
DIGITAL EQUIPMENT CORPORATION. MAYNARD, MASSACHUSETTS

DEC-08-CMAA-D

PDP-8 PROGRAMMING MANUAL

MACRO-8

February 1966

DIGITAL EQUIPMENT CORPORATION • MAYNARD, MASSACHUSETTS

Copyright 1965 by Di'gital Equipment Corporation

II

Reprinted October 1966
Reprinted November 1967

PREFACE

The PDP-8 comes to the user complete with an extensive selection of system programs

and routines making the full data processing capability of the new computer immedi­

ately available to each user, eliminating many commonly experienced initial program­

ming delays.

The PDP-8 programming system takes advantage of the many man-years of program

development and field testing by PDP-5 users. Although in many cases PDP-8 programs

originated as PDP-5 programs, all utility and functional program documentation is issued

in anew, recursive format introduced with the PDP-8. Programs written by users of

either the PDP-5 or the PDP-8 and submitted to the users' library (DECUS - Digital

Equipment Corporation Users' Society) are immediately available to PDP-8 users. Con­

sequently, users of either computer can take immediate advantage of the continuing

program developments for the other.

The MACRO-8 Manual is divided into two parts: Basic Information and the MACRO

Language. Part 1 is especially for the new user, while those experienced with assembly

programs will want to start with Part 2.

iii

CONTENTS

PART 1

BASIC INFORMATION

Chapter Page

2

3

4

5

INTRODUCTION... 1-1

THE BI NARY SYSTEM••..•...................•................ 2-1

THE PDP-8 INSTRUCTION SET .. . 3-1

Instructions•...•.......•...•.•..•.•........................ 3-1

Memory Reference Instructions•.....................•....... 3-1

Augmented Instructions••.•........•................ 3-3

The Organization of Memory•.•..•.••...•.•••...•..•......... 3-6

Complement Arithmetic.• . 3-8

Addition•...............•...........•......•.•... 3-9

Subtraction••.......•..........•..••......•........ 3-9

ORGANIZATION•..•.•.•..••.........•................•........ 4-1

Coding••....•.........•....•......•......... 4-2

Comments••...••.•....................................... 4-4

Address Tags•..•...•....•...•............•..................... 4-5

Symbolic Addressing••••....••..•....•.•................. 4-6

Storage Techniques••••...••..•..••.••.••...................... 4-6

Optimum Use•..•.•.•........•..•....•.....•........ 4-7

Subroutines••.••••......•.•.•.•..•.•.....••.•...... 4-9

PART 2

THE MACRO LANGUAGE

MACRO-8 PROGRAMMING LANGUAGE

Characters•...••..•...•.....••....•.•...•..•.••••••••••...

5-1

5-2

Elements•.••..••.. "•.•. . .•.•.••..•. 5-5

Integers

Symbols

5-5

5-5

Expressions•..................................... 5-7

v

Chapter

5 (cont)

6

7

8

9

Appendix

CONTENTS (continued)

Current Address Indicator•....•....•..•..•................. 5-10

Origin Setting... 5-10

Literals •.........•..•........•...........•.................... 5-11

Single Character Text Facility•.......................•.... 5-12

PSEUDO-INSTRUCTIONS•..••........................•...

Current Location Counter ...•......•.......•.....................•...

6-1

6-1

Extended Memory•.....•.•......................•..........• 6-1

Radix Control •........................•.........•...•.............. 6-2

Numbers•.......................................•.....•...... 6-2

Double Precision Integers ..•........•.....•..•..............•.... 6-2

Floating Point Constants. 6-3

Text Facility•......•................•............ 6-3

End of Program•.•.•............•..........................• 6-4

End of Tape ...•..•..••.•.•....•......•.....•...................... 6-4

Alterations to the Symbol Table•............... 6-4

MACROS .. . 7-1

Restrictions. • . . . • . • • • 7-2

ERROR DIAGNOSTICS•....•.•........•...............•.••. 8-1

Error Messages .•....••......•....•..•.•.•.......................... 8-1

OPERATING INSTRUCTIONS

Symbol Table Modification•.•.....••.•..•..........•..•......••.

9-1

9-4

1 MACRO-8 SYMBOL TABLE.. A1-1

2 ASCII CHARACTER SET•.....••...•.•..............•..•............ A2-1

vi

3-1

3-2

3-3

3-4

4-1

4-2

Table

2-1

3-1

3-2

3-3

3-4

3-5

9-1

ILLUSTRATIONS

Memory Reference Instruction Format

lOT Instruction Format•..............•.•.....•••.••...•............

Group 1 Operate Microinstruction Format

Group 2 Operate Microinstruction Format ...••.•••.•••••••.•.•••......•..•.

Flow Chart of Program to Calculate Sum of Integers •••.•..•......•.•.•••.•..

Program Example••••...•..•.••.••••...••••••.••••.....•...•...

TABLES

First Sixteen Integers in Three Number Systems •.••••..••..•.••....•...•.••.

Memory Reference Instructions ••..•...•••.••••••••••••••..•..•..•.••.•••.

Group 1 Operating Microinstructions .•...•••••••••••••••.•••.•.•••..•.•••.

Group 2 Operating Microinstructions •••....•••..•••••••.••••••••••••...•••

Effective Address Calculation ••..•.•....•...••.•..••.••..•..•....••..•.••

One's and Two's Complement Representations .•...•••••••.•...••.•.•.•.•.•..

Switch Options•...

vii

Page

3-2

3-3

3-4

3-5

4-1

4-9

2-1

3-2

3-4

3-6

3-7

3-8

9-2

PART 1

BASIC INFORMATION

CHAPTER 1

INTRODUCTION

In describing the solution of the following equation,

y=mx+b

one can say, "First, multiply the quantity x by m. To this product, add the quantity b. The result is the

value of y."

The same problem can be solved on an adding machine in the following steps:

1. Clear the keyboard and registers.

2. Enter the value of m and press the ADD key.

3. Enter the value of x and press the keys which initiate the multiplication.

4. Enter the value of b and press the ADD key. The result, appearing in the totalizing register,

is the value of y.

This sequence of steps can be thought of as a program for the solution of the problem on an adding machine.

In similar fashion, the steps can be written out for a solution to be performed by a digital computer. In­

stead of pressing buttons and keys, the programmer writes a sequence of instructions to perform operations

on data stored in the computer. Such a sequence (for a hypothetical computer) might appear as follows:

clear
add m
multiply x
add b
deposit y

The variables m, x, and b represent quantities stored in the computer; the variable y represents a storage

register. The operations are carried out in a register called the accumulator, abbreviated AC. The first

instruction clears the AC. The next adds the quantity m into the AC. The third instruction multiplies

the contents of the AC by the quantity x, and the fourth adds the quantity b to the result. Finally, the

contents of the AC are deposited into a storage register designated by the symbol y.

To be useful to a computer, the instructions of a written program must be translated into a sequence of

numeric codes, each of which represents a specific computer operation. To do such translating by hand

1-1

from instructions to binary numbers would be tedious l:lnd lengthy. Computer programs have been written

to perform the translating task, interpreting the writtl::!n program and producing from it a second program

which can be executed directly by the computer. These translators are called assemblers because they

assemble from a source program written by the user, CI working program instruction by instruction. This

output from the assembler is called an object, or binary program.

MACRO-S is an assembler designed to accept input in the form of a sequence of symbolic instructions

representing the operations capable of being executed on the PDP-8. It produces a binary program tape

which may then be placed in the computer and executed. The next chapter explains a few basics of the

binary numbering system; succeeding chapters deal in more detai I with the MACRO-S assembly program.

1-2

CHAPTER 2

THE BINARY SYSTEM

Every item of information stored in or processed by a digital computer is encoded as a binary number.

Consequently, the user should become fami liar with the binary system and be able to convert numbers

from binary to decimal representation and back, usi:ng the octal system as an intermediate. Eventually,

as the programmer gains more experience, he will find himself using the decimal system less and "thinking

in octal" more. This is a useful habit to cultivate.

Table 2-1 gives the first 16 integers (and 0) as they are represented in the decimal, binary, and octal

number systems. Note that in the decimal system there are ten different symbols, or digits, 0-9 which are

used to represent any number. In the binary system there are two, 0 and 1; in the octal system, eight,

0-7. The number of digits required in a given system is called the radix. Therefore, the decimal radix

is 10; the octal radix is 8, and the binary radix is 2. A subscript is used to identify the radix of the sys­

tem in which the number is represented. Thus, 4196 10 indicates a decimal number, 25478 an octal number,

and 110101 2 a binary number.

TABLE 2-1 FIRST SIXTEEN INTEGERS IN THREE NUMBER SYSTEMS

Decimal Octal Binary Decimal Octal Binary

0 0 000 9 11 1001
1 1 001 10 12 1010
2 2 010 11 13 1011
3 3 011 12 14 1100
4 4 100 13 15 1101
5 5 101 14 16 1110
6 6 110 15 17 1111
7 7 111 16 20 10000
8 10 1000

All numbering systems using radices involve positional notation; that is, each successive digit position to

the left represents the next higher power of the radix. For example, the decimal number 419610 may be

expressed algebraically as

2-1

which when calculated becomes

4 x 1000 + 1 x 1 00 + 9 x 10 + 6 x 1 = 41961 0 •

Positionally, this appears as

103 102 101 100 (Positioned radix)

1000 100 10 1 (Radix to its respective powers)

4 9 6 (Units required of each value)

Likewise, the octo l number 25478 can be expressed as 2 x 83 + 5 x 82 + 4 x 81 + 7 x 80 •

In all systems the integral and fractional parts of a number are separated by a radix point. Depending on

the system in use, this may be a decimal point, octal point, or binary point.

As can be seen from the table, four binary digit positions are required to represent the decimal integers

up to 9. The octal integers up to 7 require only three binary positions; furthermore, exactly three positions

are needed. In other words, three binary digit positions are necessary and sufficient to represent the eight

octal digits. This fact makes binary-to-octal and octal-to-binary conversions quite simple.

Example: Binary-to-Octal Conversion

The binary integer

1011100110102

can be converted to its octal equivalent as follows:

1. Divide the binary digits into groups of three, starting from the right

101 110011 010

2. Substitute for each group its octal equivalent

5 6 3 2

3. The result is the octal number

To perform the reverse conversion, substitute the binary eql,.livalent of each octal digit

4 7 5 1
4751 8 = 100 III 101 001 = 100111101001 2

2-2

To convert an octal fraction, group by threes in each direction away from the radix point

1110101.010001 2 = 1110101 .01001(0) = 165.228

2243.5578 =010010100011.101 '101111 =010010100011.101101111 2

Example: Decimal-to-Binary Conversion

The "remainder method" may be used to convert a decimal number to a binary number. The decimal

number

may be converted as follows:

1
2)2
2)5

2)11
2)23
2)"46
2)92

2)i85
2f37T
2)742

2) 1485
(binary radix)--+2) 297010

1
o
1
1
1
o
o
1
1
o
1
o~ (remainders)

~ 1011100110102

Notice that this method simply involves halving the number to be converted and noting the remainder after

each division.

