
Disk Operating System Monitor

Programmer's Handbook

(

(

Disk Operating System Monitor

Programmer's Handbook

PDP-11

DEC-II-OMONA-A-D

DIS K 0 PER A TIN G S Y S T E M M 0 NIT 0 R

PRO G RAM MER'S HAN D BOO K

Monitor Version V%8-%2

October 1972

SOFTWARE SUPPORT CATEGORY

The software described in this document
is supported by DEC under Category I,
as defined on page iv of this document.

For additional copies, order No. DEC-II-OMONA-A-D from DEC,

Software Distribution Services, Maynard, Mass. 01754

DIGITAL EQUIPMENT CORPORATION • MAYNARD, MASSACHUSETTS

First Printing, May 1971
Revised, August 1971
Revised, February 1972
Revised, October 1972

Your attention is invited to the last two
pages of this document. The "How to Obtain
Software Information" page tells you how to
keep up-to-date with DEC's S'oftware. The
"Reader's Comments" page, when filled in
and mailed, is beneficial to both you and
DEC; all comments received are acknowledged
and are considered when documenting subsequent
documents.

Copyright ~ 1971, 1972 by Digital Equipment Corporation

NOTE

The material in this manual is for information
purpo~s and is subject to change without notice.
DEC assumes no responsibility for the use or
reliability of its software on equipment which
is not supplied by DEC.

Associated Documents:

PDP-II FORTRAN IV
Programmer's Manual, OEC-II-LFIVA-A-D

PDP-I! MACRO-II Assembler,
Programmer's Manual, DEC-II-OMACA-A-D

PDP-II Edit-II Text Editor,
programmer's Manual, DEC-II-EEDA-A

PDP-II ODT-IIR Debugging Program,
Programmer's Manual, DEC-II-OODA-D

PDP-II Link-II Linker and Libr-ll Librarian
Programmer's Manual, DEC-II-ULLMA-A-D

PDP-II PIP, File utility Package,
Programmer's Manual, DEC-II-UPUPA-A-D

The following are trademarks of
Digital Equipment Corporation.

DEC
FLIP CHIP
DIGITAL (logo)
UNIBUS

ii

PDP
FOCAL
COMPUTER LAB
OMNIBUS

(

(

L

(

PREFACE

This document contains a comprehensive description of the PDP-II Disk Operating System

Monitor. The document is written for the PDP-l 1 programmer -- it assumes familiarity with

the contents of the PDP-l 1 Handbook 1971 and the MACRO-II Assembler (see document

number DEC-ll-0MACA-A-D). Previous experience with monitor or executive systems

would be helpful.

The document is separated into three chapters: Chapter 1 is an introduction to the DOS

Monitor I and provides general information about the disk operating system. Chapter 2

describes the keyboard commands available to the system operator through the Monitor;

concepts and operation of each command are also explained. Chapter 3 describes the pro­

grammed requests that are available to the programmer through the Monitor. This chapter

also explains the concepts and operation of each programmed request. The entire document

is summarized in the appendices. Appendices D (Monitor Commands) and E (Monitor

Programmed Requests) should prove to be invaluable to the DOS user.

In addition to the DOS Monitor I the PDP-ll Disk Operating System Software includes:

FORTRAN IV
MACRO-II Assembler
Edit-II Text Editor
ODT -11 R Debugging Program
PIP I File Utility Package
Link-II Linker
Libr-ll Librarian

iii

SOFTWARE SUPPORT CATEGORIES

Dig ital Equ ipment Corporation (DEC) makes avai lable four categories of software. These
categories reflect the types of support a customer may expect from DEC for a specified software
product. DEC reserves the right to change the category of a software product at any time.
The four categories are as follows:

CATEGORY
Software Products Supported at no Charge

This classification includes current versions of monitors, programming languages, and
support programs provided by DEC. DEC will provide installation (when applicable), advisory,
and remedial support at no charge. These services are limited to original purchasers of DEC
computer systems who have the requisite DEC equipment and software products.

At the option of DEC, a software product may be recategorized from Category I to
Category II for a particular customer if the software product has been modified by the customer
or a third party.

CATEGORY II
Software Products that Receive Support for a Fee

This category includes prior versions of Category I programs and all other programs avail­
able from DEC for which support is giyen. Programming assistance (additional support), as
available, will be provided on these DEC programs and non-DEC programs when used in con­
junction with these DEC programs and equipment supplied by DEC.

CATEGORY III
Pre-Re I ease Software

DEC may elect to release certain software products to customers in order to facilitate
final testing and/or customer familiarization. In this event, DEC will limit the use of such
pre-release software to internal, non-competitive appl ications. Category III software is only
supported by DEC where this support is consistent with evaluation of the software product.
While DEC will be grateful for the reporting of any criticism and suggestions pertaining to a
pre-release, there exists no commitment to respond to these reports.

