
PROGRAMMING
MANUAL

(INCLUDING PROGRAMMING NOTES)

GENERAL' ELECTRI

t ,

'I ,

~,h

PROGRAMMING MANUAL
(INCLUDING PROGRAMMING NOTES)

GENERAL ELECTRIC
COMPUTER DEPARTMENT
PHOENIX, ARIZONA

..

.. :3
CENTIAL 'IOCESSOI .. :3
CONTIOL CONSOLE .. :3
CAID IIADII. - CAID 'UNCH ... 4
'A'II. TA'I IIADII. - 'A'EI TA'I 'UNCH , , 5
DATA MATING FUNCTION ... 5
HIGH S'EID 'liNTEl SUI-SYSTEM .. 6
MAGNIEfIC TA'I SUlMiYSUM ... 6
MASS IANDOM ACCISS FILl SUI-SYSTIM. .. 1
DOCUMINT HANDUI. SUI-SYSTIM .. 9

.""., '11""l1li.11 ••• 11
IE'IESENTATION OF INFOIMATION ... 11

DATA ... 11
INSTIUCTiON WOlDS .. 12

THI DATA MATING FUNCTiON 12
AIITHMIEfBC AND CONTl.OL ... 14
AUTOMATIC ADDIESS MODIFICATION " 15
CYCLE OF O'EIATION .. 17
'IIOIITY INTEIIU'T ... 17

IIIr'"II"III"_ DII:DlI:iDT,II"'UD11:' •....•.••••••.....•....••.••.•..•..•.••..•......••.•••••••• 21
AiUTHMIEfBC ... 21
DATA TIANSFEIS '" , 2:3
SHin O'EIATiONS ... 24
INTERNAL UST.AND·BIANCH , 26
CONSOU O'!UT~ON .. 28
'A'ER TA'E iN'UT.OUTPUT ... 29
'UNCHED CAID fN'UT..oUTPUl .. 29
HIGH SPEED 'RINIEI SUB.SYSflEM .. 33
MAGNIEfIC TA'E SUI-SYSflEM .. 36
MASS IANDOM ACCESS FlU SUI-SYSUM , , .. 40
DOCUMENT HANDUI. SUI-SYSTIM , , 41

... 45
GENEIAL DESCRI'TION .. ,............................. , 45
'SEUDO.INSTIUCTiONS ... 45
THE GE 225 CODING SHEIEf . , .. 46
InATIVE ADDIESSING ... 46
'SEUDo.~NSTRUCT.ON USAGE , ,. 48
n.LUSTRA TIVE 'ROBLEM ... 51

.. 53
iNDICATOI 'ANEL ... , " .. ,. 53
CONtlOl 'AN!L , , , 55

_.", ... _ , 57

iii

H. PROGRAMMING NOTES ... 59
PROGRAMMING MACHINE CALCULATIONS . .. 59
PROGRAMMING LOGICAL DECISIONS ... 73
MODIFICATION WORD PROGRAMMING ... 83
PROGRAMMING FOR SUBROUTINE USAGE .. 87
PROGRAMMING FOR CONSOLE CONTROL. .. 91
PUNCHED PAPER TAPE OPERATIONS .. 97
PUNCHED CARD OPERATIONS 101
PROGRAMMING PRINTED REPORTS ... 127
MAGNETIC TAPE OPERATIONS 141
MASS RANDOM ACCESS FILE OPERATIONS . .. 149
MAGNETIC DOCUMENT HANDLER OPERATIONS 155

I. APPENDiX .. 165
NUMBER SYSTEMS .. 165
BINARY ARITHMETIC .. 166
BINARY·DECIMAL CONVERSION TABLE .. 168
REPRESENTATION OF CHARACTERS 169
INSTRUCTION FORMATS 170
OCTAL LIST OF INSTRUCTIONS 172
STANDARD FLOW CHART SyMBOLS 175

iv

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

LIST OF ILLUSTRATIONS

GE 225 Central Processor ... 3

GE 225 Control Console .. 4

Card Reader ,.. 4

Card Punch .. 4

Paper Tape Reader .. 5

Paper Tape Punch ... 5

High Speed Printer Sub-System ... 6

Magnetic Tape Sub-System .. 7

Mass Random Access File " .. 8

Twelve-pocket Document Handler ... 8

Figure 11 Two-pocket Document Handler ... 9

Figure 12 E13B Font ... 9

Figure 13 large Configuration .. 13

Figure 14 Register Relationships .. 16

Figure 15 Central Processor Operating Cycle .. 18

Figure 16 GE 225 Coding Sheet .. 47

Figure 17 GE 225 Coding Sheet Example ... 50

Figure 18 Control Console .. 54

Figure 19 Central Processor .. 59

Figure 20 Control Console ... 91

Figure 21 Paper Tape Reader .. 97

Figure 22 Paper Tape Punch ... 97

Figure 23 Card Reader .. 101

Figure 24 Card Punch ... 102

Figure 25 High Speed Printer Sub-System .. 127

Figure 26 Magnetic Tape Sub-Systems ... 141

Figure 27 Mass Random Access File Sub-System .. 149

Figure 28 Twelve-pocket Document Handler ... 155

Figure 29 Two-pocket Document Handler ... 155

v

R~AD nM~ ~ CARDS.

(OMPUTE nD~RAI., -lAX FROM (G~tOS'S
DEI~~I'I~DE!Nl'S '" 1

ADD FICA to VDt - FfCA.

GO 10 (AI.,(,- StATE- tAX.

IF VtD·- FI(A GR 120.00, GO 10
REiMBURSE - FICA.

8.

This is the General Electric Common - the
langu,l,ge understood all General Electric CVjlllfJ'Ult~L
when programs are the new General

It is no necessary for the
to concern himself with the intricacies of the

machine of each computer with which he deals.
The new General Electric common

to meet the needs and
both business data and scientific ajJlflll'lOal,lV"'b,

""""Y>"~'" the to express his solution to
which is for the

sentences or
CUHJA'VVJ,W'- convenient decimal

the relative ease or

some of the "",''''''H11'1,,",

may require a detailed unCleJrstan,CllfU:I;
It is to these progranlmers who must

with the GE 225
Information that the present manual
is dedicated. If the need for such seerns
ul1l1ecessary in view of the several

reasons for this need are;

L

"'''~;~AJl!f;\J a program requires a kntyui!priJ),p

machine instructions.

-1/2-

--1) #3)

DO StRESS - UMn FOR
XS.

MOVE Q- VAI.,U~ 1'0 MOD-

2. smail ,"",0<-"1';""
often more CHH';l.CHU

direct machine

3.

which are in use.

with the GE 225 to

notation in a concise tabular
both the address format and the

structure of the actual computer instruction
words. This symbolic is read into com-

memory along with a Assembly Pro-
gram. The General is a basic

program with extensive error fea-
for effective program modification.

is a program in the abso-
code of the computer. One instruction

written in language is
translated into one computer instruction.

use of the General
in General

the General "'''''''''',llU'Y
be the basic tool of the GE 225 programmer, and

this programming manual will be oriented to its use.
Absolute machine bit will be only
for the sake of and for reference in un-
usual prog:ranl situations. details
of the General are given in a later
section.

!

THE GENERAL ELECTRIC 225 SYSTEM

The GE 225 Information Processing System places
emphasis on the total systems concept and flexibility
of computer hardware organization as the answer to
the increasing complexity of todays's applications. A
modern, fully transistorized central computer pro­
vides an economical basis for extremely flexible
hardware configurations ranging from simple card or
paper tape input-output systems, suited to scientific
laboratories or small business users, to sophisticated
arrangements of high speed printers, magnetic tape
units, mass random access file memories and direct
information links with communication and data col­
lection networks, suited to large installations employ­
ing the latest techniques of completely integrated
data processing.

CENTRAL PROCESSOR

The GE 225 Central Processor is a single address,
stored program, general purpose digital computer
which operates primarily in a straight binary mode

but processes both alphanumeric and binary infor­
mation. The Central Processor performs the com­
putation (arithmetic), fast random access memory
storage and control functions for the GE 225 System.
The programs to be executed and the data to be
immediately operated upon are stored in a magnetic
core memory wherein each core, depending on direc­
tion of magnetization, represents a binary digit (bit)
of an instruction or data word; a word being the basic
unit of addressable information in the memory. The
memory is thought of as consisting of a number of
individual cells, each capable of holding one word;
each cell having a unique designation or address. A
more complete description of Central Processor
characteristics is the subject of the following section.

CONTROL CONSOLE

The control exercised by the console is of a manual
nature, in distinction to the control function per­
formed by the Central Processor, and need not be

Figure 1 GE 225 Central Processor

GE 225 PROGRAMMING MANUAL

-3-

2 GE 225 Control Console

operative in normal program execution.
This manual control is concerned with
the program into memory, starting the execution

the progress of the program
and U!';'!';,""lLlHct,UY

the program for or other purposes.
Typing out on the Console Typewriter at the
rate of 1 0 characters per second. Information may
be numeric or alphanumeric. Other indications of
Central Processor status are available in
the form of and indicators on the Console
In addition to the as an

console allow manual
into the Central Processor. To this

the console thus serves as an device

CARD READER - CARD PUNCH

Punched cards have been used for many years
as a file medium. These cards are

in a clerical to record
transaction data in but may
well be produced as "Uj,uJ!uc~a

The Card Reader is a basic on-line device used
in the 225 to read PU:[lctled
into the Processor! s memory.
3D-column cards may at a m<Lximum
rate of 400 cards per minute. Information may be

-4-

recorded on these cards
or standard Hollerith

of the data PUIl1Cfled
termined mode of the "read cards"
instruction executed the processor. Since
the card reader is conSidered a basic it is con­
trolled by the control function of the Central Pro­

console.

and external control switches and indicators
with the card reader appear on the control

:3 Card Reader

4 Card Punch

It was mentioned that pc.",",.,,,,,,,

as a result of computer
The on-line Card Punch associated with

nA',.fn",w,<l this function. Card punching
or Hollerith code at the

cards per minute. As was the case in
card the Card Punch is controlled the
control function of the Central Processor.

5 rleader

-5-

PAPER TAPE READER- PAPER rAPE PUNCH

Perforated paper is in wide use in diversi-
fied business and scientific It is com-

by a distinct clerical operation from
such business equipment as typewriters (flexowriters),

1l1C''''''J.'''~''', desk calculators and cash
Each of these devices are used to create transaction
records in machine sensible form. Punched paper

is a popular input medium with
scientific laboratories. tape is also used as a
data communication medium during teletype oper­
ations.

The Reader is an on-line input
S"",t"Tn that reads paper

under program control at the rate of either 100
characters per second or 1000 characters per second
at Standard paper is
8

In some it may be desirable to record
computer information on punched paper
Towards this end a Tape Punch has been in-
duded as an on-line device for 225
users. Information may be thus at a rate of
60 characters per second. standard ClUJ',,-',,""
paper is 8 other formats are optional.

DATA MATING FUNCTION

common '-'VllU''''-'t

The data
transfer point
speed nl'jnt'Pt'

random access file memories and the direct

6 Punch

of
a

the use of convenient connectors,
associated units can be connected in

configurations and interchanged according to
the immediate of the This
function allows for the easy addition of

as the needs of a installation
grow and for the addition of new or improved input-

devices with if or
changes. Information can through the
data unit at the rate of 50,000 words per
second.

In where a vast amount of data is pro­
duced by the Central Processor for visual the
console will not suffice. To
fill this need, an on-line Printer has been
incorporated into the 225 """h,.~,

The consists of the Printer
Mechanism and a Printer Controller. Information
to be on one line is transferred from the
Processor's memory to the Printer which
stores this information in a "buffer" where it will
be scanned many times during the process.
After this transfer is

7

"off-line" from Central Processor com-
and no further of Processor

is necessary, Alter the line has been
the paper will be slewed (spaced or

for one or more lines to vertical format
"'rl",,,~ functions can be "",'-'Vi,,},).!.

by a mode of the print instruction. Horizontal
data arrangement and additional functions will
be by the Central Processor prior to

500 lines of up
to 120 characters per
minute.

MAGNETIC lAPE SUI-SYSTEM

tape is one of the chief items that distin­
modern electronic data

from earlier card
in the 225

iron oxide. Infor­
mation is recorded on the tape as a series of tightly

of magnetic
tapes over other of file storage media include
the speed with which information may be
on or retrieved from them that the infor-
Ination is

Printer ;')UID·;'),YST'em

8 Magnetic

a more common ar-
Each will contain a '"'''5''''''''0'''

Controller and from one to
Handlers. The function of the Controller is to re­
lieve the Central Processor from the constant moni-

and
will be I.:d;'ldUJle

with Central Processor
Of course, these will have to be occa-

while an accumulation of infor­
to the Processor's

memory as read
this later type
cussed in a later

more
section on the automatic

feature.

magnetic tape is the
1 to Hi,384 words.
to or from at
second,

unit of information on
record" of from

This inforxuation is transferred
a rate of 1 characters per

To take advantage of the high
offered by U«',,",H.C".""

master and
some sequence before

business "'1"1'''".''''«'''''-'''>0>
is either not
will result if it can be eliminated. To this
GE 225 includes an
random access, file
Mass Random Access File

discs on a
shaft. usually repre-

master files, are randomly accessible with
this device.

The Mass Random Access File consists
of a Controller unit and from one to four Mass Ran­
dom Access File memory units. The function of the
Controller is to relieve the Central Processor from
the for and my';HnC<'

ations. The Controller checks the
received from memory and cheeks for errors when

or on a disc. The Central Processor
is free for other computations except for occasional

as when an accumulation of information
from the file is transferred to the Processor's
memory a read

225----------~~~~
-7-

9 Mass Random Access File

The basic unit of information on a disc is
the "disc record" consisting of 54 words. Each word
in this record is recorded as an of the word
as it appears in the Central Processor memory.

both and coded
decimal) configurations are retained without
Information is recorded in 256 circular
tracks on each side of a disc: 64-word records
in each of 128 inner and sixteen 54-word
records in each of 128 outer tracks. Eight read-

write heads on the arm associated with
each disc assure a maximtm:l time of 200
milliseconds. Inforrnation transfer rates are
bits per second for the inner tracks and
per second for the outer tracks.
time for information in a track to reach a
read is a maximum of 100 milliseconds. Mass
Random Access File memory units are offered in two
sizes: a 15-disc file with a of records
and a 54-disc file with a of records.

IWISlv,e-CIOClker Document Handler

·8-

un""'.'ul. ... nm. .. in the field of data
elClDl1tleJ1t of ink character

Electric. The most common
eq1Jlp,mlmt thus far has been in

the area of """'JAJ.H5, nrw"",,,,,,, new uses oHbis power­
ful tool will soon be seen in many oiher business
data

Both the GE Document
Handlers are The Document Handler is
an on· line device to the 225
that capable of reading paper documents printed
with E13B font and and

this information to the Central at the rate
of 1200 items per minute. These documents may

size and of mutilation. A
concurrent with

ne:r1Tl,ne.raIS and the Central Processor. The
will accommodate both of handlers

in any combination not to exceed two. The Document
Handler may also be used off-line for document sort-

The Document Handler can re,col2;nl.ze
the ten decimal and four
Cue characters. Cue characters are

fields of decimal digits (to i.dentify dollar
amount fields and identification fields).

II I

12 E13B Font

!

C. CENTRAL PROCESSOR ORGANIZATION

REPRESENTATION OF INFORMATION

The ~y of the Central Processor of the GE 225
System is made up of magnetic cores, each core storing
one bit of information. All information held within the
memory of the Central Processor must exist in the form
of words, a word being the basic unit of addressable in­
formation in the memory. The memory is organized
into a number of individual cells each capable of holding
one word of information and each labelled with a unique
designation or address. Each word is considered to
consist of 20 bits although a word stored in memory
actually has 21 bits since a parity check bit is computed
and stored as a transfer to memory occurs. Available
memory sizes are 2048 words, 4096 words, 8192 words
and 16,384 words. The core memory provides storage
for both data and computer instructions.

A. Data Words

One basic method of entering information into the
Central Processor is by reading punched cards. The
information may be punched in either 80-column Hol­
lerith (alphanumeric) code or binary (column) form.
For this reason, the GE 225 can function as either an
alphanumeric machine with binary capabilities or as a
normal binary computer; so that, by means of the pro­
gram which he prepares, the user may switch between
modes of operation to take advantage of the particular
characteristics of a given application. On those occa­
sions when a conversion from alphanumeric to binary
or from binary to alphanumeric representation of data
is deSirable, subroutines are automatically provided
by the General Assembly Program.

If information is punched in Hollerith code, upon read­
ing a card in the alphanumeric (decimal) mode, each
character is converted into a six-bit binary coded deci­
mal configuration. Thus, three alphanumeric charac­
ters will occupy 18 of the 20 bit positions of a memory
word. (See the Appendix for an equivalence table of the
Hollerith and binary coded decimal codes.) In this
sense, an alphanumeric data word consists of three
alphanumeric characters-:-Double length operations
also permit the automatic handling of symbolic codes
(account numbers, stock numbers, etc.) of six alpha­
numeric characters. These convenient word sizes re­
duce the need for elaborate partial word facility. The
26 alphabetics, 10 numerics and 11 special characters
can be expressed by six-bit binary coded decimal con­
figurations. As an example, the symbolic code B62 in
binary coded decimal form would appear as follows:

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
10 101011101011101010101111101010101011101

, A A J

13 6 2

As can be seen in the above illustration, the most Sig­
nificant bit positions 0 and 1 are free to hold other in­
formation while bit positions 2 through 19 store the
three six-bit binary coded decimal digits.

The GE 225 operates arithmetically in the binary mode
in order to capitalize on the advantages of high speed,
versatile command structure and ability to handle data
in binary as well as decimal and alphabetic forms. A
binary data word consists of 19 binary digits plus a sign
bit. Forexample, a pure binary 49 may be represented
as follows:

s
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

10101010101010101010101010101111101010111

Special operations are provided to handle computations
on double length data words (two adjacent memory
words); that is, 38 bits plus the sign. The sign of the
value stored in straight binary notation will be in bit
position zero. A 0 bit represents a plus; a 1 bit re­
presents a minus. In addition to the presence of a 1
bit in the sign position, a negative number is repre­
sented by the 2' s complement of the corresponding
positive number. For example, a pure binary -68
may be represented as follows:

s
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

11111111111111111111111111101111111110101

Negative equivalents may be generated by a special
instruction which performs this function.

The largest positive numeric value that may be stored
in 19 bit positions is 219_1, equivalent to the decimal
number 524,287. This may be verified by reference to
the binary-decimal conversion table in the Appendix.
A numeric (decimal) data word may, therefore, be re­
garded as consisting of approximately 5-1/2 decimal
digits. Double length operations permit the handling
of numbers of up to 11 decimal digits.

GE 225 _____________________ ----:...P:..:..:RO::..:G:..:..:RA:...::M~M.:.:.:I.:..:.NG=-:..:..M:.:....:A.:..:.NU:.:..A=_l
-11-

Subroutine packages automatically provided by the
General Assembly Program make the necessary con­
versions when it is desired to work in the decimal
(BCD) mode before and after the binary arithmetic
operations (add, subtract, multiply, etc.). In par­
ticular, a conversion will be necessary from straight
binary to binary coded decimal (BCD) before the result
of an arithmetic operation may be transferred to the
console typewriter, high speed printer or paper tape
punch. Information output to punched cards or mag­
netic tape may be in either binary or BCD notation.
It should be noted that when information is output in
straight binary form, the intention is to re-enter this
information as input to a subsequent process. The
necessity of input and output conversions is thereby
avoided.

B. Instruction Words

An instruction ~ in the GE 225 is a single address
word consisting of 20 bits. The baSic format of the
instruction word is as follows:

19

OPERAND ADDRESS

Bits 0 through 4 deSignate the operation which is to be
performed, bits 5 and 6 determine whether or not the
instruction is to be automatically modified, and bits 7
through 19 indicate the operand address.

The significance of the instruction bits 7 through 19
will vary depending upon the particular operation sped­
fied by the operation code. They will frequently be used
to elaborate the exact operation to be performed when
no memory address is aSSOCiated with the execution of
the instruction. For example, word transfers between
internal registers do not require an operand address.
Other instrUctions, such as shift commands, require
only bit positions 15 through 19 to indicate length of
shift. Such use of available bit positions of the operand
address field extend the instruction repertoire of the
GE 225 far beyond the maximum of 32 operations which
would be allowed by the five bit positions of the opera­
tion code. The type of instruction which makes use of
these additional bits to further specify the operation is
called a "general" instruction. Complete detailed in­
formation on instruction formats is given in the appen­
dix. An explanation of micro-programming capabilities
is also included for the advanced programmer. It
should be noted, however, that the user does not code
his programs by means of binary notation except for
unusual debugging situations. Under normal circum­
stances machine running programs are created by use
of the General Assembly Program, wherein operations
are expressed by mnemonic codes.

Bits 5 and {) of an instruction word may be employed
for the automatic modification of the instruction before

its execution. One of three modification words (also
known as X Registers) may be selected and the contents
added to the operand address portion of the instruction
word. These three words are memory locations 1, 2
and 3. Bit combination 01 selects memory location 1;
bit combination 10 selects memory location 2; and bit
combination 11 selects memory location 3. A 00 com­
bination indicates no address modification.

THE DATA MATING AJNalON
(CONTROLLER SelECTOR)

The Data Mating Function, or Controller Selector, is
the focal point for information transfers between the
Central Processor and the input-output peripheral units
other than punched card, paper tape and console type­
writer. The decision as to which of the associated
peripheral equipments is to be granted memory access
during any given word time is made by the Controller
Selector. The basis for this decision is the priority
assigned to each controller connected to the Controller
Selector, which in turn is dependent upon the address
associated with each controller. The assignment of an
address to a controller is the result of a manual modi­
fication. There is an inverse relationShip between an
assigned address and the priority level; thus, the high­
est priority is associated with the controller which has
been assigned address #0, the next highest to the con­
troller addressed #1, etc.

The input-output instructions which relate directly or
indirectly to the data mating function fan within the
"general instruction" classification. This "general"
instruction consists of three words. The first word
has the following format:

o 2 3 4 5 6 7 8

(} 1 (} x X (} 0

This word selects the control unit of the particular
peripheral that is to perform the desired operation.
Bit positions 0 through 4: and hit positions 7, 8 and 15
must be as shown above. Bit positions 10 through 13
hold the binary address of the controller to be selected.
At present, only eight peripheral controllers are in­
tended to be on-line through the Controller Selector.
Bit position 10 is available for expansion. The bit
positions that are not filled in indicate that they are
not significant during the execution of the command.

The instruction words in the two fonowing memory
locations are sent directly to the selected control unit
upon execution of the first word of the general input­
output instruction. These two instruction words con­
tain the necessary information to indicate the kind of
operation the peripheral is to perform and the starting
memory location where information is to be stored or
extracted. If, for example, a magnetic tape controller
had been addressed and selected, the contents of the
two command words might contain such information as:

GE
5 __ '~~~~~~MM~I~NG~MAN~~U~A~L

·12-

64
DISC

Mass
Random
Access
Files

Paper Tape
Reader

13

Communication
Networks

Magnetic
Tape
Units

Document
Handlers

Paper Tape
Punch

Configuration

-13-

the operation to be performed (e. g., the con­
troller is to read a magnetic tape),

the designation of the magnetic tape unit,

the number of words to be read, and

the starting address in the memory where the
information is to be stored.

ARITHMETIC AND CONTROL REGISTERS

1. M Register

All information written into or out of the Central Pro­
cessor's magnetic core memory must first pass through
the 21-bit M Register. The M Register is thus a focal
point for information transfers among 225 System units.
The 21 bits of the M Register include 20 information bits
and a parity check bit. When a word (20 bits) enters
the M Register in preparation for writing into memory,
the number of 1 bits are counted. If the total is an even
number, a one bit is generated for the 21st bit position.
If the total is odd, a zero is generated. The full 21 bits
are then stored away in memory. When a word is read
from memory into the M Register, another bit count is
made to determine that there are still an odd number of
1 bits in the 21 bits of the memory word. Should this
check reveal an even number of 1 bits, a parity error
will be indicated.

2. B Register

All information transferred from memory (via the M
Register) to other internal registers and components
of the Central Processor must first pass through the
20-bit B Register. In this manner, the B Register
serves as a buffer between the arithmetic and control
components and the memory and M Register. The
memory and M Register are then free to be accessed
and utilized simultaneously with Central Processor
operations not requiring memory usage. For example,
multiply and divide instructions, after initial memory
access, consist simply of a series of addition and shift­
ing operations. In arithmetic operations, the B Register
holds the addend for addition, the subtrahend for sub­
traction, the multiplicand for multiplication and the
divisor during division. It is also used in the execu­
tion of certain data transfer commands.

3. A Register

The A Register is a 20-bit register which serves as
the accumulator for the Central Processor. The A
Register performs the following functions:

a. Holds the augend during addition.

b. Holds the sum after addition.

c. Holds the minuend during subtraction.

d. Holds the result after subtraction.

e. Holds the most significant half of the product
after multiplication.

f. Holds the most ,significant half of the dividend
before division.

g. Holds the quotient after division.

h. Holds the most significant half of the double
length word after the execution of all double
word length instructions.

i. Holds a word which has been transferred from
memory or which is to be transferred to mem­
ory.

j. Holds the word on which extraction is performed
during the execution of the Extract instruction.

k. Holds the word to be shifted during various
shift instructions.

1. Holds a word which is to be transferred to an­
other register or which is to be modified in
some way during the execution of various DATA
TRANSFER COMMANDS.

m. Holds the word which determines future action
during the execution of various branch instruc­
tions.

Manual input to the A Register is possible from 20 con­
sole switches provided for this purpose. An example of
the use of these switches would be in initial program
startup when it is necessary to get the first instruction
into the machine. Console operation is discussed more
fully in a later section.

4. Q Register

The Q register is a 20-bit register which acts with the
A Register to form a double word length (38 bits plus
sign) accumulator during the execution of double word
length instructions. Information is not transferred
directly from memory into the Q Register but is trans­
ferred through the A Register into the Q Register.

I Register A Register Q I
The Q Register performs the following functions:

a. Holds the least significant half of the double
length word during the execution of double length
load and store instructions.

b. Holds the least significant half of the result
after multiplication.

GE225--------__________________________ ~P~RO=G=R~~M'~NG~~~N=UA~L
-14-

c. Holds the least significant half of the dividend
prior to division.

d. Holds the remainder after division.

e. Holds the least significant half of the augend
prior to double addition and the least signifi­
cant half of the sum afterwards.

f. Holds the least significant half of the minuend
prior to double subtraction and the least sig­
nificant half of the result afterwards.

g. Holds the least significant half of the informa­
tion to be shifted during double shift instructions.

h. Can be shifted right or left along with the Nand
A Registers in special shift instructions.

5. Arithmetic Unit

The Arithmetic Unit serves two functions. It performs
the arithmetic calculations specified by the operation
code in the I Register during arithmetic operations. It
serves as a transfer bus for data words going between
the A Register and memory (via the M Register) and for
instruction words going to the I Register.

6. N Register

The N Register is a six-bit register which is used as a
single character buffer between the computer and the
Console Typewriter, Paper Tape Reader or Paper Tape
Punch. This permits the appropriate input-output pro­
cesses to occur simultaneously with other Central Pro­
cessor operations. Information is transferred directly
between the N Register and the A Register by means of
several shift instructions.

7. I Register

The I Register is the instruction register. It holds the
20 bits of the ins'truction word during execution of a
computer command. In the execution of all instructions,
the left-most five bits indicate the operation which is to
be performed; the next two bits refer to the automatic
address modification words. During the execution of
instructions involving reading an operand from memory,
the thirteen rightmost bits indicate the memory location
of the operand. During the execution of other instruc­
tions, these thirteen bits may have various meanings as
given in the instruction repertoire.

8. P Counter

The P Counter (Program Address Counter) is the lo­
cation counter that controls the execution sequence of
the instructions; that is, it holds the memory address
of the next instruction to be executed. The thirteen
bits of the next instruction address are indicated by
thirteen display lights on the control panel. The P

Counter is incremented by one before the execution
of an instruction so that it normally indicates the ad­
dress of the next instruction in sequence. Under cer­
tain conditions, an address in the I Register may be
transferred to P.

AUTOMATIC ADDRESS MODIFICATION

Automatic modification of the address portion (bits 7
through 19) of instruction words prior to their execution
can be accomplished under program control through the
use of three special automatic address modification
words. These special words, also referred to as X
Registers, are magnetic core memory locations 00001,
00002 and 00003. The 5 and 6 bit positions of an in­
struction word are used to deSignate which of the three
memory locations is to be used in modifying the ad­
ress.

o 4 5 6 7 19

IOP~~~iIONI X X I OPERAND ADDRESS

----ADDRESS MODIFICA TION BITS

Bit configuration 01 in bit pOSitions 5 and 6 se­
lects memory location 00001, 10 selects memory
location 00002 and 11 selects memory location 00003.
Bits 00 indicate that no modification is to be per­
formed.

When an instruction word comes from memory
to the I (instruction) Register, the two modifica­
tion bits (5 and 6) are tested to determine whether
or not address modification is required. If bits
5 and 6 are other than 00, an address modifica­
tion is performed (see reference below to certain
exceptional cases). The address portion of the
selected modification word is sent through the B
Register to the Arithmetic Unit. Bits 7 through
19 of the I Register (operand address bits) are
also sent to the Arithmetic Unit where the address
portion of the selected modification word is added
to it. The changed address is then put in the I
Register, and the instruction is executed.

Summing up, the result of an automatic address
modification is: the operation code (bits 0 through
4) of the instruction word in the I Register is un­
changed; and the operand address (bits 7 through
19) is altered by the amount in the modification
word. If automatic address modification is called
for, an extra word time (18 microseconds) is re­
quired to accomplish this.

GE225----------------------------------~p~ROO~~~M~M~'N~G~~~N~UA~L
-15-

,
c:r

-Peripheral
Units -

1

M

Register

B

Register

Arithmetic

Unit

From To
Paper Tape

Reader 1 Typewriter I Paper Tape Punch

N

Register

1 f

14

,.

Peripheral
Units

Core Address

Decode
Memory

Logic ~

xl

Q

Register II Register

!'*-

I--

In the case of certain instructions which affect the ad­
dress modification words themselves, the 5 and 6 bits
are usoo to designste these modification words as a part
of the normal execution of the instruction. The bit posi­
tions are. therefore, not available to indicate address
modification. The Instruction Repertoire section of this
manual indicates which instructions can be automatically
modified and which cannot. The programmer must be
aware, however, that the modification of many instruc­
tions, though possible, wiHnothave a proper meaning.
In this category are those instructions which use a por­
tion or all of the operand address field as an elaboration
of the operation code.

CYCU OF O'ER.AtION

With the exception of branching operations, instructions
are executed sequentially. The next instruction is read
from memory after the execution of the current in­
struction. A sequence control counter, the P counter,
contains the address of the next instruction to be ex­
ecuted. The contents of P are displayed on the control
console.

In order for the Central Processor to fetch and execute
program instructions in an orderly and sequential man­
ner, it is necessary to provide a definite time base for
these operations. The effective pulse frequency for all
Central Processor operations is 450 KC. Therefore,
the time between these basic pulses is apprOximately
2.25 microseconds. Eight of these pulses comprise
another basic unit of time, known as a "word time",
which is of HI microseconds duration.

A word time is the time required to read one word out
of memory, transfer this word to the appropriate reg­
ister or registers, and re-write the word back into
memory (due to destructive readout). Thus, one word
time will be required to fetch an instruction out of
memory, and one word time will normally be required
to look up the operand associated with this instruction
and perform all operations necessary to its proper ex­
ecution. Some instructions will require more than one
word time for their complete execution. Examples of
these include double word length instructions and mul­
tiply and divide. Single word transfers from 01" to
memory, including instruction access time, require
a total of 36 microseconds; double word length trans­
fers require a total of 54 microseconds. Execution
times for each instruction in the command repertOire
of the GE 225 is given in a later section of this manual.

That portion of the control logic necessary to ensure
the orderly sequence of (1) fetching an instruction,
(2) mOdifying the data address (if required), and (3)
executing the instruction is known as the sequence con­
trol. The sequence control also ensures the repetition
of these steps in a cyclic manner, thereby permitting
program execution. In addition, the sequence control
directs the sequence of additional steps required for the
execution of multiple-word-time instructions by pro­
viding appropriate signals (Operation Enable 01" OE)
for this purpose.

·17·

Figure 15 is a flow chart of the operations performed
by the Central Processor while executing a program.
More exactly, this diagram illustrates the nature of
the operations and tests performed during one com­
plete instruction cycle, including the extraction of the
instruction from memory (AMP), modification of the
data address portion of the instruction if r~~ (AMX),
and the subsequent execution thereof (M.n:, GIS or AMX).
Program execution is accomplished by properly repeat­
ing this basic cycle until the program has been complete­
ly executed. Program execution may also be stopped
from the Operator's Console, in which event the cycle
will be stopped immediately following the AMP operation.

The following example illustrates the cycle of computer
operation. Assume that the first instruction of a pro­
gram has somehow been manually entered into the I
Register and that it is a LOAD REGISTER A instruction.
Further assume that bits 5 and 6 of this instruction word
are zeros, indicating that no modification of the data
address in I is required. The remainder of the program
has been loaded into memory beginning at location 0000
and the P Register has been manually cleared (1. e., set
equal to 0000) by the operator. The Auto/Manual Con­
sole Switch is placed on Auto and the Start (Step) button
is depressed. Since the execution of this particular in­
struction involves use of the memory (the instruction
is not a "general" instruction), the next operation to be
performed will be AMI. During the execution of the
LOAD A instruction, the contents of the memory cen
specified by the data address bits (7-19) of the I Reg­
ister will be transferred to the A Register (via the M
and B Registers and the Arithmetic Unit). Since the
LOAD A instruction requires only one word time for
its complete execution, an End of Operation signal
(EOO) will be generated during AMI time, thereby
instructing the sequence control to perform the AMP
operation next. Assuming that memory access win
be available to the Processor during this following
word time, the instruction located in cell 0000 (in this
example) will be pulled out of memory, transferred to
the I Register, and the cycle repeated.

'IROIn'Y INTEIIUPT

Due to the unique deSign concept of the 225 System,
the core memory serves the dual function of: (1) main
memory and (2) input-output buffer. Thus, two or more
asynchronous operations may be performed simultane­
ously; for example, reading cards at a relatively slow
rate while computing at the standard 450 KC repetition
rate. Processor computation and access to the mem­
ory win have to be interrupted occasionally to allow
information to be entered into or taken out of the mem-
0ry at the request of the input or output devices cur­
rently in operation. Since several requests for mem­
ory access might be made at the same time, a provision
is made to grant only one such request for access during
a particular word time. The analysis of these various
requests for memory access and the determination of
whether an input-output device or the Central Processor
should have access to the memory is performed by the
Priority Interrupt logic.

POWER ON

LOAD

Is the instruction in the
r Register to he modified?

EOO (End of Operation)

Look up instruction at (Address in P)
Register)

Address of instructi.on
+ 1 P Register)

Medify the Data
Address of the
instruction in the
I Register

W)(J-oi.._---Y;;.;E:;;.;S;.; Will
JL use

- 12 + - 12 - 17 - 12

Execute rnx, BXH,
or BXL instruction

YES

Execute Memory
Reference Instruction

lIas the Memory Reference YES EOO
fustruction been completely ~;;::;;;:"""" ______ -L;;:'::"::::' ________ --'

executed?

,,----Only as Required (e. ,Douhle Precision)

Continue Execution
of Memory Reference
Instruction

15 Centra! Processor

~H3-

The granting of a request for memory access 1s de­
pendent upon the priority assigned (built into the com­
puter) to a particular device. This priority, in turn,
is determined by the repetition rate of pulses (infor­
mation) going to or coming from the input-output device.
Thus, if a request for access is received from two
input-output devices Simultaneously, the one with the
higher repetition rate will have top priority and, hence,
be the first to be granted access. The other device
will wait for one word time. The reasoning behind
this basis for priority assignment is that the slower
speed unit can afford to wait without danger of loss
of information. The faster unit cannot afford to wait
since additional information is soon to follow. The
Central Processor will always have the ~p'ri-

ority since no loss of information can result if it is
forced to "hang up" or remain in a state of suspended
animation awaiting memory access during its normal
cyclic operation. The Priority Interrupt logic will
consider the Controller Selector (data mating function)
as.Q!lfl other input-output device. Thus, two levels of
priority are involved in the data mating operation.
First, there is the computer priority (Priority Inter­
rupt logic). This priority determines whether mem­
ory access is granted to the computer. to the card
system, or to the Controller Selector. Second, there
is a Controller Selector priority which determines
which associated peripheral unit is granted memory
access when the Controller Selector, itself, has such
access.

Computer Priority Interrupt Control

rc;:;dl
~

-------------1 thru 5-------------

.... 41------------- Increasing Priority

GE225--------------------------------~PR~OO=MMM~~'N~G~~~N~~L
.19/20·

D.

The GE 225 under the ,n-l;Kr"'U;LlU~~U
of over one instructions,
are classified into the

1. Arithmetic
2. Data Transfers
3. Shift nn",,,,<.f"rm'"

4.
5.
f).