Example: Decimal-to-Octal Conversion

The remainder method may also be used for octal conversions. The decimal number

wou Id be converted as fo Ilows:

o
8)5

8)"46
8)37'l

(octal radix)--+8) 297010

2-3

5
6
3
2~(remainders)

~

In one sense, the conversion of a number from one representation to another is a way of encoding the

number; the octal integer 778 can be encoded as the binary integer 111111. Simi larly, one can assign

a binary code to any symbol, such as a letter of th~ alphabet. The table in Appendix B shows the binary

codes assigned to all the characters of the Model ASR-33 Teletypewriter.

A programmer may invent a symbolic name to refer to the location of a given word in the computer mem­

ory. These symbolic names, or tags, are assembled together with the instruction mnemonic into a binary

number which indicates the memory location of the word, the instruction code, and the address of the

data.

The association of binary code and symbol is the basis of a programming language. A programmer learns

the symbols for the computer's repertoire of operations and the rules for arranging a sequence of symbolic

instructions in a useful format. He prepares a symbolic program for input on a medium such as punched

paper tape. An assembly program accepts this source program input and translates it into an equivalent

sequence of binary numbers, producing a program which is usable directly by the computer by placing it

on an output medium, which again may be punched tape. This binary, or object program tape may then

be read into the computer and executed.

2-4

CHAPTER 3

THE PDP-8 INSTRUCTION SET

INSTRUCTIONS

Every PDP-8 operation is specified by a unique combination of l's and O's stored in the twelve bits of one

memory register. Such an instruction word can be one of two types: memory reference instructions per­

form operations which require access to the information stored in a memory register; augmented instructions

do not refer to memory cells.

The operation code of an instruction is contained in bits 0, 1, and 2 of the word. Since three binary digits

correspond to one octal digit, it is apparent that there can be no more than eight operation codes, corre­

sponding to the octal di gits 0-7. Codes 0-5 are reserved for memory reference instructions. Operation

codes 6 and 7 are for augmented instructions. These two types of instructions are defined, and the instruc­

tions described, in the following sections.

The following special symbols are used in the instruction lists below.

Symbol

C(A)

C(A) ~ C(B)

Y

Yj

Yl -4

C(AO_5) ~ C(Y 6-11)

V

/\

C(A)

Definition

The contents of register A

The contents of register A replace the contents of
regi ster B

The address or location of any memory register

The jth bit of register Y

Bits 1-4, inclusive, of register Y

The contents of bits 0-5 of register A replace the con­
tents of bits 6-11 of register Y. The contents of A are
not affected.

Inclusive OR

AND (Boolecm)

The l's complement of the contents of register A

Memory Reference Instructions

Word format of memory reference instructions is shown in Figure 3-1, and the instructions are explained

in Table 3-1.

3-1

Mnemonic
Symbol

ANDY

TAD Y

ISZ Y

DCAY

I 0

Octal
Code

o

2

3

OPERATION MEMORY
CODES 0-5 PAGE . ,---A---,

, I 2 I 3 I 4 I 5 I 6 7 I 8 I 9 I '0
" I

'---y---i '--

,ND'RECT ADDRESS
ADDRESS'NG

Figure 3-1 Memory Reference Instruction Format

TABLE 3-1 MEMORY REFERENCE INSTRUCTIONS

Time
(f-lsec)

3.0

3.0

3.0

3.0

Operation

Logical AND. The AND operation is performed between
the C(Y) and the C(AC). The result is left in the AC,
and the ori gi na I C(AC) are lost. The C(Y) are unchanged.
Corresponding bits are compared independently. This in­
struction, often called extract or mask, can be considered
as a bit-by-bit multiplication. C(Y.) 1\ C(AC.) => C(AC.)

I I I

Example

C(AC.) original
I

C(Y.)
I

C(AC.) final
I

0 0 0
0 1 0

0 0

Two's complement add. The C(y) are added to the C(AC)
in 2's complement arithmetic. The result is left in the AC
and the ori gi na I C(AC) are lost. The C(Y) are unchanged.
If there is a carry from ACO' the link is complemented.
This feature is useful in multiple precision arithmetic.
C(Y) + C(AC) => C(AC)

Index and skip if zero. The C(y) are incremented by one
in 2 1s complement arithmetic. If ·he resultant C(y) = 0,
the next instruction is skipped. If the resultant C(Y) f 0,
the program proceeds to the next instruction. The C(AC)
are IJnaffected.
C(y) + 1 => C(y)
If resu I t = 0, C(PC) + 1 => C(PC)

Deposit and clear AC. The C(AC) are deposited in core
memory location Y and the AC is then cleared.
The previous C(Y) are lost.
C(AC) => C(Y), then 0 => C(AC)

:3-2

TABLE 3-1 MEMORY REFERENCE INSTRUCTIONS (continued)

Mnemonic
Symbol

JMS Y

JMPY

Octat
Code

4

5

Time
(fJsec)

3.0

1.5

Operation

Jump to subroutine. The C(PC} are deposited in core mem­
ory location Y. The next instruction is taken from location
Y+1.
C(PC} + 1 => C(y)
Y + 1 ~ C(PC}

Jump to Y. The next instruction is taken from core mem­
ory location Y.
Y ~ C(PC)

Augmented Instructions

There are two classes of augmented instructions, or instructions which do not reference core memory.

They are the input-output transfer (lOT) which has an operation code of 6, and the operate (OPR), which

has an operation code of 7. Bits 3 through 11 within these instructions function as an extension of the

operation code and can be microprogrammed to perform several operations with one instruction. Augmented

instructions are 1-cycle instructions requiring 1.5 fJsec for execution.

Input-Output Transfer Instruction

Microinstructions of the input-output transfer (lOT) instruction effect information transfers between the

arithmetic and control element and an input-output device via the input-output control element. The

format of the lOT instruction is shown in Figure 3-2" Bits 3 through 8 are used to select the I/o device;

and bits 9 through 11 enable generation of I/o pulses during event times 4, 2, and 1, respectively.

Operations performed by lOT microinstructions are explained in Chapter 4 of the PDP-8 Users Handbook.

OPERATION
CODE 6 .

0 I I 2

,

I 3 I 4 I 5 I 6

,
DEVICE

SELECTION

I 7 I 8

GENERATES GENERATES
AN lOP 4 AN lOP 1

PULSE AT PULSE AT
EVENT TIME 3 EVENT TlME1

IF A 1 IF A 1
,.--J--, ,....-'--,

'---y--J
GENERATES

AN lOP 2
PULSE AT

EVENT TIME 2
IF A 1

Fi gure 3-2 lOT I nstructi on Format

3-3

Operate Instruction

The operate instruction consists of two groups of microinstructions. Group 1 is principally for clear,

complement, rotate, and increment operations and is designated by the presence of a 0 in bit 3. Group 2

is used principally for checking the contents of the c)ccumulator and link and continuing to or skipping the

next instruction based on the check. A 1 in bit 3 and a 0 in bit 11 designate a Group 2 microinstruction.

Group 1 operate microinstruction format is shown in Figure 3-3, and the microinstructions are listed in the

table below. Any logical combination of bits within this group can be combined into one microinstruction.

For example, it is possible to assign 1'5 to bits 5, 6, and 11; but it is not logical to assign 1'5 to bit 8 and

9 simultaneously since they specify conflicting operations. If RAL, RAR, RTL, or RTR is specified, lAC

may not be specified, and conversely.

Mnemonic
Symbol

CLA

CLL

CMA

CML

RAR

OPERATION
CODE 7 . CLA

r-'-----l

'----v--'
CONTAINS

A 0 TO
SPECIFY
GROUP'

CMA
,--A--,

CML

ROTATE 1
ROTATE POSITION IF A 0,

AC AND L 2 POSITIONS
RIGHT IF A 1

,--A--, ~

'--t---'
ROTATE

AC AND L
LEFT

Figure 3-3 Group 1 Operate Microinstruction Format

TABLE 3-2 GROUP 1 OPERATE MICROINSTRUCTIONS

Octal
Code

7200

7100

7040

7020

7010

Event
Time

2

Clear AC.
0=> C(AC)

Clear L.
0=> C(L)

Operation

Complement AC. The C(AC) are set to the l's com­
plement of C(AC).
C(AC) => C(AC)

Complement L.
C([) => C(L)

Rotate AC and L ri ght. The C(AC) and the C(L) are
rotated right one place.
C(AC.) ;> C(AC. + 1)
C(AC I);> C(L)'
C(L) =b! C(ACO)

3--4

Mnemonic
Symbol

RAL

RTR

RTL

lAC

NOP

TABLE 3-2 GROUP 1 OPERATE MICROINSTRUCTIONS (continued)

Octcil
Code

7004

7012

7006

7001

7000

Event
Time

2

2

2

2

Operation

Rotate AC and L left. The C(AC) and the C(L) are
rotated left one place.
C(AC j) =i> C(AC j _ 1)
C(ACO) =i> C(L)
C(L) => C(AC ll)

Rotate two places to the right. Equivalent to two
successive RAR operations.

Rotate two places to the left. Equiva lent to two
successive RAL operations.

Index AC. The C(AC) are incremented by one in
2's complement arithmetic.
C(AC) + 1 =i> C(AC)

No operation. Causes a 1.5 I-Isec program delay.

Group 2 operate microinstruction format is shown in Figure 3-4, and the microinstructions are listed in

the table below. Any logical combination of bits within this group can be composed in one microinstruction.

REVERSE
SKIP

OPERATION SENSING OF
CODE 7 CLA SZA BITS 5,6,7 HLT .

~ ~ ~ ~

0 I I I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 11

'-v-' '--y-J '--y-J '--v----' '-v-'
CONTAINS A 1 SMA SNL OSR CONTAINS A 0
TO SPECIFY TO SPECIFY

GROUP 2 GROUP 2

Figure 3-4 Group 2 Operate Microinstruction Format

If skips are combined in a single instruction, the inc:lusive OR of the conditions determines the skip. For

example, if l's are designated in bits 6 and 7 (SZA and SNL), the next instruction is skipped if either

C(AC) = 0, or C(L) = 1, or both. If two reverse sense skip instructions are combined (bit 8 is set), the

logical AND of the conditions determines the skip. For example, if l's are designated in bits 6, 7, and

8 (SNA and SZL), the next instruction is skipped if C(AC) f 0 and C(L) = O. The CLA microinstruction

from Group 1 can be combined with Group 2 commands. This command occurs at event time 2 with respect

to the event times I isted in the following table.

