Disk Operating System Monitor
Programmer’s Handbook

—

DEC-11-OMONA-A~D

Disk Operating System Monitor
Programmer’s Handbook

PDP-11

DISK OPERATING SYSTEM MONTITOR

PROGRAMMER' S HANDBOOK

Monitor Version V@8-@2

October 1972

SOFTWARE SUPPORT CATEGORY

The software described in this document
is supported by DEC under Category I,
as defined on page iv of this document.

For additional copies, order No. DEC-11-OMONA-A-D from DEC,

Software Distribution Services, Maynard, Mass. 01754

DIGITAL EQUIPMENT CORPORATION « MAYNARD, MASSACHUSETTS

T

First Printing, May 1971
Revised, August 1971
Revised, February 1972
Revised, October 1972

Your attention is invited to the last two

pages of
Software

this document. The "How to Obtain
Information" page tells wyou how to

keep up-to-date with DEC's goftware. The
"Reader's Comments" page, when filled in
and mailed, is beneficial to both you and

DEC; all

comments received are acknowledged

and are considered when documenting subsequent
documents.

Copyright (:) 1971, 1972 by Digital Equipment Corporation

NOTE

The material in this manual is for information

purposes

and is subject to change without notice.

DEC assumes no responsibility for the use or
reliability of its software on equipment which
is not supplied by DEC.

Associated Documents:

PDP-11

PDP-11

PDP-11

PDP-11

PDP-11

PDP-11

FORTRAN IV
Programmer's Manual, DEC-11-LFIVA-A-D

MACRO-11l Assembler,
Programmer's Manual, DEC-11-OMACA-A-D

Edit-1l1l Text Editor,
Programmer's Manual, DEC-11-EEDA-A

ODT-11R Debugging Program,
Programmer's Manual, DEC-11-OODA-D

Link-11 Linker and Libr-1ll Librarian
Programmer's Manual, DEC-11-ULLMA-A-D

PIP, File Utility Package,
Programmer's Manual, DEC-11-UPUPA-A-D

The following are trademarks of
Digital Equipment Corporation.

DEC PDP

FLIP CHIP FOCAL
DIGITAL (logo) COMPUTER LAB
UNIBUS OMNIBUS

ii

el

PREFACE

This document contains a comprehensive description of the PDP-11 Disk Operating System
Monitor, The document is written for the PDP-11 programmer == it assumes familiarity with
the contents of the PDP-11 Handbook 1971 and the MACRO-11 Assembler (see document
number DEC-11-OMACA-A-D). Previous experience with monitor or executive systems

would be helpful.

The document is separated info three chapters: Chapter 1 is an infroduction to the DOS
Monitor, and provides general information about the disk operating system. Chapter 2
describes the keyboard commands available to the system operator through the Monitor;
concepts and operation of each command are also explained. Chapter 3 describes the pro-
grammed requests that are available to the programmer through the Monitor. This chapter
also explains the concepts and operation of each programmed request. The entire document
is summarized in the appendices. Appendices D (Monitor Commands) and E (Monitor

Programmed Requests) should prove to be invaluable to the DOS user.
In addition to the DOS Monitor, the PDP-11 Disk Operating System Software includes:

FORTRAN 1V
MACRO-11 Assembler
Edit=11 Text Editor

. ODT-11R Debugging Program
PIP, File Utility Package
Link=11 Linker
Libr-11 Librarian

ess
i

SOFTWARE SUPPORT CATEGORIES

Digital Equipment Corporation (DEC) makes available four categories of software. These
categories reflect the types of support a customer may expect from DEC for a specified software
product. DEC reserves the right to change the category of a software product at any time.

The four categories are as follows:

CATEGORY |
Software Products Supported at no Charge

This classification includes current versions of monitors, programming languages, and
support programs provided by DEC. DEC will provide installation (when applicable), advisory,
and remedial support at no charge. These services are limited to original purchasers of DEC
computer systems who have the requisite DEC equipment and software products.

At the option of DEC, a software product may be recategorized from Category | to
Category Il for a particular customer if the software product has been modified by the customer
or a third party.

CATEGORY I
Software Products that Receive Support for a Fee

This category includes prior versions of Category | programs and all other programs avail-
able from DEC for which support is giyen. Programming assistance (additional support), as
available, will be provided on these DEC programs and non-DEC programs when used in con-
junction with these DEC programs and equipment supplied by DEC ,

CATEGORY 1l

Pre-Release Software

DEC may elect to release certain software products to customers in order to facilitate
final testing and/or customer familiarization. In this event, DEC will limit the use of such
pre-release software to internal, non-competitive applications. Category |1l software is only
supported by DEC where this support is consistent with evaluation of the software product.
While DEC will be grateful for the reporting of any criticism and suggestions pertaining to a
pre-release, there exists no commitment to respond to these reports.

CATEGORY 1V
Non-Supported Software

This category includes all programs for which no support is given

CHAPTER

CHAPTER

CONTENTS

1 INTRODUCTION

THE

FHEEE P E R e
. . e e 4.
oo o0Oo Ul b W N B

-
s

w N

DOS MONITOR

MONITOR CORE ORGANIZATION
HARDWARE CONFIGURATIONS
MONITOR MESSAGE
STARTING THE MONITOR

A GUIDE TO THIS HANDBOOK
Terminology

Standards for Tables
Standards for Numbers

2 MONITOR KEYBOARD COMMANDS

. . . . o .
.
N

The
The
The
The
The
The
How

. e

NOoOUTs WN

The
The
The
The
The
The
The
The
The
The
The
The
The
The
The

FHFEFRFEFRFRFFPFPOONOOUIDS WDNDE

b WNhE O

« s e s . « s

NDNNMNMNDNMNMOMNMMMNMNNMNDNDMNONNMOMNNNONDNODDNDN D DNNMNNMDNMNNMDNDDNDDND D D D MDD DN
. . .

e .

INTRODUCTION
Monitor Commands by Function
When Monitor Commands are Legal

MONITOR MODE AND USER MODE
COMMAND STRING INTERPRETER (CSI)
USER IDENTIFICATION CODE (UIC)
FILENAMES AND FILENAME EXTENSIONS
SPECIAL KEYBOARD CHARACTERS

RETURN Key
RUBOUT Key
CTRL/C Keys
CTRL/U Keys
Semicolon Key
ESCAPE Key

Keyboard Characters are Processed
GETTING ON THE SYSTEM
MONITOR KEYBOARD COMMANDS

ASSIGN Command
BEGIN Command
CONTINUE Command
DATE Command
DUMP Command
ECHO Command
END Command
FINISH Command
GET Command
KILL Command
LOGIN Command
MODIFY Command
ODT Command
PRINT Command
RESTART Command

NN N DNMNNMMNMNMDNNDDND D D M N MDNDN
1

Page

1

il
HFOom N o0 o & B

. ©

LN U U R I H R |
HF H OWWOWooOo~N~NIID O U Ul b W

CHAPTER

2.8.16 The RUN Command

2.8.17 The SAVE Command
2.8.18 The STOP Command
2.8.19 The TIME Command
2.8.20 The WAIT Command

3 PROGRAMMED REQUESTS

INTRODUCTION

TYPES OF PROGRAMMED REQUESTS

Requests for Input/Output and Related
Services

READ or WRITE Level Requests

RECORD Level Requests

BLOCK Level Requests

TRAN Level Requests

Requests for Directory Management Services
Requests for Miscellaneous Services

DEVICE INDEPENDENCE
SWAPPING ROUTINES INTO CORE
MONITOR RESTRICTIONS ON THE PROGRAMMER

REQUEST FOR INPUT/OUTPUT SERVICES
LINIT
.RLSE
. OPEN
.CLOSE
. READ
.WRITE
.RECRD
.BLOCK
.TRAN
LWAIT
.WAITR
.SPEC
.STAT

REQUESTS FOR DIRECTORY MANAGEMENT SERVICES
.ALLOC

.DELET

. RENAM

.APPND

. LOOK

.KEEP

REQUESTS FOR MISCELLANEOUS SERVICES

Load a Program or an Overlay

. RUN

Request to Return Control to the Monitor
.EXIT .

Requests to Set Monitor Parameters

. TRAP

- RSTRT :

Requests to Obtain Monitor Parameters
.CORE

ww w
.
NS SOR S
—

. . o

e e e e
WN R R
e e ..
W N

¢ e s e o e o * s e s e e s e o s e o o s s . .
CWOOOWOWWOMWMOWWOMWMOWO NNNNNNY oo oo 00y U W W MDNDNDMDDNDDNDDND
. e s o e o e o o s e ® e e e s s e @ .
AU WN FHHRFHOVoOoONOUIR WNDR
[V VN Tl =)

« o s
.
=

B WWWNDN R

-

[

WWWWWWLWWWWW WWLWWWWWwWw WWWwWwWwuwWwwwwwwww w w w wuwwwww
N

vi

Page

2-32
2-34
2-36
2-37
2-38

APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
INDEX

WWLWLWLWWLWLWWWLWLWWWWWWWWWWWwww

WWWLWLWLWLLWWWWWWWW ww

.
0O 0O CO CO ©O 00 00 CO 0O 00 0O 00 ©0 00 CO 0O CO 0O 00 00 O
* s+ s e e . .

« o .

« e

s e o . * »

. .
LWOWLOVLLOVWWOVWOVWWYVWLOVWYVWWYWWOVOWYWWYWYO 0o
. .

O 2 R " uH+H oD aoa+=HHoOaawp

QUTUTUTUTLTOTUT DD DD DD DD DD DD

e o s e « o o e o)
o O
.« e

. .

oYU WWWNDNDND

N = oAUl WNH FHFFHRRPRPOVYOoONOURWDN
=S W RO

N =

. .
N =

.
=

Page

.MONR 3-53
.MONF 3-54
.DATE 3-55
. TIME 3-56
. CVTDT 3-57
.GTUIC 3-59
. SYSDV 3-60
.GTPLA 3-61
.STPLA 3-62
.GTCIL 3-63
.GTSTK 3-64
.STSTK 3-65
.STFPU 3-66
Requests to Perform Conversions 3-67
. RADPK 3-67
. RADUP 3-70
.D2BIN 3-71
.BIN2D 3-72
.02BIN 3-73
.BIN20O 3-74
Requests for Interfacing with the
Command String Interpreter 3-75
.CsIl 3-76
.CsI2 3-717
USER PROGRAM TABLES AND CONTROL BLOCKS 3-80
The Link Block 3-80
The Filename Block 3-82
Error Condition Codes (FILBLK-1) 3-82
The File Protection Codes 3-86
The Line Buffer Header 3-87
The Transfer Mod€s 3-88
The Status Byte 3-91
The RECORD Block 3-93
The BLOCK Block 3-94
The TRAN Block 3-95
The Special Functions Block 3-97
The RUN Block 3-98
The Function Word 3-99
PHYSICAL DEVICE NAMES A-1
EMT CODES B-1
SUBSIDIARY ROUTINES AND OVERLAYS c-1
SUMMARY OF MONITOR COMMANDS D-1
SUMMARY OF MONITOR PROGRAMMED REQUESTS E-1
SUMMARY OF DOS ERROR MESSAGES F-1
LISTING OF SYSMAC.SML (SYSTEM MACRO FILE) G-1
PERIPHERAL DEVICES H-1
COMMAND STRING INTERPRETER I-1
SPECIAL I/O FUNCTIONS J-1
EXAMPLE PROGRAMS K-1
CONVERSION TABLES L-1
CHARACTER CODES M-1
GLOSSARY AND ABBREVIATIONS N-1
RESERVED FILENAME EXTENSIONS o-1
X-1

vii

n

CHAPTER 1
INTRODUCTION

1.1 THE DOS MONITOR

The PDP-11 Disk Operating System (DOS) Monitor is a powerful,
keyboard-oriented, program development system designed for use on
PDP-11 computers. The DOS Monitor facilitates use of a wide range
of peripherals available for use with the PDP-11.

