
I

l. ,

~ I

I ,
i ,
t

t '
I

1

I

@~D~~~
PROGRAMMING
REFERENCE
MANUAL

GENERAL _ ELECTRIC

COMPUTER DEPARTMENT

@~D~~~
PROGRAMMING
REFERENCE
MANUAL

Revised May, 1964

GENERALfj ELECTRIC

COMPUTER DEPARTMENT

, -.' .

PREFACE

The GE-225 Programming Reference ~ has been prepared both as a reference manual
for programming the GE-225 information processing system and as a training aid. It includes
a brief description of the major components of the system, machine language and number systems,
central processor and console typewriter operations, controller selector operations, programming
conventions, and an octal and alphabetical listing of General Assembly Program instructions.

The information in this manual also applies essentially to other members of the GE Compatibles/
200 family of systems--the GE-200 Bank Transit System, and the GE-205 and GE-215 systems.

This manual is a condensed version of the previous edition which also contained information on
the General Assembly Program, and the various peripheral subsystems used with the GE-225.
Separate manuals have been published to cover these subjects, as listed below:

Subject

General Assembly Program

400-cpm Card Reader

1000-cpm Card Reader

100-cpm Card Punch

300-cpm Card Punch

15- & 15/41Kc. Map;netic Tape
Subsystems

Paper Tape Reader/Punch

Manual Title and Publication No.

General Assembly Program IT (CD225F1.006/
007)

Punched Card Subsystems Reference Manual
(CPB-302)

Magnetic Tape Subsystems Reference Manual
(CPB-339)

Paper Tape Subsystem Reference Manual
(CPB-308)

High Speed Printer Reference Manual
900- Lpm On- Line High Speed printer}

900-Lpm Off/On-Line High Speed (CPB-321)
Printer

12-Pocket Document Handler
(1200-dpm)

12-Poetet Document Handler
(750-dpm)

Document Handler Reference Manual
(CPB-307)

Document Handler Reference Manual
(750-dpm) (CPB-333)

o 1963,1964 by General Electric Co.

ii

Section

I THE GE-225 INFORMATION PROCESSING SYSTEM

System Components
Simultaneous Operations

II MACHINE LANGUAGE

Number Systems
Data Words
Instruction Words

III CENTRAL PROCESSOR ORGANIZATION

Magnetic Core Storage
Arithmetic and Control Registers
Basic Operating Cycle

IV GENERAL ASSEMBL Y PR0GRAM II

See new manual entitled General Assembly Program II (CD225Fl. 006/007)

V CENTRAL PROCESSOR OPERATIONS

General
Arithmetic Instructions
Data Transfer Instructions
Shift Instructions
Internal Branch Instructions
Modification Instructions
Programming 16K Memory Systems
Programming Central Processor Operations

VI DIRECT INPUT-OUTPUT OPERATIONS

Control Console Operations
Console Typewriter Operations
Paper Tape Operations - See new manual entitled Compatibles/200 Paper Tape

Subsystem Reference Manual (CPB-308) ----
Card Reader operations} See new manual entitled Compatibles/200 Punched
Card Punch Operations Card Subsystems Reference Manual (CPB-302)

VII CONTROLLER SELECTOR OPERATIONS

Controller Selector Priority
Controller Selector Instructions
Automatic Program Interrupt

Page

I - 2
I - 8

II- I
II- 7
II- 9

III- 1
IIl- 3
IIl- 7

V-I
V - 2

I

V -14 I
V - 24
V - 31
V - 34
V - 37
V - 41

VI - 1
VI - 6

VII - 1
VII - 1
VII - 2

I

@~[J~~~ __________ _

iii
May 1964

I

I

I

I
I

Section

VITI

IX

x

XI

XII

xm

MAGNETIC TAPE OPERATIONS

See new manual entitled Compatibles/200 Magnetic Tape Subsystems Reference
Manual (CPB-339) -------

HIGH-SPEED PRINTER OPERATIONS

See new manual entitled Compatibles/200 High Speed Printer Reference Manual
(CPB-321) ---

DOCUMENT HANDLER OPERATIONS

See new manual entitled Compatibles/200 Document Handler Reference Manual
(CPB-307)

DISC STORAGE UNIT

See new manual entitled Compatibles/200 Disc Storage Unit Reference Manual
(CPB-323) - - --- --

AUXILIARY ARITHMETIC UNIT OPERATIONS

See new manual entitled GE-215/225 Auxiliary Arithmetic Unit Reference Manual
(CPB-325) - --- --

PROGRAMMING CONVENTIONS

Memory Layouts
Input/ Output Documentation
Use of Symbols
Subroutine Usage
Typewriter Utilization
Debugging Techniques
Program Documentation

APPENDICES

I. Representation of GE-225 Characters
II. Octal List of GE-225 Instructions
III. Alphabetic List of GE-225 Instructions

XITI - 1
XIII - 1
XITI - 8
XIII - 8
XIII - 9
XITI - 10
xm -12

A-I
A-3
A-ll

@~D~~~ _________ _

iv May 1964

Figure

1 - 1
1 - 2
1 - 3
1 - 4
1 - 5

2 - 1
2 - 2
2 - 3
2 - 4
2 - 5
2 - 6

3 - 1
3 - 2
3 - 3
3 - 4
3 - 5
3 - 6
3 - 7
3 - 8

5 - 1
5 - 2
5 - 3
5 - 4
5 - 5
5 - 6
5 - 7
5 - 8
5 - 9
5 - 10
5 - 11

13 - 1
6 - 2
6 - 3
6 - 4
6 - 5

13 - 1
13 - 2
13 - 3
13 - 4
13 - 5
13 - 6
13 - 7
13 - 8
13 - 9
13 - 10
13 -11
13 - 12
13 - 13
13 - 14

GE-225 System Components
Central Processor and Controller Buffers
GE-225 Priority Access System
Large GE-225 System Configuration
Controller Selector Priority

Binary Addition Table
Octal Addition Table
Table of Powers of 2 and 8
Octal-to-Decimal Conversion Chart
Decimal-to-Octal Conversion Charts
Basic GE-225 Word

Bit Storage in a Ferrite Core
Representative Allocation of Memory
GE-225 Arithmetic and Control Register
GE-225 Arithmetic Registers
GE-225 Control Registers
Basic Timing for Single Length Word Operations
GE-225 Instruction-Execution Cycle
Flow Chart Showing Central Processor Operating Cycle

Two Numbers in Memory before Scaling
Incorrect Sum after Addition without Scaling
~umbers in Memory after Scaling
Using a Rounding Factor of .05
16K Memory Layout
Instruction Characteristics when Addressing 16K Memories
Rejected Parts Cost Flow Chart
RPC Program - Initialization
RPC Program - DPARTS Calculations
RPC Program - EPARTS Calculations and Constants
RPC Program - OVRFLO Routine

Units Directly Accessing Memory
The Control Console Panel
Console Typewriter
Typewriter Character Set
Sample Typewriter Coding

Typical Memory Allocation
Magnetic Tape Record Layout
Magnetic Tape Record Layout Sheet
Memory Layout Sheet
BCD Multiple Card Layout Sheet
Memory Allocation Layout Sheet
80-Column Card Layout Form
Typical Symbolic Addresses
Representative Subroutine
Subroutine Requiring a Calling Sequence
Subroutine Calling Sequence
Printer Controller Octal Memory Dump
Programmed Octal Memory Dump
Octal Correction Card

1- 8
1- 9
1-11
I - 13
1-14

II - 2
II - 3
II - 4
II - 5
II - 6
II - 7

III - 1
III - 2
III - 4
III - 5
III - 6
III - 7
III - 8
III - 10

v - 13
V -13
V - 13
V -14
V -37
V -38
V -42
V -43
V -43
V -44
V -44

VI - 1
VI - 2
VI - 7
VI - 7
VI- 9

XIII - 1
XIII - 2
XIII - 3
XIII - 4
XIII - 5
XIII - 6
XIII - 7
XIII - 8
XIII - 8
XIII - 8
XIII - 9
XIII - 10
XIII - 11
XIII - 12

@~[~~~~)-------------

v May 1964

SECTION

THE GE - 225 INFORMATION PROCESSING SYSTEM

The GE-225 Information Processing System is a
medium-scale, general-purpose digital computer that
permits an integrated approach to the total infor­
mation processing needs of business, government, and
science, while providing an economical means of
processing large volumes of data at high speed.

The modular design of the GE-225 system provides
flexibility in meeting data processing requirements
for a wide range of applications. A GE-225 system
consists of reading (input) and writing (output) devices
interconnected and controlled through a central pro­
cessor. The number and types of input and output
devices, as well as the configuration of the central
processor, are determined largely by the deSired
applications. Input data can be frompapertape, mag­
netic tape, punched cards, and magnetically-encoded
(MICR) paper documents. Output can be in the form of
paper tape, magnetic tape, punched cards, andprinted
reports. Both alphabetic and numeric data can be
received or produced by the computer, either locally,
or over long distances from the central processor using
peripheral data transmission equipment, such as the
Datanet-15 and its associated terminals.

The GE-225 is a SOlid-state" Single-address coml1uter
that operates under both stored program and oper­
ator control. Also, it is a buffered computer with an
input-output priority system that permits simultaneous
operations, such as reading, writing, and processing.
Further flexibility is provided through the ability to
operate internally in either the binary or the decimal
modes.

The basic programming language for the GE-225 is
provided by the General Assembly Program. It is
an automatic assembly system that permits the pro­
grammer to prepare routines in meaningful symbolic
language, rather than in the absolute machine lan­
guage, or code, of the GE-225 and then utilize the
GE-225 (and the assembly program) to assemble a
computer-ready program. Extensive clerical effort
is eliminated by using significant mnemonic codes
that generally have a one-to-one correlation to basic
machine instructions. Added flexibility is provided
because addresses can be assigned using either deci­
mal or symbolic notation. Capabilities of the General
Assembly Program also include the ability to incor­
porate the many library routines provided -by General
Electric, such as input-output and mathematical pack­
ages.

®~D~~~ _________ _
1-1 October 1963

SYSTEM COMPONENTS

The GE-225 system can assume various configurations,
depending upon the application requirements. Brief
descriptions of system components are given below.
More detailed descriptions and information pertaining
to their use are provided in appropriate programming
sections of the manual.

Central Processor

The GE-225 Central Processor provides arithmetic,
comparison, and decision circuits and automatic con­
trol facilities for the proceSSing system. In addition,
it houses the randomly-accessed magnetic core stor­
age (or memory).

Core storage pnJ\"idt ,. the main memory element for
the system, altho'Jgn it ,'an bE' augmented by external
storage in the forn;)! n;_ll';neti~ tape or disks. Both
data to be processE c! .lnc\ the controlling instructions
are held in core stclla'2;E "nd called forth by the con­
trol element as requlred. Information in storage is
retained by tiny mdgnetic ~'ores, each core capable of
holding one bit (binarv digit) of data. The basic unit of
storage is the word, each word consisting of 20 bits
(Plus a check bit), and each word being individually
addressable. The access time associated with trans­
ferring a word into or out of memory is 18 micro­
seconds, or one word time. Core storage can consist
of 4,096, 8,192, or 16,384 locations, each of which
can contain a single-address instruction, a binary
data word, or three alphanumeric or binary-coded­
decimal (BCD) characters.

@~D~~~ ___ -------

1-2

Control Console

The GE-225 Control Console, attached to the central
processor, provides manual control of operations,
visual display of the contents of appropriate registers,
program monitoring facilities for the operator, and
typed output via the console typewriter, under program
control. From the console, the operator controls the
initial loading and starting of programs and can per­
form in-process modifications based upon processing
results.

Paper Tape Reader-Punch

The GE-225 Paper Tape Reader-Punch is two mechan­
ically-independent units: a mechanism for reading
five-, six-, seven-, and eight-channel perforated paper

tapes at 250 or 1000 characters per second, and a
mechanism for punching five-, six-, seven-, and
eight-channel paper tapes at 110 characters per
second. Provisions are made to accommodate all com­
mon paper tape codes.

Card Reader

Either a 400 card per minute or a 1000 card per minute
card reader is available with the GE-225. Both readers
can read standard 80-column punched cards in one of
three modes: ten-row or twelve-row binary, or stan­
dard Hollerith (alphanumeric) mode. Cards are read
serially (one column at a time) in all three modes.

@~D~~~ _________ _

1-3

Either card reader can operate simultaneously with the
central processor and other peripheral operations.
For example, cards can be read at the same time that
data is input from magnetic tape or from a 12-pocket
document handler; simultaneously, previously input
data can be processed within the central processor.

Standard cards are 7-3/8 by 3-1/4 inches and con­
sist of 80 columns along the long dimension and 12
rows alor.g the short dimension. As cards are moved
through the card reader mechanism, all twelve row I positions of a column are simultaneously photoelec­
trically sensed. Card reader logic, which is contained
within the central processor, permits cards to be
read on demand by the processor or continuously.

Card Punch

The card punch is an output device which punches stan­
dard 80-column cards at a rate of either 100 or 300
cards per minute, depending upon the model selected.
Cards are punched in either of three modes: ten-row
or twelve-row binary, or standard Hollerith mode,
depending upon program control.

The card punch is primarily an on-line peripheral and
receives basic control signals from the centralproces­
sor. However, gang punching, or duplication of many
cards from a master card, can be performed off-line.

As an on-line peripheral, the card punch can operate
simultaneously with the central processor and other
peripherals.

Controller Selector

The GE-225 Controller Selector serves as a common
control and data transfer point between the central
processor and the peripheral controllers for magnetic
tape handlers, document handlers, high-speed prin­
ters, mass random access data storage, Datanet-15
terminals, and the auxiliary arithmetic unit. The
controller selector contains eight hubs or addresses
to which eight controllers can be connected. By
priority assignments, which are determined by the
addresses, the controller seleetor controls aceess to
core storage for the attached peripheral units. This I
permits Simultaneous operation of as many as eight
peripherals on the controller selector, plus the card
reader and punch, for a total of 10 concurrent input/
. output operations.

The logic for the controller selector is contained within
the central processor. Access to the central processor
and memory for peripherals and their associated con­
trollers is provided by cables between the controller
selector and the controllers.

@~D~~~ _________ _

1-4 October 1963

Control Console

The GE-225 Control Console, attached to the central
processor, provides manual control of operations,
visual display of the contents of appropriate registers,
program monitoring facilities for the operator, and
typed output via the console typewriter, under program
control. From the console, the operator controls the
initial loading and starting of programs and can per­
form in-process modifications based upon processing
results.

Paper Tape Reader-Punch

The GE-225 Paper Tape Reader-Punchistwomechan­
ically-independent units: a mechanism for reading
five-, six-, seven-, andeight-channelperforatedpaper

tapes at 250 or 1000 characters per second, and a
mechanism for punching five-, six-, seven-, and
eight-channel paper tapes at 110 characters per
second. Provisions are made to accommodate all com­
mon paper tape codes.

Card Reader

Either a 400 card per minute or a 1000 card per minute
card reader is available with the GE-225. Both readers
can read standard 80-column punched cards in one of
three modes: ten-row or twelve-row binary, or stan­
dard Hollerith (alphanumeric) mode. Cards are read
serially (one column at a time) in all three modes.

@~D~~~ _________ _

1-3

Either card reader can operate simultaneously with the
central processor and other peripheral operations.
For example, cards can be read at the same time that
data is input from magnetic tape or from a 12-pocket
document handler; simultaneously, previously input
data can be processed within the central processor.

Standard cards are 7-3/8 by 3-1/4 inches and con­
Sist of 80 columns along the long dimension and 12
rows alor.g the short dimension. As cards are moved
through the card reader mechanism, all twelve row I positions of a column are simultaneously photoelec­
trically sensed. Card reader logic, which is contained
wit.hin the central processor, permits cards to be
read on demand by the processor or continuously.

Card Punch

The card punch is an output device which punches stan­
dard aO-column cards at a rate of either 100 ·or 300
cards per minute, depending upon the model selected.
Cards are punched in either of three modes: ten-row
or twelve-row binary, or standard Hollerith mode,
depending upon program control.

The card punch is primarily an on-line peripheral and
receives basic control signals from the centralproces­
sore However, gang punching, or duplication of many
cards from a master card, can be performed off-line.

As an on-line peripheral, the card punch can operate
simultaneously with the central processor and other
peripherals.

Controller Selector

The GE-225 Controller Selector serves as a common
control and data transfer point between the central
processor and the peripheral controllers for magnetic
tape handlers, document handlers, high-speed prin­
ters, mass random access data storage, Datanet-15
terminals, and the auxiliary arithmetic unit. The
controller selector contains eight hubs or addresses
to Which eight controllers can be connected. By
priority aSSignments, which are determined by the
addresses, the controller selector controls access to
core storage for the attached peripheral units. This I
permits Simultaneous operation of as many as eight
peripherals on the (;.:mtroller selector, plus the card
reader and punch, for a total of 10 concurrent input!
. output operations.

The logic for the controller selector is contained within
tbe central processor. Access to the central processor
and memory for peripherals and their associated con­
trollers is provided by cables between the controller
selector and the controllers.

®~D~~~ _________ _
1-4 October 1963

Magnetic Tape

Magnetic tape provides a fast method of transmission
of data between the central processor and bulk storage.
Millions of bits of data can be rec.orded on a single
reel of tape, thus providing a compact and economical
storage medium. Magnetic tape canprovide in-process
(on-line) or static (off-line) storage for immediate or
subsequent use, yet can be erased and be re-used
repeatedly.

Up to eight magnetic tape controllers can be connected
to the controlle.r selector; up to eight magnetic tape
handlers can be connected to each controller, prOviding

a maximum of 64 magnetic tape handlers for the GE-
225 system. Different models of magnetic tape
handlers provide two data transfer rates: 15,000 and
41,700 characters per second. Data can be read or
written either in standard binary or in binary-coded­
decimal (BCD) mode.

The combination of a tape controller and its associated
tape handlers comprises a magnetic tape subsystem.
A subsystem of one tape controller and multiple tape
handlers permits reading..Q!.. writing concurrently with
other operations. A subsystem containing two or more
tape controllers permits reading J!ill!. writing simul­
taneously with other operations.

@~D(2(2~ ___ -------
T-fl

High Speed Printer

The GE-225 High Speed Printer is an output unit for
applications requiring presentation of large quantities
of printed information. The printer produces alpha­
numeric output, up to 120 characters per line, 900
lines per minute. Printing format is governed by the
printer controller, which contains logic for automati­
cally editing the print line independent of the central
processor. Editing features include zero suppression,
deletion of data, and insertion of special symbols,
constants, and spaces. Printing can also be performed
completely off-line from the system by using magnetic
tape as an interim storage medium. Printing and
editing can proceed simultaneously with other peri­
pheral and central processor operations.

Disc Storage Unit

Disc Storage Units, each consisting of 16 vertically­
mounted rotating magnetic disks, are available for
non-sequential file processing. Each DSU has a total
capacity of 98,304 records, or over 6 million words.
This provides storage for about 19 million alpha­
numeric characters or 34 million numeric digits.

I I

@~D~~~ __ --------
1-6

I

- _._---- - -. . , . ~

\ 1

One or two DSU controllers can be conneeted to the
controller selector; up to four DSU units can be
connected to each controller. DSU reading and writ­
ing operations can proceed simultaneously with other
peripheral and central processor operations.

12-Pocket Document Handler

The 12-pocket document handler is an on-line or off­
line peripheral that reads and sorts documents printed
with magnetic ink in E13B font at a speed of 1200
documents per minute. The document handler can be
used off-line as a document sorter, and it is possible
to use two sorters simultaneously. The document
handler adapter (controller) permits concurrentoper­
ation with other peripherals and the central processor.
Two document handlers under the control of a single
adapter permit an input rate to the central processor
of 2400 documents per minute.

Auxiliary Arithmetic Unit (AAU)

Although the AAU is connected to the central processor
through the controller selector (address 7), it is more
properly considered to be an extension of the central
processor, rather than a peripheral unit. The AAU
provides increased facilitiy for double-length word
binary arithmetic in either normalized or unnormal­
ized floating-point modes or in fixed-point mode. The
AAU can operate concurrently with normal central pro­
cessor and peripheral operations.

@~D(2(2~ ___ -------
1-7 October 1963

Datanet-15

Transmission and reception of data between the GS
225 Central Processor and remote locations is made
possible by the Datanet-15, which can accept serial
data at speeds from 60 to 2400 bits per second. The
Datanet-15 can operate with as many as 15 remote
stations, one at a time, in addition to controlling a
paper tape reader-punch. Terminal devices include
Teletype equipment, other Datanet-15 units,or virtually
any terminal device utilizing five-, six-, seven-, or
eight-channel bit codes.

SIMULTANEOUS OPERATIONS

The logical design of the GE-225 permits up to eleven
simultaneous input-output operations. That is, data
can be transferred between core storage in the central
processor and several direct and indirect peripherals
at the same time that the central processor is engaged
in processing data previously read in. Such operations
are made feasible because of the vast differences in
data transfer rates between core storage (18 micro­
seconds per word), and peripherals, such as the 400
cpm card reader (5610 micI"oseconds per BCD word).

Maximun
Per

Name System

CENTRAL PROCESSOR (mandatory) 1
CONTROL CONSOLE, including Console

Typewriter (mandatory) 1

DIRECT INPUT-OUTPUT UNITS
Paper Tape Reader-Punch 1
Card Reader, 400 cpm or High Speed 1
Card Punch, 100 or 250 cpm 1

PERIPHERAL CONTROLLERS
Controller Selector 1
Mass Random Access Data Storage

Controller 1
Magnetic Tape Controller 8
High-Speed Printer Controller 8
Datanet-15 8
Document Handler Adapter 8
Auxiliary Arithmetic Unit 1

CONTROLLER SELECTOR PERIPHERALS
Mass Random Access Data Storage

Unfu 8 I
Magnetic Tape Handlers 64
High-Speed Printers 8
Datanet Terminals 120
12-Pocket Document Handlers 16

Figure 1-1. GE-225 System Components

To make optimum use of the high speed of core stor­
age, the GE-225 makes provision for time sharing ac­
cess to memory by buffering data transfers, assigning
peripheral priorities for access to memory, and
permitting simultaneous processing of two or more
unrelated programs.

Buffers and Buffering

Buffering is a technique for providing optimum data
transfer between two components having different
data transfer rates such as core storage and the
400 cpm card reader mentioned above. Buffering
involves using a temporary storage device, or buffer,
that can be filled with data at a rate governed by the
data source component, and subs~quently unleaded
into the data receiving component at a rate governed
by that component. This permits both components I
to function at their optimum speeds when processing
unrelated data without the faster component being
slowed down during data transfers by the slower one.

Thus, in transfers between core storage and the 400
cpm card reader, although it takes 15"0,000 micro­
seconds to read all 80 card columns, core storage

@~D(2(2~ ___ -------
1-8 October 1963

Card Reader

Card Punch --
-

~~

CORE STORAGE BUFFERS

Buffer ... ~
Core

Storage

Buffer ~

Central Processor

CONTROLLER BUFFERS

..... --
Buffer

Typewriter
Paper Tape
Reader-Punch

Core
Storage

~ - - - - -I------;r~~ .. 1----- -

Central Processor ,r

Controller
Selector

Magnetic
Tape

C \.---~~T~ap~e~~_~~_~,r 2- .. ,~ Control
Buffer ...

High
Speed
Printer

Printer
Control
Buffer

Figure 1-2. Central Processor and Controller
Buffers

-

~

To Other
Peripheral

Buffers

@~D~~~ _________ _

1-9

is occupied in receiving the daL read for only 1512
microseconds (one word time per column). The
balance of the time it takes to read the card (148,560
microseconds) can be used for other data processing.

Buffers in the GE- 225 are of two types: direct 1-0
buffers and controller buffers, as illustrated in
Figure 1-2. Direct 1-0 buffers, located within the
central processor, are for use with peripherals having
direct access to core storage, such as the card reader
and punch, the paper tape reader-punch, and the con­
sole typewriter. Controller buffers are located in the
separate controlle"rs for high-speed peripherals, such
as magnetic tape handlers, MRADS units, and high­
speed printers. Buffers for these units have access
to core storage indirectly through the controller
selector.

The Interrupt Principle

The interrupt principle takes advantage of the signi­
ficant difference in operating speeds of the central
processor and the peripherals by permitting the normal
'fetch instruction, execute, fetch instruction, execute,
fetch ..• etc.,' sequence of the central processor to be
interrupted for data transfers.

Two kinds of interrupt are provided in the GE-225.
One, related to normal program proceSSing, is called
priority interrupt; the other, related to multi-program
processing, is called automatic program interrupt.

PRIORITY INTERRUPT

In the GE-225, buffering permits two or more oper­
ations in a program to be performed simultaneously;
for example, cards or tape can be read while computing
occurs in the central processor and, at the same time,
cards or tape can be written. In the example, compu­
tation and access to core storage by the central pro­
cessor are interrupted whenever the input or output
buffers are filled or emptied and a core storage access
cycle is required to transfer data.

If the central processor requests memory access while
input or output peripherals are requesting access, the
processor obtains access on the first free cycle. Be­
cause several requests for access to core storage
might be made at the same time, provision is made to
grant only one request for access during a memory
cycle. The priority interrupt logic incorporated into
the system analyzes these requests for access and de­
termines which of four possible channels is to have ac­
cess during that particular cycle. Refer to Figure 1-3.

All access to memory, including that by the central
processor, is controlled by the priority interrupt logic,
which controls four channels. The first channel has

highest priority; the fourth channel has lowest p riority.
Normally, priority is assigned to components thusly:

Channel and
Priority

Assignment

1
2
3
4

Peripheral
or

Equipment

Card Reader
Controller Selector
Card Punch
Central Processor, including

Console Typewriter and
Paper Tape Reader-Punch

In general, priority is determined by the operating.
characteristics and buffering of system peripherals.
Usually, the peripheral having a high data transfer rate
will have a highpriority; the peripheral with a low data
transfer rate will have a low priority. Two major ex­
ceptions to this arrangement are the card reader and
the central processor.

The card reader is buffered in such a way that it I
must have un.interrupted access to core storage while
it is reading each character on a card, or data may
be lost. The card reader is assigned the highest
priority.

On the other hand, the central processor is assigned
the lowest priority (with the console typewriter and
paper tape reader-punch) because there is no danger
of lost data if central processor operation is inter­
rupted by higher-priority peripherals. Also, program­
run-time is optimized if fully-buffered peripherals are
permitted to operate at capacity.

The controller selector, through which all high-speed
peripherals access core storage, is aSSigned the
second-highest priority. These peripherals are fully
buffered and there is little danger of data loss if their
operation is interrupted. Controller selector priority
is further discussed below.

The card punch which is a comparitively slow peri­
pheral, is assigned the third priority channel because
a card punch operation is initiated only when the card
punch buffer is filled. The card punch buffer can
maintain a partially-filled condition indefinitely; thus,
interrupting card punch operations cannot cause inad­
vertent data loss.

Controller Selector Priority Interrupt. The controller
selector is the common control and transfer point for
input-output peripherals. Specifically, the controller
selector: 1) provides peripheral configuration flexi­
bility and 2) permits the establishment of user-de­
termined priority systems.

@~D~~~ _________ _

1-10 October 1963

Card Reader
Controller
Selector

To
Peripheral
Controllers

Core Storage I

Card Punch

Central Processor
Console Typewriter
Paper Tape Reader-Punch

Figure 1-3. GE-225 Priority Access System

@~C]~~~ _________ _

1-11

The controller selector permits the use of a wide va­
riety of peripherals. Through plug-in connectors,
peripheral controllers can be connected in many ways
and changed to meet varying system requirements.
This ability allows for addition of specific peripherals
as the needs of an installation grow. It also allows for
the addition of new or improved input-output units with
little or no logic or wiring changes. Figure 1-4 illus­
trates one possible system configuration. Smaller or
different configurations are also possible.

In Figure 1-4, the card reader, card punch, paper tape
reader-punch, and console typewriter are connected
directly to the central processor. The other peri­
pherals, through their controllers, are connected to the
central processor through the controller selector. As
many as eight controllers can be connected to the con­
troller selector through eight plug-in connectors, each
with an individual address; these controllers can be a
combination of the following:

I 1 or 2 DSU Controllers
1 to 8 Magnetic Tape Controllers
1 to 8 High-Speed Printer Controllers
1 to 8 Datanet-15 Controllers
1 to 8 Document Handler Adapters (Controllers)

1 Auxiliary Arithmetic Unit (includes Con­
troller)

As shown in Figure 1-4, controllers can direct the
operation of several peripherals. The following list
shows the maximum possible number of peripherals
each respective controller can handle:

lIto 4 DSU Units
1 to 8 Magnetic Tape Handlers

1 High-Speed Printer
1 to 15 Datanet Terminals, plus a Paper Tape

Reader-Punch
1 to 2 12-Pocket Document Handlers

1 Auxiliary Arithmetic Unit

The priority interrupt system actually operates on two
levels. The first level assigns priority access to core
storage through one of the four priority channels, with
the controller selector being assigned the second­
highest priority (channel 2). The second level exists
within the channel 2 priority of the controller selector
and is assigned through eight address hubs, numbered
o through 7. Once a. controller selector request for
access is granted, the controller selector priority
system determines which of two or more requesting
controllers is to receive memory access. Which con­
troller receives access is determined by its assigned
priority, as evidenced by the controller selector
address hub to which it is connected. The controller

connected to address hub 0 has highest priority; the
controller on hub 7 has lowest priority within the con­
troller selector priority.

Thus, any controller on the controller selector has a
higher priority than the card punch (channel 3) or the
central processor and its associated peripherals
(channel 4).

Figure 1-5 is an expansion of the priority interrupt
control system shown previously in Figure 1-3. This
diagram further illustrates the relationship between
overall system priority and controller selector pri­
ority.

The priority aSSignments for peripherals connected
through the controller selector should be consisteI~t
with the data transfer rates and the relative amounts
of data to be transferred by each peripheral. If re­
quests for access are received from two units simul­
taneously, the one having the higher transfer rate
will have the higher priority and be granted access
first. The other unit, having the lower priority, must
wait at least one memory cycle before attaining access.
The reasoning behind this arrangement is that the
slower unit can wait longer with less effect on total
processing time and less danger of data loss than can
the faster unit. A magnetic tape controller, for
example, generally should have a higher priority (lower
priority addres~) than does a printer controller. Once
a magnetic tape controller initiates tape motion, the
controller must have ready access to memory for opti­
mum data transfer. The printer, on the other hand,
does not start printing until it has received all requisite
data, and can therefore afford to wait several cycles
for data.

AUTOMATIC PROGRAM INTERRUPT

Because the central processor will lose no information
if program processing is temporarily interrupted, it
is possible to provide instruction coding in a main
program for an automatic interruption of the program
to process one or more 'priority' programs.

Automatic program interrupt is an optional feature to
control the simultaneous processing of two or more
unrelated programs. This provides for concurrent
operation of peripherals while the main program is
being processed. Priority programs could include
those in which it is desired to transfer data from cards,
tape, or core storage to the high-speed printer, or to
an MRADS unit.

Automatic program interrupt in the central processor
monitors the card reader, card punch, and controller
selector peripherals; the interrupt feature takes effect
only when a peripheral that has previously been engaged
returns to the idle status. Initial engagement of the
peripheral is controlled by the stored program. An

®~D~~~ _________ _
1-12

0 1

Magnetic
Tape

Controller

LEa LoG

Central
Processor

l--------?01 Card Punch
'-----r------J

2

Magnetic
Tape

Controller

~

Controller
Selector

3

DOCwn~ Handler
Adapter

4

High-Speed
Printer

Controller

Printer

Figure 1-4. Large GE-225 System Configuration

5

Auxiliary
Arithmetic

Unit

6

7

High-Speed
DATANET-15 Printer

Controller

J
Printer

...:r

~

@~D~~~ _________ _

1-13

instruction early in the main program sets the auto­
matic program interrupt to permit exit from the pro­
gram when a peripheral signals the centralprocessor
that it is idle. Note that this differs from priority
interrupt, which requires that a peripheral actively
request access to memory. An automatic program
interrupt causes a transfer from the mainprogram to a
'priority' routine which initiates use of a peripheral and
subsequently returns control to the main program;
simultaneously, the peripheral continues operation.
When interruption of the main program occurs, the

location of the next main program instruction to be
executed is stored in a special modification word.
When the 'priority' routine is completed, a branch in­
struction returns control to the main program.

Entry to a 'priority' routine automatically turns offthe
automatic program interrupt. To permit further inter­
ruptions of the main program, the 'priority' routine
must reset the automatic program interrupt before
returning control to the main program.

Priority Interrupt Logic

Priority Interrupt Control
Central Proc~ssor
Console Typewriter

MRADS
Controller

Card
Reader

Magnetic
Tape

Controller

Magnetic
Tape

Controller

Document
Handler
Ada ter

DATANET-15

High-Speed
Printer

Controller

Paper Tape Reader-Punch

CENTRAL PROCESSOR

Card
Punch

» .// '///
/. ///

Auxiliary
Arithmetic

Unit

High-Speed
Printer

Controller

Figure 1-5. Controller Selector Priority

@~D~~~ _________ _

T-14

SECTION \I

MACHINE

To efficiently program the GE-225, the programmer
should have a certain amount of knowledge concerning
numbering systems other than the familiar decimal
notation. He should also know how to convert num­
bers from one system to another. Tl1e reasons for this
are simple: 1) the GE-225 system holds and manipu­
lates data in binary notation, 2) the programmer gen­
erally functions most effectively when working with
numbers in the decimal form, and 3) because neither
decimal nor binary notation is satisfactory as a com­
mon language between programmer and computer, an
intermediate numbering system (octal notation) is often
useful.

NUMBER SYSTEMS

The decimal number system consists of ten digits, 0
through 9, which are used in combination to express
values greater than 9. Depending upon their relative
positions in a number, digits are considered to be
equal to the digit times a positional factor. This
factor is some exponential power of ten, the base of
the decimal system. For example, the number 458
is actually an abbreviated way of expressing the fol­
lowing:

Positional
Digit factor Value

4 x 102 400 hundreds

+ 5 x 101 + 50 tenths

+ 8 x 100 + 8 units ---
458

Any value less than infinity can be expressed in
the decimal system by expanding the number of
positional factors as far as necessary.

LANGUAGE

10,000's 1,000's 100's 10's l's
Positional

lOn 104 103 factor 102 101 100

Digit
positions X .•... X X X X X

Other number systems are possible, using bases other
than ten. In each system, the number of digits used
corresponds to the base. Anumber system with a base
of 7 could have the digits 0 through 6, with positional
values corresponding to the powers of 7. Note that,
whatever the number system, the highest digit used
is one less than the base of the system.

Binary Number System

The binary number system uses two digits, 0 and 1,
called binary digits or bits, and has a base of 2.
Positional notation is similar to that of the decimal
system. Successive positions in a binary number, from
right to left, have values corresponding to increasing
powers of 2. Thus, the binary number 11011101 is
equal to 1 x 27 + 1 x 26 + 0 x 25 + 1 x 24 + 1 x 23 + 1 x
22 + 0 x 21 + 1 x 20, or 221 in decimal notation.

Like the decimal system, any number less than infinity
can be expressed by using enough positions.

Decimal
value etc 256 128 64 32 16 8 4 2 1

Positional
factor 2n 28 27 26 25 24 23 22 21 2°

Digit
position X X X X X X X X X X

@~D~~~ __________ _

II-I October 1963

Counting in binary is similar to decimal, beginning with
0, then 1. Once the highest digitis reached, a carry to
the left adjacent digit position is made and the count
starts at zero again. Thusly:

Decimal Binary

0 0
1 1
2 10
3 11
4 100
5 101
6 110
7 111
8 1000
9 1001
etc. etc.

Addition in binary is simpler than decimal addition,
as illustrated in Figure 2-1. Other arithmetic oper­
ations are similarly easy.

+ 0 1

0 0 1

1 1 10

Figure 2-1. Binary Addition Table

The table shows that 0 + 0=0, 0 + 1=1, 1 + 0=1, and
1 + 1=0 plus a 1 carry. In a two-number addition, the
largest intermediate sum is never more than 1 with a
1 carry.

Example: Add the binary numbers 10110101 and
11010110

1 1 1 1 1 ~carry
101 101 0 1

+ 1 1 0 1 0 1 1 0

=1 1 0 0 0 1 0 1 1

Octal Number System

The octal number system uses eight digits, 0 through
7, and the base 8. Again, positional notation is similar
to that of the 'decimal and binary systems. Successive
positions in an octal number, from right to left, have
values corresponding to ll1creasing powers of 8. Thus
the octal number 1376 is equal to 1 x 83 + 3 x 82 + 7
x 81 + 6 x 80, or 766 in decimal notation.

The octal system can be extended to expr ~ss any size
number.

Decimal
value

Positional
factor

Digit
position

etc 262.144 32,768 4096 512 64 8 1

8n 86 85 84 83 82 81 80

X X X X X X X X

Octal counting is also similar to decimal counting. The
count begins with 0, proceeds to 7 (the largest octal
digit), generates a carry into the adj acentleft position,
and starts again at zero. Thusly:

Decimal Octal

0 0
I 1
2 2
3 3
4 4
5 5
6 6
7 7
8 10
9 11

10 12
11 13
12 14
13 15
14 16
15 17
16 20
etc. etc.

Octal addition and other arithmetic operations are
more difficult than binary or the familiar decimal oper­
ations. The most useful is octal addition, which is
facilitated by tables such as that shown in Figure 2-2.

@~D~~~ _________ _

II-2

Octal Digits

+ 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7 10

2 2 3 4 5 6 7 10 11

3 3 4 5 6 7 10 11 12

4 4 5 6 7 10 11 12 13

5 5 6 7 10 11 12 13 14

6 6 7 10 11 12 13 14 15

7 7 10 11 12 13 14 15 16

Figure 2-2. Octal Addition Table

The table is useful in adding two octal numbers, which
is the most common application the programmer will
require.

Example: Add the octal numbers 642351 and 162534.

1 11 carry
642351

+ 162534
1025105

Notation Convention

Wherever the possibility of confusion eXists, a sub­
script notation is used to indicate to which system a
given number belongs. For example, 1010 could be
a binary representation of the decimal number 10,

I an octal representation of the decimal number 520,
or the decimal number 1010 • If a number is ex­
pressed in binary notation t~~ subscript 2 is used:
10102, Octal numbers are shown with a sUDscript 8 :
1238, Decimal numbers are shown with a subscrlpt
10: 876 10, If it is evident from the text which nota­
tion is uS-ea, the subscript is omitted.

Decimal-To-Binary Conversion

To convert a decimal number to binary, divide the
decimal number repeatedly by 2. After each division,

write down the remainder in sequence from right to
left. The remainders will be the binary equivalent of
the initial decimal number. Note that each division by
two leaves either a 0 or a 1 as a remainder.

Example: Find the binary equivalent of the decimal 53.

26
2153

-ll...
1------~~1

13
2126

--2.L
o --------l •• 01

6
2[13

....1L
1------I.~101

3
2 rB

6
o -----1 •• 0101

1
213

2
1 ------' •• 10101

o
2r1

0

1st remainder

1st two remainders

1st three remainders

1st four remainders

1st five remainders

1 -----1 •• 110101 all remainders

B i nary-to-Deci mal

Binary numbers can be converted to decimal by the
same method as decimal-to-binary conversion, except
that the division is by 1010 expressed in binary (1010)
and the arithmetic is in binary. After each diviSion,
the binary remainder is converted to a decimal digit.

The remainders, in reverse sequence, are the decimal
equivalent of the original binary number.

@~D~~~ __________ _

11-3 October 1963

Example: Convert 101111011 2 to decimal notation.

100101
1010 101111011

1010
1110
~

10011
1010
1001 91O:------..~ 9 units digit

11
1010 I 100101

1010
10001

1010
111 71O----t~.79 tens and units

digits

o
1010 I 11

0
11 = 310----1 •• 379 hundreds, tens,

and unit digits.

Another method would be simply to look up the decimal
equivalents of the corresponding powers of two in the
table shown in Figure 2-3 and add.

Example: Convert 1011110112 to decimal notation.

1 0 1 1 1 1 0 1 1

li
L-----I. 0

'-------I: 8
'--------1. 16

'---------------1: 32
'------------------1: 64

'--------------------~. 0
L----------------------256

Binary
Positional
Factors

Binary
Digits

2n n

80= . 1 0

2 1
4 2

81= 8 3

16 4
32 5

82= • 64 6

128 7

83= .
256 8
512 9

1 024 10
2 048 11

84= • 4096 12

8 192 13
16 384 14

85= 32 768 15

65 536 16
131 072 17

86= • 262 144 18

524 288 19
1 048 576 20

87= 2 097 152 21

"1 194 304 22
8 388 608 23

88= . 16 777 216 24

33 554 432 25
67 108 864 26

89= • 134217728 27

268 435 456 28
536 870 912 29

810= . 1 073 741 824 30

2 147 483 648 31
4 294 967 296 32

811= 8 589 934 592 33

17 179 869 184 34
34 359 738 368 35

812= . 68719476736 36

137 438 953 472 37
274 877 906 944 38

813= . 549 755 813 888 39

1 099 511 627 776 40

Figure 2-3. Table of Powers of 2 and 8

@[D~~~-----------

11-4

Binary-To-Octal Conversion

Converting numbers from binary to octal notation is
a simple mechanical procedure. Three binary digit
positions are the equivalent of one octal bit position.
Thus, a 15-bit number, such as 101 001 110 111 0012'
is a 5 digit octal number when converted. To convert,
the binary digits are separated into groups of three,
beginning on the right. Each group of three is evalu­
ated individually; the right-most bit has a weight of 1,
the center bit is 2, and the left-most bit equals 4. As­
suming 1-bits in all three positions of a group, the
highest value expressible is 7, which is the largest
octal digit.

