‘ Ble=225

PROGRAMMING

REFERENCE
MANUAL

GENERAL &3 ELECTRIC

TTTTTTTTTTTTTTTTTT

Ble=225

PROGRAMMING

REFERENCE
MANUAL

Revised May, 1964

COMPUTER DEPARTMENT

PREFACE

The GE-225 Programming Reference Manual has been prepared both as a reference manual
for programming the GE-225 information processing system and as a training aid. It includes
a brief description of the major components of the system, machine language and number systems,
central processor and console typewriter operations, controller selector operations, programming
conventions, and an octal and alphabetical listing of General Assembly Program instructions,

The information in this manual also applies essentially to other members of the GE Compatibles/
200 family of systems--the GE-200 Bank Transit System, and the GE-205 and GE-215 systems,

This manual is a condensed version of the previous edition which also contained information on
the General Assembly Program, and the various peripheral subsystems used with the GE-225,
Separate manuals have been published to cover these subjects, as listed below:

Subject Manual Title and Publication No,
General Assembly Program General Assembly Program I (CD225F1,006/
007)

400-cpm Card Reader
1000-cpm Card Reader Punched Card Subsystems Reference Manual
100-cpm Card Punch (CPB-302)

300-cpm Card Punch

15- & 15/41Kc. Magenetic Tape Magnetic Tape Subsystems Reference Manual
Subsystems (CPB-339)
Paper Tape Reader/Punch Paper Tape Subsystem Reference Manual
(CPB-308)

900-Lpm On-Line High Speed Printer
High Speed Printer Reference Manual

900-Lpm Off/On-Line High Speed (CPB-321)
Printer

12-Pocket Document Handler Document Handler Reference Manual
(1200-dpm) (CPB-307)

12-Pocket Document Handler Document Handler Reference Manual
('750-dpm) (750-dpm) (CPB-333)

@ 1963, 1964 by General Electric Co.

ii

CONTENTS

Section
I THE GE-225 INFORMATION PROCESSING SYSTEM
System Components
Simultaneous Operations
I MACHINE LANGUAGE

Number Systems
Data Words
Instruction Words

il CENTRAL PROCESSOR ORGANIZATION
Magnetic Core Storage
Arithmetic and Control Registers
Basic Operating Cycle

v GENERAL ASSEMBLY PRCGRAM II

See new manual entitled General Assembly Program II (CD225F1.006/007)

v CENTRAL PROCESSOR OPERATIONS

General

Arithmetic Instructions

Data Transfer Instructions

Shift Instructions

Internal Branch Instructions

Modification Instructions

Programming 16K Memory Systems
Programming Central Processor Operations

VI DIRECT INPUT-OUTPUT OPERATIONS

Control Console Operations

Console Typewriter Operations

Paper Tape Operations - See new manual entitled Compatibles/200 Paper Tape
Subsystem Reference Manual (CPB-308)

Card Reader Operations See new manual entitled Compatibles/200 Punched

Card Punch Operations Card Subsystems Reference Manual (CPB-302)

vl CONTROLLER SELECTOR OPERATIONS

Controller Selector Priority
Controller Selector Instructions
Automatic Program Interrupt

Page
I- 2
I- 8
Im-1
Im- 1
II- 9
ar- 1
ur- 3
mr- 7
v-1
V-2
V-14
V-24
Vv -31
V-34
v -37
vV -41
VI -1
VI - 6
VII - 1
VII- 1
VII - 2

Ble- 228

.

May 1964

Section

vl

XI

X1

X

MAGNETIC TAPE OPERATIONS

See new manual entitled Compatibles/200 Magnetic Tape Subsystems Reference
Manual (CPB-339)

HIGH-SPEED PRINTER OPERATIONS

See new manual entitled Compatibles/200 High Speed Printer Reference Manual
(CPB-321)

DOCUMENT HANDLER OPERATIONS

See new manual entitled Compatibles/200 Document Handler Reference Manual
(CPB-307)

DISC STORAGE UNIT

See new manual entitled Compatibles/200 Disc Storage Unit Reference Manual
(CPB-323)

AUXILIARY ARITHMETIC UNIT OPERATIONS

See new manual entitled GE-215/225 Auxiliary Arithmetic Unit Reference Manual

(CPB-325)

PROGRAMMING CONVENTIONS

Memory Layouts
Input/Output Documentation
Use of Symbols

Subroutine Usage
Typewriter Utilization
Debugging Techniques
Program Documentation

APPENDICES

I
II.

Representation of GE-225 Characters
Octal List of GE-225 Instructions

II. Alphabetic List of GE-225 Instructions

G- 228

Page

XIo -
XI -

XIII -

XII -

DN O WO - =

—

iv

May 1964

_Figure

— e
1
[S2 I ~NIUI

DODNDNDNDNDDN
1
T w

LOWWWWwWww w
1 1
O -JO0 U wh —

AN NI ;U gt
1
—
O WO W R wh

-11
6- 1
6- 2
6- 3
6- 4
6- 5
13- 1
13- 2
13- 3
13- 4
13- 5
13- 6
13- 7
13- 8
13- 9
13 - 10
13 - 11
13 - 12
13 - 13
13 - 14

JLYUSTRATIONS

GE-225 System Components

Central Processor and Controller Buffers
GE-225 Priority Access System

Large GE-225 System Configuration
Controller Selector Priority

Binary Addition Table

Octal Addition Table

Table of Powers of 2 and 8
Octal-to-Decimal Conversion Chart
Decimal-to-Octal Conversion Charts
Basic GE-225 Word

Bit Storage in a Ferrite Core

Representative Allocation of Memory

GE-225 Arithmetic and Control Register

GE-225 Arithmetic Registers

GE-225 Control Registers

Basic Timing for Single Length Word Operations
GE-225 Instruction-Execution Cycle

Flow Chart Showing Central Processor Operating Cycle

Two Numbers in Memory before Scaling

Incorrect Sum after Addition without Scaling
Numbers in Memory after Scaling

Using a Rounding Factor of . 05

16K Memory Layout

Instruction Characteristics when Addressing 16K Memories
Rejected Parts Cost Flow Chart

RPC Program - Initialization

RPC Program - DPARTS Calculations

RPC Program - EPARTS Calculations and Constants
RPC Program - OVRFLO Routine

Units Directly Accessing Memory
The Control Console Panel
Console Typewriter

Typewriter Character Set

Sample Typewriter Coding

Typical Memory Allocation

Maguetic Tape Record Layout

Magnetic Tape Record Layout Sheet
Memory Layout Sheet

BCD Multiple Card Layout Sheet
Memory Allocation Layout Sheet
80-Column Card Layout Form

Typical Symbolic Addresses
Representative Subroutine

Subroutine Requiring a Calling Sequence
Subroutine Calling Sequence

Printer Controller Octal Memory Dump
Programmed Octal Memory Dump
Octal Correction Card

Page
I1- 8
I-9
I1-11
I-13
I1-14
Im- 2
Im- 3
- 4
Ir- 5
II- 6
Im- 7
Im- 1
- 2
I - 4
- 5
II1- 6
m- 7
I - 8
11 -10
VvV -13
VvV -13
VvV -13
VvV -14
Vv -37
VvV -38
V -42
V -43
V -43
V -44
V -44
Vvi-1
VI- 2
vI- 17
VI- 17
VIi- 9
XII - 1
XII - 2
XIII - 3
XIII - 4
XII - 5
XIII - 6
XII - 7
XIII - 8
XII - 8
XII - 8
XIII - 9
XIII - 10
XII -11
XIII - 12

blE-22%

May 1964

SECTION |

THE GE - 225

The GE-225 Information Processing System is a
medium-scale, general-purpose digital computer that
permits an integrated approach to the total infor-
mation processing needs of business, government, and
science, while providing an economical means of
processing large volumes of data at high speed.

The modular design of the GE-225 system provides
flexibility in meeting data processing requirements
for a wide range of applications. A GE-225 system
consists of reading (input) and writing (output) devices
interconnected and controlled through a central pro-
cessor. The number and types of input and output
devices, as well as the configuration of the central
processor, are determined largely by the desired
applications. Input data can be frompaper tape, mag-
netic tape, punched cards, and magnetically-encoded
(MICR) paper documents. Output canbe inthe form of
paper tape, magnetic tape, punched cards, andprinted
reports. Both alphabetic and numeric data can be
received or produced by the computer, either locally,
or over long distances from the central processor using
peripheral data transniission equipment, such as the
Datanet-15 and its associated terminals.

INFORMATION PROCESSING SYSTEM

The GE-225 is a solid-state, single-address computer
that operates under both stored program and oper-
ator control. Also, it is a buffered computer with an

input-output priority system that permits simultaneous
operations, such as reading, writing, and processing.

Further flexibility is provided through the ability to
operate internally in either the binary or the decimal
modes.

The basic programming language for the GE-225 is
provided by the General Assembly Program, It is
an automatic assembly system that permits the pro-
grammer to prepare routines in meaningful symbolic
language, rather than in the absolute machine lan-
guage, or code, of the GE-225 and then utilize the
GE-225 (and the assembly program) to assemble a
computer-ready program, Extensive clerical effort
is eliminated by using significant mnemonic codes
that generally have a one-to-one correlation to basic
machine instructions, Added flexibility is provided
because addresses can be assigned using either deci-
mal or symbolic notation, Capabilities of the General
Assembly Program also include the ability to incor-
porate the many library routines provided by General
Electric, such as input-output and mathematical pack-
ages.

I-1

October 1963

SYSTEM COMPONENTS

The GE-225 system can assume various configurations,
depending upon the application requirements. Brief
descriptions of system components are given below.
More detailed descriptions and informationpertaining

to their use are provided in appropriate programming
sections of the manual.

Central Processor

The GE-225 Central Processor provides arithmetic,
comparison, and decision circuits and automatic con-
trol facilities for the processing system. In addition,
it houses the randomly-accessed magnetic core stor-
age (or memory).

Core storage provides the main memory element for
the system, althougn it can be augmented by external
storage in the form >t muagnetic tape or disks. Both
data to be processed and the controlling instructions
are held in core storage and called forth by the con-
trol element as required. Information in storage is
retained by tiny magnetic cores, each core capable of
holding one bit (binarv digit) of data. The basic unit of
storage is the word, each word consisting of 20 bits
(plus a check bit), and each word being individually
addressable. The access time associated with trans-
ferring a word into or out of memory is 18 micro-
seconds, or one word time. Core storage can consist
of 4,096, 8,192, or 16,384 locations, each of which

can contain a single-address instruction, a binary
data word, or three alphanumeric or binary-coded-
decimal (BCD) characters.

Control Console

The GE-225 Control Console, attached to the central

processor, provides manual control of operations,
visual display of the contents of appropriate registers,

program monitoring facilities for the operator, and

typed output via the console typewriter, under program
control. From the console, the operator controls the
initial loading and starting of programs and can per-

form in-process modifications based upon processing
results.

Paper Tape Reader-Punch

The GE-225 Paper Tape Reader-Punchistwo mechan-
ically-independent units: a mechanism for reading
five-, six-, seven-, and eight-channel perforatedpaper

Ble- 225

tapes at 250 or 1000 characters per second, and a
mechanism for punching five-, six-, seven-, and
eight-channel paper tapes at 110 characters per
second. Provisions are made to accommodate all com-
mon paper tape codes.

Card Reader

Either a 400 cardper minute or a 1000 card per minute
card reader isavailable with the GE-225. Both readers
can read standard 80-column punched cards in one of
three modes: ten-row or twelve-row binary, or stan-
dard Hollerith (alphanumeric) mode. Cards are read
serially (one column at a time) in all three modes.

w

Either card reader canoperate simultaneously with the
central processor and other peripheral operations.
For example, cards can be read at the same time that
data is input from magnetic tape or from a 12-pocket
document handler; simultaneously, previously input
data can be processed within the central processor.

Standard cards are 7-3/8 by 3-1/4 inches and con-
sist of 80 columns along the long dimension and 12
rows alor.g the short dimension, As cards are moved
through the card reader mechanism, all twelve row
positions of a column are simultaneously photoelec-
trically sensed, Card reader logic, whichis contained
within the central processor, permits cards to be
read on demand by the processor or continuously.

Card Punch

The card punch is anoutput device which punches stan-
dard 80-column cards at a rate of either 100 or 300
cards per minute, depending upon the model selected.
Cards are punched in either of three modes: ten-row
or twelve-row binary, or standard Hollerith mode,
depending upon program control.

The card punch is primarily an on-line peripheral and
receives basic control signals from the central proces-
sor. However, gang punching, or duplication of many
cards from a master card, can be performed off-line.

As an on-line peripheral, the card punch can operate
simultaneously with the central processor and other
peripherals.

Controller Selector

The GE-225 Controller Selector serves as a common
control and data transfer point between the central
processor and the peripheral controllers for magnetic
tape handlers, document handlers, high-speed prin-
ters, mass random access data storage, Datanet-15
terminals, and the auxiliary arithmetic unit, The
controller selector contains eight hubs or addresses
to which eight controllers can be connected, By
priority assignments, which are determined by the
addresses, the controller selector controls access to
core storage for the attached peripheral units, This
permits simultaneous operation of as many as eight
peripherals on the controller selector, plus the card
reader and punch, for a total of 10 concurrent input/

-output operations,

The logic for the controller selector is contained within
the central processor. Access tothe central processor
and memory for peripherals and their associated con-
trollers is provided by cables between the controller
selector and the controllers.

1-4

October 1963

Control Console tapes at 250 or 1000 characters per second, and a

mechanism for punching five-, six-, seven-, and
eight-channel paper tapes at 110 characters per
second. Provisions are made to accommodate all com-
mon paper tape codes.

The GE-225 Control Console, attached to the central
processor, provides manual control of operations,
visual display of the contents of appropriate registers,
program monitoring facilities for the operator, and
typed output via the console typewriter,under program
control. From the console, the operator controls the
initial loading and starting of programs and can per-

form in-process modifications based upon processing
results.

Card Reader

Paper Tape Reader-Punch Either a 400 cardper minute or 21000 card per minute
card reader isavailable with the GE-225. Both readers

can read standard 80-column punched cards in one of
The GE§—225 Paper Tape Reader-Punchis two mechan- three modes: ten-row or twelve-row binary, or stan-
ically-independent units: a mechanism for reading dard Hollerith (alphanumeric) mode. Cards’are read

five-, six-, seven-, and eight-channel perforated paper

Blt-225

serially (one column at a time) in all three modes.

1-3

Either card reader canoperate simultaneously with the
central processor and other peripheral operations.
For example, cards can be read at the same time that
data is input from magnetic tape or from a 12-pocket
document handler; simultaneously, previously input
data can be processed within the central processor.

Standard cards are 7-3/8 by 3-1/4 inches and con-
sist of 80 columns along the long dimension and 12
rows alor.g the short dimension, As cards are moved
through the card reader mechanism, all twelve row
positions of a column are simultaneously photoelec-
trically sensed, Card reader logic, whichis contained
within the central processor, permits cards to be
read on demand by the processor or continuously,

Card Punch

The card punch is anoutput device which punches stan-
dard 80-column cards at a rate of either 100 or 300
cards per minute, depending upon the model selected.
Cards are punched in either of three modes: ten-row
or twelve-row binary, or standard Hollerith mode,
depending upon program control.

The card punch is primarily an on-line peripheral and
receives basic control signals from the central proces-
sor. However, gang punching, or duplication of many
cards from a master card, can be performed off-line.

As an on-line peripheral, the card punch can operate
simultaneously with the central processor and other
peripherals.

Controller Selector

The GE-225 Controller Selector serves as a common
control and data transfer point between the central
processor and the peripheral controllers for magnetic
tape handlers, document handlers, high-speed prin-
ters, mass random access data storage, Datanet-15
terminals, and the auxiliary arithmetic unit. The
controller selector contains eight hubs or addresses
to which eight controllers can be connected. By
priority assignments, which are determined by the
addresses, the controller selector controls access to
core storage for the attached peripheral units, This
permits simultaneous operation of as many as eight
peripherals on the controller selector, plus the card
reader and punch, for a total of 10 concurrent input/

-output operations,

The logic for the controller selector is contained within
the central processor. Access to the central processor
and memory for peripherals and their associated con-
trollers is provided by cables between the controller
selector and the controllers.

October 1963

Magnetic Tape

Magnetic tape provides a fast method of transmission
of data between the central processor andbulk storage.
Millions of bits of data can be recorded on a single
reel of tape, thus providing a compact and economical
storage medium. Magnetic tape canprovide in-process

(on-line) or static (off-line) storage for immediate or
subsequent use, yet can be erased and be re-used
repeatedly.

Up to eight magnetic tape controllers canbe connected
to the controller selector; up to eight magnetic tape
handlers can be connectedto each controller, providing

a maximum of 64 magnetic tape handlers for the GE-
225 system. Different models of magnetic tape
handlers provide two data transfer rates: 15,000 and
41,700 characters per second. Data can be read or
written either in standard binary or in binary-coded-
decimal (BCD) mode.

The combination of a tape controller andits associated
tape handlers comprises a magnetic tape subsystem.
A subsystem of one tape controller and multiple tape
handlers permits reading or writing concurrently with
other operations. A subsystem containing twoormore
tape controllers permits reading and writing simul-
taneously with other operations.

High Speed Printer

The GE-225 High Speed Printer is an output unit for
applications requiring presentation of large quantities
of printed information. The printer produces alpha-
numeric output, up to 120 characters per line, 900
lines per minute. Printing format is governed by the
printer controller, which contains logic for automati-
cally editing the print line independent of the central
processor. Editing featuresinclude zero suppression,
deletion of data, and insertion of special symbols,
constants, and spaces. Printing canalsobeperformed
completely off-line from the system by using magnetic
tape as an interim storage medium. Printing and
editing can proceed simultaneously with other peri-
pheral and central processor operations.

Disc Storage Unit

Disc Storage Units, each consisting of 16 vertically-
mounted rotating magnetic disks, are available for
non-sequential file processing, Each DSU has a total
capacity of 98,304 records, or over 6 million words,
This provides storage for about 19 million alpha-
numeric characters or 34 million numeric digits,

e

I-6

Octoher 1942

One or two DSU controllers can be connected to the
controller selector; up to four DSU units can be
connected to each controller, DSU reading and writ-
ing operations can proceed simultaneously with other
peripheral and central processor operations,

GENERAL §B ELECTRIC

12-Pocket Document Handler

The 12-pocket document handler is an on-line or off-
line peripheral that reads and sorts documentsprinted
with magnetic ink in E13B font at a speed of 1200
documents per minute. The document handler can be
used off-line as a document sorter, and it is possible
to use two sorters simultaneously. The document
handler adapter (controller) permits concurrentoper-
ation with other peripherals and the central processor.
Two document handlers under the control of a single
adapter permit an input rate to the central processor
of 2400 documents per minute.

Auxiliary Arithmetic Unit (AAU)

Although the AAU is connectedtothe central processor
through the controller selector (address 7), itismore
properly considered to be an extension of the central
processor, rather than a peripheral unit. The AAU
provides increased facilitiy for double-length word
binary arithmetic in either normalized or unnormal-
ized floating-point modes or in fixed-point mode. The
AAU canoperate concurrently with normal central pro-
cessor and peripheral operations.

I-7

October 1963

L

g

Datanet-15

Transmission and reception of data between the GE
225 Central Processor and remote locations is made
possible by the Datanet-15, which can accept serial
data at speeds from 60 to 2400 bits per second. The
Datanet-15 can operate with as many as 15 remote
stations, one at a time, in addition to controlling a
paper tape reader-punch. Terminal devices include
Teletype equipment, other Datanet-15 units,or virtually
any terminal device utilizing five-, six-, seven-, or
eight-channel bit codes.

SIMULTANEOUS OPERATIONS

The logical design of the GE-225 permits up to eleven
simultaneous input-output operations. That is, data
can be transferred between core storage in the central
processor and several direct and indirectperipherals
at the same time that the centralprocessoris engaged
in processing data previously readin. Suchoperations
are made feasible because of the vast differences in
data transfer rates between core storage (18 micro-
seconds per word), and peripherals, such as the 400
cpm card reader (5610 microseconds per BCD word).

Maximun
Per
Name System
CENTRAL PROCESSOR (mandatory) 1
CONTROL CONSOLE, including Console
Typewriter (mandatory) 1
DIRECT INPUT-OUTPUT UNITS
Paper Tape Reader-Punch 1
Card Reader, 400 cpm or High Speed 1
Card Punch, 100 or 250 cpm 1
PERIPHERAL CONTROLLERS
Controller Selector 1
Mass Random Access Data Storage
Controller 1
Magnetic Tape Controller 8
High-Speed Printer Controller 8
Datanet-15 8
Document Handler Adapter 8
Auxiliary Arithmetic Unit 1
CONTROLLER SELECTOR PERIPHERALS
Mass Random Access Data Storage
Units 8
Magnetic Tape Handlers 64
High-Speed Printers 8
Datanet Terminals 120
12-Pocket Document Handlers 16

Figure 1-1. GE-225 System Components

To make optimum use of the high speed of core stor-
age, the GE-225 makes provision for time sharing ac-
cess to memory by buffering datatransfers, assigning
peripheral priorities for access to memory, and
permitting simultaneous processing of two or more
unrelated programs.

Buffers and Buffering

Buffering is a technique for providing optimum data
transfer between two components having different
data transfer rates such as core storage and the
400 cpm card reader mentioned above, Buffering
involves using a temporary storage device, or buffer,
that can be filled with data at a rate governed by the
data source component, and subsequently unleaded
into the data receiving component at a rate governed
by that component, This permits both components
to function at their optimum speeds when processing
unrelated data without the faster component being
slowed down during data transfers by the slower one,

Thus, in transfers between core storage and the 400
cpm card reader, although it takes 150,000 micro-
seconds to read all 80 card columns, core storage

GIECYS

I-8 October 1963

CORE STORAGE BUFFERS

Card Reader —® Buffer > e ¢—
c Typewriter
ore Paper Tape
Buff P P
Storage er Reader-Punch
Card Punch Buffer < >

Central Processor

CONTROLLER BUFFERS

<_ _____ .
Core 1

Storage - — — — — —P»

Central Processor

Controller
Selector
) @&——| Tape 4__}
Magnetic Control
Tape Buffer
Printer ———o
Control
Buffer
High
Speed
Printer
™ To Other
Peripheral
Buffers

Figure 1-2. Central Processor and Controller
Buffers

Ble- 225

is occupied in receiving the dat.. read for only 1512
microseconds (one word time per column), The
balance of the time it takes to read the card (148,560
microseconds) can be used for other data processing,

Buffers in the GE-225 are of two types: direct I-O
buffers and controller buffers, as illustrated in
Figure 1-2. Direct I-O buffers, located within the
central processor, are for use withperipherals having
direct access to core storage, suchasthe card reader
and punch, the paper tape reader-punch, and the con-
sole typewriter. Controller buffers are located in the
separate controllers for high-speed peripherals, such
as magnetic tape handlers, MRADS units, and high-
speed printers. Buffers for these units have access
to core storage indirectly through the controller
selector.

The Interrupt Principle

The interrupt principle takes advantage of the signi-
ficant difference in operating speeds of the central
processor and the peripherals by permitting the normal
‘fetch instruction, execute, fetch instruction, execute,
fetch...etc.,” sequence of the central processor to be
interrupted for data transfers.

Two kinds of interrupt are provided in the GE-225.
One, related to normal program processing, is called

priority interrupt; the other, related to multi-program
processing, is called automatic program interrupt.

PRIORITY INTERRUPT

In the GE-225, buffering permits two or more oper-
ations in a program to be performed simultaneously;
for example, cardsor tape canbe read while computing

occurs in the central processor and, at the same time,
cards or tape can be written. Inthe example, compu-
tation and access to core storage by the central pro-
cessor are interrupted whenever the input or output
buffers are filled or emptied and a core storage access
cycle is required to transfer data.

If the central processor requests memory access while
input or output peripherals are requesting access, the
processor obtains access on the first free cycle. Be-
cause several requests for access to core storage
might be made at the same time, provisionis made to
grant only one request for access during a memory
cycle. The priority interrupt logic incorporated into
the system analyzes these requests for accessandde-
termines which of four possible channels is to have ac-
cess during that particular cycle. Refer to Figure 1-3.

All access to memory, including that by the central
processor, is controlled by the priority interruptlogic,
which controls four channels. The first channel has

highest priority; the fourth channel has lowestpriority.
Normally, priority is assigned to components thusly:

Channel and Peripheral
Priority or
Assignment Equipment
1 Card Reader
2 Controller Selector
3 Card Punch
4 Central Processor, including

Console Typewriter and
Paper Tape Reader-Punch

In general, priority is determined by the operating.
characteristics and buffering of system peripherals.
Usually, the peripheral having a high data transfer rate
will have a highpriority; the peripheral witha low data
transfer rate will have a low priority. Two major ex-
ceptions to this arrangement are the card reader and
the central processor.

The card reader is buffered in such a way that it
must have uninterrupted access to core storage while
it is reading each character on a card, or data may
be lost, The card reader is assigned the highest
priority. :

On the other hand, the central processor is assigned
the lowest priority (with the console typewriter and
paper tape reader-punch) because there is no danger
of lost data if central processor operation is inter-
rupted by higher-priority peripherals. Also, program-

run-time is optimizedif fully-buffered peripheralsare
permitted to operate at capacity.

The controller selector, through which all high-speed
peripherals access core storage, is assigned the
second-highest priority. These peripherals are fully
buffered and there is little danger of dataloss if their
operation is interrupted. Controller selectorpriority
is further discussed below.

The card punch which is a comparitively slow peri-
pheral, is assigned the third priority channel because
a card punch operation is initiated only when the card
punch buffer is filled. The card punch buffer can
maintain a partially-filled condition indefinitely; thus,
interrupting card punch operations cannot cause inad-
vertent data loss.

Controller Selector Priority Interrupt. The controller

selector is the common control and transfer point for
input-output peripherals. Specifically, the controller
selector: 1) provides peripheral configuration flexi-
bility and 2) permits the establishment of user-de-
termined priority systems.

Gle-229

I-10

October 1963

Core Storage

;

Priority Interrupt Logic

Central Processor
Console Typewriter
Paper Tape Reader-Punch

)

Controller
Card Reader Selector

To
Peripheral
Controllers

Card Punch

Figure 1-3. GE-225 Priority Access System

The controller selector permits the use of a wide va-
riety of peripherals. Through plug-in connectors,
peripheral controllers can be connected in many ways
and changed to meet varying system requirements.
This ability allows for addition of specific peripherals
as the needs of an installation grow. It also allows for
the addition of new or improved input-output units with
little or no logic or wiring changes. Figure 1-4 illus-
trates one possible system configuration. Smaller or
different configurations are also possible.

In Figure 1-4, the card reader, cardpunch, paper tape
reader-punch, and console typewriter are connected
directly to the central processor. The other peri-
pherals, through their controllers, are connected to the
central processor through the controller selector. As
many as eight controllers can be connectedto the con-
troller selector through eight plug-in connectors, each
with an individual address; these controllers can be a
combination of the following:

1 or 2 DSU Controllers

1 to 8 Magnetic Tape Controllers

1 to 8 High-Speed Printer Controllers

1 to 8 Datanet-15 Controllers

1 to 8 Document Handler Adapters (Controllers)
1 Auxiliary Arithmetic Unit (includes Con-
troller)

As shown in Figure 1-4, controllers can direct the
operation of several peripherals. The following list
shows the maximum possible number of peripherals
each respective controller can handle:

1 to 4 DSU Units
1 to 8 Magnetic Tape Handlers
1 High-Speed Printer
1 to 15 Datanet Terminals, plus a Paper Tape
Reader-Punch
1 to 2 12-Pocket Document Handlers
1 Auxiliary Arithmetic Unit

The priority interrupt system actually operatesontwo
levels. The first level assignspriorityaccessto core
storage through one of the four priority channels, with
the controller selector being assigned the second-
highest priority (channel 2). The second level exists
within the channel 2 priority of the controller selector
and is assigned through eight address hubs, numbered
0 through 7. Once a controller selector request for
access is granted, the controller selector priority
system determines which of two or more requesting
controllers is to receive memory access. Whichcon-
troller receives access isdetermined by its assigned
priority, as evidenced by the controller selector
address hub to which it is connected. The controller

connected to address hub 0 has highest priority; the
controller on hub 7 has lowest priority within the con-
troller selector priority.

Thus, any controller on the controller selector has a
higher priority than the card punch (channel 3) or the
central processor and its associated peripherals
(channel 4).

Figure 1-5 is an expansion of the priority interrupt
control system shown previously in Figure 1-3. This
diagram further illustrates the relationship between
overall system priority and controller selector pri-
ority.

The priority assignments for peripherals connected
through the controller selector should be consistent
with the data transfer rates and the relative amounts
of data to be transferred by each peripheral. If re-
quests for access are received from two units simul-
taneously, the one having the higher transfer rate
will have the higher priority and be granted access
first. The other unit, having the lower priority, must
wait at leastone memory cycle before attaining access.
The reasoning behind this arrangement is that the
slower unit can wait longer with less effect on total
processing time and less danger of data loss than can
the faster unit. A magnetic tape controller, for
example, generally should have a higher priority (lower
priority address) than does a printer controller. Once
a magnetic tape controller initiates tape motion, the
controller must have ready access to memory for opti-
mum data transfer. The printer, on the other hand,
does not startprinting until it has received all requisite
data, and can therefore afford to wait several cycles
for data.

AUTOMATIC PROGRAM INTERRUPT

Because the central processor will lose no information
if program processing is temporarily interrupted, it
is possible to provide instruction coding in a main
program for an automatic interruption of the program
to process one or more ‘priority’ programs.

Automatic program interrupt is an optional feature to
control the simultaneous processing of two or more
unrelated programs. This provides for concurrent
operation of peripherals while the main program is
being processed. Priority programs could include
those inwhichitisdesiredto transfer data from cards,
tape, or core storage to the high-speed printer, or to
an MRADS unit.

Automatic program interrupt in the central processor
monitors the card reader, card punch, and controller
selector peripherals; the interrupt feature takes effect
only when a peripheral that has previously been engaged
returns to the idle status. Initial engagement of the
peripheral is controlled by the stored program. An

BlE-229

Octoher 10R2

—— e

Card Reader

-

Control
Console

Paper Tape
Reader-Punch

Central
Processor

Card Punch

Controller Auxiliary
tor
Selec . Arithmetic
Unit
7
7
0 1 2 3 4 5 6
MRADS Magnetic Magnetic Document High;Speed High-Speed
Tape Tape Handler Printer DATANET-15 Printer
Controller
Controller Controller Adapter Controller Controller
,@ B 1 Paper-Tape
nch
_ Printer
= D =))
_ 2)
4 L
=0

g

Figure 1-4. Large GE-225 System Configuration

instruction early in the main program sets the auto-
matic program interrupt to permit exit from the pro-
gram when a peripheral signals the centralprocessor
that it is idle. Note that this differs from priority
interrupt, which requires that a peripheral actively
request access to memory. An automatic program
interrupt causes atransfer from the mainprogramto a
‘priority’ routine whichinitiates use of aperipheral and
subsequently returns control to the main program;
simultaneously, the peripheral continues operation.
When interruption of the main program occurs, the

location of the next main program instruction to be
executed is stored in a special modification word.
When the ‘priority’ routine is completed, a branchin-
struction returns control to the main program.

Entry to a ‘priority’ routine automatically turns off the
automatic program interrupt. Topermit further inter-
ruptions of the main program, the ‘priority’ routine
must reset the automatic program interrupt before
returning control to the main program.

Core
Storage

¥

Priority Interrupt Logic

Central Proc._ssor
Console Typewriter

Paper Tape Reader-Punch

CENTRAL PROCESSOR

Card
Reader

Controller
Selector

Card
Punch

Magnetic Auxiliary
MRADS Tape DATANET-15 Arithmetic
Controller Controller Unit
Magnetic Document High-Speed High-Speed
Tape Handler Printer Printer
Controller Adapter Controller Controller

Figure 1-5. Controller Selector Priority

SECTION

MACHINE

To efficiently program the GE-225, the programmer
should have a certain amount of knowledge concerning
numbering systems other than the familiar decimal
notation. He should also know how to convert num-
bers from one system to another. THe reasons for this
are simple: 1) the GE-225 system holds and manipu-
lates data in binary notation, 2) the programmer gen-
erally functions most effectively when working with
numbers in the decimal form, and 3) because neither
decimal nor binary notation is satisfactory as a com-
mon language between programmer and computer, an
intermediate numbering system (octal notation) is often
useful.

NUMBER SYSTEMS

The decimal number system consists of ten digits, 0
through 9, which are used in combination to express
values greater than 9. Depending upon their relative
positions in a number, digits are considered to be
equal to the digit times a positional factor. This
factor is some exponential power of ten, the base of
the decimal system. For example, the number 458
is actually an abbreviated way of expressing the fol-
lowing:

Positional
Digit factor Value
4 x 102 - 400 hundreds
+5 x 101 = 4 50 tenths
+8 x 100 - 4 8 vynits
= 458

Any value less than infinity can be expressed in
the decimal system by expanding the number of
positional factors as far as necessary.

LANGUAGE

10,000’s 1,000’s 100’s 10’s 1’s

Positional

factor 10M.....10% 103 102 101 100
Digit

positions XX X X X X

Other number systems are possible, using bases other
than ten. In each system, the number of digits used
corresponds to the base. Anumber system with a base
of 7 could have the digits 0 through 6, with positional
values corresponding to the powers of 7. Note that,
whatever the number system, the highest digit used
is one less than the base of the system.

Binary Number System

The binary number system uses two digits, 0 and 1,
called binary digits or bits, and has a base of 2.
Positional notation is similar to that of the decimal
system. Successive positionsinabinary number, from
right to left, have values corresponding to increasing
powers of 2. Thus, the binary number 11011101 is
equalto 1 x27+1x26 1 0x25+1x24+1x23+1x

22 + 0x 2l + 1 x 20, or 221 in decimal notation.

Like the decimal system, any number less than infinity
can be expressed by using enough positions.

Decimal

value etc.....256 128 64 32 16 8 4 2 1
Positional

factor ot .28 27 98 95 94 93 92 91 90
Digit

position. XX X X X X XX X X

BlE-225

October 1963

Counting in binaryis similar to decimal, beginning with
0, then 1. Once the highestdigitis reached, a carry to
the left adjacent digit position is made and the count
starts at zero again. Thusly:

Decimal Binary

10
11
100
101
110
111
1000
1001
etc.

OCO=-JO0 Uk wWwN O

(]
-+
o

Addition in binary is simpler than decimal addition,
as illustrated in Figure 2-1. Other arithmetic oper-
ations are similarly easy.

+ 0 1
0 0 1
1 1 10

Figure 2-1. Binary Addition Table

The table shows that 0 + 0=0, 0 + 1=1, 1 + O=1, and
1 + 1=0 plus a 1 carry. In a two-number addition, the
largest intermediate sum is never more than 1 with a
1 carry.

Example:
11010110

Add the binary numbers 10110101 and

<—carry

+
—
- O =
O - =
— =
[N g
— =
- O
o~

=110001011

Octal Number System

The octal number system uses eight digits, 0 through
7, and the base 8. Again, positional notation is similar
to that of the decimal and binary systems. Successive
positions in an octal number, from right to left, have
values corresponding to increasing powers of 8. Thus
the octal number 1376 is equal to 1 x 83 + 3 x 82 4+ 7

x 81 + 6 x 80, or 766 in decimal notation.

The octal system can be extended to exprzss any size
number.

Decimal

value etc.....262,144 32,768 4096 512 64 8 1
Positional

factor 8" gb 8> g% g3 g2gl g0
Digit

position X X X X X X XX

Octal counting isalso similar to decimal counting. The
count begins with 0, proceeds to 7 (the largest octal
digit), generates a carry into the adjacent left position,

and starts again at zero. Thusly:
Decimal Octal
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 10
9 11
10 12
11 13
12 14
13 15
14 16
15 17
16 20
etc. etc.

Octal addition and other arithmetic operations are
more difficult thanbinary or the familiar decimal oper-
ations. The most useful is octal addition, which is
facilitated by tables such as that shown in Figure 2-2.

Octal Digits

+ 2 3 4 5 6 7
0 2 3 4 5 6 7
1 3 4 5 6 7T 10
2
& 2 4 5 6 7 10 11
A
3 5 6 7 10 11 12
‘g 4 6 7 10 11 12 13
@)
5 7 10 11 12 13 14
6 10 11 12 13 14 15
7 11 12 13 14 15 16

Figure 2-2. Octal Addition Table

The table is useful in adding two octal numbers, which
is the most common application the programmer will
require.

Example: Add the octal numbers 642351 and 162534.

111

642351
+ 162534

1025105

carry

Notation Convention

Wherever the possibility of confusion exists, a sub-
script notation is used to indicate to which system a
given number belongs., For example, 1010 could be
a binary representation of the decimal number 10,
an octal representation of the decimal number 520,
or the decimal number 1010,.. If a number is ex-
pressed in binary notation tllmg subscript , is used:
1010,. Octal numbers are shown with a su%script :
1238. Decimal numbers are shown with a subscript
0 876 0" If it is evident from the text which nota-
zion is usled, the subscript is omitted,

Decimal-To-Binary Conversion

To convert a decimal number to binary, divide the
decimal number repeatedly by 2. After eachdivision,

write down the remainder in sequence from right to
left. The remainders will be the binary equivalent of
the initial decimal number. Note thateachdivision by
two leaves either a 0 or a 1 as a remainder.

Example: Find thebinary equivalentof the decimal 53.

» 1 1st remainder

1st two remainders

1st three remainders

1st four remainders

1st five remainders

1] — 110101 all remainders

Binary-to-Decimal

Binary numbers can be converted to decimal by the
same method as decimal-to-binary conversion, except
that the division is by 107 expressed inbinary (1010)
and the arithmetic is in binary. After each division,
the binary remainder is converted to a decimal digit.

The remainders, in reverse sequence, are the decimal
equivalent of the original binary number.

Bl 229

II-3

October 1963

Example: Convert 1011110115 to decimal notation.

100101
1010 [101111011
1010
1110
1010
10011
1010

1001 = 910——" 9 units digit

11
1010 I 100101
1010
10001
1010
111 = 79— 179 tens and units
digits

0
1010/ 11
0

11 = 3yp—»379 hundreds, tens,
and unit digits.

Another method would be simply to look up the decimal
equivalents of the corresponding powers of two in the
table shown in Figure 2-3 and add.

Example: Convert 1011110119 to decimal notation.

Binary
Positional
Factors

2 2% 9% 9% 93 92 o1 JOg

1
Binary
i Digits
1
2
0
8

256

= 379,

gd=

89

gld= .

Figure 2-3. Table of Powers of 2 and 8

............

............

..........

65 536

131 072

......... 262 144
524 288
1048 576
........ 2 097 152
4 194 304
8 388 608
........ 16 777 216
33 554 432

67 108 864
134 217 728

268 435 456

536 870 912

...... 1073 741 824
2 147 483 648
4 294 967 296
...... 8 589 934 592
17 179 869 184
34 359 738 368
..... 68 719 476 736
137 438 953 472
274 877 906 944
549 755 813 888

—_

099 511 627 776

10
11
12

13
14
15

16
17
18

19
20
21

22
23
24

25
26

28
29
30

31
32
33

34
35
36

37
38
39

40

II-4

Binary-To-Octal Conversion

Converting numbers from binary to octal notation is
a simple mechanical procedure. Three binary digit
positions are the equivalent of one octal bit position.
Thus, a 15-bit number, such as 101 001 110 111 0014,
is a 5 digit octal number when converted. To convert,
the binary digits are separated into groups of three,
beginning on the right. Each group of three is evalu-
ated individually; the right-most bit has a weightof 1,
the center bit is 2, and the left-mostbit equals 4. As-
suming 1-bits in all three positions of a group, the
highest value expressible is 7, which is the largest
octal digit.

Example: Convert 1010011101110019 into octal nota-
tion.

gt g3 g2 gl g0 Octal Position Factors

421 421 421 421 421 Conversion Weight

Binary Number

101 001 110 111 001
= Octal Equivalent

5 1 6 7 1

Octal-to-Binary Conversion

By reversing the aboveprocess, conversionfrom octal
to binary notation is simplified. Beginning with the
right-most digit of the octal number, each digit is
converted to its binary equivalent. Each octal digit,
upon conversion, requires three bit positions.

