FP11
floating-point processor
maintenance manual

DEC-11-HFPAA-C-D

FP11
floating-point processor
maintenance manual

digital equipment corporation - maynard, massachusetts

Ist Edition, March 1972

2nd Printing (Rev), October 1972
3rd Printing, December 1972

4th Printing, April 1973

5th Printing (Rev), August 1973
6th Printing, January 1974

7th Printing, November 1974

Copyright © 1972, 1973, 1974 by Digital Equipment Corporation

The material in this manual is for informa-
tional purposes and is subject to change
without notice.

Printed in U.S.A.

The following are trademarks of Digital Equipment
Corporation, Maynard, Massachusetts:

DEC PDP
FLIP CHIP FOCAL
DIGITAL COMPUTER LAB

UNIBUS

CHAPTER 1

1.1
1.2
1.2.1
1.2.2
1.3
1.4
1.5
1.5.1
1.6

CONTENTS

INTRODUCTION

General
Floating-Point Arithmetic

Floating-Point Addition and Subtraction
Floating-Point Multiplication and Division

Floating-Point Features

Simplified Block Diagram Description
FP11/Memory Word Relationships
FP11 Hidden Bit

FP11-B Physical Description (PDP-11/45)

CHAPTER 2 INTERFACE

2.1
2.2
23

CHAPTER 3

3.1
3.1.1
3.1.2
3.1.3
3.14
3.2
3.3
34
3.5
3.6

CHAPTER 4

4.1
4.2
4.2.1
422
4.2.3

CHAPTER 5

5.1
5.2
5.2.1
5.2.2
5.2.3

Introduction
Interface Signals
11/45 Interface

DATA AND DATA FORMATS

FP11 Data Formats

FP11 Integer Format

FP11 Floating-Point Formats
Floating-Point Mantissa

Floating-Point Exponent

FP11 Program Status Register
Processing of Floating-Point Exceptions
FP11 Instruction Formats

Instruction Set

FP11 Programming Examples

CONTROL ROM

Introduction

Control ROM

Control ROM Flow Diagram
ROM Field Description
Detailed Analysis of ROM Word

ARITHMETIC ALGORITHMS

Introduction

Floating-Point Addition and Subtraction
Description of Fraction Processing
Description of Exponent Processing
Testing For Normalization

ii

Page

1-1
1-1
1-1
1-2

1-3
1-4
1-5
1-6

2-1
2-1
2-3

3-1
3-1
3-1

32
3-3

3-4
37
3-8

41

4-5
4-12
4-20

5-1
5-1
5-1
5-2
5-4

CONTENTS (Cont)

Page
5.3 Floating-Point Multiplication 5-4
5.3.1 Fundamental Concepts 5-4
5.3.2 Multiply Hardware 5-6
5.3.3 Multiply Timing 5-11
5.4 Division 5-13
5.4.1 Restoring Division 5-13
5.4.2 Non-Restoring Division - 5-13
543 Non-Restoring Divide Using Normalizing 5-14
5.4.4 Divide Timing 5-17
CHAPTER 6 FP11-B LOGIC DIAGRAM DESCRIPTIONS
6.1 Introduction 6-1
6.2 Detailed Logic Diagram Descriptions 6-1
6.2.1 FRHA 6-2
6.2.2 FRHB, FRHC, FRHD 6-2
6.2.3 FRHE 6-2
6.2.3.1 Multiply 6-3
6.2.3.2 MR1 and MRO Register o 6-3
6.2.3.3 MUL ARITH 6-3
6.2.3.4 Pause Logic 6-4
6.2.3.5 STRG 1 Flip-Flop 6-4
6.2.3.6 AR Control 6-4
6.2.3.7 QR Control 6-5
6.2.3.8 MUL SUB Flip-Flop 6-6
6.2.3.9 AR Clock . 6-6
6.2.3.10 QR Clock 6-6
6.2.4 FRHF 6-7
6.2.4.1 Sign Bit 6-7
6.2.4.2 RSQR IN 6-7
6.2.4.3 RR2, RR1, RRO 6-7
6.2.4.4 LSQR IN 6-8
6.2.4.5 SS Logic 6-8
6.2.4.6 SD Logic 6-8
6.2.4.7 Step Counter 6-8
6.2.5 FRHH 6-9
6.2.5.1 Time State Generator 6-9
6.2.5.2 PAUSE Flip-Flop 6-9
6.2.5.3 MPAUSE Flip-Flop 6-9
6.2.6 FRHJ 6-11
6.2.7 FRLA, FRLB, FRLC, FRLD 6-11
6.2.8 FRLE, FRLF, FRLH, FRLJ, and FRLK 6-11
6.2.8.1 FALU Control 6-12

6.2.8.2 Carry-Look-Ahead 6-12

iv

(., “ CONTENTS (Cont)

6.2.8.3 Rounding
6.2.8.4 Increment
6.2.9 FRLL, FRLM
6.2.9.1 QR
6.2.9.2 BR

. 6.2.9.3 EXP NEQ 0
6.29.4 LSQR31 INH
6.2.10 FRLN

° 6.2.11 FRLP
6.2.11.1 Floating Status Register
6.2.11.2 Floating Condition Codes
6.2.11.3 FER Flip-Flop
6.2.12 FRMA, FRMB
6.2.12.1 Control ROM Address Register
6.2.12.2 Address Modification
6.2.12.3 Traps
6.2.13 FRMC, FRMD
6.2.14 FRME, FRMF
6.2.15 FRMH

P 6.2.15.1 ALU Select

< 6.2.16 FRMJ

- 6.2.16.1 ICLR and 20 ABORT
6.2.16.2 Set ATTENTION
6.2.16.3 Set FP REQ
6.2.16.4 Set FP SYNC
6.2.16.5 Clear ATTN
6.2.16.6 FPSYNC L
6.2.16.7 Clear FP SYNC
6.2.16.8 Clear FP REQ
6.2.17 FXPA and FXPB
6.2.17.1 EMX
6.2.17.2 EALU
6.2.17.3 Constant Field Decoding

* 6.2.18 FXPC
6.2.18.1 BD Register

. 6.2.18.2 BA Register
6.2.19 FXPD
6.2.20 FXPE
6.2.21 FXPF
6.2.21.1 B Condition Code Logic
6.2.21.2 Range ROM
6.2.21.3 SUB FRAC
6.2.21.4 Illegal Op Code Detector

. _, 6.2.22 FXPH

Page

6-12
6-13
6-13
6-13
6-13
6-13
6-13
6-13
6-13
6-13
6-14
6-14
6-14
6-14
6-14
6-15
6-16
6-16
6-16
6-16
6-18
6-18
6-18
6-18
6-20
6-20
6-20
6-20
6-20
6-20
6-20
6-20
6-20
6-21
6-21
6-21
6-22
6-22
6-22
6-22
6-22
6-22
6-22
6-22

6.2.23
6.2.24
6.2.24.1
6.2.24.2
6.2.25

‘CONTENTS (Cont)

FXPJ
FXPK
DIMX
Drivers
FXPL

CHAPTER 7 MAINTENANCE

7.1
7.2
7.2.1
7.3
7.3.1
7.3.2
7.3.3
7.3.4
7.3.5
7.3.6
7.4
7.4.1
742
7.5

APPENDIX A

Figure No.

1-1
1-2
1-3
1-4
1-5
2-1
2-2
2-3
3-1
3-2
3-3
3-4
4-1
42
5-1

Introduction

Maintenance Module

Time Margining Using Maintenance Module
Special Maintenance Instructions

LDUB — Load Microbreak Register (170003)
LDSC — Load Step Counter (170004)

STAO — Store AR In ACO (170005)

STQO — Store QR In ACO (170007)

MRS — Maintenance Right Shift (170006)
Maintenance Instruction Programming Example
Console Display Features

Display of ROM Address

Display of EALU Contents

Maintenance Programming

SIGNAL GLOSSARY

ILLUSTRATIONS
Title

Floating-Point Representation

FP11 Simplified Block Diagram
Accumulator Configuration

FP11

FP11-B Module Layout

11/45 Simplified Interface Diagram
CPU/FPP Interface Diagram

Sequence of Events for Load Instruction
Integer Formats

Floating-Point Data Formats

Status Register Format

Instruction Formats

FP11 Data Paths

Control ROM Simplified Block Diagram
Exponent Magnitudes

vi

Page

6-23
6-23
6-23
6-24
6-24

7-1
7-1
7-2
7-3
7-3
7-3
7-3
7-4
7-4
7-4
7-8
7-8
7-8
7-8

Page

1-1
1-4
1-5
1-6
1-7
2-1
2-3
2-4

32

3-3
3-5
4-3

5-3

AN

Figure No.

5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-9
6-1
6-2
6-3

Table No.

3-1
32
4-1
4-2
5-1
6-1
6-2
6-3
6-4

ILLUSTRATIONS (Cont)
Title

Multiply Flow Diagram

Multiply State Diagram

Examples of Floating-Point Multiplication
Multiply and Divide Timing Diagram
Example of Non-Restoring Division

Divide Flow Diagram

State Diagram for Divide

Examples of Floating Point Division

Time State Generator Timing Relationships
Scratchpad Configuration

ICLR, INIT, and 20 Abort Timing Relationships

TABLES
Title

Format of FP11 Instructions
Instruction Set

Flow Diagram Statements

ROM Fields

Add and Subtract Implementation
Arithmetic Anticipation
Multiplexer Branching Conditions
ALU Control Selection

Scratch Address Selection

vii

Page

5-8

5-9

5-11
5-14
5-16
5-17
5-18
6-10
6-12
6-19

Page

39
47
4-13
5-2
6-4
6-16
6-17
618

™

TN

FOREWORD

The PDP-11 Floating-Point Processor is an optional arithmetic processor used with the PDP-11/45. This
processor eliminates the necessity of writing complex software routines to implement arithmetic opera-
tions. This manual is divided into the following seven chapters and two appendices:

Chapter 1 is both a system description and a physical description of the FP11.

Chapter 2 is a description of the PDP-11/45 and FP11 interface.

Chapter 3 is a description of the data and instruction formats and describes the FP11 instruction
set.

Chapter 4 is a description of the control ROM used to microprogram the FP11. A description of
the FP11 flow diagrams is also included in this chapter.

Chapter 5 is a conceptual description of the add, subtract, multiply and divide algorithms.
Chapter 6 is a detailed description of the FP11 logic diagrams.

Chapter 7 provides maintenance information on the Maintenance Module, 11/45 console,
FP11 maintenance instructions, and diagnostic programming.

Appendix A is a brief description of the integrated circuits in the FP11.
Appendix B is a'signal glossary of the FP11.

The following list of documents supplement the information contained in this manual.

PDP-11/45 Maintenance Manual DEC-11-H45A-D

KB11 Central Processor Maintenance Manual DEC-11-HKBA-D
PDP-11/45 Processor Handbook

PDP-11/45 Unibus Interface Manual (2nd edition) DEC-11-HIAB-D

TTL Integrated Circuits Catalog from Texas Instruments CC-201-R

TTL Catalog Supplement from Texas Instruments Catalog Supplement CC-301
MSI/TTL Integrated Circuits from Texas Instruments Bulletin CB-125

INTEL LSI Product Guide
The Integrated Circuits Catalog for Design Engineers

CHAPTER 1
INTRODUCTION

1.1 GENERAL

The FP11 Floating-Point Processor is a hardware option used with the PDP-11/45 Central Processor. The FP11
enables the PDP-11 Central Processor to perform arithmetic and logic operations using floating-point arithmetic.
The prime advantage is increased speed without the necessity of writing complex floating-point software routines.
The FP11 has single- and double-precision floating-point capability. Prior to describing the FP11 Floating-Point
Unit, several fundamentals of floating-point arithmetic are presented.

1.2 FLOATING-POINT ARITHMETIC

Floating-point representation of a binary number consists of two parts, an exponent and a mantissa. The mantissa
is a fraction in sign and magnitude format with the binary point positioned between the sign bit and the most sig-
Vd nificant bit. If the mantissa is normalized, all leading Os are eliminated from the binary representation; the most
. significant bit is thus a logical 1. Leading Os are removed by shifting the mantissa left; howevér, each left shift of
the mantissa must be followed by a decrement of the exponent value to maintain the true value of the number.
The exponent value represents the power of 2 by which the mantissa is multiplied to obtain the value to be used.
Figure 1-1 shows an unnormalized number in floating-point notation and then the same number after it has been

normalized.
EXPONENT SI(ISN MANTISSA
[]
UNNORMALIZED 00 100 o11 0. 000 000 m m 001
SIGN
S—
[]
- NORMALIZED | 00 o011 101 0. 1M 111 001 000 000

DECREASE EXPONENT BY SIX LEFT SHIFT MANTISSA SIX PLACES

11-0804

Figure 1-1 Floating-Point Representation

1.2.1 Floating-Point Addition and Subtraction

(For floating-point addition or subtraction operations, the exponents must be aligned or equal. If they are not
aligned, the mantissa with the smaller exponent is shifted right until they are. Each shift to the right is

1-1

accompanied by an incrementing of the exponent value. When the exponents are aligned or equal, the mantissa
can be added or subtracted, whichever the case may be. The exponent value indicates the number of places the
binary point is to be moved to obtain the actual representation of the number.

In the example below, the number 7,, is added to the number 40, , using floating-point representation. Note
that the exponents are first aligned and then the mantissas are added; the exponent value dictates the final loca-

tion of the binary point.

0. 101 000 000 000 000 x26
0. 111 000 900 000 000 x23

505 =40;,
T3 = 710

a. To align exponents, shift the mantissa with the smaller exponent three places to the right and in-
crement the exponent by 3.

0. 101 000 000 000 000 x2% =50g =40,
0. 000 111 000 000 000 x2% = 7g="T,
0. 101 111 000 000 000 x25 =575=47,

b. Move the binary point six places to the right.
5 7

——

—~—
0. 101 111 .000 000 000

1.2.2 Floating-Point Multiplication and Division

In floating-point multiplication, the mantissas are multiplied and the exponents are added. For floating-point
division, the mantissas are divided and the exponents are subtracted.

There is no requirement to align the binary point in the floating-point multiplication or division.

In the following example, the number 7,, is multiplied by the number 5, ,. An eight-bit register is assumed for
simplicity. '
0.1 110 000x23=75="7,
x 0.1 010 000x2%=55=35,

00000000
1110000
0
1110000
.10001100000000x28

a. Move the binary point six places to the right.

.100011.00000000 = 435 = 35,,
S

1.3 FLOATING-POINT FEATURES

The Floating-Point Processor is an integral part of the central processor. It uses the same memory management
facilities provided by the Memory Segmentation option and similar addressing modes. Floating-point instructions
can reference any core location, the CPU general registers, and any of the floating-point accumulators discussed
in this chapter. Some of the notable features of the FP11 Floating-Point Unit are listed as follows:

1-2

e \~\

® Performs arithmetic operations on 32- or 64-bit floating-point numbers.

® Includes special instructions to optimize input/output routines and mathematical subroutines.
e Utilizes microprogramming techniques for reduced cost.

® Compatible with existing PDP-11 address modes.

® Overlap processing, i.e., CPU and FP11 can run simultaneously.

® Allow execution of in-line code, i.e., CPU and floating-point instructions can be interspersed as desired.

® Employs multiple accumulators for ease of data handling.

® s capable of converting 16- or 32-bit integers to 32- or 64-bit floating-point numbers during the load
class of instructions, if desired.

® Is capable of converting 32- or 64-bit floating-point numbers to 16- or 32-bit integers during the Store
class of instructions, if desired.

® [s capable of converting single-precision floating point to double-preéision floating point and vice versa
during the Store class of instructions, if desired.

® Average single-precision multiply time is 6 us.

® Average double-precision multiply time is 9.5 us.
® Average single-precision divide time is 7.5 us.

® Average double-precision divide time is 12.5 us.

® Contains floating-point condition codes that can be copied into the CPU status register to provide the
CPU with the capability of branching on results of floating-point operations.

® Contains built-in maintenance instructions for ease of maintenance.

® Hardware provides for flexible handling of error conditions.

1.4 SIMPLIFIED BLOCK DIAGRAM DESCRIPTION

Figure 1-2 shows a simplified block diagram of the Floating Point Processor. The major elements of the FP11
are the exponent calculation logic, the accumulators, and the fraction calculation logic.

The exponent calculation logic connects to a 16-bit wide data path that processes exponent or data information;
the fraction calculation logic consists of a 60-bit wide data path that processes the fractional part of the operands.
The fraction calculation logic sends or receives data to or from the 32-bit scratchpad accumulator.

The accumulators (ACs) are general-purpose read/write scratchpad memories with nondestructive readout. Accu-
mulators 5 through 0 are used for storage of general-purpose data and for register-to-register transfers. Accumu-
lator 6 is used as internal storage and is not accessible by the programmer.

Accumulator 7 is used for internal temporary storage of the following status information:

1. FEC Floating Exception Code — a number that identifies the cause of the interrupt.

2. FEA Floating Exception Address — the address of the instruction that caused an error.

Accumulator 7 is also used for temporary storage of the address of the current instruction, the program status
(FPS), and the exception code.

1-3

DATA OR EXPONENT FRACTION

DATA
our (16 BITS) i} @ (32 BITS) | [|

SCRATCH PAD
ACCUMULATORS

ACC 0-5-GENERAL PURPOSE
REGISTERS ACCES-

EXPONENT SIBLE TO PRO- FRACTION
CALCULATION GRAMMER CALCULATION
LOGIC ACC 6-INTERNAL TEMPO- LOGIC

RARY STORAGE -
(16 BITS) NOT ACCESSIBLE (60 BITS)

TO PROGRAMMER

ACC 7-INTERNAL STORAGE
OF STATUS NOT
ACCESSIBLE TO
PROGRAMMER
EXCEPT VIA STORE
STATUS INSTRUC -
TION

ﬁ T}DATA OR EXPONENT | FRACTION 4 » ﬁ

(16 BITS) (32 BITS)
DATA IN 11-0809
(16 BITS)

Figure 1-2 FP11 Simplified Block Diagram

The ACs are interpreted as 32- or 64-bits long depending on the data formats (refer to Chapter 3). For a single-
precision floating-point format, a 32-bit AC is specified (the left-most 32 bits as shown in Figure 1-3). For
double-precision floating-point format, a 64-bit AC is specified. The ACs are accessible in 32-bit words. The de-
signated AC and the length of the word contained therein is specified as follows:

AC 5 [3:2] AC3 [3:‘2] [1:0]

The number following the AC designates one of 8 accumulators, and each number in the bracket denotes a 16-bit
word. In the first example, AC 5 contains a 32-bit word; in the second case, AC 3 contains a 64-bit word [3:2]
[1:0]. The [3] represents the most significant 16 bits, and the [0] represents the least-significant 16 bits. This
notation is carried throughout this manual and also in the associated flow diagrams.

1.5 FP11/MEMORY WORD RELATIONSHIPS

Words stored in memory are either integers or floating-point numbers. Integers are stored in 2’s complement for-
mat and are converted to sign and magnitude format when transferred to the FP11. Floating-point numbers are
already in sign and magnitude format and are transferred directly to the FP11 without being converted. When
the FP11 finishes processing the numbers, they can be transferred back to memory as two’s complement integers
or sign and magnitude floating-point numbers. Floating-point numbers are normalized before being transferred
back to memory.

All positive numbers are represented the same in two’s complement or in sign and magnitude format. An exam-
ple is the positive number 2 shown below.

+2 000010 two’s complement
000010 sign and magnitude

_t e

sign magnitude

1-4

For a negative 2, the number is represented as shown below.

011110 two’s complement of -2
100010 sign and magnitude
sign-J magnitude
64 BIT
AC
A
r N
32 BIT
AC
LN
4)
~
0 Aco [3] ACO [2] ACO [1] ACO [0]
1 AC1 [3] Act1 [2] Act [1] Act [0]
2 Ac2 [3] Ac2 [2] Ac2 [1] Ac2 [0]
3 AC3 [3] AC3 [2] AC3 [1] AC3 [0]
ACCUMULATORS ﬁ
4 AC4 [3] AC4 [2] AC4 [1] AC4 [0]
5 AC5 [3] Ac5 [2] AC5 [1] AC5 [0]
6 ACe [3] AC6 [2] AC6 [1] AC6 [b]
\7 AC7 [3] AC7. [2] AC7 [1] AC7 [0]
[3] [2] (11 [o]
16 BITS 16 BITS 16 BITS 16 BITS

11-0805

Figure 1-3 Accumulator Configuration

NOTE
AC 7 [1] contains address of instruction
AC 7 [0] contains FPS (temporary storage of FEC)

1.5.1 FP11 Hidden Bit

All numbers (fractions) transferred to the fraction calculation logic are transferred as positive fractions of the
form 0.1 xxxx. Since the most significant bit to the right of the binary point is always a 1, this bit is referred
to as the ““hidden bit” and is dropped when the word is stored in memory. This provides another bit of signifi-
cance in the FP11. Words transferred from memory to the FP11 are represented in the FP11 by a sign bit, eight
bits of exponent and 23 bits (single-precision) or 55 bits (double-precision) of fraction. For example, consider
the number minus 1/2. The sign is 1, the exponent is 200 which is equal to 2° power, and the fraction is

Figure 1-4 shows the word as it appears in memory and how it appears when stored internally in the FP11.

MEMORY

WORD 1 WORD 2
15| 14 12111 918 6|5 312 o 16) 14 12 1t 9 8 6|5 312 o
| 1 1 0O o|J]O0O O O]J]O O OfO (o] | LO 0o o ofo o ojo o ojo o OfjO0O 0 O |

o olo o
r«oooooool[ol_iooooo
[} 7 615 302) 24 [23 21120 18 117 i5 [14 12111 sls 615 312)
f HIDDEN BIT °

BINARY POINT
N

EXPONENT FRACTION

11-1043
FP11

Figure 1-4 FP11

Note that even with a negative number as shown above the fraction is treated as a positive normalized fraction
(bit 24 =0, bit 23 = 1). Bits 24 and 23 are dropped when the floating-point word is reassembled and stored back
in memory.

1.6 FP11-B PHYSICAL DESCRIPTION (PDP-11/45)

The FP11-B Floating-Point Processor is used with the PDP-11/45 CPU. The FP11-B consists of four multi-layer
hex modules that are plugged into the pre-wired KB11A Main Frame. The four modules plug into slots 2, 3, 4,
and 5 and take-up rows A through F (see Figure 1-5). The chart below shows the slots associated with each
module.

Module Slot Row
M8113 — FXP 5 A through F
M8112 — FRM 4 A through F
M8115 — FRL 3 A through F
M8114 — FRH 2 A through F

A +5V regulator card is included and is plugged into the upper power supply in slot A. The =15V needed for the
time state generator on the FRH module is supplied by regulator E, which is included as part of the Central
Processor Regulator Set.

Slot E1 on the KB11A Main Frame is reserved for the Floating-Point Maintenance Module (refer to Chapter 7 for
additional information on this module). The +8 Vdc required for this module is obtained from the upper bulk
supply (PS H742A).

1-6

< 'ON 10IS

I

€¢I I1 0o 6 8 L

14!

opIS Uid

8L LI 91 ¢l

- = c e = >
MANT | MAINT “Clock | UmBUs A | TERM
FRH (M8114) A
FRL (M8115)
FLOATING POINT
FRM (M8112)
FXP (M8113) Y
DAP (M8100) A
GRA (M8101)
IRC (M8102)
RAC (M8103)
PDR (M8104) CENTRAL
TMC (M8105) PROCESSOR
UBC (M8106)
SSR (M8108)
SAP (M8107) or SJB (M8116)
TIG (M8109) Y PHK ()
MEM CTRL (M8110) A
MTRX (Bipolar=M8111 & MOS=G401)
MTRX (Bipolar=M8111 & MOS=G401)
MTRX (Bipolar=M8111 & MOS=G401)
MTRX (Bipolar=M8111 & MOS=G401)
SEMICONDUCTOR
MEM CTRL (M8110) MEMORY
MTRX (Bipolar=M8111 & MOS=G401)
MTRX (Bipolar=M8111 & MOS=G401)
MTRX (Bipolar=M8111 & MOS=G401)
MTRX (Bipolar=M8111 & MOS=G401) Y
DEVICE 1 ‘ UNI A CABLE
DEVICE 2 UNI B CABLE
DEVICE 3 UNIBUS B TERM

ON30IS~> 8T LT 9T ST vT ¢€C Tt IT 0T 6l

Figure 1-5 FP11-B Module Layout’

1-7

2.1 INTRODUCTION

CHAPTER 2
INTERFACE

The Floating Point Processor connects directly to the 11/45 Central Processor (see Figure 2-1) and not to the
Unibus. This is to allow for proper operation of the segmentation option and to increase the speed of instruc-

tion execution.

The 11/45 CPU fetches instructions from memory and decodes them. If the instruction contains a 173 op code,
it is a floating-point instruction and the CPU branches to the CPU ROM states associated with floating-point in-
structions. At this point, the CPU/FP11-B interaction is initiated (refer to Paragraph 2.3). '

11/ 45
CENTRAL
PROCESSOR

CONTROL
LINES

FP11-8B
FLOATING
POINT UNIT

Figure 2-1 11/45 Simplified Interface Diagram

2.2 INTERFACE SIGNALS

11/45 INTERFACE

The signals that interface the 11/45 CPU to the FP11 are described below (see Figure 2-2).

Signal Description
BAMX (00:15) H Sixteen lines from the CPU that contain the address of the instruction.
BR (00:15)BL Sixteen data lines that provide transfer of data from the CPU to FP11.
BUS INTD (00:15) L Sixteen lines used to send data from the FP11 to the CPU. These lines are also
used by the segmentation option.
FP ACKN L A signal from the CPU indicating that an FP TRAP was received from the FP11.

Signal

INTRCLRL

FP READ L

FPATINL

INITL
FP EXC TRAP L

AD1,AD2H

FCLD EN L

FP REG WR H

FP ADDRINCL
FP SYNCL

FPREQ (1)L

FPC1 H

FPPRESENT L
EALU (00:15)

CRAR (00:07)

Description

A signal from the 11/45 that indicates that the 11/45 CPU is in its interrupt
service routine. ‘

A signal from the 11/45 that indicates that the BUS INTD lines can be used by
the FP11.

A signal from the CPU to the FP11 that accompanies information sent to or
from the FP11.

An initialize pulse used to reset major registers in the FP.

This signal, when low, causes the CPU to trap to vector address 2445 (Trap
Vector).

Represent constants that are added to or subtracted from the general registers
in the CPU for address calculation. The constants are:

AD2 AD1
0 0 constant of 8
0 1 : constant of 4
1 0 - constant of 2
1 1 constant of 0

This signal causes the FP11 floating-point condition codes to be written into the
CPU condition codes.

When high, this signal causes BUS INTD data to be loaded into general registers
in the CPU.

A signal to the CPU indicating that the address is to be incremented by 2.

A signal from the FP11 in response to FP ATTN indicating that the data has
been accepted or that the FP11 is ready to send or receive data.

A signal used in conjunction with FP SYNC to indicate that more data wdrds
are desired.

Indicates a DATO operation. When this signal goes low, it indicates a DATI
operation.

Indicates the FP11 is present.

Sixteen lines to console that allow the contents of EALU to be displayed (used
with 11/45 CPU).

Eight lines to console that allow the next ROM address to be displayed.

X

DAPB,C,D BAMX<15:00>H >
PDRB BRA<{5:00>L >
< BUS INTD<15:00>L
ce‘rjlfr‘}ail_ TMCB FP ACKN L FLgAP11'I1NG
PROCESSOR TMCE INTR CLR L (11/45 ONLY) POINT
(CPU) TMCF FP_READ L (11/45 ONLY) UNIT
UBCD FP ATTN L
_ UBCE INIT L
FRHH FP EXC TRAP L
FXPE AD 1 H
FXPE AD 2 H
FXPE FCLD EN L
FRMF FP REG WR H
FRMJ FP ADDR INC L
FRMJ FP SYNC L
FRMJ FP REQ (1)L
FRMJ FPC1 H
FRMJ FP PRESENT L (11/45 ONLY)
11/45
ROMLNS NN
ADDRESS
c&g'spelz\s AN N
L 11745 < FXPA,B EALU<15:00>(TO 11/45 CONSOLE ONLY)
L CONSOLE) -
(__FRMAB CRAR<O7:00> (TO 11745 CONSOLE ONLY)
—NT N N N
NOTE:

For 11/20 CPU, an Interface Unit is inserted between the CPU and FP11 to connect
11/20 Unibus signals to FP11 Compatible signals.The signals shown above are
used with the 11/20 also, except as noted.

11-0807

Figure 2-2 CPU/FPP Interface Diagram

2.3 11/45 INTERFACE

Figure 2-3 shows the interaction involved between the 11/45 CPU and the FP11-B for a floating-point Load in-
struction. The sequence of events for other instructions can be found in the FP11 flow diagrams. The CPU puts
the instruction on the BRA lines accompanied by FP ATTN. The CPU also decrements the PC and puts the
decremented PC on the BAMX lines (see Figure 2-2). It is necessary to transfer the contents of the PC to the
FP11-B because the CPU and FP11 can execute instructions simultaneously. The CPU may jump or trap to a
new location while the FP11 instruction is being executed, and if a floating-point error occurs the programmer
can then determine the address of the FP11 instruction that caused the error condition. -

After the instruction and address are on the lines, the CPU goes into a wait loop, monitoring break requests and
also waiting for FP SYNC from the FP11. If a break request occurs, the CPU branches to its break service rou-
tine and issues an Abort signal (INTR CLR) to the FP11. This signal aborts the floating-point instruction in
process. On return from the break service routine, the CPU fetches the next instruction; however, this instruc-
tion is the same instruction that was aborted since the PC was previously decremented.

If FP SYNC occurs before a break request, the CPU loads the status from the FP1 lb into the CPU (see Figure 2-3).
If FCLD EN is low, the floating-condition codes (BR ¢3:07)) from the FP11 are inserted in the status word;

11/45 CPU

CPU fetches instruction and issues
FP ATTN

(CPU sits in wait loop
and monitors break requests)
CPU waits for FP SYNC

CPU loads floating-point
status into BR register in CPU

BR (03:00) loaded into CC (condition
codes) if FCLD EN is low from
FP11-B

CPU performs address calculation of
the data using constants AD1 and AD2
if addressing modes M1, M2, or M4

are specified

CPU issues FP ATTN

and waits for FP SYNC

FP11-B

Floating-point status loaded into FP11-B

P Instruction and Address loaded into FP11-B

/

FP11-B sets FP REQ

FP11-B sends FP SYNC

FP11-B waits for FP ATTN

Y

»-FP11-B issues FP SYNC

. f / FP11-B waits for FP ATTN
CPU loads first data word into l

BR register in CPU and issues

FP ATTN T
CPU waits for FP SYNC

CPU loads second data word into
BR register in CPU and issues

FP ATTN

CPU waits for FP SYNC

Because FP SYNC is sent and FP REQ

is cleared, the CPU fetches next instruction

(required operands have been trans-
ferred to FP11-B).

P-Contents of BR loaded into FP11-B

FP11-B issues FP SYNC

FP11-B waits for FP ATTN

|

¥ Contents of BR loaded into FP11-B

FP11-B clears FP REQ and issues FP SYNC

Because the FP11-B has the required number of
operands, it executes the specified operation
and, when completed, goes to Ready.

Figure 2-3 Sequence of Events for Load Instruction

otherwise, the word is unmodified. In addition, the CPU starts to calculate the address of the data. If addressing
modes M1, M2, or M4 are specified, the address is calculated using constants AD1 and AD2. If another mode is
specified, the address is calculated like any other destination address. On completion of the address calculation,
the CPU issues FP ATTN to the FP11, and the FP11 responds with FP SYNC.

On receipt of FP SYNC from the FP11, the CPU loads the first data word into the BR register, raises FP ATTN,
and waits for FP SYNC. The data word is loaded in the FP11-B, and the FP11-B raises FP SYNC, acknowledges
receipt of this word, and awaits the next data word accompanied by FP ATTN.

