
FORTRAN IV
PROGRAMMEItS

REFERENCE MANUAL

FORTRAN IV
PROGRAMMER'S
REFERENCE MANUAL

The information in this document reflects the software as of

Version 26 of the FORTRAN Compiler and Version 32 of the

run-time operat:ng system (LI 840).

DEc-r O-AFDO-D

DIGITAL EQUIPMENT CORPORATION • MAYNARD, MASSACHUSETTS

1st Printing March 1967
2nd Printing (Rev) Novemb~r 1967
3rd Printing (Rev) September 1968
4th Printing April 1969
5th Printing June 1969
6th Printing September 1969
7th Printing (Rev) February 1970
Update Pages October 1970
Update Pages February 1971
Update Pages October 1971
Update Pages May 1972

Copyright © 1967, 1968, 1969, 1970, 1971, 1972 by Digital Equipment Corporation

The material in this manual is for informa­
tion purposes and is subject to change with­
out notice.

The following are trademarks of Digital Equipment
Corporation, Maynard Massachusetts:

DEC
FLIP CHIP
DIGITAL

PDP
FOCAL
COMPUTER LAB

CONTENTS

SECTION 1 THE PDP-l0 FORTRAN LANGUAGE

CHAPTER 1 INTRODUCTION TO THE FORTRAN LANGUAGE

1.1 Line Format

1. 1. 1 Statement Number Field

1. 1.2 Line Continuation Field

1. 1.3 Statement Field

1. 1.4 Comment Line

1.2 Character Set

CHAPTER 2 CONSTANTS, VARIABLES, AND EXPRESSIONS

2. 1 Constants

2.1.1 Integer Constants

2.1.2 Real Constants

2.1.3 Double Precision Constants

2.1.4 Octal Constants

2.1.S Complex Constants

2.1.6 Logical Constants

2.1.7 Literal Constants

2.2 Variables

2.2.1 Scalar Variables

2.2.2 Array Variables

2.3 Expressions

2.3.1 Numeric Expressions

2.3.2 Logical Expressions

CHAPTER 3 THE ARITHMETIC STATEMENT

3. 1 General Description

CHAPTER 4 CONTROL STATEMENTS

4.1

4.1.1

4.1.2

4.1.3

GO TO Statement

Unconditional GO TO Statements

Computed GO TO Statements

Assi gned GO TO Statement

iii

Page

1-1

1-1

1-1

1-2

1-3

1-3

2-1

2-1

2-1

2-2

2-2

2-2

2-3

2-3

2-4

2-4

2-4

2-6

2-6

2-8

3-1

4-1

4-1

4-1

4-2

CONTENTS (Cont)

4.2 IF Statement

4.2.1 Numerical IF Statements

4.2.2 Logical IF Statements

4.3 DO Statement

4.4 CONTINUE Statement

4.5 PAUSE Statement

4.6 STOP Statement

4.7 EN D Statement

CHAPTER 5 DATA TRANSMISSION STATEMENTS

5. 1 Nonexecutable Statements

5.1.1 FORMAT Statement

5.1.2 NAMELIST Statement

5.2· Data Transmission Statements

5.2.1 Input /0 utput Li sts

5.2.2 Input/Output Records

5.2.3 PRINT Statement

5.2.4 PUNCH Statement

5.2.5 TYPE Statement

5.2.6 WRITE Statement

5.2.7 READ Statement

5.2.8 REREAD Statement

5.2.9 ACCEPT Statement

5.3 Device Control Statements

5.4 Encode and Decode Statements

CHAPTER 6 SPECIFICATION STATEMENTS

6.1 Storage Specifi cation Statements

6. 1. 1 DIMENSION Statement

6.1.2 COMMO N Statement

6.1.3 EQUIVALENCE Statement

6.1.4 EQUIVALENCE and COMMON

6.2 Data Specification Statements

6.2.1 DATA Statement

iv

Page

4-2

4-3

4-3

4-4

4-6

4-6

4-7

4-7

5-1

5-1

5-11

5-13

5-14

5-15

5-15

5-16

5-16

5-16

5-17

5-19

5-20

5-20

5-21

6-2

6-2

6-4

6-5

6-6

6-6

6-6

6.2.2

6.3

6.3.1

BLOCK DATA Statement

Type Declaration Statements

IMPLI CIT Statement

CONTENTS (Cont)

CHAPTER 7 SUBPROGRAM STATEMENTS

7.1

7.2

7.3

7.4

7.4.1

7.5

7.5.1

7.5.2

7.5.3

7.6

7.6.1

7.7

7.8

Dummy Identifiers

Library Subprograms

Arithmetic Function Definition Statement

FUNCTION Subprograms

FUNCTION Statement

SUBROUTI NE Subprograms

SUBROUTINE Statement

CALL Statement

RETURN Statement

BLOCK DATA Subprograms

BLOCK DATA Statement

EXTERNAL Statement

Summary of PDP-10 FORTRAN IV Statements

SECTION II THE RUNTIME SYSTEM

CHAPTER 8 THE FORTRAN IV LIBRARY - LIMO

8. 1

8. 1 . 1

8.1.2

8.1.3

8.2

8.2. 1

8.2.2

The FORTRAN Operating System

FORSE.

I/O Conversion Routines

FORTRAN UUOs

Science Library and FORTRAN Utility Subprograms

FORTRAN I V Library Functions

FORTRAN IV Library Subroutines

CHAPTER 9 SUBPROGRAM CALLING SEQUENCES

9. 1

9.1.1

9.1.2

Macro Subprograms Called by FORTRAN Main Programs

Calling Sequences

Returning of Answers

v

Page

6-8

6-8

6-9

7-1

7-1

7-1

7-2

7-2

7-4

7-4

7-5

7-5

7-6

7-6

7-6

7-7

8-1

8-1

8-2

8-3

8-4

8-4

8-8

9-1

9-1

9-2

9.1.3

9.1.4

9.2

9.2.1

9.2.2

9.2.3

CONTENTS (Cont)

Use of Accumu lators

Examples of Subprogram Linkage

Macro Main Programs Which Reference FORTRAN Subprograms

Calling Sequences

Returning of Answers

Example of Subprogram Linkage

CHAPTER 10 ACCUMULATOR CONVENTIONS FOR MAIN PROGRAMS AND SUBPROGRAMS

10.1

10.2

10.2.1

10.2.2

10.2.3

10.3

10.4

10.5

10.6

Locations

Accumulators

Accumulators 0 and 1

Accumulators 2 through 15

Accumulators 16 and 17

UUOs

Subprograms Called by JSA 16, Address

Subprograms Ca II ed by PUS HJ 17, Address

Subprograms Called by UUOs

CHAPTER 11 SWITCHES AND DIAGNOSTICS

11. 1 FORTRAN Switches and Diagnostics

CHAPTER 12 FORTRAN USER PROGRAMMING

ASCII Character Set

PDP-l0 Word Formats

FORTRAN Input/Output

12.1

12.2

12.3

12.3.1

12.3.2

12.3.3

12.4

12.4.1

12.4.2

12.4.3

12.5

Logical and Physical Peripheral Device Assignments

DECtape and Disk Usage

Magneti c Tape Usage

Random Access Programming

How to Use Random Access

Restri ctions

Examples

PDP-l0 Instruction Set

APPENDIX A THE SMALL FORTRAN IV COMPILER

vi

Page

9-2

9-2

9-9

9-9

9-9

9-10

10-1

10-1

10-1

10-2

10-2

10-2

10-2

10-2

10-3

11-1

12-1

12-2

12-3

12-4

12-4

12-6

12-7

12-8

12-8

12-9

12-13

1-1

2-1

4-1

2-1

3-1

5-1

5-2

5-3

8-1

8-2

8-3

8-4

10-1

11-1

11-2

11-3

11-4

12-1

12-2

12-3

Typical FORTRAN Coding Form

Array Storage

Nested DO Loops

Types of Resultant Subexpressions

Allowed Assignment Statements

Magnitude of Internal Data

Numeric Field Codes

Device Control Statements

I/o Conversion Routine

FORTRAN UUOs

FORTRAN IV Library Functions

FORTRAN IV Library Subroutines

ILLUSTRATIONS

TABLES

Accumulator Conventions for PDP-lO FORTRAN IV Compiler and Subprograms

FORTRAN Compiler Switch Options

FORTRAN Compiler Diagnostics (Command Errors)

FORTRAN Compiler Diagnostics (Compilation Errors)

FORTRAN Operating System Diagnostics (Execution Errors)

ASCII Character Set

PDP-10 FORTRAN IV Standard Peripheral Devices

Device Table for FORTRAN IV

vii

Page

1-2

2-5

4-5

2-7

3-2

5-3

5-4

5-20

8-2

8-3

8-5

8-8

10-3

11-1

11-2

11-3

11-8

12-1

12-3

12-5

PREFACE

This is a reference manual describing the specific statements and features of the

FORTRAN IV language for the PDP-10. It is written for the experienced

FORTRAN programmer who is interested in writing and running FORTRAN IV pro­

grams alone or in conjunction with MACRO-10 programs in the single-user or

time-sharing environment. Fami I iarity with the basic concepts of FORTRAN pro­

gramming on the part of the user is assumed. PDP-10 FORTRAN IV conforms to

the requirements of the USA Standard FORTRAN.

ix

INTRODUCTION TO THE FORTRAN IV SYSTEM

The FORTRAN compi ler translates source programs written in the FORTRAN IV language into the machine

language of the PDP-lO. This translated version of the FORTRAN program exists as a retrievable, relocatable

binary file on some storage device. All relocatable binary filenames have the extension .REL if they reside on

a directory-oriented device (disk or DECtape). Binary files may also be created by the MACRO-lO assembler
1

(see Chapter 9) .

In order for the FORTRAN program to be processed, the Linking Loader must load the relocatable binary file

into core memory. Also loaded are any relocatable binary files found in the FORTRAN library (LIMO) which

are necessary for the program's execution. Within the FORTRAN source program, the library files may be called

explicitly, such as SIN, in the statement

x = SIN(Y)

or implicitly, such as FLOUT., the floating-point to ASCII conversion routine, which is implied in the follow­

ing statements.

PRINT 3,X
3 FORMAT(lX, F4. 2)

A FORTRAN main program and its FORTRAN and/or MACRO-10 subprograms may be compiled or assembled sep­

arately and then linked together by the Linking Loader at load time. The core image may then be saved on a

storage device. When saved on a directory storage device, these files have the extension .SAV in a multipro­

gramming Monitor system and. SVE in a single-user Monitor system.

The Time-Sharing Monitors act as the interface between the user and the computer so that all users are protected

from one another and appear to have system resources available to themselves. Several user programs are loaded

into core at once and the Time-Sharing Monitors schedule each program to run for a certain length of time. All

Monitors direct data flow between I/O devices and user programs, making the programs device independent, and

overlap I/O operations concurrently with computations.

In a multiprogramming system, all jobs reside in core and the scheduler decides which of these jobs should run.

In a swapping system, jobs can exist on an external storage device (usually disk) as well as in core. The scheduler

I lFor further information on the MACRO-10 assembler, see the MACRO-10 ASSEMBLER manual, DEC-10-AMZC-D.

Revision 1 FORTRAN ix October 1970

decides not only which job is to run but also when a job is to be swapped out onto the disk or brought back into

core.

The number of users that can be handled by a given size time-sharing configuration is further increased by using

the reentrant user-programming capability. This means that a sequence of instructions may be entered by more

than one user job at a time. Therefore, a single copy of a reentrant program may be shared by a number of users

at the same time to increase system economy. The FORTRAN compiler and operating system are both reentrant.

x

SECTION I

The PDP-10 FORTRAN IV Language

The seven chapters of this section deal with the PDP-10 FORTRAN IV language.

Included in these chapters are the language elements of FORTRAN IV and the

five categories of FORTRAN IV statements (arithmetic, control, input/output,

specification, and subprogram).

CHAPTER 1

INTRODUCTION TO THE FORTRAN LANGUAGE

The term FORTRAN IV (FORmula TRANslation) is used interchangeably to designate both the FORTRAN IV

language and the FORTRAN IV translator or compiler. The FORTRAN IV language is composed of mathematical­

form statements constructed in accordance with precisely formulated rules. FORTRAN IV programs consist of

meaningful sequences of FORTRAN statements intended to direct the computer to perform the specified operations

and computations.

The FORTRAN IV compiler is itself a computer program that examines FORTRAN IV statements and tells the com­

puter how to translate the statements into machine language. The compiler runs in a minimum of 9K of core.

The program written in FORTRAN IV language is called the source program. The resultant machine language

program is called the object program. Digital's small FORTRAN compiler, which runs in 5.5K of core, is vir­

tually identical to the larger compiler, except for differences explained in Appendix 2. Operating procedures

and diagnostic messages for both compi lers are explained in the PDP-10 System Users Guide (DEC-10-NGCC-D).

1. 1 LINE FORMAT

Each line of a FORTRAN program consists of three fields: statement number field, line continuation field, and

statement field. A typical FORTRAN program is shown in Figure 1-1.

1. 1. 1 Statement Number Field

A statement number consists of from one to five digits in columns 1-5. Leading zeros and all blanks in this field

are ignored. Statement numbers may be in any order and must be unique. Any statement referenced by another

statement must have a statement number. For source programs prepared on a teletypewriter, a horizontal tab may

I be used to skip to the statement field with from a through 5 characters in the label field. This is the only place

a tab is not treated as a space.

1. 1.2 Line Continuation Field

If a FORTRAN statement is so large that it cannot conveniently fit into one statement field, the statement fields

of up to 19 additional lines may be used to specify the complete statement. Any line which is not continued, or

the first line of a sequence of continued lines, must have a blank or zero in column 6. Continuation lines must

Version 24 FORTRAN
Version 31 LIMO

1-1 October 1971

FORTRAN
(OIlINI.'dItM

~;r --- --------------- ;;R~:: S-T:::~-- -- --------- -- ------------~:::=

.. ''''11M! ' ~~

~2;. ~ ~€ ;-'O-,~ '~;l'4'~ ~~~§'-;m~51wrn~Jj-JiJS~i,~-J~!o;,~4~~~~8;;;o?-~~SJ;;-~-;6m;SU~~~-~-&~,~.~~~~n n]~~~
~-+-+- T-+-HL~-+~R.?+g~6M..f.tJfl!!-t\U~S+-!~,Il1t-~BIEIRIS, ,F,R,oM-..J+-l,. ,'L9.--.-~+++++__+_+_-~ : : : : r : 1 1 1 1 1 +

r-+--+-+--.-+_-+O",9..I J,OI ,1,--,1"+'-1-15,°1 '11211 t II 1-+--+0++-""111111111 H-+-+-+--+-+-+-+-+++++-++++++-+-+-+- +-+-+-+--4---+­

t--+~_+-tJ,,-+-=+,I_+-+--+--+_~ I , I I' 'I' I I I I 'I I , I +-+-+-+-+-~-+-+--+-+--+-+-+--+--"+-+-+--+-+-+-+~+-T"""H--r-t--+-_"""--+--+--l
1"4,+-+--+-<---+--!,J+==+J,,-+~ +-+-+-+--+-+--+-+-+-+~, ..,,--+-, -+-1 -II-I>-+-I +-+-+-+ +-+---4-+-+-+-+-+-~+-."'_'--+-' ~,,,,'H-I +--+--+- -+-+- +-+-+-+--+--+--+-+-~--+-+--+--+-1f-+-~--+-+-+-+-1

A=.J.

+t'-I+F+~I.I.(.. ,B""I)'--+I.."",5",, '4-, -+,-,--1 ,."O"",-+-, .. ,,,5 ... , -+-, ~,..,,--+-, +1 ~I"'I--+-I -+-'--11--+-' +, ~'--f' __ ' +-1 ~'--+--"""--+-~--+-+-+-+-+-+--+--+-+--+--+-+--+-+-+-+-+-+-~--+-~--+-'"+~--+-+-+---+->--t
5 I F .(J .. L T.S.QRT .(FLOATU .l.ll .GO TO 4

TYPE 1 OS
I I I I I I I I I

f'+LQ_"f~T'-+,114N4"u""e4-I--+I--fIH-1 +1--+1-+1 +-+-+-+-+-+--t--t-t--+-+--+-+-+--'-+-++-+--+I ~I"'IH-I +I~I--fl>-+-I +I-II---+-I +1 ... ,-+-+--+-....., __ ~--+-+--+----+-_~>-+-_++-T~---+-_---i

105 FORMAT _114 'IS PRIME:'l

:NO

1 1'1 1'1'1'1

-+--+-t--+ -+-+-+-+-+- I I "I 1 1 1 -+-+-+-+-+-+1 ~'--f'--+-~--+-+I ... ,---+-+--.-+-+--+--+-+'-+--I ~-+-, ---+->-+-~--+-~--+-+-+~>-+----+--+-+--+-+-++-+--+--I--+--+-+--+-"""----+--i

f--++--+-+-t+-+-++-+++-+++-+-+-+-+--+-++++-+-+-+--'--+ 1 I I I 1 I I I I " 'I I I I I I I I I I I I I , I +-++++++-H-+-t+-!----t--l---I--+-+----l+H

I I I , 1 , I 1 I , 1-+-+-+-+--+-1 I 1 1 1 1 1 1 I I 1 I I , I, I' I 1 , I 1 I I I I I I I til' I I I I I I t I I I

PG - 3 DIGITAL EQUIPMENT CORPORATION • MAYNARD. MASSACHUSETTS 100 - 12/64

Figure 1-1 Typical FORTRAN Coding Form

have a character other thon blank or zero in column 6. If a continuation line is desired when a TAB is used in

the statement number field, a digit from 1 to 9 must immediately follow the TAB.

1. 1.3 Statement Field

Any FORTRAN statement, as described in later sections, may appear in the statement field (columns 7-72). Ex­

cept for alphanumeric data within a FORMAT statement, DATA statement, or literal constant, blanks (spaces)

and TABS are ignored and may be used freely for appearance purposes. Thus the fo!lowing statements are equiv­

alent.

END (tab) FILE (tab) 2
END (space) FILE (space) 2
ENDFILE2

Version 24 FORTRAN
Version 31 LIMO

1-2
October 1971

1. 1.4 Comment Line

I Any line that starts with one of the characters $ * / or the letter C in column 1 is interpreted as a line of com­

ments. Comment lines are printed onto any listings requested but are otherwise ignored by the compiler. Col­

umns 2-72 may be used in any format for comment purposes. A comment line must not immediately precede a

continuation line.

I As an aid for program debugging, the letter 0 in column 1 causes the line to be interpreted as a comment unless

the /1 switch appears in the command string. (Refer to Table 11-1 for Compile Switch options.) If the /1 switch

is present, the letter 0 in column 1 is interpreted as a space and the line is compiled as a program statement.

1 .2 CHARACTER SET

The following characters are used in the FORTRAN IV language:

Revision 2 FORTRAN

Blank 0 @

A

II 2 B

3 C

$ 4 0

% 5 E

& 6 F

7 G

8 H

9

* J

+ K

< L

= M

> N

/ ? 0

NOTE

ASCII characters greater than Z (1328) are replaced by
the error character lit ". See Chapter 12 for the internal
representation of these characters.

1-3

P

Q

R

S

T

U

V

W

X

y

Z

February 1971

CHAPTER 2

CONSTANTS, VARIABLES, AND EXPRESSIONS

The rules for defining constants and variables and for fonning expressions are described in this chapter.

2.1 CONSTANTS

Seven types of constants are permitted in a FORTRAN IV source program: integer or fixed point, real or single­

precision floating point, double-precision floating point, octal, complex, logical, and literal.

2. 1. 1 Integer Constants

An integer constant consists of from one to eleven decimal digits written without a decimal point. A negative

constant must be preceded by a minus sign. A positive constant may be preceded by a plus sign.

Examples: 3
+10
-528

8085

I An integer constant must fall within the range _235+1 to 235_1. When used for the value ofa subscript, the

value of the integer constant is taken as modulo 218.

2. 1 .2 Rea I Constants

Real constants are written as a string of decimal digits including a decimal point. A real constant may consist

of any number of digits but only the leftmost 9 digits appear in the compiled program. Real constants may be

given a decimal scale factor by appending an E followed by a signed integer constant. The field following the

letter E must not be blank, but may be zero.

Examples:

Revision 1 FORTRAN

15.
0.0

.579
-10.794

5. OE3{i.e., 5000.)
5. OE+3{i . e. , 5000)
5.0E-3{i.e., 0.005)

2-1 October 1970

A real constant has precision to eight digits. The magnitude must lie approximately within the range
-38 38

O. 14 x 10 to 1.7 x 10 . Real constants occupy one word of PDP-lO storage.

2.1.3 Double Precision Constants

A double precision constant is specified by a string of decimal digits, including a decimal point, which are

followed by the letter D and a signed decimal scale factor. The field following the letter D must not be blank,

but may be zero.

Examples: 24.67132598213400
3.6D2 (i.e., 360.)
3.6D-2 (i.e., .036)
3.000

Double precision constants have precision to 16 digits. The magnitude of a double precision constant must lie

. t I be 0 14 10-38 and 1.7 x 1038 . Do bl . . d f PDP 10 approxlma e y tween . x u e-preclslon constants occupy two wor so -

storage.

2.1.4 Octal Constants

A number preceded by a double quote represents an octal constant. An octal constant may appear in an arith­

metic or logical expression or a DATA statement. Only the digits 0-7 may be used and only the last twelve

digits are significant. A minus sign may precede the octal number, in which case the number is negated. A

maximum of 12 octal digits are stored in each 36-bit word.

Examples: "7777
"-31563

2.1.5 Complex Constants

FORTRAN IV provides for direct operations on complex numbers. Complex constants are written as an.ordered

pair of real constants separated by a comma and enclosed in parentheses.

Examples: (.70712, -.70712)
(8. 763E3,2 .297)

The first constant of the pair represents the real part of the complex number, and the second constant represents

the imaginary part. The real and imaginary parts may each be signed. The enclosing parentheses are part of

the constant and always appear, regardless of context. Each part is internally represented by one single­

precision floating point word. They occupy consecutive locations of PDP-I0 storage.

2-2

FORTRAN IV arithmetic operations on complex numbers, unlike normal arithmetic operations, must be of the

form:

A±B = a 1:±b 1+i(a2:±b2)

A*B = (albl-a2b2)+i(a2bl+alb2)

(a Ib 1 +a 2b2) +i (a2b l-a Ib2)
A/B= 2 2 2 2

b 1 +b2 b 1 +b2

where A = a 1 + ia2 , B = b 1 + ib2 , and i =F

2.1.6 Logical Constants

The two logical constants, . TRUE. and .FALSE. , have the internal values -1 and 0, respectively. The en­

closing periods are part of the constant and always appear.

Logical constants may be entered in DATA or input statements as signed octal integers (-1 and 0). Logical

quantities may be operated on in either arithmetic or logical statements. Only the sign is tested to determine the

truth value of a logical variable.

2. 1. 7 li tera I Constants

A literal constant may be in either of two forms:

a. A string of alphanumeric and/or special characters enclosed in single quotes; two adjacent single
quotes within the constant are treated as one single quote.

b. A string of characters in the form

nHx 1x2"· .xn

where x 1x2" •• xn is the literal constant, and n is the number of characters following the H.

literal constants may. be entered in DATA statements or input statements as a string of up to 5 7-bit ASCII char­

acters per variable (10 characters if the variable is double-precision or complex). literal constants may be

operated on in either arithmetic or logical statements.

NOTE

literal constants used as subprogram arguments will have a
zero word as an end-of-string indicator.

2-3

txamples:

2.2 VARIABLES

LALL ::>UIj ~ L1ltKAL LUI'\I::> 1 A 1'\1 1)

'DONT"T'
5HDON'T
A = 'FIVE' + 42
B = (5HABCDE .AND. "376)/2

A variable is a quantity whose value may change during the execution of a program. Variables are specified

by name and type. The name of a variable consists of one or more alphanumeric characters, the first one of

which must be alphabetic. Only the first six characters are interpreted as defining the variable name. The

type of variable (integer, real, logical, double precision, or complex) may be specified explicitly by a type

declaration statement or implicitly by the IMPLICIT statement. If the variable is not specified in this manner,

then a first letter of I, J, K, L, M or N indicates a fixed point (integer) variable; any other first letter indi-

I cates a floating-point (real) variable. Variables of any type may be either scalar or array variables. When used

in a subscript or as an index to a DO Statement, the value of the integer variable is taken as modulo 218 .

2.2.1 Scalar Variables

A scalar variable represents a single quantity.

Examples: A
G2
POPULATION

2.2.2 Array Variables

An array variable represents a single element of an n dimensional array of quantities. The variable is denoted

by the array name followed by a subscript list enclosed in parentheses. The subscript list is a sequence of in­

teger expressions, separated by commas. The expressions may be of any form or type providing they are explicitly

changed to type integer when each is completely evaluated. Each expression represents a subscript, and the

values of the expressions determine the array element referred to. For example, the row vector A. would be
I

represented by the subscripted variable A(J), and the element, in the second column of the first row of the square

matrix A, would be represented by A(l ,2). Arrays may have any number of dimensions.

Examples: V(l)
STATION (K)
A (3* K+2, I, J-1)

The three arrays above (V, STATION, and A) would have to be dimensioned by a DIMENSION, COMMON,

or type declaration statement prior to their first appearance in an executable statement or in a DATA or

NAMELIST statement. (Array dimensioning is discussed in Chapter 6).

Revision 1 FORTRAN 2-4 October 1970

l-Dimensional Array A(lO)

I A(I) ,A(2) I A(3) I A(4) , A(S) I A(6) ,A(7) I A(8), A(9) , AlIO) ,

CONSECUTIVE STORAGE LOCATIONS

2-Dimensional Array B(5,5)

3-Dimensional Array C(5, 5, 5)

SI CU,I, 3)

S2 C(2,I,3)

26 CU,I,2) 31 C!I,2,21
27 C(2J,2) 32 C{2 2 2)

I C(I I I) 6 W,2 I) II C(I,3 I)
2 C(2,I,I) 7 C(2,2,1l 12 C(2,3,1)
3 C(3,I,I) 8 C(3,2,1) 13 C(3,3,1)
4 C{4,1 I) 9 C{42 I) 14 C(43 I)
5 C(S,I,I) 10 C(S,2,1) 15 C(S,3,1)

I 6(1,1) 6 6(1,2) II 6(1,3) 16 6(1,4) 21 6(I,S)

2 6(2,1) 7 6(2,2) 12 6(2,3) 17 6(2,4) 22 6(2,S)

3 6(3,1) 8 6(3,2) 13 6(3,3) 18 6(3,4) 23 6(3,S)

4 6(4,1) 9 6(4,2) 14 6(4,3) 19 6(4,4) 24 6(4,S)

S 6(S,I) 10 6(S,2) IS 6(S,3) 20 6(S,4) 21 6(S,S)

6(3,1) IS THE THIRD STORAGE WORD IN SEQUENCE

6(3,4) IS THE EIGHTEENTH STORAGE WORD IN SEQU ENCE

101 W,I,S) 106 C(1,2,S) III C(1,3,S) 116 W,4,S) 121 C(I,S,S)

102 C(2,I,S) 107 C(2,2,5) 112 C(23,S) 117 C(2,4,S) 122 C(2,S,S)

76 C(I,I,4) 81 C(I,2,4) 86 C(i,3,4) 91 C(144) 96 ClI,5 4) 118 C(3,4,S) 123 C(3,S,S)

77 C(2,I,4) 82 C(2,2,4) 87 C(2,3,41 92 C(2,4,41 97 C(2,5,4) 119 C(4,4,S) 124 C(4,S,S)

S6 C(I,2,3) 61 C(I,3,3) 66 C(I,4,3) 71 C(I,5,3) 98 C(3,S,4) 120 C(S,4,S) 12S C(S,5,S)

S7 C(2,2,3I 62 C(2,3,3) 67 Cl2,4,31 72 C(2,5,31 99 C(4,S,4)

36 C{I,3,2) 41 C(I,4,2) 46 C(I,S,2) 73 C(3,S,3) 100 C(5,S,4)

37 C{2.3.2) 42 C(242) 47 C(2,S,2) 74 C(4,S,3)

16 C(l4 I) 21 C(I S I) 48 C(3,S,2) 7S C(5,S,3)
17 C(2,4,1) 22 C(2,S,I) 49 C(4,S,2)
18 C(34 I) 23 C(3 SI) SO C(5,S,2)
19 C(44 I) 24 C(451)

20 C{S,4,1) 2S C{S,S,I)

C(l ,3, 2) is the 36th storage word in sequence,

C(l, 1,5) is the lOlst storage word in sequence.

