
ALGOL
PROGRAMMEItS

REFERENCE MANUAL

ALGOL
PROGRAMMER'S REFERENCE MANUAL

This manual reflects Version 6 of the ALGOL System.

Additional copies of this manual may be ordered from: Software Distribution Center,
Digital Equipment Corporation, Maynard, MA 01754 Order Code: DEC-10-LALMA-B-O

digital equipment corporation· maynard. massachusetts

First Printing, September 1971
Revised: September 1971

December 1 971
May 1972

December 1 972
July 1973
July 1974
May 1975

September 1975
Second Printing, March 1976

The information in this document is subject to change without notice and should not be construed
as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this manual.

The software described in this document is furnished to the purchaser under a license for use on
a single computer system and can be copied (with inclusion of DIGITAL's copyright notice) only
for use in such system, except as may otherwise be provided in writing by DIGITAL.

Digital Equipment Corporation assumes no responsibility for the use or reliability of its software
on equipment that is not supplied by DIGITAL.

Copyright © 1971, 1972, 1973, 1974, 1975, 1976 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this document requests the
user's critical evaluation to assist us in preparing future documentation.

The following are standard trademarks of Digital Equipment Corporation:

CDP
COMPUTER LAB
COMSYST
COMTEX
DDT
DEC
DECCOMM
DECTAPE
DIBOL

DIGITAL
DNC
EDGRIN
EDUSYSTEM
FLIP CHIP
FOCAL
GLC-8
IDAC
IDACS

INDAC
KA10
LAB-8
LAB-8/e
LAB-K
OMNIBUS
OS/8
PDP
PHA

PS/8
QUICKPOINT
RAD-8
RSTS
RSX
RTM
RT-II
SABR
TYPESET 8
UNIBUS

CONTENTS

Page

CHAPTER 1 INTRODUCTION

1.1 General 1-1

1.2 D ECsystem-1 0 ALGOL 1-1

1 .3 The ALGOL Compiler 1-2

1 .3.1 Compiler Extensions 1-2

1.3.2 Compiler Restrictions 1-3

1.4 The ALGOL Operating Environment 1-3

1.5 Terminology 1-3

CHAPTER 2 PROGRAM STRUCTURE

2.1 Basic Symbols 2-1

2.2 Compound Symbol s 2-2

2.3 Delimiter Words 2-2

2.4 Use of Spacing and Commentary 2-4

CHAPTER 3 IDENTIFIERS AND DECLARATIONS

3.1 Identifi ers 3-1

3.2 Scalar Declarations 3-2

CHAPTER 4 CONSTANTS

4.1 Numeric Constants 4-1

4.1 .1 Integer Constants 4-1

4.1.2 Real Constants 4-1

4.1.3 Long Real Constants 4-2

4.2 Octal and Boo I eon Constants 4-2

4.3 ASCII Constants 4-3

4.4 String Constants 4-3

CHAPTER 5 EXPRESSIONS

5.1 Arithmetic Expressions 5-1

5.1.1 Identifiers and Constants 5-2

5.1 .2 Special Functions 5-2

iii

CONTENTS (Cont)

Page

5.2 Boolean Expressions 5-4

5.2.1 Boolean Operators 5-4

5.2.2 Evaluation of Boolean Variables 5-4

5.2.3 Arithmetic Conditions 5-5

5.3 Integer and Boolean Conversions 5-5

CHAPTER 6 STATEMENTS AND ASSIGNMENTS

6.1 Statements 6-1

6.2 Assignments 6-1

6.3 Mul tiple Assignments 6-2

6.4 Evaluation of Expressions 6-2

6.5 Compound Statements 6-3

CHAPTER 7 CONTROL TRANSFERS, LABELS, AND
CONDITIONAL STATEMENTS

7.1 Labels 7-1

7.2 Uncondi tional Control Transfers 7-1

7.3 Conditional Statements 7-2

CHAPTER 8 FOR AND WHILE STATEMENTS

8.1 FOR Statements 8-1

8.1 .1 STEP-UNTIL Element 8-2

8.1.2 WHILE Element 8-2

8.2 WHILE Statement 8-3

8.3 General Notes 8-3

CHAPTER 9 ARRAYS

9.1 General 9-1

9.2 Array Declarations 9-1

9.3 Array Elements 9-2

CHAPTER 10 BLOCK STRUCTURE

10.1 General 10-1

10.2 Arrays with Dynamic Bounds 10-3

Version SA ALGOL iv May 1975

CONTENTS (Cont)

Page

CHAPTER 11 PROCEDURES

11. 1 Parameters Called By "Value" 11-1

11.2 Parameters Called By "Name" 11-1

11.3 Procedure Headings 11-3

11.4 Procedure Bodi es 11-3

11.5 Procedure Calls 11-5

11.6 Advanced Use of Procedures 11-6

11.6.1 Jensen's Device 11-6

11.6.2 Recursion 11-7

11.7 Layout of Declarations Within Blocks 11-8

11.8 Forward References 11-9

11.9 External Procedures 11-10

11.10 Additional Methods of Commentary 11-11

11.10.1 Comment After END 11-11

11.10.2 Comments Within Procedure Headings 11-11

CHAPTER 12 SWITCHES

12.1 General 12-1

12.2 Switch Declarations 12-1

12.3 Use of Switches 12-1

CHAPTER 13 STRINGS

13.1 General 13-1

13.2 String Expressions and Assignments 13-1

13.3 Byte Strings 13-2

13.4 Byte Subscripting 13-2

13.5 Null Strings 13-3

13.6 String Comparisons 13-3

13.7 Library Procedures 13-3

13.7.1 Concatenation 13-4

13.7.2 Length and Size 13-4

13.7.3 Copying 13-4

13.7.4 Newstring 13-5

13.7.5 Delete 13-5

Version 5A ALGOL v May 1975

CONTENTS (Cont)

Page

CHAPTER 14 CONDITIONAL EXPRESSIONS AND STATEMENTS

14.1 General 14-1

14.2 Conditional Operands 14-1

14.3 Conditional Statements 14-2

14." Designational Expressions 14-3

CHAPTER 15 OWN VARIABLES

15.1 General 15-1

15.2 Own Arrays 15-1

CHAPTER 16 DATA TRANSMISSION

16.1 General 16-1

16.2 Allocation of Peripheral Devices 16-1

16.2.1 Device Modes 16-2

16.2.2 Buffering 16-3

I 16.2.3 Error Returns 16-3

16.3 Selecting Input/Output Channels 16-3

16.4 File Devices 16-4

I 16.4.1 Error Returns 16-5

16.5 Releasing Devices 16-5

16.6 Basic Input/Output Procedures 16-6

16.6.1 Byte Processing Procedures 16-6

16.6.2 String Output 16-6

16.6.3 Miscellaneous Symbol Procedures 16-7

16.6.4 Numeric and String Procedures 16-8

16.6.4.1 Numeric Input Data 16-8

16.6.4.2 Numeric Output Data 16-9

16.6.4.3 Octal Input/Output 16-10

16.7 Defaul t Input/Output 16-10

16.8 Logical Input/Output 16-10

16.9 Special Operations 16-11

16.10 I/O Channel Status 16-11

16.11 Transferring Files 16-12

I. 16.12 Currently Selected Channel Numbers 16-12

Version 5A ALGOL vi May 1975

CO NT ENTS (Cant)

Page

CHAPTER 17 THE DECsystem-l0 OPERATING ENVIRONMENT

17.1 Mathematical Procedures 17-1

17.2 String Procedure 17-2

17.3 Utility Procedures 17-2

17.3.1 Array Dimension Procedures 17-2

17.3.2 Minima and Maxima Procedures 17-3

17.3.3 Field Manipulations 17-3

17.4 Data Transmission Procedures 17-3

17.5 FORTRAN Interface Procedures 17-4

17.6 General Information Routine 17-5

17.7 Date and Time in ASC II Format 17-5

17.8 Random Number Routines 17-5

CHAPTER 18 RUNNING AND DEBUGGING PROGRAMS

18.1 Compilation of ALGOL Programs 18-1

18.1.1 Compilation of Free-Standing Procedures 18-4

18.2 Loading ALGOL Programs 18-4

18.3 Running ALGOL Programs 18-5

18.4 Concise Command Language 18-5

18.5 Run-Time Diagnostics and Debugging 18-6

18.5.1 Facilities to Aid in Program Debugging 18-6

18.5.1.1 Checking 18-6

18.5.1.2 Controlling Listing of the Source Program 18-7

18.5.1 .3 Setting Line Numbers in Listings 18-7

18.6 Cross Reference Listing 18-8

18.7 Stack Analysis 18-8

18.8 Trace 18-9

18.8.1 Dynamic Trace 18-9

18.8.2 Post-Mortem Trace 18-10

18.9 Performance Analysis 18-11

18.9.1 Heap Space 18-11

18.9.2 Code Utilization 18-12

CHAPTER 19 TECHNICAL NOTES

Version 6 ALGOL vii September 1975

CONTENTS (Cont)

TABLES
Page

2-1 DECsystem-10 ALGOL Symbols 2-1

2-2 Compound Symbols 2-2

2-3 Delimiter Words Used in DECsystem-10 ALGOL 2-3

5-1 Operator Precedence 5-1

5-2 Function of Boolean Operators 5-4

5-3 Boo I ean Expressions 5-6

11-1 Parameters in a Procedure Call 11-2

16-1 Standard Device Names 16-2

17-1 FORTRAN Interface Procedures 17-4

18-1 Error Trap Numbers 18-6

Version 6 ALGOL viii September 1975

CHAPTER 1

INTRODUCTION

1.1 GENERAL

DECsystem-l0 ALGOL is an implementation of ALGOL-60; ALGOL is an abbreviation of ALGOrithmic

Language, and 1960 is the year it was defined. The authoritative definition of ALGOL-60 is contain­

ed in the" Revised Report on the Algorithmi c Language ALGOL-60" , 1 hereafter referred to as the

"Revised Report". This report leaves a number of ALGOL-60 features undefined, notably input/output,

and permits the implementer of the language some latitude in interpreting other features. Many of

these features have been discussed extensively since the publication of the Revised Report; some have

been given rigorous interpretations in various versions of ALGOL, particularly the ALGOL-68
2

Language.

Where there is need for interpretation in the Revised Report, such interpretations as seem reasonable

have been made in light of current ALGOL opinion. Where no guidelines exist, ALGOL-68 is used as

a basis. These points are discussed in Chapter 19.

1.2 DECsystem-l0 ALGOL

The purpose of this manual is to teach the use of DECsystem-l0 ALGOL. The manual is written both

for the user who is familiar with ALGOL implementations and for the user who has no knowledge of

ALGOL but is reasonably fluent in a high-level scientific programming language such as FORTRAN IV.

This manual is not a primer in high-level languages. 3

1 "Revised Report on the Algorithmic Language ALGOL-60", Backus et al., Communications of the
ACM, 1963, vol. 6, no. 1, pp. 1-17.

2"Report on the Algorithmic Language ALGOL-68", A. Van Wijngaarden (Editor), B. J. Mailloux,
J. E. L. Peck, and C. H. A. Koster, Mathematisch Centrum, Amsterdam, MR101, October 1969.

3A Primer of ALGOL-60 Programming, E. W. Dijkstra, Academic Press, London, 1962.

1-1 December 1972

Readers not thoroughly familiar with ALGOL should read the entire manual. Readers already familiar

with ALGOL-60 should read all chapters except Chapters 5, 6, 7, 8, 9, 10, 11, 12, and 14, which

need be referred to only briefly.

1.3 THE ALGOL COMPILER

The DECsystem-10 ALGOL Compiler is that part of the DECsystem-10 ALGOL System that reads pro­

grams written in DECsystem-10 ALGOL and converts them into a form (relocatable binary) that is

acceptable to the DECsystem-10 Linking Loader. The compiler is also responsible for finding errors in

the user's source program and reporting them to the user.

Slight constraints are imposed on the way the user writes his program. These constraints, made to gain

the most desirable feature of a single-pass compiler, concern the order in which the user declares the

identifiers in the program and the use of forward declarations under certain special circumstances.

Such a compiler can process ALGOL programs rapidly and does not require the use of any backing

store. The minor restri ctions imposed will not normally affect the user.

1.3.1 Compiler Extensions

The following ALGOL-60 extensions are allowed by the compiler:

a. A LONG REAL type, equivalent to FORTRAN's double precision, is added that
gives the user power to handle double-precision real numbers.

b. An EXTERNAL procedure facility allows the user to compile procedures separately
from the main program.

c. A WHILE statement, and an abbreviated form of the FOR statement, allow the
user greater flexibility of iteration.

d. A new type STRING allows the user to manipulate strings of various size bytes.
In addition, the user can individually manipulate the bytes within a string by
means of a byte subscripting facility.

e. An integer remainder function REM, is provided.

f. Assignments are permitted within expressions.

g. Delimiter words may be represented in either reserved word format (upper case) or
as non-reserved words enclosed in single quotes (primes).

h. Constants of type REAL may be expressed as an integer
part and a decimal part only as in FORTRAN.

The compiler accepts reserved word delimiters in normal mode, but it can also accept programs

using non-reserved delimiter words enclosed in primes. Refer to Chapter 18.

1-2 July 1974

1.3.2 Compiler Restrictions

If the user is unfamiliar with any of the following terminology, he should refer to the Revised Report

and to Paragraph 1.5.

The compiler imposes the following restrictions on ALGOL-60:

a. Numeric labels are not permitted.

b. All formal parameters must be speci fi ed •

c. Identifiers are restricted to 64 characters in length.

d. Arrays and scalars must be declared before switches and procedures.

e. Forward references for procedures and labels must be given under certain circum­
stances.

1.4 THE ALGOL OPERATING ENVIRONMENT

Programs compiled by the ALGOL compiler are run in a special operating environment that provides

special services, including input/output facilities for the object program.

The ALGOL operating environment consists of:

a. The ALGOL Library, known as ALGLIB - a set of routi nes, some of whi ch are
incorporated into the user's program by the linking loader.

b. The ALGOL Object Time System, known as ALGOTS - responsible for organizing
the smooth running of the program and providing services such as core manage­
ment, peripheral device allocation, and fault monitoring in case the program
encounters an error condition at run time.

Refer to Chapters 17 and 18 for a description of ALGLIB and ALGOTS.

1.5 TERMI NOLOGY

Some of the following words, used in this manual, may be new to the reader. Many have a FORTRAN

equivalent; where such an equivalent exists, it is enclosed in parentheses.

Delimiter Word - a single, English language word that is an inherent part of the
structure of the ALGOL language. Such words cannot normally be used for other
purposes. Example: BEGIN IF ARRAY.

Identifi er - a name, established by user declaration, that represents some quantity
within a program.

Label (Statement Number) - an identifier used to mark a certain statement in a program.
Control of program execution can be transferred to the statement following the label.
A numeric label (not available in DECsystem-lO ALGOL) is similar to a FORTRAN
statement number.

(continued on next page)

1-3 July 1974

I

Procedure (Subroutine, Function) - part of a program, which may be invoked by "calling".
In general, parameters are suppli ed as arguments and a resul t may be returned.

Parameter (Formal Parameter - Dummy Variable, Actual Parameter - Argument) See
Procedure. - A Formal Parameter is an identifier used within the procedure that repre­
sents the argument supplied when the procedure is called.

1-4 December 1971

I

CHAPTER 2

PROGRAM STRUCTURE

2.1 BASIC SYMBOLS

DECsystem-10 ALGOL programs consist of a sequence of symbols from the DECsystem-10 ASCII

character set. The meaning of individual characters, given in Table 2-1, is much the same as in other

high-level languages.

Symbol

A-Z

a-z

0-9

+

-
*
/
t

()

[]

,

.
;

Table 2-1
DECsystem-10 ALGOL Symbols

Meaning or Use

Used to construct identifiers and delimiter words.

Lower case letters; are treated as upper case letters except when they
appear in string constants and ASCII constants.

Decimal digits; used to construct numeric constants and identifiers.

Arithmetic addition operator.

Arithmetic subtraction operator.

Arithmetic multiplication operator.

Arithmetic division operator.

Arithmetic exponentiation operator.

Parentheses; used in arithmetic expressions and to enclose parameters
in procedure specifi cations and calls.

