, with printing at the beginning 
and ending of each page in the report. Multiple page 
headings are common to most reports. (See Figures 17 
through 28. ) 

Detail line--a body line of the report. The Report Writer 
procedure which prepares and writes a detail line is 
controlled by means of the GENERATE detail-name sentence 
(see Report Writer verbs). Figures 17, 20 and 26 show 
typical detail line types. 

A logical control total line. This line normally contains 
accumulated values of tabulated detail fields and is issued 
automatically by the Report Writer as control breaks occur. 
Total lines may be defined with or without printing of any 
detail lines of the values being accumulated. A good total 
line practice is to allow the second character of total line 
type to indicate the total control- break level number. Thus, 
T1 is a level one total, T2 a level two total, etc. A Line 
Control entry under Report Definition defines the total level 
of the line; thus, the use of a level number in line code is a 
documentation aid only. Whenever a control break occurs, 
total lines are printed in order of low- to- high control- break 
level. The number of lines printed reflects the current level 
of control break. 

A logical control heading line. This line functions similarly 
to control totals but heads rather than follows the detail 
lines associated with it. Again, a Line Control entry speci­
fies the leve I of the line. In the case of control headings, 
the lines are printed in high-to-low order of control break, 
or the reverse of control totals. 

Series of lines. Any series of D, T, or H lines may be de­
scribed by a series header. This header identifies a number 
of consecutive lines which function essentially as an entity; 
that is, all lines in the series are to be printed consecutively 
whenever the first one is printed. The series line code 
beginS with an S and is followed by one to three characters 
which are duplicated in the leading pOSitions of every line code 
within the series. Thus, a series can contain only one line 
type. The Line Image entries for a particular series must 
follow the header for that series. A series of associated lines 
at a total control break level is shown in Figure 23. A series 
header is meaningless for any of the fixed lines, RH, RF, PH, 
PF. and is recognized as an error. 

Line nam·: :nay be written under data name on the form and serves as user documen­
tation on all line types except detail. If the detail-name (line or series) is written, 
it must bt, used in the GENERATE detail-name sentences in the Procedure Division. 

@ ~ 0 ~ @@ ~[~ rnl [ ~ ~ ----------------RE-FE-RE....::~:.::.:~~:..;;;o~~~u-=..=.~~ 

-203-



LINE IMAGE 
ENTRY 
(Cont. ) 

2. Pre- and Posts lew 

Pre- and postprint line spacing, to occur in conjunction with thE printing of a given 
line, is specified in columns 25 and 26 respectively. The literal value can only be 
one character in length. An integer (1-9) is entered to show a fixed number of lines 
of spacing to appear on the report before and/or after the printEd line every time it 
is printed. The normal case can be described with a pre or post entry alone, but in 
certain situations it is advantageous to be able to specify both. For object program 
efficiency, a post entry alone is recommended. 

The letter E may be entered in the pre and post columns to specify ejection to a new 
page to whatever has been set as top-of-page by a channel punch in channel 8 of the 
printer paper tape loop. This slew resets the line counter to ZEro. 

E need not be entered in post of the last page footing or pre of the first page heading. 
this slew is automatic at page overflow or page skip (E) time. ]f entered in either of 
these pOSitions, the deSignation will be ignored by the Report Writer. 

E is invalid within a series except as an initial pres lew or a final posts lew on the 
individual Line Image entries. 

Any alphabetic character other than E defines a pre- or postslew to a fixed line 
number relative to the top of the page. These symbols should be used only where the 
desired line spacing cannot be achieved by slewing a fixed number of lines relative to 
the current line being printed. At object time, a slew to a fixed line-number less 
than the current line-count results in a page skip, with printing of PF, PH lines, 
followed by a slew to that line number. The fixed line number associated with each 
alphabetic symbol is specified in the Line Number entry (see Page Control Entries, 
page ). 

3 . Line Images 

The line image or physical structure of the line as it will appeal' on the printed page 
is entered beginning in column 28. Each unique line is described with respect to its 
data image, literal image and space fill content. 

Data Images 

A data image defines the format of a single report field. In addition to the 
standard data format symbols A, 9, X, field data can be displayed with a 
wide range of report editing features. The most common editing features 
pertain to reporting of numerit:: quantities, where decimal points, commas, 
zero character suppressions, floating dollar signs, and check protection 
symbols are desired. Figure 29 presents a concise summary of the allow­
able data format symbols. The Report Writer adheres to the conventions 
for output format symbols in GECOM with extensions to include the options 
of floating leading sign, complete zero suppression, and CR, DB credit and 
debit symbols. 

@ ~ 0 ;?2 W)(m ~~ [ffi ~ ~~ ------------------::-;RE=FE=RE=~-::::~~~O~7:-:~=UA77-1 ~ 
-204-



LINE IMAGE 
ENTRY 
(Cont. ) 

The parenthesis allowed in the data image of a File Section entry as short­
hand to show a repeated symbol is not permissible on the Report Form. 
Each data character position on the report must contain its format symbol 
in the appropriate column on the line image. 

To accommodate the Report Writer group-indicate function, the symbol G 
has also been added to the valid data image symbols. It is only allowed in 
the Report Section. It is placed in the leading character of any data image 
contained on a detail line. It means that the value for that field is to appear 
only on the first detail line printed for consecutive lines that contain dupli­
cate values for that field. Group indication occurs on the first line of con­
secutive detail lines starting on a new page or after a total control break. 
Usually file sequence key fields (which are also control break fields) are in 
this category. It is assumed that the data symbol replaced by the G is the 
same as the symbol immediately after the G. If the field is length 1, an 
alphanumeric (X) is assumed as the data format symbol. See Figure 20. 

Literal Images 

Literals are shown exactly as is, with no surrounding quotation marks. A 
literal image cannot contain a blank. Blanks (space fill) separate literal 
and field images on the Line Image entry and by definition are not counted 
as part of the literal or field image. 

A series header cannot have a pre, post, or a line image portion in the Line Image 
entry. 

On a Single report, the Report Writer allows no more than thirty unique line struc­
tures, or this number of Line Image entries. 

-205-



REPORT DE FINITION 
HEADER 

FUNCTION 

The Report Definition header (RD) indicates the start of the Report Definition entries. 

FORMAT 

.!!Q E,nteger] in columns 8-11. 

[Report-name] in columns 13-24. 

DEFINITION. in columns 28, etc. 

CONVENTIONS 

1. The portion of a report description headed by this entry must follow the report 
layout portion identified by the same RD (integer) code in the Report Layout 
header. 

2. It is not necessary to repeat the report name in columns 13 - 24 of this entry. 

@ ~ 0 ~(o)(ill ~~ [ffi ~ ~~ -------------·--=RE=FE=~RE...,;;.~C~E~..;;.;.O~;.,-~=u!~~ 

-206-



FUNCTION 

The Report Definition entries are: 

Line Definition entry 
Line Control entries 
Line Section entry 
Page Control entries 

FORMAT (All options selected) 

LINE DEFINITIONS. starting in column 8. 
(Line Definition entries) 

LINE CONTROL. starting in column 8. 
(Line Control entries) 

LINE SECTIONS. starting in column 8. 
(Line Section entries) 

PAGE CONTROL. starting in column 8. 
(Page Control entries) 

CONVENTIONS 

REPORT 
DE FlNITION ENTRIES 

1. The report definition must contain at a minimum a LINE DEFINITIONS section 
unless the report is composed entirely of all-literal lines. Within this section 
one Line Definition entry is required for each Line Image entry that is not entirely 
literal. See Line Definition entry, page 

2. The LINE CONTROL, LINE SECTIONS, and PAGE CONTROL sections are all 
optional. Their functions are described on the following pages by entry name. 

3. Each section must be headed by a hea.der entry (as shown under FORMAT) naming 
the section. See Figures 17, 20, 23, and 26. 

4. Only one section of each type may be contained under a single report definition. 

5. The sections may appear in any order under Report Definition. 

-207-



LINE DE F1NITION 
ENTRY 

FUNCTION 

The Line Definition entry associates data names with the images appearing on the corresponding 
Line Image entry and specifies Accumulation and Count fields. 

FORMAT 

Line- code in columns 8-11. 

Line definition in columns 28, etc: 

Image-I-name [, image-2-name, image-3-name, --j 

CONVENTIONS 

1. The Line Definitions must be preceded by the LINE DEFINITIONS. header. 

2. Line code must match a line code for a line defined in a Line Image entry of the 
report layout portion. 

3. A Line Definition entry may use up to two full lines on the Report Description 
form. If more than one line is used, the line code must not be repeated on the 
second line. The second line is started in column 28 or after. A word may not 
be split over two lines on the form. (See Report Description Form Conventions, 
page .) 

4. A Line Definition entry consists of a list of names in order of corresponding 
image (data or literal) appearance in the Line Image entry. 

5. The Line Definition entries must appear under the LINE DEFINITION header in 
order of corresponding Line Image entries under Layout header. 

6. Lines composed entirely of literals and space fill, as is common in headings, 
are not described under definition, and are skipped by the programmer in his 
order of Line Definition entries. 

7. The image names within a definition list can be separated by one or more spaces, 
a comma, or a comma and one or more spaces. Each list must: be terminated by 
a period. 

8. As defined under Line Image entry, an image is a data image or a literal image. 
These two types of images along with blanks, or space fill, make up a line image. 
The two classes of image names are as follows: 

Literal identifier 
Data image-name 

9. A literal identifier by definition is the letter L. A series of N consecutive 
separated literal images can be identified by L(N) or Lt.(N) or by separate literal 
identifiers, L, L, L. 

-208-



LINE DE FINITION 
ENTRY 
(Cont. ) 

The L(N) or L6(N) causes the series of literals and the encompassed spaces to be 
created as one literal string by the Report Writer. This notation is recommended 
for object efficiency whenever the consecutive literals are not widely separated. 

10. Adjacent images on a report line occur occasionally, when it is necessary to layout 
data and literals so that one image appears for the combination. Adjacent data 
images are shown by slash separators between the data image names in place of the 
normal spaces and/or comma in Line Definition. (See Figure 20.) In this case, 
the data image under the Layout header is for user documentation only and the Report 
Writer obtains the individual data descriptions from the input file, Working-Storage, 
or Constant Sections. Literal portions of adjacent images must be specified as 
field literals defined outside of the Report Section. 

11. A data image name can be the name of a field, element, or group defined elsewhere 
in the Data Dlvision or an Accumulation or Count field-name. The latter fields are 
set up and maintained automatically by the Report Writer as described in the section 
titled Accumulation and Count Names. 

12. The Line Defmition entry for a control total or heading line may contain a control­
break-data-name for any level. At total time, the data-name value for the previous 
details is moved by the Report Writer to the field named as control break for that 
level. The move is made prior to execution of a line section. After total printing, 
the value is set to the next detail value; or the one which forced the total. This value 
may be appropriately printed on any control headings to follow, by using the same 
data-name on the Line Definition entry as used at total line definition. 

13. In keeping with the GECOM conventions for output data-names, subscripts are not 
allowed on data-names in the Line Definition entry. 

@ ~ 0 ~ @@ ~[E [ffi J[~ ~ ---------------RE-FE-RE....:;:~.:::::~~~o~~~-u~;:;.!;.~ 
-209-



LINE CONTROL 
ENTRIES 

FUNCTION 

The Line Control entries specify the control break hierarchy and associated control line printing. 

FORMAT 

Control Breaks Entry: 

CONTROL--BREAK[SJ ON control-break-data-namel, 

data-name-2,----, control-break-data-name-n 

[control- break-

[FINAL] ] . 

starting in column 13 or after. 

Line Control Entry: 

Line- code in columns 8- 11 . 

CControl- break- data- name) 
ALL starting in column 13 or after. 

CONVENTIONS 

1. Line Control entries must follow the LINE CONTROL. header under Report 
Definition. 

2. Only one Control Breaks entry is allowed. It must immediately follow the LINE 
CONTROL. header. 

3. The Control Breaks entry defines any control breaks to be detected by the object 
program. One (to fifteen, at the most) control-break-data-names (element or 
field) may be listed. These are usually file sequence key data names, such as 
organization, pay number, name, etc. Qualifiers are written when needed for 
uniqueness. (See Figures 17, 20, and 23.) 

4. When more than one control break level exists, the data names must be listed in 
order of minor to major level. The order of listing establishes the hierarchy of 
control breaks. By definition, a control break at any level (other than lowest) 
assumes all lower level breaks automatically without testing. 

5. The Control Breaks entry supplies the Report Writer with the number of levels 
of accumulations (see Accumulation and Count Names) to be set up and maintained 
automatically. When final or report totals are required in addition to those for 
control-break-data-names, the key word FINAL must be written as the highest 
level of control-break-data-name. FINAL may be the only level given. 

6. A Line Control entry associates a control-break data-name with a line (or series), 
thus defining the level of control break that determines issue of the line or series. 
The line or series code must match one supplied in a Line Image entry. The 
control- break data-name must match one of the names given in the Control Breaks 
entry. (See Convention 13.) 

@[E 0 ~ @@ ~[E [ffi ~ [E ~ --------------------::-:RE=FE=R~E~,;:;~~~O:.:.,...~=UA~I ~ 
-210-



LINE CONTROL 
ENTRIES 
(Cont. ) 

7. A Line Control entry is valid only for an H or T line or line series code. Line 
Control is implied by definition for the RH, RF, PH, PF line codes and cannot 
be stated. D lines are controlled by the programmer. 

8. Lines withill a series cannot have a Line Control entry. The line control must 
be given at the series level. 

9. Only one heading line or series and one total line or series can function at each 
control break level. 

10. A heading type (H or SH) cannot be associated with the FINAL control break 
name. A total (T or ST) may have the FINAL name, and is printed after all 
lower levels of totals which are forced automatically at end of report (FINAL 
condition true). 

11. The same or different control break levels can be associated with T and H lines. 
At a control break of level 3, where all three levels are associated with T and H 
lines, the hnes appear on the report as follows: 

(detail lines) 
T (level 1) 
T (level 2) 
T (level 3) 
H (level 3) (start of new logical group) 
H (level 2) 
H (level 1) 

(detail lines) 

12. In many cases one T line (or H) can be defined to operate at all control break 
levels, at a saving in object program space. This is true when the same or 
nearly the same line format applies at all levels. (See Figures 20 and 23.) In 
this case, the ALL option may be used to avoid writing multiple Line Control 
entries. 

13. The issue (If lines at control breaks is independent of the overall control break 
procedure of detection, roll forward, and resetting of specified accumulation 
and count field values. A control break can be defined and have no line issue 
associated with it; or, it may have an H line and no T line, etc. 

-211-



LINE SECTION 
ENTRY 

FUNCTION 

The Line Section entry identifies a section of the Procedure Division to be performed at line 
printing time. 

FORMAT 

1. Line code in columns 8-11. 

2. Section-name starting in column 28 or after. 

CONVENTIONS 

1. Section-name identifies a section of the source program in the Procedure Division. 
Line code establishes the line time at which the section will be performed under 
control of the Report Writer. 

2. All entries must be placed under the LINE SECTIONS header. No ordering require­
ments are imposed. 

3. A Line Section entry cannot be given for a series code. 

4. No more than one entry of this type may be made for each line defined by a Line 
Image entry. 

5. The section is performed immediately prior to line formation and printing. 
Accumulation of detail values is performed after detail line pr inting; hence, values 
to be accumulated can be calculated in the section. 

6. The same section name may be given for two or more lines. 

7. See Accumulation and Count Names on page to obtain the conventions for use 
of these special names in a section of the Procedure Division. 

@~ 0 ~(O)(m ~[E[ffi ~ [E~ ----------------RE-F-ER.....::E~~~~:..:::;O~.:...--u~=~ 

-212-



FUNCTION 

ACCUMULATION AND 
COUNT NAMES 

The Accumulation and Count Names specify page numbering of a report and detail accumulation 
and counting requirements of the report. 

FORMAT 

Page numbering: 

PAGE-COUNT 

Detail Accumulation and Counting: 

DETAIL--COUNT 

COUNT FOR ( condition-name ) 
true-false data-name 

(¥cfUMULATION) QE. field-name [FOR 

CONVENTIONS 

(condition- name "'\1 
\..true-false data-nam~ 

1. The Accumulation and Count Names of the formats above operate as data image 
names on the Line Definition entry. In addition to naming the corresponding data 
image on the Line Image entry, each type of name implies an accumulation or 
count action to be performed by the Report Writer. 

2. The PAGE- COUNT clause requests that the pages of the report be consecutively 
numbered ane! that the current page number appear in the associated image position 
on each page of the report. 

3. The DETAIL,~COUNT clause specifies automatic counting of detail lines. The 
DETAIL--COUNT field is incremented by 1 every time a detail line or series is 
printed. 

4. To obtain an automatic accumulation of detail field values into one or more total 
levels, one of the above forms of accumulation definition names in a Line Definition 
entry is used. Figures 17, 20, and 23 show examples of the use of this name type. 

5. The E;ame detail accumulation or counting field name (formats above) -may appear 
on any or all total line definitions, where separate lines are defined for separate 
levels of control break. One appearance of a given name suffices to specify the 
desired action at detail time. 

@~ 0 ;?2ffiXOJ ~~lffi [I [~~ ------·---------RE-FE-R...:::E~..:::..:;~~:.:::O~.:....--u~;:;..=.~ 

-213-



ACCUMULATION AND 
COUNT NAMES 

(Cont. ) 

6. Knowledge of the control break hierarchy of levels gained from the Control Breaks 
entry under the LINE CONTROL header determines the exact manner of "roll 
forward" of counts and accumulated values. At each occurrenee of a control break 
the current accumulated amount for that level is rolled forward or accumulated 
to the next higher level, and then reset to zero. It is not necessary that a total 
line be printed at every level of accumulation. At each detail reporting cyele (line 
or series), the current values of the designated fields are accumulated to the 
lowest level of accumulation. At control break time, appropriate roll forward and 
reset occurs with or without associ.ated total line printing. 

7. The FOR--- phrase is used to specify conditional accumu!aLO'l 01' counting. The 
accumulation or count is performed at detail time only at true staLus of the condition 
or data name. Condition names and true-false data-names arE' defined in the File 
or Working-Storage Section to suit the needs of the programlwr. Where a condition 
name is not appropriate, any complexity of logical expressici can be f",amined in 
a Procedure Division sentence and a true-false data-name sft for interrogation by 
the Report Writer. Once a detail value is accumulated (or a count incremented by 
1) to the lowest level, that value automatically carries forward to all higher levels 
of accumulation or count. The condition name or true-false da.ta-name must not 
have a qualifier. 

8. The control-break level associated with the total line or line s,~ries is the implied 
level of accumulation to be printed for all of the accumulation and counts contained 
on the Line Definition entry. The current level of accumulation is made available 
for printing (and user reference) at: object time by the Report Writer object program. 

9. At detail time, a series of lines operates in exactly the same manner as an 
individual detail line. The values for accumulation and count fields are added once 
per series to the lowest level of accumulation. The field names do not need to 
appear in the detail line or series Line Definition entry. The detail field values to 
be accumulated may be calculated in a section of the Procedure Division at line 
printing time. See Line Section Entry, page 

10. Accumulation and Count Names may be referenced in a section of the Procedure 
Division executed at line preparation time. (See Line Section Entry, page . ) 
The names shown under the formats above may be used as field names for this 
purpose. The following conventions apply to the accumulated values obtained: 

• At total line time, the value referenced is the current accumulated 
value for the level of line about to be printed. 

• At detail, heading, or footing time, the value referenced is the 
accumulated value printed on the last previous total timE. 

11. Field name may be qualified in accordance with the General Compiler language 
conventions. The qualifier data names (group, record, and; or file name) are 
written as "OF data-name" after the original field name and before any additional 
elauses. A given source field should always be written \:ith the same qualifiers. 
Report name is not needed as a final qualifier in the Report Section Line Definition 
entries for that report. However, if the same Accumulation or Count Name is 
defined on more than one report, the report name must be uned as a qualifier in 
all Procedure Division references to that field. 

12. The programmer must not enter Accumulation and Count Names into the Working­
Storage Section. Internal Process Storage is set up by the Report Writer. . 

@j~ 0 ~@@ ~[E[ffi ~ ~~ -----·-----------RE-FE-RE....:;:~..:;;,;;~~;,;;,:;O~.:..---UA=I~ 

-214-



ACCUMULATION AND 
COUNT NAMES 

(Cont. ) 

13. The internai storage mode for Report Writer Accumulations is determined by the 
source data description of the item to be accumulated. The programmer may 
describe an Input (or Working-Storage) field as integer, fixed point, or floating 
point. Int':'ger arithmetic retains decimal accuracy which may be lost in fixed 
point calcl!lations as a result of the binary mode of computation. For this reason 
the programmer is urged to define fields for accumulation as integers with the K 
symbol to show implied decimal scaling rather than the V symbol. If the scaling 
of the input field in Process Storage will not also accommodate the accumulation, 
another scaling can be set by the programmer with the M data image convention 
on the input field. The leading charader of the image must be M and the trailing 
character S followed by the scale desired. For example, an input field of size 
9(4) can be assigned 38 rather than 19 scaling internally by describing the field 
as M9(4)S:!8, or M999K9S38. Count fiLelds are given an internal scaling of 19 by 
the Report Writer. The decimal scaHng shown by the K symbol is assumed at 
report format time for decimal alignment purposes when accumulation fields are 
printed. C(lunt fields in Process Storage are always set up by the Report Writer 
as integer \\ ith a binary scale of 38. 

14. At present, floating point numbers cannot be described on the Report Description 
form for printing other than in fixed form. 

15. Approximately 30 unique Accumulation Names may be defined per report. 

16. Accumulation and Count names may be included in the output files section. The 
qualifier area is used for the field names and any additional qualifiers or FOR 
names. The key words ACC, COUNT, etc. will appear under data name. The 
current level of accumulation or count will be moved to output. 

GECOM - II 
REFERENCE MANUAL 

-215-



CONTROL BREAK 
CONDITION NAMES 

FUNCTION 

Control Break Condition Names allow interrogation of control break status in Procedure Division 
sentences. 

FORMAT 

CONTROL - BREAK ~ntegerJ 

CONVENTIONS 

1. True-false data-names are set up automatically by the Report v., riter for each 
level of break defined under LINE CONTROL. header. These fields are set to true 
at detection of a break and remain set to true until completion Jf the printing of any 
total control break lines at that level.. 

2. These true-false data-names may be interrogated but not alte'ed by the program­
mer. A common use is in a section of the Procedure Division for a control line 
operating at more than one level of break. Knowledge of the l"vel may influence 
the assignment of certain field values to be printed. See Figures 22 and 25. 

3. If more than one control-break level (other than FINAL) is defined, all array of 
true-false fields is set up by the Report Writer. The integer lS the subscript value 
necessary to interrogate the correct level of break. Subscript "alues 1, 2, ---
are level numbers assigned to control- break data- name-I, c< mtrol- break data­
name- 2 - - - respectively (See Control Breaks Entry). 

4. The key word FINAL is used as a condition name to interrogat e final reporting 
condition. 

5. Unless control break fields are used in calculations by the prosla mmer outside 
of the Report Section, they Should be described as alphanumeric (X) to avoid 
unnecessary conversion to internal binary form. The Report W:.'iter sets up an 
auxiliary field for each control-break data-name to hold previ'l1:s data-name values 
for comparison purposes. 

GECOM - II 
REFERENCE MANUAL 

-216-



PAGE CONTROL 
ENTRIES 

The two Page Control entries, Page Overflow and Line Number follow. 

FUNCTION--PAGE OVERFLOW ENTRY 

The Page Overflow entry specifies requirements for page overflow testing at line printing time. 

FORMAT 

[LINES/PAGE 

LLAST N DETAIL 

CONVENTIONS 

integer-I} starting in column 13 or after. 

1. The Page Overflow entry must be made under the PAGE CONTROL. header. 

2. Page overflow causes the page break procedure of page footing print (if any), 
slew to top of next page, and page heading print, before printing of the intended 
line or lilles. The page overflow test: consists of a comparison of current line 
count on the page with an overflow line number calculated at report program 
generatio 1 time. Depending on the Page Overflow entry type and the lines 
defined for the report, an overflow line number may be calculated for use with 
each give:} line or series of type H, D, or T. 