CATEGORY IV
Non-Supported Software

This category includes all programs for which no support is given.

iv

(

(

(

(

(

(

CONTENTS

CHAPTER 1 INTRODUCTION

1.1

1.2

1.3

1.4

1.5

1.6
1.6.1
1.6.2
1.6.3

THE DOS MONITOR

MONITOR CORE ORGANIZATION

HARDWARE CONFIGURATIONS

MONITOR MESSAGE

STARTING THE MONITOR

A GUIDE TO THIS HANDBOOK
Terminology
Standards for T.ab1es
Standards for Numbers

CHAPTER 2 MONITOR KEYBOARD CO!~~DS

2.1
2.1.1
2.102

2.2

2.3

2.4

2.5

2.6
2.6.1
2.6.2
2.6.3
2.6.4
2.6.5
2.6.6
2.6.7

2.7

2.8
2.8.1
2.8.2
2.8.3
2.8.4
2.8.5
2.8.6
2.8.7
2.8.8
2.8.9
2.8.10
2.8.11
2.8.12
2.8.13
2.8.14
2.8.15

INTRODUCTION
Monitor Commands by Function
When Monitor Commands are Legal

MONITOR MODE AND USER MODE

COMMAND STRING INTERPRETER (CSI)

USER IDENTIFICATION CODE (UIC)

FILENAMES AND FILENAME EXTENSIONS

SPECIAL KEYBOARD CHARACTERS
The RETURN Key
The RUBOUT Key
The CTRL/C Keys
The CTRL/U Keys
The Semicolon Key
The ESCAPE Key
How Keyboard Characters are Processed

GETTING ON THE SYSTEM

MONITOR KEYBOARD COMMANDS
The ASSIGN Command
The BEGIN Command
The CONTINUE Command
The DATE Command
The DUMP Command
The ECHO Command
The END Command
The FINISH Command
THe GET Command·
The KILL Command
The LOGIN Command
The MODIFY Command
The ODT Command
The PRINT Command
The RESTART Command

v

Page

1-1

1-4

1-6

1-6

1-7

1-8
1-8
1-9
1-10

2-1
2-2
2-3

2-4

2-5

2-5

2-6

2-7
2-7
2-7
2-7
2-8
2-8
2-9
2-9

2-10

2-11
2-13
2-14
2-18
2-19
2-20
2-21
2-22
2-23
2-24
2-25
2-26
2-27
2-29
2-30
2-31

2.8.16 The
2.8.17 The
2.8.18 The
2.8.19 The
2.8.20 The

RUN Command
S.fISE Command
STOP Command
TIME Command
WAIT Command

Page

2-32
2-34
2-36
2-37
2-38

CHAPTER 3 PROGRAMMED REQUESTS

3.1

3.2
3.2.1

3.2.1.1
3.2.1.2
3.2.1.3
3.2.1.4
3.2.2
3.2.3

3.3

3.4

3.5

3.6
3.6.1
3.6.2
3.6.3
3.6.4
3.6.5
3.6.6
3.6.7
3.6.8
3.6.9
3.6.10
3.6.11
3.6.12
3.6.13

3.7
3.7.1
3.7.2
3.7.3
3.7.4
3.7.5
3.7.6

3.8
3.8.1
3.8.1.1
3.8.2
3.8.2.1
3.8.3
3.8.3.1
3.8.3.2
3.8.4
3.8.4.1

INTRODUCTION

TYPES OF PROGRAMMED REQUESTS
Requests for Input/Output and Related
Services
READ or WRITE Level Requests
RECORD Level Requests
BLOCK Level Requests
TRAN Level Requests

3-1

3-3

Requests for Directory Management Services
Requests for Miscellaneous Services

3-6
3-6
3-10
3-12
3-14
3-16
3-16

DEVICE INDEPENDENCE

SWAPPING ROUTINES INTO CORE

MONITOR RESTRICTIONS ON THE PROGRAMMER

REQUEST
.INIT
.RLSE
. OPEN
• CLOSE
• READ
• WRITE
• RECRD
• BLOCK
.TRAN
. WAIT
.WAITR
.SPEC
• STAT

FOR INPUT/OUTPUT SERVICES

3-16

3-17

3-18

3-20
3-20
3-21
3-22
3-26
3-28
3-29
3-30
3-31
3-33

- 3-35
3-36
3-37
3-38

REQUESTS
.ALLOC

FOR DIRECTORY MANAGEMENT SERVICES 3-39
3-39
3-41
3-42
3-43
3-44
3-46

.DELET

.RENAM

.APPND

. LOOK

. KEEP

REQUESTS FOR MISCELLANEOUS SERVICES
Load a Program or an Overlay
. RUN
Request to Return Control to the Monitor
.EXIT
Requests to Set Monitor Parameters
• TRAP
• RSTRT
Requests to Obtain Monitor Parameters
. CORE

vi

3-47
3-47
3-47
3-49
3-49
3-50
3-50
3-51
3-52
3-52

(

(

(

3.8.4.2
3.8.4.3
3.8.4.4
3.8.4.5
3.8.4.6
3.8.4.7
3.8.4.8
3.8.4.9
3.8.4.10
3.8.4.11
3.8.4.12
3.8.4.13
3.8.4.14
3.8.5
3.8.5.1
3.8.5.2
3.8.5.3
3.8.5.4
3.8.5.5
3.8.5.6
3.8.6

3.8.6.1
3.8.6.2

3.9
3.9.1
3.9.2
3.9.2.1
3.9.2.2
3.9.3
3.9.3.1
3.9.3.2
3.9.4
3.9.5
3.9.6
3.9.7
3.9.8
3.9.8.1

