DEC - 08 - ASAB - D

DIGITAL EQUIPMENT CORPORATION . MAYNARD, MASSACHUSETTS

PAL 11l SYMBOLIC ASSEMBLER
PDP-8 PROGRAMMING MANUAL

DIGITAL EQUIPMENT CORPORATION . MAYNARD, MASSACHUSETTS

Copyright 1967 by Digital Equipment Corporation

Revised March 1967
Reprinted November 1967

PREFACE

The PDP-8 comes to the user complete with an extensive selection of system programs and routines making
the full data processing capability of the new computer immediately available to each user, eliminating

many commonly experienced initial programming delays.

The programs described in these abstracts come from two sources, past programming effort on the PDP-5
computer, and present and continuing programming effort on the PDP-8. Thus the PDP-8 programming

system takes advantage of the many man-years of program development and field testing by PDP-5 users.

Although in many cases PDP-8 programs originated as PDP-5 programs, all utility and functional program

documentation is issued in a new, recursive format introduced with the PDP-8.

Programs written by users of either the PDP-5 or the PDP-8 and submitted to the users' library (DECUS -

Digital Equipment Corporation Users' Society) are immediately available to PDP-8 users.

Consequently, users of either computer can take immediate advantage of the continuing program develop-

ments for the other.

cee
11

CONTENTS

1 INTRODUCTION ittt iitieitiit i ceitcsenansosernsasnnsnceens 1-1
2 ILLUSTRATIONS OF PDP-8 ASSEMBLER FEATURESiieiiiieninninnennn. 2-1
The Location Counterueeieeiereoeeoenssesesonnnaneessecesnennns 2-1

Coding HIUstrations . .v.iieeeeeeeneeneeeeneenenssesneeoaroneneonnens 2-1

3 THE SOURCE LANGUAGE C ettt et et 3-1
The Character Set et et et et ecaet et ettt ettt ansaas 3-1

Leffers coeveieineenininneiecececnnns Gstecsssassnssnssessasnn 3-1

Digits voiereeenreneesseriosescosansnsas Geecstecciatioctanoaas 3-1

Punctuation Charactersuieeieeeeeeeenonenereneennnanananns 3-1

Ignored Characters v vuveveeeiereeeneeneeneneeeeneeeennoneanenns 3-2

Illegal Charactersiiiiiniiieiieneeeeereecasaesassnaeannnns 3-2

Elements ...ooviiiieinnnnnnsns ceeienn Geeetececscessasessanntasnns 3-2

NUMbBEr +etiettettnieieernesoesanesoessssosssrosssossacasnns 3-2

Symbol cheeeeiteneetannns ceeeseseas et eie e 3-3

Parameter Assignmentst inn ittt it ittt 3-3

Symbol Definition . ..ceeeeerieieiiintineeenreneeneeeneennnennenns 3-4

EXPressionseuiiiiiiiiiiiiitiiiii it ittt ittt 3-5

Current Address Indicatorciiiiinniiiiiiiiii ittt 3-8

COMMENTS | 4iuiueeineneoaneerasesososscsosssssseseesscssonsnnens 3-9
Pseudo=Instructionscouiuiiiiiiiiii ittt 3-9

4 PROGRAM PREPARATION AND ASSEMBLER OUTPUTccivivvnnennn. 4-1
Program Tape . ..icieiiiiiiii ittt itiesennsnocanananeenennanennnns 4-1

5 OPERATING INSTRUCTIONS ittt ittt iee i et tieieenrnneenaennenns 5-1
SUMMANY 1ttt ittt ittt e tneeneneeneaneneonennensnscnsnnens 5-2

6 SYMBOL TABLE ALTERATION ...ttt iiiiien it eiiiinnnnns 6-1

Appendix

CONTENTS (continued)

vi

CHAPTER 1

INTRODUCTION

The use of an assembly program has become standard practice in the programming of digital computers.

Use of an assembler permits a programmer to code in a more convenient language than basic machine code.
The advantages of this practice are widely recognized: Easily recognized mnemonic codes are used in-
stead of numeric codes; instructions or data may be referred to by a symbolic name; decimal data may be
used as such with the assembler making the required decimal-to-binary conversion; programs may be al-

tered without extensive changes in the source language; and debugging is simplified.

The basic process performed by the Assembler is the substitution of numeric values for symbols, according
to associations found in the symbol table. In addition, the user may request that the Assembler itself as-
sign values to the user's own symbols at assembly time. These symbols are normally used to name memory

locations, which may then be referenced by name.

The ability to use mnemonic names to represent machine instructions is of great value. The name TAD re-
minds the user of the Two's complement ADdition instruction, while the number 190@ does not. Conse-
quently, the instructions are easier to remember when mnemonics are used. The same is true of location
names. |t is much easier to associate the name TOTAL with the location containing the accumulated

total than it is to remember that location 1374 contains the total.

Another advantage is that, since the assignment of absolute numbers to symbolic locations is done by the

Assembler, the updating of a program by adding or removing instructions is simplified.

In addition to translating statements directly into their binary equivalents, the Assembler will accept in-
structions for performing translations. These instructions may not look different from other instructions,
but they do not generate binary codes. For this reason, they are referred to as pseudo-instructions. For
example, the pseudo-instruction DECIMAL tells the Assembler that all numbers following in the program
are to be taken as decimal rather than as octal. This instruction is important to the assembly process but
has no binary equivalent in the object program. Certain other features of assembly can be directed to the

Assembler by the setting of the switch register, abbreviated SR.

