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FOREWORD 

The PDP-II Floating-Point Processor is an optional arithmetic processor used with the PDP-l 1/45. This 

processor eliminates the necessity of writing complex software routines to implement arithmetic opera­

tions. This manual is divided into the following seven chapters and two appendices: 

Chapter 1 is both a system description and a physical description of the FPll. 

Chapter 2 is a description of the PDP-II /45 and FP 11 interface. 

Chapter 3 is a description of the data and instruction formats and describes the FPll instruction 

set. 

Chapter 4 is a description of the control ROM used to microprogram the FPll. A description of 

the FPll flow diagrams is also included in this chapter. 

Chapter 5 is a conceptual description of the add, subtract, multiply and divide algorithms. 

Chapter 6 is a detailed description of the FP 11 logic diagrams. 

Chapter 7 provides maintenance information on the Maintenance Module, 11/45 console, 

FP 11 maintenance instructions, and diagnostic programming. 

Appendix A is a brief description of the integrated circuits in the FPll. 

Appendix B is a'signal glossary of the FPll. 

The following list of documents supplement the information contained in this manual. 

PDP-1 1/45 Maintenance Manual 

KB11 Central Processor Maintenance Manual 

PDP-11/45 Processor Handbook 

PDP-11/45 Unibus Interface Manual (2nd edition) 

TTL Integrated Circuits Catalog from Texas Instruments 

TTL Catalog Supplement from Texas Instruments 

MSI/TTL Integrated Circuits from Texas Instruments 

INTEL LSI Product Guide 

The Integrated Circuits Catalog for Design Engineers 

DEC-II-H45A-D 

DEC-II-HKBA-D 

DEC-ll-HIAB-D 

CC-20I-R 

Catalog Supplement CC-30I 

Bulletin CB-125 
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1.1 GENERAL 

CHAPTER 1 
INTRODUCTION 

The FPll Floating-Point Processor is a hardware option used with the PDP-l 1/45 Central Processor. The FPll 

enables the PDP-II Central Processor to perform arithmetic and logic operations using floating-point arithmetic. 

The prime advantage is increased speed without the necessity of writing complex floating-point software routines. 

The FPll has single- and double-precision floating-point capability. Prior to describing the FPll Floating-Point 

Unit, several fundamentals of floating-point arithmetic are presented. 

1.2 FLOATING-POINT ARITHMETIC 

Floating-point representation of a binary number consists of two parts, an exponent and a mantissa. The mantissa 

is a fraction in sign and magnitude format with the binary point positioned between the sign bit and the most sig­

nificant bit. If the mantissa is normalized, all leading Os are eliminated from the binary representation; the most 

significant bit is thus a logical 1. Leading Os are removed by shifting the mantissa left; however, each left shift of 

the mantissa must be followed by a decrement of the exponent value to maintain the true value of the number. 

The exponent value represents the power of 2 by which the mantissa is multiplied to obtain the value to be used. 

Figure 1-1 shows an unnormalized number in floating-point notation and then the same number after it has been 

normalized. 

EXPONENT SIGN MANTISSA 

UNNORMALIZEO 00 100 011 I Q. 000 000 111 111 001 I 

SIGN 

NORMALIZED 00 011 101 I Q. 111 111 001 000 000 I 

DECREASE EXPONENT BY SIX LEFT SHIFT MANTISSA SIX PLACES 

11-0804 

Figure 1-1 Floating-Point Representation 

1.2.1 Floating-Point Addition and Subtraction 

For floating-point addition or subtraction operations, the exponents must be aligned or equal. If they are not 

,aligned, the mantissa with the smaller exponent is shifted right until they are. Each shift to the right is 
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accompanied by an incrementing of the exponent value. When the exponents are aligned or equal, the mantissa 

can be added or subtracted, whichever the case may be. The exponent value indicates the number of places the 

binary point is to be moved to obtain the actual representation of the number. 

In the example below, the number 710 is added to the number 4010 , using floating-point representation. Note 
that the exponents are first aligned and then the mantissas are added; the exponent value dictates the finalloca­
tion of the binary point. 

O. 101 000 000 000 000 x26 = 508 = 4010 

O. 111 000 000 000 000 x23 = 78 = 710 

a. To align exponents, shift the mantissa with the smaller exponent three places to the right and in­
crement the exponent by 3. 

O. 101 000 000 000 000 x26 = 508 = 4010 

O .. 000 111 000 000 000 x26 = 78 =.710 

O. 101 111 000 000 000 x26 =578 =4710 

b. Move the binary point six places to the right. 

5 7 .......-. .......-. 
O. 101 111 .000 
\,--_~I 

000 000 

1.2.2 Floatirig-Point Multiplication and Division 

In floating-point multiplication, the mantissas are multiplied and the exponents are added. For floating-point 
division, the mantissas are divided and the exponents are subtracted. 

There is no requirement to align the binary point in the floating-point multiplication or division. 

In the following example, the number 710 is multiplied by' the number 510 ; An eight-bit register is assumed for 
simplicity. 

0.1 110 000 x 23 = 78 = 710 

x 0.1 010 000x23 =58 =5 10 

00000000 

1110000 

o 
1110000 

.lOOOll00000000x26 

a. Move the binary point six places to the right. 

. 100011.00000000 = 438 = 3510 
• • 

1.3 FWATING-POINT FEATURES 

The Floating-Point Processor is an integral part of the central processor. It uses the same memory management 

facilities provided by the Memory Segmentation option and similar addressing modes. Floating-point instructions 

can reference any core location, the CPU general registers, and any of the floating-point accumulators discussed 

in this chapter. Some of the notable features of the FP11 Floating-Point Unit are listed as follows: 
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• Performs arithmetic operations on 32- or 64-bit floating-point numbers. 

• Includes special instructions to optimize input/output routines and mathematical subroutines. 

• Utilizes microprogramming techniques for reduced cost. 

• Compatible with existing PDP-ll address modes. 

• Overlap processing, i.e., CPU and FPll can run simultaneously. 

• Allow execution of in-line code, i.e., CPU and floating-point instructions can be interspersed as desired. 

• Employs multiple accumulators for ease of data handling. 

• Is capable of converting 16- or 32-bit integers to 32- or 64-bit floating-point numbers during the load 
class of instructions, if desired. 

• Is capable of converting 32- or 64-bit floating-point numbers to 16- or 32-bit integers during the Store 
class of instructions, if desired. 

• Is capable of converting single-precision floating point to double-precision floating point and vice versa 
during the Store class of instructions, if desired. 

• Average single-precision multiply time is 6 J.ls. 

• Average double-precision multiply time is 9.5 J.ls. 

• Average single-precision divide time is 7.5 J.ls. 

• Average double-precision divide time is 12.5 J.ls. 

• Contains floating-point condition codes that can be copied into the CPU status register to provide the 
CPU with the capability of branching on results of floating-point operations. 

• Contains built-in maintenance instructions for ease of maintenance. 

• Hardware provides for flexible handling of error conditions. 

1.4 SIMPLIFIED BLOCK DIAGRAM DESCRIPTION 

Figure 1-2 shows a simplified block diagram of the Floating Point Processor. The major elements of the FPll 

are the exponent calculation logic, the accumulators, and the fraction calculation logic. 

The exponent calculation logic connects to a 16-bit wide data path that processes exponent or data information; 

the fraction calculation logic consists of a 60-bit wide data path that processes the fractional part of the operands. 

The'fraction calculation logic sends or receives data to or from the 32-bit scratchpad accumulator. 

The accumulators (ACs) are general-purpose read/write scratchpad memories with nondestructive readout. Accu­

mulators 5 through 0 are used for storage of general-purpose data and for register~to-register transfers. Accumu­

lator 6 is used as internal storage and is not accessible by the programmer. 

Accumulator 7 is used for internal temporary storage ofthe following status information: 

1. FEC Floating Exception Code - a number that identifies the cause of the interrupt. 

2. FEA Floating Exception Address - the address of the instruction that caused an error. 

Accumulator 7 is also used for temporary storage of the address of the current instruction, the program status 

(FPS), and the exception code. 
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DATA OR EXPONENT FRACTION 
DATA 
OUT (32 BITS) (16 BITS) 

SCRATCH PAD 
ACCUMULATORS 

ACC 0-5- GENERAL PURPOSE 
REGISTERS ACCES-

EXPONENT SIBLE TO PRO- FRACTION 

CALCULATION GRAMMER CALCULATION 

LOGIC ACC 6 -INTERNAL TEMPO- LOGIC 
RARY STORAGE-

(16 BITS) NOT ACCESS I BLE (60 BITS) 
TO PROGRAMMER 

ACC 7 -INTERNAL STORAGE 
OF STATUS NOT 
ACCESSIBLE TO 
PROGRAMMER 
EXCEPT VIA STORE 
STATUS INSTRUC-
TION 

DATA OR EXPONENT FRACTION 

(16 BITS) (32 BITS) 

DATA IN 
11-0809 

(16 BITS) 

Figure 1-2 FPll Simplified Block Diagram 

The ACs are interpreted as 32- or 64-bits long depending on the data formats (refer to Chapter 3). For a single­

precision floating-point format, a 32-bit AC is specified (the left-most 32 bits as shown in Figure 1-3). For 

double-precision floating-point format., a 64-bit AC is specified. The ACs are accessible in 32-bit words. The de­

signated AC and the length of the word contained therein is specified as follows: 

AC 5 [3:2] AC 3 [3:2] [1 :0] 

The number following the AC designates one of 8 accumulators, and each number in the bracket denotes a l6-bit 

word. In the first example, AC 5 contains a 32-bit word; in the second case, AC 3 contains a 64-bit word [3:2] 

[1 :0]. The [3] represents the most significant 16 bits, and the [0] represents the least-significant 16 bits. This 

notation is carried throughout this manual and also in the associated flow diagrams. 

1.5 FPlljMEMORY WORD RELATIONSIDPS 

Words stored in memory are either integers or floating-point numbers. Integers are stored in- 2's comph:m~.pt for­

mat and are converted to sign and magnitude format when transferred to the FPll. Floating-point numbers are 

already in sign and magnitude format and are transferred directly to the FPll without being converted. When 

the FPll finishes processing the numbers, they can be transferred back to memory as two's complement integers 

or sign and magnitude floating-point numbers. Floating~point numbers are normalized before being transferred 

back to memory. 

All positive numbers are represented the same in two's complement or in sign and magnitude format. An exam­

ple is the positive number 2 shown below. 

+2 0 0 0 0 1 0 
o 0 0 0 1 0 
-t '---....---J 

sign ---.J magnitude 

two's complement 

sign and magnitude 
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For a negative 2, the number is represented as shown below. 

011110 

1 000 1 0 

two's complement of - 2 

sign and magnitude 

. '~d Slgn -.J magnltu e 

( 

( 

o 

2 

3 

ACCUMULATORS 

4 

5 

6 

7 

1.5.1 FPll Hidden Bit 

ACO [3] 

ACI [3] 

AC2 [3 ] 

AC3 [3] 

AC4 [3] 

AC5 [3] 

AC6 [3] 

AC7 [3] 

[3] 
16 BITS 

32 BIT 
AC 
A 

ACO [2] 

ACI [2] 

AC2 [2 ] 

AC3 [2 ] 

AC4 [2 ] 

AC5 [2 ] 

AC6 [2] 

AC7. [2] 

[ 2] 
16 BITS 

64 BIT 
AC 
A 

, 
ACO [1] 

ACI [1] 

AC2 [1] 

AC3 [1] 

AC4 [1] 

AC5 [1 ] 

AC6 [ 1 ] 

.AC7 [ 1 ] 

[ 1 ] 
16 BITS 

Figure 1-3 Accumulator Configuration 

NOTE 
AC 7 [1] contains address of instruction 
AC 7 [0] contains FPS (temporary storage of FEC) 

ACO [0] 

ACI [0] 

AC2 [0] 

AC3 [0] 

AC4 [0] 

AC5 [0] 

AC6 [0] 

AC7 [0] 

[01 
16 BITS 

, 

11-0805 

All numbers (fractions) transferred to the fraction calculation logic are transferred as positive fractions of the 

form 0.1 xxxx. Since the most significant bit to the right of the binary point is always aI, this bit is referred 

to as the "hidden bit" and is dropped when the word is stored in memory. This provides another bit of signifi­

cance in the FP 11. Words transferred from memory to the FP II are represented in the FP 11 by a sign bit, eight 

bits of exponent and 23 bits (single-precision) or 55 bits (double-precision) of fraction. For example, consider 

the number minus 1/2. The sign is I, the exponent is 200 which is equal to 2° power, and the fraction is 

.10 ..... 

Figure 1-4 shows the word as it appears in memory and how it appears when stored internally in the fP II. 
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MEMORY 

WORD 1 WORD 2 

o 

t 
SIGN 

FP 11 

Figure 1-4 FP II 

Note that even with a negative number as shown above the fraction is treated as a positive normalized fraction 

(bit 24 = 0, bit 23 = I). Bits 24 and 23 are dropped when the floating-point word is reassembled and stored back 

in memory. 

1.6 FPII-B PHYSICAL DESCRIPTION (PDP-II /45) 

The FPII-B Floating-Point Processor is used with the PDP-I 1/45 CPU. The FPII-B consists of four multi-layer 

hex modules that are plugged into the pre-wired KB IIA Main Frame. The four modules plug into slots 2, 3, 4, 

and 5 and take-up rows A through F (see Figure 1-5). The chart below shows the slots associated with each 

module. 

Module Slot Row 

M8113 - FXP 5 A through F 
M8112 - FRM 4 A through F 
M8115 - FRL 3 A through F 
M8114 - FRH 2 A through F 

A +5V regulator card is included and is plugged into the upper power supply in slot A. The -15V needed for the 

time state generator on the FRH module is supplied by regulator E, which is included as part of the Central 

Processor Regulator Set. 

Slot El on the KBIIA Main Frame is reserved for the Floating-Point Maintenance Module (refer to Chapter 7 for 

additional information on this module). The +8 Vdc required for this module is obtained from the upper bulk 

supply (PS H742A). 
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CPU I FPP 
I I 

KWll LINE 
UNIBUS A I1ERM MAINT MAINT CLOCK I 

N FRH (MS114) J~ 

W FRL (MSI15) 
FLOATING POINT 

oj::. FRM (MSI12) 

VI .. FXP (MSI13) ,It 

0\ DAP (MSI00) 
'" 

-..J GRA (MSI0l) 

00 IRC (MSI02) 

\0 RAC (MSI03) 

..... 
0 PDR (MS 1 04) CENTRAL 
..... ..... TMC (MSI05) PROCESSOR 

..... 
N UBC (MS106) 

..... 
w SSR (MSI0S) 

/- ..... 
'( 

oj::. 

'- ..... 
VI 

SAP (MSI 07) or SJB (MSI16) 

TIG (MS109) It PHK ( ) 

..... 
0\ MEM CTRL (MSII0) H. 

..... 
-..J MTRX (Bipolar=MSlll & MOS=G401) 
..... 
00 MTRX (Bipolar=MSlll & MOS=G40l) 
..... 
\0 MTRX (Bipolar=MSlll & MOS=G40l) 

N 
0 MTRX (Bipolar=MSlll & MOS=G401) 

SEMICONDUCTOR 
N MEM CTRL (MSII 0) MEMORY 

N 
N MTRX (Bipolar=MSlll & MOS=G40l) 

N 
W MTRX (Bipolar=MSl1 1 & MOS=G401) 

N 
oj::. MTRX (Bipolar=MSlll & MOS=G401) 

N 
,~;, 

VI MTRX (Bipolar=MSlll & MOS=G401) , 
-

N 
0\ DEVICE 1 UNI A CABLE 

N 
-..J DEVICE 2 UNIB CABLE 

N 
00 DEVICE 3 UNIBUS B TERM 

t 
tI.l 
0' 
~ 

( Z 
~ Figure 1-5 FPII-B Module Layout 
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2.1 INTRODUCnON 

CHAPTER 2 
INTERFACE 

The Floating Point Processor connects directly to the 11/45 Central Processor (see Figure 2-1) and not to the 

Unibus. This is to allow for proper operation of the segmentation option and to increase the speed of instruc­

tion execution. 

The 11/45 CPU fetches instructions from memory and decodes them. If the instruction contains a 178 op code, 

it is a floating-point instruction and the CPU branches to the CPU ROM states associated with floating-point in­

structions. At this point, the CPU/FPII-B interaction is initiated (refer to Paragraph 2.3). 

CONTROL 

LINES 

11/45 FPll-B 
CENTRAL FLOATING 

PROCESSOR POINT UNIT 

DATA LINES 

11/45 INTERFACE 

Figure 2-1 11/45 Simplified Interface Diagram 

2.2 INTERFACE SIGNALS 

The signals that interface the 11/45 CPU to the FPII are described below (see Figure 2-2). 

Signal 

BAMX (00: IS) H 

BR (00: 15) B L 

BUS INTD (00: 15) L 

FPACKNL 

Description 

Sixteen lines from the CPU that contain the address of the instruction. 

Sixteen data lines that provide transfer of data from the CPU to FP II. 

Sixteen lines used to send data from the FPII to the CPU. These lines are also 
used by the segmentation option. 

A signal from the CPU indicating that an FP TRAP was received from the FPll. 
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Signal 

INTRCLRL 

FP READ L 

FPATTNL 

INIT L 

FP EXC TRAP L 

AD1,AD2H 

FCLDENL 

FPREGWRH 

FPADDRINC L 

FP SYNC L 

FP REQ (1) L 

FPCl H 

FPPRESENT L 

EALU (00: 15) 

CRAR (00:07) 

Description 

A signal from the 11/45 that indicates that the 11/45 CPU is in its interrupt 
service routine. 

A signal from the 11/45 that indicates that the BUS INTD lines can be used by 
the FP11. 

A signal from the CPU to the FP11 that accompanies information sent to or 
from the FP11. 

An initialize pulse used to reset major registers in the FP. 

This signal, when low, causes the CPU to trap to vector address 2448 (Trap 
Vector). 

Represent constants that are added to or subtracted from the general registers 
in the CPU for address calculation; The constants are: 

AD2 AD1 

0 0 constant of 8 
0 1 constant of 4 
I 0 constant of 2 
1 constant of 0 

This signal causes the FPl1 floating-point condition codes to be written into the 
CPU condition codes. 

When high, this signal causes BUS INTD data to be loaded into general registers 
in the CPU. 

A signal to the CPU indicating that the address is to be incremented by 2. 

A signal from the FP11 in response to FP ATTN indicating that the data has 
been accepted or that the FP 11 is ready to send or receive data. 

A signal used in conjunction with FP SYNC to indicate that more data words 
are desired. 

Indicates a DATO operation. When this signal goes low, it indicates a DATI 
operation. 

Indicates the FP11 is present. 

Sixteen lines to console that allow the contents of EALU to be displayed (used 
with 11/45 CPU). 

Eight lines to console that allow the next ROM address to be displayed. 
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l1i45 
CENTRAL 

PROCESSOR 
UNIT 
(CPU) 

11/45~ 
ROM 

ADDRESS 
TO 

CONSOLE 
DISPLAY 

~ 11/45 
CONSOLE 

~ 

2.3 11/45 INTERFACE 

DAPB,C,O BAMX<15:00>H 

PDRB BRA<15:00>L 

BUS INTD<15:00>L 

TMCB FP ACKN L FPll 
FLOATING 

TMCE INTR CLR l (11/45 ONLY) POINT 
UNIT 

TMCF FP READ L (11/45 ONLY) 

UBCD FP ATTN L 

UBCE IN1T l 

FRHH FP EXC TRAP L 

FXPE AD 1 H 

FXPE AD 2 H 

FXPE FCLD EN l 

FRMF FP REG WR H 

FRMJ FP ADDR INC L 

FRMJ FP SYNC l 

FRMJ FP REQ (Ill 

FRMJ FPC1 H 

FRMJ FP PRESENT l (11/45 ONLY) 

FXPA,B EALU <15:00>(TO 11/45 CONSOLE ONLY) 

FRMA,B CRAR<07:00> (TO 11/45 CONSOLE ONLY) 

~ 
NOTE: 

For 11/20 CPU, an Interface Unit is inserted between the CPU and FPl1 to connect 
11/20 Unibus signals to FP11 Compatible signals.The signals shown above are 
used with the 11/20 also, except as noted. 

Figure 2-2 CPU/FPP Interface Diagram 
11-0807 

Figure 2-3 shows the interaction involved between the 11/45 CPU and the FPII-B for a floating-point Load in-

. struction. The sequence of events for other instructions can be found in the FPll flow diagrams. The CPU puts 

the instruction on the BRA lines accompanied by FP ATTN. The CPU also decrements the PC and puts the 

decremented PC on the BAMX lines (see Figure 2-2). It is necessary to transfer the contents of the PC to the 

FPII-B because the CPU and FPll can execute instructions simultaneously. The CPU may jump or trap to a 

new location while the FPll instruction is being executed, and if a floating-point error occurs the programmer 

can then determine the address of the FP 11 instruction that caused the error condition. 

After the instruction and address are on the lines, the CPU goes into a wait loop, monitoring break requests and 

also waiting for FP SYNC from the FPll. If a break request occurs, the CPU branches to its break service rou­

tine and issues an Abort signal (lNTR CLR) to the FPll. This signal aborts the floating-point instruction in 

process. On return from the break service routine, the CPU fetches the next instruction; however, this in~truc­

tion is the same instruction that was aborted since the PC was previously decremented. 

If FP SYNC occurs before a break request, the CPU loads the status from the FPll into the CPU (see Figure 2-3). 

If FCLD EN is low, the floating-condition codes (BR (3:07») from the FPll are inserted in the status word; 
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11/45 CPU FPll-B 

CPU fetches instruction and issues Floating-point status loaded intoFPII-B 
FP ATTN ----------------4.~Instruction and Address loaded into FPII-B 
(CPU sits in wait loop FP Il-B sets FP REQ 
and monitors break requests) 

CPU waits for FP SYNC FP Il-B sends FP SYNC 

t ~ t· 
CPU loads floating-point ~ . FP Il-B waits for FP ATTN 
status into BR register in CPU 

BR <03:00> loaded into CC (conditioll 

codes) if FCLD EN is low from 

FPII-B 

CPU performs address calculation of 

the data using constants AD I and AD2 

if addressing modes MI, M2, or M4 

are specified 

CPU issues FP ATTN • FPII-B issues FP SYNC 
and waits for FP SYNC . ./ t 

t ~. FPll-B waits for FP ATTN 
CPU load~ first data word into I 
BR register in CPU and issues + 
FP ATTN t ~ Contents of BR loaded into FP Il-B 

CPU waits for FP SYNC t / 

FPII-B issues FP SYNC 

• . . FPII-B waits forFP ATTN 
CPU loads second data word into . ! 
BR regist~r in CPU and issues 

FP ATTN t • Contents of BR loaded into FPII-B 

FP Il-B clears FP REQ and issues FP SYNC 

CPU w,i'''", FP SYNC / 

Because F/SYNC is sent and FP REQ Because the FPII-B has the required number of 
is cleared, the CPU fetches next instruction 

(required operands have been trans-

ferred to FPII-B). 

operands, it executes the specified operation 

and, when completed, goes to Ready. 

Figure 2-3 Sequence of Events for Load Instruction 

otherwise, the word is unmodified. In addition, the CPU starts to calculate the address of the data. If addressing 

modes MI, M2, or M4 are specified, the address is calculated using constants ADI and AD2. If another mode is 

specified, the address is calculated like any other destination address. On completion of the address calculation, 

th~ CPU issues FP ATTN to the FPII, and the FPII responds with FP SYNC. 
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( On receipt of FP SYNC from the FP 11, the CPU loads the first data word into the BR register, raises FP ATTN, 

and waits for FP SYNC. The data word is loaded in the FPll-B, and the FPll-B raises FP SYNC, acknowledges 

receipt of this word, and awaits the next data word accompanied by FP ATTN. 

The CPU loads the second data word into the BR register and raises FP ATTN. This word is loaded in the FPll-B 
and the FP ll-B raises FP SYNC; however, because this is the last data word desired (single-precision floating-point 

format requires two data words), FP REQ is cleared. When the CPU receives FP SYNC with FP REQ cleared, it 
fetches the next instruction. While the CPU is fetching the instruction, the FPll-B proceeds to execute the op­

erations specified. When this is completed, the FPll-B goes to the Ready state to await the next floating-point 
instruction. 

When the FPll is executing an instruction anp the CPU fetches another'FPll instruction, the FPll continues 

execution of the instruction and the CPU hangs in a wait loop. If a break request occurs while the CPU is in the 

wait loop, the CPU branches to its service routine and issues an Abort (INTR CLR) as previpusly described; how­

ever, because the FPll is busy in this case, the Abort is not honored and the FPll proceeds to complete execu­

tion of the instruction. The CPU subsequently refetches the instruction so it can be executed. 

To further clarify the interaction between the CPU and the FPII, two examples are provided. The fITst (Figure 

2-4) shows the interaction for address mode 0 and the second (Figure 2-5) shows the interaction for address 
mode 2; 
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ENTER HERE 
AFTER EXECUTION OF 

( 

• 
FETOO 

FOPOO (101) FET1D RoyZO 172) 

IRoOO WAIT FOR NEXT FP INSTR 
BACKUP PC; ENA. FP ATTN LD FIR & INSTR ADDRESS 

1, (BA<-PCB) 

tz SHFR+:PCB - 2 FP ATTN ALWWS TIMING DIMX~DATA ADDRESS 

'3 BEND TO ADVANCE TO T3 EMX+-OIMX 

\; PCA+-PCB - 2 
ALU'S+-B 

te FPATTN 
ACMX+-EALU 

PCB<-PCA; SR+-SHFR 
WAIT FOR FP ATTN 
ta FIR+-oATA IN 
., S&+SD<-O 
REQ+-1 

r FOP 10 (133) ! WOK FOR BREAK RE- RDY3Q (76) 

auESTS SENDPC&OP 
CODe TO FP11 WITH FP 

LD INS_ ADDRESS 

ATTN DIMX+-OATA ADDRESS 

1, BA+-f'CB EMX+-OIMX 

tz (SHFR+-BR) ALU'S+-B 
ACMX+-EALU 

S4 AC711j+-ACMX 
Sa ENABLE FP SYNC 
IF '\,CONVSP <>- ! 

00 
ROY 60 (234) 

NO MEM CLASS LD 
CONTENTS OF GEN~RAL 
REG_ 

FOP 20 (174) 

CLK. BREAKS; SEND PC & 
EMX+-OATA IN 

OP CODE TO FP11 AND 
ALU'S+-B 

LOOK FOR FP READY 
BMX+-EALU 
WAIT FOR FP ATTN 

t1 BA+-PCB ATT2 OF NEXT ROM STATE t. BD+BMX 

t2 (SHFR~BR) FROM FPSVNC 
~. ENABLE FP SYNC 

t3,BRQ STROBE 50", 

.JL. NOM 36 ! (67) 

LD DATA INTO FPS 
-FPSYNC -- S1 REQ+i) 

FOP 30 (173) EALU+-A 

STEP PC AND GET FPl t 
t4 FPS+-EALU 

STATUS ! t, (BA+-FP EALU); READ FP RDYOO 131 
tz SHFR+-PCB+2 WRITE FPS IN SCRATCH 
Ii; PCA+-PCB+2 
te BR+-8US Sl REQ+-O 

PCs<--PCA ACMX+-'\,FPS 
S4AC7[Oj+-ACMX 

FOP 60 (211) ! LOAD CCS IF TOLD TO; ROY 10 161 
FP STATUS IN BR 

FROM DECODE OF FIR LD FPS IN BD 

t, (BA+-EALU) WITH FCLD EN ONLY 
12 (SHFR+-OR) ON [CFCC,STCFI,STEXP) 

SCR OUT+-AC7[O) 

ta BEND BMX+-ACL 

t,; CC+-8R(FPCC) "t.! BD+-BMX 

IF ENABLED BY FP11 

! RDYZO 1721 
FOP 60 (362) WAIT FOR NEXT FP INSTR 

PUTDEST REG IN BR & LD FIR & INSTR ADDRESS 

ENABLE FP ATTN 
DIMX+-DATA ADDRESS 

1, (BA+-EALU) EMX+-DIMX 

tz SHFR+-DR ALU'S+-B 

ta FPATTN ACMX+-EALU 

BR+-SHFR WAIT FOR FP ATTN 
ta FIR+-OATA IN 

- ~ SS+SD+-O 

FOP 70 (316) REQ+-1 

SEND FP ATTN & WAIT 

FOR FP11 
FPATTN ,... t, <BA+-EALU) 

t2 SHFR+-8R 

FPSYNC 

-FPSYNC 

-FP REG WRITE FP REG WRITE 
(NEVER TRUE FOR 
THIS INSTRUCTION) 

FOP 80 1 (376) FOP 90 (375) 

GET FPDATA MODIFY DEST REG & 
ENABLE FP ATTN 

FET08 
GO TO READY 

t1 <BA+-EALU) !---. t, <BA+-EALU) 
FP READ tz SHFR+-8R 

~ (SHFR+-8R) t5 GR[DFJ+-SHFR 
t6 BR+-8US Ii; FPATTN 

I 
11-1443 

Figure 2-4 LD FPS Instruction Interaction - Mode a 
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.fETOO (217) RDY20 • {7'1 

START fETCH NEXT WAIT FOR NEXT fP INS. 
INSTR LD FIR AND INS. ADRS 
CLEAR INSTR REG 

DIMX+-DATA ADDRE~ 
t, BA+-PCB;BC+-DATI 

fPATIN EMX+-DIMX 
t:z SHfR.f-SR-5R ALU'S0-8 
t3 BUST;CLEAR fLAGS ACMX+-EALU 
!ts IR+-SHfR WAIT fOR fPATIN 

~ 
~ fIR+-DATA IN 

fET10 (260) t:J SS+$D+-D 
REQ+-l 

GET INSTR & STEP PC 

t, BA+-PCB:BC+-DATI RDY30 • (76) 

12 (SHfR+-PCB+2) 
LD INSADRS t:J PRO STROBE 

1$ BUS LONG PAUSE DIMX+-DATA ADDRESS 
PCA+-PCB+2 EMX+OIMX 

ta IR+-9US;BR+-BUS ALU'S+-B 
PCB+-PCA ACMX+-EALU 

+ 
~ AC7[lj+-ACMX 

IRDDD (3431 ~ ENABLE FP SYNC 
IF"'CONVSP 

DECODE THIS INSTR & 

~ STEP PCA BEYOND & RDY70 (254) 
READ SRC& DST fiELD 
GEN REGS LOAD CLASS INS 

t, BA+-PCB:BC+-DATI EMX+ilATA IN 
t2 SHFR+-PCB ALU'S+-8 
t:J -CONDITIONAL BUST BMX+-EALU 

ts PCA+-PCB+2 WAIT FOR FP ATTN 

ta -5F7:SR+-GSISFI ~ ENABLE FP SYNC 

SF7:SR+-SHFR 

~ -DF7:DR+-GDIDFI LD 12 (241) 
DF7:DR+-SHFR 

LD 1ST WORD OF SRC 

FOP 00 + (101) 
INAC6 

BACKUP PC TO POINT AT INC ADDRESS 
INSTR;ENABLE fP ATTN FPC1+-DATI 

EMX+-DATA IN 
t, (BA+-PCB) ALU'St-"v8 
t:z SHFR+-PCB-2 ACMX+-EALU 

( 
',,---

~ ~ BEND WAIT FOR FP ATTN 
ta PCA+-PC8.2 S4 AC6[3[+-ACMX 
ta FP ATTN t.. SET FCC'S 

PC8+-PCA 
EN8L -0 INTERRUPT 

SR+-SHFR 
~ ENABLE FP SYNC 

FOP 10 f (133) 
lD 13. • {202} 

lOOK FOR BREAK RE· 
QUESTS SE.'IID PC & OP LD2Na-WORD OF SRC 
CODE TO FPU WITH FP INAC6 
ATTN 

INC ADDRESS 
t, BA+-PCB FPC1+-DATI 
~ (SHFR+-9R) EMX+-DATA IN 

I--
ALU'S+-'VB 

BROOO ACMX+-EALU 
FOP 20 • (174) WAIT FOR FP ATTN 

elK BREAKS; SEND PC & OP 
S4 AC6!2!-ACMX 

CODE TO FPU & LOOK FOR 
~ ENABLE FP SYNC 

FPREADY 

+ ill •• {2371 
t, BA+-PCB 

READ MOST SIGN. ~ (SHFR-aR) 
t3 BRa STROBE HALF OF ACS (AC6J AND 

GO TO lDf MO 

r -fPSYNC 
S1 REO+-O -- seR OUT+-ACSI3:2! 

