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APPliCATION NOTE 801 

SCALING FOR FIXED-POINT, 2 1s COMPLEMENT ARITHMETIC 

INTRODUCTION 

in the programming of arithmetic operations on a fixed-point, 2 1s complement arithmetic com­

puter, the position of the scale point; that is, the decimal point in a decimal number or the 

binary point in a binary number, must be kept track of by the programmer. Once numbers 

have been entered in the computer, there is no hardware or movable machine point to repre­

sent the scale points. The scale point exists only in the mind of the programmer, and only by 

keeping track of its imaginary position is he able to correctly interpret the machine's calculated 

resul ts. 

The fundamental properties of scaled numbers can be simply explained if we imagine a hypo­

thetical decimal machine that is capable of manipulating numbers consisting of a sign and five 

decimal digits. In this hypothetical computer, as in real computers, the machine acts as if 

there were a scale point between the sign and the leftmost decimal digit. It is called the 

machine point. Thus, every number contained in the computer can be thought of as a signed 

decimal fraction. 

Example: + 12345 
A 

machine point 

However, the programmer is free to assign a decimal point at any position in the number. For 

example, the above number could represent + 123.45 if the scale point were thought of as being 

three places to the right of the machine point. In that case the number would be written 

+12345 D3, where D3 indicates that the decimal point is three places to the right of the machine 
A 

point. In other words, D3 is the decimal scale factor. Any scale factor may be chosen without 

changing the contents of the machine. 



Examples: + 12345 02 = + 12.345 
A 

+ 12345 04 = + 1234.5 
A 

+ 12345 00 = +. 12345 
A 

The scale factor need not be restricted by the size of the machine word. Numbers in our 

hypothetical computer can be assigned scale factors that exceed five, or the scale factors can 

even be negative. 

Examples: +12345 07 = +1234500. 
A 

+ 12345 0-4 = + .000012345 
A 

Of course, these are merel y programmer IS representations; the mach ine number is always re­

stricted to a sign and five digits. 

Addition and Subtraction 

In addition and subtraction, the scale factors of the numbers to be combined must be identical. 

Thus, +42204 03 added to +23332 03 gives a sum of +65536 03 (422.04 + 233.32 = 655.36). 
A A A 

This rule has the same basis as in ordinary arithmetic. If the scale factors differ, one number 

must be shifted until the scale points are aligned. 

Examples: + 14271 01 (+1.4271) 
A 

+38496 03 (+384.96) 
A 

The number + 14271 01 is brought into the accumulator and shifted right two decimal places 
A 

before addition or subtraction. The scale point sh ifts with the number. 

+001.42 
+384.96 
+386.38 

(+ .00142 03) 
(+ .38496 03) 
(+ .38638 03) 

Notice that if the number of the higher scale factor had been shifted left instead, its two most 

significant digits would have been lost and the resulting sum would have been seriously in error. 

The shifting of numbers off the left end of the accumulator in th is manner is called overflow. 
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Multipl ication 

When two numbers are multiplied together, the scale factor of the product is the algebraic sum 

of the scale factors of the multiplier and multiplicand. 

Example: (+00200 03) x (+0600002)= +00012 05, or 12. 
A A A 

Normally the most significant part of the product is in the AC and the least significant part is 

in another register. Thus, the product in the above example would appear in the computer 

with the machine point between the sign and leftmost digit in the AC. The machine point for 

the least significant portion of the product is ignored, since this involves double-precision 

arithmetic. 

+00012 +00000 05 
A A 

It is important to remember that the two decimal numbers, +00200 and +06000, when multipl ied 
A A 

in the computer will result in the machine product of +00012 +00000 regardless of the positions 
A A 

of the scale points in the multiplier and multiplicand. The scale points must be kept track of by 

the programmer. Thus fractions, as well as integers, can be multiplied in exactly the same way. 

Examples: + 20000 05 x +00060 03 = +00012 +00000 08 (+20, 000 x +.6 = + 12, 000) 
A A A 

+00200 00 x +06000 00 = +00012 +00000 00 (+.002 x +.06 = +.00012) 
A A A 

+00200 0-2 x +60000 0-4 = +00120 +00000 0-6 (+.00002 x +.00006 = +.0000000012) 
A A A 

Oivision 

The remarks above for multiplication apply directly to division, with two exceptions. First, 

the scale point of the result is the algebraic difference of the scale points of the operands. 