The PDP-8 Assembly system consists of the Assembler (PAL 111) and the Binary Loader (Digital-8-2-U). A
source program prepared in the source language using ASCII code is translated by the Assembler into a
binary object tape in two passes through the Assembler. The object binary tape is loaded by the Binary

Loader into the computer ready for execution.

1-1

During the first pass of the assembly, all symbols are defined and placed in the Assembler's symbol table.
During the second pass, the binary equivalents of the input source language are generated and punched.
The Assembler has an optional third pass, which produces an "assembly listing, " or a listing with the lo-

cation, generated binary, and source code side by side on a line.

The PDP-8 Assembly system also includes the Symbolic Tape Editor (Digital-8-1-S) for altering or editing
the source language tape; the DEC Debugging Tape (DDT-8, Digital-8-4-5) for debugging the object
program by communicating with it in the source language, and various other utility programs such as

dumps, etc.

The Assembler requires a basic PDP-8 system consisting of the 33 ASR Tape Reader and Punch and a 4K core
memory. The Assembler can use either the 750C Photo-Electric Reader, the 75E High-Speed Punch, or
both. The basic Assembler allows 590 user symbols when using the 33 ASR and allows 495 user symbols
when using the photoelectric reader. The Extended Assembler contains additional symbols for all optional

devices. This symbol list is to be found in the Appendix.

CHAPTER 2

ILLUSTRATIONS OF PDP-8 ASSEMBLER FEATURES

THE LOCATION COUNTER

In general, statements generate 12-bit binary words which are placed into consecutive memory locations
when the object tape is loaded. The location counter is a register used by the PDP-8 Assembler to keep
track of the next memory location available. It is updated after processing each statement. The location
counter may be explicitly set by an element or expression preceded by an asterisk. The element or ex-
pression following the asterisk sets the current location counter to the value of that element or expression.

Subsequent instructions are assembled into subsequent locations.

Example:

* 300

The next instruction would be placed in location 3g@. The location counter is initially set to @200,

CODING ILLUSTRATIONS

To illustrate some of the features of the PDP-8 Assembler, a small routine has been chosen and coded in
a number of different ways. The routine continually adds 1 to the contents of a location until the result
is positive, then halts. The instructions used are represented as their octal codes (more compact than the
binary actually used). The number being incremented is in location 17@. The notation C(A) means the

contents of location A.

W /C(178) INTO AC

1 700 /ADD 1 TO AC

92 57 /STORE IN LOCATION 178

B g /FETCH C(170)

g g /SKIP ON POSITIVE AC, CLEAR AC

5 s /JUMP TO LOCATION 108

g6 JHALT

REC /WILL CONTAIN NUMBER TO BE INCREMENTED

Since the location counter is automatically incremented, specifying sequential addresses could have been
avoided after the first address in the progression. In addition, the names of the PDP-8 instructions could
have been used in place of the octal codes. The octal representation of these instructions is substituted
by the Assembler whenever symbols appear in the program.

2-1

Example 2:
190

TAD 17¢
IAC

BCA 170
TAD 170
SPA CLA
JMP 1090
HLT

*17
o

The same program could have been written using symbolic address tags. The comma after the symbol A
indicates to the Assembler that the location in which it places the instruction TAD B is to be named A.
Information associating the symbol A with the number of actual locations is placed in the Assembler's sym-
bol table. Consequently, when processing the instruction JMP A, the Assembler finds the symbols JMP

and A in the symbol table and uses these values to form the binary equivalent of the instruction JMP A.

Example 3:

*100

A, TAD B
IAC
DCA B
TAD B
SPA CLA
JMP A
HLT

*17¢

B, g

Unless the user specifically wanted to use location 17¢ for storage, he could let the Assembler assign the

location.

Example 4:

190

A, TAD B
IAC
DCA B
TAD B
SPA CLA
JMP A
HLT

B, g

2-2

CHAPTER 3

THE SOURCE LANGUAGE

This chapter explains the featuresofthe ASCII source language available to the user of PAL I11.

THE CHARACTER SET

Letters

ABCDE..XYZ

Digits

1234567894

Punctuation Characters

Since a number of characters are invisible (i.e. nonprinting), the following notation is used to represent

them in the examples:

L space
— tab
) carriage return

The following characters are used to specify operations to be performed upon symbols or numbers:

Character Use
— space combine symbols or numbers
+ plus combine symbols or numbers
- minus combine symbols or numbers
) carriage retfurn terminate line
— tab combine symbols or numbers or format the
source fape
, comma assign symbolic address
= equals define parameters
* asterisk set current location counter
; semicolon terminate coding line
$ dollar sign terminate pass

3-1

point has value equal to current location counter

/ slash indicates start of a comment

Ignored Characters

form feed end of a logical page of a source program (See Symbolic Editor 8-1-5)
blank tape used for leader/trailer

rubouts used for deleting characters

code 200 used for leader/trailer

line feed follows carriage return

Illegal Characters

All other characters are illegal and cause the lllegal Character error printout: 1C dddd AT dddd during
PASS1. The first number is the value of the offending character, and the second is the value of the cur-

rent location counter where it occurred. lllegal characters are ignored.