3-5

Mnemonic
Symbol

CLA

SPA

SMA

SNA

SZA

SZL

SNL

SKP

OSR

HLT

TABLE 3-3 GROUP 2 OPERATE MICROINSTRUCTIONS

Octal
Code

7600

7510

7500

7450

7440

7430

7420

7410

7404

7402

Event
Time

2

2

2

Clear AC.
o => C(AC)

Operation

Skip on positive AC. If the C(AC) is a positive
number, the next instruction is skipped.
If C(ACO) = 0, then C(PC) + 1 => C(PC)

Skip on minus AC. If the C(AC) is a negative num­
ber, the next instruction is skipped.
If C(ACO) = 1, then C(PC) + 1 ~ C(PC)

Skip on non-zero AC.
If C(AC) f 0, then C(PC) + 1 => C(PC)

Skip on zero AC.
If C(AC) = 0, then C(PC) + 1 => C(PC)

Skip on zero L. If C(L) = 0, the next instruction is
skipped.
If C(L) = 0, the C(PC) + 1 => C(PC)

Skip on non-zero L.
If C(L) = 1, then C(PC) + 1 ~ C(PC)

Skip, unconditional. The next instruction is skipped.
C(PC) + 1 ~ C(PC)

OR with switch register. (May be combined with
CLA.)
C(SR) V C(AC) => C(AC)

Halt. Stops the program. If this instruction is com­
bined with others in the OPR 2 group, the computer
stops immediately after completion of the cycle in
process.

THE ORGANIZATION OF MEMORY

A PDP-8 memory field can be likened to a book. The 4,096 words of the memory field correspond to the

lines of text, and if we divide the memory into segments of 128 words each, we have an analogy to a

32-page book in which each page contains 128 lines.

The memory field is in fact segmented in this fashion, and the analogy to a book is affirmed by the fact

that each of the 128-word blocks is called a page. Because the PDP-8 instruction word is not long enough

to allow direct reference to all of the registers in a memory field, a special type of address reference must

be provided. This can be illustrated by pursuing our book analogy a little bit farther.

3-6

Suppose that one is reading a text, and taking notes in the margins of each page. One can expect that

some of the notes wi II refer to other parts of the page, or to i nformati on on other fJclges. For conven i ence,

if one of the notes refers to a line of text on the same page, write only the line number. If the note re­

fers to a line on some other page, write the page number followed by the number of the line on that page.

Alternatively, of course, it is possible to begin on the first page and number all the lines of the book con­

secutive Iy, and refer to them by these numbers a lone.

In similar fashion, a given word of memory may be referred to by its page address; that is, its address

within a page, or by its absolute address, which designates its position in the whole of memory. Here the

ana logy ends.

A PDP-8 memory field is organized as follows: the 4,096 words are arranged sequentially, with absolute

addresses of 0 through 77778 , The field is divided into 32 pages numbered from 0-378 , Each page con­

tains 128 registers, with page addresses of 0-1778 , As Figure 3-1 shows, the address field of a memory

field of a memory reference instruction contains 7 bits, which is just enough to allow access to 2008

locations. If bit 4 of the instruction contains a 1, the address field of the instruction refers to one of the

addresses on the current page, that is, the page in which the instruction is stored. If bit 4 contains a 0,

the reference is to an address on page O.

The state of bit 3 of the instruction determines what is done with the contents of the memory register speci­

fied by bits 4-11. If this bit is 0, the contents of the cell addressed by the instruction are taken as the

operand, and the operation is completed. In this case, the address specified by the instruction is the

effective address of the instruction. If, however, bit 3 contains a 1, the contents of the cell addressed

are treated, not as the operand, but as the 12-bit absolute address of the register containing the operand.

In other words, the cell addressed contains the effective address of the instruction. In this way, a mem­

ory reference instruction can indirectly address any register in the memory field, regardless of which page

it is on.

Thus, there are four ways, depending on the states of bits 3 and 4 of a memory reference instruction, in

which the effective address may be obtained.

Bit 3 Bit 4

o o

o

TABLE 3-4 EFFECTIVE ADDRESS CALCULATION

Effective Address

The operand is in page 0 at the address specified by bits 5
through 11 •

The operand is in the current page at the address specified by
bits 5 through 11.

3-7

Bit 3

TABLE 3-4 EFFECTIVE ADDRESS CALCULATION (continued)

Bit 4

o

Effective Address

The absolute address of the operand is taken from the contents
of the location in page 0 designated by bits 5 through 11.

The absolute address of the operand is taken from the contents
of the location in the current page designated by bits 5 through 11.

COMPLEMEI'H ARITHMETIC

In the PDP-8, as in other machines utilizing complementation techniques, negative numbers are repre­

sented as the complement of positive numbers, and subtraction is achieved by complement addition.

Representation of negative values in 2's complemenj· arithmetic is slightly different from that in l's com­

plement arithmetic.

The l's complement of a number is the complement ()f the absolute positive value; that is, all l's are re­

placed by O's and all O's are replaced by l's. The 2's complement of a number is equal to the l's com­

plement of the positive value plus one.

In l's complement arithmetic a carry from the sign bit (most significant bit) is added to the least signifi­

cant bit in an end-around carry. In 2's complement arithmetic a carry from the sign bit complements the

link (a carry would set the link to 1 if it were properly cleared before the operation), and there is no

end-around carry.

A l's complement representation of a negative number is always one less than the 2's complement repre­

sentation of the same number. Differences between l's and 2's complement representations are indicated

in the following table.

Number

+5
+4
+3
+2
+1
+0
-0
-1

TABLE 3-5 ONE'S AND TWO'S COMPLEMENT REPRESENTATIONS

One's Complement

000000000·1 01
000000000"1 00
000000000011
000000000010
000000000001
000000000000
11111111111 11
1111111111110

3·-8

Two's Complement

000000000101
000000000100
000000000011
000000000010
000000000001
000000000000
Nonexistent
111111111111

TABLE 3-5 ONE'S AND TWO'S COMPLEMENT REPRESENTATIONS (continued)

Number

-2
-3
-4
-5

One's Complement

11111111'1101
111111111100
111111111011
111111111010

Two's Complement

111111111110
111111111101
111111111100
111111111011

Note that in 2's complement there is only one repn~sentation for the number which has the value zero,

whi Ie in l's complement there are two representations. Note also that complementation does not interfere

with sign notation in either l's or 2's complement arithmetic; bit 0 remains a 0 for positive numbers and a

1 for negative numbers.

PDP-8 arithmetic operations (as exemplified by the TAD instruction) are carried out in 2's complement.

This means that the operands involved in the arithmetic must be in correct 2's complement representation.

The 2's complement of any number is formed by taking the l's complement, and adding 1 to it. The two

operate class instructions, CMA and lAC, may be combined into a single instruction to perform the opera­

tion of taking a 2's complement. Because the operation is often required, the mnemonic CIA is given to

the combined instruction.

Addition

The addition of a number contained in a core memory location and the number contained in the accumu­

lator is performed directly by using the TAD Y instruction, assuming that the binary point is in the same

position and that both numbers are properly represented in 2's complement arithmetic. Addition can be

performed without regard for the sign of either the augend or the addend. Overflow is possible, in which

case the result will have an incorrect sign, althou!3h the eleven least significant bits will be correct. A

carry from bit 0 will complement the link bit.

Subtracti on

Subtraction is performed by complementing the subtrahend and adding the minuend. As in addition, if

both 'numbers are represented by their 2's complement, subtraction can be performed without regard for

the signs of either number.

3-9

CHAPTER 4

ORGANIZATION

The rules for writing a program can best be introduced by tracing the steps from the statement of a problem

to the completed routine. Consider, for example, a program to compute the sum of the first n integers,

s = n + (n-1) + (n-2) + (n-3) + ••• +3 + 2 + 1

First, a flow chart, that is, a block diagram of the general steps to the solution of the problem, should be

made. It might look something like Figure 4-1. I!~noring the first box for the moment, consider the

second, third, and fourth boxes. The operations specified in these three boxes perform the main compu­

tation of the sum. Box 2 specifies the actual arithmetic of computing the partial sum. Box 3 is a counter,

which counts the number of partial additions that have been made. Box 4 is a decision point; if the count

indicates that the sum is complete, the program goes on to box 5; if it is not complete, the program re­

turns to the beginning of the main computation. This sort of continuous recycling through a section of

program is called a loop.

2

3

4

5

CLEAR TEMPORARY
REGISTERS

AND INITIALIZE

Figure 4-1 F low Chart of Program to Ca Icu late Sum of Integers

The first box in this chart specifies the operations which prepare the program for operation. Since nearly

every program written will be used more than once, with different data each time, it is necessary at the

4-1

start of the routine to clear out old results from previous use of the program so that one can start fresh

with new data, in the same way that one clears the keyboard and registers of an adding machine before

starting a new calculation. In programming terms, l-his preparation is called initializing.

Besides indicating the general sequence of operations, the flow chart also gives an idea of storage require­

ments. Space will be needed not only for the instructions which perform the computation, but also for the

data used by the routine. One register wi II be needed to hold the partial sum accumulated through re­

peated additions; this register will naturally hold the correct total when the calculation is finished.

Another cell is needed for the index, which is the counter specified in box 3 of the flow chart. Finally,

one register is necessary to hold the number ~, which determines the limit of the computation.

The program, then, must supply two types of information. First, it must include the executable instructions,

data, and temporary registers which will occupy memory cells when the program is executed. Second, it

must include a certain amount of information for the MACRO Assembler itself, to establish the locations

and extent of the program in memory. These assembler directives are called pseudo-instructions; they are

included in the program along with the executable instructions. A pseudo-instruction is rather like a

proofreader IS mark on a manuscript; the mark provides information to the editor, but does not itself cause

additional text to appear in the printed book. Simil(lrly, a pseudo-instruction provides information to the

Assembler, but does not itself cause any coding to be inserted into the object program.

CODING

Now to write the program. First one must decide wh,ere the program is to be stored. To do this, it is

necessary only to establish the location of the first register of the program. This word is called the origin,

and can be designated in two ways. The most common way is to designate the page in which the program is

to be stored; the origin is automatically set at the first register (page address 0) in that page. Thus, to put

the routine in page 2, the pseudo-instruction, PAGE, would be used as follows:

PAGE 2

The program would then begin in location 0 of page 2.

To set the origin to any register other than the first one in a page, the absolute address of the starting

location must be specified. This is done by using the special character "*". To place the origin at loca­

tion 210, the coding would be:

*210

In establishing the origin, an index within the Assembler, called the current location counter (CLC), has

been set equal to the absolute address of the origin. For example, the use of PAGE 2 would set the CLC

4-2

to a value of 400, which is the absolute address of the first register in page 2. Likewise, *210 causes

the CLC to be set to a value of 210. In programming terms the CLC points to the origin; such an index

is called a pointer.

The coding for the program may now be written. First three registers for the three items of data must be

reserved. Usually, data storage is set aside by placing a 0 in each register, thus allocating a cell. The

coding looks like this:

PAGE 2
o
o
o

Since the origin has been set at location 400, the three data cells occupy locations 400, 401, and 402

(page addresses 0, I, and 2, respectively).

