
Digital Equipment Corporation
Maynard, Massachusetts

PDP-10
KA 10 Central Processor
Maintenance Manual
Volume I

PDP-10
KA 10 Central Processor
Maintenance Manual
Volume I

DEC-l0-HMAA-D

DIGITAL EQUIPMENT CORPORATION 0 MAYNARD. MASSACHUSETTS

Printed in U.S.A.

1 st Printing December 1968

Copyright © 1968 by Digital Equipment Corporation

Specifications contained in this manual are for general information only. Actual
specifications are subject to change without notice. The drawings, specifications,
and descriptions herein are the property of Digital Equipment Corporation and shall
not be reproduced or copied or used in whole or in part as the basis for the manu­
facture or sale of items without written permission.

The following are registered trademarks of Digital
Equipment Corporation, Maynard, Massachusetts

DEC
FLIP CHIP
DIGITAL

PDP
FOCAL
COMPUTER LAB

The equipment described herein is covered by patents
and patents pendi n9 .

ii

CONTENTS

Page

CHAPTER 1
GENERAL INFORMATION

1.1 Description 1-1

1.1. 1 Physical Description 1-1

1.1.2 System Configurations 1-1

1.2 Characteri sti cs 1-1

1.3 Installation 1-2

1.4 Related Documents 1-2

CHAPTER 2
SYSTEM DESCRIPTION

2.1 Arithmetic Processor 2-2

2.2 Memory 2-2

2.2.1 Memory Bus 2-3

2.2.2 Memory Priority 2-3

2.2.3 Memory Cycles 2-3

2.2.4 Parity 2-4

2.2.5 Multiplexor 2-4

2.3 Input/Output 2-5

2.3.1 I/O Bus and Control Devices 2-5

2.3.2 I/o Transfers 2-5

2.3.3 Basic Input Transfers 2-6

2.3.4 Basic Output Transfers 2-6

2.3.5 Priority Interrupt in a Time-Shared System 2-6

2.3.6 Hardware Read-In 2-6

2.3.7 Drum Split Signal 2-7

2.4 Priority Interrupt System 2-7

2.5 Programmi ng 2-8

2.5.1 Time Allotment (Simplified Description) 2-8

2.5.2 Memory Protection and Relocation 2-8

2.5.3 Input/Output 2-9

2.5.4 Conditions Storage 2-9

2.6 Instructions 2-9

2.6.1 Instruction Word Formats 2-9

2.6.2 Unimplemented User Operations - UUOs 2-10

2.6.3 Effective Address Calculation 2-10

iii

CONTENTS (Cont)
Page

2.6.4 Instruction Classes 2-11

2.6.5 Instruction Execution 2-12

CHAPTER 3
OPERA TING PROCEDURES

3.1 Operator's Console 3-1

3.2 Margin Check and Maintenance Panel 3-5

3.3 Bay 1 and 2 Indicators 3-6

3.4 Paper Tape Reader/punch and DECtape 3-6

3.5 Teleprinter 3-6

3.6 Readin 3-10

CHAPTER 4
CENTRAL PROCESSOR ORGANIZATION

4.1 KA10 Registers and Adders 4-1

4.1.1 AR (Arithmetic Register, 36 bits) 4-1

4.1.2 BR (Buffer Register, 36 bits) 4-1

4.1.3 MQ (Multiplier Quotient, 36 bits) 4-1

4.1.4 AD, ADR (Adder, 36 bits) 4-1

4.1.5 MI (Memory Indicator, 36 bits) 4-1

4.1.6 PB (Parity Buffer, 37 bits) 4-1

4.1.7 MA (Memory Address, 18 bits) 4-1

4.1.8 PC (Program Counter, 18 bits) 4-1

4.1.9 IR (Instruction Register, 18 bits) 4-1

4.1.10 SC (Shift Counter, 9 bits) 4-2

4.1. 11 SCAD (Shift Counter Adder, 9 bits) 4-2

4.1.12 FE (Floating Exponent, 9 bits) 4-2

4.1.13 PR, PR2 (Protection Registers, 8 bits each) 4-2

4.1.14 RL, RL2 (Relocation Registers, 8 bits each) 4-2

4.1.15 PIH, PIR, PIO (Priority Interrupt Hold, Request, 4-2
and On, 7 bits each)

4.2 KA10 Basic Cycles 4-2

4.2.1 Instruction Cycle (See Dwg. KA 1 O-o-IAC) 4-2

4.2.2 Address Cycle (See Dwg. KA 10-o-IAC) 4-3

4.2.3 Fetch Cycle (See Dwg. KA 1 O-O-FC) 4-3

iv

CONTENTS (Cont)
Page

4.2.4 Execute Cycle (See Dwg. KA10-0-ESC) 4-4

4.2.5 Store Cycle (See Dwg. KA10-0-ESC) 4-4

4.3 KA10 Basic Instructions 4-5

4.3.1 Boolean 4-5

4.3.2 Add, Sub 4-5

4.3.3 Full Word Transfer (FWn 4-5

4.3.4 Half-Word Transfer (HWn 4-5

4.3.5 Exchange (EXCH) 4-6

4.3.6 Unimplemented User Operation (UUO) 4-6

4.3.7 Jump 4-6

4.3.8 Test 4-7

4.3.9 Add One to Both and Jump (AOBJ) 4-7

4.3.10 Skips 4-7

4.3.11 Jumps 4-8

4.3.12 Compare 4-8

4.3.13 PUSH 4-8

4.3.14 Push and Jump 4-8

4.3.15 POP 4-8

4.3.16 POPJ 4-8

4.3.17 Execute (XCT) 4-9

4.4 KA10 Additional Instructions 4-9

4.4.1 Extended Instructi ons 4-9

4.4.2 Block Transfer 4-11

4.4.3 Byte Manipulation 4-12

4.4.4 Floating Point 4-13

4.5 KA10 Console Key Logic 4-19

4.5.1 STOP Key 4-19

4.5.2 RESET Key 4-19

4.5.3 REPEAT Key 4-19

4.5.4 START Key 4-19

4.5.5 CONTINUE Key 4-19

4.5.6 EXAMINE, DEPOSIT, and EXECUTE Keys 4-20

4.5.7 READIN Key 4-20

4.6 KA10 Memory Control 4-20

4.6.1 Memory Subroutine 4-20

v

CONTENTS (Cont)
Page

4.6.2 Read Cycles 4-21

4.6.3 Write Cycles 4-22

4.6.4 Read/Write Cyc les 4-22

4.6.5 Memory Indicator Register 4-23

4.6.6 Address Stop or Break 4-23

4.6.7 Input/Output System 4-23

4.6.8 I/O Instructi ons 4-23

4.7 KA10 Priority Interrupt System 4-24

4.7.1 User Mode Logic 4-25

CHAPTER 5
BASIC I/o DEVICES

5.1 Paper Tape Reader 5-1

5.2 Paper Tape Punch 5-1

5.3 Teleprinter Control 5-2

CHAPTER 6
KA10 TROUBLESHOOTING

AND MAINTENANCE

6. J Troubleshooting 6-1

6.2 Test Equipment 6-1

6.3 Processor Test Programs 6-1

6.3.1 Description 6-1

6.3.2 Recognizing an Error 6-3

6.3.3 Typical Diagnostic Check 6-4

6.3.4 Troubleshooting with Test Programs A through C 6-4

6.3.5 Troubleshooting with Diagnostic D 6-6

6.3.6 Troubleshooting with Test Programs E through M and P 6-6

6.3.7 Troubleshooting with Test Program N 6-7

6.4 Margin Check System 6-8

6.4.1 Considerations for Running Margins 6-8

6.4.2 Using the Margin Switches 6-8

6.4.3 Altered Programs 6-10

6.5 Troubleshooting Readin (RDI) 6-12

6.5.1 No Data Read In 6-12

6.5.2 Wrong Data Readin 6-13

vi

1-1

2-1

2-2

2-3

2-4

2-5

2-6

2-7

2-8

2-9

3-1

3-2

3-3

3-4

3-5

3-6

3-7

3-8

6-1

6-2

6-3

A-1

A-2

A-3

A-4

CONTENTS (Cont)

APPENDIX A
FLOW DIAGRAM AND

SCHEMATIC INTERPRETATION

APPENDIX B
INSTRUCTION CODES

APPENDIX C
INSTRUCTION WORD FORMATS

APPENDIX 0
DEVICE MNEMONICS

ILLUSTRATIONS

PDP-10 General Purpose Computer

PDP-10 System Diagram

Memory System

Memory and Multiplexor Bus

Multiplexor Bus

Input/Output Bus

Priority Interrupt System, Functional Diagram

Basic Instruction Word

I/O Instruction Word

Effective Address Calculation

KA 10 Operator's Conso I e

Margin Check and Maintenance Panel

Indicator Panels, Bay 1 and 2

Paper Tape Reader/Punch

DECtape

Teletype Model 35 KSR

Teleprinter Model 37 KSR

READIN DEVICE Switches

Diagnostic A, Typical Page of Program Listing

Test Program N, Error Printout

Margin Check System, Simplified Diagram

Tabular Format

Inverter

Flip-Flop

NAND and NOR Gates

vii

1-2

2-1

2-4

2-4

2-5

2-5

2-7

2-10

2-11

2-11

3-1

3-5

3-7

3-7

3-8

3-8

3-9

3-10

6-5

6-9

6-10

A-3

A-4

A-4

A-5

CONTENTS (Cont)

Page

ILLUSTRATIONS

A-5 Pulse Amplifier A-5

A-6 Delay Line and Delay Line Output A-5

TABLES

1-1 Central Processor Options 1-1

1-2 Peripherals Furnished with Central Processor 1-1

2-1 Reserved Memory Locations 2-9

3-1 Function of Console Switches 3-1

3-2 Function of Console Indicators 3-4

3-3 Function of Margin Check and Maintenance 3-5
Panel Controls

6-1 List of Maintenance Supplies 6-1

6-2 Processor Diagnostic Programs 6-2

6-3 CP Flags Versus Output Word Bits 6-7

6-4 Marginal Check Specifications (For All Tests) 6-11

viii

INTRODUCTION

This publication is one of a series covering the opera­
tion, theory, and mai ntenance of the Programmed Data
Processor PDP-lO manufactured by Digital Equipment
Corporation, Maynard, Massachusetts.

Since the PDP-lO System may take various forms de­
pending upon the options chosen, there is no single
maintenance manual for the entire system.

This manual covers the KAlO Central Processor of the
PDP-lO System. References to other manuals in the
series are made when necessary, and duplication of
content is avoided when possible.

ix

Volume I of this manual contains the operating instruc­
tions, principles of operation, and maintenance instruc­
tions for the KAlO Central Processor. Volume II con­
tains a set of engineering drawings, flow diagrams,
and logic diagrams along with other reference material
supplementing the text of this volume.

This manual assumes that the reader is familiar with
the PDP-lO System as described in the PDP-lO System
Reference Manual (DEC-lO-HGAA-D) and therefore,
will not cover the fundamentals of data processing
systems or what system instructions are, but rather,
how they are implemented by the system hardware.

CHAPTER 1
GENERAL INFORMATION

The PDP-I0 (Figure 1-1) is a general purpose computer
which consists, typically, of a central processor, a
memory, and peripheral equipment such as: a paper­
tape reader and punch, teletype card reader, line
printer, DECtape, disk file, and display. The KAI0
Central Processor is the primary control unit for the
PDP-I0 System. The processor handles 36-bit words
which are stored in a memory with a maximum capac­
ity of 262,144 words.

1.1 DESCRIPTION

1.1.1 Physical Description

The central processor occupies three 31-in. DEC cab­
inets. Bay 3 (on the right) includes the paper-tape
reader and punch and the operator1s console. Two
TU55 DECtape units may also be located in Bay 3. At
the left of the reader/punch is the margin check and
maintenance panel which serves as the master control
for system margin checks and as the control panel
for performing maintenance checks on the central
processor.

logic wiring is accessible behind the hinged front
doors of the cabinets. As many as 16 module panels,
designated A through T (G, I, 0, Q omitted), from
top to bottom, can be mounted. Panels in the 31-in.
cabinets hold 44 DEC FLIP CHIP plug-in modules
(numbered from left to right, front view), whi Ie those
in the 19-in. cabinets hold a maximum of 32. local
margin check switches are located beside each module
panel. Power supplies are bolted to a hinged frame
on the inside of the rear door. Fans or blowers within
the cabinets provide the necessary heat removal.

1.1.2 System Configurations

The PDP-I0 has an extensive variety of available pe­
ripherals. Standard peripherals, the paper tape
reader/punch and console teleprinter, are provided
with every system; all other options are provided upon
request of the user. Table 1-1 lists the hardware op­
tions packaged in the central processor. Table 1-2
lists the standard peripherals furnished with the cen­
tra I processor.

1-1

Although there are five basic PDP-I0 systems
(PDP-l 0/1 0 through PDP-I0/50) , the flexibi lity
afforded by hardware/software interaction and the
variety of optional devices precludes identifying
equipment configurations are standard.

Table 1-1
Central Processor Options

Designation Option

KEI0 Extended Order Code

KTlO Memory Protection and Relocation
or

KTlOA Double Memory Protection and Re-
location

KMI0 Fast Reg i sters

Table 1-2
Peripherals Furnished with Central Processor

Model Name

KSR35 (l T35A) Teleprinter

or
(10 characters/second)

KSR37 (lT37A) Teleprinter
(15 characters/second)

f Paper Tape Reader
DEC Type PC09 (300 character/second)
(Modified) (L Pape, Tape Punch

(50 characters/second)

1.2 CHARACTERISTICS

The operating characteristics of the PDP-I0 are as
follows:

Word length:

Core Memory Capac i ty:

Accumulators:

36 bits

Expandable to 262,144
words

16

Index Registers:

I/o Capacity:

1.3 INSTALLATION

15

7 Priority interrupt
channels; 128 I/o
device assignments.

The PDP-I0 system incorporating the KA 10 Central
Processor will be installed by DEC Field Service per­
sonnel; therefore, installation procedures will not be
covered in this manual. The PDP-I0 Installation
Manual can be used for planning the layout and in­
stallation of the various PDP-I0 system options.

1.4 RELATED DOCUMENTS

The following documents either supplement the infor­
mation containel in this manual, or are prerequisite
to understanding the material presented.

Document Title

DEC-I0-HGAA-D PO P-l 0 System Reference
Manual

DEC-I0-HIFB-D PDP-I0 Interface Manual

DEC-I0-BIBA-D MBI0 Magnetic Core Memory
System, Instruction Manual

Document

DEC-OO-H ZT A-D

o EC-08-12BA-D

Royal McBee Corp

Bulletin 281B
(Teletype Corp)

Bulletin 333
(Teletype Corp)

Bulletin
(Teletype Corp)

Bulletin
(Teletype Corp)

Bulletin 273B
(Teletype Corp)

Bulletin 1184B
(Teletype Corp)

Figure 1-1 PDP-10 General Purpose Computer

1-2

Title

TU55 DECtape 55, Instruction
Manual

PC02 Paper-Tape Reader,
Instruction Manual

Paper Tape Punch, Model 500,
Maintenance Manual

KSR35 Teletype, Technical
Manual

KSR35 Teletype, Parts

KSR37 Teletype, Technical
Manual

KSR37 Teletype, Parts

KSR33 Teletype Technical
Manual (Volume I and II)

KSR33 Teletype, Parts

CHAPTER 2
SYSTEM DESCRIPTION

This manual is primarily concerned with the KA10
Central Processor, however a description of basic
system operation is provided so that the reader can
more clearly see how the KA 10 operation relates to
the system.

The major components of any PDP-l0 system are the
arithmetic processor, core memory, and input/output
(I/O) subsystems. A functional configuration of
system elements, representing a typical basic instal­
lation, is presented in Figure 2-1.

As the name implies, the arithmetic processor per­
forms system arithmetic and logical data manipula­
tions. It connects to the memory and I/O subsystems
through buses. Standard I/o devices furnished with

MEMORY BUS

[UP TO]
262,144
WORDS

TELEPRINTER

PAPER TAPE PUNCH

PAPER TAPE READER

KAIO
CENTRAL

PROCESSOR

MEMORY PROTECTION
AND

RELOCATION

EXTENDED ORDER
CODE

FAST MEMORY

the processor are the paper tape reader/punch and
the console teleprinter. Optional processor hardware
comprises the memory protection and relocation, ex­
tended order code, and fast memory options.

The core memory is the basic memory element. It is
accessed directly by the processor, and can be ac­
cessed via a data channel by high-speed devices such
as disk files. It is made up of separate modules, but
appears to the processor as one homogeneous unit.
Memory functions include recognizing addresses,
reading and writing data, and putting appropriate
control information and data on the bus for the pro­
cessor. Once a memory module has received its com­
mands, it performs these functions independent of the

INPUT IOUTPUT BUS

UP TO
4

UP TO UP TO
8 8

UP TO
64

DEVICES

10-0014

TO
PDP-8
OR
PDP-9

Figure 2-1 PDP-l0 System Diagram

2-1

processor and of other modules. There are a number
of different types of core memories available for the
PDP-10 system, and the details of operation, main­
tenance and theory of each will be found in the
appropriate manual.

2.1 ARITHMETIC PROCESSOR

The arithmetic processor performs all arithmetic and
logical operations, controls all transfer of data to
and from the input/output devices, and makes service
requests to memory. It operates asynchronously using
hardware subroutines, whereby the start of each oper­
ation is triggered by the completion of the previous
operation rather than by a trigger from a synchronous
timing chain.

Registers in the arithmetic processor differ consider­
ably in size. Generally, data registers contain 36
bits; address registers, 1a bits; floating-point expo­
nent registers, 9 bits; memory protection and reloca­
tion registers, a bits; and registers of the priority
interrupt system, 7 bits.

The processor has 16 general-purpose registers that
are implemented as the first 16 core memory locations
or high-speed integrated circuit registers (fast memory
option). In either configuration, the general-purpose
registers may be used as accumulators, index registers,
and/or normal memory locations. This functional
interchangeabil ity affords a number of advantages.
For example, the contents of one register can be
transferred to another with a single instruction by ad­
dressing one register as a memory location and the
other as an accumulator.

When the general-purpose registers are to function as
memory locations, the address is carried in the stan­
dard memory address field (bits 1a through 35) of the
instruction word. When used as accumulators, they
are addressed in the accumulator portion (bits 9
through 12) of the instruction word. When several
operations are required in a computation, a number of
consecutive operations can be performed and their re­
sults stored in the different accumulators. The con­
tents of the accumulators, each representing a partial
result, can then be combined quickly for the final
answer to the computation.

When used as index registers, the general-purpose
registers are addressed by the index field (bits 14-17)
of the instruction word. The contents of the addressed
register are added to the memory address portion of
the instruction word before the operation specified in
the instruction word is carried out. Only 15 of the

16 general-purpose registers (addresses 1a through 17a)
can be used for indexing purposes. When a 0 appears
in the index field, no indexing occurs.

In systems employing the fast memory option, 16 high­
speed integrated circuit registers replace the first 16
core memory locations and are so addressed. When
the option is included, the replaced core locations
are not program accessible. Instruction operating
times can be reduced by executing iterative program
loops from consecutive fast memory locations.

Time sharing systems employ optional memory protec­
tion and relocation hardware which includes four
a-bit registers. Basically, this equipment stores con­
stants used by the processor to prevent one program
from infringing upon areas of memory assigned to
another. The relocation hardware automatically re~
assigns user programs to available memory locations,
rather than allowing them to be stored in the loca­
tions for which they are written. (Essentially all user
programs are written to run from memory address
00000.) Consequently, a program written for loca­
tions 0 through 3777a, for example, may be relocated
to run from locations 12000a through 15777a, or any
other block of 4000a contiguous locations starting at an
integral multiple of 2000a. The protection hardware
inhibits a user program from calling a memory loca­
tion that exceeds the total number of assigned loca­
tions. These concepts, protection and relocation,
are discussed further in Section 2.4 Programming.

The standard processor contains 366 wired instructions
which include the optional extended-order code
hardware for implementing byte and floating-point
instructions. The optional hardware provides 35
floating-point and 5 byte instructions. Floating­
point logic contains complete arithmetic capability,
including two instructions for double precision calcu­
lations (calculations involving numbers larger than
36 bits), and two for simplifying the conversion from
fixed to floating point. Byte instructions operate on
bytes of any size. Systems without the extended­
order code option use programmed simulators of the
byte and floating-point instructions to exactly simu­
late the unimplemented instructions.

2-2

2.2 MEMORY

Standard PDP-10 memory systems (Figure 2-2) are
fabricated from aK (a, 192 words) or 16K (16,384
words) memory modules. The modules of a memory
system connect to the associated central processor
(or other high-speed device) through a common mem-

ory bus. As many as sixteen 16K modu I es (262, 144
memory locations) can be grouped into a single mem­
ory system.

Access to all storage locations in a module is avail­
able through each of four ports. A module can
connect to, and constitute a part of, as many as four
separate memory systems through these ports. Each
system, of course, has a separate memory bus; how­
ever, the use of a memory bus and its associated mem­
ory system can be apportioned between as many as
eight high-speed devices by the optional multiplexer
equipment.

2.2.1 Memory Bus

The memory bus connects the central processor in par­
allel with each memory module on 72 lines; 37 bidir­
ectional, 3 memory to processor, 32 processor to mem­
ory. Although a particular memory module may not
use every bus line, all lines are strapped across the
module interface and are available to subsequent mod­
ules on the bus. Module interfaces have two sets of
bus connectors; one receives incoming lines, the other
accommodates outgoing lines.
Twenty-eight of the memory bus lines carry address
selection data. Eight of them carry the 1 and 0 states
of the four most-significant address bits. These lines
enter the modules through local switches that are con­
figured to assign each module a different address. A
module responds only to bus inputs that include its
address. The remaining address bits specify one stor­
age location in the selected module.

In addition to being used to select a memory location,
the least-significant address bit {both the 1 and 0
states} is applied to the memory modules through local
switches which can be used to assign all odd and all
even addresses to alternate modules in a memory net­
work. Such an arrangement allows the processor to
interleave memory cycles between alternate modules,
thus reducing processor idle time which results from
waiting for a module to complete one-cycle before
requesting another cycle. In general, interleaving is
possible over an entire memory network made up of an
even number of modules. If a network has an odd
number of modules, the last module cannot participate
in the interleave scheme.

2.2.2 Memory Priority

Because a module may constitute a portion of as many
as four discrete memory systems (Figure 2-2), every

module has a priority network that grants access
through only one of its ports at a time. Ports with the
first and second priorities are always serviced in that
order. The third-and fourth-priority ports are serviced
in order also, except when they simultaneously re­
quest memory access. In this case, access is granted
to the port (third and fourth) least recently serviced
(assuming neither the first- or second-priority ports
are requesting access).

When a port gains access to a memory module, the
processor or other high speed device on the memory
bus dictates the type of cycle the module undergoes.
After one cycle, the port loses its access rights and
the priority scheme is re-examined to determine
which memory system is granted the following memory
cycle.

2.2.3 Memory Cycles

The three basic memory cycles are read, write, and
read-modify-write. The read cycle reads a word into
the processor, then rewrites it into the original mem­
ory location. A write cycle clears the specified
memory location, then writes data from the processor
into that location. A read-modify-write cycle reads
a memory word into the processor, pauses while the
processor uses the word, then stores the result of the
processing in the original memory location.

2-3

The processor is connected to memory only when ne­
cessary during a memory cycle. During a read cycle,
for example, the processor is connected only long
enough to access the memory word. It is then free to
continue operations or access a location in a second
memory module, while the first module restores the
data to its original location. This facility for over­
lapping memory cycles, or overlapping a memory
cycle with computation, contributes to overall access
times shorter than the period of one memory cycle.

2.2.3.1 - Read Cycle - When the processor wants to
read data from memory, it places the address on the
memory and multiplexor bus (Figure 2-3), and brings
up the memory cycle request (REQ CYe) and read re­
quest (RD RQ) lines. If the addressed module is not
already in use, and if a request is not being made
through a higher-priority port, the module reads the
address into its input buffer and acknowledges the
request with an address acknowledge (ADR ACK)
pulse. It then fetches the requested data and stores it
in its data buffer.

MEMORY
MODULE

#1

I
I
I r TO A TOTAL OF 1

~6Z, 144 WORD~
I
I

I

MEMORY
MODULE

#N

ADDRESSES

COMMANDS

DATA
AND PARITY

RESTART

NOTE

II

KA-l0
CENTRAL

PROCESSOR

MEMORY MODULES CA N BE

S.1.00jJl
OROS.1.00PI

OS, 1.65~.

MA 10 - 8,19Z WORD
MB IDA - 16,384 W
MB lOB - 16,384 WOO

10-0013

Figure 2-2 Memory System

The data is also send down the bus, and the module
sends a read restart (RD RS) pu Ise to the processor.
Having performed the required functions, the module
disconnects itself from the bus and restores the data in
its data buffer to the original memory location.

2.2.3.2 Write Cycle - To initiate a write cycle the
processor places an address on the memory or multi­
plexor bus (Figure 2-3) and brings up the REQ CYC
and write request (WR RQ) lines. If the addressed
module is not busy, it responds with an ADR ACK sig­
nal and reads the address into its buffer register. It
then clears the addressed location, during which time
the processor loads the data into the module's buffer
register. Upon receipt of the data, the module dis­
connects itself from the bus and initiates the writing
of the data into the addressed location.

2.2.3.3 Read-Modify-Write Cycle - The processor
initiates a read-modify-write cycle (Figure 2-3) by
sending the address REQ eve and both RD RQ and
WR RQ. If not otherwise employed, the memory mod­
ule performs a normal read cycle. Instead of discon­
necting itself from the bus and restoring the data in
the buffer register to its original location, the module
clears its buffer register and waits. When ready, the
processor sends new data to the modu Ie and restarts
memory action with a write restart (WR RS) pulse.
After receiving WR RS, the module disconnects from
the bus and writes the new data into the location from
which it read the old data.

2.2.4 Parity

Standard PDP-10 memory modules have 37 bits per
word with one bit providing parity storage. They do
not have parity inserting or checking circuits; odd
parity is inserting by the processor when writing, and
is checked by the processor when reading.

2-4

REO CYC (II
~

RD RO, WR RO 121

MADR 18-21,35; MODULE SELECT LINES (101

ADR ACK III

IGN PARITY III

CENTRAL RD RS III MEMORY

PROCESSOR
WR RSI1l

MODULE
-~

MADR2'-35, ADORESS LINES 1151
~

DATA lIND PARITY 1371

* GROUND

* -15V TURN ON

*115V TURN ON
~

*NOT PART OF MEMORY 8US

'0-0007

Figure 2-3 Memory and Multiplexor Bus

Nonstandard memory modules without provisions for
parity storage, or standard modules which, for some
reason, want to inhibit the processor's parity check
function, must accompany their ADR ACK pulses with
the ignore parity (IGN PARITy) signal.

2.2.5 Multiplexor

Devices accessing memory through a multiplexor share
a common data bus. The multiplexor assigns use of
the data bus to one device at a time on a priority
basis.

When a device required memory access, it raises its
REQn signal (Figure 2-4). If the multiplexor is not
being used, and if a similar signal is not being sent
by a higher-priority device, the multiplexor returns
an ACKn signal. The acknowledged device now has
control of the multiplexor bus, and proceeds to com­
municate directly with memory through the associated
memory bus.

When the device places a request on the memory bus,
the multiplexor enters a mode in which it waits for
memory to respond. If the request addresses a non­
existent memory location, the multiplexor can wait

indefinitely for a response. To prevent such a condi­
tion, the transmitting device can relinquish control
of the multiplexor by generating a MPX CLR (multi­
plexor clear) signal if memory does not respond with­
in approximately 100 iJS.

IIPX CLR II)

HIGH- SPEED REQ "2

DEVICE AtK" U) MULTIPLEXER

DATA ,PARITY. DATA CONTROL (72) r-
L_ -,

I
I
I
I
I

+
TO ADDITIONAL

HIGH - SPEED
DEVICES

Figure 2-4

2.3 INPUT/OUTPUT

Multiplexor Bus

........ TO I FROM MEMORY

8US

to-ooo.

Various I/o techniques can be employed in a PDP-10
system. Some approaches generally considered stan­
dard are discussed in the following sections.

2.3.1 I/o Bus and Control Devices

The bidirectional I/o bus (Figure 2-5), comprising
72 separate lines, connects in parallel the arithmetic
processor and all I/o devices. Thirty-six of the
lines carry data and status information: 14, addresses
for selecting specific devices; and the remainder for
control type signal,. Although a particular device
may not use every bus line, all lines must be strapped
across its interface and made available to subsequent
devices on the bus. Device interfaces have two sets
of bus connectors: one for incoming lines and the
other for outgoing lines.

To provide the isolation necessitated by the parallel
nature of the bus, each device is equipped, within a
control section, with a selection gate capable of de­
coding a unique 7-bit number. This decoder causes
an I/o device to respond only to bus data including
the device's specific device number.

In addition to the selection gate, I/o control devices
contain data registers, control registers, and status

registers. The data registers vary in size from 1 to 36
bits. Those with less than 36 bits usually connect to
the low-order data bus lines; that is, data enters and
leaves the processor in the low-order bit positions.

Control registers vary in size up to 18 bits; status reg­
isters, up to 36 bits. The processor is able to spec ify
the function the device is to perform by loading con­
ditions into the control register. It can determine the
current state of a device by requesting that the con­
tents of the status register be placed on the data bus
lines.

2-5

lOBO - lOB 3~; 36 TWO-WAY DATA LINES

lOS 3 - lOS 9; 14 DEVICE SELECTION LINES

CONO COMMAND SIGNALS; 2 LINES

OATAO COMMAND SIGNALS; 2 LINES

CON I COMMAND SIGNAL; t LINE

DATAl COMMAND SIGNAL; 1 LINE

lOB PI I - P17; 7 PROGRAM INTERRUPT LINES

PDP-tO lOB ROI PULSE; I READ -IN COMMAND LINE 110
CENTRAL

PROCESSOR
DEVICE

lOB ROI DATA; I READ-IN CONTROL UNE

lOB DR SPLIT; 1 DRUM SPLIT LINE

lOB RESET; 1 CLEAR PULSE LINE

*GROUND

* -t~ V TURN-ON

*msVAC TURN-ON

* NOT PART Of 1/0 BUS

Figure 2-5 Input/Output Bus
1O-00!2

2.3.2 I/o Transfers

The processor makes only four demands of I/o de­
vices: take initial conditions from the data lines,
place status bits on the data lines, place data on the
data liries, and take data from the data lines. For
this purpose it uses four basic I/o instructions:

Conditions
Out (CONO)

Conditions
In (CONI)

Data Out
(DATAO)

Data In
(DATAl)

Transmits the control word to
the device control register to
specify the desired operation.

Transmits the contents of the de­
vice control and/or status reg­
ister to the processor.

Transmits processar data to the de­
vice data register.

Transmits the contents of the device
data register to the processor.

2.3.3 Basic Input Transfers

This discussion assumes a system that is not using the
priority interrupt system and that is not time-shared.

When the processor requires data from a device, it
places the device number on the device selection
lines (Figure 2-5), places the control word on the
data lines, and sends two CONO pulses. The first
pulse prepares the device to receive the control word;
the second pulse commands the device to read the 18-
bit control word from the data bus. Typically, the
control word starts the device and/or defines the type
of I/o transaction to take place.