FOP 30 I (173) BMX+-EXP 

STEP PC & GET FPU 
t.. BA ..... SMX 

STATUS 
t3 QR---LDOl 

t.. SS~SCR OUT(31) 

t, (BA+-FP EALU) 
t. BR ..... CR 

READ FP 
~ SHFR ..... PCB+2 
1:s PCA .... PCS+2 
1:a BR+-9US 

PCB+i'CA 

0J B C D E F 

1I-1442-A 

Figure 2-5 LDF Instruction Interaction - Mode 2 (Sheet 1 of 2) 
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[F1J.TO 
ROM 265 

012.BO (111) 

DST ADRS INDR;SRC 
OPERAND IN BR & SR 
CHECK STACK LIMIT 

t, BA+-DR;BC<-BSOPl 
'tz SHFR+-BR 
~ BUST;GRI OF I 
~ SR+-SI:IFR 

CC<-BR (FPCC) 
IF ENABLE BY FPU 

012.70 

STEP DST FIELD 
REGISTER 

. t, (BA+-DR) 

(139) 

1:2 SHFR<-DR+DSTCON 
t3 BEND 

BROSTROBE 
1:s PCA .... DR+OSTCON 

GRIDFI<-SHFR 
t 6 DF7:PCB<-PCA 

FOP 40 

FSV20 

DST ADRS TO BR 
ENABLE FP ATTN 

t, (BA .... EALUJ 
t2 SHFR ..... DR 
t3 BEND . 

t6 BR+-SHFR 
FPATTN 

(036) 

(225) 

SEND FP ATTN & WAIT 
UNTIL FPU READY 

t, (BA<~EALUJ 

1:2 (SHFR-PCB) 
~ BRO'STROBE 

·FPSYNC 

.FP REO FP SYNC 

FPREO 
FSVOO (245) 

DO BUS OP FOR FPU; 
FOR DATO BR GETS GOOD 
DATA FROM FPU TO 
OUTPUT 

t,· BA' DR;BC' ·FC 
FP READ 

t:z <SHF ..... PCB) 

1::! BUST;GDIOI 
t6 BR··BUS 

FSV 10 (l50) 

FINISH BUS OP Be STEP 
DR;FOR DATI BR GETS 
PST OPERAND FOR FPU; 

FCLO EN 

CFCC, 
STCFI, 
STEXP 

A02,AOl 

~O 1 

FPATTN 

FPSYNC 

FPC1" FOR DATI 

~E_N_AB_L_E_F_PA_TI __ N ____ ~4--_ 

t, BA- DR;BC<-FC 
l:2 SHFR ..... DR+2 
15 BUS LONG PAUSE 
te FPATTN 

OR·-SHFR 
BR-BUS 

INCR ADD 

NOM 04 
cp 

15) 

READ LEAST SIGN. HALF 
OF SOURCE AC+MOVE SS 
TO SO 

SCR OUT+-ACSll:01 
t4 OR .... LDOO 
'l.t BR .... OR 

"SO",", 

NOM 06 • (21) 

WRITE INTO MOST SIGN. 
HALF OF OEST. AC 

ALU'~B 

FMX<-BR 
ACMX<-FALUH 
EMX<-BA 

$4 ACDI3:21+-SCR IN 
t4 SET FCC (0) 

'--{DYDO + 13) 

WRITE FPS IN SCRATCH 

S, REO+-O 
ACMX"'""'\,FPS 

S4 AC7[01<-ACMX 

RDY 10 ~ 161 

LOAD FPS IN BD 

SCR OUT<-AC7101 
BI\1X .... ACL 

t4 BO<-BMX 

~ 

Figure 2-5 LDF Instruction Interaction - Mode 2 (Sheet 2 of 2) 
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3.1 FPll DATA FORMATS 

CHAPTER 3 

DATA AND DATA FORMATS 

The FPll utilizes short (I) and long (L) integer format in addition to single- (F) and double-precision (D) floating­

point format. The following paragraphs briefly define the integer formats followed by a description of the floating­

point formats. 

3.1.1 FPll Integer Format 

Integer format is represented in 2's complement notation in the FPll. The short-integer format is 16 bits long; 

the long-integer format is 32 bits long. In both instances the most significant bit represents the sign bit. Figure 

3-1 shows the integer 5 in both formats followed by the integer minus 5 in both formats. 

SHORT INTEGER (1) 

LONG INTEGER (L) 

SHORT INTEGER (1) 

INTEGER = 5 

1414--- WORD 1 --~ol 
31 30 16 

1144--- WORD 1 ----to 1 
15 14 0 

1-WORD 2----+t 
15 14 0 

I 0 I 0 I 0 I 0 I 0 1 0 1 1 0 1 0 1 0 1 0 I 0 I 5 

INTEGER =-5 
1414--- WORD 1 ----to 1 

15 14 0 

1."---WORD 1 -I I--WORD 2----+t 
LONG INTEGER (L) 31 30 16 15 14 0 

11-0801 

Figure 3-1 Integer Formats 

3.1.2 FPll Floating-Point Formats 

Single-precision floating-point format is 32 bits long and is designated by F; double-precision (extended) format 

is 64 bits long and is designated by D. All floating-point numbers are assumed to be normalized. The mantissa 

or fraction is represented in sign and-magnitude format with the sign bit extended to the most significant bit 

position, as shown in Figure 3-2. Note that the 8-bit exponent separates the fraction from its associated sign. 
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SINGLE -PRECISION 
FLOATING POINT (F) 

DOUB LE - PRECISION 
FLOATING POINT (0) 

S = Sign 

114 .. ---- WORD 1------t-1 141----- WORD 2 ----+1-, 
31 30 23 22 16 15 o 
rIS~I---EX-P--~I----~lrl ------------~ 

~--------------~v~----------------~ 
FRACTION 

... 1_6S3 .... 1_6_2 __ E_X_p __ 5_5.!-5_4 ___ 4--1S I t j t j t j 
FRACTION 

11-0802 

EXP = Exponent in excess 2008 notation (refer to Paragraph 3.1.4.) 

Fraction = 23 or 55 bit fraction in sign and magnitude format. Binary point 
between bits 22 and 23 for F format or between bits 54 and 5~ for D format. 

Figure 3-2 Floating-Point Data Formats 

3.1.3 Floating-Point Mantissa 

All floating-point numbers are normalized; thus, in sign and magnitude format, the mantissa has a range from 

0.10000 .... to 0.1111. ... for positive operands and a range from 1.10000 .... to 1.11111. ... for negative 

operands. All operands transferred between the CPU and FPll are in sign and magnitude format and are con­

verted internally to 2's complement format to perform arithmetic operations. Because, in sign and magnitude 

format, the bit immediately to the right of the binary point is always ai, it is not stored in memory or in the 

scratchpad accumulators. This hidden bit provides another bit of significance in the results of arithmetic opera­

tions. However, when data is loaded into the fractional calculation logic data path, the hardware inserts the hid­

den bit; this point must be kept in mind when examining results during maintenance procedures. 

3.1.4 Floating-Point Exponent 

The exponent in the FPll is specified by eight bits, providing a range from a to 3778. Excess 200 notation is 

used, which means that 200 is add.ed to the exponent. Thus, an exponent of -177 is represented by 001 8 , an 

exponent of 0008 is represented by 2008, and an exponent of 177 is represented by 3778 . 

200 
a (0 exponent) 377 

t I .. ~ negative ..... ~loII( ~ positive oil( ~ I 
2- 200 177 

TI77 exponents 2°=1 exponents 2 

For example, the number 0.12 is actually 0.1 x 2°, and the exponent is represented as 10 000 0002 because 

2008 represents an exponent of zero. The following chart shows the range of floating-point numbers that can 

be handled by the FPl1. Only three bits are shown for simplicity, but they can be extended to any number. 

-.111 X 2177 -.100 X T177 +.100 X T177 +.111 X 2177 

~ ________________ ~_~~C~_· ____ ~ ____________ ~ 
I Most Zero 

Negative 

Number 

3-2 

Most 

Positive 

Number 
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3.2 FPll PROGRAM STATUS REGISTER 

The FPll contains a program status register; this register contains FPll condition codes (carry, overflow, zero, 

and negative) that Can be copied into the Central Processor. In other words, FC, FV; FZ, and FN can be copied 

into the CPU's C; V, Z, and N condition codes, respectively. The program statusregister also contains four mode 

bits and additional bits used to enable various interrupt conditions. Figure 3-3 shows the layout of the program 

status register. Each bit shown in the figure is described in the following paragraphs: 

INTERRUPT ENABLES MODE BITS CONDITION CODES 
r---~--~--------~,~~ 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

I I I I I I I I I I I I I I I I I 

FER 

FID I 
NOT USED 

NOT USED 

FIUV 

FlU 

FIV 

FIC 

FD 

IL 

FT 

FMM 

FN 

FZ 

FV 

FC 
11- 0806 

Figure 3-3 Status Register Format 

FER - This bit indicates an error condition of the FP 11. 

FID (Floating Interrupt Disable) - All interrupts by the FPll are disabled when this bit is on. 

FIUV (Floating Interrupt on Undefined Variable) - When this bit is set and a minus 0 is obtained from memory, 

an interrupt occurs. If the bit is not set, minus 0 can be loaded and stored; however, any arithmetic operation is 

treated as if it were a positive O. 

FlU (Floating Interrupt on Underflow) - When this bit is set, an underflow condition causes a floating underflow 

interrupt. The result of the operation causing the interrupt is correct except for the exponent, which is off by 

4008 . If the FlU bit is not set and underflow occurs, the result is set to zero. 

FIV (Floating Interrupt on Overflow) - When this bit is set, floating overflow causes an interrupt. The result of 

the operation causing the interrupt is correct except for the exponent, which is off by 4008 . If the FIV bit is not 

set, the result of the operation is the same; the only difference is that the interrupt does not occur. 

FIe (Floating Interrupt on Integer Conversion Error) - When this bit is set, and the Store Convert Floating to 

Integer instruction causes FC to be set (indicating a conversion error), an interrupt occurs. When a conversion 

error occurs, the destination register is cleared and the source register is untouched. When FIC is reset, the result 

of the operation is the same; however, no interrupt occurs. 
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FD (Double-Precision Mode Bit) - This bit, when set, specifies double-precision format and, when reset, specifies 

single-precision format. 

IL (Long-Precision Integer Mode Bit) - This bit is employed during conversion between integer and floating­

point format. If set, double-precision, 2's complement integer format of 32 bits is specified, and, if reset, single­

precision 2's complement integer of 16 bits is specified. 

FT (Truncate Bit) - This bit, when set, causes the result of any floating-point operation to be truncated rather 

than rounded. 

FMM (Maintenance Mode Bit) - This bit is used to enable special maintenance logic and is described in Chapter 7. 

Fe, FV, FZ, and FN - These bits are the four floating-point condition codes, which can be loaded in the CPU's 

C, V, Z, and N condition codes, respectively. This is accomplished by the Copy Floating Condition Codes (CFCC) 

instruction. To determine how each instruction affects the condition codes, refer to the instruction description 

in the PDP-11 Handbook. 

For the Store Convert Floating to Integer instruction (which converts a floating-point number to an integer), the 

FC bit is set if the resulting integer is too large to be stored in the specified register. 

3.3 PROCESSING OF FLOATING-POINT EXCEPTIONS 

The interrupt vector used to handle all floating-point interrupts is in location 2448 , A total of seven possible 

interrupts can occur. These seven possible interrupt exceptions are encoded in the FPII Exception Code Register 

(FEC). The interrupt exception codes represent an offset into a dispatch table, which routes the program to the 

right error handling routine. The dispatch table is a function of the software. The offset for each exception code 

is shown below followed by a brief description. 

FPll Exception Code 

2 

4 

6 

10 

12 

14 

16 

Definition 

Floating Op Code Error - The FP II causes an interrupt for 
an erroneous op code if the FlO bit is not set. 

Floating Divide by Zero - Division by zero causes an interrupt 
if the FlO bit is not set. 

Floating Integer Conversion Error 

Floating Overflow 

Floating Underflow 

Floating Undefined Variable 

Micro Break Trap 

NOTE 
The traps for exception codes 6, 10, 12, and 14 can 
be enabled in the FPU's Program Status Register. 

In addition to the FEC register, the FPll contains a 16-bit Floating Exception Address register (FEA), which 

stores the address of the last floating-point instruction that caused a floating-point exception. 

3.4 FPll INSTRUCTION FORMATS 

The FPll instruction set is divided into five formats as shown in Figure 3-4. 
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15 12 11 8 7 6 5 o 
F1 OC = 17 FOC AC FSRC/FDST 

15 12 11 6 5 o 
F2 OC = 17 FOC FDST 

15 12 11 8 7 6 5 o 
F3 OC =17 FOC AC SRC/DST 

15 12 11 6 5 o 
.F4 OC = 17 FOC SRC/DST 

15 12 11 o 

F5 OC = 17 FOC 

11-0800 

Figure 3-4 Instruction Fonnats 

The 2-bit AC field (bits 6 and 7) allows selection of scratchpad accumulators 0 through 3 only. If address mode 0 

is specified with formats Fl or F2, bits 2 through 0 are used to select the floating-point accumulator. Onlyaccu­

mulators 5 through 0 can be accessed in this manner. If accumulators 6 or 7 are specified, the FPll traps if the 

interrupt is enabled. 

The fields of the various instruction formats (refer to Table 3-1) are interpreted as follows: 

Mnemonic 

OC 

FOC 

SRC 

DST 

FSRC 

FDST 

AC 

Description 

Operation Code - All floating-point instructions are designated by a 4-bit op 
code of 178 . 

Floating Operation Code - The number of bits in this field varies with the for­
mat and is used to speCify the actual floating-point operation. 

Source - A 6-bit source field identical to that in a PDP-II instruction. 

Destination - A 6-bit destination field identical to that in a PDP-II instruction. 

Floating Source - A 6-bit field used only in fonnat Fl. It is identical to SRC, 
except in mode 0 when it references a floating-point accumulator rather than a 
CPU general register. 

Floating Destination - A 6-bit field used in formatsFI and F2. It is identical 
to DST, except in mode 0 when it references a floating-point accumulator in­
stead of a CPU general register. 

Accumulator - A 2-bit field used in fonnats Fl and F3 to speCify accumulators 0 
through 3. 
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Table 3-1 /" 

Format of FPll Instructions \ 
Instruction Format Instruction Mnemonic 

Fl ADD ADDF FSRC, AC 
ADDD FSRC, AC 

LOAD LDF FSRC, AC 
LDD FSRC,AC 

SUBTRACT SUBF FSRC, AC 
SUBD FSRC, AC 

COMPARE CMPF AC, FDST 
CMPD AC, FDST 

MULTIPLY MULF FSRC, AC 
MULD FSRC, AC 

MODULO MODF FSRC, AC 
MODD FSRC, AC 

STORE STF AC, FDST 
STD AC,FDST 

DIVIDE DIVF FSRC, AC 
DIVD FSRC, AC 

LOAD CONVERT LDCFD FSRC, AC 
LDCDF FSRC, AC 

FI STORE CONVERT STCFD AC, FDST 
STCDF AC, FDST ( 

F2 CLEAR CLRF FDST 
CLRDFDST 

TEST TSTFFDST 
TSTD FDST 

ABSOLUTE ABSF FDST 
ABSD FDST 

F2 NEGATE NEGFFDST 
NEGD FDST 

F3 LOAD EXPONENT LDEXP SRC, AC 

LOAD CONVERT INTEGER TO FLOATING LDCIF SRC, AC 
LDCID SRC, AC 
LDCLF SRC, AC 
LDCLD SRC, AC 

STORE EXPONENT STEXP AC, DST 

F3 STORE CONVERT FLOATING TO INTEGER STCFI AC, DST 
STCFL AC, DST 
STCDI AC, DST 
STCDL AC, DST 

F4 LOAD FPII 's PROGRAM STATUS LDFPS SRC 

t STORE FPII '8 PROGRAM STATUS STFPS DST 

F4 STORE FPll '8 STATUS STST DST 

(continued on next page) 
( 
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Table 3-1 (Cont) 

Format of FPll Instructions 

Instruction Format Instruction Mnemonic 

F5 COpy FLOATING CONDITION CODES CFCC 

SET FLOATING MODE SETF 

SET INTEGER MODE SETI 

LOAD UBREAK REGISTER LDUB 

LOAD SHIFT COUNTER LDSC 

STORE AR REGISTER IN ACO STAO 

MAINTENANCE RIGHT SHIFT MRS 

STORE QR REGISTER IN ACO STQO 

SET DOUBLE MODE SETD 

F5 SET LONG INTEGER MODE SETL 

3.5 INSTRUCTION SET 

Table 3-2 contains the instruction set of the FP11. Some of the symbology may not be readily apparent; there­

fore, a brief description is given in the following paragraphs: 

a. A floating-point flip-flop, designated FD, determines whether single- or double-precision floating­
point format is specified. If the flip-flop is reset, single-precision is specified and is designated by F. 
If the flip-flop is set, double precision is specified and is designed by D. Examples are NEGE, 
NEG 12, SUB 12, etc. 

b. An integer flip-flop, designated IL, determines whether short-integer or long-integer format is speci­
fied. If the flip-flop is reset, short-integer format is specified and is designated by I. If the flip-flop 
is set, long-integer format is specified and is designated by L. 

c. Several convert type instructions use the symbology below and are defined as follows: 

CIL FD - convert integer to floating , 
CFD,IL - convert floating to integer 

CF D or CD F - convert single-float to double-float or double-float to single-float , , 
d. Numbers in angle brackets indicate bit positions; an example is AR (57: 0), which indicates AR bits 

57 through O. 

e. UPUM is defined as the largest possible number that can be represented in floating-point format. 
This number has an exponent of 377 and a fraction of all 1 s. Note that UPUM is dependent on the 
format specified. LOLIM is defined as the smallest possible number that is not identically zero. 
This number has an exponent of 001 and a fraction of all Os except for the hidden bit. 

f Some of the octal codes listed in Table 3-2 are in the form of mathematical expressions. These octal 
codes can be calculated as shown in the following examples. 

Example: 

LD FPS instruction 
170100+SRC 

SRC field is equal to 37 
Basic op code is 170100 

Mode 3, Register 7 specified 

SRC + basic op code is added to yield l70l37. 
(continued on next page) 
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Example: 

LDF instruction 
1 72400+AC* 100+FSRC 

AC=2 
2*100 = 200 

172400 + 200 = 172600 

FSRC is equal to 26 
172600 + 26 = 172626 

3.6 FPll PROGRAMMING EXAMPLES 

AC2, Mode 2, and Register 6 specified 

This paragraph shows two programming examples using the FP1l instructlon set. In program example 1, A is 

added to B, D is subtracted from C, the quantity (A+B) is multiplied by (C-D), and the product of this multipli­

cation is divided by X and the result stored. Example 2 calculates DX3 + CX2 + BX + A. This involves a three­

pass loop, whereby each loop does the calculation indicated below. 

Example 1: 

{~:~:.(/l t> (.1 ~~1 

(I. V' V' ~?I (,11 L/ 

O(;l~H') 1 ('1 
r;WI(7' (/1 1 LI 

(Av116 v. ~ ':1 
('1(1.(11022 

(Xj [1 712 6 

Example 2: 

vlf.'l010C':' 
ns r. 1 E~ Li 

W1;(ll J(~ 
W7lPlI 12 
(.l(i](."1 1 LJ 

'Willi 1 16 

({Wn 1:? vi 
ylGW 1 22 
000124 

Loop 2 

ACO = [05*X~)*X+B] *X+A 
'-v-' 
Loop 1 . 

Loop 3 

ACO = [DX2 + CX + B] * X + A 

ACO=DX3 +CX2 +BX+A 

J 7~'LJf, 7 f.i.~ V' '-:1 1 ~ ~ UIF 
1 72(1)67 0C:(; 1 ~~ l'.DDF 
1 72567 110 Vi v' 122 LDF 
173167 0V;~11?2 SllFl[i 
171(::1('1 fvlULF 
174467 liI0&1752 nIVF 
174(1]67 00v]752 STF 

01271/)1;) (1i2!E'~Hcl3 

01 27C.'J 1 (](.j0146 

172526 
170400 
1 72v..i44 LOOP; 

171(101 

(n7(~k'~3 

17;:'(i)LjLj 

174046 

i\ .. /ole!i' 
8 .. f.\C,,) 
C ,1l,C 1 
D .. ACI 

JLCAD AC0 FKOM A 
JAO) HAS (A+B) 
JLOI!.D ACI FhOf'l C 
JAC1 liAS <C-[) 

ACI .. ACQJ JAC0 HAS (A+D)*<C-D) 
X,I-\Cf/I 
ACe:·, y 

~iOV 

IvC'V 

LDF 
CLhF" 
ADDF 

HJLF' 

!SOb 
AODF 
STF 

3-8 

;AC~ hAS (A+D)*(C-D)/X 
;STOkE (A+D)*<C-D)/X IN Y 

#3,700 
IrD+LJ .. %1 

(6)+,ACl 
AC(') 
-(Ll) .. AC'~ 

I4C 1 .. ACVl 

%~l .. LON' 
-(-4),AC", 
AC0,-(6) 

;5ET U~ LOCP C0U~TE~ 
JSET UP pblNTEK TO 
; C (, F F FIe lEN T S 
JPOP X FkO~ STACK 
JCLEAR CUT AC0 
JADD NEXT COEFFICIENT 
;TO PA~TIAL ~ESULT 
JMULTIPL¥ PAkTIAL KE~ULT 
JbY X 
J DO LOOP 3 T H>TS 
JADD X TO GET hESULT 
;PUSH kESULT ON STACk 

( 

( 

( 



r--, 
( 

Mnemonic 

CFCC 

SETF 

SETI 

LDUB 

Vol 
(0 

LDSC 

,('\ 
, 

Table 3-2 

Instruction Set 

Instruction Description 

Copy Floating Condition Codes 

C~FC 

V~FV 

Z~FZ 

N~FN 

Set Floating Mode 

FD~O 

Set Integer Mode 

FL~ 0 

Load Microbreak Register 

This instruction is a maintenance instruction in which the 

content of register R3 is gated into the VB register. When 

the control ROM address register matches the contents of 

the UB register, a scope sync is generated. If the FPll is in 

maintenance mode (FMM=I), an interrupt is also generated 

and the FPU traps to the Ready state. A VB interrupt can­

not be generated by the Ready state or by the states that 

are used to generate the U Break interrupt. 

Load Step Counter 

This is a maintenance instruction in which the content of 

register R4 is gated into the step counter, if the FPll is in 

maintenance mode (FMM=l). Whenever the step counter 

is loaded by an LDSC, normal loading via the microprogram 

is inhibited until the step counter is incremented to zero. 

This allows partial quotients and products to be formed for 

diagnostic purposes. If FMM=O, the LDSC acts as a NOP. 

170000 
FS Format 

170001 
FS Format 

170002 
FS Format 

170003 
FS Format 

170004 
FS Format 

/\ 

Octal Code 



'{' 

o 

STAO 

MRS 

STQO 

SETD 

SETL 

LDFPS SRC 

STFPS DST 

STST DST 

CLRFFDST 

CLRD FDST 

o 

Mnemonic 

Table 3-2 (Cont) 

Instruction Set 

Instruction Description 

Store AR in ACO 

ACO (54:32) +- AR (57:35) if FD = 0 

ACO (54:0) +- AR (57:3) if FD = I 

Maintenance Right Shift 

AR +- AR/2; QR +- QR/2 

Store QR in ACO 
BR +- QR; AC (54:32) +- BR (57:35) if FD = 0 

ACO (54:0) +- BR (57:3) if FD = I 

Set Floating Double Mode 
FD +- I 

Set Long Integer Mode 

FL +- I 

Load FPII's Program Status Word 

FPS +- (SRC) 

Store FPII'8 Program Status Word 

DST +- (FPS) 

Store FPII'8 Status 

DST +- (FEC) 

DST + 2+ (FEA) if not mode 0 or not immediate mode 

Clear. 

FDST +-0 

FC +- 0 

FV+-O 

FZ +-1 

FN+-O 

!~. 

170005 

F5 Format 

170006 

F5 Format 

170007 

F5 Format 

1700 II 

F5 Format 

170012 

F5 Format 

170100 + SRC 

F4 Format 

170200 + DST 

F4 Format 

170300 + DST 

F4 Format 

170400 + FDST 

F2 Format 

Octal Code 

(continued on next page) 
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TSTF FDST 
TSTDFDST 

ABSF FDST 
ABSDFDST 

NEGF FDST 

NEGDFDST 

LDEXP SRC, AC 

~ 

Mnemonic 

/~-\ 

Table 3-2 (Cont) 
Instruction Set 

Instruction Description 

Test 
FDST ~ (FDST) 
FC~O 

FV~ 0 

FZ~ 1 if (FDST) = 0, else FZ ~ 0 

FN ~ 1 if (FDST) < 0, else FN ~ 0 

Absolute 
FDST ~ -(FDST) if (FDST) < 0; else FDST ~ (FDST) 

FC+-O 
FV~O 

FZ ~ 1 if (FDST) = 0; else FZ ~ 0 

FN~O 

Negate 
FDST ~ -(FDST) 

FC~O 

FV~O 

FZ ~ 1 if (FDST) = 0, else FZ ~ 0 
FN ~ I if (FDST) < 0, else FN ~ 0 

Load Exponent 
AC SIGN ~ (AC SIGN) 
AC EXP ~ (SRC) + 200 
AC FRACTION ~ (AC FRACTION) 
FC~O 

FV ~ 1 if 1 AC I> UPLlM; else FV ~ 0 

FZ ~ 1 if (AC) = 0, else FZ = 0, else FZ ~ 0 

FN ~ I if (AC) < 0, else FN = 0, else FN ~ 0 

Octal Code 

170500 + FDST 
F2 Format 

170600 + FDST 
F2 Format 

170700 + FDST 

F2 Format 

176400 + AC * 100 + SRC 
F3 Format 

~ 

(continued on next page) 
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Mnemonic 

LDClF SRC, AC 

LDCID SRC, AC 

LDCLF SRC, AC or 

LDCLD SRC, AC 

LDClF - single integer to single float 

LDClD - single integer to double float 

LDCLF - long integer to single float 

LDCLD - long integer to double float 

STEXP AC, DST 

I~' 

Table 3-2 (Cont) 

Instruction Set 

Instruction Description 

Load arid convert from integer to floating 

At +- CFL,FD (SRC) 
FC+- 0 

FV +-0 

FZ +- I if (AC) = 0; else FZ +- 0 

FN +- I if (AC) < 0; else FN +- 0 

CFL,FD specifies conversion from a 2's complement integer 

with precision I or L to a floating-point number of precision F 

or D. If integer flip-flop IL = 0, a 16-bit integer (I) is specified, 

and if IL = 1, a 32-bit integer (L) is specified. If floating-point 

flip-flop FD = 0, a 32-bit floating-point number (F) is specified, 

and ifFD = 1, a 64-bit floating-point number (D) is specified. 

If a 32-bit integer is specified .and addressing mode 0 or imme­

diate mode is used, the 16-bits of the source register are left 

justified, and the remaining 16-bits are zeroed before the con­

version. 

Store Exponent 

DST ~AC EXPONENT -200 

FC+-O 

FV+-O 

FZ +- 1 if (DST) = 0; else FZ +- 0 

FN +- 1 if (DST) < 0; else FN +- 0 

C+-FC 

V+-FV 

Z+-FZ 

N+-FN 

i~" 

Octal Code 

177000 + AC * 100 + SRC 
F3 Format 

175000 + AC * 100 + DST 

F3 Format 

(continued on next page) 
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Mnemonic 

STCFIAC,DST 

STCFL AC, DST 

STcm AC, DST or 

STCDL AC, DST 

~ 

STCFI = Single float to single integer 

STCFL = Single float to long integer 

STCDI = Double float to single integer 

STCDL = Double float to long integer 

STF AC,FDST 

STDAC,FDST 

DIVF FSRC, AC 

DIVD FSRC, AC 

./~'\ 

I 

Table 3-2 (Cont) 

Instruction Set 

Instruction Description 

Store Convert from Floating to Integer 

Destination receives converted AC if the resulting integer 

number can be represented in 16 bits (short integer) or 32 

bits (long integer). Otherwise, destination is zeroed and C 

bit is set. 

FV+-O 

FZ +- 1 if (DST) = 0; else FZ +- 0 

FN +- I if (DST) < 0; else FN +- 0 

C+-FC 

V+-FV 

Z +-FZ 

N+-FN 

When the conversion is to long integer (32 bits) -aml address 

mode 0 or immediate mode is specified, only' the most sig­

nificant 16 bits are stored in the destination register. 

Floating Store 
FDST+- (AC) 

FC +- FC 

FV +-FV 

FZ +-FZ 

FN+-FN 

Floating Divide 

AC +- (AC)/(FSRC) ifi (AC)/(FSRC) I>LOLIM; else AC +- 0 
Fe +- 0 . 

FV +- I if 1 (AC) I> UP LIM 

FZ +- 1 if (AC) = 0; else FZ +- 0 

FN +- 1 if (AC) < 0; else FN +- 0 

Octal Code 

175400 + AC * 100 + DST 
F3 Format 

17 4000 + AC * 100 + FDST 

Fl Format 

174400 + AC * 100 + FSRC 

Fl Format 

'\ 

(continued on next page) 
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Mnemonic 

LDCDF FSRC, AC 
LDCFD FSRC, AC 

ADDF FSRC, AC 

ADDD FSRC,AC 

LDF FSRC, AC or 
LDD FSRC, AC 

(' 

Table 3-2 (Cont) 

Instruction Set 

hlstruction Description 

Load Convert Double to Floating or Floating to Double 

AC +-- CF D v D F(FSRC) , , 
FC +-- 0 

FV +-- I if I (AC) I> UPLIM; else FV +-- 0 
FZ +-- I if (AC) = 0; else FZ +-- 0 

FN +-- I if (AC) < 0; else FN +-- 0 

If the current format is single-precision floating-point (FD = 0), 

the source is assumed to be a double-precision number and is 

converted to single precision. If the floating truncate bit is set 

the number is truncated; otherwise, it is rounded. If the current 

format is double-precision (FD = 1), the source is assumed to be 

a single-precision number and is loaded left justified in the AC. 

The lower half of the AC is cleared . 