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

APPENDIX F

APPENDIX G

APPENDIX H

APPENDIX r
APPENDIX J

APPENDIX K

APPENDIX L

APPENDIX M

APPENDIX N

APPENDIX 0

INDEX

• MONR
• MONF
• DATE
• TIME
.CVTDT
.GTUIC
.SYSDV
.GTPLA
.STPLA
.GTCIL
.GTSTK
.STSTK
.STFPU
Requests to Perform Conversions
.RADPK
.RADUP
.D2BIN
.BIN2D
.02BIN
.BIN20
Requests for Interfacing with the
Command String Interpreter
.CSIl
.CSI2

USER PROGRAM TABLES AND CONTROL BLOCKS
The Link Block
The Filename Block
Error Condition Codes (FILBLK-1)
The File Protection Codes
The Line Buffer Header
The Transfer Mod~s
The Status Byte
The RECORD Block
The BLOCK Block
The TRAN Block
The Spe'cia1 Functions Block
The RUN Block
The Function Word

PHYSICAL DEVICE NAMES

EMT CODES

SUBSIDIARY ROUTINES AND OVERLAYS

SUMMARY OF MONITOR COMMANDS

SUMMARY OF MONITOR PROGRAMMED REQUESTS

SUMMARY OF DOS ERROR MESSAGES

LISTING OF SYSMAC.SML (SYSTEM MACRO FILE)

PERIPHERAL DEVICES

COMMAND STRING INTERPRETER

SPECIAL I/O FUNCTIONS

EXAMPLE PROGRAMS

CONVERSION TABLES

CHARACTER CODES

GLOSSARY AND ABBREVIATIONS

RESERVED FILENAME EXTENSIONS

vii

Page

3-53
3-54
3-55
3-56
3-57
3-59
3-60
3-61
3-62
3-63
3-64
3-65
3-66
3-67
3-67
3-70
3-71
3-72
3-73
3-74

3-75
3-76
3-77

3-80
3-80
3-82
3-82
3-86
3-87
3-88
3-91
3-93
3-94
3-95
3-97
3-98
3-99

A-1

B-1

C-1

D-1

E-1

F-l

G-1

H-1

1-1

J-1

K-1

L-1

M-1

N-1

0-1

X-1

(

(

CHAPTER 1

INTRODUCTION

1.1 THE DOS MON.ITOR

The PDP-II Disk Operating System (DOS) Monitor is a powerful,

keyboard-oriented, program development system designed for use on

PDP-II computers. The DOS Monitor facilitates use of a wide range

of peripherals available for use with the PDP-II.

The DOS Monitor supports the PDP-II user throughout the de­
velopment and execution of his program by:

• providing convenient access to system programs
and utilities such as the FORTRAN Compiler l ,

the MACRO-Il Assembler l , a Linker, a debugging
package, an Editor, a file utility package,
etc. ;

• performing input/output transfers at four dif­
ferent levels, ranging from direct access of
device drivers to full formatting capabilities,
while providing the convenience of complete
device independence;

• providing a file system for management of
secondary storage; and

• providing a versatile set of keyboard commands
for use in controlling the flow of programs.

System programs and utilities can be called into core from

disk, DECtape or magtape with Monitor commands issued directly

at the keyboard. This feature eliminates the need to manipulate

numerous paper tapes, and provides the user with an efficient and

convenient programming tool.

DOS gives

independence.

I/O devices.

the user program the capability of complete device

Programs can be written without concern for specific

When the program is run, the user can select the

most effective or convenient I/O device available for the function

to be performed. In addition, if the system configuration is

altered, many programs can take advantage of the new configuration

without being rewritten. Logical names can be assigned to devices

1 Available only on 12K or larger systems. The 8K assembler does not
support macros.

l-l

within the system enabling sywbolic referencing of any device. No

concern need be given to I/O buffer size within the user program

yet the user can alternatively retain direct control of I/O buffers.

All input/output (I/O) transfers are handled by the Monitor in

any of three user-selected levels called READ/WRITE, RECORD/BLOCK,

and TRAN. READ/WRITE is a formatted level of I/O in which the .user

can specify anyone of nine options. RECORD/BLOCK is a file-structured,

random-access I/O level with no formatting. TRAN does basic I/O

operations at the device driver level. All I/O is concurrent and

interrupt driven.

The file system on secondary storage uses two types of files:

linked and contiguous. Linked files can grow serially and have no

logical limit on their size. Contiguous files must have their

lengths declared before use but can be. randomly accessed by RECORD

or BLOCK level I/O requests. All blocks in a contiguous file are

physically adjacent, while blocks in a linked file are typically

not adjacent (the first word of each block contains the address of

the next block). Files can be deleted or created at any time, and

are referenced by name. Table 1-1 summarizes the features and

benefits of the DOS Monitor.

The user communicates with the Monitor in two ways: through

keyboard instructions called commands, and through programmed

instructions called requests.

Keyboard commands enable the user to load and run programs;

assign I/O devices or files; start or restart programs at specific

addresses; modify the contents of memory locations; retrieve system

information such as time of day and date; and dump core. Users

with more than 8K of memoryl can utilize programmed requests,

which are macros assembled into the user's program and through

which the user specifies the operation to be performed by the

Monitor. Some programmed requests are used to access input/output

transfer facilities, ·and to specify where the data is, where it is

going, and what format it is in. In these cases the Monitor will

take care of bringing drivers in from disk, performing the data

transfer, and notifying the user of the status of the transfer.