The DOS Monitor supports the PDP-11 user throughout the de-

velopment and execution of his program by:

o providing convenient access to system programs
and utilities such as the FORTRAN Compiler!,
the MACRO-11 Assembler!, a Linker, a debugging
package, an Editor, a file utility package,
etc.;

) performing input/output transfers at four dif-
ferent levels, ranging from direct access of
device drivers to full formatting capabilities,
while providing the convenience of complete
device independence;

® providing a file system for management of
secondary storage; and

) providing'a versatile set of keyboard commands
for use in controlling the flow of programs.

System programs and utilities can be called into core from
disk, DECtape or magtape with Monitor commands issued directly
at the keyboard. This feature eliminates the need to manipulate
numerous paper tapes, and provides the user with an efficient and
convenient programming tool.

DOS gives the user program the capability of complete device
independence. Programs can be written without concern for specific
I/0 devices. When the program is run, the user can select the
most effective or convenient I/0 device available for the function
to be performed. In addition, if the system configuration is
altered, many programs can take advantage of the new configuration
without being rewritten. Logical names can be assigned to devices

1 Available only on 12K or larger systems. The 8K assembler does not
support macros.

within the system enabling symbolic referencing of any device. No
concern need be given to I/O0 buffer size within the user program
yet the user can alternatively retain direct control of I/O buffers.

All input/output (I/0) transfers are handled by the Monitor in
any of three user-selected levels called READ/WRITE, RECORD/BLOCK,
and TRAN. READ/WRITE is a formatted level of I/0 in which the user

can specify any one of nine options. RECORD/BLOCK is a file-structured,

random-access I/0 level with no formatting. TRAN does basic I/O
operations at the device driver level. All I/0 is concurrent and

interrupt driven.

The file system on secondary storage uses two types of files:
linked and contiguous. Linked files can grow serially and have no
logical limit on their size. Contiguous files must have their
lengths declared before use but can be randomly accessed by RECORD
or BLOCK level I/O requests. All blocks in a contiguous file are
physically adjacent, while blocks in a linked file are typically
not adjacent (the first word of each block contains the address of
the next block). Files can be deleted or created at any time, and
are referenced by name. Table 1-1 summarizes the features and
benefits of the DOS Monitor.

The user communicates with the Monitor in two ways: through
keyboard instructions called commands, and through programmed

instructions called requests.

Keyboard commands enable the user to load and run programs;
assign I/0 devices or files; start or restart programs at specific
addresses; modify the contents of memory locations; retrieve system
information such as time of day and date; and dump core. Users
with more than 8K of memory! can utilize programmed requests,
which are macros assembled into the user's program and through
which the user specifies the operation to be performed by the
Monitor. Some programmed requests are used to access input/output
transfer facilities, -and to specify where the data is, where it is
going, and what format it is in. In these cases the Monitor will
take care of bringing drivers in from disk, performing the data
transfer, and notifying the user of the status of the transfer.

18K users must include the code generated by such an assembly (the
assembly language expansion shown in Appendix E and in the explana-
tion of each programmed request in Chapter 3) in their programs to
utilize the Monitor functions. See the MACRO manual
(DEC~11-OMACA-A-D) for other differences in the 8K Assembler,

1-2

Table 1-1

PDP-11 DOS Monitor Features and Benefits

Feature

Files are catalogued in multi-
level file directories.

Files are referred to by name.

Files can grow serially.

Files can be as large as the
storage device can accept.

File storage is allocated dynam-
ically on any bulk-storage
device.

Monitor subroutines can be
swapped into core when needed.
Routines need not permanently
tie up an area of core.

Monitor subroutines can be
made permanently core resi-
dent before or during run
time.

The Monitor is divided into
logical modules.

All I/0 is interrupt-driven.

Device independence.

Devices are assigned to one
or more datasets.

Benefits to User

No file naming conflicts among
users.

Files do not have to be remem-
bered by number.

Files can be created even when
their final size is not known.

No logical limit on the size of
files.

Files can be deleted or created
even at run time for maximum
storage efficiency.

Much more efficient use of core
space for user programs. Free
core expands and contracts as
Monitor subroutines are used.
Space can be reclaimed for user
programs. The user can deter-
mine which Monitor subroutines
will be in core, and when.

The user can tailor the Monitor
for his particular needs.

The user can easily and effi-
ciently use the logical pieces
of the Monitor for his own needs.
He can also easily add his own
specialized drivers to the sys-
tem by following a simple set

of rules, and still use the

rest of the Monitor with these
drivers.

Such specialized equipment as
communications modems and A/D
converters which must be inter-
rupt driven can be run under the
Monitor. Several I/0 calls can
be handled concurrently.

Any device can be specified by
the user in his program, and
another device can be substituted
by him when his program is being
run.

The user may reassign a device
which is used for one purpose
(dataset) without changing its
assignment for all other purposes
(datasets).

1-3

Other requests access Monitor facilities to query system variables
such as time of day, date, and system status, and to specify special

functions for devices.

Programs supported by DOS, and hence accessible through the
Mdnitor, are listed in Table 1-2.

Table 1-2

Principal DOS System Programs

System Program Document Number
FORTRAN IV DEC-11-LFIVA-A-D
MACRO-11 Assembler DEC-11-OMACA-A-D
EDIT-11 Text Editor DEC-11-EEDA-D
ODT-11R Debugging Program DEC-11-0O0DA-D
PIP, File Utility Package DEC-11-UPUPA-A-D
Link-11 Linker and Libr-11 Librarian DEC-11-ULLMA-A-D

1.2 MONITOR CORE ORGANIZATION

Core memory is divided into:

° a user area where user programs are located;

® the stack where parameters are stored temde
rarily during the transfer of control between
routines;

® the free core or buffer area which is divided
into 16-word blocks assigned by the Monitor
for temporary tables, for Monitor routines
called in from disk, and for data buffering
between devices and user programs;

) the resident Monitor itself which includes
all permanently resident routines and tables;

® The interrupt vectors.

Figure 1-1 is a map of core as organized by the Monitor.

The DOS Monitor dynamically acquires and releases core on the

basis of system requirements.

xx77768

000000

Free Core

Device Assignment Table
Generated After Load Time

Monitor Buffers
(Data Buffers, Data Control
Blocks, Drivers, etc.)

Device Assignment Table
Generated Before Start of Program

Monitor Routines Resident
for Program Duration

Device Assignment Table
Generated Before Load Time

Permanently Resident Monitor
and Vectors

Top of Core (.CORE)

Base of User (.GTPLA)
Programs

Top of Full (.MONF)
Monitor

Top of Resident
Monitor (.MONR)

Figure 1-1 The Monitor Core Map

1.3 HARDWARE CONFIGURATIONS (

Many minimum hardware configurations for use by the disk opera-
ting system may be derived by choosing one item from each of the

five following sets.

® PDP-11 System Building Block with 900 nsec. Core Memory
and a Terminal (DECwriter [LA30], Alphanumeric CRT
[VT05-B], or Teletype! [LT33]).

) Cabinets and all Mounting Hardware.
e Bootstrap Loader (BM792-YB or MR-11l).
® Choice of Disks (Control Logic Included)

64K word Fixed Head Disk (RS64/RCl1l)
256K word Fixed Head Disk (RF11/RS11)
1.2 word Interchangeable Cartridge Disk (RK05/RK11)

@ Choice of Tape Devices (Control Logic Included)
Dual Drive DECtape (TU56/TCl1l)

7- or 9-track Industry Standard Magnetic Tape (TUl0/TM11)
High-Speed Paper Tape Reader/Punch (PCl1l)

Specific details are available from a sales representative. Note (ﬁ

that 12K of core is required with the RK disk and DECtape is required
with the RC disk.

1.4 MONITOR MESSAGE

When a message-producing situation (such as a system error)
occurs, an error code and an additional word of information are dis-

played on the teleprinter. There are five types of messages:

Informational

Action required by the operator

Warning to the operator
Fatal '

System Program error
The type of message is identified by being preceded by the letter
I, A, W, F or S respectively. If the system disk should fail and

the error message cannot be brought into core, the Monitor halts.

Monitor messages are described in detail in Appendix F. (

lTeletype is a registered trademark of the Teletype Corporation.

1-6

1.5 STARTING THE MONITOR

The Monitor is called into core from disk by performing the
following procedure for systems with the BM792YB:

1. If the system device is an RK1l1l Disk, turn WRITE
ENABLE off;

2. Move HALT/ENABLE switch to HALT position;

3. Load the processor switch register with 17310¢;

4, Depress LOAD ADDRESS processor switch;

5. Load the switch register with,
177462 if the system device is RF1ll disk,
177496 if the system device is RK1l1l disk,
177459 if the system device is RC1ll disk;

6. Move HALT/ENABLE processor switch to ENABLE position;

7. Depress START processor switch.
With the MR11l Bootstrap Loader, the procedure is:

1. Load the processor switch register with:

173148 if the Monitor storage device is RF11l disk,
173119 if the Monitor storage device is RK1l disk,

2. Move HALT/ENABLE switch to HALT position;
3. Move HALT/ENABLE switch to ENABLE position;
4, Depress LOAD ADDRESS processor switch;

5. Depress START processor switch.
The Monitor will load into core and identify itself by printing:
DOS Vxx
on the teleprinter, where Vxx represents the version number of the

Monitor being used. The Monitor is now ready to accept an operator

command (see Chapter 2).

1.6 A GUIDE TO THIS HANDBOOK

1.6.1 Terminology

The reader should understand the following terms as they apply
to the PDP-11 Disk Operating System. An expanded Glossary, with
abbreviations, can be found in Appendix I.

A dataset is a logical collection of data which is treated as
an entity by a program. Typically, the items in a dataset have
a realtionship to each other which simultaneously binds them to-
gether and distinguishes them from items in other datasets. For
example, the records in the Object dataset produced by the assembler
are clearly related to each other and are clearly distinct from the
listing dataset produced by the same assembler. A parameter file
and a source file, when presented successively to the assembler,
might be viewed as a single dataset, however.

Typically, each dataset is associated with exactly one link
block (see section 3.8.6.1), although a link block can be associ-
ated (successively, not simultaneously) with more than one dataset.
For example, when the assembler finishes processing one dataset
and returns for another command, the new input will constitute a
new dataset, but the same link block will be used.

Examples of datasets are:

e all or part of a file on a file-structured
device;

® one or more paper tapes in a paper tape reader;

® a deck of cards, terminated by an EOF card;

o three lines of keyboard data, a disk file,

and a paper tape; which are read in sequence
by the assembler and are viewed as the source
input dataset.

A device is any PDP-11 peripheral supported by the Monitor.

A device controller can support one or more device units.

