decsUsceno

BASIC LANGUAGE

REFERENCE CARD
(Version 17B)

Copyright © 1972 Digital Equipment Corp.

9/78 03 03

Abbreviated channel
specifier

Arithmetic operators

Channel specifier

Formula

Line number

List

Matrix

Number

Numeric formula

Numeric variable

Numeric vector

Relational
operators

CONVENTIONS

A channel specifier without the trailing comma or
colon.

The following symbols:

+ Addition, or positive number

- Subtraction, or negative number
L Multiplication

/ Division

t or ** Exponentiation

A numeric formula N specifying a BASIC input/
output channel. The formula is truncated to an
integer which must be between 1 and 9, inclusive.
For a sequential access file, the channel number is
represented as "N or "Nz, and for a random access
file, as :N, or :N:. If the statement or function
which contains the channel specifier is only appli-
cable to sequential access files or to random access
files, the leading 7 or : in the channel specifier
can usually be omitted since it is not necessary.

Any legal combination of constants, variables,
functions, and arithmetic operators.

One to five digits at the beginning of the line
which serve to identify the information on the line
as a statement.

A one-dimensional array.
A variable which names a list or table.

A positive or negative decimal quantity which is
significant to about 8 digits.

A formula having a numeric value. When an in-
teger is required, as in a subscript calculation, the
number represented by the formula is truncated to
the nearest integer.

A variable name composed of a single letter, or a
single letter followed by a single digit, which
names a numeric value or a collection of numeric
values.

A one dimensional array (list) containing numeric
values. It is named by a numeric variable.

The following six symbols:

Equal to

Less than

Less than or equal to
Greater than

Greater than or equal to
<> Not equal to

}I/V/\/\ 1]

Relational operators used in string context imply
alphabetical order.

String A sequence of characters each of which is a letter,
digit, space, or some character other than a line
terminator or carriage return.

String constant A string enclosed in double quotes.
String formula A formula having a string value.
String variable A single letter followed by a dollar sign, or a

single letter followed by a single digit and a dol-
lar sign, which represents a string or a collection
of strings.

String vector A one-dimensional array (list) containing string
values. It is named by a string variable.

Table A two-dimensional array (only numeric tables are

allowed in BASIC).

Variable A name used to refer to stored data. The name of
a numeric variable is either a single letter or a
single letter followed by a single digit. The name
of a string variable is similar to the name of a num-
eric variable, except that it has an appended dol-
lar sign. Examples: A, A4, A§, A4§.

When a statement or command accepts a device name, filename, and/or
extension, the following rules apply:

1) If the device is omitted, DSK: is assumed except as noted below

(*6).

2) If the filename is given but the extension is omitted, .BAS is
assumed.

3) If the filename is given and the extension consists only of a
period, the null extension is assumed.

4) If the filename is omitted, the extension must also be omitted.

5) If both the filename and extension are omitted, the current
filename and extension are used.

6) If the device is omitted and the specification is followed by

three asterisks, the library device BAS: is assumed.

In the statement descriptions that follow, words that are represented in
capital letters are part of the BASIC statement and must be typed by the
user in the same order as they appear in the description.

Square brackets ([1) have been used to show that the user is to substitute
his data for what is in the brackets. The square brackets are not typed
by the user; they have been used only to make the statement easier to
read. For example, the statement GO TO [line number] could be

typed as GO TO 50.

The braces ({ }) have been used to designate that either item inside the
braces may be used in the statement. For example, ON [formulal, GO
TO [line number]l and ON [formulal, THEN [line number] are equiva-
lent. The braces are not typed by the user.

The parentheses appearing in statements are required and must be typed
by the user.

BASIC Statements

CHAIN [string or string formulal, [numeric formulal

Stops execution of the currently running program, retrieves the
named program from the specified device, compiles the program,
and begins execution. The stringis the name of the program and
the string formula's value isthe name of the program. The program
name is in the form ''device:filename.ext''. The filename is re—
quired. The numeric formula is the line number in the chained
program at which execution is to begin. If the numeric formula is

omitted, the program is started at the beginning. Note that infor-
mation in core in the currently running program is completely erased.

Examples: 50 CHAIN MYPROG, 100

string formula numeric vector
CHANGE [or TO l: or

numeric vector string variable

Causes a string formula to be converted to a numeric vector or a
numeric vector fo be converted to characters and placed in a
location named by a string variable. In a string formula to numeric
vector conversion, the zero element of the vector is set to the num=-
ber of characters in the string. In a numeric vector to string vari-
able conversion, the number of characters which are to be in the
string must be given as the zero element of the numeric vector.

Examples: 40 CHANGE A$ TO A
70 CHANGE V TO A$

DATA [data, data, . . .]

Supplies constant data (numbers or alphanumeric strings) for READ
statements. This statement is required when one or more READ
statements are used.