Figure 2-1 Array Storage

2-5

Arrays are stored in increasing storage locations with the first subscript varying most rapidly and the last subscript

varying least rapidly. For example, the 2-dimensional array B(I,J} is stored in the following order: B (1,1),

B (2,1}, ... , B (I, l},B (l,2},B (2,2), ... ,B (I,2}, ... ,B (I,J).

2.3 EXPRESSIONS

Expressions may be either numeric or logical. To evaluate an expression, the object program performs the

calculations specified by the quantities and operators within the expression.

2.3. 1 Numeric Expressions

A numeric expression is a sequence of constants, variables, and function references separated by numeric

operators and parentheses in accordance with mathematical convention and the rules given below.

The numeri c operators are +, -, *, /, **, denoting, respectively, additi on, subtraction, multipl i cati on,

division, and exponentiation.

In addition to the basic numeric operators, function references are also provided to facilitate the evaluation

of functions such as sine, cosine, and square root. A function is a subprogram which acts upon one or more

quantities, called arguments, to produce a single quantity called the function value. Function references are

denoted by the identifier, which names the function (such as SIN, COS, etc.), followed by an argument list

encl osed in parentheses:

identifier(argument, argument, ... , argument}

At least one argument must be present. An argument may be an expression, an array identifier, a subprogram

identifier, or an alphanumeric string.

Function type is given by the type of the identifier which names the function. The type of the function is inde­

pendent of the types of its arguments. (See Chapter 7, Section 7.4.1. 1.)

A numeric expression may consist of a single element (constant, variable, or function reference):

2.71828
Z(N}
TAN(THETA}

Compound numeric expressions may be formed by using numeric operations to combine basic elements:

X+3.
TOTAL/A
TAN(PI*M}
(X+3.) -(TOTAL/A) * TAN (PI*M)

2-6

Compound numeric expressions must be constructed according to the following rules:

a. With respect to the numeric operators +, -, *, I, any type of quantity {logical, octal, integer,
real, double precision, complex or literal) may be combined with any other, with one exception:
a complex quantity cannot be combined with a double precision quantity.

The resultant type of the combination of any two types may be found in Table 2-1. The conversions
between data types will occur as follows:

(1) A literal constant will be combined with any integer constant as an integer and with a real
or double word as a real or double word quantity. (Double word refers to both double precision
and complex:)

(2) An integer quantity (constant, variable, or function reference) combined with a real or double
word quantity results in an expression of the type real or double word respectively; e.g., an integer
variable plus a complex variable will result in a complex subexpression. The integer is converted
to floating point and then added to the real part of the complex number. The imaginary part is
unchanged.

(3) A real quantity (constant, variable, or function reference) combined with a double word quan­
tity results in an expression that is of the same type as the double word quantity.

(4) A logical or octal quantity is combined with an integer, real, or double word quantity as if
it were an integer quantity in the integer case, or a real quantity in the real or double word case
(i .e., no conversion takes place).

b. Any numeric expression may be enclosed in parentheses and considered to be a basic element.

(x+Y)/2
(ZETA)
(COS(SI N(PI* M)+X))

Table 2-1
Types of Resultant Subexpressions

Type of Quantity

Double +,-,*,/ Real Integer Complex
Precision

Real Real Real Complex Double
Precision

Integer Real Integer Complex Double
Precision

Complex Complex Complex Complex Not

Type of Allowed

Quantity Double Double Double Not Double
Precision Precision Precision Allowed Precision

Logical, Real Integer Complex Double
Octal, or Precision
Literal

2-7

Logical,
Octal, or

Litera I

Real

Integer

Complex

Double
Precision

Logical,
Octal, or
Literal

c. Numeric expressions which are preceded by a + or - sign are also numeric expressions:

+x
-(ALPHA *BET A)
-SQRT(-GAMMA)

d. If the precedence of numeric operations is not given explicitly by parentheses, it is understood
to be the following (in order of decreasing precedence):

Operator

**

*and/

+and-

Explanation

numeric exponentiation

numeric multiplication and division

numeric addition and subtraction

In the case of operations of equal hierarchy, the calculation is performed from left to right.

e. No two numeric operators may appear in sequence. For instance:

x*-y

is improper. Use of parentheses yields the correct form:

x*(-y)

By use of the foregoing rules, all permissible numeric expressions may be formed. As an example of a typical

numeric expression using numeric operators and a function reference, the expression for one of the roots of the

general quadratic equation:

-b+ .Jb 2 - 4ac
20

would be coded as:

(-B+SQRT(B **2-4. * A *C))/(2. * A)

2.3.2 Logical Expressions

A logica I expression consi sts of constants, variab les, function references, and arithmeti c expressions, separated

by logical operators or relational operators. Logical expressions are provided in FORTRAN IV to permit the im­

plementation of various forms of symbolic logic. Logical masks may be represented by using octal constants.

The result of a logical expression has the logical value TRUE (negative) or FALSE (positive or zero) and therefore,

only uses one word.

Version 24 FORTRAN
Version 31 LIB40 2-8 October 1971

2.3.2.1 Logical Operators - The logical operators, which include the enclosing periods and their definitions,

I are as follows, where P and Q are expressions:

• NOT.P

P.AND.Q

P.OR.Q

P.XOR.Q

P.EQV.Q

Has the value. TRUE. only if P is .FALSE., and has the
value .FALSE. only if P is • TRUE.

Has the value. TRUE. only if P and Q are both. TRUE.,
and has the value .FALSE. if either P or Q is .FALSE.

(Inclusive OR) Has the value .TRUE. if either P or Q is .TRUE.,
and has the value .FALSE. only if both P and Q are .FALSE.

(Exclusive OR) Has the value. TRUE. if either P or Q but not
both are .TRUE., and has the value .FALSE. otherwise.

(Equivalence) Has the value. TRUE. if P and Q are both
• TRUE. or both .FALSE., and has the value .FALSE. otherwise.

I Logical expressions are evaluated by combining the full word values of P and Q (only the high-order part if P

and Q are double precision, only the real part if P and Q are complex) using the appropriate logical operator.

The result is TRUE if it is arithmetically negative and FALSE if it is arithmetically positive or zero.

Logical operators may be used to form new variables, for example,

X'" Y .AND.Z
E '" E. X OR. "400000000000

2.3.2.2 Relational Operators - The relational operators are as follows:

Operator Relation

.GT. greater than

.GE. greater than or equal to

. LT. less than

. LE. less than or equal to

.EQ. equal to

.NE. not equal to

The enclosing periods are part of the operator and must be present.

Mixed expressions involving integer, real, and double precision types may be combined with relationals.

I The value of such an expression will be .TRUE. (-1) or .FALSE. (0).

The relational operators .EQ. and. NE. may also be used with COMPLEX expressions. (Double word quantities

are equa I if the correspondi ng parts are equa I.)

Version 24 FORTRAN
Version 31 L1B40 2-9 October 1971

A logical expression may consist of a single element (constant, variable, function reference, or re iation):

.TRUE.
X.GE.3.141S9

Single elements may be combined through use of logical operators to form compound logical expressions, such as:

TVAL.AND.INDEX
BOOl(M). OR. K.EQ.LIMIT

Any logical expression may be enclosed in parentheses and regarded as an element:

(T .XOR. S).AND.(R.EQV. Q)
CALL PARITY ((2.GT.Y .OR.X.GE. Y).AND. NEVER)

Any logical expression may be preceded by the unary operator. NOT. as in:

· NOT. T
· NOT.X+7.GT.Y+l
BOOL{K). AN D •. NOT. (TVAL. OR. R)

No two logical operators may appear in sequence, except in the case where. NOT. appears as the second of

two logical operators, as in the example above. Two decimal points may appear in sequence, as in the

example above, or when one belongs to an operator and the other to a constant.

When the precedence of operators is not given explicitly by parentheses, it is understood to be as follows (in

order of decreasing precedence):

**
*,/
+,-
· G T. , . GE. , . L T. , . LE. , • E Q. , . NE.
.NOT .
. AND •
. OR .
. EQV., .XOR.

For example, the logical expression

· NOT. lETA**2+Y*MASS.GT.K-2. OR. PARITY .AND.X.EQ.Y

is interpreted as

(. NOT. (((lET A**2)+(y*MASS». GT. (K-2))). OR. (PARITY .AND.(X .EQ. V»~

2-10

3.1 GENERAL DESCRIPTION

CHAPTER 3

THE ARITHMETIC STATEMENT

One of the key features of FORTRAN IV is the ease with which arithmetic computations can be coded. Compu­

tations to be performed by FORTRAN IV are indicated by arithmetic statements, which have the general form:

A=B

where A is a variable, B is an expression, and = is a replacement operator. The arithmetic statement causes the

FORTRAN IV object program to evaluate the expression B and assign the resultant value to the variable A.

Note that the = sign signifies replacement, not equality. Thus, expressions of the form:

A=A+B and

A=A*B

are quite meaningful and indicate that the value of the variable A is to be replaced by the result of the expres­

sion to the right of the = sign.

Examples: Y=l*Y
P=. TRUE.
X (N}=N*ZETA(ALPHA*M/PI)+(l . ,-1.)

Table 3-1 indicates which type of expression may be equated to each type of variable in an arithmetic statement.

D indicates that the assignment is performed directly (no conversion of any sort is done); R indicates that only

the real part of the variable is set to the value of the expression (the imaginary part is set to zero); C means that

the expression is converted to the type of the variable; and H means that only the high-order portion of evaluated

expression is assigned to the variable.

The expression value is made to agree in type with the assignment variable before replacement occurs. For ex­

ample, in the statement:

THET A=W*(ABET A+E}

if THETA is an integer and the expression is real, the expression value is truncated to an integer before assign­

ment to THETA.

3-1

Table 3-1
Allowed Assignment Statements

Expression

Variable Real Integer Complex

Real D C R,D

Integer C D R,C

Complex D, R,I C,R,I D

Double
D,H,L C,H,L R,D,H,L

Precision

Logical D D R,D

D - Direct Replacement

C - Conversion between integer and floating point

R - Real only

- Set imaginary part to 0

H - High order only

L - Set low order part to 0

3-2

Logical,
Double Octal, or

Precision Literal
Constant

H,D D

H,C D

H, D,R,I D, R,I

D D,H,L

H,D D

CHAPTER 4

CONTROL STATEMENTS

FORTRAN compiled programs normally execute statements sequentially in the order in which they were presented

to the compiler. However, the following control statements are available to alter the normal sequence of state­

ment execution: GO TO, IF, DO, PAUSE, STOP, END, CALL, RETURN. CALL and RETURN are used to en-

ter and retum from subroutines.

4.1 GO TO STATEMENT

The GO TO statement has three forms: unconditional, computed, and assigned.

4.1.1 Unconditional GO TO Statements

Unconditional GO TO statements are of the form:

GO TO n

where n is the number of an executable statement. Control is transferred to the statement numbered n. An un­

conditional GO TO statement may appear anywhere in the source program, except as the terminal statement of

a DO loop.

4.1.2 Computed GO TO Statements

Computed GO TO statements have the form:

where n 1 ' n2, ... , nk are statement numbers, and i is an integer expressi on.

This statement transfers control to the statement numbered n1,n2, ... ,nk if i has the value 1,2, ... ,k, respec­

tively. If i exceeds the size of the list of statement numbers or is less than one, execution will proceed to the

next executable statement. Any number of statement numbers may appear in the list. There is no restriction on

other uses for the integer variable i in the program.

4-1

In the example

GO TO (20,10,5),K

the variable K acts as a switch, causing a transfer to statement 20 if K=l, to statement 10 if K=2, or to state­

ment 5 if K=3.

A computed GO TO statement may appear anywhere in the source program, except as the terminal statement of

a DO loop.

4.1.3 Assigned GO TO Statement

Assigned GO TO statements have two equivalent forms:

GO TO k

and

I where k is a variable or array element and n l' n2, ••. nk are statement numbers. Any number of statement numbers

may appear in the list. Both forms of the assigned GO TO have the effect of transferring control to the statement I whose number is currently associated with the variable k. The second form of the assigned GO TO statement passe

control to the next executable statement if k is not associated with one of the statement numbers in the list. This

association is established through the use of the ASSIGN statement, the general form of which is:

ASSIGN iTO k

I where i is a statement number and k is a variable or array element. If more than one ASSIGN statement refers to

the same integer variable name, the value assigned by the last executed statement is the current value.

Examples: ASSIGN 21 TO INT ASSIGN 1000 TO INT

GO TO INT GO TO INT, (2,21,1000,310)

An assigned GO TO statement may appear anywhere in the source program, except as the terminal statement of

a DO loop.

4.2 IF STATEMENT

IF statements have two forms in FORTRAN IV: numerical and logical.

Version 24 FORTRAN
Version 31 LIB40 4-2 October 1971

4.2.1 Numerical IF Statements

Numerical IF statements are of the form:

where n1 ,n2,n3 are statement numbers. This statement transfers control to the statement numbered n1 ,n2,n3 if

the value of the numeric expression is less than, equal to, or greater than zero, respectively. All three state­

ment numbers must be present. The expression may not be complex.

Examples: IF (ETA) 4,7,12
IF (KAPPA-L (10)) 20,14,14

4.2.2 Logical IF Statements

Logical IF statements have the form:

IF (expression)S

where S is a complete statement. The expression must be logi cal. S may be any executable statement other than

a DO statement or another logical IF statement (see Chapter 2, Section 2.3.2). If the value of the expression is

.FALSE. (positive or zero), control passes to the next sequential statement. If value of the expression is .TRUE.

(negative), statement S is executed. After execution of 5, control passes to the next sequential statement unless

5 is a numerical IF statement or a GO TO statement; in these cases, control is transferred as indicated. If the

expression is • TRU E. (negative) and 5 is a CALL statement, control is transferred to the next sequential state­

ment upon return from the subroutine.

Numbers are present in the log ica I expression:

IF (B)Y=X *SIN (Z)
W=Y**2

If the value of B is . TRUE., the statements Y=X*SIN(Z) and W=Y**2 are executed in that order. If the value of

B is .FALSE., the statement Y=X*SIN(Z) is not executed.

Examples:

Version 24 FORTRAN
Version 31 LIB40

IF (T. OR. S)X=Y+ 1
IF (Z.GT.X(K)) CALL SWITCH (S,Y)
IF (K .EQ.INDEX) GO TO 15

NOTE

Care should be taken in testing floating point numbers
for equality in IF statements as rounding may cause
unexpected resu I ts.

4-3 February 1971

I

4.3 DOSTATEMENT

The DO statement simplifies the coding of iterative procedures. DO statements are of the form:

where n is a statement number, i is a nonsubscripted integer variable, and m1,m2,m3 are any integer expressions.

If m3 is not specified, it is understood to be 1.

The DO statement causes the statements which follow, up to and including the statement numbered n, to be ex­

ecuted repeatedly. This group of statements is called the range of the DO statement. The integer variable i of

the DO statement is called the index. The values of m1,m2, and m3 are called, respectively, the initial, limit,

and increment values of the index.

A zero increment (m3) is not allowed. The increment m3 may be negative if m1~m2. If m1~m2' the increment

m3 must be positive. The index variable can assume legal values only if (m2-mi)*m3~0 .. (m i is the current value

of the index variable m1.)

Examples: Form

DO 101=1,5,2

DO 10 1=5, 1 , - 1

DO 1 0 I=J, K, 5

D0101=J,K,-5

DO 10 L=I, J, -K

DO 10 L=I, J, K

J<K

J>K

Restri cti on

I<J,K<O or I>J,K>O - -
I<J,K>O or I>J,K>O
- -

Initially, the statements of the range are executed with the initial value assigned to the index. This initial ex­

ecution is always performed, regardless of the values of the limit and increment. After each execution of the

range, the increment value is added to the value of the index and the result is compared with the limit value.

If the value of the index is not greater than the limit value, the range is executed again using the new value

of the index. When the increment value is negative, another execution will be performed if the new value of

the index is not less than the limit value.

After the last execution of the range, control passes to the statement immediately following the range. This

exit from the range is called the normal exit. Exit may also be accomplished by a transfer from within the range.

The range of a DO statement may include other DO statements, provided that the range of each contained DO

statement is entirely within the range of the containing DO statement. When one DO loop is completely con­

tained in another, it is said to be nested. DO loops can be nested to any depth. A transfer into the range of

a DO statement from outside the range is not allowed.

Version 24 FORTRAN
Version 31 LIB40

4-4
October 1971

More than one DO loop within a nest of DO loops can end on the same statement. This terminal statement is

considered to belong to the innermost DO loop that ends on the terminal statement. The statement label of

such a terminal statement cannot be used in any GO TO or arithmetic IF statements except those that occur

within the DO loop to which the terminal statement belongs.

Version 24 FORTRAN
Version 31 LIB40 4-40 October 1971

Va I id DO Loop Nest

B I,---A __ _

C

Control must not pass from within loop A
or loop B into loop D, or from loop D into
loop A or loop B.

Figure 4-1

Invalid DO Loop Nest

B

A

C

Loop C is not fully within the range of
loop B even though it is within the range
of loop A.

Nested DO Loops

Within the range of a DO statement, the index is available for use as an ordinary variable. After a transfer

from within the range, the index retains its current value and is available for use as a variable. The value of

the index variable becomes undefined when the DO loop it controls is satisfied. The values of the initial, limit,

and increment variables for the index and the index of the DO loop, may not be altered within the range of the

DO statement.

The range of a DO statement must not end with a GO TO type statement or a numeri cal IF statement. If an

assigned GO TO statement is in the range of a DO loop, all the statements to which it may transfer must be

either in the range of the DO loop or all must be outside the range. A logical IF statement is allowed as the

last statement of the range. In this case, control is transferred as follows. The range is considered ended when,

and if, control would normally pass to the statement following the entire logical IF statement.

As an example, consider the sequences:

DO 5 K = 1,4
5 IF(X(K).GT. Y(K))Y(K) = X(K)
6 ...

Statement 5 is executed four times whether the statement Y(K) = X(K) is executed or not. Statement 6 is not ex­

ecuted unti I statement 5 has been executed four times.

4-5

Examples: DO 22 L -, 1,30
DO 45 K =- 2, LIMIT,-3
DO 7 X = T, MAX , L

4.4 CONTINUE STATEMENT

The CONTINUE statement has the form:

CONTINUE

This statement is a dummy statement, used primarily as a target for transfers, particularly as the last statement in

the range of a DO statement. For example, in the sequence:

DO 7 K = START, END

IF (X (K))22, 13,7

7 CONTINUE

a positive value of X(K) begins another execution of the range. The CONTINUE provides a target address for

the IF statement and ends the range of the DO statement.

4.5 PAUSE STATEMENT

The PAUSE statement enables the program to incorporate operator activity into the sequence of automati c events.

The PAUSE statement assumes one of three forms:

PAUSE
PAUSE n
PAUSE 'xxxxx'

where n is an unsigned string of six or less octal digits, and 'xxxxx' is a literal message.

Execution of the PAUSE statement causes the message or the octal digits, if any, to be typed on the user's tele­

typewriter. Program execution may be resumed (at the next executable FORTRAN statement) from the console

by typing "G," followed by a carriage return. Program execution may be terminated by typing "X, 11 followed

by carriage return.

Example: PAUSE 167
PAUSE 'NOW IS THE TIME'

4-6

I

I

I

4.6 STOP STATEMENT

The STOP statement has the forms:

STOP or
STOP n

where n is an unsigned string of one to five octal digits.

The STOP statement terminates the program and returns control to the monitor system. (Termination of a program

may also be accomplished by a CAll to the EXIT or DUMP subroutines.) Use of the STOP statement implies a

call to the EXIT subroutine.

4.7 END STATEMENT

The END statement has the form:

END

The END statement informs the compiler to terminate compilation and must be the physically last statement of

the program. The END statement implies a STOP statement in a main program or a RETURN statement in a sub­

routine or a function. The END statement is implied by an end-of-file.

Revision 1 FORTRAN 4-7 October 1970

CHAPTER 5

DATA TRANSMISSION STATEMENTS

Data transmission statements are used to control the transfer of data between computer memory and either

peripheral devices or other locations in computer memory. These statements are also used to specify the format

of the output data. Data transmission statements are divided into the following four categories.

a. Nonexecutable statements that enable conversions between internal form data within core memory
and external form data (F ORMAT), or specify lists of arrays and variables for input/output transfer
(NAME LIST). .

b. Statements that specify transmission of data between computer memory and I/o devices: READ,
WRITE, PRINT, PUNCH, TYPE, ACCEPT.

c. Statements that control magnetic tape unit mechanisms: REWIND, BACKSPACE, END FILE,
UNLOAD, SKIP RECORD.

d. Statements that specify transmission of data between series of locations in memory: ENCODE,
DECODE.

5. 1 NONEXECUT ABLE ST ATEME NTS

The FORMAT statement enables the user to specify the form and arrangement of data on the selected external

medium. The NAME LIST statement provides for conversion and input/output transmission of data without

reference to a FORMAT statement.

5. 1. 1 FORMAT Statement

FORMAT statements may be used with any appropriate input/output medium or ENCODE/DECODE statement.

FORMAT statements are of the form:

where n is a statement number, and each S is a data fie Id specification.

FORMAT statements may be placed anywhere in the source program. Unless the FORMAT statement contains

only alphanumeric data for direct input/output transmission, it will be used in conjunction with the list of a

data transmission statement.

5-1

Slashes are used to specify unit records, which must be one of the following:

a. A tape or disk record with a maximum length corresponding to a line buffer (135 ASCII characters).

b. A punched card with a maximum of 80 characters.

c. A printed line with a maximum of 72 characters for a Teletype ®and either 120 or 132 characters
for the line pri nter .

During transmission of data, the object program scans the designated FORMAT statement. If a specification

for a numeric field is present (see Section 5.2.1 of this chapter) and the data transmission statement contains

items remaining to be transmitted, transmission takes place according to the specifications. This process ceases

and execution of the data transmission statement is terminated as soon as all specified items have been transmitted.

Thus, the FORMAT statement may contain specifications for more items than are specified by the data transmis­

sion statement. Conversely, the FORMAT statement may contain specifications for fewer items than are specified

by the data transmission statement.

The following types of field specifications may appear in a FORMAT statement: numeric, numeric with scale

factors, logical, alphanumeric. The FORMAT statement also provides for handling multiple record formats,

formats stored as data, carriage control, skipping characters, blank insertion, and repetition. If an input list

requires more characters than the input device supplies for a given unit record, blanks are supplied.

5.1.1.1 Numeric Fields - Numeric field specification codes designate the type of conversion to be performed.

These codes and the corresponding internal and external forms of the numbers are listed in Table 5-2.

The conversions are specified by the forms:

1.
2.
3.
4.
5.
6.

Dw.d
Ew.d
Fw.d
Iw
Ow
Gw.d
Gw
Gw.d,Gw.d

(for real or double precision)
(for integer or logical)
(for complex)

respectively. The letter D, E, F, I, 0, or G designates the conversion type; w is an integer specifying the

field width, which may be greater than required to provide for blank columns between numbers; d is an integer

specifying the number of decimal places to the right of the decimal point or, for G conversion, the number of

significant digits. (For D, E, F, and G input, the position of the decimal point in the external field takes

precedence over the value of d in the format.)

® Teletype is a registered trademark of Teletype Corporation.

5-2

For example,

FORMAT (I5,F 10. 2, D18. 10)

could be used to output the line,

bbb32bbbb-17.60bbb.5962547681D+03

on the output listing.

The G format is the general format code that is used to transmit real, double precision, integer, logical, or

complex data. The rules for input depend on the type specification of the corresponding variable in the data

list. The form of the output conversion also depends on the individual variable except in the case of real and

double-precision data. In these cases the form of the output conversion is a function of the magnitude of the

data being converted. The following table shows the magnitude of the external data, M, and the resulting

method of conversion.

Table 5-1
Magnitude of Internal Data

Magnitude of Data Resulting Conversion

O.l~M<l F(w-4). d, 4x

1 < M < 10 F(w-4).(d-l),4x -

10d- 2 ~ M < lOd- 1 F(w-4). 1, 4x

10d- 1 ~ M < 10d F(w-4). 0, 4x

All others Ew.d

The field width w should always be large enough to include spaces for the decimal point, sign, and exponent.

In all numeric field conversions if w is not large enough to accommodate the converted number, the excess

digits on the left will be lost; if the number is less than w spaces in length, the number is right-adjusted in the

field.

5-3

Conversion
Code

D

E

F

I

0

G

Table 5-2
Numeric Field Codes

Internal Form

Binary floating point
double-precision

Binary floating point

Binary floating point

Binary integer

Binary integer

One of the following:
single precision
binary floating point,
binary integer,
binary logical, or
binary complex

External Form

Decimal floating point
with D exponent

Decimal floating point
with E exponent

Decimal fixed point

Decimal integer

Octal integer

Single precision
decimal floating point
integer, logical (T or
F), or comp lex (two
decimal floating point
numbers), depending
upon the internal form

5. 1. 1.2 Numeric Fields with Scale Factors - Scale factors may be specified for D, E, F, and G conversions.

A scale factor is written nP where P is the identifying character and n is a signed or unsigned integer that

spec ifies the scale factor.

For F type conversions (or G type, if the external field is decimal fixed point), the scale factor specifies a

power of ten so that

external number = (internal number)* 10(scale factor}

For D, E, and G (external field not decimal fixed point) conversions, the scale factor multiplies the number by

a power of ten, but the exponent is changed accordingly leaving the number unchanged except in form. For

example, if the statement:

FORMAT (F8.3,E16.5)

corresponds to the line

bb26.451bbbb-O.41321E-Ol

then the statement

FORMAT (-lPF8.3,2PE 16.5)

5-4

might correspond to the line

bbb2.645bbb-41.32157E-03

In input operations, F type (and G type, if the external field is decimal fixed point) conversions are the only

types affected by sca Ie factors.

When no scale factor is specified, it is understood to be zero. However, once a scale factor is specified, it

holds for all subsequent D, E, F, and G type conversions within the same format unless another scale factor is

encountered. The scale factor is reset to zero by specifying a scale factor of zero. Scale factors have no

effect on I and 0 type conversions.

5.1.1.3 Logical Fields - Logical data can be transmitted in a manner similar to numeric data by use of the

specification:

Lw

where L is the control character and w is an integer specifying the field width. The data is transmitted as the

value of a logical variable in the input/output list.

If on input, the first nonblank character in the data field is T or F, the value of the logical variable wi II be

stored as true or false, respectively. If the entire data field is blank or empty, a value of false will be stored.

On output, w minus 1 blanks followed by Tor F will be output if the value of the logical variable is true or

false, respectively.

5.1.1.4 Variable Field Width - The D, E, F, G, I, and 0 conversion types may appear in a FORMAT state­

ment without the specification of the field width (w) or the number of places after the decimal point (d). In

the case of input, omitting the w implies that the numeric field is delimited by any character which would

otherwise be illegal in the field, in addition to the characters -, +, ., E, D, and blank provided they follow

the numeri c fie Id. For examp Ie, input according to the format

10 FORMAT(2I,F,E,O)

might appear on the input medium as

-10,3/15.621-.0016E-10,777.