ELEMENTS

. . 12,
Any group of letters, digits, and punctuation which represents binary values less than 2 7 is an element.

Number

Any sequence of numbers delimited by punctuation characters forms a number.

Example:

1
12
4372

The radix control pseudo-instructions indicate to the Assembler the radix to be used in number interpreta-
tion. The pseudo-instruction DECIMAL indicates that all numbers are to be interpreted as decimal until

the next occurrence of the pseudo-instruction OCTAL.

The pseudo-instruction OCTAL indicates that all numbers are to be interpreted as octal until the next oc-
currence of the pseudo-instruction DECIMAL. The radix is initially set to octal and remains octal unless

otherwise specified.

3-2

Symbol

Any sequence of letters and digits beginning with a letter and delimited by punctuation characters is a
symbol. Although a symbol may be any length, only the first six characters are considered, and any ad-
ditional characters are ignored; symbols which are identical in their first six characters are considered

identical.

The Assembler has in its permanent symbol table definitions of the symbols for all PDP-8 operation codes,
operate commands, and many 1OT commands (see the Appendix for a complete list). These may be used

without prior definition by the user.

Examples:
JMS is a symbol whose value of 490 is taken from the operation code
definitions.
A is a user-created symbol. When used as a symbolic address tag,

its value is the address of the instruction it tags. This value is
assigned by the Assembler.

PARAMETER ASSIGNMENTS

A parameter may be assigned by use of the equal sign. The symbol to the left of the equal sign is assigned
the value of the expression on the right.
Examples:

A=6
EXIT=RETURN=JMP | ¢

Symbols defined by use of the equal sign may be used in any valid expression.

Example:

A=100

B=40¢

A+B has the value 500
TAD A has the value 1190

If the expression to the left of the equal sign has already been defined, the ReDefinition diagnostic:
RD XXXXXX AT dddd

Will be typed where XXXXXX is the symbol's name and dddd is the contents of the current location

counter at the point of redefinition. The new value will be stored in the symbol table.

Example:

100
CLA=7600

will cause the diagnostic:

RD CLA AT 200

Whenever CLA is used after this point, it will have the value 7600.

SYMBOL DEFINITION

A symbol may be defined by the user in one of two ways

(1) by use of parameter assignment

Example:
DISMIS=JMP | @
and (2) by use of the comma

When a symbol is terminated by a comma, it is assigned a value equal to the current location counter.

If it is defined more than once in this manner, the Assembler will type the duplicate tag diagnostic:
DT XXXXXX AT dddd

where XXXXXX is the symbol, and dddd is the current location counter at the second occurrence of the

attempted symbol definition. The symbol is not redefined.

Example:
* 300
START, TAD A

DCA COUNTER

CONTIN, JMS LEAVE
JMP START

A, -74
COUNTER, 7]

START, CLA CLL

The symbol "START" would have a value of @3@0, the symbol "CONTIN" would have a value of #3092,
the symbol "A" would have a value of @304, the symbol "COUNTER" (considered by the Assembler to be
COUNTE) would have a value of @3@5, and when the Assembler processed the next line, it would type
during PASS1:

3-4

DT START AT @3¢6

Since the first PASS of PAL 11l is used to define all symbols in the symbol table, the Assembler will type
a diagnostic if, at the end of PASS1, there are any symbols remaining undefined. For example:
*717¢
A, TAD C
CLA CMA

HLT
JMP Al

c, ¢
$
would produce the Undefined Address diagnostic:

UA XXXXXX AT dddd

where XXXXXX is the symbol and dddd is the location at which it was first seen. The entire symbol table
is printed at the end of PASST. In the case of the above example, this would be:

A 7178
UA Al AT 7173
C 7174

If, during PASS1, PAL Ill detects that its symbol table is full (in other words, that there is no more memory

space to store symbols and their associated values), the Symbol Table full diagnostic:

ST XXXXXX AT dddd

is typed. XXXXXX is the symbol that caused overflow, and dddd is the current location when the over-
flow occurred. The Assembler halts and may not be restarted. The source program should be segmented,

or more address arithmetic used, to reduce the number of symbols. PAL Ill's symbol capacity is:

Using 33 ASR; 655 symbols. The basic symbol table contains 65 symbols (see Appendix) leaving 59@ user-

defined symbols. Using the 750 Photo-Electric Reader; 560 symbols. The basic symbol table contains 65
symbols leaving 495 user-defined symbols.

EXPRESSIONS

Symbols and numbers are combined with certain operators to form expressions. There are three operators:

+ plus this signifies 2's complement addition
- minus this signifies 2's complement subtraction
L space space is interpreted in context. Since a PDP-8 instruction has an opera-

tion code of three bits as well as an indirect bit, a page bit, and seven
address bits, the Assembler must combine memory reference instructions

3-5

in a manner somewhat different from the way in which it combines operate
or |OT instructions. The Assembler accomplishes this by differentiating
the symbols in its permanent symbol table. The following symbols are
used as memory reference instruction op codes:

AND Juf0f1]] logical AND

TAD 1000 Two's complement ADdition
I1SZ 2000 Index and Skip if Zero
DCA 3000 Deposit and Clear Accumulator
JMS 4000 JuMp to Subroutine