Examples: 20 READ A1, A2, A3
70 DATA 54, -3, .25

DEF FNx (sequence of numeric variables) = [formulal

Defines a user=-specified function. The name of the function must
be three alphabetic characters, the first two of which are FN. The
formula must fit on one line unless the user is defining a multiple-
line function. In the latter case, the equals sign is omitted; the
definition appears on the following lines and is terminated with a
FNEND statement.

Examples: 30 DEF FNA(x) =EXP (xt2) +5
50 DEF FNP (x, y)
55 LET FNP =X
60 IF Y< =X THEN 70
65 LET FNP =Y
70 FNEND

DIM [variable]l (subscript), [variablel (subscript), . . .

Specifies the space to be allocated for a list or a table. If a list
or table is not specified in a DIM statement, the default dimension
for a list is 10 items and the default for a table is 10, 10 items.

Examples: 1 DIM A (5)
5DIM X (10, 20)
10 DIM A$ (5), X (10, 20)
END

Indicates the end of the program and must be the statement with the
highest line number. This statement is always required.

Example: 1000 END
FOR [numeric variable]l = [formula,] TO [formula,] {STEP\ [formula,l
1 2\ Ry 3

Specifies a loop and must be used with a NEXT statement. The
numeric variable is initially set equal to Formula] . Then, if the

numeric variable is less than formulay (for a positive or zero formu-
lag) or greater than formula, (for a negative formulas), the steps
%ﬁowing the FOR sfcfemen% are executed until the NEXT statement
is reached. The numeric variable is then incremented by formu|c3,
and control transfers back fo the beginning of the loop where the
test against formulay is repeated. When the numeric variable is
greater than or less than formulag, as appropriate, control is trans-
ferred to the statement following the NEXT statement. [f STEP

(or BY) [Formuqu] is omitted, the increment assumed is 1.

Examples: 20 FOR A =0 TO 100 STEP 2
25 PRINT SIN (A)
30 NEXT A
50 FOR X =N*7+ ZTO 206 BY 2.5
55 PRINT X
100 FOR C =-2TO 2
150 PRINT SQR (C)
200 NEXT C
250 NEXT X

GOSUB [line number]

Enters a subroutine at the statement specified by line number. The
subroutine is exited from by executing a RETURN statement. The
GOSUB statement can appear at any point in the main program
except within a multiple line DEF.

Examples: 45 GOSUB 100
100 REM A STATEMENT IN THE SUBROUTINE

GO TO [line numberl

Transfers control to, and continues execution at, the statement with
the specified line number , instead of executing the next sequential

statement following the GO TO statement.
Examples: 100 GO TO 20

IF [formulal [relational operator] [formulal, {THEN } [line number]
GO TO

Transfers to the statement with the specified line number if the
given relationship is true. If the relationship is not true, the next
line in sequential order is executed. The comma is optional.

Examples: 50 IF X =0, THEN 20
70 IF SIN (A)< =B THEN 20
100 IF N§ = M§, GO TO 999

INPUT [variable, variable, . . .1
Allows data to be entered from the user's terminal during the running
of the program. This statement causes a question mark to be output
to the user's terminal so that he can respond by typing in values for
the requested variables.

Examples: 10 INPUT A, B, C$

LET [variable]l = [formulal or LET [vcricb]e1 :vcriablez =...1=
[formulal

Assigns the value of the formula to the specified variable. The word
LET may be omitted. Multiple assignments are allowed.

Examples: 50 LETW=X=Y =3%B -7
80 A$ =""THIS IS A CHARACTER STRING"

MARGIN [numeric formulal

Allows the user to set a right margin for terminal output from 1 to
132 characters. The numeric formula specifies the right margin, in
the number of characters from the left margin. Without this state-
ment, the standard right margin is 72 characters. Since the Monitor
recognizes the right margin for output as 72 characters, a SET TTY
WIDTH n monitor command (n is the desired margin) must be given
before a MARGIN statement with an argument greater than 72 will
be effective. The right margin for input is always 142 characters
and is not affected by MARGIN statements.

Examples: 10 MARGIN 75

MAT mcfrixz = matrix]

Sets up matrix, to be the same as matrix; and the dimension given
to matrixp is that of matrixy. Sufficient space must be allocated
for matrix, before this statement is executed.

Examples: 30 MAT A =B

MAT mctrix3 = mcxfrix] + mofrix2

Adds matrix, to matrix, to obtain matrix,. Matrix, and mc:h'ix2
must have ' the same “dimensions, whic% will be given to
matrix,, and sufficient space must be allocated for mcfrix3 before
this stdtement is executed.

Example: 20 MAT C=A+B

MAT marri><3 = marrix.l —mafrixz

Subtracts matrix.,, from matrix; to obtain matrix,. Matrix, and
matrix, must have the same dimensions, which Ts given to matrix,.
Sufficient space must be allocated for matrixy before this statement
is executed.