Example: Convert 1010011101110012 into octal nota­
tion.

84 83 82 81 80

421 421 421 421 421

101 001 110 111 001
= 5 1 671

Octal P0sition Factors

Conversion Weight

Binary Number
Octal Equivalent

Octal-to-Binary Conversion

By reversing the above process, conversion from octal
to binary notation is simplified. Beginning with the
right-most digit of the octal number, each digit is
converted to its binary equivalent. Each octal digit,
upon conversion, requires three bit positions.

Example: Convert 12345678 into binary notation.

7
6
5
4
3
2
1 _001

OCTAL

oro
1 til

011 100 101 110 111

Octal-to-Decimal Conversion

One method of converting octal numbers to their deci­
mal equivalents is to 1) convert the octal number to
binary and 2) convert the binary equivalent to decimal,
by the previously described procedures.

Another method is to use a conversion table and merely
look up the equivalent decim;ll number. For large octal
numbers,. such conversion tables often run to many
pages. The short conversion table in Figure 2-4 is
useful in converting octal numbers up to 3777777
(sufficient for GE-225 programming) directly to deci­
mal notation. The table shows the decimal equivalents
of all octal digits as a function of their position in the
octal number.

To illustrate the use of the table, consider the octal
number 1761354. To convert this number to its decimal
equivalent, read the equivalent decimal value of each
octal digit from the table and add them to find the total
decimal equivalent, as shown below:

Octal Positions Decimal Positions

86 85 84 83 82 81 80 105 104 103 102 101 100

1 7 6 I 3 5 4...;.= 4

I
I l ~= 4 0

:: 1 9 2
5 1 2

2 4, 5 7 6
2 2 9, 3 7 6
2 6 2, 1 4 4

thus, 17613548 5 1 6, 8 4 410

DIGIT OCTAL DIGIT POSITION
VALUE

86 85 84 83 82 81 80

1 262,144 32,768 4,096 512 64 8 1
2 524,288 65,536 8,192 1,024 128 16 2
3 786,432 98,304 12,288 1,536 192 24 3
4 - 131,072 16,384 2,048 256 32 4
5 - 163,840 20,480 2,560 320 40 5
6 - 196,608 24,576 3,072 384' 48 6
7 - 229,376 28,672 3,584 448 56 7

Figure 2-4. Octal-to-Decimal Conversion Chart

@~D~~~ _________ _

II-5

Decimal-To-Octal Conversion

Decimal-to-octal conversion can be done by first con­
verting the decimal number to its binary equivalent,
then reconverting the resulting binary number to octal
notation.

Another method .involves the use of the two tables in
Figure 2-5. The octal equivalents ofthe decimal digits
are found in the upper table and are then added octally.
The lower table assists in the required octal additio:~
by permitting the octal equivalents to be added in dec~i­
mal, a column at a time, then converted to octal nota­
tion.

CONVERSION CHART

DECIMAL POSITION

DECIMAL
DIGIT 105 104 103 102 101 100

I

1 303,240 23,420 1,750 144 12 1
2 606,500 47,040 3,720 310 24 2
3 1,111,740 72,460 5,670 454 36 3
4 1,415,200 116,100 7,640 620 50 4
5 1,720,440 141,520 11,610 764 62 5

6 2,223,700 165,140 13,560 1,130 74 6
7 2,527,140 210,560 15,530 1,274 _J)6 7
8 3,032,400 234,200 17,500 1,440 ~20 10
9 3,335,640 257,620 21,450 1,604 :,32 11

OCTAL EQUIVALENTS OF DECIMAL NUMBERS

DECIMAL OCTAL DECIMAL OCTAL DECIMAL OCTAL
1 1 15 17 2H 35
2 2 16 20 30 36

3 3 17 21 31 37
4 4 18 22 32 40

5 5 19 23 33 41
6 6 20 24 34 42

7 7 21 25 35 43

8 10 22 26 36 44
9 11 23 27 37 45

10 12 24 30 38 46
11 13 25 31 39 47

12 14 26 32 40 50
13 15 27 33 41 51

14 16 28 34 42 52

Figure 2-5. Decimal-to-Octal Conversion Charts

I Example: Convert 34597810 to octal notation.

Decimal Positions

105 104 103 102 101 100

3 4 5 9 7 ~=

I I \
I I

~~
I thus, 345978 10

@~D~~~

Octal Positions

86 85 84 83 82 81 80

1 0
1 0 6

1 6 0 4
1 1 6 1 0

1 1 6 1 0 0
1 1 1 1 7 4 0

1 2 4 3 5 7 28

II-6

Adding the 80 column in decimal gives 1010, which is
128' according to the lower table in Figure 2-5.
Writing the 2, carrying a 1 into the 81 column, and

adding in decimal gives 78 and no carry; write the 7.
Adding the 82 column in decimal gives 2110, which is
258, Writing the 5, carrying a 2 into the 83 column,

~nd addin~ gives 1140 or 138' Writingthe 3 and carr.y-
mg the 1 mto the 8 column gives 48' no carry; WrIte
the 4. The 85 column gives 2 and the 86 column is 1.

October 1963

DATA WORDS

In the GE-225, the word (or basic unit of information)
consists of 20 binary digits. Words can be stored in
4096 to 16,384 core storage locations, each of which
is individually addressable. Additional random access
and sequential access storage is available in MRADS
units and magnetic tape.

A word can be an instruction, a binary data word or
number, a binary-coded-decimal word (for expressing
either alphabetic or numeric characters), or any pat­
tern of 20 bits the programmer so desires. The 20
bit positions of the GE-225 word are depicted in Fig­
ure 2-6. S (or 0) refers to the sign position, 1 indicates
the high-order bit position, 2 the next highest, and so
on. Bit position 19 indicates the low-order bit position.

I I I I I I I I I I
o 1 2 3
S

I I I I I I I I I
. 19

Figure 2-6. Basic GE-225 Word

Binary Data Words

When a word is interpreted by the GE-225 as binary
data, the 0 (or S) position acts as the arithmetic sign.
A O-bit in the sign position indicates that the word is
positive; a 1-bit indicates that the word or number is
negative. In binary wo rds, I-bits in posi tions 1 through
19 indicate values corresponding to the powers of two.
A I-bit in bit position 1 equals 218 or 262,14410; in
position 2, a I-bit equals 217 or 131,07210; in position
19 20 or 1. The largest positive decimal number that
c~ be expressed in the 20-bit binary word is 219 - 1,

or 524,28710'

Negative numbers are expressed in binary form by
plaCing a I-bit in the signpositionandthe 2's comple­
ment of the desired number in bit positions 1 through
19.

To express a given negative number:

1. Write the positive number in binary

2. Change it to the 2' s complement form by
a) converting all I-bits to O-bits andall O­

bits to 1-bits and
b) adding a I-bit to the least significant bit

position.

For example, to express the decimal -6810 in binary,
write +6810 in binary:

101 0 I 0 10 1010 I 0 10 I 0 \ 0 10 \ 0 1011 \0 10 10 1110 10 I
S 1 2 3 • . • 19

Inverting all bit positions gives:

11\1 It 1111 hl1 It hl111 It 1110111111101111\
S 1 2 3 • . . • • . . • • . 19

Adding a I-bit to bit position 19:

11 It 11 h \1 II 1111 111111\1 illo 11 11\11110 10 I
s 1 2 3 . • • . • . . • • • • . . . • 19

The largest negative number that can be expressed in
the 20-bit binary word is 219, or 524,28810,

A machine instruction is provided for automatically
converting a positive number to a negative number.
Also, in subtract operations involving positive num­
bers, the required complements are automatically
formed'.

Double Length Binary Words

The GE-225 can perform double length data word~per­
ations. Double length words consist of two 20-bit words
which are normally stored in adjacent memory loca­
tions. For processing, they are treated as a single
word consisting of a sign bit and 38 data bits.

For illustration, consider the decimal 3,862,48310, In
binary, this number would be stored in two adjacent
memory locations:

, 221 f9
\0 1010 10 I 0 \ 0 10 10 10 I 0 I 0 10 10 10 10 10 10 11 11 1 I
S 1 2 3 19
Memory Location 1

10 10 11 \ 011 11 \1 \ 0 \1 \1 \1\1 \1\11011 1010 11 \1 I
S 1 2 3 . . . • • . . 19
Memory Location 2

@~D~~~ _________ _

11-7

I

The most significant half of the double word is stored
in the first memory location. The adjacent (higher)
location contains the least significant half of the word.
Bit positions in the second memory location have values
corresponding to the first nineteen powers of two (20
through 218), while those of the first (lower) memory
location correspond to the second nineteen powers of
two (219 through 237). The signs of both locations are
the same, 0 for plus or 1 for minus. Double length
negative numbers are expressed in the 2' s complement
form.

Floating- Point Notation

The auxiliary arithmetic unit (AAU) expands the arith­
metic capability of the GE-225 to include normalized
and unnormalized floating-point operations. Repre­
sentation of floating-point numbers is discussed in the
section, Auxiliary Arithmetic Unit Operations.

GE-225 installations, with or without the AAU, can
process floating pOint arithmetic with utility subrou­
tines provided by General Electric for this purpose.
However, for voluminous floating point calculations,
the AAU provides greater efficiency, because of its
speed and capacity.

Binary-Coded-Decimal Data Words

In addition to its basic binary capability, the GE-225
can process binary-coded-decimal (BCD) or alpha­
numeric data. The six bit positions of the BCD code
may be used to express 64 character configurations,
including all alphanumeric and special characters of
the GE-225 character set.

The 6-bit code consists of two groups:

ZONE
GROUP

B A

NUMERIC
GROUP

8 4 2 1

The numeric bits correspond to the first four powers
of two, as they do in the binary system, and can express
up to 16 numeric values, 0 through 15. The zone bits
provide for coding alphabetic and special characters.

Selected characters are shown below inBCD. All GE-
225 characters and their equivalent BCD codes are
shown in the Appendix.

In the BCD mode, the GE-225 word can contain three
characters, occupying 18 bit pOSitions (2 through 19).

B A 8 4 2 1

1 0 0 0 0 0 1

5 0 0 0 1 0 1

9 0 0 1 0 0 1

A 0 1 0 0 0 1

N 1 0 0 1 0 1

R 1 0 1 0 0 1

. 1 0 0 0 1 .I. /

Z 1 1 1 0 0 1

$ 1 0 1 0 1 1

The remamms two bit positions (S and 1) do not nor-I
mally contain data, but are used for program and
printer control purposes discussed later. A repre­
sentative GE-225 BCD word is shown:

Double length BCD words are possible to express al­
phanumerics consisting of as many as six characters.

Optional instructions permit variable length BCD arit­
metic operations. Negative numbers must be expres­
sed in 10's complement form with a I-bit in the sign
position. Note that, in BCD numerics, the zone bits
(2, 3, 8, 9, 14, 15 bit positions) are set to zero. Al­
though the BCD word contains only three numeriCS, the
variable length feature permits operations with BCL
numbers of any practical length.

Examples of BCD quantities:

Decimal

+ 10

+ 989

- 10

- 989

+ 87649

- 87649

BCD word(s)

I +10 II 10 I
LJ9j819 I

1

I
-191910 I

-10 h 11 I

QOI8\? 11+1614191

I -191112IJ-1315111

@~D~~~ _________ _

ll-B October 1963

INSTRUCTION WOF~DS

Instructions are expressed do, 20- bit words. Three
different formats are used,

Format 1. All instructions inv()lving reference to mem­
ory are written in Format 1. Included are arithmetic,
memory transfer, and eE"rtain branch instructions.
Complete descriptions of thes(instructions are pro­
vided in subsequent sections.

The format for memory reference instructions is:

o 4 5 6 7

OPERATION
CODE

o 4

x X

5 6

WITH DATA
LOCATED HERE

OR

7

OPERAND
ADDRESS

19

19

The five bits (0 through 4) indicate the operation to be
performed, such as add, subtract, read cards, etc.

Bits 5 and 6 provide for automatic address modifica­
tion by stipulating whether the contents of one of sev­
eral X registers are to be used to modify the operand
address. Automatic address modification is treated
in Section V.

Bits 7 through 19 designate thE: ope rand address; that
is, the memory location where the data to be added,
subtracted, etc., is stored,

I About 60 of the over 300 instructions in the GE-235
repertoire require operand addresses. Instructions
without operand addresses cannot be address modi­
fied, This permits bits 5 and 6, and 7 through 19 to be
used for other purposes. ILstructions in this cate­
gory (no operand address) are ealled generalinstruc­
tions, Format II, or shift instruetions, Format III.

Format II. All instruetions ill data transfer (ex eluding
memory transfer) and input-output categories and most
internal test-and-braneh lI1structions are written in
Format II. Instructions in ttli~ format are commonly
called general instructions and have the same oper­
ation code in bit positions Sthrough4(10 101, or 258)'
Format II has three variations, corresponding to the
three general categories mentioned.

The word movement variation is for instructions in­
volving full word transfers between arithmetic regis­
ters and the arithmetic unit. They assume this format:

9 >19

Specifies Exact Operation

'--~ ~ ~\'---------..r~-----')

Alwats is 1 01tindicates
258 for Word Move-
General ment Variation 1 Instruction

No Address
Modification

Interpretation of
these bits is ex­
plained under
'Micro-program­
ming-

The input-output variation is used for instructions in­
volving the central processor and peripherals. Bits
S through 4 contain 258 (10 101) and bits 7 and 8 are
0' s. The remaining bits specify the input-output oper­
ation. The format is as follows:

S~4

Operation
Code

~ i t
Always is
258 for
General
Instruction

Designates
Input- Output
Variation

Designates
the specific
input-output
operation

No Address
Modification

Either a mem­
ory location or
peripheral con­
troller address

The test-and-branch variation is usedforinstructions
that provide for breaking the normal sequence of in­
struction execution. These instructions are identified
by 258 (10 101) in bit positions S through 4 and I-bits

@~Cl~~~ ___________ _

11-9 October 1963

in positions 7 and 8. The test condition for determining
a branch to another instruction is specified by bit posi­
tions 9 through 19. The format is:

10 >19

Branch Condition

'----~,,--------'

i
Designates
Test-and­
Branch
Variation

Specifies con-

Instruction

No Address
Modification

dition to be
tested

1 = branch on
negation (no)
o = branch on
affirmation (yes)

The specific bit patterns for all Format IT instructions
can be found by converting the octal equivalent of the
instructions to binary. The octal form of each in­
struction is included in the instruction descriptions in
subsequent sections.

Format ITI. Only shift instructions are written in
Format III. Shift instructions are used to shift one or
more bits within or between arithmetic registers. Bit
positions S through 4, designating the operation code,
contain 258; bits 7 and 8 contain 1 and 0 respectively,
identifying a shift operation; bit 9 indicates direction
of shift (right or left); bits 10 through 14 identify the
registers involved; bits 15 through 19 designate the
number of bits to be shifted. The format is:

10 14
Exact
Operation

t~~~~
Always is Shift Specifies
258 for Varia- Registers
General tion
Instruction

No Address
Modification

1 = left
shift
0= right
shift

Up to
31 bit
positions

While it is possible to prepare programs for GE-225
processing directly in binary notation, it is infre­
quently done because such programming is tedious and
subject to clerical error. However, a knowledge of
binary notation and instruction structure is essential
in micro-programming (the building or creating of
instructions by the programmer). Micro-program­
ming is discussed in a later section.

In program debugging and patching, octal notation is
frequently used for 3 reasons: 1) octal notation pro­
vides the programmer with a more meaningful pre­
sentation than does binary, 2) the GE 225 provides
printed outputs (during GAP program assembly) and
memory dumps in octal notation, and 3) octal can easily
be converted to binary or decimal. On the other hand
binary is difficult to read or write; also it is tedious t~
convert to the familiar decimal notation.

GE-225 Octal Notation

Conversion of GE-225 words from binary to octal or
octal to binary is a simple mechanical procedure.

Given the GE-225 binary word:

Starting on the right, divide the word into groups of
three bits (giving six groups of three, and one group of
two) and assign octal values to the bit positions as
shown:

01 101 011 100

CD G) @ CD
101 100

@ ®
111

(j)

~Bits

~Octal
Group

No.

Evaluate each group and write the equivalent octal digit:

CD 01 1

® 101 5

® 011 3

CD 100 4 15345478

® 101 5

® 100 4

G) 111 7

The result of the binary-to-octal conversion is a 7-
digit number in place of the longer, less meaningful
20-bit binary word.

@~D~(2~ ___ -------

11-10

I

Note that any GE-225 word can be represented as a 7-
digit octal number, whether it be a data word or an in­
struction.

The representation of the number 12345678 in binary is
accomplished by reversing the above process,:

~ Binary Word

1 001
2 010
3 011
4 100
5 101
6 110
7 111

Because of the simplicity and convenience of octal nota­
tion, it is used freely in the balance of the manual to
simplify explanations and to provide familiarity.

SYMBOLIC PROGRAMMING

Programs for the GE-225 information processing
system are generally written in symbolic coding.
The programmer is thus able to write instructions
in meaningful symbolic codes, rather than the absolute
numeric code language of the computer. This relieves
him of much time-consuming clerical detail, especially
important in writing lengthy programs.

The General Assembly Program

The General Assembly Program transforms symbolic
mnemonic codes into numeric machine language for
each instruction in the repertoire of the GE-225
system. These mnemonic codes have been chosen
to provide Significance and easy recognition of the
operation performed. For example, the mnemonic
code "ADD" instructs the General Assembly Pro­
gram to build a numeric instruction by which the
GE-225 system performs algebraic addition.

The General Assembly Program is comprised of
two parts:

1. The symbolic language used by the pro­
grammer in coding the source program.

2. The actual assembly program (on punched
cards, perforated tape, or magnetic tape)
supplied by General Electric that processes
the source (or symbolic) program into a
ready to execute machine l<:.nguage (or obj ect)
prograD,l.

The symbolic language consists of these standardized
mnemonic codes divided into two general categories:

1. The pseudo-instructions used by the General
Assembly Program for memory location
assignments, program control constants,
program constant storage, and program
control during the assembly operation. These
do not correspond to "real" GE-225 machine
instructions.

2. The mnemonic operation codes corresponding
to the more than 300 machine instructions
of the GE-225 system.

There generally is a one-to-one relationship between
the mnemonic operation code prepared by the pro­
grammer and the machine instruction appearing in
the object program as assembled by the General
Assembly Program. A Single pseudO-instruction,
however, can result in the generation of from one to
several machine instructions during the assembly
operation. The pseudo-instructions are described
in a separate manual, General Assembly Program II
(CD225F1.006/007), which also discusses all phases
of the assembly operation and operating procedures.

The machine instructions for the GE-225 central
processor are described in Sections V, VI, and VII
of this manual. Instructions for the various peripheral
subsystems are described in the separate manuals
covering these subsystems, as listed in the" Preface"
and "Contents."

A complete, brief listing of General Assembly Pro­
gram instructions in both alphabetical and octal
order is given in Appendices II and III.

@~D~!2~ ___ -------_

n-11 May 1964

SECTION III

CENTRAL PROCESSOR ORGANIZATION

The central processor performs all arithmetic and
logical functions in the GE-225 system and acts as a
central control for all internal and peripheral oper­
ations. Because the program (or instructions for data
processing) is held in memory like the data to be pro­
cessed, the GE-225 is known as a stored program
computer.

MAGNETIC CORE STORAGE

Instructions and data are held in the primary storage
unit, or memory, through the use of tiny ferrite cores.
Each core is a ring, or toroid, of ferromagnetic mater­
ial capable of being magnetized in one of two polarities
when current is passed through wires inserted through
the cores. Current through the wires generates a mag­
netic field which in turn magnetizes the core; when the
current is stopped, the core remains magnetized. If
the direction of current flow is reversed, the field about
the wire is reversed and the ferrite core will be mag­
netized in the opposite direction. The two possible
states of magnetization can be called 1 and 0, corres­
ponding to the two binary digits.

Current
Flow ~

1
Sense

Winding

Direction of
M agnetiza tion

No
Current ~

Flow

~

Figure 3-1 illustrates this principle of storage. Note
that two wires are used to provide the magnetizing cur­
rent and current must be present in both wires to mag­
netize a core or switch the core from one magnetic
polarity to the other. The third wire shown, the sense
winding, is used to sense the change in magnetization
of the core. As the core 'flips' from one magnetic pol­
arity to the other, a pulse is induced in the sense
winding by the collapsing field of original polarity and
the increaSing field of the new polarity.

The basic GE-225 memorymoduleisanarrayor block
of cores 64 cores wide, 64 cores long, and 21 cores
deep. It can be visualized as 4096 vertical columns of
21 cores each. Each column of cores can contain 20
information bits plus a parity (or check) bit. When a
word is stored in or read from memory, the bit pat­
tern of the word is simultaneously set into or read from
all 21 cores of the desired column or storage location.
In addition to the basic 4096-word module, memory is
also available with storage capacities of 8192 and
16,384 words.

Each memory word is individually addressable. Ad­
dresses are used to make data stored in memory

Current Induced
Flow

/
Setting a Core
to the '1' State

A 'I' Bit
Retained

Resetting a Core
to '0' and Reading
out a 'I' Bit.

Figure 3-1. Bit Storage in a Ferrite Core

@~D~~~ _________ _

III-I

I

relocatable. Instructions requiring data to be moved
to or from memory must specify an operand address
corresponding to the memory address containing the
data. Instructions held in memory are accessed by
their addresses. Addresses are numbered sequentially
from 0000 to 4095 (or 8191) for basic memory sizes.
Addressing the additional 8192 words in a 16,384 word
memory is covered in a later section.

Access time for a word stored in memory is 18
micorseconds (millionths of a second); this includes 1)
reading the word from core storage, 2) storing the
word in a register external to memory, and 3)restor­
ing or replacing the word in core storage. Core
storage access time is also called a memory cycle
or a word time. A single data word transfer to or
from memory, including access time for the instruc­
tion effecting the transfer, requires 36 microseconds
(2 word times); a double length word transfer requires
54 microseconds (3 word times). When a word is
read from memory, all 21 bits are transferred simul­
taneously. Storing a word in a gi ven address destroys
the previous contents of that address.

Stored Program

Because instructions, like data, are stored in memory,
data processing can proceed automatically, performing
instructions in sequence as they exist in storage, or
branching to other instructions in the sequence depend­
ing upon the preceding instruction.

For the same reason, self-modifying programs are
possible. Instructions can be manipulated as well as
data, permitting changes to the basic program as a
result of in-process decisions.

Addresses:
0000

INDEXING
0128

AUTOMATIC
PROGRAM INTERRUPT

0256
CARD

INPUT-OUTPUT
1000

PROGRAM
2500

CONSTANTS
2800

MAGNETIC TAPE INPUT-OUTPUT
2940

PRINTER INPUT-OUTPUT
3100

SUBROUTINES

Figure 3-2. Representative Allocation of Memory

Programming efficiency is aided by good planning
or the orderly use of available memory. The designa­
tion of specific areas of memory for specific purposes
reduces programming time and errors. Figure 3-2
illustrates a possible allocation of memory space for
input-output, constant, instruction, and subroutine
storage.

X Register Operation

Memory addresses 0000 through 0003 have special pro­
perties. Instructions are provided to permit their use
as program counters by making provision for incre­
menting their contents by a constant and testing the
contents with one of two special test instructions.

In addition, locations 0001 through 0003 can be used for
modification word storage and are called X registers.
Bit pOSitions 5 and 6 of the basic instruction word can
be used to specify which of the three X register con­
tents is to be used for modification, as indicated:

Bit Position X Register
5 6 Selected

a a None
a 1 0001
1 a 0002
1 1 0003

If an instruction containing an operand address also
specifies an X register in bit positions 5 and 6, the
contents of the specified location (0001, 0002, or 0003)
are added to the operand address to give the effective
address. The instruction is executed using the effective
address, rather than the operand address. The original
instruction in storage remains unchanged.

X registers facilitate addreSSing upper memory (loca­
tions above 8191), as described in the section, Addres­
sing Upper Memory.

Additional modification words are available as partof
an optional package that also provides a three-way
compare instruction and decimal (BCD) arithmetic
capability. The added modification words consist of
31 groups, each containing a word that can be incre­
mented as can location 0000, and three words with the
same modification properties as locations 0001 through
0003. This provides 96 modification words and 32
counter words in memory locations 0000 through 0127.

Use of the optional modification groups requires the
specification of the desired modification group with a
special select instruction. A group remains selected
until a subsequent special select instruction is used to
specify another group. Once a group is selected, the

@~D~~~ __________ _

UI-2
October 1963

desired modification word within the group is specified
by bits 5 and 6 of the instruction. For example, if
modification word group 28 were specified by a special
select instruction during a normal program sequence,
all subsequent instructions with X register coding of 01 ,
10, or 11 would be modified by the contents of locations
0113,0114, or0115, respectively, until another modifi­
cation group was specified by another select instruc­
tion.

M Register Operation

The M register is a 21-bit register (see Figure 3-3).
All information transferred to or from core storage
must first pass through the M register, which is the
focal point for information transfers among GE-225
system components. The 21 bits of the M register
include 20 information bits, plus a parity check bit.

Parity Checking

A parity check is performed automatically as a word is
read from memory into the M register. The parity
check circuits count the I-bits contained in all 21 bit
positions; if the count is odd, parity is correct and
operations proceed; if the count is even, then a parity
error (bit drop or pick-up) has occurred and the parity
alarm light on the control console is turned on. In
addition, depending upon the position of the 'Stop on
Parity Alarm' switch on the control console, a com­
puter halt or aprogrammed branch for remedial action
can occur.

Words written into memory have a parity bit generated
(as required) by the parity check circuits, while the
word is held in the M register. The parity check cir­
cuits count the bits and, ifthe count is even, generates
a bit for the 21st bit position. If the count is odd, no
parity bit is required. In either case, the entire 21 bit
positions of the M register are stored in memory.

ARITHMETIC AND CONTROL
REGISTERS

Arithmetic operations, such as addition, subtraction,
multiplication, and division, require temporary stor­
age devices external to memory for holding inter­
mediate and final results and performing the necessary
calculations. The GE-225 uses arithmetic registers
for these purposes. In addition, arithmetic registers
are used for shifting and other data manipulations
related to decision-making and arithmetic capabilities.

Arithmetic registers include:

B Register
A Register
Q Register
N Register
C Register (optional, not illustrated)
Arithmetic Unit

Control registers control the sequential proceSSing
and interpretation of instructions. These registers
include:

I Register
X Registers
P Counter (or register)

Arithmetic Registers (Figure 3-4)

B REGISTER. The B Register is a 20-bit register
which acts as a buffer register between the M register
and the central processor during data transfers. The
B register is also a buffer for arithmetic operation
and contains:

The addend for addition
The subtrahend for subtraction
The multiplicand for multiplication
The divisor during division

Outputs from the B register are supplied to the I regis­
ter and the arithmetic unit. The B register is also used
in the execution of certain data transfer commands.

A REGISTER. The A Register is a 20-bit register and
is used most frequently in central processor oper­
ations. It receives information from and transfers
information to the arithmetic unit. It serves as the
accumulator for the central processor and performs
this function by holding:

The augend during addition
The sum after addition
The minuend during subtraction
The result after subtraction
The most significant half ofthe product after mul­

tiplication
The 'most Significant half of the dividend before

division
The quotient after division
The most significant half of a word after the exe­

cution of all double length word instructions
A word transferred from, or to be transferred to,

memory
The word on which extraction is performed during

the execution of the extract instruction (Ex­
traction is the examination and replacement
of bits in a word according to a previously­
defined pattern)

@[D~~~ _________ _

m-3

Address I "l
Decoding P Counter

Network I 123 . 151

Core T Storage

I I Register 1
f0123. .191

d Reader
d Punch

Car
Car
Con troller

Selector

S 123 .

Peripherals

I
S 123 .

I
M Register

I Parity
Check

A Register

N
Register

.1 2 E

1
Console Typewriter
Paper Tape Reader-Punch

1
r B Register

.19 Pl S123. . 19

I
Arithmetic

Unit

,
I I Q Register

19 r-- S 123 . . . 191

Figure 3-3. GE-225 Arithmetic and Control Register

The word to be shifted during various shift
instructions

A word to be transferred to another register or to
be modified in some way during the execution
of various data transfer commands _

The word that determines future action during the
execution of branch instructions.

In addition, manual access to the A register is per­
mitted by 20 console switches provided for this pur­
pose.

Q REGISTER. The Q Register is a 20-bit register
which acts with the A register to form a double length
word accumulator (38 bits plus a sign bit) during the
execution of double length word instructions. Infor­
mation is not transferred directly from memory into
the Q register, but is read into the A register and then

shifted into the Q register. The Q register performs
the following functions:

I, Holds the least significant half of the augend
before double precision (double length) addi­
tion, and the least significant half of the sum
after addition.

2, Holds the least significant half ofthe minuend
before double precision subtraction, and the
least significant half of the result after sub­
traction.

3. Holds the multiplier before multiplication.
4. Holds the least significant half of the result

after multiplication.

5. Holds the least significant half of the divi­
dend before division.

6, Holds the remainder after diviSion,

@~D~~~ __ --------

III-4 October 1963

Holds the least significant half of the double length
word during the execution of double length word
instructions.

Holds the least significant half of information to be
shifted during double length shift instructions.

N REGISTER. The N Register is a 6-bit register which
is used as a single character buffer between the central
processor and 1) the console typewriter, 2) the paper
tape reader, and 3) the paper tape punch. This permits
input-output operations with these units to occur simul­
taneously with other central processor operations.
Information is transferred directly between the N reg­
ister and the A registerby means of shift instructions.

C REGISTER. The C Register, or Real Time Clock, is
an optional equipment feature that permits the timing
of operations in either relative or real time. This
feature is convenient where it is necessary to deter­
mine or record elapsed time of operations performed

Address
Decoding
Network

Core

Storage

I

by the GE-225, or of operations external to the GE-225
system. In addition, it is possible to determine the
time of an occurrence relative to actual (Greenwich
or local) time or to any suitable time base.

The C register is a 19-bit binary register that can be
set directly from, or read directly into, the A register.
Only bits 1 through 19 of the A register are involved in
such transfers.

The C register is automatically incremented by one,
in binary mode, every sixth of a second while power is
applied to the GE-225. When the C register count
reaches the binary equivalent of 24 hours (518,400
sixths of a second), it automatically resets to zero and
starts counting again. Translation of the C register
contents from binary notation to clock time can be
performed either manually or by a simple conversion
routine. Instructions and conversion procedures are
discussed in Section V.

J P Counter

I 123 •• . 15 j

I Register I

1012 3. . .191

d Reader Car
Car
Con

d Punch
troller
Selector

S123.

Peripherals

S123.

1 1
M Register B Register

. . .19 pJ S 123. . . 19

1 I Parity
Check

Arithmetic
Unit

A Register j' Q Register

19 t-- S123. . . . 19

N
Register

12. . 6

t
Console Typewriter
Paper Tape Reader-Punch

Figure 3-4. GE-225 Arithmetic Registers

III-5

ARITHMETIC UNIT. The arithmetic unit is a high­
speed, parallel, binary adder network. It serves two
functions. During arithmetic operations, it performs
the calculations specified by the operation code in the
I register. It also serves as a transfer bus for words
moved between the A register and memory (via the M
register), and for the operand portion of instructions
mOving into the I register ..

Control Registers (Figure 3-5)

I REGISTER. The I Register is the instruction regis­
ter. It contains all 20 bits of an instruction word during
the execution of a computer instruction. While instruc­
tions are being processed, bits 0 through 4 indicate the
operation to be performed, and bits 5 and 6 control the
automatic address modification, if required. During
the execution of instructions involving memory loca­
tions, bits 7 through 19 specify the memory address

I X Registers Address
Decoding
Network

Core
Storage

I

involved. Bits 5 through 19 have other meanings during
the execution of general and shift instructions.

Instructions are read from memory into tile M register
and set into the B register. From the B register, bit
positions 0 through 6, compriSing the operation code
~d the address modification bits, are transferred
directly into the I register for decoding. At the same
time, bit positions 7 through 19, the operand portion of
the instruction, are routed to the arithmetic unit. If
bit positions 5 and 6 indicate address modification, the
contents of the indicated X register are added to the
instruction operand in the arithmetic unit and the modi­
fied operand is set into the I register. If no address
modification is indicated, the unmodified operand is set
into the I register.

X REGISTERS. X Registers, memory locations 0000
through 0003, are not actually registers, but serve
some of the same functions as do control registers.

I P Counter •
I 12 3 • · 15

I Reltister
r0123.•••••.• 19

I 1
d Reader

M Register
Car
Car
Con

d Punch S 123 •••••• 19 P S 123. . . .
troller I Selector
Peripherals I Parity

Check Arithmetic
Unit

I A Register

S 123. • • • . . 19 ~ S 123

N
Register

12 . .. • • 6

l Console Typewriter
Paper Tape Reader-Punch

Figure 3-5. GE-225 Control Registers

B Register

· •.••••.. 19

Q Register

· 19

@~D~~~ _________ _

III-6

These four memory locations are reserved to serve as
counters and for automatic address modification.

P COUNTER. The P Counter (or register) is a 15-bit
location counter that contains the memory address of
the next instruction to be executed. The contents of
the P counter are incremented by one before the exe­
cution of an instruction so that the P counter indicates
the next instruction in sequence. The Store P and
Branch instruction is an exception. The contents of the
P counter can be set from the I register when uncondi­
tional branching is specified by the program. The con­
tents of the P counter (the address of the next instruc­
tion) are displayed by 15 lights on the control console.

BASIC OPERATING CYCLE

Program execution normally proceeds with instruc­
tions executed sequentially under the control of a 450
kilocycle crystal-contrOlled timer. This basic timing
device emits pulses every 2.25 micro-seconds. Eight

sequential pulses comprise the GE-225 operating cycle
of 18 microseconds, one word time. A word time is
the interval required to read a word from memory,
transfer it to the proper register(s), and restore the
word in memory. Figure 3-6A, Word Time #1, illus­
trates the basic read-write cycle.

In executing a program instruction, one word time is
required to fetch an instruction from memory and
another (Word Time #2, Figure 3-6A) is normally re­
quired to fetch the operand specified and perform the
operation - a minimum of two word times per instruc­
tion. Instructions indicating address modification
require an additional word time to fetch the address
modifier from the specified X register, augment the
original operand with the modifier, and transfer the
updated address to the appropriate register. See
Figure 3-6B.

Some instructions require more than one word time for
execution. Examples include double length word, mul­
tiply, divide, and shift instructions. The additional

1 A. No Address Modification Required

T Times

Extract Instruction
Word From Memory"

Word Time
,II

(Fetch Instruction Word)

Transfer To M.---+_I'

Transfer Instruction
Word From M To B -+ __ -----<~
To I.

Re-Write Instruction
Word [n Memory -+----_.[,

Word Time
*3

Fetch Next Instruction Word)

Same A9 1 In
t77==I_---t-word Time #1

Same As 2 In
Word Time #1

~
Transfer Data Word '--Re-Write Data
To Appropriate Word In Memory
Register (8)

lB. Address Modification Required

T Times

Same As 1 Abcn e In
Word Time #1 ---t-.r;r

Same As 2 Abo\-e In

Word Time
#I

Word Time #1 --f---__

Same As 3 In Above
Word Time"l ---+----__

Combine Modifier With
Address Portion Of I &
Transfer Modified Ad­
dress To I

Word Time
#3

T~

Word Time
#4

Extract Data Word From 1
Memory & Transfer To M Data

Re-Write Modifier Word In Memory
In Memory Transfer Data Word

To Appropriate
Register (S)

Same As 2 In
Word Time *1

Same As 1 In
Word Time-n

Same As 3 In
Word Time *1

Figure 3-6. Basic Timing for Single Length Word Operations

@~D~~~ ______ ' ___ _

III-7

word times required are automatically provided by the
central processor sequence control logic.

Single word transfers from or to memory, including
instruction access time and not involving address
modification, require two word times; double length
word transfers require three word times. Execution
times for all instructions are included in the individual
instruction descriptions.

Sequencing

Instructions are normally executed sequentially. With­
in each operation cycle, the controllogic of the central
processor provides sequence control for:

1. Fetching the instruction,
2. Modifying the operand address (if required),

and
3. Executing the instruction.

The sequence control causes repetitive performance
of this cycle automatically, thus permitting execution
of successive program instructions. In addition, by
monitoring the execution' of multiple-word-time in­
structions, the sequence control provides appropriate
control signals to make available the necessary word
times for execution before the next instruction is
fetched from memory.

Operation Cycle, General

Instructions are executed sequentially, except when
decision instructions 0 r p rio ri ty 0 r program interrupts
break the sequence and commence processing at an­
other point in the program. The operation cycle des­
cribed briefly in Sequencing, above, consists of two
phases: the instruction phase and the execution phase,
thereby giving meaning to the term, instruction-exe­
ution cycle.

INSTRUCTION PHASE. The instruction phase serves
three functions:

1. To locate the instruction in memory and
transfer it to the I (instruction) register.

2. To locate the data in memory as specified by
the instruction operand address.

3. To establish execution control circuits for the
instruction.

The instruction phase is illustrated more clearly by the
flow chart in Figure 3-7. During this phase, an in­
struction is read from memory and stored in the I reg­
ister. The operation code (bits 0 through 4) of the

instruction word are p-xamined by the instruction de,,:
coding logic to determine the kind of instruction, that
is, branch, shift, arithmetic, etc. If necessary, the
remaining bits are also examined. This examination
established the necessary controls for directing pro­
ceSSing during the execution phase.

During the examination, the P counter is incremented
by one to contain the address of the ~ instruction
in sequence. The control circuits ask, " is the instruc­
tion in the I register to be modified?" If yes, the
contents of the specified X register are read from
memory and added to the operand address in the
A register, then sent to the I register. If no, the
instruction is executed. When the central processor
is stopped manually, the P counter displays the address
of the instruction currently in the I register.

1 WT

1 or
more
units

Look up Instruction
and Store in the
I Re ister

Increment the
P Counter for
the Address of
the next
Instruction

Execute the
Instruction

Figure 3-7. GE-225 Instruction-Execution Cycle

Normally, the instruction phase of all instructions re­
quires the same amount of time: placing instruction
in the I register and incrementing the P counter takes
one word time. However, if the instruction is to be
modified, an additional word time is required.

EXECUTION PHASE. During the execution phase, the
central processor performs the action specified by the
operation code. For example, if the instruction is LDA
3200 (load the contents of memory location 3200·into
the A register), the operand address in the I register
selects the proper control lines through the address
decoding network to bring the contents of memory loca­
tion 3200 into the M register and, through the B regis­
ter and arithmetic unit, into the A register. Instruction
execution can require one or several word times,
depending upon the instruction.

@~D~~~ _________ _

ill-8 October 1963

The instruction-execution cycle is continuous in nor­
mal operation. As soon as the instruction phase is
completed, the centralprocessor enters and completes
the execution phase, and another instruction phase is
initiated. The cycle is automatic as long as power is
applied to the system.

Operation Cycle, Detail

Three different kinds of memory access are required
to execute GE-225 instructions: one requires access
to memory under control of the P counter, another in­
volves control by an X register, and the third type of
access is controlled by the I register. The type of
access permitted during any word time is governed
by one ofthree flip-flop circuits as set by control logic:

1. AMP - A flip-flop in the sequence controller
that is used to Address Memory from the P
counter.

2. AMX - A flip-flop in the sequence controller
that is used to Address Memory from one of
the X registers.

3. AMI - A flip-flop in the sequence controller
that is used to Address Memory from the I
register.

Figure 3-8 is a flow chart depicting the operations
performed by the central proeessor while executing a
program. This diagram illustrates the nature of the
operations and tests performed during one complete
instruction cycle, including: 1) extraction of the in­
struction from memory (AMP). 2) modification of the
address portion of the instruction, if required (AMX) ,
and 3) the subsequent execution of the operation (AMI,
GIS, or AMX). GIS is a flip-flop in the sequence con­
troller that controls the execution sequence during all
general instructions, hence General Instruction Se­
quencing, or GIS.

Program execution is aeeomplished by properly re­
peating the basic operating cycle until the program has
been completely executed. Program execution can be
interrupted at any time from the control console, in
which event the cycle stops immediately following an
AMP operation.

The symbols used in Figure 3-8 require some explan­
ation. Each circle containing alphabetic characters
represents an operation requiring one word time. The
abbreviations correspond to controlling flip-flops in
the instruction sequence control logic. Each smaller
circle containing an X indicates that the operation in­
volves memory access during the associated word
time.

Note, for a manual start, that the first instruction is
assumed already to be in the I register. Upon depres­
sion of the Start button, the first action is the stepping
of the P counter by one, in preparation for the next
sequential instruction.

If the instruction currently in the I register involves an
X register, the next operating cycle isanAMX access
cycle. Otherwise, the next cycle is either a basic AMI
cycle or a general GIS cycle. Format I instructions
require one or more AMI cycles for execution. After
each AMI cycle, the control logic is interrogated for an
end-of-execution condition, which (when detected)
turns on the EOO (end of operation) signal.

If the instruction is a general instruction, the next
cycles (if any) are one or more GIS cycles (to complete
instruction execution) or two AMI cycles (for input­
output operations involving the controller selector).

In all cases, completion of instruction execution results
in the generation of the EOO signal, which initiates an
AMP cycle for reading out the next instruction. Fur­
ther action at this point is contingent upon the position
of two switches on the control console: the Automatic­
Manual switch and the stop on Parity Error switch.