The CPU loads the second data word into the BR register and raises FP ATTN. This word is loaded in the FP11-B
and the FP11-B raises FP SYNC; however, because this is the last data word desired (single-precision floating-point

 format requires two data words), FP REQ is cleared. When the CPU receives FP SYNC with FP REQ cleared, it

fetches the next instruction. While the CPU is fetching the instruction, the FP11-B proceeds to execute the op-
erations specified. When this is completed, the FP11-B goes to the Ready state to await the next floating-point
instruction.

When the FP11 is executing an instruction and the CPU fetches another FP11 instruction, the FP11 continues
execution of the instruction and the CPU hangs in a wait loop. If a break request occurs while the CPU is in the
wait loop, the CPU branches to its service routine and issues an Abort (INTR CLR) as previously described; how-
ever, because the FP11 is busy in this case, the Abort is not honored and the FP11 proceeds to complete execu-
tion of the instruction. The CPU subsequently refetches the instruction so it can be executed.

To further clarify the interaction between the CPU and the FP11, two examples are provided. The first (Figure
2-4) shows the interaction for address mode 0 and the second (Figure 2-5) shows the interaction for address
mode 2.

2-5

ENTER HERE
AFTER EXECUTION OF

FET 00
FOPOO l (101) FET10 RDY 20 (72)
IRD 00

WAIT FOR NEXT FP INSTR
BACKUP PC; ENA. FP ATTN LD FIR & INSTR ADDRESS
(BA«PCB)
:; SHFR«PCB - 2 FP ATTN ALLOWS TIMING DIMX<DATA ADDRESS
t, BEND TO ADVANCE TO T3 EMX<DIMX
2 ALU'S-B
15 PCAPCE - ACMX+<EALU
s FPATTN WAIT FOR FP ATTN
PCB«PCA; SRSHFR & FIR-DATA IN
t; SS+SD+0
REQ-1
FOP 10 (133) l
LOOK FOR BREAK RE- RDY 30 (76)
QUESTS SEND PC & OP
CODE TO FP11 WITH FP LD INS. ADDRESS
AT DIMX<DATA ADDRESS
t, BA<PCB EMX<DIMX
1, (SHFR+BR) ALU'S<B
ACMX<EALU
S, AC7[1}<ACMX
S; ENABLE FP SYNC
IF VCONV SP
BRQ l
RDY 60 234)
00 (
NO MEM CLASS LD
CONTENTS OF GENERAL
REG.
FOP 20 (174)
1
CLK. BREAKS; SEND PC & i’rﬁ,‘;e:” N
OP CODE TO FP11 AND BMXCEALU
LOOK FOR FP READY WALT FOR FP ATTN
t BAPCB AT T2 OF NEXT ROM STATE ty BD-BMX
t, (SHFR+BR) : FROM FP SYNC S; ENABLE FP SYNC
t,-BRQ STROBE 50ms .
|—| NOM 36 l (67)
LD DATA INTO FPS
—FP SYNC
S1REQ+D
FOP 30 (173) EALU-A
t, FPScEALU
STEP PC AND GET FP11 s FPS]
STATUS l
t, (BA<FP EALU); READ FP RDY 00 (3)
2 SHFR-POBY2 WRITE FPS IN SCRATCH
t; PCAPCB+2 i
t; BRCBUS S1REQ-0
pespea . ACMX<FPS
54 AC7[0]-ACMX
FOP 50 (211) l
LOAD CCS IF TOLD TO; RDY 10 (6)
FP STATUS IN BR
FROM DECODE OF FIR LD FPS IN BD
t, (BA-EALU) WITH FCLD EN ONLY
t, (SHFR«DR) ON [CFCC,STCFI,STEXP] SCR OUT+AC7(0]
3 BEND ~ - BMX+ACL
t; CC+BR(FPCC) t, BD<BMX
IF ENABLED BY FP11
l RDY 20 l (72)
FOP 60 (362) WAIT FOR NEXT FP INSTR
PUT DEST REG IN BR & LD FIR & INSTR ADDRESS
ENABLE FPATTN DIMX«<DATA ADDRESS
t, (BA<EALUY EMX<DIMX
t, SHFR<DR ALU'S<B
t; FPATTN ACMX<EALU
BR<SHFR WAIT FOR FP ATTN
t3 FIR<DATA IN
t; SS+SD+0
FOP 70 (316) REQ-1
SEND FP ATTN & WAIT
FOR FP11 EPATTN
t, BA-EALU)
t, SHFR<BR
FP SYNC
-FP SYNC
-FP REG WRITE FPREGWRITE _ {NEVERTRUR FOR
FOP 80 (376) FOP 90 (375)
GET FP DATA MODIFY DEST REG &
ceTos ENABLE FP ATTN
t, BAEALU)
GO TO READY ! P READ |, t, BA-EALU)
t, SHFR«BR
t, (SHFR<BR) t; GRIDF|«<SHFR
5 BR-BUS & FPATTN
11-1443

Figure 2-4 LD FPS Instruction Interaction — Mode 0

2-6

N

BRQOO

FET 00 (217

START FETCH NEXT
INSTR
CLEAR INSTR REG

t, BAPCB;BCDATI

t, SHFR<SR—SR

t; BUST; CLEAR FLAGS
t; IR<SHFR

FP ATTN

RDY 20 { (72]

WAIT FOR NEXT FP INS.
LD FIR AND INS. ADRS

DIMX+DATA ADDRESS
EMX<DIMX

FET 10 l (260

GET INSTR & STEP PC

t, BA-PCB;BCDATI
t, (SHFR«PCB+2)
t; PRQ STROBE
t; BUS LONG PAUSE
PCAPCB+2
t; IR-BUS;BR-BUS
PCBPCA

ALU'S<B
ACMX<EALU
WAIT FOR FP ATTN
t; FIR-DATA IN
ty SS+SD0
REQ«-1

RDY 30 l (76)

LD INS ADRS

DIMX<DATA ADDRESS
EMX<DIMX
ALU'S-B

IRD 00 l (343)

DECODE THIS INSTR &
STEP PCA BEYOND &
READ SRC & DST FIELD
GEN REGS

t, BA-PCB;BCDATI

t, SHFR<PCB

t; CONDITIONAL BUST

t; PCA+PCB+2

t; —SF7:SR«GS|SF|
SF7:SReSHFR

ACMX<+EALU

Sy AC7[1[<ACMX

S; ENABLE FP SYNC
1FVCONV SP

RDY 70 l (254)

LOAD CLASS INS

—DF7:DR<GD|DF|
DF7:DR«<SHFR
FOP 00 ‘ (101)

BACKUP PC TO POINT AT
INSTR;ENABLE FP ATTN

t, (BA<PCB)

t, SHFR<PCB-2

t; BEND

tg PCA<PCB-2

t FPATTN
PCBPCA
SR<SHFR

FOP 10 & (133)

LOOK FOR BREAK RE-
QUESTS SEND PC & OP
CODE TO FPU WITH FP
ATTN

t, BA<PCB
t, (SHFR<BR}

(174)

CLK BREAKS; SEND PC & OP
CODE TO FPU & LOOK FOR
FP READY

t, BAPCB
t, (SHFR<BR)
t; BRQ STROBE

-FP SYNC

FOP 30 173

STEP PC & GET FPU
STATUS

t, BA<FP EALU)
READ FP

t, SHFR-—PCB+2

t; PCA-PCB+2

t; BR<BUS
PCB<PCA

EMX<+DATA IN
ALU'S<B
BMX«<EALU

WAIT FOR FP ATTN
S; ENABLE FP SYNC

LD 12 l (241)

LD 1ST WORD OF SRC
IN AC6

INC ADDRESS
FPC1<DATI

EMX<DATA IN
ALU'S—\B
ACMX<EALU
WAIT FOR FP ATTN

S, ACB[3]«-ACMX

t, SET FCC'S
ENBL -0 INTERRUPT

S; ENABLE FP SYNC

LD 13 i (202)

LD 2ND WORD OF SRC
IN AC6

INC ADDRESS

BUD

FPC1<DATI
EMX<DATA IN
ALU'S\B
ACMX<+EALU
WAIT FOR FP ATTN
S, ACB[2]-ACMX
S; ENABLE FP SYNC

LD 22 l (237)

READ MOST SIGN.
HALF OF ACS (AC6) AND
GO TO LDF MO

s, REQ-0
SCR OUT-ACS]|3:2|
BMX«<EXP
t, BA-BMX
t; QR-LDQ1
t, SS-SCR OUT(31)
t, BR=QR

9

11-1442-A

Figure 2-5 LDF Instruction Interaction — Mode 2 (Sheet 1 of 2)

2-7

VOC 2

D12.80 {111) NOM 04 (5)

DST ADRS INDR;SRC
OPERAND IN BR & SR

READ LEAST SIGN. HALF

OF SOURCE AC+MOVE S
CHECK STACK LIMIT TOSD
t, BA-DR;BC-BSOP1 FCLD EN SCR OUT+ACS| 1:0]
t SHFR<BR orec, t, QR<LDQO
- t, BUSTGR|DF| STCFI t, BR<QR
tg SRESHFR STEXP t, SD+SS
CCBR (FPCC)
IF ENABLE BY FPU NOM 06 ‘ @
D12.70 ‘ (135) WRITE INTO MOST SIGN.

HALF OF DEST. AC
STEP DST FIELD

REGISTER ALU'S\B
FMX<BR
t, (BA<DR) ACMX<FALUH
t, SHFR<DR+DSTCON AD2,AD1 EMX<BA
3 BEND S, ACD|3:2[«SCR IN
BRQ STROBE o t, SET FCC (0)
t5 PCA<DR+DSTCON -
GRIDF|~SHFR oy o ‘ @
tg DF7:PCB<PCA
WRITE FPS IN SCRATCH
FOP 40 ‘ (036) s, REQ-0
DST ADRS TO BR ACMX\FPS
ENABLE FP ATTN Sq AC7|0[-ACMX
t, (BACEALU) RDY 10 l (6)
t, SHFR<DR
tyBEND LOAD FPS IN BD
tg BR-SHFR
FPATTN SCR OUT<AC7|0|
BMX<ACL
t, BD<BMX

FSV 20 (225) l
SEND FP ATTN & WAIT

UNTIL FPU READY

FPATTN | .

t, BAEALU)

t, (SHFR—PCB)

t, BRQ STROBE

FP SYNC
-FPSYNC ,
[F1].T0 -FPREQ | FPSYNC
ROM 265 FPREQ
FSV 00 (245)

DO BUS OP FOR FPU;

FOR DATO BR GETS GOOD
DATA FROM FPU TO
OUTPUT

t; BA- DR:BC- -FC
FP READ

t, (SHF-PCB)

t; BUST;GD|0]

t; BR--BUS

FsV 10 J (150}

L FINISH BUS OP & STEP
DR;FOR DATI BR GETS
PST OPERAND FOR FPU;
ENABLE FP ATTN

FPC1 FOR DATI

t, BA- DRBCFC

t, SHFR—DR+2 INCR ADD

t; BUS LONG PAUSE

t; FPATTN
DR--SHFR
BR-BUS

}

11-1442-8

Figure 2-5 LDF Instruction Interaction — Mode 2 (Sheet 2 of 2)

2-8

7 N

~

CHAPTER 3
DATA AND DATA FORMATS

3.1 FP11 DATA FORMATS

The FP11 utilizes short (I) and long (L) integer format in addition to single- (F) and double-precision (D) floating-
point format. The following paragraphs briefly define the integer formats followed by a description of the floating-
point formats.

3.1.1 FP11 Integer Format

Integer format is represented in 2’s complement notation in the FP11. The short-integer format is 16 bits long;
the long-integer format is 32 bits long. In both instances the most significant bit represents the sign bit. Figure
3-1 shows the integer 5 in both formats followed by the integer minus 5 in both formats.

INTEGER=5
k——WORD 1-—>|

14
[°I°|°|°|°|5I

SHORT INTEGER (I)

|« WORD 1 | WORDZ———H
LONG INTEGER (L) 31 30 16 15 14
noponnfonnonn
INTEGER=-5

|[&—— WORD { ———
15 14 0

Lo l-]-]5]
N WORD 1 | I WORD 2 ——»|
LONG INTEGER (L) 31 30 16 15 14 [¢]

Ll el o] Ldefede]r]e]

11-0801

SHORT INTEGER (I)

Figure 3-1 Integer Formats

3.1.2 FP11 Floating-Point Formats

Single-precision floating-point format is 32 bits long and is designated by F; double-precision (extended) format
is 64 bits long and is designated by D. All floating-point numbers are assumed to be normalized. The mantissa
or fraction is represented in sign and-magnitude format with the sign bit extended to the most significant bit
position, as shown in Figure 3-2. Note that the 8-bit exponent separates the fraction from its associated sign.

3-1

e WORD 1 > |e WORD 2 ————»]

31 30 23 22 16 15 o
SINGLE -PRECISION ls[EXP I I J
FLOATING POINT (F)
N)]
FRACTION
WORD WORD WORD
le
™ WORDT > | 2 _’| !‘_ 3 _’1 I"‘ 4 —’i
63 62 55 54 48 47 32 31 16 15 0o
DOUBLE-PRECISION | l
FLOATING POINT (D) S ExXP
« s

FRACTION
’ 11-0802
S = Sign
EXP = Exponent in excess 2008 notation (refer to Paragraph 3.1.4.)

Fraction = 23 or 55 bit fraction in sign and magnitude format. Binary point
between bits 22 and 23 for F format or between bits 54 and 55 for D format.

Figure 3-2 Floating-Point Data Formats

3.1.3 Floating-Point Mantissa

All floating-point numbers are normalized; thus, in sign and magnitude format, the mantissa has a range from
0.10000. . ..to 0.1111. ... for positive operands and a range from 1.10000. . ..to 1.11111. . .. for negative
operands. All operands transferred between the CPU and FP11 are in sign and magnitude format and are con-
verted internally to 2’s complement format to perform arithmetic operations. Because, in sign and magnitude
format, the bit immediately to the right of the binary point is always a 1, it is not stored in memory or in the
scratchpad accumulators. This kidden bit provides another bit of significance in the results of arithmetic opera-
tions. However, when data is loaded into the fractional calculation logic data path, the hardware inserts the hid-
den bit; this point must be kept in mind when examining results during maintenance procedures.

3.1.4 Floating-Point Exponent

The exponent in the FP11 is specified by eight bits, providing a range from 0 to 3775. Excess 200 notation is
used, which means that 200 is added to the exponent. Thus, an exponent of -177 is represented by 0014, an
exponent of 000y is represented by 2005, and an exponent of 177 is represented by 3773.

200
0 1 (0 exponent) 3717
* |4———> negative 4—P|<———> positive €——»
=200 4177 0_ 2
2 2 exponents 20=1 exponents

For example, the number 0.1, is actually 0.1 x 2°, and the exponent is represented as 10 000 000, because
2004 represents an exponent of zero. The following chart shows the range of floating-point numbers that can
be handled by the FP11. Only three bits are shown for simplicity, but they can be extended to any number.

-111 x 2177 -.100 x 27177 +.100 x 27177 +.111 x 2177
[Most Zero Most |
Negative Positive
Number Number

3-2

TN

3.2 FP11 PROGRAM STATUS REGISTER

The FP11 contains a program status register; this register contains FP11 condition codes (carry, overflow, zero,
and negative) that can be copied into the Central Processor. In other words, FC, FV, FZ, and FN can be copied
into the CPU’s C; V, Z, and N condition codes, respectively. The program status register also contains four mode
bits and additional bits used to enable various interrupt conditions. Figure 3-3 shows the layout of the program
status register. Each bit shown in the figure is described in the following paragraphs:

INTERRUPT ENABLES MODE BITS CONDITION CODES

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ANNEEEEEEEEEEEEE
Fer |

FID —

NOT USED
NOT USED
Fluv

Flu

FIV

FIC

FD

I

FT

FMM

FN

Fz

Fv

Fc

11- 0806
Figure 3-3 Status Register Format

FER — This bit indicates an error condition of the FP11.
FID (Floating Interrupt Disable) — All interrupts by the FP11 are disabled when this bit is on.

FIUV (Floating Interrupt on Undefined Variable) — When this bit is set and a minus 0 is obtained from memory,
an interrupt occurs. If the bit is not set, minus O can be loaded and stored; however, any arithmetic operation is
treated as if it were a positive 0.

FIU (Floating Interrupt on Underflow) — When this bit is set, an underflow condition causes a floating underflow
interrupt. The result of the operation causing the interrupt is correct except for the exponent, which is off by
4004 . If the FIU bit is not set and underflow occurs, the result is set to zero.

FIV (Floating Interrupt on Overflow) — When this bit is set, floating overflow causes an interrupt. The result of
the operation causing the interrupt is correct except for the exponent, which is off by 400g. If the FIV bit is not
set, the result of the operation is the same; the only difference is that the interrupt does not occur.

FIC (Floating Interrupt on Integer Conversion Error) — When this bit is set, and the Store Convert Floating to
I'nteger instruction causes FC to be set (indicating a conversion error), an interrupt occurs. When a conversion
error occurs, the destination register is cleared and the source register is untouched. When FIC is reset, the result
of the operation is the same; however, no interrupt occurs.

FD (Double-Precision Mode Bit) — This bit, when set, specifies double-precision format and, when reset, specifies
single-precision format.

IL (Long-Precision Integer Mode Bit) — This bit is employed during conversion between integer and floating-
point format. If set, double-precision, 2’s complement integer format of 32 bits is specified, and, if reset, single-
precision 2’s complement integer of 16 bits is specified.

FT (Truncate Bit) — This bit, when set, causes the result of any floating-point operation to be truncated rather
than rounded.

FMM (Maintenance Mode Bit) — This bit is used to enable special maintenance logic and is described in Chapter 7.

FC, FV, FZ, and FN — These bits are the four floating-point condition codes, which can be loaded in the CPU’s
C,V,Z,and N condition codes, respectively. This is accomplished by the Copy Floating Condition Codes (CFCC)
instruction. To determine how each instruction affects the condition codes, refer to the instruction description

in the PDP-11 Handbook.

For the Store Convert Floating to Integer instruction (which converts a floating-point number to an integer), the
FC bit is set if the resulting integer is too large to be stored in the specified register.

3.3 PROCESSING OF FLOATING-POINT EXCEPTIONS

The interrupt vector used to handle all floating-point interrupts is in location 244, . A total of seven possible
interrupts can occur. These seven possible interrupt exceptions are encoded in the FP11 Exception Code Register
(FEC). The interrupt exception codes represent an offset into a dispatch table, which routes the program to the
right error handling routine. The dispatch table is a function of the software. The offset for each exception code
is shown below followed by a brief description.

FP11 Exception Code Definition
2 Floating Op Code Error — The FP11 causes an interrupt for
an erroneous op code if the FID bit is not set.
4 Floating Divide by Zero — Division by zero causes an interrupt
if the FID bit is not set.
6 Floating Integer Conversion Error
10 Floating Overflow
12 Floating Underflow
14 Floating Undefined Variable
16 Micro Break Trap
NOTE

The traps for exception codes 6, 10, 12, and 14 can
be enabled in the FPU’s Program Status Register.

In addition to the FEC register, the FP11 contains a 16-bit Floating Exception Address register (FEA), which
stores the address of the last floating-point instruction that caused a floating-point exception.

3.4 FP11 INSTRUCTION FORMATS

The FP11 instruction set is divided into five formats as shown in Figure 3-4.

N

i

VR

15 12 1 8 7 6 5 (o]

F1

-

o [

F5

oCc =17 [FoC I AC | FSRC/FDST J
15 12 1 6 5 0
oc =17 | FOC I FDST J
15 12 1 8 7 6 5 0
oc=17 I FOC l AC | SRC/DST I
15 12 1 6 5 o
oc=17 FOC SRC/DST J
15 12 1 o
0C =17 FOC J

1-0800

Figure 3-4 Instruction Formats

The 2-bit AC field (bits 6 and 7) allows selection of scratchpad accumulators O through 3 only. If address mode O
is specified with formats F1 or F2, bits 2 through 0 are used to select the floating-point accumulator. Only accu-

mulators 5 through O can be accessed in this manner. If accumulators 6 or 7 are specified, the FP11 traps if the

interrupt is enabled.

The fields of the various instruction formats (refer to Table 3-1) are interpreted as follows:

Mnemonic

oC
FOC
SRC

DST
FSRC

FDST

AC

Description

Operation Code — All floating-point instructions are designated by a 4-bit op
code of 175.

Floating Operation Code — The number of bits in this field varies with the for-
mat and is used to specify the actual floating-point operation.

Source — A 6-bit source field identical to that in a PDP-11 instruction.

Destination — A 6-bit destination field identical to that in a PDP-11 instruction.
Floating Source — A 6-bit field used only in format F1. It is identical to SRC,
except in mode O when it references a floating-point accumulator rather than a
CPU general register.

Floating Destination — A 6-bit field used in formats F1 and F2. It is identical

to DST, except in mode 0 when it references a floating-point accumulator in-
stead of a CPU general register.

Accumulator — A 2-bit field used in formats F1 and F3 to specify accumulators 0
through 3.

Table 3-1

Format of FP11 Instructions

Instruction Format

Instruction

Mnemonic

F1
A

F1

F2

F2

F3

F3

F4

F4

ADD

LOAD

SUBTRACT

COMPARE

MULTIPLY

MODULO

STORE

DIVIDE

LOAD CONVERT

STORE CONVERT

CLEAR

TEST

ABSOLUTE

NEGATE

LOAD EXPONENT

LOAD CONVERT INTEGER TO FLOATING

STORE EXPONENT

STORE CONVERT FLOATING TO INTEGER

LOAD FP11’sPROGRAM STATUS
STORE FP11’s PROGRAM STATUS
STORE FP11’s STATUS

ADDF FSRC, AC
ADDD FSRC, AC

LDF FSRC, AC
LDD FSRC, AC

SUBF FSRC, AC
SUBD FSRC, AC

CMPF AC, FDST
CMPD AC, FDST

MULF FSRC, AC
MULD FSRC, AC

MODF FSRC, AC
MODD FSRC, AC

STF AC, FDST
STD AC, FDST

DIVF FSRC, AC
DIVD FSRC, AC

LDCFD FSRC, AC
LDCDF FSRC, AC

STCFD AC, FDST
STCDF AC, FDST

CLRF FDST
CLRD FDST

TSTF FDST
TSTD FDST

ABSF FDST
ABSD FDST

NEGF FDST
NEGD FDST

LDEXP SRC, AC

LDCIF SRC, AC
LDCID SRC, AC
LDCLF SRC, AC
LDCLD SRC, AC

STEXP AC, DST

STCFI AC, DST
STCFL AC, DST
STCDI AC, DST
STCDL AC, DST

LDFPS SRC
STFPS DST
STST DST

3-6

(continued on next page)

——

Table 3-1 (Cont)
Format of FP11 Instructions

Instruction Format Instruction Mnemonic
F5 COPY FLOATING CONDITION CODES CFCC
4 SET FLOATING MODE SETF
SET INTEGER MODE SETI
LOAD UBREAK REGISTER LDUB
LOAD SHIFT COUNTER LDSC
STORE AR REGISTER IN ACO STAO
MAINTENANCE RIGHT SHIFT MRS
STORE QR REGISTER IN ACO STQO
v SET DOUBLE MODE SET D
F5 SET LONG INTEGER MODE SETL

3.5 INSTRUCTION SET

Table 3-2 contains the instruction set of the FP11. Some of the symbology may not be readily apparent; there-
fore, a brief description is given in the following paragraphs:

a.

A floating-point flip-flop, designated FD, determines whether single- or double-precision floating-
point format is specified. If the flip-flop is reset, single-precision is specified and is designated by F.
If the flip-flop is set, double precision is specified and is designed by D. Examples are NEG F,
NEG D, SUB D, etc.

An integer flip-flop, designated IL, determines whether short-integer or long-integer format is speci-
fied. If the flip-flop is reset, short-integer format is specified and is designated by I. If the flip-flop
is set, long-integer format is specified and is designated by L.

Several convert type instructions use the symbology below and are defined as follows:

CIL,FD — convert integer to floating
CFD,IL — comnvert floating to integer
Cg Dor CD,F — convert single-float to double-float or double-float to single-float
Numbers in angle brackets indicate bit positions; an example is AR (57:0), which indicates AR bits

57 through 0.

UPLIM is defined as the largest possible number that can be represented in floating-point format.
This number has an exponent of 377 and a fraction of all 1s. Note that UPLIM is dependent on the
format specified. LOLIM is defined as the smallest possible number that is not identically zero.
This number has an exponent of 001 and a fraction of all Os except for the hidden bit.

Some of the octal codes listed in Table 3-2 are in the form of mathematical expressions. These octal
codes can be calculated as shown in the following examples.

Example:

—

LD FPS instruction Mode 3, Register 7 specified
170100+SRC
SRC field is equal to 37
Basic op code is 170100

SRC + basic op code is added to yield 170137.
(continued on next page)

3-7

Example:

LDF instruction
172400+AC*100+FSRC
AC=2
2*%100 =200
172400 + 200 = 172600
FSRC isequal to 26
172600 + 26 = 172626

3.6 FP11 PROGRAMMING EXAMPLES

AC2, Mode 2, and Register 6 specified

This paragraph shows two programming examples using the FP11 instruction set. In program example 1, A is

added to B, D is subtracted from C, the quantity (A+B) is multiplied by (C-D), and the product of this multipli-
cation is divided by X and the result stored. Example 2 calculates DX® + CX? + BX + A. This involves a three-
pass loop, whereby each loop does the calculation indicated below.

Loop 2
ACO= [(5*X+C)*X+B] *X+A
——
Loop 1

Loop 3

ACO = [DX? +CX+B] *X+A

ACO=DX3 +CX2 +BX + A

Example 1:

17w acb’d 167 LivF HaBCE

{7 g 172667 12« ALDE a0y 3ACH
BARER TN 172567 12e LDF C,AaCl

Gl 4 173167 A1 2e SEIEF Ds>AaC1H sAC1
AR 171001 MULF ACT1»ACEH 3ACE
nwrnae 2 174467 GRaTs5e DIVFE X ACH 3ACY
NAVHE 6 1740067 nepTshe STF AC# s Y

Example 2:

ARG 20 12706 GeenY3 MOV #3s%0
NECIGa 12701 0GErR146 anY FD+45%1
pZAT1m 172526 LDF (6)+,ACH

aan112 170400 CLKF
w114 172644 LGOPs ADDF
PBG116 171001 MULF
WEGL1EY PT7083 sS0E
pEr122 172044 ADDF
AaAl124 1740146 STF

3-8

3LCAD ACH FriM A

HAS (A+E)

3L.0AD AC1 FROM C

HAS (C-D)
HAS (A+D)Y*(C-D)
HAS (A+D)*(C=-D) /X

sSTORE (A+DIY#(C-DO/Xx IN Y

ACH
~(4)5ACE

ACT1-4CH
W LCOP

=(4)sACH
ACE > =-(6)

3SET Uk LGCP CGUNTER
3SET UpP POINTER TOC
SCCEFFICIENTS

5PCF X FhQOM STACK
sCLEAR CUT aACwH

3ADD NEXT COEFFICTENT
5TG PARTIAL RESULT

sULTIPLY PAKTIAL RESULT

sk XK

DG Lok 3 TIMES

SADE ® TG GET KESULT
SPUSH RESULT OM 5TACK

Table 3-2
Instruction Set

B /;—‘\‘

Mnemonic

Instruction Description

Octal Code

CFCC

SETF

SETI

LDUB -

LDSC

Copy Floating Condition Codes
C<FC
V< FV
Z<FZ
N<«<FN

Set Floating Mode
FD <0

Set Integer Mode
FL<«< 0

Load Microbreak Register

This instruction is a maintenance instruction in which the
content of register R3 is gated into the UB register. When
the control ROM address register matches the contents of
the UB register, a scope sync is generated. If the FP11 isin
maintenance mode (FMM=1), an interrupt is also generated
and the FPU traps to the Ready state. A UB interrupt can-
not be generated by the Ready state or by the states that
are used to generate the U Break interrupt.

Load Step Counter

This is a maintenance instruction in which the content of
register R4 is gated into the step counter, if the FP11 is in
maintenance mode (FMM=1). Whenever the step counter
is loaded by an LDSC, normal loading via the microprogram
is inhibited until the step counter is incremented to zero.
This allows partial quotients and products to be formed for
diagnostic purposes. If FMM=0, the LDSC acts as a NOP.

170000
F5 Format

170001
F5 Format

170002
F5 Format

170003
F5 Format

170004
F5 Format

ol-¢

Table 3-2 (Cont)
Instruction Set

Mnemonic Instruction Description Octal Code
STAOQ Store AR in ACO 170005
AC0¢54:32) <~ AR(57:35if FD=0 F5 Format
ACO0(54:0) < AR(57:3)if FD =1
MRS Maintenance Right Shift 170006
AR < AR/2; QR < QR/2 F5 Format
STQO Store QR in ACO 170007
BR < QR; AC(54:32) <~ BR(57:35)if FD =0 F5 Format
AC0<54:0) < BR(57:3) if FD = |
SETD Set Floating Double Mode 170011
FD <1 F5 Format
SETL Set Long Integer Mode 170012
FL <1 F5 Format
LDFPS SRC Load FP11’s Program Status Word 170100 + SRC
FPS < (SRC) F4 Format
STFPS DST Store FP11’s Program Status Word 170200 + DST
DST <« (FPS) F4 Format
STST DST Store FP11’s Status 170300 + DST
DST < (FEC) F4 Format
DST + 2« (FEA) if not mode 0 or not immediate mode
CLRF FDST Clear 170400 + FDST
CLRD FDST FDST <0 F2 Format
FC< 0
FV <0
FzZ <1
FN <0
(continued on next page)

I1-€

AC SIGN « (AC SIGN)

AC EXP « (SRC) + 200

AC FRACTION < (AC FRACTION)

FC<0

FV < 1 if | AC [> UPLIM; else FV < 0

FZ < 1if(AC)=0,else FZ=0, else FZ <0
FN < 1 if (AC) <0, else FN =0, else FN < 0

- : s ' ‘ ™
Table 3-2 (Cont)
Instruction Set
Mnemonic Instruction Description Octal Code
TSTF FDST Test) 170500 + FDST
TSTD FDST FDST « (FDST) F2 Format
FC<0
FV<«< 0
FZ < 1 if (FDST) =0,else FZ< 0
FN « 1 if (FDST) <0, else FN <0
ABSF FDST Absolute 170600 + FDST
ABSD FDST FDST < —(FDST) if (FDST) < 0; else FDST <« (FDST) F2 Forma_t
FC+0
FV<0
FZ < 1 if (FDST) =0;else FZ <0
FN <0
NEGF FDST Negate 170700 + FDST
NEGD FDST FDST < —(FDST) F2 Format
FC<0
FV<«<0
FZ < 1if (FDST) =0, else FZ <0
FN « 1 if (FDST) <0, else FN < 0
LDEXP SRC, AC Load Exponent 176400 + AC * 100 + SRC

F3 Format

(continued on next page)

Table 3-2 (Cont)
Instruction Set

Mnemonic

Instruction Description

Octal Code

LDCIF SRC, AC

LDCID SRC, AC

LDCLF SRC, AC or

LDCLD SRC, AC

LDCIF — single integer to single float
LDCID - single integer to double float
LDCLF — long integer to single float
LDCLD — long integer to double float

C¢I-€

STEXP AC, DST

Load and convert from integer to floating

AC < CFL,FD (SRC)

FC< 0

FV <0

FZ < 1if (AC)=0;else FZ<«0

FN < 1if (AC) <0;else FN <0

CgL FD specifies conversion from a 2’s complement integer
with’precision I or L to a floating-point number of precision F
or D. If integer flip-flop IL = 0, a 16-bit integer (I) is specified,
and if IL = 1, a 32-bit integer (L) is specified. If floating-point
flip-flop FD = 0, a 32-bit floating-point number (F) is specified,
and if FD = 1, a 64-bit floating-point number (D) is specified.
If a 32-bit integer is specified and addressing mode 0 or imme-
diate mode is used, the 16-bits of the source register are left
justified, and the remaining 16-bits are zeroed before the con-
version.

Sfore Exponent

DST <AC EXPONENT -200
FC<0

FV<o0 .