JMP 5000 JuMP

FADD 1900 Floating ADDition

FSUB 2000 Floating SUBtraction

FMPY 3000 Floating MultiPlY

FDIV 4000 Floating DIVide

FGET 5000 Floating GET

FPUT 6000 Floating PUT

FNOR 7000 Floating NORmalize

FEXT Joj00]1] Floating EXiT

When the Assembler has processed one of these symbols, the space acts as an address field delimiter:

*4100
JMP A
A, CLA

A has the value 4181, JMP has the value 5000, and the space acts as a field delimiter. These symbols

are combined as follows:

LA
JMP 191 008 g @00

The seven address bits of A are taken, i.e.:

200 oo gog oo

The remaining bits of the address are tested to see if they are zero's (page zero reference); if they are not,

the current page bit is set:

gog g1 geg g

The operation code is then ORed into the expression to form:

181 g1 g om

or, written more concisely:

5301

3-6

In addition to the above outlined tests, the page bits of the address field are compared with the page bits
of the current location counter. If the page bits of the address field are nonzero and do not equal the page

bits of the current location counter, an out-of-page reference is being attempted and the Illegal Reference

diagnostic is printed on PASS2 or PASS3.

For example:

* 4100
A, CLACLL

7200
JMP A

The symbol in the address field of the jump instruction has a value of 41g@ while the current location
counter, i.e., the address where the instruction will be placed in memory, has a value of 720, This

instruction is illegal on the PDP-8 and will be flagged during PASS2 or PASS3 by the Illegal Reference

diagnostic:
IR 4198 AT 7200

The value 5388 would be assembled at location 720@.

The symbol | caused the indirect bit (bit 3) to be set in a memory reference instruction: For example:
DCA | 1g

would produce:

gu o gg g oo

or:

3419

When a space occurs in an expression that does not contain a memory reference instruction op code, it

means inclusive OR;:

For example:

CLA CLL

the symbol CLA has a value of 7200 and the symbol CLL has a value of 718@; CLA CLL would produce 730@.

User-defined symbols are treated as nonmemory reference instructions (see Pseudo-Instructions).

3-7

For example:
A=333

*222
B, CLA

Then the expressions and their values are shown below:

A+B @555
A-B a1
A_B @333
-A 7445
1-B 7557
B-1 13221
=71 7797
etc.

An expression is terminated by either a carriage-return ()) or a semicolon (;). If any information was

generated to be loaded, the current location counter is incremented.
Example:
RAR; RTR; CMA)

Produces three registers of information and the current location counter is incremented after each ex-

pression. The statement:

HALT=HLT CLA)

produces no information to be loaded (it produces an association in the Assembler's symbol table) and

hence does not increment the current location counter.

*4721
TEMP,)
TEMZ2, ﬂ)

The current location counter is not incremented after the line TEMP,) and hence the two symbols TEMP

and TEM2 are assigned the same value, in this case 4721.

CURRENT ADDRESS INDICATOR

The single character period (.) has, at all times, a value equal to the value of the current location counter.

It may be used as any number or symbol (except to the left of the equal sign).

Example:

* 200
JMP 42

is equivalent to JMP 202.

* 300
42400

would produce, in register 3@@, the quantity 270¢

Example:

* 2200
CALL=JMS |
27

Since the second line, CALL=JMS 1 . does notincrement the current location counter, @027 would be

placed in register 2200 and CALL would have the value of 190 110 ﬂﬁﬂz or 46ﬂﬂ8.

The properties of the character (.) have been slightly changed; so that, it now acts as a terminator.
Previously, PAL IIl would neither diagnose nor correctly assemble expressions such as: JMP. (where
there is no space between the P and the .) PAL III now treats this (JMP.) as if it were this (JMP .)

COMMENTS

A comment field is indicated by the slash (/) character. The Assembler will ignore everything from

the slash to the next carriage return.

Example:

CLA /THIS IS A COMMENT

PSEUDO-INSTRUCTIONS

There are several pseudo-instructions that are used to direct the Assembler. These are:

DECIMAL Set the current radix to decimal
OCTAL Set the current radix to octal
PAUSE Stop the Assembler. The current pass is not terminated. PAUSE must be

at the physical end of the program tape segment as the reader routines are
buffered and the buffer is emptied when PAUSE is detected. The as-
sembly is continued by depressing CONTINUE.

FIELD EXPRESSION Causes a field setting to be punched during PASS2, This is recognized by
the Extended Memory Loader (Digital-8-2A-U) and causes all subsequent
information to be loaded into the field specified by the expression., The
expression must be between § and 7, inclusive.

EXPUNGE Expunge the entire symbol table except for the pseudo-instructions.

FIXTAB Fix the current symbol table. Symbols that have been fixed are not
printed in the symbol table at the end of PASS] or PASS 3.

FIXMRI Fix memory reference instruction. This may be given only after
EXPUNGE. It tells the Assembler that the following symbol definition

is a memory reference instruction and is to be treated as described under
Expressions .

Example:

EXPUNGE

FIXMRI TAD=1@00
FIXMRI DCA=3000
CLA=7208

FIXTAB

PAUSE

When this program segment is read into the Assembler during PASS1, all symbol definitions are

deleted and the three symbols listed are added to the table.

This process is often performed to alter the Assembler's symbol table so that it contains only those

symbols that will be used. This may increase the Assembler's capacity for other user-defined symbols.