Example: Convert 1234567g into binary notation.
7
6
5
4
|
2)
1 —001 010 011 100 101 110 111

Octal-to-Decimal Conversion

One method of converting octal numbers to their deci-
mal equivalents is to 1) convert the octal number to
binary and 2) convert the binary equivalent to decimal,
by the previously described procedures.

Another method is touse a conversion table and merely
look up the equivalent decimal number. Forlarge octal
numbers, such conversion tables often run to many
pages. The short conversion table in Figure 2-4 is
useful in converting octal numbers up to 3777777
(sufficient for GE-225 programming) directly to deci-
mal notation. The table shows the decimal equivalents

of all octal digits as a function of their position in the
octal number.

To illustrate the use of the table, consider the octal
number 1761354. To convertthis numbertoits decimal
equivalent, read the equivalent decimal value of each
octal digit from the table and add them to find the total
decimal equivalent, as shown below:

Octal Positions Decimal Positions

86 8% 8% 83 82 g1 g0 105 10% 103 102 10! 100

1 7 6 1 3 5 4->-= 4
' 4 L 5= 4 0
L%L—)= 1 9 2

= 5 1 2

= 2 4, 5 i 6

= 2 2 9, 3 7 6

= 2 6 2, 1 4 4

thus, 17613544

1]
(9]
—
(=]
[oe]
K
NS

—
o

OCTAL

DIGIT OCTAL DIGIT POSITION

VALUE g6 8o g g3 82 gl g0
1 262, 144 32,768 4,096 512 64 8 1
2 524,288 65,536 8,192 1,024 128 16 2
3 786,432 98,304 12,288 1,536 192 24 3
4 - 131,072 16,384 2,048 256 32 4
5 - 163,840 20,480 2,560 320 40 5
6 - 196,608 24,576 3,072 384 48 6
7 - 229,376 28,672 3,584 448 56 7

Figure 2-4. Octal-to-Decimal Conversion Chart

II-5

Decimal-To-Octal Conversion

Decimal-to-octal conversion can be done by first con-
verting the decimal number to its binary equivalent,
then reconverting the resulting binary number to octal
notation.

Another method involves the use of the two tables in
Figure 2-5. Theoctal equivalents of the decimal digits
are found in the upper table and are then added octally.
The lower table assists in the required octal additio=

by permitting the octal equivalents tobe addedin deci-

mal, a column at a time, then convertedto octal nota-
tion.

CONVERSION CHART

DECIMAL POSITION
DECIMAL
DIGIT 103 100
e———
1 303, 240 23,420 1,750 144 1
2 606,500 47,040 3,720 310 24 2
3 1,111,740 72,460 5,670 454 36 3
4 1,415, 200 116,100 7,640 620 50 4
5 1,720, 440 141,520 11,610 764 62 5
6 2,223,700 165,140 13,560 1,130 74 6
7 2,527,140 210,560 15,530 1,274 206 7
8 3,032, 400 234,200 17,500 1,440 220 10
9 3,335,640 257,620 21,450 1,604 132 11
OCTAL EQUIVALENTS OF DECIMAL NUMBERS
DECIMAL . OCTAL DECIMAL OCTAL DECIMAL OCTAL
1 1 15 17 29 35
2 2 16 20 30 36
3 3 17 21 31 37
4 4 18 22 32 40
5 5 19 23 33 41
6 6 20 24 34 42
7 7 21 25 35 43
8 10 22 26 36 44
9 11 23 27 37 45
10 12 24" 30 38 46
11 13 25 31 39 47
12 14 26 32 40 50
13 15 27 33 41 51
14 16 28 34 42 52

Figure 2-5. Decimal-to-Octal Conversion Charts

I Example: Convert 345978 to octal notation.

Decimal Positions Octal Positions

105 104 103 102 101 100 86 g5 g4 83 g2 gl g0

3 4 5 9 "1 = 10
I l L - 1 0 6
= 1 6 0 4
= 116 10
= 1161 00
=_ 111117 40
thus, 34597810 =12 4 3 5 17 2

Adding the 80 column in decimal gives 10y, which is
12g, according to the lower table in Figure 2-5.
Writing the 2, carrying a 1 into the 8l column, and
adding in decimal gives 7g and no carry; write the 7.
Adding the 82 column in decimal gives 217, which is
258' Writing the 5, carrying a 2 into the g3 column,
and adding gives 11‘%0 or13g. Writingthe 3 and carry-
ing the 1 into the 8% column gives 4g, no carry; write
the 4. The 85 column gives 2 and the 86 column is 1.

GlE-229

I1-6

October 1963

DATA WORDS

In the GE-225, the word (or basic unit of information)
consists of 20 binary digits. Words can be stored in
4096 to 16,384 core storage locations, each of which
is individually addressable. Additional random access
and sequential access storage is available in MRADS
units and magnetic tape.

A word can be an instruction, a binary data word or
number, a binary-coded-decimal word (for expressing
either alphabetic or numeric characters), or any pat-
tern of 20 bits the programmer so desires. The 20
bit positions of the GE-225 word are depicted in Fig-
ure 2-6. S (or0) refers to the sign position, 1 indicates
the high-order bit position, 2 the next highest, and so
on. Bitposition19indicates the low-order bit position.

LLIT TP [TTTTTITT]

01231
S

Figure 2-6. Basic GE-225 Word

Binary Data Words

When a word is interpreted by the GE-225 as binary
data, the O (or S) position acts as the arithmetic sign.
A 0-bit in the sign position indicates that the word is
positive; a 1-bit indicates that the word or number is
negative. Inbinarywords, 1-bits inpositions1 through
19 indicate values corresponding to the powers of two.
A 1-bit in bit position 1 equals 2 18 or 262,1441¢; in
position 2, a 1-bit equals 217 5r131 07210,1n position
19, 90 or 1. The largestpositive decimal number that
can be expressed in the 20-bit binary wordis 219 _ 1,

or 524,2874.

Negative numbers are expressed in binary form by
placing a 1-bit in the signpositionandthe 2’s comple-
ment of the desired number in bit positions 1 through
19.

To express a given negative number:

1. Write the positive number in binary

2. Change it to the 2’s complement form by
a) converting all 1-bits to 0-bits andall 0-
bits to 1-bits and
b) adding a 1-bit to the least significant bit
position.

For example, to express the decimal -68; in binary,
write +68;(in binary:

I—TO]0|0‘0|0|0|0|0|0|0|0|0|1IOIOlOIlIO]OI
S123)

Inverting all bit positions gives:

llllll|1|1hl1|1|1|1|1l1|1loI1|1|Jo|1l1|
S123 }

Adding a 1-Dbit to bit position 19:

l1[1|1|1|111I1T1]1|1lll1|1|oI1|1|1]1|0|ol
S123

The largest negative number that can be expressed in
the 20-bit binary word is 219, or 524,288, .

A machine instruction is provided for automatically
converting a positive number to a negative number.
Also, in subtract operations involving positive num-
bers, the required complements are automatically
formed.

Double Length Binary Words

The GE-225 can perform double length data word oper-
ations. Double length words consist of two 20-bit words
which are normally stored in adjacent memory loca-
tions. For processing, they are treated as a single
word consisting of a sign bit and 38 data bits.

For illustration, consider the decimal 3,862,483
binary, this number would be stored in two adjacent
memory locations:

921 ,19
Uo|o|o|o|o|0|o|o|o|o|o|o|olo|0 |0|1|1 ﬂ
Ss123.......
Memory Location 1

916 914 911 o8 95 20

fofofafoTafafaifoli]s 111101 oo 1 1]
s123.1

Memory Location 2

BlE-229

The most significant half of the double word is stored
in the first memory location. The adjacent (higher)
location contains the least significant half of the word.
Bit positions inthe second memory location have values
corresponding to the first nineteen powers of two (20
through 218) "while those of the first (lower) memory
location correspond to the second nineteen powers of
two (219 through 237). The signs of both locations are
the same, 0 for plus or 1 for minus. Double length
negative numbers are expressedinthe 2’s complement
form.

Floating-Point Notation

The auxiliary arithmetic unit (AAU) expands the arith-
metic capability of the GE-225 to include normalized
and unnormalized floating-point operations. Repre-
sentation of floating-point numbers is discussed inthe
section, Auxiliary Arithmetic Unit Operations.

GE-225 installations, with or without the AAU, can
process floating point arithmetic with utility subrou-
tines provided by General Electric for this purpose.
However, for voluminous floating point calculations,
the AAU provides greater efficiency, because of its
speed and capacity.

Binary-Coded-Decimal Data Words

In addition to its basic binary capability, the GE-225
can process binary-coded-decimal (BCD) or alpha-
numeric data, The six bit positions of the BCD code
may be used to express 64 character configurations,
including all alphanumeric and special characters of
the GE-225 character set,

The 6-bit code consists of two groups:

ZONE NUMERIC
GROUP GROUP
B A 8 4 2 1

L Ll

The numeric bits correspond to the first four powers
of two, as they do in the binary system, and can express
up to 16 numeric values, 0 through 15. The zone bits
provide for coding alphabetic and special characters.

Selected characters are shown below inBCD. All GE-
225 characters and their equivalent BCD codes are
shown in the Appendix.

In the BCD mode, the GE-225 word can contain three
characters, occupying 18 bit positions (2 through 19).

B A 8 4 2 1
1 0 0 0 0 0 1
5 0 0 0 1 0 1
9 0 0 1 0 0 1
A 0 1 0 0 0 1
N 1 0 0 1 0 1
R 1 0 1 0 0 1
/ i 1 0 0 0 1
Z 1 1 1 0 0 1
$ 1 0 1 0 1 1

The remaining two bit positions (S and 1) do not nor-
mally contain data, but are used for program and
printer control purposes discussed later, A repre-
sentative GE-225 BCD word is shown:

BAS 421 BAB421BAS842I1
lolofol1]oJoT1ToJo o o 1 1]0 o o o 0 1] 0]
S 1\)\ 2N by

B

6 2

Double length BCD words are possible to express al-
phanumerics consisting of as many as sixcharacters.

Optional instructions permit variable lengthBCD arit-
metic operations. Negative numbers must be expres-
sed in 10’s complement form with a 1-bit in the sign
position. Note that, in BCD numerics, the zone bits
(2, 3, 8, 9, 14, 15 bit positions) are set to zero. Al-
though the BCD word contains only three numerics, the
variable length feature permits operations with BCC
numbers of any practical length.

Examples of BCD quantities:

Decimal BCD word(s)

+ 10 _+loli]o

+ 989 []o]8]o

- 10 [-Tolofo |

- 989 [-Tolil1]

+o640 | +lolsl7 | []6lals]
~e7649 | -l9[1]2 |[F[3611]

GE-22%

I1-8

October 1963

INSTRUCTION WORDS

Instructions are expressed as 20-bit words. Three
different formats are used.

Format I. Allinstructionsinvolving reference tomem-
ory are written in Format I. Includedare arithmetic,
memory transfer, and certain branch instructions.
Complete descriptions of these instructions are pro-
vided in subsequent sections.

The format for memory reference instructions is:

DO X X WITH DATA
THIS LOCATED HERE
0 4 5 6 7 19
OR
OPERATION X X OPERAND
CODE ADDRESS
0 4 5 6 7 19

The five bits (0 through 4) indicate the operation to be
performed, such as add, subtract, read cards, etc.

Bits 5 and 6 provide for automatic address modifica-
tion by stipulating whether the contents of one of sev-
eral X registers are to be used to modify the operand
address. Automatic address modification is treated
in Section V.

Bits 7 through 19 designate the operand address; that
is, the memrory location where the data to be added,
subtracted, etc., is stored.

About 60 of the over 300 instructions in the GE-235
repertoire require operand addresses, Instructions
without operand addresses cannot be address modi-
fied, This permits bits 5and6, and 7 through 19 to be
used for other purposes, Instructions in this cate-
gory (no operand address) are called generalinstruc-
tions, Format II, or shift instructions, Format III,

Format II. All instructions indata transfer (excluding
memory transfer) and input-output categories and most
internal test-and-branch instructions are written in
Format II. Instructions in this format are commonly
called general instructions and have the same oper-
ation code in bit positions Sthrough4 (10 101, or 25g).
Format II has three variations, corresponding to the
three general categories mentioned.

The word movement variation is for instructions in-
volving full word transfers between arithmetic regis-
ters and the arithmetic unit. They assume this format:

S—>4 56 78 9 >19
Operation o .
Code 0 0|0 1| Specifies Exact Operation
\)\ J\ e J
Always is 01 indicates
258 for Word Move-
General ment Variation
Instruction
No Address Interpretation of
Modification these bits is ex-

plained under
‘Micro-program-
ming~

The input-output variation is used for instructions in-
volving the central processor and peripherals. Bits
S through 4 contain 25g (10 101) and bits 7 and 8 are
0’s. The remaining bits specify the input-outputoper-
ation. The format is as follows:

S—>4 56 78 9—->13 14—>19
Operation 0oo0loo Starting Specific
Code Address | Operation
‘ | !
Always is Designates Designates
25g for Input~ Qutput the specific
General Variation input-output
Instruction operation
No Address Either a mem-
Modification ory location or

peripheral con-
troller address

The test-and-branch variation is usedfor instructions
that provide for breaking the normal sequence of in-
struction execution. These instructions are identified
by 25g (10 101) in bit positions S through 4 and 1-bits

BE-228

October 1963

in positions 7and 8. The test condition for determining
a branch to another instructionis specified by bit posi-
tions 9 through 19. The format is:

S—>4 56 738 9 10— >19
Opgl(‘;téon 0 0] 11| 1/0 | Branch Condition

J

e) e V|

!

Always is Designates Specifies con-
25g for Test-and- dition to be
General Branch tested
Instruction Variation
No Address 1 =branch on
Modification negation (no)

0 =branch on
affirmation (yes)

The specific bit patterns for all FormatII instructions
can be found by converting the octal equivalent of the
instructions to binary. The octal form of each in-
struction is included in the instruction descriptionsin
subsequent sections.

Format III. Only shift instructions are written in
Format III. Shift instructions are used to shift one or
more bits within or between arithmetic registers. Bit
positions S through 4, designating the operation code,
contain 25g; bits 7 and 8 contain 1 and 0 respectively,
identifying a shift operation; bit 9 indicates direction
of shift (right or left); bits 10 through 14 identify the
registers involved; bits 15 through 19 designate the
number of bits to be shifted. The format is:

S—>4 5 6 7 8 9 10 14 15 19
Operation Exact Length
Code 00 110 11/0 Operation | of Shift
.
Always is Shift Specifies
25g for Varia- Registers
General tion
Instruction
No Address 1 =1left Up to
Modification shift 31 bit
0 =right positions
shift

While it is possible to prepare programs for GE-225
processing directly in binary notation, it is infre-
quently done because such programming is tedious and
subject to clerical error. However, a knowledge of
binary notation and instruction structure is essential
in micro-programming (the building or creating of
instructions by the programmer). Micro-program-
ming is discussed in a later section.

In program debugging and patching, octal notation is
frequently used for 3 reasons: 1) octal notation pro-
vides the programmer with a more meaningful pre-
sentation than does binary, 2) the GE 225 provides
printed outputs (during GAP program assembly) and
memory dumps inoctal notation, and 3) octal can easily
be converted to binary or decimal. Onthe other hand,
binary is difficult to read or write; also it is tedious to
convert to the familiar decimal notation.

GE-225 Octal Notation

Conversion of GE-225 words from binary to octal or
octal to binary is a simple mechanical procedure.

Given the GE-225 binary word:

lolililolilo
S 1

l1l1]1 ololilolifiloo]i]1]1]
S T

.

Starting on the right, divide the word into groups of
three bits (giving six groups of three, andone group of
two) and assign octal values to the bit positions as
shown:

01 [101 [o11 [100 [101 [100 | 111 |<—Bits
Octal
D@ |@|®|®|®|® [<Grow
No.

Evaluate eachgroup and write the equivalent octal digit:

01
101
011
100
101
100
111

O

)

1534547

PN B NS T 7) B

PQEE®®

The result of the binary-to-octal conversion is a 7-
digit number in place of the longer, less meaningful
20-Dbit binary word.

BlE-228

1I-10

Note that any GE-225 word can be representedas a 7-
digit octal number, whether it beadataword or an in-
struction.

The representation of the number 1234567g inbinary is
accomplished by reversing the above process:

421 Binary Word
19

1100 [101 [110 [111 |
/ /

!

il

s1

001 —> o|oﬂ 01ﬂ011
010 —

011 —

100
101
110
111

oo

O U W

Because of the simplicity and convenience of octal nota-
tion, it is used freely in the balance of the manual to
simplify explanations and to provide familiarity.

SYMBOLIC PROGRAMMING

Programs for the GE-225 information processing
system are generally written in symbolic coding.
The programmer is thus able to write instructions
in meaningful symbolic codes, rather thanthe absolute
numeric code language of the computer, Thisrelieves
him of much time-consuming clerical detail, especially
important in writing lengthy programs,

The General Assembly Program

The General Assembly Program transforms symbolic
mnemonic codes into numeric machine language for
each instruction in the repertoire of the GE-225
system, These mnemonic codes have been chosen
to provide significance and easy recognition of the
operation performed., For example, the mnemonic
code “ADD” instructs the General Assembly Pro-
gram to build a numeric instruction by which the
GE-225 system performs algebraic addition,

The General Assembly Program is comprised of
two parts:

1. The symbolic language used by the pro-
grammer in coding the source program,
2. The actual assembly program (on punched

cards, perforated tape, or magnetic tape)
supplied by General Electric that processes
the source (or symbolic) program into a
ready to execute machine lainguage (or object)
program.

@E-225

The symbolic language consists of these standardized
mnemonic codes divided into two general categories:

1. The pseudo-instructions used by the General
Assembly Program for memory location
assignments, program control -constants,
program constant storage, and program
control during the assembly operation, These
do not correspond to “real” GE-225 machine
instructions,

The mnemonic operation codes corresponding
to the more than 300 machine instructions
of the GE-225 system,

There generally is a one-to-one relationship between
the mnemonic operation code prepared by the pro-
grammer and the machine instruction appearing in
the object program as assembled by the General
Assembly Program, A single pseudo-instruction,
however, can result in the generation of from one to
several machine instructions during the assembly
operation, The pseudo-instructions are described
in a separate manual, General Assembly Program II
(CD225F1.006/007), which also discusses all phases
of the assembly operation and operating procedures,

The machine instructions for the GE-225 central
processor are described in Sections V, VI, and VII
of this manual, Instructions for the variousperipheral
subsystems are described in the separate manuals
covering these subsystems, as listed in the “Preface”
and “Contents,”

A complete, brief listing of General Assembly Pro-
gram instructions in both alphabetical and octal
order is given in Appendices II and III,

May 1964

SECTION il

CENTRAL PROCESSOR ORGANIZATION

The central processor performs all arithmetic and
logical functions in the GE-225 system and acts as a
central control for all internal and peripheral oper-
ations. Because the program (or instructionsfordata
processing) is held in memory like the data to be pro-

cessed, the GE-225 is known as a stored program
computer.

MAGNETIC CORE STORAGE

Instructions and data are held in the primary storage
unit, or memory, through the use of tiny ferrite cores.
Each core isaring, or toroid, of ferromagnetic mater-
ial capable of being magnetized in one of two polarities
when current is passed through wires inserted through
the cores. Currentthroughthe wires generatesa mag-
netic field which in turn magnetizes the core; when the
current is stopped, the core remains magnetized. If
the directionof current flow is reversed, the field about
the wire is reversed and the ferrite core will be mag-
netized in the opposite direction. The two possible
states of magnetization can be called 1 and0, corres-
ponding to the two binary digits.

Current Sense No
Flow —> Winding

Current —>

a9 iz

Figure 3-1 illustrates this principle of storage. Note
that two wires are used toprovide the magnetizing cur-
rent and current mustbe presentinbothwires to mag-
netize a core or switch the core from one magnetic
polarity to the other. Thethirdwire shown, the sense
winding, is used to sense the change in magnetization
of the core. Asthe core ‘flips’ from one magnetic pol-
arity to the other, a pulse is induced in the sense

winding by the collapsing field of original polarity and
the increasing field of the new polarity.

The basic GE-225 memory module is anarrayor block
of cores 64 cores wide, 64 cores long, and 21 cores
deep. It can be visualized as 4096 vertical columns of
21 cores each. Each column of cores can contain 20
information bits plus a parity (or check) bit. When a
word is stored in or read from memory, the bit pat-
tern of the wordis simultaneously set intoor read from
all 21 cores of the desired columnor storage location.
In addition to the basic 4096-word module, memory is
also available with storage capacities of 8192 and
16,384 words.

Each memory word is individually addressable. Ad-
dresses are used to make data stored in memory

Current
Flow

Induced
Current

)

D

NV

" Direction of /
Magnetization
Resetting a Core
Setting a Core A ‘1’ Bit to ‘0’ and Reading
to the ‘1’ State Retained out a ‘1’ Bit.

Figure 3-1. Bit Storage in a Ferrite Core

Ble-225

relocatable. Instructions requiring data to be moved
to or from memory must specify an operand address
corresponding to the memory address containing the
data. Instructions held in memory are accessed by
their addresses. Addresses are numbered sequentially
from 0000 to 4095 (or 8191) for basic memory sizes.
Addressing the additional 8192 words in a 16,384 word
memory is covered in a later section.

Access time for a word stored in memory is 18
micorseconds (millionths of a second); thisincludes 1)
reading the word from core storage, 2) storing the
word in a register external to memory, and 3)restor-
ing or replacing the word in core storage, Core
storage access time is also called a memory cycle
or a word time., A single data word transfer to or
from memory, including access time for the instruc-
tion effecting the transfer, requires 36 microseconds
(2 word times); a double length wordtransfer requires
54 microseconds (3 word times), When a word is
read from memory, all 21 bits are transferred simul-
taneously, Storing a word in agiven address destroys
the previous contents of that address,

Stored Program

Because instructions, like data, are storedin memory,
data processing canproceed automatically, performing
instructions in sequence as they exist in storage, or
branching to other instructions in the sequence depend-
ing upon the preceding instruction.

For the same reason, self-modifying programs are
possible. Instructions can be manipulated as well as
data, permitting changes to the basic program as a
result of in-process decisions.

Addresses:
0000
INDEXING
0128
AUTOMATIC
PROGRAM INTERRUPT
0256
CARD
INPUT-OUTPUT
1000
PROGRAM
2500
CONSTANTS
2800
MAGNETIC TAPE INPUT-OUTPUT
2940
PRINTER INPUT-OUTPUT
3100
SUBROUTINES

Figure 3-2. Representative Allocation of Memory

Programming efficiency is aided by good planning
or the orderly use of available memory. The designa-
tion of specific areas of memory for specific purposes
reduces programming time and errors. Figure 3-2
illustrates a possible allocation of memory space for
input-output, constant, instruction, and subroutine
storage.

X Register Operation

Memory addresses 0000 through 0003 have special pro-
perties. Instructions are provided to permittheiruse
as program counters by making provision for incre-
menting their contents by a constant and testing the
contents with one of two special test instructions.

In addition, locations 0001 through 0003 canbe used for
modification word storage and are called X registers.
Bit positions 5 and 8 of the basic instruction word can
be used to specify which of the three X register con-
tents is to be used for modification, as indicated:

Bit Position X Register
5 6 Selected
0 0 None
0 1 0001
1 0 0002
1 1 0003

If an instruction containing an operand address also
specifies an X register in bit positions 5 and 6, the
contents of the specified location (0001, 0002, or 0003)
are added to the operand address to give the effective
address. Theinstructionis executedusingthe effective
address, rather thanthe operandaddress. The original
instruction in storage remains unchanged.

X registers facilitate addressing upper memory (loca-
tions above 8191), as describedinthe section, Addres-
sing Upper Memory.

Additional modification words are available as partof
an optional package that also provides a three-way
compare instruction and decimal (BCD) arithmetic
capability. The added modification words consist of
31 groups, each containing a word that can be incre-
mented as can location 0000, and three words with the
same modificationproperties aslocations 0001 through
0003. This provides 96 modification words and 32
counter words in memory locations 0000 through 0127.

Use of the optional modification groups requires the
specification of the desired modification group with a
special select instruction. A group remains selected
until a subsequent special select instruction isusedto
specify another group. Once a group is selected, the

BE-22%

11I-2

October 1963

desired modification word within the group is specified
by bits 5 and 6 of the instruction. For example, if
modification word group 28 were specifiedby a special
select instruction during a normal program sequence,
all subsequentinstructions withX register codingof01,
10, or 11 wouldbe modified by the contents of locations
0113, 0114, or 0115, respectively, until another modifi-
cation group was specified by another select instruc-
tion.

M Register Operation

The M register is a 21-bit register (see Figure 3-3).
All information transferred to or from core storage
must first pass through the M register, which is the
focal point for information transfers among GE-225
system components. The 21 bits of the M register
include 20 information bits, plus a parity check bit.

Parity Checking

A parity check isperformed automatically asa word is
read from memory into the M register. The parity
check circuits count the 1-bits contained in all 21 bit
positions; if the count is odd, parity is correct and
operations proceed; if the count is even, then a parity
error (bit drop or pick-up) hasoccurred and the parity
alarm light on the control console is turned on. In
addition, depending upon the position of the ‘Stop on
Parity Alarm’ switch on the control console, a com-
puter halt or aprogrammedbranch for remedial action
can occur.

Words written into memory have a parity bit generated
(as required) by the parity check circuits, while the
word is held in the M register. The parity check cir-
cuits count the bits and, if the countis even, generates
a bit for the 21st bit position. If the count is odd, no
parity bit is required. Ineither case, the entire 21 bit
positions of the M register are stored in memory.

ARITHMETIC AND CONTROL
REGISTERS

Arithmetic operations, such as addition, subtraction,
multiplication, and division, require temporary stor-
age devices external to memory for holding inter-
mediate and final results and performing the necessary
calculations. The GE-225 uses arithmetic registers
for these purposes. In addition, arithmetic registers
are used for shifting and other data manipulations
related to decision-making and arithmetic capabilities.

Arithmetic registers include:

B Register

A Register

Q Register

N Register

C Register (optional, not illustrated)
Arithmetic Unit

Control registers control the sequential processing
and interpretation of instructions. These registers
include:

I Register
X Registers
P Counter (or register)

Arithmetic Registers (Figure 3-4)

B REGISTER. The B Register is a 20-bit register

which acts as a buffer register between the M register
and the central processor during data transfers. The
B register is also a buffer for arithmetic operation
and contains:

The addend for addition

The subtrahend for subtraction
The multiplicand for multiplication
The divisor during division

Outputs from the B register are supplied to the I regis-
ter and the arithmetic unit. The B register is also used
in the execution of certain data transfer commands.

A REGISTER. The A Register isa 20-bit register and
is used most frequently in central processor oper-
ations. It receives information from and transfers
information to the arithmetic unit. It serves as the
accumulator for the central processor and performs
this function by holding:

The augend during addition

The sum after addition

The minuend during subtraction

The result after subtraction

The most significant half of the product after mul-
tiplication

The most significant half of the dividend before
division

The quotient after division

The most significant half of a word after the exe-
cution of all double length word instructions

A word transferred from, or to be transferredto,
memory

The word on which extractionisperformed during
the execution of the extract instruction (Ex-
traction is the examination and replacement
of bits in a word according to a previously-
defined pattern)

Ble- 225

Address
Decoding P Counter
Network 123 15
Core
Storage
I Register
0123 . . i i it e e e e e e .. 19
A
> M Register i

Card Reader g B Register

Card Punch S 128 i i i e e e e e e ... 19 P S 128, @ . i e e e 19
Controller

Selector
Peripherals
Parity
Check
Arithmetic
Unit
y
A Register Q Register
S 123 . e e e e e e e . 19 S123 e e 19
N .
Register
2

Console Typewriter
Paper Tape Reader-Punch

Figure 3-3. GE-225 Arithmetic and Control Register

The word to be shifted during various shift
instructions

A word to be transferred to another registeror to
be modified in some way during the execution
of various data transfer commands B

The word that determines future action during the
execution of branch instructions.

In addition, manual access to the A register is per-
mitted by 20 console switches provided for this pur-
pose.

Q REGISTER. The Q Register is a 20-bit register
which acts with the A register to forma double length
word accumulator (38 bits plus a sign bit) during the
execution of double length word instructions. Infor-
mation is not transferred directly from memory into
the Q register, but is readinto the A register and then

shifted into the Q register. The Q register performs
the following functions:

1. Holds the least significant half of the augend
before double precision (double length) addi-
tion, and the least significant half of the sum
after addition,

Holds the least significant half of the minuend
before double precision subtraction, and the
least significant half of the result after sub-
traction,

Holds the multiplier before multiplication.
Holds the least significant half of the result
after multiplication,

Holds the least significant half of the divi-
dend before division,
Holds the remainder after division,

BlE-229

October 1963

Holds the least significant half of the double length
word during the execution of double length word
instructions.

Holds the least significant half of information to be
shifted during double length shift instructions.

N REGISTER. TheN Registerisa6-bit register which
is used asasingle characterbuffer between the central
processor and 1) the console typewriter, 2) the paper
tape reader, and 3) the paper tape punch. This permits
input-output operations with these units to occur simul-
taneously with other central processor operations.
Information is transferred directly betweenthe N reg-
ister and the A register by means of shift instructions.

C REGISTER. The C Register,or Real Time Clock, is
an optional equipment feature that permits the timing
of operations in either relative or real time. This
feature is convenient where it is necessary to deter-
mine or record elapsed time of operations performed

by the GE-225, or of operations external to the GE-225
system. In addition, it is possible to determine the

time of an occurrence relative to actual (Greenwich
or local) time or to any suitable time base.

The C register is a 19-bit binary register that can be
set directly from, or read directly into, the A register.
Only bits 1 through 19ofthe A register are involved in
such transfers.

The C register is automatically incremented by one,
in binary mode, every sixth of a second while power is
applied to the GE-225. When the C register count
reaches the binary equivalent of 24 hours (518,400
sixths of a second), it automatically resetsto zero and
starts counting again. Translation of the C register
contents from binary notation to clock time can be
performed either manually or by a simple conversion
routine. Instructions and conversion procedures are
discussed in Section V.

Addrgss P Counter

Decoding

Network 123.. FE A 15

Core
Storage
I Register
012 3. 0 v v o o o o o o o o o o o o o o o o s 19
- M Register B Register
Card Reader
Card Punch S 128 . . 0 i i it e e e e e e 19 P S 128 . i i i it e e e e e e e e 19
Controller
Selector
Peripherals Parity
Check Arithmetic
Unit
A Register f— Q Register
S 123 . v i e e e e e e e e 19 S123 i i e e 19
N
Register
2 6)

Console Typewriter
Paper Tape Reader-Punch

Figure 3-4. GE-225 Arithmetic Registers

II1-5

ARITHMETIC UNIT, The arithmetic unit is a high-
speed, parallel, binary adder network. It serves two
functions. During arithmetic operations, it performs
the calculations specified by the operation code in the
I register. It also serves as atransfer bus for words
moved between the A register and memory (via the M
register), and for the operand portion of instructions
moving into the I register.

Control Registers (Figure 3-5)

I REGISTER. The I Register is the instruction regis-
ter. Itcontainsall 20bits of an instruction word during
the execution of a computer instruction. While instruc-
tions are being processed, bits 0 through 4 indicate the
operation to be performed, and bits 5and 6 control the
automatic address modification, if required. During
the execution of instructions involving memory loca-
tions, bits 7 through 19 specify the memory address

involved. Bits 5 through 19 have other meanings during
the execution of general and shift instructions.

Instructions are read from memory into tne M register
and set into the B register. From the B register, bit
positions 0 through 6, comprising the operation code
and the address modification bits, are transferred
directly into the I register for decoding. At the same
time, bit positions 7 through 19, the operandportion of
the instruction, are routed to the arithmetic unit. If
bit positions 5 and 6 indicate address modification, the
contents of the indicated X register are added to the
instruction operand inthe arithmetic unit and the modi-
fied operand is set into the I register. If no address
modification is indicated, the unmodifiedoperandis set
into the I register.

X REGISTERS. X Registers, memory locations 0000
through 0003, are not actually registers, but serve
some of the same functions as do control registers.

X Reci Address
L gisters Decoding P Counter
Network 123 . 000 0 vvvvun 15
Core
Storage
I Reglster
0123 . 0 0 i i v e i e .. . 19
- M Register B Register
Card Reader
Card Punch S 1283 . ¢ v v v v v v v 19P S1283. “ e e s e e e e 19
Controller 1
Selector
P
eripherals Parity
Check Arithmetic
Unit
A Register Q Register
M S 123 o i i e e e e 19 S 123 . . . e e e 19
N
Register
12, 6]

Console Typewriter
Paper Tape Reader-Punch

Figure 3-5. GE-225 Control Registers

These four memory locations are reservedto serveas
counters and for automatic address modification.

P COUNTER, The P Counter (or register)is a 15-bit
location counter that contains the memory address of
the next instruction to be executed. The contents of
the P counter are incremented by one before the exe-
cution of an instruction so that the P counter indicates
the next instruction in sequence. The Store P and
Branch instruction is an exception. The contents of the
P counter can be setfrom thelregister when uncondi-
tional branching is specified by the program. The con-
tents of the P counter (the addressofthe next instruc-
tion) are displayed by 15 lights onthe control console.

BASIC OPERATING CYCLE

Program execution normally proceeds with instruc-
tions executed sequentially under the control of a 450
kilocycle crystal-controlled timer. This basic timing
device emits pulses every 2.25 micro-seconds. Eight

1A,

Word Time
#1

(Fetch Instruction Word)

T Times 10 | T1|T2|T3| T4|T5 | T8|T7

(Fetch Operand Word &
Execute Instruction)

To| T1| T2|T3 | T4|T5| T8 |T7

sequential pulses comprise the GE-225 operating cycle
of 18 microseconds, one word time. A word time is
the interval required to read a word from memory,
transfer it to the proper register(s), and restore the
word in memory. Figure 3-6A, Word Time #1, illus-
trates the basic read-write cycle.

In executing a program instruction, one word time is
required to fetch an instruction from memory and
another (Word Time #2, Figure 3-6A) is normally re-
quired to fetch the operand specified and perform the
operation - a minimum of twowordtimesper instruc-
tion. Instructions indicating address modification
require an additional word time to fetch the address
modifier from the specified X register, augment the
original operand with the modifier, and transfer the
updated address to the appropriate register. See
Figure 3-6B.

Some instructions require more thanone wordtime for
execution. Examples include double lengthword, mul-
tiply, divide, and shift instructions. The additional

No Address Modification Required
Word Time
#2

Word Time
#3

Fetch Next Instruction Word)|

To|T1{T2| T3|T4 | T5|T6 |T7

Extract Instruction 1
Word From Memory &
Transfer To M.-

Transfer Instruction

Word FromMTo B —f— g "
To L.

Re-Write Instruction
Word In Memory

Extract Data Word
From Memory &
Transfer To M.

1

1 Same As 1 In
| Word Time #1

Same As 2 In

- | Word Time #1

Same As 3 In

Word Time #1
-

Transfer Data Word X Re-Write Data

To Appropriate

Word In Memory

Register (S)

1B. Address Modification Required

Word Time
#1
(Fetch Instruction Word)

Word
#:

(Fetch Address Modifying

Word Time
#3
(Fetch Operand Word &
Execute Instruction)

Word Time
#4
Fetch Next Instruction Word)

Time
2

T Times

1o | 11| T2|T3| T4|T5 | T6|T7

Word)
7o |T1|T2|T3|T4 | TS{T8|T7

To|T1|T2|T3|T4 | T5T6 | T7

1o|T1|T2|73| T4|T5|T6|T7

Same As 1 Above In
Word Time #1 —

Same As 2 Above In
Word Time #1 ————f

Same As 3 In Above
Word Time #1 ————rt

Extract Modifier From
Memory & Transfer To M

Figure 3-6.

1

2

Re-Write Modifier
In Memory

Transfer Modified Ad-

dress To I

1

1

3
Extract Data Word From ;
Memory & Transfer To M | Re-Write Data

Combine Modifier With
Address Portion Of I &

Word In Me

Transfer Data Word
To Appropriate

A Same
Register (8)

Word

mory | Same As 2 In

Word Time #1

As 1 In Same As 3 In
Time #1 Word Time #1

Basic Timing for Single Length Word Operations

III-7

word times required are automatically provided by the
central processor sequence control logic.

Single word transfers from or to memory, including
instruction access time and not involving address
modification, require two word times; double length
word transfers require three word times. Execution
times for all instructions are included in the individual
instruction descriptions.

Sequencing

Instructions are normally executed sequentially. With-
in each operation cycle, the controllogic of the central
processor provides sequence control for:

1. Fetching the instruction,

2. Modifying the operand address (if required),
and

3. Executing the instruction.

The sequence control causes repetitive performance
of this cycle automatically, thus permitting execution
of successive program instructions. In addition, by
monitoring the execution of multiple-word-time in-
structions, the sequence control provides appropriate
control signals to make available the necessary word
times for execution before the next instruction is
fetched from memory.

Operation Cycle, General

Instructions are executed sequentially, except when
decision instructionsorpriority or program interrupts
break the sequence and commence processing at an-
other point in the program. The operation cycle des-
cribed briefly in Sequencing, above, consists of two
phases: the instruction phase andthe executionphase,
thereby giving meaning to the term, instruction-exe-
ution cycle.

INSTRUCTION PHASE, The instruction phase serves
three functions:

1. To locate the instruction in memory and
transfer it to the I (instruction) register.

2. To locate the data in memory as specified by
the instruction operand address.

3. To establish execution control circuits for the
instruction.

The instruction phase isillustrated more clearly by the
flow chart in Figure 3-7. During this phase, an in-
struction is read from memory and storedin the I reg-
ister. The operation code (bits 0 through 4) of the

GE-22%

instruction word are examined by the instruction de-
coding logic to determine the kind of instruction, that
is, branch, shift, arithmetic, etc. If necessary, the
remaining bits are also examined. This examination
established the necessary controls for directing pro-
cessing during the execution phase.

During the examination, the P counter is incremented
by one to contain the address of the next instruction
in sequence, The control circuits ask, “ is the instruc-
tion in the I register to be modified?” If yes, the
contents of the specified X register are read from
memory and added to the operand address in the
A register, then sent to the I register. If no, the
instruction is executed, When the central processor
is stopped manually, the P counter displays the address
of the instruction currently in the I register,

(Look up Instruction|
and Store in the
I Register

1WT

Increment the
P Counter for
the Address of
k the next

Instruction

Is the Instruction
in the I Register
0 be Modified ?

Modify
Address
1WT

No é——é-__

Execute the
Instruction

1or
more
units

Figure 3-7. GE-225 Instruction-Execution Cycle

Normally, the instruction phase of allinstructions re-
quires the same amount of time: placing instruction
in the I register and incrementing the P counter takes
one word time. However, if the instruction is to be
modified, an additional word time is required.

EXECUTION PHASE, During the execution phase, the
central processor performs the action specified by the
operation code. Forexample, if the instructionis LDA
3200 (load the contents of memory location 3200 into
the A register), the operand address in the I register
selects the proper control lines through the address
decoding network tobring the contents of memory loca-
tion 3200 into the M registerand, throughthe B regis-
ter and arithmetic unit, into the A register. Instruction
execution can require one or several word times,
depending upon the instruction.

October 1963

The instruction-execution cycle is continuous in nor-
mal operation. As soon as the instruction phase is
completed, the centralprocessor entersand completes
the execution phase, and another instruction phase is
initiated. The cycle is automatic as long as power is
applied to the system.

