

processor
handbook

digital equipment corporation

Copyright@ 1972, by Digital Equipment Corporation

DEC, PDP, UNIBUS are registered trademarks of Digital Equipment Corporation.

ii

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 GENERAL

1.2 GENERAL CHARACTERISTICS.
1.2.1 The UNIBUS
1.2.2 Central Processor
1.2.3 Memories
1.2.4 Floating Point
1.2.5 Memory Management

1·1

1·1

1·2
1·2
1·3
1·5
1·5
1·5

1.3 PERIPHERALS/OPTIONS ... 1·5
1.3.1 I/O Devices 1·6
1.3.2 Storage Devices
1.3.3 Bus Options .. .

1·6
1·6

1.4 SOFTWARE ... ,. 1·6
1.4.1 Paper Tape Software .. 1·7
1.4.2 Disk Operating System Software 1·7
1.4.3 Higher Level Languages 1·7

1.5 NUMBER SYSTEMS 1-7

CHAPTER 2 SYSTEM ARCHITECTURE.

2.1
2.2

2.3

2.4
2.5
2.6

2.7

SYSTEMDEFINITION
UNIBUS
2.2.1 Bidirectional Lines
2.2.2 Master·Slave Relation ..
2.2.3 Interlocked Communication
CENTRAL PROCESSOR
2.3.1 General Registers
2.3.2 Processor Status Word
2.3.3 Stack Limit Register
EXTENDED INSTRUCTION SET & FLOATING POINT ..
CORE MEMORy
AUTOMATIC PRIORITY INTERRUPTS
2.6.1 Using the Interrupts.
2.6.2 Interrupt Procedure
2.6.3 Interrupt Servicing
PROCESSOR TRAPS
2.7.1 Power Failure
2.7.2 Odd Addressing Errors
2.7.3 Time·out Errors
2.7.4 Reserved Instructions
2.7.5 Trap Handling

iii

2-1

2·1
2-1
2-1
2-2
2-2
2-2
2-3
2-4
2-5
2-5
2-6
2-7
2-9
2-9
2-10
2-10
2-10
2-10
2·11
2-11
2-11

CHAPTER 3 ADDRESSING MODES .. 3·1

3.1 SINGLE OPERAND ADDRESSING 3·2
3.2 DOUBLE OPERAND ADDRESSING ~·2
3.3 DIRECT ADDRESSING ... '" 3-4

3.3.1 Register Mode .. 3·4
3.3.2 Auto·increment Mode.. 3·5
3.3.3 Auto·decrement Mode 3·7
3.3.4 Index Mode.. 3·8

3.4 DEFERRED (INDIRECT) ADDRESSING 3·10
3.5 USE OF THE PC AS A GENERAL REGISTER 3·12

3.5.1 Immediate Mode .. 3·13
3.5.2 Absolute Addressing 3·13
3.5.3 Relative Addressing 3·14
3.5.4 Relative Deferred Addressing 3·15

3.6 USE OF STACK POINTER AS GENERAL REGISTER 3·16
3.7 SUMMARY OF ADDRESSING MODES 3·16

3.7.1 General' Register Addressing 3·16
3.7.2 Program Counter Addressing 3·18

CHAPTER 4 INSTRUCTION SET .. 4·1

4.1 INTRODUCTION .. 4·1
4.2 INSTRUCTION FORMATS 4·2
4.3 LIST OF INSTRUCTIONS .. 4·4
4.4 SINGLE OPERAND INSTRUCTIONS4·6
4.5 .DOUBLE OPERAND INSTRUCTIONS 4·22
4.6' PROGRAM CONTROL INSTRUCTIONS 4·36
4.7 MISCELLANEOUS 4·74

CHAPTER 5 PROGRAMMING TECHNIQUES 5·1

5.1 THE STACK .. 5·1
5.2 SUBROUTINE LINKAGE 5·5

5.2.1 Subroutine Calls 5·5
5.2.2 Argument Transmission 5·6
5.2.3 Subroutine Return .. 5·9
5.2.4 PDP·l1 Subroutine Advantage 5·9

5.3 INTERRUPTS.. 5·9
5.3.1 General Principles .. 5·9
5.3.2 Nesting 5·10

5.4 REENTRANCY .. 5·13
5.5 POSITION INDEPENDENT CODE 5·15
5.6 CO·ROUTINES 5·16
5.7 MULTI·PROGRAMMING .. 5·17

5.7.1 Control Information .. 5·17
5.7.2 Data .. 5·17
5.7.3 Processor Status Word 5·17

iv

CHAPTER 6 MEMORY MANAGEMENT

6.1 PDP-ll FAMILY BASIC ADDRESSING LOGIC 6-1
6.2 VIRTUAL ADDRESSING 6-2
6.3 INTERRUPT CONDITIONS UNDER MANAGEMENT

CONTROL """""""""""""''''''''''''''''''''''' , 6-2
6.4 CONSTRUCTION OF A PHYSICAL ADDRESS 6·3
6.5 MANAGEMENT REGISTERS ... 6-4

6.5.1 Page Address Register.. 6-5
6.5.2 Page Descriptor Register 6-5

6.6 FAULT REGISTERS 6-7
6.6.1 Status Register #0 ... 6-7
6.6.2 Status Register #2 ... 6-8

CHAPTER 7 INTERNAL PROCESSOR OPTIONS

7.1 GENERAL ... 7-1
7.2 EIS OPTION ... 7-1
7.3 FLOATING POINT OPTION ... 7-3
7.4 STACK LIMIT OPTION 7-5

CHAPTER 8 CONSOLE OPERATION

8.1 CONSOLE ELEMENTS 8-1
8.2 STATUS INDICATORS ... 8·2
8.3 CONSOLE SWITCHES .. 8-3
8.4 DISPLAYS ... 8·4

CHAPTER 9 SPECIFICATIONS

9.1 PACKAGING ... 9-1
9.2 CPU OPERATING SPECIFICATIONS 9-1
9.3 OTHER EQUIPMENT ... 9-1
9.4 PDP-ll FAMILY OF COMPUTERS 9-4

Appendix A Instruction Set Processor .. A-I

Appendix B Memory Map .. ,................... B·1

Appendix C PDP-ll/40 Instruction Timing C-1

Appendix D Instruction Index and Numerical Op Code List D-1

Appendix E Summary of PDPll Instructions E-1

v

vi

CHAPTER 1

INTRODUCTION

1.1 GENERAL
The PDP·l1 family includes several central processors, a large number
of peripheral devices and options, and extensive software. PDP·l1 com·
puters have similar architecture and are hardware and software upwards
compatible, although each machine has some of its own characteristics.
New systems will be compatible with existing family members. The user
can choose the system which is most suitable for his application, but as
needs change or grow he can easily add or change hardware.

This Handbook describes the PDP·11/40, one of the latest computers in
the PDP·l1 family from Digital Equipment Corporation (DEC). This
powerful, low· priced machine is packaged in a 21-" front panel slide
chassis, allowing convenient access and expansion when mounted in a
standard rack. The PDP·ll/40 was designed to fit a broad range of
applications, from small stand alone situations where the computer con·
sists of only aK of memory and a processor, to large multi·user, multi·
task applications requiring up to 124K of addressable memory space.
Among its major features are a fast central processor with a choice of
floating point and sophisticated memory management, both of which are
hardware options.

Some of the PDP·11/40 features are:
• 16·bit word (two a·bit bytes)

direct addressing of 32K 16·bit words or 64K a·bit bytes (K = 1024)
• Word or byte processing

very efficient handling of a·bit characters
• Asynchronous operation

systems run at their highest possible speed, replacement with faster
devices means faster operation with no other hardware or software
changes

• Modular component design
extreme ease and flexibility in configuring systems

• Stack Processing
hardware sequential memory manipulation makes it easy to handle
structured data, subroutines, and interrupts

1·1

• 8 fast general-purpose registers
very fast integrated circuits used in tera:tively for instruction processing

• Automatic priority processing
four-line, multi-level system is dynamically alterable

• Vectored interrupts
fast interrupt response without device polling

• Single & double operand instructions
powerful and convenient set of micro-programmed instructions

DEC References
The following publications contain supplementary and useful information:

Title

PDP-ll Peripherals and Interfacing
Handbook

PDP-ll UNIBUS Interface Manual

Introduction to Programming

Small Computer Handbook

1.2 GENERAL CHARACTERISTICS
1.2.1 The UNIBUS
All computer system components and peripherals connect to and com­
municate with each other on a single high-speed bus known as the
UNIBUS-the key to the PDP-ll's many strengths_ Since all system ele­
ments, including the central processor, communicate with each other in
identical fashion via the UNIBUS, the processor has the same easy ac­
cess to peripherals as it has to memory.

Figure 1-1 PDP-ll System Simplified Block Diagram

With bidirectional and asynchronous communications on the UNIBUS,
devices can send, receive, and exchange data independently without
processor intervention. For example, a cathode ray tube (CRT) display
can refresh itself from a disk file while the central processor unit (CPU)
attends to other tasks. Because it is asynchronous, the UNIBUS is com­
patible with devices operating over a wide range of speeds.

Device communications on the UNIBUS are interlocked_ For each com­
mand issued by a "master" device, a response signal is received from a

1-2

"slave" completing the data transfer. Device·to·device communication
is completely independent of physical bus length and the response times
of master and slave devices.

Interfaces to the UNIBUS are not time-dependent; there are no pulse­
width or rise-time restrictions to worry about. The maximum transfer rate
on the UNIBUS is one 16-bit word every 400 nanoseconds, or 2,500,000
words per second.

Input/output devices transferring directly to or from memory are given
highest priority and may request bus mastership and steal bus and mem­
ory cycles during instruction operations. The processor resumes opera­
tion immediately after the memory transfer. Multiple devices can operate
simultaneously at maximum direct memory access (DMA) rates by
"stealing" bus cycles.

1.2.2 Central Processor
The central processor, connected to the UNIBUS as a subsystem, con­
trols the time allocation of the UNIBUS for peripherals and performs
arithmetic and logic operations and instruction decoding. It contains
multiple high-speed general-purpose registers which can be used as accu­
mulators, address pointers, index registers, and other specialized func­
tions. The processor can perform data transfers directly between I/O
devices and memory without disturbing the processor registers; does
both single- and double-operand addressing and handles both 16-bit word
and 8-bit byte data.

Instruction Set
The instruction complement uses the flexibility of the general-purpose
registers to provide over 400 powerful hard-wired instructions-the most
comprehensive and powerful instruction repertoire of any computer in
the 16-bit class. Unlike conventional 16-bit computers, which usually
have three classes of instructions (memory reference instructions, oper­
ate or AC control instructions and I/O instructions) a" operations in the
PDP-l1 are accomplished with one set of instructions. Since peripheral
device registers can be manipulated as flexibly as core memory by the
central processor, instructions that are used to manipulate data in core
memory may be used equally we" for data in peripheral device registers.
For example, data in an external device register can be tested or modified
directly by the CPU, without bringing it into memory or disturbing the
general registers. One can add data directly to a peripheral device reg­
ister, or compare logica"y or arithmetically contents with a mask and
branch. Thus a" PDP-l1 instructions can be used to create a new dimen­
sion in the treatment of computer I/O and the need for a special class of
I/O instructions is eliminated.

The basic order code of the PDP-l1 uses both single and double operand
address instructions for words or bytes. The PDP-l1 therefore performs
very efficiently in one step, such operations as adding or subtracting two
operands, or moving an operand from one location to another.

ADD A,B

PDP·ll Approach

;add contents of location A to loca­
tion B, store result at location B

1-3

LOA A

ADD B

STA B

Priority Interrupts

Conventional Approach

;Ioad contents of memory location A
into AC

;add contents of memory location B to
AC

;store result at location B

A mUlti-level automatic priority interrupt system permits the processor
to respond automatically to conditions outside the system_ Any number
of separate devices can be attached to each level.

Each peripheral device in the PDP-ll system has a hardware pointer to
its own pair of memory words (one points to the devices's service rou­
tine, and the other contains the new processor status information)_ This
unique identification eliminates the need for polling of devices to identify
an interrupt, since the interrupt servicing hardware selects and begins
executing the appropriate service routine after having automatically
saved the status of the interrupted program segment_

The devices' interrupt priority and service routine priority are independ­
ent_ This allows adjustment of system behavior in response to_ real-time
conditions, by dynamically changing the priority level of the service
routine_

The interrupt system allows the processor to continually compare its
own programmable priority with the priority of any interrupting devices
and to acknowledge the device with the highest level above the proces­
sors priority level. Servicing an interrupt for a device can be interrupted
for servicing a higher priority device_ Service to the lower priority device
is resumed automatically upon completion of the higher level servicing_
Such a process, called nested interrupt servicing, can be carried out to
any level without requiring the software to save and restore processor
status at each level.

Reentrant Code
Both the interrupt handling hardware and the subroutine call hardware
facilitate writing reentrant code for the PDP-ll_ This type of code allows
a single copy of a given subroutine or program to be shared by more
than one process or task_ This reduces the amount of core needed for
multi-task applications such as the concurrent servicing of many peri­
pheral devices_

Addressing
Much of the power of the PDP-ll is derived from its wide range of ad­
dressing capabilities_ PDP-ll addressing modes include sequential ad­
dressing forwards or backwards, address indexing, indirect addressing,
IS-bit word addressing, a-bit byte addressing, and stack addressing_
Variable length instruction formating allows a minimum number of bits
to be used for each addressing mode_ This results in efficient use of
program storage space_

1-4

Stacks
In the PDP·U, a stack is a temporary data storage area which allows a
program to make efficient use of frequently accessed data. The stack is
used automatically by program interrupts, subroutine calls, and trap in·
structions. When the processor is interrupted, the central processor
status word and the program counter are saved (pushed) onto the stack
area, while the processor services the interrupting device. A new status
word is then automatically acquired from an area in core memory which
is reserved for interrupt instructions (vector area). A return from the
interrupt instruction restores the original processor status and returns to
the interrupted program without software intervention.

Direct Memory Access
All PDP·U's provide for direct access to memory. Any number of DMA
devices may be attached to the UNIBUS. Maximum priority is given to
DMA devices thus allowing memory data storage or retrieval' at memory
cycle speeds. Latency is minimized by the organization and logic of the
UNIBUS, which samples requests and priorities in parallel with data
transfers.

Power Fail and Restart
The PDp·U's power fail and restart system not only protects memory
when power fails, but also allows the user to save the existing program
location and status (including all dynamic registers), thus preventing
harm to devices, and eliminating the need for reloading programs. Auto·
matic restart is accomplished when power returns to safe operating
levels, enabling remote or unattended operations of PDP·U systems. All
standard peripherals in the PDp·ll family are included in the systemized
power·fail protect/ restart feature.

1.2.3 Memories
Memories with different ranges of speeds and various characteristics can
be freely mixed and interchanged in a single PDP·ll system. Thus as
memory needs expand and as memory technology grows, a PDP·U can
evolve with none of the growing pains and obsolescence associated with
conventional computers.

1.2.4 Floating Point (optional)
A Floating Point Unit functions as an integral part of the PDP·ll/40
processor, not as a bus device.

1.2.5 Memory Management (optional)
PDP·ll/40 Memory Management is an advanced memory extension,
relocation, and protection feature which will:

extend memory space from 28K to 124K words
allow efficient segmentation of core for multi·user environments
provide effective protection of memory segments in multi·user en·
vironments

1.3 Peripherals/Options
Digital Equipment Corporation (DEC) designs and manufactures many of
the peripheral devices offered with PDP·1l's. As a designer and manu·

1·5

facturer of peripherals, DEC can offer extremely reliable equipment, lower
prices, more choice and quantity discounts.

1.3.1 I/O Devices
All PDP·ll systems are available with Teletypes as standard equipment.
However, their I/O capabilities can be increased with high speed paper
tape reader·punches, line printers, card readers or alphanumeric display
terminals. The LA30 DECwriter, a totally DEC·designed and built tele·
printer, can serve as an alternative to the Teletype. It has several ad·
vantages over standard electromechanical typewriter terminals, including
higher speed, fewer mechanical parts and very quiet operation.

PDp·ll I/O devices include:

DECterminal alphanumeric display
DECwriter teleprinter
High Speed Line Printers
High Speed Paper Tape Reader and Punch
Teletypes
Card Readers
Synchronous and Asynchronous Communications Interfaces

1.3.2 Storage Devices
Storage devices range from convenient, small· reel magnetic tape (DEC·
tape) units to mass storage magnetic tapes and disk memories. With the
UNIBUS, a large number of storage devices, in any combination, may be
connected to a PDp·ll system. TU56 DECtapes, highly reliable tape units
with small tape reels, designed and built by DEC, are ideal for applica·
tions with modest storage requirements. Each DECtape provides storage
for 144K 16-bit words. For applications which require handling of large
volumes of data, DEC offers the industry compatible TUI0 Magtape.

Disk storage include fixed·head disk units and moving-head removable
cartridge and disk pack units. These devices range from the 64K RS64
DECdisk memory, to the RP02 Disk Pack system which can store up to
93.6 million words.

PDP-ll storage devices include:

DECtape
Magtape
RS64 64K-256K word fixed-head disk
RSll 256K-2M word fixed-head disk
RK05 I-2M word moving-head disk
RP02 10M word moving-head disk

1.3.3 Bus Options
Several options (bus switches, bus extenders) are available for extending
the UNIBUS or for configuring multi-processor or shared-peripheral
systems.

1.4 SOFTWARE
Extensive software, consisting of disk and paper tape systems, is ayail·

1·6

able for PDp-ll Family systems. The larger the PDP-ll configuration, the
larger and more comprehensive the software package that comes with it.

1.4.1 Paper Tape Software
The Paper Tape Software system includes:

Editor (ED11)
Assembler (PAll I)
Loaders
On·line Debugging Technique (ODT11)
Input·Output Executive (lOX)
Math Package (FPP11)

1.4.2 Disk Operating System Software
The Disk Operating System software includes:

Text Editor (ED11)
MACRO Assembler (MACRO-11)
Linker (LlNK11)
File Utilities Packages (PIP)
On Line Debugging Technique (ODT11)
Librarian (LlBRll)

1.4.3 Higher Level Languages
PDp-ll users needing an interactive conversational language can use
BASIC which can be run on the paper tape software system with only
4,096 words of core memory. A multi· user extension of BASIC is avail·
able so up to eight users can access a PDP-ll with only 8K of core.

BATCH
The BATCH System adds job stream processing to the DOS System.

RST5-11
The PDp-ll Resource Timesharing System (RSTS-11) with BASIC·PLUS,
an enriched version of BASIC, is available for up to 16 terminal users.

FORTRAN
PDp-11 FORTRAN is an ANSI·standard FORTRAN IV compiler.

1.5 NUMBER SYSTEMS
Throughout this Handbook, 3 number systems will be used; octal, binary,
and decimal. So as not to clutter all numbers with subscripted bases,
the following general convention will be used:

Octal-for address locations, contents of addresses, and operation
codes for instructions; in most cases there will be words of 6
octal digits

Binary-for describing a single binary element; when referring to
a PDp-11 word it will be 16 bits long

Decimal-for all normal referencing to quantities

1-7

Octal Representation

:-:--\15114 13 12111 10 91 8 7 615 4 3 t 2 I 0 \ PDP-II word
~~t==::~~\ I ! J~ ______ r

o o o o o o 6-digit octal

The 16-bit PDP-ll word can be represented conveniently as a 6-digit
octal word. Bit 15, the Most Significant Bit (MSB), is used directly as
the MSB of the octal word. The other 5 octal digits are formed from the
corresponding groups of 3 bits in the binary word.

When an extended address of 18 bits is used (shown later in the Hand­
book), the MSB of the octal word is formed from bits 17, 16, and 15.
For unsigned numbers, the correspondence between decimal and octal is:

Decimal

o
(216_1)= 65,535
(218-1)=262,143

2's Complement Numbers

Octal

000000
177777
777777

(l6-bit limit)
(l8-bit limit)

In this system, the first bit (bit 15) is used to indicate the sign;

O=positive
l=negative

For positive numbers, the other 15 bits represent the magnitude directly;
for negative numbers, the magnitude is the 2's complement of the re­
maining 15 bits. (The 2's complement is equal t9 the l's complement
plus one.) The ordering of numbers is shown below:

Decimal 2's Complement (Octal)

Sign Bit Magnitude Bits
largest positive +32,767 0 77777

+32,766 0 77776

+1 0 00001
0 0 00000

-1 1 77777
-2 1 77776

-32,767 1 00001
most negative -32,768 1 00000

1-8

CHAPTER 2

SYSTEM ARCHITECTURE

2.1 SYSTEM DEFINITION

The PDp·ll/40 is a 16-bit, general-purpose, parallel logic computer using
2's complement arithmetic. The processor can directly address 32,768
16-bit words or 65,536 8-bit bytes.

The Central Processing Unit performs all arithmetic and logical opera­
tions required in the system. A Floating Point Unit mounts integrally into
the Central Processor as does a Memory Management Unit which pro­
vides a full memory managemnt facility through relocation and protec­
tion.

The PDP-ll/40 hardware has been optimized towards a multi-program­
ming environment and the processor therefore operates in two modes
(Kernel and User). By taking full advantage of this feature, a software
operating system can insure that no user (who is operating in User
mode) can cause a failure (crash) of the entire system. Full control of
the entire system is retained at the console or by an operator who is in
Kernel mode.

2.2 UNIBUS
The UNIBUS is a single, common path that connects the central proces­
sor, memory, and all peripherals. Addresses, data, and control informa­
tion are sent along the 56 lines of the bus.

The form of communication is the same for every device on the UNIBUS.
The processor uses the same set of signals to communicate with mem­
ory as with peripheral devices. Peripheral devices also use this set of
signals when communicating with the processor, memory or other pe­
ripheral devices. Each device, including memory locations, processor
registers, and peripheral device registers, is assigned an address on the
UNIBUS. Thus, peripheral device registers may be manipulated as flex­
ibly as core memory by the central processor. All the instructions that
can be applied to data in core memory can be applied equally well to
data in peripheral device registers. This is an especially powerful feature,
considering the special capability of PDP-ll instructions to process data
in any memory location as though it were an accumulator.

2.2.1 Bidirectional Lines
Most UNIBUS lines are bidirectional, so that the same signals that are
received as input can be driven as output. This means that a peripheral
device register can be either read or loaded by the central processor or

2-1

other peripheral devices; thus, the same register can be used for both
input and output functions.

2.2.2 Master-Slave Relation
Communication between two devices on the bus is in the form of a
master·slave relationship. At any point in time, there is one device that
has control of the bus. This controlling device is termed the "bus mas·
ter". The master device controls the bus when communicating with
another device on the bus, termed the "slave". A typical example of
this relationship is the processor, as master, fetching an instruction from
memory (which is always a slave). Another example is the disk, as
master, transferring data to memory, as slave. Master·slave relation·
ships are dynamic. The processor, for example, may pass bus control
to a disk. The disk, as master, could then communicate with a slave
memory bank.

Since the UNIBUS is used by the processor and all I/O devices, there is
a priority structure to determine which device gets control of the bus.
Every device on the UNIBUS which is capable of becoming bus master
is assigned a priority. When two devices, which are capable of becoming
a bus master, request use of the bus simultaneously, the device with
the higher priority will receive control.

2.2.3 Interlocked Communication
Communication on the UNIBUS is interlocked so that for each control
signal issued by the master device, there must be a response from the
slave in order to complete the transfer. Therefore, communication is
independent of the physical bus length (as far as timing is concerned)
and the response time of the master and slave devices. This asynchron·
ous operation precludes the need for synchronizing with, and waiting
for, clock pulses. Thus, each device is allowed to operate at its maximum
possible speed.

2.3 CENTRAL PROCESSOR
The PDP·ll/40 performs all arithmetic and logical operations required
in the system. It also acts as the arbitration unit for UNIBUS control by
regulating bus requests and transferring control of the bus to the reo
questing device with the highest priority.

Space is provided within the central processor for the following options:

Extended Instruction Set
Floating Point Unit
Memory Management Unit
Programmable Stack Limit

The machine operates in two modes; Kernel and User. When the machine
is in Kernel mode a program has complete control of the machine;
when in User mode the processor is inhibited from executing certain
instructions and can be denied direct access to the peripherals on the
system. This hardware feature can be used to provide complete execu·
tive protection in a multi· programming environment.

The central processor contains 8 general registers which can be used
as accumulators, index registers, or as stack pointers. A stack, as used

2·2

in the PDP-11, is an area of memory set aside by the programmer for
temporary storage or subroutine/ interrupt service linkage. A program can
add or delete words or bytes within the stack. The stack uses (he "Iast­
in, first-out" concept; that is, various items may be added to a stack
in sequential order and retrieved or deleted from the stack in reverse
order. On the PDP-11, a stack starts at the highest location reserved for
it and expands linearly downward to the lowest address as items are
added. Stacks are extremely useful for nesting programs, creating re­
entrant coding, and as temporary storage where a Last-In, First-Out
structure is desirable. One of the general registers is used as the PDP-
11 /40's Program Counter. Two others are used as Processor Stack
Pointers, one for each operational mode.

The CPU performs all of the computer's computation and logic opera­
tions in a parallel binary mode through step by step execution of indi­
vidual instructions.

2.3.1 General Registers
The general registers can be used for a variety of purposes; the uses
varying with requirements. The general registers can be used as accumu­
lators, index registers, autoincrement registers, autodecrement registers,
or as stack pOinters for temporary storage of data. Chapter 3 on Ad­
dressing describes these uses of the general registers in more detail.
Arithmetic operations can be from one general register to another, from
one memory or device register to another, or between memory or a de­
vice register and a general register.

GENERAL
REGISlERS R0

Rl

R2

R3

R4

R5

R6

KERNEL
STACK POINTER

R7

PROGRAM COUNTER

l(sP) R6

USER
STACK POINTER

(WITH MEMORY

I(pc) MANAGEMENT OPTION)

Figure 2-1 The General Registers

R7 is used as the machine's program counter (PC) and contains the
address of the next instruction to be executed. It is a general register

2-3

normally used only for addressing purposes and not as an accumulator
for arithmetic operations.

The R6 register is normally used as the Processor Stack Pointer indicat·
ing the last entry in the appropriate stack (a common temporary storage
area with "Last-in First-Out" characteristics). The two stacks (with the
Memory Management option) are called the Kernel Stack and the User
Stack. When the Central Processor is operating in Kernel mode it uses
the Kernel Stack and in User mode, the User Stack. When an interrupt
or trap occurs, the PDP·ll/40 automatically saves its current status on
the Processor Stack selected by the service routine. This stack· based
architecture facilitates reentrant programming.

2.3.2 Processor Status Word

15 14131211 8154

CURRENTM~t ~l
~V~MO~~----~-
PRIORITY ___________________________ --l

CONDITION CODES

• MODE: 00-KERNEL
II =USER

Figure 2-2 Processor Status Word

3 2 I 0

T
The Processor Status Word (PS), located at location 777776, contains
information on the current status of the PDP-ll/40. This information in­
cludes the current processor priority: current and previous operational
modes; the condition codes describing the results of the last instruction;
and an indicator for detecting the execution of an instruction to be
trapped during program debugging.

Modes (with Memory Management Option)
Mode information includes the present mode, either User or Kernel (bits
15, 14) and the mode the machine was in prior to the last interrupt or
trap (bits 13, 12).

The two modes permit a fully protected environment for a multi­
programming system by providing the user with two distinct sets of
Processor Stacks and Memory Management Registers for memory map­
ping. In User mode a program is inhibited from executing a "HALT" in­
struction and the processor will trap through location 10 if an attempt
is made to execute this instruction. Furthermore, the processor will
ignore the "RESET" instruction. In Kernel mode, the processor will ex­
ecute all instructions.

A program operating in Kernel mode can map users' programs anywhere
in core and thus explicitly protect key areas (including the device reg­
istersand the Processor Status Word) from the User operating environ­
ment.

2-4

Processor Priority
The Central Processor operates at anyone of eight levels of priority, 0-7.
When the CPU is operating at level 7 an external device cannot interrupt
it with a request for service. The Central Processor must be operating
at a lower priority than the external device's request in order for the
interruption to take effect. The current priority is maintained in the
processor status word (bits 5-7). The 8 processor levels provide an ef­
fective interrupt mask.

Condition Codes
The condition codes contain information on the result of the last CPU
operation.

The bits are set as follows:

Z = I, if the result was zero
N = I, if the result was negative
C = I, if the operation resulted in a carry from the MSB
V = I, if the operation resulted in an· arithmetic overflow

Trap
The trap bit (T) can be set or cleared under program control. When set,
a processor trap will occur through location 14 on completion of instruc­
tion execution and a new Processor Status Word will be loaded. This bit
is especially useful for debugging programs as it provides an efficient
method of installing breakpoints.

Interrupts and trap instructions both automatically cause the previous
Processor Status Word and Program Counter to be saved and replaced
by the new values corresponding to those required by the routine ser­
vicing the interrupt or trap. The user can, thus, cause the central proces­
sor to automatically switch modes, or disable the Trap Bit whenever a
trap or interrupt occurs.

2.3.3 Stack Register (with Memory Management option)
All PDP-U's have a Stack Overflow Boundary at location 400,. The Ker­
nel Stack Boundary, in the PDP-11/40 is a variable boundary set through
the Stack Limit Register found at location 777774.

Once the Kernel stack exceeds its boundary, the Processor will complete
the current instruction and then trap to location 4 (Yellow or Warning
Stack Violation). If, for some reason, the program persists beyond the
I6-word limit, the processor will abort the offending instruction, set the
stack point (R6) to 4 and trap to location 4 (Red or Fatal Stack Viola­
tion).

2.4 EXTENDED INSTRUCTION SET & FLOATING POINT
The Extended Instruction Set (EIS) option fits within the Central Pro­
cessor mounting assembly. It provides the capability of performing hard­
ware fixed point arithmetic and allows direct implementation of multiply,
divide, and multiple shifting. A double-precision 32-bit word can be
handled.

The Floating Point Unit, which uses the EIS as a prerequisite, fits within
the CPU mounting assembly. This option enables the execution of 4

2-5

special instructions for floating point addition, subtraction, multiplica­
tion, and division_ The EIS and Floating Point hardware provide signifi­
cant time and coding improvement over comparable software routines_

2.5 CORE MEMORY
Memory Organization
A memory can be viewed as a series of locations, with a number (ad­
dress) assigned to each location. Thus a 4096-word PDP-ll memory
could be shown as in Figure 2-3.

OCTAl.
AOORESSES

000000

000001

000002

000003

000004

017774

017775

017776

017777

I.OCATIONS

........ -~

Figure 2-3 Memory Addresses

Because PDP-ll memories are designed to accommodate both 16-bit
words and 8-bit bytes, the total number of addresses does not corre­
spond to the number of words. A 4096,word memory can contain 8,192
bytes and consists of 017777 octal locations. Words always start at even­
numbered locations.

A PDP-ll word is divided into a high byte and a low byte as shown in
Figure 2-4.

15

HIGH BYTE
I I

B 7

LOW BYTE

Figure 2-4 High & Low Byte

o

Low bytes are stored at even-numbered memory locations and high
bytes at odd-numbered memory locations. Thus it is convenient to view
the PDP-ll memory as shown in Figure 2-5.

2-6

00000'

000003

000005

I

-

BYTE

HIGH

HIGH

HIGH

IS-BIT WORD
~

B

LOW

LOW

LOW

,
000000

000002

000004

037773 HIGH LOW 037772
037775 --HI-G-H --t---LO-W--; 037774

037777 L-_.;.;H;,;;1G;,;;H _--, __ ~LO_W_--, 037776

WORD ORGANIZATION

OR

8- BIT BYTE ,-------.,
[I LOW 000000

WORO'l -....;H"",G""H--t 000001

{
LOW 000002

WORD -..;:H;,;;,G~H--; 000003

{t---L"':"OW--'10ooo04

{
{

---~.,....

HIGH

LOW

HIGH

BYTE ORGANIZATION

037775

037776

037777

Figure 2·5 Word and Byte Addresses

Certain memory locations have been reserved by the system for inter'
rupt and trap handling, processor stacks, general registers, and peripheral
device registers. K.ernel virtual addresses from 0 to 370. are always re­
served and those to 777. are reserved on large system configurations for
traps and interrupt handling. The top 4,096 word addresses (from
770000. up) have been reserved for general registers and peripheral
devices.

A 16·bit word used for byte addressing can address a maximum of 32K
words. However, the top 4,096 word locations are traditionally reserved
for peripheral and register addresses and the user therefore has 28K of
core to program. To expand above 28K the user must use the Memory
Management Unit. This device provides an 18·bit effective memory ad·
dress which permits addressing up to 124K words of actual memory.
The unit also provides a facility which permits individual user programs
up to 32K in length and provides a relocation and protection facility
through two sets of 8 registers.

Full 16·bit words or 8-bit bytes of information can be transferred on the
bus between a master and a slave. The information can be instructions,
addresses, or data. This type of operation occurs when the processor, as
master, is fetching instructions, operands, and data from memory, and
storing the results into memory after execution of instructions. Direct
data transfers occur between a peripheral device control and memory.

2.6 AUTOMATIC PRIORITY INTERRUPTS
When a device (other than the central processor) is capable of becom·
ing bus master and requests use of the bus, it is generally for one of
two purposes:

1. to make a non· processor transfer of data directly to or from
memory

2·7

2. to interrupt a program execution and force the processor to
go to a specific address where an interrupt service routine is
located.

Direct memory or direct data transfers can be accomplished between
any two peripherals without processor supervision. These non·processor
request transfers, called NPR level data transfers, are usually made for
Direct Memory Access (memory to/from mass storage) or direct device
transfers (disk refreshing a CRT display).

The PDp·II has a multi-line, mUlti-level priority interrupt structure.

DEVICE
CP REQUEST

PRIORITY LINE

4--NPR-------,--------.---------,------------

B~5k]
_ BR7 -------,-----------,---------------------- - - - - -

88
~

4--BR6 -----::::r--,--------=-.r-------------------------~

~ ~ :
~ _BR'--[f]"--,. --[fJ-r""02 --[fJ""r-o, --- -- --~

-BR4-----.[£]-[£]--,---HSP -rdJ-[f].----TP -----
INCREASING PRIORITY

Figure 2-6 UNIBUS Priority

Bus requests from external devices can be made on one of five request
lines. Highest priority is assigned to non-processor request (NPR). These
are direct memory access type transfers, and are honored by the pro­
cessor between bus cycles of an instruction execution.