18K users must include the code generated by such an assembly (the
assembly language expansion shown in Appendix E and in the explana­
tion of each programmed request in Chapter 3) in their programs to
utilize the Monitor functions. See the MACRO manual
(DEC-ll-OMACA-A-D) for other differences in the 8K Assembler.

1-2

(

(

(

"

(

Table 1-1

PDP-II DOS Monitor Features and Benefits

Feature

Files are catalogued in multi­
level file directories.

Files are referred to by name.

Files can grow serially.

Files can be as large as the
storage device can accept.

File storage is allocated dynam­
ically on any bulk-storage
device.

Monitor subroutines can be
swapped into core when needed.
Routines need not permanently
tie up an area of core.

Monitor subroutines can be
made permanently core resi­
dent before or during run
time.

The Monitor is divided into
logical modules.

All I/O is interrupt-driven.

Device independence.

Devices are assigned to one
or more datasets.

Benefits to User

No file naming conflicts among
users.

Files do not have to be remem­
bered by number.

Files can be created even when
their final size is not known.

No logical limit on the size of
files.

Files can be deleted or created
even at run time for maximum
storage efficiency.

Much more efficient use of core
space for user programs. Free
core expands and contra.cts as
Monitor subroutines are used.
Space can be reclaimed for user
programs. The user can deter­
mine which Monitor subroutines
will be in core, and when.

The user can tailor the Monitor
for his particular needs.

The user can easily and effi­
ciently use the logical pieces
of the Monitor for his own needs.
He can also easily add his own
specialized drivers to the sys­
tem by following a simple set
of rules, and still use the
rest of the Monitor with these
drivers.

Such specialized equipment as
communications modems and A/D
converters which must be inter­
rupt driven can be run under the
Monitor. Several I/O calls can
be handled concurrently.

Any device can be specified by
the user in his program, and
another device can be substituted
by him when his program is being
run.

The user may reassign a device
which is used for one purpose
(dataset) without changing its
assignment for all other purposes
(datasets) •

1-3

Other requests access Monitor facilities to query system variables

such as time of day, date, and system status, and to specify special

functions for devices.

Programs supported by DOS, and hence accessible through the

r.1onitor, are listed in Table 1-2.

Table 1-2

Principal DOS System Programs

System Program

FORTRAN IV
MACRO-II Assembler
EDIT-II Text Editor
ODT-llR Debugging Program
PIP, File Utility Package
Link-II Linker and Libr-ll Librarian

1.2 MONITOR CORE ORGANIZATION

Core memory is divided into:

Document Number

DEC-ll-LFIVA-A-D
DEC-ll-OMACA-A-D
DEC-ll-EEDA-D
DEC-ll-OODA-D
DEC-ll-UPUPA-A-D
DEC-ll-ULLMA-A-D

• a user area where user programs are located;
.,

• the stack where parameters are stored tempo­
rarily during the transfer of control between
routines;

• the free core or buffer area which is divided
into l6-word blocks assigned by the Monitor
for temporary tables, for Monitor routines
called in from disk, and for data buffering
between devices and user programs;

• the resident Monitor itself which includes
all permanently resident routines and tables;

• The interrupt vectors.

Figure 1-1 is a map of core as organized by the Monitor.

The DOS Monitor dynamically acquires and releases core on the

basis of system requirements.

1-4

(

xx7776 S

000000

(

STACK

f----- ----------
Free Core

Device Assignment Table
Generated After Load Time

Monitor Buffers
(Data Buffers, Data Control

Blocks, Drivers, etc.)

Device Assignment Table
Generated Before Start of Program

Monitor Routines Resident
for Program Duration

Device Assignment Table
Generated Before Load Time

Permanently Resident Monitor
and Vectors

-

-

..

Top of Core (.CORE)

Base of User (.GTPLA)
Programs

Top of Full (.MONF)
Monitor

Top of Resident
Moni tor (. MONR)

Figure 1-1 The Monitor Core Map

1-5

1.3 HARDWARE CONFIGURATIONS

Many minimum hardware configurations for use by the disk opera­

ting system may be derived by choosing one item from each of the

five following sets.

PDP-ll System Building Block with 900 nsec. Core Memory
and a Terminal (DECwriter [LA30], Alphanumeric CRT
[VT05-B], or Teletype l [LT33]).

• Cabinets and all Mounting Hardware.

• Bootstrap Loader (BM792-YB or MR-ll).

• Choice of Disks (Control Logic Included)

64K word Fixed Head Disk (RS64/RCll)
256K word Fixed Head Disk (RFll/RSll)
1.2 word Interchangeable Cartridge Disk (RK05/RKll)

• Choice of Tape Devices (Control Logic Included)

Dual Drive DECtape (TU56/TCll)
7- or 9-track Industry Standard Magnetic Tape (TU10/TMll)
High-Speed Paper Tape Reader/Punch (PCll)

Specific details are available from a sales representative. Note

that 12K of core is required with the RK disk and DECtape is required

with the RC disk.