Next, write the coding for the computation.

PAGE 2
o
o
o
CLA
DCA 400
TAD 401
DCA 402
TAD 400
TAD 402
DCA 400
STA
TAD 402
SZA
JMP 406
HLT
$

The program now occupies locations 400-4i6 (0-16 I::>n page 2).

The special character $ indicates to the Assembler that it is a complete program and that nothing else is

to follow.

This program is now complete, and can be assembled into a working routine. The coding, however, is

rather stark, and not very usefu I to another programmer, shou Id he wi sh to di scover what the program does.

Of course, he could figure out the function of the n::>utine by going through it step by step with pencil

4-3

and paper, but if this program were much longer, this task would be tedious and impractical. Comments,

a method of explaining the functions of the program, .nake the work immediately useful to someone else.

COMMENTS

Comments are included in a PDP-8 program in a simple way. Consider the three data storage locations of

our program. A comment would identify each register's function immediately; they might appear as:

o
o
o

/PARTIAL SUM AND FINAL TOTAL
/INTEGER N
/INDEX

The slash preceding each comment is the character which identifies a comment field. All information on

that line following the slash is considered to be a comment, and is ignored by the Assembler. For clarity

and neatness, a tab has been inserted between the instruction and the comment.

Since a slash identifies all the subsequent information on a line as a comment, one full line can be used

for a title by placing the slash in the first space after the left margin. With a title, the program might

look like this:

/INTEGER SUMMATION ROUTINE

PAGE 2
o /PARTIAL SUM AND FINAL TOTAL

Now, an immediate identification of what the program is to be used for is included in the listing.

More comments explain the workings of the program:

/INTEGER SUMMATION ROUTINE

PAGE 2
o
o
o

CLA
DCA 400
TAD 401
DCA 402
TAD 400
TAD 402
DCA 400
STA

/PARTIAL SUM AND FINAL TOTAL
/INTEGER N
/INDEX

/ZERO TO SUM

/SET INDEX
/MAIN LOOP

/DECREMENT INDEX

4-4

TAD 402
SZA
JMP 406
HLT
$

/IS IT O?
/NO: KEEP GOING
/YES: HALT

Now it is a little easier to understand the program, but some limitations remain. It is tied to one particu­

lar place in the computer's memory; to put it in some other location, recoding the entire routine with new

addresses would be necessary. Nor are these octal page addresses much help in keeping track of program

flow; even in a short routine such as this, it is necElssary to do some counting to find out what location the

instruction STA is in, for example. A simple, meaningful way of identifying storage addresses is needed.

ADDRESS TAGS

As described above, a symbol is assigned to each of the PDP-8 instruction codes. Similarly, the program­

mer can assi gn a symbol to anyone of the storage addresses in the computer memory. For instance, the

routine under discussion contains three important registers: the beginning of data storage, the beginning

of the program sequence, and the beginning of the main loop.

Each one of these locations can be labelled with a symbolic tag, in the following way:

/INTEGER SUMMATION ROUTINE

PAGE 2
DATA, 0

o
o

BEGIN, CLA
DCA 400
TAD 401

GO, DCA 402
TAD 400
TAD 402
DCA 400
STA
TAD 402
SZA
JMP 406
HLT
$

/PARTIAL SUM AND FINAL TOTAL
/INTEGER N
/INDEX

/ZERO TO SUM

/SET INDEX
/MAIN LOOP

/DECREMENT INDEX

/IS IT O?
/NO: KEEP GOING
/YES; HALT

Three reference points have been established. Note that the tags are roughly mnemonic, thus offering an

:::Idditional measure of program identification and clarification. In programming terms, three symbols have

been defined. In this case, each symbol has a value that is equal to the absolute address of the register in

which the associated item {data word or instruction} is stored. Thus, the value of the symbol DATA is 400;

of BEGIN, 403; of GO, 406.

4-5

Symbolic Addressing

Locating sections of a program has been simplified, but full advantage of address tags has not yet been

taken. The instruction addresses themselves are still Hed to the absolute addresses of the program. How­

ever, since each tag has a numeric value corresponding to an address, a tag may also be used as a symbol

in the address part of an instruction. For example, the absolute address 402 is clearly equivalent to the

expression, BEGIN-1 (BEGIN=403; 403-1=402). Similarly, the address 411 is equivalent to GO+3.

Replacing absolute addresses with symbolic expression:., the program will look like this:

/INTEGER SUMMATION ROUTINE

PAGE 2
DATA, 0

o
o

BEGIN, CLA
DCA DATA
TAD DATA+1

GO, DCA DATA+2
TAD DATA
TAD DATA+2
DCA DATA
STA
TAD DATA+2
SZA
JMP GO
HLT
$

/PARTIAL SUM AND FINAL TOTAL
/INTEGER N
/INDEX

/ZERO TO SUM

/SET INDEX
/MAIN LOOP

/IDECREMENT INDEX

/15 IT O?
/NO: KEEP GOING
/YES: HALT

This program that is easily readable, includes a running commentary for explaining its functions, and

carries its own symbolic references that further assist in understanding and keeping track of the routine.

Moreover, the routine has been freed from a specific place in memory by the use of symbolic addresses.

To change the location of the program, it is necessary only to change the origin setting by the PAGE

pseudo-instructions.

STORAGE TECHNIQUES

The program above will function but it may be improved. One of its drawbacks is the fact that wherever

the program is stored, the data must be stored right along with it. When space is at a premium, as it

often is, it would be desirable to put all of the data in a fixed place, and let the working parts of the

program be arranged as necessary.

In the PDP-8, data that is used by several parts of a program is often stored in page O. If each of the

three data words in the program is given aname, page 0 addresses can be assigned to them. Call the first

4-6

word TOTAL, the second INDEX, and the third N. In effect, the data words have been labeled with

address tags, but since the names can be used in symbolic expressions (for instance, in an instruction

address), programmers usually refer to them as variables. If the variables are assigned to page 0 and the

instruction address in the program changed to match, the coding will look like this:

IINTEGER SUMMATION ROUTINE

*20
TOTAL, 0
INDEX, 0
N, 0

PAGE 2
BEGIN, CLA

DCA TOTAL
TAD N

GO, DCA INDEX
TAD TOTAL
TAD INDEX
DCA TOTAL
STA
TAD INDEX
SZA
JMP GO
HLT
$

ITHESE REGISTERS ARE
INOW ON PAGE 0

IZERO TO SUM

ISET INDEX
IMAIN LOOP

IDECREMENT INDEX

liS IT O?
INO: KEEP GOING
/yES: HALT

When the program is loaded, the three items of data (having been assigned addresses on page 0) will be

stored in page O.

A large step toward our goal of a refined, useful routine has been taken; i.e., a program which may be

placed anywhere in memory and is easily understood and interpreted by someone other than the author,

because of liberal comments and symbolic addressingl.

OPTIMUM USE

It remains only to relate this sequence of coding to the context in which it is likely to operate. Obviously

the summation program is useless in core by itself, waiting for an integer summation to be carried out.

Since the example has served its purpose in illustrating how a complete program can be written, all the

coding except the minimum necessary for the actual computation will be removed, leaving this (the

ellipsis always indicates the presence of unspecified coding):

4-7

BEGIN, CLA
DCA TOTAL
TAD N

GO, DCA INDEX
TAD TOTAL
TAD INDEX
DCA TOTAL
STA
TAD INDEX
SZA
JMP GO
HLT

IZERO TO SUM

ISET INDEX
lMAIN LOOP

IDECREMENT INDEX

lis IT O?
INO: KEEP GOING
IYES: HALT

This sequence can now be placed within a larger program wherever it may be needed. Figure 4-2 is an

example of a long program which uses this routine ""'0 times. Whenever the summation routine occurs,

it is preceded by an instruction which takes the value of N from the AC and places it on the proper loca­

tion in data storage. One other change is also necessary. The address tag GO has been eliminated from

all but the first occurrence in the coding sequence; iit is obvious that one symbol cannot be defined with

more than one value, or there would be confusion as to which of the values was meant at anyone time.

As a result, it is necessary to eliminate the reference to GO in the JMP instruction at the end of the

sequence.

Notice that the instruction, DCA INDEX always remains exactly seven locations ahead of the JMP in­

struction, regardless of where the routine is stored. Evidently, an address expression which could refer

to the location of DCA INDEX relative to the location of the JMP instruction is needed. In other words,

a construction is desired that wi II perform the same function as the following but without having to define

the symbol HERE:

DCA INDEX
TAD INDEX

HERE, JMP HERE-2

Remembering that the current location counter alway's "points" to the location of the instruction currently

being assembled, it becomes apparent that what is desired is a symbol which, whenever it is used, always

takes the value of the CLC. In MACRO-8, this symbol is the period, ".". Whenever this character is

encountered in an address expression, the value of the CLC is substituted for it. In the example in

Figure 4-2 it is used in the address of the JMP instruction wherever it appears in the routine. In this way,

the necessity of having to c:Iefine a new set of symbols each time the routine is used is avoided.

4-8

PAGE 10

BEGIN, DCA N /INITIALlZATION
DCA TOTAL
TAD N

GO, DCA INDEX /SET INDEX
TAD TOTAL /MAIN LOOP
TAD INDEX
DCA TOTAL
STA /INCREMENT INDEX
TAD INDEX
SZA /IS IT O?
JMP GO /NO: KEEP GOING

/yES: ALL DONE

DCA N /INITIALlZATION
DCA TOTAL
TAD N
DCA INDEX /SET INDEX
TAD TOTAL /MAIN LOOP
TAD INDEX
DCA TOTAL
STA /DECREMENT INDEX
TAD INDEX
SZA /IS IT O?
JMP .-7 /NO: KEEP GOING

/YES: ALL DONE

$

Figure 4-2 Program Example

SUBROUTINES

Now the program example is useful, but one more difficulty must be overcome. An examination of

Figure 2-4 will make this· problem obvious: If the routine is used very many times, an extremely large

amount of storage space will be used simply in repeti·tions of the same coding sequence. This counteracts

the general aim of writing a concise, efficient program. If the routine could be written only once, placed

in a separate section of memory and called into opercltion each time it was needed, the whole procedure

would be more efficient.

4-9

A program that may be used in this manner is called a subroutine. It is a sequence of coding with the

following properties:

1. It is self-contained, that is, it can be assembled by itself without having to be part

of a larger program.

2. It occupies its own section of memory, logically separate from other coding sequences.

3. It performs only one task. Each subroutine has a definite purpose.

4. It is called into operation only by another program, and when it has finished its

task, it returns to that program. It can be called any number of times, and upon com­

pletion always returns control to the point from which it was last called.

5. When necessary, it uses data supplied by the calling program, and returns results to

a place accessible by that program.