Example: 70 MAT C =B -A

*

MAT rncnfrix3 = ma'rrix] rncfri><2

Multiplies matrix, by matrix,, to obtain matrix,. The number of
columns in matrix; must be equal to the numbet of rows in matrix,.
Sufficient space must be allocated for matrixy before this statement
is executed.

Example: 60 MAT C = A* B

MAT mufrix2 1

Multiplies each component of matrix, by the numeric formula K
in order to form the components of matrix,. The formula K must
be enclosed in parenthesis.

Example: 40 MAT B = (10)* A

= (K)* matrix

MAT matrix = CON
Sets up the specified matrix with all components equal to one.
Example: 30 MAT A =CON

MAT matrix = IDN
Sets up the specified matrix as an identity matrix.
Example: 20 MAT A = IDN

MAT INPUT vector

Inputs a vector. After this statement is executed, the NUM function
contains the number of items input.

Example: 40 MAT INPUT V
MAT mc1rrix2 =[NV (mafrix])

Inverts matrix, in order to obtain matrix,. Matrix; must be a
square matrix. After the execution of “this statement, the DET
function contains the determinant of matrix, .

1
Example: 30 MAT B = INV (A)

MAT PRINT mafrix], mcfrixz, & o @
Types the indicated matrices on the user's terminal.

Example: 20 MAT PRINT A, B
MAT READ mcfrix.l, mcfr?x2, & @ s

Reads the specified matrices from DATA statements. Matrices are
read in row-column order (i.e., A (1,1), A(1,2), . .., A(2,1),
A(2, 2, ...).

Example: 50 MAT READ A, B

MAT rnatrix2 =TRN (mc:rrix1)

Transposes mafrix, to obtain matrix, (i.e., if marrix.l has n rows and
m columns, mufrix2 will have m rows and n columns).

Example: 70 MAT B =TRN (A)
MAT matrix = ZER

Sets up the specified matrix with all components equal to zero.
Example: 30 MAT C = ZER

NEXT [nhumeric variablel

Indicates that the numeric variable is to be incremented by the
step size specified in the associated FOR statement and that the
end condition in the FOR statement is to be tested again. If the
end condition is not satisfied, control is transferred to the state-
ment following the FOR statement. The NEXT statement must be
used with a FOR statement and the numeric variable must be re-
presented in the same way as in the FOR statement.

Examples: 50 FOR B =0 TO 100 STEP 5
55 PRINT B, SQR (B)
60 NEXT B

NOPAGE

Changes the mode so that output to the terminal is no longer divided
into pages. Since this is the normal condition, the NOPAGE state-
ment is needed only when changing the mode from PAGE mode.
<PA>delimiters in PRINT statements work in either NOPAGE or
PAGE mode.

Example: 100 NOPAGE

NOQUOTE

Sets the terminal to NOQUOTE mode. This means that on output
strings are not enclosed in quotes by BASIC even if they contain
delimiters (blanks, commas, or tabs); a leading blank is not output
before strings and negative numbers; and a data item can be split
across one or more lines. This is the default mode and is used when
writing a text file as opposed to writing a data file.

Example: 50 NOQUOTE

ON [Formu|a],{GO TO\ [line numberll, [line numberz], & &
THEN

Transfers control to the statement with line number, if the integer
portion of the value of the formula is 1, with line number,, if the
value is 2, and so forth. If the integer portion is below 17or larger
than the number of line numbers listed, an error message is given.
The comma after the formula is optional. The ON statement can
contain any number of line numbers as long as they fit on one line.

Examples: 20 ON X2 GO TO 100, 200
50 ON X“ -3 THEN 60, 80, 99, 99
750N A +B+C GO TO 55, 80, 20, 101

PAGE [numeric formulal

Divides the terminal output into pages with the specified number of
lines. The numeric formula represents the page size. A PRINT
statement containing < PA> does not interfere with paging except
that it immediately starts a new page and sets the line count for the
terminal page back to zero.

Examples: 10 PAGE 50

PRINT [sequence of formulas and format control characters]

Types out results of a computation, types out a message in the pro-
gram, and/or types out a blank line (i.e., skips a line). The format
control characters are commas, semicolons, and <PA>, A comma is
a signal to move to the next print zone. A semicolon is a signal to
print the items in a close packed form. If a <PA> appears, the
item following is printed in the first print zone of the next page of

output. If a TAB (n) appears, the terminal's print head s moved to
column n, unless n is less than the current column. In this case,
the TAB is ignored.

Examples: 10 PRINT ""VALUE'', "'SQUARE ROOT"
15 PRINT
20 PRINT A,, B$ (6)

PRINT USING [line number or string formulal, [formulc],
formu|02, 5w

Types the formulas according to the format specified by the image.
An image is a string of characters describing the form of the output
and the plccemenf of the output on the output line. When a line
number is used, the image is on the line specified and is in the
form :string of ‘characters. These characters are not enclosed in
quotes. When a string formula is used, the image is the value of
the string formula.