After issuing the CONO commands, the processor
proceeds with other tasks until it is ready to take data
from the initialized device. At this time, the pro­
cessor sends a CONI and the device responds by
sending a status message across the data bus. If the
status message received indicates that the I/O device
has data ready, the processor sends a OAT AI pu Ise •
DATAl reads the data into the processor over the data
bus, and initializes the device to send another word.
The processor reads successive words of a message by
repeating the CONI/DATAI sequence. Of course,
the device number must accompany every command
to the device.

The processor recognizes the end of a transfer as a
result of the program or receipt of an end-of-file sta­
tus from the input device. When a transfer is com­
pleted, the processor deactivates the device with
CONO signals.

2.3.4 Basic Output Transfers

As with the basic input transfers, this discussion as­
sumes a system that does not use the priority interrupt
system and is not time-shared.

Output transfers in a basic system (Figure 2-5) are
similar to input transfers. They begin with CONO
pulses that perform device initializing functions.

When the processor wants to send data, it senses the
devicels readiness with a CONI. If the status message
returned by the device indicates that the device is
ready, the processor can transfer data with OAT AO
commands. Successive word transfers are accomplish­
ed by repeated CONI/DATAO cycles. When an
entire message has been transferred, the processor
turns off the device by issuing a CONO instruction.

2.3.5 Priority Interrupt in a Time-Shared System

The most efficient use of processor time is made by
employing the interrupt system. Using this system,
the processor initializes an I/o device and returns to
other data manipulations until the device sends an
interrupt signal indicating its readiness.

Initially, the processor assigns an I/o device to one
of the seven priority interrupt lines by issuing a
CONO command containing the channel number in
the three low-order bits of the control word. The
control word, in addition to specifying the priority
channel assignment, typically activates the device
and defines the type of I/o transfer to take place.
The processor also must tum on the PI (priority inter­
rupt) system, enable the appropriate PI channel, and
be able to call the program subroutines required to
service the device. With the initializing tasks com­
pleted, the processor is free to perform other pro­
grammed operations.

When the device is ready to participate in the speci­
fied transfer, it interrupts the processor by grounding
the assigned priority interrupt lines. To determine
which device is requesting the interrupt, the proces­
sor repeatedly issues CONI-type instructions to de­
vices assigned to the interrupted channel, placing a
different device number on the device selection lines
each time. As each device is queried, it responds
with a status message. The message from the signal­
ing device contains a set ready flag, and flags that
define the particular condition within the interrupting
device. When the processor detectsi'he active ready
flag it can effect the data transfer with DATAl or
DATAO commands. Data transfer clears the inter­
rupt condition in the device. At the end of the I/o
transaction, the processor issues CONO signals to
deactivate the I/O device. As in all I/o proceed­
ings, the device number must accompany all control
and data outputs from the processor.

2-6

2.3.6 Hardware Read-In

The user, using the console switches, can initiate
data read-in from an I/o device. This is a function
of processor hardware and of special hardware in each
I/O device intended for hardware read-in operation.

Initially, the number of the device is entered on the
read-in device switches. When the console READIN
switch is pressed, the processor generates an lOB
RESET pulse (Figure 2-5). This pulse halts all motion
in the I/O devices and clears all conditions that ini-

tiate interrupts. The devices remain in this null con­
dition until reactivated by CONO commands.

requesting its first memory cycle during a read­
modify-write cycle previously initiated by the pro­
cessor.

NOTE

The DF10 system does not use this feature.

Following lOB RESET, the processor sends an lOB RDI
pulse to the device addressed by the console switches,
and the special device logic forces the device into
the read-in mode. For example, lOB RDI causes the
DECtape to prepare to read data starting at block O.

When the device is ready with input data, it brings
up the lOB RDI data line. The processor responds by
reading in the first word and using it to determine the
starting address for storing the data words that follow.

The processor itself may also be assigned a channel.
Through this channel, the real time clock and
certain processor flags are able to interrupt system
operations.

2.4 PRIORITY INTERRUPT SYSTEM

2.3.7 Drum Split Signal

The drum split signal (lOB DR SPLIT) is used by high­
speed devices controlled by the processor which ac­
cess memory through a separate memory bus. When
active, this I ine prevents the processor from making
memory read-modiFy-write requests. Instructions re­
quiring read-modify-write cycles are performed in­
stead with separate read and write cycles. Thus,
processor control of memory is limited to one memory
cycle at a time.

A device brings up the lOB DR SPLIT line whenever a
high-speed transfer must be executed to or from mem­
ory. In this manner, the device is prevented from

PI CHANNEL
ENABLE GATE

CHANNEL I CHANNEL I
~ GATE FLIP-FLOP

CHANNEL 2 CHANNEL 2 --- GATE FL IP - FLOP

~
CHANNEL 3 CHANNEL 3

GATE FLI P-FLOP

The priority interrupt system permits I/O devices re­
quiring attention to interrupt processor operation.
I/o bus interrupt requests which correspond to channels
which the program has enabled are sampled and stored
in flip-flops. The request to be honored is determined
by a priority chain. PI request 1 is honored first,
PI request 7 last, if requests occur on all channels
simultaneously (see Figure 2-6).

When, as a result of an interrupt, the processor
enters a device service routine, the routine cannot
be interrupted by another device on the same or on
a lower-priority interrupt channel. If an interrupt
occurs on a higher-priority channel, however, the
routine in process is interrupted and the processor
enters its service routine for the higher priority

INTERRUPT
LINES FROM

DEVICES

CHANNEL 4 CHANNEL 4 PRIORITY
INTERRUPT FROM

HIGHEST PRIORITY
CHANNEL CURRENTLY

ENABLED
GATE

CHANNEL 5
GATE

CHANNEL 6 -- GATE

CHANNEL 7 -- GATE ,
CHANNEL 1-7

ENABLE/DISABLE

Figure 2-6

FLIP -FLOP

CHANNEL 5
FL I P -FLOP

CHANNEL 6
FLIP-FLOP

CHANNEL 7
FLI P-FLOP

NETWORK

,
SYSTEM

ENABLE / DISABLE

Priority Interrupt System, Functional
Diagram

2-7

channel. When the latter routine is finished, the
processor returns to the place in the lower-priority
routine at which the interrupt occurred. For example,
if the processor is performing a routine for a device on
channel 7 and a channel 6 interrupt occurs, the pro­
cessor stops the channel 7 routine and proceeds to the
routine for channel 6. If, while performing the
channel 6 routine, it is interrupted by channel 2, the
processor interrupts and proceeds to the channel 2
routine. If no other interrupts occur, the processor
completes the channel 2 routine, finishes the channel
6 routine, and finally returns to the channel 7 rou­
tine. When all routines are complete, the processor
returns to the instruction it was performing at the time
of the channel 7 interrupt. The act of interrupting
and backlogging successive interrupts having ascend­
ing priorities is referred to as nesting interrupts.

2.5 PROGRAMMING

One-user systems operate in a single mode, executive.
In such systems the user's program and the monitor
program are each able to dictate all machine activities
and maintain continuous control. (Generally the
user's program calls the monitor program to do I/o
but this is not a requirement.) Multi-user systems
operate in executive and user modes. Here, machine
control alternates between the monitor program and
various user programs. The executive program dicates
overall system operation, while user programs assume
control of the processor to handle jobs for specified
users.

The basic purpose of the monitor program in a multi­
user system is governing user-program access to the
machine to assure most effective machine operation.
There is one monitor program capable of handling the
executive tasks associated with the most complex
PDP-lO system. Portions of this program can be de­
leted as required to provide a monitor that is tailored
to the needs of a specific system. Certain portion-s of
the monitor are rarely deleted, however, as they con­
trol operations that are standard to most systems. A
few of the standard executive tasks are outlined in
the following sections.

2.5.1 Time Allotment (Simplified Description)

To provide all user programs with an equitable share
of machine time, the monitor establishes a time-shar­
ing sequence (referred to as "queues" in programming).

The monitor grants control of the processor to one user
at a time for a predetermined period (typically several
hundred mi lIisecond). During this time period, the
selected user program executes as many of its instruc­
tions as possible. When the allotted time expires,
the monitor transfers control to another user. The
cycle repeats when all users have been granted one
control period.

If a user program reaches a point where it cannot con­
tinue until it can access a particular I/o device, the
monitor removes the user from the time-sharing se­
quence. The user is returned to the sequence as soon
as the I/o transfer is complete.

2-8

When an interrupt occurs, the monitor halts the user
program in progress, services the interrupt, and re­
turns to the interrupted program. Such a transaction
does not significantly affect the interrupted user's
allotted time in the time sharing sequence.

Systems without enough core memory to simultaneously
accommodate all of its user programs may expand
their storage capaciti es with mass storage. In such
a system the monitor brings programs stored on the
mass storage device into memory before they are need­
ed in the time-sharing sequence.

Using a sophisticated algorithm, the monitor swaps
programs not currently needing to be in core onto
the disk (or drum) and swaps programs waiting to run
into the core. Normally this swapping takes place at
the same time as some other user's program is running.
When a program is to be run again, it is again swapped
back into core.

2.5.2 Memory Protection and Relocation

Before be i ng loaded, each user program requests a
specific number of core memory locations. As such
requests are made, the monitor assigns blocks of loca­
tions to users, progressing from the lower to the higher
memory addresses. Since all user programs are written
to start at memory location 0, the monitor positions
these programs in various areas of memory by assigning
each one a relocation constant. Memory addresses
referenced by a user program are incremented by the
associated constant and, as a result, the program is
relocated to a specific memory area. Every time the
user program runs, the monitor must fetch the appro­
pri ate constant. When a program is removed from
memory, the monitor will, in some cases, reassign re­
location constants and reposition the remaining users
so that all unused memory locations exist in the high­
est memory addresses.

To prevent the memory references of one program from
being relocated into another user's area, the monitor
stores the highest location assigned to each user. If
a user program specifies an address (unrelocated)
that exceeds the highest location in its memory area,
the memory cycle is inhibited. As with relocation,
the memory protection operation is performed whenever
a user program addresses memory.

2.5.3 Input/Output

User programs are not usually allowed to control I/o
devices directly. If this were possible, one user
might try to operate a device already carrying out an
order from another user.

As an alternative, all user requests for I/o operations
are made by means of UUO's which cause the machine
to immediately store the requesting instruction in
monitor memory address 408 , The machine then traps
to location 418 from which the monitor accesses its
library of I/o subroutines. This library comprises
subroutines for performing all I/o operations including
such tasks as: determining whether or not an I/o
device is available, performing input or output opera­
tions on an available device, and controlling a user­
selected substitute for a device. When the I/o task
has been accomplished, the processor returns to the
step in the user program that follows the point from
which the call occurred.

I/o functions that take place as a result of interrupts
are also handled by the monitor program. A pair of
monitor locations, within addresses 428 - 578' are
assigned to each of the seven interrupt lines. When
active, an interrupt line traps to its assigned pair of
locations. From these locations the monitor accesses
the subroutines that service the active interrupt.
Upon completing the I/o transaction, the processor
returns to the program step in process at the time of
the interrupt.

Table 2-1 details the memory locations in the central
processor hardware reserved for I/o and other special
functions.

Table 2-1 Reserved Memory Locations

Location {Octal} Function

00-17 General-purpose registers

0 Program read-in pointer word

2-9

Table 2-1 (Cont) Reserved Memory Locations

Location (Octal} Function

20-37 Reserved for expansion or loader

40 Programmed operator storage

41 Programmed operator trap

42-57 Priority interrupt trap

60, 61 Byte and floating point trap locations
(if the extended order code option is
not included)

62-77 Reserved for expansion

Additional locations are reserved by the monitor for
user-specific monitor data.

User mode lOT is a special user mode in which the
user program has direct access to I/o devices. Of
course, since the priority interrupt system operates as
an I/o device, an lOT user program can prevent all
interrupts, including the executive time-sharing inter­
rupt. Therefore, user programs requiring the lOT
mode must be assembled and used with great care, be­
cause once such a program gains control of the pro­
cessor it effectively becomes an executive program.

2.5.4 Conditions Storage

Whenever the monitor switches control from one user
to another, or interrupts a user to perform an I/o
operation, it stores certain machine conditions so that
they can be duplicated upon return to the current user
program. Data stored for use on return includes the
contents of the accumulators, the contents of the pro­
gram counter, certain processor flags indicating pro­
cessor operating conditions, and the protection and
relocation constants. Storage is effected in the first
few locations of the associated user program. It is
restored when the user program is recalled or re­
entered from an interrupt.

2.6 INSTRUCTIONS

2.6.1 Instruction Word Formats

There are two types of instruction words: the basic
instruction word which defines processor operations

not involving I/O, and the I/O instruction word
which defines processor operations that to involve
I/O operations. A number from 0 to 6 contained
in bits 0 through 2, identifies the word as a basic
instruction (Figure 2-7). In this case, bits 0 through
8 are the operation code and define the specific
operation to be performed. The remaining bits decode
as follows:

Bit Numbers Function

9-12 (AC) Specify 1 of 16 accumulators to be
used in executing the instruction.

13 (I) When this bit is set the operand is
fetched, not from the location ad-
dressed, but from the address speci-
fi ed by the data stored at the
addressed memory location.

14-17 (X) If not 0, specify the index register
whose contents must be used to alter
the memory address in bits 18
through 35. If 0, indicates no
indexing.

18-35 (Y) Indicate an 18 bit quantity which
may be the memory address in which
the operand is stored, or the operand
itself.

If bits 0 through 2 contain 7, the word is identified
as an I/o instruction (Figure 2-8). In this case bits
3 through 9 specify the address of the I/o device
and bits 10 through 12 define the I/o operation to
be performed. The remaining bits (13 through 35)
decode as in a basic instruction.

2.6.2 Unimplemented User Operations - UUOs
(formerly called Unused Operators)

Operating codes 0408 through 0778 are called pro­
grammed operators or unimplemented user operators

o

(UUOs), and are employed by user programs to com­
municate with the time-sharing monitor. When an
instruction containing one of these codes appears in
a user program, it is stored immediately in" location
408 of the monitor and the machine traps to location
418 • From this I ocat i on, the mon i tor calls
subroutines to determine the nature of the user's call
and to execute the desired operations.

Some UUOs request I/o service from the monitor;
others request monitor-stored information such as date
and time of day; still others call special monitor sub­
routines such as those that provide software implemen­
tation of floating-point arithmetic in systems without
optional floating-point hardware. In general, user
programs resort to the use of UUOs to request monitor
intervention for performing tasks they are incapable
of commanding.

Instructions 001 through 0378 are also considered
UUOs and function in the same manner as codes 0408
through 0778. However, they are involved with
locations 408 and 0418 (relocated) in the user's own
program, rather than in the monitor program. Sub­
routines called from these locations are in the user
program.

2.6.3 Effective Address Calculation

Without exception, all instructions calculate an
effective address using bits 13 through 35 (Figures
2-7 and 2-8). That is, the memory address, Y, is
altered according to the indexing and indirect ad­
dressing operations specified by the Q- and X-fields.
The method of calculation is outlined below.

17 18

a. Obtain the number in the address field, Y
(bits 18 through 35). Any of 262,144 loca­
tions can be specified.

b. If the index field, X (bits 14 through 17), is
non-zero, add the contents of the specified
index register to the number obtained in step a.

35

OP CODE x I Y

INSTRUCTION
AND MODE

ACCUMULATOR
ADDRESS

INDEX
REGISTER
ADDRESS

Figure 2-7 Basic Instruction Word

2-10

MEMORY ADDRESS

I/O
INSTRUCTION

TYPE

INDEX
REGISTER

ADDRESS

35

Y

MEMORY ADDRESS

Figure 2-8 I/o Instruction Word

c. Obtain the indirect bit I (bit 13). If it is 0,
the calculation is done and the result of a and
b is the effective address. If it is I, go to d.

d. Use the address calculated in a and b to obtain
a new word from memory and return to a.

The effective address calculation continues until a
word is encountered with a 0 in bit 13. At that
point, the result of a and b is taken as the effective
address for the instruction.

Figure 2-9 shows the flow diagram for this process.

ENTER

Figure 2-9 Effective Address Calculation

2-11

2.6.4 Instruction Classes

It is convenient to consider an instruction as belong­
ing to one of five classes. Four classes (data trans­
mission, arithmetic and logical, executive, and push
down) are included in the basic instruction format.
The fifth class, I/o, is specified in the I/o instruc­
tion format.

The description of the instructions contained in this
manual is intended to provide a general background
for understanding the operation of the KA 1 0 Central
Processor. A detailed description of each of the 366
instructions from the system programmer's point of
view will be found in the PDP-10 System Reference
Manual (DEC-10-HGAA-D).

Each instruction class is composed of numerous instruc­
tions. Those in the data transmission, arithmetic and
logical, and executive classes are grouped into in­
struction types. Specific operations and conditions
concerning the execution of the instruction types are
specified by various modes. The class, type, and
mode are all defined by the instruction bits.

2.6.4.1 Data Transmission - There are five types of
instructions in the data transmission class: full word,
half word, byte manipulation, and miscellaneous.
For the most part, they involve simple data transfers
involving core memory and/or 1 or more of the 16
processor accumulators. Full-word instructions
transfer 36-bit words, half-word instructions transfer
18-bit words, and byte manipulation instructions
transfer any number of contiguous bits in a 36-bit
word. The miscellaneous instructions are exchange
and block transfer. The former exchanges the con­
tents of the effective address with the contents of the
specified accumulator. The latter moves blocks of
words from one contiguous group of addresses to an­
other. Modes associated with this instruction class
define operating details such as the direction of data
transfer, and the form (swapped, negated, set to
magnitude) in which the data is transferred.

2.6.4.2 Arithmetic and Logical - There are four
types of instructions in the arithmetic and logical
class: fixed point arithmetic, floating point arith­
metic, boolean, and shifting. Arithmetic instructions
cause the processor to add, subtract, multiply, or
divide. Fixed-point arithmetic involves whole num­
bers and floating-point arithmetic involves mantissa
and exponents. Both are done in 21s complement
binary, that is, carries from the highest order bit are
dropped, and negative numbers are the 21s comple­
ment of the positive numbers with the same magnitude.
The processor is hard-wired for single-precision arith­
metic but is easily programmed for double precision.

Boolean instructions combine the effective address or
its contents with the specified accumulator on a bit­
by-bit basis. They provide for all 16 possible boolean
functions of two variables.

Shift instructions perform various types of shifts on the
contents of an accumulator or on the combined con­
tents of two consecutively addressed accumulators.

The modes associated with this instruction class spec­
ify operating details such as where to store results and
what to do with remainders from arithmetic calcula­
tions.

2.6.4.3 Executive Instructions - There are five types
of instruction in the executive class: memory and
accumulator modification and testing, arithmetic
compare, logical compare and modify i jump, and
miscellaneous.

Within the memory and accumulator modification and
testing instructions there are two groups: accumulator
jumps and memory skips. The jump instructions test
and/or modify the contents of the accumulator. If
the conditions specified by the mode are met, program
control jumps to the instruction at the effective ad­
dress. Skip instructions test and/or modify the con­
tents of the effective address. If the conditions
specified by the mode are met, the next instruction
is skipped.

Arithmetic compare instructions algebraically compare
the contents of the effective address with the contents
of the accumulator, or vice versa. If the conditions
specified by the mode are met, the next instruction is
skipped.

Logical compare and modify instructions skip by test­
ing and possibly modifying the bit positions of the
accumulator corresponding to bit positions in the

memory word containing 1s. The mode specifies the
conditions under which a skip occurs.

Jump instructions are of two basic types: uncondi­
tional and conditional. Unconditional jumps cause
the processor to take its next instruction from a speci­
fied memory location. Conditional jumps cause the
jump only if certain conditions exist.

Included in the miscellaneous instructions is the exe­
cute instruction which forces the machine to execute
the instruction located by the effective address.
Essentially, the instruction modes in the executive
class detail the type of modifications and compari­
sons to be performed and the conditions to be tested.

2.6.4.4 Push-Down Instructions - Push-down in­
structions provide a means of inserting or removing
data from lists that are stored in consecutive memory
locations. They operate in such a manner that the
last data placed on the list is the first removed.

2.6.4.5 I/O Instructions - The eight I/o instruc­
tions are used for transferring data and control infor­
mation to I/o devices and for transferring data and
status information out of I/o devices.

2.6.5 Instruction Execution

Processor operation is initiated by means of a special
key cycle that supplies timing for events associated
with intervention from the console and provides entry
into the main sequence. When the processor is run­
ning, timing is supplied by the main sequence, which
is repeated for each instruction.

Most instructions are executed by the five cycles that
make up the main sequence: instruction, address,
fetch, execute, and store. Each main sequence be­
gins when the instruction cycle requests memory ac­
cess to retrieve an instruction word. Upon receiving
the instruction, the processor enters the address cycle
wherein it calculates the effective address. If an
indirect address is encountered, a new address word is
retrieved from memory and the cycle begins again.
After repeating the cycle as many times as necessary
to produce the effective address, the processor pro­
ceeds to fetch cycle.

2-12

In fetch, the processor fetches the operands required
for the actions specified by the instruction. After
fetching the operands, the processor enters the

execute cycle during which it executes whatever
logical, arithmetic, or control functions are necessary
to carry out the instruction. The program counter is
incremented during the execute cycle. Incrementing
the counter by one causes it to point to the next in­
struction in the sequence.

Finally, the processor enters the store cycle. For
most instructions, the store cycle places the results of
the execution cycle in an accumulator, in memory,
or in both. The processor then returns to the start of
another instruction cycle. During the instruction
cycle of the new sequence, the incremented program
counter is used to obtain the next consecutive instruc­
tion in the program.

The main sequence uses a hierarchy of other sequences
(built-in hardware subroutines) for performing the
operations within its five cycles. These subsequences
are called directly by the main sequence or by any
subsequence of higher rank within the hierarchy.
Thus, the processor operates using many levels of
nested sequences; each sequence stops upon calling
a lower rank sequence and restarts upon return from
it (although the restart need not be at the point of
departu re) •

Most processor control functions involved in the re­
trieval and setup of instructions and the retrieval and
storage of operands take a negligible amount of time
when compared to memory access ti me • For each
memory access the processor must first check for mem-

ory protection and relocation and then wait until the
addressed memory is free. Approximate instruction
execution times may be determined from the flow
charts included in Volume II of this manual.

The more complicated instructions are performed by
special sequences that are entered from the execute
cycle and usually return to the store cycle. Some­
times a special sequence handles the storage itself
and returns directly to the instruction cycle. Other
instructions must first fetch and operate on a pointer
that provides information necessary for the retrieval
of the true operand; such instructions require, in
effect, two main sequences.

A block transfer repeats the fetch and execute cycles
once for every word in the block. Whenever the exe­
cute cycle occurs more than once for a single instruc­
tion, program counter incrementation is inhibited in
a II but the fi na I repet i ti on • In th i s way the counter
points to the next instruction only when the current
one can be completed before an interruption can
occur.

Because instructions are executed by nests of se­
quences, performance times vary from one instruction
to another. For example, multiplication and division
are performed by a series of additions and subtrac­
tions. The time required for such major sequences
depends upon the number of times the various sub­
sequences must be called.

2-13

CHAPTER 3
OPERATING PROCEDURES

This chapter describes the operating controls and in­
dicators of the KA10 Central Processor and includes
operating procedures for the arithmeti c processor,
paper tape reader/punch and teleprinter, and some
operator maintenance instructions. Detai led operat­
ing instructions for maintenance purposes are provided
in Chapter 6 of this volume.

3.1 OPERATOR'S CONSOLE

The KA10 console (Figure 3-1) has 36 data switches,
18 memory address (MA) switches and 20 control
switches. Of the 20 control switches, 10 are momen­
tary contact switches and 10 are latching switches.

The ten momentary contact switches are: READ IN ,
START, CONT (continue), STOP, RESET, XCT (exe­
cute), EXAMINE THIS, EXAMINE NEXT, DEPOSIT
THIS, and DEPOSIT NEXT.

When pressed these switches (except STOP) generate
some or all of the pulses(KTO through KT4) in the key
cycle that initializes processor operation. Each of
these switches sets the corresponding flip-flop that is
used to gate functions required for the operations
associated with the switch. The flip-flops are cleared
at the end of the key function unless a repeat action is
dictated by the REPT(repeat) switch. Simultaneously
pressing two momentary contact switches may result in
erroneous processor operations.

The ten latchlng switches are: SING INST (single
instruction), SING CYCLE (sing Ie cycle), PAR STOP
(parity stop), NXM STOP (nonexistent memory stop),
ADDRESS CONDITIONS INST FETCH (instruction
fetch) , DATA FETCH and WRITE, ADR STOP (address
stop), and ADR BREAK (address break). When a latch­
ing switch is operated, its function remains active until
the switch is disengaged.

STOP, RESET, XCT, EXAMINE THIS, and DEPOSIT
THIS are effective when the processor is running (under
program control) or stopped. All other switches, ex­
cept for REPT, are effective only when the machine
is stopped. When used in conjunction with EXAMINE
THIS, DEPOSIT THIS, or XCT, the REPT switch is
effective while the machine is running. When used
with any of the other switches, REPT is effective only
when the machine is stopped.

Tables 3-1 and 3-2 list and describe the function of
each of the console switches and indicators, respective­
ly.

Table 3-1
Function of Console Switches

Switch Function

READIN Clears processor and I/o devices.
Initiates the reading in of data from
the I/o device specified by the READ
IN DEVICE switches (margin check
and maintenance panel). When the

Figure 3-1 KA10 Operator IS Console

3-1

Table 3-1 (Cont)
Function of Console Switches

Switch Function

READIN
(Cont)

START

CONT

STOP

RESET

XCT

readin is completed, the processor
begins operation by executing the
last word read in from the device.

NOTE

Do not press another function switch
while a readin is in progress. If a
readin operation must be interrupted
(e.g., due to a crumpled tape) clear
the readin condition using the RESET
switch before proceeding to another
function.

Starts program execution at the loca­
tion specified by the MA switches.
Processor and I/O states are not clear­
ed. Memory relocation and protection
mayor may not occur depending on the
current state (user or executive mode)
of the machine.

Causes program execution to resume
from stops caused by any of the follow­
ing: SING INST, SING CYCLE,
NXM STOP, PAR STOP, STOP, ADR
STOP. RESET, SHIFT CNTR MAINT,
or stops initiated by the program.

Halts machine operations by clearing
the RUN flip-flop and aborting any
unending indirect address calculation.
STOP cannot be repeated.

Same as STOP except that it clears
processor and I/O devices.

Causes the contents of the data
switches to be executed as an instruc­
tion. Priority interrupts are inhibited
during this instruction to insure that
it runs to completion. The XCT switch
may be used while the machine is run­
ning. However, if the machine is in
the user mode, relocation and pro­
tection will be in effect and attempt­
ed I/O instructions may be trapped.

3-2

EXAMINE
THIS

EXAMINE
NEXT

DEPOSIT
THIS

DEPOSIT
NEXT

SING INST

Ca uses the memory i ndi cators (MI) to
display the contents of the word whose
address is in the MA switches. MEM­
ORY DATA illuminates above the
memory indicators. Protection and re­
location are inhibited so that the
absolute rather than the relocated
address is referenced. EXAMINE
THIS may be used while the machine
is runni ng, in wh i ch case the memory
fetch is synchronized between two
i nstructi ons .

NOTE

Memory protection and relocation are
inhibited in all deposit and examine
functions.

Increments the contents of the MA
by one. Displays the contents of the
resulting address in the MI with MEM­
ORY DATA illuminated. This key is
not functional unless the machine is
stopped.

Writes the contents of the data switch­
es into the memory address specified
by the MA switches. The data is dis­
played in the MI with MEMORY DATA
illuminated. If the switch is activated
while the processor is running, the
action is synchronized between two
i nstructi ons .

Increments the contents of the MA by
one and writes the contents of the
DATA switches into the resulting
address. The data is shown in the MI
with MEMORY DATA illuminated.
This key is not functional unless the
machine is stopped.

Halts the processor (with the RUN
flip-flop off) after each instruction is
completed (prior to ITO for the follow­
ing instruction). This allows a pro­
gram to be stepped through one instruc­
tion at a time, using the CONT switch.
To prevent clock interrupts that would
otherwise appear between every in­
struction whi Ie stepping slowly, the
SING INST switch inhibits the setting
of the processor clock flag. Instruc­
tions that never end, specifically non-

Table 3-1 (Cont)
Function of Console Switches

Switch Function

SING INST
(Cont)

SING CYCLE

PAR STOP

NXM STOP

terminating indirect-address calcula­
tions, are stopped by the STOP or RE­
SET switch but not by the SING INST
switch.

Stops the processor at the end of each
memory control subroutine, prior to
the generation of MCRSTO or MCRSTl .

NOTE

The memory subroutine is used for all
memory references that reference
instructions, indirect references, or
effective address contents. The mem­
ory subroutine is not used in machines
having internal fast-memory options
when making index register or accumu­
lator references since this would slow
down these operations. However,
single cycle operations involving fast
memory references may be performed
by turning off the FM ENABLE switch
(margin check and maintenance panel),
ca us i ng core memory I ocat ions 0 thro ug h
17 to be used as acc umu lators. As wi th
any STOP, act.ivating the CONT
switch after a single cycle stop resumes
processor operation.

Stops the processor at the end of a
m~mory subroutine in which a word
containing incorrect parity is read.
Running with this switch on slows all
memory read operations the amount
of time required to check parity.
Therefore, it is not usually advisable
to operate with PAR STOP on unless
memory errors are suspected. In
either case, the parity of memory
reads is checked and, if an error is
detected, the processor's parity error
flag is set.

Stops the processor when reference is
made to a non-existent memory loca­
tion (i .e., one whi ch is beyond the
memory size of the system or one
which for some reason does not re-

3-3

NXM STOP
(Cont)

spond to memory requests). For read
references, a word containing Os is
assumed. For write references, the
data is discarded. The CO NT switch
may be used to proceed with the pro­
gram.

REPT Causes actions specified by any of

ADDRESS
CONDITION:

the momentary function switches ex­
cept STOP to be repeated. The rate
of repetition is dictated by the SPEED
CONTROL switches on the margin
check and maintenance panel. If,
with the processor running, the REPT
and CO NT switches are both active,
the processor wi II stop and then con­
tinue through programmed stops (hard­
ware or software). The period of the
stop is determined by the SPEED
CONTROL switches.

INST FETCH Used in conjunction with ADR STOP
or ADR BREAK. Causes a stop (ADR
STOP) or break (ADR BREAK) in the
execution of the program when an
instruction fetch or indirect address
operati on references the addr«!ss in
the MA switches.

DATA FETCH Used in conjunction with ADR STOP
or ADR BREAK. Causes a stop (ADR
STOP) or break (ADR BREAK) in the
program on a II memory read references
except when an instruction fetch or
indirect address occurs and the re­
ferenced memory address equal to
the contents of the MA switches.

WRITE Used with ADR STOP or ADR BREAK.
Causes a stop (ADR STOP) or break
(ADR BREAK) on all memory writes
that reference the address in the MA
switches.

ADR STOP Stops program execution when the
condition specified by the ADDRESS
CONDITION INST FETCH, DATA
FETCH, or WRITE switch is encounter­
ed.

Table 3-1 (Cont)
Function of Console Switches

Switch Function

ADR BREAK

Data Switches

Causes a priority interrupt on the
KA 10 PI channel when the condition
specified by the ADDRESS CONDI­
TION INST FETCH, DATA FETCH,
or WRITE switch is encountered.