Second, the scale point of the divisor must be smaller than the scale point of the dividend; 

that is, the scale point of the quotient must be positive. Again, the contents of the registers 

in our decimal computer will look the same no matter where scale points of the numbers are 

located. 
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SCALING ON A BINARY COMPUTER 

The fundamental properties of scaled numbers in a computer as outl ined above can now be 

appl ied to the binary and octal numbering systems as used in a 2 1s complement, fixed-point, 

binary computer. The decimal scale factor becomes the binory scale factor and is indicated 

by a B in front of the scale factor. The machine point is still between the sign and the leftmost 

digit, but in this case the sign is a binary digit. In a 12-bit computer such as PDP-8, then, 

the leftmost bit is the sign bit and there are eleven bits for the number, with the machine point 

between the first and second bits. 

Because the number system used by the mach i ne is now different from that customari I y used by 

the programmer, conversion becomes one of our new considerations. The programmer may be 

deal ing with decimal or octal numbers, but because the machine is binary, the scale factors 

must be determined from the binary equivalents. As will be explained below, a scaling analysis 

is performed on each problem so that the binary scale factors chosen result in the most efficient 

use of the 12-bit word. Having selected the appropriate scale factor for a given number, it is 

expressed in decimal or octal form followed by the binary scale factor. For example, the 

combination 975 B 10 means that the decimal number 975, when converted to binary form, has a 

binary point ten places to the right of the machine point. 

The decimal number 975 B10 when converted to binary would appear in the machine as: 

011110011110 
A A 

machine point binary point 

Grouping these bits into threes, it is more convenient to write this number in its octal form: 

3636 B10 

Notice that in this octal form, we cannot indicate the point which separates the integral from 

the fractional part, because it comes within one of the octal digits. Also, the sign bit, bit 0, 

becomes part of the leading digit. 
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Negative numbers can be written either one of two ways. For example, consider the octal 

number: 

-3.2 86 

As a positive octal number, 3.2 B6 would be stored in the computer as: 

000 001 101 000 
A 

binary point 

As a negative number in 2 1s complement, it would be stored: 

111110010 111 
A 

+1 
111 110 all 000 

A 

binary point 

In the octal form, it would be written: 

7630 B6 

Again we cannot separate the integral from the fractional part, and the sign is incorporated 

into the leading octal digit. 

The summary of the above rules of binary scal ing is given in Appendix 1. 

OVERFLOW 

In addition to shifting digits off the left end of the accumulator, overflow can also occur in 

arithmetic operations. Suppose we are working with signed quantities and we add the numbers: 

Decimal Value 

18 B5 

5 B5 

23 B5 

Binary Representation 

O~O 010 000 000 

990 101 000 000 

CllO 111 000 000 

5 

Octal Equivalent 

2200 B5 

500 B5 

2700 B5 



Notice that there was no carry to the left of the first machine position (i.e., into the sign bit). 

However, if we try to add the numbers: 

Decimal Value Binary Representation Octal Equivalent 

28 B5 0A1 1 1 00 000 000 3400 B5 

5 B5 OEO 101 000 000 500 B5 

33 B5 lAOO 00 1 000 000 4100 B5 

The result as given in the machine would be erroneous because the magnitude portion of the 

AC is not large enough to hold the sum. This situation is described as overflow. 

If overflow occurs in division, the link is set to 1, no division takes place, and control returns 

to the main program. 

Overflow occurs in the PDP-8 when: 

1. In addition, the sign of the addend and augend are the same and the 

sign of the sum is different and/or the I ink is set. 

2. In division, the magnitude of the divisor is less than that of the dividend 

when the scale factors are the same (i .e., when the quotient ~ 1.0 BO). 