7.
8.
9.

10.

Test-and-Branch
Console Orferati.on
Punched

The following list of instructions gives the mnemonic
code for the command and an indication of whether a
m€~m(i:ry location or a constant is

Machine programs are created use of the
General Assembly Program. Routines are un~u."r."u

in tabular form the mnemonics of the
the memory locations or constants in­

and whether or not the instructions are to be
modified. For if it is desired to store the
contents of the A in memory and the

the will
this:

Code

STA

STA

memory
address may be a

Modification
Word

x

A) stores the contents of
memory location (Y). The

be a decimal number
or the

which is LUleU.J.t!!,LIClL'"

bIer routines. With the
the programmer may use symbols for (\n"r~"'f1

dresses whenever he so and memory loca-
tions will be The letter "X"

indicates whether or not the instruction
is to aUitoll11at:ic"tUy modified. A zero indicates that
there is to be no Hl~IUL.'L"',""UV1l, while a 1, 2 or 3 selects
memory modification words 00002 or 00003.

the word
instructions involving transfer of

information from the condition of the reg­
ister after execution is unchanged unless otherwise
stated. A ny" indicates an
indicates the operand itself. Some
their nature do not an operand.
times for execution include the
the instruction.

by
The word

fetching of

The capacity of the A may be exceeded in execution of SUbtract or
this

sig:nificamt) bit of the re-
commands in a condition known as "overflow".

the overflow indicator is turned
sillt is and the of the is reversed.

SUI

y

The contents of Y
The result is

y

Octal: 01

are a."~'''''''L ""''''''H
in .tteglster

Octal: 02

SUBTRACT. The contents of Y
tents of A
contents of

-21-

Word Time: 2

added to the contents of ''1slepT'

The contents of Y are not

Word Time: 3

subtracted from the con-
in A The

DAD Y Octal: 11 Word Time: 3

DOUBLE LENGTH ADD. If Y is even, the contents of Y (s,1-19) and Y + 1 (1-19)
are algebraically added to the contents of Register A (s,1-19) and Register Q (1-19).
If Y is odd, the contents of Y (s,1-19) and Y (1-19) are algebraically added to the
contents of Register A (s,1-19) and Register Q (1-19). The result is placed in
Register A (s,1-19) and Register Q (1-19). The sign of Register Q is set to agree
with the sign of Register A. The contents of Y and Y + 1 are unchanged. If this
instruction is automatically modified, the address after modification will determine
the result as indicated above.

DSU Y Octal: 12 Word Time: 5

DOUBLE LENGTH SUBTRACT. If Y is even, the contents of Y (s,1-19) and Y + 1
(1-19) are algebraically subtracted from the contents of Register A (s,1-19) and
Register Q (1-19). If Y is odd, the contents of Y (s,1-19) and Y (1-19) are alge­
braically subtracted from the contents of Register A (s,1-19) and Register Q (1-19).
The result is placed in Register A (s,1-19) and Register Q (1-19). The sign of
Register Q is set to agree with the sign of Register A. The contents of Y and Y + 1
are unchanged. If this instruction is automatically modified, the address after
modification will determine the result as indicated above.

MPY Y Octal: 15 Maximum Of: 21

MULTIPLY. The contents of Y (s,1-19) are algebraically multiplied by the contents
of Register Q (s,1-19). The result is placed in Register A (s,1-19) and Register Q
(1-19); the sign of Register Q is the same as the sign of Register A after multipli­
cation. If the contents of Register A are not set to zero before the MPY command
is given, the contents of Register A will be added algebraically to the least signi­
ficant half of the product. Thus, with proper scaling, it is possible to form the
value AB + C.

DVD Y Octal: 16 Maximum Of: 30

DIVIDE. The contents of Register A (s,1-19) and Register Q (1-19) are algebraically
divided by the contents of Y (s,1-19). The quotient is placed in Register A (s,1-19);
the remainder is placed in Register Q (s,1-19). The sign of the remainder is the
sign of the dividend. The magnitude of the divisor must be greater than the mag­
nitude of the contents of Register A. If not, the overflow indicator will be turned
ON and control will be immediately transferred to the next instruction in sequence.

INX X,K Octal: 14 Word Time: 3

INCREMENT X BY K. K, positions 7 through 19 of the I Register, is added abso­
lutely to the contents of Register X (7-19), and the result replaces the contents of
Register X (7-19). Any carry from position 7 of Register X is lost. This instruc­
tion is not automatically modified since bits 5 and 6 are used to identify the parti­
cular X Register.

ADO Octal: 2504032 Word Time: 3

ADD ONE. Plus one is added algebraically to Register A (19). If the capacity of
Register A is exceeded, the overflow indicator will be turned ON.

SBO Octal: 2504112 Word Time: 3

SUBTRACT ONE. One is subtracted algebraically from Register A (19). If the
capacity of Register A is exceeded, the overflow indicator will be turned ON.

GE225 __________________________________ ~P~RO~G~~~M~'NG~~~N=uA~L
-22-

DATA TRANSFERS

LDA y Octal: 00 Word Time: 2

LOAD A. The contents of Y (s,1-19) replace the contents of Register A (s,1-19).
The contents of Yare not changed.

STA y Octal: 03 Word Time: 2

STORE A. The contents of Register A (s,1-19) replace the contents of Y (s,1-19).
The contents of Register A are not changed.

DLD y Octal: 10 Word Time: 3

DOUBLE LENGTH LOAD. If Y is eventhe contents of Y (s,1-19) and Y + 1 (s,1-19)
replace the contents of Register A (s,1-19) and Register Q (s,1-19). If Y is odd,
the contents of Y (s,1-19) replaces the contents of Register A (s,1-19) and Register
Q (s,1-19). The contents of Y and Y + 1 are unchanged. If this instruction is auto­
matically modified, the address after modification will determine the result as
indicated above.

DST y Octal: 13 Word Time: 3

DOUBLE LENGTH STORE. If Y is even, the contents of Register A (s,1-19) and
Register Q (s,1-19) replace the contents of Y (s,1-19) and Y + 1 (s,1-19). If Y is
odd, the contents of Register Q (s,1-19) replace the contents of Y (s,1-19). The
contents of Register A and Register Q are unchanged. If this instruction is auto­
matically modified, the address after modification will determine the result as
indicated above.

LQA Octal: 2504004 Word Time: 3

LOAD Q FROM A. The contents of Register A (s,1-19) replace the contents of
Register Q (s,1-19). The contents of Register A are unchanged.

LAQ Octal: 2504001 Word Time: 3

LOAD A FROM Q. The contents of Register Q (s,1-19) replace the contents of
Register A (s,1-19). The contents of Register Q are unchanged.

XAQ Octal: 2504005 Word Time: 3

EXCHANGE A AND Q. The contents of Register A (s,1-19) and Register Q (s,1-19)
are interchanged.

MAQ Octal: 2504006 Word Time: 3

MOVE A TO Q. The contents of Register A (s,1-19) replace the contents of Reg­
ister Q (s,1-19). Zeros replace the contents of Register A (s,1-19).

STO y Octal: 27 Word Time: 3

STORE OPERAND ADDRESS. The contents of Register A (7-19) replace the con­
tents of Y (7-19). The contents of Register A and Y (s,1-6) are unchanged.

GE225 ___ ~p=RO~G~RA~M~M~'N~G~MA~NU~AL
-23-

ORY Y Octal: 23 Word Time: 3

ORA INTO Y. Each bit of Register A is examined. If there is a 1 bit in Register
A in a given position, a 1 bit is placed in Y in that position. The contents of Reg­
ister A and the other bit positions of Yare unchanged.

EXT Y Octal: 20 Word Time: 3

EXTRACT. Each bit of Y is examined. If there is a 1 bit in Y in a given position,
a zero is placed in the corresponding position of Register A. If there is a zero in
a given pOSition of Y, the corresponding pOSition in Register A is left unchanged.
The contents of Yare unchanged.

LDZ Octal: 2504002 Word Time: 3

LOAD ZERO INTO A. The contents of Register A (s,1-19) are replaced by O's.

LDO Octal: 2504022 Word Time: 3

LOAD ONE INTO A. The contents of Register A (s,I-19) are set to 0, and a 1 is
placed in Register A (19).

LMO Octal: 2504102 Word Time: 3

LOAD MINUS ONE INTO A. The contents of Register A (s,l-19) are replaced by
l's.

CPL Octal: 2504502 Word Time: :3

COMPLEMENT A. Each bit in Register A (s,l-19) is inverted; that is, each 1 is
replaced by a 0 and each 0 is replaced by 1.

NEG Octal: 2504522 Word Time: 3

NEGATE A. The 2t s complement (negative value) of the contents of Register A
(s,1-19) replaces the contents of Register A (s,1-19). If the capacity of Register
A is exceeded, the overflow indicator will be turned ON.

CHS Octal: 2504040 Word Time: 2

CHANGE SIGN OF A. The sign of Register A is changed. Positions 1-19 of Reg­
ister A are unchanged.

NOP Octal: 2504012 Word Time: 3

NO OPERATION. Zero is added to the contents of Register A (s,1-19),

SHIFT OPERATIONS

The Shift commands shift the contents of the A Register to the right or left serially
(bit by bit) either alone or with the contents of the Nand/or Q Registers. A maxi­
mum of 31 places can be shifted. All shift commands vary between two and nine
word times, depending upon the length of the shift. Two word times are required
for a shift of four bit positions or less. One additional word time is required for
each additional four bit shift or fraction thereof.

GE225--------------------------------~PR~OO~MMM~~IN~G~~~N~~~L
-24-

..

"

SIlA K Octal: 25100 Word Time: 2+

SHIFT RIGHT A. The contents of A If
(F s are inserted in the vacated If
l's are inserted in the vacated
19 are lost, The of A is not

SlA K Octal: 25120 Word Time: 2+

SHIFT LEFT A. The contents of A (1-19) are shifted left K Va-

seA

of A are filled with zeros. If a non-zero bit is shifted out
the overflow indicator will be turned ON, and the bit is lost. The

~C~A~"QA Aisun(~haLngect.

Octal: 251004 Word Time: 2+

SHIFT CIRCULAR A. The contents of are shifted K
that the bit out of pOSition 19 is inserted in

the bit out of pv,~."'vu 1. The of A is not

Octal: 25110 Word Time: 2+

SHIFT RIGHT DOUBLE. ReRister A and the contents of
Q
A

lost. If the

to the Bits shifted out of
Bits shifted out of rV'~:KJ.::;u~r Q (19) are

fin the vacated if the of
The Q is re-

Octal: 25122 Word Time: 2+

SHIFT LEFT DOUBLE. The contents of A (1-19) and the contents of
Q (1-1!:}) are shifted K to the left. Bits shifted out of
Q (1) shift A The vacated of Q are

filled with zeros. If a non-zero bit is shifted out of A (1), the overflow
indicator is turned and the bit is lost. The Q the
sign of A. The of Q is UWA'"'U!'.'''''''

Octal: 25112 Word Time: 2+

SHIFT CIRCULAR DOUBLE. The contents of A and Q
to the in a circular fashion. Bits shifted

U",,-A.0''<OA. Q and those from Q (19) shift
A the The

SAN Octal: 25104 Word Time: 2+

SHIFT A AND N RIGHT. A
are shifted K to the

""p,n",'r",r N Bits shifted out of
fill the vacated }!",OU,'V""",

1 ! s fill the vacated pvon>v"""

-25-

SNA K Octal: 25101 Word Time: 2+

SHIFT N AND A RIGHT. The contents of Register N (1-6) and Register A (1-19)
together are shifted K places to the right. Bits shifted out of Register N (6) shift
into Register A (1). Vacated positions in Register N are filled with O's. Bits
shifted out of Register A (19) are lost. The sign of A is unchanged.

NAQ K Octal: 25111 Word Time: 2+

SHIFT N, A AND Q RIGHT. The contents of Register N (1-6), Register A (1-19)
and Register Q (1-19) together are shifted K places to the right. Bits shifted out of
Register N (6) shift into Register A (1). Bits shifted out of Register A (19) shift
into Register Q (1). Bits shifted out of Register Q (19) are lost. Vacated positions
of Register N are filled with O's. The sign of Register A is unchanged.

ANQ K Octal: 25114 Word Time: 2+

SHIFT A INTO N AND Q. The contents of Register A (1-19) are shifted K places
to the right into both Register N and Register Q. Bits shifted out of Register A
(19) enter both Register Q (1) and Register N (1). Bits shifted out of Register N
(6) and Register Q (19) are lost. If the sign of Register A is plus, the vacated posi­
tions of Register A are filled with O's; if the sign of Register A is minus, l's fill
the vacated positions of Register A. The sign of Register A replaces the sign of
Q. The sign of Register A is unchanged.

NOR K Octal: 25130 Word Time: 2+

NORMALIZE A REGISTER. If R, the number of leading zeros of Register A (1-19),
is less than K, the contents of Register A (1-19) are shifted left R places, and K-R
replaces the contents of location 0000 (15-19). If R is greater than, or equal to, K,
the contents of Register A (1-19) are shifted left K places, and a zero replaces the
contents of location 0000 (15-19). Positions S, 1-14 of location 0000 are always set
to zero. Vacated, positions of Register A are filled with zeros. The sign of Register
A is unchanged.

DNO K Octal: 25132 Word Time: 2+

DOUBLE LENGTH NORMALIZE. If R (the number of leading zeros of Register A)
is less than K, the contents of Register A (1-19) and Register Q (1-19) are shifted
left R places, and K-R replaces the contents of location 0000 (15-19). If R is
greater than, or equal to, K, the contents of Register A (1-19) and Register Q (1-19)
are shifted left K places and a zero replaces the contents of location 0000 (15-19).
Positions S, 1-14 of location 0000 are always set to zero. Bits shifted out of Reg­
ister Q (1) shift into Register A (19). Vacated positions of Register Q are filled
with zeros. The sign of Register Q replaces the sign of Register A. The sign of
Register Q is unchanged.

INTERNAL TEST-AND-BRANCH

BRU y Octal: 26 Word Time: 1

BRANCH UNCONDITIONALLY. Control is transferred to the instruction located
at Y; i.e., Y becomes the address of the next instruction. (The contents of Register
I (7-19) are transferred to Register P (7-19.)

GE225 ______________________________________ ~P~RO~G~R~AM~M~'N~G~M=A~N=uA~l
-26-

SPB X,Y Octal: 07 Word Time: 2

STORE P AND BRANCH. The location of this instruction, Register P (7-19), re­
places the contents of Register X (7-19), and control is transferred to the instruc­
tion located at Y, i.e., Y becomes the address of the next instruction. This in­
struction is not automatically modified since bits 5 and 6 are used to identify the
particular X Register.

BPL Octal: 2516001 Word Time: 2

BRANCH ON PLUS. If the sign of Register A is plus, the computer takes the next
sequential instruction. If the sign of Register A is not plus, the computer skips the
next instruction and executes the second sequential instruction. The contents of
Register A are unchanged by this instruction. (Note that branching will occur if
Register A is all zeros.)

BMI Octal: 2514001 Word Time: 2

BRANCH ON MINUS. If the sign of Register A is minus, the computer takes the
next sequential instruction. If the sign of Register A is not minus, the computer
skips the next instruction and executes the second sequential instruction. The con­
tents of Register A are unchanged by this instruction.

BZE Octal: 2514002 Word Time: 2

BRANCH ON ZERO. If the contents of Register A (s,1-19) are zero, the computer
takes the next sequential instruction. If the contents are not zero, the computer
skips the next instruction and executes the second sequential instruction. The con­
tents of Register A are unchanged by this instruction.

BNZ Octal: 2516002 Word Time: 2

BRANCH ON NO ZERO. If the contents of Register A (s,1-19) are not zero, the
computer takes the next sequential instruction. If the contents are zero, the com­
puter skips the next instruction and executes the second sequential instruction. The
contents of Register A are unchanged by this instruction.

BOD Octal: 2514000 Word Time: 2

BRANCH ON ODD. If the contents of Register A are odd (A (19) contains a 1), the
computer takes the next sequential instruction. If the contents of Register A are
even (A (19) contains a 0), the computer skips the next instruction and executes the
second sequential instruction. The contents of Register A are unchanged by this
instruction.

BEV Octal: 2516000 Word Time: 2

BRANCH ON EVEN. If the contents of Register A are even [A (19) contains a 0), the
computer takes the next sequential instruction. If the contents of Register A are
odd [A (19) contains a 1], the computer skips the next instruction and executes the
second sequential instruction. The contents of Register A are unchanged by this
instruction.

GE225 __________________________________ ~PR~OG=~=MM~IN~G~~~N=uA~L
-27-

10'1 Octal: 2514003 Word Time; 2

BRANCH ON OVERFLOW. 1l' the overflow indicator is the indicator is turned
OFF and the takes the next instruction. 1l'the overflow imii-
cator is not the the next instruction and executes the second

instruction.

INO Octal: 2518003 Word Time: 2

BRANCH ON NO OVERFLOW. 1l' the overflow indicator is not the co:mput€ir
selCjwmtial instruction. 1l' the overflow indicator is the indicator

is skips the next instruction and eXI~cutes the second
qUlmtial instruction.

IPE Octal: 2514004 Word Time: 2

BRANCH ON PARITY ERROR. 1l' the error indicator is the indicator
is turned OFF, and the COltnnute!r takes the next instruction. 1l'the
error indicator is not the next instruction and executes
second seqwantlal ""''''"i'.''''

Octal: 2 518004 Word Time: 2

BRANCH ON PARITY CORRECT. 1l'the error indicator is
takes the next Se(lUenUitl 1l' the error indicator

second """',,!""""HU

IXH Octal: 05

the next instruction and executes the

Word Time: :3

are greater
if the con­

the next instruction
The contents of X are not

to
I.!£~1ru~~tiQ~~lQ1~!1Q.~@~~!~!lli2S!!~ since bits and 6 are used

to be the 2's "v.,,,1"'''''''''"'
of the desired test value.
General "''' .. ;:;;LHU~)

IXI.

BRANCH

CONSOLE OPERA lION

RCS

Octal: 04 Word Time: 3

Octal: 2500011 Word Time: 2

READ CONTROL SWITCHES. Each of the 20 A control
switches is enmined. 1l' a switch is DOWN
ponolmg tJV'''UJ'UH of otherwise the cot'n}sp1on:ulllg .v"o,,,,,-'*,
A will not be altered. should be cleared before this instruction is

-28-

TON Octal: 2500007 Word Time: 2

h",,,,,,,,,.i'!-,,, ... is turned ON. To allow the motor
to attain U,,"'Hd"Llt'" 200 milliseconds Xl1ust be
before a COltU!lmD,Q if the command TON is within 1
millisecond after off the "",,,,m,.,."'"
on the must also be turned on.)

is manual switch

INI Octal: 2514005 Word Time: 2

BRANCH ON N REGISTER READY. 11 the N is available for UllJ'u;:··cmlpun:.
READ PAPER or WRITE PAPER TAPE instruction has

takes the if the com-
the next instruction and executes the second instruction.

INN Octal: 2516005 Word Time: 2

BRANCH NOT READY, 11 the N is not available for
READ PAPER or WRITE PAPER TAPE tn-
the takes next instruction.

the next instruction and executes the second seCluenu;u

TYP Octal: 2500006 Word Time: 2

TYPE. The

OfF Octal: 2500005 Word Time: 2

TYPEWRITER OFF. Power for the ""''''''''f''j·r",.,. is turned off.

PAPEI TAPE INPUT~OUTPUT

IPI Octal: 2500010

READ PAPER TAPE. The N is {" ... ,.r~' ..
is read into N. Other instructions not

this time.

WPT Octal: 2500012

Word Time: 2

and one six-bit coded character
N may be executed

Word Time: 2

WRITE PAPER TAPE. The six-bit coded character in nel""""',.
The contents of N are not Other instructions not
N may be executed this time.

The memory address into which information is must be a
of 128 but less than 2048. Once a card read instruction has been u'4'eM "' ,

continue cards until terminated by execution of a
READER a Or a ml.sfeed.
also be if: 1) the Auto-Manual Switch is on "',,, ' ..
Punch Alarm occurred or 3) if a error has occurred and
PARITY ALARM console switch is in the

In the ~~M.S:&.-\'0J+'w;JJJl!&w2.L.l;)tI,.w:~ Ol'ler11til:m. each card column
is converted into an binary coded decimal form.
three card columns IlOLUU'''''' ... ""',, P"'YYN""""yta 18 bits which are
significant (rightmost) bits of a memory word. The 2 most "''''~'U'''J.l.C.'''''
bits of the 20-bit word are set to zero. With three to a nlemory loca-

27 memory locations are to accommodate an SO-column nu:nctled
The 27th memory location ,"v!na,w two characters.

WORD 1 WORD 2 WORD 27

Four cards of BCD information may be contained in memory at one time. The
fifth card is read into the same memory area as the first and so forth.

The word

at
to

Second card - Read into memory at
(starting address + 32) to

Third card - Read into memory at
address + to

Fourth card - Read into memory at
(starting address + 96) to

Fifth card -

etc.

at
to

last word filled from the card
address + and
information:

address +

address

address 122}

address +

10 11 0000 11 0000 111111 when the of the card is vv ... ",.~<cv

11 110000 110000 111111 when the card is the last card of the deck.

In the of each row (0 thru 9) in each card column repre-
sents a bit position; a is a 0 bit, a punch is a 1 bit. Rows 11 and 12 on the
card are ignored in the binary mode. Thus, each set of two lO-bit card columns
is converted. into a 20-bit memory word. The first column is in the 10 most

"5"'.'-4'"«"" bits of the memory the second column in the 10 least "'''~;Hlj'',"''''Ht
bits of the memory and so The 80 columns of information
are stored in memory locations.

WORD 1 WORD 2 WORD 40

Two cards of information may be contained in memory at one time. The
third card is read into the same memory area as the first and so forth.

First card. mE~m()ry at
to address +

·30·

Second card - Read into memory at
(starting address + 64) to (starting address + 1(3)

Third card - Read into memory at
(starting address) to (starting address + 39)

etc.

The second word following the last word filled from the card (i.e., starting address
+ 41 and starting address + 1(5) will automatically receive the following informa­
tion:

1000000000 1111111111 when the reading of the card is complete.

1100000000 1111111111 when the card is the last card of the input deck.

Octal: 2514006 Word Time: 2

BRANCH ON CARD READER READY. If the card reader is ready to read cards
and the card hopper is not empty, the computer takes the next sequential instruc­
tion; if not, the computer Skips the next instruction and executes the second se­
quential instruction.

BeN Octal: 2516006 Word Time: 2

BRANCH ON CARD READER NOT READY, If the card reader is not ready to read
cards or if the card hopper is empty. the computer takes the next sequential in­
struction; if not, the computer skips the next instruction and executes the second
sequential instruction.

y Octal: 250YYOO Word Time: 2

READ CARDS DECIMAL. This instruction initiates continuous reading of deCimal
cards (i.e., information is interpreted by the Processor's Card Reader logic as
being in the decimal format) into memory starting at location Y, where Y is a
multiple of 128 and less than 2048. The first card will be read into locations Y
through Y + 26, the second into Y + 32 through Y + 58, the third into Y + 64 through
Y + 90, the fourth into Y + 96 through Y + 122, the fifth into Y + 26, etc. After each
card is read in, the Sign bit of the word after the last word of the card (Y + 27,
Y + 59, Y + 91, or Y + 123) will be set to minus. After the last card of the deck is
read in, bit pOSition 1 of the word after the last word of the card (Y + 27, Y + 59,
Y + 91, or Y + 123) will be set to a 1. If the card reader is not in ready status
when the READ instruction is given, the computer will halt.

y Octal: 250YY01 Word Time: 2

READ CARDS BINARY. This instruction initiates continuous reading of binary
cards (i.e., information is interpreted by the Processor's Card Reader logic as
being in the binary format) into memory starting at location Y, where Y is a multi­
ple of 128 and less than 2048. The first card will be read into locations Y through
Y + 39, the second into Y + 64 through Y + 103, the third into Y through Y + 39, etc.
After each card is read in, the Sign bit of the second word following the card image
(Y + 41 or Y + 1(5) will be set minus. After the last card of a deck is read in,
pOSition 1 of the second word following this card image (Y + 41 or Y + 105) will be
set to 1. If the card reader is not in ready status when the READ instruction is
given, the computer will halt.

-31-

HeR Octal: 2500004 Word Time: 2

HALT CARD READER. This instruction halts the card feed. If the first half of a
card is being read at the time this instruction is given, the reading of this card
into memory will be completed, a1I:er which no further cards will be read until
another READ instruction is given. This instruction does not delay the computer
until input is complete. The program continues in sequence, therefore a delay
must be programmed to insure that the information is in memory before attempting
to utilize it.

CARD PUNCH

The starting memory address from which information is punched must be a multiple
of 128 but less than 2048. A significant difference between card reading and card
punching operations is that a write (punch) card instruction causes only a single
card to be punched. If a write (punch) card instruction is given during the next 40
milliseconds after completion of the punching of a card, the punching will proceed
at the rate of 100 cards per minute. If the next punch command is not given until
after the 40 millisecond period, the maximum punching rate is 50 cards per minute.

In the decimal (l!!p.harmmeric)~ of operation, bit positions 2 thru 7 of the start­
ing address memory word are converted into the equivalent punched card (Hollerith)
character and punched into card column 1; b1tpositions 8 thru 13 are converted and
punched into column 2; and bit positions 14 thru 19 are converted and punched into
column 3. Bits in positions 0 and 1 are disregarded. Since there are 80 columns
in the card, only 2 characters will be punched from the 27th memory location;
these latter 2 occupying bit positions 2 thru 7 and 8 thru 13 respectively.

2 7 8 13 14 19 2 7 8 13 14 19
I I ICOL licOL 21cOL 31 I I ICOL41cOL $lCOL 6\

WORD 1 WORD 2

2 78 13 14 19
l¢oL791 COL 80 I I

WORD 27

In the binary mode of operation, each row (O thru 9) in each card column may hold
a bit of information from memory; a blank is a 0 bit, a punch is a 1 bit. Rows 11
and 12 on the card are not punched in the binary mode. ThUS, a 20.bit memory
word is punched as a set of two 1O-b1t card columns. Information in bit positions
o thru 9 of the starting address memory word is punched bit for bit in the first card
column, information in bit positions 10 thru 19 is punched in the second card column,
and so forth until 40 memory words have been punched.

o 9 10 19 0 9 10 19 0 9 10 19
rl ~CO~L~1~1~=cO~L~2~1 ~1'~CO~L~3~I~c~O=L~4~1 I COL79 I COL80 I

WORDl WORD 2 WORD 40

BPR Octal: 2514007 Word Time: 2

BRANCH ON CARD PUNCH READY. If the card punch is in a ready status, the
computer takes the next sequential instruction; if not, the computer sldps the next
instruction and executes the second sequential instruction.

BPN Octal: 2516007 Word Time: 2

BRANCH ON CARD PUNCH NOT READY. If the card punch is not in a ready status,
the computer takes the next sequential instruction; if it is, the computer sldps the
next instruction and executes the second sequential instruction.

GE225------------------------------~H~OO~ww=='~~~~~u~~
-32-

..

."

WCD Y Octal: 2504402 Word Time: 2

WRITE CARD DECIMAL. The information in memory locations Y through Y + 26
(where Y is a multiple of 128 and less than 2048) is punched into a card in decimal
(alphanumeric) format. If the card punch is not in ready status when this instruc­
tion is given, the computer will halt •

WCB Y Octal: 2504403 Word Time: 2

WRITE CARD BINARY. The information in memory locations Y through Y + 39
(where Y is a multiple of 128 and less than 2048) is punched into a card in binary
format. If the card punch is not in ready status when this instruction is given, the
computer will halt.

HIGH SPEED PRINTER SUa..SYSTEM

Operation Operand Modification
Code Address Word

BDM C+TIF P

BRANCH ON DATA MATING FUNCTION INTERROGATED CONDITIONS. P is the
address of the high speed printer controller to be interrogated. C is the number
of the speCific condition to be tested, Both C and P have the range 0 to 7. If C+T
is specified and the condition tested (C) 1s true, the computer takes the next se.
quential instruction; if it is not true, the computer skips the next instruction and
executes the second sequential instruction. If C+F is speCified and the condition
tested (C) is not true (false), the computer takes the next sequential instruction; if
it is true. the computer Skips the next instruction and executes the second sequential
instruction.

Code

SEL
WPL
WPL

Condition

o Controller busy
1
2 Out of Paper
3
4
5
6
7 Any Error

Operand
Address

Modification
Word

P
F
N

GE225~------------------------------~PR~OO~~~~'N~G~~~N~UAl
-33-

WRITE PRINT LINE. P is the address (0 thru 7) of the controller to which the high
speed printer is attached. SEL is the mnemonic code for the selection function.
WPL is the mnemonic code for Write Print Line. M1 is the memory address of the

first data word in the block of 40 (maximum) data words to be printed. Data words
to be printed consist of three BCD characters each. If less than 40 words are to be
printed on one line, the sign bit must be a 1 in the last word to be printed. F is
the format control indicator. If a blank (space) is written in the F position, the
line is to be printed without automatic format control, and M2 is ignored. If an F

is written in the F position, automatic format control words starting at memory
address M2 are used to control the printing of the data words. N is the numeric

print indicator. A blank (space) is written in the N position if the data words to be
printed are alphanumeric. An N is written in the N position if the data words to be
printed consist only of decimal numbers and the 14 special symbols. Both M2 and

M1 must be in the same half of a 16,000 word memory. The General Assembly

Program normally arranges to space the paper one line after printing. Spacing of
o to 63 lines, or ejecting the paper to the top of the next page may be coded as part
of the WPL command by coding lines 2 and 3 in Octal as shown below:

1 = PRINT and slew
o Slew only

S 1 2 3 4 5 6 - 19

2nd llne, \
l=Format l=Numeric Format

1 V1 V2 V3 O=Alpha- Address
O=No Format numeric

3rd line: V4 V5 V6 C1 C2 Data Address

If C1=0 and C2=1, ignore V1 thru V6, and slew paper to top of next page.
If C1=1 and C2=1, slew paper the number of lines (0 thru 63) indicated by the
binary number in positions V1 thru V6.

A UTOMA TIC FORMAT CONTROL

If a line is to be printed under a format control, the format data is stored in the
Central Processor memory in a block of words under the same organization as the
print line data. The format control data consists of:

a. Any printable character
b. Special control characters

The Printer Controller, in assembling a formatted line, reads in from the Central
Processor memory one word of data and one word of format. The first format
character is considered initially. If it is a printable character, the character is
printed. If it is a special control character, it is treated as described below.
Assuming it was a printable character, it is printed, and the first data character
is considered. If it is a printable character it is printed. It may be a special con­
trol character, in which case it is treated as explained below. In sequence, the
second format, then second data characters are conSidered, followed by the third
format and the third data characters. Following the consideration of the third data
character another word of data and another word of format are requested from the
Central Processor memory. Upon receiving these new words, the procedure de­
scribed above is again followed. This routine is continued until a one in the sign
bit of a data word is encountered; whereupon, after consideration of that data word
and its respective format word, the sequence is ended.

GE 225 _______________________ --.:P..;.;R;.;;.O...;;;,G.;.;;RA..;;,M,;.;;,M,;.;;,I.;..;N...;;;,G...;.M;.;;.A..;.;..N.;.;;U-'-=Al

-34-

There are five special control characters, mentioned above, Jwhich are available
for controlling the format of the printed line. These characters, their BCD bit
representations, and their functions are:

1. Ignore (Octal: 35)

If a format character is an Ignore, the next data character is im­
mediately considered.

2. Ignore/Skip (Octal: 36)

If a format character is an Ignore/Skip, a blank is printed and the
next data character is considered.

3. Delete (Octal: 37)

If a format character is a Delete, the next data character is ignored,
and the next character considered is the next format character.

4. Delete/Skip (Octal: 56)

If a format character is a Delete/Skip, a blank is printed, the next
data character is ignored, and the next character considered is the
next format character.

5. Zero Suppress (Octal: 57)

If a format character is a Zero Suppress, the next data character is
ignored; and the next format character is printed if it is a printable
character. After considering this last format character, blanks will
be inserted in the print line until: (a) a non-zero data character is
detected, or (b) a period comes up in the format data. It should be
noted that once a Zero Suppress has been put into effect, the print
line data is inspected only for a non-zero data character, and the
format control data is inspected only for a period. A $ symbol in
the format data also initiates the insertion of blanks in the print
line in the same manner as Zero Suppress after it has been printed.

It is possible for an Ignore or an Ignore/Skip character to be placed in the print
line data (as well as in the format control data). If a data character is an Ignore,
the next format character is immediately considered and nothing is printed for that
data character. If a data character is an Ignore/Skip, a blank is printed and the
next format character is considered.

The above procedure makes it possible for a line format to be stored in the Central
Processor memory once and to be used as often as needed to print lines of data in
that format. The data may, within the limitations imposed by the use of the special
control as described above, be stored in sequence in computer memory, the Printer
Controller automatically constructing the print line according to the prescribed
format.

EXAMPLE

Assume that 5 words of BCD data constitute the information in storage at 00256,
00257, 00258, 00259 and 00260 as follows:

MEMORY
ADDRESS 00256 00257 00258 00259 00260

v y v v ,

Ixlxlx\ylylylZ Z Z Z Z
L A A

HOURS
WORKED

OCCUPATION
CODE

GROSS EARNINGS AMOUNT

GE225 __________________________________ ~P~RO~G~~~M~M~IN~G~~~N~UA~L
-35-

Assume that it is desired to print 4 words of the above clata as follows:

x X

HOURS WORKED GROSS EARNINGS

Further assume that insignificant blanks and zeros mu.st be deleted from the gross
earnings field, before it is printed. Design the format control clata to achieve the
desired result. Let the origin of the format control clata be at memory location
00300 as follows:

Format Data
~ ________________________ A~ __________________________ ~

(,
Memory Addresses

00300 00301· 00302 00303 00304

35 35

Iff I 1 I I I I I I 1 I f 1
Positions

'"'\.,..- 1 5 6 7 \) 10 11 12 13 14 Hi

! ! ! ! ! ! ! ! ! ! ! ! ! ! !
x X

Memory
Address '- 00256

Created by comparison
of Positions in Format
Data and Print Data

KEY !::.
s
X

Y Y z z z

00257 00258 00259 00260

Print Data

Line Image Transferred And Printed,

Positions
1 - :I

Comparison

Positions
4 - 5

Comparison

Any bit configuration permissab1e
Space
Any alphanumeric data character

Positions
{) - 15

Comparison

35 Octal 35 for Ignore
37 Octal 37 for Delete
56 Octal 56 for Delete/Skip

GE225------------------------------~'~~~~t~m~ww~u~~

I Operation Operand • Modification
Code Address Word

SIL P
SLW N
SLW

SLEW PAPER N LINES. P is the address (0 thm 7) of the controller to which the
high speed printer is attached. SEL is the mnemonic code for the selection func­
tion. SLW is the mnemonic code for Slew (Space) Paper. N is the number (0 thm
63) of lines to be slewed (spaced) before printing the next line.

Operation Operand Modi
Code Address Word

SIL P
sn
SLT

SLEW PAPER TO TOP OF PAGE. P is the address (0 thm 7) of the controller to
which the high speed printer is attached. SEL is the mnemonic code for the selec­
tion function. SLT is the mnemonic code for Slew Paper to Top of Next Page.

MAGNETIC TAPE SUI-SYSTEM
In the alphanumeric (binary coded decimal) mode of operation, each binary coded
decimal character is stored on tape as a corresponding magnetic tape character;
that Is, a memory word is stored as three magnetic tape characters. Some of the
memory bit patterns are altered as they are recorded, making the GE 225 magnetic
tape compatible with computer systems now in use. Further information on this
point. is given in the Appendix. The alt.eration of the charact.er codes when writing
and reading magnetic tape is aut.omatic.

Three 6-bit characters
recorded on tape

1st. Char 2 THRU 7

2nd Char 8 THRU 13

3rd Char

20 bit word in memory

14 THRU 19

P is a generated even parity hit
for each character.

GE225--------------------------------~PR~OO~~~~'N~G~~~N~UM
-37-

Bits Sand 1 are not recorded on tape when writing in (binary coded) decimal mode.
Writing mixed binary and BCD words on tape must be done in the binary mode.
When reading tapes in the (binary coded) decimal mode, bits Sand 1 are set to zero
in memory for each word read from tape.

In the binary mode of operation the 20 bits of a memory word are written on mag­
netic tape as 4 magnetic tape characters. Three of the magnetic tape characters
contain 6 bits of data each, while the fourth magnetic tape character contains only
2 bits of data. The four remaining bits in this character will be written as zeros.
These 4 zeros will automatically be inserted when recorded and ignored when read
back from tape.

Four 6-bit characters
recorded on tape

1st Char 0 0 0 0 S

Numbered bits of word in memory

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

2nd Char 2 3 4 5 6 7 P 1 ---'

3rd Char 8 9 10 11 12 13 P 1 --------1

4th Char 14 15 16 17 18 19 P 1 ----------------'

P is generated odd parity bit for each
character.