Bus request 7 (BR7) is the next highest priority, and BR4 is the lowest.
Levels below BR4 are not implemented in the PDP·ll/40. They are used
in larger machines (PDp·ll/45). Thus, a processor priority of 3, 2, I, or
o will have the same effect, i.e. all interrupt requests will be granted.

BR7 through BR4 priority requests are honored by the processor between
instructions. The priority is hardwired into each device except for the
processor, which is programmable. For example, Teletypes are normally
assigned to Bus Request line 4.

The processor's priority can be set under program control to one of eight
levels using bits 7, 6, and 5 in the processor status register. These bits
set a priority level that inhibits granting of bus requests on lower levels

2-8

or on the same level. When the processor's priority is set to a level, for
example PS6, all bus requests on BR6 and below are ignored.

When more than one device is connected to the same bus request (BR)
line, a device nearer the central processor has a higher priority than a
device farther away. Any number of devices can be connected to a given
BR or NPR line.

Thus the priority system is two·dimensional and provides each device
with a unique priority. Although its priority level is fixed, its actual
priority changes as the processor priority varies. Also, each device may
be dynamically, selectively enabled or disabled under program control.

Once a device other than the processor has control of the bus, it may
do one of two types of operations: data transfers or interrupt operations.

NPR Data Transfers· NPR data transfers can be made between any two
peripheral devices without the supervision of the processor. Normally,
NPR transfers are between a mass storage device, such as a disk, and
core memory. The structure of the bus also permits device-to-device
transfers, allowing customer-designed peripheral controllers to access
other devices, such as disks, directly.

An NPR device has very fast access to the bus and can transfer at high
data rates once it has control. The processor state is not affected by
the transfer; therefore the processor can relinquish control while an in·
struction is in progress. This can occur at the end of any bus cycles
except in between a read·modify-write sequence. An NPR device can gain
control of the bus in 2.6 microseconds or less. An NPR device in control
of the bus may transfer 16-bit words from memory at memory speed_

2.6.1 Using the Interrupts
Devices that gain bus control with one of the Bus Request lines
(BR 7 . BR 4), can take full advantage of the Central Processor by re­
questing an interrupt. In this way, the entire instruction set is available
for manipulating data and status registers.

When a service routine is to be run, the current task being performed
by the central processor is interrupted, and the device service routine is
initiated. Once the request has been satisfied, the Processor returns to
its former task.

2.6.2 Interrupt Procedure
Interrupt handling is automatic in the PDP-ll/40. No device polling is
required to determine which service routine to execute. The operations
required to service an interrupt are as follows:

1. Processor relinquishes control of the bus, priorities permitting.

2. When a master gains control, it sends the processor an interrupt com­
mand and an unique memory address which contains the address of
the device's service routine in Kernel virtual address space, called
the interrupt vector address. Immediately following this pointer ad­
dress is a word (located at vector address +2) which is to be used
as a new Processor Status Word.

3. The processor stores the current Processor Status Word (PS) and the
current Program Counter (PC) into CPU temporary registers.

2-9

4. The new PC and PS (the interrupt vector) are taken from the specified
address. The old PS and PC are then pushed onto the current stack
as indicated by bits 15,14 of the new PS and the previous mode in
effect is stored in bits 13,12 of the new PS. The service routine is th€n
initiated.

5. The device service routine can cause the processor to resume the
interrupted process by executing the Return from Interrupt (RTI or
RTT) instruction, described in Chapter 4, which pops the two top
words from the current processor stack and uses them to load the
PC and PS registers.

This instruction requires 2.9 ~tsec providing there is no NPR request.

A device routine can be interrupted by a higher priority bus request any
time after the new PC and PS have been loaded. If such an interrupt
occurs, the PC and the PS of the service routine are automatically stored
in the temporary registers and then pushed onto the new current stack,
and the new device routine is initiated.

2.6.3 Interrupt Servicing
Every hardware device capable of interrupting the processor has a unique
set of locations (2 words) reserved for its interrupt vector. The first word
contains the location of the device's service routine, and the second, the
Processor Status Word that is to be used by the service routine. Through
proper use of the PS, the programmer can switch the operational mode
of the processor, and modify the Processor's Priority level to mask out
lower level interrupts.

2.7 PROCESSOR TRAPS
There are a series of errors and programming conditions which will
cause the Central Processor to trap to a set of fixed locations. These
include Power Failure, Odd Addressing Errors, Stack Errors, Timeout
Errors, Memory Parity Errors, Memory Management Violations, Floating
Point Processor Exception Traps, Use of Reserved Instructions, Use of
the T bit in the Processor Status Word, and use of the lOT, EMT, and
TRAP instructions.

2.7.1 Power Failure
Whenever AC power drops below 95 volts for 115v power (190 volts for
230v) or outside a limit of 47 to 63 Hz, 'IS measured by DC power, the
power fail sequence is initiated. The Central Processor automatically
traps to location 24 and the power fail program has 2 msec. to save
all volatile information (data in registers), and condition peripherals for
power fail.

When power is restored the processor traps to location 24 and executes
the power up routine to restore the machine to its state prior to power
failure.

2.7.2 Odd Addressing Errors
This error occurs whenever a program attempts to execute a word instruc·

2·10

tion on an odd address (in the middle of a word boundary). The in­
struction is aborted and the CPU traps through location 4.

2.7.3 Time-out Errors
These errors occur when a Master Synchronization pulse is placed on
the UNIBUS and there is no slave pulse within 15~sec. This error usually
occurs in attempts to address non-existent memory or peripherals.

The offending instruction is aborted and the processor traps through
location 4.

2.7.4 Reserved Instructions
There is a set of illegal and reserved instructions which cause the pro­
cessor to trap through location 10.

2.7.5 Trap Handling
Appendix B includes a list of the reserved Trap Vector locations, and
System Error Definitions which cause processor traps. When a trap oc­
curs, the processor follows the same procedure for traps as it does for
interrupts (saving the PC and PS on the new Processor Stack etc. . . .)

In cases where traps and interrupts occur concurrently, the processor
will service the conditions according to the following priority sequence.

Odd Addressing Error

Fatal Stack Violations (Red)

Memory Management Violations

Timeout Errors

Trap Instructions

Trace Trap

Warning Stack Violation (Yellow)

Power Failure

Processor Priority level 7

Floating Point Exception Trap

BR 7

•
•
•
•
•
•
•
•
•
•

Processor 0

2-11

CHAPTER 3

ADDRESSING MODES

Data stored in memory must be accessed, and manipulated. Data handling is
specified by a PDp·l1 instruction (MOV, ADD etc.) which usually indicates:

the function (operation code)

a general purpose register to be used when locating the source operand
and/or a general purpose register to be used when locating the destination
operand.

an addressing mode (to specify how the selected register(s) is/are to be
used)

Since a large portion of the data handled by a computer is usually structured (in
character strings, in arrays, in lists etc.), the PDp· 11 has been designed to handle
structured data efficiently and flexibly. The general registers may be used with an
instruction in any of the following ways:

as accumulators. The data to be manipulated resides within the register.

as pointers. The contents of the register are the address of the operand,
rather than the operand itself.

as pointers which automatically step through core locations. Automatically
stepping forward through consecutive core locations is known as au·
toincrement addressing; automatically stepping backwards is known as
autodecrement addressing. These modes are particularly useful for pro·
cessing tabular data.

as index registers. In this instance the contents of the register, and the
word following the instruction are summed to produce the address of the
operand. This allows easy access to variable entries in a list.

PDP·l1's also have instruction addressing mode combinations which facilitate
temporary data storage structures for convenient handling of data which must be
frequently accessed. This is known as the" stack."

In the PDP·11 any register can be used as a "stack pointer"under program con·
trol, however, certain instructions associated with subroutine linkage and inter·
rupt service automatically use Register 6 as a "hardware stack pointer". For this
reason R6 is frequently referred to as the "SP"

R7 is used by the processor as its program counter (PC). It is recommended that
R7 not be used as a stack pointer.

An important PDp· 11 /40 feature, which must be considered in conjunction with
the addressing modes, is the register arrangement;

3·1

Six general purpose registers (RO-R5)

A hardware stack pointer (R6), (2 with Memory Management)

A Program Counter (PC) register (R7).

Instruction mnemonics and address mode symbols are sufficient for
writing machine language programs. The programmer need not be con­
cerned about conversion to binary digits; this is accomplished auto­
matically by the PDP-II MACRO Assembler.

3.1 SINGLE OPERAND ADDRESSING
The instruction format for all single operand instructions (such as clear,
increment, test) is:

MODE Rn

'-'5-=---____ ~~-----6'--'J ,5 4 3 2 0 'i ~f~--~I
OP CODE ___ --.J_

DESTINATION ADDRESS ---------------'

Bits 15 through 6 specify the operation code that defines the type of in­
struction to be executed.

Bits. 5 through 0 form a six-bit field called the destination address field.
This consists of two subfields:

a) Bits 0 through 2 specify which of the eight general purpose registers
is to be referenced by this instruction word.

b) Bits 3 through 5 specify how the selected register will be used (ad­
dress mode). Bit 3 indicates direct or deferred (indirect) addressing.

3.2 DOUBLE OPERAND ADDRESSING
Operations which imply two operands (such as add, subtract, move and
compare) are handled by instructions that specify two addresses. The
first operand is called the source operand, the second the destination
operand. Bit assignments in the source and destination address fields
may specify different modes and different registers. The Instruction
format for the double operand instruction is:

3-2

OP CODE I MODE An MODE Rn

15 12 ,11 10 9 8 6 J ,5 4 0)

SOURCE ADDRESS--------1+ -1
DE"STiNATION ADDRESS------------1

The source address field is used to select the source operand, the first
operand. The destination is used similarly, and locates the second op·
erand and the result. For example, the instruction AOO A, B adds the
contents (source operand) of location A to the contents (destination
operand) of location B. After execution B will contain the result of the
addition and the contents of A will be unchanged.

Examples in this section and further in this chapter use the following
sample POP·ll instructions:

Mnemonic Oescription Octal Code

ClR clear (zero the specified destination) 005000

ClRB clear byte (zero the byte in the specified 105000
destination)

INC increment (add 1 to contents of destination) 005200

INCB increment byte (add 1 to the contents of 105200
destination byte)

COM complement (replace the contents of the 005100
destination by their logical complement;
each 0 bit is set and each 1 bit is cleared)

COMB complement byte (replace the contents of the 105100
destination byte by their logical complement;
each 0 bit is set and each 1 bit is cleared).

AOO add (add source operand to destination 065500
operand and store the result at destination
address)

00 = destination field (6 bits)

55 = source field (6 bits)

) = contents of

3·3

3.3 DIRECT ADDRESSING
The following table summarizes the four basic modes used with direct addressing.

DIRECT MODES

Mode Name Assembler Function
Syntax

0 Register Rn Register contains operand

2 Autoincrement (Rn)+ Register is used as a pointer to
sequential data then in·
cremented

4 Autodecrement -(Rn) Register is decremented and
then used as a pointer.

6 Index X(Rn) Value X is added to (Rn) to pro.
duce address of operand. Nei·
ther X nor (Rn) are modified.

3.3.1 Register Mode
OPR Rn

With register mode any of the general registers may be used as simple accumula·
tors and the operand is contained in the selected register. Since they are hard·
ware registers, within the processor, the general registers operate at high speeds
and provide speed advantages when used for operating on frequently·accessed
variables. The PDP·ll assembler interprets and assembles instructions of the
form OPR Rn as register mode operations. Rn represents a general register name
or number and OPR is used to represent a general instruction mnemonic. As·
sembler syntax requires that a general register be defined as follows:

RO=%Q

RI-%l

(% sign indicates register definition)

R2 ... %2, etc.

Registers are typically referred to by name as RO, RI, R2, R3, R4, R5, R6 and R7.
However R6 and R7 are also referred to as SP and pc, respectively.

Regist .. Mode Examples
(all numbers in octal)

Symbolic

1. INCR3

Oper_tion:

Octal Code Instruction Name

005203 Increment

Add one to the contents of general register 3

3·4

10000,0,0 oloojolo I~~
~,~'5~~~~~~~~~--~6~"\5'-'4-'3'~~~~_-~~~0,

;.

OP COOE ONC(005Z».-J r
OESTINATION FIELD------------'

2. ADDR2,R4 060204 Add

R0

R'

RZ

R3

R4

R5

R6(SP)

R7 (PC)

Operation: Add the contents of R2 to the contents of R4.

3. COMBR4

Operation:

BEFORE AFTER

R21 000002 R21 000002

R41 000004 R41 000006

105104 Complement Byte

One's complement bits 0-7 (byte) in R4. (When
general registers are used, byte instructionS' only
operate on bits 0·7; i.e. byte 0 of the register)

BEFORE AFTER

1141 022222 R41 022'55

3.3.2 Autoincrwnent Mode
OPR (Rn) +

This mode provides for automatic stepping of a pointer through sequential ele­
ments of a table of operands. It assumes the contents of the selected general reg.
ister to be the address of the operand. Contents of registers are stepped (by one
for bytes, by two for words, always by two for R6 and R7) to address the next se.
quentiallocation. The autoincrement mode is especially useful for array process·
ing and stacks. It will access an element of a table and then step the pointer to
address the next operand in the table. Although most useful for table handling,
this mode is completely general and may be used for a variety of purposes.

3·5

Autoincrement Mode Examples
Symbolic Octal Code Instruction Name

1. CLR (R5) +

Operation:

BEFORE
ADDRESS SPACE

005025 Clear

Use contents of R5 as the address of the operand.
Clear selected operand and then increment the
contents of R5 by two.

REGISTER
AFTER
ADDRESS SPACE REGISTER

20000 I 005025 "5 I 030000 120000 005025 "5 1 __ 0_3_00_0_2--1

30Cr= '111"6
~

2. CLRB(R5)+

Operation:

BEFORE
AOORESS SPACE

30000 000000

105025 Clear Byte

Use contents of R5 as the address of the operand.
Clear selected byte operand and then increment
the contents of R5 by one.

AFTER

REGISTER ADDRESS SPACE REGISTER

20000 '05025 "5 1 030000 1 20000 105025 "51 __ 0_3_00_0_'_-'

30000

30002

3.

'" ,~~

ADD (R2) + ,R4 062204

30000

30002

Add

111 000

Operation: The contents of R2 are used as the address of the
operand which is added to the contents of R4. R2
is then incremented by two.

BEFORE AFTER
ADDRESS SPACE REGISTERS ADDRESS SPACES REGISTERS

'0000 10000 1 __ 06_2_2_04_--, "2 L[_-,'..;.OOO.:-0_4_~ 062204 ~002

...------- "4 1 0'0000

/r------.
'00002 Lf _-,o,-'..;.oo:..;o-,o_...J

"4 1L---,0..;.20,-0-,0..;.0_...J

100002 LI __ O_IO_0_0_0_-,

3-6

3.3.3 Autodecrement Mode
OPR-(Rn)

This mode is useful for processing data in a list in reverse direction. The contents
of the selected general register are decremented (by two for word instructions, by
one for byte instructions) and then used as the address of the operand. The
choice of postincrement, predecrement features for the PDP· 11 were not arbitrary
decisions, but were intended to facilitate hardware/software stack operations.

Autodecrement Mode Examples
Symbolic Octal Code Instruction Name

1. INC-(RO)

Operation:

BEFORE
ADDRESS SPACE

005240 Increment

The contents of RO are decremented by two and
used as the address of the operand. The operand is
increased by one.

AFTER
REGISTERS ADDRESS SPACE REGISTER

1000 L.I _..:.0.:.;05..:.24.:.;0_...J R0 ·L.I __ 0_'7_77_6_-, '000 LI_..:00=5::::2=40=~ __ R~0:..!1:::===0':::7",.77..:.4_....J

17774 L.1_..:.oo.:...o..:.oo_o_...J

2. I NCB-(RO)

Operation:

BEFORE

ADDRESS SPACE

1000 L.1_.:.;lo:..:5::..24..:.0_...J

000 17774 I 000

'7776 L.. __ '--_...J

3. ADD-(R3).RO

Operation:

~
17774 I 000001

105240 Increment Byte

The contents of RO are decremented by one then
used as the address of the operand. The operand
byte is increased by one.

REGISTER

R01 L. _..:.0..:.17_77..:.6_...J

064300

AFTER

ADDRESS SPACE

10001 L.. _..:.'0:..,5_24_0_-,

17774 j......::::.:..~.:.:.:~
17776 L_~_~

Add

The contents of R3 are decremented by 2 then
used as a pointer to an operand (source) which is
added to the contents of RO (destination operand).

3-7

BEFORE
ADDRESS SPACE

10020 1 064300

77774 ~_..:.000=05.:..0:""--1
77776 L. ____ ...I

3.3.4 Index Mode

REGISTER

R0 LI _...:.0.:..00...:.0.:..2O:....-~

R3 1 __ 07_7_77_6_

AFTER
ADDRESS SPACE REGISTER

10020 1 064300 R01 0000070

~4
:::: I 000050 I

OPR X(Rn)

The contents of the selected general register, and an index word following the in·
struction word, are summed to form the address of the operand. The contents of
the selected register may be used as a base for calculating a series of addresses,
thus allowing random access to elements of data structures. The selected register
can then be modified by program to access data in the table. Index addressing in·
structions are of the form OPR X(Rn) where X is the indexed word and is located
in the memory location following the instruction word and Rn is the selected gen·
eral register.

Index Mode Examples
Symbolic

1. CLR 200(R4)

Operation:

BEFORE

AOORESS SPACE

Octal Code Instruction Name

005064
OOO2OQ

Clear

The address of the operand is determined by ad·
ding 200 to the contents of R4. The location is
then cleared.

AFTER

REGISTER AQORESS SPACE REGISTER

1020 §§05064 R4 I 001000

1022 000200

1024 1000 f I::~

1020 R4 I 001000

10221-~"':"':':":"'~
1024 '--___ ~

1200 177777

1202

2. COMB 200(Rl)

Operation:

105161
OOO2OQ

1200E3

Complement Byte

The contents of a location which is determined by
adding 200 to the contents of Rl are one's com·
plemented. (Le. logically complemented)

3·8

3.

BEFORE

ADDRESS SPACE

1020 1--~:"::""-4
,022 ~---'==_-I

REGISTER

RI ... 1 __ 0_17_7_7_7_~

ADD 3O(R2).2O(R5) 066265
000030
000020

AFTER

AOORESS SPACE

10201--:-~':"""_4
10221---':;':":;::';:";"_4

20176 ~_-,16;;,;6",:0",0.,;.0_-I
20200 L... __ .l....._---J

Add

REGISTER

RI L.'_...:0:":"..,;77..;.7..,;7_..J

Operation: The contents of a location which is determined by
adding 30 to the contents of R2 are added to the
contents of a location which is determined by ad·
ding 20 to the contents of R5. The result is stored
at the destination address. i.e. 20(R~)

BEFORE AFTER

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

'020 I 066265 R2 , 00"00 '020 I 066265 RZI 001100

'022 I 000030 1022 I 000030

'024 I 000020 R5 I 002000
'024 I 000020 R51 002000

1130 I 00000' 1130 I 00000'

2020 1 00000' Z020 I 000002

1100 2000
+30 +ZO

""i""i3O 2ii2o

3-9

3.4 DEFERRED (INDIRECT) ADDRESSING
The four basic modes may also be used with deferred addressing. Whereas in the
register mode the operand is the contents of the selected register, in the register
deferred mode the contents of the selected register is the address of the operand.

In the three other deferred modes, the contents of the register selects the address
of the operand rather than the operand itself. These modes are therefore used
when a table consists of addresses rather than operands. Assembler syntax for
indicating deferred addressing is "@" (or "()" when this not ambiguous). The
following table summarizes the deferred versions of the basic modes:

Mode Name Assembler
Syntax

Function

1 Register Deferred @Rnor(Rn)
Register contains the address of
the operand

3 Autoincrement Deferred @(Rn)+ Register is first used as a
pointer to a word containing the
address of the operand, then in·
cremented (always by 2; even
for byte instructions).

5 Autodecrement Deferred @-(Rn) Register is decremented (alw.!lYs
by two; even for byte instruc·
tions) and then used as a
pointer to a word containing the
address of the operand

7 Index Deferred @X(Rn) Value X (stored in a word follow·
ing the instruction) and (Rn) are
added and the sum is used as a
pointer to a word containing the
address of the operand. Neither
X nor (Rn) are modified.

Since each deferred mode is similar to its basic mode counterpart, separate de·
scriptions of each deferred mode are not necessary. However, the following exam·
pies illustrate the deferred modes.

Register Deferred Mode Example
Symbolic Octal Code Instruction Name

CLR@R5

Operation:

BEFORE
ADDRESS SPACE

•
• 1OO677 /1--_____ -i

. 000'00

005015 Clear

The contents of location specified in R5 are
cleared.

AFTER
REGISTER AODRESS SPACE REGISTER

R5 1 _00_'7_00_~
'
677 1 lroO 1-. -0":":0000-:-:-::"0--;

R5 L-I _00_'7_00_~

3-10

Autoincrement Deferred Mode Example
Symbolic Octal Code Instruction Name

INC@(R2)+

Operation:

8EFOOE

ADDRESS SPACE

005232 Increment

The contents of R2 are used as the address of the
address of the operand.
Operand is increased by one. Contents of R2 is in­
cremented by 2.

AFTER

REGISTER ADDRESS SPACE REGISTER

~
Rzi 010300

'010 000025 /

'~
,o,o~
1012~

R2 LI __ O'_0_30_2_..J

'0300 I 00' 0'0 I '0300 t-1_-,-OO.:...,_O_'O_-1

Autodecrement Deferred Mode Example

Symbolic

COM@-(RO)

Operation:

BEFORE
ADDRESS SPACE

'0100 t-----.:.01-'-23:...4.:..5_-1

'0102 t--------I

10774 ~_..:o.:..:' 0:.:.' 0:..;0--':'-1
10776 L _____J

Octal Code Complement

005150

The contents of RO are decremented by two and
then used as the address of the address of the op­
erand. Operand is one's complemented. (i.e. logi­
cally complemented)

AFTER

REGISTER ADDRESS SPACE REGISTER

R0 LI __ o_' 0_7_76_..J '0'00 I:=j R01 0'0774

lO'~/

:~;:I 0'0'00 I

Index Deferred Mode Example
Symbolic Octal Code Instruction Name

ADD @ 1000(R2),R1 067201 Add
001000

Operation: 1000 and contents of R2 are summed to produce
the address of the address of the source operand
the contents of which are added to contents of R1;
the result is stored in Rl.