NOTE

The functions of the ADDRESS
CONDITION INST FETCH, DATA
FETCH, and WRITE switches occur
with core memory references or fast
memory references if E = FMA. If an
ADR STOP or BREAK is required on
other fast memory addresses (i.e., AC
or XR field of an instruction), the
FM ENABLE switch on the margin
check and maintenance panel must
be disabled. The function can then
be performed on the appropriate core
memory location.

(0 through 35) The contents of these switches are
written into memory when DEPOSIT
THIS or DEPOSIT NEXT is active.
They are executed as an instruction
when XCT is active. The program can
sense the contents of these switches
with a DATAl instruction.

Memory Address
Switches

(18 through 35) These switches define the memory
addresses required for the functions
associated with the following control
switches: START, EXAMINE THIS,
DEPOSIT THIS, ADR STOP, and ADR
BREAK. The contents of the switches
are continually compared with the
contents of the MA register plus the
contents of the relocation register
(if relocation is in effect) and the
fast memory address mixer. When

3-4

Memory Address
Switches
(18 through 35)
(Cont)

comparisons yield equality, logic
terms are generated enabling certain
processor functions. The contents of
the MA switches may also be jammed
into the MA register.

Table 3-2
Function of Console Indicators

Indicator

RUN

PION

POWER ON

PROGRAM
STOP

MEMORY
STOP

USER MODE

lOB PI
REQUEST

(7 indicators)

PI ACTIVE
(7 i ndi cators)

PI REQUEST
(7 indicators)

PI IN
PROGRESS

(7 i ndi cators)

Function

Lights when the RUN flip-flop is set,
indicating that the program is running
or is hung up in a loop.

Indicates that the PI system is enabled.

Indicates that system power is on,
and the power-up sequence is com­
pleted.

Indicates that the machine has stopped
as a result of a halt instruction.

Indicates that the machine has stopped
as the result of a memory reference
and a condition associated with any
of the following switches when the
switch is active: SING CYCLE,
PAR STOP, NXM STOP, ADR STOP.

Indicates that the machine is in the
user mode.

Indicate active PI lines from the I/o
devices prior to their entering the
PI system.

Indicate enlJbled PI channels.

Indicate active PI channels that are
being considered by the PI priority
network.

Indicate which PI channel, of those
set, is bei ng serviced by a subrouti ne •

Table 3-2

Function of Console Indicators (Cont)

Name

PROGRAM
COUNTER

(18 indicators)

INSTRUCTION/

Function

NOTE

The subroutine is servicing the high­
est priority PI channel.

Display contents of the program count­
er.

AC/I/INDEX/ The left half displays the contents of
MEMORY the instruction register (operating

ADDRESS code, accumutator address, indirect-
(36 indicators) address bit, and index bits). The

right half displays the contents of the
memory address register.

MEMORY/
PROGRAM

DATA
(36 indicators)

MEMORY
DATA

PROGRAM
DATA

Operate under control of the console
switches to show the contents of mem­
ory locations, or under program con­
trol to display various types of data
via the AR.

Lights when the MEMORY/PROGRAM
DA T A i ndi cators di sp lay the contents
of a memory location as a function of
the console switches.

Lights when the MEMORY/PROGRAM
DATA indicators display data as a
function of the program.

3.2 MARGIN CHECK AND MAINTENANCE
PANEL

The margin check and maintenance panel (Figure 3-2)
is used for maintenance purposes. The controls on the
margin check section of the panel are used to control
application of either margin or standard voltage to the
system. The controls of the maintenance section are
used to control exercising of the centra I processor.
The function of each of the controls and the indicator
on the panel is given in Table 3-3.

3-5

Figure 3-2 Margin Check and Maintenance Panel

Table 3-3
Function of Margin Check and

Maintenance Panel Controls

Name

MARGIN CHECK
-15L/+10L/OFF/+10R/
-15R Switch

Function

Selects the polarity of the
margin check power-supply
output. Connects the select­
ed voltage to the left or right
side of the system. (The pro­
cessor and all cabinets to the
left of it comprise the left
side of the system; cabinets
to the right of the processor
comprise the right side.)

Table 3-3
Function of Margin Check and

Maintenance Panel Controls (Cont)

Name Function

Margin Check Vernier Varies the output from the
margin check power-supply.
Approximate limits are: 0 to
20V, unloaded; 20V, 7A,
maxi mum load.

FM ENB Switch Substitutes the fast memory
registers for the first 1610
core memory locations.

SHIFT CNTR MAINT
Switch

MI PROG DIS Switch

REPT BYP Switch

Transfers control of shift­
counter stepping from the
shift-counter timing chain to
the console CONT switch.

Over-rides program control
of MI register displays, re­
turning control to the MA
switches.

Reinitiates the key cycle
selected by the console
switches when, due to a mal­
function, the selected key
cycle hangs up. The rate of
the repeat is selected by the
SPEED CONTROL switches.
The REPT switch must be ac­
tive to utilize REPT BYP.

NOTE

When using the REPT BYP switch, make
certain that the delay selected by the
SPEED CONTROL switches is longer
than the period of the selected key
cycle. Otherwise, the selected key
cycle will be re-initiated before it
c:an run to completion.

SPEED CONTROL,
COARSE/FINE
Controls

Select time delays that deter
mine the rate at which the
repeat function re-initiates
the key cycles. Six basic
delays can be selected by the
COARSE SPEED CONTROL.

3-6

SPEED CONTROL,
COARSE/FINE
Controls (Cont)

The FINE SPEED CONTROL
varies the six basic delays so
that overlap occurs between
the range of delays that can
be selected by adjacent posi­
tions of the COARSE SPEED
CONTROL. The positions·
and corresponding delays are:

Position 1: 270 ms to 5.4s
Position 2: 38 ms to 780 ms
Position 3: 3.9 ms to 78 ms
Position 4: 390 IJS to 7.8 ms
Position 5: 27 IJS to 540 IJS
Position 6: 2.2 IJS to 44 IJS

READIN DEVICE Select the I/o device used
Switches in a readin operation.

POWER Switch Controls application of pri­
mary power to the system.

TOTAL HOURS Meter Records power-on time from
00000.0 to 99999.9 hr.

3.3 BAY 1 and 2 INDICATORS

The indicator panels (Figure 3-3) at the top of bays 1
and 2 are provided primarily for maintenance purposes.
They display I/O bus data, the status of all control
fli p-fl ops, and the contents of a II processor reg isters
including the I/o register. Status indicators are a Iso
included for many critical enabling levels.

3.4 PAPER TAPE READER/PUNCH AND DECTAPE

Power is avai lable to the reader/punch (Figure 3-4)
and DECtape (Figure 3,..5) when processor power is on.
A description of the switches and controls, and operat­
ing data such as tape loading procedures are provided
in: Perforated-Tape Reader PC02 Instruction Manual
(DEC-08-12AA-D), and Royal-McBee Model 500
Maintenance Manual and Instruction Manual DECtape
Transport (Document No. DEC-H-TU55).

3.5 TELEPRINTER

The teleprinter provides two-way communication be­
tween operator and computer. It is actually two in­
dependent devices, keyboard and printer, which may
be operated simultaneously. Either a Teletype Model
35 KSR (Figure 3-6) or Model 37 KSR Teleprinter
(Figure 3-7) is provided with the KA10.

Figure 3-3 Indi cator Panels I Bay 1 and 2

Figure 3-4 Paper Tape Reader/Punch

3-7

Figure 3-5 DECtape

Figure 3-6 Teletype Model 35 KSR

3-8

Figure 3-7 Teleprinter Model 37 KSR

Both models of the teleprinter operate with 8-bit
characters plus start and stop control signals trans­
mitted serially. The 35 KSR operates at 10 characters
per second and the 37 KSR at 15 characters per second.
One of the most significant differences between the
two models is that the 37 KSR prints out lower case
I etters, as we II as upper case.

Power is available to the teleprinter when KA10 power
is on. When on, the LINE/OFF/LOCAL switch is set
to LINE, the unit is "on line" and goes on and off with
system power.

The keyboard of both the 35 KSR and 37 KSR resembles
that of a standard typewriter with four rows of keys and
a space bar. Striking a key transmits a character to
the teleprinter control logic. The character is printed
or the function executed by the teleprinter only if the
processor sends it back to the printer.

Striking only the character keys transmits the codes
for the characters on the lower part of the keys.

3-9

Striking the character keys while holding down the
shift key transmits the codes for printable characters
on the upper part of the keys (punctuation, ampersand,
percent sign, etc.). On the 37 KSR, lower case is
normally transmitted and the shift key gives upper case.
Control codes are transmitted by holding down the
control key, CTRL, when striking the appropriate
character key. Codes for all characters listed on the
keyboard, and some that are not, can be transmitted
to the computer. However, codes for some of the
control functions have no effect on the printer when
they are sent back.

The code used is the American Standard Code for
Information Interchange (ASCII) with adaptations for
the PDP-10. Table 3-4 lists all codes, and their
PDP-10 ASCII graphics assignments. The operational
differences between the 35 KSR and 37 are cited in the
remarks column of the table.

Pressing the REPT button while striking a character
key causes repeated transmission of the corresponding

code for as long as REPT is held down. Characters that
require the SHIFT or CTRL key may also be repeated in
this manner. (On the 37 KSR, repeated transmissions
are accomplished by pressing and holding down the key.
Refer to the remarks column of Table 3-4 for the appli­
cable keys that provide repeated transmissions.) The
red button at the left, BRK RLS, is not operative.
LOC LF and LOC CR are the local line feed and car­
riage return buttons. They affect the printer directly
and do not transmit codes to the control logic. The
white button, BREAK, on the far right opens the line,
sending continuous space.

Details of paper installation, ribbon replacement, tab
setting procedures and maintenance procedures for
the teleprinter will be found in Teletype Bulletin
281B.

3.6 READIN

The readin mode of operation permits placing informa­
tion in memory without relying on a program in memory
or toading one word at a time manually.

Console initiation of readin from the paper tape
reader, DECtape, or any other device so equipped is
accomplished in the readin mode. With the address
of the appropriate input device entered in the READIN
DEVICE switches, pressing the READ IN switch causes

3 4

READ IN DEVICE
(SWITCHES)

5 6 7

the processor to read the loader program from the input
device. If the program is self-starting, the last instruc­
tion causes the processor to jump and execute the
loader, thereby reading in the remaining tape data.
If the program is not self-starting, the processor can
usually be induced to execute the loader program by
pressing the CONT key.

Details of loaders will be found in the MACRO-lO
Assembler Programmer's Reference Manual ,(DEC-10-
AMAO-D).

To read tapes in either the RIM10 or RIM10B loader,
proceed as follows:

a. Load the tape onto the input device as directed
in DEC-10-AMAO-D.

b. Enter the device address in the READIN DEVICE
switches.

c. Press the RESET switch.

d. Press the READIN switch.

When using the READIN DEVICE switches (Figure 3-8),
note that the least significant octal digit of the device
code is selected by a single switch (switch 9). This
final digit can only be a zero or a four.

8 9

PUSH HERE
FOR 0

PUSH HERE
FOR 1

~~ ____ ~y~ ____ ~A~ ____ ~y~ _____ ~

MOST SIGNIFICANT LEAST SIGNIFICANT
OCTAL DIGIT OCTAL DIGIT

(ALWAYS 4 OR 0)

Figure 3-8 READIN DEVICE Switches

3-10

CHAPTER 4
CENTRAL PROCESSOR ORGANIZATION

This chapter is divided as follows:

4.1 KAla Registers and Adders
4.2 KAla Basic Cycles
4.3 KAla Basic Instructions
4.4 KA 1 a Addi ti ona I Instructi ons
4.5 KAla Control Key Logic
4.6 KAla Memory Control
4.7 KAla Priority Interrupt

4.1 KAla REGISTERS AND ADDERS

Brief descriptions of the registers and adders of the
processor and the data paths between them are given
below.

4.1.1 AR (Arithmetic Register, 36 bits)

This is the most active register in the processor since
it serves as an internal accumulator and as a memory
buffer. Vo transfers a Iso take place through this
register. It can be loaded from the adder, either
directly, or with a one bit shift to the left or right;
its ha Ives may be swapped. Other inputs to this reg­
ister include the SC, IR, memory bus, fast memory,
console data switches, and the arithmetic flags.

4.1.2 BR (Buffer Register, 36 bits)

The BR is used primarily to hold the second operand
of an instruction. It is loaded only from the AR.

4.1.3 MQ (Multiplier Quotient, 36 bits)

As the name implies, this register holds the multiplier
during multiplication, and the quotient during divi­
sion. This register can be considered as a right-hand
extension to the AR, and it can shift right or left; its
externa I input comes from the adder.

4.1.4 AD, ADR (Adder, 36 bits)

The adder is not actually a register, but a network of
gates that generate various logical functions. The
primary function of the AD is to add arithmeti cally,
but due to a very flexible system of control gating,

several other functions are possible. The AD can
internally produce either the arithmetic sum, or the
logical equivalence of its two input branches.
(Equivalence is the complement of exclusive-OR.)
One input is from the AR, the other from the BR.
Each of the two input branches may select one of
four functions:

4-1

a. a II Os;

b. a Ills;

c. the register;

d. the l's complement of the register.

There is a Iso a +1 input separate Iy se lectab Ie, and a
+ 1 or -1 input to the left half.

4.1.5 MI (Memory Indicator, 36 bits)

The sole function of the MI is to drive the console
indicators .• This register is loaded from the AR.

4.1.6 PB (Parity Buffer, 37 bits)

The PB holds a II words going to and from the memory
bus for the purpose of computing their parity. Its
input is from the memory bus.

4.1.7 MA (Memory Address, 18 bits)

This register is the primary source of address to the
memory system. This register is loaded from the AR,
PC, and the console address switches.

4.1.8 PC (Program Counter, 18 bits)

This register holds the program address. It is equipped
with a high-speed counting gate and is loaded from
the MA.

4.1 .9 IR (Instruction Register, 18 bits)

This register holds the instruction during execution.
Its primary input is from the memory bus; however,

the READ-IN DEVICE switches also provide an input.
The instruction register is divided into a 13-bit left
part and a 5-bit right part; these parts are handled
separately during address calculation.

4.1.10 SC (Shift Counter, 9 bits)

In addition to counting shifts, the SC is used for
exponent calculation in floating point arithmetic,
and for position calculation in byte operations. For
these operations, the SC works in conjunction with
the SCAD. The SC has a separate high-speed count­
ing gate of the same type used in the PC. The shift
counter gets inputs from the AR, BR, FE, SCAD and
several llmagic numbers ll used to determine the number
of shifts in multiply and divide operations, or as con­
stants for floating point and byte operations.

4.1.11 SCAD (Shift Counter Adder, 9 bits)

The SCAD is a smaller version of the AD, which is
used in conjunction with the SC. One of the SCAD
inputs comes from the SC, other inputs are provided
by selected bits of the AR, BR, and more "magic
numbers."

4.1.12 FE (Flaating Exponent, 9 bits)

This register holds the exponent of floating point
numbers when all other registers are busy. The reg­
ister is loaded from the SCAD.

4.1.13 PR, PR2 (Protection Registers, 8 bits each)

These registers hold the upper address bounds for the
memary protection feature of the KTlOA options; these
registers are loaded from the I/o bus.

4.1.14 RL, RL2 (Relocation Registers, 8 bits each)

These registers hold offsets that are added to the MA
to form the actual memory address, as a feature of
the KTlOA options; they are loaded from the I/O bus.

4.1.15 PIH, PIR, PIO (Priority Interrupt Hold,
Request, and On, 7 bits each)

These registers are port of the priority interrupt system,
and will be explained in Section 4.5.

4-2

4.2 KA 10 BASIC CYCLES

During the execution of each instruction, the central
processor goes through at least five basic cycles.
These basic cycles are:

Instruction Cycle - used to retrieve the instruc­
tion from memory.

A Address Cycle - used to compute the effective
address.

F Fetch Cycle - used to fetch the operands from
memory and ACs.

E Execution Cycle - used to perform a basic
instruction or to begin execution of a more
complicated instruction.

S Store Cycle - used to return the results to
memory or ACs.

The term IIcycles" as used in the KA10 has a differ­
ent meaning than in most computers. In the KA10
the machine is soid to be in a given cycle when the
active timing pulse is finding its way through the delay
lines, gates, and PAs that control that cycle. There
are no flip-flops or other multi-stable circuit elements
that determine when a fixed group of clock pulses is
currently producing a given cycle. Each of the fol­
lowing cycle descriptions is referenced to a flow
chart. The I and A cycles are shown on the lAC flow
diagram; the F cycle on FC flow diagrams, and the
E and S cycles on the ESC flow diagram. These dia­
grams are included in Volume II of this manua I. For
those readers not familiar with DEC logic standards
and flow diagrams, Appendix A contains a brief
review.

4.2.1 Instruction Cycle (See Drawing KA la-O-IAC)

The instruction cycle has only two time pulses, ITO
and ITl. The ITO pulse begins each instruction,
either as a result of the completion of the previous
instructions, or from some console action, coming
from KT4. ITO, through MR CLR (called "mister
clear"), clears a II registers, and loads the MA with
the address of the next instruction.

Th is address norma lIy comes from the PC, but may,
in some cases, a I ready be in the M.A., or be a tra p
address determined by the priority interrupt system.
The IR input gates are also enabled to allow the left­
most 18 bits of the instruction word, which is re­
trieved from the memory system, to enter the IR. The
entire instruction word wi II also enter the AR, as it
does during all memory read operations.

Having established the above conditions, the IFO
flip-flop is set; this flip-flop informs the memory
control logic where it should return when the instruc­
tion word has been read from the memory system.
This is an example of the "hardware subroutine"
concept. Control is passed to the memory control
logic via the read request input. At the completion
of the memory operation a MCRSTl pulse is gener­
ated. (Because this pulse is common for a II memory
operations, it will be discussed later. The timing
wi II return to ITl since only the IFO flip-flop is set;
this flip-flop is only one of a group of flip-flops that
gate the MCRSTI pulse.)

At ITl, the M.A. is cleared in case it is required later
and the input gates to the IR are disabled. The left­
most 13 bits of the IR hold the operation and accumu­
lator parts of the instruction word and do not change
during the address calculation. The right-most 5 bits
are the indirect address and index bits and will be
zeroed by the address calculation algorithm. The
signal flow then branches in one of three ways, de­
pending on whether a priority interrupt is requested
and whether indexing or indirect addressing is called
for. The priority interrupt system is covered in detail
in Section 4.5 of this chapter. The normal case is to
enter the address cyc Ie.

4.2.2 Address Cycle (See Drawing KA 10-0-IAC)

The first part of the address cycle computes the sum
of the address and the index register (if indexing is
called for). Data fetches from registers are compli­
cated by the fact that the interna I fast-register block
(KMI0) is optional; thus, each time a register is re­
quired, a decision must be made as to its location:
whether it is internal to the KA 10 or in the memory
system. ATl (Address Time 1 pulse) prepares for this
register data fetch by saving the address part of the
instruction in the BR and clearing the AR. The con­
trol signal path then branches depending on whether
MC FM EN is false or true (memory control fast
memory, enable); if false, the register data fetch is
made from a memory register by a fast memory read
request; if true, the contents of the index regi ster are

4-3

loaded into the AR by A T2 after a short de lay to allow
the internal address decoders to set up. Previously,
the fast memory address decoders were set to the XR
part of the IR by the MR C LR pu Ise • Both paths
produce A T2 with the same result.

The delay after AT2 allows the adder to set up the
sum of the address in the BR and the index register in
the AR. (The appropriate adder enable conditions
were previously set by the MR CLR pulse.) At AT3
the sum is loaded into the AR, if indexing was called
for and the original contents of the AR are saved in
the BR for later use by the JRST instruction. The left
ha If of the AR is cleared, if the address is to be used
as an immediate operand, and the fast memory de­
coders are set to examine the AC part of the IR, in
preparation for fetching data from an accumulator.

After a delay to allow the contents of the AR to
settle, the indirect bit of the IR is examined. If the
indirect bit is set, pulse AT4 occurs next. This pulse
loads the M.A. with the computed address and requests
a new instruction to be fetched. The only difference
between this and ITO is that the MR CLR pulse is not
produced and the left part of the IR is not disturbed,
thereby retaining the same instruction. If the indi­
rect bit is cleared, the address cycle is terminated by
AT6 which loads the M.A. with the calculated effective
address. Byte instructions (134-137) set the IR gati ng
to allow the index and indirect bits of a pointer word,
which will be fetched during the fetch cycle, into
the IR. Control of the processor is then given over to
the fetch cycle.

4.2.3 Fetch Cycle (See Drawing KA lQ-Q-FC)

The fetch cycle retrieves operands in the following
order:

a. memory,

b. accumulator,

c. miscellaneous operands.

After AT6, a decision regarding the memory operands
is made. If the instruction requires a memory operand
that wi II not be returned to memory, the FCE condi­
tion (Fetch C(E» wi II be true, and FTO wi II occur;
however, if an operand, which will be modified and
then returned to memory is required, the condition,
FCE PSE (Fetch C(E) Pause}, will be true and FTI
will occur.

The pulse FTl occurs after a delay to allow the
MA lS-31 = 0 gate to set up. Because the fast reg­
isters do not have the destructive readout charac­
teristics of core memory, no read-modify-write cycle
is provided for them. Hence, any reference to an
accumulator will be made as a straight read reference.
The MC SPLIT CYCLE SYNC flip-flop forces all
read-modify-write cycles to be made as separate
reads and writes. Instructions that do not require
memory operands, and most immediate mode instruc­
tions, proceed directly to FTlA; however, floating­
point immediate instructions take the immediate
mode operand in the left half, so, at FTS, the halves
of the AR are swapped.

At FT lA, the memory operand, if any, is placed in
the BR (except for a JRST instruction, which pre­
serves the previous contents of the BR to use in re­
storing the arithmeti c flags, if they are required).
The next decision that must be made is whether or
not an accumulator is needed. (By coincidence,
any instruction that does not need an accumulator
does not need a miscellaneous operand.) If no AC
is needed, FAC INH (Fetch AC Inhibit) will be true,
and signal flow will proceed directly to FT9, the
end of the fetch cycle. If an AC operand is required,
this is picked up by FT2 and FT3, in a manner simi­
lar to ATl and AT2 in the address cycle. At FT3, if
the next higher AC will also be required, the fast
memory address decoder is set to examine the accumu­
lator part of the IR incremented by one. If no further
operands are required, control again is given over to
FT9.

Of the remaining fetches, there are three categories.
These are:

a. FAC2 (Fetch AC2)

b. FCCACLT (Fetch the C(C(AC)left»

c. FCCACRT (Fetch the C(C(AC) . ht»
rIg

These additiona I operands are placed in the MQ.
However, the only path from memory or the fast reg­
isters is into the AR; hence, as a first step, the AR
is saved in the MQ (via the adder). The operand is
then fetched, and the AR and MQ interchanged.
For the second category of fetch, the FAC2, FT4,
FT5, and FT 4A accomplish the task. For FCCACRT,
the address is in the right half of the AR, which was
the AC just fetched. This address is placed in the
MA at FT7, and an ordinary read cycle is then re­
quested, returning to FT4A. For FCCACLT, FT6
interchanges the halves of the AR to get the left-hand

4-4

address into the MA at FT7. FT4A restores the fast­
register address to the first AC in anticipation of the
store cycle, and then goes to FT9.

FT9, the end of the fetch cycle, normally increments
the PC unless the instruction specifically asserts
PC+l INH: the pulse also sets up gating for the
adder, as necessary, for the individua I instructions.
The KEY SYNC RQ flip-flop is sampled at this time
to determine whether there will be a key cycle at
the end of this instruction. Control now advances to
the execute cycle.

4.2.4 Execute Cycle (See Drawing KA lO-0-ESC)

Flow through the execute cycle, though simple,
accomplishes the functions of most instructions. This
description concerns flow only; the other actions are
covered in the detailed description for each instruc­
tion. The first condition examined in the execute
cycle is EFO LONG; this condition determines
whether the subsequent ETO pulse is to be delayed
for a long or short time after FT9. If the adder is
being used for a full-add function (and hence, needs
to propagate carries), EFO LONG will be asserted,
choosing the longer delay. ETO sets the adder enables
to the state necessary during the store cycle if the
next pulse wi II be STl. Two conditions determine
what takes place next: E LONG calls for ETl and
ET2 to occur; ST INH (store time inhibit) means that
the current instruction has an additional timing chain
of its own which wi II occur as the result of one of the
execution pulses. Unless the ST INH condition is
asserted, control will progress to produce STl, after
either ETO or ET2, with the adder output holding the
contents of the BR.

4.2.5 Store Cycle (See Drawing KA lo-o-ESC)

The store cycle is entered from the execute cycle at
STl, or at STO from the individual instruction timing
chains. The STO pulse is provided to set up the adder
for subsequent store cycle operations. The store
cycle attempts to skirt around as many pulses as pos­
sible, consistent with what has to be done; hence,
there are many paths from STl to ST9. STl stores
the AR in the fast registers, if they are present, and
AC store is not inhibited.

If no other registers are to be stored, control passes
directly to ST9; however, if the current instruction
was performed as the result of a priority interrupt,
pulse STlA and a delay are squeezed in to allow the

PIOV and PICYC flip-flops to clear before progressil)g
to ITO.

If the content of an AC is to be stored, and the fast
registers are not present, pulse STl requests a fast
memory write, and control eventually returns to ST2
after the memory subroutine.

Control also reaches ST2 when the content of a second
AC is to be stored, or when the result to be stored in
memory is in the BR (the BR data is not the same as the
AR data: SAR -I BR). When a second AC is stored,
the fast register address is changed to that of the
second AC. When a result is to be stored in memory
from the BR, the AR is loaded from the adder, which
contains the BR.

ST5, ST6, and ST6A perform the storing of a memory
result. ST5 is used when the memory result is modi­
fied from a word previously used from the same loca­
tion (at FT1). Pulse ST5 may be produced as the
result of ST2, or directly from ST1. Pulse ST6 per­
forms ordinary memory writes and also may be pro­
duced as the result of either ST2 or STl. After re­
turning from the memory subroutine, the -store cycle
ends if the second AC was not required. When data
is stored in a second AC (SAC2), ST7 will retrieve
the data from the MQ and, after a delay, STS will
either put this data into the fast registers or wi II ca II
the memory subroutine to store the data in memory.

ST2 also has a direct path to ST9 in the event that
ST2 was necessary on Iy because of the lack of fast
registers. At ST9 a decision is made whether to start
a new instruction or to enter the key logic cycle.

4.3 KA 10 BASIC INSTRUCTIONS

The basic instructions are so called because they
require no timing pulses other than those from the
basic cycles. These instructions are covered as they
appear on basic instruction flow diagrams BIF1, BIF2,
and BIF3 in Volume II of this manual.

4.3.1 Boalean

The Boolean group includes 16 instructions in 4 modes.
These instructions perform all possible functions of
two variables; they are decoded as BOOLE 0 through
BOOLE 17 (octal). The mnemonics appear below the
relevant flow chart section. The E LONG condition
is selected for those functions requiring the comple­
ment of the AC and/or the other variable. Operands

4-5

are fetched only when necessary, because some cases
are degenerate. The adder is set by FT9 to give a
true or complemented BR, or the complemented AR,
or the equivalence (XOR) of the AR and BR. At ETO
the result is either jammed, ORed, or ANDed into
the AR. For all except the four long instructions,
control goes directly to STl; for the long instructions,
ET 1 and ET2 form the comp lement of the A R.

4.3.2 Add, Sub

The distinction between these two groups of four
instructions is made at FT9, when a subtract selects
the 21s complement of the BR by taking its complement
plus one. The result is then put into the AR at ETO,
and if required, the overflow and carry flags are set.

4.3.3 Full Word Transfer (FWT)

The FWT group is composed of the four variations of
MOVE. If negation is possible, EFO LONG is
selected to allow enough time. AD AR NEGATE
sets the adder gating for the complement of the AR
plus one. This result may be strobed into the AR at
ETO, or may be ignored if the instruction is MOVMX
and the AR is a Iready positive.

4.3.4 Half-Word Transfer (HWT)

The HWT group is divided into two independent sec­
tions. The second section, requiring E LONG,
includes only the following four of the 64 instructions
in the group:

a. HRL

b. HLR

c. HRLI

d. HLRI

These four instructions have the property of being a
function of both the BR and AR, and that the BR (or
memory) argument must have its halves swapped. In
this group, ETO interchanges the AR and BR, and at
ETl the bits are shuffled in the AR as necessary.

The first HWT section contains the remaining 60
instructions, which, for the most part, require only
one operand. If a \I ls are needed for a ha If word,
the adder is first set up with both BR+ and BR- inputs

active, thus, guaranteeing a 1 in every bit position.
At ETO, either the destination half of the AR is
already correct (HLLXX or HRRXX), or the other half
of the AR is loaded into it (HLRXX or HRLXX). The
other half either is available from the adder, or will
be O. For HXXEX instructions, a special term called
HWT E TEST is used: this term looks at the correct
bit of the AR to determine the sign of the result.

4.3.5 Exchange (EXCH)

This instruction interchanges the memory and AC
operands and uses the SAR I BR signa I to have the
two results handled separately. This instruction re­
quires only ETO which interchanges the AR and BR.

4.3.6 Unimplemented User Operation (UUO)

The most difficult part of UUOs is deciding when an
instruction is a UUO. Operation codes 000 through
127 are always UUOs; operation codes 130 through
177 are UUOS if the IR FP TRAP SW is on, which
usually signifies that the KE10 extended order code
is not present. The JRST instructions become UUOs
when they ca II for a ha It, or ca II to restore the PI
system when the system is in user mode, but not in
user lOT mode. (The signa I EX ALLOW lOTS covers
the user lOT condition.) Operation codes 700
through 777 are lOTs and become UUOS except when
EX ALLOW lOTS is true or when a PI cycle is in
progress.

The basic effect of a UUO is to store the instruction
given (with the effective address calculated) in one
location and to execute the instruction at the next
location. The location used by the UUOs varies:
most UUOs are not relocated, even if in user mode.
All UUOs (except operation codes 001 through 037)
trap to absolute lower memory locations, independent
of user mode. Operation codes 001 through 037 trap
to user location 40, if in user mode. Non-relocated
UUOs trap to absolute locations 40, 60, 140, or 160
depending on the following conditions: operation
codes 100 through 177, when UUOS, add 20 to the
basic address of 40; the MA TRAP OFFSET switch
adds 100. This switch is used to move the UUOS in
multiprocessor systems when it is undesirable to have
both processor UUOs trap to the same location.

The MA register is preserved in its 0 state throughout
the fetch cycle, and hence, at ETO, the trap address
bits can be ORed in, but are controlled by the con­
ditions explained above. All non-relocated UUOs

4-6

set the EX ILL OP flip-flop, which suspends reloca­
tion to allow the instruction at the non-relocated
address to preserve the state of the user mode condi­
tion. The EXCTF flip-flop is set to signify that the
MA is not to be loaded from the PC by the next ITO,
because the MA contains the address of the next
instruction to be executed, less one. The EUUOF
flip-flop causes the one to be ORed into the MA at
ITO. The UUO instruction is stored during the normal
store cycle, because MA contains the correct address.
The PC+ 1 operation at FT9 is inhibited for the UUO
so, in normal operation, a JSR instruction at the trap
address will cause one PC increment, and store the
address of the instruction following the UUO. If an
interrupt occurs between the UUo or JSR instruction
ordinarily found at the trap address, the UUO will
be restarted from the beginning upon return from the
interrupt routine.