The GE 225 tape system has error detection circuits to insure accuracy in trans­
ferring information between memory and tape. These error detection circuits are:

1. Controller Input/Output Register Overflow/Exhaust. Checks that
capacity of Input/Output Register is not exceeded.

2. Lateral (vertical) Parity. This parity bit checks the accuracy of
each character when read from tape.

3. Horizontal Parity. This is a parity check on each of the seven
record tracks on tape which is recorded at the end of each record.

4. Modulo Three or Four. When information is read from tape a check
is made to determine that the proper number of characters (three
in decimal moje and four in binary mode) constitute a word.

5. Write Check. All data written on magnetic tape is checked immedi­
ately after it is written by reading back on the physically separate
read head and verifying lateral parity and horizontal parity.

Operation Operand Modification
Code Address Word

BOM C+T1F P

GE225 ______________________________________ ~P~RO~G~~~M~'N~G~M~A~N~uA~l
-38-

BRANCH ON DATA MATING FUNCTION INTERROGATED CONDITIONS. P is the
address of the magnetic tape controller to be interrogated. C is the number of the
specific condition to be tested. Both C and P have the range 0 to 7. If C+T is
specified and the condition tested (C) is true, the computer takes the next sequential
instruction; if it is not true, the computer skips the next instruction and executes
the second sequential instruction. If C+F is specified and the condition tested (C)
is not true (false), the computer takes the next sequential instruction; if it is true,
the computer skips the next instruction and executes the second sequential in­
struction.

Condition

o Controller Busy
1 End of File
2 End of Tape
3 Any Tape Rewinding
4 Parity Error
5 Input/Output Buffer Error
6 Mod 3 or Mod 4 Error
7 Any Error

Operation Operand Modification
Code Address Word

SEL p
XXX M
XXX N T

MAGNETIC TAPE CONTROL INSTRUCTIONS. P is the address (0 thru 7) of the
magnetic tape controller to be selected for this magnetic tape instruction. For
tape read instructions M is the address of the first word of a block of N words in
memory which is to receive data from magnetic tape; for tape write instructions
M is the address of the first word of a block of N words in memory which is to be
written on magnetic tape. N is the maximum number of words to be read or the
exact number of words to be written. T is the number of the tape handler unit
(0 thru 7) to be used. XXX is the mnemonic code for the specific tape movement
desired. The mnemonic codes for specific tape movements are:

WTD
WTB
RTD
RTB
RWD
BKW
BKR
WEF

Write tape in deCimal (alphanumeric) mode
Write tape in binary mode
Read tape in decimal (alphanumeric) mode
Read tape in binary mode
Rewind tape to leader
Backspace one record and pOSition WRITE head
Backspace one record and position READ head
Write END of FILE character (0001111)

After reading (in either binary or decimal mode) N words from magnetic tape into
memory starting at location M, memory location M + N will contain zeros if exactly
N words were' read from a record on tape containing N words. If the number of
words contained in the record currently read is less than N, then only the contents
of the record will be stored in memory; and the 2' s complement of the residue
(N - record length) will be stored in memory cell M + N with a one-bit in the sign
pOSition. If the number of words in the record is greater than N, then only N words
will be stored in memory and the increment (record length - N) will be stored in
memory cell M + N with a zero in the sign pOSition. M is not automatically modi­
fied. In order to forward space (skip) one record, the RTD or RTB command is
used with N set equal to zero.

GE225----------________________________ ~PR~OG=~~~'N~G~~~N=uA~L
-39-

MASS RANDOM ACCESS FILE lUI-SYStEM.

Each Mass Random Access File (MRAF) consists of either 16 or 64 storage discs.
From one to four 16-disc MRAFs or one 64-disc MRAF may be attached to a con­
troller unit and, through the data mating function, to the Central Processor. A
MRAF record consists of 64 20-bit information words. Each word is an image of
the corresponding word in computer memory. In addition, there is a 65th odd­
parity check word which insures against loss of information during data transfers.
Six numbers are required to address a specific record:

L Controller Address
2. File Number
3. Disc Number

(0 thru 7)
(0 thru 3)

4. READ-WRITE Head Number
(0 thru 15) or (0 thru (3)
(0 thru 7)

5. Track Number
6. Record Number

Operation Operand
Code Address

IDM C+T/F

(0 thru (3)

{(O thru 15) on 256 outer tracks
(0 thru 7) on 256 inner tracks

Modification
Word

,
BRANCH ON DATA MATING FUNCTION INTERROGATED CONDITIONS. P is the
address of the mass random access file controller to be interrogated. C is the
number of the specific condition to be tested. Both C and P have the range 0 to 7.
If C + T is specified and the condition tested (C) is true, the computer takes the
next sequential instruction; if it is not true, the computer skips the next instruction
and executes the second sequential instruction. If C + F is specified and the con­
dition tested (C) is not true (false), the computer takes the next sequential instruc­
tion; if it is true, the computer skips the next instruction and executes the second
sequential instruction.

Condition

Operation
Code

SIEL
'RF
OCT

o
1
2
3
4
5
6
7

Controller Busy
File #0 Ready
File #1 Ready
File #2 Ready
File #3 Ready
Input-OUtput Error
Parity Error
Any Error

Operand
Address

(MRAF address)

,
R

POSITION MRAF. P is the address (0 thru 7) of the controller to which the MRAF
is attached. SEL is the mnemonic code for the selection function. PRF is the
mnemonic code for Position MRAF to transmit or receive a specific record. R is
the number (O thru 3) of the selected MRAF. The third line contains the actual
MRAF address (octal) of the record to be acted upon. The format of this line is:

GE225--------------------------------~PR=OO=MMM~~(~~~~N~uAl

-40-

20-bit word 13 thl'll 15

Head Numbe
Record Number

is 0, the MRAF is to read (or write) the record
entire address in bits 1 thru 19. If S is 1, the MRAF is !:,V""'C.!Vl',",'-'

on the track bits 1 thl'll 15. When a Sut)SeqU1em
MRAF instruction is first available record from this

VV'~l"'VH will be transmitted to core memory written from core memory).

SEL
IIF
IIF

Address

N
M

Modification
Word

P
I

READ MRAF, P is the address (0 thru 7) of the controller to which the MRAF is
attached. SEL is the mnemonic code for the selection function. RRF is the
mnemonic code for Read MRAF. N is the number (1 thru 16) of 54-word records
to transmit from the disc to core R is the number thl'll 3) of
the selected MRAF. M is the core memory address into which the word of the
first record is to be All words and if any, will be copied

memory locations. The MRAF address will be
the MRAF is M must be an even of

SEl
WIF
WIF

modified.

Address

N
M

Modification
Word

P
I

WRITE MRAF. P is the address (0 thl'll 7) of the controller to which the MRAF is
attached. SEL is the mnemonic code for the selection function. WRF is the
mnemonic code for Write MRAF. N is the number (1 thru of 54-word records
to transmit from consecutive core storage locations to disc R is the
number (0 thru of the selected MRAF. M is the core memory address from
which the will be The MRAF destination address will be the one
at which the MRAF is M must be an even of 64 and
is not modified.

Each of the 14 characters by the Document Handler is converted into a
BCD code and stored in the least four bits of a
word in memory; that bit 17, 18 and 19. All other bits of the word
are zeros for case of cue If the character read is one of
the 4 cue I bits are stored in bit 0 and 1 of the word.
If a character is invalid be and translated the Document

a 1 bit is only in bit Characters are read from
the document in sequence from to left into successive memory locations until
the document is read.

·41·

BRANCH ON DATA MATING FUNCTION INTERROGATED CONDITIONS. P is the
address of the document handler controller to be C is the number of
the condition to be tested. Both C and P have the range 0 to 7. If C+T is

1-1""-011,',,,'-' and the condition tested is the takes the next
if it is not the computer the next instruction and executes

instruction. If C+F is and the condition tested
the computer takes the next seIClU!?ntial

the next instruction and

o
1
2
3
4
5
6
7

Handler #1 ",",,>ill"!!!

Handler #2

Handler #1 """'UHI'"
Handler #2

buffer error
error

READ SINGLE DOCUMENT. P is the address (0 thru 7) of the controller to which
the document handler is attached. SEL is the mnemonic eode for the seleetion
function. RSD is the mnemonic eode for Read Document. N is the number
(1 or 2) of the selected Document Handler. If N is left the pro­
gram will assume that Handler #1 is to be used. M is the core mernory address
into which the first character read from the document will be M is not
automatically modified. Single reading of documents can be done at the rate of
600 per minute.

Modification
Word

P
N

READ DOCUMENT AND CONTINUE FEEDING NEXT DOCUMENT. P is the
address (0 thm 7) of the controller to which the document handler is attached.
SEL is the mnemonic code for the selection function. RDC is the mnemonic code
for Read Document and Continue. N is the number (1 or 2) of the selected Docu­
ment Handler. If N is left the program will assume that RandleI'
#1 is to be used. M is the core memory address into which the first character
read from the document will be copied. M is not modified. This
instruction calls for moving a second document into for immediate
after the first document passes the head. RDC instructions must be used
to achieve the 1200 document per minute With each use of the RDC

there are 50 milliseconds of
before another RDC or Halt instruction must be given.

-42-

Set
PKT
OCT

Word

P
N

POCKET SELECT, P is the address (0 thru 7) of the controller to which the docu­
ment handler is attached. SEL is the mnemonic code for the selection function.
PKT is the mnemonic code for Pocket Select. N is the number (1 or 2) of the
selected Document Handler. If N is left the program will assume
that Handler #1 is to be used. The third line contains the address of the

into which the document is to be stacked. The table the
octal codes to be used in the selection.

SPECIAL
o
1
2
3
4
5
6
7
8
9

REJECT

0000001
0000017
0000016
0000015
0000014
0000013
0000007
0000006
0000005
0000004
0000003
0000002

To be the Pocket Selection cmnmand must be

0000020
0000360
0000340
0000320
0000300
0000260
0000160
0000140
0000120
0000100
0000060
0000040

within a maximum of
35 milliseconds after the reading of the document is ,",V"ll-h'"

M

Modification
Word

P
N

HAL T CONTINUOUS FEEDING. P is the address (0 thru 7) of the controller to
which the document handler is attached. SEL is the mnemonic code for the selection
function. HL T is the mnemonic code for Halt Continuous N is the number
(1 or 2) of the selected Document Handler" If N is left program
will assume that Handler #1 is to be used. M is the core memory address into
which the first character of the document the reading head
will be This document will be read when the HL T command is
first used an RDC instruction. Document mayor may not cease.
It is therefore necessary to use a second HLT and another document may
or may not be read. If a document is not the handler win remain in a busy

that the Read will be ERB In
no case will a document be

225-----------~~~~
-43-

ion
Code

SEL
Ell
XXX

Address
Modification

Word

P
N

END READ BUSY SIGNAL. P is the address (0 thru 7) of the controller to which
the document handler is attached. BEL is the mnemonic code for the selection
function. ERB is the mnemonic code for End Read N is the number (lor 2)
of the selected Document Handler. If N is left blank, the will
assume that Handler #1 is to be used. The third line must be n"'Aa.~nT
used in this instruction. The programmer may use this line as wo<rk:in!l "',." .. """,
as constant XXX be anyone of the

When a HLT command is
"",jr'Mll1'f"ii"" is used to reset the

5----------------------~~~~~

..

GENERAL ASSEMll Y PROGRAM

GENERAL DESCRIPTION

The General Assembly Program is a basic assembly
routine with extensive error checking features and
provision for program modification. With the General
Assembly Program, the programmer writes his own
GE 225 program employing symbolic notation rather
than the absolute code of the computer. However, both
the single address format and the general structure
of a computer instruction word are retained. This
symbolic program is read into memory along with the
General Assembly Program itself. The output from
the computer is the user's original symbolic program,
now converted into absolute machine language. One
symbolic instruction is usually translated into one
computer instruction. This program is now ready to
be read into memory for execution.

The symbolic notation selected to designate each in­
struction is a mnemonic code. These mnemonic codes
are carefully chosen to provide maximum Significance
to the user. For example, the mnemonic code for the
addition instruction is ADD, for subtraction the code
is SUB, and so forth. The assembly program trans­
lates these mnemonic codes into the absolute code of
the computer.

Memory addresses may be assigned USing decimal
notation (location 1500 for example) or using symbolic
notation chosen for maximum convenience to the pro­
grammer. If an alphabetic (NETPAY) or an alpha­
numeric (TAX3) is used to designate a memory address,
the General Assembly Program automatically assigns

memory locations. The programmer need only specify
the starting address into which the first instruction
of the program is stored.

'SEUDO-INSTRUCTIONS

In addition to the mnemonic codes for the instructions
in the normal repertoire of the GE 225, the General
Assembly Program uses other mnemonic codes to
define a group of terms called pseudo-instructions.
A pseudo-instruction is a symbolic representation of
information required by the General Assembly Program
for the assembly of a program. The pseudo-instruc­
tion has the same general form as a computer instruc­
tion, and it is listed like a normal instruction in the
preparation of a program; however, it is never executed
by the computer as an actual instruction. For example,
ORG is a pseudo-instruction which may be used to in­
dicate the starting address in the assignment of a pro­
gram to memory. Thus, ORG 400 may indicate that
a program is to enter memory with the first instruc­
tion starting at location 400. The General Assembly
Program automatically assigns succeeding memory
locations to the remaining instructions of the program.
ORG never enters memory to become a part of the pro­
gram as do regular instruction words. In a stmilar
manner, the other pseudo-instructions provide infor­
mation to the assembly routine but do not actually be­
come part of the final program.

A list of pseudo-instructions available for use with the
Genez:al Assembly Program is given below. More
specific details for their use will be found in a later
section,

AU ALPHANUMERIC. Used for program headings. The first three char­
acters in the operand address field are converted to a binary coded dec­
imal word and assigned a memory location.

ass BLOCK STARTED BY SYMBOL. Saves a block of memory locations of
specified amount. Amount may be decimal or symbolic. If symbOliC,
number of locations specified by the symbol is saved.

DEC DECIMAL. Decimal numbers are converted to binary. Limited to one
word.

DDC roUBLE DECIMAL. Used for establishing decimal constants larger
than 524287 or, in other words, larger than can fit into one word.

END END OF PROGRAM. Punches all assembled instructions to this point
and punches control card indicating where to start program. END in­
dicates the end of assembly and should be used only at the end of a pro­
gram.

PROGRAMMING MANUAL

·45·

EQU EQUAL. Defines a symbol which can be equal to a decimal or another
symbol.

OCT OCTAL. Gives the binary representation of up to 7 octal digits, left jus­
tified.

ORG ORIGIN. Designates the starting storage location of a program or a
portion of a program in memory. Address may be decimal or symbolic.

REM REMARKS. Remarks immediately following this pseudo-instruction
are written by programmer for reference only and are not processed
by assembly program. Remarks are part of the source program and
output listing but not the final obj ect program.

TCD TRANSFER CARD. Like END, TCD punches all instructions to this
point and punches a control card; but TCD allows assembly to continue.

THE GE 225 CODING SHEET

The General Assembly Program coding sheet is divided
into six fields: Symbol, Operation, Operand, X Reg­
ister, Remarks, and Sequence. The numbers 1 through
80 in the header information on each sheet correspond
to the column numbers of a standard 80-column punched
card. When a symbolic program is punched into cards,
columns 7, 11 and 21 are not used; these blank columns
serve to separate important fields.

1. Symbol Field.

Columns 1 through 6 constitute the symbol field. Sym­
bols may consist of from 1 to 6 digits. One of the digits
in the symbol field must be alphabetic. HOPE, CONST3
are legitimate symbols; 345 is not a legitimate symbol.
A symbol may be either right or left justified in the
symbol field; that is, the symbol AB in columns 1 and 2
is the same symbol as in columns 5 and 6. The plus
and minus signs cannot be used in the symbol field be­
cause they are used in the operand field for relative
addressing. A blank (space) in the symbol field is
ignored by the assembly.

2. Operation Field.

Columns 8, 9 and 10 make up the operation field. Any
of the mnemonic codes for the normal computer instruc­
tions (LDA, BRU, etc.) or for the pseudo-instructions
(ORG, DEC, etc.) can be placed in this field.

3. Operand Field.

Columns 12 through 19 constitute the operand field.
Operands may be an alphabetic or alphanumeric sym­
bol up to six characters in length or a decimal number
and can be positioned anywhere in the operand field.
The plus and minus sign are used only in the operand
field and only when expressing a relative address.
The subject of relative addressing is discussed in a
later section. All numbers appearing in the operand
field are considered to be decimal except when following
the operation OCT and ALF. Numbers following OCT

are treated as octal and are converted to their binary
equivalent. Digits following ALF are converted to
their binary coded decimal equivalents. Blanks (spaces)
in the operand field are ignored.

4. X Register.

Column 20 deSignates the X Register (automatic address
modification word). A decimal 1, 2 or 3 in this field
deSignates modification word 00001, 00002 or 00003
respectively in memory. A zero in this column in­
dicates that address modification is not to be per­
formed. A blank (space) is considered a zero.

5. Remarks Field.

Columns 22 through 75 make up the remarks field.
Remarks are written in this field for reference by the
programmer. These remarks are punched in the as­
sembly program source deck, but the information is
not carried through to the final object program. Thus,
information in the remarks field is obtained only on a
printed listing as a part of the assembly process.

6. Sequence Field.

Columns 76 through 30 constitute the sequence field.
Each card is to be given a sequence number so that a
deck can be sorted into proper order should the cards
get out of sequence.

RELATIVE ADDRESSING

The General Assembly Program provides facility for
the assignment of addresses relative to some starting
point (relative addressing). Assume, for example,
that the programmer has established that the symbol
B is equal to memory location 00500. Using the tech­
nique of relative addressing, memory location 00510
can now be addressed by simply writing B + 10 in the
operand field of the coding sheet. This is illustrated
as follows:

GE 225 __________________________;P:..:.R.:.;:O;.;;G:;.;.R;::..A;:.;M.::..M~I:..;N..;::;G...:MA..:..;:..;;N~UA~L
-46-

.....
';'I

c-!) ,..,
~
~
U'1

"'tI
;ICI

g

~
Z
G'>

~
Z
c »

GENERALf) ELECTRIC

PROBLEM:

WRITTEN BY:

SYMBOL OPR OPERAND

11 I I T 16 81 11 0121 I I I I I 11

1 1 1 1 1 1 I 1 1 1 I I I 1

1 1 1 I I 1 1 1 1 1 1 1 1 1

1 1 1 1 I I, 1 I I I I I I I

1 1 1 1 1 1 I I I II I 1 I

1 1 1 1 1 1 I I I 1 1 1 1 I

I I 1 I I I 1 1 1 1 1 I 1 1

1 1 1 1 1 1 1 I I 1 1 1 1 1

I I I I I I 1 I 1 I I I I I

I I 1 I I I I 1 I 1 1 I I I

I 1 I I I I 1 1 1 I 1 1 I I

1 1 I 1 1 1 I I I II I I I

1 1 1 1 I I I 1 I 1 1 1.1 I

I 1 I I I I I _Ll I 1 1 1 I

1 I I I I 1 I I I I I I I I

1 I I I I I I 1 1 1 I I I I

1 I I 1 1 I I 1 1 1 1 1 I I

1 1 1 I I I I 1 1 I 1 I I I

1 1 I I I I I I 1 1 1 I 1 1

I I 1 I I 1 I I I I 1 1 1 1

I I I I I I I I I 1 1 1 I I

1 I I I I I I 1 1 1 1 1 I I

~l_~ I I I 1 1 1 I I I

I I I I I 1 I I I I I I I I

, I I I I I I 1 1 I I I I I

I I 1 I I I I 1 1 1 I I I I

GE 225 CODING SHEET

PAGE OF

X REMARKS SEQUENCE

2022 75761 I Tjac

1 I I 1

1 1 1 1

I 1 I 1

I I I 1

1 I I 1

I 1 1

I I I 1

1 I I I

I I I 1

I 1 1 1

I I 1 I

I I 1 1

1 I I I

1 1 I I

1 1 1 I

I I I

1 1 I I

I I 1

I I 1

I I I 1

I I 1

I I I

I I I I

I I I I

I I I 1

Figure 16 GE225 Coding Sheet

Symbol

B

Operation Operand

500
B

silO
The EQU pseudo-instruction establishes that the sym­
bol B is equal to memory location 00500. The instruc­
tion LDA (Load Register A) loads the A Register with
the contents of memory location 00500. The next LDA
instruction, some program steps later, loads register
A with the contents of B + 10 (location 00500 + 10 =
00510).

Another illustration of relative addreSSing is the fol­
lowing example with reference to pseudo-instruction
ORG.

Symbol

C

Operation

EQU
ORG

~
ORG

Operand

200
C

C!1000

The first ORG (Origin) establishes that information is
to be placed in memory starting at the location indicated
by the symbol C; that is, at memory location 00200.
The second ORG, some program steps later, estab­
lishes that information is to be placed in memory start­
ing at location 01200.

Because the plus and minus signs are used in relative
addressing operations in the operand field, they can­
not be used as symbols in the symbol field of the coding
sheet.

PSEUDO.INSTRUCTION USAGE

In this section some examples of the use of GAP
pseudo-instructions are given. The headings Symbol,
Operation, Operand and Remarks correspond to the
headings on the GAP coding sheets.

1. AU The psuedo-instruction ALF (alphanumeric)
is used for program headings. The first three char­
acters of the operand field are converted to binary
coded decimal equivalents and this BCD word is as­
signed a memory location. Three alphabetics are
converted per pseudo-instruction. For example, the
heading NAME RATE HOURS could be entered as
program constants in the following manner:

Symbol Operation Operand

A ALF NAM
ALF E
ALF RA
ALF TE
ALF HOU
ALF RS

This heading can be picked up by addreSSing the symbol
A and entering a program loop to pick up the other
locations. Note from the arrangement of information
in the operand field that three spaces separate NAME
and RATE and that one space separates RATE and
HOURS.

2. BSS The pseudo-instruction BSS (Block Started
by Symbol) is used to reserve a block of memory stor­
age. For example:

Operation Operand

sss 50

The assembly program reserves the next 50 memory
locations, and the assignment of memory addresses
to instructions continues with the 51st memory loca­
tions following.

The BSS pseudo-instruction is conveniently used to
reserve input memory locations when punched cards
are read. For example, when a Read Cards Decimal
(RCD) instruction is given, the information from the
first card is stored in memory location 00128 (or a
multiple thereof) through the next 26 memory locations.
Assume that the programmer is at first undecided as
to the memory location to be used as the starting ad­
dress for input when cards are read in the decimal
mode.

Therefore, each time an RCD command is used in the
program, the operand address is indicated simply by
the symbol IN:

Operation Operand

RCD IN

Later, the programmer decides to use memory loca­
tion 0128. The symbol IN must then first be defined
in the program as follows:

Symbol

IN

Operation

ORG
BSS

Operand

128
27

The result is that each time the symbol IN is addressed
the assembly assigns memory location 00128, so that
information from the card is stored starting at that
memory location. The BElS pseudo-instruction re­
serves the next 26 memory locations for the remainder
of the card.

3. DEC The pseudo-instruction DEC (Decimal) con­
verts decimal numbers to binary:

Symbol

HOPE

Operation

DEC

Operand

560

The constant 560 can be called for by the programmer
the symbol HOPE. A negative 560 can be created

by simply writing -560 in the field. The dec-
imal number 524,287 is the decimal number
that can be associated with . Larger decimal
constants can be established by the pseudo-instruction
DOC. which is discussed below.

A convenient symbol for the programmer to use to re­
present a decimal number may often be the alphabetic
representation of the decimal number.

Symbol

THREE

Operation

DEC

Operand

3

4. DDt The pseudo-instruction DOC (D:mble Decimal)
is used to establish decimal constants larger than
524,287. For example, the decimal number 576,897
which is referred to symbolically as constant 1 is es­
tablished as follows:

Symbol

CONSTI

Operation

DOC

Operand

576897

The assembly program converts the decimal number
576897 to a double length binary word.

If the decimal constant is larger than the eight digit
positions allowed for the operand field, the digits in
excess of eight are written on the next line of the
operand field.

Symbol Operation

CONST2 DOC

Operand

-1234567
89

5. lEND The pseudo-instruction END (End of Program)
indicates the end of the program to be assembled. END
causes all instructions to this point to be output as well
as a control record indicating where to start the pro­
gram.

Operation Operand

END 400

The memory address 00400 is converted to binary and
output in the control record. It indicates the origin
of the program.

6. Ott The pseudo-instruction OCT (Octal) converts
up to seven octal digits into a binary equivalent. These
digits are left justified prior to conversion.

Symbol

CONSTI

Operation

OCT

Operand

0371652

OCT converts 0371652 from octal into its binary equiv­
alent and stores it so that the symbol CONSTI can be
used as the memory address where the binary con­
stant is stored. The programmer may use a negative
octal number in which case seven octal digits and the
minus Sign are written in the operand portion:

·49-

Symbol

CONST2

Operation

OCT

Operand

-0371652

As in the previous example, the symbol CONST2 can
be used as the memory address where the binary equiv­
alent of the stated octal number is stored. The effect
of the minus sign is to place a 1 bit in the zero bit posi­
tion of the word.

7. 01.6 The pseudo-instruction ORG (Origin) is used
to indicate the location of the first instruction of the
program when it is stored in memory. ORG can be
used in the program as many times as deSired. For
example, assume that the first ORG directs that the
program is to be stored in successive memory loca­
tions starting at location 00400. After 200 memory
locations are filled with program steps, however, the
rest of the program is to be stored starting at loca­
tion 01000.

Operation

ORG

ORG

200 program
instructions

Operand

400

1000

The memory locations between 00600 and 01000 are
not used for storage of the program.

The memory address of ORG may be symbolic as wen
as decimal. The definition of the symbol must precede
this use of the symbol as illustrated below.

Symbol

A

Operation

EQU
ORG

Operand

512
A

The pseudo-instruction EXtU establishes that the symbol
A is equal to memory location 00512. The pseudo-in­
struction ORG sets the value of A (1. e., (0512) as the
origin for the storage of the program in memory.

8. I.IEM When the pseudo-instruction REM (Remarks)
is in the operation field, the programmer's remarks
immediately following are not processed by the assem­
bly program:

Operation

REM

Operand Remarks

Programmer's
remarks

PROGRAMMING MANUAL

t"
?

~ ,..,
~
~
c.n

."

'" 8
~
~
Z
G'l
~ » z
c » .-

GENERAL fJ ELECTRIC GE 225 CODING SHEET

PROBLEM:

WRITTEN BY:

-

SYMBOL OPR OPERAND X REMARKS

11 I I I 16 81 110 121 I I I I I ~. 20 22

I$L4 18 1010 D 1E 1C 14 ,8,0,0,0,0,

, ,Z,E,R,O D,E,C , , , , , ,0,

, , , , , , , , , , , , , ,
, ,F, I ,CIA D,L,D ,Y,T,D, , , , LOAD YEAR-TO-DATE IN A AND Q

1 1 , , , D,C,U ,$,4,8,0,0, , SUBTRACT $4800

, , , , , B,P,L , , , , , , , TEST FOR PLUS

J L , 1 , B,R,U ,M,A,I,N, , , NO FICA DEDUCTION. GO TO MAIN PROGRAM.

, , , , , D,L,D ,$,4,8,0,0, , LOAD $4800

, , , , , D,S,U , ,Y,T,D, , , SUBTRACT YEAR-TO-DATE

--L-L-L.Ll
D,S ,U , , ,C,E, , , SUBTRACT CURRENT EARNINGS

, , , , , B,P,L , , II , , , TEST FOR PLUS

, , , , , D,L,D ,Z,E,R,O, , , ALL CE TAXABLE. CLEAR A AND Q

~~ , , , D,A,D , , ,C,E, , , ADD CURRENT EARNINGS

, , , , , F~O,M ,T¥I~ ~O~NT?~ F,ICA TAX WILL BE COMPUTED ON THAT PORTION OF CURRENT

, , , , , EfR,NINqS ~,R~91~T~RS A AND Q.

~ L , I , , , , , II , , ,

, , , , , , , , , , , , , ,
, , , , , , , , , , , , , ,
I I , , , , , , , , , , , ,
, , , , , , , , , II , , ,

, , , , , , , , , , , , , ,
, , , , , , , , , , I , , ,

, , , , , , , , , I I I , I

, , , , I I I , , , , , , ,

, , , I I I I I I I I I I - ----_. -- - - - -

Figure 17 GE 225 Coding Sheet Example

PAGE OF

SEQUENCE

75761 I I 18c

, , , ,
, , , ,
, , , ,
, I , 1

, , , ,
, , , ,
, , , ,
, , , ,
, , , ,
, , , ,
, , , ,
, , , ,
, I , I

, , , ,
, , , , I

, , , , I

, , , , I

, , , , I

, , , , I

, , , , I

, , , , I

, , , ,
, , I I

, , , ,
, I , I

The programmer's remarks appear only on a printed
list which is produced as part of the assembly process.

9. TeO The pseudo-instruction TCD (Transfer Control
Data) outputs all instructions to this point in the program
and then outputs a control record just as does the
pseudo-instruction END. TCD, however, does not
indicate end of assembly. TCD allows the table of
symbols to be carried over to the next assembly. This
permits the assembly of more than one program using
the same basic constants. The operand address of
TeD indicates the starting address for the program.

Operation Operand

TCD 500

The 500 is converted to binary and indicates the origin
of the program. This location is punched on the con­
trol record.

•

EXAMPLE- (page 50)

This example illustrates the decisions which are requir­
ed in the calculation of Social Security (FICA) tax during
payroll computations. Assume that payroll data (repre­
senting an employee master payroll record) is in mem­
ory. If Year-to-Date (before current week's earnings)
gross pay is equal to or greater than $4800, control is
transferred to the main program since no additional
FICA will be deducted (this year). Should this first test
indicate that either all or a portion of this week's pay is
taxable, the new YTD gross pay is computed (old YTD +
this week's current earnings) and subtracted from the
$4800 limit to determine whether all or just a portion
of this week's earnings are taxable. If this second test
indicates that the entire week's pay is taxable, the A
Register will be cleared, and this week's entire current
earnings loaded into A for subsequent tax computation.
If this second test indicates that only a portion of this
week's pay is taxable, the taxable portion is computet'
and left in the A Register for further computation. Thus
for example, if old YTD = $4750, and this week's CE
$125, only $50 of this week's pay is taxable; the remair
ing $75 exceeding the $4800 limit.

GE225----------------------------------~PR~OO~AAMM~~'N~G~~~N~UA~L
-51/52-

..

F. CONTROL CONSOLE OPERATION

The primary function of the Control Console is to pro­
vide an indicating control center for the computer oper­
ator from which he has visual representation and man­
ual control of operation of the system.

The Indicator Panel, consIsting of display lights of the
A, I and P Registers and various alarm and ready
status indicators, occupies the upper three quarters of
the Control Console; the Control Panel occupies the
lower quarter.

iNDICATOR PANEL

1. Three registers are displayed by lights on the indi­
cator panel:

a) The thirteen-bit P counter.
b) The twenty-bit I Register.
c) The twenty-bit A Register.

2. Switches:

a) The Save P switch inhibits the normal advance
of the P Counter so that the contents of the P
Counter are retained and the execution of the
addressed instruction is repeated. This switch
is used primarily for maintenance purposes.

b) The Reset A switch clears the A Register; i. e. ,
sets it equal to zero. This switch has no effect
when the Auto-Manual switch is in the automatic
position.

c) Twenty switches are provided to set up auy one­
word bit configuration into the A Register. These
switches each have :3 pOSitions which have the
fonowing significance:

UP - If the Auto-Manual switch is in the
Manual position, a 1 bit is set into
the corresponding A Register posi­
tion. If the Auto-Manual switch is
in the automatic pOSition, there is
no effect. The UP poSition is spring
loaded and will return to the CENTER
position when released.

CENTER - No effect.

DOWN - When placed in the DOWN position,
the switch will not return to CEN­
TER when released. In this posi­
tion the switches may be "read" by
the RCS instruction as discussed in
the instruction repertoire.

3. Ready Lights (GREEN):

a) The Card Reader Ready light indicates the card
reading equipment is ready to operate; 1. e., the
card hopper is not empty and a card reading
operation is not currently being performed.

b) The Card Punch Ready light indicates the card
punch equipment is ready to operate; 1. e., the
card hopper is not empty, the stacker is not full,
a card is located at the first punch station, and
a card is not currently being punched.

c) The N Register Ready light indicates that the N
Register is available for input-output.

4. Alarm Lights (RED):

a) The Priority alarm light indicates that the Cen­
tral Processor has lost priority (access to the
memory). This indicator will also be turned on
when the Central Processor is operating in the
Manual mode.

b) The Parity alarm Ught indicates a parity error.

c) The Overflow alarm light indicates overflow in
the Arithmetic Unit (1. e., its capacity has been
exceeded) or overflow in the A Register as the
result of a shift left instruction. The computer
does not halt.

d) The Card Punch alarm light indicates an attempt
to execute a WCB or WCD instruction when the
Card Punch is not in the ready condition. The
computer halts.

e) The Card Reader alarm light indicates an at­
tempt to execute It RCB or RCD instruction when
the Card Reader is not in the ready condition.
The computer halts.

225 __ ~p~ROG~~~~~'~N~G~MA~N~U~A~l
·53·

000

A 000

@@

o
o

p

1 B Control Console

-54-

i) The Card Feed alarm indicates an att'2m]pt
to execute a RCB or instruction when no
card has been jJV<nuvu<, ... on the 0"","""",,,,
and the or if a misieed
occurs halts.

(ONTIOL PANEL

L Push Buttons

a) The two left-most buttons are the '-'V'UjJC, • .,4

Power On and Power Off controls.

bJ The Reset Alarn:l button resets all
alarms. This switch is effective when the
Auto-Manual switch is in Manual P"",,,"vu.

c)

d) The Reset P
L e., sets it

button clears the P ,",'-'1..111'".,4

to zero.

e) The push button allows
ation the when
switch to the left it is in the manual V'J,nUVH.

otherwise it starts the into automatic

f) The A-I push button transfers the contents of
the A into the I An instruc-
tion can be set in the A means of
the available then tr::msfeI'red
to the I This switch has no effect in
the Automatic mode of "n.""~'~'rm

g) The XAQ
formation the A and Q

the contents of A
of Q goes into A.

in the automatic mode of ","p,-;.,,,

2. Switches

a) When the Auto-Manual switch is in the automatic
the executes instructions in

When the switch

instructions in a
from one to the next each
button is The exact
cedure followed in the manual
is determined by the position of the switch dis­
cussed below.

the next instruction to be ex-
will the

b) v,,'hen the Instruction-OE switch is in the Instruc-
tion one instruction is executed each
time the button is When the
switch is in OE
one word time
the button is
is intended for maintenance use

c) The
alarm.
On

switch is concerned with parity
The switch has two (1) Stop

Alarm which the for
any error and (2) Norm which does not

the when there is a parity error.
switch will be in the Norm JJV''''''_VU

when the program run has been nr,eD<tred
to take remedial action when any parity error
occurs. This to continue
without

The GE 225 is a transistorized system and repre-
sents a new standard of in commercial com-
puter is assured by built-in

circuits that check the loss of infor-

is to reduce the occurrence
of undetected errors to zero.

such routines is made
For

of ",<,""""",1<.;
is set. This indicator may be by the pro­
grammer using a branch instruction which then routes
the to a recovery routine. The recovery rou-

be to the tape and
att:enlpi to reread any number of times at the '''1',(\(1',.'',rn
mer's discretion. If the error

a media error would}, then and then would
an error halt be The remainder of the

and treats the halted unit
AtitenLticin Indicator will be prom­

dum!:l.v€~d on the appropriate control

The Central Processor Control Panel contains a switch
which controls the action upon the occurrence of
errors. In the position the computer win halt on
an error. In position an error will not

cause a halt. The switch will be placed in the ~~_
PO:sitiLon when a recovery routine has been programmed.
This to continue without interrup­
tion.

The of errors may be encountered:

1. Media Error

2.

3.

An
an or medium. On an input UH',U.UU<,

thl.s error is non-recoverable. On an me-
the character may be erased and rewritten.

Error

A non-existent operation code or incorrect unit
address selection.

Transmission Error

An information error
transmission between units.

4. Unit Operating Error

58-

Information or control error
a unit.

within

H. PROGRAMMING NOTES

Figure 19 Central Processor

PROGRAMMING MACHINE CALCULATIONS
Conversion Routines

An calculations within the computer deal with num­
bers represented as binary numbers. SillCe input data
will normally be represented as binary ooded decimal
(BCD) numbers, it wID be necessary to convert binary
coded decimal (BCD) numbers to binary numbers before
the calculations are performed. Likewise, the results
of calculations are expressed as binary numbers. It
will be necessary to convert the binary result to a bi­
nary coded decimal (BCD) number in order to print
or punch the number as a decimal. The programmer
wID have to provide for this conversion of numbers.
Conversion is facilitated, however, by "package rou­
tines" which are available with the GE 225. The pro­
grammer utilizes the package routines by specification
on the "calling sequence". For example~ the calling
sequence for a BCD to binary conversion assuming
punched card input would be specified as follows.