Floating Add 

AC +-- (AC) + (FSRC) if I (AC) + (FSRC) ~ LOLIM 

else AC +-- 0 

FC +-- 0 

FV +-- I if I (AC) I> UPLIM; else FV +-- 0 

FZ +-- lif (AC)= 0; else FZ +-- 0 

FN +-- I if (AC) < 0; else FN +-- 0 

Floating Load 

AC +-- (FSRC) 

FC +-- 0 

FV+-O 

FZ +-- I if (AC) = 0; else FZ +- 0 

FN +-- I if (AC) < 0; else FN +-- 0 

(\, 

Octal Code 

177400 + AC * 100 + FSRC 

FI Format 

F ,D - single-precision to double-precision 

floating 

D ,F - double-precision to single-precision 

floating 

172000 + AC * 100 + FSRC 

FI Format 

172400 + AC * 100 + FSRC 

FI Format 

(continued on next page) 
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Mnemonic 

SUBF FSRC, AC or 

SUBD FSRC, AC 

CMPF FSRC, AC 

CMPD FSRC, AC 

MULF FSRC, AC 

MULD FSRC, AC 

MODF FSRC, AC 

MODO FSRC, AC 

Floating Subtract 

/-\ 

Table 3-2 (Cont) 

Instruction Set 

Instruction Description 

AC +- (AC) - (FSRC) if I (AC) - (FSRC) I;;;. LOLIM 

else AC +- a 

FC +-0 

FV +- I if I (AC) I> UPLIM; else FV +- a 

FZ +- I if (A C) = 0; else FZ +- a 

FN +- I if (AC) < 0; else FN +- a 

Floating Compare 

FC+-O 

FV+-O 

FZ +- I if (FSRC) - (AC) = 0; else FZ +- a 

FN +- I if (FSRC) -- (AC) < 0; else FN +- a 

Floating Multiply 

AC +- (AC) * (FSRC) if i (AC) * (FSRC) i;;;. LOLIM 

else AC +- a 

FC +-0 

FV +- I if 1 (AC) I> UPLIM; else FV +- a 

FZ +- I if (AC) = 0; else FZ +- a 

FN +- 1 if (AC) < 0; else FN +- a 

Floating Modulo 

AC V I +- integer part of [(AC) * (FSRC)] 

AC +- fractional part of (AC) * (FSRC) - (AC V 1) if 

1 (AC) * (FSRC) I;;;. LOLIM or FIU = I; else AC +- a 

FC+-O 

FV +- I if 1 (AC) I> UPLIM; else FV +- a 

FZ +- I if (AC) = 0; else FZ +- a 

FN +- I if (AC) < 0; else FN +- a 

Octal Code 

173000 + AC * 100 + FSRC 

FI Format 

173400 + AC * lOa + FSRC 

FI Format 

171000 + AC * 100 FSRC 

FI Format 

171400 + AC * 100 + FSRC 

FI Format 

--~, 

(continued on next page) 
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Mnemonic 

(cont) 

STCFD AC, FDST 

STCDF AC, FDST 

. ...-, 
( i 

Table 3-2 (Cont) 

Instruction Set 

Instruction Description 

The product of (AC) and FSRC) is 48 bits in single-precision 

floating-point format or 59 bits in double-precision floating­

point format. The integer part of the product [(AC) * (FSRC)l 

is found and stored in AC V I. The fractional part is then ob­

tained and stored in AC. Note tMt multiplication by 10 can be 

done with zero error, allowing decimal digits to be stripped off 

with no loss in precision. 

Store Convert from Floating to Double or Double to Floating 

FDST +- CF D V D F (AC) , , 
FC+-O 

FV +- 1 if I (AC) I > UPLIM; else FV +- 0 

FZ +- 1 if (AC) = 0; else FZ +- 0 

FN +- 1 if (AC) < 0; else FN +- 0 

I~ 
I ' 

Octal Code 

176000 + AC * 100 + FDST 

Fl Format 

F ,D - single-precision to double-precision 

floating 

D,F - double-precision to single-precision 

floating 

~, 

~--,--------
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4.1 INTRODUCfION 

CHAPTER 4 

CONTROL ROM 

Figure 1-2 shows a simplified block diagram of the Floating Point Processor, which consists of the fraction 

calculation logic, exponent calculation logic, and scratchpad accumulators. Figure 4-1 expands this block diagram 

to show the various data paths of the FPII and also to show each of the multiplexers and major registers. These 

registers and multiplexers are described below. 

FIR (11: 0> Instruction Register - The most significant four bits represent the 178 op code for floating point and 

should be 1 s. When the other bits are loaded into the instruction register, these four bits are checked; if they are 

not all 1 s, an illegal instruction trap occurs. 

DIMX - An input multiplexer that selects data in or address in from the CPU. In the Ready state, the address is 

automatically selected so that the address of the floating-point instruction can be temporarily stored in the FPII 

at the same time that data is clocked into the FPll FIR. 

EMX - The. EMXselects one of four input sources to the B side of the EALU. The four inputs are: 

a. BA register 

b. DIMX output 

c. CNST (constant) 

d. Step Counter (when the step counter is selected, bits 15 through 6 are Os). 

BA Register - A l6-bit Temporary Storage register that feeds the B side of EALU via the EMX. 

BD Register - A l6-bit storage register used to send data to the CPU and to the A side of the EALU. 

EALU - An exponent arithmetic logic unit capable of performing both arithmetic and logical functions between 

the A and B inpi.tts. The EALU is 16 bits wide. 

Step Counter - A (i.bit up counter used to count the number of shifts required for normalization of the fraction 

and used to count the number of steps performed in multiplication or division or long shift subroutines . 

. . Ubreak Register - An 8-bit register used to set up break points in the microprogram for diagnostic purposes. 

FPS - The floating-point status register contains the current status of the FPll including floating condition codes 

and interrupt enable status. 

BMX - A multiplexer that selects one of four sources as inputs to the BA and BD registers. The four inputs are: 

a. EALU 

b. ACH - Selects most significant 16 bits of the 32-bit accumulator specified. 

4-1 



C. ACL - selects least significant 16 bits of the 32-bit accumulator specified. 

d. EXP - strips off exponent portion of word (8 bits) contained in accumulator and right justifies it. 
Remaining bits are zeroed. 

AC;<63:0), i = 0 through 7 - There are eight 64-bit wide accumulators in the FPll. Each accumulator is divided 

into four l6-bit segments (3, 2, 1, and 0 as described in Chapter 1). The high-order 32-bits, the low-order 32-bits 

or a 16-bit segment can be accessed. Data written into the scratchpad accumulator is inverted when read out of 

the scratchpad. This is compensated for by writing the 1 's complement of the data into the scratchpad. 

ACMX - The ACMX is 32 bits wide and selects one of four 32-bit input sources for writing into the accumulators. 

The ACMX allows the floating-point status to be written into the atcumulator, allows the exponent and fraction 

to be assembled from the EALU and FALU into floating-point format, and allows the least significant bits (34:3) 

of FALU to be written into the·accumulators.-

QR - A 60-bit wide left-right shift register, which is loaded from thescratchpad in two segments. This is accom­
plished by LDQ 1 and LDQO load signals. 

BR - A 60-bit holding register, which receives inputs via the QR. The BR cannot be shifted. 

AR - A 60-bit left-right shift register. In all arithmetic operations where the result is to be normalized, normal. 
ization occurs in the AR. 

FMX - Allows the appropriate bit of the AR to be loaded into the B side of theF ALU for rounding operations. 

The FMX also allows insertion of 1 in the appropriate position of the F ALU to provide for the incrementing of 

integer numbers. 

FALU - A 60-bit wide fractional arithmetic logic unit tliat has the capability of performing arithmetic and logical 

operations between the A and B inputs. Two levels of cany look-ahead are provided. The controls of the EALV 

and FALU are ganged together. 

4.2 CONTROL ROM 

The FPll utilizes a control ROM (read-only memory) to implement microprogramming techniques. A micro­

program is a sequence of control operations. Control operations, for example, might involve a sequence of infor­

mation transfers from one register to another, which may take place directly or through an adder or other logical 

network as determined by the outputs of the read-only memory. 

The control ROM in the FPll is comprised of 256 64-bit words. Eight bits of each word represents the next ad. 

dress of the microprogram. If certain branch conditions are satisfied, the control ROM causes the next address 

to be modified and the microprogram, instead of branching to the next address, branches to the modified address. 

This action is shown in Figure 4-2. Note that the CRAR (Control 'ROM Address Register) specifies the next ad­

dress. The instruction in this address is executed and, if the branch conditions are not satisfied, the 8-bit address 

in this instruction represents the next address of the microprogram.. The following paragraphs introduce the ROM 
flow diagrams and associated symbology. 

Asynchronous conditions can cause the microprogram to trap to specific microaddresses rather than cOl}tinue in, 

the normal sequence. These traps can be caused by initialization and 11/45 abort conditions, by a microbreak 

(which occurs when a control ROM address compares with a presettable address in maintenance mode), and by 

the floating minus zero trap, which occurs when a minus zero is detected. 

4-2 
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ACCUMULATORS '. 

( FPS<~5:0» I I I ( UB<7:0> ) 

hXPJ T FRLPI EALU FALUH I I II 
FALUL I I I 

o 

EALU<15:0> II 
FALU<59:0> 

(A) (B) (A) (B) H ( ''<"0> ) 1 II ~i 
FRHB-FRHO, FXPA, 

FXPB FXPL ACMX FRLE-FRLK 
EMX 

II FXPA, 
o 1 2 3 FXPB FRLA-FRLO 

I~ II II FCC 

FRLH 
FRLK 

FMX 

ATA~ 
CNST 

II 1 0 

OUT I L ~ 1>----'"' '0,"'" II OIMX 
FXPK 

II 1 F-[_OATA IN 

AC l [3:0]<15:0> 

II l=O THRU 7 

( BO<15:0> ) ( BA<15:0> ) ( FIR<11,O» II , AR<59·:0> ( BR<59:0> ') 
FRLA- " FRHB-FRHO, FRHA, FXPC FXPC FXPO FRLO " 

II 
II FRLE-FRLK FRLL, 
t FRLM 

( 
"-

~ 
EALU n QR<59:0> 

: 
ACH LOQ1~:OQO I I FRLN~ 
ACL 

FRHA, 
EXP n FRLL, 

FRLM L ____________ J L.....;. ___ J L ________ J 
11-0820 

I 
I DATA PATH DEFINITION 

ACMXO (31) +- - BN; AC~XO (30) +- BZ;ACMXO (29: 16)+-: 37777; ACMXO <15:0)+- FPS 

ACMX1 (31: 16)+- EALU(a 5:00); ACMX1 <15 :00) +- EALU <15:00) 

ACMX2 (31) +- - SD; ACMX2 (30:23)+- EALU (07:00)'; ACMX2 (22:00)+- FALU (57:35) 

ACMX3 (31 :OO)+- FALU (~4:03) 

BMXO (15:00)+- EALU (tS:OO) 

BMX1 <15:00)+-ACi [3] (~5:00)orACi [1] <15:00) 

BMX2 <15:00)+- ACj [2] (~5:00)or ACi [0] (15:00) 

BMX3 <15:08)+-0 ;BMX3 ~07:00)+- ACi [3:2] (30:23) or ACi [01 :0] (30:23) 
I 

EMXO <15:00)+- BA <15:0~) 
EMXl <15:00)+- DIMX (q:OO) 

EMX2 <15: 00) +- CNST <151: 00) 

EMX3 (15: 06) +- 0 ; EMX31(05: 00) +- SC (05: 00) 
. t 

FJ04Xq (02) +- BR (35); FMpcO(01) +- BR (19) ; FMXO (00) +- BR (3) 

,FMX1 (02) +- AR (34) ; FMX1 (01) +- 1; FMXO (00) +- AR (02) 

LDQ1 = QR (59) +- 0; QR ~58) +- 1 if ACi [3:2] (30:24)* 0 else QR (58) +- 0 

QR (57:35)+- Acil [3:2] (22:0) 

LDQO = QR (34:3) +- ACi ~1 :0] (31 :0) ; QR (2:0)+- 0 
I 

Figure 4-1 FP11 Data Paths 
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ROM 
CONTROLS 

CROM 

FRMC 
FRMD 

UAF. UBR 

BRANCH { 
CONDITIONS 

FRMD 007- 000 

NEXT ADDRESS 

MUX 

FRMA 
FRMB 

11-0799 

Figure 4-2 Control ROM Simplified Block Diagram 

4.2.1 Control ROM Flow Diagram 

This section describes the flow diagrams associated with the FPII. General points concerning the flow diagram 

symbology are described first, followed by Table 4-1 which lists and defines each of the statements found in the 
flow diagram. 

1. The floW diagram contains blocks with designators above the upper left and right corners of each block 
and below the right corner of each block. These are defined as shown in the sample block reproduced 
from sheet 13. 

SCF.60 (165) ~Current ROM Address 

Symbolic name fo/ STR Rounded Result 

this particular state ALUS+-- A 

ACMX +- FALUH 
ACS [3:2] +- ACMX 
SET FCC (1) 

(164) 6F2 

ROM Next Address ~ 'BranChing conditions (certain 

The branching conditions are designated as follows: 

blocks will have no branch con­
ditions) 

6F2 
represents the octal decode of the X 1'1:. ____ decode of microaddress field (bits 12 

microbranch bits (bits 10 through and 11 of control ROM) 

8 of control ROM) 
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2. The flow diagram contains diamond shaped symbols with connector names listed inside. Below 
the connector name is the sheet reference. Normally, the diamond is connected to an oval shaped 
symbol of the same connector name. For example, the following symbol is reproduced from sheet 
13 of the flow diagram. This indicates that the flow is connected to an oval symbol with the de­
signation CONY DONE. This oval symbol is on sheet 13 as referenced by the number in the bottom 
of the diamond. 

3. Certain connector names have numbers following them, which are used to differentiate between 
connectors of the same category. For example, on sheet 11 of the flow diagram there are 
diamond symbols designated NORM 10, NORM 20, NORM 30, and NORM 40. These symbols 
are connected to oval symbols designated NORM 10, NORM 20, NORM 30, and NORM 40, 
respectively, on sheet 12. 

4. Several statements of the following forms: 

AC 7 [0] +- ... . 

ACS [3:2] +- ... . 

ACD [3:2] +- ... . 

ACD VI [3:2] +- ... . 

These statements refer to the accumulator and the specific words referenced. 

The 7 after the AC in the first statement references Accumulator 7 - one of the eight accumulators available to 

the microprogram. The S following the AC in the second statement specifies the source accumulator designated 

by FIR bits 2 through 0, while the D following the AC in the third statement specifies the destination accumu­

lator designated by bits 7 and 6 of the FIR if address mode 0 is used; otherwise, AC6 is the destination accumula­

tor. The number or numbers in brackets in each statement designate the portion of the accumulator word, as 

shown in the following example: 

3 2 o 

63 4847 3231 16 IS 0 

[3:2] specifies bits 63 through 32 
[3:0] specifies bits 63 through 0 
[1 :0] specifies bits 31 through 0 

The last statement specifies a logical OR function of (ACD) OR 1 and is used in the MODF instruction. The truth 

table for this statement is as follows: 
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( FIR 7 FIR 6 ACD ACDVI 

0 0 0 
0 I I 
I 0 2 3 

3 3 

. In the MODF instruction, the integer portion of the nwnber is stored first followed by the fractional part. If an 

odd accumulator is specified, the integer and fraction are stored in the same accumulator; however, the integer 

part is stored first and is destroyed by the storing of the fraction. If an even accwnulator is specified, the integer 

is stored in an odd nwnbered accumulator and the fraction is stored in an even numbered accwnulator, which is 
one less than the odd nwnbered accumulator. 

Statement 

ABSF 

ACMX+-BALU 

ACMX +- FALUH 

ACMX +- FALUL 

ACMX+-FPS 

ADDF 

ALU'S +- A PLUS B 
PLUS 1 

ALU'S +- A A ~ B 

ALU'S +- A MINUS B 

ALU'S +- A PLUS B 

ALU'S+-A 

ALU'S +- A MINUS I 

ALU'S+-~ A 

ALU'S +-- (AVB) 

ALU'S+-B 

Table 4-1 
Flow Diagram Statements 

Description 

A branch specified if the current instruction is an ABS instruction with 
single- or double-precision floating point speCified. 

The output of the BALU (bits 15 through 0) is gated through the ACMX. 

The high-order bits of the FALU (bits 57 through 35), bits 7 through 0 of 
.. the BALU, and ~SD are gated through ACMX. 

The 32 bits (bits 34 - 3) ofFALU are gated through ACMX. 

The floating-point status word is gated through the ACMX. BN and BZ 
can also be gated through ACMX to set FZ and FN, respectively. 

A branch path specified for an add, subtract, or compare instruction using 
floating-pofut format. 

The output of the BALD' and F ALU contains the sum of the data on the A 
and B inputs plus one. 

The output of the BALUand F ALU contains the data on the A input 
ANDed with the complement of the data on the B input. 

The output of the BALU and F ALU contains the data on the A fuput 
minus the data on the B input. 

The output of the BALU and F ALU contains the sum of the data on the 
A and B inputs. 

The output of the BALU and F ALU contains the data on the A input. 

The output of the BALU and F ALU contains the data on the A input 
minus 1. 

The output of the BALU and F ALU has the complement of the data on 
theA input. 

The output of the BALU and F ALU contains the complement of the logi-
• calOR function of the A and B inputs. 

The output of the BALU and FALU contains the data on the B input. 

(continued on next page) 
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Statement 

ALU'S +--B 

ALU'S +-1 

ALU'S +-0 

AR (59) (0) 

AR (59) (1) 

AR (59:58)(0) 

AR (59:58) (1) 

AR (59:58) (2) 

AR (59:58) (3) 

AR +-FALU 

BA+-BMX 

BB 1 Z (B Registers 
Byte 1 Zero) 

BD +-BMX 

BMX+-ACH 

BMX+-ACL 

BMX+-EALU 

BMX+-EXP 

BN -,- (B Registers 
Negative) 

BR+-QR 

BR+-O 

BZ - (B Registers Zero) 

CERRINT 

CFCC 

CLRF 

CMPF 

CONVSP 

Table4-1 (Cont) 

Flow Diagram Statements 

Description 

The output of the ALU contains the complement of the data on the B input. 

The output of 'the EALU and FALU contains allIs. 

The output of the EALU and F ALU contains all Os. 

Indicates a positive sign bit. 

Indicates a negative sign bit. 

Indicates an unnormalized number (0.0) with bits 59 and 58 on a O. 

Denotes the number is a normalized number (0.1). 

Denotes the number is an unnormalized number (1.0). A right shift of 1 
causes this number to become normalized. 

Indicates an unnormalized number (1.1) with bits 59 and 58 on a 1. 

The contents of FALU is loaded in the AR. 

The BA register is loaded from the BMX. 

Indicates the upper eight bits of the last data word loaded in either the BA 
or BD register are zeros. 

The BD register is loaded from the BMX. 

The high-order 16 bits of the 32-bit wide scratchpad output are gated 
through the BMX. 

The low-order 16 bits of the 32-bit wide scratchpad output are gated 
through the BMX. 

The output of the EALU is gated through BMX. 

The 8 bits of exponent from the AC are gated through the least significant 
8 bits (bits 7 through 0) of the BMX. Upper 8 bits (bits 15 through 8) of 
BMX are zeroed. 

Indicates that the last data word loaded in the BA or BD register is negative. 

The contents of the QR are transferred to the BR. 

The BR regiSter is zeroed. 

Indicates the last data word loaded in the BA or BD register is zero. 

Conversion error interrupt. 

Copy floating condition codes instruction. 

A. clear instruction specifying single- or double-precision floating point. 

A compare instruction specifying single- or double-precision floating point. 

A group of instructions which include STEXP, STCFI, and STCFD. 

( \ 

( 

(continued on next page) C 
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Statement 

DIMX +- DATA ADDRESS 

DIVF 

EMX+-BA 

EMX +-CNST 1 

EMX +- CNST.2 

EMX +- CNST.4 

EMX +- CNST.I 0 

EMX +- CNST.12 

EMX+ CNST.17 

EMX +- CNST.21 

EMX +- CNST.31 

EMX +- CNST.35 

EMX +- CNST.71 

EMX+- CNST. 7 5 

( EMX +- CNST.200 

EMX +- CNST.220 

EMX +- CNST.I 00000 

EMX +- DATA IN 

EMX+-DIMX 

ENABLE FMO INTERRUPT 

ENABLE FP REG WR 

ENABLE FP SYNC 

EQ 

FD +- 1 IF SET D 

FD +- 0 IF SET F 

FD (1) (Bit 7 of FPS) 

FINT 

FIR +- DATA IN 

/ 

~ .. 

Table 4-1 (Cont) 

Flow Diagram Statements 

Description 

The data address is gated through DIMX. 

A divide instruction specifying single- or double-precision floating point. 

The output of the BA is gated through EMX. 

The output of EMX contains a constant of 1. 

The output of EMX contains a constant of 2. 

The output of EMX contains a constant of 4. 

The output of EMX contains a constant of 10. 

The output of EMX contains a constant of 12. 

The output of EMX contains a constant of 17. 

The output of EMX contains a constant of 21. 

The output of EMX contains a constant of 31. 

The output of EMX contains a constant of 35. 

The output of EMX contains a constant of 71. 

The output of EMX contains a constant of 75. 

The output of EMX contains a constant of 200. 

The output of EMX contains a constant of 220. 

The output of EMX contains a constant of 100000. 

The output of EMX contains the input data from the CPU or the IU. 

The output of DIMX is applied to EMX. 

Enables microtrap if 1 's complemented floating minus zero is present 
at output of ACMX. 

Indicates that the CPU is to copy data from the FPII into a general register. 

Enables FP SYNC to be generated, at TS2 of next ROM state. 

Equal branch (indicates that the exponents of the operands are equal or the 
exponent of the MODF instruction is zero). 

If the SET D instruction is specified, the FD flip-flop is set. 

If the SET F instruction is specified, the FD flip-flop is zeroed. 

When the flip-flop is set, double-precision floating point is specified and, 
when reset, single-precision floating point is specified. 

All errors branch to floating interrupt (PINT) ROM location. 

The data input is transferred to the floating-point instruction register. 

(continued on next page) 
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Statement 

FIU (Bit 10 of FPS) 

FIV (Bit 9 of FPS) 

FL +- I IF SET L 

FL +- a IF SET I 

FMX+-F. RND 

FMX +-1. INC 

FPCI +- DATI 

FPCI +- DATO 

FPS+-EALU 

FRACDIV 

FRACMUL 

FT (I) (Bit 5 of FPS) 

FV - Floating Overflow 
(Bit I of FPS) 

GT 

ILL. OP. CODE 

IMMEDIATE 

INC ADDRESS 

INIT V 1145 ABORT 

LDAC6 

LDCIF 

Table 4-1 (Cont) 

Flow Diagram Statements 

Description 

Floating Interrupt on Underflow. This bit, if set, causes a floating interrupt 
on underflow to occur if an underflow condition is detected. 

Floating Interrupt on Overflow. With this bit set, an overflow causes an 
interrupt. 

If the SET L instruction is specified, the FL flip-flop is set. 

If the SET I instruction is specified, the FL flip-flop is zeroed. 

If single-precision floating-point format, AR bit 34 is fed to bit 35 on the B 
input to F ALU via FMX. If double-precision floating-point format, AR bit 
2 is fed to bit 3 on the B input to FALU via FMX. 

Inserts a I in bit 35 of the B input to FALU if short-integer format is speci­
fied, or inserts a I in bit 19 of the B input to F ALU if long-integer format 
is specified. 

Informs the CPU that a DATI cycle is requested. 

Informs the CPU that a DATO cycle is requested. 

The output of EALU is transferred to the FPS register. 

Initiates a divide subroutine and causes the ROM to pause until completion 
of the subroutine. 

Initiates a multiply subroutine and causes the ROM to pause until comple­
tion of the subroutine. 

This bit, when set, causes the result to be truncated and, when reset, causes 
the result to be rounded. 

A condition code indicating an overflow condition. 

Greater than branch. Indicates the exponent in the BD register is greater 
than the exponent in the BA register or the MODF exponent is greater than 
200. 

An undefined op code. 

Specifies address mode 2 and register 7. 

Indicates to the CPU that the current address of the data is to be incre­
mented by 2. 

If the 11/45 sends an 1145 ABORT or an INIT signal, the FPll traps to 
the Ready state. 

A branching path taken by instructions which require that one operand 
be fetched from memory. 

A load instruction which loads and converts a number from integer to 
floating-point format. 

(continued on next page) 
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Statement 

LDFPS 

LDSC 

LDUB 

LOADCL 

LS.AR.I 

LS.QR.SC 

LT 

MGT 

MLT 

NEGF 

NO.MEM.CL. 

NRM.AR 

QR+- LDQI 

QR+-LDQO 

QR+-O 

REQ +-1 

REQ +-0 

RSAR. I 

RSAR. SC 

RS.QR. I 

RS.QR. SC (0 IN) 

RS.QR.SC (1 IN) 

Table 4-1 (Cont) 

Flow Diagram Statements 

Description 

The instruction that causes the floating-point status to be loaded in the 
FPll floating-point status register. 

An instruction that causes the step counter to be loaded from an external 
source. 

An instruction that loads the micro break register from an external source. 

Indicates a class of instructions that require operands from memory. 

Left shifts the AR one bit position and inserts a 0 in AROO. 

Left-shift the QR by the number contained in the step counter. The step 
counter contains the I 's complement of the number of shifts desired. 

Less than branch. Indicates that the exponent in the BD register is less 
than the exponent in the BA register, or the exponent in the MODF in­
structibn is less than 200. 

Much greater than branelr. The number cannot be aligned within the 
boundaries of the AR and BR registers. 

Much less than branch. The number cannot be aligned within the boundaries 
of the AR and BR reg~sters. 

The negate instruction specified with single- or double-precision floating­
point format. 

Indicates a nonmemory reference instruction. 

Initiates a.hardware subroutine that normalizes the number in the AR. 
. The number of shifts required to normalize is contained in the step counter. 

The QR is loaded as follows: 

OR (59) +- 0; QR (58) +- 1 if exponent of word is not zero (hidden bit), 
else QR (58) +- 0; QR (57:35) +- ACi [0: 1] (22:0>, 

QR <34:3) +- ACi (31 :0); QR (2:0) +- O. 

QR register is cleared. 

Sets the REQ (request) flip-flop. 

REQ flip-flop is cleared. 

Right shift the AR one place. A 0 is shifted into AR59. 

Right shift the AR by the number contained in the step counter (1 's com­
plement). Zeros are shifted into the AR. 

Right shift QR one bit position and shift in a 0 into QR bit 59. 

Right shift the QR by the number contained in the step counter 
(1 's complement). A 0 is shifted into QR bit 59. 

Right shift the QR by the number contained in the step counter (1 's com­
plement). Shift a 1 into QR bit 58. QR bit 59 is cleared. 

(continued on next page) 
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Statement 

SC+-EALU 

SD +- SCR OUT (3 I) 

SD +- SS 

SD +- ~ SS IF SUB 
ELSE SD +-SS 

SD +- SS 'tI SD 

SEND FP EXC TRAP 

SET FCC (0) 

SET FCC (1) 

SET FCC (2) 

SET MODES 

SS +- I 

SS A SD +-0 

STORE.CL 

VB +-EALU 

WAIT FOR FP ACKN 

WAIT FOR FP ATTN 

-0 TRAP 

4.2.2 ROM Field Descriptions 

Table 4-1 (Cont) 

Flow Diagram Statements 

Description 

Step counter is loaded with number contained in EALU. 

Bit 31 from the scratchpad accumulator is transferred to SD. 

Sign of source is loaded into sign of destination. 

If subtract instruction is specified, sign of destination is loaded with 
complement of sign of source; otherwise, sign of destination is loaded 
with sign of source. 

The exclusive OR of SS and SD. 

Signals the CPU to trap through the floating-point trap vector. 

FN is set by ACMX (31) (0); FZ is set by ACMX (30:23) (377); FV and 
FC are cleared. 

FN is set by ACMX <31> (0); FZ is set by ACMX (30:23) (377); FV is set 
by EALU (8) (1); FC is cleared. 

FN is set by ACMX (31) (0); FZ is set by ACMX (30:23) (377); FC is set 
to I; FV is cleared. 

A branch that the SET F, SET D, SET I, or SET L instructions follow. 

A I is loaded in the sign of the source. 

Sign of source and sign of destination are zeroed. 

Indicates store class of instructions. 

. The ~break register is loaded with the output of EALU. 

The FPII goes in the Wait state and waits for FP ACKN from the CPU or 
IV. FP ACKN is sent when the FP EXC TRAP is acknowledged. 

The FPll goes into the Wait state and waits for FP ATTN from the CPU 
or from the IU. 

Floating minus zero trap. 

Each block on the set of flow diagrams represents a specific ROM word. The number of ROM words necessary 

to execute a floating-point instruCtion are dependent on the instruction. Table 4-2 shows how each ROM word 

is subdivided into fields and briefly defines the purpose of each field. Several fields are unique and require further 

explanation. One is bit (58), the redefined constant bit. If this bit is a 0, bits (57:53) of the constant field are not 

affected. If this bit is aI, the constants specified by bits (57: 53) of the ROM word are redefined. For example, 

if bit (58) is a 0, bits (57: 54) are 1 s and bit (53) is a 0, a constant of 74 is specified. If bit (58) now becomes aI, 

bit 53 takes on a new meaning whereby the FPll issues FP TRAP and waits for FP ACKN (see (58) in Table 4-2), 

These bits can be microcoded also: for example, if bit 57 were also a 0, detection of minus 0 would also be 
enabled. 
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Bits Field 

(63) DISBL I 

(62) DISBL 0 

(61 :59) CONTROL SEL 2-
CONTROL SEL 0 

(58) RDFNCNSTF 
(Redefined Constant Field) 

(57:53) CNST F 4-CNST FO 
(constant field) 

Table 4-2 

ROM Fields 

Field 
Setting 

0 
I 

0 
I 

0 
1 
2 
3 
4 
5 
6 

0 
I 

0 
1 
2 
3 
4 
5 
6 
7 

10 
II 
12 
13 
14 
15 
16 
17 
20 
21 
22 
23 
24 

4-13 

Definition 

Clears FP REQ 
NOP 

Clears ICLR, 20 ABORT, INITF and ABO RTF 
NOP 

LOAD FPSC 
LOADUBC 
FPREGWR 
DISABLE SYNC 
DISABLE SC 
FIR CLK 
Not used 

NOP 
Constant field (bits (57:53») redefined as follows: 

BIT 57 = CNT 4(0); 
enables detection of minus 0 

BIT 56 = CNT 3(0); 
enables DATI 

BIT 55 = CNT 2(0); 
not used 

BIT 54 = CNT 1(0); 
wait for FP ATTN 

BIT 53 = CNT 0(0) 
issue FP tRAP and wait forFP ACKN 

200 This field specifies the following 
1 list of constants 
2 
3 
4 
5 
6 
7 
10 
100000 
12 
13 
14 
100004 
16 
17 
220 
21 
22 
23 
24 

(continued on next page) 



Bits Field 

(57:53) 
(cont) 

(52) _ SYNC 

(5 j) D SEL 
(Data Select) 

(50) SCC 
(Step COllnter Control) 

(49) BDC 
(BD control) 

(48) ADDRINCR 
(Address Increment) 

(47) BAC 
(BA Control) 

(46:45) EMXC1,EMXCO 
(EMX Control) 

(44:43) FCC I, FCCO 
(Floating Condition Codes) 

(42:41) SIGNC1, SIGNCD 
(Sign Control) 

Table 4·2 (Cont) 

ROM Fields 

Field 
Definition 

Setting 

25 25 
26 26 
27 27 
30 30 
31 31 
32 70 
33 71 
34 34 
35 35 
36 74 
37 75 

a Enable FP SYNC 
I NOP 

a Select address 
I Select data 

a Load step co linter 
1 NOP 

a Load BD register 
I NOP 

a Increment address of data by 2 
1 NOP 

a Load BA register 
1 NOP 

a EMX +-BA 
1 EMX +- DATA IN or ADDRESS 

2 EMX+-CNST 
3 EMX+-SC 

a FN +- ACMX (3 I) (0); FZ +- ACMX (30: 23) (377) 
FV +- 0; FC +-0 

I FN +- ACMX(3 I).(O); FZ +- ACMX (30:23) (377); 
FV +- EALU (8) (1); FC +- a 

2 FN +- ACMX (3 I) (O);FZ +- ACMX (30:23) (377) 
FV +- 0; FC +- I 

3 NOP 

a SD +- - SS if subtract; otherwise. SD +- SS 
1 SD +- SS V SD 
2 SS +- I 
3 NOP 

(continued on next page) 
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Bits Field 

(40:39) BMXCl, BMXCO '. 