Square brackets; used to enclose subscript bounds in array declarations,
and array subscri pt lists.

Comma; general separator, placed between array subscripts, procedure
parameters, items in switch lists, etc.

Decimal point; used in numeric constants and byte subscripting. Also,
used as a readability symbol in identifiers.

Semi colon; used to termi nate statements.

(continued on next page)

2-1 December 1971

Symbol

:

=

< >
& @

I

"
1

%

$
+-

Table 2-1 {Cont}
DECsystem-10 ALGOL Symbols

Meaning or Use

Colon; used to indicate labels, and separate lower and upper bounds in
array declarations.

Equality; used in arithmetic and string comparisons.

Nonequality •

Less than, greater than.-

Introduces exponent in floating-point numbers.

Prime, or single quote; used to enclose delimiter words when the non-
reserved word implementation is used.

Opening and closing string quotes.

Comment.

Introduces an octal constant.

Introduces an ASCII constant.

Alternative to := {refer to Table 2-2}.

2.2 COMPOUND SYMBOLS

Compound symbols consist of two adjacent basic symbols. Any intervening spaces or tabs do not affect

their use. The compound symbols are shown in Table 2-2.

Symbol

.=

<=
>=

2.3 DELIMITER WORDS

Table 2-2
Compound Symbols

Usage

Assignment

Less than or equal to

Greater than or equal to

Certain upper-case letter combinations are reserved as part of the structure of the language and may

!lQ! be used as identifiers unless the compiler used is a version accepting delimiter words in single

I quotes. Such an option is selected by using a special switch option {refer to Chapter 1S}. It is assumed

Version 2 ALGOL 2-2 December 1971

throughout this manual that the standard method of delimiter word representation is used, that is,

reserved words.

For example, the delimiter word

BFGIN

will always appear in the text of this manual as shown above and cannot be used as an identifier in a

program. If the alternative method of representation is used, it would appear as

'REG 11\"

and

RFGIN

could be used as an identifier. Table 2-3 contains a list of all the delimiter words used in the language.

Table 2-3
Delimiter Words Used in DECsystem-10 ALGOL

Reserved Word Chapter Reference

AND 5.2.1
ARRAY 9
BEGIN 10
BOOLEAN 5.2
CHECKOFF 18
CHECKON 18
COMMENT 2.4
DIV 5.1
DO 8
ELSE 7.3
END 10
EQV 5.2.1
EXTERNAL 11.9
FALSE 4.2
FOR 8
FORWARD 11.8

I GO 7.2
GOTO 7.2
IF 7.3
IMP 5.2.1
INTEGER 3.2
LABEL 11
LINE 18
L1STOFF 18
LISTON 18
LONG 3.2

(continued on next page)

Version 2A ALGOL 2-3 May 1972

DECsystem-l0 ALGOL also permits the use of a decimal point as a "readability symbol" in the alpha­

betic portion of identifiers. These readability symbols can appear between two alphabetic characters

of an identifier and are ignored by the compiler. Thus:

ONe E. AGA IN

and

PI.8Y.TI..JC'

have exactly the same effect as

ONCE'AGA IN

and

PIBYTWO

respectively.

Note that

ALPHA3.5

and

8FTA.22

are not identifiers, since the decimal point does not appear between two alphabetic characters.

3.2 SCALAR DECLARATIONS

A declaration reserves an identifier to represent a particular quantity used in a program. Such

declarations are mandatory in ALGOL. At any particular point during program execution, the form of

the variable or quantity associated with the identifier depends on the type of variable. The type of

variable is cO'ntrolled by the type of identifier which represents it.

There are five scalar variables, that is, variables which contain a single value:

a. Integer
b. Real
c. Long Real
d. Boolean
e. String

Integer, real, and long real variables are capable of holding numerical values of the appropriate type

{and only of that type}. The range of values is as follows: integer: -34,359,738,368 through

34,359,738,367; real and long real: approximately -1.7&38 through 1.7&38; values less than approx­

imately 1 .4&-39 in magnitude are represented by zero.

3-2

Boolean variables {similar to FORTRAN's Logical variables} can hold a Boolean quantity, which is

I usually one of the states TRUE or FALSE but, in general, can be any pattern of 36 bits.

String variables are somewhat more complicated. A full discussion of their properties is presented in

I Chapter 13. At this point, it is sufficient to say that string variables are really pointers to byte strings.

All of the above variables can be declared for use by preceding a list of the identifiers to be used by

the appropriate delimiter word for their type. Throughout this manual, a "list of items" consists of

those items arranged sequentially and separated by commas.

Examples:

INTEGER I .. J .. K;

LONG REAL DOU8LE .. P .. G .. ELEPHANT;

BOCLEAN ISITREALLYTRUE;

STRING S .. T;

3-3 December 1971

CHAPTER 4
CONSTANTS

4.1 NUMERIC CONSTANTS

There are three forms of numeric constants:

a. Integer constants
b. Real constants
c. Long Real constants

4.1.1 Integer Constants

Integer constants consist of a number of adjacent decimal digits, subject to the constraint that the

nl'mber represented must be in the range 0 through 34,359,738,367.

Examples:

3

24

NOTE

Any preceding sign that appears in the program is not
considered part of the constant.

9276541

I See also Section 4.3

4.1.2 Real Constants

Real constants consist of a decimal number (containing either an integral part or a fractional part, or

both) followed by an optional exponent. If the decimal number is unity, it may be omitted. The ex­

ponent consists of either the & or @ symbol followed by an optionally signed integer. This has the

effect of multiplying the decimal number by the power of ten specified in the exponent. If no decimal

number appears, a value of unity is assumed.

Version 5A ALGOL 4-1 May 1975

The range of real constants is approximately 1.4&-39 to 1.7&38; numbers less than 1.4&-39 are repre­

sented by zero. Real numbers are stored to a significance of approximately eight and one-half decimal

digits.

Examples:

Represen tati on Value

3.141592653589793 3.14159265
.0001 0.0001
4.37&5 437000.0
5&-3 0.005
&-6 0.000001

4.1.3 Long Real Constants

Long real constants are used to represent numeric quantities to approximately twice the precision

available with real numbers: about seventeen decimal digits. Long real constants are formed by

writing a real constant in floating-point form, but replacing the & or @ by && or @@.

The range of long real constants is the same as that of real constants, except numbers below approxi­

mately 3.0&&-30 can only be represented to single precision due to hardware considerations.

Examples:

Representation Value

3. 14159265358979323846&&0 3.1415926535897932
12&&-3 0.012

4.2 OCTAL AND BOOLEAN CONSTANTS

Octal constants consist of the symbol % followed by a number of octal digits. Up to twelve significant

digits may appear (leading zeros are ignored); these digits are right justified.

Examples:

%777777777774

%0.lj70

Octal constants may only be used in Boolean expressions.

Boolean constants consist of the words TRUE and FALSE. They are equivalent to the octal constants

%7777m77m and %000000000000, respectively.

4-2

4.3 ASCII CONSTANTS

Up to five ASCII symbols can be packed right justified to give an integer-type constant. The format is

a dollar sign ($), followed by up to five ASCII symbols enclosed within a delimiting symbol pair. The

leading delimiter symbol immediately follows the $, and may be a readable character or an invisible

one such as a space. Thus, the user can generate a single ASCII character constant by placing one

space on each side of it, and preceding the triplet by a dollar sign.

Examples:

Text Octal Value

$A 000000 000101
$/01234/ 160713516674

4.4 STRING CONSTANTS

String constants allow the user to store any reasonable length string of ASCII characters within a pro­

gram. The length of such a constant is restricted only by the amount of core storage available to the

user for the execution of the program. String constants may be used, typically, to output a message

during the execution of the program or as values assigned to string variables.

The string of symbols is enclosed within quotes ("). There are restrictions on the symbols that may

appear within the string.

a. [] ; and II may not appear alone.
b. [and] may appear if they are properly paired.
c. Single occurrences of [] ; and II are represented by [[]] ;; and "" respectively.
d. Where a string has to be broken across two or more lines of source, the carriage return

and line feed characters can be ignored by preceeding them with a control-back arrow
character.

Note that [[and]] are stored as such in the byte string generated by the compiler. ;; and II" are

stored as a single; or ", respectively. The restriction on the representation of ; is made to

protect the user against quoting his whole program by missing out a ".

Square brackets are used to enclose symbols that have a specific effect when the string is output.

These are discussed in Paragraph 16.6.2.

Examples:

"ARCDFFGH J JKLIV NOPCRS TI IVWXYZ"

"KEIVEt-tRFR THAT SPACES ETC. ARE !5 ICir-dF ICAI\'T"

"[PSCJINPLIT DATA:[SC)"

.. • .. ·A[[IJ] := til.};;"""

Version 5A ALGOL 4-3 September 1975

•

CHAPTER 5

E~PRESSIONS

5. 1 ARITHMETIC EXPRESSIONS

DECsystem-10 ALGOL arithmetic expressions are written in a form similar to that used in FORTRAN and

mc:::2ny other high-level scientific computer languages. The usual algebraic rules concerning precedence

of operators and brackets are followed (see Table 5-1).

Operator

parentheses
exponenti ation

Table 5-1
Operator Precedence

multiplication and division
addition and subtraction

Priority
(decreasing)

1
2
3
4

Th ere are two additional operators, DIVand REM, that indicate integer division and remainder,

respectively. They have the same precedence as ordinary division. Within the precedence scheme,

th~ order of evaluation is always from left to right. For example:

Xt'l' t Z means (X t Y) t Z

an-c::l

T 0 I V J R E (V K means (I 0 I V J) K F. 1'1 K

U-Iike FORTRAN, when ordinary division of one integer by another is performed, the real result is

no ... rounded to an integer value •

5-1 July 1974

I

The difference between the various types of division is clarified by the following examples:

7/4 yields a result of 1.75, whereas

7 DIV 4 yields a result of 1, and

7 REM 4 yields a result of 3

The interpretation of integer division for negative integers follows:

Let M, N > 0, then

-~ DIV N = ~ DIV (-N) = -(M DIV N)

-~ DIV (-N) = M DIV N

The integer remainder operator, REM, is defined so that for all integral M, N:

M kfM N = M - N*(M DIV N)

5.1 .1 Identifi ers and Constants

Arithmeti c expressions consist of operands, that is, identifi ers and constants, of the three types,

integer, real and long real, together with the arithmetic operands + - * / DIV REM and t and

parentheses where necessary.

Identifiers are used to represent variables whose values are used when they appear in some calculation.

Since automatic conversion takes place as necessary when an expression is evaluated, the user may

freely mix the three different types of identifiers and constants.

Integer quantities may have more precision than can be represented in a real variable. The user must

beware of possible loss of significance in integral quantities used in mixed type expressions.

5.1.2 Special Functions

Three special functions ore provided for use in arithmetic expressions. The first is the transfer function,

ENTlER, which converts a real or long real quantity into an integer quantity defined as the largest

integer value not exceeding the argument.

Thus

FNT I ER (3 • 5) = 3

and

F-NTIER(-3.S) = -4

5-2 December 1971

I

I

I
I

The special function ASS yields the absolute value (also known as the modulus) of its argument. The

argument may be any integer, real, or long real quantity; the result is always of the same type as the

argument.

Thus

AR S (- 3 • S) = 3. 5

and

A8S (-3) = 3

The special function SIG N is the signum function whose argument can be integer, real, or long real.

The result is always integral, being minus one or zero or plus one, depending on whether the argument

is negative, zero, or greater than zero, respectively.

Thus

SIGN(-3.S) = -I

STGt'-.1(~) = (1

SIG!'H3.S) =

NOTE

ENTlER, ASS, and SIGN are not delimiter words. They
may be used for other purposes ina program.

Examples of simple arithmetic expressions follow:

x

+ 3

MY/Z

P+Q/R

X2 + Y

XJ-iJ

J + ENTIEfHK-2)

SIGN(ENTIER(J/K) + I)

(X + y> t (- I)

Version 5A ALGOL 5-3 May 1975

5.2 BOOLEAN EXPRESSIO NS

Boolean expressions involve Boolean identifiers, Boolean and octal constants, arithmetic conditions,

and Boolean operators interspersed in an order similar to that of arithmetic expressions.

5.2.1 Boolean Operators

I There are five Boolean operators listed here in decreasing order of precedence.

a. NOT (unary operator)
b. AND
c. OR
d. IMP (implication)
e. EQV (equivalence)

NOT is a unary operator that complements a Boolean quantity in the same way that a unary minus sign

negates an arithmetic quantity in an arithmetic expression. In this case, it changes FALSE to TRUE,

and vice versa.

Table 5-2 gives the result of A OP B where OP stands for one of the Boolean operators AND, OR,

IMP, or EQV, for all values of A and B.

Table 5-2
Function of Boolean Operators

A FALSE TRUE
B FALSE TRUE FALSE TRUE
AAND B FALSE FALSE FALSE TRUE
A ORB FALSE TRUE TRUE TRUE
AIMPB TRUE TRUE FALSE TRUE
A EQV B TRUE FALSE FALSE TRUE

In addition, the following theorems hold true:

A IMP B is equivalent to NOT A OR B,

A EQV B is equivalent to A AND B OR NOT A AND NOT B.

I 5.2.2 Evaluation of Boolean Variables

Actually, Boolean variables may have a value consisting of any pattern of bits, rather than be

confined to the values TRUE and FALSE. The logical operations operate on a bit-by-bit basis

according to the preceding rules.

Version 5A ALGOL 5-4 May 1975

The actual test employed to determine the truth of a Boolean expression such as

BAND C

is to evaluate it and regard it as true if its value is nonzero, i.e., at least one bit is set, otherwise it

is false.

This is particularly important when octal constants are used in Boolean expressions. For example, if

the user wishes to test a particular bit in a Boolean variable, an appropriate octal constant can be

used, for example:

BAND %1

is a Boolean expression that is true if and only if the bottom (least significant) bit of B is a one.

I 5.2.3 Arithmetic Conditions

Arithmetic conditions are used as operands in Boolean expressions. They consist of two arithmetic ex­

pressions coupled with a comparator. The comparator, which decides the particular type of test to be

performed on the two expressions, is one of the following:

< less than

<= I ess than or equal to

equals

> greater than

>= greater than or equal to

not equal to

Such an arithmetic condition can be regarded as true or false according to whether the condition speci­

fied by the comparator is met when the arithmetic expressions on each side of it are evaluated. The

resulting condition may form part of a Boolean expression.

The following examples of Boolean expressions, shown in Table 5-3, also involve arithmetic conditions.

5.3 INTEGER AND BOOLEAN CONVERSIONS

An integer quantity can be converted to a Boolean quantity by means of the dummy function BOOL.

Similarly, the dummy function INT converts a Boolean quantity to an integer quantity.

Version 5A ALGOL 5-5 May 1975

Table 5-3
Boo I ean Expressions

Expression Meaning

NOTB NOTB
B AND NOT C B AND (NOT C)
A OR BAND C A OR (B AND C)
B EQV X<Y B EQV (X<Y)
X+Y<Z AND B OR P=Q «(X+Y)<Z) AND B) OR (P=Q)

The value passed by these functions is unchanged: the functions are included for semantic correctness.

Thus:

BOOl(I)

may be regarded as a Boolean operand, and

INT(B)

I NT(%400000000000)

as integer operands.

BOOl and INT are not reserved words. They can be used for other purposes by declaring them as re­

qui red. However, this practice should be avoided since it could lead to confusion.

Version 5A ALGOL 5-6 May 1975

CHAPTER 6

STATEMENTS AND ASSIGNMENTS

6.1 STATEMENTS

The statement is the basic operational unit in ALGOL-60. It describes an operation to be performed at

run time, such as an assignment.

6.2 ASSIGNMENTS

Assignments convey the value produced by the execution of an expression to a destination variable of

the appropriate type. This is done by writing the destination identifier, followed first by the symbols

: and = and then by the expression to be eval uated • Thus

X := Y + Z

causes the result of the addition of the values contained in the variables Y and Z to be placed in the

variable x.

When an assignment is made to a variable type differing from that of the result of the expression, a

type conversion is performed. Integer, real and long real expressions may be assigned to variables of

any of these three types, but not to any other types. Boolean and string expressions can only be

assigned to a variable of their own type.

If a real or long real value is assigned to an integer type variable, a rounding process occurs.