Instruction Word
Location Operation Operand Modification

SPB Sub- routine origin 1
DEC Card image origin
DEC Card column starting

location
DEC Field size
BRU Error return
Normal return

If there is a BCD number starting in card column 19

GE225
·59·

and ending in card column 25 and the card image origin
is at 0128. the calling sequence would be:

Instruction Word
Location Operation Operand Modification

A
A+l
A+2
A+3
A+4
A+5

SPB Sub-routine origin 1
DEC 0128
DEC 19
DEC 7
BRU Error sub-routine origin
Normal return

The converted BCD number wUl appear in the "A" and
"Q" registers as a double precision binary number.
The least significant half will be in 'Q" and the most
Significant half will be in "A". The field size of the
number to be converted is limited to 11 digits.

The calling sequence for binary to BCD conversion
assuming punched card output would be specified as
follows:

Location

A
A+l
A+2
A+3
A+4
A+5

Instruction Word
Operation Operand Modification

SPB Sub-routine origin 1
DEC Card image origin
DEC Card column ending
DEC Field size
BRU Error return
Normal return

PROGRAMMING MANUAL

If there is a binary number contained in the A and Q
registers which is to be converted into a BCD num­
ber starting in card column 18 and ending in card col­
umn 23, and the card image origin is at 0128, the call­
ing sequence would be:

J.nstrucUon Word
Location Operation Operand Modification

A
A+1
A + 2
A+3
A+4
A+5

SPB Sub-routine origin 1
DEC 128
DEC 23
DEC 6
BRU Error sub-routine origin
Normal return

If the field size specified is larger than the number
of digits produced, the remaining positions of the field
will contain leading zeros. If the integer is negative,
the 11 punch will be placed over the units position of
the card field.

Double Length Operations

The programmer may specify the use of other sub­
routine packages which will be available with the GE
225. For example, a subroutine will be available to
accomplish multiplication of2word-length numbers
by 2 word-length numbers. The double multiply sub­
routine is utilized as follows:

DOUBLE MULTIPLY

If the multiplicand is in the A and Q Registers .. the least
significant half in Q, the most significant half in A, the
calling sequence for the double multiply subroutine
would be:

Location Operation Operand Modification

SPB Sub-routine origin 1
Normal return

Product will appear at locations 4090, 4091, 4092 and
4093 with least significant half in 4093-4092 and most
Significant half in 4091-4090. Multiplier must be in
location 4094 and 4059; least Significant half in 4095,
and most significant half in 4094.

If a double length word is being multiplied by a single
length word .. the single length word should be the mult­
iplier in location 4095 and zeros in location 4094. Re­
sult will be a maximum of 3 word lengths: 4091; 4092
and 4093. Also .. a sub-routine will be available for
the division of 2 word-length numbers by 2 word-length
numbers. The double division sub-routine is utilized
as follows:

DOUBLE DNISlON

If the dividend is in A and Q with the least significant

GE225
-60-

half in Q and the most Significant half in A, the calling
sequence for the double divide sub- routine would be:

Location Operation Operand Modification

SPB DDV 1
LDA DNISOR
LDA REMAINDER
Normal return

The quotient will be in A and Q with the least significant
half in Q and the most significant half in A. The re­
mainder will be stored in two consecutive locations
addressed by the operand of A + 2. The Divisor is in
two consecutive locations addressed by the command
in A + 1.

The equivalent of the double multiply subroutine and
double divide subroutine is provided for addition and
subtraction by double length add and double length sub­
tract commands. Because of their more frequent use,
these instructions are provided as part of the normal
command repertoire of the computer.

The path of information transfer during arithmetic
calculations with single word length instructions is
from main memory to the A register and from the A
register to main memory. one word at a time. Access
to the Q register required in multiplication and division
is achieved through the A register. The double length
add .. double length subtract, double length load, and
double length store commands provide the program­
mer with extra facility to transfer two words of data
between the main memory storage areas and the A and
Q registers. The double length commands must spec­
ify even numbered memory locations.

Overflow

A value stored in the core memory may be added to.
or subtracted from, the contents of the A register.
The capacity of the A register may be exceeded in
execution of add, subtract. or m ultipl~ commands.
J.n·thls event, the overflow indicator is turned on, the
high-order bit of the result is lost, and the sign of the
result is reversed. Overflow may also occur in the
divide command; for which. see below. Examples of
ii'ii'i'ii:rY arithmetic may be found in the Appendix.

Multiply Command

It will be noted that the multiply command adds the
contents of the A register to the product of the num ..
bel' in the Q register and the number in the specified
memory location. Therefore, for normal multiplica­
tion it is necessary to replace the contents of the A
register with zeros. The MAQ instruction loads zeros
into the A register and also moves the multiplicand to
the Q register. This instruction would normally be
used in the program before a multiplication command.

PROGRAMMING MANUAl.
•

Divide Command

In order to divide correctly. the absolute value of the
divisor must be greater than the absolute value of that
portion of the dividend in the A register. If this rule
is Violated, the overflow indicator win be turned on.
Therefore, the programmer should interrogate the
overflow indicator and program a procedurE:> to deal
with overflow if there is a possibility of violating this
rule.

Scaling

The movement of the deCimal point to the right or left
in order to properly align numbers is called "scaling"
or "decimal positioning". Before numbers can be cor­
rectly added or subtracted in the computer the number
of places to the right of the decimal point of both num­
bers must be the same. For example; in order to add
3.0 to 4.16 one must first arrange 3.0 to correspond to
3.00 and then add. If the decimal point is moved to the
right in order to prepare for calculations .. the number

225

is "scaled to the right"; if the decimal point is moved
to the left~ the number is "scaled to the left" •

When two numbers are multipliedl the number of places
to the right of the decimal point in the product is the
sum of the places to the right of the decimal point in
both the multiplier and the multiplicand. If it is de­
sired to scale the product (which is expressed as a
binary number), the product must be divided by a con­
stant that is the binary equivalent of the appropriate
power of 10.

Rounding

After a calculation bas been com pleted .. it is common
to round the result to the next highest integer. "Round­
ing" is accomplished by adding a "5" into the position
adjacent to the position to receive any carry. Since,
within the GE 225 .. all calculations are performed with
binary numbers; the proper rounding factor of "5" is
expressed in binary and is carried as an appropriate
constant within memory. After the round factor is
added, the positions to the right of the position which
receives any carry are deleted through scaling.

PROGRAMMING MANUAL

-61-

CE225

CALCULATIONS ON DATA STORED WITHIN THE 225

LDA

Load A register
store A register
Add
Subtract
Multiply
Divide
Double Length Add
Double Length Subtract
Double Length Load
Double Length Store
Move A to Q
Load Zero
Branch on Overflow
Branch on Zero

Y LOAD A

LDA
STA
ADD
SUB
MPY
DVD
DAD
DSU
DLD
DST
MAQ
LDZ
BOV
BZE

The contents of Y (s, 1-19) replace the contents of A (s, 1-19). The contents of
Yare not changed.

STA Y STORE A

The contents of A (s, 1-19) replace the contents of Y (s, 1-19). The contents of
A are not changed.

ADD Y ADD

The contents of Y (s, 1-19) are algebraically added to the contents of A (s, 1-19).
The result is placed in A (s, 1-19). The contents of Yare not changed.

SUB Y SUBTRACT

The contents of Y (s, 1-19) are algebraically subtracted from the contents of A
(s, 1-19). The result is placed in A (s, 1-19). The contents of Yare not changed.

MPY Y MULTIPLY

The overflow indicator is turned OFF. The contents of Y (s, 1-19) are algebraic­
ally multiplied by the contents of Q (s, 1-19). The result is placed in A (s, 1-19)
and Q (s, 1-19), the Sign of Q is the same as the sign of A. If the contents of A
are not set to zero before the MPY command is given, the contents of A will be
added algebraically to the least significant half of the product. Thus, with proper
scaling, it is possible to form the val ue AB plus C. If overflow occurs, the over­
flow indicator will be turned ON. If no overflow occurs, the overflow indicator
will be left OFF after this command is executed.

DVD Y DIVIDE

The contents of A (s, 1-19) and Q (1-19) are algebraically divided by the contents
of Y (s, 1-19). The quotient is placed in A (s, 1-19); the remainder will be in Q
(s, 1-19). The sign of the remainder is the sign of the dividend. The overflow in­
dicator will be turned OFF when execution of the DVD command is complete The
magnitude of the divisor must be greater than the magnitude of the contents of A.
If not, the overflow indicator will be turned ON and control will be transferred to
the specified next instruction

DAD Y DOUBLE LENGTH ADD

If Y is even, the contents of Y (s, 1-19) and Y + 1 (1-19) are algebraically added
to the contents of A (s, 1-19) and Q (1-19). If Y is odd, the contents of Y (s, 1-19)

PROGRAMMING MANUAL

-62-

GE225

and Y (1-19) are algebraically added to the contents of A (s, 1-19) and Q (1-19).
The result is placed in A (s, 1-19) and Q (1-19). The sign of Q is set to agree with
the sign of A. The contents of Y and Y + 1 are unchanged. If this instruction is
automatically modified, the address after modification will determine the result
as indi cated above.

DSU Y DOUBLE LENGTH SUBTRACT

If Y is even, the contents of Y (s, 1-19) and Y + 1 (1-19) are algebraically sub­
tracted from the contents of A (s, 1-19) and Q (1-19). If Y is odd, the contents of
Y (s, 1-19) and Y (1-19) are algebraically subtracted from the contents of A (s,
1-19) and Q (1-19). The result is placed in A (s, 1-19) and Q (1-19) The sign of
Q is set to agree with the sign of A The content s of Y and Y + 1 are unchanged
If this instruction is automatically modified, the address after modification will
determine the result as indicated above.

DLD Y DOUBLE LENGTH LOAD

If Y is even, the contents of Y (s, 1-19) and Y + 1 (s, 1-19) replace the contents of
A (s, 1-19) and Q (s, 1-19). If Y is odd, the contents of Y (s, 1-19) replaces the
contents of A (s, 1-19) and Q (s, 1-19). The contents of Y and Y + 1 are unchanged.
If this instruction is automatically modified, the address after modification will
determine the result as indicated above.

DST Y DOUBLE LENGTH STORE

If Y is even, the contents of A (s, 1-19) and Q (s, 1-19) replace the contents of Y
(s, 1-19) and Y + 1 (s, 1-19). If Y is odd, the contents of Q (s, 1-19) replace the
contents of Y (s, 1-19). The contents of A and Q are unchanged. If this instruc­
tion is automatically modified, the address after modification will determine the
result as indicated above

MAQ MOVE A TO Q

The contents of A (s, 1-19) replace the conterts of Q (s, 1-19). Zeros replace the
contents of A (s, 1-19)

LDZ LOAD ZERO INTO A

The contents of A (s, 1-19) are replaced by O's.

BOV BRANCH ON OVERFLOW

If the overflow indicator is ON, the indicator is turned OFF and the computer takes
the next sequential instruction. If the overflow indicator is not ON, the computer
skips the next instruction and executes the second sequential instruction.

BZE BRANCH ON ZERO

If the contents of A (s, 1-19) are zero, the computer takes the next sequential in­
struction. If the contents are not zero, the computer skips the next instruction
and executes the second sequential instruction. The contents of A are unchanged
by this instruction.

EXAMPLES

1. Add the number in storage in memory location 0129 to the number in storage
in memory location 0257. Store the result in memory location 0257.

1000
1001
1002

LDA
ADD
STA

0219
0257
0257 I Add 2 numbers and store the sum.

PROGRAMMING MANUAL

-63-

located in memory locations 0129 and 0257 will be as
Later material on of data will provide for conYers-

ion of coded decimal data to numbers. The load A command loads
the number in memory location 0129 into the A The command in
at 1001 will add the number in at 0257 to the contents of the A
The addition of the number in 0129 to the number in 0257 Or!}cttlCes c,,,,,,,, .. y

result as the addition of the same n'lt",a<,.,,,,

nr,p"'~;f'n as decimal numbers. The store A command the contents of
the word in at location 0257 with the sum oUhe numbers in 0129 and 0257.
The number stored at 0257 will be represented as a number. Later ma-
terial on of data will for conversion of num-
bers to binary decimal nUlnb!ers

1000
1001
1002
1003
1004

LDA
ADD
BOV
BRU
STA

0129
0257

3200
0257

test the result of the addition to determine whether
the numbers in 0129 and 0257 exceeds the """J"''''U;Y

of the A is transfer

Add 2 numbers

Test for overflow and transfer

store the sum

If the results of the addition exceed the the overflow
indicator will be turned on. The overflow lHUH;.,'H),/. does not machine oper-
ation unless it is the The command in at location
1002 will the If the indicator is on, control will be
transferred to the command in at 1003. If the indicator is not on, control
will continue with the command in at 1004.

3. Write the necessary commands to reconstruct the sum as a double precision bi­
nary when overflow occurs. Hold the reconstructed double num-
ber in the A and Q and program a "halt".

3200 SRD 1 } Reconstruct as a double
3201 CBS number in A &: Q
3202 SRD 18

1
HALT 3203 BRU 3203

3204 DST 0256 Store the double result and
3205 BRU 1005 continue.

at 3200, 3201 and 3202 win reconstruct the sum as a
double number in the A and Q The BRU connnand at
3203 will execute a continuous branch to itself and will be sus-
Oe!lO:C'Q until there is intervent iOll from the console. Whell further is
"'''',''Heu the console must put the GE 225 in "manual" and cause a branch
to the command at The command at 3204 will cause the double
result to be stored and a transfer to the command at 1005 to conUnue pro".""""""

4. One positive nlllnher. X, occupies two memory locations at 0130 and 0131. An-
other two memory locations at 0258 and 0259.
Add A to B and store and 0259.

1000
1001
1002

DLD
DAD
DST

0130
0258
0258 1

Add 2 numbers and store the sum

The double length load command loads X into the A and Q The com­
mand in at 1001 will add y to X and the sum will remain in the A and Q
registers. The double length store A command at 1002 win the contents
of the word in at location 0258 and 0259 with the sum of X and Y.

-64-

MANUAL

5. Subtract the number stored in memory location 0257, from the sum of X and
location 0256 with zeros.

the addition of X and Y,
number.

Y. Before the contents of
If the of the and Q is exceeded
transfer control to 3200. Assume that Z is a

998 LDZ
999 STA 0256

} Store zeros in 0256

1000 DLD
1001 DAD
1002 BOY
1003 BRU

0130 } Add 2 numbers 0258

1 3200 Test for overflow and transfer

1004 DSU
1005 DST

0256 } Subtract number from A and 0258
store the difference.

The double subtract command in memory location 1004 wilt subtract Z from
the sum of X and

Since the double
the commands at

and the differenc e wilt remain in the A and Q

subtract command wilt "address" memory location 0256,
and 999 will "set" the contents of 0256 fo zero.

The test for overflow condition is after the addition of X and since
if Z is a the of A and Q wiH not be exceeded as a result
of the subtract command at 1004. The result of X ... Y - Z is stored
in memory at locations 0258 and 0259.

6. the number in memory location the number in memory iocation
Test for the overflow con-10. Store the result in location 0256

dition before and after the command.

638 BOV 1 Test and transfer for overflow
689 BRU 3200
690 LDA 0128

1 691 MAQ Load number and position

692 MPY mno
693 DST 0256

The commands at location 688 and 689 the overflow indicator before
the multiply command is executed to whether the overflow indicator

"set". The number in memory iocation 0128 is loaded into
egJ,,"na and moved to the Q by the commands at locations 690 and

the contents of the A will be replaced with zeros by the com-
mand at location 691. The command will the contents oitha A
and Q the number in location 0010. The product of the two
numbers can exceed the and Q only when both num-
bers are and each represent a maximum value (_ZH,). There-
fore, there is not for the overflow condition after the MPY command.
The is stored at memory iocation 0256 and 0257 by the double length store
command.

7. Divide the number in memory location 0257 by the number in,"' 'u·u

10. store the in memory location 0128. the
for the overflow condition after the divide command is executed.

785 BOY } 786 BRU 3200 Test and transfer for overflow

787 LDA
788
789 DVD
790 BOV
791 BRU
792 STA

0257
}

0010

1 3200
0128

Position 'i,,,JU'.u, and divide

Test and transfer to overflow
Store 1'1",-.t1'''nt"

-65·

PROGRAMMiNG MANUAL

GE225

The dividend is loaded into theA register and moved to the Q regIster by the com­
mands in memory locations 787 and 788. Also, the contents of the A register wilt
be replaced with zeros by the command at location 788. The divide command will
divide the contents of the A and Q registers by the number in memory location
0010. The magnitude of the divisor must be greater than the magnitude of the por­
tion of the dividend in the A register. If not, the overflow indicator will be turned
on and control will be transferred to the command in storage at 3200. The diVidend
is stored in memory location 0128 by the command in memory at 792. The re­
mainder, if any, will appear in the Q register and will be disregarded.

PROGRAMMING MANUAL

·66·

GE225

SHlmNG, 10UNDiNG AND AIIANGEMENT OF DATA FOI MACHINE CALCULATIONS

SLA

Shift Left A
Shift Right A
Load A from Q

K SHIFT LEFT A

SLA
SRA
LAQ

The contents of A (1-19) are shifted left K places. Vacated positions of A are filled
with zeros. If a non-zero bit is shifted out of position 1, the overflow indicator will
be turned ON, and the bit is lost. The sign of A is unchanged.

SRA K SHIFT RIGHT A

The contents of A (1-19) are shifted right K places. If A is plux, O's are inserted
in the vacated positions of A. If A is minus, I's are inserted in the vacated posi­
tions of A. Bits shifted out of position 19 are lost. The sign of A is not changed.

LAQ LOAD A FROM Q

The contents of Q (s, 1-19) replace the contents of A (s, 1-19). The contents of
Q are unchanged.

EXAMPLES

1. Move the binary P-Qint of the number in location 0128 one place to the left. (Mul­
tiply the bin:;u:ynUiriber in memory location 0128 by 2.)

0600
0601
0602
0603

LDA
SLA
BOV
ERU

0128
0001

3200

}
}

Load and shift left 1 binary position

Test and transfer for overflow

The binary number in location 0128 is loaded into the A register by the command
in storage at 0600. The shift of a binary number to the left will increase the ma­
gnitude of the number by a power of 2 for every place that the number is shifted
to the left. If the number exceeds the capacity of the A register after the number
is shifted the overflow indicator will be turned on and control will be transferred
to the command in storage at 0603.

2. Move the binary_p.oint of the number in location 0129 one place to the right..
(Divide the binary number in memory location 0129 by 2.) Assume any remaind­
er is lost.

0600
0601

LDA
SRA

0129
0001 } Load and shift right

The binary number in location 0129 is loaded into the A register by the command
in storage at 0600. The shift of a binary number to the right will decrease the
magnitude of the number by a power of 2 for every place that the number is shifted
to the right. DiVision win net increase the magnitude of the number, and therefore,
the overflow indicator will not be turned on.

3. Move the decimal p'oint of the number in iocation 0128 one place to the left.
(Multiply the number in location 0128 by 10). Assume that the number in 0128
represents an integer expressed as a binary number.

3999 DEC 10 00000 00000 00000 01010

0600 LDA 0128

} 0601 MAQ Multiply by constant of 10
0602 MFY 3999

PROGRAMMING MANUAl..

·67·

The binary number in location 0128 is loaded into the A by the command
in at 0000 and moved to the Q the command at 0601.
plication of a number other a power of 2 is "'t::'cV,LUV""'lCU

command the of the '"'''''''''1'''''''''
location 0602 "addresses" the

The Generalized will
ary constants for use in the n1'{,,"""
will create the
result as the shift of a ae,Clll[U:U ;nt,,,,,,,,,,,.

4, Move the of the number in location 0128 one to the
(Divide the ~~~ lOc:ax:wn 0128 Assume that the number in 0128 re-

as a number, Assume any remainder is

3999

0600
0601
0602

DEC

LDA

mv

10 00000 00000

0128
Divide constant of 10

03999

The binary number in location 0128 is loaded into the A
in at 0600 and moved to the Q the command

number other than a power 2 is the divide
equivalent of the dIvisor, The divide command at location

of 10 at location 3999, The in the
the same result as the shift of a decimal one

5, The number in location 0128 is an lnt,eQ'E~r p'ltnT'A<:,'lArI

to the of the decimal.
as a numoor with 3 to the of the decimal
in location 0128 to the number in location 0130 and store
in location 0132,

3999 DEC 10 00000 00000

0600 LDA 0128

00000 01010

0601 MAQ } Multiply by constant of 10
0602 MPY 3999
0603 1 Position number in A
0604 ADD 0130 } Add 2 numbers and store the sum,
0605 STA 0132

at 0600, 0601 and 0602 the
Sp~eCl!1ed in 3 ahove. After the decimal

ber in location is moved one to the
for addition with the number in The
the A in for the addition, The commands in M",nU'M

and will the number in at 0130 to the contents of the
and store the results in location 0132,

6, Assume that X

3996
3997
3998

DEC
DEC
DEC

o
50
100

00000
00000
00000

·68·

memory location 0130, X is an

00000
00000
00000

r<llC}r€~SentE!Ci as a bi-

00000
00001
00011

00000
10010
00100

0600 LDA 01S0
0601 Multiply 2 mnnbers
0602 MPY 0131
0603 DAD 3996 Add round factor
OS04 DVD 3998

1 constant of 100 and store 0605 STA 0258

PROGRAMMING MANUAL

CE22S

CONVERSION OF NUMERIC BINARY CODED DECIMAL DATA TO BINARY FORM
(FROM CARD INPUT)

Assume that a binary coded decimal number starts in card column 20 and ends in
card column 26 and the card image has been read in beginning in memory location
0128. Write the "calling sequence" to convert the number to a binary number.
Assume that the appropriate conversion routine is in storage beginning at loca­
tion 3700. Branch to the command at 3000 if an error should be generated dur­
ing the conversion routine.

0700
0701
0702
0703
0704

SPB
DEC
DEC
DEC
BRU

3700
0128
0020
0007
3000

1 Transfer to conversion subroutine

I Calling sequence

The SPB command in storage at 0700 will transfer control to the first command
in the conversion subroutine in storage at 3700. The location of the SPB command
is preserved in modification word 1. The operation of the DEC command is ex­
plained in the section on the General Assembly Program (GAP 225). The com­
mands in storage at 0701, 0702 and 0703 will provide binary equivalents of the
decimal integers 0128, 0020 and 0007. The utilization of the integers expressed
as binary numbers is illustrated in example 2 in the section on Subroutine Pro­
gramming.

If there is an error in the calling sequence specification, for example, an attempt
to convert a (binary coded) decimal field of more than 11 digits. control will be
transferred to the command in storage at 0704. After a number is converted, con­
trol will be transferred to the command in storage at 0705.

When the conversion is accomplished, the converted number will appear in the A
and Q registers. The least Significant word of the 2 word binary number will ap­
pear in the Q register; the most Significant word will appear in the A register.
The conversion routine will properly interrogate the least Significant character
position of the card field and produce a negative binary number if this position
contains the appropriate overpunch (11 punch in Hollerith code).

PROGRAMMING MANUAL

-70-

CE22S

CONVERSION OF BINARY DATA TO NUMERIC BINARY CODED DECIMAL FORM
(FOR CARD OUTPUT)

Assume that an integer is expressed as a binary number contained within the A and
Q registers and that it will consist of no more than 9 digits when converted to a
(binary coded) decimal number. Write the "calling sequence" to convert the num­
ber and store the binary coded decimal number in a 9 digit field ending in card
column 25. Assume that the card image begins in memory storage at location 0128
and that the appropriate conversion routine is in memory storage at location 3300.
Branch to the command at 3100 if an error should be generated during the convers­
ion routine.

0640
0641
0642
0643
0644

SPB
DEC
DEC
DEC
BRU

3300
0128
0025
0009
3100

Transfer to conversion subroutine

1
Calling sequence

The SPB command in storage at 0640 will transfer control to the first command
in the conversion subroutine in storage at 3300. The Location of the SPB command
is preserved in modification word 1. The operation of the DEC command is ex­
plained in the section on the General Assembly Program (GAP 225). The com­
mands in storage at 0641, 0642 and 0643 will provide binary equivalents of the
decimal integers 0128, 0025 and 0009. The utilization of the integers expressed
as binary numbers is illustrated in example 2 in the section on Subroutine Pro­
gramming.

If there is an error in the calling sequence specification, for example, an attempt
to store the converted number in a field greater than 11 digits, control will be
transferred to the command in storage at 0644. After a number is converted and
contained within the card image, control will be transferred to the command in
storage at 0645.

When the conversion is accomplished and converted number will appear in coLumns
17 - 25 within the card image in storage. The conversion routine will properly
interrogate the sign position of the binary number (sign of the A register) and, if
the number is negative, produce the equivalent of an overpunch (11 punch in Hol­
lerith code) over the least significant character position of the card field (column
26 in this example .

•

PROGRAMMING MANUAL

-71172-

PROGRAMMING LOGICAL DECISIONS

Perhaps the most important feature of a computer is
its ability to make logical decisions. Naturally> these
decisions can be made only through stored programs
which utilize test and branch commands in the proper
sequence. Frequently I decisions which determine the
paths of processing within a routine are based on the
results from tests on the data being processed itself.
Thus, input records may be categorized by some id­
entification key or factor and processed accordingly.

When large volumns of records are involved, it is usu­
ally more effiCient to prearrange them prior to pro­
cessing. This prearrangement involves the ordering
(sorting) of records by some key. A key is a portion
of the record which is set aside to identify it uniquely
from other records or to categorize it with other re­
cords, according to the nature of the dsta proceSSing
problem. A key is made up of a variable number of
numeric, alphabetic or alphanumeric characters; keys
may range in length from 2 or 3 digits to 20 or more.
When data pertaining to a particular subject (account
1f, employee 4f, or catalog I. etc.) is split up into sev­
eral records, each carried in a separate file, it is
necessary to "match up" the records on the key be­
fore any processing can be done. A common example
is the matching of input transaction records against
records in a master file prior to the posting and up­
dating of information in the master file.

The sequencing and matching of records in accomp­
lished through the comparison of appropriate keys.
In order to match keys or to arrange them in some
standard understandable sequence .. it is clearly nec­
essary to have some system of ranking of all charact­
ers in the "alphabet" of the computer language. Thus,
a system must be established similar to that employed
by dictionaries and encyclopedias by which the letter
A is given lowest rank and the letter Z highest. If the
reader will consider the octal (or equivalent binary)
value for each computer character in BCD mode (see
Character Representation in Appendix). he will see that
viewing each character as a six bit binary number ac­
complishes an automatic ranking. 0 (zero) has the
lowest rank and 'J has the highest. The numbers 0-9
are lower than any other characters; the alphabetics
A-Z are arranged in their normal sequence; and the
special characters are not ordered in any particular
way. Further investigation will show that if any com­
bination of characters is viewed as a pure binary num­
ber and compared to any other combination of charact­
ers viewed in the same way, the combination with high­
est numerical value will be listed follOwing the other
combination if one proceeds to order them in "dic­
tionary sequence" (examining them character by char­
acter from left to right). In this senSe one may say
that a key (whether numeric, alphabetic or alphanu­
meric) of a given record is either equal to, higher
than or lower than the key of another record.

In the GE 225 keys are compared in the following man-

&(225
-73-

ner. One key is loaded into the A or A and Q registers
utilizing the LDA command or the DLD command. The
second key is subtracted from the first key by the SUB
command or the DSU command. and the difference be­
tween the two keys remains in the A or A and Q reg­
isters. If the two keys are exactly equal, the contents
of the A register or A and Q registers will be equal
to zero. Therefore, the BNZ or BZE commands will
be ultized to interrogate the contents of the registers
for zero. However, the BMZ and BZE commands in­
terrogate the A register only. If a test of the Q reg­
ister is required because of a double word length key,
the XAQ command or LAQ command will load A with
the contents of the Q register. The BZE or BNZ com­
mands can then be repeated to test the status of the
second key. Control will either transfer to the next
command, or the command after the next command,
depending upon whether the contents of the A register
is equal to zero.

If the contents of the A register is positive (plus), the
first key loaded must be higher than the second key.
A test for the zero condition should precede the test
for a plus condition since a word of zeros would also
be positive. The A register may be interrogated for
the plus condition by the BPL command. Control will
either transfer to the next command, or the command
after the next command. depending upon whether the
contents of the A register is positive (plus) or nega­
tive (minus). If the contents of the registers is neither
positive nor equal to zero, the contents must be neg­
ative. If control does not transfer as a result of the
zero or plus test, the absolute value of the second key
must be greater than the absolute value of the first
key. The registers may be interrogated directly for
"minus" by the BM! command, or the minus condition
may be assumed if control does not transfer after a
BZE and BPL command.

It is important to note that the keys for matching do
llill have to be converted from BCD to binary numbers
before the LDA, SUB, BZE, BPL, BM! sequence is
executed. Even though the correct algebraic result
will not be obtained from the subtraction, the correct
relative conditions of equality (zero) J high (plus) or
low (minus) will be properly generated. Therefore,
keys do not have to be converted before logical decis­
ions are made.

One of the distinguishing features which take stored
program computers out of the class of desk calcula­
tors and punched card equipment is the power to per­
form calculations on the instructions which govern
the machine's functions. If there is some relation­
ship between memory addresses and their contents,
it is thus possible to compute the operand addresses
of instructions in a program so that data may be moved
about, to and from memory storage, without the use
of the standard test and branch commands described

PROGRAMMING MANUAL

in the previous paragraphs for routing of the informa­
tion. This is a particularly powerful method for table
lookup and table posting operations. If a relationship
does exist between memory addresses and their con­
tents, one can use mathematical terminology and say
that the address is a "function" of the contents. For
this reason the term "function table technique" is often
applied to such programming usage.

The STO command is the chief tool used for this pur-

GE225
-74-

pose. The command permits data to be inserted di­
rectly into the operand address portion of an instruc­
tion SO that the data value itself will determine the ad­
dress selected by the instruction. Since there is no
restriction on the type of instruction that may be thus
modified, the data may determine memory locations
from which other data is extracted or into which other
data is stored, or it may determine the addresses of
other parts of the program to which control is trans­
ferred.

PROGRAMMING MANUAL

GE225

TRANSFER OF CONTROL BASED UPON LOGICAL COMPARISONS OF DATA
WITHIN THE 225

BRU

Branch Unconditionally
Branch on Plus
Branch on Minus
Subtract One
Branch on No Zero

Y BRANCH UNCONDITIONALLY

Control is transferred to the instruction located at Y.

BPL BRANCH ON PLUS

BRU
BPL
BMI
SBO
BNZ

If the sign of A is plus, the computer takes the next sequential instruction. If the
sign of A is not plus, the computer skips the next instruction and executes the sec­
ond sequential instruction. The contents of A are unchanged by this instruction.

BMI BRANCH ON MINUS

If the sign of A is minus, the computer takes the next sequential instruction. If
the sign of A is not minus, the computer skips the next instruction and executes
the second sequential instruction. The contents of A are unchanged by this in­
struction.

SBO SUBTRACT ONE

One is subtracted algebraically from A (19). If the capacity of A is exceeded, the
overflow indicator will be turned ON.

BNZ BRANCH ON NO ZERO

If the contents of A (s, 1-19) are not zero, the computer takes the next sequential
instruction. If the contents are zero, the computer skips the next instruction and
executes the second sequential instruction.

EXAMPLES

1. Compare the word in memory location 0128 with the word in memory location
0256. If both words are equal transfer control to memory location 1500.

1000
1001
1002
1003

LDA
SUB
BZE
BRU

0128 }
0256

1500 }

Subtract in A register.

Test A register and transfer for equal.

If the word in memory at location 0128 is equal to the word in memory at location
0256, the contents of the A register would be equal to zero, and computer control
would continue with the command in memory at location 1003. If the contents of
0128 is not equal to the contents of 0256, control would transfer to the command
in memory at location 1004.

2. In the previous example, if the word in memory at location 0128 is higher than
the word in memory at 0256, transfer control to the command at location 3000. If
the word in 0128 is lower, transfer control to the command at location 3500.

1000 LDA 0128 } Subtract in A register. 1001 SUB 0256
1002 BZE } Test and transfer for equal. 1003 BRU 1500
1004 BPL l Test and transfer for high. 1005 BRU 3000
1006 BRU 3500 } Transfer for low.

PROGRAMMING MANUAL

-75-

If the 'WOrd in memory at location 0128 is than the word in memory at loca-
tion 0258 .. the contents of the A would be and control would continue
with the command in memory at location 1005. If word in at location
0128 is lower than the 'WOrd in at location 0256 the contents the A reg-
ister 'WOuld be minus and control transferred to the command in memory
at location 1006.

in column 1 of an transfer control to a routine
location transfer control to men:l0ry

location 3050; If a 3, transfer to in card column 1 is neither
a 1,2 or 3, continue control with the next command in sej:luemc,e. Assume the card
has been read into memory with the word at

1500 LDA 0128 } Position first card column in A 1501 SRA 0012
1502 SBO \ 1503 BZE Test and transfer for 1.
1504 BRU 3000 I
1505 SBO

} 1506 BZE Test and transfer for 2.
1507 BRU 3050
1508 BBO

} 1509 BZE Test and transfer for 3.
1510 BRU 3075

The contents of location 0123 contain coded decimal
of the code contained in columns 1.2 and 3 of

the 30-column card. The command at location 1500 loads the A
ister with the contents of memory location The shift A command
letes the data from card columns 2 and 3 from the A and shifts the bin-
any coded decimal data from card column 1 into the "low order of the
A 14-19). control will transier the com-
mands If reduction of contents of the A"''''''''''''''''
zero condition for any of 3 tests. If control does oot then the
column 1 is neither a 1,2 or and control will continue com-
mand in memory at location

4. One master file record of 12 words of data is in storage DejgIDnlll,g
at location 0256. One input file transaction record of 8 words

"''''!,,'''H'''''''5 at location 0128. The first 3 words each record can-
Ol' of the the in both files are in as-

~""""",u'" sequence. If all three words of each are transfer control
to the next available location to the master file record. If the in-
put transaction item than master file item transfer control
to the command in to the master file record onto the new
"'p " master file. on the transaction record is lower than the master

transfer control to command at 3200 to create and insert a new mast-
er file record into the file.

0593 LDA 0128
0599 BUB 0256
0600 BZE
0601 BRU 0005 Test and transfer for first word.
0002 BM!
0003 BRU 3200
0604 BRU 3100
0005 LDA 0129
0606 BUB 0257 Test and transfer for second word.
0607 BZE
0608 BRU 0610
0809 BRU 0002 Transfer for oot

-76-

0610
0611
0612
0613

LDA
SUB
BNZ
BRU

where successive vVL"P"U

Test and transfer for third word.

1""'''",,,,,, 0601 will test the first word
If the first words are

LV1IU'n. will he transferred to
,"U,'«A"UH O words of the pro-

1853

YTD Gross r-----------~M .DeductnoFlCA,1

3998
3999

<

Calculate FICA on
Current l',arULH"',",

DEC
DEC

o
480000

0130-0131
0132-0133

1858

Calculate FICA on
- TID Gross

section of the General in the Pl'I"lPT'>lm

show how these two DS4[lUC!O-<.;VJlUUl<URU; result in the
in 3998 and the of 480000 in

GE225

0431 DLD 0130
Load YTD gross pay and subtract 4800.00 0432 DSU 3998

0433 BPL
Test and transfer for no FICA. 0434 BRU 1853

0435 DAD

0132

1

Add current earnings.
0436 BPL Test and transfer for all earnings taxable. 0437 BRU 1858
0438 BRU 1875 Transfer for part earnings table.

The commands in storage at 0431, 0432, 0433 and 0434 Will compare the YTD earn­
ings with the constant 480000 and transfer control to 1853 if YTD earnings are
greater than or equal to this amount. The DAD command will increment the a­
mount in registers A and Q by current weeks' earnings. Testing register A at this
point for a positive Sign is tOe logical equivalent of comparing YTD gross pay plus
current weeks' earnings against the constant 480000 to see if total earnings (in­
cluding this week) are equal to or larger than $4800.00. If so, control transfers
to 1858; if not .. control transfers to 1875 where the FICA tax is calculated on all
of this weeks' earnings.

PROGRAMMING MANUAl..

-78-

..

225

ADDIESS COM'UTATION (FUNCTION TAllIE TECHNIQUES)

Store Operand Address STO

STO Y STORE OPERAND ADDRESS

The contents of A (7-19) replace the contents of Y (7-19). The contents of A and
Y (s, 1-6) are unchanged.

EXAM'lES

1. As successive employee input records are read into memory, the current week's
gross earnings for each employee record will appear in storage at 0132 and 0133.
The employee departmental charge number will appear in each employee input
record in storage at 0134. It is desired that current week's gross earnings be
summarized by departmental charge number in a table which originates at mem­
ory location 0900 and extends to 1099. Departmental charge numbers are repre­
sented by the numbers 100-199. Thus, charges to number 100 should be accumu­
lated in location 900-901, etc., allowing two locations in the table for each depart­
mental charge number. (This may be accomplished by increasing the departmental
charge number to the appropriate value in the 0900 to 1099 range and then storing
this "calculated address" in the operand portion of the instructions which perform
the calculations.) Write the necessary commands to accumulate and distribute the
gross earnings for each employee input record to the correct departmental charge
number at the appropriate location.

