i O N RN

MANUAL

(INCLUDING PROGRAMMING NOTES)

PROGRAMMING

.

]

s A

PROGRAMMING MANUAL

(INCLUDING PROGRAMMING NOTES)

GENERAL ELECTRIC
COMPUTER DEPARTMENT
PHOENIX, ARIZONA

j DATA PROCESSOR l

B

E

i

23

TABLE OF CONTENTS

A, T RODUCTI O . 1
B. THE GENERAL ELECTRIC 225 SYSTEM . . . i 3
CENTRAL PROCESSORottt e e e e i 3

CONTROL CONSOLE .. e e e e 3

CARD BEADER — CARD PUNCH e et e e e e e et e 4

PAPER TAPE READER — PAPER TAPE PUNCH 5

DATA MATING FUNCTION . e et e e e e e e e e 5

HIGH SPEED PRINTER SUB-SYST M . . . e e e e e e e e e 6

MAGNETIC TAPE SUB-SYSTEM e e 6

MASS RANDOM ACCESS FILE SUB-SYSTEMttt e 7

DOCUMENT HANDLER SUB-SYSTEM\ttt e e e e 9

C. CENTRAL PROCESSOR ORGANIZATION i, 1
REPRESENTATION OF INFORMATIONt i 11

DATA WORDS . .t e e e e 11

INSTRUCTION WORDS . .. ot e e e e 12

THE DATA MATING FUNCTION (CONTROLLER SELECTOR)cotiviiiiinninnn 12

ARITHRMETIC AND CONTROL REGISTERSttt i 14

AUTOMATIC ADDRESS MODIFICATIONt e 15

CYCLE OF OPERATIONttt e e i 17

PRIORITY ENTERRU BT . . et e e e e e e 17

D. INSTRUCTION REPERTOIRE 21
ARITHMETIC . 21

D AT A TR ARSEERS . . e e e 23

SHIFT OPERATIONSttt e e e e e 24

INTERNAL TEST-AND-BRANCH i 26

CONSOLE OPERATION e e e e 28

PAPER TAPE INPUT-OUTPUT . e e 29

PUNCHED CARD INPUT-OUTPUT . e et e 29

HIGH SPEED PRINTER SUB-SYSTEM . e e e e e 33

MAGNETIC TAPE SUB-SYSTEM 36

MASS RANDOM ACCESS FILE SUB-SYSTEM e e 40

DOCUMENT HANDLER SUB-SYSTEM 41

E. THE GENERAL ASSEMBLY PROGRAM i 45
GENERAL DESCRIPTION . . 45
PSEUDO-INSTRUCTIONSt e e 45

THE GE 225 CODING SHEET e e 46

RELATIVE ADDRESSING . . e e e e e 46
PSEUDO-INSTRUCTION USAGE e i 48
ILUSTRATIVE PROBLEM e i 51

F. CONTROL CONSOLE OPERATION i 53
INDICATOR PANEL i 53

CONTROL BANEL e e 55

G. SYSTEM ERROR CHECKING AND RECOVERY FEATURES 57

sax
i

H. PROGRAMMING NOTES............................cooiiiiiin, e 59

PROGRAMMING MACHINE CALCULATIONSot 59
PROGRAMMING LOGICAL DECISIONSo et e 73
MODIFICATION WORD PROGRAMMINGo 83
PROGRAMMING FOR SUBROUTINE USAGE 87
PROGRAMMING FOR CONSOLE CONTROL oot ettt 91
PUNCHED PAPER TAPE OPERATIONSo e e 97
PUNCHED CARD OPERATIONS oottt e e 101
PROGRAMMING PRINTED REPORTS oot e e 127
MAGNETIC TAPE OPERATIONSttt e e 141
MASS RANDOM ACCESS FILE OPERATIONS\ttt 149
MAGNETIC DOCUMENT HANDLER OPERATIONSottt 155

Lo APPEN DI X 165
NUMBER SYSTEMS . . . oottt e e e e e 165
BINARY ARITHMETIC\ttt e e e e e 166
BINARY-DECIMAL CONVERSION TABLEt e 168
REPRESENTATION OF CHARACTERSot oo ottt e et e 169
INSTRUCTION FORMATSottt e e e e 170
OCTAL LIST OF INSTRUCTIONSottt 172
STANDARD FLOW CHART SYMBOLS\ oottt e e 175

LIST OF ILLUSTRATIONS

Figure T GE 225 Central Processor i i i i i i e e e e 3
Figure 2 GE 225 Control Console i e et e e e 4
Figure 3 Card Reader e 4
Figure 4 Card Punch e e 4
Figure 5 Paper Tape Reader i e 5
Figure 6 Paper Tape Punch e 5
Figure 7 High Speed Printer Sub-System e 6
Figure 8 Magnetic Tape Sub-System e 7
Figure 9 Mass Random Access File e e e 8
Figure 10 Twelve-pocket Document Handler 8
Figure 11 Two-pocket Document Handler e e 9
Figure 12 BT3B Font e e 9
Figure 13 Large Configurationttt e e e e 13
Figure 14 Register Relationships e 16
Figure 15 Central Processor Operating Cycle i i i e 18
Figure 16 GE 225 Coding Sheet i e 47
Figure 17 GE 225 Coding Sheet Example e e e 50
Figure 18 Control Console e e e e e e e 54
Figure 19 Central Processorottt e e et ettt et e e e e 59
Figure 20 Control Console i e e 91
Figure 21 Paper Tape Readerottt e e e e e e 97
Figure 22 Paper Tape Punch 97
Figure 23 Card Readerttt et e e 101
Figure 24 Card Punch . ..o . e e e 102

Figure 25 High Speed Printer Sub-System e e 127

Figure 26 Magnetic Tape Sub-Systems 141
Figure 27 Mass Random Access File Sub-System 149
Figure 28 Twelve-pocketDocumentHandler e 155
Figure 29 Two-pocket Document Handler 155

wayshs Buissedold uoyeuuou] 6ZZ 39

A. INTRODUCTION

READ TIME~ CARDS.

COMPUTE FEDERAL~TAX FROM (GROSS ~
PAY — (DEPENDENTS * 13.00)) * 0.18.

ADD FICA TO YDT ~FICA,
GO YO CALC~STATE~TAXK.

IF YIB~FICA GR 120.00, GO TO
REIMBURSE ~ FICA,

A (I, J)=SIN (A—B)-}(33.33* (Q) (P—1) #3)
—LOG (A—Q).

DO STRESS ~ LIMIT FOR X, X1, X2, X3,
X4, X5.

MOVE Q~VALUE (I, M) TO MOD~P(J, K.

This is the General Electric Common Language - the
language understood by all General Electric computers
when programs are prepared using the new General
Comypiler, It is no longer necessary for the systems
analyst to concern himself with the intricacies of the
machine language of each computer with which he deals.
The new General Electric common language, specif-
ically designed fo meet the needs and requirements of
both business data processing and scientific applications,
permits the systems analyst to express his solution to
a problem in a language which is advantageous for the
problem - the language of narrative statements having
the wordage and syntax of English sentences or the
language of mathematics employing convenient decimal
numbers. Arguments regarding the relative ease or
difficulty of programming a particular computer no
longer have validity when the Geheral Electric Common
Language is used.

Despite the reduction of time consuming computer
coding through the use of problem oriented languages,
some of the personnel at every computer installation
may require a detailed understanding of the actual com~
puter language. It is to these programmers who must
learn the art of communicating directly with the GE 225
Information Processing System that the present manual
is dedicated. If the need for such programmers seems
unnecessary in view of the General Compiler, several
good reasons for this need are:

1. The program which is executed by the computer
is in its own language; hence, machine testing
{debugging) a program requires a knowledge of
the actual machine instructions.

2. Making small changes o existing programs can
often be more efficiently done by patching with
direct machine coding.

3. Each installation should have some expert pro-
grammers who are capable of contributing to
the extension and improvement of the automatic
coding techniquesand problemoriented languages
which are in use.

A special facility has been provided with the GE 225 to
permit the programmer to code for this computer em-
ploying symbolic notation in a concise tabular form,
vet retaining both the single address format and the
general structure of the actual computer instruction
words. This symbolic program is read into com-
puter memory along with a General Assembly Pro-
gram. The General Assembly Program is a basic
assembly program with extensive error checking fea-
tures and provision for effective program modification.
Its output is a running program prepared in the abso-
lute binary code of the computer. One instruction
written in General Assembly Program language is
usually translated into one computer instruction.

Programs produced by use of the General Compiler
are also expressed in General Assembly Program
language. Therefore, the General Assembly Program
will be the basic tool of the GE 225 programmer, and
this programming manual will be oriented to its use.
Absolute machine bit configurations will be given only
for the sake of completeness and for reference in un~
usual program debugging situations. Complete details
of the General Assembly Program are given in a later
section.

DATA PROCESSOR

GE 225

PROGRAMMING MANUAL

-]/2-

THE GENERAL ELECTRIC 225 SYSTEM

The GE 225 Information Processing System places
emphasis on the total systems concept and flexibility
of computer hardware organization as the answer to
the increasing complexity of todays's applications. A
modern, fully transistorized central computer pro-
vides an economical basis for extremely flexible
hardware configurations ranging from simple card or
paper tape input-output systems, suited to scientific
laboratories or small business users, to sophisticated
arrangements of high speed printers, magnetic tape
units, mass random access file memories and direct
information links with communication and data col-
lection networks, suited to large installations employ-
ing the latest techniques of completely integrated
data processing.

CENTRAL PROCESSOR

The GE 225 Central Processor is a single address,
stored program, general purpose digital computer
which operates primarily in a straight binary mode

Figure 1

but processes both alphanumeric and binary infor-
mation. The Central Processor performs the com-
putation (arithmetic), fast random access memory
storage and control functions for the GE 225 System.
The programs to be executed and the data to be
immediately operated upon are stored in a magnetic
core memory wherein each core, depending on direc-
tion of magnetization, represents a binary digit (bit)
of an instruction or data word; a word being the basic
unit of addressable information in the memory. The
memory is thought of as consisting of a number of
individual cells, each capable of holding one word;
each cell having a unique designation or address. A
more complete description of Central Processor
characteristics is the subject of the following section.

CONTROL CONSOLE
The control exercised by the console is of a manual

nature, in distinction to the control function per-
formed by the Central Processor, and need not be

GE 225 Central Processor

PROGRAMMING MANUAL

GE 225

Figure 2

necessarily operative in normal program execution.
This manual control is concerned with initially loading
the program into memory, starting the execution
thereof, monitoring the progress of the program
primarily via the console typewriter, and occasionally
stopping the program for checking or other purposes.
Typing out on the Console Typewriter proceeds at the
rate of 10 characters per second. Information may
be numeric or alphanumeric, Other indications of
Central Processor operating status are available in
the form of lights and indicators onthe Consocle panel.
In addition to the typewriter serving as an output de-
vice, switches on the console allow the manual eniry
of information into the Central Processor. To this
extent, the console thus serves as an input device
as well,

CARD READER — CARD PUNCH

Punched cards have been widely used for many years
as a file storage medium., These cards are usually
prepared in a separate clerical operation to record
transaction data in business applications but may
well be produced as computer output.

The Card Reader is a bagic on-line input device used
in the 225 System to read punched card information
into the Processor's memory. Reading of standard,
80-column punched cards may proceed at a maximum
rate of 400 cards per minute. Information may be

GE 225 Control Console

recorded on these cards in either binary (column)
or standard Hollerith (alphanumeric) code, the inter-
pretation of the data punched in the card being de-
termined by the particular mode of the "read cards”
instruction being executed by the processor. Since
the card reader is considered a basic unit, it is con-
trolled by the control function of the Central Pro-
cessor, and external control swiiches and indicators
associated with the card reader appear on the control
congole.

Figure 3 Card Reader

PROGRAMMING MANUAL

GE 225

Figure 4 Card Punch

It was mentioned that punched cards may be obtained
ag a result of computer output during processing
operations, The on-line Card Punch associated with
the 225 System performs this function. Cardpunching
may also be in either binary or Hollerith code at the
rate of 100 cards per minute. As was the case in
card reading, the Card Punch is controlled by the
control function of the Central Processor.

Figure 5 Paper Tape Reader

PAPER TAPE READER — PAPER TAPE PUNCH

Perforated paper tape is in fairly wideuse in diversi-
fied business and scientific operations., It is com-
monly produced by a distinct clerical operation from
such business equipment as typewriters (flexowriters),
billing machines, desk calculators and cash registers,
Each of these devices are used to create transaction
records in machine sensible form. Punched paper
tape is a particularly popular input medium with
scientific laboratories. Paper tape is also used as a
data communication medium during teletype oper-
ations,

The High Speed Paper Tape Reader isanon-line input
device of the 225 System that reads punched paper
tape under program control at the rate of either 100
characters per second or 1000 characters per second
at operator's option. Standard punched paper tape is
§ channel; other formats are optional.

In some applications it may be desirable to record
computer output information on punched paper tape.
Towards this end a Paper Tape Punch has been in-
cluded as an on-line output device for 225 System
users, Information may be thus punched at a rate of
80 characters per second. Again, standard punched
paper tape is 8 channel; other formats are optional.

DATA MATING FUNCTION

The ability of the GE 225 to incorporate a variety of
peripheral devices is accomplished by means of a
common connecting device, or "data mating function”.
The data mating component is a common control and
transfer point for such peripheral units as the high
speed printer, the magnetic tape systems, the mass
random access file memories and the direct data links,

Figure 6 Paper Tape Punch

PROGRAMMING MANUAL

GE 225

Through the use of convenient plug-in connectors,
associated peripheral units can be conpected in
varying configurations and interchanged according to
the immediate requirements of the system, This
function allows for the easy addition of peripheral
equipment as the needs of a particular installation
grow and for the addition of new or improved input-
output devices with little, if any, logic or wiring
changes. Information can be transferred through the
data mating unit at the rate of 50,000 words per
second,

HIGH SPEED PRINTER SUB-SYSTEM

In applications where a vast amount of data is pro-
duced by the Central Processor for visual output, the
console typewriter will obviously not suffice. To
fili this need, an on-line High Speed Printer has bheen
incorporated into the 225 System.

The printer sub-system consists of the Printer
Mechanism and a Printer Controller. Information
to be printed on one line is transferred from the
Processor's memory to the Printer Controller, which
stores this information in a "buffer” where it wiil
be scanned many times during the printing process.
After this transfer is complete, printing commences

completely “off-line” from Central Processor com-
putation and no further interruption of Processor
operation is necessary. After the line has been
printed, the paper will be slewed (spaced or advanced)
for one or more lines to provide vertical format
arrangement, Editing functions can be accomplished
by a special mode of the print instruction. Horizontal
data arrangement and additional editing functions will
be performed by the Central Processor prior to
printing. 600 lines of alphanumeric information, up
to 120 characters per line, may be printed in one
minute,

MAGNETIC TAPE SUB-SYSTEM

Magnetic tape is one of the chief items that distin.
guishes modern electronic data processing systems
from earlier card calculating devices, Tapes used
in the 225 System consist of thin strips of mylar
plastic 1/2 inch wide, 1 mil thick and 3600 feet in
length, coated with magnetizable iron oxide. Infor.
mation is recorded on the tape as a series of tightly
packed magnetic "spots", Advantages of magnetic
tapes over other itypes of file storage media include
the high speed with which information may be placed
on or retrieved from them (provided that the infor-
mation is processed sequentially) and reusability.

Figure 7

High Speed Printer Sub-System

PROGRAMMING MANUAL

GE 225

Figure 8

Theoretically, up to 8 magnetic tape sub-.systems
may be included in a 225 System; however, one ov
two tape sub-systems will be a more common ar-
rangement, Each sub-system will contain a Magnetic
Tape Controller and from one to eight Magnetic Tape
Handlers, The function of the Controller is to re-
lieve the Central Processor from the constant moni-
toring necessary during reading and writing opera-
tions, The Controller, therefore, will be capable of
controlling the operation of the Magnetic Tape Handler
simultaneocusly with Central Processor computations,
Of course, these computations will have to be occa-
sionally interrupted while an accumulation of infor-
mation from tape is transferred to the Processor's
memory as during a magnetic tape read operation;
this later type of operation being more fully dis-
cussed in a later section on the automatic priority
interrupt feature.

In addition to the normal functions of reading and
writing in either binary or alphanumeric (binary
coded decimal} mode, such housekeeping functions
as advancing or backing up the tape, detection of the
end of tape and the end of file, and the rewinding of
tape are performed by this system. I should be
mentioned that a given Tape Controller may direct
either a reading or writing operation, but not both
simultaneously, The basic unit of information on
magnetic tape is the "tape record” consisting of from
1 to 16,384 words. This information is transferred
to or from tape at a rate of 15,000 characters per
second.

Magnetic Tape Sub-System

MASS RANDOM ACCESS FILE SUB-SYSTEM

To take advantage of the high speed data processing
fagility offered by magnetic tape systems, all files
(both master and transaction} must be sorted into
some sequence before processing begins. In certain
important business applications this latter operation
is either not practical, or significant time savings
will result if it can be eliminated. To this end, the
GE 225 System includes an on-line, large capacity,
random access, file storage device. Basically the
Mass Random Access File consists of several large
magnetic discs arranged vertically on a rotating
shaft. Several million characters, usually repre-
senting master files, are randomly accessible with
this device,

The Mass Random Access File sub.system consists
of a Controller unit and from one to four Mass Ran-
dom Access File memory units. The function of the
Controller is to relieve the Central Processor from
the monitoring required for reading and writing oper.
ations. The Controller checks the parity of words
received from memory and checks for errors when
reading or writing on a disc. The Central Processor
is free for other computations except for occasional
interruptions as when an accumulation of information
from the file is transferred to the Processor's
memory during a read operation.

PROGRAMMING MANUAL

GE 225

Figure 9

The basic unit of information on a magnetic disc is
the "disc record” consisting of 64 words. Each word
in this record is recorded as an image of the word
as it appears in the Central Processor memory.
Thus, both binary and alphanumeric (binary coded
decimal) configurations are retained without change.
Information is recorded serially in 2856 circular
tracks on each side of a disc: eight 64-word records
in each of 128 imner tracks, and sixteen 64-word
records in each of 128 outer tracks, Eight read.

Mass Random Access File

write heads on the positioning arm associated with
each disc assure a maximum positioning time of 200
milliseconds. Information transfer rates are 250,000
bits per second for the inner tracks and 500,000 bits
per second for the outer tracks. Latency time, the
time required for information in a track to reacha
read head, is a maximum of 100 milliseconds, Mass
Random Access File memory units are offered in two
sizes: a 16-disc file with a capacity of 98,304 records
and a 64.disc file with a capacity of 393,218 records.

Figure 10

Twelve-pocket Document Handler

PROGRAMMING MANUAL

GE 225

Figure 11 Two-pocket Document Handler

DOCUMENT HANDLER SUB-SYSTEM

A recent breakthrough in the field of data processing
has been the development of magnetic ink character
recognition by General Electric. The most common
application of MICR equipment thus far has been in
the area of banking; however, new uses ofthis power-
ful tool will soon be seen in many other business
data processing applications.

Both the 1Z2-.pocket and the 2-pocket GE Document
Handlers are available., The Document Handler is
an optional on-line input device to the 225 System
that is capable of reading paper documents printed
with E13B font and magnetic ink, and transferring

this information o the Central Processor, at the rate
of 1200 items per minute. These documents may
vary in quality, size and degree of mutilation. A
controller unit permits concurrent operation with
other peripherals and the Central Processor. The
Controller will accommodate both types of handlers
in any combination not to exceed two, The Document
Handler may also be used off-line for document sort-
ing operations,

The Document Handler can recognize 14 characters:
the ten decimal digits and four special symbols called
Cue characters. Cue characters are normally usedto
separate fields of decimal digits (to identify dollar
amount fields and identification fields).

Figure 12 E13B Font

| DATA PROCESSOR

PROGRAMMING MANUAL

GE 225

-9/10-

|
|

C. CENTRAL PROCESSOR ORGANIZATION

REPRESENTATION OF INFORMATION

The memory of the Central Processor of the GE 225
System is made up of magnetic cores, each core storing
one bit of information. All information held within the
memory of the Central Processor must exist in the form
of words, a word being the basic unit of addressable in-
formation in the memory. The memory is organized
into a number of individual cells each capable of holding
one word of information and each labelled with a unique
designation or address. Each word is considered to
consist of 20 bits although a word stored in memory
actually has 21 bits since a parity check bit is computed
and stored as a transfer to memory occurs. Available
memory sizes are 2048 words, 4096 words, 8192 words
and 16,384 words. The core memory provides storage
for both data and computer instructions.

A. Data Words

One basic method of entering information into the
Central Processor is by reading punched cards. The
information may be punched in either 80-column Hol-
lerith (alphanumeric) code or binary (column) form.
For this reason, the GE 225 can function as either an
alphanumeric machine with binary capabilities or as a
normal binary computer; so that, by means of the pro-
gram which he prepares, the user may switch between
modes of operation to take advantage of the particular
characteristics of a given application. On those occa-
sions when a conversion from alphanumeric to binary
or from binary to alphanumeric representation of data
is desirable, subroutines are automatically provided
by the General Assembly Program.

If information is punched in Hollerith code, upon read-
ing a card in the alphanumeric (decimal) mode, each
character is converted into a six-bit binary coded deci-
mal configuration. Thus, three alphanumeric charac-
ters will occupy 18 of the 20 bit positions of a memory
word. (See the Appendix for an equivalence table of the
Hollerith and binary coded decimal codes.) In this
sense, an alphanumeric data word consists of three
alphanumeric characters. Double length operations
also permit the automatic handling of symbolic codes
(account numbers, stock numbers, etc.) of six alpha-
numeric characters. These convenient word sizes re-
duce the need for elaborate partial word facility. The
26 alphabetics, 10 numerics and 11 special characters
can be expressed by six-bit binary coded decimal con-
figurations. As an example, the symbolic code B62 in
binary coded decimal form would appear as follows:

5 6 7 8 910 11 12 13 14 15 16 17 18 19
|010|0|1J—[0|1|0|0|101111[0L010L(H011|0J

B 6 2

As can be seen in the above illustration, the most sig-
nificant bit positions 0 and 1 are free to hold other in-
formation while bit positions 2 through 19 store the
three six-bit binary coded decimal digits.

The GE 225 operates arithmetically in the binary mode
in order to capitalize on the advantages of high speed,
versatile command structure and ability to handle data
in binary as well as decimal and alphabetic forms. A
binary data word consists of 19 binary digits plus a sign

bit. For e: example, a pure binary 49 may be represented
as follows:

S

0123456 78 9101112131415161718 19

[oJoToToJoJoJoJoJoJoJofoJofo 1]1]ofofo 1]

Special operations are provided to handle computations
on double length data words (two adjacent memory
words); that is, 38 bits plus the sign. The sign of the
value stored in straight binary notation will be in bit
position zero. A 0 bit represents a plus; a 1 bit re-
presents a minus. In addition to the presence of a 1
bit in the sign position, a negative number is repre-
sented by the 2's complement of the corresponding
positive number. For example, a pure binary -68
may be represented as follows:

S
4 5 6 7 8 910111213 14151617 18 19

[lllLllJIIllllllillllIJIIOIILTJIIOIOI

Negative equivalents may be generated by a special
instruction which performs this function.

The largest positive numeric value that may be stored
in 19 bit positions is 219-1, equivalent to the decimal
number 524,287. This may be verified by reference to
the binary-decimal conversion table in the Appendix.
A numeric (decimal) data word may, therefore, be re-
garded as consisting of approximately 5-1/2 decimal
digits. Double length operations permit the handling
of numbers of up to 11 decimal digits.

PROGRAMMING MANUAL

GE 225

-11-

Subroutine packages automatically provided by the
General Assembly Program make the necessary con-
versions when it is desired to work in the decimal
(BCD) mode before and after the binary arithmetic
operations (add, subtract, multiply, etc.)., In par-
ticular, a conversion will be necessary from straight
binary to binary coded decimal (BCD) before the result
of an arithmetic operation may be transferred to the
console typewriter, high speed printer or paper tape
punch. Information output to punched cards or mag-
netic tape may be in either binary or BCD notation.
It should be noted that when information is output in
straight binary form, the intention is to re-enter this
information as input to a subsequent process. The
necessity of input and output conversions is thereby
avoided.

B. Instruction Words

An instruction word in the GE 225 is a single address
word consisting of 20 bits. The basic format of the
instruction word is as follows:

0 4 56 7 19

OPERATION X X

CODE OPERAND ADDRESS

Bits 0 through 4 designate the operation which is to be
performed, bits 5 and 6 determine whether or not the
instruction is to be automatically modified, and bits 7
through 19 indicate the operand address.

The significance of the instruction bits 7 through 19
will vary depending upon the particular operation speci-~
fied by the operation code. They will frequently be used
to elaborate the exact operation to be performed when
no memory address is associated with the execution of
the instruction. For example, wordtransfersbetween
internal registers do not require an operand address.
Other instructions, such as shift commands, require
only bit positions 15 through 18 to indicate length of
shift. Such use of available bit positions of the operand
address field extend the instruction repertoire of the
GE 225 far beyond the maximum of 32 operations which
would be allowed by the five bit positions of the opera-
tion code. The type of instruction which makes use of
these additional bits to further specify the operation is
called a "general' instruction. Complete detailed in-
formation on instruction formats is given in the appen-
dix. An explanation of micro-programming capabilities
is also included for the advanced programmer. It
should be noted, however, that the user does not code
his programs by means of binary notation except for
unusual debugging situations. Under normal circum-
stances machine running programs are created by use
of the General Assembly Program, wherein operations
are expressed by mnemonic codes.

Bits 5 and 6 of an instruction word may be employed
for the automatic modification of the instruction before

its execution. One of three modification words (also
known as X Registers) may be selected and the contents
added to the operand address portion of the instruction
word. These three words are memory locations 1, 2
and 3. Bit combination 01 selects memory location 1;
bit combination 10 selects memory location 2; and bit
combination 11 selects memory location 3. A 00 com~
bination indicates no address modification.

THE DATA MATING FUNCTION
{(CONTROLLER SELECTOR)

The Data Mating Function, or Controller Selector, is
the focal point for information {ransfers between the
Central Processor and the input-output peripheral units
other than punched card, paper tape and console type-
writer, The decision as to which of the associated
peripheral equipments is to be granted memory access
during any given word time is made by the Controller
Selector. The basis for this decision is the priority
assigned to each controller connected to the Controller
Selector, which in turn is dependent upon the address
associated with each controller. The assignment of an
address to a controller is the result of 2 manual modi~
fication. There is an inverse relationship between an
assigned address and the priority level; thus, the high~
est priority is associated with the controller which has
been assigned address #0, the next highest to the con-
troller addressed #1, etc.

The input-output instructions which relate directly or
indirectly to the data mating function fall within the
"general instruction' classification. This "general”
instruction consists of three words. The first word
has the following format:

01 23456 78910111213141516171819

1 0 1 0 1 X X 0 0 CONTROLULER 1

ADDRESS

This word selects the control unit of the particular
peripheral that is to perform the desired operation,
Bit positions 0 through 4 and bit positions 7, 8 and 15
must be as shown above, Bit positions 10 through 13
hold the binary address of the controller to be selected.
At present, only eight peripheral controllers are in-
tended to be on-line through the Controller Selector.
Bit position 10 is available for expansion. The bit
positions that are not filled in indicate that they are
not significant during the execution of the command.

The instruction words in the two following memory
locations are sent directly to the selected control unit
upon execution of the first word of the general input-
output instruction. These two instruction words con-
tain the necessary information to indicate the kind of
operation the peripheral is to perform and the starting
memory location where information is to be stored or
extracted. If, for example, a magnetic tape controller
had been addressed and selected, the contents of the
two command words might contain such information as:

PROGRAMMING MANUAL

GE 225

GE 225

Magnetic Mass Communication Magnetic
Tape Random Networks Tape
Units Access . tnits (O
Q Files 18
DISC
C 64 Document
O DisC Handlers
4 O (
4 i \] 4
Control Control Control Control Control Control

Printer "

& Control

‘ Card N

Paper Tape
Reader

Controller
Selector

Reader

Figure 13 Large Configuration

]

225

Paper Tape
Punch

7

Printer
& Control

Central
Computer

Md\

Type~-
writer

ot Card
l Punch

PROGRAMMING MANUAL

.13.

the operation to be performed (e.g., the con-
troller is to read a magnetic tape),

the designation of the magnetic tape unit,
the number of words to be read, and

the starting address in the memory where the
information is to be stored.

ARITHMETIC AND CONTROL REGISTERS
1. M Register

All information written into or out of the Central Pro-
cessor's magnetic core memory must first pass through
the 21-bit M Register. The M Register is thus a focal
point for information transfers among 225 System units.
The 21 bits of the M Register include 20 information bits
and a parity check bit. When a word (20 bits) enters
the M Register in preparation for writing into memory,
the number of 1 bits are counted. If the total is an even
number, a one bit is generated for the 21st bit position.
If the total is odd, a zero is generated. The full 21 bits
are then stored away in memory. When a word is read
from memory into the M Register, another bit count is
made to determine that there are still an odd number of
1 bits in the 21 bits of the memory word. Should this
check reveal an even number of 1 bits, a parity error
will be indicated.

2. B Register

All information transferred from memory (via the M
Register) to other internal registers and components
of the Central Processor must first pass through the
20-bit B Register. In this manner, the B Register
serves as a buffer between the arithmetic and control
components and the memory and M Register. The
memory and M Register are then free to be accessed
and utilized simultaneously with Central Processor
operations not requiring memory usage. For example,
multiply and divide instructions, after initial memory
access, consist simply of a series of addition and shift-
ing operations. In arithmetic operations, the B Register
holds the addend for addition, the subtrahend for sub-
traction, the multiplicand for multiplication and the
divisor during division. It is also used in the execu-
tion of certain data transfer commands.

3. A Register

The A Register is a 20-bit register which serves as
the accumulator for the Central Processor. The A
Register performs the following functions:

a. Holds the augend during addition.

b. Holds the sum after addition.

c. Holds the minuend during subtraction.
d. Holds the result after subtraction.

e. Holds the most significant half of the product
after multiplication.

f. Holds the most significant half of the dividend
before division.

g. Holds the quotient after division.

h. Holds the most significant half of the double
length word after the execution of all double
word length instructions.

i. Holds a word which has been transferred from
memory or which is to be transferred to mem-
ory.

j. Holds the word on which extraction is performed
during the execution of the Extract instruction.

k. Holds the word to be shifted during various
shift instructions.

1. Holds a word which is to be transferred to an-
other register or which is to be modified in
some way during the execution of various DATA
TRANSFER COMMANDS.

Holds the word which determines future action
during the execution of various branch instruc-
tions.

B

Manual input to the A Register is possible from 20 con-
sole switches provided for this purpose. An example of
the use of these switches would be in initial program
startup when it is necessary to get the first instruction
into the machine. Console operation is discussed more
fully in a later section.

4. Q Register

The Q register is a 20-bit register which acts with the
A Register to form a double word length (38 bits plus
sign) accumulator during the execution of double word
length instructions. Information is not transferred
directly from memory into the Q Register but is trans-
ferred through the A Register into the Q Register.

Register A Register Q

The Q Register performs the following functions:
a. Holds the least significant half of the double
length word during the execution of double length
load and store instructions.

b. Holds the least significant half of the result
after multiplication.

PROGRAMMING MANUAL

GE 225

c. Holds the least significant half of the dividend
prior to division.

Holds the remainder after division.

Holds the least significant half of the augend
prior to double addition and the least signifi-
cant half of the sum afterwards.

Holds the least significant half of the minuend
prior to double subtraction and the least sig-
nificant half of the result afterwards.

g. Holds the least significant half of the informa-
tion to be shifted during double shift instructions.

h. Can be shifted right or left along with the N and
A Registers in special shift instructions.

5. Arithmetic Unit

The Arithmetic Unit serves two functions. It performs
the arithmetic calculations specified by the operation
code in the I Register during arithmetic operations. It
serves as a transfer bus for data words going between
the A Register and memory (via the M Register) and for
instruction words going to the I Register.

6. N Register

The N Register is a six-bit register which is used as a
single character buffer between the computer and the
Console Typewriter, Paper Tape Reader or Paper Tape
Punch. This permits the appropriate input-output pro-
cesses tooccur simultaneously with other Central Pro-
cessor operations. Information is transferred directly
between the N Register and the A Register by means of
several shift instructions.

7. I Register

The I Register is the instruction register. It holds the
20 bits of the instruction word during execution of a
computer command. In the execution of all instructions,
the left-most five bits indicate the operation which is to
be performed; the next two bits refer to the automatic
address modification words. During the execution of
instructions involving reading an operand from memory,
the thirteen rightmost bits indicate the memory location
of the operand. During the execution of other instruc-
tions, these thirteen bits may have various meanings as
given in the instruction repertoire.

8. P Counter

The P Counter (Program Address Counter) is the lo-
cation counter that controls the execution sequence of
the instructions; that is, it holds the memory address
of the next instruction to be executed. The thirteen
bits of the next instruction address are indicated by
thirteen display lights on the control panel. The P

Counter is incremented by one before the execution
of an instruction so that it normally indicates the ad-
dress of the next instruction in sequence. Under cer-
tain conditions, an address in the I Register may be
transferred to P.

AUTOMATIC ADDRESS MODIFICATION

Automatic modification of the address portion (bits 7
through 19) of instruction words prior to their execution
can be accomplished under program control through the
use of three special automatic address modification
words. These special words, also referred to as X
Registers, are magnetic core memory locations 00001,
00002 and 00003. The 5 and 6 bit positions of an in-
struction word are used to designate which of the three
memory locations is to be used in modifying the ad-
ress.

0 4 5617 19

OPERATION|y o OPERAND ADDRESS

CODE

o
ADDRESS MODIFICATION BITS

Bit configuration 01 in bit positions 5 and 6 se-
lects memory location 00001, 10 selects memory
location 00002 and 11 selects memory location 00003.
Bits 00 indicate that no modification is to be per-
formed.

When an instruction word comes from memory
to the I (instruction) Register, the two modifica-
tion bits (5 and 6) are tested to determine whether
or not address modification is required. If bits
5 and 6 are other than 00, an address modifica-
tion is performed (see reference below to certain
exceptional cases). The address portion of the
selected modification word is sent through the B
Register to the Arithmetic Unit. Bits 7 through
19 of the I Register (operand address bits) are
also sent to the Arithmetic Unit where the address
portion of the selected modification word is added
to it. The changed address is then put in the I
Register, and the instruction is executed.

Summing up, the result of an automatic address
modification is: the operation code (bits 0 through
4) of the instruction word in the I Register is un-
changed; and the operand address (bits 7 through
19) is altered by the amount in the modification
word. If automatic address modification is called
for, an extra word time (18 microseconds) is re-
quired to accomplish this.

PROGRAMMING MANUAL

GE 225

-15-

agin

LA

TYNYW SNIWWYEOOUd

LT ——

Peripheral
Units

g

M

Register

B

Register

Arithmetic
Unit

From To Peripheral
Paper Tape Typewriter Up it
Reader Paper Tape Punch BiLs
‘, |
N Core e o et BAATESE
“* e o o wd DJecOde e
Register Memory
e el L0OgIC 5
] X H
. A Q I
wi Hegister g Register Register
L
P
Advance Counter
Figure 14 Register Relationships
k2 #

In the case of certain instructions which affect the ad-
dress modification words themselves, the 5 and 6 bits
are used to designate these modification words as a part
of the normal execution of the instruction. The bit posi~
tions are, therefore, not available to indicate address
modification. The Instruction Repertoire section of this
marnual indicates which instructions can be automatically
modified and which cannot. The programmer must be
aware, however, that the modification of many instruc-
tions, though possible, willnot have a proper meaning.
In this category are those instructions which use a por-
tion or all of the operand address field as an elaboration
of the operation code.

CYCLE OF OPERATION

With the exception of branching operations, instructions
are executed sequentially. The next instruction is read
from memory after the execution of the current in~
struction. A sequence control counter, the P counter,
containg the address of the next instruction to be ex-
ecuted. The contents of P are displayed on the control
console,

In order for the Central Processor to fetch and execute
program instructions in an orderly and sequential man-
ner, it is necessary to provide a definite time base for
these operations. The effective pulse frequency for all
Central Processor operations is 450 KC. Therefore,
the time between these basic pulses is approximately
2.25 microseconds. Eight of these pulses comprise
another basic unit of time, known as a "word time",
which is of 18 microseconds duration.

A word time is the time required to read one word out
of memory, transfer this word to the appropriate reg-
ister or registers, and re-write the word back into
memory (due to destructive readout). Thus, one word
time will be required to fetch an instruction out of
memory, and one word time will normally be required
to look up the operand associated with this instruction
and perform all operations necessary to its proper ex-
ecution, Some instructions will reguire more than one
word time for their complete execution. Examples of
these include double word length instructions and mul-
tiply and divide. Single word transfers from or to
memory, including instruction access time, require
a total of 36 microseconds; double word length trans-
fers reguire a total of 54 microseconds. Execution
times for each instruction in the command repertoire
of the GE 225 is given in a later section of this manual.

That portion of the control logic necessary to ensure
the orderly sequence of (1) fetching an instruction,
(2) modifying the data address (if required), and (3)
executing the instruction is known as the sequence con-
trol. The sequence control also ensures the repetition
of these steps in a cyclic manner, thereby permitting
program execution. In addition, the sequence control
directs the sequence of additional steps required for the
execution of multiple-word-time instructions by pro-
viding appropriate signals (Operation Enable or OF)
for this purpose.

Figure 15 is a flow chart of the operations performed
by the Central Processor while executing a program.
More exactly, this diagram illustrates the nature of
the operations and tests performed during one com~-
plete instruction cycle, including the extraction of the
instruction from memory (AMP), modification of the
data address portion of the instruction if required (AMX),
and the subsequent execution thereof (AMI, GIS or AMX).
Program execution is accomplished by properly repeat-
ing this basic cycle until the program has been complete-
ly executed. Program execution may also be stopped
from the Operator's Console, in which event the cycle
will be stopped immediately following the AMP operation.

The following example illustrates the cycle of computer
operation, Assume that the first instruction of a pro-~
gram has somehow been manually entered into the I
Register and that it is a LOAD REGISTER A instruction.
Further assume that bits 5 and 6 of this instruction word
are zeros, indicating that no modification of the data
address in Iis required. The remainder of the program
has been loaded into memory beginning at location 0000
and the P Register has been manually cleared (i.e., set
equal to 0000) by the operator. The Auto/Manual Con-
sole Switch is placed on Auto and the Start (Step) button
is depressed. Since the execution of this particular in-
struction involves use of the memory (the instruction
is not a "general' instruction), the next operation to be
performed will be AMI. During the execution of the
LOAD A instruction, the contents of the memory cell
specified by the data address bits (7-19) of the I Reg-
ister will be transferred to the A Register (via the M
and B Registers and the Arithmetic Unit). Since the
LOAD A instruction requires only one word time for
its complete execution, an End of Operation signal
(EQO) will be generated during AMI time, thereby
instructing the sequence control to perform the AMP
operation next. Assuming that memory access will
be available to the Processor during this following
word time, the instruction located in cell 0000 (in this
example) will be pulled out of memory, transferred to
the I Register, and the cycle repeated.

PRIORITY INTERRUPT

Due to the unique design concept of the 225 System,
the core memory serves the dual function of: (1) main
memory and (2) input-output buffer. Thus, two or more
asynchronous operations may be performed simultane-
ously; for example, reading cards at a relatively slow
rate while computing at the standard 450 KC repetition
rate. Processor computation and access to the mem-
ory will have to be interrupted cccasionally to allow
information to be entered into or taken out of the mem-
ory at the request of the input or output devices cur-
rently in operation. Since several requests for mem-
ory access might be made at the same time, a provision
is made to grant only one such request for access during
a particular word time. The analysis of these various
requests for memory access and the determination of
whether an input-output device or the Central Processor
should have access to the memory is performed by the
Priority Interrupt logic.

PROGRAMMING MANUAL

GE 225

317

POWER ON

EOQ EQO {(End of Operation}
Look up instruction at {address in P)
START(Btep} {Memory I Hegister}
Button Compute Address of next instruction
; {P Register + 1 P Register)
LOAD C3 ARD HALTHI YES] Is the Auto/Manual Consocle
Switch on manual?
- i
STEP ©
Is the instruction in the .
I Register to be modified? ?gg;feigff %?;a
instruction in the
‘NO I Register
By, #0 {1, ,+X e &
YES! Will the execution involve 26 T T-12 T-i
AMX age of an X Register?
Execute INX, BXH, $NO
or BXL instruction B te Ge 1
xecute Genera
Ig there a "General” X X
. TR instruction {or
ing!;!;;;&aﬂ?m the Initiate execution
of in/out insiruction}

NO

Was this an

“Input/Qutput” YES

Instruction ?