(BMX Control) 

(38) ACRE 
(AC Read) 

(37:-35) ACC2-ACCO 
(AC Control) 

-;/ 

(34:32) ACF2-ACFO 

( 
,----

(31 :30) ACMXC I, ACMXCO 
(ACMX Control) 

(29:27) CSB2-CSBO 
(Call hardware subroutine) 

Table 4-2 (Cont) 

ROM Fields 

Field 
Definition 

Settiilg 

0 BMX+-EALU 
1 BMX+-ACH 

2 BMX+-ACL 
3 BMX+-EXP 

" 

0 Write enable 
1 Read enable 

0 [3:2] This field selects the following 
I [3] ACs or combinations of ACs. 
2 [2] One ACs specify 16 bits and 
3 None two ACs specify 32 bits. 
4 [I :0] 
5 [ 1] 
6 [0] 
7 

0 ACS (AC source) Bits (2:0) of in-
struction word 
specify ACS 

I ACS or I (Selects odd AC) 

2 ACD 
3 ACD or 1 (Selects odd AC) 
4 AC6 
5 AC7 
6 Not used 
7 Not used 

0 ACMX +- BN, BZ and FPS 
1 ACMX+-EALU 
2 ' ACMX +- FALU H 
3 ACMX +- FALU L 

0 Multiply BR and QR: leave result in AR. 
1 Divide AR by BR: leave result in QR. 
2 Shift AR right by the number in SC; shift in Os. 
3 Shift AR left until normalized and count num-

ber of shifts in SC. 
4 Shift QR right by the number in SC.Shift in Os. 
5 Shift QR left by the number in SC. Shift in Os. 
6 Shift QR right by the number in SC. Shift in Is 

(sign bit remains 0). 
7 NOP 

(continued on next page) 
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Bits Field 

(26:25) ARCI, ARCO· 

(AR Control) 

(24:23) BRCI, BRCO 

(BR Control) 

(22:21) QRCI, QRCO 

(20) QRC2 

(J 9: 16) ALUC3-ALUCO 

(ALU Control) 

Table 4·2 (Cont) 

ROM Fields 

Field 

SE;!tting 
Definition 

0 Load AR 

I Shift AR left. Shift Os in. 

2 Shift AR right. Shift Os in. 

3 NOP 

0 Clear and Load B R 

I Clear BR 

2 Load BR 
~ 

3 NOP 

0 "'Load QR (59:35) if ACC <2> (0); otherwise 

load QR <34:3). QRS9 is loaded with O. 
QRS8 is loaded with I if exponent is nonzero. 

QR2 through 0 are loaded with Os. 

Load SS from SCR out 31 if ACF ;:: 0 or I. 
-~ 

J.,oad SD from SCR out 31 if ACF ;:: 2 or 3. 

I Shift QR left; shift Os in. 

2 Shift QR right; shift Os in. 

3 NOP 

0 Zero QR 

I NOP 

0 ALU oE-~ A A ;:: A side of ALU; B ;:: B 

I ALU oE- ~ (A or B) side of ALU 

2 ALU oE- A-B ALU = EALU and FALU, 

3 ALU oE- 0 which are ganged together 

4 ALU oE- ~ (A and B) 

5 ALU oE-- B 

6 ALU oE- A - B-1 

7 ALU oE- A and ~ B 

10 ALU oE- A + B + I 
II ALU oE- A + B 

12 ALU oE- B 

13 ALU oE- A and B 

14 ALU oE- 1 

15 ALU oE- A-I 

16 ALU +- A or B 

17 ALU oE- A 

(continued on next page) 
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Bits 

05: 14> 

(13) 

02:11> 

Field 

FMXCI, FMXCO 

UJP 
(Microjump) 

UAFI, UAFO 
(Microaddress field-used in 
conjunction with UBR field 
(bits 10 through 8) to specify 
branch modification.) 

Table 4-2 (Cont) 

ROM Fields 

Field 

Setting 
Definition 

0 Not used 

2 Round. Normally, BR is cleared so that AR (34) 

is added to AR (35) if FD = 0 or AR2 is added to 

AR3 ifFD = 1. 

I Normally, BR is cleared allowing AR to be in-
cremented at bit 35 if IL = 0 or at bit 19 if IL 

== I. 
3 NOP 

0 Jump to READY if bits 0:0> of modified ad-
dress are set. 

I NOP 

0 OR function with UAD (5:0> ifUBR (0) 0; 
otherwise OR with UAD (5: 2> 
UBR 0 (0) specifies even rows,UBR 0 (1) 

1 
,..specifies odd rows' 
OR function with UAD (0) (only bit 0 can be 
modified) 

2 < OR function with UAD <I> (only bit I can be 
modified) 

3 OR function with UAD 0:0> (bits 0 or I can be 
,-modified) 

NOTE 
The remainder of this table defines the micro branch­
ing conditions (bits 10 through 0). 

(continued on next page) 
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Bits Field 
Field 

Setting 

(10:8) UBR2-UBRO 0 

(Microbranch 1 
field - used in 2 

. conjunction with 3 
UAF field to spe-

4 
cify branch mod-

5 ification.) 
6 

7 

(7:0) UAD 7=UADO 

~ ...... 
00 

r 

UADS 

SUB FRAC 
FIR (7) (1) 

RNG2 

0 

0 

FIRD 6 

0 

0 

Table 4-2 (Cont) 

ROM Fields 

UAD4 UAD3 

FlRD 4 FIRD 3 
FIR (6) (1) FIR (t 1) (1) 

RNG 1 RNGO 

0 0 

0 0 

FIRD 5 0 

0 FIR (8) (0) 

0 0 

Definition 

UAD2 UAD 1 UADO 

FIRD 2 FIRD 1 FIRDO 

FIR (Im (1) AR (50) (0) SD (I) 

0 BBIZ (1) BN (0) 

FlU (1) IL (0) Immediate 

FT (1) ~ (FC and FIC) FD.(O) 

-CNVSP - (FV and FIV) MO 

AR 58 (1) AR (59) (0) BZ (1) 

0 0 0 

8-bit address of next instruction. This is the address which mayor may not be modified by bits (I 2:8). 

I~ \ , 
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A second ROM group requiring further explanation is the microbranching fields. UAD bits 7 through 0 of the 

ROM word arc used to define the:lext ROM address to be sequenced. This next address mayor may not be 

modified under certain conditions. The UAF field (ROM bits 12 andll) in conjuhction with the UBR field 

(ROM bits 10 through 8 determine which bits of the next address can be modified, and which oranch conditions 

will be used to cause the bits to be modified. 

Several conditions must be met before micro branching can occur. 

J. Only bits 5 through 0 of the UAD (next address) can be modified; bits 6 and 7 cannot be changed. 
The exception to this is the UJP and UTrap described in a subseql1ent paragraph. 

2. Only UAD (next address) bits on a 0 can be modified, i.e., UAD bits on a zero can be modified to 
1 s, but UAD bits on a 1 cannot be modified. 

3. The branch condition(s) being used must be true. See the chart in the definition column of the UBR 
field for the branch conditions. Note that some of the conditions are true when they are in the 0 
state such as AR59, IL, etc. 

The UBR field (ROM bits 10 through 8) is decoded to determine which conditions will be used to modify the 

next address, i.e., if the UBR = 6s we can use FIR bit 8 (0) to modify UAD bit 3, AR58 (1) to modify UAD 

bit 2, etc. These modifications are, of course, contingent on the prior listed conditions and also on the decoding 

of the UAF field (refer to Table 4-2). 

The UAF field (ROM bits 12 and 11) is decoded to determine which bits of the UAD (next address) can be modi­

fied. See the definition column of the UAD field for this octal decoding. Note that a decode of 0 in the U:AF 

field (i.e., ROM bits 12 and 11 both Os) is further modified by the condition of UBR bit 0 (ROM bit 8). If UBR 

" bit 0 is a 0 and the UAF field decode is a 0, then bits 5 through 0 of the next address can be modified. UBR bit O' 

l. is a 0 for UBR octal decodes of 0,2,4; and 6. If UBR bit 0 is a 1 (octal decodes of 1,3,5, and.7 of the UBR 

field) and the UAF field decode is a 0, then only bits 5 through 2 of the next address can be modified. 

I 

~. 

TheUAD field (ROM bits 0-7) gives the next ROM address to be sequenced, subject to modification if selected. 

As an example of microbranching refer to Block NRM.OO on sheet 12 of the flow diagrams. From block NRM.OO 

one of four different ROM addresses can be selected subject to the conditions of AR bits 58 and 59. The con­

tents of the U~D (next address) field is octal 11 as indicated by the number 11 in parenthesis under the lower 

right-hand corner of the block. The term6FO, following the next address of (11), refers to the UBRand UAF 

fields of the ROM word in location 273. The 6 is the octal decode of the UBR bits, and the FO is the decode of 

the UAF bits. Because the UAF field is decoded to be 0, the state of UBR bit 0 must be examined to determine 

which bits of the next address can be modified. Because the octal decode of the UBR field is 68 or binary 110, 

UBR bit 0 is O. 

By definition, if the UAF field is 0 and UBR field is 0, bits 5 through 0 of the next address canbr_modified (see 

UAF field 0 in Table 4-2). 

With an octal decode of 6 in the UBR field, only bits 3 through 0 have any conditional branches C~ee UBR field 

6 in Table 4-2). Bits 4 and 5 cannot be modified (0 designates no change to the UAD bit). The next address in 

the UAD field is lIs thus, bits 0 and 3 are 1 s, as shown below: 

UAD Field 

bits 7 6 5 4 3 :2 0 

next address = lIs 0 0 0 0 0 0 
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As previously mentioned, bits on a 1 in the UAD field cannot be changed. Consequently, only bits 1 and 2 of 

the UAD field can be modified. These bits can be modified by AR59 and AR58, respectively, which agrees with 

the statements on the flow diagram. 

AR(58} modifies UAD bit 2 to a 1 and AR(59} (0) modifies UAD bit 1 to a 1 (refer to UBR field 6 in Table 4-2), 

which yield the following branch possibilities: 

UAD 

next address will be 

118 = 00 001 001 2 
138 = 00 001 011 2 
158 = 00 001 101 2 
178 = 00 001 1112 

Possible AR Conditions 

if AR59 AR58 AR decoded 

o 
1 

o 

o (2) 

o = (0) 

1 (3) 

= (1) 

Examination of the branch conditions on sheet 12 of the flow diagram under block (273) verifies that the above 

micro branch decodes are correct. 

The UJP field (ROM bit 13) is a special form of micro branching. This field is used to return the ROM program 

to the Ready state (ROM location 3 - see sheet I of the flow diagram). 

The UJP bit, when cleared, causes the next address (UAD field)"to be set to 3 (bits 7 through 2 of the UAD field 

being cleared) if bits 0 and I of this address are both 1 s. This occurs if bits 0 and 1 are 1 s either prior to or after 

address modification by the UBR and UAF fields. 

For example, examine flow block NOM. 18 on sheet 2 of the flow diagram. Note the letter J following the UBR 

and UAF field designators below the lower right-hand corner of the block, i.e., (22) 4Fll. The J indicates that the 

UJP is a 0 in this ROM word, and that the next address is ROM location 3, provided bits 0 and 1 of the next ad­

dress are 1 s. For a next address of 22, UAD bit 1 is a 1 but UAD bit 0 is a O. If the branch condition specified 

by 4Fl is not satisfied, the next address is 22. However, if FD is on a 0, UAD 0 is modified to a 1 and the next 

address is 23. Because UAD bits 0 and 1 are now both Is and because the J bit is cleared, the next address is 

forced from state 23 to the Ready state (state 3 where bits 0 and 1 are set and bits 2 through 7 are cleared). 

4.2.3 Detailed Analysis of ROM Word 

Each ROM word is shown as a block on the flow diagram. As previously mentioned, a series of ROM words is 

necessary to execute a particular instruction. One such block is described in detail to illustrate how the ROM is 

implemented. The selected ROM word is block LD.12 (designated above the upper left corner of block) shown 

on sheet 4 of the flow diagrams. The ROM word selected is associated with the Load class of instructions, with 

some mode other than mode 0 (register-to-register) specified. The current address of this word is 2418 shown 

above the upper-right corner of the block; the next address is 2028 shown below the lower right corner of the 

block and followed by a 3F 1. The first number (3) designates the UBR bit and the F 1 designates the UAF bit. 

Functionally, this ROM word takes a data word from the CPU, writes it into the scratch accumulator, and moni­

tors the data for a minus 0; this procedure is done at the output of the ACMX. In order to see how these func­

tions are accomplished, it is necessary to examine each step in the block. First, the INC ADDRESS indicates 

that the address of the data is to be incremented.by 2. This is accomplished by making bit 48 of the ROM word 

aO. 

A FPCI signal generated by the FPll, specifies that data is to be transferred from the CPU to the FPll. The 

data is gated into the EMX by making bits 46 and 45 of the ROM word a 0 and 1, respectively. The data is then 
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I gated into the ALU where it is complemented. The reason for complementing the data is that the scratch 
\ '~j accumulator hardware inverts the data and, therefore, a second inversion is necessary to have the true data avail-

able. From the ALU, the data is gated into the ACMX by making bits 31 and 30 of the ROM word a 0 and 1, 

respectively. The next element in the block specifies that the FPll is to wait for an FP ATTN from the CPU, 

which accompanies a transfer of data. In order to accomplish this, bit 58 must be a 0 to redefine the CNT 

(constant) field, and bit 54 must be a 0 specifying that the FPll wait for FP ATTN. The ACMX is loaded into 

AC6 [3]. This is accomplished by bits 37 through 35 of the ROM word on a Is. AC6 is used to temporarily 

store the data so that if a floating minus 0 occurs, the contents of the destination accumulator will not be de­

stroyed. 

The next statement specifies that the floating-point condition codes be set. This is accomplished by bits 44 and 

43 of the ROM word. Because no overflow or carry occurs during a load, bits 44 and 43 should both be Os. 

The ENBL -0 INTERRUPT statement causes the hardware to examine the output of ACMX for the 1 's comple­

ment of a floating minus O. 

Finally, the last statement in the block is FP SYNC, which is specified by bit 60 set to a O. Consequently, all 

elements contained in this block have been specified by designated bits of the ROM word. All bits not discussed 

are set to the NOP or default condition and are subsequently not used at this time. A similar analysis can be 
followed by tracing through any of the ROM blocks in the diagram. 
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5.1 INTRODUCTION 

CHAPTER 5 

ARITHMETIC ALGORITHMS 

This chapter describes the arithmetic algorithms associated with the FPII. Addition and subtraction are first 

described followed by multiplication and division .. Several basic concepts are described before multiplication 

and division to familiarize the reader with the more complex concepts utilized in the FPII. State diagrams and 

examples of the multiply and divide algorithms are provided. 

5.2 FLOATING-POINT ADDITION AND SUBTRACTION 

Floating-point addition and subtraction is performed in the ALU. The exponents of the operands are processed 

in the EALU, and the fractions are processed in the FALV. The operands are designated source and destination 

operands. The following chart lists the register associated with the exponent, fraction, and sign of each operand. 

Operation 

Destination 

Source 

Result 

Exponent 

BD 

BA 

BD 

Fraction 

AR 

BR&QR 

AR 

Sign 

SD 

SS 

SD 

For example, the exponent of the result of an addition or subtraction is found in the BD, the fraction is found 

in the AR, and the sign is found in SD. 

The source operand is located in an AC if mode 0 is specified or located in memory if mode 0 is not specified. 

In the latter case, the operand in memory is transferred to AC6. 

5.2.1 Description of Fraction Processing 

To understand how the hardware implements the fractional part of the operand floating-point addition and sub­

traction, refer to Table 5-1. SS represents the sign of the operand in ACS, and SD represents the sign of the oper­

and in ACD. The sign of the result is stored in SD. Note that the table contains four possible combinations of 

SS and SD for the add instruction and a similar number for the subtraction instruction. Further note that the 

sign that precedes the quantity in parenthesis corresponds to the sign of the destination. The sign of the result 

is the sign of the destination (SD) if the quantity in the parenthesis is positive, which is the case for combinations 

1, 4, 6, and 7. In each of these cases, the quantities are actually added by the hard ware because ( IACD I + lACS I) 

is specified in each of these cases. 

There are four possible combinations where the quantity in parenthesis can produce a negative result: combina­

tions 2 and 3 for the add instruction, and combinations 5 and 8 for the subtract instruction. Note in combinations 
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2 and 3 that the sign of the source is the complement of the sign of the destination. If the quantity in parenthesis 

in combination 2 is negative, the final result is positive and the sign of the source is the sign of the result. Simi­

larly, in combination 3, if the quantity in parenthesis is negative, the final result is negative and the sign of the 

source represents the sign of the result. In these two cases then the sign of the source is transferred to the sign of 

the destination where the sign of the result is stored. If the quantity in parenthesis is positive in either case, SD 

is the sign of the result. In combinations 5 and 8, listed under the subtract instruction, the sign of the source and 

the sign of the destination are the same and both are the opposite of the sign of the result. In combination 5, if 

the quantity in parenthesis is negative, the sign of the result should be negative, while SS and SD are both positive. 

The hardware circumvents this by complementing the sign of the source and transferring it to the sign of the 

destination. In combination 8, if the quantity in parenthesis is negative, the sign of the result should be positive, 

while SS .and SD are both negative. Again, the sign of the source is complemented and transferred to the sign of 

the destination. If the quantity in parenthesis in combination 5 or 8 is positive, SD is the sign of the result. 

Table 5-1 

Add and Subtract Implementation 

Hardware 
Sign of Result 

Combination SS SD Add Instruction Positive Negative 
Performs 

Parenthesis Paren thesis 

I a a 
2 a 1 

3 I a 
4 1 1 

5 a a 
6 a 1 

7 1 a 
8 1 1 

ACD +-+ (IACD 1+ IACSI) Add 

ACD +- - (IACD I-IACSI) Subtract 

ACD+-+(IACD 1- IACSI) Subtract 

ACD+- - (IACD I + lACS I) Add 

Subtract Instruction 

ACD +- + (IACD 1- lACS I) Subtract 

ACD +- - (IACD 1+ lACS I) Add 

ACD +-+ (IACD 1+ IACSI) Add 

ACD +- - (IACD 1- lAcs I) Subtract 

NOTE 
The microprogram is implemented such that the 
source can be subtracted from the destination but 
the destination cannot be subtracted from the 
source. 

5.2.2 Description of Exponent Processing 

SD +- SD -

SD +-SD SD +- SS 

SD +- SD SD +- SS 

SD +- SD -

SD +- SD SD +- ~ SS 

SD +- SD -

SD+- SD -

SD +- SD SD +- ~ SS 

During exponent alignment, the relative magnitude of the operands is detected by subtracting the smaller exponent 

from the larger exponent - the difference being the number of right shifts the smaller number is to be shifted. If 

this number is very small compared to the other number, it can be completely shifted out of the register. To 

avoid needless shifting in these cases, the relative magnitude of the numbers is detected and falls into one of the 

following five classes (see FP 11 flow diagram), and Figure 5-1 : 

1. EQ - (exponents equal). In this case, the exponents of the operands are equal and no exponent 
alignment is necessary. The mantissas can simply be added in the F ALU. 
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( GT - (greater than). The operand in the AR is greater than the operand in the BR. The operand 
in the BR is the same operand that is stored in the QR, and since the BR cannot be shifted, the QR 
is right shifted until the exponents associated with the mantissas in the QR and AR are equal. Then 
the contents of the QR is transferred to the BR. Figure 5-1 shows the various ranges of magnitudes. 
If single-precision floating-point format is specified, the difference between the two exponents must 
not be greater than 2510 to be in the GT class. If double-precision floating-point format is specified, 
the difference between the exponents can be no greater than 5710 , The reason that 2510 shifts II-lUst 
be exceeded when the single-precision word. for example, is only 24 bits (23 bits plus hidden bit) is 
that the number must be completely shifted out of the register including the rounding bit slot, before 
the GT class can be exceeded. 

3. LT ,- (less than). The operand in the AR is less than the operand in the BR, and in this case, the AR 
is right shifted to fall in this class. The AR EXP - BR EXP difference should result in a number more 
positive than minus 2510 for single-precision or minus 5710 for double-precision floating-point. 

4. MGT - (much greater than). In this case, the operand in the AR is much greater than the operand 
in the BR and when the QR is right shifted to align exponents, the number contained therein would 
be completely shifted out of the QR. This fact is detected by the FPII hardware; thus, unnecessary 
shifting is prevented. Effectively, the operand in the AR is the result in this case. 

5. MLT - (much less than). The operand in the AR is much less than the operand in. the BR. In this 
case, right shifting the AR to align the exponents would zero but the quantity in the AR. This fact 
is detected by the FP II hardware, thus avoiding the necessity of performing unnecessary shifting 
operations. The quantity in the BR is effectively the result. The exponent in the BA and the mantissa 
in the BR are loaded into the destination AC . 

. Consequently, in the last two cases (MGT, MLT) where one operand is much larger or smaller than the other 

operand, the addition is never performed, and the result is the result of the larger quantity. In the first three 

cases (EQ, GT, LT), the two operands are added or subtracted by the hardware after they are aligned. 

RANGE = EXPD - EXPS 

If positive, shift source 

If positive and> 251 0 (single preCision) or 5710 (double precision), use destination as result 

If negative, shift destination 

If negative and <2510 (single precision) or 5710 (double precision), use source as result 

EQ 

MLT LT GT MGT 

(Use source) (Shift destination) (Shift source) (Use destination) 

0 

F Range < -2510 -251O~ Range < 0 0< Range ~ 2510 Range> 2510 

D Range < -5710 -5710~ Range < 0 0< Range ~ 5710 Range> 5710 

Figure 5-1 Exponent Magnitudes 
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5.2.3 Testing For Normalization 

After the required addition or subtraction operation has been performed, the result in the AR is tested to ensure 

that it can be normalized. If the number in the AR is negative, it indicates that the number cannot be O. If the 

AR is positive, a possibility exists that it can be O. Consequently, I is subtracted from the AR and if the result is 

negative (change of signs) the number in the AR is known to be 0 and cannot be normalized. If there is no sign 

change in the subtraction the AR contains a positive nonzero number, which can be normalized. 

After normalization, the result is rounded or truncated depending on the setting of the FT bit in the program 

status register. The floating condition codes are also set. 

5.3 FLOATING-POINT MULTIPLICATION 

The FP 11 Floating-Point Processor employs a rather complex method of shifting over I s and Os to perform mul­

tiplication. In order to familiarize the reader with this method, several concepts of this technique are first de­

scribed followed by a description of the hardware employed in the FP 11. 

5.3.1 Fundamental Concepts 

One simple method used in multiplication is to examine the multiplier on a bit-by-bit basis. If the bit is a 0, the 

multiplicand is shifted left one place. If the bit is ai, the multiplicand is added to the partial product and is then 

shifted left one place. 

o o t t... """ multipli"nd 'oft 
add and shift multiplicand left 

add and shift multiplicand left 

L-.. ________ add and shift multiplicand left 

L-.. __________ shift multiplicand left 

'--____________ add and shift multiplicand left 

The same result can be obtained by shifting the partial product and the multiplier right one place as opposed to 

shifting the multiplicand left one place. 

The method just described becomes rather time consuming because each 1 in the multiplier requires an addition. 

A method is desired where addition can be replaced with shifts inasmuch as shifting consumes less time. An im­

provement over this method is a process of shifting over 1 s and Os. 

In order to implement shifting over 1 s and Os, the binary configuration of a number is represented in a different 

manner. For example, the binary number 1111 can be represented as 10000-1. Both expressions are equivalent 

and are equal to 1510 . Note that the second representation of the number contains only two 1 s, requiring only 

two arithmetic operations whereas the first representation of the number contains four 1 s for a total of four ad­

dition operations. The operations for each representation are performed as shown on the following page. 
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o o o o - 1 t t -+ ,dd 'nOMifl 
add and shift 

add and shift 

ttL ,"bl~d ""d "';[1 

shift 

shift 

'--________ add and shift '--_______ shift 

L-________ add and shift 

Old Method Shifting Over 1 s And Os 

Note that a subtraction occurs in the bit position corresponding to the least significant 1 in the string, and an ad­

dition occurs I-bit position beyond the most significant bit position in the string. This method proves most ad­

vantageous where long strings of 1 s occur. Worst case occurs for alternating 1 s and Os. 

An additional improvement over this method is developed where an isolated 1 occurs in a string of Os or an iso­

lated 0 occurs in a string of 1 s. In this method, the multiplier is examined two bits at a time to look for runs of 

Is or Os. A run is defined as a string of two or more consecutive identical bits as shown below. 

11 00000 ~llllJ 
\.....,J '-...,-.../ ---

I I ... _I_runofls 
_ run of Os 

'--__________ run of 1 s 

To see how this improved technique is implemented, consider the example of an isolated 0 in a string of 1 s as 

shown in the following example: 

.. t t.l, ,ubl,,,"nd ""if! (~ring ofl, ~coun',,,d) 
shift 

shift 

'--________ add and shift (string of 1 s terminated) 

L..-__________ subtract and shift (new string of Is encountered) 

L-___________ shift 

L..-______________ shift 

'--_________________ add (necessary because of the previous subtraction) 

Note in this example that in the 0 bit positiod an add is performed followed by a subtraction in the next bit po­

sition. This situation can be reduced to one arithmetic operation by performing the subtraction where the isolated 

o is located. Consequently, adding the 23 bit position (810 ) and subtracting the 24 bit position (1610 ) is the same 

as merely subtracting the 23 bit position (810 ) both methods yielding -8. Another important point is that the 
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last bits encountered in the multiplier are a run of I s. Since a subtraction is first performed, when the run is 

encountered, it is necessary to conclude the operation with an addition occurring one bit beyond the most sig­

nificant bit position. 

Now, consider the case where an isolated I occurs in a string of 2s. 

o o o 0 0 

t t_Shift 

~shift 
~ _______ shift 

L-_________ subtract and shift 

'--__________ add and shift 

'--____________ shift 

L..-__________ . ___ shift 

At first glance, this seems more cumbersome than the simple method first described. However, this can be re­

duced to one arithmetic operation (an addition) occurring where the I bit is encountered. Thus, instead of sub­

tracting the 23 bit (-810 ) and adding the 24 bit (+ 1610 ), the same result is obtained by adding the 23 bit (+810 ). 

5.3.2 Multiply Hardware 

With these principles in mind, the following paragraphs describe the implementation of the shifting over I s and Os 

method. The multiplicand is loaded in the BR register via the QR register, and the multiplier is then loaded in the 

QR register. The AR register is initially cleared and retains the partial products as they are accumulated. The 

hardware contains a step counter that keeps track of the number of shifts. This counter is preset with the l's 

complement of the number of bits in the multiplier and is incremented after each shift or after each arithmetic 

opera,tion followed by a shift. The counter is checked during each step and the multiplication is complete when 

the step counter goes to all Is. Bits QR59 through QR3 in the QR are loaded. The extension bits, QR2 through 

QRO, are cleared. These bits are an extension of the QR register and are used for rounding operations. The test­

ing of the bit pattern of the multiplier is dorie in a high-speed 2-bit register (MR I and MRO), which has a copy of 

the appropriate bits of the QR. MRO is always initialized to O. MR I is initialized with the contents of QR3 if 

double-precision floating point is specified or is initialized to the contents of QR35 if single-precision floating 

point is specified. During the multiply operation, MRI is shifted into MRO and QR4 (double-precision) or QR36 

(single-precision) is shifted into MR 1. Note that the initialization requires an extra shift at the start of the mul­

tiply operation. The floating-point hardware also contains a STRG I (string of I s) flip-flop, which is set by two 

consecutive I s and reset by two consecutive Os. The flip-flop is initially reset. Figure 5-2 shows a flow diagram 

with three variables: MR I, MRO, and STRG I. If MR I and MRO are both Os and the STRG I flip-flop set, the 

multiplicand is added to the partial product. If MR I is a 0, MRO is a I, and STRG I is a 0, the multiplicand is 

also added to the partial product. Note that the QR (containing the multiplier) and the AR (containing the par­

tial product) are right shifted and the BR (containing the multiplicand) is not shifted. 

( 

Figure 5-3 shows a state diagram based on the state of MRI, MRO, and the STRG I flip-flop. For example, if all 

three are in the 0 state, the next shift could cause all three to remain in the 0 state or a I could be shifted into 

MRI. These are the only possible states that can be entered when all three variables are initially O. Listed below ( 
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ABBREVIATIONS: 
STRGI - STR I NG OF 1's 
FD - DOUBLE PRECISION FLOATING 
RS - RIGHT SHIFT 
OR, AR - REGISTERS 
SC- STEP COUNTER 

AR-AR-BR 
RS OR, RS AR 
INC SC 
STRGI-l 

>-N..:.O"---_SINGLE PRECISION-USE OR35 INSTEAD OF OR3 
USE OR34 "INSTEAD OF QR2 
AND THIS FLOW DIAGRAM 

>-y.:.:E::.;S'--_. STOP 

AR-AR+BR 
RSOR,RSAR 
INC SC 
STRG1-0 

STOP 

STOP 

IS APPLICABLE FOR SINGLE 
PRECISION FLOATING POINT 

11-0436 

Figure 5-2 Multiply Flow Diagram 
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*00(0) 

00(0) 10(0) 

11(1) 

MRJ MR~ 

FUNCTION 
QR3(DBl) QR2 (DBl) 

STRGI 
OR35(SNG) QR34 (SNG) 

0 RIGHT SHI FT OR, AR, INCREMENT SC ** 

0 AR-BR+AR,RIGHTSHIFT OR,AR,INCREMENT SC 

0 0 RIGHT SHIFT OR,AR,INCREMENT SC 

0 AR-AR-BR,RIGHT SHIFT QR,AR,SET STRG1,INCREMENT SC 

AR-AR+BR ,RIGHT SH 1FT OR, AR, RESET STRG 1, INCREMENT SC 

0 ,. RIGHT SHIFT OR,AR, INCREMENT SC 

0 AR-AR-BR,RIGHT SHIFT QR,AR,INCREMENT SC 

RIGHT SHI FT OR, AR INCRE MENT SC 

*Fordouble precision format 00(0)=OR3,OR2,(STNGI) 
For single precision format 00(0)= QR35,QR34,(STNG I) 

*ItThe step counter is set to the two's complement,af the number of bits in the multiplier and 'S checked 
for zero ofter each incrementotion. 

Figure 5-3 Multiply State Diagram 

the state diagram is a table describing the functions performed as a result of the various bit configurations. For 

example, if MR I is aI, MRO is a I, and STRG 1 is reset, the multiplicand is subtracted from the partial product, 

the step counter is incremented, the AR and QR .registers are right shifted one place, and the STRG I flip-flop is 

set. This table is very helpful in working through a typical multiplication example in order to determine the next 

sequence of events. Figure 5c4 provides some typical examples using 6-bit numbers for simplicity. The following 

poirits should be carefully observed in studying the examples. 

1. Subtraction is performed using 2's complement arithmetic. 

2. If the previous arithmetic operation was a subtraction, a I is shifted into the most significant bit of 
the AR when the AR is right shifted. Conversely, if the previous arithmetic operation was an addi­
tion, a 0 is shifted into the most significant bit of the AR when the AR is right shifted. 
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Example: 0.7510 X 0.510 = 0.37510 

QR QR STNG 
Step AR QR 3 2 1 BR Functions Performed 

0 o 0 0 0 0 0 0 1 o 0 0 0 0 0 0 11 o 0 o QR +- MULTIPLIER, BR +-MULTIPLICAND, SC+--7, STRGI +- 0 

1 0 0 1 0 0 0 0 0 RS QR, RS AR,'lNC .. SC TO -6 

2 0 0 0 1 0 0 0 0 RS QR, RS AR,INC. SC TO -5 

3 0 0 0 0 1 0 0 0 RS QR, RS AR,INC. SC TO -4 
4 0 0 0 0 0 1 0 0 RS QR(, RS AR,INC. SC TO -3 NOTE 
5 0 0 0 0 0 0 1 0 RS QR~ RS AR, INC. SC TO -2 1. By investigati~g state of QR3, QR2, and STRGl, the next function performed can be determined. 