3. A digit is sh if ted off the left end of the accumulator. 

Overflow is something which must be avoided in all normal circumstances. To accomplish this, 

the programmer must have some knowledge of the magnitude of the numbers with which he is 

working and, accordingly, must locate each number at such a scale that overflow cannot occur 

even in the "worst case. II 

In this connection, the concept of "minimum binary scale" is helpful. At a binary scale of 5, 

the largest positive integer that can be contained is: 

all 1 1 1 000 000 
A 

binary point 

which in decimal is 31 (i.e., 25 -1). 
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T.he largest positive integers which can be contained at other binary scales are tabulated in 

Appendix 2. If, for example, we have the number 75 to place in the computer, the table in 

Appendix 2 indicates that it can be contained at a binary scale of 7 or higher. A binary scale 

of 6 or lower would not be sufficient to hold a number of that magnitude. 

If a binary scale factor greater than 7 were used, the number would be shifted farther to the 

right than necessary resulting in underflow. The number of significant figures that can be 

carried in the fractional part is thereby reduced. If the number 75 were carried as 75 B7, 

there is room in the machine word for fractional results since four binary bits can follow the 

binary point; if it were carried 75 B11, there is no provision for a fractional part in single­

precision arithmetic. 

The programmer may not always be successful in his attempts to arrange numbers so that over­

flow will not occur. If overflow does occur, the PDP-8 does not halt but an indication of some 

type is given. The type of indication depends upon the operation which produced the overflow. 

If a programmer suspects that overflow may occur as a result of an addition or division, he 

should follow such an operation by a program sequence that would correct the error or at least 

indicate that such an overflow took place. 

The proper location of the binary point and the avoidance of overflow, at best, takes some 

effort on the part of the programmer. 

PROGRAMMING TECHNIQUES FOR SCALING 

General 

A complete set of shift subroutines in both single and double precision is available from the 

PDP-8 Library (Digital-8-8-U-Sym) for use in scal ing numbers both before and after arithmetic 

operations. When using the routines, it is important to keep in mind that a left shift of one 

position decreases the binary scale factor by one. Similarly a right shift of one position in­

creases the binary scale factor by one. 
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One technique used in seal ing is to express numbers in a symbol ic form that would clear! y 

impl y the position of the binary point, The general form is: 

where: X is the absolute value of the number, 

2q is the factor such that q is the smallest integer that makes 2q 

greater than the maximum val ue of X, 

q corresponds to the minimum binary scale factor which was pre­

viousl y discussed, 

XI is the scaled form of X (i ,e" X is XI with the binary point 

q places to the right of the machine point), 

A seal ing analysis should be performed on each problem to insure maximum accuracy (i ,e" the 

most efficient use of the binary word so that there are no leading insignificant bits), At the 

same time, the programmer must insure that there will be no loss of the most significant bits by 

overflow at any step in the calculation, These are the two bounds within which the programmer 

must keep the numbers as they are stored and manipulated in the machine, 

Analysis 

In the programming of any given problem or equation, there are three steps prior to the actual 

coding which should be taken to insure maximum accuracy and to prevent error due to over­

flow, 

Step 1: Determine the limits of the values of all numbers to be used in the 

problem (maximum and minimum), 

Step 2: Determine the scale factors and set up the relationships between the 

true numbers and the scaled fractions, 

Step 3: Substitute the scaled quantities into the original equation and can­

cel where possible, The scale factors that do not cancel specify the number 
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of required shift operations. If the scale factor of a term is negative, the 

number must be shifted right before manipulation is performed. If the scale 

factor is positive, the number must be shifted left if it is to be stored at 

minimum binary scale. 

Addition Seal ing 

As emphasized before, quantities to be added {or subtracted} must have the same scale factors. 

However, in order to prevent an overflow in the summing process, it is not enough to scale the 

final sum according to its limit. Generally the program must be scaled by the largest limit 

which appl ies to any element in the sum or partial sum generated during the summing process. 

Example 1 

Program the operation spec ified by: 

A= 
n 
E a. 

1 
i= 1 

where a. < K for i = 1, 2, 3, •••. n. The maximum value of A is < K· n, that is, the maxi-
1 

mum value of the sum is obtained by multiplying the upper limit of any element in the list to 

be summed by the number of elements in the list. 

1. Statement 

Solve the above problem for n = 10 and K = 100.0. 