Operation Cycle, Detail

Three different kinds of memory access are required
to execute GE-225 instructions: one requires access
to memory under control of the P counter, another in-
volves control by an X register, and the third type of
access is controlled by the I register. The type of
access permitted during any word time is governed
by one of three flip-flop circuits as set by control logic:

1. AMP - A flip-flop in the sequence controller
that is used to Address Memory from the P
counter.

2. AMX - A flip-flop in the sequence controller
that is used to Address Memory from one of
the X registers.

3. AMI - A flip-flop in the sequence controller
that is used to Address Memory from the I
register.

Figure 3-8 is a flow chart depicting the operations
performed by the central processor while executing a

program. This diagram illustrates the nature of the
operations and tests performed during one complete
instruction cycle, including: 1) extraction of the in-
struction from memory (AMP), 2) modification of the
address portion of the instruction, if required (AMX),
and 3) the subsequent execution of the operation (AMI,
GIS, or AMX). GIS is a flip-flop in the sequence con-
troller that controls the execution sequence duringall
general instructions, hence General Instruction Se-
quencing, or GIS.

Program execution is accomplished by properly re-
peating the basic operating cycle until the program has
been completely executed. Program execution can be
interrupted at any time from the control console, in
which event the cycle stops immediately following an
AMP operation.

The symbols used in Figure 3-8 require some explan-
ation. Each circle containing alphabetic characters
represents an operation requiring one wordtime. The
abbreviations correspond to controlling flip-flops in
the instruction sequence control logic. Each smaller
circle containing an X indicates that the operation in-
volves memory access during the associated word
time.

Note, for a manual start, that the first instruction is
assumed already to be in theIregister. Upon depres-
sion of the Start button, the firstactionis the stepping
of the P counter by one, in preparation for the next
sequential instruction.

If the instruction currently in the I registerinvolves an
X register, the next operating cycle isan AMX access
cycle. Otherwise, the next cycleis eithera basic AMI
cycle or a general GIS cycle. Format I instructions
require one or more AMI cycles for execution. After
each AMI cycle, the controllogic is interrogated for an
end-of-execution condition, which (when detected)
turns on the EOO (end of operation) signal.

If the instruction is a general instruction, the next
cycles (if any) are one or more GIS cycles (to complete
instruction execution) or two AMI cycles (for input-
output operations involving the controller selector).

In all cases, completion of instruction execution results
in the generation of the EQO signal, whichinitiates an
AMP cycle for reading out the next instruction. Fur-
ther action at this point is contingentupon the position
of two switches on the control console: the Automatic-
Manual switch and the Stop on Parity Error switch.

If the Automatic-Manual switch is in the Manual posi-
tion, the processor halts. Otherwise, processing of the
next instruction is initiated, unless the Stop on Parity
Error switch is in the Stop positionanda parity error
has occurred during one or more of the memory access
cycles of the previous instruction cycle or the just-
completed AMP cycle.

If a processor halt occurs for any reason, the address
in the P counter is the address of the instruction that

is held in the I register upon completion of the AMP
cycle preceding the halt.

1-9

Power

End of Operation (E00) < End of Operation (E09*
(X\ Look up the ™\
@ instruction
word & store
it inthe I
Register
Load Manual Is this a manual orh
Card Halt Automatic Operauoly
Automatic
Start Compute Address of
Increment P Counter By One| Next Instruction

I8 the instruction in the I

Register to be Modified? Bits 5 & 6 = 00

Bits 5 & 6 # 00 Yes

Modify Data Address
(X) Portion of Instruction

Word. (Add I7-19 To
@ X5-19 and place result
in 15-19).

Does its Execution require
use of an X Register?

Execute if BXL,
BXH or INX
Instruction.

I8 the instruction inthe I \ No
Register A General
Instruction?

Yes

Execute General Instruction,
If an Input/Output Instruction,
Initiate Execution Process.

Is it an Input/Output
Instruction?

No

Has the instruction been

completely éxecuted? —
Q
Q) complete Execution
of Instruction.
Is it a Branch Instruction Yes

Yea whose Branching Condition o
was not satiu(iedi/
No
Has the lnslrucnon® Yes J
S Completely Executed?
@) Transmit 2nd
@ Command Word

No Does it involve the

Controller Selector?

Transfer P To I

To Controller No
Selector

Complete Execution Of
@ General Instruction,
Increment The P
Counter By One

Transfer P To I

@) Transmit 3rd
Command Word
@ To Controller
Selector

Increment The P
Counter By One

Figure 3-8: Flow Chart Showing Central Processor Operating Cycle

I11-10

SECTION IV.

GENERAL ASSEMBLY PROGRAM

The latest information on General Assembly Program
II now appears in a separate manual, GENERAL
ASSEMBLY PROGRAM II (Pub, No, CD225F1,006/007).

SECTION V

CENTRAL PROCESSOR OPERATIONS

GENERAL

Operations that occur within the central processor and
do not involve either direct input-output or controller
selector connectedperipheral devices are classifiedas
central processor operations. These operations are
further divided into five basic categories:

Arithmetic

Data Transfer

Shift

Internal Test-and-Branch
Address Modification

Rl ol Ml

Within each category, all instructions are discussed
and presented in essentially the same format. Intro-
ducing each instruction, in GAP format, is the mne-
monic operation code, the operand field (if required),
and the address modification code, if the instruction can
be automatically modified, thusly:

ADD Y X

— N
Mnemonic Memory Address
Code Location Modification

The Y symbol is usedto indicate that, for this instruc-
tion, the operand field refers to a memorylocation; Y
can be a symbolic or actual address. For instructions
requiring an operand other than an address, the symbol
K is specifiedin the heading. K has different meanings,
depending upon the instruction, and is explained inthe
description of the individual instructions. TheX sym-
bol indicates that the instruction can be automatically
modified. On the same heading line, the machine

language form of the instruction is given inoctal, fol-
lowed by the required execution time of the instruction
(including instruction read-out time):

ADD Y X 0100000 Word Times: 2
— —
Octal Execution
Instruction Time

Following the heading is the Functional Description of
the instruction, which details the effect of executing

the instruction, and one or more examples of instruc-
tion usage. Included in each example are the actual
GAP coding for the instruction and the contents of
the affected registers before and after execution.
Normally, control register contents are not shown;
it can be assumed that, unless otherwise stated, the I
register will contain the instruction being executed and
the P counter has been stepped to the next sequential
address. In other words, only the effectof the instruc-
tion is detailed.

Also, most examples are illustrated using data ex-
pressed in octal and using symbolic locationsinorder
to provide familiarity with these forms. Octal is the
form in which most GAP print-oyuts are made; sym-
bolic locations are more convenient for the program-
mer to use than are the actual numeric locations.

BE-229

ARITHMETIC INSTRUCTIONS

SUB Y X 0200000 Word Times: 3

ADD Y X 0100000 Word Times: 2

Functional Description: ADD. The contents of memory
location Y (S,1-19) are algebraically added to the con-
tents of the A register (S,1-19). The result is placed
in the A register (S,1-19). Yisunchanged. Overflow,
discussed at the end of this section, is possible.

Example 1: Addapositive number 42189, (0122315g),
located at GAP symbolic location AMT#%, to the posi-
tive number 52630, (01466268), which haspreviously
been loaded into the A register.

GAP Coding:
Symbol Opr Operand X
|L243L4‘5La ENED ‘2['”“?”‘””]‘”]” 20
- A DDIAMT # 2 L

Register Contents in Octal

A Q
Before execution: [0146626 l[? J
[[o2rmias | [

After execution:

Example 2: Addanegative number 4218910(36554638),
located at GAP symbolic location AMT#3+1, to the
positive number 52630, (01466264), which is already
- X 10 8

in the A register.

GAP Coding:

Operand X

12[1311 “I”l‘u”l”l” 20

Symbol Opr
‘0410
ADDIAMT # 3 + .1

|[zfa|41\5{es

Register Contents in Octal

A Q
[o14e626 [7]

Before execution:

After execution:

[oo24311 |{ 2 |

Comments: Note the use of relative addressingin the
operand field of Example 2. AMT#3+1 isone memory
location beyond AMT#3.

Functional Description: SUBTRACT. The contents of
location Y (S, 1-19) are algebraically subtracted from
the contents of the A register (S, 1-19). The result is
placed in A (S,1-19). Y is unchanged. Overflow is

possible.
GAP Coding:
Symbol Opr Operand X
'[ZXSI‘T‘i‘ s | 9 |10 12 13 uLvateinlla]n 20
) . S UB|/AMT # 2
Example 1: Subtract the positive number 421891'0

(01223158), located at GAP symbolic location AMT#2,
from the positive number 52630, (0146626g), which
has been previously loaded into the A register.

Register Contents in Octal

A Q
Before execution: 0146626 ?
After execution: 0024311 2

Example 2: Subtract the positive number 65421,
(0177615g), located at GAP symbolic location AMT#3
from the smaller positive number 52630, (01466268),
which has been previously loaded into the A register.

GAP Coding:
Symbol Opr Operand X

|Lz MJ°L° [N 121 1s lALHLIeinlluln
— . S UBIAMT # 3

»
o

Register Contents in Octal

A Q
Before execution: | 0146626 | [2 |

[374000 |[-]

Comments: Note that, when a larger number is sub-
tracted from a smaller number of like sign, the result

is in complement form.

After execution:

DAD Y X 1100000 Word Times: 3

Functional Description: DOUBLE LENGTH ADD. If the
(modified) address of memory location Y is even, the
contents of Y (S,1-19) and Y+1(1-19) are algebraically
added to the contents of register A (S,1-19) and
Q (1-19). However, if the {(modified) address Y is odd,

GlE-229

V-2

the contents of Y (S, 1-19) and Y (1-19) are algebrai-
cally added to the contents of A (S, 1-19) and Q (1-19).
The result is placed in A (S, 1-19) and Q (1-19). The
sign of the Q register is settoagree with that of the A

register. Y and Y+1 are unchanged. Overflow is pos-
sible.
Example 1: Add the positive number 821,695,

(0000001 11046775), located at GAP symbolic locations
AMT#17 and AMT#?'7+1, to the positive number 52630010
(0000001 0003734g), which has been previously loaded
into the A and Q registers. AMT#7 is an even-num-
bered memory location.

GAP Coding:

GAP Coding:

Symbol Opr Operand X
|[zls| Alsle els|1o uI!ﬂTTPaLri|wlan 20
) DADAMT# 9 ‘

Register Contents in Octal

A Q
Before execution: | 3777776 | | 3774044 |

I 3777775] | 3141724 |

After execution:

Example 4: Addthe positive number 155,926,921,828,

Symbol Opr Operand

v[2] s a] s[efs [o]ro]r2]

~

'ﬂ‘"]”l”i”l'el" 0

L X DADAMT# 7 X

Register Contents in Octal

A
Before execution: LOOOOOOI l[0003734 J

(1104677 0001144g), located at GAP symbolic loca-
tions AMT#7+1 and AMT#7+2, to the positive number
52630010 (0000001 0003734g), which has been pre-
viously loaded into the A andQ registers. If AMT#7+1
is an odd memory location, the contents of AMT#7+1
are added to the contents of both A and Q, and the con-
tents of AMT#7+2 are ignored.

| oocoooz || 1110633

After execution:

Example 2: Add the positive number 821,695
(0000001 1104677g), located at GAP symbolic loca-
tions AMT#7 and AMT#7+1, to the negative number
-526300, (3777776 3774044g), which has been pre-
viously loaded into the A andQ registers. AMT#7 is an

GAP Coding:
Symbol Opr Operand X
‘[zlsl‘[“l“ 8 [9 |10 |2]13]|4]|ﬁ1l6||7l|a|!9 20
L) DADIAMT# 7 + 1

Register Contents in Octal

even-numbered memory location. A 2
Before execution: L 0000001 l I 0003734 J
GAP Coding: 1
After execution: 1104700 1110633 J
PROGRAMMER
Symbol Opr Operand X . .._
I D CEMD D A SO R AT BT DSU Y X 1200000 Word Times: 5
I . |DADIAMT#U7

Register Contents in Octal

A
[3777776

Q
Before execution: | [3774044 |

[ooooooo || 1100743]

Example 3: Add the negative number -734288;(
(87777176 3145660g), located at GAP symbolic loca-
tions AMT#9 and AMT#9+1, to the negative number
-526300,((3777776 3774044g), which has been pre-
viously loaded into the A and Q registers. AMT#9 is
an even-numbered memory location.

After execution:

Functional Description: DOUBLE LENGTH SUB-
TRACT. If the (modified) address of memory location
Y is even, the contents of Y (S, 1-19) and Y+1 (1-19)
are algebraically subtracted from the contents of reg-
isters A (S, 1-19) and Q (1-19). However, if the
(modified) address Y is odd, the contentsof Y (S, 1-19)
and Y (1-19) are algebraically subtracted from the
contents of A (S, 1-19) and Q (1-19). The result is
placed in A (S,1-19)andQ (1-19). The sign of Q is set
to agree with the sign of A. Y and Y+1 are unchanged.
Overflow is possible.

Example 1: Subtract the positive number 5263004
(0000001 0003734g), located in GAP symbolic locations

AMT#6 (even) and AMT#6+1, from the positive number
82169510 (0000001 1104677g) which has beenpreviously
loaded into the A and Q registers.

BE-229

Symbol Opr Operand X
1t 2] a]afs[e[s o]0 1213 14] 48] 1617 [t [19]20
L D .S U AAM,TA#,L

Register Contents in Octal

A Q
Before execution: | 0000001 | [1104677 |

| ooosooo] | 1100743 1}

After execution:

Example 2: Add one to the negative number -42189 0
(3655463;;, which has been previously loaded into the
A register.

GAP Co :
Symbol Opr Operand X
s 2[a] a[s[e8] vz 1a] V4] V816 17 ts 1020
1 e " 1 AIDJO L " - -

Register Contents in Octal

A Q
Example 2: Subtract the positive 155,929,921,828, Before execution: [3655463 l | ?]
(1104677 00011448), located in GAP symbolic locations
AMT#6+1 (odd) and AMT#6+2, from the positive number After execution: 3655464 ?
155,927,218,62410 (11046717 1104700g), which hasbeen
previously loaded into the A and Q registers.
SBO 2504112 Word Times: 3 |
ding:'
GAP Coding:' Functional Description:- SUBTRACT ONE. Plusone is
Symbol Opr Operand X algebraically subtracted from the contents of the A reg-
W[2] 3]] 8] e[orofrz[1a]rafos]ve]17 s 10]z20 ister (bit position 19). If the capacity of the A register
DSUIAMT $ 6 + 1 is exceeded, overflow occurs.
. . Example 1: Subtract one from the positive number
Register Contents in Octal ZXxample 1. p
gl 85421, (0177615g), which has been previously loaded
A Q into the A register.
GAP Coding:
Before execution: 1104677 1104700
Symbol Opr Operand X
After execution: 0000000 0000001 t[a[a] a] e] e[o o ro]safra]rafvsfre[17]1s]10]20
L __|S BO . A
Register Contents in Octal
ADO 2504032 Word Times: 3

Functional Description: ADD ONE. Plusoneis added
algebraically to the contents of the A register (bit

position 19). If the capacity of A is exceeded, overflow
occurs.

ample 1: Add one to the positive number 5263010
%%14682685, which has been previously loaded into the
A register.

Q
]
[orm7e14 | L~ |

A
Before execution: I 0177815] I

After execution:

Example 2: Subtract one from the negative number
-85421 10 (3600163g), which has been previously loaded

into the A register.

GAP Coding: GAP Coding:
Symbol Opr Operand X Symbol Opr Operand X
1 [2] a] a] o] e]e o rofva[ra]rafrs]te]17]ts]1o]z0 v[2] 8] 4] 5] 6|6 [[10]|v2]1s 1a]Vs]ve[17] 18] 10]20
1A DO — — _ IS B O

Register Contents in Octal
A Q

Before execution: | 0146626 ” ? I
[o146627 || 2 1}

After execution:

GE-225

Register Contents in Octal

A Q
Before execution: r3500163 I r ? J
[se0062 J[2]

After execution:

October 1963

MPY Y X 1500000 Word Times: 9to 23

DVD Y X 1600000 Word Times: 26 to 29

Functional Deseription: MULTIPLY. The contentsof
memory location Y (S,1-19) are algebraically multi-
plied by the contents of the Q register (8, 1-19). The
product is placed in registers A (S, 1-19) and Q (1-19).
The sign of Q is the same as the sign of A after mul-
tiplication. If the contents of A are not set to zero
before MPY, the contents of A are addedalgebraically
to the least significanthalf of the product, thus permit-
ting evaluation of expressions of the form AB+C.
Overflow is possible.

Example 1: Multiply the positive number 52630,
2014662685 in GAP symbolic location AMT#1 by the
positive number 42189, (0122315g) in the Q register.
The A register contains zeros.

Functional Description: DIVIDE. The contents of reg-
isters A (S,1-19)andQ (1-19) are algebraically divided
by the contents of location Y (S, 1-19). The quotient is
placed in A (S, 1-19); the remainder is placed in
Q (1-19). The sign of the remainder (Q) is the sign of
the quotient (A), For proper division, the absolute
magnitude of the divisor (Y) must be greater than

the magnitude of the contents of A, otherwise over-
flow occurs,

Example 1: Divide the positive number 524220,
(177767485’in the Q register by the positive number
5263019 (01466268) in GAP symbolic location AMT#
The A register contains zeros.

GAP Coding: GAP Co :
Symbol Opr Operand X Symbol Opr Operand X

] 2] s] «a[s8] e]s o [t10]1z]va]ra]vs] 16 17 16019

N

)

MPYAMT# 1

Register Contents in Octal

A
| oooo000 | | 0122315 |

Before execution:

After execution:

0010213 | | 0134436 |

Example 2: Multiply the positive number 52630,
201466268) in GAP symbolic location AMT#1 by t%xe
positive number 418,254, (1460716g) in the Q register.

The A register contains the positive number 37955
(01121038).

GAP Coding:

Symbol Opr Operand X

1[2[31 4[u] s [s [10 '21"1"]“|'°i'7|”l'° 20

.. MPYAMT# 1 .

s o

Register Contents in Octal

A Q
Before execution: 0112103 1460716
After execution: 0122001 1754367

BlE-229

v 2] s] «] 5] 6| [1oftz[1a[r14]ve]te][17] 18] 1020
D VDIAMT# 1

ien— n n

Register Contents in Octal

A
[oooo000 | | 1777674 |

Before execution:

After execution:

0000011]

0142566 |

Decimal Arithmetic

In business applications, data to be processed is
often recorded externally in the BCD format, To
process such data in a binary computer requires
conversion of data from BCD to binary, computation
in binary mode, and subsequent reconversion to
BCD format for externaluse,

The decimal arithmetic optional feature* provides the
GE-225 with the capability of performing addition and
subtraction of BCD data directly in the decimal mode,
thereby eliminating the need for converting and recon-
verting data.

A GE-225 with the decimal arithmetic feature normally
operates inthe binary mode. Operationis shifted to the
decimal mode only by executing a SET DECMODE in-
struction, and can be returned to the binary mode by
executing a SET BINMODE instruction or depressing

* Part of the optional group which includes additional
modification word groups and the three-way compare
instruction.

October 1963

the Power On switch on the control console. The initial
power on sequence automatically sets the GE-225in the
binary mode.

Rather than providing entirely new instructions and
mnemonics, the decimal arithmetic feature modifies
the execution of the following existing binary arithmetic
instructions:

Single Add ADD
Single Subtract SUB
Add One ADO
Subtract One SBO
Double Add DAD
Double Subtract DSU

All other GE-225 instructions are unaffected and con-
tinue to be executed as they are in the normal binary
mode. Indexing is performed in binary regardless of
the mode set.

In decimal mode operations, affected GE-225 words
are considered to consist of three decimal digits as
shown:

S1 4 7 10 13 16 19

lo]ofo oJoo10foofoo10foofooio]

Bit positions 4 through 7,10 through 13, and 16 through
19 are used to express decimal digitsin standard BCD
format. Decimal quantities greater than 999 are ex-
pressed by using two or more 20-bit words.

The sign of the decimal number is in the S position of
the word containing the most significant decimal digit;
a 0-bit designates a positive decimal number, while a
1-bit indicates a negative quantity.

Zone bits of each BCD character(2and3, 8 and 9, and
14 and 15) contain O-bits and do not enter into arith-
metic operations.

The decimal word containing the most significant (high-
order) digit must be marked or flagged to define the
end of the decimal field by placing a 1-bit in bit posi-
tion 1.

Thus, the decimal quantity +979989 would appear in
memory as two words of three digits each:

Memory Location Y

S1 4 7 10 13 16 19

lof1fooJio01foofor11]o0[1001]

1y 7 7

+ 9 y

End of Field
Flag

Memory Location Y+1

[o\o\oohoo1]00(10000011001]
P

The programmer should flag each BCD number prior
to arithmetic operations by coding which sets a 1-bit
into bit position 1 of the most significant word of each
quantity. Sample coding to accomplish this is shown
under Program Insertion of End-of-Field Flag.

Besides defining the length of the decimal number, the
end-of-field flag affects the disposition of carries
generated during arithmetic operations. A carry out
of the most significant digit position of a word is re-
membered if the word does not containan end-of-field
flag. The carry is remembered either until the next
decimal instruction is executed or the Clear Alarmis
depressed.

If the end-of-field marker is set(al-bitin position 1),
then a carry out of the most significant digit position
causes overflow, which turns onthe overflowindicator
and reverses the sign of the most significant word of
the decimal number.

The end-of-field flag is not essential for bothquantities
involved in a decimal operation; only the high-order
word of the quantity loaded into the A register must
be so marked. If the field in memory is flagged and
the field in the A register is not, an error condition
occurs. If both fields are flagged, the effect is the
same as if only the A register were flagged. A flag in
the A register field automatically generates an end-of-
field flag for the result field.

Negative decimal numbers must be expressed in the
10’s complement form before decimaloperations. The
10’s complement is formed automatically by subtract-
ing the decimal number from a decimal zero (delimited

GE-225

by an end-of-field flag in bit position 1) while in the
decimal mode. Negative resultsof decimal operations
also appear in the 10’s complement form. Thus, the
decimal number -222222 would be converted to
-777,778 (1,000,000 - 222,222) before being used in
arithmetic operations.

DECIMAL ARITHMETIC INSTRUCTIONS

SUB Y X 0200000 Word Times: 3

ADD Y X 0100000 Wword Times: 2

Functional Description: DECIMAL ADD. The contents
of Y (3 BCD digits, S,4-7,10-13,and 16-19) are alge-
braically added to the contents of the A register (bits
S, 4-7, 10-13, and 16-19). The result is placed in the
A register (bits S, 4-7, 10-13, and 16-19).

Example 1: Decimal add the quantity +333 in sym-
bolic location INCR to +444 which has beenpreviously
loaded into the A register, Assume that the central
processor is operating in the decimal mode, by a
prior SET DECMODE instruction,

GAP Coding:
Symbol Opr Operand X

B IS N) N N A A D D AR RO A R

ADDIINCR, ., |

»
o

' ! L 1

L " 5 L . L " " |

Memory and A Register Contents in BCD

Functional Description: DECIMAL SUBTRACT. The
contents of Y (bits S, 4-7, 10-13, and16-19) are alge-
braically subtracted from the contents of the A reg-
ister (bits S, 4-7, 10-13, and 16-19). The result is
placed in the A register (bits S, 4-7, 10-13, and 16-
19).

Example 1;: Decimal subtract the quantity +333 in sym-
bolic location DECR from +444 which has been pre-
viously loaded into the A register. Assume that tr

central processor is operating in the decimal mnde.

GAP Coding:

Symbol Opr Operand X

1[2[s] a4 s] 6o o [ro]sz]1a]1a]1s]16]17 18] 1o

»

o

o S, U B|D.E CR, .

i " " " i

A INCR
Before execution: +14 14| 4 +/3|313
After execution: +l71717 +|3l3ls

Example 2: Decimal add the quantity -333 in symbolic
Tocation NEGN to +444 which has beenpreviously loaded
into the A register. Assume that the central processor
is operating in the decimal mode.

GAP Coding:

Memory and A Register Contents in BCD

DECR

A I
Lxlalals] [+]s]3]s]
After execution: + l—[lm l+]3|3[3]

Before execution:

Example 2: Decimal subtract the quantity -333 in
symbolic location NEGN from +444 which has beenpre-
viously loaded into the A register. Assume that the
central processor is operating in the decimal mode.

Symbol Opr Operand X

Symbol Opr Operand X
v [2] s]] 5] 6|8 [[t0]rz[1a] 14181617 1e]10

~
o

N
o

[2] s al s]elefo[rofraTis]ralrs]re]s7]1s]e

S UBINEGN, , ,

A DDNEGN, N

i ! L n L

i - | .y i

Memory and A Register Contents in BCD

A NEGN
Before execution: +1414| 4 -16|1 617
After execution: +i1(11]1 -(6]16]"7

Memory and A Register Contents in BCD

Before execution: +141414 -16}1617

After execution:

Ble-225

October 1963

J pap Y X 1100000 Word Times: 3

Functional Description: DOUBLE DECIMAL ADD. If
Y is even, the contents of Y (S, 4-7, 10-13, and 16-19)
and Y+1 (4-7, 10-13, and 16-19) are algebraically
added to the contents of registers A (S, 4-7, 10-13, and
16-19) and Q (4-7, 10-13, and 16-19). If Y is odd, the
contents of Y (S, 4-7, 10-13, and 16-19) and Y (4-7,
10-13, and 16-19) are added to registers A (S, 4-17,
10-13, and 16-19) and Q (4-7, 10-13, and 16-19). The
result is placed in registers A and Q.

Example 1: Double decimal add the quantity +123456 in
symboli¢ locations POSN and POSN+1 to the quantity
+543210 which has been previously loaded into the A
and Q registers. Assume that POSN isan even mem-
ory address and that the central processorisoperating
in the decimal mode.

GAP Coding:

Symbol Opr Operand X
12 s a] s e]e]o]r0 vz 1] 14] V8 18] 17] 18 1920
] 1 e 1 DLAJD P.Ol S AN L A 1

Memory and A and Q
Egister Contents in BCD
Before execution: A Q
+]151413 21110
POSN POSN+1
+11]2]3 415 1|8

After execution:

A Q
L lefe]e] [Jefe]e]
POSN POSN+1
+|1]2]|3 4|5|6

Example 2: Double decimal add the quantity +123456 in
symbolic locations PREP and PREP+1 to the quantity
+543210 which has been previously loaded into the A
and Q registers. Assumethat PREP isan odd memory
address and that the central processor is operating
in the decimal mode.

GAP Coding:

Memory and A and Q
Register Contents in BCD

Before execution: A Q
+]|5| 4|3 2(1|0
PREP PREP+1
+]11]213 415|6
After execution: A
+16161(6 31313
PREP PREP+1
+111213 4|151|6
DSU Y X 1200000 Word Times: 5 |

Functional Description: DOUBLE DECIMAL SUB-
TRACT. If Y is even, the contentsof Y (S, 4-7, 10-13,
and 16-19) and Y+1 (4-7, 10-13, and 16-19) are alge-
braically subtracted from the contents of registers A
(S, 4-7, 10-13, and 16-19) and Q (4-7, 10-13, and 16-
19). If Y is odd, the contents of Y (S, 4-7, 10-13, and
16-19) and Y (4-7, 10-13, and 16-19) are subtracted
from the contents of registers A (S, 4-7, 10-13, and
16-19) and Q (4-7, 10-13, and 16-19). The result is
placed in the A and Q registers.

Example 1: Double decimal subtract the quantity
+123456 in symbolic locations DECR and DECR+1 from
the quantity +543210 which has been previously loaded
into the A and Q registers. Assume that DECR is an
even memory address and that the central processor
is operating in the decimal mode.

GAP Coding:

Symbol Opr Operand X

v 2] a] a[5] 6|8 o [r0fvz]1s[ra]vs]v6[t7 1810

~
o

DS U|DE CR, -

i) I i I

Symbol Opr Operand X

[27 s] a[s] e8|]10 'q"l”]“l”l"l"]"

3

0

. . . |DADIPRETP .

4 4 L " " L L " L

Memory and A and Q
Register Contents in BCD

A Q
Before execution: [+ l5 IﬂS J I |2 I 1 |0]
DECR DECR+!
tfafzfs| [[¢]s]e]

BE-229

October 1963

After execution:

AnAnEnonn

DECR DECR+1

1|2]s] | [4]5]e]

Example 2: Double decimal subtract the quantity
+123456 in symbolic locations NEGR and NEGR+1 from
the quantity +543210 which has been previously loaded
into the A and Q registers. Assume that NEGR is an
odd memory address and that the central processor
is operating in the decimal mode.

+

GAP Coding:
Symbol Opr Operand X
le[s]aTsIo s [o |10 lZ'_IaJ,!J]lBJHl'!'IlIsJ!O 20
. . . , |IDSU|NEGR, R

Memory and A and Q
Register Contents in BCD

A Q
Lelslafs] | [2]1]o]

i 205]

Before execution:

NEGR+1

[[o]e]

After execution: A Q
+ (4 (2 Ol 0|8|"7
NEGR NEGR+1
+(1]218 415|686
ADO 2504032 Word Times: 3

Functional Description: ADD ONE DECIMAL. Oneis
algebraically added to the contents of the A register
(4-7, 10-13, and 16-19). If the capacity of A is ex-
ceeded, the overflow indicator is turned on. This
instruction operates properly only on decimal words
of three digits or less.

BE-225

Example: Add a decimal one to the quantity +832 in
the A register.

GAP Coding:

Symbol Opr Operand X
|[z|s]415‘5 eln|1o |2I|sl“]ls]|si|7lul|n 20
1 1 1 Al D| O 1 1 1 L 1 1

Register Contents in BCD
A
Before execution: +|8l|sl2
After execution: +|18(381|83
SBO 2504112 Word Times: 3

Functional Description: SUBTRACT ONE DECIMAL.
One is subtracted algebraically from the contents of the
A register (4-7, 10-13, and 16-19). If the capacity of
the A register is exceeded, the overflow indicator is
turned on. This instruction operates properly onlyon
decimal words of three digits or less.

Example: Subtract a decimal one from the quantity
-763 in the A register. Assume thatthe 10’s comple-
ment of -763 has already been formed.

GAP Coding:
Symbol Opr Operand X
3 IEN A% I3 A3 I N N AT) Y) K KT K KA D
e s BO| , ., . . L
Register Contents in BCD
A
Before execution: -12(81"7
After execution: -l2l3l8

MODE CONTROL INSTRUCTIONS

SET. DECMODE 2506011 Word Times: 2

Functional Description: SET DECIMAL MODE causes
the arithmetic commands ADD, DAD, SUB, DSU, ADO,

and SBO to be executed inthe decimal mode. No other
commands are affected.

SET BINMODE 2506012 Word Times: 2

Functional Description: SET BINARY MODE causes
the arithmetic commands ADD, DAD, SUB, DSU, ADO,
and SBO to be executed in the binary mode. No other
commands are affected.

RELATED CONSOLE CONTROLS

1. Power On Switch. Depressionofthis switch at any
time sets the central processor into the binary mode
of operation.

2. Clear Alarm Switch. Depression of this switch
removes any carry resulting from uncompleted deci-
mal operations and prepares the decimal controls for
a new sequence.

PROGRAM INSERTION OF END-OF-FIELD FLAGS

To designate the beginning of a decimal field, a 1-bit
is inserted into bit position 1 of the high-order word of
the field. A typical method of accomplishing the bit
insertion is:

Comments: The OCT 1000000 places the flag constant

in storage; LDA MILL and ORY DECW insert a 1-bit
into bit position 1 of DECW (the high-order word).

TEN’S COMPLEMENT FORMATION

Preparatory to decimal arithmetic operations, nega-
tive decimal quantities must be convertedto 10’s com-
plement form. One method for so doing is:

GAP Coding:
Symbol Opr Operand X
‘[2] s] «] 5]][[t0ft2]ta]1a]ts]te[17 1 1020
M 1,LL.L. ., |OCT|1,00,00,0 0,
L) LDAMI L L = |
OR YD ECW
DECW Contents
in Binary
Before

execution: | 0]0]0 0 0]o10[o00]o10[000[010]
I — —

M 2 2 2

Aft

execution: | 0]1]000{010]000]010]000]010]
1 ~— ~—— ~—
Y 2 2 2

End-of-Field Flag

GAP Coding:

Symbol Opr Operand X
1[2]3L4L515 s o 10 |z'l|sl|4jl5]u|'7|xa|n 20
MI LL , |]OCT|l1 00.0.0.0.,0,

. O0.C T{0. 0.0 0.0 ,0,0,

DLDMITL L
. DSUINEG,D,_, , |,
\ DST|ICOMP . . |
Memory Contents
in BCD
NEGD and NEGD+1: +{3]2]5 41116
COMP and COMP+1:
(after execution) - 181714 5|84

PROGRAMMING DECIMAL OPERATIONS

The GAP listing below illustrates the fundamentals of
performing arithmetic operationsin the decimal mode.
Address location 01750 contains the end of field marker
to be inserted in the two BCD numbers before addi-
tion. In theory, both numbers need not contain a flag;
only the number in the A register must have the
marker. However, it is a good practice to flag all

numbers to be used in decimal arithmetic operations.
Memory locations 01756, 01757 and 01760 contain the

commands for flagging the BCD numbers.

‘Command 01761 converts the internal operation of

the computer to BCD prior to the addition and com-
mand 1765 restores the computer to the binary mode.

BE-229

v-10 October 1963

GAP Listing

01750 ORG 1000
01750 1000000 MILL OCT 1000000
01751 0000000 0CT 0000000
01752 0020202 A1 ALF 222
01753 0020202 A2 ALF 222
01754 ooLoLoL 81 ALF Lhb
01755 ooLoLokL 32 ALF LLi
01756 0001750 START LDA MILL
01757 2301752 ORY Al
01760 2301754 ORY B1
01761 2506011 SET DECMODE
01762 1001752 DLD A1l
01763 1101754 DAD B1
01764 130160k DST 0900
01765 2506012 SET BINMODE

The printout of the memory addresses used in the
program shows that locations 01752 and 01754 con-
tain flags in the words containing the most significant
digits. Locations 01604 contains the sum which also
is automatically flagged.

Memory Printout
01604 & 01605

0000000
2606060
0000000
0700040
0700040
0700040
0700040
(1020202 0020202
1001752 1101754

006060€
000000C
000000C
070004C
070004C

0000000
0000000

0000017
0000000
0000000
0700040

0700040
0060608
0700040 0700040
IOEOEOE

1301604 2506012

2516006
0000000
0000000
0700040
0700040
0700040
0700040
0001750

2600002
0000000
0000000
0700040
0700040
0700040
0700040
2301752

00230
00240
00250
00260
01600
01610
01750
01760

0060000
0000000
0000000
0700040
0700040
0700040
1000000
2301754

0000002
0000000
2001777
0700040
0700040
0700040
0000000
2506011

Overflow

During arithmetic operations. the result of the cal-
culation can exceed the capacity of the 20-bit A
register. When this happens. the register overflows
(loses a bit from the high-order position). This is
known as an overflow condition.

The A register can also overflow as a result of double
length word calculations. For a divide instruction,
register overflow can occur when the magnitude of the
divisor is not greater than that portion of the dividend
in the A register. An overflow condition also is pos-
sible when an attempt is made to negate (execute a
NEG instruction) thelargest possible negative number.

When anoverflow conditionarises, three things happen:

1. The sign of the result is reversed.

2. The most significant bit of the result (in bit

position 1) is lost, and

3. The overflow indicator on the control con-

sole is turned ON.

The reversal of the sign bit in the A register causes
the overflow indicator to turn ON, regardless of the
type of instruction causing overflow.

Register Capacity. The A register can holdany num-
ber consisting of 19 numerical bits (bits 1 through 19)
plus the sign bit (bit 0). Thus, it is possible to rep-
resent a maximum positive number of 524,287 0 and
a maximum negative number of -524,288, })efore
overflow could occur. These two numbers, with their
binary equivalents are shown below:

S

012345678910111213141516171819

0111111111 1 111111111

Maximum Positive Number = +524,28710

S

012345678910111213141516171819

1000000000 O 0O O OO OOO0OO0OO

Maximum Negative Number = -524,28810

The addition of any number, except O, to the largest
positive number causes an overflow of a 1-bitinto the
sign bit position, thereby reversing the sign.

As shown, the maximum negative number consists of
a 1 bit in the signbitposition followed by all zeros. It
is incorrect to consider this configuration asa ‘minus
zero;’ it is -524,28810. An attempt to negate the
largest negative number (with the NEG instruction)
results in overflow: allthebitpositionsare reversed,
giving the 1’s complement, and when one is added to
form the 2’s complement, aoneis carriedinto the sign
bit position. It can be seen that, although bit 0 indi-
cates the sign of the number (0 = plus; 1 = minus), all
twenty bits are involved in arithmetic operations.

The specific conditions for overflow are summedup in
the following paragraphs. Overflow for each kind of
arithmetic operation is illustrated by examples.

Addition Overflow. The overflow indication occurs
during the addition of two positive numbers when there
is a carry from the most significant bit position (bit
position 1) to the sign bit position. No overflow indi-
cation is possible during the addition of numbers with
unlike signs. The overflow indication occurs during
the addition of two negative numbers when there is a
reversal of the sign bit position.

G- 225

Example 1: Add the contents of symbolic location
AMT#1 (0146626g) to 1777674g, which has previously
been loaded into the A register.

Example: Subtract the negative number in symbolic
location AMT#3 (-65421(or 3600163g) from the posi-

tive number 524220,(, which has previously been
loaded into the A register.

GAP Coding:
GAP Coding:
Symbol Opr Operand X
s 2] s] a] s efe[o[rofsa]vs]ra]vs 1617 18 10]20 Symbol Opr Operand X

, . ., |ADDAMT# 1,

—

Register Contents in Octal

A
Before execution: 1777674 ?
After execution: 2146522 ?

Example 2: Add the contents of symbolic location
AMT#2 (-524288;(or 2000000g) to -1, which haspre-
viously been loac%ed into the A reg1ster

GAP Coding:

Symbol Opr Operand X
([2] s] 4] s 6] [[vo[vz]1s]1a]v8]te6]17 18] 10
ADDIAMTG# 2

[

" L 1 n L

1

L . L L . N

Register Contents in Octal

A Q
| s7vmom || 2 |

Before execution:

After execution:

1771717 | 2|

Comments: Note that, in both examples, the sign bit
of the A register is reversed. In example 1, initially
the sign bit position and bitposition 1 contain 01; after
addition, these positions contain 10. In example 2,
initially the sign bit and bitposition 1 contain 11; after
addition, these positions contain 01.

Subtraction Overflow. In subtraction, the 2’s comple-
ment of the subtrahend is added to the contents of the
A register. The rules for overflow which apply to
addition also apply to subtraction.

GE-229

~

[

v 2] s] «] 5] e[[1ofva]1s[1418 1e[17 18] 10
S UB|AMT#3

. L A n

—

Register Contents in Octal

A Q
Before execution: 1777674 ?
After execution: 2177511 ?

Comments: Note that this subtraction is performed
by adding the 2’s complement of 3600163g (0177615g)

to 1777674g. Overflow occurs when the sign bit changes
from 0 to 1.

Multiplication Overflow. The overflow indication oc-

curs in multiplication only when there is anattempt to
multiply the maximum negative number by the maxi-
mum negative number (-219 x -219), The overflow
indicator on the control console is automatically turned
off prior to execution of a multiply instruction.

Example: Multiply -524,28810 in symbolic location
AMT#7 by -524,28819, which has previously been
loaded into the Q register.

GAP Coding:

Symbol Opr Operand X

v[2 s «] s e[o to[vz[1a]vafvs]r6[17 18] 10

]

Il A n e

MPYAMT# 7,

— e It n l

Register Contents in Octal

A Q
Before execution: 0000000 2000000
After execution? 2000000 2000000

V-12

Division Overflow. Forproper division, the magnitude
of the divisor must be greater than the magnitude of
that portion of the dividend in register A. If not, the
overflow indication is turned on and control is trans-
ferred to the next instruction in sequence. The over-
flow indicator on the control console is automatically
turned off prior tothe executionof a divide instruction.
Also, overflow will occur if division results in a
quotient that exceeds the capacity of the A register.

Exampie: Divide the positive number 17,3\'38,832,32910
(0100457 03127118), which has been previously double

loaded into the A and Q registers, by 20,0004
(0047040g) in symbolic location WRDS.