4.3.7 Jump

4.3.7.1 Jump to Subroutine (JSR)

The JSR instruction stores the PC and flag word at the
effective address, and jumps to that address plus one.
The incrementation is done at ET2. All instructions
that store the flags clear BYF6, a flip-flop in the byte
instruction control (for reasons which will be explained
later) •

4.3.7.2 Jump and Save PC (JSP)

JSP saves the PC and the flags in the AC.

4.3.7.3 Jump and Save AC (JSA)

The JSA is another subroutine-calling instruction.
This instruction stores the AC at E, and stores the PC
and E in the AC. Having E in the left half of the AC
allows the JRA instruction (see Section 4.3.10) to
find the storage location of the AC and thus restore
the AC when returning from the subroutine. ETO saves
the AC (which was loaded into the AR during the
fetch cycle) in the BR. The right half of the AR is
replaced by the old PC, which was incremented by
FT9. The PC is loaded from the MA. At ETl, the
old PC is moved to the left half of the AR, and the
new PC (containing E) is loaded into the right half of
the AR. At ET2 the halves of the AR are swapped,
and the PC is incremented to get around the word
currently being stored.

4.3.7.4 Jump and Restore AC (JRA)

The JRA instruction is intended for use as a return
from a subroutine previously entered by JSA instruc­
tions. If the same AC as the JSA used is specified,
the left half of the AC points to the location where
the old contents of that AC were stored. The
FCCACLT level will then cause the fetch cycle to
retrieve the word whose address is contained in the
left half of the AC, and place it in the MQ. The
effective address is usually indexed by this same AC,
thereby getting an address relative to the location
from which the subroutine was called.

The effective address will not be in the MA, because
the MA was previously changed by the FCCACLT,
but wi II be found in the BR. The effective address is
sent to the PC via the MA and AR, using the three
ET time pulses. The content of the AC is retrieved
from the MQ duri ng ETl.

4.3.7.5 Jump on Flags and Clear (JFCL)

JFCL tests for any of the four flags being on, and
clears those that have been tested. The four flags
are specified by the four AC bits of the instruction.
If a detected flag is on, the PC wi II be loaded from
the MA during ETO. If all AC bits are off, this
becomes a "no-op" instruction and is the fastest
"no-op" instruction in the instruction repertoire.

4.3.7.6 Jump and Restore (JRST)

JRST is the simplest unconditiona I jump instruction.
This instruction can do several useful things when
ca lied for by bits in the AC field of the instruction.
IR10 specifies halt, which clears RUN. This option
causes E LONG in order to allow the console lights
to be setup to show the old PC in the MA lights.
Halting is not allowed in user mode, so IR10 changes
the JRST into a UUO when present. IR9 restores the
interrupt system; and is discussed with the priority
interrupt system. IR9 also changes the JRST into a
UUO in user mode.

The IRll specifies that the flags be restored from the
left half of the last word referenced in the address
calculation. For the IRll option to be meaningful,
the JRST instruction should be indexed or indirected.
The BR is saved throughout the fetch cycle so that it
wi II be available for the index or indirect operation.
The flags are in the same stored format as the JSR,
JSP, and PUSHJ instructions.

4-7

IR12 sets the EX MODE SYNC flip-flop which will
put the machine into user mode for the next instruc­
tion. This flip-flop can a Iso be set by restoring the
flags (with IR11) with bit 5 on in the flag word.

4.3.8 Test

The test instructions are another 64-instruction group.
The memory operond is used as a mask to se lect bits
in the AC operand. The selected bits may be tested,
and then either cleared, set, complemented, or left
unchanged. The TDXX and TRXX groups are the same
with the exception that TRXX is an immediate group.
The TSXX and TLXX are a Iso the same except that
TLXX is an immediate group. At FT9, the adder
enablers are set up to provide the true mask for TXOX,
the complement of the mask for TXZX, and the exclu­
sive OR of the mask and AR for TXCX.

Because the halves of the mask in the BR cannot be
swapped, the AR is swapped for TSXX and TLXX by
both ETO and ET2; this accomplishes the effect of
swapping the BR halves. At ETl, the AR is ANDed
into the BR and the adder is set so that the true BR
will be available from the adder at ET2. Simultane­
ously, at ET1 the new result is formed in the AR:
TXOX ORs the adder into the AR, TXZX ANDs the
adder to the AR, and TXCX jams the adder into the
AR. ET2 will increment the PC when the test condi­
tion is true, as determined by the instruction and
whether or not the adder is zero.

4.3.9 Add One to Both and Jump (AOBJ)

There are two instructions in this group: AOBJP (add
one to both halves of the AC and jump if positive)
and AOBJN (same as AOBJP but jumps on negative
result). The addition of one to both halves is accom­
plished by a special adder enable that simulates a
one in bit 17 of the BR input of the adder. Note that,
if the right half of the AC is 777777 before this in­
struction, two will be added to the left half: an
explicit one, and a carry from the right ha If. This
phenomenon takes place in all cases where both
halves of the AR are incremented.

4.3.10 Skips

The Skip group includes instructions in the AOS, SOS
and SKIP classes. AOS and SOS use the FCE PSE
mode, because they add and subtract one, respectively,
from memory locations. Some of the logic conditions

specified by this group are common to the JUMP group
which performs similar actions with respect to ACs.
The FT9 pulse sets the adder enablers for the true AR
(either plus one, minus one, or unchanged).

The adder result is jammed back into the AR at ETa,
and the skip condition is tested. The skip conditions
for the skips, jumps, and comparisons are all encoded
by PC conditions P, Q, and R. These conditions are
logically derived from the skip or jump conditions (as
described in the PDP-10 Systems Reference Manual)
and have been reduced to an OR of six 3-way ANDs.

Conditions Q and R are similar: condition R is used
for the skips and jumps, and depends only on the
adder sign bit (ADO); condition P depends on whether
the adder output is equal to zero and also includes
the "always" skip case. The AOSX and SOSX
instruction groups set the AR flags as indicated.

4.3.11 Jumps

The Jump group includes AOJ, SOJ, and JUMP
classes. These classes are similar to the corresponding
skip classes, and operate on ACs, jumping when the
specified conditions are met. The jump logic is
largely common with the skip group described previ­
ously.

4.3.12 Compare

The Compare group, CAMX and CAlX have the same
modifiers as the skip and jump groups previously
mentioned. The CAMX compares the content of the
AC to memory and, hence, uses the FCE. CAlX is
immediate; the comparison is accomplished by sub­
tracting the memory operand from the AC, and
examining the result in the adder. The conditions
P, Q, and R, mentioned in the skip group, also apply
to the compare group. Condition Q is used in place
of condition R because a subtraction may overflow
and, therefore, AD CON D, whi ch corrects for over­
flow, is used in place of ADO. Condition P remains
the same.

4.3.13 PUSH

This instruction is representative of the PUSH, POP,
PUSHJ, and POP J instructions in that they a II use an
AC as a pointer word. The left half contains a count
that is tested during each of these instructions to
detect whether it has passed through zero; if so, the

4-8

CPA PDL OV flip-flop is set, usua Ily indicating an
error in the program.

The PUSH instruction specifically adds one to both
halves of the AC, and uses the resultant right-half
address as the location in which to store the contents
of the effective address.

4.3.14 Push and Jump

After incrementation, as in PUSH, the PUSHJ instruc­
tion stores the PC and flag word at the address speci­
fi ed by the AC. Here, because the path from the PC
and flags is into the AC, the result of the pointer word
incrementation is loaded temporarily into the MQ,
during ETa. At ET1 the AR is moved to the BR and
the AC is brought back to the AR from the MQ. ET2
loads the address part of the pointer into the MA.
The resu Its are stored as with the PUSH instruction.

4.3.15 POP

POP is the opposite of PUSH; this instruction uses the
FCCACRT part of the fetch cycle to retrieve the word
pointed to by the AC. FT9 sets the adder to subtract
a one from both halves of the AR containing the
pointer. This is accomplished by setting the BR + and
BR - inputs to get the quantity -1; also the AD - 1 LH,
which introduces a zero at bit 17. These actions add
the number 777776777777 to the content of the AR.
At ETa, this result is put in the MQ, and the word
retrieved from memory is brought into the AR from the
MQ. At ET 1, the contents of the AR and BR are
exchanged leaving the data word in the BR, the effec­
tive address in the AR, and the pointer in the MQ.
At ET2, the effective address is placed in the MA and
the poi nter is brought back to the A R.

4.3.16 POPJ

POP J is the subroutine return used to exit from a sub­
routine called by the PUSHJ instruction. Its opera­
tion is identical to that of POP (above) through ETa.
At ETl, the address part of the data word is loaded
into the MA, and the pointer is brought back to the
AR. At ET2, the PC is loaded from the MA causing
the next instruction to be taken from the address
specified in the right half of the word removed from
the push down list.

4.3.17 Execute (XCT)

The execute instruction causes the contents of the
effective address register to be executed as an
instruction without changing the normal instruction
sequencing (unless a jump-type instruction is exe­
cuted). Hence, a skip instruction skips, relative to
the execute instruction, and is independent of its
own location. The only function of the execute
cycle during an execute instruction is to set the
EXCTF flip-flop, which causes the next ITO to use
the address already in the 1M when fetching the
instruction. The PC is not incremented unless the
instruction be ing executed increments it.

4.4 KAI0 ADDITIONAL INSTRUCTIONS

4.4.1 Extended Instructions

4.4.1.1 Shift and Rotate - The shift and rotate group
includes ASH, ASHC, LSH, LSHC, ROT, and ROTC.
The flow of this group of instructions is shown on the
"SMF" flow chart. The XXC instructions cause the
second AC to be fetched and stored in the MQ during
the FAC2 part of the fetch cyc Ie. The direction of
shift is determined by the sign bit of the effective
address (bit 18). A positive number causes a left shift.
Because the SC counts up from a 2's complement nega­
tive number, the correct representation of the number
wi II be loaded into the SC from the BR at ETO if the
effective address is negative. If the BR address is
positive, ETO sets up the SCAD to negate the SC.

Because these instructions specify ST INH, ETO is the
last main-flow time pulse unti I this group returns to
STO. The next pulse will either be SCTO or SRTl;
SRTl is used to negate the SC, if necessary, and then
it goes to SCTO also.

SCTO provides entry to the shift and count subroutine
and is explained in detail below. The various shift
instructions differ only in determining where the bits
at the end of the registers go. The shifting pattern is
shown on the "SCAF" flow diagram. Both the AR and
MQ are shifted for all instructions in this group, be­
cause shifting the MQ does no harm, even though
nothing of interest is contained in the MQ. The shift
and count subroutine returns at SCT4 and is fed direct­
ly to STO for this class.

4.4.1.2 Shift and Count Subroutine - The shift and
count subroutine includes the timing for all places
where a known number of shifts are to be executed.
Because shifting of the AR is done through the adder,
the shift and count logic also does the inner loop of
multiply and divide routines. In addition to saving
logic, this permits the shift speed to be set in only
one place; logic is shown on the "SCBT" flow diagram.

4-9

The shift and count subroutine is made up of pulses
SCTO through SCT4. The first pulse, SCTO, is the
common entry point to the subroutine; this pulse always
sets the adder for the true AR. The BR inputs are con­
trolled as a function of the instruction calling this
subroutine. The SCAD SC + 1 setup is done (mostly for
historical reasons) although a new high-speed counting
circuit has been added to circumvent the SCAD. The
SC STOP Switch is tested, and if on, the SC STOP
flip-flop is set, thus allowing single stepping through
the shift iterations. A delay then allows the adder
gating and the gating which determines bit position
to set up. Control passes to SCT4 immediately, if no
shifts are necessary. SCTl is generated if the SC is
sti II negative and the SC STOP is zero. SCTl counts
the SC using the counting gate (B166s).

The branch after SCTl determines whether any additions
or subtractions are being done this time around; and if
so, squeezes in SCT2 and a delay, which lengthens
the loop time to 280 ns. SCT3 does the actual shifting
as gated by the particular instruction. SCT3 also sets
the adder for the next time around the loop if the in­
struction is a multiply or divide. The basic shift-loop
time is set to 150 ns. This loop is closed by SCT3,
and the sign of the SC is again examined to determine
whether the loop must be repeated. If the SC STOP
is on, control is resumed by pushing CONT on the
console. SCT4 is the subroutine exit, which also
clears the SC STOP, and MSF1, for a multiply.

4.4.1.3 Fixed Point Multiply - The two kinds of fix­
ed point multiplication in the PDP-10 system differ
only in how results are treated. Integer multiply dis­
cards the high-order result word and sets overflow if
the high-order word contains any significant bits.
Multiplication is done directly with 2's complement
numbers. The algorithm is explained in detail in the
System Reference Manual.

Both the MULX and IMULX instructions start by en­
abling the BR + input to the adder, at FT9, which is
used at MSTO. ETO loads the SC with the number
7358 (equivalent to -35 decimal), the number of times
around the shift loop. Control passes from ETO to

MSTO, which rearranges the operands. The multiplier,
or memory operand, is loaded into the MQ, from the
BR, via the adder. The multiplicand, or accumulator
operand, is sent to the BR. The MPF2 flip-flop re­
members whether both operands are negative. This
condition is used later to check for a possible overflow.

MSTl sets the MSFl flip-flop, which controls adder
gating. Whenever MQ34 and MQ35 are equal, the
BR inputs to the adder are disabled. If MQ34 and
MQ35 are 01, the AD MD+ level is generated; this
causes the BR to be added to the quantity in the AR
in the adder. When MQ34 and MQ35 are 10, AD MD­
is generated; this subtracts the BR from the quantity in
the AR. These conditions affect the adder at each
SCT3 pulse in the shift and count subroutine. The
initial adder setup depends only on the state of MQ35
and is done by MSTl. The AR is cleared at this time,
to initia lize the product.

The product is developed in the AR, and is shifted in­
to the MQ, as bits are vacated by the multiplier being
shifted off the right-hand end of the MQ. This pro­
cess is carried out by the shift and count subroutine
(SCTO through 4). During fixed-point multiply, con­
trol returns from SCT 4 to MPT2. Here the last result
is loaded from the adder into the AR while the MQ is
shifted right, thus bringing the sign of the result into
the MQ sign bit. If the result is negative, and both
the operands are negative, the AROV flip-flop is set,
since two negative numbers should have a positive
product. (The only possibi lity of this case is 400000
000000 times itself.)

If IR6 is on, the instruction is a MULX, and control
passes directly to the store cycle via STO. If IR6 is
not on, the instruction is IMULX, and the AR result
is tested for being either all Os or all ls; either con­
dition means that there is no significance in the AR.
The adder enables are set for only the AR+ input, and
if the AR is negative, the AD CRY INS will effec­
tively complement the output of the adder. The AD =
o condition is tested at MPT4 and, if false, AROV is
set. MPT4 also brings the result in the MQ back to
the AR. IMULX stores only one AC while MULX also
stores the second (unless the instruction was a MULM,
in which case no ACs are stored.)

4.4.1.4 Fixed Point Divide - As with multiply, there
are also two kinds of divide instructions, DIVX and
IDIVX. IDIVX takes a single-word dividend, and
processes it as the low-order word. Because there is
no simple direct 2 1s complement division algorithm,
a method is used which takes the magnitude of the

dividend, but keeps the divisor in complement form.
The fixed-point divide instructions are shown on the
"DIVpl flow chart. The divide instructions take
separate paths until they combine during DSTl, the
divide subroutine which is also used for floating point.
IDIVX sets up the proper dividend in the AR and MQ
registers during the normal execution cycle. At FT9,
the adder is set up to give the negative of the divi­
dend in the AR. At ETO, the negative dividend is
read back into the AR, if the dividend was negative
in the first place. The SC is set up for a count of -35
(decimal) and the adder gates are set for the true AR.

Then, at ETl , the di vi dend is moved into the MQ,
and the AR is cleared. Thus, the AC operand is in
the position of the low-order word in a regular divide
instruction. ET2 shifts the MQ one place left, to re­
move the sign bit. Control then is given over to DSTl
(see below).

Because DIVX may have to negate two words of the
dividend, a special timing chain involving DIVTO
through DIVT4 is provided. The timing chain logic is
also used for floating point division. FT9 sets the
adder for the complement of the high-order dividend
in the AR. ETO sets the SC as in IDIVX and also causes
DIVTO, which has effect only if the dividend is nega­
tive.

DIVTO swaps the MQ and the complemented AR, there­
by leaving the lis complemented high-order dividend
in the MQ and the original low-order dividend in the
AR. The adder CRY 36 input is turned on, to set the
adder for the 2 1s complement of the AR. The DSF7
flip-flop is set, to remember that a negative dividend
was originally present.

Nothing further takes place until pulse ET2, allowing
the adder to set up. Then, if the dividend was origin­
ally negative, control passes to DIVTl which again
swaps the MQ and AR (this time the AR is negated),
leaving the correct low-order dividend in the MQ,
where it belongs, and the complemented high-order
dividend in the AR. The AR answer will be correct,
unless the low-order part was all Os, in which case,
the 21s complement should propagate a carryall the
way to the high-order word. This condition is check­
ed at DIVTl through DIV LOW ZERO COND. This
condition is true whenever (1) a carry propagates al'l
the way through the adder and the instruction is a
fixed-point division, or (2) bits 8 through 35 of the
adder are 0 and the instruction is a floating point
division. Because the AD CRY 36 was previously set,
it is cleared unless the DIV LOW ZERO COND is true.
The other adder enables are set for the positive AR.

4-10

Hence, DIVT3 will either read the identical AR or the
AR+l into the AR.

Control reaches DIVT4 either from DIVT3, or directly
from ET2 if the dividend was originally positive.
DIVT 4 shifts the sign bit out of the MQ, and then
proceeds to DSTl for a fixed-point divi de, or returns
to additional special logic for floating point.

The divide subroutine consists of DSTl through DST7,
and is used for all divides in the KA 10. DSTl sets the
DSFl flip-flop, which controls the direction of shift­
ing (to the left) and the conditions governing AD MD+
and AD MD-. If the result of a division step is posi­
tive (ADO (0)), the magnitude of the divisor should
be subtracted from the dividend; if the result of a
division step is negative (ADO (1)), the magnitude of
the dividend should be subtracted from the divisor.
Because the divisor is in 2's complement form, addi­
tion and subtraction of the divisor must be exchanged
when the divisor is negative. Hence, BRO is effective­
ly exclusive o Red with ADO to determine whether an
addition or subtraction must be made. DSTl sets the
adder gates to initia Ily subtract the magnitude of the
BR from the AR. After a suitable delay, the sign of
the initial result is checked. If the result is still
positive, the divisor is too small relative to the divi­
dend to hold the answer in the current word size and,
therefore, DST7 sets the appropriate overflow flip­
flops and proceeds immediately to ST9, bypassing the
store cycle, so that the initial values are still ayail­
able in the ACs or memory to provide data for deter­
mining the cause of the overflow.

If the first result is negative, DST2 calls the SC sub­
routine which performs the next 35 steps of the divi­
sion (27 for floating point). The bits of the quotient
are the complement of the adder sign bit and enter
MQ35 when the combined AR and MQ are shifted
left. The shift pattern is shown on the "SCAF" flow
chart. At the completion of the shift and count
subroutine, control returns to DST3, which shifts the
last quotient bit into the MQ, and loads the last
remainder bit into the AR, this time without shifting.
The adder enables are once more set according to AD
MD+ and AD MD-. At DST4, the remainder is
corrected if the last step of the division made the
remainder negative. DST4 also sets up to give the
remainder the correct sign; that of the original divi­
dend, stored in DSF7. At DST5, the remainder,
having the correct sign, is loaded into the MQ and
the quotient is brought back to the AR from the MQ.
If this was a fixed-point divide, the adder is set up
to negate the quotient if it is necessary. For a float­
ing point divide, the adder is set to round the quotient.

Control then returns to either the fixed or floating­
point divide logic, whichever is appropriate.

The fixed-point divide logic ends at DIVT5, at which
time the negative quotient is loaded into the AR if the
exclusive OR of the original divisor and dividend signs
were 1. Control then passes to STO, and the store
cycle.

4.4.2 Block Transfer

The BlT instruction is unique in that it may make a
large number of memory cyc les, and, hence, needs
to be interruptable at any point. When interrupted,
the routine must be able to restart where it left off.
The flow for BlT is on the "SCBT" flow diagram.

The BlT instruction initially specifies the PC + 1 INH
condition so that the PC will not be incremented until
all words in the block have been transferred. The
FCCAClT level causes the fetch cycle to pick up the
first data word, whose address is in the left half of the
specified AC. At FT9, the AR will contain the pointer
word from the AC with its halves swapped (to, from),
the MQ wi II contain the first data word, the MA wi II
contain the first "from" address, and the BR will have
the final address (the effective address of the BlT).
FT9 sets the adder enables , which are usedat ET2. ETO
swaps halves of the pointer word back to the original
AR configuration (from, to). At ETl, the "to"
address is loaded into the MA. Then, at ET2, the
data word is brought back to the AR from the MQ,
and the pointer, with both its addresses incremented,
is read into the MQ from the adder. A memory "write"
cycle is requested and the control goes to the memory
subroutine.

The memory control returns to BlT Tl, which sets up
the test by bringing the final "to" address back to the
AR from the MQ and clearing the left half of the AR.
The adder is set to subtract the BR from the AR. Be­
cause CRY 36 was cleared by BlT Tl, the first
time AD17 will be zero is when the final address
equals the current "to" address. Because no bits are
present in the left halves of the AR or BR, AD17 will
just show the carry out of the right half. When BlT
instruction is complete, control goes to BLT T2, which
increments the PC, and goes to STlA, allowing the
PC to settle before going to the next instruction.

If there are more words to transfer, the next pulse is
a BlT T3, which clears the AD BR-EN so that the add­
er controls wi II be the same as they are during a fetch
cycle. The full pointer word is loaded back into the

4-11

AR, and the priority interrupt system is checked for
waiting interrupts. If no interrupt is present, control
returns to the fetch cycle at FT6, the pulse which
prepares for FCCACLT. If an interrupt is waiting,
control passes to the store cycle via STO, which
stores the painter word back into the AC.

4.4.3 Byte Manipulation

The byte manipulation group, part of the KE 1 0 extend­
ed-order code option, consists of five instructions:
LDB, DPB, ILDB, IDPS, and IBP. Byte instructions
are performed in two parts (1) updating the byte
pointer word and generating a mask and (2) isolation
of the actua I byte in the data word. The flow of a II
byte instructions is shown on the "BYTF" flow diagram.

The two parts of the byte instructions are distinguished
by the state of the BYF5 flip-flop; this flip-flop is 0
for the first part, and 1 for the second part. The
levels BYTE PTR INC and BYTE PTR NOT INC divide
the byte instructions into two groups during the first
part of byte i nstructi ons, dependi ng on whether or
not the pointer is to be incremented. The byte instruc­
tions can be interrupted during the middle of a byte
operation. The BYF6 flip-flop is set at the end of the
first cycle, where pointer incrementing occurs. Should
an interrupt occur before the second part can take
place, the state of flip-flop BYF6 is stored in memory
along with the PC. When the interrupt is dismissed,
BYF6 wi II be restored and the byte instruction restart­
ed. However, on the second time through, increment­
ing the pointer again would be erroneous; therefore,
flip-flop BYF6 causes ILDB and IDPB to become part
of the BYTE PTR NOT INC group. The IBP instruction
does not involve the above problem because it is
completed in only one part.

Byte instructions begin with the BYF5 flip-flop off
(shown at the left side of the BYTF flow diagram) .
During the fetch cycle, the index and indirect parts
of the instruction register are enabled to receive the
same parts of the pointer word, when this word is re­
trieved from memory. If the pointer word is to be in­
cremented, it wi II be fetched using the FCE PSE. The
PC will not be incremented on any but the IBP instruc­
tion and the ST INH flip-flop will hold off the store
cycle unti I all the byte logic steps are completed. The
adder wi II be set to increment the AR for BYTE PTR
INC instructions. Control leaves the execution chain
at ETO.

The BYTE PTR INC instructions go to BYTl, which
loads the SC with the position part of the pointer,

from AR bits 0 through 5. SC-EN calls for the second
input of the SCAD to be subtracted from the SC. This
second input is selected to be AR bits 6 through 11,
the size part of the pointer. If the result is negative,
the pointer has moved off the right end of the word,
and wi II have to be moved on to the next word; hence,
control goes to BYT2. BYT2 loads the AR with its old
contents plus 1, and clears the SC. BYT3 loads the
SC with 44 (octal), the position corresponding to the
leftmost bit in the word; this becomes an input to the
SCAD by virtue of its being in the SC. Either this
new position, or the one computed from BYTl is load­
ed into the AR from the SCAD output at BYT 4, thus
replacing the original position. The SC is cleared,
and the pointer is written back into memory. If this
has been an IBP instruction, it has been completed,
and the memory control will return to STlA, in the
store cycle. If the instruction has been an ILDB or
IDPB, control goes to BYT7 from the memory control.

The BYTE PTR NOT INC instructions bypass BYTl
through BYT4, and join at BYT7, after going through
BYT6 to set the SCAD enables in the same configura­
tion as they were at BYTl. BYF4 serves the dual func­
tion of being the return control for the memory sub­
routine and for the shift-and-count subroutine when
making up the byte mask. BYT7 loads the SC with the
negative of the size, because the size has been avail­
able in its negative form from the SCAD for some time.
BYT7 then calls the shift-and-count subroutine, which
shifts Is in the MQ, to the left, making a mask of as
many bits as the byte size calls for. BYT7A loads the
SC with the position of the byte and sets the SCAD to
negate it. Flip-flops BYF5 and BYF6 are set, to in­
dicate that the second part of the instruction is to be
entered, and that i ncrementi ng has been performed (i f
called for). The main adder enables are set in the
same manner as by ITO and control is returned to ITl
where the effective address of the byte pointer is com­
puted. This is possible because the index and indirect
bits of the IR are loaded during the earlier fetch cycle.

If, during the address calculation, an interrupt occurs,
the byte operation wi II be aborted, but the state of the
BYF6 flip-flop will be preserved, as previously describ­
ed. If no interrupt occ urs, the second part of the byte
instruction takes place, this time the instruction is
divided into BYTE LOAD (ILDB and LDB) and BYTE
DEPOSIT (IDPB and DPB). The BYTE LOAD instruc­
tions fetch the contents of E, and go immediately into
the shift-and-count subroutine from ETO, which also
pi cks up the negative of the SC from the SCAD. SCT3
shifts the AR (which contains the byte desired) to the
right, moving the rightmost bit into bit 35. The LBTl
pulse causes the mask in the MQ to be ANDed into the

4-12

AR, preserving only those bits of the AR that are part
of the desired byte. The BYF6 flip-flop is cleared and
control is sent to the store cycle for the completion of
the instruction.

The BYTE DEPOSIT group of instructions starts out in
a fashion similar to the BYTE LOAD group of instruc­
tions. However, this group also fetches the AC. The
shift-and-count subroutine is used to shift the mask and
byte in the AR to the left, simultaneously positioning
both byte and mask. The desired result is that the C(E)
is unchanged when the mask has Os and contains the
bits of the AC when the mask has ls.

DBTl changes the adder enables to the condition of
BR+ only. At DBT2, the three main registers are
permuted such that the AR contains the mask, the BR
contains the byte, and the MQ contains the result
word. The adder is then set for the complement of
the AR, or mask. At DBT3, the mask, in the AR, is
ANDed into the BR with the result that extraneous
bits in the original AC are set to a, and hence, the
only 1 in the BR will be in the desired byte. The AR
is loaded from the adder, producing the complement
of the mask. The adder enables are then changed
again to give the BR+. At DBT4, the MQ is ANDed
into the AR, thereby preserving only 1 bits only in
the area of the result word where the byte is no longer.
Then, at DBTS, the byte is ORed into the AR, from
the adder. Hence, the function performed is: (Byte
1\ Mask) V (C(E)I\- Mask). This group of instruc­
tions then returns control to STO, where the result is
stored back in E. This instruction group does not use
FCE PSE because it is possible to hold up the memory
for several microseconds during the shifting operation.

4.4.4 Floating Point

The floating-point instructions are the second half of
the KE10 extended order code option. There are four
primary subgroups in the floating-point logic, and
three additional special instructions. The four primary
subgroups are FAD, FSB, FMP, and FDV, and the three
special instructions are UFA, FSC, and DFN. The
UFA instruction is covered with the FAD group. In
each of the main groups, rounding and immediate mode
are options.

4.4.4.1 Floating Add and Subtract - This group in­
cludes all variations of FAD, FSB and UFA. The "FAF"
flow diagram covers the operation of this group of in­
structions. The basic scheme of operation of all in­
structions in this group is as follows.

a. Find the operand with the larger (in magnitude)
exponent.

b. Subtract the magnitude of the smaller exponent
from the larger exponent.

c. Shift the fraction of the number with the smaller
exponent to the right by the number of places found
in step b.

d. Add or subtract the two fractions.

e. Un I ess perform i ng a U FA i nstructi on, renorma Ii ze
the fraction of the result by shifting the fraction to
the left unti I its magnitude is between 1/2 and 1 and
subtract 1 from the exponent of the result for each
step of normalization.

f. Combine the resultant exponent (which is the
original, larger exponent, less the number of steps
taken in norma lization), with the norma lized fraction.

The FAD and FSB instruction groups each have an
immediate mode in which the effective address is used
as the operand; however, because the significant part
of a floating point number is in the left half, FT8 in
the fetch cycle swaps the two halves of the AR, provid­
ing an immediate operand having significance in the
left half, and a in the right half. FSB uses the main
execution cycle to negate the memory operand, which
starts in the BR. The operands are interchanged be­
tween the AR and BR, but this is immaterial because
A-B = -B+A.

Instruction UFA causes the fast memory address decoder
to advance to the second accumulator at ETa, because
the UFA has the added function of storing its result in
the second AC. All three operations join at FATl .

Because floating point numbers are in 21s complement
form, a complication results. This complication is
that the exponents of negative floating-point numbers
are in lis complement form. (Because a fraction must
have some bit set, the +1 inherent in 2 1s complementa­
tion does not propagate all the way down to the expon­
ent part of the word; hence, the exponent, consi dered
as a separate number, will be in lis complement form.)

FATl begins computation of the difference in magni­
tude of the exponents by loading the AR exponent into
the SC. If the two operands are of the same sign, the
SCAD is set to subtract the BR exponent from the SC.
If the operands are of different sign, the SCAD is set
to add the exponent in the BR to the SC. The main
adder is set to hold the BR+. At FAT2, the result of
the previous operation is loaded into the SC. The

4-13

desired result is the 2's complement difference of the
exponent magnitude because this result is needed to
control the shift-and-count loop. At FAT2, four
classes of result are possible.

a. If the result is negative (and the signs of the AR
and BR are equal) the correct result already exists
because a 2's complement subtraction was performed.
In this case, all SCAD functions are disabled, causing
the true SC to appear at the SCAD output when the
next time pulse occurs.

b. If the result is positive (and the signs agree) the
result must be 2's complemented to obtain the correct
negative difference.

c. If the result is negative (and the signs are differ­
ent} , a l's complement number is added to the positive
number and, hence, a 1 must be added to the result
to get a 2's complement result.

d. If the result is positive (and the signs are different)
the result is too small by 1; therefore, l's complement­
ing this number will produce a correct 2's complement
result (Note: -(x+l) = (x+l)' +1= x' +1' + 1 = x' where
, = l's complement).