5-5

In this case, commas delimit the numeric fields, blanks may also be used as field delimiters. On output,

omitting the w has the following effect:

Format

D

E

F

G

o

Becomes

D25.16

E15.7

F15.7

G 15.7 or G25. 16

115

015

5.1. 1.5 Alpha~"'meric Fields - Alphanumeric data can be transmitted in a manner similar to numeric data by

use of tht:. Torm Aw, where A is the control character and w is the number of characters in the field. The alpha­

numeric characters are transmitted as the value of a variable in an input/output list. The. variable may be of any

type. F or the sequence:

READ 5, V
5 FORMAT (A4)

causes four characters to be read and placed in memory as the value of the variable V.

Although w may have any value, the number of characters transmitted is limited by the maximum number of

characters which can be stored in the space allotted for the variable. This maximum depends upon the variable

type. For a double precision variable the maximum is ten characters; for all other variables, the maximum is

five characters. If w exceeds the maximum, the leftmost characters are lost on input and replaced with blanks

on output. If, on input, w is less than the maximum, blanks are fi lied in to the right of the given characters

unti I the maximum is reached. If, on output, w is less than the maximum, the leftmost w characters are trans­

mitted to the external medium. Since for complex variables each word requires a separate field specification,

the maximum value for w is 5. For example,

COMPLEX C
ACCEPT I, C

1 FORMAT (2A5)

could be used to transmit ten alphanumeric characters into complex variable C.

5. 1. 1.6 Alphanumeric Data Within Format Statements - Alphanumeric data may be transmitted directly into or

from the format statement by two different methods: H-conversion, or the use of single quotes.

5-6

In H-conversion, the alphanumeric string is specified by the form nH. H is the control character and n is the

number of characters in the string counting blanks. For example, the format in the statement below can be used

to print PROGRAM COMPLETE on the output listing.

FORMAT (17H PROGRAM COMPLETE)

The statement

FORMAT (16HPROGRAM COMPLETE)

causes ROGRAM COMPLETE to be printed.

Referring to this format in a READ statement would cause the 17 characters to be replaced with a new string

of characters.

The same effect is achieved by merely enclosing the alphanumeric data in quotes. The result is the same as in

H-conversion; on input, the characters between the quotes are replaced by input characters, and, on output,

the characters between the quotes (including blanks) are written as part of the output data. A quote character

within the data is represented by two successive quote marks. For example, referring to:

FORMAT (' DON"T')

with an output statement would cause DON'T to be printed. Referring to

FORMAT ('DON"T')

causes 0 N'T to be printed. The first character referenced by the FORMAT statement for output is interpreted

I as a carriage control character (see 5.1.1. 13). TAB characters in FORMAT statements are converted to single

blanks at runtime by the FORTRAN operating system.

5.1.1.7 Mixed Fields - An alphanumeric format field may be placed among other fields of the format. For

example, the statement:

FORMAT (I5,7H FORCE=F10.5)

can be used to output the line:

bbb22bFORCE=bb 17 .68901

The separating comma may be omitted after an alphanumeric format field, as shown above.

Revision 1 FORTRAN 5-7 October 1970

5. 1. 1.S Complex Fields - Complex quantities are transmitted as two independent real quantities. The format

specification consists of two successive real specifications or one repeated real specification. For instance,

the statement:

FORMAT (2E15.4,2(FS.3,FS.5»

could be used in the transmission of three complex quantities.

5. 1. 1.9 Repetition of Fie Id Specifications - Repetition of a field specification may be specified by preceding

the control character D, E, F, I, 0, G, L, or A by an unsigned integer giving the number of repetitions de­

sired. For example:

FORMAT (2E12.4,315)

is equivalent to:

FORMAT (E 12.4,E12.4,IS,IS ,IS)

5.1.1.10 Repetition of Groups - A group of field specifications may be repeated by enclosing the group in

parentheses and preceding the whole with the repetition number. For example:

FORMAT (21S ,2(E15 .5,2FS.3»

is equivalent to:

FORMAT (2IS, E15 .5,2FS.3,E 15.5,2FS.3)

5. 1. 1.11 Multiple Record Formats - To handle a group of input/output records where different records have

different field specifications, a slash is used to indicate a new record. For example, the statement:

FORMAT (308/15 ,2FS.4)

is equivalent to

FORMAT (30S)

for the first record and

FORMAT (I5,2FS.4)

for the second record.

5-8

The separating comma may be omitted when a slash is used. When n slashes appear at the end or beginning of

a format, n blank records may be written on output or records skipped on input. When n slashes appear in the

middle of a format, n-1 blank records are written or n-1 records skipped.

Both the slash and the closing parenthesis at the end of the format indicate the termination of a record. If the

list of an input/output statement dictates that transmission of data is to continue after the closing parenthesis

of the format is reached, the format is repeated starting with that group repeat specification terminated by the

last right parenthesis of level one or level zero if no level one group exists.

Thus, the statement

FORMAT (F7.2,(2(E15.5,E15.4},I7})

level O~ J jL level 0
level 1 level 1

causes the format

F7 .2,2(E 15 .5,E 15 .4} ,17

to be used on the first record, and the format

2(E 15 .5,E 15.4} ,17

to be used on succeeding records.

As a further example, consider the statement

FORMAT (F7.2/(2(E15.5,E15.4},I7)}

The first record has the format

F7.2

and successive records have the format

2(E 15 .5,E15.4} ,17

5.1.1.12 Formats Stored as Data - The ASCII character string comprising a format specification may be stored

as the values of an array. Input/output statements may refer to the format by giving the array name, rather than

the statement number of a FORMAT statement. The stored format has the same form as a FORMAT statement ex­

cluding the word "FORMAT." The enclosing parentheses are included.

5-9

As an example, consider the sequence:

DIME NSION SKELETON (2)
READ 1, (SKELETON(I), I == 1,2)

1 FORMAT (2M)
READ SKELETON,K,X

The first READ statement enters the ASCII string into the array SKE LETON. In the second READ statement,

SKELETON is referred to as the format governing conversion of K and X.

5. 1. 1. 13 Carriage Control - The first character of each ASCII record controls the spacing of the line printer

or Teletype. This character is usually set by beginning a FORMAT statement for an ASCII record with 1Ha,

where a is the desired control character. The line spacing actions, listed below, occur before printing:

FORTRAN Printer Octal
Effect

Printer
Character Character Value Channel

space LF 012 Skip to next line 8
wi th form feed after
60 lines

0 zero LF ,LF 012 Skip a line 8

one FF 014 Form feed - go to
top of next page

+ plus Suppress skipping -
overprint the line

* asterisk DC3 023 Skip to next line 5
wi th no form feed

- minus LF,LF,LF 012 Skip two lines 8

2 two DLE 020 Space 1/2 of a page 2

3 three VT 013 Space 1/3 of a page 7

/ slash DC4 024 Space 1/6 of a page 6

period DC2 022 Triple space with a 4
form feed after every
20 lines printed

, comma DCl 021 Double space with a 3
form feed after every
30 lines printed

NOTE: Printer control characters DLE, DC1, DC2, DC3, and DC4 affect only the line printer.

Version 24 FORTRAN
Version 31 LIMO 5-10 October 1971

A $ (dollar sign) as a format field specification code suppresses the carriage return at the end of the Teletype or

line printer line.

5.1.1.14 Spacing - Input and output can be made to begin at any position within a FORTRAN record by use

of the format code

Tw

where T is the control character and w is an unsigned integer constant specifying the character position in a

FORTRAN record where the transfer of data is to begin. When the output is printed, w corresponds to the {w-l)th

print position. This is because the first character of the output buffer is a carriage control character and is not

printed. It is recommended that the first field specification of the output format be 1x f except where a carriage

control character is used.

Version 24 FORTRAN
Version 31 LlB40 5-10a October 1971

For example,

2 FORMAT (T50, 'BLACK'T30, 'WHITE')

would cause the following line to be printed

Print Position 29 Print Position 49

+
WHITE

For input, the statement

1 FORMAT(T35, 'MONTH')

READ (3,1)

+
BLACK

cause the first 34 characters of the input data to be skipped, and the next 5 characters would replace the char­

acters M, 0, N, T, and H in storage. If an input record containing

ABCbbbXYZ

is read with the format specification

10 FORMAT (T7,A3, T1 ,A3)

then the characters XYZ and ABC are read, in that order.

5.1.1.15 Blank or Skip Fields - Blanks may be introduced into an output record or characters skipped on an

input record by use of the specification nX. The control character is X; n is the number of blanks or characters

skipped and must be greater than zero. For example, the statement

FORMAT (5H STEPI5, 10X2HY=F7.3)

may be used to output the line

bSTEPbbb28bbbbbbbbbbY=b-3.872

5. 1.2 NAME LIST Statement

The NAME LIST statement, when used in conjunction with special forms of the READ and WRITE statements,

provides a method for transmitting and converting data without using a FORMAT statement or an I/O list. The

NAMELIST statement has the form

5-11

where the X's are NAMELIST names, and the A's, B's, and C's are variable or array names.

Each list or variable mentioned in the NAME LIST statement is given the NAME LIST name immediately preceding

the list. Thereafter, an I/o statement may refer to an entire list by mentioning its NAMELIST name. For

example:

NAMELIST/FRE D/ A, B, C/MARTHA/D, E

states that A, B, and C belong to the NAMELIST name FRED, and D and E belong to MARTHA.

The use of NAME LIST statements must obey the following rules:

a. A NAME LIST name may not be longer than six characters; it must start with an alphabetic char­
acter; it must be enclosed in slashes; it must precede the list of entries to which it refers; and it must
be unique within the program.

b. A NAMELIST name may be defined only once and must be defined by a NAMELIST statement.
After a NAMELIST name has been defined, it may only appear in READ or WRITE statements. The
NAME LIST name must be defined in advance of the READ or WRITE statement.

c. A variable used in a NAME LIST statement cannot be used as a dummy argument in a subroutine
definition •

d. Any dimensioned variable contained in NAME LIST statement must have been defined in a
DIMENSION statement preceding the NAMELIST statement.

5.1.2.1 Input Data For NAME LIST Statements - When a READ statement refers to a NAME LIST name, the

first character of all input records is ignored. Records are searched until one is found with c 'b (." & as the

second character immediately followed by the NAMELIST name specified. Data is then converted and p!aced

in memory unti I the end of a data group is signaled by a $ or & either in the same record as the NAME LIST name,

or in any succeeding record as long as the $ or & is the second character of the record. Data items must be

separated by commas and be of the following form:

where V may be a variable name or an array name, with or without subscripts. The K's are constants which may

be integer, real, double precision, complex (written as (A, B) where A and B are real), or logical (written as

T for true and F for false). A series of J identical constants may be represented by J*K where J is an unsigned

integer and K is the repeated constant. Logical and complex constants must be equated to logical and complex

variables, respectively. The other types of constants (real, double precision, and integers) may be equated to

5-12

any other type of variable (except logical or complex), and will be converted to the variable type. For

example, assume A is a two-dimensional real array, B is a one-dimensional integer array, C is an integer

variable, and that the input data is as follows:

$FRED A(7,2}=4, B=3,6*2.8, C=3.32$
t

Column 2

A READ statement referring to the NAMELIST name FRED will result in the following: the integer 4 will be

converted to floating point and placed in A(7,2). The integer 3 will be placed in B(1) and the floating point

number 2.8 will be placed in B(2), B(3), ... , B(7). The floating point number 3.32 will be converted to the

integer 3 and placed in C.

5.1.2.2 Output Data For NAMELIST Statements - When a WRITE statement refers to a NAME LIST name, all

variables and arrays and their values belonging to the NAME LIST name will be written out, each according to

its type. The complete array is written out by columns. The output data will be written so that:

a. The fields for the data will be large enough to contain all the significant digits.

b. The output can be read by an input statement referencing the NAMELIST name.

For example, if JOE is a2xj-array, the statement

NAME LI ST/NAM l/JOE,K 1 ,ALPHA
WRITE (u, NAM 1)

generate the following form of output.

Column 2
~

$NAM1
JOE = -6.75,

-17.8,
K 1 = 73.1,

. 234E-04,
0.0,

ALPHA=3,$

5.2 DATA TRANSMISSION STATEMENTS

68.0,
-. 197E+07,

The data transmission statements accomplish input/output transfer of data that may be listed in a NAMELIST

statement or defined in a FORMAT statement. When a FORMAT statement is used to specify formats, the data

transmission statement must contain a list of the quantities to be transmitted. The data appears on the external

media in the form of records.

5-13

5.2. 1 Input/Output Lists

The list of an input/output statement specifies the order of transmission of the variable values. During input,

the new values of listed variables may be used in subscript or control expressions for variables appearing later

in the list. For example:

READ 13,L,A(L),B(L+1)

reads a new value of L and uses this value in the subscripts of A and B.

The transmission of array variables may be controlled by indexing similar to that used in the DO statement. The

list of controlled variables, followed by the index control, is enclosed in parentheses. For example,

READ 7, (X(K),K=1,4),A

is equivalent to:

READ7, X(l),X(2),X(3),X(4),A

As in the DO statement, the initial, limit, and increment values may be given as integer expressions:

READ 5, N, (GAIN(K),K=1,M/2,N)

The indexing may be compounded as in the following:

READ 11, ((MASS(K,L),K=1,4),L=1,5)

The above statement reads in the elements of array MASS in the following order:

MASS(1 , 1), MASS(2, 1), ... , MASS(4, 1) ,MASS{l ,2), ... ,MASS(4,5)

If an entire array is to be transmitted, the index ing may be omitted and only the array identifier written. The

array is transmitted in order of increasing subscripts with the first subscript varying most rapidly. Thus, the

example above could have been written:

READ 11, MASS

Entire arrays may also be designated for transmission by referring to a NAMELIST name (see description of

NAMELIST statement).

5-14

5.2.2 Input/Output Records

All information appearing on external media is grouped into records. The maximum amount of information in

one record and the manner of separation between records depends upon the medium. For punched cards, each

card constitutes one record; on a teletypewriter a record is one line, and so forth. The amount of information

contained in each ASCII record is specified by the FORMAT reference and the I/o list. For magnetic tape

binary records, the amount of information is specified by the I/o list.

Each execution of an input or output statement initiates the transmission of a new data record. Thus, the

statement

READ 2, FIRST ,SECOND, THIRD

is not necessarily equivalentto the statements

READ 2, FIRST
READ 2, SECOND
READ 2, THIRD

since, in the second case, at least three separate records are required, whereas, the single statement

READ 2, FIRST ,SECOND, THIRD

may require one, two, three, or more records depending upon FORMAT statement 2.

If an input/output statement requests less than a full record of information, the unrequested part of the record

is lost and cannot be recovered by another input/output statement without repositioning the record.

If an input/output list requires more than one ASCII record of information, successive records are read .

. 5.2.3 PRI NT Statement

The PRI NT statement assumes one of two forms

PRINT f, list
PRINT f

where f is a format reference.

The data is converted from internal to external form according to the designated format. If the data to be

transmitted is contained in the specified FORMAT statement, the second form of the statement is used.

5-15

Examples: PRINT 16, T ,(B(K) ,K=l ,M)
PRINT F 106, SPEE D, MISS

In the second example, the format is stored in array F106.

5.2.4 PUNCH Statement

The PUNCH statement assumes one of two forms

PUNCH f, list
PUNCH f

where f is a format refe rence.

Conversion from internal to external data forms is specified by the format reference. If the data to be trans­

mitted is contained in the designated FORMAT statement, the second form of the statement is used.

Examples: PUNCH 12,A,B(A),C(B(A))
PUNCH 7

5 . 2.5 TY PE Statement

The TYPE statement assumes one of two forms

TYPE f, list
TYPE f

where f is a format reference.

This statement causes the values of the variables in the list to be read from memory and listed on the user's

teletypewriter. The data is converted from internal to external form according to the designated format. If

the data to be transmitted is contained in the designated FORMAT statement, the second form of the statement

is used.

Examples: TYPE 14,K,(A(L),L=1,K)
TYPE FMT

5.2.6 WRITE Statement

The WRITE statement assumes one of the following forms

5-16

WRITE (u,f) list
WRITE(u ,f)
WRlTE(u, N)
WRITE(u) list
WRITE(u#R,f) list

where u is a unit designation, f is a format reference, N is a NAMELIST name, and R is a record number where

I/o is to start.

The first form of the WRITE statement causes the values of the variables in the list to be read from memory and

written on the unit designated in ASCII form. The data is converted to external form as specified by the desig­

nated FORMAT statement.

The second form of the WRITE statement causes information to be read directly from the specified format and

written on the unit designated in ASCII form.

The third form of the WRITE statement causes the names and values of all variables and arrays belonging to the

NAMELIST name, N, to be read from memory and written on the unit designated. The data is converted to

external form according to the type of each variable and array.

The fourth form of the WRITE statement causes the values of the variables in the list to be read from memory

and wrif'ten on the unit designated in binary form.

The fifth form of the WRITE statement causes the variables in the list to be written in the specified record of the

file on the disk unit designated. Either a pound sign (#) or a single quote (') can be used to separate the unit

and the record. This allows a programmer to access fixed-length records directly, and eliminates the sequential

writing of data to access one or more records within the file. The file must first be defined properly by a CALL

to DEFINE FILE (see Section 12.4). Output begins when the random WRITE specifying the record to which the

writing is desired is given in the correct format.

5.2.7 READ Statement

The READ statement assumes one of the following forms:

READ f, list
READ f
READ(u,f) list
READ(u ,f)
READ(u, N)
READ(u)list
READ(u#R,f) list
READ(u ,f ,E ND=C, ERR=d) list
READ(u, f, E ND=C) list
READ(u, f, ERR=d) list

Revision 2 FORTRAN 5-17 February 1971

where f is a format reference, u is a unit designation, N is a NAMELIST name, R is a record number ;Afhero) i/O

is to STart I C is 0 statement number to which control is transferred upon encountering an end-of-fi Ie, and d is

the statement number to which control is transferred upon encountering an error condition on the input data.

The first form of the READ statement causes information to be read from cards and put in memory as values of the

variables in the list. The data is ;:onverted from external to internal form as specified by the referenced

FORMAT statement.

Example: READ 28,ZI ,Z2,Z3

The second form of the READ statement is used if the data read from cards is to be transmitted directly into the

specified format.

Example: READ 10

The third form of the READ statement causes ASCII information to be read from the unit designated and stored

in memory as values of the variables in the list. The data is converted to internal form as specified by the

refere nced FORMAT statement.

Example: READ(J, 15)ET A, PI

The fourth form of the READ statement causes ASCII information to be read from the unit designated and trans­

mitted directly into the specified format.

Example: READ(N, lOS)

The iifth form of the READ statement causes data of the form described in the discussion of input data for

NAMELlST statements to be read from the unit designated and stored in memory as values of the variables or

arrays specified.

Example: READ(2, FRED)

The sixth form of the READ statement causes binary information to be read from the unit designated and stored

in memory as values of the variables in the list.

Example: READ(M)GAIN, Z/AI

The seventh form of the READ statement causes information to be read from the specified record in a disk file

into the variables of the list. This allows random access of fixed-length records in a disk file. The file from

which records are to be read is defined by the DEANE ALE call (see Section 12.4).

5-18

Example: DOUBLE PRECISION FIL
DIMENSION A(6)
DATA FIL/'FILE.ONE'/
CALL DEANE FILE (4,30,NV,FIL,111,"23)
READ (4#54 i 5)A

This example reads the 54th record from FILE.ONE on the disk area belonging to programmer [11,23] into the

list variables A(l) through A(6).

The eighth form of the READ statement causes control to be transferred if an end-of-file or error condition is

I encountered on the input data. The arguments END=c and ERR=d are optional and if both are included, either

may appear first. If an end-of-file is encountered, control transfers to the statement specified by END=c. If

an END parameter is not specified, I/O on that device terminates and the program halts with an error message

to the user's TTY. If an error on input is encountered, control transfers to the statement specified by ERR=d.

If an ERR=d parameter is not specified, the program halts with an error message to the user's TTY.

Example: READ (7,7,ENrF888, ERR=999)A

888 (control transfers here if an end-of-file is encountered)

999 (control transfers here if an error on input is encountered)

5.2.8 REREAD Statement

The reread feature allows a FORTRAN program to reread information from the last used input file. The format

used during the reread need not correspond to the original read format, and the informati on may be read as

many times as desired.

a. To reread from an input device, the following coding would be used:

READ (16, l00)A

REREAD 105,A

The REREAD 105,A statement causes the last input device used to be reread according to format state­
ment 105. The original read format and a subsequent reread format need not be the same.

b. The reread feature cannot be used until an input from a file has been accomplished. If the feature
is used prematurely, an error message wi II be generated.

c. Information may be reread as many times as desired using either the same or a new format statement
each time.

d. The reread feature must be used with some forethought and care since it rereads from the last input
file used, i.e.:

Revision 1 FORTRAN 5-19 October 1970

The following example will reread from the file on Device No. 10, not Device No. 16:

READ (16, 1OO)A

READ (10,2oo)B

REREAD 110,A

5.2.9 ACCEPT Statement

The ACCEPT statement assumes one of two forms

ACCE PT f, list
ACCEPT f

where f is a format reference.

This statement causes information to be input from the user's teletypewriter and put in memory as values of the

variables in the list. The data is converted to internal form as specified by the format. If the transmission of

data is directly into the designated format, the second form of the statement is used.

Examples: ACCE PT 12 ,ALPHA, BETA
ACCEPT 27

5.3 DEVICE CONTROL STATEMENTS

Device control statements and their corresponding effects are listed in Table 5-3.

~je(r,~6,'{:, :::~, 4- ..f,-~, ,,\.{~~"': dCf(,.l.d~:
.j ,

Table 5-3
Device Control Statements

Statement Effect

BACKSPACE u
~ ... ~

Backspaces designated,~ one ASCII record or one
logical binary record.

END FILE u Writes an end-of-fi Ie.

REWIND u Rewinds tape on designated unit.

SKIP RECORD u Causes skipping of one ASCII record or one logical
binary record.

• .. ,1..(, /-
UNLOAD u Rewinds and unloads the designated t

~KASC u N,-'W, ~ ';\i:.-lw\ c! bta. k kt'i ~.,,\. lllt~ .. d":~;~lail:,1 " "k.

5-20

5.4 ENCODE AND DECODE STATEMENTS

ENCODE and DECODE statements transfer data, according to format specifications, from one section of user's

core to another. No peripheral equipment is involved. DECODE is used to change data in ASCII format to

data in another format. ENCODE changes data of another format into data in ASCII format.

The two statements are of the form

where

ENCODE(c,f,v),L(l), •.. ,L(N)
DECODE(c,f,v), L(l), .•• ,L(N)

c = the number of ASCII characters
f the format statement number
v the starting address of the ASCII record referenced
L(l), ..• ,L(N) = the list of variables.

I A slash cannot appear in the FORMAT statement referenced by an ENCODE or DECODE statement.

Example: Assume the contents of the variables to be as follows:

A(l) contains the floating-point binary number 300.45

A(2) contains the floating-point binary number 3.0

J contains the binary integer value 1.

B is a four-word array of indeterminate contents

C contains the ASCII string 12345

DO 2 J = 1,2
ENCODE (16, 10,B) J, A(J)

10 FORMAT (lX,2HA(,11 ,4H) = ,F8.2)
TYPE 11 ,B

11 FORMAT (4A5)
2 CONTINUE

DECODE (4, 12, C) B
12 FORMAT (3F1.0, 1X,F1.0)

TYPE 13,B
13 FORMAT (4F5.2)

END

Array B can contain 20 ASCII characters. The result of the ENCODE statement after the first iteration of the

DO loop is:

B(1)
B(2)
B(3)
B(4)

Version 26 FORTRAN
Version 32 LlB40

A(1)

300.4
5

Typed as

A(1) = 300.45

5-21 May 1972

The result after the second iteration is:

8(1)
8(2)
8(3)

A(2)

3.0
8(4) "---____ ---'

Typed as

A(2) = 3.0

The result of the DECODE statement is to extract the digits 1, 2, and 3 from C and convert them to floating­

point binary values and store them in 8(1), 8(2), and 8(3). Then skip the next character (4) and extract the

digit 5 from C, convert it to a floating-point binary value, and store it in 8(4).

5-22

CHAPTER 6

SPECIACATION STATEMENTS

Specification statements allocate storage and furnish information about variables and constants to the compiler.

Specification statements may be divided into three categories, as follows:

a. Storage specification statements: DIMENSION, COMMON, and EQUIVALENCE.

b. Data specification statements: DATA and BLOCK DATA.

c. Type declaration statements: INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL,
SUBSCRIPT INTEGER, and IMPLICIT.

By extending the USA Standard in regard to specification statements, PDP-10 FORTRAN IV allows the following

statements to be used anywhere in the program, provided that the variables they specify appear in executable

statements only after the particular specification statement. The specification statement must not appear in the

range of a DO loop.

DIMENSION statement
EXTERNAL statement (described in Chapter 7)
COMMON statement
EQUIVALENCE statement
Type dec larat i on statements
DATA statement

A sample program that incorporates these statements follows.

DOUBLE PRECISION D
DIMENSION Y(10), D(5)
Y(l) = -1.0
INTEGER XX(5)
Y(2) = ABS(Y(l))
DATA XX/1 ,2,3,4,5
DO 10 1= 3,7

10 Y(I) = XX(I-2)
COMMON Z
Z=Y(l)*Y(2)/(Y(3) + Y(5))
END

Only IMPLICIT statements and arithmetic function definition statements (described in Chapter 7) must appear in

the program before any executable statement.

6-1

In addition, arrays must be dimensional before being referenced in a NAMELIST, EQUIVALENCE, or DATA

statement. DOUBLE PRECISION and COMPLEX arrays must be declared before they are dimensioned.

6.1 STORAGE SPECIFICATION STATEMENTS

6.1.1 DIMENSION Statement

The DIMENSION statement is used to declare identifiers to be array identifiers and to specify the number and

bounds of the array subscripts. The information supplied in a DIMENSION statement is required for the alloca­

tion of memory for arrays. Any number of arrays may be declared in a single DIMENSION statement. The

DIMENSION statement has the form

where S is an array specification.

Each array variable appearing in the program must represent an element of an array declared in a DIMENSION

statement, unless the dimension information is given in a COMMON or TYPE statement. Dimension information

may appear only once for a given variable.

Each array specification gives the array identifier and the minimuM and maximum values which each of its sub­

scripts may assume in the following form:

identifier{min/max, min/max, ••• ,min/max)

The minima and maxima must be integers. The minimum must not exceed the maximum. For example, the state­

ment

DIMENSION EDGE{-1/1,4/8)

specifies EDGE to be a two-dimensional array whose first subscript may vary from -1 to 1 inclusive, and the sec­

ond from 4 to 8 inclusive.

Minimum values of 1 may be omitted. For example,

NET{5, 10)

is interpreted as:

NET{1/5,1/1O)

6-2

Examples: DIMENSION FORCE(-l/l,O/3,2,2,-7 /3)
DIMENSION PLACE(3,3,3), JI(2,2/4), K(256)

Arrays may also be declared in the COMMON or type declaration statements in the same way:

COMMON X(10,4), Y,Z
INTEGER A(7,32),B
DOUBLE PRECISION K(-2/6, 10)

6.1.1.1 Adjustable Dimensions - Within either a FUNCTION or SUBROUTINE subprogram, DIMENSION and

TYPE statements may use integer variables in an array specification, provided that the array name and variable

dimensions are dummy arguments of the subprogram. The actual array name and values for the dummy variables

are given by the calling program when the subprogram is called. The variable dimensions may not be altered

within the subprogram (i .e., typing the array DOUBLE PRECISION or COMPLEX after it has been dimensioned)

and must be less than or equal to the explicit dimensions declared in the calling program.

Example: SUBROUTINE SBR(ARRAY,M1,M2,M3,M4)
DIMENSION ARRAY (Ml/M2,M3/M4)

DO 27 L=M3, M4
DO 27 K=M1,M2

27 ARRAY(K,L)=VALUE

END

The calling program for SBR might be:

DIMENSION A1(10,20),A2(1000,4)

CALL SBR(A1,5,10, 10,20)

CALL SBR(A2, 100,250,2,4)

END

6-3

6.1.2 COMMON Statement

The COMMON statement causes specified variables or arrays to be stored in an area available to other programs.