2. Analysis 

Step 1: 

Step 2: 

a. < 100.0 for i = 1, 2, 3, ••• 10 
1-

Therefore, A< K·n 100.0·10= 1000 

A=2 10 ·N 
7 

a. = 2 • a. 
1 1 
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Step 3: 
10 7 1 7 1 7 1 

2 AI = 2 a 1 + 2 a2 + ..•... + 2 a 10 

3. Machine Instruction Coding 

Assume that the ten values of the numbers are stored in consecutive loca­

tions starting at location Alas a. B7 and that the sum is stored in A. 
I 

ADDUP, CLA II NITIALIZE 
DCA A 
TAD M12 
DCA COUNTR 
TAD ADR1 
DCA POINTR 

LOOP, TAD M3 ISUMMATION LOOP 
JMS SPSR IENTER SHIFT RIGHT SUBROUTINE 
POINTR 
TAD A 
DCA A 
ISZ POINTR 
ISZ COUNTR 
JMP LOOP 

IEXIT 

POINTR, 0 ICONSTANTS 
M3, 0-3 
COUNTR, 0 
M12, 0-12 
ADR 1, A1 
A, 0 

Multiplication Scaling 

When multipl ication is performed in digital computers, note that the product of two IIn ll bit 

numbers is one 112n ll bit number. Usually the high-order portion is left in the AC and the 

low-order portion is stored in a specified register. The fundamental rule, again, is: 
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Scale factor of multiplier + scale factor of multiplicand = scale factor of 

product. 

l. Statement 

Program the multipl ication operation: 

x = a.b 

2. Analysis 

Step 1: a<400.0 
b<1000.0 

Therefore x<400,000. 

9 I 

Step 2: a = 2 a 

b = 2 10 b 
I 

17 I 

x = 2 x 

17 I 9 I 
• 210 b 

I 

Step 3: 2 x = 2 a 
I 2 I I 

X = 2 a . b 

3. Machine Instruction Coding 

Assume that the val ues of a and b are stored in locations A and B. Assume 

that they are scaled B9 and B10, respectively. 

SETMUL: CLA 
TAD A 
JMS MULT 

B, 0 
DCA SVA /MOVE PRODUCT TO TEMP STORE 
TAD MP1 
DCA SVA +1 
TAD M2 
JMS DPSL /SHIFT PRODUCT LEFT 2 PLACES 
SVA 
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SVA, 0 
o 

M2, 0-2 

J\Jter the multipl ication (22-bit signed product), the shift brings two more significant bits into 

the high-order portion of the product. Knowing the maximum value of y more definitely (i .e., 

if a and b could never be maximum at the same time) would allow for even more accuracy. In 

this example, the limit of y was not known so it was assumed to be 400),000 as calculated in 

Step 1 of the analysis. 

Division Seal ing 

When division is performed in digital computers, the dividend is a "2n" bit word and the 

divisor is an "n" bit word. 

Remember that in division the divisor must be greater than the dividend for division to occur 

without overflow. Therefore, the programmer should scale the values so that division will 

occur with maximum dividend and minimum divisor. For example, if both dividend and div­

isor are stored at minimum binary scale, the dividend should be shifted one position to the 

right by a double-shift subroutine before division to insure that overflow does not take place. 

1. Statement 

Program the division operation: 

2. Analysis 

Step 1: m<24, 000 
60<n<l,OOO 

Therefore, 24<y<400 

y = m 

n 
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Step 2: 
15 

m = 2 m l 

10 
n = 2 nl 

6 
y = 2 y' 

Step 3: 
6 I _ 215 m' = 25 m I 

2 y - 10 -;:;-' 
2 n' 

-1 
In this example, the 2 implies that the quotient would have one significant bit to the left 

of the machine point (i .e., in the sign bit). Thus, the division would result in overflow. 

This problem could be averted by shifting the dividend right one position, as previously 

mentioned, before division takes place. 

3. Machine Instructions 

Assume that the single-precision division subroutine (Digital 8-12-F) 

is used. The dividend is stored in locations num 1 and num 1 + 1 at a 

scale factor of B15 and the divisor is stored in num2 at a scale factor 

of B 1 O. 

SETDIV, CLA CMA /LOAD -1 INTO AC 
JMS DPSR /SHIFT RIGHT SUBROUTI NE 
NUM1 
DCA SVA /SAVE MSB 
TAD LSH /MOVE LSB 
DCA CALDIV + 1 
TAD SVA 

CALDIV, JMS DIV /DIVIDE B16/B10 = B6 
0 

NUM2, 0 
DCA ANS /SAVE QUOTIENT 
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APPENDIX 1 

RULES OF BINARY SCALING 

ADDITION 

The binary scale factor of the addend, augend, and sum are alike. 