GAP Coding:

Symbol Opr Operand X

l[leiATsIo s ° 1012 15 ululu"n]laln 20

D VDWRDS

o

Register Contents in Octal

A Q
| o100457 | [0312711 |

| 0201136 | [o62s622 |

Before execution:

After execution:

Scaling

The movement of the decimal point to the right or left
to properly align numbers is called 'scaling’ or ‘deci-
mal positioning.” Before decimal numbers can be
correctly added or subtracted in the central processor,
the number ofplaces to the right of the decimal point of
both numbers must be the same. Forexample, to add
3.0 to 4.16, 3.0 is arranged to correspond to 3.00 and
then added to 4.16. If the decimal point is moved to the
right in preparation for calculations, the number is
‘scaled to the right;’ if the decimal point is moved to
the left, the number is ‘scaled to the left.’

When two numbers are multiplied, the number of places
to the right of the decimal point in the product is the
sum of the places to the right of the decimal point in
both the multiplier and the multiplicand. If it is de-
sired to scale the product (which is expressed as a
binary number) for subsequent calculations, the pro-
duct must be divided by a constant that is the binary
equivalent of an appropriate power of 10.

To further illustrate the concept of scaling, consider
the example of adding the following two decimal num-
bers:

24.4
+13.25
37.65 Desired sum

Because the central processor does not recognize
decimal points in arithmetic operations, the binary
equivalent of 244;and 132510 would appear in memory
as shown in Figure 5-1.

012345678910111213141516171819

00/000j000(00 OJ0O0 1 111 1 0|1 0 O

00/000/000/01 Of1 0 O0/1 0 1f1 O 1

= 24410 and 132510

Figure 5-1. Two Numbers in Memory before Scaling

When these two numbers are added, the result would
appear in the A registeras 1569;¢ (Figure 5-2). This,
of course, is incorrect, for the desired sum is 37.6510_

012345678910111213141516171819

0000000001 1 00 0100O0O0O0T1

= 156910

Figure 5-2. Incorrect Sum after Addition without
Scaling

To obtain the correct sum of 37.65,, it is necessary
to scale the augend 244, to theleftone decimal posi-
tion by multiplying 244, by 10;o- Through multipli-
cation, 244, becomes 24407 and thusis scaledto the
left so that the decimal points in the two numbers are
properly aligned. After scaling, the two numbers are
aligned as shown in Figure 5-3.

012345678910111213141516171819

oojfooo0j0o0OOf10 01 1 0{0 O 1{0 0 O

00/000j000J01 Oj1 0 O0f{1 0 11 0 1

= 2440, and 132510

Figure 5-3. Numbers in Memory after Scaling

ble 225

V-13

Because the two numbers are now properly aligned, the
correct sum of 37.651¢g is achieved when the numbers
are added.

Note that scaling operations can be accomplished in
one of two ways: (1) by multiplying or dividing by the
binary equivalent of the appropriate power of 10, or
(2) by using GE-225 scaling routines available to the
programmer.

Rounding

After a calculation hasbeen completed, itis sometimes
necessary to round the result to the next highest in-
teger. ‘Rounding’ is accomplished by adding a ‘5’
into the decimal position to the right of the position
to receive any carry. Since all calculations, within
the GE-225 are performed primarily with binary num-
bers, the proper rounding factor of ‘5’ is expressed
in binary and is carried as an appropriate constant
within memory. For example, this constant might be
programmed by using the pseudo-instruction DEC to
obtain the binary equivalent of 5. The instruction
would be DEC 5. SeeSectionIV for detailed discussion
of pseudo-instructions. After the rounding factor is
added, the positions to the right of the digit which
receives any carry can be deleted through scaling.

To illustrate further, assume that the decimal 10.75
is to be rounded to the nearest tenth. By using a
rounding factor of .05 stored as a constantin memory,
the desired result, 10.80, is achieved by adding the
rounding factor as shown in Figure 5-4.

012345678910111213141516171819

1.|00/000{000j01 0|0 O0 Oj1 1 0}jO0 1 1

2./00/000/000(00 0|0 O 0|0 O Ofj1 01

3.|l00j000j000j01 0|0 O Oj1 1 1}]0 0 O

where 1 = 10.7510
9= .0510

= 10.801¢

Figure 5-4. Using a Rounding Factor of .05

DATA TRANSFER INSTRUCTIONS

Data transfer instructions are grouped into two major
categories: memory transfersand register transfers.
Although not involving a true transfer of data, register
modification instructions are alsoincludedin this sec-
tion.

Memory transfers involve word movement between
core memory and central processor registers. In
general, the previous contents of the ‘receiving’ unit
(memory location or register) are replaced by the
transferred word, while the transferred word remains
unchanged in the original memorylocationor register.

Arithmetic register transfers involve the transfer of
information between registers; the condition of the
register initially holding the information is unchanged,
after execution, except as noted in the discussion of
each instruction.

Register modification instructions change the contents
of the specified register in a predetermined manner,
such as complementing, sign changing, and negating.

Data transfer instructions involve either or both the
A and Q registers. In general, transfer instructions
cause parallel transfers (all bits simultaneously),
rather than serial transfers (a bit at a time).

Data Transfers-Memory

LDA Y X 0000000 Word Times: 2

Functional Description: LOAD A REGISTER. The con-
tents of memory locations Y (S, 1-19) replace the con-
tents of the A register (S, 1-19). Y is unchanged.

Example 1: Load the A register with the contents of
GAP symbolic location AMT#1, which contains the
positive number 526301¢ (01466265). The A register
initially contains zeros.

GAP Coding:
Symbol Opr Operand X

1[2131 4[5[e NEREE |z‘|3‘u]|s||e"7|uin °

LDAIAMT# 1 —

»

i A 1

Register Contents in Octal

A Q
Before execution: 0000000 ?
After execution: 0146626 2

G- 229

V-14

Example 2: Load the A register with the contents of
GAP symbolic location AMT#5, which contains the
negative number -42189,, (3655463g). The A register
initially contains 421891 (0122315g).

GAP Coding:
Symbol Opr Operand X
L[21314T are s e [10f1z 13 '41l5l|s|l7l|aJ|a 20

A ., |[LDAJAMT#5

Register Contenis in Octal

A
0122315 ?

3655463J ?

Before execution:

After execution:

DLD Y X 1000000 Word Times: 3

Functional Description: DOUBLE LENGTH LOAD. If
the (modified) address of location Y is even, the con-
tents of Y (S, 1-19) and Y+1 (S, 1-19) replace the con-
tents of the A (S, 1-19) and Q (S, 1-19) registers. If
the (modified) address of Y is odd, the contents of Y
(S, 1-19) replace the contents of the A (S, 1-19) and Q
(S, 1-19) registers. Y and Y+1 are unchanged.

Example 1: Double length load the A and Q registers
with the positive number 821695, (0000001 1104677g)

in GAP symbolic locations AMT#7 (even) and AMT#7+1.

Examgle 2: Double length load the A and Q registers

wi € positive number 526300, (0000001 0003734g)
in GAP symbolic locations AMT#6 (odd) and AMT#6+1.

GAP Coding:
Symbol Opr Operand X
|[2 | 31 41 LL° [ENED t2]1a] 1alvs [ve 1716 [1920
N . IDDLDIAMT # 6
Register Contents in Octal
A Q
Before execution: ? ?
After execution: 0000001 0000001

Comments: Note that, if the specified operandaddress
is odd, the contents of that address areloaded into both
the A and Q registers and the second address is
ignored.

STA Y X 0300000 Word Times: 2

Functional Description: STORE A. The contents of the
A register (S, 1-19) replace the contents of memory
location Y (S, 1-19). The contentsof A are unchanged.

Example 1: Store the A register contents 4218919
(01223158) in GAP symbolic location RESULT.

GAP Coding:

Symbol Opr Operand X
'rz"l‘T°L° ENEL 12 13 vafrs e 17 1e 1020
STA|IRESUL T,

GAP Coding:
Symbol Opr Operand X Register Contents in Octal
'[2|31‘l5 6 | 8 e .1c 12 13 |AJ|51|61I7IIG 19 | 20 A Q
~ DLDAMT#07"
Before execution: [0122315 | l ? I
After execution: I 0122315 I [2 I
Register Contents in Octal
GAP Symbolic Location, RESULT
A Q A
—
Before execution: ? 1, ? Before execution: ? [
After execution: 0000001 | | 1104677 After execution: 0122315

Example 2: Store the A register contents -65421+0
(3600163g) in GAP symbolic location OUTPUT. ouT-

PUT initially contains -421891((3655463g).
GAP Coding:
Symbol Opr Operand X

v[2] s] a] 8] e|e o [rofva]vs valvs]ve[17 1s] 10
S.T.AIOU.T.PUT, .

~

o

) i n

n L " L " 4

Register Contents in Octal

A

Q
[3600163 | [2 |
| secom63 || 2 |

GAP Symbolic Location, OUTPUT

Before execution:

After execution:

A
Before execution: 3655463
After execution: 3600163
DST Y X 1300000 Word Times: 3

Functional Description: DOUBLE LENGTHSTORE. If
the (modified) address of memory location Y is even,
the contents of the A (S, 1-19)andQ (S, 1-19) registers
replace the contents of Y (S, 1-19) and Y+1 (S, 1-19).
If the (modified) address of Y is odd, the contents of
Q (S, 1-19) replace the contents of Y (S, 1-19). The
contents of A and Q are unchanged.

Example 1: Double length store A andQ register con-
tents 821695, (0000001 1104677g) in GAP symbolic
locations AMT#8 (even) and AMT#8+1.

GAP Symbolic Lecations

AMT#8 AMT#8+1
Before execution: ? j I ? J
After execution: 0000001 1104677

Example 2: Double length store A andQ register con-
tents 52630010 (0000001 00037348) in GAP symbolic
locations AMT#7 (odd) and AMT#7+1.

Register Contenis in Octal

A Q
Before execution: 0000001] Q003734
Aiter execution: 0000001 I 0003734

GAP Symbolic Locations

AMT#7 AMT#7+1
Before execution: ? | ?
After execution: 0003734] ?
STO Y X 2700000 Word Times: 3

Functional Description: STORE OPERAND ADDRESS.
The contents of the A register (7-19) replace the con-
tents of memory location Y (7-19). A (S, 1-19) and Y
(S, 1-6) are unchanged.

Example: Store the operand address that is in the A
register, 65535, (177778), in GAP symbolic location
TAX#1, which initially contains 0001667g, an LDA
instruction.

GAP Coding: GAP Coding:
Symbol Opr Operand X Symbol Opr Operand X
v[2 a] «] s e[o [rofvalvajrafvs]ve 17 1e]10]z0 v 2]]] 8] e|es o vofvz]1s vaJrs]rve[17]ts]10]20
) . DSTIAMT# 8 L | X STO|TAX # 1 L

Register Contents in Octal

A Q
| 0000001 | | 1104677 |

Before execution:

After execution: L 0000001 1 I 1104677J

Register Contents in Octal

A Q
[oot || 2 |

| oormrm || 2 |

Before execution:

After execution:

Bt 229

GAP Symbolic Location, TAX#1

Before execution:

0001667
0017777 |

After execution:

ORY Y X 2300000 Word Times: 3

Functional Description: OR AINTOY. Corresponding
bit positions of memory location Y (S, 1-19) are set
with 1-bits for every bit position of the A register
(S, 1-19) containing a 1-bit. The contents of the A
register and other bitpositions of Y remainunchangead.

Example 1: OR Ainto Y withthe A register containing
1641374g and Y is GAP symbolic location $OUT, con-
taining 00137114,

GAP Coding:

Symbol Operand X

“J”i”]”i“i” 20

|Iz|3ln]5io s 9 |10

uiu:
$OU T

" i "

Memory and A Register before Execution (binary):

$OouUT

Vs e N

A

01 1/111{00 1|0 01

00/000(001

012345678910 111213 141516 171819

01(110f100/00 1({0 1 1|1 1 1{1 0 O

— J

A Reg

Memory and A Register after Execution (binary):

$OUT

~

111 0 1

,
lotliiofiotfor 1|11 111
012345678910 111213 141516 171819

lotft1of100foo 1o 1t 1]1 1 11 00

\

A Reg

Example 2: Placea dollar sign (§), previously loaded
into the A register, before the 2-digit BCD quantity
56 in GAP symbolic location PRICE.

Ble- 228

GAP Coding:
Symbol Opr Operand X
|[2 | s[IT s[B EEEREE uJuJ 4] vs Ve[17 [te 1920
O RYPRI CE
Memory and A
Register Contents (BCD)
A Reg PRICE
1
Before execution: $]0}0 ‘ 0| 5 6‘_‘|
After execution: $|10}]0 ‘ $!1 516
EXT Y X 2000000 Word Times: 3

Functional Description: EXTRACT. Foreachl-bitin
Y (S, 1-19) a 0-bit is placed in the corresponding bit
position of the A register (S, 1-19). If bit positions in
Y contain 0-bits, the corresponding bit positions in the
A register are unchanged. Y is not affected.

Example 1: Extract 1-bits from the A register con-

tents 2465317g according to the pattern 1234753 con-
tained in GAP symbolic location MOD.

_GAP Coding:
Symbol Opr Operand X
L[2| 3, 4| 8] els o 0 l21l3i|41|5l|ei|7[le]|9 20
EX T|M OD

Memory and A Register before Execution (binary):

MOD

~

—
lo1 111101011

012345678910 111213 141516 171819

l; oftoof110f10 1\ 011 11 {J
J

0 10[0 11(10 0

001

A Reg

Memory and A Register after Execution (binary):

MOD

-
[o 1]0 1 o,o 1 1[1 0 o] 11 1| 101]o ;44;]

012345678910 111213 141516 171819

10{100/100/00 1|0 0 O 000|100]
(N

-/

A Reg

Example 2: Delete the dollar sign ($) from the BCD
word $89 in the A register preparatory to storing the
word into memory. Assume GAP symbolic location
Memory and A Register before Execution (BCD):
STRIP eentains the BCD word $00.

GAP Coding:

Symbol Opr Operand X
v 2] 3] «] 5] 6] o [toftz]1s]1a] Vs 1ejt7] 1010
EX T/|STRIP,

»
o

L n I L) n n " L " L

Memory and A
Register Contents (BCD)
A Reg STRIP
Before execution: L$ | 8 l QJ [$| 0 [0]
After execution: ol s J 9] $ L 0 | 0 I
* MOV Y 2400000 Word Times: 4+ 2N

Functional Description: MOVE, A block of infor-
mation starting at Y is moved to another area of
memory, The A register must contain the starting
address of the area to which the data is to be moved,
and the Q register must contain the 2’s complement
of the number of words to be moved, The contents
of the P counter are stored automatically in index
word 00 (bits 5 through 19), The time required to
execute this command is 4 plus 2N word times,
where N is the number of words to be moved, After
execution, the A register is set to 0’s and the Q
register contains the 2’s complement of the number
of words moved, This instruction cannot be auto-
matically modified,

* This instruction is an optional feature.

Example: Move a block of 10 words initially stored in
an area starting at symbolic location START to the
memory area starting at symbolic location TOTALS.
Assume that GAP has assigned the symbolic location
START to actual address 017710 and TOTALS to actual
address 120079. Assume that the number of words to
be moved has previously been loaded into the Q reg-
ister in 2's complement form.

Memory ana Register Contents in Octal:

Before execution:

Memor Registers
Octal
Address Contents A
0261 0123456 0002260 |= 120010
0262 0246531
0263 1234567
0264 0765432
0265 0135764 Q
0266 2345670 3777766 |= -1010
0267 1001234
0270 0132456
0271 21471765
0272 L
v
2260 ?
2261 ?
2262 ?
2263 ?
2264 ?
2265 ?
2266 ?
22617 [
2270 ?
2271 ?

ble- 225

October 1963

Memory and Register Contents in Octal: Example: LoadA from Q, orreplace the existing con-
tents of A 1234567g with the contents of Q 36543218‘ '
After execution:

GAP Coding:
Memory Registers
Symbol Opr Operand X
Octal v 2] 8] 4] 5] 6|6 [[10]1a]1s[14]Vs[te[17] 16 1|20
Address Contents A . 0 JLLAQL L o
0261 0123456 0000000 T— e r— - . e
0262 0246531 Register Contents in Octal
0263 1234567 A Q
Before execution: 1234567 3654321
0264 0765432
After execution:
0265 0135764 Q 3654321 3654321
0266 2345670 8777766 Comments: No operand address is required. Auto-
0267 1001234 matic modification will change the instruction.
0270 0132456
LQA 2504004 Word Times: 3
0271 2147765
0272 1777777 Functional Description: LOAD Q FROM A. The con-
tents of the A register (S, 1-19) replace the contents
} of the Q register (S, 1-19). A is unchanged.
2260 0123456 Example: Load Q from A, or replace the existing con-
2961 0246531 tents of Q 2465317g with the contents of A 1117776g.
GAP Coding:
2262 1234567 [—
Symbol | ©Opr Operand X
2263 0765432 1] 2] 8] 4] s8] 6|8] |t0|va]ts]ra]vs]re[17[te][10]z0
2264 0135764 NSNS £ (T 2. S —
2265 2345670 Register Contents in Octal
2266 1001234 A Q
2267 0132456 Before execution: | 1117776 | | 2465317 |
2270 2147765 After execution: 1117776 | 1117776 I
2271 17777717 Comments: No operand address is required. Auto-

matic modification will change the instruction.

Data Transfers-Arithmetic

MAQ 2504006 Word Times: 3
LAQ 2504001 Word Times: 3
Functional Description: MOVE A TO Q. The contents
Functional Description: LOAD A FROM Q. The con- of the A register (S, 1-19) replace the contents of the Q
tents of the Q register (S, 1-19) replace the contents register (S, 1-19). Zeros replace the contents of A
of the A register (S, 1-19). Q is unchanged. (s, 1-19).

G

V-19 October 1963

Example:

Move A to Q, or replace the existing con-

tents of the Q register 37777778 with the contents of the
A register 13334444 and zero the A register.

GAP Coding:
Symbol Opr Operand X
|[z[3l4is[e e | o |10 lles]lQI'Bllel|7||al|9 20
N . |MAQ - -

Register Contents in Octal

A Q
Before execution: 1333444 377771

Comments: No operand address is required. Auto-
matic modification will change the instruction.

XAQ 2504005 Word Times: 3

Functional Description: EXCHANGE A AND Q. The
contents of registers A (S, 1-19) and Q (S, 1-19) are
interchanged.

Example: Exchange A and Q, or interchange the con-
tents of A 1234567g and Q 17777717g.

GAP Coding:

Opr

e|o|1o

X A Q

Operand X
lleal “l”] te |17 1810

Symbol

R

N

o

Register Contents in Octal

A Q
Before execution: 1234567 1mm
After execution: 17717777 1234567

Comments: No operand address isneeded. Automatic

modification will change the instruction.

* LAC 2504202 Word Times: 3

Functional Description: LOAD A REGISTER FROM C
REGISTER. The contents of the A register (1-19) are
replaced by the contents of the C register (real time
clock). The sign of the A registeris set to zero. The
contents of the C register are unchanged.

Example: Load A register from C register. Assume
that the C register contains the binary equivalent of
1 hour (52, 1408 sixths of a second).

GAP Coding:
Symbol Opr Operand X
t[zl3]4[5|e 8 9 10 12113)1|4LM|!5||7L|3]|» 20
) . |L A C) L
Register Contenis in Octal
A C
Before execution: ? 0052140
After execution: 0052140 0052 140
* LCA 2504210 Word Times: 3

Functional Description: LOAD C REGISTER FROM A
REGISTER. The contents of the C register are re-
placed by the contents of the A register (1-19). The
sign of the A register countents is ignored. The con-
tents of A are unchanged.

Example: Load C register from A register. Assume
that the A register contains thebinary equivalentof 12
hours (259,200, sixths of a second).

GAP Coding;
Symbol Opr Operand X
12 s[4 8] s [8 10 ‘ZI"J‘“]"’l”I”I“‘J" 20
_ . |L.CA P

* Thisinstructionispartof the real time clock optional
feature.

Gle-229

V-20

October 1963

Register Contents in Octal

Initial Register Contents:

C

roszzooJ [2]
| omr2200 | | 0772200 |

Comments: The C register operates as a binary
counter that is incremented by one every sixth of a
second. When the binary count reaches the equivalent
of 24 hours (518,400 sixths of a second), it automati-
cally resets to zero and starts counting again.

Before execution:

After execution:

The C register contents are not directly accessible
for processing or console display. However, the LAC
instruction, by transferring those contents to the A
register, makes the C register available to the stored
program or to the console operator.

A conversion subroutine is required for program
translation of the C register contents from binary nota-
tion to hours, minutes, seconds, and sixths/seconds,
and for print-out of elapsed or actual time through the
control console typewriter.

A simple, straightline subroutine is shown below to
illustrate how conversion could be done. In actual
practice, a more sophisticated approach involving X
registers and controlled looping would be more ef-
ficient.

Example: Convert the C register contents 12057018
to decimal hours, minutes, seconds, and sixth-seconds.
Assume symbolic locations CON1 through CON3 con-
tain conversion constants as follows:

Symbolic

Location Contents Remarks
CON 1 52,1408 Hours Factor
CON 2 550 g Minutes Factor
CON 3 6 Seconds Factor

i O:w .5;.. “o,:...:’ _ ‘,LLT . - R 1(1‘\2::”7 ~ o

L AC | TRANSFER TIME TO A REG

M A QL____ . TRANSFER TIME ng EEQ FQEPLD

DVDCON.1 | _ COMPUTE HOURS

|

w
-
>
o
o
[=]
4

I

LDz) :(CLEARAREG]
bvopconz [compuremuTes
STAMINS | B -
l.opz . N
DVDCONS3 | _COMPUTESECONDS __
STASECS . _] -
XA TRANSFER SIXTH-SECONDS TO A REG
xaQ] SECONDS TO A REG
STASXTHS

o B

C A Q
1205701 ? ?
Registers Affected by Each Instruction:
GAP Registers
Coding A Q
LAC 1205701 ?
MAQ 0000000 [] 1205701
DVD CON 1 0000017 || 0015041
STA HOURS 0000017 0015041A
LDZ 0000000 00150:1?
DVD CON 2 0000022 || 0000321
STA MINS 0000022 || 0000321
LDZ QOOOOOO 0000321
DVD CON 3 »07099042 70000005
STA SECS 0000042]| 0000005
XAQ 0000005]| 0000042
STA SXTHS 000000; 000004”2

Memory Contents after Conversion:

factors.

Symbolic
Location

HOURS
MINS
SECS

SXTHS

Contents

0000017

0000022

0000042

0000005

The time represented by the C register contents can
also be converted manually to a chronological scale
by dividing those contents by appropriate conversion
Perhaps the simplest method would be to con-
vert the binary contents of the C register to octal, then
decimal, and divide by decimal conversion factors. The

R . D52

157

V-21

conversion chart in Figure 2-4 makes the octal-to-
decimal conversion easy. Decimal conversion factors
used for division could be:

Hours = 21,600
Minutes = 360
Seconds = 8

(Any remainder would be in sixth-seconds.)

For example, assume that the contents of the C register
are 1205701g. By keying in an LAC instruction at the
control console, 1205701g18 displayed in the A register
indicators. The octal-fo-decimal conversion chart in
Figure 2-4 provides the decimal equivalent 330,689
(in sixth-seconds).

Dividing by the hours conversion factor:

15 hours

21600 1330689
21600
114689

108000
6689 sixth-seconds remainder

Dividing the remainder by the minutes conversion
factor:

18 minutes
360! 6689
360
3089
2880
209 sixth-seconds remainder

Dividing this remainder by the seconds conversion
‘factor:

34 seconds
61209
18_
29
24
5 sixth-seconds remainder

Thus, the C register contents 1205701g represent 15

hours, 18 minutes, 34 seconds, and 5 sixth-seconds, or
15:18:34:05.

Register Modifications

LDZ 2504002 Word Times: 3

Functional Description: LOAD ZERO INTO A REG-
ISTER. The contents of the A register (S, 1-19) are
replaced by zeros.

Example: Load zero into A register, or replace the
existing contents of the A register 3777777g with zeros.

GAP Coding:

Symbol Opr Operand X
1[?(;[4] s]e s [9 |10 ‘ZI"I“]'!I'°1‘$'L'° 20
L D Z

"] i L l L 1 —

Register Contents in Octal

A

Q
L smmmmn || -]

)

0000000 | 2|

Before execution:

After execution: i

Comments: No operand address isneeded. Automatic
modification will change the instruction.

LDO 2504022 Word Times: 3 |

Functional Description: LOAD ONE INTO A REG-
ISTER. A 1-bit is placed in bit position 19 of the A
register; all other bit positions (S, 1-18) are set to
0-bits.

Example: Load one into A register. Assume that the
A register initially contains 3777777g.

GAP Coding:
Symbol Opr Operand X
'i=L=L‘T‘r° s [0 [10 |zI|alqu]|el|7luln 20

L. . |LDO

Register Contents in Octal

A Q
Before execution: 3777777 ?
After execution: 0000001 ?

Comments: No operand address isneeded. Automatic
modification will change the instruction.

BlE-22%

V-22 October 1963

LMO 2504102 Word Times: 3

Functional Description: LOAD MINUS ONE INTO A
REGISTER. The contents of the A register (S, 1-19)
are replaced by 1-bits, giving the octal configuration
37177117,

Example: Load minus one into A register. Assume
that the A register initially contains 1357642g.
GAP Coding

Symbol Opr Operand X
q[2 | 3L‘b£° s [» [10 12{131 “L'BJHI'.’L'ei" 20

] 4 " i LIMAO . i L 4 i i

Comments: No operand address isneeded. Automatic
modification will change the instruction.

NEG 2504522 Word Times: 3

Functional Description: NEGATE A. The 2’s com-
plement of the contents of the A register (S, 1-19)
replaces the contents of A (S, 1-19). If the capacity
of A is exceeded, in anattempt to negate the maximum
negative number, overflow occurs.

o " " A " L

Register Contents in Octal

A Q
Before execution: [1357642 J I ?]
After execution: 3777777] 2]

Comments: No operand address isneeded. Automatic
modification will change the instruction.

Example: Negate A register contents 0000101g.
GAP Coding:

Symbol Opr Operand X

|[2[slalsre s [9 |10 lz[t;llaTlB]lsln'u]n 20

. ., INE G

i i i i + 2 L

CPL 2504502 Word Times: 3

Functional Description: COMPLEMENT A. Each bit
position in the A register (S, 1-19) is inverted; each
1-bit is replaced by a 0-bit and each0-bit is replaced
by a 1-bit.

Example: Complement A register. Assume that the
A register contains 1234567g.

GAP Coding:
Symbol Opr Operand X
1] 2] 3] «] 5] e] [10]12]1s]14a]¥5]ts]17 18 1020

] 1 " i CXP1L . It 1 i .

- " " i o

A Register Contents
in Binary

Before execution:

012345678910 111213 141516 171819

01j010/011j10 0|1 0 1|1 1 0|1 11

After execution:

10j101{100/01 1|0 1 0/ 0 O 1{0 O O

2 5 4 3 2 1 0
Octal Equivalent

Register Contents in Octal

A Q
Before execution: 0000101 ?
After execution: 377617 ?

Comments: Note that, unlike the CPL instruction
which forms the 1’s complement, NEG forms the 2’s
complement of the contents of A, Nooperand address
is needed, Automatic modification will change the
instruction, Overflow occurs if an attempt is made
to negate the largest negative number, -524,28810.

CHS 2504040 Word Times: 2

Functional Description: CHANGE SIGN OF A REG-
ISTER. The sign bit of the A register is changed. Bit
positions 1 through 19 of A are unchanged.

Example: Change sign of A register. Assume that the
A register contains 1357642g.

GAP Coding:
Symbol Opr Operand X
th[al4Isie s [9 [10 l2[lsll41|5]le||7lla}lo 20

- , |[C HS e

Register Contents in Octal

A Q
| 1357642 || 2 |

3357642 2]

Before execution:

After execution:

Gl-229

v-23 October 1963

Comments: No operand address isneeded. Automatic
modification will change the instruction.

NOP 2504012 Word Times: 3

Functional Description: NO OPERATION. Zero is
added to the contents of the A register (S, 1-19).

Example: No operation, or add zero to the contents
12345678 of the A register.

A shift instruction can require from2to12 word times
for execution (including instruction access time),
depending upon the length of shift. A shift of one bit
position or less requires two word times. Each addi-
tional 3-bit shift, or fraction thereof, requires an
additional word time.

Automatic modification of shift instructions changes
the instruction.

Arithmetic Register Shifts

GAP Coding:
Symbol Opr Operand X SRA K <31 2510000 Word Times: 2t013
qizfa]alure s | o |10 12[13]!4]|5|nl|7|1al|g 20
Y o INO/P e e
b Functional Description: SHIFT RIGHT A REGISTER.

Register Contents in Octal

A Q
Before execution: 1234567 ?
After execution: 1234587 ?

Comments: This instruction is useful inprogramming
delays or reserving space in a program for later in-
sertion of an instruction. No operand address is
needed. Automatic modification will change the in-
struction.

SHIFT INSTRUCTIONS

Shift instructions involve the serial (bit-by-bit) move-
ment of data within or between registers. Shifts fall
into two categories: arithmetic register shifts and
input-output register shifts.

Shifting is useful in arranging data before and after
transfer between direct input-output peripherals, and
the central processor, scaling quantities before and
after arithmetic operations, recovering from overflow
conditions, and performing simple multiplications and
divisions.

Shifting is limited to 31 bitpositionsper shift instruc-
tion because bit position 15 through 19 of the instruc-
tion word are used to indicate the length of shift. With
5 bit positions, the largest number that can be ex-
pressed is 31.

The contents of the A register (1-19) are shifted right
K places. If Aisplus,0-bitsare inserted in the vaca-
ted positions of A; if A is minus, 1-bits are inserted in
the vacated positions. Bits shifted out of bit position 19
are lost. The sign of A is not changed.

Example 1: Shift right 3 bit positions the positive num-
ber 12325678, previously loaded into the A register.

GAP Coding:
Symbol Opr Operand X
v[2] s] 4] s e|s o t10|12]ts]va]Vs]1e[17 18|10 20
L S RAIS | L

A Register Contents
in Binary

Before execution:

012345678910 111213 141516 171819

01010

011(10 O

101110111

2 3 4 5 6 7

After execution:

012345678910 111213 141516 171819

0{0j001(010/01 1{1 0 0f1 0 1|1 1 0

+0 1 2 3 4 5 6

GlE-22%

V-24

October 1963

Example 2: Shift right 7bitpositions the negative num-
ber 3765432g, previously loaded into the A register.

GAP Coding:
Symbol Opr Operand X
1 2| 4 s 6 8 e 12|12 13 14 s e I7‘[I8 19 | 2¢
S R AT

A Register Contents
in Binary

Before execution:

012345678910 111213 141516 171819

101]10%011010

1111111111 0

3 7 6 5 4 3 2

After execution:

012345678910 111213 141516 171819

1{1{1114111

111\111‘0101110

3 7 7 7 7 2 6

Example 3: Divide by 8the positive number 464,104,
(1612350g), previously loaded into the A register.

GAP Coding:

Opr

]2 3 4 s 6) I R B T

S R A|3

Symbol Operand X

ta s

16 17 18 19 |2¢C

Register Contents in Octal

A Q
[1612350 | [2]

Before execution:

places. Vacated bit positions of A are filled with
0-bits. If a non-zero bit is shifted out of position 1,

overflow occurs and the bit is lost. The sign of A is
unchanged.

Example 1: Shift left 2 bitpositions the positive num-
ber 123456, previously loaded into the A register.

GAP Coding:

Symbol Operand X

|Ajl5j|e‘|7{|e‘w 20

121 13
i i

SL A2

A Register Contents
in Binary

Before execution:

012345678910 111213 141516 171819

ofojoo1j010j01 11 0 0j1 0 1|1 10

B 1 2 3 4 5 6

After execution:

012345678910 111213 141516 171819

o/|0j101j001J11 0/ 0 1 0|1 1 1|0 0 O
+ 5 1 6 2 7 0
Example 2: Shift left 5 places the negative number
2036361g, previously loaded into the A register.
_GAP Coding:
Symbol Opr Operand X
'{213‘4\5‘6 [N uru “T”‘N\”l”l" 20
S L A5

A Register Contents
in Binary

Before execution:

012345678910 111213 141516 171819

101000011201 0/0 1 1f1 1 0{0 01

After execution: [7155557 [> j

= 5801319

SLA K 2512000 Word Times: 2to 12

2 0 3 6 3 6 1

After execution:

012345678910 111213 141516 171819

1111111(001

1111000100000

Functional Description:

SHIFT LEFT A REGISTER.

The contents of the A register (1-19) are shifted left K

3

7

1

4

0

RE-295

(ata

V-25

Example 3: Multiply by 4 the positive number 13364

I (2470;8), previously loaded into the A register.

GAP Coding:

Example 2: Shift right double 2 bit positions the con-

tents of the A and Q registers.

GAP Coding:
— 5 Symbol Opr Operand X
Symbol, pr Operand X |lz}al‘[5[a s s 10 |zita‘Lul|u||e}|7l|e[n 20
2 3 4 5 6 8) 2 418 617 8 9|2
tfa]a]«f5s] [[rofravs]vafs]vefrrfuefo]ao L lsropl2
L . 1S L Af2, ,
Register Contents in Octal Register Contents
in Binary
A Q '
l Before execution: 0002470 ? Before execution:
A R
After execution: 0012340 2 °8
00f110J101/01 1{1 0 1}J1 1 0|0 01
53449
012345678910 111213 141516 171819
— 00{011|010j11 041 1 0}0 1 1J]0 1 O
SRD K 2511000 Word Times: 2to12

Functional Description: SHIFT RIGHT DOUBLE. The
contents of the A and Q registers (1-19) together are
shifted K places to the right. Bits shifted out of A (19)
shift into Q (1). Bits shifted out of Q (19) are lost.

If the sign of A isplus(0), 0-bits fill the vacated posi-
tions. If the sign of A is minus (1), 1-bits fill the
vacated positions. The signofQ is replaced by the sign
of A. The sign of A is unchanged.

] When the instruction is written SRD 0, only the sign
of A is shifted into the sign position of Q, There is
no other data transfer,

Example 1: Shift right double 2 octal positions the con-
tents of the A and Q registers. A contains 12345678;
Q contains 36543218.

GAP Coding:

Symbol Opr
|1213] 4Tu{s

! . i L

Operand X
|z[13] uTlsI ve 17 [18] 19

a‘o]!o

S RD|6,

»

0

Register Contents in Octal

A Q
| 1234567]L 3654321 |

Before execution:

After execution:

0012345 |

1576543 |

Q Reg

After execution:

A Reg

00/001/120101 O0f1 1 140 1 1|1 0O

012345678910 111213 141516 171819

00f100f11010 11 0 1}1 0 O0}J1 1 O
Q Reg
SLD K 2512200 Word Times: 2to12

Functional Description: SHIFT LEFT DOUBLE. The
contents of the A and Q registers (1-19) together are
shifted K places to the left. Bits shifted out of Q (1)
shift into A (19). The vacatedpositionsof Q are filled
with 0-bits. If a non-zero bit is shifted out of A (1),
overflow occurs and the bit is lost.

The sign of Q replaces the signof A. The sign of Q is
unchanged. (SLD O shifts only the sign of Q to Al
There is no other data transfer.)

Ble-225

October 1963

Example: Shift left double 4 bit positions the contents
of the A and Q registers.

GAP Coding:

Symbol Opr Operand X
1 [2] s| 4] 5] 6| o 10|tz ts[1a]vs[t6[17 16 15|20

P __|S L D|4.

Register Contents
in Binary

Before execution:
A Reg
00/000j010{11 00 1 1{1 1 01 01
012345678910 111213 141516 171819
0001101101 1|1 0 1401 1011
Q Reg
After execution:
A Reg
00(101f100411 1j1 0 1,0 1 0/ 0 11
012345678910 111213 141516 171819
00{110f111{01 O0O{1 1 041 10 00O
Q Reg
SCA K 2510040 Word Times: 2to12

Functional Description: SHIFT CIRCULAR A REG-
ISTER. The contents of the A register (1-19) are
shifted right K places 1nacircular fashion; that is bits
shifted out of position 19 are inserted in position 1,
replacing bits asthey are shifted out of position 1. The
sign of A is unchanged.

Example: Shift circular A register contents 8bit posi-
tions.

GAP Coding:

Register Contents
in Binary

Before execution:
A Reg

012345678910 111213 141516 171819

olojt11{o01j000} 1 1 11 0 11 11

After execution:
A Reg

012345678910 111213 141516 171819

oftjt1oj111fro01|1 1 0({0 1 00 01

SCD K 2511200 Word Times: 2to12

Functional Description: SHIFT CIRCULAR DOUBLE.
The contents of the A and Q registers (1-19) together
are shifted K places to the right ina circular fashion.
Bits shifted out of A (19) shift into Q (1) and those
from Q (19) shift into A (1). The sign of A replaces
the sign of Q. The sign of A is unchanged.

Example: Shift circular double 4 bitpositions the con-
tents of the A and Q registers.

GAP Coding:

Symbol Opr Operand X
1 zl’l‘]LL° s | 9 |10 |2[|3l|4]|slla]|7l|a]n 20

L) S C DJ|4.

Register Contents
in Binary

Before execution:
A Reg
01100111000 1 01 011001
0{11234(56 7({8910|111213|141516 (171819
ojojo11{0004f11 1{0 1 0{1 0 0|1 10
Q Reg
After execution:
A Reg

00110110011 100 010 101

symbol opr Operand " 0[1/234(5617(8910{11 1213[14 1516171819
2 3‘4 5 6 8 9 |10 12 13| 14|18 | 1617 | 18 91{20
Lol S o[1/oo1f0o01j10 0f0 1 1{1 0 1[0 10
A . |S C A |8 L
Q Reg

BlE-22%

v-27

Arithmetie. Register Shifts GAP Coding:
Symbol Opr Operand X

|[z\3 «] s el v 1o l2F|3A|AJI5—[Ie‘\I7ils|19 20
SAN K 2510400 Word Times: 2to12 S N A6
Functional Description: SHIFT A AND NRIGHT. The
contents of the A (1-19) and N (1-6) registers together
are shifted K places to the right. Bits shifted out of A Register Contents (BCD)
(19) shift into N (1).

A N
Bits shifted out of N (6) are lost. If the sign of A is Before execution L 123 1 l 8]
plus, O-bits fill the vacated positions of A. If the sign
of A is minus, 1-bits fill the vacated positions of A. After execution: [2012 "I l 07
The sign of A is unchanged.
Example: Shift A and N right 6-bit positions (1 BCD
character).
ANQ K 2511400 Word Times: 2to12
GAP Coding:
Symbol Opr Operand X

1[2[3}1775?5 s | o |10 IZ‘T|3:|AII5‘|6‘|71\G‘|B 20

S A NJ6,

Register Contents in BCD

A N
Before execution: | $59 T I ? I
After execution: 085 9

Comments: While this instruction can be modified
automatically, its use ina modifiedformisnot recom-
mended. However, if the length of the shift is modified
by the contents of an X register, thenthe length of the
shift, plus the contents of X, cannot exceed 31 places
in any one shift instruction.

Functional Description: SHIFT AINTONANDQ. The
contents of the A register (1-19) are shifted K places
to the right into both registers N and Q. Bits shifted
out of A (19) enter both Q (1) and N (1). Bits shifted
out of N (6) andQ (19) arelost. If the sign of A is plus,
the vacated positions of A are filled with 0-bits; if the
sign of A is minus, 1-bits fill the vacated positions of
register A. The sign of A replacesthe sign of Q. The
sign of A isunchanged. The N register must be ‘ready’
before this instruction is executed. See BNNand BNR
instructions.

Example: Shift A into NandQ registers 6 bit positions.

SNA K 2510100 Word Times: 2to12

Functional Description: SHIFT N AND A RIGHT. The
contents of registers N (1-6) and A (1-19) together are
shifted K places to the right. Bits shifted out of N (6)
shift into A (1). Vacated positions inN are filled with
0-bits. Bits shifted out of A (19) are lost. The sign
of A is unchanged. The N register must be ‘ready’
before this instruction is executed. See BNN and BNR
instructions.

Example: Shift N and A right 6 bit positions (1 BCD
character).