‘Nﬁ

Was this a Branch
Instruction whose
Branching Condition
was nob satisfied ?

YES
P oy je=p

‘NQ

Has the General
Instruction been
completely executed 7

YES

Yl

Exzecute Memory
Reference Instruction

Complete General
Instroction Execution.
{NGIR or word

movement}
Has the Memory Reference :
jolee]
Instruction been completely XES

executed?

NG

oy e (1LY B S Required {e, g, , Double Precision}
sy,

Continue Execution
of Memory Reference
Instruction

Figure 15 Central Processor Operating Cycle

GE 225

PROGRAMMING MANUAL

18-

The granting of a request for memory access is de~
pendent upon the priority assigned (built into the com-
puter) to a particular device. This priority, in turn,
is determined by the repetition rate of pulses (infor-
mation) going to or coming from the input-output device,
Thus, if a request for access is received from two
input~output devices simultanecusly, the one with the
higher repetition rate will have top priority and, hence,
be the first to be granted access. The other device
will wait for one word time. The reasoning behind
this basis for priority assignment is that the slower
speed unit can afford to wait without danger of loss
of information. The faster unit cannot afford to wait
since additional information is soon to follow. The
Central Processor will always have the lowest pri-

ority since no loss of information can result if it is
forced to "hang up' or remain in a state of suspended
animation awaiting memory access during its normal
cyclic operation. The Priority Interrupt logic will
consider the Controller Selector (data mating function)
as one other input-output device. Thus, two levels of
priority are involved in the data mating operation.
First, there is the computer priority (Priority Inter-
rupt logic). This priority determines whether mem-
ory access is granted to the computer, to the card
system, or to the Controller Selector. Second, there
is a Controller Selector priority which determines
which associated peripheral unit is granted memory
access when the Controller Selector, itself, has such
access.

Computer Priority Interrupt Control

Card Controller
Reader Selector
Address joemmmm oo 1 thru Beee e
0

Card
Punch Computer
Address Address
& 7

Increasing Priority

DATA PROCESSOR

PROGRAMMING MANUAL

GE 225

-19/20-

D. INSTRUCTION REPERTOIRE

The GE 225 operates under the programmed control
of over one hundred instructions, These instructions
are classified into the following categories:

Arithmetic

Data Transfers

Shift Operations

Internal Test-and-Branch

Console Operation

Punched Card Input-Qutput

Paper Tape Input-Qutput

High Speed Printer Sub-System

Magnetic Tape Sub.System

. Mass Random Access File
Sub-System

11. Document Handler Sub-System

)

*

®

* ®

Sork

The following list of instructions gives the mnemonic
code for the command and an indication of whether a
memory location {operand address) or a constant is
required.

Machine running programs are created by use of the
General Assembly Program. Routines are prepared
by specifying in tabular form the mnemonics of the
instructions, the memory locations or constants in-
volved, and whether or not the instructions are to be
modified. For example, if it is desired to store the
contents of the A Register in memory and modify the
instruction, the following display will aceomplish
this:

ARITHMETIC

Operation Operand Modification
Code Address Word
STA Y X

The mnemonic STA (Store A) stores the contents of
the A Begister in the memory location (¥). The
operand address (Y} may be a decimal number (for
example, memory location 01050) or the operand
address may be a symbolic designation (for example,
NETPAY) which is intelligible to the GE 225 assem-
bler routines., With the General Assembly Program
the programmer may use symbols for operand ad-
dresses whenever he s0 desires, and memory loca-
tions will be automatically assigned. The letter X"
(X Register) indicates whether or not the instruction
is to be automatically modified. A zeroindicates that
there is to be no modification, whilea 1, 2 or 3 selects
memory modification words 00001, 00002 or 00003,

In the fellowmg list of mstructmns, a.ll_j.nsimﬂmna

ically modified 5 i
In all instructions involvmg the bringmg ef a word
from memory, the word in memory remains une
changed; in all instructions involving the transfer of
information from registers, the condition of the reg-
igter after execution is unchanged unless otherwise
stated, A 'Y indicates an operand address; a "K"
indicates the operand itself, Some instructions by
their nature do not require an operand. The word
times required for execution include the fetching of
the instruction.

The capacity of the A Register may be exceeded in execution of Add, Subtract or
Multiply commands resulting in a condition known as "overflow". In this event,
the overflow indicator is turned on, the high-order (most significant) bit of the re-
sult is lost, and the sign of the result is reversed.

ADD Y

Octal: 01

Word Time: 2

ADD. The contents of ¥ {s8,1-18)are algebraically added to the contents of Register
A (s,1-18), The result is placed in Register A (8,1-19). The contents of ¥ are not

changed.

suUB Y

Octal: 02

Word Time: 3

SUBTRACT. The contents of Y (g,1-19) are algebraically subtracted from the con-

tents of Register A (s,1-198).
contents of Y are not changed.

The result is placed in Register A (s,1-19). The

PROGRAMMING MANUAL

GE 225

DAD Y Octal: 11 Word Time: 3

DOUBLE LENGTH ADD. If Y is even, the contents of Y (s,1-19) and Y + 1 (1-19)
are algebraically added to the contents of Register A (s,1-19) and Register Q (1-19).
If Y is odd, the contents of Y (s,1-19) and Y (1-19) are algebraically added to the
contents of Register A (s,1-19) and Register @ (1-19). The result is placed in
Register A (s,1-19) and Register Q (1-19). The sign of Register Q is set to agree
with the sign of Register A. The contents of Y and Y + 1 are unchanged. If this
instruction is automatically modified, the address after modification will determine
the result as indicated above.

DSU Y Octal: 12 Word Time: 5

DOUBLE LENGTH SUBTRACT. If Y is even, the contents of Y (s,1-19) and Y + 1
(1-19) are algebraically subtracted from the contents of Register A (s,1-19) and
Register Q (1-19). If Y is odd, the contents of Y (s,1-19) and Y (1-19) are alge-
braically subtracted from the contents of Register A (s,1-19) and Register Q (1-19).
The result is placed in Register A (s,1-19) and Register Q (1-19). The sign of
Register Q is set to agree with the sign of Register A, The contents of Yand Y + 1
are unchanged. If this instruction is automatically modified, the address after
modification will determine the result as indicated above.

MPY Y Octal: 15 Maximum Of: 21

MULTIPLY. The contents of Y (s,1-19) are algebraically multiplied by the contents
of Register Q (s,1-19). The result is placed in Register A (s,1-19) and Register Q
(1-19); the sign of Register Q is the same as the sign of Register A after multipli-
cation. If the contents of Register A are not set to zero before the MPY command
is given, the contents of Register A will be added algebraically to the least signi-
ficant half of the product. Thus, with proper scaling, it is possible to form the
value AB + C.

DVD Y Octal: 16 Maximum Of: 30

DIVIDE. The contents of Register A (s,1-19) and Register Q@ (1-19) are algebraically
divided by the contents of Y (s,1-19). The quotient is placed in Register A (s,1-19);
the remainder is placed in Register Q (s,1-19). The sign of the remainder is the
sign of the dividend. The magnitude of the divisor must be greater than the mag-
nitude of the contents of Register A. If not, the overflow indicator will be turned
ON and control will be immediately transferred to the next instruction in sequence.

INX X, K Octal: 14 Word Time: 3

INCREMENT X BY K. K, positions 7 through 19 of the I Register, is added abso-
lutely to the contents of Register X (7-19), and the result replaces the contents of
Register X (7-19). Any carry from position 7 of Register X is lost. This instruc-

tion is not automatically modified since bits 5 and 6 are used to identify the parti-
cular X Register.

ADO Octal: 2504032 Word Time: 3

ADD ONE. Plus one is added algebraically to Register A (19). If the capacity of
Register A is exceeded, the overflow indicator will be turned ON.

SBO Octal: 2504112 Word Time: 3

SUBTRACT ONE. One is subtracted algebraically from Register A (19). If the
capacity of Register A is exceeded, the overflow indicator will be turned ON.

GE 225 PROGRAMMING MANUAL

.22

DATA TRANSFERS

GE 225

LDA Y Octal: 00 Word Time: 2

LOAD A. The contents of Y (s,1-19) replace the contents of Register A (s,1-19).
The contents of Y are not changed.

STA Y Octal: 03 Word Time: 2

STORE A. The contents of Register A (s,1-19) replace the contents of Y (s,1-19).
The contents of Register A are not changed.

DLD Y Octal: 10 Word Time: 3
DOUBLE LENGTH LOAD. I Y is eventhe contents of Y (s,1-19) and Y + 1 (s,1-19)
replace the contents of Register A (s,1-19) and Register Q (s,1-19). If Y is odd,
the contents of Y (s,1-19) replaces the contents of Register A (s,1-19) and Register
Q (s,1-19). The contents of Y and Y + 1 are unchanged, If this instruction is auto-
matically modified, the address after modification will determine the result as
indicated above.

DST Y Octal: 13 Word Time: 3

DOUBLE LENGTH STORE. If Y is even, the contents of Register A (s,1-19) and
Register Q (s,1-19) replace the contents of Y (s,1-19) and Y + 1 (s,1-19). If Y is
odd, the contents of Register @ (s,1-19) replace the contents of Y (s,1-19). The
contents of Register A and Register Q are unchanged. If this instruction is auto-
matically modified, the address after modification will determine the result as
indicated above.

LQA Octal: 2504004 Word Time: 3

LOAD Q FROM A. The contents of Register A (s,1-19) replace the contents of
Register Q (s,1-19). The contents of Register A are unchanged.

LAQ Octal: 2504001 Word Time: 3

LOAD A FROM Q. The contents of Register Q (s,1-19) replace the contents of
Register A (s,1-19). The contents of Register Q are unchanged.

XAQ Octal: 2504005 Word Time: 3
EXCHANGE A AND Q. The contents of Register A (s,1-19) and Register Q (s,1-19)
are interchanged.

MAQ Octal: 2504006 Word Time: 3

MOVE A TO Q. The contents of Register A (s,1-19) replace the contents of Reg-
ister Q (s,1-19). Zeros replace the contents of Register A (s,1-19).

STO Y Octal: 27 Word Time: 3

STORE OPERAND ADDRESS. The contents of Register A (7-19) replace the con-
tents of Y (7-19). The contents of Register A and Y (s,1-6) are unchanged.

PROGRAMMING MANUAL

.23.

ORY Y Octal: 23 Word Time: 3

OR A INTO Y. Each bit of Register A is examined. If there is a 1 bit in Register
A in a given position, a 1 bit is placed in Y in that position. The contents of Reg-
ister A and the other bit positions of Y are unchanged,

EXT Y Octal: 20 Word Time: 3
EXTRACT. Each bit of ¥ is examined, If there is a 1 bit in Y in a given position,
a zero is placed in the corresponding position of Register A, If there is a zero in
a given position of Y, the corresponding position in Register A is left unchanged.
The contents of Y are unchanged.

LDz Octal: 2504002 Word Time: 3

LOAD ZERO INTO A. The contents of Register A (8,1-19) are replaced by 0's.

LDO QOctal: 2504022 Word Time: 3

LOAD ONE INTO A. The contents of Register A (8,1-19) are setto 0, and a 1 is
placed in Register A (19).

LMO] Octal: 2504102 Word Time: 3

LOAD MINUS ONE INTO A. The contents of Register A (s,1-19) are replaced by
1's.

CPL Octal: 2504502 Word Time: 3

COMPLEMENT A, Each bit in Register A (s,1-19) is inverted; that is, each 1 is
replaced by a 0 and each 0 is replaced by 1.

NEG Qctal: 2504522 Word Time: 3

NEGATE A. The 2's complement (negative value) of the contents of Register A
(8,1-19) replaces the contents of Register A (s,1-18). If the capacity of Register
A is exceeded, the overflow indicator will be turned ON,

CHS Qctal: 2504040 Word Time: 2

CHANGE SIGN OF A. The sign of Register A is changed. Positions 1-18 of Reg-
ister A are unchanged.

NOP QOctal: 2504012 Word Time: 3

NO OPERATION. Zero is added to the contents of Register A (s,1-19).

SHIFT OPERATIONS

The Shift commands shift the contents of the A Register to the right or left serially
{(bit by bit) either alone or with the contents of the N and/or Q Registers. A maxi.
mum of 31 places can be shifted, All shift commands vary between two and nine
word times, depending upon the length of the shift. Two word times are required
for a shift of four bit positions or less. One additional word time is required for
each additional four bit shift or fraction thereof,

GE 225 PROGRAMMING MANUAL

24-

SRA K Qctal: 25100 Word Time: 2+

SHIFT RIGHT A. The contents of Register A (1-19) are shifted right K places, If
Register A is plus, 0's are inserted in the vacated positions of Register A, I
Register A is minus, 1's are inserted in the vacated positions of Register A, Bits
shifted out of position 19 are lost. The sign of Register A is not changed.

SLa | 4 QOctal: 25120 Word Time: 2+

SHIFT LEFT A. The contents of Register A (1-19) are shifted left K places. Va-
cated positions of Register A are filled with zeros. If a non-zero bit is shifted out
of position 1, the overflow indicator will be turned ON, and the bit is lost. The
gsign of Register A is unchanged.

SCA K Octal: 251004 Word Time: 2+

SHIFT CIRCULAR A. The contents of Register A (1-19) are shifted right K places
in a circular fashion; that is, the bit shifted out of position 19 is inserted in posi-
tion 1, replacing the bit shifted out of position 1. The sign of Register A is not
affected,

SRD K Qctal: 25110 Word Time: 2+

SHIFT RIGHT DOUBLE. The contents of Register A {1-19) and the contents of
Register Q (1-19) together are shifted X places to the right. Bits shifted out of
Register A (19) shift into Register Q (1). Bits shifted out of Register @ (19) are
lost, If the sign of Register A is plus, 0's fill the vacated positions; if the sign of
Register A is minus, 1's fill the vacated positions. The sign of Register Q is re~
placed by the sign of Register A, The sign of Register A is unchanged.

SLD K Octal: 25122 Word Time: 2+

SHIFT LEFT DOUBLE. The contents of Register A (1-19) and the contents of
Register @ (1-19) together are shifted K places to the left, Bits shifted out of
Register @ (1) shift into Register A (19). The vacated positions of Register Q are
filled with zeros. I a non-zero bit is shifted out of Register A (1), the overflow
indicator is turned ON, and the bit is lost. The sign of Register Q replaces the
sign of Register A. The sign of Register Q is unchanged.

SCh K Qctal: 25112 Word Time: 2+

SHIFT CIRCULAR DOUBLE. The contents of Register A (1-19) and Register Q
(1-19) together are shifted K places to the right in a circular fashion. Bits shifted
out of Register A (19) shift into Register Q (1) and those from Register ©Q (19) shift
into Register A (1). The sign of Register A replaces the sign of Register Q. The
sign of Register A is unchanged,

SAN K Octal: 25104 Word Time: 2+

SHIFT A AND N RIGHT. The contents of Register A (1-19) and Register N (1-8)
together are shifted K places to the right. Bits shifted out of Register A (19) shift
into Register N (1). Bits shifted out of Register N (6) are lost. If the sign of Reg-
ister A is plus, 0's fill the vacated positions of Register A; if the sign of Register
A is minus, 1's fill the vacated positions of Register A. The sign of Register A is
unchanged.

GE 225 PROGRAMMING MANUAL

25.

SNA K Octal: 25101 Word Time: 2+

SHIFT N AND A RIGHT. The contents of Register N (1-6) and Register A (1-19)
together are shifted K places to the right. Bits shifted out of Register N (6) shift
into Register A (1). Vacated positions in Register N are filled with 0's. Bits
shifted out of Register A (19) are lost. The sign of A is unchanged.

NAQ K Octal: 25111 Word Time: 2+

SHIFT N, A AND Q RIGHT. The contents of Register N (1-6), Register A (1-19)
and Register Q (1-19) together are shifted K places to the right. Bits shifted out of
Register N (6) shift into Register A (1). Bits shifted out of Register A (19) shift
into Register Q (1). Bits shifted out of Register Q (19) are lost. Vacated positions
of Register N are filled with 0's. The sign of Register A is unchanged.

ANQ K Octal: 25114 Word Time: 2+

SHIFT A INTO N AND Q. The contents of Register A (1-19) are shifted K places
to the right into both Register N and Register Q. Bits shifted out of Register A
(19) enter both Register Q (1) and Register N (1). Bits shifted out of Register N
(6) and Register Q (19) are lost. If the sign of Register A is plus, the vacated posi-
tions of Register A are filled with 0's; if the sign of Register A is minus, 1's fill
the vacated positions of Register A. The sign of Register A replaces the sign of
Q. The sign of Register A is unchanged.

NOR K Octal: 25130 Word Time: 2+

NORMALIZE A REGISTER. If R, the number of leading zeros of Register A (1-19),
is less than K, the contents of Register A (1-19) are shifted left R places, and K-R
replaces the contents of location 0000 (15-19). If R is greater than, or equal to, K,
the contents of Register A (1-19) are shifted left K places, and a zero replaces the
contents of location 0000 (15-19). Positions S, 1-14 of location 0000 are always set
to zero. Vacated positions of Register Aare filled with zeros. The sign of Register
A is unchanged.

DNO K Octal: 25132 Word Time: 2+

DOUBLE LENGTH NORMALIZE. If R (the number of leading zeros of Register A)
is less than K, the contents of Register A (1-19) and Register Q (1-19) are shifted
left R places, and K-R replaces the contents of location 0000 (15-19). If R is
greater than, or equal to, K, the contents of Register A (1-19) and Register Q (1-19)
are shifted left K places and a zero replaces the contents of location 0000 (15-19).
Positions S, 1-14 of location 0000 are always set to zero. Bits shifted out of Reg-
ister Q (1) shift into Register A (19). Vacated positions of Register Q are filled
with zeros. The sign of Register Q replaces the sign of Register A. The sign of
Register Q is unchanged.

INTERNAL TEST-AND-BRANCH

BRU Y Octal: 26 Word Time: 1

BRANCH UNCONDITIONALLY. Control is transferred to the instruction located
at Y; i.e., Y becomes the address of the next instruction. (The contents of Register
I (7-19) are transferred to Register P (7-19.)

GE 225 PROGRAMMING MANUAL

-26-

SPB X, Y Octal: 07 Word Time: 2

STORE P AND BRANCH. The location of this instruction, Register P (7-19), re-
places the contents of Register X (7-19), and control is transferred to the instruc-
tion located at Y, i.e., Y becomes the address of the next instruction. This in-

struction is not automatically modified since bits 5 and 6 are used to identify the
particular X Register.

BPL Octal: 2516001 Word Time: 2

BRANCH ON PLUS. If the sign of Register A is plus, the computer takes the next
sequential instruction. If the sign of Register A is not plus, the computer skips the
next instruction and executes the second sequential instruction. The contents of
Register A are unchanged by this instruction. (Note that branching will occur if
Register A is all zeros.)

BMI Octal: 2514001 Word Time: 2

BRANCH ON MINUS. If the sign of Register A is minus, the computer takes the
next sequential instruction. If the sign of Register A is not minus, the computer
skips the next instruction and executes the second sequential instruction. The con-
tents of Register A are unchanged by this instruction.

BZE Octal: 2514002 Word Time: 2

BRANCH ON ZERO. If the contents of Register A (s,1-19) are zero, the computer
takes the next sequential instruction. If the contents are not zero, the computer
skips the next instruction and executes the second sequential instruction. The con-
tents of Register A are unchanged by this instruction.

BNZ Octal: 2516002 Word Time: 2

BRANCH ON NO ZERO. If the contents of Register A (s,1-19) are not zero, the
computer takes the next sequential instruction. If the contents are zero, the com-
puter skips the next instruction and executes the second sequential instruction. The
contents of Register A are unchanged by this instruction.

BOD Octal: 2514000 Word Time: 2

BRANCH ON ODD. If the contents of Register A are odd (A (19) contains a 1), the
computer takes the next sequential instruction. If the contents of Register A are
even (A (19) contains a 0), the computer skips the next instruction and executes the
second sequential instruction. The contents of Register A are unchanged by this
instruction.

BEV Octal: 2516000 Word Time: 2

BRANCH ON EVEN. If the contents of Register A are even [A (19) contains a 0], the
computer takes the next sequential instruction. If the contents of Register A are
odd [A (19) contains a 1], the computer skips the next instruction and executes the
second sequential instruction. The contents of Register A are unchanged by this
instruction.

GE 225 PROGRAMMING MANUAL

.27-

BOV Octal: 2514003 Word Time: 2

BRANCH ON OVERFLOW. If the overflow indicator is ON, the indicator is turned
OFF and the computer takes the next sequential instruction. If the overflow indi-
cator is not ON, the computer skips the next instruction and executes the second
sequential instruction.

BNO Octal: 2516003 Word Time: 2

BRANCH ON NO OVERFLOW. If the overflow indicator is not ON, the computer
takes the next sequential instruction. If the overflow indicator is ON, the indicator
is turned OFF, the computer skips the next instruction and executes the second
sequential instruction.

BPE Octal: 2514004 Word Time: 2

BRANCH ON PARITY ERROR. If the parity error indicator is ON, the indicator
is turned OFF, and the computer takes the next sequential instruction. If the parity
error indicator is not ON, the computer skips the next instruction and executes the
second sequential instruction.

BPC Octal: 2516004 Word Time: 2

BRANCH ON PARITY CORRECT. If the parity error indicator is OFF, the com-
puter takes the next sequential instruction. If the parity error indicator is ON, the
indicator is turned OFF, the computer skips the next instruction and executes the
second sequential instruction.

BXH X, K QOctal: 05 Word Time: 8

BRANCH IF X IS HIGH OR EQUAL. If the contents of Register X (7-19) are greater
than or equal to K, the computer takes the next sequential instruction; if the con-
tents of Register X (7-19) are less than K, the computer skips the next instruction
and executes the second sequential instruction. The contents of Register X are not
changed. This instruction is not automatically modified since bits 5 and 6 are used
to identify the particular X Register. (Note: K is required to be the 2's complement
of the desired test value, This requirement is automatically taken care of by the
General Assembly Program.)

BXL X K Octal: 04 Word Time: 3

BRANCH IF X IS LOW. if the contents of Register X (7-19) are less than X, the
computer takes the next sequential instruction; if the contents of Register X (7-19)
are greater than or equal to K, the computer skips the next instruction and executes
the second sequential instruction. The contents of Register X are not changed,

is i ion i aut i yv.modified since bits b and 6 are used to identify
the particular X Register. (Note: K is required to be the 2's complement of the
desired test value. This requirement is automatically taken care of by the General
Assembly Program.)

CONSOLE OPERATION
RCS Octal: 2500011 Word Time: 2

READ CONTROL SWITCHES. Each of the 20 manually set Register A control
switches is examined. If a switch is DOWN (ON), a 1 bit is placed in the corres.
ponding position of Register A; ctherwise the corresponding position in Register
A will not be altered, The A Register should be cleared before this instruction is
given.

GE 225 PROGRAMMING MANUAL

TOMN Qctal: 2500007 Word Time: 2

TYPEWRITER ON. The power for the typewriter is turned ON. To allow the motor
to attain operating speed, a delay of at least 200 milliseconds must be programmed
before giving a command to type. However, if the command TON is given within 1
millisecond after turning off the typewriter, nodelay is required. (A manual switch
on the typewriter must also be turned on.)

BNR Octal: 2514005 Word Time: 2

BRANCH ON N REGISTER READY. If the N Register is available for input-output,
(if the last TYPE, READ PAPER TAPE, or WRITE PAPER TAPE instruction has
been executed) the computer takes the next sequential instruction; if not, the com.
puter skips the next instruction and executes the second seguential instruction.

BNN Octal: 2516005 Word Time: 2

BRANCH ON N REGISTER NOT READY. If the N Register is not available for
input-output (if the last TYPE, READ PAPER TAPE, or WRITE PAPER TAPE in-
struction has not been executed) the computer takes the next sequential instruction,
If it is, the computer skips the next instruction and executes the second sequential
instruction,

TYe Octal: 2500008 Word Time: 2

TYPE. The six-bit, coded character in Register N is typed. The contents of
Register N are not changed. (No keys will be activated when an attempt is made to
type an illegal bit configuration, and the N Register will be placed in a BUSY condi.
tion. Clearing of this condition is accomplished by manually typing a character.)

OFF Octal: 2500005 Word Time: 2

TYPEWRITER OFF. Power supply for the typewriter is turned off.

BAPER TAPE INPUT-QUTPUT
RPT Qctal: 2500010 Word Time: 2

READ PAPER TAPE. The N Register is cleared, and one six-bit coded character
is read into Register N. Other instructions not using Register N may be executed
during this time,

WPT Octal: 2500012 Word Time: 2

WRITE PAPER TAPE. The six-bit coded character in Register N is punched.
The contents of Register N are not changed. Other instructions not using Register
N may be executed during this time.

PUNCHED CARD INPUT-QUTPUT
CARD READER

The starting memory address into which information is placed must be a multiple
of 128 but less than 2048, Once a card read instruction has been initiated, it will
continue reading cards continuously until terminated by execution of a HALT CARD
READER instruction, a hopper "empty" condition, or amisfeed. (Card reading will
alsc be stopped if: 1) the Auto-Mamual Console Switch is on Manual, 2) a Card
Punch Alarm has occurred or 3} if a parity error has occurred and the 8STOP ON
PARITY ALARM console switch is in the STOP position.)

GE 225 PROGRAMMING MANUAL

25

In the decimal (alphanumeric) mode of operation, each card column {one character)
is converted into an equivalent 6-bit binary coded decimal form. Each group of
three card columns (characters) represents 18 bits whichare placed in the 18 least
significant (rightmost) bits of a memory word. The 2 most significant (leftmost)
bits of the 20-bit word are set equal to zero, With three digits to 2 memory loca-
tion, 27 memory locations are required to accommodate an 80-column punched
card. The 27th memory location contains only two characters,

012 78 1314 19 012 78 1314 18 012 78 1314 19
ojojcor ifcor 2fcor 3] [oJofcor 4[COL 5[COL 6] [0]0JCOL79 COL &0 1000000

WORD 1 WORD 2 WORD 27

Four cards of BCD information may be contained in memory at one time. The
fifth card is read into the same memory area as the first card, and so forth,

First card .~ Read into memory at
(starting address) to (gtarting address + 28)

Second card - Read into memory at
(starting address + 32) to (starting address + 58)

Third card - Read into memory at
(starting address + 64) to (starting address + 80)

Fourth card - Read into memory at
{starting address + 96) to (starting address + 122)

Fifth card -~ Read into memory at
(starting address) to (starting address + 28)

ate,

The word following the last word filled from the card (i.e., starting address + 27,
starting address + 59, starting address + 91, and starting address + 123) will auto-
matically receive the following information:

10 110000 110000 111111 when the reading of the card is complete,

11 110000 110000 111111 when the card is the last card of the input deck.

In the binary_inode of operation, each row (0 thru §) in each card column repre-
sents a bit position; a blank is a 0 bit, a punch is a 1 bit., Rows 11 and 12 on the
card are ignored in the binary mode. Thus, each set of two 10-bit card columns
is converted into a 20-bit memory word. The first column is placed in the 10 most
significant bits of the memory word, the second column in the 10 least significant
bits of the memory word, and so forth. The 80 columns of punched information
are stored in forty successive memory locations.

0 9 10 19 0 9 10 19 0 910 19
[coLi] corLz][coL3 | coL4 || CoL79 | COLSO |

WORD 1 WORD 2 WORD 40

Two cards of binary information may be contained in memory at one time. The
third card is read into the same memory area as the first card, and so forth.

First card - Read into memory at
(starting address) to (starting address + 39)

GE 225 PROGRAMMING MANUAL

Second card - Read into memory at
(starting address + 64) to (starting address + 103)

Third card - Read intc memory at
(starting address) to (starting address + 39)

ete.

The second word following the last word filled from the card (i.e., starting address
+ 41 and starting address + 105) will automatically receive the following informa-
tion:

1000000000 1111111111 when the reading of the card is complete,

1100000000 1111111111 when the card is the last card of the input deck.

BCR Octal: 2514006 Word Time: 2

BRANCH ON CARD READER READY, If the card reader is ready to read cards
and the card hopper is not empty, the computer takes the next sequential instruc-
tion; if not, the computer skips the next instruction and executes the second se-
gquential instruction.

BCN Qctal: 25160086 Word Time: 2

BRANCH ON CARD READER NOT READY, If the card reader is not ready to read
cards or if the card hopper is empty, the computer takes the next sequential in-
struction; if not, the computer skips the next instruction and executes the second
sequential instruction.

RCD A 4 Octal: 250YY00 Word Time: 2

READ CARDS DECIMAL. This instruction initiates continuous reading of decimal
cards (i.e., information is interpreted by the Processor's Card Reader logic as
being in the decimal format) into memory starting at location Y, where Y is a
multiple of 128 and less than 2048. The first card will be read into locations Y
through Y + 26, the second into Y + 32 through Y + 58, the third into Y + 64 through
Y + 80, the fourth into Y + 96 through Y + 122, the fifth into Y + 26, etc. After each
card is read in, the sign bit of the word after the last word of the card (Y + 27,
Y + B9, Y+ 91, or Y + 123) will be set to minus. After the last card of the deck is
read in, bit position 1 of the word after the last word of the card (Y + 27, Y + 59,
Y + 91, or ¥ + 123) will be set to a 1. If the card reader is not in ready status
when the READ instruction is given, the computer will halt.

RCB Y QOctal: 250YY01 Word Time: 2

READ CARDS BINARY, This instruction initiates continuous reading of binary
cards (i.e., information is interpreted by the Processor's Card Reader logic as
being in the binary format) into memory starting at location Y, where Y is a multi-
ple of 128 and less than 2048, The first card will be read into locations Y through
Y + 39, the second into Y + 64 through Y + 103, the third into Y through Y + 39, etc.
After each card is read in, the sign bit of the second word following the card image
(Y + 41 or Y + 105) will be set minus, After the last card of a deck is read in,
position 1 of the second word following this card image (Y + 41 or Y + 105) will be
set to 1. 1If the card reader is not in ready status when the READ instruction is
given, the computer will halt.

GE 225 PROGRAMMING MANUAL

.31-

HCR Qctal: 2500004 Word Time: 2

HALT CARD READER. This instruction halts the card feed. If the first half of a
card is being read at the time this instruction is given, the reading of this card
into memory will be completed, after which no further cards will be read until
another READ instruction is given. This instruction does not delay the computer
until input is complete. The program continues in sequence, therefore a delay

must be programmed to insure that the information is in memory before attempting
to utilize it.

CARD PUNCH

The starting memory address from which information is punched must be a multiple
of 128 but less than 2048, A significant difference between card reading and card
punching operations is that a write (punch) card instruction causes only a single
card to be punched. If a write (punch) card instruction is given during the next 40
milliseconds after completion of the punching of a card, the punching will proceed
at the rate of 100 cards per minute, If the next punch command is not given until
after the 40 millisecond period, the maximum punching rate is 50 cards per minute,

In the decimal (alphanumeric) mode of operation, bit positions 2 thru 7 of the start-
ing address memory word are converted into the equivalent punched card (Hollerith)
character and punched into card column 1; bit positions 8 thru 13 are converted and
punched into column 2; and bit positions 14 thru 19 are converted and punched into
column 3. Bits in positions 0 and 1 are disregarded. Since there are 80 columns
in the card, only 2 characters will be punched from the 27th memory location;
these latter 2 occupying bit positions 2 thru 7 and 8 thru 13 respectively,

2 78 1314 19 2 78 1314 19 2 18 1314 19
['T TcoLilcovL 2icoL 3] | | |coL4|coL 5lcoL 6l | | JCOLT79 COL 80 |]
WORD 1 WORD 2 WORD 27

In the binary mode of operation, each row (0 thru 8) in each card column may hold
a bit of information from memory; a blank is a 0 bit, a punch is a 1 bit. Rows 11
and 12 on the card are not punched in the binary mode. Thus, a 20-bit memory
word is punched as a set of two 10-bit card columns. Information in bit positions
0 thru 9 of the starting address memory word is punched bit for bit in the first card
column, information in bitpositions 10thru19is punched in the second card column,
and so forth until 40 memory words have been punched.

0 g9 10 18 0 9 10 19 0 9 10 19
| coLt | coL2 || COL3 | COL4 || COLT79 | COLS8O |
WORD 1 WORD 2 WORD 40

BPR QOctal: 2514007 Word Time: 2

BRANCH ON CARD PUNCH READY., If the card punch is in a ready status, the
computer takes the next sequential instruction; if not, the computer skips the next
instruction and executes the second sequential instruction,

BPN Qctal: 2516007 Word Time: 2
BRANCH ON CARD PUNCH NOT READY. Ifthe card punch is not in a ready status,

the computer takes the next sequential instruction; if it is, the computer skips the
next instruction and executes the second sequential instruction.

GE 225 PROGRAMMING MANUAL

.32-

WCD 4 Octal: 2504402 Word Time: 2

WRITE CARD DECIMAL., The information in memory locations Y through ¥ + 26
(where Y is a multiple of 128 and less than 2048) is punched into a card in decimal
(alphanumeric) format. If the card punch is not in ready status when this instruc-
tion is given, the computer will halt,

WCB A 4 QOctal: 2504403 Word Time: 2

WRITE CARD BINARY, The information in memory locations Y through Y + 39
(where Y is a multiple of 128 and less than 2048) is punched into a card in binary
format. If the card punch is not in ready status when this instruction is given, the
computer will halt,

HIGH SPEED PRINTER SUB-SYSTEM

Operation Operand Modification
Code Address Word
BDM C4T/F P

BRANCH ON DATA MATING FUNCTION INTERROGATED CONDITIONS. P is the
address of the high speed printer controller to be interrogated. C is the number
of the specific condition to be tested. Both C and P have the range O to 7. If C+T
is specified and the condition tested (C) is true, the computer takes the next se-
quential instruction; if it is not true, the computer skips the next instruction and
executes the second sequential instruction., I C+F is specified and the condition
tested (C) is not true (false), the computer takes the next sequential instruction; if
it is true, the computer skips the next instruction and executes the second sequential
- instruction.

Condition

0 Controller busy

1

2 Out of Paper

3

4

5

6

7 Any Error

QOperation Qperand Modification

Code Address Word
SEL P
WPL M, F
WPL M, N

G[225 PROGRAMMING MANUAL

.33.

WRITE PRINT LINE. P is the address (0 thru 7) of the controller to which the high
speed printer is attached. SEL is the mnemonic code for the selection function.
WPL is the mnemonic code for Write Print Line, M1 is the memory address of the

first data word in the block of 40 (maximum) data words to be printed. Data words
to be printed consist of three BCD characterseach. If less than 40 words are to be
printed on one line, the sign bit must be a 1 in the last word to be printed. F is
the format control indicator. If a blank (space) is written in the F position, the
line is to be printed without automatic format control, and M, is ignored. Ifan F

is written in the F position, automatic format control words starting at memory
address M2 are used to control the printing of the data words. N is the numeric

print indicator. A blank (space) is written in the N position if the data words to be
printed are alphanumeric. An N is written in the N position if the data words to be

printed consist only of decimal numbers and the 14 special symbols. Both M2 and

M1 must be in the same half of a 16,000 word memory. The General Assembly

Program normally arranges to space the paper one line after printing. Spacing of
0 to 63 lines, or ejecting the paper to the top of the next page may be coded as part
of the WPL command by coding lines 2 and 3 in Octal as shown below:

1 = PRINT and slew
0 = Slew only
S 1 213 14 5 6 - 19
1=Format 1=Numeric | Format
2nd line: 1 V1| V2 |V3 | 0O=Alpha- Address
0=No Format numeric
3rd line: V4 V5 Vé | Cl |C2 Data Address

If C1=0 and C2=1, ignore V1 thru V6, and slew paper to top of next page.
If C1=1 and C2=1, slew paper the number of lines (0 thru 63) indicated by the
binary number in positions V1 thru V6.

AUTOMATIC FORMAT CONTROL

If a line is to be printed under a format control, the format data is stored in the
Central Processor memory in a block of words under the same organization as the
print line data. The format control data consists of:

a. Any printable character
b. Special control characters

The Printer Controller, in assembling a formatted line, reads in from the Central
Processor memory one word of data and one word of format. The first format
character is considered initially. If it is a printable character, the character is
printed. If it is a special control character, it is treated as described below.
Assuming it was a printable character, it is printed, and the first data character
is considered. If it is a printable character it is printed. It may be a special con-
trol character, in which case it is treated as explained below. In sequence, the
second format, then second data characters are considered, followed by the third
format and the third data characters. Following the consideration of the third data
character another word of data and another word of format are requested from the
Central Processor memory. Upon receiving these new words, the procedure de-
scribed above is again followed. This routine is continued until a one in the sign
bit of a data word is encountered; whereupon, after consideration of that data word
and its respective format word, the sequence is ended.

GE 225 PROGRAMMING MANUAL

.34-

There are five special control characters, mentioned above, jwhich are available
for controlling the format of the printed line. These characters, their BCD bit
representations, and their functions are:

1. Ignore (Octal: 35)

If a format character is an Ignore, the next data character is im-
mediately considered.

2. Ignore/Skip (Octal: 36)

If a format character is an Ignore/Skip, a blank is printed and the
next data character is considered.

3. Delete (Octal: 37)

If a format character is a Delete, the next data character is ignored,
and the next character considered is the next format character.

4, Delete/Skip (Octal: 56)

If a format character is a Delete/Skip, a blank is printed, the next
data character is ignored, and the next character considered is the
next format character.

5. Zero Suppress (Octal: 57)

If a format character is a Zero Suppress, the next data character is
ignored; and the next format character is printed if it is a printable
character. After considering this last format character, blanks will
be inserted in the print line until: (a) a non-zero data character is
detected, or (b) a period comes up in the format data. It should be
noted that once a Zero Suppress has been put into effect, the print
line data is inspected only for a non-zero data character, and the
format control data is inspected only for a period. A $ symbol in
the format data also initiates the insertion of blanks in the print
line in the same manner as Zero Suppress after it has been printed.

It is possible for an Ignore or an Ignore/Skip character to be placed in the print
line data (as well as in the format control data). If a data character is an Ignore,
the next format character is immediately considered and nothing is printed for that
data character. If a data character is an Ignore/Skip, a blank is printed and the
next format character is considered.

The above procedure makes it possible for aline format to be stored in the Central
Processor memory once and to be used as often as needed to print lines of data in
that format. The data may, within the limitations imposed by the use of the special
control as described above, be stored in sequence in computer memory, the Printer
Controller automatically constructing the print line according to the prescribed
format.

EXAMPLE

Assume that 5 words of BCD data constitute the information in storage at 00256,
00257, 00258, 00259 and 00260 as follows:

MEMORY
ADDRESS 00256 00257 00258 00259 00260

— a's v A 'g WV N

XIX\|X|Y\|Y|Y |2 Z 2|2 Z Z\|2 Z Z

HOURS OCCUPATION GROSS EARNINGS AMOUNT
WORKED CODE

GE 225 PROGRAMMING MANUAL

.35.

Assume that it is desired to print 4 words of the above data as follows:

X X . X |SPACE | SPACE | $ 2, 22Z , 222 . ZZ

g of Y
v w

HOURS WORKED GROSS EARNINGS

Further assume that insignificant blanks and zeros must be deleted from the gross
earnings field, before it is printed. Design the format control data to achieve the
desired result. Let the origin of the format control data be at memory location

00300 as follows:

Format Data

A
r N
Memory Addresses
00300 00301 00302 00303 00304
35 | 35 . 56 | 56 | 37 $ y a5 | 35 s 35 | 35 . 35

Positions

~N,l 2 3 4 5 6 7 8

X X X Y Y Y Z Z

Memory v v % N h N v
Address "_‘)~ 00256 00257 00258 00259 00260
A\ vy
e
Print Data

Line Image Transferred And Printed,

Created by comparison

of Positions»in Format x|x|.Ix|s|stslzl,lzlzlz!|,lzlzlz|.lz]|z
Data and Print Data
Mo S \ e
Positions Positions Positions
1-3 4 - 5 8- 15
Comparison

Comparison Comparison

KEY A Any bit configuration permissable 35 Octal 35 for Ignore
8 Space 37 Octal 37 for Delete
X Any alpbanumeric data character 56 QOctal 56 for Delete/Skip

PROGRAMMING MANUAL

GE 225

Operation Operand Modification
Code Address Word
SEL P
Silw N
SLW

SLEW PAPER N LINES. P is the address (0 thru 7) of the controller to which the
high speed printer is attached. SEL is the mnemonic code for the selection func-
tion, SLW is the mnemonic code for Slew (Space) Paper. N is the number (0 thru
63) of lines to be slewed (spaced) before printing the next line.