I := X

results in an integral value equal to

ENTIER(X + 0.5)

being assigned to I.

When an integer expression is assigned to a real or long real variable, a conversion to that type is

performed. Real to long real conversion simply consists of zeroing the low-order precision word of

6-1

the long real result after assignment of the real result to the high-order part of the long real variable.

Long real to real assignments truncate the low-order part of the long real expression, after appropriat,

rounding.

6.3 MULTIPLE ASSIGNMENTS

A value may be assigned simultaneously to several variables of the same type by a multiple assignment.

This takes a form such as

P := R := S := X + Y - Z

where the result of adding Y to X and subtracting Z is assigned to P, R, and S simultaneously.

All identifiers on the left-hand side of a multiple assignment must be of the same type. If the user

wishes to assign a value to two or more different types of variables, the "assignment within expression"

(embedded assignment) feature must be used, as below.

A parenthesized assignment may be substituted for any operand in an expression. For example,

X := (Y := P+Q)/Z

This causes the embedded assignment to be made after the inner expression p+Q is evaluated. Where a

type conversion is performed as part of an embedded assignment, the operand type is the same as that

assigned to the vari abl e in the embedded assignment. Thus

X := (I := 3.ll)

sets I equal to 3 and X equal to 3.0.

6.4 EVALUATION OF EXPRESSIONS

All expressions in DECsystem-10 ALGOL are evaluated observing the normal algebraic rules of prece­

dence, including bracketing.

Within the precedence structure, expressions are always evaluated from left to right. For example, if

X is a scalar, and F a function procedure (see Chapter 11) that alters X,

X := X+F

may have a different effect than

X := F+X

6-2

This is known as a "side effect" •

Consider also:

A[IJ:= (1:= 1+1)

The subscript I is always evaluated before I is incremented, as it is to the left of the embedded assign­

ment, within the statement. Thus the above expression is equivalent to

J := IJ I := 1+1; A[J] := 1

The user can always predict the order of evaluation of an expression and can count on such things as

X := (I" := P+Q)/(P+Fd

being evaluated correctly, thus giving the same result as

P := P+Q

X := P/(P+R);

6.5 COMPOUND STATEMENTS

A compound statement consists of a number of statements, preceded by BEGIN, separated by semi­

colons, and terminated by END. ALGOL statements, unlike those in FORTRAN, are terminated by

a semicolon not by the end of a line of text.

For exampl e:

BEG I 1\1

.- 3; J := 4;

K • - + J;

x • - K

END

is a compound statement. Semi colons do not have to appear after the BEGIN or before the END;

BEGIN and END act as a type of bracket.

The usefulness of compound statements will become apparent in later chapters.

6-3

CHAPTER 7

CONTROL TRANSFERS, LABELS, AND CONDITIONAL
STATEMENTS

7.1 LABELS

A label is a method of marking a place in a program so that control can be transferred to that point

from elsewhere in the program.

DECsystem-10 ALGOL uses identifiers as labels. These identifiers are placed before statements and are

followed by a colon. Numeric labels are permitted in the Revised Report, but are not implemented in

DECsystem-10 ALGOL. Most implementations of ALGOL-60 do not allow integer labels.

For example:

COIV'P: X : = X + y

is a statement labeled by COMP.

More than one label can be attached to a statement if required; thus,

LAR I: LAB:?: Y : = 0

7.2 UNCONDITIONAL CONTROL TRANSFERS

A transfer of control, or "jump" , to a statement in a program is effected by a GOTO statement. This

statement consists of the word GOTO followed by the name of the label attached to the relevant state-

I ment. The two words GO TO can be used instead of the word GOTO in any statement where GOTO

can be used. Thus:

BEGIN INTEGER I,J,H;

LAR : I: = • .1 : = 3 J

K := I + J;

GOTO LAB

END

is an example of a somewhat tedious program. Clearly, to write any reasonable program, it is neces­

sary to be able to jump conditionally.

Version 2A ALGOL 7-1 May 1972

I

8.1.1 STEP-UNTIL Element

This particular form deserves closer inspection, because it is not quite as simple as it appears. For

example, consider

FOR I := 1 STEP I UNTIL N DC S

The statement S is obeyed with I taking an initial value of 1, and being incremented by I until the final

value N is achieved. The question is, "Is the I after the STEP recalculated during each turn around

the loop, or does it have a constant value equal to the initial value of I?"

The answer is slightly more complicated. Consider the general case

FOR V := EI STEP E2 U~TIL E3 DO S

This is defined to have exactly the same effect as

V := EI;

L1: IF (V - E3HSIGN(E2) > (i) THEN GC,TO L2;

s;

V : = V + E2 J

GeoTO L1;

L2 :

Clearly, the value of I following the STEP in the previous example is evaluated, if necessary, twice

during each turn around the loop, once in the sign test at L 1, and again to update V. ALGOL allows

the user to modify V, E1, E2, and E3 freely throughout the loop, and takes account of all these

changes in the eval uation of the loop.

8.1.2 WHILEElement

NOTE

DECsystem-10 ALGOL allows the user the abbreviated form

FOR V :== E1 UNTIL E3 DO S

instead of

FOR V :== E1 STEP 1 UNTIL E3 DO S

A FOR statement with a single WHILE element takes the form

FOR V := E WHILE B DO S

8-2 December 1972

This is interpreted as follows:

L\: V:=L

IF NOT B THEN GOTO L2;

s;

GOTO Ll;

L2:

Once again, the complexity of the loop may be affected by changing Vand E within the loop.

8.2 WHILE STATEMENT

The WHILE statement is an enhancement of ALGOL-60 provided in DECsystem-l0 ALGOL. It takes

the general form

WHILE R DO S

and is interpreted as follows:

LI: IF NOT B THEN GOTO L2;

s;

GOTO Ll;

L2:

8.3 GENERAL NOTES

1. Within a FOR statement of any kind, the user can change the controlling variable
or any other variable appearing within the action of the loop. Such changes pre­
dictably affect the execution of the loop by the rules given above.

2. On exit from a FOR statement either by jumping out of the loop or by exhausting
the FOR elements, the controlling variable has a well-defined value equal to
the last assigned value of the controlling variable. This may not be true of other
ALGOL-60 implementations. Section 4.6.4 of the Revised Report should be
studied carefully in this connection.

8-3 July 1974

CHAPTER 9

ARRAYS

9.1 GENERAL

Arrays are essentially collections of variables of the same type, allowing the user to address them

individually by means of a common name and a unique subscript or subscripts. In the simplest case, an

array is a vector and is known as a one-dimensional array. A matrix is a two-dimensional array, etc.

There is no limit to the number of subscripts allowed, other than those imposed by the ability of the

computer to store the array.

9.2 ARRAY DEQ.ARATIONS

Arrays may be of type integer, real, long real, Boolean, or string. They are declared in a similar

fashion to scalar variables, except the size of the array must be stated. For each subscript that the

array possesses, a lower and an upper bound, called the "bound pair" for that subscript, must be given.

For example, to declare two one-dimensional integer arrays A and B with lower bound 1 and upper

bound 5:

INTEGER ARRAY A .. 8U :5J

Note that the lower and upper bounds are enclosed in square brackets and separated by a colon.

When there are two or more subscripts, the declaration is similar, and the bound pairs are separated by

commas. Thus

LONG REAL ARRAY P .. Q .. R[-5:2 .. 0:10J

declares three real arrays, P, Q and R, with the first subscript bounded by -5 and 2 and the second

subscript bounded by 0 and 10.

It is possible to declare arrays of different sizes in the same statement provided they are of the same

type:

REAL ARRAY AU :10J .. B .. CU :10 .. 1 :12]

9-1

I

Note also that in the case of real arrays, the REAL may be omitted in the declaration, and is assumed

by default, thus:

AkkAY AU :10], B,C[l :10,1 :12]

The bounds in an array need not be static, as in the examples above. In general, they may be any

arithmetic expressions, which are evaluated to give an integral value for the individual bound pairs.

The use of such dynamic array declarations will become apparent later.

9.3 ARRAY ELEMENTS

An individual element of an array can be referred to by following the name of the array by a list of

subscripts in square brackets. The number of subscripts must be identical to the number in the array

declaration. Thus, a typical element of A used in the last declaration might be

A [5] or A [9) or generally, A [I J

where I is some integer expression or, in general, any expression whatsoever, with the limitation that

its value when used as a subscript and evaluated as an integer is in the range 1 through 10, the bounds

of the array A.

As an example of the use of arrays, consider the declaration

hFAt. ARRAY f),I<;,F [I :1~'r,1 :HlJ

and suppose that it was required to set F equal to the matrix product of D and E:

F(ll< Ili'IT I I.. lV) DO

FOR J.- UNTIL l~ 00

BFG I N X: = (.l J

FeR k := 1 UNTIL 10 DO X .- X + D[!,KJ*E[K,J];

F[I,~JJ := X

END

Note that X is used to accumulate the inner product of the multiplication for all values of I and J.

It would be very inefficient not to use such a variable, because F would otherwise be needlessly in­

volved in the inner loop of the computation.

Also, note that an element of an array of a particular type may be used anywhere that a scalar variable

of the same type may be used, even in such places as the controlling variable in a FOR statement.

9-2 December 1971

CHAPTER 10

BLOCK STRUCTURE

10.1 GENERAL

ALGOL program structure is somewhat more complicated than other high-level languages, such as

FORTRAN. An ALGOL program consists of a number of "blocks" arranged hierarchically; a block con­

sists of the words BEGIN and END enclosing declarations and (optionally) statements.

Thus:

bEG!!'!

BEGIl\i

END

bJ~G I!,I

bEGIN

F~[)

is an ALGOL program, assuming appropriate declarations and statements in the blocks.

The block structure offers the user many interesting features not available in non-block structured

languages. For instance, the user may declare an identifier that appears to conflict with another

identifi er in an enclosing block. Thus:

8EGIN I NTEGEk I;

PEG!N INTFGFk I;

END

END

10-1

In fact, there is no conflict as there are two different Is. The only I that statements in the outer block

can "see" is the one in the outer block. Similarly, any statements in the inner block will always use

the I in that block. Such a declaration in an inner block is known as a "local" variable; it takes

precedence over declarations occurring at an outer or more "global" level. In general, all variables

can be "seen" from any point in a program that is either in the same block as the declaration or in a

block that is enclosed by the block in which the declaration of the variable occurred. Note that a

more local variable is always taken in preference to a relatively global variable. Consider the follow-

ing example:

8F.GIN I NTEGEt~ I, J;

[I)

BEGIN INTEGEk J,K

[2)

END;

HEGIN INTEGEh I, K

[3)

END

Ef\1O

Any statements occurring at point [1] can see the declarations of I and J, which are local, but cannot

see the declarations of J and K in the first inner block, or the declarations of I and K in the second

inner block. At [2], the local variables J and K can be seen, as can the global variable I in the outer

block. The global variable J is not seen because the local variable J takes precedence over it; the

variables I and K in the second inner block are not seen at all. A similar situation occurs at [3];

here both local variables I and K, as well as the global variable J, are seen.

Note that the "scope" of a variable is the set of all places in a program where it can be seen and

therefore used. This term will be used frequently throughout this text.

In general, it is more efficient to use local variables in preference to global ones. This statement is

also true of most ALGOL-60 implementations. Where a non-local variable is used frequently, it is

advisable to assign its value to a local variable and use that in preference. For example:

10-2

HF (; 11\1 INTEGEk I;

I : = •••••

REG!!\! I ~,:TFGFk r I;

II := I;

I I •••••

[I\ID

Here, in the inner block, a local variable II is used, and assigned the value of the global variable I

for use throughout the local block.

10.2 ARRAYS WITH DYNAMIC BOUNDS

The concept of the scope of a variable can be appl ied most usefully to arrays. In DECsystem-10

ALGOL, all arrays are constructed at execution time, that is, no fixed space is reserved for them by

the compiler, irrespective of whether their bounds are static or dynamic. VV'hen a declaration of an

array is encountered within a block, the space required to construct it is obtained and the array is laid

out. VV'hen the end of the block enclosing the array is reached, that is, the array variable is no longer

within scope, the space utilized by the array is recovere-:l and can be used later for other arrays.

Consider the case of a problem in which the size of an array to be used in a calculation is dependent

on the data to be processed. The programmer has the choice of making the array large enough to cope

with the worst case (in many languages he does not have any choice at all) or constructing the array

with dynamic bounds to suit the size required by the particular data. The first method has the disad­

vantage of wasting space on many occasions; the latter method only has the minor disadvantage of the

overhead needed to construct the array. Such overhead is very small compared to the running time of

most programs; therefore, the second method is more desirable.

10-3

I

Consider the following example:

BEG IN INTEGER ~;

L.: N : = •••••

REGIN AkKAY AU :NII :N];

EI\:O;

GOTO L.

FI\'f)

A value for N is calculated in this example, possibly dependent on some data read into the program,

and used to declare the array A, which is used to process the data in the inner block. When the end

of the inner block is reached, the space used by A is recovered and control passes to L, where another

value for N is cal culated, and the process repeated.

10-4 December 1971

CHAPTER 11
PROCEDURES

Procedures are similar in concept to the FORTRAN subroutine, although more sophisticated and general

in their possible applications.

A "procedure" is a portion of an ALGOL program that is given a name to identify it and can be

"called" from any part of a program which is in the scope of the body of the procedure. A procedure

can execute a number of statements, or it can return a value if it is a function procedure. In addition,

it mayor may not have parameters.

In DECsystem-10 ALGOL, a procedure can be one of the following types: integer, real, long real,

Boolean or string, or it may be typeless. The formal parameters of a procedure, known as "dummy

variables" in FORTRAN, can be one of the following types: integer, real, long real, Boolean or string,

as scalars, arrays or procedures, or label. There are seventeen different types of parameters. In

addition, all of these parameters may appear in two different modes, neither of which is the same as

FORTRAN's method of handling parameters.

11.1 PARAMETERS CALLED BY "VALUE"

Calling parameters by "value" is the most common and, with the exception of arrays, the most efficient

way to pass a parameter to a procedure. The value of the expression presented in a procedure call,

known as the actual parameter, is evaluated on entry to the procedure and assigned to a formal param­

eter within the procedure. This formal parameter acts exactly as if it were a local variable of the pro­

cedure which is initialized with the value of the actual parameter supplied in the call to the procedure.

I Since, in the case of arrays or strings, a new copy of the array or string is made, this type of param­

eter-passing for arrays and strings (if they are very long) should be avoided unless it is specifically

required.

11.2 PARAMETERS CALLED BY "NAME"

Calling parameters by "name" is a very sophisticated method of passing a parameter to an ALGOL pro­

cedure. Whenever the formal parameter associated with the actual parameter in a procedure body

Version 2A ALGOL 11-1 May 1972

appears in the body of the procedure, the actual parameter is re-evaluated as if it appeared in the

procedure body at that point. For example, if the actual parameter were an array element such as

AU)

it would be re-evaluated using the value of I available each time the formal parameter is used, not the

value of I at the time the procedure body is entered.

Table 11-1 shows the different types of formal parameters, together with valid actual parameters that

can be substituted in a procedure call.

Formal Parameter Type

~::er }

Long Real

Boolean

String

Label

Switch

Integer Array

Real Array {or Array}

Long Real Array

Boo I ean Array

Stri ng Array

Procedure

Integer Procedure }
Real Procedure
Long Real Procedure

Boolean Procedure

String Procedure

Table 11-1
Parameters in a Procedure Call

Permissible Actual Parameter

Any arithmetic expression

Any Boolean expression

Any stri ng expression {refer to Chapter 13}

A label or switch element {refer to Chapter 12 and
Paragraph 14.4}

A switch

An array of type integer*

An array of type real *

An array of type long real *

An array of type Boolean

An array of type string

A non-type procedure

A procedure of type integer, real, or long real

A procedure of type Boolean

A procedure of type string

*In the case where the array parameter is called by value, any arithmetic type
(integer, real, or long real) array is allowed as an actual parameter. A type
conversion takes place during the copying process.

11-2

11.3 PROCEDURE HEADINGS

Procedure headings identify the type of procedure and the number and type of its parameters. They

precede the body of the procedure.