At FAT3, the final correct difference is loaded into
the SC, and FAT3A wi II be produced if the sign of the
SC is the same as the sign of the AR. FAT3A causes
the AR and BR to be interchanged, bringing the number
with the smaller exponent into the AR. This is true
because the sign being examined in the SC is that
loaded by FAT2 and is the result of a straight sub­
traction of exponents. If the signs are equal, then
the number originally in the AR is larger, because
the subtraction does not change its sign; hence, the
numbers in the AR and BR must be swapped.

The branch following the delay after FAT3 determines
whether it is necessary to shift the smaller number to
the right. If the exponents differ by an amount great­
er than 54, all significance in the smaller number is
shifted off the end of the MQ, so that it is not neces­
sary to take time to shift. Because the number 64 is
easier to test for, the logic tests whether the SC has
a negative number of the form ?XX or a positive
number (which can only be 0, because of the logic
from FATl through 3) before operation goes to FATS
and the shift routine. FAT4 occurs when this condi­
tion is not met, and clears the AR and SC, to set up
the adder for the add to come. FATS spreads the AR
sign over the AR exponent because the exponent
would cause problems if shifted with the rest of the AR.
With this operation done, the fraction in the AR is

effectively a 36-bit fixed-point number. Bits leaving
the right end of the AR register during floating-point
shifts enter bit 8 of the MQ, because the high-order
bits of the MQ are used for determining the exponent
in long-mode operations. The AR sign is unchanged,
thereby propogating itself into all vacated bits to the
left of the fraction. The shift path is shown on the
"SCAF" flow diagram.

When shifting has been completed, control returns
directly to FAT6 (where FAT4 also goes). FAT6 picks
up the BR exponent, the exponent of the answer. The
SC will have been cleared by FAT4, or the shift-and­
count subroutine, so the SC+BR setup will just give
the BR exponent. When FAT? occurs, the exponent is
loaded into the SC, and the exponent part of the BR is
smeared with the BR sign, once more, to make the BR
number appear as an effectively fixed-point number.
The SCAD is set to complement the SC(in case the BR
was negative and the exponent was in l's complement
form). FAT8 finally performs the actual addition of
fractions, and, if necessary, picks up the complement
of the resulting exponent so that the exponent wi II
always be positive when going into the normalization
operation. Control then passes to the common normal­
ization routine used for all floating point operations.

4.4.4.1.1 Normalization - The normalization logic,
shown on flow diagram "NRF," performs several func­
tions for the floating point operations.

a. The normalization logic takes care of the case
where the sum of two fractions exceeded 1 in magni­
tude, thereby overflowing into bit 8.

b. This logic brings the first significant bit into bit
9 from the right, if any significant bits exist in either
the AR or MQ.

c. For all but division operations, this logic handles
rounding.

d. This logic inserts the exponent into the result word.

e. This logic fixes up (modifies) the MQ for long
mode, except for division.

The normalize logic begins at NRTO (called NR for
normalize - return, because it returns to the main
timing sequence). The SCAD is set to count up by one,
and the main adder is set to have the AR+ enabled.
After a delay, if the AR result (shown in the adder) is
all Os, and either MQ bits 9 through 35 are all 0, or
this a floating-point divide operation, the NR ALL

4-14

ZERO condition is true. In this case control is sent
directly to NRT99 and then to STO. If the NR ALL
ZERO condition is false, control wi II pass to NRTl .
In addition, NR SH RT COND wi II also be true if the
AR sign differs from AR bit 8 {the overflow bit for the
fractional addition}, or if bit 8 is set and bits 9 through
35 are all O. This latter condition is necessary to de­
tect the case of exactly -1 as a fraction, whi ch must
be turned into -1/2 with an increased exponent. When
NR SH RT COND is true, the AR is shifted right one
place, and the incremented exponent is loaded into
the SC from the SCAD. The MQ is also shifted, unless
in a floating point divide instruction, because in that
case the MQ does not contain an extension of the
quotient, but rather contains a remainder.

For all non-trivial cases, flow proceeds to NRTl,
which sets the SCAD to complement the SC. This
step is necessary for normalization operations going
to the left because the exponent needs to be decre­
mented. Exponent decrementi ng is accomp Ii shed by
first complementing, incrementing as necessary, and
then recomplementing. The output of the delay after
NRTl combines with the output of the delay from
NRT2 and tests for the NR NORMAL condition. A
number is normalized when ARO is different from AR9,
or the fraction is 400 000 000 (i . e. , AD9 (1) 1\ AD
10 through 35 == O); also the UFA instruction forces the
NR NORMAL condition to be true.

If the number in the AR is not yet normalized, the
NRT2 delay loop is circled {each time loading the
SC from the SCAD} shifting the AR left, and shifting
the MQ left if not in FDV. The first time through
N RT2, the complement of the exponent is loaded i n­
to the SCi however, because NRT2 does a SCAD SC+1
SETUP, all successive times through the loop wi II give
increments. When the number is normalized, control
passes to NRT3, which performs the final increment
into the SC, and sets up to recomplement the expon­
ent. If the exponent was normalized to begin with,
the NRT3 pulse will pick up the complement, which
was set up at NRT1 .

Following the delay after NRT3, the rounding condi­
tion is examined. NRF1 is set when rounding has
already occurred, or when rounding is not desired,
when it might otherwise occur; in parti cular, during
FDVR, rounding is done by a different algorithm. The
NR ROUND condition is NRF1 {O} AND IR6(l} AND
MQ8(1} AND NOT {MQ9-35 == 0 AND ARO(l}}. In
this situation, IR6(l} indicates an "R" mode instruc­
tion is present, MQ8{1} indicates that the magnitude
of the fraction in the MQ is at least 1/2 and that, if
the AR is negative, the magnitude of the fraction in

the MQ is not exactly half. The last condition {NOT
(MQ8-35 == 0 AND ARO{l))) is necessary because nega­
tive numbers truncate in the more negative direction
in 21s complement. An additional consequence of 2 1s
complement arithmetic is that the fraction in the MQ
is always positive, so that a negative number in the
AR {which is inexact and therefore has additional
bits in the MQ, will be an additional "one" more
negative. As an example, consider the number -1
in the AR: 777777 777 777. Then -1-1/4 is
777777 777 7776 in the AR and 001 400000 000 in
the MQ using MQ8 as the most significant bit}. This
number when rounded wi II become -1 , and hence 1
has to be added to the AR. Note that MQ8 was a 1 .
By a simi lar argument, -1-3/4 should become -2. In
this case, the MQ would contain 000 400 000 000,
with MQ8 a 0, which wi II not cause the AR to be
changed. The MQ holds 001 000 000 when -1-1/2
is represented. Here MQ8 is a 1, but the desired
result is -2. This special case is picked out by the
logic, to prevent incrementing of the AR.

If NR ROUND is true, control proceeds to NRT6,
which loads the SC with the recomplemented exponent
{now in positive form}, sets the adder to add one to
the AR, and sets NRF1, indicating that rounding has
occurred. NRT7 loads the AR with the incremented
fraction, and returns control to NRTO. This loop is
necessary since the fraction may no longer be normal­
ized, because the one which has been added may have
caused overflow in bit 8. The easiest way to handle
the problem is to proceed through the entire renormal­
ization process.

If NR ROUND is not true, control goes from NRT3 to
NRT4. NRT4 loads the positive exponent into the SC,
and if the AR is positive, disables all inputs to allow
SCAD to hold the true number in the SC. The over­
flow and underflow conditions are checked on the
contents of the SC, prior to being recomplemented.

4-15

If SCO is 0, then the true exponent would have a 1 in
bit 0, and therefore be invalid. This condition sets
the overflow flag and the floating-point overflow flag.
If both SCO and SC1 are 0, then the exponent under­
flowed, meaning that the sum of two exponents is
negative. NRT5 returns the exponent to the AR, via
the SCAD. If the AR is negative, then the SCAD SC
COMP enables are left on at NRT4, and the comple­
ment of the exponent is used.

Following NRT5, floating-divide instructions return
to their own special timing chain. Long-mode float­
i ng-poi nt operati ons, other than FDVL I proceed to
NLTO. All other operations are completed. NRT99
provides a common exit for the normalize subroutine
and returns to STO.

The "long" mode of the floating-point operations re­
turns a second accumulator which contains additional
significance for addition, subtraction, and multiplica­
tion, and the remainder of divisions. The division
case is handled separately. The major task of the
"NL" timing chain is to give the low-significance
word an exponent that is 2710 less than the exponent
of the word in the AR.

N LTO sets the SCAD to subtract 338 (2710) from the
exponent in the SC. At NLTl, this exponent is load­
ed back into the SC, and the high-order result is
temporari Iy moved to the MQ. If the reduced ex­
ponent is still positive, the MQ {which contains the
low-signifi cance bits} is brought into the AR; if the
reduced exponent underflows, the AR is cleared. The
underflow of the low-order exponent is not consider­
ed an error. NLT2 shifts the AR to the right one
place, moving the most-significant bit into bit 9.
All floating-point shift operations use bits 8 through
35 of the MQ to preserve significance and, hence,
the result must be moved right one place at the end.
The SCAD enables are cleared by N LT2, leaving the
true low-order exponent at the SCAD outputs. At
NLT3, the exponent is loaded into the AR if the frac­
tion is non-zero. Lastly, NLT4 interchanges the MQ
and AR, returning the result to its proper position.
Control then passes to NRT99 and STO.

4.4.4.2 Floating-Point Multiply - The steps that
perform floating point multiplication are:

a. Compute the resulting exponent as the sum of the
magnitudes of the exponents of the operands, less
200 (octal).

b. Perform multiplication using the standard multi­
plication algorithm.

c. Normalize the result using standard NR logic
and "long" mode logic, if necessary. The exponent
calculation is a common routine used for both floating­
point multiply and divide instructions.

4.4.4.2.1 Floating-Point Exponent Calculation -
Floating-point exponent calculation is complicated by
the fact that exponents can be either true or comple­
mented depending on the sign of the full word contain­
ing them. The problems here are similar to those en­
countered in the floating-point add exponent situation.
For floating-point multiply, the FP routine is entered
directly from ETO, but floating-point divide instruc­
tions may use additional logic before reaching FPTO.

FPTO loads the SC with the exponent of the AR oper­
and. If the AR is negative, the SCAD is set to com­
plement the SC, to get the true exponent. At FPTl ,
the true exponent is loaded into the SC, and the BR
input to the SCAD is enabled. The condition FP EXP
ADD, determi nes whether the BR exponent is added to,
or subtracted from the SC. The FP EXP ADD condi­
tion is true for divides; if the BR is positive; and is
true for multi plies, if the BR is negative. Unfortunate­
Iy, this signal is misnamed, because if FP EXP ADD is
true, the exponents are subtracted, and if false, the
exponents are added. The SCAD +1 EN is set for
divides because the desired result is the difference be­
tween the magnitudes of the exponents and if the FP
EXP ADD condition causes the exponents to be added,
it is because the BR is negative. Therefore, the ex­
ponent in the BR is in l's complement form and needs
a 1 added to get a 2's complement result. For the sub­
traction case, the addition of 1 is necessary in 2's com­
plement as usual.

FPT2 loads the result of the previous calculation into
the SC, and cuts off the BR inputs to the SCAD, en­
abling the number 2008 , instead. The 2008 is needed
because exponents are Kept in excess 200 notation
{which makes it possible to use fixed-point comparison
operations on floating-point numbers}. If two expon­
ents are added, it is necessary to subtract out 1 of the
excess 200; if exponents are subtracted, the excess
200 must be added again. For divisions, the SC+EN
is set, to add the 200, and for multiplies, SC-EN
causes the 200 to be subtracted {in 2's complement}.
At FPT3, the exponent parts of the AR and BR are
reduced to sign bits, because no further use wi II be
made of them, and having them as sign bits simplifies
the multiplication or division that follows. The final
exponent is loaded into the FE register from the SCAD,
where it stays while the SC is being used to count
iterations of the multiply or divide. For multiplica­
tion, the SC is cleared prior to being loaded with the
number of shifts. For division, the exponent is loaded
into the SC because it may have to be manipulated
once more. The SCAD is set to increment the SC,
and main adder enables, which may have been set
earlier in division, are cleared. Multiplication flow
proceeds to FMTl and division flow to FDT1.

4.4.4.2.2 Multiplication and Normalization - After
returning from the floating-point exponent calculation
routine, FMTl sets the SC to 745, which calls for 27
(decimal) shifts. This is the number of significant bits
in floating-point fractions. Because the shift path be­
between the AR and MQ enters the MQ at bit 8, 27
shifts are sufficient to align the product correctly in

4-16

the AR and MQ. The adder BR + EN is set (prior to
permuting the operands); this is necessary to get the
memory operand into the MQ and AC operand into
the BR. At this point, floating-point multiplication
joins the fixed-point multiplication logic through
SCT4. This operation has been explained in detail
in Section 4.4.3. After SCT4 (this is a floating-point
multiply), control returns to pulse FMT3 where the
final result in the adder is loaded into the AR, and
the last multiplier bit (contained in MQ35) is cleared.
The SC will be 0 on return from SCT4, so the expon­
ent can be ORed into the SC prior to going to the
normalization return routine (which completes the
floating-point multiplication).

4.4.4.3 Floating-Point Divide - The floating divide
instructions in the PDP-10 system are the most com­
plicated in the machine. The FDVL instruction
(floating-divide long) has considerable additional
complication because it requires a double length
operand and gives a remainder as part of the result.
The following steps are taken as part of a floating
divide.

a. Take the magnitude of the di vi dend, remember­
ing its original sign.

b. Compute the exponent of the quoti ent •

c. Test to see if the magnitude of the dividend is
greater than the magnitude of the divisor; and, if
greater, shift the dividend right one place and in­
crease the quotient exponent by one.

d. Set the shift count for the divide loop, taking
one extra step when rounding is called for.

e. Call the divide subroutine to perform the actual
division.

f. Round the quotient on the basis of an extra bit
developed in the quotient, when called for.

g. Normalize the result using the normalize sub­
routine.

h. Recomplement the quotient, if necessary, and
return to STO unless the instruction is FDVL.

i. Refetch the dividend to get its exponent.

i. Subtract 27 (decimal) from this exponent (or 26
if step c above was necessary).

k. Affix the exponent to the remainder unless the
exponent underflowed or the remainder is zero.

I. Return the results to the usual registers and re­
turn to STO.

The description of the floating divide routine is
shown on the "FDVF" flow chart. The FDVL instruc­
ti on fetches both ACs, and uses the earl y part of the
fixed-divide timing chain (DIVTl through DIVT4) to
take a two-word magnitude. This operation can be
followed in the description of fixed-point divide in
Section 4.4.1.4. All other floating-point divide
instructions have a one-word operand whose magnitude
is taken by FT9 and ETO. At this poi nt a II floati ng
divide instructions go through the floating-point ex­
ponent calculation subroutine previously explained in
the floating multiplication description, Section
4.4.4.2.1. The floating-point exponent calculation
takes the difference between the magnitude of the ex­
ponent of the dividend and that of the divisor. After
returning from FPT3, FDTl sets up to subtract the
magnitude of the divisor from the dividend to check
for overflow. In order for the remainder to be correct,
the number of quotient bits which must be developed
to yield a normalized result must be precomputed.
Assuming normalized arguments (in the range 1/2 to
1), the quotient must lie between 1/2 and 2. If the
dividend is larger than the divisor, yet still normal­
ized, the quotient must lie between 1 and 2. If this
is the case, an equivalent answer is obtained by
shifting the dividend to the right one place and in­
creasing the exponent of the quotient by 1, yield-
ing a fractional quotient between 1/2 and 1. Through
this stratagem, the quotient of any two normalized
numbers wi II itself be normalized, and hence, the
remainder wi" be correct.

4-17

If bit ADO is 0 following FDTl, the result of the sub­
traction is still positive, indicating that the dividend
in the AR was larger; hence, FDT2 is generated, re­
setting the adder to hold only the AR, and clearing
the FE. FDT3 shifts the entire dividend, in the AR
and MQ, right one place and also reloads the FE
with the increased exponent. The SCAD was previous­
ly left holding the increased exponent by FPT3. Flip­
flop FDF3 remembers that this step was taken, for
later use in handling the exponent of the remainder
for a FDVL instruction. The two paths merge at FDT 4,
which clears the SC in preparation for FDT5. FDT5
loads the count of the number of shifts to make during
actual division. An extra step is called for if the
rounded mode is used. This extra bit is squeezed out
later after it is used to round the result.

FDT5 calls the division subroutine (whose operation
is described in Section 4.4.1.4). Following DST5,
control returns to FDT6 (which achieves rounding
because DST5 previously set the adder to add one to
the quotient). FDT6 shifts the quotient right one
place because one extra quotient bit is developed
when rounding is indicated. If this bit is 0 the plus 1
would have made the bit a 1; however, the 1 would
be shifted off the right end anyway. If the extra bit
is a 1, then a +1 would have incremented the quo­
tient. FDT6 also retrieves the exponent of the quo­
tient from the FE, and sets NRF1, to prevent the
normalizing routine from rounding. Control is then
given over to the normalizing routine, for the follow­
i ng reasons.

a. If the operand was un-normalized, the result will
be normalized, and

b. the normalizing routine has the logic required to
insert the exponent into the quotient. For floating
divide instructions, the normalizing routine returns
control to FDT7 from NRT5. FDT7 sets up to negate
the quotient and at FDT8 this negative is taken if one
and only one of the original operands is negative.
The adder enables are set back to the true AR, only.
After FDT8, control is sent to STO for non-long float­
ing divides because the correct quotient is now in the
AR.

FDT9 moves the quotient to the BR, clears the AR,
and clears the SC in preparation for retrieving the
original dividend, again. This step is necessary be­
cause the remainder must be given an exponent of as
many powers of two less than the dividend as there
were steps of division. The AC is retrieved in the
usual way by FDTlO, or by the memory subroutine.
At FDT11, the exponent of the dividend is loaded
into the SC. The remainder is brought into the AR
from the MQ, and the SCAD is set to either add or
subtract 32 or 33 (octal). Addition occurs if the
dividend, and hence its exponent, is negative; sub­
traction occurs if the dividend, and hence its ex­
ponent is positive.

The number 32 is selected if the FDF3 flip-flop is set,
indicating that the dividend was shifted right one
place at FDT3. FDT12 reads the exponent back into
the remainder, if the exponent sti II has the same sign
as the remainder and the remainder is non-zero. If
the sign associated with the exponent changed, the
exponent underflowed and hence, the remainder is
set to O. FDTl3 returns the remainder to the MQ
and prepares the adder to show the quotient in the
BR, which is returned to the AR at FDTl4. Control
then returns to STO.

4.4.4.4 Floating Scale - The floating scale instruc­
tion multiplies floating-point numbers by powers of
two by adding the power of two to the exponent. The
instruction flow is found on the "FSDN" flow chart.
ETO begins the operation by loading the SC with the
effective address, taking bit 18 as the sign, and bits
28 through 35 as the rest of the significance. The
AR, containing the AC, is moved to the BR, because
the input gates to the SCAD come from the BR. De­
pending on the sign of the AR, the SCAD is set to
either add or subtract the exponent (which will be the
BR) from the SC. This is done because the exponent
may be either in true or lis complement form. If the
number is negative, and the exponent is complemented,
the usual +1 associated with subtraction is disabled be­
cause the number is in lis complement form. At Ell ,
the exponent part of the AR is cleared to sign bits (a
requirement of the normalization logic). The new
exponent is loaded into the SC at ET2 and control
passes to the normalize return logic (where the number
wi II be normalized if necessary and the exponent part
is re-inserted into the word). An additional reason
for using normalization logic is that the exponent will
not be inserted in a word with a zero fraction.

4.4.4.5 Double Floating Negate - This instruction
was necessitated by the double-precision floating­
point format used by the PDP-l0. In this format, rhe
low-order word is kept with positive sign and expon­
ent independent of the sign of the high-order word.
To negate a double-precision quantity, it is necessary
to negate only the fractional part of the low-order
word and then complement the entire high-order word,
propagating a carry from the low-order fraction when
necessary. This instruction is shown on the "FSDN"
flow chart.

In DFN, the AC contains the high-order word and the
C(E) contains the low-order word. These arguments
are in the AR and BR, respectively. FT9 sets the add­
er for the 21s complement of the BR and sets the SCAD
for the exponent of the BR. At ETO, the low-order
exponent is loaded into the SC, the negated low-order
part is loaded into the AR (from the adder), the high­
order part is moved from the AR to the BR and if the
fractional part of the adder (bits 9 through 35) is not
all 0, the carry 36 input to the adder is cleared. This
last operation causes the carry to continue to propagate
into the high-order word only if the low-order fraction
is all O.

ETO also clears all miscellaneous inputs to the SCAD
so that the contents of the SC are available at the
SCAD output. At ETl, the exponent is restored to
the low-order word, unchanged. ET2 moves the Iow-

4-18

order word back to the BR, and the complemented
(and possibly also incremented) high-order word is
brought back to the AR, thus completing the operation.

4.5 KA10 CONSOLE KEY LOGIC

The logic associated with the console is known as the
"KEY" logic. This logic is primarily concerned with
the "action II keys - stop, reset, start, continue, XCT,
examine, examine next, deposit, deposit next. Logic
is included to allow these functions to be repeated, at
varying speeds (when appropriate). The KEY opera­
tions can be followed on the "KO" flow diagram.

4.5.1 STOP Key

The simplest action is caused by the STOP key. This
key, through an initial transient detector, generates
the KST 1 pulse which clears the RUN flip-flop. The
machine is given a 100 I-Is delay to stop (which it
usually will). The machine examines the RUN flip­
flop between instructions. After this 100 I-IS delay,
the address time chain is broken by IFO being held in
the 0 state for 100 I-IS by the KEY AT INH delay. Be­
cause all instructions (except BLT) must go through
that point in the logic at least once every 100 I-IS, the
machine will be likely to stop.

4.5.2 RESET Key

The RESET key is similar to the STOP key, except that
it may be repeated, and therefore has a flip-flop
which holds the information that the key has been
pushed. Flip-flops are provided for all keys whose
functions may be repeated. Pushing the RESET key,
first clears KEY REPT SYNC, stopping any key func­
tions. KEY RESET is an input to the KEY MANUAL
initial transient detector which gives a single transi­
tion from potentially bouncy mechanical contacts.
KEY MANUAL triggers a 30 ms delay to allow bounc­
ins to stop, and then gives KEY FCN STROBE. This
signal reads the state of the repeatable action keys
into a set of flip-flops. It is assumed that only one
key was pushed at a time.

After 1 IJS KTO occurs. This pulse will start the repeat
delay if the REPEAT BYPASS switch is set. REPEAT
BYPASS causes repeatable actions to be re-initiated
even if they never reach a normal conclusion. If RUN

is on during a RESET operation, control passes to KSTl,
as if STOP had been pushed. Following the second
100 I-IS delay (KEY AT INH), KST2 gives the MR

START pulse, which clears all internal control states
and I/o device control registers.

4.5.3 REPEAT Key

If the RE PEAT key is on when RES ET is pushed, the
KEY REPT SYNC flip-flop will be set at KEY FCN
STROBE (or KTO, too). KST2 gives the KEY DONE
pulse, which will either clear the key function flip­
flops if KEY REPT SYNC (0), or trigger the KEY REPT
DLY if KEY REPT SYNC (1). If the REPEAT switch is
off, KEY REPT SYNC will be cleared. The repeat
loop is closed by the off-going transition of the repeat
delay, which triggers KTO if KEY REPT SYNC is sti II
on. If not, KEY FCN CLR is generated which clears
the key function flip-flops.

4.5.4 START Key

The START key operation goes through the KEY MAN­
UAL logic, as described above for RESET. KTO trig­
gers KTOA, a logically identical pulse, but electric­
ally a B-series pulse. If the RUN flip-flop is set, the
START function is not allowed, and control goes im­
mediately to KEY FCN CLR. If the RUN (0), the KTl
through KT 4 chain is entered, wh ich, for the START
operation, gives MR CLR, clears the AR, reads the
address switches into the MA, then reads the MA into
the PC and turns on RUN, exiting through KT 4 to ITO
to start a normal instruction.

4.5.5 CONTINUE Key

The operation of the CONTINUE key depends on how
the machine came to a stop, if, indeed, it hasstopped.
The KEY MID INST STOP level is true when the ma­
chine has stopped in the middle of an instruction, i.e.,
MC STOP (1) or SC STOP (1). If MC STOP (1),
MCRSTO is given to restart the machine at KTOA. If
SC STOP (1), SCTl is triggered from KTOA. RUN
will be set on CONTINUE if KEY MID INST STOP is
false. Unless RUN (0), and KEY MID INST STOP was
false, the CONTINUE function is complete, and KEY
DONE will occur. In the remaining case, the instruc­
tion sequence needs to be restarted, and therefore
KCTO is generated followed by a delay to allow RUN
to settle on (it was turned on at KTOA) and then KT4
returns to the main instruction sequence.

4-19

4.5.6 EXAMINE, DEPOSIT, and EXECUTE Keys

EXAMINE, DEPOSIT and EXECUTE can be considered
as a group known as KEY SYNC OPS, because their
function occurs even while the machine is running,
by being so synchronized as to have their effect occur
between instructions. When RUN (0), these keys go
through the normal KTO through KT3 timing chain.
When the RU N (1), however, they set the KEY SY NC
RQ flip-flop at KTOA, and then wait for the following
sequence. The next FT9 sets the KEY SYNC flip-flop,
followed by an ST9 when EXCTF (0) diverts the normal
path from ST9 to ITO into KTl, which then performs
the required action.

EXAMINE reads the address from the address switches
into the MA, and then proceeds to make a memory
read request. MI PROG is cleared, allowing the new
reference to show in the MI lights. DEPOSIT clears
the AR and then reads inthe DATA switches, and
picks up the address switches into the MA. It then
makes a memory write request. The KEY Fl subroutine
return flip-flop inhibits relocation on key-controlled
memory references. EXECUTE causes the DATA
switches to be read into the AR, and then transfers
the AR to the IR by doing a MC WR RS, sending the
data over the memory bus. The IR L T and RT enab les
are set by KT2. Because the instruction cannot be
restarted in case of interrupt, PIs are inhibited by the
KEY PI INH flip-flop for one instruction. EXECUTE
enters the normal time chain via KT3A at ITl, where
the processor treats it as though it has just retrieved a
new instruction from memory.

EXAMINE NEXT and DEPOSIT NEXT are allowed only
when the machine is stopped, because the examine or
deposit address information is kept in the MA. These
operations increment the MA, and then do the corre­
sponding simpler operation. The only complication is
that the MA cannot be directly incremented and,
therefore, the key-next time chain, KNTl through
KNT3 is employed to use the PC counting circuit.
Because the original PC cannot be lost, it is saved in
the AR when the MA (examine or deposit address) is
sent to the PC at KNTl. KNT2 increments the PC
(examine or deposit address), and brings the AR (or­
iginal PC) back to the MA. KNT3 sends the PC (ex­
amine or deposit address, incremented) to the AR,
and restores the original PC from the MA. KTl re­
trieves the examine or deposit address, incremented to
the MA from the AR.

4.5.7 READ-IN Key

READ-IN operation follows the "RIMF" isolated flow
diagram. The READ-IN key puts the machine in a

special mode for initially loading programs into a
cleared machine. It is allowed only when RUN (0).
At KTOA, a master clear pulse is sent to all I/o de­
vices, and a delay is set for 1.5 flS. The IR is loaded
with a DATAl to location 0 of the device set in the
READ-IN DEVICE switches. At the end of the KEY
RDI DL Y, mentioned above, the lOT RDI PULSE is
sent, selecting the device whose code was just read
into the IR, and initiating that device to perform its
read-in operation. Each time the selected device has
a word of data, it pulses the lOB RDI DATA line,
causing the KTl through KT3A time chain to run,
exiti ng to ITl. On the first data word, the same
DATAl instruction will be executed (for a second
time, although the first one has no effect), reading
the count and address into location O. On successive
lOB RDI DATA pulses, the disappearance of the lOB
RDI DATA pulse sets the KEY RDI PART 2 flip-flop.
A BLKI to location 0 will be loaded into the IR, which
uses the pointer word read-in earlier to read in data
from the selected device.

4.6 KA10 MEMORY CONTROL

4.6.1 Memory Subroutine

The memory control section of the KA 10 is a hardware
subroutine with multiple entries. Its function is to
communicate with the memory system over the memory
bus and to sort out requests involving the optional
KM 10 fast memory. A complete description of the
memory bus itself is found in the PDP-lO Interface
Manual (DEC-l0-HIFB-D). The reader should become
familiar with the bus system before proceeding.

The memory control flow is shown on the "MCFM"
flow diagram. The calls to the memory control are
shown at the top of th is drawi ng • They fa II into four
broad groups:

a. Read Request

b. Read;\Vrite Request

c. Write Request

d. Read;\Vrite Restart

The fast memory-read request is used when it is neces­
sary to fetch a word which would always be located in
the fast registers, if they were available, but they are
either, in this case, not implemented or disabled.
Therefore, the main memory system will be used for

4-20

the first 208 locations. This group of requests is fur­
thur characterized by the fact that the addresses re­
quired are not in the MA, but are available at the
output of the fast memory-address mixer.

The MC FM RD RQ signal sets the MAl FMA SEL flip­
flop, which forces the high-order 14 bits of the ad­
dress presented to the memory bus to be zeroes, and
selects the FMA mixer as the low-order 4 bits. This
type of request then becomes an ordinary read request.

4.6.2 Read Cycles

The MC RD RQ PULSE sets the read flip-flop and
clears the write flip-flop, signifying a simple read
cycle. It also clears the AR, which will receive the
data. The next pulse, MC RQ PULSE, does the
following:

a. Clears the MC STOP,

b. Clears the MC PAR STOP,

c. Clears the PB (parity buffer) which will be used
to compute the par i ty of the i ncom i ng data word,

d. Sends a pulse to the priority interrupt system to
synchron ize requests to that system.

If the machine is not in USER mode, or if the address
in the MA is less than 208, the MC RQ flip-flop is
set 45 ns after the MC RQ PULSE. The MC RQ flip­
flop is what actually starts the memories on the bus.
If the machine is in USER mode, 140 ns are allowed
for the relocated address to set up. Then, the MC RQ
is set only if the address is valid (-PRA ILL ADR). If
the address is illegal, the MC ILLEG ADR pulse is
fired, setting the CPA MEM PROT FLAG, and aborting
the memory cycle. In this case, control returns to
ST9, unless this was an instruction or address calcula­
tion fetch, in which case, control returns to ITl.

The MC RQ signal wi II only reach the memory bus if
two other conditions are fulfilled:

a. At least one of the read or write requests is set

b. Either the fast registers are disabled or this is not
a request for a location below 208 ,

Assuming these conditions are fulfilled, the request
(called MC REQ CYC now) is sent to the bus. The
processor now stops and waits for a response from the
memory, in particular, "address acknowledge" (called

MAl CMC ADR ACK in the drawings). This pulse,
regenerated as MC ADR ACK, clears the MC RQ flip­
flop, and the parity flip-flop. On a read cycle, no
further action results from this pulse.