FZ < 1if (DST) =0;else FZ <0
FN < 1if (DST)<O0;else FN<« 0
C<FC

V<« FV

Z <« FZ

N<«<FN

177000 + AC * 100 + SRC

F3 Format

175000 + AC * 100 + DST

F3 Format

(continued on next page)

€l-¢

P 3 3

Table 3-2 (Cont)
Instruction Set

Mnemonic

Instruction Description

Octal Code

STCFI AC, DST
STCFL AC, DST
STCDI AC, DST or
STCDL AC, DST

STCFI = Single float to single integer
STCFL = Single float to long integer
STCDI = Double float to single integer
STCDL = Double float to long integer

STF AC, FDST
STD AC, FDST

DIVF FSRC, AC
DIVD FSRC, AC

Store Convert from Floating to Integer

Destination receives converted AC if the resulting integer
number can be represented in 16 bits (short integer) or 32
bits (long integer). Otherwise, destination is zeroed and C
bit is set.

FV <0

FZ < 1if (DST)=0;else FZ<0

FN « 1 if (DST) <O0;else FN<« 0

C<FC

V< FV

Z < FZ

N < FN

When the conversion is to long integer (32 bits) and address
mode 0 or immediate mode is specified, only the most sig-
nificant 16 bits are stored in the destination register.

Floating Store
FDST < (AC)
FC«<FC
FV «<FV
FZ < FZ
FN < FN

Floating Divide

AC < (AC)/(FSRC) if I (AC)/(FSRC) |>LOLIM;else AC <0
FC <0 '

FV < 1if I(AC) |> UPLIM

FZ < 1if (AC)=0;else FZ<+0

FN <« 1if (AC) <O0;else FN <0

175400 + AC * 100 + DST
F3 Format

174000 + AC * 100 + FDST
F1 Format

174400 + AC * 100 + FSRC
F1 Format

(continued on next page)

yi-¢

Table 3-2 (Cont) .

Instruction Set

Mnemonic

Instruction Description

Octal Code

LDCDF FSRC, AC
LDCFD FSRC, AC

ADDF FSRC, AC
ADDD FSRC, AC

LDF FSRC, AC or -

Load Convert Double to Floating or Floating to Double
AC<Cgpy D,F(FSRC)

FC<0

FV < 1 if [(AC) |> UPLIM; else FV <0

FZ < 1if (AC) =0;else FZ <0

FN < 1 if (AC) <O0;else FN<«0

If the current format is single-precision floating-point (FD = 0),
the source is assumed to be a double-precision number and is
converted to single precision. If the floating truncate bit is set
the number is truncated; otherwise, it is rounded. If the current
format is double-precision (FD = 1), the source is assumed to be
a single-precision number and is loaded left justified in the AC.
The lower half of the AC is cleared.

Floating Add

AC < (AC) + (FSRC) if | (AC) + (FSRC) < LOLIM
else AC< 0

FC<+o0

FV < 1if |(AC) |> UPLIM;else FV < 0

FZ < 1if (AC)=0;else FZ<0

FN <« 1if (AC) <0;else FN <0

Floating Load

177400 + AC * 100 + FSRC

F1 Format

F,D — single-precision to double-precision
floating

D,F — double-precision to single-precision
floating

172000 + AC * 100 + FSRC
F1 Format

172400 + AC * 100 + FSRC

LDD FSRC, AC AC < (FSRO) F1 Format
FC< 0
FV <0
FZ < 1if (AC)=0;¢lse FZ <0
FN <« 1if (AC)<O;else FN«< 0
(continued on next page)

Sl-¢

:/ x\

Table 3-2 (Cont)
Instruction Set

Mnemonic

Instruction Description

Octal Code

SUBF FSRC, AC or
SUBD FSRC, AC

CMPF FSRC, AC
CMPD FSRC, AC

MULF FSRC, AC
MULD FSRC, AC

MODF FSRC, AC
MODD FSRC, AC

Floating Subtract

AC < (AC) — (FSRQ) if |(AC) — (FSRC) |= LOLIM
else AC<0

FC<0

FV < 1 if I(AC) |> UPLIM; else FV <0

FZ < 1if (AC)=0;else FZ <0

FN < 1if (AC) <0;else FN<0

Floating Compare

FC+<0

FVv<o0

FZ < 1 if (FSRC) — (AC)=0;else FZ< 0
FN « 1 if (FSRC) — (AC) <0;else FN <0

Floating Multiply

AC < (AC) * (FSRQ) if i (AC) * (FSRC) i= LOLIM
else AC< 0

FC+<0

FV < 1if [(AC) |> UPLIM; else FV <0

FZ < 1if (AC)=0;else FZ<«0

FN < 1if (AC) <O0;else FN <0

Floating Modulo

AC V 1 < integer part of [(AC) * (FSRC)]

AC < fractional part of (AC) * (FSRC) — (AC V 1) if
[(AC) * (FSRC) |>= LOLIM or FIU = 1;else AC< 0
FC <0

FV < 1 if I(AC) |> UPLIM;else FV <0

FZ< 1if (AC)=0;else FZ<0

FN < 1if (AC) <O0;else FN <0

173000 + AC * 100 + FSRC
F1 Format

173400 + AC * 100 + FSRC
F1 Format

171000 + AC * 100 FSRC
F1 Format

171400 + AC * 100 + FSRC
F1 Format

(continued on next page)

91-¢

Table 3-2 (Cont)
Instruction Set

Mnemonic

Instruction Description

Octal Code

(cont)

STCFD AC, FDST
STCDF AC, FDST

The product of (AC) and FSRC) is 48 bits in single-precision
floating-point format or 59 bits in double-precision floating-
point format. The integer part of the product [(AC) * (FSRC)]
is found and stored in AC V 1. The fractional part is then ob-
tained and stored in AC. Note that multiplication by 10 can be
done with zero error, allowing decimal digits to be stripped off
with no loss in precision.

Store Convert from Floating to Double or Double to Floating
FDST < Cg p v pF (AC)

FC<0

FV < 1if [(AC) | > UPLIM; else FV < 0

FZ < 1if (AC)=0;else FZ <0

FN<« 1if (AC)<O0;else FN<«0

176000 + AC * 100 + FDST

F1 Format

F,D — single-precision to double-precision
floating

D,F — double-precision to single-precision
floating

CHAPTER 4
CONTROL ROM

4.1 INTRODUCTION

Figure 1-2 shows a simplified block diagram of the Floating Point Processor, which consists of the fraction
calculaﬁon logic, expdnent calculation logic, and scratchpad accumulators. Figure 4-1 expands this block diagram
to show the various data paths of the FP11 and also to show each of the multiplexers and major registers. These
registers and multiplexers are described below.

FIR (11:0) Instruction Register — The most significant four bits represent the 174 op code for floating point and
should be 1s. When the other bits are loaded into the instruction register, these four bits are checked; if they are
not all 1s, an illegal instruction trap occurs.

DIMX - An input multiplexer that selects data in or address in from the CPU. In the Ready state, the address is
automatically selected so that the address of the floating-point instruction can be temporarily stored in the FP11
at the same time that data is clocked into the FP11 FIR.

EMX — The EMX selects one of four input sources to the B side of the EALU. The four inputs are:

a. BA register

b. DIMX output

c. CNST (constant)

d. Step Counter (when the step counter is selected, bits 15 through 6 are 0s).

BA Register — A 16-bit Temporary Storage register that feeds the B side of EALU via the EMX.
BD Register — A 16-bit storage register used to send data to the CPU and to the A side of the EALU.

EALU — An exponent arithmetic logic unit capable of performing both arithmetic and logical functions between
the A and B inputs. The EALU is 16 bits wide.

Step Counter — A 6-bit up counter used to count the number of shifts required for normalization of the fraction
and used to count the number of steps performed in multiplication or division or long shift subroutines.

~Ubreak Register — An 8-bit register used to set up break points in the microprogram for diagnostic purposes.

FPS — The floating-point status register contains the current status of the FP11 including floating condition codes
and intei‘rupt enable status.

BMX — A multiplexer that selects one of four sources as inputs to the BA and BD registers. The four inputs are:
a. EALU

b. ACH — Selects most significant 16 bits of the 32-bit accumulator specified.

¢. ACL — selects least significant 16 bits of the 32-bit accumulator specified.

d. EXP — strips off exponent portion of word (8 bits) contained in accumulator and right justifies it.
Remaining bits are zeroed.

AC{63:0), i = 0 through 7 — There are eight 64-bit wide accumulators in the FP11. Each accumulator is divided
into four 16-bit segments (3, 2, 1, and 0 as described in Chapter 1). The high-order 32-bits, the low-order 32-bits
or a 16-bit segment can be accessed. Data written into the scratchpad accumulator is inverted when read out of.
the scratehpad. This is compensated for by writing the 1’s complement of the data into the scratchpad.

ACMX — The ACMX is 32 bits wide and selects one of four 32-bit input sources for writing into the accumulators.

The ACMX allows the floating-point status to be written into the accumulator, allows the exponent and fraction
to be assembled from the EALU and FALU into floating-point format, and allows the least significant bits {34:3)
of FALU to be written into the accumulators.-

QR — A 60-bit wide left-right shift register, which is loaded from the scratchpad in two segments This is accom-
plished by LDQ1 and LDQO load s1gnals

BR — A 60-bit holding register, which receives inputs via the QYR. The BR cannot be shifted.

AR — A 60-bit left-right shift register. In all arithmetic operations where the result is to be normalized, normal-
ization occurs in the AR.

FMX — Allows the appropriate bit of the AR to be loaded into the B side of the FALU for rounding operations.
The FMX also allows insertion of 1 in the appropriate position of the FALU to provide for the incrementing of
integer numbers.

FALU — A 60-bit wide fractional arithmetic logic unit that has the capability of performing arithmetic and logical
operations between the A and B inputs. Two levels of carry look-ahead are provided. The controls of the EALU
and FALU are ganged together

4.2 CONTROL ROM

The FP11 utilizes a control ROM (read-only memory) to implement microprogramming techniques. A micro-
program is a sequence of control operatiéns. Control operations, for example, might involve a sequence of infor-
mation transfers from one register to another, which may take place directly or through an adder or other logical
network as determined by the outputs of the read-only memory.

The control ROM in the FP11 is comprised of 256 64-bit words. Eight bits of each word represents the next ad-
dress of the microprogram. If certain branch conditions are satisfied, the control ROM causes the next address

to be modified and the microprogram, instead of branching to the next address, branches to the modified address.
This action is shown in Figure 4-2. Note that the CRAR (Control’ ROM Address Register) specifies the next ad-
dress. The instruction in this address is executed and, if the branch conditions are not satisfied, the 8-bit address
in this instruction represents the next address of the microprogram. The following paragraphs introduce the ROM
flow diagrams and associated symbology. '

Asynchronous conditions can cause the microprogram to trap to specific microaddresses rather than continue in
the normal sequence. These traps can be caused by initialization and 11/45 abort conditions, by a microbreak
(which occurs when a control ROM address compares with a presettable address in maintenance mode), and by
the floating minus zero trap, which occurs when a minus zero is detected.

42

2

N

//“\\\

—— — — e e e e .
EXPONENT CALCULATION LOGIC] SCRATCHPAD-I FRACTION CALCULATION LOGIC]
ACCUMULATORS \

(us<7:0>)

FPS<15:0> I I
RLP IEALU FALUH

I FXPJ | | I
: i | FaLuL | | l
l EALU<15:0> l I I : FALU<59:0> |
I | |
so>)t S 3 l FRHB-FRHD,
| » ACMX | FRLE-FRLK I
| | | FRLA-FRLD I | |
CNST I FCC I I I
-
IDATAv | I I
ouT I
| BUS ADDRESS I I |
l ~ DATA IN I | I | I
ACi [3:01<15:0> : I
| | I =0 THRU 7
| (BD<15:O>) (BA<15:0>) | | | I . BR<59:0>) I
FRLA- i FRHB -FRHD FRHA,
l FXPC FXPC FXPD ' | FRLD | | / FRLE-FRLK " FRLL, I
Ly I | ‘
I 11

I

11-0820

{
|

|
“L DATA PATH DEFINITION ,
ACMXO0 (31) < ~ BN; ACMXO0 (30) < BZ; ACMXO0 (29:16) < 37777; ACMXO (15:0) < FPS
ACMX1 (31:16)< EALU (15:00); ACMX1 (15:00) < EALU (15:00)
ACMX2 (31) + ~ SD; ACMX2 (30:23)+ EALU (07:00); ACMX2 (22:00) < FALU (57:35)
ACMX3 (31:00)< FALU <§s4:03>

BMXO0 (15:00)< EALU (15:00

BMXI (15:00)< AC; [3] (15:00)or AC; [1] (15:00)

BMX2 (15:00« AC; [2] (15:00)or AC; [0] (15:00)

BMX3 (15:08)0; BMX3 (07:00) AG; [3:2] (30:23) or AC; [01:0] (30:23)

EMXO0 (15:00) < BA <15:0c§»

EMX1 (15:00 < DIMX (15:00)

EMX2 (15:00 < CNST ¢15:00)

EMX3 (15:06)< 0 ; EMX3 (05:00) < SC (05:00)

{
FMXO0 (02) < BR (35) ; FMXO0 (01 < BR (19} ; FMXO0 {00 < BR (3)

FMX1 (02) < AR (34) ; FMX1 (01) < 1; FMXO0 (00 < AR (02

LDQI = QR (59) < 0 ; QR (58) + 1 if AC; [3:2] (30:24)# 0 else QR (58) < 0
QR (57:35)+ AC{ [3:2] (22:0)
LDQO = QR (34:3) < AC; [1:0] (31:0; QR (2:0)+ 0

i
1
]
|
|
i
|

Figure 4-1 FP11 Data Paths

4-3

’ UAF, UBR
(i
—
BRANCH MUX
ROM
CONTROLS CONDITIONS
: N FRMA
FRMB
SEATIM coue
FRMF
FRMD DO7-DOO
- NEXT ADDRESS
FRMA
. FRMB
CROM
FRMC
FRMD
i;?g FRMA
FRMB

11-0799

Figure 4-2 Control ROM Simplified Block Diagram

TN

4.2.1 Control ROM Flow Diagram

This section describes the flow diagrams associated with the FP11. General points concerning the flow diagram
symbology are described first, followed by Table 4-1 which lists and defines each of the statements found in the
flow diagram.

1. The flow diagram contains blocks with designators above the upper left and right corners of each block

and below the right corner of each block. These are defined as shown in the sample block reproduced
from sheet 13.

SCF.60 (165) <€¢——Current ROM Address
Symbolic name for‘ STR Rounded Result
this particular state ALUS <~ A

ACMX < FALUH
- : ACS [3:2] <« ACMX
SET FCC (1)

ROM Next Address \Branching conditions (certain

blocks will have no branch con-
ditions)

The branching conditions are designated as follows:
6 F2
<’ ‘ represents the octal decode of the/ T decode of microaddress field (bits 12
N microbranch bits (bits 10 through and 11 of control ROM)
8 of control ROM)

4-5

2. The flow diagram contains diamond shaped symbols with connector names listed inside. Below
the connector name is the sheet reference. Normally, the diamond is connected to an oval shaped
symbol of the same connector name. For example, the following symbol is reproduced from sheet
13 of the flow diagram. This indicates that the flow is connected to an oval symbol with the de-
signation CONV DONE. This oval symbol is on sheet 13 as referenced by the number in the bottom
of the diamond.

CONV. DONE

3. Certain connector names have numbers following them, which are used to differentiate between
connectors of the same category. For example, on sheet 11 of the flow diagram there are
diamond symbols designated NORM 10, NORM 20, NORM 30, and NORM 40. These symbols
are connected to oval symbols designated NORM 10, NORM 20, NORM 30, and NORM 40,
respectively, on sheet 12.

4. Several statements of the following forms:

AC7[0] «<....
ACS [3:2] «....
ACD [3:2] <. ...
ACD V1 [3:2] «<....

These statements refer to the accumulator and the specific words referenced.

The 7 after the AC in the first statement references Accumulator 7 — one of the eight accumulators available to
the microprogram. The S following the AC in the second statement specifies the source accumulator designated
by FIR bits 2 through 0, while the D following the AC in the third statement specifies the destination accumu-
lator designated by bits 7 and 6 of the FIR if address mode 0 is used; otherwise, AC6 is the destination accumula-
tor. The number or numbers in brackets in each statement designate the portion of the accumulator word, as
shown in the following example:

3 2 1 0

63 4847 3231 1615 O
[3:2] specifies bits 63 through 32
[3:0] specifies bits 63 through 0
[1:0] specifies bits 31 through 0O

The last statement specifies a logical OR function of (ACD) OR 1 and is used in the MODF instruction. The truth
table for this statement is as follows:

4-6

FIR7 FIR 6 ACD ACD V1

0 0 0 1
0 1 1 1
1 0 2 3
1 1 3 3

In the MODF instruction, the integer portion of the number is stored first followed by the fractional part. If an

odd accumulator is specified, the integer and fraction are stored in the same accumulator; however, the integer

part is stored first and is destroyed by the storing of the fraction. If an even accumulator is specified, the integer
is stored in an odd numbered accumulator and the fraction is stored in an even numbered accumulator, which is
one less than the odd numbered accumulator.

7 /r—\\\\

Table 4-1
Flow Diagram Statements
Statement Description
ABSF A branch specified if the current instruction is an ABS instruction with
single- or double-precision floating point specified.
ACMX < EALU - The output of the EALU (bits 15 through 0) is gated through the ACMX.
ACMX < FALUH The high-order bits of the FALU (bits 57 through 35), bits 7 through 0 of
“the EALU, and ~SD are gated through ACMX.
ACMX < FALUL The 32 bits (bits 34 — 3) of FALU are gated through ACMX.
ACMX < FPS The floating-point status word is gated through the ACMX. BN and BZ
can also be gated through ACMX to set FZ and FN, respectively.
ADDF A branch path specified for an add, subtract, or compare instruction using
floating-point format. ‘
ALUS«< APLUSB The output of the EALU and FALU contains the sum of the data on the A
PLUS 1 - and B inputs plus one. ’ ’
ALUS<AA~B The output of the EALU and FALU contains the data on the A input
ANDed with the complement of the data on the B input.
ALU’S < A MINUS B The outpuf of the EALU and FALU contains the data on the A input

ALU'S < APLUSB

ALUS+ A
ALU’S < A MINUS 1

ALUS <~A

ALU’S <~ (AVB)

ALUS < B

minus the data on the B input.

The output of the EALU and FALU contains the sum of the data on the
A and B inputs.

The output of the EALU and FALU contains the data on the A input.

The output of the EALU and FALU contains the data on the A input
minus 1.

The output of the EALU and FALU has the complement of the data on
the A input.

The output of the EALU and FALU contains the complement of the logi-

~cal OR function of the A and B inputs.

The output of the EALU and FALU contains the data on the B input.

L
|

(continued on next page)

47

Table 4-1 (Cont)
Flow Diagram Statements

Statement Description
ALUS«<~B The output of the ALU contains the complement of the data on the B input.
ALUS < 1 The output of the EALU and FALU contains all 1s.
ALUS <0 The output of the EALU and FALU contains all Os.
AR (59) (0) Indicates a positive sign bit.
AR (59 (1) Indicates a negative sign bit.

AR (59:58)(0)
AR (59:58) (1)
AR (59:58) (2)

AR (59:58) (3)
AR < FALU
BA < BMX

BB1Z (B Registers
Byte 1 Zero)

BD < BMX
BMX < ACH

BMX < ACL

BMX < EALU
BMX < EXP

BN — (B Registers
Negative)

BR < QR
BR <0

BZ — (B Registers Zero)

CERR INT
CFCC
CLRF
CMPF
CONV SP

Indicates an unnormalized number (0.0) with bits 59 and 58 on a 0.
Denotes the number is a normalized number (0.1).

Denotes the number is an unnormalized number (1.0). A right shift of 1
causes this number to become normalized.

Indicates an unnormalized number (1.1) with bits 59 and 58 ona 1.
The contents of FALU is loaded in the AR.
The BA register is loaded from the BMX.

Indicates the upper eight bits of the last data word loaded in either the BA
or BD register are zeros.

The BD register is loaded from the BMX.

The high-order 16 bits of the 32-bit wide scratchpad output are gated
through the BMX.

The low-order 16 bits of the 32-bit wide scratchpad output are gated
through the BMX.

The output of the EALU is gated through BMX.

The 8 bits of exponent from the AC are gated through the least significant
8 bits (bits 7 through 0) of the BMX. Upper 8 bits (bits 15 through 8) of
BMX are zeroed.

Indicates that the last data word loaded in the BA or BD register is negative.

The contents of the QR are transferred to the BR.

The BR register is zeroed.

Indicates the last data word loaded in the BA or BD register is zero.
Conversion error interrupt.

Copy floating condition codes instruction.

A clear instruction specifying single- or double-precision floating point.

A compare instruction specifying single- or double-precision floating point.

A group of instructions which include STEXP, STCFI, and STCFD.

(continued on next page)

4-8

(

T
‘v

Table 4-1 (Cont)
Flow Diagram Statements

Statement Description
DIMX < DATA ADDRESS The data address is gated through DIMX.
DIVF A divide instruction specifying single- or double-precision floating point.
EMX < BA The output of the BA is gated through EMX.
EMX < CNST 1 The output of EMX contains a constant of 1.
EMX < CNST.2 The output of EMX contains a constant of 2.
EMX < CNST .4 The output of EMX contains a constant of 4.

EMX < CNST.10
EMX < CNST.12
EMX <« CNST.17
EMX < CNST.21
EMX « CNST.31
EMX < CNST.35
EMX « CNST.71
EMX « CNST.75
EMX < CNST.200
EMX « CNST.220
EMX « CNST.100000
EMX < DATA IN
EMX < DIMX
ENABLE FMO INTERRUPT

ENABLE FP REG WR
ENABLE FP SYNC

EQ

FD < 11IF SETD
FD<OIF SETF
FD (1) (Bit 7 of FPS)

FINT
FIR < DATA IN

The output of EMX contains a constant of 10.

The output of EMX contains a constant of 12.

The output of EMX contains a constant of 17.

The output of EMX contains a constant of 21.

The output of EMX contains a constant 6f 31.

The output of EMX contains a constant of 35.

The output of EMX contains a constant of 71.

The output of EMX contains a constant of 75.

The output of EMX contains a constant of 200.
The output of EMX contains a constant of 220.
The output of EMX contains a constant of 100000.
The output of EMX contains the input data from the CPU or the IU.
The output of DIMX is applied to EMX.

Enables microtrap if 1’s complemented floating minus zero is present
at output of ACMX.

Indicates that the CPU is to copy data from the FP11 into a general register.
Enables FP SYNC to be generated at TS2 of next ROM state.

Equal branch (indicates that the exponents of the operands are equal or the
exponent of the MODF instruction is zero).

If the SET D instruction is specified, the FD flip-flop is set.
If the SET F instruction is specified, the FD flip-flop is zeroed.

When the flip-flop is set, double-precision floating point is specified and,
when reset, single-precision floating point is specified.

All errors branch to floating interrupt (FINT) ROM location.

The data input is transferred to the floating-point instruction register.

(continued on next page)

Table 4-1 (Cont)
Flow Diagram Statements

Statement

Description

FIU (Bit 10 of FPS)
FIV (Bit 9 of FPS)

FL<1IFSETL
FL<«<OIF SET1
FMX < F. RND

FMX < L. INC

FPCI < DATI
FPCI < DATO
FPS < EALU
FRAC DIV

FRAC MUL
FT (1) (Bit 5 of FPS)
FV — Floating Overflow

(Bit 1 of FPS)
GT

ILL. OP. CODE
IMMEDIATE
INC ADDRESS

INIT V 1145 ABORT
LD ACo

LDCIF

Floating Interrupt on Underflow. This bit, if set, causes a floating interrupt
on underflow to occur if an underflow condition is detected.

Floating Interrupt on Overflow. With this bit set, an overflow causes an
interrupt.

If the SET L instruction is specified, the FL flip-flop is set.
If the SET I instruction is specified, the FL flip-flop is zeroed.

If single-precision floating-point format, AR bit 34 is fed to bit 35 on the B
input to FALU via FMX. If double-precision floating-point format, AR bit
2 is fed to bit 3 on the B input to FALU via FMX.

Inserts a 1 in bit 35 of the B input to FALU if short-integer format is speci-
fied, or inserts a 1 in bit 19 of the B input to FALU if long-integer format
is specified.

Informs the CPU that a DATI cycle is requested.
Informs the CPU that a DATO cycle is requested.
The output of EALU is transferred to the FPS register.

Initiates a divide subroutine and causes the ROM to pause until completion
of the subroutine.

Initiates a multiply subroutine and causes the ROM to pause until comple-
tion of the subroutine.

This bit, when set, causes the result to be truncated and, when reset, causes
the result to be rounded.

A condition code indicating an overflow condition.

Greater than branch. Indicates the exponent in the BD register is greater
than the exponent in the BA register or the MODF exponent is greater than
200.

An undefined op code.
Specifies address mode 2 and register 7.

Indicates to the CPU that the current address of the data is to be incre-
mented by 2.

If the 11/45 sends an 1145 ABORT or an INIT signal, the FP11 traps to
the Ready state.

A branching path taken by instructions which require that one operand
be fetched from memory.

A load instruction which loads and converts a number from integer to
floating-point format.

(continued on next page)

4-10

TN

Table 4-1 (Cont)
Flow Diagram Statements

Statement Description

LD FPS The instruction that causes the floating-point status to be loaded in the
FP11 floating-point status register.

LDSC An instruction that causes the step counter to be loaded from an external
source.

LD UB An instruction that loads the microbreak register from an external source.

LOAD CL Indicates a class of instructions that require operands from memory.

LS. AR. 1 Left shifts the AR one bit position and inserts a 0 in AR0O.

LS.QR.SC Left-shift the QR by the number contained in the step counter. The step
counter contains the 1’s complement of the number of shifts desired.

LT Less than branch. Indicates that the exponent in the BD register is less
than the exponent in the BA register, or the exponent in the MODF in-
struction is less than 200.

MGT Much greater than branehr. The number cannot be aligned within the
boundaries of the AR and BR registers.

MLT Much less than branch. The number cannot be aligned within the boundaries
of the AR and BR registers. :

NEGF The negate instruction specified with single- or double-precision floating-
point format.

NO. MEM. CL. Indicates a nonmemory reference instruction.

NRM. AR Initiates a hardware subroutine that normalizes the number in the AR.
The number of shifts required to normalize is contained in the step counter.

QR « LDQI The QR is loaded as follows:
QR (59) < 0; QR (58} < 1 if exponent of word is not zero (hidden bit),
else QR (58) <= 0; QR (57:35) < AC; [0:1] €22:0.

QR < LDQO QR (34:3) < AC; (31:0); QR €2:0) < 0.

QR <0 QR register is cleared.

REQ <1 Sets the REQ (request) flip-flop.

REQ <0 REQ flip-flop is cleared.

RS.AR. 1 Right shift the AR one place. A 0 is shifted into AR59.

RS.AR.-SC Right shift the AR by the number contained in the step counter (1’s com-
plement). Zeros are shifted into the AR.

RS.QR. 1 " Right shift QR one bit position and shift in a 0 into QR bit 59.

RS.QR. SC (0 IN)

RS.QR.SC (1 IN)

Right shift the QR by the number contained in the step counter
(I’s complement). A O is shifted into QR bit 59.

Right shift the QR by the number contained in the step counter (1’s com-
plement). Shift a 1 into QR bit 58. QR bit 59 is cleared.

(continued on next page)

— 4-11

Table 4-1 (Cont)
Flow Diagram Statements

Statement - v Description
SC <« EALU Step counter is loaded with number contained in EALU.
SD « SCR OUT 31D Bit 31 from the scratchpad accumulator is transferred to SD.
SD <SS Sign of source is loaded into sign of destination.
SD <~ SS IF SUB If subtract instruction is specified, sign of destination is loaded with
ELSE SD <SS complement of sign of source; otherwise, sign of destination is loaded

with sign of source.

SD < SS¥ SD The exclusive OR of SS and SD.

SEND FP EXC TRAP Signals the CPU to trap through the floating-point trap vector.

SET FCC (0) FN is set by ACMX (31> (0); FZ is set by ACMX (30:23) (377); FV and
FC are cleared.

SET FCC (1) FN is set by ACMX (31) (0); FZ is set by ACMX (30:23)(377); FV is set
by EALU (8 (1); FC is cleared.

SET FCC (2) FN is set by ACMX (31) (0); FZ is set by ACMX (30:23) (377); FC is set
to 1; FV is cleared.

SET MODES A branch that the SET F, SET D, SET I, or SET L instructions follow.

SS«1 A 1 isloaded in the sign of the source.

SSASD <0 Sign of source and sign of destination are zeroed.

STORE. CL Indicates store class of instructions.

UB < EALU " The ubreak register is loaded with the output of EALU.

‘WAIT FOR FP ACKN The FP11 goes in the Wait state and waits for FP ACKN from the CPU or

IU. FP ACKN is sent when the FP EXC TRAP is acknowledged.

WAIT FOR FP ATTN The FP11 goes into the Wait state and waits for FP ATTN from the CPU
or from the 1U.

—0TRAP Floating minus zero trap.

4.2.2 ROM Field Descriptions

Each block on the set of flow diagrams represents a specific ROM word. The number of ROM words necessary

to execute a floating-point instruction are dependent on the instruction. Table 4-2 shows how each ROM ‘word

is subdivided into fields and briefly defines the purpose of each field. Several fields are unique and require further
explanation, One is bit (58), the redefined constant bit. If this bit is a 0, bits (57:53) of the constant field are not
affected. If this bit isa 1, the constants specified by bits (57:53) of the ROM word are redefined. For example,
if bit (58) is a 0, bits (57:54 are 1s and bit {53} is a 0, a constant of 74 is specified. If bit {58) now becomesa 1,
bit 53 takes on a new meaning whereby the FP11 issues FP TRAP and waits for FP ACKN (see (58) in Table 4-2),
These bits can be microcoded also: for example, if bit 57 were also a 0, detection of minus 0 would also be
enabled.