6 o 0 1 1 0 0 AR +- A'R + BR, RS QR, RS AR, INC. SC TO - 1 END MUL TIPL Y 2. When the AR~s right shifted, the MSB retains the same bit polarity it had before the shift occurred, 

Answer = 0.01100 = 0.2510 + 0.12510 = 0.37510 QR3 QR2 STNGI Function 

0 0 '0 RS QR, RS AR, INC SC 
Example: 0.75 10 X 0.718710 = 0.5390610 

0 1 ;0 AR +- BR + AR, RS QR, RS AR, INC SC 

QR QR STNG 
Step AR QR 3 2 1 BR Functions Performed 

1 0 10 RS QR, RS AR, INC SC 

1 1 10 AR +-AR - BR, RS QR, RS AR, INC SC, SET STRGI 

0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 1 1 0 0 o QR +- MULTIPLIER, BR +- MULTIPLICAND, SC = -7, STRGI +- 0 0 0 11 AR +- AR + BR, RS QR, RS AR, INC SC, RESET STRG 1 

( 1 0 0 1 0 1 1 1 0 RS QR, RS AR,iINC SC TO -6 
2 1 1 0 1 0 0 0 0 0 1 0 1 1 1 AR ~~ AR - BR, RS QR, RS AR, SET STRG 1, INC SC TO -5 

0 1 11 RS QR, RS AR, INC SC 

1 0 : 1 AR +- AR - BR, RS QR, RS AR, INC SC 

3 1 1 1 0 1 0 0 0 0 0 1 0 1 1 RS QR, RS AR"INC SC TO -4 1 1 11 RS QR, RS AR, INC SC 

4 1 1 1 1 0 1 0 0 0 0 0 1 0 1 RS QR, RS AR, INC SC TO -3 I 
5 1 1 0 0 1 0 0 0 0 0 0 0 1 1 AR +- AR - BR;, RS QR, RS AR, INC SC TO -2 

6 1 1 1 0 0 1 0 0 0 0 0 0 0 1 RS QR, RS AR,lNC SC TO -1 

0 1 0 0 0 1 AR +- AR + BRiNO FINAL SHIFT, END MULTIPLY 

Answer = 0.100012 = .510 + .0312510 = 0.53125 

Note: With six bits, of significance, the answer 0.53125 is the closest possible answer to the true result.of 0.53906. 

Figure 5-4 Examples of Floating-Point Multiplication 
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3. Initially, MRO and STRG I are as and, thus, an extra shift will occur at the beginning of a multiply 
operation regardless of the state of MR I (see table in Figure 5-2). 

4. Arithmetic operations are performed only after state 10 (0) or a I (1), where the leftmost bit repre­
sents MRI, the middle bit represents MRO, and the bit in parenthesis represents STRG I. 

5. A string of I s occurring immediately to the right of the binary point requires a final addition one 
place beyond the binary point. This addition is not followed by a shift. 

6. Although not shown in the example, the sign of the operand stored in the accumulator is stored in 
SD (sign of destination) and the sign of the other operand is stored in SS (sign of source). Upon 
conclusion of the multiplication, the signs are exclusively ORed - if they are the same, the sign of 
the product is positive - if they are different, the sign of the product is negative. The resultant 
sign is left in SD. 

5.3.3 Multiply Timing 

The timing for the multiplication operation is shown in Figure 5-5. The basic clock rate is 50 ns, which is the 

rate at which shifting occurs. Note that events occur at the trailing edge of the clock pulses. When the actual 

arithmetic operation (addition or subtraction) takes place, a 200 ns delay (4 clock pulses) is incurred. This is ac­

complished by setting the MUL ARITH flip-flop. This flip-flop is set for add or subtract operations during mul­

tiplication and, when set, inhibits shifting until the product is loaded in the AR. During normal shifting opera­

tions, the MUL ARITH flip-flop is in the reset state. 

FRHJ CLOCK H 

FRHE MUL ARITH (1) H 

FRHE PO (1) H 

FRHE Pl (1) H 

FRHE P2 (2) H 
1 

I 1 

~~------~~~-------
SHIFT ADD/SUB SHIFT SHIFT 

FRHE MUL SUB - - - - - - - - - - - - - - - - - - - -, _________ ::~ ::: :~:TRACT 

11-0837 

NOTE' 
Trailing edge triggering is employed 

Figure 5-5 Multiply and Divide Timing Diagram 

Refer again to the state diagram for multiplication shown in Figure 5-3; the two states that precede a state in­

volving an arithmetic operation are 10 [0] and a I [I]. Detection of either of these states causes the MUL ARITH 

flip-flop to set with the next clock pulse. The MUL ARITH flip-flop, in turn, enables the pause logic consisting of 

flip-flops PO, PI, and P2. The three flip-flops (PO, PI, P2) produce a 200 ns delay to allow time for completion 
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of the arithmetic operation. PO is set on the next clock pulse occurring after MUL ARITH is set, PI is set on the 
. . 

next clock pulse occurring after PO is set, and P2 is set on the next clock pulse occurring after PI is set. The set-

ting ofP2 enables PO to be reset on the next clock pulse, similar to a ring-tail counter. The resetting of PO, in 

turn, causes PI and P2 to get reset. PO, when set, switches the AR control lines from shift 'to load and causes the 

AR to be loaded rather than shifted; P2, when high, is used to enable the AR clock pulses and then goes low to 

disable the pause logic and consequently enable the shift pulses. 

Normally, in the multiply algorithm, the last step encountered in a string of 1 s is an add and shift or merely a 

shift if a string of Is has not been encountered (see the following examples). 

o III o o 0 ttL ,dd .nd ,]rift 
shift . 

add and shift 

t t Lmbmct 
shift 

shift 

L--______ shift L--______ shift 

1--_______ shift L--________ add and shift 

'--__________ add and shift L--__________ shift 

String of Is No String of Is 

If the string of 1 s should occur in the most significant bit positions, it is necessary to inhibit the shift following 

the add operation (see examples below). The shift will occur if the string of Is is not present. 

o III o o 1 0 1 t t L"'d .nd "'ift 
shift 

add and shift 

t t L,ubmct 
shift 

shift 

L...-______ shift '--_______ shift 

'--________ shift '--________ add and shift 

L..-__________ add and inhibit shift '--___________ shift is inhibited 

String of Is No String of Is 

The hardware implements this by setting the MUL SUB flip-flop when a subtraction in a string of Is occurs. 

The flip-flop is reset by an add operation and, therefore, this flip-flop remains set until the add and shift opera­

tion, which terminates a string of 1 s. 

The step counter is preset to the 1 's complement of the number of shifts that are required. For each shift that 

occurs, the step counter is incremented. Multiplication is terminated when the step counter sequences to all 1 s 

(77 8)' With the MUL SUB flip-flop set (indicating that the last arithmetic operation was subtract and that a string 

of 1 s was encountered), shifting occurs and the step counter is incremented for each shift. If the step counter 

sequences to 77 8 before the add operation occurs, the shift following the add is inhibited. If the add operation 

occurs before the step counter sequences to 77 8, the shift following the add is allowed to occur. 
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5.4 DIVISION 

Digital computers have various methods available for performing division. Several that are briefly described in 

the following paragraphs are: restoring division, noncrestoring division, and non-restoring division utilizing the 

normalizing principle. This latter method is the most efficient and is the one employed in the FPll Floating­

Point Unit. 

5.4.1 Restoring Division 

When dealing with positive numbers in restoring division, the divisor is first subtracted from the dividend, yielding 

a remainder. If the subtraction is successful (indicating that the dividend is larger than the divisor), a 1 is entered 

into the quotient. If the subtraction is unsuccessful, a 0 is entered in the quotient and the remainder is restored 

back to its original value; this is done by adding the divisor to the remainder. The disadvantage is that two arith­

metic operations (a subtraction and an addition) are required when the subtraction is unsuccessful. In the next 

cycle, the remainder is left shifted one place(which is equivalent to multiplying by 2), the divisor is subtracted 

from the remainder, and the result is examined. If the subtraction is successful, a 1 is entered in the quotient; 

if not, a 0 is entered and the remainder is restored. This process continues until an appropriate number of quo­

tient bits have been determined. The sign of the dividend and divisor can be handled separately. If they are both 

of the same sign, a positive quotient results; if different, a negative quotient results. 

5.4.2 Non-Restoring Division 

The chief advantage of non-restoring division over restoring division is that the remainder need not be restored in 

the same cycle if the subtraction result is unsuccessful. The steps in restoring divide for an unsuccessful subtrac­

tion are: 

1. R-D 

R = remainder 

D = divisor 

2. R-D+D 

3. (R-D+D) x 2 

4. (R-D+D) x 2-D 
(R-D+D) x 2-D = 2R-D 

Isubtract 

Irestore remainder 

Ileft shift new remainder 

I subtract divisor 

The steps performed in non-restoring divide for an unsuccessful subtraction are: 

1. R-D 

2. (R-D) x 2 

3. (R-D)x2+D 
(R -D) x 2 + D = 2R - 2D + D = 2R - D 

I subtract 

Ileft shift new remainder 

ladd divisor 

Note that the results in either case are the same (2R-D), but that the restoring divide required an additional arith­

metic operation. An example of non-restoring division is shown in Figure 5-6. 
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Example: 0.110002 7 0.10001 2 = 1.01101 2 

1.011012 = 0.10110 X 21 = 0.687510 x 2 = 1.37510 

0.7510 70.5312510 = 1.4 

Step Function Register 3 (R3) Register 2 (R2) Register 1 (R 1 ) 

1 

2 

3 

-4 

5 

6 

R2- Rl pas. o 0 o 0 o 0 o I I 0 o 0 o I 
R3 +-1 o 0 o 0 o 1 o 0 o I I 1 

LS R2 o 0 o 0 o I 001 1 1 0 

R2 - Rl NEG. 1 1 1 1 o 1 

R3 +-0 o 0 o 0 1 0 
LSR2 1 1 1 o 1 0 

R2 + R1 pas. o 0 1 0 1 1 

R3 +-1 o 0 o 1 o I 
LS R2 010 1 1 0 

R2 - Rl pas. 000 1 o 1 

R3 +-1 o 0 1 0 1 1 

LS R2 o 0 1 0 1 0 

R2 - Rl NEG. 1 1 1 0 o 1 

R3 +-0 o 1 o 1 1 0 

LSR2 1 1 001 0 

R2 + R1 pas. 0 000 1 1 

R3 +-1 1 0 1 1 o 1 

LS R2 0 001 1 0 

NaTE 
Because the dividend is larger than the divisor, the quotient 
must be greater than 1. The quotient, in this case, is not in 
true normalized form; thus, it must be right shifted one place, 
and the associated exponent must be incremented. 

Figure 5~6 Example of Non-Restoring Division 

5.4.3 Non-Restoring Divide Using Normalizing 

o 0 o I 

Non-restoring divide using the normalizing principle provides a further improvement over non-restoring divide. 

When a trial subtraction is performed in this case, the result is examined to determine if it is normalized. If not, 

the remainder and quotient are left shifted until the number is normalized. For each left shift, an arithmetic 

operation is ~liminated. When the number becomes normalized, the divisor is subtracted from or added to_ the 

new remainder and the result is again examined. If unnormalized, the remainder and quotient are left shifted 

until the remainder is normalized. If normalized, a new subtraction or addition is performed. When dealing with 

positive numbers, the divisor (in normalized form) is subtracted from the remainder, which; if unnormalized, is 

by definition smaller than the divisor, as shown in the following example: 

Remainder 0.01111 

Divisor 0.10001 (normalized) 
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As a result, leading Os can be shifted over when dealing with positive numbers. Conversely, with negative 

numbers, leading 1 s can be shifted over. 

Initially, the dividend and divisor are assumed positive. The normalized dividend is loaded in the AR and the 

normalized divisor is loaded in the BR. The QR is initially cleared and is used to accumulate the partial bits of 

the quotient as they are calculated. 

In order to understand the divide algorithm, it is necessary to refer to the flow chart shown in Figure 5-7. Be­

cause the AR is initially positive, the BR is subtracted from the AR, the difference being placed in the AR. Both 

the AR and QR are left shifted and the complement of the most significant bit of the AR is shifted into the least 

significant bit of the QR. The number in the AR is now examined to determine if it is normalized. If it is not, 

the number is normalized by a routine, which will subsequently be described. If the number is normalized, it 

must be determined if it is a positive or negative number. If it is positive, the BR is subtracted from the AR, the 

AR and QR are left shifted with QRLSB receiving the complement of ARMSB. If negative, the BR is added to 

the AR with QRLSB receiving the complement of ARMSB . The AR is again examined to determine if it is nor­

malized, If it is normalized, another addition (if the number is negative) or subtraction (if the number is positive) 

is performed, the QR and AR are left shifted, and the complement of ARMSB is shifted into QRLSB . If not, the 

number is normalized as described below. 

In order for a number to be normalized, it must be in the form of 0.1 xxxx (positive number) or 1.0 xxxx (neg­

ative number) with x designating a don't care. The number 0.000 II, for example, can be normalized by three 

left shifts (shifting over Os), yielding 0.11000. The three Os to the right of the binary point have positional sig­

nificance but have no numerical value. The quotient is left shifted three places and Os are shifted into the least 

significant bit positions. The number 1.11100 can be normalized by three left shifts (shifting over Is), yielding 

1.00000. This is a negative number and in 2's complement form; thus, the Is being shifted over are in reality Os 

and have no numerical value. In this case, the quotient is left shifted three places and 1 s are shifted into the least 

significant bit positions. A step counter is preset to the I 's complement of the number of bits in the multiplier 

and is incremented for each shift. When the counter is incremented to all I s, the division is terminated. 

Figure 5-8 shows the state diagram for floating-point diviSIon. This is interpreted in the same manner as the dia­

gram for floating-point multiplication. Note that the number in the AR is assumed to be normalized and of the 

form 0.10 or 0.11 (the initial states). The number in the BR at this time is also assumed positive and normalized. 

Several examples of the normalizing principle are shown in Figure 5-9. The first example has a dividend larger 

than the divisor, and the second example has a divisor larger than the dividend. 

It should be noted in all cases where the dividend is larger than the divisor, the quotient will be of the form I.xxxx, 

having a significance greater than 1. This number is not in true normalized form; consequently it must be shifted 

to the right one place yielding 0.1 xxx. This reduces the number by a power of 2, and in order to maintain the 

same equivalence, the exponent associated with the number must be incremented, which increases the number by 

a power of 2. The floating-point divide algorithm can best be described by stating the rules associated with the 

algorithm. These are summarized below. 

RULES FOR FLOATING-POINT DIVIDE 

1. For the first time, the AR, containing the dividend, is positive. Consequently, subtract the BR 
from the AR and place the result in the AR. Left shift the QR and the AR with the complement 
of ARMSB being shifted into QRLSB. Examine the AR; if it is normalized proceed to Step 2; if 
not, proceed to Step 3. 

2. If the AR is positive, subtract the BR from the AR; if it is negative, add the BR to the AR. In 
either case, left shift the QR and AR shifting the complement of ARMSB into QRLSB. If the num­
ber is normalized, repeat Step 2; if not, go to Step 3. 

(continued on page 5-17) 
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LS QR 
QROO-",AR59 

'----t------~ LS AR 
AROO-O 

SUBTRACTION 
NORMALIZED 

NORMALIZE LOOP 

NOTE: 

INC SC 

LS QR 

YES 

SUBTRACTION 
UNNORMALIZED 

QROO - AR59 
LS AR 
AR-OO 
INC SC 

DIVIDEND IS MADE POSITIVE AND LOADED IN AR 
DIVISOR IS MADE POSITIVE AND LOADED IN BR 
BOTH NUMBERS ARE NORMALIZED PRIOR TO DIVIDE 

Figure 5-7 Diyide Flow Diagram 
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c 

000 

110 

*Three digits shown throughout state diagram refer to bits AR59, 58, and 57. 

For example I 

010 

II L AR57 = RRO 
AR58 = RRl 
AR59 = RR2 

1H 

111 

NOTE 11-0443 

BR is always positive and normalized. 

Figure 5-8 State Diagram for Divide 

3; Left shift the QR and AR shifting ARMSB into QRLSB . Note that during normalize, QRLSB 
receives ARMSB and not the complement of ARMSB as is done immediately after an arithmetic 
operation. 

Again examine the AR. If normalized, return to Step 2; if not, repeat Step 3 until the AR is 
normalized, then return to Step 2. 

NOTE 
Since the divisor shown in the example is six bits, 
a total of six shifts will occur before the divide is 
terminated. 

In floating-point division, the sign of the dividend is stored in the sign of the destination (SD), and the sign of the 

divisor is stored in the sign of the source (SS). The sign of the quotient is determined by an exclusive OR of the 

two. In other words, if the signs are the same, the exclusive OR is 0, yielding a positive sign; if the signs are dif­

ferent, the exclusive OR is 1, yielding a negative sign. 

5.4.4 Divide Timing 

The timing for floating-point divide is the same as that employed for floating-point multiplication with the three 

pause flip-flops providing a 200 ns delay during arithmetic operations. During these operations, the AR NORM 

flip-flop is set, indicating a normalized result in the AR. If AR NORM is reset, the AR is shifted left until the con­

tents become normalized. 
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Example: 0.110002 "'" 0.101002 = 0.10011 2 X 22 (Dividend Larger Than Divisor) 

0.7510 + 0.62510 = 1.210 NOTE: In binary, quotient is 1.1874 which is as close to 1.2 as possible using six bits. 

Step QR AR BR Functions Performed 

0 o 0 0 0 0 0 1 1 0 0 0 0 . 1 0 1 0 0 Set Step counter to -7 
AR is positive first time through 

1 0 o 0 0 0 1 0 0 1 0 0 0 AR +- AR - BR, LS AR, LS QR, QRLSB +- ~ ARMSB' INC SC TO -6 
AR is now unnormalized 

2 0 o 0 0 1 0 o 1 o 0 0 0 LS AR, SL QR, QRLSB +- ARMSB, INC SC TO -5 
AR is now normalized and positive. 

3 0 o 0 1 0 0 1 1 1 0 0 0 AR +- AR - BR, LS AR, LS QR, QRLSB +- ~ ARMSB, INC SC TO -4 
AR now unnormalized 

4 0 o 1 0 0 1 1 1 0 0 0 0 LS QR, LS AR, QRLSB +- ARMSB, INC SC TO -3 
AR still unnormalized 

5 0 1 o 0 1 1 1 0 0 0 0 0 LS QR, LS AR, QRLSB+- ARMSB, INC SC TO -2 
AR now normalized and negative 

6 1 0 0 1 1 O. 1 1 0 1 0 0 AR +- AR + BR, LS QR, LS AR, QRLSB +- ~ ARMSB,INC SC TO-l 
Sign of QR is negative, RS QR and increment exponent 

O. 1 o 0 1 1 Divide complete - Quotient in QR 
'--- ___ L-_ '---

Example: 0.100002 "'" 0.101002 = 0.11001 2 (Divisor Larger Than Dividend) 

0.510 "'" 0.62510 = 0.810 NOTE: In binary, quotient is 0.78125 which is as close to 0.8 as possible using six bits~ 

Step QR AR BR Functions Performed 

0 0 0 0 0 0 0 I 0 0 0 0 0 1 0 1 0 0 Set Step counter to -7 
AR is positive first time through 

1 1 1 1 0 0 0 AR +- AR - BR, LS AR, LS QR, QRLSB +- ~ ARMSB, INC SC TO -6 

2 0 0 o 0 0 1 1 1 0 0 0 0 LS AR, LS QR, QRLSB +- ARMSB, INC SC TO -5 
AR still unnormalized 

3 0 0 0 0 I I 1 0 0 0 0 0 LS AR, LS QR, QRLSB +- ARMSB, INC SC TO -4 
AR is now normalized and negative 

4 0 0 0 1 I 0 1 0 1 0 0 0 AR +- AR + BR, LS AR, LS QR, QRLSB +- ~ ARMSB, INC SC TO -3 
AR is unnormalized and negative 

5 o 0 1 I 0 o I I I 0 0 0 AR +- AR + BR, LS AR, LS QR, QRLSB +- ~ ARMSB, INC SC TO -2 
AR is now unnormalized and negative 

, 

6 0 I I 0 0 I I I 0 0 0 0 LS AR, LS QR, QRLSB +- ~ ARMSB; INC SC TO -I 
.. I>iyi~e comple!e - quotient in QR 

Figure 5-9 Examples of Floating Point Division 
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CHAPTER 6 

FPII-B LOGIC DIAGRAM DESCRIPTIONS 

6.1 INTRODUCTION 

This chapter describes the logic diagrams associated with the FP Il-B Floating-Point Processor. This chapter, in 

conjunction with the signal glossary in Appendix B, provides an adequate description of the FP Il-B logic diagrams. 

6.2 DETAILED LOGIC DIAGRAM DESCRIPTIONS 

The FPII-B logic diagrams are divided into four groups of prints - each group corresponding to one of the four 

FPII-B hex modules. The prints are designated by a four-letter code and are classified in one of the following 

four groups, whereby the first three letters of the code are defined as follows: 

FRL 
FRH 
FRM 
FXP 

Fraction Data Path Low Order 
Fraction Data Path High Order 
FP ROM and ROM Control 
Floating-Point Exponent Data Path 

NOTE 

MBIIS-O-Ol 
MBII4-0-01 
MBI12-0-01 
MBI13-0-01 

The fourth letter in each group designates the sheet 
number of the print within the group specified, i.e., 
FRHA, FXPB where A and B refer to the sheet numbers. 

The FRL group of prints contains the following logic: 

a. lower half ofFALU 

b. lower half of AR 

c. lower half of BR 

d. lower half of QR 

e. floating-point status 

f ACMX 

g. scratch pad (AC7 -0) 

h. BMX 

The FRH group of prints contains the following logic: 

a. upper half of F ALU 

b. upper half of AR 

c. upper half of BR 

(continued on next page) 
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d. upper half of QR 

e. clock logic, times states, time pulses 

t. sign of source (SS) and sign of destination (SD) logic 

g. fractional control logic 

The FRM group of prints contains the following logic: 

a. Control ROM 

b. Control ROM address register 

c. Scratchpad addressing logic 

d. ROM multiplexers 

e. ROM data buffer 

t. Interface logic 

The FXP group of prints contains the following logic: 

a. EALU 

b. EMX 

c. Step counter 

d. FIR 

e. BA register 

t. BD register 

g. U Break register 

h DIMX 

6.2.1 FRHA 

This sheet shows the upper half of the QR and BR. Bits 58 through 35 of the QR are shown and bits 59 through 

36 of the BR are also shown (refer to descriptions of FRLL and FRLM). 

6.2.2 FRHB, FRHC, FRHD 

These three sheets show the upper half of the AR and the FALU. Bits 59 through 36 ofthe AR and FALU are 

shown (refer to descriptions ofFRLE, FRLF,FRLH, FRLJ and FRLK). 

6.2.3 FRHE 

This print contains the following circuitry (which is described in subsequent paragraphs): 

a. MR 1 and MRO register 

b. MUL ARITH flip-flop 

c. Pause logic 

d. STRG I flip-flop 

e. ARControl 

t. QR Control 

g. MUL SUB flip-flop 

h. AR clock logic 
(continued on next page) 
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( i. QR clock logic 

i. Sign bit 

6.2.3.1 Multiply - When a multiply or divide operation is designated, the FPII-B enters a Pause state where 

auxiliary hardware controls the fractional logic data paths. The AR, BR, and QR are initialized prior to this, 

and the ALU is set up to look at the AR (A input to ALU). MRO and STRG I are cleared and MRI contains the 

same value that was loaded into QR03 (double precision) or QR35 (single precision). Note that the microprogram 
must issue a LDQI before a LDQO to initialize MRI correctly. 

As described in the multiply algorithm, the first operation in the multiply subroutine is a shift. QR04 (double 

precision) or QR36 (single precision) is shifted into QR03 or QR35, respectively, and is also shifted into MR 1; 

the content of MRI is shifted into MRO. If the bit pattern of MRl, MRO, and STRG 1 is such that.an arithmetic 

operation is required, MUL ARITH will set on the next clock (see multiply timing) and enable the pause logic 

which, in turn, will inhibit the AR and QR clock. The pause logic allows time for the data on the ALU input 

lines to settle before the add or subtract operation is performed. The ALU c6ntrol is now selected by the 

multiply/divide hardware to do an A plus B or A minus B, as a result of the ALU select signals. The result of the 

operation is then set up to be loaded in the AR on the next CLK AR signal. A load occurs as a result of PO going 

to ai, which overrides all other inputs to the AR select lines and causes ARS 1 and ARSO to gp high, thus speci­

fying a load of the AR. In order to actually load the AR, the trailing edge of the AR clock must occur. However, 

when MUL ARITH was set, the CLK AR and CLK QR pulses were disabled. This disable is removed by P2 going 

to aI, which allows two clocks to occur. The first allows the result of the add or subtract to be clocked in the 

AR, and the second allows both the AR and QR to be shifted following this operation. At the end of the first 

. clock, PO goes low forcing ARlSllow which, in conjunction with AR1SO high, sets up the AR for a right :b.ift 

that occurs on the trailing edge of the second clock. AR 1 SO remains high because CSB a (0) L is true (see 

Multiply Timing). 

6.2.3.2 MRI and MRO Register - MRI and MRO are 74S74 D-Type flip-flops used in the FP1I-B to speed up 

multiply operations. They are used in conjunction with the STRG I flip-flop to determine strings of 1 sand 

strings of Os. Before multiplication, the multiplier is loaded in the QR. QR59 through 35 are loaded and then 

QR34 through 3 are loaded from the scratchpad accumulator. QR02, QRO 1, and QROO are loaded and with Os. 

These bits are used for rounding operations. Note that when SCR OUT 00 is loaded into QR35 it is also copied 

into MRI but when QR 03 is loaded from SCR OUT 00, either MRI is latched if FD is on a 0 or is loaded from 

SCR OUT 00 if FD is on a 1. When the QR is right shifted,.the content of QR04 (for double precision) or QR36 

(for single precision) is shifted into MRl, and the content ofMRl (which contained the contents ofQR03 or 

QR35) is shifted into MRO. Consequently, the content ofMRl and MRO contains two successive bits of the QR. 

These flip-flops are monitored along with the STRG 1 flip-flop to determine the bit pattern of the multiplier. 

Note that during a multiply CSB bits 2, 1, and 0 are high (ROM bits 29 through 27), which disables the direct 

clear input to MRO. During other operations such as division, this register is held cleared. 

6.2.3.3 MUL ARITH - The MUL ARITH flip-flop is used during multiply to indicate that an actual arithmetic 

operation is to take place. The operation will be an add or subtract, depending on the bit patterns in MRl, MRO, 

and STRG 1. The MUL ARITH flip-flop actually anticipates an arithmetic operation with the two patterns de­

signated before shift in Table 6-1. The next clock pulse shifts a 1 or 0 into MR 1. If it is ai, a subtract operation 

is performed; if 0 is shifted into MR1, an add operation is performed. 
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Before Shift 

After Shift if QR04 = 1 * 

After Shift if QR04 = 0* 

Before Shift 

After Shift if QR04 = 1 * 

After Shift if QR04 = 0* 

Table 6-1 

Arithmetic Anticipation 

MRI MRO STRGI 

O~ I [ 1] 

1 ~O [ 1] 

0 0 [ 1] 

l~ 0 [0] 

1 ~1 [0] 

0 1 [0] 

*QR36 (if single-precision format) 

MULARITH 

0 

1 Subtract 

1 Add 

0 

1 Subtract 

1 . Add 

For example, in the second entry in the table there is a string of 1 s with an isolated o. Rather than do an add to 

terminate the string of 1 s followed by a subtract in the next higher bit position, a subtract is performed. Note 

that the direct clear input to MUL ARITH is disabled during multiply because CSB bits 2, I, and 0 are held high. 

During other operations, such as division, the flip-flop is held reset. 

6.2.3.4 Pause Logic- The pause logic is used in multiplication and division and provides a 200 ns delay to per­

form addition or subtraction operations within the multiply or divide subroutines. The logic utilizes three 

74S74 D-Type flip-flops. For multiply or divide operations, CSB2 and CSB 1 (ROM bits 29 through 27) are both' 

Os, which disables the direct clear input to the pause flip-flops. During all other operations, the direct clear is en­

abled and the pause flip-flops are held cleared. 

For multiply operations, the pause logic is enabled due to MUL ARITH going to a 1; during divide operations, AR 

NORM (1) enables the pause logic. 

6.2.3.5 STRG 1 Flip-Flop - The STRG I flip-flop is a 74S 112 J-K edge-triggered flip-flop used to indicate 

whether a strings of I s or strings of Os are present. The flip-flop will toggle only under the following two sets of 

conditions: 

a. If MR I and MRO are both I s and the STRG I flip-flop is a 0, the next clock pulse will force 
STRG 1 to a I, indicating a string of 1 s has been found. 

b. If MR 1 and MRO are both Os and STRG I is a I, the next clock pulse will force STRG I to 
a 0, indicating the start of a string of Os. 

6.2.3.6 AR Control - The AR is controlled from the AR control bits (ROM bits 26 and 25), from the call sub­

routine bits (ROM bits 29, 28, and 27), or from the multiply/divide logic (PO). The AR can do a right shift or 

left shift one place, as a result of the ARC bits as shown below: 

ARCI 

o 
o 

ARCO 

o 
1 

o 

6-4 

Load AR 
Shift AR left 
Shift AR right 
NOP 

( 

( 

( 



( 
\ 

-/ 
( 

" '. 

When the FPII enters a multiply or divide subroutine, the ARC bits must select NOP and the CSB signals take 

precedence and direct the AR as follows: 

CSB2 CSBI CSBO Function 

0 0 0 Multiply BR with QR result in AR. 

0 0 Divide AR by BR - result in QR. 

0 0 Shift AR right by number in SC. Shift in Os. 

0 Shift AR left until normalized and count number of shifts in SC. 
Shift in Os. 

0 0 Shift QR right by number in SC. Shift in Os. 

0 Shift QR left by number in SC. Shift in Os. 

0 Shift QR right by number in SC. Shift 1 s (sign bit remains 0) 

NOP 

When an addition or subtraction is to be performed within the multiply or divide subroutine, the pause logic is 

enabled and PO (1) overrides the CSB bits, causing both ARS 1 and ARSO to go high which specifies a load oper­

ation. ARSI and ARSO are the signals that direct the AR to perform one of the following functions: 

ARSI ARSO Function 

0 0 NOP 
0 Shift right 

0 Shift left 
Load 

6.2.3.7 QR Control- The QR is controlled from the QRC (bits 22 and 21 of the ROM) bits and the ACC (bits 

37 through 35 of the ROM) bits. The QRC bits direct the QR to perform one of the following functions: 

QRCI 

o 
o 

QRCO 

o 

o 

Function 

Load QROI if ACC2 (0). Otherwise, load QROO. 
Shift QR left 
Shift QR right 
NOP 

The ACC bits specify the appropriate 16-bit word of the 64-bit AC to be used. ACC2 (0) specifies quadrant' 

[3:2] of the scratchpad; ACC2 (1) specifies quadrant [1 :0]. 

Because the scratchpad is 32 bits wide, the QR is loaded in two halves - the upper half is controlled by QRlS 1 

and QRI SO, and the low.er half is controlled by QROS 1 and QROSO. Note that when the upper half of the QR 

is loaded, both QR I S I and QR 1 SO are enabled; when the lower half is loaded, both QROS 1 and QROSO are en­

abled. During shifting, the QR signals are controlled together. The QRI and QRO signals direct the QR to per­

form one of the following functions: 
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QR (Upper Half) Control QR (Lower Half) Control 

QRISI QRISO Function QROSI QROSO Function 

0 0 NOP 0 0 NOP 
0 Shift right 0 I Shift right 

0 Shift left 0 Shift left 
Load Load 

6.2.3.8 MUL SUB Flip-Flop - The MUL SUB flip-flop is set when a subtract operation is performed during a 

multiply subroutine andis reset when an add operation is to be performed. The MUL SUB flip-flop performs 

two functions: 

a. It allows the multiply operation to be terminated with an addition and inhibits final shift if the 
multiply is terminated in a string of Is. 

b. It also determines what is shifted into AR59 during right shift operations. 