A file is a physical collection of data which resides on a
directory device (e.g., disk or DECtape) and is referenced by its
name. A file occupies one or more blocks on a directory device.

e,

On a directory device it is possible to store data by name, rather

than simply physical location; it is also called a file-structured

device.

Bulk storage devices containing directories are called direc-

tory devices or file-structured devices. Devices such as paper

tape equipment and the teleprinter, which cannot support a file

structure, are called non-directory device or non-file structured

devices.

A block is a group of adjacent words of a specified size on
a device; it is the smallest system-addressable segment on the
device. If the blocks comprising a file are physically adjacent
to each other, the file is said to be contiguous; if the blocks
of the file are not physically adjacent, the file is said to be
linked.

A line is a string of ASCII! characters which is terminated by
a LINE FEED, FORM FEED or VERTICAL TAB.

File structure refers to the manner in which files are organ-

ized. Specifically, each of a user's files is given a unique name
by the user. Each user on a file-structured device is assigned a

User File Directory (UFD) in which each of his files is listed by

name and location. Each UFD is then listed in a Master File Direc-

tory (MFD) which is unique to a specific device unit.

1l.6.2 Standards for Tables

A table is a collection of data stored in sequential memory
locations. A typical table as represented in this manual is shown
below. This table is two words long, and is referenced by the sym~
bolic address TABL:. The first entry is at location TABL and con-
tains ENTRY A, which might be coded as .WORD AYE in the user's pro-
gram. The second word of the table, at address TABL+2, is divided
into two bytes. The low-order byte (address TABL+2) contains ENTRY
B, and the high-order byte (address TABL+3) contains ENTRY C. They
might be written into a program as .BYTE BEE,CEE.

I1ASCII represents American Standard Code for Information Interchange.

a) Representation in manual

ENTRY A

TABL: ENTRY C ENTRY B

b) Representation in program listing:

TABL: .WORD AYE ;ENTRY A
.BYTE BEE,CEE ;ENTRY B, ENTRY C

Note that the first byte specified is stored at the rightmost avail-
able byte.

1.6.3 Standards for Numbers

Unless otherwise stated, all numbers in the text and examples

are in octal form.

™

ot

CHAPTER 2
MONITOR KEYBOARD COMMANDS

2.1 INTRODUCTION

This Chapter shows how the Disk Operating System (DOS) Monitor
looks to the user as he sits at the terminal (i.e., the Teletype,
DECwriter, etc.). The user is communicating with the DOS Monitor

while running system, utility, and user programs.

Since DOS is an interactive operating system, the primary input
and output device is the user's terminal or teleprinter (keyboard

and printer). Through the terminal keyboard, the user can communi-
cate with

° the Monitor,

) a system or utility program (Macro, PIP, Editor,

etc.), or

® a user program written to run under DOS.
The terminal printer is used to record user input and system output.

In communicating with the Monitor, the keyboard is used as a
control device to allocate system resources, move programs into
core, start and stop programs, and exchange information with the
system. Data from the keyboard may be transferred to a buffer in
the user program or it may be processed immediately by the DOS
Command String Interpreter (CSI) as explained in Appendix I. 1In
this Chapter, the CSI is described only as it applies to the format-

ting of Monitor keyboard commands.

When the system is ready for input from the keyboard, a
single character is printed on the teleprinter. The following con-

ventions apply:

Character Meaning

$ The system is idle, waiting for a Monitor com-
mand.

. The Monitor is waiting to continue or abort a
task.

A system, utility, or user's program requests
a command through the CSI.

* A system program requests direct input, i.e.,
not through the CSI.

In this Chapter, we are concerned only with the $ and . characters.
The # and * characters are explained in the individual system and

utility programmer's manuals.

The $ and . indicate that the Monitor is waiting for a keyboard
command from the user. Note, however, that some commands may be
issued only to a $ and some only to a ., and that each command has
different limitations; these are discussed with each command in

Section 2.8.

2.1.1 Monitor Commands by Function

A number of keyboard commands are provided for communication
with the DOS Monitor. These commands are briefly identified by
function in Table 2-1 and are fully described in Section 2.8.

Table 2-1

Monitor Commands by Function

Function Command
Establish identity of user LOGIN
Terminate a session before leaving the system FINISH
Enter or retrieve date DATE
Enter or retrieve the time-of-day TIME
Load and execute a program RUN
Load a program GET
Start a program which has been loaded BEGIN
Resume a program that is waiting for user action CONTINUE

(continued on next page)

—~

Table 2-1 (Cont'd)

Monitor Commands by Function

Function

Assign an I/O device or a file at run-time

Inspect or modify individual memory locations

Save a program in core for later use

Dump memory data on the teleprinter

Suppress or resume echoing of keyboard input

Suppress or resume teleprinter output

Start the program just loaded at its ODT entry point

Stop a program

Suspend a program

Restart a program that has been running

Terminate a keyboard or paper tape dataset

2.1.2 When Monitor Commands are Legal

Command

ASSIGN
MODIFY
SAVE
DUMP
ECHO
PRINT
ODT
STOP
WAIT
RESTART
END

Each command performs a specific function, is legal to use

under specific conditions, and often alters the state of the system,

as shown in the following table.

Command

ASSIGN
BEGIN
CONTINUE
DATE
DUMP
ECHO

Legal When:

any time

program loaded and stopped
program loaded and waiting
any time

any time

program running

(continued on next page)

State Induced

no change
program running
program running
no change
no change
no change

Command Legal When: State Induced (

END program running no change

FINISH no program loaded logged out

GET no program loaded v program loaded and stopped
KILL program loaded program stopped and unloaded
LOGIN not logged in logged in

MODIFY any time no change

ODT program loaded and stopped program runnlng under ODT
PRINT program running no change

RESTART program loaded and stopped/waltlng program running =
RUN no program loaded program loaded and running
SAVE program loaded and stopped no change

STOP program running program stopped

TIME any time no change

WAIT program running program waiting

A program is loaded if you have typed RUN or GET but not KILL,
and as long as the program has not executed a .EXIT call (see Chap-
ter 3).

A program is running if you have typed RUN or if it has been
loaded and you have typed BEGIN, CONTINUE, RESTART, or ODT.

A program is loaded and stopped if GET but not BEGIN was typed,

if it was running and a STOP was typed, or after issuing a fatal (

error messade (see Appendix F).
A program is waiting if it was running and you typed CTRL/C
followed by WAIT, or after the system issues an action error message

(see Appendix F).

A program is stopped and unloaded (from core) if you have

typed KILL or if the program issued an .EXIT call (see Chapter 3).

2.2 MONITOR MODE AND USER MODE -

From the user's point of view, his terminal is in either
Monitor mode or user mode. In Monitor mode, each line the user =
types is sent to the Monitor's Command String Interpreter (CSI).
The execution of certain commands places the terminal in user mode.
When the terminal is in user mode, it becomes simply an input/
output (I/0) device for that user. In addition, user programs use
the terminal for two purposes: to accept user command strings (user

mode) or as a direct I/0 device (data mode).

2.3 COMMAND STRING INTERPRETER (CSI)

When the terminal is in Monitor mode the user communicates
with the Monitor's Command String Interpreter (CSI). The commands
described in this Chapter are processed by the CSI (see Appendix I).

The CSI makes several checks before processing commands from
the user. For example, if a user who has not logged in types a
command that requires him to be logged in, the system responds with
the message:

ILL CMD!
meaning the command was illegal and was not executed. The commands
discussed in this Chapter require that the user be logged in except
where explicitly stated otherwise. When a command is issued that
requires the job to use more core than is available, the system re-
sponds with the message:

NO CORE!

and the user's command is not executed.

All Monitor messages are shown in Appendix F.

2.4 USER IDENTIFICATION CODE (UIC)

Each user of the system is normally assigned a User Identifi-
cation Code (UIC) by the system or installation manager. The UIC
is first used when logging in to the system, as explained in Sec-
tion 2.7. The format of the UIC is:

nnn,nnn

where nnn represents a string of two or three octal digits, from
11 to 376 (F-1¢ and 377 are reserved for the system). The value
to the left of the comma represents the user-group number, while
the value to the right represents the user's number within the

group.

For example:

67,123

specifies user group 67 and user number 123.

NOTE

Except when logging in, the UIC is always de-
limited by the left and right square brackets,
as shown in the examples of various commands
in this Chapter.

2.5 FILENAMES AND FILENAME EXTENSIONS

User program files are named with a certain convention, much
the same as a person is named. For example, the first name is
the filename and the second name is the filename extension. By
convention, the filename and extension are separated by a period.
For example:

GEORGE.DOE

could be a legal filename and extension. Note that the filename and
extension cannot have embedded blanks (spaces) because a space will be
interpreted as a delimiter,

Filenames can consist of from one to six alphanumerics; all
after the sixth are ignored. The filename extension can consist
of from one to three alphanumerics. The extension is generally

used to indicate the type of information in the file. For example:

File Could be:
MAIN.F4 a FORTRAN file named MAIN
SAMPLE . MAC a Macro source file named SAMPLE
TEST1.TMP a temporary file named TEST1
NAME.REL a relocatable binary file named NAME

A list of standard extensions are shown in Appendix O

User program files are identified by the filename.extension
and the UIC. Thus, different users may use the same filename.exten-

sion, and as long as they are created under different UIC's the
files would remain distinct and separate.

2.6 SPECIAL KEYBOARD CHARACTERS

There are several special keyboard characters recognized by
the Monitor's CSI that cause specific functions to be performed.

These keyboard characters are explained below.

2.6.1. The RETURN Key

The RETURN key is used to terminate a keyboard command and
to advance the teleprinter paper one line. Typing the RETURN key
produces a carriage return and line feed action on the teleprinter.

As characters are typed, they are transferred into a buffer
where they are stored until the RETURN key (or another special
keyboard character(s)) is typed. When the RETURN key is typed,
the data on that line is transferred to and processed by the CSI.

All legal command strings are terminated by the RETURN key.

2.6.2 The RUBOUT Key

The RUBOUT key is used to correct typing errors. Typing the
RUBOUT key once causes the last character typed to be deleted;
typing it twice causes the last two characters to be deleted; etc.
The Monitor prints the deleted characters delimited by backslashes.
For example, if you meant to type ASSIGN but typed ASIS instead,
the error could be corrected by typing two RUBOUTs and then the
correct characters. The printout would be:

ASIS\ SI \ SIGN

Notice that the deleted characters are shown in reverse order,

i.e., in the order in which they are deleted.

2.6.3 The CTRL/C Keys

The CTRL/C key combination is typed by holding down the CTRL
key while typing the C key. When CTRL/C is typed, the Monitor is

alerted to accept a command from the keyboard. CTRL/C is echoed
on the teleprinter as 4C, carriage return, line feed, and. period.

CTRL/C ‘interrupts teleprinter output or keyboard input in a
user program. Monitor action on a CTRL/C is not taken until any
current Monitor command is completed because the keyboard interrupt
is turned off. However, except for DUMP and MODIFY, it appears to

the user that action on a CTRL/C is immediate.

CTRL/C puts the Monitor in listening mode only. If it is
desired to stop the function of the operating program, the STOP
command should be used.

If a second CTRL/C is typed before the RETURN key terminating
a command, the input so far will be erased, a fresh +C will be

printed, and the Monitor will await a new command.