3-11

BEFORE AFTER
ADDRESS SPACE I-fI:.GISTER ADORES S SPACE REGISTER

1020 067201 1 R' I 001234 1020 1 067201 R' I 001236

1022 001000 I R2 I 000100 '022 I 001000
R2 I 000100

1024 1 1024 1

'050 I 000002 1050 I 000002

\J:~
001050 1100~ 1000

~~~~~ 
1100 I 

3.5 USE OF THE PC AS A GENERAL REGISTER 
Although Register 7 is a general purpose register, it doubles in function as the 
Program Counter for the PDP·ll. Whenever the processor uses the program 
counter to acquire a word from memory, the program counter is automatically in· 
cremented by two to contain the address of the next word of the instruction being 
executed or the address of the next instruction to be executed. (When the pro· 
gram uses the PC to locate byte data, the PC is still incremented by two.) 

The PC responds to all the standard PDp·ll addressing -modes. However, there 
are four of these modes with which the PC can provide advantages for handling 
position independent code (PIC· seeChapter 5) and unstructured data. When reo 
garding the PC these modes are termed immediate, absolute (or immediate de· 
ferred), relative and relative deferred, and are summarized below: 

Mode Name 

2 Immediate 

3 Absolute 

6 Relative 

7 Relative Deferred 

Assembler Function 
Syntax 

# n Operand follows instruction 

@#A Absolute Address follows in­
struction 

A Relative Address (index value) 
follows the instruction. 

@A Index value (stored in the 
word following the instruction) 
is the relative address for the 
address of the operand. 

The reader should remember that the special effect modes are the same as modes 
described in 3.3 and 3.4, but the general register selected is R7, the program 
counter. 

When a standard program is available for different users, it often is helpful to be 
able to load it into different areas of core and run it there. PDP· I I 's can accompl­
ish the relocation of a program very efficiently through the use of position inde-

3-12 



pendent code (PIC) which is written by using the PC addressing modes. If an in· 
struction and its objects are moved in such a way that the relative distance 
between them is not altered. the same offset relative to the PC can be used in all 
positions in memory. Thus, PIC usually references locations relative to the current 
location. PIC is discussed in more detail in Chapter 5. 

The PC also greatly facilitates the handling of unstructured data. This is partic' 
ularly true of the immediate and relative modes. 

3.5.1 Immediate Mode 
OPR #n,DD 

Immediate mode is equivalent to using the autoincrement mode with the PC. It 
provides time improvements for accessing constant operands by including the 
constant in the memory location immediately following the instruction word. 

Immediate Mode Example 
Symbolic 

ADD #10,RO 

Operation: 

BEFORE 
ADORESS SPACE 

t020 062700 

"" R01 1022 000010 
PC 

1024 

3.5.2 Absolute Addressing 

Octal Code Instruction Name 

062700 Add 
000010 

The value 10 is located in the second word of the 
instruction and is added to the contents of RO. 
Just before this instruction is fetched and exe· 
cuted, the PC points to the first word of the in· 
struction. The processor fetches the first word and 
increments the PC by two. The source operand 
mode is 27 (autoincrement the PC). Thus, the PC 
is used as a pointer to fetch the operand (the sec· 
ond word of the instruction) before being in· 
cremented by two to point to the next instruction. 

AFTER 

REGISTER ADDRESS SPACE REGISTER 

000020 1020 062700 , R01 000030 

1022 OOOOto , _____ pc 

1024 I 

OPR @#A 

This mode is the equivalent of immediate deferred or autoincrement deferred us· 
ing the PC. The contents of the location following the instruction are taken as the 
address of the operand. Immediate data is interpreted as an absolute address 
(i.e., an address that remains constant no matter where in memory the as· 
sembled instruction is executed). 

3·13 



Absolute Mode Examples 
Symbolic 

1. ClR@#llOO 

Operation: 

BEFORE 

AOORESS SPACE 

20 

22 

1100 I 177777 

1102 

Octal Code Instruction Name 

005037 
001100 

Clear 

Clear the contents of location 1100. 

AFTER 

ADDRESS SPACE 

20 

PC 22 

2. 

1100 E 000000 

1102 

I PC 

2. ADD @#2ooo,R3 063703 

Operation: 

BEFORE 

ADDRESS SPACE 

20 I---,-.:.:..c'-'....----I 
22 1---'-=:":"'----1 
24 ~_=__---I 

/;.------
2000 I 000300 

3.5.3 Relative Addressing 

002000 

Add contents of location 2000 to R3. 

AFTER 

REGISTER ADDRESS SPACE REGISTER 

000500 20 R31 001000 

22 

2' 

2000 I 000300 

OPR A or 
OPR X(PC) ,where X is the location of A relative to the instruction. 

This mode is assembled as index mode using R7. The base of the address calcu· 
lation, which is stored in the second or third word of the instruction, is not the ad· 
dress of the operand, but the number which, when added to the (PC), becomes 
the address of the operand. This mode is useful for writing position independent 
code (see Chapter 5) since the lo~ation referenced is always fixed relative to the 
PC. When instructions are to be relocated, the operand is moved by the same 
amount. 

3·14 



Relative Addressing Example 
Symbolic Octal Code Instruction Name 

INC A 005267 Increment 
000054 

Operation: To increment location A, contents of memory loca· 
tion immediately following instruction word are ad· 
ded to (PC) to produce address A. Contents of A 
are increased by one. 

BEFORE AFTER 

ADDRESS SPACE ADDRESS SPACE 

1020 0005267 

1022 000054 

1024 _PC 

'020 f--..::OO;::5::;.26;::7_-I 

1022 000054 ~PC 
1024 f-------l 

1026 ~-----l 1026 

1100 I 000001 

1024 

1O,~,~;~ 

3.5.4 Relative Deferred Addressing 
OPR@A or 

OPR@X(PC), where x is location containing address of A, relative to the in· 
struction. 

This mode is similar to the relative mode, except that the second word of the in· 
struction, when added to the PC, contains the address of the address of the oper· 
and, rather than the address of the operand. 

Relative Deferred Mode Example 
Symbolic Octal Code Instruction Name 

CLR@A 

Operation: 

BEFORE 

ADDRESS SPACE 

1020 ~--=-'::":":"":"---l' 
1022 ~PC 

1024 f-------I 

'O~ )0~6 ~ ~'044 
10100 I 100001 I 

005077 
000020 

Clear 

Add second word of instruction to PC to produce 
address of address. of operand. Clear operand. 

AFTER 

ADDRESS SPACE 

1022 '---PC 

1024 

1044 1 .010100 

,01001 000000 

3·15 



3.6 USE OF STACK POINTER AS GENERAL RE:GISTER 
The processor stack pointer (SP, Register 6) is in most cases the general 
register used for the stack operations related to program nesting. Auto­
decrement with Register 6 "pushes" data on to the stack and autoincre­
ment with Register 6 "pops" data off the stack. Index mode with SP 
permits random access of items on the stack. Since the SP is used by 
the processor for interrupt handling, it has a special attribute: autoin­
crements and autodecrements are always done in steps of two. Byte 
operations using the SP in this way leave odd addresses unmodified. 

With the Memory Management option there are two R6 registers se­
lected by the PS; but at any given time there is only one in operation. 

3.7 SUMMARY OF ADDRESSING MODES 

3.7.1 General Register Addressing 

R is a general register, 0 to 7 
(R) is the contents of that register 

Mode 0 Register OPR R R contains operand 

R 

I INSTRUCTION ~ OPERAND 

Mode 1 Register deferred OPR (R) R contains address 

R 

I INSTRUCTION ~ ADORESS ~ OPERAND 

Mode 2 Auto-increment OPR (R)+ 

R contains address, then increment (R) 

2 FOR YoURD, 
1 FOR BYTE 

3-16 



Mode 3 Auto-increment OPR @(R)+ 
deferred 

Mode 4 Auto-decrement 

Decrement (R), then R contains address 

R contains address of address, 
then increment (R) by 2 

OPR -(R) 

Mode 5 Auto-decrement 
deferred 

OPR @-(R) Decrement (R) by 2, 
then R contains 
address of address 

R 

I INSTRUCTION ~ ADDRESS ADDRESS ~ OPERANO 

Mode 6 Index OPR X(R) (R) + X is address 

ADDRESS ~'--O-f'E-R-AN-D--' 

Mode 7 Index deferred OPR @X(R) (R) + X is address of address 

3-17 



3.7.2 Program Counter Addressing 

Register = 7 

Mode 2 Immediate OPR #n 

PC 1 INSTRUCTION I 

PC+2 ... 1 ___ -' 

Mode 3 Absolute OPR @#A 

PC 1 INSTRUCTION I 

PC+2 ... 1 __ A_--If------I OPERAND 

Mode 6 Relative OPR A 

PC 1 INSTRUCTION 1 

" .. : . ~ 
PCt4 i NEXT INSTR 1 + A 

OPERAND 

Mode 7 Relative deferred OPR @A 

Operand n follows instruction 

Address A follows instruction 

PC + 4 + X is address 
'-v-' 

updated PC 

PC + 4 + X is address of address 
'-v-' 

updated PC 

PC I INSTRUCTION 1 

PC+2 
'------' 

3·18 



CHAPTER 4 

INSTRUCTION SET 

4.1 INTRODUCTION 

The specification for each instruction includes the mnemonic, octal code, 
binary code, a diagram showing the format of the instruction, a symbolic 
notation describing its execution and the effect on the condition codes, 
a description, special comments, and examples. 

MNEMONIC: This is indicated at the top corner of each page. When the 
word instruction has a byte equivalent, the byte mnemonic is also shown. 

INSTRUCTION FORMAT: A diagram accompanying each instruction 
shows the octal op code, the binary op code, and bit assignments. (Note 
that in byte instructions the most significant bit (bit 15) is always a 1.) 

SYMBOLS: 

( ) = contents of 

SS or src = source address 

DD or dst = destination address 

loc = location 

+- = becomes 

t = "is popped from stack" 

J, = "is pushed onto stack" 

A = boolean AND 

v = boolean OR 

-y-= exclusive OR 

- = boolean not 

Reg or R = register 

B = Byte 

• = {O for word 

1 for byte 

4·1 



4.2 INSTRUCTION FORMATS 
The major instruction formats are: 

15 

15 

15 

15 

Single Operand Group 

OP Code , 

Double Operand Group 

OP Code , 
12 11 

Src 
I 

Register·Source or Destination 

OPCode , : reg I 

9 8 

Branch 

,Base ~ode , 

8 7 

4·2 

dBt 

6 5 

6 5 

6 5 

dst , 

Src/dst 
I 

offset , 

o 

o 

o 

o 



Byte Instructions 
The POP-ll processor includes a full complement of instructions that 
manipulate byte operands. Since all POP-ll addressing is byte-oriented. 
byte manipulation addressing is straightforward. Byte instructions with 
autoincrement or autodecrement direct addressing cause the specified 
register to be modified by one to point to the next byte of data. Byte 
operations in register mode access the low-order byte of the specified 
register. These provisions enable the POP-l1 to perform as either a word 
or byte processor. The numbering scheme for word and byte addresses 
in core memory is: 

HIGH BYTE 
ADDRESS 

002001 

002003 

BYTE 

BYTE 

1 

3 

BYTE 0 

BYTE 2 

\\ORO OR BYTE 
ADDRESS 

002000 

002002 

The most significant bit (Bit 15) of the instruction word is set to indicate 
a byte instruction. 

Example: 

Symbolic Octal 

CLR 
CLRB 

005000 
105000 

4-3 

Clear Word 
Clear Byte 



4.3 LIST OF INSTRUCTIONS 
The POP·11/40 instruction set is shown in the following sequence. 

SINGLE OPERAND 

Mnemonic 

General 
CLR(B) 
COM(B) 
INC(B) 
OEC(B) 
NEG(B) 
TST(B) 

Shift & Rotate 
ASR(B) 
ASL(B) 
ROR(B) 
ROL(B) 
SWAB 

Instruction 

clear destination 
complement dst 
increment dst 
decrement dst ........... .. 
negate dst .... 
test dst 

arithmetic shift right ... . 
arithmetic shift left .... . 
rotate right .... 
rotate left '" 
swap bytes. .. ................................. . 

Multiple Precision 
AOC(B) add carry .. . ................. .. 
SBC(B) subtract carry .................................... .. 
SXT sign extend ......................................... . 

DOUBLE OPERAND 

General 
MOV(B) 
CMP(B) 
ADD 
SUB 

Logical 
BIT(B) 
BIC(B) 
BIS(B) 

Register 
MUL 
OIV 
ASH 
ASHC 
XOR 

move source to destination .............. .. 
compare src to dst .......................... . 
add src to dst .................................... . 
subtract src from dst ......................... .. 

bit test " .............. . 
bit clear ........ . 
bit set .............. .. 

multiply ............................................ . 
divide .............................................. .. 
shift arithmetically ............................ .. 
arithmetic shift combined. 
exclusive OR .................................... . 

4·4 

OpCode Page 

-05000 
-05100 
-05200 
-05300 
-05400 
-05700 

-06200 
-06300 
-06000 
-06100 
000300 

-05500 
-05600 
006700 

-lSS00 
-2SS00 
06SS00 
16SS00 

-3SS00 
-4SS00 
-5SS00 

070RSS 
071RSS 
072RSS 
073RSS 
074ROO 

4·6 
4·7 
4·8 
4·9 
4·10 
4·11 

4·13 
4·14 
4·15 
4·16 
4·17 

4·19 
4·20 
4·21 

4·23 
4·24 
4·25 
4·26 

4·28 
4·29 
4·30 

4·31 
4·32 
4·33 
4·34 
4·35 



PROGRAM CONTROL 

Mnemonic 

Branch 
BR 
BNE 
BEQ 
BPl 
BMI 
BVC 
BVS 
BCC 
BCS 

Instruction 

branch (unconditional) ...................... . 
branch if not equal (to zero) ... . 
branch if equal (to zero) .................... . 
branch if plus ... 
branch if minus 
branch if overflow is clear . 
branch if overflow is set ............ . 
branch if carry is clear . 
branch if carry is set ................. . 

Signed Conditional Branch 
BGE branch if greater than or equal 

(to zero) ................... . 
Bl T branch if less than (zero) 
BGT branch if greater than (zero) ... 
BlE branch if less than or equal (to zero) .... 

Unsigned Conditional Branch 
BHI branch if higher ........................ . 
BlOS branch if lower or same ................ . 
BHIS branch if higher or same ............. . 
BlO branch if lower ......................... . 

Jump & Subroutine 
JMP jump ....................................... . 
JSR jump to subroutine ............................ . 
RTS return from subroutine 
MARK mark .................................................... . 
SOB subtract one and branch (if i= 0) ....... . 

Trap & Interrupt 

OpCode 
or 

Base Code Page 

000400 
001000 
001400 
100000 
100400 
102000 
102400 
103000 
103400 

002000 
002400 
003000 
003400 

101000 
101400 
103000 
103400 

000100 
004ROO 
00020R 
006400 
077ROO 

4-37 
4'38 
4-39 
4-40 
4-41 
4-42 
4-43 
4-44 
4-45 

4-47 
4-48 
4-49 
4-50 

4-52 
4-53 
4-54 
4-55 

4-56 
4-58 
4-60 
4-61 
4-63 

EMT emulator trap .. .... .... ...... ..... 104000-104377 4-65 
TRAP trap ........... .......................... 104400-104777 4-66 
BPT breakpoint trap ................................... 000003 4-67 
lOT input/ output trap.............. 000004 4-68 
RTI return from interrupt ............................ 000002 4-69 
RTI return from interrupt ......... .................. 000006 4-70 

MISCELLANEOUS 
HALT halt .............................. . ........... . 000000 4-74 
WAIT wait for interrupt ......... . ............. . 000001 4-75 
RESET reset external bus .................... . 000005 4-76 
MFPI move from previous instruction space .. 0065SS 4-77 
MTPI move to previous instruction space ..... . 006600 4-78 

Condition Code Operation 
ClC, ClV, CLZ, CLN, CCC clear ...................... . 000240 4-79 
SEC, SEV, SEZ, SEN, SCC set ......................... . 000260 4-79 

4-5 



4.4 SINGLE OPERAND INSTRUCTIONS 

CLR 
CLRB 

clear destination 

o 0 o 

15 

Operation: (dst).O 

Condition Codes: N: cleared 
Z: set 
V: cleared 
C: cleared 

o : 0 

-050DD 

d d d 

6 5 o 

Description: Word: Contents of specified destination are replaced with ze· 
roes. 

Example: 

Byte: Same 

Before 
(R1) = 177777 

NZVC 
1 1 1 1 

4-6 

CLR R1 

After 
(R1) = 00000o 

NZVC 
0100 



COM 
COMB 

complement dst -05100 

o 0 o : 0 1 I d d d d d , d I I 
o 

15 6 5 0 

Op .. tion: (dst).-(dst) 

Condition Codes: N: set if most significant bit of result is set; cleared otherwise 
Z: set if result is 0; cleared otherwise 
V: cleared 
C: set 

Description: Replaces the contents of the destination address by their log­
ical complement (each bit equal to 0 is set and each bit equal 
to 1 is cleared) 
Byte: Same 

Example: COM RO 

Before 
(RO) = 013333 

NZVC 
0110 

4-7 

After 
(RO) = 164444 

NZVC 
1001 



INC 
INCB 

increment dst -05200 

o 0 o d d 

15 6 5 

Operation: (dst).(dst) + 1 

Condition Codes: N: set if result is <0; cleared otherwise 
Z: set if result is 0; cleared otherwise 

d 

V: set if (dst) held 077777; cleared otherwise 
C: not affected 

Description: Word: Add one to contents of destination 
Byte: Same 

Example: INC R2 

d 

Before 
(R2) = 000333 

After 
(R2) = 000334 

NZVC 
0000 

4-8 

NZVC 
0000 

o 



DEC 
DECB 

decrement dst -05300 

o o o d d 

15 6 5 

Opwation: (dst)4(dst)-l 

Condition Codes: N: set if result is < 0; cleared otherwise 
Z: set if result is 0; cleared otherwise 

d 

V: set if (dst) was 100000; cleared otherwise 
C: not affected 

d 

o 

Description: Word: Subtract 1 from the contents of the destination 
Byte: Same 

Example: DEC R5 

Before 
(R5) = 000001 

NZVC 
1000 

4-9 

After 
(R5) = 00000o 

NZVC 
0100 



NEG 
NEGB 

negate dst -05400 

o 0 o d d d 
I 

15 6 5 

Operation: (dst). -(dst) 

Condition Codes: N: set if the result is <0; cleared otherwise 
Z: set if result is 0; cleared otherwise 
V: set if the result is 100000; cleared otherwise 
C: cleared if the result is 0; set otherwise 

d 

o 

Description: Word: Replaces the contents of the destination address by its 
two's complement. Note that 100000 is replaced by itself ·(in 
two's complement notation the most negative number has 
no positive counterpart). 
Byte: Same 

Example: NEG RO 

Before 
(RO) = 000010 

NZVC 
0000 

4·10 

After 
(RO) = 177770 

NZVC 
1001 



test dst 

10/1 I ° ° ° o 1 : 1 

15 

Operation: (dst)..,.(dst) 

d 

6 5 

d d 
I 

TST 
TSTB 

-05700 

d 

° 

Condition Codes: N: set if the result is <0; cleared otherwise 
Z: set if result is 0; cleared otherwise 
V: cleared 
C: cleared 

Description: Word: Sets the condition codes Nand Z according to the con· 
tents of the destination address 
Byte: Same 

Example: TST R 1 

Before 
(R1) = 012340 

NZVC 
0011 

4·11 

After 
(R1) = 012340 

NZVC 
0000 



Shifts 
Scaling data by factors of two is accomplished by the shift instructions: 

ASR . Arithmetic shift right 

ASL . Arithmetic shift left 

The sign bit (bit 15) of the operand is replicated in shifts to the right. The low 
order bit is filled with 0 in shifts to the left. Bits shifted out of the C bit, as shown 
in the following examples, are lost. 

Rotates 
The rotate instructions operate on the destination word and the C bit as though 
they formed a 17·bit "circular buffer'. These instructions facilitate sequential bit 
testing and detailed bit manipulation. 

4-12 



arithmetic shift right 

15 6 5 

Operation: (dst)..c:dst) shifted one place to the right 

ASR 
ASRB 

o 

Condition Cod.: N: set if the high-order bit of the result is set (result < 0); 
cleared otherwise 
Z: set if the result ... 0; cleared otherwise 
V: loaded from the Exclusive OR of the N-bit and C-bit (as set 
by the completion of the shift operation) 
C: loaded from low-order bit of the destination 

Description: Word: Shifts all bits of the destination right one place. Bit 15 
is replicated. The C-bit is loaded from bit 0 of the destination. 
ASR performs signed division of the destination by two. 
Word: 

Byte: 

4-13 



ASL 
ASLB 

arithmetic shift left -06300 

1°'1 I ° ° ° ° I I d d d d d d I 
15 6 5 o 

Operation: (dst)..{dst) shifted one place to the left 

Condition Codes: N: set if high·order bit of the result is set (result < 0); cleared 
otherwise 
Z: set if the result = 0; cleared otherwise 
V: loaded with the exclusive OR of the N·bit and C·bit (as set 
by the completion of the shift operation) 
C: loaded with the high·order bit of the destination 

Description: Word: Shifts all bits of the destination left one place. Bit 0 is 
loaded with an O. The C·bit of the status word is loaded from 
the most significant bit of the destination. ASL performs a 
signed multiplication of the destination by 2 with overflow in· 
dication. 
Word: 

Byte: 

~-IL-:: .........-~' =:!::"I ::o!:-' --,--~r-00-L..::1 ,..-I----bl ,.,'-,' ='f::=-L---,--~I-o 
15 000 ADDRESS 8 7 EVEN AOORESS 0 

4·14 



,'otate right 

! 0 I 0 : 0 ! 0 I d d 

15 6 5 

d I d 

ROR 
RORB 

-06000 

o 

Condition Codes: N: set if the high·order bit of the result is set (result < 0); 
cleared otherwise 
Z: set if all bits of result - 0; cleared otherwise 
V: loaded with the Exclusive OR of the N-bit and C-bit (as set 
by the completion of the rotate operation) 
C: loaded with the low-order bit of the destination 

Description:" Rotates all bits of the destination right one place. Bit 0 is 
loaded into the C-bit and the previous contents of the C-bit 
are loaded into bit 15 of the destination. 
Byte: Same 

Example: 
Word: 

Byte: 

4·15 



ROL 
ROLB 

rotate left 

1°/1 I 0 ° ° 
15 6 5 

d d 
I 

d 

Condition Codes: N: set if the high·order bit of the result word is set 
(result <= 0): cleared otherwise 
Z: set if all bits of the result word"" 0; cleared otherwise 
V: loaded with the Exclusive OR of the N·bit and C·bit (as set 
by the completion of the rotate operation) 
C: loaded with the high·order bit of the destination 

Description: Word: Rotate all bits of the destination left one place. Bit 15 
is loaded into the C·bit of the status word and the previous 
contents of the C·bit are loaded into Bit 0 of the destination. 
Byte: Same 

Example: 
Word: 

dst 

0-~1 ~~~~~: ~~~~~I LI __ ~1~5 __________________________________ -JtO 

Bytes: 

4·16 



SWAB 

swap bytes 0003DD 

o o I 0 o 1 I d 

15 6 o 

Operation: Byte I/Byte 0 .Byte O/Byte 1 

Condition Codes: N: set if high-order bit of low-order byte (bit 7) of result is set; 
cleared otherwise 

Z: set if low-order byte of result = 0; cleared otherwise 
V: cleared 
C: cleared 

Description: Exchanges high-order byte and low-order byte of the destina­
tion word (destination must be a word address)_ 

Example: SWAB Rl 

Before 
(Rl) = 077777 

NZVC 
1 1 1 1 

4-17 

After 
(Rl) = 177577 

NZVC 
0000 



Multiple Precision 
It is sometimes necessary to do arithmetic on operands considered as multiple 
words or bytes. The PDP· 11 makes special provision for such operations with the 
instructions ADC (Add Carry) and SBC (Subtract Carry) and their byte equiva. 
lents. 

For example two 16·bit words may be combined into a 32·bit double precision 
word and added or subtracted as shown below: 

32 81T WORD 
~ 

OPERAND f AI A0 

31 16 15 , 
OPERAND I 81 80 

31 t6 15 

RESULT 

31 16 15 

Example: 

The addition of -1 and -1 could be performed as follows: 

-1 = 37777777777 

, 

I 
D , 

I 
0 

I 
0 

(Rl) = 177777 (R2) = 177777 (R3) = 177777 (R4) = 177777 

ADD Rl,R2 
ADC R3 
ADD R4,R3 

1. After (Rl) and (R2) are added, 1 is loaded into the C bit 

2. ADC instruction adds C bit to (R3); (R3) = 0 

3. (R3) and (R4) are added 

4. Result is 37777777776 or -2 

4·18 



add carry 

1011, 0 o o o 1 I d 

15 6 5 

d d d 

ADC 
ADCB 

-05500 

d 

o 

Operation: (dst).(dst) + (C) 

Condition Codes: N: set if result <0; cleared otherwise 
Z: set if result = 0; cleared otherwise 
V: set if (dst) was 077777 and (C) was 1; cleared otherwise 
C: set if (dst) was 177777 and (C) was 1; cleared otherwise 

Description: Adds the contents of the C·bit into the destination. This per· 
mits the carry from the addition of the low·order words to be 
carried into the high·order result. 
Byte: Same 

Example: Double precision addition may be done with the following in· 
struction sequence: 
ADD AO,BO ; add low·order parts 
ADC Bl ; add carry into high·order 
ADD Al,Bl ; add high order parts 

4·19 



SBC 
SBCB 

subtract carry 

10/1 I ° ° ° 
'5 

° 

Operation: (dst).(dst)-(C) 

, : ' d 

6 5 

Condition Codes: N: set if result <0; cleared otherwise 
Z: set if result 0; cleared otherwise 

d d 

V: set if (dst) was 100000; cleared otherwise 

-05600 

d 

° 

C: cleared it(dst) was Oand C was 1; set otherwise 

Description: Word: Subtracts the contents of the C-bit from the destina­
tion_ This permits the carry from the subtraction of two low­
order words to be subtracted from the high order part of the 
result. 
Byte: Same 

Example: Double precision subtraction is done by: 

SUB AO,BO 
SBC Bl 
SUB Al,Bl 

4-20 



sign extend 

10 ,0 o o o 

15 

Operation: (dst). 0 if N bit is clear 
(dst). -1 N bit is set 

Condition Codes: N: unaffected 
Z: set if N bit clear 
V: unaffected 
C: unaffected 

SXT 

0067DD 

d d ,d d 

6 5 o 

Description: If the condition code bit N is set then a -1 is placed in the 
destination operand: if N bit is clear, then a 0 is placed in the 
destination operand. This instruction is particularly useful in 
multiple precision arithmetic because it permits the sign to 
be extended through multiple words. 

Example: SXT A 

Before 
( A) =012345 

NZVC 
1000 

4-21 

After 
( A) = 177777 

NZVC 
1000 



4.5 DOUBLE OPERAND INSTRUCTIONS 
Double operand instructions provide an instruction (and time) saving facility 
since they eliminate the need for "Ioad"and "save" sequences such as those 
used in accumulator·oriented machines. 

4·22 



MOV 
MOVB 

move source to destination -lSSDD 

o d d d d 
I 

15 12 11 6 5 o 

Operation: (dst).( src) 

Condition Codes: N: set if (src) <0; cleared otherwise 
Z: set if (src) = 0; cleared otherwise 
V: cleared 
C: not affected 

Description: Word: Moves the source operand to the destination location. 
The previous contents of the destination are lost. The con­
tents of the source address are not affected. 
Byte: Same as MOV. The MOVB to a register (unique among 
byte instructions) extends the most significant bit of the low 
order byte (sign extension). Otherwise MOVB operates on 
bytes exactly as MOV operates on words. 

Example: MOV XXX,R1 ; loads Register 1 with the con­
tents of memory location; XXX represents a programmer-de­
fined mnemonic used to represent a memory location 

MOV # 20,RO ; loads the number 20 into 
Register 0; .. # "indicates that the value 20 is the operand 

MOV @#20,-(R6) ; pushes the operand con· 
tained in location 20 onto the stack 

MOV (R6) + ,@ # 177566 ; pops the operand off a stack 
and moves it into memory location 177566 (terminal print 
buffer) 

MOV Rl,R3 
register transfer 

; performs an inter 

MOVB @# 177562, @# 177566 ; moves a character 
from terminal keyboard buffer to terminal buffer 

4-23 



CMP 
CMPB 

compare src to dst 

10/11 0 d d I d d d 

15 12 11 6 5 o 

Operation: (src)-(dst) [in detail, (src) + - (dst) + 11 

Condition Codes: N: set if result <0; cleared otherwise 
Z: set if result = 0; cleared otherwise 
V: set if there was arithmetic overflow; that is, operands were 
of opposite signs and the sign of the destination was the 
same as the sign of the result; cleared otherwise 
C: cleared if there was a carry from the most significant bit of 
the result; set otherwise 

Description: Compares the source and destination operands and sets the 
condition codes, which may then be used for arithmetic and 
logical conditional branches. Both operands are unaffected. 
The only action is to set the condition codes. The compare is 
customarily followed by a conditional branch instruction. 
Note that unlike the subtract instruction the order of oper· 
ation is (src)-(dst), not (dst)-(src). 

4·24 



ADD 

add src to dst 06SSDD 

s 

15 12 II 6 5 

d d d 
I 

d d 

o 

Operation: (dst).(src) + (dst) 

Condition Codes: N: set if result <0; cleared otherwise 
Z: set if result = 0; cleared otherwise 
V: set if there was arithmetic overflow as a result of the oper· 
ation; that is both operands were of the same sign and the 
result was of the opposite sign; cleared otherwise 
C: set if thE1re was a carry from the most significant bit of the 
result; cleared otherwise 

Description: Adds the source operand to the destination operand and 
stores the result at the destination address. The original con· 
tents of the destination are lost. The contents of the source 
are not affected. Two's complement addition is performed. 

Examples: Add to register: ADD 20.RO 

Add to memory: ADD RI.XXX 

Add register to register: ADD RI.R2 

Add memory to memory: ADD@ # 17750,XXX 

XXX is a programmer·defined mnemonic for a memory loca· 
tion. 

4·25 



SUB 

subtract src from dst 16SSDD 

o Iss s 5 s d d d ,d d d 

15 12 " 
6 5 o 

Operation: (dst).(dst)-(src) [in detail (dst) .. (dst) + -(src) + I) 

Condition Codes: N: set if result <0; c.leared otherwise 
Z: set if result = 0; cleared otherwise 
V: set if there was arithmetic overflow as a result of the oper· 
ation. that is if operands were of opposite signs and the sign 
of the source was the same as the sign of the result; cleared 
otherwise 
C: cleared if there was a carry from the most significant bit of 
the result; set otherwise 

DescritJtion: Subtracts the source operand from the destination operand 
and leaves the result at the destination address. The orignial 
contents of the destination are lost. The contents of the 
source are not affected. In double-precision arithmetic the C· 
bit, when set, indicates a "borrow". 

Example: SUB RI.R2 

Before 
(Rl) =011111 
(R2) =012345 

NZVC 
1 1 1 1 

4·26 

After 
(Rl)-Olll11 
(R2) = 00 1234 

NZVC 
0000 



Logical 
These instructions have the same format as the double operand arithmetic group. 
They permit operations on data at the bit level. 

4-27 



BIT 
BITB 

bit test 

15 12 11 

Operation: (src) A (dst) 

d 

6 5 

Condition Codes: N: set if high·order bit of result set; cleared otherwise 
Z: set if result = 0; cleared otherwise 
V: cleared 
C: not affected 

Description: Performs logical "and"comparison of the source and desti· 
nation operands and modifies condition codes accordingly. 
Neither the source nor destination operands are affected. 
The BIT instruction may be used to test whether any of the 
corresponding bits that are set in the destination are also set 
in the source or whether all corresponding bits set in the des· 
tination are clear in the source. 

Example: BIT #30.R3 ; test bits 3 and 4 of R3 to see 

; if both are off 

(30h=0 000 000 000 all 000 

4-28 



bit clear 

o 0 I s d 

15 12 11 6 5 

Operation: (dst).-(src)A(dst) 

d d 

BIC 
BICB 

-4SSDD 

d 

o 

Condition Codes: N: set if high order bit of result set; cleared otherwise 
Z: set if result = 0; cleared otherwise 
V: cleared 
C: not affected 

Description: Clears each bit in the destination that corresponds to a set 
bit in the source. The original contents of the destination are 
lost. The contents of the source are unaffected. 

Example: BIC R3, R4 

Before 
(R3) =001234 

(R4) '" 001111 

NZVC 
1 1 1 1 

Before: 

After: 

After 
(R3) =001234 

(R4) = 000101 

NZVC 
0001 

(R3)=0 000 001 010 011 100 
(R4)=0 000 001 001 001 001 

(R4)=0 000 000 001 000 001 

4-29 



BIS 
BISB 

bit set 

15 

o 

12 11 

Operation: (dst).(src) v (dst) 

d d d d 

6 5 o 

Condition Codes: N: set if high·order bit of result set. cleared otherwise 
Z: set if result = 0: cleared otherwise 
V: cleared 
C: not affected 

Description: Performs "Inclusive OR"operation between the source and 
destination operands and leaves the result at the destination 
address: that is. correspondi ng bits set in the source are set 
in the destination. The contents of the destination are lost. 

Example: BIS RO.Rl 

Before 
(RO) = 001234 
(Rl) =001111 

Before: 

After: 

NZVC 
0000 

After 
(RO) = 001234 
(Rl) =001335 

NZVC 
0000 

(RO)=O 000 001 010 all 100 
(R1)=0 000 001 001 001 001 

(R1)=0 000 001 all all 101 

4·30 



(EIS option)MUL 

multiply 070RSS 

15 9 8 6 5 o 

Operation: R, Rvi. R x(src) 

Condition Codes: N: set if product is <0; cleared otherwise 
Z: set if product is 0; cleared otherwise 
V: cleared 
C: set if the result is less than-2'" or greater than or equal to 
2"'-1: 

Descritltion: The contents of the destination register and source taken as 
two's complement integers are multiplied and stored in the 
destination register and the succeeding register (if R is even). 
If R is odd only the low order product is stored. Assembler 
syntax is : MUl S,R. 
(Note that the actual destination is R, Rvi which reduces to 
just R when R is odd.) 

Example: I6·bit product (R is odd) 

ClC 
MOV #400,RI 
MUl #IO,RI 
BCS ERROR 

Before 

(Rl) =000400 

;Clear carry condition code 

;Carry will be set if 
;product is less than 
;-2'" or greater than or equal to 2" 
;no significance lost 

After 

(R 1) = 004000 

4·31 



DIV (EIS option) 

divide 071RSS 

10 I 1 1 10 o s s s , s 

15 9 8 6 5 

Operation: R. Rvl. R. Rvl /(src) 

Condition Codes: N: set if quotient <0; cleared otherwise 
Z: set if quotient = 0; cleared otherwise 

II s 

o 

V: set if source = 0 or if the absolute value of the register is 
larger than the absolute value of the source. (In this case the 