3. Either LI~ES/ PAGE or LAST-DETAIL entry but not both, may be specified. The 
integer- 1 value may not exceed 99. 

4. If neither LINES/PAGE or LAST-DETAIL entry is specified, the Report Writer 
assumes that no page overflow testing is required in the object program in this 
case all rage control and line spacing is accomplished by the pre- and postslew 
parameters in the Line Image entries. 

5. A fixed lim' number (see Line Number entry), or E under the PRE column obviates 
any pagE 0\ erflow testing for that line type or series when a Page Overflow entry 
has been made. 

6. LAST~DE:TAIL entry means that page overflow is tested only on detail (D) and any 
control heading (H) line types. LINES/PAGE entry means that page overflow is 
tested on these types as well as on the only other variable line type, control totals 
(T) . 

7. LAST~DETAIL is the normal parameter for specifying page overflow where both 
det.ail ,Hid total lines exist. The programmer specifies the LAST-DETAIL line 
l'UW!>t"· n':.lti'.p to thu top of page (line number 0) that may contain a detail line 
tYIJe. Tlli~: irE' number should allow room on the bottom of the page for all possible 
levl'!s of (I,tab and d"Y page footings. To obtain a last detail line number for page 
(lverfl(lw tf'S! il1g, the LAST-DETAIL line number is adjusted by the number of lines 
required for printing the detail line or series. 

@[C ®17iI(<'t (~rCrC)r Ic~ GECOM - II 
@LS 0 ~ @\i ~1L~:J:r.. ~ l:oJ ::?.-' ------------------------RE-F-E-R-E.:::.NC=:;E~MAN!....:.-UA=.!:.L 

-217-



PAGE CONTROL 
ENTRIES 

(Cont. ) 

8. Page overflow line number for control headings (H) is calculated so that overflow 
occurs whenever the current level of heading lines plus at least one detail issue 
will not fit on the page. 

9. The LINES/PAGE entry specifies the line number counting from the top of page on 
which the last line of printing on the page may occur. To obtain a last line number 
for page overflow test, the specified line number is first adjusted by the number 
of lines (including pre- and postslewing) required by any page footings, and second 
by the number of lines required by the current issue. On detail and control 
headings the conventions given in notes 4 and 5 apply to this latter adjustment. On 
control totals, the calculation is made so that overflow occurs whenever the number 
of lines needed for all total lines at the current level of contrciJr!'ak will not fit 
on the page. 

10. The object program does not test for page overflow within d str les of lines, as 
the method of calculation of page overflow line number has prNfcted a series frem 
being broken across a page. 

GECOM - II 

REFERENCE MANUAL 

-218-



FUNCTION--LINE NUMBER ENTRY 

PAGE CONTROL 
ENTRIES 

(Cant.] 

The Line Number entry assigns fixed line numbers to report lines where the desired line spacing 
cannot be achieved by relative line spacing from other print lines. 

FORMAT 

literal-l (integer-I) [. literal- 2 (integer- 2U LINE-NUMBER [S J (A~E } 

[literal- n (integer- nU . starting in column 13 

CONVENTIONS 

1. This entry must be made under the PAGE CONTROL. header. 

2. The LINE-·l\UMBER [S] parameter entries assign fixed line numbers, relative to 
the top of the page, to one or more report lines of a given report. A common use 
of this parameter is to force the control- break total lines to a line number past 
the LAST~DETAIL line number. In this way the start of a new page with every 
new logical (~ontrol group may be achieved. 

3. The literal-t, literal-2, etc., values must be alphabetic characters shown in the 
PRE columns of Line Image entries. The integer-I, integer-2, etc., values must 
not exceed 99. 

4. For purposes of object program efficiency, the LINE-NUMBER [s] parameter 
should not bi' used where the desired results can be obtained by slewing a fixed 
number of ILles (or to top of page) before and/or after the printing of a given line. 
With the e:;ccption of the case outlined in convention 2 above and occasionally in 
the use ufJ1eprinted forms, spacing and page control can be maintained easily 
without USt' of this parameter. 

5. The tol) of tl·e page is defined by the channel punch in channel 8 of the printer paper 
tape loop. 

6. The line lluI1lber values integer-I, integer-2, etc., cannot exceed the LINES/PAGE 
value, if gl\·en. 

7. A fixed lin:: lUmber can only be assigned to a pre-slew of an individual line or the 
initial line uf :t series, including RH, PH, PF, RF, lines. 

8. W hen a f LX'c'd line number is assigned, the line or series will not be given a page 
overflow tpst. 

9. At object Ln,t, a slew to a fixed line number less than the current line count 
results in :lage overflow followed by a slew to the fixed line number on the page. 

@ ~ :D~ !H =:~ _________ . _______________ ;:,GE!::.!C~O::.:M~-...:I~I 
t2)L~.Jl': I' ~.~~; REFERENCE MANUAL 

-219-



PROCEDURE DIVISION--REPORT WRITER VERBS 

The Report Writer uses two verbs in the Procedurt 

Division, GENERATE and TERMINATE, which arE' 

discussed on the following pages. 

@j~ D ~(Q)(m ~~[ffi ~ ~~ ---------------RE-FE-R...::E~.:;:,:;~~;;;;:.O~.:.....--u~~~ 

-220-



GENERATE 

FUNCTION 

The GENERATE verb releases data for printing according to speciIications given for report 
preparation. 

FORMAT 

GENERATE 

CONVENTIONS 

[detail-name 

lreport-name 

LINE[S] [OF report-name REPORT] } 

REPORT 

1. GENERATE detail-name causes execution of the Report Writer procedure which 
controls a~l report lines and the subprocedure for the detail named. After 
execution, control is returned to the next source sentence. 

2. The line or series identiIied by detail-·name must be described in the Report 
Section. 

3. Detail-name is the name shown under the DATA NAME entry in the Line Image 
entry unless these positions were left blank. If blank, the designation under the 
LINE CODE entry is used. On a series of lines these are taken from the series 
header. 

4. Any number of GENERATE sentences may appear in the Procedure Division. 

5. The first GENERATE sentence executed for a report causes appropriate initial­
ization of the report; this includes an initial slew to top-of-page. The programmer 
must open the report file in the Procedure Division, before the first GENERATE 
sentence. 

6. At GENERA TE detail-name, more than one type of line may be printed, depending 
011 the out..'ome of evaluation of explic:lt and implied line control conditions. The 
intent of the GENERATE sentence is to produce a single body (detail) line or line 
st'riE's fl")111 ('UITent process values. However, if page break and/or control break 
c()nditi lIb .tl't! satisfied, any or all of the line types, T, PF, PH, H may be printed 
Ilt'fol't' Ihe Cllrrent detail information going to the D or SD lines is printed. All 
Report W r itel' functions requested in the Report Section may be performed at any 
one GE)J"ERATE verb execution. 

7. If 11lliltiplt r E'p()rts are defined, and the same detail name is given to details on 
bt'parau' I t'J",rtb, the OF report-name phrase must be included in the GENERATE 
st.'nlt'ill'(· t', identify the correct report. If it is miSSing, the first detail of that 
ll: illH , II! II p Report Section will be referf'nced. The phrase may be written for 
ciocunH'nt,1 lion purposes e\"en when not required for uniqueness. 

8, GENERATE report-name phrase is val id only where no details have been defined 
for tlw rq)()rt. All functions except detail printing are performed at each execution 
of tht~ GENERATE verb. Lines are issued only at the occurrence of page break or 
control bl'E'ak conditions. 

B. O'I(,C :[ rp]l'irt IS terminated by a TERMINATE verb, a GENERATE sentence cannot 
bp eXl'cut ul for that report. 

GECOM - II 
REFERENCE MANUAL 

- 221-



TERMINATE 

FUNCTION 

The TERMINATE verb concludes preparation of a specified report. 

FORMAT 

TERMINATE report-name REPORT. 

CONVENTIONS 

1. A TERMINATE sentence causes exeeution of report closing fUlletions. Return is 
to the source sentence immediately following the TERMINATE s·:atement. 

2. Only one TERMINATE sentence can be executed for each report. 

3. Entrance to the final reporting procedure commonly is assoeiated with an end-of­
file detection on read-in. 

4. A TERMINATE verb cannot be executed prior to a GENERATE verb on the same 
report. 

5. A TERMINATE report- name phrase causes the FINAL condition to be set to true. 

6. After the TERMINATE report-name phrase, no further GENERATE sentences can 
be executed for that report. 

7. The programmer must close the report file in the Procedure Division after termi­
nation of the one or more reports assigned to that file. 

8. If a report consists of only final report totals, a single GENERATE report-name 
sentence followed by a single TERMINATE report-name sentence may be executed 
to achieve the desired results. 

@[E 0 ~ (QXQ) ~[E [ffi ~ [E ~ --------------·--Rf-:Ff-.R-..:::E~..:::.::~~~O~.:.---u~=-=.~ 
- 22.2-



ENVIRONMENT DIVISION--REPORT SECTION 

(Refer to File-Control, page 149.) 

The following phrase in the FILE-.cONTROLsentence is used as described below: 

FORMAT 

[FOR OFF LINE PRINl] 

CONVENTIONS 

1. The OFF LI~E phrase must be specified for report tapes to be created by the 
Report Writ.,I' for deferred printing. This applies whether the off-line printer or 
the geneI'ali:~ed peripheral program (PIP) for on-line printing is employed. When 
pr inting is deferred file- name-1 is the name specified in the Report File Definition 
entry in the Report Section. 

[[' _ (m 
U; ···6 

r -: ',~, 
, -; ~1 ---------

-223·· 

GECOM - I I 



REPORT DESCRIPTION FORM CONVENTIONS 

Programming Conventions 

The Report Description form reserves columns 1-6 for sequence number, in conformance with 
other General Compiler forms. The programmer may request a sequence eheck for the source 
program as a whole. (See Chapter 4.) 

The programmer may prefer to enter the Data Division header on the Pep,:rt Description form 
rather than the Data Division form since the Report Section immediately '01l0w8 this header in 
the source program input to the Compiler. 

The following conventions apply to entries on the Report Description form 

• Columns 7 and 12 must always be left blank by the programmer. 

• Entries written in columns 8-11 (LINE CODE) that do not require the allotted 
number of columns may be entered in any consecutive subset of these column 
numbers. 

• The RFD entry must contain RFD under LINE CODE and the file name in 
columns 13-24. The file name may start anywhere in these columns. The 
optional BLOCK CONTAINS clause must begin in column 28 or after and must 
be terminated by a period before the last column of the form. 

• Report Layout portion: 

1. The word LAYOUT in the Report Layout header must start in column 
28 or after and must be terminated before column 80 of the form. 

2. On Line Image entries, an entry in columns 13- 24 (DATA NAME) 
may be contained in any consecutive subset of these column numbers. 
With the exception of detail line types (D or SD), these columns are 
ignored by the Report Writer. 

• Report Definition portion: 

1. The word DEFINITION in the Report Definition header must start in 
column 28 or after and must terminate before column 80 of the form. 

2. The main section headers, LINEll DE FINITIONS , LINEllCONTROL, 
LINE\SECTIONS, PAGEllCONTROL, must start in column 8. 

3. In Line Definition entries, columns 13-27 are ignored by the Report 
Writer. An entry may exceed one line on the form. The second line 
is started in column 28 or after and must be blank in columns 8-11 
(LINE CODE). A word may not be split across these two lines. No 
other entries under DEFINITION may exceed one line on the form. 

4. The Control Breaks entry must be the first entry under LINEllCONTROL. 
The entry must start in column 13 or after. 

-224-



5. Except for line code, when required under columns 8-11, all other 
specifications in the definition portion must start in column 13 or 
after. 

6. All entries should be terminated by a period. 

• The Report Section is terminated by any of the following section headers starting 
in column E: 

Keypunching Conventions 

ARRA YllSECTION. 
TRUE~FALSEllSECTION . 
INTEGERllSECTION. 
FILEllSECTION. 

Each line entry on the Report Description form is keypunched according to the following 
conventions: 

1. Columns 1 through 80, terminating with print position 53, are keypunched in 
columns 1 :hrough 80 of card 1. 

2. A repeat of (olumns 1 through 6 and columns 8-11 is keypunched in these 
columns of card 2. 

3. A hyphen (-") is keypunched in column '7 of card 2. 

4. Columns 8. through 158, labeled 12 through 78 on the form and starting in 
print positlOil 54, are keypunched in columns 12-78 of card 2. 

5. If lIO mf"n.Ja tiO!l is contained past column 80 of card 1, or print position 53, 
card 2 (If the line need not be keypunched. 

GECOM - II 
REFERENCE MANUAL 

-225-



I 
r,;) 
~ 
0) 
I 

@) 
M 

D 

[l::§ 
§ 
§ 

(2) 
M 
§8 
= 
M 
(2) 

:;d 
tTl 
>Tj 

tTl 
:;d 
tTl 
Z<;'l 
(') tTl 
tTl (') 

~ ~ 
Z. 
c:: 
:> H 
t-< H 

I:I:j ..... 
IlG 
~ 
"1 
CD 
~ 

-'I 

rn 

's 't:I -CD 

~ 
CD 
't:I 
0 
"1 ..... 
!"" 

~ 
CD 
't:I 
0 
"1 ..... 
rn 
CD 
n ..... ..... 
0 
::l 

GENERALe ELECTRIC 

PROGRAM 

COMPUTER DEPARTMENT 

SAMPLE R~'R"'r 1 ~ ~EPoi=lT SE.CTION 

. ; I. 

f:DMiU,; 
,il: 

._. ~-:. 1 J • 

~'~-+t+lli~+' ,,' k 04 .. '" 'b' ,,' j,. -i\l~\'a.t t- j.J.-t.~ t-: •.. , j • , " .. ~, • , , • ~ , : I, 

~ltI:J~ W.~A ,E;. ?~"E,". i-lJ.:r:."". 

II ~~~'IJ:e . :~qUi-1"'jAl~'urThl~" ~~"~h~ ; • ~~~-++++."'c -, I/!'C§I ,1§'j~wuiO'Tt 1.-•. ,. Lt\I.1 ,., '/J:C .. ,0 .. j _. ~!"1 .. j jV •• ! .f-

~ ~ ~p~: . ; ~ ~~ :~.~ :atl ~::~:~.~:i{: ~ , 
1:"""",1.,,:,:..1."," 'f 

GENERAL COMPILER 

REPORT DESCRIPTION FORM 

>- •• +-+-+ +->- >-

~ : . ; ; ; j . ' 

; ; , ; ; ~ i :: 
I. :J: 
1. 

~ •• ft· • 
'I •. 

. ,. 
l+l.;.d_l_L 

Itl11t!· t 
I.: !->>-L, 

PROGRAMMER 

• j 1.-+ 1--+-+ 

T :.1:' r· 1t 
• 1 

11 
1 

-t'--' i. 
.. l, 

" .1-.1 . 
,I, 

~ J : , I . 
t· 

, , 
, . ". I . 
II 
,!,-,. I·' 't" 

1 . 
t )··.t .. 
• t'r-I.-

ffl~:t 
inH 
'll.: 

,,;.;.,: \0 ;": \l~" :\,.,,:,.!:~,~:~~;~~~-~~~,~,~~~~ 
'1'110"::' 



1 
N 
N 
'.0 
1 

~ 
m 

0 

~ 
§ 
§ 

@j2) 
m 
~~ 

M 
{?Jj2) 

::0 
~ 
""'1 
tTj 

?O 
~ 
ZG"l 
n tTj 
tTj n 

3: ~ :v 
Z I 
c: :v H 
t-< H 

"'i ..... 
a~ 
>-j 

IT> 
N 
0 

(f) 

'" 8 
'0 
>-' 
IT> 

::0 
IT> 
'0 
0 
>-j 
M-

N 

::0 
IT> 
'0 
0 
>-j 
M-

(f) 
IT> 
(") 

:::. 
0 
;:l 

GENERAL. ELECTRIC 
COMPUTER DEPARTMENT 

II 'I! 
i i 

I 

I 
I 

GENERAL COMPILER 

HI 1'111> I I)I~(I>II' 1111\ 1111> Ii 

ii" 

pJ--(, _',r:: 

i 
I 

I 
I. 

10 

.1. 
1 . 

I 

s 

1 ~l 

I. I 

I • 

I' 

... r . _ j ; ! ~ _~ -- -
.J~ 

I 
1+_. 



I 
/!,j 
c:..o 
o 
I 

~ 
[fiJi] 

a 
[f:§ 
§ 
§ 

@R) 
[fiJi] 
§eJ 

= [fiJi] 
@R) 

;Aj 
M 
.." 
M 
;d 
M 
Z G"l 
n M 
M n 

~ ~ 
Z I 

c:: 
;t> H 
H H 

I'Sj 

~. 
'1 
(II 

~ .... 
00 
Pl 
S 
'0 -(II 
::c 
.g 
o 
'1 .... 
~ 

g 
Pl 

o .... 
<: .... 
fIl .... 
o 
;:l 

GENERAL. ELECTRIC GENERAL COMPILER DATA DIVISION FORM 

(OIlPUTERDEPARTIIIEI'IT PHOENIX ARIZONA 

SIIt'\PL£ ~~\ "2 ) ",p-.,,,- ,)I.\{ISTON 

01:<'30 

. OJ 2,A·O 

.o.\~SO 

O\2f,C 

O_L.;J .. 70 

C?1.A90 
()\2-'::l.O 
0\ ':;0.0, 

.Q13l0 

.OJ.~:.I.O 

c>~33> C 
(; \ 3>4 0 

0\ '5501 

. ~\ ;;J.'->() 
l'\ .3.0 OJ 

rQI~ .. 8o' 
~.n.1 ?S>o 

,'\'\00 

0\ ,\10 

o • T. N A .. ~ QUALIFIER 

1=ItLt SE_C n;QJt. 
IN\,LlT 'fILES • 
t='~ - 'Et-IP'<MASTEK) ~LO.Ck:. $. 00 U),Q,Rjl:>ft) 

LA@.EL IRECo .... ~f OM.TT\.E'0 •. 

~1_+~~!,NRECQRt;) 
f_~~~~_R\)NT "PE 

Cl 't)!'O'i'T I I I I I I 

~ ~~r~~A~'~S~ 
I 

i.ST N T,W,l TTA.L . 

Lf\'ST.~.N./lfv\t. 

'SEX. 

MALE 
\''EKALE. 
.l A S '3. 

1111 I)A j t:. 

M.e. 
bFl 

\\E 

COMPUTER 

~ __ ?- 5 

1 \" \O',n !;"61Id oj 1,'> 66 67"~ ~~ 7n ~I 11 11 /1 1\ l/o'/ 

oJ!'..I"'1! .1-\ G 1 'B INAIRt<'. CON'-f'..OL""_~Y ~~C () ~.t -,. ~y{; ~ , 

'" "f!1 ~ 
II I 
I 

II 

i 
X'KX,l( 

X XXX 
A A 
/I 
AC \ 8> 
.x 
I 
~ 
'f X y 

t~.J ) I 

I 
--_ ... _. ---.,----~ ".' ~~ 1~ll1111 7l'll 1< II, 17 ,. ,?:"nl 

i! ! ~ /S~ 



:;;; 
Ir 
o 
u.. 
Z 
o 
iii 
;; 
is 
« 
r­
« 
o 
Ir 
UJ 
..J 

Ci: 
:;;; 
o 
u 
..J 
« 
n: 
UJ 
z 
OJ 
\!J 

... 
ICC .... ... ... 
-' ... • -' 
c 
ICC ... 
Z ... 
t:I 

c<) 
0) 

, c" 

'Cit .. " 
. c') '" " 
0\ '--' 
Ci'> X :x: 

.. 

--
.. 
<> 

'--

;-

;,-

-
;;-

-
-

;:-.~~~~~--------------------------------T------------hrl 
~:~~---.----------------.. ---,-----~~~,-----,-~~ 

I l= ....... +-':-I-~_ -------+--'-----+----:-1 -~~ 
1= >' ,.. 

I­
e , 

,. 
~, 

I' 

r-

l) 

It <= ;, 

1 l' : 

'2 
o 
H 
i­
V. 

-.-

~. 
-·~~------------~~------;2~-----------------+~ 

r---

.r;.' 

UJ ..J 
C. ;) 
01:<: 
V I- II 

v1 VI ? ..J 1-< 
"" at 1- 3 /.I.. 
L '" V ~ ~ 
, } ::::I ~ J-
o 1-' t:> .J ..J 

~~:;>iJ.I~1l 
>-"'[)o~3 

cL: 1- u.. Ll- a:: lL f- <D. IL. u.. U- 9,: ..I, 
w 3 v. u. 

01') VO O 
~ ,~ I'll V 1/1 

<J) ,9~. "':~. 
-- -1-

O· ,) :) 0' 0 

Figure 21 (cant.) 

-2:n-

r-::.-

~ 

'" ---
-----



<.> 

a: ... 
<.> ... .... 

.... 
C 
a: ... 
z ... 
'" 

:2; 
a:: 
o 
IL 

IJJ 
U 
Z 
IJJ 
f­
Z 
IJJ 
If) 

a:: 
IJJ 
...J 

a: 
:2; 
o 
U 
...J 
« a:: 
IJJ 
Z 
IJJ 
I!J 

It 

i 
1""1 I 

I I i 

~~ ~ I~ 

I I 
I ! 
: I 

'Z o 
I-I 
ell 
J-' 
> 

1:"-' 
I Co 

il 
r-

I 

\;: 
.2! 

. '\JI 
"~I 

l~ 
J 

L'- : .,.1 
:::: 
Vi 

I" ," 
~ '!; 
; ~ 

- , 

~ 

~ 

" 

;: ; 

- , 
~ , 

~ 

< ~ 
~ 1--' 

C 
~ I .... 2 

> 0 

" ..... }-I 

0 0 
w I:--

-- '" -.! -
, ;; c 

---'-

. 
" 
IjI 

ri 
::j 

1 

I-

0 

* Ii 

+ 

0 0 
OJ If'> 

\J '" 
::; (1 

0 
0 

c--

() 

I--

~ :2 

a 
(9 

(l 

-
I:-

0 

__ L-_L~_. 

! 
! 

i , 
I 
I 

i 

I 

~ 
N 
t-

0 

I 

I 

l 
j 
I 
1 

i i 

1 

1 

J 
IIIJ -S:1 

0 o '-' a ~ 

'-" <t iJl -lI I" ,- L_ :-- c:: I" 

C- o 0 o .: 

'--- -- '-

Figure 22. Sample Report 2, Procedure Division 

I 
i 

t--~ 

@j~ 0 ~@@ ~~[ffi ~ ~~ -----------------RF-:FE-RE--"~=~~-.,;;o:~~-u~-~ 

-232-



~ 
II: ... .. ... 
~ ... • ~ 

"" II: ... 
Z ... ... 

::!; 
c:: 
o 
"­
w 
u 
z 
W 
f­
Z 
W 
(f) 

c:: 
W 
..J 

a: 
::!; 
o 
U 
..J 
<t 
c:: 
w 
z 
w 
(!J 

I 
I 

I I 

: 

~i 

~---.. 
. 

-i-

J 

i 

i 

. _ L_._ .• _ 

Figure 22(cont. ) 

-233-

I--S 
I---" 

I j--=' 
~ 
.--"' 
~ 
~ 
~ 
r--i 
1--." 
\--;. 
\--; 
t--;-

~ 
I: I-~ 

1---: 
j~ 



@f2) 
M 

0 

~ 
§ 
§ 

@R) 
M 
28 
= 
M 
@R) "%j ...... 

~ .., 
ro 
N 
c..:> 

rt.l 
!l' 
S 
'S 
ro 

N ~ 
c..:> ro 
~ '0 
I 0 .., ..... 