If the Automatic-Manual switch is in the Manualposi­
tion, the processor halts. Otherwise, processing ofthe
next instruction is initiated, unless the stop on Parity
Error switch is in the Stop position and a parity error
has occurred during one or more of the memory access
cycles of the previous instruction cycle or the just­
completed AMP cycle.

If a processor halt occurs for any reason, the address
in the P counter is the address of the instruction that
is held in the I register upon completion of the AMP
cycle preceding the halt.

@~D~~~ __________ _

III-9

Load
Cud

End of Operation (EW

'----l_...J

,-----'-------, Compute Addrell. of
'-_--=='--<-1 Next Instruction

18 it an lnPut/Out.~
Instruction? ~

No

No

B1ts5lke",OO

No

Ye,

Ye,

Complete Execution
of Instruction.

~~~~~~~~~~~~n ~Y~'~' ___________________ ~ 

Complete Execution Of 
GE'neral Inlltruction. 

Figure 3 - 8: Flow Chart Showing Central Processor Operating Cycle 

III-10 



SECTION IV. 

GENERAL ASSEMBLY PROGRAM 

The latest information on General Assembly Program 
II now appears in a separate manual, GENERAL 
ASSEMBLY PROGRAM II (Pub. No. CD225F1.006/007). 

@~D~~~ _________ _ 





SECTION V 

CENTRAL PROCESSOR OPERATIONS 

GENERAL 

Operations that occur within the central processor and 
do not involve either direct input-output or controller 
selector connected peripheral devices are classified as 
central processor operations. These operations are 
further divided into five basie eategories: 

1. Arithmetic 
2. Data Transfer 
3. Shift 
4. Internal Test-and-Branch 
5. Address Modification 

Within each category, all instructions are discussed 
and presented in essentially the same format. Intro­
ducing each instruction, in GAP format, is the mne­
monic operation code, the operand field (if required), 
and the address modification code, if the instruction can 
be automatically modified, thusly: 

ADD y x 

~ ~ ,--"'----..., 
Mnemonic Memory Address 
Code Location Modification 

The Y symbol is used to indieate that, for this instruc­
tion, the operand field refers to a memory location; Y 
can be a symbolic or actual address. For instructions 
requiring an operand other than an address, the symbol 
K is specified in the heading. K has different meanings, 
depending upon the instruetion, and is explained in the 
description of the individual instructions. The X sym­
bol indicates that the instruction can be automatically 
modified. On the same heading line, the machine 

language form of the instruction is given in octal, f.ol­
lowed by the required execution time ofthe instruction 
(including instruction read-out time): 

ADD Y X 0100000 Word Times: 2 

~~ 
Octal ExecutlOn 

Instruction Time 

Following the heading is the Functional Description of 
the instruction, which details the effect of executing 
the instruction, and one or more examples of instruc­
tion usage. Included in each exampl~ are the actual 
GAP coding for the instruction and the contents of 
the affected registers before and after execution. 
Normally, control register contents are not shown; 
it can be assumed that, unless otherwise stated, the I 
register will contain the instruction being executed and 
the P counter has been stepped to the next sequential 
address. In other words, only the effect of the instruc­
tion is detailed. 

Also, most examples are illustrated using data ex­
pressed in octal and using symbolic locations in order 
to provide familiarity with these forms. Octal is the 
form in which most GAP print-o\lts are made; sym­
bolic locations are more convenient for the program­
mer to use than are the actual numeric locations. 

@~D~~~) ___________ _ 

V-I 



ARITHMETIC INSTRUCTIONS 

ADD Y x 0100000 Word Times: 2 

Functional Description: ADD. The contents of memory 
location Y (S, 1-19) are algebraically added to the con­
tents of the A register (S,1-19). The result is placed 
in the A register (S,1-19). Yisunchanged. Overflow, 
discussed at the end of this section, is possible. 

Example 1: Add a positive number 4218910 (01223158), 
located at GAP symbolic location AMT#2, to the posi­
tive number 5263010 (01466268), which has previously 
been loaded into the A register. 

GAP Coding: 

Symbol Opr 

• I 2 I , I - I 'i ' , , I 10 

A D D 

Before execution: 

After execution: 

Oper.nd X 

'2 I ., T • -1" I ., I '7 I •• I ., 20 

AM T # 2 

Register Contents in Octal 

A Q 

0146626 r I ? 

0271143 I ~I ==? =~ 
Example 2: Add a negative number 4218910 (36554638), 
located at GAP symbolic location AMT#3+1, to the 
positive number 5263010 (01466268), which is already 
in the A register. 

GAP Coding: 

Symbol Opr Oper.nd X 

• I 2 1 ' I - I 'I ' , , I .0 '21" I "I " 1 '0 i " 1 .. I " 20 

A D D AM T # 3 + 1 

Register Contents in Octal 

A Q 

Before execution: ? 

After execution: 

0146626 II 
0024311 11r==?=~ 

Comments: Note the use of relative addressing in the 
operand field of Example 2. AMT#3+1 isone memory 
location beyond AMT#3. 

SUB Y x 0200000 Word Times: 3 

Functional Description: SUBTRACT. The contents of 
location Y (S, 1-19) are algebraically subtracted from 
the contents of the A register (S, 1-19). The result is 
placed in A (S,1-19). Y is unchanged. Overflow is 
possible. 

GAP Coding: 

Symbol Opr Oper.nd X 

• I 2 I - I - I 0' 0 , I ' I 1C 12 " "1'01'01"1"1" 20 

, S U B A M T # 2 

Example 1: Subtract the positive number 42189\0 
(01223158), located at GAP symbolic location AMT#2, 
from the positive number 5263010 (01466268), which 
has been previously loaded into the A register. 

Register Contents in Octal 

A Q 

Before execution: 0146626 I I ? 

After execution: 
0024311 II ? 

Example 2: Subtract the positive number 6542110 
(01776158), located at GAP symbolic location AMT#3 
from the smaller positive number 5263010 (01466268), 
which has been previously loaded into the A register. 

GAP Coding' 

Symbol 

.121_1_1 01, , 

S 

Before execution: 

After execution: 

Opr Oper.nd X 
gl10 12 " "1"1'01"1"1" 20 

U B A M T # 3 

Register Contents in Octal 

A Q 

0146626 II 
====:::! 

3747010 J .... 1 __ ?_---' 

? 

Comments: Note that, when a larger number is sub­
tracted from a smaller number of like sign, the result 
is in complement form. 

DAD Y x 1100000 Word Times: 3 

Functional Description: DOUBLE LENGTH ADD. If the 
(modified) address of memory location Y is even, the 
contents of Y (S,1-19) and Y+1 (1-19) are algebraically 
added to the contents of register A (S,1-19) and 
Q (1-19). However, if the (modified) address Y is odd, 

@~D~~~ __________ _ 

V-2 



the contents of Y (S, 1-19) and Y (1-19) are algebrai­
cally added to the contents of A (S, 1-19) and Q (1-19). 
The result is placed in A (S, 1-19) and Q (1-19). The 
sign of the Q register is set to agree with that of the A 
re~ister. Y and Y+1 are unchanged. Overflow is pos­
sible. 

Example 1: Add the positive number 821,69510 
(00000011104677~, located atGAP symbolic locations 
AMT#7 and AMT#7+1, to the positive number 52630010 
(0000001 00037348)' which has been previously loaded 
into the A and Q registers. AMT#7 is an even-num­
bered memory location. 

GAP Coding: 

Symbol Opr Operand X 

, ! 2 ! ' I - I - I ' , I " I '0 '2, "I '41"!"i'71"1'. 20 

D A D A M T # 7 

Register Contents in Octal 

A Q 

Before execution: I 0000001 I I 0003734 I 
After execution: I 0000002 I I 1110633 I 

Example 2: Add the positive number 821,69510 
(0000001 11046778), located at GAP symbolic loca­
tions AMT#7 and AMT#7+1, to the negative number 
-52630010 (3777776 37740448), which has been pre-
viously loaded into the A and Q registers. AMT#7 is an 
even-numbered memory location. 

GAP Coding: 

PROGRAMMER 

Symbol Opr Operand X 

• !21_1_1_1· • 1 " I '0 '2 13 1 '-I "I ,e i· 7 I" 1 , • 20 

I D A D A M T # 7 

Register Contents in Octal 

Before execution: 

A Q 
...... 3_7_77_7_7_6 ____ 11 3774044 

After execution: ,--_00_0_00_00 ____ 1 .. I _11_0_07_4_3 ____ 

Example 3: Add the negative number -73428810 
(3777776 31456608), located at GAP symbolic loca­
tions AMT#9 and AMT#9+1, to the negative number 
-52630010 (3777776 37740448), which has been pre­
viously loaded into the A and Q registers. AMT#9 is 
an even-numbered memory location. 

GAP Coding: 

Symbol Opr Operand X 

'!21'1-1-1' '1"1'0 121"1\41" .. 117 I " I ,. 20 

D A 

Before execution: 

After execution: 

D A M T # 9 

Register Contents in Octal 

A Q 

;:::3=7=77=77=6~1 ~I =3=77=4=04=4~ 
~_37_7_77_7_5~1 LI~3~1~41~7~2~4~ 

Example 4: Addthepositivenumber155,926,921,8~810 
(1104677 00011448), located at GAP symbolic loca­
tions AMT#7+1 and AMT#7+2, to the positive number 
52630010 (0000001 00037348), which has been pre­
viously loaded into the A andQ registers. If AMT#7+1 
is an odd memory location, the contents of AMT#7+1 
are added to the contents of both A and Q, and the con­
tents of AMT#7+2 are ignored. 

GAP Coding: 

Symbol Opr Operand X 

• I 2 I ' I - I - I ' , I " 1 '0 '21"1 '41 "I "1'71" i , • 20 

D A D AM T # 7 + 1 

Register Contents in Octal 

A Q 

Before execution: I 0000001 1 I 0003734 I 
After execution: I 1104700 I I 1110633 ] 

DSU Y X 1200000 Word Times: 5 

Functional Description: DOUBLE LENGTH SUB­
TRACT. If the (modified) address of memory location 
Y is even, the contents of Y (S, 1-19) and Y+1 (1-19) 
are algebraically subtracted from the contents of reg­
isters A (S, 1-19) and Q (1-19). However, if the 
(modified) address Y is odd, the contents of Y (S, 1-19) 
and Y (1-19) are algebraically subtracted from the 
contents of A (S, 1-19) and Q (1-19). The result is 
placed in A (S, 1-19) andQ (1-19). The sign of Q is set 
to agree with the sign .of A. Y and Y+1 are unchanged. 
Overflow is possible. 

Example 1: Subtract the positive number 52630010 
(0000001 00037348), located in GAP symbolic locations 
AMT#6 (even) and AMT#6+1, from thepositiv~number 
82169510 (000000111046778) which has been previously 
loaded into the A and Q registers. 

@~D~~~ _________ _ 

V-3 



GAP Codinsc' 

Symbol Opr Oper.ncI X 
,1·lal-I-lo o I • I ,0 12111110'10110117111110 .0 

D S U AM T,_* ,8 

Register Contents in Octal 

A Q 
Before execution: I 0000001 I I 1104677 I 
After execution: [ 0000000 I I 1100743 I 

Example 2: Subtract the positive 155,929-,921,82~10 
(1104677 00011448), located in GAP symbolic locations 
AMT,6+1 (odd) anaAMT#6+2, from the positive number 
155,927,218,62410 (1104677 11047008), w~ch hasbeen 
previously loaded into the A and Q registers. 

GAP Coding:' 

Symbol Opr Oper.nd X 

"·Ial-I-Io • I • 1'0 ,. \ ,a I ' -1'0 I "0 1'7 I '·1'· 20 

D S U AM T # 6+ 1 

Register Contents in Octal 

A Q 
Before execution: I 1104677 I I 1104700 I 
After execution: I 0000000 I I 0000001 I 

ADO 2504032 Word Times: 3 

Functional Description: ADD ONE. Plus one is added 
algebraically to the contents of the A register (bit 
position 19). If the capacity of A is exceeded, overflow 
occurs. 

MIample 1: Add one to the positive number 5263010 
1466268)1 which has been previously loaded into tlle 

A register. 

GAP Coding: 

Symbol Opr Op.r.nd X 

,\·Ial-Io\o o I • I ,0 121"jU]I011O]I7I1011O .0 

A D 0 

Register Contents in Octal 

A ...-_Oi..-._-. 
Before execution: 1 0146626 II ? ===:::: After execution: I 0146627 I .. I __ ? __ ... 

Example 2: Add one to the negative number -4218910 
(36554638), which has been previously loaded into the 
A register. 

GAP Coding' 

Symbol Opr Oper.nd X 
,\al·I_·lolo o I • I '0 12ll1jU'II\IIII7I"111 ao 

A D 0 

Register Contents in Octal 

A Q 
Before execution: I 3655463 I I ? I 
After execution: I 3655464 I I ? I 

SBO 2504112 Word Times: 3 I 
Functional Description:. SUBTRACT ONE. Plus-one is 
algebraically subtracted from the contents of the A reg­
ister (bit position 19). If the capacity of the A register 
is exceeded, overflow occurs. 

Example 1: Subtract one from the positive number 
6542110 (01776158), which has been previously loaded 
into the Ategister. 

GAP Coding: 

Symbol Opr Oper.nd X 

,\.1·1-10\0 o I • 1'0 11\11\ 10111 1"117 III III 10 

S B 0 

Register Contents in Octal 

A ~ 
Before execution: I 0177615 I I ? J 
After execution: I 0177614 1 I ? 

Example 2: Subtract one from the negative number 
-65421 10 (36001638). which has been previously loaded 
into the A register. 

GAP Codinsc' 

Symbol Opr Op.r.nd X 

,1.101-1 01° ° i • i ,0 121 III 101 "1 ' °1 17 III I .. 10 

S B 0 

Register Contents in Octal 

A Q 
Before execution: I 3600163 II ? I 
After execution: I 3600162 II ? I 

@~D(2~~ ___ -------

V-4 October 1963 



MPY Y x 1500000 Word Times: 9to23 

Functional Description: MUL TIPL Y. The contents of 
memory location Y (S,1-19) are algebraically multi­
plied by the contents of the Q register (S, 1-19). The 
product is placed in registers A (S, 1-19) and Q (1-19), 
The sign of Q is the same as the sign of A after mul­
tiplication. If the contents of A are not set to zero 
before MPY, the contents of A are added algebraically 
to the least significant half of the product, thus permit­
ting evaluation of expressions of the form AB+C. 
Overflow is possible. 

Example 1: Multiply the positive number 5263010 
(01466268) in GAP symbolic location AMT*,1 by the 
positive number 4218910 (01223158) in the Q register. 
The A register contains zeros. 

GAP Codin!!:' 

Symbol Opr Operand X 

·101·1-1·1· • I • I 10 12 I "[ .. j ,. j '"1'7 I" i .. 20 

M P Y A M T it 1 

Re~ister Contents in Octal 

A Q 

Before execution: 0000000 II 0122315 

After execution: 0010213 II 0134436 

Example 2: Multiply the positive number 5263010 
(01466268) in GAP symbolic location AMT#1 by the 
positive number 418,25410 (14607168) in theQ register. 
The A register contains the positive number 3795510 
(01121038), 

GAP Coding: 

Symbol Opr Operand X 

• [01·1-1·1" " I • I 10 '21 "I .. [ '" [ '"['7 I" i .. 20 

I 
MP Y A M T # 1 

Register Contents in Octal 

Before execution: 

A Q 

0112103 I I 1460716 ] 

After execution: 0122001 I I 1754367 

DVD Y x 1600000 Word Times: 26 to 29 

Functional Description: DIVIDE. The contents of reg­
isters A (S, 1-19) andQ (1-19) are algebraically divided 
by the contents of location Y(S, 1-19). The quotient is 
placed in A (S, 1-19); the remainder is placed in 
Q (1-19). The sign of the remainder (Q) is the Sign of 
the quotient (A), For proper division, the absolute I 
magnitude of the divisor (Y) must be greater than 
the magnitude of the contents of A, otherwise over­
flow occurs. 

Example 1: Divide the positive number 52422010 
(17776748) in the Q ree;ister by the positive number 
5263010 (01466268) in GAP symbolic location AMTi 
The A register contains zeros. 

GAP Coding' 

Symbol Opt" Operand X 

.12[.1-1.T· • -, .-1 10 121 181 "T'"I '"1'7 I'· I .. 00 

D V D AM T *' 1 

Re~ster Contents in Octal 

A Q 

Before execution: 0000000 II 1777674 

After execution: 0000011 II 0142566 J 

Decimal Arithmetic 

In buSiness applications, data to be processed is 
often recorded externally in the BCD format. To 
process such data in a binary computer requires 
conversion of data from BCD to binary, computation 
in binary mode, and subsequent reconversion to 
BCD format for external use. 

The decimal arithmetic optiol1al feature* provides the 
GE-225 with the capability of performing addition and 
subtraction of BCD data directly in the decimal mode, 
thereby eliminating the need for converting and recon­
verting data. 

A GE-225 with the decimal arithmetic feature normally 
operates in the binary mode. Operation is shifted to the 
decimal mode only by executing a SET DECMODE in­
struction, and can be returned to the binary mode by 
executing a SET BINMODE instruction ot depreSSing 

* Part of the optional group which includes additional 
modification word groups and the three-way compare 
instruction. 

@~D(2(2~ ___ -------

V-5 October 1963 



the Power On switch on the control console. The initial 
power on sequence automatically sets the GE-225 in the 
binary mode. 

Rather than providing entirely new instructions and 
mnemonics, the decimal arithmetic feature modifies 
the execution of the following existing binary arithmetic 
instructions: 

Single Add ADD 
Single Subtract SUB 
Add One ADO 
Subtract One SBO 
Double Add DAD 
Double Subtract DSU 

All other GE -225 instructions are unaffected and con­
tinue to be executed as they are in the normal binary 
mode. Indexing is performed in binary regardless of 
the mode set. 

In decimal mode operations, affected GE-225 words 
are considered to consist of three decimal digits as 
shown: 

Bit positions 4 through 7,10 through 13, and 16 through 
19 are used to express decimal digits in standard BCD 
format. Decimal quantities greater than 999 are ex­
pressed by using two or more 20-bit words. 

The sign of the decimal number is in the S position of 
the word containing the most significant decimal digit; 
a O-bit designates a positive decimal number, while a 
I-bit indicates a negative quantity. 

Zone bits of each BCD character (2 and 3, 8 and 9, and 
14 and 15) contain O-bits and do not enter into arith­
metic operations. 

The decimal word containing the most significant (high­
order) digit must be marked or flagged to define the 
end of the decimal field by placing a I-bit in bit posi­
tion 1. 

Thus, the decimal quantity +979989 would appear in 
memory as two words of three digits each: 

Memory Location Y 

S 1 4 

End of Field 
Flag 

7 10 13 16 19 

OlyIOOI~ 

Memory Location Y+1 

! 0 \0 \0 0 h 0 0 11 0 oJL~~~--ali 0 It 0 0 1 1 

Y ~-> ~ 
9 8 ~ 

The programmer should flag each BCD number prior 
to arithmetic operations by coding which sets a I-bit 
into bit position 1 of the most significant word of each 
quantity. Sample coding to accomplish this is shown 
under Program Insertion of End-of-Field Flag. 

Besides defining the length of the decimal number, the 
end-of-field flag affects the disposition of carries 
generated during arithmetic operations. A carry out 
of the most significant digit position of a word is re­
membered if the word does not contain an end-of-field 
flag. The carry is remembered either until the next 
decimal instruction is executed or the Clear Alarm is 
depressed. 

If the end-of-field marker is set (a 1-bitin position 1), 
then a carry out of the most significant digit position 
causes overflow, which turns on the overflow indicator 
and reverses the sign of the most significant word of 
the decimal number. 

The end-of-field flag is not essential for both quantities 
involved in a decimal operation; only the high-order 
word of the quantity loaded into the A register must 
be so marked. If the field in memory is flagged and 
the field in the A register is not, an error condition 
occurs. If both fields are flagged, the effect is the 
same as if only the A registe r we re flagged. A flag in 
the A register field automatically generates an end-of­
field flag for the result field. 

Negative decimal numbers must be expressed in the 
10' s complement form before decimal operations. The 
10's complement is formed automatically by subtract­
ing the decimal number from a decimal zero (delimited 

@~D~~~ __________ _ 

V-6 



by an end-of-field flag in bit position I} while in the 
decimal mode. Negative results of decimal operations 
also appear in the 10's complement form. Thus, the 
decimal number -222222 would be converted to 
-777,778 (1,000,000 - 222,222) before being used in 
arithmetic operations. 

DECIMAL ARITHMETIC INSTRUCTIONS 

I ADD y x 0100000 Word Times: 2 

I 

Functional Description: DECIMAL ADD. The contents 
of Y (3 BCD digits, S, 4-7,10-13, and 16-19) are alge­
braically added to the contents of the A register (bits 
S, 4-7, 10-13, and 16-19). The result is placed in the 
A register (bits S, 4-7, 10-13, and 16-19). 

Example 1: Decimal add the quantity +333 in sym­
bolic location INCR to +444 which has been previously 
loaded into the A register. Assume that the central 
processor is operating in the decimal mode, by a 
prior SET DECMODE instruction. 

GAP Coding: 

Symbol Opr Operand X 

,121·1_1,1' • I • I 10 '21"1 '-I "I "I t7 I " I ,. 20 

I A D D I N C R 

Memory and A Register Contents 1n BCD 

A INCR 

Before execution: [ + 14 I 41 41 I + 1 3131 3 1 

After execution: I + 17 17 17 I I + I 313\3 I 
Example 2: Decimal add the quantity -33~ in symbolic 
location NEGN to +444 which has been prevlOusly loaded 
1nto the A register. Assume that the central processor 
is operating in the decimal mode. 

GAP Codilllt· . 
Symbol Opr Operand X 

,1 2 1,1-1,1' , I • [ '0 12\'" "]"]"1"1"]'. 20 

I ADD N E.--.G... N 

Memory and A Register Contenta in BCD 

Before execution: 

After execution: 

SUB Y x 0200000 Word Times: 3 

Functional Description: DECIMAL SUBTRACT. The 
contents of Y (bits S, 4-7, 10-13, and16-19) are alge­
braically subtracted from the contents of the A reg­
ister (bits S, 4-7, 10-13, and 16-19). The result is 
placed in the A register (bits S, 4-7, 10-13, and 16-
19). 

Example 1: Decimal subtract the quantity +333 in sym­
bolic location DECR from +444 which has been pr~l'" 
viously loaded into the A register. Assume that t" 
central processor is operating in the decimal Ir.')de. 

GAP Coding: 

Symbol Opr Operand X 

'1 2 1'1_1'1_ _ I • I 10 121131 .. ] "I "I t7 I" 1'· 20 

I SU B D E C R 

Memory and A Register Contents 1n BCD 

A DECR 

Before execution: 1+14141411+\3\3\3\ 

After execution: 
1+11\1\111+1313131 

Example 2: Decimal subtract the quantity -333 in 
symbolic location NEGN from +444 which has been pre­
viously loaded into the A register. Assume that the 
central processor is operating in the decimal mode. 

GAP Coding: 

Symbol Opr Operand X 

,[21.1-1,1, • i • i 10 12) "I "I "["1 t7 I" i to 20 

I S U B N E G N 

Before execution: 

After execution: 

@~D~~~ __________ _ 

V-7 October 1963 



I DAD Y x 1100000 Word Times: 3 

Functional Description: DOUBLE DECIMAL ADD. If 
Y is even, the contents of Y (S, 4-7, 10-13, and 16-19) 
and Y+1 (4-7, 10-13, and 16-19) are algebraically 
added to the contents of registers A (S,4-7, 10-13, and 
16-19) and Q (4-7, 10-13, and 16-19). If Y is odd, the 
contents of Y (S, 4-7, 10-13, and 16-19) and Y (4-7, 
10-13, and 16-19) are added to registers A (S, 4-7, 
10-13, and 16-19) and Q (4-7, 10-13, and 16-19). The 
result is placed in registers A and Q. 

Example 1: Double decimal add the quantity +123456 in 
symbolic locations POSN and POSN+1 to the quantity 
+543210 which has been previously loaded into the A 
and Q registers. Assume that POSN is an even mem­
ory address and that the central processor is operating 
in the decimal mode. 

GAP Coding:' , 

Symbol Opr 

·\·1_1_\_\_ _ I • 1'0 

I D A D 

Before execution: 

After execution: 

Operand X 

12 113 114 1'"1'"1 17 1'"1'" .0 

P 0 S .N 

Memory and A and Q 
Register Contents in BCD 

A Q 

POSN POSN+1 

A Q 

1616161 

POSN POSN+1 

Example 2: Double decimaladd the quantity +123456 in 
symbolic locations PREP and PREP+1 to the quantity 
+543210 which has been previously loaded into the A 
and Q registe rs. Assume that PREP is an odd memory 
address and that the central processor is operating 
in the decimal mode. 

GAP Coding: 

Symbol Opr Oper.nd X 

.\-\.1-1-1- _ I • !'O l2\ul 14 I'"I'"I 17 I I1 I'" _0 
" D A D P R E p 

Before execution: 

After execution: 

DSU Y x 

Memory and A and Q 
Register Contents in BCD 

PREP PREP+1 

1+11\2\311 \4\516\ 

A 

PREP PREP+1 

1200000 Word Times: 5 I 
Functional Description: DOUBLE DECIMAL SUB­
TRACT, If Y is even, the contents of Y (S, 4-7,10-13, 
and 16-19) and Y+1 (4-7, 10-13, and 16-19) are alge­
braically subtracted from the contents of registers A 
(S, 4-7, 10-13, and 16-19) and Q (4-7, 10-13, and 16-
19). If Y is odd, the contents of Y (S, 4-7, 10-13, and 
16-19) and Y (4-7, 10-13, and 16-19) are subtracted 
from the contents of registers A (S, 4-7, 10-13, and 
16-19) and Q (4-7, 10-13, and 16-19). The result is 
placed in the "A and Q registers. 

Example 1: Double decimal subtract the quantity 
+123456 in symbolic locations DECR andDECR+lfrom 
the quantity +543210 which has been previously loaded 
into the A and Q registers. Assume that DEeR is an 
even memory address and that the central processor 
is operating in the decimal mode. 

GAP Codina:' , 

Symbol Opr 

·\-r·\-r-\- • I • 1'0 

D S U 

Before execution: 

Oper.nd X 

12\ "I 14\ '" 1'_1 17 I II i '" .0 

D E C R 

Memory and A and Q 
Register Contents in BCD 

A 

DECR DECR+~ 

@~D(2(2~ ___ -------

V-8 October 1963 



After execution: Q 

DECR DECR+l 

Example 2: Double decimal subtract the quantity 
+123456 in symbolic locations NEGR andNEGR+1 from 
the quantity +543210 which has been previously loaded 
into the A and Q registers. Assume that NEGR is an 
odd memory address and that the central processor 
is operating in the decimal mode. 

GAP Coding" " 

Symbol 

'\2\'\'\0\" 

Before execution: 

After execution: 

ADO 

Opr 

• I • I '0 

D S U 

1+ 

1+ 

Operand X 

'2 i "I 141 '"1'0 i 17 I" I , • 20 

N E G R 

Memory and A and Q 
Register Contents in BCD 

A 

NEGR NEGR+1 

A Q 

141210 II 10 [ 8171 

NEGR NEGR+1 

11 121311 1415161 

2504032 Word Times: 3 

Functional Description: ADD ONE DECIMAL. One is 
algebraically added to the contents of the A register 
(4-7, 10-13, and 16-19), If the capacity of A is ex­
ceeded, the overflow indicator is turned on. This 
1ruItruction operates properly only on decimal words 
of three digits or less. 

Example: Add a decimal one to the quantity +832 in 
the A register. 

GAP Coding: 

Symbol 

, \ 2 L 0] • I 0' 0 

I 

Before execution: 

Alter execution: 

SBO 

Opr Operand X 

• I • I '0 12\ 13 ] ,.] '0' '"1'7 I .. i .. 20 

A D 0 

Relister Contents in BCD 

A 

1+ 1813\21 

1+ 1 8 1 a \' 1 

2504112 Word Times: 3 

Functional Description: SUBTRACT ONE DECIMAL. 
One is subtracted algebraically from the contents of the 
A register (4-7, 10-13, and 16-19). If the capacity of 
the A register is exceeded, the overflow indicator is 
turned on. This instruction operates properly only on 
decimal words of three digits or less. 

Example: Subtract a decimal one from the quantity 
-763 in the A register. Assume thatthe 10's comple­
ment of -763 has already been formed. 

GAP Coding' " 
Symbol 

I \ 2 I • I .~ oj 0 

I 

Before execution: 

After execution: 

Opr Operand X 

° J • J ,0 12113I'·1,01,oi17lror .. 20 

S B 0 

Register Contents in BCD, 

A 

1-\2\. \or I 
1-\2\3\81 

MODE CONTROL INSTRUCTIONS 

SET DECMODE ................................. 2506011 Word Times: 2 

Functional Description: SET DECIMAL MODE causes 
the arithmetic commands ADD, DAD, SUB, DSU, ADO, 

@~c~~~ _________ _ 

V-I 



I 

and SBO to be executed in the decimal mode. No other 
commands are affected. 

SET BINMODE 2506012 Word Times: 2 

Functional Description: SET BINARY MODE causes 
the arithmetic commands ADD, DAD, SUB,DSU,ADO, 
and SBO to be executed in the binary mode. No other 
commands are affected. 

RELATED CONSOLE CONTROLS 

1. Power On Switch. Depression of this switch at any 
time sets the central processor into the binary mode 
of operation. 

2. Clear Alarm Switch. Depression of this s~itch 
removes any carry resulting from uncompleted deci­
mal operations and prepares the decimal controls for 
a new sequence. 

PROGRAM INSERTION OF END-OF-FIELD FLAGS 

To designate the beginning of a decimal field, a 1-bit 
is inserted into bit position 1 of the high-order word of 
the field. A typical method of accomplishing the bit 
insertion is: 

GAP Codtnlr . 
Symbol Opr Operand X 

'[.[01.1-1, _ I • I ,0 12 118 1 .. J '"1 10 1'71'. I to .0 

1M, I,L L 0 C T 1 0 0 0 
L DA MI L L 

o R Y 0 E C W 

DECW Contents 
in Binary 

0 0 0 

~:!~~:ion: 101010001010100 @iiJo 0 §I l ~ . 

After 
execution: 

+ 2 2 2 

Illdo 0 ilQiJo 0 iliJ]0 0 iliJ] 

+ 1 22 2 

End-of-Field Flag 

Comments: The OCT 1000000 places the flag constant 
in storage; LOA MILL and ORY DECW insert a 1-bit 
into bit position 1 of DECW (the high-order word). 

TEN'S COMPLEMENT FORMATION 

Preparatory to decimal arithmetic operations, nega­
tive decimal quantities must be converted to 10's com­
plement form. Ont: method for so doing is: 

GAP Coding: 

Symbol Opr 

'1·1'1_1_1_ • I ' ,0 

M I, L L 0 C T 
o C T 

0 

0 
, 0 

NEGD and NEGD+1: 

COMP and COMP+1: 
(after execution) 

L 0 

S.U 
S T 

Operand 
,. "I "I" 1"1" I II I to 

1 0 0 0 0 0 0 
0 0 0 0 0 0 0 

M I L L 
N,E G 0 

COM P 

Memory Contents 
in BCD 

PROGRAMMING DECIMAL OPERATIONS 

X 
20 

The GAP listing below illustrates the fundamentals of 
performing arithmetic operations in the decimal mode. 
Address location 01750 contains the end of field marker 
to be inserted in the two BCD numbers before addi­
tion. In theory, both numbers need not contain a nag; 
only the number in the A register must have the 
marker. However, it is a good practice to nag all 
numbers to be used in decimal arithmetic operations. 
Memory locations 01756, 01757 and 01760 contain the 
commands for nagging the BCD numbers. 

Command 01761 converts the internal operation of 
the computer to BCD prior to the addition and com­
mand 1765 restores the computer to the binary mode. 

@~[J~~~ _________ _ 

V-10 October 1963 

I 



GAP Listing 

01750 ORG 1000 
01750 1000000 MI LL OCT 1000000 
01751 0000000 OCT 0000000 
01752 0020202 A1 ALF 222 
01753 0020202 A2 ALF 222 
01754 0040404 B 1 ALF 444 
01755 0040404 32 ALF 444 
01756 0001750 START LOA MILL 
01757 2301752 ORY A1 
01760 2301754 ORY B 1 
01761 2506011 SET DECMODE 
01762 1001752 OLD A1 
01763 1101754 DAD B 1 
01764 1301604 OS T 0900 
01765 2506012 SET BINMODE 

The printout of the memory addresses used in the 
program shows that locations 01752 and 01754 con­
tain flags in the words containing the most significant 
digits. Locations 01604 contains the sum which also 
is automatically flagged. 

Memou Prtatout 

01604 & 01605 

0000000 006060~ Doooooa 0000017 2516006 2600002 
002]0 0060000 0000002 2606060 DODcace ooaoooo 0000000 0000000 0000000 
00240 0000000 0000000 OODoaoo 0000000 0000000 0000000 0000000 0000000 
00250 DaDDaaa 2001777 0700040 070004C 0700040 0700040 0700040 0700040 
00260 0700040 0700040 0700040 0700040 0700040 0700040 
01600 0700040 0700040 0700040 0700040 0700040 0700040 
01610 0700040 0700040 a 00040 a 00040 0700040 0700040 
01750 1000000 0000000 020202 002020 0001750 2)01752 
01760 2]01754 2506011 1001752 1101754 

754 
& 

01755 

Overflow 

During arithmetic operations. the result of the cal­
culation can exceed the capacity of the 20-bit A 
register. When this happens. the register overflows 
(loses a bit from the high-order position). This is 
known as an overflow condition. 

The A register can also ove rflow as a result of double 
length word calculations. For a divide instruction, 
register overflow can occur when the magnitude of the 
divisor is not greater than that portion of the dividend 
in the A register. An overflow condition also is pos­
sible when an attempt is made to negate (execute a 
NEG instruction) the largest possible negative number. 

When an overflow condition arises, three things happen: 

1. The sign of the result is reversed. 

2. The most significant bit of the result (in bit 
pOSition 1) is lost, and 

3. The ove!"flow indicator on the control con­
sole is turned ON. 

The reversal of the sign bit in the A register causes 
the overflow indicator to turn ON, regardless of the 
type of instruction causing overflow. 

Register Capacity. The A register can hold any num­
be r consisting of 19 numerical bits (bits 1 through 19) 
plus the sign bit (bit 0). Thus, it is possible to rep­
resent a maximum positive number of 524,28710 and 
a maximum negative number of -524,28810 before 
overflow could occur. These two numbers, with their 
binary equivalents are shown below: 

s 

012345678910111213141516171819 

o 1 1 1 1 1 1 1 1 1 

Maximum Positive Number = +524,28710 

s 

o 1 2345678910 11 12 13 1415 16 17 18 19 

10000000000000000000 

Maximum Negative Number = -524,28810 

The addition of ~ number, except 0, to the largest 
positive number causes an overflow of a 1-bitinto the 
sign bit pOSition, thereby reversing the sign. 

As shown, the maximum negative number consists of 
a 1 bit in the sign bit position followed by all zeros. It 
is incorrect to consider this configuration as a 'minus 
zero;' it is -524,28810, An attempt to negate the 
largest negative number (with the NEG instruction) 
results in overflow: all the bit positions are reversed, 
gi ving the l's complement, and when one .is added to 
form the 2' s complement, a one is carried into the sign 
bit position. It can be seen that, although bit 0 indi­
cates the sign of the number (0 = plus; 1 = minus), all 
twenty bits are involved in arithmetic operations. 

The specific conditions for overflow are summed up in 
the following paragraphs. Overflow for each kind of 
arithmetic operation is illustrated by examples. 

Addition Overflow. The overflow indication occurs 
during the addition of two positive numbers when there 
is a carry from the most significant bit position (bit 
position 1) to the sign bit position. No overflow indi­
cation is possible during the addition of numbers with 
unlike signs. The overflow indication occurs during 
the addition of two negative numbers when there is a 
reversal of the sign bit position. 

@~D~~~ __________ _ 

V-ll 



Example 1: Add the contents of symbolic location 
AMT#l (01466268) to 17776748, which has previously 
been loaded into the A register. 

GAP Coding' 

Symbol Opr Operand X 

'~'1'L41'lo 8 I • I '0 121 13 1 "I '"1'01" I" i ,. .0 

A D D A M T # 1 

Register Contents in Octal 

A Q 

Before execution: 1777674 II ? 

After execution: 2146522 II ? 

Example 2: Add the contents of symbolic location 
AMT#2 (-52428810 or 20000008) to -1, which has pre­
viously been loaded into the A register. 

GAP Coding: 

Symbol Opr 

,['\-l-l • I 0 • I • I '0 

A D D 

Before execution: 

After execution: 

Operand X 

•• \ ,. j "j "\'01" lIB I ,. .0 

AM T # 2 

Register Contents in Octal 

A Q 

3777777 I I ? 
~==:::::: 

1777777 I 1'---_?_--1 

Comments: Note that, in both examples, the sign bit 
of the A register is reversed. In example 1, initially 
the sign bit position and bit position 1 contain 01; after 
addition, these positions contain 10. In example 2, 
initially the sign bit and bit position 1 contain 11; after 
addition, these positions contain 01. 

Subtraction Overflow. In subtraction, the 2's comple­
ment of the subtrahend is added to the contents of the 
A register. The rules for overflow which apply to 
addition also apply to subtraction. 

Example: Subtract the negative number in symbolic 
location AMT#3 (-65421 10 or 36001638) from theposi­
tive number 52422010, which has previously been 
loaded into the A register. 

GAP Coding: 

Symbol Opr Operand X 

'\'\'1-1'1 0 8 i ' I '0 '.\ 13 1 "1'"\'01" I" i ,. .0 

S U B A M T # 3 

Register Contents in Octal 

A Q 

Before execution: 1777674 II ? 

After execution: 2177511 II ? 

Comments: Note that this subtraction is performed 
by adding the 2's complement of 36001638 (01776158) 
to 17776748' Overflow occurs when the sign bit changes 
from 0 to 1. 

Multiplication Overflow. The overflow indication oc­
curs in multiplication only when there is an attempt to 
multiply the maximum negative number by the maxi­
mum negative number (_219 x _219). The overflow 
indicator on the control console is automatically turned 
off prior to execution of a multiply instruction. 

Example: Multiply -524,28810 in symbolic location 
AMT#7 by -524,28810, which has previously been 
loaded into the Q register. 

GAP COding.: 

Symbol Opr 

• \ • I • I - I • I 0 8 , 10 

M P Y 

Before execution: 

After execution: 

Operand X 

,. j ,. I • -1"1'01 • 7 J ,. J " .0 

AM T # 7 

Register Contents in Octal 

A Q 

0000000 I I 2000000 

2000000 I [ 2000000 

@~D~~~ ___ -------

V-12 



Division Overflow. Forproper division, the magnitude 
of the divisor must be greater than the magnitude of 
that portion of the dividend in register A. If not, the 
overflow indication is turned on and control is trans­
ferred to the next instruction in sequence. The over­
flow indicator on the control console is automatically 
turned off prior to the execution of a di vide instruction. 
Also, overflow will occur if divIsion results in a 
quotient that exceeds the capacity of the A register. 

Exampie: Divide the positive number 17,338,832,32910 
(01004570312711 8), which has been previously double 
loaded into the A and Q registers, by 20,000 10 
(00470408) in symbolic location WRDS. 

GAP Coding: 
----"--

Symbol 

I I 2 I 3 i • I 'i ' 
, 
D 

Before execution: 

After execution: 

Scaling 

Opr Operand X 
, I 10 12 " '''' I 15 I \15 I 17 i 1S1 B 20 

V D W R D S 

Register Contents in Octal 

A 

[0100457 

[020"1136 

Q 

I I 0312711 

I I 0625622 

The movement of the decimal pOint to the right or left 
to properly align numbers is called' scaling' or' deci­
mal positioning.' Before decimal numbers can be 
correctly added or subtracted in the central processor, 
the number of places to the right of the decimal point of 
both numbers must be the sanH'. For example. to add 
3.0 to 4.16,3.0 is arranged tJ correspond to 3.00 and 
then added to 4.16. If the decimal point is moved to the 
right in preparation for calculations, the number is 
'scaled to the right;' if the decimal point is moved to 
the left, the number is . scaled to the left.' 

When two numbers are multiplied, the number of places 
to the right of the decimal pOint in the product is the 
sum of the places to the right of the decimal point in 
both the multiplier and the multiplicand. If it is de­
sired to scale the product (which is expressed as a 
binary number) for subsequent calculations, the pro­
duct must be divided by a constant that is the binary 
equivalent of an appropriate power of 10. 

To further illustrate the concept of scaling, consider 
the example of adding the following two decimal num­
bers: 

24.4 
+ 13.25 

37.65 Desired sum 

Because the central processor does not recognize 
decimal points in arithmetic operations, the binary 
equivalent of 24410 and 132510 would appear in memory 
as shown in Figure 5-1. 

o 1 234 5 6 789 10 11 12 13 14 15 16 17 18 19 

00 000 000 00 0 0 1 1 1 1 0 1 0 0 

00 000 000 o 1 0 1 0 0 1 0 1 1 0 1 