instruction is aborted because the quotient would exceed 15 
bits.) 
C: set if divide 0 attempted; cleared otherwise 

Description: The 32·bit two's complement integer in R andRvI is divided 
by the source operand. The quotient is left in R; the remain. 
der in Rvl. Division will be performed so that the remainder 
is of the same sign as the dividend. R must be even. 

Example: CLR RO 
MOV#2DOO1,RI 
DIV#2,RO 

Before 
(RO) = 00000o 
(R 1),. 020001 

After 
(RO) = 010000 
(Rl) ... 000001 

4-32 

Quotient 
Remainder 



(EIS option) ASH 

shift: arithmetically 072RSS 

10 I 1 1 10 s I S 

15 9 B 6 5 o 

Operation: R. R Shifted arithmetically NN places to right or left 
Where NN - low order 6 bits of source. 

Condition Codes: N: set if result <0; cleared otherwise 
Z: set if result .. 0; cleared otherwise 
V: set if sign of register changed during shift; cleared other· 
wise 
C: loaded from last bit shifted out of register 

Description: The contents of the register are shifted right or left the num· 
ber of times specified by the shift count. The shift count is 
taken as the low order 6 bits of the source operand. This 
number ranges from -32 to + 31. Negative is a a right shift 
and positive is a left shift. 

6 LSB of source 
011111 
000001 
111111 
100000 

Example: 

--I 
OR 

Action. in general register 
Shift left 31 places 
shift left 1 place 
shift right 1 place 
shift right 32 places 

Before 
(R3)=001234 
(RO) =000003 

4·33 

ASH RO, R3 

1-0 
0 

1- 0 

0 

After 
(R3)=012340 
(RO)=000003 



ASHe (EIS option) 

arithmetic shift combined 073RSS 

I 0 I t s s I 
I I . 

t5 9 8 6 5 o 

Operation: R, Rvl.R, Rvl The double word is shifted NN places to the 
right or left, where NN ,. low order six bits or source 

Condition Codes: N: set if result <0; cleared otherwise 
Z:set if result = 0; cleared otherwise 
V: set if sign bit changes during the shift; cleared otherwise 
C: loaded with high order bit when left Shift; loaded with low 
order bit when right shift (loaded with the last bit shifted out 
of the 32-bit operand) 

Description: The contents of the register and the register ORed with one 
are treated as one 32 bit word, R + 1 (bits 0-15) and R (bits 
16-31) are shifted right or left the number of times specified 
by the shift count The shift count is taken as the low order 6 
bits of the source operand_ This number ranges from -32 to 
+ 31. Negative is a right shift and positive is a left shift 
When the register chosen is an odd number the register 
and the register OR'ed with one are the same_ In this case the 
right shift becomes a rotate (for upto II shift ofl6), The 16 
bit word is rotated right the number of bits specified by the 
shift count 

[ I I 
p' 
• R+, I I I-GJ 
'5 o 

rLI--------~----:===~~--------------~ 
R+' 1 f-o 

4-34 



XOR 

exclusive OR 074RDD 

15 9 8 6 5 

Operation: (dst).Rv(dst) 

Condition Codes: N: set if the result <a; cleared otherwise 
Z set if result = a; cleared otherwise 
V: cleared 
C: unaffected 

d d I 
o 

Description: The exclusive OR of the register and destination operand is 
stored in the destination address. Contents of register are 
unaffected. Assembler format is: XOR RoD 

Example: XOR RO,R2 

Before 
(RO) = 001234 
(R2) = 001111 

Before: 

After: 

After 
(RO) = 001234 
(R2) = 000325 

(RO)=O 000 001 010 011 100 
(R2)=0 000 001 001 001 001 

(R2)=0 000 000 011 010 101 

4-35 



4.6 PROGRAM CONTROL INSTRUCTIONS 
Branches 

The instruction causes a branch to a location defined by the sum of the offset 
(multiplied by 2) and the current contents of the Program Counter if: 

a) the branch instruction is unconditional 

b) it is conditional and the conditions are met after testing the condition 
codes (status word). 

The offset is the number of words from the current contents of the PC. Note that 
the current contents of the PC point to the word following the branch instruction. 

Although the PC expresses a byte address, the offset is expressed in words. The 
offset is automatically multiplied by two to express bytes before it is added to the 
PC. Bit 7 is the sign of the offset. If it is set, the offset is negative and the branch 
is done in the backward direction. Similarly if it is not set, the offset is positive 
and the branch is done in the forward direction. 

The 8-bit offset allows branching in the backward direction by 200, words (400, 
bytes) from the current PC, and in the forward direction by 177, words (376, 
bytes) from the current PC. 

The PDP-II assembler handles address arithmetic for the user and computes and 
assembles the proper offset field for branch instructions in the form: 

Bxx loe 

Where "Bxx" is the branch Instruction and "Ioc" is the address to which the 
branch is to be made. The assembler gives an error indication in the instruction if 
the permissable branch range is exceeded. Branch instructions have no effect on 
condition codes. 

4-36 



BR 

branch (unconditional) 000400 Plus offset 

1000000011 OFFSET 

15 B 7 o 

Operation: PC • PC + (2 x offset) 

Description: Provides a way of transferring program control within a 
range of -128 to + 127 words with a one word instruction. 

New PC address = updated PC + (2 X offset) 

Updated PC = address of branch instruction + 2 

Example: With the Branch instruction at location 500, the following off­
sets apply. 

New PC Address 
474 
476 
500 
502 
504 
506 

Offset Code 
375 
376 
377 
000 
001 
002 

4-37 

Offset (decimal) 

-3 
-2 
-1 

o 
+1 
+2 



BNE 

branch if not equal (to zero) 001000 Plus offset 

10 0 0 0 0 0 OFFSET 
I 

15 8 7 o 

Operation: PC • PC + (2 x offset) if Z a 

Condition Codes: Unaffected 

Description: Tests the state of the Z-bit and causes a branch if the Z-bit is 
clear_ BNE is the complementary operation to BEQ. It is used 
to test inequality following a CMP, to test that some bits set 
in the destination were also in the source, following a BIT, 
and generally, to test that the result of the previous oper­
ation was not zero. 

Example: CMP A B 
BNE C 

will branch to C if A -F B 

and the sequence 

ADD A,B 
BNE C 

; compare A and B 
; bra nch if they are not equal 

; add A to B 
; Branch if the result is not 

equal to 0 

will branch to C if A + B -=I=- 0 

4-38 



branch if equal (to zero) 

15 

o 0 0 
I 

e 7 

Operation: PC ~ PC + (2 x offset) if 

Condition Codes: Unaffected 

SEQ 

001400 Plus offset 

OFFSET 

o 

Z 

Description: Tests the state of the Z-bit and causes a branch if Z is set As 
an example. it is used to test equality following a CMP oper­
ation. to test that no bits set in the destination were also set 
in the source following a BIT operation. and generally. to test 
that the result of the previous operation was zero_ 

Example: CMP A.B 
BEQ C 

will branch to C if A = B 
and the sequence 

ADD A.B 
BEQ C 

; compare A and B 
; bra nch if they are equal 

(A - B = 0) 

; add A to B 
; branch if the result=O 

will branch to C if A + B = O. 

4-39 



BPL 

branch if plus 100000 Plus offset 

11 I 0 

15 

Operation: 

Description: 

o 0 0 0 
I o I 0 

8 

OFFSET 

7 

PC .. PC + (2 x offset) if N =0 

o 

Tests the state of the N-bit and causes a branch if N is 
clear, (positive result)_ 

4-40 



8MI 

branch if minus 100400 Plus offset 

I 1 1 0 o o 10 o o OFFSET 

15 8 7 o 

Operation: PC • PC + (2 x offset) if N = 1 

Condition Codes: Unaffected 

Description: Tests the state of the N·bit and causes a branch if N is 
set. It is used to test the sign (most significant bit) of 
the result of the previous operation), branching if neg· 
ative. 

4·41 



Bve 

branch if overflow is clear 102000 Plus offset 

I' I 0 
o 

15 

Operation: 

Dascri plion: 

o I 0 o I 0 I OFFSET 

8 7 o 

PC. PC + (2 x offset) if v-o 

Tests the state of the V bit and causes a branch if the V bit is 
clear. BVC is complementary operation to BVS. 

4-42 



BVS 

branch if overflow is set 102400 Plus offset 

o 0 0 0 
I 

o OFFSET 

15 

Operation: 

Description: 

8 7 o 

PC • PC + (2 x offset) if V = 1 

Tests the state of V bit (overflow) and causes a branch if the 
V bit is set. BVS is used to detect arithmetic overflow in the 
previous operation. 

4-43 



Bee 

branch if carry is clear 103000 Plus offset 

I, I 0 o 
15 

Operation: 

Description: 

o 10 , , 0 OFFSET 

8 7 o 

PC .. PC + (2 x offset) if C =0 

Tests the state of the C·bit and causes a branch if C is clear. 
BCC is the complementary operation to BCS 

4-44 



BCS 

branch if carry is set 103400 Plus offset 

11 0 

15 

Operation: 

Description: 

a a a 
I 

8 

OFFSET 

7 

PC. PC + (2 x offset) if C=1 

a 

Tests the state of the C-bit and causes a branch if C is set. It 
is used to test for a carry in the result of a previous oper­
ation. 

4-45 



Signed Conditional Branches 
Particular combinations of the condition code bits are tested with the signed con· 
ditional branches. These instructions are used to test the results of instructions in 
which the operands were considered as signed (two's complement) values. 

Note that the sense of signed comparisons differs from that of unsigned com· 
parisons in that in signed 16·bit, two's complement arithmetic the sequence of 
values is as follows: 

largest 

positive 

negative 

smallest 

077777 
077776 

000001 
00000o 
177777 
177776 

100001 
100000 

whereas in unsigned 16·bit arithmetic the sequence is considered to be 

highest 

lowest 

177777 

000002 
000001 
00000o 

4·46 



BGE 

branch if greater than or equal 
(to zero) 

002000 Plus offset 

15 

Operation: 

Description: 

OFFSET 

8 7 o 

PC .. PC + (2 x offset) if N v V = 0 

Causes a branch if N and V are either both clear or both set. 
BGE is the complementary operation to BLT. Thus BGE will 
always cause a branch when it follows an operation that 
caused addition of two positive numbers. BGE will also cause 
a branch on a zero result. 

4-47 



BlT 

branch if less than (zero) 002400 Plus offset 

o I 0 o 

15 

Operation: 

Description: 

o I 0 OFFSET , 
8 7 o 

PC • PC + (2 x offset) if N y. V = 1 

Causes a branch if the "Exclusive Or"of the N and V bits are 
1. Thus BlT will always branch following an operation that 
added two negative numbers, even if overflow occurred. 
In particular, Bl T will always cause a· branch if it follows a 
CMP instruction operating on a negative source and a posi· 
tive destination (even if overflow occurred). Further, Bl T will 
never cause a branch when it follows a CMP instruction oper. 
ating on a positive source and negative destination. Bl T will 
not cause a branch if the result of the previous operation was 
zero (without overflow). 

4·48 



BGT 

branch if greater than (zero) 003000 Plus offset 

I 0 I 0 0 0 I 0 OFFSET 

15 

Operation: 

Description: 

B 7 o 

PC .. PC + (2 x offset) if Z v(N \0 V) = 0 

Operation of BGT is similar to BGE. except BGT will not cause 
a branch on a zero result 

4-49 



BlE 

branch if less than or equal (to zero) 003400 Plus offset 

I 0 I 0 0 0 0 OFFSET 

15 

Operation: 

Description: 

8 7 o 

PC • PC + (2 x offset) if Z v(N '# V) = 1 

Operation is similar to BL T but in addition will cause a 
branch if the result of the previous operation was zero. 

4-50 



Unsigned Conditional Branches 
The Unsigned Conditional Branches provide a means for testing the result of 
comparison operations in which the operands are considered as unsigned values. 

4·51 



BHI 

branch if higher 101000 Plus offset 

15 

Operation: 

Description: 

o I OFFSET 
! 

8 7 o 

PC • PC + (2 x offset) if C = 0 and Z = 0 

Causes a branch if the previous operation caused neither a 
carry nor a zero result. This will happen in comparison (CMP) 
operations as long as the source has a higher unsigned value 
than the destination. 

4·52 



BlOS 

branch if lower or same 101400 Plus offset 

15 

Operation: 

Description: 

OFFSET 

8 7 o 

PC .. PC + (2 x offset) if C v Z = 1 

Causes a branch if the previous operation caused either a 
carry or a zero result. BLOS is the complementary operation 
to BHI. The branch will occur in comparison operations as 
long as the source is equal to, or has a lower unsigned value 
than the destination. 

4·53 



BHIS 

branch if higher or same 103000 Plus offset 

I 1 0 0 0 0 o OFFSET 

15 

Operation: 

Description: 

B 7 o 

PC • PC + (2 x offset) if C = 0 

BHIS is the same instruction as BCC. This mnemonic is in· 
cluded only for convenience. 

4·54 



BlO 

branch if lower 103400 Plus offset 

o 000 OFFSET 

15 

Operation: 

Description: 

8 7 o 

PC .. PC + (2 x offset) if C= 1 

BlO is same instruction as BCS. This mnemonic is included 
only for convenience. 

4·55 



JMP 

jump 000100 

I 0 I 0 o o 10 o d I d d d 

15 6 5 o 
Operation: PC.(dst) 

Condition Codes: not affected 

Description: JMP provides more flexible program branching than provided 
with the branch instructions. Control may be transferred to 
any location in memory (no range limitation) and can be ac· 
complished with the full flexibility of the addressing modes, 
with the exception of register mode O. Execution of a jump 
with mode 0 will cause an "illegal instruction"condition. 
(Program control cannot be transferred to a register.) Regis· 
ter deferred mode is legal and will cause program control to 
be transferred to the address held in the specified register. 
Note that instructions are word data and must therefore be 
fetched from an even·numbered address. A 'boundary er· 
ror"trap condition will result when the processor attempts to 
fetch an instruction from an odd address. 

Deferred index mode JMP instructions permit transfer of 
control to the address contained in a selectable element of a 
table of dispatch vectors. 

4-56 



Subroutine Instructions 
The subroutine call in the PDP· I I provides for automatic nesting of subroutines, 
reentrancy, and multiple entry points. Subroutines may call other subroutines (or 
indeed themselves) to any level of nesting without making special provision for 
storage or return addresses at each level of subroutine call. The subroutine call· 
ing mechanism does not modify any fixed location in memory, thus providing for 
nientrancy. This allows one copy of a subroutine to be shared among several in· 
terrupting processes. For more detailed description of subroutine programming· 
see Chapter 5. 

4·57 



JSR 

jump to subroutine 004RDD 

15 

Operation: 

Description: 

9 B 6 5 0 

(tmp).(dst) (tmp is an internal processor register) 

t (SP).reg (push reg contents onto processor shck) 

reg. PC (PC holds location following JSR; this address 
now put in reg) 

PC.(tmp} (PC now points to subroutine destination) 

In execution of the JSR, the old contents of the specified reg· 
ister (the "LINKAGE POINTER") are automatically pushed 
onto the processor stack and new linkage information placed 
in the register. Thus subroutines nested within subroutines 
to any depth may all be called with the same linkage register. 
There is no need either to plan the maximum depth at which 
any particular subroutine will be called or to include instruc· 
tions in each routine to save and restore the linkage pointer. 
Further, since all linkages are saved in a reentrant manner 
on the processor stack execution of a subroutine may be in· 
terrupted, the same subroutine reentered and executed by an 
interrupt service routine. Execution of the initial subroutine 
can then be resumed when other requests are satisfied. This 
process (called nesting) can proceed to any level. 

A subroutine called with a JSR reg,dst instruction can access 
the arguments following the call with either autoincrement 
addressing, (reg) +, (if arguments are accessed sequentially) 
or by indexed addressing, X(reg), (if accessed in random or· 
der). These addressing modes may also be deferred, 
@(reg) + and @X(reg) if the parameters are operand ad· 
dresses rather than the operands themselves. 

4·58 



Example: 

Before: 

After: 

JSR PC. dst is a special case of the PDp·ll subroutine call 
suitable for subroutine calls that transmit parameters 
through the general registers. The SP and the PC are the only 
registers that may be modified by this call. 

Another special case of the JSR instruction is JSR PC. 
@(SP)+ which exchanges the top element of the processor 
stack and the contents of the program counter. Use of this 
instruction allows two routines to swap program control and 
resume operation when recalled where they left off. Such rou· 
tines are called "co·routines." 

Return from a subroutine is done by the RTS instruction. RTS 
reg loads the contents of reg into the PC and pops the top 
element of the processor stack into the specified register. 

JSR R5, SBR 

(PC) R7 PC Stack 

(SP) R6 n • DATA 0 

R5 #1 

R7 SBR 

I~ R6 n-2 DATA 0 

#1 
R5 PC+2 

4·59 



RTS 

return from subroutine 00020R 

I 0 1 0 o 
15 

Operation: 

Description: 

Example: 

Before: 

After: 

o I 0 o 

PC.reg 
reg. (SP). 

o 10 o 

3 2 o 

Loads contents of reg into PC and pops the top element of 
the processor stack into the specified register. 
Return from a non·reentrant subroutine is typically made 
through the same register that was used in its call. Thus. a 
subroutine called with a JSR PC. dst exits with a RTS PC and 
a subroutine called with a JSR RS. dst. may pick up para· 
meters with addressing modes (RS) +. X(RS). or @X(RS) 
and finally exits. with an RTS RS 

RTS R5 

(PC) R7 SBR Stack 

(SP) R6 n "'-- DATA 0 
~_---J! ~1---_--1 

#1 

R5 PC 

R7 PC 

R6 n+2 .. DATA 0 

R5 #1 

4-60 



mark 

15 

Operation: 

o 

SP.SP+ 2xnn 
PC4R5 
R54(SP) • 

MARK 

00 64 NN 

o n I n n 

876 5 o 

nn '"' number of parameters 

Condition Codes: unaffected 

Description: Used as part of the standard PDp·ll subroutine return con· 
vention. MARK facilitates the stack clean up procedures in· 
volved in subroutine exit. Assembler format is: MARK N 

Example: MOV 
MOV 
rv,ov 

R5,-(SP) 
Pl,-(SP) 
P2,-(SP) 

MOV PN,-(SP) 
MOV #MARKN,-(SP) 

MOV SP ,R5 

JSR PC,SUB 

;place old R5 on stack 
;place N parameters 
;on the stack to be 
;used there by the 
:subroutine 

;places the instruction 
;MARK N on the stack 
;set up address at Mark N in· 
struction 

;jump to subroutine 

At this point the stack is as follows: 

OLD R5 

P1 

PN 

WlRKN 

OLD PC 

4·61 



And the program is at the address SUB which is the beginning 
of the subroutine. 
SUB: ;execution of the subroutine it· 

self 

RTSR5 ;the return begins: this causes 

the contents of R5 to be placed in the PC which then results 
in the execution of the instruction MARK N. The contents of 
old PC are placed in R5 

MARK N causes: (1) the stack pointer to be adjusted to point 
to the old R5 value; (2) the value now in R5 (the old PC) to be 
placed in the PC; and (3) contents of the the old R5 to be 
popped into R5 thus completing the return from subroutine. 

4·62 



SOB 

subtract one and branch iil ~ ,) 077ROO Plus offset 

o 
15 9 8 

r I 
6 5 

OFFSET 
I 

o 

Operation: R. R -1 if this result + 0 then PC. PC -(2 x offset) 

Condition Codes: unaffected 

Description: The register is decremented. If it is not equal to 0, twice the 
offset is subtracted from the PC (now pointing to the follow· 
ing word). The offset is interpreted as a sixbit positive num· 
ber. This instruction"provides a fast. efficient method of loop 
control. Assembler syntax is: 

SOB R,A 

Where A is the address to which transfer is to be made if the 
decremented R is not equal to 0. Note that the SOB instruc· 
tion can not be used to transfer control in the forward direc· 
tion. 

4-63 



Traps 
Trap instructions provide for calls to emulators, 1/0 monitors, debugging pack­
ages, and user-defined interpreters. A trap is effectively an interrupt generated by 
software. When a trap occurs the contents of the current Program Counter (PC) 
and Program Status Word (PS) are pushed onto the processor stack and re­
placed by the contents of a two·word trap vector containing a new PC and new 
ps. The return sequence from a trap involves executing an RTI or RTT instruc­
tion which restores the old PC and old PS by popping them from the stack. Trap 
vectors are located at permanently assigned fixed addresses. 

4-64 



emulator trap 

15 

Operation: • {SP).PS 
f{SP).PC 

PC4(30} 
PS4(32} 

8 7 

Condition Codes: N: loaded from trap vector 
Z: loaded from trap vector 
V: loaded from trap vector 
C: loaded from trap vector 

EMT 

104000:"-104377 

o 

Description: All operation codes from 104000 to 104377 are EMT instruc· 
tions and may be used to transmit information to the emulat· 
ing routine (e.g., function to be performed). The trap vector 
for EMT is at address 30. The new PC is taken from the word 
at address 30; the new central processor status (PS) is taken 
from the word at address 32. 

Before: 

After: 

Caution: EMT is used frequently by DEC system software and 
is therefore not recommended for general use. 

PS PS 1 Stack 

R7. PC PC 1 

~ 
DATA 1 

n R6. SP 

PS (32) 

PC I (30) I DATA 1 

PS 1 

SP I n 4 I .. PC 1 

4·65 



TRAP 

trap 

, , 0 o o I ' o 

Op .. ation: • {SP).PS 
• (SP).PC 

PC.(34) 
PS.(36) 

o I ' I 
8 7 

Condition Codes: N: loaded from trap vector 
Z: loaded from trap vector 
V: loaded from trap vector 
C: loaded from trap vector 

104400-104777 

o 

Description: Operation codes from 104400 to 104777 are TRAP instruc· 
tions. TRAPs and EMTs are identical in operation, except 
that the trap vector for TRAP is at address 34. 

Note: Since DEC software makes frequent use of EMT, the 
TRAP instruction is recommended for general use. 

4·66 



BPT 

breakpoint trap 000003 

10,00000010:000000 11 
15 0 

Operation: t (SP~PS 
t(SP~PC 

PC "'" (14) 
PS "'" (16) 

Condition Codes: N: loaded from trap vector 
Z: loaded from trap vector 
V: loaded from trap vector 
C: loaded from trap vector 

Description: Performs a trap sequence with a trap vector address of 14. 
Used to call debugging aids. The user is cautioned against 
employing code 000003 in programs run under these de· 
bugging aids. 
(no information is transmitted in the low byte.) 

4·67 



lOT 

input/output trap 000004 

o 0 o 10 o 0 0 o 0 I 
15 0 

Operation: f(SP).PS 
f(SP).PC 

PC4(20) 
PS.(22) 

Condition Codes: N:loaded from trap vector 
Z:loaded from trap vector 
V:loaded from trap vector 
C:loaded from trap vector 

Description: Performs a trap sequence with a trap vector address of 20. 
Used to call the I/O Executive routine lOX in the paper tape 
software system, and for error reporting in the Disk Oper· 
ating System. 
(no information is transmitted in the low byte) 

4·68 



RTI 

return from interrupt 000002 

I 0 0 0 

15 

Operation: 

Condition Codes: 

Description: 

PC.t(SP~ 
PS.(SP). 

o 0 0 0 
I 

N: loaded from processor stack 
Z: loaded from processor stack 
V: loaded from processor stack 
C: loaded from processor stack 

o 

Used to exit from an interrupt or TRAP service routine. The 
PC and PS are restored (popped) from the processor stack. 

4-69 



RTT 

return from interrupt 000006 

0000000 10:00000 o 
15 0 

Operation: PC.t(SP) • 
PS.(SP) • 

Condition Codes: N: loaded from processor stack 
Z: loaded from processor stack 
V: loaded from processor stack 
C: loaded from processor stack 

Description: This is the same as the RTI instruction except that it inhibits 
a trace trap. while RTI permits a trace trap. If a trace trap is 
pending. the first instruction after the RTT will be executed 
prior to the next "T"trap. In the case of the RTI instruction 
the "T" trap will occur immediately after the RTI. 

4-70 



Reserved Instruction Traps· These are caused by attempts to execute instruction 
codes reserved for future processor expansion (reserved instructions) or instruc· 
tions with illegal addressing modes (illegal instructions). Order codes not corre· 
sponding to any of the instructions described are considered to be reserved in· 
structions. JMP and JSR with register mode destinations are illegal instructions. 
Reserved and illegal instruction traps occur as described under EMT, but trap 
through vectors at addresses 10 and 4 respl3Ctively. 

Stack Overflow Trap 
Bus Error Traps· Bus Error Traps are: 

1. Boundary Errors· attempts to reference instructions or word operands 
at odd addresses. 

2. Time·Out Errors· attempts to reference addresses on the bus that made 
no response withinl5}JS in the PDp·ll/40. In general, these are caused by 
attempts to reference non·existent memory, and attempts to reference 
non·existent peripheral devices. 

Bus error traps cause processor traps through the trap vector address 4. 

Trace Trap· Trace Trap enables bit 4 of the PS and causes processor traps at 
the end of instruction executions. The instruction that is executed after the in· 
struction that set the T·bit will proceed to completion and then cause a processor 
trap through the trap vector at address 14. Note that the trace trap is a system 
debugging aid and is transparent to the general programmer. 

The following are special cases and are detailed in subsequent paragraphs. 

1. The traced instruction cleared the T·bit. 

2. The traced instruction set the T·bit. 

3. The traced instruction caused an instruction trap. 

4. The traced instruction caused a bus error trap. 

5. The traced instruction caused a stack overflow trap. 

6. The process was interrupted between the time the T·bit was set and the 
fetching of the instruction that was to be traced. 

7. The traced instruction W\lS a WAIT. 

8. The traced instruction was a HALT. 

9. The traced instruction was a Return from Trap 

Note: The traced instruction is the instruction after the one that sets the T·bit. 

An instruction that cleared the T·bit . Upon fetching the traced instruction an in· 
ternal flag, the trace flag, was set. The trap will still occur at the end of execution 
of this instruction. The stacked status word. however, will have a clear T·bit. 

An instruction that set the T·bit . Since the T·bit was already set, setting it again 
has no effect. The trap will occur. 

4·71 



An instruction that caused an Instruction Trap· The instruction trap is sprung and 
the entire routine for the service trap is executed. If the service routine exists with 
an RTI or in any other way restores the stacked status word, the T·bit is set again, 
the instruction following the traced instruction is executed and, unless it is one of 
the special cases noted above, a trace trap occurs. 

An instruction that caused a Bus Error Trap· This is treated as an Instruction 
Trap. The only difference is that the error service is not as likely to exit with an 
RTI, so that the trace trap may not occur. 

An instruction that caused a stack overflow· The instruction completes execution 
as usual . the Stack Overflow does not cause a trap. The Trace Trap Vector is 
loaded into the PC and Ps, and the old PC and PS are pushed onto the stack. 
Stack Overflow occurs again, and this time the trap is made. 

An interrupt between setting of the T-bit and fetch of the traced instruction· The 
entire interrupt service routine is executed and then the T·bit is set again by the 
exiting RTI. The traced instruction is executed (if there have been no other inter· 
rupts) and, unless it is a special case noted above, causes a trace trap. 

Note that interrupts may be acknowledged immediately after the loading of the 
new PC and PS at the trap vector location. To lock out all interrupts, th\l PS at 
the trap vector should raise the processor priority to level 7. 

A WAIT· The trap occurs immediately. 

A HALT· The processor halts. When the continue key on the console is pressed, 
the instruction following the HALT is fetched and executed. Unless it is one of the 
exceptions noted above, the trap occurs immediately following execution. 

A Return from Trap· The return from trap instruction either clears or sets the T 
bit. It inhibits the trace trap. If the T·bit was set and RTT is the traced instruction 
the trap is delayed until completion of the next instruction. 

Power Failure Trap· is a standard PDp·ll feature. Trap occurs whenever the AC 
power drops below 95 volts or outside 47 to 63 Hertz. Two milliseconds are then 
allowed for power down processing. Trap vector for power failure is at locations 
24 and 26. 

Trap priorities· in case multiple processor trap conditions occur simultaneously 
the following order of priorities is observed (from high to low): 

Odd Address 
Fatal Stack Violation 
Memory Management Violation 
Timeout 
Trap Instructions 
Trace Trap 
Warning Stack Violation 
Power Failure 

The details on the trace trap process have been described in the trace trap oper· 
ational description which includes cases in which an instruction being traced 
causes a bus error, instruction trap, or a stack overflow trap. 

4-72 



If a bus error is caused by the trap process handling instruction traps, trace traps, 
stack overflow traps, or a previous bus error, the processor is halted. 

If a stack overflow is caused by the trap process in handling bus errors, instruc· 
tion traps, or trace traps, the process is completed and then the stack overflow 
trap is sprung. 

4-73 



4.7 MISCELLANEOUS 

HALT 

halt 

IS 

o 0 
I 

Condition Cod.: not affected 

o 0 0 
I 

o 

000000 

o 

Description: Causes the processor operation to cease. The console is 
given control of the bus. The console data lights display the 
contents of RO; the console address lights display the ad· 
dress after the halt instruction. Transfers on the UNIBUS are 
terminated immediately. The PC points to the next instruc· 
tion to be executed. Pressing the continue key on the console 
causes processor operation to resume. No INIT signal is 
given. 

Note: A halt issued in User Mode will generate a trap. 

4·74 



WAIT 

wait for interrupt 000001 

\0 1 00 0 000 0:0 0 000 0 0 , I 
m 0 

Condition Codes: not affected 

Description: Provides a way for the processor to relinquish use of 
the bus while it waits for an external interrupt. 
Having been given a WAIT command, the processor 
will not compete for bus use by fetching instructions 
or operands from memory. This permits higher trans· 
fer rates between a device and memory, since no 
processor·induced latencies will be encountered by 
bus requests from the device. In WAIT, as in all in· 
structions, the PC points to the next instruction fol· 
lowing the WAIT operation. Thus when an interrupt 
causes the PC and PS to be pushed onto the pro· 
cessor stack, the address of the next instruction 
following the WAIT is saved. The exit from the in· 
terrupt routine (Le. execution of an RTI instruction) 
will cause resumption of the interrupted process at 
the instruction following the WAIT. 

4·75 



RESET 

reset external bus 000005 

I 0 I 0 000 0 0 0: 0 0 000 o 1 I 
~ 0 

Condition Codes: not affected 

Description: Sends INIT on the UNIBUS for 10 ms. All devices on the UNI· 
BUS are reset to their state at power up. 

4·76 



(Memory Management option) M FPI 

move from previous instruction space 0065SS 

5 I 5 

6 5 o 

Operation: (temp) • (src) 

• (SP).(temp) 

Condition Codes: N: set if the source <0; otherwise cleared 
Z: set if the source = 0; otherwise cleared 
V: cleared 

Description: 

C: unaffected 

This instruction is provided in order to allow inter· 
address space communication when the PDp·11/40 
is using the Memory Management unit. The address 
of the source operand is determined in the current 
address space. That is, the address is determined 
using the SP and memory segments determined by 
PS (bits 15, 14). The address itself is then used in 
the previous mode (as determined by PS (bits 13, 
12) to get the source operand). This operand is then 
pushed on to the current R6 stack. 

4·77 



MTPI (Memory Management option) 

move to previous instruction space 

15 6 5 

Operation: (temo'\.t(SPV, 
(dst).(temp) 

Condition Codes: N: set if the source <0; otherwise cleared 

Z: set if the source = 0; otherwise cleared 
V: cleared 

C: unaffected 

0066DD 

o 

Description: The address of the destination operand is determined in the 
current address space. MTPI then pops a word off the current 
stack and stores that word in the destination address in the 
previous mode's (bits 13, 12 of PS). 

4-78 



Condition Code Operators ClN SEN 
ClZ SEZ 
ClV SEV 
ClC SEC 
CCC SCC 

condition code operators 0OO2XX 

I 0 0 0 0 0 0 o 10 : 1 o I 1 loI1 [Nl z lv I c I I ! ! I 
15 5 4 3 2 0 

Description: Set and clear condition code bits. Selectable combinations of 
these bits may be cleared or set together. Condition code bits 