In order to set MUL SUB, MUL ARITH must be set because this enables the pause logic. Also, MRI must be a I, 
which indicates subtract. If MRI is a 0, MUL SUB ~is reset, which indicates an add (see Paragraph 6.2.3.3). 

6.2.3.9 AR Clock - The AR is clocked at TS4 when the AR control bits (bits 26 and 25) of the ROM specify 

a load. The AR is also clocked when bit 29 (CSB2) from the ROM is a 0 and the FPII is in the Wait state. This 

occurs for a multiply, divide, right or left shift of the AR. The AR clock logic can be disabled as a result of one of 

the following three conditions: 

a. In a multiply, the pause logic is enabled due to MUL ARITH (1) when the required addition or sub­
traction is to be performed. In order to allow the data on the lines to the ALU time to settle, clock 
pulses are disabled due to P2 (0). When P2 goes to a I, the clocking of the result of the add or sub­
tract operation can be performed (see Figure 5-5). 

b. During normalizing and dividing, the AR clock is inhibited by AR NORM (1) H. In the case of 
normalizing, P2 is held on a 0 and the setting of the AR NORM flip-flop signifies the end of the 
operation. In the case of dividing, AR NORM (1) H indicates another arithmetic operation is to be 
performed. Consequently, the pause logic mlist be enabled as in a. above. 

c. If the step counter increments allIs and MUL SUB is reset,the AR clock is i~hibited. If MUL SUB 
is set, one AR clock is allowed to load the result of a final addition. This load also resets MUL SUB 
disabling further AR clocks. 

6.2.3.10 QR Clock - The QR is clocked at TS3 if QRC bits from the ROM are both Os, which specifies a load 

operation. The QR can also be clocked if CSB I is on a (0) and if the FPII is in the Wait state and if PO is a O. 

CSBI (0) corresponds to CSB fields 0, 1,4, and 5 in the ROM (bits 29 through 27), which specify the following: 

Field Description 

o Multiply QR with BR - result in AR. 
I Divide AR by BR - result in QR. 
4 ShiftQR right by number in SC. Shift in Os. 
5 Shift QR left by number in SC. Shift in Os. 
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PO is set in the multiply/divide routine when an add/subtract operation is being performed. This ensures that the 

QR is clocked only during shift operations. Finally, the QR can be clocked by the CSB bits corresponding to a 

field of 6 [CSB2 O),CSBI 0), and CSBO (0)1, which specifies a right shift of the QR by the number in the SC 

and specifies that 1 s are to be shifted in (the sign bit remaining 0). 

The same logic that causes the AR clock to be disabled also causes the QR clock to be disabled (see AR clock). 

6.2.4 FRHF 

This sheet contains the sign bit logic, RSQR in logic, RR bits (RR2, RRI, and RRO) associated with the AR regis­

ter, the AR NORM flip-flop,the LSQR IN logic, and the SS (sign of source) and SD (sign of destination) logic. 

6.2.4.1 Sign Bit - QR59 is the sign bit of the QR and is clocked whenever the QR is clocked. QR59 is loaded 

with either a 0 or with the contents of QR58. A 0 is loaded into QR59 whenever: 

a. CSBO from theiROM is O. The corresponding CSB field combinatiOli.s are 0, 2, 4,and 6. Field 2 
can be disregarded because it deals with the AR. For all other combinations (multiply, shift QR 
right with Os in, and shift QR right with I sin), QR59 is loaded with a O. 

b. QR59 is loaded with 0 when ENAB QRSO is true. This is true when the ROM control is being used to 
shift the QR right (QRCI on a I and QRCO on a 0). 

c. QR59 is loaded with 0 when LOAD QR is true. This signal is true when the ROM control is used to 
load the QR (QRCI on a 0 and QRCO on a 0). In all other cases QR58 is shifted into QR59 .. 

6.2.4.2 RSQR IN - RSQR IN is an input to QR58 and is a function of QR59 or CSBI 0) and CSBO (0). ROM 

CSB fields 2 and 6 are specified for these bit patterns. However, field 2 has no effect because it is a right shift of 

the AR. Field 6 is a right shift of the QR. Consequently, when CSB I and CSBO are 1 and 0, respectively. the 

gate is enabled. and RSQR IN goes to a I. If the gate is disabled, RSQR IN follows the value of QR5 9 and is 

transferred to QR58. 

6.2.4.3 RR2, RR1, RRO - The bits designated RR2, RRI, and RRO are used for division in order to speed up 

normalizing operations. RR2 corresponds to AR59 (sign bit), RRI corresponds to AR58 (MSB of fraction). and 

RRO corresponds to AR57. The RR bits are generated when the flip-flop associated with them is set. This can 

occur as a result of two conditions: 1) when a load is specified (ARS I and ARSO both high) and the correspond­

ing FALUbit is present or 2) during a left shift, which occurs when ARSO goes low. 

As an example, when ARSI and ARSO are high, and FALU bit 59 is a I, RR2 is set when the AR is clocked. The 

I being loaded in AR59 is also loaded in RR2. When ARSO goes low, the second NAND gate at the input to RR2 

is enabled (~.Load AR) for a left shift and RRI (AR58) is shifted into RR2. A similar situation occurs with RRO 

(AR57) shifting into RRI and AR56 shifting into RRO. 

Speed of division operations -Is increased by anticipating the normalization of a number. The bit patterns used 

to anticipate normalization are: 

RR2 

o 
RRI 

o 
RRO 

Positive number 

o Negative number 
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The only bit patterns that normalize an unnormalized number in one shift are of the above shown configuration. 

If either of the above patterns is present, AR NORM will set on the next CLK AR pulse; consequently, as soon as 

the number is normalized, AR NORM is set to indicate this. Direct clear input to AR NORM holds AR NORM 

reset for anything other than divide or normalize operations. Direct set input to AR NORM ensures that the flip­

flop is set when entering the divide subroutine, because the dividend in the AR is guaranteed to be normalized. 

6.2.4.4 LSQR IN - To understand how LSQR IN (1) is generated, refer to the divide flow algorithm; this al­

gorithm can be divided into two categories: one occurring during the normal shifting, and one occurring imme­

diately afterthe add or subtract operation is performed. If the normal shifting prior to add or subtract is taking 

place, the value of AR bit 59 (represented by RR2) is shifted into QR bit 31 (if single precision) or QR bit 00 

(if double precision). This c.ondition is enabled with P2 on a 0 (see Figure 5-4). However, P2 is on a 1 for the 

shift performed immediately after the add/subtract operation. In this case, it is necessary to shift the comple­

ment of AR59 [RR2 (0)] into QR31 or QROO, depending on the designated format. Note that FD (0) allows 

AR59 to be shifted into QR bit 31 and FD (1) allows AR59 to be shifted into QR bit 00. 

6.2.4.5 SS Logic - The SS logic consists of a 74H74 D-type flip-flop and associated gating. If the ACF field in 

the ROM (bits 34 through 32) is equal to zero (ACS) or one (AC V 1) and the upper half of the QR is to be 

loaded, the sign of the source is set from SCR OUT 31 H (sign bit) of the appropriate scratchpad accumulator. 

This means that when the microprogram loads the most significant 25 bits of theQR from the source AC (ACS) 

the most significant bit of scratch (bit 31) is also loaded in SS. The sign of the source can also be forced to a 1 

by the SGN control bits in the ROM (bits 42 and 41). This is accomplished with SIGNCI (1) and SIGNCO (0). 

The SS flip-flo:p is clocked on the trailing edge of TS4 by the same conditions which enabled the D input to the 

flip-flop. 

6.2.4.6 SDLogic - The SD logic consists of a 74H74 D-type flip-flop and associated gating. If the ACF field 

in the ROM is equal to two (ACD) or three (ACD V 1) and the upper half of the QR is to be loaded, the sign of 

the destination is set from SCR OUT 31 H (sign bit) of the scratch pad accumulator. This means that when the 

QR is loaded from a destination AC the most significant bit (SCR OUT 31) is also loaded into SD. This sign of 

the destination can also be set from the SGN control bits in the ROM according to the following conditions: 

SIGNCt SIGNCO 

o o 

o 

Function 

SD +- - SS if subtract, 
else SD +- SS 

SD +- SS "ItSD 

[SUB H I\SS (0) H V SUB L 1\ SS (1) H] 

[Exclusive OR of SS and SD] 

For example, if the SGN bits in the ROM are selected for a field of 0, the complement of SS, which is SS (0) H, 

is transferred to SD for a subtract (SUB H). If the instruction being performed is not a subtract instruction 

(SUB L), SS, designated by SS (1) (H), is transferred to SD. The SS and SD flip-flops are cleared whenever the 

FIR is loaded (FRMJ READY CLR L). 

6.2.4.7 Step Counter - The step counter is clocked in the Wait state of a hardware subroutine (refer to CSB 

bits 29 through 27 of ROM) if FRHE MUL DIV DISABLE is not on and the PO flip-flop is cleared. These two 

signals combine to inhibit the step counter from being clocked while the pause logic (see Paragraph~.2.3.4) is 

operating. 
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6.2.5 FRHH 

This sheet contains the time state generator, pause, and maintenance pause (MPAUSE) logic and associated time 

state driver circuits. 

6.2.5.1 Time State Generator - The time state generator consists of four 7 4S7 4 D flip-flops and associated 

gating. When the INIT switch on the console is depressed, the INIT signal clears the time state generator and the 

MPAUSE flip-flop. When time states 4, 3, and 1 go to a 0, time state 3 is initiated with the next clock pulse (see 

Figure 6-1). The generator then sequences to time state 4, time state 1, time state 2, and then to the Wait state 

or directly from time state 2 to time state 3. The Wait state is between state 2 and state 3. Each time state con­

sumes 50 ns. If the FPll flow diagram does not indicate a Wait state, the complete ROM cycle consumes 200 ns. 

If the Wait state is required, the total time is 200 ns plus the Wait period. During state 4, the ROM buffer is 

loaded from the ROM and during the next state 2, the next address of the ROM is clocked. The Wait state is 

initiated on the trailing edge of time state 2 when the PAUSE flip-flop is a 1. 

6.2.5.2 PAUSE Flip-Flop - The following three conditions cause the PAUSE flip-flop to set: 

a. FP ACKN WAIT - When the FPll enters a new state in which a trap might occur, the FPll antici­
pates an FP ACKN signal from the 11/45 in response to an FP trap signal from the FPll. This signal 
occurs after the interrupt and it is, therefore, necessary to initiate the Wait state. 

b. SUB CALL - If any of the three CSB bits are 0, indicating a hardware subroutine operation, the 
PAUSE flip-flop is turned on. AllIs in the CSB bits indicate a Nap. 

c. FP ATTN WAIT - The FPll enters the Wait state while waiting for FP ATTN from the 11/45. 

In each of the above three instances, the PAUSE flip-flop is clocked at the trailing edge of time state 1. The 

PAUSE flip-flop is cleared: 

a. When the CSB bits specify a normalize and the normalize is completed, which is represented by 
AR NORM (1). 

b. When the 11/45 sends an FP ATTN to the FPll, indicating that the 11/45 is now ready to receive 
or send data to the FPll. 

c. When the step counter has fully incremented to all 1 s to indicate completion of the operation. 

d. When the 11/45 responds to an FP TRAP by issuing FP ACKN. 

e. When ICLR is set an initialize condition is established which clears all major registers. 

The PAUSE flip-flop, when reset, allows the WAIT flip-flop to be cleared on the trailing edge of the next clock 

pulse and allows state 3 to set. 

6.2.5.3 MPAUSE Flip-Flop - The MPAUSE flip-flop is used in conjunction with the W13l Maintenance Module. 

A switch on this card removes the direct clear input from MPAUSE and allows this flip-flop to be armed by 

ROM + UBS. This signal results from a micromatch occurring between the control ROM address register and the 

microbreak register or by setting the appropriate switches on the maintenance card. Note that MPAUSE operates 

in parallel with PAUSE and also prevents the FPll from sequencing to state 3 from state 2. 

The remaining logic on this sheet shows the time state driver circuits (A and B outputs), which are necessary 

because of loading requirements. 
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6.2.6 FRHJ 

This sheet shows the 20 MHz crYstal clock, the variable RC clock, and a source synchronizer providing switching 

between the two clock sources. If switching should be attempted during a crystal clock pulse, the crystal clock 

pulse is completed before the RC clock is switched in and vice versa. The RC clock is used for maintenance and 

is a variable clock source whose frequency can be adjusted by the variable resistor shown. 

The source synchronizer operates in conjunction with the switches on the FMAA Maintenance Card (see KMII 

Maintenance Set Manual- cards WI30 and WI31). S3 selects the crystal clock when off or the RC clock when 

on. S4 is a MAINT STPR switch that allows the function specified by S2 and S I to be stepped. If S2 and S I are 

off, normal operation occurs. If S2 is on and S I is off, a single ROM cycle occurs each time the MAINT STPR is 

depressed. If S2 is off and SI is on a micromatch between the CRAR (control ROM address register) and the 

microbreak register will stop the clock; and if both S2 and S I are on, a single clock pulse will occur each time the 
stepper is depressed. 

The J-K flip-flop that is clocked by the single time stepper is complemented each time the stepper is depressed. 

The MPAUSE flip-flop on FRHH is set during TPI when a Single ROM cycle is selected or a micromatch occurs. 

When the single time stepper is depressed, the MSWITCH CNTU flip-flop (see FRHH) goes to a 0 and resets the 

MPAUSE flip-flop. At time state 4 MSWITCH CNTU goes to a I inhibiting the direct clear to MPAUSE. 

6.2.7 FRLA, FRLB, FRLC, FRLD 

These logic prints show the ACMX logic and the scratch pad accumulators. The ACMX consists of 16 dual-section 

74153 multiplexers. The EALU, FALU, Floating-Point Status word, and the B register condition codes (BN and 

BZ) provide inputs to ACMX. Common select lines at S I and SO provide selection of one of four inputs from each 

half of the chip. 

There are a total of eight 310 I scratchpad accumulator chips. The dual outputs from two multiplexer chips are 

applied to a scratchpad accumulator chip. An SCR WRITE signal, if low, causes data to be written into scratch 

and, if high, causes data to be read out of scratch. Note SCR WRITE I and SCR WRITE 0 versions of this. signal 

are necessary because of loading problems. 

Other inputs to the scratchpad are used to determine the AC specified and the quadrant specified. SCR ADDRS 2, 

SCR ADDRS I, and SCR ADDR 0 are a modified version of ACF bits (bits 34, 33, and 32) of the CRaM word 

and selects source AC, destination AC, AC6, or AC7 (refer to CRaM word format). Bits ACC2, ACCI,and ACCO 

are applied to inputs A3 and CS in the accumulator and are decoded to yield the quadrant specified. Each quad­

rant is 16 bits and is specified by a number from 3 through o. Quadrant 3 is bits 63 through 48, 2 is bits 47 

through 31, I is bits 31 through 16, and 0 is bits 15 through 0 (see Figure 6-2). For example, if bit ACC2 is a I 

and ACCI is a 0, the 3101 chips containing bits 31 through 16 are specified. This is quadrant l. If bit ACCO is 

a 0, quadrant 0 is also enabled which, according to the ROM word format, gives a field of 4. This can be verified 

by referring to the CRaM word format. To be more specific, ACC2 is connected to the most significant address 

select line of all the 3101 chips. ACCI is connected to the chip select of the four 310is that contain quadrants I 

and 3 of the AC. ACCO is connected to the chip select of the four 3101 s that contain quadrants 0 and 2 ofthe 

AC. 

6.2.8 FRLE, FRLF, FRLH, FRU, and FRLK 

These logic prints show the lower half of the AR register (bits 35 through 0) and the lower half of the F ALU 

(bits 35 through 0). The AR register consists of nine 74194 shift register chips, each chip having six inputs. 
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Figure 6-2 Scratchpad Configuration 

One bit to the AR register chip is from the next higher order bit of the preceding chip and provides the right shift 

capability of the AR. Bit 12 feeds bit 11, bit 8 feeds bit 7, and bit 4 feeds bit 3. A second input to the AR is 

from the next lower order bit of the succeeding chip. This provides the left shift capability of the AR, where bit 

3 feeds bit 4, bit 7 feeds bit 8, and bit 11 feeds bit 12. The other four inputs to each of the nine AR chips allow 

it to be parallel loaded with data from the FALU. The AR is simultaneously clocked by CLK AR, which is ap­

plied to all AR chips. 

6.2.8.1 F ALU Control - The 4-bit output of each AR chip is applied to the A side of F ALU along with four 

corresponding bits from the BR register. See FRHE logic diagram description for discussion of AR select lines. 

The FALU in the FPll may perform one of 18 functions. In order to ascertain the desired function, five control 

lines are supplied to the FALU. These are designated ALUM and ALUS3 through ALUSO, and derived from ALU 

bits 19 through 16 of the control ROM word. 

6.2.8.2 Carry-Look-Ahead - Associated with the FALU are 74182 carry look-ahead generators. Each carry 

look-ahead anticipates the carry for a total of four FALU chips. Eight of the FALU chips are associated with the 

two 74182 carry look-ahead circuit generators on the FRL prints. The ninth FALU chip is handled by a carry 

look-ahead generator located on the FRH prints. The carry look-ahead circuitry is used to speed up arithmetic 

operations. 

A second level of carry look ahead is provided between each group of four FALU chips (see sheet FRLK). This 

circuit anticipates a carry between groups of four F ALU chips, by looking at the three lowest order groups of 

FALU and providing a carry, if required, to the three highest order groups of FALUs. 

6.2.8.3 Rounding - The rounding logic for double-precision floating-point format is shown on sheet FRLE. 

The data path that handles the fraction has three extra bits (bits 2, 1, and 0) that are carried for rounding pur­

poses. The logic is implemented such that only the most significant bit, AR2, is examined. If this bit is ai, 1 is 

added to bit 03 in the FALU. If this bit is a 0, nothing is added to the F ALU. 

For single-precision floating-point format, the word is located in bits 63 through 32 of the AR. The logic is imple­

mented such that only the most significant rounding bit (AR34) is examined. If this bit is a I, I is added to bit 

35 of the FALU. If this bit is a 0, the FALU is unaffected. 
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6.2.8.4 Increment - For certain integer operations in long integer mode, the word is to be incremented - for 

example, when converting a I's complement number to a 2's complement number. For long-integer format, the 

32 integer bits are stored in bits 50 through 19 of the scratchpad (bits 50 through 35 for single-integer format). 

Therefore, when the long-integer word is to be incremented, 1 is aliliea to bit 19 of the FALU (see sheet FRLH), 

if the FMX select signal designated FMXCI is on a O. Similarly, when the short-integer word is to be incremented, 

I is added to bit 35 of the F ALU if FMXC I is on a O. 

6.2.9 FRLL, FRLM 

These prints show the low order 36 bits of the QR and BR registers, the EXP NEQ 0 (exponent not equal to 0) 

logic and the LSQR31 in H logic. 

6.2.9.1 QR - The QR consists of nine 74194 left/right shift chips. Four of the inputs are the normal scratchpad 

outputs. The other two are inputs from the adjacent QR chips to provide the right shift/left shift capability, just 

as described in the AR register. Note that bits QR02, QROI, and QROO are output from the QR, but the corre­

sponding bits are never input from scratch and are grounded. The loading of the QR is described in the descrip­

tion of the FRH group of prints. 

6.2.9.2 BR - The BR consists of six 74174 flip-flop chips each with six inputs and six corresponding outputs. 

The BR is loaded by CLK BR, which occurs on the trailing edge of TS4 if BR control (bit 24 ofthe CRaM word) 

is a O. The BR is cleared by CLR BR, which occurs during TS2 if BR control is a I. 

6.2.9.3 EXP NEQ 0 - The EXP NEQ 0 logic generates the input to QR58 (hidden bit) so that QR bit 58 will be 

loaded with a I if the exponent is not O. If the exponent is 0, the fraction is assumed to be O. 

6.2.9.4 LSQR31 IN H - LSQR31 IN H is used as the input to QR31 when left shifting the QR. During normal 

left shifts, QR30 is applied to QR31; during single-precision divide, the partial quotient bits are shifted into QR 

bit 31. 

6.2.10 FRLN 

This sheet shows the BMX, consisting of eight 74153 dual four-to-one line multiplexers. Each section has four in­

put and one output. Two control lines (BMX C I and BMX CO) select one of four inputs from each section. 

T1;te A inputs are inputs from. the EALU, the B inputs are SCR31 through SCR 16 outputs, the C inputs are SCR IS 

through SCRO outputs, and the D inputs are SCR30 through SCR23 outputs. Note that the D input selects the 

exponent portion of the AC right justified (bits 7 through 0) while bits IS through 8 are Os. 

6.2.11 FRLP 

This sheet shows the floating status register, floating condition code loading, and the FER flip-flop. 

6.~) 1:1 Floating Status Register - The floating status register consists of 74175 D-type flip-flop chips, a 74H74 

flip-flop, and associated gating. The status register can be loaded by the LD FPS instruction (170100) or by con­

trol ROM at the appropriate time to generate the floating condition codes. If the register is to be loaded with 

bit 4 on a I, the CPU must be in KERNEL mode. The FPII enters maintenance mode and the maintenance mode 
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flip-flop will set. The programmer, by use of the status register, can set up enables for various interrupt 

conditions. For example, by setting EALU bit 09 to a 1 and loading the status register, the floating interrupt on 

overflow (FIV) is enabled. If an overflow occurs, an interrupt will be raised. 

6.2.11.2 Floating Condition Codes - The floating condition codes can be loaded from two different sources: 

a. For the LD FPS instruction, the output of the EALU is enabled to the D inputs of the four con­
ditioncode bits. The FRMF LD FPSC signal generated from the ROM enables the clocking of the 
condition code flip-flops. 

b. If either of the FC control bits are on a 0, the condition code flip-flops will be clocked. In this case, 
the FPll is not doing a LD FPS instruction; FN will be set if the result is negative; FZ willbe set if 
the exponent is 0; FV will be set from the conditions of the EALU, which contains the exponent of 
the result at this time; and FC is set or cleared from the ROM control. 

6.2.11.3 FER Flip-Flop - The FER (floating error) flip-flop is set if a floating-point exception occurs or by bit 

15 of the LOAD FPS instruction. It is cleared by a zero in bit 15 of the LOAD FPS instruction. 

6.2.12 FRMA, FRMB 

These two sheets show the 8-bit control ROM address register (CRAR) and the control ROM multiplexers. The 

address register uses 74S74 D-type edge' triggered flip-flops, and the control ROM multiplexers use 74151 8-to-l 

line multiplexers. The two most significant bits of the address are not modified so there are only a total of 6 
multiplexers. 

6.2.12.1 Control ROM Address Register - The circuitry is designed such that the ROM can sequence to the 

next address, which mayor may not have been modified by the branching conditions, or can sequence to the 

Ready state, or can trap to a service routine. If the next address is not modified, bits D07 through DOO provide 

the inputs to each flip-flop in the address register provided a trap condition is not present. The five conditions 

that can cause a trap are: 

a. INIT AND 11/45 ABORT - sets INIT F and forces the next address to O. 

b. Microbreak - sets UBRK F flip-flop which forces the next address to location 4. 

C. 1120 ABORT - sets ABORT F and forces the next address to location 10. 

d. Floating Minus 0 (FMO) - sets FMO F flip-flop and forces the next address to 20. 

e. UJP enabled and bits 0 and 1 of the next address on I s generate GO TO READY L which 
forces the next address to 3. 

If the next address is to be modified, the address bits that are to be modified are switched from Os to 1 s. This is 

accomplished by forcing the associated multiplexer output to a 1. If the address bit is ai, it cannot be modified, 

because the normal ROM output (D7 through DO) sets the associated flip-flop regardless of the multiplexer output. 

6.2.12.2 Address Modification - The conditions to be used to modify an address are selected by the six control 

ROM bits, three of these being the UBR (micro branch) bits, two being the UAF (microaddress field) bits, and 

one being the UJP (microjump) bit. 
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The three UBR bits are applied to each of the six multiplexers and uniquely specify one of the inputs to the mul­

tiplexer. If UBR bits 2, I, and 0 are alII s, the multiplexer output goes to 0, which indicates no modification 

takes place. For all other combinations, the multiplexer output goes to a I if the selected branch condition is true. 

The UAF bits specify the multiplexer(s) as follows: 

UAFI UAFO 

o o 

o 
o 

Multiplexers Selected 

o through 5 if UBR is even (UBRO on a 0) 
2 through 5 if UBR is odd (UBRO on a 1) 

o Multiplexer selected 

I Multiplexer selected 

Both 0 and 1 Multiplexers selected 

Note that all six multiplexers are selected if UAF I and UAFO are Os and the UBR field is 0, 2, 4, or 6; and mul­

tiplexers 2 through 5 are selected, if UBR is I, 3, 5, or 7. If a multiplexer is not selected, its output is low and 

the associated address bit will not be modified. 

Table 6-2 shows how the multiplexer (specified by the UAF bits) and the inputs to the multiplexer (specified by 

the UBR bits) combine to create certain branching conditions. For example, if the UBR bits are all Os, the UAF 

bits are also Os, multiplexers 0 through 5 are specified. As a result, signals that are true at the A inputs to each 

multiplexer will cause the multiplexers' output to go high and cause that address bit to be modified (see 7 4S7 4 IC 

description in Appendix A). 

When the UAF bits are both Os and there are no trap conditions present, SELECT UBRMXB is generated, which 

is applied to the STBO inputs of the multiplexers and selects multiplexers 2 through 5. Multiplexers 0 and 1 are 

specified by utilizing other combinations of the UAF bits as shown on FRMB. 

6.2.12.3 Traps - Sheet FRMA shows the logic associated with the trap conditions. For the UBRK trap to occur, 

the FPli must be in maintenance mode, and out of the Ready state, and a match must have occurred between the 

UBR register and the CRAR. The floating minus zero trap occurs when the sign bit is a 1 and the exponent is O. 

This is detected on the output of the ACMX where the data is in complement form. Note that when a trap con­

dition is present, UTRAP A is generated (see sheet FRMB). This signal is applied to bits 0 and 1 of the CRAR and 

inhibits the ROM and multiplexer inputs to these two stages. This prevents the FPll from going to the Ready 

state. UTRAP A and GO TO READY are ORed to generate UTRAP B. This signal is applied to bits 7 through 2 

of the CRAR and inhibits the ROM bit from setting the register but allows the trap condition to set the register. 
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Multiplexer 
Inputs 

A 

B 

C 

D 

E 

F 

G 

H 

5 

SUBFRAC 

FIR07 (1) 

RNG2 

0 

0 

FIRD6 

0 

0 

6.2.13 FRMC, FRMD 

Table 6-2 

Multiplexer Branching Conditions 

4 3 2 

FIRD4 FIRD3 FIRD2 

FIR06(1) FIRII (1) FIRIO (1) 

RNGI RNGO 0 

0 0 FlU (1) 

0 0 FT (1) 

FIRD5 0 -CONVSP 

0 FIR08 (0) AR58 (0) 

0 0 0 

1 0 

FIRDl FIRDO 

AR50 (0) SD (1) 

BBIZ (1) BN (0) 

IL (0) Immediate 

- (FCAFIC) FD(O) 

- (FVA FIV) MO 

AR59 (0) BZ (1) 

0 0 

The ROM is contained on these prints and consists of sixteen 74187 Read Only Memory chips, providing a matrix 
. ! 

of 256 64-bit words. Each ROM chip contains 256 4-bit words; 8 bits of address are required to select one of the 

256 words. The 8 address lines are applied to all chips in parallel, and the output of each ROM is 4 bits wide 
yielding a 64-bit ROM word. 

6.2.14 FRME, FRMF 

/ 
These logic prints shoW the ROM buffer, which consists of 74175 D-type flip-flop chips. Each chip receives four 

ROM outputs and provides a pair of outputs for each input. The pair is simply the 0 and 1 output of a flip-flop 
toggled by the associated input. 

Only 14 buffer chips outputting 56 bits are required, because the 8 bits of next address are not applied to the 

ROM buffer but instead are applied to the control ROM address registers through some branch condition gating 

logic. In order to provide additional outputs, the signals designated CONTROL SEL 2, CONTROL SEL 1, and 

CONTROL SEL 0 (FRMF), in turn, are octally decoded to produce eight unique outputs. Only five of the eight 
outputs are presently utilized. 

The ROM buffer is loaded on the trailing edge of TS4 by CLK RB C L as are the eight additional outputs. 

6.2.15 FRMH 

This sheet shows the decoding of the ALU select lines, the scratch address lines, SCR WRITE, clocking of the 
BR, and BACMX selection. 

6.2.15.1 ALU Select - Normally, the ALUS3 through ALUSO, ALUM, and ALUCIN signals are driven from 

the ROM ALU control signals (ALUC3 through ALUCO). Note that there are four ROM output signals from 

the ALU control (ALUC3 through ALUCO), which are decoded to produce six ALU signals (ALUS3 through 

ALUSO, ALUM, and ALUCIN). ALUM is a mode bit that is low when an arithmetic function is performed and 

is high for a logical function. ALUCIN is a carry input that is required only when ALUM is a 0 (Le., when an 

arithmetic operation is being performed). The ROM signals produce the ALU select signals if the FP 11 is not in 

the arithmetic subroutine (MUL DIV is high). 

6-16 

c 

( 



( 

( ,. 

When the FPll enters the multiply or divide subroutine, MUL DIV goes low and permits the subroutine signals 

(MR1 and RR2) to drive the ALU select lines to the correct configuration (see Table 6-3). FMC MUL IS set by 

the decoding of the CSB bits in the ROM, indicating the FP11 is in the multiply subroutine.· DIV OR NORM is 
set by the decoding of the CSB bits in the ROM, indicating the FP11 is in a divide subroutine. 

As an example of how the ROM controls the ALU select lines, consider the subtract functions as selected by fields 

2 and 6. The subtract function can thus be shown as specified. 

ALUC3 

o 
ALUC2 

X 

ALUCI ALUCO 

o = Field of 2 or 6 

The ALUC3, ALUC1, and ALUCO signals are decoded to yield the FORCE SUB signal, which drivesALUS2 to 

a 1 for fields 2 and 6. Note that most of the entries (except for fields 2, 10, and 15) in the table are on al: 1 

correspondence with the numerical value. of the control field. Field 2 creates a FORCE SUB signal that causes 

ALUS2 to go to a 1; field 10 creates a FORCE ADD signal that causes ALUSO to go to a 1; and field 15 creates 

a signal that causes ALUS 1 to go to a 1. In these instances, either the ALUCIN or ALUM bits is varied to differ­

entiate between the ALU functions. 

Table 6-3 

ALU Control Selection 

ALU 

Control 

Field Function 
ALU Select Lines 

Carry 

(ALUC3- Mode in 

ALUCO) ALUS3 ALUS2 ALUSI ALUSO ALUM ALUCI 

0 ~A 0 0 0 0 I X 
1 ~(A V B) 0 0 0 1 1 X 
2 A'minus B 0 1 I 0 0 0 Drive ALUS2 low 
3 0 0 0 I I I X 
4 ~(AAB) 0 1 0 0 1 X 
5 ~B 0 1 0 1 1 X 
6 A minus B minus 1 0 1 I 0 0 1 
7 AI\~B 0 I 1 1 I X 

10 A plus B plus 1 I 0 0 1 0 0 Drive ALUSO low 
II A plusB 1 0 0 I 0 1 
12 B 1 0 I 0 1 X 
13 AAB 1 0 1 1 I X 
14 1 1 I 0 0 1 X 
15 A minus 1 1 1 I 1 0 I Drive ALUSI low 
16 AVB 1 I 1 0 I X 
17 A 1 I 1 1 I X 

X = don't care 
0= low 
1 = high 
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The ALUM (mode bit) signal is driven low for arithmetic operations and is high for logical functions. When not 

in a multiply or divide subroutine, ALUM is driven low for a ROM ALU field of 15 designating A minus I. 