1.4 MONITOR MESSAGE

When a message-producing situation (such as a system error)

occurs, an error code and an additional word of information are dis­

played on the teleprinter. There are five types of messages:

• Informational

• Action required by the operator

• Warning to the operator

• Fatal

• System Program error

The type of message is identified by being preceded by the letter

I, A, W, F or S respectively. If the system disk should fail and

the error message cannot be brought into core, the Monitor halts.

Monitor messages are described in detail in Appendix F.

lTeletype is a registered trademark of the Teletype Corporation.

1-6

l

(

(
',-----

(

1.5 STARTING THE MONITOR

The Monitor is called into core from disk by performing the

following procedure for systems with the BM792YB:

1. If the system device is an RK11 Disk, turn WRITE
ENABLE off;

2. Move HALT/ENABLE switch to HALT position;

3. Load the processor switch register with 1731~~;

4. Depress LOAD ADDRESS processor switch;

5. Load the switch register with,

177462 if the system device is RFll disk,
1774~6 if the system device is RKll disk,
17745~ if the system device is RCll disk;

6. Move HALT/ENABLE processor switch to ENABLE position;

7. Depress START processor switch.

With the MR11 Bootstrap Loader, the procedure is:

1. Load the processor switch register with:

1731~~
17311~

if the Monitor storage device is RF11 disk,
if the Monitor storage device is RK11 disk,

2. Move HALT/ENABLE switch to HALT position;

3. Move HALT/ENABLE switch to ENABLE position;

4. Depress LOAD ADDRESS processor switch;

5. Depress START processor switch.

The Monitor will load into core and identify itself by printing:

DOS Vxx

on the teleprinter, where Vxx represents the version number of the

Monitor being used. The Monitor is now ready to accept an operator

command (see Chapter 2).

1-7

1.6 A GUIDE TO THIS HANDBOOK

1.6.1 Terminology

The reader should understand the following terms as they apply

to the PDP-II Disk Operating System. An expanded Glossary, with

abbreviations, can be found in Appendix I.

A dataset is a logical collection of data which is treated as

an entity by a program. Typically, the items in a dataset have

a realtionship to each other which simultaneously binds them to­

gether and distinguishes them from items in other datasets. For

example, the records in the Object dataset produced by the assembler

are clearly related to each other and are clearly distinct from the

listing dataset produced by the same assembler. A parameter file

and a source file, when presented successively to the assembler,

might be viewed as a single dataset, however.

Typically, each dataset is associated with exactly one link

block (see section 3.8.6.1), although a link block can be associ­

ated (successively, not simultaneously) with more than one dataset.

For example, when the assembler finishes processing one dataset

and returns for another command, the new input will constitute a

new dataset, but the same link block will be used.

Examples of datasets are:

• all or part of a file on a file-structured
device;

• on.e or more paper tapes in a paper tape reader;

• a deck of cards, terminated by an EOF card;

• three lines of keyboard data, a disk file,
and a paper tape; which are read in sequence
by the assembler and are viewed as the source
input dataset.

A device is any PDP-II peripheral supported by the Monitor.

A device controller can support one or more device units.

A file is a physical collection of data which resides on a

directory device (e.g., disk or DECtape) and is referenced by its

name. A file occupies one or more blocks on a directory device.

1-8

(

L

(

(,----

(

On a directory device it is possible to store data by name, rather

than simply physical location; it is also called a file-structured

device.

Bulk storage devices containing directories are called direc­

tory devices or file-structured devices. Devices such as paper

tape equipment and the teleprinter, which cannot support a file

structure, are called non-directory device or non-file structured

devices.

A block is a group of adjacent words of a specified size on

a device; it is the smallest system-addressable segment on the

device. If the blocks comprising a file are physically adjacent

to each other, the file is said to be contiguous; if the blocks

of the file are not physically adjacent, the file is said to be

linked.

A line is a string of ASCII l characters which is terminated by

a LINE FEED, FORM FEED or VERTICAL TAB.

File structure refers to the manner in which files are organ­

ized. Specifically, each of a user's files is given a unique name

by the user. Each user on a file-structured device is assigned a

User File Directory (UFD) in which each of his files is listed by

name and location. Each UFD is then listed in a Master File Direc­

tory (MFD) which is unique to a specific device unit.

1.6.2 Standards for Tables

A table is a collection of data stored in sequential memory

locations. A typical table as represented in this manual is shown

below. This table is two words long, and is referenced by the sym­

bolic address TABL:. The first entry is at location TABL and con­

tains ENTRY A, which might be coded as .WORD AYE in the user's pro­

gram. The second word of the table, at address TABL+2, is divided

into two bytes. The low-order byte (address TABL+2) contains ENTRY

B, and the high-order byte (address TABL+3) contains ENTRY C. They

might be written into a program as .BYTE BEE,CEE.

lASCII represents American Standard Code for Information Interchange.

1-9

a) Representation in manual

ENTRY A

TABL:
ENTRY C I ENTRY B

b) Representation in program listing:

TABL: .WORD AYE
.BYTE BEE,CEE

iENTRY A
iENTRY B, ENTRY C

Note that the first byte specified is stored at the rightmost avail­

able byte.

1.6.3 Standards for Numbers

Unless otherwise stated, all numbers in the text and examples

are in octal form.