Operation Operand Modification
Code Address Word
SEL P
SLY
SLY

SLEW PAPER TO TOP OF PAGE. P is the address (0 thru 7) of the controller to
which the high speed printer is attached. SEL is the mnemonic code for the selec-
tion function. 8LT is the mnemonic code for Slew Paper to Top of Next Page,

MAGNETIC TAPE SUB-SYSTEM

In the alphanumeric (binary coded decimal) mode of operation, each binary coded
decimal character is stored on tape as a corresponding magnetic tape character;
that is, a memory word is stored as three magnetic fape characters. Some of the
memory bit patterns are altered as they are recorded, making the GE 225 magnetic
tape compatible with computer systems now in use. Further information on this
point is given in the Appendix. The alteration of the character codes when writing
and reading magnetic tape is automatic.

20 bit word in memory

|S1 | 2THRU7 | 8 THRU 13 | 14 THRU 19 |

Three 6-bit characters
recorded on tape

1st Char ZTHRU 7 P

2nd Char 8§ THRU 13 P

3rd Char 14 THRU 19 P

P is a generated even parity bit
for each character,

GE 225 PROGRAMMING MANUAL

37

Bits S and 1 are not recorded on tape when writing in (binary coded) decimal mode.
Writing mixed binary and BCD words on tape must be done in the binary mode.
When reading tapes in the (binary coded) decimal mode, bits S and 1 are set to zero
in memory for each word read from tape.

In the binary mode of operation the 20 bits of a memory word are written on mag-
netic tape as 4 magnetic tape characters. Three of the magnetic tape characters
contain 6 bits of data each, while the fourth magnetic tape character contains only
2 bits of data. The four remaining bits in this character will be written as zeros.
These 4 zeros will automatically be inserted when recorded and ignored when read
back from tape.

Numbered bits of word in memory
Four 6-bit characters

recorded on tape s 1]23 4561789101112 13/14 15 16 17 18 19]

1stChar | 0 0 0 0 S 1P

2ndChar | 2 3 4 5 6 TP

3rdChar | 8 910111213 P

4th Char [141516 171819 P

P is generated odd parity bit for each
character.

The GE 225 tape system has error detection circuits to insure accuracy in trans-
ferring information between memory and tape. These error detection circuits are:

1. Controller Input/Output Register Overflow/Exhaust. Checks that
capacity of Input/Output Register is not exceeded.

2. Lateral (vertical) Parity. This parity bit checks the accuracy of
each character when read from tape.

3. Horizontal Parity. This is a parity check on each of the seven
record tracks on tape which is recorded at the end of each record.

4. Modulo Three or Four. When information is read from tape a check
is made to determine that the proper number of characters (three
in decimal mode and four in binary mode) constitute a word.

5. Write Check. All data written on magnetic tape is checked immedi-
ately after it is written by reading back on the physically separate
read head and verifying lateral parity and horizontal parity.

Operation Operand Modification
Code Address Word
BDM C+T/F P

GE 225 PROGRAMMING MANUAL

.38-

BRANCH ON DATA MATING FUNCTION INTERROGATED CONDITIONS. P is the
address of the magnetic tape controller to be interrogated. C is the number of the
specific condition to be tested. Both C and P have the range 0 to 7. If C+T is
specified and the condition tested (C) istrue,the computer takes the next sequential
instruction; if it is not true, the computer skips the next instruction and executes
the second sequential instruction. If C+F is specified and the condition tested (C)
is not true (false), the computer takes the next sequential instruction; if it is true,
the computer skips the next instruction and executes the second sequential in-

struction.
Condition

0 Controller Busy

1 End of File

2 End of Tape

3 Any Tape Rewinding

4 Parity Error

5 Input/Output Buffer Error

6 Mod 3 or Mod 4 Error

i Any Error

Operation Operand Modification

Code Address Word
SEL P
XXX M
XXX N T

MAGNETIC TAPE CONTROL INSTRUCTIONS. P is the address (0 thru 7) of the
magnetic tape controller to be selected for this magnetic tape instruction. For
tape read instructions M is the address of the first word of a block of N words in
memory which is to receive data from magnetic tape; for tape write instructions
M is the address of the first word of a block of N words in memory which is to be
written on magnetic tape. N is the maximum number of words to be read or the
exact number of words to be written. T is the number of the tape handler unit
(0 thru 7) to be used. XXX is the mnemonic code for the specific tape movement
desired. The mnemonic codes for specific tape movements are:

WTD Write tape in decimal (alphanumeric) mode
WTB Write tape in binary mode

RTD Read tape in decimal (alphanumeric) mode

RTB Read tape in binary mode

RWD Rewind tape to leader

BKW Backspace one record and position WRITE head
BKR Backspace one record and position READ head
WEF Write END of FILE character (0001111)

After reading (in either binary or decimal mode) N words from magnetic tape into
memory starting at location M, memory location M+ N will contain zeros if exactly
N words were read from a record on tape containing N words. If the number of
words contained in the record currently read is less than N, then only the contents
of the record will be stored in memory; and the 2's complement of the residue
(N - record length) will be stored in memory cell M + N with a one-bit in the sign
position. If the number of words inthe record is greater than N, then only N words
will be stored in memory and the increment (record length - N) will be stored in
memory cell M + N with a zero in the sign position. M is not automatically modi-
fied. In order to forward space (skip) one record, the RTD or RTB command is
used with N set equal to zero.

GE 225 PROGRAMMING MANUAL

-39.

MASS RANDOM ACCESS FILE SUB-SYSTEM .

Each Mass Random Access File (MRAF) consists of either 16 or 64 storage discs.
From one to four 16-disc MRAFs or one 84-disc MRAF may be attached to a con-
troller unit and, through the data mating function, to the Central Processor. A
MRAF record consists of 64 20-bit information words. Each word is an image of
the corresponding word in computer memory. In addition, there is a 65th odd-
parity check word which insures against loss of information during data transfers,
Six numbers are required to address a specific record:

1. Controller Address (0 thru 7)
2. File Number (0 thru 3)
3. Disc Number (0 thru 15) or {0 thru 63)
4. READ-WRITE Head Number (0 thru 7)
5. Track Number (0 thru 63)
{0 thru 15) on 256 outer tracks
6. Record Number {(G thru 7) on 256 inner tracks

Operation Operand Modification
Code Address Word
BDM C+T1/F P

BRANCH ON DATA MATING FUNCTION INTERROGATED CONDITIONS., P is the
address of the mass random access file controller to be interrogated. C is the
number of the specific condition to be tested. Both C and P have the range O to 7.
If C + T is specified and the condition tested (C) is true, the computer takes the
next sequential instruction; if it is not true, the computer skips the next instruction
and executes the second sequential instruction. If C + ¥ is specified and the con-
dition tested (C) is not true (false), the computer takes the next sequential instruc-
tion; if it is true, the computer skips the next instruction and executes the second
sequential instruction.

Condition

0 Controller Busy

1 File #0 Ready

2 File #1 Ready

3 File #2 Ready

4 File #3 Ready

5 Input-Output Error

8 Parity Error

7 Any Error

Operation Operand Modification

Code Address Word
SEL P
PRF R
OCcT (MRAF address)

POSITION MRAF, P is the address {0 thru 7) of the controller to which the MRAF
is attached, SEL is the mnemonic code for the selection function. PRF is the
mnemonic code for Position MRAF to transmit or receive a specific record. R is
the number (0 thru 3) of the selected MRAF. The third line contains the actual
MRAF address (octal) of the record to be acted upon. The format of this line is:

GE 225 : PROGRAMMING MANUAL

.40~

20-bit word] S] 1 thru 6 [7 thru 12 13 thru 15 | 16 thru 19]

Dise Number—J
Track Number
Head Number:

Record Number

If 8, the sign bit, is 0, the MRAF is positioned to read {or write} the specific record
designated by the entire address in bits 1 thru 19, If S is 1, the MRAF is positioned
to read {(or write) on the track designated by bits 1 thru 15. When a subsequent
read {or write) MRAF instruction is given, the first available record from this
position will be transmitted to core memory {or written from core memory).

Operation Operand Modification
Code Address Word
SEL p
RRF N R
RRF M

READ MRAF. P is the address (0 thru 7) of the controller to which the MRAF is
attached. SEL is the mnemonic code for the selection function. RRF is the
mnemonic code for Read MRAF. N is the number (1 thru 16) of 64-word records
to transmit from the disc storage to core storage. R is the number (0 thru 3) of
the selected MRAF, M is the core memory address into which the first word of the
first record iz to be copied., All following words and records, if any, will be copied
into sequentially higher memory locations., The MRAF origination address will be
the one at which the MRAF is currently positioned. M must be an even multiple of
64 and is not automatically modified.

Operation Operand Modification
Code Address Word
SEL p
WRF N R
WRF M

WRITE MRAY. P isthe address (0 thru 7) of the controller to which the MRAF is
attached, SEL is the mnemonic code for the selection function. WRF is the
mnemonic code for Write MRAF, N is the number (1 thru 18} of 64-word records
to transmit from consecutive core storage locations to disc storage. R is the
number {0 thru 3) of the selected MRAF., M is the core memory address from
which the record(s) will be copied. The MRAF destination address will be the one
at which the MRAF is currently positioned. M must be an even multiple of 64 and
is not automatically modified,

DOCUMENT HANDLER SUB-SYSTEM

Each of the 14 characters recognized by the Document Handler is converted into a
BCD code and stored in the least significant {(rightmost) four bits of a designated
word in memory; that is, bit positions 16, 17, 18 and 18. All other bits of the word
are zeros except for the case of cue characters, If the character read is one of
the 4 cue characters, 1 bits are stored in bit positions 0 (sign} and 1 of the word.
If a character is invalid (cannot be recognized and translated by the Document
Handler), a 1 bit is placed only in bit position 0 {sign). Characters are read from
the document in sequence from right to left into successive memory locations until
the document is completely read.

GE 225 PROGRAMMING MANUAL

41-

Operation Operand Modification
Code Address Word
BDM C+T/F p

BRANCH ON DATA MATING FUNCTION INTERROGATED CONDITIONS. P is the
address of the document handler controller to be interrogated. C is the number of
the specific condition to be tested. Both C and P have the range 0 to 7. If C+T is
specified and the condition tested (C) istrue, the computer takes the next sequential
instruction; if it is not true, the computer skips the next instruction and executes
the second sequential instruction. If C+F is specified and the condition tested (C)
is not true (false), the computer takes the next sequential instruction; if it is true,
the computer skips the next instruction and executes the second sequential in-

struction.
Condition
0 Handler #1 reading
1 Handler #2 reading
2
3
4 Handler #1 feeding
5 Handler #2 feeding
8 Input buffer error {priority)
7 Any error
Operation Operand Modification
Code Address Word
SEL P
RSD N
RSD M

READ SINGLE DOCUMENT. P is the address (0 thru 7) of the controller to which
the document handler is attached, SEL is the mnemonic code for the selection
function. RSD is the mnemonic code for Read Single Document. N is the number
(1 or 2) of the selected Document Handler. If N is left blank, the assembly pro-
gram will assume that Handler #1 is to be used. M is the core memory address
intc which the first character read from the document will be copied. M is not
automatically modified. Single reading of documents can be done at the rate of
600 per minute.

Operation Operand Modification
Code Address Word
SEL p
RDC N
RDC M

READ DOCUMENT AND CONTINUE FEEDING NEXT DOCUMENT. P isthe
address (0 thru 7) of the controller to which the document handler is attached,
SEL is the mnemonic code for the selection function. RDC is the mnemonic code
for Read Document and Continue. N is the number {1 or 2) of the selscted Docu-
ment Handler. If N is left blank, the assembly program will assume that Handler
#1 is to be used. M is the core memory address into which the first character
read from the document will be copied. M is not automatically modified. This
instruction calls for moving a second document into position for immediate reading
after the first document passes the reading head. RDC instructions must be used
to achieve the 1200 document per minute reading speed. With each use of the RDC
instruction, there are approximately 50 milliseconds (minimum) of processing
time available before another RDC or Halt Feeding instruction must be given.

PROGRAMMING MANUAL

GE 225

42.

Operation Operand Modification
Code Address Word
SEL P
E)l?';' {Pocket Address) N

POCKET SELECT. P is the address (0 thru 7) of the controller to which the docu-
ment handler is attached. SEL is the mnemonic code for the selection function.
PKT is the mnemonic code for Pocket Select, N is the number (1 or 2) of the
selected Document Handler. If N is left blank, the assembly program will agsume
that Handler #1 is to be used. The third line contains the address (octal) of the
pocket into which the document is to be stacked. The following table gives the
octal codes to be used in the pocket selection.

Pocket Handler #1 Handler #2
SPECIAL 0000001 0000020
0 0000017 0000360
1 00000186 0000340
2 0000015 0000320
3 0000014 0000300
4 0000013 0000260
5 0000007 0000160
8 0000006 0000140
7 0000005 0000120
8 0000004 0000100
9 0000003 0000060
REJECT 0000002 0000040

To be effective, the Pocket Selection command must be given within a maximum of
35 milliseconds after the reading of the document is completed.

Operation Operand Maodification
Code Address Word
SEL B
HLT N
HLT M

HALT CONTINUOUS FEEDING. P is the address (0 thru 7) of the controller fo
which the document handler isattached, SEL i{s the mnemonic code for the selection
function. HLT is the mnemonic code for Halt Continuous Feeding. N is the number
(1 or 2} of the selected Document Handler. If N is left blank, the assembly program
will assume that Handler #1 is to be used. M is the core memory address into
which the first character of the document currently approaching the reading head
will be copied. This document will be completely read when the HL'T command is
first used following an RDC instruction. Document feeding may or may not cease,
It is therefore necessary to use asecond HLT command, and another document may
or may not be read. If a document is not read, the handler will remain in a busy
condition; that is, the Read Busy signal will be left on. (See ERB instruction.) In
no case will a document be only partially read. M is not automatically modified.

GE 225 PROGRAMMING MANUAL

-43.

Operation Operand Modification
Code Address Word
SEL P
ERB N
XXX

END READ BUSY SIGNAL. P is the address (0 thru 7) of the controller to which
the document handler is attached. SEL is the mnemonic code for the selection
function. ERB is the mnemonic code for End Read Busy. N is the number {1 or 2)
of the selected Document Handler. If N is left blank, the assembly program will
assume that Handler #1 is to be used. The third line must be present, but it is not
used in this instruction. The programmer may use this line as working storage or
as constant storage. XXX may be any one of the following pseudo~instruction
mnemonics: ALF, DEC, or OCT., When a HLT command is given and a document
is not read, the ERB instruction is used to reset the Document Handler to a ready
condition for further operation.

BATA PROCESSON

GE 225 PROGRAMMING MANUAL

44.

E. THE GENERAL ASSEMBLY PROGRAM

GENERAL DESCRIPTION

The General Assembly Program is a basic assembly
routine with extensive error checking features and
provision for program modification. With the General
Assembly Program, the programmer writes his own
GE 225 program employing symbolic notation rather
than the absolute code of the computer. However, both
the single address format and the general structure
of a computer instruction word are retained. This
symbolic program is read into memory along with the
General Assembly Program itself. The output from
the computer is the user's original symbolic program,
now converted into absolute machine language. One
symbolic instruction is usually translated into one
computer instruction. This program is now ready to
be read into memory for execution.

The symbolic notation selected to designate each in-
struction is a mnemonic code. These mnemonic codes
are carefully chosen to provide maximum significance
to the user. For example, the mnemonic code for the
addition instruction is ADD, for subtraction the code
is SUB, and so forth. The assembly program trans-
lates these mnemonic codes into the absolute code of
the computer.

Memory addresses may be assigned using decimal
notation (location 1800 for example) or using symbolic
notation chosen for maximum convenience to the pro-
grammer. If an alphabetic (NETPAY) or an alpha-
numeric (TAX3) is used to designate a memory address,
the General Assembly Program automatically assigns

memory locations. The programmer need only specify
the starting address into which the first instruction
of the program is stored.

PSEUDO-INSTRUCTIONS

In addition to the mnemonic codes for the instructions
in the normal repertoire of the GE 225, the General
Assembly Program uses other mnemonic codes to
define a group of terms called pseudo-instructions.
A pseudo-instruction is a symbolic representation of
information required by the General Assembly Program
for the assembly of a program. The pseudo-instruc-
tion has the same general form as a computer instruc~
tion, and it is listed like a normal instruction in the
preparation of a program; however, it is never executed
by the computer as an actual instruction. For example,
ORG is a pseudo-instruction which may be used to in-
dicate the starting address in the assignment of a pro-
gram to memory. Thus, ORG 400 may indicate that
a program is to enter memory with the first instruc-
tion starting at location 400. The General Assembly
Program automatically assigns succeeding memory
locations to the remaining instructions of the program.
ORG never enters memory to become a part of the pro-
gram as do regular instruction words. In a stmilar
manner, the other pseudo-instructions provide infor~
mation to the assembly routine but do not actually be-
come part of the final program,

A list of pseudo-instructions available for use with the
General Assembly Program is given below. More
specific details for their use will be found in a later
section.

ALF ALPHANUMERIC, Used for program headings. The first three char-
acters in the operand address field are converted to a binary coded dec-
imal word and assigned a memory location.

BSS BLOCK STARTED BY SYMBOL. Saves a block of memory locations of

DEC

DDC

END

specified amount. Amount may be decimal or symbolic. If symbelic,
number of locations specified by the symbol is saved.

DECIMAL. Decimal numbers are converted to binary. Limited to one
word.

DOUBLE DECIMAL. Used for establishing decimal constants larger
than 524287 or, in other words, larger than can fit into one word.

END OF PROGRAM. Punches all assembled instructions to this point
and punches control card indicating where to start program. END in-

dicates the end of assembly and should be used only at the end of a pro-
gram.

PROGRAMMING MANUAL

GE 225

45.

EQU EQUAL. Defines a symbol which can be equal to a decimal or another

symbol.

OoCT OCTAL. Gives the binary representation of up to 7 octal digits, left jus-

tified.

ORG

ORIGIN. Designates the starting storage location of a program or a

portion of a program in memory. Address may be decimal or symbolic.

REM REMARKS. Remarks immediately following this pseudo-instruction
are written by programmer for reference only and are not processed
by assembly program. Remarks are part of the source program and
output listing but not the final object program.

TCD TRANSFER CARD. Like END, TCD punches all instructions to this
point and punches a control card; but TCD allows assembly to continue.

THE GE 225 CODING SHEET

The General Assembly Program coding sheet is divided
into six fields: Symbol, Operation, Operand, X Reg-
ister, Remarks, and Sequence. The numbers 1 through
80 in the header information on each sheet correspond
to the column numbers of a standard 80-column punched
card. When a symbolic program is punched into cards,
columns 7, 11 and 21 are not used; these blank columns
serve to separate important fields.

1. Symbol Field.

Columns 1 through 6 constitute the symbol field. Sym-
bols may consist of from 1 to 6 digits. One of the digits
in the symbol field must be alphabetic. HOPE, CONST3
are legitimate symbols; 345 is not a legitimate symbol.
A symbol may be either right or left justified in the
symbol field; that is, the symbol AB in columns 1 and 2
is the same symbol as in columns 5 and 6. The plus
and minus signs cannot be used in the symbol field be-
cause they are used in the operand field for relative
addressing. A blank (space) in the symbol field is
ignored by the assembly.

2. Operation Field.

Columns 8, 9 and 10 make up the operation field. Any
of the mnemonic codes for the normal computer instruc-
tions (LDA, BRU, etc.) or for the pseudo-instructions
(ORG, DEC, etc.) can be placed in this field.

3. Operand Field.

Columns 12 through 19 constitute the operand field.
Operands may be an alphabetic or alphanumeric sym-
bol up to six characters in length or a decimal number
and can be positioned anywhere in the operand field.
The plus and minus sign are used only in the operand
field and only when expressing a relative address.
The subject of relative addressing is discussed in a
later section. All numbers appearing in the operand
field are considered to be decimal except when following
the operation OCT and ALF., Numbers following OCT

are treated as octal and are converted to their binary
equivalent. Digits following ALF are converted to
their binary coded decimal equivalents. Blanks (spaces)
in the operand field are ignored.

4. X Register.

Column 20 designates the X Register (automatic address
modification word). A decimal 1, 2 or 3 in this field
designates modification word 00001, 00002 or 00003
respectively in memory. A zero in this column in-
dicates that address modification is not to be per-
formed. A blank (space) is considered a zero.

5. Remarks Field.

Columns 22 through 75 make up the remarks field.
Remarks are written in this field for reference by the
programmer., These remarks are punched in the as-
sembly program source deck, but the information is
not carried through to the final object program. Thus,
information in the remarks field is obtained only on a
printed listing as a part of the assembly process.

6. Sequence Field.

Columns 76 through 30 constitute the sequence field.
Each card is to be given a sequence number so that a
deck can be sorted into proper order should the cards
get out of sequence.

RELATIVE ADDRESSING

The General Assembly Program provides facility for
the assignment of addresses relative to some starting
point (relative addressing). Assume, for example,
that the programmer has established that the symbol
B is equal to memory location 00500. Using the tech-
nique of relative addressing, memory location 00510
can now be addressed by simply writing B + 10 in the
operand field of the coding sheet. This is illustrated
as follows:

PROGRAMMING MANUAL

GE 225

-46-

-LV-

ST

TVANVW ONIWWVIOOUd

GENERAL @D ELECTRIC

GE 225 CODING SHEET

PROBLEM: PAGE__OF __
WRITTEN BY:
SYMBOL | OPR OPERAND [X REMARKS SEQUENCE
1] [T [Tel8] Tropi TT T T hsf20f22 7576 [[[8o
I A N L1
I A N L1l
[NN L L1
[B L1
R R N B A A AN A A Ll
I L1
[N L1l
| I | 1 I I | I 1 1
Lt L1
[NN [
Lottt L 1]
[N N O O O B O B IR B B A L1
[1§11 L 1 L1 L 111
[N B R R R A S A Ll
IR B L1l
Lttt el it L1
I N NN L1 1
N A Ll
T T O O B B I B L1
A R N N | LLdl
[I I B B B B AN BN A L1l
[R U B SR O S SR AN BN A Y L1
R R B AR O B BN A L1
Ll [L
J I | L1 | O | L 111

Figure 16 GE225 Coding Sheet

Symbol Operation Operand
B EQU 500
LDA

LDA B+10

The EQU pseudo-instruction establishes that the sym-
bol B is equal to memory location 00500, The instruc~
tion LDA (Load Register A) loads the A Register with
the contents of memory location 00500. The next LDA
instruction, some program steps later, loads register
A with the contents of B + 10 (location 00500 + 10 =
00510).

Another illustration of relative addresgsing is the fol-
lowing example with reference to pseudo-~instruction
ORG,

Symbol Operation Operand
C EQU 200
ORG C
| |
ORG C+1000

The first ORG (Origin) establishes that information is
to be placed in memory starting at the location indicated
by the symbol C; that is, at memory location 00200.
The second ORG, some program steps later, estab-
lishes that information is to be placed in memory start-
ing at location 01200.

Because the plus and minus signs are used in relative
addressing operations in the operand field, they can-
not be used as symbols in the symbol field of the coding
sheet,

PSEUDO-INSTRUCTION USAGE

In this section some examples of the use of GAP
pseudo-instructions are given. The headings Symbol,
Operation, Operand and Remarks correspond to the
headings on the GAP coding sheets.

1. ALF The psuedo-instruction ALF (alphanumeric)
is used for program headings. The first three char-
acters of the operand field are converted to binary
coded decimal equivalents and this BCD word is as~
signed a memory location. Three alphabetics are
converted per pseudo-instruction. For example, the
heading NAME RATE HOURS could be entered as
program constants in the following manner:

Symbol Operation Operand
A ALF NAM
ALF E
ALF RA
ALF TE
ALF HOU
ALF RS

This heading can be picked up by addressing the symbol
A and entering a program loop to pick up the other
locations. Note from the arrangement of information
in the operand field that three spaces separate NAME
and RATE and that one space separates RATE and
HOURS.

2. BSS The pseudo-instruction BSS (Block Started
by Symbol) is used to reserve a block of memory stor-

age. For example:
Operation Operand
BSS 50

The assembly program reserves the next 50 memory
locations, and the assignment of memory addresses
to instructions continues with the 51st memory loca-
tions following.

The BSS pseudo-instruction is conveniently used to
reserve input memory locations when punched cards
are read. For example, when a Read Cards Decimal
(RCD) instruction is given, the information from the
first card is stored in memory location 00128 {(or a
multiple thereof) through the next 26 memory locations.
Assume that the programmer is at first undecided as
to the memory location to be used as the starting ad-
dress for input when cards are read in the decimal
mode.

Therefore, each time an RCD command is used in the
program, the operand address is indicated simply by
the symbol IN:

Operation Operand

RCD N

Later, the programmer decides to use memory loca-
tion 0128. The symbol IN must then first be defined
in the program as follows:

Symbol Operation Operand
IN ORG 128
BSS 27

The result is that each time the symbol IN is addressed
the assembly assigns memory location 00128, so that
information from the card is stored starting at that
memory location. The BSS pseudo-instruction re-
serves the next 26 memory locations for the remainder
of the card.

3. DEC The pseudo-instruction DEC (Decimal) con~
verts decimal numbers to binary:
Symbol

Operation Operand

HOPE DEC 560

PROGRAMMING MANUAL

GE 225

The constant 560 can be called for by the programmer
using the symbol HOPE, A negative 560 can be created
by simply writing -560 in the operand field. The dec-
imal number 524,287 is the largest decimal number
that can be associated with DEC, Larger decimal
constants can be established by the pseudo-instruction
DDC, which is discussed below.

A convenient symbol for the programmer to use to re-
present a decimal number may often be the alphabetic
representation of the decimal number.

Symbol

Operation Cperand

THREE DEC 3

4. DDC The pseudo-instruction DDC {Double Decimal)

is used to establish decimal constants larger than

524,287. For example, the decimal number 576,897

which is referred to symbolically as constant 1 is es-

tablished as follows:
Symbol

Operation Operand

CONST1 DDe 576897
The assembly program converts the decimal number

5768897 to a double length binary word.

If the decimal constant is larger than the eight digit
positions allowed for the operand field, the digits in
excess of eight are written on the next line of the
operand field.

Symbol Operation Operand
CONST2 DDC ~1234567
89

5. END The pseudo-instruction END (End of Program)
indicates the end of the program to be assembled. END
causes all instructions to this point to be output as well
as a control record indicating where to start the pro-
gram.

Operation Operand

END 400

The memory address 00400 is converted to binary and
output in the control record. It indicates the origin
of the program.

6. OCT The pseudo-instruction OCT (Octal) converts
up to seven octal digits into a binary equivalent. These
digits are left justified prior to conversion.

Symbol

Operation Operand

CONST1 oCcT 0371652

OCT converts 0371652 from octal into its binary equiv-
alent and stores it so that the symbol CONST1 can be
used as the memory address where the binary con-
stant is stored. The programmer may use a negative
octal number in which case seven octal digits and the
minus sign are written in the operand portion:
Symbol

Operation Operand

CONSTZ oCcT ~-0371652

As in the previous example, the symbol CONST2 can
be used as the memory address where the binary equiv-
alent of the stated octal number is stored. The effect
of the minus sign is to place a 1 bit in the zero bit posi-
tion of the word.

7. ORG The pseudo-instruction ORG (Origin) is used
to indicate the location of the first instruction of the
program when it is stored in memory. ORG can be
used in the program as many times as desired. For
example, assume that the first ORG directs that the
program is to be stored in successive memory loca-
tions starting at location 00400. After 200 memory
locations are filled with program steps, however, the
rest of the program is to be stored starting at loca-
tion 01000.

Operation Operand
ORG 400
200 program
instructions
ORG 1000

The memory locations between 00600 and 01000 are
not used for storage of the program.

The memory address of ORG may be symbolic as well
as decimal. The definition of the symbol must precede
this use of the symbol as illustrated below.

Symbol Operation Operand
A EQU 512
ORG A

The pseudo-instruction EQU establishes that the symbol
A is equal to memory location 00512, The pseudo-in-
struction ORG sets the value of A (i.e., 00512)as the
origin for the storage of the program in memory.

8. REM When the pseudo-instruction REM (Remarks)
is in the operation field, the programmer's remarks
immediately following are not processed by the assem-~
bly program:

Operation

Operand Remarks

REM Programmer's

remarks

PROGRAMMING MANUAL

GE 225

49

-0 g-

TR

TVANVYW ONIWWVYIOOUd

GENERAL @3 ELECTRIC

GE 225 CODING SHEET

PROBLEM: PAGE___OF ____
WRITTEN BY:

SYMBOL OPR OPERAND X REMARKS SEQUENCE
1] [[] Jels] Jofg [T][fozolez ECHERT
1$L4J{L010 DEC ﬁ18|0|010101 L1 L]
LB EROIDECH Y L1l
I I T O I T O L1l
, ([F1cApDLDl YTD | LOAD YEAR-TO-DATE IN A AND Q L L1y
L 11 1 |PCul 34,800 SUBTRACT $4800 I
| BIP|L 1 1 I TEST FOR PLUS 111
Ll |BRU MAIN NO FICA DEDUCTION. GO TO MAIN PROGRAM. Ll
I T DLLID 1$14i810401 | LOAD $4800 L1 11
Ui L IPsul, YyTD | | SUBTRACT YEAR-TO-DATE I
Lol PSS CE SUBTRACT CURRENT EARNINGS Ll
St BPE TEST FOR PLUS L1
UL (1 PPl ZERO | ALL CE TAXABLE., CLEAR A AND Q L
Ll |PAapl | CE ADD CURRENT EARNINGS Ll
|| |FROM THIS POINT ON FICA TAX WILL BE COMPUTED ON THAT PORTION OF CURRENT L
g |PPENINGS [N REGISTERS 4 AND Q. L1
I T A T I O B A O L 11
B I [N L1l
L1l [111
Lt Ll el L1
[ey L1l
1L S S 11
LLL1 | L1l
I N N T T O O O L1t
| | I A O O O I | 1111
B S I O O | |

Figure 17 GE 225 Coding Sheet Example

The programmer's remarks appear only on a printed
list which is produced as part of the assembly process.

9. TCD The pseudo-instruction TCD (Transfer Control
Data) outputs all instructions to this point in the program
and then outputs a control record just as does the
pseudo-instruction END, TCD, however, does not
indicate end of assembly. TCD allows the table of
symbols to be carried over to the next assembly. This
permits the assembly of more than one program using
the same basic constants. The operand address of
TCD indicates the starting address for the program.

Operation Operand

TCD 500

The 500 is converted to binary and indicates the origin
of the program. This location is punched on the con-
trol record.

EXAMPLE - (page 50)

This example illustrates the decisions which are requir-
ed in the calculation of Social Security (FICA) tax during
payroll computations. Assume that payroll data (repre-
senting an employee master payroll record) is in mem-
ory. If Year-to-Date (before current week's earnings)
gross pay is equal to or greater than $4800, control is
transferred to the main program since no additional
FICA will be deducted (this year). Should this first test
indicate that either all or a portion of this week's pay is
taxable, the new YTD gross pay is computed (old YTD +
this week's current earnings) and subtracted from the
$4800 limit to determine whether all or just a portion
of this week's earnings are taxable. If this second test
indicates that the entire week's pay is taxable, the A
Register will be cleared, and this week's entire current
earnings loaded into A for subsequent tax computation.
If this second test indicates that only a portion of this
week's pay is taxable, the taxable portion is computec
and left in the A Register for further computation. Thus
for example, if old YTD = $4750, and this week's CE
$125, only $50 of this week's pay is taxable; the remair
ing $75 exceeding the $4800 limit.

DATA PROCESSOR

PROGRAMMING MANUAL

GE 225

-51/52-

F. CONTROL CONSOLE OPERATION

The primary function of the Control Console is to pro-
vide an indicating control center for the computer oper-
ator from which he has visual representation and man~
ual control of operation of the system.

The Indicator Panel, consisting of display lights of the
A, Tand P Registers and various alarm and ready
status indicators, occupies the upper three quarters of
the Control Console; the Control Panel occupies the
lower quarter.

INDICATOR PANEL

1. Three registers are displayed by lights on the indi-
cator panel:

a} The thirteen-bit P counter.
b} The twenty-bit I Register,
¢) The twenty-bit A Register.

2. Switches:

a) The Save P switch inhibits the normal advance
of the P Counter so that the contents of the P
Counter are retained and the execution of the
addressed instruction is repeated. This switch
is used primarily for maintenance purposes.

b) The Reset A switch clears the A Register; i.e.,
sets it equal to zero., This switch has no effect
when the Auto-Manual switch is in the automatic
position.

¢) Twenty switches are provided to set up any one-
word bit configuration into the A Register. These
switches each have 3 positions which have the
following significance:

up - If the Auto-Manual switch is in the
Manual position, a 1 bit is set into
the corresponding A Register posi-~
tion. If the Auto-Manual switch is
in the automatic position, there is
no effect. The UP position is spring
loaded and will return to the CENTER
position when released.

CENTER - No effect.

DOWN - When placed in the DOWN position,
the switch will not return to CEN-
TER when released. In this posi-
tion the switches may be "read" by
the RCS instruction as discussed in
the instruction repertoire.

3. Ready Lights (GREEN):

4.

a)

b)

c)

The Card Reader Ready light indicates the card
reading equipment is ready to operate; i. e., the
card hopper is not empty and a card reading
operation is not currently being performed.

The Card Punch Ready light indicates the card
punch equipment is ready to operate; i.e., the
card hopper is not empty, the stacker is not full,
a card is located at the first punch station, and
a card is not currently being punched.

The N Register Ready light indicates that the N
Register is available for input-output.

Alarm Lights (RED):

a)

b)

c)

d)

e)

The Priority alarm light indicates that the Cen-~
tral Processor has lost priority (access to the
memory). This indicator will also be turned on
when the Central Processor is operating in the
Manual mode,

The Parity alarm light indicates a parity error.

The Overflow alarm light indicates overflow in
the Arithmetic Unit (i. e., its capacity has been
exceeded) or overflow in the A Register as the
result of a shift left instruction. The computer
does not halt.

The Card Punch alarm light indicates an attempt
to execute a WCB or WCD instruction when the
Card Punch is not in the ready condition. The
computer halts.

The Card Reader alarm light indicates an at-
tempt to execute a RCB or RCD instruction when
the Card Reader is not in the ready condition.
The computer halts.

PROGRAMMING MANUAL

GE 225

-53.

PRIOR | pamrry
iy

QVER
FLOW

CARD
PUNCH

CARD
FEED

SAVE
2

© 00 000 000 0JclC) OO P
I OO0 OO0 OO0 OO COG

A OO OO OGO 0OG VOO
© @@@@@@@@@%{

PUR
ON

OFF

RESET
ALARM

LOAD
CARD

RESEY
g

AUTO

INETR

HAH -

UAL

QE

STEP

[R]

248

Figure 18 Control Console

PROGRAMMING MANUAL

GE 225

f)

The Card Feed alarm light indicates an attempt
to execute a RCB or RCD instruction when no
card has been positioned on the sensing platform
and the hopper is not empty, or if a misfeed
occurs during card reading. The computer halts.

CONTROL PANEL

1. Push Buttons

a)

b)

c)

d)

f)

g)

GE 225

The two left-most push buttons are the computer
Power On and Power Off controls.

The Reset Alarm push button resets (clears) all
alarms. This switch is only effective when the
Auto-Manual switeh is in the Manual position.

The Load Card push button allows one card to
be sent through the card reading mechanism,
and its contents are read in binary mode into
memovry starting at location 0000. The load
card button offers a method of initiating the
first program card through the card reading
mechanism. This switch is only effective when
the Auto-Manual switch is in the Manual position.

The Reset P push button clears the P Counter,
i.e., sets it equal to zero.

The Step push button allows step~by-step oper~
ation of the computer when the Auto~Manual
switch to the left of it is in the manual position.
Otherwise it starts the computer into automatic
operation.

The A->1 push button transfers the contents of
the A Register into the I Register. An instruc-
tion can be set up in the A Register by means of
the twenty switches available and then transferred
to the I Register. This switch has no effect in
the Automatic mode of operation.

The XAQ push button allows an exchange of in-
formation between the A and @ Registers; that
is, the contents of A goes into Q and the con-
tents of Q goes into A. This switch has no effect
in the automatic mode of operation.

2. Bwitches

a)

b)

c)

When the Auto-Manual switch is in the automatic
position, the computer executes instructions in
the normal sequential manner., When the switch
is in the manual position, the computer executes
instructions in a step-by-step procedure, going
from one step to the next each time the Step push
button is pushed. The exact step-by-step pro-
cedure followed in the manual mode of operation
is determined by the position of the switch dis-
cussed below.

Placing the Auto-Manual switch in the manual
position while the computer is operating will
bring it to a halt after completion of the instruc-
tion being executed. At this time the I Register
lights will display the next instruction to be ex-
ecuted; the P Register lights will display the
address of the instruction following the instruc-
tion currently displayed in the I Register; and
the A Register lights will display the contents
of the A Register after the execution of the last
instruction. (If the Instruction-OFE switch is in
the OE position, the computer will be stopped
immediately at the end of the current word time).

When the Instruction-OFE switch is in the Instruc~
tion position, one instruction is executed each
time the Step push button is pushed. When the
switch is in the OE (Operation Enable) position,
one word time (cycle) is completed each time
the Step push button is pushed. The OE position
is intended for maintenance use only.

The right-most switch is concerned with parity
alarm. The switch has two positions; (1) Stop
On Parity Alarm which stops the computer for
any parity error and {2) Norm which does not
stop the computer when there i8 a parity error.
The switch will be placed in the Norm position
when the program being run has been prepared
to take remedial action when any parity error
occurs. This permits processing to continue
without interruption.

| BATA PROCESSOR |

PROGRAMMING MANUAL

-55 /56

G. SYSTEM ERROR CHECKING AND RECOVERY FEATURES

The GE 225 is a fully transistorized system and repre~
sents a new standard of reliability in commercial com-~
puter design. Accuracy is assured by built-in parity
checking circuits that check against the loss of infor-
mation during transfers to and from peripheral equip~
ment. The design objective is to reduce the occurrence
of undetected errors to zero.

Wherever feasible, a detected error will not cause a
halt or hang-up of the system, but will initiate a pro-
grammed rescue and recovery routine, Eniry into
such routines is made possible by appropriate branch
instructions. For example, if an error is detected
during the reading of magnetic tape, an error indicator
is set. This indicator may be interrogated by the pro-
grammer using a branch instruction which then routes
the program to a recovery routine. The recovery rou~
tine might be programmed to reposition the tape and
attempt to reread any number of times at the program-
mer's discretion. If the error persists {as, for in-
stance, a media error would), then and only then would
an error halt be programmed. The remainder of the
system continues in operation and treatis the halted unit
as if it were busy. An Attention Indicator will be prom-
inently displayed on the appropriate control panel.

The Central Processor Control Panel contains a switch
which controls the action upon the occurrence of parity
errors. In the Halt position the computer will halt on
an error. In the Normal position an error will not

cause a halt., The switch will be placed in the Normal
position when a recovery routine has been programmed.
This permits processing to continue without interrup-
tion.

The following types of errors may be encountered:

1. Media Error
An illegal character configuration oceuring on
an input or output medium. On an input medium,
this error is non-recoverable. On an ouiput me-
dium, the character may be erased and rewritten.

2. Program Error

A non-existent operation code or incorrect unit
address selection.

3. Transmission Error

An information parity error generated during
transmission between units.

4, Unit Operating Error

Information or control error generated within
a unit.

DAYTA PROCESSCOR

GE 225

PROGRAMMING MANUAL

-57 / 58-

H. PROGRAMMING NOTES

Figure 19 Central Processor

PROGRAMMING MACHINE CALCULATIONS

Conversion Routines

All calculations within the computer deal with num-
bers represented as binary numbers. Since input data
will normally be represented as binary coded decimal
(BCD) numbers, it will be necessary to convert binary
coded decimal (BCD) numbers to binary numbers before
the calculations ave performed. Likewise, the results
of calculations are expressed as binary numbers, It
will be necessary to convert the binary result to a bi-
nary coded decimal (BCD) number in order to print
or punch the number as a decimal. The programmer
will have to provide for this conversion of numbers,
Conversion is facilitated, however, by “‘package rou-
tines’’ which are available with the GE 225. The pro-
grammer utilizes the package routines by specification
on the ‘‘calling sequence”’. For example, the calling
sequence for a BCD to binary conversion assuming
punched card input would be specified as follows;

Instruction Word

Location Operation Operand Modification
A SPB Sub-routine origin 1
A+ 1 DEC Card image origin
A2 DEC Card column starting
location
A+ 3 DEC Field size
A+ 4 BRU Error return
A+ B Normal return

I there is a BCD number starting in card column 18

and ending in card column 25 and the card image origin
is at 0128, the calling sequence would be;

Instruction Word
Location Operation Operand Modification

A SPB Sub-routine origin 1
A+l DEC 0128
A+ 2 DEC 19
A+ 3 DEC ki
A+ 4 BRU Error sub-routine origin
A+ B Normal return

The converted BCD number will appear in the A’ and
“Q” registers as a double precision binary number.
The least significant half will be in ‘Q*’ and the most
significant half will be in “A’’. The field size of the
number to be converted is limited to 11 digits.