= 24410 and 132510 

Figure 5-1. Two Numbers in Memory before Scaling 

When these two numbers are added, the result would 
appear in the A re~isteras 156910 (Figure 5-2). This, 
of course, is incorrect, for the desired sum is 37.6510, 

o 1 234567891011 1213141516171819 

1000000000110001000011 

156910 

Figure 5-2. Incorrect Sum after Addition without 
Scaling 

To obtain the correct sum of 37.6510, it is necessary 
to scale the augend 24410 to the left one decimal posi­
tion by multiplying 24410 by 1010, Through multipli­
cation, 24410 becomes 244010 and thus is scaled to the 
left so that the decimal points in the two numbers are 
properly aligned. After scaling, the two numbers are 
aligned as shown in Figure 5-3. 

01 234567891011 1213141516 17 18 19 

00 000 000 1 0 0 1 1 0 0 0 1 0 0 0 

00 000 000 o 1 0 1 0 0 1 0 1 1 0 1 

= 2440 10 and 132510 

Figure 5-3. Numbers in Memory after Scaling 

@~ 0 ~~c ______________________ _ 

V-13 



Because the two numbers are now properly aligned, the 
correct sum of 37.6510 is achieved when the numbers 
are added. 

Note that scaling operations can be accomplished in 
one of two ways: (1) by multiplying or dividing by the 
binary equivalent of the appropriate power of 10, or 
(2) by using GE-225 scaling routines available to the 
programmer. 

Rounding 

After a calculation has been completed, it is sometimes 
necessary to round the result to the next highest in­
teger. 'Rounding' is accomplished by adding a '5' 
into the decimal position to the right of the position 
to receive any carry. Since all calculations, within 
the GE-225 are performed primarily with binary num­
bers, the proper rounding factor of '5' is expressed 
in binary and is carried as an appropriate constant 
within memory. For example, this constant might be 
programmed by using the pseudo-instruction DEC to 
obtain the binary equivalent of 5. The instruction 
would be DEC 5. See Section IV for detailed discussion 
of pseudo-instructions. After the rounding factor is 
added, the positions to the right of the digit which 
receives any carry can be deleted through scaling. 

To illustrate further, assume that the decimal 10.75 
is to be rounded to the nearest tenth. By using a 
rounding factor of .05 stored as a constantin memory, 
the desired result, 10.80, is achieved by adding the 
rounding factor as shown in Figure 5-4. 

1. 

2. 

3. 

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

o 0 000 000 o 1 

00 000 000 00 

00 000 000 o 1 

where 1 = 10.7510 
2 = .0510 

3 = 10.8010 

0 0 

0 0 

0 0 

0 0 1 1 0 0 1 

0 0 0 0 0 1 0 

0 0 1 1 1 0 0 

Figure 5-4. Using a Rounding Factor of .05 

1 

1 

0 

DATA TRANSFER INSTRUCTIONS 

Data transfer instructions are grouped into two major 
categories: memory transfers and register transfers. 
Although not involving a true transfer of data, register 
modification instructions are also included in this sec­
tion. 

Memory transfers involve word movement between 
core memory and central processor registers. In 
general, the previous (~ontents of the 'receiving' unit 
(memory location or register) are replaced by the 
t'ransferred word, while the transferred word remains 
unchanged in the original memory location or register. 

Arithmetic register transfers involve the transfer of 
information between registers; the condition of the 
register initially holding the information is unchanged, 
after execution, except as noted in the discussion of 
each instruction. 

Register modification instructions change the contents 
of the speCified register in a predetermined manner, 
such as complementing, sign changing, and negating. 

Data transfer instructions involve either or both the 
A and Q registers. In general, transfer instructions 
cause parallel transfers (all bits Simultaneously), 
rather than serial transfers (a bit at a time). 

Data Transfers-Memory 

LDA y x 0000000 Word Times: 2 

Functional Description: LOAD A REGISTER. The con­
tents of memory locations Y (S, 1-19) replace the con­
tents of the A register (S, 1-19). Y is unchanged. 

Example 1: Load the A register with the contents of 
GAP symbolic location AMT#I. which contain~ the 
positive number 5263010 (0146626 8), The A regIster 
initially contains zeros. 

GAP Coding: 

Symbol 

• I 2 ~ 3 \ • \ • I ' 

Before execution: 

After execution: 

Opr Operand X 

, 1 • I '0 .21 13 1 "1"\ "1'7\" I" .0 

L D A A M T # 1 

Register Contents in Octal 

A Q 

0000000 II 
::=:===~ 

0146626 I ~I __ ?_ ...... 

? 

@[D~~~ ___ --------
V-14 



Example 2: Load the A register with the contents of 
GAP .symbolic location AMT#5, which contains the 
negative number -4218910 (36554638). TheA register 
initially contains 4218910 (01223158), 

GAP Coding: 

Symbol Opr Operond X 

.~ 21 3 1 • L 'i ' • i ' i 10 " 13 141"1"1"1"1" 20 

L D A A M T # 5 

Register Conten(s in Oct2.1 

A Q 

Before execution: 0122315 II ? 

After execution: 3655463 II ? 

DLD Y x 1000000 Word Times: 3 

Functional Description: DOUBLE LENGTH LOAD. If 
the (modified) address of location Y is even, the con­
tents of Y (S, 1-19) and Y+1 (S, 1-19) replace the con­
tents of the A (S, 1-19) and Q (S, 1-19) registers. If 
the (modified) address of Y is odd, the contents of Y 
(S, 1-19) replace the contents of the A (S, 1-19) and Q 
(S, 1-19) registers. Y and Y+1 are unchanged. 

Example 1: Double length load the A and Q registers 
with the positive number 821695 10 (000000111046778) 
in GAP symbolic locations AMT#7 (even) andAMT#7+1. 

GAP Coding: 

Symbol Opr Operand X 

'1 2 1 
3 • L ' : , . , , '0 " 13 '''' ! '!5 I I ~ I t7 I t 8 " 20 

D L D A M T # 7 

Register Contents in Octal 

A Q 

Before execution: L_?~[ ? 

After execution: 1 0000001 I I 1104677 

Examiile 2: Double length load the A and Q registers 
wIth re positive number 52630010 (000000100037348) 
in GAP symbolic locations AMT#6 (odd) andAMT#6+1. 

GAP Coding: 

Symbol Opr Operand X 

• L 2 1 3 1 • 1 'I • . , i '0 '2\'3 ~ '04 \ 1!! I Ie 117 1'8 I B 20 

D L D A M T # 6 

Register Contents in Octal 

A Q 

Befor'? execution: ? 1 I,-_? ----' 
Alter execution: 0000001 1 1-1 _00_0_0_00_1--1 

Comments: Note that, if the specified operand address 
is odd, the contents of that address are loaded into both 
the A and Q registers and the second address is 
ignored. 

STA Y x 0300000 Word Times: 2 

Functional Description: STORE A. The contents of the 
A register (S, 1-19) replace the contents of memory 
location Y (S, 1-19). The contents of A are unchanged. 

V-15 

Example 1: Store the A register contents 4218910 
(01223158) in GAP symbolic location RESULT. 

GAP Coding' 

Symbol 

• ! 2 I 3 I • I ,[ , , 

S 

Before execution: 

After execution: 

Before execution: 

After execution: 

Opr 
, • 0 

T A 

Operand X 

12: 1 13 I .. I 1!5 I HI i 17 liB i 111 " 
R E S U L T 

Register Contents m Octal 

A Q 

0122315 J [ __ ?_--' 

0122315 I L.I __ ?'-------' 

GAP Symbolic Location, RESULT 

A 

? 

0122315 



Example 2: Store the A register contents -6542110 
(360016l8) in GAP symbolic location OUTPUT. OUT­
PUT initially contains -4218910 (36554638). 

GAP Coding· 

Symbol Opr Operand X 

• J • J • I ' I ,I • , I • I '0 12J"1 14T "1"1" I" I .. .0 

, S ,T A IO.TT.'T'.P .TT.'T' 

Register Contents in Octal 

A Q 

Before execution: 3600163 II ? 

After execution: 3600163 I I ? 

GAP Symbolic Location, OUTPUT 

A 

Before execution; 3655463 

After execution: 3600163 

DST Y x 1300000 Word Times: 3 

Functional Description: DOUBLE LENGTH STORE. If 
the (modified) address of memory location Y is even, 
the contents of the A (S, 1-19) andQ (S, 1-19) registers 
replace the contents of Y (S, 1-19) and Y+1 (S, 1-19). 
If the (modified) address of Y is odd, the contents of 
Q (S, 1-19) replace the contents of Y (S, 1-19). The 
contents of A and Q are unchanged. 

Example 1: Double length store A andQ register con­
tents 82169510 (0000001 11046778) in GAP symbolic 
locations AMT#8 (even) and AMT#8+1. 

GAP Coding: 

Symbol Opr Operand X 

• I • J ' \ 'i 'i ' , I • I '0 "1 ' 'I " I " I ,. I '7 I " I , • 20 

D S T A M T.# 8 

Register Contents in Octal 

A Q 

Before execution: 0000001 I i 1104677 

After execution: 0000001 II 1104677 

GAP Symbolic Locations 

AMT#8 AMT#8+1 

Before execution: ? /I ? 

After execution: 
0000001 II 1104677 

Example 2: Double length store A andQ register con­
tents 52630010 (0000001 00037348) in GAP symbolic 
locations AMT#7 (odd) and AMT#7+1. 

Before execution: 

After execution: 

Before execution: 

After execution: 

STO Y x 

Register Conten~s in Octal 

A Q 

0000001 II 0003734 

0000001 II 0003734 

GAP Symbolic Locations 

AMT#7 AMT#7+1 

C~I ? 

I 0003734 II ? 

2700000 Word Times: 3 

Functional Description: STORE OPERAND ADDRESS. 
The contents of the A register (7-19) replace the con­
tents of memory location Y (7-19). A (S, 1-19) and Y 
(S, 1-6) are unchanged. 

Example: Store the operand address that is in the A 
register, 6553510 (177778), in GAP symbolic location 
TAX#l, which initially contains 00016678, an LDA 
instruction. 

GAP Coding: 

Symbol Opr Operand X 

"'\'\'\'\' , Q I 10 '2 I '3; I "1"1" 1"1" i .. 20 

S T 0 T A X # 1 

Re~ister Contents in Octal 

A Q 

Before execution: 0017777 II ? 

After execution: 0017777 II ? 

@~D~~~ __________ _ 

V-16 



GAP Symbolic Location, TAX#l 

Before execution: 0001667 ] 
After execution: 0017777 

ORY Y x 2300000 Word Times: 3 

Functional Description: OR A INTO Y. Corresponding 
bit positions of memory location Y (S, 1-19) are set 
with I-bits for every bit position of the A register 
(S, 1-19) containing a 1-bit. The contents of the A 
register and other bit positions of Y remain unchanged. 

Example 1: OR A into Y with the A register containing 
16413748 and Y is GAP symbolic location $OUT, con­
taining 0013711 8. 

GAP Coding: 

Symbol Opr Operond X 

'1 2 I 'l'l'L' , g I '0 12 1'3 14j'!lI'OI"!'6I B 20 

0 R Y $ 0 U T 

Memory and A Register before Execution (binary): 

$OUT 
,--- ~ \ 

10010001001101 111 1 1100110011 

o 1 234 567 89 10 11 12 13 141516171819 

\0 111 1 0 11 0 0 10 0 1 I 0 1 1 I 1 1 1 I 0 01 

~-------------------~--------------~ 

A Reg 

Memory and A Register after Execution (binat:Yl; 

$OUT 
~------------------~ \ 

o 1 234 567 8910 11 12 13 14 15 16 17 18 19 

101\110\100\001101111111100/ 

~--------------~~------------------~ 

A Reg 

Example 2: Place a dollar sign ($), previously loaded 
into the A register, before the 2-digit BCD quantity 
56 in GAP symbolic location PRICE. 

GAP Coding: 

Symbol Opr 

.1 2 1.1.1'1' , I ' I • 0 

0 R Y 

Before execution: 

After execution: 

Oper.nd X 

"I" 1"1"1" i" I " I" 20 

P R I C E 

Memory and A 
Register Contents (BCD) 

A Reg PRICE 

$\0\0110\5 
I 

6 I 
--' 

$\010J!$15 6 

EXT Y X 2000000 Word Times: 3 

Functional Description: EXTRACT. For each I-bit in 
Y (S, 1-19) a O-bit is placed in the corresponding bit 
position of the A register (S, 1-19). If bit positions in 
Y contain O-bits, the corresponding bit positions in the 
A register are unchanged. Y is not affected. 

Example 1: Extract I-bits from the A register con­
tents 24653178 according to the pattern 12347538 con­
tained in GAP symbolic location MOD. 

GAP Coding: 

Symbol Opr Oper.nd X 

• I 2 I 3 , • I ' i , , , • 0 "I" I •• j "I "I" I" I " 20 

E X T M 0 0 

Memory and A Register before Execution (binary): 

MOD 
(~----------------~----------------------~ 

101\0101 0 111100\1111101\01 d 
01 234 567 8910 111213 141516 171819 

110\100\110\101\0111001\111\ 
, ___________________ ,,~------------------~J 

A Reg 

@~o~~~----------
V-17 



Memory and A Register after Execution (binary): 

MOD 
, ~ \ 

1011010101111001111110110111 

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

110110011001001\000\000\1001 

'~------------------~,,------------------~ 
A Reg 

Example 2: Delete the dollar Sign ($) from the BCD 
word $89 in the A register preparatory to storing the 
word into memory. Assume GAP symbolic location 
Memory and A Register before Execution (BCD): 
STRIP OOfttains the BCD word $00. 

GAP Coding: 

Symbol Opr Oper.nd X 

.121-1-1-1' • I • [,. 121'"ll4j"I"I17I"11I 2. 
E X T S T R I P 

Memory and A 
Register Contents (BCD) 

A Reg STRIP 

Before execution: $ I 8\ 9 II $1 0 I 0 

After execution: 0 I 8 I 9 II $1 0 I 0 

*MOY y 2400000 Word Times: 4+ 2N 

Functional Description: MOYE. A block of infor­
mation starting at Y is moved to another area of 
memory. The A register must contain the starting 
address of the area to which the data is to be moved, 
and the Q register must contain the 2's complement 
of the number of words to be moved. The contents 
of the P counter are stored automatically in index 
word 00 (bits 5 through 19). The time required to 
execute this command is 4 plus 2N word times, 
where N is the number of words to be moved. Mter 
execution, the A register is set to 0' s and the Q 
register contains the 2's complement of the number 
of words moved. This instruction cannot be auto­
matically modified. 

* This instruction is an optional feature. 

Example: Move a block of 10 words initially stored in 
an area starting at symbolic location START to the 
memory area starting at symbolic location TOTALS. 
Assume that GAP bas assigned the symbolic location 
START to actual address 017710 and TOTALS to actual 
address 120010' Assume that the number of words to 
be moved bas previously been loaded into the Q reg­
ister in 2' s complement form. 

Memory ana Register Contents in Octal: 

Before execution: 

Memory 

Octal 
Address 

0261 

0262 

0263 

0264 

0265 

0266 

0267 

0270 

027l 

0272 

2260 

2261 

2262 

2263 

2264 

2265 

2266 

2267 

2270 

227l 

Contents 

0123456 

0246531 

1234567 

0765432 

0135764 

2345670 

1001234 

0132456 

2147765 

1777777 

J_ 
? 

? 

? 

? 

? 

? 

? 

? 

? 

? 

Registers 

A 

I 0002260 1= 120010 

Q 

13777766 ]= -1010 

@~D~~~ _______ ' __ _ 

Y··18 October 1963 



Memory and Register Contents in Octal: 

After execution: 

Memory 

Octal 
Address 

0261 

0262 

0263 

0264 

0265 

0266 

0267 

0270 

0271 

0272 

2260 

2261 

2262 

2263 

2264 

2265 

2266 

2267 

2270 

2271 

Contents 

0123456 

0246531 

1234567 

0765432 

0135764 

2345670 

1001234 

0132456 

2147765 

1777777 

l 
0123456 

0246531 

1234567 

0765432 

0135764 

2345670 

1001234 

0132456 

2147765 

1777777 

Registers 

A 

10000000 I 

Q 

3777766 

Data Transfers-Arithmetic 

LAQ 2504001 Word Times: 3 

Functional Description: LOAD A FROM Q. The con­
tents of the Q register (8, 1-19) replace the contents 
of the A register (S, 1-19). Q is unchanged. 

Example: LoadA from Q, or replace the existing con­
tents of A 12345678 with the contents of Q 36543218, I 

GAP Coding' 

Symbol Opr Oper.nd X ".,_,_,aj_ - , • I'· Ujla'14'Ia',"'I7'III" •• 
L AQ 

Register Contents in Octal 

A Q 

Before execution: 1234567 II 3654321 

After execution: 3654321 " 3654321 

Comments: No operand address is required. Auto­
matic modification will change the instruction. 

LQA 2504004 Word Times: 3 

Functional Description: LOAD Q FROM A. The con­
tents of the A register (8, 1-19) replace the contents 
of the Q register (8, 1-19). A is unchanged. 

Example: Load Q from A, or replace the existing con­
tents of Q 24653178 with the contents of A 11177768' 

GAP Coding: 

Symbol Opr 

, 1 • , - 1 -, aJ - · , · ". 
L Q A 

Before execution: 

After execution: 

O...,.nd X 

ul Ia L 14'," 1'_1 17 1111" •• 

Register Contents in Octal 

A Q 

1117776 I I 2465317 

1117776 II 1117776 

Comments: No operand address is required. Auto­
matic modification will change the instruction. 

MAQ 2504006 Word Time-s: 3 

Functional Description: MOVE A TO Q. The contents 
of the A register (8,1-19) replace the contents of the Q 
register (8, 1-19). Zeros replace the contents of A 
(8, 1-19). 

I 

®[D~~~ _________ _ 
V-19 October 1963 



Example: Move A to Q, or replace the existing con­
tents of the Q register 37777778 with the contents of the 
A register 13334448 and zero the A register. 

GAP Coding: 

Symbol 

, I 2 I • ] • I • I • 
I 

Before execution: 

After execution: 

Opr Operand X 

8 I • I '0 '21 '"I '-]'81'.1 17 I to i ,. 20 

M A Q 

Register Contents in Octal 

A Q 

II 3777777 
~===:::: 
,--0_0_0_00_0_0-J1! 1333444 

1333444 

Comments: No operand address is required. Auto­
matic modification will change the instruction. 

XAQ 2504005 Word Times: 3 

Functional Description: EXCHANGE A AND Q. The 
contents of registers A (S, 1-19) and Q (S, 1-19) are 
interchanged. 

Example: Exchange A and Q, or interchange the con­
tents of A 123'45678 and Q 17777778. 

GAP Coding: 

Symbol Opr 

,I 2 I • I • I • I • , I • I '0 
I 

X A Q 

Before execution: 

After execution: 

Operand X 

'21 '"I 14]'"1'81'7 I'· i ,. 20 

Register Contents in Octal 

A Q 

1234567 II 1777777 

1777777 II 1234567 

Comments: No operand address is needed. Automatic 
modification will change the instruction. 

• LAC 2504202 Word Times: 3 

Functional Description: LOAD A REGISTER FROM C 
REGISTER. The contents of the A register (1-19) are 
replaced by the contents of the C register (real time 
clock). The sign of the A register is set to zero. The 
contents of the C register are unchanged. 

Example: Load A register from C register. Assume 
that the C register contains the binary equivalent of 
1 hour (52,140 8 Sixths of a second). I 

GAP Coding: 

Symbol Opr Operand X 
.121·1_[·[· , . ,0 .21 '"I 141 "1"1'7 I •• I" 20 

L A C 

Register Conteni:s in Octal 

A C 

Before execution: [ ? II 0052140 

After execution~ I 0052140 II 0052140 

• LCA 2504210 Word Times: 3 

Functional Description: LOAD C REGISTER FROM A 
REGISTER. The contents of the C register are re­
placed by the contents of the A register (1-19) The 
sign of the A register (;untents is ignored. The con­
tents of A are unchanged. 

Example: Load C register from A register. Assume 
that the A register contains the binary equivalent of 12 
hours (259,20010 sixths of a second). 

GAP Coding; 

Symbol Opr Operand X 
, [ 2 [ • [ .1 .1 , ,1 • '0 '2[ IS I 141'" I "1'7 I '" i ,. 20 

L C A 

• This instruction is part of the real time clock optional 
feature. 

I 

@~o~~~ _________ _ 

V-20 October 1963 



RegIster Contents in Octal 

A C 
Before execution, 

C=0772200 1 r== ? 
After execution: 

077220~ I 0772200 

Comments: The C register operates as a binary 
counter that is incremented by one every sixth of a 
second. When the binary count reaches the equi valent 
of 24 hours (518,400 sixths of a second), it automati­
cally resets to zero and starts counting again. 

The C registe r contents are not directly accessible 
for processing or console display. However, the LAC 
instruction, by transferrin~~ those contents to the A 
register, makes the C register available to the stored 
program or to the console opt·rator. 

A conversion subroutine is required for program 
translation of the C registe I' contents from binary nota­
tion to hours, minutes, seconds. and Sixths/seconds, 
and for print-out of elapsed or actual time through the 
control console typewriter. 

A simple, straightline subroutine is shown below to 
illustrate how conversion could be done. In actual 
practice, a more sophisticated approach involving X 
registers and controlled looping would be more ef­
ficient. 

ExamRle: Convert the C register contents 1205701 8 
to deCImal hours, mlllutes. sEconds, and sixth-seconds. 
Assume symbolic locations CONI through CON3 con­
tain conversion constants as follows: 

Symbolic 
Location Contents Remarks 

-----
CON 1 52,1408 Hours Factor 

CON 2 5:iO 8 Minutes Factor 

CON 3 6 Seconds Factor 

COMPUTE MINUTES 

L D~. ,._. _., I r COM~!:l I~ ~ECONDS D Y~S_~_3_ 

S T __ ~?~~_~ _____ ~ __ 
x A ~ __ ~ __ TRANSF"ER SIXTH -SECONDS TO A REG 

S T AS X T H S 
i--~----- :-.~---

iLl cc Ci) 
'. l, '. ~ i_] 

V-21 

Initial Register Contents: 

C A Q 

1205701 ? 

Registers Affected by Each Instruction: 

LAC 

MAQ 

GAP 
Coding 

DVD CON 1 

STA HOURS 

LDZ 

DVD CON 2 

STA MINS 

LDZ 

DVD CON 3 

STA SECS 

XAQ 

STA SXTHS 

Registers 
A Q 

1205701 ? 

0000000 1205701 
------- ---------

0000017 0015041 
--'- -- ---- _. 

0000017 0015041 
----

0000000 0015041 
~-------

0000022 0000321 
1---.----

0000022 0000321 
-~-

0000000 0000321 
- -

0000042 0000005 
- --

0000042 0000005 
--.--- -

0000005 0000042 
--- - 1--- -

0000005 0000042 

Memory Contents after Conversion: 

Symbolic 
Location 

HOURS 

MINS 

SECS 

SXTHS 

Contents 

0000017 

0000022 

0000042 
~--- .. --.- -

0000005 

The time represented by the C register contents can 
also be converted manually to a chronological scale 
by dividing those contents by appropriate conversion 
factors. Perhaps the simplest method would be to con­
vert the binary contents of the C register to octal, then 
decimal, and di vide by decimal conversion factors. The 



conversion chart in Figure 2-4 makes the octal-to­
decimal conversion easy. Decimal conversion factors 
used for division could be: 

Hours z:: 21,600 
Minutes z:: 360 
SeCODda = 6 

(Any remainder would be in sixth-seconds.) 

For example, assume that the contents of the C register 
are 12057018' By keying in an LAC instruction at the 
control console, 12057018 is disPlayed in the A register 
indicators. The octal-ftl-decimal conversion chart in 
Figure 2-4 provides the decimal equivalent 330,689 
(in sixth-seconds). 

Dividing by the hours conversion factor: 

15 hours 
21600 1330689 

21600 
114689 
108000 

6689 sixth-seconds remainder 

Dividing the remainder by the minutes conversion 
factor: 

18 minutes 
36016689 

360 
3089 
2880 

209 sixth-seconds remainder 

Dividing this remainder by the seconds conversion 
factor: 

34 seconds 
61209 

18 
29 

24 
-5- sixth-seconds remainder 

Thus, the C register contents 12057018 represent 15 
hours, 18 minutes, 34 seconds, and 5 sixth-seconds, or 
15:18:34:05. 

Register Modifications 

JLDZ 2504002 Word Times: 3 

Functional Description: LOAD ZERO INTO A REG­
ISTER. The contents of the A register (S, 1-19) are 
replaced by zeros. 

Example: Load zero into A register, or replace the 
existing contents of the A register 37777778 with zeros. 

GAP Coding: 

Symbol Opt' Ope •• nc! X 

'[2L-L-1 '1 8 '1 • j '0 I2j 18j 14j'"j'"j'7j18l10 20 

L D Z 

Register Contents in Octal 

A Q 
Before execution: 3777777 I I ? 

After execution: 0000000 i I ? 

Comments: No operand address is needed. Automatic 
modification will change the instruction. 

LDO 2504022 Word Times: 3 I 

Functional Description: LOAD ONE INTO A REG­
ISTER. A I-bit is placed in bit position 19 of the A 
register; all other bit positions (S, 1-18) are set to 
O-bits. 

Example: Load one into A register. Assume that the 
A register initially contains 37777778, 

GAP Coding: 

Symbol Opr Operand X 

.!2!·t-t'!8 , 1 • I ',0 '2j"j '-j'"l'81'71'8['. 20 

I L D,O 
. 

Register Contents in Octal 

A Q 

Before execution: I 3777777 II ? 

After execution: [ 0000001 II ? 

Comments: No operand address is needed. Automatic 
modification will change the instruction. 

@~D~~~ _________ _ 

V-22 October 1963 



LMO 2504102 Word Times: 3 

Functional Description: LOAD MINUS ONE INTO A 
REGISTER. The contents of the A register (S, 1-19) 
are replaced by I-bits, giving the octal configuration 
37777778' 

Example: Load minus one into A register. Assume 
that the A register initially contains 13576428' 

GAP Coding 

Symbol Opr Operand X 

,[2[·1·1'1· • 1 • 1 '0 12\ 13 1 1'\ "\" 1 17 \'. i ,. 20 

I L M 

Before execution: 

After execution: 

0 

Register Contents in Octal 

A Q 

1357642 ,.&-, __ ?_~ 

3777777 I I,-__ ?_--, 

Comments: No operand address is needed. Automatic 
modification will change the instruction. 

CPL 2504502 Word Times: 3 

Functional Description: COMPLEMENT A. Each bit 
position in the A register (S, 1-19) is inverted; each 
I-bit is replaced by a O-bit and eachO-bit is replaced 
by a I-bit. 

Example: Complement A register. Assume that the 
A register contains 12345678, 

GAP Coding: 

Symbol Opr Operand X 

'\2\'\_\'\. • 1 • I 10 '2 \ 131 14\"\'.\17 I" i ,. 20 

I 
C P L 

A Register Contents 
in Binary 

Before execution: 

a 1 2 34 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

'0 1 \0 1 010 1 111 a 011 0 1 11 1 011 1 1 I 
After execution: 

o 01 

2 5 4 3 2 1 a 
Octal Equivalent 

Comments: No operand address is needed. Automatic 
modification will change the instruction. 

NEG 2504522 Word Times: 3 

Functional Description: NEGATE A. The 2's com­
plement of the contents of the A register (8, 1-19) 
replaces the contents of A (S, 1-19). If the capacity 
of A is exceeded, in an attempt to negate the maximum 
negative number, overflow occurs. 

Example: Negate A register contents 00001018' 

GAP Coding' 

Symbol Opr Operand X 

'J2!·I'\'\· , I • \ ,0 '2 \ 13\ "1"\" \17\ " I ,. 20 

I N E G 

Register Contents in Octal 

A Q 

Before execution: 0000101 I I ? 

After execution: 3777677 I I ? 

Comments: Note that, unlike the CPL instruction 
which forms the l's complement, NEG forms the 2's 
complement of the contents of A. No operand address 
is needed. Automatic modification will change the 
instruction. Overflow occurs if an attempt is made 
to negate the largest negative number, -524,28810, 

CH8 2504040 Word Times: 2 

Functional Description: CHANGE SIGN OF A REG­
ISTER. The sign bit of the A register is changed. Bit 
pOSitions 1 through 19 of A are unchanged. 

Example: Change sign of A register. Assume that the 
A register contains 13576428, 

GAP Coding: 

Symbol Opr Operand X 

, \ 2 \ • I • \ '\ . • 1 • 1 '0 '2\13\ "\"\"117\'8\' • 20 

I C H 

Before execution: 

After execution: 

8 

Register Contents in Octal 

A Q 

~1=35=7=64=2 :::;' ~I ===?==::::: 
~3_3_57_6_42~1 ~I __ ?_~ 

@~:D~~(~ ____________ _ 

V-23 
October 1963 



Comments: No operand address is needed. Automatic 
modification will change the instruction. 

NOP 2504012 Word Times: 3 

Functional Description: NO OPERATION. Zero is 
added to the contents of the A register (S, 1-19). 

Example: No operation, or add zero to the contents 
12345678 of the A register. 

GAP Coding: 

Symbol Opr Operand X 

.1 2 1'1_1'1' • I • I '0 '2j 18j "tiel "j "J" I , • 20 

N 0 P 

Register Contents in Octal 

A Q 

Before execution: 1234567 I I ? 

After execution: 1234567 II ? 

Comments: This instruction is useful in programming 
delays or reserving space in a program for later in­
sertion of an instruction. No operand address is 
needed. Automatic modification will change the in­
struction. 

SHIFT INSTRUCTIONS 

Shift instructions involve the serial (bit-by-bit) move­
ment of data within or between registers. Shifts fall 
into two categories: arithmetic register shifts and 
input-output register shifts. 

Shifting is useful in arranging data before and after 
transfer between direct input-output peripherals, and 
the central processor, scaling quantities before and 
after arithmetic operations, recovering from overflow 
conditions, and performing simple multiplications and 
divisions. 

Shifting is limited to 31 bit positions per shift instruc­
tion because bit position 15 through 19 of the instruc­
tion word are used to indicate the length of shift. With 
5 bit pOSitions, the largest number that can be ex­
pressed is 31. 

A shift instruction can require from 2 to 12 word times 
for execution (including instruction access time), 
depending upon the length of shift. A shift of one bit 
position or less requires two word times. Each addi­
tional 3-bit shift, or fraction thereof, requires an 
additional word time. 

Automatic modification of shift instructions changes 
the instruction. 

Arithmetic Register Shifts 

8RA K :S 31 2510000 Word Times: 2 to 12 I 

Functional Description: SHIFT RIGHT A REGISTER. 
The contents of the A register (1-19) are shifted right 
K places. If A is plus, O-bits are inserted in the vaca­
ted positions of A; if A is minus, I-bits are inserted in 
the vacated positions. Bits shifted out of bit position 19 
are lost. The sign of A is not changed. 

Example 1: Shift right 3 bit positions the positive num­
ber 12345678' previously loaded into the A register. 

GAP Coding: 

Symbol 

,121·1·1·1, 

Before execution: 

Opr Operand 

e I ' I ", ,,\ 13\ 14\ ,. \ "\ " \ 'e I " 

S R A 3 

A Register Contents 
in Binary 

X 

20 

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

1~11010i011i10 oj 1 0 1[1 10\1111 

+ 1 2 3 4 5 6 7 

After execution: 

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

10101001\010101111001101\ 1101 

+ 0 1 2 3 4 5 6 

@~D~~~ _________ _ 

V-24 October' 1963 



Example 2: Shift right 7 bit posi tions the negative num­
ber 3755432 8, previously loaded into the A register. 

GAP Coding: 

Symbol Opr Operand X 

, I ' I ,I 4 I 
, , , , ,0 12 " 

,. I!> I Hi 17 I 18 " 2C 

S R A 7 

A Register Contents 
in Binary 

Before execution: 

012345678910111213141516171819 

o 0\ 0 1\ 0 01 

3 7 6 5 432 

After execution: 

01234567891011 1213141516171819 

3 7 7 7 726 

Example 3: Divide by 8 the positive number 464,10410 
(16123508), previously loaded into the A register. 

GAP Coding: 

Symbol Opr Operand 
J--,-r-!,-,-'-, ~~---t--, -, .-+~-,-. -,,~, -, -c, ,-,~,,-,-,-, -,,+---1 

x 

S R A 3 
J----'--~---+=-'=..:.....o~- -~" - -~ ... --------+--t 

Heglste r Contents m Octal 

Before execution: 

After execution: 

SLA K 2512000 Word Times: 2 to 12 

Functional Description: SHIFT LEFT A REGISTER. 
The contents of the A register (1-19) are shi:ted left K 

places. Vacated bit positions of A are filled with 
O-bits. If a non-zero bit is shifted out of position 1, 
ove rflow occurs and the bit is lost. The sign of A is 
unchanged. 

Example 1: Shift left 2 bit positions the positive num­
ber 1234568, previously loaded into the A register. 

GAP Coding: 

Symbol 
, I , , 4 , , , , 

Opr Operand 
, , , 0 12 i 13 1 .. j 1 ~ illS I 17 I 18 

S L A 2 

A Register Contents 
in Binary 

Before execution: 

X 

" '0 

o 1 234 56 7 8910 11 12 13 14 15 16 17 18 19 

[ 0 \ 0 \ 0 0 1 \ 0 1 0 10 1 1 1 0 0 I 1 0 1 11 01 

+ 2 3 4 5 6 

After execution: 

o 1 234 567 8910 11 12 13 14 15 16 17 18 19 

10\0[101\00111 0\ 0 0\ 1\ 0001 

+ 5 6 2 7 o 

Example 2: Shift left 5 places the negative number 
2036361 8, previously loaded into the A register. 

GAP Coding' 

Symbol Opr Operand 

, I 2 i , 
4 i , , . , , 0 12 " 14]1111 tel"118j'" 

S L A 5 

Before execution: 

A Register Contents 
in Binary 

X 

20 

o 1 234 567 8910 11 12 13 14 15 16 17 18 19 

2 o 3 6 3 6 

After execution: 

o 1 234 567 8910 11 1213 141516 171819 

[1111111100111 1[ 0001 0010001 

3 7 7 o 4 o 

'OJ!? [J 0)0)~ ~lf, bbC,J.' ----------------------------------

V-25 



Example 3: Multiply by 4 the positive number 133610 
I (247018), previously loaded into the A register. 

GAP Coding: 

Symbol, Opr 

.1 2 1,1_1.1' • \ • \ ,0 

, SL A 

I Before execution: 

After execution: 

Operand X 

'2 \ ,,\ 141 '"I to i 17 \" I" 20 

2 

Register Contents in Octal 

A Q 

0002470 ",-__ ?_,_--, 

0012340 II'--__ ?_---' 

534410 

SRD K 2511000 Word Times: 2 to 12 

Functional Desc1'iption: SHIFT RIGHT DOUBLE. The 
contents of the A and Q registers (1-19) together are 
shifted K places to the right. Bits shifted out of A (19) 
shift into Q (1). Bits shifted out of Q (19) are lost. 

If the sign of A is plus (0), O-bits fill the vacated posi­
tions. If the sign of A is minus (1), I-bits fill the 
vacated positions. The sign of Q is replaced by the Sign 
of A. The sign of A is unchanged, 

I When the instruction is written SRD 0, only the sign 
of A is shifted into the Sign pOSition of Q. There is 
no other data transfer. 

Example 1: Shift right double 2 octal positions the con­
tents of the A and Q reglsters. A contains 12345678; 
Q contains 3654321 8. 

GAP Codinsz:· 

Symbol Opr Operand X 

.1 21.[_[.[' , \ ' \ ,0 '21 ,,\ 141 '"1"\'7 \ " I " 20 

, S R D 6 

Register Contents in Octal 

A Q 

Before execution: 1234567 I I 3654321 

After execution: 0012~ I 1576543 

Example 2: Shift right double 2 bit positions the con­
tents of the A and Q registers. 

GAP Coding: 

Symbol Opr Operand X 
.1 2 \.1_[,[, . , ,0 12 i 13 I 141'·I"i'7\"i" 20 

, S R D 2 

Register Contents 
in Binary 

Before execution: 

A Reg 

I 0 0 11 1 0 11 0 1 10 1 1 \1 0 1 11 1 0 I 0 0 1 I 
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

100101110101110111010111010} 

Q Reg 

After execution: 

A Reg 

I 0 0 10 0 1 11 0 1 10 1 01 1 1 11 0 1 1 I 100 

01234567 8910111213141516171819 

10011001110110 11 1 0 11 1 0 01 1 1 0 

Q Reg 

SLD K 2512200 Word Times: 2 to 12 

Functional Description: SHIFT LEFT DOUBLE. The 
contents of the A and Q registers (1-19) together are 
shifted K places to the left. Bits shifted out of Q (1) 
shift into A (19). The vacated positions of Q are filled 
with O-bits. If a non-zero bit is shifted out of A (1), 
overflow occurs and the bit is lost. 

The sign of Q replaces the sign of A. The sign of Q is 
unchanged. (SLD 0 shifts only the sign of Q to A. I 
There is no other data transfer.) 

@~D~~~ _________ _ 

V-26 October 1963 



Example: Shift left double 4 bit positions the contents 
of the- A and Q registers. 

GAP COding: 

Symbol 

,121·1·1,1_ • 
I S 

Before execution: 

A Reg 

Opr Operand 

i • I '0 "T 13I"T'"T" i '71 18 i'· 
L D 4 

Register Contents 
in Binary 

X 
20 

1001000\0101110\011111 OJ1 0 11 

o 1 2 3 4 56 7 89 10 11 12 13 14 15 16 17 18 19 

10 010 1 1 10 1 1 10 1 111 0 11 0 1 11 0 1 11 

Q Reg 

After execution: 

A Reg 

100\10111001111\101101010111 

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

1 0 011 1 0 j 1 1 110 1 0]1 1 01 1 1 01 0 0 0 I 
Q Reg 

SCA K 2510040 Word Times: 2 to 12 

Functional Description: SHIFT CIRCULAR A REG­
ISTER. The contents of the A register (1-19) are 
shifted right K places In a circular fashion; that is bits 
shifted out of position 19 are inserted in position 1, 
replacing bits as they are shifted out of position 1. The 
sign of A is unchanged. 

Example: Shift circular A register contents 8 bit posi­
tions. 

GAP Coding: 

Symbol Opr Operand X 

,121·1-1-\- • i • i 10 I2T 13I"T'"I '01'71" I' • 20 

I S C A 8 

Before execution: 
A Reg 

Register Contents 
in Binary 

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

[0101111\0011000 \1 1 1\1 0 1\1 1 11 

After execution: 
A Reg 

o 1 234 567 8 9 10 11 12 13 14 15 16 17 18 19 

10 11 \1 1 0 11 1 111 0 1 11 1 0 \ 0 1 0 I 0 0 1 I 

SCD K 2511200 Word Times: 2 to 12 

Functional Description: SHIFT CIRCULAR DOUBLE. 
the contents of the A and Q registers (1-19) together 
are shifted K places to the right in a circular fashion. 
Bits shifted out of A (19) shift into Q (1) and those 
from Q (19) shift into A (1). The sign of A replaces 
the Sign of Q. The sign of A is unchanged. 

Example: Shift circular double 4 bit positions the con­
tents of the A and Q registers. 

GAP Coding· 

Symbol 

,12\.I.T,I-

I 

Before execution: 
A Reg 

Opr Operand 

• I • 1'0 12 1 13 1" '" I .. 117 I " I ,. 
S C D 4 

Register Contents 
in Binary 

X 
20 

01100111000101011001 

o 1 234 567 8910 11 12 13 1415 16 171819 

o 0 011 000 1 1 1 010 1 0 0 1 1 0 

Q Reg 

After execution: 
A Reg 

00110110011100010101 

o 1 234 567 8910 11 12 13 14 15 16 17 18 19 

o 1 001 00 1 100 o 1 1 1 0 1 010 

Q Reg 

@~D(2(2~ ___ -------

V-27 



Aritl'll'l'leti8· Register Shifts 

SAN K 2510400 Word Times: 2to12 

Functional Description: SHIFT A AND N RIGHT. The 
contents of the A (1-19) and N (1-6) registers together 
are shifted K places to the right. Bits shifted out of A 
(19) shift into N (1). 

Bits shifted out of N (6) are lost. If the sign of A is 
plus, O-bits fill the vacated positions of A. If the sign 
of A is minus, I-bits fill the vacated positions of A. 
The sign of A is unchanged. 

Example: Shift A and N right 6-bit positions (1 BCD 
character). 

GAP Coding: 

Symbol Opr Operand X 

t I 2 I ' i • 1 'i ' , 1 ' 1 10 12 I 13 : , .... I tsl,e I" 1'8 i "' 20 

S A N 6 

Register Contents in BCD 

A N 

Before execution: $59 [?J 
After execution: 0$5 G 
Comments: While this instruction can be modified 
automatically, its use in a modified form is not recom-· 
mended. However, if the length of the shift is modified 
by the contents of an X register, then the length of the 
shift, plus the contents of X, cannot exceed 31 places 
in anyone shift instruction. 

SNA K 2510100 Word Times: 2 to 12 

Functional Description: SHIFT N AND A RIGHT. The 
contents of registers N (1-6) and A (1-19) together are 
shifted K places to the right. Bits shifted out of N (6) 
shift into A (1). Vacated positions inN are filled with 
0-bi ts. Bits shifted out of A (19) are lost. The sign 
of A is unchanged. The N register must be 'ready' 
before this instruction is executed. See BNN and BNR 
instructions. 

Example: Shift N and A right 6 bit positions (1 BCD 
character). 

GAP Coding: 

Symbol 1 Opr Oper.nd X 
t I 2 I , .. , , ! , , " 12; 13, "1"]"1"\'"1" 20 

js N A 6 

I 

Register Contents (BCD) 

A 

Before execution 123 

After execution: 

ANQ K 2511400 Word Times: 2 to 12 

Functional Description: SHIFT A INTO NAND Q. The 
contents of the A register (1··19) are shifted K places 
to the right into both regIsters Nand Q. Bits shifted 
out of A (19) enter both Q (1) and N (1). Bits shifted 
out of N (6) andQ (19) He lost. If the sign of A is plus, 
the vacated positions of A are filled withO-bits; if the 
sign of A is minus, I-bits fill the vacated positions of 
register A. The sign of A replaces the sign of Q. The 
sign of A is unchanged. The N register must be 'ready' 
before this instruction is executed. See BNN and BNR 
instructions. 

Example: Shift A into N andQ registers 6 bit positions. 

GAP Coding: 

Symbol Opr Operand X 

t I , I , . , , , ~ , ~ ~~'~I,el'71'Bil" 20 
-~ 

A N Q 6 

Register Contents in BCD 

A Q 

Before execution: 123 II ??? 

N 

G 
A Q 

After execution: 012 II 3 ?? 

N 

QJ 
@~D~~~ ________________________________________ __ 

October 1963 
V-28 



NAQ K 2511100 Word Times: 2 to 12 

Functional Description: SHIFT N, A, AND Q RIGHT. 
The contents of registers N (1-6), A (1-19), and Q 
(1-19) together are shifted K places to the right. Bits 
shifted out of N (6) shift into A (1). Bits shifted out of 