By means of COMMON statements, the data of a main program and/or the data of its subprograms may share a

common storage area.

The common area may be divided into separate blocks which are identified by block names. A block is specified

as follows:

;block identifier/identifier , identifier, .•• , identifier

The identifier enclosed in slashes is the block name. The identifiers which follow are the names of the variables

or arrays assigned to the block and are placed in the block in the order in which they appear in the block spec­

ification. A common block may have the same name as a variable in the same program.

The COMMON statement has the general form

COMMON/BLOCKl/A,B,C/BLOCK2/D,E,F/ ...

where BLOCK 1 ,BLOCK2, ..• are the block names, and A,B,C, ••. are the variables to be assigned to each

block. For example, the statement

COMMONfi/x, Y, T/C,/tJ, V, W,Z

i ndi cates that the el ements X, Y, and T are to be placed in block R in that order, and that U, V, W, and Z are

to be placed in block C.

Block entries are linked sequentially throughout the program, beginning with the first COMMON statement. For

example, the statements

COMMON/D/ALPHAfi/A,B/C/S
COMMON/C/X, Y/R/U, V, W

have the same effect as the statement

COMMON/D/ALPHA/R/A,B,U, V, W/C/S,X, Y

One block of common storage, referred to as blank common, may be left unlabeled. Blank common is indicated

by two consecutive slashes. For example,

COMMON/R/X, Y//B,C,D

indicates that B, C, and 0 are placed in blank common. The slashes may be omitted when blank common is the

fi rst b lock of the statement.

6-4

COMMON B,C,D

Storage allocation for blocks of the same name begins at the same location for all programs executed together.

For example, if a program contai'ns

COMMON' A, B/RiX, Y, Z

as its first COMMON statement, and a subprogram has

COMMON/R/U, V, W//D,E,F

as its first COMMON statement, the quantities represented by X and U are stored in the same location. A sim­

i lar correspondence holds for A and D in blank common.

Common blocks may be any length provided that no program attempts to enlarge a given common block declared

by a previously loaded program.

Array names appearing in COMMON statements may have dimension information appended if the arrays are not

declared in DIMENSION or type declaration statements. For example,

COMMON ALPHA, T(15, 10,5),GAMMA

specifies the dimensions of the array T while entering T in blank common. Variable dimension array identifiers

may not appear in a COMMON statement, nor may other dummy identifiers. Each array name appearing in a

COMMON statement must be dimensioned somewhere in the program containing the COMMON statement.

6.1.3 EQUIVALENCE Statement

The EQUIVALENCE statement causes more than one variable within a given program t<? share the same storage

location. The EQUIVALENCE statement has the form

EQUIVALENCE(V l' V 2"'·)' (Yk, Vk+ 1'··')'" .

where the V's are variable names.

The inclusion of two or more references in a parenthetical list indicates that the quantities in the list are to share

the same memory location. For example ...

EQUIVALENCE(RED, BLUE)

specifies that the variables RED and BLUE are stored in the same location.

6-5

The relation of equivalence is transitive; e.g., the two statements,

EQUIVALENCE(A,B), (B,C)
EQUIVALENCE(A, B,C)

have the same effect.

The subscripts of array variables must be integer constants.

Example: EQUIVALENCE(X ,A(3), Y(2, 1,4)), (BET A(2,2),ALPHA)

6.1.4 EQUIVALENCE and COMMON

Identifiers may appear in both COMMON and EQUIVALENCE statements provided the following rules are ob­

served.

a. No two quantities in common may be set equivalent to one another.

b. Quantities placed in a common block by means of EQUIVALENCE statements may cause the end of
the common block to be extended. For example, the statements

COMMON~;X, Y,Z
DIMENSION A(4)
EQUIVALENCE(A, Y)

causes the common block R to extend from X to A(4), arranged as follows:

X
Y A(l)
Z A(2)

A(3)
A(4)

(same location)
(same location)

c. EQUIVALENCE statements which cause extension of the start of a common block are not allowed.
For example, the sequence

COMMON~;X, Y,Z
DIMENSION A(4)
EQUIVALENCE(X ,A(3))

is not permitted, since it would require A(l) and A(2) to extend the starting location of block R.

6.2 DATA SPECIFICATION STATEMENTS

The DATA statement is used to specify initial or constant values for variables. The specified values are compiled

into the object program, and become the values assumed by the variables when program execution begins.

6.2.1 DATA Statement

The data to be compiled into the object program is specified in a DATA statement. The DATA statement has the

form

6-6

DATA list/dl,d2' •• • 1,1 istldk ,dk+ 1' •• • 1, •••

where each list is in the same form as an input/output list, and the d's are data items for each list.

Indexing may be used in a list provided the initial, limit, and increment (if any) are given as constants. Expres­

sions used as subscripts must have the form

c1*i~2

where c 1 and c2 are integer constants and i is the induction variable. If an entire array is to be defined, only

the array identifier need be listed. Variables in COMMON may appear on the lists only if the DATA statement

occurs in a BLOCK DATA subprogram. (See Chapter 7, Section 7.6)

The data items following each list correspond one-to-one with the variables of the list. Each item of the data

specifies the value given to its corresponding variable with no implied type conversion. Thus, integer variables

can only be defined numerically by integer constants, real variables by real constants, double precision variables

by double precision constants, and so forth. Refer to Section 2.1 for definitions of the various constants. Data

items may be numeric constants, alphanumeric strings, octal constants, or logical constants. For example,

I DATA ALPHA, BETA/.5, 16.E-2/

I specifies the value .5 for ALPHA and the value. 16 for BETA.

Alphanumeric data is packed into words according to the data word size in the manner of A conversion; however,

excess characters are not permitted. The specification is written as nH followed by n characters or is imbedded

I in single quotes. Double precision variables must have. at least six characters assigned to them in DATA state-

I

ments.

Octal data is specified by the letter 0 or the character ", followed by a signed or unsigned octal integer of one

to twelve digits.

Logi cal constants are written as • TRU E. ,. FALSE., T, or F.

Example: DATA NOTE,K/4HFOOT, 0-7712/
DATA QUOTE/'QUOTE'/

Any item of the data may be preceded by an integer followed by an asterisk. The integer indicates the number of

times the item is to be repeated. For example,

DATA(A(K),K;:::l,20)/61E2, 19*32E1/

specifies 20 values for the array A; the value 6100 for A(1); the value 320 for A(2) through A(20). To cause an

array or part of an array to be initialized to blanks, the blank areas must be specified explicitly in the DATA

statement. For exampl e ,

DATA(A(I),I=l,10)/'12345',9*1 1/

causes the first word of A to contain 12345 in ASCII and the next nine words of the array to be blank.

Version 24 FORTRAN
Version 31 LIMO 6-7 October 1971

6.2.2 BLOCK DATA Statement

The BLOCK DATA statement has the form:

BLOCK DATA

This statement declares the program which follows to be a data specification subprogram. Data may be entered

into labeled or blank common.

The first statement of the subprogram must be the BLOCK DATA statement. The subprogram may contain only the

declarative statements associated with the data being defined.

Example: BLOCK DATA
C OMMO N/R/S, Y /C/Z, w , V
DIMENSION Y(3}
COMPLEX Z
DATA Y /1 E-1 ,2*3E2/,X ,Z/11.877DO ,(-1.41421, 1.41421)/
END

Data may be entered into more than one block of common in one subprogram.

6.3 TYPE DECLARATION STATEMENTS

The type declaration statements INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL, IMPLICIT, and

SUBSCRIPT INTEGER are used to specify the type of identifiers appearing in a program. An identifier may ap­

pear in only one type statement. Type statements may be used to give dimension specifications for arrays.

The explicit type declaration statements have the general form

type identifier, identifier, identifier •••

where type is one of the following:

INTEGER,REAL,DOUBLE PRECISION,COMPLEX ,LOGICAL,
SUBSCRIPT INTEGER

In addition, for the sake of compatibility the following types have been made equivalent:

SUBSCRIPT INTEGER is equivalent to INTEGER*2
INTEGER is equivalent to INTEGER*4
REAL is equivalent to REAL*4
DOUBLE PRECISION is equivalent to REAL*8
LOGICAL is equivalent to LOGICAL* 1 and LOGICAL*4
COMPLEX is equivalent to COMPLEX*8

The listed identifiers are declared by the statement to be of the stated type. Fixed-point variables in a SUB­

SCRIPT INTEGER statement must fall between _227 and 227.

Version 24 FORTRAN
Version 31 LIB40 6-8 February 1971

6.3.1 IMPLICIT Statement

The IMPLICIT statement has the form

I where type represents INTEGER, REAL, LOGICAL, COMPLEX, DOUBLE PRECISION, or one of the equivalent

types listed in Section 6.3, and a 1a2' ••• represent single alphabetic characters, each separated by commas, or

a range of characters (in alphabetic sequence) denoted by the first and last characters of the range separated by

a minus sign (e.g., (A-D».

This statement causes any program variable which is not mentioned in a type statement, and whose first character

is one of those listed in the IMPLICIT statement, to be classified according to the type appearing before the list

in which the character appears. As an example, the statement

IMPLICIT REAL(A-D, L, N-P)

causes all variables starting with the letters A through D,L, and N through P to be typed as real, unless they are

explicitly declared otherwise.

The initial state of the compiler is set as if the statement

IMPLICIT REAL(A-H,O-Z}, INTEGER(I-N}

were at the beginning of the program. This state is in effect unless an IMPLICIT statement changes the above

interpretation; i.e., identifiers, whose types are not explicitly declared, are typed as follows.

a. Identifiers beginning with I, J, K, L, M, or N are assigned interger type.

b. Identifiers not assigned integer type are assigned real type.

If the program contains an IMPLICIT statement, this statement will override throughout the program the implicit

state initially set by the compiler • No program may contain more than one IMPLICIT declaration for the same

letter .

. Revision 2 FORTRAN 6-9 February 1971

CHAPTER 7

SUBPROGRAM STATEMENTS

FORTRAN subprograms may be either internal or external. Internal subprograms are defined and may be used

only within the program containing the definition. The arithmetic function definition statement is used to define

internal functions.

External subprograms are defined separately from (i .e., external to) the programs that call them, and are com­

plete programs which conform to all the rules of FORTRAN programs. They are compiled as closed subroutines;

i.e., they appear only once in the object program regardless of the number of times they are used. Extemal sub­

programs are defined by means of the statements FUNCTION and SUBROUTINE.

7.1 DUMMY IDENTIFIERS

Subprogram definition statements contain dummy identifiers, representing the arguments of the subprogram. They

are used as ordinary identifiers within the subprogram definition and indicate the sort of arguments that may ap­

pear and how the arguments are used. The dummy identifiers are replaced by the actual arguments when the sub­

program is executed.

7.2 LIBRARY SUBPROGRAMS

The standard FORTRAN IV library for the PDP-l0 includes built-in functions, FUNCTION subprograms, and

SUBROUTINE subprograms, listed and described in Chapter 8. Built-in functions are open subroutines; that is,

they are incorporated into the object program each time they are referred to by the source program. FUNCTION

and SUBROUTINE subprograms are closed subroutines; their names derive from the types of subprogram statements

used to defi ne them.

7.3 ARITHMETIC FUNCTION DEFINITION STATEMENT

The arithmetic function definition statement has the form:

identifier(identifier, identifier, •.•)=expression

7-1

I

This statement defines an internal subprogram. The entire definition is contained in the single statement. The

first identifier is the name of the subprogram being defined.

Arithmetic function subprograms are single-valued functions with at least one argument. The type of the function

is determined by the type of the function identifier.

The identifiers enclosed in parentheses represent the arguments of the function. These are dummy identifiers;

they may appear only as scalar variables in the defining expression. Dummy identifiers have meaning and must

be unique only within the defining statement. Dummy identifiers must agree in order, number, and type with

the actual arguments given at execution time.

Identifiers, appearing in the defining expression, which do not represent arguments are treated as ordinary var­

iables. The defining expression may include external functions or other previously defined arithmetic statement

functions.

All arithmetic function definition statements must precede the first executable statement of the program.

Examples: SSQR(K)=K*(K+ 1)*(2*K+1)/6
ACOSH(X)=(EXP(X/A}+EX P(-X/A»/2

In the last example above, X is a dummy identifier and A is an ordinary identifier. At execution time, the

function is evaluated using the current value of the quantity represented by A.

7.4 FUNCTION SUBPROGRAMS

A FUNCTION subprogram is a single-valued function that may be called by using its name as a function name

in an arithmetic expression, such as FUNC(N), where FUNC is the name of the subprogram that evaluates the

corresponding function of the argument N. A FUNCTION subprogram begins with a FUNCTION statement and

ends with an END statement. It returns control to the calling program by means of one or more RETURN state-

ments.

7.4. 1 FUNCTION Statement

The FUNCTION statement has the form:

FUNCTION identifier(argument,argument, ••.)

This statement declares the program which follows to be a FUNCTION subprogram. The identifier is the name of

the function being defined. This identifier must not be used as a dummy argument or appear in any nonexecutable

statement in the program other than as a scalar variable in a TYPE statement. It must appear as a scalar variable

and be assigned a value during execution of the subprogram which is the function value.

Version 24 FORTRAN
Version 31 LIMO 7-2 October 1971

Arguments appearing in the list enclosed in parentheses are dummy arguments representing the function argument.

The arguments must agree in number, order, and type with the actual arguments used in the ca II ing program.

FUNCTION subprogram arguments may be expressions, alphanumeric strings, array names, statement labels pre­

ceded by an asterisk (*) or dollar sign ($), or subprogram names.

Dummy arguments may appear in the subprogram as scalar identifiers, array identifiers, subprogram identifiers, or

an asterisk (*) or dollar sign ($), denoting statement labels in the calling program. A function must have at least

one dummy argument. Dummy arguments representing array names must appear within the subprogram in a

DIMENSION statement, or one of the type statements that provide dimension information. Dimensions given as

constants must equal the dimensions of the corresponding arrays in the calling program. In a DIMENSION state­

ment, dummy identifiers may be used to specify adjustable dimensions for array name arguments. For example, in

the statement sequence:

FUNCTION TABLE(A,M,N,B,X, Y}

DIMENSION A(M,N},B(10},C(50}

The dimensions of array A are specified by the dummies M and N, while the dimension of array B is given as a

constant. The various values given for M and N by the calling program must be those of the actual arrays which

the dummy A represents. The arrays may each be of different size but must have two dimensions. The arrays are

dimensioned in the programs that use the function.

Dummy dimensions may be given only for dummy arrays. In the example above the array C must be given abso­

lute dimensions, since C is not a dummy identifier. A dummy identifier may not appear in an EQUIVALENCE

statement in the FUNCTION subprogram.

Dummy arguments representing statement labels can be used only in connection with the RETURN statement.

When the value of the function is not required, a FUNCTION subprogram can be used as a SUBROUTINE subpro­

gram by utilizing the optional return. When the optional return appears in a FUNCTION subprogram, the value

of the function is stored on return only if RETURN or RETU RN i (where i = O) is used.

Example: FUNCTION LIST (A,$,C)

A function must not modify any arguments which appear in the FORTRAN arithmetic expression calling the func­

tion. Modification of implicit arguments from the calling program, such as variables in COMMON and DO loop

indexes, is not allowed. The only FORTRAN statements not allowed in a FUNCTION subprogram are SUBROU­

TINE, BLOCK DATA, and another FUNCTION statement.

7.4.1.1 Function Type - The type of the function is the type of identifier used to name the function. This iden­

tifier may be typed, implicitly or explicitly, in the same way as any other identifier. Alternatively, the function

7-3

I may be explicitly typed in the FUNCTION statement itself by preceding the word FUNCTION with one of the

types or equivalent types described in Section 6.3. For example:

INTEGER FUNCTION
REAL FU NCTION
COMPLEX FUNCTION
LOGICAL FUNCTION
DOUBLE PRECISION FUNCTION I REAL*8 FUNCTION

Thus, the statement

COMPLEX FUNCTION HPRIME(S,N)

is equivalent to the statements

Examples:

FUNCTION HPRIME(S, N)
COMPLEX HPRIME

FUNCTION MAY(RANGE,EP ,YP ,ZP)
COMPLEX FUNCTION COT(ARG)
DOUBLE PRECISION FUNCTION LIMIT(X,Y)
FUNCTION WORK (A,$,C)

7.5 SUBROUTINE SUBPROGRAMS

A SUBROUTINE subprogram may be multivalued and can be referred to only by a CALL statement. A SUBROU­

TINE subprogram begins with a SUBROUTINE statement and returns control to the calling program by means of

one or more RETURN statements.

7.5.1 SUBROUTINE Statement

The SUBROUTI NE statement has the form:

SUBROUTIN E identifier(argument ,argument, •.•)

This statement declares the program which follows to be a SUBROUTINE subprogram. The first identifier is the

·1 subroutine name. This identifier cannot be used as a dummy argument or appear in any nonexecutable statement

in the program other than as a scalar variable in a TYPE statement. The subroutine name can, however, be used

as a scalar variable in any executable statement in the program. The arguments in the list enclosed in parenthe-

ses are dummy arguments representing the arguments of the subprogram. The dummy arguments must agree in num­

ber, order, and type with the actual arguments used by the calling program.

SUBROUTINE subprograms may have expressions, alphanumeric strings, array names, statement labels, and sub­

program names as arguments. The dummy arguments may appear as scalar, array, subprogram identifiers, or an

Version 24 FORTRAN
Version 31 LIB40 7-4 October 1971

asterisk (*) or dollar sign ($) denoting a statement label in the calling program. Dummy arguments representing

statement labels can be used only in connection with the RETURN statement.

Dummy identifiers which represent array names must be dimensioned within the subprogram by a DIMENSION or

type declaration statement. As in the case of a FUNCTION subprogram, either constants or dummy identifiers

Version 24 FORTRAN
Version 31 LIMO 7-40 October 1971

may be used to specify dimensions in a DIMENSION statement. The dummy arguments must not appear in an

EQUIVALENCE or COMMON statement in the SUBROUTINE subprogram.

A SUBROUTINE subprogram may use one or more of its dummy identifiers to represent results. The subprogram

name is not used for the return of results. A SUBROUTINE subprogram need not have any argument at all.

Examples: SUBROUTINE FACTOR{COEFF,N,ROOTS)
SUBROUTINE RESIDU{NUM, N, DEN ,M, RES)
SUBROUTINE SERIES
SUBROUTINE TYPE{A,$,B, *)

The only FORTRAN statements not allowed in a function subprogram are FUNCTION, BLOCK DATA, and an­

other SUBROUTINE statement.

7.5.2 CALL Statement

The CALL statement assumes one of two forms:

CALL identifier
CALL identi fier (argument, argument, .•. , argument)

The CALL statement is used to transfer control to SUBROUTINE subprogram. The identifier is the subprogram

name.

The arguments may be expressions, array identifiers, alphanumeric strings, subprogram identifiers, or statement

I labels of the calling program preceded by an asterisk (*), dollar sign ($), or ampersand (&). Arguments may be

of any type, but must agree in number, order, type, and array size (except for adjustable arrays, as discussed

under the DIMENSION statement) with the corresponding arguments in the SUBROUTINE statement of the

called subroutine. Unlike a function, a subroutine may p-oduce more than one value and cannot be referred

to as a basic element in an expression.

I

A subroutine may use one or more of its arguments to return results to the calling program. If no arguments at all

are required, the first form is used.

Examples: CALL EXIT
CALL SWlTCH{SIN,2.LE.BETA,X**4, Y)
CALL TEST{VALUE, 123,275)
CALL TVPE{A,$10,B,*20,&30}

The identifier used to name the subroutine is not assigned a type and has no relation to the types of the arguments.

Arguments which are constants or formed as expressions must not be modified by the subroutine.

7.5.3 RETURN Statement

The RETURN statement has one of two forms:

Version 24 FORTRAN
Version 31 LIMO 7-5 October 1971

RETURN
RETURN i

where i is.an integer constant or an interger variable. The value of i must be positive, and specifies that the

return is to the i -th argument of the referenc i ng statement (where the i -th argument is a statement number pre­

ceded by a $ or *). If i=O, the return is the same as with the first form of the RETURN statement.

This statement returns control from a subprogram to the calling program. Normally, the last statement executed

in a subprogram is a RETURN statement. Any number of RETURN statements may appear in a subprogram. For

purposes of debugging functions and subroutines originally written as main programs, the RETURN statement has

I been made equivalent to the STOP statement in a main program.

7.6 BLOCK DATA SUBPROGRAMS

A BLOCK DATA subprogram is a data specification subprogram and is used to enter initial values into variables

in COMMON for use by FORTRAN subprograms and MACRO-10 main programs (see Chapter- 9). No executable

statements mey appear ina BLOCK DATA subprogram.

7.6. 1 BLOCK DATA Statement

The BLOCK DATA statement has the form:

BLOCK DATA

This statement declares the program which follows to be a data specification subprogram and it must be the first

statement of the subprogram (see Chapter 6, Section 6.2.2).

7.7 EXTERNAL STATEMENT

FUNCTION and SUBROUTINE subprogram names may be used as the actual arguments of subprograms. Such sub­

program names must be distinguished from ordinary variables by their appearance in an EXTERNAL statement.

The EXTERNAL statement has the form:

EXTERNAL identifier , identifier, .•• , identifier

This statement declares the listed identifiers to be subprogram names. Any subprogram name given as an argument

to another subprogram must have previously appeared in an external declaration in the calling program (i.e., as

an identifier in an EXTERNAL or CALL statement or as a function name in an expression).

Example:

Version 24 FORTRAN
Version 31 LIMO

EXTERNAL SIN, COS

CALL TRIGF(SIN, 1. 5, ANSWER)

CALL TRIGF(COS, .87,ANSWER)

END

7-6 February 1971

I

SUBROUTINE TRIGF(FUNC,ARG,ANSWER)

ANSWER = FUNC(ARG)

RETURN
END

To reference e.xternal variables from a MACRO-10 program by name, place the variables in named COMMON.

Use the name of the variable as the name of the COMMON block:

COMMON /A/A/B/B(13)/C/C(6,7)

7.8 SUMMARY OF PDP-10 FORTRAN IV STATEMENTS

General Form

ASSIGN ito m

CALL name (0 1,02, ...)

CONTINUE

DO i m=m 1,m2,m3
GO TO i

GO TO m

GO TO m, (i 1,i2, ••.)

GO TO (i 1,i2, .•.),m

IF (e l)i 1 ' i 2' i 3

IF (e2)s

PAUSE

PAUSE i
PAUSE 'h'

RETURN

RETURN i

STOP

END

CONTROL STATEMENTS

DATA TRANSMISSION STATEMENTS

General Form

ACCEPT f

ACCEPT f,list

BACKSPACE unit

DECODE (n,f,v)list

END ALE unit

Revision 2 FORTRAN 7-7

Section References

4.1.3

7.5.2

4.4

4.3

4.1.1

4.1.3

4.1.3

4.1.2

4.2.1

4.2.2

4.5

4.5

4.5

7.5.3

7.5.3

4.6

4.7

Section References

5.2.9

·5.2.9

5.3

5.4

5.3

February 1971

I

I

Genera I Form

ENCODE (n,f ,v)list

FORMAT (9)

PRINT f

PRINT f, list

PUNCH f

READ f

READ f, list

READ (unit, f)

READ (unit,f)list

READ (unit)list

READ (unit ,name 1)

READ (unit #R,f)list

READ {unit,f,END=c,ERR=d)list

READ {unit ,f,END=c)list

READ {unit, f, ERR=d)1 ist

REREAD f,list

REWIND unit

SKIP RECORD unit

TYPE f

TYPE f,list

WRITE (unit ,f)

WRITE (unit,f)list

WRITE (unit)list

WRITE (unit ,name 1)

WRITE (unit #R,f)list

UNLOAD unit

SPECIFICA TIO N ST ATEME NTS

General Form

BLOCK DATA

COMMON a(n l' n2, •••) ,b(n3,n 4'· ••), •••

COMMON ;1>lk1/a ,b/blk2/c,d/ •••

COMPLEX a{n 1,n2, •••),b("3,n4 , •••), •••

DATA t,u, ••• ;1<1,k2,k3, •• '/

v ,w, ... ;1<4,k5 ,k6, •• '/ •••

Revision 2 FORTRAN 7-8

Section References

5.4

5.1.1

5.2.3

5.2.3

5.2.4

5.2.7

5.2.7

5.2.7

5.2.7

5.2.7

5.2.7

5.2.7

5.2.7

5.2.7

5.2.7

5.2.8

5.3

5.3

5.2.5

5.2.5

5.2.6

5.2.6

5.2.6

5.2.6

5.2.6

5.3

Section References

6.2.2

6.1.2

6.1.2

6.3

6.2.1

February 1

I

DIMENSIO N a(n 1 ,n2 , •••) ,b(n1 ,n2 , •••), •••

DOUBLE PRECISION a(n1,n2 , •••),b(n3 ,n4 , •••), •••

EQUIVALENCE (a(n 1, •••),b(n2 , •••), •••), •••

(c(n3 ,···),d(n4,···),···),···

EXTERNAL y, z, •••

IMPLICIT type 1(11-1 i ,type2(13-14)'···

INTEGER a(n1 ,n2 , •••) ,b(n3,n4 , •••), •••

LOGICAL a(n 1 ,n2,· ••) ,b(n3 , n4 ,· ••), •••

NAMELIST /name /a,b, ••• /name/c,d, •••

REAL a(n 1,n2 , •••)b(n3 ,n4 , •••), •••

SUBSCRIPT INTEGER a(n1,n2 , •••),b(n3 , •••), •••

ARITHMETIC STATEMENT FUNCTION DEFINITION

6.1.1

6.3

6.1.3

7.7

6.3.1

6.3

6.3

5.1.2

6.3

6.3

General Form Section Reference

name(a,b, •••)=e

Revision 2 FORTRAN

NOTE:

a 1 ,a2,···
a,b,c,d

blkl,blk2

c

d

e

g

Ihl

are expressions

are variable names

are block names

is the statement number to which
control is transferred upon en­
countering an end-of-file

is the statement number to which
control is transferred upon en­
countering an error condition on
the input data.

is an expression

is a noncomplex expression

is a logical expression

is a format number

is a format specification

is an alphanumeric

are statement numbers

is an integer constant

are constants of the general form i*k
where k is any constant

are letters

7-9

7.3

February 1971

General Form

list

m

m1,m2 ,m3

n1 ,n2 ,···

n

name

s

t,u,v,w

type l' type2 , •••

unit

v

y,z

is an input/output list

is an integer variable name

are integer expressions

are dimension specifications

Section Reference

are the number of ASCII characters

is a subroutine or function name

are NAME LIST names

is a record number where VO begins

is a statement (not DO or logical IF)

are variable names or input/output lists

are type specifications

is an integer variable or constant specifying
a logical device number

is the starting address of the ASCII record
referenced

are external subprogram names

7-10

I

SECTION II

THE RUN TIME SYSTEM

The five chapters of this section contain information on LIMO, SUBPROGRAM

calling sequences, accumulator usage, compiler switches and diagnostic messages,

and FORTRAN user programmi ng.

Revision 1 FORTRAN October 1970

CHAPTER 8

L1B40

L1B40 is a single file which contains all of the programs in the FORTRAN library. It is composed of three groups

of programs:

(1) The FORTRAN Operating System.

(2) Science Library.

(3) FORTRAN Uti I ity Subprograms.

I There are two forms of LlB40, one for the KA-l0 and the other for the KI-l0. The KA-l0 library will run on the

KI-l0, but will not take advantage of the speed of the KI-l0. The KI-l0 library will not run on the KA-l0 be­

cause of the hardware differences. Also, the library used must match the compiler used, i.e., KA-l0 compiled

code must use the KA-l0 LlB40 and the KI-l0 compiled code must use the KI-10 LlB40.

8.1 THE FORTRAN OPERATING SYSTEM

The system programs in the FORTRAN Operating System act as the interface between the user's program and the

PDP-l0. All of these programs are invisible to the user's program. The FORTRAN Operating System is loaded

automatically from LIB40 and resides in the user's core area along with the user's main programs and any library

functions and subroutines that his programs reference.