The calling sequence for binary to BCD conversion
assuming punched card output would be specified as
follows:

Instruction Word

Location Operation Operand Modification
A SPB Sub~routine origin 1
A+l DEC Card image origin
A2 DEC Card column ending
A3 DEC Field size
A+ 4 BRU Error return
As+B Normal return

PROGRAMMING MANUAL

GE 225

If there is a binary number contained in the A and Q
registers which is to be converted into a BCD num-~
ber starting in card column 18 and ending in card col-
umn 23, and the card image origin is at 0128, the call~
ing sequence would be:

Instruction Word

Location Operation Operand Modification

A SPB Sub-routine origin 1

A+l DEC 128

A2 DEC 23

A+ 3 DEC 6

A+ 4 BRU Error sub-routine origin

A+B Normal return

If the field size specified is larger than the number
of digits produced, the remaining positions of the field
will contain leading zeros. If the integer is negative,
the 11 punch will be placed over the units position of
the card field.

Double Length Operations

The programmer may specify the use of other sub~
routine packages which will be available with the GE
225. For example, a subroutine will be available to
accomplish multiplication of 2 word-length numbers
by 2 word-length numbers. The double multiply sub-
routine is utilized as follows:

DOUBLE MULTIPLY

If the multiplicand is in the A and Q Registers, the least
significant half in Q, the most significant half in A, the
calling sequence for the double multiply subroutine
would be:

Location Operation Operand Modification
A SPB Sub-routine origin 1
Al Normal return

Product will appear at locations 4090, 4091, 4092 and
4093 with least significant half in 4093-4092 and most
significant half in 4091-4090. Multiplier must be in
location 4094 and 4059; least significant half in 4095,
and most significant half in 4094.

If a double length word is being multiplied by a single
length word, the single length word should be the mult-
iplier in location 4095 and zeros in location 4094. Re-
sult will be a maximum of 3 word lengths: 4091, 4092
and 4093. Also, a sub-routine will be available for
the division of 2 word-length numbers by 2 word-length
numbers, The double division sub-routine is utilized
as follows:

DOUBLE DIVISION

If the dividend is in A and Q with the least significant

half in Q and the most significant half in A, the calling
sequence for the double divide sub-routine would be:

Location Operation Operand Modification
A SPB DDV 1
A+l LDA DIVISOR
A+ 2 LDA REMAINDER
A4 3 Normal return

The quotient will be in A and Q with the least significant
half in Q and the most significant half in A. The re-
mainder will be stored in two consecutive locations
addressed by the operand of A + 2, The Divisor is in
two consecutive locations addressed by the command
inA+ 1.

The equivalent of the double multiply subroutine and
double divide subroutine is provided for addition and
subtraction by double length add and double length sub-
tract commands. Because of their more frequent use,
these instructions are provided as part of the normal
command repertoire of the computer.

The path of information transfer duringarithmetic
calculations with single word length instructions is
from main memory to the A register and from the A
register to main memory, one word at a time, Access
to the Q register required in multiplication and division
is achieved through the A register. The double length
add, double length subtract, double length load, and
double length store commands provide the program=-
mer with extra facility to transfer two words of data
between the main memory storage areas and the A and
@Q registers. The double length commands must spec-
ify even numbered memory locations.

Overflow

A value stored in the core memory may be added to,
or subtracted from, the contents of the A register.
The capacity of the A register may be exceeded in
execution of add, subtract, or multiply commands.
In this event, the overflow indicator is turned on, the
high-order bit of the result is lost, and the sign of the
result is reversed. Overflow may also occur in the
divide command; for which, see below. Examples of
binary arithmetic may be found in the Appendix.

Multiply Command

It will be noted that the multiply command adds the
contents of the A register to the product of the num-
ber in the Q register and the number in the specified
memory location. Therefore, for normal multiplica~
tion it is necessary to replace the contents of the A
register with zeros. The MAQ instruction loads zeros
into the A register and also moves the multiplicand to
the Q register. This instruction would normally be
used in the program before a multiplication command.

PROGRAMMING MANUAL

GE 225

-60-

Divide Command

In order to divide correctly, the absolute value of the
divisor must be greater than the absolute value of that
portion of the dividend in the A register. H this rule
is violated, the overflow indicator will be turned on.
Therefore, the programmer should interrogate the
overflow indicator and program a procedure to deal
with overflow if there is a possibility of violating this
rule,

Scaling

The movement of the decimal point to the right or left
in order to properly align numbers is called ‘““scaling”
or ““‘decimal positioning’’, Before numbers can be cor-
rectly added or subtracted in the computer the number
of places to the right of the decimal point of both num-
bers must be the same, For example, in order to add
3.0 to 4.16 one must first arrange 3.0 to correspond to
3.00 and then add. X the decimal point is moved to the
right in order to prepare for calculations, the number

GE 225

is “‘scaled to the right’’; if the decimal point is moved
to the left, the number is ““scaled to the left”’.

When two numbers are multiplied, the number of places
to the right of the decimal point in the product is the
sum of the places to the right of the decimal point in
both the multiplier and the multiplicand. ¥ it is de~
sired to scale the product (which is expressed as a
binary number), the product must be divided by a con~
stant that is the binary equivalent of the appropriate
power of 10,

Rounding

After a calculation has been com pleted, it is common
to round the result to the next highest integer. ‘“Round-
ing”’ is accomplished by adding a ‘5’ into the position
adjacent to the position to receive any carry. Since,
within the GE 225, all calculations are performed with
binary numbers, the proper rounding factor of ¢¢5” is
expressed in binary and is carried as an appropriate
constant within memory. After the round factor is
added, the positions to the right of the position which
receives any carry are deleted through scaling.

PROGRAMMING MANUAL

-61-

GE 225

CALCULATIONS ON DATA STORED WITHIN THE 225

Load A register LDA
Store A register STA
Add ADD
Subtract SUB
Multiply MPY
Divide DVD
Double Length Add DAD
Double Length Subtract DSU
Double Length Load DLD
Double Length Store DST
Move A to Q MAQ
Load Zero LDZ
Branch on Overflow BOV
Branch on Zero BZE
LDA Y LOAD A

The contents of Y (s, 1-19) replace the contents of A (s, 1-19). The contents of
Y are not changed.

STA Y STORE A

The contents of A (s, 1-19) replace the contents of Y (s, 1-19). The contents of
A are not changed.

ADD Y ADD

The contents of Y (s, 1-19) are algebraically added to the contents of A (s, 1-19).
The result is placed in A (s, 1-19). The contents of Y are not changed.

SUB Y SUBTRACT

The contents of Y (s, 1-19) are algebraically subtracted from the contents of A
(s, 1-19). The result is placed in A (s, 1-19). The contents of Y are not changed.

MPY Y MULTIPLY

The overflow indicator is turned OFF. The contents of Y (s, 1-19) are algebraic-
ally multiplied by the contents of Q (s, 1-19). The result is placed in A (s, 1-19)
and Q (s, 1-19), the sign of Q is the same as the sign of A. If the contents of A
are not set to zero before the MPY command is given, the contents of A will be
added algebraically to the least significant half of the product. Thus, with proper
scaling, it is possible to form the value AB plus C. If overflow occurs, the over-
flow indicator will be turned ON. If no overflow occurs, the overflow indicator
will be left OFF after this command is executed.

DVD Y DIVIDE

The contents of A (s, 1-19) and Q (1-19) are algebraically divided by the contents
of Y (s, 1-19). The quotient is placed in A (s, 1-19); the remainder will be in Q
(s, 1-19). The sign of the remainder is the sign of the dividend. The overflow in-
dicator will be turned OFF when execution of the DVD command is complete The
magnitude of the divisor must be greater than the magnitude of the contents of A.
If not, the overflow indicator will be turned ON and control will be transferred to
the specified next instruction

DAD Y DOUBLE LENGTH ADD

If Y is even, the contents of Y (s, 1-19) and Y + 1 (1-19) are algebraically added
to the contents of A (s, 1-19) and Q (1-19). If Y is odd, the contents of Y (s, 1-19)

PROGRAMMING MANUAL

-62-

and Y (1-19) are algebraically added to the contents of A (s, 1-19) and Q (1-19).
The result is placed in A (s, 1-19) and Q (1-19). The sign of Q is set to agree with
the sign of A. The contents of Y and Y + 1 are unchanged. If this instruction is
automatically modified, the address after modification will determine the result
as indicated above.

DSU Y DOUBLE LENGTH SUBTRACT

If Y is even, the contents of Y (s, 1-19) and Y + 1 (1-19) are algebraically sub-
tracted from the contents of A (s, 1-19) and Q (1-19). If Y is odd, the contents of
Y (s, 1-19) and Y (1-19) are algebraically subtracted from the contents of A (s,
1-19) and Q (1-19). The result is placed in A (s, 1-19) and Q (1-19). The siga of
Q is set to agree with the sign of A The contents of Y and Y + 1 are unchanged
If this instruction is automatically modified, the address after modification will
determine the result as indicated above.

DLD Y DOUBLE LENGTH LOAD

If Y is even, the contents of Y (s, 1-19) and Y + 1 (s, 1-19) replace the contents of
A (s, 1-19) and Q (s, 1-19). If Y is odd, the contents of Y (s, 1-19) replaces the
contents of A (s, 1-19) and Q (s, 1-19). The contents of Y and Y + 1 are unchanged.
If this instruction is automatically modified, the address after modification will
determine the result as indicated above.

DST Y DOUBLE LENGTH STORE

If Y is even, the contents of A (s, 1-19) and Q (s, 1-19) replace the contents of Y
(s, 1-19) and Y + 1 (s, 1-19). If Y is odd, the contents of Q (s, 1-19) replace the
contents of Y (s, 1-19). The contents of A and Q are unchanged. If this instruc-
tion is automatically modified, the address after modification will determine the
result as indicated above

MAQ MOVE A TO Q

The contents of A (s, 1-19) replace the contents of Q (s, 1-19). Zeros replace the
contents of A (s, 1-19)

LDZ LOAD ZERO INTO A

The contents of A (s, 1-19) are replaced by 0’s.

BOV BRANCH ON OVERFLOW

If the overflow indicator is ON, the indicator is turned OFF and the computer takes
the next sequential instruction. If the overflow indicator is not ON, the computer
skips the next instruction and executes the second sequential instruction.

BZE BRANCH ON ZERO

If the contents of A (s, 1-19) are zero, the computer takes the next sequential in-
struction. If the contents are not zero, the computer skips the next instruction
and executes the second sequential instruction. The contents of A are unchanged
by this instruction.

EXAMPLES

1. Add the number in storage in memory location 0129 to the number in storage
in memory location 0257. Store the result in memory location 0257.

1000 LDA 0219
1001 ADD 0257 Add 2 numbers and store the sum.
1002 STA 0257

GE 225 PROGRAMMING MANUAL

-63-

Integers located in memory locations 0129 and 0257 will be represented as binary
numbers. Later material on arrangement of data will provide facility for convers-
ion of binary coded decimal data to binary numbers. The load A command loads
the number in memory location 0129 into the A register. The command in storage
at 1001 will add the number in storage at 0257 to the contents of the A register.
The addition of the number in 0129 to the number in 0257 produces exactly the
same algebraic result as the addition of the same integers if they had been ex-
pressed as decimal numbers. The Store A command will replace the contents of
the word in storage at location 0257 with the sum of the numbers in 0129 and 0257.
The number stored at 0257 will be represented as a binary number. Later ma-
terial on arrangement of data will provide facility for conversion of binary num-
bers to binary coded decimal numbers.

2. In the previous example, test the result of the addition to determine whether
the result of the addition of the numbers in 0129 and 0257 exceeds the capacity
of the A register. If the capacity of the A register is exceeded, transfer control
to the command in storage at 3200.

1000 LDA 0128

1001 ADD 0257 Add 2 numbers

%(?ggg ggg 2200 Test for overflow and transfer
1004 STA 0257 Store the sum

1f the results of the addition exceed the capacity of the A register, the overflow
indicator will be turned on. The overflow indicator does not affect machine oper-
ation unless it is interrogated by the program. The command in storage at location
1002 will interrogate the overflow indicator. If the indicator is on, control will be
transferred to the command in storage at 1003, If the indicator is not on, control
will continue with the command in storage at 1004.

3. Write the necessary commands to reconstruct the sum as a double precision bi-
nary number, when overflow occurs. Hold the reconstructed double precision num-
ber in the A and Q registers and program a **halt”’.

3200 SRD 1 Reconstruct as a double precision
3201 CHS ;

- number in A & Q

3202 SRD 18 HA

3203 BRU 3203 LT

3204 DST 0258 Store the double precision result and
3205 BRU 1005 continue.

The commands in storage at 3200, 3201 and 3202 will reconstruct the sum as a
double precision binary number in the A and Q registers The BRU command at
3203 will execute a continuous branch to itself and further processing will be sus-
pended until there is intervention from the console. When further processing is
desired the console operator must put the GE 225 in ‘‘manual’’ and cause a branch
to the command at 3204. The command at 3204 will cause the double precision
result to be stored and a transfer to the command at 1005 to continue processing.

4, One positive number, X, occupies two memory locations at 0130 and 0131. An-
other positive number, Y, also occupies two memory locations at 0258 and 0259,
Add A to B and store the result at 0258 and 0259,

1000 DLD 0130
1001 DAD 0258 Add 2 numbers and store the sum
1002 DST 0258

The double length load command loads X into the A and @ registers. The com-
mand in storage at 1001 will add Y to X and the sum will remain in the A and Q
registers. The double length store A command at 1002 will replace the contents
of the word in storage at location 0258 and 0259 with the sum of X and V.

GE 225 PROGRAMMING MANUAL

b4~

5. Subtract the number stored in memory location 0257, Z, from the sum of X and
Y. Before subtracting, replace the contents of memory location 0256 with zeros.
If the capacity of the A and @ registers is exceeded after the addition of X and Y,
transfer control to 3200. Assume that Z is a positive number.

ggg é*? z 0956 } Store zeros in 0256
1000 DLD 0130
1001 DAD 0258 E Add 2 numbers
;gg% gg‘{] 3200 l Test for overflow and transfer
;ggg ggg gg gg } Subtract number from A and
store the difference.

The double length subtract command in memory location 1004 will subtract Z from
the sum of X and Y, and the difference will remain in the A and Q registers.

Since the double length subtract command will ““address’ memory location 0256,
the commands at 998 and 899 will “set’’ the contents of 0258 fo zero.

The test {or overflow condition is programmed after the addition of X and Y, since
if Z is a positive number, the capacity of A and @ will not be exceeded as a resull
of the double length subtract command at 1004, The resuli: of X+ Y - Z is stored
in memory at locations 0258 and 0259,

6. Multiply the number in memory location 128, by the number in memory location
10, Store the result in memory location 0256 and 0257. Test for the overflow con-
dition before and after the multiply command.

6aa BOV } Test and transfer for overflow
689 BRU 3200

880 LDA 0128 N

691 MAQ Load number and position

592 MPY 0010 multiplicand

693 DST 0256 Store product

The commands at location 688 and 689 interrogate the overflow indicator before
the multiply command is executed to determine whether the overflow indicator
has been previously ‘*set’”’, The number in memory location 0128 is loaded into
the A register and moved to the @ register by the commands at locations 680 and
601. Also, the contents of the A register will be replaced with zeros by the com-
mand at location 691, The multiply command will multiply the contents of the A
and @ registers by the number in memory location 0010. The product of the two
numbers can exceed the capacity of the A and Q registers only when both num-
bers are negative and each represent a maximum negative value (-2 9) There-
fore, there is not interrogation for the overflow condition after the MPY command.

The product is stored at memory location 0256 and 0257 by the double length store
command.

7. Divide the number in memory location 0257 by the number in memory location
10. Store the quotient in mermory location 0128. Disregard the remainder. Test
for the overflow condition after the divide command is execuied.

;gg gg; 3200 } Test and transfer for overflow
787 LDA 0257

788 MAQ Position guotient and divide
789 DVD 0010

790 BOV 1

791 BRU 3200 Test and transfer to overflow
792 STA 0128 Store quotient

GE 22 5 PROGRAMMING MANUAL

.65.

The dividend is loaded into the A register and moved to the @ register by the com-~
mands in memory locations 787 and 788. Also, the contents of the A register will
be replaced with zeros by the command at location 788. The divide command will
divide the contents of the A and Q registers by the number in memory location
0010. The magnitude of the divisor must be greater than the magnitude of the por-
tion of the dividend in the A register. If not, the overflow indicator will be turned
on and control will be transferred to the command in storage at 3200, The dividend
is stored in memory location 0128 by the command in memory at 792, The re-
mainder, if any, will appear in the @ register and will be disregarded.

GE 225 PROGRAMMING MANUAL

66~

SHIFTING, ROUNDING AND ARRANGEMENT OF DATA FOR MACHINE CALCULATIONS

Shift Left A SLA

Shift Right A SRA

Load A from @ LAQ
SLA K SHIFT LEFT A

The contents of A (1-19) are shifted left K places. Vacated positions of A are filled
with zeros. If a non-zero bit is shifted out of position 1, the overflow indicator will
be turned ON, and the bit is lost. The sign of A is unchanged.

SRA K SHIFT RIGHT A

The contents of A (1-19) are shifted right K places. If A is plux, 0’s are inserted
in the vacated positions of A. If A is minus, 1’s are inserted in the vacated posi~
tions of A. Bits shifted out of position 19 are lost. The sign of A is not changed.

LAQ LOAD A FROM Q

The contents of Q (s, 1-19) replace the contents of A (s, 1-19). The contents of
Q are unchanged.

EXAMPLES

1. Move the binary point of the number in location 0128 one place to the left. (Mul-
tiply the binary number in memory location 0128 by 2.)

oo00 DA 0128 d and shift left 1 bi iti
0601 SLA 0001 } Load and shift le inary position
0602 BOV ‘

0608 BRU 3900 } Test and transfer for overflow

The binary number in location 0128 is loaded into the A register by the command
in storage at 0600. The shift of a binary number to the left will increase the ma-
gnitude of the number by a power of 2 for every place that the number is shifted
to the left. If the number exceeds the capacity of the A register after the number
is shifted the overflow indicator will be turned on and control will be transferred
to the command in storage at 0603.

2. Move the binary point of the number in location 0129 one place to the right.
(Divide the binary number in memory location 0129 by 2.) Assume any remaind-

er is lost,
0600 LDA 0128 i cee
0801 SRA 0001 { Load and shift right

The binary number in location 0129 is loaded into the A register by the command
in storage at 0600. The shift of a binary number to the right will decrease the
magnitude of the number by a power of 2 for every place that the number is shifted
to the right. Division will not increase the magnitude of the number, and therefore,
the overflow indicator will not be turned on.

3. Move the decimal point of the number in location 0128 one place to the left.
(Multiply the number in location 0128 by 10). Assume that the number in 0128
represents an integer expressed as a binary number.

3999 DEC 10 00000 00000 00000 01010
0600 LDA 0128

0601 MAQ Multiply by constant of 10

0602 MPY 3999

GE 225 PROGRAMMING MANUAL

&7

GE 225

The binary number in location 0128 is loaded into the A register by the command
in storage at 0800 and moved {o the Q register by the command at 0601, The multi-
plication of a binary number by other than a power of 2 is accomplished by the
multiply command and the binary equivalent of the multiplier. The multiply com-
mand at location 0602 ‘“‘addresses’’ the binary eguivalent of 10 at location 3999,
The Generalized Assembly Program will provide facility for the creation of bin-
ary constants for use in the program. For example the DEC operation at 3989
will create the binary equivalent of 10. The product represents exactly the same
result as the shift of a decimal integer one place to the left.

4. Move the decimal poiunt of the number in location 0128 one place to the right.
(Divide the number in location 0128 by 10.) Assume that the number in 0128 re-
presents an integer expressed as a binary number. Assume any remainder is
lost.

3999 DEC 10 40000 00000 Q0000 01010
0600 LDA 0128

0601 MAQ Divide by constant of 10

0602 DIV 039499

The binary number in location 0128 is loaded into the A register by the command
in storage at 0600 and moved to the Q register by the command at 0601, The di-
vision of a binary number by other than a power of 2 is accomplished by the divide
command and the binary equivalent of the divisor. The divide command at location
0602 ‘‘addresses’’ the binary equivalent of 10 at location 3998. The quotient in the
A register represents exactly the same result as the shift of a decimal integer one
place to the right.

5. The number in location 0128 is an integer expressed as a binary number with 2
places to the right of the decimal point. The number in 0130 is an integer expressed
as a binary number with 3 places to the right of the decimal point. Add the number
in location 0128 to the number in location 0130 and store the sum of the numbers
in location 0132.

3999 DEC 10 00000 00000 00000 01010
0600 LDA 0128

0601 MAQ Multiply by constant of 10

0802 MPY 3099

0603 LAQ } Position number in A register
0604 ADD 0130

0605 STA 0132 } Add 2 numbers and store the sum,

The commands in storage at 0600, 06801 and 0602 perform the equivalent function
of the commands specified in example 3 above. After the decimal point of the num-~
ber in location 0128 is moved one place to the left, the number is properly aligned
for addition with the number in 0130. The LAQ command will move the number to
the A register in preparation for the addition. The commands in storage at 0604
and 0605 will add the number in storage at 0130 to the contents of the A register
and store the results in location 0132.

6. Assume that X represents rate and occupies memory location 0130, X is an
integer {which has 3 places to the right of the decimal point} represented as a bi-
nary number. Assume that ¥ represents hours and occupies memory location
0131. Y is an integer (which has 1 place to the right of the decimal point) repre-
sented as a binary number. Multiply X by Y, round the product to the nearest cent
and store the resull in memory at location 0258.

3996 DEC 0 00000 00000 00000 00000
3997 DEC 50 00000 00000 00001 16010
3998 DEC 100 00000 00000 00011 00100

PROGRAMMING MANUAL

68~

0600 LDA 0130

0601 MAQ Multiply 2 numbers

0802 MPY 0131

0603 DAD 3996 Add round factor

gggg gﬁ}f gggg E Divide b'y constant of 100 and store
the quotient,

X is loaded into the A register and moved to the § register by the commands at
0600 and 06801. X is multiplied by Y by the multiply command at 0602. The pro-
duct of X and Y, in the A and Q registers, is an integer with four places to the
right of the decimal point which is represented as a binary number, The double
length add command at location 0803 will add the binary equivalent of the round
factor (a 50 expressed as a binary number) in memory storage at 3996 and 3997
to the product of X times Y in the A and Q registers. The Generalized Assembly
Program will provide the facility for the creation of binary constants for use in
the program. The rounded sum in the A and Q registers is expressed as a binary
number, and is exactly equivalent to the algebraic addition of a decimal round fac-
tor to a decimal number. The divide command in memory location 0604 address
the binary equivalent of 100 at location 3898. The quotient in the A register re~
presents exactly the same result as the shift of the decimal integer two places to
the right (reference example 4 above}. The command in memory location 0605 will
store the product of X times Y rounded to the nearest cent in memory location
0258,

GE 225 PROGRAMMING MANUAL

CONVERSION OF NUMERIC BINARY CODED DECIMAL DATA TO BINARY FORM
(FROM CARD INPUT)

Assume that a binary coded decimal number starts in card column 20 and ends in
card column 26 and the card image has been read in beginning in memory location
0128. Write the ‘‘calling sequence’’ to convert the number to a binary number.
Assume that the appropriate conversion routine is in storage beginning at loca-
tion 3700. Branch to the command at 3000 if an error should be generated dur-
ing the conversion routine.

0700 SPB 3700 1 Transfer to conversion subroutine
0701 DEC 0128

0702 DEC 0020 Calling sequence

0703 DEC 0007

0704 BRU 3000

The SPB command in storage at 0700 will transfer control to the first command
in the conversion subroutine in storage at 3700. The location of the SPB command
is preserved in modification word 1. The operation of the DEC command is ex-
plained in the section on the General Assembly Program (GAP 225). The com-
mands in storage at 0701, 0702 and 0703 will provide binary equivalents of the
decimal integers 0128, 0020 and 0007. The utilization of the integers expressed
as binary numbers is illustrated in example 2 in the section on Subroutine Pro-
gramming.

If there is an error in the calling sequence specification, for example, an attempt
to convert a (binary coded) decimal field of more than 11 digits, control will be
transferred to the command in storage at 0704. After a number is converted, con-
trol will be transferred to the command in storage at 0705.

When the conversion is accomplished, the converted number will appear in the A
and Q registers. The least significant word of the 2 word binary number will ap-
pear in the Q register; the most significant word will appear in the A register.
The conversion routine will properly interrogate the least significant character
position of the card field and produce a negative binary number if this position
contains the appropriate overpunch (11 punch in Hollerith code).

GE 225 PROGRAMMING MANUAL

-70-

GE 225

CONVERSION OF BINARY DATA TO NUMERIC BINARY CODED DECIMAL FORM
(FOR CARD OUTPUT)

Assume that an integer is expressed as a binary number contained within the A and
Q registers and that it will consist of no more than 9 digits when converted to a
(binary coded) decimal number. Write the ‘‘calling sequence’’ to convert the num-
ber and store the binary coded decimal number in a 9 digit field ending in card
column 25. Assume that the card image begins in memory storage at location 0128
and that the appropriate conversion routine is in memory storage at location 3300.
Branch to the command at 3100 if an error should be generated during the convers-
ion routine.

0640 SPB 3300 Transfer to conversion subroutine
0641 DEC 0128

0642 DEC 0025 .

0643 DEC 0009 Calling sequence

0644 BRU 3100

The SPB command in storage at 0640 will transfer control to the first command
in the conversion subroutine in storage at 3300. The location of the SPB command
is preserved in modification word 1. The operation of the DEC command is ex-
plained in the section on the General Assembly Program (GAP 225). The com-
mands in storage at 0641, 0642 and 0643 will provide binary equivalents of the
decimal integers 0128, 0025 and 0009. The utilization of the integers expressed
as binary numbers is illustrated in example 2 in the section on Subroutine Pro-
gramming.

If there is an error in the calling sequence specification, for example, an attempt
to store the converted number in a field greater than 11 digits, control will be
transferred to the command in storage at 0644. After a number is converted and
contained within the card image, control will be transferred to the command in
storage at 0645.

When the conversion is accomplished and converted number will appear in columns
17 - 25 within the card image in storage. The conversion routine will properly
interrogate the sign position of the binary number (sign of the A register) and, if
the number is negative, produce the equivalent of an overpunch (11 punch in Hol-
lerith code) over the least significant character position of the card field (column
26 in this example.

DATA PROCESSOR

PROGRAMMING MANUAL

71/72-

PROGRAMMING LOGICAL DECISIONS

Perhaps the most important feature of a computer is
its ability to make logical decisions, Naturally, these
decisions can be made only through stored programs
which utilize test and branch commands in the proper
sequence, Frequently, decisions which determine the
paths of processing within a routine are based on the
results from tests on the data being processed itself.
Thus, input records may be categorized by some id-
entification key or factor and processed accordingly.

When large volumns of records are involved, it is usu~
ally more efficient to prearrange them prior {o pro-
cessing. This prearrangement involves the ordering
{sorting) of records by some key. A key is a portion
of the record which is set aside to identify it uniquely
from other records or to categorize it with other re-
cords, according to the nature of the data processing
problem. A key is made up of a variable number of
numeric, alphabetic or alphanumeric characters; keys
may range in length from 2 or 3 digits to 20 or more.
When data pertaining to a particular subject {account
#, employee #, or catalog #, ete.) is split up into sev~-
eral records, each carried in a separate file, it is
necessary to *“match up®’ the records on the key be~
fore any processing can be done. A common example
is the matching of input transaction records against
records in a master file prior to the posting and up-
dating of information in the master file,

The sequencing and matching of records in accomp-
lished through the comparison of appropriate keys.

In order to match keys or to arrange them in some
standard understandable sequence, it is clearly nec~
essary to have some system of ranking of all charact-
ers in the “alphabet’” of the computer language. Thus,
a system must be established similar to that employed
by dictionaries and encyclopedias by which the letter
A is given lowest rank and the letter Z highest, If the
reader will consider the octal (or equivalent binary)
value for each computer character in BCD mode (see
Character Representation in Appendix), he will see that
viewing each character as a six bit binary number ac-
complishes an automatic ranking. 0 (zero) has the
lowest rank and 71 has the highest. The numbers 0-9
are lower than any other characters; the alphabetics
A-Z are arranged in their normal sequence; and the
special characters are not ordered in any particular
way. Further investigation will show that if any com~
bination of characters is viewed as a pure binary num-
ber and compared to any other combination of charact-
ers viewed in the same way, the combination with high-
est numerical value will be listed following the other
combination if one proceeds o order them in **dic-
tionary sequence’’ (examining them character by char-
acter from left to right). In this sense one may say
that a key (whether numeric, alphabetic or alphanu~
meric) of a given record is either equal to, higher
than or lower than the key of another record.

In the GE 225 keys are compared in the following man-

ner, One key is loaded into the A or A and Q registers
utilizing the LDA command or the DLD command. The
second key is subtracted from the first key by the SUB
command or the DU command, and the difference be~
tween the two keys remains in the A or A and Q reg~
isters. If the two keys are exactly equal, the contents
of the A register or A and Q registers will be equal
to zero. Therefore, the BNZ or BZE commands will
be ultized to interrogate the contents of the registers
for zero. However, the BNZ and BZE commands in-
terrogate the A register only. ¥ a test of the Q reg~
ister is required because of a double word length key,
the XAQ command or LAQ command will load A with
the contents of the Q register. The BZE or BNZ com~
mands can then be repeated to test the status of the
second key. Control will either transfer to the next
command, or the command after the next command,
depending upon whether the contents of the A register
is equal to zero,

I the contents of the A register i5 positive (plus), the
first key loaded must be higher than the second key.
A test for the zero condition should precede the test
for a plus condition since a word of zeros would also
be positive. The A register may be interrogated for
the plus condition by the BPL command. Control will
either transfer to the next command, or the command
after the next command, depending upon whether the
contents of the A register is positive {plus) or nega-
tive {minus). ¥ the contents of the registers is neither
positive nor equal to zero, the contents must be neg-
ative, M control does not {ransfer as a result of the
zero or plus test, the absolute value of the second key
must be greater than the absolute value of the first
key. The registers may be interrogated directly for
“minus’ by the BMI command, or the minus condition
may be assumed if control does not transfer after a
BZE and BPL command.

It is important to note that the keys for matching do
not have to be converted from BCD to binary numbers
before the LDA, SUB, BZE, BPL, BMI sequence is
executed. Even though the correct algebraic result
will not be obtained from the subtraction, the correct
relative conditions of equality (zero), high (plus) or
low (minus) will be properly generated. Therefore,
keys do not have to be converted before logical decis~
ions are made,

One of the distinguishing features which take stored
program computers out of the class of desk calcula~
tors and punched card equipment is the power to per-
form calculations on the instructions which govern
the machine’s functions. I there is some relation-
ship between memory addresses and their contents,
it is thus possible to compute the operand addresses
of instructions in a program so that data may be moved
about, to and from memory storage, without the use
of the standard test and branch commands described

PROGRAMMING MANUAL

GE 225

73-

in the previous paragraphs for routing of the informa-
tion. This is a particularly powerful method for table
lookup and table posting operations. If a relationship
does exist between memory addresses and their con-
tents, one can use mathematical terminology and say
that the address is a “‘function’’ of the contents. For
this reason the term ‘‘function table technique’’ is often
applied to such programming usage.

The STO command is the chief tool used for this pur-

pose. The command permits data to be inserted di-
rectly into the operand address portion of an instruc-
tion so that the data value itself will determine the ad-
dress selected by the instruction. Since there is no
restriction on the type of instruction that may be thus
modified, the data may determine memory locations
from which other data is extracted or into which other
data is stored, or it may determine the addresses of
other parts of the program to which control is trans-
ferred.

PROGRAMMING MANUAL

GE 225

74-

TRANSFER OF CONTROL BASED UPON LOGICAL COMPARISONS OF DATA
WITHIN THE 225

Branch Unconditionally BRU

Branch on Plus BPL

Branch on Minus BMI

Subtract One SBO

Branch on No Zero BNZ
BRU Y BRANCH UNCONDITIONALLY

Control is transferred to the instruction located at Y.

BPL BRANCH ON PLUS

If the sign of A is plus, the computer takes the next sequential instruction. If the
sign of A is not plus, the computer skips the next instruction and executes the sec-
ond sequential instruction. The contents of A are unchanged by this instruction.

BMI BRANCH ON MINUS

If the sign of A is minus, the computer takes the next sequential instruction. If
the sign of A is not minus, the computer skips the next instruction and executes
the second sequential instruction. The contents of A are unchanged by this in-
struction.

SBO SUBTRACT ONE

One is subtracted algebraically from A (19). I the capacity of A is exceeded, the
overflow indicator will be turned ON.

BNZ BRANCH ON NO ZERO

If the contents of A (s, 1-19) are not zero, the computer takes the next sequential
instruction. If the contents are zero, the computer skips the next instruction and
executes the second sequential instruction.

EXAMPLES

1. Compare the word in memory location 0128 with the word in memory location
0256. If both words are equal transfer control to memory location 1500.

1000 LDA 0128 . .
1001 SUB 0256 Subtract in A register.
iggg ggg 1500 } Test A register and transfer for equal.

If the word in memory at location 0128 is equal to the word in memory at location
0256, the contents of the A register would be equal to zero, and computer control
would continue with the command in memory at location 1003. I the contents of
0128 is not equal to the contents of 0256, control would transfer to the command
in memory at location 1004.

2. In the previous example, if the word in memory at location 0128 is higher than
the word in memory at 0256, transfer control to the command at location 3000. I
the word in 0128 is lower, transfer control to the command at location 3500.

1000 LDA 0128 . .

1001 SUB 0256 Subtract in A register.

iggg glzu'% 1500 } Test and transfer for equal.
}ggg gg% 3000 } Test and transfer for high.
1006 BRU 3500 } Transfer for low.

GE 225 PROGRAMMING MANUAL

.75.

I the word in memory at location 0128 is higher than the word in memory at loca-
fion 0258, the contents of the A register would be plus and control would continue
with the command in memory at location 1005. ¥ the word in memory at location
0128 is lower than the word in memory at location 0256 the contents of the A reg-
ister would be minus and control would be transferred to the command in memory
at location 1006,

3. I the punch in column 1 of an input card is a 1, transfer control to a routine
starting at memory location 3000; if the punch is a 2, transfer control to memory
location 3050; if it is a 3, transfer to 3075. ¥ the punch in card column 1 is neither
a 1, 2 or 3, continue control with the next command in sequence. Assume the card
has been read into memory beginning with the word at 0128,

igg{l) é‘RDi gﬁg } Position first card column in A register,
1502 SBO

1503 BZE Test and transfer for 1.

1504 BRU 3000

1505 SBO

1506 BZE Test and transfer for 2.

1507 BRU 3050

1508 8BO

1508 BZE Test and transfer for 3.

1510 BRU 3075

The contents of memory location 0128 contain equivalent binary coded decimal
representation of the Hollerith code punching contained in columns 1, 2 and 3 of
the 80-column card. The command in memory at location 1500 loads the A reg-
ister with the contents of memory location 0128. The shift right A command de-
letes the data from card columns 2 and 3 from the A register and shifts the bin-
any coded decimal data from card column 1 into the *“low order positions®” of the
A register. (Bit positions 14-19). Computer control will transfer during the com~
mands which follow if reduction of the contents of the A register by 1 causes a
zero condition for any of 3 tests. X conirol does not transfer, then the digit in card
column 1 is neither a 1, 2 or 3§, and computer control will continue with the com-
mand in memory at location 1511,

4. One master file record consisting of 12 words of data is in storage beginning
at location 0258. One input file transaction record consisting of 8 words of data
is in storage beginning at location 0128, The first 3 words of each record con-
tain the identification, or key, of the record, the “keys? in both files are in as-
cending sequence. If all three words of each key are identical, transfer control
to the next available storage location to update the master file record. H the in-
put transaction item key is higher than the master file item key, transfer control
to the command in storage at 3100 to output the master file record onto the new
updated master file. I the key on the transaction record is lower than the master
file key, transfer control to the command at 3200 to create and insert a new mast-
er file record into the file.

0598 LDA 0128

0599 SUB 0256

0600 BZE

0601 BRU 0605 Test and transfer for first word.
0602 BMI

0803 BRU 3200
0604 BRU 3100
0606 LDA 0129

0606 SUB 0257 Test and transfer for second word. -
0607 BZE

0808 BRU 0610

0609 BRU 0802 } Transfer for not equal.

GE 225 PROGRAMMING MANUAL

iy .9

0610 LDA 0130

ggi; %%% 0258 Test and transfer for third word.
0613 BRU 0602

The commands in storage at locations 0598 through 0601 will test the {irst word
of the master file and transaction keys for equality. X the first words are equal,
the contents of the A register will be zero; and control will be transferred to 0605
where successive comparisons are made on the remaining words of the key, pro-
gressing from left to right. At any point where the keys are discovered to be un-
equal, control will be transferred to 0602. The commands in storage at 0602 through
0604 determine which key is larger and route control of the program accordingly.
¥ all three words of the keys check for equality (i.e., the keys are identical} con-
trol passes to location 0814 where proper posting of the transaction occurs.

5. This example involves the decisions which are required in the calculation of
Social Security (FICA) tax for a payroll. Assume thatpayroll data is in storage
beginning at location 0128, Year~io~year gross pay occuples locations 0130 and
0131. Current weeks’ earnings occupy locations 0132 and 0133. X year-to-date
gross pay is equal to or greater than $4800, transfer control to the command in
storage at 1853 where no additional FICA will be deducted. If year-to-date gross
pay is less than $4800, determine whether year-to-date gross pay plus current
earnings is equal to or greater than $4800. I year-to-date plus current earnings
is equal to or greater than $4800, transfer control to 1858 where the FICA tax will
be calculated on $4800 minus year-to-date earnings (not including the current week).
¥ year-to-date plus current earnings is less than $4800, transfer control to 1875
where the FICA tax will be calculated for the total amount of current weeks’ earn-
ings.

1853
\ 2
YTD Gross Pay: 4800.00 i Deduct no FICA

%

-

YTD Gross Pay and Current
Earnings — Storage

1858

v

Calculate PICA on
$4800 - YTD Gross Pay

Storage: 4800.00

Calculate FICA on
Current Earnings

YTID Gross Pay 0130-0131
Current (Week’s) Earnings 0132-0133

3998 DEC 0
3808 DEC 480000

(The section of the General Assembly Program in the Programming Manual will
show how these two pseudo-commands will result in the storage of a binary zero
in 3998 and the binary equivalent of 480000 in 3999.)

GE 225 PROGRAMMING MANUAL

77

GE 225

0431
0432
0433
0434
0435
0436
0437
0438

DLD
DsU
BPL
BRU
DAD
BPL
BRU
BRU

0130
3998

1853
0132

1858
1875

Load YTD gross pay and subtract 4800.00

Test and transfer for no FICA.
Add current earnings.

Test and transfer for all earnings taxable.

Transfer for part earnings table.

The commands in storage at 0431, 0432, 0433 and 0434 will compare the YTD earn-
ings with the constant 480000 and transfer control to 1853 if YTD earnings are
greater than or equal to this amount. The DAD command will increment the a-
mount in registers A and Q by current weeks’ earnings. Testing register A at this
point for a positive sign is the logical equivalent of comparing YTD gross pay plus
current weeks’ earnings against the constant 480000 to see if total earnings (in-
cluding this week) are equal to or larger than $4800.00. X so, control transfers
to 1858; if not, control transfers to 1875 where the FICA {ax is calculated on all

of this weeks’ earnings.

PROGRAMMING MANUAL

.78

ADDRESS COMPUTATION (FUNCTION TABLE TECHNIQUES)

Store Operand Address STO

8TO Y STORE OPERAND ADDRESS

The contents of A {7-19) replace the contents of Y (7~19). The contents of A and
Y (s, 1-6) are unchanged.

EXAMPLES

1. As successive employee input records are read into memory, the current week’s
gross earnings for each employee record will appear in storage at 0132 and 0133.
The employee departmental charge number will appear in each employee input
record in storage at 0134. It is desired that current week’s gross earnings be
summarized by departmental charge number in a table which originates at mem-
ory location 0900 and extends to 1099, Departmental charge numbers are repre-
sented by the numbers 100-199. Thus, charges to number 100 should be accumu-~
lated in location 900-901, etc., allowing two locations in the table for each depart-
mental charge number. (This may be accomplished by increasing the departmental
charge number to the appropriate value in the 0900 to 1099 range and then storing
this “‘calculated address’” in the operand portion of the instructions which perform
the calculations,) Write the necessary commands to accumulate and distribute the
gross earnings for each employee input record to the correct departmental charge
number at the appropriate location.