Image formatting — strings

A string field begins with an apostrophe and may be continued with
as many L, R, C, or E characters as needed, but may not contain
a mixture of these characters. L, R, and C fields left adjust, right
adjust, and center the string in the field, respectively. The string
is truncated on the right if it is longer than the field. The E field
performs a left-adjust action and, in addition, extends the field if
the string overflows.

Image formatting = Numeric

A numeric field begins with two number signs (#), two dollar signs
($), or two asterisks (*). It may be continued with either the lead-
ing character or with number signs. If the field contains a decimal
point, the decimal point may be followed by four uparrows (1) or
circumflexes (A) to specify that the E format is desired. If the field
contains commas, all digits output on the left of the decimal point
are separated into groups of threes by commas. (The commas must
not appear between the first two number signs, dollar signs, or as—
terisks, or within the 4 uparrows or circumflexes in the field.) Nor-
mally, the sign of the number (a blank or a minus sign) is output just
before the first digit, and the field must reserve a place for it, as
well as for the digits and commas. However, if the field is followed
immediately by a minus sign, the sign is output at the end of the field.

A field beginning with number signs and not containing a trailing
minus sign need not reserve space for the sign of non-negative num-
bers. When a field begins with dollar signs, a dollar sign is placed
into the position immediately before the first digit. When the field
begins with asterisks, asterisks are output from the left to the posi-
tion of the first digit. Outputting negative numbers to dollar sign
or asterisk fields is legal only if the trailing minus sign is present.

Image formatting = printable characters

Characters that are not part of a field but appear in the image are
output as they appear.

Examples: In the following examples, the symbol A is used to indi-
cate a single blank space. The statements

10 : ATHE A'LLLL AOFA ' & IS o ###f |
20 PRINT USING 10, "'"'SQRT"Y, "BY, 5000
result in the following output:
A THE A SQRT aa OFA B A IS A 5,000,
The statements
90 A =96.8457
100 PRINT USING 120, A, A, A, A, -A
120 : A##A## A 5555, $$ A**** x
result in the following output:
AQ6A97.A N $96.851%%96,85~
The statements
1000 C =13.145
1100 A § =" # t 11 1an #H#E 11t 1ot
1200 PRING USING A$, C, C
result in the following output:
A1.3EH01A A A131.E-01 213

QUOTE

Sets the terminal to quote mode. This means that strings are en-
closed in quotes by BASIC if they contain delimiters (blanks, commas,
or tabs); a leading blank is output before strings and negative num=—
bers; and a data item cannot be longer than the maximum amount of
space available on a new line. This is used when writing a data file,
rather than a text file. Its function is to preserve the integrity of

the data items.

Example: 10 QUOTE

RANDOMIZE
Obtains a different set of random numbers for each run.

Examples: 5 RANDO MIZE
10 FOR A=1TO 10
15 PRINT RND
20 NEXT A

READ [variable, variable, . . .1

Assigns the data (numeric or string) in DATA statements to the
specified variables. This statement must be used with one or more
DATA statements.

Examples: 10 READ A, B, C
90 DATA 10, 32, 15

REM

Inserts comment lines in the program. The line number of the com=-
ment can be referred to by other BASIC statements (e.g., GO TO)
even though the comment line itself is not executed. Note that
short comments can be placed on the same line with a BASIC state—
ment (except an IMAGE statement) by placing an apostrophe after
the statement and following the apostrophe with the comment.

Examples: 50 REM THIS IS THE BEGINNING
51 REM OF THE SECOND PASS
60 A = SQRT (B) 'CALCULATE RESULT

RESTORE

Allows data in DATA statements to be read more than once. This
statement sets the data block pointers back to the beginning of the
collection of data values. RESTORE § restores only the string data
block pointer and RESTORE % restores only the numeric data block

pointer.

Examples: 10 FOR I =1 TO 10
12 READ X
25 NEXT 1~
72 RESTORE
74 READ X
76 FOR 1=1TO 10

RETURN

Indicates an exit line of a subroutine and directs BASIC to go to
the statement following the last GOSUB from which it transferred.

Example: 312 RETURN

STOP

Stops the program and is equivalent to GO TO n where n is the
line number of the END statement.

Example: 300 STOP

BASIC DATA FILE STATEMENTS

NOTE

Sequences of arguments are separated by
commas or semicolons. For example, in
the FILE statement each channel specifier =
filename argument pair is separated from
the next pair by a comma or semicolon.

FILE [sequence of [channel specifier] [filename argument]]

Assigns files to channels during program execution and establishes
file types. This allows the user to change the assignment during
the running of his program. The filename argument is a string
formula in the form filename.ext type where filename.ext is the
name of the file and type is 1) % for a random access numeric file,
2) $nnn for a random access string file where nnn is the number of
characters in the longest string, or 3) blank for a sequential access
file. The maximum value allowed for nnn is 132. If nnn is omitted
and the file presently exists, the value with which the file was
written is used. If nnn is omitted and the file does not exist, the
value 34 is assumed.