3998
3999

DEC
DEC

(2
(700

00000
00000

00000
00000

00000
10010

00010)
11000)

(Explained in General Assembly Program section; results in storage of binary
equivalents of 2 and 700.)

0474 LDA 0134 } Load departmental charge number into A.
0475 MAQ

3998 } Multiply charge number by 2. 0476 MPY
0477 LAQ Add 700 to product. 0478 ADD 3999
0479 STO 0482 Insert address into commands at 482 and 483. 0480 STO 0483
0481 DLD 013'j Load current gross earnings.
0482 DAD 0000 Add previous gross and store. 0483 DST 0000

Since the location of the departmental accumulated charges is a function of the
departmental charge number, the location 1s calculated by the direct use of the
departmental charge number itself. The departmental charge number is loaded
into register A by the command at 0474. The departmental charge number is then
multiplied by 2 since the departmental charge accumulations will each occupy 2
locations of storage. After multiplying by 2, it is necessary to increase the de­
partmental charge number by 700 to get the proper value in the 0900 to 1099 range.
This is accomplished by the instructions at 0477 and 0488. The STO commands
is storage at 0479 and 0480 will insert the calculated departmental charge num­
ber location into the operand portion of the commands at 0482 and 0483. The com­
mands in storage at 0481, 0482 and 0483 will now add current week's gross earn­
ings to appropriate departmental accumulated charges.

PROGRAMMING MANUAL

-79·

'IOGIAMMING SWITCHES

EXCHANGE A AND Q

The contents of A

L Transaction cards are
first card is to be read into
into the fourth into
put area by means of a

3998 RCD 0256\
3999 RCD 0128

0150 DLD 3998 }
0151 l
0152 DST 3008t
0153 STA 0156 j

0154 BCN 0154} 0155 BRU
0156 RCD 0000 }
0157 HCR

Continue

iXAM,US

read into memory The
the second card the third

etc. Provide for this alternation of in-

Constant for RCD command.

Load both commands

and store for next use.

Store RCD command.

RCD command.

The DLD command at 0150 will load both RCD commands into the A and Q reg-
isters. The command will the contents of the A and Q ,.P,)"",I""'T''''

and the DaT comm and will store the now RCD commands back
sHion for the next alternation. The STA at 0153 will store the
riaie RCD command in to be executed. The chosen RCD command
be executed when the card reader is material on Card JJ11J'U,"VllllJ'''''

Control will be read the next card the command

assume that alternate cards different
different programs. Write a control routine uti-

0050 BRU 0400
0051 BRU 0300

BRU command t<constants".

0100 DLD 0050 Load both commands.
0101 XAQ
0102 DST 0050

""A"'!l .. :U1~;'" and store for next use.

0103 STA 0104
0104 BRU 0000

0300 BCN
0301 BRU 0300
0302 RCD 0128
0303 HCR Routine for card read into 0128.

process

BRU 0100

PROGRAMMING MANUAL

-80-

GE

0400 BCN
0401 BRU 0400
0402 ReD 0256
0403 HCR Routine for card reacl into 0256.

process

0496 BRU 0100

The commands in storage at 0100, 0101" 0102 and 0103 are equivalent to the com­
mands in storage at 0105, 0151" 0152 and 0153 in the previous example. In this
example the "flip-flop" consists of alternation of branch commands.

PROGRAMMING MANUAL

-81182-

J

MODIFICATION WORD PROGRAMMING

The contents of a modification word may be program­
med to automatically increment the "operand address"
portion of an instruction each time the instruction is
executed. The words in memory storage at 0001, 0002
and 0003 perform the functions of modification words.
These functions include testing and tallying for control
of iterative program loops as well as simple address
modification.

When using these modification words, it is necessary
to "initialize" their setting, which usually means re­
plaCing their contents with zeros, and to periodically
increment the contents of the modification words them­
selves. The contents of a modification word may be
most conveniently replaced with zeros by the LDZ
command followed by the STA command. The operand
address of the STA command will specify the modi­
fication word to be cleared to zeros. The modification
words can be incremented directly by the INX com­
mand. The INX command will increment a modifica­
tion word by the amount contained in the "operand
address" portion of this instruction. The amount may
by specified as a negative number to permit decre­
ments.

It will often by necessary to test the contents of a mod­
ification word to determine the path for program con­
trol to follow. The contents of a modification word
may be tested most directly by the BXH and BXL com-

CE22S
-83-

mands. Control will be transferred to the next instruc­
tion in sequence if the contents of the modification word
are equal to or higher than the test amount in the case
of the BXH command or lower than the test amount in
the case of the BXL command. The BXH commands
are utilized for the testing of modification words only.

Certain commands are not address modified. An ex­
ample is the INX comm and. The operand address
portion of this command is used to contain the amount
by which the contents of a modification word is to be
incremented. The programmer designates the modi­
fication word he wishes to increm ent by entering a 1,
2 or 3 into that portion of the instruction normally
used to indicate automa tic address modification. For
similar reasons, the BXH and BXL commands are not
automatically address modified.

The shift commands may be automatically address
modified. However, the "operand address" of the shift
commands consists of a binary number (length of shift)
equivalent to 31 or less. Therefore, the programmer
should be aware that any "address modification" must
not produce a length of shift in excess of 31 positions.
Certain data transfer commands (MAQ, LQA, XAQ,
etc.) should not be address modified because the "op­
erand address" of these comm ands are not to be uti­
lized by the programmer. Commands for testing (BPL,
BMI, BOV, etc.) should not be automatically address
modified for similar reasons.

PROGRAMMING MANUAL

USE Of THE 225 MODiFICATION WOlDS '01
ADDIESS MODifiCAtiON

....... , ,., nns AND AUTOMATIC

1NX

Increment Modification Word K
Branch if Modification Word is Low
Branch on No Zero

INCRE:MENT X BY K

UU~'"''Jl1''' '1 through 19 of the I are added
and the result the contents of X

7 of X 1s lost. This instruction is not aut.om.aUcail] M""""""'''''.

BXL

are less than
instruction; if the contents of X are than or

the next instruction and executes the second seClue:ntilH

1NX
BXL
BNZ

tents of X are not This instruction is not <tULVU'."",,"U'Y

BNZ BRANCH ON NO ZERO

If the contents of A are not zero, the takes the next se(luenU:al
instruction. If the contents are zero, the COlJt1pulter the next instruction and
executes the second instruction. contents of A are by
this instruction.

0700
0701
0702
0703
0704
0705
0706
0707
0708
0709
0710
0711
0712
0713
0714
0715
0716
0717
0718
0719
0720
0721
0722
0723
0724
0725
0726
0727

pun,Cl1E!U into a card has been read in BCD mode into memory 10ca-
54. Transfer the information from the card area to memory

locations 0256-0282. Do not use address modification.

DLD
DST
DLD
DST
DLD
DST
DLD
DST
DLD
DST
DLD
DST
DLD
DST
DLD
DST
DLD
DST
DLD
DST
DLD
DST
DLD
DST
DLD
DST
LDA
STA

0128
0256
0130
0258
0132
0260
0134
0262
0136
0264
0138
0266
0140
0268
0142
0270
0144
0272
0146
0274
0148
0276
0150
0278
0152
0280
0154
0282

PROGRAMMING MANUAL

The 13 double length load and double length store commands in memory storage
locations 0700-0725 will transfer 26 words of information to the output storage
area; the 27th word is transferred by a single l.ength load and store command.

2. In the previous example, write the program steps required using programmed
address modification.

3996
3997
3998
3999

DEC
DEC
DEC
DEC

o
2
1
13

00000
00000
00000
00000

00000
00000
00000
00000

00000
00000
00000
00000

00000
00010
00001
01101

(Explained in General Assembly Program Section; results in storage of binary
equivalents of 0, 2, 1, and 13.)

0700 DLD 0128 } Move 2 Words of Data
0701 DST 0256
0702 LDA 0700

} 0703 ADD 3997 Modify Location 0700
0704 STA 0700
0705 LDA 0701

} 0706 ADD 3997 Modify Location 0701
0707 STA 0701
0708 LDA 3996

} 0709 ADD 3998 Increment Tally
0710 STA 3996
0711 SUB 3999 } Test the Tally
0712 BNZ
0713 BRU 0700 Go Back to Move 2 Words
0714 LDA 0154
0715 STA 0282

Two words of data are transferred by the commands in storage at 0700 and 0701.
The commands in storage at 0702-0704 will increment the operand or "address"
of the double length load command at 0700. The double length load command wHl
now "address" the next two words to be loaded. The commands in storage at
0705-0707 win increment the operand "address" of the double length store com­
mand at 0701. The double length store command win now "address" the next two
words of storage. The commands in storage at 0708-0710 will increment a "count"
in storage at 3996. When the "count" in storage at 3996 is not equal to 13, control
is transferred back to location 0700. Thus, two more words will be transferred,
and the programmed address modification will be continued. When 26 words have
been transferred, the count will be equal to 13, and control win be continued with
the command in memory at 0714.

3. Write the program steps required in examples 1 and 2 above using the 225 modi­
fication words for automatic address mOdification, tallying and testing.

0700 LDZ
0701 STA 0001
0702 DLD 0128 1 Move 2 Words of Data and Automatic
0703 DST 0256 1 Address Modification
0704 INX 2 1 Increment Tally
0705 BXL 26 1 Test TaUy
0706 BRU 0702 Go Back to Move 2 Words
070'1 LDA 0154
0708 STA 0282

The commands in storage at 0700 and 0701 replace the contents of the word at 0001
with zeros. The commands in storage at 0702 and 0'103 will transfer two words of
data. Before either the command at 0702 or 0703 is executed the contents of the

PROGRAMMING MANUAL

-85-

GE225

modification word will automatically increment the command itself. There are 3
memory locations which are available in the 225 for automatic address modification.
The 3 memory locations available are 0001, 0002 and 0003.

When a command in storage indicates a 1, 2 or 3 in the proper position of the format,
the contents of either word 0001, 0002 or 0003 will automatically increment the
command before it is executed. Automatic address modification is performed
when the contents of memory words 0001, 0002 or 0003 increment the command.
The contents of memory location 0001 automatically increment the commands at
locations 0702 and 0703 because a "1" is inserted into the instruction format in
the proper position. A tally' or "count" is performed when the command in storage
at 0704 adds directly to the modification word in storage at 0001. The "1" in the
proper position indicates addition to the modification word at memory location 0001.
The "2" indicates that a 2 is to be added to the modification word in memory loca­
tion 0001 each time the INX instruction is executed. Testing is performed when the
contents of the modification word at 0001 are compared to a "26". When the con­
tents of the modification word are equal to 26, 26 words have been transferred, and
control will be transferred to the command in storage at 0707. As long as the
contents of the modification word at 0001 are not equal to 26, 26 words have not
been transferred, and control will be transferred back to the command in storage
at 0702.

4. Code example 4 of the Programming Logical Decisions section, Transfer of Con­
trol Based upon Logical Comparisons of Data within the 225, making use of address
modification. A master file record conSisting of 12 words of data is in storage be­
ginning at location 0256. An input transaction record conSisting of 8 words of data
is in storage beginning at location 0128. The first 3 words of each record contain
the identification, or key, of the record, and both files are in ascending sequence.
If all three words of each key are identical, transfer control to the next available
storage location to update the master file record. If the input transaction item key
is higher than the master file item key, transfer control to the command in storage
at 3100 to output the master file record onto the new updated master file. If the key
on the transaction record is lower than the master file key, transfer control to the
command at 3200 to create and insert a new master file record into the file.

0598 LDZ
0599 STA 0001
0600 LDA 0128
0601 SUB 0256
0602 BZE
0603 BRU 0607
0604 BMI
0605 BRU 3200
0606 BRU 3100
0607 INX 1
0608 BXL 3
0609 BRU 0600

1
1

1
1

}

1
)

J

Store Zeros in Word 1

Test for Equality

Test and Transfer for Transaction Key
Lower.
Transfer for transaction key higher.

Test for all 3 words equal.

Transfer to repeat again.

The commands in storage at 0598 and 0599 will replace the contents of modification
word 1 with zeros The commands in storage at 0600 through 0603 will test each
word of the master file and transaction keys, starting with the major key and ending
with the minor key, for equality. If the keys are equal, the contents of the A register
will be zero and control will be transferred to the command at 0607 to continue the
comparison. If all 3 words of the key are equal, control will be transferred to the
command at the next available storage location at 0610 by the INX and BXL commands
at 0607 and 0608 If the transaction key is higher than the master file key, control
will be transferred to the command in storage at 3100. If the transaction key is low­
er than the master file key, control will be transferred to the command in storage
at 3200.

PROGRAMMING MANUAL

-86-

•

PROGRAMMING FOR SUBROUTINE USAGE

In writing a program, it is often necessary to use on
several different occasions a particular set of instruc­
tions which perform a specific function. Considerable
saving of memory space and programming time will re­
sult if it is possible to transfer control from any point
in the routine to execute this set of instructions when­
ever they are required and then jump back to the
correct place in the main routine. "Subroutine" is
the term applied to such a series of commands design­
ed to perform a repetitive function for the main pro­
gram.

Programming for the use of subroutines presents the
programmer with the opportunity to employ the "build­
ing block principle" for the construction of programs.
All frequently used data processing functions at an in­
stallation are prepared in subroutine form. It is then
only necessary for the programmer to prepare the
skeletal structure of the main program which provides
the mortar for these building blocks. Subroutines for
the conversion of binary coded decimal data to binary
form and for the conversion of binary data to binary
coded decimal form have already been encountered.
These subroutines will be combined with the pro­
grammer's own coding by the General Assembly Pro­
gram. Any time a data conversion is required in his
own routine, the programmer will simply transfer
control to the desired subroutine in the prescribed
manner.

It has already been observed that it is necessary to be
able to jump to a subroutine from !ID~ point in memory
and to return there. Thus, along with the transfer of
control information must also be retained so the sub­
routine will know where to go when it is finished. This
idea of informing the subroutine how to get back has
led to the name "linkage". The SPB command is de-

GE225
-87-

signed to provide the "link" for the return of control
back to the main program after the subroutine function
is performed. The memory location of the SPB com­
mand will be saved within a modification word. The
subroutine will execute a proper return to the main
program by reference to the contents of this modifica­
tion word. The INX command can be used to increment
the contents of the modification word; and a BRU com­
mand, automatically address modified by the incre­
mented modification word, will transfer control back
to the proper next instruction in the main program.
Through such "linkage" it is possible to utilize the
subroutine many times without repetition of the sub­
routine each time it is required within the main pro­
gram.

In addition to linkage, it is also necessary to specify
the parameters which define the problem to the sub­
routine; that is, subroutines are usually written in a
form for general applicability and must be self-spe­
cialiZing to the particular problem at hand. For ex­
ample, the programmer must indicate to one of the
general conversion subroutines the length of field in­
formation and the location of the data in memory by
means of DEC commands following the SPB command.
Since the location of the SPB command is saved with­
in a modification word, the following DEC command
information by be "called in" by the subroutine pro­
gram. The "calling sequence" technique is to write
a linkage followed by a few words which contain the
parameter information.

In summary, it should be clear that subroutines make
possible considerable saving of memory space and
programming time at the very slight expense of the
space and complexity of linkages and calling sequences.

PROGRAMMING MANUAL

GE225

PROGRAM LINKAGE AND SUBROUTINE PACKAGES

STORE P AND BRANC H SPB

SPB Y,X STORE P AND BRANCH

The location of this instruction replaces the contents of x (7-19), and control is
transferred to the instruction located at Y. This instruction is not automatically
modified.

EXAMPLES

1. Assume that a subroutine is in memory beginning at location 2000. This sub­
routine will transfer 28 words of data from memory storage beginning at 0128 to
memory storage beginning at 0256. (See example 3 under section "Modification
Word Programming".) Transfer control to the instruction at location 2000 to
execute this subroutine and at the same time preserve the location of the command
which initiates the transfer; that is, transfer control to 2000 and establish a link
back to the main program.

0100 SPB 2000 1

The SPB command will transfer control to the instruction in storage at 2000. In
addition, the memory location of the SPB command (location 0100) will be stored
within modification word 0001.

2. In the previous example include the necessary instruction steps to return to the
main program after the subroutine is executed.

0100 SPB 2000 1 } Transfer to subroutine

2000 LDZ
2001 STA 0002
2002 DLD 0128 2
2003 DST 0256 2 Subroutine to move 28 v.ords
2004 INX 2 2 in storage.
2005 BXL 28 2
2006 BRU 2002
2007 BRU 0001 1 Transfer back to main program at 0101.

Modification word 1 will contain the location in memory of the SPB instruction
(0100) after this instruction is executed. The subroutine program steps in memory
at locations 2000 through 2006 accomplish the transfer of the 28 words. The last
instruction of the subroutine, at memory location 2007, will transfer control back
to the main program at location 0101. This occurs because the contents of modifi­
cation word 0001 will automatically increment the operand of the BRU command
before it is executed.

3. In the example above, assume that the subroutine in memory beginning at location
2000 is a "skeleton" routine. Provide the necessary "calling sequences" in the
main program to adapt the subroutine to the desired job.

0100
0101
0102
0103

SPB
DEC
DEC
DEC

2000
0128
0256
28

1 1

1

Branch to main pr~ram.

Calling Sequence.

PROGRAMMING MANUAL

-88-

,-

..

GE225

2000 INX
2001 LDA
2002 STO
2003 lNX
2004 LDA
2005 STO
2006 lNX
2007 LDA
2008 STO
2009 LDZ
2010 STA
2011 DLD
2012 DST
2013 INX
2014 BXL
2015 BRU
2016 BRU

1
0000
20n
1
0000
2012
1
0000
2014

0002
0000
0000
2
0000
2011
0001

1
1

1 Commands to "can in" the necessary
1 parameters before the subroutine is

executed.
1
1

2
2 Subroutine to move 28 words of storage.
2
2

1 Transfer back to main program.

The operation of the DEC command is explained in the section on General Assembly
Program. The commands in storage at 0101, 0102 and 0103 will provide binary
equivalents of the decimal integers 0128, 0256 and 0028. The instructions in the
subroutine at locations 2000 through 2008 will store the binary equivalents of 0128,
0256 and 0028 in the operand portH:m.s of the instructions at 2011, 2012 and 2014.
The INX commands facilitate the operation by picking up the successive memory
locations (where the constants 0128, 0256 and 0028 are stored) using the address
modification word technique. Thus, for example, the contents of modification word
1 will become the operand of the LDA command at 2001. (See the material on
Modification Word Programming.) After the LDA command is executed the binary
equivalent of 0128 will be in the A register. The 8TO command wiU replace the
operand of the instruction at 20n with the binary equivalent of 0128. The net re­
sult after the command at 2008 is executed is to produce a subroutine identical to
that in example 2, above.

4. In the example above, design the "call in" commands without using the INX
commands.

0100 SPB 2000 1 } Branch to main program.
0101 DEC 0128

1
0102 DEC 0256 Calling sequence.
0103 DEC 28

2000 LDA 0001 1
2001 8TO 2011 Commands to "call in" the necessary
2002 LDA 0002 1 parameters before the subroutine is
2003 8TO 2012 executed.
2004 LDA 0003 1
2005 8TO 2014
2006 LDZ
2007 STA 0002
2008 DLD 0000 2
2009 DST 0000 2 Subroutine to move 28 words of storage.
2010 INX 2 2
2011 BXL 0000 2
2012 BRU 2008
2013 BRU 0004 2 Transfer back to main program.

This example is similar to example 3; however, the example above is more efficient
and requires less time to execute. In the example above, the INX commands are
eliminated because the LDA commands contain the necessary increment in their
operand addresses.

PROGRAMMING MANUAL

-89/90-

..

20

of a program it will often be de­
information to the coosole

if an overflow condition occurs
","JI.;o;"'''''"1!', of an the programmer

may desire that the console the mes-
sage "Overflow condition for record . The con-
sole operator then may take remedial action from the
console.

There are 20 switches on the console which can be
used to enter information A.
These switches of
a word. the switches may
also have the of program control switches.
For in the above the program
have been to transfer control to a
the routine that would the record which ~h~rt'~n"flrl
the overflow condition and continue
operator had moved console
"down" . Another switch
sensed in the program to have the effect of
aU and out the TUn.

the could all
of the file and prepare for the next job.

The external influence of the console on a
program WOuld be reserved for ex-

IAV"",,:tl situations. The console is ad-
on the situation means of a mes-

on the output The console h"~",,,,,.ri1h.,,,
the contents of the N each time the

TYPE command is executed. The character to be

Console

must be set up as a
cUlllurur·<tLllun which in the case of

betics may be different from the BCD
uration for the same character within the
The difference in the bit for these char-
acters occurs in the of zone
bits.

The alternation of these zone bits are shown below:

00
01
10
11

00
11
10
01

The above holds true for the numbers
of the A-Z, and the &,

The conngu~ation for (zero) is 010000;
"~,,>,~'f'; for / (slash) is 001011. In addition there

are command characters which cause the
writer to take an action, These characters are:

000000
011110
111111
011010
011101

Tab
return

Print Red
Print Black

The programmer may assume that the program

PROGRAMMING MANUAL

to conversion of bit cOluil;rw'a
Uons in form. It will not be neces-
sary to write a conversion routine, The conversion
will be a part of a subroutine provided to transfer data

·92·

the information will be
ferred to the output

indicate the
be and

PROGRAMMING MANUAL

OE225

(ONSOLI P~OG~AM (ONt~OB. (OPtiON) SWlt(HIS

EXTRACT
READ CONTROL SWITCHES

EXT Y EXTRACT

EXT
RCS

Each bit of Y is examined. If there is a 1 in Y in a given poSition, a zero is placed
in the corresponding position of A. If there is a zero in a given position of Y, the
corresponding position in A is left unchanged. The contents of Yare unchanged.

RCS READ CONTROL SVI.'lTCHES

Each of the 20 manually set control. switches is examined. If a switch is DOWN
(ON), a 1 is placed in the corresponding position of A. If a switch is UP (OFF),
the corresponding position in A will not be altered. The A register should be
cleared before this command is given.

EXAMPLES

1. Write the necessary commands to interrogate console option switch 11. If con­
sole option switch 11 is ON (in the "down" position), branch to the command in
memory at 2550 to print a message. If console option switch 11 is OFF (in the
"up" position), continue with the normal sequential execution of the program. As­
sume that no other console option switches may be ON.

0531
0532
0533
0534
0535

LDZ
RCS
SRA
BOD
BRU

8

2550

} "Zero" A and read console switches.

Shift right (19-11) places.

} Test and branch for console option switch 11 "on".

The command in memory at 0531 wiU replace the contents of the A register with
zeros. The command at 0532 will. insert a 1 bit in position 11 in the A register if
the corresponding console control switch is down. The shift right command at
0533 will put the "11 bit" into bit position 19. Bit position 19 is tested by the
BOD command at 0534. If bit position 19 contains a "1", console option switch
11 is on and control is transferred to 2550 by the commands at 0534 and 0535.

2. In the example above assume that other console option switches may be on.

3999 OCT 3777377 11111 11111 10111 11111
0531 LDZ } 0532 RCS Clear A register and read console control switches.
0533 EXT 3999 Mask: out other switches.
0534 BNZ } 0535 BRU 2550 Test and branch.

The command in memory at 0532 will insert 1 bits into the bit position of register
A corresponding to any of the 20 console switches that are in the "down" position.
The EXT command at 0533 wiH replace all bits in the A register with zeros ex­
cept the bit position which corresponds to console option switch 11. If console
option switch 11 is on, control will be transferred to the command in memory at
2550. The commands above are also appropriate for testing whether or not com­
binations of switches are "on", by variations of the bit configuration at 3999.

3. Transfer control in a continuous loop if console oition switch 15 is on. Assume
other console option switches may be on. If console option switch 15 is not on,
continue the normal sequential execution of the program.

PROGRAMMING MANUAL

-93-

GE225

3999 OCT 3777757 (11111111111111101111)
0620 LDZ } 0621 RCS "Zero" and read console switches.
0622 EXT 3999 Mask out other switches.
0623 BNZ } 0624 BRU 0621 Test and transfer for console switch 15 "ON".

The commands at 0620 through 0623 are exactly equivalent to the commands at 0531
through 0534 in the previous example. The command at 0624 will transfer control
back to the command at 0620 until console option switch 15 is in the "off" position.

4. Write the commands to "Halt" the GE 225 until further action is initiated from
the console.

620 BRU 620 Transfer "Loop".

Control will be transferred in a continuous loop by the command at 0620. The loop
will be identifiable by the console operator since the command will be displayed
at the console. The console operator may intervene by depressing the "Manual"
switch.

PROGRAMMING MANUAL

-94-

CE22S

PRINTING OF TYPEWRITER MESSAGES

SAN

Shift A and N Right
Branch on N Register Not Ready
Type

K SHIFT A AND N RIGHT

SAN
BNN
TYP

The contents of A (1-19) and N (1-6) together are shifted K places to the right.
Bits shifted out of A (19) shift into N (1). Bits shifted out of N (6) are lost. If the
sign of A is plus, O's fill the vacated positions of A; if the sign of A is minus, 1 's
fill the vacated position of A. The sign of A is unchanged.

BNN BRANCH ON N -REGISTER NOT READY

If the N-register is not available for input-output (if the last TYPE instruction has
not been executed), the computer takes the next sequential instruction. If it is, the
computer skips the next instruction and executes the second sequential instruction.

TYP TYPE

The six-bit, coded character in N is typed. The contents of N are not changed.

EXAMPLES

1. Assume that the message "End of Job" is in storage at locations 3995, 3996,
3997 and 3998 in the "proper configuration for typing". Write the commands to
print the message on the output typewriter. Assume that the power for the out-
put typewriter has been turned on. When all characters have been typed, trans-
fer control to the next command in memory.

0999 LDZ

} 1000 STA 0001 "Zero" words 1 and 2.
1001 LDZ
1002 STA 0002
1003 LDA 3995 1 Load first word in A.
1004 BNN } Delay for N register busy. 1005 BRU 1004
1006 SAN 6 } Send character to N register and type. 1007 TYP
1008 INX 6 2

} 1009 BXL 18 2 Test for transfer for 1 word typed.
1010 BRU 1004
1011 INX 1 1 } 1012 BXL 4 1 Test and transfer for 4 words typed.
1013 BRU 1001

The commands in memory locations 0999 through 1002 will replace the contents
of modification words 1 and 2 with zeros. The first word to be typed is loaded
into the A register by the command at 1003. All characters for typing must be
transferred through the N register. The commands at 1004 and 1005 will interro­
gate the status of the N register. If the N register is occupied from the previous
operation, control will be transferred in a "continuous loop" by the commands at
1004 and 1005. When the N register is ready, the shift command at 1006 will trans­
fer one character to the N register from the A register for typing. The TYP com­
mand will type the character represented by the contents of the N register on the
output typewriter. T he commands in storage at 1008, 1009 and 1010 will incre­
ment and test the contents of modification word 2 for 18. If all 3 of the digits in
the word have been shifted to the output typewriter and typed, the contents of mod­
ification word 2 will be equal to 18 and control will be transferred to the command
at 1011. If all 3 characters in the word have not been typed, control is transferred
back to the command at 1004 to set up the next character, etc.

PROGRAMMING MANUAL

-95-

After the 3 characters in each word have been
101 1012 and 1013 will increment modification 1

1 is tess than 4, control will be transferred back to command at 1001 to
begin typing the contents of the second word. When aU words have been
the contents of modification word 1 wiH be to 4 and control will be trans-
ferred to the command at 1014.

2. Assume that there is a 50-word message in ",ura'"'' ""6 ' .. '6

and that the message must be converted to the proper "'V'.'Hl~"J.
Write the necessary commands to return the tvrle\\rr1t:er
is to

0100
0101
0102

BPS
LDA
DEC

3500
0500

50

1

} Transfer to subroutine sequence.

The above instructions sequence information for
a subroutine in subroutine for
messages is of the In the case it is as-
sumed that the programmer has that the subroutine be
in memory at the location. The BPS command at 0100 will transfer control
to the subroutine messages. The location of the BPS command itself
will be word 1. The subroutine will then caIl in the re-

out

0100
0101
0102

the location of the mes-
sequence informa-

the DEC command. The LDA com-
n1'"'")V1Itl'" the necessary selJlence In-

is to be returned be­
the programmer must

ovna out.

"'-""'''''1.1'''' write the necessary commands to the message wtth-

BPS
EXT
DEC

the tuT"'''''I'.lt •

3500
0500

50

1

} Transfer to subroutine sequence.

The calling sequence information will be utilized as ",,,,.,,,,,r,,, Bow­
with-ever, the EXT comma.nd at 0101 wiH ca.use the

out a return of the before

PROGRAMMiNG MANUAL

-96-

Figure 22 Paper Punch

21 Reader

Each charader transferred to or from paper must pass
N In order to transmit or receive a character to or from the N n,"'.ll"i .. .,a

the must be shifted - from the A to the N
from the N to the A

of paper tape
or from the of
paper input and output will
aids as described in

PROGRAMMING MANUAL

-97-

CE22S

TRANSFERS OF DATA TO AND FROM PUNCHED PAPER TAPE

RPT

Read Paper Tape
Write Paper Tape
Shift N and A Right

READ PAPER TAPE

RPT
WPT
SNA

The N register is cleared, and one six-bit coded character is read into N. Other
insturctions not using N may be executed ch.tring this time.

WPT WRITE PAPER TAPE

The six-bit coded character in N is punched. The contents of N are not changed.
Other instructions not using N may be executed during this time.

SNA K SHIFT N AND A RIGHT

The contents of N (1-6) and A (1-19) together are shifted K places to the right.
Bits shifted out of N (6) shift into A (1). Vacated positions in N are filled with
O's. Bits shifted out of A (19) are lost. The sign of A is unchanged.

EXAMPLES

l. Write the commands to transfer the next 3 characters from paper tape to the
A register.

1998 BNN Delay for "N" register busy.
1999 BRU 1998
2000 RPT Read paper tape.
2001 BNN 2000 } 2002 BRU 2001 Delay for "N" register busy.

2003 SNA 6

l 2004 RPT
2005 BNN
2006 BRU 2005 Read next 2 characters from paper tape to
2007 SNA 6 A register.
2008 RPT
2009 BNN
2010 BRU 2009
2011 SNA 6
2012 SRA 1 Position 3 characters as a BCD word.

The next 3-characters will be read in from the paper tape reader and positioned
as 3 characters in a BCD word. Appropriate subroutines from the GE 225 Pro­
gramming Library may be utilized for paper tape input. These subroutines will
not only accomplish the functions of reading paper tape, but will also convert the
6 bit paper tape code to the "proper configuration" for use in further processing.

2. Write the commands to transfer 3 characters from the A register to the paper
tape punch. Assume the 3 characters are represented in the "proper configura­
tion" for punching.

3000 BNN
3001 BRU
3002 SAN
3003 WPT
3004 BNN
3005 BRU
3006 SAN
3007 WPT
3010 BNN
3011 BRU
3012 SAN
3013 WPT

3000
6

3004
6

3010
6

Write next 3 characters from A register to
paper tape.

PROGRAMMING MANUAL

-98-

CE22S

The next 3 characters will be punched out on the paper tape punch. Appropriate
subroutines from the GE 225 Programming Library may be utilized for paper tape
output. These subroutines will not only accomplish the function of punching paper
tape but will also convert the 6 bit character code of data within storage to the
"proper configuration" for punching .

•

PROGRAMMING MANUAL

-99/100-

23 Card Reader

CARD READING

is converted into an ""'''''' "<,,,.
decimal form of 6 bits and forms oue mem­
ory word out of each group of three card columns

Three card characters are rnnr'f'",>nf
by 18 bits while one memory word consists
The three characters up the Itl bits are
in the 18 least of the rnemory word.

with three to a memory location 27 mem-
be used card with the 27th

two characters.

memory address into which information
by the and must be a

less than An address counter
in the card input circuitry is to the start-

address at the start of each card
Only four cards of information are contained in mem­
ory at anyone time unless transferred to other areas.
After four cards have been read into the
fifth card is read into the same location as the
card and so forth.

Data from
first card

Data from

- Read into
to

second card - Read into
dress

Data from
third card - Read into

dress

Data from

ad-

fourth card - Read into memory at ad-
dress to address

Data from
fifth card

etc.

- Read into
to

ad-

the last word filled from the card
starting address starting

address 123) will automatically
information;

Bit PV,"H,<VH 0 - "On" when the reading of card
is" ""u ".u;"

Bit 1 - "On" when the card is the last
card in the input deck.

Bit positions 14
1 9 - "On" to indicate proper

chronization of the card
the of the card.

the binary mode of operation, the circuitry
forms one 20-bit memory word out of each set of two
ten-bit card columns. The first column is in
the 10 most bits of the memory word, the
second cOlumn in the 10 ieast bits of the
memory word and so forth. The coiumns of
information during the binary therefore,
be stored in memory locations. The
address into which information is is UC'''"l'.'!<U'CU

the program and must be a multiple of 128 but less
then 2048. An address counter in the card input cir-

·101·

is to the address at the start of
each card input operation. Only two cards of
information are contained in memory at anyone time,
After two cards Inve been read into memory, the third
card is read into memory at the same location as the
Hrst card and so forth,

Data from
first card

Data from
second card - Read into memory at

dress to

Data from
third card - Read into

to
etc.

The word after the word
from the card {starting address

Uon:
vlill receive the

Bit Position 0 - "On" when the
card is '"''';'''1'''-'''',<;0

ad-

ad­
address +103)

ad-

informa-

of the

PROGRAMMiNG MANUAL

Bit position 1 - "On" when the card is the last
card in the deck.

Bit pV~"'''''J'''' 1 {)
through 19 - "On" to indicate proper syn­

chronization of the card reader
the of the card.

CARD PUNCHING

Figure 24 Card Punch

In the a card
initiates the necessary to
and read into the address counter memory location
of the first word to be An BO-bit is
filled with the BO bits which will constitute row 12 of
the the first row to be

of output
characters contained in each word are two
characters in the 27th to the 12-bit Hollerith
code and what wiH become the 12th row into
the 80 bit The twelfth row is f01-

the other 11 rows.

functions the same marmer as for
mode with the exceptions.
word in memory will be on the card as two
ten-bit columns. 11 and 12 on the card are not

zero rowan the
read the COl:respt}nding
in memory into

-102-

The information for
memory

f'V''>U''''''''' of the first
the ten least

word oc­
the

MANUAL

RCD

Read Cards Decimal
Hatt Card Reader
Write Card Decimal

Y READ CARDS DECIM:AL

RCD
HCR
WCD

This command initiates continuous of decimal cards into memory
at location where Y, is a and less than 2048. The first card
be read into iocations Y the second into Y + 32 Y +
third into Y + 64 Y + the into Y + 96 Y + the
into Y + etc. After each is read in the hit of the word after the last
word of the card +27, Y + Y + or Y + will be set minus. After the
last card of the deck is read bit 1 of the word after the iast word of
the card Y + Y + 91, or Y + will be set to a 1. If the card reader
is not in the READ instruction is the wilt hait.

HCR HALT CARD READER

This instruction halts the card feed. If a card is read at the time this tn-
the of this card into memory will be after

which no cards will be read until another READ instruction is This
instruction does not the until input is The program con-
tinues in sequence, therefore a must be to insure that the in-
formation is in memory before to utilize it.

WCD Y WRITE CARD DECIM:AL

This instruction causes the information in memory locations Y through Y + 26
Y is a of to be into a card in format.

If the card is not in status when the WRITE instruction is the
wiH halt.

1. Read one card into magnetic core storage "c~p"'U""" with memory location 0128.
Halt the card reader.

1000
1001

RCD
HCR

0128 } Read card and halt.

One card will be
0154 will receive

and the reader will be halted. locations 0128 n",,,,,,,yh
coded decimal re](lrE:sent.lti()U of information

in columns 1-80 of the

2. Read cards into core but do not halt the card reader.

1000 RCD 0128 Read cards

The card reader will continue to read cards into lSlH,:C!;;,eUllIl!£ memory locations;
160- 224-250. The fifth card will be read into the next
into

:1. Punch one card from AU",!'.U',,'

0256.

1000 WCD 0256

core "''''IGutltU'!> with memory location

Punc h card and baIt.

One card wiH be and the will be halted. The contatts of memory
locations 256-282 will be punched into columns 1-80 of the card in Hollerith code.

·103·

MANUAl..

PROGRAM REQUIREMENTS RElAUD TO TRANSFERS OF II NARY CODED DECIMAL
DATA TO AND FROM PUNCHED CARDS

Branch on Card Reader
Branch on Card Reader Not
Branch on Card "Pl,mch
Branch on Card Punch Not

BCR BRANCH ON CARD READER READY

If the card reader is
computer takes the next

to read cards and the card
if

BeR
BeN
BPR
BPN

next instruction and executes the second instruction,

BCN BRANCH ON CARD READER NOT READY

the
the

If the card reader is not ready to read or if the card is the
COlmOUH~r rakes the next instruction, If the reader is and the card
hopper is not empty, the the next instruction and executes the sec-
ond instruction.