GAP Coding:
Symbol Opr Operand X
l‘z\s 4 5 6 8 ° IEN EEREE |4§|5||e‘|71|a!n 20
AN Q|6
Register Contents in BCD
A Q
Before execution: [123] [?2?? J
N

After execution:

A Q
012] L 377 J
N

KN

BE-225

NP

v-28

October 1963

NAQ K 2511100 Word Times: 2to12

Functional Description: SHIFT N, A, AND Q RIGHT.
The contents of registers N (1-6), A (1-19), and Q
(1-19) together are shifted K places to the right. Bits
shifted out of N (6) shift into A (1). Bits shifted out of
A (19) shift into Q (1). Bits shifted out of Q (19) are
lost. Vacatedpositionsof Nare filled with 0-bits. The
sign of A isunchanged. The signof Q is set to the sign
of A. The N register must be ‘ready’ before this
instruction is executed.

Example: ShiftN, A, andQ right6 bit positions (1 BCD
character).

GAP Coding:

Symbol Opr Operand X
|lzls]4Ts[o HNENED |2Ilal|4]|sl|e||1l:sl|9 20
IR It 1 NAAJQ 6 " I —_ "

Register Contents in Octal

A Q
Before execution: I; 888 J I ?2??]

N

7

A Q
After execution: [788 J r 8?? l

N

0

NOR K 2513000 Word Times: 3to12

Functional Description: NORMALIZE THE A REG-
ISTER. The effect of this instruction dependsupon the

value of K, the sign of the A register contents and R
(the number of leading zeros in A).

If the A register sign is plus, and the number of
leading 0-bits (R) in A (1-19) is less than K, the con-
tents of A (1-19) are shifted left R places. The dif-

ference K-R replaces the contents of memory location
0000.

If the A register sign is plus, and the number of
leading 0-bits (R) in A (1-19) is greater than or equal
to K, then the contents of A (1-19) are shifted left K

places; 0-bits replace the contents of memory location
0000 (15-19); bit positions (S, 1-14) of 0000 are always
set to zeros. The sign of A is unchanged. Vacated
positions of A are filled with 0-bits.

If the A register sign is minus, the number of leading
1-bits of A (1-19) are shifted left; otherwise execution
occurs as described above. If a 1-bit is shifted from
A (1), overflow occurs.

Example 1: Normalize the A register which contains
05012348 (9 leading 0-bits) to 10 bit positions (K = 10,
R =9).

GAP Coding:

Symbol Opr Operand

|[2|J‘{5[6 BlDuO

|zI|a] u]vslle]nllelw

. . . . INOR|[1 0

| L I

Memory and Register Contents in Octal

A 0000
Before execution: 0001234 00000 ??
After execution: 1234000 0000001

Example 2: Normalize the A register which contains
00123455 (6 leading 0-bits) to 5 bit positions (K = 5,
R = 6).

GAP Coding:
Symbol Opr Operand X
1[2\3141 5Lo s | o [10 |z]|a]u]n||e||7ua||o 20
! i e N1 O. R 5 L . L L —l

Memory and Register Contents in Octal

A 0000
Before execution: | 0012345 | | 0000077 |
After execution: 11624007 0000000]

BE-22%

v-29

Example 3: Normalize the A register which contains
the negative number 3776542 (9 leading 1-bits) to 6
bit positions (K= 6, R = 9).

GAP Coding:

Symbol Opr Operand X
|L2'SJAXL!L6 ENED llesllATulls}nlla]w 20

N O R|6

L _ 1

Memory and Register Contents in Octal

A 0000
3776542 | | 0000077 |

Before execution:

After execution: 3654200

0000000

Comments: The NOR instruction i~ used primarilyin
normalizing the A register in normalized floating-point
arithmetic operations in the AAU., See Section XII.

NOR canbe automatically modified; however, the length
of a shift after modification must not exceed 31 places.

DNO K 2513200 Word Times: 2to12

Example 1: Double length normalize the Aand Q reg-
Isters which contain 0001234g 0076543g (8 leading

0-bits) to 6 bit positions (K = 6, R = 8).

GAP Coding:

Symbol Opr Operand X

1 stll] sLs s ° 10 ‘21'!{l‘l‘b—l‘el'7Ll°l'° 20

__|D N O

L

N

Memory and Register Contents in'Octal

A Q
Before execution: L 0001234 J L 0076543]
0000

00000 ?? ‘
A

[1123403 | [1654300 |

After execution:

0000
0000000

Example 2: Double length normalize the A and Q reg-
isters which contain 0001777g 0000177g (9 leading
0-bits) to 15 bit positions (K = 15, R = 9).

Functional Description: DOUBLE LENGTH NORMAL-
IZE. If the signof the A register is plus, and the num-
ber of leading 0-bits (R) of A (1-19) is less than the
constant (K), then the contents of registers A (1-19)
and Q (1-19) are shifted left R places. K minus R
replaces the contents of location 0000 (15-19).

If R is greater than or equal to K, then the contents of
registers A (1-19) and Q (1-19) are shifted left K
places; 0-bits replace the contents of memory location
0000 (15-19). BitpositionsS, 1-14of location 0000 are
always set to zero. Bits shiftedoutof Q (1) shift into A
(19). VacatedpositionsofQare filled with 0-bits. The
sign of Q replaces the sign of A. The sign of Q is
unchanged.

If the sign of A is minus, the number of 1’s of A (1-19)
are shifted left; all other conditions are the same as
when the sign of A is plus. If a 1 bit is shifted out of
bit position 1, the overflow indicator is turned ON.

GAP Coding:
Symbol Opr Operand X
|‘z[s]4Te[o s ER |zf|3j\4}lsllel|7L|uLvo 20

D N O[15

e

Memory and Register Contents in Octal

A
[ooo1777 | | 0000177 |

Before execution:

0000
00000 ??

After execution:

A Q
1777000 | [0177000 |

0000
0000006

GlE-229

v-30

INTERNAL BRANCH INSTRUCTIONS

Branch instructions, which provide decision-making
capability in the GE-225, fall into two categories: 1)
internal branch instructions (describedin this section)
and 2) input-output branch instructions (described in
appropriate peripheral instruction sections).

Internal branch instructions can be further subdivided
into two groups: 1) unconditional branch instructions
and 2) test-and-branch instructions.

Unconditional Branch Instructions

These instructions, when executed, unconditionally
cause transfer of program control to the instruction
contained in the memory location specified by the oper-
and address. Operands can specify actual or GAP
symbolic addresses.

BRU Y X 2600000 Word Times: 1

Functional Description: BRANCH UNCONDITION-
ALLY. Control is transferred to the instruction at
memory location Y (Y becomes the address of the next
instruction). If this instruction is modified auto-
matically, all 15bitsof the P counter are altered by the
sum of bits 7-19 of the I register and by bits 5-19
of the specified X register. If no modification, then
only 13 bits of the P counter are altered. .

Example: Branch unconditionally to the GAP symbolic
location STORE. Assume that STORE has been as-
signed the octal address 1766g by GAP and that the
BRU instruction is located inmemory location 00460g.

GAP Coding:

Symbol Opr Operand X

|Lzl:;a s e [8 s 10 B EEEREENED 1T te e 20

004 6 0|BRU|S T ORE

P Counter Contents in Octal

| oo461 ||]
01766 | | |

Before execution:

After execution: I

Comments: Note that, before execution, the P counter
has already been stepped to the address of the next
sequential instruction. BRU modifies the P counter

GE-228

to transfer control to the instructionlocatedinaddress

01766g. Note that automatic address modification is
possible.
SPB Y X 0700000 Word Times: 2

Functional Description: STORE P AND BRANCH. The
memory location of the SPB instruction (held in bits
5-19 of the P counter) replaces the contents of bit
positions 5-19 of the specified modification word (of the
current modification group, for systems having the
additional modification group feature). Bits 0-4 of
the modification word are automatically set to zero.
Control transfers to the instruction held in memory
location Y. The P counter is not incremented during
an SPB instruction.

Example: Store P and branch. Store the location of
the SPB instruction 2676ginX register 3 and branch to
the instruction held in GAP symbolic location RERUN.
Assume that GAP has assigned octal location 05008 to
the symbol RERUN.

GAP Coding:
Symbol Opr Operand X
|[z\3 ALSLG s o |10 |2J|3l|l}lﬂ]\ﬂ|‘7l|a]|o 20
0 2 6 76|sSP BI[RERUN 3

P Counter and X Register Contents in Octal

P 0003
Before execution: r 02676 —l | 2?22?22]
After execution: 00500 0002676

Comments: SPB cannot be automatically modified be-
cause bit positions 5 and 6 are used to specify the X
register to receive the SPB memory location.

Test-and-Branch Instructions

A test-and-branch instruction causes a check of the
status or contents of a central processor indicator or
register to determine if the test condition is true or
false. If the test is true (condition exists), the central
processor executes the next sequential instruction; if
the test is false (condition does not exist), the central
processor skips the next instruction and executes the
second sequential instruction.

-31

The tested registers are unchanged by the test; tested
indicatars may or may not change, depending upon the
test and the indicator status. Test-and-branchinstruc-
tions affect only the P counter. Ifthe condition tested
is true, the P counter is automatically increased by
one, as in non-branch instructions; if the condition
tested is false, the P counter is increased by two,
thereby skipping an instruction.

Test-and-branch instructions require no operand
address; they can be followed sequentially by a BRU
instruction specifying the transfer address. For con-
venience, GAP also permits the use of relative and
symbolic addressing with test-and-branch instruc-
tions, as illustrated in the examples following the
instruction descriptions.

BOD 2514000 Word Times: 2

Functional Description: BRANCH ON ODD, The A
register is tested for an odd value; A (19) contains a
1-bit for all odd values.

BEV 2516000 Word Times: 2

Functional Description: BRANCH ON EVEN. .The A
register is tested for an even value; A (19) contains a
0-bit for all even values.

BZE 2514002 Word Times: 2

Functional Description: BRANCH ON ZERO. The A

BOV 2514003 Word Times: 2

Functional Description: BRANCH ON OVERFLOW,
The overflow indicator is tested for the ON condition.
If ON, theindicator is automatically turned OFF and the
next sequential instruction is executed. Ifnooverflow
occurred, the second sequential instruction is exe-
cuted.

register contents (S, 1-19) are tested for 0-bits in all
positions.

BNZ 2516002 Word Times: 2

BNO 2516003 Word Times: 2

Functional Description: BRANCH ON NON-ZERO. The
A register contents (S, 1-19) are tested for 1-bits in
any positions.

Functional Description: BRANCHON NOOVERFLOW,
The overflow indicator is tested for the OF F condition
(if overflow occurred, the indicator is automatically
turned OFF).

If no overflow occurred the next sequential instruction
is executed. If overflow occurred the second sequen-
tial instruction is executed.

BPL 2516001 Word Times: 2

Functional Description: BRANCH ON PLUS. The A
register is tested for a plus sign in the sign bit posi-
tion. If the signisplus, the next sequential instruction
is executed. If minus, the second sequential instruc-
tion is executed.

BMI 2514001 Word Times: 2

Functional Description: BRANCH ON MINUS. The A
register is tested for a minus signin the sign bit posi-
tion. If the conditiontestedis true, the next sequential
instruction is executed. If false, the second sequential
instruction is executed.

BPE 2514004 Word Times: 2

Functional Description: BRANCH ON PARITY ERROR.
The parity alarm indicator is tested for the ON condi-
tion. If a parity error occurred, the indicator is
automatically turned OFF and the next sequential in-
struction is executed: if no parity error occurred, the
second sequential instruction is executed. Note: If
the control console parity alarm switch is in the
STOP ON PARITY ALARM position and aparity error
occurs, the parity alarm indicator turns on and the
central processor halts. If the parity alarm switch
is in the NORM position, a parity error will turn on
the parity alarm indicator but processing will con-
tinue. This permits programmed interrogation of the
indicator with a BPE or BPC (below) instruction and
optional branching to a corrective routine.

BPC 2516004 Word Times: 2

Functional Description: BRANCH ON PARITY COR-
RECT. The parity alarm indicator is tested for the
OFF condition. If parity is correct, the indicator
remains OFF and the next sequential instruction is
executed. If a parity error occurred, and the parity
alarm indicator is ON, it is turned OFF automatically
and the second sequential instruction is executed. See
Note under BPE, above.

BlE- 229

V-32

Example: Test the A register contents for a positive
value; if negative, test for an even value; if odd, test
for zero; if not zero, store A in symbolic location
RESULT. Assume quantity to be tested has previously
been loaded into the A register and TEST begins in
location 0211g-

instruction. If TEST equals A, go to symbolic location
EQUALS. If TEST islessthanA, go to symbolic loca-
tion LESS. Assume CAB is in location 0123g.

GAP Coding:

Symbol Opr Operand X
GAPCOdinE: 1[2'31‘15[5 s | 9 |10 |z[|aiul|\slxei|7i|a||9 20
A NSI|C A BITE ST,
SymboL Opr Operand X BRUMORE
t 2] 3 4f s 6|68 e 1o ji2Ta3 14 vs | ve 17|18 | 19|20) BARUEJQU‘AL‘SL
T ESMBPLL . _ LE SS|ADD|[3 4
B BRU|PL US .
B7ZE| 0
. BRU|ZEROO . — ‘
BE V| L =
BRUIE VEN L
STAIRES UL T Registers Affected:
. {{ L L P Counter in Octal
\)’ o] Before execution: 0000123 | = ANS
After execution:
Comments: If the number in the A register is positive, Y >A 0000124| = ANS+1
the P counter is not stepped and the instruction at
TEST+1 causes a transfer to symbolic location PLUS. Y=A 0000125| = ANS+2
If the number tested is negative, the P counter is
stepped to TEST+2, which causes the number to be Y<<A 0000126| = LESS
tested for zero. If zero, again the P counter is not
stepped and control transfers to symbolic location
ZERO. If not zero, the P counter steps to TEST+4 and
the number is tested for an even value. If even, the P
counter is not stepped and control transfers to loca-
tion EVEN, If not even, the P counter is stepped +1 * DCB Y 2200000 ~ Word Times: 2to6

and the contents of the A register are stored in sym-
bolic location RESULT. One result of the series of
instructions is to store only negative odd numbers in
location RESULT.

* CAB Y 2100000 Word Times: 2to 4

Functional Description: COMPARE AND BRANCH.
The contents of the A register are comparedalgebrai-
cally with the contents of location Y. If the contents of

Y are greater than the contents of A, the next instruc-
tion in sequence is executed. If the contents of Y are

equal to the contents of A, the next instruction is
skipped and the second sequential instruction is exe-
cuted. If the contents of Y are less than the contents
of A, the nexttwo instructions are skippedand the third
sequential instruction is executed.

Example: Compare the contents of symbolic location
TEST with the contents of the A register. If TEST is
greater than A, go to symbolic location MORE for next

Functional Description: DOUBLE COMPARE AND
BRANCH. The contents of the A and Q registers are
compared algebraically with the contents of memory
locations Y and Y + 1. If the contents of Yand Y + 1
are greater than the contents of A and Q, the next in-
struction in sequence is executed. Ifthe contents of Y
and Y+ 1are equal to the contents of A and Q, the com-
puter skips the nextinstruction and executes the second
sequential instruction. If the contents of Yand Y + 1
are less than the contents of A and Q, the computer
skips the next two instructions and executes the third
sequential instruction. Y should be an even location.
If Y is odd, Y and Y are compared with the contents of
A and Q. The signs of Y+1 and Q are ignored.

Comments: Both the DCB and the CAB instructions
provide a ‘three-way compare’ capability. CAB pro-
vides of single-length word comparisons, while DCB

* This instruction is an optional feature.

G- 229

v-33

compares double-length words. In both instructions
the effect on the P counter is similar:

Y > A (or A and Q) P unchanged

Y = A(or AandQ) Step P + 1

Y<< A (or AandQ) Step P + 2

MODIFICATION INSTRUCTIONS

INX K X 1400000 Word Times: 3

Functional Description: INCREMENT X. This instruc-
tion adds the number K (bit positions 7 through 19 of the
I register) to the contents of the specified X register
(bit positions 5 through 19). The result replaces the
contents of the X register (positions 5-19); any carry
from position 5 is dropped. No automatic modification
is possible. X register locations are 0000 through
0003, -or 0000 through 0127, if the additional modifi-
cation groups are available.

Example 1: Increment X register 0002, which contains
51210'2(—10003), by 1.

GAP Coding:

Symbol Opr Operand X
v] 2] s] 4] s e|e o ro]ta]1s]ra]rs] Ve 1718 10]20
e I NX1 L,]2

X Register Contents in Octal

0002
Before execution: 0001000
After execution: [0001001 l

Example 2: DecrementX register 0003, which contains
10070 (144g), by 6 (same as incrementing by 818610
or 17772g).

X Register Contents in Octal

0003
Before execution: 0000144
After execution: 0020136

Comments: If INX isusedtodecrementthe X register,
a carry is generated into bit position 6. This 1-bit in
position 6 does not affect BXH or BXL instructions
(described later), because these commands compare
bit positions 7 through 19 only. However, if the de-
cremented contents of the X register are used to modify
an address, the carry into position 6 will affect the
modification. ThisisbecauseX registerbits5 through
19 are used to modify the operand address. Also,
INX should be used with caution tozeroan X register;
incrementing or decrementing the register by the
quantity required to set it to zero actually sets the
register to 8192 (1-bit in position 6), The LDA
or LDX ZERO instruction is recommended for zero-
ing an X register,
X Register Contents

1

S 5 617 19
= =
ZZE222
N J
o~
Affects BXL and
K BXH instructions
J
N
Modified by INX instruction and
used for address modification
BXH K X 0500000 Word Times: 3

Functional Description: BRANCH IF X IS HIGHER
THAN OR EQUAL TO. If the contents of the X register
(7-19) are greater than or equal to the constant K, the
next sequential instruction is executed; if less thankK,
the second sequential instruction is executed. X is
unchanged. No automatic modification is possible. X
register locations are 0000 through 0003, or 0000
through 0127 if the additional modification groups are
available.

Example 1: Branch if X is higher than or equal to 4.
Assume that X register 0002, which contains 6, is to
be used. Assume that BXH is inactual memory loca-
tion 01638.

Symbol Opr Operand X
1[2]] a] s[e e o rofvz[1a]raf1s]ve[17 16 19]20
GAP Coding: , |BXH4 | | | L. 12
Symbol Opr Operand X FI CA L B.RU|lO7T7 7 , | | |
v[2] 5] «] 5] e |e[°[1o]z]ta] 4[] refr7 e]r0]z0 S. TA|T.E MP)
L . I N X([8,1 8 6 3 l) é L .

Ble-229

V-34

October 1963

P Counter Contents
in Octal and Symbolic

Before execution: 0164 = FICA
After execution: ‘ 0164 - FICA

Example 2: Branch if X is higher than or equal to 4.
Assume that X register 0002, which now contains a 3,

is to be used. Assume that BXH is in actual memory
location 0163g.

BXL K X 0400000 Word Times: 3

Functional Description: BRANCH IF X ISLESS THAN.
If the contents of the X register (7-19) are less than the
constant K, the next sequential instruction is executed;
if greater than or equal to K, the second sequential
instruction is executed. X is unchanged. No auto-
matic modification is possible. X register locations
are 0000 through 0003, or 0000 through 0127 if the ad-
ditional modification word groups are available.

Example 1: Branch if X islower than 5. Assume that
X register 0003, which contains 6, is to be used.
Assume that BXL is in actual location 0014g.

Symbol Opr Operand X Symbol Opr Operand X
1] a[s]a]s[efefofrofra[rs]vaTrs]r6]17] e]10]20 tJ2]s[a]s[efsofrofraTra]rafrs]rejtr]te|10}z20
. ., . ., |BXHI4 .]2 eor v o x5, o, 18
FI.CA . |BRU|0T777 L M O D |BRUJ1 4 1 1
S TATEMZP | S TA|IT.EMP,
T S e ——

P Counter Contents
in Octal and Symbolic

Before execution: 0164

FICA

After execution:

0165 FICA+1

Comments: Note, inexample 1, that because the tested
condition is true, the P counter is not stepped to the
second sequential instruction. Instead, the next in-
struction is the unconditional branch (BRU) which
transfers control to the instruction at 0777. In
example 2, the tested condition is false; that is, the X
register contents are not higher than 4. Hence, the
P counter, which has already been stepped once, is
stepped again to 0165 and the unconditional branch is
skipped.

A BXH instruction is generally, but not necessarily,
followed by a BRU instruction specifying the address
of the first instruction of the branch sequence.

If an optional modification word group is to be used,
the BXH instruction must have been preceded by an
SXG instruction, which selects the desired modifi-
cation word group.

P Counter Contents
in Octal and Symbolic

Before execution: 0015 MOD

MOD+1

After execution: 0016

Example 2: Branch if X islower than 5. Assume that
X register 0003, which contains 2, is to be used. As-
sume that BXL is in actual location 0014g.

GAP Coding:

Opr
s [o [10
B X L
B.RU 4 1.1,
S, TA|T EMP .
AN e

Symbol
iIZI S] 4] 5[6

Operand
1z]|3[u]lsl tef17[1e 19

[

0

n i L ! 4 ! !

P Counter Contents
in Octal and Symbolic

Before execution: 0015 = MOD
After execution: ‘ 0015 = MOD

BE-228

V-35

October 1963

Comments: In example 1, the tested conditionis false;
that is, the X register contents are not lower than 5.
Hence, the P counter is stepped anadditional location,
and the BRU instruction is skipped. Inexample 2, the
tested condition is true; the X register contents are
lower than 5. Thus, the P counter is not stepped and
the next instruction executed is the BRU, whichtrans-
fers control to the instruction at actual location 1411.

The BXL instruction is generally, but notnecessarily,
followed by a BRU instruction for the branch sequence.

If an optional modification word group is to be used,
the BXL instruction must have been preceded by an
SXG instruction, which selects the desired modification
word group.

Example: Store X register 0002 contents in symbolic
location RESET.

Assume 0002 contains 01357468.

LDX Y X 0600000 Word Times: 3

Functional Description: LOAD X. The contents of
memory location Y (S, 1-19) areloadedinto register X
(S, 1-19). Y is not affected.

Example: Load X with the contents of symbolic loca-
tion SET1. Use X register 0003. Assume SETI1 con-
tains 0000001.

GAP Coding:

Symbol Opr Operand X
|[2|al¢]5[e [NERED 'ZJ”["I”’]‘””L”]” 20
.) S TXIRESET | 2
Memory and X Register

Contents in Octal

RESET 0002
Before execution: ? 0135746
After execution: 0135746 0135746

Comments: This instruction cannot be automatically
address modified. X registersinoptional modification
word groups can beused, if STX ispreceded by an SXG
instruction specifying the desired group.

* SXG Y 2506013 Word Times: 2 ||

GAP Coding:
Symbol Opr Operand X
|[z[3I4Tsls s [9 |10 ‘ZI”}“l”]”f”l”l” 20
L) LDX|SE T 1, ., 138
Memory and X Register
Contents in Octal
) SET1 0003
Before execution: LOOOOOOl] L ?]
After execution: 0000001 1 0000001 1

Comments: This instruction cannot be automatically
address modified. X registers inoptional modification
word groups can be used, if LDX is preceded by an
SXG instruction specifying the desired group. LDXis
useful in initializing an X register.

Functional Description: SELECT X REGISTER GROUPR
The modification word group (00-31) specified by Yis
selected and remains selected until another SXG in-
struction is given. After agivengroupis selected, all
instructions referencing an X register will refer toone
of the words within the selected modification group.

Example: SelectX register group 27 so that subsequent
instructions containing X modification coding (bitposi-
tions 5 and 6) will refer to memory locations 0108
through 0111.

STX Y X 1700000 Word Times: 3

Functional Description: STORE X. The contents of
register X (S, 1-19) are stored in memory location Y.
X is not affected.

GAP Coding:

Symbol Opr Operand X
1[21314415{: s [s (10 ‘2I'ﬂ“l")”|'7[”]” 20
L _lsxGl2.7 B o

Subsequent

Instruction

Bit Positions Modification Word
5 6 Selected (Decimal)
0 0 0108
0 1 0109
1 0 0110
1 1 0111

* This instruction is an optional feature.

G- 229

v-36 October 1963

Comments: After execution of the SXG instruction,
subsequent instructions containing 01, 10, or 11 in bit
positions 5 and 6 will reference memory location 0109,
0110, or 0111 until another SXG instruction selects
another modification word group. X registerinstruc-
tions (INX, BXL, BXH, LDX, and STX) containing 00,
01, 10, or 11 will reference memory locations 0108,
0109, 0110, or 0111. Note that the location specified by
00 X register coding (0108, in this case) has the same
properties as location 0000.

The decimal locations of the modification words sel-
ected by the SXG are readily computed by multiplying
the modification word group number by 4 and adding
the X register coding of the instruction in question to
the result.

For example, assume thatanSTA instruction specifies
modification word 3 (11) and that a previous SXG in-
struction selected modification word group 18. To
determine the actual location of the modification word,
multiply 18 by 4 (giving 0072) andadd 3 (giving location
0075).

PROGRAMMING 16K MEMORY
SYSTEMS

The GE-225 information processing system is avail-
able with a 16k (16,384 word) memory which is
regarded by programmers as being divided into two
basic parts: the lower 8k memory and the upper 8k
memory, referred to as the lower bank and the upper
bank. The lower bank is considered to be memory
locations 0000 through 8191, and the upper bank
locations 8192 through 16,383. In programming 16k
systems, accessingtechniquesand special restrictions
as to instructions and software use mustbe considered.

0000 LINKAGE

READ-WRITE AREAS
LOWER MEMORY

PACKAGED SUBROUTINES

\ WORKING STORAGE
8191 AND CONSTANTS

8192
1 PROGRAM

UPPER MEMORY

TABLES AND
ARRAYS

\
16383

Figure 5-5. 16k Memory Layout

In addition, the proper allocation and use of meniory
becomes essential. Figure 5-5 illustratesanefficient
and economical memory layout that allocates linkage,
read-write areas, special subroutines, working stor-
age and constants to lower memory and places the
operating program and program subroutines in upper

memory. Using memory in this way minimizes
indexing or address modification operations.

Addressing the Upper Bank

In the 16k system, an operand address requires a
fifteen-bit addressing capability, as opposed to a
thirteen-bit 8k address. Thus, memory locations
00000 through 08191 in the lower bank can be ad-
dressed directly, but memory locations 08192 through
16383 must be accessed throughaddress modification.

When modification is used, both the P and I registers
which possess 15-bit address capability, are affected.

When an instruction is modified, the 15-bit constant
in an index word (bits 5through 19)is added to the 13-
bit operand in the I register. After this addition, the
instruction actually executed has an effective operand
of 15 bits.

An example using address modification to access the
upper bank is shown by the coding:

Symbeol Opr Operand X Remar(

O ER RN K KRNI I A K A LA KD £ Kl \
1luPB NK. DEC[8.1 9 2 UPPER BANK CONSTANT /
N ¢ 1
) 1

2 LDX|UPBNK 2 | SET INDEX TWO - 8192)
(« . (

N) \

3 LD.AlS6 N 2 \(
|

The execution of the instruction in line two places the
Constant 8192 in index word 2. The instruction of line
3 is modified by index word 2 and gives an effective
address of 8192+6, or 8198, which is the desired upper
bank memory location.

Index word 2 can now be used whenever access to data
in an upper bank memory location is desired by the
programmer. However, if the program is executing
instructions in the upper bank, the P counter remains
set for upper memory andis incrementedin the normal
manner without the need for modification.

Most GE-225 instructions access only memory loca-
tions in the lower bank when not indexed, but can access
the upper bank when properly indexed. Figure 5-6
contains a brief description of the effect of GE-225
instructions when addressing 16k memories. Further
explanations are given for specific commands.

GRS

October 1963

Commands

Behavior

1. MOV and controller commands

2. General commands

3. Indexed BRU

4. SPB and unindexed BRU

5. LDX and STX

6. All others

1. Any memory location may be
accessed with a 15-bit direct
address.

2. The operand address is restricted
or non-existent, independent of
memory size.

3. Any memory location can be
accessed through automatic
address modification, and the P
counter is set to obtain successive
instructions from the memory
bank selected by the BRU.

4, The 13-bit address applies only
to locations in the memory bank
in which the instruction is stored.

5. The 13-bit address always applies
to locations in the lower memory
bank.

6. Unindexed instructions access
locations in the lower memory
bank; indexed instructions may
access any location via automatic
address modification.

Figure 5-6. Instruction Characteristics when Addressing 16k Memories

Executing Instructions in the Upper Bank

Control can be shifted to instructions contained in
memory locations in the upper bank of a 16k system
by a suitably indexed BRU instruction. The effect of
an indexed BRU is to set the two high-order address
bits of the P counter. Noother instruction may accom-
plish this (P automatically advances from 8191 to
8192 when no branch intervenes). Unindexed BRU
instructions do not change the high-order addressbits
in the P counter. Also, anunindexed BRU causes sub-
sequent instructions to be taken from the bank con-
taining the BRU. Control remains in the upper bank
until the next indexed BRU is executed, despite inter-
vening SPB and unindexed BRU instructions.

Example 1: Change control from the lower bank to
memory location 12000 in the upper bank. Assume
index word 2 contains the constant 08192.

GAP Coding:
Memory Opr Operand X
Location 5 | o |10 'i’i‘ﬁ”l”'” [18]1e]20
BRU|3.808. |2
1756

Next Instruction Location is 12000.

Subsequent instructions executedare in the upper bank.

Example 2: Upper Baunk Execution. Index word 2 con-
tains 08192.

GAP Coding:
Memory Opr Operand X
Location 8 9 10 |2Y|s|u}!5]lei|7lis||o 20
T
19950 BRU|3 808 ‘ 2

Next Instruction Location is 12000

Execution of instructions continues in upper bank.

Example 3: Upper Bank Execution. Indexword 2 con-
tains 00000.

GAP Coding:
Memory Opr Operand X
Location 8 | 8 10 12[13]14T|5|1e‘n[|e[19 20
BR U|3 8 0 8 L
12250]

Next Instruction Location is 03808

ble-22%

V-38

Controls are changed to the lower bank starting at
memory location 03808.

In summary, it is essential that the programmer re-
member:

1. Only a modified BRU instruction can direct
the central processor to begin executing in-
structions in the upper bank. The BRU must
be modified by the necessary increment, as
illustrated in example 1, above.

2. Once operating in the upper bank, subsequent
BRU instructions do not change the setting of
bits 5 and 6 of the P counter unless another
properly indexed BRU instruction is encoun-
tered. Also,onceoperatingineither the lower
or upper bank it is not necessary to continue
indexing to keep control in thatbank. Modifi-
cation is only necessary whenbranching from
one memory bank to another.

SPB Instructions

An SPB instruction can beused, atnoincrease in word
time, in the upper bank to refer toan upper bank sub-
routine. However, anSPB instructionin the upper bank
cannot be used to refer to a subroutine in the lower
bank without first modifying a BRU instruction. The
same rule exists with respect tousing anSPB instruc-
tion in the lower bank to refer to a subroutine in the
upper bank.

Example: Assume index word 2 contains 08192. Use
an SPB and BRU inthe lower bankto access a memory
location in the upper bank.

GAP Coding:
Memory Symbol Opr Operand X
Location [1] 2 [s] «[s[e|e o t1o]tz]vs|r1a]vs[tej17]1s]1e]20
1750 .. . ISP B/UPPER 1
1751 UPPER, B RU|3 808 L 2

An SPB command executed in the upper bankperforms
exactly like an nonindexed BRU.

Example:
GAP Coding:
Memory Opr Operand X
Location s | 9 [10 ‘ZT"I"I“l”l”l”I" 20
122258 S P B|2 0,0 0, . 1

Next Instruction Executed is 10192.

The effective address of the next instruction executed
(10192) is formed by bits 7 through 19 of the I register,
plus bits 5 and 6 of the P counter with bits 5 through 19
of P stored in the index word.

The programmer should note that since only SPB and
BRU instructions have operand addresses which relate
directly to P counter contents, only the perform as
described in the previous paragraphs. All other GE-
225 instructions with 13-bit operands accesslocations
in the lower bankunless they are appropriately indexed
for the upper bank, regardless of where they are
located.

LDX and STX Instructions

Index words are normally set and stored with LDX
(Load Index) and STX (Store Index) instructions. These
instructions transfer a 20-bit GE-225 word between a
specified memory location, for which a 13-bitoperand
address is provided, and a specified indexword. Since
the index word selected represents a sending or
receiving location in a data transfer process, auto-
matic address modification does not occur on LDX and
STX operand addresses. The 13-bit address field
means that LDX and STX instructions may access only
locations 00000 through08191. Although these instruc-
tions may be stored in and executed from the upper
bank, they always refer to data stored in the lower

Controls are changed from the lower bank to the upper
bank with the instruction in memory location 12000
being executed next. The return from the upper bank
routine (after execution) to lower bank memory location
01752 can be accomplished by a BRU:

GAP Coding:
Memory Opr Operand X
Location 8 [9 [10 12[13 “T”l”["l'al" 20
12120 |[B.R.U|2, ..

Next Instruction Executed is 01752

Bl 225

bank.
Example: GAP Coding:
Memory Opr Operand X
Location [& [° [*° |z[|3l|4]wl|ol|7l|a‘n 20
12250 LD X|6.50.0. . . . 2
6500 D.E C |0, N N

V-39

October 1963

STO Instruction

The STO instruction is used for direct instructionad-
dress modification. Since the standard operand ad-
dress field is thirteen bits, STOis designedto replace
the low-order thirteen bits in the specified memory
location with the low-order thirteen bits of the A reg-
ister. In 8k memories, STO has virtually no special
limitations. In 16k memories, STO cannot handle
MOV or controller commands addressing the upper
bank, nor is it adequate for direct address modifica-
tion in other instructions when the address being
stored is (or may be) in the other bank.

Example: The contents of index word 2 = 08192.
GAP Coding:

Memory Opr Operand X
Location [eT s Jvo[vz] s 1«]vs]Te]i7]to]s]z0
12160 L.DAJ|3,0,0.0, L 12
12161 S PBl* . +.1. . 11
12162 S. T .Ol2, . - 1
12163 A DD|O, N

Designing Subroutines for 16K Memories

Like 8k programs, subroutines and othex: program ele-
ments inlower 8k canaccess data and constants and set
program switches without employing index registers.
Subroutines in the upper bank must either useindexes
or utilize the lower bank for data, constants, and
switches. LDX and STX are essential for indexing
procedures when extra index groups are employed.
But LDX and STX can only access the lower bank. It
is very important to remember this fact whendesign-
ing subroutines for the upper bank, Therefore,
constants should always be in the lower bank.
Subroutines in general contain their own constants and
working storage areas. If they are to be assembled
into the upper bank, they must employ indexes to refer
to such values, and they must do so without LDX and
STX. One of two rules is necessary: either subrou-
tines are located inthe lower bank, or else subroutines
are written to employ a specific index group, whose
absolute core locations are used in LDA and STA in-
structions with LDX and STX prohibited.

16K Memories and Prior Software

Subroutines which have been written for the GE-225
with 8k memories in mind must usually be modified in
order to function properly with 16k memories. There
are several reasons for this:

1. Negative indexing, if used, is accomplished by
simply adding the 2’s complement of the desired

decrement so that a carry is generated into bit
position 6. This bit is effective during address
modification because bits 5 through 19 are trans-
ferred during modification. Programs which use
negative indexing do not perform properly when
they are run on 16k systems.

The STO instruction can be employed extensively
to set up data buffer addresses in pertinent com-
mands in input-output subroutines. STO does not
handle 14-bit addresses, so that such routines
must either be modified or else be restricted to
buffers in the lower 8k bank.

Subroutines usually contain their own constants
and working storages, and do not access them
with the aid of index registers. They, therefore,
must be located in-the lower bank.

Subroutines which call other subroutines have not
been designed to go through a ‘branch relay’ pro-
cess. Therefore, nested subroutines must all be

placed in the same memory bank, presumably the
lower bank.

Indirect arguments are often processed with the
use of the STOinstruction. Subroutines which have
employed this mechanism either mustbe modified
or else must restrict their indirect arguments to
the lower bank.

Subroutines frequently have usedthe LDX and STX
instructions which can only access the lower bank.

In general, most existing routines and even basic
card formats assumed a 13-bit operand address
field. The 16k memories require fourteenbits for
the operand address field.

Programming for 16K Memories

The following list represents a summary of important
points to be remembered when programming the GE-
225 with a 16k memory:

1. Unindexed instructions, such as LDA, STA, and
ADD, access the lower bank only.

2, Operand addresses of MOV and controller com-
mands cannot be indexed but contain the full 15-bit
direct addresses.

Some subroutines work only in the lower bankand
some only in index group zero.

An SPB instruction does not cross the memory
interface (lower-to-upper or upper-to-lower) di-
rectly.

Subroutines and other program elements mustnot
straddle the memory interface; thatis, they should

GE-229

V-40

October 1963

be located entirely in either the lower or upper
bank (subject to the restriction in item 3 above).

6. Instructions LDX and STX always function as if
only the lower bank were present.

7. STO stores only 13-bit operand address fields.

PROGRAMMING CENTRAL PROCESSOR
OPERATIONS

Figure 5-7 illustrates aportion of the flow charting for
a rejected parts cost program. GAP 'coding sheets
corresponding to that portion of the flow chart are
shown in Figures 5-8 through 5-11. The coding shown
was chosen to illustrate typical usage of central pro-
cessor instructions rather than to show recommended
methods for programming specific problems.

In Figure 5-8, lines 2 through 10 initialize the input
and cost areas by storing zeros in the affected loca-
tions. Note the use of index word 2 to loop through
lines 4 through 6 until the entire block of 200 locations,

starting with symbolic address APART, is filled with
Zeros.

In Figure 5-9, lines 2 and 3, SW#3 is interrogated. If
SW#3 is OFF (contains zeros), calculation of DAREA
parts follows; if SW#3 is ON, the BNZ in line three
transfers control to BYPASS (line 3, Figure5-10),
DAREA calculations are skipped, and EAREA calcula-
tions are made.

Line 20 of Figure 5-9 shows a typical method for
exiting from the main program to a subroutine after
making provision for returnto the exitpointupon com-
pletion of the subroutine. The SPB NPRIBD causes
an unconditional branch to a Binary-to-BCD conversion
routine beginning at symbolic location NPRIBD (not
shown) and causes the P counter contents (location of
the SPB) to be placed in index register 1. The final
instruction of the NPRIBD subroutine is a BRU 0001,
modified by index register 1, which returns control to
the instruction following the SPB.

Following the EAREA parts calculation in Figure5-10
is a test for overflow. Ifanoverflow condition exists,
line 11 causes the control location to be stored in modi-
fication word 1 and control transfers to OVRFLO, line 2
of Figure 5-10. After overflow recovery the BRU 0002,
modified by index word 1 returns to the main routine,
line 13, Figure 5-10,

V-41

GE-228

i

Zero Input
and
Cost Areas

1
ON K OFF

\SW#3/

4

Calculate
EAREA Cost

v

Adjust Cost
—»ETOTAL

y

Calculate
AREA#2 Costs

BOV

YES

OVERFLOW
SUBROUTINE:
Construct as

Double Length

Store Result
—» TEMP

!