Examples: FILE #1:TEST, :6:DATAM,F4%61

FILES [sequence of filename arguments]

Assigns files to channels before program execution. Channels are
assigned consecutively to the arguments of all the FILES statements
in the program before execution begins. If an argument is omitted,
the channel for the missing argument is skipped. These statements
are not used again during program execution. The filename argu-—
ments are as described in the FILE statement, except thaf they must

be string constants without quotes.

Examples: FILES FIRST,, THIRD.DAT %

IF END [abbreviated channel specifier],) THEN { [line number]
GO TO

Determines if there is any data in the file between the current
position in the file and the end of the file. The comma preceding

THEN or GO TO is optional.
Examples: IF END #3, THEN 3000

INPUT [channel specifier] [sequence of variables]

Inputs data from the sequential or random access file on the speci-
fied channel. This statement should not be used with line numbered
sequential access files because if a line number is present, it is
read as data. (READ statements are for line numbered files.) For
a sequential access file, the variables can be string, numeric, or
both. For a random access file, the variables can be string or
numeric, but not both, since it is illegal to have a random access
file which contains mixed data types.

Examples: INPUT :2, A$, Q$(4)

MARGIN [sequence of [channel specifier] [numeric formulall
Sets the right output margins for the files on the specified channels
to be the value of the respective numeric formulas. This statement
is used only for sequential access files since there is no margin in
a random access file.

Examples: MARGIN #2, 132

MARGIN ALL [nhumeric formulal

Sets the right output margin for the sequential access files on chan-
nels T through 9 to be the value of the numeric formula. This is a
convenient way to set a margin for all sequential access files cur-
rently assigned to channels. [t has no effect on random access files.

Examples: MARGIN ALL 132

NOPAGE [sequence of abbreviated channel specifiers]

Indicates that output to the sequential access files on the specified
channels is not to be divided into pages. NOPAGE mode is as—
sumed unless changed with a PAGE statement. This statement has
no effect on random access files.

Examples: NOPAGE #1, 3, 2

NOPAGE ALL

Indicates that the output to the sequential access files on channels
1 through 9 is not to be divided into pages. This is a convenient
way in which to set all sequential access files assigned to channels
to NOPAGE mode. It has no effect on random access files.

Examples: NOPAGE ALL

NOQUOTE [sequence of abbreviated channel specifiers]

Places the sequential access files on the specified channels into
NOQUOTE mode. This means that strings are not enclosed in
quotes by BASIC even if they contain delimiters (blanks, tabs, or
commas); a leading blank is not output before strings and negative
numbers; and data items longer than the amount of space available
on a line are split across more than one line. This is the default
mode and the NOQUOTE statement is necessary only when chang-
ing from QUOTE to NOQUOTE mode.

Examples: NOQUOTE #6

NOQUOTE ALL

Places the sequential access files on channels 1 through 9 into
NOQUOTE mode. This is a convenient way to set all sequential
access files assigned to channels into noquote mode. It has no
effect on random access files.

Examples: NOQUOTE ALL

PAGE [sequence of [channel specifier] [numeric formulall

Sets the output page sizes for the sequential access files on the
specified channels to be the values of the numeric formulas.

Examples: PAGE #1:60, #4:15

PAGE ALL [numeric formulal

Sets the output page size for the sequential access files on channel
1 through 9 to be the value of the numeric formula. This is a con-
venient way to set the page size for all sequential access files as-
signed to channels. [t has no effect on random access files.

Examples: PAGE ALL 60

PRINT [channel specifier] [sequence of formulas and format control
characters]

Outputs data to the file on the specified channel; this statement
cannot be used with line numbered sequential access files since it
does not write a line number at the beginning of a new line.
(WRITE and WRITE USING statements are for line numbered files.)
For non-line-numbered sequential access files, the formulas can be
string, numeric, or both. For a random access file, the formulas
can be string or numeric, but not both, because a random access
file cannot contain mixed data types. Sequential access files
created by PRINT statements are normally read by INPUT state—
ments, since both the statements are for non=line=numbered files.
Refer to the PRINT statement in the first section for descriptions
of the format control characters.

Examples: PRINT #1, "THE RESULT IS"; SQRT (A) <PA>

PRINT [abbreviated channel specifier], USING [line number or
string formulal, [sequence of formulasl

PRINT USING [abbreviated channel specifier], [line number or
string formulal, [sequence of formulas]

Outputs data to a non=-line-numbered sequential access file on
the specified channel. (WRITE and WRITE USING statements
are for line-numbered files.) The data is output according to
the format specified by an image. When a line number is used,
the image is on the line specified. When a string formula is
used the image is the value of the string formula. With the first
form of the statement, the comma preceding the word USING is
optional. Refer to the PRINT USING statement in the previous
section for a discussion of the image.