4-12

N

Table 4-2

ROM Fields
Bits Field Field Definition
Setting
(63) DISBL 1 0 Clears FP REQ
1 NOP
(62) DISBL 0 0 Clears ICLR, 20 ABORT, INITF and ABORTF
1 NOP
(61:59 CONTROL SEL 2- 0 LOAD FPSC
CONTROL SEL 0 1 LOAD UBC
2 FP REG WR
3 DISABLE SYNC
4 DISABLE SC
5 FIR CLK
6 Not used
(58 RDFN CNSTF 0 NOP
(Redefined Constant Field) 1 Constant field (bits {57:53)) redefined as follows:
: BIT 57 = CNT 4(0);
enables detection of minus 0
BIT 56 = CNT 3(0);
enables DATI
BIT 55 = CNT 2(0);
not used
BIT 54 = CNT 1(0);
wait for FP ATTN
BIT 53 =CNT 0(0)
issue FP TRAP and wait for FP ACKN
(57:53 CNST F4-CNST FO 0 200 This field specifies the following
(constant field) 1 1 list of constants
2 2
3 3
4 4
5 5
6 6
7 7
10 10
11 100000
12 12
13 13
14 14
15 100004
16 16
17 17
20 220
21 21
22 22
23 23
24 24

(continued on next page)

413

Table 4-2 (Cont)

ROM Fields
Field
Bits Field le. Definition
Setting
(57:53) 25 25
(cont) 26 26
27 27
30 30
31 31
32 70
33 71
34 34
35 35
36 74
37 75
(52 . SYNC 0 Enable FP SYNC
' 1 NOP
SD D SEL 0 Select address
(Data Select) 1 Select data
S0 sScC 0 Load step counter
(Step Counter Control) 1 NOP
(49 BDC 0 Load BD register
(BD control) 1 NOP
(48) ADDR INCR 0 Increment address of data by 2
(Address Increment) 1 NOP
@n BAC 0 Load BA register
(BA Control) 1 NOP
(46:45) EMXC1, EMXCO 0 EMX < BA ‘
(EMX Control) 1 EMX < DATA IN or ADDRESS
2 EMX < CNST
3 EMX « SC
(44:43) FCC1, FCCO 0 FN < ACMX (31) (0); FZ <« ACMX €30:23) (377);
(Floating Condition Codes) FV < 0;FC<0
1 FN < ACMX (31)-(0); FZ < ACMX(30:23)(377);
FV < EALU(8) (1); FC<0
2 FN <~ ACMX (31} (0); FZ + ACMX (30:23)(377);
FV < 0;FC+«1 :
3 NOP
(42:41) SIGNC1, SIGNCO 0 SD < ~ SS if subtract; otherwise, SD < SS
(Sign Control) 1 SD < SS ¥ SD
2 SS <1
3 NOP

4-14

(continued on next page)

/ \

C

LV /—)\\

Table 4-2 (Cont)

ROM Fields
Field
- Bits Field . Definition
) , Setting
(40:39) BMXC1, BMXCO 0 BMX < EALU
(BMX Control) 1 BMX < ACH
2 BMX < ACL
3 BMX < EXP
(38 ACRE 0 Write enable
(AC Read) 1 Read enable
(37:35) ACC2-ACCO 0 [3:2] This field selects the following
(AC Control) 1 [3] ACs or combinations of ACs.
2 [2] One ACs specify 16 bits and
3 None two ACs specify 32 bits.
4 [1:0]
_ 5 [11
i 6 (0]
7
(34:32) ACF2-ACFO0 0 ACS (AC source) Bits €2:0) of in-
struction word
specify ACS
1 ACSorl (Selects odd AC)
2 ACD
3 ACDor1 (Selects odd AC)
4 AC6
5 AC7
6 Not used
7 Not used
(31:30 ACMXC1, ACMXCO 0 ACMX < BN, BZ and FPS
(ACMX Control) 1 ACMX < EALU
2 - ACMX <~ FALU H
3 ~ACMX < FALUL
(29:27 CSB2—-CSBO 0 Multiply BR and QR: leave result in AR.
(Call hardware subroutine) 1 Divide AR by BR; leave result in QR.
' 2 Shift AR right by the number in SC; shift in Os.
3 Shift AR left until normalized and count num-
ber of shifts in SC. »
4 Shift QR right by the number in SC. Shift in Os.
5 Shift QR left by the number in SC. Shift in Os.
6 Shift QR right by the number in SC. Shift in 1s
(sign bit remains 0).
7 NOP

4-15

(continued on next page)

Table 4-2 (Cont)

ROM Fields
Field
Bits Field . Definition
Setting
(26:25) ARCI1, ARCO 0 Load AR
(AR Control) 1 Shift AR left. Shift Os in.
2 Shift AR right. Shift Os in.
3 NOP
(24:23) BRC1, BRCQO 0 Clear and Load BR
(BR Control) 1 Clear BR
2 Load BR
3 NOP
22:21) QRCI1, QRCO 0 (Load QR (59:35) if ACC (2) (0); otherwise
load QR (34:3). QR59 isloaded with 0.
QRS58 is loaded with 1 if exponent is nonzero.
QR?2 through 0 are loaded with Os.
Load SS from SCR out 31 if ACF=0or 1.
h,oad SD from SCR out 31 if ACF =2 or 3.
1 Shift QR left; shift Os in.
2 Shift QR right; shift Os in.
3 NOP
Qo QRC2 0 Zero QR
1 NOP
(19:16) ALUC3—-ALUCO 0 ALU«<~A A =Aside of ALU;B=B
: (ALU Control) 1 ALU < ~ (A or B) side of ALU
2 ALU<A-B ALU = EALU and FALU,
3 ALU <« 0 which are ganged together
4 ALU < ~ (A and B)
5 ALU <« ~B
6 ALU<A-B-1
7 ALU < A and ~ B
10 ALU<A+B+1
11 ALU<+~ A+B
12 ALU <« B
13 ALU<«< Aand B
14 ALU <« 1
15 ALU <A -1
16 ALU< AorB
17 ALU < A

4-16

(continued on next page)

L

Table 4-2 (Cont)

ROM Fields
. . Field .
Bits Field . Definition
‘ Setting
(15:14) FMXC1, FMXCO 0 Not used _
2 Round. Normally, BR is cleared so that AR (34)
is added to AR (35) if FD = 0 or AR2 is added to
AR3ifFD =1.
1 Normally, BR is cleared allowing AR to be in-
cremented at bit 35 if IL =0 or at bit 19 if IL
=1.
3 NOP
(13 uJp 0 Jump to READY if bits <1:0) of modified ad-
(Microjump) dress are set.
1 NOP
12:1D UAF1, UAFO 0 OR function with UAD ¢5:0) if UBR (0} 0;
(Microaddress field—used in : otherwise OR with UAD (5:2)
conjunction with UBR field UBR O (0 specifies even rows, UBR O (1)
(bits 10 through 8) to specify specifies odd rows
branch modification.) 1 OR function with- UAD (0> (only bit O can be
modified)
2 OR function with UAD (1) (only bit 1 can be
modified)
3 OR function with UAD (1:0) (bits 0 or 1 can be
modified) ‘ .

NOTE
The remainder of this table defines the microbranch-
ing conditions (bits 10 through 0).

(continued on next page)

4-17

81

* Table 4-2 (Cont)

ROM Fields
. Definition
Bits Field SF'e-l d
etting UAD 5 UAD 4 UAD 3 UAD 2 UAD 1 UAD O
(10:8) UBR2-UBRO 0 SUB FRAC FIRD 4 FIRD 3 FIRD 2 FIRD 1 FIRD 0
(Microbranch 1 FIR (7 (1) FIR (6 (1) FIR (11) ¢)) FIR (10> (1) AR (50) (0) SD (1)
field — used in 2 RNG 2 RNG 1 RNG 0 0 BB1Z (1) BN (0)
* conjunction with 3 0 0 0 FIU (1) 1L (0) Immediate
UAF field to spe- | 0 0 0 FT (1) ~ (FC and FIC) FD (0)
cify branch mod-
ification.) 5 FIRD 6 FIRD 5 0 -CNVSP ~ (FV and FIV) MO
6 0 0 FIR <8) (0) AR 58 (1) AR (59) (0) BZ (1)
7 0 0 0 0 0 0
(7:0) UAD 7=UADO 8-bit address of next instruction. This is the address which may or may not be modified by bits (12:8).

/_‘\

A seccond ROM group requiring further explanation is the microbranching fields. UAD bits 7 through O of the
ROM word are used to define the next ROM address to be sequenced. This next address may or may not be
modified under certain conditions. The UAF field (ROM bits 12 and 11) in conjunction with the UBR field
(ROM bits 10 through 8 determinc which bits of the next address can be modified, and which branch conditions
will be used to cause the bits to be modified.

Several conditions must be met before microbranching can occur.

1. Only bits 5 through 0 of the UAD (next address) can be modified; bits 6 and 7 cannot be changed.
The exception to this is the UJP and UTrap described in a subsequent paragraph.

2. Only UAD (next address) bits on a 0 can be modified, i.e., UAD bits on a zero can be modified to
1s, but UAD bits on a 1 cannot be modified.

3. The branch condition(s) being used must be true. See the chart in the definition column of the UBR
field for the branch conditions. Note that some of the conditions are true when they are in the O
state such as ARS9, IL, etc.

The UBR field (ROM bits 10 through 8) is decoded to determine which conditions will be used to modify the
next address, i.e., if the UBR = 65 ‘'we can use FIR bit 8 (0) to modify UAD bit 3, AR58 (1) to modify UAD

bit 2, etc. These modifications are, of course, contingent on the prior listed conditions and also on the decoding
of the UAF field (refer to Table 4-2).

The UAF field (ROM bits 12 and 11) is decoded to determine which bits of the UAD (next address) can be modi-
fied. See the definition column of the UAD field for this octal decoding. Note that a decode of 0 in the UAF
field (i.e., ROM bits 12 and 11 both 0s) is further modified by the condition of UBR bit 0 (ROM bit 8). If UBR
bit 0 is a 0 and the UAF field decode is a 0, then bits 5 through O of the next address can be modified. UBR bit 0
isa 0 for UBR octal decodes of 0, 2,4,and 6. If UBR bit 0 isa 1 (octal decodesof 1, 3,5, and 7 of the UBR
field) and the UAF field decode is a 0, then only bits 5 through 2 of the next address can be modified.

The UAD field (ROM bits 0—7) gives the next ROM address to be sequenced, subject to modification if selected.

As an example of microbranching refer to Block NRM.0O on sheet 12 of the flow diagrams. From block NRM.00
one of four different ROM addresses can be selected subject to the conditions of AR bits 58 and 59. The con-
tents of the UAD (next address) field is octal 11 as indicated by the number 11 in parenthesis under the lower
right-hand corner of the block. The term 6FO0, following the next address of (11), refers to the UBR and UAF
fields of the ROM word in location 273. The 6 is the octal decode of the UBR bits, and the FO is the decode of
the UAF bits. Because the UAF field is decoded to be 0, the state of UBR bit 0 must be examined to determine
which bits of the next address can be modified. Because the octal decode of the UBR field is 65 or binary 110,
UBR bit 0 is 0. '

By definition, if the UAF field is 0 and UBR field is 0, bits 5 through O of the next address can be_modified (see
UAF field 0 in Table 4-2).

With an octal decode of 6 in the UBR field, only bits 3 through 0 have any conditional branches (see UBR field
6 in Table 4-2). Bits 4 and S cannot be modified (0 designates no change to the UAD bit). The next address in
the UAD field is 115 thus, bits 0 and 3 are Is, as shown below:

UAD _ Field
bits . 7 6 5 4 3 21 0

next address = 114 0 0 0 0 1 0 0 1

4-19

As previously mentioned, bits on a 1 in the UAD field cannot be changed. Consequently, only bits 1 and 2 of (- .
the UAD field can be modified. These bits can be modified by AR59 and ARS8, respectively, which agrees with
the statements on the flow diagram.

AR(58) modifies UAD bit 2 to a 1 and AR(59) (0) modifies UAD bit 1 to a 1 (refer to UBR field 6 in Table 4-2),
which yield the following branch possibilities:)

UAD Possible AR Conditions
next address will be if AR59 AR58 AR decoded
115 =00 001 001, 1 0 =@ ’
133 =00 001 011, 0 0 = (0
155 =00 001 101, 1 1 =(3) =
174 =00 001 111, 0 1 =(D

Examination of the branch conditions on sheet 12 of the flow diagram under block (273) verifies that the above
microbranch decodes are correct.

The UJP field (ROM bit 13) is a special form of microbranching. This field is used to return the ROM program
to the Ready state (ROM location 3 — see sheet 1 of the flow diagram).

The UJP bit, when cleared, causes the next address (UAD field)to be set to 3 (bits 7 through 2‘ of the UAD field
being cleared) if bits 0 and 1 of this address are both 1s. This occurs if bits 0 and 1 are 1s either prior to or after
address modification by the UBR and UAF fields.

For example, examine flow block NOM. 18 on sheet 2 of the flow diagram. Note the letter J following the UBR -
and UAF field designators below the lower right-hand corner of the block, i.e., (22) 4F1J. The J indicates that the (
UJP is a 0 in this ROM word, and that the next address is ROM location 3, provided bits 0 and 1 of the next ad-

dress are 1s. For a next address of 22, UAD bit 1 is a 1 but UAD bit O isa 0. If the branch condition specified

by 4F1 is not satisfied, the next address is 22. However, if FD is on a 0, UAD 0 is modified to a 1 and the next

address is 23. Because UAD bits 0 and 1 are now both 1s and because the J bit is cleared, the next address is

forced from state 23 to the Ready state (state 3 where bits 0 and 1 are set and bits 2 through 7 are cleared).

4.2.3 Detailed Analysis of ROM Word

Each ROM word is shown as a block on the flow diagram. As previously mentioned, a series of ROM words is
necessary to execute a particular instruction. One such block is described in detail to illustrate how the ROM is
implemented. The selected ROM word is block LD.12 (designated above the upper left corner of block) shown
on sheet 4 of the flow diagrams. The ROM word selected is associated with the Load class of instructions, with
some mode other than mode 0 (register-to-register) specified. The current address of this word is 2415 shown
above the upper-right corner of the block; the next address is 2025 shown below the lower right corner of the
block and followed by a 3F1. The first number (3) designates the UBR bit and the F1 designates the UAF bit. -

Functionally, this ROM word takes a data word from the CPU, writes it into the scratch accumulator, and moni-
tors the data for a minus 0; this procedure is done at the output of the ACMX. In order to see how these func-
tions are accomplished, it is necessary to examine each step in the block. First, the INC ADDRESS indicates
that the address of the data is to be incremented by 2. This is accomplished by making bit 48 of the ROM word
a0. ‘

A FPCI signal generated by the FP11, specifies that data is to be transferred from the CPU to the FP11. The (
data is gated into the EMX by making bits 46 and 45 of the ROM word a 0 and 1, respectively. The data is then ~.

4-20

N

RN

gated into the ALU where it is complemented. The reason for complementing the data is that the scratch
accumulator hardware inverts the data and, therefore, a second inversion is necessary to have the true data avail-
able. From the ALU, the data is gated into the ACMX by making bits 31 and 30 of the ROM word a 0 and 1,
respectively. The next element in the block specifies that the FP11 is to wait for an FP ATTN from the CPU,
which accompanies a transfer of data. In order to accomplish this, bit 58 must be a 0 to redefine the CNT
(constant) field, and bit 54 must be a O specifying that the FP11 wait for FP ATTN. The ACMX is loaded into
AC6 [3]. This is accomplished by bits 37 through 35 of the ROM word on a 15. AC6 is used to temporarily
store the data so that if a floating minus 0 occurs, the contents of the destination accumulator will not be de-
stroyed.

The next statement specifies that the floating-point condition codes be set. This is accomplished by bits 44 and
43 of the ROM word. Because no overflow or carry occurs during a load, bits 44 and 43 should both be Os.

The ENBL -0 INTERRUPT statement causes the hardware to examine the output of ACMX for the 1’s comple-
ment of a floating minus 0.

Finally, the last statement in the block is FP SYNC, which is specified by bit 60 set to a 0. Consequently, all
elements contained in this block have been specified by designated bits of the ROM word. All bits not discussed
are set to the NOP or default condition and are subsequently not used at this time. A similar analysis can be
followed by tracing through any of the ROM blocks in the diagram.

421

,//\\

CHAPTER 5
ARITHMETIC ALGORITHMS

5.1 INTRODUCTION

This chapter describes the arithmetic algorithms associated with the FP11. Addition and subtraction are first
described followed by multiplication and division. Several basic concepts are described before multiplication
and division to familiarize the reader with the more complex concepts utilized in the FP11. State diagrams and
examples of the multiply and divide algorithms are provided.

5.2 FLOATING-POINT ADDITION AND SUBTRACTION

Floating-point addition and subtraction is performed in the ALU. The exponents of the operands are processed
in the EALU, and the fractions are processed in the FALU. The operands are designated source and destination
operands. The following chart lists the register associated with the exponent, fraction, and sign of each operand.

Operation Exponent Fraction Sign
Destination BD AR SD
Source BA BR & QR SS
Result BD AR SD

For example, the exponent of fhe result of an addition or subtraction is found in the BD, the fraction is found
in the AR, and the sign is found in SD.

The source operand is located in an AC if mode O is specified or located in memory if mode O is not specified.
In the latter case, the operand in memory is transferred to AC6.

5.2.1 Description of Fraction Processing

To understand how the hardware implements the fractional part of the operand floating-point addition and sub-
traction, refer to Table 5-1. SS represents the sign of the operand in ACS, and SD represents the sign of the oper-
and in ACD. The sign of the result is stored in SD. Note that the table contains four possible combinations of
SS and SD for the add instruction and a similar number for the subtraction instruction. Further note that the
sign that precedes the quantity in parenthesis corresponds to the sign of the destination. The sign of the result

is the sign of the destination (SD) if the quantity in the parenthesis is positive, which is the case for combinations
1,4, 6, and 7. In each of these cases, the quantities are actually added by the hardware because (IACD |+ IACSI)
is specified in each of these cases.

There are four possible combinations where the quantity in parenthesis can produce a negative result: combina-
tions 2 and 3 for the add instruction, and. combinations 5 and 8 for the subtract instruction. Note in combinations

2 and 3 that the sign of the source is the complement of the sign of the destination. If the quantity in parenthesis
in combination 2 is negative, the final result is positive and the sign of the source is the sign of the result. Simi-
larly, in combination 3, if the quantity in parenthesis is negative, the final result is negative and the sign of the
source represents the sign of the result. In these two cases then the sign of the source is transferred to the sign of
the destination where the sign of the result is stored. If the quantity in parenthesis is positive in either case, SD

is the sign of the result. In combinations 5 and 8, listed under the subtract instruction, the sign of the source and
the sign of the destination are the same and both are the opposite of the sign of the result. In combination 5, if
the quantity in parenthesis is negative, the sign of the result should be negative, while SS and SD are both positive.
The hardware circumvents this by complementing the sign of the source and transferring it to the sign of the
destination. In combination 8, if the quantity in parenthesis is negative, the sign of the result should be positive,
while SS and SD are both negative. Again, the sign of the source is complemented and transferred to the sign of
the destination. If the quantity in parenthesis in combination 5 or 8 is positive, SD is the sign of the result.

Table 5-1
Add and Subtract Implementation
Sign of Result
Combination | SS SD Add Instruction Hardware Positive Negative
Performs - .
Parenthesis Parenthesis
1 0 0 ACD <+ (IACD |+ |ACS|) | Add SD < SD —
2 0 1 ACD < — (IACD |- |ACSI) | Subtract SD < SD SD <SS
3 1 0 ACD <+ (IACD |- |ACS|) | Subtract SD < SD SD <SS
4 1 1 ACD < - (IACD |+ |ACS |) | Add SD < SD -
Subtract Instruction
S 0 0 ACD <+ (IACDI- |ACSI|) | Subtract - SD < SD SD <~ SS
6 0 1 ACD < - (|IACD I+ |ACSI1) | Add SD < SD —
7 1 0 ACD <+ (IACD |+ |ACS!) | Add SD <« SD —
8 1 1 ACD < — (IACD |- IACSI) | Subtract SD «SD SD <~ SS
NOTE

The microprogram is implemented such that the
source can be subtracted from the destination but
the destination cannot be subtracted from the
source.

5.2.2 Description of Exponent Processing

During exponent alignment, the relative magnitude of the operands is detected by subtracting the smaller exponent
from the larger exponent — the difference being the number of right shifts the smaller number is to be shifted. If
this number is very small compared to the other number, it can be completely shifted out of the register. To
avoid needless shifting in these cases, the relative magnitude of the numbers is detected and falls into one of the
following five classes (see FP11 flow diagram), and Figure 5-1:

1. EQ — (exponents equal). In this case, the exponents of the operands are equal and no exponent
alignment is necessary. The mantissas can simply be added in the FALU.

5-2

. \\n

2. GT — (greater than). The operand in the AR is greater than the operand in the BR. The operand
in the BR is the same operand that is stored in the QR, and since the BR cannot be shifted, the QR
is right shifted until the exponents associated with the mantissas in the QR and AR are equal. Then
the contents of the QR is transferred to the BR. Figure 5-1 shows the various ranges of magnitudes.
If single-precision floating-point format is specified, the difference between the two exponents must
not be greater than 25, to be in the GT class. If double-precision floating-point format is specified,
the difference between the exponents can be no greater than 57,,. The reason that 25, shifts must
be exceeded when the single-precision word, for example, is only 24 bits (23 bits plus hidden bit) is
that the number must be conipletely shifted out of the register including the rounding bit slot, before
the GT class can be exceeded.

3. LT - (less than). The operand in the AR is less than the operand in the BR, and in this case, the AR
is right shifted to fall in this class. The AR EXP - BR EXP difference should result in a number more
positive than minus 25,, for single-precision or minus 57, for double-precision floating-point.

4.- MGT — (much greater than). In this case, the operand in the AR is much greater than the operand
in the BR and when the QR is right shifted to align exponents, the number contained therein would
‘be completely shifted out of the QR. This fact is detected by the FP11 hardware; thus, unnecessary
shifting is prevented. Effectively, the operand in the AR is the result in this case.

5. MLT — (much less than). The operand in the AR is much less than the operand in the BR. In this
case, right shifting the AR to align the exponents would zero out the quantity in the AR. This fact
is detected by the FP11 hardware, thus avoiding the necessity of performing unnecessary shifting
operations. The quantity in the BR is effectively the result. The exponent in the BA and the mantissa
in the BR are loaded into the destination AC.

Consequently, in the last two cases (MGT, MLT) where one operand is much larger or smaller than the other
operand, the addition is never performed, and the result is the result of the larger quantity. In the first three
cases (EQ, GT, LT), the two operands are added or subtracted by the hardware after they are aligned.

RANGE = EXP, — EXPg

If positive, shift source

If positive and >25,, (single precision) or 57;, (double precision), use destination as result
If negative, shift destination

If negative and <25, (single precision) or 57,, (double precision), use source as result

EQ
¢—— MLT —p-€¢—— LT ———— 14— GT —p<«¢ MGT >
(Use source) (Shift destination) (Shift source) (Use destination)
0
F Range < -25,, -25;0<Range <0 0 <Range < 25, Range > 25,
Range <-57,, =570 <Range <0 0 < Range <57, Range > 57,,

Figure 5-1 Exponent Magnitudes

5-3

5.2.3 Testing For Normalization

After the required addition or subtraction operation has been performed, the result in the AR is tested to ensure
that it can be normalized. If the number in the AR is negative, it indicates that the number cannot be 0. If the
AR is positive, a possibility exists that it can be 0. Consequently, 1 is subtracted from the AR and if the result is
negative (change of signs) the number in the AR is known to be 0 and cannot be normalized. If there is no sign
change in the subtraction the AR contains a positive nonzero number, which can be normalized.

After normalization, the result is rounded or truncated depending on the setting of the FT bit in the program
status register. The floating condition codes are also set.

5.3 FLOATING-POINT MULTIPLICATION

The FP11 Floating-Point Processor employs a rather complex method of shifting over 1s and Os to perform mul-
tiplication. In order to familiarize the reader with this method, several concepts of this technique are first de-
scribed followed by a description of the hardware employed in the FP11.

5.3.1 Fundamental Concepts

One simple method used in multiplication is to examine the multiplier on a bit-by-bit basis. If the bit isa 0, the
multiplicand is shifted left one place. If the bit is a 1, the multiplicand is added to the partial product and is then
shifted left one place.

1 0o 1 1 1 0O
A A T L_ shift multiplicand left

add and shift multiplicand ieft
add and shift multiplicand left
add and shift multiplicand left

shift multiplicand left

add and shift multiplicand left

The same result can be obtained by shifting the partial product and the multiplier right one place as opposed to
shifting the multiplicand left one place.

The method just described becomes rather time consuming because each 1 in the multiplier requires an addition.
A method is desired where addition can be replaced with shifts inasmuch as shifting consumes less time. An im-
provement over this method is a process of shifting over 1sand Os.

In order to implement shifting over 1s and Os, the binary configuration of a number is represented in a different
manner. For example, the binary number 1111 can be represented as 10000-1. Both expressions are equivalent
and are equal to 15,,. Note that the second representation of the number contains only two 1s, requiring only

two arithmetic operations whereas the first representation of the number contains four 1s for a total of four ad-
dition operations. The operations for each representation are performed as shown on the following page.

5-4

23 22 21 20 24 23 22 21 20
1 1 1 1 = 1 0O 0 0 0 -1

{ add and shift A T é subtract and shift

add and shift shift
add and shift shift
add and shift . shift

add and shift
Old Method Shifting Over 1s And Os

Note that a subtraction occurs in the bit position corresponding to the least significant 1 in the string, and an ad-
dition occurs 1-bit position beyond the most significant bit position in the string. This method proves most ad-
vantageous where long strings of 1s occur. Worst case occurs for alternating 1s and Os.

An additional improvement over this method is developed where an isolated 1 occurs in a string of Os or an iso-
lated O occurs in a string of 1s. In this method, the multiplier is examined two bits at a time to look for runs of
Isor 0s. A run is defined as a string of two or more consecutive identical bits as shown below.

11 00000 | 1111

| runofls

run of Os

run of 1s

To see how this improved technique is implemented, consider the example of an isolated O in a string of 1s as

shown in the following example:

26 2% 2% 23 22 21 20
1 1 1 0 1 1 1

A A A t L_ subtract and shift (string of 1s encountered)
shift

shift
add and shift (string of 1s terminated)

subtract and shift (new string of 1s encountered)
shift
shift

add (necessary because of the previous subtraction)

Note in this example that in the 0 bit positionl an add is performed followed by a subtraction in the next bit po-
sition. This situation can be reduced to one arithmetic operation by performing the subtraction where the isolated
0 is located. Consequently, adding the 23 bit position (8,,) and subtracting the 2% bit position (16,,) is the same
as merely subtracting the 23 bit position (8,,) both methods yielding —8. Another important point is that the

last bits encountered in the multiplier are a run of 1s. Since a subtraction is first performed, when the run is

f‘—*\\ -

encountered, it is necessary to conclude the operation with an addition occurring one bit beyond the most sig-
nificant bit position.

Now, consider the case where an isolated 1 occurs in a string of 2s.

260025 2% 23 22 2t 20

o 0 0 1 0 0 0 ’

A A A { .
shift
shift
shift -

subtract and shift
add and shift
shift

shift

At first glance, this seems more cumbersome than the simple method first described. However, this can be re-
duced to one arithmetic operation (an addition) occurring where the 1 bit is encountered. Thus, instead of sub-
tracting the 23 bit (-8,,) and adding the 2* bit (+16,,), the same result is obtained by adding the 23 bit (+8;,).

5.3.2 Multiply Hardware

With these principles in mind, the following paragraphs describe the implementation of the shifting over 1s and Os =
method. The multiplicand is loaded in the BR register via the QR register, and the multiplier is then loaded in the

QR register. The AR register is initially cleared and retains the partial products as they are accumulated. The

hardware contains a step counter that keeps track of the number of shifts. This counter is preset with the 1°s

complement of the number of bits in the multiplier and is incremented after each shift or after each arithmetic

operation followed by a shift. The counter is checked during each step and the multiplication is complete when

the step counter goes to all 1s. Bits QR59 through QR3 in the QR are loaded. The extension bits, QR2 through

QRO, are cleared. These bits are an extension of the QR register and are used for rounding operations. The test-

ing of the bit pattern of the multiplier is done in a high-speed 2-bit register (MR 1 and MRO), which has a copy of

the appropriate bits of the QR. MRO is always initialized to 0. MR1 is initialized with the contents of QR3 if
double-pfecision floating point is specified or is initialized to the contents of QR35 if single-precision floating

point is specified. During the multiply operation, MR1 is shifted into MRO and QR4 (double-precision) or QR36
(single-precision) is shifted into MR1. Note that the initialization requires an extra shift at the start of the mul- ~
tiply operation. The floating-point hardware also contains a STRG1 (string of 1s) flip-flop, which is set by two
consecutive 1s and reset by two consecutive Os. The flip-flop is initially reset. Figure 5-2 shows a flow diagram
with three variables: MR1, MRO, and STRG1. If MR1 and MRO are both Os and the STRG1 flip-flop set, the
multiplicand is added to the partial preduct. If MR1isa O, MROisa 1, and STRG1 isa 0, the multiplicand is
also added to the partial product. Note that the QR (containing the multiplier) and the AR (containing the par-
tial product) are right shifted and the BR (cohtaining the multiplicand) is not shifted.

Figure 5-3 shows a state diagram based on the state of MR1, MRO, and the STRG1 flip-flop. For example, if all
three are in the O state, the next shift could cause all three to remain in the O state or a 1 could be shifted into B
MR1. These are the only possible states that can be entered when all three variables are initially 0. Listed below L

5-6

ABBREVIATIONS:
STRG1 - STRING OF 1's
FD - DOUBLE PRECISION FLOATING
RS - RIGHT SHIFT
QR, AR - REGISTERS
SC- STEP COUNTER

RS QR
RS AR
INC sSC

SINGLE PRECISION-USE QR35 INSTEAD OF QR3
USE QR34 INSTEAD OF QR2
AND THIS FLOW DIAGRAM
IS APPLICABLE FOR SINGLE
PRECISION FLOATING POINT

STOP

YES

AR «— AR-BR
RS QR, RS AR
INC sC
STRGl1<+—1

AR<— AR+ BR
RS QR, RS AR
INC SC
STRG1=+—0

YES

sTOP
\\\fsz1)
NO
RS QR, RS AR
INC SC
sTOP

YES

11-0436

Figure 5-2 Multiply Flow Diagram

START
STRG i=-0

*00 (0)

10 (1)

BYWT -

MR} MR@
QR3(DBL) | QR2 (DBL)
STRG1 FUNCTION
QR35(SNG) QR34 (SNG)
(o] RIGHT SHIFT QR,AR,INCREMENT SC **

AR<—BR+AR,RIGHT SHIFT QR,AR,INCREMENT SC
RIGHT SHIFT QR, AR,INCREMENT SC
AR<—AR-BR,RIGHT SHIFT QR,AR,SET STRG1{,INCREMENT SC

AR<—AR+BR,RIGHT SHIFT QR,AR,RESET STRG1,INCREMENT SC
RIGHT SHIFT QR, AR, INCREMENT SC

AR<—AR-BR,RIGHT SHIFT QR, AR,INCREMENT SC

RIGHT SHIFT QR, ARINCREMENT SC

~|[=|-]=|o|o|o|o

-|lo|=-|o|=-|Oo|=]|O

1
1
o
(o]
1
1

*For double precision format 00(0)=QR3,QR2,(STNGI)
For single precision format 00 (0)= QR35,QR34,(STNG 1)

*%The step counter is set to the two's complement of the number of bits in the multiplier and is checked

for zero after each incrementation.
11-0437

Figure 5-3 Multiply State Diagram

the state diagram is a table describing the functions performed as a result of the various bit configurations. For
example, if MR1 isa 1, MRO isa 1, and STRGI1 is reset, the multiplicand is subtracted from the partial product,
the step counter is incremented, the AR and QR registers are right shifted one place, and the STRG1 flip-flop is
set. This table is very helpful in working through a typical multiplication example in order to determine the next
sequence of events. Figure 5-4 provides some typical examples using 6-bit numbers for simplicity. The following

peints should be carefully observed in studying the examples.

1. Subtraction is performed using 2’s complement arithmetic.

2. If the previous arithmetic operatibn was a subtraction, a 1 is shifted into the most significant bit of
the AR when the AR is right shifted. Conversely, if the previous arithmetic operation was an addi-
tion, a 0 is shifted into the most significant bit of the AR when the AR is right shifted.

5-8

TN

Example: 0.75;, X 0.5,, =0.375,,

R |QRISTNG
Step AR QR 31211 BR Functions Performed
0 [0]|0]j0|0|Oj0O]|0O]1}j0]0]|0O] 0]0|O 110]0| 0] QR <« MULTIPLIER, BR < MULTIPLICAND, SC < -7, STRG1 < 0
1 0|0|1]|0|0l O]O|O RS QR, RS AR,INC.SCTO -6
2 0|0|0]1]|0] 0j0O]O RS QR, RS AR, INC. SC TO -5
3 0/0]0j0}1f O]0O]O RS QR, RS AR, INC. SC TO -4 1}
4 0{0|0]|0j0f 1|]0]|O RS QR/, RS AR, INC. SCTO -3 ‘ NOTE
5 0|0{0|0|0] O} 1]0 RS QR\, RS AR, INC. SCTO -2 1. By investigatiﬁg state of QR3, QR2, and STRG1, the next function performed can be determined.
6 |0{0|1[{1]0]0 AR < AR + BR,RS QR, RS AR, INC. SCTO ~ 1 END MULTIPLY 2. When the AR‘}is right shifted, the MSB retains the same bit polarity it had before the shift occurred.
Answer = 0.01100 = 0.25, +0.125,, =0.375;, QR3 | QR2 | STNG1 | Function
0|0 | 0 |RSQRRSAR,INCSC
Example: 0.75,, X 0.7187,, =0.53906,, 0 1 0 AR < BR + AR, RS QR, RS AR, INC SC
R|QR|STNG 1 0 50 RS QR, RS AR, INC SC
Step AR QR 3l 21 1 BR Functions Performed 1 1 0 |AR <AR — BR, RS QR RS AR, INC SC, SET STRGI
0 (0(0(0j0|0OjO|O|1|Of1 1] 1fO]O 1{0| 0] 0] QR <~ MULTIPLIER, BR <~ MULTIPLICAND, SC =-7, STRG1 < 0 olo I‘ 1 |AR<AR+BR,RS QR, RS AR, INC SC, RESET STRG1
1 ojojrjoli 110 RS QR, RS AR, INC SC TO -6 0|1 |1 |RS QR,RS AR, INC SC
2 |1f{1]0|1]|]0f0|O{O[O|1]0O 1} 1]1 AR +~ AR — BR, RS QR, RS AR, SET STRG1, INC SC TO -5 1 0 : 1 |AR<AR - BR,RS QR,RS AR, INC SC
3 j1f(1jtrjojrjofojofojof1 o} 111 RS QR, RS AR, INC SC TO -4 1 1 1 |RSQR,RS AR, INCSC
4 (1j1f{1j1foj1{ojojo|o0jof 14 0f1 RS QR, RS AR, INC SC TO -3 ‘)
5 1{1{0(0f1|00]|0O|0O|0O]O O] 1|1 AR < AR — BR,; RSQR, RS AR, INC SC TO -2 !
6 |1[1]1]0|0|1f0]|0O[0]|O]|0O O] O] 1 RS QR, RS AR, INC SCTO -1 !
0|1]0]0(0]1 AR < AR+ BR;“ NO FINAL SHIFT, END MULTIPLY i

Answer = 0.10001, = .5, +.03125,, = 0.53125

Note: With six bits, of significance, the answer 0.53125 is the closest possible answer to the true result.of 0.53906.