8.1.1 FORSE.

FORSE. is the main program of the FORTRAN Operating System and is loaded whenever a FORTRAN main pro­

gram is in core •. The primary functions of FORSE. are

a. FORMAT statement processing,

b. Dispatching of all UUOs, and

c. Control of I/O devices at runtime.

8.1.1.1 FORMAT Processing - FORSE. assumes that all FORMAT statements are syntactically correct since the

syntax of each statement is checked by the compi ler. FORSE. scans the FORMAT statements and performs the

indicated I/O operations. FORSE. invokes the required conversion routine to actually do data conversion. The

conversion routine that is used is a function of the conversion indicated in the FORMAT statement and of the

data type of the element in the I/O list.

Version 26 FORTRAN
Version 32 LlB40

8-1 May 1972

I

I

8.1.1.2 UUO Dispatching - Some UUOs are handled minimally by FORSE. (NLIN, NLOUT, MTOP), but the

others are handled almost entirely within FORSE.

8. 1. 1 .3 I/O Devi ce Control - FO RSE. executes the requi red carriage control of output devi ces that are phys­

ical I isting devices (LPT, TTY) and stores the carriage control character at the beginning of each line if the out­

put is going to a retrievable medium for deferred listing. When listings are deferred, the appropriate switch in

PIP can be used to list the file and execute the required carriage control.

8. 1. 1.4 Additional Functions of FORSE. - FORSE. is responsible for the following:

a. Control of REREAD and ENCO DE/DECODE features.

b. Interaction with EOFTST and READ (unit,f,END=C)list to handle end-of-file testing.

c. Control of the assignment of devices to software channels.

d. Control of the handling of filenames for I/O associated with directory devices.

e. Control of the opening and closing of data files.

f. Control the handling of the functions associated with the MAGDEN, BUFFER, IBUFF, OBUFF,
DEFINE FILE, TRAPS, and RELEASE subroutines.

8.1.2 I/O Conversion Routines

The I/O conversion routines convert data from internal PDP-10 format to external format or vice versa. The

calls to these routines are implied by FORMAT and data transfer statements in the FORTRAN source program.

The routines reside as relocatable binary files in LIMO. REL.

Version 26 FORTRAN
Version 32 L1B40

Table 8-1
I/O Conversion Routines

Routine Description

ALPHI. Alphanu:":lcric ,\SCII input conversion

ALPHO. AI rhe: lur,lCi i c ASC II output conversion

FLIRT .* Floating point ond double precision
input cOllversion

FLOUT. * Floatir.SJ r--oint c,ld double precision
output conversion

INTI. Integer input conversicn

INTO. Integer output conversion

LINT. Logicol input conversion

LOUT. Logkal output cc.I'I;)~siun

"FLIRT. conlo;n. Iwo enl,y po;n", FLIRT and DI~T. J
FLOUT. contains two entry points, FLOU~ and D<?~B7.

8-2
n--; ., ,

Routine

BINWR.

OCTI.

OCTO.

NMLST.

8.1.3 FORTRAN UUOs

Table 8-1 (Cont)
I/O Conversion Routines

Description

Binary 1/0

Octal input conversion

Octal output conversion

Namelist

Operation codes 000 through on in the PDP-l0 are programmed operators, sometimes referred to as UUO's (Un­

implemented User Operators) since from a hardware point of view their function is not prespecified. Some of

these op-codes trap to the Monitor and the rest trap to the user program. FORTRAN UUO's trap to the FORTRAN

Operating System UUO Handler and are then processed.

UUO

RESET.

IN.

OUT.

DATA.

FIN.

RTB.

WTB.

MTOP.

SLIST.

INF.

OUTF.

RERED.

NLI.

Op
Code

015

016

017

020

021

022

023

024

025

026

027

030

031

Table 8-2
FORTRAN UUOs

Meaning

Resets all devices, clears tables and flags.

Initializes device for formatted input, does a LOOKUP.

Initializes device for formatted output, does an ENTER.

Converts one data element from external to internal for­
mat or vice versa depending upon whether input or out­
put is being done. Actual data transfer takes place.

Terminates data transfer statements.

Initializes device for unformatted input, similar to IN.

Initializes device for unformatted output, similar to OUT.

Performs Magtape operations, rewind, rewind and unload,
backspace, end file, skip, write blank record.

Converts entire arrays from external to internal format or
vice versa depending upon whether input or output is
being done. Actual data transfer takes place.

IFILE. Sets up input filename, similar to IN. but with
specified filename.

o FI LE • Sets up output fi I ename, s i mil ar to OUT. but
with specified filename.

REREAD. Reread last record.

Namel ist input.

8-3

UUO
Op

Code

NLO. 032

DEC. 033

ENC. 034

Table 8-2 (Cont)
FORTRAN UUOs

Meaning

Namel ist output.

DECODE.

ENCODE.

8.2 SCIENCE LIBRARY AND FORTRAN UTILITY SUBPROGRAMS

The Science Library und FORTRAN Utility Subprograms extend the capabilities of the FORTRAN language. The~

subprograms are called explicitly by the user. The subprograms include the built-in FORTRAN math functions

and the user-called utility subroutines which provide optional I/O capabilities and control of and information

about the program's environment. The optional I/O capabilities and environmental control are achieved by the

subroutines from interactions with the FORTRAN Operating System.

8.2.1 FORTRAN IV Library Functions

This section contains descriptions of all standard function subprograms provided with the FORTRAN IV library for

the PDP-I0. These functions are called by using the function mnemonic as a function name in an arithmetic ex-

I pression. The function mnemonics in Table 8-3 have the types specified unless their types are explicitly or im­

plicitly changed. (Refer to Section 6.3, "Type Declaration Statements" and Section 6.3.1, "IMPLICIT State­

ment. If)

Version 24 FORTRAN
Version 31 LIB40 8-4

.«
C1) C1)
... o· o·
:l :l

W'"
"'0-
r- -n
-0
~;;o
0-4

;;0

»
z

co
I
Ut

f
"<

-0
'-I

'"

I
I

I

,

Table 8-3
FORTRAN IV library Functions

Function Mnemonic Definition
Number of Type of External Calls
Arguments Argument Function

Absolute value:
Real ABS I arg I 1 Real Real
Integer lABS I arg I 1 Integer Integer
Double precision DABS I arg I 1/2 1 Double Double
Complex to real CABS c={x2 +y2) 1 Complex Real SQRT

Conversion:
Integer to real FLOAT * 1 Integer Real
Rea I to integer IFIX * Result is largest integer ~a 1 Real Integer
Double to real SNGl 1 Double Real
Real to double DBlE 1 Real Double
Integer to double DFlOAT 1 Integer Double
Complex to real

REAL 1 Complex Real
(obtain real part)
Complex to real
(obtain imaginary AI MAG 1 Complex Real
part)
Real to complex CMPLX c=Arg 1 +i *Arg2 2 Real Complex

Truncation:
Real to real AINT {S;~Ofa~ * } 1 Real Real
Real to integer INT* largest integer 1 Real Integer
Double to integer IOINT ~ largl 1 Double Integer

Remaindering:
Real AMOD { The .. ma;nde, } 2 Real Real ERROR., TRAPS
Integer MOD when Arg 1 is 2 Integer Integer
Double precision DMOD divided by Arg 2 2 Double Double

Maximum Value:
AMAXO

{ Max(""'1''''''2' 0 0 0]

Integer Real FLOAT
AMAXl

{ ~2}
Real Real

MAX 0 Integer Integer
MAX 1 Real Integer IFIX
DMAXl Double Double

Minimum Value: :

AMINO

{ M;n(A~l ,A'92' 0 0 oj
Integer Real FLOAT

AMINl

{ ~2}
Real Real

MINO Integer Integer
MINl Real Integer IFIX
DMINl Double Double

*These functions are not used on the K 1-1 0 because they are unnecessary.

«
CI) CI) ., .,
~. ~.
o 0
:l :l

WN
NO-
r- '"T1

0:;0
~;;o
0-1

;;0
}>

Z

ex>
I
0-

s:
")

-<
..r;
"-
t-..

Function

Transfer of Sign:
Real
Integer
Double precision

Positive Difference:
Real
Integer

Exponential:
Real
Double
Complex

Logarithm:
R~al

Double

Complex

Square Root:
Real
Double
Complex

Sine:
Real (radians)
Real (degrees)
Double (radians)
Complex

Cosine:
Real (radians)
Real (degrees)
Double (radians)
Complex

Mnemonic

SIGN
ISIGN
DSIGN

DIM
IDIM

I

EXP
DEXP
CEXP

ALOe;
ALOG10
DLOG
DlOG10
CLOG

SORT
DSORT
CSQRT

SIN
SIND
DSIN
CSIN

COS
COSD
DCOS
CCOS

Table 8-3 (Cont)
FORTRAN IV Library Functions

Definition
Number of Type of
Arguments Argument Function

{ Sgn(Arg2)* I Arg 1 fr
2 Real Real
2 Integer Integer
2 Double Double

{ Arg 1-Min(Arg1,Arg2) }
2 Real Real
2 Integer Integer

{eAr9 } 1 Real Real
1 Double Double
1 Complex Complex

loge (Arg) 1 Real Real

1091O (Arg) 1 Real Real
loge (Arg) 1 Double Double

10910 (Arg) 1 Double Double
10ge (Arg) 1 Complex Complex

1/2
(Arg) 1/2 1 Real Real

(Arg) 1/2 1 Double Double
c=(x + i y} 1 Complex Complex

1 Real Real

{ sin (Arg) } 1 Real Real
1 Double Double
1 Complex Complex

1 Real Real

(cos (Arg) } 1 Real Real
1 Double Double
1 Complex Complex

External Calls
\

ERROR.

EXP,SIN,COS,
ALOG,ERROR.

ERROR.
ERROR.

ALOG,ATAN2,
SORT ,ERROR.

ERROR.

SORT

SIN,SINH,COSH,
ALOG,EXP

SIN,SINH,COSH,
ALOG,EXP

«
CD CD o· o·
::J ::J

W~
~o-

r- "T1

iijO
.,..:::0
0-4

:::0 » z

co
I

f
"<

-0
~

Function Mnemonic

Hyperbol i c:
Sine SINH
Cosine COSH
Tangent TANH

Arc - sine ASIN

Arc - cosine ACOS

Arc tangent
Real ATAN
Double DATAN
quotient of

two arguments ATAN2

DATAN2

Complex Conjugate CONJG

Random Number RAN

Table 8-3 (Cont)
FORTRAN IV Library Functions

Definition
Number of Type of
Arguments Argument Function

sinh (Arg) 1 Real Real
cosh (Arg) 1 Real Real
tanh (Arg) 1 Real Real

asin (Arg) 1 Real Real

acos (Arg) 1 Real Real

atan (Arg) 1 Real Real
atan (Arg) 1 Double Double

atan (Arg l Arg2) 2 Real Real

atan (ArglArg2) 2 Double Double

Arg=X + iY ,C=X-iY 1 Complex Complex

result is a random number 1 Integer, Real
in the range of 0 to 1.0. Real,

Double,or
Complex

External Calls

EXP,ERROR.
EXP,ERROR.
EXP

ATAN,SQRT,
ERROR.

ATAN,SQRT,
ERROR.

ATAN,ERROR. ,
TRAPS
OAT AN, ERROR.

8.2.2 FORTRAN IV Library Subroutines

This section contains descriptions of all standard subroutine subprograms provided within the FORTRAN IV library

for the PDP-l0. These subproQrams are closed subroutines and are called with a CALL statement.

Subroutine Name

BUFFER

CHAIN

DATE

*For explanation, see page 7-10.

Table 8-4
FORTRAN IV Library Subroutines

Effect

Allows the programmer to specify buffering for a
device at one of fifteen levels.

CALL BUFFER (unit*, in/out, number)

where in/out is 1 for input buffering only, 2 for
output buffering only, or 3 for both, and number is
the level of buffering (1 < number < 15). If number
is not specified, 2 is assumed. In calls to two en­
tries in BUFFER, IBUFF and OBUFF, the programmer
can specify a non-standard buffer size if the records
in his data files exceed standard buffer sizes set by
the Monitor. (See Tab Ie 12-1.) The programmer
cannot change buffer sizes for the disk; IBUFF
and OBUFF are designed primarily for Magtape.

CALL IBUFF (d,n,s)

where d is the devi ce number, n is the number of
buffers, and s is the size of buffer.

Reads a segment of coding (Chain file) into core
and links it to a program already residing in core.

CALL CHAIN (type,device,file)

where type is 0 (the next Chain file is read into core
immediately above the permanent resident area) or
type is 1 (the next Chain file is read into core im­
mediately above the FORTRAN IV program which
marks the end of the removable resident). Device
is 0,1,2, •.. FORTRAN IV logical device number
(Chain files can be stored on DSK, MTA, or DTA
only) corresponding to the device where the Chain
file can be found. File is 0 for reading the next
fi Ie from the selected magnetic tope or 1,2, ... for
the number of the magnetic tape unit where the
Chain file is located.

Places today's date as left-justified ASCII characters
into a dimensioned 2-word array.

CALL DATE (array)

where array is the 2-word array. The date is in the
form

dd-mmm-yy

8-8

Subroutine Name

DATE (cont)

DUMP

EOF1 (unit*)

EOFC(unit*)

ERRSET

EXIT

IFILE

Table 8-4 (Cont)
FORTRAN IV Library Subroutines

Effect

where dd is a 2-digit day (if the first digit is 0, it
is converted toa blank), mmm is a 3-digit month
(e.g., MAR), and yy is a 2-digit year. The date
is stored in ASCII code, left-justified in the two
words.

Causes particular portions of core to be dumped and
is referred to in the following form:

CALL DUMP (L1,U1,F1, .•. ,Ln,Un,Fn)

where L. and U. are the variable names which give
the limiJs of co~e memory to be dumped. Either
Li or Ui may be upper or lower limits. Fi is a
number indicating the format in which the dump is
to be performed: O=octal, l=real, 2=integer, and
3=ASCII.

If F is not 0,1,2,3, the dump is in octal. If Fn is
missing, the last section is dumped in octal. If
Un and Fn are missing, an octal dump is made from
L to the end of the job area. If Ln, Un' and Fn
are missing, the entire job area is dumped in octal.

The dump is terminated by a call to EXIT.

Skips one end-of-fi Ie terminator when found and
returns the value TRUE if an end-of-file was found
and FALSE if it was not found. Subsequent termi­
nators produce an error message.

Skips more th"an one end-of-file terminators when
found and returns the value TRUE if an end-of-file
was found or FALSE if it was not found.

Allows the user to control the typeout of execution­
time arithmetic error messages, ERRSET is called
with one argument in integer mode.

CALL ERRSET(N)

Typeout of each type of error message is suppressed
after N occurances of that error message. IF ERRSET
is not called, the default value of N is 2.

Returns control to the Monitor and, therefore, ter­
minates the execution of the program.

Performs LOOKUPs for files to be read from DECtape
and disk.

CALL IFILE(unit*,filnam)

where filnam is a filename consisting of five or fewer

I ASCII characters enclosed in single quotes ('). e.g.,
~ ________________________ ~ ____ C_A_L_L_I_FI_L_E~(1_2~,_IF_I_LE_1_') ________________________ ~

*For explanation, see page 7-10.

Version 26 FORTRAN
Version 32 LlB40

8-9 May 1972

Subroutine Name

ILL

LEGAL

MAGDEN

OFILE

PDUMP

RELEAS

SAVRAN

SETRAN

Table 8-4 (Cont)
FORTRAN IV Library Subroutines

Effect

Sets the ILLEG flag. If the flag is set and an illegal
character is encountered in floating-point/double­
precision input, the corresponding word is set to zero.

CALL ILL

Clears the ILLEG flag. If the flag is set and an
illegal character is encountered in floating-point/
double-precision input, the corresponding word is
set to zero.

CALL LEGAL

Allows specification of magnetic tape density and
parity.

CALL MAGDEN(unit* ,density, parity)

where density is the tape density desired (200 = 200
bpi,556=556 bpi, or 800=800 bpi) and parity is
the tape parity desired (O=odd, 1 =even). Even
parity is intended for use with BCD-coded tapes
only.

Performs ENTERs for files to be written on DECtape
and disk.

CALL OFILE (unit*,filnam)

where filnam is a filename consisting of five ASCII
characters.

Is referred to in the following form:

CALL PDUMP(L1,U1,F1, ... ,Ln,Un,Fn)

where the arguments are the same as those for DUMP.
PDUMP is the same as DUMP except that control
returns to the calling program after the dump has
been executed.

Closes out I/O Gn a device initialized by the
FORTRAN Operating System and returns it to the
uninitialized state.

CALL RELEAS (unit*)

SAVRAN is called with one argument in integer mode.
SAVRAN sets its argument to the last random number
(interpreted as an integer) that has been generated
by the function RAN.

SETRAN has one argument which must be a non­
negative integer"::: 231. The starting value of the
function RAN is set to the value of this argument,
unless the argument is zero. In this case, RAN uses

~~--~--~-----------------*For explanation, sec pase 7-10.
_. ___ _ _____ . __ -----.J its normal starting value.

8-10

Subroutine Name

SLlTE(i)

SLlTE(i, j)

SSwrCH (i , j)

TIME

I

Table 8-4 (Cont)
FORTRAN IV Library Subroutines

Effect

Turns sense lights on or off. i is an integer expres­
sion. For 1 < i < 36 sense light i will be turned on.
If i =0, all sense lights will be turned off.

Checks the status of sense light i and sets the var­
iable j accordingly and turns off sense light i. If
i is on, j is set to 1; and if i is off, j is set to 2.

Checks the status of data switch i (0< i < 35) and sets
the variable j accordingly. If i is set down, j is
set to 1; and, if i is up, j is set to 2.

Returns the current time in its argument(s) in left­
justified ASCII characters. If TIME is called with
one argument,

CALL TIME(X)

the time is in the form

hh : mm

where hh is the hours (24-hour time) and mm is the
mi nutes. If a second argument is requested,

CALL TIME (X, Y)

the first argument is returned as before and the sec­
ond has the form

ss. t

where ss is the seconds and t is the tenths of a sec­
ond.

8-11

CHAPTER 9

SUBPROGRAM CALLING SEQUENCES

This chapter describes the conventions used in writing MACRO subprograms which can be called by FORTRAN IV

programs, and FORTRAN subprograms which can be linked to MACRO main programs. The reader is assumed to

be familiar with the following texts:

MACRO-10 Assembler (DEC-10-AMZB-D)
Secti on 2.5.8 "Link ing Subroutines"
Figure 7-1, "Sample Program, CLOG"

Timesharing Monitors: (DEC-T9-MTZC-D)
Section 3.2.2 "Loading Relocatable Binary Files"

Science Library and FORTRAN Utility Subprograms
(DEC-lO-SFLE-D)

How to Use This Manual - FORTRAN calling sequences

9.1 MACRO SUBPROGRAMS CALLED BY FORTRAN MAIN PROGRAMS

9. 1 . 1 Ca II i ng Sequences

The FORTRAN calling sequence, in the main program, for a subroutine is

where

FORTRAN Code

CALL subprog (adr l' adr 2' ...)

subprog

adr 1, adr2 ,· ..

code l' code2

Revision 1 FORTRAN

MACRO Code (Generated by Compiler)

JSA 16, subprog
ARG code 1, adr 1
ARG code2, adr2

is the name of the subprogram

are the addresses of the arguments

are the accumulator fields of the ARG instructions
which indicate the type of argument being passed
to the subprogram. These codes are as follows:

0 Integer argument 4 Octal argument
1 Unused 5 Hollerith argument
2 Real argument 6 Double-precision
3 Logical argument argument

7 Complex argument

9-1 October 1970

An example of a FORTRAN calling sequence for a subroutine and the MACRO-10 coding generated by the

compiler is given below.

FORTRAN Code

CALL PROG 1 (REAL,INT)

MACRO Code

JSA 16, PROG1

ARG 02, REAL

ARG 00, INT

The MACRO code generated by the compi ler is the same for subroutines and functions; hO\AJever, the FORTRAN

code is different.

9. 1.2 Returning of Answers

A subroutine returns to its answers in specified locations in the main program. These locations are often given

as argument names or as variab Ie names.

A function returns its answer in accumulator 0 (if a single word result) or in accumulators 0 and 1 (if a double­

precision or complex result). A function may also return its answer in specified locations (given by argument

names in the CALL) or variable names; in any event, however, it must return an answer in accumulator 0 (or

accumulators 0 and 1).

A MACRO subprogram access COMMON by declaring as external common block names for labelled

COMMON and by declaring .COMM. as external for blank common. A common block name always refers

to the same core location as the first element following the block name in a COMMON statement. MACRO

subprograms may refer to the remainder of the variables in the common block through additive globals.

9. 1.3 Use of Accumulators

For accumulator usage, see Chapter 10, Accumulator Conventions for PDP-10 Main Programs and Subprograms.

9. 1. 4 Examples of Subprogram Linkage

Three examples of subprogram linkage, one of a subroutine, one of a function subprogram, and one of a

FORTRAN main program and MACRO subprogram both referencing COMMON, are given below.

9.1.4.1 Example of a Subroutine Linkage - The coding of the subroutine in this example is followed by the

calling sequence.

9-2

I

ENTRY SUBA

SUBA: 0
MOVE l,@0(16)
IMULI 1, 12
MOVEM l,@0(16)
JRA 16, 1(16)

FORTRAN Calling Sequence

CALL SUB A (I NT)

iGET FIRST ARGUME NT
iMULTIPLY BY 10
iRETURN RESULT IN ARGUMENT
iRETURN TO MAIN PROGRAM

MACRO Code (Generated by Compiler)

JSA 16, SUBA
ARG ~O, INT

9. 1.4.2 Example of a Function Subprogram Linkage - The coding of the function subprogram in this example

is followed by the calling sequence.

ENTRY FNC

FNC: o
MOVE
MOVE
IMUL

JRA

00 ,@0(16)
01,@1(16)
~O, 01

16, 2(16)

FORTRAN Calling Sequence

X =FNC (I, 10)

iPICK UP FIRST ARGUMENT
iPICK UP SECOND ARGUMENT
iMULTIPLY BOTH ARGUMENTS
iRESULT IN ACO
iRETURN WITH ANSWER IN ACO

MACRO Code (Generated by Compiler)

JSA 16, F NC
ARG 00, I
ARG ~O, CONST.

9.1.4.3 Example of a FORTRAN Main Program and a MACRO Subprogram Both Referencing COMMON.

Revision 1 FORTRAN 9-3 October 1970

-
;:oc T F40 V013 28-NOV-69 12:24
(1)

!:.
'" DIMENSION A(5), B(3 ,4) ,C(3) 0
:J 1M BLOCK a
-n
0 COMMON C ;:oc
-I
;:oc
» COMMON/A! A/B/B/D/D z

A(2)=B(2,3)+C(3}+D
MOVE 02,D
FADR 02,B+7
FADR 02,C+2
MOVEM 02,A+1

CALL SUB2
JSA 16, SUB2

END

JSA 16,EXIT
MAIN.% RESET. 00,0

-0
JRST 1M

I
~

COMMON
C /.COMM./ a
A /A! a
B /B/ a
D /D/ a

SUBPROGRAMS

FORSE.
JOBFF
SUB2
EXIT

SCALARS

0 D a
0
0 ARRAYS 0-
(1) .,
-0
"'-I
0

-0
I

U'1

A
B
C

MAIN.

o
o
o

ERRORS DETECTED: 0

2K CORE USED

.MAIN MACRO. V36 12:23 28-NOV-69

000000
000001
000002
000003
000004
000005

NO ERRORS DETECTE D

PROGRAM BREAK IS 000006

000000
200000
202000
200000
202000
267716

SYMBOL TABLE

A
SUB2

000000 EXT
000000' INT

000000
000002
000003
000000
000000
000000

SUB2:

B
.COMM.

EXTERNAL .COMM.,A,B,D
ENTRY SUB2
o
MOVE
MOVEM
MOVE
MOVEM
JRA
END

000000 EXT
000003' EXT

O,A+2
O,B+3
O,.COMM.
O,D
16,(16)

D

iGET A(3)
;STORE IN B(l ,2)
;GET C
;STORE IN D
iRETURN TO FORTRAN PROGRAIV
iEND

000004' EXT

003466 IS THE PROGRAM BREAK
IORTR. 000334

STORAGE MAP LOOK. 002034
MTOP. 000000

MAIN. 000140 000035 MTPZ. 002030
NLI. 000000

MAIN. 000146 NLO. 000000
. COMM. 000150 FORSE . 000203

A 000153 lIB. 001141

B 000160 IN. 000000

D 000174 INF. 000000
INP. 002007

. MAIN 000175 000006 INPDV . 002203
NXTCR. 001162

SUB2 000175 NXTLN. 001172
ONLY 1. 002204

JOBDAT 000203 000000 OUT. 000000
OUTF. 000000

FORSE. 000203 002374 OUTT. 002013
OVFLS. 002202

BUFCA. 001624 PAKFL. 002176
-0 RERDV. 002501
I BUFHD. 002337

0-
CHINN. 001121 RERED. 000000

CLOS. /002002 RESET. 000000

CLOSI. 002000 RIN. 000245

CLROU. 001763 RTB. 000000

CLRSY. 001770 SESTA. 002020
DADDR. 002276 SETOU. 001755

DATA. 000000 SLIST. 000000
DEPOT. 001004 STAT. 001774
DEVIC. 002477 TCNTl. 002506
DEVNO. 002172 TCNT2. 002507
DYNDV. 002212 TEMP. 002232

DYNND. 002356 TNAM1. 002133

ENDLN. 001047 TANM2. 002132

EOFFL. 002205 TPNTR. 002505

EOFTS. 001214 TYPE. 002504

EOL. 002275 UUOH. 001234

FI. 001112 WAIT. 002024

FIN. 000000 WTB. 000000

FMTBG. 002274 XIO. 000424

FMTEN. 002273
FNCTN. 001751 ERROR. 002577 000431

BPHSE. 002777 ALPHO. 003250
DEVER. 002667
DPRER. 002767 DDIRT 003252 000002
DUMER. 003041
E NDTP. 002772 DIRT. 003252
ERROR. 002577
ILLCH. 002634 DDOUBT 003254 000002
ILLMG. 003007
ILRE D. 003025 DOUBT. 003254
ILUUO. 003051
INiER. 002654 DFURT 003256 000002
USTB. 002737
LOGEN. 002627 F URT. 003256
MSNG. 002707
NMLER. 003020 DFLOUT 003260 000002
NOROM. 002720
PARER. 003034 FLOUT. 003260
QTY1 003170
REDER. 002746 DINTI 003262 000002
TBLER. 002700

-0
UUOM 003067 INTI. 003262

I WLKER. 002731 "..J DOCTI 003264 000002
EXIT 003230 000002 OCTI. 003264

EXIT 003230
EXIT . 003231 DINTO 003266 000002

IOADR. 003232 000014 INTO. 003266

IOADR. 003232 DOCTO 003270 000002

DALPHI 003246 000002 OCTO. 003270

ALPHI. 003246 DUNT 003272 000002

DALPHO 003250 000002 LINT. 003272

DLOUT 003274 000002

LOUT. 003274

DNMLST 003276 000003

DELIM. 003300 ILLEG. 003465
NMLST. 003276 LEGAL 003462

DTFMT 003301 000002 LOADER 3K CORE
3+3K MAX 1225 WORDS FREE

TFMT. 003301

DBINWR 003303 000002

BINDT. 003303

BINEN. 003303
BINWR. 003303
INPT. 003303

DTPFCN 003305 000002

TR=CN. 003305

DEVTB. 003307 000123

-0
I DATTB. 003363 00

DEVLS. 003344
DEVND. 003352
DEVTB. 003307
DVTOT. 000035
MBFBG. 003352
MTABF. 003353
MTACL. 003421
NEG1. 000005
NEG2. 000007
NEG3. 000003
NEG5. 000002
TABP1. 003363
TABPT. 003362

PDLST. 003432 000025

PDLST. 003432

ILL 003457 000007

ILL 003457

9.2 MACRO MAIN PROGRAMS WHICH REFERENCE FORTRAN SUBPROGRAMS

9.2. 1 Calling Sequences

The MACRO code which calls the FORTRAN subprogram should be the same as that produced by the

FORTRAN IV compiler when it calls a subroutine. That is:

MACRO Code

JSA 16, subprog
ARG code 1, adq
ARG code2' adr2

where
subprog

adr1, adr2 ,···

code l' code2

is the name of the subprogram

are the addresses of the arguments

are the accumulator fields of the ARG instruction
which indicate the type of argument being passed
to the subprogram. These codes are as follows:

o Integer argument
1 Unused
2 Real argument
3 Logical argument
4 Octal argument
5 Hollerith argument
6 Double-precision argument
7 Complex argument

Both subroutines and functions are called in this manner.