A procedure heading consists of:

a. The type of procedure (omitted in the case of typel ess procedures).

b. The word PROCEDURE followed by the name of the procedure.

c. A semicolon if the procedure has no parameters; otherwise

d. A list of the formal parameters, enclosed in parentheses, and followed by a semi­
colon.

e. Specifications of the formal parameters. Omitting formal parameter specifications,
this looks like

LONG REAL PROCEDURE LRJ

BOOLEAN PkOCEDUkE BOOLCON (I~J~K)J

PROCEDURE CALC<THETA~X);

The formal parameter specification that follows consists of a list of descriptions of the formal param­

eters, appearing in any order, and a value specification if any of the parameters are to be called by

value. (If this is omitted, the parameters, by default, will be called by name.) For example, the

specification of the formal parameters for the second example above might be:

meaning that all three formal parameters are of type integer (scalars), and I and J are to be called by

value, while K is to be called by name. A typical formal parameter specification for the third ex­

ample might be:

REAL PROCEDURE THETA; AkRAY X;

11.4 PROCEDURE BODIES

The body of a procedure is that part that follows the procedure heading. It consists of a single state­

ment, a compound statement, or a block. In the last-mentioned case, there may be declarations of

local variables within the block, and also other blocks or procedures. Consider the following examples

of realistic procedures:

11-3
July 1974

o. A real procedure, squoreroot, to calculate the square root of a real quantity. The
first parameter is the argument; the second is a label that is used as an escape if
the argument is found to be negative. The result of the procedure is the square
root of the argument. Note how the result of the calculation is assigned to the
procedure by placing the name of the procedure on the left-hand side of an
assignment.

VALl.IF x; /,FAt x; U\HFL L;

"Fl'll '1',/;

Ifo- X < ,1 T H F i': (; (rr r L;

'I' • - (t + X) I? ;

IT: " .- (,,/'1' + Y)/?;

IF AHS(Z - '1') < tl-A THFN G0TO OK;

Y := [; GOTO IT;

F\'D

The previous example uses the Newton-Rapheson method of finding the square
root of a number: taking an initial approximation (1 + X)/2 and iterating until
the difference between successive approximations is less than 1&-6. Although
this is a very simple procedure, it is more enlightening with the aid of some
commentary. The DECsystem-10 ALGOL alternative method of commentary
(refer to Chapter 2) is used for brevity:

REAL PkOCEDUkE S~UAREkOGT(X,L);

VALUE x; REAL X; LABEL LJ

REG IN CALCULATES THE VALUE OF SGRT(X)

USING THE NEWTON-RAPHESON ~ETHOD.

L IS ['SED FOR AN ESCAPE IF X < 0J

REAL Y,ZJ

IF X < 0 THEN GOTO L; EX IT I F X < 0;

Y • - (t + X) 12 ; FIRST APPROXI~ATION;

IT:

Z := (X/Y + Y)/2; ITERATE;

IF ARS(Z-Y) < 1&-6

THEN GOTO OK; TEST FOR CONVERGENCE;

Y .- Z; GOTO IT; OTHERWISE CONTINUE;

(continued on next page)

11-4

OK:

SQIJAREROOT .- Z; FINAL RESULT;

END

b. This function evaluates the sum of the values of any real procedure G over the
integers 1 ••••• N, where N is also a parameter of the procedure.

REAL PROCEDURE SU~(G~N)J

VALUE N; REAL PROCEDURE G; I NTEGEK N;

BEGIN INTEGER 1; KEAL x;

X : = 0;

FOR I := I UNTIL N DO X .- X + G(N);

SUM := X

END

Notice in this example how the formal parameter G is invoked so that the actual
procedure that is substituted for G is called.

11.5 PROCEDURE CALLS

In the preceding example, the procedure G was "called". Since G is a function procedure, it is only

necessary for its name to appear in an expression for the procedure to be entered with the actual

parameters speci Ii ed substi tuted for the formal parameters.

The procedure squareroot can be called in a similar way, for example:

P := SQIIARFROOT(Z + (1.5)

causes the square root of Z + 0.5 to be calculated.

An example of the use of the procedure sum can be used to calculate the sums of the square roots of

the first J integers, with the result squared, as follows:

X := SU~(SQUAREkOOT~J)T2;

11-5

Here is a further example of a procedure and its ccllrs:

PROCF.:DllkE I'1ATR I XMULT (A. B.C. N);

VALUE N; ARRAY A.B.C ; INTEGER N;

REG IN INTEGER I.J.K; REAL x;

COM~ENT THIS PROCEDURE PERFORMS THE ~ATRIX

I'1ULTIPLICATION OF BAND C AND PUTS THE RESULT

IN A. THE ARRAYS ARE ASSUMED TO BE SQUARE

AND OF BOUNDS 1 :N.l:N;

FOR := UNTIL N DO

FOR J := UNTIL N DO

BEGIN X := 0;

FOR K : = 1 UNTIL N DO X := X +

BCI.Kl*C[K.Jl;

A[J .. Jl .- X

END

END

A typical call for this procedure might be

I t-'ATF< I Xt-'ULT CF.F .G. N);

or

I fY'ATRIXt-'llL..TCf.F .. F.N);

I Since the arrays are called by name, a call such as MA TRIXMUL T(E, E, F, N); would give rather interest­

ing results.

This call could be made to work by calling Band C by value. However, this would increase the over­

head of the procedure considerably.

11.6 ADVANCED USE OF PROCEDURES

11.6.1 Jensen's Device

This method of using a procedure exploits the power and flexibility of the call-by-name concept.

Consider the following example:

11-6 December 1971

REAL PROCEDURE SUMCI,N,X); VALUE N; INTEGER I,N; REAL X;

BEGIN REAL 'I;

y : = 0;

fOR I := I UNTIL N DO Y := 'I + x;

SUM := Y

END

On the surface, the procedure appears to calculate the value of N*X. However, consider the call

Z := SUMCJ,10,A[JJ);

and remember that J and A[J] are parameters called by name. Since I and consequently J take new

values, each X in the loop is evaluated as a particular value of A [J], using the value of J just assign­

ed. Hence the above call calculates

AU J + A[2J + ••••• + AU0J.

Similarly, the call

calculates the (I,J)th inner product of A and B.

11 .6.2 Recursion

ALGOL procedures have the inherent ability of recursion, that is, they may call themselves, directly

or indirectly, to any reasonable depth. (The only restri ction is the amount of core storage avail abl e

to the object program.)

An often-quoted and very inefficient method of calculating the factorial function of a small positive

integer N is:

INTEGER PROCEDURE fACTORIALCN); VALUE N; INTEGEk NJ

II' N = I THEN fACTORIAL := 1

ELSE fACTORIAL := N*fACTORIALCN-l)J

Note that this procedure has only a single statement, but no local variables. Therefore, it can be

written in a very compact form. A call such as

J := fACTORIAl(6);

11-7

causes the procedure to be entered with N equal to 6. The call to FACTORIAL inside FACTORIAL

enters the procedure a second time with N equal to 5, but this N is different from the one to the pre­

vious N, which retains its value of 6, as it is stored in a different space. In this particular case,

FACTORIAL is entered six times, the last time with N equal to 1.

11.7 LAYOUT OF DECLARATIONS WITHIN BLOCKS

Declarations must always be made at the head of a block, before any assignments, procedure calls,

I etc., in the following order: 1) scalars and arrays and 2) procedures and switches (see Chapter 12).

Any procedure bodies that occur in a block should follow the declarations at the head of the block,

although this is only enforced when necessary. Consider the following example:

REGIN

PROCEDURE P(X)J VALUE x; REAL x;

BEGIN INTEGER JJ

J : = I;

[ND;

INTEGEk I;

The assignment of I to J within the body of P utilizes the I that is declared following the body of P,

rather than some global I. However, the compiler has not yet seen this I and, therefore, cannot take

any rational action. In a case such as this, the user must declare I before the body of P:

REG IN INTEGEk 1;

PROCEDURE: P(X); VALUE X; REAL x;

REGIN I NTEGEH J;

J : = I;

END;

If the user neglects to declare I before P, the compiler can easily detect the condition, because either

I is unknown at the time of the assignment to J, or else there is a more global I available, whereupon

an error message will occur when the declaration of I is' found following the body of P.

Version 2A ALGOL 11-8 May 1972

I

11.8 FORWARD REFERENCES

Although most ALGOL-60 compilers operate in two or more passes, the DECsystem-l0 ALGOL compiler

operates in one pass. Consequently, it has to make some minor restrictions to ALGOL-60 in order not

to restrict the user in other ways.

A forward reference for a procedure has to be given when a procedure is called (either directly, or in­

directly, by passing its name as an actual parameter in a procedure call) before its body is encountered

by the compiler. In most cases the user can avoid this situation by a minor re-ordering of the program.

!-bwever, in rare cases like the following, where procedure P calls procedure Q, and vice versa, a

forward reference, as shown, must be given.

BEGIN

FORWARD REAL PROCEDURE Q;

PROCEDURE P(X); VALUE x; REAL x;

BE GIN k E {l L Y;

Y := Q(X);

END;

REAL PROCEDURE Q(Z); VALUE Z; REAL Z;

BEGIN REAL F;

F := P(Z);

END;

In general, a forward reference consists of the word FORWARD, followed by the type of the procedure

I (omitted if the procedure is typeless), the word PROCEDURE, and the name of the procedure.

For example:

I FORWARD LONG REAL PROCEDURE INTEGRATE

or

FORWARD PROCEDURE PROBLEM

Version 2A ALGOL 11-9 May 1972

I

Note that the forward reference must occur in the same block as the procedure body to which it refers.

I A forward reference has to be given for a label in one of the following rare cases:

a. The label is used as an actual parameter in a procedure call, and has not yet
appeared in the program.

b. A variable of identical name has appeared in the program and is in the scope of
the procedure call •

For example:

BEG IN REAL U

BEGIN FORWARD U

P (L);

L:

END;

In this case, a forward reference for L must be gi ven •

11.9 EXTERNAL PROCEDURES

If it is required to compile a procedure independently of a program (see Paragraph 18.1.1), an

EXTERNAL declaration must be made in the program instead of the procedure. The form of this

is the same as that of a FORWARD declaration, but with the word FORWARD replaced by EXTERNAL.

For example:

EXTERNAL INTEGEk PkOCFDU~E CALC

Such an EXTERNAL declaration can be made in any block within the program, and has the same scope

as if the procedure appeared at that point.

At present all EXTERNAL procedure names referenced in a program or scanned in a library must differ

in their first six characters, as only the first six characters are available to LINK.

Version 5A ALGOL 11-10 May 1975

I

11.10 ADDITIONAL METHODS OF COMMENTARY

Two further ways of writing commentary are available to the user in addition to COMMENT and

described in Section 2.4.

11.10.1 Comment After END

Following the delimiter word END, the user may add commentary, terminated by a semicolon, with the

following restrictions:

1. The commentary may only contain letters and digits.

2. If the reserved delimiter word mode of compilation is employed, any words
appearing in the comment may not be delimiter words.

For example:

END OF PkOC INVEkT;

11. 10.2 Comments Within Procedure Headings

This method of commentary allows the user to comment formal parameters in a procedure heading. This

is done by enclosing the commentary, which may consist of letters only, between the symbols) and :(

and omitting the comma on the left of the formal parameter. This cannot apply to the first formal

parameter.

The example in Section 11.6.1 can thus be rewritten:

REAL PkCCEDURE SIII"(I) CQLJNT:{N) INCkEI':ENT:(X);

In a similar fashion, a call to such a procedure can be commented. The following example uses the

coli to SUM in Section 11.6.1:

Z:=SlJfviCK) COUNTER:{/Y!) CROSS PRODUCT: (A[IIK1*8[KIJ);

11-11 December 1972

CHAPTER 12

SWITCHES

12.1 GENERAL

Switches enable the user to jump to one of a number of labels, depending on the value of an arithmetic

expression. In addition, they provide an automati c detection when such an expression is out of range

for the switch.

12.2 SWITCH DECLARATIONS

A switch declaration takes the form of the word SWITCH followed by (a) the name of the switch, (b)

an assignment (:=), and (c) a list of labels, called switch elements, all of which must be in the scope

of the switch declaration. For example:

A switch name must follow the usual rules of scope with regard to its use and, therefore, must not

conflict with any local variable of the same name.

In addition to the example above, a switch element itself may be one of the labels in the switch

declaration.

12.3 USE OF SWITCHES

A jump to a particular label in a switch declaration is made by following the word GOTO with the

name of the switch and an arithmeti c expression in square brackets. Thus:

GOTO SW[I J

This causes control to pass to the 1'th label in the switch declaration, unless I is negative or zero, or is

larger than the number of switches in the switch declaration. In either case, there is no transfer of

control. If the expression in square brackets is not integral, it is evaluated and rounded as usual.

12-1

Consider the following more complicated example:

SWITCH SW := LABILIIL210KISTOPJ

GOTO TW[I H

If I has the value 3, a jump to L4 occurs. If I has the value 2 and J has the value 1, a jump to LAB

occurs, via SW.

Nore sophisticated switch elements are described in Chapter 14.

12-2

CHAPTER 13

STRINGS

13.1 GENERAL

DECsystem-10 ALGOL-60 includes a major extension to the string features defined in the

Revised Report. Users wishing to run their programs on machines other than the DECsystem-10

should check whether the compiler they will use offers similar facilities. Scalar, array or

procedure variables may be of type STRING, and are declared by the delimiter word STRING.

The byte size, length and contents of string variables are defined via the various assignment

statements described below.

Typical string declarations might be:-

STHING S,T; STHI1JG ARRAY SA[l:HJ];

STRING PROCEDURE BeX); VALUE X; RCAL X:

13.2 STRING EXPRESSIONS AND ASSIGNMENTS

String expressions are limited to a single string variable, a string procedure call or a string

constant. (For a full description of string constants see Section 4.4.) The only string operators

are the comparison operators and the assignment operator. All other operations are achieved via

the string library procedures described in Section 13.7.

String expressions can be assigned only to string variables. For example:-

5:=T:

SA[!]: =5A[3];

5A[2]:=DeZ);

T:="AtJY OLD IRON";

Version 5A 13-1 May 1975

13.3 BYTE STRINGS

The value associated with a string variable is a byte string. A byte string is a sequence of bytes

of a uniform size between one and thirty-six, which can be efficiently handled by the

DECsystem-10 hardware. In some ways they can be thought of as arrays, but the most important

difference between an array and a byte string is that the size of a byte string can vary con­

tinuously. Thus when a byte string is created by means of a READ statement, the programmer

need not know how long the string will be. The routine starts accepting characters after it

encounters the opening quotation marks and continues until it finds the closing ones.

When one string is assigned to another, e.g.,

S:=T:

then a copy of T is made to which S will refer. Any previous value S had is destroyed {and the

heap space it occupied is released}. Subsequent changes to the value of T will not affect S, or

vice versa, unless a further assignment is made from one to the other.

Please note that this is an important change from the implementation of strings prior to Version

5.

13.4 BYTE SUBSCRIPTING

Byte strings can be modified by means of the byte subscripting mechanism. Individual bytes in

a string are referenced by following the string variable name by a decimal point and then the

subscript number enclosed in square brackets. For example

s. [1]

refers to the I'th byte of string S. The subscript may be any arithmetic expression and is eval­

uated in exactly the same way as an array subscript.

Byte-subscripted string variables are regarded as being of type integer, having an integer value

equivalent to the byte to which they refer. It follows that to change the value of a particular

Version 5A ALGOL 13-2 May 1975

byte in a string, a byte-subscript must appear on the left-hand side of an arithmetic statement

with the appropriate new value on the right-hand side. Should the new value be too large to

be held in the byte, it is simply truncated. No warning is given.

13.5 NULL STRINGS

Until a value is assigned to a string by the program, it is assumed to have the value null. That

is, it is assumed to contain no bytes. Any attempt to reference it by a byte-subscript will

resu It in a fatal run-time error, though it can be used on the right-hand side of a string assign­

ment, in which case the variable to which it is assigned similarly becomes null.

13.6 STRING COMPARISONS

Two byte strings can be compared with each other using the usual comparison operators. For

example

IF S < T THEN GO TO L;

where Sand T are string variables, string constants or string procedures. The effect of the

comparison is to compare the strings byte-by-byte, the "lesser" string being that with the

first lower value byte, working from left to right. Thus "ABCD" is less than "ABCE" or

"ABC DE" • Where the strings to be compared are of different byte sizes, then the smaller bytes

are regarded as being extended on the left by null bits.