CHAPTER 4

PROGRAM PREPARATION AND ASSEMBLER OUTPUT

The source language tape (symbolic tape) is prepared in ASCII code on 8-channel punched paper tape
using an off-line Teletype or the on-line Symbolic Tape Editor (Digital-8-1-S). In general, a program

should begin with leader code which may be blank tape, code 20, or rubouts.

PROGRAM TAPE

Since the Assembler ignores certain codes, these may be used freely to produce a more readable symbolic

source tape. These codes are tab, line-feed, and form-feed.

The Assembler will also ignore extraneous spaces, carriage-return/line-feed combinations, and blank

tape.

The program body consists of statements and pseudo-instructions. The program is terminated by the dollar
sign followed by some trailer code. If the program is large, it may be segmented by use of the pseudo-
instruction PAUSE. This often facilitates the editing of the source program since each section will be

physically smaller.

The Assembler initially setsits current location counter to @2@@. Thisisreset whenever the asterisk is processed.

During PASS1, all illegal characters cause a diagnostic to be printed. The character is ignored.

The following two programs are identical:
*200
/EXAMPLE OF FORMAT
/GENERATOR
BEGIN, @/START OF PROGRAM
KCC
KSF/WAIT FOR FLAG
JMP.-1/FLAG NOT SET YET
KRB/READ IN CHARACTER
DCA CHAR
TAD CHAR
TAD MSPACE/IS IT A SPACE?
SNA CLA
HLT/YES
JMP BEGIN+2 /NO: INPUT AGAIN
CHAR, @/TEMPORARY STORAGE
MSPACE, -248/-ASCIl EQUIVALENT
/END OF EXAMPLE
$

4-1

*200
/EXAMPLE OF FORMAT

/GENERATOR
BEGIN, g /START OF PROGRAM
KCC
KSF /WAIT FOR FLAG
JMP.-1 /FLAG NOT SET YET
KRB /READ IN CHARACTER
DCA CHAR
TAD CHAR
TAD MSPACE /IS IT A SPACE?
SNA CLA
HLT /YES
JMP BEGIN+2 /NO: INPUT AGAIN
CHAR, g /TEMPORARY STORAGE
MSPACE, -24g /-ASCIl EQUIVALENT
/END OF EXAMPLE
$

Both of these programs are identical and produce the same binary code. The second, however, is easier

to read.

During PASS1, the Assembler reads the source tape and defines all symbols used. The user's symbol table
is printed (or punched) af the end of PASS1. If any symbols remain undefined, the UA diagnostic is
printed. The symbol table is printed in alphabetic order. If the program listed above were assembled,

the PASS1 output would be:

BEGIN 9200
CHAR #9213
MSPACE #9214

During PASS2, the Assembler reads the source tape and generates the binary code using the symbol table
equivalences defined during PASS1. The binary tape that is punched may be loaded by the Binary Loader
(Digital-8-2-U). This binary tape consists of leader code, an origin setting, and then data words. Every
occurrence of an asterisk experssion causes a new origin to be punched on the tape and resets the As-
sembler's current location counter. At the end of PASS2, the checksum is punched on the binary tape

and trailer code is generated. During PASS2, the Assembler may diagnose an Illegal Reference. When
using the 33 ASR Punch, the diagnostic will be both typed and punched and will be preceded and followed

by rubouts. The Binary Loader will ignore everything that has been punched on a tape between rubouts.

During PASS3, the Assembler reads the source tape and generates the code from the source statements.
The assembly listing is typed (or punched). It consists of the current location counter, the generated
code in octal, and the source statement. The symbol table is typed at the end of the pass. |f the program

listed above were assembled, the PASS3 output would be:

4-2

9200
@201
9202
2203
0204
9205
9206
9207
0219
@211
9212
9213
0214

BEGIN
CHAR

Jo[of0/1]
6932
6031
5202
6036
3213
1213
1214
7650
7492
5202
2009
754g

2200
9213

MSPACE @214

200
/EXAMPLE OF FORMAT
/GENERATOR
BEGIN, ¢
KCC
KSF
JMP.-1
KRB
DCA CHAR
TAD CHAR
TAD MSPACE
SNA CLA
HLT
JMP BEGIN+2
CHAR, @
MSPACE, -244
/END OF EXAMPLE

/START OF PROGRAM

/WAIT FOR FLAG
/FLAG NOT SET YET
/READ IN CHARACTER

/1S IT A SPACE?

/YES

/NO: INPUT AGAIN
/TEMPORARY STORAGE
/-ASCIl EQUIVALENT

CHAPTER 5

OPERATING INSTKUCTIONS

The PAL III Assembler is provided as a binary tape. This is loaded into the PDP-8 memory by means of

the Binary Loader, using either the 33 ASR Reader or the 750C Photo-Electric Reader (see Digital-8-2-U).
The Assembler will use either the 33 ASR Reader or the photo-electric reader to read the source language
tape, and it will use either the 33 ASR Punch or the 75E Punch for output. The selection of I/O devices
is made by the Assembler when it is started. The source language tape must be in the proper reader, with
the reader and punch turned on. When using the high-speed punch, the symbol table will be typed on

the 33 ASR if bit 11 of the switch register is O (down); it will be punched on the high-speed punch if bit
11 of the switch register is a 1 (up). When using the 33 ASR for symbol table output, the telepunch should
be left on, since the symbol table produced may be read by DDT (see Digital-8-4-S). All diagnostics
will be typed on the 33 ASR (except for the undefined address diagnostic when using the high-speed punch
and the bit 11 switch option). The binary tape produced during PASS2 will be punched using the 33 ASR
punch or the 75E Punch if it is included in the maching configuration and turned on. The only diagnostic
in PASS2 will be Illegal Reference. Since this is typed on the 33 ASR, it may also be punched on the
binary tape. It will, however, be ignored by the Binary Loader. The bit 11 switch option may be used
during PASS3 also. If the machine is not equipped with the 75E High-Speed Punch, bit 11 will have no
effect.