After the arrival of ADR ACK, the memory should send
the data bits, along with RD RS. If neither the MC
STOP nor the MC PAR STOP flip-flops were set (by
the MC STOP SET pulse which occurs after a delay
from the MC RQ PULSE), MCRSTO (memory control
restart, time 0) is generated from MAl CMC RD RS.
MAl CMC RD RS is reshaped as MC RD RS, which is
then delayed 140 ns to allow the parity network to set
up. If the console PARITY STOP switch is on, the
MC PAR STOP flip-flop is set, requiring verification
of correct parity before triggering MCRSTO. If the
parity is acceptable (-PN PAR EVEN OR MC IGNORE
PARITY(1)) and, MC STOP (O) and MC PAR STOP (1),
MCRSTO will occur after the delay.

If the parity is even, the MC PAR ERR pulse occurs,
setting the MC STOP flip-flop if the PARITY STOP
switch is on, causing the console MEMORY STOP light
to be on when the machine stops. The CPA PAR ERR
flip-flop is set on any parity error, independent of the
parity stop setting. The PARITY STOP switch, there­
fore, gives two choices: proceed rapidly, but set the
"parity error flag", causing an interrupt on a parity
error, or wait until each word has its parity checked
before proceeding, and stop on an error. The latter
mode is normally used only for maintenance, of if
memory fai lures are suspected as the cause of an other­
wise unexplained problem.

Following MCRSTO, a 65 ns delay allows the data to
settle in the AR (and possibly IR) before control is
returned to the calling routine by MCRSTl.

An alternate path for a read cycle occurs if the ad­
dress is not in the range of existing memory: a non­
existent memory reference. This is handled by an
integrating one-shot (R303) set for 100 fJS. If this
time goes by following a memory request with the MC
RQ flip-flop sti II on and the MC STOP off, the MC
NON EX MEM pulse is fired. This pulse sets the
CPA NON EX MEM flag, and if the console NXM
STOP switch is on, sets the MC STOP flip-flop again
to light the MEM STOP console indicator. Control
proceeds to the MC NXM RST pulse if the NXM STOP
switch is off. This pulse acts as if ADR ACK is pre­
sent. In the case of a read cycle, MC NXM RD oc­
curs, and if MC STOP has not been set from some
other reason, will simulate a RD RS, triggering
MC RSTO. In th is case, the mach i ne proceeds as if the
word addressed contains zero; however, the NON EX
MEM flag wi II cause an interrupt, if enabled.

4-21

The remaining type of memory read cycle addresses
one of the first 20 registers, assuming the KM 10 fast
memory is enabled. For this type of request, the MC
REQ CYC must remain false to avoid signaling the
core memory system that a word is required; this gating
is provided, as explained above. As was previously
mentioned, the fast registers also have their own ad­
dress i ng network, independent of the MA; hence, it
is necessary to feed the MA outputs to the fast memory
address inputs. This is accomplished by a signal
called FMA MA EN, which overrides the normal FMA
(fast memory address) source. FMA MA EN is the
AND of MC RQ (1), MA 18-31 = 0 and MC FM EN.
If this signal is true after a delay followir>~ the set­
ting of MC RQ, then the request is not going out on
the bus, but will allow FMATl to fire, loading the
AR from the fast memory, if in a read cycle.

The next problem is that the word retrieved from the
fast memory may also be required in the IR. Since
gates from the fast memory are provided only to the
AR, the memory bus data lines are used to convey the
information to the IR, if required. After a delay fol­
lowing FMATl, FMAT2 hits MC ADR ACK, clearing
the MC RQ. Because we have postulated that FMA
MA EN is true, the MC WR RS pulse is generated and
causes the MC MEM BUS FM AR pulse, which takes
the contents of the AR and puts it on the bus. Norm­
ally, this function is used only during a write cycle,
but here it serves to route the information to the IR.
Because no memory on the bus can be logically con­
nected to this processor at this time, pulsing various
bus lines has no effect on the memory system. MC WR
RS feeds into MCRSTO which is in the normal return
path.

4.6.3 Write Cycles

Normal write requests enter through the MC WR RQ
PULSE. In the case where the fast registers would be
used, if functioning, the MC FM WR RQ input is
available to set the MAl FMA SEL, much as is done
by the MC FM RD RQ discussed in Section 4.13. The
MC WR RQ PULSE sets the MC WR and clears the MC
RD flip-flops, calling for a simple write cycle. The
flow through to MC RQ SET is the same as for a read
cycle, including the check for illegal addresses and
the MC STOP SET .

In a write cycle, the only response from a memory is
the "address acknowledge", which becomes MAl CMC
ADR ACK, and then is fed toa PA to reshape it into a
standard pulse called MC ADR ACK. This pulse clears
the MC RQ and PB, as in the read cycle, and then,
since MC WR (1) and MC RD (0), goes on to MC WR

RS. This pulse generates MC MEM BUS FM AR,which
actually strobes the AR flip-flops onto the me mary bus
and into the PB (parity buffer), since it has perma­
nently enabled input gates from the memory bus. After
a delay to allow the parity network to settle, the MC
BUS WR RS signals the memory to go on with its cycle,
because it now has the data from the processor. Si­
multaneously, if the parity of the 36-bit word was
even, the MC PAR PULSE is sent, causing the 37th bit
to be set. In the meantime, if MC STOP has not been
set, MCRSTO is triggered by MC WR RS. MCRSTO
generates MCRSTl, which wilJ restart the calling
routine.

For a write cycle which addresses fast memory, the
situation is identical to a similar read cycle, except
that FMATl does not load the AR from the fast memory,
but instead hits the FMA FM FM AR(J) (fast memory
address fast memory from AR jammed) pu Ise.

4.6.4 Read/Write Cycles

The read/write cycle is used where the processor ex­
pects to read a word and send back a new word to the
same address within a microsecond or so. Since this
ties up the memory unti I the new word is sent back,
precautions are taken to avoid tying up the memory
for extended periods. The MC SPLIT CYC SYNC flip­
flop determines whether read/write cycles are to be
split into separate read and write cycles. This flip­
flop is cleared at the beginning of each instruction
by MR CLR, and is set at IT1 for any of the following
reasons:

a. KEY ADR STOP is true, allowing the possibility
of stopping the machine in the middle of an instruction

b. KEY SING CYCLE is true, for the same reason

c. lOB DR SPLIT is true, indicating that an I/O de­
vice cannot even tolerate the extra microsecond that
may be squeezed into the memory cycle, because it
has its own memory port which needs rapid access

d. MC FM EN is false, indicating that core memory
wi II have to be used for the first 208 locations. Be­
cause the KA10 fetches accumulators after it fetches
memory operands, it is possible that the memory mod­
ule containing the AC needed will be hung up due to
a previous read/write cycle.

The MC SPLIT evc SYNC may also be set at FTl, if
MA 18-31=0, because read/write cycles are suppressed
in this case, and this flip-flop carries the information

4-22

through to the store cycle that a read/write cycle was
changed into separate read and write cycles.

When a read/write cycle is successfully inWiated by
FT1, the MC RD;WR RQ PULSE sets both the MC RD
AND MC WR flip-flops, and clears the~. The
cycle proceeds as a normal read cycle, returning
through MCRSTl , which clears MC RD. During the
subsequent part of the instruction, the memory is pro­
ceeding to that part of its, cycle where it must have
the data to write into the cores. If that point is
reached, the memory will stop and wait for write re­
start.

At some later time, the KA10 indicates that the data
to be written is available by causing the MC RD;WR

PULSE. If the MC SPLIT CYC SYNC is on, the read
part of the intended read/write cycle was turned into
a simple read cycle, and the write part must be done
as a simple write cycle; therefore, control will go to
the MC WR RQ PULSE. If MC SPLIT CYC SYNC is
off, the MC WR RS pulse is given, and control returns
to the main sequence through MCRSTl, as usual.

4.6.5 Memory Indicator Register

The memory indicator register (Ml) usually follows the
contents of the reg ister addressed in the address
switches. This is accomplished by a comparator, which
dynamically compares the address selected by the
memory address interface (MAl) with the AS (address
switches), and the FMA with the AS. On memory
references going through the memory control subrou­
tine, MCRSTO samples the AS COND, which is true
if the MAl comparator is true and the FMA select is
fa Ise, or if the FMA comparator is true and the FMA
select is true. On a read reference, MITO is squeezed
in to allow a delay for the AR to set up, otherwise
MIT 1 occurs i mmed iate Iy .

The MI PROG flip-flop indicates that the MI has been
loaded by the DATAO PI instruction, and that auto­
matic MI loading should be suspended; therefore, the
MI LOAD pulse occurs after MITl only if MI PROG is
a O. The direct fast memory references are handled
simi larly, using only the AS=FMA comparator.

The MI PROG DIS switch on the maintenance panel
a 1I0ws the program loadi ng feature of the MI to be
disabled, by holding the MI PROG flip-flop off and
disabling the MI PROG EN signal.

4.6.6 Address Stop or Break

The address stop feature a I lows the operator to cause
the machine to stop whenever a given location is
referenced, in a selected mode. The address break
feature is similar, except that a PI request is made
rather than a stop. There are three "address condition"
switches on the console: instruction, data fetch, data
write. These translate to hardware terms as follows:

a. Instruction means that IFO(l}

b. Data Fetch means that IFO(O} and MC RD(l},

c. Data Write means that MC RD(O} and MC WR(l}.

The OR of these conditions makes MC SW COND.
AS=RLA (the archaic name for the AS=MAI compara­
tor) ANDed with KEY ADR STOP and MC SW COND
(ORed with KEY SING CYCLE) makes MC STOP EN,
which sets MC STOP after a delay following the MC
RQ PULSE.

In the case of address break, the AND of MC SW
COND, AS=RLA, KEY ADR BREAK and MC RQ (1)
generates a level transition which sets the CPA ADR
BREAK flip-flop which will eventually cause an
interrupt.

4.6.7 Input/Output System

The input/output system operates over the "I/o bus",
which is a cable system similar to the memory bus. A
complete description of the I/o bus, is found in the
PDP-10 Interface Manual (DEC-10-HIFB-D), knowl­
edge of which is assumed below.

4.6.8 I/O Instructi ons

The flow of the eight I/o instructions is found on the
"IOTF" flow diagram. BLKO and BLKI are special,
in that they go through the address, fetch, and ex­
ecute cycle twice. Furthermore, the action of
BLKI/O depends on whether the instruction was ex­
ecuted in normal program sequence, or as a result of
a priority interrupt (as the instruction in the PI loca­
tion). BLKI/O first picks up the pointer word during
the fetch cycle on a read/write request. At FT9, the
adder is set to increment both halves of the pointer.
At ETO the new pointer is returned to the AR, and, if
the left half did not overflow (AD CRYO(O)} and if

4-23

this instruction was not a PI instruction (PI CYC(O)) ,
the PC is incremented causing a skip. If overflow oc-

curred, and PIOV EN was true (indicating PI CYC(l)
or in read-in mode), PI OV is set, causing the inter­
rupt not to be dismissed. IR12 is set at ETO, changing
this instruction into the corresponding DATAI/O in­
struction; i.e., BlKI becomes DATAl and BlKO be­
comes DATAO. ETO also clears EX ILL OP, which
fixes the following problem; a user program (running
in user mode) executes a non-relocated UUO (op
codes 0, 40-77); between the time the UUO is stored
in 40 and the instruction in 41 can be executed, a PI
occurs; the PI does a BLKI/O instruction, which does
not overflow; if EX III OP remained set (from the
UUO), the program would resume from the C(PC) un­
relocated, because relocation is suspended by EX ILL
OP. Lastly, ETO sets lOT Fl, a subroutine fl ip-flop,
and calls MC RD/WR RS to return the pointer to
memory. When the memory control returns, lOT Tl
clears lOT F 1, and returns to the end of the address
cycle, AT3. The instruction is then treated as if it
were always a DATAI/O instruction, with the right
half of the incremented pointer as its effective address.

The remaining six I/o instructions (other than BLKI
and BLKO) fetch operands as needed, and set the lOT
GO flip-flop at ETO. As soon as the lOT RESET
DELAY is false, lOT TO is generated, starting the lOT
special timing chain. The reset delay allows the bus
to be reset to its quiescent state of -3V, without tying
up the processor unless two I/o instructions come too
c lose together. lOT TO starts two one-shot delays:
the initial setup delay, and the lOT RESTART DELAY.
The initial setup delay, lasting 1 jJs, fires lOT T2
when completed. This pulse clears lOT GO, and
sends the first pulse associated with CONO and
DATAO, the CLR pulse. In another microsecond, the
lOT RESTART DELAY will time out, generating lOT T3
which causes the second pulse for the outward lOTs:
CONO SET or DAT AO SET. lOT T3B, a "B-series ,,'
pu Ise, occurs simu Itaneously with lOT T3, reads the
I/o bus into the AR, sets the adder BR+EN (reading
the data switches into the AR, if the instruction were
a DATAl APR). The lOB DATAl and lOB STATUS
(called lOB CONlon the I/O bus) signals, which
tell the I/o devices to place their data on the bus,
are generated during the combined durations of the
lOT RESTART DLYand the lOT DATA DLY. The lOT
DATA DlY starts at lOT T2 and lasts 1.5 JJS, giving a
total of 2.5 JJS during which data appears on the bus.
lOT T4 occurs at the end of the lOT DATA DlY. It
causes the AR to be ANDed into the BR on CONSO
and CONSZ instructions. Any other type of I/o in­
struction now proceeds directly to STO. CONSX in­
structions take an extra time pulse, lOT T5, which
increments the PC if the skip condition is met. The
I/o bus is driven back toward -3V by the bus reset

gates for the duration of the lOT RESET DLY less the
overlap time of the lOT DATA DLY of 0.5 jJs, giving
a reset time of 2.0 jJS.

4.7 KA 10 PRIORITY INTERRUPT SYSTEM

The priority interrupt (PI) system allows an I/o device
to interrupt the normal sequence of instructions. There
is no flow chart specifically for the PI system, since
there is little sequential logic involved.

Interrupt requests on the I/o bus may appear at any
time, and therefore must be synchronized in the pro­
cessor to insure that no new request wi II fou I the com­
putation of wh ich request to honor. The PI system is
equipped with three registers: PIO (PION), PIR (PI
Request) and PIH (PI Hold). There is also a master
enable, called PI ACT, and two auxiliary control
flip-flops, called PI CYC and PI OV.

The incoming interrupt requests, called "lOB PI n",
are sampled by the PIR STB (PI request strobe) pu Ise,
which occurs at every MC RQ PULSE when not al­
ready in a PI cycle. The PIRn flip-flop will be set
when a request is true if the corresponding PIO flip­
flop is on (indicating that the programmer wishes to
honor requests from that channel) and if the corre­
sponding PIH flip-flop is off (indicating that there is
not presently an interrupt in progress on that channel).

The processor determines whether it should take a PI
cycle by examining the PI RQ signal, normally at ITl,
which occurs just after retrieving an instruction or an
indirect address. PI RQ is also examined during the
BLT instruction; however, if PI RQ is true, BlT will
first terminate in an orderly fashion, and the request
will be picked up by ITl. PI RQ is the OR of the
seven "PI REQ n" signa Is, ANDed with PI CYC(O)
(to insure that one instruction is completed for a given
interrupt before a higher priority channel can inter­
rupt) and KEY PI INH(O) (which suppresses interrupts
during instructions executed by pushing the console
EXECUTE key).

The determination of which of several waiting inter­
rupt requests should be serviced is handled by a prior­
ity chain, known as "PIOK n". PIOK n will be true
if neither the PIH nor PIR flip-flops of the channel of
immediately higher priority are set, and the PIOK for
that channel is a Iso true. The highest priority chan­
nel uses PI ACT(l) as its enabling condition. If PIOK
is true for a given channel, and its PIR flip-flop is

4-24

set, and PIH flip-flop is clear (which is redundant,
since the PIR could not possibly be set unless the PIH
was clear), the PI REQ n will be true.

The PI REQ nls feed the PI RQ gate, and also feed a
unary-to-binary converter (encoder) which comes up
with a binary address from zero to seven. When the
processor gets to ITl, if PI RQ is true, PI TO will come
next. PI TO sets PI CYC and allows a delay for the
MA to clear from ITl, and for PI CYC to settle. Con­
trol returns to ITO, where the PI channel encoder ad­
dress will be ORed into the MA, along with the 408
bit, and possibly the 1008 bit, if the MA TRAP OFF­
SET switch is on.

If the instruction at the interrupt address is not an lOT
(for instance, a JSR) matters are simple: PI HOLD
will be true, since PI CYC(l) and -IR lOT is true,
hence, at FT9, PIH FM PICH RQ wi II occur, and the
PIH flip-flop associated with the channel whose PI
REQ was honored will be set, clearing the PIR flip­
flop. For a control-type I/o instruction, the machine
will hang indefinitely, since neither PI HOLD nor PI
OV ever become true. A DATAl or DATAO will cause
both PI HOLD and PI RESTORE to be true and, there­
fore, the PIH FM PICH RQ pulse will occur, clearing
the PIR, and then the PIOK CLRS PIH pulse will clear
the PIH at ETO, thereby dismissing the interrupt. PI
CYC will be cleared by ST1.

The remaining cases involve BLKI and BLKO. If the
count of a BLK lOT overflows, PI OV will be set at
ETO. After the BLK lOT turns into a DATA lOT, ST9
will fire PITO again, instead of going back to ITO first.
PI TO will clear the MA, and then ITO will read the PI
channel encoder again; however, PI OV supplies a
l-bit in bit 35, thereby moving to the second interrupt
location associated with the particular channel. The
new instruction must not be an lOT for PI HOLD to be
true. If this condition is true, the PI OVand PI CYC
will be turned off at the end of the instruction, and
the PIH flip-flop will be on, and PIR off. If the count
of the BLKI or BLKO does not overflow, it is treated
just as if it was a DATAl or DATAO; namely, the PI
HOLD and PI RESTORE will both be true, allowing
the processor to proceed from the state prior to inter­
ruption.

When an interrupt has been held, it may be dismissed
by a JRST with IR9(1), causing PI RESTORE, which
clears the PIH on the highest priority channel whose
PIHison.

4.7.1 User Mode Logic

User mode logic is available as either the KT10 or
KT10A options. The KT10A option includes a dual
protection and relocation system. Each system
includes a user mode flip-flop (found on the EX print,
and called EX USER) which indicates when protection
of memory and instructions is in effect. Since EX
USER must be set between instructions, an EX MODE
SYNC flip-flop is provided, which is set by JRST,
either with bit 12 on, or when restoring the flags,
with flag bit 5. If EX MODE SYNC is set, the next
MR CLR will set EX USER.

When EX USER is set, the IR decoders turn 7XX (IOT)
op-codes and JRSTs which attempt to halt the machine
or restore the PI system into UUOs, all unless EX USER
lOT is set. The user lOT fl ip-flop a IIows these other­
wise illegal instructions to happen, since it may be
desirable in some circumstances to have only memory
protection. This flip-flop can only be set by flag
bit 6, when not already in user mode; however, it can
be cleared by a 0 in bit 6, when restoring the flags
in any mode.

The EX ILL OP flip-flop tells that an illegal operation
has been done (including all standard monitor call
UUOs 040-077). When EX ILL OP is on, or EX PI
SYNC is on (during a PI cycle), EX TRAP COND will
suppress relocation, thereby forcing absolute address­
ing. If the monitor program does the expected sub­
routine call, the EX USER flip-flop will be cleared at
ETO of that instruction, after its old state has been
preserved with the flags.

Relocation is controlled by the EX REL signal. This
signal is generated twice to supply enough drive to
all the gates using it, without taking the time to in­
vert the signal twice. Relocation is in effect when­
ever EX USER (1) AND EX TRAP CO NO is false and
the MA does not address an accumulator (since ACs
are always in fixed lower memory) and MAl FMA SEL
(0) (since if that flip-flop is on, the address is to come
from the FMA mixer) and KEY Fl(O) (since that flip­
flop indicates that the console examine or depasit
function is operating).

4-25

The relocation adder(s) are always computing the sum
of the MA and the relocation register(s).

In the simple KTlO option, the EX REL signal deter­
mines whether the MAl (memory address interface) bits
come from the output of the relocation adder, or di­
rectly from the MA. With the KTlOA option, if EX
REL is true, the RLA adder signals are selected if the

MA is less than or equal to the PR (the lower protec­
tion register), and the RLB adder signals are selected
if the MA is greater than the PRo

In the simple KTlO, an address is valid if less than or
equal to the PRo In the KTlOA, the valid condition
is that the MA is either less than or equal to PR, or
greater than or equal to 400000, and less than or

equal to the PRB (upper protection register) and either
the PR COR PROT (write protection) bit is off, or a
write or read/write is not being made. Stated sym­
bolically, this condition is:

VALID = (MA5.. PRB) + [(MA,L400000)' (MA.$..PRB)'
(PR WR PROT (0) + MCWR RQ(O))l

4-26

CHAPTER 5
BASIC liD DEVICES

5.1 PAPER TAPE READER

The paper tape reader is part of the Digital PC09.
The PC09 consists of a PC02 Perforated Tape Reader
and a PC03 Perforated Tape Punch with a SCR punch
motor control added. The PC02 mechanism is de­
scribed in the PC02 Instruction Manual (DEC-08-
I2BA-D). The PC03 is a Model 500 Royal-McBee
(Roytron) tape punch. Its mechanism is described in
the Royal-McBee maintenance manual. Some addi­
tional interface information for the PC02 and PC03
(which alone make up the PCOl Paper Tape Reader/
Punch) is found in the PDP-8/S Paper Tape Reader/
Punch Control combined manual (DEC-00-IP1A-D,
o EC-00-IP2A-D , DEC-OO-IP3A-D).

The paper tape reader portion of the PC09 is arranged
to operate in two modes: binary, in which six char­
acters of tape are buffered to form a 36-bit word; and
alpha, in which each 8-bit character is sent to the
processor.

The control for the reader is found on three drawings:
PTR1, 2 and 3. The first drawing shows the fairly
standard I/o device control register, plus the PTR
TAPE flag logic. The PTR TAPE flip-flop indicates
to the program that there is tape in the reader. If
tape is present, PTR TAPE SYNC wi II be pu II ed off
at some time shortly after each PTR MOTOR SHIFT •
If PTR TAPE SYNC is off by the next PTR MOTOR
SHIFT, PTR TAPE will be turned on. If the TAP E
SYNC remains on through a whole motor shift cycle,
then PTR TAPE will be turned off. When a tape is
loaded, pushing the manual PTR FEED SWITCH will
cause PTR TAPE to be set, setting the PTR DONE
flag. This will request an interrupt, if a channel has
been assigned.

In operation, the PTR RUN signal is generated by
either the PTR FEED SWITCH or PTR BUSY (1). As­
suming the reader has been idle for at least 40 ms,
the PTR ENABLE flip-flop will be set. This enables
the clock circuit, which has an integrator controlling
the clock speed, since the stepping motor cannot
start at full speed. The first clock pulse (PTR ClK)
will sample the PTR RUN and assuming it is true, will
not affect PTR ENABLE. Since the normal stop posi­
tion of the reader is between characters, the PTR
DATA PHASE will be false, so the PTR STROBE

5-1

PULSES will not occur. The PTR MOTOR SHIFT will
advance the 2-bit counter PTR A and PTR B, and turn
on PTR POWER. PTR A and B count in a sequence
00 10 11 01 00, causing the stepping motor to ad­
vance one-half character on each pulse.

At the next PTR ClK pulse, the motor will have ad­
vanced so that the character is over the read head.
PTR DATA PHASE will be true, enabling PTR STROBE,
if either the reader is not in binary mode or hole 8 is
seen. The PTR STROBE pulses will read the data into
the buffer and advance the PTR C NT counter. In
alpha mode, PTR lAST is always true, while in binary
mode, PTR lAST becomes true after five counts,
namely, prior to the sixth character. At the PTR
STROBE when PTR lAST is true, PTR DONE is set,
and PTR BUSY is cleared.

When the program does a DATAl, the PTR BUSY will
be turned back on. Each time BUSY comes on, the
PTR ClR pulse clears the buffer and counter. As long
as BUSY is again set within one-half character time;
i.e., before the next PTR ClK pulse, the reader will
continue at full speed. If a PTR ClK pulse comes
when PTR RUN is false, (hence PTR BUSY(O», PTR
ENABLE will be cleared, inhibiting the delayed clock
pulse from causing PTR MOTOR SHIFT. Furthermore,
the PTR SHUTDOWN delay will be triggered, inhi­
biting PTR ENABLE from being set again for 40 ms.
At the end of the shutdown delay, if PTR RUN is still
false, PTR POWER will be cleared. If PTR RUN had
become true during the delay time, PTR ENABLE will
be set when PTR SHUTDOWN becomes false.

The PTR buffer is arranged to shift by groups of six.
The seventh and eighth bits from the right (bits 28
and 29) are also used for holding the two extra bits
when in the alpha mode.

5.2 PAPER TAPE PUNCH

The paper tape punch is part of the Digital PC09. It
is a Roytron punch, with SCR motor control. The
punch sends sync signals to the logic to time each
character. The control has both binary and alpha
modes; however, the only difference between the two
modes is that binary forces the eighth hole to 1, and
the seventh hole to o. The control logic can be found
on drawings PTPl and PTP2.

The PTPl drawing shows the standard device control
register and the motor control logic. The object of
the motor control is to run the motor only when punch­
ing, but keep it running for 5 seconds after the last

punching operation, in case more punching is to
occur. If the motor has been shut down, either push­
ing TAPE FEED or setting the PTP BUSY flip-flop will
turn on both the 5s delay and the ls delay. The 5s
delay drives the PTP SCR DRIVER as long as the ma­
chine is not power clearing. When the 1s delay times
out, PTP SPEED wi II be true, indicating the motor is
up to speed. The 5s de lay will remain on for 5s after
the TAPE FEED button was released, or PTP BUSY was
last on.

The PTP2 drawing shows the data buffer and punch­
magnet driving logic. When TAPE FEED is pushed,
if BUSY is not on, a PTP DATAO ClR pulse will
clear the buffer. Each PTP SYNC pulse arriving
while PTP SPEED is true will generate a 10 ms PTP
SYNC DEL, which enables the punch magnet drivers.
During TAPE FEED hole 8 is suppressed by PTP BUSY
being off.

Under computer control, the action is simi lar to that
described above; however, the data is loaded by
DATAO SET. The PTP DONE PULSE is given at the
end of the 10 ms PTP SYNC DEL, which clears BUSY,
and sets DONE.

5.3 TELEPRINTER CONTROL

The teleprinter control is designed to operate any
teletypewriter using ASCII (USASCIL) code conven­
tions at 110 and 150 baud. The logic is found on
drawings TTYI and TTY2.

The TTY1 print shows the control register, which is
straightforward. The only unusual thing is that the
BUSY and DONE flags are set and cleared by dif­
ferent I/o bus bits.

The receiving logic, shown on the TTY2 print, has
two primary inputs: TTY RCV EIA and TTY RCV
LINE. These are used for Model 37 and 33/35 Tele­
types, respectively, due to their different interface
characteristics. A third input comes from the trans­
mitter logic and is gated with the TTY TEST flip-flop
for purposes of checking the logi c in a closed loop.

The definitions at the right of the drawing are useful
in determining what conditions should exist on vari­
ous signal lines. TTY INPUT remains false during
the idle condition. When TTY INPUT becomes true,
a START bit has arrived, and TTl ACTIVE is set.
This gates the TTl ClK, which gives pulses at the
desired bit rate. The clock output is actually a
square wave, which switches true half-way through
each bit, so the bit can be sampled. The on-going
transition of TTl ACTIVE fires TTl ClR, clearing the
character assembly register. If at the first TTl SHIFT
pulse, the TTl INPUT has become false, then TTl
ACTIVE is turned back off, since the condition could
only be caused by a noise pulse.

After the "start" bit and eight information bits have
been read in, TTl STOP wi II be set, turning off TTl
ACTIVE and setting the TTl DONE flag. The bits as
read into the computer are the complement of the
actual states at the TTl buffer, since the "start" bit is
held therein as a 1, while it corresponds to a O.

The output section has the option of putting out one
or two units of "stop" following the eight code bits.
The 10 unit option corresponds to 1 stop unit, and is
selected by the TTY 10 UNIT SW. A character is
transmitted by loading it into the TTO buffer by a
DATAO instruction. The TTO ENB and TTO STOP
bits are always set to 1 by the DATAO SET. The
buffer is assumed to be clear from the last operation,
or an I/o reset. TTO 1 is cleared by the DAT AO
ClR, since it will be left on in 10 unit mode. The
output clock runs continuously, and samples TTO
ENB. At the first pulse following the setting of HO
ENB, TTO ACTIVE is set, turning on TTO LI NE,
giving a "start" bit. The next nine or ten clock
pulses will give TTY SHIFT pulses, sending the char­
acter out to the Teletype. Two true periods before it
is desired to stop the shifting, HO EMPTY will be­
come true, and the next pu Ise will clear TTO AC­
TlVE. The TTO FLAG is set when TTO ACTIVE goes
off, although the last (or only) stop unit is still on
true. If the computer returns with a DATAO before
that time unit is over, characters will be sent at the
maxi mum rate.

5-2

CHAPTER 6
KA 10 TROUBLE SHOOTING
AND MAINTENANCE

This chapter describes maintenance and troubleshoot­
i ng procedures for the KA 10 Centra I Processor.

6.1 TROUBLESHOOTING

In a system with such complex and interactive hard­
ware and software as the PDP-lO, troubleshooting be­
comes a real challenge. All units of the PDP-l0
system are designed to realize a high reliability.
When "fai lures" do occur, they will be due to opera­
tor error, hardware or software design problems (bug),
hardware fa i lures, program errors (due to data read in
wrong from the source), or even to misunderstandings
of what should take place under particular conditions.
In addition, symptoms of a problem may show up in
unexpected ways at places far removed from the actual
problem.

The first step toward fixing a reported fault is to
locate it. In a hardware-software system environment
such as the PDP-lO, the first step is to determine
whether the problem lies in the hardware, software,
or both. The only practical way of doing this is to
maintain a rapport between the programmer and main­
tenance personnel unti I it is established to the satis­
faction of both where (and of what type) the error is.

Crucial to troubleshooting almost anything are the
ability to reproduce the problem (ideally at will),
and the technique of systematically tracing the pro­
blem from its symptoms, step-by-step, back to its
source. Until the problem is isolated to either hard­
ware or software, the cooperation of both kinds of
personnel is essential. The step-by-step procedure
should be used to trace the problem back until a point
is reached where all of inputs (conditions) into a
element (of the hardware or software) are proper, but
the output is improper. The element thus located must
be at fault and should be repaired. Where necessary,
or desired, the element itself may be subjected to
step-by-step fault location (from output to input) unti I
the internal source of the problem is found.

Depending on circumstances it may be desirable to
use DDT, the diagnostic programs, or margining as
described later, to aid in the location of faults.

6-1

6.2 TEST EQUIPMENT

Special tools and test equipment required for mainten­
ance are listed in Table 6-1. Except for DEC equip­
ment, suggested commercial brands are given for
purposes of specification only, and do not constitute
exclusive endorsement.

