
IDENTIFICATION

Product Name:

Product Code:

Date Created:

Maintainer:

Appl ication Notes

D EC-08- NAAA-D

July 12,1965

Special Systems Group

PDP-B
LIBRARY

APPliCATION NOTE 801

SCALING FOR FIXED-POINT, 2 1s COMPLEMENT ARITHMETIC

INTRODUCTION

in the programming of arithmetic operations on a fixed-point, 2 1s complement arithmetic com­

puter, the position of the scale point; that is, the decimal point in a decimal number or the

binary point in a binary number, must be kept track of by the programmer. Once numbers

have been entered in the computer, there is no hardware or movable machine point to repre­

sent the scale points. The scale point exists only in the mind of the programmer, and only by

keeping track of its imaginary position is he able to correctly interpret the machine's calculated

resul ts.

The fundamental properties of scaled numbers can be simply explained if we imagine a hypo­

thetical decimal machine that is capable of manipulating numbers consisting of a sign and five

decimal digits. In this hypothetical computer, as in real computers, the machine acts as if

there were a scale point between the sign and the leftmost decimal digit. It is called the

machine point. Thus, every number contained in the computer can be thought of as a signed

decimal fraction.

Example: + 12345
A

machine point

However, the programmer is free to assign a decimal point at any position in the number. For

example, the above number could represent + 123.45 if the scale point were thought of as being

three places to the right of the machine point. In that case the number would be written

+12345 D3, where D3 indicates that the decimal point is three places to the right of the machine
A

point. In other words, D3 is the decimal scale factor. Any scale factor may be chosen without

changing the contents of the machine.

Examples: + 12345 02 = + 12.345
A

+ 12345 04 = + 1234.5
A

+ 12345 00 = +. 12345
A

The scale factor need not be restricted by the size of the machine word. Numbers in our

hypothetical computer can be assigned scale factors that exceed five, or the scale factors can

even be negative.

Examples: +12345 07 = +1234500.
A

+ 12345 0-4 = + .000012345
A

Of course, these are merel y programmer IS representations; the mach ine number is always re­

stricted to a sign and five digits.

Addition and Subtraction

In addition and subtraction, the scale factors of the numbers to be combined must be identical.

Thus, +42204 03 added to +23332 03 gives a sum of +65536 03 (422.04 + 233.32 = 655.36).
A A A

This rule has the same basis as in ordinary arithmetic. If the scale factors differ, one number

must be shifted until the scale points are aligned.

Examples: + 14271 01 (+1.4271)
A

+38496 03 (+384.96)
A

The number + 14271 01 is brought into the accumulator and shifted right two decimal places
A

before addition or subtraction. The scale point sh ifts with the number.

+001.42
+384.96
+386.38

(+ .00142 03)
(+ .38496 03)
(+ .38638 03)

Notice that if the number of the higher scale factor had been shifted left instead, its two most

significant digits would have been lost and the resulting sum would have been seriously in error.

The shifting of numbers off the left end of the accumulator in th is manner is called overflow.

2

Multipl ication

When two numbers are multiplied together, the scale factor of the product is the algebraic sum

of the scale factors of the multiplier and multiplicand.

Example: (+00200 03) x (+0600002)= +00012 05, or 12.
A A A

Normally the most significant part of the product is in the AC and the least significant part is

in another register. Thus, the product in the above example would appear in the computer

with the machine point between the sign and leftmost digit in the AC. The machine point for

the least significant portion of the product is ignored, since this involves double-precision

arithmetic.

+00012 +00000 05
A A

It is important to remember that the two decimal numbers, +00200 and +06000, when multipl ied
A A

in the computer will result in the machine product of +00012 +00000 regardless of the positions
A A

of the scale points in the multiplier and multiplicand. The scale points must be kept track of by

the programmer. Thus fractions, as well as integers, can be multiplied in exactly the same way.

Examples: + 20000 05 x +00060 03 = +00012 +00000 08 (+20, 000 x +.6 = + 12, 000)
A A A

+00200 00 x +06000 00 = +00012 +00000 00 (+.002 x +.06 = +.00012)
A A A

+00200 0-2 x +60000 0-4 = +00120 +00000 0-6 (+.00002 x +.00006 = +.0000000012)
A A A

Oivision

The remarks above for multiplication apply directly to division, with two exceptions. First,

the scale point of the result is the algebraic difference of the scale points of the operands.