BPR BRANCH ON CARD PUNCH READY

If the card punch is in a ready the takes the next in-
if the computer the next instruction and executes the second

seltlw~nti.al instruction.

BPN BRANCH ON CARD PUNCH NOT READY

If the card is not in a the takes the next ~~,._~""
instruction; if it the computer the next instruction and executes the sec-
ond instruction.

1. Read a single card. Delay further until the card has been com-

1000
1001
1002
1003

read,

RCD
HCR
BeN
BRU

} Read card;md

0128

1002

The branch on card reader not command will transfer control to the next
command until the card has been read. After has been com-
pleted, control will transfer to the LV"UU"",,,,U located at 1004,

2, Read cards continuously.
read.

1502
1503
1504
1505

RCD
LDA
BPL
BRU

0128
0155

1504

until each card has been C;V1Uj},''''<',a

I Read oard and

The load A command loads the word after the last word to be fined from the card
into the A ,The bit of the last word will be set to 1 when the card
is completely read. The branch on command win transfer control to the next
command until the card has been read, After has been c01n-
pleted, control will tral'lsfer to the at 1506. of
the first card has been it will be necessary to determine in the pro-
gram whether the second card has been etc.

-104-

""

3. Determine whether or not the card just read is the last card of the deck.

1501 RCD 0128

}
1502 HCR
1503 LDA 0155 Read card and delay until completed.
15tH BPL
1505 BRU 1504
1506 SLA 0001 } 1507 BOV Test and branch for last card in deck.
1508 BRU 3000

The word after the last word filled las been loaded into the A register by the load
A command in memory storage at 1503. Bit position 1 of the last word filled will
be set to a 1 after the last card of the deck has been completely read. The shift
left A command will cause the 1 to be shifted oot of bit position 1 and the overflow
indicator will be turned on. The branch on overflow command will transfer con­
trol to the command in storage at 3000 when the last card of the deck has been
read. For an other cards control will be transferred to the command in storage
at 1509.

4. Determine whether or not the card just read is the last card of the deck (alter-
nate method).

3999 DEC 2'177777 10111 11111 11111 11111
1501 RCD 0128

}
1502 HCR
1503 LDA 0155 Read card and test for comparison.
1504 BPL
1505 BRU 1504
1506 SRD 6 } 1507 SLA 6 Store bits 14-19 in the Q register for later re-
1508 EXT 3999 qUirements.
1509 BNZ } 1510 BRU 3000 Test for last card in deck and branch.

The constant located in storage at 3999 will cause every bit position of the word
in the A register to be set to 0 for every card except the last card of the deck woon
too extract command is executed. The branch of non-zero command will transfer
control to the command in storage at 3000 when the last card of the deck has been
read. For aU other cards control will be transferred to the command in storage
at 1511. The commands at 1506 and 1507 will store bits 14-19 in the Q register
for later requirements.

5. In the above determine whether there was proper synchronization dur-
ing the reading of the card.

3998 OCT 0000077
Uill LDZ

J Clear A and recover bits. 1512 SLD 6
1513 SUB 3998
1514 BNZ } Test and branch for synchronization. 1515 BRU 4000

The commands at 1511 and 1512 will recover bits 14-19 from the Q register. The
contents of the A register should be zero after the constant at 3998 is subtracted
if there was proper synchronization during the reading of the card.

PROGRAMMING MANUAL

-105-

CE22S

6. Punch a single card. Delay further processing until the card ros been com­
pletely punched.

1000
1001
1002

weD
BPN
BRU

} Punch and test for completion
0256

1001

The branch on punch not ready command will transfer control to the command in
storage at 1002 until punching of the card is completed. When card punching is
completed, computer control will be transferred to the command in storage at
1003.

PROGRAMMING MANUAL

-106-

....

GE22S

RCB

TRANSFERS OF BINARY DATA TO AND FROM PUNCHED CARDS

Read Cards Binary
Write Cards Binary

Y READ CARDS BINARY

RCB
WCB

This command initiates continuous reading of binary cards into me mory starting
at location Y, where Y is a multiple of 128 and less than 2048. The first card will
be read into locations Y through Y + 39, the second into Y + 64 through Y + 103,
the third into Y through Y + 39, etc. After each card is read in, the SIGN position
of the second word following the card image (Y + 41 or Y + 105) will be set to a 1.
After the last card of a deck is read in, position 1 of the second word following
this card image (Y + 41 or Y + 105) will be set to 1. If the card reader is not in
ready status when the READ instruction is given, the computer will halt.

WCB Y WRITE CARDS BINARY

This instruction causes the information in memory locations Y through Y + 39
(where Y is a multiple of 128) to be punched into a card in binary format. If the
card punch is not in ready status when the WRITE instruction is given, the com­
puter will halt.

EXAMPLES

1. Read one card into magnetic core storage beginning with memory location 0128.
Halt the card reader.

1000
1001

RCB
HCR

0128
} Read card and halt.

One card will be read, and the reader will halted. Memory locations 0128-0167
will receive equivalent binary representation of information punched in columns
1-80 of the card.

2. Read cards into magnetic cor e storage, but do not halt the card reader.

1000 RCB 0128 Read cards continuously.

The card reader will continue to read cards into a succeeding memory location
at 0192-231. The third card will be read into 0128-0167, the next into 0192,231,
etc.

3. Punch one card from magnetic core storage beginning with memory location
0256.

1000 WCB 0256 Punch card and halt.

One card will be punched and the punch will be halted. The contents of memory
locations 0256-0295 will be punched into columns 1-80 of the card as follows:

Word Columns

1 and 2
3 and 4

79 aid 80

Each word is distributed, left to right in punching positions 0 - 9 of two columns
of the card.

PROGRAMMING MANUAL

-107-

GE22S

PROGRAM REQUIREMENTS RELATED TO TRANSFERS OF BINARY DATA TO AND
FROM PUNCHED CARDS

The program requirements for transfers of binary data to and from punched cards
are idential to those discussed previously regarding binary coded decimal data
except:

1. Bits 0 and 1, for indication of card reading completion and last card in the deck,
will appear in the second word following the card image {starting address +41 and
starting address +105}.

2. Bit Positions 10 through 19 will be Han" to indicate proper synchronization
of the card reader during the reading of the card.

The programmer may program requirements as illustrated in the preceding ex­
amples for ~y coded decimal data. However, for binary data transfers:

a. The LDA command at 1503 within the previous example 2 will now re­
ference memory location 0169 instead of 155.

b. The commands at 1506 and 1507 within previous example 4 wiU now SRD
10 and SLA 10 instead of SRD 6 and SLA 6 so as to store bits 10-19 in
the Q register for later requirements.

c. When recovering bits 10 through 19 in example 5 the SLD command at
1512 should be SLD 10.

d. When testing the condition of bits 10 through 19 in previous exampl!t&
for "on", the constant at 3998 should be changed to:

3998 OCT 0001777

PROGRAMMING MANUAL

·108·

Problem: (1) Price labor vouchers
(2) Obtain cost

Weekly labor voucher cards with requisition cost sum-
mary cards by number,

Priced labor vouchers
New requisition cost summary cards

Labor Voucher:

n"'4U'.;:>UJ.VH Cost Card

Priced Labor Voucher:

Requisition Cost Card:

Area
Hours
Card Code

Card Code

Area
Hours
Labor
Card Code

Card Code

OIH based on 1st of

-109·

1-5
7-13
28-30
31-33 (1 Decimal)
80 (0)

7-13
27-33
36-42
80 (1)

1-5
7-13
28-30
31-33
34-39
80 (0)

7-13
27-33
36-42
80

X Area Rate)

X

100

150

250

300

%)

VOUCHER Hourly rate based on area (4 decimals)

LOC

128/256
129/257
130/258
131/259
132/260
133/261
134/262
135/263
136/264
137/265
138/266
139/267
140/268
141/269
142/270
143/271
144/272
145/273
146/274
147/275
148/276
149/277
150/278
151/279
152/280
153/281
154/282

CE22S

Area No.

050
125
220
360
420
500
600
640
703
800

CASE PROBLEM

Area Rate

2.5623
3.1275
2.0000
3.2500
1. 7500
2.2500
2.3750
2.8715
2.4571
2.7550

MEMORY ALLOCATION LAYOUT SHEET
INPUT

Labor Voucher Requisition Cost Card
~ __________ ~A~ __________ ~ ~ ______________ A~ ________ ~

I \ I \
0 1 2 7 8 13 14 19 0 1 2 7 8 13 14 19

00 Badge Badge Badge 00 ---- ---- ----
00 Badge Badge ---- DO ---- ---- ----
00 Reqn Reqn Reqn 00 Reqn Reqn Reqn
00 Reqn Reqn Reqn 00 Reqn Reqn Reqn
00 Reqn ---- ---- DO Reqn ---- ----
00 ---- ---- ---- DO ---- ---- ----
00 ---- ---- ---- DO ---- ---- ----
00 ---- ---- ---- DO ---- ---- ----
00 ---- ---- ---- DO ---- ---- Labor
00 Area Area Area 00 Labor Labor Labor
00 Hours Hours Hours 00 Labor Labor Labor
00 ---- ---- ---- DO ---- ---- O/H
00 ---- ---- ---- DO O/H O/H O/H
00 ---- ---- ---- DO O/H O/H O/H
00 ---- ---- ---- DO ---- ---- ----
00 ---- ---- ---- DO ---- ---- ----
00 ---- ---- ---- DO ---- ---- ----
00 ---- ---- ---- DO ---- ---- ----
00 ---- ---- ---- DO ---- ---- ----
00 ---- ---- ---- DO ---- ---- ----
00 ---- ---- ---- DO ---- ---- ----
00 ---- ---- ---- DO ---- --=- ----
00 ---- ---- ---- DO ---- ---- ----
00 ---- ---- ---- DO ---- ---- ----
00 ---- ---- ---- DO ---- ---- ----
00 ---- ---- ---- DO ---- ---- ----
10 ---- Card Code ---- 10 ---- Card Code ----

PROGRAMMING MANUAL

-110-

LOC

384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410

CE22S

CASE PROBLEM
MEMORY ALLOCATION LAYOUT SHEET

OUTPUT

Priced Labor Voucher Requisition Cost Card
~ ________ -JA~ __________ ~ ~ ______________ JA~ ______________ ~

/ \ / \
0 12 7 8 13 14 19 LOC 0 12 78 13 14 19

00 Badge Badge Badge 512 00 ---- ---- ----
00 Badge Badge ---- 513 00 ---- ---- ----
00 Reqn Reqn Reqn 514 00 Reqn Reqn Reqn
00 Reqn Reqn Reqn 515 00 Reqn Reqn Reqn
00 Reqn ---- ---- 516 00 Reqn ---- ----
00 ---- ---- ---- 517 00 ---- ---- ----
00 ---- ---- ---- 518 00 ---- ---- ----
00 ---- ---- ---- 519 00 ---- ---- ----
00 ---- ---- ---- 520 00 ---- ---- Labor
00 Area Area Area 521 00 Labor Labor Labor
00 Hours Hours Hours 522 00 Labor Labor Labor
00 Amt Amt Amt 523 00 ---- ---- O/H
00 Amt Amt Amt 524 00 O/H O/H O/H
00 ---- ---- ---- 525 00 O/H O/H O/H
00 ---- ---- ---- 526 00 ---- ---- ----
00 ---- ---- ---- 527 00 ---- ---- ----
00 ---- ---- ---- 528 00 ---- ---- ----
00 ---- ---- ---- 529 00 ---- ---- ----
00 ---- ---- ---- 530 00 ---- ---- ----
00 ---- ---- ---- 531 00 ---- ---- ----
00 ---- ---- ---- 532 00 ---- ---- ----
00 ---- ---- ---- 533 00 ---- ---- ----
00 ---- ---- ---- 534 00 ---- ---- ----
00 ---- ---- ---- 535 00 ---- ---- ----
00 ---- ---- ---- 536 00 ---- ---- ----
00 ---- :-0--- ---- 537 00 ---- --1:- ----
00 ---- Card Code 538 00 ---- Card Code ----

PROGRAMMING MANUAL

-111-

GE 5

CASE PROBLEM
FLOW CHART

START

-112-

PUNCH
DATA

TO WRITE
AREA

LAST CARD?

STORE
NEW

REQN
NO IN

TEMP 1

PROGRAMMING MANUAL

,
¥'

~ ..,
~
ell

"'0
lID

8

i z
G'>

~
Z
j;

$I

PROBLEM: Reqn Cost & Labor PrIcing
WRITTEN BY: _________ _

c ~

225 CODING SHEET
PAGE 1 OF 11

Remarks

Work area for input cards

Work area for cost data

Area 640

Area 703

Area 800

Rate Table Start

Rate 2.5623

Rate 3.1275

Rate 2.0000

.
i"

~
rrI
N
N
U'I

;g

~
~
~
~
r-

PROBLEM: Reqn Cost & Labor Pricing
WRITTEN BY: _________ _

~

225 CODING SHEET
PAGE..,! of..!!.

Remarks

Rate 3.2500

Rate 1.7500

Rate 2.2500

Rate 2.3750

Double length word

Last card mask

for transfer control to

Last card indicator

Temp. storage for labor voucher in binary

Reqn % O/:a: Rate - 1 st digit 0

Reqn % O/:a: Rate - 1st digit 1

Reqn % o/:a: Rate - 1st digit 2

"

.
......
If'

~
PPI
N

"'0

8
~
~
Z
Q

~ z
c »-....

,

PROBLEM; Reqn Cost &; Labor Pricin,li
~TTENBY; __________________ __

•

225 CODING SHEET
PAGE.l.of 11

Remarks

3

Used to store reqn overhead

Used to store Reqn labor

Rounding constants

constant

Input area

. -9'

~ ...,
~
~
U"I

-0

8
i
~

~

PROBLEM: Reqn Cost & Labor Pricing
WRITTEN BY: _________ _

k

225 CODlNG SHEET

PAGE.J,.of..11.

RemuQ

Priced voucher output area

Established card code "(P' in coL 80

Reqn cost area output area

Establish cud code Hi" in col. 80

Program start

•

·
';-I

~

PROBLEM;~~~~~~~~~~ __
WRITTEN BY: _________ _

225 conING SHEET
PAGE

ReJ:l:'l2.rks

Zero modification word :>

Trl:msier

reqn number - 1

,

c:p

~ ,...,
~
~
U'1

"'0
;:oc
o
G'>
;:oc
}>
~
~
Z
G'>
~
}>
Z
c:
}>
r-

PROBLEM: Reqn Cost & Labor Pricing
WRITTEN BY: __________ _

Symbol Opr Operand X

11 liT 16 81 110 12f1111111 920

, , , , , E,X,T Z,E,R,O, , , ,

, , , , , B,N,Z , , , , , , ,
I , , , , BIR,U D, , I , , , ,

, , , , , I,N,X -,2,8, , , , , 3

, , , , , S,P,B B,CID, ,B, I ,NI 1

, , , , , D,E,C 4, , I , , , ,

I I I , , DIE,C 2,8, I , , , ,

, , , 1 1 D,E,C 31 , , , , , 1

, , , , 1 B,R,U E,R,R,O,R, , ,

I , I , , LIA,Q , , I , I , ,

HI I I I I SIUIB TIAIBI I I I , 3

I , , , , BIN,Z , , I I , , ,

, , , , , B,R,U T,EIS,T, , , 1

I , , 1 1 I,N,X 1, , I I , , I 3

I I , , I B,XIL 1,1, I I , , , 3

I , , , , B,R,U H, , , , , , 1

I I I , , BIRIU E,R,RIOIRI , ,

TIEISIT, I SIPIB B,C,DI IBI I IN, 1

I I I 1 1 DIEIC 41 1 1 1 1 1 I

225 CODING SHEET

PAGEiof 11

Remarks Sequence

22 75761 I I 80

CARD CODE ZERO OR ONE? , , , ,

, I I ,

CARD CODE 1 I I I ,

ZERO MODIFICATION WORD 3
I l I I

I I I I

, , , ,
CONVERT AREA TO BINARY , I I ,

, I I I

I I , ,

MOVE Q TO A I I , ,

I , , ,

, I , ,

TL U FOR CORRECT AREA I I , ,

RELATIVE RATE ADDRESS MAINTAINED IN I , , ,

MODIFICA'IlON WORD 3 ' , , ,
1 , , ,

' , , ,
I I , ,

1 I I I

,
~

'P

c-:» ,..,
~
~
U'1

"'tI
;oc
o
Q
;oc

~
Z
Q
~
)0-
Z
c
)0-
r-

PROBLEM: Reqn Cost & Labor Pricing
~TTENBY: ____________________ _

Symbol Opr Operand X

1/ / / / /6 8/ /10 12/ / / / / I /1 920 22

1 I I I I DIEIC 31 11 I I I I I

I I I I I DIEIC 31 I I I I I 1

I I I I I BIRIU EIRIRIOIRI I I

I I I I I MIPIY TIAIBILI I I I 3

I I I I I DIAID 51HIUINIDI I 1

I I I I I DIVID RIOIUINIDIAI I

I I I I I MIAIQ I I I I I I I

1 I I I I DISIT TI EIMIPI 41 I I

I I I I I DIAID LIAIBIOIRI I I

I I I I I DISIT LIAIBIOIRI I I

I I I I I DILID TIEIMIPI41 I I

I I I I I SIPIB BI I I NiBICIDI I 1

I I I I I DIEIC 41 I 1 I I I I

1 I I I I DIEIC 3191 I I I I I

I I I I 1 DIEIC 61 1 1 I I I 1

I 1 I I 1 BIRIU EIRIRIOIRI I I

1 I I I I LIDIZ I I I I I I I

I I I I I SITIA 31 I I I I I I

I I I I I I BIPIN I I I I I I I }

225 CODING SHEET

PAGE 7 of !1

Remarks Sequence

75761 11 80

Convert hours to binary I I I I

I I I I

I I I I

Rate table modified by mod. word 3
I I I I

Multiply and round 500 I I I I i

1000 I I I I

Move A to Q I I I I

I I I I

Add voucher labor to reqn labor & store I I I I

I I I I

Load "A" with voucher labor I I I I

I I I I

Convert vou. labor to BCD
I I I I

I I 1 I

I I I I

I I I I

Zero modification word 3
I I I I

I I I I

Checking card punch ready I I I I

.
~

9

n ,..,
r::I
U"I

;
~

I

PROBLEM: ReqIl Cost & Labor Pricing
WRITTEN BY: _________ _

..

225 CODING SHEET

PAGE.!!, of !!

Remarks

Transfer priced voucher data to punch

Write priced voucher

Convert reqn labor to binary

Add reqn labor to reqn labor

Check for last card

•

· ~
I>J

-0
;:0 g
;:0

~
:it
Z
Q

~
Z
c » ,....

PROBLEM: ~.-'j" -~~. - ~~~4 ~ 4 ~VkUl?

WRITTEN

225 CODING SHEET
PAGE

Remarks

Set last card indicator

Determine % 1st of reqn.

MPY labor X % round

.
to.)

t-

~

'" ~
~
U'1

"tI

'" o
Q
~
~
~
Z
Q

~
Z
c »
r-

CODING SCHEME FOR SIMULTANEOUS READ·PROCESS·PUNCH

WRITTEN BY: __________ _

Symbol Opr Operand Remarks

iT I I I 16 81 110 121 I I I I I 119 20 22

N,O,R,E,A,D B,C,N , , , , I , , See if Card Reader is Ready

, , , , , B,RIU N,OIRIEIA,DI , Wait for Card Reader

, , , , , R,C,D 3,8,4, , , , , Read a Decimal Card into 384 (Area C)

, , , , , H,C,R , 1 1 1 1 , , stop after Single Card

B,A,C,K, , BIC,N I , , , , , ,

1 1 , , 1 B,R,U BIA,C,K, 1 , , Wait for Card Reader

R,E,A,DI , R,C,D 2,5,6, , , 1 1 Read a Decimal Card into 256 (Area B)

1 , 1 , , H,C,R I , , , , , 1 Read Single Card Only

, , , , , , 1 , , , , , 1 ,

, , , , , S,P,B B,C,DI ,B,IIN, I Branch to BCD to BIN Conversion

C,A,LIC,I, D'E,C 0,318,4, , , , **Constant = To Area C Read In

, , , , , D,E,C 0,0,0,5, , , , Column 5 of Card

, , , , , D,E,C 0,0,0,3, , , , 3 Digit Field

, , , , 1 B,R,U E,R,R,O,R, ,I, Error Routine as Required

, , , , , D,S,T R,A,T,E, , , , Temporary storage of Binary Rate

, , , , , SIP,B B,C,D, ,B,I,N, I Branch to BCD to BIN Conversion (Pieces to Binary)

C,A,L,CI21 DIE,C 0,3,814, 1 1 , **Constant = to Area C Read In

, , , 1 , D,E,C 0,0,3,2, , , 1 Column 32 of Card

, , , 1 , D,E,C 0,0,0,2, , , , 2 Digit Field

1 1 , 1 , B,RIU E,R,RIO,R, ,21 Error Routine as Required

"

PAGE I OF 3

Sequence

751761 I I 80

0,0,0,0,1

, , , ,2

, 1 1 ,3

, , , ,4

, 1 1 ,5

, 1 , ,6

, , 1 ,7

, , 1 ,8

, , , ,
, , , ,9
, , ,1,0

, , ,1,1

, 1 ,1,2

, , ,1,3

, , ,1,4

, , ,1,5

1 1 ,1,6

, , 1117

, , ,1,8

, , ,l~

.

'"

~

"" ~
~
U'I

"'tI
;og

g
~
~
Z
G'>

~
Z
c »
r-

PROBLEM: Reqn Cost & Labor Pricing
WRITTEN BY: _________ _

Symbol Opr Operand X

11 I I I 16 81 110 121 I I I I I 119 20

I I I I I S,-T,A T,E,M,P,31 I I

RIEIQINI I LID,A T,E,MIP,I'+121

, I I I , S,R,A 1,2, , , , , ,

I L I I I S,TIA I, I , , I , ,

I I I , I L,D,A T,A,B,L,2, , , 1

, , , , , S,T,A F, , , I I I I

, , , , , D,LID LIAIBIOIRI , I

I I I , , M,PIY F, , , I , , I

, , , , , X,A,Q , , , , , , ,
I I , , I A,D,D F,l,F,TIYI I I

, I I I , SIT,A T,EIM,P,2, , ,

, , , , , LIDIZ I I I I I , I

, , , , , D,V,D R,O,U,NIDI I I

I I , I I SITIA OIVIEIRIHIDI I

, , I I , LIDIA TIEIMrPI21 I I

, , , , , XIAIQ I , I I I I I

, , , I I DIVID RIOIU,N,D, I ,

, , , I , S,T,A O,V,E,R,H,D,+,1

I I I I , DILID OtvIEIR,HIDI ,

225 CODING SHEET

PAGE!.of !!

Remarks Sequence

22 75 761 I I 80

Set last card indicator I I I I

, I I I

Determine O/H % by 1st digit of reqn. , , I I

, , , ,
, I I ,

, , , I

I , I ,

, I I I

, , I ,

, , , ,
, , , I

MPY labor X O/H % round I , , ,

, I , I

I I I I I

I I I ,

, , , ,
, , I I

, , , I

1 , , , I

.
to.)

t-

n
rPI

U'II

~
i
Cl

~
.)-....

CODING SCHEME FOI. SIMULtANEOUS I.EAo..PI.OCESS-PUNCH

WRITTEN BY: _________ _ PAGE..!. OF.!

Remarks

See if Card Reader is Ready

Wait for Card Reader

Read a Decimal Card into 384 (Area

stop after Bingle Card

Wait for Card Reader

Read a Decimal Card into 256 (Area B)

Read Single Card Only

Branch to BCD to BIN Conversion

**Constant ::: To Area C Read In

Column 5 of Card

3 Digit Field

Error Routine as Required

Temporary Storage of Binary Rate

Branch to BCD to BIN Converaion

**Constant ::: to Area C Read In

Column 32 of Card

2 Digit Field

Error Routine as Required

~ # • • ...

.,
I;JI

G':»
~

~
~
U'I

."
;00

8

i z
G')

~ z
c »-,....

% J ~

CODING SCHEME FOR SIMULTANEOUS READ~PROCESS-PUNCH

WRITTEN BY: _________ _ PAGEl-of,!

Remarks

Since Rate Value

Branch to

**Constant = to Area C

Column 32 of Card

5 Digit Field

Error Routine as Rp.mli'l"pd

Bit Pattern of Command at Punch

Put Bit Pattern of Punch in ()

Binary Const = Decimal 2

Change Punch Instruction to Punch Calc. Area

Bit Pattern of Command of Read

Change Constants to Refer to Read Area

Put Punch Area Back in A

Deduct 2 from Binary Punch Inst. (Changes it to Read)

Read Now into Area Just Punched

· ~
10
9'

"0
;:0 g
;:0

~
~
Z
Q

~
Z
c »
r-

CODING SCHEME FOR SIMULTANEOUS READ-PROCESS-PUNCH

WRITTEN BY: _________ _ PAGE

Remarks

"''''Punch Area Just Extended bv Calc,

Go Back Read New Card & Calc. Other

Constant Needed to Increase or Decrease bv 2

Notes:

Area A'" 128

AreaB '" 256

Area C '" 384

We Read into A

Calculate B

Punch C

Then;

Read into C

Calculate A

Punch B

Then;

Read into B

Calculate C

Punch A and then

..

PROGRAMMING PRINTED REPORTS

Figure 25 High Speed Printer Sub·System

The Printer receives information directly from tht
main memory of the computer, through the Data Mat­
ing FUnction, when the PRINT command is specified.
The Printer will print the "hard type" equivalent to
10 numeric, 26 alphabetic, and 10 special characters
when correctly represented in binary coded decimal
form. A single PRINT command will cause printing
of up to 120 characters on one line from a block of
40 words of BCD data in memory.

Printer operations may be programmed to overlap
or share time with other processing. The printer
can be interrogated for "ready" status (completion
of previous PRINT commands) by the BDM command.
The programmer may transfer control directly back
to the BDM command in a "loop", for repeated inter­
rogation .. until the printer is ready; or he may trans­
fer control to another part of his program to execute

225
·127·

other operations and return at a later time. The
printer is not conSidered as Hbusy during a slewing
operation.

If a number previously calculated within the computer
is to be printed, the binary number must first be con­
verted to the binary coded decimal equivalent using
the appropriate conversion subroutine from the Gen­
eral Assembly Program library. If the number is a
negative number, the Sign of the number will be re­
flected by the insertion of a binary coded decimal hy ..
phen or H_" in the high order position (or low order
position at the discretion of the programmer) of the
number field so that the number will print as "-xxxxx"
(or xxxxx-). An alternate symbol might be chosen as
the symbol to represent a negative number in lieu of
the (-) hyphen. AlphabetiC and alphanumeric data would
be carried in BCD from throughout the proceSSing so no
conversions are necessary.

Data to be printed is transferred to the printer by
either of two modes of the available print commands.
Important considerations will arise regarding the ap­
propriate edit of the print data before or during the
transfer of the data and the skipping or "slewing" of
lines. Several alternatives exist to perform editing
and slewing. Editing may be accomplished by any
combination of the follOwing methods:

1. Design of records to conform exactly to the design
of the print line.

2. Rearrangement of the record and insertion of edit­
ing constants to meet the requirements of the print
line by programmed changes.

3. Use of automatic format control to provide auto­
matic editing of data as the line is printed.

Slewing or skipping may be accomplished by:

1. Inserting the appropriate control and slew data with­
in the print command.

2. Writing separate slew commands to cause slewing
before the line is printed.

3. Wiring a separate slew command to cause slew­
ing after the line is printed.

PROGRAMMING MANUAL

GE225

PRINTING OF DATA ON THE HaGH SPEED PRINTER

BRANCH ON DATA MATING FUNCTION INTERROGATED CONDITIONS

Operation

BDM

Operand

+T
C

+F

Modification Record

P

P is the plug number or controller number to be interrogated. C is the number
of the specific condition to be tested. Both C and P have a range (I to 7. C + T
calls for branching if the condition tested (C) is true. C + F calls for branching
if the condition tested if false.

Condition
Number

(I

1
2
3
4
5
6
7

Condition Tested

Printer Controller Busy

Out of Paper

Any Error in Printer Sub-System

HIGH SPEED PRINTER CONTROL INSTRUCTIONS

All HSP action instructions require three lines of GAP - 225 coding.

Write Print Line

Operation Operand Modification Word

1st line
2nd line
3rd line

SEL
WPL
WPL

P
F
N

P is the plug number (0 thru 7) to which the on line printer is attached. WPL is
the mnemonic code for Write Print Line. M1 is the memory "address t ' of the
first data word in the line of 40 (maximum) data words to be printed. Data words
to be printed consist of three BCD characters each. If less than 40 words are to
be printed on one line; the sign bit must be "on" in the last word to be printed.
F is the format control indicator. If a blank is written in the F position, the Une
is to be printed without horizontal format control and M2 is ignored. If an F is
written in the F position. horizontal format control words starting at memory ad­
dress M2 are used to control the printing of the data words. N is the numeric
print indicator. If a blank is written in the N position» the data words to be printed
are alphanumeric. If an N is written in the N position the data words to be printed
consist only of decimal numbers and the 14 special symbols. Both M2 and M1 must
be in the same half of a 16K memory. After printing the paper is automatically
spaced one line. Spacing of (I to 63 lines> or ejecting the paper to the top of the
next page may be coded as part of the WPL command by cOding lines 2 and 3 in
Octal.

PROGRAMMING MANUAL

·128·

..

..

; •

1
o

2nd line:

3rd line:

GE22S

4

V3

5

1:: Numeric
o =: Alpha­

numeric

6 - 19

Format
Address

Data Address

bit 5 is also part of the format address and is assumed to be the same

as data address bit 5.

If C1 "" 0 and C2 "" 1, ignore VI thru V6, and slew paper to top of next page.

If Cl=l and C2=1, slew paper the number of lines (0 thru 63) indicated by the bi­
nary number in positions Vl thru V6.

Slew Paper a Fixed Number of Lines

Operation

1st line:
2nd line:
3rd Une:

SEL
SLW
SLW

Operand Modification Word

P
N

P is the plug number (0 thru 7) to which the on line printer is attached. SLW is the
mnemonic code for SLEW PAPER. N is the number (0 thru 63) of lines to be spaced
or slewed before printing the next line.

Slew Paper to Top of Next Page

1st line:
2nd line:
3rd Une:

Operation

SEL
SLT
SLT

Operand Modification Word

P

P is the plug number (0 thru 7) to which the on line printer is attached. SLT is the
mnemonic code for slew paper to top of next page.

EXAMPLES

1. Assume that the data to form one line of print occupies 23 consecutive storage
locations at 2025 - 2047. Assume that the printer is plugged into data mating hub
i 6. Write the commands to print only 23 words of data on the high speed printer.

Assume the data to be printed is already in the proper format. Assume the data
to be printed is alphanumeriC data.

3000 LDA 2047
3001 BMI Set sign of 204 7 to -
3002 BRU 3004
3003 CBS
3002 STA 2047
3004 BDM O+T 6 Delay until ready.
3005 BRU 3004
3006 BEL 6
3007 WPL Print alphanumeric data
3008 WPL 2025

PROGRAMMING MANUAL

-129-

The commands at 3000 - 3003 will "set" the sign bit of the 24th word to a 1. The
commands at 3004 and 3005 will delay processing until the printer is ready. The
commands at 3006 - 3008 will cause 23 words of alphanumeric data to be printed
on the high speed printer. After printing, the paper is automatically spaced one
line.

2. In problem 1 above assume that all of the data to be printed consists of either
numeric data or any of the 14 special symbols.

3007 WPL 2025 N.

All commands will be identical except the command at 3007 which will include an
N. in the position normally reserved for the modification word.

3. Assume in the above example that the paper is to be "Slewed" 16 lines after the
line is printed. Write the command to "slew" paper as part of the command to
print.

3006
3007
3008

SEL
OCT
OCT

22 0 00 o~ } BINARY CONSTANT
03 0 37 51

All commands will be identical except the programmer will substitute the two con­
stants above at 3007 and 3008 as indicated below

2 2 0 0 0 0 0

I I I
~

P NO VI V2 V3 A
R F L
lOP

" FORMAT ADDRESS

N R H
T M A
& A N
STU
L M
E E
W R

I
o 3 C 0

o o 1 .
V4 V5 V6 Cl C3

3

1 1

7 5

1 1 1 1

DATA ADDRESS
Binary 2025

1

1

The binary constant at VI V2 V3 V 4 V5 and V6 will represent the number of lines
to be slewed(16), after the line is printed. In the above examples the address 2025
is considered as the "actual" or absolute address in the "object" program of the
line to be printed. This address may be specified for the first word to be printed
by means of an "ORG" operation.

4. Assume that the paper is to be "slewed" 16 lines after the line.is printed.
Write the command to "slew" paper as a separate command.

3009
3010
3011

SEL
SLW
SLW

Slew paper 16 lines.

1

CE22S PROGRAMMING MANUAL

-130-

CE22S

The commands above will cause the paper to "skip" 16 lines after the line is
printed. The commands above could cause slewing before the line is printed when
they precede the commands to print (WPL) and follow the commands to interrogate
the plug (BDM) for "BUSY" .

5. Write the commands to cause the paper to skip to the first line on the next page

3009
3010
3011

SEL
SLT
SLT

2 } SLEW TO FIRST PRINI'ING LINE

The commands above will cause the paper to skip to the first printing line of the
next page.

PROGRAMMING MANUAL

-131-

GE22S

PROGRAMMED EDITING Of DATA fOR OUTPUT

ORY

Or A into Y
Normalize A register
Branch if Modification Word is High
No operation

Y OR A INTO Y

ORY
NOR
BXH
NOP

Each bit of A is examined. If there is a 1 in A in a given position, a 1 is placed
in Y in that position. The contents of A are unchanged.

NOR K NORMALIZE A REGISTER

If R, the number of leading zeros of A (1-19), is less than K, the contents of A
(1-19) are shifted left R places, and K-R replaces the contents of location 0000
(15-19). If R is greater than, or equal to, K, the contents of A (1-19) are shifted
left: K places, and a zero replaces the contents of location 0000 (15-19). Positions
S, 1-14 of location 0000 are always set to zero. Vacated positions of A are filled
with zeros. The sign of A is unchanged.

BXH BRANCH IF X IS mGH

If the contents of X (7-19) are greater than or equal to .K, the computer takes the
next sequental instruction if the contents of X (7-19) are less than K, the computer
skips the next instruction and executes the second sequential instruction. The con­
tents of X are not changed. This instruction is not automatically modified.

NOP NO OPERATION

Zero is added to the contents of A (s, 1-19),

1. Assume an 11 digit binary coded decimal number representing dollars and cents
is in memory storage beginning in word 0256 and ending in word 0259. Assume
that a decimal point is actually represented by the proper BCD configuration with­
in the 12 digit field. Write the necessary commands to delete inSignificant zeros
to the left: of the decimal point. The number in memory is represented as:

.XX

0256 0257 0258 0259

3996 DEC 19

I
00000000 000000 010011

3997 ALF 00110000 110000 110000
3998 DEC {) 00000 00000 00000 00110
3999 DEC '1 00000 00000 00000 00111

3148 LDZ } Clear Modification Word 1
3149 STA 0001
3150 LDA 0256 1

} 3151 NOR 19 Set up A Register for Zero Test
3152 LDA 0000
3153 BZE f Test and Branch for 3 Zeros
3154 BRU 3164
3155 LDA 3996 } Convert from 19 Complement
3156 SUB 0000
3157 SUB 3999

} 3158 BMI Test and Branch for No Zeros.
3159 BRU 3179

PROGRAMMING MANUAL

·132·

..

3160 SUB 3998 } 3161 BPL Test and Branch for 2 Zeros
3162 BHU 3170
3163 BHU 3175 Branch for 1 Zero
3164 LDA 3997

}
3165 OHY 0256 1
3166 INX 1 1 Insert 3 Blanks in Word and Test for Return
3167 BXL 3 1
3168 BRU 3150
3169 BHU 3179 Continue
3170 LDA 3997

}
3171 BRA 6
3172 fiLA 6 Insert 2 Blanks in Word
3173 OHY 0256 1
3174 BHU 3179
3175 LDA 3997

1 }

3176 aRA 12
Insert 1 Bland 3177 aLA 12

3178 OHY 0256

The commands in storage at 3148 and 3149 win replace the contents of modification
word 1 with zercs. The commands in storage at 3150 and 3151 will insert a num­
ber within location 0000, as follows. The value inserted within 0000 wiU be the
binary equivalent of 19 minus the number of high order zero bits in the A register:
The A register is then loaded with the number in storage at 0000 and tested for
zero by the commands at 3152, 3153 and 3154.

li the contents of the A register are equal to zero, the number of positions shifted
by the NOH command would be equivalent to 19; and, therefore, control is trans­
ferred to the command at 3164 to insert 3 spaces (blanks) within the word to be
edited, The command at 3164 win load 3 spaces (blanks) into the A register. The
ORY in storage at 3165 wiH cause the contents of 0256 to be replaced with binary
coded decimal spaces (blanks). Control will be returned to "edit" the next word
or continue in if aU 4: words have been "edited" by the commands in
storage at 3166 3169.

li the word in does not contain the of aU zeros, control. will con­
tinue with the command in 3155. The commands in 3155 and 3156 wiLl load a "bi­
nary 19" into the A register, subtract the contents of 0000 from the "binary 19",
and produce a number within the A register which is equivalent to the number of
() bits shifted out of the high order positions of the word by the NOR command at
3151. The commands in storage at 3157, 3158 and 3159 will test the contents of
the A register to determine whether the NOR command executed 7 or more shifts.
If the NOR command does not complete 7 or more shifts, there are no blanks for
insertion in the high order positions; and control will be transferred to the com­
mand at 3179 to continue the program.