In addition to the binary tape of the Assembler, the user is provided with an ASCII tape containing
symbol definitions for the instruction sets of the available options to the PDP-8 (i.e., card readers,
magnetic tapes, A/D converters). Since there is only a finite amount of space available, expanding the
number of permanent symbols that the Assembler recognizes decreases the maximum number of symbols the
user may have available. For this reason, the ASCII Extended Definitions tape should be edited to con-
tain definitions for only those options which the user has acquired. This tape should be read into the
Assembler only on PASS1. Since it permanently fixes the symbols it contains, it should not be read again

until PAL III is reloaded.

1. Load the Assembler using either the 33 ASR Reader or the 750C Photo-Electric

reader.
2. Set P20 into the switch register; press LOAD ADDRESS.

3. Place the source language tape in the reader. Turn the reader on; turn the punch

on. Be certain that leader code is in the reader.

5-1

4. Set Bits @ and 1 of the switch register for the proper pass. These settings are:

Bit @ Bit 1
[/ 1 PASSI
1 g PASS2
] 1 PASS3

PASS1 is required so that the Assembler can initialize its symbol table and define
all user symbols. After PASS1 has been made, either PASS2 or PASS3 may be made.

5. Bit 11 switch option

During PASS1 Bit 11 =1 Punch symbol table on high-speed punch if it isin the
machine configuration.
Bit 11 =4 Type (and punch) the symbol table on the 33 ASR.
During PASS2 No effect
During PASS3 Bit 11 =1 Punch assembly listing tape, in ASCIl, on high-speed
punch.
Bit11 =0 Type assembly listing on 33 ASR.

6. Press START. The Assembler will halt at the end of each pass. Proceed from step 3.
If the Assembler has halted because of a PAUSE statement, put the next tape into the
reader and press CONTINUE.

SUMMARY

PASSI The Assembler reads the source tape, defines all user symbols, and outputs the user

symbol table in alphabetic order. PASS1 diagnostics are:
IC dddd AT xxxx Illegal Character

where dddd is the value of the illegal character and xxxx is the value of the current

location counter when the character was processed. The character is ignored.

RD XXXXXX AT dddd ReDefinition

where XXXXXX is the symbol being redefined and dddd is the value of the current

location counter at the point of redefinition. The symbol is redefined.

DT XXXXXX AT dddd Duplicate Tag

5-2

PASS2

An attempt is being made to redefine a symbol using the comma. XXXXXX is the
symbol and dddd is the value of the current location counter. The previous value of

the symbol is retained and the symbol is not redefined.

ST XXXXXX AT dddd Symbol Table full

where XXXXXX is the symbol causing the overflow and dddd is the value of the Cur-
rent Location Counter at the point of overflow. The Assembler halts and may not be

restarted.

UA XXXXXX AT dddd Undefined Address

where XXXXXX is the symbol that was used, but never defined, and dddd is the value
of the Current Location Counter when the symbol was first processed. This is typed
with the symbol table at the end of PASST. The symbol is assigned a value equal to

the highest address on the memory page where it was first used.

The Assembler reads the source tape and using the symbol table defined during PASST,
generates and punches the binary code. This binary tape may then be loaded by the
Binary Loader. The PASS2 diagnostic is:

IR dddd AT xxxx Illegal Reference

where dddd is the address being referenced and xxxx is the value of the Current

Location Counter. The illegal address is then treated as if it were on the proper mem-
ory page.
Example:

*7306
JMP 397

would produce:
IR @307 AT 73@6

and would generate 53@7 to be loaded into location 73@6.

5-3

PASS3

The Assembler reads the source tape and, using the symbol table defined during PASS]1
generates and types the code represented by the source statements. The Current Loca-
tion Counter, the contents, and the source statement are typed side by side on one
line. If bit 11 of the switch register is a 1 and the machine configuration includes
the high-speed punch, the assembly listing will be punched in ASCII. The PASS3

diagnostic is Illegal Reference.

CHAPTER 6

SYMBOL TABLE ALTERATION

PAL III contains a table of symbol definitions for the basic PDP-8 and its most common optional peripheral
devices. These are the symbols such as TAD, RFC or SPA, which do not have to be defined in every pro-
gram ., This table is considered to be PAL III's permanent symbol table. All the symbols it contains are
listed under the heading BASIC SYMBOLS in Appendix 1 of this manual. If the user had purchased one or
more of the optional devices whose instruction set is not defined among the BASIC SYMBOLS, for example,
EAE or an A/D CONVERTER, it would be desirable if he could add the necessary symbol definitions to the
permanent symbol table. This would eliminate the need for him to define these symbols in every program
he writes. The opposite case would be the user who needs more space for his symbols. He would like to be

able to delete all definitions except the ones he will actually use in his program.