9.2.2 Returning of Answers

A FORTRAN subroutine returns its answers in specified locations in the main program. These locations may be

given as variable names in COMMON or as argument names.

A FORTRAN function returns its answer in accumulator 0, if a single word result, or in accumulators 0 and 1,

if a double-precision or complex result. A function may also return its answer in specified locations given by

argument names in the CALL, or variable names in COMMON; in any event, however, it must return an answer

in accumulator 0 (or accumulators 0 and 1).

If it is desired to reference a common block of data in both the MACRO main program and the FORTRAN sub­

program, it is necessary to set up the common area first by loading a FORTRAN BLOCK DATA program before

the MACRO main program and the FORTRAN subprogram.

9-9

9.2.3 Example of Subprogram Linkage

The following is an example of a FORTRAN subroutine being called by a MACRO main program. Both programs

reference common data. Read and write statements have been omitted for simplification. Because the FORTRAN

operating system, FORSE., sets up I/o channels at run time, the MACRO programmer must be sure not to ini­

tialize a devic~ on a channel that FORSE. will then try to use, unless he releases the device before FORSE. is

called. FORSE. initializes the first device encountered in the user program on software channel I, the second

on channel 2, etc.

It is possible to release a device from its associated channel in a FORTRAN program by a call to the subroutine

RELEAS. Channels one through seventeen are available for I/O. If a FORTRAN user wishes to write MACRO

programs which do I/o, he may use either FORTRAN UUO's or the channel numbers less than or equal to seven­

teen but greater than the largest number used by FORSE.

The FORTRAN RESET. UUO should be the first instruction executed in any program which'accesses FORTRAN

subroutines. For this reason the FORTRAN operating system, which contains the FORTRAN UUO handler

routine, must be declared external in the MACRO main program. This causes FORSE. to be loaded. In general,

any program in the FORTRAN library referenced in a MACRO program must be declared external. This results

in the searching of LIB40 by the Linking Loader and loading the referenced program.

9-10

BLKDTA.F4 F40 V016 22-JAN-70 15:46

1M BLOCK 0 BLOCK DATA

C OMMO N/ A/ A/B/B/C/C

COMMON D

DIME NSION A(5) ,B(2,3)

END

DAT. BLOCK 0

COMMON
A /A/ 0
B /B/ 0
C /C/ 0
D /.COMM./ 0

-.0 SUBPROGRAMS
I
~

~

JOBFF

SCALARS

C 0
D 0

ARRAYS

A 0
B 0

DAT. ERRORS DETECTE D: 0

2K CORE USED

·MAIN MACRO. V40 16:05 22-JAN-70
START .MAC

000000 015000 000000 START:
000001 200000 000000
000002 202000 000000
000003 200000 000000
000004 202000 000000
000005 200040 000002
000006 202040 000005
000007 266700 000000

000010 266700 000000

NO ERRORS DETECTED
-0
I

PROGRAM BREAK IS 000011
N

START .MAC SYMBOL TABLE

A 00000]' EXT
C 000003' EXT
START 000000' ENT

ENTRY
EXTERNAL
RESET.
MOVE
MOVEM
MOVE
MOVEM
MOVE
MOVEM
JSA
JSA

END

ARGS
EXIT .
.COMM.

START

00,0
O,A
O,B
O,C
O,.COMM.
1,A+2
1,B+5
16,ARGS
16,EXIT .

START

• COMM. ,A, B,C,ARGS, FORSE., EXIT.

000007' EXT
000010' EXT
000004' EXT

;DO FORTRAN UUO RESET, FOUND IN FORSE.
;GET A(I)
;STORE IN B(l, 1)
;GET C
;STORE IN D
;GET A(3)
; STORE IN B(2,3)
;GO TO FORTRAN SUBROUTINE ARGS
;EXIT. FORTRAN EXIT ROUTINE WHICH PR!NTS
;OUT SUMMARIES AND ALSO CALLS MONITOF­
;LEVEL EXIT UUO. USER HAS OPTION TO USE
;EITHER

;END

B
FORSE.

000002' EXT
000000 EXT

ARGS.F4 F40 V016 22-JAN-70 15:46

1M BLOCK 0 SUBROUTINE ARGS

COMMON /A/A/B/B/C/C

COMMON D

DIMENSION A(5),B(2,3)

A(l)=B(1 ,1)+C+D
MOVE 02,C
FADR 02, D
FADR 02,B
MOVEM 02,A

RETURN
JRST 2M

END

JRST 2M
-0 ARGS% ARG 00,0
I MOVEM 15, TEMP
w

MOVEM 16, TEMP.+1
JRST 1M

2M MOVE 15, TEMP.
MOVE 16,TEMP.+1
JRA 16,0(16)

COMMON
A /A/ 0
B /B/ 0
C /C/ 0
D /.COMM./ 0

SCALARS

ARGS 17
C 0
D 0

ARRAYS

A 0
B 0

ARGS ERRORS DETECTE D: 0
2K CORE USED

003471 IS THE LOW SEGMENT BREAK

.MAIN STORAGE MAP 16:06 22-JAN-70

STARTING ADDRESS 000155 PROG .MAIN FILE START

DAT. 000140 000015

-0 DAT. 000140 A 000140 B 000145 C 000153
I .COMM. 000154
~

.MAIN 000155 000011

START 000155

ARGS 000166 000020

ARGS 000174

JOB DA T 000206 000000

FORSE. 000206 002374

BUFCA. 001627 BUFHD. 002342 CHINN. 001124 CLOS. 002005
CLOSI. 002003 CLROU. 001766 CLRSY. 001773 DADDR. 002301
DATA. 000000 DEPOT. 001007 DEVIC. 002502 DEVNO. 002175
DYNDV. 002215 DYNND. 002361 ENDLN. 001052 EOFFL. 002210
EOFTS. 001217 EOL. 002300 FI. 001115 FIN. 000000
FMTBG. 002277 FMTEN. 002276 FNCTN. 001754 FORSE. 000206
lIB. 001144 IN. 000000 INF. 000000 INP. 002012
INPDV. 002206 IORTR. 000337 LOOK. 002037 MTOP. 000000
MTPZ. 002033 NLI. 000000 NLO. 000000 NXTCR. 001165
NXTLN. 001175 ONLYl. 002207 OUT. 000000 OUTF. 000000
oun. 002016 OVFLS. 002205 PAKF L. 002201 RERDV. 002504

RERED. 000000 RESET. 000000 RIN. 000250 RTB. 000000
SESTA. 002023 SETOU. 001760 SLIST. 000000 STAT. OOlm
TCNTl. 002511 TCNT2. 002512 TEMP. 002235 TNAMl. 002136
TNAM2. 002135 TPNTR. 002510 TYPE. 002507 UUOH. 001237
WAIT. 002027 WTB. 000000 XIO. 000427

ERROR. 002602 000431

BPHSE. 003002 DEVER. 002672 DPRER. 002772 DUMER. 003044
ENDTP. 002775 ERROR. 002602 ILLCH. 002637 ILLMG. 003012
ILRED. 003030 ILUUO. 003054 INIER. 002657 LISTB. 002742
LOGEN. 002532 MSNG. 002712 NMLER. 003023 NOROM. 002723
PARER. 003037 QTY1 003173 REDER. 002751 TBLER. 002703
UUOM 003072 WLKER. 002734

EXIT 003233 000002

EXIT 003233 EXIT. 003234

IOADR. 003235 000014

-0
I IOADR. 003235 -U1

DALPHI 003251 000002

ALPHI. 003251

DALPHO 003253 000002

ALPHO. 003253

DDIRT 003255 000002

DIRT. 003255

DDOUBT 003257 000002

DOUBT. 003257

DFLIRT 003261 000002

FLIRT. 003261

DFLOUT 003263 .000002

FLOUT. 003263

DINTI 003265 000002

INTI. 003265

DOCTI 003267 000002

OCTI. 003267

DINTO 003271 000002

INTO. 003271

DOCTO 003273 000002

OCTO. 003273

DLINT 003275 000002

LINT. 003275

DLOUT 003277 000002

LOUT. 003277

DNMLST 003301 000003

DELIM. 003303 NMLST. 003301

DTFMT 003304 000002

TFMT. 003304
-0
I DBINWR 003306 000002
0-

BIN DT. 003306 BINEN. 003306 BINWR. 003306 INPT. 003306

DTPFCN 003310 000002

T~CN. 003310

DEVTB. 003312 000 123

DATTB. 003366 DEVLS. 003347 DEVND. 003355 DEVTB. 003312
DVTOT. 000035 MBFBG. 003355 MTABF. 003356 MTACL. 003424
NEG1. 000005 NEG2. 000007 NEG3. 000003 NEG5. 000002
TABP1. 003366 TABPT . 003365

PDLST. 003435 000025

PDLST. 003435

ILL 003462 000007

ILL 003462 ILLEG. 003470 LEGAL 003465

LOADER 3K CORE
3+3K MAX 1222 WORDS FREE

10.1 LOCATIONS

CHAPTER 10

ACCUMULATOR CONVENTIONS FOR
MAIN PROGRAMS AND SUBPROGRAMS

Locations specified in the calling sequence for a FORTRAN subprogram may be either required locations or

defined locations. A required location is a memory location whose address is specified in the calling sequence

for a subprogram. For example, X is a required location in the calling sequence

JSA 16, SQRT
ARG X

A defined location is a memory location whose address is specified in the definition of a calling sequence. The

location does not appear in the calling sequence. For example in the calling sequence

MOVEI 16, MEMORY
PUSHJ 17, DFAS.O

MEMORY is required, and ACO, AC1, and AC2 are defined by DFAS.O.

10.2 ACCUMULATORS

10.2. 1 Accumulators 0 and 1

When used for subprograms called by JSA, accumulators 0 and 1 may be used at any time without restoring their

original contents. These accumulators cannot be required locations. A FORTRAN function returns its answer in

accumulator 0 (if a single word result) or in accumulators 0 and 1 (if a double-precision or complex result). A

function may also return its answer in specified locations (given by argument names in the CALL) or variable

names; in any event, an answer must be returned either in accumulator 0 or in accumulators 0 and 1.

When used for subprograms called by PUSHJ 17, adr, accumulators 0 and 1 may have their contents destroyed.

Some subprograms by their definition return an argument in accumulator 0 or 1.

10-1

IU.L.L Accumulators L Ihrough I,)

Accumulators 2 through 15 must not be destroyed by FORTRAN functions, but may be destroyed by FORTRAN

subroutines. (Presently subroutines must preserve the contents of accumulator 15.) The contents of these accu­

mulators must not be destroyed by subprograms called by PUSHJ unless the definition of the subroutines requires

it.

10.2.3 Accumulators 16 and 17

Accumulator 16 should be used only for JSA-JRA subprogram calls unless the definition of the subprogram se­

quence requires otherwise. The contents of accumulator 16 may be destroyed by subprograms called by PUSHJ

17, adr.

Accumulator 17 must be used only for pushdown list operations.

10.3 UUOS

User UUO's are not considered subprograms and may not change any locations except those required for input

and the contents of accumulators 0 or 1.

10.4 SUBPROGRAMS CALLED BY JSA 16, ADDRESS

The calling sequence is

J SA 16, address
ARG adrl
ARG adr2

ARG adrN

where each AR G adrN corresponds to one argument of the subprogram.

There mayor may not be arguments. If there are arguments, they must be inaccumulators 2 through 15. Sub­

routines called with the FORTRAN CALL statement may, by definition, return an argument in accumulator 0 or

1. Subprograms that are FORTRAN functions (such as SIN or SQRT) may destroy the contents of accumulators 0

and 1. Results are returned in accumulator 0 for single word results and accumulators 0 and 1 for double word

results.

10.5 SUBPROGRAMS CALLED BY PUSHJ 17, ADDRESS

See section 10.2. In addition, three consecutive accumulators are required for double-precision addition, sub­

traction, multiplication, and division operations. The contents of the third accumulator may be destroyed. The

10-2

"to memory" modes also leave the answer in the defined accumulators. The two arguments of the double-precision

operation cannot be in the same accumulators. Complex addition, subtraction, multiplication, and division op­

erations do not destroy locations except those required for the answer and accumulator 16. The two arguments of

the complex operation must not be in the same accumulator.

10.6 SUBPROGRAMS CALLED BY UUOS

Subprograms called by UUO's may change the contents of accumulators 0 and 1 only.

Subprogram
Called

By:
Accumulators

0, 1 1)
2)

3)

2-15 1)
2)

3)

16 1)
Reserved for 2)
JSA-JRA
Operations 3)
(except as not-
ed for PUSHJ)

17 1)
Reserved for 2)
Pushdown
List Opera- 3)
tions

Table 10-1
Accumulator Conventions for

PDP-10 FORTRAN IV Compiler and Subprograms

JSA PUSHJ

Functions Subroutines

May be destroyed. 1) May be destroyed. 1) May be destroyed.
May not be used to 2) May not be used 2) May be used to
pass arguments. to pass arguments. pass arguments if
A result must be 3) Results must not the subprogram is
returned in 0 or be returned. defined with an
o and 1. argument in 0 or

o and 1.
3) Resu I ts may be re-

turned if the sub-
program is so de-
fined.

Must be preserved. 1) May be destroyed. 1) Must be preserved
Arguments may be 2) Arguments may be unless the defini-
passed. passed. tion of subprogram
Results may be re- 3) Results must not forces resu I ts to
turned if required be returned. be returned.
by call ing se- 2) Arguments may be
quence. passed.

3) Results may be re-
turned if the sub-
program is so de-
fined.

Must be preserved. 1) Must be preserved. 1) Is destroyed.
May not be used 2) May not be used 2) Used for argument
to pass arguments. to pass arguments. address.
Results must not be 3) Results must not 3) Resu I ts must not be
returned. be returned. returned.

Must be preserved. 1) Must be preserved. 1) Must be preserved.
May not be used 2) May not be used 2) May not be used
to pass arguments. to pass arguments. to pass arguments.
Resu Its must not be 3) Results must not 3) Results must not be
returned. be returned. returned.

10-3

UUO

1) May be destroyed.
2) May be used to pass

arguments except as
defined.

3) Resu Its must not be
returned.

1) Must be preserved.
2) Arguments may be

passed.
3) Results must not be

returned.

1) Must be preserved.
2) May not be used to

pass arguments.
3) Resu I ts must not be

returned.

1) Must be preserved.
2) May not be used to

pass arguments.
3) Results must not be

returned.

I

CHAPTER 11

SWITCHES AND DIAGNOSTICS

11.1 FORTRAN SWITCHES AND DIAGNOSTICS

Switch

E

M

N

S

Table 11-1
FORTRAN Compiler Switch Options

Advance magnetic tape reel by one file.

Backspace magnetic tape reel by one file.

Meaning

Generate a CREF-type cross-reference listing. (DSK:CREF. TMP assumed if no list-dev
specified)

Complement: Do not produce cross-reference information (standard procedure).

Print an octal listing of the binary program produced by the compiler in addition to the
symbolic listing output.

Complement: Do not produce octal I isting (standard procedure).

Translate the letter D in column 1 as a space and treat the line as a normal FORTRAN
statement.

Complement: Translate the letter D in column 1 as a comment character and treat the
line as a comment (standard procedure).

Include MACRO coding in the output listing.

Complement: Eliminate the MACRO coding from the output listing (standard procedure).

Suppress output of error messages on the Teletype.

Complement: Output error messages on TTY (standard procedure).

If the compiler is running on the KA-10, produce code for execution on the KI-10 and
vice-versa.

Skip to the logical end of the magnetic tape reel.

Rewind the magnetic tape reel.

Zero the DECtape directory.

\witches A through C and T, W, and Z must immediately follow the device name or filename.ext to which
the individual switch applies.

Version 26 FORTRAN
Version 32 LlB40 11-1 May 1972

I

I

Table 11-2
FORTRAN Compiler Diagnostics

(Command Errors)

Message

?BINARY OUTPUT ERROR dev:filename.ext

?CANNOT FIND dev:filename.ext

?DEVICE INPUT ERROR for command string

IMPROPER 10 FOR DEVICE dev:

ILLEGAL MEMORY REFERENCE AT loc
COMPILATION TERMINATED

?INPUT DATA ERROR dev:filename.ext

?x IS A BAD SWITCH

?x IS AN ILLEGAL CHARACTER

?dev: IS NOT AVAILABLE

LINKAGE ERROR

?LINKAGE ERROR FOR dev:filename

?LISTING OUTPUT ERROR

?NO ROOM FOR filename.ext

?NO FILE NAMED filename. ext

?NOT ENOUGH CORE FOR LINKAGE

?SYNT AX ERROR IN COMMAND STRING

?X SWITCH ILLEGAL AFTER LEFT ARROW

?X SWITCH ILLEGAL AFTER FIRST STANDARD
FILE

?X SWITCH, NO LISTING FILE

?INSUFFICIENT CORE - COMPILATION
TERMINATED

Meaning

An output error has occurred on the device specified for
the binary program output.

Filename.ext cannot be found on this device.

Device error occurred while attempting to read Monitor
command fil e.

An input device is specified for output (or vice versa) or
an illegal data mode was specified (e.g., binary output
to TTY).

An illegal memory reference hos occurred and compi la­
tion has stopped. The current output files will be closed
and the next source files read.

A read error has occurred on the source device.

This specified switch is not recognizable.

A character in a command string typein is not recogniz­
able (e.g., FORM-FEED).

Either the device does not exist or it has been assigned
to another job.

Input device error while doing Dump Mode I/O, or not
enough core was ava i lable to execute the newly loaded
program.

Specified dev:filename appears in a 1 Monitor command
string, but cannot be run for some reason.

An output error has occurred on the device specified for
the list i ng output.

The directory on dev: DTAn is full and cannot accept
filename.ext as a new file, or a protection failure oc­
curred for a DSK output file.

An illegal filename has been used.

Not enough core available to load (with dump mode I/O)
the program specified in a ! Monitor command string.

A syntax error has been detected in a command string
typcin (e.g., the --has been omiited).

Cannot change marhine type wit~l a fil,~ or clear source
directory •

Cannot clear directolY after start of compi lation (Batch

Mode). I

;h~:~m~iislt~~:~:~~:~:;i:i~i::i~:b:~I:~ace to compile the I
program.

~ _________________ -L.. ______________ ----------

Version 24 FORTRAN
Version 31 LIB40 11-2

I

Table 11-2 (Cont)
FORTRAN Compiler Diagnostics

(Command Errors)

Message Meaning

WORK STACK OVERFLOW AT loc The pushdown list used by the compiler for machine
COMPILATION TERMINATED language subroutine calls has overflowed. Compilation

has stopped. The current output files will be closed
and the next source file read.

Table 11-3
FORTRAN Compiler Diagnostics

(Compilation Errors)

Message

1-1 DUPLICATED DUMMY VARIABLE IN
ARGUMENT STRING

1-2 ARRAY NAME ALREADY IN USE

1-3 ATTEMPT TO REDEFINE VARIABLE
TYPE

1-4 NOT A VARIABLE FORMAT ARRAY

1-5 NAME ALREADY USED AS NAMELIST
NAME

1-6 DUPLICATED NAMELIST NAME

1-7 A NAME APPEARS lWICE IN AN
EXTERNAL STATEMENT

1-8 ARGUMENT TYPE DOESN'T AGREE
WITH FUNCTION SPEC

1-9 THIS FUNCTION REQUIRES MORE
ARGUMENTS

1-10 SUBPROGRAM NAME ALREADY IN
USE

1-11 DUMMY ARGUMENT IN DATA
STATEMENT

Version 24 FORTRAN
Version 31 LIMO

Meaning

A dummy variable (identifier) may appear only once in
anyone argument set representing the arguments of a
subprogram. (See Secti on 7.3)

Any attempt to re-dimension a variable or redefine a
scalar as an array is illegal. (See Section 6.1.1)

Once a variable has been defined as either complex,
double precision, integer, logical, or real it may not
be defined again. (See Section 2.2, 6.3)

The variable which contains the FORMAT specification
read-in at object time must be a dimensioned variable,
i.e., an array (see Section 5.1.1) or a subprogram ar­
gument was used as a NAMELIST name with the subpro­
gram (see Section 5.1.2).

After a NAMELIST name has been defined, it may ap­
pear only in READ or WRITE statements and may not be
defined again. (See Section 5.1 .2)

A NAMELIST name has already been used as a scalar
array or global dummy argument. (See Section 5.1 .2)

A subprogram name has been declared EXTERNAL more
than once. (See Section 7.7)

The actual arguments for a function do not agree in
type with the dummy arguments in the specification of
the function.

Not enough arguments were supplied for a function.

A subprogram name has appeared in another statement
as a scalar or array variable, arithmetic function state­
ment name, or COMMON block name. (See Section
7.5)

Dummy arguments may not appear in DATA statements.
(See Section 6.2.1)

11-3 October 1971

I

Table 11-3 (Cont)
FORTRAN Compiler Diagnostic~

(Compilation Errors)

Message

1-12 NOT A SCALAR OR ARRAY

1-13 ILLEGAL USE OF DUMMY ARGUMENT

1-14 ILLEGAL DO LOOP PARAMETER

1-15 I/O VARIABLES MUST BE SCALARS OR
ARRAYS

1-16 A CONFLICT EXISTS WITH A COMMON
DECLARATION

S-l ILLEGAL NAME OR DELIMITER OR
KEY CHARACTER

S-2

S-3

S-4

S-5

S-6

S-7

S-8

STATEMENT KEYWORD NOT
RECOGNIZED

ILLEGAL FIELD SPECIFICATION

SCALAR VARIABLE - MAY NOT BE
SUBSCRIPTED

ILLEGAL TYPE SPECIFICA nON

ARGUMENT IS NOT SINGLE LETTER

'NAMELIST' NOT FOLLOWED BY"/"

ILLEGAL CHARACTER IN LABEL

Version 24 FORTRAN
Version 31 LIB40

Meaning

The variable defining the starting address for an
ENCODE/DECODE statement must be a scalar or an
array. (See Section 504)

The I/O unit name of a READ/WRITE statement is not
a scalar or array. (See Sections 5.2.6, 5.2.7)

An attempt to ASSIGN a label number to a variable that
is not a scalar or array. (See Section 2.2)

An attempt to GO TO through a variable that is not a
scalar or array. (See Section 4.1)

Dummy arguments may be used with functions or subpro­
grams only. (See Sections 7 04.1 , 7.5.1)

The DO index must be a non-subscripted integer variable
while the initial, limit, and increment values of the in­
dex must be an integer expression - the index may not
be zero. (See Section 4.3)

Referencing data in an I/O statement other than scalars
or arrays is illegal. (See Section 5.2)

The function name used was previously declared a scalar
variable in a COMMON statement.

A variable name doesn't start with an alphabetic charac­
ter, or a delimiter such as the left parenthesis that be­
gins a format is missing, or a key character such as the
letter D in BLOCK DATA is missing.

A statement keyword such as ERASE was not recognized,
possibly due to misspell ing (e.g., ERASC 16).

The field width or decimal specification in a FORMAT
statement must be integer. The number of Hollerith
characters in an H specification must be equal to the
number specified. (See Sections 5.1.1.1, 5.1.1.6)

An undimensioned variable (a scalar variable) is being
illegally subscripted (see Section 2.2.1) or a scalar
variable is subscripted in an ENCODE/DECODE state­
ment (see Section 5 A) .

The type of constant specified is illegal or misspelled.
(See Section 2.1)

Arguments in parentheses must be single letters in
IMPLICIT statement. (See Section 6.3.1)

The first character following NAMELIST must be /.
(See Section 5.1 .2)

A non-numeric character was detected in the label field
of the statement, possibly because tabs or spaces are
missing.

11-4 October 1971

Table 11-3 (Cont)
FORTRAN Compiler Diagnostics

(Compilation Errors)

Message

5-9 MISSING COMMA OR SLASH IN
SPECIFICATION 5 TATEMENT

S-10 ILLEGAL ARITHMETIC "IF" -
TOO MANY LABELS

S-ll A NUMBER WAS EXPECTED

S-12 IMPLICIT TYPE RANGE OVERLAPS
PREVIOUS SPECIFICA nON

S-13 ATTEMPT TO USE AN ARRAY OR
FUNCTION NAME AS A SCALAR

S-14 ARRAY NOT SUBSCRIPTED

S-15 ILLEGAL USE OF AN ARITHMETIC
FUNCTION NAME

S-16 MUL nPLE RETURN ILLEGAL
WITHOUT STATEMENT LABEL ARG

S-17 INCORRECT PAREN COUNT OR
MISSING IMPLIED DO INDEX

S-18 INVALID INDEX IN DO-LOOP OR
IMPLIED DO-LOOP

5-19 EQUIVALENCE REQUIRES TWO OR
MORE ELEMENTS

S-20 ILLEGAL DEFINITION OF AN
ARITHMETIC STATEMENT FUNCTION

5-21 MISSING COMMA IN INPUT/OUTPUT
LIST

S-22 STATEMENT CONTINUES PAST
RECOGNIZED END POINT

S-23 ILLEGAL COMPLEX CONSTANT

Version 24 FORTRAN
Version 31 LIMO

Meaning

A specification statement (see Section 7.8) requires a
comma or slash and it is missing.

An arithmetic "IF" statement must have no more or less
than three statement labels to transfer to. Special op­
timization will occur if two of the labels are the same,
or one or more labels refer to the next statement.

Only arrays which are subprogram arguments can have
adjustable dimensions. (See Section 6.1.1.1)

An implicit type range encompasses a character that has
already been given an implicit type.

Variables may be either scalar or array but not both.
Variables appearing in a DIMENSION statement must
be subscripted when used. (See Section 2.2) Function
names must be followed by at least one argument enclosed
in parentheses (See Section 7.4) .

See 5-13

Arithmetic function definition statement name is being
used without arguments (i.e., as a scalar) in an arithme­
tic expression. (See Section 7.3)

A dollar sign ($) or an asterisk (*) must have appeared in
the argument list of this subprogram to represent the po­
sition of a statement label argument in the call.

The number of left and right parentheses does not match,
or an undefined index variable was used in defining a
DO loop (see Section 5.2.1), or the number of implied
DO loops and the number of matching parentheses dif­
fer in a DATA statement. (See Section 6.2.1)

The index of a DO statement must be a non-subscripted
integer variable and must not be zero. (See Section
4.3) The index is not used as a subscript in a DATA list.
(See Section 6.2.1)

The EQUIVALENCE statement must have more than one
argument because it causes variables to share the same
location. (See Section 6.1.3)

The statement function continues past its recognized end
point.

An input/output list continues past its recognized end
point.

A statement other than those mentioned above continued
past its recognized end point.

The parentheses of the complex constant enclose a logical,
Hollerith, or complex constant.