Second, the scale point of the divisor must be smaller than the scale point of the dividend;

that is, the scale point of the quotient must be positive. Again, the contents of the registers

in our decimal computer will look the same no matter where scale points of the numbers are

located.

3

SCALING ON A BINARY COMPUTER

The fundamental properties of scaled numbers in a computer as outl ined above can now be

appl ied to the binary and octal numbering systems as used in a 2 1s complement, fixed-point,

binary computer. The decimal scale factor becomes the binory scale factor and is indicated

by a B in front of the scale factor. The machine point is still between the sign and the leftmost

digit, but in this case the sign is a binary digit. In a 12-bit computer such as PDP-8, then,

the leftmost bit is the sign bit and there are eleven bits for the number, with the machine point

between the first and second bits.

Because the number system used by the mach i ne is now different from that customari I y used by

the programmer, conversion becomes one of our new considerations. The programmer may be

deal ing with decimal or octal numbers, but because the machine is binary, the scale factors

must be determined from the binary equivalents. As will be explained below, a scaling analysis

is performed on each problem so that the binary scale factors chosen result in the most efficient

use of the 12-bit word. Having selected the appropriate scale factor for a given number, it is

expressed in decimal or octal form followed by the binary scale factor. For example, the

combination 975 B 10 means that the decimal number 975, when converted to binary form, has a

binary point ten places to the right of the machine point.

The decimal number 975 B10 when converted to binary would appear in the machine as:

011110011110
A A

machine point binary point

Grouping these bits into threes, it is more convenient to write this number in its octal form:

3636 B10

Notice that in this octal form, we cannot indicate the point which separates the integral from

the fractional part, because it comes within one of the octal digits. Also, the sign bit, bit 0,

becomes part of the leading digit.

4

Negative numbers can be written either one of two ways. For example, consider the octal

number:

-3.2 86

As a positive octal number, 3.2 B6 would be stored in the computer as:

000 001 101 000
A

binary point

As a negative number in 2 1s complement, it would be stored:

111110010 111
A

+1
111 110 all 000

A

binary point

In the octal form, it would be written:

7630 B6

Again we cannot separate the integral from the fractional part, and the sign is incorporated

into the leading octal digit.

The summary of the above rules of binary scal ing is given in Appendix 1.

OVERFLOW

In addition to shifting digits off the left end of the accumulator, overflow can also occur in

arithmetic operations. Suppose we are working with signed quantities and we add the numbers:

Decimal Value

18 B5

5 B5

23 B5

Binary Representation

O~O 010 000 000

990 101 000 000

CllO 111 000 000

5

Octal Equivalent

2200 B5

500 B5

2700 B5

Notice that there was no carry to the left of the first machine position (i.e., into the sign bit).

However, if we try to add the numbers:

Decimal Value Binary Representation Octal Equivalent

28 B5 0A1 1 1 00 000 000 3400 B5

5 B5 OEO 101 000 000 500 B5

33 B5 lAOO 00 1 000 000 4100 B5

The result as given in the machine would be erroneous because the magnitude portion of the

AC is not large enough to hold the sum. This situation is described as overflow.

If overflow occurs in division, the link is set to 1, no division takes place, and control returns

to the main program.

Overflow occurs in the PDP-8 when:

1. In addition, the sign of the addend and augend are the same and the

sign of the sum is different and/or the I ink is set.

2. In division, the magnitude of the divisor is less than that of the dividend

when the scale factors are the same (i .e., when the quotient ~ 1.0 BO).

3. A digit is sh if ted off the left end of the accumulator.

Overflow is something which must be avoided in all normal circumstances. To accomplish this,

the programmer must have some knowledge of the magnitude of the numbers with which he is

working and, accordingly, must locate each number at such a scale that overflow cannot occur

even in the "worst case. II

In this connection, the concept of "minimum binary scale" is helpful. At a binary scale of 5,

the largest positive integer that can be contained is:

all 1 1 1 000 000
A

binary point

which in decimal is 31 (i.e., 25 -1).