Set SW#4
ON

NO

4

Continuation

+

Calculate
DAREA Rejected
Parts-Total
Cost—»DTOTAL

Calculate
Average DAREA,
Rejected Part
Cost

SUBROUTINE:
Convert DAVG
from Bin to BCD
— DAVG

Figure 5-7. Rejected Parts Cost Flow Chart

V-42

GAP Coding:

PROGRAMME X PROGHAM Run #2 OATE PAGE 4
GECODER | Rejected Parts Cost 1/9/63 or 90
Symbol Opr Operand X REMARKS Sequence
e T T T e e e e e T L) RN A A
1 ‘ ORG|1 O o 0 . | | MAIN PROGRAM ORIGIN 1000
2SS TART DLDZERO) S 10005
3 S TA|2 N ZERO INDEX WORD TWO 1,0,1.0
40 . IDST|/APART, 2| ZERO INPUT AREAS 1.0.1.5
5y JINX|2 2l e 1,020
6) BX L|l200 L 2) o 1.0.25
7 BR U * -3 . N o 1.030
8y . |LDX Z.E RO 2 R 1,035
9 D ST|ACO,S T . | 2| ZERO COST AREAS 1040
10 I NX|2) 2 1045
11 5§ S) '
Figure 5-8. RPC Program - Initialization
GAP Coding:
DATE PAGE:
PROGRAMMER GE CODER PROG;AeMjec}%ggggrts Cost 1/9/63 o’o 28
Symbol Opr Operand X REMARKS Sequence
V[2] 5] 4] v 6| [s [10]tz[1] va]vs[te][17] ts 1e[20]3] 75 [76 [77 78 [79 [0
1 . _ |L.D X|Z E R O, __|2 | ZERO INDEX WORD TWO 1.2.5.0
2) _lLDA[SW #3) SWITCH NO. 3 1,2 5.5
3 B, N.Z|B Y P ASS SKIP DAREA COST . 1.2,6.0
4)) LDA|# DPART, NUMBER DAREA INDIVIDUAL PARTS 1,2.6.5
5 ,) N E G ‘ o CONVERT TO TWO’S COMPLEMENT FORM 1.2.7.0
6 S.TO|LOOPD, ., |, SET UP NUMBER TIMES THRU LOOP 1.2.7.5
7IDC A LC LD, A|IDP ART, . 2 | NUMBER OF EACH PART REJECTED 1,2,8.0
8 M,A.Q N 1,2.8.5
91 . ___ ImMmPY|IDCOST , |2 [COST PER REJECTED PART 12,90
10 X, A.Q . . 1,2.9.5
11) ADDIDTOTAL, ,1.3,00
12 . N S T A|IDTOTAL, |, TOTAL COST DAREA REJECTED PARTS 1,3,0.5
13 L I N.X|[1 |2 1.3,1.0
14 1L, 0.0, P, D B.X.L|O ey oy 2 ,1,.3.1.5
15 B.R U/IDCALC, 1.3,.2.0
16 I Q e, 1.3.2.5
171 . . . |DV.D|# DP.ART, CALCULATE AVERAGE DAREA COST 1,330
18 N DAD|ADJ U S T, ADJUST $,1,3,38.5
191 | L., IM.AQ e ,1,3.4.0
20 L _ |s,P BIN P R,I B D, , |1]|BIN-BCDCONVERSION ROUTINE 1.3,4.5
21 . |s;TO|* +,3, . . . 1.3.5,0
22 , ., laADO . L 1.355
23 ‘ S, TOl* +.3, . . 1,3.6,0
24 . . lupalo, . | . AVERAGE COST DAREA REJECTS ,1.3.6.5
25 - S TA[DAVG 1, 3170
Figure 5-9. RPC Program - DPARTS Calculations

V-43

GAP Coding:

P A
ROGRAMMERGE Coder p’?lgzjﬂe::‘te%uga#rzts Cost "1/9/83 or 23
Symbol Opr Operand X REMARKS Sequence
v s]al e[oo rora]ra o] to 7 [te[10]20 [TSre [[P0
- ., 1L D AJO . . 1.3 17,5
) . |ISTAIDAVG +1 1,.3.8.,0
B YPASS|LDAEPART, NUMBER EAREA PARTS 1,3,8.5
. . M A Q| | .) N 1,390
M P Y|E C O, ST, L COST PER PART EAREA 1,3,95
_lx.a.Q| . , . 1.4.00
A DDIEADJ, , | EAREA ADJUSTMENT 1,4 0.5
S TA|JET OTAL TOTAL ADJUSTED COST EAREA REJECTS 1,410
. A DDIAREA# 2 | CALC AREA#2 COSTS 1,4,15
- B OV L 1.4 2 0
L S PB|OVRFLO, 1 | OVERFLOW SUBROUTINE 1.4,2 5
. B.RU|#,2C OS, T, |, 1,4,30
. DS T|IT EMZP . TEMPORARY STORAGE 14,35
L LDAONE | | 1 4,.4.0
. S TA|SW #4 = SET SWITCH 4 ON 1.4,4.5
B,R U#,2C. 08T, , 14,50
. oo |, . .
DPART, |BSS|(30 N N Y
A R EM N N CONSTANTS AND SWITCHES 1, 7,35
Z ERO) ppbcjo, N 1. 740
ONE, B | DECIl, ., o, oo 1,745
D.J. U S T/D D Ci5 0,0, R 1. 750
S W # 2 DEC|O, . | . 1.7.5.5
S W # 3, D E C{0) 1. 760
S.W #. 4 D E _C|0 1 76 5
Figure 5-10. RPC Program - EPARTS Calculations and Constants
GAP Coding:
PROGRAMMER FROGRAM OATE sace 20
GE Coder ;pjpr\%;l: 'ﬁzrfe Cost [1/9/63 or 20
Symbol Opr Operand X REMARKS Sequence
1] 2] s] 4] s 6|8 [® [10]|12] 13 1a]5 [vet7 s 15|20 75[7e 7778 179 80
R . IR EM| | OVERFLOW SUBROUTINE 2.4 0.0
OVRFLOI|ISRD]I1 | 2.4 0
C HS . 2. 4.1 0
) S RDJ|1. 8 X . N o 2,.4.1.5
R U2, N { EXIT . 2.4.2 0
S BR|ISTRIZP, | BCD - BIN CONVERSION ROUTINE 2. 4.2 5
BRINPR I B D, BIN - BCD CONVERSION ROUTINE 2 430
E ND|ST ART, B R N

Figure 5-11. RPC Program - OVRFLO Routine

V-44

SECTION VI

DIRECT INPUT-OUTPUT OPERATIONS

GE-225 peripheral units can gain access to memory
either through the M and N registers or through the
controller selector and then the M register, as shown
in Figure 6-1. Peripherals connected to the M or N
register are deemed to have direct access to memory
and include the paper tape reader-punch, console type-

writer, card reader, card punch, and the console
switches. Operations involving these units are dis-~

cussed in this section. Other peripheral operations,
such as those involving the MRADS, high-speedprinter,
magnetic tape handlers, document handlers, and
Datanet-15 terminals, are covered in the section, Con-
troller Selector Operations.

CONTROL CONSOLE DJPERATIONS

The control console is a control center from which the
GE-225 operator has both manual control of processing
and visual representation of the operating status of
various registers and peripheral units.

Manual control includes the initial reading into memory
of the program, starting program execution, and
(as required) interrupting operation for checking or
other purposes, Manual control is accomplished
through the switches described on page VI-12, Visual

!]
| |
! Core 1
! Memory)
| | y, - T TT- - == |
| | | |
]
| N l Q Reg I] B M Reg ! : Card '
! AU Reg ! I Punch '
| Reg A Reg | | |
L_ ¥ n !
--l----"---"Frr-"-"—-"=-"-=-"=-"=-"=-=-=-= - - , Card |
- -0 - - —_~ - == ! Reader |
Console ')
Switches \ e
&
Indicators Controller DIRECT ACCESS
Selector

<

— e e e e - - - e — -

DIRECT ACCESS

L

To and from
Peripheral
Controllers

Figure 6-1. Units Directly Accessing Memory

Ble- 225

VI-1

October 1963

representation of register contents and status of oper-
ational units is provided by various lensed lights,
which are also described below, The control console
consists essentially of a control and an indicator panel,
as illustrated in Figure 6-2, The upper two-thirds
of the panel contains most of the indicators, although
many of the switches in the control position serve
as indicators as well,

Alarm Indicators

At the top left of the console panel, Figure 6-2, are six
alarm indicators. Theseareturnedonif various error
conditions are detected during programoperation. All
alarm indicators exceptthe PRIORITY alarm are reset
(turned off) by the RESET ALARM switch.

PRIORITY ALARM. This alarm is turned on under
any of the following conditions:

PARITY ALARM. If the STOP ON PARITY ALARM
switch is on when a parity error is detected, the cen-
tral processor will halt. The PARITY alarm can be
turned off by pressing the RESET ALARM switch or,
although not a common practice, by programmed
instructions. The PARITY alarm is turned on under
any of the following conditions:

1. The memory-checking circuits of the central pro-
cessor detect a parity error while the AUTO/
MANUAL switch is in the AUTO position.

2. The parity checking circuits associated with the
paper tape reader detect a parity error.

3. A parity error is detected as information is re-

ceived from a controller through the controller
selector.

OVERFLOW ALARM. The central processor doesnot

1. The AUTO/MANUAL switch is in the MANUAL halt on an overflow alarm. The alarm may be reset
position. automatically several times during a normal MPY in-
struction. The indicator can also be turned off by
2. The STOP ON PARITY ALARM switch is engaged depressing the RESET ALARM switch or by pro-
and a parity error is detected. grammed instructions. The OVERFLOW alarm is
turned on under any of the following conditions:
3. The central processor does not have priority
(access to memory). 1. The capacity of the A register is exceeded during
arithmetic operations.
4. A card punch or card reader alarm condition has
occurred. 2. An illegal divide is attempted.
pronn] | e[225y || .|| | st @ﬁ%ﬁwmhim}
U U U U U
@ INDEX GROUP -
#QQ QQOIP00 000 0QQ QY OQOP

© -0

000 OO0 OO0

99 099G Q900009
0 000 OO0 OO0

')
1)

STOP ON|

RESET
ALARM

LOAD

RESET
CARD P

AUTO

PARITY
ALARM

INSTR

START A1

c—/—/a

PWR

MANUAL

NORM

WORD

OFF

Figure 6-2. The C

ontrol Console Panel

October 1963

3. A 1-bit is shifted outof bitposition1 of the A reg-
ister during a shift left operation.

CARD PUNCH ALARM. This alarm is turned on any
time a WCB, WCD, or WCF instruction is attempted
when the card punch is not in the ready condition. As
already noted, the PRIORITY alarm also comes on, and
the central processor halts. The alarm can be reset
only by pressing the RESET ALARM switch.

ECHO ALARM. This alarmisturnedonwhen the cen-
tral processor makes anunsuccessful attempt to select
a controller through the controller selector. The ECHO
alarm light can be turned off only by depressing the
RESET ALARM switch, The alarm indicates any of
the following conditions:

1. The selected controller is busy (delay not pro-
grammed).

2. An erroneous address was programmed, the ad-
dressed plug is not installed.

3. Controller is off line.
4. Power is off to controller.

5. Controller is malfunctioning.

CARD READER ALARM. Thisalarmis turnedon when
attempting to execute an RCB, RCD, or RCF instruction
while the card reader is not in the ready condition,
When the CARD READER alarm comes on, the
PRIORITY alarm also comes on and the card reader
and the central processor halt. The alarms in this
combination are reset only by depressing the RESET
ALARM switch. The reader can be ‘not ready’ for
any of the following reasons:

1. Card reader is not turned on.

2. Input hopper is empty.

3. A card is not positioned on the sensing platform.
4. Reader is busy (already reading a card).

5. A misfeed or card jam occurs.
Ready Indicators

The upper right corner of the control console contains
the ready indicators which are green. When the card
punch or card reader is ready to receive information
these indicators are on. If the equipmentis not ready
for operation, an attempt to use the equipment will set
an alarm indicator and halt central processor oper-
ation. The standard ready indicators are:

CARD PUNCH READY, This light reflects the status
of the card punch. If the cardpunch is not in an oper-
able condition when a punch instruction is attempted,
the ready light will be off and the CARD PUNCH and
PRIORITY Alarms will come on. The more common

conditions affecting the operating status of the card
punch are:

1. An empty input hopper.
2. A full stacker.

3. A misfed card.

4. A jammed card.

5. A punch cycle.

6. An improperly seated chip box which inhibits
the turn on of power.

CARD READER READY. Turn onof thisindicator de-
notes the ready state of the card reader. Execution of
a read instruction while this lamp is off causes the
CARD READER and PRIORITY Alarms tolightandthe
central processor to halt. The following conditions
affect operating status:

1. An empty input hopper.
2. A read cycle.

3. A misfeed.

4. A jam.

N REGISTER READY. This lamp indicates the readi-
ness of the N Register to receive input or transfer
output data. This register is used by the typewriter,
paper tape reader, or paper tape punch. If an illegal
code is placed in the N Register and a TYP command
is given, the N REGISTER READY light goes out and
stays out until a space key is struck.

AIM (AUTOMATIC INTERRUPT MQODE), If the GE-225
system configuration includes the optional Automatic
Program Interrupt device, then this light (when ON)
indicates that control has been transferred to an execu-
tive routine for servicing one or more peripherals
in a ready condition,

8K. This is the only red lampin the group. When lit,
this lamp indicates that only an 8K memory is in use.

DECIMAL MODE. IftheDecimal Modeoptional feature
is included, this indicator will come on when the com-
puter operates in the decimal mode.

MODIFICATION GROUP INDICATORS

The five INDEX GROUP display lights are located below
the alarm lights and to the left of the P counter display
lights. The lights are numberedone throughfive from
right to left. These five lights, read as binary digits,
indicate the modification word group that has been
selected by the program (Groups 0 through 31). Each
group has four registers, 0 through 3. When all lights

GlE-229

VI-3 October 1963

are off, group zero is available without special selec-
tion. Only modification word group zero is standard
on the GE-225 system; additional groups areoptional.
Any time a light is on in the index group, an index
group other than zero has been selected.

P Counter Lights

The fifteen display lights for the P counter are located
to the right of the INDEX GROUP indicators. They
are numbered, left to right, from 5 through 19, and
are arranged in groups of three to facilitate reading
the binary numbers directly in octal notation. These
lights show the location of the instruction which
appears in the I register. The P counter is useful
when debugging a program and when checking for cor-
rect operation after a manual branch command to a
particular program location.

Save P Switch

This switch permits manual return to a particular
position in the program after interruption to make a
correction, such as to introduce an instruction manu-
ally. The SAVE P switch, in the down position, pre-
vents the P counter from incrementing. When the
SAVE P switch is returned to the up (normal) position
after manual operations, the program is ready to
continue from the place of interruption. When the
SAVE P switch is in the downposition during the auto-
matic mode of operation, the instruction in the I
register is executed repeatedly.

| Register Lights

The 20 I register display lights are located below the
INDEX GROUP and P counterlights, andare numbered
from 0 to 19. They display the contents of the instruc-
tion register. Like the other register display lights,
they are easily readinoctalnotation. Following either
a program halt or a change of the AUTO/MANUAL
switch to the MANUAL position theI Register displays
the next instruction to be executed.

A Register Lights

The 20 A register display lights are located below the
I register lights. They are numbered from 0 to 19,
and display the contents of the A register. These are
also readable in octal. By using the XAQ switch (des-
cribed later), the A register lights can be used to
display the contents of the Q register. All data and
instructions fed manually into the central processor
go through the A register, and are entered by use of
the option switches.

Option Switches

The 20 option or control switches justbelow the A reg-
ister display lights are used to feed information into
the A register. Each of these toggle switches enters
information into the corresponding A register position.

The numbers 0 through 19 below the A register lights
also apply tothe switches. When movedup, the spring-
loaded switches return automatically to the center
(normal) position. When moved down, they remain in
the down position until manually returned to the normal
position.

When the central processor is in the manual mode,
moving an option switch up causesa 1-bit to be put into
the corresponding position of the A register. This is
indicated by an A register display light. Moving an
option switch up has no effect when the central proces-
sor is in the automatic mode.

Moving an option switch down when the central pro-
cessor is in the automatic mode causes a 1-bit to be
put into the corresponding position of the A register
at the time of a programmed RCS instruction. Speci-
fied switches areleftinthe down position while running
certain routines and while generating GAP assemblies.

RESET A Switch

This switch is to the left of the option switches. It is
effective only when the central processor is in the
manual mode. Like the option switches, it is spring-
loaded in the up position. but not in the down position.
When moved either up or down, it clears to zero the
contents of the A register, and turns off all of the A
register display lights.

Control Switches

A strip of switches along the bottom of the control con-
sole, and the SAVE P and RESET A switches just des-
cribed, give manual control over the central processor
and certain functions of peripherals. Eight of the
switches are the pushbutton type that are pressed
momentarily to be activated. Three double-label
switches are the rocker type with two positions. For
example, the AUTO/MANUAL SWITCH isplacedinthe
AUTO position by pressing the end thatislabeled AUTO
and leaving that end in the depressed position.

PWR. ON. Depressing the PWR ON pushbutton turns
on DC power to the central processor, the control con-
sole, and the 400 card per minute reader. It is also
used as general reset for the central processor. The
pushbutton is also anindicator, for itlights when power
is on.

PWR, OFF, When DC power is on, depressing this
pushbutton turns it off.

RESET ALARM. This switch is effective only in the
manual mode. Depressing the pushbutton clears any
existing alarm condition. It turns off the alarm lights
and resets flip-flops so that the central processor can
continue operation. It does not clear the cause of the
alarm.

Gle-228

VI-4

LOAD CARD. This switchis effectiveonlyin the man-
ual mode. Depressing the pushbutton initiates card
reader action and causes the reader to go through one
load and read cycle.

RESET P. This switch is effective only in the manual
mode. Depressing the pushbutton clears the P counter.

AUTO/MANUAL. This two-position, rocker switch
selects either the automatic or the manual mode of
operation for the central processor. When AUTO is
depressed, the central processor isplacedinthe auto-
matic mode, and instructions are processed in a con-
tinuous sequence under program control. When MAN-
UAL is depressed, the central processor is placed in
the manual mode, and the program is executed one
step each time that the START switch i5 depressed.
Setting the AUTO/MANUAL switch to MANUAL during
automatic operation causes the computer tohaltoper-
ations at the end of the instruction or word being
executed. Putting the central processor inthe manual
mode causes the PRIORITY alarm light to come on.
The following operations can be performed only when
the AUTO/MANUAL switch is set to MANUAL:

1. Clear or set information into the A register with
option switches.

2. Clear alarm conditions with the RESET ALARM
switch.

3. Reset the P counter with the RESET P switch.

4. Load a card manually, using the LOAD CARD
switch.

5. Transfer the contents of the A register to the I
register using the A to I switch.

6. Exchange the contents of the A and Q registers
using the XAQ switch.

INST/WORD. This is also a two-position, rocker

switch which is effective only in the manual mode. It
determines the length of the cycle of the central pro-
cessor during manual operations. When INST is
depressed, the central processor executes one com-
plete instruction each time the START switch is
engaged. When WORD is depressed, only one word
time is executed each time the START switch is en-
gaged.

START. In the automatic mode, depressing the START
pushbutton initiates action. After the operationbegins,
the program runs automatically and depressing the
START switch againhasno effect. Inthe manual mode,
depressing the START switch causes the execution of
one instruction or one word time, depending upon the
setting of the INSTR/WORD switch.

bl 225

A—>I(Atol). This switch is effective only in the man-
ual mode. Depressing the A to I pushbutton transfers
the contents of the A register, including the sign bit,
to the I register. The contents of the A register re-
main unchanged, and can be cleared by toggling the
RESET A switch. The A toIswitch can be used to load
an instruction manually into the Iregisteror to correct
an instruction already there.

XAQ. Thisswitchis effective only in the manual mode.
Depressing XAQ causes an exchange of information
between the A and Q registers. That is, the contents
of A go into Q and the contents of Q go into A. This
permits observation/modification of the contents of the
Q register. By using the RESET A switch and the
option switches, the operator canclear andcorrectthe
contents of the Q register while saving the contents
of the A register.

STOP ON PARITY ALARM/NORM. This is a two-
position, rocker switch. It determines the response
of the central processor to the detection of a parity
error. When STOP ON PARITY ALARM isdepressed,
the central processor halts each time a parity error
is detected and the PARITY and PRIORITY alarm
lights come on. When NORM (normal) is depressed,
the central processor continues operation, regardless
of parity errors, and the only indication of a parity
error is that the PARITY alarm light is turned on.
The setting of the STOP ON PARITY ALARM/NORM
switch is determined by the programmer. If he has
included remedial action throughout the program for
parity errors and provision for resetting the PARITY
alarm light, he can specify the settingofthe STOP ON
PARITY ALARM/NORM switch to the NORM position.
Otherwise, he can have the program halt at time of a
parity error by specifying the setting of STOP ON
PARITY ALARM.

Manual Operating Procedures

The option switches on the console permit the manual
entry of instructions and data; the register indicators
permit the display of the contents of memoryand reg-
isters.

MANUAL LOAD AND EXECUTION OF INSTRUC TIONS,
Any instruction that is meaningful to the GE-225 sys-
tem can be manually loaded and executed as follows:

1. Set the INSTR/WORD switch to INSTR.

2. Set the AUTO/MANUAL switch to MANUAL.

3. Toggle the RESET A switchto clear the A register.

4. Load the octal equivalent of the instructioninto the
A register.

5. Depress the A to I switch.

Toggle the RESET A switchandload any necessary
data into the A register.

7. Depress the START switch.

The central processor will execute the one instruction
and halt.

LOADING DATA MANUALLY. When data is to be

loaded into memory, the followingprocedure isuseful:

1. Set the INSTR/WORD switch to INSTR.

2. Set the AUTO/MANUAL switch to MANUAL.

3. Toggle the RESET A switch.

4. Load an STA instruction in the A register (Store
A is an octal 0300000) with the memory address
where the data is to be stored replacing the right-
hand digits of the STA instruction.

5. Depress the A to I switch.

6. Toggle the RESET A switch.

7. Load the octal equivalent of the data to be stored
into the A register.

8. Depress the START switch.

Load additional words by repeating steps 3 through 8.

EXTRACTING DATA FROM MEMORY. The contents of
a given memory location can be displayed by following
this procedure:

1. Set the INSTR/WORD switch to INSTR.

2. Set the AUTO/MANUAL switch to MANUAL.

3. Toggle the RESET A switch, thus leaving an LDA
instruction in the A register.

4. Load the memory location of the information de-
sired into bit positions 7 through 19 of the A
register.

5. Depress the A to I switch.

6. Depress the START switch.

The contents of the memory location specified in step
4 now appear in the A register.

Control Console Instruction

This instruction permits operator intervention. Itcan
be used in programs in which alternate pathsof oper-
ation are available. Job requirements may vary daily
for one type of run, necessitating that the operator

determine which path or leg of the program is to be

followed. For example, one program path may be for
card input and tape output, while the alternate path
provides for both tape and printer output.

RCS 2500011

Word Times: 2

Functional Description: READ CONTROL SWITCHES.
Each of the 20 console control switchesforthe A reg-
ister is examined. If a switchisdown (ON), a 1-bit is
placed in the corresponding position of A; otherwise,
the corresponding bit position of A will notbe altered.

Example: Read the control switches and modify the A
register accordingly. Assume thatthe A register con-
tains a BRU 0000 instruction and the control switches
are set to 00016338,

GAP Coding:
Symbol Opr Operand X
'[zl‘]‘lﬂ° s | 9 |10 |quJqul|elnl|eln 20
L RC.S A S

Register Contents in Octal

A
2600000

Before execution:

After execution: 2601633

Comments: RCS is used to interrogate the control
switches during processing. In most applications, the
A register should be cleared to zero before RCS is
executed.

During AUTOMATIC operations, the A register
switches on the console have no effect on the contents
of the A register, except during the time that the RCS
command is in the instruction register. At that time,
each of the 20 console switches is examined.

CONSOLE TYPEWRITER OPERATIONS

The console typewriter, Figure 6-3, is primarily an
output device, which is normally located on the control
console desk. Itcanbeusedtoprovide brief messages
to the operator during program processing, or it can
serve as a more extensive output medium in lieu of a
high-speed printer.

The typewriter receives and types one character at a
time from the N register. The sixposition N register,
in turn, is loaded withone character ata time from the

G- 229

Figure 6-3. Console Typewriter

A register. The typewriter can print ten characters
per second under program control. Typewriter capa-
bilities include:

Red printout

Black printout

Print characters 0 through 9, A throughZ, minus,
period, slash, dollar sign, and comma

Carriage return

Space

Tabulation

Error messages are normally programmed toprintin
red. Figure 6-4 illustrates typewriter charactersand
actions and the corresponding octal codes.

Messages produced through the console typewriter can
serve as a log ofprogram performance. For this pur-
pose, the typewriter can be programmed to record
program identification, list magnetic tape labels, and
provide instructions to the GE-225 operator. Operator
comments can be inserted manually whenever the GE-
225 is in a halt status (AUTO or MANUAL).

Required carriage returns must always be specifiedin
the program. If returns are omitted, typing continues
to the right margin stop; the carriage then halts, but
typing continues, resulting in illegible messages.
Typeouts involving tabulation require manual inter-
vention. The operator must manually set required tab
stops before running the program.

The typewriter shares accessto memory through the N
register with the paper tape reader and punch. Thus,
if the N register is engaged because of a type oper-
ation, paper tape read or punch operations must be
delayed until the N register is released. Also,
electrical power can be on for only one of these three
units at one time; if power is on for the paper tape
reader, for example, then power is off for the paper
tape punch and the typewriter. This permits an

=229

economy in the assignment of operation codes; the code
2500006, is used for type, read paper tape, and write
(punch) paper tape.

Typewriter
Character
or Action

Octal
Equivalent
of BCD Codes

00
01
02
03
04
05
06
07
10
11
21
22

23
24

25
26
27
30
31
41
42
43
44
45
46
47
50
51
62
63
64
65
66
67
70
71
40
60
13
33
53

I NN S<OQHREUEWOZENR Y~ ZIQHHUQW > ©®I 3 hwn =0

Space

$
Carriage
Return
Print Red
Print Black
Tab

37
72

75
76

Figure 6-4. Typewriter Character Set

Programmed use of the typewriter requires that the
typewriter power on switch (under the right front
corner of the typewriter) be turned on manually. In
addition, at least 200 milliseconds before the first
character is to be typed, a typewriter on instruction

VI-7

must be given; the unit will remain on until a subse-
quent instruction (such as OFF, RON, or PON) turns
off typewriter power.

Next, the N register must be tested fora ready status;
if ready, then a shift to move the character to be typed
into the N register may be given, followed by a TYP
command. This sequence of test, shift, and type must
be repeated for each character to be typed.

An optional feature enables the typewriter tobe used as
an input device, in addition to the described output
function. The input feature enablesone BCD character,
as selected by a typewriter key, to be placed in the N
register. The character can then be shiftedinto the A
register for subsequent processing as desired.

The input feature is enabled by the operation code
2500016g, which also serves as the halt paper tape
(HPT) instruction. Normally, HPT has meaning only
when the paper tape reader is on and is moving tape.
Because typewriter andpaper tape reader cannotoper-
ate concurrently, there is no disadvantage to dual use
of the 25000168 code.

To use the optional typewriter input feature, the type-
writer must be ON. Issuinga HPT instruction enables
the typewriter keyboard and causes the N register to
become not ready. Depressingatypewriter keyplaces
the corresponding BCD character into the N register
and returns the register to the ready state.

Typewriter Instructions

TYP 2500006 Word Times: 2

Functional Description: TYPE. Iftypewriter poweris
on, one BCD (six-bit) character in the N register is
typed. The contents of N are unchanged.

Example: Examples of all typewriterinstructionsare
provided in the coding sample following the last
discussed typewriter instruction.

Comments: Execution of a TYP instruction does not
affect the contents of any arithmetic register.

The TYP instruction is normally preceded by a shift
of data into the N register from the A register, as well
as by a test-and-branch (BNR or BNN).

The N register becomes busy during the execution of
TYP and remains busy until typing of the character is
completed.

No typewriter keys are activated when an attempt is
made to type an illegal character (that is,a character
not included in the typewriter character set as shown
in Figure 6-4); in addition, the N register goes busy

and must be cleared by manually typinga character or
depressing the space bar.

Central processor operation is not delayedby the exe-
cution of a TYP. The next sequential instruction is
initiated inthe following word time, although typing may
not be completed for several milliseconds.

The TYP instruction is used to control typewriter
action other than typing. If the Nregister contains one
of the following codes, the indicated actions occur:

N Register
Contents (Octal) Action
60 Space
786 Tab
37 Carriage Return
72 Print Red
75 Print Black

TON 2500007 Word Times: 2

Functional Description: TYPEWRITERON. The type-
writer power is turned on (if the typewriter power on
switch is on) and power for the paper tape reader-
punch is turned off.

Example: Examples of all typewriterinstructionsare
provided in the coding sample following the last
discussed typewriter instruction.

Comments: To allow the typewriter motor sufficient
time to attain operation speed after a TON, a delay of
at least 200 milliseconds should be programmed before
executing a TYP instruction. However, if the TON is
given within 1 millisecond after turning off the type-
writer (with a programmed OFF, RON, or PON), no
delay is required.

Unless the typewriter power is already ON, failure
to program a TON instruction before TYP will cause
the N register to become and remain not ready,

OFF 2500005 Word Times: 2

Functional Description: POWER OFF. The power
supply for the typewriter and paper tape reader and
punch is turned off.

Example: Examples of all typewriterinstructionsare
provided in the coding sample following the last dis-
cussed typewriter instruction.

Gomments: AfteranOFF is executed, subsequent TON,
RON, or PON instructions will restore poweronto the

Ble- 228

respective units. If power is on for any one of the
units (typewriter, paper tape reader, or paper tape
punch), it is off for the other two.

BNN 2516005 Word Times: 2

Functional Description: BRANCH ON N REGISTER
NOT READY. If the Nregisterisnot available for in-
put or output (that is, if a previous type, read paper
tape, or write paper tape instruction has notbeen com-
pletely executed), the next sequential instruction is
executed. If the N register is ready, the second
sequential instruction is executed.

Example: Examples of all typewriter instructionsare
provided in the coding sample following the last dis-
cussed typewriter instruction.

Comments: The BNN instruction (or its counterpart,
BNR) is used to insure that the N register is ready
(not in use) before initiating a read or a punch paper
tape operation, as well as before type operations.

BNR 2514005 Word Times: 2

Functional Description: BRANCH ON N REGISTER
READY. If theN registerisavailable for input or out-
put (that is, if the last type, read paper tape, or write

paper tape instruction has been completely executed),
then the next sequential instruction is executed. If the
N register is not ready, the second sequential instruc-
tion is executed.

Example: Examples of all typewriterinstructionsare
provided in the coding sample following this instruction
description.

Comments: The BNR instruction (like its counterpart,
BNN) is used to insure that the N register is ready
before initiating a read or a punch paper tape oper-
ation, as well as before type operations.

Typewriter Sample Coding

Prepared output routines are available to assist the
programmer in preparing coding for typewriter print-
outs. These routines provide for single or multiple
word output, red or black ribbon, punctuation, tabu-
lation, and carriage returns.

To illustrate the use of the various instructions related

to typewriter operations, a simple example is shown
in Figure 6-5.

SROGRAMMER PROGRAM

—
DATE PAGE.
or

Symbel Opr Operand X

REMARKS Sequence

W[2] a] a] s 8] o 1otz vs va]rw]ie[v7 Vs e [20[3]

~i
o

E0) [77 (7! Ivllle

PREP |

=
(o]

TYPEWRITER ON

———

1 N INITIALIZE X REGISTER 1

1.5 8.7 . {1] LOOP FOR 200 MS

PR EP.+.3,

2 N INITIALIZE X REGISTER 2

TYPE

T AX . TYPEWRITER MESSAGE (3 CHARS.) A

1.2 . . SHIFT 2ND TWO CHARS. TO Q .

TEST N REGISTER

F

- _MOVE CHAR. TO BE TYPED TON I
TYPE CHARACTER M

POSITION NEXT CHAR. IN A

N 2 | COUNT CHARS. TYPED n

2| IF LAST CHAR., EXIT N

ik 2P lozPoHRolxEZBP

:

LOOP TO TYPE NEXT CHAR.

CONTAINS OCTAL 37

TEST N REGISTER M- L

i OCTAL 37 RETURNS CARRIAGE

-
Oﬂmm_ﬂ’rmm“mﬁmwmml—'m[“mm"‘ml"
M EZeckpicrXPPR2eclZCh PNELCPRPRZ

*
.
—

< PP

P TURNS OFF TYPEWRITER POWER . .

Figure 6-5. Sample Typewriter Coding

October 1963

As presented, the program assumes that a three-letter
word to be typed is in symbolic location TAX and that
an octal 37 (carriage return) is in location RETURN.
Further, it is assumed that the manual power on
switch on the typewriter has been turned on.

Line 1 of the GAP Coding Sheet turns on the typewriter.
Lines 2 through 6 contain coding that sets up X reg-
ister 1 to operate as a counter, then counts through
the INX, BXL, BRU loop 1587 times to insure that at
least 200 milliseconds (to allow the typewriter motor

to reach operating speed) pass before a TYP is initi-
ated.

Lines 7 and 8 prepare X register 2 to operate as a
character counter during the following TYP operation.

The 3-character message (in BCD) isloaded intothe A
register (line 9) and then shifted right, 2 characters,

into the Q register in order to position the first char-
acter to be typed.

Lines 11 and 12 test the N register for ready status.
If it is not ready, the program loops until it is. Line
13 shifts a character into the N register and it is typed
(line 14).

X register 2 is incremented to indicate that the first
character has been typed (line 16), then tested to see
if typing is complete. If it is not, the program loops
back to line 11 and repeats the sequence until the
entire word (3 characters) has been typed.

Upon completion of typing, a carriage return (octal 37)
is loaded into A (line 20), the N register tested (line 20)
for ready, and (if ready) receives the return code.
Line 23, TYP, causes the carriage to return, and the
typewriter is turned off (line 24).

Paper Tape Operations

The material formerly under this heading has now
been superseded by a separate manual, Compatibles/

200 Paper Tape Subsystem Reference Manual (CPB-
308).

Card Reader Operations

The material formerly under this heading has now
been superseded by a separate manual, Compatibles/
200 Punched Card Subsystems Reference Manual
(CPB-302).

Card Punch Operations

The material formerly under this heading has now
been superseded by a separate manual, as given
under “Card Reader Operations” above,

SECTION ViI

CONTROLLER SELECTOR OPERATIONS

Certain GE-225 high-speed input-output peripherals do
not access memory directly, but are buffered by means
of controllers which, in turn, are granted memory
access through a control and data transfer device, the
controller selector. Figure 1-2 illustrates this rela-
tionship. The auxiliary arithmetic unit (AAU), although
connected to the controller selector, has character-
istics that distinguish it from the high-speed peri-
pherals. While it is not an input/output unit, it is
discussed in a later section like other peripherals.

CONTROLLER SELECTOR PRIORITY

Because the controller selector serves as a means of
communicating between peripheral controllers and
memory, each controller must have a unique address
and a specified memory priority. Thisisaccomplished
with plug-in connectors which tie together the peri-
pheral controllers and the controller selector.

The controller selector assigns eachof the eightavail-
able plugs aunique memory accesspriority. The lower
the plug number the higher isthepriority, as shown in
Figure 1-5. The relationship of priority to plug number
means that the memory access requirements of the
peripheral device must be taken into consideration
before it is assigned to a specific plug. The controller
selector has a datatransfer rate of 55,000 20-bit words
per second, which is more than sufficientfora typical
GE-225 installation, A GE-225 system may have any
combination of input-output controllers except for
the following limitations: No more than 1 AAU, 2
41-Kc, magnetic tape controllers, 2 DSU controllers,

or a combination of 2 41-Kc, magnetic tape and DSU
controllers.

Devices with high memory access requirements,
such as a disc storage unit (DSU), require high
priority plug numbers, Devices that can wait for
access to memory without loss of information are
assigned low priority. Plug assignments should be
determined during the early stages of system planning
and all programmers informed of the plug number

of each device, Recommended plug assignments
whenever possible are:

Plug Number Peripheral Controller
0 Disc Storage Unit
(DSU)

2nd DSU or Magnetic Tape

2 Magnetic Tape

3 Magnetic Tape or Document Handler
Adapter

4 Document Handler Adapter

5 Doc. Handler Adapter/DATANET-15

6 Printer

7 AAU

The adoption of these assignments increases compati-
bility of software and back-up between installations.

CONTROLLER SELECTOR
INSTRUCTIONS

Input-output operations of peripherals connected to the

controller selector are accomplished by a sequence of
instructions.

The controller selector should firstbe tested to deter-
mine if it is inaready state before issuing an instruc-
tion to perform an operation. Attempted execution by
the computer of a SEL command (discussed below)
when the controller selector isbusy resultsinan alert
halt condition and hangs up the computer. Interrogation
of the controller selector is done by one or more BCS
instructions, which are discussed in the sections on
high-speed peripheral operations.

VII-1

May 1964

l BCS XXX P 2514P2C/2516PCC Word Times: 2

Functional Description: BRANCH ON CONTROLLER
SELECTOR. The peripheral connected to controller P
is testedfor the condition (CC) indicated by a mnemonic
placed in the operand address field identified by XXX
above. The BCS instructions are listed anddescribed

with the instructions for the various peripheral de-
vices.

If the controller selector is ready, the plug containing
the peripheral controller that is to be placed in oper-
ation must be selected by a Select (SEL) instruction.

SEL P X 2500P20 Word Times: 2

Functional Description: SELECT. The peripheral con-
nected to controller P (addresses O through 7) is sel-
ected for the operation indicated by an associated
instruction. The executionof the SEL commandalways
sends the contents of the nexttwo memory locations to
the selected peripheral controller. Execution of the
SEL instruction also resets controller error condi-
tions.

Every peripheral connected to the controller selector
requires three memory words containing instructions
to perform an operation: theSEL instruction selecting
the controller and two other words instructing the con-
troller to perform a specific task. The instructions
contained in the two words following the SEL command
are not executed by the central processor. Therefore
when the SEL is in the I register, the P register will
hold the address of the third sequential instruction.

Example of SEL Coding:

Opr Operand X
s [o |10 "l"l"l"l'q"l"l" of31 S
S E.LJ6., . . | N

The contents of the two words following the SEL in-
struction is governed by the operation desired and by
the peripheral equipment to be used. Specific details

for programming these peripheral operations are given
in subsequent sections.

AUTOMATIC PROGRAM INTERRUPT
(API)

A GE-225 optional feature makes it possible to pro-
gram an automatic interruption of the mainprogram to
process a higher priority program. This feature, when
used with the Automatic Priority Interrupt Executive

Routine, controls the simultaneous operation of two
or more unrelated programs. The system combines
peripheral-to-peripheral runs (e.g., tape-to-printer,
tape-to-punch, and card-to-tape) with a mainprogram
and can control programs associated with the remote
inquiry stations.

The API feature provides for automatic interrupt of
the main program whenever selected peripheral con-
trollers change status from ‘not ready’ to ‘ready’.
This allows control to be transferred automatically
from the main program to the executive routine de-
signed to service the peripherals. Each controller
on the GE-225, the card reader, and the card punch,
can signal the GE-225 thatit hasfinishedan operation,
and is ready for another operation. This signal may,
or may not, cause a physical interrupt onthe GE-225,
depending upon the status of the computer. The type-
writer and paper tape reader or punch cannot cause
automatic program interrupt.

A switch is provided for each peripheral controller
which allows only desired peripherals to cause an API
thereby, in effect, masking out devices for which an
interrupt is not desired.

When the switch is ‘ON’, the peripheral controller will
be allowed to cause an automatic interrupt (under de-
signated interrupt conditions).

When the API switchis ‘OFF’, the peripheral controller
will not be allowed to cause automatic interrupt (under
any conditions).

When a GE-225 system operates with API, the computer
may be in a specific mode of operation within the pro-
gram being executed. These operating modes andpro-
gram are defined as:

Non-Interrupt A mode of operation in which the
Mode GE-225 is not processing a priority
program; and can not be physically

interrupted by a signal from a

peripheral device. When power is

initially applied to the GE-225, the

GE-225 is in the Non-Interrupt Mode,

Interrupt Mode A mode of operation in which the
GE-225 is not processing a priority
program; but can be physically in-
terrupted as a resultofa signal from
a peripheral device. A set mode is
required to place the GE-225 in the
Interrupt Mode.

Priority Mode A mode of operation in which the

GE-225 isprocessingaprioritypro-

gram, as a resultofbeing physically

interrupted while operating on a

main program in Interrupt Mode.

GE-229

VII-2

October 1963

Definitions

Main Program - The program thatisbeing executed at
all times other than when an Automatic Program
Interrupt occurs.

Priority Program - Aprogram (peripheral-to-periph-
eral) that is designed to be executed in the Inter-
rupt Mode.

Remote Inquiry Program - A program that controls the

Remote Inquiry hardware and is executed in the
Interrupt Mode.