1-10

(

2.1 INTRODUCTION

CHAPTER 2

MONITOR KEYBOARD COMMANDS

This Chapter shows how the Disk Operating System (DOS) Monitor

looks to the user as he sits at the terminal (i.e., the Teletype,

DECwriter, etc.). The user is communicating with the DOS Monitor

while running system, utility, and user programs.

Since DOS is an interactive operating system, the primary input

and output device is the user's terminal or teleprinter (keyboard

and printer). Through the terminal keyboard, the user can communi­

cate with

• the Monitor,

• a system or utility program (Macro, PIP, Editor,
etc.), or

• a user program written to run under DOS.

The terminal printer is used to record user input and system output.

In communicating with the Monitor, the keyboard is used as a

control device to allocate system resources, move programs into

core, start and stop programs, and exchange information with the

system. Data from the keyboard may be transferred to a buffer in

the user program or it may be processed immediately by the DOS

Command String Interpreter (CSI) as explained in Appendix I. In

this Chapter, the CSI is described only as it applies to the format­

ting of Monitor keyboard commands.

When the system is ready for input from the keyboard, a

single character is printed on the teleprinter. The following con­

ventions apply:

2-1

Character Meaning

$ The system is idle, waiting for a Monitor com­
mand.

The Monitor is waiting to continue or abort a
task.

A system, utility, or user's program requests
a command through the CSI.

* A system program requests direct input, i.e.,
not through the CSI.

In this Chapter,. we are concerned only with the $ and. characters.

The # and * characters are explained in the individual system and

utility programmer's manuals.

The $ and. indicate that the Monitor is waiting for a keyboard

command from the user. Note, however, that some commands may be

issued only to a $ and some only to a ., and that each command has

different limitations; these are discussed with each command in

Section 2. 8.

2.1.1 Monitor Commands by Function

A number of keyboard commands are provided for communication

with the DOS Monitor. These commands are briefly identified by

function in Table 2-1 and are fully described in Section 2.8.

Table 2-1

Monitor Commands by Function

Function

Establish identity of user

Terminate a session before leaving the system

Enter or retrieve d~te

Enter or retrieve the time-of-day

Load and execute a program

Load a program

Start a program which has been loaded

Resume a program that is waiting for user action

Command

LOGIN

FINISH

DATE

TIME

RUN

GET

BEGIN

CONTINUE

(continued on next page)

2-2

(

(

(

Table 2-1 (Conti d)

Monitor Commands by Function

Function Command

Assign an I/O device or a file at run-time

Inspect or modify individual memory locations

Save a program in core for later use

ASSIGN

MODIFY

SAVE

DUMP

ECHO

Dump memory data on the teleprinter

Suppress or resume echoing of keyboard input

Suppress or resume teleprinter output PRINT

Start the program just loaded at its ODT entry point ODT

Stop a program STOP

Suspend a program

Restart a program that has been running

Terminate a keyboard or paper tape dataset

2.1.2 When Monitor Commands are Legal

WAIT

RESTART

END

Each command performs a specific function, is legal to use

under specific conditions, and often alters the state of the system,

as shown in the following table.

Command

ASSIGN
BEGIN
CONTINUE
DATE
DUMP
ECHO

Legal When:

any time
program loaded and stopped
program loaded and waiting
any time
any time
program running

2-3

State Induced

no change
program running
program running
no change
no change
no change

(continued on next page)

Conunand

END
FINISH
GET
KILL
LOGIN
MODIFY
ODT
PRINT
RESTART
RUN
SAVE
STOP
TIME
WAIT

Legal When:

program running
no program loaded
no program loaded
program loaded
not logged in
any time
program loaded and stopped
program running
program loaded and stopped/waiting
no program loaded
program loaded and stopped
program running
any time
program running

State Induced

no change
logged out
program loaded and stopped
program stopped and unloaded
logged in
no change
program running under ODT
no change
program running
program loaded and running
no change
program stopped
no change
program waiting

A program is loaded if you have typed RUN or GET but not KILL,

and as long as the program has not executed a .EXIT call (see Chap­

ter 3).

A program is running if you have typed RUN or if it has been

loaded and you have typed BEGIN, CONTINUE, RESTART, or ODT.

A program is loaded and stopped if GET but not BEGIN was typed,

if it was running and a STOP was typed, or after issuing a fatal

error message (see Appendix F).

A program is waiting if it was running and you typed CTRL/C

followed by WAIT, or after the system issues an action error message

(see Appendix F).

A program is stopped and unloaded (from core) if you have

typed KILL or if the program issued an .EXIT call (see Chapter 3).

2.2 MONITOR MODE AND USER MODE

From the user's point of view, his terminal is in either

Monitor mode or user mode. In Monitor mode, each line the user

types is sent to the Monitor's Conunand String Interpreter (CSI).

The execution of certain conunands places the terminal in user mode.

When the terminal is in user mode, it becomes simply an input/

output (I/O) device for that user. In addition, user programs use

the terminal for two purposes: to accept user conunand strings (user

mode) or as a direct I/O device (data mode) •

2-4

(

(

j-

2.3 COMMAND STRING INTERPRETER (CSI)

When the terminal is in Monitor mode the user communicates

with the Monitor's Command String Interpreter (CSI). The commands

described in this Chapter are processed by the CSI (see Appendix I).