Figure 5-4 Examples of Floating-Point Multiplication

5-9

Y 3. Initially, MRO and STRGI1 are Os and, thus, an extra shift will occur at the beginning of a multiply
\\ operation regardless of the state of MR 1 (see table in Figure 5-2).

4. Arithmetic operations are performed only after state 10 (0) or 01 (1), where the leftmost bit repre-
- sents MR1, the middle bit represents MRO, and the bit in parenthesis represents STRG 1.

5. A string of 1s occurring immediately to the right of the binary point requires a final addition one
place beyond the binary point. This addition is not followed by a shift.

6. Although not shown in the example, the sign of the operand stored in the accumulator is stored in
SD (sign of destination) and the sign of the other operand is stored in SS (sign of source). Upon
£ conclusion of the multiplication, the signs are exclusively ORed — if they are the same, the sign of
the product is positive — if they are different, the sign of the product is negative. The resultant
sign is left in SD.

5.3.3 Multiply Timing

The timing for the multiplication operation is shown in Figure 5-5. The basic clock rate is 50 ns, which is the
rate at which shifting occurs. Note that events occur at the trailing edge of the clock pulses. When the actual
arithmetic operation (addition or subtraction) takes place, a 200 ns delay (4 clock pulses) is incurred. This is ac-
complished by setting the MUL ARITH flip-flop. This flip-flop is set for add or subtract operations during mul-
tiplication and, when set, inhibits shifting until the product is loaded in the AR. During normal shifting opera-
tions, the MUL ARITH flip-flop is in the reset state.

e——— 200ns DELAY ————

n
2
X
m
3y
o
x

FRHE P2 (2)H

I I
| |
| I
1 1
I !
| |
| |
1 |
| I
! |
! |
! [
I |
! |
! 1
| |
| !
|

| I
| |

SHIFT ADD/SUB SHIFT SHIFT

____________________ ,——HIGH FOR SUBTRACT
FRHE MUL SuB

————————— LOW FOR ADD

11-0837
NOTE:
=) Trailing edge triggering is employed

Figure 5-5 Multiply and Divide Timing Diagram

Refer again to the state diagram for multiplication shown in Figure 5-3; the two states that precede a state in-

volving an arithmetic operation are 10 [0] and 01 [1]. Detection of either of these states causes the MUL ARITH

flip-flop to set with the next clock pulse. The MUL ARITH flip-flop, in turn, enables the pause logic consisting of
(7 N flip-flops PO, P1, and P2. The three flip-flops (PO, P1, P2) produce a 200 ns delay to allow time for completion

of the arithmetic operation. PO is set on the next clock pulse occurring after MUL ARITH is set, P1 is set on the
next clock pulse occurring after PO is set, and P2 is set on the next clock pulse occurring after P1 is set. The set-
ting of P2 enables PO to be reset on the next clock pulse, similar to a ring-tail counter. The resetting of PO, in
turn, causes P1 and P2 to get reset. PO, when set, switches the AR control lines from shift to load and causes the
AR to beloaded rather than shifted; P2, when high, is used to enable the AR clock pulses and then goes low to
disable the pause logic and consequently enable the shift pulses.

Normally, in the multiply algorithm, the last step encountered in a string of 1s is an add and shift or merely a
shift if a string of 1s has not been encountered (see the following examples).

0 1 1 1 1 1 o 1 o0 1 o0 1

A A LL—:_ subtract A A t_f: add and shift
shift shift
shift add and shift
shift shift
shift add and shift
add and shift shift

String of 1s No String of 1s

If the string of 1s should occur in the most significant bit positions, it is necessary to inhibit the shift following
the add operation (see examples below). The shift will occur if the string of 1s is not present.

o 1 1 1 1 1 0 1 0 1 0 1

A A T Lsubtract A A ‘|‘ L_add and shift
shift shift
shift add and shift
shift shift
shift add and shift
add and inhibit shift shift is inhibited

String of 1s No String of 1s

The hardware implements this by setting the MUL SUB flip-flop when a subtraction in a string of 1s occurs.
The flip-flop is reset by an add operation and, therefore, this flip-flop remains set until the add and shift opera-
tion, which terminates a string of 1s.

The step counter is preset to the 1’s complement of the number of shifts that are required. For each shift that
occurs, the step counter is incremented. Multiplication is terminated when the step counter sequences to all 1s
(773). With the MUL SUB flip-flop set (indicating that the last arithmetic operation was subtract and that a string
of 1s was encountered), shifting occurs and the step counter is incremented for each shift. If the step counter
sequences to 775 before the add operation occurs, the shift following the add is inhibited. If the add operation
occurs before the step counter sequences to 774, the shift following the add is allowed to occur.

5-12

5.4 DIVISION

Digital computers have various methods available for performing division. Several that are briefly described in
the following paragraphs are: restoring division, non-restoring division, and non-restoring division utilizing the
normalizing principle. This latter method is the most efficient and is the one employed in the FP11 Floating-
Point Unit.

5.4.1 Restoring Division

When dealing with positive numbers in restoring division, the divisor is first subtracted from the dividend, yielding
a remainder. If the subtraction is successful (indicating that the dividend is larger than the divisor), a 1 is entered
into the quotient. If the subtraction is unsuccessful, a 0 is entered in the quotient and the remainder is restored
back to its original value; this is done by adding the divisor to the remainder. The disadvantage is that two arith-
metic operations (a subtraction and an addition) are required when the subtraction is unsuccessful. In the next
cycle, the remainder is left shifted one place (which is equivalent to multiplying by 2), the divisor is subtracted
from the remainder, and the result is examined. If the subtraction is successful, a 1 is entered in the quotient;

if not, a 0 is entered and the remainder is restored. This process continues until an appropriate number of quo-
tient bits have been determined. The sign of the dividend and divisor can be handled separately. If they are both
of the same sign, a positive quotient results; if different, a negative quotient results.

5.4.2 Non-Restoring Division

The chief advantage of non-restoring division over restoring division is that the remainder need not be restored in
the same cycle if the subtraction result is unsuccessful. The steps in restoring divide for an unsuccessful subtrac-

tion are:
R = remainder
D = divisor
1. R-D /subtract
2. R-D+D ' /restore remainder
3. (R-DtD)x 2 /left shift new remainder
4. (R-D+D) x 2-D /subtract divisor

(R-D+D) x 2-D = 2R-D

The steps performed in non-restoring divide for an unsuccessful subtraction are:

1. R-D /subtract
2. (RD)yx2 , /left shift new remainder
3 RD)x2+D /add divisor

(RD)x2+D=2R-2D+D=2R-D

Note that the results in either case are the same (2R-D), but that the restoring divide required an additional arith-
metic operation. An example of non-restoring division is shown in Figure 5-6.

Example: 0.11000, +0.10001, =1.01101,
1.01101, =0.10110 x 2! =0.6875,; x 2=1.375;
0.75,, + 0.53125 = 1.4

Step Function Register 3 (R3) Register 2 (R2) Register 1 (R1) ’
R2-R1 POS. 0{0|0j0(0}0 o|1|1(0|CG|0 0110001
1 R3«1 0]0j0|0f0|1 0jojof1]1|1
LS R2 ofjojojofof1 0l|0|1(1]1}0
R2-R1 NEG. 1{1{1{1]|0]|1
2 R3<«0 ' 0]0)j0|0(1|0
LSR2 111(1(0|110
R2 + R1 POS. 001|011
3 R3«1 0(oj0|1(of1
LS R2 0j1{0|1|1]0
R2-RI1 POS. ' 0|0f{o(1]0]1L
4 R3 <1 0|0(1{0]1]1
LS R2 o|of1{0(1]0
R2-R1 NEG. 1|11{1{0]0]1
5 R3<«0 o(1(o|1j1jo
LS R2 1|1j0j0]|1 |0
R2 +R1 POS. ojojojo|1 i1
6 R3 <1 110|1|1]0}1
LS R2 ofojojr1j]o
NOTE

Because the dividend is larger than the divisor, the quotient
must be greater than 1. The quotient, in this case, is not in
true normalized form; thus, it must be right shifted one place,
and the associated exponent must be incremented.

Figure 5-6 Example of Non-Restoring Division

5.4.3 Non-Restoring Divide Using Normalizing

Non-restoring divide using the normalizing principle provides a further improvement over non-restoring divide.
When a trial subtraction is performed in this case, the result is examined to determine if it is normalized. If not,
the remainder and quotient are left shifted until the number is normalized. For each left shift, an arithmetic
operation is gliminated. When the number becomes normalized, the divisor is subtracted from or added to the
new remainder and the result is again examined. If unnormalized, the remainder and quotient are left shifted
until the remainder is normalized. If normalized, a new subtraction or addition is performed. When dealing with
positive numbers, the divisor (in normalized form) is subtracted from the remainder, which, if unnormalized, is
by definition smaller than the divisor, as shown in the following example:

Remainder 0.01111
Divisor 0.10001 (normalized)

5-14

As a result, leading Os can be shifted over when dealing with positive numbers. Conversely, with negative
numbers, leading 1s can be shifted over.

Initially, the dividend and divisor are assumed positive. The normalized dividend is loaded in the AR and the
normalized divisor is loaded in the BR. The QR is initially cleared and is used to accumulate the partial bits of
the quotient as they are calculated. '

In order to understand the divide algorithm, it is necessary to refer to the flow chart shown in Figure 5-7. Be-
cause the AR is initially positive, the BR is subtracted from the AR, the difference being placed in the AR. Both
the AR and QR are left shifted and the complement of the most significant bit of the AR is shifted into the least
significant bit of the QR. The number in the AR is now examined to determine if it is normalized. If it is not,
the number is normalized by a routine, which will subsequently be described. If the number is normalized, it
must be determined if it is a positive or negative number. If it is positive, the BR is subtracted from the AR, the
AR and QR are left shifted with QR gp receiving the complement of ARygp- If negative, the BR is added to
the AR with QR gp receiving the complement of ARygp- The AR is again examined to determine if it is nor-
mélized, If it is normalized, another addition (if the number is negative) or subtraction (if the number is positive)
is performed, the QR and AR are left shifted, and the complement of ARMSB is shifted into QRLSB‘ If not, the
number is normalized as described below.

In order for a number to be normalized, it must be in the form of 0.1 xxxx (positive number) or 1.0 xxxx (neg-
ative number) with x designating a don’t care. The number 0.00011, for example, can be normalized by three
left éhifts (shifting over 0s), yielding 0.11000. The three Os to the right of the binary point have positional sig-
nificance but have no numerical value. The quotient is left shifted three pléces and Os are shifted into the least
significant bit positions. The number 1.11100 can be normalized by three left shifts (shifting over 1s), yielding
1.00000. This is a negative number and in 2’s complement form; thus, the 1s being shifted over are in reality Os
and have no numerical value. In this case, the quotient is left shifted three places and 1s are shifted into the least
significant bit positions. A step counter is preset to the 1’s complement of the number of bits in the multiplier
and is incremented for each shift. When the counter is incremented to all 1s, the division is terminated.

Figure 5-8 shows the state diagram for floating-point division. This is interpreted in the same manner as the dia-
gram for floating-point multiplication. Note that the number in the AR is assumed to be normalized and of the
form 0.10 or 0.11 (the initial states). The number in the BR at this time is also assumed positive and normalized.

Several examples of the normalizing principle are shown in Figure 5-9. The first example has a dividend larger
than the divisor, and the second example has a divisor larger than the dividend.

It should be noted in all cases where the dividend is larger than the divisor, the quotient will be of the form 1.xxxx,
having a significance greater than 1. This number is not in true normalized form; consequently it must be shifted
to the right one place yielding 0.1xxx. This reduces the number by a power of 2, and in order to maintain the
same equivalence, the exponent associated with the number must be incremented, which increases the number by

a power of 2. The floating-point divide algorithm can best be described by stating the rules associated with the
algorithm. These are summarized below.

RULES FOR FLOATING-POINT DIVIDE

1. For the first time, the AR, containing the dividend, is positive. Consequently, subtract the BR
from the AR and place the result in the AR. Left shift the QR and the AR with the complement
of ARpsB being shifted into QR gg. Examine the AR; if it is normalized proceed to Step 2; if
not, proceed to Step 3.

2. If the AR is positive, subtract the BR from the AR; if it is negative, add the BR to the AR. In
either case, left shift the QR and AR shifting the complement of ARy;qp into QRLSB' If the num-

ber is normalized, repeat Step 2; if not, go to Step 3.
(continued on-page 5-17)

5-15

FIRST
YES JTIME
POSITIVE AR JHROUGH

NO

AR<—AR-BR

AR
POSITIVE
?

AR<—AR-BR AR<—AR+BR

!

LS QR
QROO<+—~AR59

NORMALIZE LOOP o

LS AR
AROO<—0
INC SC

WAIT<—0
RESTART TIMING

SUBTRACTION
NORMALIZED

AR58=AR59
?

YES

SUBTRACTION
UNNORMALIZED

LS QR

QROO «— AR59
LS AR

AR <—00

INC sC

WAIT<—0
RESTART TIMING

YES

AR58=?AR59

NOTE :

DIVIDEND IS MADE POSITIVE AND LOADED IN AR
DIVISOR IS MADE POSITIVE AND LOADED IN BR
BOTH NUMBERS ARE NORMALIZED PRIOR TO DIVIDE

11-0444

Figure 5-7 Divide Flow Diagram

5-16

N

ol

STAD ~N

000 * 010

O11
SUBTRACT

000

111

*Three digits shown throughout state diagram refer to bits AR59, 58, and 57.
For example,

010
LAR57 = RRO
ARS58 = RR1
AR59 = RR2

NOTE ’ 11-0443
BR is always positive and normalized.

Figure 5-8 State Diagram for Divide

3; Left shift the QR and AR shifting ARMSB into QRLSB' Note that ‘during normalize, QRLSB
receives ARy gp and not the complement of ARpgp as is done immediately after an arithmetic
operation.

Again examine the AR. If normalized, return to Step 2; if not, repeat Step 3 until the AR is
normalized, then return to Step 2.

NOTE
Since the divisor shown in the example is six bits,
a total of six shifts will occur before the divide is
terminated.

In floating-point division, the sign of the dividend is stored in the sign of the destination (SD), and the sign of the
divisor is stored in the sign of the source (SS). The sign of the quotient is determined by an exclusive OR of the
two. In other words, if the signs are the same, the exclusive OR is 0, yielding a positive sign; if the signs are dif-
ferent, the exclusive OR is 1, yielding a negative sign.

5.4.4 Divide Timing

The timing for floating-point divide is the same as that employed for floating-point multiplication with the three
pause flip-flops providing a 200 ns delay during arithmetic operations. During these operations, the AR NORM
flip-flop is set, indicating a normalized result in the AR. If AR NORM is reset, the AR is shifted left until the con-
tents become normalized.

5-17

81-§

Example: 0.11000, ~0.10100, =0.10011, X 2, (Dividend Larger Than Divisor)
NOTE: In binary, quotient is 1.1874 which is as close to 1.2 as possible using six bits.

0.75,0 + 0.625,0 = 1.2,

Step QR AR BR Functions Performed
o|0ofojo|ojojoj1rj1j0j0f0j0j1j0]1 Set Step counter to -7
AR is positive first time through
1 0|0j0|0f0Of1]0|0O|1|0}|0O]|O AR<—AR-BR,LSAR,LSQR,QRLSB<—~ARMSB,INCSCTO—6
AR is now unnormalized
2 |0|0j0|l0Of1|0}|0]|1]0|0]|O|O LS AR, SL QR, QRSB < ARMSB, INC SC TO -5
AR is now normalized and positive.
3 |j0f|0lof1j0f0O1(1|1(0|0O]|O AR < AR -BR, LS AR, LS QR, QR s < ~ ARpsB, INC SC TO -4
AR now unnormalized
4 |10(0f1]0|0}1)1 (1}0|0{0]|O LS QR, LS AR, QR gg < ARpMsB, INC SC TO -3
AR still unnormalized
S (0f1{0j0(1|1|1|0[0O|O|O]O LS QR, LS AR, QR gg+ ARpsB, INC SC TO -2
AR now normalized and negative
6 110|{0)1|1({0J1]1]0|1]0 |0 AR < AR +BR, LS QR, LS AR, QRj gg <~ ARMSB,INC SCTO -1
Sign of QR is negative, RS QR and increment exponent
0.{110f{0 |11 Divide complete — Quotient in QR
Example: 0.10000, + 0.10100, =0.11001, (Divisor Larger Than Dividend)
0.5, 70.625,, =0.8; NOTE: In binary, quotient is 0.78125 which is as close to 0.8 as possible using six bits.
Step QR AR BR Functions Performed
ojojofofofojoj1jo|o|OfO|O]|1|O]|1 Set Step counter to -7
AR is positive first time through
1 1]1 0/0]0 AR < AR -BR, LS AR, LS QR, QR gg < ~ ARpsB, INC SC TO -6
2 |0|0f(0O|0fOf1]1]1|{0|O}JO]|O LS AR, LS QR, QR gg < ARpsB, INC SC TO -5
AR still unnormalized
3 |0|0(0|Of1|1)1]0{0]0O|O]|O LS AR, LS QR, QR gg < ARpsB, INC SC TO -4
AR is now normalized and negative
4 |10|0|0|1(f1]0}1]0}1]|0]|0O]|O AR < AR +BR, LS AR, LS QR, QR g <~ AR)sB, INC SC TO -3
AR is unnormalized and negative
S5 jojofjrfrjojojrjirfij{ojojo AR < AR +BR, LS AR, LS QR, QR gB < ~ ARpsB, INC SC TO -2
AR is now unnormalized and negative :
6 [(0Of1]1|0|0|1f1}|1]j0([OfO0O]|O LS AR, LS QR, QR gB < ~ ARpsB; INC SC TO -1
Divide complete — quotient in QR

Figure 5-9 Examples of Floating Point Division

N

CHAPTER 6
- FP11-B LOGIC DIAGRAM DESCRIPTIONS

6.1 INTRODUCTION

This chapter describes the logic diagrams associated with the FP11-B Floating-Point Processor. This chapter, in
conjunction with the signal glossary in Appendix B, provides an adequate description of the FP11-B logic diagrams.

6.2 DETAILED LOGIC DIAGRAM DESCRIPTIONS

The FP11-B logic diagrams are divided into four groups of prints — each group corresponding to one of the four
FP11-B hex modules. The prints are designated by a four-letter code and are classified in one of the following
four groups, whereby the first three letters of the code are defined as follows:

FRL Fraction Data Path Low Order M8115-0-01

FRH Fraction Data Path High Order M8114-0-01

FRM FP ROM and ROM Control M8112-0-01

FXP Floating-Point Exponent Data Path M8113-0-01
NOTE

The fourth letter in each group designates the sheet
number of the print within the group specified, i.e.,
FRHA, FXPB where A and B refer to the sheet numbers.

The FRL group of prints contains the following logic:

a. lower half of FALU
b. lower half of AR

c. lower half of BR

d. lower half of QR

e. floating-point status
i ACMX

g scratch pad (AC7-0)
h. BMX

The FRH group of prints contains the following logic:

a. upper half of FALU
b. upper half of AR
¢. " upper half of BR

(continued on next page)

6-1

d. upper half of QR
e. clock logic, times states, time pulses (
sign of source (SS) and sign of destination (SD) logic

g fractional control logic

The FRM group of prints contains the following logic:

a. Control ROM

b. Control ROM address register

c. Scratchpad addressing logic -
d. ROM multiplexers

e. ROM data buffer .

[Interface logic

The FXP group of prints contains the following logic:

EALU

EMX

Step counter
FIR

BA register

ISR

&0

BD register
U Break register
DIMX ' (

;R h ®

6.2.1 FRHA

This sheet shows the upper half of the QR and BR. Bits 58 through 35 of the QR are shown and bits 59 through
36 of the BR are also shown (refer to descriptions of FRLL and FRLM).

6.2.2 FRHB, FRHC, FRHD

These three sheets show the upper half of the AR and the FALU. Bits 59 through 36 of the AR and FALU are
shown (refer to descriptions of FRLE, FRLF, FRLH, FRLJ and FRLK).

6.2.3 FRHE

This print contains the following circuitry (which is described in subsequent paragraphs):

a. MR1 and MRO register

b. MUL ARITH flip-flop)
¢. Pause logic

d. STRG 1 flip-flop

e. AR Control

- QR Control

g MUL SUB flip-flop

h. AR clock logic

(continued on next page) -~

6-2

i QR clock logic
j. Sign bit

6.2.3.1 Multiply — When a multiply or divide operation is designated, the FP11-B enters a Pause state where
auxiliary hardware controls the fractional logic data paths. The AR, BR, and QR are initialized prior to this,

and the ALU is set up to look at the AR (A input to ALU). MRO and STRG 1 are cleared and MR1 contains the
same value that was loaded into QR03 (double precision) or QR35 (single precision). Note that the microprogram
must issue a LDQ1 before a LDQO to initialize MR1 correctly.

As described in the multiply algorithm, the first operation in the multiply subroutine is a shift. QR04 (double
precision) or QR36 (single precision) is shifted into QR03 or QR35, respectively, and is also shifted into MR1;
the content of MR1 is shifted into MRO. If the bit pattern of MR1, MRO, and STRG 1 is such that an arithmetic
operation is required, MUL ARITH will set on the next clock (see multiply timing) and enable the pause logic
which, in turn, will inhibit the AR and QR clock. The pause logic allows time for the data on the ALU input
lines to settle before the add or subtract operation is performed. The ALU control is now selected by the
multiply/divide hardware to do an A plus B or A minus B, as a result of the ALU select signals. The result of the
operation is then set up to be loaded in the AR on the next CLK AR signal. A load occurs as a result of PO going
to a 1, which overrides all other inputs to the AR select lines and causes ARS1 and ARSO to go high, thus speci-
fying a load of the AR. In order to actually load the AR, the trailing edge of the AR clock must occur. However,
when MUL ARITH was set, the CLK AR and CLK QR pulses were disabled. This disable is removed by P2 going
to a 1, which allows two clocks to occur. The first allows the result of the add or subtract to be clocked in the
AR, and the second allows both the AR and QR to be shifted following this operation. At the end of the first

~clock, PO goes low forcing AR1S1 low which, in conjunction with AR1S0 high, sets up the AR for a right -hift

that occurs on the trailing edge of the second clock. AR1S0 remains high because CSB O (0) L is true (see
Multiply Timing).

6.2.3.2 MRI1 and MRO Register — MR1 and MRO are 74574 D-Type flip-flops used in the FP11-B to speed up
multiply operations. They are used in conjunction with the STRG 1 flip-flop to determine strings of 1s and
strings of 0s. Before multiplication, the multiplier is loaded in the QR. QRS59 through 35 are loaded and then
QR34 through 3 are loaded from the scratchpad accumulator. QR02, QRO1, and QROO are loaded and with Os.
These bits are used for rounding operations. Note that when SCR OUT 00 is loaded into QR35 it is also copied
into MR1 but when QR 03 is loaded from SCR OUT 00, either MR1 is latched if FD is on a O or is loaded from
SCROUT 00 if FD ison a 1. When the QR is right shifted, the content of QR04 (for double precision) or QR36
(for single precision) is shifted into MR1, and the content of MR1 (which contained the contents of QRO3 or
QR35) is shifted into MRO. Consequently, the content of MR1 and MRO contains two successive bits of the QR.
These flip-flops are monitored along with the STRG 1 flip-flop to determine the bit pattern of the multiplier.

Note that during a multiply CSB bits 2, 1, and O are high (ROM bits 29 through 27), which disables the direct
clear input to MRO. During other operations such as division, this register is held cleared.

6.2.3.3 MUL ARITH — The MUL ARITH flip-flop is used during multiply to indicate that an actual arithmetic
operation is to take place. The operation will be an add or subtract, depending on the bit patterns in MR1, MRO,
and STRG 1. The MUL ARITH flip-flop actually anticipates an arithmetic operation with the two patterns de-
signated before shift in Table 6-1. The next clock pulse shiftsa 1 or 0 into MR1. If it isa 1, a subtract operation
is performed; if O is shifted into MR 1, an add operation is performed.

6-3

Table 6-1
Arithmetic Anticipation

MR1 MRO STRG 1 MUL ARITH
Before Shift 0 1 [1] 0
\

After Shift if QRO4 = 1* 1 A (1] 1 Subtract
After Shift if QRO4 = 0% 0 0 o 1 Add
Before Shift 1 0 [0] 0

After Shift if QR4 = 1* 1 S [0] 1 Subtract
After Shift if QRO4 = 0* 0 1 [0] 1 Add

*QR36 (if single-precision format)

For example, in the second entry in the table there is a string of 1s with an isolated 0. Rather than do an add to
terminate the string of 1s followed by a subtract in the next higher bit position, a subtract is performed. Note
that the direct clear input to MUL ARITH is disabled during multiply because CSB bits 2, 1, and 0 are held high.
During other operations, such as division, the flip-flop is held reset.

6.2.3.4 Pause Logic — The pause logic is used in multiplication and division and provides a 200 ns delay to per-
form addition or subtraction operations within the multiply or divide subroutines. The logic utilizes three

74S74 D-Type flip-flops. For multiply or divide operations, CSB2 and CSB1 (ROM bits 29 through 27) are both’
0Os, which disables the direct clear input to the pause flip-flops. During all other operations, the direct clear is en-
abled and the pause flip-flops are held cleared.

For multiply operations, the pause logic is enabled due to MUL ARITH going to a 1; during divide operations, AR
NORM (1) enables the pause logic.

6.2.3.5 STRG 1 Flip-Flop — The STRG 1 flip-flop is a 74S112 J-K edge-triggered flip-flop used to indicate
whether a strings of 1s or strings of Os are present. The flip-flop will toggle only under the following two sets of
conditions:

a. If MR1 and MRO are both 1s and the STRG 1 flip-flop is a 0, the next clock pulse will force
STRG 1 to a 1, indicating a string of 1s has been found.

b. If MR1 and MRO are both Os and STRG 1 is a 1, the next clock pulse will force STRG 1 to
a 0, indicating. the start of a string of Os.

~ 6.2.3.6 AR Control — The AR is controlled from the AR control bits (ROM bits 26 and 25), from the call sub-
. routine bits (ROM bits 29, 28, and 27), or from the multiply/divide logic (PO). The AR can do a right shift or
left shift one place, as a result of the ARC bits as shown below:

ARC1 ARCO
0 0 Load AR
0 1 Shift AR left
1 0 Shift AR right
1 1 NOP

When the FP11 enters a multiply or divide subroutine, the ARC bits must select NOP and the CSB signals take

precedence and direct the AR as follows:

CSB2
0

0
0
0

CSB!1

0
0

CSBO

0

Function

Multiply BR with QR result in AR.
Divide AR by BR — result in QR.
Shift AR right by number in SC. Shift in Os.

Shift AR left until normalized and count number of shifts in SC.
Shift in Os.

Shift QR right by number in SC. Shift in Os.

Shift QR left by number in SC. Shift in Os.

Shift QR right by number in SC. Shift 1s (sign bit remains 0)
NOP

When an addition or subtraction is to be performed within the multiply or divide subroutine, the pause logic is
enabled and PO (1) overrides the CSB bits, causing both ARS1 and ARSO to go high which specifies a load oper-
ation. ARSI and ARSO are the signals that direct the AR to perform one of the following functions:

ARS1

0
0
1
1

ARSO Function
0 NOP
1 Shift right
0 Shift left
1 Load

6.2.3.7 QR Control — The QR is controlled from the QRC (bits 22 and 21 of the ROM) bits and the ACC (bits
37 through 35 of the ROM) bits. The QRC bits direct the QR to perform one of the following functions:

QRC1

0
0
1
1

QRCO

0

1
0
1

Function

Load QRO1 if ACC2 (0). Otherwise, load QROO.
Shift QR left

Shift QR right

NOP

The ACC bits specify the appropriate 16-bit word of the 64-bit AC to be used. ACC2 (0) specifies quadrant
[3:2] of the scratchpad; ACC2 (1) specifies quadrant [1:0].

Because the scratchpad is 32 bits wide, the QR is loaded in two halves — the upper half is controlled by QR1S1
and QR1S0, and the lower half is controlled by QR0S1 and QR0S0. Note that when the upper half of the QR
is loaded, both QR1S1 and QR 1S0 are enabled; when the lower half is loaded, both QR0OS1 and QRO0SO are en-
abled. During shifting, the QR signals are controlled together. The QR1 and QRO signals direct the QR to per-
form one of the following functions:

QR (Upper Half) Control QR (Lower Half) Control (f]

QR1S1 QR1S0 Function QROS1 QROSO Function
0 0 NOP 0 0 NOP
0 1 Shift right 0 1 Shift right
1 0 Shift left 1 0 Shift left
1 1 Load 1 1 Load

6.2.3.8 MUL SUB Flip-Flop — The MUL SUB flip-flop is set when a subtract operation is performed during a
multiply subroutine and is reset when an add operation is to be performed. The MUL SUB flip-flop performs .
two functions:

a. It allows the multiply operation to be terminated with an addition and inhibits final shift if the .
multiply is terminated in a string of 1s.

b. Tt also determines what is shifted into AR59 during right shift operations.

In order to set MUL SUB, MUL ARITH must be set because this enables the pause logic. Also, MR1 mustbea 1,
which indicates subtract. If MR1 is a 0, MUL SUB is reset, which indicates an add (see Paragraph 6.2.3.3).

6.2.3.9 AR Clock — The AR is clocked at TS4 when the AR control bits (bits 26 and 25) of the ROM specify
aload. The AR is also clocked when bit 29 (CSB2) from the ROM is a 0 and the FP11 is in the Wait state. This
occurs for a multiply, divide, right or left shift of the AR. The AR clock logic can be disabled as a result of one of
the following three conditions:

a. In a multiply, the pause logic is enabled due to MUL ARITH (1) when the required addition or sub-
traction is to be performed. In order to allow the data on the lines to the ALU time to settle, clock ()
pulses are disabled due to P2 (0). When P2 goes to a 1, the clocking of the result of the add or sub- -
tract operation can be performed (see Figure 5-5).

b. During normalizing and dividing, the AR clock is inhibited by AR NORM (1) H. In the case of
normalizing, P2 is held on a 0 and the setting of the AR NORM flip-flop signifies the end of the
operation. In the case of dividing, AR NORM (1) H indicates another arithmetic operation is to be
performed. Consequently, the pause logic must be enabled as in a. above.

c. If the step counter increments all 1s and MUL SUB is reset, the AR clock is inhibited. If MUL SUB
is set, one AR clock is allowed to load the result of a final addition. This load also resets MUL SUB
disabling further AR clocks.