2.6.4 The CTRL/U Keys

The CTRL/U key combination is typed by holding down the CTRL
key while typing the U key. When CTRL/U is typed, the line on
which it is typed is deleted; the system responds with a carriage
return and line feed so that the line (command) may be typed again.

CTRL/U is echoed on the teleprinter as 4U, carriage return,
and line feed.

2.6.5 The Semicolon Key

When the Monitor is in listening mode (i.e., following a
CTRL/C), the semicolon (;) key causes subsequent characters on the
line to be treated as a comment. It effectively puts the keyboard
off-line so that all characters following the semicolon are printed
on the teleprinter but no Monitor action is taken.

2.6.6 The ESCAPE Key

The ESCAPE key (ASCII @33 octal) may be used to pass special
keyboard characters to a running user program. When the CSI de-
tects the ESC key it passes the next character directly to the
user program. The use of this feature is under programmer control.

2.6.7 How Keyboard Characters are Processed

As characters are typed they are stored in the keyboard buffer
(about 85 characters capacity) pending termination of the line with
a RETURN, CTRL/C, or CTRL/U, which transfers the line of characters
to the Monitor buffer.

When a RUBOUT is processed, it remains in the keyboard buffer
and the character which it deletes is replaced with another RUBOUT.
Simce RUBOUTs are not removed until the line is transferred to the
user, the capacity of the keyboard buffer may be exceeded if the
sum of normal characters plus RUBOUTs is greater than 85. When
this occurs, only RETURN, CTRL/C, or CTRL/U is accepted; all other
characters are discarded and not echoed. This is done to maintain
economy of core and to ensure that characters such as CTRL/C and
CTRL/U can be processed correctly, even when they appear at the
end of a very long line.

CTRL/C and CTRL/U characters are processed immediately.

2.7 GETTING ON THE SYSTEM

In order to gain access to the system, the user must log in
with the LOGIN command (see section 2.8.11). First, ensure that
the terminal is connected to the system (see Appendix H). The
LOGIN command is issued in response to the Monitor's $. If none
exist on the teleprinter paper, type the RETURN key and a $ will
be printed by the Monitor; if not, a new Monitor must be loaded
as described in the Batch/D0OS-11 System Manager's Guide.

In response to $, the user should issue the LOGIN command
with his User Identification Code (UIC) (see section 2.4). For

example:

$LOGIN 20f,200
DATE:-2@-0CT-72
TIME:-10@:41:16
$

NOTE

In the examples, underscoring is used to designate
system printout, whereas user input is not under-
scored.

In response to the LOGIN command, the Monitor prints the cur-
rent calendar date and time-of-day followed by the $, indicating
that the system is ready for a Monitor command from the user.

Only one user can be logged in at a time. The LOGIN command
will be rejected when it is given before the previous user has

logged out with the FINISH command.

2.8 MONITOR KEYBOARD COMMANDS

A keyboard command to the Monitor consists of two parts: a

" command name and possibly one or more command arguments. A com-

mand name is a string of two or more letters; all letters after
the first two and up to a command name delimiter (space or comma)

are ignored.

Monitor keyboard commands are typed in response to a dollar
sign ($) or a period (.), which is printed by the system. Gener-
ally speaking, the $ indicates that the Monitor is waiting for a
new task, and the . indicates that the Monitor is waiting to con-

tinue or abort a previously assumed task.

Although the commands are arranged in alphabetical order for
ease of reference, they can be divided into functional groups for
ease of learning. These groups with their associated commands

are as follows:

o Command to allocate system resources:
ASSIGN

) Commands to manipulate core images:
RUN GET
DUMP SAVE

® Commands to start a program:
BEGIN CONTINUE
RESTART

° Commands to stop a program:
STOP WAIT
KILL

° Commands to exchange information with the system:
DATE TIME
LOGIN MODIFY
FINISH

e Miscellaneous commands:
ECHO PRINT
END oDT

The following conventions apply to all Monitor commands:

® All commands are terminated with the RETURN key.

) The command name is separated from its argu-
ment (dataset specifier, etc.) with a space.

° All characters in a command are interpreted by
the CSI; thus, no embedded blanks are allowed.

® The UIC is always enclosed within square brackets,

[1, except when used with the LOGIN command.

The proper format for each command is given in the discussion
of each command in this section. The following conventions apply
to the command formats shown in this section.

° Brackets [] are used to enclose optional elements

) Braces { } are used to indicate that a choice must
be made from the enclosed elements

°® The symbol A indicates that a space must appear there.
) dev: refers to a device mnemonic (see Appendix 2).
° dataset specifier may be represented by any portion

of the expression:

dev:filename.ext, [uic]

where
dev: is a legal device mnemonic and
colon
filename is a filename of up to six alpha-
numerics
.ext is a period and filename extension
of up to three alphanumerics
[uic] is the user's identification code
in the form:
[group no., user no.]
) logical name is the name given by the user to the

dataset in Link Block word LNKBLK+2 (see Chapter 3).

If for any reason a command cannot be executed satisfactorily,
an appropriate message will be printed on the teleprinter and the
command will be ignored. These messages are shown in Appendix F.

—

ASSIGN

2.8.1 The ASSIGN Command

Format:
AS[SIGN]Adev: [dataset specifier, logical name]

Purpose:

This command assigns a physical device (and a filename when
the device is file-structured) to the dataset identified by "logical

name". The format of "dataset specifier" is:
filenam.ext[uic]

which designates the name, extension, and uic, if any, to be as-

signed to the file.

Any filename specified for a nonfile-structured device is

ignored.

Note that a device is assigned to a dataset, and that reas-
signing it for one dataset does not reassign it for all datasets.

The ASSIGN command overrides any assignment made in the pro-
gram's internal control blocks (Link and Filename Blocks). The
ASSIGN command is not needed if the program makes its own provi-
sions for obtaining this information; e.g., by specifying defaults
in its control blocks or by requesting a command string, as is done
with the # symbol in the DOS system programs.

An ASSIGN with no argument releases (deassign) all ASSIGNments
previously made by the current user, i.e., since the last LOGIN

command

The ASSIGN command can be given at any time the Monitor is

in core. Consider the following:

If ASSIGN is given before a program is loaded, the
device assignment will remain in effect until an-
other ASSIGN is given with the same logical name
or with no arguments, or until the Monitor itself
is reloaded. ASSIGN, given at this time, enables
the user to specify an assignment which will apply
to several programs.

If ASSIGN is given after a program is loaded and
before it has started running (i.e., after a GET
command) , the assignment will remain in effect as
long as the program is in core, or until another
ASSIGNment is performed. When the program disap-
pears (by an .EXIT request or a KILL command), the
assignment is released.

ASSIGN may also be given after a program is running.

For example, as a recovery from an
A@@3 (device not ready)

message, the user would do an ASSIGN followed by
a CONTINUE. The assignment will remain in effect
as long as the program is in core, or until the
programmer reassigns the dataset, or until he re-
starts the program with a BEGIN command.

Doing an ASSIGN in this manner is provided for
such emergency situations, but is not recommended
as standard practice because it causes an extra
buffer to be allocated from free core, and it will
be effective only if the program has not already
INITed the dataset to some other device.

o

BEGIN

2.8.2 The BEGIN Command

Format:

BE[GIN]A [address]

PurEose:

The BEGIN command starts the execution of an already loaded
program at the stated address. If no address is specified, the normal
start address will be used. This command is valid only if a program

is already in core.

BEGIN is used after a GET, a STOP, or following a fatal error
condition. The GET command followed by a BEGIN command is equiva-
lent to a RUN command. If given after a program has been started,
a BEGIN will restore core to the state which existed immediately
after the program was loaded. It will rename all core allocations
to buffers, device drivers, and assignments made dYnamically, and
the stack will be cleared before control is passed back to the pro-
gram. If any files are under creation at this time, they will be
deleted (see section 2.8.15).

To start a program at its normal start address, type:
BE
To start a program at absolute address 3446, type:

BEA3446

After a Program Crash:

The BEGIN Command is provided not only as a means of starting
a program loaded by GET but also to enable the user to try again
after a program crash, hopefully with a clean slate. At the time
of the crash, the program may already have opened but not closed
output files and the subsequent request to reopen after a restart
could then lead to other failure because these files now exist. To
prevent this, the BEGIN processor tries to delete the files, but not
by the normal Monitor process since this could mean writing out bit-
maps which are currently in core and must be suspect because of the
crash. Instead, it merely removes the names of the files from the
appropriate device directory, and if these are on disk, unlinks any
blocks so far allocated; for safety it does not touch the bit-maps
already stored on the device., In almost all cases, this procedure

suffices. However, the following implications should be noted.

1. This automatic deletion by BEGIN will not suit a
user who has already amassed considerable data in
one of his output files and cannot replace it if
he starts over. 1In this case, KILLing the program
to save his data under a different filename might
be a more appropriate action. However, he should
then realize that he might be transmitting the ef-
fects of his program failure to the device concerned.

2. It is possible that by the time of the crash the
program may have produced a fairly long file. On
a DECtape for which there is only one bit-map, this
is no problem. A disk, however, requires several
bit-maps and the allocation of some of the blocks
for the file may already be permanently recorded
because the appropriate bit-map has been filled and
has been replaced in core by another. Since BEGIN
does not change the maps, these blocks will not be
freed for further use, A series of situations such
as this can, after a time, result in the disk becom-
ing full even though the known files are not seen to
occupy the whole capacity. The user should in this
case consider whether or not he should chance disk-
corruption and use KILL rather than BEGIN. The user
can then delete the file by using PIP-11 to avoid the
build-up of the nonavailable blocks described.

TN

Some programs cannot be restarted with BEGIN (i.e.,
after having been started, they cannot be restarted
with BEGIN.) A FORTRAN program is an example. In
general, a program must be self-initialized if BEGIN
is to be used in this way. Also, since the Monitor
will try to clean up core and delete files, reBEGIN-
ning a program which was badly out of control may
lead to undesirable results. Thus, use BEGIN only
if there is no other alternative.)

CONTINUE

2.8.3 The CONTINUE Command

Format:
CO[NTINUE]
Purpose:
This command is used after a WAIT command or a recoverable error

condition (operator action message) to resume program operation at

the point where it was interrupted.

CONTINUE is valid only if a program is already in core.

2-18

T

DATE

2.8.4 The DATE Command

Format:

DA[TE]A [date]

Purpose:

The DATE command may be used to obtain the current calendar
date and to enter a date value from the keyboard; the date is
printed in the dd-mmm-yy format.

To obtain the current calendar date, simply type the DATE
command followed by the RETURN key. For example:

$DATE
20-0CT-72
$

The current calendar date is entered by the system or installation
manager, and need not be reentered except when loading a new DOS

Monitor.

To enter a date value from the keyboard, type the DATE
command, the desired date value, and then the RETURN key.
For example:

$DATE A dd-mmm-yy

putting the desired date value in place of dd-mmm-yy. The entered
date value is returned in response to subsequent DATE commands
until another date is given. If the desired date value is

an invalid date, e.g., 42-BOB-Al, subsequent responses to DATE
will be meaningless, e.g., g@-XXX-YY.

DATE is valid at any time.

DUMP

2.8.5 The DUMP Command

Format:

DU[MP]ALP: [0], Startgaddr [,end addr]

Purpose:

The DUMP command is used to print on the Line Printer an abso-
lute copy of the contents of the specified core area, formatted in

octal. The core image is not altered.