For such purposes PAL III has three pseudo-instructions that may be used to alter its permanent symbol
table. These pseudo-instructions are recognized by the Assembler only during PASS1. During either

PASS2 or 3, they are ignored and have no effect.
The pseudo-instructions that alter the symbol table are:

EXPUNGE EXPUNGE the entire permanent symbol table, except for the 9 pseudo-instructions
listed in Appendix 1 under BASIC SYMBOLS.

FIXMRI Fix Memory Reference Instructions. This must be followed on the same line by
a symbol definition statement (parameter assignment) since the memory reference
instructions are constructed in the symbol immediately following the pseudo-
instructions. In other words the letters FIXMRI must be followed by one space,
the symbol for the MRI to be defined, an equal sign, and the actual value of the
symbol to the immediate left of the equal sign. The pseudo-instruction must be
repeated for each MRI to be defined. All MRI's must be defined before the
definition of any other symbol.

EXAMPLE: EXPUNGE
FIX MRT TAD = 1000
FIX MRI DCA = 3000

FIXTAB FIX the current symbol TABLE. All symbols that have been defined before the
occurance of this pseudo-instruction are made part of the permanent symbol table

and will not be printed in the symbol table at the end of PASS] or PASS3.

An actual tape to add two symbols to those already in PAL III's permanent symbol table would have punched
on it in ASCII:

CDF=6201
CIF=6202
FIXTAB
PAUSE

To use such a tape the user would:
1. Read in PAL III with the Binary Loader.
2. Set 200 in the SWITCH REGISTER and press LOAD ADDRESS.
3. Set switches for PASS1.
4. Put definitions tape (ASCII) in the proper reader.,
5. Press START.

The PAUSE pseudo-instruction at the end of the tape indicates to the Assembler that the current PASS is
not ended and another tape is to follow.
6. With switches still set to PASS1, put user's program in reader and press CONTINUE on the

console.

The next program to be assembled should not be preceded by the definitions since they are already in the

permanent symbol table and will be there until PAL III is reloaded.

After altering the symbol table to fit his needs the user might wish to keep PAL III in this state. This can

be done by punching a binary of the section of core occupied by PAL with its new symbol table.

To do this:
1. Read in PAL III and modify symbol table as desired.
2. PAL III's symbol table begins at location 23508. Count all the symbols in the altered symbol
table. Since each symbol and its value require four registers, multiply this number by 4.

Convert this number to octal and add it to 23508. This number is the upper limit of PAL III
The lower limit is 0001 .

3. Using the directions for Binary Punch Routine. (Digital-8-5-U) and the limits as stated in 2
above punch out the PAL III Assembler itself.

4. The output of the Binary Punch Routine is the Assembler with the modified Symbol Table and
may be loaded with the binary loader.

EXAMPLE: PAL III is loaded.
The following ASCII tape is read in on PASS1 ;

CDF = 6201
CIF = 6202
RDF = 6214
RIF = 6224
RMF = 6244
RIB = 6234
FIXTAB
PAUSE

The Assembler now has in its symbol table the "MEMORY EXTENSION CONTROL" symbols and
definitions. Six symbols were added and none removed. There were 84 symbols in the basic
Assembler, there are now 90 symbols which require a total of 360(10) or 5508 locations. Since
the symbol table starts at 2350, it extends to 23508 + 5508 or 31208. The Binary Punch

Routine is used to punch from OOO]8 through 31 208 and the output is the Assembler with all the

basic symbols plus memory extension symbols.

APPENDIX 1

SYMBOL LISTS

BASIC SYMBOLS

/PSEUDO INSTRUCTIONS

FIELD
EXPUNGE
FIXMRI
PAUSE
FIXTAB
DECIMAL
OCTAL
1
Z
/MEMORY REFERENCE INSTRUCTIONS /FLOATING-POINT INSTRUCTIONS
AND goog FEXT 2000
TAD 1000 FADD 100¢
ISZ 2000 FSUB 2000
DCA 3000 FMPY 3000
JMS 4000 FDIV 4000
JMP 5000 FGET 5000
FPUT 6000
FNOR 7¢0@
/PROGRAM INTERRUPT
ION 6@l
10F 6002
/HIGH-SPEED READER /TELEPRINTER/PUNCH
RSF 6011 TSF 6041
RRB 612 TCF 6042
RFC 6014 TLS 6046
TPC 6@44
/HIGH-SPEED PUNCH /GROUP 1 OPERATES
PSF 6921 NOP 7000
PCF 6022 IAC 7001
PPC 6024 RAL 7004
PLS 6026 RTL 7006
/KEYBOARD,/READER RAR 70g
KSF 631 RTR 7012
KCC 6@32 CML 7920
KRS 60134 CMA 7049
KRB 6036 CLL 7100
CLA 7200
/GROUP 2 OPERATES /COMBINED OPERATES
HLT 7492 CIA 7041
OSR 7494 LAS 7604

Al-1

SKP 7419 STL 7129

SNL 7420 GLK 7204
SZL 7430 STA 7240
SZA 7449

SNA 7450

SMA 7500

SPA 7519

/DECTAPE DUAL TRANSPORT TYPE 555 AND CONTROL TYPE 552
MMMM 6757 MMSF 6761
MMMF 6756 MMCF 6772
MMML 6766 MMSC 6771
MMLS 6751 MMRS 6774
MMLM 6752 MMCC 6762
MMLF 6754 MMLC 6764
/DECTAPE TRANSPORT TYPE TU55 AND CONTROL TYPE TCA
DTRA 6761 DTSF 6771
DTCA 6762 DTRB 6772
DIXA 6764 DTLB 6774
/MEMORY PARITY TYPE 188