6.2.3.10 QR Clock — The QR is clocked at TS3 if QRC bits from the ROM are both Os, which specifies a load
operation. The QR can also be clocked if CSB1 is on a (0) and if the FP11 is in the Wait state and if PO is a 0.

CSB1 (0) corresponds to CSB fields 0, 1, 4, and 5 in the ROM (bits 29 through 27), which specify the following: -
Field Description
0 Multiply QR with BR — result in AR.
1 Divide AR by BR — result in QR.
4 Shift QR right by number in SC. Shift in Os.
5 Shift QR left by number in SC. Shift in Os.

6-6

PN

; \
/ \
i |
i

PO is set in the multiply/divide routine when an add/subtract operation is being performed. This ensures that the
QR is clocked only during shift operations. Finally, the QR can be clocked by the CSB bits corresponding to a
field of 6 [CSB2 (1), CSB1 (1), and CSBO (0)], which specifies a right shift of the QR by the number in the SC
and specifies that 1s are to be shifted in (the sign bit remaining 0).

The same logic that causes the AR clock to be disabled also causes the QR clock to be disabled (see AR clock).

6.2.4 FRHF

This sheet contains the sign bit logic, RSQR in logic, RR bits (RR2, RR1, and RRO0) associated with the AR regis-
ter, the AR NORM flip-flop, the LSQR IN logic, and the SS (sign of source) and SD (sign of destination) logic.

6.2.4.1 Sign Bit — QR59 is the sign bit of the QR and is clocked whenever the QR is clocked. QR59 is loaded
with either a O or with the contents of QR58. A 0 is loaded into QR59 whenever:

a. CSBO from the' ROM is 0. The corresponding CSB field combinations are 0, 2, 4, and 6. Field 2
can be disregarded because it deals with the AR. For all other combinations (multiply, shift QR
right with Os in, and shift QR right with 1sin), QR59 is loaded with a 0.

b. QR59 isloaded with O when ENAB QRSO is true. This is true when the ROM control is being used to
shift the QR right (QRC1 on a 1 and QRCO on a 0).

¢. QRS9 isloaded with O when LOAD QR is true. This signal is true when the ROM control is used to
load the QR (QRC1 on a 0 and QRCO on a 0). In all other cases QR58 is shifted into QR59.

6.2.4.2 RSQR IN — RSQR IN is an input to QR58 and is a function of QR59 or CSB1 (1) and CSBO (0). ROM
CSB fields 2 and 6 are specified for these bit patterns. However, field 2 has no effect because it is a right shift of
the AR. Field 6 is a right shift of the QR. Consequently, when CSB1 and CSBO are 1 and O, respectively, the
gate is enabled and RSQR IN goes to a 1. If the gate is disabled, RSQR IN follows the value of QR59 and is
transferred to QR58.

6.2.4.3 RR2,RR1, RRO — The bits designated RR2, RR1, and RRO are used for division in order to speed up
normalizing operations. RR2 corresponds to ARS59 (sign bit), RR1 corresponds to ARS8 (MSB of fraction), and
RRO corresponds to AR57. The RR bits are generated when the flip-flop associated with them is set. This can
occur as a result of two conditions: 1) when a load is specified (ARS1 and ARSO both high) and the correspond-
ing FALU bit is present or 2) during a left shift, which occurs when ARSO goes low.)

As an example, when ARS1 and ARSO are high, and FALU bit 59 isa 1, RR2 is set when the AR is clocked. The
1 being loaded in AR59 is also loaded in RR2. When ARSO goes low, the second NAND gate at the input to RR2
is enabled (~ Load AR) for a left shift and RR1 (AR58) is shifted into RR2. A similar situation occurs with RRO
(ARS7) shifting into RR1 and ARS56 shifting into RRO.

Speed of division operations-is increased by anticipating the normalization of a number. The bit patterns used
to anticipate normalization are:

RR2 RR1 RRO
0 0 1 Positive number
1 1 0 Negative number

6-7

The only bit patterns that normalize an unnormalized number in one shift are of the above shown configuration.
If either of the above patterns is present, AR NORM will set on the next CLK AR pulse; consequently, as soon as
the number is normalized, AR NORM is set to indicate this. Direct clear input to AR NORM holds AR NORM
reset for anything other than divide or normalize operations. Direct set input to AR NORM ensures that the flip-
flop is set when entering the divide subroutine, because the dividend in the AR is guaranteed to be normalized.

6.2.4.4 LSQR IN — To understand how LSQR IN (1) is generated, refer to the divide flow algorithm; this al-
gorithm can be divided into two categories: one occurring during the normal shifting, and one occurring imme-
diately after the add or subtract operation is performed. If the normal shifting prior to add or subtract is taking
place, the value of AR bit 59 (represented by RR2) is shifted into QR bit 31 (if single precision) or QR bit 00
(if double precision). This condition is enabled with P2 on a 0 (see Figure 5-4). However, P2 ison a 1 for the
shift performed immediately after the add/subtract operation. In this case, it is necessary to shift the comple-
ment of AR59 [RR2 (0)] into QR31 or QROO, depending on the designated format. Note that FD (0) allows
ARS9 to be shifted into QR bit 31 and FD (1) allows ARS59 to be shifted into QR bit 00.

6.2.4.5 SS Logic — The SS logic consists of a 74H74 D-type flip-flop and associated gating. If the ACF field in
the ROM (bits 34 through 32) is equal to zero (ACS) or one (AC V 1) and the upper half of the QR is to be
loaded, the sign of the source is set from SCR OUT 31 H (sign bit) of the appropriate scratchpad accumulator.
This means that when the microprogram loads the most significant 25 bits of the QR from the source AC (ACS)
the most significant bit of scratch (bit 31) is also loaded in SS. The sign of the source can also be forced to a 1
by the SGN control bits in the ROM (bits 42 and 41). This is accomplished with SIGNC1 (1) and SIGNCO (0).
The SS flip-flop is clocked on the trailing edge of TS4 by the same conditions which enabled the D input to the
flip-flop.

6.2.4.6 SD Logic — The SD logic consists of a 74H74 D-type flip-flop and associated gating. If the ACF field

in the ROM is equal to two (ACD) or three (ACD V 1) and the upper half of the QR is to be loaded, the sign of
the destination is set from SCR OUT 31 H (sign bit) of the scratch pad accumulator. This means that when the
QR is loaded from a destination AC the most significant bit (SCR OUT 31) is also loaded into SD. This sign of
the destination can also be set from the SGN control bits in the ROM according to the following conditions:

SIGNC1 SIGNCO Function
0 0 SD < ~ S8 if subtract, [SUBH ASS (0) HV SUB L ASS (1) H]
else SD < SS
0 1 SD <SS » SD [Exclusive OR of SS and SD]

For example, if the SGN bits in the ROM are selected for a field of 0, the complement of SS, which is SS (0) H,
is transferred to SD for a subtract (SUB H). If the instruction being performed is not a subtract instruction
(SUB L), SS, designated by SS (1) (H), is transferred to SD. The SS and SD flip-flops are cleared whenever the
FIR is loaded (FRMJ READY CLR L).

6.2.4.7 Step Counter — The step counter is clocked in the Wait state of a hardware subroutine (refer to CSB
bits 29 through 27 of ROM) if FRHE MUL DIV DISABLE is not on and the PO flip-flop is cleared. These two
signals combine to inhibit the step counter from being clocked while the pause logic (see Paragraph 6.2.3.4) is
operating.

6-8

6.2.5 FRHH

This sheet contains the time state generator, pause, and maintenance pause (MPAUSE) logic and associated time
state driver circuits.

6.2.5.1 Time State Generator — The time state generator consists of four 74574 D flip-flops and associated
gating. When the INIT switch on the console is depressed, the INIT signal clears the time state generator and the
MPAUSE flip-flop. When time states 4, 3, and 1 go to a 0, time state 3 is initiated with the next clock pulse (see
Figure 6-1). The generator then sequences to time state 4, time state 1, time state 2, and then to the Wait state
or directly from time state 2 to time state 3. The Wait state is between state 2 and state 3. Each time state con-
sumes 50 ns. If the FP11 flow diagram does not indicate a Wait state, the complete ROM cycle consumes 200 ns.
If the Wait state is required, the total time is 200 ns plus the Wait period. During state 4, the ROM buffer is
loaded from the ROM and during the next state 2, the next address of the ROM is clocked. The Wait state is
initiated on the trailing edge of time state 2 when the PAUSE flip-flop isa 1.

6.2.5.2 PAUSE Flip-Flop — The following three conditions cause the PAUSE flip-flop to set:

a. FP ACKN WAIT — When the FP11 enters a new state in which a trap might occur, the FP11 antici-
pates an FP ACKN signal from the 11/45 in response to an FP trap signal from the FP11. This signal
occurs after the interrupt and it is, therefore, necessary to initiate the Wait state.

b. SUB CALL — If any of the three CSB bits are 0, indicating a hardware subroutine operation, the
PAUSE flip-flop is turned on. All 1s in the CSB bits indicate a NOP.

¢. FPATTN WAIT — The FP11 enters the Wait state while waiting for FP ATTN from the 11/45.

In each of the above three instances, the PAUSE flip-flop is clocked at the trailing edge of time state 1. The
PAUSE flip-flop is cleared:

a. When the CSB bits specify a normalize and the normalize is completed, which is represented by
AR NORM (1).

b. When the 11/45 sends an FP ATTN to the FP11, indicating that the 11/45 is now ready to receive
or send data to the FP11.

c. When the step counter has fully incremented to all 1s to indicate completion of the operation.
d. When the 11/45 responds to an FP TRAP by issuing FP ACKN.

e. When ICLR is set an initialize condition is established which clears all major registers.

The PAUSE flip-flop, when reset, allows the WAIT flip-flop to be cleared on the trailing edge of the next clock
pulse and allows state 3 to set.

6.2.5.3 MPAUSE Flip-Flop — The MPAUSE flip-flop is used in conjunction with the W131 Maintenance Module.
A switch on this card removes the direct clear input from MPAUSE and allows this flip-flop to be armed by

ROM + UBS. This signal results from a micromatch occurring between the control ROM address register and the
microbreak register or by setting the appropriate switches on the maintenance card. Note that MPAUSE operates
in parallel with PAUSE and also prevents the FP11 from sequencing to state 3 from state 2.

The remaining logic on this sheet shows the time state driver circuits (A and B outputs), which are necessary
because of loading requirements.

6-9

01-9

VTR I I I I I I PR I I I O I o I 6 6

FRHH WAIT({) H l

FRMJ ATTENTION (1) H ___W_—I‘\\

FRMJ FP REQ (1) H

FRHH STATE { (1) H

FRHH STATE 2 (1) H

FRHH STATE 3 (1) H

FRHH STATE 4 (1) H

CROM STATE 72

FXPD CLK IR H

FRMJ FP SYNC (1) H

CROM STATE 76

FRMJ FP SYNC L

CROM STATE 254

CROM STATE 257

CROM STATE 3

|
|

2 F) 1
l_l) Y [EE M L |
711 1 M 1 r
1 1 R L 1
— | M (M1 A | |
' ({ { § .
g § —
— Ly B —
L_F 3 Lt L]
! i B
| i — 1
§ ——

Figure 6-1 Time State Generator Timing Relationships

11-0853

6.2.6 FRHIJ

This sheet shows the 20 MHz crystal clock, the variable RC clock, and a source synchronizer providing switching
between the two clock sources. If switching should be attempted during a crystal clock pulse, the crystal clock
pulse is completed before the RC clock is switched in and vice versa. The RC clock is used for maintenance and
is a variable clock source whose frequency can be adjusted by the variable resistor shown.

The source synchronizer operates in conjunction with the switches on the FMAA Maintenance Card (see KM11
Maintenance Set Manual — cards W130 and W131). S3 selects the crystal clock when off or the RC clock when
on. S4 is a MAINT STPR switch that allows the function specified by S2 and S1 to be stepped. If S2 and S1 are
off, normal operation occurs. If S2 is on and S1 is off, a single ROM cycle occurs each time the MAINT STPR is
depressed. If S2 is off and S1 is on a micromatch between the CRAR (control ROM address register) and the
microbreak register will stop the clock; and if both S2 and S1 are on, a single clock pulse will occur each time the
stepper is depressed.

The J-K flip-flop that is clocked by the single time stepper is complemented each time the stepper is depressed.

The MPAUSE flip-flop on FRHH is set during TP1 when a single ROM cycle is selected or a micromatch occurs.
When the single time stepper is depressed, the MSWITCH CNTU flip-flop (see FRHH) goes to a 0 and resets the
MPAUSE flip-flop. At time state 4 MSWITCH CNTU goes to a 1 inhibiting the direct clear to MPAUSE.

6.2.7 FRLA,FRLB, FRLC, FRLD

These logic prints show the ACMX logic and the scratch pad accumulators. The ACMX consists of 16 dual-section
74153 multiplexers. The EALU, FALU, Floating-Point Status word, and the B register condition codes (BN and
BZ) provide inputs to ACMX. Common select lines at S1 and SO provide selection of one of four inputs from each
half of the chip.

There are a total of eight 3101 scratchpad accumulator chips. The dual outputs from two multiplexer chips are
applied to a scratchpad accumulator chip. An SCR WRITE signal, if low, causes data to be written into scratch
and, if high, causes data to be read out of scratch. Note SCR WRITE 1 and SCR WRITE 0 versions of this signal
are necessary because of loading problems.

Other inputs to the scratchpad are used to determine the AC specified and the quadrant specified. SCR ADDRS 2,
SCR ADDRS 1, and SCR ADDR 0 are a modified version of ACF bits (bits 34, 33, and 32) of the CROM word
and selects source AC, destination AC, AC6, or AC7 (refer to CROM word format). Bits ACC2, ACC1,and ACCO
are applied to inputs A3 and CS in the accumulator and are decoded to yield the quadrant specified. Each quad-
rant is 16 bits and is specified by a number from 3 through 0. Quadrant 3 is bits 63 through 48, 2 is bits 47
through 31, 1 is bits 31 through 16, and 0 is bits 15 through O (see Figure 6-2). For example, if bit ACC2 isa 1
and ACCl1 is a 0, the 3101 chips containing bits 31 through 16 are specified. This is quadrant 1. If bit ACCO is

a 0, quadrant O is also enabled which, according to the ROM word format, gives a field of 4. This can be verified
by referring to the CROM word format. To be more specific, ACC2 is connected to the most significant address
select line of all the 3101 chips. ACC1 is connected to the chip select of the four 3101s that contain quadrants 1
and 3 of the AC. ACCO is connected to the chip select of the four 3101s that contain quadrants 0 and 2 of the
AC.

6.2.8 FRLE, FRLF, FRLH, FRLJ, and FRLK

These logic prints show the lower half of the AR register (bits 35 through 0) and the lower half of the FALU
(bits 35 through 0). The AR register consists of nine 74194 shift register chips, each chip having six inputs.

6-11

32 BIT

WORD
63 48|47 32
3 2
16 WORDS
31 16|15 0
1 0
31 28|27 24|23 20{19 16|15 12|11 8|7 4|3 O

. J

8 "4-BIT WORDS" =
32 BIT WORD
11-0854

Figure 6-2 Scratchpad Configuration

One bit to the AR register chip is from the next higher order bit of the preceding chip and provides the right shift
capability of the AR. Bit 12 feeds bit 11, bit 8 feeds bit 7, and bit 4 feeds bit 3. A second input to the AR is
from the next lower order bit of the succeeding chip. This provides the left shift capability of the AR, where bit
3 feeds bit 4, bit 7 feeds bit 8, and bit 11 feeds bit 12. The other four inputs to each of the nine AR chips allow
it to be parallel loaded with data from the FALU. The AR is simultaneously clocked by CLK AR, which is ap-
plied to all AR chips.

6.2.8.1 FALU Control — The 4-bit output of each AR chip is applied to the A side of FALU along with four
correspondihg bits from the BR register. See FRHE logic diagram description for discussion of AR select lines.

The FALU in the FP11 may perform one of 18 functions. In order to ascertain the desired function, five control
lines are supplied to the FALU. These are designated ALUM and ALUS3 through ALUSO, and derived from ALU
bits 19 through 16 of the control ROM word.

6.2.8.2 Carry-Look-Ahead — Associated with the FALU are 74182 carry look-ahead generators. Each carry
look-ahead anticipates the carry for a total of four FALU chips. Eight of the FALU chips are associated with the
two 74182 carry look-ahead circuit generators on the FRL prints. The ninth FALU chip is handled by a carry
look-ahead generator located on the FRH prints. The carry look-ahead circuitry is used to speed up arithmetic
operations.

A second level of carry look ahead is provided between each group of four FALU chips (see sheet FRLK). This
circuit anticipates a carry between groups of four FALU chips, by looking at the three lowest order groups of
FALU and providing a carry, if required, to the three highest order groups of FALUs.

6.2.8.3 Rounding — The rounding logic for double-precision floating-point format is shown on sheet FRLE.
The data path that handles the fraction has three extra bits (bits 2, 1, and 0) that are carried for rounding pur-
poses. The logic is implemented such that only the most significant bit, AR2, is examined. If this bitisa 1, 1 is
added to bit 03 in the FALU. If this bit is a 0, nothing is added to the FALU.

For single-precision floating-point format, the word is located in bits 63 through 32 of the AR. The logic is imple-
mented such that only the most significant rounding bit (AR34) is examined. If this bitisa 1, 1 is added to bit
35 of the FALU. If this bit is a 0, the FALU is unaffected.

6-12

—

6.2.8.4 Increment — For certain integer operations in long integer mode, the word is to be incremented - for
example, when converting a 1’s complement number to a 2’s complement number. For long-integer format, the
32 integer bits are stored in bits 50 through 19 of the scratchpad (bits 50 through 35 for single-integer format).
Therefore, when the long-integer word is to be incremented, 1 is added to bit 19 of the FALU (see sheet FRLH),
if the FMX select signal designated FMXC1 is on a 0. Similarly, when the short-integer word is to be incremented,
1 is added to bit 35 of the FALU if FMXC1 is on a 0.

6.2.9 FRLL, FRILM

These prints show the low order 36 bits of the QR and BR registers, the EXP NEQ 0 (exponent not equal to 0)
logic and the LSQR31 in H logic.

6.2.9.1 QR — The QR consists of nine 74194 left/right shift chips. Four of the inputs are the normal scratchpad
outputs. The other two are inputs from the adjacent QR chips to provide the right shift/left shift capability, just
as described in the AR register. Note that bits QR02, QRO1, and QROO are output from the QR, but the corre-
sponding bits are never input from scratch and are grounded. The loading of the QR is described in the descrip-
tion of the FRH group of prints.

6.2.9.2 BR — The BR consists of six 74174 flip-flop chips each with six inputs and six corresponding outputs.
The BR is loaded by CLK BR, which occurs on the trailing edge of TS4 if BR control (bit 24 of the CROM word)
isa 0. The BR is cleared by CLR BR, which occurs during TS2 if BR controlisa 1.

6.2.9.3 EXP NEQ 0 — The EXP NEQ 0 logic generates the input to QR58 (hidden bit) so that QR bit 58 will be
loaded with a 1 if the exponent is not 0. If the exponent is 0, the fraction is assumed to be O,

6.2.9.4 LSQR31 IN H — LSQR31 IN H is used as the input to QR31 when left shifting the QR. During normal
left shifts, QR30 is applied to QR31; during single-precision divide, the partial quotient bits are shifted into QR
bit 31..

6.2.10 FRLN

This sheet shows the BMX, consisting of eight 74153 dual four-to-one line multiplexers. Each section has four in-
put and one output. Two control lines (BMX C1 and BMX CO0) select one of four inputs from each section.

The A inputs are inputs from the EALU, the B inputs are SCR31 through SCR16 outputs, the C inputs are SCR15
through SCRO outputs, and the D inputs are SCR30 through SCR23 outputs. Note that the D input selects the
exponent portion of the AC right justified (bits 7 through 0) while bits 15 through 8 are Os.

6.2.11 FRLP

This sheet shows the floating status register, floating condition code loading, and the FER flip-flop.

6.@/1 1.1 Floating Status Register — The floating status register consists of 74175 D-type flip-flop chips, a 74H74
flip-flop, and associated gating. The status register can be loaded by the LD FPS instruction (170100) or by con-
trol ROM at the appropriate time to generate the floating condition codes. If the register is to be loaded with

bit 4 on a 1, the CPU must be in KERNEL mode. The FP11 enters maintenance mode and the maintenance mode

6-13

flip-flop will set. The programmer, by use of the status register, can set up enables for various interrupt
conditions. For example, by setting EALU bit 09 to a 1 and loading the status register, the floating interrupt on
overflow (FIV) is enabled. If an overflow occurs, an interrupt will be raised.

6.2.11.2 Floating Condition Codes — The floating condition codes can be loaded from two different sources:

a. For the LD FPS instruction, the output of the EALU is enabled to the D inputs of the four con-
dition code bits. The FRMF LD FPSC signal generated from the ROM enables the clocking of the
condition code flip-flops.

b. - If either of the FC control bits are on a 0, the condition code flip-flops will be clocked. In this case,
the FP11 is not doing a LD FPS instruction; FN will be set if the result is negative; FZ will be set if
the exponent is 0; FV will be set from the conditions of the EALU, which contains the exponent of
the result at this time; and FC is set or cleared from the ROM control.

6.2.11.3 FER Flip-Flop — The FER (floating error) flip-flop is set if a floating-point exception occurs or by bit
15 of the LOAD FPS instruction. It is cleared by a zero in bit 15 of the LOAD FPS instruction.

6.2.12 FRMA, FRMB

These two sheets show the 8-bit control ROM address register (CRAR) and the control ROM multiplexers. The
address register uses 74S74 D-type edge triggered flip-flops, and the control ROM multiplexers use 74151 8-to-1
line multiplexers. The two most significant bits of the address are not modified so there are only a total of 6
multiplexers.

6.2.12.1 Control ROM Address Register — The circuitry is designed such that the ROM can sequence to the
next address, which may or may not have been modified by the branching conditions, or can sequence to the
Ready state, or can trap to a service routine. If the next address is not modified, bits DO7 through D00 provide
the inputs to each flip-flop in the address register provided a trap condition is not present. The five conditions
that can cause a trap are:

a. INIT AND 11/45 ABORT - sets INIT F and forces the next address to O.

b. Microbreak — sets UBRK F flip-flop which forces the next address to location 4.
c¢. 1120 ABORT — sets ABORT F and forces the next address to location 10.

d. Floating Minus 0 (FMO) — sets FMO F flip-flop and forces the next address to 20.

e. UJP enabled and bits 0 and 1 of the next address on 1s generate GO TO READY L which
forces the next address to 3.

If the next address is to be modified, the address bits that are to be modified are switched from Os to 1s. This is
accomplished by forcing the associated multiplexer output to a 1. If the address bit isa 1, it cannot be modified,
because the normal ROM output (D7 through DO) sets the associated flip-flop regardless of the multiplexer output.

6.2.12.2 Address Modification — The conditions to be used to modify an address are selected by the six control
ROM bits, three of these being the UBR (microbranch) bits, two being the UAF (microaddress field) bits, and
one being the UJP (microjump) bit.

6-14

6-Bit Branch Bits

UAF | UAF | UBR | UBR | UBR
ujp 1 0 2 1 0

If branch condition true, - % -
Trap to Ready CROM (IS)J

Selects multiplexers CROM (12:11)

Selects inputs to multipiexers CROM ¢10:08)

The three UBR bits are applied to each of the six multiplexers and uniquely specify one of the inputs to the mul-
tiplexer. If UBR bits 2, 1, and 0 are all 1s, the multiplexer output goes to 0, which indicates no modification
takes place. For all other combinations, the multiplexer output goes to a 1 if the selected branch condition is true.

The UAF bits specify the multiplexer(s) as follows:

UAF1 UAFO0 Multiplexers Selected
0 0 0 through 5 if UBR is even (UBRO on a 0)
2 through 5 if UBR is odd (UBRO ona 1)
0 ‘ 1 0 Multiplexer selected
0 1 Multiplexer selected
1 1 Both 0 and 1 Multiplexers selected

Note that all six multiplexers are selected if UAF1 and UAFO are Os and the UBR field is 0, 2, 4, or 6; and mul-
tiplexers 2 through 5 are selected, if UBR is 1, 3, 5, or 7. If a multiplexer is not selected, its output is low and
the associated address bit will not be modified.

Table 6-2 shows how the multiplexer (specified by the UAF bits) and the inputs to the multiplexer (specified by
the UBR bits) combine to create certain branching conditions. For example, if the UBR bits are all Os, the UAF
bits are also Os, multipleXers 0 through 5 are specified. As a result, signals that are true at the A inputs to each
multiplexer will cause the multiplexers’ output to go high and cause that address bit to be modified (see 74S74 IC

description in Appendix A).

When the UAF bits are both Os and there are no trap conditions present, SELECT UBRMXB is generated, which
is applied to the STBO inputs of the multiplexers and selects multiplexers 2 through 5. Multiplexers O and 1 are
specified by utilizing other combinations of the UAF bits as shown on FRMB.

6.2.12.3 Traps — Sheet FRMA shows the logic associated with the trap conditions. For the UBRK trap to occur,
the FP11 must be in maintenance mode, and out of the Ready state, and a match must have occurred between the
UBR register and the CRAR. The floating minus zero trap occurs when the sign bit isa 1 and the exponent is 0.
This is detected on the output of the ACMX where the data is in complement form. Note that when a trap con-
dition is present, UTRAP A is generated (see sheet FRMB). This signal is applied to bits 0 and 1 of the CRAR and
inhibits the ROM and multiplexer inputs to these two stages. This prevents the FP11 from going to the Ready
state. UTRAP A and GO TO READY are ORed to generate UTRAP B. This signal is applied to bits 7 through 2
of the CRAR and inhibits the ROM bit from setting the register but allows the trap condition to set the register.

6-15

5 4 3 2 1 0

A | SUB FRAC | FIRD4 FIRD3 FIRD2 FIRD1 FIRDO

B | FIRO7 (1) FIR06 (1) | FIR11 (1) | FIR10 (1) AR50 (0) SD (1)

C | RNG2 RNGI1 RNGO 0 BB1Z (1) BN (0)
Multiplexer | D | O 0 0 FIU (1) IL (0) Immediate
Inputs E |0 0 0 FT (1) ~(FCAFIC) | FD(0)

F | FIRD6 FIRDS 0 ~CONVSP | ~(FVAFIV) | MO

G |0 0 FIRO8 (0) | AR58 (0) ARS59 (0) BZ (1)

H|O 0 0 0 0 0

Table 6-2

Multiplexer Branching Conditions

6.2.13 FRMC, FRMD

The ROM is contained on these prints and consists of sixteen 74187 Read Only Memory chips, providing a matrix
of 256 64-bit words. Each ROM chip contains 256 4-bit words; 8 bits of address are required to select one of the
256 words. The 8 address lines are applied to all chips in parallel, and the output of each ROM is 4 bits wide
yielding a 64-bit ROM word.

6.2.14 FRME, FRMF

/
These logic prints show the ROM buffer, which consists of 74175 D-type flip-flop chips. Each chip receives four
ROM outputs and provides a pair of outputs for each input. The pair is simply the 0 and 1 output of a flip-flop
toggled by the associated input. '

Only 14 buffer chips outputting 56 bits are required, because the 8 bits of next address are not applied to the
ROM buffer but instead are applied to the control ROM address registers through some branch condition gating
logic. In order to provide additional outputs, the signals designated CONTROL SEL 2, CONTROL SEL 1, and
CONTROL SEL 0 (FRMF), in turn, are octally decoded to produce eight unique outputs. Only five of the eight
outputs are presently utilized.

The ROM buffer is loaded on the trailing edge of TS4 by CLK RB C L as are the eight additional outputs.

6.2.15 FRMH

This sheet shows the decoding of the ALU select lines, the scratch address lines, SCR WRITE, clocking of the
BR, and BACMX selection.

6.2.15.1 ALU Select — Normally, the ALUS3 through ALUSO, ALUM, and ALUCIN signals are driven from
the ROM ALU control signals (ALUC3 through ALUCO0). Note that there are four ROM output signals from
the ALU control (ALUC3 through ALUCO), which are decoded to produce six ALU signals (ALUS3 through
ALUSO, ALUM, and ALUCIN). ALUM is a mode bit that is low when an arithmetic function is performed and
is high for a logical function. ALUCIN is a carry input that is required only when ALUM is a O (i.e., when an
arithmetic operation is being performed). The ROM signals produce the ALU select signals if the FP11 is not in
the arithmetic subroutine (MUL DIV is high).

6-16

When the FP11 enters the multiply or divide subroutine, MUL DIV goes low and permits the subroutine signals
(MR1 and RR2) to drive the ALU select lines to the correct configuration (see Table 6-3). FRAC MUL is set by
the decoding of the CSB bits in the ROM, indicating the FP11 is in the multiply subroutine. DIV OR NORM is
set by the decoding of the CSB bits in the ROM, indicating the FP11 is in a divide subroutine.

As an example of how the ROM controls the ALU select lines, consider the subtract functions as selected by fields
2 and 6. The subtract function can thus be shown as specified. '

ALUC3 ALUC2 ALUC1 ALUCO
0 X 1 0 = Fieldof20r6

The ALUC3, ALUCI1, and ALUCO signals are decoded to yield the FORCE SUB signal, which drives ALUS2 to
a 1 for fields 2 and 6. Note that most of the entries (except for fields 2, 10, and 15) in the table are ona 1:1
correspondence with the numerical value. of the control field. Field 2 creates a FORCE SUB signal that causes
ALUS?2 to go to a 1; field 10 creates a FORCE ADD signal that causes ALUSO to go to a 1; and field 15 creates
a signal that causes ALUS]1 to go to a 1. In these instances, either the ALUCIN or ALUM bits is varied to differ-
entiate between the ALU functions.

Table 6-3
ALU Control Selection
ALU
Control
Field Function ALU Select Lines Ca'rry
(ALUC3— Mode in
ALUCO0) ALUS3 | ALUS2 [ALUS1 | ALUSO | ALUM | ALUC1
0 ~A 0 0 0 0 1 X
1 ~(AVB) 0 0 0 1 1 X
2 A’ 'minus B 0 1 1 0 0 0 Drive ALUS2 low
3 0 0 0 1 1 1 X
4 ~ (A AB) 0 1 0 0 1 X
5 ~B 0 1 0 1 1 X
6 A minus B minus 1 0 1 1 0 0 1
7 AN~B 0 1 1 1 1 X
10 A plusB plus 1 1 0 0 1 0 0 Drive ALUSO low
11 A plus B 1 0 0 1 0 1
12 B 1 0 1 0 1 X
13 ANB 1 0 1 1 1 X
14 1 1 1 0 0 1 X
15 A minus 1 1 1 1 1 0 1 Drive ALUSI low
16 AVB 1 1 1 0 1 X
17 A 1 1 1 1 1 X
X = don’t care
0=low
1 = high

6-17

The ALUM (mode bit) signal is driven low for arithmetic operations and is high for logical functions. When not

in a multiply or divide subroutine, ALUM is driven low for a ROM ALU field of 15 designating A minus 1.
FORCE ADD (created by fields 10 or 11) or FORCE SUB (created by fields 2 or 6) also cause ALUM to go low.
Normally ALUCIN is high, however, it is driven low in fields 0, 2, 10, and 12. The signal has no meaning for fields
0 and 12 because the ALUM signal isa 1 in that field. ALUCIN can also be driven low by MUL SUB or DIV SUB
when in a subroutine.

6.2.15.2 SCR Address — SCR ADRS 2 through SCR ADRS 0 bits are decoded as a result of the ACF bits as
shown in Table 6-4.

Table 6-4
Scratch Address Selection

Field ACF2 ACF1 ACFO Function SCR ADRS 2 SCR ADRS 1 SCR .ADRS 0

0 0 0 0 ACS Looks at FIR02, 01, and 00 if address mode O is
1 0 0 1 1 ACSVI specified. These bits can address ACs O through 5.
If not mode 0, ACC is specified.
2 0 1 0 ACD Looks at FIR06 and 07,0f instruction. These bits
3 0 1 1 ACD V1 can address ACs 0 through 3.
.4 1 0 0 AC6 1 1 0
5 1 0 1 AC7 1 1 1
6 1 1 0 AC6 1 1 0
7 1 1 1 AC7 1 1 1

The remaining logic shows: a. the gating for clocking and clearing of the BR, 5. the SCR WRITE 0 and SCR
WRITE 1 signals which occur during TS 4 when ACRE (Accumulator Read) ison a 0, and c. BACMX C1 (1)
and BACMX CO (1) which are the buffered ACMX control lines used to select one of four inputs to the ACMX.