The argument O specifies the dump to be output from core. An

O is assumed on default, but the comma is required.

The argument @ is assumed if no "start address" is specified
and the highest word in core is assumed if no "end address" is speci-
fied.

DUMP is valid at any time. If given while a program is run-
ning, the operation of the program will be suspended for the time
required to effect the dump.

The syntax of the DUMP command was chosen to facilitate later
expansion and flexibility of the command.

ECHO

2.8.6 The ECHO Command

Format:

EC [HO]

Pureose H

The ECHO command may be used to suppress and restore keyboard
echo, i.e., characters typed by the user will not appear on the
terminal printer. A subsequent ECHO command turns the echo feature
on again. The teleprinter as an output device for the program or
the Monitor is not affected by this command.

ECHO is valid only when a program is running in core and using
the keyboard as an input device.

END

2.8.7 The END Command

Format:
KB
EN[D] A pT

Purpose:

The END command is used to terminate using the console as an
input device, i.e., the keyboard or low-speed paper tape reader.
The command tells the Monitor "there is no more input from the
device". The command effectively generates an end-of-file (EOF)

from the keyboard.
When no device is specified in the command, KB is assumed.
The following actions are required with this command

1. Type CTRL/C to obtain the Monitor's attention.
Since the console is being used for program input
(data mode), the Monitor is not expecting a com-
mand.

2, 1Issue the END command (with appropriate argument).

3. Type the RETURN key twice; yes, two RETURNs. The
two RETURNs are required to return to the Monitor.

For example: (wheretC = CTRL/C, and (CR) = RETURN)
+C
. END,KB (CR) (CR)

END is valid only when the console is being used as an input

device.

TN

FINISH

2.8.8 The FINISH Command

Format:

FI[NISH]

Purgose:

The FINISH command informs the Monitor that the current user
is leaving the system. The Monitor deletes all files which are
not protected against automatic deletion on FINISH (see Section
3.9.2.2), and a new copy of the resident Monitor is "booted" into

core.

FINISH is valid only when no user program is in core. There-
fore, unless the last character on the teleprinter is a $, the
user should precede a FINISH with CTRL/C followed by KILL. For
example, the printout might be:

tC
LKILL

SFINISH
TIME:-16:42:00
MONITOR Vg8-g2

$

In response to a FINISH, the Monitor prints the time and then the
newly booted Monitor identifies itself. The system is now ready

for a user to log in.

GET

2.8.9 The GET Command

Format:

GE[T]Adataset specifier

PurEose:

The GET command loads the specified file from the specified
device. When a device is not specified, the system device is as-
sumed.

GET is valid only when no program is in core.

The user should use a BEGIN or ODT command to commence exe-
cution.

KILL

2.8.10 The KILL Command

Format:
KI[11]

PurEose :

The KILL command stops the execution of the current prbgram
after closing all open files and completing any outstanding I/O.
It then removes the program from core by returning control to
the Monitor.

KILL is valid only when a program is in core.

To resume operations, the user must reload the program or
load another with RUN or GET.

LOGIN

2.8.11 The LOGIN Command

Format:
LO[GIN]Auic

PurEose H

The LOGIN command enables a user to gain access to the system.
LOGIN requires a UIC as its argument (see section 2.4). The UIC
indicates which directory (of several possible), on each file-
structured device, will be directly available to the user.

Here the UIC is not enclosed within the square brackets; its
format is simply
nnn,nnn

specifying group, user numbers respectively.

LOGIN is valid only when there is no program loaded in core
and provided no user has logged in and not logged out (FINISHed).

MODIFY

2.8.12 The MODIFY Command

Format:

MO[DIFY] A octal address

octal address/contents: [new contents]
Purpose:

This command allows the user to display and make changes to the
contents of the absolute memory location specified by "octal address"
in the command line. When the RETURN key is typed at the end of the
command line, the system responds by printing the contents of that
address. At this point, the user can type one of the following
((CR) = RETURN key; (LF) = LINE FEED key):

(CR) will leave the contents unmodified.
new contents (CR) will change contents to new contents.
(LF) will take similar action as CR and

then automatically print the contents
of the next memory location.

To change the contents of location 40000:

$MODIFYA40000 (CR)
40000/16406: 10406 (CR)

Then to examine the contents of 40000:

$MOA40000 (CR)
£0000/10406: (CR)

To examine the contents of locations 40000 and 40002, the sequence

would be:

$MOA40000 (CR)
40000/104060: (LF)
40002/000003:

Entry of an address outside the available core memory as part
of the original MODIFY command will cause an error, and the command
will be rejected.

MODIFY is wvalid at any time.

TN

oDT

2.8.13 The ODT Command

Format:

oo {1

Purpose:

The ODT command starts the execution of the ODT-11R Debugging
Program. The argument specifies which ODT start address is to be

used:
Argument Starts at Action
(none) ' START+@ Clears ODT breakpoint table with-
out resetting breakpoints.

R START+2 Clears ODT breakpoint table after
replacing old instructions at
breakpoints.

K START+4 Leaves breakpoints ekxactly as
they are.

This command begins execution at the ODT entry point of the
user's load module. The user must have linked ODT-11R with his
program and must have identified his program to the Linker with
the /OD switch.

To reset all breakpoint locations at their former instruc-
tions and restart ODT, the user would type:

.ODAR

ODT is valid only when ODT-11lR is linked to a program and

both are in core.

PRINT

2.8.14 The PRINT Command

Format:
PRIINT]

Purpose:

The PRINT command may be used to suppress and restore tele-
printer printing when the printer is used as an output device to
a user program. A subsequent PRINT command turns the printing
feature on again.

PRINT is valid only when a program is running in core and is
using the teleprinter as an output device.

2-30

e,

RESTART

2.8.15 The RESTART Command

Format:

RE [START] A[address]

Purpose:

The RESTART command permits a program to be restarted. As shown,
the user may optionally supply an address at which the program is to
be restarted. If no address is specified, the address set by the
.RESTART programmed request is assumed if a .RSTRT request has

been issued by the program (see Section 3.8.3.2).
If neither address is specified, the command is rejected.
RESTART is valid only when a program is already in core.
Before the program is restarted, the stack is cleared, any
current I/0 is stopped, and all internal busy states are removed.

Buffers and device drivers set up for I/0 operations will, how-
ever, remain linked to the program for future use.

RUN

2.8.16 The RUN Command

Format:
RU[N] Adataset specifier
Purpose:
» The RUN command loads into core the specified program from the
specified device and starts its execution at the normal start ad-
dress. RUN is equivalent to a GET command followed by a BEGIN com-
mand.
The dataset specifier is of the form:
dev:filenam.ext[uic]
When no device is specified, the system device (disk) is assumed.
The sequence in which the Monitor performs its search for the
specified program depends on the existence and type of filename ex-

tension and on the UIC. Various forms of the RUN command are shown
below with the search sequence performed by the Monitor.

) RUNAFILE
Attempt 1 -- FILE.LDA [current uic]
Attempt 2 -- FILE.LDA [1,1]
Attempt 3 -~ FILE [current uic]
Attempt 4 -- FILE [1,1]

[] RUNAFILE .EXT
Attempt 1 -- FILE.EXT [current uic]
Attempt 2 -- FILE.EXT [1,1]

S

® RUNAFILE[x,x]

Attempt 1 -- FILE.LDA [x,x]
Attempt 2 -- FILE [x,x]

[] RUNAFILE.EXT[x,x]
Attempt 1 -- FILE.EXT [x,x]

If all attempts fail to find the file, a NO FILE message is printed

on the teleprinter.

Searching for the LDA extension first exploits the fact that
both the Linker and the SAVE command produce LDA extensions, unless

the user specifies otherwise.

RUN is valid only when there is no program in core.

SAVE \

2.8.17 The SAVE Command

Format:

SA[VE]A [dataset specifier] [/RA:low:high]

Purgose:

The SAVE command writes the program in core onto the device in
loader format. The core image is not altered. SAVE is valid only
when a program is in core but not running, i.e., immediately after

loading with a GET command or after being halted by either a STOP

command or a fatal error.

If no dataset specifier is given, the SAVE processor will
automatically set up a file called SAVE.LDA on the system disk
after it has deleted any current file of the same name. If the (
user wishes to retain the current file, he must first rename it
using PIP-11. If the dataset specifier is given, the file named
must not already exist or the command will be rejected. System
disk is assumed by default if the dataset specifier contains only
a filename. When the filename is specified, the extension should

also be specified.

Normally it is expected that the user will only wish to save
his program area. If this is the case, the range need not be
given and the new file will begin from the program's low limit and
extend to the top of core. If any other area is to be saved, the
user should include the following at the end of the command:

/RA:low:high

where /RA is the range switch, and low and high define the limits
required (each being valid octal word-bound addresses). The saved

TN

image will be preceded by the same communication information as
that for the original program loaded, except that any information

about the resident EMT modules will be lost.

The SAVE processor will endeavor to get an extra 256-word
buffer in order to satisfy the command. If this request cannot
be granted because of insufficient free core, the command will
be rejected. The user is therefore advised to use this facility

only after he has released any datasets currently established.

Once the SAVE command has been syntactically verified, any
errors will be handled by the SAVE processor, which will print

a relevant message and return to Monitor listening mode:

DEVICE FULL End of output medium reached

FILE ERROR xxx File structures error as indi-
cated by xxx = file status byte

STOP

2.8.18 The STOP Command

Format:
ST[OP]

Purgose:

This is an emergency command to stop the program and to
abort any I/O in progress (by doing a hardware reset). The pro-
gram may be resumed with either the BEGIN or RESTART command.

STOP is valid only if a program is in core.

STOP differs from KILL in that KILL terminates the program
in an orderly manner and removes the program from core.

TIME

2.8.19 The TIME Command

Format:

TI[ME]A[time]

PurEose:

The TIME command may be used to obtain the current time-of-
day and to enter a time value from the keyboard. The time

is printed in the following format.
hh:mm:ss
meaning hours:minutes:seconds.

To obtain the current time-of-day, simply type the TIME
command followed by the RETURN key. For example:

$TIME
10:43:27
$

The current time-of-day is entered by the system or installation
manager, and need not be reentered except when loading a new DOS

Monitor.

To enter a time value from the keyboard, type the TIME command,
the desired time value, and then the RETURN key.

For example:

$TIME A hh:mm:ss
putting the desired time value in place of hh:mm:ss. The entered
time value is returned in response to subsequent TIME commands

until another time value is given.

TIME is valid at any time.

WAIT

2.8.20 The WAIT Command

Format:
WA[IT]

Purgose H

The WAIT command suspends the current program and allows any
I/0 in progress to finish. The program may be resumed with either
the CONTINUE or RESTART command.

WAIT is valid only if a program is in core.

T

| CHAPTER 3
PROGRAMMED REQUESTS

3.1 INTRODUCTION
The Monitor provides a number of services which are available

to any user or system program. The most prominent of these are
input/output (I/0) services. Other services include directory manage-
ment, retrieval and modification of system parameters, various con-
version routines, and a command string interpreter. The I/O services
provide for linkage to device drivers, access to files in the file

structure, and transfer of data to or from each device.