The commands in storage at 3160 through 3162 will further test the number of
shifts executed the NOR command. If the NOR command executed 13 or mOre
shifts, control be transferred to the command at 3170. The commands at 3170
through 3173 win the contents of the word to be edited with 2 blanks in the
high order poSitions of the word and transfer control to continue processing. The
instructions for the insertion of spaces (blanks) utilize the LDA command to load
a word consisting of 3 BCD blanks, the BRA and SLA commands to delete an ap­
propriate number of blanks, and the ORY command to insert the blanks to replace
the inSignificant BCD zeros.

If the word to be edited does not contain 3 BCD zeros, no zeros, or 2 BCD zeros,
it must contain 1 BCD zero in the high order position. Control in this case will
be transferred to the commands at 3175 through 3178 for the insertion of 1 blank.

The above routine for insertion of blanks to the left of the decimal point in place

PROGRAMMING MANUAL

.133·

GE225

of insignificant BCD zeros may be utilized as a subroutine package. Review ma­
terial on Programming for Subroutine Usage.

2. In the previous example, after zero suppression takes place, complete editing
by the insertion of appropriate commas and a dollar sign. The number in storage
after the insertion of a dollar sign and commas may occupy 5 words of memory.
Let these memory locations be 0255, 0256, 0257, 0258 and 0259.

3994
3995

3179
3180
3181
3182
3183
3184
3185

3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219

ALF
ALF

NOP
BXH
BRU
BXH
BRU
BXH
BRU

LDA
SRA
SLA
ORY
DLD
SRD
ORY
LDZ
STA
SLD
SLA
ORY
LDA
SLD
ORY
LDA
MAQ
STA
LAQ
SLA
SRA
ORY
LDA
ORY
BRU
LDA
STA
BRU
LDA
STA
LDA
MAQ
BRU

00,
$ ••

3
3211
2
3211
1
3214

3995
12
12
0255
0256
6
0255

0256
6
12
0256
3994
(}

0256
0257

0257

7
1
0257
3994
0257
3219
3995
0255
3219
3995
0255
0257

3199

o
o

1

1

1

}
}
}

)
}
}

}

J
}
}

}
}

}

1
}

000000
101011

000000
110000

111011
110000

Edit for 3 H O. Words of Blanks

Edit for 2 H.O. Words of Blanks

Edit for 1 H.O. Words of Blanks

Additional
Constants

Control continues to 3186 when no H.O. words
of Blanks

Load $ Symbol and insert in left hand
position of 0255.

Insert 2 H.O.P. of 0256 into L.O.P. of 0255.

Zero out 0256

Insert 1 L.O.P. of 0256 into 1 H.O.P. of 0256.

Insert comma into middle posit ion 0256 and
H.O. position of 0257 into L.O. 0256.

Load 0257 and preserve in Q.

Zero out 0257. Reload A with contents of 0257.

Insert 2 L.O.P. of 0257 into 2 H.O.P. of 0257.

Insert comma into L.O.P. of 0257.

Transfer to continue processing.

Load $ sign and 2 blanks into 0255.

Transfer control to continue processing.
Load $ symbul and insert in left hand
position of 0255.

Load 0257 and preserve in Q.

A dollar sign with 2 blanks in the low order positions (L.O. P.) will be in storage
at 3995. A comma with zeros in the high order positions (H.O.P.) will be in stor­
age at 3994. The commands at 3180 through 3185 will test modification word 1 to
determine the number of high order words in the number which contain all blanks
after the edit routine in problem 1 is executed. If no high order words in the num­
ber contain all blanks, control will transfer to the command at 3186

PROGRAMMING MANUAL

-134-

CE22S

The commands in storage at 3186 through 3210 will insert a dollar sign into the
high order position of location 0255 and appropriately shift the number, with in­
sertion of commas where necessary, as indicated below.

xxx xxx xxx .XX Before

0256 0257 0258 0259

$XX X'X XXX .XX After

0255 0256 0257 0258 0259

The commands in storage at 3211 through 3213 will insert a dollar sign into the
high order position of location 0255 as indicated below.

BLANKS BLANKS BLANKS .XX Before

0256 0257 0258 0259

$BLANKS BLANKS BLANKS BLANKS .XX After

0255 0256 0257 0258 0259

BLANKS BLANKS XXX .XX Before

0256 0257 0258 0259

$BLANKS BLANKS BLANKS XXX .XX After

0255 0256 0257 0258 0259

The commands in storage at 3214 through 3218 and 3199 through 3210 will insert
a dollar sign into the high order position of location 0255 and appropriately shift
the number, with insertion of commas where necessary, as indicated below:

BLANKS XXX XXX .XX Before

0256 0257 0258 0259

$BLANKS BLANKSX x X, XXX .XX After

0255 0256 0257 0258 0259

As mentioned in the previous example, this coding might be used as part of an edit­
ing subroutine package. The use of the NOP (No Operation) command is of particu­
lar interest here. At the time this example was prepared another instruction was
written in 3179, which is the natural continuation of example 1. A check of the
coding revealed that t'his instruction was not correctly placed and would have to
be deleted. Something therefor e had to be done with memory location 3179. To
have the coding in example 1 jump to 3180 to continue or to have moved the cod­
ing for example 2 up on memory location would have necessitated several ad­
dress changes with attendant possibilities for clerical error. The NOP command
is a handy way to fill in such gaps in a program.

PROGRAMMING MANUAL

-135-

CE22S

EDITING OF DAtA FOR OUtPut WitH AUtOMAtiC FORMAt CONtROl

If a Une is to be printed under a format control, the format data is stored in the
Central Computer Memory under the same organization as the print line data.
The format control data consists of:

a. Any printable character.
b. Special control characters.

The Printer Controller, in assembling a formatted line, reads in from the Cen­
tral Computer Memory one word of data and one word of format. The first format
character is considered initially. If it is a printable character the character is
printed. If it is a special control character it is treated as described below. As­
suming it was a printable character, it is printed, and the first data character is
considered. If it is a printable character it is printed. It may he a special con­
trol character, in which case it is treated as explained below. In sequence, the
second format, then second data characters are consl.dered, followed by the third
format and the third data characters. Following the consideration of the third data
character another word of data and another word of format are requested from the
Central Computer Memory. Upon receiving these new words, the procedure de­
scrl.bed above is again foHowed. This routine is continued until a one is the sign
bit of a data word is encountered, whereupon, after consideration of that data word
and its respective format word, the sequence is ended.

There are five special control characters, mentioned above, which are available
for controlling the format of the printed Une. These characters, and their BCD
bit representations are:

Ignore
Ignore/Skip
Delete
Delete/Skip
Zero Supress*

Octal 35
Octal 36
Octal 37
Octal 56
Octal 57

*Noie; Zero suppression is also incorporated when a printable $ symbol appears
within the format data.

If a format character is an Ignore, the next data character is immediately conSidered.

If a format character is an Ignore/SkiP. a blank is printed and the next data char­
acter is considered.

If a format character is a Delete, the next data character is ignored, and the next
character considered is the next format character.

If a format character is a Delete/Skip, a blank is printed, the next data character
is ignored, and the next character considered is the next format character.

If a format character is a Zero Suppress, the next data character is ignored and
the next format character is printed if it is a printable character. After consider­
ing this last format character blanks will be inserted in the print Une until; (a)
a non-zero data character is detected, or (b) a period comes up in the format data.
It should be noted that once a Zero Suppress has been put into effect the print line
data is inspected only for fI. non-zero character. The format data is inspected only
for a period. Zero suppression is also incorporated when a printable dollar sign
appears within the format data.

It is possible for an Ignore or an Ignore,tSkip character to he placed in the print
line data (as well as the format control data). If a data character is an Ignore,
the next format character is immediately considered and nothing is printed for
that data character. If a data character is an Ignore/Skip a blank is printed and
the next format character is considered.

PROGAAMM~NG MANUAl.

·136·

The alxYVe makes it for a line format to be stored in the Cen-
tral once, and be used as often as needed to Hnes of data
in that format. The data within the limitations by the use of the
"'u<;<.,~'u control as described be stored in sequence in cOlnp1Llt

Printer Controller constructing the line ""r,.-Min",,,

format.

1. Assume that 4 words of data

MEMORY
ADDRESS

0259 and 0260 re!:1rl::~Benu:'u

0256 257 258 259 260
__ --..... --.....,.",.~--- --_---~ r-------"'V'""-----,

x X X X X X X X X

"'----v..---"'----.... ...----'----------"',---------""
ROURS WORKED OCCUPATION GROSS EARNINGS AMOUNT

CODE

Assume that it is desired to 4 words of the above data as foHows:

X X X SPACE SPACE SPACE .XX

'-'-----.v,,---- ~'------v~---~/
ROURS WORKED GROSS EARNINGS

Assume that Ul"'''!S'UU'''''''Il< blanks and zeros must be deleted from the gross earn-
before it is the the format control

write the commands to write the under automatic format controL Assume
that the of the format data will at 3100, Assume that the

of the data before it is at 3600.

-137-

MANUAL

GE

FORMAT DATA

r---__________________ A~ ________________________ ~

(011'11'1 311'11 011'1'1 3103 3104 '\ Memory Addresses <:I.l.VV v <:I.l.V,,"

';---~---v----A---~--~--~~~'---~--~--~

Positions
1 2 :3 4 5 6 7 8 9 10 11 12 13 14 15

Memory
Address

PRINT DATA
LINE IMAGE TRANSFERRED AND PRlNTED.

L Positions Position Position
1-3 4 - 6 '1 - 15

Comparison Comparison Comparison

Created by comparison
of Positions in Format
Data and Print Data

KEY
.. ANY BiT CONFiGURATION PERMIBSABLE

S SPACE

X ANY ALPHANUMERIC DATA CHARACTER

35 OCTAL 35 FOR iGNORE

56 OCTAL 56 FOR DELETE/SKiP

57 OCTAL 57 FOR ZERO SUPPRESS

NOTE: Zero suppression is also incorporated when a printable dollar sign
-- appears within the format data.

5
-138-

PROGRAMMING MANUAL

..

2;}99 ORG :3100
3100 OCT 035 35 33

I 3101 OCT 05S 56 56
3102 OCT 053 73 35
3103 OCT 035 73 35
3104 OCT 035 33 35

of Format Data

FORMAT DATA

3501 DLD 0256
f 3502 DST 3600

Insert words 0256 and 0257 in 3500 and 3601.

3503 DLD 258 } 3504 DST 3602
Insert 5 characters in 3602 and 3503

3505 LDA 0260 } 3505 STA 3504
Insert 4 characters 3604 and 3605

3507 BDM OTT S

1
3508 BRU 35 7
3509 SEL 5
3510 WPL 3100 F
3511 WPL 3500

Print line under automatic format control.

3104 cause the necessary format data to be
3501 3500 "set" up data words 3600,

nTjnt';"", The commands at 3507 3511 will
the line under automatic control. Automatic format will cause

as described above of each format data
tion and each data Each causes the trans-
fer of the desired character to build the line as described above.

PROGRAMMING

·1391140·

•

Figure 26 Magnetic Tape Sub-Systems

MAGNETIC TAPE OPERATIONS

Before beginning this discussion it would be well to
consider a few fundamental terms normally used in
any type of data processing. These are:

Record

A collection of facts peculiar to an identifiable item.
Examples are: an employee's pay record; a customer's
account containing the date and amount of payments
made relative to an obligation; and, an inventory card
containing a balance on hand for a specific stock num­
ber.

A file may be referred to as an accumulation of related
records. For instance, in any payroll system a record
is maintained for each employee in the company. The
record will contain various data such as the individual's
name, pay number, rate of pay, type of employee (dir­
ect or indirect), the number of withholding exemptions,
and other types of deductions to be made from the
employee's gross pay at each pay period. An accum­
ulation of all payroll records for a company is termed
a "payroll file".

Files are comprised of many forms of information.
The example given above may also be termed a ID!!,§.:­

lirr file. The accumulation of all stock withdrawal
cards for a specified period of time to be processed
against a stores master file for the purpose of up­
dating balances on hand is also referred to as a file
- a stores transaction file.

GE225
-141-

In order to process a transaction file against a mas­
ter file, it is necessary to have some identification
common to the master data and the related trans­
action. This may be accomplished through the use
of a "key" which produces a zero when the trans­
action key is subtracted from the master key. Ex­
amples of keys are: stock number, pay number, cost
center, and job level.

The basic use of magnetic tape is to serve as a file
storage medium. The prim e benefit derived from
this type of storage is the rapidity with which in­
formation can be placed on the retrieved from the
tape surface. Storage may be "on-line" where the tape
is utilized as auxiliary memory to the Central Pro­
cessor, but more commonly it will be "off-line" where
one or more reels are used to hold complete master
files and transaction files. Master file and trans­
action tapes usually are sequentially ordered by the
record key (e.g., job number, pay number) in order
to take advantage of the fast sequential record access
associated with tape reading and to facilitate pro­
cessing within the computer. An exception to the
sequential requirem ent is the use of tapes in con­
junction with a random access memory device. In
this latter case the magnetic tape is used chiefly as
a compact storage medium for vast amounts of data.

Sorting of transaction data may be done prior to con­
version to magnetic tape. For instance, punched
cards may be sorted in ascending sequence before

PROGRAMMING MANUAL

placing their contents on tape. Under other circum­
stances it may be more desirable to sort transac­
tions within the computer. (This is an exam ple of
the use of "on-line" temporary tape storage).

Information is placed on magnetic tape in groups of
words referred to as records or blocks. A record
may consist of only one word, or it may be as large
as the entire computer memory. Each record or
block is separated by a 3/4 inch gap of erased tape
which permits starting and stopping between records.
It is extremely' imp'ortant for the p'rogrammer to re­
alize that this use of the term "record" is not the
same as that p'reviously' defined. It is true that the
size of a magnetic tape record may be varied at the
option of the programmer, but a "magnetic tape re­
cord" would not normally be made the same size as
the "data record". To do so would unnecessarily
waste tape space with an excessive number of inter­
record gaps (3/4 inch of tape each). In normal data
processing several data records will be contained
in each magnetic tape record. In order to avoid this
confusion of terms, magnetic tape records might be
conSistently referred to as "blocks", or data records
might be consistently referred to as "items". Un­
fortunately, "record" is a very popular and tradi­
tional term for both usages.

The use of magnetic tapes implies files of great size.
Therefore, in many programs a file will consist of
more than one reel of tape. When the end of a tape
or the end of a file is reached, the tape reel must be
rewound, removed and replaced. To maintain the con­
tinuity of the running program it is very worthwhile
to program an immediate switch, or alternation, from
the just completed tape to the succeeding tape (already
mounted on another handler). This technique permits
the mechanical reWind and manual removal of the com­
pleted tape to proceed independently of further pro­
cessing. If suffiCient tape units are not available to
permit convenient switching for all files, the most
extensive files should be given priority in the allot­
ment of tape handlers.

Tapes used with the GE 225 contain a silver spot to
signal the physical end of the tape. When detected by
a photo-electric cell within the tape unit, an indicator

GE225
-142-

is set. The condition of the indicator should be tested
by programmed instructions after reading or writing
each record. If the indicator is not set, normal pro­
cessing will continue; if set, an end of tape branch will
jump into program specified subroutines - normally
the rewinding of the current reel and alternation to
a new reel. The end of file sentinel is the magnetic
representation of the binary code 0001111 preceded
by an erased section of the tape 3 3/4 inches long.
During magnetic tape operations several other excep­
tional conditions may occur which are secondary to
the main processing job. A list of all such conditions
is as follows:

1. Controller Busy
2. End of File
3. End of Tape
4. Tape Rewinding
5. Parity Error
6. Input-output Buffer Error
7. Modulo 3 or Modulo 4 Error
8. Any Error

Handling of these exceptional conditions may be con­
veniently aSSigned to "executive routines". The ex­
ecutive routines will be provided to magnetic tape
users of the GE 225 as part of standard input-output
packages that both detect and correct the above con­
ditions, when they occur, according to standard oper­
ating conventions.

In order to process a computer run we must know the
data contained in each tape. Is it the master file?
Is it the proper transaction file? To tell us this, ex­
terior and interior labels are used. Exterior labels
are notations placed on the container relative to the
tape data. Interior labels are recorded magnetically
on the tape for positive identification and are tested by
the computer program. Interior labels are the most
important. They are permanent, and reliably estab­
lish the tape content. Each input or output tape should
contain this identification. It is properly placed in the
first record of the tape and should contain the date,
identification, and reel number. These data should be
checked by the computer program before any further
processing ensues.

PROGRAMMING MANUAL

GE225

TRANSFERS OF DATA BETWEEN THE MAGNETIC TAPE UNITS AND THE
CENTRAL PROCESSOR

BRANCH ON DATA MATING FUNCTION INTERROGATED CONDITIONS

T
BDM C + P.

P

P is the plug number or controller number to be interrogated. C is the number of
the specific condition to be tested. Both C and P have the range 0 to 7. C + T
calls for branching if the condition tested (C) is true. C + F calls for branching
if the condition tested is false.

Condition Number

o
1
2
3
4
5
6
7

Magnetic Tapes

Controller Busy
End of File
End of Tape
Any tape rewinding
Parity Error
Input/output Buffer Error
Mod 3 or Mod 4 Error
Any Error

MAGNETIC TAPE CONTROL INSTRUCTIONS

All magnetic tape movement instructions require three lines of GAP-225 coding.

Operation

1st line: SEL
2nd line: XXX
3rd line: XXX

Operand

M
N

Modification

P

T

P is the plug number (0 thru 7) of the magnetic tape controller to be selected for this
magnetic tape instruction. M is the memory address (decimal number of alpha­
betic symbol) of the first word of a block of N + 1 words to receive data from mag­
metic tape on tape read instructions. On tape write instructions. M is the address
of the first word of a block of N words to be written on magnetic tape. N is the
maximum number of words to be read or the exact number of words to be written.
T is the number of the Tape Unit (0 thru 7) to be activated on plug P. XXX is the
mnemonic code for the specific tape movement desired. The mnemonic codes for
specific tape movements are:

WTD
WTB
RTD
RTB
RWD
BKW
BKR
WEF

Write tape in decimal mode
Write tape in binary mode
Read tape in decimal mode
Read tape in binary mode
Rewind to tape to leader
Backspace one record and position WRITE Head
Backspace one record and position READ Head
Write END of FILE

When writing on magnetic tape in binary mode, one word of memory becomes four
6-bit characters on tape as shown below:

PROGRAMMING MANUAL

-143-

Four 6-BIT Characters
recorded on tape Numbered bits of word in memory

1st Char

2nd Char

3rd Char

4th Char

000 0 SIP

234567P

8 9 10 11 12 13 P

14 15 16 17 18 19 P

345 6 718 9 10 11 12 13114 15 16 17 18 191

P is a generated odd parity bit for each character.

When writing on magnetic tape in decimal mode, one word in memory becomes three
7 - bit characters on tape as shown below, but some of the 6 - bit patterns are al­
tered to conform to the IBM 727 tape binary codes for BCD and alp hebetic charac­
ters. The alteration of the character codes when writing and reading magnetic
tape is automatic.

20 bit word in memory

Three 6-BIT Characters
recorded on tape

S 1 2 THRU 7 8 THRU 13 14 THRU 19

1st Char 2 THRU 7 P 1+-------
2nd Char 8 THRU 13 P ~-----------

3rd Char 14 THRU 19 P ~-----------------

P is a generated even parity bit for each character.

GE225

Bits Sand 1 are not recorded on tape in decimal mode. Writing mixed binary and
BCD words on tape must be done in the binary mode When reading tapes in the
decimal mode, bits Sand 1 are set to zero in memory for each word read from
tape.

After reading N words from magnetic tape into memory starting at location M,
(in either binary or decimal mode) memory location M + N will contain certain
zeros indicating that exactly N words were read from a record on tape containing
N words. If the number of words contained in the record currently read is less
than N, then only the contents of the record will be stored in memory and the 2's
complement of the residue (N-record length) will be stored in memory cell M + N
with a one-bit in the sign position. If the number of words in the record is greater
than N, then only N words will be stored in memory and the increment (record
length-N) will be stored in memory call M + N with a zero in the sign position.
M is not indexable.

EXAMPLES

L Read a record from tape unit 1, assume the controller is plugged into Data Mating
hub #4. Assume that records on magnetic tape are variable in length from 0 to 50
words. However, all data needed from processing is contained within the first 10
words of any record. The record is to be read into storage beginning at 1000.
Assume mixed binary and binary coded decimal data has previously been written
on the tape in binary mode.

PROGRAMMING MANUAL

-144-

GE225

0000 BDM O+T 4 } Delay until controller ready 0601 BRU 06VO
0602 SEL 4 } 0603 RTB 1000 Read up to 10 words in Binary mode
0604 RTB 10 1
0305 BDM 0+ T 4 } Delay until ready 0606 BRU 0605

The commands at 0600 and 0601 will delay processing until the controller is not
busy. The commands at 0602,0603 and 0604 will read up to 10 words from the
next record on magnetic tape. The commands at 0605 and 0606 will delay pro­
cessing until the record is completely read. Mixed binary and binary coded deci­
mal data may appear in a magnetic tape record when the record is both written
and read in the binary mode. Therefore, binary data may be calculated freely
without a need to convert before the calculation, and binary coded decimal data
will also retain its identity as binary coded decimal data.

2. After the record in problem 1, above, is read, interrogate the word at 1010
to determine whether the record contained more than 50 words. If the record
contains more than 50 words, continue further processing at 3000.

3998 DEC 40

0607 LDA 1010 } Load 1010 0608 BMI
0609 BRU 0613 Transfer if less than 10 read

0610 SUB 3998

} Test and Transfer for more 0611 BPL
0612 BRU 3000 than 50 words

0613

The word after the last word read from the block will contain a 1 in the sign bit
position if the record read contained less than 10 words. Therefore, the com­
mands at 0608 and 0609 will cause further proceSSing to continue at 0613 if the
record just read contained less than 10 words. If the record just read contain­
ed more than 50 words of data, the commands at 0610, 0611 and 0612 will cause
further processing to continue at 3000.

3. When the record in problem 2 above contains more than 50 words, write the
commands to backspace the tape unit and read up to 100 words from the record.
Load the number of words in the block into the A register and "halt" the com­
puter at "BRU 3012".

3998 DEC

3000 BDM
3001 BRU
3002 SEL
3003 BKR
3004 BKR
3005 SEL
3006 RTB
3007 RTB
3008 BDM
3009 BRU
3010 LDA
3011 ADD
3012 BRU

100

0+ T
3000

1000
100
O+T
3008
1100
3998
3012

4

4

1
4

1
4

} Delay until controller ready

} Backspace and position to read

} Read up to 100 words into storage

}
Load and convert to no. of words in
block Programmer halt no. of wo rds
in block in A

The commands at 3000 and 3001 will delay the controller until it is ready. The
commands at 3002, 3003 and 3004 will cause the tape unit to backspace 1 block
and position to read the block. The commands at 3005, 3006 and 3007 will cause
up to 100 words of the record to be read. The commands at 3010, 3011 and 3012

PROGRAMMING MANUAL

·145·

GE225

will cause the number of words in the block to appear in the A register and a halt
due to a programmed loop. Further processing can be initiated from the console.

4. Write a command to rewind the tape to the leader.

3001 BDM O+T 4 } Delay until controller ready 3002 BRU 3011
3013 SEL 4 } 3014 RWD Rewind tape to leader
3015 RWD 1

The commands above will rewind the tape to the leader.

5 Assume that data concerning one item has been recorded in 2 records on tape
unit 2, on a controller on plug 4. Also, assume that pertinent data is contained
within the second record. Write the commands to "Skip" the first record and read
the second record into 1000.

2500 BDM O+T 4 } Delay until controller ready 2501 BRU 2500
2502 SEL 4 } 2503 RTB 0 Skip Record
2504 RTB 0 2
2505 BDM 0+ T 4 } Delay until ready 2506 BRU 2505
2507 SEL 4 } 2508 RTD 1000 Read second record
2509 RTD 50 2

The commands in 2500 and 2501 will delay processing until the controller is ready.
The commands at 2502, 2503 and 2504 will "skip" a record on magnetic tape. The
commands at 2505 and 2506 will delay processing until the controller is ready.
The commands at 2507, 2508 and 2509 will read the next record from magnetic
tape into storage.

6. Assume the input tape is tape unit 1 on a controller on plug 4. Assume the out­
put tape is tape unit 1 on a controller on plug 5. Write the commands to read 50
words into storage from the input tape beginning at 1000 and to write 50 wor ds on
the output tape. Interrogate the "End-of-File" indicator on the input tape. If set,
write the end-of-file on the output tape and rewind all tapes.

2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619

BDM
BRU
BDM
BRU
SEL
RTD
RTD
BDM
BRU
SEL
WTD
WTD
BRU
BDM
BRU
SEL
WEF
WEF
BDM
BRU

O+T
2613
0+ T
2602

1000
50
O+T
2607

1000
50
2600
O+T
2613

0+ T
2618

4

4

4

1
4

5
1
1

5

5

1
5

} Interrogate and transfer for input
end-of-file

} Delay for input tape busy

} Read record from input tape

} Delay until record is read

} Write record on output tape

Return and repeat

} Delay until output ready

} Write end of file

} Delay until end of file written

PROGRAMMING MANUAL

-146-

CE22S

2620
2621
2622
2623
2624
2625
2626
2627
2628

SEL
RWD
RWD
BDM
BRU
SEL
RWD
RWD
BRU

0+ T
2623

2628

5

1
4

4

1

} Rewind output

} Delay for input tape busy

} Rewind input

Halt

The commands at 2600 and 2601 will interrogate the input tape file to determine
whether the last record on the input tape has been previously processed. If the
last record has been previously processed, further processing will be continued
with the command at 2613. The commands beginning at 2613 will initiate the nec­
essary steps to "close" the files and terminate processing i.e. 2613-2617 will
write the end-of-file record on the output tape, 2618-2622 will rewind the output
tape, 2623-2627 will rewind the input and the command at 2628 will "Halt" fur­
ther processing until further action is initiated from the control console. It is im­
portant to consider the necessity for writing the delay commands when initiating
action on the individual tape units. When information is transferred from or to a
tape unit, the controller or data mating plug is "Busy" during the transfer. All op­
erations affecting any tape unit on the same controller must be delayed until the
transfer is completed (by use of the appropriate BDM and BRU commands). When
rewinding tapes on the same controller the "rewind" controller is "busy" for 250
us, therefore "rewind" commands in a series should be preceded by appropriate
BDM and BRU commands. As a matter of policy it is appropriate to precede all
operations which affect magnetic tape with appropriate BDM and BRU commands.
Therefore, the commands to rewind the "input" magnetic tape (2625-2627) are pre­
ceded with the commands to "delay" even though the delay should have been in­
cluded in the previous processing sequences.

The commands at 2602 and 2612 will read records of 50 words in length from the
"input" magnetic tape and write the records on the output magnetic tape with ap­
propriate delay commands as discussed above .

•

PROGRAMMING MANUAL

-1471148-

MASS RANDOM ACCESS FILE OPERATIONS

Figure 27 Mass Random Access File Sub-System

The Mass Random Access File Sub-System provides
the ability to store vast quantities of data and to access
that data randomly rather than sequentially. Random
access processing~ as opposed to sequential processing,
is somewhat self-explanatory. That is, data to be pro­
cessed may be accumulated on either punched cards,
paper tape, or magnetic tape in the non-sequential
order in which source documents are received. For
example, checks in payment of insurance premiums
are received daily, and the account must be credited
with the amount paid. Naturally, these payments will
not be received in a strict numerical succession by
policy number. If payments were received this way,
we would have a Utopian example of sequential input -
we would not have to sort in numerical sequence prior
to magnetic tape processing within a computer. Se­
quential updating is normally a deinite requisite when
using magnetic tape as a storage medium. Since data
within the Mass Random Access File is directly ad­
dressable, sequential input is not required.

Using the insurance premium receipts as an example,
we are now in a position to process these transactions
against a master file contained in a Mass Random
Access File device. However, through the key, it is
not necessary to consecutively read every master re­
cord until an equal key is found to determine whether
it is the one we desire to update. In random access
processing we directly address the record using the

CE225
-149-

key; and the time taken in matching one piece of in­
formation to another is not dependent upon the loca­
tion of the last data processed, as it is in sequential
processing. The matching time is relatively negli­
gible since it is possible to go directly to the data we
need in the random access memory. Two or more
files, whose sequence is divergent, may therefore be
updated at practically the same time.

We must, however, have a method of using the key to
locate the master data; for in order to utilize the ran­
dom access capabilities of the file most fully, very
careful consideration must be given to the actual ad­
dressing of records. This may be achieved through
arithm etically modifying the key, using the result as
a random access memory address; or in some appli­
cations the key is synonomous with the address, and
no modification is necessary. Thus, the record ad­
dress will most often be either carried as the key with­
in the record itself or calculated by means of a special
routine. When the record address is given by the key
contained within the record itself, the key which corres­
ponds to the address is simply inserted by the program
into the address portion of the appropriate command
words. When the record address is calculated by means
of a special routine, it will be convenient to construct
and utilize this routine as a subroutine package. At
times the modification of two or more keys may result
in the same address. In such cases, a system of "link­
ing" is utilized to store and to address the proper re­
cord.

As we have seen, random access processing permits
us to store master records, and to process input files
non-sequentially. Some systems applications, how­
ever, may easily use a composite of random and seq­
uential processing. An inventory system may be used
as an illustration in which it is desired to update a
master file containing stock number, balance on hand,
unit cost, total cost, and order point; and, also to de­
velop raw material statistics by job number. For the
purposes of this example, assume that:

1. the master file is randomly contained in random
access memory,

2. the job number file is on a tape in numerical suc­
cession, and

3. the transaction file is sorted in numerical sequence
by job number.

We may now read a transaction, and using the job num­
ber as a key, update the proper job number master tape
record; and at the same time, the stock number key,
may be utilized to find and update the master inventory
record within random access memory. Study and ex­
perience will disclose the most convenient or economi­
cal methods for using sequential or random processing,
or a combination of both.

PROGRAMMING MANUAL

CE22S

ACTUATOR
POSITIONING

ARM~

-----II : : : :

OUTER PART
128 Tracks
16 Sectors per Track

1 Record per Sector
500,000 BitS/Second
Transfer Rate

~GHTHEADS
FOR EACH DISC

Figure I

Figure II

-150-

INNER PART

128 Tracks
8 Sectors per

Track
1 Record per

Sector
250,000 Bits/second
Transfer Rate

Above Information is
for One Side of Disc.
Other Side Exact

Duplicate

PROGRAMMING MANUAL

GE225

TRANSFERS OF DATA BETWEEN THE MASS RANDOM ACCESS FILE AND THE
CENTRAL PROCESSOR

BRANCH ON DATA MATING FUNCTION INTERROGATED CONDITIONS

T
BDM C+ P

F

P is the plug number or controller number to be interrogated. C is the number of
the specific condition to be tested. Both C and P have the range 0 to 7. C + T calls
for branching if the condition tested (C) is true. C + F calls for branching if the
condition tested is false.

CONDITION
NUMBER

o
1
2
3
4
5
6
7

MASS RANDOM
ACCESS FILES

Controller Busy
File #0 Ready
File #1 Ready
File #2 Ready
File #3 Ready
Input-Output Error
Parity Error
Any Error

MASS RANDOM ACCESS FILE CONTROL INSTRUCTIONS

Each Mass Random Access File (MRAF) consists of either 16 or 64 storage discs.
From one to four 16 disc MRAF's or one 64 disc MRAF may be attahced to the GE
225 core memory through a single plug on the DATA MATING FUNCTION. The 16
disc MRAF stores 98,304 records, each record consisting of 64 20-bit information
words. Six numbers are required to address a specific 64 word record on a MRAF:

1. DATA MATING PLUG Number
2. File Number
3. Disc Number
4. Head Number
5. Track Number
6. Record Number

(0 thru 7)
(0 thru 3)
(0 thru 15) or (0 thru 63)
(0 thru 7)
(0 thru 63)
(0 thru 15) on 256 outer tracks
(0 thru 7) on 256 inner tracks

Reference
Schematic
Figure 1

All MRAF instructions (except Branch on MRAF conditions) require three lines of
GAP 225 coding.

POSITION MRAF

1st line:
2nd line:
3rd line:

OPERATION

SEL
PRF
OCT

OPERAND

(MRAF Address)

MODIFICATION

P
R

P is the plug number (0 thru 7) to which the MRAF is attached. PRF is the mnemonic
code for Position MRAF to transmit or receive a specific record. R is the number
(0 thru 3) of the selected MRAF. The third line contains the actual MRAF address of
the record to be acted upon. The format of this line is:

20-bit word

Disc Number
Track Number

Head Number ---­
Record Number ----

PROGRAMMING MANUAL

·151·

CE22S

If S, the sign bit, is 0, the MRAF is positioned to read (or write) the specific record
designated by the entire address in bits 1 thru 19.

Is S is 1, the MRAF is positioned to read anyone of the 8 or 16 records designated
by bits 1 thru 15. When a subsequent read MRAF instruction is given, the first
available record from this position will be transmitted to core memory.

READ MRAF

1st line:
2nd line:
3rd line:

OPERATION

SEL
RRF
RRF

OPERAND

N
M

MODIFICA TION

P
R

P is the plug num rer (0 thru 7) to which the MRAF is attached. RRF is the mnemonic
code for Read MRAF. N is the number (1 thru 16) of 64-word records to transmit
from the disc storage to core storage. R is the number (0 thru 3) of the selected
MRAF. M is the core memory address (decimal number of alphabetics symbol) in
to which the first word of the first record is to be copied. All following words and
records, if any, will be copied into sequentially higher memory locations. M must
be an even multiple of 64 words. M is not indexable.

WRITE MRAF

1st line:
2nd line:
3rd line:

OPERATION

SEL
WRF
WRF

OPERAND

N
M

MODIFICA TION

P
R

P is the plug number (0 thru 7) to which the MRAF is attached. WRF is the mnemon­
ic code for Write MRAF. N is the number (1 thru 16) of 64-word records to trans­
mit from consecutive core storage locations to disc storage. R is the number (0
thru 3) of the selected MRAF. M is the core memory address (decimal number or
alphabetic symbol) from which the record(s) will be copied. The MRAF destina­
tion address will be the one at which the MRAF is currently positioned. M must be
an even multiple of 64 words. M is not indexable.

EXAMPLES

1. Read a record from mass random access file #1. Mass random access file #1 is
plugged into Data Mating plug #2. The record is to be read into storage beginning
at 640. The record is located at disc # 10, head #5, track #35, and record # 15.

0300 BDM O+T 2 } Delay until controller ready 0301 BRU 0300
0302 SEL 2 } 0303 PRF 1 Position MRA F
0304 OCT 0250737
0305 BDM 1 + F 2 } Delay until ready
0306 BRU 0305
0307 SEL 2 } 0308 RRF 1 1 Read Record from MRAF
0309 RRF 0604
0310 BDM O+T 2 } Delay until Read 0311 BRU 0310

The commands at 0300 and 0301 will transfer control in a continuous loop until the
controller is not busy. The commands at 0302,0303 and 0304 will position the
MRAF to read the desired record as defined below:

PROGRAMMING MANUAL

-152-

GE225

o 7 . ,. ,.;
3 . 7. 2 . 5 .

I I
o ,1 2 3 4 5 6 .. 7 8 9 10 11.12 13 14 15 16 17 18 19.

Disc #<
Binary 10

Track #<
Binary 35

Head #< Record #<
Binary 5 Binary 15

The command at 0305 and 0306 will delay further processing until the MRAF device
is positioned to read the desired record. The commands at 0307, 0308 and 0309
will transfer the desired record into storage beginning at 0640. The commands
in storage at 0310 and 0311 will delay further pro cessing until the record has
been fully read into storage at 0640 - 703.

2. In problem 1, above, assume that all address data is known except the record
number. Read anyone of the recor ds within range of access on the same file,
disc, head, and track. Assume that the record to be read will furnish further in­
formation for the "search" and further processing will interrogate the data with­
in the record itself.