;.0 

~ 
ro 
'0 
0 .., 
..... 
rt.l 
ro 
rJ ..... ..... 
§ 

~ 
"'1 
t"'j 
;;d 
t"'j 

Zl~ n t"'j 
t"'j n 

"7 ~ 
~ Z 
C 

~~~ 

GENERAL. ELECTRIC
COMPUTER DEPARTMENT

IPROGRA:'!,

~ L:
I ' ; ~ 1 j

i i:, i . I.

GENERAL COMPILER

REPORT DE~CRIPTIO" FOR'\I

[
.[

I, I 1 '
t
I
I

I" .

I
I
I 1

1

·1
·1

1.
I.

.1,

:1
0::
0
u..
Z
0
iii
5>
is
<{
r-
<{
0

0::
oJ
...J

a:
:1
0
0

...J
<(
0::
UJ
Z
UJ
(!)

u

""
u

•
4

"" ...
z ...
<.:I

"'

, f

i ... 1

"

~ ,
4

!
,

I ~
I

11\

,~ I
I

:

'-t :T
'-

I __ .t--
I I

. ~ I
' ,

i

.
~
<­

'0

;
:z
0
5:

2:
0

.a
UI

'Z
III
::l
0-
III
(/)

i

t

')

i

t
I i~ I , .

, '" ,. j i ~
, ' 'In'

X'X ~)(.... N. ~ 0)1 01

-t--
I

-+
i 1

I I

-+- i

! !

!

1

i

I j i
I I
I
!

i

~
~
foO-
-=-~.

-=-~ c<
~~
-"... -
- --=-,

-;-
i7
+
i-':-
r§-.
ro­
~­
~,

r.;..

II ~

I
-¥C'

-=-
~

N

~

-

-;;--.'

~

4 ,,' Z ;;. "'- '- U- :... I;. c ~ V, (j IJ.. J.>, I- iJ... ll., u.

I~ ,~ "''-.------,----------------+-1
0 - ::: ;J ':' ,~ J ::1

']-
~) ~ J " " ') :) [) .:J

0 '. - .C/ " 'r u1 .!) "
,I) (' .", i'-i V' Lf': :.: r- rC

:: of\ \1 ~1 ~ '·1 M ~l: ~\ fl ',i ,; - <; <f " 'f, V <t, , - -
"

-, 2 :: 2
, ,=' j 0 0: o~

-' 0' 0: -;
I I -----.

Figure 24. Sample Report 3, Data Division

@[E D ~ffi~@ ~)[E rm ,: i ~ i0 ------------------------R-EF-E-R-E..::;~.;:;.~C.;;.E O;;.:~~~-u.::.~.;;.~
-235-

,
I\j
(0)
CI)
I

@2l
(fiJ1]

o

~
§
§

(2)
(fiJ1]

2B
=
(fiJ1]
(2)

;;0
t'1
"<j
t'1
;;0

~1C':l n t'1
t'1 n

~ ~
Z
~

~I~

"Zj
aq
~
'1
CD

N

"'" 0-
0

f

GENERAL. ELECTRIC GENERAL COMPILER DATA DIVISION FORM

COMPlJTER DEP.RT~ENT. PIWENIX. ARIZONA

51\IoIPlt '!';., ~TI\ 't>1.H'SIO~ CC()~\'~J I<E\'oR\
3 5

",. "" I I I In 1''''''1 Ii I I rr
1~ 8 1 9 10111 !,] .11,14 '1 5 16 II T 1 B, 19 ! a i2 1:22121124 } 5 26 1 21 28: 29i)0: 11 \3 2l11~ H~, 3 SI16I37Il81~j40 l411421014 41, 514 'i4114 ai, 9 j 501511s 7' \ 311 ~I:; S j} 6 :51 :58 i59 ~6 0: b Ii 6116 1 i 64: ~ 51 6 6:61!U ;6~1-,aF~72 i71'14 1n 176 '7:78 ,0 80

014':)0
(j 'c~QO

.U 1.,5 \ U

C) I.S2 0

() \.5 ~()

.01540

.0,\ SSf)
01_;:;.60
01570
oISB.O

O_LS :70
(;.'.6 ()
() I 6.10

c". \ b \ I
oIG\<.

1--01.6 \ ~

I I

I<IllG_~ STQj!,l\.G~lls coc. TION.

'\'~C.T.~1. bLE

--ru lFi..L:,_-.L1:.I"'E:. ·1
~~i ~'~:cnQ ~I'

--~+----.---.

I I I I

O~o7

+--. I

r
I I I I I

99K9-9
K9.9 9.
K'7.99.
K999
,K9.99
~9,K9~.
XXX

" M·D.N.",
"TUE."
.. WE.b"

"TH.U"
.' F R,I/'

~~~T"_"_. 
"su Nil 

i I 
i 

.-~-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •.. ~~ .,I"I'II ,I I'1i'4 1'1 ",", la l '9!aol 
." ___ ~ __ h _ ,,! 1 ! 1 !

CAI4 II 621 \1/1/ez

::;
Ir
o
"­
w
u
z
W
f­
Z
W
(I)

Ir
W
.J

a.
::;
o
U
.J
<l:
Ir
W
Z
W
l'J .

n
4-1

--'
o

'1

'::, I

Figure 25. Sample Report 3, Procedure Division

-237-

r-':'
ri
t-"
r7
~
t--c;
~
t--'.::

1 t--c:'
t-'f r-,;

---;-

t-:'
t-i

GECOM - II

REFERENCE ~lANUAL

~
a: ...

::!
II:
o
II..

I1J
U
Z
I1J
I­
Z
I1J
If)

II:
I1J
oJ
it
::!
o
u
oJ
oct
II:
I1J
Z
I1J
(!)

u "

~ i

'I II: ...
Z

t~

I t~

j

1 1
i ~

1 j
i ! -~

1 -;-

1---;;-

Figure 25(cont.)

@~c~@@ ~~[ffi~~~-------------·--RE-F-ER"":::E~:':;:;;~~=O~.:.....~-U~:"::"~

-238-

@?)
(Ni]

0

[}::§
§
§

~
[flilJ
§9
=:::1
[Jml

~ "zj
~
'"l
ro
I:\.:)

?'
(/)
Il'
S
'0
ro

I
~ I:\.:)

C..:> ro
:.0 '0
I 0

'"l
~

!"""
~
ro
'0
0
'"l
~

(/)
ro
n
0
::;l

::0
t'1
'"'J
t'1
::0

~10 n t'1
t'1 n

~ §!
Z
c:::
?:I~

GENERAL. ELECTRIC GENERAL COMPILER

HI.I'U/{ I IJbUIII'II\!\ i ul\.l;
COMPUTER DEPARTMENT

"''''''IiAM '.'~'L" '=~::,'~, "~':l"ll'!'f~':~::: "'"'~'''I'~'~'~':':'~'''''''I''~''''''''' . I"'" . ,. "i."::~.":<A~M,'~ l' '1'"'''''' liK ," I'··· .. · '.~,i.i"." I' . , ""'I' . ''', ." .', 1 ~ E 0 1 2 3 4 5 6 7 8 9 io 11 II

.D~ .A/~AML ~ ~ ~ 1!2 1415 16 1' 8 9 011 '13141~ 6 ,IRis () J l I 415 611J~19 011 0 14 '151)IB 9 0 I? 1 4 ~ 6 1819011;> 31415 ~ 189 () 1 2 J 4 ~ 6 I 8 9 () I 2 j 4'> 6 189 () I 2 1 4 ~ 61890 I 2 j 4, h I ~ <j () 12 J 4 ~ 6 I ~ 9 () 1 2 j 4 5 I> 1 8 9,0

Inj~:~:tr\' .AV,o,,'T!. II., ": , : ,.: ~I i
, , J " I I j ,. j E~:EO~R!"Ldj[CAl"S.rlIliT.lQH. II\. :;J'l:~ :A;N ~L.'6I," L,F>-'O.PT 195 -'961 I I l

j ; . J ,," • I " J .. : •• : ~. " •• ~ : ~ • 9 : .. : : , i:: c.: ~~;" : ;1 : ; : : : : ,~~r: : : : .. ':t : :. I:: I : : .., H'

f.'.····..'·l· ~f c.'IJrNf.'. i NUMBER

: .0,1.0,11
: .<.AI,DAD

"0":0'31

t:o,'o~~:
f :OJ_Q.S

IOip;E; .D,

LP\o:7' - RD.:4.
tOLO. :6..' L:' J<:E
I 9.1.0.90 .D.:
! .u,i,I.oPj ~: : '

~.

,

t .. ,.

, j,. j J., • j~W':E~Pi I t lQ.-.oS;, ,LQ- lSI, j j2Io,-p.19; ;~Or;~ .. -J4p-,04j'9, , pP,-•.. ,.6Pr.6:;>', +' .0."1.9 ,I ,C,O,U.N.T" ,A,.!J.G: , ! ' ;
,~, ~._ ,_ , : :; : : :~: ;: j:; ;: l": 0: :": :": ''': :"; ": :": ;"~·i :"! "; :"1 :'" :.~ ;": .~ :": '''1 :"; ;": ": _. ',' . ;-: :.: ~: :". ;": : ... ;" I"; .. : : \ J , ~:l.'~C~T:':O:N:.:lj l;E~:':N:IT::~:~:~f//:': ,"; ":":"'99 : M~9') i2. ,$:9 "'~.99!). A QW . :?i'.9;;~ : ?",,,j,J7'?,9.) . i.'lli'i Ii""": I I

._, ..•.• , •. ,.J ••..... ,.,.. , " . ., . ,. ,. J, ,I j, l- .-,

ID:Ef:l:":':':l:O":S, 1 1:.:: 1 : .. :,.1:.:::1:::::: :.'1:1:: :1 .•. :. ":1, .. :: .::1:. : .. i::\ . '.: 1': :','.:: t ... "... t ,.r~,Q1W.~.t..A,~~JL,' ,L, . ., .. s.PJqE.t>,".i." .sr~.~Dl'·',Zr !5PJ:,EjD~.~,,.J s.P!E.r:,yl"'J4,,: ~p.r:.c.v,"'~ '" .s.:J·.£'.c,u.... i-,'J'.l,l,V."'.'J .,.: ~y~r..r-.L>t""~'" :.J.~,Q\;l,""',9 .). APC-jEl:>""l'"jOUHr:,. •• qt' I 1 f"""w,",'1" " I .. I 'l I . '1 I' I' l" , +.

"I !: '1
1
,:: . . "". i: :'/:,: ,I ::1' I: "1::::: I ••

'j l T,·I' I':' . .
··.1····,· ::'j····1 .. ,. III · i

:...._1....-1_,_,

.. I ~-.-. +--

· I. t-t
• J •• 1- -+ ~ --'--'-, •

I ., .1. "1'" I' .. ·1 If ·jr,··j .J .• 1. ::. : ..

_ : :::IT I [I
.: : : '.::! I .. . :':. ' : l· ... \,1"" "",,,.j ... ,,,, ... ,, ... ,,,,,,,,, ,,, . .\, .. ,,"., ·1·· .. ,· ."·.· .. 1· .. ",,,/ ,. '0 (J/6i. .

, .

· L.
I.

I ': ,Ic.{~.:",

I
r.J
.p..
0
I

~
M

0

[f§
§
§

(02)
M
§eJ

= M
(02)

;d
tTl
"J
M
;d
tTl

Z '"' n tTl
tTl n

~ ~
Z
C
:Po H
t"" H

>%j
aq
C
'1
(!l

r.J

~

til
Il'
S
'0 ...-
(!l

::tI
!Ii
'0
0
'1
<"t-

~

t::l
Il'
<"t-
Il'

t::l
~.
......
Ul

0-
;:l

I
I

GENERAL. ELECTRIC GENERAL COMPILER DATA DIVISION FORM

CO ... PelT ~R 0 E PA R T ~ f NT P HOE N I X. IlRI Z OM II.

PROGRAJol
S~"'PLC:: -~E?O: "\ +, LI\I/, UI:VL '-=.} (\\\

PROGRAIUER

,EOUfN(E I) 1 II. >I II. ~ E QUALIFIER REP ~ II. T

N IJ ~ R r ~

I 1 1 j
, , " . 1J : I I? ',) I I I' 16 I 7 '1 R : 1 9 1 ~ 2 1 2 2 """"" '" H,;o,"i"I",,,, \ H l7 lA 19 HI41

o \ ('IOU D A IL1.V ~ S IJ'JJ·~ •. r IT ",
rj \ \ \ 0 A ~ f ~ ! '5"[CTl:OtL WHI \:l (I I) \2,') •

o I 120 F1 LL ",cCTIOII,

o I I ~u II 11 P \1" ViLES.

01 140 rD WN \) f\ N Q"1 1'-,2.
o I 1 . .5'-' H W1M\)ND/.."TI',

o I I 6(, F '=-U,,-:'\f,"TION

I o I I 70 F YE fI.R
o I I Be r \-\0 NT II
O! I),; C MA,":'CI\
() I '2 .,.I() ~ p.,f'\'.IL
0\'2.10 C f1 A I
G 1 2 ~ l; r ,I I~E

c \ 2~:) f II \: I GI\T

OI?--'1 () \' \;lRCCT'iO~,1

_~. \ '2 S') f '=-fEC\),

- () I 'II. ' f TECII 1\\1 c.r AN

, 12 '/, r 'i) A y
~,c\' II, P ~~,~.; _ \' _~ Le-
• I I'" '1 .,.J ~,~ "jLI!_

!

" t ,-, \ ~ •

,
JI J J I 1 ~

. - .

I
1 I I i

.-~-

OAT r

:CO/llPUTER : PAGf
'2. " 0;

"'"'' p -

~ ~~\.-!-2-~I:-' CATI,I"'A(.[

,
, " ')' 'I \ 1, '5' "0 \ I : 6? /, 1 I ~ \ \ Ii 6 , 6' 6' 6 9 I 1 G)' I 1 'J I' 'S , /, 7 1 ''1 '? "C 4) ~ l ~ j ~) ~ 6 11 7 I 18 ~ 9 ' \ 0 'I ,

i XX
I 9c:;,

I 1 r I

I
5
4-

11
' ')

I ')')'79

I I !

T
,

I;~ . • I

!

I I ; j(I\':',)
,

i)"J I ,

I I I I i [rX (q:;'\
I

I I I
1

"'C'"'''''''' ,.,'" "",I
,.ldG:.'..

I
~
>I>­.....
I

@i2J
[fiJl]

a

~
§
§

@J2)
[fiJl]

2eJ
=
[n:nJ
@J2)

f;l
":I

'" ;0

fil'"' n '"
'" n
$: §!
z
c:::
~I~

"':I
~.
'1
(!)

~
-J

n-
O

f

GENERAL. ELECTRIC GENERAL COMPILER DATA DIVISION FORM

I'

,loll

(I \ ~..::) ()

c) (~ __ -: ()

,\ \ ~L, 1)1

u \ ~ ~~

o \ ::, '))
C) 1 ::; '1 u
,0 I .,.~ i:J (l
, -' ~ ') ()

o I ~ Di J

0\ 1 I,)
0_.\4,2 (,
o 1'\ ':: ul

o 1,1'! (l

. 0 :<1 SI_.

u 1'1.10 ')
~, 1_'1-1 0

D. I '\ '1 I
G ',,4 '12-
(,I. \ L., 1 3.
,.-__ I 4,-4
0. I .q 1 .S'
u 14 7b
'--'~ I 4.71

i'll
\ " ~,J ! /"d\ \

1,1111114 1\ 1; 1/ IA 19 '11 11111114 11'26 lI'28!79,lli JI'11'll'J4"ls!J6IJ7!Hln'o:41!J714114414s1H'"

F
F

;1" F
F
F
F

,1
-;:'PE ~.\'~ ~ CL AS'S

:'\'r:l\N\.
.5(' F"" \ "2
5r(r"t "'3

spr c \ I)~
';:iJ.'C LV,N 5

~of'FC\' ~G

':,::>Y.C IC: L) ,0 '1
f SI" E C [) N C
F ~pr ELM).

,F S.P c. L \),,,~, 0 L\..h'-1~.

F '::>,1'.1: I:. \;."/1·1 C;

I' I'D ,W N L,I\ tEL, ,

c.o f,r':'TI\ HT SEC.,T,.'..oh I,.
F'L LA BEL. . __ lD

"Q \ I T '0 N
-~.~)

1/51

9

t93, 7,9
59 '399
3993
9~93

9993<;)
t79Sl.9D
29~999
9.9939

~
95J")

'3,2E!9,:9 ,9:2:2;}.
.9,,3,99

X,(9~ .

r".I~t>cA.~ ill
'''~LLL"N,W.:.t.,2. "
",E,t,t,.,L:.N A b.,b.'3" 'f ' c. A/,,/\ Jj ,E.bb. 4"

Th..bf::;:..E6L::. L511
. ',rJ-.':' (o,S.E.. t. t. G "

... o!:.. L 6. 5 A L L- '7'"

~·~'M~~-~.1~·,;--
~,"_/':,..AL.L.A,A V G N

5

4 '7 'd
r-; \ 4 ;,,9

II! 1 4 ;1,17 ",12;11;1411516'718 llinin:7617717fti79j!O

CA 14 f1li/l/)"

I
LV
ol:>o

"" I

@2)
M

0

Ci'B
§
§

(2)
M
§2J
=
M
(2)

:<1
M
'"'j
M
;0
M
Z C)
n M
M n

~ ~
z e
;J> H
t-< H

"%j
~
'1
ro

"" 00

tI.l
Il'
S
't:l
ro
::0
ro

't:l
0
'1
ol:>o

"C
'1
0
("l
ro
§-
'1
ro
t1
<:
Ul
0
::l

GENERAL,. ELECTRIC
COMPUTE:R DEP~~T~[NT P~IHN ,

I PROGRAM

ipROGRAM,,(]I-

S/\\'IPLE

GENERAL COMPILER SENTENCE FORM

IiCE(>:)k-r 42 ?PDC-E\)UPT DIV"lS10H . __ ~__ _&'_
~COMPUTER PAGE ~1

" ['I: j 1 , "
____ ----"-_ ~ -+- ~--l~ ~ __ ~_ L--

, , l~ 11(1/ 'l l,!lqll,jll 1$ 1'I,1a;21:nl2Jl,j:I'IL6~17!-2!, i -;;r;;;~~I~~>D' 4/~;!~~~ll~14;'~8~H IC-rSl:S?15i ;j';\llo ';I \B:\9 6061 &:'

i~Bi~ J?.B (') r E \) Ll P E V \L~lill·\ . .e.. t==
u \ L\ 9 l.l . 0 f' E t\ ALL "f lEO:::::' ., .. ~

i .Ml"iQ.CJ MOl\;. st:Y" r::_:':' I.D_,VH\.j)~~. .

T • r •
186970 'I ') .,

r () i 5,' ,) ~ [h \~ ~ \""\. L c 9. ~.I\ t VJ II D f\ ., Q IfU?

;~.I s~· .'-' _I-- . _. LE...lI DI M A f>.C: H Gn 10 REAIY~ F I L.E _

II 1= E \--.II:> (J 1" 1r1: LEO So Ie . ("L C ~ t,()---,--+.~~_

C, IS,S. <,J ,-~ t),'l _~~J __ Q~\-

0.1,,4 c' ~ 'sP Z.E t; ,..,c.J,..~:;; ~ o:;J _0. , .~~_~._ __00_' _. _______ .

- -I

6IS.5.o _~LS~~.SP~[t.vflR~_~L¥.~OL~M._l~e~~~~l_~U~N~-L\~T~L~~J~E~Q~~9~.~. __ ~ ____ ~~ _________ ~

o \ ,S 5-1l __ . ________ ~~ f' E C D _~J~9~~ __ 2 ~~ ~ ~_ . ..:."""C~L~nA· -":;~s""· b---,G",-,=O<--...--'..I ""lJ'"--'~'t'N>.c.t,,,,,,,,-,,Do.L'()=""". ---"-t~~~~~-+----------J
()' S7Q S~ EE D ~ C LAS';: =-?~P.~_-::j:;'_"..C.Jo~~'L.,_1J2"LL_-+ __ .~ __ ~+--- .~ ___ --+ _________,

.~ I' ~;~ ~~~~ :,~~"~ E'{'~' ~~·C"~~··-J)-';~WI LN.f~ C-i'J D + 1 , ._ .. ~~ [-II
_0, I§ or. 'd.L1LD (.J_eJ_,c22.c..=j<J,LlI to .Cl .. I 0) -t ,i i'-"-~~~~-~+-'--~--~-------+----'------
.!~I(,I() __ WIN\)(:r lZ)~WI,Nt/I 12', + b'1.I'.£CT1.0.N

JG,j c.; ~,IJJD~':7..-;JJ.,=.W,l.I'Jt ,9+J_)--':+: .. L_,-,_ .. ~L. ~,_~~+-_~~.
~CJ,\C:;Ll WINb'((i'J!==WI ND1.11. JI+ SPES\:'.

. ~':.'~ ~~~ c Ai-~~O" ~~".~·~,~·~=-~~~~w 1.\1.\ . D.' 'j'+ .. 'II' I N~b~.(.'9c. ;1)-+ '1'1'] N;.':I;-~3h"4-' W." T'N'C, (. -9, '4,\('] i ~\ \) ('). 'S)
u ' to G c' WIN f) (") r;,) + WIN D (9).7)t WJN_C,.l.';7_,B)'+~,lli.t.L')~L{_~ .___1 .
Ole-I:) "OPl' '1G5 Vf.,RY.I rp._otLl.1LL.J UNIIL I CR 8.

-1-

~ I 6.8'.o_I-L.J~.\.L!U ROU,t1 DE ~ W 1 N D (]') 12) /,.1 P!~ (T r !o . .1.
016,90 EXIT -P[)'{dGS. --r---.- ~ --- -c--- ,

~. _Jl~~ " ~-,--_.c.'-,-'~--,--,--,-,-,
'~E~' ~.

'o,~0 ~j,-:~-,~~~, -::-:,:-,--,~-,~'6""LlI :,71'/1,/;:)': ,'6111178! 'leo l";l'll ilSl3t:li j~,JQ ~-:I ~IIV,'J'H,4\1~,,07;IB 191\1 \1111

jill/ {,A.

I
I:'~
.t>
w
I

§
[ilJ1]

[R§)
§
r--,
(-- --

,'C;/?)
, u

[nnJ

I
",I
t"'J
'Tj

'" '" t"'J
Z .:;-)
n t"'J
t"'J n

o
~ :s:
z ,
C
:I> H
,.. H

"rj
aa
'"i
~

t'-.:)

00

n-
O
::l ,.... .

GENERAL tJ ElECTRIC

-' - (.. ..,. "

GENERAL COMPILER SENTENCE FORM

,
"

': 1 'lr),0 .. tJl~'" ~VC;r:" ,_,\I.AK'L~]_.S RO M---.....i..''!3''L-----"1l~.bL.!OLL..L --'4""---..."...-'-

I SJ;1

I -;1
1

, 'J" II: " 'J~ -', 1'1" ._.<:6:' " '. '_I ",~\ _l~~'~_J~_~:_~~ 1'_

_"So :J,'29, ..1 D.l. ~ A 'IGS >, ,. _ .. ___ ,'_. _______ .~_. ____ j
'. ~."--" .. ~ ~-.~ ... ' -. ~.~ .. - w. :..L! Ui:!. ~.1l .fCO lL~"CO."'· C:J, }o.. -. 1.n.
~I..J~~O 11 N E "\) 0 ,_~,A...f.I::_~ r ' I', y ___ .. ~.L_.,_._ ... __ •.. _" - 'l
, ,Q.\ -','1"'-_ VL V ,r. WLN J) (, ~+ (

i -5 l, .t~C.i J ~ _.~~JJ ... J' ("I . ~ "

'L'-='- f iJ fVI Q_ll I
\-"It.. Movt:

o I -I r: '." MQ..J..,t vo,!,l N t~:[.-,S \ '---" .~
~'I') 2J MO~\}r'Ai'-NlCd,-L+k2.)