The user program calls for the services of the Monitor through
programmed requests. Programmed requests are macro calls! which are
assembled into the user program and interpreted by the Monitor at
execution time. A programmed request consists of a macro call

followed, when appropriate, by one or more . arguments. For example:
.WAIT #LNKBLK

is a programmed request called .WAIT followed by an argument #LNKBLK.
The macro request is expanded at assembly time by the MACRO Assembler!
into a sequence of instructions which trap to and pass the arguments
to the appropriate Monitor service routine to carry out the specified
function. The assembly language expansion for .WAIT #LNKBLK is:

MOV #LNKBLK,-(SP)

EMT 1

To use the macro call, it is necessary to tell the assembler

that you want the system definition for the macro. This is accom-

plished via the .MCALL assembler directive (Macro-11 Assembler Pro-
grammer's Manual), e.g.,

.MCALL <WAIT

which must appear in the source prior to the first use of .WAIT. When
.MCALL is encountered, the MACRO Assembler will get the definition of
.WAIT from the system macro file (SYSMAC.SML) which is searched for,
first in the current user's disk area, then under user identification
code [1,1].

The system macros will accept most addressing modes as arguments.
They will detect and announce potentially troublesome (e.g. X (SP))
or unlikely (e.g. SP) modes to protect the user.

lysers with less than 12K of core cannot run MACRO and consequently
must include the assembly language expansion of the programmed re-
quest in their programs instead of the request itself.

3-1

All legal addressing modes will appear without alteration in
the expansion. Since the monitor expects the address of the Link
Block on top of the stack at .WAIT time, any of the following macro
calls might be appropriate:

.WAIT #LNKBLK

.WAIT RY 7 ADDRESS OF LNKBLK
;IS IN REGISTER Rf
.WAIT POINTR ;ADDRESS OF LNKBLK IS

; IN MEMORY LOCATION POINTR

Refer to the MACRO-11 Assembler Programmer's Manual (Order
Number DEC-11-OMACA-A-D) for further details.

The programmed request arguments are parameters or addresses of
tables which contain the parameters of the request. These tables
are part of the user program, and are described in detail in
Figures 3-6 to 3-18.

TN

3.2 TYPES OF PROGRAMMED

REQUESTS

Services which

programmed requests.

® requests
® requests

® requests

the
can
for

for
for

Monitor makes available to the user through

be classified into three groups:

input/output and related services
directory management services

miscellaneous services

Table 3-1 summarizes the programmed requests available under the

Monitor. Detailed descriptions of each request can be found in

the sections cited in Table 3-1.

Table 3-1
Summary of Monitor Requests

Mnemonic Purpose Section
Requests for Input/Output and Related Services:
+INIT Associates a dataset with a device driver and 3.6.1
sets up the initial linkage.
«RLSE Removes the linkage between a device driver and 3.6.2
a dataset, and releases the driver,
« OPEN Opens a dataset, 3.6.3
«CLOSE Closes a dataset. 3.6.4
«READ Transfers data from a device to a user's line 3.6.5
buffer.
<WRITE Transfers data from a user's line buffer to a 3.6.6
device,
«RECRD Transfers one logical record of a file between 3.6.7
a device and a user buffer.
« BLOCK Transfers one physical block of a file between 3.6.8
device and a Monitor buffer,
« TRAN Transfers data between a device and a user 3.6.9
buffer, independent of any file structure.
+WAIT Waits for completion of any action on a dataset, 3.6.10
+WAITR Checks for completion of any action on a dataset, 3.6.11
and provides a transfer address for a busy return,
+SPEC Performs special device functions., 3.6.12
«STAT Obtains device characteristics. 3.6.13
Requests for Directory Management Services:
«ALLOC Allocates a contiguous file, 3.7.1
+DELET Deletes a file. 3.7.2
« RENAM Renames a file, Changes a protection code. 3.7.3
+APPND Appends one linked file to another, 3.7.4
« LOOK Searches the directory for a particular filename 3.7.5
and returns information about the file.
+KEEP Protects a file against automatic deletion on 3.7.6
FINISHing.
Requests for Miscellaneous Services:
« RUN Loads programs and overlays. 3.8.1.1
«EXIT Returns control to the Monitor. 3.8.2.1

{Continued on

next page)

N

Table 3-1
Summary of Monitor Requests (Cont.)

Mnemonic Purpose Section
« TRAP Sets interrupt vector for the TRAP instruction. 3.8.3.1
«RSTRT Sets the address used by the RESTART command. 3.8.3.2
«CORE Obtains address of highest word in core memory. 3.8.4.1
« MONR Obtains address of first word above the 3.8.4.2
resident Monitor.

« MONF Obtains address of first word above the 3.8.4.3
Monitor's highest allocated free core buffer.

«DATE Obtains the date. 3.8.4.4

.TIME Obtains the time of day. 3.8.4.5

«CVTDT Converts internal date or time to ASCII. 3.8.4.6

+GTUIC Gets current UIC, 3.8.4.7

+SYSDV Gets Radix-~50 name of the system device. 3.8.4.8

«GTPLA Gets the current program load address. 3.8.4.9

«STPLA Sets the program low address, 3.8.4.10

«GTCIL Gets the base disk address of the CIL. 3.8.4.11

«GTSTK Gets the current stack base address. 3.8.4.12

«STSTK Sets the current stack base addfess. 3.8.4.13

. STFPU Sets the floating point exception vector. 3.8.4.14

« RADPK Packs three ASCII characters into one Radix-50 3.8.5.1
word.,

«RADUP Unpacks one Radix-50 word into three ASCII 3.8.5.2
characters,

«D2BIN Converts five decimal ASCII characters into 3.8.5.3
one binary word,

«BINZ2D Converts one binary word into five decimal 3.8.5.4
ASCII characters.

«02BIN Converts six octal ASCII characters into one 3.8.5.5
binary word.,

«BIN20O Converts one binary word into six octal ASCII 3.8.5.€
characters.,

.CSI1 Condenses a command string and checks for 3.8.6.1
proper syntax.

.CSI2 Interprets one command string dataset specifi- 3.8.6.2

cation,

3.2.1 Requests for Input/Output and Related Services
All user I/O is handled by programmed requests, which provide

three different levels of transfer:

e READ or WRITE
RECORD or BLOCK
e TRAN

Each level uses a sequence of requests to complete the transfer.
Note the distinction between READ/WRITE, RECORD/BLOCK, and TRAN as
names of transfer levels, and .READ, .WRITE, .RECRD, .BLOCK, and

.TRAN as specific programmed requests within these levels.

Requests for I/O related services perform special device
functions (such as rewinding a tape) and obtain device character-
istics from device status words.

Each request related to I/O services is described in Section 3.6.

3.2.1.1 READ or WRITE Level Requests - Most input and output

is done at this level. Processing is sequential, in that each read
or write is applied to the next record or line in the file. Records
may be in either ASCII or binary mode, and a number of formats are
handled by the monitor. Records may also be of variable length:
ASCII records usually contain line terminators while formatted binary

records contain byte counts.

READ or WRITE I/O under the Monitor consists of transferring
the contents of a dataset between a device and a line buffer via a
buffer in the Monitor (Figure 3-la). A line buffer is an area set
up by the user in his program, into which he (or the Monitor) places
data for output (or input). The line buffer is usually preceded
by the line buffer header, in which the user specifies the size and
location of the line buffer and the mode (format) of the data.

e X

.

USER PROGRAM

USERS LINE
BUFFER

-READ -WRITE

MONITOR BUFFER DEVICE
— X)

-READ

Figure 3-la ' The Transfer Path

. INIT #LNKBLK

MOV #FILBLK,R@
' . ;FOR OUTPUT, REPLACE .OPENI

.OPENI #LNKBLK,Rf ; WITH .OPENO
; ADDRESS OF FILBLK IS IN Rf@

——3 . READ #LNKBLK, # BUFHDR ;FOR OUTPUT, REPLACE .READ
. ; WITH .WRITE
-WRITE #LNKBLK ;COULD BE REPLACED BY .WAITR

(Process Data)

.CLOSE #LNKBLK
.RLSE #LNKBLK

LNKBLK: (entries) _
FILBLK: (entries) Tables in User's Program
BUFHDR: (entries)

Figure 3-1b Sequence of Requests for READ/WRITE

Figure 3-1 .READ/.WRITE Input/Output Transfers

3-7

When using READ or WRITE one can specify nine different modes
of transfer, in two categories: ASCII and Binary. Details are

presented in Section 3.6.1 and Figure 3-11.

ASCII Modes: Formatted ASCII Parity - Special
Formatted ASCII Parity - Normal
Formatted ASCII Nonparity - Special
Formatted ASCII Nonparity - Normal
Unformatted ASCII Parity - Normal
Unformatted ASCII Nonparity - Normal

Binary Modes: Formatted Binary - Special
Formatted Binary - Normal

Unformatted Binary - Normal

To implement a READ or WRITE transfer, the programmer follows
the sequence of requests shown in Figure 3-1b. First, the
programmér associates the device with the dataset via the .INIT
request. The argument of this request is the address of a table
called the Link Block. Entries in this table specify the device
involved in the approaching transfer so that the Monitor may
eventually establish a link between that device and the dataset.
The Link Block is described in detail in Figure 3-6. The .INIT
request loads the appropriate device driver into the Monitor's

free core area, if it is not already there.

Following the .INIT request, the programmer opens a dataset with
an .OPENx request. This need be done only if the device being used
is a file-structured device. However, it is advisable to use an
.OPENx even for a non-file-structured device to preserve the device
independence of the program, since it may be desirable to assign
the transfer to a file—structured‘device later. The arguments of
this request are the address of the Link Block and a register into
which the user has moved the address of a table called the Filename
Block (Figure 3-7). Entries in this table describe the file

involved in the transfer.

A dataset can be opened for input, for output, for update, or
for extension. The last letter of the .OPENX request specifies

which type of open is desired.

A .READ (for input) or a .WRITE (for output) follows the .OPENx.
Either request causes a transfer to take place between the line
buffer and the device via a buffer allocated by the Monitor in

its free core area. The arguments of either request are the address

TN

TN

<

i

of the Link Block for the dataset and the address of the Line Buffer
Header (Figure 3.9). The Line Buffer Header specifies the area

in the user's core area to or from which the data is to be trans-
ferred. During the transfer, the Monitor formats the data according
to the transfer mode and formatting characters in the data itself.

In most modes, terminating characters indicate the end of a line.

.READ or .WRITE is followed by .WAIT, which tests for the
completion of the last transfer, and passes control to the next
instruction when the transfer is complete. Typically, what follows
a .WAIT on an input is a subroutine to process the portion of data
just read. When the prodess‘has been completed, the program checks
to see if there is more data; if there is, the program transfers
control back to the .READ request and the process is repeated. If
all data has been transferred, the .CLOSE request follows to
complete any pending action, update any directories affected, and
release to free core any buffer space the Monitor has allocated from
free core for this dataset. Finally, action on the dataset is
formally terminated with the .RLSE request, which disassociates the
device from the dataset, and releases the driver. Releasing the
driver frees core provided there is no other claim to the driver

from another dataset.

3.2.1.2 RECORD Level Requests - The Record Level request is

used for random access to the records in a file. A program which
uses Read or Write Level requests can only read or write the next
record in the dataset being processed. When Record Level requests

are used, the program always has access to any record in the file.