FORCE ADD (created by fields 10 or II) or FORCE SUB (created by fields 2 or 6) also cause ALUM to go low. 

Normally ALUCIN is high, however, it is driven low in fields 0, 2, 10, and 12. The signal has no meaning for fields 

o and 12 because the ALUM signal is a I in that field. ALUCIN can also be driven low by MUL SUB or DIV SUB 

when in a subroutine. 

6.2.15.2 SCR Address - SCR ADRS 2 through SCR ADRS 0 bits are decoded as a result of the ACF bits as 

shown in Table 6-4. 

Table 6-4 

Scratch Address Selection 

Field ACF2 ACFl ACFO Function SCR ADRS 2 I SCR ADRS 1 I SCRADRSO 

0 0 0 0 ACS Looks at FIR02, 01, and 00 if address mode 0 is 
1 0 0 I ACS VI specified. These bits can address ACs 0 through 5 . 

If not mode 0, ACC is specified. 

2 0 1 0 ACD Looks at FIR06 and 07,of instruction. These bits 
3 0 I I ACDVI can address ACs 0 through 3. 

4 1 0 0 AC6 I I 0 
5 I 0 I AC7 I I I 
6 I I 0 AC6 I I 0 
7 1 I I AC7 I I I 

The remaining logic shows: a. the gating for clocking and clearing of the BR, b. the SCR WRITE 0 and SCR 

WRITE I signals which occur during TS 4 when ACRE (Accumulator Read) is on a 0, and c. BACMX CI (1) 

and BACMX CO (1) which are the buffered ACMX control lines used to select one o(four inputs to the ACMX. 

6.2.16 FRMJ 

This sheet shows some of the decoding of the interface signals (FPCI, ADR INC, etc.) and contains the logic as­

sociated with INIT, ICLR, FP REQ, FP SYNC, and FP ATTN. 

6.2.16.1 ICLR and 20 ABORT - The ICLR and 20 ABORT flip-flops are set from asynchronous external sources. 

ICLR is set by INIT or INTR CLR and FP REQ (1). INTR CLR is generated by the 11/45 if an abort condition is 

found. Note that the FPII is trapped back to the Ready state. Both ICLR and 20 ABORT are cleared under 

ROM control. Figure 6-3 shows the timing associated with ICLR, INIT, and 20 ABORT. 

6.2.16.2 Set ATTENTION - The FP ATTN signal from the CPU sets the ATTENTION flip-flop. This signal in- . 

djcates that the CPU is requesting the transfer of data to or from the FPII. If the FPII is in the Ready state, the 

setting of the ATTENTION flip-flop clears the PAUSE flip-flop (see sheet FRHH), allowing the time state gen­

erator to advance. This sequences the FPII out of the Wait state. 

6.2.16.3 Set FP REQ - FP REQ is set by ATTN (1) and FIRC (0), which is true only in the Ready state. 
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FRHH CLK H 

FRHH STATE 1 (1)H '---___ --...JI 
FRHH STATE 2 (1) H 

FRHH STATE 3 (1) H __ ___...J~~ ____ ___...J 

FRHH STATE 4 (1) H '---___ --...Jr-I L-
FRMJ ICLR (1) H 

FRMA INITF (1) H 

9' CROM STATE 0 
____________ ---', - ___ m __ ... -1'---_____ _ 

'" FRMJ 20 ABORT (1) H w.~6$.,.~~ 

FRMA ABORTF (1) H r 
NEXT CROM STATE 

_____ ---',--- ---- --l~ ____________ _ 

CROM STATE 10 
-----lL-______ _ 

NOTE: 
DISBLO IN STATE 10 CAN NOT CLEAR ICLR SO THAT IF POWER ON CAUSES START AT CROM ADDRESS 10 INIT WILL STILL BE SEEN. 
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Figure 6-3 ICLR, INIT, and 20 Abort Timing Relationships 



6.2.16.4 Set FP SYNC - TheFP SYNC flip-flop is normally set under ROM control by SYNC (0) H in time 

state 3. 

6.2.16.5 Clear ATTN - The ATTN flip-flop is cleared by SET SYNCF L, which occurs when the FP SYNC flip­

flop is set. This allows the CPU to raise another FP ATTN signal for additional transfers. 

6.2.16.6 FP SYNC L - FP SYNC L is a synchronizing signal sent to the CPU in response to FP ATTN and is 

generated during TS2 of the next ROM state following the setting of the FP SYNC flip-flop. FP SYNC L, being 

delayed until TS2, allows time for FP REQ to be cleared if no more data transfers are required. 

6.2.16.7 Clear FP SYNC - The issuing of FP SYNC L clears the FP SYNC flip-flop so that only one FP SYNC 

is issued. The FP SYNC flip-flop can also be cleared at TP4 by CLR SYNC if the instruction contained in the IR 

is a CONY SP class and the DISBL SYNC signal from ROM control is present. The reason for clearing FP SYNC 

at this time is to delay FP SYNC L to allow conversion of the data before storing. This delay allows the 11/45 

CPU to monitor BR requests during the data conversion. 

6.2.16.8 Clear FP REQ - The FP REQ flip-flop is cleared by DISBL I (0) from the ROM control. 

6.2.17 FXPA and FXPB 

The EMX and EALU and constant field decoding are shown on logic prints FXPA and FXPB. 

( 

6.2.17.1 EMX - The 16-bit EMX consists of eight 74153 ICs, each IC capable of processing two bits of data. ( 

It selects one of four inputs via two select lines - EMX CI (1) H from the control ROM and EMX CO. The truth 

table for the EMX is as follows: 

SI SO 
EMX Cl (1) EMXCO Input Selected 

L L BA 

L H MPXDATA 

H L CNST 

H H SC 

6.2.17.2 EALU - The 16-bit EALU consists of four 74181 ICs, each IC capable of processing four bits. These 

four bits represent the outputs of two EMX chips. Five select lines (S3, S2, S 1, SO, and M) provide the capability 

of selecting a wide variety of arithmetic operations (see 74181 IC description in Appendix A). 

6.2.17.3 Constant Field Decoding - The FXPA print shows additional decoding logic, which decodes the con­

stant fields to produce the desired constant. Constant fields which are not mapped I to I are: 
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Constant Field Constant 

0 200 
11 100000 
15 100004 
20 220 
32 70 
33 71 
36 74 
37 75 

The constant field is specified by bits 57 through 53 of the ROM word. For a constant field of 0, bit 7 of the 

EALU is enabled, yielding 2008 , For a constant field of 208 , bit 57 (field bit 04) of the ROM word is also aI, 

enabling bit 4 of the EALU as well as bit 7 to yield 2208 , For constant fields 11 and 15, CNST bit 15 is generated. 

CNST bit 00 is decoded for all odd fields except 11 and 15. CNST bit 03 is generated for constant fields of 10, 12, 

13,14,16, and 17 because bit 03 is common to all these fields. 

The EN CNST 7X signal is generated for constant fields of 32,33,36, and 37 as shown below: 

Bit 57 Bit 56 Bit 55 Bit 54 Bit 53 Constant 

4 3 2 1 0 Field Constant 

0 0 32 70 

0 1 33 71 

0 36 74 

37 75 

EN CNST 7X is applied to the EMX and becomes the B input to EALU bit 05. CNST 4 and CNST 3 are enabled 

in order to generate EN CNST 7X. These signals are applied to EALU bits 04 and 03, respectively, and as a result 

EALU bits 5, 4, and 3 are enabled to generate an octal 7. 

6.2.18 FXPC 

This logic print contains the 16-bit BA and 16-bit BD registers, which are used as storage registers. Each register 

consists of two 74174 D-type flip-flop chips and one 74175 D-type flip-flop chip. The 74174 lCs are 6-bit chips 

and the 74175 is a 4-bit chip. 

6.2.18.1 BD Register - The BD is loaded by CLK BD from the control ROM. This occurs during the trailing 

edge of the clock pulse in TS4, if bit 49 of the control ROM word (BDC 0) is on a O. 

6.2.18.2 BA Register - The BA is loaded by CLK BA from the control ROM if bit 48 of the ROM word (BAC 0) 

is on a O. CLK BA is generated on the trailing edge of the clock pulse in TS4, if bit 48 (SAC 0) of the control 

ROM word is on a O. A second clock input is available from the interface unit with the 11/20 Central Processor. 

This signal is designated FlCC CLK BA. 

NOTE 
Both the BA and BD registers are loaded with data 
from the BMX (see description of sheet FRLN). 
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6.2.19 FXPD 

This sheet shows the 12-bit instruction register, which receives the instruction from the buffered BR inputs. The 

register consists of three 74175 D-type flip-flop chips and is loaded on the leading edge of TS3 when bit 59 of 

the ROM word (FIR control) is a O. 

The remaining logic on the sheet shows the two instruction ROMs. The five inputs to each ROM select one of 32 

8-bit words depending on the specified instruction (see Table on FXPM-M81 13-0-0). The instruction ROMs are 

8598 ICs, and the outputs of each ROM are applied to the branch logic on FXPE. 

6.2.20 FXPE 

This sheet shows the decoding associated with the branching conditions. The A and B outputs from the instruc­
tion ROMs are collector ORed to set up the various branches. ADI and AD2 are the constants used to update 

the CPU general register, depending on the format specified. FCLD LD EN is the enable level used to cause the 

floating condition codes to be copied in the CPU. The remaining signals on this sheet represent the decoding of 

the floating instruction register to set up various addressing modes and/or branching conditions. 

6.2.21 FXPF 

This sheet shows the B condition code logic, the range ROM used to determine the magnitude of the exponent 

difference between two numbers, the logic used to develop the SUB FRAC signal, and the illegal 9P code detector. 

6.2.21.1 B Condition Code Logic - The condition code logic contains a 74175 flip-flop chip to generate the B 

condition codes. If BB 1 Z is ai, the upper byte (bits 15 through 8) of the last word loaded in the BA or BD 

register is O. If BN is ai, the last word loaded in the BA or BD register is negative (bit 15 on a 1). If BZ is ai, 

the last word loaded in the BA or BD register is 0 (bits 15 through 00). The 74175 flip-flops are clocked on the 

trailing edge of TS4 when the BA control (bit 48 of CRaM) or BD control (bit 49 ·of CRaM) is a O. When this 

occurs, the BA or BD register is loaded so that the B condition codes reflect the condition of the data loaded in 

the BA or BD register. 

6.2.21.2 Range ROM - The range ROM is a 256-word x 4-bit ROM used to determine the difference between 
two exponents. The ROM provides a 3-bit output, which is applied to the branching logic. EALU bits 9 through 

o are provided at the input. The reason for this circuitry is described in Paragraph 5.2.2. 

6.2.21.3 SUB FRAC - The SUB FRAC signal is developed when the hardware is to perform a subtraction; 

This occurs when an add instruction with unlike signs or a subtract instruction with like signs is specified. If 

SUB FRAC is not present, the FP 11 sequences through the add branch where the hardware performs an add 

operation (see sheet FRMA). 

6.2.21.4 IllegalOp Code Detector - The illegal op code logic examines bits 15 through 12 of the word for all 

1 s yielding a 178 op code. If any of these bits go to 0, an illegal op code sign is generated. This is used to force 

FIRD5 and FIRD610w, which causes the microprogram to branch to the illegal op code routine (see sheet FXPE). 

6.2.22 FXPH 

This print shows the 74H74 floating-point (FD) and integer (IL) flip-flops. Also shown are sixteen 74S05 open­

collector drivers, which provide the BMX outputs to the B condition code logic on FXPF. 
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The combinaticn of bits FIR06 and FIR03 are set up to specify one of the following five instructions. 

FIR03 FIR06 Instruction 

0 LDFPS (LoadFP Status) 

0 0 SETF (Floating-point) 

0 SETD (Double Floating-point) 

0 0 SET I (Integer) 

0 SETL (Long Integer) 

If FIR06 (1) H is true and EALU bit 06 is present, the D input to the IL flop is enabled. When the flip-flop is 

clocked, the IL bit in the status register is set. If FIR06 (1) H is true, and EALU bit 07 is present, the D input 

_ to the FD flip-flop is enabled. When the flip-flop is clocked, the FD bit in the status register is set. Both flip­

flops are clocked at the trailing edge of TS4. The LD FPSC (0) II signal is true for the five instructions listed 
above and FIR06 (1) L is true in the case of the LD FPS instruction. 

If FIR06 (O).H is true, one of the other four instructions (SET D, SET F ,SET I, SET L) is specified. This is de­

pendent on FIR03, FIROO, and FIROI. IfFIR02 (1) H is true, either the IL or FD flip-flop is set, depending on 

which gets clocked. The flip-flop that gets clocked is determined by FIROI or FIROO. Note that FIR06 (1) Lis 

now disabled. If FIROI (0) L is true, FD is clocked; if FIROO (0) L is true, IL is clocked. 

The remaining logic on the sheet shows the open-collector inverters, which are collector ANDed to supply the 

inputs to the B condition code logic on FXPF. 

6.2.23 FXPJ 

The logic on this print is used for maintenance purposes and consists of eight D-type flip-flops, and two 7485 4-bit 

decoders. The eight D-type flip-flops are housed in two 74175 ICs - four per IC. These flip-flops comprise the 

8-bit U Break register, which is loaded from EALU bits 7 through O. 

Because the FPll does not have the capability of determining what state the CROM is in, the U Break register 

and decoding logic are designed for this purpose. This allows the programmer or maintenance personnel to load 

an 8-bit address into the U Break register. When the CROM sequences to this address, it is detected and a Jl match 

signal is generated. Detection occurs because the contents of the microbreak register matches the controls of the 

CRAR (Control ROM Address Register). 

The CROM address is loaded in TS2 but the CROM buffer is actually loaded in TS4. Note that two versions of the 

Jl match signal are available - one occurring as soon as the Jl match signal is generated. This signal is sent to the 
FRM module to produce an interrupt when a match is detected. The second version of this signal enables aD-type 

flip-flop, which is clocked at the same time as the CROM data buffer (TS4). The output of this flip-flop provides 

a synchronizing signal for oscilloscope use. This flip-flop sets at the beginning of the required ROM state and re­

mains true for the entire ROM state. 

6.2.24 FXPK 

The FXPK print shows the DIMX and the drivers, that the BD register feeds for communication with the 11/45. 

6.2.24.1 DlMX- The DIMX consists of four 74158 quadruple 2line-to-lline multiplexers. Inputs are from 

the CPU BAMX (designated BAMX15 to BAMXOO) or from the DATA IN lines (designated BR15 to BROO). 
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When the FPll is in the Ready state, the BAMX data input to MPX DATA15 through MPX DATAOO (DIMX) 

is enabled, which allows the address of the instruction to be loaded into the scratchpad accumulator via the EMX, 

EALU,and ACMX. The instruction is fed to the FIR directly from the buffered BR lines. In this way, both the 

PC and the instruction are transferred to the FPll at the same time. When the FPll is not in the Ready state,_ 

the buffered BR lines are enabled through the DIMX. 

6.2.24.2 Drivers - The sixteen 74HOl 2-input positive NAND gates are used as open-collector drivers to drive 

the outputs from the BD register to the Central Processor Unit, via the BUS INTD lines. The BUS INTD lines are 

a fast internal bus also used by the Central Processor and solid state memory. 

6.2.25 FXPL 

This print shows the six-stage step counter, which consists of a four-stage 74191- binary counter and two 74Sll2 
J-K edge-triggered flip-flops. The S-type flip-flops are used for bits 0 and 1 to ensure sufficiently fast set-up time 

on the input gates to the SCZ flip-flop. The 1 's complement of the number of shifts to be perfonned is loaded in­

to the step counter from EALU bits 5 through O. This occurs during TP4. The step counter is used as an up­

counter to count the number of shifts used in nonnalizing, arithmetic operations, or in the aligning of exponents. 

The step counter is preset to the 1 's complement of the number of shifts required. Termination of the opera­

tion is detected when the step counter sequences to all 1 s. When this occurs, SCZ goes to a 1. Note that all in­

puts to the SCZ flip-flop are 1 s, except for SCOO which is a O. The next increment of the step counter causes the 

count to go to alII sand SCZ to be set. Also note that SC EQ XXIII 1 is true when all four bits (bits 2, 3, 4, and 

5) are Is. 

If in maintenance mode, the direct clear to the SC LOADED flip-flop goes high, allowing this flip-flop to be set 

by a LD SC maintenance instruction. When the flip-flop is set, subsequent loads of the step counter by the micro­

program will be inhibited. When the step counter increments to allIs or when maintenance mode is disabled, 

SC LOADED is reset allowing load pulses to occur. 
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CHAPTER 7 
MAINTENANCE 

7.1 INTRODUCfION 

This chapter describes some of the maintenance techniques and tools available for maintenance of the FP II. A 

description of the FMAA Maintenance Module, display features, maintenance instructions, and diagnostic pro­

gramming is also provided. 

7.2 MAINTENANCE MODULE 

The.maintenance module consists of an indicator switch board (WI3l) and a driver board (W130 or W133) 

mounted piggy back in slot E I of the KB ll-A mainframe. The following floating-point signals may be displayed 

on the indicator board: 

a. 

h. 

c. 

d. 

e. 

f 
g. 

h. 

i. 

j. 

k. 

TPH 

T1 

T2 

T3 

T4 
FPWAIT 

FPATTN 

FPREQ 

FP SYNC 

Four floating-point condition codes (FZ, FC, FV, FN) 

Two lights on the indicator board are unused but their pins are available on the back plate in 
order to allow the maintenance engineer to look at signals he may be interested in. The two 
available pins are EOI F2 and EOI H2. A high signal (+3V) is needed to turn on the light. . 

The following CPU signals are also displayed: 

a. BUST 

h. MEM 

c. REF REQI 

d. REF REQ2 

e. CPFC I /FPEC 1 

f BBSY 

g. MSYN 

h. SSYN 
(continued on next page) 
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i. CNTLOK 

j. AERF 

k. PAR ERR 

1. SERF 

m. T5 

The switches on the maintenance module are: 

S4 - MAINT STPR switch 

S3 - crystal clock/RC clock 

82 Sl 

o 
I 

o 

o 
o 

Normal operation 

Single ROM cycle 

Microbreak stop 

Single time pulse 

S3 is placed into the RC clock position where the clock period can be varied for maintenance purposes. It is usu­

ally placed in the crystal position for normal operation. 

NOTE 
During maintenance, when any of the floating-point 
modules are inserted in extender boards, the clock 
must be in the RC position and set to more than 50 ns 
per clock period. It is also recommended that multi­
layer extender boards be used. 

S4 is a MAINT STPR switch that allows the function selected by the combination of switches S 1 and S2 to be 

performed. For example, if S2 is on and Sl is off, a single ROM cycle will occur each time the MAINT STPR 

stepper (S4) is depressed. The cycle will stop between TS2 and TS3. This feature can be used where mainte­

nance personnel suspect a specified instruction is not sequencing through the proper branches. Maintenance per­

sonnel can operate in single ROM cycle mode and compare the ROM address on the console to the ROM address 

on the flow diagram to ensure that the proper branches are being taken. If S2 is off and S 1 is one and the 

MAINT STPR is depressed, the FPll will stop between TS2 and TS3 when a match occurs between the CRAR 

(control ROM address register) and the microbreak register. If the MAINT STPR switch is depressed again, the 

machine recycles until a second micromatch occurs at the same ROM address. This micro break register is loaded 

by the by the LDUB instruction and provides maintenance personnel with a convenient means of sequencing to a 

desired state without manually depressing the single time stepper for each state sequenced through. 

If 82 and S 1 are both on, a clock transition occurs each time the MAINT STPR stepper is depressed. This allows 

the FPll to be stopped with the clock pulse high or low in order to examine gate conditions in the logic. A sec­

ond feature is that if the CPU could not cycle on the instruction, the operator could single clock up to the point 

of failure to see if the data paths are set up properly. Note that both the crystal and RC clock can be controlled 

by switches S4, S2, and S1. 

7.2.1 Time Margining Using Maintenance Module 

The timing of the RC clock can be varied using the maintenance module with S4 in the RC position, by adjusting 

potentiometer R32 on the M8114 module. The limits are from 45 ns minimum to 500 ns maximum. 
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The time margins should be checked periodically to locate any potential problems due to increase in pmpagation 

delays or flip-flop switching times. 

7.3 SPECIAL MAINTENANCE INSTRUCfIONS 

A set of five maintenance instructions are available to assist maintenance personnel. These instructions are de­

scribed in the following paragraphs. 

7.3.1 LDUB - Load Microbreak Register (170003) 

This instruction causes the lower eight bits of general register 3 in the CPU to be loaded into the micro break reg­

ister. LDUB can be used for the functions described in the following paragraphs, depending on the FMM bit 

(bit 4) in the program status word (FPS). 

NOTE 
The FMM bit in the status word is used to enable spe­
cial maintenance logic. In order to set this bit, the CPU 
must be in KERNEL mode. . 

With the FMM bit set, the microprogram will be aborted through the trap routine ROM address to tlIe Rea~)' 

state after the state specified by the address (next sequential ROM state) in the micro break register is detected. 

If the Interrupt Enable bit (bit 14) of the floating-point processor status word is set, the CPU will trap to loca­

tion 244. An exception code of 16 will be stored in the FEC (floating exception code) register. The conte,nts 

of the FEC register can be transferred to the CPU by the STST (store status) instruction. A second Junction, 

available as a result of the LDUB instruction, is that the maintenance personnel can use the address match as a 

, scope sync independent of the FMM bit. When the ROM address matches the contents of the microbreak regis­

ter, the UMATCH flip-flop is set at the leading edge of TS 1. The set output of this flip~flbp (pin DK 1 of slot 4 

in the FXP module) is used as a scope sync to allow visual observation of events that occur during a particular 

ROM state. UMATCH is cleared at the trailing edge ofTS4, which provides maintenance personnel with a sync 

signal that occurs at the beginning of a specified ROM state and ends at the beginning of the next ROM state. 

7.3.2 LDSC - Load Step Counter (170004) 

This maintenance instruction loads the 1 's complement of the least significant six bits of general register 4 into 

the step counter. LDSC sets the SC LOADED flip-flop, provided FMM (bit 4) of the processor status word is set 

(CPU must be in KERNEL mode to set FMM), which inhibits the ROM from loading the step counter. When the 

step counter is incremented to all 1 s, the SC LOADED flip-flop is cleared. As a result of this instruction, main­

tenance personnel can set up the step counter to do a specified number of steps in a multiply or divide routine 

and can stop where desired to examine the contents of the registers. 

7.3.3 STAO - Store AR In ACO (170005) 

This instruction transfers the contents of the AR to ACO, as described below: 

AR (57: 35) -+ ACO (57: 35) if FD = 0 

AR (57:3)-+ ACO (57:3>ifFD = 1 
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.7.3.4 STQO ~ Store QR In ACO (170007) 

This instruction transfers the contents of the QR to ACO, as described below: 

QR (57:35)-* ACO (57:35>ifFD = 0 

QR (57:3)-* ACO (57:3>ifFD = I 

NOTE 
The ST AO and STQO instructions are used to store 
the contents of the AR and QR (internal registers) 
in an AC. Since the contents of the AC can be trans­
ferred to memory, ~is provides maintenance person­
nel with a means of checking the contents of the AR 
and QR registers. 

7.3.5 MRS - Maintenance Right Shift (170006) 

The Mail1tenance Right Shift instruction shiftstheARorQR one bit position to the right. This instruction is 

used in (:lonjunction with the STAO instruction to allow AR59 and AR58 to be examined. Two MRS instructions 

are neCessary to transfer AR59 to ARS7 and AR58 to ARS6. The MRS instruction is also used in conjunction 

with the STQO instruction to allow bits QR59 and QR58 to be examined. Two MRS instructions are necessary 

in order to shift QR59 to QR57 and QR58 to QR56. ARS9 and AR58 as well as QR59 and QR58 represent the 

sign bit and hidden bit, respectively. These bits are not transferred between the CPU and the FPII but are used 

in data calculations by the Floating-Point Unit. Therefore, in order to examine the state of these two bits, the 

use of the MRS instruction is required. 

7.3.6 Maintenance Instruction Programming Example 

The following program demonstrates the use of the FP 11 maintenance instructions. This program is a multipli­

pation example, whereby the contents of the AR and QR are typed out with each incrementation of the step 

90unter from I through 71. Note that the MRS instruction is used in order to get AR and QR bits 59 and 58 in­

to general register RS for the typeout in each pass through the loop. 

The fractional part of the multiplicand which is 1/2 or 0.1 is stored in the BR and the fractional part of the mul­

tiplier-which consists of alternating Is and Os is stored in the QR. The multiplier has an exponent of 200 and the 

multiplicand has an exponent of 204. The sign bit is a 0 and the hidden bit is a 1. The result of each step of the 

multiplication is stored in the AR~ The typeout of the listing after each step of the multiplication is shown fol­

lowing the example. 

The contents of the AR and QR are typed out 57 times. On the 58th typeout, the step counter is not set and 

this lasttypeout represents the final product. 

7-4 

( 



001000 012706 START: MOV #600,%6 ;SET UP STACK POINTER AT 600 

( 001002 000600 
001004 170127 LDFPS #40220 ;DISABLE INTERRUPTS;SET DOUBLE AND MAINT. MODE 
001006 040220 
001010 172667 LDD MLYR,AC2 ;LOAD MULTIPLIER IN AC2 
001012 000204 
001014 012703 MOV #230,%3 ;SET REG. 3 to 230 
001016 000230 
001020 170003 LDUB ;SET MBR TO 230 
001022 005004 CLR %4 ;CLEAR COUNTER 
001024 005204 NXTMUL: INC %4 ;INCREMENT COUNTER 
001026 170004 WSC ;LOAD l'SCOMPLEMENTOF R41NTOSC 
001030 012705 LSTMUL: MOV #OR+10,%5 ;SET UP REG. 5 TO STORAGE TABLE. 
001032 001166 
001034 172567 LDD MCND,ACl ;LOAD MULTIPLICAND INTO ACl 
001036 000150 
001040 171102 MULD AC2,ACl ;DO PARTIAL MULTIPLY 
001042 170007 STOO ;TRANSFER OR TO ACO 
001044 174045 STD ACO,-(5)·· ;STORE OR IN TABLE 
001046 042715 BIC #177600,@5 ;CLEAR SIGN AND EXPONENT 
001050 177600 
001052 170005 STAO ;STORE AR IN ACO 
001054 174045 STD ACO,-(5) ;STORE AR IN TABLE 
001056 042715 BIC #177600,@5 ;CLEAR SIGN AND EXPONENT 
001060 177600. 
001062 170006 MRS ;SHIFT AR AND OR RIGHT ONE PLACE 
001064 170006 MRS ;SHIFT AR AND OR RIGHT ONE PLACE 
001066 170007 STOO ;TRANSFER OR TO ACO 
001070 174067 STD ACO,TEMP ;MOVE ACO TO TEMP 

( 
001072 000134 
001.074 016703 MOV TEMP,%3 ;MOVE MOST SIGNIFICANT 7 BITS OF OR TO R3 

""-- 001076 000130 
001100 042703 BIC #177600,%3 ;CLEAR SIGN AND EXPONENT 
001102 177600 
001104 006303 ASL %3 ;SHIFT MSB OF OR ONE PLACE LEFT 
001106 006303 ASL %3 ;SHIFT MSB OF OR ONE PLACE LEFT 
001110 050365 BIS %3,10(5) ;SET OR59 AND OR58 IN TABLE 
001112 000010 
.001114 170005 STAO ;STORE AR IN ACO 
001116 174067 STD ACO,TEMP ;MOVE ACO TO TEMP 
001120 000106 
001122 016703 MOV TEMP,%3 ;MOVE MOST SIGNIFICANT 7 BITS OF AR TO R3 
001124 000102 
001126 042703 BIC #177600,%3 ;CLEAR SIGN AND EXPONENT 
001130 177600 
001132 006303 ASL %3 ;SHIFT MSB OF AR ONE PLACE LEFT 
001134 006303 ASL %3 ;SHIFT MSB OF AR ONE PLACE LEFT ... 
001136 050315 BIS %3,@5 ;SET AR59 AND AR58 IN TABLE 
001140 004567 JSR %5,PRINT ;PRINT AR AND OR 
001142 000234 .. 001144 000410 BR .+22 ;BRANCH OVER ARGUMENTS 
001146 000000 AR: .FLT4 0 ;AR STORED IN THESE FOUR LOCATIONS 
001150 000000 
001152 000000 
001154 000000 
001156 000000 OR: .FLT4 0 ;OR STORED IN THESE FOUR LOCATIONS 

(-
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001160 000000 /-

001162 000000 ( 
001164 000000 
001166 020427 CMP %4,#71 ;HAVE 71 PASSES BEEN DONE 
001170 000071 
001172 100714 BMI NXTMUL ;NO-DO NEXT PASS 
001174 001402 BEQ LSTPAS ;YES-OO LAST PASS 
001176 000167 JMP START ;THIS MULTIPLY COMPLETE-DO NEXT ONE 
001200 177576 
001202 005204 LSTPAS: INC %4 ;INOICATE 72ND PASS 
001204 000167 JMP LSTMUL ;00 LAST PASS WITHOUT LOADING SC. 
001206 177620 
001210 040052 MCND: .WORD 040052 
001212 125252 .wORD 125252 
001214 125252 .WORD 125252 
001216 125252 .WORD 125252 
001220 040000 MYLAR: .WORD 040000 
001222 000000 ,WORD 000000 
001224 000000 .WORD 000000 
001226 000000 .wORD 000000 
001230 000000 TEMP: .FLT4 0 
001232 000000 
001234 000000 
001236 000000 

000001 .END 
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TYPEOUT OF QR AND AR 

Step AR QR 
.. 

( 0000000000000000000 1252525252525252525 
, 2 0000000000000000000 0525252525252525252 

3 1000000000000000000 0252525252525252525 
4 0400000000000000000 0125252525252525252 
5 1200000000000000000 0052525252525252525 
6 0500000000000000000 0025252525252525252 
7 1240000000000000000 0012525252525252525 
8 052000QOOOOOOOOOOOO· 0005252525252525252 
9 1250000000000000000 0002525252525252525 

10 0524000000000000000 0001252525252525252 
11 1252000000000000000 0000525252525252525. 
12 0525000000000000000 0000252525252525252 
13 1252400000000000000 ·0000125252525252525 
14 0525200000000000000 0000052525252525252 
15 1252500000000000000 0000025252525252525 
16 0525240000000000000 OQOO012525252525252 
17 1252520000000000000 0000005252525252525 
18 0525250000000000000 qOOOO02525252525252 
19 1252524000000000000 0000001252525252525 
20 0525252000000000000 0000Q00525252525252 
21 125252500000000000Q 0000000252525252525 
22 0525252400000000000 0000000125252525252 
23 1252525200000000000 0000000052525252525 
24 0525252500000000000 0000000025252525252 
25 1252525240000000000 0000000012525252525 
26 0525252520000000000 0000000005252525252 
27 1·252525250000000000 0000000002525252525 
28 0525252524000000000 0000000001252525252 

/" 29 1252525252000000000 0000000000525252525 

~. 30 0525252525000000000 . 0000000000252525252 
31 1252525252400000000 0000000000125252525 
32 0525252525200000000 0000000000052525252 
33 1252525252500000000 0000000000025252525 
34 0525252525240000000 0000000000012525252 
35 1252525252520000000 0000000000005252525 
36 0525252525250000000 0000000000002525252 
37 1252525252524000000 0000000000001252525 
38 0525252525252000000 0000000000000525252 
39 1252525252525000000 0000000000000252525 
40 0525252525252400000 0000000000000125252 
41 1252525252525200000 0000000000000052525 
42 0525252525252500000 0000000000000025252 
43 1252525252525240000 0000000000000012525 
44 0525252525252520000 0000000000000005252 
45 1252525252525250000 0000000000000002525 
46 0525252525252524000 ·0000000000000001252 
47 1252525252525252000 0000000000000000525 
48 0525252525252525000 0000000000000000252 
49 1252525252525252400 0000000000000000125 
50 0525252525252525200 0000000000000000052 
51 1252525252525252500 0000000000000000025 
52 0525252525252525240 0000000000000000012 
53 1252525252525252520 0000000000000000005 
54 0525252525252525250 0000000000000000002 
55 1252525252525252524 0000000000000000001 

, 56 0525252525252525252 0000000000000000000 
57 1252525252525252525 0000000000000000000 

( 58 1252525252525252525 0000000000000000000 

1252525252525252525 0000000000000000000 
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7.4 CONSOLE DISPLAY FEATURES 

The PDP-l 1/45 console can be used to display the floating-point ROM address and, under certain conditions, can 

di:;play the contents of the EALU. 