11-5 October 1971

I

Table 11-3 (Cont)
FORTRAN Compiler Diagnostics

(Compilation Errors)

Message

0-1 BLOCK DATA NOT SEPARATE PRO­
GRAM

0-2 SUBROUTINE IS NOT A SEPARATE
PROGRAM

0-3 STATEMENT OUT OF PLACE

0-4

A-1

A-2

A-4

EXECUTABLE STATEMENTS ILLEGAL
IN BLOCK DATA

MINIMUM VALUE EXCEEDS MAXIMUM
VALUE

ATTEMPT TO ENTER A VARIABLE INTO
COMMON TWICE

ATTEMPT TO EQUIVALENCE A SUB­
PROGRAM NAME OR DUMMY
ARGUMENT

NOT A CONSTANT OR DUMMY
ARGUMENT

Meaning

Block Data must exist as a separate program. (See
Sections 6.2.2,7.6)

A subroutine following a main program or another sub­
routine subprogram may have no statement between it
and the preceding programs END statement and must be­
gin with a SUBROUTINE statement. The previous pro­
gram must have been terminated properly. (See Section
7.5)

The IMPLICIT specification statement and any arithmetic
function definition statement must appear before any ex­
ecutable statement. (See Chapter 6)

Block DATA statements cannot contain executable
statements .

Minimum value of an array exceeds the maximum value
specified. (See Section 6.1 .1)

A variable name may appear in COMMON statement
only once. (See Section 6.1 .2)

An identifier defined as a subprogram name cannot ap­
pear in EQUIVALENCE statements in the defining pro­
gram. Dummy argument identifiers of a subprogram may
not appear in EQUIVALENCE statements in that subpro­
gram. (See Sections 6.1.3, 7.1)

Only constant and dummy arguments may be used as ar­
guments in dimension statements. (See Section 7.4.1)

I A-5 CAUTION ** COMMON VARIABLE
PASSED AS ARGUMENT

The variable may be mul tiply defined in the call ed sub­
program. (See Sections 7.4.1, 7.5.1)

M-1

M-2

M-3

M-4

M-5

M-6

M-7

TOO MANY SUBSCRIPTS

WRONG NUMBER OF SUBSCRIPTS

CONSTANT OVERFLOW

ILLEGAL 'IF' ARGUMENT

ILLEGAL CONVERSION IMPLIED

LABEL OUT OF RANGE OR ARRAY
TOO LARGE

UNTERMINATED HOLLERITH STRING

Version 24 FORTRAN
Version 31 L1B40

An array variable appears with more subscripts than
specified. (SeeSections2.2.2,6.1.l)

An array variable appears with too few subscripts. (See
Sections 2.2.2,6.1.1)

Too many significant digits in the formation of a con­
stant or the exponent is too large. (See Section 2.1)

Logical IF or DO statement adjacent to a logical IF
statement, or illegal expression within a logical IF
statement. (See Sections 4.2.2, 4.3)

Attempt'to mix double precision and complex data in
the same expression. (See Section 2.3.1)

Illegal statement label (See Section 1.1.1) or array size
is greater than 2 18_1.

A missing single quote or fewer than n characters follow­
ing an "nH" specification. (See Section 5.1.1.6)

11-6 Oc tob er 1971

Tabl e 11-3 (Cont)
FORTRAN Compiler Diagnostics

(Compilation Errors)

Message

M-8 SYSTEM ERROR - NO MORE SPACE
FOR RECURSIVE STORAGE

M-9 TOO MUCH DATA - WRONG ARRAY
SIZE OR LITERAL TOO LONG

M-I0 ILLEGAL DO LOOP CLOSE

M-ll MORE DATA NEEDED - LITERAL TOO
SHORT OR TYPE CONVERSION EXPECTED

M-12 NON-INTEGER PARAMETER IN 'DO'
STATEMENT

M-13 NON-INTEGER SUBSCRIPT

M-14 ILLEGAL COMPARISON OF COMPLEX
VARIABLES

M-15 TOO MANY CONTINUATION CARDS

M-16 NON-INTEGER I/O UNIT OR
CHARACTER COUNT

M-17 SYSTEM ERROR-ROLL OUT OF RANGE

M-18 SYSTEM ERROR - NO MORE SPACE
FOR RECURSIVE CALLS

I M-19 ILLEGAL USE OF STATEMENT LABEL

M-20 ILLEGAL RECURSIVE CALL

EXCESSIVE COUNT

OPEN DO LOOPS

UNDEFINED LABELS

Version 26 FORTRAN
Version 32 LlB40

Meaning

The compiler's work roll is too small to hold the parts of
all the subexpressions this stat"ement implies. Break this
statement" or reassemble the compiler with a larger work­
roll parameter (WORLEN=1508 at present) •

The list of DATA constants deFines more words than the
list of DATA variables specifies. This may be due to an
array of the wrong size in the list of DATA variables, or
definition of an integer, real, or logical DATA variabl e
with a Hollerith constant of more than five characters.

Illegal statement terminating a DO loop. (See Section
4.3)

The list of DATA constants defines fewer words than the
list of DATA variables specifies. This may be due to a
double precision or complex DATA variable defined
with a Hollerith constant of less than six characters, or
a double precision DATA variable defined with a real
constant.

DO statement parameters must" be integers. (See Section
4.3)

Array subscripts must be integer constants, variables, or
expressions. (See Section 4.3)

The only comparison allowed of complex variables is
.NE. or .EQ. (See Secl"ions 2.2,2.3)

More than 19 continuation cards. (See Section 1 .1 .2)

The I/o unit variable of a READ;WRITE statement, or
the character count variable of an ENCODE/DECODE
statement, is not an int"eger variable. (See Sections
5.2.6,5.2.7,5.4)

Compiler error. Report this message and its circumstances
via a Software Trouble Report.

The compiler's exit roll is t"OO small to hold the return
addresses for all the recursive subroutine calls this state­
ment requires to be compil ed. Break up the st"atement or
reassemble the compiler with a largel' exit roll parameter
(EXLEN1 :2018 at present).

A GO TO or I F statement" transfers to i tse If .

The statement function called itself. Recursive calls are
illegal in the FORTRAN language.

The number specified is greater than the maximum pos­
sible number of characters in a statement".

The list of statements are specified in DO statements
but not defined.

The list of labels that do not appear in the label field.

11-7 May 1972

I

Tabl e 11-3 (Cont)
FORTRAN Compiler Diagnostics

(Compilation Errors)

Message Meaning

MUL nPL Y DEFINED LABELS The list of labels that appeared more than once in the
label field.

ALLOCA nON ERRORS The list of EQUIVALENCEd COMMON variables which
have attempted to extend the beginning of a COMMON
block.

Table 11-4
FORTRAN Operating System Diagnostics

(Execution Errors)

Message

?BLOCK TOO LARGE OR QUOTA
EXCEEDED ON dey

?CANNOT ACCESS FORTR.SHR­
GETSEG ERROR CODE xx

?dev: NOT AVAILABLE

?DEVICE NUMBER n IS ILLEGAL

?DEVICE NUMBER n MUST BE DSK FOR
RAND OM ACCESS

?DIRECT ACCESS DEVICE NUMBER n IS
ILLEGAL

ENCODE - DECODE ERROR

END OF FILE ON dey:

?END OF TAPE ON dey:

?FILE NAME filename.ext NOT ON
DEVICE dey:

?ILLEGAL CHARACTER, x, IN FORtv\AT

?ILLEGAL CHARACTER, x, IN INPUT S,P.ING

?ILLEGAL MAGNETIC TAPE OPERA nON,
TAPE dey:

?ILLEGAL PHYSICAL RECORD COUNT,
TAPE dey:

?ILLEGAL USER UUO uuu AT U_<R Icc

?INPUT DEVICE ERROR Ot-...J dey:

~-------------------------'--

Version 26 FORTRAN
Version 32 LlB40

Meaning

The user's program attempted to add blocks to a
random access file, which caused the block to be
too large or caused him to exceed his disk quota.

An error occurred when a GETSEG UUO was issued to
access FORTR.SHR. The codes are listed in Appendix E
of the TOPS-10 Monitor Calls manual.

FORSE. tried to initialize a device which either does not
exist or has been assigned to another job.

A nonexistent device number was selected.

The device for random access operations must be disk.

Only devices 1 through 17 can be used for random
access.

The character count in an ENCODE or DECODE state­
ment was incorrect_

A premature end-of-file has occurred on an input device.

The end of tape marker has been sensed during input or
output

Filename .ext cannot be found in the direc10ry of the
:.;peci fi ed davi c e.

The illegal character x is not valid for a FORMAT
sta1ement.

T'le :1!cgal character x is not valid for this type of input.

An attempt was made to s!dp a record after performing
output on a magnetic tap~.

FORSE. has encountered an inconsistency in the physiccl
record count on a magnetic tape.

A,l illegai u • ..)r UUU to For\S~. Vias encountered oi

location 10:::.

A data transmission error has been dE:tccted in the input
from C1 C: '!v; ~ c .

11-8

FORTRAN Operating System Diagnostics
{Execution Errors}

Message

?LlBRARY {FORTR. SHR} AND USER PROGRAM
VERSION NUMBERS ARE DIFFERENT

?MORE THAN 15 DEVICES REQUESTED

?NAMELIST SYNTAX ERROR

?NO ROOM FOR FILE filename.ext ON
DEVICE dev:

?NOT ENOUGH CORE FOR BUFFERS

program name NOT LOADED

?OUTPUT DEVICE ERROR ON dev:

I ?OUTPUT FIELD WIDTH OVERFLOW

?PARITY ERROR ON dey:

?REREAD EXECUTED BEFORE FIRST READ

?TAPE RECORD TOO SHORT ON UNIT n

?dev: WRITE PROTECTED

WARNING! / IS ILLEGAL IN ENCODE­
DECODE, END OF FOR MAT ASSUMED

Meaning

The user's executable program is using an obsolete ver­
sion of the library. The program should be recompiled
so that the correct version of the library is used.

Too many devices have been requested.

Improper mode of I/O {octal or Hollerith}, incorrect
variable name.

There is no room for the file in the directory of the
named devi ce.

Either a call to BUFFER or a random access operation
tried to set up a buffer ring when not enough core was
available.

A dummy routine was loaded instead of the real one.
Generally, this error occurs when a loaded program is
patched to include a call to a library program which
was not called by the original program at load time.

A data transmission error has been detected during out­
put to a device.

A field overflowed on output and was filled with
asterisks.

A pari ty error has been detected.

A reread was attempted before initializing the first in­
put device.

The data list is too long on a binary tape READ opera­
tion.

The device is WRITE locked.

A slash was used in the FORMAT statement referenced
by an ENCODE or DECODE statement. Since slashes
are illegal in these statements, the operating system
assumes that the slash is the end of the format.

The following messages are typed twice, when the error occurs, and in a final summary. When the error

occurs, the PC value is appended to the message. When the message appears in the final summary, the number

of times that the error occurred in the program is appended to the message.

?ACOS OF ARG > 1.0 IN MAGNITUDE

?ASIN OF ARG > 1.0 IN MAGNITUDE

?ATTEMPT TO TAKE LOG OF NEGATIVE ARG

?ATTEMPT TO TAKE SQRT OF NEGATIVE ARG

?FLOATING DIVIDE CHECK

?FLOATING OVERFLOW

?FLOATING UNDERFLOW

?INTEGER DIVIDE CHECK

?INTEGER OVERFLOW

Version 26 FORTRAN
Version 32 LlB40 11-9 May 1972

Message

Table 11-4 (Cont)
FORTRAN Operating System Diagnostics

(Execution Erron)

Meaning

The following messages are Issued when a LOOKUP, ENTER, or RENAME UUO error occurs. The number In

parentheses indicates the error code. Refer to Appendix E in the TOPS-10 Monitor Calls manual.

?(O) ILLEGAL FILENAME WAS NOT FOUND FILE xx ON DEVICE yy

?(1) NO DIRECTORY FOR PROJECT -PROGRAMMER NUMBER FILE xx ON DEVICE yy.

?(2) PROTECTION FAILURE FILE xx ON DEVICE yy

?(3) FILE WAS BEING MODIFIED FILE xx ON DEVICE yy

?(4) RENAME FILE NAME ALREADY EXISTS FILE xx ON DEVICE yy

?(5) ILLEGAL SEQUENCE OF UUOS Fn.E xx ON DEVICE yy

?(6) BAD UFO OR BAD RIB FILE xx ON DEVICE yy

?(7) NOT A SAV FILE FILE xx ON DEVICE yy

?(1O) NOT ENOUGH CORE FILE xx ON DEVICE yy

?(11) DEVICE NOT AVAILABLE FILE xx ON DEVICE yy

?(12) NO SUCH DEVICE FILE xx ON DEVICE yy

?(13) NOT TWO RELOC REG. CAPABn.ITY FILE xx ON DEVICE yy

?(14) NO ROOM OR QUOTA EXCEEDED Fn.E xx ON DEVICE yy

?(15) WRITE LOCK ERROR FILE xx ON DEVICE yy

?(16) NOT ENOUGH MONITOR SPACE FILE xx ON DEVICE yy

?(17) PARTIAL ALLOCATION ONLY FILE xx ON DEVICE yy

?(20) BLOCK NOT FREE ON ALLOCA nON FILE xx ON DEVICE yy

NOTE

With the exception of the messages ILLEGAL USER UUO
uuu AT USER loc and ENCODE/DECODE ERROR, all
messages are followed by a second message

LAST FORTRAN I/o AT USER LOC adr

Several arithmetic error conditions can occur during execution time.

a. Overflow - An attempt was made to create either a positive number greater than the largest repre­
sentable positive number or a negative number greater in magnitude than the most negative representable
number (in the appropriate mode).

Example: For I an integer,

377777777777 < I < 400000000000 (oc ta I)

b. Underflow - An attempt was made to create either a positive non-zero number smaller than the
smallest representable positive non-zero number or a negative number smaller in magnitude than l:'e
negative number whose magnitude is the small est represcnfabl e.

Version 24 FORTRAN
Version 31 LlB40 11-10 October 1971

I

Exampl e: For X a real non-zero number,

7n 400000000 < X < 000400000000

c. Divide Check - An attempt was made to divide by zero.

d. Improper Arguments for L1B4O math routines - For example, an attempt was made to find the arc
sine of an argument greater than 1.0.

When overflow, underflow, or divide check errors occur in the user's FORTRAN program, the Monitor calls the

LIMO routine OVTRAP. This routine replaces the resulting numbers, if the numbers are floating point, with

either zero in the case of underflow or ± the largest representable number in the cases of overflow and divide

check. OVTRAP does not affect numbers in integer mode.

Overflow, underflow, and divide check errors occurring in L1B4O math routines are handled differently from

when they occur in the user's program: only if the final answer from a routine is in error is an error condition

considered to exist. If the answer is floating point, it is set to the appropriate value as for user program errors.

Integer answers are handled in various ways. (See the Science Library and FORTRAN Utility Subprograms,

DEC-I0-SFLE-D .)

When an error condition occurs in a user program or in a final answer from a L1B4O math routine, an error mes­

sage is typed. Presently there are eight distinct error messages.

Error Message No.

2

3

4

5

6

7

8

final

Error Message

INTEGER OVERFLOW PC=nnnnnn

INTEGER DIVIDE CHECK PC=nnnnnn

FLOATING OVERFLOW PC=nnnnnn

FLOATING UNDERFLOW PC=nnnnnn

FLOATING DIVIDE CHECK PC=nnnnnn

ATTEMPT TO TAKE SQRT OF NEGATIVE ARG

ACOS OF ARG > 1.0 IN MAGNITUDE

ASIN OF ARG > 1 .0 IN MAGNITUDE

? FA TAL I/o ERROR

NOTE

nnnnnn = location at which the error occurred.

After two typeouts of a particular error message, further typeout of that error message is suppressed. At the end

of execution, a summary listing the octual number of times each error message occurred is typed out. If the user

wishes to permit more than two typeouts for each error message, he may do 50 by calling the routine ERRSET at

the beginning of the executable part of his main program. ERRSET accepts one argument in integer mode. This

argument is the number of typeouts that are permitted for each error message before suppression occurs. This

routine is used to obtain the PC information which would otherwise be lost. Altematively, because of the slow-

Version 24 FORTRAN
Version 31 LIB40 11-11 October 1971

ness of the Teletype output, the user may wish to suppress typeout of the messages entirely. This can be done by

calling ERRSET with an argument of zero. Suppression. of typeout can also be accomplished during execution by

typing to on the Teletype.

Error messages and the summary are output to the Teletype (or the output device when running BATCH), regard­

less of the device assignments that have been made.

The treatment of overflow, underflow, and divide check errors in MACRO pragrams (those that are loaded with

OVTRAP) can, to a certain extent, be manipulated by the user. (See OVTRAP in the Science Library and

FORTRAN Utility Subprogram manual.)

Version 24 FORTRAN
Version 31 LlB40 11-12 C ctober 17'/1

12.1 ASCII CHARACTER SET

SIX BIT Character
ASCII
7-Bitt

00 Space 040
01 ! 041
02 II 042
03 /I 043
04 $ 044
05 % 045
06 & 046
07 I 047

10 (050
11) 051
12 * 052
13 + 053
14 , 054
15 - 055
16 056
17 / 057

20 0 060
21 1 061
22 2 062
23 3 063
24 4 064
25 5 065
26 6 066
27 7 067

30 8 070
31 9 071
32 : 072
33 ; 073
34 < 074
35 = 075
36 > 076
37 ? 077

Table 12-1
ASCII Character Set

SIX BIT Character

40 @

41 A
42 B
43 C
44 D
45 E
46 F
47 G

50 H
51 I
52 J
53 K
54 L
55 M
56 N
57 0

60 P
61 Q

62 R
63 S
64 T
65 U
66 V
67 W

70 X
71 Y
72 Z
73 [

74 \
75]

76 t
77 -

ASCII
7-Bitt

100
101
102
103
104
105
106
107

110
111
112
113
114
115
116
117

120
121
122
123
124
125
126
127

130
131
132
133
134
135
136
137

t FORTRAN IV also accepts the following control codes in 7-bit ASCII:

Horizontal Tab 011 Carriage Return
Line Feed 012 Form Feed

Revision 1 FORTRAN 12-1

CHAPTER 12

FORTRAN USER PROGRAMMING

Character
ASC,II
7-Bitt

,
140

a· 141
b 142
c 143
d 144
e 145
f 146
g 147

h 150
i 151

i 152
k 153
I 154
m 155
n 156
0 157

p 160
q 161
r 162
s 163
t 164
u 165
v 166
w 167

x 170

Y 171
z 172

{ 173

I 174

} 175

- 176
Delete 177

015
014

October 1970

12.2 PDP-10 WORD FORMATS

BASIC INSTRUCTIONS

INSTRUCTION CODE Y (INCLUDING MODEl

IN-OUT INSTRUCTIONS

1111 I 11 DEVICE CODE I'NS~~~~TlONI/I X Y

0 1 J 9 10 11 13 14 17 18

PC WORD

flAGS 1000 0 01 PC
I I I I

12: 13 17 18

BLT POINTER [XWD]

SOURCE ADDRESS DESTINATION ADDRESS

17 18

BLK 1/ BLKO POINTER, PUSHDOWN POINTER, DATA CHANNEL CONTROL WORD [IOWD]

- WORD COUNT I ADDRESS-I

SIGN
0+ , -
o ,

POSITION P I
5 6

S6~N EXCESS 128 EXPONENT
, - (ONES COMPLEMENT I

SIZE S

o , 8 9

17 18

BYTE. PO INTER

y

" 12 13 ,4 17 1e

BYTE STORAGE
f----s BITS P BITS

I BYTE NEXT BYTE

35-P-S-l 35-P 35-P"

FIXED POINT OPERANDS

BINARY NUMBER (TWOS COMPLEMENTJ

FLOATI NG POI NT OPERANDS

FRACTION (TWOS COMPLEMENTJ

LOW ORDER WORD IN DOUBLE LENGTH FLOATING POINT OPERANDS

o
o ,

EXCESS 128 EX PONENT - 27
IN POSITIVE FORM

LOW ORDER HALF OF FRACTION (TWOS COMPLEMENT I

8 9

12-2

35

I
35

I
35

35

35

35

35

35

35

35

In addition to the arithmetic functions, the PDP-10 FORTRAN IV library (LIMO) contains several subprograms

which control FORTRAN IV I/O operations at runtime. The I/O subprograms are compatible with the PDP-10

Monitors.

In general FORTRAN IV I/O is done with double buffering unless the user has either specified otherwise through

calls to IBUFF and OBUFF or is doing random access I/O to the disk. In these cases, single buffers are used.

The standard buffer sizes for the devices normally available to the user are given in Table 12-2. Note that the

devices and buffer sizes are determined by the Monitor and may be changed by a particular installation. Also a

user may specify buffer sizes for magtape operations through the use of IBUFF and OBUFF.

The logically first device in a FORTRAN program is initialized on software I/O channel one, the second on

software I/O channel two, and so forth. Software I/O channel 0 is reserved for error message and summary

output. The SIXBIT name of the device that is initialized on channel N can be found in !l dynamic device table

at location DYNDV. + N. A device may be initialized for input and output on the same I/O channel. Devices

are initialized only once and are released through either the CALL [SIXBIT/EXIT!J executed at the end of every

FORTRAN program or the LIMO subroutine RELEAS.

Table 12-2
PDP-10 FORTRAN IV Standard Peripheral Devices

Name Mnemonic
Input/Output Buffer Size

Operation
Formatted Unformatted In Words

Card Punch CDP Yes Yes 26 WRITE

Card Reader CDR Yes Yes 28 READ

Disk
(includes disk DSK Yes Yes 128 READ,lWRITE
packs and drums)

DECtapes DTA Yes Yes 127 READ,lWRITE

Line Printer LPT Yes No 26 WRITE

Magtape MTA Yes Yes 128 READ,lWRITE

Plotter PLT Yes Yes 36 WRITE

Paper Tape Punch PTP Yes Yes 33 WRITE

Paper Tape Reader PTR Yes Yes 33 READ

Pseudo Teletype PTY Yes No 17 READ,lWRITE

Teletype - User TTY Yes No 17 READ,lWRITE

Teletype - Console CTY Yes No 17 READ,lWRITE

12-3

I

I

12.3.1 Logical and Physical Peripheral Device Assignments

Logical and physical device assignments are controlled by either the user at runtime or a table called DEVTB.

The first entry in DEVTB. is the length of the table. Each entry after the first is a sixbit ASCII device name.

The position in the table of the device name corresponds to the FORTRAN logical number for that device. For

example, in Table 12-3, magnetic tape 0 is the 16th entry in DEVTB. Therefore, the statement

WRITE (16, 13)A

refers to magnetic tape O. The last five entries in DEVTB. correspond to the special FORTRAN statements READ,

ACCEPT, PRINT, PUNCH, and TYPE. Any device assignments may be changed by reassembling DEVTB.

If the user gives the Monitor command

ASSIGN DSK 16

prior to the running of his program, a file named FOR16.DAT would be written on the disk. Similarly, the

Monitor command

ASSIGN LPT 16

causes output to go to the line printer.

12.3.2 DECtape and Disk Usage

12.3.2.1 Binary Mode - In binary mode, each block contains 127 data words, the first of which is a record

control word of the form:

where w is the word count specifying the number of FORTRAN data words in the block (126 for a full block) and

n is 0 in all but the last block of a logical record, in which case n is the number of blocks in the logical record.

A logical record contains all the data corresponding to one READ or WRITE statement, that is, the maximum num­

ber of logical records per disk/DECtape block is one.

12.3.2.2 ASCII Mode - In ASCII mode, blocks are packed with as many full lines (a line is a unit record as

specified by a format statement) as possible. Lines always begin with a new word. If a line terminates in the

middle ofa word, the word is filled out with null characters and the next line begins with the next word. Lines

are not split across blocks. Such a file is created by FORTRAN during output or by PIP with the A switch.

FORTRAN input files must be in this format.

Revision 1 FORTRAN 12-4 October 1970

Table 12-3
Device Table for FORTRAN IV

TITLE DEVTB V.017
SUBTIL 1-APR-69

ENTRY DEVTB., DEVND. ,DEVLS. ,DVTOT.
ENTRY MTABF., MBFBG., TABPT ., TABP1.
ENTRY MTACL. ,DATIB., NEG1.,NEG2. ,NEG3. ,NEG5.
P=17

DEVTB.: EXP DEVND.-. iNO. OF ENTRIES
iLOGICAL# ,/FILENAME/DEVICE

SIX BIT .DSK. i 1 FOROL OAT DISC
CDRPOS: SIX BIT .CDR. i 2 FOR02. OAT CARD READER
LPTPOS: SIX BIT .LPT. i 3 FOR03. DAT LINE PRINTER

SIX BIT .CTY. i 4 FOR04. DAT CONSOLE TELETYPE
TTYPOS: SIX BIT .TTY. i S FOROS. DAT USER TELETYPE

SIX BIT .PTR. i 6 FOR06. DAT PAPER TAPE READER
PTPPOS: SIX BIT .PTP. ; 7 FOR07.DAT PAPER TAPE PUNCH

SIX BIT · DIS. ; 8 FOR08. DAT DISPLAY
SIX BIT · DTAl. ; 9 FOR09. DAT DECTAPE
SIX BIT .DTA2. ; 10 FOR10.DAT
SIX BIT .DTA3. ill FOR11.DAT
SIX BIT .DTA4. ; 12 FOR12.DAT
SIX BIT .DTAS. ; 13 FOR13.DAT
SIX BIT .DTA6. ; 14 FOR14.DAT
SIX BIT .DTA7. i lS FOR1S.DAT
SIX BIT .MTAO. ; 16 FOR16. DAT MAGNETIC TAPE
SIX BIT .MTAl. ; 17 FOR17.DAT
SIX BIT .MTA2. ; 18 FOR18.DAT
SIX BIT .FORTR. ; 19 FORTR. DAT ASSIGNABLE DEVICE, FORTR

SIX BIT .DSKO. ; 20 FOR20.DAT DISK
SIX BIT · DSK l. i 21 FOR21. DAT
SIX BIT .DSK2. ; 22 FOR22.DAT
SIX BIT .DSK3. ; 23 FOR23.DAT
SIX BIT .DSK4. ; 24 FOR24. DAT
SIX BIT · DEVl. ; 2S FOR2S. DAT ASSIGNABLE DEVICES
SIX BIT .DEV2. ; 26 FOR26. DAT
SIX BIT .DEV3. i 27 FOR27. DAT
SIX BIT .DEV4. i 28 FOR28. DAT

DEVLS. : SIX BIT .DEVS. ; 29 FOR29. DAT V.OO6
SIX BIT .REREAD. -6 REREAD
SIX BIT .CDR. -S READ
SIX BIT .TTY. -4 ACCEPT
SIX BIT .lPT. -3 PRINT
SIX BIT · PTP. -2 PUNCH

DEVND.: SIX BIT .TTY. -1 TYPE

12.3.2.3 File Names - File names may be declared for DECtapes or the disk through the use of the library sub­

programs IFIlE and ~ALE. In order to make an entry of the file name FILE1 on unit u, the following statement

could be used:

12-S

I CALL OALE (u,'FILE1')

Similarly, the following statements might be used to open the file, RALPH, for reading:

RALPH=5HRALPH
CALL IFILE(u, RALPH)

After writing a file, the END FILE u statement must be given in order to close the current file and allow for

reading or writing another file or for reading or rewriting the same file. If no call to IFILE or OFILE has been

given before the execution of a READ or WRITE referencing DECtape or the disk the file name FORnn.DAT is

assumed where nn is the FORTRAN logical number used in the I/O statement that references device nn.

The FORTRAN programmer can make logical assignments such that each device has its own unique file as intend­

ed, but each can be on the DSK. In order to use the devices available, the programmer can make assignments

at run time and assign the DSK to those not available.

For example, the FORTRAN logical device numbers, e.g., 1 = DSK, 2 = CDR, 3 = LPT, are used in the file

name. The written file names are FOR01.DAT, FOR02.DAT, etc. The same is true for READ. For example, a

WRITE (3, 1) A, B, C, in the FORTRAN program generates the file name FOR03.DAT on the DSK if the DSK has

been assigned LPT or 3 prior to running the program. (Note: REREAD rereads from the file belonging to the de­

vice last referenced in a READ statement, not FOR-6.DAT, as usual.) The progrommer must, of course, realize

his own mistake in assigning the DSK as the TTY in the case that FORSE tries to type out error messages or

PAUSE messages.