When a subroutine is written, four requirements which are implied by the last two properties listed above

must be fu Ilfi lied:

a. The data must be accessible by thE! subroutine.

b. The results must be accessible by the calling program.

c. There must be a way of calling the subroutine into operation.

d. There must be a way of returning control to the calling program.

The problem of data transmission has been solved by placing the three data storage registers in page 0,

thereby making them accessible to any program or subroutine in memory. The transfer and control of

return is not quite so obvious. First, restore the symbolic tags to the subroutine as well as the title and

other pseudo-instructions to make it a self-contained program giving:

/INTEGER SUMMATION SUBROUTINE

PAGE 2
INTSUM, DCA N

DCA TOTAL
TAD N

GO, DCA INDEX
TAD TOTAL
TAD INDEX
DCA TOTAL
STA

/SAVE INPUT IN C(AC)
/ZERO TO SUM

/SET INDEX
/MAIN LOOP

/DECREMENT INDEX

4-10

$

TAD INDEX
SZA
JMP GO

/IS IT O?
/NO: CONTINUE
/VES

At a first glance, it could seem easy to eliminate the problem of transferring control to the subroutine.

A JMP INTSUM in the calling program every time the subroutine was called would provide the path. But

what happens at the end of the calculation? The subroutine has no way of knowing where to return. The

subroutine cannot merely halt as this violates reqtJire,ment ~ above.

The solution lies in the use of the JMS instruction. Remembering from Chapter 2 when the JMS instruction

is executed, the contents of the program counter are saved in the location addressed by the instruction,

and control is transferred to the register immediately following the one addressed. Thus, a register which

contains the address of the next instruction following the JMS is available. This can be used to return to

the proper point in the calling program when the subroutine has finished its computation. Rearrange the

first part of our subroutine as follows:

/INTEGER SUMMATION ROUTINE

PAGE 2
INTSUM, 0

DCA N
DCA TOTAL
TAD N

GO, DCA INDEX

/SAVE PC HERE
/SAVE INPUT NUMBER
/ZERO TO SUM

/SET INDEX

Now, whenever the instruction JMS INTSUM is used, the contents of the program counter are stored in the

location tagged with the name INTSUM and the computer continues operation with the instruction imme­

diately following which is the first instruction of the subroutine.

Now that the subroutine has been called, a means t() exit from it must be provided. The JMS instruction

stores the program counter which "points" to the instruction following the JMS. After the execution of a

JMS INTSUM, the register INTSUM contains the contents of the program counter at the time the JMS was

executed. This can be used as an effective address (See Chapter 3, the" Organization of Memory") to

return to the point of call. To do this, the subroutine may be terminated with a JMP instruction which

references the register INTSUM as an indirect addre$s as follows:

4-11

/INTEGER SUMMATION SUBROUTINE

PAGE 2
INTSUM, 0

DCA N

JMP I INTSUM

/SAVE PC HERE
/SAVE INPUT NUMBER

/yES: EXIT SUBROUTINE

The character "I" is used to signify indirect addressing. In use here it means, "Jump to the register whose

address is contained in the register tagged INTSUM."

The complete subroutine is shown below: {not including the page 0 definition of the variables}.

/INTEGER SUMMATION SUBROUTINE

PAGE 2
INTSUM, 0

DCA N
DCA TOTAL
TAD N

GO, DCA INDEX
TAD TOTAL
TAD INDEX
DCA TOTAL
STA
TAD INDEX
SZA
JMP GO
JMP I INTSUM

/SAVE PC HERE
/SAVE INPUT NUMBER
/ZERO TO SUM

/SET INDEX
/MAIN LOOP

/DECREMENT INDEX

/IS IT O?
/NO: CONTINUE
/YES: ALL DONE

The reader is referred to the PDP-8 Library for other examples of subroutine calling techniques.

The MACRO-8 Programming Language may now be discussed in detail.

4-12

PART 2

THE MACRO LANGUAGE

CHAPTER 5

MACRO-8 PROGRAMMING LANGUAGE

The MACRO-8 Symbolic Assembler accepts source programs written in symbolic language and translates

them into binary form. MACRO-8 produces an obiect program tape (binary), a symbol table defining

memory locations (for use with DDT), an octal/symbolic assembly listing, and useful diagnostic messages.

MACRO-8 is compatible with PAL III, but has the following additional features:

User-Defined Macro's

Double Precision Integers

Floating Point Constants

Operators

Literals

Text Facility

Link Generation

Groups of computer instructions required for the

the solution of a specific problem can be defined

as a macro instruction by the user.

Positive or negative double precision integers are

a Ilotted two consecutive core locations.

The format and rules for defining these constants

are compatible with the format used by the PDP-8

Floating Point Package (See Di gital-8-5-S).

Symbols and integers may be combined with a

number of operators.

+ Addition

Subtraction

& Boolean AND

Boolean Inclusive OR

Symbolic or integer literals (constants) are auto­

maticallyassigned.

There are text facilities for singb characters and

blocks of text.

Links are automatically generated for out of page

references.

To incorporate these new features, it was necessary to decrease the size of the symbol table and because

of this, programs that were originally coded to be assembled by PAL III might have too many symbols to

be assembled by MACRO-8.

5-1

CHARACTERS

Programs in the MACRO-8 language are written using characters from the ASCII character set. The

following characters are used:

Letters

ABCD ••• XYZ

1234567890

Punctuation Characters

Since a number of characters are invisible (i .e., nonprinting), the following notation is used to represent

them in the examples:

space

tab

carriage return

The following characters are used to specify operations to be performed upon symbols or numbers:

+

=

$

*

Character

space

plus

minus

exclamation point

carriage return

tab

comma

equals

semicolon

dollar sign

asterisk

point

Use

Combine symbols or numbers

Combine symbols or numbers (add)

Combine symbols or numbers (subtract)

Combine symbols or numbers (OR)

Terminate line

Combine symbols or numbers or format source

tape

Assign symbolic address

Define parameters

Terminate coding line

End of pass

Set location counter

Has value equal to current location counter

5-2

/ slash

& ampersand

" quote

() parentheses

[1 brackets

<> angle brackets

Ignored Characters

Form-feed

Blank tape

Rubouts

Code 200

Line-feed

Indicates start of a comment

Combine symbols or numbers (AND)

Generate ASCII constant

Defi ne litera I on current page

Define page 0 literal

Define a macro

End of a logical page of a source program

(see Symbolic Editor)

Used for leader/trai ler

Used for deleting characters

Used for leader/trailer

Follows carriage-return

All other characters are illegal when not in a comment or a TEXT field, and cause the error message IC

to be printed. The form-feed is used at the end of a page of program for editing purposes. The functions

of leader and trailer are self-explanatory. This may be either blank tape or code 200.

Tabulations are usually used in the body of a program to provide a neat page for printing; they can separate

fields from one another, as between an instruction and an associated comment. For example, a line could

be written as:

GO, TAD TOTAL/MAIN LOOP)

but it is far easier to read if tabs are inserted:

GO, ---+t TAD TOTAL -+I /MAIN l.OOP)

(the characters ~ and ; are nonprinting)

Either ; (semicolon) or the combination carriage-return/line-feed may be used as line terminators. The

semicolon is considered identical to carriage-return/line-feed except that it will not terminate a comment.

Example:

TAD A /TH IS IS A COMMENT TAD B)

The entire expression up to the carriage return is considered a comment.

5-3

As was noted previously, the tabulation is used as a formatting device to provide a neat appearance for

the printed program listing. Use of the semicolon allows the programmer to place several lines of coding

on a single line. If, for 'example, he wishes to write a,sequence of instructions to rotate the C(AC) and

C(L) six places to the right, it might look like:

RTR)

RTR)

RTR)

He may place all three instructions as a single line b), substituting the control character ";" (semicolon)

for the line terminator") " (carriage return). The above sequence of instructions may be rewritten as:

RTR; RTR; RTR)

This type of format is particularly useful when setting aside a section of data storage for a list. For ex­

ample, a 12-word list could be reserved by:

LIST, o· , o· , o· , o· , o· ,
o· , o· , O· , o· , o· ,

A neat printout (or program listing, as it is usually caHed) makes subsequent editing, debugging, and

interpretation much easier than if the coding were laid out in a haphazard fashion. The coding practices

listed below are in general use, and will result in a readable, orderly listing. (See Digital-8-21-U for

a program to produce listings of this form.)

1. A title comment begins at the left hand margin.

2. Pseudo-instructions may begin at the left margin; often, however, they are indented

one tab stop to line up with the executable instructions.

3. Address tags begin at the left margin. They are separated from succeeding fields by

a tabulation.

4. Instruction fields, whether or not they are preceded by a tag field, are indented

one tab stop.

5. A comment is separated from the preceding field by a tabulation, unless it occupies

the whole line, in which case it usually begins at the left margin.

5-4

Elements

12
Any group of letters, digits, and punctuation characters which represents binary values less than 2 is an

element.

Any sequence of numbers delimited by punctuation characters forms a number. Example:

12

4372

The radix control pseudo-instructions indicate to the Assembler the radix to be used in number interpre­

tation. The pseudo-instruction DECIMAL indicates that all numbers are to be interpreted as decimal until

the next occurrence of the pseudo-instruction OCTAL.

The pseudo-instruction OCTAL indicates that all numbers are to be interpreted as octal until the next

occurrence of the pseudo-instruction DECIMAL. The radix is initially set to octal and remains octal un­

less otherwise specified.

A symbol is a string of one or more alphanumeric characters delimited by a punctuation character. Symbols

are composed according to the following rules:

1. The characters must be either alphabetic (A-Z) or numeric (0-9).

2. The first character must be alphabetic.

3. Only the first six characters of any symbol are meaningful; the remainder, if any,

are ignored.

4. A symbol is terminated by any nonalphanumeric character.

The MACRO Assembler has, in its permanent symbc)1 table, definitions of the symbols for all PDP-8 operation

codes, operate commands, and many lOT commands (see Appendix A for a complete list). These may be

used without prior definition by the user. Example:

JMS is a symbol whose value of 4000 is taken from the operation code

definitions.

.5-5

A is a user-created symbol. When used as a symbolic address tag, its value

is the address of the instruction it tags. This value is assigned by the

Assembler.

Note that because of rule 3, a symbol such as INTEGER, for instance, would be interpreted as INTEGE

since the seventh letter is ignored. If symbols of more! than six characters are used, the programmer should

be careful to avoid the error of defining two apparently different symbols whose first six characters are,

in fact, identical. For example, the two symbols, GEORGE 1 and GEORGE2, differ only in the seventh

character, so that the Assembler would treat them as being the same symbol, GEORGE.

It is not necessary to define a symbol before it is used in an expression. They must be defined before the

end of PASS 1, however. Thus, one may refer to a number of registers by their address tags, and then

define the symbols later.