The CSI makes several checks before processing commands from

the user. For example, if a user who has not logged in types a

command that requires him ~o be logged in, the system responds with

the message:

ILL CMD!

meaning the command was illegal and was not executed. The commands

discussed in this Chapter require that the user be logged in except

where explicitly stated otherwise. When a command is issued that

requires the job to use more core than is available, the system re­

sponds with the message:

NO CORE!

and the user's command is not executed.

All Monitor messages are shown in Appendix F.

2.4 USER IDENTIFICATION CODE (UIC)

Each user of the system is normally assigned a User Identifi­

cation Code (UIC) by the system or installation manager. The UIC

is first used when logging in to the system, as explained in Sec­

tion 2.7. The format of the UIC is:

nnn,nnn

where nnn represents a string of two or three octal digits, from

11 to 376 (~-l~ and 377 are reserved for the system). The value

to the left of the comma represents the user-group number, while

the value to the right represents the user's number within the

group.

2-5

For example:

67,123

specifies user group 67 and user number 123.

NOTE

Except when logging in, the UIC is always de­
limited by the left and right square brackets,
as shown in the examples of various commands
in this Chapter.

2.5 FILENAMES AND FILENAME EXTENSIONS

User program files are named with a certain convention, much

the same as a person is named. For example, the first name is

the filename and the second name is the filename extension. By

convention, the filename and extension are separated by a period.

For example:

GEORGE. DOE

could be a legal filename and extension. Note that the filename and

extension cannot have embedded blanks (spaces) because a space will be

interpreted as a delimiter,

Filenames can consist of from one to six alphanumerics; all

after the sixth are ignored. The filename extension can consist

of from one to three alphanumerics. The extension is generally

used to indicate the type of information in the file. For example:

File

MAIN.F4

SAMPLE.MAC

TESTl.TMP

NAME.REL

Could be:

a FORTRAN file named MAIN

a Macro source file named SAMPLE

a temporary file named TESTI

a relocatable binary file named NAME

A list of standard extensions are shown in Appendix 0

User program files are identified by the filename.extension

and the UIC. Thus, different users may use the same filename.exten­

sion, and as long as they are created under different UIC's the

files would remain distinct and separate.

2-6

(

(
\

(

2.6 SPECIAL KEYBOARD CHARACTERS

There are several special keyboard characters recognized by

the Monitor's CSI that cause specific functions to be performed.

These keyboard characters are explained below.

2.6.1. The RETURN Key

The RETURN key is used to terminate a keyboard command and

to advance the teleprinter paper one line. Typing the RETURN key

produces a carriage return and line feed action on the teleprinter.

As characters are typed, they are transferred into a buffer

where they are stored until the RETURN key (or another special

keyboard character(s)) is typed. When the RETURN key is typed,

the data on that line is transferred to and processed by the CSI.

All legal command strings are terminated by the RETURN key.

2.6.2 The RUBOUT Key

The RUBOUT key is used to correct typing errors. Typing the

RUBOUT key once causes the last character typed to be deleted;

typing it twice causes the last two characters to be deleted; etc.

The Monitor prints the deleted characters delimited by backslashes.

For example, if you meant to type ASSIGN but typed ASIS instead,

the error could be corrected by typing two RUBOUTs and then the

correct characters. The printout would be:

ASIS \ SI \. SIGN

Notice that the deleted characters are shown in reverse order,

i.e., in the order in which they are deleted.

2.6.3 The CTRL/C Keys

The CTRL/C key combination is typed by holding down the CTRL

key while typing the C key. When CTRL/C is typed, the Monitor is

2-7

alerted to accept a command from the keyboard. CTRL/C is echoed

on the teleprinter as tc, carriage return, line feed, and. period.

CTRL/Cinterrupts teleprinter output or keyboard input in a

user program. Monitor action on a CTRL/C is not taken until any

current Monitor command is completed because the keyboard interrupt

is turned off. However, except for DUMP and MODIFY, it appears to

the user that action on a CTRL/C is immediate.

CTRL/C puts the Monitor in listening mode only. If it is

desired to stop the function of the operating program, the STOP

command should be used.

If a second CTRL/C is typed before the RETURN key terminating

a command, the input so far will be erased, a fresh tc will be

printed, and the Monitor will await a new command.

2.6.4 The CTRL/U Ke¥s

The CTRL/U key combination is typed by holding down the CTRL

key while typing the U key. When CTRL/U is typed, the line on

which it is typed is deleted; the system responds with a carriage

return and line feed so that the line (command) may be typed again.

CTRL/U is echoed on the teleprinter as tu, carriage return,

and line feed.

2.6.5 The Semicolon Key

When the Monitor is in listening mode (i.e., following a

CTRL/C), the semicolon (;) key causes subsequent characters on the

line to be treated as a comment. It effectively puts the keyboard

off-line so that all characters following the semicolon are printed

on the teleprinter but no Monitor action is taken.

2-8

(

2.6.6 The ESCAPE Key

The ESCAPE key (ASCII ~33 octal) may be used to pass special

keyboard characters to a running user program. When the CSI de­

tects the ESC key it passes the next character directly to the

user program. The use of this feature is under programmer control.

2.6.7 How Keyboard Characters are Processed

As characters are typed they are stored in the keyboard buffer

(about 85 characters capacity) pending termination of the line with

a RETURN, CTRL/C, or CTRL/U, which transfers the line of characters

to the Monitor buffer.