corresponding to bits in the condition code operator (Bits o· 
3) are modified according to the sense of bit 4, the set/clear 
bit of the operator. I.e. set the bit specified by bit 0, 1, 2 or 3, 
if bit 4 is a 1. Clear corresponding bits if bit 4 = O. 

Mnemonic 
Operation 

ClC Clear C 

ClV Clear V 

ClZ Clear Z 

ClN Clear N 

SEC SetC 

SEV Set V 

SEZ Set Z 

SEN Set N 

SCC Set all CC's 

CCC Clear all CC's 

Clear V and C 

NOP No Operation 

OP Code 

000241 

000242 

000244 

000250 

000261 

000262 

000264 

000270 

000277 

000257 

000243 
000240 

Combinations of the above set or clear operations may be ORed together to form 
combined instructions. 

4-79 





CHAPTER 5 

PROGRAMMING TECHNIQUES 

In order to produce programs which fully utilize the power and flexibility of the 
PDP·II, the reader should become familiar with the various programming tech· 
niques which are part of the basic design philosophy of the PDP·II. Although it is 
possible to program the PDP· 1 1 along traditional lines such as "accumulator ori· 
entation" this approach does not fully exploit the architecture and instruction set 
of the PDP·ll. 

5.1 THE STACK 
A "stack", as used on the PDP·II. is an area of memory set aside by the pro· 
grammer for temporary storage or subroutine/interrupt service linkage. The in· 
structions which facilitate "stack" handling are useful features not normally 
found in low·cost computers. They allow a program to dynamically establish, 
modify, or delete a stack and items on it. The stack uses the "Iast·in, first·out" 
co!,\cept, that is, various items may be added to a stack in sequential order ~nd reo 
trieved or deleted from the stack in reverse order. On the PDP·II, a stack starts 
at the highest location reserved for it and expands linearly downward to the low· 
est address as items are added to the stack. 

HIGH ADDRESSES 

LOW ADDRESSES 

Figure 5·1: Stack Addresses 

The programmer does not need to keep track of the actual locations his data is 
being stacked into. This is done automatically through a "stack pointer." To keep 
track of the last item added to the stack (or "where we are" in the stack) a Gen· 
eral Register always contains the memory address where the last item is stored in 
the stack. In the PDp·l1 any register except Register 7 (the Program Counter· PC) 
may be used as a "stack pointer" under program control; however, instructions 
associated with subroutine linkage and interrupt service automatically use Regis· 
ter 6 (R6) as a hardware "Stack Pointer." For this reason R6 is frequently reo 
ferred to as the system "SP." 

5·1 



Stacks in the PDP-ll may be maintained in either full word or byte units. This is 
true for a stack pointed to by any register except R6, which must be organized in 
full word units only. 

WORD STACK 

ITEM "'1 

ITEM "'2 

ITEM "'3 

007100 

007076 

007074 

007072 

007070 

007066 

007064 

t-_'T_E_M_"'_4_--1+--- SP IL ___ DO_7_0_72 __ -, 

007100 

007077 

007076 

007075 

BYTE STACK 

ITEM 
"" ITEM "'2 

ITEM "'3 

ITEM "'4 

NOTE: BYTES ARE 
ARE ARRANGED IN 
WORDS AS FOLLOWING: 

---spl L ___ 0_07_0_7_5 __ ~ 

Figure 5-2: Word and Byte Stacks 

Items are added to a stack using the autodecrement addressing mode with the 
appropriate pointer register. (See Chapter 3 for description of the autoincre­
mentldecrement modes). 

This operation is accomplished as follows; 

MOV Source,-(SP) ;MOV Source Word onto the stack 

or 

MOVB Source,-(SP) ;MOVB Source Byte onto the stack 

This is called a "push" because data is "pushed onto the stack." 

5-2 



To remove an item from stack the autoincrement addressing mode with the ap­
propriate SP is employed_ This IS accomplished in the following manner: 

MOV (SP) + ,Destination ;MOV Destination Word off the stack 

or 

MOVB (SP) + ,Destination ;MOVB Destination Byte off the stack 

Removing an item from a stack is called a "pop" for "popping from the stack," 
After an item has been "popped," its stack location is considered free and avai­
lable for other use, The stack pOinter points to the last-used location implying 
that the next (lower) location is free, Thus a stack may represent a pool of share­
able temporary storage locations, 

HIGHMEMORY~ ~ -SP 

} 
I E0 .... SP 

STACK 
AREA 

LOW MEMORY • 
, AN EMPTy STACK 2. PUSHING A DATUM 

AREA ONTO THE STACK 

,~~t 
4. ANOTHER PUSH 

~
E3 

E0 

£1 "sp 

7 POP 

Edp 
~4SP 
5. POP 

Ed 
I~SP 

3 PUSHING ANOTHER 
DATUM ONlD THE 
STACKS 

I~'" 
6 PUSH 

Figure 5-3: Illustration of Push and Pop Operations 

5-3 



As an example of stack usage consider this situation: a subroutine (SUBR) wants 
to use registers 1 and 2, but these registers must be returned to the calling pro· 
gram with their contents unchanged. The subroutine could be written as follows: 

Address 

076322 
076324 
076326 
076330 

076410 
076412 
076414 
076416 
076420 
076422 
076424 

I ndex Constants 

Octal Code 

010167 
000074 
010267 
000072 

016701 
000006 
016702 
000002 
000207 
000000 
00000o 

SUBR: 

Assembler Syntax 

MOV Rl,TEMPI ;save Rl 

MOV R2,TEMP2 ;save R2 

MOV TEMPI. Rl ;Restore Rl 

MOV TEMP2, R2 ;Restore R2 

RTSPC 
TEMPI: 0 
TEMP2: 0 

Figure 5·4: Register Saving Without the Stack 

OR: Using the Stack 

Address 

010020 
010022 

010130 
010132 
010134 

Octal Code 

010143 SUBR: 
010243 

012301 
012302 
000207 

Assembler Syntax 

MOV Rl, -(R3) ;push Rl 
MOV R2, -(R3) ;push R2 

MOV (R3) + , R2 ;pop R2 
MOV (e3) +, Rl ;pop Rl 
RTSPC 

Note: In this case R3 was used as a Stack Pointer 

Figure 5·5: Register Saving using the Stack 

The second routine uses four less words of instruction code and two words of 
temporary "stack" storage. Another routine could use the same stack space at 
some later point. Thus, the ability to share temporary storage in the form of a 
stack is a very economical way to save on memory usage. 

5-4 



As a further example of stack usage, consider the task of managing an input buf· 
fer from a terminal. As characters come in, the terminal user may wish to delete 
characters from his line; this is aceomplished very easily by maintaining a byte 
stack containing the input characters. Whenever a backspace is received a char· 
acter is "popped" off the stack and eliminated from consideration. In this ex· 
ample, a programmer has the choice of "popping" characters to be eliminated by 
using either the MOVB (MOVE BYTE) or INC (INCREMENT) instructions. 

00101 \ 

001010 

001007 

001006 

001005 

001004 

001003 

001002 

001001 

c c 
U U 

5 INC R3 5 

T T 

0 0 

M M 

E E 

R R 001002 

Z 001001 

Figure 5·6: Byte Stack used as a Character Buffpr 

NOTE that in this case using the increment instruction (INC) is preferable to 
MOVB since it would accomplish the task of eliminating the unwanted character 
from the stack by readjusting the stack pointer without the need for a destination 
location. Also, the stack pointer (SP) used in this example cannot be the system 
stack pointer (R6) because R6 may only point to word (even) locations. 

5.2 SUBROUTINE LINKAGE 
5.2.1 Subroutine Calls 
Subroutines provide a facility for maintaining a single copy of a given routine 
which can be used in a repetitive manner by other programs located anywhere 
else in memory. In order to provide this facility, generalized linkage methods 
must be established for the purpose of control transfer and information exchange 
between subroutines and calling programs. The PDP·ll instruction set contains 
several useful instructions for this purpose. 

PDP·ll subroutines are called by using the JSR instruction which has the follow· 
ing format. 

a general register (R) for linkage ----. 
JSR R,SUBR 

an entry location (SUBR) for the subroutine....J 

5·5 



When a JSR is executed, the contents of the linkage register are saved on the sys­
tem R6 stack as if a MOV reg,-(SP) had been performed_ Then the same register 
is loaded with the memory address following the JSR instruction (the contents of 
the current PC) and a jump is made to the entry location specified_ 

BEFORE 

(RS)= 000132 
(R6)=OQ1776 

(PC):{R1):: 001000 

002000 

Address Assembler Syntax Octal Code 

001000 JSRR5.SUBR 004567 
001002 Index constant for SUBR 000064 

001064 SUBR MOVA.B Olnnmm 

Figure 5-7: JSR using R5 

AFTER 

(R5)=001004 
(R6)=001774 

(PC)"'(R7)-001064 

002000 nnnnnn 

001776 r-----t_ SP '--00-'7-7-6-', 00'776 r-----t 
001774 

001772 

001774 000132 ... SP 
00'772 r---,-,-,-,c:....--I 

001774 

Figure 5-8: JSR 

Note that the instruction JSR R6,SUBR is not normally considered to be a mean­
ingful combination_ 

5.2,2 Argument Transmission 
The memory location pointed to by the linkage register of the JSR instruction may 
contain arguments or addressses of arguments. These arguments may be ac­
cessed from the subroutine in several ways. Using Register 5 as the linkage regis­
ter, the first argument could be obtained by using the addressing modes in­
dicated by (R5), (R5) + ,X(R5) for actual data, or @(R5) + , etc. for the address of 
data. If the autoincrement mode is used, the linkage register is automatically up­
dated to point to the next argument. 

Figures 5-9 and 5-10 illustrate two possible methods of argument transmission. 

Address Instructions and Data 

010400 
010402 

010404 
010406 

020306 SU BR: 
020310 

JSR R5,SUBR 
Index constant for SUBR 
arg #1 
arg #2 

MOV (R5) + ,R1 
MOV (R5) + ,R2 

SUBROUTINE CALL 

ARGUMENTS 

;get arg # 1 
;get arg # 2 Retrieve Arguments 
from SUB 

Figure 5-9; Argument Transmission -Register Autoincrement Mode 

5-6 



Address Instructions and Data 

010400 JSR R5,SUBR 
010402 index constant for SUBR SUBROUTINE CALL 
010404 077722 Address of Arg # 1 
010406 077724 Address of Arg. # 2 
010410 077726 Address of Arg. # 3 

077722 Arg # 1 
077724 arg #2 arguments 
077726 arg #3 

020306 SUBR: MOV@(R5)+,R1 ;get arg # 1 
020301 MOV @(R5) + ,R2 ;get arg #2 

Figure 5·10: Argument Transmission·Register Autoincrement Deferred Mode 

Another method of transmitting arguments is to transmit only the address of the 
first item by placing this address in a general purpose register. It is not necessary 
to have the actual argument list in the same general area as the subroutine call. 
Thus a subroutine can be called to work on data located anywhere in memory. In 
fact, in many cases, the operations performed by the subroutine can be applied 
directly to the data located on or pointed to by a stack without the need to ever 
actually move this data into the subroutine area. 

Calling Program: MOV 
JSR 

SUBROUTINE ADD 

POINTER, R1 
PC,SUBR 

(R1) + ,(R1) ;Add item # 1 to item #2, place 
result in item #2, R1 points 

etc. 
or 

to item # 2 now 

ADD (R1),2(R1) ;Same effect as above except that 

R1 still points to item # 1 
etc. 

ITEM :lit -Rt I 
ITEM .. 2 '------' 

Figure 5·11: Transmitting Stacks as Arguments 

5-7 



Because the PDP·ll hardware already uses general purpose register R6 to point 
to. a stack for salling and restoring PC and PS (processor status word) informa· 
tion, it is quite conllenient to use this same stack to salle and restore intermediate 
results and to transmit arguments to and from subroutines. Using R6 in this 
manner permits extreme flexibility in nesting subroutines and interrupt service 
routines. 

Since arguments may be obtained from the stack by using some form of register 
indexed addressing, it is sometimes useful to salle a temporary copy of R6 in 
some other register which has already been sailed at the beginning of a subrout· 
ine. In the prellious example R5 may be used to index the arguments while R6 is 
free to be incremented and decremented in the course of being used as a stack 
pointer. If R6 had been used directly as the base for indexing and not "copied", it 
might be difficult to keep track of the position in the argument list since the base 
of the stack would change with ellery autoincrement/decrement which occurs. 

oro ., O'Q '"' org #2 org .. 2 

sP..... org #3 or'll #3 

oro .. 2 Is at source 
-2 (SP) 

but when another item 
TO is pushed 

TO 

oro#2 Is at source 
-4(SP) 

Figure 5·12: Shifting Indexed Base 

Howeller, if the contents of R6 (SP) are sailed in R5 before any arguments are 
pushed onto the stack, the position relatille to R5 would remain const<'nt. 

f-_O'..:.Q--:,"--:'_-;-R5 
SP org #2 

org .. \ - org .. 2 

SP- org #3 

or9#2150t 2(R5) oro.2ls stili ot 2{R51 

Figure 5·13: Constant Index Base Using "R6 Copy" 

5·8 



5.2.3 Subroutine Return 
In order to provide for a return from a subroutine to the calling program an RTS 
instruction is executed by the subroutine. This instruction should specify the 
same register as the JSR used in the subroutine call. When executed, it causes the 
register specified to be moved to the PC and the top of the stack to be then placed 
in the register specified. Note that if an RTS PC is executed, it has the effect of reo 
turning to the address specified on the top of the stack. 

Note that the JSR and the JMP Instructions differ in that a linkage register is al· 
ways used with a JSR; there is no linkage register with a JMP and no way to reo 
turn to the calling program. 

When a subroutine finishes, it is necessary to "clean·up" the stack by eliminating 
or skipping over the subroutine arguments. One way this can be done is by insist· 
ing that the subroutine keep the number of arguments as its first stack item. Re· 
turns from subroutines would then involve calculating the amount by which to reo 
set the stack pointer, resetting the stack pointer, then restoring the original 
contents of the register which was used as the copy of the stack pointer. The PDp· 
11 140, however, has a much faster and simpler method of performing these 
tasks. The MARK instruction which is stored on a stack in place of "number of ar· 
gument" information may be used to automatically perform these "clean·up" 
chores. 

5.2.4 PDP·ll Subroutine Advantages 
There are several advantages to the PDP·11 subroutine calling procedure. 

a. arguments can be quickly passed between the calling program and the subr· 
outine. 

b. if the user has no arguments or the arguments are in a general register or on 
the stack the JSR PC,DST mode can be used so that none of the general pur· 
pose registers are taken up for linkage. 

C. many JSR's can be executed without the need to provide any saving procedure 
for the linkage information since all linkage information is automatically 
pushed onto the stack in sequential order. Returns can simply be made by 
automatically popping this information from the stack in the opposite order of 
the JSR's. 

Such linkage address bookkeeping is called automatic "nesting" of subroutine 
calls. This feature enables the programmer to construct fast, efficient linkages in 
a simple, flexible manner. It even permits a routine to call itself in those cases 
where this is meaningful. OtherTamifications will appear after we examine the 
PDp·ll interrrupt procedures. 

5.3 INTERRUPTS 
5.3.1 General Principles 
Interrupts are in many respects very similar to subroutine calls. However, they are 
forced, rather than controlled, transfers of program execution occurring because 
of some external and program·independent event (such as a stroke on the tele· 
printer keyboard). Like subroutines, interrupts have linkage information such 

5·9 



that a return to the interrupted program can be made. More information is ac· 
tually necessary for an interrupt transfer than a subroutine transfer because of 
the random nature of interrupts. The complete machine state of the program im· 
mediately prior to the occurrence of the interrupt must be preserved in order to 
return to the program without any noticeable effects. (i.e. was the previous oper· 
ation zero or negative. etc.) This information is stored in the Processor Status 
Word (PS). Upon interrupt. the contents of the Program Counter (PC) (address of 
next instruction) and the PS are automatically pushed onto the R6 system stack. 
The effect is the same as if: 

MOV PS .-(SP) 
MOV R7.-(SP) 

had been executed. 

; Push PS 
; Push PC 

The new contents of the PC and PS are loaded from two preassigned consecutive 
memory locations which are called an "interrupt vector". The actual locations are 
chosen by the device interface designer and are located in low memory addresses 
of Kernel virtual space (see interrupt vector list. Appendix B). The first word con· 
tains the interrupt service routine address (the address of the new program se· 
quence) and the second word contains the new PS which will determine the mao 
chine status including the operational mode and register set to be used by the 
interrupt service routine. The contents of the interrupt service vector are set un· 
der program control. 

After the interrupt service routine has been completed. an RTI (return from inter· 
rupt) is performed. The two top words of the stack an! automatically "popped" 
and placed in the PC and PS respectively. thus resuming the interrupted pro· 
gram. 

5.3.2 Nesting 
Interrupts can be nested in much the same manner that subroutines are nested. 
In fact. it is possible to nest any arbitrary mixture of subroutines and interrupts 
without any confusion. By using the RTI and RTS instructions. respectively. the 
proper returns are automatic. 

1. Process 0 is running; 
SP is pointing to loca· 
tion PO. 

2. Interrupt stops process 0 
with PC = PCO. and 
status = PS 0 ;starts process 1. 

5-10 

po§ pso 
SP~ pco 



3. Process 1 uses stack for 

temporary storage (TEO, TEl). 
PO 

a 

4. Process I interrupted with PC = PCI PO 

and status = PSI; process 2 is started 

5. Process 2 is running and does a 
JSR R7,A to Subroutine A with 
PC = PC 2. 

6. Subroutine A is running 
and uses stack for 
temporary storage. 

5-11 

sP~ 

PO 

a 

PO 

1--:::ps:':O--I 

PCO 

TEO 

'---__ --.J 

PSO 

PC a 
TEO 

TEl 

PS 1 

PC 1 

PSO 

pco 

TEO 

TE 1 

PSl 

PC 1 

PC2 

PSO 

PCO 

TEO 

TEl 

PS 1 

PCl 

PC2 

TAl 

TA2 



7. Subroutine A releases the temporary 

storage holding TAl and TA2. 

8. Subroutine A returns control to process 
2 with an RTS R7,PC is reset to PC2. 

9. Process 2 completes with an RTI instruction 
(dismisses interrupt) PC is reset 
to PC(1) and status is reset to PSI; 
process I resumes. 

10. Process I releases the temporary 

storage holding TEO and TEl. 

11. Process 1 completes its operation with 
an RTI PC is reset to pea and status is 
reset to PSO. 

PO 

PSO 

PCO 

TEO 

TEl 

PSl 

PCl 

PC2 

a 

PO 

PSO 

PCO 

TEO 

TEl 

PSl 

PC 1 

PO 1-___ -1 
PSO 

PCO 

TEO 

SP---+ TE1 

0L-___ --.J 

PO~ pso 

SP~ PCO 

Figure 5·14: Nested Interrupt Service Routines and Subroutines 

Note that the area of interrupt service programming is intimately involved with 
the concept of CPU and device priority levels. 

5-12 



5.4 REENTRANCY 
Further advantages of stack organization become apparent in complex situations 
which can arise in program systems that are engaged in the concurrent handling 
of several tasks. Such multi·task program environments may range from rela­
tively simple single,user applications which must manage an intermix of 1/0 in· 
terrupt service and background computation to large complex multi·programm· 
ing systems which manage a very intricate mixture of executive and multi·user 
programming situations. In all these applications there is a need for flexibility 
and timelmemory economy. The use of the stack provides this economy and 
flexibility by providing a method for allowing many tasks to use a single copy of 
the same routine and a simple, unambiguous method for keeping track of com· 
plex program linkages. 

The ability to share a single copy of a given program among users or tasks is 
called reentrancy, Reentrant program routines <!iffer from ordinary subroutines in 
that it is unnecessary for reentrant routines to finish processing a given task be· 
fore they can be used by another task. Multiple tasks can be in various stages of 
completion in the same routine at any time. Thus the following situation may oc· 
cur: 

MEMORY 

""OGRAM'~ PROGRAM 2 SueRCXJTINE A 
_"'3 

PDP-ll Approach 

Programs 1, 2, and 3 can 
share Subroutine A. 

MEMORY 

PROGRAM 1 sUEiROuTINE A 

""OGRAM 2 ~.SU8ROUTINE .~ 

Conventional Approach 

A separate copy of Subroutine A 
must be provided for each program. 

Figure 5·15: Reentrant Routines 

The chief programming distinction between a non·shareable routine and a reen· 
trant routine is that the reentrant routine is composed solely of "pure code", i.e. 
it contains only instructions and constants. Thus, a section of program code is reo 
entrant (shareable) if and only if it is "non self·modifying", that is it contains no 
information within it that is subject to modification. 

Using reentrant routines, control of a given routine may be shared as illustrated 
in Figure 5·16. 

5·13 



REENTRANT 
ROUTINE 

Q 

Figure 5·16: Reentrant Routine Sharing 

1. Task A has requested processing by Reentrant Routine Q. 

2. Task A temporarily relinquishes control (is interrupted) of Reentrant Routine 
Q before it finishes processing. 

3. Task B starts processing in the same copy of Reentrant Routine Q. 

4. Task B relinquishes control of Reentrant Routine Q at some point in its pro· 
cessing. 

5. Task A regains control of Reentrant Routine Q and resumes processing from 
where it stopped. 

The use ot reentrant programming allows many tasks to share frequently used 
routines such as device interrupt service routines, ASCII·Binary conversion rou· 
tines, etc. In fact, in a multi·user system it is possible for instance, to construct a 
reentrant FORTRAN compiler which can be used as a single copy by many user 
programs. 

As an application of reentrant (shareable) code, consider a data processing pro· 
gram which is interrupted while executing a ASCII·to·Binary subroutine which has 
been written as a reentrant routine. The same conversion -routine is used by the 
deyice service routine. When the device servicing is finished, a return from inter­
rupt (RTI) is executed and execution for the processing program is then resumed 
where it left off inside the same ASCII·to·Binary subroutine. 

Shareable routines generally result in great memory saving. It is the hardware im­
plemented stack facility of the PDP-ll that makes shareable or reentrant rou­
tines reasonable. 

A subroutine may be reentered by a new task before its completion by the pre­
vious task as long as the new execution does not destroy any linkage information 
or intermediate results which belong to the previous programs. This usually 
amounts to saving the contents of any general purpose registers, to be used and 
restoring-them upon exit. The choice of whether to save and restore this informa· 
tion in the calling program or the subroutine is quite arbitrary and depends on the 
particular application. For example in controlled transfer situations (Le. JSR's) a 
main program which calls a code·conversion utility might save the contents of 
registers which it needs and restore them after it has regained control, or the 
code conversion routine might save the contents of registers which it uses and reo 
store them upon its completion. In the case of interrupt service routines this 
save/restore process must be carried out by the service routine itself since the in· 
terrupted program has no warning of an impending interrupt. The advantage of 

5·14 



using the stack to save and restore (i.e. "push" and "pop") this information is 
that it permits a program to isolate its instructions and data and thus maintain 
its reentrancy. 

In the case of a reentrant program which is used in a multi·programming envi· 
ronment it is usually necessary to maintain a separate R6 stack for each user al· 
though each such stack would be shared by all the tasks of a given user. For ex· 
ample, if a reentrant FORTRAN compiler is to be shared between many users, 
each time the user is changed, R6 would be set to point to a new user's stack area 
as illustrated in Figure 5·17. 

Figure 5·17: Multiple R6 Stack 

5.5 POSITION INDEPENDENT CODE· PIC 
Most programs are written with some direct references to specific addresses, if 
only as an offset from an absolute address origin. When it is desired to relocate 
these programs in memory, it is necessary to change the address references 
and lor the origin assignments. Such programs are constrained to a specifiec set 
of locations. However, the PDP·l1 architecture permits programs to be con­
structed such that they are not constrained to specific locations. These Position 
Independent programs do not directly reference any absolute locations in 
memory. Instead all references are "PC-relative" i.e. locations are referenced im 
terms of offsets from the current location (offsets from the current value of the 
Program Counter (PC». When such a program has been translated to machine 
code it will form a program module which can be loaded anywhere in memory as 
required. 

Position Independent Code is exceedingly valuable for those utility routines 
which may be disk·resident and are subject to loading in a dynamically changing 
program environment. The supervisory program may load them anywhere it de· 
termin'es without the need for any relocation parameters since all items remain in 
the same positions relative to each other (and thus also to the PC). 

Linkages to program routines which have been written in position independent 
code (PIC) must still be absolute in some manner. Since these routines can be lo­
cated anywhere in memory there must be some fixed or readily locatable linkage 
addresses to facilitate access to these routines. This linkage address may be a 
simple pointer located at a fixed address or it may be a complex vector composed 
of numerous linkage information items. 

5·15 



5.6 C()'ROUTINES 
In some situations it happens that two program routines are highly interactive. 
Using a special case of the JSR instruction i.e. JSR PC,@(R6) + which exchanges 
the top element of the Register 6 processor stack and the contents of the Pro· 
gram Counter (PC), two routines may be permitted to swap program control and 
resume operation where they stopped, when recalled. Such routines are called 
"co·routines". This control swapping is illustrated in Figure 5-18. 

Routine # 1 is operating, it then executes: 

MOV #PC2,-(R6) 

JSR PC,@(R6) + 
with the following results: 

1) PC2 is popped from the stack 

and the SP autoincremented 

2) SP is autodecremented and the 
old PC (i.e. PC1) is pushed 

3) control is transferred to the 
location PC2 (i.e. routine # 2) 

Routine # 2 is operating, it then executes: 

JSR PC ,@(R6) + 
with the result the PC2 is exchanged 
for PC1 on the stack and control is 
transferred back to routine # 1. 

SP 

....--...1.---..., PC2 

Figure 5·18 - Co-Routine Interaction 

5-16 



5.7 MULTI·PROGRAMMING 
The PDP 11/40's architecture with its two modes of operation and its 
Memory Management provides an ideal environment for multi·program· 
ming systems. 

In any multi·programming system there must be some method of trans· 
ferring information and control between programs operating in the same 
or different modes. The PDP 11/40 provides the user with these com· 
munication paths. 

5.7.1 Control Information 
Control is passed inwards (User to Kernel) by all traps and interrupts. 
All trap and interrupt vectors are located in Kernel virtual space. Thus 
all traps and interrupts pass through Kernel space to pick up their new 
PC and PS and determine the new mode of processing. 

Control is passed outwards (Kernel to User) by the RTI and RTT instruc· 
tions. 

5.7.2 Data 
Data is transferred between modes by two instructions: Move From Pre· 
vious Instruction space (MFPI) and Move To Previous Instruction space 
(MTPI). The instructions are fully described in Chapter 4. However, it 
should be noted that these instructions have been designed to allow data 
transfers to be under the control of the inner mode (Kernel) program 
and not the outer, thus providing protection of an inner program from an 
outer. 

5.7.3 Processor Status Word 
The PDP 11/40 protects the PS from implicit references by User pro· 
grams which could result in damage to an inner level program. 

A program operating in Kernel mode can perform any manipulation of 
the PS. Programs operating at the outer level are inhibited from chang· 
ing bits 5·7 (the Processor's Priority). They are also restricted in their 
treatment of bits 15, 14 (Current Mode), and bits 13, 12 (Previous Mode) 
these bits may only be set, they are only cleared by an interrupt or trap. 

Thus, a programmer can pass control outwards through the RTI and RTI 
instructions to set bits in the mode fields of his PS. To move inwards, 
however, bits must be cleared and he must therefore, issue a trap or 
interrupt. 

The Kernel can further protect the PS from explicit references (Move 
data to location 777776·the PS) through Memory Management. 

5·17 





CHAPTER 6 

MEMORY MANAGEMENT 

The PDP-ll/40 Memory Management Unit provides the hardware facili­
ties necessary for complete memory management and protection. It is 
designed to be a memory management facility for systems where the 
system memory size is greater than 28K words and for multi-user, multi­
programming systems where memory protection and relocation facilities 
are necessary_ 

In order to most effectively utilize the power efficiency of the PDP-
11/40 in medium and large scale systems it is necessary to run several 
programs simultaneously. In such multi-programming environments sev­
eral user programs would be resident in memory at any given time. The 
task of the supervisory program would be: control the execution of the 
various user programs, manage the allocation of memory and peripheral 
device resources, and safeguard the integrity of the system as a whole 
by careful control of each user program. 

In a mUlti-programming system, the Management Unit provides the 
means for assigning memory pages to a user program and preventing 
that user from making any unauthorized access to those pages outside 
his assigned area_ Thus, a user can effectively be prevented from acci­
dental or willful destruction of any other user program or the system 
executive program. 

The basic characteristics of the PDP-11/40 Memory Management Unit 
are: 

• 8 User mode memory pages 
• 8 Kernel mode memory pages 
• 8 pages in each mode for instructions and data 
• page length from 32 to 4096 words 
• each page provided with full protection and relocation 
• transparent operation 
• 3 modes of memory access control 
• memory extension to l24K words (248K bytes) 

6.1 PDP-ll FAMILY BASIC ADDRESSING LOGIC 
The addresses generated by all PDP-11 Family Central Processor Units 
(CPUs) are 18-bit direct byte addresses_ Although the PDP-11 Family 
word length and operational logic is all l6-bit length, the UN IBUS and 
CPU addressing logic actually is l8-bit length. Thus, while the PDP-11 
word can only contain address references up to 32K words (64K bytes) 
the CPU and UN IBUS can reference addresses up to 128K words (256K 
bytes). These extra two bits of addressing logic provide the basic frame­
work for expanded memory paging. 

6-1 



In addition to the word length constraint on basic memory addressing 
space, the uppermost 4K words of address space is always reserved for 
UN IBUS 110 device registers. In a basic PDp·11/40 memory configura· 
tion (without Management) all address references to the uppermost 4K 
words of 16·bit address space (170000·177777) are converted to full 
18·bit references with bits 17 and 16 always set to 1. Thus, a 16·bit 
reference to the I/O device register at address 173224 is automatically 
internally converted to a full 18·bit reference to the register at address 
773224. Accordingly, the basic PDP·11/40 configuration can directly 
address up to 28K words of true memory, and 4K words of UNIBUS I/O 
device registers. Memory configurations beyond this require the PDp· 
11/40 Memory Management Unit. 

6.2 VIRTUAL ADDRESSING 
When the PDP·11/40 Memory Management Unit is operating, the normal 
16·bit direct byte address is no longer interpreted as a direct Physical 
Address (PA) but as a Virtual Address (VA) containing information to be 
used in constructing a new 18-bit physical address. The information con­
tained in the Virtual Address (VA) is combined with relocation and des· 
cription information contained in the Active Page Register (APR) to yield 