In the special case of ASCII strings (strings of byte size 7, like string constants), trailing nulls

and trailing blanks, or any mixture thereof, are treated as equal. Similarly ASCII strings of

different lengths will compare equally if the extra length comprises only spaces and nulls. In

all other cases strings of unequal length can only be regarded as equal if the extra length is

comprised entirely of null bytes.

13.7 LIBRARY PROCEDURES

Section 16.6 deals with the input and output procedures that are applicable to strings.

The procedures LINK, LlNKR and TAIL that were included in the library until Version 3B have

been dispensed with.

Version 5A ALGOL 13-3 May 1975

13.7.1 Concatenation

A string can be assigned the concatenate~ value of two strings with the string procedure

CONCAT. For example

s: =CClNCf>. T< T, U);

S:=CONCI'T<S,T);

If, in the first example, T had a different byte size from U, then the size of the first string

encountered (T in this case), would be adopted by S. The bytes copied from U would be trun­

cated or filled with null bits as appropriate.

13.7.2 Length and Size

The primary attributes of a string, its length in bytes and byte size in bits, are returned by the

integer LENGTH and SIZE, respectively.

Thus

I:=LF.N(ITH(~D; ,J:=SIZE(S):

would return the number of bytes in string S in I, and the number of bits in each byte in J.

In the case of a null string both procedures return zero.

13.7.3 Copying

The new byte string can be generated from an existing one by means of the string procedure

COPY. This procedure can have one, two or three parameters.

a. The effect of copy with one parameter is precisely
the same as a simple string assignment, but this
feature has been retained for the sake of continuity.

b. Where there are two parameters, e.g.,

s: = COpy (T , f'1) ;

where M is an arithmetic expression, then S is
assigned the value of the first through M'th bytes of T.

Version 5A ALGOL 13-4 May 1975

c. If there are three parameters, e.g.,

S: = COpy (T ,1'1, to;

where both M and N are arithmetic expressions,
then S is assigned the value of the M'th through
N'th bytes of T.

13.7.4 Newstring

Although it is not possible to refer to bytes in a null string (see Section 13.5 above), it is

possible to create a string of any appropriate byte size but containing nulls, by using this

string procedure. NEWSTRING takes two parameters, the first being the number of null

bytes to be assigned to the string, and the second their size.

For example

S:=NEWSTRING(100,7);

causes a null string of 100 ASCII nulls to be assigned to S. Notice that although S is 100 bytes

long at this point, and thus byte subscripts up to and including S.[100] are valid, if a subsequent

assignment of another string were made to S, both its length and its byte-size might change

(depending, of course, on the length and byte-size of the other string I).

13.7.5 Delete

In Section 13.5 it was explained that if a null string is assigned to another string, then that

string also becomes null, and its previous value is lost. Any space that the previous value

occupied is returned to the heap, as with any ordinary string assignment. The typeless

procedure DELETE has the same effect on the string passed to it as a parameter as the assignment

of a null string would have. Deleting a null string has no effect, beyond using computer time.

Version 5A ALGOL 13-5 May 1975

CHAPTER 14

CONDITIONAL EXPRESSIONS AND STATEMENTS

14.1 GENERAL

ALGOL-60 allows great flexibility in the construction of expressions and conditions.

Consider, for example, if a user wanted to set a variable I equal to 0 or 1 according to the value of a

Boolean variable B, he could write:

IF' B THEN I .- I;

Also, consider the case where a user wants to perform some action, depending on the value of B:

I IF' B THEN XI := Y; IF' i'iOT [{ THEN X2 := y;

14.2 CONDITIONAL OPERANDS

ALGOL-60 allows the user to substitute a conditional operand for any operand in an expression by the

use of a construction involving IF ••••• THEN ••••• ELSE.

For instance, the first example above can be rewritten

I := IF' B THEN 0 ELSE I;

Clearly, this is more compact and of great use in cases such as:

J := J + (IF' K < I THEN I-K ELSE K-I);

Note that the conditional operand must be bracketed. It may be unbracketed only when it forms the

complete expression itself.

In general, a conditional operand may replace an operand in any arithmetic or Boolean expression. It

may also be used in place of a label as the element in a switch list, for example:

SWITCH SW := LI~ IF' B THEN L2 ELSE L3~ L4;

14-1 December 1971

It is also permitted, of course, in an array subscript (and also in a byte subscript), for example:

X := A[I~ IF L = 0 THEN J ELSE J+l);

Since a conditional operand may replace any operand in an expression, it may also replace operands

in conditional expressions. Consider the following example:

IF IF 8 THEN Al ELSE 82 THEN I := I + 1;

This looks complicated but is really quite simple if brackets are inserted for clarity. Thus:

IF <IF B THEN Bl ELSE B2) THEN I := 1+ 1;

14.3 CONDITIONAL STATEMENTS

The reader was introduced to conditional statements of the form

IF B THEN SI ELSE 52

I in Chapter 7. The full power of this type of statement can now be demonstrated.

First, Sl and S2 can be compound statements or blocks. For example:

IF 1 < (11 THEN

BEGIN .- -1; B .- FALSE

END ELSE

BEGIN .- I + 1; GOTO L2

END

Second, the whole structure of the IF ••••• THEN ••••• ELSE statement can be made more powerful

by using conditional statements within themselves. For example:

IF X < 0 THEN X := 0 ELSE IF B THEN GOTO L

This is equivalent to the simple sequence of statements:

IF NOT X < 0 THEN GOTO Ll;

X := 0; GOTO L2;

Ll: IF NOT B THEN GOTO L2;

GOTD U

L2 :

Clearly the former method of expression is both briefer and more elegant.

Version 2A ALGOL 14-2 May 1972

I

Conditional statements take the general form

IF B THEN SI ELSE S2

where S1 and S2 may themselves be conditional statements with the provision that)f there is ambiguity I

bracketing using BEGIN and END must be used to remove it. Consider the following illegal example:

IF R THEN IF X = 0 THEN Y := Z ELSE P := G;

This could be interpreted as

IF B THEN BEGIN IF X = 0 THEN Y := Z END ELSE P .- ~;

or

IF B THEN BEGIN IF X = 0 THEN Y := Z ELSE P .- U END;

The first case is interpreted as:

IF NOT B THEN GOTO Ll;

IF NOT X = 0 THEN GOTO L2;

Y := Z; GOTO L2;

U:P:=QJ

L2 :

The second case is interpreted as:

IF NOT 8 THEN GOTO L2;

IF NOT X = 0 THEN GOTO Ll;

Y := ZJ GOTO L2J

U: P :=QJ

L2:

ALGOL-60 forbids such ambiguities by forbidding the sequence THEN IF ••••• THEN ••••• ELSE.

14.4 DESIGNATIONAL EXPRESSIONS

A designational expression is something that acts as an argument in a GOTO statement I either directly

or indirectly I via a formal procedure parameter of type label. It may simply be a label or a switch

element. Thus the follow ing are designational expressions:

L

IF 8 THEN Ll ELSE L2

IF X < 0 THEN SW[ll ELSE IF X+Y >= Z THEN TW[Jl ELSE L

Version 2A ALGOL 14-3 May 1972

These designational expressions would be used in the following manner:

GOTO U
GOTO IF B THEN LI ELSE L2J

I GOTn IF X < 0 THEN SW(ll ELSE IF X+Y >= Z THEN TW[JlELSE LJ

Version 2A ALGOL 14-4 May 1972

CHAPTER 15

OWN VARIABLES

15.1 GENERAL

I Own variables are a special kind of ALGOL variable, and may be of type integer, real, long real,

Boolean or string, either scalar or array. They have the following properties:

a. Although they follow the normal scope rules, they are not recursive, the same
copy of each variable being used in all occurrences of a procedure or block.

, b. The values they contain when control passes out of a block are retained and
are still available when the block is re-entered.

c. They are initialized to zero before execution of the program. (FALSE in the
case of Boolean own variables.) OWN STRINGS are initialized to possess no
byte string.

Own variables are declared by writing the usual declaration with the word OWN preceding it. For

example:

OWN REAL ARRAY THETA[1 :MJ

15.2 OWN ARRAYS

Own arrays are implemented in a completely dynamic fashion in DECsystem-10 ALGOL. The

declaration proceeds according to the following rules.

a. If this is the first time the array is declared, space is obtained and then the array
laid out. If the array has been laid out before, proceed to Step b.

b. The bounds are examined to see if they are identical to those of the previous con­
struction of this array. If they are the same, the array is left unaltered; otherwise,
proceed to Step c.

c. A new array is constructed and those elements that it has in common, if any, with
the old array are copied into it; the remaining elements are zeroed. The old array
is then deleted and the space used by it is recovered for future use.

15-1 December 1971

For example, if an own array A is declared as follows:

OWN REAL ARRAY AL[l:M,M:N]j

where M == 2 and N == 5 the first time, and M == 1 and N == 4 the second time, the elements [1,2],

[1,3] and [1,4] are copied over, and the remaining elements of the new array are zeroed.

15-2

CHAPTER 16

DATA TRANSMISSION

16.1 GENERAL

Data transmission encompasses the input and output of data between the user's program and peripheral

devices, such as disk, DECtape, magnetic tape, card reader, card punch, and line printer. The

I DECsystem-10 ALGOL object-time system, in conjunction with the ALGOL library, provides the user

with a set of basic procedures for handling data from most DECsystem-10 devices in a uniform fashion.

The user may also perform input/output operations with virtual peripherals that manifest themselves as

byte strings in the user1s program.

All peripheral devices that the user requires are under his control completely and can be allocated or

rei eased at any time throughout the execution of the program. The user can handle up to sixteen de­

vices simultaneously (seventeen, if one of them is the terminal attached to his job), any number of

wh i ch may be fil e devi ces (disk, D ECtape) and have an independent fi I e open.

16.2 ALLOCATION OF PERIPHERAL DEVICES

Peripheral devices are allocated to the user's program by calls to the library procedures INPUT or

OUTPUT. A call to one of these procedures usually has two parameters. The first is the channel num­

ber, an integer in the range 0 to 15, on which the device is to operate. Only one device at a time

may be operated on a channel; a channel provides either input or output facilities, except in the case

of a terminal, where the input and output functions are performed simultaneously on the same channel.

The second parameter is either a string or a string constant. The text contained in the string is the

logical name of the device to be allocated to this channel.

The DECsystem-10 Users Handbook should be consulted for an explanation of what constitutes a logical

device name. In the simplest case, it may be the actual name of the peripheral device. The device

names shown in Table 16-1 are recognized as standard.

16-1 December 1971

Device Name

DSK
DTA
MTA
CDR
COP
LPT
PTR
PTP
PLT
TTY

Table 16-1
Standard Devi ce Names

Disk

Peripheral

o ECtape
Magneti c tape
Card reader
Card punch
Li ne pri nter
Paper-tape reader
Paper-tape punch
Plotter
Terminal

For example, to allocate the card reader for use as an input device on channel 5, the user would use

the statement

INPUT(5~"CDk");

or, if S were a string possessing a byte string that had the characters CDR in it,

INPUT(5~S);

Similarly, if the disk were to be used as an output device on channel 9:

OUTPlJT(9~"DSK");

Note that with the exception of terminals, all devices are allocated to operate in one direction only;

thus, if the user wants input and output from the disk, he must use two separate channels.

Terminals are always allocated bidirectionally, irrespective of whether the user uses INPUT or OUTPUT.

For example,

INPUT(0~"TTY");

allocates the user's terminal for input and output on channel O.

16.2.1 Device Modes

Normally, a device is allocated in ASCII mode, that is, when the user reads a character from the de­

vice it is a 7-bit byte representing readable text, such as a stored source program or data. To allocate

the device in a different mode, a third parameter is specified in the call to the INPUT or OUTPUT pro­

cedure. Thus, to allocate a disk to channel 9 in image binary mode (the mode used for the storage of

binary data on a disk), the user can use

OUTPUT(9 .. "DSK 11);
16-2

The DECsystem-10 Assembly Language Handbook should be consulted for a full explanation of

the different modes used with peripheral devices. The INPUT and OUTPUT procedures allow

the user to allocate any standard peripheral device in any buffered mode.

16.2.2 Buffering

The INPUT and OUTPUT procedures normally allocate two buffers for each allocated device;

terminals are allocated two buffers for input and two for output. The user may desire to use

either one or more than one buffer for a device. For example, in a non-compute bound job

that uses a lot of disk transfers at odd intervals, four or even eight buffers may be desirable to

increase the speed of execution of the program.

The number of buffers to be used can be controlled by adding a fourth parameter to the procedure

call. Thus, to allocate a disk on channel 14 in mode 0 with eight buffers, the call is

OUTPUT (!4 DSK 0 .. 8) J

Note that the mode must always be specified in this case, otherwise there would be an ambiguity

in the third parameter.

16.2.3 Error Returns

Normally, if the device allocation fails (for example if the device is in use by another job), a

suitable message is typed and the program terminated. The user can prevent this by providing,

as the fifth parameter to INPUT or OUTPUT, a label to which control is to be passed in the

event of an error. Note that the third and fourth parameters must be present in this case to

avoid ambiguity: they may be zero when the default values will be used. For example:

OUTPUT< 14," MIA" ,0,0 ,ERROH .LABEL.);

If the actual label parameter is a switch whose subscript is out of range, the procedures behave

as though the label parameter were absent.

16.3 SELECTING INPUT/OUTPUT CHANNELS

Before a user uses a device to transfer data, assuming that the device has already been allocated

to some channel, the appropriate input or output channel must be "selected" for use as the input

or output channel. All data input and output always occurs on the currently selected input

channel and output channel, respectively. The user may change the selection of channels at

any time, switching from one channel to another without loss of data, irrespective of whether

Version 5A ALGOL 16-3 May 1975

complete lines {or records} of data have been read or not. In fact, the DECsystem-10 input/

output system does not assume any structure in the data: all input and output channels are re­

garded as pipelines through which the user pulls or pushes data.

To select an input channel, a call to the procedure SELECTINPUT must be made. This has one

parameter, which is the channel number. Thus

SELECTINPUT(S);

causes input channel 5 to be selected.

Similarly, the procedure SELECTOUTPUT is used to select an output channel.

16.4 FILE DEVICES

Some peripheral devices, such as disk and DECtape, require the opening of a specifically named

file before any input or output operations can be performed. This optionally may be performed

on spooled devices {refer to Chapter 3 of DECsystem Operating System Commands for a description

of spooling}. The opening of this file is performed by means of the procedure OPENFILE, which

is called after the device has been allocated to a channel. The procedure call has two

parameters: the channel number on which the device has been allocated and a string variable

possessing a byte string or a string constant, the text of which is the name of the file.

The user can also specify a protection and/or project-programmer number of a file by means of

optional third and fourth Boolean or integer parameters. For example, to open a file with

protection 177 on disk area [11,50] the user could write

OPENFILE (9,"TEST.DAT",%177,%00fl01100~J050);

When a user has finished with a file it should be closed. A file is closed by using the procedure

CLOSEFILE, with a parameter that is the channel number on which the file is open. Thus,

CLOSEFILE(9);

closes the file that is open on channel 9.

Version 5A ALGOL 16-4 May 1975

The user may also rename or delete existing files: if a file is already open, use of OPENFILE

causes the file to be renamed with the new name supplied. Thus the sequence

OPENFILE (S TEST1.DAT ..).

OPENFILE (S TEST2.DAT ..).

causes the file with name TESTI.DAT to be renamed TEST2 .DAT •

If the string containing the new name is null, the original file is deleted. Thus,

OPENFILE (S TEST3.DAT ..).

OPENFILE (S).

causes the file TEST3.DAT to be deleted.

16.4. 1 Error Returns

Normally, if the operation requested fails (for example an input file does not exist), a suitable

message is typed and the program terminated. The user can prevent this by providing a label

and an optional integer variable as the fifth and sixth parameters to OPENFILE. In the event

of an error, control will be passed to the label, with an error-code set into the integer

variable if present. The error-codes are those returned by the ENTER and LOOKUP UUO'S:

refer to Appendix E of the DECsystem-10 Monitor Calls Manual.