3998 DEC (2 00000 00000 00000 00010)
3999 DEC (700 00000 00000 10010 11000)

(Explained in General Assembly Program section; results in storage of binary
equivalents of 2 and 700.)

0474 LDA 0134 } Load departmental charge number into A.
0475 MAQ Multiply charge number by 2

0476 MPY 3998 ply charg y &

0477 LAQ

0478 ADD 3999 Add 700 to product.

gigg g% gigg Insert address into commands at 482 and 483,
0481 DLD 0132 Load current gross earnings.

0482 DAD 0000 .

0483 DST 0000 Add previous gross and store.

Since the location of the departmental accumulated charges is a function of the
departmental charge number, the location is calculated by the direct use of the
departmental charge number itself. The departmental charge number is loaded
into register A by the command at 0474, The departmental charge number is then
multiplied by 2 since the departmental charge accumulations will each occupy 2
locations of storage. After multiplying by 2, it is necessary to increase the de-
partmental charge number by 700 to get the proper value in the 0900 to 1099 range.
This is accomplished by the instructions at 0477 and 0488. The STO commands
is storage at 0479 and 0480 will insert the calculated departmental charge num-
ber location into the operand portion of the commands at 0482 and 0483. The com~
mands in storage at 0481, 0482 and 0483 will now add current week’s gross earn-
ings to appropriate departmental accumulated charges.

GE 2 25 PROGRAMMING MANUAL

7.

PROGRAMMING SWITCHES

Exchange A and Q XAQ
XAQ EXCHANGE A AND Q

The contents of A (s, 1-19) and Q (s, 1~19) are interchanged.
EXAMPBLES

1. Transaction cards are being read into memory storage and processed., The
first card is to be read into 0128-0154, the second card into 0256-0282, the third
into 0128-0154, the fourth into 0256-0282, etc. Provide for this alternation of in-
put area by means of a programmed “{lip-flop’’.

3998 RCD 0258

3999 RCD 0128 Constant for RCD command,

0150 DLD 3998 | Load both commands

0151 XAQ

0152 DST 3998 Exchange and store for next use.
0153 5TA 0156 Store appropriate RCD command.
0154 BCN

0155 BRU 0154 Delay for reader ready.

0158 RCD 0000 Appropriate RCD command.

0157 HCR
0158 Continue
processing

0367 BRU 0150

The DLD command at 0150 will load both RCD commands info the A and @ reg-
isters, The XAQ command will exchange the contents of the A and Q registers,
and the DST command will store the now exchanged RCD commands back into po-
sition for the next alternation. The STA command at 0153 will store the approp-
riate RCD command in position to be executed. The chogen BRCD command will
be executed when the card reader is ready. (See material on Card Input-Output
Programming.}) Control will be returned to read the next card by the command
in storage at 0367.

2. In the above example assume that alternate cards reguire entirely different
processing and, hence, entirely different programs., Write a control routine uti-
lizing a “‘program switch”’,

0050 BRU 0400 . .,
0051 BRU 0300 BRU command *“constants”’.

0100 DLD 0050 Load both commands.

0101 XAQ
0102 DST 0050 Exchange and store for next use,
0103 STA 0104 Store appropriate BRU command.

0104 BRU 0600

x Appropriate BRU command.
0300 BCN
0301 BRU 0300
0302 RCD 0128
0303 HCR

0304 process

Routine for card read into 0128,

0350 BRU 0100

GE 225 . PROGRAMMING MANUAL

-80-

GE 225

0400
0401
0402
0403
0404

0496

BCN

BRU 0400
RCD 0256
HCR

process

BRU 0100

Routine for card read into 0256.

The commands in storage at 0100, 0101, 0102 and 0108 are equivalent to the com-~
mands in storage at 0105, 0151, 0152 and 0153 in the previous example. In this

example the ““flip-flop’’ consists of alternation of branch commands.

DATA PFROCESSOR !

PROGRAMMING MANUAL

-81/82-

|

MODIFICATION WORD PROGRAMMING

The contents of a modification word may be program-
med to automatically increment the ‘‘operand address’’
portion of an instruction each time the instruction is
executed. The words in memory storage at 0001, 0002
and 0003 perform the functions of modification words.
These functions include testing and tallying for control
of iterative program loops as well as simple address
modification.

When using these modification words, it is necessary
to ‘‘initialize’’ their setting, which usually means re-
placing their contents with zeros, and to periodically
increment the contents of the modification words them-
selves. The contents of a modification word may be
most conveniently replaced with zeros by the LDZ
command followed by the STA command. The operand
address of the STA command will specify the modi-
fication word to be cleared to zeros. The modification
words can be incremented directly by the INX com-
mand. The INX command will increment a modifica-
tion word by the amount contained in the ‘‘operand
address’’ portion of this instruction. The amount may
by specified as a negative number to permit decre-
ments.

It will often by necessary to test the contents of a mod-
ification word to determine the path for program con-
trol to follow. The contents of a modification word
may be tested most directly by the BXH and BXL com-

mands. Control will be transferred to the next instruc-
tion in sequence if the contents of the modification word
are equal to or higher than the test amount in the case
of the BXH command or lower than the test amount in
the case of the BXL command. The BXH commands
are utilized for the testing of modification words only.

Certain commands are not address modified. An ex-
ample is the INX command. The operand address
portion of this command is used to contain the amount
by which the contents of a modification word is to be
incremented. The programmer designates the modi-
fication word he wishes to increment by enteringa 1,
2 or 3 into that portion of the instruction normally
used to indicate automatic address modification. For
similar reasons, the BXH and BXL commands are not
automatically address modified.

The shift commands may be automatically address
modified. However, the ‘‘operand address’’ of the shift
commands consists of a binary number (length of shift)
equivalent to 31 or less. Therefore, the programmer
should be aware that any ‘‘address modification’’ must
not produce a length of shift in excess of 31 positions.
Certain data transfer commands (MAQ, LQA, XAQ,
etc.) should not be address modified because the ‘‘op-
erand address’’ of these commands are not to be uti-
lized by the programmer. Commands for testing (BPL,
BMI, BOV, etc.) should not be automatically address
modified for similar reasons.

PROGRAMMING MANUAL

GE 225

-83-

GE 225

USE OF THE 225 MODIFICATION WORDS FOR TALLIES, TESTS AND AUTOMATIC
ADDRESS MODIFICATION

Increment Modification Word by K INX

Branch if Modification Word is Low BXL

Branch on No Zero BNZ
INX KX INCREMENT X BY K

K, positions 7 through 19 of the I register are added absoclutely to the contents of
X {7-19), and the result replaces the contents of X (7-19). A carry from position
7 of X is lost. This instruction is not automatically modified.

BXL KX BRANCHIF X I8 LOW

If the contents of X (7-19) are less than K, the computer takes the next sequential
instruction; if the contents of X {7-19) are greater than or equal to K, the computer
skips the next instruction and executes the second sequential instruction. The con~
tents of X are not changed. This instruction is not avtomatically modified.

BNZ BRANCH ON NO ZERO

If the contents of A (s,1-19) are not zero, the computer takes the next sequential
instruction, If the contents are zero, the computer skips the next instruction and
executes the second sequential instruction. The contents of A are unchanged by
this instruction.

EXAMPLES

1. Data punched into a card has been read in BCD mode into memory storage loca-
tions 0128-0154. Transfer the information from the card input area to memory
storage locations 0256-0282. Do not use address modification.

0700 DLD 0128
0701 D8T 0256
0702 DLD 0130
0703 DST 0258
0704 DLD 0132
0705 DST 0280
0706 DLD 0134
0707 DST 0262
0708 DLD 0138
0709 DST 0264
0710 DLD 0138
0711 DST 0266
0712 DLD 0140
0713 DST 0268
0714 DLD 0142
0715 DsT 0270 Straight-line Programring
07186 DLD 0144
0717 DST 0272
0718 DLD 0146
0719 DST 0274
0720 DLD 0148
0721 DST 0276
0722 DLD 0150
0723 DST 0278
0724 DLD 0152
0725 DST 0280
07286 LDA 0154
0727 STA 0282

PROGRAMMING MANUAL

-84-

The 13 double length load and double length store commands in memory storage
locations 0700-0725 will transfer 26 words of information to the output storage
area; the 27th word is transferred by a single length load and store command.

2. In the previous example, write the program steps required using programmed
address modification.

3996 DEC 0 00000 00000 00000 00000
3997 DEC 2 1 00000 00000 00000 00010
3998 DEC 1 1 00000 00000 00000 00001
3999 DEC 13 00000 00000 00000 01101

{(Explained in General Assembly Program Section; results in storage of binary
equivalents of 0, 2, 1, and 13.)

0700 DLD 0128

0701 DST 0256 } Move 2 Words of Data
0702 LDA 0700 1

0703 ADD 3097 J Modify Location 0700
0704 STA 0700

0705 LDA 0701

0706 ADD 3997] Modify Location 0701
0707 STA 0701

0708 LDA 39906

0709 ADD 3998 } Increment Tally

0710 STA 3998

0711 SUB 30998]

0712 BNZ f Test the Tally

0713 BRU 0700 Go Back to Move 2 Words
0714 LDA 0154

0715 STA 0282

Two words of data are transferred by the commands in storage at 0700 and 0701,
The commands in storage at 0702-0704 will increment the operand or ‘“‘address”
of the double length load command at 0700. The double length load command will
now *‘address’’ the next two words to be loaded. The commands in storage at
0705-0707 will increment the operand ‘‘address’ of the double length store com~
mand at 0701. The double length store command will now ‘‘address’’ the next two
words of storage. The commands in storage at 0708-0710 will increment a ‘“count”’
in storage at 3996. When the “‘count’’ in storage at 3996 is not equal to 13, control
is transferred back to location 0700, Thus, two more words will be transferred,
and the programmed address modification will be continued. When 26 words have
been transferred, the count will be equal to 13, and control will be continued with
the command in memory at 0714.

3. Write the program steps required in examples 1 and 2 above using the 225 modi-
fication words for automatic address modification, tallying and testing.

0700 LDZ

0701 STA 0001

0702 DLD 0128 1 } Move 2 Words of Data and Automatic
0703 DST 0256 1 Address Modification

0704 INX 2 1 Increment Tally

0705 BXL 26 1 Test Tally

0708 BRU 0702 Go Back to Move 2 Words

0707 LDA 0154

0708 STA 0282

The commands in storage at 0700 and 0701 replace the contents of the word at 0001
with zeros. The commands in storage at 0702 and 0703 will transfer two words of
data. Before either the command at 0702 or 0703 is executed the contents of the

GE 225 PROGRAMMING MANUAL

GE 225

modification word will automatically increment the command itself. There are 3
memory locations which are available in the 225 for automatic address modification.
The 3 memory locations available are 0001, 0002 and 0003.

When a command in storage indicates a 1, 2 or 3 in the proper position of the format,
the contents of either word 0001, 0002 or 0003 will automatically increment the
command before it is executed. Automatic address modification is performed
when the contents of memory words 0001, 0002 or 0003 increment the command.
The contents of memory location 0001 automatically increment the commands at
locations 0702 and 0703 because a ‘‘1”’ is inserted into the instruction format in
the proper position. A tally or ‘‘count’’ is performed when the command in storage
at 0704 adds directly to the modification word in storage at 0001. The “‘1’’ in the
proper position indicates addition to the modification word at memory location 0001.
The ‘2’ indicates that a 2 is to be added to the modification word in memory loca-
tion 0001 each time the INX instruction is executed. Testing is performed when the
contents of the modification word at 0001 are compared to a ‘‘26’’. When the con-
tents of the modification word are equal to 26, 26 words have been transferred, and
control will be transferred to the command in storage at 0707. As long as the
contents of the modification word at 0001 are not equal to 26, 26 words have not
been transferred, and control will be transferred back to the command in storage
at 0702.

4. Code example 4 of the Programming Logical Decisions section, Transfer of Con-
trol Based upon Logical Comparisons of Data within the 225, making use of address
modification. A master file record consisting of 12 words of data is in storage be-
ginning at location 0256. An input transaction record consisting of 8 words of data
is in storage beginning at location 0128. The first 3 words of each record contain
the identification, or key, of the record, and both files are in ascending sequence.
If all three words of each key are identical, transfer control to the next available
storage location to update the master file record. If the input transaction item key
is higher than the master file item key, transfer control to the command in storage
at 3100 to output the master file record onto the new updated master file. If the key
on the transaction record is lower than the master file key, transfer control to the
command at 3200 to create and insert a new master file record into the file.

0598 LDZ ;

0599 STA 0001 } Store Zeros in Word 1

0600 LDA 0128 1

0601 SUB 0256 1 Test for Equality

0602 BZE

0603 BRU 0607

0604 BMI Test and Transfer for Transaction Key
0605 BRU 3200 } Lower.

0606 BRU 3100 Transfer for transaction key higher.
gggg Il'f)z(l.. :1; } } Test for all 3 words equal.

0609 BRU 0600 Transfer to repeat again.

The commands in storage at 0598 and 0599 will replace the contents of modification
word 1 with zeros The commands in storage at 0600 through 0603 will test each
word of the master file and transaction keys, starting with the major key and ending
with the minor key, for equality. If the keys are equal, the contents of the A register
will be zero and control will be transferred to the command at 0607 to continue the
comparison. If all 3 words of the key are equal, control will be transferred to the
command at the next available storage location at 0610 by the INX and BXL commands
at 0607 and 0608 1If the transaction key is higher than the master file key, control
will be transferred to the command in storage at 3100. If the transaction key is low-
er than the master file key, control will be transferred to the command in storage
at 3200.

PROGRAMMING MANUAL

-86-

PROGRAMMING FOR SUBROUTINE USAGE

In writing a program, it is often necessary to use on
several different occasions a particular set of instruc-
tions which perform a specific function. Considerable
saving of memory space and programming time will re-
sult if it is possible to transfer control from any point
in the routine to execute this set of instructions when-
ever they are required and then jump back to the
correct place in the main routine. ¢‘Subroutine’’ is
the term applied to such a series of commands design-
ed to perform a repetitive function for the main pro-
gram.

Programming for the use of subroutines presents the
programmer with the opportunity to employ the ‘‘build-
ing block principle’’ for the construction of programs.
All frequently used data processing functions at an in-
stallation are prepared in subroutine form. It is then
only necessary for the programmer to prepare the
skeletal structure of the main program which provides
the mortar for these building blocks. Subroutines for
the conversion of binary coded decimal data to binary
form and for the conversion of binary data to binary
coded decimal form have already been encountered.
These subroutines will be combined with the pro-
grammer’s own coding by the General Assembly Pro-
gram. Any time a data conversion is required in his
own routine, the programmer will simply transfer
control to the desired subroutine in the prescribed
manner.

It has already been observed that it is necessary to be
able to jump to a subroutine from any point in memory
and to return there. Thus, along with the transfer of
control information must also be retained so the sub-
routine will know where to go when it is finished. This
idea of informing the subroutine how to get back has
led to the name ¢‘linkage’’. The SPB command is de-

signed to provide the ¢link’’ for the return of control
back to the main program after the subroutine function
is performed. The memory location of the SPB com-
mand will be saved within a modification word. The
subroutine will execute a proper return to the main
program by reference to the contents of this modifica-
tion word. The INX command can be used to increment
the contents of the modification word; and a BRU com-
mand, automatically address modified by the incre-
mented modification word, will transfer control back
to the proper next instruction in the main program.
Through such ‘‘linkage’’ it is possible to utilize the
subroutine many times without repetition of the sub-
routine each time it is required within the main pro-
gram.

In addition to linkage, it is also necessary to specify
the parameters which define the problem to the sub-
routine; that is, subroutines are usually written in a
form for general applicability and must be self-spe-
cializing to the particular problem at hand. For ex-
ample, the programmer must indicate to one of the
general conversion subroutines the length of field in-
formation and the location of the data in memory by
means of DEC commands following the SPB command.
Since the location of the SPB command is saved with-
in a modification word, the following DEC command
information by be ‘‘called in’’ by the subroutine pro-
gram. The ¢‘calling sequence’’ technique is to write
a linkage followed by a few words which contain the
parameter information.

In summary, it should be clear that subroutines make
possible considerable saving of memory space and
programming time at the very slight expense of the
space and complexity of linkages and calling sequences.

PROGRAMMING MANUAL

GE 225

-87-

PROGRAM LINKAGE AND SUBROUTINE PACKAGES

STORE P AND BRANCH SPB

SPB Y, X STORE P AND BRANCH

The location of this instruction replaces the contents of x (7-19), and control is
transferred to the instruction located at Y. This instruction is not automatically
modified.

EXAMPLES

1. Assume that a subroutine is in memory beginning at location 2000. This sub-
routine will transfer 28 words of data from memory storage beginning at 0128 to
memory storage beginning at 0256. (See example 3 under section ‘“Modification
Word Programming’’.) Transfer control to the instruction at location 2000 to
execute this subroutine and at the same time preserve the location of the command
which initiates the transfer; that is, transfer control to 2000 and establish a link
back to the main program.

0100 SPB 2000 1
The SPB command will transfer control to the instruction in storage at 2000. In

addition, the memory location of the SPB command (location 0100) will be stored
within modification word 0001.

2. In the previous example include the necessary instruction steps to return to the
main program after the subroutine is executed.

0100 SPB 2000 1 } Transfer to subroutine

2000 LDZ

2001 STA 0002

2002 DLD 0128 2

2003 DST 0256 2 Subroutine to move 28 words

2004 INX 2 2 in storage.

2005 BXL 28 2

2006 BRU 2002

2007 BRU 0001 1 | Transfer back to main program at 0101.

Modification word 1 will contain the location in memory of the SPB instruction
(0100) after this instruction is executed. The subroutine program steps in memory
at locations 2000 through 2006 accomplish the transfer of the 28 words. The last
instruction of the subroutine, at memory location 2007, will transfer control back
to the main program at location 0101. This occurs because the contents of modifi-
cation word 0001 will automatically increment the operand of the BRU command
before it is executed.

3. In the example above, assume that the subroutine in memory beginning at location
2000 is a ‘‘skeleton’’ routine. Provide the necessary ‘‘calling sequences’’ in the
main program to adapt the subroutine to the desired job.

0100 SPB 2000 1 | Branch to main program.
0101 DEC 0128

0102 DEC 0256 Calling Sequence.

0103 DEC 28

GE 225 PROGRAMMING MANUAL

-88-

GE 225

2000 INX 1 1

2001 LDA 0000 1

2002 STO 2011

2003 INX 1 1 Commands to ““call in’’ the necessary
2004 LDA 0000 1 parameters before the subroutine is
2005 8TO 2012 executed,

2006 INX 1 1

2007 LDA 0000 1

2008 STO 2014

2009 LDZ]

2010 STA 0002

2011 DLD 0000 2

2012 DST 0000 2 Subroutine to move 28 words of storage.
2013 INX 2 2

2014 BXL, 0000 2

2015 BRU 2011

2016 BRU 0001 1 1 Transfer back to main program,.

The operation of the DEC command is explained in the section on General Assembly
Program. The commands in storage at 0101, 0102 and 0103 will provide binary
equivalents of the decimal integers 0128, 0256 and 0028. The instructions in the
subroutine at locations 2000 through 2008 will store the binary equivalents of 0128,
0256 and 0028 in the operand portions of the instructions at 2011, 2012 and 2014,
The INX commands facilitate the operation by picking up the successive memory
locations (where the constants 0128, 0256 and 0028 are stored) using the address
modification word technigque. Thus, for example, the contents of modification word
1 will become the operand of the LDA command at 2001. (See the material on
Modification Word Programming.) After the LDA command is executed the binary
equivalent of 0128 will be in the A register. The STO command will replace the
operand of the instruction at 2011 with the binary equivalent of 0128. The net re-
sult after the command at 2008 is executed is to produce a subroutine identical to
that in example 2, above.

4. In the example above, design the “‘call in’’ commands without using the INX
commands.

0100 SPB 2000 1 Branch to main program.

0101 DEC 0128

0102 DEC 0256 Calling sequence.

0103 DEC 28

2000 LDA 0001 1

2001 8TO 2011 Commands to ““call in’’ the necessary
2002 LDA 0002 1 parameters before the subroutine is
2003 STO 2012 executed.

2004 LDA 0003 1

2005 STO 2014

2006 LDZ

2007 STA 0002

2008 DLD 0000 2

2009 DST 0000 2 Subroutine to move 28 words of storage.
2010 INX 2 2

2011 BXL 0000 2

2012 BRU 2008)

2013 BRU 0004 2 } Transfer back to main program.

This example is similar to example 3; however, the example above is more efficient
and requires less time to execute. In the example above, the INX commands are
eliminated because the LDA commands contain the necessary increment in their
operand addresses.

225

PROGRAMMING MANUAL

-89/90-

e

Figure 20 Control Console

PROGRAMMING FOR CONSOLE CONTROL

During the running of a program it will often be de-
sirable to provide information to the console operator.
For example, if an overflow condition occurs during
the processing of an input transaction, the programmer
may desire that the console typewriter type the mes-
sage ‘“‘QOverflow condition for record XXXX’’. The con-
sole operator then may take remedial action from the
console.

There are 20 switches on the console which can be
used to enter information directly into register A,
These switches correspond to the 20 bit positions of
a word. By proper programming, the switches may
also have the effect of 20 program control switches.
For instance, in the above example the program might
have been prepared to transfer control to a portion of
the routine that would skip the record which generated
the overflow condition and continue processing if the
operator had moved console option switch 10 to the
“down’’ position. Another option switch might be
sensed in the program to have the effect of rewinding
all magnetic tapes and closing out the run. Thus, by
using this switch, the operator could suspend all further
processing of the file and prepare for the next job.

The external influence of the console operator on a
running program would normally be reserved for ex-
ceptional situations. The console operator is ad-
vised on the exceptional situation by means of a mes-
sage on the output typewriter. The console typewriter
prints the contents of the N register each time the
TYPE command is executed. The character to be

typed out from the N register must be set up as a par-
ticular six-bit configuration which in the case of alpha-
betics may be slightly different from the BCD config-
uration for the same character within the computer.
The difference in the bit configurations for these char-
acters occurs chiefly in the representation of zone
bits.

The alternation of these zone bits are shown below:

In memory N register
00 00
01 11
10 10
11 01

The above holds true for the numbers 1-9, the letters
of the alphabet A-Z, and the special symbols &, 8, -
and ,. The configuration for 0 (zero) is 010000; the
configuration for / (slash) is 001011, In addition there
are five command characters which cause the type-
writer to take an action. These characters are:

000000 Space

011110 Tab

111111 Carriage return
011010 Print Red
011101 Print Black

The programmer may assume that the program steps

PROGRAMMING MANUAL

GE 225

91

to accomplish any required conversion of bit configura~
tions will be in ““package’’ form. It will not be neces-
sary to write a conversion routine. The conversion
will be a part of a subroutine provided to transfer data

for typing. The programmer will simply indicate the
‘‘calling sequence’’ for the message to be typed, and
the information will be properly converted and trans-
ferred to the ocutput typewriter.

PROGRAMMING MANUAL

GE 225

92.

CONSOLE PROGRAM CONTROL (OPTION) SWITCHES

EXTRACT EXT
READ CONTROL SWITCHES RCS
EXT Y EXTRACT

Each bit of Y is examined. If there isa 1 in Y in a given position, a zero is placed
in the corresponding position of A, If there is a zero in a given position of Y, the
corresponding position in A is left unchanged. The contents of Y are unchanged.

RCS READ CONTROL SWITCHES

Bach of the 20 manually set control switches is examined. If a switch is DOWN
{ON), a 1 is placed in the corresponding position of A. If a switch is UP (OFF},
the corresponding position in A will not be altered. The A register should be
cleared before this command is given.

EXAMPLES

1. Write the necessary commands to interrogate console option switch 11. If con-
sole option switch 11 is ON (in the ‘‘down’’ position}, branch to the command in
memory at 2550 to print a message. If console option switch 11 is OFF (in the
““up”’ position), continue with the normal sequential execution of the program. As-
sume that no other console option switches may be ON.

ggg; ggg‘ } “Zero’® A and read console switches.

0533 SRA 8 Shift right (19-11) places.

0534 BOD

0535 BRU 9550 Test and branch for console option switch 11 “‘on’’.

The command in memory at 0531 will replace the contents of the A register with
zeros. The command at 0532 will insert a 1 bit in position 11 in the A register if
the corresponding console control switch is down. The shift right command at
0533 will put the *‘11 bit’? into bit position 19. Bit position 19 is tested by the
BOD command at 0534, If bit position 19 contains a ““17’, console option switch
11 is on and control is transferred to 2550 by the commands at 0534 and 0535.

2. In the example above assume that other console option switches may be on.

3999 OCT 3737 11111 11111 10111 11111
0531 LDZ .

0532 RCS } Clear A register and read console control switches.
0533 EXT 3998 Mask out other switches.

0534 BNZ

0535 BRU 2550 Test and branch.

The command in memory at 0532 will insert 1 bits into the bit position of register
A corresponding to any of the 20 console switches that are in the ‘“‘down’’ position.
The EXT command at 0533 will replace all bits in the A register with zeros ex-
cept the bit position which corresponds to console option switch 11. I console
option switch 11 is on, control will be transferred to the command in memory at
2550. The commands above are also appropriate for testing whether or not com-
binations of switches are ““on”’, by variations of the bit configuration at 3999,

3. Transfer control in a continuous loop if console option switch 15 is on. Assume

other console option switches may be on. If console option switch 15 is not on,
continue the normal sequential execution of the program.

GE 225 PROGRAMMING MANUAL

93.

3999 oCT 3777757 (11111111111111101111)

0620 LDZ .

0621 RCS ¢¢Zero’’ and read console switches.
0622 EXT 3999 Mask out other switches.

0623 BNZ] .

0624 BRU 0621 } Test and transfer for console switch 15 ‘“ON”’.

The commands at 0620 through 0623 are exactly equivalent to the cobmmands at 0531
through 0534 in the previous example. The command at 0624 will transfer control
back to the command at 0620 until console option switch 15 is in the ‘‘off’’ position.

4. Write the commands to ‘‘Halt’’ the GE 225 until further action is initiated from
the console.

620 BRU 620 Transfer ‘“‘Loop’’.

Control will be transferred in a continuous loop by the command at 0620. The loop
will be identifiable by the console operator since the command will be displayed
at the console. The console operator may intervene by depressing the ‘“Manual’’
switch.

GE 225 PROGRAMMING MANUAL

-94-

PRINTING OF TYPEWRITER MESSAGES

Shift A and N Right SAN
Branch on N Register Not Ready BNN
Type TYP
SAN K SHIFT A AND N RIGHT

The contents of A (1-19) and N (1-6) together are shifted K places to the right.
Bits shifted out of A (19) shift into N (1). Bits shifted out of N (6) are lost. If the
sign of A is plus, O’s fill the vacated positions of A; if the sign of A is minus, 1’s
fill the vacated position of A. The sign of A is unchanged.

BNN BRANCH ON N-REGISTER NOT READY

If the N-register is not available for input-output (if the last TYPE instruction has
not been executed), the computer takes the next sequential instruction. If it is, the
computer skips the next instruction and executes the second sequential instruction.

TYP TYPE

The six-bit, coded character in N is typed. The contents of N are not changed.
EXAMPLES

1. Assume that the message ‘“‘End of Job’’ is in storage at locations 3995, 3996,
3997 and 3998 in the ‘‘proper configuration for typing’’. Write the commands to
print the message on the output typewriter. Assume that the power for the out-
put typewriter has been turned on. When all characters have been typed, trans-
fer control to the next command in memory.

0999 LDZ

1000 STA 0001 «“7ero’” words 1 and 2.

1001 LDZ

1002 STA 0002

1003 LDA 3995 1 Load first ward in A.

}833 ggg 1004 } Delay for N register busy.

iggs i“?\ll:' 6 } Send character to N register and type.
1008 INX 6 2

1009 BXL 18 2 } Test for transfer for 1 word typed.
1010 BRU 1004

1011 INX 1 1 }

1012 BXL 4 1 Test and transfer for 4 words typed.
1013 BRU 1001

The commands in memory locations 0999 through 1002 will replace the contents
of modification words 1 and 2 with zeros. The first word to be typed is loaded
into the A register by the command at 1003. All characters for typing must be
transferred through the N register. The commands at 1004 and 1005 will interro-
gate the status of the N register. If the N register is occupied from the previous
operation, control will be transferred in a ‘‘continuous loop’’ by the commands at
1004 and 1005." When the N register is ready, the shift command at 1006 will trans-
fer one character to the N register from the A register for typing. The TYP com-
mand will type the character represented by the contents of the N register on the
output typewriter. The commands in storage at 1008, 1009 and 1010 will incre-
ment and test the contents of modification word 2 for 18. If all 3 of the digits in
the word have been shifted to the output typewriter and typed, the contents of mod-
ification word 2 will be equal to 18 and control will be transferred to the command
at 1011. If all 3 characters in the word have not been typed, control is transferred
back to the command at 1004 to set up the next character, etc.

GE 225 PROGRAMMING MANUAL

95.

After the 3 characters in each word have been typed, the commands in storage at
1011, 1012 and 1013 will increment modification word 1 by 1. When modification
word 1 is less than 4, control will be transferred back to the command at 1001 to
begin typing the contents of the second word. When all words have been typed,
the contents of modification word 1 will be equal to 4 and control will be trans~
ferred to the command at 1014.

2. Assume that there is a 50-word message in storage beginning at location 0500,
and that the message must be converted to the proper configuration for typing.
Write the necessary commands to return the typewriter carriage before printing

is to begin.
0100 SPB 3500 1
gig% g’E}é osgg } Transfer to subroutine calling sequence.

The above instructions provide the necessary calling segquence information for
a subroutine in storage beginning at location 3500, This subroutine for typing
messages is part of the GAP subroutine library. In the present case it is as-
sumed that the programmer has previously specified that the subroutine be placed
in memory at the given location. The 8PB command at 0100 will transfer control
to the subroutine for typing messages. The location of the S$PB command itself
will be preserved in modification word 1. The subroutine will then call in the re-
guired parameter information regarding the beginning storage location of the mes-
sage and the number of words to be typed. Normally, calling sequence informa-
tion is indicated by the programmer utilizing the DEC command. The LDA com-
mand at 0101 will in this case not only provide the necessary calling sequence in-
formation, but will also indicate that the typewriter carriage is to be returned be-
fore typing is to begin. For subsequent carriage returns, the programmer must
include his own carriage returns in the material to be typed out,

3. In the above example write the necessary commands to type the message with-
out initially returning the typewriter carriage.

0100 5PB 3500 1
0101 EXT 0500 i T for t brouti i
0102 DEC 50 { ransfer to subroutine calling sequence.

The calling sequence information will be utilized as previously explained. How-
ever, the EXT command at 0101 will cause the desired message to be typed with-
out a return of the typewriter carriage before typing begins.

DATA PROUESSOR

GE 225 PROGRAMMING MANUAL

96-

Figure 22 Paper Tape Punch

Figure 21 Paper Tape Reader

PUNCHED PAPER TAPE OPERATIONS

Each character transferred to or from punched paper tape must pass through the
N register. In order to transmit or receive a character to or from the N register
the character must be shifted - either from the A register to the N register or
from the N register to the A register.

Configurations of paper tape input and output words will normally be converted to
or from the configurations of words in FE 225internal storage. The conversionof
paper tape input and output will normally be assigned to appropriate subroutine
aids as described in Programming Aids, GE 225 Programming Library.

GE 225 PROGRAMMING MANUAL

97

TRANSFERS OF DATA TO AND FROM PUNCHED PAPER TAPE

Read Paper Tape RPT

Write Paper Tape WPT

Shift N and A Right SNA
RPT READ PAPER TAPE

The N register is cleared, and one six-bit coded character is read into N. Other
insturctions not using N may be executed during this time.

WPT WRITE PAPER TAPE

The six-bit coded character in N is punched. The contents of N are not changed.
Other instructions not using N may be executed during this time.

SNA K SHIFT N AND A RIGHT

The contents of N (1-6) and A (1-19) together are shifted K places to the right.
Bits shifted out of N (6) shift into A (1). Vacated positions in N are filled with
O’s. Bits shifted out of A (19) are lost. The sign of A is unchanged.

EXAMPLES

1. Write the commands to transfer the next 3 characters from paper tape to the
A register.

iggg gglé 1998 } Delay for ‘“N’’ register busy.

2000 RPT Read paper tape.

2001 BNN 2000 })

2002 BRU 2001 Delay for ¢“N’’ register busy.

2003 SNA 6

2004 RPT

2005 BNN

2006 BRU 2005 Read next 2 characters from paper tape to

2007 SNA 6 A register.

2008 RPT

2009 BNN

2010 BRU 2009

2011 SNA 6

2012 SRA 1 Position 3 characters as a BCD word.

The next 3-characters will be read in from the paper tape reader and positioned
as 3 characters in a BCD word. Appropriate subroutines from the GE 225 Pro-
gramming Library may be utilized for paper tape input. These subroutines will
not only accomplish the functions of reading paper tape, but will also convert the
6 bit paper tape code to the ‘‘proper configuration’’ for use in further processing.

2. Write the commands to transfer 3 characters from the A register to the paper
tape punch. Assume the 3 characters are represented in the ‘““proper configura-
tion”’ for punching.

3000 BNN

3001 BRU 3000

3002 SAN 6

3003 WPT

3004 BNN Write next 3 characters from A register to
3005 BRU 3004 paper tape.
3006 SAN 6

3007 WPT

3010 BNN

3011 BRU 3010

3012 SAN 6

3013 WPT

GE 225 PROGRAMMING MANUAL

98-

The next 3 characters will be punched out on the paper tape punch. Appropriate
subroutines from the GE 225 Programming Library may be utilized for paper tape
output. These subroutines will not only accomplish the function of punching paper
tape but will also convert the 6 bit character code of data within storage to the
‘‘proper configuration’’ for punching.

DATA PROCESSOR

GE 225 PROGRAMMING MANUAL

-99/100-

PUNCHED CARD OPERATIONS

Figure 23 Card Reader

CARD READING

During the alphanumeric mode, each card column (one
character) is converted into an equivalent binary-coded
decimal form consisting of 8 bits and forms one mem-
ory word out of each group of three card columns
(characters). Three card characters are represented
by 18 bits while one memory word consists of 20 bits.
The three characters making up the 18 bits are placed
in the 18 least significant bits of the memory word.
Thus, with three digits to a memory location 27 mem-
ory locations must be used per card with the 27th
memory location containing only two characters.

The starting memory address into which information
is placed is designated by the program and must be a
multiple of 128 but less than 2048. An address counter
in the card input logic circuitry is preset to the start-
ing address at the start of each card input operation.
Only four cards of information are contained in mem-
ory at any one time unless transferred to other areas.
After four cards have been read into memory, the
fifth card is read into the same location as the first
card and so forth.

Data from
first card - Read into memory at (starting ad-
dress) to {starting address +26)
Data from

second card ~ Read into memory at (starting ad-
dress +32) to (starting address +58)

Data from
third card - Read into memory at (starting ad-
dress +64) to (starting address +90)

Data from

fourth card - Read into memory at (starting ad-

Data from
fifth card - Read into memory at (starting ad-
dress) to (starting address +26)
ete.

The word following the last word filled from the card
(starting address +27, starting address +59, starting
address +91, starting address 123) will automatically
receive the following information:

Bit position 0 - ““On’’ when the reading of card
is complete.

Bit position 1 - “*On”’ when the card is the last
card in the input deck.

Bit positions 14
through 18 - “On’’ to indicate proper syn-
chronization of the card reader
during the reading of the card.

During the binary mode of operation, the circuitry
forms one 20-bit memory word out of each set of two
ten-bit card columns. The first column is placed in
the 10 most significant bits of the memory word, the
second column in the 10 least significant bits of the
memory word and so forth. The 80 columns of punched
information must, during the binary mode, therefore,
be stored in forth memory locations. The starting
address into which information is placed is designated
by the program and must be a multiple of 128 but less
then 2048. An address counter in the card input cir-
cuitry is preset to the starting address at the start of
each card input operation. Only two cards of binary
information are contained in memory at any one time.
After two cards have been read into memory, the third
card is read into memory at the same location as the
first card and so forth.

Data from
first card - Read into memory at (starting ad-
dress) to (starting address +39)
Data from

second card - Read into memory at (starting ad-
dress +64) to (starting address +103)

Data from
third card - Read into memory at (starting ad-
dress) to (starting address +30)
ete.

The word after the word following the last word filled
from the card (starting address +41, starting address

+105) will automatically receive the following informa-
tion;

Bit Position 0 - “0On”’ when the reading of the
card is complete,

PROGRAMMING MANUAL

dress +96) to (starting address +122)

Bit position 1 - “On”” when the card is the last

card in the input deck.

Bit positions 10
through 18 - “On’’ to indicate proper syn-

chronization of the card reader
during the reading of the card.

CARD PUNCHING

GE 225

Figure 24 Card Punch

In the alphanumeric mode, a card punching command
initiates the necessary steps to energize the card punch
and read into the address counter the memory location
of the first word to be punched. An 80-bit register is
filled with the 80 bits which will constitute row 12 of
the card, the first row o be punched. This is accom-
plished by sequentially reading out of memory, 27 words
of output data, converting the three, 6-bit alphanumeric
characters contained in each word {there are only two
characters in the 27th word) to the 12-bit Hollerith
code and reading what will become the 12th row into
the BO bit register. The twelfth row is punched, fol-
lowed in sequence by the other 11 rows.

In punching a card in the binary mode, the output logic
functions in the same manner as for the alphanumeric
mode with the following exceptions. A 20-bit GE 225
word in memory will be punched on the card as two
ten-bit columns. {Rows 11 and 12 on the card are not
used in the binary mode.} The output information for
one card, therefore, is contained in 40 memory words;
the ten most significant bit positions of the first binary
word occupying the first card column, the ten least
significant bit positions of the first binary word oc-
cupying the second card column, etc. To punch the
zero row on the card, therefore, the output logic must
read the corresponding 2 bits from each of the 40 words
in memory into the 80-bit register.

PROGRAMMING MANUAL

-102-

TRANSFERS OF BINARY CODED DECIMAL DATA YO AND FROM PUNCHED CARDS

Read Cards Decimal RCD

Halt Card Reader HCR

Write Card Decimal WCD
RCD Y READ CARDS DECIMAL

This command initiates continuous reading of decimal cards into memory starting
at location ¥, where Y, is a multiple of 128 and less than 2048. The first card will
be read into locations Y through Y + 26, the second into Y + 32 through Y + 58, the
third into ¥ + 64 through Y + 90, the fourth into Y + 96 through Y + 122, the {ifth
into Y 4 26, etc. After each card is read in the sign bit of the word after the last
word of the card (Y +.27, Y+ 59, Y + 91, or ¥ + 123) will be set minus. After the
last card of the deck is read in, bit position 1 of the word after the last word of
the card (Y + 27, Y+ 59, Y+ 91, or Y + 123) will be set to a 1. If the card reader
is not in ready status when the READ instruction is given, the computer will halt.

HCR HALT CARD READER

This instruction halis the card feed. If a card is being read at the time this in-
struction is given, the reading of this card into memory will be completed, after
which no further cards will be read until another READ instruction is given. This
instruction does not delay the computer until input is complete. The program con-
tinues in sequence, therefore 3 delay must be programmed to insure that the in-
formation is in memory before attempting to utilize it.

WCD Y WRITE CARD DECIMAL

This instruction causes the information in memory locations Y through ¥ + 26
{(where Y is a multiple of 128} to be punched into a card in alpbanumeric format.
If the card punch is not in ready status when the WRITE instruction is given, the
computer will halt.

EXAPMPLES

1. Read one card into magnetic core storage beginning with memory location 0128,
Halt the card reader.

1000 RCD 0128 } Read card and halt.
1001 HCR

One card will be read, and the reader will be halted. Memory locations 0128 through
0154 will receive equivalent binary coded decimal representation of information
punched in columns 1-80 of the card.

2. Read cards into magnetic core storage, but do not halt the card reader.

1000 RCD 0128 Read cards continuously.

The card reader will continue to read cards into succeeding memory locations:
160-186, 192-218, 224-250. The fifth card will be read into 0128-0154, the next
into 160-186, ete.

3. Punch one card from magnetic core storage beginning with memory location
0256,

1000 WCD 0256 Punch card and halt.

One card will be punched and the punch will be halted. The contents of memory
locations 256-282 will be punched into columns 1-80 of the card in Hollerith code.