6

T.he largest positive integers which can be contained at other binary scales are tabulated in

Appendix 2. If, for example, we have the number 75 to place in the computer, the table in

Appendix 2 indicates that it can be contained at a binary scale of 7 or higher. A binary scale

of 6 or lower would not be sufficient to hold a number of that magnitude.

If a binary scale factor greater than 7 were used, the number would be shifted farther to the

right than necessary resulting in underflow. The number of significant figures that can be

carried in the fractional part is thereby reduced. If the number 75 were carried as 75 B7,

there is room in the machine word for fractional results since four binary bits can follow the

binary point; if it were carried 75 B11, there is no provision for a fractional part in single­

precision arithmetic.

The programmer may not always be successful in his attempts to arrange numbers so that over­

flow will not occur. If overflow does occur, the PDP-8 does not halt but an indication of some

type is given. The type of indication depends upon the operation which produced the overflow.

If a programmer suspects that overflow may occur as a result of an addition or division, he

should follow such an operation by a program sequence that would correct the error or at least

indicate that such an overflow took place.

The proper location of the binary point and the avoidance of overflow, at best, takes some

effort on the part of the programmer.

PROGRAMMING TECHNIQUES FOR SCALING

General

A complete set of shift subroutines in both single and double precision is available from the

PDP-8 Library (Digital-8-8-U-Sym) for use in scal ing numbers both before and after arithmetic

operations. When using the routines, it is important to keep in mind that a left shift of one

position decreases the binary scale factor by one. Similarly a right shift of one position in­

creases the binary scale factor by one.

7

One technique used in seal ing is to express numbers in a symbol ic form that would clear! y

impl y the position of the binary point, The general form is:

where: X is the absolute value of the number,

2q is the factor such that q is the smallest integer that makes 2q

greater than the maximum val ue of X,

q corresponds to the minimum binary scale factor which was pre­

viousl y discussed,

XI is the scaled form of X (i ,e" X is XI with the binary point

q places to the right of the machine point),

A seal ing analysis should be performed on each problem to insure maximum accuracy (i ,e" the

most efficient use of the binary word so that there are no leading insignificant bits), At the

same time, the programmer must insure that there will be no loss of the most significant bits by

overflow at any step in the calculation, These are the two bounds within which the programmer

must keep the numbers as they are stored and manipulated in the machine,

Analysis

In the programming of any given problem or equation, there are three steps prior to the actual

coding which should be taken to insure maximum accuracy and to prevent error due to over­

flow,

Step 1: Determine the limits of the values of all numbers to be used in the

problem (maximum and minimum),

Step 2: Determine the scale factors and set up the relationships between the

true numbers and the scaled fractions,

Step 3: Substitute the scaled quantities into the original equation and can­

cel where possible, The scale factors that do not cancel specify the number

8

of required shift operations. If the scale factor of a term is negative, the

number must be shifted right before manipulation is performed. If the scale

factor is positive, the number must be shifted left if it is to be stored at

minimum binary scale.

Addition Seal ing

As emphasized before, quantities to be added {or subtracted} must have the same scale factors.

However, in order to prevent an overflow in the summing process, it is not enough to scale the

final sum according to its limit. Generally the program must be scaled by the largest limit

which appl ies to any element in the sum or partial sum generated during the summing process.

Example 1

Program the operation spec ified by:

A=
n
E a.

1
i= 1

where a. < K for i = 1, 2, 3, •••. n. The maximum value of A is < K· n, that is, the maxi-
1

mum value of the sum is obtained by multiplying the upper limit of any element in the list to

be summed by the number of elements in the list.

1. Statement

Solve the above problem for n = 10 and K = 100.0.

2. Analysis

Step 1:

Step 2:

a. < 100.0 for i = 1, 2, 3, ••• 10
1-

Therefore, A< K·n 100.0·10= 1000

A=2 10 ·N
7

a. = 2 • a.
1 1

9

Step 3:
10 7 1 7 1 7 1

2 AI = 2 a 1 + 2 a2 + ..•... + 2 a 10

3. Machine Instruction Coding

Assume that the ten values of the numbers are stored in consecutive loca­

tions starting at location Alas a. B7 and that the sum is stored in A.
I

ADDUP, CLA II NITIALIZE
DCA A
TAD M12
DCA COUNTR
TAD ADR1
DCA POINTR

LOOP, TAD M3 ISUMMATION LOOP
JMS SPSR IENTER SHIFT RIGHT SUBROUTINE
POINTR
TAD A
DCA A
ISZ POINTR
ISZ COUNTR
JMP LOOP

IEXIT

POINTR, 0 ICONSTANTS
M3, 0-3
COUNTR, 0
M12, 0-12
ADR 1, A1
A, 0

Multiplication Scaling

When multipl ication is performed in digital computers, note that the product of two IIn ll bit

numbers is one 112n ll bit number. Usually the high-order portion is left in the AC and the

low-order portion is stored in a specified register. The fundamental rule, again, is:

10

Scale factor of multiplier + scale factor of multiplicand = scale factor of

product.

l. Statement

Program the multipl ication operation:

x = a.b

2. Analysis

Step 1: a<400.0
b<1000.0

Therefore x<400,000.

9 I

Step 2: a = 2 a

b = 2 10 b
I

17 I

x = 2 x

17 I 9 I
• 210 b

I

Step 3: 2 x = 2 a
I 2 I I

X = 2 a . b

3. Machine Instruction Coding

Assume that the val ues of a and b are stored in locations A and B. Assume

that they are scaled B9 and B10, respectively.

SETMUL: CLA
TAD A
JMS MULT

B, 0
DCA SVA /MOVE PRODUCT TO TEMP STORE
TAD MP1
DCA SVA +1
TAD M2
JMS DPSL /SHIFT PRODUCT LEFT 2 PLACES
SVA

11

SVA, 0
o

M2, 0-2

J\Jter the multipl ication (22-bit signed product), the shift brings two more significant bits into

the high-order portion of the product. Knowing the maximum value of y more definitely (i .e.,

if a and b could never be maximum at the same time) would allow for even more accuracy. In

this example, the limit of y was not known so it was assumed to be 400),000 as calculated in

Step 1 of the analysis.

Division Seal ing

When division is performed in digital computers, the dividend is a "2n" bit word and the

divisor is an "n" bit word.

Remember that in division the divisor must be greater than the dividend for division to occur

without overflow. Therefore, the programmer should scale the values so that division will

occur with maximum dividend and minimum divisor. For example, if both dividend and div­

isor are stored at minimum binary scale, the dividend should be shifted one position to the

right by a double-shift subroutine before division to insure that overflow does not take place.

1. Statement

Program the division operation:

2. Analysis

Step 1: m<24, 000
60<n<l,OOO

Therefore, 24<y<400

y = m

n

12

Step 2:
15

m = 2 m l

10
n = 2 nl

6
y = 2 y'

Step 3:
6 I _ 215 m' = 25 m I

2 y - 10 -;:;-'
2 n'

-1
In this example, the 2 implies that the quotient would have one significant bit to the left

of the machine point (i .e., in the sign bit). Thus, the division would result in overflow.

This problem could be averted by shifting the dividend right one position, as previously

mentioned, before division takes place.

3. Machine Instructions

Assume that the single-precision division subroutine (Digital 8-12-F)

is used. The dividend is stored in locations num 1 and num 1 + 1 at a

scale factor of B15 and the divisor is stored in num2 at a scale factor

of B 1 O.

SETDIV, CLA CMA /LOAD -1 INTO AC
JMS DPSR /SHIFT RIGHT SUBROUTI NE
NUM1
DCA SVA /SAVE MSB
TAD LSH /MOVE LSB
DCA CALDIV + 1
TAD SVA

CALDIV, JMS DIV /DIVIDE B16/B10 = B6
0

NUM2, 0
DCA ANS /SAVE QUOTIENT

13

APPENDIX 1

RULES OF BINARY SCALING

ADDITION

The binary scale factor of the addend, augend, and sum are alike.

23.9 B8 + 169.7 B8 = 146.2 B8

SUBTRACT ION

The binary scale factor of the minuend, subtrahend, and difference are alike.

107.8 B7 - 23.2 B7 = 84.6 B7

MUL TIPLICATION

The binary scale factor of the product is the sum of the binary scale factor of the multiplier

and multiplicand.