Examples: PRINT #2, USING 1000, A, B$ + C$, TIM
PRINT USING 74, 1$(8), Fé%, N(0)

QUOTE [sequence of abbreviated channel specifiers]

Places the sequential access files on the specified channels into
QUOTE mode. This means that strings containing delimiters
(blanks, tabs, or commas) are enclosed in quotes by BASIC; a
leading blank is output before string and negative numbers; and
data items cannot be longer than the amount of space available
on a line. This statement is used when creating data files as
opposed to text files. Its function is to preserve the integrity
of the data items.

Examples: QUOTE #6, #8

QUOTE ALL

Places the sequential access files on channels 1 through 9 into
quote mode. This is a convenient way to set all sequential
access files assigned to channels into quote mode. It has no
effect on random access files.

Examples: QUOTE ALL

READ [channel specifier] [sequence of variables]

Inputs data from the file on the specified channel. This statement
should not be used with a non-line-numbered sequential access
file because it expects each line of data to begin with a line num-
ber, which it ignores. (The INPUT statement is for non-line-num-
bered files.) If a line number is not present, an error message is
given. For a sequential access file, the variables can be string,
numeric, or both. For a random access file, the variables can be
string or numeric, but not both, because a random access file can—
not contain mixed data types.

Examples: READ :4, W(8), L(1); L(2)

RESTORE [sequence of abbreviated channel specifiers]

Places a sequential access file in read mode or sets the record
pointer for a random access file to the beginning of the file. It

is only necessary to restore a sequential access file if it is presently
in write mode.

Examples: RESTORE #1, #3

SCRATCH [sequence of abbreviated channel specifiers]

SET

Erases a sequential access file and sets it in write mode, or erases
a random access file and sets the record pointer to the beginning
of the file.

Examples: SCRATCH #1, :4

[sequence of [channel specifier] [numeric formula]]

Moves the record pointer for random access files to the item in the
file that is specified by the numeric formula. Items are numbered
1.2, 87 5 © =i

Examples: SET 1:1, 4:115

WRITE [channel specifier] [sequence of formulas]

Outputs data to the file on the specified channel. This statement
should not be used with a non-line-numbered sequential access
file because it begins each line of output with a line number and a
tab. (PRINT and PRINT USING statements are for non=line-num-
bered sequential access files.) The first line is numbered 1000 and
subsequent lines are incremented by 10. For a sequential access
file, the formulas can be string, numeric, or both. For a random
access file, the formulas can be string or numeric, but not both,
because a random access file cannot contain mixed data types.
Files created by WRITE statements are normally read by READ
statements, since both of these statements are for line numbered
files.

Examples: WRITE #6, SQRT (A+B(Q+8)) t 2

WRITE [channel specifier], USING [line number or string formulal,
[sequence of formulas]

WRITE USING [channel specifier], [line number or string formulal,
[sequence of formulas]

Outputs data to a line numbered sequential access file on the
specified channel. (PRINT and PRINT USING statements are

for non-line-numberedsequential access files.) The data is out—
put according to the format specified by an image. When a line
number is used, the image is on the line specified. When a string
formula is used, the image is the value of the string formula. With
the first form of the statement, the comma following the channel
specifier is optional. Refer to the PRINT USING statement in
the previous section for a discussion of the image.

Examples: WRITE #2 USING 10, A1, A2, A3
WRITE USING #4, WA = ###17 A

BASIC Intrinsic Functions

ABS (numeric formula)

Finds the absolute value of the numeric formula.

ASC (one character or a 2- or 3-letter code)
Returns the equivalent ASCII decimal number for the specified
argument.

ATN (numeric formula)

Finds the arctangent of the numeric formula.

CHR$ (numeric formula)
Truncates the numeric formula to an integer, interprets the integer
as a decimal number, and converts it to its equivalent ASCII char-
acter.

CLOG (numeric formula)

Returns the logarithm to the base 10 of the numeric formula.

COS (numeric formula)

Finds the COSine of the numeric formula.

COT (numeric formula)
Finds the COTangent of the numeric formula.

DET

Equals the determinant of a matrix after the matrix is inverted. If
an attempt is made to invert a matrix whose determinant is zero, a
warning message is given, DET is set equal to zero, and execution
continues.

EXP (numeric formula)

Raises e to the power of the numeric formula.

INSTR (numeric formula, string formula] , string Formu|uz)

Searches within the string specified by string formula, for the sub-
string specified by string formula, and returns the position number
of the first character of the substfing. The numeric formula speci-
fies the character position in the string at which to begin the search
for the substring. If the numeric formula is omitted, the search
starts at the first character of the string.

INT (numeric formula)

Determines the greatest integer less than or equal to the numeric
formula argument.

LEFT$ (string formula, numeric formula)

Returns a substring of the specified string formula. This substring
begins at the leftmost character of the string formula and contains
the number of characters specified by the numeric formula.