SMP 6101

CMP 61g4

EXTENDED SYMBOLS

/PDP -5 EAE SYMBOLS 153*

CAM 6181 \yA®) 6114
LMQ 6192 DIV 6121
LAR 6194 RDM 6122
MUL 6111 SAF 6124
RDA 6112

/PDP-8 EAE SYMBOLS 182

MUY 7495 ASR 7415
DVI 7407 LSR 7417
NMI 7411 MQL 7421
SHL 7413 SCA 7441
MQA 7501 CAM 7621
/MEMORY EXTENSION CONTROL TYPE 183

CDF 6201 RIF 6224
CIF 6202 RMF 6244
RDF 6214 RIB 6234
/AUTO RESTART TYPE KR@1

SPL = 6102

* PDP-5 EAE symbol definitions do not appear on the actual tape due to a conflict in the CAM

instructions of PDP-5 and PDP-8. PDP-8 EAE symbols should be deleted if those for PDP-5 are
inserted in the extended symbols tape .

/AD CONVERTER TYPE 189

ADC 60904

/AD CONVERTER/MULTIPLEXER 138E/139E

ADSF 6531 ADCC
ADCV 6532 ADSC
ADRB 6534 ADIC

/OSCILLOSCOPE DISPLAY TYPE 34D

DCX 6051 DYL
DXL 6053 DIX
DCY 6061 DIY
DXS 6057 DYS

/SCOPE TYPE 30N
DLB 60974

/LIGHT PEN TYPE 370
DSF 6071 DCF

/PLOTTER AND CONTROL TYPE 35@B

PLSF 6501 PLCF
PLPU 6504 PLPR

PLPU 6512 PLDD
PLPL 6521 PLUD
PLPD 6524

/CARD READER AND CONTROL TYPE CRZ1C

RCSF 6631 RCSP
RCRA 6632 RCSE
RCRB 6634 RCRD

/CARD READER TYPE 451

CRSF 6632 CERS
CRRB 6671 CRSA
CRSB 6674

/CARD PUNCH AND CONTROL TYPE 450

CPSF 6631 CPSE
CPLB
CPCF 6641 /CERS

/LINE PRINTER TYPE 645

LCF 6652 LPR
LSF 6661 LCB
LLB 6664

6541
6542
6544

6063
6054
6064
6067

60972

6502
6511
6514
6522

6671
6671
6674

6634 /also services card punch 450
6672

6642
6644

as appears under card reader 451

6655
6662

/SERIAL DRUM 25@ AND 251

DRCR 6603 DRCW 6605
DRCF 6611 DREF 6612
DRTS 6615 DRSE 6621
DRSC 6622 DRCN 6624

/MAGNETIC TAPE TYPE 57A

MSCR 6701 MCD 6792
MTS 6706 MSUR 6711
MNC 6712 MTC 6716
MSWF 6721 MDWF 6722
MCWF 6722 MEWF 6722
MIWF 6722 MSEF 6731
MDEF 6732 MCED 6732
MEEF 6732 MIEF 6732
MTRS 6734 MCC 6741
MRWC 6742 MRCA 6744
MCA 6745

/MAGNETIC TAPE TYPE 580

TSRD 6715 TIFM 6797
TSWR 6716 TSDF 6721
TSSR 6722 TSST 6724
TWRT 6731 TCPI 6732
TSRS 6734

/EIGHT CHANNEL SAMPLE AND HOLD CONTROL TYPE ACH1A

/OPTION TO TYPE 139E MULTIPLEXOR

HSC 6571
HAC 6572
SAC 6574

/DATA COMMUNICATION SYSTEMS TYPE 630

TTINCR 6441 TTRL 6414
TTI 6402 TTSKP 6421
T10 6494 TTXON 6422
TTCL 6411 TTXOF 6424
TTSL 6412

Al-4

APPENDIX 2

ASCIl CHARACTER SET

A 3N 1] 260
B 302 1 261

C 303 2 262
D 304 3 263
E 3¢5 4 264
F 306 5 265

G 397 6 266
H 318 7 267
I 311 8 27¢
J 312 9 271

K 313 $ 244
L 314 * 252
M 315 + 253
N 316 , 254
®) 317 - 255
P 320 . 256
Q 321 / 257
R 322 ; 273
S 323 = 275

T 324 Space 249
u 325 Tab 211

\ 326 Line Feed 212

w 327 Form Feed 214
X 33¢ Carriage-Return 215

Y 331 Rubout 377
Z 332 Leader/Trailer 20@*

*Code 20# may be used as leader/trailer. It is generated by depressing:
Shift, CTRL, Repeat, @

Release the keys in reverse order.

A2-1

NOTE 1: PAL Il does not require the presence of Channel 8. Thus, 141 is con-
sidered equivalent to 3@1. This is useful if the paper tape is prepared on a Teletype

that punches parity.

NOTE 2: All other characters are valid within comments.

dlilglitlall

EQUIPMENT
CORPORATION

MAYNARD, MASSACHUSETTS

PRINTED IN U.S.A.