6.2.16 FRMJ

This sheet shows some of the decoding of the interface signals (FPC1, ADR INC, etc.) and contains the logic as-
sociated with INIT, ICLR, FP REQ, FP SYNC, and FP ATTN.

6.2.16.1 ICLR and 20 ABORT — The ICLR and 20 ABORT flip-flops are set from asynchronous external sources.
ICLR is set by INIT or INTR CLR and FP REQ (1). INTR CLR is generated by the 11/45 if an abort condition is
found. Note that the FP11 is trapped back to the Ready state. Both ICLR and 20 ABORT are cleared under
ROM control. Figure 6-3 shows the timing associated with ICLR, INIT, and 20 ABORT.

6.2.16.2 Set ATTENTION — The FP ATTN signal from the CPU sets the ATTENTION flip-flop. This signal in-
dicates that the CPU is requesting the transfer of data to or from the FP11. If the FP11 is in the Ready state, the
setting of the ATTENTION flip-flop clears the PAUSE flip-flop (see sheet FRHH), allowing the time state gen-
erator to advance. This sequences the FP11 out of the Wait state.

6.2.16.3 Set FP REQ — FP REQ is set by ATTN (1) and FIRC (0), which is true only in the Ready state.

6-18

61-9

STRYCT T I I I I U I Iy
FRHH STATE{ (1) H I I | I I l | | r__
FRHH STATE 2 (1) H ____[_—] | I I I I I

FRMJ ICLR (1) H i L
CROM STATE 0 I |

Frw 20 aBORT (0 LI I
|

FRMA ABORTF (1) H

|
NEXT CROM STATE J I

CROM STATE 10 I I

NOTE:
DISBLO IN STATE 10 CAN NOT CLEAR ICLR SO THAT IF POWER ON CAUSES START AT CROM ADDRESS 10 INIT WILL STILL BE SEEN.

11-0808

Figure 6-3 ICLR, INIT, and 20 Abort Timing Relationships

6.2.16.4 Set FP SYNC — The -FP SYNC flip-flop is normally set under ROM control by SYNC (0) H in time (.
state 3.

6.2.16.5 Clear ATTN — The ATTN flip-flop is cleared by SET SYNCF L, which occurs when the FP SYNC flip-
flop is set. This allows the CPU to raise another FP ATTN signal for additional transfers.

6.2.16.6 FP SYNC L — FP SYNC L is a synchronizing signal sent to the CPU in response to FP ATTN and is
generated during TS2 of the next ROM state following the setting of the FP SYNC flip-flop. FP SYNC L, being
delayed until TS2, allows time for FP REQ to be cleared if no more data transfers are required. s

6.2.16.7 Clear FP SYNC — The issuing of FP SYNC L clears the FP SYNC flip-flop so that only one FP SYNC -
is issued. The FP SYNC flip-flop can also be cleared at TP4 by CLR SYNC if the instruction contained in the IR

is a CONV SP class and the DISBL SYNC signal from ROM control is present. The reason for clearing FP SYNC

at this time is to delay FP SYNC L to allow conversion of the data before storing. This delay allows the 11/45

CPU to monitor BR requests during the data conversion.

6.2.16.8 Clear FP REQ — The FP REQ flip-flop is cleared by DISBL 1 (0) from the ROM control.

6.2.17 FXPA and FXPB

The EMX and EALU and constant field decoding are shown on logic prints FXPA and FXPB.

6.2.17.1 EMX — The 16-bit EMX consists of eight 74153 ICs, each IC capable of processing two bits of data. (
It selects one of four inputs via two select lines — EMX C1 (1) H from the control ROM and EMX CO. The truth
table for the EMX is as follows:

S1 SO

EMX C1 (1) EMX CO Input Selected
L L BA
L H MPX DATA
H L CNST
H H SC

6.2.17.2 EALU — The 16-bit EALU consists of four 74181 ICs, each IC capable of processing four bits. These
four bits represent the outputs of two EMX chips. Five select lines (S3, S2, S1, SO, and M) provide the capability
of selecting a wide variety of arithmetic operations (see 74181 IC description in Appendix A).

6.2.17.3 Constant Field Decoding — The FXPA print shows additional decoding logic, which decodes the con- -
stant fields to produce the desired constant. Constant fields which are not mapped 1 to 1 are:

Constant Field Constant

0 200
11 100000
15 100004
20 220
32 70
33 71
36 74
37 75

The constant field is specified by bits 57 through 53 of the ROM word. For a censtant field of 0, bit 7 of the
EALU is enabled, yielding 2005. For a constant field of 204, bit 57 (field bit 04) of the ROM word isalso a 1,
enabling bit 4 of the EALU as well as bit 7 to yield 2205 . For constant fields 11 and 15, CNST bit 15 is generated.
CNST bit 00 is decoded for all odd fields except 11 and 15. CNST bit 03 is generated for constant fields of 10, 12,
13, 14, 16, and 17 because bit 03 is common to all these fields.

The EN CNST 7X signal is generated for constant fields of 32, 33, 36, and 37 as shown below:

Bit 57 Bit 56 Bit 55 Bit 54 Bit 53 Constant

4 3 2 1 0 Field Constant
1 1 0 1 0 32 70
1 1 0 1 1 33 71
1 1 1 1 0 36 74
1 1 1 1 1 37 75

EN CNST 7X is applied to the EMX and becomes the B input to EALU bit 05. CNST 4 and CNST 3 are enabled
in order to generate EN CNST 7X. These signals are applied to EALU bits 04 and 03, respectively, and as a result
EALU bits 5, 4, and 3 are enabled to generate an octal 7.

6.2.18 FXPC

This logic print contains the 16-bit BA and 16-bit BD registers, which are used as storage registers. Each register
consists of two 74174 D-type flip-flop chips and one 74175 D-type flip-flop chip. The 74174 ICs are 6-bit chips
and the 74175 is a 4-bit chip.

6.2.18.1 BD Register — The BD is loaded by CLK BD from the control ROM. This occurs during the trailing
edge of the clock pulse in TS4, if bit 49 of the control ROM word (BDC 0) is on a 0.

6.2.18.2 BA Register — The BA is loaded by CLK BA from the control ROM if bit 48 of the ROM word (BAC 0)
isona0. CLK BA is generated on the trailing edge of the clock pulse in TS4, if bit 48 (BAC 0) of the control
ROM word is on a 0. A second clock input is-available from the interface unit with the 11/20 Central Processor.
This signal is designated FICC CLK BA.

NOTE
Both the BA and BD registers are loaded with data
from the BMX (see description of sheet FRLN).

6.2.19 FXPD

This sheet shows the 12-bit instruction register, which receives the instruction from the buffered BR inputs. The
register consists of three 74175 D-type flip-flop chips and is loaded on the leading edge of TS3 when bit 59 of
the ROM word (FIR control) is a 0.

The remaining logic on the sheet shows the two instruction ROMs. The five inputs to each ROM select one of 32
8-bit words depending on the specified instruction (see Table on FXPM-M8113-0-0). The instruction ROMs are
8598 ICs, and the outputs of each ROM are applied to the branch logic on FXPE.

6.2.20 FXPE

This sheet shows the decoding associated with the branching conditions. The A and B outputs from the instruc-
tion ROMs are collector ORed to set up the various branches. AD1 and AD?2 are the constants used to update
the CPU general register, depending on the format specified. FCLD LD EN is the enable level used to cause the
floating condition codes to be copied in the CPU. The remaining signals on this sheet represent the decoding of
the floating instruction register to set up various addressing modes and/or branching conditions.

6.2.21 FXPF

This sheet shows the B condition code logic, the range ROM used to determine the magnitude of the exponent
difference between two numbers, the logic used to develop the SUB FRAC signal, and the illegal op code detector.

6.2.21.1 B Condition Code Logic — The condition code logic contains a 74175 flip-flop chip to generate the B
condition codes. If BB1Z is a 1, the upper byte (bits 15 through 8) of the last word loaded in the BA or BD
register is 0. If BN is a 1, the last word loaded in the BA or BD register is negative (bit 15 ona 1). If BZisa 1,
the last word loaded in the BA or BD register is O (bits 15 through 00). The 74175 flip-flops are clocked on the
trailing edge of TS4 when the BA control (bit 48 of CROM) or BD control (bit 49 of CROM) is a 0. When this
occurs, the BA or BD register is loaded so that the B condition codes reflect the condition of the data loaded in
the BA or BD register.

6.2.21.2 Range ROM — The range ROM is a 256-word x 4-bit ROM used to determine the difference between
two exponents. The ROM provides a 3-bit output, which is applied to the branching logic. EALU bits 9 through
0 are provided at the input. The reason for this circuitry is described in Paragraph 5.2.2.

6.2.21.3 SUB FRAC — The SUB FRAC signal is developed when the hardware is to perform a subtraction.

This occurs when an add instruction with unlike signs or a subtract instruction with like signs is specified. If
SUB FRAC is not present, the FP11 sequences through the add branch where the hardware performs an add
operation (see sheet FRMA).

6.2.21.4 Illegal Op Code Detector — The illegal op code logic examines bits 15 through 12 of the word for all
1s yielding a 175 op code. If any of these bits go to 0, an illegal op code sign is generated. This is used to force
FIRDS and FIRDG6 low, which causes the microprogram to branch to the illegal op code routine (see sheet FXPE).

6.2.22 FXPH

This print shows the 74H74 floating-point (FD) and integer (IL) flip-flops. Also shown are sixteen 74S05 open-
collector drivers, which provide the BMX outputs to the B condition code logic on FXPF.

6-22

The combinaticn of bits FIR06 and FIR03 are set up to specify one of the following five instructions.

FIRO3 FIR06 Instruction

0 1 LD FPS (Load FP Status)

0 0 SETF (Floating-point)

1 0 SET D (Double Floating-point)
0 0 SET I (Integer)

1 0 SET L (Long Integer)

If FIR06 (1) H is true and EALU bit 06 is present, the D input to the IL flop is enabled. When the flip-flop is
clocked, the IL bit in the status register is set. If FIR06 (1) H is true, and EALU bit 07 is present, the D input

_to the FD flip-flop is enabled. When the flip-flop is clocked, the FD bit in the status register is set. Both flip-
flops are clocked at the trailing edge of TS4. The LD FPSC (0) H signal is true for the five instructions listed
above and FIR06 (1) L is true in the case of the LD FPS instruction.

If FIRO6 (0) H is true, one of the other four instructions (SET D, SET F, SET I, SET L) is specified. This is de-
pendent on FIR03, FIR00, and FIR01. If FIR02 (1) H is true, either the IL or FD flip-flop is set, depending on
which gets clocked. The flip-flop that gets clocked is determined by FIRO1 or FIR00. Note that FIR06 (1) L is
now disabled. If FIR01 (0) L is true, FD is clocked; if FIROO (0) L is true, IL is clocked.

The remaining logic on the sheet shows the open-collector inverters, which are collector ANDed to supply the
inputs to the B condition code logic on FXPF.

6.2.23 FXPJ

, The logic on this print is used for maintenance purposes and consists of eight D-type flip-flops, and two 7485 4-bit
decoders. The eight D-type flip-flops are housed in two 74175 ICs — four per IC. These flip-flops comprise the
8-bit U Break register, which is loaded from EALU bits 7 through 0.

Because the FP11 does not have the capability of determining what state the CROM is in, the U Break register
and decoding logic are designed for this purpose. This allows the programmer or maintenance personnel to load
an 8-bit address into the U Break register. When the CROM sequences to this address, it is detected and a 4 match
signal is generated. Detection occurs because the contents of the microbreak register matches the controls of the
CRAR (Control ROM Address Register).

The CROM address is loaded in TS2 but the CROM buffer is actually loaded in TS4. Note that two versions of the
u match signal are available — one occurring as soon as the u match signal is generated. This signal is sent to the
FRM module to produce an interrupt when a match is detected. The second version of this signal enables a D-type
flip-flop, which is clocked at the same time as the CROM data buffer (TS4). The output of this flip-flop provides
a synchronizing signal for oscilloscope use. This flip-flop sets at the beginning of the required ROM state and re-
mains true for the entire ROM state.

6.2.24 FXPK

The FXPK print shows the DIMX and the drivers, that the BD register feeds for communication with the 11/45.

6.2.24.1 DIMX — The DIMX consists of four 74158 quadruple 2 line-to-1 line multiplexers. Inputs are from
the CPU BAMX (designated BAMX15 to BAMXO00) or from the DATA IN lines (designated BR15 to BR0O).

6-23

When the FP11 is in the Ready state, the BAMX data input to MPX DATA15 through MPX DATAOO0 (DIMX)

is enabled, which allows the address of the instruction to be loaded into the scratchpad accumulator via the EMX,
EALU, and ACMX. The instruction is fed to the FIR directly from the buffered BR lines. In this way, both the
PC and the instruction are transferred to the FP11 at the same time. When the FP11 is not in the Ready state,
the buffered BR lines are enabled through the DIMX.

6.2.24.2 Drivers — The sixteen 74H01 2-ihput positive NAND gates are used as open-collector drivers to drive
the outputs from the BD register to the Central Processor Unit, via the BUS INTD lines. The BUS INTD lines are
a fast internal bus also used by the Central Processor and solid state memory.

6.2.25 FXPL

This print shows the six-stage step counter, which consists of a four-stage 74191 binary counter and two 74S112
J-K edge-triggered flip-flops. The S-type flip-flops are used for bits 0 and 1 to ensure sufficiently fast set-up time
on the input gates to the SCZ flip-flop. The 1’s complement of the number of shifts to be performed is loaded in-
to the step counter from EALU bits 5 through 0. This occurs during TP4. The step counter is used as an up-
counter to count the number of shifts used in normalizing, arithmetic operations, or in the aligning of exponents. -

The step counter is preset to the 1’s complement of the number of shifts required. Termination of the opera-
tion is detected when the step counter sequences to all 1s. When this occurs, SCZ goes to a 1. Note that all in-
puts to the SCZ flip-flop are 1s, except for SCO0 which is a 0. The next increment of the step counter causes the
count to go to all 1s and SCZ to be set. Also note that SC EQ XX1111 is true when all four bits (bits 2, 3, 4, and
5) are 1s.

If in maintenance mode, the direct clear to the SC LOADED flip-flop goes high, allowing this flip-flop to be set
by a LD SC maintenance instruction. When the flip-flop is set, subsequent loads of the step counter by the micro-
program will be inhibited. When the step counter increments to all 1s or when maintenance mode is disabled,

SC LOADED is reset allowing load pulses to occur.

6-24

TN

CHAPTER 7
MAINTENANCE

7.1 INTRODUCTION

This chapter describes some of the maintenance techniques and tools available for maintenance of the FP11. A
description of the FMAA Maintenance Module, display features, maintenance instructions, and diagnostic pro-
gramming is also provided.

7.2 MAINTENANCE MODULE

The maintenance module consists of an indicator switch board (W131) and a driver board (W130 or W133)
mounted piggy back in slot E1 of the KB11-A mainframe. The following floating-point signals may be displayed
on the indicator board:

TPH

T1

T2

T3

T4

FP WAIT

FP ATTN

FP REQ

i ~ FPSYNC

Four floating-point condition codes (FZ, FC, FV, FN)

k. Two lights on the indicator board are unused but their pins are available on the back plate in
order to allow the maintenance engineer to look at signals he may be interested in. The two
available pins are EO1 F2 and EO1 H2. A high signal (+3V) is needed to turn on the light.

IS

DS B T T S)

The following CPU signals are also displayed:

BUST
MEM

REF REQ1
REF REQ2
CPFC1/FPECI
BBSY

MSYN

SSYN

Q5 - R

> ® o= oo

(continued on next page)

CNTL OK

~

j. AERF

k. PARERR
1. SERF

m, T5

The switches on the maintenance module are:

S4 — MAINT STPR switch
S3 — crystal clock/RC clock

S2 S1

0 0 Normal operation
1 0 Single ROM cycle
0 1 Microbreak stop

1 1 Single time pulse

S3 is placed into the RC clock position where the clock period can be varied for maintenance purposes. It is usu-
ally placed in the crystal position for normal operation. '

NOTE
During maintenance, when any of the floating-point
modules are inserted in extender boards, the clock
must be in the RC position and set to more than 50 ns
per clock period. It is also recommended that multi-
layer extender boards be used.

S4 is a MAINT STPR switch that allows the function selected by the combination of switches S1 and S2 to be
performed. For example, if S2 is on and S1 is off, a single ROM cycle will occur each time the MAINT STPR
stepper (S4) is depressed. The cycle will stop between TS2 and TS3. This feature can be used where mainte-
nance personnel suspect a specified instruction is not sequencing through the proper branches. Maintenance per-
sonnel can operate in single ROM cycle mode and compare the ROM address on the console to the ROM address
on the flow diagram to ensure that the proper branches are being taken. If S2 is off and S1 is one and the
MAINT STPR is depressed, the FP11 will stop between TS2 and TS3 when a match occurs between the CRAR
(control ROM address register) and the microbreak register. If the MAINT STPR switch is depressed again, the
machine recycles until a second micromatch occurs at the same ROM address. This microbreak register is loaded
by the by the LDUB instruction and provides maintenance personnel with a convenient means of sequencing to a
desired state without manually depressing the single time stepper for each state sequenced through.

If S2 and S1 are both on, a clock transition occurs each time the MAINT STPR stepper is depressed. This allows
the FP11 to be stopped with the clock pulse high or low in order to examine gate conditions in the logic. A sec-
-ond feature is that if the CPU could not cycle on the instruction, the operator could single clock up to the point
of failure to see if the data paths are set up properly. Note that both the crystal and RC clock can be controlled
by switches S4, S2, and S1.

7.2.1 Time Margining Using Maintenance Module

The timing of the RC clock can be varied using the maintenance module with S4 in the RC position, by adjusting
potentiometer R32 on the M8114 module. The limits are from 45 ns minimum to 500 ns maximum.

‘The time margins should be checked periodically to locate any potential problems due to increase in propagation
delays or flip-flop switching times.

7.3 SPECIAL MAINTENANCE INSTRUCTIONS

A set of five maintenance instructions are available to assist maintenance personnel. These instructions are de-
scribed in the following paragraphs.

7.3.1 LDUB - Load Microbreak Register (170003)

This instruction causes the lower eight bits of general register 3 in the CPU to be loaded into the microbreak reg-
ister. LDUB can be used for the functions described in the following paragraphs, depending on the FMM bit
(bit 4) in the program status word (FPS).

NOTE
The FMM bit in the status word is used to enable spe-
cial maintenance logic. In order to set this bit, the CPU
must be in KERNEL mode. '

With the FMM bit set, the microprogram will be aborted through the trap routine ROM address to the Ready ‘
state after the state specified by the address (next sequential ROM state) in the microbreak register is detected.
If the Interrupt Enable bit (bit 14) of the floating-point processor status word is set, the CPU will trap to loca-
tion 244. An exception code of 16 will be stored in the FEC (floating exception code) register. The contents
of the FEC register can be transferred to the CPU by the STST (store status) instruction. A second function,
available as a result of the LDUB instruction, is that the maintenance personnel can use the address match as a

. scope sync independent of the FMM bit. When the ROM address matches the contents of the microbreak regis-
ter, the UMATCH flip-flop is set at the leading edge of TS1. The set output of this flip-flop (pin DK1 of slot 4
in the FXP module) is used as a scope sync to allow visual observation of events that occur during a particular
ROM state. UMATCH is cleared at the trailing edge of TS4, which provides maintenance personnel with a sync
signal that occurs at the beginning of a specified ROM state and ends at the beginning of the next ROM state.

7.3.2 LDSC — Load Step Counter (170004)

This maintenance instruction loads the 1°s complement of the least significant six bits of general register 4 into
the step counter. LDSC sets the SC LOADED flip-flop, provided FMM (bit 4) of the processor status word is set
(CPU must be.in KERNEL mode to set FMM), which inhibits the ROM from loading the step counter. When the
step counter is incremented to all 1s, the SC LOADED flip-flop is cleared. As a result of this instruction, main-
tenance personnel can set up the step counter to do a specified number of steps in a multiply or divide routine
and can stop where desired to examine the contents of the registers.

7.3.3 STAO — Store AR In ACO (170005)
This instruction transfers the contents of the AR to ACO, as described below:

AR (57:35)~> ACO(57:35) if FD =0
AR {57:3)—> ACO(57:3)if FD = 1

7.3.4 STQO — Store QR In ACO (170007)
This instruction transfers the contents of the QR to ACO, as described below:

QR (57:35)> AC0(57:35if FD=0
QR (57:3)> ACO(57:3)if FD =1

NOTE
The STAO and STQO instructions are used to store
the contents of the AR and QR (internal registers)
in an AC. Since the contents of the AC can be trans-
ferred to memory, this provides maintenance person-
nel with a means of checking the contents of the AR
and QR registers.

7.3.5 MRS — Maintenance Right Shift (170006)

The Maintenance Right Shift instruction shifts the AR or QR one bit position to the right. This instruction is
used in conjunction with the STAO instruction to allow AR59 and AR58 to be examined. Two MRS instructions
are necessary to transfer AR59 to AR57 and ARS8 to AR56. The MRS instruction is also used in conjunction
with the STQO instruction to allow bits QR59 and QR58 to be examined. Two MRS instructions are necessary
in order to shift QR59 to QR57 and QR58 to QR56. AR59 and AR58 as well as QR59 and QR58 represent the
sign bit and hidden bit, respectively. These bits are not transferred between the CPU and the FP11 but are used
in data calculations by the Floating-Point Unit. Therefore, in order to examine the state of these two bits, the
use of the MRS instruction is required.

7.3.6 Maintenance Instruction Programming Example

The following program demonstrates the use of the FP11 maintenance instructions. This program is a multipli-
cation example, whereby the contents of the AR and QR are typed out with each incrementation of the step
counter from 1 through 71. Note that the MRS instruction is used in order to get AR and QR bits 59 and 58 in-
to general register R5 for the typeout in each pass through the loop.

The fractional part of the multiplicand which is 1/2 or 0.1 is stored in the BR and the fractional part of the mul-
tiplier-which consists of alternating 1s and Os is stored in the QR. The multiplier has an exponent of 200 and the
multiplicand has an exponent of 204. The sign bit is a 0 and the hidden bit isa 1. The result of each step of the
multiplication is stored in the AR. The typeout of the listing after each step of the multiplication is shown fol-
lowing the example. ‘

The contents of the AR and QR are typed out 57 times. On the 58th typeout, the step counter is not set and
this last typeout represents the final product.

,//\‘

I

001000
001002
001004
001006
001010
001012
001014
001016
001020
001022
001024
001026
001030
001032
001034
001036
001040
001042
001044
001046
001050
001052
001054
001056
001060
001062
001064
001066
001070
001072
001074
001076
001100
001102
001104
001106
001110
001112
001114
001116
001120
001122
001124
001126
001130
001132
001134
001136
001140
001142
001144
001146
001150
001152
001154
001156

012706 START:
000600
170127
040220
172667
000204
012703
000230
170003
005004
005204 NXTMUL:
170004
012705 LSTMUL:
001166
172567
000150
171102
170007
174045
042715
177600
170005
174045
042715
177600,
170006
170006
170007
174067
000134
016703
000130
042703
177600
006303
006303
050365
000010
170005
174067
000106
016703
000102
042703
177600
006303
006303
050315
004567
000234
000410
000000 AR:
000000
000000
000000
000000 QR:

MoV
LDFPS
LDD
MOV

LDuB
CLR
INC
LDSC
MOV

LDD

MULD
STQO
STD
BIC

STAO
STD
BIC

MRS
MRS
STQO
STD
MOV
BIC
ASL
ASL
BIS

STAO
STD

MOV
BIC
ASL
ASL
BIS
JSR

BR
.FLT4

.FLT4

#600,%6
#40220
MLYR,AC2
#230,%3
%4

%4
#QR+10,%5
MCND,AC1
AC2,AC1
ACO,-(5)

#177600,@5

ACO,-(5)
#177600,@5

ACO, TEMP
TEMP,%3
#177600,%3
%3

%3

%3,10(5)
ACO,TEMP
TEMP,%3
#177600,%3
%3

%3

%3,@5

%5,PRINT

+22
0

0

;SET UP STACK POINTER AT 600

;DISABLE INTERRUPTS; SET DOUBLE AND MAINT. MODE
;LOAD MULTIPLIER IN AC2

SET REG. 310 230

:SET MBR TO 230
:CLEAR COUNTER

" ;INCREMENT COUNTER

;LOAD 1'S COMPLEMENT OF R4 INTO SC
SET UP REG. 5 TO STORAGE TABLE

;LOAD MULTIPLICAND INTO AC1

;DO PARTIAL MULTIPLY
;TRANSFER QR TO ACO .
;STORE QR IN TABLE
;CLEAR SIGN AND EXPONENT

;STORE AR IN ACO

;STORE AR IN TABLE

;CLEAR SIGN AND EXPONENT

;SHIFT AR AND QR RIGHT ONE PLACE
;SHIFT AR AND QR RIGHT ONE PLACE
;TRANSFER QR TO ACO

;MOVE ACO TO TEMP

;MOVE MOST SIGNIFICANT 7 BITS OF QR TO R3
;CLEAR SIGN AND EXPONENT

;SHIFT MSB OF QR ONE PLACE LEFT
;SHIFT MSB OF QR ONE PLACE LEFT
;SET QR59 AND QR58 IN TABLE

;STORE AR IN ACO
;MOVE ACO TO TEMP

;MOVE MOST SIGNIFICANT 7 BITS OF AR TO R3
;CLEAR SIGN AND EXPONENT

;SHIFT MSB OF AR ONE PLACE LEFT

;SHIFT MSB OF AR ONE PLACE LEFT

;SET AR59 AND AR58 IN TABLE

;PRINT AR AND QR

;BRANCH OVER ARGUMENTS
;AR STORED IN THESE FOUR LOCATIONS

;QR STORED IN THESE FOUR LOCATIONS

7-5

001160
001162
001164
001166
001170
001172
001174
001176
001200
001202
001204
001206
001210
001212
001214
- 001216
001220
001222
001224
001226
001230
001232
001234
001236

000000
000000
000000
020427
000071
100714
001402
000167
177576
005204
000167
177620
040052
125252
125252
125252
040000
000000
000000
000000
000000
000000
000000
000000
000001

LSTPAS:

MCND:

MY LAR:

TEMP:

CmP

BMI
BEQ
JMP

INC
JMP

WORD
WORD
WORD
.WORD
.WORD
.WORD
.WORD
WORD
.FLT4

.END

%4, #71

NXTMUL
LSTPAS

START

%4

LSTMUL

040052
1256252
125252
125252
040000
000000
000000
000000
0

;HAVE 71 PASSES BEEN DONE

:NO—-DO NEXT PASS
;'YES—DO LAST PASS
;THIS MULTIPLY COMPLETE—DO NEXT ONE

/INDICATE 72ND PASS
;DO LAST PASS WITHOUT LOADING SC.

/"\

TYPEOUT OF QR AND AR
Step

O N WN =

©

AR

0000000000000000000
0000000000000000000
1000000000000000000
0400000000000000000
1200000000000000000
0500000000000000000
1240000000000000000

0520000000000000000-

1250000000000000000
0524000000000000000
1252000000000000000
0525000000000000000
1252400000000000000
0525200000000000000
1252500000000000000
0525240000000000000
12525200000000C0000
0525250000000000000
1252524000000000000
0525252000000000000
1252525000000000000
0525252400000000000
1252525200000000000
0525252500000000000
1252525240000000000
0525252520000000000
1252525250000000000
0525252524000000000
1252525252000000000
0525252525000000000
1252525252400000000
0525252525200000000
1252525252500000000
0525252525240000000
1252525252520000000
0525252525250000000
1252525252524000000
0525252525252000000
1252525252525000000
0525252525252400000
1252525252525200000
0525252525252500000
1252525252525240000
0525252525252520000
1252525252525250000
0525252525252524000
1252525252525252000
0525252525252525000
1252525252525252400
0525252525252525200
1252525252525252500
0525252525252525240
1252525252525252520
0525252525252525250
1252525252525252524
0525252525252525252
1252525252525252525
1252525252525252525

1252525252525252525

7-1

QR

1252525252525252525
0525252525252525252
0252525252525252525
0125252525252525252
0052525252525252525
0025252525252525252
0012525252525252525
0005252525252525252
0002525252525252525
0001252525252525252
0000525252525252525
0000252525252525252
0000125252525252525
0000052525252525252
0000025252525252525
0000012525252525252
0000005252525252525
0000002525252525252
0000001252525252525
0000000525252525252
0000000252525252525
0000000125252525252
0000000052525252525
0000000025252525252
0000000012525252525
0000000005252525252
0000000002525252525
0000000001252525252
0000000000525252525
0000000000252525252
0000000000125252525
0000000000052525252
0000000000025252525
0000000000012525252
0000000000005252525
0000000000002525252
0000000000001252525
0000000000000525252
0000000000000252525
0000000000000125252
0000000000000052525
0000000000000025252
0000000000000012525
0000000000000005252
0000000000000002525
0000000000000001252
0000000000000000525
0000000000000000252
0000000000000000125
0000000000000000052
0000000000000000025
0000000000000000012
0000000000000000005
0000000000000000002
0000000000000000001
0000000000000000000
0000000000000000000
0000000000000000000

0000000000000000000

7.4 CONSOLE DISPLAY FEATURES . (\
)

The PDP-11/45 console can be used to display the floating-point ROM address and, under certain conditions, can
display the contents of the EALU.

7.4.1 Display of ROM Address

The 16 DATA indicators on the console can be used to display the 8-bit FP11 ROM address and the 8-bit CPU

ROM address. The FP11 ROM address is displayed on the left-most DATA indicators (bits 15—08) and the CPU

ROM address is displayed on the right-most indicators (bits 07—00). The four-position data selector switch on .
the console must be set to the u ADDR FPP/CPU position to display the ROM address.

NOTE
If the FMAA maintenance module is set up to do single
ROM cycles or u match, the FP11 ROM address displayed
is the next ROM address; i.e., the address of the next
ROM state to be cycled. The reason for this is that the
ROM address changes at the end of time state 2 and a
Pause or Wait state occurs between time state 2 and time
state 3. If the FMAA maintenance module is set up to do
single clock cycles during time states 1 and 2, the ROM ad-
dress displayed is the current address, and for single clock
cycles during time states 3 and 4, the ROM address displayed
is the next address.

7.4.2 Display of EALU Contents

In certain ROM states of the CPU the contents of the EALU may be displayed on the lower 16 ADDRESS in- (
dicators (bits 15—00) on the PDP-11/45 console. These CPU ROM states are unique to F class instructions and
are listed as follows:

ROM State Octal Address

FOP.30 173
FOP.50 211
FOP.60 362
FOP.70 316
FOP.80 376
FOP.90 375
FOP.40 36

FSV.20 225

NOTE =

The content of the EALU at any of these ROM states

is dependent.on the FP ROM state occurring at that

time. Both the FP11 and the CPU should be set up for ' -
single-step operation using both the CPU and FP11

Maintenance Boards to see meaningful data in these

ROM states.

The eight-position address selector switch on the console must be set to CONS.PHYS, or PROG.PHYS.

7.5 MAINTENANCE PROGRAMMING (

This section describes some simple programs that can be performed by maintenance personnel to ascertain if cer- -
tain areas of the logic are working properly.