Note that the third and fourth parameters must be present if the error return parameter is

specified: they may be zero in which case the default values will be used.

If the actual label parameter is a swi'tch whose subscript is out of range, the procedure behaves

as though the label parameter were absent. The integer error-code parameter is called by name.

16.5 RELEASING DEVICES

The procedure RELEASE is used to release a device from a channel. Thus,

RELEASE(S)'

Version 5A ALGOL 16-5 May 1975

releases the device allocated to channel 5. If t~e device is a tile device, and a tile is still open on

the device, it is automatically closed. Releasing a device on a channel causes a channel to become

free; if this channel is currently selected for input or output operations, it is deselected.

If an attempt is made to allocate a device to a channel that already has a device allocated, the allo­

cated device is tirst released and, if a tile is open on it, it is closed before releasing the device.

If a user terminates his program without releasing devices on channels, they are automatically released.

16.6 BASIC INPUT/OUTPUT PROCEDURES

16.6.1 Byte Processing Procedures

The following procedures may be used with any device to handle bytes of any standard size (1 to 36

bits). However, because they are normally used with devices supplying or receiving ASCII bytes, they

are "symbo I" ori ented •

a. INSYMBOL(S); - (where S is usually some integer variable) causes the next byte
to be read from the currently selected input channel and stored in S.

b. OUTSYMBOL(J); - (where J is usually some integer expression) causes the value
of J to be output as a byte to the currently selected output channel. If J is too
large for the byte size of the device in use, it is truncated to size.

c. NEXTSYMBOL(S); - acts in exactly the same way as INSYMBOL except that
the byte pointer for the input channel is not advanced to the next available
byte. This gives the user a look-ahead facility of one byte.

d. SKIPSYMBOLi - causes the next byte from the selected input channel to be
read and ignored.

e. BREAKOUTPUTi - causes all bytes in the buffer of a device to be sent immedi­
ately to it. This procedure is normally used to conduct a question-and-answer
dialogue on a terminal,with the question and answer on the same line. Nor­
mally, a block of data is sent to a device only when the buffer is full (the
exception being the terminal, where a break is sent at the end of each line).

16.6.2 String Output

A byte string may have its contents transferred to the currently selected output channel by means of

the procedure WRITE, whose single parameter is either a string constant or a string variable that

possesses the string to be output. For example:

WRITE(S)J

or

WRITE("THE MOON IS MADE OF GREEN CHEESE");

16-6

I

With exceptions explained in the following paragraphs, all of the bytes in the string are output literal­

Iy, with the exception, of course, of the quotes ina stri ng constant, whi ch are not in fact stored in

the byte string at all. The important thing to remember is that, unlike some other ALGOL implemen­

tations, spaces and other non-printing symbols in byte strings are meaningful.

Special editing characters are permitted within square brackets within the text of a byte string. These

have a special function:

P

Cor N

T

S

B

Page throw

New line (C stands for carriage return, line feed)

Tab

Space

Break output

Any combination of these characters, with optional repetition counts preceding them, can appear with­

in square brackets in a byte string and are output as their special interpretation demands. For example:

HR ITE ("ABCD [P2C 5S JEFGH" >;

causes the following to be output:

a. the symbols ABCD followed by a page throw
b. two new Ii nes and five spaces
c. the symbols EFGH.

In order to output the symbols

[] " or i

they must appear in the form

[[]] "" or ii

respectively. Thus

l.JRITE(...... A[[IJJ .- 3;; >;

causes the text

"A [I] : = 3;"

to be output.

16.6.3 Miscellaneous Symbol Procedures

The procedures SPACE, TAB, PAGE, and NEWLINE cause the appropriate number of spaces, tabs,

page throws, or new lines to be output, depending on their single parameter, which is an integer ex­

pression. If the parameter is omitted a value of one is assumed. Thus

Version 2A ALGOL 16-7 May 1972

SPACE(5);

causes five spaces to be output, whereas

SPACE;

or

SPACE<1);

causes one space to be output.

116.6.4 Numeric and String Procedures

Numeric procedures are used to read and print numeric quantities. They will normally be used with a

device that is operating in ASCII mode. They are capable of processing integer, real, or long real

quantities in fixed-point and floating-point representations.

16.6.4.1 Numeric Input Data - Numeric data for input can be represented in any format that would

be acceptable as a numeric constant in a program, irrespective of the type of variable involved. When

a number is read, an automatic type conversion is performed, giving a result of the same type as if an

assignment of the data represented as a constant in the program had been executed.

There is a minor restriction in that no spaces, tabs, or other non-printing symbols may appear in such

numeric data except between the exponent sign (& or @ for real, && or @§J for long real) and the

exponent. Otherwise, any symbol that is not itself a part of a numeric quantity may act as a terminator

for such a quantity. It is strongly recommended that spaces, tabs, or new lines be used as separators.

For example:

3.4 - 9.6 1.36 - 52

Vl 14.9

Note that in reading a numeric quantity, the terminating symbol, that is, the first symbol that is not

part of the number, is lost.

DECsystem-10 ALGOL also allows the user to input floating-point data written in FORTRAN format,

that is, using E for & or @, and D for && or @§J. Note, however, that no other special effects

inherent in FORTRAN formatting are introduced.

I The procedure READ is used to input numeric data and also strings. This procedure may have any num­

ber of parameters, of type integer, real, long real, Boolean, or string.

Version 2 ALGOL 16-8 December 1971

The efFect is as follows:

a. For integer, real and long real variables, a number is read and converted to the
type appropriate to the parameter and then assigned to the variable.

b. For Boolean, a number is read as if for an integer variable, and assigned to the
variable.

c. For a string variable, the data text is scanned until a quote (") is found, and the
text following this up to but not including the next free quote is read in and a
byte string generated, which is then possessed by the string variable.

If the sequence 1111 is found, a single II is stored, and reading of the string continues.

16.6.4.2 Numeric Output Data - Numeric data is output by means of the procedure PRINT. This

procedure may have one, two, or three parameters, the first of which is the variable to be printed.

I This variable may be an integer, real, or long real. The second and third parameters determine the

format to be used and are integer expressions. If they are omitted, they are assumed to be zero. The

effect of the various combinations of the format integers, M and N, is as follows:

M > 0, N > 0:

M >0, N = 0:

M = 0, N >0:

Fixed-point printing, M places before the decimal
point, N places after. A sign, space if positive,
- if negati ve appears before the number. Zeros
before the decimal point are replaced by spaces and
the sign moved up to the number.

This format always outputs M+N+2 symbols.

The same as the preceding except that (a) no frac­
tional port appears, and (b) the decimal point is
suppressed.

This format always outputs M+1 symbols.

Floating-point format, consisting of a sign, a decimal
digit, a decimal point, N more decimal digits, and an
exponent consisting of & for real, && for long real
followed by the exponent sign and a two-digit exponent,
zero suppressed from the I eft.

This format outputs N+7 symbols for real and N+8 sym­
bols for long real quantities.

If only two parameters appear, format M,O is assumed for integer variables, and format 0, N for real

and long real quantities, where M and N are, respectively, the values of the second parameter.

If only one parameter appears, the format is interpreted as 0,0 which assumes standard printing modes

of 11,0 for integer quantities, 0,9 for real quantities, and 0,17 for long real quantities.

Version 28 ALGOL 16-9 December 1972

If the user requests more digits to be printed than are significant in real or long real numbers, the

appropriate number of zeros follow a properly rounded printing of the number to the maximum precision

available.

16.6.4.3 Octal Input/Output - The procedures READOCTAL and PRINTOCTAL, respectively, allow

the user to input and output quantities in octal format.

On input, for single precision variables, up to 12 octal digits are read, preceded by the symbol %, the

terminator being any non-numeric symbol. For long real variables, two such octal numbers must be

I presented for input, each preceded by the symbol %.

On output, 12 octal digits, preceded by the symbol %, are printed for single precision variables. For.

long real variables, two quantities each with 12 octal digits are printed, with a space separating them.

The foregoing procedures have one scalar parameter which may be of type integer, real, long real or

Boolean.

16.7 DEFAULT INPUT/OUTPUT

If the user does not select any input or output channels, input and output occur via an "invisible"

channel from and to the user's terminal. Thus, for simple programs where the user wishes to input a

few numbers and print a few results, he simply uses READ, types in the data on line through his

terminal, and gets back the results from PRINT.

16.8 LOGICAL INPUT/OUTPUT

In addition to the 16 channels used to communicate with peripheral devices, an additional 16 channels,

numbered from 16 to 31, are provided. These are input or output channels that use byte strings as a

means of storage.

By means of the procedures INPUT or OUTPUT, the user can attach a channel to a byte string possessed

by a string variable, and can read and write bytes from and to this byte string, either to or from a

peripheral device, or to and from another byte string.

INPlJT(20 .. S);

or

OUTPUT(20 .. S);

cause the byte string possessed by the string variable 5 to be used as logical channel 20; this channel

may subsequently be sel ected for input or output, as appropria te.

Version 2 ALGOL 16-10 December 1971

I

The user is still free, of course, to manipulate the individual bytes within the byte string by means of

the byte-subscripting facilities available. Such facilities enable the user to read a file from a

peripheral device into a string, process it in any way whatsoever, and output it again.

16.9 SPECIAL OPERATIONS

These procedures are used on channels assigned to magnetic tapes. They consist of the procedures

BACKSPACE, ENDFILE and REWIND, each having one parameter, i.e., the channel number on which

the operation is to be performed.

Since there is no implicit structure on a magnetic tape, these procedures enable the user to build up

formats in any way he chooses.

16.10 I/O CHANNEL STATUS

The status of any input or output channel can be determined at any time by means of the Boolean pro­

cedure IOCHAN, which takes as its single parameter an integer quantity which is the channel number.

The status returned is b it coded as foil ows:

Bit Value Meaning if Set

18 0/0400000 Device is physical (i .e., not logical)
19 %200000 Directory device
20 %100000 Terminal device
21 %040000 ASCII mode
22 %020000 Magnetic tape
23 %010000 Plotter
24 %004000 Set for default TTY on channel -1
25 %002000 Device is spooled
26 %001000 Device can do input
27 %000400 Device is initialized for input
28 %000200 File is open for input
29 %000100 End of file encountered
30 %000040 Input ok status
31 %000020 Device can do output
32 %000010 Device is initialized for output
33 %000004 File is open for output
34 %000002 Device quota (exceeded)
35 %000001 Output status ok

Some of these bits are of little use to the user, but, for example, if a device is allocated, and the user

does not know whether or not it is a file device, he can use IOCHAN to determine this. The bits of

particular use to the user are the input and output end-of-file (note that end-of-file on output is a

logical status indicating that, for example, a disk quota is exceeded or a DECtape is full, or in the

case of a logical device, the byte string is full).

Version 2B ALGOL 16-11 December 1972

When IOCHAN is used, the end-of-file flags are always cJ~ared, if set, so that the user may proceed

to read a magnetic tape after an end-of-file marker is found.

The following example shows how the user would handle an unknown device whose name is given to the

program via the user's terminal:

BEGIN

END

STRING DEVICE, FILEJ INTEGER CHANNELJ
WRITE C"CHANNEL NO: ")J BREAK.OUTPUT;
READ CCHANNEL>;
WRITE C"[CJDEVICE NAt<E: "); BREAK.OUTPUT;
READ CDF-V ICE>;
OUTPUT CCHANNFl, DEVICE)J
IF IOCHAN CCHANNEL) AND %200~00 THEN

BEGIN
VlRITE C"[CJFILE NAIVE: "); Br.:EAK.OllTPUT;
HEAD CFILE);
OPENFILE OCHANNEL, FILE)

END;

NOTE

When using Boolean expressions involving IOCHAN,
the rules for evaluation followed in this implementa­
tion should be borne in mind. See Section 5.2.1.

16.11 TRANSFERRING FILES

Once a device has been allocated to an input or an output channel, a complete file of information

may be transferred between them automatically by calling the parameter-less procedure TRANSFILE.

This procedure copies bytes from one device to another from the currently selected input channel to

the currently selected output channel, until an end-of-file status is raised on either the input or out­

put channel.

16.12 CURRENTLY SELECTED CHANNEL NUMBERS

The number of the channel currently selected for input or output may be obtained by use of the integer

procedures INCHAN or OUTCHAN.

Version 5A ALGOL 16-12 May 1975

CHAPTER 17

THE DECsystem-10 OPERATING ENVIRONMENT

The operating environment of DECsystem-10 ALGOL programs consists of those procedures in the

DECsystem-10 ALGOL Library required by the user1s program, and the DECsystem-10 ALGOL Object

Time System.

The former are those procedures detailed in Chapters 13 and 16, together with those described below.

These procedures can be thought of as existing in a block surrounding the user's program, and, there­

fore, are available when called. Their names, however, are in no sense reserved as are words such as

BEGIN.

Note also that these procedures are only present in the user's program when required. They are loaded

by the DECsystem-10 Linking Loader when so directed by the DECsystem-10 ALGOL Compiler. The

user is not required to take any action to include these procedures, other than make a call to them.

A complete list of library procedures is given below.

17.1 MATHEMATICAL PROCEDURES

I The following procedures expect one argument, of real type, and yield a real type result.

Procedure Name

SIN
COS
ARCTAN
SQRT
EXP
LN
TAN
ARCSIN
ARCCOS
SINH
COSH
TANH

Function

Sine
Cosine
Arctangent
Square root
Exponential
Logarithm (to base e)
Tangent
Arcsine
Arccosine
Sinh
Cosh
Tanh

Note that if arguments of type integer or long real are given in an ALGOL call to these

procedures, the compi ler plants the appropriate conversion code.

17-1 July 1974

I

The following procedures expect one argument, of long real type, and yield a long real type result.

Note that theyare formed by adding an L before the equivalent single precision procedure.

Procedure Name

LSIN
LCOS
LARCTAN
LSQRT
LEXP
LLN

Function

Sine
Cosine
Arctangent
Square root
Exponential
Logarithm (to base e)

The functions ENTlER, ABS and SIGN are also available, as described in Section 5.1.2

17.2 STRING PROCEDURES

For details of the procedures CONCAT, LENGTH, SIZE, COPY, NEWSTRING and DELETE, see

Paragraph 13.7.

17.3 UTILITY PROCEDURES

17.3.1 Array Dimension Procedures

The integer procedure DIM, which takes as its parameter the name of an array of any type, yields a

result that is the number of dimensions of the array. This is most useful when the user passes an array

as a parameter and wishes to check if it is, for example, a matrix.

The integer procedures LB and UB also take as first parameters the name of an array; their second

parameter is the subscript number. The resul t is the lower or upper bound, respectively, of the sub­

script specified by the second parameter. The following procedure uses these to clear real matrices.

PkOCEDUHE ZEkOCA); ARRAY A;

flFGIN

INTEGER I .. J;

IF DI~CA) = 2 THEN

REG 11\)

.1~ tlTF.('En L 1 ,L2,U 1, U2;

LI .- LRCA .. I); UI .- !.IRCA .. I);

L.2 : = l ~ C A .. 2); U2, : = UI1 C A .. 2) ;

FOR I := L.1 UNTIL III DO

FOF: J := L.2 LINTIL 112 f)O A[I.JJ ._ v.l

FND

FND

Version 5A ALGOL 17-2 May 1975

17.3.2 Minima and Maxima Procedures

The integer procedures IMIN and IMAX, the real procedures RMIN and RMAX, and the long real pro­

cedures LMIN and LMAX are used, respectively, to determine the minimum or maximum of a number

of arguments of the appropriate type. These procedures normally accept up to ten parameters {this

I figure may be changed by re-assembling the ALGOL library with a different parameter.

For example:

17.3.3 Field Manipulations

The procedures GFIELD and SFIELD enable the user to manipulate a field within any integer, real,

long real, Boolean or string variable. The integer parameters I and J specify a byte of length J bits

whose leftmost bit is the 11th bit {counting from zero at the left-hand side}. The byte specified may

be from 1 to 36 bits in length and may be at any position in the variable.

For single word variables {integer, real, Boolean}, I may range from 0 to 35, with the constraint

1+ J <= 36. For double word variables {long real and string}, I may range from 0 to 71, with the

constraint I + J < = 72.