an 18-bit Physical Address (PA). Memory can be dynamically allocated 
in pages each composed of from 1 to 128 blocks of 32 words. 

:32K 

o 

VIRTUAL 
ADDRESS SPACE 

PAGE 

PAGE 

VIRTUAL ADDRESS 
(168ITS) 

APR 7 

APR 6 

APR 5 

APR 4 

APR :3 

APR 2 

APR 1 

APR 0 

ACTIVE PAGE 
REGISTERS 

128K 

rE 
~ 

PHYSICAL 
ADDRESS SPACE 

SEG 5 

SEG 6 

SEG 7 

SEG 4 

PHYSICAL ADDRESS 
(18 BITS) 

Figure 6-1 Virtual Address Mapping into Physical Address 

The starting address for each page is an integral multiple of 32 words, 
and has a maximum size of 4096 words. Pages may be located any­
where within the 128K Physical Address space. The determination of 
which set of 8 pages registers is used to form a Physical Address is made 
by the current mode of operation of the CPU, i.e. Kernel or User mode. 

6.3 INTERRUPT CONDITIONS UNDER MANAGEMENT CONTROL 
The Memory Management Unit relocates all addresses. Thus, when Man· 
agement is enabled, all trap. abort. and interrupt vectors are considered 
to be in Kernel mode Virtual Address Space. When a vectored transfer 
occurs, control is transferred according to a new Program Counter (PC) 

6·2 



and Processor Status Word (PS) contained in a two-word vector relocated 
through the Kernel Active Page Register Set 

When a trap, abort, or interrupt occurs the "push" of the old PC, old PS 
is to the User! Kernel R6 stack specified by CPU mode bits 15,14 of the 
new PS in the vector (00 = Kernel, 11 = User)_ The CPU mode bits 
also determine the new APR set In this manner it is possible for a 
Kernel mode program to have complete control over service assignments 
for all interrupt conditions, since the interrupt vector is located in Kernel 
space_ The Kernel program may assign the service of some of these con­
ditions to a User mode program by simply setting the CPU mode bits 
of the new PS in the vector to return control to the appropriate mode_ 

6_4 CONSTRUCTION OF A PHYSICAL ADDRESS 
The basic information needed for the construction of a Physical Address 
(PA) comes from the Virtual Address (VA), which is illustrated in Figure 
6-2, and the appropriate APR set_ 

15 13 12 

APF OF 

ACTIVE PAGE FIELD DISPLACEMENT FIELD 

Figure 6-2 Interpretation of a Virtual Address 

The Virtual Address (VA) consists of: 

o 

L The Active Page Field (APF)_ This 3-bit field determines which of 
eight Active Page Registers (APRO-APR?) will be used to form the 
Physical Address (PA)_ 

2_ The Displacement Field (DF)_ This 13-bit field contains an address 
relative to the beginning of a page_ This permits page lengths up to 
4K words (213 = 8K bytes)_ The OF is further subdivided into two 
fields as shown in Figure 6-3_ 

12 6 5 o 
BN DIB 

BLOCK NUMBER DISPLACEMENT IN BLOCK 

Figure 6-3 Displacement Field of Virtual Address 

The Displacement Field (OF) consists of: 

L The Block Number (BN)_ This ?-bit field is interpreted as the block 
number within the current page_ 

2_ The Displacement in Block (DIB)_ This 6-bit field contains the dis-
placement within the block referred to by the Block Number_ 

The remainder of the information needed to construct the Physical Ad­
dress comes from the 12-bit Page Address Field (PAF) (part of the Active 
Page Register) and specifies the starting address of the memory which 
that APR describes_ The PAF is actually a block number in the physical 
memory, e_g_ PAF = 3 indicates a starting address of 96, (3 X 32 = 96) 
words in physical memory_ 



The formation of a physical address takes 150 ns. 

The formation of the Physical Address is illustrated in Figure 6·4. 

15 13 12 6 5 

I APF I BLOCI< NO I OIB I ~~~~:SLS 

15 '2r'~I ________ ~~ __________ ~~ 

PAGE ADDRESS FIELD ACTIVE PAGE 

L.--9 REGISTER 

5 0 17 

I PHYSICAL BLOCK NO 1-----1 OIB I PHYSICAL 
ADDRESS 

(DiSPLACEMENT IN BLOCK) 

Figure 6·4 Construction of a Physical Address 

The logical sequence involved in constructing a Physical Address is as 
follows: 

1. Select a set of Active Page Registers depending on current mode. 

2. The Active Page Field of the Virtual Address is used to select an 
Active Page Register (APRO-APR7). 

3. The Page Address Field of the selected Active Page Register con· 
tains the starting address of the currently active page as a block 
number in physical memory. 

4. The Block Number from the Virtual Address is added to the block 
number from the Page Address Field to yield the number of the 
block in physical memory which will contain the Physical Address 
being constructed. 

5. The Displacement in Block from the Displacement Field of the Virtual 
Address is joined to the Physical Block Number to yield a true IS-bit 
PDp·ll/40 Physical Address. 

6.5 MANAGEMENT REGISTERS 
The PDP-ll/40 Memory Management Unit uses two sets of eight 32-bit 
Active Page Registers. An APR is actually a pair of 16·bit registers: a 
Page Address Register (PAR) and a Page Descriptor Register (PDR). 
These registers are always used as a pair and contain all the information 
needed to describe and locate the currently active memory pages. 

One set of APR's is used in Kernel mode, and the other in User mode. 
The choice of which set to be used is determined by the current CPU 
mode contained in the Processor Status word. 

The various Memory Management Registers are located in the upper­
most 4K of PDP-ll physical address space along with the UNIBUS 110 

device registers. 

6·4 



15 14 13 

KERNAL (00) 

APR 0 
1------1 

APR 1 1-____ ---1 
APR 21-____ ---1 
APR3 

I-------t 
APR41-___ --I 
APR 5 

1------; 
APR6 

1---------4 
APR7 '--____ -..l 

PROCESSOR STATUS WORO 
I I 

USER (11) 

APRO 1-____ -1 
APR 1 

1-------; 
APR2 

1------1 
APR3 

I-------t 
APR41-____ -I 
APR5 

1---------4 
APR6 

1---------4 
APR7 '--____ -' 

ACTIVE 
PAGE 
REGISTERS 

ffi 0 ffi 0 "":1 :!....----PA-R ---"'~ _____ Ir::----PD-R ------'''--,1 
PAGE ADDRESS REGISTER PAGE DESCRIPTION REGISTER 

Figure 6·5 Active Page Registers 

6.5.1 Page Address Registers 

o 

The Page Address Register is the first word of the 32·bit Active Page 
Register; it contains the Page Address Field, a 12·bit field, which speci· 
fies the starting address of the page as a block number in physical 
memory. 

15 12 11 o 
PAF 

Figure 6·6 Page Address Register 

Bits 15·12 of the PAR are unused and reserved for possible future use. 
The Page Address Register which contains the Page Address Field may 
be alternatively thought of as a relocation register containing a reloca· 
tion constant, or as a base register containing a base address. Either 
interpretation indicates the basic importance of the Page Address Reg· 
ister as a relocation tool. 

6.5.2 Page Descriptor Register 
The Page Descriptor Register contains information relative to page ex· 
pansion, length, and access control. 

Figur.e 6·7 Page Descriptor Register 

6·5 



Access Control Field (ACF) 
This 2-bit field, occupying bits 2-1 of the Page Descriptor Register con­
tains the access rights to this particular segment. The acccess codes or 
"keys" specify the manner in which a page may be accessed and whether 
or not a given access should result in an abort of the current operation. 
A memory reference which causes an abort is not completed. Aborts are 
used to catch "missing page faults," prevent illegal accesses, etc. 

In the context of access control the term "write" is used to indicate the 
action of any instruction which modifies the contents of any addressable 
word. Except in those cases where references are made to the 4K word 
UNIBUS I/O register area, a "write" is synonymous with what is usually 
called a "store" or "modify" in many computer systems. 

The modes of access control are as follows: 

ACF Key Mode 

00 0 non-resident abort all accesses 

01 2 read only abort on write attempt 

10 4 (unused) abort all accesses 

11 6 read/write no system abort action 

Access Information Bits 
W Bit (bit 6)-This bit indicates whether or not this page has been modi­
fied (i.e. written into) since the PSR was loaded. (W = 1 is Affirmative) 
The W Bit is useful in applications which involve disk swapping and 
memory overlays. It is used to determine which pages have been modi­
fied and hence must be saved in their new form and which pages have 
not been modified and can be simply overlayed. 

Note that the W bit is reset to 0 whenever the Active Page Register 
(either PAR or PDR) is modified (written into). 

Expansion Direction (ED) 
This one-bit field, located at bit 3 of the Page Descriptor Register, speci­
fies whether the segment expands upward from relative zero (ED = 0) or 
downwards toward relative zero (ED = 1). Relative zero, in this case, is 
the PAF. Expansion is done by changing the Page Length Field. In ex­
panding upwards, blocks with higher relative addresses are added; in 
expanding downwards, blocks with lower relative addresses are added to 
the page. Upward expansion is usually used to add more program space, 
while downward expansion is used to add more stack space. 

Page Length Field (PLF) 
The seven-bit field, occupying bits 14-8 of the Page Descriptor Register, 
specifies the number of blocks in the page. A page consists of at least 
one and at most 128 blocks, and occupies contiguous core locations. 
If the page expands upwards, this field contains the length of the page 
minus one (in blocks). If the page expands downwards, this field con­
tains 128 minus the length of the page (in blocks). 

6-6 



A Page Length Error occurs when the Block Number of the virtual ad­
dress is greater than the Page Length Field, if the segment expands 
upwards, or if the page expands downwards, when the BN is less than 
the PLF_ 

Reserved Bits 
Bits 15, 4 and 5 are reserved for future use, and are always 0_ Bits 7 
and 0 are used by the PDP-ll/45, and in the PDP-11/40 they are set 
to 0_ 

6.6 FAULT REGISTERS 
Aborts generated by the hardware are vectored through Kernel virtual 
location 250. Status Registers #0 and # 2 (# 1 is used by the PDP-
11/45) are used to determine why the abort occurred. Note that an abort 
to a location which is itself an invalid address will cause another abort. 
Thus the Kernel program must insure that Kernel Virtual Address 10 is 
mapped into a valid address, otherwise a loop will occur which will 
require console intervention. 

6.6.1 Status Register #0 (SRO) (status and error indicators) 
SRO contains error flags, the page number whose reference caused the 
abort, and various other status flags. The register is organized as shown 
in Figure 6-8. 

15 14 13 12 9 8 7 6 5 4 3 2 0 

D---LI_~==~~=--L-I -=~C4...-.L..1 --L-' -LI---J 
ABORT-NON RESIDENT-.J J ~ '---------...--J I 
ABORT -PAGE LENGTH ERROR 

~8~~~~A~~~--_~~~~~~~ ______________ ~ 
MAINTENANCE MODE 
MODE 
PAGE NUM8ER-------------------------------------------
ENABLE MANAGEMENT ___________________________________________ -.-J 

Figure 6-8 Format of Status Register #0 (SRO) 

Bits 15-13 when set (error conditions) cause Memory Management to 
freeze the contents of bits 1-7 a nd Status Register # 2. 

Note that Status Register #0 (SRO) bits 0, and 8 can be set under 
program control to provide meaningful page control information. How­
ever, information written into all other bits is not meaningful. Only that 
information which is automatically written into these remaining bits as 
a result of hardware actions is useful as a monitor of the status of the 
Memory Management Unit. Setting bits 15-13 under program control 
will not cause traps to occur; these bits however must be reset to 0 
after an abort has occurred in order to resume page status monitoring. 

Abort-Non-Resident 
Bit 15 is the "Abort-Non-Resident" bit. It is set by attempting to access 

6-7 



a page with an Access Code Field key equal to 0 or 4. It is also set by 
attempting to use Memory Management with a mode of 1 or 2. 

Abort-Page Length 
Bit 14 is the "Abort-Page Length" bit. It is set by attempting to access 
a location in a page with a block number (Virtual Address bits 12·6) 
that is outside the area authorized by the Page Length Field of the Ac· 
tive Page Register for that page. Bits 14 and 15 may be set simultane· 
ously by the same access attempt. 

Abort-Read Only 
Bit 13 is the "Abort-Read Only" bit. It is set by attempting to write 
in a "Read·Only" page. "Read·Only" pages have an access key of 2. 

Maintenance! Designation Mode 
Bit 8 specifies Maintenance use of the Memory Management Unit. It is 
provided for diagnostic purposes only. 

Mode 
Bits 5, 6 indicate the CPU mode (User/ Kernel) associated with the page 
causing the abort. (Kernel = 00, User = 11). If an illegal mode is speci· 
fied, management will abort and set bit 15. 

Page Number 
Bits 3·1 contain the page number of a reference causing a fault. Note 
that pages, like blocks, are numbered from 0 upwards. 

Enable Management 
Bit 0 is the "Enable Management" bit. When it is set to 1, all addresses 
are relocated by the Management unit. When bit 0 is set to 0 the Unit 
is inoperative and addresses are not relocated or protected. 

6.6.2 Status Register # 2 
SR2 is loaded with the I6·bit Virtual Address at the beginning of each in­
struction fetch. SR2 is Read·Only; it can not be written, SR2 is the Vir­
tual Address Program Counter. 

6-8 



CHAPTER 7 

INTERNAL PROCESSOR OPTIONS 

7.1 GENERAL 
This chapter describes 3 options which mount in the Central Processor, 
assembly unit. The Extended Instruction Set (EIS) option allows ex· 
tended manipulation of fixed point numbers. The Floating Point option 
(which requires the EIS option) enables direct operations on single pre· 
cision 32·bit words. The Stack Limit option allows dynamic adjustment 
of the lower boundary of permissible stack addresses. 

The options are contained on individual modules that plug into dedi· 
cated, prewired slots. 

KEll·E EIS option 
KEll·F Floating Point option 
KJll·A Stack Limit option 

The basic processor timing is not degraded, and NPR latency is not 
affected by the use of these options. 

7.2 EIS OPTION 
The Extended Instruction Set option adds the following instruction 
capability: 

Mnemonic 

MUL 
DIV 
ASH 
ASHC 

Instruction 

multiply 
divide 
shift arithmetically 
arithmetic shift combined 

Op Code 

070RSS 
071RSS 
072RSS 
073RSS 

The EIS instructions are directly compatible with the larger 11 com· 
puter, the PDP·11/45. The detailed operation of these instructions is 
covered in Chapter 4. 

The number formats are: 
15 14 

16·bit single word: IL--s .1.� ___ ..l-__ --'-'N_UM_~_ER _ ___'_ ___ _'_ __ __l1 

IS 14 

32·bit double word: .5 0 

rl~-------~-w-NurjM-eE-R-M-f------~1 

S is the sign bit. S = 0 for positive quantities 
S = 1 for negative quantities; number is in 2's 

complement notation 

Interrupts are serviced at the end of an EIS instruction. 

7·1 



7-3 FLOATING POINT OPTION 
The Floating Point instructions used with this option are unique to the 
PDP-ll/40. However, the Op Codes used do not conflict with any other 
instructions. 

Mnenomic Instruction Op Code 

FADD floating add 07500R 
FSUB floating subtract 07501R 
FMUL floating multiply 07502R 
FDIV floating divide 07503R 

The number format is: 

15 

EXPONENT 
I 

760 

I FRACTION (HIGH PART) 
I . I I 

HIGH ARGUMENT 

o 
FRACTION '(LOW PART) 

I , 

LOW ARGUMENT 

S = sign of fraction; 0 for positive, 1 for negative 
Exponent = 8 bits for the exponent, in excess (200), notation 
Fraction = 23 bits plus 1 hidden bit (all numbers are assumed to be 
normalized) 

The number format is essentially a sign and magnitude representation. 
The format is identical with the 11/45 for single precision numbers. 

Fraction 
The binary radix point is to the left (in front of bit 6 of the High Argu­
ment), so that the value of the fraction is always less than 1 in magni­
tude. Normalization would always cause the first bit after the radix point 
to be a I, such that the fractional value would be between 112 and 1. 
Therefore, this bit can be understood and not be represented directly, 
to achieve an extra 1 bit of resolution_ 

The first bit to the right of the radix point (hidden bit) is always a 1. The 
next bit for the fraction is taken from bit 6 of the High Argument. 
The result of a Floating Point operation is always rounded away from 
zero, increasing the absolute value of the number. 

Exponent 
The 8-bit Exponent field (bits 14 to 7) allow exponent values between 
-128 and +127. Since an excess (200), or (128)'0 number system is 
used, the correspondence between actual values and coded representa­
tion is as follows: 

Actual Value Representation 

Decimal Octal Binary 

+127 377 11 111 111 

+1 201 10 000 001 
0 200 10 000 000 

,-1 177 01 111 111 

-128 000 00 000 000 

7-2 



If the actual value of the exponent is equal to -128, meaning a total 
value (including the fraction) of less than 2-128, the floating point number 
will be assumed to be 0, regardless of the sign or fraction bits. The hard· 
ware will generate a clean 0 (a 32-bit word of all zeros). 

Example of a Number 

+(12),0 = +(1100), 

= +(24)'0 X (.11), [16 X (Vz + 1,4) = 12] 

s Exponent Fraction 
~, \ 

10 000 100 1 1'000000 0000000000000000 

hidden bit is a 1 

radix point is understood 

representation: 0 

Registers 
There are no pre-assigned registers for the Floating Point option. A gen­
eral purpose register is used as a pointer to specify a stack address. 
The contents of the register are used to locate the operands and answer 
for the Floating Point operations as follows: 

(R) = High B argument address 
(R)+2 = Low B argument address 
(R)+4 = High A argument;lddress 
(R)+6 = Low A argument address 

After the Floating Point operation, the answer is stored on the stack as 
follows: 

(R)+4 = address for High part of answer 
(R)+6 = address for Low part of answer 

where (R) is the original contents of the general register used. 

After execution of the instruction, the general register will point to the 
High answer, at (R)+4. 

Condition Codes 
Condition codes are set or cleared as shown in the Instruction Descrip­
tions, in the next part of this section. If a trap occurs as a function of 
a Floating Instruction, the condition codes are re-interpreted as follows: 

v = 1, if an error occurs 
N = 1, if underflow or divide-by-zero 
C = I, if divide by zero 
Z=O 

V 

Overflow 1 
Underflow 1 
Divide by 0 1 

7-3 

N C Z 

0 0 0 
1 0 0 
1 1 0 



Traps occur through the vector at location 244. A Floating Point instruc­
tion will be aborted if a BR request is issued before the instruction is 
within approximately 8 Ilsec of completion. The Program Counter will 
point to the aborted Floating instruction so that the Interrupt will look 
transparent. 

INSTRUCTIONS 

FADD 
floating add 

to I' 1 

'5 

Operation: 

Condition Codes: 

Description: 

FSUB 
floating subtract 

I 0 ,t , 

'5 

Operation: 

Condition Codes: 

Description: 

o 0 
I 

07500R 

3 2 0 

[(R)+4. (R)+6] ~[(R)+4. (R)+6]+[(R).(R)+2]. if 
result ~ 2-128; else [(R)+4. (R)+6] ~ 

N; set if result < 0; cleared otherwise 
Z: set if result = 0; cleared otherwise 
V: cleared 
C: cleared 

Adds the A argument to the B argument and stores 
the result in the A Argument position on the stack. 
General register R is used as the stack pointer for 
the operation. 

A~A+B 

07501R 

000 
I 

3 2 0 

[(R)+4. (R)+6] ~[(R)+4. (R)+6J-[(R). (R)+2]. if 
result ~ 2-128; else [(R)+4. (R)+6] ~ 

N: set if result < 0; cleared otherwise 
Z: set if result = 0; cleared otherwise 
V: cleared 
C: cleared 

Sutracts the B Argument from the A Argument and 
stores the result in the A Argument position on the 
stack. 

A~A-B 

7·4 



FMUL 
floating multiply 07502R 

15 3 2 

Operation: 

Condition Codes: 

Description: 

FDIV 
floating divide 

15 

Operation: 

Condition Codes: 

Description: 

[(R)+4, (R)+6]~[(R)+4, (R)+6] X [(R), (R)+2] if 
result ~ 2-128; else [(R)+4, (R)+6] ~ 

N: set if result < 0; cleared otherwise 
Z: set if result = 0; cleared otherwise 
V: cleared 
C: cleared 

Multiplies the A Argument by the 8 Argument and 
stores the result in the A Argument position on the 
stack. 
A~A X 8 

070503R 

o 0 1 
I 

3 2 

[(R)+4, (R)+6]~[(R)+4, (R)+6] / [(R),(R)+2 ] if 
result ~ 2-128; else [(R)+4, (R)+6)] ~O 

N: set if result < 0; cleared otherwise 
Z: set if result = 0; cleared otherwise 
V: cleared 
C: cleared 

Divides the A Argument by the 8 Argument and 
stores the result in the A Argument position on the 
stack. If the divisor (8 Argument) is equal to zero, 
the stack is left untouched. 

A~A/8 

7.4 STACK LIMIT OPTION 
This option allows program control of the lower limit for permissible 
stack addresses. The limit may be varied in increments of (400), bytes 
or (200), words. 

There is a Stack Limit Register, with the following format: 
15 8 7 0 

7-5 



The Stack Limit Register can be addressed as a word at location 777774, 
or as a byte at location 777775. The register is accessible to the proces· 
sor and console, but not to any bus device. 

The 8 bits, 15 through 8, contain the stack limit information. These bits 
are cleared by System Reset, Console Start, or the RESET instruction. 
The lower 8 bits are not used. Bit 8 corresponds to a value of (400). 
or (256),0. 

Stack Limit Violations 
When instructions cause a stack address to exceed (go lower than) a 
limit set by the programmable Stack Limit Register, a Stack Violation 
occurs. There is a Yellow Zone (grace area) of 16 words below the Stack 
Limit which provides a warning to the program so that corrective steps 
can be taken. Operations that cause a Yellow Zone Violation are com· 
pleted, then a bus error trap is effected. The error trap, which itself uses 
the stack, executes without causing an additional violation, unless the 
stack has entered the Red Zone. 

A Red Zone Violation is a Fatal Stack Error. (Odd stack or non·existent 
stack are the other Fatal Stack Errors.) When detected, the operation 
causing the error is aborted, the stack is repositioned to address 4, and 
a bus error occurs. The old PC and PS are pushed into locations 0 and 2, 
and the new PC and PS are taken from locations 4 and 6. 

Stack Limit Addresses 
The contents of the Stack Limit Register (SL) are compared to the stack 
address to determine if a violation has occurred. The least significant 
bit of the register (bit 8) has a value of (400) •. The determination of 
the violation zones is as follows: 

Yellow Zone = (SL) + (340 through 377). 

Red Zone ~ (SL) + (337). 

If the Stack Limit Register contents were zero: 
Yellow Zone = 340 through 377 
Red Zone = 000 through 337 

7-6 

execute, then trap 

abort, then trap to lo­
cation 4 







CHAPTER 8 

CONSOLE OPERATION 

8.1 CONSOLE ELEMENTS 
The PDP·1l/40 Operator's Console provides the following facilities: 

Power Switch (with a key lock) 

ADDRESS Register display (18 bits) 

DATA Register display (16 bits) 

Switch Register (18 switches) 

Status Lights 
RUN 
PROCESSOR 
BUS 
CONSOLE 
USER 
VIRTUAL 

Control Switches 
LOAD ADRS (Load Address) 
EXAM (Examine) 
CONT (Continue) 
ENABLE/ HALT 
START 
DEP (Deposit) 

8.2 STATUS INDICATORS 

RUN 

PROCESSOR 

BUS 

CONSOLE 

USER 

VIRTUAL 

Lights when the processor clock is run· 
ning. It is off when the processor is wait· 
ing for an asynchronous peripheral data 
response, or during a RESET instruction. 
It is on during a WAIT or HALT instruction. 

Lights when the processor has control of 
the bus. 

Lights when the UNIBUS is being used. 

Lights when in console mode (manual op· 
eration). Machine is stopped and is not 
executing the stored program. 

Lights when the CPU is executing program 
instructions in User mode. 

Lights when the ADDRESS Register display 
shows the 16-bit Virtual Address. 

8-1 



8.3 CONSOLE SWITCHES 

POWER { OFF 
ON 

LOCK 

Switch Register 
( Up = 1) 
(Down = 0) 

Control Switches 

LOAD ADRS 
(depress to activate) 

EXAM 
(depress to activate) 

CONT 
(depress to activate) 

ENABLE/HALT { ENABLE 

HALT 

Power to the processor is off. 

Power to the processor is on and all con· 
sole switches function normally. 

Power to the processor is on, but the Con­
trol Switches are disabled. The Switch 
Register is still functional. 

Used to manually load data or an address 
into the processor. 

Transfers contents of the Switch Register 
to the Bus Address register. 

The resulting Bus Address is displayed in 
the ADDRESS Register, and provides an 
address for EXAM, DEP, and START. The 
LOAD Address is not modified during pro­
gram execution. To restart a program at 
the previous Start Location, the START 
switch is activated. 

Causes the contents of the location speci­
fied by the Bus Address to be displayed in 
the DATA Register. If the EXAM switch is 
depressed again, the contents of the next 
sequential word location are displayed. 
(Bus Address is incremented automati­
cally). If an odd address is specified, the 
next lower even address word will be dis­
played. 

Causes the processor to continue opera­
tion from the point at which it had stopped. 
The switch has no effect when the CPU 
is in the RUN state. If the program had 
stopped, this switch provides a restart 
without a System Reset. 

Allows the CPU to perform normal opera­
tions under program control. 

Causes the CPU to stop. Depressing the 
CONT switch will now cause execution of 
a single instruction. 

8-2 



START 
(depress to activate) 

DEP 
(raise to activate) 

8.4 DISPLAYS 

ADDRESS Register 

DATA Register 

If the CPU is in the RUN state, the START 
switch has no effect. 

If the program had stopped, depressing 
the START switch causes a System Reset 
signal to occur; the program will then 
continue only if the ENABLE/ HALT switch 
is in ENABLE. 

Deposits contents of the Switch Register 
into the location specified by the Bus Ad· 
dress. If the DEP switch is raised again, 
the Switch Register contents (which were 
probably modified) are loaded into the 
next word location. (Bus Address is incre­
mented automatically). If an odd address 
is specified, the next lower even address 
word will be used. 

Displays the address of data just exam­
ined or deposited. During a programmed 
HALT or WAIT instruction, the display 
shows the next instruction address. 

Displays data just examined or deposited. 
During HALT, general register RO contents 
are displayed. During Single Instruction 
operation, the Processor Status word (PS) 
is displayed. 

8-3 





CHAPTER 9 

SPECIFICATIONS 

9.1 PACKAGING 
The PDP·1l/40 Central Processor is housed in a 21" slide chassis unit 
that mounts in a standard 19" rack (see Figure 9·1). The included power 
supply has sufficient excess capacity to drive core memory modules and 
peripheral logic mounted within the unit. The first 9 slots of the assembly 
are prewired for basic and optional CPU modules. In addition, space is 
provided within the chassis for mounting 7 System Units, each of which 
can hold 4 large (hex) modules. The power supply does not slide out, but 
stays mounted stably in the cabinet. The slide chassis provides con· 
venient access to all logic modules. With a cabinet the PDp·11/40 weighs 
about 400 Ibs. 

9.2 CPU OPERATING SPECIFICATIONS 

Temperature: +10° to +50°C 

Relative Humidity: 20% to 95% (without condensation) 

Input Power: 115 VAC ± 10%, 47 to 63 Hz 
or 230 VAC ± 10%, 47 to 63 Hz 

A system using a PDp·1l/40 CPU loaded with 3 System Units 
of memory and peripheral logic draws about 12 amps at 115 
VAC, or 6 amps at 230 VAC. 

9.3 OTHER EQUIPMENT 

Digital Equipment Corporation manufactures and sells a wide range of 
peripheral equipment, cabinets, and mounting assemblies. The PDp· 
11/40 CPU can be the heart of the system suited to your needs. There 
are several other PDp·11 computers available, offering price/ perform· 
ance choices. 

All PDp·11 computers and systems are shipped with extensive support 
documentation, such as: 

instruction manuals 
system and diagnostic software 
installation and mounting information 
systems checkout report 

9·1 



1--17"---1 

~ 
25" 

1I 
21" 

'----------J 1 
FRONT VIEW 

f--- 17" ----l 
,.....---....,-

SPACE 
FOR 

7 
SYSTEM 
UNITS 

CPU 

PWR 
SUP 

-
TOP VIEW 

Figure 9-1 PDP-ll/40 Assembly Unit 

9-2 

I 
25" 

l 



9.4 PDp·ll FAMilY OF COMPUTERS 

CENTRAL PROCESSOR 11/05 11/10 11/15 11/20 11/40 11/45 

Main Market OEM End User OEM End User OEM & End User OEM & End User 

Memory core core core bipolar, MOS, core 

Reg to Reg Transfer 2.7 ~s 2.3 ~lS 0.9 ~lS 0.3 0.45 0.9 

Max Mem Size (words) 32K 32K 128K 128K 128K 

General Purpose Reg 8 8 8 16 

Stack Processing yes yes yes yes 

Micro·programmed yes no yes yes 

Instructions basic set basic set basic set + same as 11/40 + 
XOR, SOB, MARK, MUL, DIY, ASH, 

SXT, RTT ASHC, SPL 

\0 Extended Arith metic option (external option (external) option (internal) standard (int) 
W (hardware) MUL, DIY, 

ASH, ASHC 

floating Point software only software only hardware option hardware option 
32·bit word 32 or 64·bit word 

Stack Limit Address 400 (fixed) 400 (fixed) 400 or programmable 
programmable 

(option) 

Memory Management not available not available option option 
(subset) (full) 

Modes 1 std, 2 opt 3 

Automatic Priority 4·line 1·line 4·I,ne 4·line 4·line 
Interrupt multi· level multi-lev multi·lev multi·level multi·level 

(4·line, + 
opt) 8 software levels 

Power Fail and standard option standard standard standard 
Auto·Restart 





APPENDIX A 

ISP is a language (or notation) which can be used to define the action of a 
computer's instruction set. It defines a computer, including console and periph­
erals, as seen by a programmer. It has two goals: to be precise enough to con­
stitute the complete specification fOT a computer and to still be highly readable 
by a human user for purposes of reference, such as this manual. This appendix 
contains an ISP description of the PDP-ll, using a few English language comme'1ts 
as support. 

The following brief introduction to the notation is given using examples from 
the PDP-ll :'lodel 20 ISP description. The complete PDP-ll descnption follows the 
introduction. 

A processor is completely defined at the programming level by giving its 
instruction set and its interpreter in terms of basic operations, data types and 
the system's memory. For clarity the ISP description is usually given in a fixed 
order: 

Declare the system's memory: 

Processor state (the information necessary to restart the processor 
if stopped between instluctions, e.g., general registers, PC, index 
registers) , 

Primary memory state (the memory directly addressable from the 
processor) 

Console state (any external keys, switches, lights, etc., that 
affect the interpretation process) 

Secondary memory (the disks, drums, dectapes, magnetic tapes. etc.) 

Transducer state (memory available in any peripheral deVIces that 
is assumed in the instructions of the processor) 

Declare the Instruction format 
Define the operand address calculation process 
Declare the data types 
Declare the operations on the data types 
Define the instruction interpretation process including Interrupts, traps, etc. 
Define the instruction set and the instruction execution process (provides an 

ISP expression for each instruction) 

Thus, the computer system is described by first declaring memory. data-types and 
primitive data operations. The instruction interpreter and the instruction-set 
is then defined in terms of these entities. 

The ISP notation is similar to that used in higher level prograrraning languages. 
Its statements define entities by means of expressions involVing other entities in 
the system. For example, an instruction to increment (add-one) to tnemory would be 

Increment := (M[x] .... M[x] + 1); add one to memo!"')J, x 

This defines 8n operation, called "increment", that takes the contents of memory 
M at an address, x, and replaces it with a value one higher. The:= symbol simply 
assigns a name (on the left) to stand for the expression (on the right). English 
language comments are given in italics. Table 1 gives a reference list of nota­
tions, which are illustrated below. 

ISP expressions are inherently interpreted in parallel, reflecting the under­
lying parallel nature of hardware operat.ions. This is an import.ant difference 
bet.ween ISP and standard programming languages, which are inherently serial. For 
example. in 

1 
The notation derived and used in the book. Computer Structures: Readings and 

Examples, McGraw-Hill, 1971 by C. :;ordon Bell and Allen Newell. The book contains 
ISPJ s of 14 computers. 

A-I 



z ,- (M[xl - 5'+D'; Mlyl - M[xll; 