A (19) shift into Q (1). Bits shifted out ofQ (19) are 
lost. Vacated positions of N are filled with O-bits. The 
sign of A is unchanged. The sign of Q is set to the sign 
of A. The N register must be 'ready' before this 
instruction is executed. 

Example: ShiftN,A, andQ right 6 bit positions (1 BCD 
character). 

GAP COding' 

Symbol Opr Operand X 
,12T·]-I,I- , i oj, 0 ,2],8]'4]"1"1 17 1"]" 20 

N A Q 6 

Re~ister Contents in Octal 

A Q 

Before execution: 888 II ??? 

N 

G 
A Q 

After execution: 788 " 8?? 

N 

0 

NOR K 2513000 Word Times: 3 to 12 

Functional Description: NORMALIZE THE A REG­
ISTER. The effect of this instruction depends upon the 
value of K, the sign of the A register contents and R 
(the number of leading zeros in A). 

If the A register sign is plus, and the number of 
leading O-bits (R) in A (1-19) is less than K, the con­
tents of A (1-19) are shifted left R places. The dif­
ference K-R replaces the contents of memory location 
0000. 

If the A register sign is plus, and the number of 
leading O-bits (R) in A (I-I9)~reater than or e ual 
to K, then the contents of A (1-19 are shifted left K 

places; O-bits replace the contents of memory location 
0000 (15-19); bit positions (S, 1-14) of 0000 are always 
set to zeros. The sign of A is unchanged. Vacated 
positions of A are filled with O-bits. 

If the A register sign is minus, the number of leading 
I-bits of A (1-19) are shifted left; otherwise execution 
occurs as described above. If a I-bit is shifted from 
A (1), overflow occurs. 

Example 1: Normalize the A register which contains 
06012348 (9 leading O-bits) to 10 bit positions (K = 10, 
R = 9). 

GAP Coding: 

Symbol Opr Operand X 
,12/a/-T,T. • i 0 i '0 '21 "I '4/"1'_/17 I'· i ,. 20 

I N 0 R 1 0 

Memory and Register Contents in Octal 

A 0000 

Before execution: 0001234 II ooooon 

After execution: 1234000 I t 0000001 

Example 2: Normalize the A register which contains 
00123458 (6 leading O-bits) to 5 bit pOSitions (K = 5, 
R = 6). 

GAP Coding: 

Symbol Opr Operand X 

'/2/al-l,T- • I 0 I '0 '21 "1'41 "/ "1'7 I'· i .. 20 

I 
N 0 R 5 

Memory and Register Contents in Octal 

A 0000 

Before execution: L 0012345 II OOOOO?? 

After execution: I 1162400 II 0000000 

®[D~~~ _________ _ 

V-29 



Example 3: Normalize the A register which contains 
the negative number 3776542 (9 leading I-bits) to 6 
bit positions (K = 6, R = 9). 

Example 1: Double length normalize the A and Q reg­
isters whlCh contain 00012348 00765438 (8 leading 
O-bits) to 6 bit positions (K = 6, R = 8). 

GAP Coding' 
GAP Coding: 

Symbol apr Operond X 

• I 2 1 
, , : 'i ' , , I .0 12 l 13 "1"1"1"I"i" 20 

N 0 R 6 

Memory and Register Contents in Octal 

A 0000 

Before execution: 3776542 I I OOOOO?? 

After execution: 3654200 I I 0000000 

Comments: The NOR instruction iC' used primarily in 
normalizing the A register in normalized floating-poInt 
arithmetic operations in the AAU. See Section XII. 

NOR can be automatically modified; however, the length 
of a shift after modification must not exceed 31 places. 

DNO K 2513200 Word Times: 2 to 12 

Functional Description: DOUBLE LENGTH NORMAL­
IZE. If thesignoftheAregister is plus, and the num­
ber of leading O-bits (R) of A \1-19) is less than the 
constant (K), then the contents of registers A (1-19) 
and Q (1-19) are shifted left R places. K minus R 
replaces the contents of location 0000 (15-19). 

If R is greater than or equal to K, then the contents of 
registers A (1-19) and Q (1-19) are shifted left K 
places; O-bits replace the contents of memory location 
0000 (15-19). BitpositionsS, 1-140flocation 0000 are 
always set to zero. Bits shifted out of Q (1) shift into A 
(19). Vacated positions ofQ are filled with O-bits. The 
sign of Q replaces the sign of A. The sign of Q is 
unchanged. 

If the sign of A is minus, the number of l's of A (1-19) 
are shifted left; all other conditions are the same as 
when the sign of A is plus. If a 1 bit is shifted out of 
bit position 1, the overflow indicator is turned ON. 

Symbol apr Operond X 

• I 2 1 ' I 'I ,1 ' . , I" 
'2 T "I "-T"l "i" I " I " 20 

D N 0 6 

Memory and Register Contents in-Octal 

A Q 

Before execution: 0001234 I I 0076543 

0000 

[ 00000 ?? 

A Q 

After execution: [ 1123403 II 1654300· 

0000 

0000000 

Example 2: Double length normalize the A and Q reg­
isters which contain 00017778 00001778 (9 leading 
O-bits) to 15 bit positions (K = 15, R = 9). 

GAP Coding: 

Symbol apr Operand X 

• I 2 1 , ,I ,I , . , " " " "I "1 " i " I " I •• zo 

D N 00-2-~ 

Memory and Register Contents in Octal 

A Q 
Before execution; r= 0001777 I I 0000177 

0000 

[ooo~;;?J 

A Q 
After execution: 1777000 I I 0177000 

0000 

0000006 

@~D(2~~ __ --------

V-30 



INTERNAL BRANCH INSTRUCTIONS 

Branch instructions, which provide decision-making 
capability in the GE-225, fall into two categories: 1) 
internal branch instructions (described in this section) 
and 2) input-output branch instructions (described in 
appropriate peripheral instruction sections). 

Internal branch instructions can be further subdivided 
into two groups: 1) unconditional branch instructions 
:l.nd 2) test-and-branch instructions. 

Unconditional Branch Instructions 

These instructions, when executed, unconditionally 
cause transfer of program control to the instruction 
contained in the memory location speCified by the oper­
and address. Operands can specify actual or GAP 
symbolic addresses. 

BRU Y x 2600000 Word Times: 1 

Functional Description: BRANCH UNCONDITION­
ALL Y. Control is transferred to the instruction at 
memory location Y (Y becomes the address of the next 
instruction). If this instruction is modified auto­
matically, all 15 bits ofthe P counter are altered by the 
sum of bits 7-19 of the I register and by bits 5-19 
of the speCified X register. If no modification, then 
only 13 bits of the P counter are altered .• 

Example: Branch unconditionally to the GAP symbolic 
location STORE. Assume that STORE has been as­
signed the octal address 17668 by GAP and that the 
BRU instruction is located in memory location 004608, 

GAP Coding: 

Symbol 

I 12 I , . , 6 . 
0 0 4 6 0 B 

Before execution: 

After execution: 

apr . 
R 

Operand X 

10 12 1 '3 
.. 1!1l t15 "1'8 " 20 

U S T 0 R E 

P Counter Contents in Octal 

~0=04=61~1 ~I ======: 
r==m 766 II '--__ --' 

Comments: Note that, before execution, the P counter 
has already been stepped to the address of the next 
sequential instruction. BRU modifies the P counter 

to transfer control to the instruction located in address 
017668' Note that automatic address modification is 
possible. 

SPB Y X 0700000 Word Times: 2 

Functional Description: STORE P AND BRANCH. The 
memory location of the SPB instruction (held in bits 
5-19 of the P counter) replaces the contents of bit 
positions 5-19 of the specified modification word (of the 
current modification group, for systems having the 
additional modification group feature). Bits 0-4 of 
the modification word are automatically set to zero. 
Control transfers to the instruction held in memory 
location Y. The P counter is not incremented during 
an SPB instruction. 

Example: Store P and branch. Store the location of 
the SPB instruction 26768 in X registe r 3 and branch to 
the instruction held in GAP symbolic location RERUN. 
Assume that GAP has assigned octal location 05008 to 
the symbol RERUN. 

GAP Coding: 

Symbol apr Operand X 

I 12 I , • 1 'i • . , i 10 "1"1"1"1"1"1"1" 20 

o ,2 6 7 6 S P B R E R U N 3 

P Counter and X Register Contents in Octal 

P 0003 

Before execution: 02676 I I??????? 

After execution: 0050~ I 0002676 

Comments: SPB cannot be automatically modified be­
cause bit positions 5 and 6 are used to specify the X 
register to receive the SPB memory location. 

Test-and-Branch Instructions 

A test-and-branch instruction causes a check of the 
status or contents of a central processor indicator or 
register to determine if the test condition is true or 
false. If the test is true (condition exists), the central 
processor executes the next sequential instruction; if 
the test is false (condition does not exist), the central 
processor skips the next instruction and executes the 
second sequential instruction. 

@~D~~~ ___________ _ 

V-31 



The tested registers are unchanged by the test; tested 
indicatCU's mayor may not change, depending upon the 
test and the indicator status. Test-and-branch instruc­
tions affect only the P counter. If the condition tested 
is true, the P counter is automatically increased by 
one, as in non-branch instructions; if the condition 
tested is false, the P counter is increased by two, 
thereby skipping an instruction. 

Test-and-branch instructions require no operand 
address; they can be followed sequentially by a BRU 
instruction specifying the transfer address. For con­
venience, GAP also permits the use of relative and 
symbolic addressing with test-and-branch instruc­
tions, as illustrated in the examples following the 
instruction descriptions. 

BOV 2514003 Word Times: 2 

Functional Description: BRANCH ON OVERFLOW. 
The overflow indicator is tested for the ON condition. 
If ON, the indicator is automatically turned OFF and the 
next sequential instruction is executed. If no overflow 
occurred, the second sequential instruction is exe­
cuted. 

BNO 2516003 Word Times: 2 

Functional Description: BRANCH ON NO OVE RFLOW. 
The overflow indicator is tested for the OFF condition 
(if overflow occurred, the indicator is automatically 
turned OFF). 

If no overflow occurred the next sequential instruction 
is executed. If overflow occurred the second sequen­
tial instruction is executed. 

BPL 2516001 Word Times: 2 

Functional Description: BRANCH ON PLUS. The A 
register is tested for a plus sign in the sign bit posi­
tion. If the sign is plus, the next sequential instruction 
is executed. If minus, the second sequential instruc­
tion is executed. 

BMI 2514001 Word Times: 2 

Functional Description: BRANCH ON MINUS. The A 
register is tested for a minus sign in the sign bit posi­
tion. If the condition tested is true, the next sequential 
instruction is executed. If false, the second sequential 
instruction is executed. 

BOD 2514000 Word Times: 2 

Functional Description: BRANCH ON ODD. The A 
register is tested for an odd value; A (19) contains a 
I-bit for all odd values. 

BEV 2516000 Word Times: 2 

Functional Description: BRANCH ON EVEN .. The A 
register is tested for an even value; A (19) contains a 
O-bit for all even values. 

BZE 2514002 Word Times: 2 

Functional Description: BRANCH ON ZERO. The A 
register contents (S, 1-19) are tested for O-bits in all 
positions. 

BNZ 2516002 Word Times: 2 

Functional Description: BRANCH ON NON-ZERO. The 
A register contents (S, 1-19) are tested for I-bits in 
any positions. 

BPE 2514004 Word Times: 2 

Functional Description: BRANCH ON PARITY ERROR. 
The parity alarm indicator is tested for the ON condi­
tion. If a parity error occurred, the indicator is 
automatically turned OFF and the next sequential in­
struction is executed: if no parity error occurred, the 
second sequential instruction is executed. Note: If 
the control console parity alarm switch is in the 
STOP ON PARITY ALARM position and a parity error 
occurs, the parity alarm indicator turns on and the 
central processor halts. If the parity alarm switch 
is in the NORM position, a parity error will turn on 
the parity alarm indicator but proceSSing will con­
tinue. This permits programmed interrogation of the 
indicator with a BPE or BPC (below) instruction and 
optional branching to a corrective routine. 

BPC 2516004 Word Times: 2 

Functional Description: BRANCH ON PARITY COR­
RECT. The parity alarm indicator is tested for the 
OFF condition. If parity is correct, the indicator 
remains OFF and the next sequential instruction is 
executed. If a parity error occurred, and the parity 
alarm indicator is ON, it is turned OFF automatically 
and the second sequential instruetion is executed. See 
~ under BPE, above. 

@~D~~~ __________ _ 

V-32 



Example: Test the A register contents for a positive 
value; if negative, test for an even value; if odd, test 
for zero; if not zero, store A in symbolic location 
RESULT. Assume quantity to be tested has previously 
been loaded into the A register and TEST begins in 
location 02118' 

GAP Coding: 

Symbol Opr Operand X 

1 
1 , 

1 

, . I , , , . 18 1-;1"-; I< 
-~ 

\!\ i I fi ! t 7 I 18 i " 2D 

.T E S T B P L __ .--J..- ___ , ____ ~___+-_. _~_ -
B R U P L U S 

-----

B .~ ------

B R U Z E R 0 
---------

B E -~ --
B R lL ~ __ YE N 1 1 

S T A R E S U L 1 T 
( 

--

< 
-- --- ---- I --

------

'¥ 
--

Comments: If the number in the A register is positive, 
the P counter is not stepped and the instruction at 
TEST+l causes a transfer to symbolic location PLUS. 
If the number tested is negative, the P counter is 
stepped to TEST+2, which causes the number to be 
tested for zero. If zero, again the P counter is not 
stepped and control transfers to symbolic location 
ZERO. If not zero, the P counter steps to TEST+4 and 
the number is tested for an even value. If even, the P 
counter is not stepped and control transfers to loca­
tion EVEN. If not even, the P counter is stepped +1 
and the contents of the A register are stored in sym­
bolic location RESULT. One result of the series of 
instructions is to store only negative odd numbers in 
location RESULT. 

• CAB Y 2100000 Word Times: 2 to 4 

Functional Description: COMPARE AND BRANCH. 
The contents of the A register are compared algebrai­
cally with the contents of location Y. If the contents of 
Yare greater than the contents of A, the next instruc­
tion in sequence is executed. If the contents of Yare 
equal to the contents of A, the next instruction is 
Skipped and the second sequential instruction is exe­
cuted. If the contents of Yare less than the contents 
of A, the next two instructions a re skipped and the third 
sequential instruction is executed. 

Example: Compare the contents of symbolic location 
TEST with the contents of the A register. If TEST is 
greater than A, go to symbolic location MORE for next 

instruction. If TEST equals A, go to symbolic location 
EQUALS. If TEST is less than A, go to symbolic loca­
tion LESS. Assume CAB is in location 01238' 

GAP Coding: 

Symbol Opr Operand X 

1 [ , 1'1-1,[, , i ' i 1 C "1 13 11<1'"1"\"\ 18 1" 20 

A N S C A B T, E S T 
1 

B R U M 0 RE 
B R U E QU AL S 

-- L E S S A D D 3. 4 ~ 

Registers Affected: 

P Counter in Octal 

Before execution: 100001231= ANS 

After execution: 

Y>A 100001241 ANS+l 

Y:= A 100001251 ANS+2 

Y<A I 00001261 LESS 

• DCB Y 2200000 Word Times: 2 to 6 

Functional Description: DOUBLE COMPARE AND 
BRANCH. The contents of the A and Q registers are 
compared algebraically with the contents of memory 
locations Y and Y + 1. If the contents of Y and Y + 1 
are greater than the contents of A and Q, the next in­
struction in sequence is executed. If the contents of Y 
and Y + 1 are equal to the contents of A and Q, the com­
puter skips the next instruction and executes the second 
sequential instruction. If the contents of Y and Y + 1 
are less than the contents of A and Q, the computer 
skips the next two instructions and executes the third 
sequential instruction. Y should be an even location. 
If Y is odd, Y and Yare compared with the contents of 
A and Q. The signs of Y+l and Q are ignored. 

Comments: Both the DCB and the CAB instructions 
provide a 'three-way compare' capability. CAB pro­
vides of single-length word comparisons, while DCB 

• This instruction is an optional feature. 

@~D~~~ _________ _ 

V-33 



compares double-length words. In both instructions 
the effect on the P counter is similar: 

Y > A (or A and Q) 

Y -= A (or A and Q) 

Y < A (or A and Q) 

P unchanged 

Step P + 1 

step P + 2 

MODIFICATION INSTRUCTIONS 

INX K x 1400000 Word Times: 3 

Functional Description: INCREMENT X. This instruc­
tion adds the number K (bit positions 7 through 19 of the 
I register) to the contents of the specified X register 
(bit positions 5 through 19). The result replaces the 
contents of the X register (positions 5-19); any carry 
from position 5 is dropped. No automatic modification 
is possible. X register locations are 0000 through 
0003,or 0000 through 0127, if the additional modifi­
cation groups are available. 

Example 1: Increment X register 0002, which contains 
51210 (10008), by 1. 

GAP Coding: 

Symbol Opr Operand X 

'\2/'/4/_/' , / • I '0 '2 L "J '4 1 ,- 1 " 1 '7 1 ,. "I ,. 20 

I I N X 1 2 

X Register Contents in Octal 

0002 

Before execution: 0001000 

After execution: 0001001 

Example 2: DecrementX register0003, which contains 
10010 (1448), by 6 (same as incrementing by 818610 
or 177728)· 

GAP Coding: 

Symbol Opr Operand X 

'\2/'/4/'/' • / • 1'0 '2\ ,,/ '4/"/"117/" I'. 20 

, I N X 8 1 8 6 3 

Before execution: 

After execution: 

X Register Contents in Octal 

0003 

0000144 

0020138 

Comments: IfINXisusedtodecrementthe X register, 
a carry is generated into bit position 6. This 1-bit in 
position 6 does not affect BXH or BXL instructions 
(described later), because these commands compare 
bit positions 7 through 19 only. However, if the de­
cremented contents of the X register are used to modify 
an address, the carry into pOSition 6 will affect the 
modification. This is because X register bits 5 through 
19 are used to modify the operand address. Also, 
INX should be used with caution to zero an X register; 
incrementing or. decrementing the register by the 
quantity required to set it to zero actually sets the 
register to 8192 (l-bit in position 6). The LDA I 
or LDX ZERO instruction is recommended for zero­
ing an X register. 

X Register Contents 
S 1 5 6 7 U 

~[111\111111110 

BXH K X 

'~------------~~----------~I 

Affects BXL and 
BXH instructions 

Modified by INX instruction and 
used for address modification 

0500000 Word Times: 3 

Functional Description: BRANCH IF X IS HIGHER 
THAN OR EQUAL TO. If the contents of the X register 
(7-19) are greater than or equal to the constant K, the 
next sequential instruction is executed; if less than K, 
the second sequential instruction is executed. X is 
unchanged. No automatic modification is possible. X 
register locations are 0000 through 0003, or 0000 
through 0127 if the additional modification groups are 
available. 

Example 1: Branch if X is higher than or equal to 4. 
Assume that X register 0002, which contains 6, is to 
be used. Assume that BXH is in actual memory loca­
tion 01638• 

Symbol Opr Operand X 

'\21·\_/_/' , I • I ,0 12 I "I 141" 1 "1 171 "j'. 20 

, B X H 4 2 

F I C A iB RU 0 7 7 7 
S TA T E MP 

<- I , 

+ 
I 

@~D~~~ _________ _ 

V-34 October 1963 



I 

Before execution: 

After execution: 

P Counter Contents 
in Octal and Symbolic 

0164 FICA 

0164 FICA 

Example 2: Branch if X is higher than or equal to 4. 
Assume that X register 0002, which now contains a 3, 
is to be used. Assume that BXH is in actual memory 
location 01638. 

GAP Coding· 

Symbol 

.\21·\_\_\_ 
, 

F. I C A 

, 

Before execution: 

After execution: 

Opr 

, I • I ,0 
B X H 

B R U 

S T A 

I 
) 

) 

V¥ 

Oper.nd 

12[ 13 I"I"\"j 17 I '8 \" 

4 

0 7 7 ? , I , I 

T E M P 

~ 

P Counter Contents 
in Octal and Symbolic 

0164 FICA 

G65 FICA+1 

X 

20 

2 

Comments: Note, in example 1, that because the tested 
condition is true, the P counter is not stepped to the 
second sequential instruction. Instead, the next in­
struction is the unconditional branch (BRU) which 
transfers control to the instruction at 0777. In 
example 2, the tested condition is false; that is, the X 
register contents are not higher than 4. Hence, the 
P counter, which has already been stepped once, is 
stepped again to 0165 and the unconditional branch is 
skipped. 

A BXH instruction is generally, but not necessarily, 
followed by a BRU instruction specifying the address 
of the first instruction of the branch sequence. 

If an optional modification word group is to be used, 
the BXH instruction must have been preceded by an 
SXG instruction, which selects the desired modifi­
cation word group. 

BXL K X 0400000 Word Times: 3 

Functional Description: BRANCH IF X IS LESS THAN. 
If the contents of the X register (7-19) are less than the 
constant K, the next sequential instruction is executed; 
if greater than or equal to K, the second sequential 
instruction is executed. X is unchanged. No auto­
matic modification is possible. X register locations 
are 0000 through 0003, or 0000 through 0127 if the ad­
ditional modification word groups are available. 

Example 1: Branch if X is lower than 5. Assume that 
X register 0003, which contains 6, is to be UHd. 
Assume that BXL is in actual location 00148. 

GAP Coding: 

Symbol Opr 

• I 2 I • I - I - I - , i • i ,0 
, B X L 

MO D B RU 

S T .A 
( 

, ) 
\ 
'i 

Before execution: 

After execution: 

Operand X 

12\ 131 "\ "1 161"1" \,. 20 

5 
1 4 1 1 

T.E MP 

I 

P Counter Contents 
in Octal and Symbolic 

0015 MOD 

0016 MOD+1 

3 

Example 2: Branch if X is lower than 5. Assume that 
X register 0003, which contains 2, is to be used. As­
sume that BXL is in actual location 00148• 

GAP Coding: 

Symbol Opr 

t \ 2 I 3 \ 4 I _ \ 6 , I • ItO 

, B Xl 
MO D B RU 

S T A 
( 

, \ 
) 

-V 

Before execution: 

After execution: 

V-35 

Operand 

12\13I14\"\I"t"118 \ t. 

5 

1 4 I I 

T E MP 

I 

P Counter Contents 
in Octal and Symbolic 

0015 MOD 

0015 MOD 

X 

20 

3 

October 1963 

I 

I 



Comments: In example 1, the tested condition is false; 
that is, the X register contents are not lower than 5. 
Hence, the P counter is stepped an additionallocation, 
and the BRU instruction is skipped. In example 2, the 
tested condition is true; the X register contents are 
lower than 5. Thus, the P counter is not stepped and 
the next instruction executed is the BRU, which trans­
fers control to the instruction at actual location 1411. 

The BXL instruction is generally, but not necessarily, 
followed by a BRU instruction for the branch sequence. 

If an optional modification word group is to be used, 
the BXL instruction must have been preceded by an 
SXG instruction, which selects the desired modification 
word group. 

LDX Y X 0600000 Word Times: 3 

Functional Description: LOAD X. The contents of 
memory location Y (S, 1-19) are loaded into register X 
(S, 1-19). Y is not affected. 

Example: Load X with the contents of symbolic loca­
tion SET1. Use X register 0003. Assume SET1 con­
tains 0000001. 

GAP Coding: 

Symbol 

,I,j·I-I-j" 
, 

Before execution: 

After execution: 

Opr Operand 

" j , j' 0 "I "j "1'"1 '"j 171 '" 1 " 

L DX S E T 1 

Memory and X Register 

Contents in Octal 

SET1 0003 

0000001 

" ? :=:::===::::: 
'--0_0_00_0_01----11 I 0000001 

X 

,0 

3 

Comments: This instruction cannot be automatically 
address modified. X registers in optional modification 
word groups can be used, if LDX is preceded by an 
SXG instruction specifying the desired group. LDX is 
useful in initializing an X register. 

STX Y X 1700000 Word Times: 3 

Functional Description: STORE X. The contents of 
register X (S, 1-19) are stored in memory location Y. 
X is not affected. 

Example: Store X register 0002 contents in symbolic 
location RESET. Assume 0002 contains 01357468. 

GAP Coding: 

Symbol 

,I,j'l-j-l" 8 

S 

Before execution: 

After execution: 

Opr Operand X 

iii i '10 "I" j "1" I '"j "j '" j " ,0 

T X R E S E T 2 

Memory and X Register 
Contents in Octal 

RESET 0002 

[ ? I I 0135746 

[ 0135746 I I 0135746 

Comments: This instruction cannot be automatically 
address modified. X registers in optional modification 
word groups can be used, if STX is preceded by an SXG 
instruction specifying the desired group. 

• SXG Y 2506013 Word Times: 2 I 
Functional Description: SE LE C T X RE GISTER GROUP. 
The modification word group (00-31) specified by Yis 
selected and remains selected until another SXG in­
struction is given. After a gi ven group is selected, all 
instructions referenCing an X register will refer to one 
of the words within the selected modification group. 

Example: SelectX register group 27 so that subsequent 
instructions containing X modification coding (bitposi­
tions 5 and 6) will refer to memory locations 0108 
through 0111. 

GAP Coding: 

Symbol Opr Oper.nd X 

,I,j·I-I-I" 8 , • 10 "1'3j "I'-j'"j17j'"I" ,0 

, S X G 2 7 

Subsequent 
Instruction 
Bit Positions Modification Word 

5 6 Selected (Decimal) 

0 0 0108 

0 1 0109 

1 0 0110 

1 1 0111 

• This instruction is an optional feature. 

@~D~~~ ___ -------
V-36 October 1963 



Comments: After execution of the SXG instruction, 
subsequent instructions containing 01, 10, or 11 in bit 
positions 5 and 6 will reference memory location 0109, 
0110, or 0111 until another SXG instruction selects 
another modification word group. X register instruc­
tions (INX, BXL, BXH, LDX, and STX) containing 00, 
01, 10, or 11 will reference memory locations 0108, 
0109, 0110, or 0111. Note that the location specified by 
00 X register coding (0108. in this case) has the same 
properties as location 0000. 

The decimal locations of the modification words sel­
ected by the SXG are readily eomputed by 'multiplying 
the modification word group number by 4 and adding 
the X register coding of the instruction in question to 
the result. 

For example, assume that an ST A instruction specifies 
modification word 3 (11) and that a previous SXG in­
struction selected modification word group 18. To 
determine the actual location of the modification word, 
multiply 18 by 4 (giving 0072) and add 3 (giving location 
0075). 

PROGRAMMING 16K MEMORY 
SYSTEMS 

The GE-225 information processing system is avail­
able with a 16k (16,384 word) memory which is 
regarded by programmers as being divided into two 
basic parts: the lower Bk memory and the upper 8k 
memory, referred to as the lower bank and the upper 
bank. The lower bank is considered to be memory 
locations 0000 through 8191, and the upper bank 
locations 8192 through 16,383. In programming 16k 
systems, accessing techniques and special restrictions 
as to instructions and software use must be considered. 

0000 LINKAGE 

t READ-WRITE AREAS 
LOW ER MEMORY 

J 
PACKAGED SUBROUTINES 

WORKING STORAGE 
8191 AND CONSTANTS 

8192 

t 
PROGRAM 

UP PER MEMORY 

1 
TABLES AND 

ARRAYS 

16383 

Figure 5-5. 16k Memory Layout 

In addition, the proper allocation and use of memory 
becomes essential. Figure 5-5 illustrates an efficient 
and economical memory layout that allocates linkage, 
read-write areas, special subroutines, working stor­
age and constants to lower memory and places the 
operating program and program subroutines in upper 
memory. Using memory in this way minimizes 
indexing or address modification operations. 

Addressing the Upper Bank 

In the 16k system, an operand address requires a 
fifteen-bit addressing capability, as opposed to a 
thirteen-bit 8k address. Thus, memory locations 
00000 through 08191 in the lower bank can be ad­
dressed directly, but memory locations 08192 through 
16383 must be accessed through address modification. 

When modification is used, both the P and I registers 
which possess 15-bit address capability, are affected. 

When an instruction is modified, the 15-bit constant 
in an index word (bits 5 through 19) is added to the 13-
bit operand in the I register. After this addition, the 
instruction actually executed has an effective operand 
of 15 bits. 

An example using address modification to access the 
upper bank is shown by the coding: 

Sy"' .... 0,.. Operand X ...... " .1, • :Ig " " .. ,. H 11 .. ,. 20 11 

U PB N K DEC 8 1 9 2 UPPER BANK CONSTANT J 
-.-. ( ( I 

) ) 

L D X U P B N K 2 SET INDEX 1WO - 8192 

{ ( I 
\ ) \ 

L D A 6 2 

The execution of the instruction in line two places the 
Constant 8192 in index word 2. The instruction of line 
3 is modified by index word 2 and gives an effective 
address of 8192+6, or 8198, which is the desired upper 
bank memory location. 

Index word 2 can now be used whenever access to data 
in an upper bank memory location is desired by the 
programmer. However, if the program is executing 
instructions in the upper bank, the P counter remains 
set fo! upper memory and is incremented in the normal 
manner without the need for modification. 

Most GE-225 instructions access only memory loca­
tions in the lower bank when not indexed, but can access 
the upper bank when properly indexed. Figure 5-6 
contains a brief description of the effect of GE-225 
instructions when addressing 16k memories. Further 
explanations are given for specific commands. 

@[D~~~ _________ _ 

V-37 October 1963 



Commands Behavior 

1. MOV and controller commands 1. Any memory location may be 
accessed with a 15-bit direct 
address. 

2. General commands 2. The operand address is restricted 
or non-existent, independent of 
memory size. 

3. Indexed BRU 3. Any memory location can be 
accessed through automatic 
address modification, and the P 
counter is set to obtain successive 
instructions from the memory 
bank selected by the BRU. 

4. SPB and unindexed BRU 4. The 13-bit address applies only 
to locations in the memory bank 
in which the instruction is stored. 

5. LDX and STX 5. The 13-bit address always applies 
to locations in the lower memory 
bank. 

6. All others 6. Unindexed instructions access 
locations in the lower memory 
bank; indexed instructions may 
access any location via automatic 
address modification. 

Figure 5-6. Instruction Characteristics when Addressing 16k Memories 

Executing Instructions in the Upper Bank 

Control can be shifted to instructions contained in 
memory locations in the upper bank of a 16k system 
by a suitably indexed BRU instruction. The effect of 
an indexed BRU is to set the two high-order address 
bits of the P counter. No other instruction may accom­
plish this (P automatically advances from 8191 to 
8192 when no branch intervenes). Unindexed BRU 
instructions do not change the high-order address bits 
in the P counter. Also, an unindexedBRU causes sub­
sequent instructions to be taken from the bank con­
taining the BRU. Control remains in the upper bank 
until the next indexed BRU is executed, despite inter­
vening SPB and unindexed BRU instructions. 

Example 1: Change control from the lower bank to 
memory location 12000 in the upper banl:c. Assume 
index word 2 contains the constant 08192. 

Memory 
Location 

1756 

GAP Coding' 
Opr Operand X 

• [ • [ , a 121 ,,' 141 '8' ,. ['7 I'. [ .. 20 

B R U 3 8 0 8 2 

Next Instruction Location is 12000. 

Subsequent instructions executed are in the upper bank. 

Example 2: Upper Bank Execution. Index word 2 con­
tains 08192. 

Memory 
Location 

12250 

GAP Coding' 

Opr Operand X 

• . " '2! "1'4 J '81'°['71'· ['. 20 

B RU 3 8 0 8 2 

Next Instruction Location is 12000 

Execution of instructions continues iIi upper bank. 

Example 3: Upper Bank Execution. Indexword 2 con­
tains 00000. 

Memory 
Location 

12250 

GAP Coding' 

Opr Operand X . , , , a 121 "[ 14 1""°[17 [ .. i ,. 20 

BR U 3 8 0 8 2 

N ext Instruction Location is 03808 

@~D~~~ _________ _ 

V-38 



Controls are changed to the lower bank starting at 
memory location 03808. 

In summary, it is essential that the programmer re­
member: 

1. Only a modified BRU instruction can direct 
the central processor to begin executing in­
structions in the upper bank. The BRU must 
be modified by the necessary increment, as 
illustrated in example 1, above. 

2. Once operating in the upper bank, subsequent 
BRU instructions do not change the setting Of 
bits 5 and 6 of the P counter unless another 
properly indexed BRU instruction is encoun­
tered. Also, once operating in either the lower 
or upper bank it is not necessary to continue 
indexing to keep control in that bank. Modifi­
cation is only necessary when branching from 
one memory bank to another. 

SPB Instructions 

An SPB instruction can be used, at no increase in word 
time, in the upper bank to refer to an upper bank sub­
routine. However, an SPB instruction in the upper bank 
cannot be used to refer to a subroutine in the lower 
bank without first modifying a BRU instruction. The 
same rule exists with respect to using an SPB instruc­
tion in the lower bank to refer to a subroutine in the 
upper bank. 

Example: Assume index word 2 contains 08192. Use 
an SPB and BRU in the lowe r bank to access a memory 
location in the upper bank. 

GAP Coding: 

Memory Symbol Opr Oper .. nd X 

Location • , 2 , • I ., ., • • i • : 10 "1· i l 14i" 'e I t7 .. .. 20 

1750 , S P B UP P E R 1 
1751 UP P E R B R U 3 8 0 8 2 

Controls are changed from the lower bank to the upper 
bank with the instruction in memory location 12000 
being executed next. The return from the upper bank 
routine (after execution) to lower bank memory location 
01752 can be accomplished by a BRU: 

Memory 
Location 

12120 

GAP Coding' 

Opr Operand X 

• 1 • I' 0 '2 i "]'4 i ,"\'6\"\" I"~ 20 

B R U 2 1 

Next Instruction Executed is 01752 

An SPB command executed in theupperbankperforms 
exactly like an nonindexed BRU. 

Example: 

Memory 
Location 

122258 

GAP Coding· 

Opr Operand X 

• i • i' 0 12' 131 14',"' 101.7 I to I to 20 

S P B 2 0 0 0 1 

Next Instruction Executed is 10192. 

The effective address of the next instruction executed 
(10192) is formed by bits 7 through 190f the I register, 
plus bits 5 and 6 ofthe P counter with bits 5 through 19 
of P stored in the index word. 

I 

The programmer should note that since only SPB and I 
BRU instructions have operand addresses which relate 
directly to P counter contents, only the perform as 
described in the previous paragraphs. All other GE-
225 instructions with 13-bit operands access locations 
in the lower bank unless they are appropriately indexed 
for the upper bank, regardless of where they are 
located. 

LOX and STX Instructions 

Index words are normally set and stored with LDX 
(Load Index) and STX (store Index) instructions. These 
instructions transfer a 20-bit GE-225 word between a 
specified memory location, for which a 13-bitoperand 
address is provided, and a specified index word. Since 
the index word selected represents a sending or 
receiving location in a data transfer process, auto­
matic address modification does not occur on LDX and 
STX operand addresses. The 13-bit address field 
means that LDX and STX instructions may access only 
locations 00000 through 08191. Although these instruc­
tions may be stored in and executed from the upper 
bank, they always refer to data stored in the lower 
bank. 

Example: 

Memory 
Location 

12250 

6500 

GAP Coding-

Opr Operand X 
• i • T. 0 .2' 131 14". 1'6'.7',. i ,. 20 

L D X 6 5 0 0 2 
( 
l 

DEC 0, 

@~D~~~ _________ _ 

October 1963 
V-39 



I 

STO Instruction 

The STO instruction is used for direct instruction ad­
dress modification. Since the standard operand ad­
dress field is thirteen bits, STO is designed to replace 
the low-order thirteen bits in the specified memory 
location with the low-order thirteen bits of the A reg­
ister. In 8k memories, STO has virtually no special 
limitations. In 16k memories, STO cannot handle 
MOV or controller commands addressing the upper 
bank, nor is it adequate for direct address modifica­
tion in other instructions when the address being 
stored is (or may be) in the other bank. 

Example: The contents of index word 2 = 08192. 

Memory 
Location 

12160 
12161 

12162 

12163 

GAP Cod1Dc: 

Opr Operand 
• I • I 10 12l"l "1"1 "1" I" i" 
LDA 3 0 0 0 

S P B • + 1 
S T 0 2 

ADD 0 

X 

20 

2 

1 
1 

Designing Subroutines for 16K Memories 

Like 8k programs, subrou~es and other program el~­
ments in lower 8k can access data and constants and set 
program switches without employing index registers. 
Subroutines in the upper bank must either use indexes 
or utilize the lower bank for data, constants, and 
switches. LDX and STX are essential for indexing 
procedures when extra index groups are employed. 
But LDX and STX can only access the lower bank. It 
is very important to remember this fact when design­
ing subroutines for the upper bank. Therefore, 
constants should always be in the lower bank. 
Subroutines in general contain their own constants and 
working storage areas. If they are to be assembled 
into the upper bank, they must employ indexes to refer 
to such values, and they must do so without LDX and 
STX. One of two rules is necessary: either subrou­
tines are located in the lower bank, or else subroutines 
are written to employ a specific index group, whose 
absolute core locations are used in LDA and STA in­
structions with LDX and STX prohibited. 

16K Memories and Prior Software 

Subroutines which have been written for the GE-225 
with 8k memories in mind must usually be modified in 
order to function properly with 16k memories. There 
are several reasons for this: 

1. Negative indexing, if used, is accomplished by 
simply adding the 2's complement of the desired 

decrement so that a carry is generated into bit 
position 6. This bit is effective during address 
modification because bits 5 through 19 are trans­
ferred during modification. Programs which use 
negative indexing do not perform properly when 
they are run on 16k systems. 

2. The STO instruction can be employed extensively 
to set up data buffer addresses in pertinent com­
mands in input-output subroutines. STO does not 
handle 14-bit addresses, so that such routines 
must either be modified or else be restricted to 
buffers in the lower 8k bank. 

3. Subroutines usually contain their own constants 
and working storages, and do not access them 
with the aid of index registers. They, tht::refore, 
must be located in·the lower bank. 

4. Subroutines which call other subroutines have not 
been designed to go through a 'branch relay' pro­
cess. Therefore, nested subroutines must all be 
placed in the same memory bank, presumably the 
lower bank. 

5. Indirect arguments are often processed with the 
use of the STO instruction. Subroutines which have 