GE 225 PROGRAMMING MANUAL

-103-

PROGRAM REQUIREMENTS RELATED TO TRANSFERS OF BINARY CODED DECIMAL
DATA TO AND FROM PUNCHED CARDS

Branch on Card Reader Ready BCR

Branch on Card Reader Not Ready BCHN

Branch on Card Punch Ready BPR

Branch on Card Punch Not Ready BPN
BCR BRANCH ON CARD READER READY

If the card reader is ready to read cards and the card hopper is not empty, the
computer takes the next sequential instructions, if not, the computer skips the
next instruction and executes the second sequential instruction.

BCN BRANCH ON CARD READER NOT READY

If the card reader is not ready to read cards, or if the card hopper is empty, the
computer rakes the next sequential instruction. If the reader is ready and the card
hopper is not empty, the computer skips the next instruction and executes the sec~
ond sequential instruction.

BPR BRANCH ON CARD PUNCH READY

If the card punch is in a ready status, the computer takes the next sequential in-
struction; if not, the computer skips the next instruction and executes the second
sequential instruction.

BPN BRANCH ON CARD PUNCH NOT READY

If the card punch is not in a ready status, the computer takes the next sequential
instruction; if it is, the computer skips the next instruction and executes the sec-
ond sequential instruction.

EXAMPLES

1. Read a single card. Delay further processing until the card has been com-~
pletely read.

1000 RCD 0128

1001 HCR N : \
1002 BCN Read card and delay processing until completed.
1003 BRU 1002

The branch on card reader not ready command will transfer control {o the next
command until the card has been completely read. After reading has been com-
pleted, control will transfer to the command located at 1004,

2. Read cards continuously. Delay processing until each card has been completely

read.
1502 RCD 0128
1503 LDA 0155
1504 BPL Read card and delay processing until completed.
1505 BRU 1504

The load A command loads the word after the last word to be filled from the card
into the A register. The sign bit of the last word will be set to 1 when the card
is completely read. The branch on plus command will transfer control to the next
command until the card has been completely read. After reading has been com-
pleted, control will transfer to the command located at 1506. After processing of
the first card has been completed, it will be necessary to determine in the pro-
gram whether the second card has been completely read, ste.

GE 22 5 PROGRAMMING MANUAL

-104-

3. Determine whether or not the card just read is the last card of the deck.

1501 RCD 0128

1502 HCR

1503 LDA 0155 Read card and delay until completed.
1504 BPL

1505 BRU 1504

15086 SLA 0001

1507 BOV } Test and branch for last card in deck.
1508 BRU 3000

The word after the last word filled has been loaded into the A register by the load
A command in memory storage at 1503, Bit position 1 of the last word filled will
be set to a 1 after the last card of the deck has been completely read. The shift
left A command will cause the 1 to be shifted out of bit position 1 and the overflow
indicator will be turned on. The branch on overflow command will transfer con-
trol to the command in storage at 3000 when the last card of the deck has been

read. For all other cards control will be transferred to the command in storage
at 1500,

4. Determine whether or not the card just read is the last card of the deck (alter-
nate method).

3999 DEC 2T 10111 11111 11111 11111
1501 RCD 0128

1502 HCR

1503 LDA 0155 Read card and test for comparison.

1504 BPL

1505 BRU 1504

1506 SRD 6

1507 SLA 6 l Store bits 14-19 in the Q register for later re~
1508 EXT 3999 quirements,

1509 BNZ

1510 BRU 3000 } Test for last card in deck and branch.

The constant located in storage at 3999 will cause every bit position of the word
in the A register to be set to 0 for every card except the last card of the deck when
the extract command is executed. The branch of non-zero command will transfer
control to the command in storage at 3000 when the last card of the deck has been
read. For all other cards control will be transferred to the command in storage
at 1511, The commands at 1506 and 1507 will store bits 14-19 in the Q register
for later requirements.

5. In the above example determine whether there was proper synchronization dur-
ing the reading of the card.

3998 ocT 0000077

igi; éfg 6 } Clear A and recover bits.
1513 SUB 3998
%gig gg{z} 4000 } Test and branch for synchronization.

The commands at 1511 and 1512 will recover bits 14-19 from the Q register. The
contents of the A register should be zero after the constant at 3998 is subtracted
if there was proper synchronization during the reading of the card.

GE 225 PROGRAMMING MANUAL

-105-

6. Punch a single card. Delay further processing until the card has been com-
pletely punched.

1000 WCD 0256
1001 BPN Punch and test for completion
1002 BRU 1001

The branch on punch not ready command will transfer control to the command in
storage at 1002 until punching of the card is completed. When card punching is
completed, computer control will be transferred to the command in storage at
1003.

GE 225 PROGRAMMING MANUAL

-106-

TRANSFERS OF BINARY DATA TO AND FROM PUNCHED CARDS

Read Cards Binary RCB
Write Cards Binary WCB
RCB Y READ CARDS BINARY

This command initiates continuous reading of binary cards into me mory starting
at location Y, where Y is a multiple of 128 and less than 2048. The first card will
be read into locations Y through Y + 39, the second into Y + 64 through Y + 103,
the third into Y through Y + 39, etc. After each card is read in, the SIGN position
of the second word following the card image (Y + 41 or Y + 105) will be set to a 1.
After the last card of a deck is read in, position 1 of the second word following
this card image (Y + 41 or Y + 105) will be set to 1. If the card reader is not in
ready status when the READ instruction is given, the computer will halt.

WCB Y WRITE CARDS BINARY

This instruction causes the information in memory locations Y through Y + 39
(where Y is a multiple of 128) to be punched into a card in binary format. If the
card punch is not in ready status when the WRITE instruction is given, the com-
puter will halt.

EXAMPLES

1. Read one card into magnetic core storage beginning with memory location 0128.
Halt the card reader.

1000 RCB 0128 }

1001 HCR Read card and halt.

One card will be read, and the reader will halted. Memory locations 0128-0167
will receive equivalent binary representation of information punched in columns
1-80 of the card.

2. Read cards into magnetic core storage, but do not halt the card reader.

1000 RCB 0128 Read cards continuously.
The card reader will continue to read cards into a succeeding memory location
at 0192-231. The third card will be read into 0128-0167, the next into 0192, 231,

etc.

3. Punch one card from magnetic core storage beginning with memory location
0256.

1000 WCB 0256 Punch card and halt.

One card will be punched and the punch will be halted. The contents of memory
locations 0256-0295 will be punched into columns 1-80 of the card as follows:

Word Columns
0256 1 and 2
0257 3 and 4
0295 79 and 80

Each word is distributed, left to right in punching positions 0 - 9 of two columns
of the card.

GE 225 PROGRAMMING MANUAL

-107-

PROGRAM REQUIREMENTS RELATED TO TRANSFERS OF BINARY DATA TO AND
FROM PUNCHED CARDS

The program requirements for transfers of binary data to and from punched cards
are idential to those discussed previously regarding binary coded decimal data
except:

1. Bits 0 and 1, for indication of card reading completion and last card in the deck,
will appear in the second word following the card image (starting address +41 and
starting address +105).

2. Bit Positions 10 through 19 will be ‘‘on”’ to indicate proper synchronization
of the card reader during the reading of the card.

The programmer may program requirements as illustrated in the preceding ex-
amples for binary coded decimal data. However, for binary data transfers:

a. The LDA command at 1503 within the previous example 2 will now re-
ference memory location 0169 instead of 155,

b. The commands at 1506 and 1507 within previous example 4 will now SRD
10 and SLA 10 instead of SRD 6 and SLA 6 so as to store bits 10-18 in
the Q register for later requirements.

¢. When recovering bits 10 through 19 in example § the SLD command at
1512 should be SLD 10.

d. When testing the condition of bits 10 through 19 in previous example 5
for ‘‘on?’, the constant at 3998 should be changed to:

3998 OoCT 0001777

GE 225 PROGRAMMING MAMNUAL

-108-

CASE PROBLEMS ILLUSTRATING REQUISITION COST AND LABOR PRICING

Problem: (1) Price labor vouchers
(2) Obtain requisition cost

INPUT: Weekly labor voucher cards merged with requisition cost sum-
mary cards by requisition number.

CUPUT: (1) Priced labor vouchers
(2) New requisition cost summary cards

INPUT CARD FORMAT:

Labor Voucher: Badge 1-5
Requisition 7-13
Area 28-30
Hours 31-33 (1 Decimal)
Card Code 80 (0)
Requisition Cost Card Requisition 7-13
Labor 27-33
O/H 36-42
Card Code 80 (1)

OUTPUT CARD FORMAT:

Priced Labor Voucher: Badge 1-5
Requisition 7-13
Areg 28-30
Hours 31-83
Labor 34-39 (Hours X Area Rate)
Card Code 80 (0)
Requisition Cost Card: Requisition 7-13
Labor 27-33
O/H 36-42 {Labor X Requisition O/H %)
Card Code 80 (1)

REQN O/H percentage based on 1st digit of requisition

1st Digit

of Reqn. O/H %
0
1 } 100
2
3
4 } 150
5
6 250
7
8
9 300

GE 225 PROGRAMMING MANUAL

-109-

VOUCHER Hourly rate based on area (4 decimals)

Area No. Area Rate
050 2.5623
125 3.1275
220 2.0000
360 3.2500
420 1.7500
500 2.2500
600 2.3750
640 2.8715
703 2.4571
800 2.7550

CASE PROBLEM
MEMORY ALLOCATION LAYOUT SHEET

INPUT
Labor Voucher Requisition Cost Card
Y- N
/ \ / \
LOC 0 1f2 718 13|14 19(10 1)2 718 13(14 19
128/256 | 00 Badge Badge Badge 00 ——— ——— ————
129/257 | 00 | Badge Badge —— 00 — ——— ————
130/258 | 00| Reqn Reqn Reqn 00| Reqn Reqn Reqn
131/259 | 00| Reqn Reqn Reqn 00| Reqn Regn Reqn
132/260 | 00| Reaqn - ———- 00| Reqn —— _—
133/261 | 00 ——— ——— — 00 ——— ——— ———
134/262 | 00 ——— -—— ———— 00 ———— ——— ——
135/263 | 00 ———- ——— ———— 00 ———— ——— _——
136/264 | 00 ———- -—— _—— 00 _——— ——— Labor
137/265 | 00 Area Area Area 00 Labor Labor Labor
138/266 | 00| Hours Hours Hours 00| Labor Labor Labor
139/267 | 00 ~——- -—— ——— 00 ——— ——— O/H
140/268 | 00| ---- ——— ———— 00| O/H O/H O/H
141/269 | 00| ---- ——-- ———— 00| O/H O/H O/H
142/270 | 00 ---- ——— ——— 00 ——— ——— ———
143/271 | 00 -——- ——— ———— 00 ——— ———— ———
144/272 | 00 ———- ———— ———— 00 ——— ——— _—
145/273 | 00 -———- ——— ——— 00 ——— ——— ———
146/274 | 00 -—-- -——- ——— 00 ——— ——— ——
147/275 | 00 ———— -——- ———- 00 ---- ———- ———
148/276 | 00 ——— -—-— ———- 00 -——- -—— ————
149/277 | 00 -—— - -——— 00 -——- ———- _———
150/278 [00 | ---- ———- ———- 00| ---- ———- ——
151/279 [00| ---- S ——-- 00| ---- - -
152/280 | 00 ——— -——- ——— 00 ——— -——- _——
153/281 | 00 ——— ——— ——— 00 -——— - ———
154/282 | 10 -——- Card Code ———— 10 ———- Card Code -———

GE 225 PROGRAMMING MANUAL

-110-

CASE PROBLEM
MEMORY ALLOCATION LAYOUT SHEET

OUTPUT
Priced Labor Voucher Requisition Cost Card
/\ /\
/ \ / \

LOC 0 1|2 718 13|14 19 LOC 0 12 18 13(14 19
384 00 Badge Badge Badge 512 00 —— ——— ———-
385 00 Badge Badge ———- 513 00 ——— ——— _——
386 00 Reqn Regn Reqn 514 00 Reqn Reqn Reqn
387 00 Reqn Reqn Reqn 515 00 Reqn Reqn Reqn
388 00 Reqn ---- ——— 516 00 Reqn ——— _———
389 00 -—— ---- ———— 517 00 -—-- -—-- -——--
390 00 ———- ———- ———- 518 00 -—-- -—— -——
391 00 -——- -—-- ———— 519 00 -—-- -———- -——-
392 00 -——— ———- ———— 520 00 ———- -—-- Labor
393 00 Area Area Area 521 00 Labor Labor Labor
394 00 Hours Hours Hours 522 00 Labor Labor Labor
395 00| Amt Amt Amt 523 00| ---- ——— O/H
39 00 Amt Amt Amt 524 00 O/H O/H O/H
397 00| ---- - —-- 525 00| O/H O/H O/H
398 00 ——— -———— ——— 526 00 -——-- ——— -————
399 00 ———— ——— ——— 527 00 -——-- -——— ————
400 00 -———- -—-- ———— 528 00 -——-- -—-- -
401 00| ---- -—-- -—-- 529 00| ---- - -—--
402 00 -—-- ———— ——- 530 00 -—-- -——-- -—--
403 00 ---- ——— ——— 531 00 ---- - -———-
404 00 ———- -———- -———- 532 00 -——-- ---- -—--
405 00| ---- -—-- - 533 00| ---- -——-- -—--
406 00 ——-- - _——— 534 00 -—-- -—-- -—--
407 00 -—-- ———— _—— 535 00 -—-- -—-- -———-
408 00 ———- -—-- -——-- 536 00 ---- ---- -——-
409 00 -—-- o S 537 00 -—-- s -——--
410 1 00| ---- |card Code 538 |00 | ---- lcard Code| ="

GE 225 PROGRAMMING MANUAL

-111-

CONVERT
LABOR TO
BINARY

' CARD READER

ADD

LABOR
TO REQN

LABOR

CASE PROBLEM
FLOW CHART

START

READER
DELAY

READY?

MODIFY
MOD
WORD 2

TRANSFER
TO W/A
TEMP

REQN SAME?

DETER-
MINE
O/H
RATE

123

CONVERT
AREA TO
BINARY

TLY
FOR
RATE

CONVERT
HOURS TO
BINARY

BOURS
X
RATE

v

ADD
VOQUCHER
LABOR
TO REQN
LABOR

CONVERT
VOUCHER LABOR
TG BCD

THANSFER
PUNCH
DATA
TO WRITE
AREA

wWeD
OUT,

LAST CARD?

RATE X
LABOR
& STORE

CONVERT
O/H TO
BOD

CONVERT
LABOR
TO BCD

TRANSFER
REQN
CosT

DATA TO
WRITE
AREA

PROGRAMMING MANUAL

GE 225

-112-

€Lt

TARH

TVANVYW ONIWWVYYOOUd

PROBLEM: Reqgn Cost & Labor Pricing

225 CODING SHEET

PAGE 1 OF 11

WRITTEN BY:
Symbol Opr Operand X Remarks Sequence
1] [[[[efs] [rop2f [][][192022 7576 | | 80
Ll 1t IORIGI4) | | | 1§ Lot
TEMIP) | IB(S(SI2171 1 1 ¢ 1 Work area for input cards (1
L1111 |OIRIGI410) ¢ 1 | Ll
TIEMIP]] BiSiS|1(4; {1 1 1 Work area for cost data RN
[11 11 |OR|GI60) | | § | Area table start |
TIABf | | [DIECI501 § 1 1 4 Area 050 L
L1111 |DIEC|T5) |1 g | Area 125 L1l
L1t 11 |DIEICIS 5 11 g | Area 220 [
[11 11 |[DEIC|1/4(05 | 4 Area 360 L1 1
L1 1 1 1 |DIEIC|6/0) | | | | Area 420 Ll
I 1111 |DIEC|810) || | Area 500 L1l
L1 1 11 |DIEICI1;010) § 4 | Area 600 g
L1 1 [DIECI40, 44 Area 640 L1
L1111 |[DIECI63) | 4 4 Area 703 L1t
Lt) |DIECI9T) 1) g Area 800 v L1l
Ll 1) [RIEM] § gy Rate Table Start N
TIA|B|L| | |D|E|C|2/5612(3] | Rate 2.5623 L1
| 1 1 11 |DIEIC|3)1)2715) | Rate 3.1275 L1
I 1111 |DIEIC|{21010]010) | Rate 2.0000 vy L1l

N4

LTAE N

TVONVYW ONIWWYEDO0Ud

PROBLEM: _Reqn Cost & Labor Pricing

225 CODING SHEET

PAGE_2 of 11

WRITTEN BY:
Symbol Opr Operand X Remarks Sequence
1] [[[Is|8] [tofsaf | [[[[fro]20]22 75/76] | | 80
L 11 11 |DIEIC|3/2151010) § | Rate 3.2500 N
| 11 1 1 |DIEIC|11715(010) | 4 Rate 1.7500 L 111
| 1 1 11 |DIE|C|2(2(51010] | | Rate 2.2500 L1t
| 11 11 |DIEIC|21317)510) | | Rate 2.3750 L 111
L1t 11 |DIECI287115) 4 4 Rate 2.8715 L
L1111 |[DIECI21415/71) ¢ | Rate 2.4571 Ll
1 11 (1 |DIEIC|21755101 | | Rate 2.7550 [1]
L1 1 11 |IDIECIO) § 414 Rate 0 v Lt
MO|D| I F|Y|DE|C|1(218) | { | | Double length word Ll
Lpo 11 IDIECIOp oyl [
MA|SIK] | o T|- 101 M 7117 Last card mask L
Z\E{R1Of | 101C1T|-11171710101717 Use to mask for card code L
Fio 11 1 IDECIOr 1 114 1 W/A for transfer control to ‘4emp’’ (11
TIEMP12) [DIEICIO | | |1 1] W/A for rounding L
TIEMPI31 IDIECIOr 1 11 1 14 Last card indicator TN
TIEMPI4 [B1Si8I21 1L L1 Temp. storage for labor voucher in binary N
T|AIB|L|2| |DIE|C|11010) | | | | Reqn % O/H Rate - 1st digit 0 L1
| 11 11 |DIEJC|11010) | § | | Reqn % O/H Rate - 1st digit 1 L1
L1 1 1| |DIEIC[1(0101 | | || Reqn % O/H Rate - 1st digit 2 bt

e
«

Gl

TR

TVANYW ONIWWVYIOOUd

225 CODING SHEET

PROBLEM: _Regn Cost & Labor Pricing PAGE 3 of 11
WRITTEN BY:

Symbol Opr Operand X Remarks Sequence
1 [T [Isls] Joldl [T 11T hol2ol22 7576l | | 80
L1 L 1 1 |DIEIC|1510f | | | Reqn % O/H Rate - 1st digit 3 Ll
L 11 1 1 |DIEIC|11510{ | | | | Rean % O/H Rate - 1st digit 4 L1
L1 1 1 1 |DIEIC|2/5101 | | | | Reqn % O/H Rate - 1st digit 5 L1l
[L1 1 1 |DIEIC|215(0(| | | | Reqn % O/H Rate - 1st digit 6 L1
L1 11 | |DIEC]25100 | | Reqn % O/H Rate - 1st digit 7 L1l
L1 1 1 1 IDIECI25/0) | 4 | | Reqn % O/H Rate - 1st digit 8 L1
L 11 1 | |DIE|C|31010) | | | 4 Reqn % O/H Rate - 1st digit 9 Ll
OVIERHDIBSSI2) | 1 1111 Used to store reqn overhead N

LIAIBIOIR] |BiSIS8I12y | | | { 11}

Used to store Reqn labor

FILFITY) IDIEICI510) 11 | (]

SIHIUINIDy IDIE(CIO] | |1 | |1

Rounding constants

Lt 11t |DIEjCI51010) | 4 | 111
RIOIUNID; IDIEICI11010) |} L1
RIOUND|AIDIE|C|110,010; | ; , L1l
Gl | | | | |DIECI128) | | Constant L1l
Lt 1 JORIGI11218) 1 4 4 Input area L1l
)Ny 3o B8 81207 1 111 Ll
L L1 1 | |ORIG|2(5(6] | | | | Input area L1

Ll L B8 SI2i7y (1114

Gec1)

9Ll

TVOANYW ONIWWVYEOOUd

225 CODING SHEET

PROBLEM: Reqn Cost & Labor Pricing PAGE 4 of 11
WRITTEN BY:

Symbol Opr Operand X Remarks Sequence
1] 11] Iels] Juofto | | | | | [9l20]22 756 | | 80
P11 loriGlsisi4 1 1 Priced voucher output area TR
OUITI 1 | IB18iSI2161 1 1 1 1 Established card code ‘0%’ in col. 80 L1 d
Lttt IAILIFIO0O | | Ll
1 lomriGlsite g Reqn cost area output area Ll
C101SiT) | IB1S(S1216; 1 1 1 1 Establish card code ‘1%’ in col. 80 R
Lt IAILFIONLO |1 g L1
1 11 11 |ORIG|6/0j0; | | | Program gtart Lf1
SITIAIR|T; [RICIDILING | | ¢ ¢ L1l
Lo JHCIRE) L1l
Al 1 1L 1L L IBICINL ot Lty
Lttt IBIRIUIA; |] | [
Lt 1 11 |DiL)DIMOIDIIFY) Ll
L1y ISITAI2) o1 Ll
Lt 31X AQ Ll 11
Lt 11 D8 TIMODIIFY, L1
i1t JADIDIG | o111 .
Lt L I8ITOBy o1 L1
Lt [RICDITING (g | 2 L1
P HCRE 1 Lt

AR

GC

TVANYW ONIWWVEDOUd

225 CODING SHEET

PROBLEM: __Reqn Cost & Labor Pricing PAGE 5 of 11
WRITTEN BY:

Symbol Opr Operand X Remarks Sequence
1t TT T Tels] Tolif TTT 1T holeof22 75i16] | | 80
Ci izl Zero modification word 3 TR
Ll 1 1 B TIAIS L L |
Bl {1 11 IDjwbiog 4o 3 Ll
Lt sy TlmEME g |3 Transfer input data into W/A “temp”’ (L
Lt I NG X2y oy b1 13 Ll
L IBiXgn2¢8) 1131 |3 Ll
LA b L IBIRUIBE | (1] 7 I
Lt DI AITEM P 11 +14) Lt
Ll L L L ISIVIBITIEMIP 4141 | Lol
L L L L IBINZE o LLrd
Lt 1 IBIRIUIRIE[QING | | | [
L 1 1L | 1 |DiLp|TEMPI 1412 Compare reqgn number - temp; temp 1 U
Ao b1 IDISIUITIEMP 2] 1 Ll
Ll b1 1 BNy ZL oy g L]
L1 IERUIRIEIQING | | | I
[T .SV ¥ 1] N O O i bl
b L IBINGZL b1
L1 1 [BIRIUREQN ({ | J L1l
Cl i1 11 |LIDIAITIEMP+/2(6) L1

TAREH

8llL-

TYANVW ONIWWVIOOYd

225 CODING SHEET

PROBLEM: _Reqgn Cost & Labor Pricing PAGE 6 of 11
WRITTEN BY:

Symbol Opr Operand X Remarks Sequence
1] T T T Tel8] ool TTT T T lofzo]22 75l76] | | 80
L1 LB TlZEERO g ! CARD CODE ZERO OR ONE? Ul
L1114 (BINIZE g o)1l l L1 11
L1 11 [BYRUIDE gy CARD CODE 1 L 111
Ll tryNxl-1218 (11 (|3 ZERO MODIFICATION WORD 3 1
41111 |SPBIBICID| |BIIiN; |1 Ll
L1111 |DVECI4) g L1 11
L1111 |DIECI218) | ||| CONVERT AREA TO BINARY N
L1111 IDIECI3) gy L1
111 11 |BIRIUIERIRIOR| | | 11
Ll W AQp g MOVE Q TO A L 111
H| | (|| [SIUB|TIAIBl | | | | {3 Ll
I T I £ =30 \ 2 I O A O I L1
L1111 |[BIRJUITIES|T] | | | TLU FOR CORRECT AREA L 111

o sy s s RELATIVE RATE ADDRESS MAINTAINED IN L
IR R AT E MODIFICATION WORD 3 L
L1111 (BIRUMH) | ||| 1111
L1111 |BIRJUIEIRIRIOR| | | L 111
TIE|S|T| | {8|P|B|B|IC|D| BiI|N| {1 L1l
11 11| |IDIEC{4) (| |11 1110

“6LL-

TAEH

TVANYW ONIWWVYIOO0Ud

PROBLEM:

Reqn Cost & Labor Pricing

WRITTEN BY:

225 CODING SHEET

PAGE 7 of 11

Symbol

Opr

Operand

Remarks

Sequence

[[1]

8| [10

2l [[][] ho

22

75

76 | | 80

| S .

D|E,|C

|

Convert hours to binary

L1111

D|E|C

31 111111

B|R(U

ERIRIOIR) | |

M| P)Y

TIAIBIL] | | |

Rate table modified by mod. word 3

D|AD

SIHIUINID|)

Multiply and round

500

D,V (D

RIO|UIN|DJA| |

1000

MAIQ

I I |

Move A to Q

D|sT

TIEMPI4) | |

D|A|D

LI1ABIOIR) | |

Add voucher labor to reqn labor & store

D|S|T

L)A|BIO|R| | |

D|L|D

TIEMP|4) | |

Load ‘“A’’ with voucher labor

S|P|B

B I|N|BICiD| |

D(E|C

4 111111

Convert vou. labor to BCD

D|E|C

3191 11111

DIE|C

6L 111111

BIR|U

E|RIRIOIR| | |

L|D|Z

N O A

Zero modification word 3

SIT|A

31t 1l

L I

B|PIN

I O |

Checking card punch ready

TAE G

gVAN

TVNNVYW ONIWWVYEOOUd

225 CODING SHEET

PROBLEM: Reqgn Cost & Labor Pricing PAGE 8 of 11
WRITTEN BY:

Symbol Opr Operand X Remarks Sequence
1t 7T [Tels] Tojig] T 11 1 [hofzol22 75/76] | | 80
Lty IBIRJUIT fop g J 1oLl
TIRJAINIS| |[DILIDITVEMIP] | | 3 |3 I
Lt Ioisyrlouimy o g U3 Transfer priced voucher data to punch L
I N O O I I W21 T T O OO 6 I O - LL
Ll IBX L4y p ooy 13 L1
b1 IBIRIUITIRIAINIBY 1 J Lb41
L1111 (WCIDIOUITY | g Write priced voucher L1
b1 IBIRIUIE (1111 Pl
Dl 1 1 11 [SIPBIBICIDIBIIIN; | |1 Ll
Lt IDEClA Convert reqn labor to binary T
L L L) IDIECI27) (11 Pt
Lrr L IDECIT g1 L1
Ly IBIRIUIERIRIOR | |) Ll
{1 1 11 |DADlLIABOR, | | Add reqn labor to reqn labor b st
L1 1 DS TILIABIOR) | | .
E{ 1 111 |LIDIAITIEMP|+126) Lt
L1 |EX|TIMAISIK | 1 | Check for last card [111
Lt BIZYEL o L] J L1l
Lt IBIRIUIAL 1 11 1] Lt i

TR

-1t

TVANYW ONIWWVEDOUd

225 CODING SHEET

PROBLEM: __Regn Cost & Labor Pricing PAGE 9 of 11
WRITTEN BY:

Symbol Opr Operand X Remarks Bequence
1y |] Isl8] fojel 11| | | hoj20|22 75076 | | 80
oLl IS TIAITEMIP3) | Set last card indicator (1
RIEQIN; | |[LIDIAITIEMP;11+)2) Pl
L IsirAlL2 Determine O/H % by 1st digit of regn. L1t
L1 1 IS8 TiAIL gy L1
Lty 1 L DAITABILI2) o |1 Ll
Lt 1 1 ISITAIF g1) Ll
Lt {DILDILIAIBIOIR] | i
Lt L MPYIF L1
Ll L XAQ v a1 L 11
Lt ADDIDIFITIFITIY) | 111
Lt 1 [SITIAITIEMPI2)) 4 i1
L1 JEDZ) g MPY labor X O/H % round L1
Lt 1 IDIVIDIRIOUINIDy | | L L1
Lyt I8 TAIO\VIERHD, L1l
Lt 1 | LDAITIEMPI2 | L1141
Ll e XAQ Lrdt
L1 11 [DIVIDIRIOUIND; | | Lt
L1 1 [SITIAIOVIERHD 4+ 1 J L]
1111 |DILDIOWVIERIHD | } Ll 41

MTAEH

yel-

TVANVYW ONIWWVYIOOUd

CODING SCHEME FOR SIMULTANEOUS READ-PROCESS-PUNCH

WRITTEN BY: PAGE_1 OF 3
Symbol Opr Operand Remarks Sequence
1] [[[[e]s] Taofta] T T [T frof20f22 7sje[[| 80
NIO/RIEJAD|BICIN| | | | | | See if Card Reader is Ready 00404041
l 1 1 1 1 |BIRIU|N|OIRIEIAD| | Wait for Card Reader L 11 42
[1L 111 |ricDl3i8141 | {1} Read a Decimal Card into 384 (Area C) [11 13
L HICR] g Stop after Single Card L1114
BIAICIK) | [BICIN| | | | | 1] L 1115
L1 11 |BIRIU[BIAICIK] | | | Wait for Card Reader L1146
RIE;A|D] | |R|C|D|2,5/6; | | | | Read a Decimal Card into 256 (Area B) L
L1 1 1 1 HICR gy Read Single Card Only L 1148
Lo br bt L 111
L L 1 1 | |sipB|BCD; (BiI|N |1 Branch to BCD to BIN Conversion L1 1 19

CIAILIC|1| |D|E|C[0131814] | | | **Constant = To Area C Read In | 11110
L 1 1| |DIE|C|01010/5) | | | Column 5 of Card L1yt

L 11 1| |DE|C[00,043) 4 | | 3 Digit Field L1 112

| L1 1| { |BIRUIERRIOR, (1] Error Routine as Required |1 11,3

| 11 11 |DS|TIRAITE; | | Temporary Storage of Binary Rate [114

{11 (1 |sPB[BCD; BN, |1 Branch to BCD to BIN Conversion (Pieces to Binary) | | 1145

C|A|L|C|2| |D|E|C[0(3/814] | | | **Constant - to Area C Read In L 11146
L1111 [DIEC|0j0y3)2) | | | Column 32 of Card L1117

L 11 1 1 |DIE|C|0]01012 | | | 2 Digit Field L1 1148

| L1 1 1| |BRIUIERIRIOR| |24 Error Routine as Required L1 11,9

TAEH

-Let-

TVANVW ONIWWVYIOOYd

225 CODING SHEET

PROBLEM: Reqgn Cost & Labor Pricing PAGE 9 of 11
WRITTEN BY:
Symbol Opr Operand X Remarks Sequence
t] T T T Te[8] Tojo] TTTT T [of20]22 75l | | 80
L1 11 s AlTEMP3 4 Set last card indicator L1l
RIEQIN) | |L)DJAITEMP|11+/2) L 111
L sl g Determine O/H % by 1st digit of regn. L1
Lt 1 IS TIAIL g g g L 111
L1111 |LDATVABILI2) | ¢ |1 L 111
L1 11 ISITA[F) 4 g g g) L1
L 11 11 |DL|DILIABIOR| | | L 111
L1 MPYIF g1 L L1l
Lo JXAQ g1 L 111
L 11 11 [ADDIFIT|\/FIT|Y) | | L 111
11111 |S|ITIAITIEMP|2; | | L 111
Ly ozl MPY labor X O/H 9 round L
Il 1111 [{D)VIDIRIOUIND| | | 111
L1411 |8 TA|[OVIERHD, , L1
L1111 [LDAITIEMP2) | | L1
Ll IXAQ 111 L 111
I 1111 |D/WVDROUND ; 111
L1111 |S)TIA[OVIERHD|+1) [111
L1111 |IDILDIOV|ERHD)] 1111

TR

Il

TVANVW ONIWWVHOOUd

CODING SCHEME FOR SIMULTANEOUS READ-PROCESS-PUNCH

WRITTEN BY: PAGE 1 OF 3
Symbol Opr Operand Remarks Sequence
1 T T T Tels] Tolal TTT 1T hol2ofz 75ftel | | 80f
NIO|RIE(AIDIBICIN | 1 1 1 1 14 See if Card Reader is Ready 010,001
L1 1 11 |BJRIUINJOIRIEIAD] | Wait for Card Reader [11 12
L1 11 IriCiDl3814) | 1 ¢ Read a Decimal Card into 384 (Area C) P11 13
Ll 11 [BCIRl (g1 Stop after Single Card L1114
BIAICIKy | IBICINI (1 11114 (L1 15
L1 1 11 [BIRIUIBIAICIK] | | | Wait for Card Reader L1148
RIE{AD| | IRICD|2(5/6; | | | i Read a Decimal Card into 256 (Area B) R
Lt 1 [HICRE g Read Single Card Only | 1118
AN TN N U U O O N N O O O 0 O O L1
L L 1L 11 |SPBIBCD (BN |1 Branch to BCD o BIN Conversion L
CIAILIC|1| |DIE(C[013/8;4] | | | **Constant - To Area C Read In 11110
L1 1 1 | |DiECI0,010/5; ; 4 4 Column 5 of Card L o1og1gt
| 1 (1 1 |DIE|C]0101013) | ¢ | 3 Digit Field [11142
L1 1 (| IBIRiUERROR, |1 Error Routine as Required {1 (13
| L1 { | IDISITIRIATIE; ¢ { | Temporary Storage of Binary Rate | 144
V11 11 IS;PB|BCiD; (BN, |1 Branch to BCD to BIN Conversion {(Pieces to Binary) | g 115
C1A|L|C|2| |DIE|C|0;3/814] | | | **Constant = to Area C Read In L1118
| 1 111 |DIE|C|0,0y312) | | | Column 32 of Card LT
[1 111 |[DIE|C|0j0j0[2] | | | 2 Digit Field L1118
L L 11 IBRUIERROR, (2 Error Routine as Required {1 119

1%

TAE S

TVANYW ONIWWYEOOUd

CODING SCHEME FOR SIMULTANEOUS READ-PROCESS-PUNCH

WRITTEN BY: PAGE2of 3
Symbol Opr Operand X Remarks Sequence
1 [[[]e]s] Jropo] [][] ltof20f2 7spel | | 80
L1t IMP YR AITIE +1; Since Rate Only 1 Word Binary Value 0,0,0,2,0
L 1 1 | | ISPyB|BI\N, |B,C)D; |1 Branch to Binary to BCD Extended Am’t to P 1241
ClA|L|C 3 |D|E|C[0;3184) | | | **Constaut =10 Area C L1122
L 11 1 1 |PIEC|00/45; | | | Column 32 of Card L1123
L1411 |DEC[0,0,0;5 ; ;| > Digit Field L1124
{11 11 |RBUERROR, 3 Error Routine as Required P 1245
L L1 L | |uDAIPUNCH | | Bit Pattern of Command at Punch L 128
BRI I Put Bit Pattern of Punchin 0 (11247
P11 (WDAICAILIC (1) L1 128
L1 1 1| |ADD|CONST ;2 Binary Const = Decimal 2 Lt 129
| L L L1 IsyrolpiuiNCH 4 Change Punch Instruction to Punch Calc. Area [1 130
{11 {1 |L/DJAIRIEAD | ¢ | Bit Pattern of Command of Read [y 1351
Lt 11 ISITIOICIAILIC) 1) 4 | 1 1342
[11 L1 IsiTi0lciALIC) 12 | Change Constants to Refer to Read Area {1 1313
Lrgg 1 (SITOICIAILIC) 43 | L1 1314
L1 1 LA g g Put Punch Area Back in A L1 1315
L1 L1t IswuBlciomsiTy 12 Deduct 2 from Binary Punch Inst. (Changes it to Read) | 1 1816
L 1 L L1 ISITIOIREAD | | Read Now into Area Just Punched 11 1347
NOPIUIN| IBIPIN/ | 1 1] 111 ‘ 111348
L1111 |BRUINOIPUN | | Wait for Punch Cycle L1 1319

TAE

9Ll

TYANYW ONIWWVEOOUd

CODING SCHEME FOR SIMULTANEOQUS READ-PROCESS-PUNCH

WRITTEN BY: PAGE 3 of 3
Symbol Opr Operand Remarks Bequence
1] T T T Tela]l Tofio T T 1 1T 1 hol2o2z 76l | | 80
PUN{CiH] |W;C D 1,218 | 1 | **Punch Area Just Extended by Cale, 0100140
UL L L IBRUIBAICK | Go Back Read New Card & Cale. Other L q 1441
cloN;T12; IDiEICl2) 1 11 1y Constant Needed to Increase or Decrease by 2 |1 1442
Lt e b [11
AN N B AN I I A L1t
NN NN RN L1
[. e Notes: [
IR IR AR AN I A Area A =128 L1l
HEEEEEENEENEEN Area B = 256 L1
EEEEENEE NN Area C = 384 L1
NN [NEERE Actually: We Read into A L
[N N RN RN Calculate B L1t
EEENE NN EEEEEE Punch € L
IREE AN I BN N N N A A Then: Lidd
RN NS EEEREN Read into C L1
I AR A A Calculate A L1
BN NEEEEEERE Punch B L 1L
A T b Lrbird Then:]
HEEEE NN Read into B L1
NN NN EEEE NN Calculate C 111
EEE | NEERE Punch A and then Repeat BN

PROGRAMMING PRINTED REPORTS

Figure 25 High Speed Printer Sub-System

The Printer receives information directly from the
main memory of the computer, through the Data Mat~
ing Function, when the PRINT command is specified.
The Printer will print the ‘“‘hard type’’ equivalent to
10 numeric, 26 alphabetic, and 10 special characters
when correctly represented in binary coded decimal
form. A single PRINT command will cause printing
of up to 120 characters on one line from a block of
40 words of BCD data in memory.

Printer operations may be programmed to overlap
or share time with other processing, The printer
can be interrogated for ‘“‘ready’’ status {completion
of previous PRINT commands) by the BDM command.
The programmer may transfer control directly back
to the BDM command in a ““loop”’, for repeated inter-
rogation, until the printer is ready; or he may trans-~
fer control to another part of his program to execute

GE 225

other operations and return at a later time. The
printer is not considered as “busy during a slewing
operation.

¥ a number previously calculated within the computer
is to be printed, the binary number must first be con~
verted to the binary coded decimal equivalent using
the appropriate conversion subroutine from the Gen-
eral Assembly Program library. I the number is a
negative number, the sign of the number will be re~
flected by the insertion of a binary coded decimal hy-
phen or ¢“~”’ in the high order position {or low order
position at the discretion of the programmer) of the
number field so that the number will print as ¢-xxxxx’’
{or xxxxx~}. An alternate symbol might be chosen as
the symbol to represent a negative number in lieu of
the (~) hyphen. Alphabetic and alphanumeric data would
be carried in BCD from throughout the processing so no
conversions are necessary.

Data to be printed is transferred to the printer by
either of two modes of the available print commands.
Important considerations will arise regarding the ap~
propriate edit of the print data before or during the
transfer of the data and the skipping or “slewing’’ of
lines, Several alternatives exist to perform editing
and slewing. Editing may be accomplished by any
combination of the following methods:

1. Design of records to conform exactly to the design
of the print line,

2. Rearrangement of the record and insertion of edit-
ing constants to meet the requirements of the print
line by programmed changes.

3. Use of automatic format control to provide auto-
matic editing of data as the line is printed.

Slewing or skipping may be accomplished by:

1. Inserting the appropriate control and slew data with-
in the print command.

2. Writing separate slew commands to cause slewing
before the line is printed.

3. Wiring a separate slew command to cause slew-
ing after the line is printed.

PROGRAMMING MANUAL

GE 225

PRINTING OF DATA ON THE HIGH SPEED PRINTER

BRANCH ON DATA MATING FUNCTION INTERROGATED CONDITIONS

Operation QOperand Modification Record
+ T
BDM C P
+ F

P is the plug number or controller number to be interrogated. C is the number
of the specific condition to be tested, Both C and P havea range 0to 7. C+ T
calls for branching if the condition tested (C) is true. C + F calls for branching
if the condition tested if false,

Condition
Number Condition Tested

0 Printer Controller Busy
1
2 Out of Paper
3
4
5
6
7 Any Error in Printer Sub-System

HIGH SPEED PRINTER CONTROL INSTRUCTIONS

All HSP action instructions require three lines of GAP - 225 coding.

Write Print Line

Operation Operand Modification Word
1st line SEL P
2nd line WPL My F
3rd line WPL My N

P is the plug number (0 thru 7) to which the on line printer is attached. WPL is
the mnemonic code for Write Print Line. My is the memory “‘address’ of the
first data word in the line of 40 (maximum) data words to be printed. Data words
to be printed consist of three BCD characters each. I less than 40 words are to
be printed on one line, the sign bit must be ‘‘on” in the last word to be printed.
F is the format control indicator. H a blank is written in the ¥ position, the line
is to be printed without horizontal format control and My is ignored. X an F is
written in the F position, horizontal format control words starting at memory ad-
dress My are used to control the printing of the data words. N is the numeric
print indicator. If a blank is written in the N position, the data words to be printed
are alphanumeric., X an N is written in the N position the data words to be printed
consist only of decimal numbers and the 14 special symbols. Both Mg and My must
be in the same half of a 16K memory. After printing the paper is automatically
spaced one line. Spacing of 0 to 63 lines, or ejecting the paper to the top of the
next page may be coded as part of the WPL command by coding lines 2 and 3 in
QOctal.