23.9 B8 + 169.7 B8 = 146.2 B8 

SUBTRACT ION 

The binary scale factor of the minuend, subtrahend, and difference are alike. 

107.8 B7 - 23.2 B7 = 84.6 B7 

MUL TIPLICATION 

The binary scale factor of the product is the sum of the binary scale factor of the multiplier 

and multiplicand. 

1 2 . 2 B6 x 3 B 7 = 36. 6 B 1 3 

24.9 B5 x 135.5 B8 = 3373.95 B13 

(minimum binary scale) 

DIVISION 

The binary scale factor of the quotient is the binary scale factor of the dividend minus the 

binary scale factor of the divisor. 

88 B 1 5 -:- 11 B5 = 8 B 1 0 
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Binary Scale 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

. 16 
17 
18 
19 

.20 
21 
22 
23 

APPENDIX 2 

MINIMUM BINARY SCALE 

Maximum Decimal Capacity (2n -1) 

15 

1 
3 
7 

15 
31 
63 

127 
255 
511 

1 023 
2047 
4095 
8 191 

16383 
32767 
65535 

131 071 
262 143 
524287 

1 048 575 
2 097 151 
4 194303 
8 388 607 



APPLICATION NOTE 802 

The question of matrix inversion comes up occasionally concerning the PDP-8. 
There is no general answer to the matrix-inversion problem. The approach depends upon the 
"behavior" of the given matrix. Basically, the problem is: 

Given a matrix A, find a matrix B, such that 
AB = I where I is the unit matrix. 

There are three basic approaches. All numbers below are decimal, all operations 
are floating-point without EAE. 

GAUSS - JORDAN METHOD 

Time ~ (2.5) (1.46 mils) (M3) where the matrix is M x M 

Storage -;;:::::. 3M2 + 630 + about 550 
(This does not include input/output which would require about 

450 locations.) 

For a lOx 10 (well behaved) matrix: 

Time =3.66 seconds 

Storage ~ 1480 words + 450 for I/O 

For a 20 x 20 (well behaved) matrix: 

Time 9:;::; 29.28 seconds 

Storage ~ 2380 words + 450 for I/O 

RANK ANNIHILATION 

Time ~ 5M3 (1 .96 mils) where the matrix is M x M 
2 

Storage ~6M + 12M + 630 + about 400 words 
(This does not include I/O which would require about 450 
locations. ) 

For a lOx lOwell behaved nonsymmetric matrix: 

Time -;;:::::"9.80 seconds 

Storage ~ 1750 + 450 for I/O 

For a 20 x 20 well behaved nonsyrnetric matrix: 

Time :;:::::::. 78.4 seconds 

Storage ~3670 + 450 for I/O 
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GAUSS - SEIDEL (ITERATIVE METHOD) 

Time ~ M2 (.88 mils) per iteration (M x M matrix) 
(It would be impossible to estimate the number of iterations re­
quired. The method may not work in some cases.) 

Storage ~ 3M2 + 6M + 630 + about 200 (not including I/O) 

For a 10 x 10 matrix: 

Time ::::::-88 mils / iteration 

Storage ~ 1190 + 450 for I/O 

For 20 x 20 matrix: 

Time ~ 352 mils / iteration 

Storage ~ 2150 + 450 for I/O 

Generally, a matrix is well behaved if the elements along the major diagonal 
dominate are greater than the other elements of the matrix. As nondiagonal elements become 
larger than the diagonal elements, the matrix becomes ill behaved and it becomes increasingly 
difficult to invert. 
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APPLICATION NOTE 804 

THROUGHPUT TO I BM-COMPATI BLE MAGNETIC TAPE 

A common data-acquistion situation is the real-time conversion of an analog 
signal(s) to digital form together with the recording of the resulting digital information on mag­
netic tape in I BM-compatible format (I BM Binary). 

A typica I system consists of a 138 B Converter, PDP-8, 57 A and 570 Tape T rans­
port. The use of the 57 A permits the controll ing program to load one core buffer whi Ie the 
57 A writes (via the data break) the data in a second core buffer on tape and produces the in­
terrecord gap. The function of the buffers is then reversed by the program. 