1 2 . 2 B6 x 3 B 7 = 36. 6 B 1 3

24.9 B5 x 135.5 B8 = 3373.95 B13

(minimum binary scale)

DIVISION

The binary scale factor of the quotient is the binary scale factor of the dividend minus the

binary scale factor of the divisor.

88 B 1 5 -:- 11 B5 = 8 B 1 0

14

Binary Scale

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

. 16
17
18
19

.20
21
22
23

APPENDIX 2

MINIMUM BINARY SCALE

Maximum Decimal Capacity (2n -1)

15

1
3
7

15
31
63

127
255
511

1 023
2047
4095
8 191

16383
32767
65535

131 071
262 143
524287

1 048 575
2 097 151
4 194303
8 388 607

APPLICATION NOTE 802

The question of matrix inversion comes up occasionally concerning the PDP-8.
There is no general answer to the matrix-inversion problem. The approach depends upon the
"behavior" of the given matrix. Basically, the problem is:

Given a matrix A, find a matrix B, such that
AB = I where I is the unit matrix.

There are three basic approaches. All numbers below are decimal, all operations
are floating-point without EAE.

GAUSS - JORDAN METHOD

Time ~ (2.5) (1.46 mils) (M3) where the matrix is M x M

Storage -;;:::::. 3M2 + 630 + about 550
(This does not include input/output which would require about

450 locations.)

For a lOx 10 (well behaved) matrix:

Time =3.66 seconds

Storage ~ 1480 words + 450 for I/O

For a 20 x 20 (well behaved) matrix:

Time 9:;::; 29.28 seconds

Storage ~ 2380 words + 450 for I/O

RANK ANNIHILATION

Time ~ 5M3 (1 .96 mils) where the matrix is M x M
2

Storage ~6M + 12M + 630 + about 400 words
(This does not include I/O which would require about 450
locations.)

For a lOx lOwell behaved nonsymmetric matrix:

Time -;;:::::"9.80 seconds

Storage ~ 1750 + 450 for I/O

For a 20 x 20 well behaved nonsyrnetric matrix:

Time :;:::::::. 78.4 seconds

Storage ~3670 + 450 for I/O

16

GAUSS - SEIDEL (ITERATIVE METHOD)

Time ~ M2 (.88 mils) per iteration (M x M matrix)
(It would be impossible to estimate the number of iterations re­
quired. The method may not work in some cases.)

Storage ~ 3M2 + 6M + 630 + about 200 (not including I/O)

For a 10 x 10 matrix:

Time ::::::-88 mils / iteration

Storage ~ 1190 + 450 for I/O

For 20 x 20 matrix:

Time ~ 352 mils / iteration

Storage ~ 2150 + 450 for I/O

Generally, a matrix is well behaved if the elements along the major diagonal
dominate are greater than the other elements of the matrix. As nondiagonal elements become
larger than the diagonal elements, the matrix becomes ill behaved and it becomes increasingly
difficult to invert.

17

APPLICATION NOTE 804

THROUGHPUT TO I BM-COMPATI BLE MAGNETIC TAPE

A common data-acquistion situation is the real-time conversion of an analog
signal(s) to digital form together with the recording of the resulting digital information on mag­
netic tape in I BM-compatible format (I BM Binary).

A typica I system consists of a 138 B Converter, PDP-8, 57 A and 570 Tape T rans­
port. The use of the 57 A permits the controll ing program to load one core buffer whi Ie the
57 A writes (via the data break) the data in a second core buffer on tape and produces the in­
terrecord gap. The function of the buffers is then reversed by the program.

Within a record, the character density must conform to I BM standards; 200, 556,
or 800 characters to the inch. I BM specifications govern the longitudinal tolerance as each
character may be recorded. Each interrecord gap must be regardless of density (within allow­
able tolerance) 3/4 inch to conform to IBM standards. These comments apply for tape that will
be processed on IBM Magnetic Tape Units IBM 72911, IV, V, and VI.

In a given file on tape (disregarding the end-of-file gap and character), the
effective density of recorded information is a function of the relationship between record length
as compared to gap length. For example a file consisting of a single long record with no record
gaps would consist entirely of data or would be 100% efficient. On the other hand, a file con­
sisting of many 3/4-inch records would be only 50% efficient since half of the available tape
would be used for the 3/4-inch interrecord gaps required by each record.