PROGRAMMING MANUAL

-128-

1 = PRINT and slew
0 = Slew only

8 1 2 3 4 5 6 - 19
1 = Format 1 = Numeric Format
2nd line: 1 Vi ve V3 0= Aiyha" Address
0 = No Format numeric
3rd line: V4 V5 Ve c1 c2 Data Address

bit 5 is also part of the format address and is assumed to be the same

as data address bit 5.

¥ C1=0andC2=1,ignore V1 thru V6, and slew paper to top of next page.

I Cl=1 and C2=1, slew paper the number of lines (0 thru 63} indicated by the bi-
nary number in positions V1 thru V6.

Slew Paper a Fixed Number of Lines

Operation Operand Modification Word
1st line: SEL P
2nd line: SLW N
3rd line: SLW

P is the plug number {0 thru 7) to which the on line printer is attached. SLW is the
mnemonic code for SLEW PAPER. N is the number (0 thru 63) of lines to be spaced
or slewed before printing the next line.

Slew Paper to Top of Next Page

Operation Operand Modification Word
1st line: SEL P
2nd line: SLT
3rd line: SLT

P is the plug number {0 thru 7) to which the on line printer is attached. SLT is the
mnemonic code for slew paper to top of next page.

EXAMPLES

1. Assume that the data to form one line of print occupies 23 consecutive storage
locations at 2025 - 2047, Assume that the printer is plugged into data mating hub
6. Write the commands to print only 23 words of data on the high speed printer.

Assume the data to be printed is already in the proper format. Assume the data
to be printed is alphanumeric data.

3000 LDA 2047

3001 BMI

3002 BRU 3004 Set sign of 2047 to ~
3003 CHS

3002 STA 2047

3004 BDM 0+7T 8 Delay until ready.

3005 BRU 3004

30086 SEL 8

3007 WPL Print alphanumeric data

3008 WPL 2025

GE 225 PROGRAMMING MANUAL

-129-

The commands at 3000 - 3003 will ‘‘set’’ the sign bit of the 24th word to a 1. The
commands at 3004 and 3005 will delay processing until the printer is ready. The
commands at 3006 - 3008 will cause 23 words of alphanumeric data to be printed

on the high speed printer. After printing, the paper is automatically spaced one
line.

2. In problem 1 above assume that all of the data to be printed consists of either
numeric data or any of the 14 special symbols.

3007 WPL 2025 N.

All commands will be identical except the command at 3007 which will include an
N. in the position normally reserved for the modification word.

3. Assume in the above example that the paper is to be ‘‘Slewed’’ 16 lines after the
line is printed. Write the command to ‘‘slew’’ paper as part of the command to

print.
3006 SEL 6
3007 OoCT 22 0 00 00 BINARY CONSTANT
3008 OCT 03 0 37 51

All commands will be identical except the programmer will substitute the two con-
stants above at 3007 and 3008 as indicated below

2 2 0 0 0 0 0
- -~ — ~- ~~ - A
1({0jo0|11]0 0
—— ~ —— =~ =
P NO V1 V2 V3 A FORMAT ADDRESS
R F L
I O P
N R H
T M A
& A N
s T U
L M
E E
w R
I
0 3 C o 3 7 5 1
- N - - A~ ~ -~ —~ v A ~~ -
oj(ofo]1]1 1 1]1(1]1](1 1 1
V4 V5 V6 Cl C3 DATA ADDRESS
Binary 2025

The binary constant at V1 V2 V3 V4 V5 and V6 will represent the number of lines
to be slewed(16), after the line is printed. In the above examples the address 2025
is considered as the ‘‘actual’’ or absolute address in the ‘‘object’’ program of the
line to be printed. This address may be specified for the first word to be printed
by means of an ‘““ORG’’ operation.

4. Assume that the paper is to be ‘‘slewed’’ 16 lines after the line.is printed.
Write the command to ‘‘slew’’ paper as a separate command.

3009 SEL 6
3010 SLW 16 Slew paper 16 lines.
3011 SLW

GE 225 PROGRAMMING MANUAL

-130-

The commands above will cause the paper to ‘‘skip’’ 16 lines after the line is
printed. The commands above could cause slewing before the line is printed when
they precede the commands to print (WPL) and follow the commands to interrogate
the plug (BDM) for “BUSY’’.

5. Write the commands to cause the paper to skip to the first line on the next page

3009 SEL 2
3010 SLT SLEW TO FIRST PRINTING LINE
3011 SLT

The commands above will cause the paper to skip to the first printing line of the
next page.

GE 225 PROGRAMMING MANUAL

-131-

PROGRAMMED EDITING OF DATA FOR OUTPUT

Or Ainto Y ORY

Normalize A register NOR

Branch if Modification Word is High BXH

No operation NOP
ORY Y OR A INTO Y

Each bit of A is examined. If there is a 1 in A in a given position, a 1 is placed
in Y in that position. The contents of A are unchanged.

NOR K NORMALIZE A REGISTER

1f R, the number of leading zeros of A {1-19), is less than K, the contents of A
{1-19) are shifted left R places, and K-R replaces the contents of location 0000
(15-19). If R is greater than, or equal to, K, the contents of A {1-19) are shifted
left K places, and a zero replaces the contents of location 0000 (15-18). Positions
8, 1-14 of location 0000 are always set to zero. Vacated positions of A are filled
with zeros. The sign of A is unchanged.

BXH KX BRANCH IF X IS HIGH

1If the contents of X {7-18) are greater than or equal to K, the computer takes the
next sequental instruction if the contents of X (7-19) are less than X, the computer
skips the next instruction and executes the second sequential instruction. The con-
tents of X are not changed. This instruction is not automatically modified.

NOP NO OPERATION

Zero is added to the contents of A (s, 1-19).
EXAMPLES

1. Assume an 11 digit binary coded decimal number representing dollars and cents
is in memory storage beginning in word 0256 and ending in word 0259, Assume
that a decimal point is actually represented by the proper BCD configuration with-
in the 12 digit field. Write the necessary commands to delete insignificant zeros
to the left of the decimal point. The number in memory is represented as;

XXX XXX XXX XX
0256 0257 0258 0259
3996 DEC 19 00000000 000000 010011
3997 ALF 00110000 110000 110000
3908 DEC 8 00000 00000 00000 00110
3999 DEC 7 00000 00000 00000 00111
3148 LDZ oo e
3149 STA 0001 } Clear Modification Word 1
3150 LDA 0256 1
3151 NOR 19 Set up A Register for Zero Test
3152 LDA 0000
3153 BZE
3154 BRU 3164 } Test and Branch for 3 Zeros
3155 LDA 3996 C t f 19 Complement
3156 SUB 0000 | Convert from P
3157 SUB 3999
3158 BMI } Test and Branch for No Zeros.
3159 BRU 3179

GE 22 5 PROGRAMMING MANUAL

-132-

3160 SUB 3998

3161 BPL Test and Branch for 2 Zeros
3162 BRU 3170

3163 BRU 3175 Branch for 1 Zero

3164 LDA 3997 A

3185 ORY 0256 1

3166 INX 1 1 Insert 3 Blanks in Word and Test for Return
3187 BXL 3 1

3168 BRU 3150 J

3169 BRU 3179 Continue

3170 LDA 3997]

3171 SRA 6

3172 SLA 6 » Insert 2 Blanks in Word
3173 ORY 0256 1

3174 BRU 3179 J

3175 LDA 3997

gi;g gzi i‘g Insert 1 Bland

3178 ORY 0256 1

The commands in storage at 3148 and 3149 will replace the contents of modification
word 1 with zeros. The commands in storage at 3150 and 3151 will insert a num~
ber within location 0000, as follows. The value inserted within 0000 will be the
binary equivalent of 19 minus the number of high order zero bits in the A register:
The A register is then loaded with the number in storage at 0000 and tested for
zero by the commands at 3152, 3153 and 3154,

If the contents of the A register are equal to zero, the number of positions shifted
by the NOR command would be equivalent to 19; and, therefore, control is trans-
ferred to the command at 3164 to insert 3 spaces (blanks) within the word to be
edited. The command at 3164 will load 3 spaces (blanks) into the A register. The
ORY in storage at 3165 will cause the contents of 0256 to be replaced with binary
coded decimal spaces (blanks). Control will be returned to “edit”’ the next word
or continue in sequence if all 4 words have been *‘edited’’ by the commands in
storage at 3166 through 3169.

If the word in storage does not contain the equivalent of all zeros, control will con-
tinue with the command in 3155, The commands in 3155 and 3156 will load a ““bi-
nary 19’ into the A register, subtract the contents of 0000 from the “‘binary 1977,
and produce a number within the A register which is equivalent to the number of
0 bits shifted out of the high order positions of the word by the NOR command at
3151, The commands in storage at 3157, 3158 and 3159 will test the contents of
the A register to determine whether the NOR command executed 7 or more shifts.
If the NOR command does not complete 7 or more shifts, there are no blanks for
insertion in the high order positions; and control will be transferred to the com-
mand at 3179 to continue the program.

The commands in storage at 3160 through 3162 will further test the number of
shifts executed by the NOR command. If the NOR command executed 13 or more
shifts, control will be transferred to the command at 3170. The commands at 3170
through 3173 will replace the contents of the word to be edited with 2 blanks in the
high order positions of the word and transfer control to continue processing. The
instructions for the insertion of spaces (blanks) utilize the LDA command to load
a word consisting of 3 BCD blanks, the SRA and SLA commands to delete an ap-
propriate number of blanks, and the ORY command to insert the blanks to replace
the insignificant BCD zeros.

If the word to be edited does not contain 3 BCD zeros, no zeros, or 2 BCD zeros,
it must contain 1 BCD zero in the high order position. Control in this case will
be transferred to the commands at 3175 through 3178 for the insertion of 1 blank.

The above routine for insertion of blanks to the left of the decimal point in place

GE 225 PROGRAMMING MANUAL

-133-

of insignificant BCD zeros may be utilized as a subroutine package. Review ma-
terial on Programming for Subroutine Usage.

2. In the previous example, after zero suppression takes place, complete editing
by the insertion of appropriate commas and a dollar sign. The number in storage
after the insertion of a dollar sign and commas may occupy 5 words of memary.
Let these memory locations be 0255, 0256, 0257, 0258 and 0259.

3994 ALF 00, 0 000000 000000 111011 Additional
3995 ALF $AA 0 101011 110000 110000 Constants
3179 NOP
3180 BXH 3 1 Edit for 3 H O. Words of Blanks
3181 BRU 3211
3182 BXH 2 1 .
3183 BRU 3911 ‘(Edit for 2 H.O. Words of Blanks
3184 BXH 1 1 } .
3185 BRU 3914 Edit for 1 H.O. Words of Blanks
Control continues to 3186 when no H.O. words
of Blanks
3186 LDA 3995
3187 SRA 12 Load $ Symbol and insert in left hand
3188 SLA 12 position of 0255.
3189 ORY 0255
3190 DLD 0256
3191 SRD 6 } Insert 2 H.O.P. of 0256 into L.O.P. of 0255.
3192 ORY 0255
3193 LDZ
3194 STA 0256 } Zero out 0256
3195 SLD 6
3196 SLA 12 } Insert 1 L.O.P. of 0256 into 1 H.O.P. of 0256.
3197 ORY 0256
3198 LDA 3994 Insert comma into middle position 0256 and
3199 SLD 6 H.O. position of 0257 into L.O. 0256.
3200 ORY 0256
gggé 1{",3‘22 0257 } Load 0257 and preserve in Q.
gggi i&‘z 0257 } Zero out 0257. Reload A with contents of 0257.
3205 SLA ki
3206 SRA 1 } Insert 2 L.O.P. of 0257 into 2 H.O.P. of 0257.
3207 ORY 0257
gggg (L)gé gggg } Insert comma into L.O.P. of 0257.
3210 BRU 3219 Transfer to continue processing.
ggg é"ll‘): gggg } Load $ sign and 2 blanks into 0255.
3213 BRU 3219 Transfer control to continue processing.
3214 LDA 3995 } Load $ symbol and insert in left hand
3215 STA 0255 position of 0255.
3216 LDA 0257
3217 MAQ } Load 0257 and preserve in Q.
3218 BRU 3199
3219

A dollar sign with 2 blanks in the low order positions (L.O.P.) will be in storage
at 3995. A comma with zeros in the high order positions (H.O.P.) will be in stor-
age at 3994. The commands at 3180 through 3185 will test modification word 1 to
determine the number of high order words in the number which contain all blanks
after the edit routine in problem 1 is executed. If no high order words in the num-
ber contain all blanks, control will transfer to the command at 3186

PROGRAMMING MANUAL

GE 225

-134-

The commands in storage at 3186 through 3210 will insert a dollar sign into the
high order position of location 0255 and appropriately shift the number, with in-
sertion of commas where necessary, as indicated below.

XXX XXX XXX XX Before
0256 0257 0258 0259

* $XX X’X XX> XXX XX After
0255 0256 0257 0258 0259

The commands in storage at 3211 through 3213 will insert a dollar sign into the
high order position of location 0255 as indicated below.

BLANKS BLANKS BLANKS . XX Before
0256 0257 0258 0259
$BLANKS BLANKS | BLANKS BLANKS XX After
0255 0256 0257 0258 0259
i BLANKS BLANKS XXX XX Before
0256 0257 0258 0259
. $BLANKS BLANKS BLANKS XXX XX After
0255 0256 0257 0258 0259

The commands in storage at 3214 through 3218 and 3199 through 3210 will insert
a dollar sign into the high order position of location 0255 and appropriately shift
the number, with insertion of commas where necessary, as indicated below:

BLANKS XXX XXX XX Before

0256 0257 0258 0259

$BLANKS BLANKSX XX, XXX . XX After
0255 0256 0257 0258 0259

As mentioned in the previous example, this coding might be used as part of an edit-
ing subroutine package. The use of the NOP (No Operation) command is of particu-
lar interest here. At the time this example was prepared another instruction was
written in 3179, which is the natural continuation of example 1. A check of the
coding revealed that this instruction was not correctly placed and would have to
be deleted. Something therefore had to be done with memory location 3179. To
have the coding in example 1 jump to 3180 to continue or to have moved the cod-
ing for example 2 up on memory location would have necessitated several ad-
dress changes with attendant possibilities for clerical error. The NOP command
is a handy way to fill in such gaps in a program.

PROGRAMMING MANUAL

GE 225

-135-

EDITING OF DATA FOR OUTPUT WITH AUTOMATIC FORMAT CONTROL

If a line is to be printed under a format control, the format data is stored in the
Central Computer Memory under the same organization as the print line data.
The format control data consists of:

a. Any printable character.

b. Special control characters.

The Printer Controller, in assembling a formatted line, reads in from the Cen-
tral Computer Memory one word of data and one word of format. The first format
character is considered initially. If it is a printable character the character is
printed. If it is a special control character it is treated as described below. As-
suming it was a printable character, it is printed, and the first data character is
considered. If it is a printable character it is printed. It may be a special con~
trol character, in which case it is treated as explained below. In sequence, the
second format, then second data characters are considered, followed by the third
format and the third data characters. Following the consideration of the third data
character another word of data and another word of format are requested from the
Central Computer Memory. Upon receiving these new words, the procedure de-
scribed above is again followed. This routine is continued until a one is the sign
bit of a data word is encountered, whereupon, after consideration of that data word
and its respective format word, the sequence is ended.

There are five special control characters, mentioned above, which are available
for controlling the format of the printed line. These characters, and their BCD
bit representations are:

Ignore Octal 35
Ignore/Skip Octal 36
Delete Octal 37
Delete/8kip Octal 56
Zero Supress* Octal 57

*Note: Zero suppression is also incorporated when a printable $ symbol appears
within the format data.

If a format character is an Ignore, the next data character is immediately considered,

If a format character is an Ignore/Skip, a blank is printed and the next data char-
acter is considered.

If a format character is a Delete, the next data character is ignored, and the next
character considered is the next format character,

if a format character is a Delete/8kip, a blank is printed, the next data character
is ignored, and the next character considered is the next format character.

If a format character is a Zero Suppress, the next data character is ignored and
the next format character is printed if it is a printable character. After consider-
ing this last format character blanks will be inserted in the print line until; (a)
a non-zero data character is detected, or (b) a period comes up in the format data,
It should be noted that once a Zero Suppress has been put into effect the print line
data is inspected only for a non-zero character. The format data is inspected only
for a period. Zero suppression is also incorporated when a printable dollar sign
appears within the format data.

It is possible for an Ignore or an Ignore/Skip character to be placed in the print
line data (as well as the format control data). If a data character is an Ignore,
the next format character is immediately considered and nothing is printed for
that data character. If a data character is an Ignore/Skip a blank is printed and
the next format character is considered.

G E 225 PROGRAMMING MANUAL

-136-

The above procedure makes it possible for a line format to be stored in the Cen~
tral Computer Memory once, and be used as often as needed to print lines of data
in that format. The data may, within the limitations imposed by the use of the
special control as described above, be stored in sequence in computer memory,
the Printer Controller automatically constructing the print line according to the
prescribed format.

EXAMPLES

1. Assume that 4 words of data represent the following information in storage at
0256, 0257, 0258, 0239 and 0260 represented as BCD data.

MEMORY
ADDRESS
0256 257 258 259 260

X X1 X1 X} X X X X X1 X X X X X X

Sone B, o —g

HOURS WORKED OCCUPATION GROSS EARNINGS AMOUNT
CODE

Assume that it is desired to print 4 words of the above data as {ollows:

X X . X | BPACE SPACE | SPACE $X ,EX¥ XXX .XX
S g v L. —” o
HOURS WORKED GROSS EARNINGS

Assume that insignificant blanks and zeros must be deleted from the gross earn-
ings field, before it is printed. Arrange the data, design the format control data,
and write the commands to write the data under automatic format control. Assume
that the origin of the format data will appear in storage at 3100. Assume that the
origin of the data before it is printed will appear in storage at 3600,

GE 225 PROGRAMMING MANUAL

-137-

FORMAT DATA

M
‘ \
Memory Addresses L0 3101 3102 3103 3104
; . §) ‘ 1
35|35 .| 56/ 56/56| 1| ,|35/35|, |35|35/|.]|35

4 4 4 4 A 4 4 A 4 &

Positions
OS2 3 4 5 6 7 8 9 10 11 12 13 14 15
V.YV VvV V VvV v v ¥V vV VvV v Vv v VvV Y
X|Ix | x| A AlAl x| x|x x| x|x|x|x|Xx
Memory \ ~ J v v J v \ y)
Address 3600 3601 3602 3603 3604
N J
2'g
PRINT DATA
LINE IMAGE TRANSFERRED AND PRINTED,
XIX| | X|s|s|s8|$[x|,|X|X|X| [|X|X|X]| [X|X
%, Ao, r i
el Ny V"
Positions Position Position
1-3 4-8 7 - 15
Comparison Comparison Comparison

Created by comparison

of Positiong in Format

Data and Print Data
KEY

A ANY BIT CONFIGURATION PERMISSABLE
8 SPACE

X ANY ALPHANUMERIC DATA CHARACTER
35 OCTAL 35 FOR IGNORE

56 OCTAL 56 FOR DELETE/SKIP

57 OCTAL 57 FOR ZERO SUPPRESS

NOTE: Zero suppression is also incorporated when a printable dollar sign
appears within the format data.

GE 22 5 PROGRAMMING MANUAL

-138-

GE 225

2999
3100
3101
3102
3103
3104

3501
3502
3503
3504
3505
3506
3507
3508
3508
3510
3511

WPL

3100

035 38 33
056 56 56
053 73 35
035 73 35
035 33 35

0256
3600
258
3602
0280
3604
O+ T
35

3100
3600

]
7
6
F

Origin of Format Data

FORMAT DATA

Insert words 0256 and 0257 in 3600 and 3601.

Insert 5 characters in 3602 and 3603

Insert 4 characters 3604 and 3605

Print line under automatic format control.

The pseudo commands at 2099 through 3104 cause the necessary format data to be
established at 3100, The commands at 3501 through 3506 ‘““set’’ up data words 3600,
3601, 3602, 3603, and 3604, for printing. The commands at 3507 through 3511 will
print the line under automatic format control. Automatic format control will cause
the line to be printed as described above by comparison of each format data posi-
tion and each print data position sequentially. Each comparison causes the trans-
fer of the desired character to build the line image as described above.

DAYTA PROCESSOR

PROGRAMMING MANUAL

-139/140-

Figure 26 Magnetic Tape Sub-Systems

MAGNETIC TAPE OPERATIONS

Before beginning this discussion it would be well to
consider a few fundamental terms normally used in
any type of data processing. These are:

Record

A collection of facts peculiar to an identifiable item.
Examples are: an employee’s pay record; a customer’s
account containing the date and amount of payments
made relative to an obligation; and, an inventory card
containing a balance on hand for a specific stock num-
ber.

File

A file may be referred to as an accumulation of related
records. For instance, in any payroll system a record
is maintained for each employee in the company. The
record will contain various data such as the individual’s
name, pay number, rate of pay, type of employee (dir-
ect or indirect), the number of withholding exemptions,
and other types of deductions to be made from the
employee’s gross pay at each pay period. An accum-
ulation of all payroll records for a company is termed
a ““payroll file’’,

Files are comprised of many forms of information.
The example given above may also be termed a mas-
ter file. The accumulation of all stock withdrawal
cards for a specified period of time to be processed
against a stores master file for the purpose of up-
dating balances on hand is also referred to as a file
- a stores transaction file.

Key

In order to process a transaction file against a mas-
ter file, it is necessary to have some identification
common to the master data and the related trans-
action. This may be accomplished through the use
of a ‘“’key’’ which produces a zero when the trans-
action key is subtracted from the master key. Ex-
amples of keys are: stock number, pay number, cost
center, and job level.

The basic use of magnetic tape is to serve as a file
storage medium. The prime benefit derived from
this type of storage is the rapidity with which in-
formation can be placed on the retrieved from the
tape surface. Storage may be ‘‘on-line’’ where the tape
is utilized as auxiliary memory to the Central Pro-
cessor, but more commonly it will be ¢‘off-line’’ where
one or more reels are used to hold complete master
files and transaction files. Master file and trans-
action tapes usually are sequentially ordered by the
record key (e.g., job number, pay number) in order
to take advantage of the fast sequential record access
associated with tape reading and to facilitate pro-
cessing within the computer. An exception to the
sequential requirement is the use of tapes in con-
junction with a random access memory device. In
this latter case the magnetic tape is used chiefly as
a compact storage medium for vast amounts of data.

Sorting of transaction data may be done prior to con-

version to magnetic tape. For instance, punched
cards may be sorted in ascending sequence before

PROGRAMMING MANUAL

GE 225

-141-

placing their contents on tape. Under other circum-
stances it may be more desirable to sort transac-
tions within the computer. (This is an example of
the use of ‘‘on-line’’ temporary tape storage).

Information is placed on magnetic tape in groups of
words referred to as records or blocks. A record
may consist of only one word, or it may be as large
as the entire computer memory. Each record or
block is separated by a 3/4 inch gap of erased tape
which permits starting and stopping between records.
It is extremely important for the programmer to re-
alize that this use of the term ‘‘record’’ is not the
same as that previously defined. It is true that the
size of a magnetic tape record may be varied at the
option of the programmer, but a ‘“magnetic tape re-
cord’’ would not normally be made the same size as
the ‘¢data record’’. To do so would unnecessarily
waste tape space with an excessive number of inter-
record gaps (3/4 inch of tape each). In normal data
processing several data records will be contained
in each magnetic tape record. In order to avoid this
confusion of terms, magnetic tape records might be
consistently referred to as ‘‘blocks’’, or data records
might be consistently referred to as ¢‘items’’. Un-
fortunately, ‘‘record’’ is a very popular and tradi-
tional term for both usages.

The use of magnetic tapes implies files of great size.
Therefore, in many programs a file will consist of
more than one reel of tape. When the end of a tape
or the end of a file is reached, the tape reel must be
rewound, removed and replaced. To maintain the con-
tinuity of the running program it is very worthwhile
to program an immediate switch, or alternation, from
the just completed tape to the succeeding tape (already
mounted on another handler). This technique permits
the mechanical rewind and manual removal of the com-
pleted tape to proceed independently of further pro-
cessing. If sufficient tape units are not available to
permit convenient switching for all files, the most
extensive files should be given priority in the allot-
ment of tape handlers.

Tapes used with the GE 225 contain a silver spot to
signal the physical end of the tape. When detected by
a photo-electric cell within the tape unit, an indicator

is set. The condition of the indicator should be tested
by programmed instructions after reading or writing
each record. If the indicator is not set, normal pro-
cessing will continue; if set, an end of tape branch will
jump into program specified subroutines - normally
the rewinding of the current reel and alternation to
a new reel. The end of file sentinel is the magnetic
representation of the binary code 0001111 preceded
by an erased section of the tape 3 3/4 inches long.
During magnetic tape operations several other excep-
tional conditions may occur which are secondary to
the main processing job. A list of all such conditions
is as follows:

Controller Busy

End of File

End of Tape

. Tape Rewinding

Parity Error

. Input-output Buffer Error

. Modulo 3 or Modulo 4 Error
Any Error

“ .

Handling of these exceptional conditions may be con-
veniently assigned to ‘“‘executive routines’’. The ex-
ecutive routines will be provided to magnetic tape
users of the GE 225 as part of standard input-output
packages that both detect and correct the above con-
ditions, when they occur, according to standard oper-
ating conventions.

In order to process a computer run we must know the
data contained in each tape. Is it the master file?
Is it the proper transaction file? To tell us this, ex-
terior and interior labels are used. Exterior labels
are notations placed on the container relative to the
tape data. Interior labels are recorded magnetically
on the tape for positive identification and are tested by
the computer program. Interior labels are the most
important. They are permanent, and reliably estab-
lish the tape content. Each input or output tape should
contain this identification. It is properly placed in the
first record of the tape and should contain the date,
identification, and reel number. These data should be
checked by the computer program before any further
processing ensues.

PROGRAMMING MANUAL

GE 225

GE 225

TRANSFERS OF DATA BETWEEN THE MAGNETIC TAPE UNITS AND THE
CENTRAL PROCESSOR

BRANCH ON DATA MA TING FUNCTION INTERROGATED CONDITIONS

T
BDM C + p.
P

P is the plug number or controller number to be interrogated. C is the number of
the specific condition to be tested. Both C and P have the range 0 to 7. C+ T
calls for branching if the condition tested (C) is true. C + F calls for branching
if the condition tested is false.

Condition Number Magnetic Tapes

Controller Busy

End of File

End of Tape

Any tape rewinding
Parity Error
Input/output Buffer Error
Mod 3 or Mod 4 Error
Any Error

SO U WN = O

MAGNETIC TAPE CONTROL INSTRUCTIONS

All magnetic tape movement instructions require three lines of GAP-225 coding.

Operation Operand Modification
1st line: SEL P
2nd line: XXX M
3rd line: XXX N T

P is the plug number (0 thru 7) of the magnetic tape controller to be selected for this
magnetic tape instruction. M is the memory address (decimal number of alpha-
betic symbol) of the first word of a block of N+ 1 words to receive data from mag-
metic tape on tape read instructions. On tape write instructions, M is the address
of the first word of a block of N words to be written on magnetic tape. N is the
maximum number of words to be read or the exact number of words to be written.
T is the number of the Tape Unit (0 thru 7) to be activated on plug P. XXX is the
mnemonic code for the specific tape movement desired. The mnemonic codes for
specific tape movements are:

WTD Write tape in decimal mode

WTB Write tape in binary mode

RTD Read tape in decimal mode

RTB Read tape in binary mode

RWD Rewind to tape to leader

BKW Backspace one record and position WRITE Head
BKR Backspace one record and position READ Head
WEF | Write END of FILE

When writing on magnetic tape in binary mode, one word of memory becomes four
6-bit characters on tape as shown below:

PROGRAMMING MANUAL

-143-

Four 6-BIT Characters
recorded on tape Numbered bits of word in memory

S 123456 7(89 10 11 12 13|14 15 16 17 18 19

J

P

P
3rd Char 8 9 10 11 12 13 P |«

P

Ist Char 0 0 o o0 s 1

2nd Char 2 3 4 5 6 17

4th Char 14 15 16 17 18 19 —

W P is a generated odd parity bit for each character.

When writing on magaetic tape in decimal mode, one word in memory becomes three
7 - bit characters on tape as shown below, but some of the 6 - bit patterns are al-
tered to conform to the IBM 727 tape binary codes for BCD and alphebetic charac-
ters. The alteration of the character codes when writing and reading magnetic
tape is automatic.

20 bit word in memory

2
Three 6-BIT Characters S1 THRU 7 8 THRU 13 14 THRU 19

recorded on tape j
1st Char 2THRU 7 P |«
2nd Char 8 THRU 13 P [«

3rd Char 14 THRU 19 P [«

P is a generated even parity bit for each character.

Bits S and 1 are not recorded on tape in decimal mode. Writing mixed binary and
BCD words on tape must be done in the binary mode When reading tapes in the
decimal mode, bits S and 1 are set to zero in memory for each word read from
tape.

After reading N words from magnetic tape into memory starting at location M,
(in either binary or decimal mode) memory location M + N will contain certain
zeros indicating that exactly N words were read from a record on tape containing
N words. If the number of words contained in the record currently read is less
than N, then only the contents of the record will be stored in memory and the 2’s
complement of the residue (N-record length) will be stored in memory cell M + N
with a one-bit in the sign position. If the number of words in the record is greater
than N, then only N words will be stored in memory and the increment (record
length-N) will be stored in memory call M + N with a zero in the sign position.
M is not indexable.

EXAMPLES

1. Read a record from tape unit 1, assume the controller is plugged into Data Mating
hub #4. Assume that records on magnetic tape are variable in length from 0 to 50
words. However, all data needed from processing is contained within the first 10
words of any record. The record is to be read into storage beginning at 1000.
Assume mixed binary and binary coded decimal data has previously been written
on the tape in binary mode.

GE 225 . PROGRAMMING MANUAL

-144-

888(1) gglg 86:)(')1‘ 4 } Delay until controller ready

0602 SEL 4

0603 RTB 1000 Read up to 10 words in Binary mode
0604 RTB 10 1

0305 BDM 0+ T 4 } Del til read

0606 BRU 0605 elay until ready

The commands at 0600 and 0601 will delay processing until the controller is not
busy. The commands at 0602, 0603 and 0604 will read up to 10 words from the
next record on magnetic tape. The commands at 0605 and 0606 will delay pro-
cessing until the record is completely read. Mixed binary and binary coded deci-
mal data may appear in a magnetic tape record when the record is both written
and read in the binary mode. Therefore, binary data may be calculated freely
without a need to convert before the calculation, and binary coded decimal data
will also retain its identity as binary coded decimal data.

2. After the record in problem 1, above, is read, interrogate the word at 1010
to determine whether the record contained more than 50 words. If the record
contains more than 50 words, continue further processing at 3000.

3998 DEC 40

0607 LDA 1010 Load 1010

0608 BMI T fer if 1 than 10 d
0609 BRU 0613 ransfer if less than rea
0610 SUB 3998 Test and Transfer for more
0611 BPL than 50 d

0612 BRU 3000 oD words

0613

The word after the last word read from the block will contain a 1 in the sign bit
position if the record read contained less than 10 words. Therefore, the com-
mands at 0608 and 0609 will cause further processing to continue at 0613 if the
record just read contained less than 10 words. If the record just read contain-
ed more than 50 words of data, the commands at 0610, 0611 and 0612 will cause
further processing to continue at 3000.

3. When the record in problem 2 above contains more than 50 words, write the
commands to backspace the tape unit and read up to 100 words from the record.
Load the number of words in the block into the A register and ‘‘halt’’ the com-
puter at ““BRU 3012”°.

3998 DEC 100

3000 BDM 0+T 4 .

3001 BRU 3000 } Delay until controller ready

3002 SEL 4

3003 BKR Backspace and position to read
3004 BKR 1

3005 SEL 4

3006 RTB 1000 Read up to 100 words into storage
3007 RTB 100 1

3008 BDM 0+T 4

gggg Egg ?(1)38 Load and convert to no. of words in
3011 ADD 3998 block Programmer halt no. of words

3012 BRU 3012 in block in A

The commands at 3000 and 3001 will delay the controller until it is ready. The
commands at 3002, 3003 and 3004 will cause the tape unit to backspace 1 block
and position to read the block. The commands at 3005, 3006 and 3007 will cause
up to 100 words of the record to be read. The commands at 3010, 3011 and 3012

GE 225 PROGRAMMING MANUAL

-145-

GE 225

will cause the number of words in the block to appear in the A register and a halt
due to a programmed loop. Further processing can be initiated from the console.

4. Write a command to rewind the tape to the leader.

ggg; ggl{\}l gOﬁlT 4 } Delay until controller ready
3013 SEL 4

3014 RWD } Rewind tape to leader

3015 RWD 1

The commands above will rewind the tape to the leader.

5 Assume that data concerning one item has been recorded in 2 records on tape
unit 2, on a controller on plug 4. Also, assume that pertinent data is contained
within the second record. Write the commands to ‘‘Skip’’ the first record and read
the second record into 1000.

;ggg gglg g.;b(;r 4 } Delay until controller ready
2502 SEL 4
2503 RTB 0 } Skip Record
2504 RTB 0 2
5 0+T 4
3286 gglg 2505 } Delay until ready
2507 SEL 4
2508 RTD 1000 } Read second record
2509 RTD 50 2

The commands in 2500 and 2501 will delay processing until the controller is ready.
The commands at 2502, 2503 and 2504 will ‘‘skip’’ a record on magnetic tape. The
commands at 2505 and 2506 will delay processing until the controller is ready.
The commands at 2507, 2508 and 2509 will read the next record from magnetic
tape into storage.

6. Assume the input tape is tape unit 1 on a controller on plug 4. Assume the out-
put tape is tape unit 1 on a controller on plug 5. Write the commands to read 50
words into storage from the input tape beginning at 1000 and to write 50 words on
the output tape. Interrogate the ‘“End-of-File’’ indicator on the input tape. If set,
write the end-of-file on the output tape and rewind all tapes.

2600 BDM 0+T 4 } Interrogate and transfer for input
2601 BRU 2613 end-of-file

2602 BDM 0+T 4 } .

2603 BRU 2602 Delay for input tape busy
2604 SEL 4

2605 RTD 1000 } Read record from input tape
2606 RTD 50 1

2607 BDM 0+T 4 } . .

2608 BRU 2607 Delay until record is read
2609 SEL 5

2610 WTD 1000 1 } Write record on output tape
2611 WTD 50 1

2612 BRU 2600 Return and repeat

ggii gg][\? gsi.li;r 5 } Delay until output ready

2615 SEL 5

2616 WEF } Write end of file

2617 WEF 1

ggig gglg ge+1ér 5 } Delay until end of file written

PROGRAMMING MANUAL

-146-

2620 SEL 5

2621 RWD } Rewind output

2622 RWD 1

2623 BDM 0+T 4 })

2624 BRU 2623 Delay for input tape busy
2625 SEL 4

2626 RWD } Rewind input

26217 RWD 1

2628 BRU 2628 Halt

The commands at 2600 and 2601 will interrogate the input tape file to determine
whether the last record on the input tape has been previously processed. If the
last record has been previously processed, further processing will be continued
with the command at 2613. The commands beginning at 2613 will initiate the nec-
essary steps to ‘“close’’ the files and terminate processing i.e. 2613-2617 will
write the end-of-file record on the output tape, 2618-2622 will rewind the output
tape, 2623-2627 will rewind the input and the command at 2628 will ‘“Halt’’ fur-
ther processing until further action is initiated from the control console. It is im-
portant to consider the necessity for writing the delay commands when initiating
action on the individual tape units. When information is transferred from or to a
tape unit, the controller or data mating plugis ‘“Busy’’ during the transfer. All op-
erations affecting any tape unit on the same controller must be delayed until the
transfer is completed (by use of the appropriate BDM and BRU commands). When
rewinding tapes on the same controller the ‘“‘rewind’’ controller is ‘‘busy’’ for 250
us, therefore ‘‘rewind’’ commands in a series should be preceded by appropriate
BDM and BRU commands. As a matter of policy it is appropriate to precede all
operations which affect magnetic tape with appropriate BDM and BRU commands.
Therefore, the commands to rewind the ‘‘input’’ magnetic tape (2625-2627) are pre-
ceded with the commands to ‘‘delay’’ even though the delay should have been in-
cluded in the previous processing sequences.

The commands at 2602 and 2612 will read records of 50 words in length from the
‘‘input’’ magnetic tape and write the records on the output magnetic tape with ap-
propriate delay commands as discussed above.

DATA PROCESSOR

GE 225 PROGRAMMING MANUAL

-147/148-

MASS RANDOM ACCESS FILE OPERATIONS

Figure 27 Mass Random Access File Sub-System

The Mass Random Access File Sub-System provides
the ability to store vast quantities of data and to access
that data randomly rather than sequentially. Random
access processing, as opposed to sequential processing,
is somewhat self-explanatory. That is, data to be pro-
cessed may be accumulated on either punched cards,
paper tape, or magnetic tape in the non-sequential
order in which source documents are received. For
example, checks in payment of insurance premiums
are received daily, and the account must be credited
with the amount paid. Naturally, these payments will
not be received in a strict numerical succession by
policy number. If payments were received this way,
we would have a Utopian example of sequential input -
we would not have to sort in numerical sequence prior
to magnetic tape processing within a computer. Se-
quential updating is normally a deinite requisite when
using magnetic tape as a storage medium. Since data
within the Mass Random Access File is directly ad-
dressable, sequential input is not required.

Using the insurance premium receipts as an example,
we are now in a position to process these transactions
against a master file contained in a Mass Random
Access File device. However, through the key, it is
not necessary to consecutively read every master re-
cord until an equal key is found to determine whether
it is the one we desire to update. In random access
processing we directly address the record using the

key; and the time taken in matching one piece of in-
formation to another is not dependent upon the loca-
tion of the last data processed, as it is in sequential
processing. The matching time is relatively negli-
gible since it is possible to go directly to the data we
need in the random access memory. Two or more
files, whose sequence is divergent, may therefore be
updated at practically the same time.

We must, however, have a method of using the key to
locate the master data; for in order to utilize the ran-
dom access capabilities of the file most fully, very
careful consideration must be given to the actual ad-
dressing of records. This may be achieved through
arithmetically modifying the key, using the result as
a random access memory address; or in some appli-
cations the key is synonomous with the address, and
no modification is necessary. Thus, the record ad-
dress will most often be either carried as the key with-
in the record itself or calculated by means of a special
routine. When the record address is given by the key
contained within the record itself, the key which corres-
ponds to the address is simply inserted by the program
into the address portion of the appropriate command
words. When the record address is calculated by means
of a special routine, it will be convenient to construct
and utilize this routine as a subroutine package. At
times the modification of two or more keys may result
in the same address. In such cases, a system of ‘‘link-
ing”’ is utilized to store and to address the proper re-
cord.

As we have seen, random access processing permits
us to store master records, and to process input files
non-sequentially. Some systems applications, how-
ever, may easily use a composite of random and seq-
uential processing. An inventory system may be used
as an illustration in which it is desired to update a
master file containing stock number, balance on hand,
unit cost, total cost, and order point; and, also to de-
velop raw material statistics by job number. For the
purposes of this example, assume that:

1. the master file is randomly contained in random
access memory,

2, the job number file is on a tape in numerical suc-
cession, and

3. the transaction file is sorted in numerical sequence
by job number.

We may now read a transaction, and using the job num-
ber as a key, update the proper job number master tape
record; and at the same time, the stock number key,
may be utilized to find and update the master inventory
record within random access memory. Study and ex-
perience will disclose the most convenient or economi-
cal methods for using sequential or random processing,
or a combination of both.

PROGRAMMING MANUAL

GE 225

-149-

GE 225

ACTUATOR

POSITIONING

ARM
Tr-}—

PISC 7

/E;GHT HEADS

FOR EACH DISC

Figure |

OUTER PART

128 Tracks

16 Sectors per Track
1 Record per Sector

500,000 Bits/Second

Transfer Rate

Figure Il

INNER PART

128 Tracks
8 Sectors per
Track
1 Record per
Sector
250,000 Bits/second
Transfer Rate

Above Information is
for One Side of Disc,
Other Side Exact
Duplicate

PROGRAMMING MANUAL

-150-

TRANSFERS OF DATA BETWEEN THE MASS RANDOM ACCESS FILE AND THE
CENTRAL PROCESSOR

BRANCH ON DATA MATING FUNCTION INTERROGATED CONDITIONS

BDM C+ P
F

P is the plug number or controller number to be interrogated. C is the number of
the specific condition to be tested. Both C and P have the range 0 to 7. C + T calls
for branching if the condition tested (C) is true. C + F calls for branching if the
condition tested is false.