Program Interrupt Instructions

SET PST 2506015 Word Times: 2

Functional Description: SET AUTOMATIC PROGRAM
INTERRUPT ON is required to cause the program
interrupt feature to be effective. This instruction
causes the computer to enter and remain inthe inter-
rupt mode until the priority program is completed and
directions are given for return to the main program.
This command must be given before the mainprogram
can be interrupted. If a programmer doesnot wish to
use the interrupt feature, he merely avoids executing
a SET PST.

SET PBK 2506016 Word Times: 2

Functional Description: SET AUTOMATIC INTER-

RUPT OFF is required to disable the program interrupt
hardware. This instruction causes the computer to
leave the interrupt mode and remain in the normal
mode until the mode is reset by a SET PST instruc-
tion.

To prevent the main routine from being interrupted
after aSET PST has been executed, aSET PBK must be
executed.

Because the program interruptfeature becomes effec-
tive whenever the command SET PST (Priority Set)
is executed and becomes ineffective when the command,
SET PBK (Priority Break) is executed, any attempted
interrupt (caused by a change in status of one of the
selected controllers) which occurs during the time
when Automatic Interrupt is not set will be remem-
bered and will cause an automatic interrupt immedi-
ately following the next SET PST. Itthen becomes the
responsibliity of the Executive Routine to determine
which of the selected peripheral controllers changed
status and must be serviced.

Operation of API

When automatic interrupt is initiated, the following
events occur:

1. Interrupt of the main program is delayeduntil the
next instruction access time. (The P counter con-
tains the address of the next instruction.)

2. The computer automatically selects index group
32. NOTE: Index group 32 is available only on
GE-225 systems with the API feature and can
be used only as prescribed for API.

3. The contents of the P counter are stored in word
one of the API index group 32 (memory location
0129).

4, Control is transferred to address 0132 (the first
word following index group 32) which is the start
of the Executive Routine and an automatic priority
break occurs.

5. During the time that control remains with group
32, the SPB command (if used) will refer to group
32 only.

The only index. group available during the Executive
Routine is group 32. It must be remembered that the
address of the next instruction to be accessed in the
main program has been stored in word 1 of this group
and the contents must not be destroyed. The com-
puter cannot be interrupted again until SET PST com-
mand has been executed as described below.

To return tc the main program, the following pro-
cedure is required:

1. A SET PST command is required in all cases
regardless of whether or not it is desiredto con-
tinue under control of the program interrupt
feature. If the programmer wishes to return to
the main program with program interrupt dis-
abled, the SET PST must be followed by a SET
PBK.

2. An indexed unconditional branch (BRU) tolocation
zero, modified by word one of index group 32,
sets the P counter to the address of the next main
program instruction to be accessed. This is
always the final step in the sequence for returning
to the main program.

3. Any peripheral controller that changed from not
ready to ready status while the computer was
under control of the Executive Routine will cause
an interrupt after return to the main program.

It is permissible to execute any number of instructions
between the SET PST and the indexed BRU which is
used to transfer control back to the main program.

Ble- 225

October 1963

Also, any number of BRU instructions canbe executed
while in the interrupt mode.

When API is set in the program, the following occurs
when a controller goes from not ready to ready status:

1. P counter + 1 is stored in location 012910.
2. Control is transferred to location 01324(.

3. At this time, any or all controllers may or may not
be tested and may or may not be ‘put to work’. It
is not necessary, however, to do any testingor to
issue any commands to return to the main pro-
gram.

4. The computer-generated-and-executed SPB 1324

word 1, is the instruction which turns the API flip-
flop off in the central processor. This generated
instruction, in effect, also executes a SET PBK
instruction. Any controller becoming ready while
the program is interrupted will be remembered
until the priority is SET and the modified branch
is executed, at which time the APIflip-flop will be
set again if any controller went ready during the
time the ‘pseudo’ SET PBK instruction was exe-
cuted by the computer.

Once a controller causes aninterrupt, it will not cause
another automatic interrupt until it goes from the not
ready to ready status again.

APl Executive Routine

The API executive routine (CD225J4.000) is in memory
with every main program or remote inquiryprogram.
Programs with precedence or remote inquiry pro-
grams may be in memory, if desired. The API exe-
cutive routine:

1. Performs functions necessary for starting and
ending all programs being executed underits con-
trol.

2. Saves the A and Q registers and the overflow indi-
cation when a main program is interrupted
because of a peripheral going from busy to not
busy.

3. Determines which peripherals are in ready state
and executes the appropriate priority programs.

4. Restores the A and Q registers and the overflow
condition before returning control to the mainpro-
gram.

Three basic combinations of programs are designed to
share memory and peripherals with the API executive
at execution time. These are:

1. A main program and from one to four priority pro-
grams.

2. A main program and a remote inquiry program.

3. A main program, from one to three priority pro-
grams, and a remote inquiry program.

The Automatic Program Interrupt Executive has as
its basic configuration the GE-225 with a4K or larger
memory. Any configurationofperipherals may be used
in conjunction with this, excluding the document handler

and paper tape reader-punch. The system mustinclude
the API feature.

The routine requires 97 memory locations and, when
added to the front of a user’s program, is assembled
into the following areas:

1. 0128, 0141, = 14 locations
2. 0143, 0169 = 27 locations
3. 0552, 06064 = 55 locations
4. 0606, 0639, = 34 locations

for future expansion

With the exception of programs for magnetic tape and
MRADS controllers, programs must not refer to
peripherals used by another program in the same
load. When magnetic tape and MRADS controllers
are both used, the same handler on MRADS must not
be addressed.

Programs must not refer to memory areas used by
another program, except in the use of common subrou-
tines.

Card read-in areas are restricted to locations 025610

and 0384, for programs being executed under thecon-
trol of API Executive.

Card punch areas are restricted to locations 051210
and 0640;g, for programs using API Executive.
All symbols used in the executive routine start with
#APIL,

Locations 0142, and 0144, are reserved for remote
inquiry and must contain zeros if remote inquiry is
not used.

Restart is provided only for the main program.

All programs being executed simultaneously should
used the same tape or MRADS input/output routine.

Ble-229

October 1963

It is permissible to use two different magnetic tape I/0
routines only if they refer todifferent tape controllers
or if the read/writers are not buffered and a delay,
error check, and correct is done after each.

Hardware Operation

Each controller, the card reader, and the card punch
can generate a signal to the central processor that it
has finished an input/output operation, andis ready for
another command. Whether or not this signal is
actually sent to the central processor depends upon the
setting of the API switch associated with each device.
The controller switches arelocated onthe inside of the
controller, usually near the controller selector plug.
The card reader and card punch switches are located
inside the top door on the front of the control console.
With this switch off, the interrupt signal from the device
is not sent to the central processor. The switch must
be on for the central processor to receive the signal
from the I/O device.

The action of the central processor when it receives
an interrupt signal depends upon the mode of operation.
Non-Interrupt Mode is established by a SET PBK com-
mand, or by resetting the computer through depression
of the power on button. Inthe Non-Interrupt Mode, the
signal merely sets a latch to remember that it re-
ceived the signal forlateruse at suchtime as Interrupt
Mode is set. Interrupt Mode is established by a SET
PST command.

When a physical interrupt occurs, the central pro-
cessor enters the Priority Mode of operation. The
location of the next command to be executed in the
main program (note the difference from normal SPB
operation) is stored in word 1 of API index group 32
(location 201 octal). Index group 32 is set automati-
cally; and program control is transferred to octal
location 204. A SET PBK operation is executed auto-
matically as a result of the interrupt, resetting the
latch associated with the I/0 devices, and dropping the
Automatic Interrupt Mode. Further signals from I/0
devices becoming ready during Priority Mode set the
I/O latch again so that another interrupt may occur
when the priority program is finished and Interrupt
Mode is re-established.

When the priority program hLas completed its oper-
ations, control is returned to the main program by
issuing a SET PST, followedby a BRU 0, index word 1.
(Any modified BRU following the SET PST will cause
exit from Priority Mode. Modified BRU instructions
prior to issuing the SET PST have no effect, and oper-
ate normally in group 32 in Priority Mode.) Issuance
of the SET PST followed by a BRU 0, word 1, will cause
a return to the main program and the previous index
group that the main program was operating in when the
interrupt occurred. Upon return tothe mainprogram,

the computer is in the Interrupt Mode. If it is desired
to return to a main program from a priority program
in Non-Interrupt Mode, a SET PBK should be executed
between the SET PST and the BRU 0, word 1.

Interrupts can occur only at the point that an instruc-
tion has been executed completely and another instruc-
tion is about tobe accessed. Aftera test such as BZE,
an interrupt will not occur until the computer has
analyzed which route it should take. Interrupts can not
occur between a BRU and the location to which it goes.
Hence, a program loop such as BRU * cannot be inter-
rupted.

Programming Considerations

Each main program to be used in conjunction with the
API and a priority program should be carefully scruti-
nized to ascertain what damage if any, could result
from an interrupt at any given point. For instance,
an interrupt between a RCD and an HCR might result
in continuous reading of cards. (An HCR instruction at
the beginning of the priority program will prevent
this.) An interrupt in the middle of a type routine
might result in the loss of the N register contents
and a meaningless message. An interrupt justafter a
test-and-branch, suchas BZE, has been executed might
prove disastrous if the priority program should re-
verse the condition just after the test is made. Each
of the above conditions might necessitate a SET PBK
and a SET PST around the routine to prohibit interrupt
during the crucial operation. Care should be exer-
cised not to abuse the ability to prohibit interrupts in
this manner, however, or the effectiveness of APIwill
be unnecessarily reduced.

Sample API Problem

Assume that it is desirable to operate two programs
concurrently within GE-225 memory. Oneprogramis
a card-to-tape conversion, the other represents an
independent processing function. This problem canbe
solved efficiently by use of the program interrupt
feature, without use of the API Executive Routine.

Card-to-Tape Conversion - This should be the priority
routine since it involves few program steps, re-
quires continuous use of peripherals, and exe-
cution depends upon the card reader and the tape-
controller being in a ready status.

Independent Processing Function - This should be the
main program because it requires manyprogram
steps and is much less reliantupon peripheral use
and readiness for processing.

Ble- 228

Symbol Opr Operand X REMARKS
1]a2[s]afs[eleforofra]rajrafrsftefr7]te]ro]20]3 7
A1, |DEC]5,1 2, , First card read-in area

s . |IDECl|6,4 0, | Second card read-in area
A 2 D ECI{5.1.2, . ., First card read-in area

. . . ., ., IDECI|6,4.0, . . Second card read-in area
CONSTIDECI|]1 4.2, . . . Transfer location
coNsS/T2DDClO . . . Storage area for contents of the A and Q registers

. B . C N ; . . Test for card reader not ready

. L B R U[A 6 TR Exit if card reader is not ready
A3 X RCDI|O. 51,2, , Read card into memory beginning at 0512
. H C R L Halt card reader
)) DSTICONS . T,2, | Store contents of A and Q registers for main
. A . TR T program
. D L DJA 1, . Load read-in area constants
. XAQ|[., , . . Switch read-in areas
i . bs.T|lAL ., Store read-in areas as constants
, ., lsT O0|A2 |) | Set up alternate card read-in area
A 4 . . . BRUAT Bypass writing a tape record the first time
. L Ly through
e ... BCcsSsB.T N oo 2 [Test for tape controller not ready
, ., . BRU* -1, ., Delay until tape controller is ready
R SE L2, ., A Select controller selector address two
AS . . W T DJOS5 1,2, , , 1 |Write tape in decimal mode from memory

— X ey locations beginning at 0512 onto tape 1

L) L 2.7, |) Write a maximum of 27 words

N . DLDlA2 .) Load read-in area constants

X AQ . ; R Switch read-in area constants
N DS T|A 2) L Store read-in area constants
S . T OJAS N Set up memory address from which tape record is
. . _— . e to be written
A 6. D LD|ICONS T 2, Load contents of the A and Q registers from main
R L program _
T . s ETPS T, ., . . | Set priority interrupt mode on
. . B R.U N . . 1 |Branch to zero as modified by word one of index
)) | L group 32; i.e., to the setting of the P counter
- . ; e when the main program was interrupted
AT, . LDAICONS T, 1, | Load binary equivalent of 142
. e . Is.TOlA4 . ., Will cause the writing of tape records all succeed- |
SN N T R ing times through the program
. B, R UIA 6 N Transfer to exit
Figure 7-1. Assembly Program Coding for API Problem

The programmer should realize that use of the API
executive routine extends the usefulness of the API

feature and reduces the housekeeping functions and
checks necessary for efficient use.

BlE-22%

VII-6

May 1964

SECTIONS VI, IX, X, XI, AND XIl

The latest information on programming and operating
the subsystems formerly described in the above
sections now appears in separate manuals devoted
to each subsystem. See the “Preface” and “Contents”
at the front of this manual for a listing of their titles
and publication numbers.

SECTION Xill

PROGRAMMING CONVENTIONS

The efficiency of any computer installation depends Dectmal
. . e
to a g.reat extent upon proper qrgamzatmp of pro- Location Description
gramming procedures and techniques. This section 0000 Index Regist
contains suggestions and lists items that should be o ex Reglsters
considered in establishing installation procedures. 0003
0004 Optional
to Index Registers
MEMORY LAYOUTS 0127
0128 Reserved for
to Automatic
X X 0169 Program Interrupt
Many installations have (as standard procedure) allo-
cation of memory areas which all programmers must 0170 Miscellancous
observe. A few advantages of such a system are: 0255 Working Storage
N s . 025 -
1. Standardization of input and output, sub- e Card Read-In
routine, constant, and main program areas. 0283
. . . . 0284 Miscellaneous
2. Programmer familiarization with the oper- t03 Constants or
ating program is increased. 038 Working Storage
0384 Card Read-In
3. Changes and modifications are more easily 0;81 Area
and correctly made.
0402 Miscellaneous
. . : . to Constants or
4. Debugging is accomplished more readily. 0511 Working Storage
- - . . 0512 Card
Because operating conditions and requirements vary to Punch
from installation to installation, the memory layout 0539 Area
used may be unique and suitable only for that parti- 0540 Reserved for
cular installation. A typical layout is shownin Figure to Automatic
13-1 0639 Program Interrupt
0640 Printout and
to Format Areas
0719
INPUT/OUTPUT DOCUMENTATION 0720 Magnetic Tape
to Input and
0839 Output Areas
. . 0840 Subroutines
Proper documentation and layout of input and output 19“9’9
data is the responsibility of the programmer; in
addition, good documentation is a valuable tool for the 2000 Main
programmer, because it enables the programmer to efgl Program
modify or change data with a minimum of effort,

debugging is made easier and program operation is
possible in less time. Typical forms available are)
shown in Figures 13-2 through 13-7. Figure 13-1. Typical Memory Allocation

Ble-228

XIII-1

GE 225
MAGNETIC TAPE RECORD LAYOUT

CK - 62

PROGRAMMER

DATE

RUN

BCD
BIN

MODE:

— OF

PAGE

SPEC BIN

POSITIONS

BIT

-FrrrrrrrrErrrrrErEEEEErERCE R III“IIII
Tlll.lll.llrl.llwllllrl [[[[[[v'llll—l‘l.vll"
o ! “ “ “
— | | | !
s s e s e el e e - e
IR N T 1 e e T e T N N A O

v|.U.I|,||T|‘ITTn!I.II\s|TrI||I| — - = = = = = =
[9 IIIIIIIIIIIII _ e = = -t} —
. - rrrrrrrrrrrrrr~r-rrrr 1 rnrrrr-
e s e
ITITIT]IIT llllll FlllTlTT |||||||
HIITIYIIIT ||||||| TIIIFIT ||||| L

WORD

Figure 13-2. Magnetic Tape Record Layout

Gle-229

XIII-2

¢-IIIX

S66-39

CK 52 (2M 6-61)

vt @ e
::ELCE;)RD TYPE: GE 225 MAGNETIC TACP:h;EDi{];CORD LAYOU'?;ng;IME;;;I‘ PAGE: OF:

[I 0 O B D S DR S SRS I i
I I NS S N I A 0 N e B
0 0 0 O 0 0 O 0 A
0 O O A A OO O 0 0O 0
908 0 O 0 O O O 0 I O O
0 0 A O O O 0 96 O O I
S O 0 O 0 O O 0
50 O 0 0 O O O 0 B

5 5 O

Figure 13-3. Magnetic Tape Record Layout Sheet

y-aIx

GE 225

CK 87
RUN MEMORY LAYOUT DATE
SYSTEM PROGRAMMER PAGE OF
10 20 30 40 50 50 70 80 90

T 17 T 17 TT T T T T T L 1T 711 LI I I T T T 11

0
I | I I T A T L1 I | !] L T |
LI LI UL LI L L L LI LI ! LI LI

100
1111 T T T - I L1y I N !] 11 I
T 11 LI I T 11 11 T 1 T T 1 l J T LI I

200
I T I I I 11 L L] | 11 L1
11 LI I LI I T L T 11 LI A I I T 1 T 11

300
| I | [L T T | ! | L] T
11 11 T LI I LI I L LI I 1 L

400
| | I | I Ll T [l ! I I O N B |
T T LI I LI I LI UL L B I O B I T T T 111

500
S I | | - I - T | 11 L1 1 1 1] | | | 1 I -
T 11 [L B LI 11 T L L T T T 111

600
I I I 11|] [I [| | 11 -
L LI LI T T T T 1T 1T T LI T I LI T 11

700
B | I T I T T Y L L1 | ! ! [T
LI T 1T LR T 171 T T 17T LI 1T 17 LI T ¥ T 11T

800
I [I I T I N T Y W T Y | ! 1 | I W
LA T 1 T LI 11 UL 1 LI T l I LI B B

900
I I I T Y P11 I O I [| | I N T T T

EACH BLOCK REPRESENTS 10 WORDS OF STORAGE

Figure 13-4. Memory Layout Sheet

CK 85

GE 225 MULTIPLE CARD LAYOUT

BINARY CODED DECIMAL DATA

PROGRAMMER

RUN

SYSTEM

o < o °
8 8 3 3 3 8 ©
3 @ > @ @ =3 ~
& = 1v. 2 & 7vv
e m === - £ s Mttt -] it el B
e 2 @ e e 3
= = = e
s £ S £ £ £ 2
° e © °
_ 2 _ 21 _ s BB _____=___]
=) B -3 o [w) -
B 2 2 [2 2
< < s < < - -
= = 4 2 = N =
P
2l S R L R < N <]
= o o ~ = o
& g 1 K e o
= - = - = = «
< 3 s = = = 2
o o
g g g e _ _2 e
|||||||||||||||||||||||||||| e e NSNS -{ I S
g 3 g a s g
= P P = = P
2 3 3 3 2 3]
= = = =
5 P~ . ® s 8 ______8___|
F-—— g T T T gt - © - 5
k3 38 2 2 3 3
= - a . - M B
2 H 3 3 8 3 =
s
o I 1 3|3 sl _____3_ T
B
2 2 3 3 3 3
o o o e o
e 3 2 e 3 S ;4
- g 2 i s B ___8l_
el el s]——————— —— == - =T ———
2 H 2 H 8 2
P Py
2 2 2 2 a3 2 a
P @ ®
| 8l __ ______ 2| .||||||||u||||||||m|u|||..||¢||||
o
b 5 & & 5 s
2
2 2 ? 2 2 8 2
e 5 s - w2 2
] b o e 88 __8_______.&a_ |
= 3 3 2 3 b3
2 3 2 8 2 a =
o o
3 3 S 3 o 3
| e B ey a3 == - — -
H]] = H s
2
2 3 2 3 2 2 2
P = = =
|||||| o __ s Sl _® % _
= ® = = =
2] 2 E3] E)
= & = = w
< B < S < % a
< e < 2 e b
s i = S ___F% =
. 1 e _F . { N,] S ——
- - - - - -
b b p4 p4
3 s 3 3 3 b by
2 Py
||||||||| SR8 __=&___
S S r
< < < < < <
= = B =
] 3] F]] o
e e e e B B (PR 5 fllllllllslllllIIINIIIIiIIIIlI||
2 3 3 3 2 sl
P @ P = ® =
a k3 3 E3 k3 & b
s < e o = =
R 1 L o Bl _____8l _______&_
3 o © -
2 2 3 E a2 2
o - - 2 a » -
2 E H E H E =
- <
3 3 3 3 2 3
lllllllllllllllllll S R, ¥ .| S | SR 1
2 8 2 2 a 2
o o o o o
8 8] s E ES e
- = o - = =
- — <3 L B o ki <1 MU /1 R,
5 = -
53 3 2 2 2]
a 2 P a a
& 8 i]] N *
= = ® = P
L Sl 8 N8 _8_______238__
£ =
8] S 8 8 S
<
] {] H]] ©
w 2 2 . w 5
e |1 S8 s _S8_______8.____ 1
- - -
S I I I 3 3
b] < 8]] =
o o o o
oo Sl __% 8 8~ 8L | 8
= = =T = - - =t ———
o~ ~ -~ ~N ~ -~
e
]]]]]] ©
2
2 = _ 2 2 2 2
- h i w = = 2 = B
2 = = = 2 <
= =
= S = 5 = = P
= e 2 = s s
R 1 . F-——————p—m————— e — e L
2 £ B E] = E
It =
= = A = = X -
- - - - « -
S - [. T B e -, U | S | I) RO
S w 5
B = o b o =
= = = = = = 3
2 s s e s S
e el . o . e el e] TSI —" SR —
@ L. CJ o L o
@ L © @ @ © o~
= L4 - = = -
e e e e e S __=_
© © ° © © ©
w w w w w © -
- - A.AA - - -
N L ” L L L3
~ ~ ~ -~ o~ o~ =
- - - - Lol -
o
mE
=]
9z
=3
3

Figure 13-5. BCD Multiple Card Layout Sheet

XII-5

9-ImXx

GE 225

MEMORY ALLOCATION LAYOUT SHEET

INPUT - - OUTPUT R CK 68
RUN PROGRAMMER DATE PAGE OF
WORD MEMORY CARD BIT POSITIONS DESCRIPTION | WORD MEMORY CARD BIT POSITIONS DESCRIPTION
NBR LOCATION COL |0 -1 12-7]8-13[14- 19| OF DATA NBR LOCATION COL 0 - 2 -718-13114-19] QF DATA

0 0
1 1
2 2
3 3
4 4
5 5
6 6
1 1
8 8
9 9
0 0
1 1
2 2
3 3
4 4
5 5
6 - 6
7 1 S _ [S A S
8 8
9 9
0 0
1 1
2 2
3 3
4 4
5 5
6 | 6
1 B | : {7 - [N S A S S S— N
R 2
: S R o T T R
0 ! 1 0 I !

| + B v | 1 | J
1 I I N S0 S N B T b 4 g 4
2 2
3 3
4 4
5 5
6 1]
1 7
8 8
9 9

Figure 13-6. Memory Allocation Layout Sheet

wIod nokeT pie) uwniod-08 °L-g£T1 dIndrd

07— 3ovd

SHUVWaY atva
—_—_—___ WaLSAS HIAWON QYD

— ERiin

08 6L BL LL YL SL KL €L ZL 1L OL 69 89 L9 99 S9 ¥9 €9 Z9 19 09 65 85 LS 95 SS VS €5 25 IS O 6% 8¥ Ly 9% Sh bp € Zv I¥ OF 6E §€ LC OC SC ¥C C I€ IC OC 6z 8 LZ 92 ST ¥Z £ IT 1Z 0Z 61 81 L1 9T St ML €1 Z1 1 Ol & & L 9 s ¥ € T I

6 65 6 5 6 6 6 6 65 6 6 6 6 6 6 6 6 8

8 8 ¢ 9 9 ¢ ¢ 8 9 8 8 ® 9 & ¢ ¢ § ¢ 9 9 % v ¢ ¢ 8 ® 8 ¢ ¢ ¢ 8 8 © 6 9 ¢ © ¢ ¢ ® ¢ ¢ ¢ © & @ @ € 9 ¢ € ¢ € @ & ¢ € ¢ © @ 9 9 9 ¢ @ € 9 ¢ € € @ € © @ 8 @ & @ @ 8

L

s

s

»

€

@ ¢ ¢z oz ¢ ¢ ¢ oz ¢ ozt ozt ¢z ¢tz z Tttt zeo oz ozt ¢z oz z z t.t tt:z Tz Tz tr .t rr T Tz Tttt ti iz izttt orirrrozz z

L T L T T T T T T T T T L T T L T T T T T T T T T '
Cowe we Mo vl ie ae e mwosa wwowe ww buobw 2w 1Y Us BS MG Ly 9% 85 by EG 26 1S 05 A% 9y Lb 9¥ SH ¥ Eb Zv [y O 68 AT L€ 9€ SU ¥E £f 26 (€ OU 52 BZ LT 92 ST ¥Z €2 2 12 07 6 81 L1 9L S ML EL T L1 0L 6 8 L 9 s b € 2 &
v u v v v v v v v v oY BB 0 O o8 0 0 o 6 0 0 o 0 0 0 0 o o0 0

x

¥

9%

104100 -~ 12dNI
UV NWAT0D 08 -~ WHO4 LAOAVT
sz 30

XII-7

USE OF SYMBOLS

The use of symbolic memory addresses rather than
absolute addresses is of utmost importance to the
programmer because it relieves him of having to keep
track of the location of each constant or instruction
in memory. By shifting the burden of memory location
to the assembly program, the programmer can code
with less errors and thus produce an operating pro-

for general applicability and mustbe self-specializing
to the particular problem at hand.

The calling sequence which supplies the information
(parameters and linkage) needéd by the subroutine can
vary in size and form. An example of a simple sub-
routine is illustrated in Figure 13-9.

gram more quickly. In addition, the symbol used can Symbol Opr Operand X
convey information as to the action taking place within 1[2] o] e sl efeforefvalna]valvs ve]v7 e]re]20
the program. Figure 13-8illustrates typical symbols.) . D L DIN UM, N
) . D ADINUM 2 . |
S.PBIMP Y T E N, 1
Symbol Opr Operand X ‘ DS TIRRES UILT .
%1121314]'5[0 ENED ‘Zl'al”l”]”l"luln 20 a:
T W O 2 nL.e.c{2,. . ., .)) L
T E N . ID.E.C|1. 0. . . , . |) L)
C ARDINIBS.S[2.7 . . . | MPYTENSLD|L ‘ o
T ORE, (DD C|O, e, STA|TEMP .
C.DE OF AL F¥|Z2 72 2. . . ., S Dé
EEEE— . D ADITEMP, , |
. , B. R, U|1, e 1
Figure 13-8. Typical Symbolic Addresses T E,M P D.D,C|°" L

SUBROUTINE USAGE

The use of subroutines can result in saving of both
programming and machine running time. Subroutines
can control all input and output operations and many
internal operations of aprogram anduse less memory.
Normally, a subroutine is a series of instructions
which perform a repetitive function for the main pro-
gram.

The use of subroutines enables the programmer to
employ the ‘building block principle’ in the con-
struction of the program. All frequently-used data
processing functions at an installation canbe prepared
in subroutine form. It is then only necessary for the
programmer to use these routines to construct a
major portion of the main program with less effort
and time than would otherwise be necessary.

The ability to jump to a subroutine and return to the
main program requires the retention of information
for the return. This concept of informing the sub-
routine how to get back is termed ‘linkage’. In the
GE-225, the SPB command provides the ‘link’ for
returning control to the main program after the sub-
routine function is performed.

In addition to linkage, it is also necessary to specify
the parameters which define the problem to the sub-
routine. Subroutines are usually written in a form

Figure 13-9. Representative Subroutine

This type of subroutine requires no parameters or
elaborate calling sequence. The data needed is con-
tained in the A and Q registers before entry and the

results from the routine are in the A and Q registers
upon exit.

A subroutine requiring a set of parameters in the
calling sequence is shown in Figure 13-10.

Opr Operand X \
s] s [rofve[s valvs]Te 7 te [ve]z0 |31 7
'"IspBlsTRI P |1
*ID.EcC|1.2 8 o
*ID.E c|1,
‘Ip E c|3, \ ,
*|B. R UE.RROR, ., |,
*lstalamMmTs1, \

~
-

— A "

Figure 13-10. Subroutine Requiring a Calling
Sequence

bl 229

XMI-8

00620 ORG 0400

REM

REM

REM

REM

REM

REM

REM

REM
00620 0020001 *CRDIN LDA 1
00621 2700636 STO *RD#1
00622 2700663 STO *RD#2
00623 2700650 STO *EOF
00624 2700656 STO *MOVE
00625 0100644 ADD *SYCON
00626 0300644 STA *SYCON
00627 0020002 LDA 2
00630 0300657 STA *STORE
00631 0000707 LDA *ENCON

BCD CARD READ SUBROUTINE
CALLING SEQUENCE

A SPB * CRDIN 1

A+1 DEC CARD INPUT AREA
A+2 DEC WORKING STORAGE

A+3 ALF PROGRAM EOF

A+lL EOF RETURN

A+5 NORMAL RETURN

CARD INPUT AREA

RCD #1

RCD #2

EOF LOCATION

MOVE LOCATION

SYNC CONSTANT LOCATION

WORKING STORAGE AREA
ENTRY CONSTANT

Figure 13-11. Subroutine Calling Sequence

Since the parameters necessary for a subroutine can
vary over a wide range, the exits from a routine can
vary, depending upon the condition encountered within
the routine. In the example above, an error in the
routine results in the return to line 5 on the coding
sheet. In programming, this can be accomplished
within the routine by an instruction consisting of

BRU 4 1

A subroutine calling sequence and the use of the

parameters within the sequence isillustratedin Figure
13-11.

The exits from the routine are handledinthis manner.

GAP Coding:

Opr Operand X
NEREE IZI 13 |4l (X3 L‘° [t7[1s 192031

1 -t L

B RU|[4, . . 1 [EOF Return 1
B.RU|[S, R R 1 |Normal Return

In summary, the use of subroutines makes possible
considerable saving of memory space and program-
ming time at the very slight expense of the space and
complexity of linkages and calling sequences.

TYPEWRITER UTILIZATION

The GE-225 console typewriter can be used by the
programmer to type messages concerning conditions
within a program and also to instruct the computer
operator as to program needs. Using the typewriter
for operation control can help reduce human errors.

Typical messages on program conditions are:
1. O ERRORS TAPE 3

O ERRORS TAPE L
EMD OF PASS O

2. END OF JOB
3. EOF P 1 T 2002 - OO4 PREMATURE START

002 - OOk PREMATURE START
003 ~ 010 PREMATURE START

Typewriter messages concerning the operator will be
similar to these:

1. JOB DONE. TAPE 7 IS NEW MONITOR TAPE. SAVE & AND 7

TAPE 7 XONT READ

2. REMOV TAPE 2
MOUNT TAPE 5
TOGGLE SWITCH 18

Ble-225

XIII-9

Since the typewriter is a relatively slow output device,

messages and operator instructions should be asbrief
as possible.

DEBUGGING TECHNIQUES

Debugging can be extremely expensive and wasteful of
time unless done properly. A few simple and basic
rules can do much to reduce the expense involved in
getting an operational program. Because debugging
methods vary with the individual and the situation,
the following is offered merely as a guide.

Desk Checking

When the symbolic program is returned from key
punching, a listing is usually sent with the card deck.
Check this listing for discrepancies due to misinter-
pretation by the key punch operator and any possible
key punch machine errors. In scanning the symbolic
program listing, watch for mistakes in the operation
codes and for punches in card columns 7 and 11.
During GAP assembly any card containing punches in
columns 7 and 11 will be rejected. Correct any errors
found before proceeding to the GAP assembly.

Gorrecting Errors Detected By Gap

After the symbolic program has been assembled by
GAP and returned, correct the errors detected and
listed by the General Assembly Program. If there
were numerous errors listed, make the corrections
to the symbolic program deck and reassemble. If
relatively few errors were detected, make these cor-
rections in the symbolic program deck without re-
assembling but by punching octal correction cards to
place with the GAP binary program deck.

Flow Chart Utilization

A flow chart is a valuable debugging aidin that it pro-
vides for easier detection of logic errors and can be
used by the programmer to check off debugged paths

within the program. Because this provides the pro-
grammer with an indication of what portions are
completed, debugging time and check-out time can be
reduced.

During debugging, if the programmer uses valid input
data and predetermined answers at various program
check-points, he can use flow charts as an aid in
error location or bracketing, thereby reducing de-
bugging time and machine time requirements.

Memory Dumps

During debugging, memory dumps are essential. Sev-
eral types of dumps are available but the most fre-
quently used are octal dumps.

The quickest dump of memory is obtained by pressing
the memory dump button on the Printer Controller.
This automatically produces an octal dump (Figure
13-12), starting at memory location 0000 and continues
until the manual clear button on the printer controller
is depressed. The printer does not stop automatically
when the entire memory has been dumped, but con-
tinues looping through memory until the clear button
is pressed.

The octal dump that is most frequently used provides
the octal memory location for each eight (8) word line
of print (column 1 of Figure 13-13). If the words for
a line of print are identical to those of the last line
printed, the line is skipped, This saves the number
of lines printed and machine time required for dump-
ing, This routine is a program feature and thus must
be either in memory or read in from cards or tape,

Memory can also be dumped on magnetic tape. Nor-
mally, this type of dump is intended for later use by
rerun or recovery routines and, in the case of long
running programs, should be done periodically. Rou-
tines are then available to list these tapes via the
high-speed printer.

2514003 0001340 0000002 2600002
0000200 2700023 2700015 2510015
2504002 0300001 0020201 0321277
1420001 0437732 2600022 0220201
2600002 0000000 0000000 0000000
0000000 2001777 0000000 0000000

2500201 2500004 2516006 2600006
2514002 2601277 2504522 2700031
0100200 2514003 2504032 0300200
2514002 2600002 2514006 2600036
0000000 0000000 0000000 0000000
0000000 0000000 0000000 0000000

Figure 13-12. Printer Controller Octal Memory Dump

Gle- 229

XMI-10

October 1963

Octal

Location

0000000 0001340
00230 0060000 0000002 2606060 0000000
00240 0000000 0000000 0000000 0000000
00250 0000000 2001777 0000000 0000000
00260 0000000 0000000 0000000 0000000
00400 0060126 0040171 0030606 0012604
00410 0606060 0606001 0004002 0606060
00420 0112200 0032322 0510200 O0LL6060D
00430 0606060 0K06060 0606060 2606077
00440 0000000 0000000 0000000 0000000

0000000 0000017 2516006 2600002
0000000 0000000 0000000 0000000
0000000 0000000 0000000 0000000
0000000 0000000 0000000 0000000
0000000 0000000 0000000 0000000
0112100 0052322 0510101 0LL6060
0060126 0040271 0000606 001260k
0606060 0606001 0004001 0606060
0000000 0000000 0000000 0000000
0000000 0000000 0000000 0000000

Figure 13-13. Programmed Octal Memory Dump

Memory dumps when properly utilized are very in-
formative and very efficient since only a small amount
of computing time is used when dumping through the
high-speed printer. The advantages of a memory
dump are:

a. It gives the results of any program modifi-
cation that may have been done.

b. Programmer can check memory to see that
information is correct and in the proper
locations.

c. It gives temporary or final results in key
memory locations up to the time memory
was dumped.

d. It shows input or test data being used as a
program is run.

Memory dumps via the typewriter or card punch con-
sume computer time and should be used only when a
high-speed printer is not available.

Memory dumps should be used frequently during
debugging. However, if they prove insufficient, then
tracing may provide the solution.

TRACING

The TRACE routine can be used when other techniques
have failed. However, at first, trace only the portions
of the program that are known or suspectedto contain
bugs. If it then becomes necessary. trace as much of
the program as required. Tracing canbe an extremely
powerful debugging tool but often its use is abused.
Tracing is time-consuming and thusis expensive when
used to excess.

Options are available with most trace routines that
may supply the desired information without tracing
each program instruction.

Typical options are:

1. Snapshot Option

This type lists index registers 0, 1, 2, and
3, and registers P, I, A, andQ before a BRU,
SPB, or SEL instruction is executed.

2. Single Address Option

This type lists the same registers as the
SNAPSHOT option, only when a specific
address is referenced.

3. Normal Option

The same registers listed in the other types
are printed before each instruction is exe-
cuted.

Tracing output is normally through the high-speed
printer.

Loaders

When the program deck from GAP is in binary form,
a binary loader deck is used to readthe GAP program
deck into the proper memory locations.

During debugging, it is best to use a binary loader
with octal correction cards. This type of loader will
read into memory the binary deck and then read the
octal corrections into the specified memory words.
Thus, errors can be corrected without repeated re-
assembly of the symbolic deck and, when the program
is completely debugged, a corrected symbolic deck
can be produced in a single new GAP assembly. Nor-
mally a loader, such as the Lower Memory Binary
Loader for Binary Deck with Octal Correction Cards,

b= 229

XII-11

October 1963

Qo230 ceisuel

(X1 1 N1 |
2345678
IRRRRREE

]
"
1

999099999999999998999919199
123456780 m UBRINNRN DN

L L R N N NN R R NN NN N XY
HRNUBERT U AN 2 ANS RN BANNLDUSER T NAN NN QIUCRT RN VD UBRTRNANNROUBNORANTIIINE NI NN
(R R R AR R R R R R R RN R R R R R R R R R RN AR R R R R R R R R RR RN RRRRRRRRR Y|
2222220222202212
33333330333233333333333333333333333333
G444 4404444440440 040444004004040404404404000400000001 0400000000000
§55
66666666666 CHoMeMecoG66666666666666666666666666666665G66566666666665666666666666
1111117100000 10 0000000001110 1 0007711710000 07170100 0710117000 010011011711111111

\

For use with a binary loader containing
an octal correction subroutine to change
a specific memory location.

Figure 13-14. Octal Correction Card

CD225B1.3, is used. To illustrate loader and cor-
rection card usage, the deck set-up using octal
corrections for Routine CD225B1.3 is shown:

[f ogram
lear{gsrfer Card

C(g‘crteacltions

Loader
Transfer Card

Binary
Deck

The octal corrections are punched as follows: One
card is punched for each change tobe made. Columns
5 through 9 contain the octal address and columns 12
through 18 contain the octal contents required. Figure
13-14 shows a sample octal correction card.

When the program is considered debugged, the cor-
rections should be made to the source deck and the
program reassembled. A final checkout should now
be made with the new object deck.

PROGRAM DOCUMENTATION

Accurate, up-to-date program documentation can
produce considerable savings in programming and
operator effort, as well as computer time. Efficient
operation of a computer system requires that changes

=229

or correction to operating programs be made quickly
and correctly. Without adequate documentation,
changes and corrections may become difficult to ac-
complish. Since each computer installation has dif-
ferent characteristics, program documentation can
vary from site to site. However, a basic pattern can
be used by each system.

Run Book

A RUN BOOK should exist for every program run
within a system and should contain documentation so
complete that modifications can be made with minimum
effort. Also, if trouble develops, the source can be
readily found. A typical run book would contain the

following:
A. Run Number and Title.

B. Name of Programmer, Date Completed, and Date
of Last Modification.

C. A Concise Description of what the run is to
accomplish.

D. A Write-up containing all internal and external
controls pertinent to the program, including:

1. A completed Operator Instruction or Run
Form that contains,

a. Average run time andprocedure to follow
if established time limit is exceeded.

b. Console switch settings and brief de-
scription of each.

XMI-12

Error and special procedure loops with
brief explanation of each.

Tape controller and input and output tape
handler numbers.

Identification and disposition of* tapes.
Rerun and restart procedure.

All peripheral device set-ups and plug
designation.

2. Completed description and Layout Forms for
all input and output.

3. Memory Allocation Layout

a.

BE-228

Mark input and output areas
Program and subroutine areas

Working storage areas identifying each
location used

If overlays are used, identify areas in
which it occurs.

Run Diagram and Flow Chart

An up-to-date run diagram and an accurate flow
chart should be in the Run Book. GAP coding
reference points should be marked or identified
on the flow chart. This provides references
between the operating program and the flow chart
providing for easier program corrections.

Sample Printer Output

If the high-speed printer is used during the run,
a sample of the output can be extremely useful.

The samples should be marked with the runnum-
ber.