employed this mechanism either must be modified 
or else must restrict their indirect arguments to 
the lower bank. 

6. Subroutines frequently have used the LDX andSTX 
instructions which can only access the lower bank. 

7. In general, most existing routines and even basic 
card formats assumed a 13-bit operand address 
field. The 16k memories require fourteen bits for 
the operand address field. 

Programming for 16K Memories 

The following list represents a summary of important 
pOints to be remembered when programming the GE-
225 with a 16k memory: 

1. Unindexed instructions, such as LDA, STA, and 
ADD, access the lower bank only. 

2. Operand addresses of MOV and controller com­
mands cannot be indexed but contain the full 15-bit 
direct addresses. 

3. Some subroutines work only in the lower bank and 
some only in index group zero. 

4. An SPB instruction does not cross the memory 
interface (lower-to-upper or upper-to-Iower) di­
rectly. 

5. Subroutines and other program elements must not 
straddle the memory interface; that is, they should 

@[D~~~ ___ ---------
V-40 October 1963 



be located entirely in either the lower or upper 
bank (subject to the restriction in item 3 above). 

6. Instructions LDX and STX always function as if 
only the lower bank were present. 

7. STO stores only 13-bit operand address fields. 

PR06RAMMIN6 CENTRAL PROCESSOR 
OPERATIONS 

Figure 5-7 illustrates a portion of the flow charting for 
a rejected parts cost program. GAP 'coding sheets 
corresponding to that portion of the flow chart are 
shown in Figures 5-8 through 5-11. The coding shown 
was chosen to illustrate typical usage of central pro­
cessor instructions rather than to show recommended 
methods for programming specific problems. 

In Figure 5-8, lines 2 through 10 initialize the input 
and cost areas by storing zeros in the affected loca­
tions. Note the use of index word 2 to loop through 
lines 4 through 6 until the entire blockof 200 locations, 
starting with symbolic address APART, is filled with 
zeros. 

In Figure 5-9, lines 2 and 3, SW#3 is interrogated. If 
SW#3 is OFF (contains zeros), calcuiation of DAREA 
parts follows; if SW#3 is ON, the BNZ in line three 
transfers control to BYPASS (line 3, Figure 5-10), 
DAREA calculations are skipped, and EAREA calcula­
tions are made. 

Line 20 of Figure 5-9 shows a typical method for 
exiting from the main program to a subroutine after 
making provision for return to the exit point upon com;., 
pletion of the subroutine. The SPB NPRIBD causes 
an unconditional branch to a Binary-to-BCD conversion 
rbutine beginning at symbolic location NPRmD (not 
shown) and causes the P counter contents (location of 
the SPB) to be placed in index register 1. The final 
instruction of the NPRIBD subroutine is a BRU 0001, 
modified by index register 1, which returns control to 
the instruction following the SPB. 

Following the EAREA parts calculation in Figure 5·10 
is a test for overflow. Ifanoverflow condition eXists, 
line 11 causes the control location to be stored in modi­
fication word 1 and control transfers to OVRFLO, line 2 
of Figure 5-10. After overflow recovery the BRU 0002, 
modified by index word 1 returns to the main routine, 
line 13, Figure"5-10. 

@~D~~~ _________ _ 
V-41 



Calculate 
EAREA Cost 

Adjust Cost 
---+ETOTAL 

Calculate 
AREA#2 Costs 

Store Result 
--+TEMP 

set SW#4 
ON 

Continuation 

ON OFF 

NO 

Calculate 
DAREA Rejected 

Parts-Total 
Cost-----+DTOTAL 

Calculate 
Average DAREA, 

Rejected Part 
Cost 

SUBROUTINE: 
Convert DA VG 

from Bin to BCD 
----'DAVG 

Figure 5-7. Rejected Parts Cost Flow Chart 

@~D~~~ _________ _ 

V-42 



1 

2 

3 
4 

5 

6 

7 

8 

9 

10 

11 

12 
13 

14 
15 
16 
17 

18 
19 

20 

21 

22 
23 

24 
25 

GAP COding: 

GAP COding: 

PROGRAMMER 

GE CODER 
Symbol Opr 

'1' . . • L • • 1 • l" 
L D X 

L D A 

B N Z 

L D A 

N E G 

S T 0 
DCA L C L D A 

M A Q 

M P y 

X A Q 

A D D 

S T A 

I N X 

L 0 0 P D B X L 

B R U 

.M A Q 
D V D 
DAD 

M A Q 

S P B 

S T 0 
ADO 

S T 0 

L D A 
S T A 

IOAT
i/9/63 

Figure 5-8. RPC Program - Initialization 

PROGRAM Run *2 IOAii9/63 Rejected Parts Cost 
Operand X REMARKS 

uJ 13 '4 til t. '7 ,. 1. .. 31 

Z E R 0 2 ZERO INDEX WORD TWO 

S W * 3 SWITCH NO.3 

B y P A S S SKIP DAREA COST 

* D P A R T NUMBER DAREA INDIVIDUAL PARTS 

CONVERT TO TWO'S COMPLEMENT FORM 

L 0 0 P D SET UP NUMBER TIMES THRU LOOP 

D P A R T 2 NUMBER OF EACH PART REJECTED 

D C 0 S T 2 COST PER REJECTED PART 

D T 0 T A L 

D T 0 T A L TOTAL COST DAREA REJECTED PARTS 

1 2 

0 2 

D C A L C 

# D P A R T CALCULA TE AVERAGE DARE A COST 

AD J U S T ADJUST $ 

N P R I B D 1 BIN-BCD CONVERSION ROUTINE 

* + 3 

* + 3 

0 AVERAGE COST DAREA REJECTS 
D A V G 

Figure 5-9. RPC Program - DPARTS Calculations 

P ..... GE 4 
O. 20 

Sequence 
75 " 77 I 78 

1 0 0 0 

1 0 0 ,5 

1 0 1 .0 
.1 0 1 5 

1 0 2 0 
1 0 2· 5 

0 3 0 

1 0 3 5 

1 0.4 0 

0 4 5 

P'AGE· 8 
o. 2 

Sequence 

5 7. 7'7 7' 1. o. 
1 2 5 0 

1 2 5 5 

1 2 6 0 

1 2 6 5 

1 2 7 0 

1 2 7 5 

1 2 8 0 

1 2 8 5 

1 2 9 0 

1 2 9 5 

1 3 0 0 

1 3 0 5 

1 3 1 0 

1 3 1 5 

1 3 2 0 

1 3 2 5 
1 3 3 0 

1 3 3 5 

1 3 4 0 

1 3 4 5 
1 3 5 0 

1 3 5 5 

1 3 6 0 

1 3 6 5 
1 3 7 0 

@~D~~~ _________ _ 
V-43 



GAP Coding: 

PROGRAMMER PROGRAM !tun #"l. IOATi!9/63 
PAGE. .7 

GE Coder Reieeted Parts Cost OF 20 
Symbol Opr Oper.nd X REMARKS Sequence 

I I ' I • I • I 'I ' • I ' I" "1"1"1"1"1"I"i" " II 7S 7e 11 "1 79 1'0 
, L D A 0 1 3 7 5 

S TAD A V G + 1 1 3 8 0 
B YP ASS L D A E P A R T NUMBER EAREA PARTS 1 3 8 5 

M A Q , 1 3 9 0 

M P Y E C 0, S T COST PER PART EAREA 1 3 9 5 
X A Q 1 4 0 0 

ADD E A D J EAREA ADJUSTMENT 1 4 0 5 
S T A E T 0 T A L TOTAL ADJUSTED COST EAREA REJECTS 1 4 1 0 

A D D A R E A # 2 CALC AREA#2 COSTS 1 4 1 5 
B 0 V 1 4 2 0 
S P B 0 V R F L 0 1 OVERFLOW SUBROUTINE 1 4 2 5 

B R U 1# 2 C 0 S T 1 4 3 0 

D S T T EM P TEMPORARY STORAGE 1 4 3 5 

L D A 0 N E 1 4 4 0 
S T A S W # 4 SET SWITCH 4 ON 1 4 4 5 

B R U # 2 C,O S T 1 4 5 0 
( ( 

D P A R T B S S 3 0 

R EM CONSTANTS AND SWITCHES 1 7 3 5 
Z E R 0 D D C 0 1 7 4 0 

O,N E D E C 1 1 7 4 5 

I A n .f. TJ . R . T D D C 5 o 0 1 7 5 0 

S W #, 2 D E C 0 1 7 S S 

S W # 3 D E C 0 1 7 6 0 
I R ,W JI 4 D E CO 1 7 6 5 

Figure 5-10. RPC Program - EPARTS Calculations and Constants 

GAP Coding: 

PROGRAMMER FROGRAMRun #2 
f"1/9/6:i 

PAGE ~u 

GE Coder Rpi"l't.,tl P" ... t" r.,-,,,t 0' 20 

Symbol Opr Operond lX REMARKS Sequence 

I I , I , I • I ,I • • I ' I " 121'3: '''I t!! lie 117 ! 18 1',91'2e II 7~ " 77 '17! 79i6') 

T-~- ~----

R E .M ~ __ O~RFkQW SjJBROUTINE ~ ___ 2 4 0 .0 

0 V.R F L ,0 S R D 1 ~ .. ~-~~ 
-~-------.,.-- --~--.-

2 4 0 5 
r H S 2 4 1 0 ~~I_-1------- -

S R D 1 

::~~l p ·1-1---- --- - -- ---- 2 4 1 5 

a R U 2 r-_EXI"L ____ - 2 4 2 0 

S B R S f--_~QR_::I~IN CONVERSION ROUTINE 2 4 ,2 5 -----

S BR N p_Jl. . I B D __ /-----BIN - BCI) CONYE_R§.I9N ROUTINE 2 4,3 0 

IE N D S T ART 
-.-- ___ !_. ~~-4----L-- - -~-----. - --

f-- ~--'--'-- -- -----------_ .. _- -----.-

Figure 5-11. RPC Program - OVRFLO Routine 

@~D~!2~-----------

V-44 



SECTION VI 

DIRECT INPUT-OUTPUT OPERATIONS 

GE-225 peripheral units can gain access to memory 
either through the M and N registers or through the 
controller selector and then the M register, as shown 
in Figure 6-1. Peripherals connected to the M or N 
register are deemed to have direct access to memory 
and include the paper tape reader-punch, console type­
writer card reader, card punch, and the console 
switch~s. Operations involving these units are dis­
cussed in this section. Other peripheral operations, 
such as those involving the MRADS, high-speed printer, 
magnetic tape handlers, document handlers, and 
Datanet-15 terminals, are covered in the section, Con­
troller Selector Operations. 

1------

1 
t Core 

Memory 

CENTRAL PROCESSOR 

CONTROL CONSOLE )PERATIONS 

The control console is a control center from which the 
GE-225 operator has both manual control of processing 
and visual representation of the operating status of 
various registers and peripheral units. 

Manual control includes the initial reading into memory I 
of the program, starting program execution, and 
(as required) interrupting operation for checking or 
other purposes. Manual control is accomplished 
through the switches described on page VI-12. Visual 

1- - - - - - - - - - - 1 

t t 
I Card I 

'----.----..;---+-~ Punch : 

Switches 
& 

Indicators 

I 
I 
I 

Typewriter : 
- - - - __ - - __ I 

DIRECT ACCESS 

Controller 
Selector 

To and from 
Peripheral 
Controllers 

1- _ 

Card 
Reader 

DIRECT ACCESS 

Figure 6-1. Units Directly Accessing Memory 

I 

@~[J~~~ _________ _ 

VI-l October 1963 



representation of register contents and status of oper­
ational units is provided by various lensed lights, 
which are also described below. The control console 
consists essentially of a control and an indicator panel, 
as illustrated in Figure 6-2. The upper two-thirds 
of the panel contains most of the indicators, although 
many of the switches in the control position serve 
as indicators as well. 

Alarm Indicators 

At the top left ofthe console panel, Figure 6-2, are six 
alarm indicators. These are turned on if various error 
conditions are detected during program operation. All 
alarm indicators except the PRIORITY alarm are reset 
(turned off) by the RESET ALARM switch. 

PRIORITY ALARM. This alarm is turned on under 
any of the following conditions: 

1. The AUTO/MANUAL switch is in the MANUAL 
position. 

2. The STOP ON PARITY ALARM switch is engaged 
and a parity error is detected. 

3. The central processor does not have priority 
(access to memory). 

4. A card punch or card reader alarm condition has 
occurred. 

PARITY ALARM. If the STOP ON PARITY ALARM 
switch is on when a parity error is detected, the cen­
tral processor will halt. The PARITY alarm can be 
turned off by preSSing the RESET ALARM switch or, 
although not a common practice, by programmed 
instructions. The PARITY alarm is turned on under 
any of the following conditions: 

1. The memory-checking circuits of the central pro­
cessor detect a parity error while the AUTO/ 
MANUAL switch is in the AUTO position. 

2. The parity checking circuits associated with the 
paper tape reader detect a parity error. 

3. A parity error is detected as information is re­
ceived from a controller through the controller 
selector. 

OVERFLOW ALARM. The central processor does not 
halt on an overflow alarm. The alarm may be reset 
automatically several times during a normal MPYin­
struction. The indicator can also be turned off by 
depressing the RESET ALARM switch or by pro­
grammed instructions. The OVERFLOW alarm is 
turned on under any of the following conditions: 

1. The capacity of the A register is exceeded during 
arithmetic operations. 

2. An illegal divide is attempted. 

.--------------------------------------------------------------~ 

Sit. DEC ~--~ ~~ ~LY MODE 

@ ~INDEXGROUP--::;;::;:l 
,""lOa 0001000 000 000 000 OCjOP 

p 5 4 3 2 J 5 6 7 8 9 to II 12 13 14 15 16 17 18 19 

I 00 000 000 000 000 OOC) O()O 
o I 2 3 4 5 6 7 B 9 10 II 12 13 14 15 16 17 18 19 

A 00 000000 000 000 000 OCjO 
o I 2 3 4 5 6 7 B 9 10 II 12 13 14 15 16 I~' 18 19 

@ @@ @@@ @@@ @©)@ @@@ @©O C)() =) ~~~,~ 
A 

-----------------------------------~ 

Figure 6-2. The Control Console Panel 

@~D~~~_---------

VI-2 October 1963 



3. A I-bit is shifted out of bit position 1 of the A reg-
ister during a shift left operation. 

CARD PUNCH ALARM. This alarm is turned on any 
time a WCB, WCD, or WCF instruction is attempted 
when the card punch is not in the ready condition. As 
already noted, the PRIORITY alarm also comes on, and 
the central processor halts. The alarm can be reset 
only by pressing the RESET ALARM switch. 

ECHO ALARM. This alarm is turned on when the cen­
tral processor makes an unsuccessful attempt to select 
a controller through the controller selector. The ECHO 
alarm light can be turned off only by depressing the 

I RESET ALARM switch. The alarm indicates any of 
the following conditions: 

1. The selected controller is busy (delay not pro­
grammed). 

2. An erroneous address was programmed, the ad­
dressed plug is not installed. 

3. Controller is off line. 

4. Power is off to controller. 

5. Controller is malfunctioning. 

CARD READER ALARM. This alarm is turned on when 
attempting to execute an RCB, RCD, or RCF instruction 
while the card reader is not in the ready condition. 
When the CARD READER alarm comes on, the 
PRIORITY alarm also comes on and the card reader 
and the central processor halt. The alarms in this 
combination are reset only by depressing the RESET 
ALARM switch. The reader can be 'not ready' for 
any of the following reasons: 

1. Card reader is not turned on. 

2. Input hopper is empty. 

3. A card is not positioned on the senSing platform. 

4. Reader is busy (already reading a card). 

5. A misfeed or card jam occurs. 

ReadY Indicators 

The upper right corner of the control console contains 
the ready indicators which are green. When the card 
punch or card reader is ready to receive information 
these indicators are on. If the equipment is not ready 
for operation, an attempt to use the equipment will set 
an alarm indicator and halt central processor oper­
ation. The standard ready indicators are: 

CARD PUNCH READY. This light reflects the status 
of the card punch. If the card punch is not in an oper­
able condition when a punch instruction is attempted, 
the ready light will be off and the CARD PUNCH and 
PRIORITY Alarms will come on. The more common 

conditions affecting the operating status of the card 
punch are: 

1. An empty input hopper. 

2. A full stacker. 

3. A misfed card. 

4. A jammed card. 

5. A punch cycle. 

6. An improperly seated chip box which inhibits 
the turn on of power. 

CARD READER READY. Turn on of this indicator de­
notes the ready state of the card reader. Execution of 
a read instruction while this lamp is off causes the 
CARD READER and PRIORITY Alarms to light and the 
central processor to halt. The following conditions 
affect operating status: 

1. An empty input hopper. 

2. A read cycle. 

3, A misfeed. 

4. A jam. 

N REGISTER READY. This lamp indicates the readi­
ness of the N Register to receive input or transfer 
output data. This register is used by the typewriter, 
paper tape reader, or paper tape punch. If an illegal 
code is placed in the N Register and a TYP command 
is given, the N REGISTER READY light goes out and 
stays out until a space key is struck. 

AIM (AUTOMATIC INTERRUPT MODE). IftheGE-225I 
system configuration includes the optional Automatic 
Program Interrupt device, then this light (when ON) 
indicates that control has been transferred to an execu­
tive routine for servicing one or more peripherals 
in a ready condition. 

BK. This is the only red lamp in the group. When lit, 
this lamp indicates that only an BK memory is in use. 

DE CIMAL MODE. If the Decimal Mode optional feature 
is included, this indicator will come on when the com­
puter operates in the decimal mode. 

MODIFICATION GROUP INDICATORS 

The five INDEX GROUP display lights are located below 
the alarm lights and to the left of the P counter display 
lights. The lights are numbered one through five from 
right to left. These five lights, read as binary digits, 
indicate the modification word group that has been 
selected by the program (Groups 0 through 31). Each 
group has four registers, 0 through 3. When all lights 

@~CJ~~~ __________ _ 

VI-3 October 1963 



are off, group Zero is available without special selec­
tion. Only modification word group zero is standard 
on the GE-225 system; additional groups are optional. 
Any time a light is on in the index group, an index 
group other than zero has been selected. 

P Counter Lights 

The fifteen display lights for the P counter are located 
to the right of the INDEX GROUP indicators. They 
are numbered, left to right, from 5 through 19, and 
are arranged in groups of three to facilitate reading 
the binary numbers directly in octal notation. These 
lights show the location of the instruction which 
appears in the I register. The P counter is useful 
when debugging a program and when checking for cor­
rect operation after a manual branch command to a 
particular program location. 

Save P Switch 

This switch permits manual return to a particular 
position in the program after interruption to make a 
correction, such as to introduce an instruction manu­
ally. The SAVE P switch, in the down position, pre­
vents the P counter from incrementing. When the 
SA VE P switch is returned to the up (normal) position 
after manual operations, the program is ready to 
continue from the place of interruption. When the 
SA VE P switch is in the down position during the auto­
matic mode of operation, the instruction in the I 
register is executed repeatedly. 

I Register Lights 

The 20 I register display lights are located below the 
INDEX GROUP and P counter lights, and are numbered 
from 0 to 19. They display the contents of the instruc­
tion register. Like the other register display lights, 
they are easily read in octal notation. Following either 
a program halt or a change of the AUTO/MANUAL 
switch to the MANUAL position the I Register displays 
the next instruction to be executed. 

A Register Lights 

The 20 A register display lights are located below the 
I register lights. They are numbered from 0 to 19, 
and display the contents of the A register. These are 
also readable in octal. By using the XAQ switch (des­
cribed later), the A register lights can be used to 
display the contents of the Q register. All data and 
instructions fed manually into the central processor 
go through the A register, and are entered by use of 
the option switches. 

Option Switches 

The 20 option or control switches just below the A reg­
ister display lights are used to feed information into 
the A register. Each of these toggle switches enters 
information into the corresponding A register position. 

The numbers 0 through 19 below the A register lights 
also apply to the switches. When moved up, the spring­
loaded switches return automatically to the center 
(normal) position. When moved down, they remain in 
the down position until manually returned to the normal 
position. 

When the central processor is in the manual mode, 
moving an option switch up causes a I-bit to be put into 
the corresponding position of the A register. This is 
indicated by an A register display light. Moving an 
option switch up has no effect when the central proces­
sor is in the automatic mode. 

Moving an option switch down when the central pro­
cessor is in the automatic mode causes a I-bit to be 
put into the corresponding position of the A register 
at the time of a programmed RCS instruction. Speci­
fied switches are left in the down position while running 
certain routines and while generating GAP assemblies. 

RESET A Switch 

This switch is to the left of the option switches. It is 
effective only when the central processor is in the 
manual mode. Like the option switches, it is spring­
loaded in the up position. but not in the down position. 
When moved either up or down, it clears to z;ero the 
contents of the A register, and turns off all of the A 
register display lights. 

Control Switches 

A strip of switches along the bottom ofthe control con­
sole, and the SAVE P and RESET A switches just des­
cribed, give manual control over the central processor 
and certain functions of peripherals. Eight of the 
switches are the pushbutton type that are pressed 
momentarily to be activated. Three double-label 
switches are the rocker type with two positions. For 
example, the AUTO/MANUAL SWITCH is placed in the 
AUTO position by pressing the end that is labeled AUTO 
and leaving that end in the depressed position. 

PWR. ON. Depressing the PWR ON pushbutton turns 
on DC power to the central processor, the control con­
sole, and the 400 card per minute reader. It is also 
used as general reset for the central processor. The 
pushbutton is also an indicator, for it lights when power 
is on. 

PWR. OFF. When DC power is on, depressing this 
pushbutton turns it off. 

RESET ALARM. This switch is effective only in the 
manual mode. Depressing the pushbutton clears any 
existing alarm condition. It turns off the alarm lights 
and resets flip-flops so that the central processor can 
continue operation. It does not clear the cause of the 
alarm. 

@~D~~~ _________ _ 

VI-4 



LOAD CARD. This switch is effecti ve only in the man­
ual mode. Depressing the pushbutton initiates card 
reader action and causes the reader to go through one 
load and read cycle. 

RESET P. This switch is effective only in the manual 
mode. Depressing the pushbutton clears the P counter. 

AUTO/MANUAL. This two-position, rocker switch 
selects either the automatic or the manual mode of 
operation for the central processor. When AUTO is 
depressed, the central processor is placed in the auto­
matic mode, and instructions are processed in a con­
tinuous sequence under program control. When MAN­
UAL is depressed, the central processor is placed in 
the manual mode, and the program is executed one 
step each time that the START switch i~ depressed. 
Setting the AUTO/MANUAL switch toMA1'l'UAL during 
automatic operation causes the computer to halt oper­
ations at the end of the instruction or word being 
executed. Putting the central processor in the manual 
mode causes the PRIORITY alarm light to come on. 
The following operations can be performed only when 
the AUTO/MANUAL switch is set to MANUAL: 

1. Clear or set information into the A register with 
option switches. 

2. Clear alarm conditions with the RESET ALARM 
switch. 

3. Reset the P counter with the RESET P switch. 

4. Load a cad manually, using the LOAD CARD 
switch. 

5. Transfer the contents of the A register to the I 
register using the A to I switch. 

6. Exchange the contents of the A and Q registers 
using the XAQ switch. 

INST /WORD. This is also a two-position, rocker 
switch which is effective only in the manual mode. It 
determines the length of the cyele of the central pro­
cessor during manual operations. When INST is 
depressed, the central processor executes one com­
plete instruction each time the START switch is 
engaged. When WORD is depressed, only one word 
time is executed each time the START switch is en­
gaged. 

START. In the automaticmode,depressingtheSTART 
pushbutton initiates action. After the operation begins, 
the program runs automatically and depressing the 
START switch again has no effect. In the manual mode, 
depressing the START switch causes the execution of 
one instruction or one word time, depending upon the 
setting of the INSTR/WORD switch. 

A-"I(A to I). This switch is effective only in the man­
ual mode. Depressing the A to I pushbutton transfers 
the contents of the A register, including the sign bit, 
to the I register. The contents of the A register re­
main unchanged, and can be cleared by toggling the 
RESET A switch. TheA toIswitch can be used to load 
an instruction manually into the I register or to correct 
an instruction already there. 

XAQ. This switch is effective only in the manual mode. 
Depressing XAQ causes an exchange of information 
between the A and Q registers. That is, the contents 
of A go into Q and the contents of Q go into A. This 
permits observation/modification of the contents of the 
Q register. By using the RESET A switch and the 
option switches, the operator can clear and correct the 
contents of the Q register while saving the contents 
of the A register. 

STOP ON :pARITY ALARM/NORM. This is a two­
position, rocker switch. It determines the response 
of the central processor to the detection of a parity 
error. When STOP ON PARITY ALARM is depressed, 
the central processor halts each time a parity error 
is detected and the PARITY and PRIORITY alarm 
lights come on. When NORM (normal) is depressed, 
the central processor continues operation, regardless 
of parity errors, and the only indication of a parity 
error is that the PARITY alarm light is turned on. 
The setting of the STOP ON PARITY ALARM/NORM 
switch is determined by the programmer. If he has 
included remedial action throughout the program for 
parity errors and provision for resetting the PARITY 
alarm light, he can specify the setting of the STOP ON 
PARITY ALARM/NORM switch to the NORM position. 
Otherwise, he can have the program halt at time of a 
parity error by specifying the setting of STOP ON 
PARITY ALARM. 

Manual Operating Procedures 

The option switches on the console permit the manual 
entry of instructions and data; the register indicators 
permit the display of the contents of memory and reg­
isters. 

MANUAL LOAD AND EXECUTION OF INSTRUCTIONS. 
Any instruction that is meaningful to the GE-225 sys­
tem can be manually loaded and executed as follows: 

1. Set the INSTR/WORD switch to INSTR. 

2. Set the AUTO/MANUAL switch to MANUAL. 

3. Toggle the RESET A switch to clear the A register. 

4. Load the octal equivalentofthe instruction into the 
A register. 

5. Depress the A to I switch. 

@~D~~~ __________ _ 

VI-5 



6. Toggle the RESET A switch and load any necessary 
data into the A register. 

7. Depress the START switch. 

The central processor will execute the one instruction 
and halt. 

LOADING DATA MANUALLY. When data is to be 
loaded into memory, the following procedure is useful: 

1. Set the INSTR/WORD switch to INSTR. 

2. Set the AUTO/MANUAL switch to MANUAL. 

3. Toggle the RESET A switch. 

4. Load an ST A instruction in the A register (Store 
A is an octal 0300000) with the memory address 
where the data is to be stored replacing the right­
hand digits of the ST A instruction. 

5. Depress the A to I switch. 

6. Toggle the RESET A switch. 

7. Load the octal equivalent of the data to be stored 
into the A register. 

8. Depress the START switch. 

Load additional words by repeating steps 3 through 8. 

EXTRACTING DATA FROM MEMORY. The contents of 
a given memory location can be displayed by following 
this procedure: 

1. Set the INSTR/WORD switch to INSTR. 

2. Set the AUTO/MANUAL switch to MANUAL. 

3. Toggle the RESET A switch, thus leaving an LDA 
instruction in the A register. 

4. Load the memory location of the information de­
sired into bit positions 7 through 19 of the A 
register. 

5. Depress the A to I switch. 

6. Depress the START switch. 

The contents of the memory location specified in step 
4 now appear in the A register. 

Control Console Instruction 

This instruction permits operator intervention. It can 
be used in programs in which alternate paths of oper­
ation are available. Job requirements may vary daily 
for one type of run, necessitating that the operator 
determine which path or leg of the program is to be 

followed. For example, one program path may be for 
card input and tape output, while the alternate path 
provides for both tape and printer output. 

RCS 2500011 Word Times: 2 

Functional Description: READ CONTROL SWITCHES. 
Each of the 20 console control switches for the A reg­
ister is examined. If a switch is down (ON), a I-bit is 
placed in the corresponding position of A; otherwise, 
the corresponding bit position of A will not be altered. 

Example: Read the control switches and modify the A 
register accordingly. Assume that the A register con­
tains a BRU 0000 instruction and the control switches 
are set to 00016338, 

GAP Coding: 

Symbol Opr Operand X 

,[2[_j_I"IO • I • i '0 I2j"j"1'"I'OI'71181'· 20 

I RC S 

Register Contents in Octal 

A 

Before execution: 2600000 

After execution: 2601633 

Comments: RCS is used to interrogate the control 
switches during processing. In most applications, the 
A register should be cleared to lero before RCS is 
executed. 

During AUTOMATIC operations, the A register 
switches on the console have no effect on the contents 
of the A register, except during the time that the RCS 
command is in the instruction register. At that time, 
each of the 20 console switches is examined. 

CONSOLE TYPEWRITER OPERATIONS 

The console typewriter, Figure 6-3, is primarily an 
output device, which is normally located on the control 
console desk. It can be used to provide brief messages 
to the operator during program processing, or it can 
serve as a more extensive output medium in lieu of a 
high-speed printer. 

The typewriter receives and types one character at a 
time from the N register. The six position N register, 
in turn, is loaded with one character at a time from the 

@[D(2(2~ ___ -------
VI-6 



Figure 6-3. Console Typewriter 

A register. The typewriter can print ten characters 
per second under program control. Typewriter capa­
bilities include: 

Red printout 
Black printout 
Print characters 0 through 9, A through Z, minus, 

period, slash, dollar sign, and comma 
Carriage return 
Space 
Tabulation 

Error messages are normally programmed to print in 
red. Figure 6-4 illustrates typewriter characters and 
actions and the corresponding octal codes. 

Messages produced through the console typewriter can 
serve as a log ofprogram performance. For this pur­
pose, the typewriter can be programmed to record 
program identification, list magnetic tape labels, and 
provide instructions to the GE-225 operator. Operator 
comments can be inserted manually whenever the GE-
225 is in a halt status (AUTO or MANUAL). 

Required carriage returns must always be specified in 
the program. If returns are omitted, typing continues 
to the right margin stop; the carriage then halts, but 
typing continues, resulting in illegible messages. 
Typeouts involving tabulation require manual inter­
vention. The operator must manually set required tab 
stops before running the program. 

The typewriter shares access to memory through the N 
register with the paper tape reader and punch. Thus, 
if the N register is engaged because of a type oper­
ation, paper tape read or punch operations must be 
delayed until the N register is released. Also, 
electrical power can be on for only one of these three 
units at one time; if power is on for the paper tape 
reader, for example, then power is off for the paper 
tape punch and the typewriter. This permits an 

economy in the assignment of operation codes; the code 
25000068 is used for type, read paper tape, and write 
(punch) paper tape. 

Typewriter Oc~l 
Character Equivalent 
or Action of BCD Codes 

0 00 
1 01 
2 02 
3 03 
4 04 
5 05 
6 06 
7 07 
8 10 
9 11 
A 21 
B 22 
C 23 
D 24 
E 25 
F 26 
G 27 
H 30 
I 31 
J 41 
K 42 
L 43 
M 44 
N 45 
0 46 
P 47 
Q 50 
R 51 
S 62 
T 63 
U 64 
V 65 
W 66 
X 67 
y 70 
Z 71 

40 
Space 60 

/ 13 
33 

$ 53 
Carriage 

Return 37 
Print Red 72 
Print Black 75 

Tab 76 

Figure 6-4. Typewriter Character Set 

Programmed use of the typewriter requires that the 
typewriter power on switch (under the right front 
corner of the typewriter) be turned on manually. In 
addition, at least 200 milliseconds before the first 
character is to be typed, a typewriter on instruction 

U5~D~~~ ___ ---------
VI-7 



must be given; the unit will remain on until a subse­
quent instruction (such as OFF, RON, or PON) turns 
off typewriter power. 

Next, the N register must be tested for a ready status; 
if ready, then a shift to move the character to be typed 
into the N register may be given, followed by a TYP 
command. This sequence of test, shift, and type must 
be repeated for each character to be typed. 

An optional feature enables the typewriter to be used as 
an input device, in addition to the described output 
function. The input feature enables one BCD character, 
as selected by a typewriter key, to be placed in the N 
register. The character can then be shifted into the A 
register for subsequent processing as desired. 

and must be cleared by manually typing a character or 
depressing the space bar. 

Central processor operation is not delayed by the exe­
cution of a TYP. The next sequential instruction is 
initiated in the following word time, although typing may 
not be completed for several milliseconds. 

The TYP instruction is used to control typewriter 
action other than typing. If the N register contains one 
of the following codes, the indicated actions occur: 

N Register 

Contents (Octal) Action 

60 
The input feature is enabled by the operation code 76 

Space 
Tab 

25000168, which also serves as the halt paper tape 37 
(HPT) instruction. Normally, HPT has meaning only 72 

Carriage Return 
Print Red 

when the paper tape reader is on and is moving tape. 75 Print Black 
Because typewriter and paper tape reader cannotoper-
ate concurrently, there is no disadvantage to dual use 
of the 25000168 code. 

To use the optional typewriter input feature, the type­
writer must be ON. Issuing a HPT instruction enables 
the typewriter keyboard and causes the N register to 
become not ready. Depressing a typewriter key places 
the corresponding BCD character into the N register 
and returns the register to the ready state. 

Typewriter Instructions 

TYP 2500006 Word Times: 2 

Functional Description: TYPE. If typewriter power is 
on, one BCD (six-bit) character in the N register is 
typed. The contents of N are unchanged. 

Example: Examples of all typewriter instructions are 
provided in the coding sample following the last 
discussed typewriter instruction. 

Comments: Execution of a TYP instruction does not 
affect the contents of any arithmetic register. 

The TYP instruction is normally preceded by a shift 
of data into the N register from the A register, as well 
as by a test-and-branch (BNR or BNN). 

The N register becomes busy during the execution of 
TYP and remains busy until typing of the character is 
completed. 

No typewriter keys are activated when an attempt is 
made to type an illegal character (that is, a character 
not included in the typewriter character set as shown 
in Figure 6-4); in addition, the N register goes busy 

TON 2500007 Word Times: 2 

Functional Description: TYPEWRITER ON. The type­
writer power is turned on (if the typewriter power on 
switch is on) and power for the paper tape reader­
punch is turned off. 

Example: Examples of all typewriter instructiQns are 
provided in the coding sample following the last 
discussed typewriter instruction. 

Comments: To allow thE' typewriter motor sufficient 
time to attain operation speed after a TON, a delay of 
at least 200 milliseconds should be programmed before 
executing a TYP instruction. However, if the TON is 
given within 1 millisecond after turning off the type­
writer (with a programmed OFF, RON, or PON), no 
delay is required. 

un.less the typewriter power is already ON, failure I 
to program a TON instruction before TYP will cause 
the N register to become and remain not ready, 

OFF 2500005 Word Times: 2 

Functional Description: POWER OFF. The power 
supply for the typewriter and paper tape reader and 
punch is turned off. 

Example: Examples of all typewriter instructions are 
provided in the coding sample following the last dis­
cussed typewriter instruction. 

comments: After an OFF is executed, subsequent TON, 
RON, or PON instructions will restore power on to the 

@~D~~~ __________ _ 

VI-B 



I 

I 

I 

respective units. If power is on for anyone of the 
units (typewriter, paper tape reader, or paper tape 
punch), it is off for the other two. 

BNN 2516005 Word Times: 2 

Functional Description: BRANCH ON N REGISTER 
NOT READY. U the N register is not available for in­
put or output (that is, if a previous type, read paper 
tape, or write paper tape instruction has not been com­
pletely executed), the next sequential instruction is 
executed. U the N register is ready, the second 
sequential instruction is executed. 

Example: Examples of all typewriter instructions are 
provided in the coding sample following the last dis­
cussed typewriter instruction. 

Comments: The BNN instruction (or its counterpart, 
BNR) is used to insure that the N register is ready 
(not in use) before initiating a read or a punch paper 
tape operation, as well as before type operations. 

BNR 2514005 Word Times: 2 

Functional Description: BRANCH ON N REGISTER 
.READY. U the N register is available for input or out­
put (that is, if the last type, read paper tape, or write 

ROGRAMMER PfltOG .. AM 

S"" .... Op. Operand X 
, . . . . . . " I. II 14 t. 1e '7 ,. II ao 31 

paper tape instruction has been completely executed), 
then the next sequential instruction is executed. If the 
N register is not ready, the second sequential instruc­
tion is executed. 

Example: Examples of all typewriter instructions are 
provided in the coding sample following this instruction 
description. 

Comments: The BNR instruction (like its counterpart, 
BNN) is used to insure that the N register is ready 
before initiating a read or a punch paper tape oper­
ation, as well as before type operations. 

Typewriter Sample Coding 

Prepared output routines ar~ available to assist the 
programmer in preparing coding for typewriter print­
outs. These routines provide for single or multiple 
word output, red or black ribbon, punctuation, tabu­
lation, and carriage returns. 

To illustrate the use of the various instructions related 
to typewriter operations, a simple example is shown 
in Figure 6-5. 

1 DATI: POAQI:· .. 
REMARKS Sequence 

,. 7.777171 10 

PRE P TON TYPEWRITER ON 

I L.D '7. 

S TAl INITIALIZE X REGISTER 1 

lIN X 1 

• B XLI 5 8 7 1 LOOP FOR 200 MS 

lB. R Tl l>.R R,l> ,3 

L D Z 

S T A 2 INITIALIZE X REGISTER 2 
T Y P E L D A T A X TYPEWRITER MESSAGE (3 CHARS.) 

I. S R D 1 2 SHIFT 2ND TWO CHARS. TO Q .. B N N 

B R U • - 1 TEST N REGISTER .. 
IS SAN 6 MOVE CHAR. TO BE TYPED TO N .. T Y P TYPE ("'u,, '("TER 
11 S L D 6 POSITION NEXT CHAR. IN A ,. 

I N X 1 2 COUNT CHARS. TYPED 
t7 IB X. L 3 12 IF LAST CHAR. EXIT ,. 

B R U T Y P,E 2 LOOP TO TYPE NEXT CHAR. 
I. E, X. I:r IT n, R R T,Tl,R,N, CnNTATNl'I ()('TAT. 3'7 .. 

IB N.N 
II I B R U • 1 TESTN 
I. S A,N 16 
II T. V l> OCTAL 37 RETURNS c .. "" ... nE 