Parameter Assignments

A symbol may be assigned a value by means of a parameter assignment statement which looks like an alge­

braic statement. The single symbol to the left of the equal sign is assigned the value of the expression on

the right. No space(s} or tab(s} may appear between the single symbol to the left of the equal sign and the

equal sign. Examples:

A=6

EXIT = JMP 10

C=A+B

All symbols to the right of an "=" sign must be already defined. The symbol to the left of the "=" sign

and its associated value is stored in the Assembler's symbol table.

The use of the "=" does not increment the current location counter. It is, rather, an instruction to the

Assembler itself rather than a part of the output binary. The equal sign may be used to redefine a symbol.

Symbol Definition

A symbol may be defined by the user in one of three ways:

1. By use of a parameter assignment. Example:

DISMIS = JMP RESTOR

5-6

2. As a macro name. Example:

DEFINE LOAD A

< CLA
TAD A>

3. By use of the comma. When a symbol is terminated by a comma, it is assigned

a value equal to the current location counter. Example:

* 100 /SET CLC TO 100
TAG, CLA

JMP A
B, 0
A, DCA B

The symbol "TAG" is assigned a value of 0100, the symbol "B" a value of 0102, and the symbol "A" a

value of 0103.

Expressions

All elements, i.e., symbols and numbers (exclusive of pseudo-instruction symbols, macro names, and

double precision or floating point constants) may be combined with certain operators to form expressions.

These operators are:

+

&

plus

minus

exclamation point

ampersand

space

This signifies 2 1s complement addition (modulo

409610) •

This signifies 21s complement subtraction (modulo

409610) •

This signifies Boolean inclusive OR (union).

This signifies Boolean AND (intersection).

Space is interpreted in context. It may signify

inclusive OR or act as a field delimiter.

Symbols and integers may be combined with any of the above operators. A symbolic expression is evalu­

ated from left to ri ght; no grouping of terms is permitted. Example:

Value
Value
Value

A

0002
0007
0700

B

0003
0005
0007

A+B

0005
0014
0707

5-7

A-B

7777
0002
0671

A! B

0003
0007
0707

A&B

0002
0005
0000

The MACRO-8 Assembler makes a distinction between the types of symbols it is processing. These types

are 1} permanent symbols, 2} user defined symbols, and 3} macro names. The character "space" is inter­

preted written in the context of the expression. If a space is used to delimit two or more permanent sym­

bols, space signifies inclusive OR. Example:

CLA is a permanent symbol whose value is 7200.
CMA is a permanent symbol whose value is 7040.

The expression:

CLA CMA has a value of 7240.

If the symbol following the space is a user defined symbol, space acts as an address field delimiter.

Example:

*2117
A, CLA

JMP A

"A" is a user defined symbol whose value is 2117. The expression JMP A is evaluated as follows:

The seven address bi ts of A are taken, i. e .:

A 010 00 1 001 111
1 001 111

The remaining five bits of A are tested to see if they 'Jre O's (page 0 reference); if they are not, the

current page bit is set.

000 011 001 111

The operation code is ORed into the expression:

JMP 101 000 000 000
Address A 000 011 001 111
J MP A 1 01 011 001 1 11

or, written more concisely:

5317

5-8

In addition to the above outlined tests, the page bits of the address field are compared with the page bits

of the current location counjer. If the page bits of the address field are nonzero and do not equal the

page bits of the current location counter, an out-of-page reference is being attempted. If the reference

is to an address not on the pa3e where the instructi.:>n will be located, the Assembler will set the indirect

bit (bit 3) and an indirect address linkage will be generated on the current memory page. If the out-of­

page reference is already an incirect one, the error diagnostic II (Illegal Indirect) will be typed on

PASS 2. When the link is generated, the LG (Link Generated) message will be typed on PASS 2. In the

case of several out-of-page references to the same address, the link will be generated only once, but the

LG message will be printed each time. Example:

*2117
A, CLA

*2600
JMP A

The space preceding the user defined symbol "A" acts as an address field delimiter. The Assembler will

recognize that the register tagged "A" is not on the current page (in this case 2600-2777) and will

generate a link to it as follows:

in location 2600 the Assembler will place the word

5777 which is JMP I 2777

in address 2777 (the last location on the current page), the word 2117 (the actual

address of "A") will be placed.

The address field of a memory reference instruction may be any valid expression. Example:

A=270
*200
TAD A-20

would produce, in location 200, the word

001 010 101 000 or 1250 (TAD 250)

Although the Assembler will recognize and generate an indirect address linkage when necessary, the

programmer may indicate an explicit indirect address by using the special symbol "I". This must be

between the operation code and the address fie Id. The Assembler cannot generate a link for an instruction

that is already specified as being an indirect reference. In this case, the Assembler will type the message

II (Illegal Indirect).

5-9

Current Address Indicator

The single character period (.) has, at all times, a value equal to the value of the current location

counter. It may be used as any integer or symbol (except to the left of an equal sign). Example:

*200
JMP .+2

Is equivalent to JMP 202.

*300
.+2400

would produce, in register 0300, the quantity 2700.

*2200
CALL=JMS I •

0027

Since the second line, CALL=JMP I ., does not increment the current location counter, 0027 would be

placed in register 2200 and CALL would be placed in the symbol table with an associated value of

1 00 11 0 000 000 or 4600.

Origin Setting

The ori gi n (current location counter) is reset by use of the specia I character asteri sk (*). The current

location counter is set to the value of the expression following the "*". The origin is initially set to

0200. All symbols to the right of "*" must already have been defined. Example:

If D has the value 250

then

*D+10 will set the location counter to 0260.

To simplify page handling, the pseudo-instruction PAGE may be used. When "PAGE" is encountered,

the ori gin is reset to the first location of the next page. A page number may be specified by a legal

expression following the page pseudo-instruction. Example:

*270

at this point, either

5-10

*400

or

PAGE

or

PAGE 2

will reset the origin to 0400.

Li terclls

Since the symbol ic expressions which appear in the alddress part of an instruction usually refer to the loca­

tions of registers containing the quantities being operated upon, the programmer must explicitly reserve

the registers holding his constants. The MACRO-8 language provides a means for using a constant directly.

Suppose, for example, that the programmer has an index which is incremented by two. One way of coding

this operation would be as follows:

CLA
TAD INDEX
TAD C2
DCA INDEX

Using a literal, this would become

CLA
TAD INDEX
TAD (2)
DCA INDEX

The left parenthesis is a signal to the Assembler that the expression following is to be evaluated and as­

signed a register in the constants table of the current page. This is the same table in which the indirect

address linkages are stored. In the above example, the quantity 2 is stored in a register in a list begin­

ning at the top of the memory page (page address 177), and the instruction in which it appears is encoded

with an address referring to that address. A literal is assigned to storage the first time it is encountered;

subsequent references wi II be to the same register.

If the programmer wishes to assign I iterals to page 0 rather than the current page, he may use square

brackets, II [II and II] ", in place of the parentheses. However, in both cases, the right of closing member

may be omitted. The following examples are acceptable:

5-11

TAD (777;
AND [JMP;

Note that in the second example, the instruction AND fJMP has the same effect as AND [5000.

Literals may be nested. For example:

*200
TAD (TAD (30

will generate

0200 1376

0376 1377
0377 0030

This type of nesting may be carried to as many leveds as desired. Literals are stored on each page starting

at page address 177 and extending toward page address O. (Only 12710 or 1778 literals may be placed on

page 0). If a literal is generated for a nonzero page and then the origin is set to another page, the current

page literal buffer is punched out (during PASS 2). If the origin is then reset to the previously used page,

the same literal will be generated if used again.

Single Character Text Facility

If a single character is preceded by a double quote, the a-bit value of the ASCII code for the character

is inserted instead of taking the letter as a symbol. Example:

CLA
TAD ("A

will place the constant 0301 in the accumulator.

5-12

CHAPTER 6

PSEUDO-INSTRUCTIONS

The pseudo-instructions are directions to the Assembler to perform certain tasks or to interpret subsequent

coding in a certain way. By themselves pseudo-instructions do not generate coding or (in general) effect

the current location counter. The functions of each pseudo-instruction are described in this chapter.

PAGE

PAGE n

PAGE

CURRENT LOCATION COUNTER

This pseudo-instruction is used to set the current location counter.

This will reset the current location counter to the first address of page n, where n is on

integer, a previously defined symbol, or a symbolic expression. Examples:

PAGE 2 wi II set the CLC to 0400

PAGE 6 wi II set the CLC to 1400

When used without an argument, PA.GE will reset the CLC to the first location on the

next succeeding page. Thus, if a program is being assembled into page 1 and the pro­

grammer wishes to begin the next segment on page 2, he need only insert the pseudo­

instruction PAGE, as follows:

JMP .-7

PAGE

CLA

The current location counter may be explicitly set by use of the asterisk.

EXTENDED MEMORY

On PDP-8's equipped with more than one memory bank, the pseudo-instruction

FIELD n may be used where n is an integer, a previously defined symbol, or a symbolic expression

within the range 0~n~7.

This pseudo-instruction causes a word of the form

11 XXX 000 where 000.s XXX .s 111

6-1

to be punched on the binary tape during PASS 2. This word is interpreted by the Extended Memory Binary

Loaders (see DigitaI-8-2A-U; Digital-8-2B-U).

RADIX CONTROL

Normally, all integers used in a program are taken as octal numbers. If, however, the programmer wishes

to have certain numbers treated as decimal, he may use the pseudo-instructions:

DECIMAL When this pseudo-instruction occurs, all integers encountered in subsequent coding will

be taken as decimal until the OCCl)rrenCe of the pseudo-instruction

OCTAL which will reset the radix to its original (octal) base.

NUMBERS

The types of numbers allowed are integers (See Chapter 5), double precision integers, and double pre­

cision floating point numbers.

Double Precision Integers

Double precision integers may be positive or negative (2's complement) according to their sign but may

not be combined with operators. They are always t(lken as decimal radix although the current radix is

not disturbed. Each double precision integer is allotted two consecutive registers with the sign indicated

by bit 0 of the first word.

The double precision integer mode is entered through the use of pseudo-instruction DUBL and all numbers

encountered will be taken as double precision integers until an alphabetic character is encountered.

Each number is terminated by the carriage return ()) or the semicolon (;) or by a comment. Example:

DUBL

TAG, CLA)

wou Id produce

*400)
679467~
44~
-3,)

0400 0245
0401 7053
0402 0000
0403 0054

6-2

0404 7777
0405 7775
0406 7200

and the symbol" TAG" would have a value equal to 0406.

Floating Point Constants

Double precision floating point constants may be positive or negative according to their sign but may not

be combined with operators. Decimal radix is assumed but the current radix is not altered. Floating

point constants are each assigned three registers and are stored in normalized form. (See Digital-8-5-S

for a description of floating point arithmetic.)