Within a record, the character density must conform to I BM standards; 200, 556, 
or 800 characters to the inch. I BM specifications govern the longitudinal tolerance as each 
character may be recorded. Each interrecord gap must be regardless of density (within allow­
able tolerance) 3/4 inch to conform to IBM standards. These comments apply for tape that will 
be processed on IBM Magnetic Tape Units IBM 72911, IV, V, and VI. 

In a given file on tape (disregarding the end-of-file gap and character), the 
effective density of recorded information is a function of the relationship between record length 
as compared to gap length. For example a file consisting of a single long record with no record 
gaps would consist entirely of data or would be 100% efficient. On the other hand, a file con­
sisting of many 3/4-inch records would be only 50% efficient since half of the available tape 
would be used for the 3/4-inch interrecord gaps required by each record. 

Wh i I e the 57 A is wri ti ng the contents of the one bu ffer on tape and then wri ti ng 
the blank interrecord gap, the second buffer is being filled by information coming from the 
A-to-D converter. Since the conversion rate must be constant, this process continues both dur­
ing the emptying of the first buffer and during gapping. There is, therefore, a difference in 
the rate at which data enters one buffer from the A-to-D converter and the rate at which data 
as distinguished from gap is written on tape from the second buffer. 

Consider a 570 Transport with a speed of 75 ips recording at 200 cpi. The number 
of characters that may be recorded per second is equal to: 

75 x 200 = 15000 cps 

Suppose, though, that the situation discussed above (3/4-inch records separated 
by 3/4-inch gaps) existed. The actual conversion rate (assuming a 12-bit conversion) would 

be: 

15,000 x 1/2 x 1/2 = 3750 conversions per second 

The second factor of 1/2 arises because only half of the tape is available for 
actual data (0.50 duty factor) due to the interrecord gaps. 

Figure 1 illustrates the duty factor as a function of characters per record for all 
three standard I BM densities. A 3/4-inch interrecord gap is assumed. 

18 



DUTY FACTOR (EFFECTIVENESS) 

256 512 1024 2048 4096 

200 bpi .631 .773 .en .932 .985 

556 bp; .311 .,51 .116 .831 .,08 

800 bpi . 29' A • .131 .773 "'12 

256 512 1024 2048 .c096 

CHAR.lRECORD 

Note that these rates could never be realized in practice with a double-buffer 
type of throughput since the assumption of the necessity of a double buffer implies that at least 
two records-an ideal case and therefore one i nterrecord gap-wi II be wri tten. 

Figure 2 lists the throughput rates which could be achieved if no interrecord gaps 
were required. Next, the duty factor is used to calcu late actual (or effective) character rates 
as a function of characters per record and this information is plotted. Consider the top curve of 
Figure 3. In this case the nominal (or ideal) character rate is 90,000 cps. The vertical bars 
at the two "ends" of the curve illustrate how far below the nominal character rate the actual 
character rate is at any point. Note that for small records the actual character rate falls off 
very rapid Iy. 

Writing Rates (cps) 

200 bpi 556 bpi 800 bpi 

45 ips 9,000 25,000 36,000 
75 ips 15,000 41,700 60,000 

112.5 ips 22,500 62,500 90,000 

Effect of Record Length 

256 512 1024 2048 4096 

45 ips 200 bpi 5,670 6,960 7,850 8,380 8,680 
556 bpi 9,520 13,800 17,810 20,800 22,700 
800 bpi 10,770 16,600 22,700 27,850 31,400 

75 ips 200 bpi 9,450 11,600 13,100 13,990 14,490 
556 bpi 15,900 23,000 29,530 34,670 37,870 
800 bpi 17,950 27,640 37,800 46,400 52,300 

112.5 ips 200 bpi 14, 180 17,400 19,620 20,970 21,730 
556 bpi 23,800 34,500 44,500 52,000 56,800 
800 bpi 26,900 41,500 56,700 69,600 78,400 
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One ii-': cresting aspect of Figure 2 > that by proper choice of record length (or 
core buffer size, see below), tape speed, and density, a desired ADC conversion rate may be 
selected. Note the horizontal line at 40,000 cps. Assuming 12-bit conversions, the conver­
sion rate here would be 20,000 conversions per second and this could be achieved by using a 
double buffer, each one of which was capable of holding the number of characters indicated on 
the lower scale below the intersection of the horizontal line (at 40,000 cps) with the respective 
equipment curves. 