~~\~~-~ J~,IJ[~~L~fi~~~ --'- ___ "d '-'-----~-~
(..) -'j ~-~ -- ~

,_cc.-J...J; :
~ -~---.------'-

,~., f: <'1 c, :

....) , C ,~ c' _ p:f'1~O~V~E+--.!J.~~"'=-.J.....,c......:~f.l-c~....2.:~=:...=..L.'....'"4'~
, I .' t t ~,~,J, ."---1='-- t

/)I,'(.'c,U

....i. l.c',C-+--+

, I I I I !
26:17 66: 611 68: _,': ':'111 It,' 71, H, 15 1 161 17,)S~ '9, sa

iii j I(.t,

L P

E 0

A S

D I

I T

N I

G 0

N

X

X

X

X

X

X

X

X

X

X

X

X

-
I P T P Z S F I S

N 0 R 0 E U L F Y

T S A S R P 0 M

E I I I 0 P A M B

R T L T R T U 0

M I I I E I L L MEANING

E 0 N 0 S N T I
D N G N S G I

I I ~ p

I I
,

A 0 L i
I

T N E

E I
-

I

., X A Alphabetic (/~ . ~ S, hlank)
v X X Alphabetic, n 1Ilieric or any of "

compute, ~ ,t

X X 9 Nur_~\~ric (0--9)

X DeC'imal point

X , Conuna

X Z Zero suppress Lon

X X $ Dollar sign

X X X * Check protect Len

X X X + Plus sign if)ositive

Minus sign if n~gative

X X X - Blank if pos it:i ve

Minus sign if n=gative

X CR Blank if posi t.i-ve

CR if negativl'

X DB Blank if pos i I i-Je

DB if negativt'

G Group indicatl' (1 only)

X I 12 row overpullch if positive

11 row overpullch if negative

X R No overpunch 1 f positive

11 row overpullch if negative

,,< Complete zero suppression requires the Z symbol in all numeric positions,
both left and right of the decimal point.

Figure 29. Report Data Image SymbolS

I
I

I
I
I

@[Eo ;?2@@ ~[E[ffi ~ ~~ -----------------:::RE=FE=R~E~~~~~O~=;=u~:-:-~

-244-

APPENDIX A
COMPILER VOCABULARY

The vocabulary of the General Compiler consists of the following words.
must be spelled corrEctly and cannot be used as data or procedure names.

These words always
Key letters after each

word (IEDPR) denote the division in which that word is most commonly used. (I=Identification,
E=Environment, D=Data, P=Procedure, and R=Report writer.

:\08 P FOUR(S) E P PRINT E
·\CC R FROM P PRINTER(S) E
-\CCl'MCl .. \TlO· R PRIORITY E
.\CTIO:-:S P GAP P PROCEDURE E P
·\DD P GENERATE P PROCEED P
ADnnESSl:".(: p GIVING P PROCESS D
ADVA~CE P GO P PROGRAM I E P
\DVA"l"CI:\,; P OR P PROGRAM-ID I
.1,FTER E GREATER P PROGRAMMED E
ALL R GROUP D P PTP E
ALTI:R P PTR E
ALTER~ATF E HARDWARE E PUNCH
AND HIGH E
API E HSP E READ P
ARE D READING P
AREA E IDENTIFICATION D READER E
ARRAY D IF P READY P
ASSIG~ F. IN E RECORD(S) E D P
AT P INPUT E D P RECORDING D
ATA~~ P IN'TEGER D REEL E D
.\UTHOR INTERRUPT E RELEASE P
AUTOMATIC E INTO P RELOCATABLE P

I-Q-.(:ONTROL E RELOCATE
BEGl~ E P IS D P REPLACING
BEGINh'lNti E REPORT R
BGN ~FIL-·L.ABl D JOURNAL TAPE E D RERUN E
BGN -TAP-LAB'. D JT E D RESERVE E
BINARY D REWIND P
BLOCK E D P L D R ROUNDED P
BLOCKED E LABEL ED ROW(S) P
UUFFER E LAST-DETAIL R RUN P
BY P LAYOUT R

LESS P SAME E
CARD E LINE(S) P SECTION D P R
CHAI~ P LINE-COUNT P SEE
CHAl~T\G P LlNE-NUMBER(S) R SEGMENT E P
CLOSE(D) P LINES/PAGE R SELECT E
COBOL-MODE LN P SENTINEL D
COMMO~-STor AGE E D LOAD P SEQUENCED D
*CQMMO:-l-5TORAI IE E D LOCK P SEQUENTIAL E
COM PUT A TIOt. ·M(ID E E LOG P SEVEN(S) E P
CONDlTlO:-.lS P LOWER E SIN P
CONSOLE P LS P SIX(ES) E P
CONSTA~T D SIZE E D P
CONTAI:>.E E D MAGNETIC E SPACE(S) P
CO!\TROL P MAIN E SPEED E
CONTROL-BIn AK S' R MEMORY E SQRT P
CONTROL -KE'\ D MIO E STANDARD E
COPY P MODE D STOP P
COPYING P MODULE(S) E STORAGE D
COS P MOVE P SUBTRACT P
COUKT R MT E SWlTCH(ES) P
CP E MULTIPLE E
CR E MULTIPLY P TABLE P
CS D P TAPE(S) E

NEGATIVE P TERMINATE D
DATA D NEQ P THAN P
DATE--CO\lIPII ED NEXT-PROGRAM THREE(S) E P
DEFI~ITIO!'-l(S\ R NGR P TO E P
DEPENDIr-.:G P NINE(S) E P TOP P
DET AIL-CaCN r R NLS P TRUE-FAUlE D
DISC' E NO P TWO(S) P
DIVlDE P NONE TYPEWRITER P
DIVISIO:-'; I E D P NOT P
DSU--CO!\THOI E NOTE P UNEQUAL P
DSV(Sl E NQ-SET D Uh'IT E

NUMBER E UNTIL P
EIGHTIS E P UPPER E
END E D P OBJECT-COMPUTE::t E USE E
ENDl~G E OBJECT-PROGRAM E USING P
END-FIL- LAB D OF E P R
END -TAP-LAII D OFF E VARY P
E!>ITEH P OMITTED D
ENTRA:-<Cl" E ON E D P WITH P
E:--;VIROl\:v1E:\" , E ONE(S) E P WORDS D
EQ P OPEN P WORKING--6TORAGE D P
EQl'AUS' OPTIONAL E WRITE P
ERROR E P OR P WRITING P
EVF:RY E OUTPUT E D P ws D P
EXCEEDS P OVERLAY--6EGMENTATION E
EXCHA.,\(d· P ZERO(S) E P
EXIT P PAGE P ZEROES E P
E:<P p PAGE--.cOUNT R ZERO--£ET D

PAPER E
FILE(::i' E D P PERFORM P IS-BIT D
FILf.~CU'~TiH 1 E PL E
FI:\AL R PLACE E 215 E
FIn:(S PLUG(S) E 225 E
FU)/\Tl'\t-:' E POINT E 235 E
FLPT E POSITION E
FOH R POSITIVE P

@~o~@@ ~~ug!l [E~ GECOM - II
REFERENCE MANUAL

-245-

APPENDIX B
ORDER OF SOURCE PROGRAM

IDENTIFICATION DIVI'SION

PROGRAM~ ID.

NEXT~ PROGRAM.

AUTHOR.

DATE~ COMPILED.

L%TALLATIOK

SECURITY.

REMARKS.

ENVIRONMENT DIVISION

OBJECT~ COMPUTER.

I~~CONTROL.

FILE~ CONTROL.

DSU~ CONTROL.

COM PUT ATION~ MODE.

DATA DIVISION

REPORT SECTION.

ARRAY SECTION.

T RUE~ FALSE SE CTION.

INTEGER SECTION.

FILE SE CTION.

OUTPUT FILES.

INPUT FILES.

WORKIN~STORAGE SECTION.

COMMON~STORAGE SECTION.

*COMMON~STORAGE SECTION.

CONST ANT SE CTION.

PROCEDURE DIVISION

Sections and closed decision tables
(may be intermixed)

Master program (including open
decision tables if used)

END PROGRAM.

-246-

Mandatory

Mandatory

Optional

Optional

'Jptio:"J

(.ip tic· .J. '

(;ption",

Optional

Mandatory

Optional

()ptional

Optional

Optional

Optional

Mandatory

Optional

Optional

Optional

Optional

Optional

Optional

Optional

Optional

Optional

Optional

Optional

Mandatory

Placement
mandatory
if used

Mandatory

Mandatory

APPENDIX C

OBJECT PROGRAM RELOCATABLE DECK FORMATS

All binary instruction decks (segments or subroutines) are preceded by one or more cards called
Header cards. These cards contain information for the loader. They indicate the names of all
subprograms (segments or subroutines) referenced by the particular routine, all entrances to the
routine plus other information required in loading.

HEADER CARD FORMAT

1. The contents of words 0 through 6 are explained in Figure 30.

2. Entrance name blocks are five words in length. The first entrance name block starts
in word 7. The first four words of each block contain a left-justified BCD name of
twelve or less characters of an entrance to the routine. The fifth word of each block
specifies, in binary, the relative position of the entrance. The entrance to the first
instruction of a routine is position zero. (An entrance ten locations down from the
first instruction would be position ten,,) There are as many five word blocks as
specified by the count in word 6.

3. Subprogram name blocks follow the entrance name blocks and are four words in length.
Each block eontains a left- justified BCD name of a required subprogram. There are
as many four word blocks as are specified in word 5.

4. Additional Header cards contain the first two words of basic information followed by
the continuation of the previous card.

5. Checksums are only thirteen bits long. They are computed first as twenty-bit check­
sums and then broken down into seven and thirteen-bit groups which are added
together, overflow checked, and stored as a thirteen-bit checksum.

INSTRUCTION CARD FORMAT

Instructions are in relocatable binary format. Each group of nine or less words to be loaded is
preceded by a control word. Bits 2-3 of the word control the loading of the first word of the group;
bits 4-5 control the loading of the second word of the group; and so on, until bits 18-19 control the
loading of the ninth word of the group if that many words are required.

@~o~@@ ~~[ffil][~~-------------=RE=FE=REN~G~~~OM~MA=~UA~I~
-247-

Control Bits

The control bits have the following meaning:

00 - relocate the word with respect to the origin assigned to the first instruction by the
loader.

01 - relocate the word as for 00 above, and increment the address portion of the word by
the origin assigned to the first inst ruction of the routine.

10 - relocate the word as for 00 above, and develop the address as [.)), 01 above, then
complement the address developed.\

Full Instruction Card

A full InstructiGn card has the following format:

Word 0

Word 1

Word 2
Words 3-11
Word 12
Words 13-21
Word 22
Words 23-31
Word 32
Words 33-39

Bits S, 1, 2, 3: Type (OOll)
Bit 4: Same meaning as C in Header card (Figure 30).
Bits 5-19: Same meaning as Origin in Header card (Figure 30).
Bits S-6: Same meaning as Size in Header card (Figure 30).
Bits 7-19: Checksum.
Control word for first nine ,words to be loaded.
Nine words to be loaded.
Control word for next nine words.
Nine words to be loaded.
Control word for next nine words.
Nine words to be loaded.
Control word for next seven words.
Seven words to be loaded.

Partial Instruction Card

If an Instruction card is not full, only the control words or bits necessary are used.

@~ 0 ~@@ ~~[ffi ~ ~~ -----·--------------::-::RE=FE=RE~~c::::E~~O~~~=u~~~

-248-

Word 0

2

3

4

5

6

s 2 5 6 8 9 10 11 12 13 14 15 16 17 18 19
re

Type _I (I .. Location • .~

These two words
peated if more
an one Header
rd used.

th

_Size -I~I Check &um .- , ca
-

r I- Lower Range

.. Upper Range

- Origin

.. Number of sUbprograms

- Number of entrances to
-

5-word

.. --..
following binary deck_

\ Th
pe
He

ese words ap-
ar only on first
ader card.

,
V (

Entrance Name Bh,d. >

4-word

Subprogram Name Blocks

Legend.

Type: Binary 1000 in bits S, 1, 2, 3.

Th
be
ot

ese blocks may
continued onto

her Header'cards.

C: Always C' when produced by compiler. Can be changed to 1 to override
checksum.

Location: Address to begin Vector Table.

Size: Number of words used on this card. ,/' ,

I: 1 means tCI load up to lower range into upper 8k.
a means to load up to lower range into lower 8k.

Lower Range: Relocatable origin of first location of input file tables (if
present), 8177 if not present.

Upper RangE: Relocatable address of last location of constant area (if
present), 8191 if not.

Origin: Beginning relocatable address of following binary deck.

Figure 30. Header Card Format

@j ~ c ~(Q)(ID ~~ [ffi ~ [~~ ---------------,,--REF=E=REN~G~~~OM~MA=~U~!~
249-

\

APPENDIX D
OBJECT PROGRAM CONSTANTS

The references to constants used by a GECOM-produced object program and the library routines
are equateci" to absolute memory locations. The eonstahts themselves are included in the object
program whenever the subroutines are punched. These constants may be referenced by name in
General Assembly Program coding written by the programmer in the source program. The
values of the constants are given below:

ZER
ZOO
ZOl
Z02
Z03
Z04
Z05
Z06
Z07
Z08
Z09
Z10
Zll
Z12
Z17
Z18
Z19
Z20
Z24
Z25
Z26
Z30
Z31
Z32
Z33 .
Z34
Z37
Z38
Z40
Z41
Z42
Z43
Z44
Z45
Z46
Z47
Z48
Z49

Constant

DDC
EQU
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
ALF
ALF
OCT
ALF
ALF
DEC
DEC
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT

Remarks

0 Always even location
ZER
1
2
3
4
5
6
7
8
9
10
-1
-2
17
18
-18
-19
24
25
20
00.
00,
0000060
00-

.
00+
37
38
3777717
3606060
2777777
3777760
3776077
3607777
3000077:
3770000
3777700
3007777 .

·e-

GECOM - II
REFERENCE MANUAL

@!""C®rrr'f[II'(QlIr:' fD' ~ r~ (:u
@ l£ 0 6l.llJ\l!! ~L~; Ut'! ~J L~J0 ---------------------:===~~,.:.;..

-251-

APPENDIX D - GECOM OBJECT PROGRAM CONSTANTS (CaNT.)

~ Constant Remarks

Z50 OCT 0000000 Al.vays even location
Z51 OCT 0000013
Z52 OCT 0006000 Fl'Jating powers of 10

OCT 0000000
OCT 0022400
OCT 0000000
OCT 0037100
OCT 0000000
OCT 0053720
OCT 0000000
OCT 0072342
OCT 0000000
OCT 0107032
OCT 1000000

zao OCT 2000000
Z81 OCT 3700000
Z82 OCT 0100000
Z83 OCT 3777001
Z84 OCT 3577777
Z85 OCT 0000066
Z86 OCT 0006600
Z87 OCT 0077777
Z88 DDC IB38

} BLK ALF Double Length Blanks
ALF

FCA OCT 0167000
OCT 0000000

FCB OCT 0164000
OCT 0000002

FCC OCT 0173000
OCT 0000000

FCD OCT 0170000
OCT 0000001

FLB OCT 0006060

Z* ALF 00*

~ ALF 00$

@[E 0 ~@@ ~[E[ffi~[E~ -----------------RE-FE-"RE-~-~~-O~-~-u~-~
-252-

APPENDIX E
OBJECT PROGRAM TYPING SUBROUTINES

The following typing sl.broutines produced in GECOM object programs are also available to the
programmer writing Gelleral Assembly Program coding in a GECOM source program, if the
General Assembly cod ,n~ is not a part of a separate relocatable segment.

1. TYI
CALL - SPB TYl, 3
PURPOSE: TAB ONCE, SET RED, TYPE

2. TYl+2
CALL - SPB TY1 + 2, 3
PURPOSE: TAB TWICE, SET RED, TYPE

3. TYI + 4
CALL - SPB TY1 + 4, 3
PURPOSE: TAB ONCE, SET BLACK, TYPE

4. TYI + 6
CALL - SPB TY1 + 6, 3
PURPOSE: TAB TWICE, SET BLACK, TYPE

5. TYl+8
CALL - SPB TY1 + 8, 3
PURPOSE: SET RED, TYPE

6. TYI + 10
CALL - SPB TYI + 10, 3
PlHPOSE: SET BLACK, TYPE

In all of the TYl-type entnes, a second word in the calling sequence indicates the following:

Slgn Bit ON

Sign Hit OFF

PositiOn 1 Bit
ON

Posit LOn 1 Bit
OFF

a..
Type ",list of words.
The address portion specifies the number of
words to type. A third word is required in
the calling sequence and gives the beginning
address of the list.

Type the 3 BCD characters in positions 2-19
of this word.

No carriage return after typing.

Carriage return after typing.

GECOM - II
REFERENCE MANUAL

-253-

Examples:

1. SPB TY1+6, 3
ALF ERR

2. SPB TYl, 3
OCT 2000006
LDA MESS

3. SPB TY1+6, 3
OCT 1255151

4, SPB TY1+10,
OCT 3000007
LDA LIST

3

One word, Carriage return.

Type 6 words starting at MESS
and Carriage Return

One word, no carriage return.

Type 7 words starting at LIST.
No carriage return.

-254-

GECOM - II
RE"ERENCE MANUAL

APPENDIX F

INPUT/OUTPUT SYMBOL.IC NAME ASSIGNMENT

FILE NUMBERS

Each file is assigned a 2 -digit BCD file number starting with 00 and continuing to a possible 99.
Numbers are assigned ill order. The first output file described in the Data Division is assigned
number 00.

The file number appears as the first two characters of every name associated with coding for that
file and is referred to in examples as fn.

SPECIAL CHARACTERS

The third character of the name depends on the routine or area in which a name is used as shown
in Figure 31.

c .'
c~

11

" /

'\'
~(
,.

L

/~
;1

((1

110

<,
"

l

Related Routine or Area

Entries of file table
I/O Control
Open
Close
Read, Write Entrance
I/O Area 1
I/O Area 2
Unpacking or Packing':'

READ AND COpy UNTIL

* Unpacking is the move/ convert of input fields mentioned in the
procedures. Packing is the move/ convert to output buffer.

Figure 31. Third Character for I/O Symbolic Name Assignment

-255-

RECORD NUMBERS

Record numbers are assigned to each data record of a file starting with O(~ and continuing to a
possible Q!L Label records are assigned BT (Beginning Tape), BF (Beginning File), ET (End
Tape), or EF (End File), if they contain m,nstandard portions.

Record numbers (referred to as rn) are used in the names of the packing and unpacking routines.

Examples:

01Z02

03ZET

If 01 is an input file number, this is the name of th, "" ill', that unpacks
record number 02 defined for file 01.

If 01 is an output file number, this is the name given t'J lit' 'D"ltie that
packs record number .Qb

:-;,llnf, of routine that unpacks or packs added informatJoll in the ENl}-...TAP~
LABL of file 03.

-256-

GECOM - II
REFERENCE MANUAL

SYMBOLIC I/O ENTRANCES AND FUNCTIONS PERFORMED

The symbols are described in the order they will appear for that file in the input; output coding
portion of the Edited Listing.

Name Description

fnU Open File Entrance
Functions:
a. Set read switch (fnW) to process.
b. Set end -of -file indicator to off.
c. Test open/close indicator; if file open, type error

message.
d. Set open/close indicator to open.
e. Clear record count to zero.
f. If buffered file, initialize read command and

end-of-file test.
g. If buffered file, prime first buffer.
h. Exit to procedure coding.

fnW Head File Entrance.
(This is the open/close switch. It is set to go to TER
when closed and set to go to fnW+2 when open.)
Functions:
a. If not buffered, read a card into input buffer.
b. Delay until last card read is in the input buffer.
c. Check sychronization word for card read error.
d. If read error go to fnTEC.
P. Check for end-of-file card. If end-of-file, set

indicator in the first word of the file table and
transfer control to fnT.

f. Update card count.
g. If a buffered file:

1. Execute read command to fill next input buffer.
2. Exchange buffers and modify read command,

synch. test, and end-of-file test.
3. Set input area pointer fnTCP.

h. If no control keys or read until, go to unpacking
(fnZOO).

i. If control keys or read until, go to fnZCK.

Figure 32. Input Card Files

-257-

Name

fnTS3

fnTSO

fnTS2

fnTEC

fnV

fnZrn

TER

TCT

fnS

fnTXT

fnTCP

fnT

fnTLL

fnTMW

Description

Card Read Error Check (this name presently only on
buffered files.)

End-of-File Test (This name is present only on b.lffered
files.)

Read Command (This name present only on buff'l Ed files.)

Card Reader Error Recovery
Functions:
a. Type error message.
b. Wait for operator to reposition the file.
c. If not buffered, return to read card again.
d. If buffered, read card and go to wait for ca n~

reader ready.

Close File Entrance
Functions:
a. Set read switch (fnW) to error.
b. Test file closed; i.f closed, type error mesba:~e.
c. Set open/close indicator to close.
d. Type record count.
e. Return to procedure coding.

Entrance to Input Unpacking for Record Number I'n.

Type error message when programmer tries to l'I~ad
file before opening it.

Type Count
a. Type card count on closing.
b. Type record count on control"'key error.

First word of file table.

Temporary storage for exit to Procedure coding.

Input Area Pointer.

End-of-File Transfer Address to Procedure codir.g.

Length of Record just Read.

End-of-File Image.

Figure 32. (Cont.)

-258-

Narrle

fnU

: ~ \\ 1

Open File Entrance
Functions:

De sc ription

:1. Set write switch (fnW) to Process.
b. Test open/close indicator; if file open, type

error message.
c. Set open/ close indicator to open.
ll. Cleat· record count to zero.
'. Exit to procedure coding.

v,' dtp File Entrance (This is the open/close switch.
t.' tJ1P fill' is closed, it is set to go to TER and
t'J!P:c' an t't"l'or message. If the file is open, it is
"et to go to fnW+2.)
Functions:
a. Set output buffer pacUn~: transfer.
b. Say£, exit to procedure <.:oding.
c. If buffe red:

1. Go to TBP to clear the output area unless
no-sPl option used "I' if a Process File.

2. Go to pa<.:king.
3. \\'ait foJ' punch to corne ready.
-t. Executp punch corrllnand.
;). lJpdate record count.
I). Exchange output buffers in the fUp table.
7. Set punch cornIlland to next output buffer.
S. Set output area pointer (fnTCP), to next

buffe r.
fl. Heturn control to pl'ocedure coding.

('. If not buffered:
1. Wait for punch to come ceady if 11;,t Pro,:::(:,;,.; File.
, Cleat· the output buffer llnh'ss no-set option

\\ as used or' if a PI')ce~", File •
.). Go to packing.
4. [SSU(punch conlInai1d.
~). lTpdate record count..
fi. \\ ait fur· punch tu come ready if a Process F'ile.
'. Iktlll·ll control to pt·ocedure coding.

[·.-".1 ",; ;;ywbol for making modifications when buffe r·ed,
n,.1 ,·lltr'ancp t.o control ruint. from packing, thru fnWE.

("l"s,~ Entrancf'
I,'tillc tion s:

::>et wl·ite switch to C1T01'.

Tpst if fill' c\ooc'd; ii dllSPci, type an (,lTOl' lIH';-;sagp.

:-;pt "I'PIl/closp ll1di',ato;' to ~.
Type l'PcI)l'd CO!1tlt.

Exit. to P],(ICf'c!;1t'P co:1iti;;.
-.. ---.-.... -.----.---. _ .. _---_ .. _--._ .. _-_._--. __ .•.... _•. _-

Figure 33. Output Card Files

GECOM • T I

!d'FEP.ENCE ~1ANl:AL

-259-

Name

fnWrn

fnZrn

TER

TBP

TBh

fnS

fnTXT

fnTCP

fnWE

Description

Write Record Entrance
Functions:
a. Pass record packing address to write file ('IlXance.

(After output area has been prepared fOI' P<'c "ing,
control is transfered to fn2rn which packs the
record and returns to fnWE.)

b. Transfer CC'lL'Ol. to ""rite File Fn:r:111' l

Entrance to output packLlg for record I:urrl !, t' ~

See Input Card Files.

Entrance to TBK.

Store blanks or zeros in output area bE,fore l'~iC,,:: g.

Firs t word of file table.

Temporary Storage for Exit to PrOCedUl!> :', d:r,,;

Output Area Pointer

Entrance to Control Routine from Packing C('diJ~;
Always branches to fnWT. L-________ ~ ________________________________ . _________ ~ ____

Name

fnU

Figure 3,3. (Cont.)