both righthand sides of the data transmission operator (~) are evaluated in the 
current memory state in parallel and then transmission occurs. Thus the old 
value of M[x] would go into M[y], Serial ordering of processing is indicated by 
using the term "next". For example, 

Z :"" (M[x] .... S'+O'; next Mey] .... M[x]); 

performs the righthand data transmission after the lefthand one. Thus, the new 
value of Mrx] would be used for M[Yl in this latter case. 

:-lemory Dec lara t ions 

Memory is defined by giving a memory declaration as shown in Table 1. For 
example. 

Mp[O:2 k _ 1}<15:0".::-

declares a memory named, Mp, of 2k .... ords (wher~ k has been given a value). The 
addresses of the words in memory are 0,1" •• ,2 -1. Each word has 16 bits and the 
bits are labeled 15.14 ••.•• 0. Some other examples of memory declarations are: 

, 
Boundary -error 2 ) 
Boundary -error 
ActivitY3 
N/Negative 
CC<3'> 
M[0,2 18 _1J<7,(I> 
Ml 0,15][ 0,40951<7, (I> 

brop<l: (h16) 
brop<7:()-:.2 

boolean meMories; scyala1' bit altel'"rtatives 

teM1QI'Y digit~ holding value 0~1J 01' 2 
Jlias~ N and Negative a1'e synonomous 
bit J of a 1'egiste1' 
veCYtol' of 218 8-bit LJ01'Js 
ClI'roy 0/16 x 4096 8-bit WOI'ds 
altel'"rtative ways of defining a I'egisteI' 

using base 16 and b.:lse 2 

Renaming and Restructuring of Previously Defined Registers 

Registers can be defined in terms of existing registers. In effect, each 
time the name to the left of the :'" symbol is encountered. the value is computed 
according to the expression to the right of :=. A process can be evoked to form 
the value and side-effects are possible when the value is computed. 

Examples of simple renaming in part or whole of existing memory 

N/Negative := CC<3-"'" 
Sp.;l5:0> := Rf6]<l5:0> 

N is nCV'!€ of bit J of register cc 
SP is the same as register R[6] 

Examples of register formed by concatenation 

LAC<L.O: 11> := LDAC<O: 11'> 
AB<O:47> :'" A<O:23>os<O:23> 
Mword[O]<l5:0> := Mbyte[O]<7:O:--n1byte[l]<7 0> 

Examples of values and registers formed by evaluation of a process 

ai/address-increment<l: 0> := ( 
--, byte-op ::0 2; 

byte-op ~ 1) 
Run := (Activity"" 0) 

Ins true t ion Format 

value of ai is 2 if --, byte op, 
eLse value is 1 

Run=l 01' 0 depending on value of ACYtivity 
being 0 01' not 0 

Instruction formats are declared in the same fashion as memory and are not 
distinguishable as special· non-memory entities. The instructions are carried in 
a register; thus it is natural to declare thern by giving names to the various 
parts of the instruction register. Usually only a single declaration is made, 
the instruction/i, followed by the declarations of the parts of the instruction; 
the operation code, the address fields, indirect bit, etc. 

This declaration would correspond to the usual box diagram: 

A-2 



Table 1. ISP Character-Set and Expression Forms 

A ••••• Z.a •.••• z ••• _ ....... , , I ... ,0, •••• 9 

:1~'X:v·z 

n 

a := flexpression) 

b(c •••• ,el :'" g,expression) 

name' :"" h(expression\ 

a - ftexpression) 
f (expression) 

( ) 

{data-type 1 

boolean OlD expression; 

boolean ~ (eKpression-l else 
exprp.ssion-l) ; 

; next 

alb 

XI:"" boolean) ~ expression; 

name alphabet. This character set is used for 
names. 

comments. Italics are used for comments. 

memory declaration. An n-dimensional memory 
array of words where a: b ••• v:w are the range 
of values for the first Bnd last dimensions. 
The values of the hrst dimension are, for 
example. a. a+l ..... b for a S b (or 
a.a-l ••••• b for a . b). The word length base, 
z, is normally 2 if not specified. The digits 
of the word are x.x+l •••• y. 

definition. The ope!'lltor. :=, defines memory. 
names. process. or operations in terms of 
existing memory and operations. Each occur­
rence of "a" causes the in place substitution 
by f (expression). 

The definition b, may have dumny.parameters. 
c •••• ,e. which are used in g(expression). 

side effects naming convention. In this 
description we have used' to indicate that 
a reference to this name will cause other 
regi s ters to change. 

transmission operator. The contents in 
register a are replaced by the value of 
the function. 

parentheses. Defines precedence and range 
of various operations and definitions 
(roughly equivalent to begin, and end). 

operator and data-type modifier 

condi tional expression, equivalent to ALGOL 
.!.t boolean ~ expression 

equivalent to Algol if boolean tneo expression-l 
else expression-2 - --

sequential delimiter interpretation is to occur 

concatenation. Consider the registers to the 
left and right of 0 to be one. 

statement delimiter. Separates statements. 

item delimiter. Separates li ats of variables. 

division and synonym. Used in two contexts: 
for division and for defining the name. a. 
to be an alias (synonym) of the name. b. 

unknown or unspecified value 

set value. Takes on all values for a digit 
of the given base, e.g., It2 specifies either 
102 or 112 

instruction value definition. The name X is 
defined to have the value of the boolean. 
When the boolean is true, the expression 
will be evaluated. 

A·3 



Cormoon Arithmetic, Logical and Relational Operators 

~ 
+ add 
- subtract. also negative 
X multiply 
/ divide 
mod modulo (remainder) 
( )2 squared 
( )a exponentiation 
( ) fa exponentiation 
( )b base 
( )'b base 
sqrt ( ) square root 
aba ( ) absolute value 
sign-extend ( ) 

i/ instruction<l5: 0> 
bop<3: 0> i<15: 12-., 
sf<5:0> := i<1l:6"'> 
df<5:0> : .. i<5:0'> 

Operand Address Calculation Process 

Lodcal 
.., not 
1\ and 
V or 

Relational 
~l 
F not identical 
= equal 

E9 exclusive-or 
';i equivalence 

, not equal 
.... greater than 

the instl'uction 

O:!: greater than or equal 
< less than 
S less than or equal 

specifies bin.al'Y (dyadieJ operotions 
specifies SOU1'ae (fi1'stJ operund 
E"J6ciiie.r; seao7Ul ope1'and and destination 

In all processors. instructions make use of operands. In most conventional 
processors, the operand is usually in memory or in the processor. defi.ned as M[z]. 
where z is the effective address. In PDP-ll, a destination address. Daddress, is 
used in this fashion for only two instructions. It is defi.ned in ISP by giving 
the process that calculates it. This process may involve only accesses to primary 
memory (possibly indexed). but it may also involve side effects. Le •• the modifica­
tion of either. of primary memory or processor memory (e.g •• by incrementing a reg­
ister). Note that the effective address is calculated whenever its name is en­
countered in evaluating an ISP expression (either in an instruction or in the inter­
pretation expression). That is. it is evaluated on demand. Consequently. any side 
effects may be executed more than once. 

Operation Detennination Processes 

Instead of effective-address, the operands are usually determined directly. 
For example. the l6-bit destination register is just the register selected by the 
dr field of an instruction. i.e •• 

Rd ,= Rrdr] the destination 't'egiste't' 

In one other case. the operand is just the next word following an instruction. 
This next word can be defined. 

ow',l5: o>/next-word :"" (Mw[PC]; PC'" PC + 2) the nert WON i8 seleated and PC is moved 

Here, the' shows that a reference to nw will cause side effects. in this case. 
PC'" PC + 2. For calculating the source operand, S. the process is: 

5'<15,0> ,. ( 

(8m-O) ~ R[",,]; 

(8m=1) '" Mw[R[srll 

( ... 2) 1\ (sr-7) ~ nw; 

value fo'1' SOU'1'ce opel'and 

if mode=O then S r is the Registe1' add1'essed 
by inst't'uation fie ld 81' 

if mode=l the S r i8 indi1'eat via R $'1' 

if mode::::z:2 and SOU1'C€ 't'egistero=FC then the 
nert !JON is the ope't'and; this aan be 
seen by substi tuting the ezp'1'ession. fo'1' n.tJ r 

A·4 



An expre.sion h aho needed for the operand, S, which does not cauae the side 
effecta. and a.suming the effacts have taken place. counteracts them. Thus. S 

would be: 

5<15, II> ,- ( 

( .. 0) :::a R[sr); 

(_1) • ",,["[or)]; 

(_~) " ( ..... 7) »""[PC-2] 

no side effe.cts 

no side effects 

counteract previous side effects 

In the ISP ducription a general proceu is given which determines operands for 
Source-Destination. vord-byte. and with-vithout Side-effects. In order to clarify 
what really happens, the source operand calculation. for words, with side effects, 
b given belov. 

Sf<S,1I> ,- i<ll: 6> 

"'8 ,- .f<5: 3> 

od ,- sf<3> 

or8 ,- sf<2: D> 

mr'<U:O> ,- (""[PC]; 

"0<15, II> ,- "[or] 

S'<15,II>/Source ,- « 
<.,..0) .. Rs; 

PC ... PC+2) 

( ... 2) " (orlo7) • (""[Ro] 

R .... R.+2)~ 

( .... 2) " (sr-7) • nw. 

(...-4) • (Rs ... Re - 2. next 

""[Ro]); 

(_) " (orlo7) • ""[ow' + Ra]; 

(_6) " (0 .. 7) • ""[ow' + PC]; 

<_1) • ""[io]; 

'._3)!' (orlo7) • (""[Mv[Ra)]; 

R .... Rs+2); 

(..-3) " (u--7) • M[nv'); 

(IIII""S) • (Rs ... R8 - 2; next 

""[""[Ro]]) ; 

(_7) " (orlo7) • ""[Mv[nw' + Ro)]; 

( .... 7) " (.r-7) - Mw[Mw[nv' + PC]) 

); 

( ... 6) " «_) V (_5» " 

(SP<400e) - (Stack overflow ... 1) 

Det.-TYpe. 

SOUl'"ce field (6-bitsJ of instl'uction 

soupce mode control field 

defe1"1"ed address control 

register specifiaation f01' SOUl'"ce 

next !JOM; used as operond 

soupce roegiste1' specification 

value /01' the sou1'Ce--direct addressing 

use the Ngister Rs as o'llerand 

direct auto-increment (inC1'e11Jent 

Rs); usually used as pop 

diNet; actually irrmediate operand 

diNct; auto-decrement (dee1'€ment 

RaJ; usualLy used as PUSH 

direct; indexed via Rs--uses next-word 

direct; roelative to pc; uses next-word 
value for the Bource-defiMd addressing 

defe1' through Ra 

defer through staak; auto 

increment 

defer via nezt """"I'd; absoZute add:ressing 

defer through staak aftel' auto 

deC!1'emen.t 

de!er, indexed via Rs 

defer 1'eLative to PC 

end cat,puLation process; 

cheaks if s~k ovel'fiOtJed for severaZ 
mode. 

end SOU1'Ce aalaulation 

A data-type specifies the encoding of a m.eaning into an information medium. 
The ... ning of the data-type (what it d.signates or refers to) is called ita 
referent (or value). lbe referent may be anything ranging from highly abstract 
(the un interpreted bit) to highly concrete (the payroll account for a specific 
type of employ.e). 

Every data-type has a carrier, into which all ita component data-types can 
be upped. The carrier is used in storing the data-type in memories and is usually 
• word- or multiple thereof. It must be extensive enough to hold all the component 
data-type., but .. y be a larger (having error checking and correcting bits, or 

A-5 



even unused bits). The .mapping of the component data-types into the carrier is 
called the format. It is given as a list which associates to each component an 
expression involving the carrier (e.g •• as in the instruction fonnat). 

ISP provides a way of naming data -types, which also serves as a basis for 
abbreviations. Som~ data-types simply have conventional names (e.g., character/ch. 
qoating point numbers/!); others are named by their value (e.g., integer/i). Data­
types which are iterates of a basic component can be named by the component suffixed 
by a length-type. The length-type can be array/a, implying a multi-dimensional 
array of fixed, but unspecified dimensions; a string/ st I implying a single sequence, 
of variable length (on each occurrence); or a vector/v, implying a one dimensional 
array of a fixed but unspecified number of components. The length-type need not 
eXist, and then this form of the name is not applicable. Thus, iv is the abbrevi­
ation for an integer vector. It is also possible to name a data-type by simply 
listing its components. 

Data-types are often of a given precision and it has becane customary to 
measure this in terms of the number of components that are used, e.g •• lriple 
precision integers. In ISP this is indicated by prefixing the preci sion symbol 
to the basic data-type name, e.g •• di for double preCision integer. Note that a 
double precision integer, while taking two words, is not the same thing as a two 
integer vector, so that the precision and the length-type, though both implying 
something about the size of the carrier, do not express the same thing. 

A list of common data-types and their abbreviations is given in Table 2. 

Operations on nata-types 

Operations produce results of specific data-types from operands of specific 
datartypes. The data-types themselves determine by and large the possible opera­
tions that apply to them. No attempt will be made to define the 'Jarious .opera-
tions here. as they are all familiar. A reasonably comprehensive list is giv_en in 
Table 1. An operation-modifier, enclosed in braces, { }, can be used to distinguish 
variant operations. The operation-modifier is usually the name of a data-type, e.g., 
A+B{f} is a floating point addition. Modifiers can also be a description name ap­
plying to the operation, e.g., a X 2 (rotate}. 

New operations can be defined by means of forms. For example, the various 
add operations on differing data·types are specified by wri ting {data-type} after 
the operation. 

Instruction Interpretation Process 

The instruction interpretation expression and the instruction set constitute 
a single ISP expression that defines the processor's action. In effect, this 
single expression is evaluated and 811 the other parts of the lSP description of 
a processor are evoked as indirect consequences of this evaluation. Simple inter­
preter without interrupt facilities show the familiar cyde of fetch-the-instruction 
and execute-the instruction. 

Example: 
Run == (instruction .... H[PC]; PC .... PC + 1; next This is a simple 

Instruction-execution; next) interrpreter', not the 
one for' the PDP-11 

In more complex processors the conditions for trapping and interrupting must 
also be dexcribed. The effective address calculation may also be carried out in 
the interpreter I prior to executing the instruction. especially if it is to be 
calculated only once and will have a fixed value independent of anything that 
happens while executing instructions. Console activity can also be described in 
the interpreter, e.g., the effect of a switch that permits stepping through the 
program under manual" control, or interrogating and -changing memory. 

The normal statement for PDP-ll interpretation is just: 

..., Interrupt-rq " Run ~ (instruction ... Mw[PC]; PC'" PC + 2; next 
Instruction-execution; next -
T-flag" (State-change(l4a); T-flag ... 0» 

A·6 

fetah 
euaute 
troae mode 



Table 2. Common Data-Types Abbreviations 

Primitive 
~r boolean 
by byte 
ch character 
cx complex 
df double precision floating 
dw double word 
d digit 

floating 
fr fraction 
hw ha If word 

integer 
mi xed number 

qw quadruple length word 
tw triple lengtr. word 

word 

String and Vector 
bv bit,vector 
by.st byte. string 
ch,st character,string 

jd j -digi t number 

Instruction-Set and Instruction Execution Process 

The instruction set and the process by which each instruction is executed 
are usually given together in a single definition; this process is called 
Instruction-execution in most ISP descriptions. This usually includes the defini­
tion of the conditions for execution, Le., the operation code, value, the name 
of the instruction, a mnemonic alias, and the process for its execution. Thus, 
an indi vidual instruC'.tion typically has the fonn; 

MOV (:= bop"" 0001 2 ) = ( 
r .... S';next 

,'7/0ve lJo1"c1 

move SC'I.l.Y'C'e to intermediate register 

N +- r<:lS ; YiB?atilJe'.' 

(r<..:::rS:O-, == 0) = (2 .... 1 else Z .... 0); zeY'G 

D .... r); tl'ansrrn't Y'esult to destination 

With this format for the instruction, the entire instruction set is simply 
a list of all the instructions. On any particular execution, as evoked by the 
interpretation expression, typically one and only one operation code correlation 
will be satisfied, hence one and only one instruction will be executed. 

In the case of PDP-ll, the text carries the definition of the individual 
instructions, hence they are not redefined in the appendix. Instead, the appendix 
defines the condillon for executing the instructions. For example, 

MOV : '" (bop => 0001 2 ) 

is given in the appendix, and the action of !-IOV is defined (in ISP) in the text. 

A·7 



THE PDP-ll ISP 

PDP-1!'s Pr-imazoy (ProgroamJ Memoroy and PrtOaessoJ'l State 
The deel.aNtion of this memor!~ ineludes all the state (bits, tJoMs, etc:.) that a l'rog:rant 

(prog1'f:1l'merJ has access to in this pal't of the eomputel'. The eonsole is not included. The 
various seconda1"Y memories (e.g., disks, tapes) and input-output device state deeta1'ations aN 
ineluded in a fo llOtJing seation. 

Primal'!J (p1'OgroamJ MemoPy 

Mp[O:2k .l]<15:0> aetual physical, I6-bit merrIOJ"}.I of a PQ1"ticular 
systemj k ~ 12, "'J 17 

Mw/Hword[x<15:0>]<15:0> :"" ( tJOrd-accessed memol'?~ 

"'"'"I x<O> = Mp [x<15: 1>] j lJorod on et'en hyte bound~, all tt1.ght 

x<:(t.> _ (1oo11.4e ; Boundary-error'" 1» word on odd byte boundary, tl"aP 

Mb/Mbyte[x<15:1:t>]<7:o-;> :a ( byte-aceessed memo~ 

...., x<o> ~ Mp[x<15:l»<7:0>; take loo-o1'de1' bits it even 

x<0> = Mp[x<15:b]<15:8» take hi-orodel' bits if odd 

Processor' <state 

0(0: 7 J<15: o-~ 

SP-:::15:<t:>/Stack w Pointer :"" R[6] 

Pc<l5:<t:>/Program w counter ;- R[7] 

PS<l5: O>/Processor.State-Word 

Unused<7 : O>/Undefined : - PS<l5: 8> 

P<:.2:0>/Priority 

T/Trace 

PS<7: 5> 

: ... PS<4> 

CC<3:(t..>/condition·Codes :- P5<3:0> 

N/Negative :- CC<3> 

Z/Zero 

V/Overflow 

c/ca.rry 

:- cC<2> 

;- CC<b 

:- CC<O> 

eight, 16-bit rretleroat-Register>s, used for> 
accumulatol's, indexing and staeks 

speeial staek, eontl'olted b~! R[6] 

loeation next instruetion, also HPJ 

16-bit 1'egister> giving NSt of state 

mapping of bits into PS 

inter>l'upt level aontr>ol of p1'Ocessol' 

denotes whether> trop is to oeaul' aftel' eflch 
instruction 

set as a f"uncticm of instl"uction and l'esults 

if 1'esult = -
if Nsult = a 
if Nsult overflo!.Js 

if l"esult earned into/bol'l'OlJed f'!'Om most 
significant bit 

ProcessOl"-Contl"olled El'l"Or Flags (1'esulting from instruetion-exeaution) 

Boundary.Ert'or set if ""'M is accessed on odd b].lte boundary 

Stack-Overflow 

Time·Qut-Error 

Illegal- Instruction 

Pl'OeessoI'-activity 
Activity) 

Run :"" (Activity = 0) 

Wait :- (Activity - 1) 

Off (Acti vi ty - 2) 

set if fJJOM accessed, via SP < 4008 

set if non-existent l"Iemo~ or device is 
refel'enced 

set if a parlicular class of instl'uations is 
executed 

teronaroy, speeifyi7'lg state" of pl'Oaessol' 

nOZ"lal instruetion interopr>etation 

LJaiting fol' inteM'upt 

off, do~t 

El'l'OI'-Ftags (roesulting froom witho.ut the processor) 

Power·FaU·Flag 

PowerwUp·FLag 

set if p01Jel' is low 

set when pOtJel' comes on 

A-8 



InstruC!tion fOPmat fieZd deC!Zarutions 

1<15: Ct>/ instruction 

bop<3:0> :'"' i<15: 12 ~ 

sf<5: ()", i<11:6· 

SlD8 sf<5: 3 

sd ,= sf..:::3 

srS ,- 5£<2: O~· 

df<5: 0> :- i<5:0'> 

dm8 df<5: 3 

dd :- df<3· 

drS :" df<2 :(}--

uop<3: (t/8 :' i<15:6:.-

df 

jsoP<7: 0"> i<15: 9'-

sr; df 

brop<I:<t ...... 16 ... i<15:8> 

offset<7:0 .... :'" s1gn-extend(i<7:(t-) 

trop<1:(t">16 := 1<15:8'> 

unused-trop<I:0'-"16 :- i<7 0-... 

eop<6: 0> 

er<3:0:> 

esf<5: 0> 

esma 

esd 

fop<7: 0-, 

fr<7:0'> 

fsf<5: 0> 

15 

i<15: 9> 

i<8:6" 

- i<5: 0> 

:- esf<5:3> 

:= e5£<3";.­

:= esf<2: 0 ... 

:= 1<15:1t> 

1<7:6 .... 

::11 i<5:(t .... 

~ df l 
~~ 

jsop 
! , ! ' 

brop 
I I , 

ad dd 

sr 
I , 

df 
! ! 

df 

binaT'?J oPC!ode format 

BOU1'C!e fie ld 

SOIJ.1'"Ce ""ode - 3 hi ts 

souJ"ee rie.fe'1" bit 

80UY'ee roegisteY' - J bits 

destination ;I'ie ld 

destination mode - 3 bits 

destination defer' b1:t 

destination register - 3 bits 

unary op aode (a1'ith., logical, shif'ts) 

Bee binary 0,0 f'ormat 

,181' f'o1'mat 

see binal']1 or> [01'f'lQt 

bmnah fOT""/at 

offset value 

trap fo:rmat 

extended oP(!ode ."orrmat 

extended l'egistel' 

extended sourae f'ie Zd 

mode 

defer 

l'egistel' 

floating (lP format 

J"egister destination 

source 

binary operand (2 operands) fonnat 

unary operand (1 operand») .1MP format 

JSR format 

branch fonnat 

value :- .1gn~extend (offset) 

trop I;) unused 171 trap format I I ! I I 

eop 1 .sf extended operation format 

fop fr fsf floating op fonnat 

A·9 



ai/addreSS-increment<l:O> .. ( 

..., Byte .. op ~ 2; 

Byte-op .. 1) 

Byte-op :- (MOVB V BICB V BISB V BITB V CLRB V 

COMB V INCB V DECB V NEGB V ADCB V 

SBCB V TSTB V RORB V ROLB V ASRR V 

ASLB V SWAB) 

Reserved-instruction := (0'" ) V (1 = ) V ••• V(i '" » unused instructions 

Registers and Data Addressed via Instruction Forrmat Sver::if'ica.tions 

nw/next-word<15:0> Mw~PCl used in ope1"and deter'mination 

nw'/next-word' ,15:0:- (~tw[PC]; PC - PC + 2) Idth side ef"fects 

1w/last-word "15:0 := ~tw[PC - 2] undoes side effects 

Rs<15:0-> R[sr]<15:0> 

Rd<15:(t-. := R[dr]<15:0> 

Operonrf Deteminat1' on for' 50uree and Destination 

the source registe1" 

the destination 1"€gister' 

Two types of operonds an used: 5' ~ D' ~ Sb' and Db' - for operonds that cause side-effects 
(i.e. ~ othe1" 1"€giste1"s an changedj and 5, 0, Sb and Db for opepands that do not cause side 
ef'feets. Two genel'al p1'Ocedu1"€s Wo' and Wo are used to determine these operunds fol' side ef­
fects and no side effects, l'espectivety 

S'<15:0:,> :'" Oprd'<15:0>(Mw, 2.sm , sr) 

5<15:0' Oprd<15:0'>(Mw, 2,sm , sv) 

Sb'<7:0> Oprd'<7:(t-.(}·tb. 2, sm,sr) 

Sb<:.7:0> Oprd<7:0>(Mb, l,snt,sr) 

D'<15:0'> Oprd'<15:0>(Mw,2,drn,dr) 

0<15:0"> Oprd<15:Q:--(Mw, 2,dm,dr) 

Db'<7:0", Oprd'<7:0">(Mb, I, dm,dr) 

Db--:7:0',..- := Oprd<7:0>(Mb, 1. dm,dr) 

GenePd:Z Operocm.d CaLcuLation P"rocess (with S1:de Effects) 

Oprd'..:wl:it..>(M.ai,m.rg) :- « 

Rr<IS,!)c· ,- R[rg] 

(m:aO) = Rr<wl:Q:--; 

(m,.2) 1\ (rg~7) .. (M[Rr]; next 

Rr ... Rr + ai~ 
(m-2) 1\ (rg=]) • n..,'<w1:0>; 

(m=4) .. (Rr ... Rr - a1; next 

M[Rr]); 

( .... 6) 1\ (rg~7) .. M[OW' + Rr]; 

(m-6) 1\ (rg-7) .. M[nw' + PC]; 

( ... 1) = M[Rr]; 

(m=3) 1\ (r~7) • (M[Mw[RrJ]; next 

Rr ... Rr + 2); 

(..-3) 1\ (r&,,7) .. M[nw']; 

(m-5) .. (Rr'" Rr - ai; next 

M[Mw[Rr]]) ; 

A·I0 

source wOl'd operand side-effects 

source wOl'd opel'ands no side-effects 

source byte 

Destination operonds 

value for IJOrd 01' byte operandj di1"€ct 
addressing: wl indica.tes length; m 
mode, and rg, 1'€giste1" 

secondapY definition for l'egistel' 

0, use the l'€gister>, R-r, as opel'a1'ld 

2, dinct auto-inc1"€ment (increment 

81') j usually used in pop stack 

2~ directj next-word is immediate 
opel'and 

4, dil'ectj aftel' auto tiec1"€ment 

usua.lZ:y used as PUSH stack 

6, dil'8ct; indexed via 8r> uses next­
LJOrd 

6, diroect j roe lative to PC; uses next­
!JON vaZue fo1" word operand defer> 
addl'essing 

1, defel' th1"ough Rr 

3, defel' through MIJ[Rr] (u8uaHy stack), 

auto-incl'€ment 

3, defer via next-word; absotute 
addressing 

5, defer> through stack after auto 

decl'ement 



(m::7) " (rgr7) ~ M[Mw[nw' + RrJJ; 

(rnzt) " (rg:?) '" M[Mw[nw' + PC1J; 

i, 

(r:;:6) A «m=4) v (m=S») A 

(SP < 4008» '" (Stack-overflow .... 1) 

) 

?, dEfer indexed via Rr> 

?, defer relative to PC 

end C!alaulation proC!ess 

cheC!k i.f stack over>flo1.Js 

end operand calculation pr>ocess 

Cerwral Operand Calculation Pr>oC!ess (tdthout Side Effects) 

Oprd<wl: O-:>(M,ai,m,rg) := ( 

Rr<lS,O> ,= R[rg] 

(m=O) '" Rr<wl: 0>; 

(1tP2) " (rgr7) '" Mw[Rr - ail; 

(m""2) 1\ (rg=]) '" 1\1--..w1; (J~; 

(1lP'4) = M[Rr]; 

(m""6) 1\ (rgr]) = M[lw + Rr); 

(mE 6) " (rg=7) '" M(lw + PC]; 

(m:l) '" H[Rr]; 

(m=3) A (rgf)) =M[Mw[Rr - 2JJ, 

(rn"'3) " (rg:7) '" M[lwJ; 

(m=S) = M[Mw[Rr J J, 

(rn"']) " (rg~7) ~ MlMw[lw + Rr]]; 

(m=7) " (rgr7) '" M[Mw[lw + PC]]) 

Destination addresses for JMP and JSR 

Oa<15: 0> « 
(<lnP<O) ::t (?; Illegal-instruction'" 1); 

(dm=2) A (drr7) = (Rd, Rd ~ Rd + 2), 

(dtn='2) " (dr=7) '" (PC; PC .... PC + 2); 

(dm=4) '" (Rd 0- Rd - 2; next Rd); 

(dm=6) " (d~7) '" (nw' + Rd); 

(dm=6) " (dr=7) ::t (nw' + ,PC); 

(dm=l) '" MW[Rd]; 

(dID=3) A (drr7) = (Mw[Rd]; Rd ~ Rd + 2), 

(dm=3) " (dr=7) ::t nw'; 

(dm=5) ::t (Rd .... Rd - 2; next Mw[Rd]); 

(dm""7) " (drr7) ::t Mw[nw + Rd]; 

(dm:7) " (dr=7) '" Mw[nw' + PC]); next 

undo ,r>ev,'cus side-dtF'ects 

undo tJr>evious 8,'de-ef'fects 

undo DT'eviou," side-effects 

undo prevl:oU$ side-eff'ect:; 

undo pT'ev:'ous side-effects 

w::i:::; p!'evious s::de-eff'ects 

undo previous side-effects 

ur.do pf'e!Jiou.s side-efJects 

dir>eats: 

illegal register> address 

auto-incroement 

auto- aearef'lent 

indexed 

r>elative 

defers: 

via register 

via auto-inerement 

absolute address 

auto-decre"'1ent 

via index 

r>elative to PC 

(dr==6) ,,-, «dm=0) V(dIl1""3) V (dm=7» 1\ (SP < 4008 ) "'( check for stack overflow 

stack-overflow .... 1» 

Data Type Formats 

by/byte<7,0> 

w/word<l5: 0> 

Wi/word. integer<l5: 0> 

bybv/byte. boolean-vector<.:7: (J/ 

wbv/word. boolean-vee tol"'C15. 0> 

d/d.w/double.word<31: Ct> 

A-ll 



f/d. f/double.word. floating<3l: 0> 

£S/floating.sign :- £<31> 

fe/floating.exponent<7:0> :- £<30:23> 

fm/floating.mantissa<22:0> - f<22:0> 

t/ triple.word<4 7: 0> 

oj quadruple.word<63: 0> 

qf/ quadruple.word.floating-point<63 0'-> 

qfs := qf<63> 

qfe :'" q£<62:55> 

qfm :" qf<54:iJ> 

I/O Devices and Inte1'Tupte~ State Infomation 

Device[O:N-l] 

Device-name[J]<15:0> :'" J 

Device-interrupt-location(J]<15:0> :~ K 

dob/device-output-buffer(J ]<15: 0> 

d ib/ device-Input-buffer (J }<15: 0> 

ds/device-status [J]<lS: 0> 

N I/O deviaes - asswne devioe J 

'lwnber to whiah device responses and. 
is addnssed 

each device has a value~ K~ whiah it 
uses as an address to interrupt processor 

program aontl'O'Lled device data 

a 1"egiste1" IJ'ith device control state 

conrnon derr/device-error-flags[J}<3:0> :- ds[J)<15:12> 

dbusy/device-busy[J] :- ds[J]<l1> status 
dunit/device-unit-selection[J]<2:0> :- ds[J)<10:8> assignments 

ddone[J] :::0 ds(J]<7> 

denb/device-done-interrupt-enable :- ds [J ]<6> 

derrenb/device-error-interrupt-enable :- ds(J}<5> 

dme/device-1l1emory-extension[J]<4: 3> :- ds [J }<4: 3> 

dfnc/device-function[J]<2:0> :- dS[J]<2:0> 

dintrqfdevice-interrupt-request(J] :"" ( 

(ddone(J] "denb[J) V «derr[J) ~ 0) "derrenb[J))) 

di 1/ device-Interrupt-level [J ]<7: 4> eaah device is assigned to 1 of 4 levels 

Mapping of Devices into M. Each device's 
Teletype 

ngiste1"s an ITtlpped into primary WON memory~ e.g.~ 

HI [1775608] :'" tks/ds[TTY-keyboard] 

M' [177562 8] :" tkb/dib[TTY-keyboard] 

H' [1775648 ] :" tps/ds[ITY-printer] 

H' [177566 8 ] :" tpb/dob[TTY-printer] 

Inte1"1'upt Reques ts 

br/bus -request -£or_interrupt<7: 4> 

(dintrq[O] ~ dil[O]) V 

(dintrq[l] ~ dil[I]) V_ •• 

(dintrq[J] ,. dil[J]) v ... 

(dintrq[N] ~ dil[N]) 

lnterrupt-rq :s (intrql 2: p) 

intrql/ interrupt -request-level<2: 0> 

br<:7> • 7; 

....., brc7> /I. br<:6> ,. 6; 

...... br<7> " ..., br<6> " ..., br<5> " br<4> ~ 4) 

A-12 

keyboard status 

keyboaI'd input data 

teleprinter status 

telepl"inte1" data to p1'int 

OR of all device 1"equssts 

interorupt if a request is "2: prio-ri'ty/P 



Inst1'uetion Intezop1'etation ProeeS8 

Interrupt-rq " Run. (Normal-interpretation); 

Normal-interpretation :- (l ... Hw(PC]; PC'" PC + 2 next 

Instruction-execution; next e:r:eeute 

T-flag" (State-change(l48 ); T-flag ... 0)) 

Interrupt-rq " -, Off • ( 

Stste_change(oevice_interrupt_locati.on[J J); 

P ... intrql); 

off. ( ); 

-, Interrupt-rq " Wai t • ( ); 

tl'aee 

assume device J inte1'1'upts 

State-change(x) :"" ( .~o1' stacking state and 1'estOl"e 

SP ... SP - 2; next 

Mw[SP] ~ PS; 

SP ... SP .. 2; next 

Mw[SP] ~ PC; 

PC ... Mw(x]; 

PS ~ Mw[x+2] 

Boundary-Error ~ (State-change(4a ); Boundary .. error ... 0) 

Time-Dut-Error .... (State-change(4S); Time~ut-Error ... 0) 

Power-Fail-Flag. (state-change(24a); PoWer-Fail-Flag - OJ) D1'ogram must tU1"'1 off f!omvutel" 

Power-Up-Flag ,. (PC'" 24 8 ; Power-Up-Flag'" 0; Activity'" 0') Sta1"t l1!' on pOlJer-up 

bastruetion-Set Def'inition 

Each instruation is def'ined in ISF in t~e te.xt~ the1"e.rore~ it fJill not be repeated here. 

ISP fOl' Floating Point Prtocesso1'/FPP 
Device-interrupt-Iocation [FPPJ :- H' [2448 ] 

FEo<:l5: 0> 

FOCE :" (FEC02) 

tDZE := (FEC04) 

FICE :" (FEC06) 

FVE :" (FEC08) 

FUE :" (FECOlO) 

FUVE :" (FECOl2 ) 

FAC[O:5]<63:0> 

Fr<63:0> 

FPo<:lS:O> 

FPSR<lS: 0> 

FER :- FPSR<15> 

FIE :- FPSR<14> 

FIUV:" FPSR<ll> 

FlU :" FPSR<lO> 

FlV :- FPSR<9> 

FIC :" FPSR<8> 

FD :" FPSR<7> 

FL :. PPSR<6> 

FT :- FPSR<5> 

_ :" FPSR<4> 

A-13 

floating point processor el'1'Ol' eode 
register 

floating op eode 81'l"Or 

floating di1Jide by aero 

floating it1tegel" 
f!011IJel"sion e1'1'01' 

floating oIJel"jlow 

fl.oating underfl."" 

floating undefined variable 

6 floating point aceumutatol's 

tempoMry floating point Ngister 

floating point PC 

floating point prooeeS80l" status regis tel' 

[loa ting (31TOr 

in te1"l'upt enab le 

intel"rupt on undefined variable 

intel'1'upt on undel"[low 

interl"upt On ove1'flow 

inte~pt on integel" conversiot1 e1''NJr 

floating double pzoecision mode 

floating tong integel' mode 

floating truncate mode 

floating mcnntenaMe mode 



PH :,. FPSR<3> 

FZ ,- FPSR<2> 

FV :- FPSR<l> 

FC ~ .. FPSR <0> 

Instpuation !01'nrJt 

00<3,11> ,- 1<15,12> 

FOO<3, II> 1<11,8> 

Ao<l,1I> ,- 1<7,6> 

Genepal Definitions 

XL ,- «F1)o0) ~ 1_2-24 ; 

(~I) ~ 1_2-56 ) 

XLL ,_ 2-128 

XUL :_ 2127 • XL 

JL ,_ «FLoO) • 215 _1; 

(FLoI) 0231 _1) 

Addpes8 Calculation 

FP5<63:0> :- ( 

(dm-O) .. FAC(dr); 

(cImjIO) • ( 

(F1)o0) .0<15,II>OIw(PC+2); 

(~I) .0<15,II>OIII(PC+2)C 

Mw(PC+4 ) 0lIl (PC+6 ») 
FPS'<63,1I> ,- ( 

(_0) • FAC(dr); 

(cImjIO) ~ ( 

(F1)o0) • D'<15,II>cm.' 

(Fl>-l) .. D'<1S:O>ChW'tbw'lbW 1 » 
FP0<63 , II> ,- FPs<63 , II> 

FPD'<63:0>:- FPS I <63:0> 

FS<15,1I> ,- 0<15,11> 

FS'<l5:0> :- D'<lS:O> 

10<15, II> ,- 0<15, II> 

FD'<lS: 0> :- D'<15: 0> 

Fac :- FAC(AC) 

1a 17 bit result, r, used only for descriptive purposes 

floating negative 

floating aero 

j7.0ati"fl overflow 

floati"fl ,.,,"'!! 

op code 

j7.0ati"fl op code 

tU!CWPluZatop 

lal'gest !ruction 

sm:zllest non-aero numbep 

Zapgest numbep 

l.azogest integer 

floating point ppoaessor source 

floating point pzoocessor SOUrc9 lUith 
side e!feats 

floating point processor destination 

floating point p1'OCeS80P destination IJith 
side effects 

floating source, CPU mode 

floating source tJith side effeats, 
CPU mode 

floating destination, CPU mode 

floating destination tJith side effects, 
CPU mode 

destination f1.oating l"Bgister 

2A prime is used in 5 (e.g •• 5') and D (e.g •• D') to indicate that when a word is acceseed in 
thiB fashioLl. side effects may occur. 'That is, registers of R may be changed. 

3ll aU 16 bits of result. r • 0, !!!!.!!. Z is set to 1 else Z iB set to O. 

4Tbe 8 least significant bits are used to form a l6-bit positive or negative number by extend­
ing bit 7 into 15:8. 

Eo a = b means: g boolean a is true !h.!!.!. 'b iB executed. 

6Hw means the memory taken as a work-organized memory. 

A-14 



APPENDIX B MEMORY MAP 

INTERRUPT VECTORS. 

000 RESERVED 
004 TIME OUT. BUS ERROR 
010 RESERVED INSTRUCTION 
014 DEBUGGING TRAP VECTOR 
020 lOT TRAP VECTOR 
024 POWER FAIL TRAP VECTOR 
030 EMT TRAP VECTOR 
034 "TRAP" TRAP VECTOR 
040 SYSTEM SOFTWARE 
044 SYSTEM SOFTWARE 
050 SYSTEM SOFTWARE 
054 SYSTEM SOFTWARE 
060 TTY IN·BR4 
064 TTY OUT ·BR4 
070 PCll HIGH SPEED READER·BR4 
074 PC11 HIGH SPEED PUNCH 
100 KWllL . LINE CLOCK BR6 
104 KW11P . PROGRAMMER REAL TIME CLOCK BR6 
120 XY PLOTTER 
124 DRllB·(BR5 HARDWIRED) 
130 AD01 BR5·(BR7 HARDWIRED) 
134 AFCll FLYING CAP MULTIPLEXER BR4 
140 AAll·A.B.C SCOPE BR4 
144 AAll LIGHT PIN BR5 
170 USER RESERVED 
174 USER RESERVED 
200 LP11 LINE PRINTER CTRL·BR4 
204 RFll DISK CTRL·BR5 
210 RCll DISK CTRL·BR5 
214 TCll DEC TAPE CTRL·BR6 
220 RKll DISK CTRL·BR5 
224 TMll COMPATIBLE MAG TAPE CTRL·BR5 
230 CRlllCMll CARD READER CTRL·BR6 
234 UDCll (BR4. BR6 HARDWIRED) 
240 11/45 PIRQ 
244 FPU ERROR 
254 RPll DISK PACK CTRL·BR5 
260 
264 
270 USER RESERVED 
274 USER RESERVED 

300 START OF FLOATING VECTORS 

8·1 



DEVICE ADDRESSES 

NOTE: XX MEANS A RESERVED ADDRESS FOR THAT OP­
TION_ OPTION MAY NOT USE IT BUT IT WILL RE­
SPOND TO BUS ADDRESS_ 

777776 
777774 
777772 
777716 
777676 
777656 
777646 
777636 
777626 
777616 
777606 
777576 
777574 
777572 
777570 
777566 
777564 
777562 
777560 
777556 
777554 
777552 
777550 
777546 

777516 
777514 
777512 