The integer procedure GFIELD uses I and J as the second and third parameters; the first parameter is

the variable. The result is the value of the byte {right justified} specified by I, J.

Thus

gives the value of the byte consisting of bits 3 through 7 of A.

The procedure SFIELD sets a byte specified by the second and third parameters I, J to the value speci­

fied by the fourth parameter, of type integer. Thus

zeros the byte specified in the first example.

17.4 DATA TRANSMISSION PROCEDURES

For details of these procedures refer to Chapter 16.

17-3 July 1974

17.5 FORTRAN INTERFACE PROCEDURES

I F-10 or F-40 FORTRAN subroutines may be incorporated in ALGOL object programs by loading these

subroutines with the ALGOL main program (and any other separate ALGOL procedures).

Such FORTRAN subroutines should be specified by an EXTERNAL declaration in the ALGOL program

and, depending on which compiler was used to compile them, are called by the procedures shown in

the table.

Table 17-1

~ NONTYPE INTEGER REAL LONG REAL BOOLEAN

FORTRAN
(DOUBLE PR.) (LOGICAL)

F-10 F1,0'CALL F1,0'ICALL F1,0'RCALL F1,0'DCALL F1,0'LCALL

F-40 CALL ICALL RCALL DCALL LCALL

The first parameter in these procedure calls must be the name of the FORTRAN subroutine. Subsequent

parameters are taken as the arguments to the procedures.

I CALL and F1,0'CALL are used as single statements, for example:

CALL CFOkT,X,Y)

is equivalent to

CALL FORT <X,Y)

in a FORTRAN program.

ICALL etc. must appear in the appropriate context in an expression, thus

P := 0 + ICALLCZ)

Version 5A ALGOL

NOTE

The parameters of CALL, ICALL, etc., are restricted to
integer, real, long real, or Boolean expressions with the
restriction that if the expression is a single variable, it
must be a local scalar or a format parameter called by
value.

17-4 May 1975

17.6 GENERAL INFORMATION ROUTINE

The integer procedure INFO provides information about various aspects of the environment, depending

on the value of the parameter with which it is called.

For example

might produce

parameter

o
1
2
3
4
5
6
7

PHI NT (I f'JFO(4»;

113·46(1(1

returns integer value of

core size in words
date (l.5-bit format)
time (ticks since midnight)
time (micro-seconds since midnight)
runtime (milliseconds)
processor type (l=KA, 2=KI, 3=KL)
number of stack shifts so far
compiler version word

- the job's runtime up to now in mi" iseconds.

17.7 DATE AND TIME IN ASC" FORMAT

Three routines are provided for returning the current time and date in string format suitable for

printing without modification. The two date routines, FDATE and VDATE, give the option of a

standard three-character abbreviation for the month (FDATE), or a variable-length string with the

name of the month in full (VDATE). In both cases the year is given in fu". String procedure TIME

gives an eight-character string with the current time as HH :MM:SS.

For example

might produce

~m ITE(VDA IE); tJEWLI NF.; \vR ITE (THIE) ;

27-.IANUARY-1975
12:16:55

17.8 RANDOM NUMBER ROUTINES

Three routines have been included to provide a random number capability. The number generator

is similar to that used in the FORTRAN library, which is documented in the Science Library

manual. The ALGOL version is, however, initialized randomly. If it is required to generate a

Version 5A ALGOL 17-5 May 1975

sequence of pseudo-random numbers in a repeatable way, then procedure SETRAN should be called

before the first reference to RAND, with the required initial value. For example, to generate the

same sequence as a FORTRAN program using the default starting value currently used by FORTRAN,

SETRAN(-1)i should be included in the ALGOL program. The third procedure is SAVRAN which

returns the value of the last random number without invoking the number generator.

RAND and SAVRAN are INTEGER procedures; SETRAN is non-type.

Version 5A ALGOL 17-6 May 1975

CHAPTER 18

RUNNING AND DEBUGGING PROGRAMS

18.1 COMPILATION OF ALGOL PROGRAMS

DECsystem-10 ALGOL programs are compiled by the ALGOL compiler under the standard DECsystem-l0

timesharing monitor. The compiler is called by typing

H ALGOL

at monitor command level.

The DECsystem-l0 ALGOL Compiler responds by typing an asterisk on the user's terminal. The user

then types a command string to the compiler, specifying the source file{s) from which the program is to

be compiled, and the output files for listing and output of relocatable binary. The command string

takes the form:

I OUTPUT-FILE, LlSTING-FILE=SOURCE-FILES

followed by a carriage-return (ALTMODE cannot be used to terminate a command string).

A file takes one of the forms

DEVICE:FILE-NAME. FILE-EXTENSION

or

DEVICE:FILE. NAME

for directory devices (disk and DECtape)

or

FILE-NAME. FILE-EXTENSION

or

FILE-NAME

where DSK is assumed to be a default device.

Version 2A ALGOL 18-1 May 1972

I

In the case of non-directory devices, the format is simply

DEVICE:

In cases where no FILE-EXTENSIONS are specified, the standard defaults REL for the relocatable

binary output file, LST for the listing file, and ALG for the source file are assumed.

SOURCE-FILES

consists of one file or a list of files separated by commas. If a DEVICE is specified for the first file,

and not for succeeding files, the second and following files are taken from the same device as the

fi rst.

Example:

FlJLFR,TTY:=EULER

[read source from DSK:EULER.ALG, write relocatable binary on DSK:EULER.REL and listing on the

user's terminal] • I MTM1:,DSK:SIIV26=SIIV?6,PAkAfvi.TST

[read source from DSK:SIM26.ALG, DSK:PARAM .TST, write relocatable binary on device MTAO,

and listing on file DSK:SIM26.LST).

Certain switches may be set by the user in the command string. These are:

BUFFERS:n
CHECKON
CHECKOFF

HEAP:n

HELP
KAla
Kl1 a
KLlO
LIST

NOERRORS
NOLIST
NONUMBERS

NOQUOTES

Version SA ALGOL

Set number of buffers in compi ler's I/O buffer-ring to n.
Compile run-time array-bound checking (see 18.5.1.1).
Do not compile run-time array-bound checking, regardless
of any CHECKON statements in the source.
Set the initial size of the dynamic core area (which is used
for I/O buffers, strings and OWN arrays) to n words. This
area is dynamically expanded at run-time if necessary; its
final size is typed out at the end of execution if the object
program is loaded with DDT.
*Type helpful text.
Produce code to run on the KA1 a processor.
Produce code to run on the KilO processor.
Produce code to run on the KLl a processor.
*List the source program (default if a listing-device is
specified in the command-string).
Do not type error-messages on the terminal.
Do not I ist the source program.
The source program does not have line sequence numbers in
columns 73 to 80 (default).
Delimiter words are not in quotes (default).

18-2 May 1975

NUMBERS

PRODUCTION

QUOTED
TEMPCODE:n

TRACE

The source program has line sequence numbers in
columns 73 to 80.
Do not compile trace information or output expanded
symbol-table to the .REL file (not yet implemented).
*Delimiter words are in quotes.
Set length of TEMPCODE area in compiler to n words:
this is only necessary if the compiler produces a message
to that effect, which may happen for some very complicated
statement constructs.
Control tracing. (Not yet implemented.)

Switches may be shortened to a unique abbreviation: those marked with an asterisk (*) in the

above list may also be given as a single character. Values (n) are in decimal.

These switches are set by preceding them with a / after a file-specification, for example:

PH aD, PhOD= PI"? OD IlL, PROD21 NOL/HE,\P: 2000

causes file PRODl to be compiled with a listing, PROD2 to be compiled without listing, and the

initial size of the run-time dynamic core area to be set to 2000 words (the default size is 521

words) •

Version 5A ALGOL 18-3 May 1975

I

I

The ALGOL compi! er reports all source program errors both on the user IS terminal and in the listing

device (if it is other than the terminal). After compiling a program, the compiler returns with another

asterisk, whereupon the user may compile another program, or type tc to return to monitor level.

18.1.1 Compilation of Free-Standing Procedures

DECsystem-l0 ALGOL allows the user to compile procedures independent of programs that call them.

Such procedures may either follow the mai~ program in the source file (but may not appear before it),

or may be in an independent source file either singly or together. The user uses exactly the same

process to compile such files.

If the user requires to call those procedures from the main ALGOL program, the appropriate EXTERNAL

dec larations must be made (refer to Paragraph 11.9).

18.2 LOADING ALGOL PROGRAMS

ALGOL programs are loaded by means of the DECsystem-l0 Linking Loader in exactly the same way as

programs generated by MACRO-l0 and FORTRAN (for details, refer to the DECsystem-l0 Assembly

Language Handboak).

LINK-tO automatically causes all procedures required from the ALGOL Library (ALGLIB) to be

incorporated into the user's program.

For example, consider the source file MAIN.ALG which contains the ALGOL main program and

the files SUB1.ALG and SUB2.ALG which contain free-standing procedures.

The user may compile these files to give one relocatable binary file by typing the following command

string to the ALGOL compiler,

MAIN,MAIN=MAIN,SU81,SU82

and loading the resulting program by giving the command string

nr. I rUGO

to LINK-l0. Alternatively, the three source files can be compiled independently by typing three

command strings to the ALGOL compiler, for example:

MAl N, MA I N =MAI N

SUB 1 ,SUI:H =S Ud 1

SU82, SUS2=SUB2

Version 5A ALGOL 18-4 May 1975

I and giving LlNK-l0 the command string.

I

MAIN,SUbl,SUB2/G

After a program has been loaded, it may be executed.

18.3 RUNNING ALGOL PROGRAMS

ALGOL programs are executed by typing the console command

START

or any of its valid abbreviations. If the program executes successfully, it finishes by printing the exe­

cution time statistics (core store used and execution and elapsed times) on the user1s terminal, and

returns to monitor command level.

18.4 CONCISE COMMAND LANGUAGE

The concise command language (CCL) features in the DECsystem-l0 monitor may be used to facil itate

the compilation and execution of ALGOL programs. They are used in exactly the same way as for

programs written in DECsystem-l0 FORTRAN. For details, refer to the DECsystem-l0 Users Handbook.

Switches to the ALGOL compiler are enclosed in parentheses and separated by slashes; for example:

rX r.r. un: FOO(OUOTED/HEAP: 2""'~)IKI)

18.5 RUN-TIME DIAGNOSTICS AND DEBUGGING

If a run-time error occurs during the execution of an ALGOL object program, an error message is pro­

duced, detailing the type of error, and its address within the user1s program. Such errors fall into two

categories - fata I and non -fata I.

A mechanism has been provided by which the user can trap non-fatal errors, and, when they occur,

transfer control to a label within the user1s program. Each such error has a unique number, and a

table of these appears below. The library procedure TRAP, used to trap non-fatal error has the follow­

ing specification:

PROCEDURE TRAP (N, L); VALUE N, L;

INTEGER N; LABEL L;

Where N is the number of the error to be trapped, and L is a label to which control is required to be

passed when the error occurs.

Version SA ALGOL 18-5 May 1975

Once such a trap is set up ~ a call to TRAP, it remains in force unti I another call to TRAP sets a trap

to a different label, or until the trap is turned off by

TRAP (N)

i.e., omitting the label parameter in a trap call.

Note that the trap label is a formal parameter by value.

TRAP NO.

18
19

32
33
34
35

37
38
39
40
41
42
43
44

48
49
50
51
52

Table 18-1
Error Trap Numbers

ERROR

FLOATING POINT OVERFLOW
FIXED POINT OVERFLOW

INPUT OR OUTPUT DEVICE UNAVAILABLE
ILLEGAL MODE FOR INPUT OR OUTPUT DEVICE
INPUT OR OUTPUT ON UNDEFINED CHANNEL
ATTEMPT TO READ OR WRITE ON DIRECTORY DEVICE WITHOUT FILE OPEN

FILE NOT AVAILABLE OR RENAME FAILURE
ATTEMPT TO READ OR WRITE OVER END-OF-FILE
ERROR CONDITION ON INPUT OR OUTPUT
ILLEGAL CHARACTER IN NUMERIC DATA
OVERFLOW IN NUMERIC DATA
ERROR CONDITION ON CLOSING FILE
ILLEGAL INPUT -OUTPUT OPERATION
1-0 CHANNEL NUMBER OUT OF RANGE

SQRT ARGUMENT NEGATIVE
LN ARGUMENT ZERO OR NEGATIVE
EXP ARGUMENT TOO LARGE
INVERSE MATHS FUNCTION ARGUMENT OUT OF RANGE
TAN ARGUMENT TOO LARGE

18.5.1 Facilities to Aid in Program Debugging

18.5. 1.1 Checking - The directive

I CHECKON

when placed anywhere in a user's program causes all array subscripts from this point onward in the pro­

gram to be checked at run-time for being in range. The directive

I CHECKOFF

nullifies this action. Note that use of this facility causes the generated program to be slightly larger,

and to run slower.

Version SA ALGOL 18-6 May 1975

I

I

I

The compiler switches /CHECKON and /CHECKOFF may also be used: they override any CHECKON

or CH ECKOFF statements in the source program.

NOTE

Most inexplicable errors arising during the execution of an
ALGOL program are caused by an array subscript being out
of range. Whenever such errors occur, the program should
be recompiled with the array bound check feature on, and
rerun.

18.5.1.2 Controlling Listing of the Source Program - Normally, a listing of the source program is

output with the object program during compilation. The user can suppress this listing entirely by means

of the /NOLIST compiler switch. However, if the user wishes to suppress only part of the listing and

then continue listing, he can control the listing from within his program by means of the statements

LISTOFF
LISTON

The LISTOFF statement causes listing to be suppressed from the point in the program where LISTOFF

was encountered to either the end of the program or until a LISTON statement is encountered. The

LISTON statement causes listing to continue after it had been suppressed by a LISTOFF statement.

The LISTON and L1STOFF statements have no effect if the /NOLIST switch is included in the com­

piler command string.

18.5.1.3 Setting Line Numbers in Listings - Ordinarily, the lines in the listing file are numbered

sequentially starting at 1 and incrementing by 1. The user can, however, change the line numbers by I placing sequence numbers in columns 73 through 80 of the source program and compiling with the

/NUMBERS switch. Another way in which the user can change the line numbers is by means of the

LI N E statement. The statement

LINE n

causes the next line number to be set to n, which is a decimal integer. The line numbers that follow

are incremented by 1 until either another LINE statement is encountered or the program terminates.

Version SA ALGOL 18-7 May 1975

18.6 CROSS REFERENCE LISTING

The /CREF switch has been implemented, causing ALGOL to generate output for CREF. Output

takes the following formats:

Variables and Labels: each occurrence of a variable or label name is recorded, with a #
whenever a defining reference is made. In the case of labels the line reference
is to the line which causes code for the label to be generated, which may
follow the line where the label itself appears. No distinction is made amongst
different incarnations of a variable at various block levels.

Blocks: the messages "START OF BLOCK n" and "END OF BLOCK n" are suppressed in the
CREF listing. However, there is a separate CREF of blocks on the first page
following the program. As with labels, the line-numbers refer to those
causing code to be generated, not necessarily those on which BEGIN or END
appear in the source.

18.7 STACK ANALYSIS

The stack analysis takes two forms - if a program stops with an error, the stack is scanned to

give the names of the active procedures. Thus a typical error message now reads:

?RUN-TlME ERROR AT ADDRESS 000162

IN PROCEDURE OPENFILE
CALLED FROM PROCEDURE PQRSTUVWXYZ
CALLED FROM PR OCEDURE THISPROCEDUREISNEXTTOI NNERMOST
CALLED FROM PROCEDURE THISONEISNEARLYTHEOUTERMOST
CALLED FROM PROCEDURE THISISTHEOUTERMOSTPROCEDURE
CALLED FROM MAIN PROGRAM
FILE DSK:NOSUCH.FLE NOT AVAILABLE OR RENAME FAILURE ON CHANNEL I 1

The above type of analysis is automatic whenever an error is detected; the second type is in­

voked by a REEnter command after program execution, followed by typing P (for Profile). This

causes a list of all the procedures, labels and library procedures referenced in the program to

be printed, together with a count of the actual number of times each was referenced (or passed

through in the case of labels). As with the trace print, labels can be distinguished by a trailing

colon (:) and library procedures by a trailing asterisk (*), but different procedures with the same

name must be identified from the order in which they appear, which is the same as the order in

which they were loaded.