Open File Entrance
Functions:

Desc ription

a. Set write switch (fnW).
b. Test open/close indicator'; if open, type ,1[1

error nlessage.
c. Set open/close indicator to open.
d. Clear record count. --
e. Exit to procedure coding.

fnW Write File Entrance
(This is the open/close switch. If the file is clo~(d,
the switch is set to go to TER to type an error
message. If the file is open, the switch is set t<, go
to fnW+2.)
Functions:
a. Set packing transfer
b. Save exit to procedure coding.

Figure 34. Printer Files

@~c~@@ ~~[ffi~~~-----'----------RE-F-ER-=E~;.;;.;~~=O~':""'~-UA=I~

-260-

:\am~' Description

fn\,'T

f'nV

fn \\' }'

fnAllY

c, If any advancing, other than normal one line,
execute SPL.

d. Clear line cuuntl'r (PCB) if "top-of-page" option
used on this write.

",

1'.

r: buffered:
1. Go 10 TBP to clear the output area unless ne>-se:

opti'lIl u;:;ed,or if an adv<jtnce only, or if a Pr·:,ces3 File.
-, Go to packing routine unless an advance onl: .
:1. ',\'ait fo1' printer to come ready.
4, Execute print or slew command,
5 1..-pdate line count,
G, Exchange buffers.
7. Re::let print comrnand.
8. HE'set line count indicator.
~). Check for advance complete and if not, go

back to finish advancing.
Ill. r~xit to Procedure Coding.
If not buffered:
1. Wait for printer ':0 come ready if not a Process File.
:!. Go tu TBP t(l ch,ar the output area unle',3 r..::--..se:

option used,or an advance only,or if a Proce"'3 ~ils
3. Go to packing unless an advance only.
4. Execute print command or slew command.
J. LTpdate line count.
G. Reset print command.
7. Reset line count indicator.
8. \Vait for printer to come ready if a Process File.
9. Cneck for advancing. Completed; if not go bac;';

L" finish advancing.
10. Exit to procedure coding.

lisC' as symbol for making modifications to control
coding, and entrance to control coding from packing
thru fnWE

Close Entrance
Functions:
3..

b,

d,

Set w rite switch to error.
Test if file closed; if closed, type an error
rnessage.
Set open/close indicawr to close.
Type count.
Exit to procedure coding.

F:ntt'ance to control routir,e fl'om packing coding.
-\lways branches to fnWT,

·\dvance Printel' Entrance
Function:
.~et write instruction to "advance only" and go to
Nritp file entrance,

~------------~---,-----

Figure 34. (Cont.)

, ________________________________ G_E_C_O_M_-__ I_I

REFERENCE MAJJUAL

-261-

Name

fnWrn

fnZrn

SPL

TEl{

TBl~

fnS

fnTXT

fnTCP

De sc ription

Writ(' i{l'col'd Entrance
Func t inn s:
a. Pass record packj,ng address to w!'ite fil,' ('tit ":ll1Ct',

(i\ fter output buffer has been p I'epa red ;'0 I' [J.H king
and write instruction developed, control is 11,;'n:=­
f,el'eel to fnZrn. After packing is finish,'(; "(n'j'nl is
l'l~turn('d to fnWE.)

ll. Transfer conl)'ol il) wl'ite :'ill, "ntj'~;nc",

Pl'inter Advancing Setllp. Builds ll"~,l1t"" i;lSl')'., ,

See Input Card Files.

Entrance to TBK

Store blanks 01' Z£01'OS to clear an dl1t[lul area be ",',.
pac:king.

First Il'ord of file tabl,'.

TI'lllporary storage fo.l' exit to procedul'e cudilL'

Out.put Area Pointer.

Figure 34. (Cont.)

r------~ .--.. --------------------------,
Namp

fnTl

fnV

fnW

f'nWrn

fnZrn

Dese ription

Performs the opell functi'lIls.
a. If optional fil.' ex"eu!t~ OPT.
b. Execule OPN.

PprfOL"ms till' clos!~ functions.
a. If input execute ICL,
b. IJ output execute OCL.

H!:1d/Write Entrance (This is a switch whic! ., ,t I·

tilt' (lPN routine to go to TWR on index 3.)
a. I, the file is not open, execute TER.
b. TWR used this call tu obtain the file tabl! ;,c11n'ss.

\\'l"iU Record Fntnmr e.
Load A and Q registel's with record packing ;"IIil 'ss
(fnZn1) and record length, transfer ctlntrol 1" 11\.,

Entrance for unpacking or packing of record 111"11 ',:1' j'n,

Figure 35. Tape Files

GECOM - II

RI'I'ERFNCE MANUAL

-:262-

~ame

CFO

TY1

TY3

TY2

TEH

U(,V

Description

Ready for Overlay Load.
a. If tape overlay, check last tape instruction and

branch to overlay load subroutine.
b. If disc storage unit overlay:

1. Go to MlO to hold all disc storage instructions.
2. Save first word of punch buffer.
3. Execute overlay load subroutine.
4. Restore punch buffer.
5. Return to procedure coding.

Type Control.
a. To type one word or a list of words after perform­

ing one of the following:
1. Set blac k, no tab.
2. Set red, no tab.
3. Set black, tab once.
4. Set red, tab once.
5. Set black, tab twice.
6. Set red, tab twi.ce.

b. To return or not return the carriage depending on
the call word.

Return Carriage.

Type tape and plug number in the form PxTy.
a. If output file referenced, tab twice.
b. If input file referenced, tab once.
c. If an error call, type in red.

Type error message when programmer tries to read or
w rite a file which has not been opened.

Add one in BCD to a number in the A -register. Used
to update reel number and multifile tape position.

THL Read console switches. Calls on RCS subroutine. Used
for operator decisions.

TBK

T(,T

WSP

Store blanks or zeros to clear an output area before
packing.

Type Count.
a. Type record on cont.rol--key error.
b. Type block count on input tape error.

Tape Swap.
a. Initialize first tape assign during open.
b. Swap tapes at the end of a reel.

Figure 35. (Cont.)

-263-

Name De sc ription

OPN Open Tape File.

!

ULM

a. Set read/write switch (fnW) to open (SPB T.Y H, 3).
b. Set exit to procedure coding (m;es TS1).
c. Initializ e buffer synchronization.
d. Initialize E of indicator.
e. Check open/close indicator.
f.
g.
h.
i.
j.

k.
l.
nl.

n.
8.

p.

q.

Type error message if closed.
Check lock/no-lock indicator.
Type error m"ssage if locked.
Execute WSP if n:.uli.iple t:JiJPS ass.gr'!'l .
Initiali:;.f' tape mark indicator.
Initialize tape error indicato,'.
Initialize reel coc:nt to zero.
Rewind tape if indicated in the call.
If output execute TBK and transfe!' contlo! . I OLe.
If input multifile file execute UFP to PO"itll " t'l:'P.
If a blocked input file set fnTCP to end l'~' ') ,,,;\.; to
force a tape read on the first procpdul'P 1'('; ,i c"ll.
If input go to ILC,.

Label Move.
Moves an input label from the buffer to the labe ;: rea
(CLA) for label checking. Buffer address is se! l}

WST.

YPC Tape Alert Halt Check.

WDH

WDT

WRL

WBR

WRT

WRO

WTM

a. Set plug number if more than one tape plug.
b. Loop counting until controller becomes ready 01'

count becomes zero.
c. If controller comes ready, return normal

(BRUl, 3).
d. If count becomes :~ero:

1. Type E7 error.
2. Go to error return (other functions using this

routine takes care of recovery).

Wait on tape Rewinding.

Rewind Tape.

Read or Write of Label Record.

Backspace Tape.

Read or Write Tape.

Read Zero Words (To space 1 block.)

Write Tape Mark.

Figure 35. (Cont.)

-264-

11"

Description

Entered from one of the above six entries to execute
the tape function.
". Execute command.
h. Execute YPC.
(. Hepeat command if YPC indicates an alert halt.

W:-iT :id tape, plug, read or write, buffer address, and
!lumber of words where needed for WDT, WRL, WBR,

\\ :\:1

(P)\\'T

\ \' RT, W no, WTM, YIN, and ULM. This routine and
the above seven entries are used for tape movement
other than normal read/write, such as label read or
write, error l'pcovery, multifile positioning, rewinding,
and priming a buffered input file.

1 J sed as exit for the above nine routines.

1':1'1'or check and recovery for plug P. The file table
addrpss for the last tape used for a normal read or
'\' cite is stored in (P)UB. Before any other tape action
('an take place, a pass thru this routine is necessary.
'c. Check (P)UB for zero, if zero exit.
h, If non-zero:

1. Execute YPC.
2. Repeat command if YPC indicates an alert halt.
3. Check for any error, if yes go to 1 TX to recover.
4. If input, check for end-of -file mark and set

end-of -file indicator in the file table.
5. If output, check for end-of-r2"J and set

indicator in the file table.

ITX ":lTor recovery. If a two tape plug system, error re­
covery for second plug starts at 2TX. Each of these is
a switch. When an error i.s detected, the switch is set
to go to TRY and transfers control to TX9.

TX9 ;~rl'or Recovery Initialization.
a. Set exit to error check (PWT).
h. Execute WST.
c. Set error counters.
<l. If two controllers, set plug number in test in­

structions.
" Execute TRY.

If error is corrected, check for end-of-reel detected
and set end-of-reel indicator in the file table; then exit.

T HY l~rror Recovery Instructions.
:t. Decrease error counter by one.

Figure 35. (Cont.)

-265-
r

Nanle

TCR

b.

Description

If error counter is nonzero:
1. Check for cnd of reel and set indicatuI·.
2. Backspace the tape (\VBR).
3. Heread or rewrite the tape block.
4. Re-enter (P)WT at 1WK (2'11'1\: for second con­

troller). The routine will return by th, 1 TX
switch if still in error.

c. If error counter zero:
1. Input

a) Type '°1'1'01' ITIessagp.
b) \\ait for operator aCl iDYL
c) If operator sets switch 1:.! down, 1 ••• I IT,

counter and go to THY.
d) If operator does not set switch 19, sd !'l'P,'

indicator in the file table and exit.
2. Output

a) Backspace the tape.
b) Write two tape marks if non-puck,,] [,ocket,

one if pucker pocket.
c) Check for error on writing tap'" tl;a I,. If

any error skip note (C4.
d) If skip counter non-ZEro:

1) Backspace the tape. (This sho.:ld skip
3 inches of tape.)

2) Set error counter. Go to repeat fiyc
more times.

e) If unrecoverable error on output:
1) Type error message.
2) Wait for operator decision.
3) If operator sets switch 19, it i,.; assumed

that another tape has been mounted, and
exit is made to repeat write.

4) If operator does not set 19, it is
assumed that he wishes to try ag3.in on
the same tape.

Write Rerun Dump
a. On end of reel:

1. Set plug number if two controllers.
2. Set tape number.
3. If two controllers, wait for both to be n ·ady .
4. Wait for ca I'd reader ready.
5. Update rerun count.
6. Type rerun number.
7. Write memory in one record.
S. If it cannot be written correctly in five t I') s,

type NO after rerun number and exit.
b. On separate rerun tape:

1. Do 3 thru 6 above.
2. Write rerun label.
3. Write rerun dump.
4. If error, type NO and repeat the wri\(L ntil

a good dump is executed; then exit.

Figure 35. (Cont.)

GECOM - II @ ~ 0 ~ @(ID ~~ [ffi ~ ~ ~ -------------·---;R::-;::;EF::-;::;ER:;-;::;EN~CE~MA~N~UA::7"L
-266-

OCL

De sc ript ion

Output Tape File Close
a. Set write switch (fnW) to SPB TER, 2 and save exit

to procedure coding (uses TS1).
b. Check for file closed. If closed, type an error

message. Set close i.ndicator (uses TZQ).
c;. Check lock indicator of call and set to lock if indicated.
d. If two controller system, set error bucket address

(PUR) and error check address (PWT) in control
l'Outine (TWR).

P. If a blockpd file go to write last block after setting
return in h""\\'T,

f. Errol' check last record.
g. Write an end-of-file mark and go to OTC.

OTC Output Ending Label Create

OTR

a. Executes TY2.
b. If labeled file:

1. Type beginning label information.
2. Execute TBP for label area.
3. C reate ending tape or file label.
4. If end -of -file:

a) Execute after end-of-file label section, if
any (uses TAS).

b) Execute end .. of-file label packing for non­
standard fields, if any (users TAS).

5. If end-of-tape:
a) Execute after end-of-tape label section, if

any (uses T AS).
b) Execute end .. of-tape label packing for non­

standard fields, if any (uses T AS).
G. Execute OLW (Output Label Write).

c. If nonlabel file, execute TY3.
d. Go to OTR.

Output end-of-tape or -file close out.
a. If end-of-file:

1. Rewind tape, if indicated.
2. Return to exit.

b. If end-of-tape:
1. Execute TCR if rerun indicated.
2. Rewind tape.
3. Execute WSP if multiple tape units assigned to

this file. Otherwise, wait for operator to
mount blank tape on this handler.

4. Go to OLC.

Figure 35. (Cant.)

@rea®ro'ro'(Q)[E[ffi !][~ @) _______________ ~GE~COM~-..:..:..II

~ L£ ~ lWlW &l ~ REFERENCE MANUAL

-267-

Name

OLC

OLW

UFP

ICL

Description

Output beginning label create.
a. Update reel number through DCV.
b. If labeled file:

1. Execute TBP for label area.
2 C reate beginning tape or file label.
3. If a multifile tape:

a) Execute after beginning Fle label S.'diol1,
if any (uses TAS).

b) Execute beginning file label pac: in~ :)1

nonstandard fields, if allY (us,> T t .:.),

4, If other thon multifile:
a) Execute aftpl' beginning tape> la0.· L ,. t t :"n,

if any (uses TAS).
b) Execute beginning tape label pac',ll1,,; l()r

nonstandard fields, if any (usee; T\~).
5. Execute OL\\;.

c. If executed from open go to exit.
d. If executed from write, return to TWH routilC,

Output Label Write
a. Execute LRR.
b, If label write error:

1. Type error message.
2. Operator action:

a) Skip and try again, or
b) Skip label write.

Multifile input tape position.
a. Check open/close multifile indicator.
b. If a file on this multifile is open:

1. Type error message.
2. Ask operator if it is desired to proceed.

c. Position tape to file indicated by file table.

Input tape file close.
a. Set exit to procedure coding (uses TSI).
b. Check open/close indicator for open (uses TZ(~).
c. If closed:

1. Type error message.
2. Ask operator if it is desired to proceed.

d. Set lock/no lock indicator as desired.
e. If not a file or multifile tape:

1. Rewind if indicated
2. Go to exit (uses T SF).

f. If a file of a multiLle tape:
1. Rewind if indicated or position to next file

if no rewind.
2. Set multifile open/close indicator to clobP'l.
3. Update multifile position indicator.
4. Go to exit (TSF).

Figure 35. (Cont.)

-268-

::-Jame

ILC

ITC

Desc ription

Input beginning label check.
a. Update reel number in file table.
b. Execute TY2.
c. If labeled file:

1. Execute LRR.
2 If label read error:

a) Type error message.
b) Operator action:

1) Repeat read, or
2) Skip label check.

3. If no label read error:
a) Execute ULM.
b) Type label.
c) Check label information against file table

information.
1) If label information error:

-Type error message.
-Type file table information.
-Ask operator if it is desired to mount
correct tape, or accept label as is and
move label information to file table.

2) Execute TY3.
4. Execute beginning label unpacking for non­

standard fields, if any (uses TAS).
5. Execute after beginning label section, if any

(uses TAS).
d. If buffered file, read first block.
e. If executed from OPN, go to exit (TFS).
f. If executed from TWR, return to execute read thru

TSO.

Input ending tape or file label check.
a. If labeled file:

1. Execute LRR.
a) If label read error (go to VER).

1) Type error message.
2) Ask operator if it is end-of-tape or

end-of-file.
b) If no label read error:

1) Execute ULM.
2) Check record count.
3) Check block count.
4) If count error type error message (at

T X 2), and ask operator if it is desired
to continue.

2. If end of tape:
a) Execute TCR if rerun indicated.
b) Rewind tape.
c) Execute end-of-tape label unpacking for

non-standard fields, if any (uses TAS).

Figure 35. (Cont.)

-269-

:\lame Description

LHH

TAS

TSI

OPT

d) Execute after end-oI-tape label secLon, if
any (uses TAS).

e) If multiple tape units indicated, exc(u1e \\'SP.
f) If one tape unit only, type IVIT and IV"U for

operator to signal to continue.
g) Go to ILC.

b. If end-of-file (nonlabeled file" alway" go to "ncl-of­
file transfer address.)
1. Execute end-of-file label unpacking \','1' n "

standard fie Ids, if any (uses T A S\,
2, Execute after end-of-file label sectiu:", 1 :cll\

(uses TAS).
3. Set end -of -file indicator in file table.
4. Go to end-of-fiLe transfer address set by

procedure coding in word 17 of file tahle

Label read/write
a. Execute WST.
b. Execute WRL.
c. Check for tape error.

1) If no error, return.
2) If error, repeat up to five times.
3) If error persists after five attempts, go co

return plus one.

Label After Section or label pack/unpack expcu1e.
a. If execute address equal zero, return.
b. If execute address not equal to zero, execute

section or pack/unpack then return.

Set exit
a. Set index register one to indicate first location

of file table of file beging operated on.
b. Set exit in file table.

Optional file
a. Type OPT.
b. Type the first word of the file table.
c. Set end-of-file indicator in the file table.
d. Set end-of-file transfer address into read entcancp.
e. Ask operator if this file present.

1) If not present
a) Type FD.
b) Return to main program.

2) If present
a) Execute TY3.
b) Go to open this file.

Figure 35. (Cant.)

@~ 0 ~(DXill ~~[ffi ~ ~~ -----------------RE-FE-R....;.E~-~~-O~----UA--I~

-270-

Twa

Description

Input / Output Control
In each file table there is a seven word branch table which
is used to control the path of the program through this
routine onc e the initial conditions are set. This method is
used to eliminate as many tests for file conditions as
possible. The initial conditions which are set are as
follows:
a. Store record length and packing address for an output

file.
b. Set exit.
c. If more than one plug, set error check address and

bucket address.

The actual read or write is executed in the file table start­
ing at word 21 and control is returned to this routine at
word 24.

The individual routines as described below are entered
from one of the following:
a. In line.
b. From the branch table.
c. From one of the other service routines.
d. From one of the other sections of TWR.
e. From the file table.

TSO a. Execute error delay and check on previous READ/
WRITE.

b. Set file table location in the error check bucket.

TS1 a. Test for end-of-tape.
b. Test for tape error on input.

TS2 a. Execute delay and error check.
h. Update block count.

TBC Update block count.

TS:3 Change buffer areas.

TSZ

TS~

TS5

TS7

UJjdate record count.

Change end of block address.

a.
h.

a.
h.

Update rerun counter.
Execute rerun if counter is equal to rerun count
of file table.

Test for end-of-block.
Update block process address.

Figure 35. (Cont.)

-271-

Name

TCC
TS8

TSD

TS!\

TEC

TSG

TDS

TSF

TSB

TRN

Des c ription

Update record count
a. Test for block overflow, if not go to TSG.
b. Test for full block.
c. Store end of block sentinel, if not a full block.
d. Go to TSO.

Execute TBK for output a.rea.

ct. Update output block process adrlress.
b. Update intermediate record count.
c. Update record count.
d. If Process File, go to TS8

Execute input error procedure.

Transfer control to packi.ng

Execute delay and error check routine (for Proces~ ~~iles).

Exit to procedure coding

End- of-tape test for input and go to ITC or output
go to OTC.

Used by the control key a.nalysis section (from ZCE) to
type message if control key error is detected.

Figure 35. (Cont.)

@ ~ 0 ~ @@ ~[E ~ ~ ~~ -----------------RE-FE-_RE...:::.~.::.::~~~O~.:.-~-UA=-=-I~

-272-

~\jame

fnZCK

fnFND

fneLL

fnHEC

fnUPA

fnTAB

t'nZ

Description

Start of control key analysis.
Unpack control key field and compare it to the literals.
When a match is found, branch to fnFND.

Control key match found.
a. If records are of different length, the length of the re­

cord found is picked up from fmCLL and stored in fnTLL.
b. If no UNTILs on this file, control is transferred to the

appropriate record I.mpacking (which is obtained from
fnREC table).

c. If any UNTILs,examines contents of SRU.

1) If SRU is zero, go to unpack.
2) If SRU is nonzero, store unpacking transfer at fn$Z

and branch to SRU.

Table of record lengths.

Table of record numbers.

Table of record umpacking addresses.

Table of addresses for the literals to which the control
key field is compared.

Location into which the matching record's record is
stored.

Figure 36. Control Key Analysis

@ ~ 0 COl ro'~i (~I~ @ rr~ ~ _________________ --..::G~EC~OM!....:-=_I:..=.I
~~ ~~~ ~~uu. ~"~ REFERENCE MANUAL

-273-

Name

fn#

fn(u

fn*

fn%

fnUTL

fn!

fn$

fn%Z

fn#

fn#UP

fn(~ UP

fn"UP

fn%UP

De sc ription

Entrance for first read until statement if input file.

Entrance for second read until statement.

Entrance for third read until statement.

Entrance for fourth read until statement.

Created only if more than one until statement ,)1 tI
file
a. Initializes read until. switch (SRU).
b. 1£ copy, initializes the transfer to the copy Ll
c. Go to the read entrance.

Unsatisfied return from procedure test of until fie d
a. If copy, executes copy function by going to

entrance at fn#.
ll. Go to read next record.

Satisfied return from proc edure tests of until fl(, ld.
a. Heset read until switch (SRU) to zero.
b. Go to unpacking.

Unpacking transfer switch for read until. Set by c lr­

trol key analysis.

Entranc e for copy function if output file. Save l·ec Jl d
length and input buffer pointer.

Unpacking of until field for first read until statement.

Unpacking of until field for second read until statement.

Unpacking of until field for third read until statenH'n:.

Unpacking of until field for fourth read until statene:lt.

SRU Read until switch.

fn#CP

a. If zero, no READ UNTIL is in process.
b. If non-zero, contains branch to until field unp"cking.

Temporary storage for input file record length and input
area address when there is a copy function on this fiJ E'.

Figure 37. Read Until or Read Copy Until

-274-

Name>

RDY

ROT

RIT

FXT

STX

RR\\

RDS

Des cription

Entrance from procedure coding to DSU I/O for ready statement
'In input files.
a. Execute STX to store exit and setup call to MIa subroutine.
1). Check for overriding ready and type error message if yes.
". Get DSU record address from using field and store in file

table.
d. If more than one DSU used get DSU number from unit field

and store in file table.
('. Set ready given indicator.
f. Set first read or write indicator (used on blocked files).
l!;. If blocked or buffered file, set beginning of buffer

pointer.
h. Go to open/close switch for next function (word 29 of

File Table).

Entrance to control routine from word 29 of output file table.
a. If sequential file go to EXT to return to procedure section.
b. If non-sequential fi.le store the indication of whether or

not the seek is given on the ready.
1. If seek is indicated by the calling sequence execute

RRW to stack the seek in MIa DSU command table.
2. Return to procedure section.

Entrance to control routine from word 29 of input file table.
a. Execute RRW to stack the seek in MIa DSU command table.

If calling sequence from procedure section specifies
"ready for reading" the read will also be stacked.

b. Return to procedure section.

Return control to procedure section.

Control initialization
a. Save exit to procedure section in word 19 of the file table.
b. Set index 1 to file table address.
c. Setup calling sequence to MIL.

Execute call to MIa
a. Execute call to MIa
b. Restore file table address in index 1.
c. Check for error return and if so, go to type error message.

Entrance from procedure section to DSU I/O for ready statements
on output files.
a. If nonsequential file go to RDY.
h. If sequential file check for last operation complete.

1. If completed go to RDY.

Figure 38. DSU Files

(lli~ c ~@@ ~~rn; ~ ~~ ---------------RE-FE-R~E~~~~~:!.....:~:......;u~!:..!..~
-275-

Name

RDS (ConL)

UDA

RFD

SDNI

SDD

TEE

ssw

SRD

TF2

TFS

RFL

TRL

DSW

TBX

TRG

Description

2. If not completed execute TJT if an,' I()Ul'II,11 tape alld
execute demand call to l\IIO.

3. Go to RDY.

Update DSU record address for sequential file'S.