7.4.1 Display of ROM Address 

The 16 DATA indicators on the console can be used to display the 8-bit FPll ROM address and the 8-bit CPU 

ROM address. The FPll ROM address is displayed on the left-most DATA indicators (bits 15-08) and the CPU 

ROM address is displayed on the right-most indicators (bits 07-00). The four-position data selector switch on 

the console must be set to the 11 ADDR FPP/CPU position to display the ROM address. 

NOTE 
If the FMAA maintenance module is set up to dosingle 
ROM cycles or 11 match, the FPll ROM address displayed 
is the next ROM address; i.e., the address of the next 
ROM state to be cycled. The reason for this is that the 
ROM address changes at the end of time state 2 and a 
Pause or Wait state occurs between time state 2 and time 
state 3. If the FMAA maintenance module is set up to do 
single clock cycles during time states 1 and 2, the ROM ad­
dress displayed is the current address, and for single clock 
cycles during time states 3 and 4, the ROM address displayed 
is the next address. 

7.4.2 Display of EALU Contents 

In certain ROM states of the CPU the contents of the EALU may be displayed on the lower 16 ADDRESS in­

dicators (bits 15-00) on the PDP-l 1/45 console. These CPU ROM states are unique to F class instructions and 
are listed as follows: 

ROM State Octal Address 

FOP.30 173 
FOP.50 211 
FOP.60 362 
FOP.70 316 
FOP.80 376 
FOP.90 375 
FOP.40 36 
FSV.20 225 

NOTE 
The content of the EALU at any of these ROM states 
is dependent on the FP ROM state occurring atthat 
time. Both. the FPll and the CPU should be set up for 
single-step operation using both the CPU and FPll 
Maintenance Boards to see meaningful data in these 
ROM states. 

The eight-position address selector switch on the console must be set to CONS.PHYS, or PROG.PHYS. 

7.5 MAINTENANCE PROGRAMMING 

This section describes some simple programs that can be performed by maintenance personnel to ascertain if cer­
tain areas of the logic are working properly. 
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PROGRAM 1 

000000 ACO=%O 
177570 SWR=177570 
003000 .=3000 

003000 172400 LDF ACO,ACO ;FCLASS AND MODE 0 
003002 000000 HALT 

PROGRAM 2 

003010 .=3010 
003010 172400 LDF ACO,ACO ;FCLASS AND MODE 0 
003012 000776 BR .-2 ;LOOP ON INSTRUCTION 
003014 000000 HALT ;SHOULD NEVER HALT 

PROGRAM 3 

003020 .=3020 

003020 016701 174544 MOV SWR,%l ;SWITCHES TO CP REGISTER 1 

003024 170101 LDFPS %1 ;CP REGISTER 1 TO FPS 

003026 170200 STFPS%O ;FPS TO CP REGISTER 0 

003030 020100 CMP %1,%0 ;DOES RO=R1? 

003032 001400 BEQ .+2 ;TEST 

003034 000000 HALT ;IS NOT THE SAME 

003036 000137 003020 JMP@#3020 ;RESTART PROGRAM 

PROGRAM 4 

003050 .=3050 
003050 170011 SETD ;PUT FPU IN DOUBLE PRECISION 

003052 172437 004000 LDD @#4000,ACO ;LOAD ACO FROM LOCATION 4000 

003056 174037 004010 STD ACO,@#4010 ;STORE ACO IN LOCATION 4010 

003062 000000 HALT ;EXAMINE DATA TO SEE IF SAME 

004000 .=4000 
004000 011111 11111 ;FIRST WORD OF LOAD 

004002 022222 22222 ;SECOND WORD 

004004 033333 33333 ;THI RD' WORD 

004006 044444 44444 ;FOURTH WORD 

000001 .END 

The following general assumptions can be made about each of the programs. 

1. In program number I it can be assumed that control can be transferred between the FPII and the 
CPU and also that the FPII can cycle on the LDF instruction. 

2. In program number 2 it can be assumed that the floating-point instruction can be run dynamically 
and that the interface signals are being properly generated. The program is useful for scoping con­
trol signals between the FPII and the CPU. In addition, it is probable that both the FPII and the 
CPU control ROMs will pause in the Ready state and the LDF instruction can be looped on. 

3. In program number 3 it can be assumed that single-operand fetches work and that the data is being 
transferred properly. The program allows the data placed in the switch register to be transferred 
from the CPU to the FPII, back to the CPU, and then compared. 

NOTE 
Bits 12 and 13 of the floating-point status word are 
unused and should be set to 0 on the switch register. 

4. In the program number 4 two floating-point words from memory are transferred to the FPII and 
then transferred back to memory. It can generally be assumed that the QR, BR, FALU, ACMX, 
and scratch pad are operating correctly. For single-precision mode, the same program can be utilized 
if the SETD instruction is replaced with the SETF instruction. 

NOTE 
Refer to Chapter 4 of the PDP-ll /45 System Main­
tenance Manual for information on diagnostic pro­
gramming. 
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Signal Mnemonic 

ACC (2:0) 
(AC Control) 

ACF (2:0) 
(AC Field) 

ACMX (07:00) 
ACMX (I 5 :08) 
ACMX(23: 16} 
ACMX (31: 24) 

ACMXCl, ACMXCO 
(ACMX Control) 

ACRE 
(AC Read) 

ADDRINCR 
(Address Increment) 

AD2,ADI 

ALUCIN 

ALUC <3:Q) 
(ALU Control) 

ALUM 

Logic Print 

FRME 

FRME 

FRLA 
FRLB. 
FRLC 
FRLD 

FRME 

FRME 

FRMF 

FXPE 

FRMH 

FRME 

FRMH 

A-I 

APPENDIX A 

SIGNAL GLOSSARY 

Function 

Three bits used to select a 16 or 32 byte location 
within the accumulator. 

Three ROM bits used to specify accumulator 
address. 

Outputs of ACMX, which are applied to scratch 
pad accumulator. 

ROM bits used to select inputs to ACMX. 

ROM bit used to specify AC Read on a 1 and AC 
Write on a O. 

ROM bit that causes the BA register to be incre­
mented twice. 

A 2-bit constant field that is decoded to a value of 
0, 2, 4, or 8 and indicates how much the program 
counter is to be incremented. This is based on the 
number of memory cycles required to represent the 
operand, as shown: 

AD2 
o 
o 

1 

AD! 
o 

o 

No. of Operands 
8 
4 
2 
o 

One of the six inputs to the ALU and produces a 
carry under certain conditions (see Table 6-3). 

Four ROM bits used to select function performed 
by ALU. 

Mode bit which, when set, indicates a logical func­
tion is to be performed by the ALU and, when re­
set, indicates an arithmetic function is to be per­
formed. 

(continued on next page) 



Signal Mnemonic Logic Print Function ( 
ALUS <3:0> FRMH Select lines which specify the function to be per-

formed in the ALU. (See Table 6-3). 

ARC1,ARCO, FRME ROM bits used to control the shifting or loading of 
(AR Control) the AR. 

AR <59:52) FRHD Outputs from AR which are directly applied to 
AR (51:44) FRHC the FALU. 
AR (43:36) FRHB 
AR <35:32) FRLK 
AR <31 :24> FRLJ 
AR (23: 16) FRLH -", 

AR (15:08) FRLF 
AR (07:00) FRLE 

ARNORM(l)H FRHF If the AR is normalized, this flip-flop is set when 
the AR is clocked. If the AR is unnormalized, the 
flip-flop remains reset. The flip-flop is held cleared 
except for divide and left shifting of the AR. 

ARS1,ARSO FRHE AR select signals used to specify function performed 
by AR. These signals are derived from AR control 
bits 26 and 25 from the ROM or from ROM CSB 
bits 29 through 27 during an add or subtract op-
eration. 

ATTENTION (1) 1I FRMJ This signal is set by FP ATTN and is used to force ( the FPll out of the Wait state by clearing FRHH 
PAUSE. 

BA 05:00> FXPC Represents the 16-bit outputs of the BA register. 

BAC FRMF ROM bit used to load the BA register. 
(BA Control) 

BACMXC 1, BACMXCO FRMH Buffered ACMX control lines used to specify inputs 
to ACMX. 

BBlZ FXPF When this signal is aI, it indicates that the expo-
nent (bits 15 ,through 8) is 0 and that the exponent 
has not overflowed. 

BD <15:00> FXPC Represents the 16-bit outputs of the BD register. 

BDC FRMF ROM bit used to load the BD register. 
(BD Control) 

BMX (15:00> FRLN Outputs of the BMX which represent data from 
one of four input sources. 

BMX <15:0Q)H FXPH These are inputs to the condition codes and convey 
information regarding the state of the exponent 
(overflow, underf1ow, negative, etc.). 

BMXCl, BMXCO FRME,FRMF ROM bits used to select inputs to BMX. 
(BMX Control) 

( 
(continued on next page) 
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Signal Mnemonic Logic Print Function ( 
CLKSC FRHF A signal used to clock the step counter in multiply 

or divide. The signal is inhibited during the actual 
arithmetic operation or wh~n the AR is normalized. 

CLOCK A,B,C,D FRHJ Four clock lines from the clock driver used to sup-
ply clock signals to the FPll. 

CLOCK A,B,C, RTN FRHJ Return lines for the four clock driver lines which 
supply signals to the FPll. 

CLR QR A, CLR QR B FRHF Signals used to clear the QR in time state 2 with 
ROM control bit QRC2 on a O. 

CLRSYNC FRMJ ROM derived control signal occurring during the 
latter half of TS4 which causes the SYNC flip-flop 
to be cleared if a CONY SPECIAL-type instruction 
is issued. 

CNST BIT 00, AND 15 FXPA These are signals which, when enabled, will force a 
bit into bit 00, or bit 15 of the EMX, respectively. 

CNST BIT 03 FXPA A constant bit used in bit location 3 of the constant 
word which is fed into the B input of EALU via 
the EMX. 

CNSTF4~CNSTFO FRMF Five ROM bits used for various constants employed 
in the FPll. When accompanied by RDFN 
CNSTF (1) these bits are used for control functions. ( 

CONTROLSEL2-CONTROLSELO FRMF Three ROM bits used for encoding up to seven ad-
ditionl:\l functions, such as LOAD FPSC, LOAD 
UBC, REG WRITE, etc. 

CONVSP FXPE When a store exponent, store floating to integer, or 
store floating to double instruction is issued, CONY 
SP is generated to initiate a conversion routine 
based on the instruction. 

COUTIO FRHD Carry output to succeeding F ALU chip for carry 
COUT09 FRHC propagation. 
COUT06,07 ,08 FRHB 

CRAR ID L FRMB Input to CRAR I which represents the next state 
of the address register bit. 

CRAROD L FRMB Input to CRAR 0 which represents the next state 
of the address register bit. 

CRAR <07:04) FRMA Bits 7 through 4 of the 8-bit control ROM address 
register. These bits are generated by the control 
ROM. CRAR bits 4 and 5 can be modified by some 
branch conditions which have been satisfied. 

CRAR <03:00> FRMB Bits 3 through 0 of the 8-bit control ROM address 
register. These bits are generated from the control 
ROM and can be modified. by branch conditions 
which have been satisfied. l 

(continued on next page) 
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CSB (2:0> FRME Three ROM bits used to specify functions to be 
(Call Subroutine bits) performec' during :m arithmetic subroutine. 

D (63:32> FRMC 32 control ROM outputs which are applied to the 
D (31 :00> FRMD ROM output buffer. Bits D07 through DOO are not 

applied to the output buffer but are directly ap-
plied to the control ROM address register. 

DISABLE SC FRMF Second level decoding of ROM bits 61 through S9 
(Disable Step Counter) to yield 48 , 

DISABLE SYNC FRMF Second level decoding of ROM bits 61 through S9 

"' to yield 38 

DlV SUB FRMH Indicates that a subtract function is to be performed 
by the ALU in a divide subroutine. 

DRaM (A 7 :AO> FXPD Decoded instruction ROM outputs used with 
DRaM B7 - DRaM BO to specify branching con-
ditions necessary to perform each instruction. 

DRaM <B7:BO) FXPD Decoded iristruction ROM outputs used with 
DRaM A7 - DRaM AO to specify the branching 
conditions necessary to perform each instruction. 

DSBLI, DSBLO FRMF ROM bits used to clear FP REQ and/or disable 
BRQ monitor. 

C. EALU (IS:OO> FXPA,FXPB 16 outputs from EALU whose content depends on 
inputs supplied and function specified to be per-
formed in EALU. 

EMXCO FXPA One of the select lines to EMX. Used in conjunc-
tion with EM XC I (1) H to select one of four inputs. 

EMXCl, EMXCO FRMF ROM bits used to select inputs to EMX. 

(EMX Control) 

EN CNST 7x FXPA This signal is generated in order to generate an octal 
digit of 7x8 for constants of 70, 71. 74, and 75 
specified by constant fields of 32, 33, 36, and 37, 
respectively. 

'<' ENABLEFMO FRMJ This signal enables the floating minus zero internlpt 
if the gating on sheet FRMA detects a minus zero 
condition. This is detected by a negative sign and .. an exponent of all Os. 

ENABLE FV FRLP Indicates that a positive exponent has, overflowed, 
setting bit 8 out of EALU. Occurs only when 
CRaM enables Floating Condition Code Olltput. 

ENAB QRSOL FRHE ROM derived signal indicating that a right shift 
should be performed in the QR, with Os being shifted 

( into the MSB. 
(continued on next page) 
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EXPEQOL FRLM When these signals are enabled, it indicates that the 
EXPEQOH FRLM exponent is equal to o. SCR OUT 30-23 can re-

present the eight bits of exponent. 

FALUS9-fALU52 FRND Outputs from F ALU dependent on inputs from AR 
FALUSI-FALU44 FRNC and BR and function specified in FALU. 
FALU43-FALU36 FRNB 
FALU35-FALU32 FRLK 
FALU31-FALU24 FRLJ .. ' 
fALU23-FALU16 FRLH 
FALU15-FALU08 FRLF 
FALUO? - F ALUOO FRLE ,. 

FC FRLP Bit 0 of the FPII program status register which, 
when set, indicates that the integer, obtained from 
conversion of a floating-point number, is too large 
to be stored in the specified register. This is a re-
sult of the STCXJ instruction. FC also indicates 
that absolute value of floating-point result was 
larger than largest integer which can be represented 
by 56 bits (D) or 24 bits (F). 

FCCl;FCCO FRMF ROM bits used to determine inputs to floating con-
(Floating Condition Codes) dition codes. 

FCINT FRLP The AND of FIC (1) Hand FC (1) H. If the pro-
grammer wishes to trap only on the setting of a ( 
condition code, he sets FIC (1) H. When the condi-
tion code is set (designated by FC (1», FC INT is 
generated which causes an FP TRAP if the interrupt 
enable bit is set. 

FCLDENH FXPE Used to signify that the floating condition codes 
must be loaded into the CPU. 

FD FXPH The floating double flip-flop, when set, indicates 
double-precision floating point and when reset, in-
dicates single-precision floating-point. 

FER FRLP Bit 15 of the FP 11 program status register which 
(Floating Error) is set by CROM when FPll sequences into error 

state. 

FIC FRLP Bit 8 of the FP program status register which, when 
(Floating Interrupt on Conversion set, will cause an interrupt if the FC bit (indicating 
Error) a conversion error) is set. .. 
FID FRLP Bit 14 of the FPII program status register which, 
(Floating Interrupt Disable) when set, allows all interrupts to be disabled. 

FIRI1-FIROO FXPD Represents the 12-bits of the instruction word stored 
in the floating instruction register. 

FIRC FRMF ROM bit used to load the floating instruction regis-
(FIR Control) ter; also used to indicate the Ready state of the ( FPll, since this is the state during which the IR is 

loaded. "'-" 
(continued on next page) 
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FP REQ (I) H FRMJ Signal used in conjunction with FP SYNC to indi- ( 
cate that more data words are desired. When FP 
SYNC is returned to the CPU in the absence of FP 
REQ, the memory cycles are terminated. 

FP SYNC FRMJ A signal sent to the CPU indicating that data has 
been accepted or that the FP II is ready to send 
or receive data. 

FP SYNC (I) H FRMJ This signal enables FP SYNC to be sent to the CPU 
in TS2 of the next ROM state. 

FPTRAP FRHH Indicates that the FPII is issuing a trap command. 

FRACMUL FRHE This signal is derived from ROM bits 29 through 27 
(CSB 2 through 0). When these bits are all Os, a 
multiply operation is indicated. 

FT FRLP Bit 5 of the FPll program status register, which, 
(Floating Truncate) when set, causes the result of any floating-point 

operation to be truncated rather than rounded. 

FV FRLP Bit I of the FPll program status register which is 
(Floating Overflow) the FPll version of the V condition code. 

FVINT FRLP The AND of FIV (1) Hand FV (1) H. If the pro-
(Floating Overflow Interrupt) gram mer wishes to trap only on the setting of the 

overflow bit, he sets FIV (1) H. When the overflow 
bit is set (designated by FV (I)), FV INT is gen- ( era ted which causes an FP TRAP if the interrupt 
enable bit is set. 

FZ FRLP Bit 2 of the FP II program status register which is 
(Floating Zero) the FPII version of the Z condition code. 

GATE BD BI, GATE BD B2 FXPK Allows data to be gated from the BD to the 11/45-
two sections available for adequate drive. 

GEN 12, PROP 12 FRHC Outputs from first level carry look-ahead which are 
used as inputs to second level carry look-ahead. 

GO TO READY FRMB Causes FPII to trap to ready if the J.t1MP CRaM 
bit is on and next address has 2 LSBs of 1. 

ICLR (I) H FRMJ This signal is an enable to the INITF flip-flop which 
allows the INITF flip-flop to be set synchronously 
with the FPII. ICLR is set by INIT or INTR CLR 
where INTR CLR is the CPU signal. 

ILL OPCODE FXPF Indicates an illegal op code in that bits IS through .' 
12 of the instruction are not all I s, yielding the 178 
op code assigned to FPU. 

IMMEDIATE FXPE Indicates register R 7 and modes I, 2, or 4. 

INIT FRHH A signal asserted by the processor when the start 
key is depressed, when a reset instruction is executed, 
or when the power fail sequence is)nitiated. C (continued on next page) 
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INlTF B 

L2 CaUTIO, 11,12 L 

LDQR 

LDQR (59:35) 

LDQR (34:00> 

LDSC 

LOAD FPSC 
(Load floating-point status control) 

LOADUBC 
(Load Ilbreak control) 

LSQRINH 

LSQR31 IN H 

LSQROOIN H 

MOORI 

MPAUSE (1) H 

MPX DATA (15:00> 

MRI (1), MRO (1) 

Logic Print 

FRMA 

FRLK 

FRHF 

FRHE 

FRHE 

FXPL 

FRMF 

FRMF 

FRHF 

FRLM 

FRHF 

FXPE 

FRHH 

FXPK 

FRHE 

A-9 

Function' 

Output from INIT flip-flop which is at TP2 by 
ICLR (1), a function ofINIT. INTF B is used to 
direct clear the CRAR. 

Carry outputs from the second level carry look"ahead 
circuit. These outputs represent carry between the 
first level carry look-ahead circuits. 

A signal developed from ROM bits 22 and 21 to 
load the QR. 

ROM derived signal indicating that the upper half 
of the QR is to be loaded. 

ROM derived signal indicating that the lower half 
of the QR is to be loaded. 

A signal occurring at TP4 which is used to load the 
six-stage step counter. 

Second level decoding of ROM bits 61 through 59 
to yield Os. 

Second level decoding of ROM bits 61 through 59 
to yield Is. 

This signal, when high, causes a I to be shifted into 
QROO (double precision) or QR31 (single precision) 
and when low causes a 0 to be shifted in. 

Used in single-precision floating point and represents 
the bit that is shifted into bit position 31 of the QR 
during a left shift. 

This signal is generated during divide with double­
precision floating-point format specified and repre­
sents the bit shifted into the LSB position of the QR. 

A mode 0 or mode 1 instruction has been decoded. 

A flip-flop used during maintenance which stops 
the state counter between time state 2 and time 
state 3 and allows the Wait state to be turned on. 

A multiplexer which selects the contents of the BR 

register or the BAM X which contains the vaiue of 

the program counter when the FP mstruction was 

fetched. This MPX allows both the floating instruc­

tion and floating return address to be transferred 

simultaneously to the FPII. 

These are two flip-flops used'during the, multiply 
subroutine to store the two LSBs of the QR for 
increased speed. 

(continued on next page) 
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MSWITCH CNTU (1) H FRHH 

MULADD ·FRMH 

MUL ARITH (1) H FRHE 

MULDIV FRMH 

MUL DIV DISABLE FRHE 

MULDIVH FRHE 

MUL DIV LSQR31 L FRHF 

MULSUB FRMH 

MULSUB(l) H FRHE 

PAUSE (1) H FRHH 

PO, PI, P2 (l) H FRHE 

QRO SO, QRO SI, QRl SO,QRl SI FRHE 

A-10 

Function 

A maintenance signal which allows manually switch­
ing out of the Wait state by clearing MPAUSE flip­
flop. 

Indicates an add operation in the multiply subrou­
tine. 

This flip-flop is set under following conditions: 

MRI MRO STRGl 

0 I [I] 

° [0] 

and indicates an arithmetic operation is to occur. 

Indicates a multiply or divide subroutine has been 
selected by the ROM. When MUL DIV is true, 
ALUC signals are disabled. 

This signal disables the multiply or divide subrou-
tine by inhibiting the clock pulses from clocking 
the QR or AR. This signal is gerterated when an 
arithmetic operation occurs (MUL ARITH (1)), 
when an operand is normalized, or when the step 
counter is fully incremented. 

This signal is derived from ROM bits 29 and 28 
(CSB bits 2 and 1). When both bits are 0, a multi-
ply or divide operation is indicated. 

This signal is generated during divide with single-
precision floating-point format specified and repre-
sents the bit shifted into QR31. 

Indicates that a subtract function is to be per-
formed by the ALU in a multiply subroutine. 

This flip-flop is set when a subtract operation is 
performed during a multiply subroutine and is ini-
tiated by a string of Is. 

A flip-flop which stops the state counter between 
state 2 and 3 and allows the Wait state to be turned 
on. 

Pause flip-flops which provide a 200 ns delay to 
inhibit clocking the AR and QR during an add or 
subtract operation in an arithmetic subroutine. 

QR select signals used to specify function perform-
ed by QR. The signals are derived from QR con-
trol bits 22 and 21 from the ROM and are used in 
conjunction with ACC2 to determine what accumu-
lator is loaded into the QR and whether it is loaded 
into the lower or upper half of the QR 

(continued on next page) 
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QR59 (1) H 

QR (58:35) 
QR (34:23) 
QR (22:00> 

Signal Mnemonic 

QRC (2:0) 
(QR Control) 

RC 

RDFNCNSTF 
(Redefined Constant Field) 

READYCLR 

REG 6 or 7 

REG WRITE 
(Register Write) 

RNG ROM 2,1,0 

ROM + UBS 

RR2, RR1, RRO (1) H 

RS QRINH 

SC (05:00) 

SCC 
(Step Counter Control) 

SC LOADED (0) H 

Logic Print 

FRHF 

FRHA 
FRLM 
FRLL 

FRME 

FRHJ 

FRMF 

FRNJ 

FXPE 

FRMF 

FXPF 

FRHJ 

FRHF 

FRHF 

FXPL 

FRMF 

A-ll 

Function 

This is the QR sign bit flip-flop, and its value de.·· 
pends on whether the QR is being right shifted or 
left shifted. 

Outputs from QR directly applied to BIt .. 

Three· ROM bits used to specify if QR is to be 
shifted or loaded. 

An RC clock used to vary the frequency during main­
tenance mode. 

ROM bit used to redefine constant field bits 57 
through 53, so that they may be used for control 
purposes. 

Occurs every time the IR is loaded and is used to 
ensure that certain flip-flops are initialized at the 
beginning of each instruction. 

Indicates that register 6 or register 7 has been 
addressed. 

Second level decoding of ROM bits 6l through 59 
to yield 28 , 

Outputs of the range ROM used to determine the 
magnitude difference between the two exponents 
involved. 

Signal which represents a CROM address compari­
son or single ROM cycle in maintenance mode. 
This signal sets MPAUSE at TPI time to force the. 
FPll into the Wait state. -

Three flip-flops used in division to speed up the add 
or subtract operations within the divide subroutine. 
They are high-speed duplications of AR59. AR58, 
and AR57 and can only be left shifted. 

Input to MSB of QR register during a right shift 
operation. 

Outputs of the step counter which indicate number 
of shifts that have occurred during normalizing or 
the number of shifts that must occur during. some 
arlthmetic operation. 

ROM bit used to load the step counter. 

Maintenance signal used to allow one load of the 
step counter and inhibits further loading until step 
counter overflow. 

(continued on next page) 



Signal Mnemonic Logic Print Function' C ) 
SCR OUT (31 : 24) FRLD Outputs from scratchpad accumulator which are 
SCR OUT (23: 16) FRLC applied to BMX or QR. 
SCR OUT 05:08) FRLB 
SCR OUT (07:00> FRLA 

SCR ADDRS (2:0) FRMH Address lines which select one of eight accumulator 
scratchpads (ACO-AC7). 

SCR WRITE 1, SCR WRITE 0 FRMH A control signal used to command a write into the 
scratch pad accumulator. Two signals available to 

,I 
satisfy drive requirements. 

SC EQ XXllll FXPL Indicates four outputs (SC5 through SC2) are all 1 s. !!' 

SCZ(l) H FXPL A signal used to indicate that the step counter is 
fully incremented to all Is, which causes termina-
tion of the operation being performed. 

SD (1) H FRHF This flip-flop represents the sign of the destination 
operand and can be set by SCR OUT 31 when the 
upper half of the QR is to be loaded, by the ex-
clusive OR for SS and SD with a SGNC field of 1 
(see Paragraph 6.2.4.6), or by SS or its complement 
with a SGNC field of O. 

SELECT UBRMXB FRMA Indicates that the UAF bits are selecting the ap-
propriate branch combinations and the FMO, 

( ABORT, ~BRK conditions are not enabled. ) 
SET FER FRMJ A signal generated by the ROM control to set the 

error flag. The FER signal does not cause an inter-
rupt; however, the same ROM control will cause an 
interrupt on sheet FRHH if the FIE bit is not enabled, 

SET SYNCF FRMJ A direct set to the SYNC flip-flop whIch is pro-
duced at TS2 time when commanded by the con-
trol ROM or when a FMO trap is going to occur. 

SIGNC 1, SIGNCO FRMF ROM bits used to deteIinine sign of source and sign 
(Sign) of destination. 

SS (1) H \ FRHF This flip-flop represents the sign of the source op-
erand and can be set by the sign bit (SCR OUT 31) 
of the scratchpad accumulator during loading of 
the upper half of the OR, or by the SGN bits in the .. -
control ROM. 

SS XOR SD FRHF A signal which represents exclusive OR of SS and 
SD. 

START EN FRHH Enables the state counter to restart from the Wait 
state on the next clock pulse. 

STATE 4(1) H FRHH Indicates that the FPll is in time state 4. 

STATE 3 (1) H FRHH Indicates that the FPll is in time state 3. 

(-(continued on next page) 
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STATE 20)H FRHH Indicates that the FPll is in time state 2. 

STATE 1 (1) H FRHH Indicates that the FP 11 is in time state 1. 

STRG 1 (1) FRHE This flip-flop when set, indicates a string of 1 s is 
present. 

STRZERO FRLP Indicates that all eight bits of the exponent which 
(Store Zero) are stored in the scratch pad are Os . .. 
SUB FXPE Indicates hardware is to subtract two numbers. 

SUB CALL FRHH A signal which is enabled for any of the seven sub-
" routine calls designated by the CSB bits in the ROM. 

SUB FRAC FXPF Denotes that the hardware is doing a subtraction 
with like signs or an addition with unlike signs. 

SYNC FRMF ROM bit used to enable FP SYNC. 

TP4 FRMA A pulse occurring during the latter half of TS4. 

TP2 FRMA A pulse occurring during the latter half of TS2. 

TS3,TS4, TSl, TS2 FRHH Output signals which represent the four time states 
of the FPll and which are applied to maintenance 
indicator lights on the FMAA card. 

e TS4A,TS4B FRHH TS4A and TS4B represent the TS4 signal after being 
applied through a driver. 

TS3A, TS3B FRHH TS3A and TS3B represent the TS3 signal after 
being applied through a driver. 

TS2A, TS2B FRHH TS2A and TS2B represent the TS2 signal after 
being applied through a driver. 

UAFl, UAFO FRME ROM bits used in conjunction with UBR and UJP 
(Microaddress field) bits for micro branching. 

UBR2-UBRO FRME Three ROM bits used in conjuriction with UAF 
(Microbranch) and UJP bits for micro branching. 

J.lBRKF (1) H FRMA This signal indicates that a match has occurred be-
tween the control ROM address register and the 
J.lBreak register and causes the FPll to trap state 4 
and interrupt if the interrupt enable is on. This sig-
nal occurs during maintenance mode and the FPII 
must be in some state other than the Ready state. 

J.lJMP FRME ROM bit used in conjunction with UBR and UAF 
(Microjump) bits for micro branching. 

J.lMATCHH FXPJ A signal generated when the contents of the control 
. ROM address register match the contents of the 
microbreak register. The FPll can be programmed 
to stop when a match occurs. 

( 
(continued on next page. 
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,uMA TCH (l) H FXPJ A delayed version of ,uMATCH H which represents 

one complete ROM state. This signal is used for 
synchronization in scope loops. 

,uTRAP BL FRMA This signal, when low, disables the ROM from the 
CRAR and allows the trap bit to be enabled. 

WAIT (1) H FRHH Indicates the FPll is in the Wait state. 

WAITS FRHH An output signal which represents the Wait state of (1 

theFP I J. This signal is applied to a maintenance 
indicator light on the FMAA board. 

"!Il 

XTAL FRHJ The basic 20 MHz clock for the FPll. 

c-) 
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READER'S COMMENTS FPll FLOATING POINT PROCESSOR 
DEC-II-HFPAA-C-D 

Your comments and suggestions will help us in our continuous effort to improve the quality and usefulness of 

our publications. 

What is your general reaction to this manual? In your judgment is it complete, accurate, weli organized, well 

written, etc.? Is it easy to use? 

What features are most useful? ------------------------------------

What faults do you find with the manual? __________________________ _ 

Does this manual satisfy the need you think it was intended to satisfy? _____________ ---

Does it satisfy your needs? Why? 

Would you please indicate any factual errors you have found. 

Please describe your position. 

Name_~ _______ ---------- Organization _______________ _ 

Street. ____________________ _ Department 

City ~ ________ _ State ____________ _ Zip or Country ______ _ 



- - - - - - - - - -' - Fold Here - - -'- -- --

- - - - - -- -- -- DoNotTear-FoldHereandStaple'- - - - -- -- - -

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES 

Postage will be paid by: 

Digital Equipment Corporation 
Technical Documentation Department 
146 Main Street 
Maynard, Massachusetts 01754 

FIRST CLASS 
PERMIT NO. 33 

MAYNARD, MASS. 

( '\ 
.' 

~J 

c) 

" I 





DIGITAL EQUIPMENT CORPORATION 
MAYNARD, MASSACHUSETTS 01754 