The double precision floating point mode is entered through use of the pseudo-instruction FLTG. All

numbers encountered after the use of FLTG will be -taken as double precision floating point constants until

the occurrence of an alphabetic character other than E. The general input format of a floating point

number is

±ddd.ddddE±dd

where the d's are decimal digits. Any character which is not legally part of the above format (except

rubouts) terminates input of the number. Example:

Produces

*400)
FLTG +509. 32E -02 ~ 0400 0003

0401 2427
0402 6670

-62.97E04~ 0403 0024
0404 5462
0405 0740

1 .00E-2~ 0406 7772
0407 2436
0410 5574

TAG2, CLA~ 0411 7200

and the symbol "TAG2" would be assigned a v(Jlue of 0411 •

TEXT FACILITY

There is a text facility for single characters and text strings. For a description of the single character

mode (double quote), see Chapter 5.

6-3

A string of text may be entered by giving the pseudo-instruction TEXT followed by a space, a delimiting

character, a string of text, and repeating the same delimiting character. Example:

TEXT ATEXTA

The character codes are stored two to a register in ASCII code that has been trimmed to six bits. Following

the last character, a 6-bit zero is inserted as a stop c:ode. The above statement would produce

2405

3024
0000

TEXT...... IBOBI
would produce

0217
0200

The TEXT pseudo-op could also be used as part of a cCJlling sequence to a subroutine:

a.

or

b.

ADDMESS,

JMS MESS
TEXT I

JMS MESS
NOWDS
ADDMESS

TEXT I

I

I

INO WDS IN MESSAGE
IADDRESS OF MESSAGE

Note that while the TEXT pseudo-instruction causes characters to be stored in a trimmed code, the use of

the single-character control code (") causes characters to be stored as a full 8-bit ASCII code.

END OF PROGRAM

The special symbol "$" indicates the end of a program. When the Assembler encounters the "$" it termi­

nates the PASS.

6-4

END OF TAPE

When several tapes are to be assembled together, each, except the last (which ends in "$"), should have

as its last symbol the pseudo-instruction PAUSE. This causes the MACRO-8 Assembler to stop processing

and halt the computer. After placing a new tape in the reader, assembly can be continued by depressing

CONTINUE.

ALTERATIONS TO THE SYMBOL TABLE

There are two pseudo-instructions that may be used to alter the permanent symbol table (during PASS 1):

EXPUNGE

FIXTAB

EXPUNGE the entire symbol table, except for the pseudo-instructions.

FIX the symbol TABle. All symbols that are currently in the symbol table are fixed.

Example:

CLSF=6141
FIXTAB

would define CLSF as a permanent symbol.

EXPUNGE
TAD=1000
FIXTAB

would place the symbol TAD in the assembler's permanent symbol table. All other symbols would have

been expunged.

6-5

CHAPTER 7

MACROS

When writing a program, it often happens that certain coding sequences are used several times with just

the arguments changed. If so, it is convenient if the entire sequence can be generated by a single state­

ment. To do this, the coding sequence is defined with dummy arguments as a macro. A single statement

referri ng to the macro by name, a long wi th a list of rea I arguments, wi II generate the correct sequence

in line with the rest of the coding.

The macro name must be defined before it is used. The macro is defined by means of the pseudo-instruction

DEFINE followed by the macro's name and a list of dummy arguments. For example:

A macro to move the contents of register A to register B and also leave the result in the

accumulator, would be coded as follows:

DEFINE ~ MOVE ~ DUMMY1 ~ DUMMY2
<CLA

TAD
DCA
TAD

DUMMY1
DUMMY2
DUMMY2>

The actual choice of symbols used as dummy arguments is arbitrary; however, they may

not be defined or referenced prior to the macro definition.

The above definition of the macro MOVE is identical to the following:

DEFINE ~ MOVE ~ ARG1 ~ ARG2
<CLA;TAD ARG1; DCA ARG2; TAD ARG2>

The actual definition of the macro is enclosed in angle brackets.

When a macro name is processed by the assembler, the real arguments will replace the dummy arguments.

For example:

Assuming that the macro MOVE has been defined as above,

*400
A,O
B, -6

0400
0401

0000
7772

7-1

MOVE ~ A, B
$

0402
0403
0404
0405

7200
1200
3201
1201

NOTE: A macro need not have any arguments: For example, a sequence of
coding to rotate the C(AC) and C(L) six places to the left might be encoded
as a macro by means of

DEFINE. ~ ROTL 6
<RTLi RTLi RTL>

The entire macro definition is placed in the Macro Table, two characters per word, with a dummy argu­

ment value replacing the symbolic name. Example:

DEFINE ~ LOAD ~ A
<CLA

TAD A>

is stored, in the Macro Table, roughly as follows:

where the vertical lines indicate successive 12-bit words. Comments and line-feeds

are not stored.

The macro definition can consist of any valid coding except for TEXT or " type statements.

RESTRICTIONS

1. Macros cannot be nested; i.e., another macro name or definition cannot appear in

a macro definition and cannot be brought in CIS an argument at reference time.

2. TEXT or " type statements cannot appear in a macro definition.

3. Arguments cannot be:

a. Macro name
b. TEXT pseudo-instruction or " special character

4. The symbols used as dummy arguments must not have been previously defined or

referenced.

7-2

5. A macro may not be redefined. Example:

DEFINE ~ LOOP ~ A ~ B

<TAD
DCA
TAD
ISZ
JMP

A
B
COUNT
B
.-2>

The symbol "COUNT" is not a dummy ar~~ument but an actual symbol.

A macro is referenced by giving the macro name, ,J space, and then the list of real arguments, separated

by commas. There must be at least as many arguments in the macro reference as in the corresponding

macro definition. When a macro is referenced, its definition is found, expanded, and the real arguments

replace the dummy arguments. The expanded macro is then processed in the normal fashion.

LOOP ~ X, Y2

is equivalent to:

TAD X
DCA Y2
TAD COUNT
ISZ Y2
JMP .-2

NOTE: The macro table shares the clvai lable space (60410 registers) with the
symbol table. Thus the programmer must be aware of the amount of room re­
quired by his macros and the fact thclt each symbol occupies four words of mem­
ory. Also, the arguments of a macro call are temporarily stored in this buffer
space whi Ie the macro is being expanded.

7-3

CHAPTER 8

ERROR DIAGNOSTICS

The format of the error messages is:

ERROR CODE ADDRESS

Where ERROR CODE is a 2-character code which specifies the type of error, and ADDRESS is either the

absolute octal address where the error occurred or the address of the error relative to the last symbolic

tag (if there was one) on this page.

Assembly will continue or may be continued after al,1 errors except SE (Symbol Table Exceeded). If an SE

error occurs, the Assembler wi II hal t and may not be restarted.

ERROR MESSAGES

PE Current, Non-Zero Page Exceeded

An attempt was made to

1. override a literal with an instruction or

2. override an instruction with a literal.

This can be corrected by

a. decreasing the number of literals (In the page

b. decreasing the number of instructions on the page

ZE Zero Page Exceeded

Same as PE only wi th reference to page 0

ID Illegal Redefinition of a Symbol

An attempt was made to give a previously defined symbol a new value not via the "=". The

symbol was not redefined. (This is similar to the Duplicate Tag diagnostic of PAL III).

IC Illegal Character

1. # % I : ? @'\ were processed neither in a comment nor a TEXT field. The character

is ignored and the assembly continued.

8-1

2. A non-valid character was processed. The computer will halt with the illegal character

displayed in the accumulator. Assembly may be continued by putting the desired character

in the SWITCH REGISTER and depressing CONTINUE.

IE Illegal Equals

An equal sign was used in the wrong context. Examples:

TAD A + = B
A + B = C (The expression to the left of the aqual sign is not a single symbol)

II Illegal Indirect

An out of page reference was made, and a link could not be generated because the indirect

bit was already set. Example:

*200
TAD A

PAGE
A, CMA Cll

lG Link Generated

SE

A link was generated for an out of page reference at this address. Example:

*200 Generated Binary
TAD A 0200 177.7

0377 0400
PAGE
A, CMA, Cll 0400 7140

Symbol Table Exceeded

The Symbol Table overlaps the Macro Table or vice versa. Assembly is halted and cannot

be continued.

1M Illegal Format in a Macro Definition

The expression after the DEFINE pseudo-instruction does not comply with the macro definition,

position, or structural rules. Example:

A macro name is referenced before the macro definition.

8-·2

US Undefined Symbol

A symbol has been processed during PASS 2 that was not defined by the end of PASS 1.

MP Missing Parameter in a Macro Call

An argument, called for by the macro definition, is missing.

Example:

DEFINE MAC A B

< TAD A
CIA
DCA B>

MAC SUM

BE Two MACRO-8 internal tables have overlapped. This situation can usually be corrected by de­

creasing the number of current page I itemls used prior to this point on the page. If the error

persists, please contact the Small Computer Systems Programming Group at Digital Equipment

Corporation for assistance.

8-3

CHAPTER 9

OPE R A TI N GIN ST R U CT ION 5

MACRO-8 is a 2-pass assembler with an optional third pass which produces an octal/symbolic assembly

listing. During the first pass, MACRO-8 processes j-he source tape and places all symbol definitions and

macro definitions in its symbol table and macro table, respectively. During the second pass, MACRO-8

processes the source tape and punches the Binary Format Tape. At the end of PASS 2, MACRO-8 prints

the Symbol Table (it is also punched if the 33-ASR PUNCH is turned on). This punched table may be

read by DDT (See Digital-8-4-S). The third pass provides a listing of the generated octal code and the

orig ina I source language.

There are two versions of MACRO-8 which differ with respect to their use of input/output equipment:

the low speed version uses the 33-ASR Reader for a II input and the 33-ASR Punch for a II output; the high

speed version uses the Type 750 Photoelectric Reader for all input, the Type 75 High Speed Punch for

binary output, and the 33-ASR Punch for printable output such as error printouts, symbol table punch ing

and listing, and third pass assembly listing.

NOTE: In the high speed version of flM.CRO-8, the Type 75 Punch may be
used as the printable output device bY' changing the contents of location 0004
from 2600 to 0600. This is useful for long third pass listings, since the punched
output from the 75 Punch can be subsequently listed off-line. It is advised that
th is change not be made unti I pass 3, so that pass 1 and pass 2 error messages
will come out on the 33-ASR.

1. Load MACRO-8 with the Binary Loader (See Digital-8-2-U).

2. Put the source tape in the reader.

3. Set the SWITCH REGISTER to 0200.

4. Depress LOAD ADDRESS.

5. Set switch options (See Table 9-1).

6. Depress S TART.

7. Turn on the 33-ASR reader (if using the low speed version).

9-1

8. When MACRO-8 stops reading (after pn:>cessing a PAUSE statement), place the

next tape in the reQ.der and depress CONTINUE. Repeat this step until all tapes have

been processed.

9. When MACRO-S encounters the terminating character, dollar sign ($), it performs

one of the following sets of events dependinH upon what pass has just been completed.

Proper operator intervention is then required.