Entrance to DSU control to execute read or w cit,
a. Execute STX.
b. Check for read\' c;iven and if Lot, 1:\'pe "] ',1 I·,',~~a[:'p.

Reset ready given indicator fnr non-sequenLa' !",- ",
a. If sequential blocked file and read campl, t,· c,

s tart unblocking.
TETl t)

b. If sequential blocked file and read not Cumi'L'Cl~(1 2;() to l\UO
to complete the read and set the buffer p' intcl'.

Execute demand of input and set the buffer point, :

Unblocking for blocked files.

Set seek started indicator for not blocked buffen d sequential
file.

Update DSU address and start seek/read.

End of block action on input files.
a. If nonsequential go to "if end of block" stat,'ment.
b. If sequential and cross buffer sharing, releaE''' t!w output

buffer and write back on the file.
c. If this file is assigned to a journal tape go tc E rn)r check

TJT.

Reset ready indicator on non -sequential files.

Entrance for release statement to release an outnt buffer to
be written onto the DSU.

Check if write statement indicated a release alsc.

Set up a seek and write call to MIO.

Set buffer pointer.

Check if preset of buffer is required. Execute TBK if yes
and go to packing routines

Figure 38. (Cont.)

(m@ ~[E lffi [: [E ~ -------------------'--R-E-FE-cR-E.:;:.~~:;:.:~;;.;;" O;:,;:-~-U-=.~=-LI
-276-

Name

RSG

TRP
TIP
TAP

TOP

TFD
TFP

TDM

WSQ

WTQ

DR\\

TXA

DFM

RUT

WCP

TRU

ICU

$CS

$VP

ROP

Description

If 16k program, used to go to packing routine.

Blocking and end of block test for output file.

Indicate buffer sharing on blocked sequential output.

End of block action on sequential output files.

"l'sed for blocked sequential input with cross buffer sharing.

Vsed to control action of not-buffered not-blocked sequential
output files.

"l-sed to control action o~ buffered not-blocked sequential output.

To write not-blocked sequential output.

Reset buffer pointer for blocked sequential output.

Check write complete and update DSU record address for
sequential output.

L'sed to perform copy function on DSU files.

Used to perform copy function on DSU files.

Entrance for until-files to set until··switch on.

Entrance for unsatisfied UNTIL to get next record.

Entrance for satisfied UNTIL to set until switch off and go
to unpack this record.

Vnpacking address of record on until-statement being examined.

DSU open file entrance.
a. Check open/close indicator.
b. Type error message if already open.
c. Set open switch in word 29 of the file table.
d. Return to procedure coding.

Figure 38. (Cont.)

-277-

Name

RCL

RRI

RR2

RR3

RR4

RR5

WJT

TJT

JTX

JTW

JTE

WJR

Description

DSU close file entrance.
a. Check open/close indicator.
b. Type error message if already closed.
c. Set close switch in word 29 of the file table.
d. Check for any action to be completed on records in buffers.
e. Return to procedure coding.

Type RFR for instruction sequence error disc<n'E'J'('d m]·eady.

Type CFS for instruction sequence error dis COVE' "·.-c (>n read/write.

DSU read or write error.

Type OCE for open / close error.

Type FNO for file not open message.

Write journal tape.
1. Check to see if this file is to be written Oil jc lIrnal tape,

unless all DSU output is to be on journal tap~ .
2. If there are no other tape files present, codi:Jg will be

provided to perform delay and error check a'uj writing on the
journal tape. Otherwise, these functions will Je performed
by utilizing the I/O coding already present.

Test journal tape.
1. Check to see if this file is to be written on jc,urnal tape,

unless all DSU output is to be on journal t.ape.
2. Check status of journal tape.

Restore indexes and exit.

Coding to perform journal tape write, delay and <'rt'or check,
etc. Not generated if there are other tape files lwsides
journal tape.

Journal tape error.
1. Attempt to recover from error on journal tape.

Write journal tape record.
1. Update record count.
2. Rewind journal tape using JTZ
3. Write labels, if present, using JTZ.
4. Write EOF using JTZ.

Figure 38. (Cont.)

@ IT> ~~ I])@ ~~ [ffi [; ~ ~ --------------------R-E-F-ER-E~~.:;;;~~:;..:;" O;.;.::'-~-u-=~~~
-278-

Name

JTZ

JTL

JTC

RET

Description

Used by WJR.

Journal tape label and type -outs.
1. Error type-out.
:2. Record count.
3. Journal tape label.

Journal tape commands.
1. Rewind.
2.
')
d.

4.
5.

Backspace.
Write end-of-file.
Write journal tape record file number of DSU file.
Write label record.

DSU error table.
1. RFR - Ready followed by ready.
2. CFS - Command followed by same command.
3. MRE - DSU error.
4. OCE - Open/Close error.
5. FNO - File not open.

Figure 38. (Cont.)

@i ~ 0 ~lffim' ~ [E G; : ~ ~ ________ . _______________ .:;:.GE!::.:C;:.;;O~Mc_-~I~I
~j ~~ ~ ~ REFERENCE MANUAL

-279-

APPENDIX G
FILE TABLES

File tables are the communication link between GECOM's I/O service routine and other I/O
coding. 1, 0 service routines, which eliminate the necessity of in-line coding, perform the
following functions:

Openlllg and closing input and output: files
Checkins input and output file labels
Creating and writing output labels
Setting optional file indicators
Rewindin~ output tapes
Checkins for controller errors
Position ing multifile input tapes
Swapp ins tapes.

File tables are built, n lower memory in accordance with the relocation constant for the program.
Two types of file tablEc's are created. Tables for input files are listed first, and may be up to 48
words long. Output file tables follow and may be up to 44 words long. When a file table is set
up for the first file oj a multifile tape, the last two words of the file table are used for information
pertinent to multifile lapes. Otherwise, there is no need for these words, and the file table is
two words shorter.

Card reader. card punch and printer file tables are created using eight words. These eight
words contain the same information as words 0-7 of the tape file tables. Figures 39 thru 43 show
the format for input a ntl output file tables.

Each file is given a symbolic name: Three BCD characters consisting of a 2-digit number
(represented as fn in the diagrams) followed by S. The first file is OOS, the second 01S, etc.
This file name, fnS, appears in word 0, bits 1-19, of every file table. The sign bit is the EOF
indicator. (See Figures 39 and 42).

Word 1 of the table iLdlcates the length of the table which is always an even number.

Words 2 and 3 contain read commands (bits S-4) which contain the address of incoming data
(bits 5-19). If the file is not buffered, word 2 will always equal word 3. Word 3 always shows
the location into which data was last read.

Words 4 and 5 contain mdicators only.

Words 6 and 7 contain the block count and record count of the tape (not the file).

t1\l r? 0 Gil, inrQ'. (~rc:O' r :' ~ GECOM - II
'Illi LC; '";'~),", ~ If, lID I :.!": c;.; ---------.----------------~:::.;;::~.-:::..;:,.

REFERENCE MANUAL

-281-

Word 8 contains the address of the starting location of the delay and error check service routine
for the tape plug to which the file is assigned. This word is only used if the two tape plugs are
specified.

Word 9 contains the address of the location used by the delay and error check service routine to
obtain the file table starting location of the last file operated on for the tape plug to which the file
is assigned. This is only used if two tape plugs are specified.

Word 10 contains a BC D reel or file number.

Bits 2-19, of words 11, 12 and 13, contain the LABEL ill.

fneD 1S the address of the creation date. Words 14 and 15 are reserved f<)r the actual date. This
date 1S taken from the first label of the input tape, or from locations 1076 e and 10778 for an
output file if dating symbols are not specified.

Word 16 is used only when the file is part of a multifile tape or when mort' than one tape unit is
assigned to this file. If part of a multifile tape, word 16 contains the posltiJn (in BCD) of this
file on the tape. If more than one tape unit is assigned, bits 0- 4 contam t hE tape code of the
starting tape.

fnT, the file number followed by T to indicate control section, at word 17 c()ntains the address to
which control reverts when the EOF is encountered on input. Word 17 on output is used as an
intermediate record count for blocked files.

fnTCP, word 18, contains the address of the reeord which is currently being processed. It will
be aSSigned an "EQO;" consequently, all buffer areas (except card) will now be absolute rather
than relocatable and will be located in Common Storage.

fnTXT, word 19, contains the exit location from the READ, WRITE, OPEN or CLOSE sentence.

fnTLL contains the length of the record being processed if the table is an input file table. In an
output fHe table, this word (20) contains a branch into the I/O control sectitm from the packing
sectlOn.

Words 21-23 contam the general select instruction for this file followed bv ·.he READ or WRITE
command which was last executed.

Word 24 contains a branch to the 110 control seetion which is executed aft er a READ or WRITE
sentence.

Word 25 is used only when more than one tape is assigned to this file. In this case, it contains
the tape codes for each tape unit. (No more than four tapes are allowed f<)r ea ch file.)

,,"11(0-. '. CQ? IE 10< I' :-c <Qc ________________ _
~JU~' 0~U_u'_Lf~:

GECOM - II

REFERENCE MANUAL

-282-

fnTEB, words 26 and 27, are present only when records are blocked. They contain the address
of the end of the block for each input area. These are zero when blocking is not used. Word 27
is zero If record is blocked but not buffered.

Words 28 through 30 1I1 input file tables and word 44 in output file tables are addresses used to
execute USE AFTER LABEL sections.

Words 31-37 control :)ranches through the I/O control section.

Word 38 contains the elld of block literal, which is $%$ for BCD, 3777777 for binary and 0777777
for special binary. On output files 0401700 is used for off line print files.

Word 39 contains the number of records between rerun points.

Word 40 contains the rpcord counter for rerun.

Words 42- 43 show th!' end- of- tape and end- of-file label unpacking or packing addresses for fields
on the label that are J'eferenced by the user.

Word 44 cuntains the address of the AFTER STANDARD ERROR PROCEDURE section, if any.

Words 4~- 47 contain multifile tape information. If this is not a file of a multifile tape, word 45
IS zero; oth('rw iSt', t hIS word gives the address of the location containing the current tape
position. W ()rds 46 :llId 47 are present only on the first file table produced for a given multifile
tape. All fill'S desnilJed as multifile and aSSigned to the same tape handler are considered part
of the same multiflle system.

CECOM - II
REFERENCE MANUAL

Word Symbol Dese ription

0 fnS Sign bit = EOF indicator
3 BCD file name (file no. 21us S)

1 Length of this file table (number of words u,.;ull
2 Read command plus address of input area 1
3 Read command plus address of input area 2 (,j' not

buffered area 1)

4 Sign bit = open/close indicator;on=closed,off=opel1
5 Not used

- -------
6 Record count

-_. --.-- --_._._-
7 Not used

Figure 39. File Table Format for Input Card Files

Word Sym~ol De sc ript ion

0 fnS Three BCD file name (file no. plus S)
1 Bit one on = preblank the output area befol'e I,a'~i,-

ing length of this file table (number of w(H'd,.; used)
2 Punch command plus address of output area 1 --------
3 Punch command plus address of output an'a ~ ('t' 1.

not buffered, area 1) --
4 Sign bit = open/close indicator·on=closed off=o[Jen
5 Not used
6 Record count
7 Not used

Figure 40. File Table Format for Output Card Files

Word Symbol Description

0 fnS Three BCD file name (file no. plus S)
1 Bit 1 on - preblank the output area before par: king

length of this file table (number of words used)
2 Second word of print command for area 1
:3 Second word of print command for area 2 (if Clc,t

buffered, same as 2)
4 Sign bit - open/close indicator;on-closed,off=open
5 Not used
6 Record count
7 Advance counter

Figure 41. File Table Format for Printer Files

(Ql ~ [OJ r; ;c:.~ GECOM - I I
d~ lffi L LS C§! ----------------------·---R-E-F-E-R-E.:;N.;;:C.;;:E..;;.MA:.:....N-U-A::.;L:..

-284-

Word S:/mbo Description

0 fLS Sign bit, EOF indicator, 3 BCD file name (file no. plus USN)

1 Length of this file table (number of words used)
2 Tape command and input area 1
3 Tape command and input area 2 (if not buffered,

same as word 2)
.

4 Sign bit = open / c lose indicator; on=clo sed, off=open
Bit 19 = lock/no lock indicator;on=not locked,
off=locked

5 Sign bit = unrecoverable tape error if bit on
Bit 19 = end of tape characters encounterd if bit
on

6 Block count
7 Record count
8 Sign bit on = rerun at end of reel

Address of delay and error check routine for
this plug

9 Sign bit on = this file is buffered
Address of delay and error check file table bucket

-
lO BCD reel number if not multifile

BCD file number if multifile
11 Sign bit on - no labels

Literal ID word 1 (3 BCD characters)
12 Literal ID word 2 (3 BCD Characters)
13 Literal ID word 3 (3 BCD characters)
1-± fnCD Created date word 1
15 Created date word 2
lS Bits 0 thru 4 = tape code of 1 st tape assigned to

this file. Position of this file in BCD if multifile
17 fr.T End of file transfer address
18 fLTCP Current record address
19 fr;T'\.T Exit to procedure coding
20 fnTLL Length of current record
:21 General select command

-
:22 Words 21,22, and 23 are actual tape command sequence
:23 InT.,3 Executed to read the data block into memory
::4

f----
Branch to control routine after executing tape command
Sits 0 thru 4 - first tape code (used for tape swapping)

:! .) Bits ;j thru 9 = second tape code (usecf for"1ape swapping)
Bits 10 thru 14 = third tape code (used for' tape swapping)
Bits 15 thru 19 = fourth tape code (used for tape swapping)

.) ,~
_t) InT '·:8 End of block address for area 1 (if blocked file).
.) -
- I End of block address for area 2 (if not buffered, zero) --.
~g .'\ddress of beginning tape or file label section
:2') Address of end-o!:..tape label section
:1·) .'\dd 1"(,SS of end -of -file label section

Slgn bit = I/O indicator; on=output file,off=input file

Figure 42. File Table Format for Input Tape Files

(ffi~" ~(O)(m ~~[ffi J [~~ --------------RE-F-ER-....:E~=~~=O~~---UA::.=.I~

-285-

· __ ._- . __ ._-_ .. __ .- ------
\\' ord Symbol De sc ript ion

-,----,.-

31 Branch table used to direc t the ('xecutiun (;' Llw
32 control routine for this pa rt ic ulal' typ")j ni'llt
33 file. Includes words 31 thru 37,

_ .. ---~

38 End of block literal $"/0$ for BCD, all bib 11 1'0)'

binary bits 2 thru 19 for special binary

39 ?\umber of records between rerun poinb
- . - -_._------

40 Rerun record counter
- .---- ----- --- ----

Beginning label unpacking address 41 - -_ ... - - ------- _ .. __ ._-

4~ End-of-tape 1, bel unpacking .J.ddt'c'ss
- ~- .. - _._-

43 End-of-file label unpacking addncss
.---- -.--. ------

44 Address of # after standard error proc(,(ll '" # ~f'('ti('n

(Sign on = NO "after standal'd error proceciuT 3t?C~j.,)11.)

--------- ----_._ .. -

Zero if not multifile
LLl If part of a multifile tape, this word will contain

the address of the multifile position counter,

46 Multifile position counter
Sign bit = open/close indicator of multifile t;' P";-
Ol:open, 1 =closed
Note - -word 46 and 47 will be present only ,lL the

47 first file table produced for a given multifile
tape. All files described as multifile and assigned
to the same tape unit are considered PO)'! of the
same multifile system.

Figure 42. (Cant.)

@~D~@@ ~~[ffi~~~---------------RE-FE-R'-:::E~.:;:.:;~~:.::.:O~':---UA=I~

-286-

Word S)llcbol Desc ription

:) S 3 BCD file name (file no. plus S)
1 Length of this file table (number of words used)
'J Tape command and output area 1
., Tape command and output area 2 (If not buffered, ,J

same as 2)
Sign bit - = open / close indicator; on=closed,

1 off= lockpd. Bit 19 '" lock/no lock indicator;
on= not,locked off= locked

;) Bit 19 on = end-of-tape encountered
fi Block count
7 Record count

Sign bit on = rerun at end-of-reel
a Address of delay and error check routine for this

plug
9 Sign bit on - this file is buffered

Address of delay and error check file table bucket
111 BCD reel number if not multifile

BCD file number if multifile
11 Sign bit on = no labels

Literal ID word 1 (3 BCD characters)
12 Literal ID word 2 (3 BCD characters)
13 Literal ID word 3 (3 BCD characters)
14 fnCD Creation date word 1
13 Creation date word 2

Bits 0 thru 4 = tape code of first tape assigned to
If) this file. Position of this file if multifile

(in BCD)
17 Intermediate record count for buffered blocked fi,les
18 fnTCP Current record address
19 fnTXT Exit to procedure coding
~O fn\\' E Entrance from packing to tape control routine
:21 General select comnmnd
22 Words 21,22, and 23 are the actual tape command

sequence
~3 fnT:33 Executed to write the data blocks on tape.
:24 Branch to control routine after executing tape

conlnlancl
Bits 0 thru 4 = first tape code (used for tape swapping)

:2S Bits 5 thru 9 = second tape code (used for tape swapping)
Bits 10 thru 14 = third tape code (used for tape swapping)
Bits 15 thru 19 = fourth tape code (used for tape swappiI g)

:2(; fnTEB End of block address for area 1 (if blocked file)
,) -
- I End of block address for area ~ (it' not buUered, same

as 26)

~8

Sign Bit = present/no set indicator;on=present, off=no set.
Bit 1 on = present output area to blanks. Bit 1 off = present
output area to zeros. Address of beginning tape or file
label section

~9 Address of end-of-tape label section
(Sign bit on = Process File.)

:3U Address of end-of-file label section
Sign bit on = this is an output file table

Figure 43. File Table Format for Output Tape Files

@~ a ~(ID(ID ~~[ffi ~]~ ---------------RE-FE-R....:::E~.::..::~~:..;;:;:.:..-~-UA.::..:...I~

-287-

Symbol

Branch table used to direct the execution of the
control routine for this partie ular output fil".
Includes words 31 thru 37
End of block literal $'70$ for BCD, all bits fc 1

binary bits 2 thru 19 for special binary, d·H l',UU
for off -line print

~---n=-~-------+~--~--~~~~~-----------~---
I-____ ----,-,,--+--________ -I----::'--Jc:--u_m __ b __ e_r __ o_f_r_c-;-'c_ords between rerun points __ . ___ . __ _ . ___

Rerun record counter
-------c;--:-.-+------+--c:::--'--=--:--.....:....:;---:-~--'--'-'.:::.:.._"_c__-__;_:_---- .. ----. -- - .-- ----.--.---.-

Beginning laJl~_E,:,~_king ~cl.<.!..r~·~_s ____ u _ __. __ _ 1------,--,--+--_._--.
End tape label packing addrebs

I-----~,--+-----------f---:F~. n-d~-,-) fc'--_· file label pac 1, ing ad d ;'e 5S --- ---. - - .----

'-------'-------'-----------------_._----_ ... __ ... __ ._ .. _-

Figure 43. (Cant.)

-288-

Word S)ml '01

0 1
1
2
3 ---,--- --.
4
5
6
7

--

8

9
10
11
12

I--~--

-
13
11.
15
16

-- -----
17

18
-- ~----

C:p
19

--1-------
XT

tIT
fIT
frT

--
20 LL --
21 --_ ...
22

~-- 1-------

I
---- .--~

~-----t--~--

25 t-----
-

-_._---
26
27
28

-- t--~----.
29
30 tr-31

. --

~--- ~~ 33 __

_.
- .

~-.-----L-____ . -

Description

3 BCD file name (file no. plus S) .
Seek status indicator.
Read status indicator.
Buffer availability indicator.
Error counter.
DSU plug number.
DSU unit number.
Input/output indicator. O-input
Number of frames.
Power mode indicator O=on l=off
Not used on inj2ut files, must be zero.
DSU record address.
Input area l.
Input area 2 (same as 12 if not buffered) .
Priority indi_cator (always zero for CECOM) .
Used by MIO.
Sign Bit=reac.y given indicator (used to check

sequence of operations) .
Bit 19=open/close indicator O=open l=close.
Bit 18 on=non-buffered sequential file.
Bit 19 on=sequential file.
Current record address.
Exit to procedure coding.
Length of current record.
Exit of procedure coding if end of block.
Address of DSU error section.
Word position of chaining address relative to

beginning of record, if present.
Address of field containing DSU address.
Address of field containing unit number.
End of input area 2.
End of input area 1 (same as 26 if not buffered) .
Exit to procedure coding if end of chain.
Open/close switch.
Branch table used to direct the execution of the

control routine for this particular input file.

Figure 44. File Table Format for Input DSU Files

CECOM - II

REFERENCE MANUAL

-289··

Word Symbol Description

0 fnS 3 BCD file name (file no. plus S) .
1 Seek status indicator.
2 Write status indicator.
3 Buffer availability indicator.
4 Error Counter.
5 DSU plug number. --
6 DSU unit number.
7 Input/output indicator l=output.

_.
8 Number of frames.
9 Power mode inoicator. O-on I~orr- - - -- ----------

10 Read after write indicator.
n DSU record address.

---- ... --_.

-------_._---
12 Output area l. -----_._----
13 Output area 2 (same as 12 if not buffered)
14 Priority indicator (always zero for G~COM)
15 Used by MIO.
16 Sign bit - ready given indicator (used to check proper

sequence of operations)
Bit 19 = open/close indicator. O=open l=closed

17 Sign on - write on journal tape.
Bit 17 on=b1ocked sequential process fil e or not

block not buffered sequential prOCESS file.
18 fnTCP Current output area address.
19 fnTXT Exit to procedure codin!l'
20 End of block sentinel if any needed.
21 fnWE Entry to DSU control coding from the packing output

coding.
22 After error section name if any.
23 Sign bit used f,or demand indicator.

Largest word size less 1-
24 Address of field containing DSU recorc address.
25 Address of field containing unit numbEr if more than

one unit.
26 End of area 2 (same as 27 if not buffEred) .
.27 End of area l.
28 Sign Bit - Set/no set. l=set O=no SE't

Bit 1 = preb1ank/prezero. 1=b1anks C =zeros
29 Open/ close: switch.
30 Branch table used to direct the execution of the
31 control routine for this particular output file.
32
33 Buffer length plus 2 (used to write journal tape if

required.)

Figure 45. File Table Format for Output DSU Files

@ ~ 0 ~W)(Q) ~~ [ffi ~ ~~ -----·-----------RE-FE-RE~~.::.;;:~~;;:.O~:.....~......;u~=..:...~

-290-

APPENDIX H
OBJECT PROGRAMS FOR 16K MEMORIES

A GE-200 SerlE'", Hi, :ld-l ''v()rd memory consists of four modules of 4,096 words each. However,
Ihe total lltellll)I'Y lllJV hI' considered as consisting of two banks of 8, 192 words each.

Tu access ,lat,l (II' ((moUllts stored in upper 8k, GE- 200 Series instructiolls require the use of an
mdex l'ef',iskr. T,) IJlu<'('s::; information in lower Bk, an index register is not required. Branch
lllslructi('IlS fr()lll :lIld II upper Bk locations require no special provisions, and a string of
;Ilstrudlllih W itllOut Wll n'PlllI1g branches behaves the same way in upper Bk as in lower Bk. Thus,
i()wer 8k is th,,' Illllt'(' II~lt\ll';Ll part of memory to store data and constants, while upper Bk is better
:';uited 10 "Iurt' Jll'()~,rJlll 11lstructi(lIlS, Because arrays of data are processed USing an index
I'l'g ister. llll'\ ('(lui ;Ills) he ('oll\'(,lliently stored in upper 8k.