LEN (string formula)

Returns the number of characters in the specified string formula.

LN (numeric formula)

Returns the logarithm to the base E of the numeric formula.

LOC (abbreviated channel specifier)

Returns the number of the current record in the random access file
on the specified channel. An error message is given if the file is
not a random access file.

LOF (abbreviated channel specifier)

Returns the number of the last record in the random access file on
the specified channel. An error message is given if the file is not
a random access file.

LOG (numeric formula)

Same as LN,

LOGIO
Same as CLOG.

LOGE
Same as LN,

MID$ (string formula, numeric Formulu], numeric formu!OQ)

Returns the substring of the string formula which starts at the char-
acter position specified by numeric formula; and contains the num-
ber of characters specified by numeric formula,. If numeric form=
ula, is omitted, the substring continues to the @nd of the string.

If numeric formulay is greater than the number of characters remain=
ing in the string, only the remaining characters are returned. This
is not considered an error condition.

NUM
Equals the number of components of the vector after a MAT INPUT
is executed.

RIGHT$ (string formula, numeric formula)

Returns a substring of the string formula. This substring ends at
the rightmost character of the string formula and contains the num-
ber of characters specified by the numeric formula.

RND
Generates random numbers between 0 and 1. The same set is gen—
erated repeatedly for purposes of program testing and debugging.
To generate a different set, use the RANDO MIZE statement.
SGN (numeric formula)
Assigns a value of 1 if the numeric formula is positive, O if the
numeric formula is zero, and =1 if the numeric formula is negative.
SIN (numeric formula)
Returns the SINE of the numeric formula.

SPACE$ (numeric formula)

Returns a string of spaces. The numeric formula specifies the num-
ber of spaces in the string.

SQR (numeric formula)

Returns the square root of the numeric formula.
SQRT (numeric formula)

Same as SQR.

STR$ (numeric formula)

Returns the string representation (as a number) of the numeric
formula.

TAN (numeric formula)
Returns the TANgent of the numeric formula.

TIM

Returns the elapsed CPU time in seconds since the start of program
execution.

VAL (string formula)

Returns the actual number that the string formula represents.

EDIT AND CONTROL COMMANDS

NOTE

Any command root can be typed out in
full or abbreviated to its first three let—
ters. Intermediate abbreviations are
not legal. For example, LISTNHRE-
VERSE and LISNHREV are equivalent.

BYE

Exits from BASIC and initiates the logout procedure from the
system.

CATALOG dev:

Lists on the terminal the filenames and extensions of the user's
files contained on the specified device. Examples of devices
are: disk (DSK:), DECtape (DTAn:), and the library device
(BAS: or ***),

COPY dev.I :fi|e.exf]>dev2 :File.ext2

Copies file.ext; to dev, and gives it the name file.ext,. If the
device is not a disk (DSK:) or DECtape (DTAn:), the Fi?encme and
extension can be omitted.

DELETE line number - line number
n m

Deletes the lines numbered n through m from the user's core. If
~line number__ is omitted, only one line (line number) is deleted.
Multiple arguments are allowed and are separated by commas (e.g.,
DELETE 10, 20-310, 471).

GOODBYE
Equivalent to BYE.

HELP

Types helpful information on the terminal to assist the user.

KEY
Sets BASIC to accept input from the keyboard of the user's terminal.
This mode is assumed unless changed with a TAPE command.
LENGTH

Prints the approximate number of characters in the source program.

LIST line numbern - line numberm

Lists with heading lines numbered n through m of the program. If
the second line number is omitted only one line (line number) is
listed with heading. Multiple arguments are allowed and ard
separated by commas. If no arguments are given, the entire pro-
gram is listed with heading.

LISTNH line numbern = line numberm
Same as LIST, but with the heading suppressed.

LISTREVERSE

Lists the program in reverse order with heading.

LISTNHREVERSE

Lists the program in reverse order without heading.

MONITOR

Exits to the monitor. The contents of core are not lost. Type

CONTINUE to return to BASIC.

NEW dev:file.ext

Erases the file currently in the user's core area. The new file
name is established as the name of the program currently in core.

OLD dev:file.ext

Replaces the file currently in the user's core area with the specified
program from the storage device. The specified file must be line=
numbered.

QUEUE file.ext/switches, file.ext/switches, . . .

Queves the specified disk files so that they will be output to the
line printer when it becomes available. The file name is required;
the extension is not. This command accepts the following optional
switches:

/n COPIES - Prints n copies of the file. The maximum number
of copies is 63. If this switch is omitted, one copy
is printed.

/LIMITn - Specifies the maximum number of line printer pages
that can be printed. [f this switch is omitted, 200
pages is the maximum.

/UNSAVE — Immediately removes the file from the user's disk
area. If this switch is omitted, the file is not re—
moved.

RENAME dev:file.ext

Changes the name of the program currently in the user's core area to
the specified filename.