777510 

777476 
777474 
777472 
777470 
777466 
777464 
777462 
777460 

777456 
777454 
777452 
777450 
777446 
777444 
777442 
777440 

CPU STATUS 
STACK LIMIT REGISTER 
11/45 PIRQ REGISTER 
TO 777700 CPU REGISTERS 
TO 777600 11/45 SEGMENTATION REGISTER 
TO 777650 MX 11 # 6 
TO 777640 MX11 #5 
TO 777630 MX11 #4 
TO 777620 MXll #3 
TO 777610 MX11 #2 
TO 777600 MXll # 1 
11/45SSR2 
11145 SSRI 
11/45 SSRO 
CONSOLE SWITCH REGISTER 
KLlI TTY OUT DBR 
KLlI TTY OUT CSR 
KLlI TTY IN DBR 
KLlI TTY IN CSR 
PCll HSP DBR 
PCll HSP CSR 
PCll HSR DBR 
PCll HSR CSR 
LKS LINE CLOCK KWll-L 

LPll DBR 
LP11 CSR 
LPll XX 
LPll XX 

RFll DISK RFLA LOOK AHEAD 
RFll DISK RFMR MAINTENANCE 
RF11 DISK RFDBR 
RF 11 DISK RFDAE 
RF 11 DISK RFDAR 
RF 11 DISK RFCAR 
RFll DISK RFWC 
RF 11 DISK RFDSC 

RCll DISK RCDBR 
RCll MAINTENANCE 
RCll RCCAR 
RCll RCWC 
RCll RCCSR-
RCll RCCSRI 
RCll RCER 
RCll RCLA 

B-2 



777434 DTl1 BUS SWITCH # 7 
777432 BUS SWITCH # 6 
777430 BUS SWITCH # 5 
777426 BUS SWITCH # 4 
777424 BUS SWITCH # 3 
777422 BUS SWITCH # 2 
777420 BUS SWITCH # 1 

777416 RKDB RKll DISK 
777414 RKMR 
777412 RKDA 
777410 RKBA 
777406 RKWC 
777404 RKCS 
777402 RKER 
777400 RKDS 

777356 TCXX 
777354 TCXX 
777352 TCXX 

777350 TCDT DEC TAPE (TCll) 
777346 TCElA 
777344 TCWC 
777342 TCCM 
777340 TCST 

777336 ASH EAE (KEll·A)#2 
777334 LSH 
777332 NOR 
777330 SC 
777326 MUL 
777324 MQ 
777322 AC 
777300 DIV 

777316 ASH EAE (KEll·A)# 1 
777314 LSH 
777312 NOR 
777310 SC 
777306 MUL 
777304 MQ 
777302 AC 
777300 DIV 

777166 CRll XX 
777164 CRDBR2 CR 11 CARD READER 
777162 CRDBR1 
777160 CRCSR 

776776 AD01·D XX 
776774 AOO1·D XX 
776772 ADDBR AID CONVERTER AOO1·D 
776770 ADCSR 

B·3 



776766 
776764 
776762 
776760 
776756 
776754 
776752 
776750 
776740 
776736 
776734 
776732 
776730 
776726 
776724 
776222 
776720 
776716 
776714 
776712 
776710 

DAC3 DACAA 11 
DAC2 
DACI 
DACO 
SCOPE CONTROL - CSR 
AAll XX 
AA11 XX 
AA11 XX 
RPBR3 RPII DISK 
RPBR2 
RPBRI 
MAINTENANCE # 3 
MAINTENANCE # 2 
MAINTENANCE # 1 
RPDA 
RPCA 
RPBA 
RPWC 
RPCS 
RPER 
RPDS 

776676 TO 776500 MULTI TIY FIRST STARTS AT 776500 

776476 TO 776406 MULTIPLE AA11'S SECOND STARTS @ 776760 
776476 TO 776460 5TH AA11 
776456 TO 776440 4TH AAII 
776436 TO 776420 3RD AA 11 
776416 TO 776400 2ND AA11 
NOTE 1ST AA 11 IS AT 776750 

776377 TO 776200 DX11 
775600 DS11 AUXILIARY LOCATION 
775577 TO 775540 DS11 MUX3 
775537 TO 775500 DS11 MUX2 
775477 TO 775440 DSll MUXI 
775436 TO 775400 DSll MUXO 
775377 TO 775200 ON 11 
775177 TO 775000 DM11 
774777 TO 774400 DPll 
774377 TO 774000 DCll 

773777 TO 773000 DIODE MEMORY MATRIX 

773000 BM792-YA PAPER TAPE BOOTSTRAP 
773100 BM792-YB RC,RK,RP,RF AND TCll - BOOTSTRAP 
773200 BM792-YC CARD READER BOOTSTRAP 
773300 
773400 
773500 
773600 
773700 RESERVED FOR MAINTENANCE LOADER 

8-4 



772776 TO 772700 TYPESET PUNCH 
772676 TO 772600 TYPESET READER 

772576 AFC·MAINTENANCE 
772574 AFC·MUX ADDRESS 
772572 AFC·DBR 
77257.0 AFC·CSR 
77.2546 KW11P XX 
772544 KW11P COUNTER 
772542 KW11P COUNT SET BUFFER 
772540 KW11P CSR 
772536 TM 11 XX 
772534 TM 11 XX 
772532 TM 11 LRC 
77253.0 TM 11 DBR 
772526 TM11 BUS ADDRESS 
772524 TM11 BYTE COUNT 
772522 TM 11 CONTROL 
77252.0 TM 11 STATUS 
772512 OST CSR 
77251.0 OST EADRS1.2 
772506 OST ADRS2 
772504 OST ADRSI 
7725.02 OST MASK2 
772500 OST MASK 1 
772416 DRIIB/DATA 
772414 DRIIB/STATUS 
772412 DRIIB/BA 
77241.0 DR11B/WC 
772136 TO 77211.0 MEMORY PARITY CSR 
772136 15 
772120 4 
772116 3 
772114 2 
772112 1 
77211.0 .0 
771776 UDCS· CONTROL AND STATUS REGISTER 
771774 UDSR . SCAN REGISTER 
771772 MCLK· MAINTENANCE REGISTER 
771766 UDC FUNCTIONAL I/O MODULES 
771000 UDC FUNCTIONAL I/O MODULES 
77.0776 TO 77.0700 KG11 CRC OPTION 
77.0776 KGllA KGNU7 
77.0774 KGDBR7 
77.0772 KGBBC7 
77.077.0 KGCSR7 
77.0716 KGNUI 
77.0714 KGBCCI 
77.0712 KGDBR 1 
77.071.0 KGCSRI 
77.0706 KGNU.o 
77.0704 KGDBR.o 
77.07.02 KGBCC.o 

B·5 



770700 KGIIA KGCSRO 
770676 TO 770500 16 LINE FOR DM11BB 
770676 DM11BB # 16 
770674 
770672 
770670 
770666 DM11BB # 15 
770664 
770662 
770660 
770656 DM11BB # 14 
770654 
770652 
770650 
770646 DM11BB # 13 
770644 
770642 
770640 
770636 DM11BB # 12 
770634 
770632 
770630 
770626 DM11BB # 11 
770624 
770622 
770620 
770616 DM11BB # 10 
770614 
770612 
770610 
770606 DMllBB #9 
770604 
770602 
770600 DM11BB #8 
770076 LATENCY TESTER 
770074 LATENCY TESTER 
770072 LATENCY TESTER 
770070 LATENCY TESTER 
770056 TO 770000 SPECIAL FACTORY BUS TESTERS 
767776 TO 764000 FOR USER and SPECIAL SYSTEMS···DR11A ASSIGNED IN 
USER AREA·STARTING AT HIGHEST ADDRESS WORKING DOWN 
767776 DR11A #0 
767774 
767772 
767770 
767766 DR11A # 1 
767764 
767762 
767760 
767756 DR llA # 2 
767754 
767752 
767750 

B·6 



764000 START NORMAL USER ADDRESSES HERE AND ASSIGN UPWARD. 
760004 TO 760000 RESERVED FOR DIAGNOSTIC· SHOULD NOT BE ASSIGNED 

B-7 





APPENDIX C 

PDP-II/40 INSTRUCTION TIMING 

INSTRUCTION EXECUTION TIME 
The execution time for an instruction depends on the instruction itself, 
the modes of addressing used, and the type of memory being referenced. 
In the most general case, the Instruction Execution Time is the sum of 
a Source Address Time, a Destination Address Time, and an Execute, 
Fetch Time. 

Instr Time == SRC Time + DST Time + EF Time 

Some of the instructions require only some of these times, and are so 
noted. All Timing information is in microseconds, unless otherwise noted. 
Times are typical; processor timing can vary ± 10%. 

I. BASIC INSTRUCTION SET TIMING 

Double Operand 
all instructions, 

except MOV: Instr Time == SRC Time + DST Time + EF Time 
MOV Instruction: Instr Time == SRC Time + EF Time 

Single Operand 
all instr, except MFPI, MTPI: Instr Time == DST Time + EF Time 
MFPI, MTPI instructions: Instr Time == EF Time 

Branch, Jump, Control, Trap, & Mise 
all instructions: Instr Time == EF Time 

NOTES: 
1. The times specified generally apply to Word instructions. In most 

cases Even Byte instructions have the same times, with some Odd 
Byte instructions taking longer. All exceptions are noted. 

2. Timing is given without regard for NRP or BR servicing. Memory 
types MMll·S, MFl1-L, and MILll are assumed with direct use ot 
the special processor MSYNA signal and with memory within the CPU 
mounting assembly. Use of the regular Unibus BUS MSYN signal 
means 0.08 "sec must be added for each memory cycle. 

3. If the Memory Management (KTl1-D) option is installed, instruction 
execution times increase by 0.15 /£Sec for each memory cycle used. 

C'l 



SOURCE ADDRESS TIME 

Instruction Source Mode SRC Time (A) Memory Cycles 

0 0.00 ~sec 0 
1 .78 1 
2 .84 1 

Double 3 1.74 2 
Operand 4 .84 1 

5 1.74 2 
6 1.46 2 
7 2.36 3 

NOTE (A): For Source Modes 1 thru 7, add 0.34 ~sec for Odd Byte in­
structions. 

DESTINATION ADDRESS TIME 

Instruction Destination Mode DST Time (B) Memory Cycles 

Single 0 0.00 ~sec 0 
Operand, 1 .78 ( .90) 1 
and 2 .84 ( .90) 1 
Double 3 1.74 (1.80) 2 
Operand 4 .84 ( .90) 1 
(except 5 1.74 (1.80) 2 
MOV, JMP, JSR) 6 1.46 (1.74) 2 

7 2.36 (2.64) 1 

NOTE (B): For Destination Modes 1 thru 7, add 0.34 ~sec for Odd Byte 
instructions. Use higher values in parentheses ( ) for ADD, 
SUB, CMP, BIT, BIC, or BIS and a Source Mode of O. 

EXECUTE, FETCH TIME 

Double Operand 

Instruction 

use with SRC ( 
T ime & DST Time) 

ADD, CMP, } 
BIT, BIC, BIS 
SUB 
XOR 

SRC Mode 0 
DST Mode 0 

EF Mem 
Time Cyc 

0.99 ~s 1 

.99 1 

.99 1 

SRC Mode 1 to 7 SRC Mode 0 to 7 
DST Mode 0 DST Mode 1 to 7 

EF Mem EF Mem 
Time Cyc Time (C) Cyc 

1.60 p's 1 1.76 ~s 2 

1.60 1 1.90 2 
- - 1.76 2 

NOTE (C): For Destination Modes 1 thru 7, add 0.48 ~sec for Odd Byte 
instructions. 

C-2 



EFTime 
DST SRC EFTime (Odd or Memory 

Instruction Mode Mode (Word instr) Even Byte) Cycles 

0 0 0.90 I'sec 1.80 I'sec 0 
0 lto7 1.46 1.80 0 

1 o to 7 2.42 2.56 2 
2 Oto 7 2.42 2.56 2 

MOV 3 o to 7 3.18 3.32 3 
4 Oto 7 2.42 2.56 2 

(use with 5 Oto 7 3.18 3.32 3 
SRC Time) 

6 0 2.84 2.98 3 
6 1 to 7 3.18 3.32 3 
7 0 3.68 3.82 4 
7 1 to 7 4.02 4.16 4 

Single Operand 

Instruction Destination Mode 0 Destination Mode 1 to 7 

Mem Mem 
(use with DST Time) EF Time Cycles EF Time (D) Cycles 

ClR, COM, NEG, INC, 
DEC, ADC, SBC, TST, 0.991'S 1 1.77 I's 2 
ROl, ASl, SWAB 

ROR,ASR 1.25 (E) 1 2.06 2 
SXT .90 1 1.77 2 

NOTE (D): For Destination Modes 1 thru 7, add 0.48 I'sec for Odd Byte 
instructions. 

NOTE (E): For RORB and ASRB, add 0.14 I'sec for Even or Odd Byte 
instructions. 

Instruction Instr Time Mem Cycles Note 

MFPI 
MTPI 

3.741's 
3.68 

Branch Instructions 

Instruction 

BR, BNE, BEQ, BPl, BMI'] 
BVC, BVS, BCC, BCS, 
BGE, Bl T, BGT, BlE, 
BH I, BlOS, BH IS, BlO 

SOB 

2 
2 

Instr Time 
(Branch) 

1.761'sec 

2.36 

C-3 

These two instructions are im­
plemented only if Memory 
Management is installed. 

Instr Time 
(No Branch) 

1.40 l'sec 

2.04 

Memory Cycles 

1 

1 



Jump Instructions 

Instruction Destination Mode Instr Time Memory Cycles 

1 1.80 I'sec 1 
2 2.10 1 
3 2.30 2 

JMP 4 1.90 1 
5 2.30 2 
6 2.36 2 
7 2.92 3 

1 2.94 2 
2 3.24 2 
3 3.44 3 

JSR 4 3.04 2 
5 3.44 3 
6 3.50 3 
7 4.06 4 

Control, Trap, & Mise: Instructions 

Instruction Instr Time Mem Cyc Notes 

RTS 2.421'sec 2 
MARK 2.56 2 
RTI, RTT 2.92 3 

SET N,Z,V,C 1.72 1 
CLR N,Z,V,C 2.02 1 

HALT 2.42 1 Console loop for a switch 
setting is 0.44 I'sec. 

WAIT 2.24 1 WAIT loop for a BR is 1.12 I'sec. 

RESET 80 msec 1 

lOT, EMT 5.80 1'sec 5 
TRAP, BPT 

UTENCY 

Interrupts (BR requests) are acknowledged at the end of the current in· 
struction. For a typical instruction, with an instruction execution time of 
4 I'sec, the average time to request acknowledgement would be 2 I'sec. 

Interrupt service ,time, which is the time from BR acknowledgement to 
the first subroutine instruction, is 5.42 I'sec, max. 

NPR (DMA) latency, which is the time from request to bus mastership 
for the first NPR device, is 3.50 I'sec, max. 

C-4 



II. EIS, KEn·E, INSTRUCTION TIMING 

Source Mode 

o 
1 
2 
3 
4 
5 
6 
7 

Instruction 

MUL 
DIV 

ASH (right) 
ASH (left) 

Instr Time = SRC Time + EF Time 

SRC Time 

0.281'sec 
.78 
.98 

1.74 
.98 

1.74 
1.74 
2.64 

EF Time 

8.88 I'sec 
11.30 

2.58 
2.78 

Notes 

Add 0.30 I'sec per shift. 
Add 0.30 I'sec per shift. 

ASHe (no shift) 2.78 
ASHC (shift) 3.26 Add 0.30 I'sec per shift. 

LATENCY 

Interrupts are acknowledged at the end of the current instruction. In­
terrupt service time is 5.42 ,.sec, max. NPR latency is 3.50 ,.sec, max. 

III. FLOATING POINT, KEn-F, INSTRUCTION TIMING 

Instr Time=Basic Time+Shift Time for binary pts+Shift Time for norm 

Time per shift to Time per shift 
Instr Basic Time line up binary points for normalization 

(0 to 23 shifts) (0 to 25 shifts) 

FADD 18.781'sec 0.3O lo'sec 0.341o'sec 
FSUB 19.08 .30 .34 
FMUL 29.00 .34 
FDIV 46.72 .34 

Basic instruction times shown for FADD and FSUB assume exponents 
are equal or differ by one. 

C·5 



LATENCY 

If an interrupt request of higher priority than the operating pro~ram 
occurs during a Floating Point instruction, the current instruction will be 
aborted unless it is near completion. The maximum time from interr~pt 
~equest to acknowledgement during Floating Point instruction executlo.n 
IS 20.08 !-,sec. Interrupt service time is 5.42 .usec, max. NPR latency IS 

3.50 !-,sec, max. 

C-6 



APPENDIXD 
INSTRUCTION INDEX 

ADC(B) .............................. 4-19 FDIV .................................. 7-5 
ADD .................................... 4-25 FMUL .................................. 7-5 
ASL(B) ................................ 4-14 FSUB .................................. 7-4 
ASH .................................... 4-33 
ASHC .................................. 4-34 HALT .................................. 4-74 
ASR(B) .............................. 4-13 

INC(B) ................................ 4-8 
BCC .................................... 4-44 lOT .................................... 4-68 
BCS .................................... 4-45 
BEQ .................................... 4-39 JMP .................................... 4-56 
BGE .................................... 4-47 JSR .................................... 4-58 
BGT .................................... 4-49 
BHI .................................... 4~2 MARK ............................... 4-61 
BHIS .................................. 4-54 MFPI .................................. 4-77 
BIC(B) ................................ 4-29 MOV(B) .................... .......... 4-23 
BIS(B) ................................ 4-30 MTPI .................................. 4-78 
BIT(B) ..................... ........... 4-28 MUL .................................. 4-31 
BLT .................................... 4-48 
BLE .................................... 4-50 NEG(B) .............................. 4-10 
BLO .................................... 4-55 NOP ................................... 4·79 
BLOS .................................. 4-53 
BMI .................................... 4-41 RESET ................................ 4-76 
BNE .................................... 4-38 ROL(B) .............................. 4-16 
BPL .................................... 4-40 ROR(B) .............................. 4-15 
BPT .................................... 4-67 RTf .................................... 4-69 
BR ...................................... 4-37 RTS ................................... 4-60 
BVC .................................... 4-42 RTT .................................... 4-70 
BVS .................................... 4-43 

SBC(B) .............................. 4-20 
CLR(B) .............................. 4-6 SOB .................................... 4-63 
CMP(B) .............................. 4-24 SUB .................................... 4-26 
COM(B) .............................. 4-7 SWAB ................................. 4-17 
CONDo CODES .................... 4-79 SXT .................................... 4-21 

DEC(B) .............................. 4-9 TRAP .................................. 4-66 
DIV .................................... 4-32 TST(B) ................................ 4-11 

EMT .................................... 4-65 WAIT .................................. 4-75 

FADD .................................. 7-4 XOR .................................... 4-3~ 

0-1 



NUMERICAL OP CODE LIST 

Op Code Mnemonic Op Code Mnemonic Op Code Mnemonic 

00 00 00 HALT 00 60 DD ROR 10 40 00 I 00 00 01 WAIT 00 61 DD ROL EMT 
00 00 02 RTI 00 62 DD ASR 10 4'3 77 00 00 03 BPT 00 63 DD ASL 
00 00 04 lOT 00 64 NN MARK 10 44 00 
00 00 05 RESET 00 65 SS MFPI 1 TRAP j 
00 00 06 RTT 00 66 DD MTPI 10 47 77 
00 00 07 (unused) 00 67 DD SXT 

00 01 DD JMP 00 70 00 1 10 50 DD CLRB 
00 02 OR RTS (unused) 10 51 DD COMB 

j 
[ 10 52 DD INCB 

00 02 10 00 77 77 J 10 53 DD DECB 
! (unused) 01 SS DD MOV 10 54 DD NEGB 

00 02 27 02 SS DD CMP 10 55 DD ADCB 
03 SS DD BIT 10 56 DD SBCB 

00 02 3N SPL 04 SS DD BIC 10 57 DD TSTB 
00 02 40 NOP 05 SS DD BIS 

06 SS DD ADD 10 60 DD RORB 
00 02 41 I 10 61 DD ROLB 

cond codes 07 OR SS MUL 10 62 DD ASRB 
00 02 77 [ 07 lR SS DIV 10 63 DD ASLB 

07 2R SS ASH 
00 03 DD SWAB 07 3R SS ASHC 10 64 00 

00 04 XXX BR 07 4R DD XOR ! (unused) 
00 10 XXX BNE 10 64 77 

07 50 OR FADD 
00 14 XXX BEQ 07 50 1R FSUB 10 65 SS MFPD 
00 20 XXX BGE 07 50 2R FMUL 10 66 DD MTPD 
00 24 XXX BLT 07 50 3R FDIV 
00 30 XXX BGT 10 67 00 I 
00 34 XXX BLE 07 50 40 I r i (unused) 

I J 004R DD JSR j 
(unused) 10 77 77 

07 67 77 
11 SS DD MOVB 00 50 DD CLR 

00 51 DD COM 07 7R NN SOB 12 SS DD CMPB 
00 52 DD INC 13 SS DD BITB 

10 00 XXX BPL 14 SS DD BICB 00 53 DD DEC 10 04 XXX BMI 15 SS DD BISB 00 54 DD NEG 10 10 XXX BHI 16 SS DD SUB 00 55 DD ADC 10 14 XXX BLOS 
00 56 DD SBC 10 20 XXX BVC 17 00 00 l. 00 57 DD TST 10 24 XXX BVS floating 

i j point 10 30 XXX BCC, BHIS 17 77 77 
10 34 XXX BCS, BLO 

0-2 



APPENDIX E SUMMARY OF PDPII INSTRUCTIONS 

GENERAL REGISTER ADDRESSING MODE 

Mode Name Symbolic Description 

0 register R 
1 register deferred (R) 

2 auto·increment (RH 
3 auto-incr deferred @(RH 
4 auto-decrement -(R) 

5 auto-deer deferred @-(R) 
6 index X(R) 
7 index deferred @X(R) 

PROGRAM COUNTER ADDRESSING 

2 
3 
6 
7 

immediate 
absolute 
relative 
relative deferred 

LEGEND 

OpCodes 

• = 0 for word/1 for byte 
55 = source field (6 bits) 
DO = destination field (6 bits) 
R = gen register (3 bits), 0 to 7 

#n 
@#A 

A 
@A 

XXX = offset (8 bits), +127 to -128 
N = number (3 bits) 
NN = number (6 bits) 

Boolaen 
1\ = AND 
v = inclusive OR 
¥ = exclusive OR 
'""""'=NOT 

NOTE: 

(R) is operand [ex. R2 = %2] 
(R) is address 
(R) is adrs; (RH(1 or 2) 
(R) is adrs of adrs; (R)+2 
(R)- (1 or 2); (R) is adrs 
(R) - 2; (R) is adrs of adrs 
(R)+X is adrs 
(R)+X is adrs of adrs 

MODE I Reg = 7 

operand n follows instr 
address A follows instr 
instr adrs +4+X is adrs 
instr adrs +4+X is adrs of adrs 

Operations 

( ) = contents of 
s = contents of source 
d = contents of destination 
r = contents of register 
~ = becomes 
X = relative address 
% = register definition 

Condition Codes 
* = conditionally set or cleared 
- = not affected 
0= cleared 
1 = set 

• = Applies to the 11/40, & 11/45 computers 
• = Applies to the 11/45 computer 

E-l 



SINGLE OPERAND: OPR dst 
15 6 5 

QP CODE DO 

Mnemonic OpCode Instruction dst Result NZVC 

General 

GLR(B) _05000 clear 0 0 100 
COM(B) _05100 complement (1 's) --cJ * * 0 1 
INC(B) _05200 increment d+1 * 

,. ... 
DEC(B) _05300 decrement d-l ,. ,. 

* 
NEG(B) _05400 negate (2's com pi) -d ,. ~~ * 

,. 
TST(B) _05700 test d * * 0 0 

Rotate & Shift 

ROR(B) _06000 rotate right :!; ~:t * * 
ROL(B) _06100 rotate left * ~~ * * 
ASR(B) _06200 arith shift right d/2 * * ~j: ;': 

ASL(B) _06300 arith shift left 2d * 
,. ;': ~:: 

SWAB 000300 swap bytes ::: ~:: t,: 0 

Multiple Precision 

AOC(B) _05500 add carry d+C ::: ::~ * * 
SBC(B) _05600 subtract carry d-G ~:t ::: * * 

... SXT 006700 sign extend o or-l * * 
DOUBLE OPERAND: OPR src,dst OPR scr,R or OPR R,dst 

15 12 11 6 5 

QP CODE 55 : I DO 
I I I 

15 9 8 6 5 

OP CODE :R I 55 OR DO 

Mnemonic OpCode Instruction Operation NZVC 

General 
MOV(B) _lSSOO move d ~s ,. * 0 
CMP(B) _2SSOO compare s-d ~:t * * * 
AOO 06SS00 add d ~s+d * * 

,. 
* 

SUB 16SS00 subtract d ~d-s * ':: ,. ,. 
Logical 

BIT(B) _3SS00 bit test (ANO) sl\d * * 0 _ 
BIC(B) _ 4SS00 bit clear d ~ t-s) 1\ d * * 0 _ 
BIS(B) _5SS00 bit set (OR) d ~svd ,. 

* 0_ 

... Register 

MUL 070RSS multiply r ~ r x s * * o * 
OIV 071RSS divide r ~ r/s * * 

,. ,. 
ASH 072RSS shift arithmetically * * 

,. ,. 
ASHC 073RSS arith shift combined * * 

,. 
* 

XOR 074ROO exclusive OR d ~r ..... d ~~ * 0 

E-2 



BRANCH B __ location 

15 

BASE CODE 
I 

8 7 

xxx 

If condition is satisfied: 
Branch to location, 
New PC ~ Updated PC + (2 x offset) ,--___ A'--__ ~ 

Op Code = Base Code + XXX ~drs of br instr +2 

Base 
Mnemonic Code Instruction Branch Condition 

Branches 

BR 000400 branch (unconditional) (always) 
BNE 001000 br if not equal (to 0) *0 Z=O 
BEQ 001400 br if equal (to 0) =0 Z=l 
BPl 100000 branch if plus + N=O 
BMI 100400 branch if minus N=l 
BVC 102000 br if overflow is clear V=O 
BVS 102400 br if overflow is set V=l 
BCC 103000 br if carry is clear C=O 
BCS 103400 br if carry is set C=l 

Signed Conditional Branches 

BGE 002000 br if greater or eq (to 0) ;;::0 N¥-V = 0 
BlT 002400 br if less than (0) <0 N.orV = 1 
BGT 003000 br if greater than (0) >0 Z v (N.orV) = 0 
BlE 003400 br if less or equal (to 0) :::;;0 Z V (N.orV) = 1 

Unsigned Conditional Branches 

BHI 101000 branch if higher > CvZ= 0 
BlOS 101400 branch if lower or same :::;; CvZ= 1 
BHIS 103000 branch if higher or same ;;:: C=O 
BlO 103400 branch if lower < C=l 

JUMP & SUBROUTINE: 

Op 
Mnemonic Code 

JMP 
JSR 
RTS 

·MARK 
·SOB 

000100 
004ROO 
00020R 
0064NN 
077RNN 

Instruction 
Notes 

jump PC ~ dst 
jump to subroutine } 
return from subroutine use same R 
mark aid in subr return 
subtract 1 & br (if =1= 0) (R)- 1, then if (R) 1= 0: 

E·3 

PC ~ Updated PC­
(2 x NN) 



TRAP & INTERRUPT: 

Op 
Mnemonic Code 

EMT 104000 
to 104377 

TRAP 104400 
to 104777 

SPT 000003 

lOT 000004 

RTI 000002 

.ARTT 000006 

MISCELLANEOUS: 

Op 
Mnemonic Code 

HALT 
WAIT 
RESET 
NOP 

• SPl 
.A MFPI 
.A MTPI 

• MFPO 
• MTPO 

000000 
000001 
000005 
000240 
00023N 

0065SS 
006600 
1065SS 
106600 

Instruction 

emulator trap 
(not for general use) 

trap 

breakpoint trap 

input/output trap 

return from interrupt 

return from interrupt 

Instruction 

halt 
wait for interrupt 
reset external bus 
(no operation) 
set priority level (to N) 

Notes 

PC at 30. PS at 32 

PC at 34. PS at 36 

PC at 14. PS at 16 

PC at 20. PS at 22 

inhibit T bit trap 

move from previous instr space 
move to previous instr space 
move from previous data space 
move to previous data space 

COND1TION CODE OPERATORS: 

15 

QP CODE BASE =000240 : 
I I 

Op 
Mnemonic Code Instruction 

ClC 000241 clear C 
ClV 000242 clear V 
CLl 000244 clear Z 
ClN 000250 clear N 
cee 000257 clear all cc bits 

SEC 000261 set C 
SEV 000262 set V 
SEZ 000264 set Z 
SEN 000270 set N 
SCC 000277 set all cc bits 

E·4 

543210 

L 0= CLEAR SELECTED CONO CODE BITS 
1 :SET SELECTED CONO CODE BITS 

N Z V C 
___ 0 
__ 0_ 
_0 __ 
0 ___ 
000 0 

___ 1 
__ 1_ 
_I __ 
1 ___ 

1 1 1 1 



PDPll/40 FLOATING POINT UNIT: 

FADD 
FSUB 
FMUL 
FDIV 

07500R 
07501R 
07502R 
07503R 

DEVICE REGISTER ADDRESSES 

Device 

KWll-L Line Clock 

KWll-P Real Time Clock 
control & status 
counter 

LA30 DECwriter 
keyboard 
printer 

LPll Line Printer 

LT33 Teletype 
keyboard 
printer 

Pell Paper Tape 
reader 
punch 

RCll/RS64 Disk (64K words) 
look ahead 
disk address 
error status 

floating add 
floating subtract 
floating multiply 
floating divide 

Control 
& Data 

Status Buffer 

777 546 

772 542 
772 540 
772 544 

777 560 777 562 
777 564 777 566 

777 514 777 516 

777 560 777 562 
777 564 777 566 

777 550 777 552 
777 554 777 556 

777 456 
777 440 
777 442 
777 444 

command & status 777 446 
word count 777 450 
current address 777 452 
maintenance 777 454 

RFll/RSll Disk (256K words) 777 472 
control status 777 460 
word count 777 462 
current mem adrs 777 464 
disk address 777466 
adrs ext error 777 470 
maintenance 777 474 
segment address 777 476 

E-5 

NZVC 
* * 0 0 
* * 0 0 
* * 0 0 
* * 0 0 

Inter-
rupt Priority 

Vector Level 

100 BR6 

104 BR6 

60 BR4 
64 BR4 

200 BR4 

60 BR4 
64 BR4 

70 BR4 
74 BR4 

210 BR5 

204 BR5 



RKll/RK05 Disk Cartridge 
drive status 
error 
control status 
word count 
current address 
disk address 
maintenance 

TCll/TU56 DECtape 
control 
command 
word count 
current address 

TMll/TU10 Magtape 
status 
command 
byte counter 
current address 
read lines 

777 400 
777 402 
777 404 
777 406 
777 410 
777 412 
777 414 

777 340 
777 342 
777 344 
777 346 

772 520 
772 522 
772 524 
772 526 
772 532 

PROCESSOR REGISTER ADDRESSES 

Processor Status Word 
PS-777776 

777 416 220 BR5 

777 350 214 BR6 

772 530 224 BR5 

15 14 13 12 I I to 8 7 5 4 3 2 I 0 

00= KERNEL 4 01=SUPERVISQRe I I =USER • 

... Stack Umit Register - 777 774 

• Program Interrupt Request - 777 772 

General Registers RO - 777 700 
(console use only) R1 - 777 701 

R2-777 702 
R3-777 703 

Console Switches & Display Register - 777 570 

INTERRUPT VECTORS 

000 (reserved) 
004 Time Out & other errors 
010 illegal & reserved instr 
014 BPT 
020 lOT 
024 Power Fail 
030 EMT 
034 TRAP 

E·6 

R4-777 704 
R5-777 705 
R6-777 706 
R7-777707 



Address 

__ 744 
__ 746 
__ 750 
__ 752 
_ 754 
__ 756 
__ 760 
_ 762 

ABSOLUTE LOADER 

Starting Address: __ 500 
~ 

Memory Size: 4K 017 
8K 037 

12K 057 
16K 077 
20K 117 
24K 137 
28K 157 

(or larger) 

BOOTSTRAP LOADER 

Contents 

016 701 
000 026 
012 702 
000 352 
005 211 
105 711 
100 376 
116 162 

E-7 

Address Contents 

_ _ 764 000 002 
_ 766 _ 400 
__ 770 005 267 
__ 772 177 756 
__ 774 000 765 
_ 776 177 560 (KB) 

or 177 550 (PR) 



NOTES 



NOTES 



NOTES 



NOTES 



DIGITAL EQUIPMENT CORPORATION ~DmDDmD WORLDWIDE SALES AND SERVICE 

MAIN OFFICE AND PLANT 

NORTHEAST 
REGIONAL OFFICE 
275 Wyman Street. Waltham, Massilchusetts 02154 
Telephone. (617}-I9)·0320/03:)J TWX· 710-324·6919 

WALTHAM 
IS Lunda Street, Waltham, Massachusetts 02154 
Telephone: (617)-891-1030 TWX 710·324·6919 

CAMBRIDGE/BOSTON 
8!:19 Main Street, Cambridge, Massechusetts 02139 
Telephone- (617)''I91-6130 TWX: 710-32Q-1167 

ROCHESTER . 
130 Aliens Creek Road, Rochester, New York 14618 
relephone: (716)-481-1700 TWX: 710-253--3078 

CONNECTICUT 
240 Pomeroy Avenue. Meriden. Connecticut 06450 
Telephone' [203)-23Hl44117466 TWX 110-461-0054 

MID-ATLANTIC - SOUTHEAST 
REGIONAL OFFICE 
US. Route 1. Princeton. New Jersey 08S40 
Telephone, (609)-452-2940 TWX: 510-685-2338 

NEW YORK 
95 Ceder Lene. Englewood. New Jersey 07631 
Telephone' (201)-871--4984, (212)-594-6955, (212)-736-0447 
TWX: 710-991-9721 

NEW JERSEY 
1259 Route 46, ParSippany. New Jersey 07054 
Telephone: (201)-335-3l:Xl TWX 710-987-8319 

PRINCETON 
U_S_ Route 1 
Princeton. New Jersey 085040 
Telephone. (609) 452-2940 TWX- 510-665-2338 

LONG ISLAND 
1 Huntington Quedrangle 
Suite lS07 Huntmgton Station. New York 117'16 
Telephone: (516)-694-4131, (212).a95-8095 

PHILADELPHIA 
Station Square Three. Paoli. Penn8ylvanie 19301 
Telephone: (215)-647-4900/4410 TeleK' 510-668-8385 

146 M,lIn Street. Maynard, Massachusetts. USA. 01754' Telephone: From Metropol'!an Boston 646-8600. Elsewhere (617)-897-5111 
TWX 710-347-0212 Cable DIGITAL MAYN Telex' S4-8457 

UNITED STATES 
MID·ATLANTIC - SOUTHEAST (cont.) 
WASHINGTON 
Exeeutlve BuddiflQ 
6811 Ken'!worth Ave" RIverdale. Maryland 20840 
Telephone (301)-779-1600/752-8797 TWX. 710-826-9662 

DURHAM/CHAPEL HILL 
2704 Chapel Hili Boulevard 
Durham, North Carolina 27707 
Telephone (919)-489-3347 TWX- 510-92HJ912 

ORLANDO 
SUlie 130. 7001 Lake Ellenor Drl"e, Orlando. FlOrida 32809 
Telephone (3}5)-851-4450 TWX 810-850'{)100 

ATLANTA 
2815 Clearv,ew Place, SUltl!! 100, 
Atlanta. GeorgIa 30340 
Telephofl8" (404)-451-3734/3735/3736 TWX: 810-757-<1223 

KNOXVILLE 
6311 Kingston PIke. SUIte 21E 
Knox",lIe, Tennessee 37919 
Telephone. (615)-588--6571 TWX 810-583-0123 

CENTRAL 
REGIONAL OFFICE 
1650 Frontage Road, Northbrook. Illinois 6(0)2 
Telephone_ (312)-498-2500 TWX 910-686-0655 

PITTSBURGH 
400 Penn Center Boule"ard 
PIttsburgh, Pennsylvania 15235 
Telephone (412)·2-0.9404 TWX 710-797·3657 

CHICAGO 
1850 Frontage Road. Northbrook, Illinois 60062 
Telephone, (312}--4198-2500 TWX 910-686-0655 

ANN ARBOR 
23") Hurotl View Boulevard, Ann Arbor. Mlehigatl <Ca103 
Telephune: (313)-761-1150 TWX· 810-223-6053 

DETROI7 
23777 Greenfield Road. Suite 189 
Southfield, Michigan <Cil}75 
Telephone (313)-559-6565 

CENTRAL (cont.) 
INDIANAPOLIS 
21 Onachway Drrve - Suite G 
IndIanapoliS. Indiana 46224 
Telephone' (317)-243-8341 TWX 810-341-3436 
MINNEAPOLIS 
SUite 111.803") Cedar Avenue South, 
MinneapolIS, Minnesota 55420 
Telephone (612)-854-6562·3--4-5 TWX 910-576-2818 
CLEVELAND 
Park HIli Buildmg. 35104 Euclid A"enue 
WIlloughby. OhiO 44094 
Telephone: (216)-Q.46-8484 TWX 810-427-2608 

CENTRAL REGION CATEGORY 
KANSAS CITY 
532 East 42'nd St" Independence, Missouri 64055 
Telephone: (816)-461-3440 TWX 816-461-3100 
51 LOUIS 
Suite 110. 115 Progress Parkway, Maryland Heights, 
M,ssouri 6:J>43 
Telephone- (314)-878-4310 TWX_ 910-764-0831 
DAYTON 
3101 Kettering Boulevard. Dayton, OhiO 45439 
Telephone- (513}-29<C-3323 TWX- 810-451H676 
MILWAUKEE 
8531 W. CapItol Drove. Milwaukee. Wisconsm 53222 
Telephone (414)-463-9110 TWX: 910-262-1199 
DALLAS 
8855 North Stemmons Freeway. Dallas. Texas 75247 
Telephone: (214)-636--4880 TWX 910-861-4000 
HOUSTON 
3417 Milem Street. SUlie A, Houston, Te~as 77002 
Telephone (713)-52<1-2961 TWX: 910-881-1651 
NEW ORLEANS 
3100 Ridgelake Dri"e, Suite 108 
Metame, LOUisiana 70002 
Telephone- 504·837-0257 

WEST 
REG/ONAL OFFICE, 
310 Soquel Way. Sunny"ale. California 94086 
Telephone (-408)-735-9200 

WEST (cont.) 
ANAHEIM 
801 E. 8all Aoad, Anaheim, CalifornIa 92805 
Telephone (714)-776-6932/873") TWX, 910-591-1189 
WEST LOS ANGELES 
1510 Cotner Avenue, Los Angeles, CalifornIa 90025 
Telephone_ (213)-479-3791/4318 TWX 910-342-6999 
SAN DIEGO 
6154 Mlss,on Gorge Road, Suite 110 
San DIego. Calt/ornie 92120 
Telephone (71<1)-200-7880. 7970 TWX- 910·335-123") 
SAN FRANCISCO 
1400 Terra Bella. Mountsln VIew. Cellfornia 94040 
Telephone' (415)-964---6200 TWX, 910-373-1266 
PALO ALTO 
560 San Anton<o Road, Palo Alto, CalifornIa 943)8 

Telephone (415)·Q69-6200 TWX. 910-373-1266 
OAKLAND 
7850 Edgeweter Drive, Oaklend, Csltfornla 9<1621 
Telephone (<115) 635-5453/7830 TWX, 910-366-7238 
ALBUQUERQUE 
6303 Indian School !'load, N_E .. Albuquerque, N.M. 87110 
Telephone_ (505)-296-5411/5428 TWX. 910-989-0614 
DENVER 
2305 South Colorado Boulevard. SUite #5 
Denver, Colorado 80222 
Telephone- (3")3)- 757-3332/756--1656/758-1659 
TWX· 910-931-2650 

SEATTLE 
1521 I30th N_E. Bellevue, Washmgton 98005 
Telephone- (206}-<C54-4058/455-54O<C TWX: 910-443-23:)6 

SALT LAKE CITY 
431 South lTd East, Salt Lake City. Utah 84111 
Telephone; (1101)-328--9838 TWX: 910-925-5834 

PHOENIX 
4358 Eaat Broadway Road. Phoenix, Arizona 85040 
Telephone_ (602)-268-3488 TWX: 910-950-4691 

PORTlAiilD 
SUite 168 
5319 SoW. Cenyon Court, Portland, Oregon 97"'-­
Talephone, (503)-297-3761/3765 



EUROPEAN HEADQUARTERS 
Digital Equipment Corporation International Europe 
81 Route de rAlre 
1211 Geneva 26, Switzerland 
Telephone 427950 Telex: 22683 

FRANCE 
EqUipment Digital S.A RL. 
PARIS 
327 Rue de Charenton, 75 PariS 12 EME , France 
Telephone 344·76-07 Telex21339 

GRENOBLE 
10 rue Auguste Ravler, F-38 Grenoble, France 
Telephone (76) 875601/02 Telex 32 882 F (Code 212) 

GERMAN FEDERAL REPUBLIC 
Digital EqUipment GmbH 

MUNICH 
8 Muenchen 13, Wallenstelnplatz2 
Telephone 0811-35031 Telex 524-226 

COLOGNE 
5 Koern 41, Aachener Strasse 311 
Telephone 0221-404495 Telex' 888-2269 
Telegram Flip Chip Koeln 

FRANKFURT 
6078 Neu-Isenburg 2 
Am Forsthaus Gravenbruch 5-7 
Telephone 06102-5526 Telex. 41-76-82 

HANNOVER 
3 Hannover, Podbrelsklstrasse 102 
Telephone 0511-69-70-95 Telex 922·952 

AUSTRIA 
Digital EqUipment Corporation Ges m b H. 

VIENNA 
Marlshrlferstrasse 136. tt50Vlenna 15, Austria 
Telephone 855186 

UNITED KINGDOM 
Digital EqUipment Co, Ltd 

U.K HEADQUARTERS 
Arkwnght Road, Reading, Berks 
Telephone 0734-583555 Telex 84327 

READING 
The Evening Post BUilding, Tassa Road 
Reading. Berks 

Fountain House 
Butts Centre 
Reading. RGI 7QN 
Telephone. Readrng563555 
Telex 84328 

BIRMINGHAM 

~~i;~h~~~m{=t;I~~5d.~~tton ~e~~dye~7 ~~rwlcks 
MANCHESTER 
13 Upper PreCinct. Walkden, Manchester M28 5AZ 
Telephone 061-790-8411 Telex 668666 

LONDON 
Bilton House, Uxbridge Road. Ealing, London W5 
Telephone 01-579-2334 Telex 22371 

EDINBURGH 
Shiel House, Craigshlll, Llvmgston. 
West Lothian. Scotland 
Telephone 32705 Telex 727113 

NETHERLANDS 
THE HAGUE 
DI91tai EqUIpment N V 
SIC Winston Churchlillaan 370 
RIJSWIJk/The Hague. Netherlands 
Telephone 070-995-160 Telex 32533 

BELGIUM 

Telex 25297 

SWEDEN 
Digital EqUipment AB 

INTERNATIONAL 
CANADA (cont.) 

3, Ontario K1YOX7 
TWX 610-562-8907 

Port Credit, Ontano 
TWX 610-492"4306 

NORWAY GENERAL INTERNATIONAL SALES 

D'9'tal EqUipment Corp A/S 

Telex 19079 DEC N 

DENMARK 
Digital EqUipment Aktlebole9 

SWITZERLAND 

56059 

ITALY 
Digital EqUipment SpA 

SPAIN 

EnngJe Larreta 12. Madrid 16 
Telex 27249 

CANADA 
DI91tai EqUipment 01 Canada, Ltd 
CANADIAN HEADQUARTERS 
150 Rosamond Street. Carleton Place. OntarIO 
Telephone (613)-257-2615 TWX 610-561-1651 

Telex 94-8457 

AUSTRALIA 

NEW ZEALAND 

Street. Box 2471 

JAPAN 

Telex TK-6428 

JAPAN (cont.) 
Rlkel Tradmg Co., Ltd. (sales only) 
Kozeto-Kalkan Bldg 
No. 18-14, N,shlshlmbashl 1-chome 
Mmato-Ku, Tokyo, Japan 
Telephone'5915246 Telex 781-4208 

PUERTO RICO 
Dl9,tal EqUipment Corporation de Puerto RICO 
American AlrI'nea Bldg. 
804 Ponce De Leon, Miramar, Puerto R,co 
Telephone 809-723-8068/67 Telex 3135-9056 

ARGENTINA 
BUENOS AIRES 
Coasln SA 
Viney del P, no 4071 Buenos Aires 
Telephone 52-3185 Telex 012-2284 

BRASIL 
RIO DE JANEIRO - GB 
Ambrtex SA 
Rue Cear<'i, 104, 2 0 e 3 0 and!lres 
Fones 221·4560/44,252-9873 
Cable RAIOCARDIO 

SAO PAULO - SP 

52-7806 

PORTO ALEGRE RS 
Ambrlex S.A 
Rua Cel. Vicente, 421. 1 0 andar 
Fones 24-7411.24-7696 
Cable 

CHILE 

INDIA 

Tele~ 011-2594 Plenty 

MEXICO 

PHILIPPINES 
Stanford Computer Corporation 
POBox 1508 
416 Dasmarmas St Manila 
Telephone 49-66-96 Telex 742-0352 