Subroutilll's may .:11111;111, lhl'lr OWIl constants and working storage areas. If they were located in
upper 8k. Ilwy w,)uld ,'('quirt.' indexing to refer to such information, but this is unnecessary in
l{Jwer Bk, Thert'flln, {ewpl' instructions need be stored and executed when subroutines are
10 cated in lower Bk,

UTILIZA nOr"'J OF MEMORY IN GECOM 16K OBJECT PROGRAMS

III .lccurd,ilitl II' tilt tilt' ,d,OH'. l'OllllllUIl constants, file tables, Common Storage, Working Storage,
,tntl sub!lJll! ide:; ,In' .ll \\ ays ,ISS igned to lower 8k Locations in GECOM obj ect programs, Howcvpr,
the COlli»;!' I ,t11.,w,; tltt jll'lgrammer to indicate that the body of coding for the segmE'nt to be
compiled ("", "Sl'c;llI'lil :;" In Chapter 6 uf this manual) ancV or certain repeated numeric fields
are to Ill' ,I,,, Igllt'd to 'lJ ,Pi; r Sk, To provide these options, the following features have been added
to the SOil!"'" langllag .. :

1, 'CUl\Ii\IO:\ STORAGE Section of the Data Division. (See Chapter 5.)

2. BEGH~ ·COMMON-STORAGE AT xxxxx clause in the Environment Division. (See
OBJECT· COMPUTER sentence in Chapter 7.)

3. PLACE SE;(,MENT IN UPPER MEMORY clause in the Environment Division.
(Sel~ OBJJ::CT COMPUTER sentence in Chapter 7.)

ThE' *CnllllIllln-Storagt> Sediun allows for the description of repeated numeric fields which are to
be stoH'd III uppE'r ilk, Ordinarily, memory addresses for *Common-Storage fields are aSSigned
in des('('ndlll~~ md!.' r fre'lll 8190 of upper Bk. If the BEGIN *COMMON~, STORAG E clause is used,
thl' address SP(:ciJIl'd 111 thai clause will be used instead as the upper limit of *Common Storage.
If the *C()1l1Illl111-Stfl!';lge Section is used in more than one segment of a program, the fields must
be deser l\wd idellt I CJ 1 L alld in the same sequence in each segment. In this case, if the BEGIN
*COMMON· STORAGE clause is used in one segment, it must be used in all segments, and the
beginning addrf'ss nll:s1 lw the same in all clauses.

GECOM - I I

REFERENCE MANU '\ L

-291-

The PLACE SEGMENT clause directs the compiler to assign the body of object coding for the
segment to upper Bk. As indicated previously, this does not include common constants, file
tables, Common Storage, Working Storage, or subroutines which are alwaY:3 assigned to lower
Bk. If the PLACE SEGMENT clause is not used, the compiler assumes that the entire segment
(except *Common Storage, if any) is to be assigned to lower Bk.

HARDWARE REQUIREMENTS

In addition to the four modules of memory, a GECOM 16k object prop",.r'1 a:'sumes the presence
of the normally optional extra index groups. The object program veckr 'lllka,e,s'-mmes
complete use of index group 1. In addition, complled obj eet codbg a h·) 1 13 kp:, u .;02 of these
locations, and their contents should not be changed if and when the m~2r 'ltl'1'" sectlOns of
General Assembly Program coding.

EXAMPLE OF MEMORY ALLOCATION
IN A GECOM 16K OBJECT PROGRAM

In the following example it is assumed that the total program consists of a main segment plus
five other segments:

1. The main segment is to be placed in upper Bk. It employs a magnetic tape input file
and a magnetic tape output file.

2. Segment~ 1 is to be placed in upper Bk. It employs a card input file and references
subroutin~ 1 and subroutin~ 2.

3 . Segment~ 2 is to be placed in upper Bk. It employs a card output file.

4. Segment~ 3 is to be placed in lower Bk.

5. Segment~ 4 is to be placed in upper Bk. It employs a printer f ilp and references
subroutin~ 3 and subroutin~ 4.

6. Segment~ 5 is to be placed in upper Bk.

7. *Common Storage consists of numeric fields A, B, and C each of which is repeated
500 times. Note that 1000 words of memory are required for each repeated field
because two words are assigned to each field.

Figure 41 shows the memory allocation for the above described example.

-292-

o
576--.,..

f11nl---

1-1.; :'---

1:;':., '-__

1 --

Loader, Common Constants

Main Segment Tape Input File Table
Main Segment Tape Output File Table
Main Segment Constant Area

Segment-l Card Input File Table
Segment-l Constant Area

Subroutine-l

Subroutine- 2

Segment-2 Card Output File Table
Segment-2 Constant Area

Segment- 3 Constant Area and Body

Segment-4 Printer File Table
Segment- 4 Constant Area

Subroutine- 3

Subroutine-4

Segment-5 Constant 1\ rl,a

Common-Storage etc,

Main Segment Body

Segment-l Body

Segment- 2 Body

Segment- 4 Body

Scgnwnt- 5 Body

'Common-Storage Field C

-:'Common-Storage Field B

"'Common-Storage Field A

Figure 46. Example of 16k Memory Allocation

-293-

LOWER 8k

UPPER 8k

GECOM - II

RFFERENC'-- MA!':UAI

APPENDIX I
GECOM RELOCATABLE OBJECT PROGRAMS

INTRODUCTION

This appendix was originally prepared for programmers writing GE- 200 Series relocatable
routines to be assembled by the General Assembly Program II. Most of the original content was
also applicable to GECOM relocatable object programs. The document has been edited to be
somewhat more specific to GECOM object programs and especially to reflect the use of the
MCML II Loader (Cm:25Bl.006R) and *Common Storage in GECOM object programs.

Thus the following text ["eads as if the programmer were hand- coding routines for assembly by
General Assembly Pr')gram II in relocatable format for loading by MCML II. The text refers to
,1I1 MCML Header Card Wnter routine (CD225B6.003R) which the programmer would need to use
if hand-l\Jding his l'Outllleb. However, the reader should keep in mind that GECOM automatically
produces General ASf'embly Program symbolic coding, assembles it into relocatable format, and
supplies the neCeSS3\'i' [leader cards to be utilized by MCML II in the loading process.

It is felt that this appendix will aid the GECOM user in obtaining a better understanding of the
method by which GECOM object programs are relocated in either or both banks of memory and
of the concept of establlshing linkage between segments and subroutines, etc.

Relocatable routines are assembled programs, subroutines, etc. that are coded to operate in any
assigned area of men,or'Y without being reassembled for execution in specifically assigned
memory locations. t\, major advantage of USing relocatable routines is that once a commonly
used subroutine has bel'n assembled in relocatable form it is available for use in other programs
without paying the pl"](·f· of reassembly each time the subroutine is needed in a new program.

Relocatable program,; alsu provide a great deal of flexibility. The user may organize a large
program into many slllall independent subroutines. Each relocatable subroutine may be
assembled independently of the main routine. Changes to a relocatable subroutine may be made
by correcting symboltc coding and reassembling only the subroutine found to be in error. If the
corrections change tte size or the storage allocation of this relocatable subroutine, storage
assignments in the main program with which the subroutine is used will not be affected.
Conversely, independent changes in the size and storage aSSignments of a relocatable main
program do not affect the use of the relocatable subroutines called upon by the main program.

Conflict in the use of cummon symbolic names in two or more subroutines is eliminated when
the subroutines are assembled independently in relocatable form. The assembly operation
converts all symbolic addresses to relative machine addresses. In this way there can be no
duplicate symbols when two or more relocatable routines are tied together into a common pro­
gram.

-295-

The Multicapability Modular Loader (MCML II) CD225B1.006R, in addition to the MCML Header
Card Writer (CD225B6.003R) needed in hand- coding routines are referencec" other helpful
information may be found in Appendix C, Object Program Relocatable Deck Formats, and
Appendix H, Object Programs for 16k Memories, of this manual. In addition the reader should
refer to the GECOM Operations Manual, Chapter 6, Object Program Operat ing Instructions.

PREPARING HAND-CODED ROUTINES FOR LOADING WITH MCML II

Coded Instructions

Much the same method is used in coding a routine in General ASl;embly P" ,gram symbolie
language for assembly in relocatable form as is used in coding for assem',i': ,n .. <'solute form.
Special rules needed in coding for relocatable form are presented in a lat,,), sectiun of this
appendix.

The output of instructions for General Assembly Program in relocatable form differs from the
output in absolute form. Each relocatable instruction has an associated flag to indicate the nature
of the operand address. This address may be one of three types.

1. Constant or absolute address
2. Relative address
3. Two's complement of a relative address

To produce a machine language program stored in the computer, three steps are followed.
These steps are illustrated below:

1. Symbolic

Programmer
writes in­
structions
which are
key punched
into cards.

2. Relocatable

r - - _Assembly operation
I converts symbolic
I addresses to rela-
I tive addresses.

I

3. Absolute

r - - Loading operation
I converts relative

addresses to fixed
addresses.

~ieneral Assemblytl
Program Symbolic
Instructions 1nstructions J j

assembled relative
to memory location
000 with all rela­
tive operand addresses
flagged.

Instructions loaded
into arbitrary se­
quence of memory
locations with all
relative addresses
modified for proper
execution from
assigned locations.

@~o~@@ ~~[ffi~~~---------------RE-FE-R-E~-~~-O~-~-u~-~

-296-

In the illustration below, addresses are modified from symbolic, to relocatable, to absolute in a
specific set of GE- 200 Series instructions. It is assumed that the loading routine has been
instructed to store the relocatable instructions in memory starting at location 200. For ease of
reading, operation codes are shown as mnemonics, addresses are shown as decimal numbers,
and indexed instructiolls are indicated by ,2.

1- SymboliC'

r- -
ORG 0

LDX TA , 2

DLD ZEHO

LOOP DAD 0 , 2

INX 2 , z

13XL T+98 , 2

nRU LOOP

ZERO DDC 0

T 13SS 98

TA DEC T

-

* Operand Address Flag:

ReI. - Relati~e Address
Abs. - Absolute Address

2. Relocatable

~

000 LDX 198

001 DLD 098

002 DAD 000

003 INX 002

004 BXL (198)

005 BRU 002

098 0000000

099 0000000

100

197

198 0000100

*
, 2 ReI.

ReI.

, 2 Abs.

, 2 Abs.

, 2 (ReI)

ReI.

Abs.

Abs.

ReI.

3. Absolute

Al2§

200 LDX 398

201 DLD 298

202 DAD 000

203 INX 002

204 BXL (398)

205 13RU 202

298 0000000

299 0000000

397

398 0000300

, 2

, 2

, 2

, 2

(ReI) Two's '~omplement of relative address. This type of operand address is reserved
for nX:1 and 13XL instructions.

Linking Relocatable Routines

The following example shows how to code a relocatable routine containing references to other
independently coded relocatable routines. Assume you are coding Routine A which calls upon
Routine B and RoutinE C. Band C are already coded and assembled in relocatable form. The
technique for calling upon other routines from Routine A is to assume there is a list of branch
instructions at the head of Routine A, one branch instruction for each subroutine entrance needed
by Routine A. Memoey space must be provided by symbolic coding in A for this list of branch
instructions. Two w(.rlis must be reserved for each referenced subroutine.

@~ D ~m)(m ~[~[ffi [1 ~~ --------------R-EF-ER-=E~:..::..:~~::..::.:O~..:....N--UA;:,.:.I~

-297-

The format for Routine A would be--

Branch Table, "Linkage," or Vector Table

Body of Routine

If Routines Band C each have one entrance, then the symbolic coding for Routine A would be
written as follows:

Four words
reserved for SUB~ B
ItLinkage"

SUB_ C

Body of START
Routine A

ORG 0

BSS 2

BSS 2

LDA -

SPB SUB-B

SPB SUB- C

END START

Relocatable Routlnc5 ~ust
start at ZERO

Loader will supply [ranch to
Routine B

Loader will supply Dranch to
Routine C

Relative locatic'n of
this word is 004

I CALL on Routine E

I CALL on Routine C

END of Routine A

When Routine A is assembled in relocatable form the assembled output is punched into binary
cards in Standard Binary Format Type 3. (See MCML II, CD225Bl.006R.) The first binary
card in the Routine A relocatable deck has an origin of 004. The last card of the output deck is
a Type- 3 transfer card.

A Type-3 transfer card indicates to a Loader Routine that this is the last card to be loaded into
memory before transferring to the routine just loaded.

-298-

Routine A is translated from symbolic form to relocatable form by the assembly operation as
shown in the following example.

Symbolic Relocatable

ORG 0 This assembly output is actually in

SUB- B BSS Z
binary form but is shown below in
same form for ease of reading.

SUB- C BSS Z

START LDA 004 LDA

SPB SUB B 1 SPB 0 1 ReI.

SPE SUB-C 1 SPB Z 1 ReI.

END START

[TYPE 3 TRANSFER CARD]

Before Routine A is loaded, a header card is prepared for A, giving the Loading Routine
information needed to supply branch instructions connecting Routine A to Band C. The Loading
Routine assigns absolute memory addresses to the instructions in Routine A, and supplies the
missing Linkage betwE~en A and Routines Band C. Routines Band C are then loaded with
Routine A.

Preparation of Header Cards

After General Assembly Program II assembles a routine in relocatable form, a header card
must be prepared to precede each independently assembled relocatable binary deck. Header
card information is punched into header description cards. The MCML Header Card Writer
Routine, CD225B6.003, then translates the header cards into binary format.

Partial formats for H,eader description cards are shown below. (For more complete information,
see MCML Header Card Writer Routine.)

1. Card One

Columns

1- 6

Field Description

Relative location (octal number) of the first instruction word or
constant in the body of the relocatable routine. Space for subroutine
linkage starts at relative location 000000. Allow two words for each
subroutine entrance called by this routine. First word in body of
routine follows last location reserved for linkage.

@[~> ~@@ flli~[ffi [] ~~ ---------------RE-FE-R....;;E~=~~=O~=---~u~=~
-299-

2.

3.

Columns

7-12

13-18

Card Two

Columns

1-12

13-18

Card Three

Columns

1-12

Field Description

Number of external subroutine entrances called to by this routine.
(Decimal number.)

Number of entrances to this routine. (Decimal number.)

One of these cards must be included for each entrance to this routine.
If this is the main routine it must have at least one named entrance.

Field Description

Alphanumeric name for an entrance to this rout, Ie.

Word number of this entrance (octal) relative to the first program
word in this routine. Do not count linkage words. First program
word is word number O.

One of these cards must be included for each external subroutine
entrance called by this routine. These entrance names must be in
the same order as assigned in the linkage table <,t the head of this
routine.

Field Description

Alphanumeric name of subroutine entrance external to this routine.

Note: The numeric fields (octal or decimal numbers) in all header description cards
must be right justified.

Example of Header Card Preparation

The preparation of header cards for the example where Routine A calls upon Routine Band C
follows. Routine A is a relocatable main routine which is stored for exec-ut ion in the lower 8k
memory bank. Routine B and Routine C each has a single entrance.

Name of entrance to Routine A: START~RTN~A

Name of entrance to Routine B: OL~AGE~TAX

Name of entrance to Routine C: INSURANCE~C3

Assume Routines Band C with their own header cards are on file in a libra ry of commonly used
relocatable routines. Header description cards used to produce the head!'r card for Routine A
follow.

@[E D ~ @@ ~[E [ffi ~ [E~ -----------------RE-FE-RE...;;.~=~~=O~:.--.-.;u~=~

- 300-

Header Description Cards

Columns Field Contents

Card One: 1-6 000004 First location of Routine A

7-12 000002 Number of external references

13-18 000001 Number of entrances to Routine A

Card Two: 1-12 START~RTN-A Name of Entrance

13-18 000000 Word number of entrance

1st Card Three: 1-12 OLD~AGE-TAX Subroutine Entrance Name

2nd Card ThrE·e: 1-12 INSURANCE~C3 Subroutine Entrance Name

The above three header description cards used as input to the MCML Header Card Writer Routine
(CD225B6.003R) would produce a single binary header card that must be placed as the first card
of the Routine A relocatable binary instruction card deck.

Arrangement of Card Decks for Relocatable Loading

Using the example described in the previous sections (a main routine with two relocatable
subroutines) the complf'te sequential arrangement of card decks for relocatable loading would be
as follows:

This card
terminates the
loadin~ Jperatl~l

..
..... t__----- Type 3 Transfer card

of Routine C

_----- Routine C Header card

Body of Routine B

------ Routine B Header card

Body of Routine A

_-----Routine A Header

~ MCMLII and Type 1 card

-301-

card

The Type-3 transfer card was produced by General Assembly Program II when Routine A was
assembled in relocatable form. It is the last output card from the assembly. The Type-3 card
has a 2, 3 punch in column 1. (A Type- 5 transfer card was also producec. and must be discarded.
A Type-5 card has a 1, 3 punch in column L)

When subroutines A and B were assembled in relocatable form, the transfer cards produced for
these routines (both Types 3 and 5) were removed before the subroutines were filed in the
subroutine library. The header cards for Routines A and B were produced and filed with their
respective routines in the library.

8K MEMORY ALLOCATION FOR RELOCATABLE LOA'~ING

The header card of the first relocatable routine to be loaded indicates Me ML II \V 'Jrking-Storage
area high address is location 8191. Working area required for MCML Ii 1S 6N+2 words where N
is the total number of relocatable routine entrances named in all the header cards to be loaded.

o

704

8191

Start Loading
Object Program

111111(,;} MOO II

6N+2
/words

}
MCML II
Working Area

o

704

End of Loading
Object Program

Illiilll, }

-302-

}jCMI 1I is overlaid by
temporary storage, perma­
nent Etorage, card I/O
areas,and common constants.

Ob j ect Program

Cornrnofl Storage overlays
most c,f working area if
COlmror storage is used.

RELOCATING ROUTINES IN UPPER 8K OF A 16K MEMORY

If the body of a relocaLai)le routine is to be stored in the upper 8k bank of a 16k memory, all of
the constants used by thlS routine should be stored in the lower 8k memory bank. Constants
stored in the lower 8k bank can be referenced by an instruction stored in the upper bank without
indexing that instructi'JI1. Relocating the program words of a single routine into two memory
banks calls for Dual Relocation.

The routine's header card must contain information necessary for MCML II to load and relocate
the body of a routine in the upper 8k memory bank and also to load and relocate the constants
used by that routine ir the lower 8k memory bank.

The routine itself mUE,t be coded in two parts:

1. The first part contains the instructions that are stored in the upper bank.

2. The second part contains all the constants that must be stored for direct addressing
in the lower 8k memory bank.

To perform Dual Relccation, MCML II maintains two separate location counters, one for the
lower 8k memory bank. and one for the upper 8k memory bank. The initial value of the lower 8k
counter depends 011 the MCML II modules used. The initial value of the upper 8k counter is 8192.
MCML II automatIcally increases the proper location counter each time it stores a program word
in memory. The valt:e of each location counter is stored as a relocation constant at the start of
the loading operatlUn of each relocatable routine. If a location counter happens to be an odd
number at thl' start 01 a new relocatable routine it is increased by one to make it an even
numbered address beiu:'e being sorted as a current relocation constant.

In the following exam,)l,' a symbolic routine coded for Dual Relocation (body in upper 8k, constants
in lower 8k) IS shown translated first to relocatable form, then to absolute form. It is assumed
at the time this routUle is loaded, the upper 8k location counter equals 9000 10, and the lower 8k
location counter equ.Ls 2000 'c. The header card for this routine has a field indicating that the
starting address of the lower 8k constants for this routine is relative address 500 10 • This field
is called the lower iiPl it and is supplied to the MCML Header Card Writer Routine on header
description card one. Thl' header card for this routine also indicates that the routine is to be
relocated in the UPP('J iik memory bank. The header card field specifying memory bank assign ..
ment is called the Memory Bank Indicator and is supplied to the MCML Header Card Writer
Routine on header def;cription card one. (For preparation of header cards refer to MCML Header
Card Writer Routine, C'D225B6. 003R.) The body of the routine in the example is assumed to be
less than 500 words i H luding the six words reserved for linkage at the head of the routine.

When any part of a PJ'o~ram IS relocated into upper memory it is necessary to use two extra
instructions 111 the Imk;lge in each subroutine. MC ML II provides this linkage and no provision
for these words need be made in the source program. At load time, MCML II will save two cells
III each program entrallce in front of the program itself. The effect is to relocate the program
upward by the extra ('ells. For instance, a program with one entrance, would be relocated two
cells upward. The e'(ample that follows these two cells would be cells 9000 and 9001 caUSing the
upper range of this program to relocate to ~002.

GECOM - II
REFERENCE MANUAL

-303-

Example of Symbolic Routine Coded for Dual Relocation

Symbolic Relocatable Absalute -----
ORG 0

Sl BSS 2

S2 BSS 2

S3 BSS 2

START LDA Cl

STA C2

SPB S3 1

LDX C3 2

INX 1 2

BRU START

ORG 500

Cl ALF YES

C2 ALF

C3 DEC 0

END START

REL
'0'06 LDA

STA

SPB

LDX

INX

BRU

500

501

502

500

501

004

502

1

006

YES

MIJ

000

1

2

2

REL

REL

REL

REL

ABS

REL

ABS

ABS

ABS

ABS
0000

2000

2001

2002

8192

9008

9009

LDA

STA

SPl'

LDX

INX

BRU

* The effective address of this SPB instruction when executed in the upper 8k
memory bank is 900410 (3192 + 012).

** The effective address of this non indexed BRU instruction when executed in

upper 3k memory bank is 900610 (8192 + 814).

YES

000

2000

2001

0812 , 1

2002 , 2

0001 , 1

0814

LOWER 8k

UPPER 8k

*

**

@~c®(~~ ~~~~~~ ________________________ . __ -===G~EC~~~-~II
~~ ~~~ &J~UD U ~~ REFERENCE MANUAL

-304-

MCML II compares each relative operand address against the "lower limit" and upper limit
relative addresses given in the relocatable routine header card. If a relative operand address
is equal to or greater than the "lower limit" that address is changed to an absolute address in
lower 8k memory where the constant referred to is to be relocated. If the relative location of
a program word "is equa~ to or greater than the "lower limit" (but less than the upper limit) that
program word is storE'd in an absolute location in the lower 8k memory bank. The program is
then relocated with respect to the lower 8k relocation constant. (An address greater than or
equal to the upper linllt is not relocated.) The logic for computing absolute memory addresses
for a relocatable routinp being stored in upper 8k memory is shown below:

E7----~ Is Operand
Enter . Address Relatlve?

Yes

Is Operand
Address Equal to

or Greater Than
"Lower Limit"

No

No Address is
Absolute

Is Operand
~ ___ ~.Address Less Thant-N;,;..o;;.......--1~

Upper Limit?

Yes

Operand Address
= (Oper. Add. =

Lower Limit) +
Lower 8k Reloca­

tion Constant

Operand Address =
Operand Address +

L--------....-tUpper 8k Reloca- I----..J

tion Constant

This same logic is uS€'d to convert relocatable program word location addresses into the absolute
locations in which the program words are stored.

ASSIGNING COMMON STORAGE TO RELOCATABLE ROUTINES

All addresses defined as octal or decimal numbers in a General Assembly Program symbolic
c.:oded routine are flagged as absolute addresses. During the loading operation, MCML II does not
alter absolute addresses. In this way Routine A can communicate with relocatable Routine B.
Commonly agreed UpOIl absolute memory locations are used. These locations are external to both
A and B after these routines are loaded. In some programs it may be useful if a set of constants
supplied by Routine A can be used directly by other relocatable routines.

Routine A's header ca:"d contains the control for loading constants from a relocatable routine into
Common Storage. W hel~ a program word in a relocatable routine has an origin (storage location)
greater than the "upper lImit" in that routine's header card, MCML II does not relocate that word
but stores it in the lont!On given on the binary instruction card. The Common Storage area must
be in the lower 8k menwry bank, regardless of whether or not the body of the relocatable routine
is stored in the lower 8k bank.

GECOM - II
REFERENCE HANUAL

-305-

An example of a symbolic routine containing both relocatable constants and constants to be stored
in Common Storage follows. The relocatable coding resulting from assembly and the absolute
coding produced by loading the routine is governed by the following assumptions;

1. At time of loading MCML II lower 8k location counter = 4000. upper 8k location
counter = 8192.

2. Body of routine is less than 100 words.
3. Header card contains:

Lower Limit = 200
Upper Limit = 7999
Memory Bank Indicator = 1 (Upper 8k)

Linkage
Space

Body

Lower
Limit

1.