0400 BDM 0+ T 2 } 0401 BRU 0400 Delay until Controller Ready
0402 SEL 2 } 0403 PRF 1 Position MRAF
0404 OCT 2250720
0405 BMD I+F 2 } 0406 BRU 0405 Delay Until Ready
0407 SEL 2

} 0408 RRF 1 1 Read Record from MRAF
0409 RRF 640
0410 BDM 0+ T 2 } 0411 BRU 0410 Delay until Read

The commands above are identical to the commands in problem 1, above except
for the address at 0404. The address at 0404 corresponds to the following:

2 2 5 0 7 2 0 r-A--_. __ ~·~ ____ A· __ ~ __ J-~~ ___ ~.~. ____ -v __ ~·~_

1110101110111011101010111111101110101010\
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
~~----~------------__ ---------.~~------v----

Causes
First
Available
Record to be
Transmitted

Disc#<
Binary 10

Track #<
Binary 35

·153-

Head # Record >It
Binary 5 Binary 0

PROGRAMMING MANUAL

CE22S

3. In problem 1, above, assume the actual address of a record to be read from
the MRAF is contained within columns 1, 2 and 3 of a card. Assume that the card
has been read into storage previously, in binary coded decimal mode, beginning
in storage at 0128. Therefore, 0128 contains the appropriate address of the re­
cord in the MRAF. Insert the address into the appropriate command programati­
cally.

0298
0299

LDA
STA

0128
0304

Same and Problem 1, above.

} Load and store Address

The commands at 0298 and 0299 will insert the "address" from the card into the
command at 0304, in problem 1, above. The commands at 0302, 0303 and 0304 in
problem 1, above, will cause the MRAF device to be positioned to either read or
write the record at the address contained in columns 1, 2 and 3 of the card.

4. In pro blem 1, above, assume that card columns 1, 2, 3, 4, 5 and 6 of the card
contain an address from which the actual address may be derived. Assume that a
subroutine is in storage at 2000 which will appropriately derive the actual address
from the contents of word 0128 and 0129. Calculate the actual address and insert
it within the appropriate command.

0297
0298
0299

DLD
SPB
STA

0128
2000
0304

1
Load columns 1 - 6
Transfer control to Subroutine at 2000.
Store calculated address from A register.

The numbers to be calculated are loaded into the A and Q registers by the command
at 0297. The command at 0298 will transfer control to the subroutine beginning at
2000. The subroutine will "derive" or calculate the actual or "absolute" address
and return control to the main program at location 0299. The command at 0299
will store the actual address from the A register into the appropriate command
which addresses the record.

5. In problem 1, above, write the commands to write the record into the MRAF
file at the same location. Assume the MRAF is positioned at the desired "address".

0505
0506
0507
0508
0509

BDM
BRU
SEL
WRF
WRF

1 + F
0505

1
0640

2

2
1

} Delay until Controller Ready.

} Write Record from Storage to File.

The commands at 0505 and 0506 will delay processing until the controller is ready.
The commands at 0507, 0508 and 0509 will transfer the record from storage to the
MRAF .

•
PROGRAMMING MANUAL

-154-

Figure 28 Twelve-pocket Document Handler

MAGNETIC DOCUMENT HANDLER OPERATIONS

Magnetic Documents may be read continuously at speeds
of 1200 documents per minute, processed, and direct­
ed to appropriate pockets all under control of the cen­
tral processor of the GE 225. Because of the speeds
of document travel, and data transfer, the programmer
must direct his attention to timing requirements in
order to achieve maximum efficiency, i.e. simul­
taneous reading at maximum speeds and processing
of each document.

Timing requirements will be met if the program in­
structions are arranged to concide with the follow­
ing sequence of operations.

1. Read Document
2. Delay until Document Read
3. Direct Document to appropriate Pocket
4. Read next document

~ -- --

Figure 29 Two-pocket Document Handler

GE225
-155-

Since the "delay" in step 2 is really a programmed
function, the Programmer may readily execute an
alternative system of processing which utilizes the
simultaneous Read, Process (and Print) abilities of
the GE 225.

1. Read Document 1
2. Read Document 2
3. Direct Document 1 to Pocket
4. Process Document 1
5. Read Document 3
6. Direct Document 2 to Pocket
7. Process Document 2
8. etc.

Such a pattern is illustrated in the examples which
follow.

The Document Handler can recognize 14 characters:
the ten decimal digits and four speCial symbols called
Cue Characters. Cue Characters are normally used
to separate fields of decimal digits, to identify dollar
amount fields and identification fields. Each charac­
ter is converted into the BCD code given below and
stored in the least Significant four bits of a word in
memory. Except for the case of Cue Characters or
invalid characters, all other bits of the word are zeros.
]f a character is invalid (cannot be recognized and
translated by the Reader), the Sign bit of the word in
memory for that character is set to 1.]f the charac­
ter read is one of the four Cue Characters, both the
Sign bit and the most significant bit (bit 1) are set to
1.

PROGRAMMING MANUAL

GE225

The following table gives the BCD codes for each of the 14 recognizable characters.

Magnetic Document
Character

a
1
2
3
4
5
6
7
8
9

Cue 1
Cue 2
Cue 3
Cue 4

"INY ALID CHARACTER"

·156·

GE-225
BCD Code (Bits 16, 17, 18, 19)

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1100
1010
1101
1011
1111

PROGRAMMING MANUAL

GE225

BASIC PROGRAMMING OF THE MAGNETIC DOCUMENT HANDLER

BRANCH ON DOCUMENT HANDLER INTERROGATED CONDITIONS

OPR OPERAND MODIFICATION

T
BDM C+ P

F

BDM is the mnemonic code for Branch on Data Mating Function. P is the plug
number (0 thru 7) to which the Handler is attached. C is the number (0 thru 7)
of the specific condition to be interrogated. C + T calls for branching if the con­
dition tested is TRUE. C + F calls for branching if the condition tested is FALSE.

CONDITION
NUMBER

o
1
3
4
5
6
7

CONDITION TESTED

Reader Number 1 reading
Reader Number 2 reading

Reader Number 1 feeding
Reader Number 2 feeding
Input Buffer Error (Priority)
Any error or parity error

MAGNETIC DOCUMENT HANDLER INSTRUCTIONS

One or two 1200 document per minute magnetic document handlers may be con­
nected on line with the G E-22 5 through a single Data Mating Function plug. Un­
der programmed control a document handler can be commanded to perform any
of the following actions:

1. Read a single document into a specified address of core memory. (Single Feed)

2. Read the current input document into a specified address of core memory and
position the next input document for immediate reading. (Continuous Feed)

3. Deposit the document last read into a specified pocket. The document handler
has 12 pockets that may be used to stack the paper documents in separate groups
according to identification codes on the documents.

4. Halt the continuous feed action.

Three lines of mnemonic coding are required to define a magnetic document hand­
ler action.

READ SINGLE DOCUMENTS

1st line:
2nd line:
3rd line:

OPR.

SEL
RSD
RSD

OPERAND

M

MODIFICATION

P
N

P is the Data Mating Function plug number (0 thru 7) to which the Document Hand­
ler is attached. RSD is the mnemonic code for Read Single Document. N is the
Handler number (lor 2). If N is blank, the assembly program will assume "1"
is the Handler number. M is the memory address into which the first character
read from the document will be copied. M may be a symbolic address or a deci­
mal integer fixed address. M is not automatically modified. Single reading of

PROGRAMMING MANUAL

-157-

GE22S

documents can be done at the rate of 600 per minute. There are no restrictions
on the amount of processing time that can be used on each document when the
documents are read with RSD type instructions.

READ DOCUMENTS AND CONTINUE FEEDING NEXT DOCUMENT

1st line:
2nd line:
3rd line:

OPR

SEL
RDC
RDC

OPERAND

M

MODIFICA TION

P
N

This set of instructions is the same as the RSD instructions, except that they call
for moving a second document into position for immediate reading after the first
document passes the reading head. RDC type instructions must be used to achieve
the 1200 document per minute reading speed. With each document read by RDC
type instructions, there are approximately 50 milliseconds of processing time
available before another RDC instructions must be given to the Document Handler.

POCKET SELECTION

1st line:
2nd line:
3rd line:

OPR

SEL
PKT
OCT

OPERAND

(Pocket Address)

MODIFICA TION

P
N

P is the Data Mating Function plug number (0 thru 7) to which the Document Handler
is attached. PKT is the mnemonic code for Pocket Select. N is the Handler num­
ber (lor 2). If N is blank, the assembly program will assume "I" is the Handler
number. The third line contains the binary code for the specific pocket into which
the document last read is to be stacked. To be effective, the Pocket Selection
command must be given within a maximum of 45 milliseconds after the reading
of the document is complete.

The following table gives the codes (in octal) to be used in the third line of a Pocket
Selection command.

POCKET
IDENTIFICA TION

SPECIAL
o
1
2
3
4
5
6
7
8
9

REJECTS

OCTAL CODE OCTAL CODE
FOR HANDLER NO.1 FOR HANDLER NO.2

01 020
17 360
16 340
15 320
14 300
13 260
07 160
06 140
05 120
04 100
03 060
02 040

The above octal codes are stored as the least significant (rightmost) digits of the
operand field of the third line of a POCKET SELECT instruction set, and zeros
fill out the field to the left.

PROGRAMMING MANUAL

-158-

CE22S

HALT TIlE CONTINUOUS FEEDING ACTION

1st line:
2nd line:
3rd line:

OPR

SEL
HLT
HLT

OPERAND

M

MODIFICA TION

P
N

P and N have the same meaning as they do in the other Document Handler commands.
HLT is the mnemonic code for HALT the continuous feeding of documents. M is the
memory address (symbolic or decimal) into which the first character of the docu­
ment currently approaching the reading head will be copied.

END READ BUSY SIGNAL

1st line:
2nd line:
3rd line:

SEL
ERB
XXX

OPERAND MODIFICA TION

P
N

P is the plug number (0 thru 7) to which the Document Handler is attached. ERB
is the mnemonic code for End Read Busy. N is the Handler number (blank, 1, or
2). If N is blank, the assembly program will assume "1" is the Handler number.
The third line must be present, but it is not used in this instruction. The pro­
grammer may use this line as working storage or as constant storage. XXX may
be anyone of the following mnemonics: DEC, OCT, ALF.

EXAMPLES

1. Document sorter #2 is plugged into Data Mating Plug #5. Read a single docu­
ment from the document sorter into storage beginning at location 1300. Assume
60 characters of data will be read into storage from the document.

900
901
902
903
904

SEL
RSD
RSD
BDM
BRU

!
1300
1 + T
903

!
Further Processing of Document

5
2

5

} READ SINGLE DOCUMENT

} DELAY PROCESSING UNTIL DOCUMENT
IS READ

A single document will be read from the document sorter into storage by the com­
mands at 900 through 902. The commands at 903 and 904 will delay further pro­
cessing until reading of the document has been completed. Characters are read
from the document in sequence from right to left. However, characters are plac­
ed in storage, within the G.E. 225 from left to right one character per word, plac­
ed in bit positions 16, 17, 18 and 19 of each word for example:
VVord 1300 1359
------ 20 Bits ----~

Low order character
on document (Least
Significant)

-159-

------20 Bits----~

116117 118 1 19 1

High order character
on Document (Most
Significant)

PROGRAMMING MANUAL

GE225

MAGNETIC DOCUME NT

~----60CHARACTERS----~1

NOTE

t
mGH ORDER CHARACTER
(most significant)

t
LOW ORDER CHARACTER
(least significant)

Therefore, at this point, the sequence of characters in storage is reversed from
the sequence of cmracters on the document itself.

2. In problem 1, above, write the pr(f;ram commands to "ring shift" the charac­
ters from the magnetic document to conform to the sequence of the characters as
they appear on the document itself. Also, include the necessary operations in the
"ring shift" to "validity check" each character read. If any character is invalid,
branch to an error correction routine in storage at 3000. Assume that "cue"
characters within the data are designated for control functions on the plugboard
of the document handler and will not enter into storage.

905 LDZ
906 STA
907 STA
908 INX
909 LDA
910 BMI
911 BRU
912 XAQ
913 LDA
914 BMI
915 BRU
916 STA
917 XAQ
918 STA
919 INX
920 BXH
921 BRU
922 INX
923 BRU

1
2
59
1300

3000

1300

3000
1300

1300
1
30

Continue
-1
909

2
1

2

1

2
1
1

2

Set modification word 1 to 0, modification
word 2 to 59.

Load L.S. into Q Register and Test for
Validity.

Load M.S. Digit into A Register and Test
for Validity.
Store M.S. Digit

Store L.S. Digit

Increment modification word 1 and test
for completion

Decrement modification word 2 Trans fer
to Repeat.

The above commands are designated to place the characters in storage in sequence
as they appear on the document itself, and also test each character for validity.
Thus the characters in storage will appear as follows after the above commands:

Word 1300
-----20 Bits------~

116117118 1 19 1

High order character
on Document. M.S.
(most significant)

-160-

1359
-----20 Bits--------

1161171181191

Low order character
on Document L.S.
(least significant)

PROGRAMMING MANUAL

GE225

NOTE: After the characters are arranged in sequence, as above, they may be con­
veniently listed on the high speed printer with automatic format control. (Explain­
ed in another section of these materials).

The commands at 905 through 908 will prepare the modification words for initial
processing. The commands at 909 through 918 will reverse the sequence of a set
of 2 characters. The sequence is repeated for each of 30 sets of 2 characters.

The commands at 919 through 922 will prepire the modification words for process­
ing of the next set of 2 characters, and test for completion of processing. If pro­
cessing is not complete, the command at 923 will continue processing for the next
set of 2 characters to be reversed.

3. Document sorter #1 is plugged into Data Mating Plug 15. Read documents and
continue feeding the next document, so as to read documents at the maximum speed
of 1200 document s per minute. Continue until the hopper is empty.

Read the first document into storage beginning at location 3000. Read the second
document into storage beginning at 4000. Read the third document into storage at
3,000, the fourth at 4,000, etc. Process the first document while reading the sec­
ond, process the second while reading the first, etc. Direct the first document to
pocket 1, the second to pocket 2, the third to pocket 1, the fourth to pocket 2, etc.

2000 SEL 5 Read Document Continuous Feed (Sorter 2001 RDC 1 assumed).
2002 RDC 3000
2003 BDM O+T Delay until First Document Read (Approx.
2004 BRU 2003 40 ms).
2005 SEL 5
2006 RDC Initiate Reading of Second Document
2007 RDC 4000
2008 SEL 5
2009 PKT Direct First Document to Pocket 1.
2010 OCT 0000016

~ ~ ~
Process first document (approx. 50ms) possible.

+ + + 2048 BDM
2049 BRU
2050 BDM
2051 BRU
2052 SEL
2053 RDC
2054 RDC
2055 SEL
2056 PKT

4+ F
4500
O+T
2050

3000

2057 OCT 0000015

5
Interrogate and Transfer for Hopper Empty.

Delay until second document read.

5
Initiate reading of third Document.

5
Direct second document to pocket 2.

~ ~ +
Process second document (approx. 50 ms).

~ ~ +
2062
2063
2064

BDM 4+ F
BRU 4500
BRU 2003

5 Interrogate and Transfer for Hopper Empty.

Transfer to continue.

The above commands will pattern processing and document reading to occur simul­
taneously according to the pittern described below:

PROGRAMMING MANUAL

-161-

CE22S

..... --------Time interval--------_
o 50ms lOOms 150ms 200ms 250ms 300

Document
Read #1
Read #2

Process #1

Read #3

Process #2

Read #4

Process #3

I I
(40ms)

(40ms)

(50ms)

I I I

(40ms)

(50ms)

(40ms)

(50ms)

I I

*Processing time for anyone document may continue for 50ms befo-re a new document
is read into the processing area.

*Reading time for anyone document may continue for approximately 40 ms or less.

The "N" position in the commands at 2001, 2006, 2009, 2053, 2056, is not provided
since the General Assembly Program will assume that sorter 1 is intended when a
blank appears in the "N" position. The commands at 2048 - 2049 and 2062 - 2064
will interrogate for the "hopper empty" condition since feeding will stop whm the
hopper is empty. The read document continuous feed next document command (RDC)
must be repeated for each document read in all cases - even if all documents are
to be read beginning in storage at the name location. The document just read must
be directed to an appropriate pocket within 30 ms. after it is read. A possible se­
quence of processing may consist of:

May both be considered
as processing of first
document. *

May both be considered
as processing of second
document. *

*NOTE:

Read Documents Continuous (First Document)
Delay for Read Completion
Read Document Continuous (Second Document)

{ Direct Document to pocket (First Document)
Process Document (First Document)

Interrogate for Hopper Empty
Delay for Read completion (Second Document)
Read Document Continuous (Third Document)

{ Direct Document to Pocket (Second Document)
Process Document (Second Docummt)
Interrogate for Hopper Empty

Since direction of a document to the appropriate pocket will most likely depend upon
data read from the document itself, both steps should really be considered as a
function of processing.

4. Assume that a RDC command has been issued, also assume that reading of the
previous document is complete. Write the commands to Halt the reading and feed­
ing of further documents.

2052
2053
2054
2055
2056
2057

SEL
HLT
HLT
SEL
PKT
OCT

+

5 Begin halt of Reader.

3000
5 Direct Previous Document to Pocket 2.

0000015

+ ~
PROGRAMMING MANUAL

-162-

GE225

Process Previous Document

~ ~
2062
2063
2064
2065
2066
2067
2068
2069

BDM
BRU
SEL
HLT
HLT
SEL
PKT
OCT

O+T 5
2062

5

4000
5

0000016

Process First Document after "Halt"

2074 LDZ
2075 STA 1
2076 BDM 0 + F 5
2077 BRU 2085
2078 INX -1 1
2079 BXL 300 1
2080 BRU 2076
2081 SEL 5
2082 ERB
2083 DEC 0
2084 BRU 2084
2085 SEL 5
2086 PKT
2087 OCT 0000015

~

~ ~ ~ ~
Process Second Document after Halt

~ ~ ~ ~
2090 BRU 2090

Delay for Read Busy

Halt the Reader

Direct first Document after Halt to Pocket 1.

set x word 1 to zero

Delay for Read Busy

Continue Delay for approx. 50ms.

Turn off Read Busy Signal

Halt

Direct Second Document After Halt to Pocket 2.

When a Halt is desired after a RDC command, there is a p'ossibility that two more
documents may be read before the Halt is completed. Therefore, the programmer
most make adequate provision in his pr~ram, as above, for:

1. Direction of the next two documents to appropriate locations in storage (Halt
commands).

2. Direction of the next two documents to appropriate pockets.

3. Appropriate processing of the next two documents, as necessary.

One ill" two documents may be read after a "Halt" command. It is possible that the
second document after the first "Halt" command will not be read. If the second
document is not read, the read busy signal will not be turned off. Therefore, a
"time count" is built into the second read busy interrogation "loop" by the com­
mands in storage at 2078 through 2080. If the loop continues for 50ms. it is assumed
that the second document after the "Halt" command was not read. The comma nds
at 2081 through 2083 will turn the "read busy signal" off and processing is halted
by the command at 2084.

PROGRAMMING MANUAL

-163/164-

I. APPENDIX

NUMBER SYSTEMS

Number Representation

The following formula defines a pattern for the representation of numbers:

N

where: N is the number,

A is a permissible symbol in the number system,

r is the radix (the total number of permissible symbols in the number
system),

m is the position of the symbol (m = 0 is in the first position to the left
of the decimal point with increasing integral values of m in po­
sitions moving to the left and decreasing integral values of m in
positions moving to the right).

(Note: Mathematically, r O = 1 regardless of values

Decimal S)'stem

In demonstration of the validity of the above formula, note that the formation of the
numbers 5126 and 32.425 in the decimal system may be written as:

5126 5000 + 100 + 20 + 6
5 x 1000 + 1 x 100 + 2 x 10 + 6 x 1

5 x 103 + 1 x 102 + 2 x 101 + 6 x 100

In this case,

32.425 30 + 2 + 4/10 + 2/100 + 5/1000
3 x 10 + 2 x 1 + 4 x 1/10 + 2 x 1/100 + 5 x 1/1000

F 3 x 101 + 2 x 100 + 4 x 10- 1 + 2 x 10-2 + 5 x 10- 3

In this case,

Thus, decimal numbers are formed by stating the coefficients (symbols) of the
powers (position) of 10. Most importantly, since there is nothing special about
r = 10, the same rules must apply to number systems using other values for the
radix.

GE 225 _________________________:..P.:.:.;RO:::.G:::.R::.::A;.::.M~M.:.::I.:..;N:=G~M~A:;:!N:...:.U;:::.:A:;:.:,.l

-165-

Binary System

The binary system consists of two admissible symbols: 0 and 1. Therefore, the
radix is two. For example, the decimal number 21 may be represented in binary
notation as follows:

21 16 + 4 + 1

1 x 24 + 1 x 22 + 1 x 20

1 x 24 + 0 x 23 + 1 x 22 + 0 x 21 + 1 x 20
10101 (binary)

Octal System

The octal system consists of eight admissible symbols: 0, 1, 2, 3, 4, 5, 6, 7.
Therefore, the radix is eight. For example, the decimal number 301 may be
represented in octal notation as follows:

301 256 + 40 + 5
4 x 64 + 5 x 8 + 5 x 1

4 x 82 + 5 x 81 + 5 x 80
455 (octal)

The chief use of the octal system is as a shorthand for binary representation since
conversion between systems can be done mentally. To demonstrate the validity of
this statement, consider the octal number 455 (deCimal 301) used in the example
above.

455 100 101 101
100101101

1 x 28 + 0 x 27 + 0 x 26 + 1 x 25 + 0 x 24 + 1 x 23 + 1 x 22 + 0 x 21 + 1 x 20

1 x 28 + 1 x 25 + 1 x 23 + 1 x 22 + 1 x 20
= 256 + 32 + 8 + 4 + 1
= 301 (decimal)

Clearly, 455 is 'l much more convenient notation then 100101101, yet the conversion
is trivial when required.

BINARY ARITHMETIC

Binary Addition

The binary, single digit, addition table for A + B is:

B
+ 0 1
o 0 1

A
1 1 0*

*A "I" binary digit is carried to the next higher order binary digit to the left.
Note that this is equivalent to the same rule in the decimal system that yields
9 + 1 = 10, which is actually 9 + 1 = 0 with a carry into the next higher order posi­
tion. (In the binary system 1 is the highest permissible symbol just as in the deci­
mal system 9 is the highest permissible symbol.) The following examples illustrate
binary addition:

Carry 1 1
100110

+ 110101
Sum 1011011

111
100111

+001110
110101

111
0111

+ 1
1000 GE225--------_________________________________ ~p=RO~G=RA~M~M~'N=G~MA~N~U~AL

-166-

Binary Subtraction

The binary, single digit, subtraction table for A - B is:

B
o 1

o 0 1*

All 0

* A "1" binary digit is borrowed from the next higher order digit to the left. Keeping
track of borrowed digits in this method of subtraction is significantly more difficult
than keeping track of carries in addition. It is therefore desirable to develop an
alternate method of subtraction which will employ an addition table. It is easy to
demonstrate, using the more familiar decimal system, that subtraction can be
accomplished by addition of the 10's complement of the number to be subtracted
and the dropping of the carry. Thus

7
-4

3

or
7
6

13
The mathematical validity of this rule is clearly shown as follows:

7 - 4 = 7 - (10 - 6) = 7 + 6 - 10 = 3

noting that the carry to be dropped is equal to 10. In the same fashion, binary sub­
traction may be accomplished by the binary addition of the 2' s complement of the
number and the dropping of the final carry. (A 2' s complement is extremely easy
to form: 1 bits are changed to zero bits, 0 bits are changed to 1 bits, and a 1 bit is
added to the result.) Examples of binary subtraction are:

39 100111
- 9 +110111

--0""1<7171 T:l 0""'" = 30

240
-112

011110000
+110010000

010000000 = 128

For convenience, the GE 225 has a special instruction which forms the 2's com­
plement of a number.

Binary Multiplication

The binary, Single digit, multiplication table for A x B is:

For example:

B
x 0 1

A 0 0 0

1 0 1

35 100011
x 13 1101

100011
1000110

100011
111000111 = 455

Thus, multiplication in binary reduces to a series of additions.

GE225----------------------------------~p~RO=G~~~M~M'~NG~~~N=uA~L
-167-

Binary Division

Division in binary can be carried out by the same process as in decimal; that is,
by repeated subtractions. As in binary subtraction, the 2's complement of the
divisor is added repetitively.

11 = 3
-1QQ!J 11011

0111
1001
0111
0000

BINARY-DECIMAL CONVERSION TABLE

2n n 2-n
1 0 1.0
2 1 0.5
4 2 0.25
8 3 0.125

16 4 0.062 5
32 5 0.031 25
64 6 0.015 625

128 7 0.007 812 5

256 8 0.003 906 25
512 9 0.001 953 125

1 024 10 0.000 976 562 5
2 048 11 0.000 488 281 25

4 096 12 0.000 241 140 625
8 192 13 0.000 122 070 312 5

16 384 14 0.000 061 035 156 25
32 768 15 0.000 030 517 578 125

65 536 16 0.000 015 258 789 062 5
131 072 17 0.000 007 629 394 531 25
262 144 18 0.000 003 814 697 265 625
524 288 19 0.000 001 907 348 632 812 5

1 048 576 20 0.000 000 953 674 316 406 25
2 097 152 21 0.000 000 476 837 158 203 125
4 194 304 22 0.000 000 238 418 579 101 562 5
8 388 608 23 0.000 000 119 209 289 550 781 25

16 777 216 24 0.000 000 059 604 644 775 390 625
33 554 432 25 0.000 000 029 802 322 387 695 312 5
67 108 864 26 0.000 000 014 901 161 193 847 656 25

134 217 728 27 0.000 000 007 450 580 596 923 828 125

268 435 456 28 0.000 000 003 725 290 298 461 914 062 5
536 870 912 29 0.000 000 001 862 645 149 230 957 031 25

1 073 741 824 30 0.000 000 000 931 322 574 615 478 515 625
2 147 483 648 31 0.000 000 000 465 661 287 307 739 257 812 5

4 294 967 296 32 0.000 000 000 232 830 643 653 869 628 906 25
8 589 934 592 33 0.000 000 000 116 415 321 826 934 814 453 125

17 179 869 184 34 0.000 000 000 058 207 660 913 467 407 226 562
34 359 738 368 35 0.000 000 000 029 103 830 456 733 703 613 281

5
25

68 719 476 736 36
137 438 953 472 37
274 877 906 944 38
549 755 813 888 39

0.000 000 000 014 551 915 228 366 851 806 640 625
0.000 000 000 007 275 957 614 183 425 903 320 312 5
0.000 000 000 003 637 978 807 091 712 951 660 156 25
0.000 000 000 001 818 989 403 545 856 475 830 078 125

GE225----------------------------------~p~ROO~~~M~'N~G~MA~N~uA~L

-168-

REPRESENTATION OF CHARACTERS

HOLLERITH BCD BCD HIGH CONSOLE PAPER TAPE
CHARACTER CODE MEMORY MAGNETIC SPEED TYPEWRITER CHARACTER

(PUNCH (OCTAL)
TAPE PRINTER CHARACTER (8 CHANNEL)

IN ROWS) (OCTAL) SYMBOLS OR ACTION
- -

0 0 00 12 0 SPACE SPACE
1 1 01 01 1 1 1
2 2 02 02 2 2 2

03 03 3 3
4 4 04 04 4 4 4
5 5 05 05 5 5 5
6 6 06 06 6 6 6
7 7 07 07 7 7 7
8 8 10 10 8 8 8
9 9 11 11 9 9 9
A 12-1 21 61 A /
B 12-2 22 62 B S S
C 12-3 23 63 C T T
D 12-4 24 64 D U U
E 12-5 25 65 E V V
F 12-6 26 66 F W W
G 12-7 27 87 G X X
H 12-8 30 70 H Y Y
I 12-9 31 71 I Z Z
J 11-1 41 41 J J J
K 11-2 42 42 K K K
L 11-3 43 43 L L L
M 11-4 44 44 M M M
N 11-5 45 45 N N N
0 11-6 46 46 0 0 0
P 11-7 47 47 P P P
Q 11 8 50 50 Q Q Q
R 11-9 51 51 R R R
S 0-2 62 22 S B S
T 0-3 63 23 T C C
U 0-4 64 24 U D D
V 0-5 65 25 V E E
W 0-6 66 26 W F F
X 0-7 67 27 X G
Y 0-8 70 30 Y H H
Z 0-9 71 31 Z I I
+ 12 20 60 + 0 0
- 11 40 40 - - -
A BLANK 60 20 BLANK & &

COLUMN
/ 0-1 61 ·21 / A A

2-8 12
3-8 13 13 # / STOP

4-8 14 14 (g)

5-8 15 -
6-8 16 PENDING >< DECISION
7-8 17

12-2-8 32 72 PRINT
RED

12-3-8 33 73
t:J 12-4-8 34 74

12 -5-8 35 PRINT
BLACK

12-6-8 36 TAB TAB
12-7 -8 37
11-2-8 52 52

$ 11-3-8 53 53 $ $ $

• 11-4-8 54 54 •
11-5-8 55
11-6-8 56
11-7-8 57
0-2-8 72 32
0-3-8 73 33 ,
0-4- 74 :ii. %

[0-5-8 75 [
] 0-6-8 76]

0-7-8 77 CARRIAGE DELl>TE
RETURN

c::><JINDICATES TYPEWRITER HANG UP. OPERATION HALTS.

MAGNETIC DOCUMENT BCD CODE MAGNETIC DOCUMENT BCD CODE
CHARACTER CHARACTER

0 0000 8 1000
1 0001 9 1001
2 0010 Cue 1 1100
3 0011 Cue 2 1010
4 0100 Cue 3 1101
5 0101 Cue 4 1011
6 0110
7 0111 "INVALID CHARACTER" 1111

GE225 __________________________________ ~PR~OO=~~~'N~G~M~AN~uA~L
-169-

INSTRUCTION FORMATS
NUMERIC CODES FOR STANDARD

225 INSTRUCTIONS

Most Significant Bits (S, 1)

OCTAL 0 1 2 3

0 LDS DLD EXT FLD

1 ADD DAD FAD

2 SUB DSU FSU

3, STA DST ORY FST

4 BXL INX

5 BXH MPY General FMP

6 DVD BRV FDV

7 SPB STO External
Linkage

The extension of the GE 225 instruction repertoire beyond the "standard" com­
mands designated by bit positions 0 through 4 is accomplished through the use of
bit pOSitions in the operand address field for those instructions which require only
a limited portion of the field (e.g., shift commands require only bit pOSitions 15
through 19 to indicate length of shift) and for those instructions which do not have
an operand address (e.g., word transfers between registers). The flexibility of the
instruction repertoire is still further enhanced by the addition of a feature known
as micro-programming. Micro-programming is the building of a computer in­
struction under programmer control by the specification of a series of elementary
operations. In the chart given below, a 1 bit in any of the labelled bit pOSitions will
result in the elemental action described therein when the instruction is executed.
In addition, if the contents of more than one register are to shift into the A register,
the bits will be added logically.

For example, a 1 in bit positions 10 and 11 of the "general" Shift Right instruction
instructs the computer to take the actions A19- Q1 and A19-N1• The octal

operation code for this specific command is 25114. Reference to the octal listing
in the Appendix shows this to be an ANQ (Shift A into Nand Q) command. The in­
struction repertoire describes ANQ as follows:

The contents of Register A (1-19) are shifted K places to
the right into both Register N and Register Q. Bits shifted
out of Register A (19) enter both Register Q (1) and Register
N (1), Bits shifted out of Register N (6) and Register Q (19)
are lost.

This information on micro-programming is included only for the use of the ad­
vanced programmer who desires to create his own special instructions. Normal
programming will employ only the mnemonic or octal codes that have been aSSigned
to the most common combinations of "micro" operations.

GE 225 ________________________ !..!PR!.::O~G:;:.!R~AM:.!.!M:..:.!!!..:IN:.::::G:..!M~A~N..!!U~A~l
-170-

GENERAL INSTRUCTION

S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

COMMAND X SUB-COMMANDS & ADDRESSES

1 0 1 0 1

SHIFT RIGHT 1 0 0 r$ Z <' LENGTH OF < < SHIFT

t t t t t
0> 0> 0> co 0>

<' < a Z <'
SHIFT LEFT 1 0 1 iii ~ LENGTH OF

N < SHIFT
...:l
< t ;2l
p:;

~ (j

WORD MOVEMENT 0 1 ~ ~

t t iii ::i
Z <

< QI~ rJl 0 < a t. (REGISTER := < E-<E-< ZE-< U Q t t :;J t TRANSFER) rJlp:; Op:; Q < $< u< < < < a
r...o.. g;Jo..

INPUT /OUTPUT 0 0 DATA ORIGIN , DECODE

MULTIPLE

OF 128

DATA MATING 0 0 CONTROLLER 1
ADDRESS

FUNCTION

BRANCH TRUE 1 1 0 DECODE

BRANCH FALSE 1 1 1 DECODE

DATA MATING 1 1 0 CONTROLLER 1 DECODE
or

BRANCH 1 ADDRESS

GE225 ____________________ ~----------------~P~RO~G~RA~M~M~'N~G~M~A~Nu~A~L
-171-

OCTAL LIST OF INSTRUCTIONS

GE 225 BASIC SYSTEM

Octal Code Description Mnemonic

0000000 Load A LDA

0100000 Add contents of Y to A ADD

0200000 Subtract Y from A SUB

0300000 Store A STA

0400000 Branch if X is low BXL

0500000 Branch if X is high BXH

0700000 Store P & branch SPB

1000000 Double Length Load DLD

1100000 Double Length Add DAD

1200000 Double Length Subtract DSU

1300000 Double Length Store DST

1400000 Increment X by K INX

1500000 Multiply Y by Q MPY

1600000 Divide A & Q by Y DVD

2000000 Extract EXT

2300000 Or A into Y ORY

250YYOO Read Cards Decimal RCD

250YY01 Read Cards Binary RCB

250YY02 Write Card Decimal WCD

250YY03 Write Card Binary WCB

2500004 Halt Card Reader HCR

2500005 Input-output off OFF

2500006 Type TYP

2500007 Typewriter on TON

2500010 Read Paper Tape RPT

2500011 Read control switches RCS

2500012 Write Paper Tape WPT ..
2500014 Reader on RON

CE22S PROGRAMMING MANUAL

-172-

GE 225 BASIC SYSTEM (CONT)

Octal Code Descrip'tion Mnemonic

2500015 Punch on PON

2504 Load Zero into A LDZ

2504001 Load A from Q LAQ

2504004 Load Q from A LQA

2504005 Exchange A & Q XAQ

2504006 Move A to Q MAQ

2504012 No operation NOP

2504022 Load one into A LDO

2504032 Add one ADO

2504040 Change sign of A CHS

2504102 Load Minus one into A LMO

2504112 Subtract one SBO

2504502 Complement A CPL

2504522 Negate A NEG

25100 Shift Right A SRA

251004 Shift Circular A SCA

25101 Shift N & A Right SNA

25104 Shift A & N Right SAN

25110 Shift Right Double SRD

25111 Shift N, A & Q Right NAQ

25112 Shift Circular Double, Right SCD

25114 Shift A into N & Q ANQ

25120 Shift Left A SLA

25122 Shift Left Double SLD

25130 Normalize A Register NOR

25132 Double Length Normalize DNO

2514000 Branch on odd BOD

2514001 Branch on Minus BMI

2514002 Branch on Zero BZE

2514003 Branch on overflow BOV

GE22S PROGRAMMING MANUAL

-173-

GE 225 BASIC SYSTEM (CONT)

Octal Code Description Mnemonic

2514004 Branch on Parity Error BPE

2514005 Branch on N Register Ready BNR

2514006 Branch on Card Reader Ready BCR

2514007 Branch on Card Punch Ready BPR

2516000 Branch on even BEV

2516001 Branch on Plus BPL

2516002 Branch on no zero BNZ

2516003 Branch on no Overflow BNO

2516004 Branch on Parity Correct BPC

2516005 Branch on N register not ready BNN

2516006 Branch on Card Reader Not Ready BCN

2516007 Branch on Card Punch Not Ready BPN

2600000 Branch unconditionally BRU

2700000 Store Operand Address STO

GE225--------____________________________ ~P~RO~G=~~M=M~'N~G~MA=N~u~AL
-174-

STANDARD FLOW CHART SYMBOLS

9 e ~ 6
~

End subroutine Go to connector
A2 on page 4

G}
We came here
from connector
A2 page 1

Comparison

Balance -
Ck amt Bal.

Enter subroutine

Decision

~ Exchange ~
A and Q

~----'

Paper tape Punched card

Find Br No.
in table

o
o

Magnetic document
Report or Listing

Rec'-'0i!:,.nc_l_·l_in_g __IL-- Source Cle.r.k ! -

~ Control Clerk Destination

Go to SIB subroutine on Page 2 and return to this point

Magnetic
tape

f
>
<

, , , ,

888
Switch or variable connector

$
Set variable connector 5 to the c state

Comparison (the nature of the comparison
is indicated separately)

Equal to
Not equal to
Greater than
Less than

Greater than or equal to

Less than or equal to

GE225 ____________________________________ ~P~RO~G~AA~M~M~'N~G~~~N~U~AL

175/176

I
f

I

.~

(AUTOMATED BYGENE~Al ELECTRIC

GENERAL ELECTRIC

CPB 126A (3M 5-61)