I. OFF TURNS OFF . POWER 
I. 

Figure 6-5. Sample Typewriter COding 

@~D~~~ _________ _ 

VI-9 
October 1963 



As presented, the program assumes that a three-letter 
word to be typed is in symbolic location TAX and that 
an octal 37 (carriage return) is in location RETURN. 
Further, it is assumed that the manual power on 
switch on the typewriter has been turned on. 

Line 1 ofthe GAP Coding Sheet turns on the typewriter. 
Lines 2 through 6 contain coding that sets up X reg­
ister 1 to operate as a counter, then counts through 
the INX, BXL, BRU loop 1587 times to insure that at 
least 200 milliseconds (to allow the typewriter motor 
to reach operating speed) pass before a TYP is initi­
ated. 

Lines 7 and 8 prepare X regis,ter 2 to operate as a 
character counter during the following TYP operation. 

The 3-character message (in BCD) is loaded into the A 
register (line 9) and then shifted right, 2 characters, 
into the Q register in order to position the first char­
acter to be typed. 

Lines 11 and 12 test the N register for ready status. 
If it is not ready, the program loops until it is. Line 
13 shifts a character into the N register and it is typed 
(line 14). 

X register 2 is incremented to indicate that the first 
character has been typed (line 16), then tested to see 
if typing is complete. If it is not, the program loops 
back to line 11 and repeats the sequence until the 
entire word (3 characters) has been typed. 

Upon completion of typing, a carriage return (octal 37) 
is loaded into A (line 20), the N register tested (line 20) 
for ready, and (if ready) receives the return code. 
Line 23, TYP, causes the carriage to return, and the 
typewriter is turned off (line 24). 

Paper Tape Operations 

The material formerly under this heading has now 
been superseded by a separate manual, Compatibles/ 
200 Paper Tape Subsystem Reference Manual (CPB-
308). 

Card Reader Operations 

The material formerly under this heading has now 
been superseded by a separate manual, Compatibles/ 
200 Punched Card Subsystems Reference Manual 
(CPB-302). 

Card Punch Operations 

The material formerly under this heading has now 
been superseded by a separate manual, as given 
under "Card Reader Operations" above. 

@~D~~~ __ --------

VI-lO 



I 
I 

SECTION VII 

CONTROLLER SELECTOR OPERATIONS 

Certain GE-225 high-speed input-outputperipherals do 
not access memory directly, but are buffered by means 
of controllers which, in turn. are granted memory 
access through a control and data transfer device, the 
controller selector. Figure 1- 2 illustrates this rela­
tionship. The auxiliary arithmetic unit (AAU), although 
connected to the controller selector, has character­
istics that distinguish it from the high-speed peri­
pherals. While it is not an input/output unit, it is 
discussed in a later section like other peripherals. 

CONTROLLER SELECTOR PRIORITY 

Because the controller selector serves as a means of 
communicating between peripheral controllers and 
memory, each controller must have a unique address 
and a specified memory priority. This is accomplished 
with plug-in connectors which tie together the peri­
pheral controllers and the controller selector. 

The controller selector assigns each of the eight avail­
able plugs a unique memory access priority. The lower 
the plug number the higher is the priority, as shown in 
Figure 1-5. The relationship of priority to plug number 
means that the memory access requirements of the 
peripheral device must be taken into consideration 
before it is assigned to a specific plug. The controller 
selector has a data transfer rate of 55,000 20-bit words 
per second, which is more than sufficientfor a typical 
GE-225 installation. A GE-225 system may have any 
combination of input-output controllers except for 
the following limitations: ~o more than 1 AAU, 2 
41-Kc. magnetic tape controllers, 2 DSU controllers, 
or a combination of 2 41-Kc. mag;netic tape and DSU 
controllers. 

Devices with high memory access requirements, 
such as a disc storage unit (DSU), require high 
priority plug numbers. Devices that can wait for 
access to memory without loss of information are 
assigned low priority. Plug assignments should be 
determined during the early stages of system planning 
and all programmers informed of the plug number 

of each device. Recommended plug assignments 
whenever possible are: 

Plug Number Peripheral Controller 

o Disc Storage Unit 
(DSU) 

2nd DSU or Magnetic Tape 

2 Magnetic Tape 

3 

4 

5 

6 

Magnetic Tape or Document Handler 
Adapter 

Document Handler Adapter 

Doc. Handler Adapter/DATANET-15 

Printer 

7 AAU 

I 

The adoption of these assignments increases compati­
bility of software and back-up between installations. 

CONTROLLER SELECTOR 
INSTRUCTIONS 

Input-output operations of peripherals connected to the 
controller selector are accomplished by a sequence of 
instructions. 

The controller selector should first be tested to deter­
mine if it is in a ready state before issuing an instruc­
tion to perform an operation. Attempted execution by 
the computer of a SEL command (discussed below) 
when the controller selector is busy results in an alert 
halt condition and hangs up the computer. Interrogation 
of the controller selector is done by one or more BCS 
instructions, which are discussed in the sections on 
high-speed peripheral operations. 

VII-l May 1964 



, BCS XXX P 2514P2C/2516PC(, Word Times: 2 

Functional Description: BRANCH ON CONTROLLER 
SELECTOR. The peripheral connected to controller P 
is tested for the condition (CC) indicated by a mnemonic 
placed in the operand address field identified by XXX 
above. The BCS instructions are listed and described 
with the instructions for the various peripheral de­
vices. 

If the controller selector is ready, the plug containing 
the peripheral controller that is to be placed in oper­
ation must be selected by a Select (SEL) instruction. 

SEL P x 2500P20 Word Times: 2 

Functional Description: SELECT. The peripheral con­
nected to controller P (addresses 0 through 7) is sel­
ected for the operation indicated by an associated 
instruction. The executionoftheSEL command always 
sends the contents of the next two memory locations to 
the selected peripheral controller. Execution of the 
SEL instruction also resets controller error condi­
tions. 

Every peripheral connected to the controller selector 
requires three memory words containing instructions 
to perform an operation: theSEL instruction selecting 
the controller and two other words instructing the con­
troller to perform a specific task. The instructions 
contained in the two words followingtheSEL command 
are not executed by the central processor. Therefore 
when the SEL is in the I register, the P register will 
hold the address of the third sequential instruction. 

Example of SEL Coding: 

Opr Operond X REMARKSJ . . .. .. to 14 " Ie 17 .. " a • 31 

Is ,E ,1 Is IIlF.T .F.r.T PT .un .~- 6 ~ 

) 

\ 

The contents of the two words following the SEL in­
struction is governed by the operation desired and by 
the peripheral equipment to be used. Specific details 
for programming these peripheral operations are given 
in subsequent sections. 

AUTOMATIC PROGRAM INTERRUPT 
(API) 

A GE-225 optional feature makes it possible to pro­
gram an automatic interruption of the main program to 
process a higher priority program. This feature, when 
used with the Automatic Priority Interrupt Executive 

Routine, controls the simultaneous operation of two 
or more unrelated programs. The system combines 
peripheral-to-peripheral runs (e.g., tape-to-printer, 
tape-to-punch, and card-to-tape) with a main program 
and can control programs associated with the remote 
inquiry stations. 

The API feature provides for automatic interrupt of 
the main program whenever selected peripheral con­
trolle rs change status from 'not ready' to 'ready'. 
This allows control to be transferred automatically 
from the main program to the executive routine de­
signed to service the peripherals. Each controller 
on the GE-225, the card reader, and the card punch, 
can Signal the GE-225 that it has finished an operation, 
and is ready for another operation. This signal may, 
or may not, cause a physical interrupt on the GE-225, 
depending upon the status of the computer. The type­
writer and paper tape reader or punch cannot cause 
automatic program interrupt. 

A switch is provided for each peripheral controller 
which allows only desired peripherals to cause anAPI 
thereby, in effect, masking out devices for which an 
interrupt is not desired. 

When the switch is 'ON', the peripheral controller will 
be allowed to cause an automatic interrupt (under de­
signated interrupt conditions). 

When the API switch is 'OFF' , the peripheral controller 
will not be allowed to cause automatic interrupt (under 
any conditions). 

When a GE- 225 system operates with API, the computer 
may be in a specific mode of operation within the pro­
gram being executed. These operating modes and pro­
gram are defined as: 

Non-Interrupt 
Mode 

Interrupt Mode 

Priority Mode 

A mode of operation in which the 
GE-225 is not processing a priority 
program; and can not be physically 
interrupted by a signal from a 
peripheral device. When power is 
initially applied to the GE-225, the 
GE-225 is in the Non-Interrupt Mode. 

A mode of operation in which the 
GE-225 is not processing a priority 
program; but can be phYSically in­
te rrupted as a result of a signalfrom 
a peripheral device. A set mode is 
required to place the GE-225 in the 
Interrupt Mode. 

A mode of operation in which the 
GE-225 is processing aprioritypro­
gram, as a resultofbeingphysically 
interrupted while operating on a 
main program in Interrupt Mode. 

@~D~~~ ___ -------

VII-2 October 1963 



Definitions 

Main Program - The program that is being executed at 
all times other than when an Automatic Program 
Interrupt occurs. 

Priority Program - A program (peripheral-to-periph­
eral) that is designed to be executed in the Inter­
rupt Mode. 

Remote Inquiry Program - A program that controls the 
Remote Inquiry hardware and is executed in the 
Interrupt Mode. 

Program Interrupt Instructions 

SET PST 2506015 Word Times: 2 

I Functional Description: SET AUTOMATIC PROGRAM 
INTERRUPT ON is required to cause the program 
interrupt feature to be effective. This instruction 
causes the computer to enter and remain in the inter­
rupt mode until the priority program is completed and 
directions are given for return to the main program. 
This command must be given before the main program 
can be interrupted. If a programmer does not wish to 
use the interrupt feature, he merely avoids executing 
a SET PST. 

SET PBK 2506016 Word Times: 2 

Functional Description: SET AUTOMATIC INTER­
RUPT OFF is required to disable the program interrupt 
hardware. This instruction causes the computer to 
leave the interrupt mode and remain in the normal 
mode until the mode is reset by a SET PST instruc­
tion. 

To prevent the main routine from being interrupted 
after a SET PST has been executed, a SET PBK must be 
executed. 

Because the program interrupt feature becomes effec­
tive whenever the command SET PST (PriOrity Set) 
is executed and becomes ineffective when the command, 
SET PBK (Priority Break) is executed, any attempted 
interrupt (caused by a change in status of one of the 
selected controllers) which occurs during the time 
when Automatic Interrupt is !lot set will be remem­
bered and will cause an automatic interrupt immedi­
ately following the next SET PST. It then becomes the 
responsibliity of the Executive Routine to determine 
which of the selected peripheral controllers changed 
status and must be serviced. 

Operation of API 

When automatic interrupt is initiated, the following 
events occur: 

1. Interrupt of the main program is delayed until the 
next instruction access time. (The P counter con­
tains the address of the next instruction.) 

2. The computer automatically selects index group 
32. NOTE: Index group 32 is available only on 
GE-225 systems with the API feature and can 
be used only as prescribed for API. 

3. The contents of the P counter are stored in word 
one of the API index group 32 (memory location 
0129). 

4. Control is transferred to address 0132 (the first 
word following index group 32) which is the start 
of the Executive Routine andanautomaticpriority 
break occurs. 

5. During the time that control remains with group 
32, the SPB command (if used) will refer to group 
32 only. 

The only index, group available during the Executive 
Routine is group 32. It must be remembered that the 
address of the next instruction to be accessed in the 
main program has been stored in word 1 of this group 
and the contents must not be destroyed. The com­
puter cannot be interrupted again until SET PST com­
mand has been executed as described below. 

To return to the main program, the following pro­
cedure is required: 

1. A SET PST command is required in all cases 
regardless of whether or not it is desired to con­
tinue under control of the program interrupt 
feature. If the programmer wishes to return to 
the main program with program interrupt dis­
abled, the SET PST must be followed by a SET 
PBK. 

2. An indexed unconditional branch (BRU) to location 
zero, modified by word one of index group 32, 
sets the P counter to the address of the next main 
program instruction to be accessed. This is 
always the final step in the sequence for returning 
to the main program. 

3. Any peripheral controller that changed from not 
ready to ready status while the computer was 
under control of the Executive Routine will cause 
an interrupt after return to the main program. 

It is permissible to execute any number of instructions 
between the SET PST and the indexed BRU which is 
used to transfer control back to the main program. 

@~CJ~~~ ____________ _ 
Vll-3 October 1963 



Also, any number of BRU instructions can be executed 
while in the interrupt mode. 

When API is set in the program, the following occurs 
when a controller goes from not ready to ready status: 

1. P counter + 1 is stored in location 012910. 

2. Control is transferred to location 013210. 

3. At this time, any or all controllers mayor may not 
be tested and mayor may not be 'put to work'. It 
is not necessary, however, to do any testing or to 
issue any commands to return to the main pro­
gram. 

4. The computer-generated-and-executedSPB 13210, 
word 1, is the instruction which turns the API flip­
flop off in the central processor. This generated 
instruction, in effect, also executes a SET PBK 
instruction. Any controlle r becoming ready while 
the program is interrupted will be remembered 
until the priority is SET and the modified branch 
is executed, at which time the API flip-flop will be 
set again if any controller went ready during the 
time the 'pseudo' SET PBK instruction was exe­
cuted by the computer. 

Once a controller causes an interrupt, it will not cause 
another automatic interrupt until it goes from the not 
ready to ready status again. 

API Executive Routine 

The API executive routine (CD225J4.000) is in memory 
with every main program or remote inquiry program. 
Programs with precedence or remote inquiry pro­
grams may be in memory, if desired. The API exe­
cutive routine: 

1. Performs functions necessary for starting and 
ending all programs being executed under its con­
trol. 

2. Saves the A and Q registers and the overflow indi­
cation when a main program is interrupted 
because of a peripheral going from busy to not 
busy. 

3. Determines which peripherals are in ready state 
and executes the appropriate priority programs. 

4. Restores the A and Q registers and the overflow 
condition before returning control to the mainpro­
gram. 

Three basic combinations of programs are designed to 
share memory and peripherals with the APIexecutive 
at execution time. These are: 

1. A main program and from one to four priority pro­
grams. 

2. A main program and a remote inquiry program. 

3. A main program, from one to three priority pro­
grams, and a remote inquiry program. 

The Automatic Program Interrupt Executive has as I 
its basic configuration the GE-225 with a4K or larger 
memory. Any configuration of peripherals maybe used 
in conjunction with this, excluding the document handler 
and paper tape reader-punch. The system must include 
the API feature. 

The routine requires 97 memory locations and, when 
added to the front of a user's program, is assembled 
into the following areas: 

1. 012810 0141 10 14 locations 

2. 0143 10 016910 27 locations 

3. 055210 060610 55 locations 

4. 060610 063910 34 locations 
for future expansion 

With the exception of programs for magnetic tape and 
MRADS controllers, programs must not refer to 
peripherals used by another program in the same 
load. When magnetic tape and MRADS controllers 
are both used, the same handler on MRADS must not 
be addressed. 

Programs must not refer to memory areas used by 
another program, except in the use of common subrou­
tines. 

Card read-in areas are restricted to locations 025610 
and 038410, for programs being executed under the con­
trol of API Executive. 

Card punch areas are restricted to locations 051210 
and 064010, for programs using API Executive. 

All symbols used in the executive routine start with 
lAP I. 

Locations 014210 and 014410 are reserved for remote 
inquiry and must contain zeros if remote inquiry is 
not used. 

Restart is provided only for the main program. 

All programs being executed simultaneously should 
used the same tape or MRADS input/output routine. 

@~D~~rs-__ --------

VII·· 4 October 1963 



It is permissible to use two different magnetic tape I/O 
routines only if they refer to different tape controllers 
or if the read/writers are not buffered and a delay, 
error check, and correct is done after each. 

Hardware Operation 

Each controller, the card reader, and the card punch 
can generate a signal to the central processor that it 
has finished an input/output operation, and is ready for 
another command. Whether or not this Signal is 
actually sent to the central processor depends upon the 
setting of the API switch associated with each device. 
The controller switches are located on the inside of the 
controller, usually near the controller selector plug. 
The card reader and card punch switches are located 
inside the top door on the front of the control console. 
With this switch off, the interrupt signal from the device 
is not sent to the central proeessor. The switch must 
be on for the central processor to receive the Signal 
from the I/O device. 

The action of the central processor when it receives 
an interrupt signal depends upon the mode of operation. 
Non-Interrupt Mode is established by a SET PBK com­
mand, 0 r by re setting the compute r through dep ression 
of the power on button. In the Non-Interrupt Mode, the 
signal merely sets a latch 10 remember that it re­
ceived the Signal for later use at such time as Interrupt 
Mode is set. Interrupt ModE is established by a SET 
PST command. 

When a physical interrupt occurs, the central pro­
cessor enters the Priority Mode of operation. The 
location of the next command to be executed in the 
main program (note the difference from normal SPB 
operation) is stored in word 1 of API index group 32 
(location 201 octal). Index group 32 is set automati­
cally; and program control is transferred to octal 
location 204. A SET PBK operation is executed auto­
matically as a result of the interrupt, resetting the 
latch associated with the I/O devices, and dropping the 
Automatic Interrupt Mode. Further signals from I/O 
devices becoming ready during Priority Mode set the 
I/O latch aga,in so that another interrupt may occur 
when the priority program is finished and Interrupt 
Mode is re-established. 

When the priority program has completed its oper­
ations, control is returned to the main program by 
issuing a SET PST, followed by a BRU 0, index word 1. 
(Any modified BRU following the SET PST will cause 
exit from Priority Mode. Modified BRU instructions 
prior to issuing the SET PST have no effect, and oper­
ate normally in group 32 in Priority Mode.) Issuance 
of the SET PST followed by a BRU 0, word 1, will cause 
a return to the main program and the previous index 
group that the main program was operating in when the 
interrupt occurred. Upon return to the main program, 

the computer is in the Interrupt Mode. If it is desired 
to return to a main program from a priority program 
in Non-Interrupt Mode, a SET PBK should be executed 
between the SET PST and the BRU 0, word 1. 

Interrupts can occur only at the point that an instruc­
tion has been executed completely and another instruc­
tion is about to be accessed. After a test such as BZE, 
an interrupt will not occur until the computer has 
analyzed which route it should take. Interrupts can not 
occur between a BRU and the location to which it goes. 
Hence, a program loop such asBRU * cannot be inter­
rupted. 

Programming Considerations 

Each main program to be used in conjunction with the 
API and a priority program should be carefully scruti­
nized to ascertain what damage if any, could result 
from an interrupt at any given point. For instance, 
an interrupt between a RCD and an HCR might result 
in continuous reading of cards. (An HCR instruction at 
the beginning of the priority program will prevent 
this.) An interrupt in the middle of a type routine 
might result in the loss of the N register contents 
and a meaningless message. An interrupt just after a 
test-and-branch, such as BZE, has been executed might 
prove disastrous if the priority program should re­
verse the condition just after the test is made. Each 
of the above conditions might necessitate a SET PBK 
and a SET PST around the routine to prohibit interrupt 
during the crucial operation. Care should be exeT­
cised not to abuse the ability to prohibit interrupts in 
this manner, however, or the effectiveness of API will 
be unnecessarily reduced. 

Sample API Problem 

Assume that it is desirable to operate two programs 
concurrently within GE-225 memory. One program is 
a card-to-tape converSion, the other represents an 
independent proceSSing function. This problem can be 
solved effiCiently by use of the program interrupt 
feature, without use of the API Executive Routine. 

Card-to-Tape Conversion - This should be the priority 
routine since it involves few program steps, re­
quires continuous use of peripherals, and exe­
cution depends upon the card reader and the tape­
controller being in a ready status. 

Independent ProceSSing Function - This should be the 
main program because it requires many program 
steps and is much less reliant upon peripheral use 
and readiness for proceSSing. 

@~Cl~~~ _________ _ 

VU-5 



Symbol Opr Oper.nd X REMARKS 

I I 2 I 3 I • I • I • • i • i 10 12 j 13j 14j .. j "jl7 j 1.1 I. 20 31 75 

A 1 , D E C 5 1 2 First card read-in area 

D E C 6 4 0 Second card read-in area 

A 2 In, E .r. 512 IFirst card read-in arpa 

D E C 6 4 0 I!':Pt'ond card read-in arpa 
ICO,NSTl InE .r. 1 4 2, ITransfer In,.,,tinn 

CON S IT 2 D D C 0 IStora!!:e area for n~ ... ~~ ... ~~ of thp. A and 0 ~egisters 

B.C N ITest for card reader not ready 

B R U A 6 Exit if card reader is not ready 

A 3 R C D 0 5 1 2 Read card into memory be!!:innin!!: at 0512 
H C R Halt card reader 

D S T C 0 N S T 2 store contents of A and 0 re!!'isters for main 
nro!!:ram 

D L D A 1 Load read-in area constants 
X A.Q I Switch read-in areas 

D S T A 1 , Store read-in areas as constants 
S T 0 A 2 Set un alternate card read-in area 

A 4 B R U A 7 Bvnass writin!!: a tane record the first time 
through 

IB ,C ,S B T N ? Test for tape controller not ready 

, B R U * - 1 Delay until tape controller is ready 

, S E L 2 Select controller selector address two 

A 5 W T D 0 5 1 2 1 Write tape in decimal mode from memory 
locations be!!:innin!!: at 0512 onto tane 1 

2 7 Write a maximum of 27 words 

D L D A 2 Load read-in area constants 

X A,Q Switch read-in area constants 
D S T A 2 Store read-in area constants 

, S .T,O A 5 , Set un memory address from which tane record is 
to be written 

IA 6 b LD CO N S T 2 Load contents of the A and Q re!!:isters from main 
program 

, S E T P S T Set nrioritv interrunt mode on 

BR U 1 Branch to zero as modified by word one of index 
group 32' i.e. to the setting of the P counter 
when the main nro!!:ram was interrunted 

A.7 L D A C 0 N ,S T 1 Load binary eauivalent of 142 

S T 0 A 4 IWill cause th<> ", .. H;na of t"n<> ,,11 .. ",.,.AArI_ 

in!!' times throu!!'h the nro!!'ram 

B R U A 6 Transfer to exit 

Figure 7-1. Assembly Program Coding for API Problem 

The programmer should realize that use of the API 
executive routine extends the usefulness of the API 

feature and reduces the housekeeping functions and 
checks necessary for efficient use. 

@~D~~~ ____ ' _____ _ 

VII-6 May 1964 



SECTIONS VIII, IX, X, XI, AND XII 

The latest information on programming and operating 
the subsystems formerly described in the above 
sections now appears in separate manuals devoted 
to each subsystem. See the "Preface" and "Contents" 
at the front of this manual for a listing of their titles 
and publication numbers. 

@[Eo~~~---------





SECTION XIII 

PROGRAMMING CONVENTIONS 

The efficiency of any computer installation depends 
to a great extent upon proper organization of pro­
gramming procedures and techniques. This section 
contains suggestions and lists items that should be 
considered in establishing installation procedures. 

MEMORY LAYOUTS 

Many installations have (as standard procedure) allo­
cation of memory areas which all programmers must 
observe. A few advantages of such a system are: 

1. Standardization of input and output, sub­
routine, constant, and main program areas. 

2. Programmer familiarization with the oper­
ating program is increased. 

3. Changes and modifications are more easily 
and correctly made. 

4. Debugging is accomplished more readily. 

Because operating conditions and requirements vary 
from installation to installation, the memory layout 
used may be unique and suitable only for that parti­
cular installation. A typical layout is shown in Figure 
13-1. 

INPUT/OUTPUT DOCUMENTATION 

Proper documentation and layout of input and output 
data is the responsibility of the programmer; in 
addition, good documentation is a valuable tool for the 
programmer, because it enables the programmer to 
modify or change data with a minimum of effort, 
debugging is made easier and program operation is 
possible in less time. Typical forms available are 
shown in Figures 13-2 through 13-7. 

Decimal 
Location Descrij!tion 

0000 Index Registers 
to 

0003 

0004 Optional 
to Index Registers 

0127 

0128 Reserved for 
to Automatic 

0169 Program Interrupt 

0170 Miscellaneous 
to Constants or 

0255 Working Storage 

0256 Card Read-In 
to Area 

0283 

0284 Miscellaneous 
to Constants or 

0383 Working Storage 

0384 Card Read-In 
to Area 

0401 

0402 Miscellaneous 
to Constants or 

0511 Working Storage 

0512 Card 
to Punch 

0539 Area 

0540 Reserved for 
to Automatic 

0639 Program Interrupt 

0640 Printout and 
to Format Areas 

0719 

0720 Magnetic Tape 
to Input and 

0839 Output Areas 

0840 Subroutines 
to 

1999 

2000 Main 
to Program 

8191 

Figure 13-1. Typical Memory Allocation 

@~Cl(2(2~ ___ -------

xm-1 



GE 22~i 

MAGNETIC TAPE RECORD LAYOUT 
CK - 62 

RUN ________________ ~ PROGRAMMER 

MODE: BCD ______________ DATE 
BIN ______________ PAGE ___ OF 

SPEC BIN ______ _ 

BIT POSITIONS 

WORD 
o 1 1 21314151617 8 1 9 1 10 1 11 I 12 I 13 14 I 1', 1 16 I 17 I 18 I 19 

I I I 1 I 1 1 1 1 1 1 I I I I I 
0 

1 I I 1 1 1 I 1 1 I 1 T--I--I I I 
1 

1 I I I 1 1 I-r- 1 1 1 1-1---T-- 1 I 
2 

1 I 1 1 1 1 1 1 1 1 I T--1--T 1 I 
3 

1 1 1 1 1 I I-r- 1 I I T--T--I I 1 
4 

I I I I I I I I I 1 I T--T---I I 1 
5 

I I 1 I I I I I I I I II---r I I 
6 

I I I I I I I I I I I 11--1 I 1 
7 

I 1 1 1 1 1 I I 1 I I I-r---T-I 1 
8 
9 I I I I I I I 1 I I I --,--T---I I I 

I I I I I I 
0 

I-r- I I I r- -r--1 1 1 

I I I I I I I 1 I I I I-r--I I I 
1 

I I I I I I I 1 1 I 1 l-r--1 I I 
2 

I I I I I I I I I I I -j-'---1 I I 
3 

1 I I I I I 1-r---rI I T--(---1 I 1 
4 

I I 1 1 I I 1 I 1 1 I r- -'--1 1 I 
5 

I I I I I I 1-r---rI I 1-'---1 I I 
6 

I 1 I 1 I I 1 I 1 I I r- -----1 I I 
7 

I I I 1 I I I I I I I I-i I I I 
8 

I I I 1 1 1 1 I I l---r-f---r- -'---r-i 1 
9 

I I I I I I I I I 1 I T-T--T I I 
0 

I I I 1 1 I II I I 1 1-,----1 I 1 
1 

I I I I I I 1-r---rI I I-i---I I I 
2 

I I I I I 1 1 I 1 1 1 I--r--I I I 
3 

I I I 1 1 1 I I I I I --r--~--I I I 
4 

I 1 1 1 I 1 1 I 1 I I li---r-- I I 
5 

1 I 
6 

I I I I 1-r---rI I T-1---11 I 

1 I I 1 1 I 1 1 I 1 I i-r--II 1 
7 

I 1 I I I I I I I I I II--T I 1 
8 

I I 1 1 1 1 1 I 1 1 I I-r---I I I 
9 

Figure 13-2. Magnetic Tape Record Layout 

@[D~~~ ___ --------

xm-2 



~ 
I 

W 

§2) 
u=u=u 

o 

~ 
~ 
@:51J 

CK 52 (2M 6-61) 

RUN, __________________________________ __ 
GENERAL'" ELECTRIC 

DATE, ____________________________ __ 

FILE, 

"~"-VIU.' Ilrt:: 

foo I 0 : 

1 

I , : 
, 9 

I I I ! 

16 17 

1 1 I 1 

24 25 

I I I I 

32 33 

I I I I 

40 41 

1 1 1 1 

48 49 

I I I I 

56 57 

I I I I 

64 65 

I I T I 

72 73 

1 1 1 1 

80 81 

L I I I I 

CompUler Department 
Phoenil!,Arizona 

PROGRAMMER, ______________ _ 

GE 225 MAGNETIC TAPE RECORD LAYOUT SHEET PAGE, __ O 

4 5 7 

I, I,T, I, 1 -,---,- - T - -7 

,I i, ,I , 
1---] -1-1---

10 11 12 13 I' II 

I I I ! I I j J 1 1 1 i i r ---r T T 1 1 

18 19 20 21 22 23 

1 1 1 I I I I I I I I I I I I I I I I 

26 27 28 29 30 31 

I I I I 1 1 1 1 1 1 1 T 1 1 1 T T T T 

3' 35 36 37 38 39 

I I I I I I I I I I I 1 ! 1 ! 1 1 1 I 
42 43 44 45 46 47 

1 1 1 1 1 1 1 1 I I I I I I I I I I I 

50 51 52 53 54 55 

I I I 1 1 1 1 1 1 I 1 1 1 r r T 1 1 1 

58 59 60 61 62 63 

I I I I I I I I I I I I I I I I I I I 

66 67 68 69 70 71 

I I I I I I I I I I I I I I I I I I I 

74 75 76 77 78 79 

1 1 1 1 1 I j 1 j 1 J I 1 1 1 1 1 T -I 

82 83 84 85 86 87 

I I I .....L--.l ,-1 ~~ -1 ' -1 ' J ' 1 ' 1 ,~, 1 ' 1 ' 1 ' 1 ' 1 ' 

Figure 13-3. Magnetic Tape Record Layout Sheet 



>< 
S 
I .,.. 

§V 
u=u=u 

o 

~ 
~ 
@51J 

D 

10 J 

20 ) 

I 300 

400 I 

) 500 

600 ) 

700 

800 

900 

GE 225 

RUN ____________________ __ MEMORY LAYOUT DATE ________ _ 
CK 67 

SYSTEM __________________ _ PROGRAMMER PAGE OF ___ __ 

10 20 30 40 50 GO 70 80 90 

I I I I , I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

I I I I I I I I I I 1 I I I I I I 1 I 1 1 I i ~. JJ 11 I I I I I I .1 I I I I I 
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 
I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

L I I I I I I I I I I I I I I I I I I I I I I 
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

L i.l I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 
I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

I I I I I I I I I I I L I I 1 I 11 I I I I I I I I .1 J lil .1 IJ I I I I I 
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

I I I I I I I I I I 1 1 1 J I 1 1 1 il 1 I I I I I I I I I I I I I I I i1 J 1 
I I I I I I I I I I I I I I r I I I I I I I 

I I I I I I I I I I I I I I I I I 1 I I II I I I 1 I j I I I I I I I I .1 I I I I 
I I I I I I I I I I I I I I I I I I I I 

I I I I I I -+-t : : I I I I I I I I I I I I I I I I I I I I I I I I 
I I I I I I I I I I I I I I I I I I I I 1-1 I I I I I I I I I I I I 

I I I I I I I I I I 1 I I_L 1 L _LL.L..L I I I I I I I I I I I I I I I I , 

EACH BLOCK REPRESENTS 10 WORDS OF STORAGE 

Figure 13-4. Memory Layout Sheet 



~ e 
I 

C1I 

~ 
u=u=lJ 

o 

~ 
~ 
®iJ 

RUN 

SYSTEM 

GE 225 MULTIPLE CARD LAYOUT 

BINARY CODED DECIMAL DATA 

CK 65 

PROGRAMMER _________ _ 

~"i illll'II'II'I'III"'111 
1 2 3 I" 5 6 I 7,8 9 110 11 12113 14 15116 17 laU9 20 21122 23 24125 26 27128 29 30131 32 33134 35 36137 38 39140 41 42143 44 45146 47 48149 ~O 51152 53 54155 56 57158 59 60161 62 63164 65 66167 68 69170 71 72173 74 75176 77 781 79 80 

t--- --, --,- --,----, ---, - - I I I I j I I i I I I i I I i I I i j i i , I , I , I , , , , I I I I I , I , I I I , I , I , 
I , , , I I I , I I I , , , I I I 1 I I I , I , I , , I I I I I , , , , I , , , , I I I I I I I , I I , , , , , I I I I I , , I I , I I I I , , , , I I , , 
I I I I I I I I I , I I , I , I I , 1 I I I , I , , 
, I I I I , I I I , I I I , I I , I I I I I I I , I 

1 23 I 4 5 6 7 8 9 '10 tt 12'1314 15'1617 18'19 20 21122 23 24'25 26 27'28 29 30'3132 33'S4 35 36'37 38 39'40 4142'43 44 45'46 4748'495051'525354'555657'58596016182 63'S4 65 66'67 68 69'707172'737475'7677 7S' 7980 

, I , , I , , I , , , I , I , I I , I I I I I I I , , I I I I I I , , I I , I I I I I I 1 , I I , I 
I I , I I I I I I , I , , I I I I I , I I I I I I 

I 

I I I , , I , , , I i I I i i I I I I I I I I I I 
I I I I , I I I I I , , I I I , I I , , I , I , , 
, I I I I I , I I , I I I I I I I I , , I I I I I 
I , I I I I , I , I I I I I , I I I I I I I I , , 

123'456 7 8 9 '1011 12'1314 15'16 17 18 119 20 21'22 23 24 125 26 27'28 29 30 131 32 33'34 35 36'37 38 39'40 41 42'43444514647 4S'49 50 51 !S2 53 54 !S5 56 57 158 5960'61 62 {}3164 6566'S7 66 69'70 7I 72'73 7475'7677 78 1 7980 

, , I I I I I , I I I I I , I I I I I I I I I , I I , I , I I I , I , I I I , , I I I I I I I I I , I 
I , , I , I , I , I , I I , I I I , , , I I , , I , , , I , I , I , , I I I , I I , , , , I I I , I , I I I , I I , I I , I I I I , I I I I I I I , I 
I , I I , I , I , , I I I , I I , , I I I I , , , 
I I 

" 

, I I I I I I I , , I I , I I , I I , I , I I 

123 1456 78 9 11011 12 113 1415116 l'l 18 119 20 21122 23 24125 26 27 128 29 3013J 323313435361373839140 4142 143 44 45146 4748149 5051 152 53 54155565'715859601616263164656616768691'70'71 72 173 74 75'76 77 78 179 80 

I I I I : , , , I , , , , I , , , I I , I I I I I , I I , I I I , I I , I I I I I , I I , , , I I I 
I I , I I , I I , I I I , I I , I I I I I , I , , , , I I , , I , I I I I , , I , I I I I I I I , I 
I I I I , I , , I , I I I , , I , , , I I I , I , 
, I I I I , I , I , , I I , , I , , , , , , , , , 
I I I I I , I , , , , I I I , , , I I I I I I I , 

1231456 '7 8 9 110 11 12113 14 15116 17 18119 20 21122 23 2412526 27128 29 30131 32 331343536137 38 3914<1 41 42143 44 45146 47 48149 50 51152 53 54155 56 57158 59 60ls162 63 164 65 6S167 68 69170 '71 721'73 74 '75176 77 '78' 79 80 

I , I I I , I , I I I I I I I I , I , I , I I I I 
I , I I , I I , I I , I I , I I I I , I , I I I I 
, I , I I I , I I I I I I I , , , I , I , I , , , 
, I I I , I I I I I , I I I I I , , , , , , , , , 
I I , I I I I I I I I I , I I , , I , I , , I I , 
I , , I , , I , I , I I I I I I , , , I , , , I , 
I I I I I I I I I I I I I I I , I I I I I , , , , 

1 2 3 14 5 6 7 8 9 110 11 12113 14 15 116 17 18'19 20 21122 23 24'25 26 21128 29 30'31 3233134 35 36137 38 39 140 41 42 143 44 451464'l 48 149 50 51 152 53 54 155 56 57 158 59 60161 62 63'64 65 66'67 68 69170 71 72'73 74 '75'76 77 78 1 79 80 

I , , I I I I , I I I I , I I I , I , , , I I I , , I I , , I I , , I I I I , , , I I , I I , I I , 
WORD • I 1 2 I , , , I • , 

6 , 7 I 6 I • I I. I 11 I 12 I " I " 
, 15 , 

16 I 17 , 16 , 19 
, 2. , 21 , 

22 
, 

23 
, 

24 
, 

25 I 26 NUMBER 
1 I I , j j I 'L I __ L 

Figure 13-5. BCD Multiple Card Layout Sheet 



~ 
at 

§2) 
Ml 

o 

~ 
~ 
®ll 

RUN 

WORD MEMORY 

NBR LOCATION 

o 

GE 225 

MEMORY ALLOCATION LAYOUT SHEET 

INPUT - - OUTPUT 

PROGRAMMER 

CARD I BIT POSITIONS I DESCRIPTION I WORD 
COL 0 - 1 I 2 - 7 I 8 - 13 114 - 19 OF DATA NBR 

DATE 

MEMORY CARD 

LOCATION COL 

---t------

CK 68 

PAGE OF 

BIT POSITIONS I DESCRIPTION 

o - 11 2 - 7 I 8 - 13 h4 - 19 OF DATil 

----+----+-----_l___ ---

~~=+==-=~-~F-==-=-t-----,-- t- - ---t--T _+u~_ I --+-+-----~ 
R, '---t-~-t---- --- r -- -T - t -r --r -: T -1 

I 

1 , uL 
__ ..L __ I 

o ---+-_ ---- ( 

4 

R 

Figure 13-6. Memory Allocation Layout Sheet 



E 
0 r:.. .... 
=' 0 
>. 
~ 
...:I 
'0 

'"' ~ 
C,) 

~i = ij: 

E ~ 
=' -' 
0 

C,) 
I 

0 
CO 

r.: 
I 

C') -Q) 

'"' ~ ... r:.. 

@~D~~~ _________ _ 

XUI-7 



USE OF SYMBOLS 

The use of symbolic memory addresses rather than 
,:bsolute addresses is' of utmost importance to the 
programmer because it relieves him of having to keep 
track of the location of each constant or instruction 
in memory. By shifting the burden of memory location 
to. the assembly program, the programmer can code 
wIth less errors and thus produce an operating pro­
gram more quickly. In addition, the symbol used can 
convey information as to the action taking place within 
the program. Figure 13-8 illustrates typical symbols. 

Symbol Opr Operand X 

t I 2 I 3 I • I • I ' 8 I G I 10 '21'3["1'"1"["["['· 20 

'T' WQ n F. c: ? 

TEN n F. C 1 0 
(' A R D I .N B S S 2 7 

S TOR E D D C 0 

C D E 0 F A L F Z Z Z, 

Figure 13-8. Typical Symbolic Addresses 

SUBROUTINE USAGE 

The use of subroutines can result in saving of both 
programming and machine running time. Subroutines 
can control all input and output operations and many 
internal operations of aprogram and use less memory. 
Normally, a subroutine is a series of instructions 
which perform a repetitive function for the main pro­
gram. 

The use of subroutines enables the programmer to 
employ the 'building block principle' in the con­
struction of the program. All frequently-used data 
processing functions at an installation can be prepared 
in subroutine form. It is then only necessary for the 
programmer to use these routines to construct a 
major portion of the main program with less effort 
and time than would otherwise be necessary. 

The ability to jump to a subroutine and return to the 
main program requires the retention of information 
for the return. This concept of informing the sub­
routine how to get back is termed 'linkage'. In the 
GE-225, the SPB command provides the 'link' for 
retltrning control to the main program after the sub­
routine Junction is performed. 

In addition to linkage, it is also necessary to specify 