More than one DSK File may be accessed, without making logical assignments at runtime, by using loyical de­

vice numbers 1, and 20 through 24 in the FORTRAN program. Logical device number 19 refers to logical device

FORTR which must be assigned at runtime and accesses file name FORTR. DAT to maintain compatibility with the

past system of default file name FORTR. DAT. In all cases when the operating system fails to find a file specified,

an attempt wi II be made to read from fi Ie FORTR. DAT a~ before.

The magnetic tape operation REWIND is simulated on DECtape or the disk; a REWIND closes the file and clears

the filename. A call to IFILE or OFILE should be made after 0 REWIND to open the file and preserve the file­

name, if desired. A program which uses READ, WRITE, END FILE, and REWIND for magnetic tape need only

have the logical device number changed or assigned to a DECtape or disk at runtime in order to perform the

proper input/output sequences on DECtape or the disk.

12.3.3 Magnetic Tape Usage

Magnetic tape and disk/DECtape I/O are different in the following ways. When a READ is issued, a record is

read in for both magnetic tape and disk. If a WRITE is then issued, the next sequential record is written on

Version 26 FORTRAN
Version 32 LIB40

12-6

magnetic tape but not on disk. When one or more READs have been executed on a disk file and a WRITE is

I issued, the next record is written. Unless records are written past the existing end-of-file, ,that end-of-file is

not changed, i.e., the file is not truncated.

12.3.3.1 Binary Mode - The format of binary data on magnetic tape is similar to that for DECtape except that

the physical record size depends on the magnetic tape buffer size assigned in the Time-Sharing Monitor or by

IBUFF/OBUFF (see Section 8.2.2). Normally, the buffer size is set at either 129 or 257 words so that either

128 or 256 word records are written (containing a control word and 127 or 255 FORTRAN data words).

The first word, control word, of each block in a binary record contains information used by the operating sys­

tem. The left half of the first word contains the word count for that block. The right half of the first word con­

tains a null character except for the last block in a logical record. In this case, the right half of the first word

contains the number of blocks in the logical record.

12.3.3.2 ASCII Mode - The format for ASCII data is the same as that used Qn DECtape.

12.3.3.3 Backspacing and Skipping Records - Both the BACKSPACE u and SKIP RECORD u statements are ex­

ecuted on a logical basis for binary records and on a line basis for ASCII records.

a. Binary Mode - Both BACKSPACE and SKIP RECORD space magnetic tape physically over one (1)
logical record; i.e., the result of one WRITE (u) statement.

b. ASCII Mode - ASCII records are packed, that is WRITE (u, f) statements do not cause physi cal writ­
ing on the tape until the output buffers are full or a BACKSPACE, END FILE, or REWIN D command is
executed by the program. BACKSPACE and SKIP RECORD on ASCII record space over one (1) line.

c" BACKSPACE and SKIP RECORD following WRITE ASCII commands.

(1) BACKSPACE closes the tape, writes 2 EOF's (tapemark) and backspaces over the last line.

(2) SKIP RECORD cannot be used during a WRITE operation. This is an input function only.

12.4 RANDOM ACCESS PROGRAMMING

In random access programming, data is obtained from (or placed into) storage, where the time required for this

access is independent of the location of the data most recently obtained from (or placed into) storage. Random

access programming allows a programmer to access any record within a file with a single READ or WRITE state­

ment independent of the location of the previously accessed record within that file. For example, a program­

mer may read or write only the 10th record in C1 file if he wishes. Random I/O is desirable when only a few

records in a large fi Ie are to be accessed, or when a file is to be read or wirtten in a non-sequential manner, as

in a sort.

Revision 2 FORTRAN 12-7 February 1971

I

I
I

I

I
I

I

Random access applies only to data tiles on lhe disk with tlx€:d-le"9th record sizes. /..:.,ny !;;<f;(l-lcnJili re.:.ord

file (formatted or unformatted) which has been written on the disk with FORTRAN or with PTP using the A switch

may be read or rewritten non-sequentially.

12.4.1 How to Use Random Access

A programmer may directly access fixed-length records in a disk file by defining the structure of the file with a

CALL DEFINE FILE and then specifying the record he wishes to access with a READ or WRITE statement .. The

fil e from which records are to be accessed is defined as follows:

where

CALL DEFINE FILE (U,S,V,F,PJ,PG)

U = the unit number expressed as an integer. The number must refer to the disk. The numbers
from 1 to 10 are available unless a particular installation decides to change this range.

S = the size of the records within the file expressed as an integer. The size is specified by the
number of characters per record for formatted records, and the number of words per record
for unformatted records. The size of the records must be consi'ant within the file and may
be from 1 to 132 characters in formatted r~cords, or one word to any size limited by core in
unformatted records.

V = the associated integer variable. Contains any integer value. The record number which
would be accessed next if I/O were to continue sequentially is returned as an integer in
the associated variable after each random read or write. The associated variable may be
used in the I/o statements as part of the integer expression which defines the record num­
ber.

F = the filename and extension. This may be zero I in which case standard default names are
used.

PJ = the project number in octal of the disk area being accessed.

PG = the programmer number in octal of the disk area being accessed. The project-programmer
numbers may be zero, in which case the user's disk area is accessed. Note that the writ­
ing on another user's disk area is restricted by the monitor.

I/O begins when the random WRITE or READ is specified in the correct format. (See Sections 5.2.6 and 5.2.7.)

12.4.2 Restrictions

A number of restrictions are imposed in random access programming:

a. A logical unit may not be used for sequential and then random I/O in the same program unless an
intervening CALL to RELEASE is issued. For example, if sequential I/o is done to unit 3 then random
I/O to unit 3 is illegal and will fail.

b. If the name of a file to be accessed randomly is specified in a DATA statement or is read in at run­
time, the user must use a full 6-character fi I ename and a 3-character extension.

c. Mixed formatted and unformatted files are not accessible randomly.

d. Before random I/O is performed through a READ or WRITE statement, the file must be properly defined
through a CALL to DEFINE FILE.

e. All FORTRAN data files must be created by FORTRAN or PIP with the A switch.

Revision 2 FORTRAN 12-8 February 1971

I

f. The records within the file must be of a fixed length.

g. Random access is used for disk files only.

h. Access to files is controlled by the file protection scheme in effect at each installation. (Refer to
the TImesharing Monitors Manual for a discussion of file access privileges.)

i. CALLs to IFILE or OFILE open files for sequential I/O. They must not be issued for units to be used
for random I/O. If it is desired to open a file for sequential I/O on a unit that has been used for random
I/O, a CALL to RELEASE must be issued before a CALL to IFILE or OFILE.

12.4.3 Examples

Example 1:

Assume a standard FORTRAN program, the purpose of which is to read the Kth record in a file and ignore

all other records. A section of the program might be as follows:

DO 1 (11 1=1. K
1 III READ <1,1) A.R.C
1 FORMAT (3AS~

If K is a large number, time is wasted in obtaining the Kth record using sequential I/O. Now consider

a program written to perform the same function using random access:

Note that the default filename FOR01.0AT and the user's project-programmer number are used in both

examples.

Example 2:

Consider a program the purpose of which is to change the contents of the Kth record within the file

FOROl • OAT on the user's disk area. Using sequential I/O, the code might be as follows:

DO 10l 1=1. K-l
RFAD Cl,I) A,R.C

IV! ~IRITE (2.1) A.B.C
RFAD (1,1) A,R,C
WRITE (2,1) D,E,F
DO 211l I=K+l.NEND
RFA D (1. 1) A. B , C

?1Il WR I TE (2,1) A. 8, C
1 FORMAT (3AS)

Revision 2 FORTRAN 12-9 i February 1971

There would be two files on the disk, FOROl.DAT and FOR02.DAT, which are identical except for the

Kth record. The code that accomplishes the same result using random access is:

CALL DEFINF FILl' (1,15,N,0,0,0)

\>.'RITE (J#K,I) D,E,F
FORI",AT (3AS)

A new file is not created; the old file remains with the Kth record changed.

Example 3:

The following code creates a new file for random output by first writing K blank records and then up­

dating the file in non-sequential output:

C
c
r

40 SPACES PER RECORD USERS
NEED NO ~ORR~ AROUT CARRIAGE
RETURNS AND LINE FEEDS·

DIMENSION A(B), P(8)
DO IVl I=I,K

I Vl \>.' RITE (I, I) A

CALL DEFINE FILE (?,4Vl,N, 'FOR01 .DAT',0,0)
N=3
DO ?Vl I =: I , S

?Vl WRITF (?#N*B,2) 8
I FORMAT (BAS)
? FORI"AT (415,?AS,FIVl,3)

Example 4:

i

Read a 1000 record file, the records of which are 27 characters long, backwards. The file is named

FOR01.DAT and resides on the user's disk area. The following program creates a disk file and then reads

it backwards. (Note that the same unit number may not be used for both sequential and random I/O in the

: same program):

12-10

Example 5:

[)IMFNSION A(f,)
CALL [)FFINF FILl' (?,?7,NV,'FOR01.DAT',Vl,VI)
DO IV'I 1=1, 1000

I Vl "','R I TF (I, I) I
Rf'1..'INn (I)
FORMAT ('THIS IS R~CORD NUI"JRER', 15)
NV=IV'lVl?
DO 20 1=1,1000

?0 R~AD (2#NV-2,2) A
? FORMAT(5A5,A2)

END

Use random WRITES to change every 7th record, beginning with record 10, in the file named DATA on

the user's disk area. The file contains 100 records, each of which is 35 characters long.

Example 6:

DIMFNSION lIST(7)
CALL DEFINE fllE(5,35,NV, 'DATA',0,0)
DO 10 1=\0,100,7

10 WRITF (5#1,5) lIST
5 fORMAT (2A5,515)

E'ND

Read one-word binary records, starting with record 26 and ending with record 7, from file FOR07.DAT.

The following program creates a 50-record file of the numbers from 1 to SO, reads the file backwards,

and types the contents of the record it read, NP, along with the contents of the associated variable,

NV. Note that FORTRAN binary output creates files with a maximum of one record per disk block •

• TY FliNTST
C FlINARY RANDOM ACCESS TEST
C

DOUFll~ PRECISION I'll
DATA I'll I'FOR07.DAT'1
CALL DEFINE FILE (2,\,NV,FIL,0,0)
DO 7 1=1,50
WRITE(7)!

7 CONTINUE
END 1'1 lE (7)
NV=28
DO 2 I = I ,20
READ(2#NV-2)NP
WRlTE(5,5)NP,NV

2 CONTINUE
5 FORMAT(' NP= ',13,' NV= ',13)

END

12-11

RllN DSK RINTST

NP= ,?f, NV= ?7
NP= '?5 NV= ,?f,

NP= '?L! NV= 25
NP= 23 NV= 2L!
NP= ?? NV= 23
NP= 21 NV= 22
NP= 20 NV= 21
NP= 19 NV= 20
NP= 1 B NV= 1 9
NP= 17 NV= 18
NP= 1 f, NV= I 7
NP= 15 NV= 1 (,
NP= 14 NV= 15
NP= I 3 NV= 14
NP= 12 NV= 1 3
NP= I 1 NV= 12
NP= 10 NV= 11
NP= 9 NV= 10
NP= 8 NV= 9
NP= 7 NV= 8

Revision 2 FORTRAN 12-12 February 1971

I 12.5 PDP-10 INSTRUCTION SET

Movl~Negative l--~
e Magnitude I t
e Swapped f- I:~~diate to AC

Half word {Right l to {Right} I ~n:~fect I ~~ ~~~ory
Left f Left Zeros

Extend sign

BLock Transfer

EXCHange AC and memory

use present pOinter} d I loaD Byte into AC

Increment pointer an \ DePosit Byte in memory

Increment Byte Pointer

PUSH down} { -
POP up and Jump

Zeros
Ones

SET to Ac
Memory
Complement of Ac
Complement of Memory

AC Immediate
to

Memory AND } I :ith Complement of Ac I
inclusive OR with Complement of Memory ,-

lAC

Both
Complements of Both

eXclusive OR -------------
Inclusive OR I
EQuiValence

SKIP if memory}
JUMP if AC -----------.

never
Less
Equal

Add One to \ r memory and SkiP} 'f
Subtract One from I \ AC and Jump II-I-.

Less or Equal
Always
Greater

\
Immediate } "

Compare Ac , h M and skip If AC-
Wit emory Greater or Equal

Not equal

, {POSitive Add One to Both halves of AC and Jump If N '
egatlve

ADD
SUBtract
MULtiply

Integer MULtiply -=.JI-
DIVide Immediate
Integer DIVide to Memory

F10atmg AdD I rand Round I: Both

Floating SuBtract Long
Floating MultiPly to Memory
F10atmg DiVide to Both

Floating SCale

Double Floating Negate

Unnormalized Floating Add

Arithmetic SHift I {
Logical SHift C- b' d
ROTate om me

Jump

to SubRoutine
and Save Pc
and Save Ac
and Restore Ac
if Find First One
on Flag and Clear it
on OVerflow (JFCL 10,)
on CaRrY 0 (JFCL 4,)
on CaRrY 1 (JFCL 2,)
on CaRrY (JFCL 6,)
on Floating OVerflow (JFCL I,)
and ReSTore
and ReSTore Flags (JRST 2,)
and ENable PI channel (JRST 12,)

HALT (JRST 4,)

eXeCuTe

DATA}

BlocK :{{In Out
CONditions ,

, d Sk' 'f I all masked bits Zero
m an Ip I \ some masked bit One

I with Direct mask II No modification I I never
T with Swapped mask set masked bits to Zeros d k' if all masked bits Equal 0

est AC Right with E set masked bits to Ones an s Ip if Not all masked bits equal 0
Left with E Complement masked bits Always

Revision 1 FORTRAN 12-13 October 1970

APPENDIX A

THE SMALL FORTRAN IV COMPILER

This compiler runs in 5.5K of core, and to the user, is identical to the large compiler, with the exception of the

following language differences. Operating procedures are given in the Systems User's Guide (DEC-10-NGCC-D).

Language Differences

The IMPLICIT, DATA, and NAMELIST statements are not recognized; constant strings are not collapsed (for ex­

ample, A=5*3 will not be treated as A=15).

A-l

ACCEPT Statement, 5-1, 5-20, 7-7

Accumulator, 10-1

Accumulator conventions, 10-1

Adjustable dimensions, 6-3

A format, 5-6

Alphanumeric fields, 5-6

ALPHI., 8-2

ALPHO., 8-2

Argument, def., 2-6

Arithmetic error conditions, 11-10

Arithmetic function definition statement, 7-1, 7-9

Arithmetic operations on complex numbers, 2-3

Arithmetic statement, 3-1

Array dimensioning, 2-4, 6-2

Array variables, 2-4

ASCII character set, 12-1

ASCII mode

DECtape, 12-4
disk, 12-4
magnetic tape, 12-7

Assigned GO TO statement, 4-2, 7-7

ASSIGN Statement, 4-2, 7-7

BACKSPACE statement, 5-1, 5-20, 7-7

Binary mode

DECtape, 12-4
disk, 12-4
magnetic tape, 12-7

BINWR., 8-3

Blank common, 6-4

Blank fields, 5-11

Blank records, 5-9

BLOCK DATA statement, 6-8, 7-6, 7-8

BLOCK DATA subprogram, 7-6

Block identifier, 6-4

Block name, 6-4

INDEX

Buffer, 12-3

sizes, 12-3

BUFFER subroutine, 8-8

CALL statement, 7-5, 7-7

Carriage control, 5-7, 5-10

Chain files, 8-8

CHAIN subroutine, 8-8

Character set, 1-3, 12-1

Closed subroutines, 7-1

Coding form, 1-2

Comment line, 1-3

Common block, 6-4

COMMON statement, 6-4, 6-6, 7-8

Common storage, 6-4

Compiler diagnostics

command errors, 11-2
compilation errors, 11-3

Compiler switches, 11-1

COMPLEX (type declaration statement), 6-8, 7-8

Complex constants, 2-2

Complex fields, 5-8

Complex subexpression, 2-7

Compound expressions

logical, 2-10
numeric, 2-7

Computed GO TO statement, 4-1, 7-7

Constants

integer, 2-1
real, 2-1
double precision, 2-2
octal, 2-2
complex, 2-2
logical, 2..,3
literal, 2-3

CONTINUE statement, 4-6, 7-7

1-1

Control statements, 4-1, 7-7

CALL, 7-5
GO TO, 4-1
IF, 4-2
DO, 4-4
RETURN, 7-5
CONTINUE, 4-6
PAUSE, 4-6
STOP, 4-7
END, 4-7

Data record, 5-15

DAT A statement, 6-6, 7-8

Data specification statements, 6-1

DATA, 6-6, 7-8
BLOCK DATA, 6-8, 7-6, 7-8

Data specification subprogram, 6-8

Data transmission statements, 5-1, 7-7

ACCEPT, 5-20
DECODE, 5-21
ENCODE, 5-21
PRINT, 5-15
PUNCH, 5-16
READ, 5-18
REREAD, 5-19
TYPE, 5-16
WRITE, 5-16

DATA. UUO, 8-3

DATE subroutine, 8-8

DECODE statement, 5-21, 7-7

DECtape us~ge, 12-4

DEC. UUO, 8-4

Defined locations, 10-1

DEFINE FILE, 5-17, 12-8

Device assignments, 12-4

Device control statements, 5-20, 7-7, 7-8

BACKSPACE, 5-20
END FILE, 5-20
REWIND, 5-20
SKIP RECORD, 5-20
UNLOAD, 5-20

Device table, 12-5

INDEX (Cont)

DEVTB., 12-4

D format, 5-2 - 5-6

Diagnostic messages

command, 11-2
compilation, 11-3
execution, 11-8

DIMENSION statement, 6-2, 7-8

adjustable dimension, 6-3

DIRT., 8-2

Disk usage, 12-4

DO loops, 4-4

DO statement, 4-4, 7-7

DOUBLE PRECISION (type declaration
statement), 6-8, 7-9

Double precision constants, 2-2

Double word, 2-7, 2-9

DOUBT., 8-2

Dummy arguments, 7-2, 7-3

Dummy identifiers, 7-1, 7-2

DUMP, 8-9

E format, 5-2 - 5-6

ENCODE statement, 5-21, 7-8

ENC. UUO, 8-4

END FILE statement, 5-20

END statement, 4-7

EOF1 subroutine, 8-9

EOFC subroutine, 8-9

EQUIVALENCE statement, 6-5

ERRSET subroutine, 8-9

EXIT subroutine, 8-9

Expressions, 2-6

numeric, 2-6
logical, 2-8

EXTERNAL statement, 7-6,7-9

Externa I subprograms, 7-1

1-2

F format, 5-2 - 5-6

Field delimiters, 5-6

Field specifications, 5-2

Field width, 5-2 - 5-6

FIN. UUO, 8-3

FLIRT., 8-2

FLOUT., 8-2

Formats stored as data ,5-9

FORMAT statement, 5-1

numeric fields, 5-2
logical fields, 5-5
variable field width, 5-5
alphanumeric fields, 5-6
mixed fields, 5-7
complex fields, 5-8
multiple records, 5-8
blank fields, 5-11

FORSE., 8-1

format processi ng, 8-1
I/o device control, 8-2
UUO dispatching, 8-2

FORTRAN operating system, 8-1

FORSE., 8-1
I/O conversion routines, 8-2
FORTRAN UUO's, 8-3

FORTRAN program and MACRO subprogram
linkage, example of, 9-3

FORTRAN UUOs, 8-3

Function, def., 2-6

Function identifier, 2-6, 7-2

FUNCTION statement, 7-2

FUNCTION subprograms, 7-2

FUNCTION statement, 7-2

Function subprogram linkage, example of, 9-3

Function type, 2-6, 7-3

Function value, 2-6

G Format, 5-2 - 5-6

INDEX (Cont)

GO TO statement

assigned, 4-2, 7-7
computed, 4-1, 7-7
unconditional, 4-1, 7-7

H-conversion, 5-6, 5-7

Hierarchy

of numeric operators, 2-8, 2-10
of logical operators, 2-9
of relational operators, 2-9

IBUFF, 8-8

IFILE subrouti ne, 8-9

I format, 5-2 - 5-6

IF statement

logical, 4-3, 7-7
numerical, 4-3, 7-7

ILL subroutine, 8-10

IMPLICIT statement, 6-9, 7-9

INF. UUO, 8-3

Instruction set, 12-13

INTEGER (type declaration statement), 6-8, 7-9

Integer constants, 2-1, 6-6

Internal subprograms, 7-1

INTI., 8-2

INTO., 8-2

IN. UUO, 8-3

I/o conversion routines, 8-2

I/o list, 5-14

I/O records, 5-15

LEGAL subroutine, 8-10

L format, 5-5

LIMO, 8-1

Library functions, 8-4

Library subprograms, 7-1, 8-4

Library subroutines, 8-8

Line continuation field, 1-1

1-3

INDEX (Gmt)

Line format, 1-1

Line spacing, 5-10

LINT., 8-2

Literal constants, 2-3

Locations

defined, 10-1
required, 10-1

LOGICAL (type declaration statement), 6-8, 7-9

Logical constants, 2-3

Logical expressions, 2-8

Logical fields, 5-5

Logical IF statement, 4-3, 7-7

Log i ca I operators, 2 -9, 2-1 0

LOOPS, DO, 4-4

LOUT., 8-2

MACRO main programs, 9-10

MACRO subprograms, 9-1

MAGDEN subroutine, 8-10

Magneti c tape usage, 12-6

Magnitude

of integer constants, 2-1
of real constants, 2-1
of double-precision constants, 2-2

Mixed Fields, 5-7

MTOP 0 UUO, 8-3

Multiple record formats, 5-8

termination of, 5-9

NAMELIST statement, 5-1 , 5-11 7-9
. '
input data, 5-12
output data, 5-13

Nested DO Loops, 4-4, 4-5

NLI. UUO, 8-3

NLO. UUO, 8-4

NMLST.,8-3

Non-executable statements

FORMAT statement, 5-1
NAME LIST statement, 5-11

Normal exit of a DO statement, 4-4

Numeric expressions, 2-6

Numeric fields, 5-2

repetition of, 5-8
repetition of groups, 5-8

Numeric IF statement, 4-3, 7-7

Numeric operations, 2-8

Numeri c operators, 2-6

OBUFF, 8-8

Octal constants, 2-2

OCTI., 8-3

OCT 0, 8-3

OFILE subroutine, 8-10

o format, 5-2 - 5-6

Open subroutines, 7-1

Operating system diagnostics, 11-8

Operators

logical, 2-9
numeric, 2-6
relational, 2-9
priorities of, 2-10

OUT 0 UUO, 8-3

OUTF 0 UUO, 8-3

PAUSE statement, 4-6, 7-7

PDUMP subroutine, 8-10

Precision

of double-precision constants, 2-2
of real constants, 2-1

PRI NT statement, 5-15, 7-8

Priorities of operators, 2-8, 2-10

PU NC H statement, 5-16, 7-8

1-4

Range of a DO statement, 4-5

Random access of records, 12-7

WRITE, 5-17, 7-8
READ, 5-18, 7-8

READ statement, 5-17, 7-8

REAL (type declaration statement), 6-8, 7-9

Rea I constants, 2-1

Relational operators, 2-9

RELEAS subroutine, 8-10

Repetition

of field specifications, 5-8
of groups, 5-8

Replacement operator, 3-1

Required locations, 10-1

REREAD statement, 5-19, 7-8

RERED. UUO, 8-3

RESET. UUO, 8-3

RETURN statement, 7-5, 7-7

REWIND statement, 5-20,7-8

RTB. UUO, 8-3

SAVRAN subroutine, 8-10

Scalar variables, 2-4

Scale factor, 2-1, 2-2, 5-4

SETRAN subroutine, 8-10

SKIP RECORD statement, 5-20, 7-8

SLIST. UUO, 8-3

SLITE subrouti ne, 8-11

SLITET subroutine, 8-11

Spacing, 5-10a

Specification statements, 6-1, 7-8

data specification, 6-6
storage specification, 6-2
type declaration, 6-8

SSWTCH subroutine, 8-11

Statement number field, 1-1

Statement numbers, 1-1

INDEX (Cont)

Statement field, 1-2

STOP statement, 4-7, 7-7

Storage specification statements, 6-2

COMMON,6-4
DIMENSION, 6-2
EQUIVALENCE, 6-5

Stored formats, 5-9

SUBSCRIPT INTEGER (type declaration
statement), 6-8, 7-9

Subprogram calling sequences, 9-1

Subprogram linkage, example of, 9-2

Subroutine linkage, example of, 9-2

SUBROUTINE statement, 7-4

Subroutine subprograms, 7-4

SUBROUTINE statement, 7-4
CALL statement, 7-5
RETURN statement, 7-5

Symbolic logic, 2-8

Tab, horizontal, 1-1

Termination of a program, 4-7

T format, 5-10a

TIME subroutine, 8-11

Type declaration statements, 6-8, 7-8

TYPE statement, 5-16, 7-8

Unconditional GO TO statement, 4-1, 7-7

Unit records, 5-2

UNLOAD statement, 5-20, 7-8

Variable field width, 5-5

Variables

Scalar, 2-4
Array, 2-4

Word format, 12-2

WRITE statement, 5-16, 7-8

WTB. UUO, 8-3

X format, 5-11

1-5

	A001.tif
	A002.tif
	A003.tif
	A004.tif
	A005.tif
	A006.tif
	A007.tif
	A008.tif
	A009.tif
	A010.tif
	A011.tif
	A012.tif
	A013.tif
	A014.tif
	A015.tif
	A016.tif
	A017.tif
	A018.tif
	A019.tif
	A020.tif
	A021.tif
	A022.tif
	A023.tif
	A024.tif
	A025.tif
	A026.tif
	A027.tif
	A028.tif
	A029.tif
	A030.tif
	A031.tif
	A032.tif
	A033.tif
	A034.tif
	A035.tif
	A036.tif
	A037.tif
	A038.tif
	A039.tif
	A040.tif
	A041.tif
	A042.tif
	A043.tif
	A044.tif
	A045.tif
	A046.tif
	A047.tif
	A048.tif
	A049.tif
	A050.tif
	A051.tif
	A052.tif
	A053.tif
	A054.tif
	A055.tif
	A056.tif
	A057.tif
	A058.tif
	A059.tif
	A060.tif
	A061.tif
	A062.tif
	A063.tif
	A064.tif
	A065.tif
	A066.tif
	A067.tif
	A068.tif
	A069.tif
	A070.tif
	A071.tif
	A072.tif
	A073.tif
	A074.tif
	A075.tif
	A076.tif
	A077.tif
	A078.tif
	A079.tif
	A080.tif
	A081.tif
	A082.tif
	A083.tif
	A084.tif
	A085.tif
	A086.tif
	A087.tif
	A088.tif
	A089.tif
	A090.tif
	A091.tif
	A092.tif
	A093.tif
	A094.tif
	A095.tif
	A096.tif
	A097.tif
	A098.tif
	A099.tif
	A100.tif
	A101.tif
	A102.tif
	A103.tif
	A104.tif
	A105.tif
	A106.tif
	A107.tif
	A108.tif
	A109.tif
	A110.tif
	A111.tif
	A112.tif
	A113.tif
	A114.tif
	A115.tif
	A116.tif
	A117.tif
	A118.tif
	A119.tif
	A120.tif
	A121.tif
	A122.tif
	A123.tif
	A124.tif
	A125.tif
	A126.tif
	A127.tif
	A128.tif
	A129.tif
	A130.tif
	A131.tif
	A132.tif
	A133.tif
	A134.tif
	A135.tif
	A136.tif
	A137.tif
	A138.tif
	A139.tif
	A140.tif
	A141.tif
	A142.tif
	A143.tif
	A144.tif
	A145.tif
	A146.tif
	A147.tif
	A148.tif
	A149.tif
	A150.tif
	A151.tif
	A152.tif
	A153.tif
	A154.tif