Constants

Upper

Symbolic

{[ORG

BSS

{[
LDA

STA

ORG

Cl DEC

•

:::n {[ORG

DEC
Constants

2. Relocatable

0] 2 REL

"'J
002 LDA 200

BOOl 003 STA BOOl

200

99 200 0099

100
8

00J 8000 0100

'. Absolute

ABS
0000

REL

ABS 4000 0099
LOWER

Bk

Booo 0100

BOOl

ABS

B192

B193

B194 LDA 4000 UPPER
Bk

ABS 819; STA BoO 1

Note that the program constant C 1 is loaded into the lower bank absolute lccation 4000 and the
operation address of the upper bank instruction (LDA C1) is changed by thE loader to absolute
address 4000. The Common Storage constant (DEC 100) is loaded into the absolute address
indicated by the ORG 8000 card in the symbolic program since this address is greater than the
"upper limit" given on the header card.

LINKAGE ACROSS MEMORY BANKS OF A 16K MEMORY

Four types of linkage between relocatable routines are automatically prodded by MCML II.

1. Upper Bank to Lower Bank
2. Lower Bank to Upper Bank
3. Lower Bank to Lower Bank
4. Upper Bank to Upper Bank

@ ~ 0 ~(QXill ~~ [ffi ~ ~ ~ ------------------RE-FF-,RE...;:.~=~~~O~.;..--~-UA=I~

<W6-

The type used depends upon the location of the routines being linked.

The technique for providing linkage requires that only index group zero be used by relocatable
routines to make subroutine calls. Also, index group one must not be destroyed by any of the
relocatable routines. The linkage logic uses two constants placed by MCML II in index words
1 and 2 of index group 1. Index word 1, group 1 (absolute location 005), contains zeros. Index
word 2, group 1 (absolute location 006) contains the value 8192. To branch across memory banks
in the generated linka?;e instructions, the branch instruction is indexed by the appropriate
constant.

In creating the linkage between Routine A stored in one memory bank and Routine B stored in the
other 8k bank, MCML II generates four instruction words. The first two instructions are placed
in the linkage space at the head of Routine A. The second two are generated and stored in the
opposite memory bank. These four instructions are--

At the head of Routine A:

1. SXG 1
2. BRU X, 1 (if going from upper to lower) or

BRU X, 2 (if going from lower to upper)

At location X:

3. SXG 0
4. BRU Y (Y is entrance of Routine B)

In creating the linkage between two routines stored in the same memory bank MCML II generates:

At the head of Routine A:

BRU X
BRU X

At location X:

SXG 0
BRUY

ASSIGNING *COMMON STORAGE

*Common Storage is merely Common Storage placed in the upper 8k memory bank with the
following restrictions:

1. Only numeric arrays may be placed into *Common Storage

2. *Commor Storage arrays may not be constant arrays. The loader never places
values into *Common Storage. The only way to place a value in a *Common
Storage field is to make it a receiving field in the object program.

*Common Storage is shown in the GECOM Edited List under Object Listing Storage Reservations,
by "Equal Cards" with lower 8k memory assignments. However, when used in the object
program, *Common Storage addresses are always indexed with the locations shown in the listing
plus 8192.

(ii) rc: 0 ®rtJIrtJI (Q? rc: fD) r:~~), ____________ ~~G~EC..:::.:OM __ -_.:..:;.II
~ LS ~ ll!)ll!) &lLS lffi L: -'=l "'- REFERENCE MANUAL

-307-

CONVENTIONS WHEN ASSEMBLING WITH
GENERAL ASSEMBLY PROGRAM AND LOADING WITH MCMLlI

1. Relocatable Routines coded in General Assembly Program symbolic form are
assembled by General Assembly Program II using the relocatable output option.

2. Symbolic relocatable routines must be assembled with all internal addresses
relative to memory location zero. (ORG = 0)

3. Two words must be reserved at the head of a relocatable routine for each external
subroutine entrance called to from within the routine.

4. The maximum size of a relocatable routine is 8192 words irccluding the space
reserved for linkage at the head of the routine.

5. The body of a relocatable routine after loading must be conta ,,'3d w itnili one 8k
memory bank. It cannot extend from the lower Bk bank into the upper 8k bank.

6. The MCML II Loader is the routine that performs the loading, relocating, and
linking function.

7. The MCML Header Card Writer Routine (CD225B6. 003R) is available to prepare
required binary header cards for relocatable routines.

B. Dual Relocation of relocatable routines (body in upper 8k, constants in lower Bk)
is controlled by the memory bank indicator and the "lower limit" field in the
routine's header card.

9. Placing constants from a relocatable routine into Common Storage is controlled
by the "upper limit" field in the routine's header card.

10. When two routines are stored in opposite memory banks, four instruction words
are generated by MCML II for linkage.

11. Names of relocatable routine entrances may be as large as twelve alphanumeric
characters.

12. All relocatable routine entrance names must be unique.

13. Index Group zero must be set in a relocatable routine when a nll is made to an
independent subroutine.

14. Relocatable routines must not destroy the words in index group one.

15. In order for a General Assembly Program language routine to be translatable into
relocatable form, most of the address references within the routine must be
symbolic references. If an address is given in the General Assembly Program
language routine as an octal or decimal number, that address must be a fixed
machine address external to the routine. This address is independent of the
memory locations in which the routine itself is to be stored for execution.

16. References from a relocatable routine to Common Storage must be coded in General
Assembly Program as octal or decimal addresses.

-308-

APPENDIX J
OBJECT PROGRAMS USING DISC STORAGE UNITS ,

(DSUS)

INTRODUCTION

This appendix pertains to object programs which read data from and/or write data on DSU's. It
does not apply to the recording of object program instructions on DSU's or the loading of object
program instructions into memory from DSU's.

GECOM produced DSU object programs conform to GET Programming Standards and Conventions.
The reader should refpr to Input/ Output Standards, DSU Files, DSU Error Control and the disc
storage' glossary contained in the GET Reference Manual.

The user should also be familiar with the SIOS (MIO) package, CD225E8. 000, which is employed
for DSU input/ output functions in GECOM produced object programs.

After reading the remacinder of this appendix, the user should consult the following sections of the
GECOM Reference Manual for more detailed information on source language functions, formats,
and conventions for the compilation of DSU object programs:

1. Data DivislOn, Nonstandard Data.

2. Data Divis:,on, File Section, File Description: Recording Mode, Label Records,
and NO ... SENTINEL clauses.

3. Data Divison, Data Image Input and Output Entries: M.

4. Procedure Divison: CHAIN, CLOSE, OPEN, READ (Options 4 and 5), READY,
RELEASE, and WRITE (Option 4) verbs.

5. Environment Division: OBJECT~COMPUTER, I~O-CONTROL, and DSU-CONTROL
sentences.

DSU ADDRESSES

In the source program, the desired DSU address is supplied by the user before each seek
operation (see Procedure Division, READY verb). The process involved in developing the DSU
address depends on the organization of the DSU data files.

-309-

DSU FILE ORGANIZATION

Some types of file organization and addressing schemes are discussed below.

1. Records of the same size (same number of frames) can be assigned to the same DSU
area. The advantage of this is that one indicator on the first frame of a record can
indicate whether the record slot is occupied or is vacant. Wh(!n it is desired to add
a record of N frames, a single test determines if an N frame record slot is vacant.
On the other hand, if records of different sizes are assigned to the same storage
area, in order to add an N frame record, a test for N consecutive vacant frames
would have to be made.

When records of the same size are assigned to the same DSl' area, it is advantageous
if the frame number (0-95) of their DSU address is a multiple ')i the number of frames
required for each record. This simplifies the randomizing pl')cess tC develop the
desired address (which must be the address of the first frame of a record). With the
rule "frame number of the DSU address must be a multiple d the record length (in
frames)" it is easy to develop a beginning-of-record addresf. Thus, a record
requiring three frames would have frame number 0, 3, 6, , 90, or 93 in the frame
portion of its DSU address. The recommended record length :.S 1, 2, 3, 4, 6, 8, 12,
or 16 frames since these all divide evenly into 96, the total number of frames avail­
able in one arm pOSition. If a size is selected which does net evenly divide into 96,
developed addresses must be checked by the user to avoid "wrap around." Thus,
frame number 95 is divisible by 5, but five frames cannot be read or written without
wrapping around through frames 0, 1, 2, and 3 of the same arm position.

2. When randomizing techniques are used to determine DSU addresses, the possibility
of more than one record randomizing to the same DSU address must be provided for.
Records whose keys randomize to a DSU address which is already occupied are
aSSigned to some "overflow areas." One method for linking the records which
randomize to the same DSU address is a form of chaining. The record occupying the
address to which other records randomize has a chaining worci which contains a new
DSU address in an overflow area. If the record at the randomized address is not the
desired record, the chaining word is interrogated to determme the overflow area
address of the next record which randomized to the same address. Many records
can be chained in this manner. The last record of a chain always has an end-of-chain
indicator.

Usually word 0 of the first frame of a record is used as the chaining word and
indicator word. Bits 2-18 contain the chaining address. Bit 0 is the vacant! occupied
indicator. If it is 1 (minus) the record slot is vacant. Note that chaining can be
accomplished through a vacant record area. The chaining address is in negated form,
however. If bits 0-18 are zero, this record is the end of a ch,ain. If bits 0-18 are all
1 bits, the record is vacant and there is no more chain; that is, the record which
pointed to this pOSition was really the last of a chain. Bit 19 is never checked, but
it must not contain a 1 bit unless bits 0-18 are also 1 bits. - -

3. The user may wish to retain some order or sequence to a file which is not in order
or sequence on the DSU. Chaining is used to accomplish this; the first record of the
file chains or points to the second record, the second record ehains to a third, etc.

@~c~@@ ~~[ffi~~~---------------RE-F-ER"";;E~=~~;"';';;:;;""'~-u~;;";:"~

-310-

In this type of chaining it is not always possible to use word 0 of the first frame of a
record as the chain word. A record might have several chaining words implying
different sequences depending on the file application. The record might belong to
more than one file. Note that care must be exercised when a record contains more
than one chain word. A record might be deleted from file A {its chain word negated}
but still be required for file B; file A must know about file B records to avoid over­
laying the record unless it is vacant to aU files of which it is a member.

4. Records may be stored and processed sequentially on the DSU's. After an initial
positionin:,!;, record addresses are developed by adding the frames required for the
record to the previous DSU address. The developed address must be checked to
a void the possibility of an illegal address {frames 96-127}. On files described as
sequential, the GECOM object program checks and adjusts for illegal addresses.

5. Either direct or index table addressing schemes provide an absolute DSU address
without in':ervening address calculations. The DSU address of a desired record
might be obtained from a table cross referencing the record keys with DSU addresses.
An absolute address might be obtained from another record--a master record
providing the address of its trailers, for example.

6. A single frame (64 words) may be able to accommodate several records of different
files. A record of file~might occupy words 0-37 of a frame while a record of filelL
occupies wC>rds 38-60. When records of different files are sharing the same frames,
only one d the files may be in the open condition. Also, only the file at the "top"
(starting l.n word..Q.of the frame) can have blocked records.

The data descriptions for frame- sharing files are conventional, except that the frame
area not occupied by the file being described must be designated as FILL.

When a frame-sharing file is read, updated, and written out, the input file name and
output filf' name must share the same buffer area. In this way any data belonging to
other files "tags along."

JOURNAL T APE:S

Output DSU files may be assigned to a Journal Tape. Each time data for one of these files is
recorded on the DSU, the same data with two additional words is written onto the Journal Tape.
The first added word contains the disc storage unit and plug number for the DSU referenced.
The disc storage unit code is in bits 5-7, and the plug number is in bits 11-13. The second
additional word conta ins the DSU address.

The purpose of the Journal Tape is to keep a record of data written on the DSU's. When the
Journal Tape option is used aU output files assigned to DSU's should also be assigned to the
Journal Tape. A possible exception to this is a DSU file which is used as temporary storage for
intermediate results.

If some program destroys DSU data, the appropriate Journal Tapes can be processed by TAPER,
CD225E8.003, to restore the DSU data. The DSU's must first be reloaded from the last complete
DSU dump; then, the Journal Tapes that were created between the dump and the errant program
can be processed.

@3[E 0 ~@@ ~~ [ffi ~ [E~ ---------------RE-F-ER--:;E~=~~;.;;.;;O~;;...~-u~;:,::,,~
-311-

LIST OF ENTRIES TO DSU CODING

Because of the variety of verbs used in referencing files assigned to the DSU--OPEN, READY,
READ, WRITE, CHAIN ... UNTIL, READ ... UNTIL, READ ... COPY ... UNTIL, etc. --and
the necessity for issuing these commands in the proper sequence for any given file, an ENTER
GAP routine may be compiled with a source program to aid in detecting the cause of errors
arising from failure to issue these commands in the required order.

The function of the routine is to build a table, LLP, which is a kist of .1ast.,£rocedure addresses
where transfers (SPB's) to the DSU coding have been performed. The table is eight locations in
length and a pointer, PNT, indicates which value in the table (LLP + PNT) contains the address
of the last SPB executed.

Because of the option of assigning the main program to upper or lower mer;lOl'Y, two versions of
the routine are required. The version for programs with "main aSSigned t·) lower" is described
in Example 1 which follows. The version for programs with "main assigned to upper" appears
in Example 2. The described coding is to be executed as an initialization routine and, therefore,
Should be placed before any OPEN statements in the source deck.

-312-

Example 1

GENERAL. ELECTRIC
GENERAL COMPILER SENTENCE FORM

C:"­
~ .---. !to.~UTf.

loUt '--'---~l

I""
I \£Q~f~n

~<~~;;;l, , " Ll Ll~

~ . ~~
1-' --'"
f-----~~--

I * ""

.----.--.~--~-~-~-~-----~--~-~---~~~~~-~----~
L.:- E 1-' ~-E1-L1l "-M.:v!S wLIl! ..Mh1~N"'-. .£'~~S"_d.S_"_I¥'N'-'rE"--"D"--Tc."'-'-dJ.-".1e <t>WER" • TriJ BUI L D

~ .LI ST ¢F i"2.Q1LE.~::;iO.'L...ll!L!l.JUL.~H " "aI THE D;U "aiDING

;UU;;~-'aI"__R"F)L£F.:WL.j)~---~+-----_+-----_t.~----~ ~ ___ L __

----.-"~ -- --------~--.. --- --II--~---+-----~--- .. ,.,
~ ~TF:; _ _ ~:l_. _____ ~ __

_ ll.,,' til l "-I' C _ _'.1j:J_--" [X±3_...:!'.£I_ .B"",R'-P",-"",C<--,-,H~T,-,,!l,--._"-'--f P",-,T-,C~H,~'_' ----"E'--'A"-"C4,HrT~I~M~E~_. _~_~ __
_ ~~_+f".!1c.·",,\-/-,-;.,i'-",~--.:!_3. ______ ._ ~~ __ .~ ___ 2.. ~.I S F XEC UTED

~-~-+r,R U.1' . .E;'Ul-"'.LLl'.- Gc 1'.. -~ ---.~- --.----__li-~----__l------__ll__----------.

"P:.u" ... T","" "!1[.:c',-\-1!1~. Dew"._ .E"-J_ - -~ - -. ~ --.~.------t--------t--------t----------
u [.. _,." . .!..N..~:\i.E~.T_ .P~_LN.I!"c~._~ __ 'f- . -- '----"~-.-.-------.

b·1.) _" S."._ . __ . _______ ~. ____ ~ ---------t--------t~~-----_I----------~

:-?-,T,,\ !.l :'\., ___ E..RL.L=- _~Q_~_~_ --'7_/_------/_~-----/_----.-
kILl.. _______ + ___ ...8..""'>·1l n)Ji..t R'ts...:i. du, 'P R

!~I}_X p:\ 1

~~~_:~_ L ioo! ____ ~l~-___ __ PUT ,A DDRES SIN TABLE 

LD.X ax 1 
____ ---.l __ _ 

-----~------~--~--_1-------~~-~----~----
RE.T_lli! .N.~I-"_Jl.:i.ll _.c ~D..illiL.-~_. ~ _________ _ 

~ .. --.~-~ _._- -+----~~---+----------~.-----------

GECOM - II 
REFERENCE MANUAL 

..,313-



Example 2 

GENERAL" ELECTRIC 
GENERAL COMPILER SENTENCE FORM 

~;;:-;;':. ---- -- --------- ------,'o~-,~--------~l :----
:~~~.,-~~~~~~~~~_~ ________ ~~~ J __ _ 

, 
50!!" 

_-"'='4'-!hti\lYl~,~ __ ,-~LILI ~lL'L~_0-------.i\:.~~_) GT-!.E_:2. ~J'S-1)_ 
,A., ___ L.l S_TJ _.O.F AJ1JJ-.B ~_sc'J .l:,~ __ ~ HJ; __ lL£ __ ~~I~_H ~'~~~ __ )~l~!' 

F_l;; JJ_F~¢; j{.0L",-,D4_~~ _ 

__ ~~--'--___ E~EF!...~G. ?_.~_~_._~ 

_) l' i H 

Q-J C." 

I~ ____ . LllK fL. L'»Y_~,R \[E_,\I~..B~ F.,-\ CJ ~lL_ (_ ~ i) all 0 ) 
~~_-j-_I-"i--,I-,-,)I~ I::lR UP·\ '~_~_~~ __ t-_~_,,,,-E,"--... r_ s r~._~ __ ~0_~~ A~CH [f,i 1 F:\ tl' 

,?J'_~, "IJ>; + L __ 2 
1iJLl;~I)_ 

~'.:~-,-U;,_}I.') L l~ '- j' \" , 

\ I} I J __ (1_ ~_ 

E...ZT LlI" "'K 
2)'~\, J: ~)~ ______ ~ _____ _ 
.,\D,D 

~~~-j-~~~----
LD.A 1

SJ'_L -"l~F ___ ---'- ~ __ -----.f __ _

L, nx {X r
. _LJlX

0_T_.\ L~

-i_F~-+"I- ,
!1.l:__ P.AcT c I!'--'s'-"---_~~

?, 7 7 7 7 7 0

_ ---'-___ ~-...;T

,ADD {JPp ER

.\qDRES-, ~)F_ ~F8

___ '-_ l~_~LT_Aj)l~~l.2L_ T.:,~=--~ __ .

) ",

; -'-[--

" ., " 71 '1: 'l, "I 7\ '~""

\IU __ _

1-, __
_ ~ __!......-.L-"":'j

@[ED~@@ ~[E[ffi~[E~--------------'--RE-FE-R"";:E~=~~=O~~-u'::"::'~:

-:n4-

ACCUMULATION
ADD verb
ADV ANCE verb
ALTER verb
Alphanumeric fields, storage of
Arithmetic Expression

Array
definition
homogeneous
nonhomogeneous
section

ASSIGNMENT verb
AUTHOR sentence
Automat ic Priority lnt,,,rrupt (API)

BEGIN COMMON STORAGE cLause
Binary Scaling
Block

definition
size clause

Blocked records

CHAIN verb
Characters,special
CLOSE verb
Comma-separated fields
Common-Storage Section
1'Common-Storage Section
Computation mode

definition

sentence
Conditional name
Constant

figurative
literal
numeric
section

Control Breaks
Control-key

Data Division erll"y
definition
in FD entry

with Comma-sepal aced fields

INDEX

Page

213
92
93
94

159
18

15
16

16
67
95

155

142

79

160

31
40
31

Data Divis ion

definitions of levels of data
order of section entries

Data Image
symbols used

zero suppress symbols
DSU CONTROL
Entries

element
field

input

output
field literal

group
input
output

1'group
input

output
literal
record level

input

96 output
9 Data names

98 character used
34 illegal
73 size
75 Dating, internal

Decimal point
32 DIVIDE verb

153

12 Editorial conventions
Element

11 definition

entries for 11
11 manipulation
68 ENTER verb

210 Environment Division

order of sentences
60 EXCHANGE verb
32 Express ion
40 arithmetic
34 logical

relational
abbreviations for

Page

29

29
246

62
65

151

54

51

52
59

47
48

45

46
57

43
43

10

245
10

160
24
99

23

29

54
158
100
139
246
105

18

20
20
20

GECOM - II @ ~ 0 ~ (OXID ~[~ rn; l] ~~ ---------------:RE=F=ER=EN=CE:.:.MA~N=UA~L
-315-

Page Page

Field I/O
conuna-separated

definition
group of
input entries
literal
output entries

Field literal
Figurative constant

definition

storage and use in Procedure
division

File-Control sentence

File Description sentence
File Tables
FILL

Fixed point
size limit
arrays

Floating point
size limits

Format
column 37 entries
object program relocatable

Functions
General Compiler (GECOM)

sentence form
Data Division form

GENE RAT!!: verb

GO verb
Group

level

of fields, entries
'~Group

level

of fields, entries
Hardware

Hyphen

abbreviations for
floating point

in column 7
in sentence name

Identification Division
Order of Sentences

IF verb
Integer

section
size

I 0 Control
Input-Output Control sentence

34 record numbers

30 service routine entries
31 storage areas and indicators
51 symbolic name assignments
57
52 JOURNAL TAPE (JT)
59 Justification

12 Label
record clause

158 tape
149 Label record

40 clause in FD
281 Literal

33 field literal, entries
literal, entries

11 numeric constant
67 Literal Constant

size limit
64 storage and use in Procedure

Division
24 LOAD verb

247 Logical expression
19

K, use of
26
27 MOVE verb

221 Multiple File
106 MULTIPLY verb

30 Nested sections
47 Next-Program sentence

Nonstandard data
30 Notations in sentence formats
45 NOTE verb

Numeric constant

141 rules and storage of
153 Numeric fields

storage

24 Object-Computer sentence
10 Object Program

constants
155 re1ocatab1e deck formats
246 typing subroutines
108 for 16k memories

OPEN verb
69 Order of Division and Section entries
11

145
145

-316-

255
258
260
255

151
35

40
36

40

59
57
11
11
11

158
111

20

163

112
145
115

81
155

35
90

116
11

157

157

140

157
247
253
291
117
246

Packed data

PERFORM verb
use within sections

PLACE SEGMENT clause
Procedure Division

Procedure names
Process Storage
Program Identificat.ion)entence

Qualifier
column entry OIl -oem

definition
Quotat ion marks

with literals
with numeric con~;l,lnt

READ
object prOt;ra~ll at llon

verb
READY verb
RELEASE vL,rb
Record

description
entries [or
label

Recording mode
definition
clause

Rc lat ional expre.s s ion
abbreviations for

Relocatable deck [ormaU
Repeat

column entry on form
Repeated ,;roups
RERUN
Rounding

with ADD
with ASSIGNHE:IT
with DIVIDE
with HULTIPLY
with SUR1RACT

Sections
of Data Division
definition

input to
nested

Segments
names
struc t ure

Sequence columns
Sequence check of S~)Ur{'l;

pro~ral~l

Secluenced clall~e

i~ ~ ,_ cJ]1
':IJ~:J /~

[

Page

32 Size error
119 with ADD

79 with ASSIGNMENT
140 with DIVIDE

79 with HULTIPLY
11 with SUBTRACT

158 Source Program
155 order for compilation

Spacing
of symbols

24 of words

13 STOP verb
Subscripts

57 in Data Division
12 mode

spacing of
SUBTRACT verb

159 Symbolic name assignments
120 in input/output
125 :3ymbols
127 in Data Image columns

operational
30 in type columns
43 zero suppression

40
Open and Closed Table Format

32
40 Tape labels
20 TERMINATE verb
20 Tilde

247 see hyphen

25
166

145

92
95
99

115
131

246
79

80

80
81
10
81
23

23
40

True-false
fields
size of fields

Truncation
of significant digits

Truth values
Typing subroutines

Unpacked data

Unused portions of records
see FILL

Use of GECOH to obtain effic ient
object programs
Use of K in GECOH descriptions

VARY verb

\-Iorking Storage
Section
Storage

HRITE
object program action
verb

Zero suppression

Page

92
95
99

115
131

246

24
24

128

67
17

24
131

255

62
18
24
65

188

36
222

10

13
70

92

21
253

32

33

171
163

132

71
159

159
135

65

______ . ____ . ________________ GE_C_,O~_l _-_I_I

REFERENCE MANUAL

'E~"N" '.··E·:R·.·.·A·· ···l· ': .' . ~. . "

. . ""

LITHO U.S.A.