Record Level requests may be used only with file-structured
devices and only with contiguous files (not with linked files).
Each of the records in the file must contain the same numbers of
bytes. No formatting is done and no line terminating characters
are needed. The length of a record is independent of the block
size of the device (may be the same or smaller or larger; neither
record length nor block size need divide the other, but processing
may be faster if this is arranged, since it can reduce the number

of multi-block transfers).

Some consideration must be given to the manner ‘in which a
Record Level file is created. Perhaps the most common way to create
such a file is by doing an .OPENC (after the file has been allocated)

and using the .WRITE request to enter data. Unformatted ASCII and
unformatted binary are the suggested transfer modes, since they

do not require terminators and do not perform formatting; recall
that all records must be.the same length. When such a file is
.CLOSED, a logical end-of-file is established following the last
record written. Subsequent processing of the file by .READ

or .RECRD will be confined to the area just written. At some
later time, the file may be opened for extension (.OPENE) and more
data can be written (.WRITE), provided the original space allocated
to the file is sufficient to contain it. A second way to create a
Record Level file is to start with .OPENU (again the file must have
been allocated previously) and to use .RECRD to do the writing. 1In
this mode, the logical end-of-file corresponds to the end of the
allocated area). Note also that, unless the program writes in every

record of the file, that some records will be left with meaningless
contents.

Before issuing Record Level requests, the program must issue
an .INIT request to associate the dataset with a file-structured

device. It must then open the dataset; .OPEN is not optional as

with .READ and .WRITE. The dataset may be opened in two ways:

USER PROGRAM

.RECRD output

. .RECRD input

USER BUFFER

DEVICE

Figure 3-2a The Transfer Path

LINIT # LNKBLK ; INIT THE DATASET

MOV #FILBLK, Rl '

.OPENU #LNKBLK,R1 ; OPEN THE FILE
Request next-———é.%igiD zigigig,#RECBLK ; INPUT THE RECORD
record for T
update if (Process Data)

more
.RECRD #LNKBLK, # RECBLK ;OUTPUT THE RECORD
.WAIT #LNKBLK

Yes“‘;E’.

No
.CLOSE #LNKBLK ;CLOSE THE FILE
.RLSE #LNKBLK ;RELEASE THE DATASET
LNKBLK:
FILBLK: Tables in User Program
RECBLK:

Figure 3-2 .RECRD Input/Output Transfers.

@ OPENU - This mode is used if the program will write
in the dataset. Reading is also permitted.
In fact, quite often the program will read a
record, update it, and write it back.

© OPENI - This mode is used if no writing will be done.
Only reading will be permitted.

The dataset may then be processed using .RECRD requests. If
updating is being done, there will generally be two such requests
in each cycle. Otherwise, there will be only one. Each .RECRD
request should be followed by a .WAIT (or .WAITR) request. When
processing is completed, a .CLOSE request should be issued to
ensure that the last record is actually written to the device (for
output) and that the directory is updated (if necessary). A .RLSE
request is also required, so that the driver can be removed from
core (if not still in use by another dataset). 'The .RECRD request
has a Link Block and a Record Block as arguments. The Record
Block specifies functién (input/output) , bgffer address, record

length, and record number (see Figure 3-12).

3.2.1.3. BLOCK Level Requests = The Block Level request is

used for random access to the physical blocks in a file. The
Block Level is similar to the Record Level. However, at the
Block Level, each request always reads or writes exactly one
physical block of data instead of a user-defined quantity of data,
as is true at the Record Level. 1In addition, data transfer is to
and from a buffer provided by the monitor, rather than a buffer
provided by the user. The user may do his processing in the
monitor buffer or he may transfer data to hié own area, As with
Record Level requests, Block Level requests may be used only with
file-structured devices and only with linked files (not with

contiguous files).

To implement a BLOCK transfer, the programmer follows the
sequence of requests shown in Figure 3-3b. Notice that the transfer
must_use .INIT, .OPEN, .WAIT, .CLOSE and .RLSE following the same
rules as the READ or WRITE level. The .BLOCK request has the
address of the Link Block and the BLOCK block for its arguments.

The BLOCK block specifies the function (INPUT, GET, or OUTPUT),
the relative number of the block being transferred to or from, the
Monitor buffer address (supplied by the Monitor), and the length of
the Monitor buffer (supplied by the Monitor). See section 3.6.8.

USER PROGRAM *Transfers between the

Monitor's buffer and the

user's buffer are optional

and must be done by the
POSSIBLE user.

USER BUFFER

N
! *
N

.BLOCK OUTPUT
~/

1 DpEVICE)

K. BLOCK INPUT

MONITOR BUFFER

Figure 3-3a The Transfer Path

LINIT #LNKBLK

MOV #FILBLK,R1
.OPENU #LNKBLK,R1
——5 .BLOCK #ILNKBLK, #BLKBLK ; INPUT DESIRED BLOCK

.WAIT #LNKBLK

(Process Data)

.BLOCK #LNKBLK,

.WAIT #LNKBLK

>

No
.CLOSE #LNKBLK
.RLSE #LNKBLK
LNKBLK:
FILBLK:
BLKBLK:

Figure 3-3b

; COULD BE REPLACED BY .WAITR
;UPDATE DATA

#BLKBLK ;WRITE UPDATED BLOCK

(entries)
(entries)

(entries)

The Sequence of Requests For .BLOCK

Figure 3-3 .BLOCK Input/Output Transfers

3.2.1.4 TRAN Level Requests - A TRAN level request is a basic

input/output operation. No services are provided for the user other (
than to pass his request to the appropriate driver. .TRAN ignores

any file-structure on the device. .TRAN does not operate within a
particular file as do .READ, .WRITE, .RECRD, and .BLOCK; hence no

.OPEN or .CLOSE is used. Because .TRAN does not respect file

structures, the user is strongly cautioned against using it with

file-structured devices, since he can easily do irreparable damage
to information on such a device. Omitting the dataset name from the i

Link Block will prevent a file-structured device from being assigned.

Data is transferred directly between the device and a buffer

k4

provided by the user (Figure 3-4a), with no formatting performed.

.TRAN is generally used in 2 situations:
1. When the file structure does not allow the desired
operation (e.g., PIP uses .TRAN to read a directory

block for the directory listing operation).
2. When one does not need or cannot afford the over-

head of doing READ/WRITE processing on a non-file
structured device (e.g, a program to read data
arriving at random intervals from an A/D converter
might use .TRAN to read the data and .BLOCK to

buffer the data on a disk for processing as time

L

permits.

To implement a TRAN transfer, the programmer follows the sequence
of requests shown in Figure 3-4b. Notice that the transfer must
use .INIT and .RLSE, but must not use -OPEN or .CLOSE. The .TRAN
request has the address of the TRAN Control Block (TRNBLK) as its
argument. This block contains entries which specify the core
starting address of the user's buffer, the device block address,
the number of words to be transferred, and the function to be

performed. TRAN is therefore a device dependent request.
Table 3-2

Transfer Levels for Types of Datasets

Type of Data

Type of Linked Contiguous Nonfile—Structureé
Transfer File File Device
READ/WRITE Yes Yes Yes
RECORD No Yes No
BLOCK No Yes No
TRAN * * Yes

* indicates that TRAN may be used on a file-structured /
device if the warnings mentioned are observed. Usage \
in these cases is not advised.

3-14

USER PROGRAM

.TRAN output

USER BUFFER
.TRAN input

<j7 DEVICE :)

Figure 3-4a The Transfer Path

A)

.INIT #LNKBLK

.TRAN #LNKBLK,#TRNBLK

.WAIT #LNKBLK ;COULD BE REPLACED BY .WAITR

(Process Data)

Yes ¢

No
-RLSE #LNKBLK

LNKBLK: (entries)
Tables and parameters

TRNBLK: (entries) in User Program

Figure 3-4b The Sequence of Requests For .TRAN

e o o e = ———— ————— T T = — —— o 1 o —

Figure 3-4 .TRAN Input/Output Transfers

3.2.2 Requests for Dixectory Management Services

Directory management requests are used to enter filenames into
directories, search for files, update filenames, and protect files
against deletion.

Each directory management request is described in Section 3.7.

3.2.3 Requests for Miscellaneous Services

Requests for miscellaneous services include:
® Requests to Load programs and overlays.

® Requests to return control from a running program to
the Monitor.

. Requests to set Monitor parameters such as the TRAP
vector or a program's restart address.

® Requests to obtain Monitor parameters such as the size
of the Monitor, the date, the time, and the current
user's UIC.

® Requests to perform conversions between ASCII and
Radix-50 packed ASCII, binary and ASCII decimal, and
binary and ASCII octal.

® Requests to access the Command String Interpreter.

Each miscellaneous service request is described in Section 3.8.

3.3 DEVICE INDEPENDENCE

It is generally preferable to write programs so that each
dataset may be associated with the widest possible variety of
devices. This makes it easier to move a program from one configura-
tion to another. It also makes it possible to use the program with
a variety of different media. For example, the Assembler accepts

input from disk, paper tape, DECtape, and other devices.

The monitor makes it relatively easy to achieve this objective.
Most I/O operations are completely device independent (i.e., no
special actions by the user are required to accommodate the opera-
tion to the device, specifically .READ, .WRITE, .OPEN, .CLOSE,
.WAIT, .WAITR, .INIT, and .RLSE. In addition, .RECRD and .BLOCK re-
quire only that the device be file structured. Only .TRAN and .SPEC

are typically device dependent.

In all cases, no device is associated with a dataset until an
.INIT request is made. The device name may be specified in any
of the following ways: ,
e the programmer may specify the name in his Link Block;

@ the program can obtain a device name by requesting the
user to enter a command string (section 3.8.6);this will
override any device specified in the Link Block;

® the user can use the ASSIGN command (see Chapter 2)

to associate a device (and file name) with the data-
set, this option overrides both preceding options.

Note that when a command string is solicited by the program, it will
always override the link block specification, no matter what is
entered. However, when ASSIGN is not solicited but is entered

at the operator's discretion, it will override the Link Block

only when specified. In the latter case, it is best to supply

a default in the Link Block.

Note that the substituted devices must be compatible. For
example, the user may initially specify a BLOCK transfer from disk
and later change the assignment to input from DECtape instead.
But, he cannot later specify a paper tape reader as the input
device, since BLOCK level requests do not apply to nonfile-

structured devices.

It is important to note that a device is assigned in a program
to a dataset logical name and that reassigning a device at run
time for one dataset logical name does not reassign that device

for all dataset logical names to which it was originally assigned.

The only transfer requests which are not device independent
are .TRAN and .SPEC. :

3.4 SWAPPING ROUTINES INTO CORE

Except for a small, permanently resident portion, the Monitor

routines which process most programmed requests are potentially
swappable. They are normally disk resident and are swapped into
core by the Monitor only when needed. The user may, however,

specify that one or more of these potentially swappable routines
be made permanently core resident or core resident only for the

duration of his program's run.

Making a potentially swappable routine core resident ties up
core space, but speeds up operation on the associated request. The
user may, for example, be collecting data via a .TRAN request in a
real-time environment. In such a case, even the short time needed

to swap in the .TRAN request processor could cause him to lose data.

Any routine which services a programmed request (other than
.READ or .WRITE) may be made core resident by one of the following
methods:

® Routines may be made permanently core resident at
Monitor Generation time (see the DOS System
Manager's Guide).