Note that in the special case of overlaid programs only the root segment is scanned.

Version 6 ALGOL 18-8 September 1 975

ACTION eH FOR HELP)? P

PR OF! LE PRI NT.

COUNT NAME

1 PQRSTUVWXYZ
1 THISPRROCEDUREISNEXTTOINNERMOST
1 THISONEISNEARLYTHEOUTERMOST
1 THISISTHEOUTERMOSTPROCEDURE
o READ*
1 I NPUT*
o OUTPUT*
1 OPENFILE*

18.8 TRACE

18.8.1 Dynamic Trace

Two types of Trace are available: dynamic and post-mortem.

The user who is at a terminal and wishes to see a full dynamic trace of his program should type

the following command sequence:

.LOAD TRTST
---- -----

ALGOL: TRTST
LINK: LOADING

EXIT

.REE

ALGOL DIAGNOSTIC SYSTEM

FACILITIES (H FOR HELP)? T

FACILITIES (H FOR HELP)? G

Version 6 ALGOL 18-9 September 1 975

This produces (at least) one line for each trace reference, as follows:

******5ECTION
***~6:
********PHASE
************WRITE* PHASE
************PRINT* 6
************WRITE* · BEGIN · ********PHAS E
~***********WRITE* END

******5ECTION
****57:
********PHAS E
************WRITE* PHASE
************PRINT* 7
************WRITE* · BEGI N · ********PAR FOR
********PHASE
************WRITE* END

Dynamic trace output always clears the terminal output buffer and begins a new line. The

current dynamic block level is represented by two asterisks for each level, printed along the

line. Note that a notional block surrounds the main program and each procedure. A maximum

of sixty asterisks are printed before the line is folded: folding is shown by a number in the first

two columns representing multiples of thirty dynamic block levels.

The name of the procedure or label appears at the end of the line of asterisks. As with the

profile, library procedures are distinguished by a trailing asterisk, and labels by a trailing

colon.

Procedures are traced at entry but not exit; however, a procedure exit can be inferred from the

block levels.

Note that in Dynamic Trace mode, ordinary TTY output may be interspersed amongst Trace

output (as in the example above).

18.8.2 Post-Mortem Trace

A post-mortem trace will be printed automatically if a batch job gives a run-time error. Under

timesharing, after typing out the location and type of error, and the stack analysis, the

diagnostic system ~ffers the user various options. Of these T (for Trace print), produces a trace

Version 6 ALGOL 18-10 September 1975

similar to the one described under Dynamic Trace above, but with spaces instead of asterisks to

represent block levels, and without, of course, any other TTY output. The post-mortem trace

entries are maintained in a circular buffer in the Heap. The default length of the buffer is 100

(decimal) but it can be altered by using the /TRACE switch to the compiler, with an appropriate

value. Tracing is the default option: users can compile their programs without trace information

by using the /PRODUCTION switch to the compiler. However, the Trace entry mechanism is

quite efficient, and users are urged not to exclude it, as this also has the effect of making the

stack analysis less useful. Library procedures are always traced.

18.9 PERFORMANCE ANALYSIS

Various features are provided which are designed to help users wishing to evaluate the perfor­

mance of their programs.

18.9.1 Heap Space

DECsystem-l0 ALGOL is very flexible in its use of memory: space for arrays, strings, I/O

buffers and so on is allocated in an area called the Heap, which lies between the program code

and the stack. The default initial Heap size is 521 (decimal) words: if a program needs more

Heap than is currently available the object-time system moves the stack up in memory to make

more room, obtaining more core from the Monitor as necessary (subject to over-riding constraints

such as the user's COREMAX)\

For most programs this provides a reasonable balance between core use and computation.

However, the stack shifting mechanism can be very expensive if it is used often and for small

expansions. The user can find out how the Heap is being used by typing REENTER, and then $

(for statistics) after the program has executed (or simply typing CONTINUE immediately after

the End of execution message). The produces output of the following format:

EXECUTION TIME:
ELAPSED TIME:
MAXIMUM HEAP SIZE: , # OF STACK SHIFTS:

Maximum # of used words in the heap table:

(The last figure is a measure of the fragmentation of the free space in the heap: it is only pro­

duced if the optional Heap Integrity Checker is present in the object-time system; i.e., when

assembly switch FTGETCHK is turned on.)

Version 6 ALGOL 18-11 September 1975

If the number of stack shifts is larger than, say, ten, an improvement in performance could be

expected from re-compiling the program with the /HEAP switch value set to the maximum heap

size given by the Statistics type-out.

18.9.2 Code Uti lization

By judicious placement of labels and subsequent printing of the program's profile, the frequency

with which a program executes particular sections of code can be monitored. The new library

procedure INFO can be used to obtain more detailed timing information.

Version 6 ALGOL 18-12 September 1975

I

CHAPTER 19

TECHNICAL NOTES

These notes concern the authors' particular interpretation of the "Revised Report on the Algorithmic

Language ALGOL-60" and its implementation.

a. At all times, strict left-to-right evaluation of statements is employed. Section
3.4.6 of the Revised Report has been construed by some experts to mean that
left-to-right evaluation of expressions is not required. However, there are un­
doubtedly many ALGOL-60 programs in existence that rely on this feature.

b. Section 4.3.5 of the Revised Report requires that a GOTO Statement with a
designational expression whi ch is a switch with a subscript out of range be
regarded as a dummy statement. Neither DECsystem-10 ALGOL nor any
other ALGOL-60 implementations, to the knowledge of the authors, follow
this rule if there is a side-effect involved in the evaluation of the subscript.

19-1 December 1971

ABS, 5-3

ALGOL-60, I-I, 6-1, 7-1

ALGOL-68, 1-1

AND, 5-4

ARCCOS, 17-1

ARCSIN, 17-1

ARCTAN, 17-1

Arithmetic Conditions, 5-5

Array Elements, 9-2

Arrays, 9-1

Arrays, OWN, 15-1

ASCII Constants, 4-3

Assignments, 1-2, 6-1

BACKSPACE, 16-11

BEGIN, 6-3,10-1

Block Structure, 10-1

BOO LEAN, 3-2

Boolean Constants, 4-2

Boolean Conversions, 5-5

Boolean Expressions, 5-4, 5-5

Boolean Operators, 5-4

Boolean Variables, 3-3

Brackets, 4-3, 9-1

BREAK OUTPUT, 16-6

Buffering, 16-3

Byte Manipulations, 17-3

Byte Processing, 16-6

Byte String Copying, 13-4

Byte Strings, 13-2

Byte Subscripting, 13-2

Channels, 16-3, 16-10

Channel Status, 16-11

Checking Array Subscripts, 18-2

Version 6 ALGOL

ALGOL INDEX

CHECKOFF, 18-2

CHECKON, 18-2

CLOSEFILE, 16-4

COMMENT, 2-4

Commentary, 2-4, 11-11

Compiler Commands, 18-1

Compiler Extensions, 1-2

Compiler Restrictions, 1-3

Compiler Switches, 18-2

Compound Statements, 6-3

Compound Symbols, 2-2

CONCAT, 13-4

Concatenate, 13-4

Conditional Expressions, 14-1

Conditional Statements, 7-2

Constants, 4-1, 4-2, 4-3, 5-2

Continuation from I/O errors, 16-3, 16-5

Controlling Listing of the Source Program, 18-7

Control Transfers, 7-1

COPY, 13-4

COS, 17-1

COSH, 17-1

CREF, 18-8

Cross-referencing, 18-8

Data, 16-8, 16-9

Data Transmission, 16-1

Debugging, 18-5

Declarations, 3-2

Default I/O, 16-10

DELETE, 13-5

Deleting Files, 16-5

Delimiter Word, 1-3

Delimiter Words, 1-2, 2-2

Designational Expressions, 14-3

Index-l September 1 975

Device Allocation, 16-1

Device modes, 16-2

Devices, 16-1

DIV, 5-1

DO, 8-1

Dummy Statement, 1 9-1

Dynamic Bounds, 10-3

Dynamic Trace, 18-9

Editing Characters, 16-7

ELSE, 7-2

END, 6-3, 10-1

End-Of-File, 16-11

ENDFILE, 16-11

ENTlER, 5-2

EQV, 5-4

EXP, 17-1

Exponents, 4-1,16-8

Expressions, 6-2

EXTERNAL, 11-10

FALSE, 4-2

'Fault Monitoring, 1-3, 18-5

Field Manipulations, 17-3

File Deletion, 16-5

Fi Ie Devices, 16-4

File Names, 16-4

File Protection, 16-4

FOR & WHILE Statements, 8-1, 8-2

Format Parameters, 1-3, 1-4, 11-1

Forward References, 1-3, 11-9

GFIELD, 17-3

GLOBAL, 10-2

Version 6 ALGOL

ALGOL INDEX (Cont)

GO, 2-3, 7-1

GO TO, 2-3, 7-1

Heap, 18-11, 18-12

Identifier, 1-3, 1-4, 3-1, 5-2

IF, 7-2

IMAX, 17-3

IMIN, 17-3

IMP, 5-4

INFO, 18-12

INPUT, 16-2

INT, 5-5, 5-6

Input Data, 16-8

Input/Output Channels, 16-3

INSYMBOL, 16-6

INTEGER, 3-2, 4-1

Integer Constants, 4-1

Integer Conversions, 5-5

Integer Remainder, 1-2

10CHAN, 16-11

I/O Channel Status, 16-11

Jensen's Device, 11-6

LABEL, 11-1

Label, 1-3, 7-1

LARCTAN, 17-1

LCOS, 17-1

LENGTH, 13-5

LEXP, 17-1

Library, 1-3, 17-1

Library Procedures, 13-3

LINE, 18-7

Index-2 September 1975

Line Numbers in Listings, 18-7

Linking Loader, 1-2, 18-4

Listing the Source Program, 18-7

LlSTOFF, 18-7

LISTON, 18-7

LLN, 17-1

LMIN, 17-3

LN, 17-1

Loading Procedures, 18-8

Local, 10-2

Logical I/O, 16-10

LONG REAL, 1-2, 3-2, 4-2

Long Real Constants, 4-2

LSIN, 17-1

LSQRT, 17-2

Mathematical Procedures, 17-1

Matrix, 9-1

Mode, 16-2

Name, 11-1

NEWLINE, 16-7

NEWSTRING,13-5

Newton-Rapheson, 11-4

NEXTSYMBOL, 16-6

NOT, 5-4

Numeric Constants, 4-1

Numeric Labels, 1-3

Numeric Procedures, 16-8

Object Time System, 17-1, 18-5

Octal Constants, 4-2

Octal I/O, 16-10

OPENFILE, 16-5

Operating Environment, 1-3

Version 6 ALGOL

ALGOL INDEX (Cont)

OR, 5-4

OUTPUT, 16-1

Output Data, 16-9

OUTSYMBOL, 16-6

OWN Arrays, 15-1

OWN Variables, 15-1

PAGE, 16-7

Parameter, 1-4, 11-1

Performance Analysis, 18-11, 18-12

Peripherals, 16-1

Post-mortem trace,

PRINT, 16-9, 16-10

PRINTOCTAL, 16-10

PROCEDURE, 1-4

Procedure Bodies, 11-3

Procedure Call Parameters, 11-2

Procedure Calls, 11-5

Procedure Headings, 11-3

Procedures, 11-1

Procedures, Advanced, 11-6

/PRODUCTION,

Profile, 18-8, 18-9

Profile Print, 18-8,18-9

Protection, 16-4

READ, 16-8

READOCT AL, 16-10

REAL, 3-2, 4-1

Real Constants, 4-1

Recursion, 11-7

REEnter command, 18-8, 18-11

RELEASE, 16-5

Relocatable Binary, 1-2

REM, 5-1

Index-3 September 1 975

ALGOL INDEX (Cont)

Rename, 16-5

Reserved Words, 2-3

Revised Report, 1 -1, 19-1

REWIND, 16-11

RMAX, 17-3

RMIN, 17-3

Run-time diagnostics, 18-5

Run-time error, 18-10

Scalar, 3-2

Scope, 10-2

Select, 16-3

SELECTINPUT, 16-4

SELECTOUTPUT, 16-4

Semicolon, 6-3

Separators, 2-1

Setting Line Numbers in Listings, 18-7

SFIELD, 17-3

Side-effect, 19-1

SIGN, 5-3

SIN, 17-1

Single-pass Compiler, 1-2

SINH, 17-1

SIZE, 13-4

SKIPSYMBOL, 16-6

SPACE, 16-7

Spacing, 2-4

SQRT, 17-1

Stack Analysis, 18-8, 18-9

Stack Shifts, 18-11

Statements, 6-1

Statistics, 18-11

STEP - UNTIL, 8-2

STRING, 3-3

String Comparisons, 13-3

Version 6 ALGOL

String Constants, 4-4

String Output, 16-6

String Procedures, 16-7

String Variables, 3-3

Strings, 1-2, 13-1, 13-2, 13-3, 13-4, 13-5,
16-6

Strings, Byte, 13-2, 13-5

Subscripting, Byte, 13-2

Switches, 12-1, 14-1

Symbol Procedures, 16-7

Symbols, 2-1

Symbols, Compound, 2-2

TAB, 16-7

TAN, 17-1

TANH, 17-1

Terminology, 1-3

TRANSFILE, 16-12

Trapping Errors, 18-5

TRAP procedure, 1 8-5

TRUE, 4-2

Type Conversion, 5-2

UNTIL, 8-2

VALUE, 11-1

WHILE, 1-2, 8-2, 8-3

While Element, 8-3

WRITE, 16-6

Index-4 September 1975

READER'S COMMENTS

DECsystem-10 ALGOL
Programmer's Reference Manual
DEC-10-LALMA-B-D

NOTE: This form is for document comments only. Problems
with software should be reported on a Software
Problem Repcrt (SPR) form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

o Assembly language programmer

o Higher-level language programmer

o Occasional programmer (experienced)

o User with little programming experience

o Student programmer

o Non-programmer interested in computer concepts and capabilities

Name Date ________________________ __

Organization __ _

Street __ _

City ___________________________ State _____________ Zip Code ____________ __

or
Country

If you require a written reply, please check here. 0

--Fold lIere--.

. -- Do Not Tear - Fold lIere and Staple --

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Software Communications
P. O. Box F
Maynard, Massachusetts 01754

FIRST CLASS

PERMIT NO. 33

MAYNARD. MASS.

	A001.tif
	A002.tif
	A003.tif
	A004.tif
	A005.tif
	A006.tif
	A007.tif
	A008.tif
	A009.tif
	A010.tif
	A011.tif
	A012.tif
	A013.tif
	A014.tif
	A015.tif
	A016.tif
	A017.tif
	A018.tif
	A019.tif
	A020.tif
	A021.tif
	A022.tif
	A023.tif
	A024.tif
	A025.tif
	A026.tif
	A027.tif
	A028.tif
	A029.tif
	A030.tif
	A031.tif
	A032.tif
	A033.tif
	A034.tif
	A035.tif
	A036.tif
	A037.tif
	A038.tif
	A039.tif
	A040.tif
	A041.tif
	A042.tif
	A043.tif
	A044.tif
	A045.tif
	A046.tif
	A047.tif
	A048.tif
	A049.tif
	A050.tif
	A051.tif
	A052.tif
	A053.tif
	A054.tif
	A055.tif
	A056.tif
	A057.tif
	A058.tif
	A059.tif
	A060.tif
	A061.tif
	A062.tif
	A063.tif
	A064.tif
	A065.tif
	A066.tif
	A067.tif
	A068.tif
	A069.tif
	A070.tif
	A071.tif
	A072.tif
	A073.tif
	A074.tif
	A075.tif
	A076.tif
	A077.tif
	A078.tif
	A079.tif
	A080.tif
	A081.tif
	A082.tif
	A083.tif
	A084.tif
	A085.tif
	A086.tif
	A087.tif
	A088.tif
	A089.tif
	A090.tif
	A091.tif
	A092.tif
	A093.tif
	A094.tif
	A095.tif
	A096.tif
	A097.tif
	A098.tif
	A099.tif
	A100.tif
	A101.tif
	A102.tif
	A103.tif
	A104.tif
	A105.tif
	A106.tif