GAP Listing

The GAP program listing can be included in the
run book. If the GAP listing is in a separate
binder, indicate the binder number for quick
location of the program. Any corrections or
modifications to the listing should be entered in
red and initialled and dated if the program is not
to be reassembled at this time.

XmI-13

(

Sas

c/

r

N2
"%IE)

.

s

APPENDICES

REPRESENTATION OF GE-225 CHARACTERS

OCTAL LIST OF GE-225 INSTRUCTIONS

ALPHABETIC LIST OF GE-225 INSTRUCTIONS

APPENDIX

REPRESENTATION OF GE-225 CHARACTERS

HIGH CONSOLE HOLLERITH BCD
CHARACTER SPEED TYPEWRITER PAPER TAPE CODE BCD MAGNETIC
PRINTER CHARACTER CHARACTER (PUNCH MEMORY TAPE
SYMBOLS OR ACTION (8 CHANNEL) IN ROWS) (OCTAL)** (OCTAL)
0 0 0 Space 0 00 12
1 1 1 1 1 01 01
2 2 2 2 2 02 02
3 3 3 3 3 03 03
4 1 4 4 4 04 04
5 5 5 5 5 05 05
6 6 6 6 6 06 06
7 7 7 7 7 07 07
8 3 8 8 8 10 10
9 9 9 9 9 11 11
A A A / 12-1 21 61
B B B S 12-2° 22 62
C C C T 12-3 23 63
D D D U 12-4 24 64
E E E v 12-5 25 65
F F F W 12-6 26 66
G G G X 12-7 27 67
H H H Y 12-8 30 70
1 1 1 z 12-9 31 71
J J J J 11-1 41 41
K K K K 11-2 42 42
L L L L 11-3 43 43
M M M M 11-4 44 44
N N N N 11-5 45 45
[9) [s) [s) o 11-6 46 46
P P P P 11-7 47 47
Q Q Q Q 11-8 50 50
R R R R 11-9 51 51
S S S B 0-2 62 22
T T T [0-3 63 23
U U u D 0-4 64 24
v v v E 0-5 65 25
W w w F 0-6 66 26
X X X G 0-17 67 27
Y Y Y H 0-8 70 30
Z 4 Z 1 0-9 71 31
+ + 0 12 20 60
- - - - 11 40 40
Space Blank Blank & Blank 60 20
/ / A 0-1 61 21
2-8 12 12
/ Stop 3-8 13 13
@ @ 4-8 14 14
€Underline) - 5-8 15 15
= = 6-8 16 16
7-8 17

12-2-8 32% 72

+0 12-0 32%
12-3-8 33 73
12-4-8 34 74
12-5-8 35 75
Tab 12-6-8 36 76

Carriage

Return 12-7-8 37 77
-0 11-0 52% 52
11-2-8 52% 52
$ $ $ $ 11-3-8 53 53
* * 11-4-8 54 54
11-5-8 55 55
11-6-8 56 56
11-7-8 57 57
Print Red 0-2-8 72 32
, , 0-3-8 73 33
% % 0-4-8 4 34
([Print Black 0-5-8 75 35
) 3 Tab 0-6-8 76 36
Delete 0-7-8 77 37

*The 400 card per minute card reader reads 11-0 and 11-2-3 as 52 and 12-0 and 12-2-8 as 32.
minute card reader treats 11-2-8 and 12-2-8 as invalid characters.

12-0 for 32.

**The OCTAL notation is a shorthand for binary representation.

The 1000 cards per
The card punch punches only 11-0 for 52 and

Conversion between the two representations can

be done mentally. In the OCTAL system, there are eight admissible symbols: 0, 1, 2, 3, 4, 5, 6, 7. Each may
represent (when used) a maximum of three binary bits.

May 1964

APPENDIX Il

Word

OCTAL LIST OF GE-225

INSTRUCTIONS

. . Word
Octal Mnemonic Times Page Octal Mnemonic Times Page
0000000 LDA Y X 2 V-14 05MMMMM RTB M T 2 VII- 11
Load A Register TTNNNNN (blank) N
Read Tape Binary
0100000 ADD Y X 2 V- 2
*Decimal Add 2 V- T 0600000 LDX Y X 3 V - 36
Load X
0200000 SUB Y 3 V-1
* Decimal Subtract 0600000 SLW N 2 IX- 6
NN00000
0200000 SUB Y X 3 V- 2 Slew Paper N Lines
Subtract
0700000 SPB Y X 2 Vv -31
0200000 WEF T 2 VIII- 11 Store P and Branch
TTNNNNN
Write End of File 0X00000 SLT K 2 IX- 6
XX00000
02MMMMM WTD M T 2 VIII- 10 Slew Paper to Tape Punch
TTNNNNN (blank) N
Write Tape Decimal 1000000 DLD Y X 3 V-15
Double Length Load
0300000 STA Y X 2 V-15
Store A 1020000(N=2) RSD M N 2 X- 3
Read Document Single
03MMMMM WTB M T 2 VIII- 10
TTNNNNN (blank) N 1040000(N=2) RDC M N 2 X- 4
Write Tape Binary Read Document Continuously
0400000 BXL K X 3 V- 35 1060000(N=2) PKT X N 2 X- 4
Branch If X Is Less Than Pocket Select
0420000(N=1) RSD M N 2 X- 3 1100000 DAD Y X 3 V- 2
Read Document Single * Double Decimal Add 3 V- 8
0440000(N=1) RDC M N 2 X- 4 1100000 DAD Y X 3 V- 2
Read Document Continuously Double Length Add
0460000(N=1) PKT X N 2 X- 4 1100000(N=2) HLT M N) X- 5
Pocket Select Halt Continuous Feeding
04MMMMM RTD M T 2 VIII- 11 1120000(N=2) ERB N 2 X- 5
TTNNNNN (blank) N 0000000
Read Tape Decimal End Read Busy
0500000 BXH K X 3 V- 34 1200000 DSU Y X 5 V-3
Branch If X Is Higher Than * Double Decimal Subtgact
or Equal To V-8
1200000 DSU Y X 5 V- 3
0500000(N=1) HLT M N 2 X- 5 Double Length Subtract
Halt Continuous Feeding
1200000 RRF N F 2 XI- 6
0520000(N=1) ERB N 2 X- 5 00MMMMM (blank) M

0000000

Ble- 225

End Read Busy

*QOptional Instruction

Read from MRADS Unit F

October 1963

Word Word
Octal Mnemonic Times Page Octal Mnemonic Times Page
1201000 RRD N F 2 XI- 1 23MMMMM WTS M T 2 VII - 11
00MMMMM (blank) M TTNNNNN (blank) N
Read from MRADS Unit F Write Tape Special Binary Mode
1202000 RAW N F 2 XI- 1 *
0000000 (blank) zero 2400000 ﬁﬁ?fe Y 4+ 2N v-18
Read After Write Check
2500000 PRF F 2 XI- 4
1300000 DST Y X 3 V -16 MMMMMMM OCT (MRADS Address)
Double Length Store Position MRADS File
1400000 INX K X 3 V - 34 2500004 HCR 2 VI- o
Increment X Halt Card Reader
14MMMMM RBD M T 2 VIII - 12 2500005 OFF 2 VI- 8
TTNNNNN (blank) N Power Off (Direct I/O Devices)
Read Backward Decimal
2500006 RPT 2 VI-16
1500000 MPY Y X 9 to 23 V-5 Read Paper Tape
Multiply
2500006 TYP 2 VI- 8
Type
2500006 WPT 2 VI-18
15MMMMM RBB M T 2 VIII - 12 Write Paper Tape
TTNNNNN (blank)
Read Backward Binary 2500007 TON 9 VI- 8
Typewriter On
1600000 DVD Y X 26to29 V-5
Divide 2500011 RCS 2 VIi- 6
Read Control Switches
1600000 BKW T 2 VIII - 12
TT00000 2500015 PON 2 VI-18
Backspace and Position Write Head Punch On
1700000 STX Y X 3 VvV -36 2500016 HPT 2 VI-17
Store X Halt Paper Tape Reader
2000000 EXT Y X 3 vV -17 2500014 RON 2 VI-16
Extract Paper Tape Reader On
2000000 WPL Y N 2 IX-5 2500P20 SEL P X 2 VII- 2
01YYYYY Select
Write Print Line
2504001 LAQ 3 V-19
2000000 RWD T 2 VIII - 12 Load A from Q
TT00000
Rewind 2504002 LDZ 3 V-22
Load Zero into A Register
2100000 *CAB Y 2to4 Vv -33
Compare and Branch 2504004 LQA 3 V-19
Load Q from A
2200000 *DCB Y 2to6 VvV -33
Double Compare and Branch 2504005 XAQ 3 V-20
Exchange A and Q
2300000 ORY Y X 3 v -117
Or A into Y 2504006 MAQ 3 V-19
Move A to Q
* This instruction is an optional feature.
A -4

October 1963

Word Word
Octal Mnemonic Times Page Octal Mnemonic Times Page
2504012 NOP 3 V- 24 250YY02 WCD Y 2 VI - 37
No Operation Write Card Decimal
2504022 LDO 3 V- 22 250YY03 WCB Y 2 VI - 37
Load One into A Register Write Card Binary
2504032 ADO 3 V- 4 250YY10 RCF Y 2 VI - 28
Add One Read Cards Full
2504032 ADO Add One 3 V- 4 250YY12 RCM Y 2 VI - 29
*Add One Decimal 3 v- 9 Read Cards Mixed
2504040 CHS 2 V-23 250YY17 WCF Y 2 VI - 37
Change Sign of A Register Write Cards Full
2504102 LMO 3 V-23 2510000 SRA K 2 to 12 V- 24
Load Minus One into A Register Shift Right A Register
2504112 SBO Subtract One 3 V- 4 2510040 SCA K 2 to 12 V-217
*Subtract One Decimal 3 V-9 Shift Circular A Register
2504202 *LAC 3 V- 20 2510100 SNA K 2 to 12 V- 28
Load A Register from C Register Shift N and A Right
2504210 *LCA 3 V- 20 2510400 SAN K 2 to 12 V-28
Load C Register from A Register Shift A and N Right
2504502 CPL 3 V-23 2511000 SRD K 2 to 12 V- 26
Complement A Shift Right Double
2504522 NEG 3 V-23 2511100 NAQ K 2 to 12 V- 29
Negate A Shift N, A, and Q Right
2506003 *SXG Y 2 V- 36 2511200 SCD K 2 to 12 V- 27
Select X Register Group Shift Circular Double
2506011 SET DECMODE 2 V-9 2511400 ANQ K 2 to 12 V- 28
Set Decimal Mode Shift A into N and Q
2506012 SET BINMODE 2 V-10 2512000 SLA K 2to12 V-25
Set Binary Mode Shift Left A Register
2506015 SET PST 2 VII- 3 2512200 SLD K 2 to 12 V-26
Set Automatic Priority Interrupt On Shift Left Double
2506016 SET PBK 2 VII- 3 2513000 NOR K 3to12 V-29
Set Automatic Priority Interrupt Off Normalize the A Register
250YY00 RCD Y 2 VI- 26 2513200 DNO K 2 to 12 vV-30
Read Cards Decimal Double Length Normalize
250YY01 RCB 2 VI - 27 2514000 BOD 2 V- 32
Read Cards Binary Branch on Odd
2514001 BMI 2 V- 32

* This instruction is an optional feature.

Branch on Minus

October 1963

Word

Word

Octal Mnemonic Times Page Octal Mnemonic Times Page
2514002 BZE 2 V- 32 2514P21(K=2) BCS SKR P 2 X-6
Branch on Zero Branch on Document Handler K
Ready
2514003 BOV 2 V- 32
Branch on Overflow 2514P22 BCS BET P 2 VIII- 14
Branch on End of Tape
2514004 BPE 2 V- 32
Branch on Parity Error 2514P22 BCS BOP P 2 IX- 7
Branch on Printer Out of Paper
2514005 BNR 2 VI- 9
Branch on N Register Ready 2514P22(F11€ 1) BCS FKR P 2 XI- 10
Branch on File K Ready
2514006 BCR 2 VI - 33
Branch on Card Reader Ready 2514P22(K=1) BCS NPK P 2 X- 6
Branch on No Pocket Decision,
2514007 BPR 2 VI - 37 Document Handler K
Branch on Card Punch Ready
2514P23 BCS BOV P 2 IX - 14
2514720 BAR BAR 7 2 XII- 8 Branch on Printer Buffer Overflow
Branch on AAU Ready
2514P23 BCS BRW P 2 VIII- 15
2514721 BAR BMI 7 2 XII- 9 Branch on Tape Rewinding
Branch on AAU Minus
2514P23(File 2) BCS FKR P 2 XI - 10
2514722 BAR BZE 7 2 XII- 9 Branch on File K Ready
Branch on AAU Zero
2514P23(K=2) BCS NPK P 2 X- 6
2514723 BAR BOV 7 2 XII- 9 Branch on No Pocket Decision,
Branch on AAU Overflow Document Handler K
2514724 BAR BUF 7 2 XII - 9 2514P24 BCS BPE P 2
Branch on AAU Underflow Branch on Mag Tape VIII- 14
5] Pty S
25147217 BAR BER 7 2 XI - 9 Parity Error
Branch on AAU Error 2514P24 BCS BSA P 2 IX - 14
Branch on Printer Slew Alert
2514P20 BCS BPR P 2 X - 7
Branch on Printer Ready 2514P24(File 3) BCS FKR P 2 XI - 10
Branch on File K Ready
2514P20 BCS BRR P 2 XI - 10
Branch on MRADS Controller Ready 2514P24(K=1) BCS FSK P 2 X- 6
Branch on Feeding, Document
2514P20 BCS BTR P 2 VI - 14 Handler K
Branch on Tape Controller Ready
2514P25 BCS BIO P 2
2514P20(K=1) BCS SKR P 2 X- 6 Branch on Mag Tapé I/0 VIII- 14
Branch on Document Handler K Buffer Error
Ready DSU X1-10
2514P25(K=2) BCS FSK P 2 X- 6
2514P21 BCS BAA P 2 IX-14 Branch on Feeding, Document
Branch on Any Alert Handler K
2514P21 BCS+ BEF P 2 VIII - 14 92514P26 BCS BME P 2 VIII- 14
Branch on End of File Branch on Mod 3 or 4 Error
2514P21(File 0) BCS FKR P 2 XI - 10 2514P26(K=1) BCS ICK P 2 X- 6

Branch on File K Ready

BlE-229

2514P26

Branch on Invalid Character,
Document Handler K

BCS ICK P 2
Branch on DSU Parity Error

X1-10

October 1963

Word Word
Octal Mnemonic Times Page Octal Mnemonic Times Page
2514P27 BCS BER P 2 2516005 BNN 2 Vi- 9
Branch on Error VIII-15 Branch on N Register Not Ready
2516006 BCN 2 VI - 33
2514P27(K=2) BCS ICK P 2 X- 6 Branch on Card Reader Not Ready
Branch on Invalid Character,
Document Handler K 2516007 BPN 2 VI - 37
Branch on Card Punch Not Ready
2514P30(K=1) BCS SKE 2 X- 1
Branch on Any Error, 2516720 BAR BAN 7 2 XII- 8
Document Handler K Branch on AAU Not Ready
2514P31 BCS FAE P 2 XI-11 2516721 BAR BPL 7 2 XII- 9
Branch on Error - On Any File Branch on AAU Plus
2514P31(K=2) BCS SKE 2 X-1 2516722 BAR BNZ 7 2 XII- 9
Branch on Any Error, Branch on AAU Not Zero
Document Handler K
2516723 BAR BNO 7 2 XIIr- 9
2514P32(K=1) *BCS DQK 2 X- 1 Branch on AAU No Overflow
Branch on Document TCD Correct,
Document Handler K. 2516724 BAR BNU 17 2 XII- 9
Branch on AAU No Underflow
2514P32(File 0) BCS FKE P 2 XI-11
Branch on File K, File Error 2516727 BAR BNE 7 2 XII- 9
Branch on AAU No Error
2514P33(K=2) *BCS DQK 2 X- 1
Branch on Document TCD Correct, 2516P20 BCS BPN P 2 IX- 7
Document Handler K. Branch on Printer Not Ready
2514P33(File 1) BCS FKE P 2 XI-11 2516P20 BCS BRN P 2 XI - 10
Branch on File K, File Error Branch on MRADS Controller
Not Ready
2514P34(File 2) BCS FKE P 2 XI-11
Branch on File K, File Error 2516P20 BCS BTN P 2 VIII - 14
Branch on Tape Controller Not
2514P35(File 3) BCS FKE P 2 XI-11 Ready
Branch on File K, File Error
2516P20(K=1) BCS SKN P 2 X- 6
2514PCC BCS XXX P 2 VII - 2 Branch on Document Handler K
Branch on Controller Selector Not Ready
2516000 BEV 2 VvV -32 2516P21 BCS BNA P 2 IX - 14
Branch on Even Branch on Printer No Alert
2516001 BPL 2 V -32 2516P21 BCS BNF P 2 VIII - 14
Branch on Plus Branch on No End of File
2516002 BNZ 2 VvV -32 2516P21(File 0) BCS FKN P 2 XI - 10
Branch on_Non-Zero Branch on File K Not Ready
2516003 BNO 2 V - 32 2516P21(K=2) BCS SKN P 2 X-6
Branch on No Overflow Branch on Document Handler
K Not Ready
2516004 BPC 2 VvV -32
Branch on Parity Correct 2516P22 BCS BNP P 2 IX- 7
Branch if Printer Not Out of Paper
* This instruction is an optional feature.
HE= 203
[}
GE=225
A-T October 1963

Word Word
Octal Mnemonic Times Page Octal Mnemonic Times Page
Branch on No End of Tape Branch on Valid Character,
. Document Handler K
2516P22(File 1) BCS FKN P 2 XI-10
Branch on File K Not Ready 2516P30(K=1) BCS SKC 2 X- 1
Branch on Document Handler
2516P22(K=1) BCS PDK P 2 X- 6 K Correct
Branch on Pocket Decision,
Document Handler K 2516P31 BCS FAC P 2 XI -11
Branch on No Error - Any File
2516P23 BCS BNO P 2 IX - 14
Branch on No Printer Buffer 2516P31(K=2) BCS SKC 2 X -
Overflow Branch on Document Handler
K Correct
2516P23 BCS BNR P 2 VIII-15
Branch on No Tape Rewinding 2516P32(File 0) BCS FKC P 2 XI-11
Branch on File K, No Unit Error
2516P23(File 2) BCS FKN P 2 XI-10
Branch on File K Not Ready 2516P32(K=1) *BCS NQK 2 X- 1
Branch on Document TCD Not
2516P23(K=2) BCS PDK P 2 X-6 Correct, Document Handler K
Branch on Pocket Decision,
Document Handler K 2516P33(F11e 1) BCS FKC P 2 XI-11
Branch on File K, No Unit Error
2516P24 BCS BNS P 2 IX -14
Branch on No Printer Slew Alert 2516P33(K=2) *BCS NQK 2 X- 17
Branch on Document TCD Not
2516P24 BCS BPC P 2 Correct, Document Handler K
Branch on Tape -
P;rity Co;\figt ap VI - 14 2516P34(File 2) BCS FKC P 2 XI-11
Branch on File K, No Unit Error
2516P24(File 3) BCS FKN P 2 XI-10
Branch on File K Not Ready 2516P35(File 3) BCS FKC P 2 XI-11
Branch on File K, No Unit Error
2516P24(K=1) BCS NFK P 2 X- 6
Branch on Not Feeding, 2516PCC BCS XXX P 2 VII- 2
Document Handler K Branch on Controller Selector
2516P25 BCS BIC P 2 25MMMMM RTS M T 2 VIII - 11
Branch on Mag Tape I/O VIII - 14 TTNNNNN (blank) N
Buffer Correct Read Tape Special Binary Mode
2516P25(K=2) BCS NFK P 2 X- 6 2600000 BRU Y X 1 V-31
Branch on Not Feeding, Branch Unconditionally
Document Handler K
2700000 STO Y X 3 V-16
2516P26 BCS BNM P 2 VIII - 15 Store Operand Address
Branch on No Mod 3 or 4 Error
3000000 FLD Y 72 usec XII- 7
2516P26 BCS RPC P 2 XI - 10 Load Auxiliary Arithmetic Unit
Branch on DSU
Parity Correct 30YYYYY WFL Y X N 2 IX- 6
01XXXXX (WPL)
2516P26(K-1) BCS VCK 2 X- 7 Write Format Line
Branch on Valid Character,
Document Handler K
2516P27 BCS BNE P 2
Branch on No Error VIII - 15 * This instruction is an optional feature
BE-225
A-8 October 1963

Word . Word

Mnemonic Octal Times Page Mnemonic Octal Times Page
3100002 MAQ A 49.5usec XII - 7 3500010 SET FIXPOINT 49.5 usec XII- 6
Move AX to QX Set Fixed-Point Mode
3100010 SET NFLPOINT 49.5 usec XII - 6 35MMMMM RBS M T 2 VIII- 12

Set Normalized Floating-Point Mode TTNNNNN (blank) N
Read Backward Special Binary
31YYYYY FAD Y Min. 162 usec XII- 7
Max. 709 usec 3BYYYYY FMP Y Min. 297usecXII- 7
AAU Add Max. 1062 usec
AAU Multiply
3200002 LQA A 49.5usec XII- 7
Load QX From AX 3600002 LAQ A 49.5usec XII- 7
Load AX From QX
3200010 SET UFLPOINT 49.5 usec XII- 6
Set Unnormalized Floating-Point 36YYYYY FDV Y Min.814.5usec XII- 8
Mode Max.1095 usec
32YYYYY FSU Y Min. 162 usec XII- 8 AAU Divide
Max. 709 usec
AAU Subtract 3700000 WRF N F 2 XI- 17
00MMMMM (blank) M
3300000 FST Y 72 usec XII- 7 Write on MRADS Unit F
Store Auxiliary Arithmetic Unit
3701000 WRD N F 2 XI- 17
3500002 XAQ A 117 usec XII- 7 00MMMMM (blank) M
Exchange AX and QX Write on MRADS Unit F

APPENDIX Il

Word

ALPHABETIC LIST OF GE-225

INSTRUCTIONS

Word
Mnemonic Octal Times Page Mngmonic Octal Times Page
ADD Y X 0100000 2 V- 2 BCN 2516006 2 vI- 33
*Decimal Add 2 V-1 Branch on Card Reader Not Ready
ADD Y X 0100000 2 V-1 BCR 2514006 2 VI - 33
Add Branch on Card Reader Ready
ADO 2504032 3 V-4 BCS BAA P 2514P21 2 IX - 14
Add One Branch on Any Alert
ADO 2504032 3 V-9 BCS BEF P 2514P21 2 VIII - 14
*Add One Decimal Branch on End of File
ALF (Pseudo) IV -10 BCS BER P 2514P27 2 VII - 15
Alphanumeric Branch on Error IX- 8
XI- 10
ANQ K 2511400 2 to 12 V -28
Shift A into N and Q BCS BET P 2514P22 2 viaI - 14
Branch on End of Tape
BAR BAN 17 2516720 2 XII - 8
Branch on AAU Not Ready BCS BIC P 2516P25 2 VIII - 14
Branch on Input/Output XI- 10
BAR BAR 17 2514720 2 XII - 8 Buffer Correct
Branch on AAU Ready
BCS BIO P 2514P25 2 VIII - 14
BAR BER 7 25147217 2 XII- 9 Branch on Input/Output XI - 10
Branch on AAU Error Buffer Error
BAR BMI 7 2514721 2 XII- 9 BCS BME P 2514P26 2 VIII - 14
Branch on AAU Minus Branch on Mod 3 or 4 Error
BAR BNE 7 2516727 2 XII- 9 BCS BNA P 2516P21 2 IX - 14
Branch on AAU No Error Branch on Printer No Alert
BAR BNO 7 2516723 2 XII- 9 BCS BNE P 2516P27 2 VII - 15
Branch on AAU No Overflow Branch on No Error X- 8
XI- 10
BAR BNU 7 2516724 2 XII- 9
Branch on AAU No Underflow BCS BNF P 2516P21 2 VIII - 14
Branch on No End of File
BAR BNZ 7 2516722 2 XII- 9
Branch on AAU Not Zero BCS BNM P 2516P26 2 VIII - 15
Branch on No Mod 3 or 4 Error
BAR BOovV 7 2514723 2 XII- 9
Branch on AAU Overflow BCS BNO P 2516P23 2 IX - 14
Branch on No Printer Buffer
BAR BPL 7 2516721 2 XII- 9 Overflow
Branch on AAU Plus
BCS BNP P 2516P22 2 IX- 17
BAR BUF 7 2514724 2 XII- 9 Branch if Printer Not Out of
Branch on AAU Underflow Paper
BAR BZE 7 2514722 2 XII- 9 BCS BNR P 2516P23 2 VIO - 15
Branch on AAU Zero Branch on No Tape Rewinding
*Optional Instruction
BE-225
(5
A-11 October 1963

Document Handler K.

* This instruction is an optional feature

or 2516P33(K=2)
Branch on Document TCD Not
Correct, Document Handler K

Word Word
Mnemonic Octal Times Mnemonic Octal Times Page
BCS BNS P 2516P24 2 BCS FAC P 2516P31 2 XI- 11
Branch on No Printer Branch on No Error - Any File
Slew Alert
BCS FAE P 2514P31 2 XI- 11
BCS BNT P 2516P22 2 Branch on Error - On Any File
Branch on No End of Tape
BCS FKC P 2516P32(File 0) 2 XI- 11
BCS BOP P 2514P22 2 or 2516P33(File 1)
Branch on Printer Out of or 2516P34(File 2)
Paper or 2516P35(File 3)
Branch on File K, No Unit Error
BCS BOV P 2514P23 2
Branch on Printer Buffer BCS FKE P 2514P32(File 0) 2 XI - 11
Overflow or 2514P33(File 1)
or 2514P34(File 2)
BCS BPC P 2516P24 2 or 2514P35(File 3)
Branch on Tape Parity Correct Branch on File K, File Error
BCS BPE P 2514P24 2 BCS FKN P 2516P21(File 0) 2 XI -10
Branch on Tape Parity Error or 2516P22(File 1)
or 2516P23(File 2)
BCS BPN P 2516P20 2 or 2516P24(File 3)
Branch on Printer Not Ready Branch on File K Not Ready
BCS BPR P 2514P20 2 BCS FKR P 2514P21(File 0) 2 XI -10
Branch on Printer Ready or 2514P22(File 1)
or 2514P23(File 2)
BCS BRN P 2516P20 2 or 2514P24(File 3)
Branch on MRADS Controller Branch on File K Ready
Not Ready
BCS FSK P 2514P24(K=1) 2 X- 8
BCS BRR P 2514P20 2 or 2514P25(K=2)
Branch on MRADS Controller Branch on Feeding, Document
Ready Handler K
BCS BRW P 2514P23 2 BCS ICK P 2514P26(K=1) 2 X-6
Branch on Tape Rewinding or 2514P27(K=2)
Branch on Invalid Character,
BCS BSA P 2514P24 2 Document Handler K
Branch on Printer Slew Alert
BCS NFK P 2516P24(K=1) 2 X-6
Branch on Tape Controller Branch on Not Feeding,
Not Ready Document Handler K
BCS BTR P 2514P20 2 BCS NPK P 2514P22(K=1) 2 X-6
Branch On Tape Controller Ready or 2514P23(K=2)
Branch on No Pocket Decision,
*BCS DQK 2514P32(K=1) 2 Document Handler K
or 2514P33(K=2)
Branch on Document TCD Correct, * BCS NQK 2516P32(K=1) 2 X- 17

ble-229

A-12

October 1963

Word Word
Mnemonic Octal Times Page Mnemonic Octal Times Page
BCS PDK P 2516P22(K=1) 2 X- 6 BNZ 2516002 2 V- 32
or 2516P23(K=2) Branch on Non-Zero
Branch on Pocket Decision,
Document Handler K BOD 2514000 2 V - 32
Branch on Odd
BCS RPC P 2516P26 2 XI- 10
Branch on DSU Parity Correct BOV 2514003 2 V- 32
Branch on Overflow
BCS RPE P 2514P2§ 2 XI- 10
Branch on DSU Parity Error BPC 2516004 2 V- 32
BCS SKC 2516P30(K=1) 2 X7 Branch on Parity Correct
or 2516P31(K=2)
Branch on Document Handler K BPE Branch on Paiist14(l)£:2"i'or 2 V- 32
Correct y
BCS SKE 2514P30(K-1) 2 X- 7 BPL L aneh o o800 2 v-32
or 2514P31(K=2) n
]?;‘:r?é:l};:l}(Any Error, Document BPN 2516007 2 VI - 37
Branch on Card Punch Not Ready
BCS SKN P gg}gg‘g?ggi 2 X-6 BPR 2514007 2 VI - 37
Branch on Document Handler K Branch on Card Punch Ready
Not Ready BRU Y X 2600000 1 V- 31
BCS SKR p 9514P20(K=1) 2 X- 6 Branch Unconditionally
or 2514P21(K=2)
Branch on Document Handler K BSS(PseL};cig)Ck Started by Symbol v-15
Ready vy
B BXH K X 0500000 3 V- 34
BCS VCK 2516P26(K=1) 2 X-1 Branch if X is Higher Than or
or 2516P27(K=2) Equal To
Branch on Valid Character, a
DOCument Handler K BXL K X 0400000 3 V _ 35
BCS XXX P 2514PCC 2 VI- 2 Branch If X is Less Than
or 2516PCC
Branch on Controller Selector BZE Branch on 263214002 2 V-32
BEV L nch on Ev 16000 2 v-32 *CAB Y 2100000 2to4 V- 33
! Compare and Branch
BKW T 1600000 2 VIII - 12 CHS 2504040 2 V - 23
TT00000 . Change Sign of A Register
Backspace and Position Write
Head CPL 2504502 3 V- 23
Complement A
BMI 2514001 2 VvV -32
Branch on Minus DAD Y X 1100000 3 V- 2 I
le Decimal Add 3 V- 8
BNN 2516005 2 VI- 9 Double Decima
Branch on N Register Not Ready * This instruction is an optional feature.
BNO 2516003 2 VvV -32
Branch on No Overflow
BNR 2514005 2 Vi- 9
Branch on N Register Ready
/DE 2@ =
- o ,/‘ A
\Lﬂ C’j@‘}
A-13 October 1963

Word

Word
Mnemonic Octal Times Page Mnemonic Octal Times Page
DAD Y X 1100000 3 V-2 FAD Y 31YYYYY Min.162 usee XII- 7
Double Length Add Max.709 usec
AAU Add
*DCB Y 2200000 2to6 VvV -33
Double Compare and Branch FDC (Pseudo) Iv-12
Floating Point Decimal
DDC (Pseudo) IV -12
Double Length Decimal FDV Y 36YYYYY Min.814.5usec XII- 8
Max.1095 usec
DEC (Pseudo) IV -11 AAU Divide
Decimal
FLD Y 3000000 72 usec XII- 7
DLD Y X 1000000 3 V-15 Load Auxiliary Arithmetic Unit
Double Length Load
DNO K 2513200 2 to 12 VvV -30 FMP Y 35YYYYY Min. 297 usec XII- 7
Double Length Normalize Max. 1062 usec
AAU Multiply
DST Y X 1300000 3 V-16
Double Length Store FST Y 3300000 72 usec XI- 7
DSU v 1200000 5 V- 8 Store Auxiliary Arithmetic Unit
* Double Decimal Subtract FSU Y 32YYYYY Min. 162 usec XII- 8
DSU Y X 1200000 5 V- 3 Max. 709 usec
- AAU Subtract
Double Length Subtract ubtrac
DVD Y X 1600000 26t029 V- 5 HCR 2500004 2 VI-26
Divide Halt Card Reader
EJT (Pseudo) IV - 17 HLT M N 0300000(N=1) 2 X-5
Eject Printer Paper or 1100000(N=2)
Halt Continuous Feeding
END(Pseudo) v - 16
End of Program HPT 2500016 2 VI- 17
EQO (Pseudo) IV - 15 Halt Paper Tape Reader
Equals Octal INX K X 1400000 3 V-34
EQU (Pseudo) IV - 15 Increment X
Equals *LAC 2504202 3 V-20
ERB N 0520000(N=1) 2 X- 5 Load A Register from C Register
0000000 LAQ 2504001 3 V-19
or 1120000(N=2) Load A from Q
0000000 ©
End Read Busy LAQ A 3600002 49.5 usec XII- 7
EXT Y X 2000000 3 V-7 Load AX from QX
Extract *LCA 2504210 3 v-20
Load C Register from A Register
LDA Y X 0000000 2 V-14
* This instruction is an optional feature. Load A Register

GE-229

A-14

October 1963

Word

Word
Mnemonic Octal Times Page Mnemonic Octal Times Page
| LDO 2504022 3 V- 22 NOP 2504012 3 V- 24
Load One into A Register No Operation
LDX Y X 0600000 3 V - 36 NOR K 2513000 3toe 12 V-29
Load X Normalize the A Register
LDZ 2504002 3 V- 22 OCT (Pseudo) Iv - 13
Load Zero into A Register Octal
LMO 2504102 3 V-23 OFF 2500005 2 vI- 8
Load Minus One into A Register Power Off (Direct I/O Devices)
LOC (Pseudo) IV - 15 ORG (Pseudo) IV - 14
Location in Octal Origin
LQA 2504004 3 V-19 ORY Y X 2300000 3 V- 117
Load Q from A Or Ainto Y
LQA A 3200002 49.5 usec XII- 7 PAL (Pseudo) Iv - 11
Load QX From AX Multiple Alphanumeric for Printer
with Print Line Indicator
LST (Pseudo) v - 17
List PKT X N 0460000(N=1) 2 X- 4
or 1060000(N=2)
MAL (Pseudo) v -11 Pocket Select
Multiple Alphanumeric
PLD (Pseudo) IV - 16
MAQ 2504006 3 V-19 Punch Loader Cards
Move A to Q
PON 2500015 2 VI - 18
MAQ A 3100002 49.5 usec XII- 7 Punch On
Move AX to QX
PRF F 2500000 2 K- 4
* MOV Y 2400000 4 + 2N V-18 OCT (MRADS
Move Address) MMMMMMM
Position MRADS File
MPY Y X 1500000 9 to 23 V- 5
Multiply RAW N F 1202000 2 XI- 1
(blank) zero 0000000
NAL (Pseudo) Iv - 10 Read After Write Check
Negative Alphanumeric
RBB M T 15MMMMM 2 VIII- 12
NAM (Pseudo) IV - 17 (blank) N TTNNNNN
Print Name or Title on Each Page Read Backward Binary
NAQ K 2511100 2 to 12 V-29 RBD M T 14MMMMM 2 VIII- 12
Shift N, A, and Q Right (blank) N TTNNNNN
Read Backward Decimal
NEG 2504522 3 VvV -23
Negate A KBS M T 35MMMMM 2 VIII- 12
(blank) N TTNNNNN
NLS (Pseudo) Iv - 117 Read Backward Special Binary
No List.
* This instruction is an optional feature.
GlE= 228
o) (G
A-15 October 1963

Word Word
Mnemonic Octal Times Page Mnemonic Octal Times Page
RCB 250YY01 2 VI - 27 SAN K X 2510400 2 to 12 V- 28 I
Read Cards Binary Shift A and N Right
RCD Y 250YY0D 2 VI - 26 SBO 2504112 3 v- 41
Read Cards Decimal Subtract One
RCF Y 250YY10 2 VI - 28 SBO 2504112 3 V-9
Read Cards Full *Subtract One Decimal |
RCM Y 250YY12 2 VI - 29 SBR (Pseudo) IV - 14
Read Cards Mixed Subroutine Call
RCS 2500011 2 Vi- 6 SCA K X 2510040 2 to 12 v-271]
Read Control Switches Shift Circular A Register
RDC M N 0440000(N=1) 2 X- 4 SCD K X 2511200 2 to 12 v-271
or 1040000(N=2) Shift Circular Double
Read Document Continuously
SEL P X 2500P20 2 VII- 2
REM (Pseudo) Iv - 16 Select
Remarks
SEQ (Pseudo) Iv - 17
RON 2500014 2 VI - 16 Check Source Program Card Sequence
Paper Tape Reader On Numbers
RPT 2500006 2 VI- 16 SET BINMODE 2506012 2 V-10
Read Paper Tape Set Binary Mode
RRD N F 1201000 2 XI- 17 SET DECMODE 2506011 2 V-9
(blank) M 00MMMMM Set Decimal Mode
Read from MRADS Unit F
SET FIXPOINT 3500010 49.5 usec XII - 6
RRF N F 1200000 2 XI- 6 Set Fixed-Point Mode
(blank) M 00MMMMM
Read from MRADS Unit F SET NFLPOINT 3100010 49.5 usec XII - 6
Set Normalized Floating-Point Mode
RSD M N 0420000(N=1) 2 X-3
or 1020000(N=2) SET PBK 2506016 2 VI - 3
Read Document Single Set Automatic Priority Interrupt Off
RTB M T 05MMMMM 2 VIII- 11 SET PST 2506015 2 VII - 3
(blank) N TTNNNNN Set Automatic Priority Interrupt On
Read Tape Binary
SET UFLPOINT 3200010 49.5 usec XII - 6
RTD M T 04MMMMM 2 VIII- 11 Set Unnormalized Floating-Point Mode
(blank) N TTNNNNN
Read Tape Decimal SLA K X 2512000 2 to 12 V-25 '
Shift Left A Register
RTS M T 25MMMMM 2 VIII- 11
(blank) N TTNNNNN SLD K X 2512200 2 to 12 V - 26 I
Read Tape Special Binary Mode Shift Left Double
RWD T 2000000 2 VIII- 12 SLT K 0X00000 2 IX- 6
TT00000 XX00000
Rewind Slew Paper to Tape Punch
A F GD (9 e
o
e ° Ak

A-16

October 1963

Word

Word
Mnemonic Octal Times Page Mnemonic Octal Times Page
SLW N 0600000 2 IX- 6 WCD v 250YY02 9 VI - 37
NN00000 Write Card Decimal
Slew Paper N Lines
WCF Y 250YY17 2 VI -37
Il sna K X 2510100 2 to 12 V-28 ¢ Write Cards Full
Shift N and A Right
WEF T 0200000 2 VIII - 11
SPB Y X 0700000 2 Vv -31 TT00000
Store P and Branch Write End of File
I sra K X 2510000 2 to 12 V- 24 WFL N 36YYYYY 2 IX- 6
Shift Right A Register (WPL) Y X 01XXXXX
Write Format Line
SRD K 2511000 2 to 12 V - 26
Shift Right Double WPL Y N 2000000 2 IX-5
01YYYYY
STA Y X 0300000 2 V-15 Write Print Line
Store A
WPT 2500006 2 VI -18
STO Y X 2700000 3 V- 16 Write Paper Tape
Store Operand Address)
WRD N F 3701000 2 XI-17
STX Y X 1700000 3 V - 36 (blank) M 00MMMMM
Store X Write on MRADS Unit F
SUB Y X 0200000 3 V-2 WRF N F 3700000 2 XI- 7
Subtract (blank) M 00MMMMM
Write on MRADS Unit F
' SUB Y X 0200000 3 V-1
*Decimal Subtract WIB M T 03MMMMM 2 VIII - 10
(blank) N TTNNNNN
* SXG Y 2506003 2 vV -36 Write Tape Binary
Select X Register Group
WTD M T 02MMMMM 2 VIII - 10
TCD(Pseudo) Iv -15 (blank) N TTNNNNN
Punch Transfer Card Write Tape Decimal
TON 2500007 2 Vi- 8 WTS M T 23MMMMM 2 VIII - 11
Typewriter On (blank) N TTNNNNN
Write Tape Special Binary Mode
TYP 2500006 2 VIi- 8
Type XAQ 2504005 3 V-20
Exchange A and Q
WCB Y 250YY03 2 VI - 37
Write Card Binary XAQ A 3500002 117 usec XII- 7
Exchange AX and QX
. Z (Pseudo) IV -13
* This instruction is an opticnal feature. Octal Operation Code
3 Y
Ak e
L :
A-17

October 1963

Progress [s Qur Most Important Product

GENERAL @3 ELECTRIC

COMPUTER DEPARTMENT ¢« PHOENIX. ARIZONA

B4