80,000 

70,000 

o 60,000 
Z 
o 
u 

'" '" a: 

'" "-

50,000 

'" 40,000 

a: 

'" f-
U 
c( 
a: 
c( 
:x: 
u 

30,000 

20,000 

10,000 

________ .-.75/Z00 

______ ~.-. 45/Z00 

o~~~~---------------------
256512 1024 2048 4096 

CHARACTERS / RECORD 

Figure 4 defines certain detai Is of I BM-compatible tapes. Note that the longi­
tudinal check character of the end of a record is separated from the other characters in a record 
by a gap that is about four times as large as the intercharacter spacing within a record (regard­
less of density) and that the record gap proper starts following the check character. (No longi­
tudinal check bit is written if the longitudinal count in the associated track is even). 

This fact is of consequence only if records composed of an extremely few characters 
are of concern and would effect the numerical data used to construct Figure 2 in the immediate 
vicinity (i .e. 1 just to the right) of the vertical scale. 

Figure 5 illustrates the time. avai lable between analog-to-digital conversions as 
a function of tape speed, density and buffer size. Figure 5 may be used to determine how many 
machine cycles are available for programming in throughput situations of this nature. 
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NOTES: 

1. Tape is shown with oxide side up, Read/Write head on same side as oxide. 

2. Tape shown representing 1 bit in all tracks, NRZI recardingj 1 bit produced by reversal of flux polarity, tape 
fully saturated in each direction. 

3. Variation permitted in the location of the Check Character assuming nominal values for tape speed and all os­
cillator timings in the Tape Control. No longitudinal check bit is written if longitudinal count in the track is even. 

4. Mylar Tape: 3/4", +5/32", -1/16". Acetate Tape. 3/4", +5/32", -1/8". Zero Backward creep. Forward 
creep less than 0.2" per cycle. 

5. Dimensions of tape measured at 50% relative humidity and 70°F. Tape thickness (Mylar or IBM HD) is 0.0022", 
+.0003", -.0004". 

6. To insure complete interchangeability, skew of each tape unit is adjusted to 0.25 fJsec or less at the read bus of 
the tape unit when reading-while-writing continuous 1 bits. Maximum skew for any reel of tape, read by any tope 
unit connected to any tape control, must be equal to or less than the read character gate for the bit density and tape 
speed at wh i ch the tape was wri tten. 

7. Write Skew Gate, ±5% 
729 II or V, 556 cpi 

729 II or V, 200 epi 
729 IV or VI, 556 epi 
729 IV or VI, 200 epi 
729 V, BOO epi 
729 VI, 800 epi 

Time from First Bit 
Rise Fall 

6.3 fJsec 16.1 fJsec 
16.9fJsec 44.0flsec 
4.3 fJsec 10.B fJsec 

11.4fJsec 29.5fJsec 
6.3 flsec 10.4 flsec 
4.0 fJsee 6.B flsee 

When reading, while writing coded information, all bits within a character must be received before the rise of the 
write skew gate. 

8. Read or Write Character Gate, 
729 II or IV, 556 epi 
729 II or V, 200 cpi 
729 IV or VI, 556 epi 
729 IV or VI, 200 cpi 
729 V, BOOepi 
729 VI, BOO cpi 

±5% 
10.5 fJsec 
29.2 flsec 
7.5 fJsec 

21.0 fJsec 
7.9 fJsec 
5.4 flsec 

9. Time Between Characters: Writing-shall not be less than fall of the skew gate timing plus 1 fJsee, including vari­
ations due to tape speed, skew and bit configuration. Reading-shall not be less than read character gate timing plus 
I fJsec, including variations due to tape speed, skew, and bit configuration. 
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It must be emphasized that the data graphed as continuous lines in Figures 1, 3, 
and 5 actually consists for each curve of a series of discrete points, which are shown as con­
tinuous lines for convenience only. For example there can never be a record consisting of 
356.135 characters, and no point associated with this number of characters is actually present 
or intended to be present in the curves of Figure 1. 
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