7-8

PROGRAM 1

003000
003002

000000
177570
003000
172400
000000

PROGRAM 2

003010
003012
003014

003010
172400
000776
000000

PROGRAM 3

003020
003024
003026
003030
003032
003034
003036

003020
016701
170101
170200
020100
001400
000000
000137

PROGRAM 4

003050
003052
003056
003062

004000
004002
004004
004006

003050
170011
172437
174037
000000
004000
011111
022222
033333
044444
000001

174544

003020

004000
004010

ACO0=%0

SWR=177570

.=3000
LDF ACO,ACO
HALT

.=3010
LDF ACO,ACO
BR .-2
HALT

.=3020
MOV SWR,%1
LDFPS %1
STFPS %0
CMP %1,%0
BEQ .+2
HALT
JMP @#3020

.=3050
SETD

;FCLASS AND MODE 0

;FCLASS AND MODE 0
;LOOP ON INSTRUCTION
;SHOULD NEVER HALT

;SWITCHES TO CP REGISTER 1
;CP REGISTER 1 TO FPS

;FPS TO CP REGISTER O
;DOES RO=R1?

;TEST

;IS NOT THE SAME

;RESTART PROGRAM

;PUT FPU IN DOUBLE PRECISION

LDD @#4000,ACO ;LOAD ACO FROM LOCATION 4000

STD ACO,@#4010

HALT
=4000

1

22222

33333

44444
.END

;STORE ACO IN LOCATION 4010
JEXAMINE DATA TO SEE IF SAME

;FIRST WORD OF LOAD
;SECOND WORD
;THIRD WORD
;FOURTH WORD

The following general assumptions can be made about each of the programs.

1.

In program number 1 it can be assumed that control can be transferred between the FP11 and the
CPU and also that the FP11 can cycle on the LDF instruction.

In program number 2 it can be assumed that the floating-point instruction can be run dynamically
and that the interface signals are being properly generated. The program is useful for scoping con-
trol signals between the FP11 and the CPU. In addition, it is probable that both the FP11 and the
CPU control ROMs will pause in the Ready state and the LDF instruction can be looped on.

In program number 3 it can be assumed that single-operand fetches work and that the data is being
transferred properly. The program allows the data placed in the switch register to be transferred
from the CPU to the FP11, back to the CPU, and then compared.

NOTE

Bits 12 and 13 of the floating-point status word are
unused and should be set to 0 on the switch register.

In the program number 4 two floating-point words from memory are transferred to the FP11 and
then transferred back to memory. It can generally be assumed that the QR, BR, FALU, ACMX,

and scratch pad are operating correctly. For single-precision mode, the same program can be utilized
if the SETD instruction is replaced with the SETF instruction.

NOTE

Refer to Chapter 4 of the PDP-11/45 System Main-
tenance Manual for information on diagnostic pro-

gramming.

Signal Mnemonic

ACC 2:00
(AC Control)

ACF (2:0)
(AC Field)

ACMX (07:00)
ACMX(15:08)
ACMX (23:16)
ACMX (31:24)

ACMXC1, ACMXCO
(ACMX Control)

ACRE
(AC Read)

ADDR INCR
(Address Increment)

AD2, AD1

- ALUCIN

ALUC (3:0
(ALU Control)

ALUM

Logic Print

FRME
FRME

FRLA
FRLB
FRLC
FRLD

FRME
FRME
FRMF

FXPE

FRMH

FRME

FRMH

A-1

APPENDIX A
SIGNAL GLOSSARY

Function

Three bits used to select a 16 or 32 byte locatlon
within the accumulator.

Three ROM bits used to specify accumulator
address.

Outputs of ACMX, which are applied to scratch
pad accumulator.

ROM bits used to select inputs to ACMX.

ROM bit used to specify AC Read ona 1 and AC
Write on a 0.

ROM bit that causes the BA register to be incre-
mented twice.

A 2-bit constant field that is decoded to a value of
0, 2, 4, or 8 and indicates how much the program »
counter is to be incremented. This is based on the
number of memory cycles required to represent the
operand, as shown:

AD2 AD1 No. of Operands
0 0 8
0 1 4
1 0 2
1 1 0

One of the six inputs to the ALU and produces a
carry under certain conditions (see Table 6-3). -

Four ROM bits used to select function performed
by ALU.

Mode bit which, when set, indicates a logical func-
tion is to be performed by the ALU and, when re-
set, indicates an arithmetic function is to be per-
formed.

(continued on next page)

Signal Mnemonic

ALUS (3:0)

ARC1, ARCO
(AR Control)

AR (59:52)
AR (51:44)
AR (43:36)
AR (35:32)
AR (31:24
AR (23:16
AR (15:08)
AR (07:00

AR NORM (1) H

ARS1, ARSO

ATTENTION (1) H

BA (15:00)

BAC
(BA Control)

BACMXC1, BACMXCO

BB1Z

BD (15:00)

BDC
(BD Control)

BMX (15:00

BMX(15:00)H

BMXC1, BMXCO
(BMX Control)

Logic Print

FRMH
FRME

FRHD
FRHC
FRHB
FRLK
FRLJ

FRLH
FRLF
FRLE

FRHF

FRHE

FRMJ
FXPC
FRMF
FRMH
FXPF
FXPC
FRMF
FRLN

FXPH

FRME, FRMF

A2

Function

Select lines which specify the function to be per-
formed in the ALU. (See Table 6-3).

ROM bits used to control the shifting or loading of

the AR.

Outputs from AR which are directly applied to

the FALU.

If the AR is normalized, this flip-flop is set when
the AR is clocked. If the AR is unnormalized, the
flip-flop remains reset. The flip-flop is held cleared
except for divide and left shifting of the AR.

AR select signals used to specify function performed

by AR. These signals are derived from AR control
bits 26 and 25 from the ROM or from ROM CSB
bits 29 through 27 during an add or subtract op-

eration.

This signal is set by FP ATTN and is used to force
the FP11 out of the Wait state by clearing FRHH

PAUSE.

Represents the 16-bit outputs of the BA register.
ROM bit used to load the BA register.

Buffered ACMX control lines used to specify inputs

to ACMX.

When this signal is a 1, it indicates that the expo-
nent (bits 15 through 8) is 0 and that the exponent

has not overflowed.

Represents the 16-bit outputs of the BD register.
ROM bit used to load the BD register.

Outputs of the BMX which represent data from

one of four input sources.

These are inputs to the condition codes and convey
information regarding the state of the exponent
(overflow, underflow, negative, etc.).

ROM bits used to select inputs to BMX.

(continued on next page)

TN

Signal Mnemonic

BN

BRCO (0) H
(BR Control)

BRC1 (O)H
(BR Control)

BR (59:36)
BR (35:24)

BR (23:00

BUS INTD (15:00)

BZ
CLK AR A,CLK ARB

CLK BA
CLK BD
CLK BR A,CLK BR B

LR BR A,CLRBR B

CLK IR
CLK QR A,CLKQRB

CLK RB A,CLK RB B

Logic Print

FXPF
FRME
FRME

FRHA
FRLM

FRLL

FXPF
FRHE

FXPC

FXPC

FRMH

FRMH

FXPD

FRHE

FRME

A-3

Function

This signal is a 1 when bit 15 isa 1 and indicates
that the exgponent has underflowed.

ROM bit used to load the BR.
ROM bit used to load the BR.

Outputs from BR which are applied to FALU.

Outputs of the BR register which are applied to the
FALU. Bit 35 of the BR is applied to FALU
through the FMX, which is used for rounding
purposes.

Outputs of the BR register which are applied to the
FALU. Bits 3, and 19 of the BR are applied to the
FALU through the FMX, which is used for round-
ing purposes.

Open collector bus lines that run between the BD
register and the 11/45 to provide for flow of data
to the 11/45. The FP11 can be disconnected from
the bus by the 11/45 gating signal TMCF FP READ.

This signal is a 1 when bits 15 through O are all Os.

CLK AR A is used to clock the AR during load and
shift operations. CLK AR B is a copy of this signal
necessary for additional drive requirements.

A signal used to load the BA register at the end of
TS4 if the BA control (bit 48) from the CROM
isa 0.

A signal used to load the BD register at the end of
TS4 if the BD control (bit 49) from the CROM
isa0. :

Signals which clock the BR during the latter half
of TS4. Two signals available to satisfy drive re-
quirements.

Signals used to clear the BR during TS2. Two sig-
nals available to satisfy drive requirements.

A signal used to load the FIR at the beginning of
TP3 if the FIR control (bit 51 of the CROM)
isa 0.

CLK QR A is used to clock the QR during load and
shift operations. CLK QR B is a copy of this signal
necessary for additional drive requirements.

This signal clocks the ROM output buffer on the
trailing edge of TS4. Two sources available for in-
creased drive capability.

(continued on next page)

Signal Mnemonic
CLK SC '
CLOCK A,B,C.D
CLOCK A,B,C,RTN
CLRQRA,CLRQRB

CLR SYNC

CNST BIT 00, AND 15

CNST BIT 03

CNSTF4-CNSTFO

CONTROL SEL2—CONTROL SELO

CONV Sp

COUT10
CouT09
COUTO06,07,08
CRARIDL
CRARODL

CRAR(07:04

CRAR (03:00)

Logic Print

FRHF

FRHJ

FRHJ

FRHF

FRMJ

FXPA

FXPA

FRMF

FRMF

FXPE

FRHD
FRHC
FRHB
FRMB
FRMB

FRMA

FRMB

A-4

Function

A signal used to clock the step counter in multiply
or divide. The signal is inhibited during the actual
arithmetic operation or when the AR is normalized.

Four clock lines from the clock driver used to sup-
ply clock signals to the FP11.

Return lines for the four clock driver lines which
supply signals to the FP11.

Signals used to clear the QR in time state 2 with
ROM control bit QRC2 on a 0.

ROM derived control signal occurring during the
latter half of TS4 which causes the SYNC flip-flop
to be cleared if a CONV SPECIAL-type instruction
is issued.

These are signals which, when enabled, will force a
bit into bit 00, or bit 15 of the EMX, respectively.

A constant bit used in bit location 3 of the constant
word which is fed into the B input of EALU via
the EMX. .

- Five ROM bits used for various constants employed

in the FP11. When accompanied by RDFN
CNSTF (1) these bits are used for control functions.

Three ROM bits used for encoding up to seven ad-
ditional functions, such as LOAD FPSC, LOAD
UBC, REG WRITE, etc.

When a store'exponent, store floating to integer, or
store floating to double instruction is issued, CONV
SP is generated to initiate a conversion routine
based on the instruction.

Carry output to succeeding FALU chip for carry
propagation.

Input to CRAR 1 which represents the next state
of the address register bit.

Input to CRAR 0 which represents the next state
of the address register bit.

Bits 7 through 4 of the 8-bit control ROM address
register. These bits are generated by the control
ROM. CRAR bits 4 and 5 can be modified by some
branch conditions which have been satisfied.

Bits 3 through 0 of the 8-bit control ROM address
register. These bits are generated from the control
ROM and can be modified by branch conditions
which have been satisfied.

(continued on next page)

,//—\\

(

"~

Signal Mnemonic

CSB (2:0)
(Call Subroutine bits)

D €63:32)
D (31:00

DISABLE SC
(Disable Step Counter)

DISABLE SYNC

DIV SUB

DROM (A7:A0)

DROM (B7:B0»

DSBL1, DSBLO

EALU (15:00)

EMXCO

EMXC1, EMXCO
(EMX Control)

EN CNST 7x

ENABLE FMO

ENABLE FV

ENAB QRSOL

Logic Print

FRME

FRMC
FRMD

FRMF

FRMF

FRMH

FXPD

FXPD

FRMF

FXPA,FXPB

FXPA

FRMF

FXPA

FRMJ

FRLP

FRHE

A-5

Function

Three ROM bits used to specify functions to be
performe? during an arithmetic subroutine.

32 control ROM outputs which are applied to the
ROM output buffer. Bits DO7 through D00 are not
applied to the output buffer but are directly ap-
plied to the control ROM address register.

Second level decoding of ROM bits 61 through 59
to yield 4.

Second level decoding of ROM bits 61 through 59
to yield 34

Indicates that a subtract function is to be performed
by the ALU in a divide subroutine.

Decoded instruction ROM outputs used with
DROM B7 — DROM BO to specify branching con-
ditions necessary to perform each instruction.

Decoded instruction ROM outputs used with
DROM A7 — DROM AO to specify the branching
conditions necessary to perform each instruction.

ROM bits used to clear FP REQ and/or disable
BRQ monitor.

16 outputs from EALU whose content depends on
inputs supplied and function specified to be per-
formed in EALU.

One of the select lines to EMX. Used in conjunc-
tion with EMXC1 (1) H to select one of four inputs.

ROM bits used to select inputs to EMX.

This signal is generated in order to generate an octal
digit of 7xg for constants of 70, 71, 74, and 75
specified by constant fields of 32, 33, 36, and 37.
respectively.

This signal enables the floating minus zero interrupt
if the gating on sheet FRMA detects a minus.zero
condition. This is detected by a negative sign and
an exponent of all Os.

Indicates that a positive exponent has overflowed,
setting bit 8 out of EALU. Occurs only when
CROM enables Floating Condition Code output.

ROM derived signal indicating that a right shift
should be performed in the QR, with Os being shifted

into the MSB.
(continued on next page)

Signal Mnemonic

EXPEQOL
EXPEQOH

FALUS59-FALU52
FALUS51-FALU44
FALU43-FALU36
FALU35-FALU32
FALU31-FALU24
FALU23-FALUl6
FALU15-FALUOS8
FALUO07-FALUO0OO

FC

FCC1, FCCO
(Floating Condition Codes)

FCINT

FCLD ENH

FD

FER
(Floating Error)

FIC
(Floating Interrupt on Conversion
Error)

FID
(Floating Interrupt Disable)

FIR11-FIR0O

FIRC
(FIR Control)

Logic Print

FRLM

FRLM

FRND
FRNC
FRNB
FRLK
FRLJ

FRLH
FRLF
FRLE

FRLP

FRMF

FRLP

FXPE

FXPH

FRLP

FRLP

FRLP

FXPD

FRMF

Function

When these signals are enabled, it indicates that the
exponent is equal to 0. SCR OUT 30-23 can re-
present the eight bits of exponent.

Outputs from FALU dependent on inputs from AR
and BR and function specified in FALU.

Bit O of the FP11 program status register which,
when set, indicates that the integer, obtained from
conversion of a floating-point number, is too large
to be stored in the specified register. This is a re-
sult of the STCXJ instruction. FC also indicates
that absolute value of floating-point result was
larger than largest integer which can be represented
by 56 bits (D) or 24 bits (F).

ROM bits used to determine inputs to floating con-
dition codes.

The AND of FIC (1) H and FC (1) H. If the pro-
grammer wishes to trap only on the setting of a
condition code, he sets FIC (1) H. When the condi-
tion code is set (designated by FC (1)), FC INT is
generated which causes an FP TRAP if the interrupt
enable bit is set.

Used to signify that the floating condition codes
must be loaded into the CPU.

The floating double flip-flop, when set, indicates
double-precision floating point and when reset, in-
dicates single-precision floating-point.

Bit 15 of the FP11 program status register which
is set by CROM when FP11 sequences into error
state.

Bit 8 of the FP program status register which, when
set, will cause an interrupt if the FC bit (indicating
a conversion error) is set.

Bit 14 of the FP11 program status register which,
when set, allows all interrupts to be disabled.

Represents the 12-bits of the instruction word stored
in the floating instruction register.

ROM bit used to load the floating instruction regis-
ter; also used to indicate the Ready state of the
FP11, since this is the state during which the IR is

loaded.
(continued on next page)

N

Signal Mnemonic

FIRD6—FIRDO

FIU-
(Floating Interrupt on Underflow)

FIUV
(Floating Interrupt on Undefined
Variable)

FIV

(Floating Interrupt on Overflow)

FL

FMM

FMOF (1) H

FMXC1, FMXCO
FN

(Floating Negative)
FORCE ADD

FORCE SUB

FP ACKN WAIT

FP ADRINC

FP ATTN WAIT

~FPC1 L

Logic Print

FXPE

FRLP
FRLP
FRLP
FXPH

FRLP

FRMA

FRME
FRLP

FRMH
FRMH
FRHH

FRMJ
FRHH

FRMJ

Function

The outputs of the two instruction decoder ROMs,
when collector ORed, generate FIRD6 through
FIRDO. These are branch conditions which are
supplied to the CROM MPX to produce the proper
sequence for each instruction.

Bit 10 of the FP11 program status register which,
when set, allows a floating underflow to cause an
interrupt. I

Bit 11 of the FP11 program status register which,
when set, allows a minus zero from memory to
cause an interrupt.

Bit 9 of the FP11 program status register which,
when set, allows an overflow to produce an interrupt
condition.

The long-integer flip-flop, when set, indicates long-
integer format and, when reset, indicates short-
integer format.

Floating Maintenance Mode — bit 4 of the FP11
program status register which is used to set FP11
into maintenance configuration. This can only be
done while 11/45 is in Kernel mode.

This flip-flop is set on a floating minus zero and
causes the FP11 to trap to 20 when the 8 bits of
exponent are all Os and the sign bit is negative.

ROM bits used for rounding or incrementing oper-
and in AR.

Bit 3 of the FP11 program status register which is
the FP11 version of the N condition code.

Combination of ALUC (ALU Control) signals which
force ALUS3—ALUSO (ALU select) signals to speci-
fy an add operation.

Combination of ALUC (ALU Control) signals which
force ALUS3—ALUSO (ALU select) signals to.spe-
cify a subtract operation.

Forces the pause flip-flop to turn on causing the
FP11 to sequence to Wait state where it produces
FP TRAP and waits for FP ACKN.

This signal causes the address of the operand to be
incremented by 2.

ROM control signal which forces FP11 into Wait
state to wait for FP ATTN.

Indicates a DATO transfer when high and a DATI
transfer when low.

(continued on next page)

Signal Mnemonic

FPREQ (1) H

FP SYNC

FPSYNC () H

FP TRAP
FRACMUL

FT
(Floating Truncate)

»

FV
(Floating Overflow)

FV INT
('F loating Overflow Interrupt)

FZ

(Floating Zero)

GATE BD B1, GATE BD B2
GEN 12,PROP 12

GO TO READY

ICLR (1) H

ILL OP CODE

IMMEDIATE
INIT

Logic Print

FRMJ

FRMJ

FRMJ
FRHH
FRHE

FRLP

FRLP

FRLP

FRLP
FRHC
FRMB

FRMJ

FXPF

FXPE
FRHH

A-8

Function

Signal used in conjunction with FP SYNC to indi-
cate that more data words are desired. When FP
SYNC is returned to the CPU in the absence of FP
REQ, the memory cycles are terminated.

A signal sent to the CPU indicating that data has
been accepted or that the FP11 is ready to send
or receive data.

This signal enables FP SYNC to be sent to the CPU
in TS2 of the next ROM state.

Indicates that the FP11 is issuing a trap command.

This signal is derived from ROM bits 29 through 27
(CSB 2 through 0). When these bits are all Os, a
multiply operation is indicated.

Bit 5 of the FP11 program status register, which,
when set, causes the result of any floating-point
operation to be truncated rather than rounded.

Bit 1 of the FP11 program status register which is
the FP11 version of the V condition code.

The AND of FIV (1) H and FV (1) H. If the pro-
grammer wishes to trap only on the setting of the
overflow bit, he sets FIV (1) H. When the overflow
bit is set (designated by FV (1)), FV INT is gen-
erated which causes an FP TRAP if the interrupt
enable bit is set.

Bit 2 of the FP11 program status register which is
the FP11 version of the Z condition code.

Allows data to be gated from the BD to the 11/45—
two sections available for adequate drive.

Outputs from first level carry look-ahead which are
used as inputs to second level carry look-ahead.

Causes FP11 to trap to ready if the uJMP CROM
bit is on and next address has 2 LSBs of 1.

This signal is an enable to the INITF flip-flop which
allows the INITF flip-flop to be set synchronously
with the FP11. ICLR is set by INIT or INTR CLR
where INTR CLR is the CPU signal.

Indicates an illegal op code in that bits 15 through
12 of the instruction are not all Is, yielding the 174
op code assigned to FPU.

Indicates register R7 and modes 1, 2, or 4.

A signal asserted by the processor when the start

key is depressed, when a reset instruction is executed,

or when the power fail sequence is initiated.
(continued on next page)

/ N

TN

Signal Mnemonic

INITF B

L2 COUT10,11,12L

LD QR

LDQR (59:35)
LDQR (34:00
LDSC

LOAD FPSC

(Load floating-point status control)

LOAD UBC
(Load ubreak control)

LSQRINH

LSQR31INH

LSQROO IN H

MOOR'1
MPAUSE (1)H

MPX DATA (15:00

MR1 (1), MRO (1)

Logic Print

FRMA

FRLK

FRHF

FRHE

FRHE

FXPL

FRMF

FRMF

FRHF

FRLM

FRHF

FXPE
FRHH

FXPK

FRHE

A9

Function

Output from INIT flip-flop which is at TP2 by
ICLR (1), a function of INIT. INTF B is used to
direct clear the CRAR.

Carry outputs from the second level carry look-ahead
circuit. These outputs represent carry between the
first level carry look-ahead circuits.

A signal developed from ROM bits 22 and 21 to »
load the QR.

ROM derived signal indicating that the upper half
of the QR is to be loaded.

ROM derived signal indicating that the lower half
of the QR is to be loaded. -

A signal occurring at TP4 which is used to load the
six-stage step counter.

Second level decoding of ROM bits 61 through 59
to yield Og .

Second level decoding of ROM bits 61 through 59
to yield 1.

This signal, when high, causes a 1 to be shifted into
QROO (double precision) or QR31 (single precision)
and when low causes a 0 to be shifted in.

Used in single-precision floating point and represents
the bit that is shifted into bit position 31 of the QR
during a left shift.

This signal is generated during divide with double-
precision floating-point format specified and repre-
sents the bit shifted into the LSB position of the QR.

A mode 0 or mode 1 instruction has been decoded.

A flip-flop used during maintenance which stops
the state counter between time state 2 and time

state 3 and allows the Wait state to be turned on.

A multiplexer which selects the contents of the BR
register or the BAMX which contains the value of
the program counter when the FP instruction was
fetched. This MPX allows both the floating instruc-
tion and floating return address to be transferred
simultaneously to the FP11.

These are two flip-flops used-during the multiply

subroutine to store the two LSBs of the QR for
increased speed.

(continued on next page)

Signal Mnemonic

MSWITCH CNTU (1) H

MUL ADD

MUL ARITH (1) H

MUL DIV

MUL DIV DISABLE

MUL DIV H

MUL DIV LSQR31 L

MUL SUB

MUL SUB (1) H

PAUSE (1) H

PO,P1,P2(1)H

QRO S0, QRO S1, QR1 SO, QR1 S1

Logic Print

FRHH

FRMH

FRHE

FRMH

FRHE

FRHE

FRHF

FRMH

FRHE

FRHH

FRHE

FRHE

A-10

Function

A maintenance signal which allows manually switch-
ing out of the Wait state by clearing MPAUSE flip-
flop.

Indicates an add operation in the multiply subrou-
tine.

This flip-flop is set under following conditions:

MR1 MRO STRG1
0 1 [1]
1 0 [0]

and indicates an arithmetic operation is to occur.

Indicates a multiply or divide subroutine has been

‘selected by the ROM. When MUL DIV is true,

ALUC signals are disabled.

This signal disables the multiply or divide subrou-
tine by inhibiting the clock pulses from clocking
the QR or AR. This signal is gerierated when an
arithmetic operation occurs (MUL ARITH (1)),
when an operand is normalized, or when the step
counter is fully incremented.

This signal is derived from ROM bits 29 and 28
(CSB bits 2 and 1). When both bits are 0, a multi-
ply or divide operation is indicated.

This signal is generated during divide with single-
precision floating-point format specified and repre-
sents the bit shifted into QR31.

Indicates that a subtract function is to be per-
formed by the ALU in a multiply subroutine.

This flip-flop is set when a subtract operation is
performed during a multiply subroutine and is ini-
tiated by a string of 1s.

A flip-flop which stops the state counter between
state 2 and 3 and allows the Wait state to be turned
on.

Pause flip-flops which provide a 200 ns delay to
inhibit clocking the AR and QR during an add or
subtract operation in an arithmetic subroutine.

QR select signals used to specify function perform-
ed by QR. The signals are derived from QR con-
trol bits 22 and 21 from the ROM and are used in
conjunction with ACC2 to determine what accumu-
lator is loaded into the QR and whether it is loaded
into the lower or upper half of the QR

(continued on next page)

Al

C

Signal Mnemonic

QRS9 (1) H

QR (58:35)
QR (34:23)
QR (22:00)

QRC(2:0)
(QR Control)
RC

RDFN CNSTF
(Redefined Constant Field)

READY CLR

REG 6 or 7
REG WRITE

(Register Write)
RNGROM 2,1,0

ROM + UBS

RR2,RR1,RRO (1) H

RSQRINH

SC <05:00)

SCC .
(Step Counter Control)

SC LOADED (0) H

Logic Print

FRHF

FRHA
FRLM
FRLL

FRME

FRHIJ

FRMF

FRNJ

FXPE

FRMF

FXPF

FRHJ

FRHF

FRHF

FXPL

FRMF

A-11

Function

This is the QR sign bit flip-flop, and its value de--
pends on whether the QR is being rlght shifted or
left shifted.

Outputs from QR directly applied to BR. v

Three ROM bits used to specify if QR is to be
shifted or loaded.

An RC clock used to vary the frequency during main-
tenance mode.

ROM bit used to redefine constant field bits 57
through 53, so that they may be used for control
purposes.

Occurs every time the IR is loaded and is used to
ensure that certain flip-flops are initialized at the
beginning of each instruction.

Indicates that register 6 or register 7 has been
addressed.

Second level decoding of ROM bits 61 through 59
to yield 2g. '

Outputs of the range ROM used to determine the
magnitude difference between the two exponents
involved.

Signal which represents a CROM address compari-
son or single ROM cycle in maintenance mode.
This signal sets MPAUSE at TP1 time to force the,
FP11 into the Wait state. '

Three flip-flops used in division to speed up the add
or subtract operations within the divide subroutine.
They are high-speed duplications of AR59, ARSE,
and ARS57 and can only be left shifted.

Input to MSB of QR register during a right shift
operation.

Outputs of the step counter which indicate number
of shifts that have occurred during normalizing or
the number of shifts that must occur during.some
arithmetic operation.

ROM bit used to load the step counter.

Maintenance signal used to allow one load of the
step counter and inhibits further loading until step
counter overflow.

(continued on next page)

Signal Mnemonic
SCR OUT {31:24)
SCR OUT (23:16)
SCR OUT ¢15:08)
SCR OUT (07:00
SCR ADDRS 2:0
SCR WRITE 1, SCR WRITE 0

SC EQ XX1111
SCZ(1) H

SD(H)H

SELECT UBRMXB

SET FER

SET SYNCF

SIGNCI, SIGNCO
(Sign)

SS(HH

SS XOR SD

START EN

STATE4 () H
STATE3 (1)H

Logic Print

FRLD
FRLC
FRLB

FRLA

FRMH

FRMH

FXPL
FXPL

FRHF

FRMA

FRM]J

FRMJ

FRMF

FRHF

FRHF

FRHH

FRHH
FRHH

A-12

Function'

Outputs from scratchpad accumulator which are
applied to BMX or QR.

Address lines which select one of eight accumulato’r
scratchpads (ACO—AC?7).

A control signal used to command a write into the
scratch pad accumulator. Two signals available to
satisfy drive requirements.

Indicates four outputs (SC5 through SC2) are all 1s.

A signal used to indicate that the step counter is
fully incremented to all 1s, which causes termina-
tion of the operation being performed.

This flip-flop represents the sign of the destination
operand and can be set by SCR OUT 31 when the
upper half of the QR is to be loaded, by the ex-
clusive OR for SS and SD with a SGNC field of 1
(see Paragraph 6.2.4.6), or by SS or its complement
with a SGNC field of 0.

Indicates that the UAF bits are selecting the ap-
propriate branch combinations and the FMO,
ABORT, uBRK conditions are not enabled.

A signal generated by the ROM control to set the
error flag. The FER signal does not cause an inter-
rupt; however, the sasme ROM control will cause an
interrupt on sheet FRHH if the FIE bit is not enabled.

A direct set to the SYNC flip-flop which is pro-
duced at TS2 time when commanded by the con-
trol ROM or when a FMO trap is going to occur.

ROM bits used to determine sign of source and sign
of destination.

This flip-flop represents the sign of the source op-
erand and can be set by the sign bit (SCR OUT 31)
of the scratchpad accumulator during loading of
the upper half of the OR, or by the SGN bits in the
control ROM.

A signal which represents exclusive OR of SS and
SD.

Enables the state counter to restart from the Wait
state on the next clock pulse.

Indicates that the FP11 is in time state 4.
Indicates that the FP11 is in time state 3.

(continued on next page)

¢

()

Signal Mnemonic

STATE 2 (1) H
STATE 1 (D H
STRG 1 (1)

STR ZERO
(Store Zero)

SUB
SUB CALL

SUB FRAC

SYNC
TP4
TP2
TS3, TS4, TSI, TS2

TS4A, TS4B
TS3A,TS3B
TS2A,TS2B

UAF1, UAFO
(Microaddress field)

UBR2—-UBRO
(Microbranch)

uBRKF (1) H

uIMP
(Microjump)

UMATCH H

Logic Print

" FRHH

FRHH
FRHE

. FRLP

FXPE

FRHH

FXPF

FRMF
FRMA
FRMA
FRHH

FRHH

FRHH

FRHH

FRME

FRME

FRMA

FRME

FXPJ

A-13

Function

Indicates that the FP11 is in time state 2.
Indicates that the FP11 is in time state 1.

This flip-flop when set, indicates a string of 1s is
present. :

Indicates that all eight bits of the exponent which
are stored in the scratch pad are Os.

Indicates hardware is to subtract two numbers.

A signal which is enabled for any of the seven sub-
routine calls designated by the CSB bits in the ROM.

Denotes that the hardware is doing a subtraction
with like signs or an addition with unlike signs.

ROM bit used to enable FP SYNC.
A pulse occurring during the latter half of TS4.
A pulse occurring during the latter half of TS2.

Output signals which represent the four time states
of the FP11 and which are applied to maintenance
indicator lights on the FMAA card.

TS4A and TS4B represent the TS4 signal after being
applied through a driver.

TS3A and TS3B represent the TS3 signal after
being applied through a driver.

TS2A and TS2B represent the TS2 signal after
being applied through a driver.

ROM bits used in conjunction with UBR and UJP
bits for microbranching.

Three ROM bits used in conjunction with UAF
and UJP bits for microbranching.

This signal indicates that a match has occurred be-
tween the control ROM address register and the
uBreak register and causes the FP11 to trap state 4
and interrupt if the interrupt enable is on. This sig-
nal occurs during maintenance mode and the FP11
must be in some state other than the Ready state.

ROM bit used in conjunction with UBR and UAF-
bits for microbranching.

A signal generated when the contents of the control
ROM address register match the contents of the
microbreak register. The FP11 can be programmed
to stop when a match occurs.

(continued on next page.

Signal Mnemonic

uMATCH (1) H

uTRAPB L

WAIT (1) H
WAITS

XTAL

Logic Print

FXPJ

FRMA

FRHH
FRHH

FRHJ

Function

A delayed version of uMATCH H which represents
one complete ROM state. This signal is used for
synchronization in scope loops.

This signal, when low, disables the ROM from the
CRAR and allows the trap bit to be enabled.

Indicates the FP11 is in the Wait state.

An output signal which represents the Wait state of
the FP11. This signal is applied to a maintenance
indicator light on the FMAA board.

The basic 20 MHz clock for the FP11.

Va N

(4

READER’S COMMENTS

FP11 FLOATING POINT PROCESSOR
DEC-11-HFPAA-C-D

Your comments and suggestions will help us in our continuous effort to improve the quality and usefulness of

our publications.

What is your genefal reaction to this manual? In your judgment is it complete, accurate, well organized, well

written, etc.? Is it easy to use?

What features are most useful?

What faults do you find with the manual?

Does this manual satisfy the need you think it was intended to satisfy?

Does it satisfy your needs? Why?

Would you please indicate any factual errors you have found.

Please describe your position.

Name Organization
Street Department
City State

Zip or Country

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

Postage will be paid by:

Digital Equipment Corporation
Technical Documentation Department
146 Main Street ,
Maynard, Massachusetts 01754

Pal

dlilgliltlall

DIGITAL EQUIPMENT CORPORATION
MAYNARD, MASSACHUSETTS 01754