Pass Just Completed Events Operator Intervention

2

3

Set up for PASS 2

Terminate current assembly;
punch out page 0 constants,
checksum and trailer code on
binary tape; print and punch
rubout, the a I phanumeri ca IIy
ordered symbol table, an EOT
code, a rubout, and trailer
code; Set up for PASS 1.

Terminate assembly listing:
Set up for PASS 1 .

Turn on 33-ASR punch (in high speed
MACRO-8, symbol table is output via
33-ASR). Put source tape in reader;
hit CONTINUE to enter PASS 2.

(a) If PASS 3 is desired:
(In the high speed version of MACRO-8,
the contents of register 0004 could be
altered at this point to change output
devices). Go to step 2 of the operating
instructions, making sure to set AC
switch 3 up at step 5.

(b) If PASS 3 not desired:
T urn off 33-AS R punch, put next program
to be assembled in the reader. Hit
CONTINUE to enter PASS 1.

Turn off 33-ASR punch; put next
program to be assembled in the reader;
hit CONTINUE to enter PASS 1.

TABLE 9-1 SWITCH OPTIONS

Switch Up Result

None

o

MACRO-8 will enter the next pass as defined in the preceding table. For

example: if the previous assembly was terminated during or at the end of PASS 1,

restarting MACRO-8 with no switches up wou Id cause PASS 2 to be entered.

MACRO-8 initially starts at PASS 1.

Restore symbol table to only the permanent symbols and enter PASS 1.

Enter PASS 2.

9-2

TABLE 9-1 SWITCH OPTIONS {continued}

Switch Up Result

2

3

10

11

Enter PASS 1 without erasing any previously defined symbols.

Enter PASS 3. During PASS 3, MACRO-8 outputs an octal/symbolic listing

of the assembled program. If this pass is terminated before completion, either

switch options 0 or 2 may be used to return to PASS 1 for subsequent assemblies.

MACRO-8 will output as much ()f the source statement {symbolic} as its internal

storage capacity will allow. Because of the internal operations during the

processing of macro statements, the symbolic output may be meaningless.

The double precision integer and double precision floating point processors

are deleted and may be used for storage of user defined symbols. This in­

creases the size of the symbol table by 6410 symbols.

The macro processor and the number processors {above} are deleted and may be

used for storage of user defined symbols. This increases the size of the symbol

table by 12510 symbols.

NOTE: Switches 10 and 11 are sensed whenever PASS 1 is entered. MACRO-8 would have to be reloaded
to handle subsequent programs that use macros, double precision integers, or floating point numbers.

The Binary Format Tape produced during PASS 2 may be loaded by the Binary Loader. When the loading

is completed, the accumulator should contain zero which indicates that it has loaded correctly.

The PASS 3 output is of the following format:

AAAA NNNN {Symbolic} CR/LF

Where AAAA is the absolute octal address and NNNN is the generated code. Literals are somewhat out

of phase with the octal. Example:

*200

0200 1377 TAD (l
0201 3776 DCA A
0376 4000 *4000
0377 0001
4000 0000 A, 0

9-:3

SYMBOL TABLE MODIFICATION

Because of the small amount Of core (60410 registers) remaining to be used for programmer symbols and the

macro table, the following suggestions are offered which may allow a particular installation or individual

to conserve on table space.

By use of the pseudo-ops EXPUNGE and FIXTAB, unnecessary instruction mn~monics can be removed from

the symbol table thus making more space available for programmer defined symbols and macros. This also

decreases assembly time as the never used instruction symbols are not involved in the symbol table searches.

The most often used instruction mnemonics shou Id be assembled first, so that they will be in core next to

the special characters and pseudo-instructions. This is desirable because the symbol search routine starts

searching at the top of the table and works down.

At an installation that does not have a piece of optional equipment available, the corresponding instruction

set can be removed. A symbolic tape beginning with EXPUNGE, containing all necessary instruction mne­

monics, and ending with FIXTAB and the $ sign could be assembled (only PASS 1 is needed) by MACRO-8

prior to any other assemblies. Example:

EXPUNGE
AND=OOOO
TAD=1000
CLA=7200

FIXTAB
$ (The pseudo-op PAUSE could also be used with this tape, the

first of a multiple tape assembly.)

9-·4

APPENDIX 1

MACRO-8 SYMBOL TABLE

IMEMORY REFERENCE INSTRUCTIONS
AND=0000
TAD= 1 ~00
ISZ =2000
DCA=3000
JMS=4000
JMP=5000
IOT=6000
OPR=7000
/MICROINSTRUCTIONS
NOP=7000
CLA=7200
CLL=7100
CMA=7040
CML=7020
HAH =7010
RTR = 7012
RAL=7004
RTL=7006
IAC=7001
SMA=7500
SZA =7440
SPA=7510
SNA=7450
SNL=7420
SZL=7430
SKP=7410
OSR =7404
HLT=7402
/COMBINED MICROINSTRUCTIONS
CIA:7041
LAS:7604
STA =7240
STL:7120
GLJ(: 720.4
/PROGRAM INTERRUPT
ION:6001
101':6002
/ANALOG TO DIGITAL CONVERTER
ADC:6004
IHIGH SPEED PERFORATED TAPE READER
RSF=6011
RRB=6012
RFC:6014
!HIGH SPEED PERFORATED TAPE PUNCH
PSF:6021
PCF:6022
PPC:61l124
PLS =6026
ITELETYPE KEYBOARD/READER
KSF:6031

AI-l

J(CC:6032
J(RS:6034
J(RB:6036
ITELETYPE TELEPRINTER/PUNCH
TSF:6041
TCF:6042
TPC:6044
TLS:6046
/FLOATING POINT INTERPRETIVE COMMANDS
FEXT:0000
FADD: 1000
FSUB:2000
FMPY:3000
FDIV:4000
FGET: 5800
FPUT:6000
FNOR: 7000
10SCILLOSCOPE AND PRECISION CRT
.A>ISPLAY
DCX :6051
DXL:6053
DCY:6061
DYL:6063
DIX :6054
01 Y :6064
DXS:6057
DYS:6067
OSF:6071
DCF:6072
OLB=6074
IINCREMENTAL PLOTTER
PLSF:6501
PLCF:6502
PLPU:650.4
PLPR:6511
PLDU:6512
PLDD:6514
PLUD:6522
PLPL:6521
PLPD:6524
/LINE PRINTER
LCF:6652
LPn :6655
LSF:6661
LCB:6662
LLD=6664
ICARD READER AND CONTROL
CRSF:6632
CERS:6634
CRRB:6671
CRSA:6672

CRSB:6674
ICARD PUNCH CONTROL
CPSF':6631
CPCF':6641
CPSE:6642
CPLB:6644
IAUTOMATIC MAGNETIC TAPE CONTROL
MSCR:67f2l1
MCD:671212
MTS:6706
MSUR :6711
MNC:6712
MTr.:S7IS
MSWF:6721
MDWF:6722
MCWF:6722
MEWF=6722
MIWF=6722
MSEF=6731
MDEF=6732
MCED:6732
MEEF:6732
£111 EF=6732
MTRS:6734
MCC:6141
(WRWC=6742
MRCA:6144
MCA:6745
ICOMBINED INSTRUCTIONS
MMMM:6757
MMMF':6757
IAUTOMATIC MULTIPLY-DIVIDE
CAM:6101
LAR:611214
LMQ:6102
RDA:6112
MUL: 6111
DI V=6121
SZO:6114
SAF=6124
RDM=6122
IMICROTAPE INSTRUCTIONS
MMLS:6751
MMLM:6752
MMLF:6754
MMSF=6761
MMCF=6772
MMSC:6711
MMRS=6714
MMCC:6762

Al-2

I'lMLC:6766
MMML:6766
IMEMORY PAR I TY
SMP:6101
CMP :6102
ITYPE 138/139 ANALOG TO DIGITAL
/CONVERTER
ADSF:6531
ADCV:6532
ADRB:6534
ADCC:6541
ADSC:6542
ADIC:6544
!SERIAL MAGNETI C DRUM SYSTEM
DRCR:6603
DRCW:6685
DRCF:6611
DREF:6612
DRTS:6615
DRSE:6621
DRSC=6622
DRCN:6624
IEXTENDED ARITHMETIC ELEMENT
MUY:7405
DVI :741217
NMI :7411
SHL=7413
ASR=7415
LSR:1417
PlQL=7421
SCA=7441
~A=7501
IMAGNETIC TAPE SYSTEM
TI F'M:6707
TSRD:6716
TSWR=6716
TSDF'=6721
TSSR:6722
TSST:6724
TSRS=6734
TWRT:6731
TCTI :6732
IMEMORY EXTENSION
RDF:6214
RIF=6224
RMF=6244
RIB=6234
CDF:6201
CI F:6202

APPENDIX 2

ASCII CHARACTER SET

These characters may be used in symbols.

Character 8-Bit From 6-Bit From Character 8-Bit From 6-Bit From

A 301 01 S 323 23
B 302 02 T 324 24
C 303 03 U 325 25
D 304 04 V 326 26
E 305 05 W 327 27
F 306 06 X 330 30
G 307 07 Y 331 31
H 310 10 Z 332 32
I 311 11 0 260 60
J 312 12 1 261 61
K 313 13 2 262 62
L 314 14 3 263 63
M 315 15 4 264 64
N 316 16 5 265 65
0 317 17 6 266 66
p 320 20 7 267 67
Q 321 21 a 270 70
R 322 22 9 271 71

These characters are special.

Character a-Bit From 6-Bit From Meaning

241 41 Inclusive OR
" 242 42 Character pseudo-instruction
243 43 Illegal outside of (TEXT) or (") or comment
$ 244 44 End of PASS
% 245 45 Illegal outside of (TEXT) or (") or comment
& 246 46 Logical AND

247 47 Illegal outside of (TEXT) or (") or comment
(250 50 Define literal
) 251 51 Terminate literal
* 252 52 Set origin
+ 253 53 2's complement addition

254 54 Define symbol
255 55 2's complement subtraction
256 56 Has value of CLC

/ 257 57 Start of comment
272 72 Illegal outside of (TEXT) or (") or comment

,~-1

Character 8-Bit From 6-Bit From Meaning

; 273 73 Terminate expression
< 274 74 Start macro definition
= 275 75 Defi ne Parameter
> 276 76 End macro defi n i ti on
? 277 77 Illegal outside of (TEXT) or (") or comment
@ 300 00 Illegal outside of (TEXT) or (") or comment
[333 33 Define page 0 literal

" 334 34 Illegal outside of (TEXT) or (") or comment
] 335 35 End page 0 literal

+ 336 36 Illegal ... 337 37 Illegal
line-feed 212 Used for formatting (ignored)
Return 215 Terminate line
Space 240 Address delimiter or inclusive OR
Rubout 377 Ignored
Form-feed 214 Ignored
Blank 000 Ignored
Code 200 200 Ignored

A2-2

ma aomo
EQUIPMENT
CORPORATION
MAYNARD,MASSACHUSETTS

PRINTED IN U.S.A.