Table 6-1
List of Maintenance Supplies

Name

Field service kit
FLIP-CHIP module
extender

Punch I ubri cants

KSR33, 35, 37
lubricants

Cleaning kit

Model

DEC Type 142
DEC Type W980 or G998

Teletype KS7470 oil; Mobil­
grease #2

Teletype KS7471 grease

DEC Type PN A425484D

6.3 PROCESSOR TEST PROGRAMS

6.3.1 Description

There are 16 processor test programs designated A
through P. Collectively, these programs provide a
complete check of the processor logic. They presume
no major malfunctions in the core memory and opera­
tor's console. Except for D and 0, test programs can
be run in the executive mode, user mode, or in a
time-sharing situation. D and 0 can only be run in
executive mode. Table 6-2 lists the KA10 test pro­
grams.

Functionally, the programs fall into two categories,
diagnostic and reliability. The diagnostics, test
programs A through H, isolate genuine go/no-go type
hardware failures that are easi Iy recognizable. The
reliability programs, programs I through P, isolate
failures that are more difficult to detect because they
are marginal in nature and/or occur infrequently or
sporadically. The family of test programs are written
so that, when run successively, they test the processor,
beginning with small portions of the hardware and grad­
ually expanding until they involve the entire machine.
To accomplish this, they are built around instructions
and portions of instructions whose demands upon pro-

Document Number

MAINDEC-lo-DOAA

MAINDEC-lo-DOBA

MAINDEC-lo-DOCA

MAINDEC-lo-DODC

MAINDEC-lo-DOEB

MAINDEC-lO-DOFB

MAINDEC-lo-DOGB

MAINDEC-lO-DOHB

MAINDEC-lo-DOIA

MAINDEC-lo-DOJA

MAINDEC-lo-DOKB

MAINDEC-lO-DOLB

MAINDEC-lo-DOMD

MAINDEC-lo-DOND

MAINDEC-lO-DOOB

MAINDEC-lo-DOPA

MAINDEC-lo-DOQA

MAINDEC-lo-DOZA

MAINDEC-lo-DlEA

MAINDEC-lo-DlFA

MAINDEC-lo-DlGA

MAINDEC-lo-D2AB

MAINDEC-lo-D2BO

Table 6-2
Processor Diagnosti c Programs *

Description

Test A Basic Instruction Diagnostic (MOVE and SKIP)

Test B Basic Instruction Diagnostic (MOVE, Test, Half
Word Instructions)

Test C Basic Instruction Diagnostic (Boole and PC Sensitive)

Test D PI System Instruction Diagnosti c

Test E Shift Rotate Diagnostic

Test F Fixed Point Mul/Div Diagnostic

Test G Floating Instruction Diagnostic (and BYTE Instructions)

Test H FMP, FDV, DFN

Test I Basic Instruction Reliability Test (ROTates)

Test J Basic Instruction Reliability Test

Test K Basic Instruction Reliability Test (Add-Subtract and JFFO)

Test L Memory a nd Both Modes Instruction Re liabi I i ty Test

Test M PC Sensitive Instruction Reliability Test

Test N Reliability Test for Fixed, Floating, and BYTE Instructions

Test 0 Automatic Block Transfer Test (BLT)

Test P KTlOA Protect and Relocate Diagnostic

Test Q KTlOA Reliability Test

Test Z Processor Timing Test (SPEEDY)

Test lE KTlO Relocation and Protection Reliability and
Diagnosti c Test

Test IF User Mode BLT Test

Test 1 G Fast Memory Test

Test 2AConsoie Teletype Test

Test 2B Paper Tape Reader/Punch Test

* Exact program number wi II change as programs are revised.

6-2

cessor capabilities progress from simple transfers and
skips to the most involved data manipulations and
arithmetic computations. As portions of the system
are proven operable, they become available to suc­
ceeding tests for use in checking out unproven portions
of the machine.

The test programs are made up of numerous self-con­
tained routines. In those programs that are diagnostic
in nature, each routine is involved with a specific
circuit or logic function. In the simplest form, for
example, a separate routine is used to check each leg
of an AND gate. When the diagnostics (A through H)
have been run to completion, the processor has been
exercised to the extent that it is proven capable of
executing a II instructions. However, such proof is
conditional because it is based on the execution of
instructions using pre-established constants as oper­
ands. Further tests are necessary to establish that
the machine properly executes instructions using oper­
ands and various combinations of operands other than
those used in the diagnostics. The reliabi lity test pro­
grams (I through P) provide this additional testing.
Primari Iy, each routine in the reliabi lity test programs
establishes a loop whereby a specific instruction or
group of instructions is repeated many times. Each
repeat is executed using operands whose magnitudes
are established by a pseudo-random number generator.
This procedure insures that machine capabilities, are
checked under a maximum number of unique condi­
tions.

When an error is detected in diagnostics A through D,
the program halts at the end of the unsatisfied routine.
The reason for the halt may then be determined by
using the console controls and indicators, maintenance
switches, and the program listings included in the
software package.

For diagnostics E through H and the reliability pro­
grams, various indications of errors can be selected
with the 36 data switches on the console. Thechoice
of indications include: halt-on-error, proceed-on­
error, print-on-line printer (or on teleprinter if the
line printer is not avai lable), and ring teleprinter bell.
The use of the data switches for selecting error indica­
tions is defined in the MAINDEC write-ups provided
with the software package.

If halt-on-error is selected, the disposition of the data
switches determines whether or not a printout and/or
ringing of the bell occur at the error, and the program
halts at the end of the unsatisfied routine. The same
things hold true for proceed-on-error except that the
program continues on to the next routine. If neither

ha It nor proceed-on-error is se lected, the processor
enters a loop whereby it continually repeats the un­
satisfied routine. In this case, various timing pulses
and levels are available for oscilloscope display as an
aid to troubleshooting.

In such a loop, the bell mayor may not ring each time
the error is encountered, but the printout always occurs
on only the first pass through the routine. Again, con­
sole controls and indicators, maintenance switches,
and program listing may be used to isolate the malfunc­
tion.

The printouts accompanying fai lures become longer and
less specific (in terms of isolating circuits) as the com­
plexities of the programs increase. For example, a
printout associated with a malfunction in floating­
point arithmetic may show the proper contents of the
various registers at each event time within the floating­
point calculation. Such printouts are derived by simu­
lating the malfunctioning instruction by performing the
functions required using previously proven instructions.

6.3.2 Recognizing an Error

When an error is detected by diagnostics A through D,
the machine comes to a halt. The halt condition is
easi Iy recognizable in that the RUN light goes out,
the PROGRAM STOP light illuminates, and the dis­
plays in the console PC, IR, and MA indicators remain
in a fixed configuration.

6-3

When an error is detected by the remaining test pro­
grams the processor may enter an error loop. In this
case the RUN light remains illuminated, the PRO­
GRAM STOP light remains extinguished, and the
contents of the PC, IR, and MA indicators sti II change
continually as during the normal running of the pro­
gram. If a printout or other indication of error has
not been selected from the DATA switches, the status
of the machine is not always obvious. To overcome
this ambiguity, all test programs contain a subroutine
that is called whenever the processor enters a loop
and does not leave it after either a predetermined
time or predetermined number of loops. The loops is
then referred to as an error loop. This subroutine
establishes a memory location as an error counter and
fills it with all Os. Each time a pass is made through
the error loop, the counter is incremented and its
contents are displayed in the MI register. Consequent­
Iy, the display of an up-count in the MI register is an
indication that the processor is hung up in an error
loop. The rate of the display is an indication of how
consistently the failure occurs.

With the processor in an error loop, you can observe
a memory location other than the error counter by
activating the MI PROG DIS switch. When active,
this switch removes control of the MI display from the
program and again makes it a function of the MA
switches.

Viewing the contents of the iteration counter (MI
register) affords further evidence of when the program
enters an error loop. One of the initial instructions
in each program assigns a memory location as an itera­
tion counter. The counter is set initially to all ls,
and is decremented by 1 each time a pass is made
through the program. With each pass, the contents of
the counter are automatically displayed in the MI
register. The decreasing count is an indication that
the program is repeating continuously. If an error
occurs, the display changes from a decrementing count
to an incrementing count of the error counter.

6.3.3 Typical Diagnostic Check

Figure 6-1 is a copy of a page from the diagnostic A
program listing. The routines shown are a portion of
several routines that check the adder. Although rela­
tively simple, the adder check characterizes the type
of tests undertaken by the diagnostic programs.

The routines successively check a portion of each bit
of the AD by MOVEi ng the series of numbers 1, 2, 4,
8, etc. (which contain exactly one bit) to AC 0, and
then adding zero to these sing Ie bit numbers. (The
series of numbers was "cooked up" when the program
was assembled by starting at 1 and adding the old
number to itself to get the new number in a MACRO,
not shown.)

The SKIPN instruction in each routine checks the
result of adding the l-bit number to O. If, due to a
malfunction, the adder loses the 1 bit in the constant,
the sum wi II be equa I to 0 and the processor wi II come
to a halt. If the addition is performed properly, the
adder generates a number other than O. In this case,
the processor skips to the JUMP .+1 instruction
which jumps to the next routine.

6.3.4. Troubleshooting with Test Programs A through C

The portion of test program A shown in Figure 6-1 is
used here as an example of how to interpret and trouble­
shoot an error detected in one of the diagnostic pro­
grams A through C.

Assume that while running program A, the processor
came to a halt with 007254 in the PC indicators. This
indicates that the routine beginning at address 007251
has failed to run satisfactorily.

The prognosis in the program listing directs you to check
the AD AR + EN gates on the adder. In order to check
these gates with an osci IIoscope, it is best to place the
processor in a loop whereby it continually repeats the
fai ling routine. Proceed as follows:

a. Press the STOP key.

b. Using the appropriate console switches, change
the HALT and JUMP . +1 instructions in locations
007254 and 007255 to JRST (254000) to location
007251 (the first location in the failing routine).

c. Select location 007251 with the MA switches.

d. Press the START key.

At this point you may question the need for changing
both the HALT and JUMP. +1 instructions to JRSTs.
There is a possibi lity that the routine may not fai I each
time it is run. If the JUMP .+1 instruction was not
altered, the machine would jump out of the mainten­
ance loop the first time the routine ran successfully.
By substituting the JRST instruction for JUMP .+1,
you insure that the processor remains in the loop
whether or not the malfunction is intermittent.

With the processor continuously repeating the mal­
functioning loop, apply a scope to the adder circuits.
The MITO pulse at 1 S37D makes an idea I synchron­
izing trigger. Setting the MA switches to the address
of the initial instruction in the routine causes MITO
to be generated when the memory reference to that
location is made. Select an initial time base that
produces an osci IIoscope sweep at least as long as
the period of the routine. When you have narrowed
the time at which the malfunction occurs to a specific
period within the period of the routine, use other
pulses, perhaps the MITO of another instruction, as a
synchronizing trigger. Generally, the most effective
method of using the osci IIoscope is to continually de­
crease the sweep length, in known time segments,
unti I the time base is the shortest possible upon which
the error can sti II be seen.

Making further use of the program listing, you can
determine that the MOVE instruction in the failing
routine of this example fetched the constant from
location 010525. Consulting the listing for the value
of ZZ or the contents of 010525, you will fi nd that
the constant contains a 1 in bit 13. Since this con-

6-4

OA MACROX V003 11: 14 3-0CI-67 PAGE 10-4

007232 200000 010522 MOVE [Z~] ;CK THE AD AR+EN
007233 270000 010466 ADD [0] ;GATES ON THE ADDER
007234 336000 000000 SKIPN

STOP I
007235 254200 007235 HALT. ;INST FAIL, TO SCOPE REPLACE
007236 320000 007237 JUMP .+1 ;CHG TO JRST BACK

000004 000000 ZZ=ZZ+ZZ

007237 200000 010523 MOVE [H] ;CK THE AD AR+EN
007240 270000 010466 ADD [0] ;GATES ON THE ADDER
007241 336000 000000 SKIPN

STOP I
007242 254200 007242 HALT. ;INST FAIL, TO SCOPE REPLACE
007243 320000 007244 JMP . +1 ;CHG TO JRST BACK

000010 000000 ZZ=ZZ+ZZ

007244 200000 010524 MOVE [H] ;CK THE AD AR+EN
007245 270000 010466 ADD [0] ;GATES ON THE ADDER
007246 336000 000000 SKIPN

STOP I
007247 254200 007247 HALT. ;INST FAIL, TO SCOPE REPLACE
007250 320000 007251 JUMP .+1 ;CHG TO JRST BACK

000020 000000 ZZ =ZZ+ZZ

007251 200000 010525 MOVE [H] ;CK THE AD AR+EN
007252 270000 010466 ADD [0] ;GATES ON THE ADDER
007253 336000 000000 SKIPN

STOPI
007254 254200 007254 HALT. ;INST FAIL, TO SCOPE REPLACE
007255 320000 007256 JUMP. +1 ;CHG TO JRST BACK

000040 000000 ZZ=ZZ+ZZ

007256 200000 010526 MOVE [H] ;CK THE AD AR+EN
007257 270000 010466 ADD [0] ;GATES ON THE ADDER
007260 336000 000000 SKIPN

STOPI
007261 254200 007261 HALT. ;INST FAIL, TO SCOPE REPLACE
007262 320000 007263 JUMP. + 1 ;CHG TO JRST BACK

000100 000000 ZZ=ZZ+ZZ

007263 200000 010527 MOVE [H] ;CK THE AD AR+EN
007264 270000 010466 ADD [0] ;GATES ON THE ADDER
007265 336000 000000 SKIPN

STOPI
007266 254200 007266 HALT. ;INST FAIL, TO SCOPE REPLACE
007267 320000 007270 JUMP. +1 ;CHG TO JRST BACK

000200 000000 ZZ =ZZ+ZZ

Figure 6-1 Diagnostic A, Typical Page of Program Listing

6-5

stant is being added to 0, the result of the addition
should a Iso contain a 1 in bit 13. Therefore, focus
the search for the malfunction on the circuits assoc­
iated with that bit. Use the osci IIoscope to determine
if:

a. AD AR + EN failed to AND with AR bit 13, or

b. The adder itself fai led, or

c. The AR from adder JAM fai led.

As can be seen from this example, the program list­
ings contain a great deal of troubleshooting data that
may not be as obvious as the prognosis in the comments
column. Make certain you take full advantage of all
such data.

When the malfunction has been found and corrected,
change the last two instructions in the maintenance
routine back to the original HALT and JUMP .+1
instructions or reload the program. Then rerun the
entire program.

To summarize, the technique for troubleshooting an
error detected by the diagnostics might be:

a. Consult the program listing.

b. Place the processor in a loop of the failing
routine.

c. Scope pertinent circuit areas, selecting various
sweep times as necessary.

Using the bui It-in maintenance features, focus the
osci IIoscope display on a segment of time that most
nearly coincides with the occurrence of the failure.
Particularly useful for this purpose are the various
"stop" keys: SING INST, SING CYCLE, ADR STOP,
ADDRESS CONDITION INST FETCH DATA FETCH
WRITE, AND SHIFT CNTR MAINT.

6.3.5 Troubleshooting with Diagnostic D

Diagnostic D is similar to diagnostics A through C in
that many of its routines force the machine to halt
when an error is detected. However, some routines
in diagnostic D check the user mode in which HALT
instructions are illegal. These routines hang up in a
JUMPA . instruction when an error is detected. The
processor continues to run, but it repeatedly jumps to
the address of the JUMPA . instruction. The RUN
light remains illuminated; the PROGRAM STOP light

remains extinguished; the PC becomes static; and the
MA contains the address of the JUMPA . instruction.

To troubleshoot the unsatisfied routine, place the pro­
cessor in a loop by changing the JUMPA . and
JUMP .+1 instructions to JRSTs back to the first
instruction in the routine. Then, proceed with the
error detection techniques outlined for diagnostics
A through C.

6.3.6 Troubleshooting with Test Programs E through
Mand P

Unless halt-on-error or proceed-on-error is selected,
programs E through M cause the processor to continu­
ally repeat routines in which errors are detected.
Once in a failing loop, the processor repeats the
routine even though the failure may be intermittent.
In the case of an intermittent failure the routine may,
upon occasion, run successfully. It can be released
from the loop only by selecting proceed-from-error at
the data switches or by restarting the program.

6-6

As with all diagnostics, E through H each checks a
unique portion of the machine. When one of these
programs detects an error and enters a fai ling loop you
can proceed directly with the troubleshooting practices
already outlined for tests A through D. However,
should one of the reliability programs (I through M
and P) fail, it is not always best to begin troubleshoot­
ing with the processor hung up in the unsatisfied rou­
tine. Instead, identify the failing instruction and re­
turn to the diagnostic that checks that instruction
under fixed conditions. If the diagnosti c does not fai I
immediately, it might be induced to fail by running
under margining conditions. (Techniques for running
margins are detailed in a later paragraph.) This pro­
cedure of back-tracking to a diagnostic is recommend­
ed because, generally, the diagnostic programs are
easier to troubleshoot than the reliability programs.

If the foregoing procedure is followed and the diagnos­
tic does not fail, return to the failing reliability pro­
gram. When the failing loop has been re-established,
troubleshoot following the same basic practices used
with the other tests. As the programs become more
complex, effective use of the various stop switches
becomes increasingly essential for isolating malfunc­
tions.

A note of caution, of particular concern when running
reliability programs, is in order at this point. If a
simulation routine should fail, the result of the simu­
lation wi II disagree with the result derived by the

instruction under test, and an error wi II be indicated.
As a result, you can waste a great deal of time trouble­
shooting a perfectly good instruction when, in fact,
the problem lies with the simulation. This situation
should not arise if the test programs are run consecu­
tively, since the instructions used for simulation in
one program are always proven operable in a preced-
i ng program.

6.3.7 Troubleshooting With Test Program N

Reliability program N performs its checks according
to a number of variables, one of which is the magni­
tude of the operands provided by the random number
generator. Consequently, the program does not run
in a precise order of consecutive instructions as the
other programs do. For this reason, and because the
instructions under test are executed indirect through
AC14, it is not always obvious from the program list­
ing how the program progressed to the point of error
when it hangs up in a loop. Because of its complexi­
ties, and because it does not include a prognosis of
failures, the program listing is not particularly re­
commended as a troubleshooting tool. But this situa­
tion is more than compensated for by the printout.

The printouts, Figure 6-2, accompanying Test N
errors are far more definitive than those for the other
programs. In particular, they list the proper contents
of the registers at various event times in the instruc­
tion. Assuming, of course, that the simulation is
correct, the printout occurs as a result of one of two
situations:

a. The right answer is obtained but the wrong flags
are set,

b. The wrong answer is obtained and flags mayor
may not be set incorrectly.

In the first situation, focus your troubleshooting on
the logic associated with the incorrect flags; in the
second, eliminate the cause of the wrong answer and
you'll probably eliminate any unwanted flags. In
either case, the practice of backtracking to the diag­
nostic that checks the failing instruction is a good
initial step. If the diagnostic fails, troubleshoot it
as previously described; if not, return to reliability
program N.

When a case of setting the wrong flags is involved,
the first line of the printout resembles the following:

FLAGS FROM MACH AND SIMULATE 440100 000000

The first group of numbers defines the flags that are set;
the second group, the flags that should be set. Table
6-3 matches the flags to their bit positions in the out­
put word.

Table 6-3
CP Flags Versus Output Word Bits

Bit

o
1
2
3
4
5
6

11
12

AROV
AR CRYO
AR CRYl
ARFOV
BYF6
EX USER
EX lOT USER
AR FXU
AR DCK

With the program in a failing loop, a malfunction
might be isolated as follows:

a. Study the printout.

b. Usi ng the various stop switches, compare the
contents of the registers at specific times in the
instruction cycle with the contents listed on the
printout. As an example, Figure 6-2 indicates
possible stop times and the switches that produce
the stops.

c. Using step b, determine the two stops between
wh i ch the error occ urs .

d. Synchronize the osci IIoscope with the decoded
IR level of the failing instruction. For example,
the printout in Figure 6-2 states that the failing
instruction is an FDVL. In this case, you would
synchronize the oscilloscope on the IR FDVL level
at IM16N.

e. Determine where the two stops, isolated in step
c, fall on the osci IIoscope sweep.

f. Find a timing pulse, between the two stops, that
nearly coincides with the fai lure.

g. Using the timing pulse from step f as a reference,
examine the logic to determine where the bit was
lost or altered, which enabling level was not gener­
ated, which transfer gate failed to respond to a
strobe, and so forth.

6-7

6.4 MARGIN CHECK SYSTEM

The margin check system provides a means of substitut­
ing a Type 702 Variable Power Supply for the fixed
+10 and -15V system operating voltages. The 5-posit­
ion MARGIN CHECK switch on the maintenance panel
selects the polarity of the margin voltage and makes
it available to the left or right side of the system
(see Figure 6-3). The processor and those cabinets to
the left of it are considered the left side of the system;
cabinets to the right side of the processor are consider­
ed the right side of the system.

Margins are run on a rack-by-rack basis as a function
of the local margin switches. Each rack usually has
two such switches; one selects the +10V margin voltage
and the other selects the -15V margin voltage. There
may be an extra switch for circuits which need to be
margined separately. The MARGIN CHECK switch
overrides the local switches in the sense that it will
apply the proper fixed voltage to a rack whose local
switches are inadvertently selecting a margin condi­
tion other than the one selected by the MARGIN
CHECK switch.

The margin check system is used in conjunction with
the MAINDEC test programs for both corrective and
preventive maintenance. In performing corrective
maintenance, the MAINDEC programs are used essent­
ially as described in Section 6.3, Processor Test Pro­
grams. While the programs are being run, however,
the margin check system is used to aggravate inter­
mittent or border-line failures into consistent failures
that are easier to recognize and troubleshoot. The
margin check meter is arranged to accurately read the
voltage which is applied to the panel of logic, if
margin check switches in only one area of the machine
are on.

As part of preventive maintenance, MAIN DEC test
programs Nand 0 should be run every 1000 hours
with the machine operating under margin conditions
as described in this section. Preventive Maintenance.
Because of the various modules involved, margin speci­
fications differ from rack-to-rack as specified in Table
6-4. The thoroughness with which MAINDEC programs
Nand 0 exercise the machine, make it unnecessary
to include the other MAINDEC programs in the pre­
ventive maintenance schedule.

6.4.1 Considerations for Running Margins

Running margins with the MAINDEC programs is an
effective troubleshooting tool. However, certain pre­
cautions must be taken if you are to use it effectively.

When a program fails under margin, it is not always
obvious where it is failing; and assuming you determine
the point of failure, it is usually much more difficult
to determine the cause of fai I ure than when the prQ­
gram is running without margins. The reason for this
difficulty is that if margins are not being used and
if the test programs have been run in order, e;counter­
ing an error usually indicates that the machine is not
properly executing the instruction under test. This is
not true when margins are involved. In this case, the
error may, in fact, occur because the machine cannot
execute the instruction under test. However, it is
just as likely that the error occurs because the margins
have:

a. Forced a failure in the simulation routines7

b. Forced an illegal printout,

c. Altered the instruction code,

d. Altered the address of the operand, or

e. Forced a failure in the memory control logic.

An infinite number of situations can be added to the
foregoing list. If you canlt consider as many of these
situations as possible, you can waste a great deal of
time troubleshooting a perfectly good instruction. Un­
fortunately, there is no foolproof method of avoiding
this mistake, but you can minimize the chance of
making it by being constantly aware that it can
happen. Never forget you Ire running margins; when
an error occurs, question the validity of the printout.
If it appears legitimate, there is no recourse but to
proceed with the normal methods for troubleshooting
an error loop. If the printout does not appear valid,
it is probable that an instruction other than the in­
struction under test is fai ling. Try to determine
which instruction is causing the error from the print­
out and/or circuits being margined. Then, follow
the standard procedure of returning to the most basic
diagnostic test for that instruction. Try to make the
diagnostic fail at approximately the same margins at
which the original failure occurred. If it does fail ,
you can probably detect the malfunction easily. If it
does not fail, go back to the original program and try
to determine where it is fai ling, using the various
stop switches, program listing, flow charts, and all
other means at your disposal.

6.4.2 Using the Margin Switches

Repositioning either the MARGIN CHECK or local
margin switches whi Ie margins are being applied can

6-8

THE MACH RESULTS IN AC.AC+I.E 000000000000 740752057505 15262',,1,; 1113

*0004663 IDIV 01 .000003 000752457505 344104140305 752~~0767173
000000000000 000752457505

TIM, PC lOlA SC ~E AR MQ RR
I T0 004663 004663 000 000 230040000003 000000000000 15~6~A161113
I TI 004663 000000 000 000 230040000003 000000000000 752620767173
AT3 004663 000000 000 000 000000000003 000000000000 230040000003
AT6 004663 "00003 000 000 000000000003 000009000000 ~30A40900003
~T0 004663 000003 000 000 752620767173 000000000000 230040000003
~T\A 004663 000003 000 000 752620767173000000000000 752620767173
~T2 004663 000003 000 000 000000000000 000000000000 752620767173
~ T2RQ 004663 000003 000 000 000752457505 000000000000 752620767173
F"T3 004663 000003 000 000 000752457505 000000000000 752620767173
F" T9 004664 000003 000 000 000752457505 000000000000 752620767173
ET0 0046604 000003 735 000 000752457505000000000000 752620767173
E TI 004664 000003 735 000 000000900000 000152451595 752620761173
ET2 004664 000003 735 000 000000000000 001725137212 752620767173
DSTI 004664 000003 735 000 000000000000 001725137212 752620767173
OST2 0004664 000003 735 000 000000000000 001725137212 752620767173
SCT0 004664 000003 735 000 000000000000 001725137212 752620767173
S CT2 0004664 000003 736 000 000000000000 001725137212 752620767173
S cn 0046604 000003 736 000 125441756366003652276424 752620767113
SCT2 000660 000003 737 000 7254041756366 003652276424 752620767173
S cn 004664 000003 737 000 725441756366 007524575050 752620767173
S CT2 004664 000003 740 000 725441756366 007524575050 152620767173
SCT3 004664 000003 740 000 725441756366 017251372120 752620767173
SCT2 004664 000003 741 000 725441756366 017251372120 752620767173
S cn 004664 000003 741 000 125.441756366 036522764240 752620167173
SCT2 00.4664 000003 742 000 725441756366 036522764240 752620767173
S cn 004664 000003 742 000 725441756366 075245750500 752620767173
S CT2 004664 000003 743 000 725.441756366 075245750500 752620767173
S cn 004664 000003 743 000 725441756366 172513721200 752620767173
S CT2 004664 000003 744 000 725.441756366 17251372120A 752620767173
S CT3 004664 000tll03 744 000 725441756366 365227642400 7526?0767173
SCT2 004664 000003 745 ~0 725.441756366 3652276420490 752620767173
S cn 004664 000003 745 000 725441756366 752457505000 752629767173
5 CT~ 004664 000003 746 000 7254041756366 752457505000 752620767173
scn 004664 000003 746 000 725.441156367 725137212000 752620767173
SCT2 004664 000003 747 000 725441756367 725137212000 752620767173
CT3 004664 000003 747 000 72544n56371 65227604204000 752620767173
S CT2 004664 000003 750 000 725441756371 652276424000 7526~767173
scn 004664 000003 750 000 725441756375 524575050000 752620767173
S CT2 00466.4 000003 751 000 72544175~375 524575050000 752620767173
SCTJ 004664 000003 751 000 725441756405 251372120000 752620767173
S CT2 00466.4 000003 752 000 725441756405 251372120000 752620767173
scn 004664 000003 752000 725441756424 522764240000 752620t67173
S CT2 004664 000003 753 000 725441756424 522764240000 752620767173
scn 004664 000003 753 000 725441756463 245750500000 752620767173
S CT2 004664 000003 754 000 7254.41756463 245750500000 752620767-173
S CTJ 004664 000003 754 000 725.4.41756560 513121200000 75262"-1767173
SCT2 004664 000003 755 000 725441756560 513721200000 752620767173
scn 004664 000003 755 000 7254.41756753 227642400000 752620767173
SCT2 004664 000003 756 000 725441756753 227642400000 752620767173
S CT3 004664 000003 756 000 725441157340 457505000000 752620767113
S CT2 00466.4 000003 757 000 725441757340 457505000000 752620761'173
S CT3 004664 000003 757 000 725441760313 137212000000 752620767173
SCT2 004664 000003 760 000 725441760313 137212000000 752620767173
S cn 004664 000003' 760 000 72544176?240 276424000000 752~2076 7173
S CT2 004664 000003 761 000 725441762240 27642040"'00"'0 75e620767173 scn 004664 000003 761 000 72541141766112 575050000000 752~~0767173
S CT2 00466.4 000003 762 000 725441766112 575050000(1]00 752620767173
S cn 004664 000003 762 000 725441715637 372120""000(1]A 752620767173
SCT2 004664 000003 763 000 725441775637 372120000A0A 7526207671 73
S cn 004664 000003 763 000 72544201 5 1 10 764240000000 7526~0767173
S CT2 004664 000M3 764 000 725442015110 764240AA0A00 7526?0767173
S CTJ 004664 000003 764 000 725442053633 750500000000 752620767173
S CT2 004664 000003 765 000 725442053633 75A5AA0A0AA'" 752';~A7"7173
S cn 00411664 000003 765 000 725442151 leI 7?1~0('10A('I~('IA 75262"'71}7173
S CT2 004664 000003 766 000 7?54421 51101 721~AA000A00 75262071}7173
SCTJ 004664 000003 766 000 725442343615 6424A00P.10(.HH''l 75?"'207 67173
SCT2 004664 000003 767 000 725442343615 64240M00000 752620767173
scn 004664 000003 767 000 725442731045 505000000000 752620767173
SCT2 004664 000003 770 000 725442731045 505000000000 752620167173
S cn 004664 000003 770 000 725443703525 212000000000 752620767173
S CT2 004664 000003 771 000 725443703525 212000000000 752620767173
SCT3 004664 000003 771 000 725405630664 424000000000 752620767173
SCT2 004664 000003 772 000 725445630664 424000000000 752620767173 scn 004664 000003 772 000 725451503163 050000000000 752620767173
S CT2 004664 000003 773 000 725451503163 050000000000 752620767173
SCT3 004664 000003 773 000 725461227760 120000000000 752620767-173
S CT2 004664 000003 774 000 725461227760 120000000000 752620767173
SCT3 004664 000003 774 000 725500501352 240000000000 752620767173
SCT2 004664 000003 775 000 725500501352 240000000000 752620767173 scn 004664 000003 775 000 725537224336 500000000000 752620767173
SCT2 004664 000003 776 000 725537224336 500000000000 752620767173
S CT3 004664 000003 776 000 725634472307 200000000000 752620767173
SCT2 004664 000003 777 000 725634472307 200000000000 752620767173
SCT3 004664 000003 777 000 726027206230 400000000000 752620767173
SCT2 000664 000003 000 000 726027206230 400000000000 7526207671 73
S CT3 004664 000003 000 000 726414436073 000000000000 752620767173
S CTo 004664 000003 000 000 726414436073 0M000000000 752620767173
D ST3 004664 000003 000 000 753573446700 000000000000 752620767173
o ST4 004664 000003 000 000 000752457505 000000000000 752620167173
DST5 01214664 000003 000 000 0000000012J000 0007524575A5 752620767173
DIVT5 004664 000003 000 000 000000000000 000752457505 752620167173
ST0 004664 000003 000 000 000000000000 000752457505 752620767173
ST\ 004664 000003 000 000 000000000000 000752457505 752620H7173
S T2 00466.4 000003 000 000 000000000000 000752.57505 752629767173
ST7 004664 000003 000 000 000752457505 000752457505 752620767173
STB 004664 ~00003 000 000 000752457505 000752457505 752620767173
S T9 1211214664 000003 a00 000 000752457505 000752457505 752620767173

Figure 6-2 Test Program N, Error Pri ntout

6-9

produce transients that adversely affect machine opera­
tion. For example, transients can alter the contents
of active registers. They can cause even more serious
problems by starting a memory reference cycle, and
thereby altering the stored test program. To minimize
such occurrences, proceed as follows when reposition­
ing the margin switches.

a. Press the STOP switch.

b. Examine location 00. (This sets the MA to 00.
If location 00 is altered inadvertently, no serious
consequences result since that location is re-initiated
when the program is restarted).