CONDITION MASS RANDOM
NUMBER ACCESS FILES

Controller Busy
File #0 Ready

File #1 Ready

File #2 Ready

File #3 Ready
Input-Output Error
Parity Error

Any Error

SJOoO Uk wWhNE=O

MASS RANDOM ACCESS FILE CONTROL INSTRUCTIONS

Each Mass Random Access File (MRAF) consists of either 16 or 64 storage discs.
From one to four 16 disc MRAF’s or one 64 disc MRAF may be attahced to the GE
225 core memory through a single plug on the DATA MATING FUNCTION. The 16
disc MRAF stores 98,304 records, each record consisting of 64 20-bit information
words. Six numbers are required to address a specific 64 word record on a MRAF:

1. DATA MATING PLUG Number (0 thru7)

2. File Number (0 thru 3)

3. Disc Number (0 thru 15) or (0 thru 63)

4. Head Number (0 thru 7) Referenqe
Schematic

5. Track Number (0 thru 63) Figure 1

6. Record Number (0 thru 15) on 256 outer tracks gu

(0 thru 7) on 256 inner tracks

All MRAF instructions (except Branch on MRAF conditions) require three lines of
GAP 225 coding.

POSITION MRAF
OPERATION OPERAND MODIFICATION
1st line: SEL P
2nd line: PRF R
3rd line: OCT (MRAF Address)

P is the plug number (0 thru 7) to which the MRAF is attached. PRF is the mnemonic
code for Position MRAF to transmit or receive a specific record. R is the number
(0 thru 3) of the selected MRAF. The third line contains the actual MRAF address of
the record to be acted upon. The format of this line is:

20-bit word S|1thru6| 7thru 12 |13 thru 15 | 16 thru 19

Disc NumberJ
Track Number
Head Number
Record Number

GE 225 PROGRAMMING MANUAL

-151-

If S, the sign bit, is 0, the MRAF is positioned to read (or write) the specific record
designated by the entire address in bits 1 thru 19.

Is S is 1, the MRAF is positioned to read any one of the 8 or 16 records designated
by bits 1 thru 15. When a subsequent read MRAF instruction is given, the first
available record from this position will be transmitted to core memory.

READ MRAF
OPERATION OPERAND MODIFICATION
1st line: SEL P
2nd line: RRF N R
3rd line: RRF M

P is the plug numker (0 thru 7) to which the MRAF is attached. RRF is the mnemonic
code for Read MRAF. N is the number (1 thru 16) of 64-word records to transmit
from the disc storage to core storage. R is the number (0 thru 3) of the selected
MRAF. M is the core memory address (decimal number of alphabetics symbol) in
to which the first word of the first record is to be copied. All following words and
records, if any, will be copied into sequentially higher memory locations. M must
be an even multiple of 64 words. M is not indexable.

WRITE MRAF
OPERATION OPERAND MODIFICATION
1st line: SEL P
2nd line: WRF N R
3rd line: WRF M

P is the plug number (0 thru 7) to which the MRAF is attached. WRF is the mnemon-
ic code for Write MRAF. N is the number (1 thru 16) of 64-word records to trans-
mit from consecutive core storage locations to disc storage. R is the number (0

thru 3) of the selected MRAF. M is the core memory address (decimal number or
alphabetic symbol) from which the record(s) will be copied. The MRAF destina-
tion address will be the one at which the MRAF is currently positioned. M must be
an even multiple of 64 words. M is not indexable.

EXAMPLES
1. Read a record from mass random access file #1. Mass random access file #1 is

plugged into Data Mating plug #2. The record is to be read into storage beginning
at 640. The record is located at disc # 10, head #5, track #35, and record # 15.

0300 BDM O+T 2 } .

0301 BRU 0300 Delay until controller ready
0302 SEL 2

0303 PRF 1 Position MRAF

0304 OCT 0250737

0305 BDM 1+ F 2 } .

0306 BRU 0305 Delay until ready

0307 SEL 2

0308 RRF 1 1 Read Record from MRAF
0309 RRF 0604

0310 BDM O+T 2 } .

0311 BRU 0310 Dela,y until Read

The commands at 0300 and 0301 will transfer control in a continuous loop until the
controller is not busy. The commands at 0302, 0303 and 0304 will position the
MRAF to read the desired record as defined below:

GE 225 PROGRAMMING MANUAL

-152-

GE 225

0 2 5 0 7 3 7
—_— —_— —A —_— A —
oft1{o]1jofr|ofojo 1|1 |1jo |11]1f1(1

0 123456178 9 10 11 121314 1516 17 18 19

Disc #

Track #

Head # Record #
Binary 10 Binary 35 Binary 5 Binary 15

The command at 0305 and 0306 will delay further processing until the MRAF device
is positioned to read the desired record. The commands at 0307, 0308 and 0309
will transfer the desired record into storage beginning at 0640. The commands
in storage at 0310 and 0311 will delay further processing until the record has
been fully read into storage at 0640 - 703.

2. In problem 1, above, assume that all address data is known except the record
number. Read any one of the records within range of access on the same file,
disc, head, and track. Assume that the record to be read will furnish further in-
formation for the ‘‘search’’ and further processing will interrogate the data with-
in the record itself.

0400
0401
0402
0403
0404
0405
0406
0407
0408
0409
0410
0411

BDM
BRU
SEL

PRF
ocT
BMD
BRU
SEL

RRF
RRF
BDM
BRU

0+ T

N

0+T 2 }
0400
2
|
2250720
1+F 2 }
0405
2
1 1 }
640

0410

Position MRAF

Delay Until Ready

Delay until Read

Delay until Controller Ready

Read Record from MRAF

The commands above are identical to the commands in problem 1, above except
for the address at 0404. The address at 0404 corresponds to the following:

2 2 5 0 7 2 0

P e ——" — e 1 B et ——" e —

1j10|0j1|0|1]j0j1({0j0OJOf1f1]1]0]|1]|O]O (OO

0123456 7 8 910111213141516171819

— ~ A — ~ -~
Causes Disc# Track # Head #_ Record #
First Binary 10 Binary 35 Binary Binary 0
Available

Record to be

Transmitted

PROGRAMMING MANUAL

-153-

GE 225

3. In problem 1, above, assume the actual address of a record to be read from
the MRAF is contained within columns 1, 2 and 3 of a card. Assume that the card
has been read into storage previously, in binary coded decimal mode, beginning
in storage at 0128. Therefore, 0128 contains the appropriate address of the re-
cord in the MRAF. Insert the address into the appropriate command programati-
cally.

0298 LDA 0128 } Load and Store Address .
0299 STA 0304

Same and Problem 1, above.

The commands at 0298 and 0299 will insert the ‘‘address’’ from the card into the
command at 0304, in problem 1, above. The commands at 0302, 0303 and 0304 in
problem 1, above, will cause the MRAF device to be positioned to either read or
write the record at the address contained in columns 1, 2 and 3 of the card.

4. In problem 1, above, assume that card columns 1, 2, 3, 4, 5 and 6 of the card
contain an address from which the actual address may be derived. Assume that a
subroutine is in storage at 2000 which will appropriately derive the actual address
from the contents of word 0128 and 0129. Calculate the actual address and insert
it within the appropriate command.

0297 DLD 0128 Load columns 1 - 6
0298 SPB 2000 1 Transfer control to Subroutine at 2000.
0299 STA 0304 Store calculated address from A register.

The numbers to be calculated are loaded into the A and Q registers by the command
at 0297. The command at 0298 will transfer control to the subroutine beginning at
2000. The subroutine will ‘“derive’’ or calculate the actual or ‘‘absolute’’ address
and return control to the main program at location 0299. The command at 0299
will store the actual address from the A register into the appropriate command
which addresses the record.

5. In problem 1, above, write the commands to write the record into the MRAF
file at the same location. Assume the MRAF is positioned at the desired ‘‘address’’.

0505 BDM 1+F 2 } .

0506 BRU 0505 Delay until Controller Ready.

0507 SEL 2

0508 WRF 1 1 Write Record from Storage to File.
0509 WRF 0640

The commands at 0505 and 0506 will delay processing until the controller is ready.
The commands at 0507, 0508 and 0509 will transfer the record from storage to the
MRAF.

Q DATA PROCESSOR

PROGRAMMING MANUAL

-154-

Figure 28 Twelve-pocket Document Handler

MAGNETIC DOCUMENT HANDLER OPERATIONS

Magnetic Documents may be read continuously at speeds
of 1200 documents per minute, processed, and direct-
ed to appropriate pockets all under control of the cen-
tral processor of the GE 225. Because of the speeds
of document travel, and data transfer, the programmer
must direct his attention to timing requirements in
order to achieve maximum efficiency, i.e. simul-
taneous reading at maximum speeds and processing
of each document.

Timing requirements will be met if the program in-
structions are arranged to concide with the follow-
ing sequence of operations.

1. Read Document

2. Delay until Document Read

3. Direct Document to appropriate Pocket
4. Read next document

Figure 29 Two-pocket Document Handler

Since the ‘‘delay’’ in step 2 is really a programmed
function, the Programmer may readily execute an
alternative system of processing which utilizes the
simultaneous Read, Process (and Print) abilities of
the GE 225.

Read Document 1

Read Document 2

Direct Document 1 to Pocket
Process Document 1

Read Document 3

. Direct Document 2 to Pocket
Process Document 2

. etc.

.

O -JO U W

Such a pattern is illustrated in the examples which
follow.

The Document Handler can recognize 14 characters:
the ten decimal digits and four special symbols called
Cue Characters. Cue Characters are normally used
to separate fields of decimal digits, to identify dollar
amount fields and identification fields. Each charac-
ter is converted into the BCD code given below and
stored in the least significant four bits of a word in
memory. EXcept for the case of Cue Characters or
invalid characters, all other bits of the word are zeros.
If a character is invalid (cannot be recognized and
translated by the Reader), the sign bit of the word in
memory for that character is set to 1. I the charac-
ter read is one of the four Cue Characters, both the
sign bit and the most significant bit (bit 1) are set to
1.

PROGRAMMING MANUAL

GE 225

The following table gives the BCD codes for each of the 14 recognizable characters.

Magnetic Document GE-225
Character BCD Code (Bits 16, 17, 18, 19)

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

Cue 1 1100

Cue 2 1010

Cue 3 1101

Cue 4 1011
¢“INVALID CHARACTER”’ 1111

GE 225 PROGRAMMING MANUAL

-156-

BASIC PROGRAMMING OF THE MAGNETIC DOCUMENT HANDLER

BRANCH ON DOCUMENT HANDLER INTERROGATED CONDITIONS

OPR OPERAND MODIFICATION
T

BDM C+ p
F

BDM is the mnemonic code for Branch on Data Mating Function. P is the plug
number (0 thru 7) to which the Handler is attached. C is the number (0 thru 7)
of the specific condition to be interrogated. C + T calls for branching if the con-
dition tested is TRUE. C + F calls for branching if the condition tested is FALSE.

CONDITION

NUMBER CONDITION TESTED
0 Reader Number 1 reading
1 Reader Number 2 reading
3
4 Reader Number 1 feeding
5 Reader Number 2 feeding
6 Input Buffer Error (Priority)
7

Any error or parity error

MAGNETIC DOCUMENT HANDLER INSTRUCTIONS

One or two 1200 document per minute magnetic document handlers may be con-

nected on line with the G E-225 through a single Data Mating Function plug. Un-
der programmed control a document handler can be commanded to perform any

of the following actions:

1. Read a single document into a specified address of core memory. (Single Feed)

2. Read the current input document into a specified address of core memory and
position the next input document for immediate reading. (Continuous Feed)

3. Deposit the document last read into a specified pocket. The document handler
has 12 pockets that may be used to stack the paper documents in separate groups
according to identification codes on the documents.

4, Halt the continuous feed action.

Three lines of mnemonic coding are required to define a magnetic document hand-
ler action.

READ SINGLE DOCUMENTS

OPR. OPERAND MODIFICATION
1st line: SEL P
2nd line: RSD N
3rd line: RSD M

P is the Data Mating Function plug number (0 thru 7) to which the Document Hand-
ler is attached. RSD is the mnemonic code for Read Single Document. N is the
Handler number (1 or 2). I N is blank, the assembly program will assume ‘1"’
is the Handler number. M is the memory address into which the first character
read from the document will be copied. M may be a symbolic address or a deci-
mal integer fixed address. M is not automatically modified. Single reading of

GE 225 PROGRAMMING MANUAL

-157-

documents can be done at the rate of 600 per minute. There are no restrictions
on the amount of processing time that can be used on each document when the
documents are read with RSD type instructions.

READ DOCUMENTS AND CONTINUE FEEDING NEXT DOCUMENT

OPR OPERAND MODIFICATION
1st line: SEL P
2nd line: RDC N
3rd line: RDC M

This set of instructions is the same as the RSD instructions, except that they call
for moving a second document into position for immediate reading after the first
document passes the reading head. RDC type instructions must be used to achieve
the 1200 document per minute reading speed. With each document read by RDC
type instructions, there are approximately 50 milliseconds of processing time
available before another RDC instructions must be given to the Document Handler.

POCKET SELECTION

OPR OPERAND MODIFICATION
1st line: SEL P
2nd line: PKT N
3rd line: OCT (Pocket Address)

P is the Data Mating Function plug number (0 thru 7) to which the Document Handler
is attached. PKT is the mnemonic code for Pocket Select. N is the Handler num-
ber (1 or 2). If N is blank, the assembly program will assume ¢‘1°’ is the Handler
number. The third line contains the binary code for the specific pocket into which
the document last read is to be stacked. To be effective, the Pocket Selection
command must be given within a maximum of 45 milliseconds after the reading
of the document is complete.

The following table gives the codes (in octal) to be used in the third line of a Pocket
Selection command.

POCKET OCTAL CODE OCTAL CODE
IDENTIFICATION FOR HANDLER NO.1 FOR HANDLER NO. 2
SPECIAL 01 020
0 17 360
1 16 340
2 15 320
3 14 300
4 13 260
5 07 160
6 06 140
7 05 120
8 04 100
9 03 060
REJECTS 02 040

The above octal codes are stored as the least significant (rightmost) digits of the
operand field of the third line of a POCKET SELECT instruction set, and zeros
fill out the field to the left.

GE 225 PROGRAMMING MANUAL

-158-

GE 225

HALT THE CONTINUOUS FEEDING ACTION

OPR OPERAND MODIFICA TION
1st line: SEL P
2nd line: HLT N
3rd line: HLT M

P and N have the same meaning as they do in the other Document Handler commands.
HLT is the mnemonic code for HALT the continuous feeding of documents. M is the
memory address (symbolic or decimal) into which the first character of the docu-
ment currently approaching the reading head will be copied.

END READ BUSY SIGNAL

OPR OPERAND MODIFICATION
1st line: SEL P
2nd line: ERB N
3rd line: XXX

P is the plug number (0 thru 7) to which the Document Handler is attached. ERB
is the mnemonic code for End Read Busy. N is the Handler number (blank, 1, or
2). I N is blank, the assembly program will assume ‘‘1’’ is the Handler number.
The third line must be present, but it is not used in this instruction. The pro-
grammer may use this line as working storage or as constant storage. XXX may
be any one of the following mnemonics: DEC, OCT, ALF.

EXAMPLES
1. Document sorter #2 is plugged into Data Mating Plug #5. Read a single docu-

ment from the document sorter into storage beginning at location 1300. Assume
60 characters of data will be read into storage from the document.

900 SEL 5

901 RSD 9 } READ SINGLE DOCUMENT

902 RSD 1300

203 BDM 1+T 5 DELAY PROCESSING UNTIL DOCUMENT
904 BRU 903 IS READ

Vo

Further Processing of Document

A single document will be read from the document sorter into storage by the com-
mands at 900 through 902. The commands at 903 and 904 will delay further pro-
cessing until reading of the document has been completed. Characters are read
from the document in sequence from right to left. However, characters are plac-
ed in storage, within the G.E. 225 from left to right one character per word, plac-
ed in bit positions 16, 17, 18 and 19 of each word for example:

Word 1300 1359
~——— 20 Bits —— > ~———20 Bits—>
16 {17 | 18| 19 16 |17 |18 | 19
Low order character High order character
on document (Least on Document (Most
Significant) Significant)

PROGRAMMING MANUAL

-159-

GE 225

MAGNETIC DOCUME NT

«——60 CHARACTERS ———

l

4

t

HIGH ORDER CHARACTER LOW ORDER CHARACTER
(most significant) (least significant)

NOTE

Therefore, at this point, the sequence of characters in storage is reversed from

the sequence of characters on the document itself.

2. In problem 1, above, write the program commands to ‘‘ring shift’’ the charac-
ters from the magnetic document to conform to the sequence of the characters as
they appear on the document itself. Also, include the necessary operations in the
‘ring shift’’ to ‘‘validity check’” each character read. If any character is invalid,
branch to an error correction routine in storage at 3000. Assume that ‘‘cue’’
characters within the data are designated for control functions on the plugboard
of the document handler and will not enter into storage.

905 LDZ

906 STA 1 Set modification word 1 to 0, modification
907 STA 2 word 2 to 59.

908 INX 59 2

909 LDA 1300 1

910 BMI Load L.S. into Q Register and Test for
911 BRU 3000 Validity.

912 XAQ

g}i ;ﬁ? 1300 2 Load M.S. Digit into A Register and Test
915 BRU 3000 for Validity.

916 STA 1300 1 Store M.S. Digit

917 XAQ .

918 STA 1300 9 Store L.S. Digit

919 INX 1 1 Increment modification ward 1 and test
920 BXH 30 1 for completion

921 BRU Continue

922 INX -1 2 Decrement modification word 2 Trans fer
923 BRU 909 to Repeat.

The above commands are designated to place the characters in storage in sequence
as they appear on the document itself, and also test each character for validity.
Thus the characters in storage will appear as follows after the above commands:

Word 1300 1359
~———20 Bits———— 20 Bits
16|17 |18 | 19 161718119

High order character
on Document. M.S.
(most significant)

Low order character
on Document L.S.
(least significant)

PROGRAMMING MANUAL

-160-

NOTE: After the characters are arranged in sequence, as above, they may be con-
veniently listed on the high speed printer with automatic format control. (Explain-
ed in another section of these materials).

The commands at 905 through 908 will prepare the modification words for initial
processing. The commands at 909 through 918 will reverse the sequence of a set
of 2 characters. The sequence is repeated for each of 30 sets of 2 characters.

The commands at 919 through 922 will prepare the modification words for process-
ing of the next set of 2 characters, and test for completion of processing. If pro-
cessing is not complete, the command at 923 will continue processing for the next
set of 2 characters to be reversed.

3. Document sorter #1 is plugged into Data Mating Plug #5. Read documents and
continue feeding the next document, so as to read documents at the maximum speed
of 1200 document s per minute. Continue until the hopper is empty.

Read the first document into storage beginning at location 3000. Read the second
document into storage beginning at 4000. Read the third document into storage at
3,000, the fourth at 4,000, etc. Process the first document while reading the sec-
ond, process the second while reading the first, etc. Direct the first document to
pocket 1, the second to pocket 2, the third to pocket 1, the fourth to pocket 2, etc.

2000 SEL 5 .

Read ni
2001 RDC 3 aaé Slll)n?gg;r'lent Continuous Feed (Sorter
2002 RDC 3000
2003 BDM 0+T Delay until First Document Read (Approx.
2004 BRU 2003 40 ms).
2005 SEL 5
2006 RDC Initiate Reading of Second Document
2007 RDC 4000
2008 SEL 5
2009 PKT Direct First Document to Pocket 1.
2010 oCT 0000016

R

Process first document (approx. 50ms) possible.

R |

ggig ggh{; 35"60F > Interrogate and Transfer for Hopper Empty.
;ggg ggl\g (2)0+5(;r Delay until second document read.

2052 SEL 5

2053 RDC Initiate reading of third Document.

2054 RDC 3000

2055 SEL 5

2056 PKT Direct second document to pocket 2.

2057 OCT 0000015

Process second document (approx. 50 ms).

'

2062 BDM 4+ F 5
2063 BRU 4500 Interrogate and Transfer for Hopper Empty.

2064 BRU 2003 Transfer to continue.

The above commands will pattern processing and document reading to occur simul-
taneously according to the pattern described below:

GE 225 PROGRAMMING MANUAL

-161-

Time interval
0 50ms 100ms 150ms 200ms 250ms 300

Document l | I L L l

Read #1 (40ms)

Read #2 (40ms)

Process #1 (50ms)

Read #3 (40ms)

Process #2 _(_.‘.')?)m_s)

Read #4 (40ms)

Process #3 (50ms)

*Processing time for any one document may continue for 50ms before a new document
is read into the processing area.

*Reading time for any one document may continue for approximately 40 ms or less.

The ¢“N’’ position in the commands at 2001, 2006, 2009, 2053, 2056, is not provided
since the General Assembly Program will assume that sorter 1 is intended when a
blank appears in the ‘“N’’ position. The commands at 2048 - 2049 and 2062 - 2064
will interrogate for the ‘‘hopper empty’’ condition since feeding will stop when the
hopper is empty. The read document continuous feed next document command (RDC)
must be repeated for each document read in all cases - even if all documents are
to be read beginning in storage at the name location. The document just read must
be directed to an appropriate pocket within 30 ms. after it is read. A possible se-
quence of processing may consist of:

Read Documents Continuous (First Document)

May both be considered Delay for Read Completion

as processing of first Read Document Continuous (Second Document)

document. * Direct Document to pocket (First Document)
Process Document (First Document)
Interrogate for Hopper Empty

May both be considered Delay for Read completion (Second Document)

as processing of second Read Document Continuous (Third Document)

document. * { Direct Document to Pocket (Second Document)
Process Document (Second Docum ent)

Interrogate for Hopper Empty

*NOTE:

Since direction of a document to the appropriate pocket will most likely depend upon
data read from the document itself, both steps should really be considered as a
function of processing.

4. Assume that a RDC command has been issued, also assume that reading of the
previous document is complete. Write the commands to Halt the reading and feed-
ing of further documents.

2052 SEL 5 .

2053 HLT Begin halt of Reader.

2054 HLT 3000

2055 SEL 5 - .

2056 PKT Direct Previous Document to Pocket 2.
2057 OCT 0000015

oo
GE 225 PROGRAMMING MANUAL

-162-

Process Previous Document

Lo

2062 BDM 0+T 5 Delay for Read Busy

2063 BRU 2062

2064 SEL 5

2065 HLT

2066 HLT 4000 Halt the Reader

2067 SEL 5

2068 PKT))

2069 OCT 0000016 Direct first Document after Halt to Pocket 1.

Process First Document after ‘“Halt’’

2074 LDZ

2075 STA 1 Set x word 1 to zero

2076 BDM 0+F 5

2077 BRU 2085 Delay for Read Busy

2078 INX -1 1

;ggg gﬁ{; 3826 1 Continue Delay for approx. 50ms.
2081 SEL 5

2082 ERB Turn off Read Busy Signal

2083 DEC 0

2084 BRU 2084 Halt

2085 SEL 5

2086 PKT Direct Second Document After Halt to Pocket 2.
2087 OCT 0000015

Vol

Process Second Document after Halt

l

When a Halt is desired after a RDC command, there is a possibility that two more
documents may be read before the Halt is completed. Therefore, the programmer
most make adequate provision in his program, as above, for:

2090 BRU 2090

1. Direction of the next two documents to appropriate locations in storage (Halt
commands).

2. Direction of the next two documents to appropriate pockets.
3. Appropriate processing of the next two documents, as necessary.

One or two documents may be read after a ‘“Halt’’ command. It is possible that the
second document after the first ‘“Halt’’ command will not be read. If the second
document is not read, the read busy signal will not be turned off. Therefore, a
‘‘time count’’ is built into the second read busy interrogation ‘‘loop’’ by the com-
mands in storage at 2078 through 2080. If the loop continues for 50ms. it is assumed
that the second document after the ‘‘Halt’’ command was not read. The comma nds
at 2081 through 2083 will turn the ‘“‘read busy signal’’ off and processing is halted

by the command at 2084.
\") DATA PROCESSOR

GE 225 PROGRAMMING MANUAL

-163/164-

1. APPENDIX

NUMBER SYSTEMS

Number Representation

The following formula defines a pattern for the representation of numbers:

_ m 2 1 0 -1 -2
N = Amr + e + Azr + Alr + Aor + A_lr + A_zr

tetA 10
-m
where: N is the number,
A is a permissible symbol in the number system,

r is the radix (the total number of permissible symbols in the number
system),

mis the position of the symbol (m = 0 is in the first position to the left
of the decimal point with increasing integral values of m in po-

sitions moving to the left and decreasing integral values of m in
positions moving to the right).

(Note: Mathematically, r0 =1 regardless of values

Decimal System

In demonstration of the validity of the above formula, note that the formation of the
numbers 5126 and 32.425 in the decimal system may be written as:

5126 = 5000 + 100 + 20 + 6
=5x1000+1x100+2x10+6x1
=5x10°+1x10% +2 x 10" + 6 x 10°

In this case, A3 = 5, A2=1, A1 =2, A0=6.

32.425 = 30+ 2 + 4/10 + 2/100 + 5/1000

3x10+2x1+4x1/10+2x1/100+ 5 x1/1000

3x101+2x100+4x10'1+2x10'2+5x10'3
3,80=2, A =4, A 5=2,A 4=5.

N

In this case, A

1

Thus, decimal numbers are formed by stating the coefficients (symbols) of the
powers (position) of 10. Most importantly, since there is nothing special about

r = 10, the same rules must apply to number systems using other values for the
radix,

GE 225 PROGRAMMING MANUAL

-165-

GE 225

Binary System

The binary system consists of two admissible symbols: 0 and 1. Therefore, the
radix is two. For example, the decimal number 21 may be represented in binary
notation as follows:

21 =16 +4+1

1x2% 41 x22

1x2%+0x2°

10101 (binary)

+1x20
+1x22+0x2

1+1x20

Octal System

The octal system consists of eight admissible symbols: 0,1, 2, 3, 4, 5, 6, 7.
Therefore, the radix is eight. For example, the decimal number 301 may be
represented in octal notation as follows:

301 = 256 + 40+ 5
4x64+5x8+5x1

4x8%+5x8' +5x8
455 (octal)

0

The chief use of the octal system is as a shorthand for binary representation since
conversion between systems can be done mentally. To demonstrate the validity of
this statement, consider the octal number 455 (decimal 301) used in the example
above.

455 = 100 101 101
100101101

1x28+0x27+0x26+1x25+0x24+1x23+1x2

1x28+1x25+1x23+1x22+1x20
256 +32 +8+4+1
301 (decimal)

2 0

+0x21+1x2

Clearly, 455 is 32 much more convenient notationthen 100101101, yet the conversion
is trivial when required.

BINARY ARITHMETIC

Binary Addition

The binary, single digit, addition table for A + B is:

B
+1 0 1
A00 1
1] 1 0*

*A "1" binary digit is carried to the next higher order binary digit to the left.
Note that this is equivalent to the same rule in the decimal system that yields
9 + 1 =10, which is actually 9 + 1 = 0 with a carry into the next higher order posi-
tion. (In the binary system 1 is the highest permissible symbol just as in the deci-
mal system 9 is the highest permissible symbol.) The following examples illustrate
binary addition:

Carry 1 1 111 111
100110 100111 0111
+ 110101 +001110 + 1
Sum 1011011 110101 1000

PROGRAMMING MANUAL

-166-

Binary Subtraction

The binary, single digit, subtraction table for A - B is:

0o 1*
Alr 1 o
*A 1" binary digit isborrowed from the next higher order digit to the left. Keeping
track of borrowed digits in this method of subtraction is significantly more difficult
than keeping track of carries in addition. It is therefore desirable to develop an
alternate method of subtraction which will employ an addition table. It is easy to
demonstrate, using the more familiar decimal system, that subtraction can be

accomplished by addition of the 10's complement of the number to be subtracted
and the dropping of the carry. Thus

7 7
-4 or 6
3 1

The mathematical validity of this rule is clearly shown as follows:

7-4=7-(10-6)=T7+6-10=3

noting that the carry to be dropped is equal to 10. In the same fashion, binary sub-
traction may be accomplished by the binary addition of the 2's complement of the
number and the dropping of the final carry. (A 2's complement is extremely easy
to form: 1 bits are changed to zero bits, 0 bits are changed to 1 bits, and a 1 bit is
added to the result.) Examples of binary subtraction are:

39 100111 240 011110000
-9 +110111 -112 +110010000
011110 = 30 010000000 = 128

For convenience, the GE 225 has a special instruction which forms the 2's com-
plement of a number.

Binary Multiplication

The binary, single digit, multiplication table for A x B is:

B
A0
110 1

35 100011
x13 1101
100011
1000110
100011
111000111 = 455

>
ol|o
-

For example:

Thus, multiplication in binary reduces to a series of additions.

GE 225 PROGRAMMING MANUAL

-167-

=3 00 [S

W -

137
274
549

719

Binary Division

N O oW [\ g

[

131
262
524

048
097
194
388

717
554
108
217

435
870
741
483

967
934
869
738

476
953
906
813

2n
1

2
4
8

16
32
64
128

256
512
024
048

096
192
384
768

536
072
144
288

576
152
304
608

216
432
864
728

456
912
824
648

296
592
184
368

736
472
944
888

by repeated subtractions.
divisor is added repetitively.

wWwN =~ OD

N OO

3
9 |27

25
625
812

906
953
976
488

244
122
061
030

015
007
003
001

000
000
000
000

000
000
000
000

000
000
000
000

000
000
000
000

000
000
000
000

25

125
562
281

140
070
035
517

258
629
814
907

953
476
238
119

059
029
014
007

003
001
000
000

000
000
000
000

000
000
000
000

BINARY-DECIMAL CONVERSION TABLE

25

625
312
156
578

789
394
697
348

674
837
418
209

604
802
901
450

725
862
931
465

232
116
058
029

014
007
003
001

11
001] 11011

oo firoir

25
125

062
531
265
632

316
158
579
289

644
322
161
580

290
645
322
661

830
415
207
103

551
275
637
818

0111
1001
0111
0000

25
625
812

406
203
101
550

715
387
193
596

298
149
574
2817

643
321
660
830

915
957
978
989

25

125
562
781

390
695
8417
923

461
230
615
307

653
826
913
456

228
614
807
403

3

625
312
656
828

914
957
478
739

869
934
467
733

366
183
091
545

25
125

062
031
515
257

628
814
407
703

851
425
712
856

25
625
812

906
453
226
613

806
903
951
475

Division in binary can be carried out by the same process as in decimal; that is,
As in binary subtraction, the 2's complement of the

5

25

125
562 5
281 25

640 625
320 312 5
660 156 25
830 078 125

PROGRAMMING MANUAL

GE 225

-168-

REPRESENTATION OF CHARACTERS

oo BCD MAg‘I:\Ill:EJ)TIC HI1?1?13 T;:I%bif’gifER PAPER TADE
CODE SP
CHARACTER (PUNCH I\gg[T%RL‘; TAPE PRINTER CHARACTER f;“£§£§§§ S
IN ROWS) (OCTAL) SYMBOLS OR ACTION
0 0 00 12 0 SPACE SPACE
1 01 01
2 02 02
— 03 03
4 4 04 04 4 4 4
5 5 05 0 5 5
6 6 06 0 6 6
7 07 0 7 7
3 0 10 8 8
9 1 1 9 9
A 12- 21 61 A /
B 5 27| 62 B S S
C - 3 6 C T T
D - 1 64 D T U
E - E v v
F - 6 6 F w W
G ~ 7 7 G p; X
H - 0 0 H Y Y
_ 1 I Z,
T - 3 T J
K = 2 3 K K K
L Z 4 L, L L
™M . 44 M M M
N - 45 N N N
0 - [16 0 0 0
P 7 7 P D P
Q -8 0 Q Q Q
R 9 R R R
5 0- [5 S B S
T 0- 6 T C C
0 - 6 U D
i 5 6 v E E
W - 66 6 W F F
X 0- 67 7 X G G
Y 0-8 0 0 Y H H
Z 0-9 1 1 Z 1 T
+ 12 20 0 + 0 0
- 11 10 0 - - -
A BLANK 0 0 BLANK 3 &
COLUMN
7 0- 3 21 7 A A
2- 1
¥ 3- 3 ¥ 7 STOP
@) 4 14 @
6-8 1 | PENDING |
DECISION
7-8 7
12-2-8 32 72 PRINT
RED
R 12-3-8 73 . ,
= 12-4-8 74
12-5-8 DRINT
| BLACK |
12-6-8 TAB TAB
12-7-
2- 2 2
5 -3~ 3 3 5
* -4~ 4 *
-6
-7 57
0-2- 2 2
; 0-3- ,
% 0-4- %
T 0-5- T
1 0-6- il
0-7- CARRIAGE| DELETE
RETURN
[E=——"]WDICATES TYPEWRITER HANG UP. OPERATION HALTS.
MAGNETIC DOCUMENT BCD CODE MAGNETIC DOCUMENT BCD CODE
CHARACTER CHARACTER
0 0000 8 1000
1 0001 9 1001
2 0010 Cue 1 1100
3 0011 Cue 2 1010
4 0100 Cue 3 1101
5 0101 Cue 4 1011
6 0110
7 0111 "INVALID CHARACTER" 1111

GE 225

PROGRAMMING MANUAL

-169-

INSTRUCTION FORMATS :
NUMERIC CODES FOR STANDARD
225 INSTRUCTIONS

Most Significant Bits (S, 1)

OCTAL 0 1 2 3

o~ 0 LDS DLD EXT |FLD

(]

o~ 1 ADD DAD FAD

n

;g 2 SUB DSU FSU

-

§ 3, STA DST ORY | FST

2

= 4 BXL INX

20

g 5 BXH | MPY | General| FMP

(2]

3 6 DVD BRV | FDV
7 SPB STO External

Linkage

The extension of the GE 225 instruction repertoire beyond the 'standard" com-
mands designated by bit positions 0 through 4 is accomplished through the use of
bit positions in the operand address field for those instructions which require only
a limited portion of the field (e.g., shift commands require only bit positions 15
through 19 to indicate length of shift) and for those instructions which do not have
an operand address (e.g., word transfers between registers). The flexibility of the
instruction repertoire is still further enhanced by the addition of a feature known
as micro-programming. Micro-programming is the building of a computer in-
struction under programmer control by the specification of a series of elementary
operations. In the chart given below, a 1 bit in any of the labelled bit positions will
result in the elemental action described therein when the instruction is executed.
In addition, if the contents of morethanone register are to shift into the A register,
the bits will be added logically.

For example, a 1 in bit positions 10 and 11 of the '"general" Shift Right instruction

instructs the computer to take the actions A19—>Q1 and A19—>N1. The octal

operation code for this specific command is 25114. Reference to the octal listing
in the Appendix shows this to be an ANQ (Shift A into N and Q) command. The in-
struction repertoire describes ANQ as follows:

The contents of Register A (1-19) are shifted K places to
the right into both Register N and Register Q. Bits shifted
out of Register A (19) enter both Register Q (1) and Register
N (1). Bits shifted out of Register N (6) and Register Q (19)
are lost.

This information on micro-programming is included only for the use of the ad-
vanced programmer who desires to create his own special instructions. Normal
programming will employ only the mnemonic or octal codes that have been assigned
to the most common combinations of "micro'" operations.

GE 225 PROGRAMMING MANUAL

-170-

GENERAL INSTRUCTION

s 1 2 3 7 8 9 10 1 12 13 14 15 16 17 18 19
COMMAND SUB-COMMANDS & ADDRESSES
1 o0 1 0
SHIFT RIGHT 1 0 o0 = | | | & | LENGTH OF
S < < SHIFT
bttt
i & Sl o | &
< |< ||z |<
SHIFT LEFT 1 0 1| m) LENGTH OF
N < SHIFT
=
s t
S
Z &
WORD MOVEMENT 0 1 m m “ .
t Qf o |3 i’. <
(REGISTER) g'ﬁ 5laly ? ! T
TRA 2] a .
NSFER) &5 Q% <|l<|<|<| &
Il n A
INPUT/OUTPUT 0 0 DATA ORIGIN . DECODE
MULTIPLE
OF 128
DATA MATING 0 0 CONTROLLER 1
ADDRESS
FUNCTION
BRANCH TRUE 11 0 DECODE
BRANCH FALSE 1 1 1 DECODE
DATA MATING 1 11]o0 CONTROLLER 1 | DECODE
or
BRANCH 1 ADDRESS

PROGRAMMING MANUAL

GE 225

-171-

GE 225

OCTAL LIST OF INSTRUCTIONS

Octal Code

0000000
0100000
0200000
0300000
0400000
0500000
0700000
1000000
1100000
1200000
1300000
1400000
1500000
1600000
2000000
2300000
250YY00
250YY01
250YY02
250YY03
2500004

2500005
2500006

2500007
2500010
2500011
2500012

2500014

GE 225 BASIC SYSTEM
Description
Load A
Add contents of Y to A
Subtract Y from A
Store A
Branch if X is low
Branch if X is high
Store P & branch
Double Length Load
Double Length Add
Double Length Subtract
Double Length Store
Increment X by K
Multiply Y by Q
Divide A& Qby Y
Extract
Or Ainto Y
Read Cards Decimal
Read Cards Binary
Write Card Decimal
Write Card Binary
Halt Card Reader
Input-output off
Type
Typewriter on
Read Paper Tape
Read control switches
Write Paper Tape

Reader on

Mnemonic

LDA
ADD
SUB

STA

BXL
BXH
SPB

DLD
DAD
DSU

DST

INX

MPY
DVD
EXT
ORY
RCD
RCB
WCD
WCB
HCR

OFF
TYP

TON
RPT
RCS

WPT

RON

PROGRAMMING MANUAL

-172-

GE 225

Octal Code

2500015
2504
2504001
2504004
2504005
2504006
2504012
2504022
2504032
2504040
2504102
2504112
2504502
2504522
25100
251004
25101
25104
25110
25111
25112
25114
25120

25122
25130

25132

2514000
2514001
2514002

2514003

GE 225 BASIC SYSTEM (CONT)

Description

Punch on

Load Zero into A
Load A from Q
Load Q from A
Exchange A & Q
Move Ato Q

No operation

Load one into A
Add one

Change sign of A
Load Minus one into A
Subtract one
Complement A
Negate A

Shift Right A

Shift Circular A
Shift N & A Right
Shift A & N Right
Shift Right Double
Shift N, A & Q Right
Shift Circular Double, Right
Shift A into N& Q
Shift Left A

Shift Left Double

Normalize A Register
Double Length Normalize
Branch on odd

Branch on Minus

Branch on Zero

Branch on overflow

Mnemonic

PON
LDZ
LAQ
LQA
XAQ
MAQ
NOP

LDO

CHS
LMO
SBO
CPL
NEG
SRA
SCA
SNA
SAN
SRD
NAQ
SCD
ANQ
SLA

SLD
NOR

DNO
BOD
BMI
BZE

BOV

PROGRAMMING MANUAL

-173-

GE 225 BASIC SYSTEM (CONT)

Octal Code Description Mnemonic
2514004 Branch on Parity Error BPE
2514005 Branch on N Register Ready BNR
2514006 Branch on Card Reader Ready BCR
2514007 Branch on Card Punch Ready BPR
2516000 Branch on even BEV
2516001 Branch on Plus BPL
2516002 Branch on no zero BNZ
2516003 Branch on no Overflow BNO
2516004 Branch on Parity Correct BPC
2516005 Branch on N register not ready BNN
2516006 Branch on Card Reader Not Ready BCN
2516007 Branch on Card Punch Not Ready BPN
2600000 Branch unconditionally BRU
2700000 Store Operand Address STO

GE 225 PROGRAMMING MANUAL

-174-

STANDARD FLOW CHART SYMBOLS

End subroutine Go to connector We came here

GE 225

Ay on page 4 from connector
Enter subroutine Ag page 1
Master File: Is sign of
Trans. Acct. reg A neg ?
No.
Paper tape Punched card
Comparison Decision
Balance - Exchange Find Br No.
Ck amt Bal. A and Q in table
I ‘ Magnetic document
Report or Listing
Reconciling
Clok |—> Source
2 B
2 Magnetic _..l Control Clerk Destination
tape
Go to SIB subroutine on Page 2 and return to this point P

O}

7

oRoRo

Switch or variable connector

1

. 5¢c

Set variable connector 5 to the c state

Comparison (the nature of the comparison
is indicated separately)

= Equal to

Not equal to

> Greater than

< Less than

2 Greater than or equal to
< Less than or equal to

PROGRAMMING MANUAL

175/176

MATED BY GENERAL ELECTRIC

ELECTRIC

CPB 126A (3M 5-61)