Wh i I e the 57 A is wri ti ng the contents of the one bu ffer on tape and then wri ti ng
the blank interrecord gap, the second buffer is being filled by information coming from the
A-to-D converter. Since the conversion rate must be constant, this process continues both dur­
ing the emptying of the first buffer and during gapping. There is, therefore, a difference in
the rate at which data enters one buffer from the A-to-D converter and the rate at which data
as distinguished from gap is written on tape from the second buffer.

Consider a 570 Transport with a speed of 75 ips recording at 200 cpi. The number
of characters that may be recorded per second is equal to:

75 x 200 = 15000 cps

Suppose, though, that the situation discussed above (3/4-inch records separated
by 3/4-inch gaps) existed. The actual conversion rate (assuming a 12-bit conversion) would

be:

15,000 x 1/2 x 1/2 = 3750 conversions per second

The second factor of 1/2 arises because only half of the tape is available for
actual data (0.50 duty factor) due to the interrecord gaps.

Figure 1 illustrates the duty factor as a function of characters per record for all
three standard I BM densities. A 3/4-inch interrecord gap is assumed.

18

DUTY FACTOR (EFFECTIVENESS)

256 512 1024 2048 4096

200 bpi .631 .773 .en .932 .985

556 bp; .311 .,51 .116 .831 .,08

800 bpi . 29' A • .131 .773 "'12

256 512 1024 2048 .c096

CHAR.lRECORD

Note that these rates could never be realized in practice with a double-buffer
type of throughput since the assumption of the necessity of a double buffer implies that at least
two records-an ideal case and therefore one i nterrecord gap-wi II be wri tten.

Figure 2 lists the throughput rates which could be achieved if no interrecord gaps
were required. Next, the duty factor is used to calcu late actual (or effective) character rates
as a function of characters per record and this information is plotted. Consider the top curve of
Figure 3. In this case the nominal (or ideal) character rate is 90,000 cps. The vertical bars
at the two "ends" of the curve illustrate how far below the nominal character rate the actual
character rate is at any point. Note that for small records the actual character rate falls off
very rapid Iy.

Writing Rates (cps)

200 bpi 556 bpi 800 bpi

45 ips 9,000 25,000 36,000
75 ips 15,000 41,700 60,000

112.5 ips 22,500 62,500 90,000

Effect of Record Length

256 512 1024 2048 4096

45 ips 200 bpi 5,670 6,960 7,850 8,380 8,680
556 bpi 9,520 13,800 17,810 20,800 22,700
800 bpi 10,770 16,600 22,700 27,850 31,400

75 ips 200 bpi 9,450 11,600 13,100 13,990 14,490
556 bpi 15,900 23,000 29,530 34,670 37,870
800 bpi 17,950 27,640 37,800 46,400 52,300

112.5 ips 200 bpi 14, 180 17,400 19,620 20,970 21,730
556 bpi 23,800 34,500 44,500 52,000 56,800
800 bpi 26,900 41,500 56,700 69,600 78,400

19

One ii-': cresting aspect of Figure 2 > that by proper choice of record length (or
core buffer size, see below), tape speed, and density, a desired ADC conversion rate may be
selected. Note the horizontal line at 40,000 cps. Assuming 12-bit conversions, the conver­
sion rate here would be 20,000 conversions per second and this could be achieved by using a
double buffer, each one of which was capable of holding the number of characters indicated on
the lower scale below the intersection of the horizontal line (at 40,000 cps) with the respective
equipment curves.

80,000

70,000

o 60,000
Z
o
u

'" '" a:

'" "-

50,000

'" 40,000

a:

'" f-
U
c(
a:
c(
:x:
u

30,000

20,000

10,000

________ .-.75/Z00

______ ~.-. 45/Z00

o~~~~---------------------
256512 1024 2048 4096

CHARACTERS / RECORD

Figure 4 defines certain detai Is of I BM-compatible tapes. Note that the longi­
tudinal check character of the end of a record is separated from the other characters in a record
by a gap that is about four times as large as the intercharacter spacing within a record (regard­
less of density) and that the record gap proper starts following the check character. (No longi­
tudinal check bit is written if the longitudinal count in the associated track is even).