REPLACE dev:file.ext

Replaces the specified file with the file currently in the user's core
area. If the device is disk (DSK:) or DECtape (DTAn:), the file be-
ing replaced must be on the device or an error message occurs.

RESEQUENCE n, line number, k

Changes the numbers of the lines from the specified line number to
the end of the file to n,n+tk, . . . The value of the specified line
number must not be greater than n. If the line number is omitted
(the commas must still be used as delimiters), the line numbers are
changed from the beginning of the file ton,n+k, . . . IfKis
omitted, the line numbers are changed ton, n+10,

RUN line number

Prints a heading, compiles the program currently in core and begins
execution at the specified line number. If the line number is omitted,
execution begins at the first line of the program.

RUNNH line number
Same as RUN but with the heading suppressed.

SAVE dev:file.ext

Saves the file currently in the user's core area on the specified de-
vice. An error message is given if an attempt is made to overwrite
an existing file of the same name.

SCRATCH
Deletes all program statements from the user's core area.
SYSTEM

Exits to the Monitor. The contents of core are lost.

TAPE

Sets BASIC to accept input from the paper-tape reader attached to
the user's terminal. If TAPE mode is set and the user wishes to input
from the terminal, he must terminate each line of input by depressing
the RETURN key followed by the LINEFEED key (normally only the
RETURN key is necessary). The KEY command is used to return
BASIC to the normal input from the keyboard mode until another
TAPE command is issued.

UNSAVE dev:file.ext, dev:file.ext, . . .

Deletes the specified files from the named devices. If no arguments
are specified, device DSK: and the name of the program currently in
core are assumed.

WEAVE dev:file.ext

Weaves the specified file into the program in core. Both the file and
the program in core must be line numbered. When a statement in core
has the same line as a statement in the file, it is replaced by that
statement from the file. Except when a line is replaced (because of
identical line numbers) all the lines originally in core and in the
specified file are in core at the end of execution of this command.

1E€ e

Stops a running program and returns to the BASIC command level. Any
files open in the program are closed.

t O

Suppresses typeout.

For additional information on the BASIC language, refer to the
DECsystem=10 BASIC Conversational Language Manual,

DEC-10-KJZE-D.

Order number DEC-10-XBRCA-A-D. For single copies of this card,
contact a DEC sales office. Multiple copies may be ordered in lots
of 25 from the Program Library, Digital Equipment Corporation,

146 Main Street, Maynard, Mass. 01754

Price $10 for 25
Copyright @ 1972 Digital Equipment Corp.

Created by

DECsystem-10 S oftware Documentation Group

	DEC-10-XBRCA-A-D DECsystem10 Basic Language Reference Card (Version 17B) 01.tif
	DEC-10-XBRCA-A-D DECsystem10 Basic Language Reference Card (Version 17B) 02.tif
	DEC-10-XBRCA-A-D DECsystem10 Basic Language Reference Card (Version 17B) 03.tif
	DEC-10-XBRCA-A-D DECsystem10 Basic Language Reference Card (Version 17B) 04.tif
	DEC-10-XBRCA-A-D DECsystem10 Basic Language Reference Card (Version 17B) 05.tif
	DEC-10-XBRCA-A-D DECsystem10 Basic Language Reference Card (Version 17B) 06.tif
	DEC-10-XBRCA-A-D DECsystem10 Basic Language Reference Card (Version 17B) 07.tif
	DEC-10-XBRCA-A-D DECsystem10 Basic Language Reference Card (Version 17B) 08.tif
	DEC-10-XBRCA-A-D DECsystem10 Basic Language Reference Card (Version 17B) 09.tif
	DEC-10-XBRCA-A-D DECsystem10 Basic Language Reference Card (Version 17B) 10.tif
	DEC-10-XBRCA-A-D DECsystem10 Basic Language Reference Card (Version 17B) 11.tif
	DEC-10-XBRCA-A-D DECsystem10 Basic Language Reference Card (Version 17B) 12.tif
	DEC-10-XBRCA-A-D DECsystem10 Basic Language Reference Card (Version 17B) 13.tif
	DEC-10-XBRCA-A-D DECsystem10 Basic Language Reference Card (Version 17B) 14.tif
	DEC-10-XBRCA-A-D DECsystem10 Basic Language Reference Card (Version 17B) 15.tif
	DEC-10-XBRCA-A-D DECsystem10 Basic Language Reference Card (Version 17B) 16.tif
	DEC-10-XBRCA-A-D DECsystem10 Basic Language Reference Card (Version 17B) 17.tif
	DEC-10-XBRCA-A-D DECsystem10 Basic Language Reference Card (Version 17B) 18.tif
	DEC-10-XBRCA-A-D DECsystem10 Basic Language Reference Card (Version 17B) 19.tif
	DEC-10-XBRCA-A-D DECsystem10 Basic Language Reference Card (Version 17B) 20.tif