the parameters which define the problem to the sub­
routine. Subroutines are usually written in a form 

for general applicability and must be self-specializing 
to the particular problem at hand. 

The calling sequence which supplies the information 
(parameters and linkage) needed by the subroutine can 
vary in size and form. An example of a simple sub­
routine is illustratect in Figure 13-9. 

Symbol Opr Operand X 

t I 2 I 3 4 I • I b a L. ['0 "1 " [ "I" I '"['7 [ " I ,. 20 

I D-oLL D N U M 

D. A D N U M 2 

S PB M P Y T E N 1 

D S T RES. U. 1 T. I 

( J -'--

~iir ---' 

-'----+-- I--
M P Y T E N S L D 1 

S T A T E MP 

S L D 2 

D ·LD T E MP 

B R U 1 1 
T E M P D D C (\ 

Figure 13-9. Representative Subroutine 

This type of subroutine requires no parameters or 
elaborate calling sequence. The data needed is con­
tained in the A and Q registers before entry and the 
results from the routine are in the A and Q registers 
upon exit. 

A subroutine requiring a set of parameters in the 
calling sequence is shown in Figure 13-10. 

4 

It 

• 
7 

Opr Operand X 

• I • [ '0 12113 i 14) 151'1'; i 17118 j Jg 20 31 

S P B S T R I P 
~ 

1 

D E C 1 2 8 

D E C 1 
-'--

D E C 3 

B R U E R R 0 R 
S T A A M T # 1 

Figure 13-10. Subroutine Requiring a Calling 
Sequence 

, 
I 

I 
\ 
\ 
) 

{ 
\ 
\ 

@~D~~~ _________ _ 

xm-8 



00620 ORG 0400 
REM BCD CARD READ SUBROUTI NE 

REM CALLING SEQUENCE 

REM A SPB -;, CRDIN 1 

REM A+1 DEC CARD INPUT AREA 

REM A+2 DEC WORKING STORAGE 
REM A+3 ALF PROGRAM EOF 

REM A+4 EOF RETURN 

REM A+5 NORMAL RETURN 

00620 0020001 -;,CRDIN LOA CARD INPUT AREA 

00621 2700636 S TO ,"ROil RCO #1 

00622 2700663 STO -;,ROJ2 RC 0 if 2 

00623 2700650 STO ,',EOF EOF LOCATION 

00624 2700656 STO ,"MOVE MOVE LOCATION 

00625 01006 1+4 ADD -;'S YCON SYNC CONS TANT LOCATION 

00626 0300644 S TA -;,SYCON 

00627 0020002 LOA 2 
00630 0300657 S TA ,',S TO RE WORKING STORAGE AREA 

00631 0000707 LOA ,',ENCON ENTRY CONSTANT 

Figure 13-11. Subroutine Calling Sequence 

Since the parameters necessary for a subroutine can 
vary over a wide range, the exits from a routine can 
vary, depending upon the eor,dition encountered within 
the routine. In the example above, an error in the 
routine results in the return to line 5 on the coding 
sheet. In programming, this can be accomplished 
within the routine by an instruction consisting of 

BRU 4 

A subroutine calling sequence and the use of the 
parameters within the sequence is illustrated in Figure 
13-11. 

The exits from the routine are handled in this manner. 

GAP Coding: 

apr Operand X j 
, I • 1 '0 "1"] 14 1"1"1"1" " 20 31 

-'- \ 
~~ 

J 
R RU 4 

-'-
1 IF-OF Return ( 

R R TT 5, -1--_4- 1 INnrrn::ol H<>tllrn' 

I 
--"-----'" 
------1.... _______ _1 • I 

In summary, the use of subroutines makes possible 
considerable saving of memory space and program·­
ming time at the very slight expense of the space and 
complexity of linkages and calling sequences. 

TYPEWRITER UTILIZATION 

The GE-225 console typewriter can be used by the 
programmer to type messages concerning conditions 
within a program and also to instruct the computer 
operator as to program needs. USing the typewriter 
for operation control can help reduce human errors. 

Typical messages on program conditions are: 

1. o ERRORS TAPE 3 
o ERRORS TAPE 4 

E:m OF PASS 0 

2. um OF JOB 

3. EOF PIT 2002 - 004 PREI·1ATURE START 

002 - 004 PREI1A TURE START 

003 - 010 PREIJA TURE START 

Typewriter messages concerning the operator will be 
similar to these: 

1. JOB DONE. TAPE 7 IS I,E\I f~mnTOR TAPE. SAVE 6 AI~D 7 

2. 

TAPE 7 xmn READ 

REI·IOV TAPE 2 

1·IOUi:T TAPE 5 
TOGGLE 5,11 TCH 1 C 

@~D~~~ ________________________________ __ 

XIII-9 



Since the typewriter is a relatively slow output device, 
messages and operator instructions should be as brief 
as possible. 

DEBUGGING TECHNIQUES 

Debugging can be extremely expensive and wasteful of 
time unless done properly. A few simple and basic 
rules can do much to reduce the expense involved in 
getting an operational program. Because debugging 
methods vary with the individual and the Situation, 
the following is offered merely as a guide. 

Desk Checking 

When the symbolic program is returned from key 
punching, a listing is usually sent with the card deck. 
Check this listing for discrepancies due to misinter­
pretation by the key punch operator and any possible 
key punch machine errors. In scanning the symbolic 
program listing, watch for mistakes in the operation 
codes and for punches in card columns 7 and 11. 
During GAP assembly any card containing punches in 
columns 7 and 11 will be rejected. Correct any errors 
found before proceeding to the GAP assembly. 

Correcting Errors Detected By Gap 

After the symbolic program has been assembled by 
GAP and returned, correct the errors detected and 
listed by the General Assembly Program. If there 
were numerous errors listed, make the corrections 
to the symbolic program deck and reassemble. If 
relatively few errors were detected, make these cor­
rections in the symbolic program deck without re­
assembling but by punching octal correction cards to 
place with the GAP binary program deck. 

Flow Chart Utilization 

A flow chart is a valuable debuggingaidin that it pro­
vides for easier detection of logic errors and can be 
used by the programmer to check off debugged paths 

2514003 0001340 0000002 2600002 
0000200 2700023 2700015 2510015 
2504002 0300001 0020201 0321277 
1420001 0437732 2600022 0220201 
2600002 0000000 0000000 0000000 
0000000 2001777 0000000 0000000 

within the program. Because this provides the pro­
grammer with an indication of what portions are 
completed, debugging time and check-out time can be 
reduced. 

During debugging, if the programmer uses valid input 
data and predetermined answers at various program 
check-points, he can use flow charts as an aid in 
error location or bracketing, thereby reducing de­
bugging time and machine time requirements. 

Memory Dumps 

During debugging, memory dumps are essential. Sev­
eral types of dumps are available but the most fre­
quently used are octal dumps. 

The quickest dump of memory is obtained bypressing 
the memory dump button on the Printer Controller. 
This automatically produces an octal dump (Figure 
13-12), starting at memory location 0000 and contin)Jes 
until the manual clear button on the printer controller 
is depressed. The printer does not stop automatically 
when the entire memory has been dumped, but con­
tinues looping through memory until the clear button 
is pressed. 

The octal dump that is most frequently used provides 
the octal memory location for each eight (8) word line 
of print (column 1 of Figure 13-13). If the words for 
a line of print are identical to those of 11le last line I 
printed, the line is skipped. This saves the number 
of lines printed and machine time required for dump­
ing. This routine is a program feature and thus must 
be either in memory or read in from cards or tape. 

Memory can also be dumped on magnetic tape. Nor­
mally, this type of dump is intended for later use by 
rerun or recovery routines and, in the case of long 
running programs, should be done periodically. Rou­
tines are then available to list these tapes via the 
high-speed printer. 

2500201 2500004 2516006 2600006 
2514002 2601277 2504522 2700031 
0100200 2514003 2504032 0300200 
2514002 2600002 2514006 2600036 
0000000 0000000 0000000 0000000 
0000000 0000000 0000000 0000000 

Figure 13-12. Printer Controller Octal Memory Dump 

@~D(2(2~ ___ --------

XllI-10 October 1963 



Octal 
Location 

0000000 0001340 0000000 0000017 2516006 2600002 
00230 0060000 0000002 2606060 0000000 0000000 0000000 0000000 0000000 
00240 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 
00250 0000000 2001777 0000000 0000000 0000000 0000000 0000000 0000000 
00260 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 
00400 0060126 0040171 0030606 0012604 0112100 0052322 0510101 0446060 
00410 0606060 0606001 0004002 0606060 0060126 0040271 0000606 0012604 
00420 0112200 0032322 0510200 0446060 0606060 0606001 0004001 0606060 
00430 0606060 0606060 0606060 2606077 0000000 0000000 0000000 0000000 
00440 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 

Figure 13-13. Programmed Octal Memory Dump 

Memory dumps when properly utilized are very in­
formative and very efficient since only a small amount 
of computing time is used when dumping through the 
high-speed printer. The advantages of a memory 
dump are: 

a. It gives the results of any program modifi­
cation that may have been done. 

b. Programmer can check memory to see that 
information is correct and in the proper 
locations. 

c. It gives temporary or final results in key 
memory locations up to the time memory 
was dumped. 

d. It shows input or test data being used as a 
program is run. 

Memory dumps via the typewriter or card punch con­
sume computer time and should be used only when a 
high-speed printer is not available. 

Memory dumps should be used frequently during 
debugging. However, if they prove insufficient, then 
traCing may provide the solution. 

TRACING 

The TRACE routine can be used when other techniques 
have failed. However, at first, trace only the portions 
of the program that are known or suspected to contain 
bugs. If it then becomes necessary. trace as much of 
the program as required. Traeing' can be an extremely 
powerful debuggll1g tool but often its use is abused. 
Tracing is time-consuming and thus is expensive when 
used to excess. 

Options are available with most trace routines that 
may supply the desired information without tracing 
each program instruction. 

Typical options are: 

1. Snapshot Option 

This type lists index registers 0, 1, 2, and 
3, and registers P, I, A, and Q before a BRU, 
SPB, or SEL instruction is executed. 

2. Single Address Option 

This type lists the same registers as the 
SNAPSHOT option, only when a specific 
address is referenced. 

3. Normal Option 

The same registers listed in the other types 
are printed before each instruction is exe­
cuted. 

Tracing output is normally through the high-speed 
printer. 

Loaders 

When the program deck from GAP is in binary form, 
a binary loader deck is used to read the GAP program 
deck into the proper memory locations. 

During debugging, it is best to use a binary loader 
with octal correction cards. This type of loader will 
read into memory the binary deck and then read the 
octal corrections into the specified memory words. 
Thus, errors can be corrected without repeated re­
assembly of the symbolic deck and, when the program 
is completely debugged, a corrected symbolic deck 
can be produced in a single new GAP assembly. Nor­
mally a loader, such as the Lower Memory Binary 
Loader for Binary Deck with Octal Correction Cards, 

@~D~~~ ____________ _ 

XIII-ll October 1963 



""11"1"1,1'1"",.""""""""1""""",,,,,11111111111111111111I11111 
1114S'7".IIUUMB.O ••• ~DDMaa~.a.~~DMB.n ••• ~au ••• G ••• ~.DM •• R ••• ~RDM •• G •• _nnnM~~n ••• 

11111111111111111111111111111111111111111111111111111111111111111111111111111111 

12 22 22122 2212 2 2 2 22 2 2 22 22 2 Z2 2 22 2 2 22 2 2 2 2 2 22 2 2 22 2 2 22 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 Z 2 2 Z Z Z Z 2 2 Z 

3333333133 3 3 33 3 3 33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 33 3 3 3 3 33 3 3 3 3 3 3 3 3 3 3 3 3333333333 I 3 3 3 3 3 3 3 3 3 3 3 

44 4 4 4 44 44 4 44 4 4 44 4 44 4 44 4 4 4 4 4 4 4 44 4 44 4 4 4 4 4 4 4 4 4 4 4 44 4 4 4 4 44 4 44 4 4 4 4 4 444444444444444444 4 

5555555555555555555555555555555555555555555555555555 5 5 5 5 55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 55 5 5 5 5 5 5 

1111111111111111111111111& II 611111 Ii I 11111 51 11111111 Ii I 51 11& I &111111111111111111 

1111111111111111111111111 11111 111 111 I 11 17111111 11 11 11 11 11111 I II I I 11111 I 1 11111111 

11111111111111111111111111111111111111111111111111"'111111111111I111111111111111 

1119111111111111111111111111111111111111111111111111111111111111111111I11111I11I 
ItS ••• 7 ••• nuUM •• o ••• nuDMs.n ••• M»uM •• n ••••••••• a ••••••••••••••••••• a ••• nnnM •• n ••• 

For use with a binary loader containing 
an octal correction subroutine to change 
a specific memory location. 

Figure 13-14. Octal Correction Card 

CD225B1.3, is used. To illustrate loader and cor­
rection card usage, the deck set-up using octal 
corrections for Routine CD225B1.3 is shown: 

The octal corrections are punched as follows: One 
card is punched for each change to be made. Columns 
5 through 9 contain the octal address and columns 12 
through 18 contain the octal contents required. Figure 
13-14 shows a sample octal correction card. 

When the program is considered debugged, the cor­
rections should be made to the source deck and the 
program reassembled. A final checkout should now 
be made with the new object deck. 

PROGRAM DOCUMENTATION 

Accurate, up-to-date program documentation can 
produce considerable savings in programming and 
operator effort, as well as computer time. Efficient 
operation of a computer system requires that changes 

or correction to operating programs be made quickly 
and correctly. Without adequate documentation, 
changes and corrections may become difficult to ac­
complish. Since each computer installation has dif­
ferent characteristics, program documentation can 
vary from site to site. However, a basic pattern can 
be used by each system. 

Run Book 

A RUN BOOK should exist for every program run 
within a system and should contain documentation so 
complete that modifications can be made with minimum 
effort. Also, if trouble develops, the source can be 
readily found. A typical run book would contain the 
following: 

A. Run Number and Title. 

B. Name of Programmer. Date Completed, and Date 
of Last Modification. 

C. A Concise Description of what the run is to 
accomplish. 

D. A Write-up containing all internal and external 
controls pertinent to the program, including: 

1. A completed Operator Instruction or Run 
Form that contains, 

a. A verage run time and procedure to follow 
if established time limit is exceeded. 

b. Console switch settings and brief de­
scription of each. 

®~D~~~ _________ _ 
XllI-12 



c. Error and special procedure loops with 
brief explanation of each. 

d. Tape controlle r and input and output tape 
handler numbe rs. 

e. Identification and disposition of" tapes. 

f. Rerun and restart procedure. 

g. All peripheral device set-ups and plug 
designation. 

2. Completed description and Layout Forms for 
all input and output. 

3. Memory Allocation Layout 

a. Mark input and output areas 

b. Program and subroutine areas 

c. Working storage areas identifying each 
location used 

d. If overlays are used, identify areas in 
which it occurs. 

E. Run Diagram and Flow Chart 

An up-to-date run diagram and an accurate flow 
chart should be in the Run Book. GAP coding 
reference pOints should be marked or identified 
on the flow chart. This provides references 
between the operating program and the flow chart 
providing for easier program corrections. 

F. Sample Printer Output 

If the high-speed printer is used during the run, 
a sample of the output can be extremely useful. 
The samples should be marked with the runnum­
ber. 

G. GAP Listing 

The GAP program listing can be included in the 
run book. If the GAP listing is in a separate 
binder, indicate the binder number for quick 
location of the program. Any corrections or 
modifications to the listing should be entered in 
red and initialled and dated if the program is not 
to be reassembled at this time. 

@~D~~~ _________ _ 

XllI-13 





APPENDICES 

I. REPRESENTATION OF 6E-225 CHARACTERS 

II. OCTAL LIST OF 6E-225 INSTRUCTIONS 

III. ALPHABETIC LIST OF 6E-225 INSTRUCTIONS 

@~D~~~ __________ _ 





I 

I 

I 

I 

APPENDIX I. 

REPRESENTATION OF 6E-225 CHARACTERS 

HIGH CONSOLE HOLLERITH BCD 

CHARACTER SPEED TYPEWRITER PAPER TAPE CODE BCD MAGNETIC 
PRINTER CHARACTER CHARACTER (PUNCH MEMORY TAPE 
SYMBOLS OR ACTION (8 CHANNEL) IN ROWS) (OCTAL)" (OCTAL) 

0 0 0 Space 0 00 12 

1 1 1 1 1 01 01 

2 2 2 2 2 02 02 

3 3 3 3 3 03 03 

4 • 4 4 4 04 04 

5 5 5 5 5 05 05 

6 6 6 6 6 06 06 

7 7 7 7 7 07 07 

8 , 8 8 8 10 10 

9 9 9 9 9 11 11 

A A A / 12-1 21 61 

B B B S 12-2" 22 62 

C C C T 12-3 23 63 

D D D U 12-4 24 64 

E E E V 12-5 25 65 

F F F W 12-6 26 66 

G G G X 12-7 27 67 
H H H Y 12-8 30 70 

I I I Z 12-9 31 71 

J J J J 11-1 41 41 

K K K K 11-2 42 42 
L L L L 11-3 43 43 
M M M M 11-4 44 44 
N N N N 11-5 45 45 
0 0 0 0 11-6 46 46 
P P P P 11-7 47 47 
Q Q Q Q 11-8 50 50 
R R R R 11-9 51 51 
S S S B 0-2 62 22 
T T T C 0-3 63 23 
U U U D 0-4 64 24 
V V V E 0-5 65 25 
W W W F 0-6 66 26 
X X X G 0-7 67 27 
Y Y Y H 0-8 70 30 
Z Z Z I 0-9 71 31 
+ + 0 12 20 60 

- - - - 11 40 40 
Space Blank Blank & Blank 60 20 

/ / A 0-1 61 21 
2-8 12 12 

t t / Stop 3-8 13 13 
@ @ 4-8 14 14 

(Underline) - 0-8 16 16 

= = 6-8 16 16 
7-8 17 

12-2-8 32' 72 
+0 12-0 32' 

12-3-8 33 73 
12-4-8 34 74 
12-5-8 36 76 

Tab 12-6-8 36 76 
Carriage 

12-7-8 37 77 
Return 

-0 11-0 62' 52 
11-2-8 62' 62 

$ $ $ $ 11-3-8 53 53 
• . 11-4-8 64 64 

11-6-8 65 66 
11-6-8 56 56 
11-7-8 67 57 

Print Red 0-2-8 72 32 
0-3-8 73 33 

% % 0-4-8 74 34 
( r Print Black 0-5-8 75 35 

~ Tab 0-6-8 76 36 
Delete 0-7-8 77 37 

'The 400 card per minute card reader reads 11-0 and 11-2-8 as 52 and 12-0 and 12-2-8 as 32. The 1000 cards per 
minute card reader treats 11-2-8 and 12-2-8 as invalid characters. The card punch punches only 11-0 for 52 and 
12-0 for 32. 

**The OCTAL n'Jtation is a shorthand for binary representation. Conversion between the two representations can 
be done mentally. In the OCTAL system, there are eight admissible symbols: 0, 1, 2, 3, 4, 5, 6, 7. Each may 
represent (when used) a maximwn of three binary bits. 

A - 1 May 1964 





APPENDIX II. OCTAL LIST OF 6E-225 INSTRUCTIONS 

Word Word 
Octal Mnemonic Times Page Octal Mnemonic Times Page 

0000000 LDA Y X 2 V - 14 05MMMMM RTB M T 2 VIII - 11 
Load A Register TTNNNNN (blank) N 

Read Tape Binary 

I 0100000 ADD y X 2 V- 2 
* Decimal Add 2 V- 7 0600000 LDX Y X 3 V - 36 

Load X 
0200000 SUB Y 3 V- 7 

I * Decimal Subtract 0600000 SLW N 2 IX- 6 
NNOOOOO 

0200000 SUB y X 3 V- 2 Slew Paper N Lines 
Subtract 

0700000 SPB y X 2 V - 31 
0200000 WEF T 2 VIll-ll Store P and Branch 
TTNNNNN 

Write End of File OXOOOOO SLT K 2 IX - 6 
XXOOOOO 

02MMMMM WTD M T 2 VlII- 10 Slew Paper to Tape Punch 
TTNNNNN (blank) N 

Write Tape Decimal 1000000 DLD y X 3 V - 15 

0300000 STA y X 2 V - 15 
Double Length Load 

Store A 1020000(N=2) RSD M N 2 X- 3 

03MMMMM WTB M T 2 VlII- 10 
Read Document Single 

TTNNNNN (blank) K 1040000(N=2) RDC M N 2 X- 4 
Write Tape Binary Read Document Continuously 

0400000 BXL K X 3 V - 35 1060000(N=2) PKT X N 2 X- 4 
Branch If X Is Less Than Pocket Select 

0420000(N=I) RSD M N 2 X- 3 1100000 DAD Y X 3 V- 2 I Read Document Single * Double Decimal Add 3 V- B 

0440000 (N =1) RDC M N 2 X- 4 1100000 DAD Y X 3 V- 2 
Read Document Continuously Double Length Add 

0460000(N=I) PKT X N 2 X- 4 1100000(N=2) HLT M N 2 X- 5 
Pocket Select Halt Continuous Feeding 

04MMMMM RTD M T 2 VlII-11 1120000(N=2) ERB N 2 X- 5 
TTNNNNN (blank) K 0000000 

Read Tape Decimal End Read Busy 

0500000 BXH K X 3 V- 34 1200000 DSU Y X 5 V- : I Branch If X Is Higher Than * Double Decimal Subt~act 
V -or Equal To 

1200000 DSU y X 5 V- 3 
0500000(N =1) HLT M N 2 X- 5 Double Length Subtract 

Halt Continuous Feeding 
1200000 RRF N F 2 XI- 6 

0520000(N=I) ERB N 2 X- 5 OOMMMMM (blank) M 
0000000 Read from MRADS Unit F 

End Read Busy 

I *Optional Instruction 

@~D~~~ 

A - 3 October 1963 



Word Word 
Octal Mnemonic Times Page Octal Mnemonic Times Pa e 

1201000 RRD N F 2 XI- 7 23MMMMM WTS M T 2 VIII - 11 
OOMMMMM (blank) M TTNNNNN (blank) N 

Read from MRADS Unit F Write Tape Special Binary Mode 

1202000 RAW N F 2 XI - 7 2400000 *MOV Y 4 + 2N V -18 
0000000 (blank) zero Move 

Read Mter Write Check 
2500000 PRF F 2 XI- 4 

1300000 DST Y X 3 V - 16 MMMMMMM OCT (MRADS Address) 
Double Length Store Position MRADS File 

1400000 INX K X 3 V - 34 2500004 HCR 2 VI - <.; 

Increment X Halt Card Reader 

14MMMMM RBD M T 2 VIII - 12 2500005 OFF 2 VI- 8 
TTNNNNN (blank) N Power Off (Direct I/O Devices) 

Read Backward Decimal 
2500006 RPT 2 VI-16 

1500000 MPY Y X 9 to 23 V- 5 Read Paper Tape 
Multiply 

I 
2500006 TYP 2 VI- 8 

Type 

2500006 WPT 2 VI-18 
15MMMMM RBB M T 2 VIII - 12 Write Paper Tape 
TTNNNNN (blank) 

Read Backward Binary 2500007 TON 2 VI- 8 
Typewriter On 

1600000 DVD Y X 26 to 29 V- 5 
Divide 2500011 RCS 2 VI- 6 

Read Control Switches 
1600000 BKW T 2 VIII - 12 
TTOOOOO 2500015 PON 2 VI- 111 

Backspace and Position Write Head Punch On 

1700000 STX Y X 3 V - 36 2500016 HPT 2 VI- 17 I 
Store X Halt Paper Tape Reader 

2000000 EXT Y X 3 V -17 2500014 RON 2 VI- 16 
Extract Paper Tape Reader On 

2000000 WPL Y N 2 IX - 5 2500P20 SEL P X 2 VII- 2 
01YYYYY Select 

Write Print Line 
2504001 LAQ 3 V -19 

2000000 RWD T 2 VIII - 12 Load A from Q 
TTOOOOO 

Rewind 2504002 LDZ 3 V- 22 
Load Zero into A Register 

2100000 *CAB Y 2 to 4 V - 33 
Compare and Branch 2504004 LQA 3 V -19 

Load Q from A 
2200000 *DCB Y 2 to 6 V - 33 

Double Comoare and Branch 2504005 XAQ 3 V- 20 
Exchange A and Q 

2300000 ORY Y X 3 V -17 
Or A into Y 2504006 MAQ 3 V -19 

Move A to Q 
* This instruction is an optional feature. 

@~D~ 
'~~ 

:'1 

A - 4 October 1963 



Word Word 
Octal Mnemonic Times Pa~e Octal Mnemonic Times Pa~e 

2504012 NOP 3 V - 24 250YY02 WCD Y 2 VI - 37 
No Operation Write Card Decimal 

I 2504022 LDO 3 V - 22 250YY03 WCB Y 2 VI - 37 
Load One into A Register Write Card Binary 

2504032 ADO 3 V- 4 250YYI0 RCF Y 2 VI - 28 
Add One Read Cards Full 

I 2504032 ADO Add One 3 V - 4 250YY12 RCM Y 2 VI - 29 
* Add One Decimal 3 V - 9 Read Cards Mixed 

2504040 CHS 2 V - 23 250YY17 WCF Y 2 VI - 37 
Change Sign of A Register Write Cards Full 

2504102 LMO 3 V - 23 2510000 SRA K 2 to 12 V - 24 
Load Minus One into A Register Shift Right A Register 

I 2504112 SBO Subtract One 3 V- 4 2510040 SCA K 2 to 12 V - 27 
*Subtract One Decimal 3 V- 9 Shift Circular A Register 

2504202 *LAC 3 V - 20 2510100 SNA K 2 to 12 V - 28 
Load A Register from C Register Shift N and A Right 

2504210 *LCA 3 V - 20 2510400 SAN K 2 to 12 V - 28 
Load C Register from A Register Shift A and N Right 

2504502 CPL 3 V - 23 2511000 SRD K 2 to 12 V - 26 
Complement A Shift Right Double 

2504522 NEG 3 V - 23 2511100 NAQ K 2 to 12 V- 29 
Negate A Shift N, A, and Q Right 

2506003 *SXG Y 2 V - 36 2511200 SCD K 2 to 12 V - 27 
Select X Register Group Shift Circular Double 

2506011 SET DECMODE 2 V - 9 2511400 ANQ K 2 to 12 V - 28 
Set Decimal Mode Shift A into Nand Q 

2506012 SET BINMODE 2 V - 10 2512000 SLA K 2 to 12 V - 25 
Set Binary Mode Shift Left A Register 

2506015 SET PST 2 VII- 3 2512200 SLD K 2 to 12 V - 26 
Set Automatic Priority Interrupt On Shift Left Double 

2506016 SET PBK 2 VII- 3 2513000 NOR K 3 to 12 V - 29 
Set Automatic Priority Interrupt Off Normalize the A Register 

250YYOO RCD Y 2 VI - 26 2513200 DNO K 2 to 12 V - 30 
Read Cards Decimal Double Length Normalize 

250YYOI RCB 2 VI - 27 2514000 BOD 2 V - 32 
Read Cards Binary Branch on Odd 

2514001 BMI 2 V - 32 
* This instruction is an optional feature. Branch on Minus 

@~D~~~ ___________ _ 

A-5 October 1963 



Octal 

2514002 

2514003 

2514004 

2514005 

2514006 

2514007 

2514720 

2514721 

2514722 

2514723 

2514724 

2514727 

2514P20 

2514P20 

2514P20 

2514P20(K=1) 

2514P21 

2514P21 

Word 
Mnemonic Times Page 

BZE 2 V - 32 
Branch on Zero 

BOV 2 V - 32 
Branch on Overflow 

BPE 2 V - 32 
Branch on Parity Error 

BNR 2 VI- 9 
Branch on N Register Ready 

BCR 2 VI - 33 
Branch on Card Reader Ready 

BPR 2 VI - 37 
Branch on Card Pun::h Ready 

BAR BAR 7 2 XII - 8 
Branch on AAU Ready 

BAR BMI 7 2 XII-9 
Branch on AA U Minus 

BAR BZE 7 2 XII - 9 
Branch on AAU Zero 

BAR BOV 7 2 XII - 9 
Branch on AAU Overflow 

BAR BUF 7 2 XII - 9 
Branch on AAU Underflow 

BAR BER 7 2 XII - 9 
Branch on AAU Error 

BCS BPR P 2 IX - 7 
Branch on Printer Ready 

BCS BRR P 2 XI - 10 
Branch on MRADS Controller Ready 

BCS BTR P 2 VIII - 14 
Branch on Tape Controller Ready 

BCS SKR P 2 X- 6 
Branch on Document Handler K 
Ready 

BCS BAA P 2 IX - 14 
Branch 0:1. Any Alert 

BCS, BEF P 2 VIII - 14 
Branch on End of File 

2514P21(File 0) BCS FKR P 2 XI - 10 
Branch on File K Ready 

Word 
Octal Mnemonic Times Page 

2514P21(K=2) BCS SKR P 2 x - 6 

2514P22 

2514P22 

Branch on Document Handler K 
Ready 

BCS BET P 2 VIII- 14 
Branch on End of Tape 

BCS BOP P 2 IX - 7 
Branch on Printer Out of Paper 

2514P22(File 1) BCS FKR P 2 XI - 10 

2514P22(K=1) 

2514P23 

2514P23 

Branch on File K Ready 

BCS NPK P 2 X - 6 
Branch on No Pocket Decision, 
Document Handler K 

BCS BOV P 2 IX - 14 
Branch on Printer Buffer Overflow 

BCS BRW P 2 VIII- 15 
Branch on Tape Rewinding 

2514P23(File 2) BCS FKR P 2 XI - 10 
Branch on File K Ready 

2514P23(K=2) BCS NPK P 2 X - 6 

2514P24 

2514P24 

Branch on No Pocket Decision, 
Document Handler K 

BCS BPE P 2 
Branch on Mag Tape VIII- 14 
Parity Error 

BCS BSA P 2 IX - 14 
Branch on Printer Slew Alert 

2514P24(File 3) BCS FKR P 2 XI - 10 
Branch on File K Ready 

2514P24(K=1) BCS FSK P 2 X - 6 

2514P25 

2514P25(K=2) 

25L4P26 

2514P26(K=1) 

2514P26 

Branch on Feeding, Document 
Handler K 

BCS BIO P 2 
Branch on Mag Tape I/O VIII- 14 
Buffer Error 

DSU 
BCS FSK P 2 
Branch on Feeding, Document 
Handler K 

XI- 10 

X- 6 

sCS BME P 2 VIII - 14 
Branch on Mod 3 or 4 Error 

BCS ICK P 2 
Branch on Invalid Character, 
Document Handler K 

Branch on DSU Parity Error 

X - 6 

I 

I 

BCS ICK P 2 XI-I0 I 
@~D~~~ __________ _ 

A - 6 October 1963 



I 

Word 
Octal Mnemonic Times Page 

2514P27 BCS BER P 2 
Branch on Error VIII -15 

2514P27(K=2) BCS ICK P 2 X- 6 
Branch on Invalid Character, 
Document Handler K 

2514P30(K=1) BeS SKE 2 X- 7 
Branch on AllY Error, 
Document Handler K 

2514P31 BCS FAE P 2 XI -11 
Branch on Error - On Any File 

2514P31(K=2) BCS SKE 2 X- 7 
Branch on Any Error, 
Document Handler K 

2514P32(K=1) *BCS DQK 2 X - 7 
Branch on Document TCD Correct, 
Document Handler K. 

2514P32(File 0) BCS FKE P 2 XI -11 
Branch on File K, File Error 

2514P33(K=2) *BCS DQK 2 X - 7 
Branch on Document TCD Correct, 
Document Handler K. 

2514P33(File 1) BCS FKE P 2 XI -11 
Branch on File K, File Error 

2514P34(File 2) BCS FKE P 2 XI -11 
Branch on File K, File Error 

2514P35(File 3) BCS FKE P 2 XI -11 
Branch on File K, File Error 

2514PCC BCS XXX P 2 VII - 2 
Branch on Controller Selector 

2516000 BEV 2 V - 32 
Branch on Even 

2516001 BPL 2 V - 32 
Branch on Plus 

2516002 BNZ 2 V - 32 
Branch all-Nan-Zero 

2516003 BNO 2 V - 32 
Branch on No Overflow 

2516004 BPC 2 V - 32 
Branch on Parity Correct 

* This instruction is an optional feature. 

Octal 

2516005 

2516006 

2516007 

2516720 

2516721 

2516722 

2516723 

2516724 

2516727 

2516P20 

2516P20 

2516P20 

Word 
Mnemonic Times Page 

BNN 2 VI - 9 
Branch on N Register Not Ready 

BCN 2 VI - 33 
Branch on Card Reader Not Ready 

BPN 2 VI - 37 
Branch on Card Punch Not Ready 

BAR BAN 7 2 XII - 8 
Branch on AAU Not Ready 

BAR BPL 7 2 XII - 9 
Branch on AAU Plus 

BAR BNZ 7 2 XII - 9 
Branch on AAU Not Zero 

BAR BNO 7 2 XII- 9 
Branch on AAU No Overflow 

BAR BNU 7 2 XII - 9 
Branch on AAU No Underflow 

BAR BNE 7 2 XII - 9 
Branch on AAU No Error 

BCS BPN P 2 
Branch on Printer Not Ready 

BCS BRN P 2 
Branch on MRADS Controller 
Not Ready 

IX - 7 

XI - 10 

BCS BTN P 2 VIII - 14 
Branch on Tape Controller Not 
Ready 

2516P20(K=1) BCS SKN P 2 X - 6 

2516P21 

2516P21 

Branch on Document Handler K 
Not Ready 

BCS BNA P 2 IX - 14 
Branch on Printer No Alert 

BCS BNF P 2 VIII - 14 
Branch on No End of File 

2516P21(File 0) BCS FKN P 2 XI - 10 
Branch on File K Not Ready 

2516P21(K=2) BCS SKN P 2 

2516P22 

Branch on Document Handler 
K Not Ready 

BCS BNP P 2 

X- 6 

IX - 7 
Branch if Printer Not Out of Paper 

@~D~~~ _________ _ 

A - 7 October 1963 



I 

I 

I 

Word 
Octal Mnemonic Times Pa e 

2516P22 BCS BNT P 2 VIII - 14 
Branch on No End of Tape 

2516P22(File 1) BCS FKN P 2 XI -10 
Branch on File K Not Ready 

2516P22(K=1) BCS PDK P 2 X - 6 

2516P23 

2516P23 

Branch on Pocket Decision, 
Document Handler K 

BCS BNO P 2 
Branch on No Printer Buffer 
Overflow 

IX - 14 

BCS BNR P 2 VIII - 15 
Branch on No Tape Rewinding 

2516P23(File 2) BCS FKN P 2 XI - 10 
Branch on File K Not Ready 

2516P23(K=2) BCS PDK P 2 X - 6 

2516P24 

2516P24 

Branch on Pocket DeCiSion, 
Document Handler K 

BCS BNS P 2 IX -14 
Branch on No Printer Slew Alert 

BCS BPC P 
Branch on Mag Tape 
Parity Correct 

2 
VIII - 14 

2516P24(File 3) BCS FKN P 2 XI - 10 
Branch on File K Not Ready 

2516P24(K=1) BCS NFK P 2 X - 6 

2516P25 

Branch on Not Feeding, 
Document Handler K 

BCS BIC P 2 
Branch on Mag Tape II 0 
Buffer Correct 

VIII - 14 

2516P25(K=2) BCS NFK P 2 X- 6 

2516P26 

2516P26 

2516P26(K=1) 

Branch on Not Feeding, 
Document Handler K 

BCS BNM P 2 VIII - 15 
Branch on No Mod 3 or 4 Error 

BCS RPC P 
Branch on DSU 
Parity Correct 

BCS VCK 

2 

2 
Branch on Valid Character, 
Document Handler K 

XI-tO 

X - 7 

I 2516P27 BCS BNE P 
Branch on No Error 

2 
VIII - 15 

Octal 

2516P27(K=2) 

2516P30(K=1 ) 

2516P31 

2516P31(K=2) 

Word 
Mnemonic Times Pa e 

BCS VCK 2 
Branch on Valid Character, 
Document Handler K 

BCS SKC 2 
Branch on Document Handler 
K Correct 

BCS FAC P 2 

x - 7 

X - 7 

XI -11 
Branch on No Error - Any File 

BCS SKC 2 
Branch on Document Handler 
K Correct 

X - j 

2516P32(File 0) BCS FKC P 2 XI - 11 
Branch on File K, No Unit Error 

2516P32(K=1) *BCS NQK 2 X - 7 
Branch on Document TCD Not 
Correct, Document Handler K 

2516P33(File 1) BCS FKC P 2 XI -11 
Branch on File K, No Unit Error 

2516P33(K=2) *BCS NQK 2 X - 7 
Branch on Document TCD Not 
Correct, Document Handler K 

2516P34(File 2) BCS FKC P 2 XI - 11 
Branch on File K, No Unit Error 

2516P35(File 3) BCS FKC P 2 XI - 11 

2516PCC 

25MMMMM 
TTNNNNN 

2600000 

2700000 

3000000 

30YYYYY 
01XXXXX 

Branch on File K, No Unit Error 

BCS XXX P 2 VII - 2 
Branch on Controller Selector 

RTS M T 2 VIII - 11 
(blank) N 
Read Tape Special Binary Mode 

BRU Y X 1 V - 31 
Branch Unconditionally 

STO Y X 3 V - 16 
Store Operand Address 

FLD Y 72 usec XII - 7 
Load Auxiliary Arithmetic Unit 

WFL Y X N 2 IX - 6 
(WPL) 
Write Format Line 

* This instruction is an optional feature 

@~D~~~ _________ _ 

A - 8 October 1963 



Mnemonic 

3100002 

3100010 

31YYYYY 

3200002 

3200010 

32YYYYY 

3300000 

3500002 

Word 
Octal Times Pa e 

MAQ A 49. 5 usee XII - 7 
Move AX to QX 

SET NFLPOINT 49.5 usee XII - 6 
Set Normalized Floating- Point Mode 

FAD Y 

AAU Add 

Min. 162 usee XII - 7 
Max. 709 usee 

LQA A 49.5 usee XII - 7 
Load QX From AX 

SET UFLPOINT 49. 5 usee XII - 6 
Set Unnormalized Floating- Point 

Mode 
FSU y 

AAU Subtract 

FST Y 

Min. 162 usee XII - 8 
Max. 709 usee 

72 usee XII - 7 
Store Auxiliary Arithmetic Unit 

XAQ A 117 usee XII- 7 
Exchange AX and QX 

Mnemonic 

3500010 

35MMMMM 
TTNNNNN 

35YYYYY 

3600Q02 

36YYYYY 

3700000 
OOMMMMM 

3701000 
OOMMMMM 

Word 
Octal Times Pa e 

SET FIXPOINT 49. 5 usee XII - 6 
Set Fixed- Point Mode 

RBS M T 2 VIII- 12 
(blank) N 
Read Backward Special Binary 

FMP Y Min. 297 usee XII - 7 
Max. 1062 usee 

AAU Multiply 

LAQ A 49.5 usee XII - 7 
Load AX From QX 

FDV Y Min.814.5usecXII- 8 
Max. 1095 usee 

AAU Divide 

WRF N F 2 XI- 7 
(blank) M 
Write on MRADS Unit F 

WRD N F 2 XI - 7 
(blank) M 
Write on MRADS Unit F 

U~~D~~~ ___ ---------
A -H 





APPENDIX III. ALPHABETIC LIST OF GE-225 INSTRUCTIONS 



Word Word 
Mnemonic Octal Times Page Mnemonic Octal Times Page 

BCS BNS P 2516P24 2 IX - 14 BCS FAC P 2516P31 2 XI - 11 
Branch on No Printer Branch on No Error - Any File 
Slew Alert 

BCS FAE P 2514P31 2 XI - 11 
BCS BNT P 2516P22 2 VIII- 14 Branch on Error - On Any File 

Branch on No End of Tape 
BCS FKC P 2516P32(File 0) 2 XI - 11 

BCS BOP P 2514P22 2 IX- 7 or 2516P33(File 1) 
Branch on Printer Out of or 2516P34(File 2) 
Paper or 2516P35(File 3) 

Branch on File K, No Unit Error 
BCS BOV P 2514P23 2 IX - 14 

Branch on Printer Buffer BCS FKE P 2514P32(File Q) 2 XI - 11 
Overflow or 2514P33(File 1) 

or 2514P34(File 2) 

I BCS BPC P 2516P24 2 or 2514P35(File 3) 
Branch on Tape Parity Correct VIII - 14 Branch on File K, File Error 

I BCS BPE P 2514P24 2 BCS ;FKN P 2316P21(File 0) 2 XI -10 
Branch on Tape Parity Error VIII - 14 or 2516P22(File 1) 

or 2516P23(File 2) 
BCS BPN P 2516P20 2 IX- 7 or 2516P24(File 3) 

Branch on Printer Not Ready Branch on File KNot Ready 

BCS BPR P 2514P20 2 IX - 7 BCS FKR P 2514P21(File 0) 2 XI -10 
Branch on Printer Ready or 2514P22(File 1) 

or 2514P23(File 2) 
BCS BRN P 2516P20 2 XI - 10 or 2514P24(File 3) 

Branch on MRADS Controller Branch on File K Ready 
Not Ready 

BCS FSK P 2514P24(K=1) 2 X- 6 
BCS BRR P 2514P20 2 XI - 10 or 2514P25(K=2) 

Branch on MRADS Controller Branch on Feeding, Document 
Ready Handler K 

BCS BRW P 2514P23 2 VIII- 15 BCS ICK P 2514P26{K=1) 2 X - 6 
Branch on Tape Rewinding or 2514P27(K=2) 

Branch on Invalid Character, 
BCS BSA P 2514P24 2 IX - 14 Document Handler K 

Branch on Printer Slew Alert 
BCS NFK P 2516P24(K=1) 2 X - 6 

BCS BTN P 2516P20 2 VIII- 14 or 2516P25(K=2) 
Branch on Tape Controller Branch on Not Feeding, 
Not Ready Document Handler K 

BCS BTR P 2514P20 2 VIII- 14 BCS NPK P 2514P22(K=1) 2 X - 6 
Branch On Tape Controller Ready or 2514P23(K=2) 

Branch on No Pocket Decision, 
*BCS DQK 2514P32 (K=l) 2 X- 7 Document Handler K 

or 2514P33(K=2) 
Branch on Document TCD Correct, *BCS NQK 2516P32(K=1) 2 X- 7 
Document Handler K. or 2516P33(K=2) 

Branch on Document TCD Not 
* This instruction is an optional feature Correct, Document Handler K 

@~D~(2~ ___ --------

A - 12 October 1963 



Word Word 
Mnemonic Octal Times Pa e Mnemonic Octal Times Page 

BCS PDK P 2516P22(K=1) 2 X- 6 BNZ 2516002 2 V - 32 
or 2516P23(K=2) Branch on Non- Zero 

Branch on Pocket Decision, 
Document Handler K BOD 2514000 2 V - 32 

Branch on Odd 

I 
BCS RPC P 2516P26 2 XI - 10 

Branch on DSU Parity Correct BOV 2514003 2 V - 32 
Branch on Overflow 

BCS RPE P 2514P26 2 XI - 10 
Branch on DSU Panty Error BPC 2516004 2 V - 32 

Branch on Parity Correct 
BCS SKC 2516P30(K=1) 2 X- 7 

or 2516P31 (K=2) BPE 2514004 2 V - 32 
Branch on Document Handler K Branch on Parity Error 
Correct 

BPL 2516001 2 V - 32 
BCS SKE 2514P30(K=1) 2 X- 7 Branch on Plus 

or 2514P31(K=2) 
Branch on Any Error, Document BPN 2516007 2 VI - 37 
Handler K Branch on Card Punch Not Ready 

BCS SKN P 2516P20(K=1) 2 X- 6 BPR 2514007 2 VI - 37 
or 2516P21 (K=2) Branch on Card Punch Ready 

Branch on Document Handler K 
Not Ready BRU y X 2600000 1 V - 31 

BCS SKR P 2514P20(K=1) 2 X- 6 
Branch Unconditionally 

or 2514P21(K=2) BSS(Pseudo) IV - 15 
Branch on Document Handler K Block Started by Symbol 
Ready 

BXH K X 0500000 3 V - 34 
BCS VCK 2516P26(K=1) 2 X- 7 Branch if X is Higher Than or 

or 2516P27(K=2) Equal To 
Branch on Valid Character, 
Document Handler K BXL K X 0400000 3 V - 35 

BCS XXX P 2514PCC 2 VIl- 2 
Branch If X is Less Than 

or 2516PCC BZE 2514002 2 V - 32 
Branch on Controller Selector Branch on Zero 

BEV 2516000 2 V - 32 *CAB y 2100000 2 to 4 V - 33 
Branch on Even Compare and Branch 

BKW T 1600000 2 VIII -12 CHS 2504040 2 V - 23 
TTOOOOO Change Sign of A Register 

Backspace and Position Write 
Head CPL 2504502 3 V - 23 

V - 32 
Complement A 

BMI 2514001 2 
Branch on Minus DAD y X 1100000 3 V- 2 I 

Double Decimal Add 3 V- B 
BNN 2516005 2 VI- 9 

Branch on N Register Not Ready * This instruction is an optional feature. 

BNO 2516003 2 V - 32 
Branch on No Overflow 

BNR 2514005 2 VI- 9 
Branch on N Register Ready 

@~D~~~ 

A - 13 October 1963 



@[ED~~~ ___ ----------

A - 14 October 19G3 



A - 15 October 19G.'3 



Word Word 
Mnemonic Octal Times Page Mnemonic Octal Times Page 

RCB 250YYOI 2 VI - 27 SAN K X 2510400 2 to 12 V - 28 I 
Read Cards Binary Shift A and N Right 

RCD Y 250YYO::J 2 VI - 26 SBO 2504112 3 V- 4 I 
Read Cards Decimal Subtract One 

RCF Y 250YYI0 2 VI - 28 SBO 2504112 3 V- 9 
Read Cards Full *Subtract One Decimal I 

RCM Y 250YY12 2 VI - 29 SBR (Pseudo) IV - 14 
Read Cards Mixed Subroutine Call 

RCS 2500011 2 VI - 6 SCA K X 2510040 2 to 12 V - 27 I 
Read Control Switches Shift Circular A Register 

RDC M N 0440000(N=I) 2 X- 4 SCD K X 2511200 2 to 12 V - 27 I 
or 1040000(N=2) Shift Circular Double 

Read Document Continuously 
SEL P X 2500P20 2 VII- 2 

REM (Pseudo) IV - 16 Select 
Remarks 

SEQ (Pseudo) IV - 17 
RON 2500014 2 VI - 16 Check Source Program Card Sequence 

Paper Tape Reader On Numbers 

RPT 2500006 2 VI - 16 SET BINMODE 2506012 2 V - 10 
Read Paper Tape Set Binary Mode 

RRD N F 1201000 2 XI - 7 SET DECMODE 2506011 2 v- 9 
(blank) M OOMMMMM Set Decimal Mode 

Read from MRADS Unit F 
SET FIXPOINT 3500010 49.5 usec XII- 6 

RRF N F 1200000 2 XI- 6 Set Fixed- Point Mode 
(blank) M OOMMMMM 

Read from MRADS Unit F SET NFLPOINT 3100010 49.5 usec XII - 6 

0420000(N=I) 2 X- 3 
Set Normalized Floating- Point Mode 

RSD M N 
or 1020000(N=2) SET PBK 2506016 2 VII - 3 

Read Document Single Set Automatic Priority Interrupt Off 

RTB M T 05MMMMM 2 VIII- 11 SET PST 2506015 2 VII - 3 
(blank) N TTNNNNN Set Automatic Priority Interrupt On 

Read Tape Binary 
SET UFLPOINT 3200010 49.5 usec XII - 6 

RTD M T 04MMMMM 2 VIII- 11 Set Unnormalized Floating-Point Mode 
(blank) N TTNNNNN 

Read Tape Decimal SLA K X 2512000 2 to 12 V - 25 I 
Shift Left A Register 

RTS M T 25MMMMM 2 VIII-11 
I (blank) N TTNNNNN SLD K X 2512200 2 to 12 V - 26 

Read Tape Special Binary Mode Shift Left Double 

RWD T 2000000 2 VIII- 12 SLT K OXOOOOO 2 IX - 6 
TTOOOOO XXOOOOO 

Rewind Slew Paper to Tape Punch 

@~D~~~ __________ _ 

A - 16 October 1963 



A - 17 October 1963 







Progress Is Of/r Mosf Imporfanf Prodf/d 

GENERALtj ELECTRIC 
~~ 

COMPUTER DEPARTMENT. PHOENIX, ARIZONA 

LITHO IN l.J S A 