This fact is of consequence only if records composed of an extremely few characters
are of concern and would effect the numerical data used to construct Figure 2 in the immediate
vicinity (i .e. 1 just to the right) of the vertical scale.

Figure 5 illustrates the time. avai lable between analog-to-digital conversions as
a function of tape speed, density and buffer size. Figure 5 may be used to determine how many
machine cycles are available for programming in throughput situations of this nature.

20

.. 0
0 0

..
~ .. "! ., ~
~

0

Not .. 5a9
!.0025 l

R,cord Gop
(Not' 4)

Reference EdV'
(Fiaed Vuide ,ide)
Not .. / a 2

l.on;ifudinol Ch~1I Choroe'" Gqp (Not' 3)
200 CPla.0207 +.0126,-.0081
556 CP/:: .0075" 0046,- .0029"
800 CPI ,.0054"+.0033,-.0021"

3.~"+ 0.9"
to fir" rlCord

----+ -++++-H+H+-

---- t -+++-IH+H-+l-

too CPI" .005,1
!5!56 CPI:;. 00/8"
800 CPI '.0012"
(Hoi' 9)

W,It,
.048" + .0000 ..

"! ----+ -++++H-HI-#- ~.0003

~
----+ -++++-H+I-H>I"-

----+ -+++++H<f--

----+ -+H-hH+1f-tt--

----+ -++++t++-H+- c

•
Top. Marlon

NOTES:

1. Tape is shown with oxide side up, Read/Write head on same side as oxide.

2. Tape shown representing 1 bit in all tracks, NRZI recardingj 1 bit produced by reversal of flux polarity, tape
fully saturated in each direction.

3. Variation permitted in the location of the Check Character assuming nominal values for tape speed and all os­
cillator timings in the Tape Control. No longitudinal check bit is written if longitudinal count in the track is even.

4. Mylar Tape: 3/4", +5/32", -1/16". Acetate Tape. 3/4", +5/32", -1/8". Zero Backward creep. Forward
creep less than 0.2" per cycle.

5. Dimensions of tape measured at 50% relative humidity and 70°F. Tape thickness (Mylar or IBM HD) is 0.0022",
+.0003", -.0004".

6. To insure complete interchangeability, skew of each tape unit is adjusted to 0.25 fJsec or less at the read bus of
the tape unit when reading-while-writing continuous 1 bits. Maximum skew for any reel of tape, read by any tope
unit connected to any tape control, must be equal to or less than the read character gate for the bit density and tape
speed at wh i ch the tape was wri tten.

7. Write Skew Gate, ±5%
729 II or V, 556 cpi

729 II or V, 200 epi
729 IV or VI, 556 epi
729 IV or VI, 200 epi
729 V, BOO epi
729 VI, 800 epi

Time from First Bit
Rise Fall

6.3 fJsec 16.1 fJsec
16.9fJsec 44.0flsec
4.3 fJsec 10.B fJsec

11.4fJsec 29.5fJsec
6.3 flsec 10.4 flsec
4.0 fJsee 6.B flsee

When reading, while writing coded information, all bits within a character must be received before the rise of the
write skew gate.

8. Read or Write Character Gate,
729 II or IV, 556 epi
729 II or V, 200 cpi
729 IV or VI, 556 epi
729 IV or VI, 200 cpi
729 V, BOOepi
729 VI, BOO cpi

±5%
10.5 fJsec
29.2 flsec
7.5 fJsec

21.0 fJsec
7.9 fJsec
5.4 flsec

9. Time Between Characters: Writing-shall not be less than fall of the skew gate timing plus 1 fJsee, including vari­
ations due to tape speed, skew and bit configuration. Reading-shall not be less than read character gate timing plus
I fJsec, including variations due to tape speed, skew, and bit configuration.

21

•• ad
.030"+.0000

-.0003

225

200

175

50

25

'-.
'--.._-

---0-".45/200

128 256 512 102~

BUFFER SIZE
WORDS

2048

It must be emphasized that the data graphed as continuous lines in Figures 1, 3,
and 5 actually consists for each curve of a series of discrete points, which are shown as con­
tinuous lines for convenience only. For example there can never be a record consisting of
356.135 characters, and no point associated with this number of characters is actually present
or intended to be present in the curves of Figure 1.

22