~
+IOL{f'\+IO.R

+I5L' "-/' - 15R

+

M -=

-=

~
• .:J

I
..-.....J

_':1
-~

+ L METER
, -,

- L METER -,

c. Position the margin switches as desired.

d. Press the RESET switch.

e. Set the ADDRESS switches to 4000.

f. Press the START switch.

6.4.3 Altered Programs

Margining in areas of the memory control, instructior.
register, or program counter logic can alter the stored
program. Error indications resulting from this situation

+ VARIABLE D.C.

- VARIABLE D.C.

r GROUND

+10 VDC

-I5VDC

+R METE R -.., ,
-RMETE I

I
I
\

, , -MARGIN VOLTAGE

R \
, \
I I

I I ~

TO \
LEFT , -

-
+MARGIN VOLTAGE ,/

GROUND

- 15 TURN-ON ~

Figure 6-3 Margin Check System, Simplified Diagram

6-10

TO
RIGHT

are invalid if the purpose of the test is to check out
an instruction. When an error of this type is suspected,
remove the margin voltage and restart the program at
location 4000. If, the program runs successfully with
no margin voltage, the original error indication is
probably valid. Reproduce the failure and trouble-

shoot it. If the program does not run successfully with
the margin voltage removed, it probably has been
altered. In this case, ignore the error indications,
reload the program, and resume the margining proce­
dure at a point preceding the point of the original
failure.

Table 6-4

Panels

1A
1B
1C
1D
1E
1F
1H
1J
1K
1L
1M
1N
1P
1R
1S

IT
2A
2B
2C
2D
2E
2F
2H
2J
2K
2L
2M
2N
2P
2R
25
2T

+

+12.0V
-I;17.5V
+17.5V
+17.5V
+17.5V
+17.5V
+17.5V
+17.5V
+17.5V
+17.5V
+17.5V
+17.5V
+17.5V
+17.5V
+15.0V

+17.5V

+17.5V
+12.0V
+17.5V
+17.5V
+17.5V
+17.5V
+17.5V
+17.5V
+17.5V
+17.5V
+17.5V
+12.0V
+17.5V
+17.5V
+17.5V
+17.5V
+17.5V

*New Test Titles

+10V

lv\arginal Check Specifications
(for all Tests)

+8.0V
+3.0V
+3.0V
+3.0V
+3.5V
+3.5V
+3.5V
+3.5V
+3.0V
+3.0V
+3.5V
+3.0V
+5.0V
+3.0V
+5.0 for Test D, L,

and M*

+3 .OV for all other tests

+3.0V
+8.0V
+3.5V
+3.0V
+3.0V
+3.0V
+2.5V
+3.0V
+3.0V
+2.5V
+2.5V
+8.0V
+5.5V
+3.5V
+3.5V
+3.0V
+3.0V

6-11

-lSV

+

-17.0V -13.0V
-18.0V -12.0V
-18.0V -12.0V
-18.0V -12.0V
-18.0V -12.0V
-18.0V -12.0V
-18.0V -12.0V
-18.0V -12.0V
-18.0V -12.0V
-18.0V -12.0V
-18.0V -12.0V
-18.0V -12.0V
-18.0V -12.0V
-18.0V -12.0V
-18.0V -12.0V

-18.0V -12.0V
-17.0V -13.0V
-18.0V -12.0V
-18.0V -12.0V
-18.0V -12.0V
-18.0V -12.0V
-18.0V -12.0V
-18.0V -12.0V
-18.0V -12.0V
-18.0V -12.0V
-18.0V -12.0V
-17.0V -13.0V
-18.0V -12.0V
-18.0V -12.0V
-18.0V -12.0V
-18.0V -12.0V
-18.0V -12.0V

Table 6-4
Marginal Check Specifications

(for a" Tests) Cont

Programs Used For Checking Margins

Old Name New Name Passes or Durati on

D OD 2 min (ALL DATA SWO)
H 01 2 min (Fast Mode)
I OJ 2 min (Fast Mode)
J OK 2 min (Fast Mode)
K OL 6 min (ALL DATA SWO)
L OM 4 min (Fast Mode)
M ON 4 min (Fast Mode)
BLT 00 4 min (ALL DATA SWO)

The following are the Marginal Check Specifications for Bay 3 while running Tests D, TTY, and
Reader Punch. The Random Binary Test Mode of the Reader Punch Test should be run whi Ie taking
margins.

3A
3A(Reader

Lamp)
3B
3C
3D
3E
3F

+10V

+

+17.S
+11.0

+17.S
+17.S
+17.S
+17.S
+17.S

6.S TROUBLESHOOTING READ IN (RDI)

+2.S
+9.0

+2.S
+2.S
+2.S
+S.S
+2.S

When an attempted read in operation does not initiate
a data transfer or appears to transfer the wrong data,
the malfunction could be in the processor and/or read
in logic, or in the I/o device. To investigate the
latter possibility attempt a read in operation from
another I/o device. If this attempt is successful, the
first device and/or its control logic is probably mal­
functioning. The fai lure can be isolated by using
the appropriate I/o diagnostic program. If the read
in from the second I/O device fai Is also, consider the
character of the fai lure. If no data is being read in,
the fault could be that the RDI logic is malfunction-

-1SV

+

-18.0 -12.0

-18.0 -12.0
-18.0 -12.0
-18.0 -12.0
-18.0 -12.0
-18.0 -12.0

ing or that the processor has lost the ability to execute
the DATAl and/or BLKI instructions required in an
RDI operation. If the wrong data is being read in I
the problem could lie with the RDI logic.

The following sections detai I suggested techniques for
isolating read in failures, assuming the I/O devices
are operating properly.

6-12

6.S.1 No Data Read In

When pressing the READIN key fails to initiate an
input transfer I the first corrective step is to determine
whether or not the processor can execute DA T Als and

BLKls. This can be done by trying to read data from
the paper tape reader, using the hardware read in
(HRI) simulator program below. Proceed as follows:
insert tape in the reader; deposit the HRI simulator
program into memory from the console; press the
START key.

HRI Simulator Program

Address Left Half - Right Half

60/
61/
62/
63/
64/
65/
66/
67/
70/

71060 - 60
71074 - 10
25400 - 61
71044 - 00
71074 - 10
2540 - 64

71040 - 00
256020 - 00
254000 - 64

CONO PTR,60
CONSO PTR,10
JMP .-1
DATAl PTR, 0
CONSO PTR,10
JMP .-1
BLKI PTR,O
XCT@O
JMP .-4

If the HRI program fails to read the tape, the malfunc­
tion probably is not in the RDI logic, but rather in
the processor's inabi lity to execute I/O instructions.
This being the case, troubleshoot the program using
the SING INST and/or SING CYCLE keys. However,
if the HRI program does read the tape, the malfunc­
tion is probably in the RDI logic. To isolate the fai l­
ure, determine the point at which the RDI cycle is
hanging up, as follows:

a. Select the paper tape reader (device code 104a)
with the READ IN DEVICE switches.

b. Remove any tape from the reader.

c. Set the MA switches to all Os.

d. Deposit all Os into location 00.

e. Press the SING CYCLE key.

f. Press the READIN key.

If the processor were operating properly, 71044 would
appear for an instant (an instant, in this case, is a
period of time far too short to obtain a reaction from
either the human eye or an incandescant fj lament;
therefore, this transition wi II not be seen) in the IR
indicators; then, change to 71040; and the MI would
contain all ls. Since the processor is malfunctioning,
however, one of the following will probably appear

\nstead~

a. An instruction code other than 71044 or 71040
appears in the IR. This indicates that pressing the
READIN key does not generate the proper instruc­
tion (s) (DATAl, BLKI). Isolate the malfunction by
checking the IR RDI SETUP.

b. 71044 shows in the IR, and the MI contains all
Os. This indicates that although the first DATAl is
generated, it does not read in the pointer. Isolate
the malfunction by checking the generation of
pulses from lOB RDI DATA to ITl.

c. 71044 shows in the IR and the MI contains all ls.
This indicates that the first DATAl is not being
changed to a BLKI after the pointer word is read in.
Isolate the malfunction by checking for IR12 CLEAR
at STl time.

6 .5.2 Wrong Data Read In

If executing a READ IN appears to load data incorrect­
ly into memory, it is possible that DAT AI instructions
in part 2 of the RDI cycle are not being changed to
BLKI instructions. Again, a good initial step is to
determine whether or not the processor properly exe­
cutes BLKI instructions by running the HRI program
with the paper tape reader as directed in the preced­
ing section. If the HRI program reads the tape success­
fully, proceed as follows:

a. Select the paper tape reader (device code 104a)
with the READ IN DEVICE switches.

b. Press RES ET

c. Remove any tape from the reader.

d. Set the MA switches to a II Os.

e. Deposit all Os into location 00.

f. Cover all but the "a" hole (outermost hole) in the
reader's photosensing mechanism.

g. With SING CYCLE and SING INST disabled,
press READIN.

Normally, the console indicators show that the
contents of the MA and the pointer word in the MI
are incremented continually as the tape is read. But
if, as suspected, DATAOs in part 2 of the RDI cycle
are not being changed to BLKls the contents of the
MI and MA remain static, and the IR contains 71044.
Such operation causes all data words to be loaded on
top of one another in the initial memory location.
The malfunction can probably be found by determining
wny lR RDl part 2 \s not being set.

6-13

APPENDIX A
FLOW DIAGRAM

AND
SCHEMATIC INTERPRETATION

The PDP-10 system, in particular the KA 10 Central
Processor, can be generally described as an asynchro­
nous system. This has two meanings:

a. there is no central source of timing pulses {pulses
are generated by the logic as needed};

b. there is no fixed sequence of timing pulses. The
system proceeds from task to task, without allowing
time for more complicated cases which are not re­
quired for the particular instruction.

The KA 10 Central Processor incorporates pulse­
sampled level logic. Data residing in the various re­
gisters and control fl ip-flops of the processor are the
sources of the level logic. Generally only a few
stages of level logic are necessary to reach a conclu­
sion. After a time adequate to cover the maximum
possible delay of the level logic stages, a pulse will
be developed which samples the outputs of the level
logic. As a consequence, the registers and control
flip-flops may be changed, making up a new set of
conditions. The actual sequence of pulses which oc­
curs is also controlled by the level logic. The timing
is accompl ished with a series of delay I ines and pu Ise
amplifier-standardizers. These delay line-pulse am­
plifier combinations form a path with branches and
loops to accomplish repetitive tasks such as shifting.
The KA 10 logic may itself be thought of as a program,
with branches and loops to accomplish its intended
functions.

A. 1 SYMBOLOGY

Essential to understanding the flow chart and logic
diagrams, which illustrate the operations of the KA10,
is the ability of the reader to interpret the symbology
used in the preparation of these diagrams. For this
reason, a discussion of the symbol standards follows.
It is recommended that a reader unfamiliar with DEC
symbol standards read this section before studying the
theory of operation.

A.l.l Lines

Lines are used to indicate flow. Where directional
arrows are not provided, the flow is presumed to be

down or to the right. Examples of flow lines are
shown below:

Example A.
Example B.
Example C.
Example D.

A.l.2 Pulses

Shows a path diverging.
Shows two paths recomb i n i ng .
Shows two independent paths crossing;
Shows a path branching three ways.

Oval enclosed names as shown below represent pulse
amplifiers. A line leaving the bottom of an oval gen­
erally indicates the continuation of the flow of control.
A line leaving the right side of the oval generally
leads to the indication of the other actions caused by
this pulse.

A-l

Pulses are named in such a manner that the location of
the flow diagram on wh ich it appears is faci litated.
Only those pulse amplifiers which are part of the con­
trol flow appear as ovals and are named as described
below.

A pulse name is generally of the form XXTn. The XX
consists of from one to three characters which identify
the pulse generating part of the logic. It usually cor­
responds directly to a drawing name, or to part of a
drawing name. The T indicates a time pulse. The
digit usually indicates which pulse in a sequence of
pulses it is. Due to the complexity of the logic, how­
ever, pulses of a given group do not always occur in
numerical order. Sometimes an additional letter wi II
appear, following the digit. These usually indicate
cases where additional drive was required, or some
other reason which required an extra pulse amplifier
to be inserted. They are, however, logically separate
from the pulse amplifier of the same name without the
suffix.

Time pulses are thought of not only as pulses which
perform some action, but also as "times" which occur
during some cycle of operation or hardware subrou­
tine. Hence, in speaking, the names are often ex­
panded; e.g., FT9 to "fetch time 9", DIVT3 to
"divide time 3", lOT T2 to "iot time 2" (jot is a short
form of "input/output transfer II from earlier (and
smaller) DIGITAL machines).

A.l.3 Delays

Horizontal lines in the flow diagram, separated by a
time specification indicate delays. Times with un­
specified units are in microseconds. Time delays un­
der 250 ns are usually implemented by delay lines;
longer time delays by monostable multivibrators. The
time given is measured through the delay only, and
does not count delays through associated gating and
pulse amplifier circuits. Hence, the time delay of a
given operation cannot be determined by simply ad­
ding the delays specified.

.210

I Delay is 0.210 fJS
(or 210 ns)

5 ms

Delay is 5 milliseconds

Horizontal lines in the flow (usually doubled) sepa­
rated by names, as shown be I ow, i nd i cate that the
flow has temporarily left this flow diagram to make
use of a hardware subroutine. The upper name is the
name of the subroutine, the lower name is the last
pulse in the subroutine. Hardware subroutines are
used where substantially similar events are desired
from several places in the overall logic. Examples of
these are: read and write from memory, shift a speci­
fied number of times, multiply two numbers. These
subroutines are sometimes nested (e.g., IIfloating mul­
tiply" calls "multiply" which in turn calls "shift").

WRRQ
MCRSTl

to SCTO
SCT4

A.l.4 Conditions

Flow lines interrupted by some logical expressions, as
shown below, indicate that flow only proceeds down
paths where the given condition is true at the time the
pulse appears at that point.

- (E LONG or ST INH)
ADO (0) ADO (1) E LONG

A.l.5 Operations

Boxes connected to ovals containing specifications of
operations are best explained by considering the ex­
ample shown below. The MQ FM AD(J) means that
the MQwill have the contents of the adder jammed
into it. The FM stands for from, - this example is
read as: "MQ from Adder, jammed ". Other similar
possibilities include MQ FM AD(l), meaning that only
the 1s are transferred, causing an Inclusive OR; or
MQ FM AD(O), transferring the Os, causing an AND.

MQ FM AD(J); CORRECT REMAINDER
AR FM MQ(J); QUOTIENT
IRl(1): AD AR +EN CLR;

AD CRY 36 SET; NEGATE REMAINDER
AD AR-EN SET;

A-2

IRI(O): AD CRY 36 SET; ROUNDING
AD AR+EN SET
AD AR-EN CLR

This backwards notation is used in order to lead the
reader directly to the block schematic diagram which
has the logic in question. In this example, the gating
and pulse amplifiers which load the MQ are found on
the MQ control print. One would expect to find
D5T5 as an input on that PA. The semicolon delimits
comments. The "correct remainder II is supplied as ad­
ditional explanatory information. The AR FM MQ (J)
is similar to that described above. Note that in com­
bination with the above item, the MQ is both changed
and read out. Since these two items are in the same

box, they occur simultaneously, and the order in
which they appear in the box is irrelevant. In all
such cases, the old contents are what are read out.

The following three items, all indented past the IR1(1),
are all conditioned on IR bit 1 being in the 1 state.
Hence, those actions will only occur if IRl is a 1.
Specifications of the form XXXX SET or CLR refer to
individual control flip-flops. As usual, the first few
characters of the name indicate the logic diagram
where the flip-flop will be found. A flip-flop which
has been SET will be in the 1 state upon application
of a time pulse; one which has been CLRed will be in
the 0 state.

A.l.6 Tabular Format

The explanation above covers one of the two forms of
flow charts used for the KA10. This form is used
where it is most important to convey the actua I
flow through the logic. However, in the basic in-

INSTRUCTION ADD
SUBTRACT

INITIAL EFO LONG
SWITCHES XXX-:FCE

M
XXX B : FCE PSE

INITIAL AR; C(AC)
REGISTERS BR; (O,E) or (ACE)

MA: E

FT9 AD AR+EN SET

structions, most of the action occurs at a few standard
time pulses. Hence, a different form of flow chart is
used to detai I which actions take place for various
instructions, either individually or in groups, at the
standard execution time pulses. This other form is a
rather standardized tabular format. The example be­
low is taken from the basic instruction flow.

The use of X in the instruction conditions allows for
variations of the basic instructions to be covered.
Here XXX-: FCE means that the instructions ADD and
SUB {without suffixes} cause the FCE function. The
ADDM, ADDB, SUBM, SUBB cause FCE PSE, by sim­
ilar reasoning. At FT9, any ADD instruction (ADD,
ADDI, ADDM, ADDB) will cause AD BR+EN SET.

A.2 LOGIC SYMBOLOGY

The system of logic symbology used in the PDP-l0
drawings has as its primary objective the c(arification
of what logical function is being performed by a given

Which instructions are covered
by this column

The settings of a number of
gating conditions used in the
fetch and execution cycles

The initial contents of the
registers used in this instruc­
tion by FT9

ADDX: AD BR+EN SET
The events which take place
at FT9 for instructions in this
group. Events at FT9 cannot
be data dependent.

ETO

ETl

ET2

FINAL
SWITCHES

SUBX: AD BR-EN SET
AD CRY 36 SET

AR FM AD(J)
ARF CRY STB

XXXM: SAC INH

ETO is the first execution time
for data dependent operations.

ETl is an optional pulse

ET2 is also optional

Settings of conditions used in
the store cycle

Figure A-l Tabular Format

A-3

circuit. Hence, a system of non-polar logic has been
adopted. Non-polar implies that any given signal has
two names: a mnemonic name to indicate one polarity
and a negation of that name at the other polarity. For
example, the instruction decoders provide outputs
that are true for the ground (or high) level; this is
symbolized by an open diamond at the end of signal
line, --<>. One decoder output is named IR ILDB
~. Note that the assertion polarity symbol
must be included with the name because the same line
is also called, -IR ILDB • (at -3V, the low
level). Thus, this line carries potentially two useful
signals: any gate that requires an input when the in­
struction register holds the instruction ILDB has the
input available at the high level and any gate that
must know when ILDB is not present, has the input
avai lable at the low level. Because some logic func­
tions are required when either polarity is available,
many of the signals in the processor are provided with
both polarities by means of inverters. The inverters
usually appear at the source end of the signal as
named by its source. For example, an instruction de­
coder similar to the example above provides IR
ASHC --<> and, by the same arguments, -IR ASHC
--._. However, the machine requires one or both
of the signals IR ASHC • or -IR ASHC --<> ;
therefore, an inverter appears at the output of th is de­
coder as shown in FigureA-2. For this case, all com­
binations of the signal IR ASHC are available.

Figure A-2 Inverter

A similar situation exists for flip-flops and devices
having register-like properties such as adders. Here
as an aid to identifying which signals are from flip­
flops and which are produced by gates, the suffixes
(1) and (0) appear at all flip-flop originated signals.
These suffixes are read aloud as, on a 1 and on a 0,
respectively. Because fl ip-flops have two comple­
mentary output terminals, a situation analogous to the
gate with an inverter exists. Each of the two outputs
of the flip-flop has two logical names; for example,
the signal IR 15(1) • is the same as the signal
-IR 15 (0) --<> ; however, because we use a suffix
on flip-flops, it can be seen that the signals -X(l)
and X(O) are equivalent. Hence, the signal -IR 15(1)
--<> always appears as IR 15(0) --<> .

Other modules are indicated by an abbreviation
enclosed in a rectangular box. These include the
following:

BD Bus driver used for driving cables

+ Adder used to perform arithmetic sum oper­
ations

A-4

ADR Alternate designation for adder

lTD Initial Transient Detector used in console
logic

ClK Clock

SS Schmitt trigger

In some cases, it may be necessary to refer to a mod­
ule catalog or the PDP-10 System Module Reference
Manual to obtain the characteristics of a module.

A similar argument holds for the other terminal of a
flip-flop. This is symbolized on drawings by showing
four outputs from a flip-flop; these are grouped for
(0) and (1) as shown in Figure A-3. The P and N
letters outside the symbol are output pins of the flip­
flop. Pin P can be both (0) • and (1) --0.
Pin N can be both (0) --<> and (1) ••
Therefore, when a gate calls for one of the four out­
puts from the flip-flop, it becomes a simple matter to
identify the signal source.

PN PN

o

IRI5

Figure A-3 Flip-Flop

Gates are shown as rectangular boxes with a symbol
enclosed to tell what logical function is performed by
the gate, given the polarity of the inputs shown. The
dual nature of logic symbology shows itself again be­
cause a given physical gate can be both a NAND and
a NOR type, depending on the polarity of its inputs
as shown in Figure A-4. A NAND gate is symbolized
by ~ /\ , and a NOR gate by ~V. The NOT part of

the gate inverts the polarity of the output and there­
fore the gates are used as AND and OR gates for log­
ical purposes. In the drawings, the representation of
a given gate is chosen which makes the logical func­
tion clearest.

8133

NAND NOR

Figure A-4 NAND and NOR Gates

Some logical functions are performed without the
necessity for gates by paralleling the outputs of exist­
ing gates. Because almost all the gates in the KA10
are of the DTL type (diode-transistor-Iogic), meaning
that they have diode inputs and a single ended tran­
sistor output, they 'can be considered as controlled
switches, which are either open circuits, or shorts to
ground. By connecting two or more such gates in
parallel, the output is grounded when either gate is
on. Hence, paraIJeled gates give an OR at ground.
By the argument of duality, an AND function is pro­
duced by such a gate at -3V.

Gates can handle both pulses and levels. Pulses are
indicated by the symbol ----. (denoting a pulse which
is true at -3V) and ---i> (denoting a pulse which is

true at ground). Most • pulses are produced by
pulse amplifiers as shown in Figure A-S. Pulse ampli­
fiers (usually referred to as PAs), normally are trig­
gered from a ground-going input pulse, but because
PAs reshape the output pulse, they can operate from
any ground-going level change.

A-S

PA

R603

Figure A-S Pulse Amplifier

Delay lines are shown as elongated rectangles, with a
delay time specification enclosed. Most delay lines
in the KA 10 have discrete taps in 2S ns increments
(e.g., B311), while some are continuously variable
(e.g., B312).

Delay lines are normally driven by a PA output. Their
output pulse configuration, for a given input pulse, is
shown in Figure A-6. The output of the delay line is
of a different shape, wider, and of less power than the
PA pulse.

------~1 ':~" NS Ir~------i.~
Kc=JH IM

C\
~ PApulse

GND

LJ""delay line
output

Figure A-6 Delay Line and Delay Line Output

APPENDIXB
INSTRUCTION CODE

--0 --1 --2 --3 --4 --5 --6 --7

00- (ILLEGAL)
01- USER DEFINED UUO'S
02- (UI\IIMPLEMENTED USER OPERATIONS)
03-

04- CALL INIT LEFT FOR SPECIAL MONITORS CALLI
05- OPEN RESERVED FOR DEC RENAME IN OUT
06- SETSTS STATO GETSTS STATZ INBUF OUTBUF INPUT OUTPUT
07- CLOSE RELEAS MTAPE UGETF USETI USETO LOOKUP ENTER

lO-
ll-
12-
13- UFA DFN FSC IBP ILDB LDB IOPB DPB

14- FAD -L -M -B FADR -I -M -B
15- FSB -L -M -B FSBR -I -M -B
16- FMP -L -M -B FMPR -I -M -B
17- FDV -L -M -B FDVR -I -M -B

20- MOVE -I -M -S MOVS -I -M -S
21- MOVN -I -M -S MOVM -I -M -S
22- IMUL -I -M -B MUL -I -M -B
23- IDIV -I -M -B DIV -I -M -B

24- ASH ROT LSH JFFO ASHC ROTC LSHC
25- EXCH BLT AOBJP AOBJN JRST JFCL XCT
26- PUSHJ PUSH POP POPJ JSR JSP JSA JRA
27- ADD -I -M ~B SUB -I -M -B

30- CAl -L -E -LE -A -GE -N -G
31- CAM -L -E -LE -A -GE -N -G
32- JUMP -L -E -LE -A -GE -N -G
33- SKIP -L -E -LE -A -GE -N -G

34- AOJ -L -E -LE -A -GE -N -G
35- AOS -L -E -LE -A -GE -N -G
36- SOJ -L -E -LE -A -GE -N -G
37- SOS -L -E -LE -A -GE -N -G

40- SETZ -I -M -B AND -I -M -B
41- ANDCA -I -M -B SETM -I -M -B
42- ANDCM -I -M -B SETA -I -M -B
43- XOR -1 -M -B lOR -1 -M -B

44- ANDCB -I -M -B EOV -I -M -B
45- SETCA -I -M -B ORCA -I -M -B
46- SETCM -I -M -B ORCM -I -M -B
47- ORCB -I -M -B SETO -I -M -B
50- HLL -I -M -S HRL -I -M -S
51- HLLZ -I -M -S HRLZ -I -M -S
52- HLLO -I -M -S HRLO -I -M -S
53- HLLE -I -M -S HRLE -I -M -S

54- HRR -I -M -S HLR -I -M -S
55- HRRZ -I -M -S HLRZ -I -M -S
56- HRRO -I -M -S HLRO -I -M -S
57- HRRE -I -M -S 'iLRE -I -M -S

60- TRN TLN TRNE TLNE TRNA TLNA TRNN TLNN
61- TDN TSN TONE TSNE TDNA TSNA TDNN TSNN
62- TRZ TLZ TRZE TLZE TRZA TLZA TRZN TLZN
63- TDZ TSZ TDZE TSZE TDZA TSZA TDZN TSZN

64- TRC TLC TRCE TLCE TRCA TLCA TRCN TLCN
65- TOC TSC TDCE TSCE TDCA TSCA TDCN TSCN
66- TRO TLO TROE TLOE TROA TLOA TRON TLON
67- TOO TSO TDOE TSOE TDOA TSOA TDON TSON

7-- INPUT - OUTPUT INSTRUCTIONS

7- -OO-BLKI the device number is inserted in bits 3 to 9
7- -Q4-DATAI of each I/o instruction.
7- -10-BLKO
7- -14-DATAO
7- -20-CONO
7- -24-CONI
7- -30-CONSZ
7- -34-CONSO

8-1

APPENDIXC
INSTRUCTION WORD FORMATS

INSTRUCTiON CODE
IINCLUDING MODEl

DEVICE CODE

BASIC INSTRUCTIONS

IN-OUT INSTRUCTIONS

r
35

r
o 1 3 910 121314 1718 35

SIGN
0-
1-
o I

SIGN
0-
1-

o I

o
o I

PC WORD

35

BLT POINTER [XWD}

SOURCE ADDRESS DESTINATION ADDRESS

17 1S 35

BLK 1/ BLKO POINTER, PUSHDOWN POINTER, DATA CHANNEL CONTROL WORD [IOWD}

- WORD COUNT I ADDRESS -1 I

POSITION P I
56

EXCESS 128 EXPONENT
10NES COMPLEMENT!

SIZE S

B 9

17 18 35

BYTE POINTER

r
11 12 13 14 17 18 35

BYTE STORAGE
I----s BITS P BITS

I BYTE NEXT BYTE

35-P-S-l 35-P -35-P+, 35

FIXED POINT OPERANDS

BINARY NUMBER (TWOS COMPLEMENT)

35

FLOATING POINT OPERANDS

FRACTION (TWOS COMPLEMENT)

35

LOW ORDER WORD IN DOUBLE LENGTH FLOATING POINT OPERANDS
EXCESS 128 EXPONENT-27

IN POSITIVE FORM
B 9

LOW ORDER HALF OF FRACTION (TWOS COMPLEMENT)

35

WORD FORMATS

C-1

0
I

~
'-' ;;
w
c
c
cr:
c<
c
:z

~
'-' w
CO>

if>
w
'-' ;;
w
c
~

~
~
a.
if>

cr:
W
if>
~

'\ ~~ ~ . .~ .. ~~ ~ . ~~ ~ . .~ .. ~~ ~ . ~~ ~ . . ~ ..
FIRST

6,10 6 16710 OA10 10 DAlO 10 AD10 10 AD10 %Tci~} 6,10APR
0 CPA PI CCI CCI2 ADC I\DC2

CENTRAL PRIORITY DRUM PDP-B,9 PDP-B,9 ANALOG-DIGITAL ANALOG-DIGITAL
PROCESSOR INTERRUPT PROCESSOR INTERFACE INTERFACE CONVERTER CONVERTER

6 761 6 760 10 CPIO 6 461 6 616 6 646 6,10 340 6,10 340 10 XYIO 10 XY1Q 10 CR10 10 CR10 6 165 10 RCIO 10 RCIO
10 10 10 10 LPIO 10 VPIO 10 VPID

PTP PTR CDP CDR TTY LPT DIS DIS2 PLT PLT2 CR CR2 DSK DSK2
PAPER PAPER CONSOLE PDP-7,B

TAPE PUNCH TAPE READER CARD PUNCH CARD READER TELETYPE LINE PRINTER DISPLAY DISPLAY PLOTTER PLOTTER CARD READER CARD READER INTERFACE SMALL DISK SMALL DISK

6

2

6

3

4

5

6

7

136 6 136 6

DC DC2
OATA DATA

CONTROL CONTROL

630

DCSA DCSB
DATA COMMUNICATION

IN-OUT
INSTRUCTION

WORD

551 6

UTC UTS MTC MTS
DEC TAPE MAGNETIC TAPE

10 I TOlD 10

DTC DTS
DECTAPE

DEVICE CODE

516 10 DCIO 10 DCIO 10 RPIO 10 RPIO 10 RAID 10 RAID 6 170

MTM DLS DLS2 DPC DPC2 MDF MDF2 DF
DATA LI NE OATA LINE DISK PACK DISK PACK MASS MASS
SCANNER SCANNER SYSTEM SYSTEM DISK FILE DISK FILE DISK FI LE

TOlD 10 TMIO 10 TMIO

DTC2 DTS2 TMC TMS TMC2 TMS2
DECTAPE MAGNETIC TAPE MAGNETIC TAPE

- - "----

24

Used with POP-6 ----=-=--+6 646-; -Option number for PDP-6
Used with PDP-lO --":"110 LP10_

1

_ Option number for PDP-IO

1 LPT {~~,~UoT~~fn:~~:C~:~~edses~~i is

Device whose code----.,:. INE PR'N~ Mnemonic for device code 124
IS 124 _ __ ",I L=-'-"==-:i

I

DEVICE MNEMONICS

I

0»
m"'O
<"'0 -m C1z mo
~­z><
m O
~
o z
f.i
Ul

Digital Equipment Corporation
Maynard, Massachusetts

printed in U.S.A.