® Routines may be made core resident for the duration
of a program's run by declaring the appropriate
global name (as specified in the definition of each
request in Sections 3.6 through 3.8) in a .GLOBL
assembler directive in the user program. For example,
to make the .7TRAN processor resident while program
FROP is being run, the following directive would be
included in program FROP:

.GLOBL TRA

Device drivers are swapped into the Monitor's free core area
on an .INIT call and are freed from core on the occurrence of a
.RLSE, provided no other dataset is INITed to that device.

3.5 MONITOR RESTRICTIONS ON THE PROGRAMMER
In return for the services provided by the Monitor, the

programmer must honor certain restrictions:

® The programmer should not use either the EMT or the
IOT instructions for communication within his program.

@ It is recommended that the user not raise his
interrupt priority level above 3, since it might
lock out a device that is currently trying to do
input/output.

® HALTS are not recommended. If a HALT is executed
during an I/O operation, most devices will stop,
and only recovery from the console (pressing the
CONTinue switch on the console) will be effective
(recovery from the keyboard will not be immediately
possible, since a HALT inhibits the keyboard
interrupt). Some devices, such as DECtape, will not
see the HALT and will continue moving, will lose
their positions over the block under transfer, and
may even run the tape off the reel.

e The RESET instruction should not be used because it
forces a hardware reset; clearing all buffer registers,
and status flags and disabling all interrupts, includ-
ing keyboard interrupts. Since all I/O is interrupt
driven, RESET will disable the system.

® The user must not penetrate the Monitor when he is
using the stack. The stack is set by the RUN time
loader just below the lowest address of the program
loaded. The Monitor checks to see that the stack is
not overflowing each time it honors a request.

® The user may allocate temporary storage areas on
the stack by simply subtracting the size of the
area needed from the current stack pointer value.
When doing so, he should use a .MONF (Section 3.8.4.3) to
determine the highest address being used by the
Monitor. It is generally wise to leave some space
for future Monitor expansion (as a consequence of
programmed requests) and for stack extension (as a
consequence of subroutine calls, Monitor requests,
device interrupts, etc.). Consult Figure 3-5 for
more information about monitor core usage.

3-18

The user should be aware that certain requests,

such as .INIT, may change the amount of available
free core, since the instructions may call in drivers
and establish data blocks. Such requests affect the
result of MONF requests.

Certain requests return data to the user on the stack.
The user must clear the stack himself before the
stack is used again. The Monitor clears the stack
after it honors requests that do not return data to
the user on the stack.

The user should not use global names that are
listed in Appendix E.

The Link pointer in the Link Block is set by the
Monitor and must not be altered by the user.

NIT

3.6 REQUEST FOR INPUT/OUTPUT SERVICES

3.6.1 L.INIT - Associate a dataset with a device driver and set up

the initial linkage.

Macro Call: .INIT #LNKBLK
where LNKBLK is the address of the Link Block.

Assembly Language Expansion:
MOV #LNKBLK,- (SP)

EMT 6
Global Name: INR
Description: Assigns a device to a dataset and assures that the

appropriate driver exists and is in core. If the driver is not in
core, it is loaded. The device assigned is that specified in the
associated Link Block, unless assignment has been made to the logical
name specified in the Link Block with the ASSIGN command or via the
. Command String Interpreter. After the .INIT has been completed,
control is returned to the user at the instruction following the

assembly language expansion. The argument is removed from the stack.

Rules: The user must set up within his program a Link Block
of the format explained in section 3.9.1 for each dataset to be
INITed. A dataset which has been .INITed should be .RLSEd prior to
any further .INIT request for any Link Block.

Errors: A nonfatal error message, A003, is printed on the
teleprinter if no assignment has been made through the ASSIGN command,
and the DEFAULT DEVICE is either not specified in the Link Block or
has been specified illegally (i.e., no such device on the system).
The user may type in an assignment (ASSIGN) and give the CONTINUE
console command to resume operation.

Control is transferred to the address specified by the error
return address in the Link Block if at any time during an operation
there is not enough space in free core for the necessary drivers,
buffers, or tables. If no address (i.e., a zero) is specified in the
Link Block's ERROR RETURN ADDRESS, a fatal (F007) error is printed

and the program stops.

Example: (see .RLSE).

3-20

TN

.RLSE

3.6.2 L.RLSE - Remove the linkage between a device driver and a data-
set and release the driver.

Macro Call: .RLSE #LNKBLK
where LNKBLK is the address of the Link Block previously INITed.

Assembly Language Expané ion:
MOV #LNKBLK,- (SP)

EMT 7
Global Name: RLS
Description: Dissociates the device from the dataset and releases

the dataset's claim to the driver. Releasing the driver frees core
provided no other dataset has claimed the driver, and provided that

the driver is not permanently core resident.

Rules: The device to be released must have been previously
INITed to the dataset.

If the dataset has been OPENed on a directory device, it must be
CLOSEd before the device is released. On a nondirectory device, a
.RLSE will ensure that any data remaining in the Monitor buffer for
output is dispatched to the device and will return any buffer still
associated with the dataset to free core.

After the release has been completed, control is returned to the
user at the instruction following the assembly language expansion;

the argument is removed from the stack.

Errors: If the dataset has been OPENed to a file-structured
device, a .RLSE not preceded by a .CLOSE will be treated as a fatal
error, F005. A .RLSE error (F005) may also occur if the link pointer
in the Link Block is invalid, indicating probable corruption of the

Monitor or its control blocks.

Example: .

. INIT #LNK1 ;ASSOCIATE A DATASET WITH A DEVICE
.RLSE #LNK1
.WORD ERR1 ; ERROR RETURN ADDRESS

LNK1: . WORD 0 ; POINTER FOR MONITOR
.RAD50 /DSI/ ; LOGICAL NAME OF DATASET
.BYTE 1,0 ;DEVICE SPECIFIED, UNIT
.RAD50 /KB/ ; SPECIFY KEYBOARD

ERRL: ; ERROR PROCESSING LOGIC

.OPEN

3.6.3 .OPEN - Prepare a device (which has been .INITed) for data
transfer and associate the dataset with a file (if the device is file-

structured) .

Macro Call: .OPEN #LNKBLK, #FILBLK
This form assumes that the File Block contains a code indicating how
the file is to be opened (see Description below).

Assembly Language Expansion:

MOV #FILBLK, - (SP)
MOV #LNKBLK, - (SP)
EMT 16

Alternate Form of Macro Call:
.OPENx #LNKBLK,Rn
where Rn is a register containing the address of the File Block and

X indicates the type of .OPEN (see Description below).

Assembly Language Expansion:

MOVB #CODE, -2 (Rn) (see Description below)
MOV Rn, - (SP)

MOV #LNKBLK,- (SP)

EMT 16

Global Name: OPN (See Appendix C for subsidiary routines.)

Description: When used, .OPEN follows .INIT or .CLOSE (if more than
one file is to be opened on the same dataset). When the device being
used is file-structured, .OPEN associates a specific file with the
dataset. .OPEN also acquires a data buffer and prepares the device

or the file for the ensuing data transfers. See Appendix C for details
about specific .OPEN actions for particular devices. .OPEN has five
forms; the desired form may be specified by inserting the proper

HOW OPEN code in the File Block (see Figure 3-7) or by selecting one

of the alternate forms of the Macro Call. The different .OPEN forms

are described below:

HOW OPEN
Form Code Description
. OPENU 1 opens a previously created contiguous file
: for input and output by .RECRD or .BLOCK
request; .OPENU is rejected if the device
is not file-structured.
.OPENO 2 a. creates a new linked file and prepares

it for output via .WRITE; the file
must not already exist.

b. prepares a nonfile-structured device
for output via .WRITE (see Appendix C).

.OPEN (cont)
HOW OPEN

Form Code Description

. OPENE 3 opens a previously created linked or con-
tiguous file to make it longer via .WRITE;
note that a contiguous file may only be
extended within the area already allocated;
although additional blocks may be added to
a linked file, no additional blocks may be
added to a contiguous file (see .CLOSE);
.OPENE is treated like .OPENO if the device
is not file-structured.

.OPENI 4 a. opens a previously created linked or
contiguous file for input via .READ,
.RECRD, or .BLOCK.
b. prepares a nonfile-structured device
for input via .READ (see Appendix C).

.OPENC 13 opens a previously created contiguous file
for output via .WRITE; when a contiguous
file is first opened for writing (via
.WRITE), .OPENC must be used; subsequent
opens for output (via .WRITE) must be
.OPENE's; .OPENC is treated like .OPENO
if the device is not file-structured.

At this point, the user should note the difference between linked
files and contiguous files. A linked file has records allocated to it
one at a time, as they are needed. Each record in the file contains
a pointer to its successor, the User File Directory (UFD) points to
the first record. Because records are allocated as needed, the user
need not concern himself at all with the size of the file nor with the
allocation of any records. Furthermore, a linked file can easily be
extended in the future. However, because records are scattered about
on the disk and because the system must read all intermediate records
to move from one record to another (forward only), linked files can
only be used for sequential processing (.READ or .WRITE).

A contiguous file has all of its records allocated at once in a-

contiguous area of the disk which is reserved for the file. Since any
record in the file can easily be located relative to the first record
in the file, random (or direct) access (.RECRD or .BLOCK) is possible
in addition to sequential access. However, it is now necessary to
know in advance how much space will be needed, since no more space can
be added later. Since this may be difficult, one often has to guess
and space is often wasted. Note, however, that a contiguous file can
be extended within the space already allocated, i.e., if the area was
not filled when the file was first written (or extended), more data
can be added. Because the user is responsible for determining the
size of a contiguous file, he is required to allocate it before open-
ing it (compare .OPENC and .OPENO). This may be done with PIP, using
the ALLOCATE command or with the .ALLOC programmed request.

3-23

.OPEN (cont)

After the open request has been processed, control is returned to
the user at the instruction following the assembly language expansion;
the arguments are removed from the stack. At this time, however, the
device concerned may still be completing operations required by the
request. A summary of transfer requests which may legally follow
.OPEN requests is illustrated in Table 3-3.

Table 3-3
Transfer Requests Which May Follow Open Requests

Linked File Contiguous File
.Input Outpqt Input Output File
v |1 . RECRD .RECRD Already
.READ | .WRITE |.READ |.BLOCK | .WRITE | .BLOCK Exist ?
Yes Yes Must
Yes Must Not
Yes Must
Yes Yes Yes Must
Yes ~ Must
Rules: a. General Rules for All .OPENx Requests - The user must

sét up a Filename Block in his program (see Figure 3-7). If the
dataset is a file, the Filename Block must contain a legal file-
name (see Section 2.3). If the dataset is not a file, or if it
will be specified by an .ASsign or via the Command String
Interpreter, the Filename Block need not contain any FILENAME or
EXTENSION entries.

All datasets must have been INITed before they are OPENed.
The .OPEN must be applicable to the type of device (e.g., .OPENI
to the line printer is illegal).

For datasets on directory devices, the User Identification
Code (UIC) in the Filename Block (if specified) must be in the
directory of the device. If the UIC is not specified, the user
must have logged in with a UIC that appears on the device.

The .OPENx request must not violate the protect code of the
file.

If a dataset is opened for any output, it cannot be opened

.again until it has been closed.

.OPEN (cont)

b. Rules for .OPENO - The .OPENO request is applicable

only for outputs to nonfile-structured device