When a RUBOUT is processed, it remains in the keyboard buffer

and the character which it deletes is replaced with another RUBOUT.

Since RUBOUTs are not removed until the line is transferred to the

user, the capacity of the keyboard buffer may be exceeded if the

sum of normal characters plus RUBOUTs is greater than 85. When

this occurs, only RETURN, CTRL/C, or CTRL/U is accepted; all other

characters are discarded and not echoed. This is done to maintain

economy of core and to ensure that characters such as CTRL/C and

CTRL/U can be processed correctly, even when they appear at the

end of a very long line.

CTRL/C and CTRL/U characters are processed immediately.

2-9

2.7 GETTING ON THE SYSTEM

In order to gain access to the system, the user must log in

with the LOGIN command (see section 2.8.11). First, ensure that

the terminal is connected to the system (see Appendix H). The

LOGIN command is issued in response to the Monitor's $. If none

exist on the teleprinter paper, type the RETURN key and a $ will

be printed by the Monitor; if not, a new Monitor must be loaded

as described in the Batch/DOS-II System Manager's Guide.

In response to $, the user should issue the LOGIN command

with his User Identification Code (UIC) (see section 2.4). For

example:

$LOGIN 2rJrJ,2rJrJ
DATE:-2rJ-OCT-72
TIME:-l:ti:41:16
f

NOTE

In the examples, underscoring is used to designate
system printout, whereas user input is not under­
scored.

In response to the LOGIN command, the Monitor prints the cur­

rent calendar date and time-of-day follqwed by the $, indicating

that the system is ready for a Monitor command from the user.

Only one user can be logged in at a time. The LOGIN command

will be rejected when it is given before the previous user has

logged out with the FINISH command.

2-10

(

(

2.8 MONITOR KEYBOARD COMMANDS

A keyboard command to the Monitor consists of two parts: a

command name and possibly one or more command arguments. A com­

mand name is a string of two or more letters; all letters after

the first two and up to a command name delimiter (space or comma)

are ignored.

Monitor keyboard commands are typed in response to a dollar

sign ($) or a period (.), which is printed by the system. Gener­

ally speaking, the $ indicates that the Monitor is waiting for a

new task, and the • indicates that the Monitor is waiting to con­

tinue or abort a previously assumed task.

Although the commands are arranged in alphabetical order for

ease of reference, they can be divided into functional groups for

ease of learning. These groups with their associated commands

are as follows:

• Command to allocate system resources:

ASSIGN

• Commands to manipulate core images:

RUN
DUMP

GET
SAVE

• Commands to start a program:

BEGIN
RESTART

• Commands to stop a program:

STOP
KILL

CONTINUE

WAIT

• Commands to exchange information with the system:

DATE
LOGIN
FINISH

• Miscellaneous commands:

ECHO
END

2-11

TIME
MODIFY

PRINT
ODT

The following conventions apply to all Monitor commands:

• All commands are terminated with the RETURN key.

• The command name is separated from its argu­
ment (dataset specifier, etc.) with a space.

• All characters in a command are interpreted by
the CSI; thus, no embedded blanks are allowed.

• The UIC is always enclosed within square brackets,
[], except when used with the LOGIN command.

The proper format for each command is given in the discussion

of each command in this section. The following conventions apply

to the command formats shown in this section.

• Brackets [] are used to enclose optional elements

• Braces { } are used to indicate that a choice must
be made from the enclosed elements

• The symbol ~ indicates that a space must appear there.

• dev: refers to a device mnemonic (see Appendix A).

• dataset specifier may be represented by any portion
of the expression:

where

dev:filename.ext., [uic]

dev:

filename

.ext

[uic]

is a legal device mnemonic and
colon

is a filename of up to six alpha­
numerics

is a period and filename extension
of up to three alphanumerics

is the user's identification code
in the form:

[group no., user no.]

• logical name is the name given by the user to the
dataset in Link Block word LNKBLK+2 (see Chapter 3).

If for any reason a command cannot be executed satisfactorily,

an appropriate message will be printed on the teleprinter and the

command will be ignored. These messages are shown in Appendix F.

2-12

(

ASSIGN

2.8.1 The ASSIGN Command

Format:

AS [SIGN]lldev: [dataset specifier, logical name]

Purpose:

This command assigns a physical device (and a filename when

the device is file-structured) to the dataset identified by "logical

name". The format of "dataset specifier" is:

filenam.ext[uic]

which designates the name, extension, and uic, if any, to be as­

signed to the file.

Any filename specified for a nonfile-structured device is

ignored.

Note that a device is assigned to a dataset, and that reas­

signing it for one dataset does not reassign it for all datasets.

The ASSIGN command overrides any assignment made in the pro­

gram's internal control blocks (Link and Filename Blocks). The

ASSIGN command is not needed if the program makes its own provi­

sions for obtaining this information; e.g., by specifying defaults

in its control blocks or by requesting a command string, as is done

with the # symbol in the DOS system programs.

An ASSIGN with no argument releases (deassign) all ASSIGNments

previously made by the current user, i.e., since the last LOGIN

command

The ASSIGN command can be given at any time the Monitor is

in core. Consider the following:

2-13

• If ASSIGN is given before a program is loaded, the
device assignment will remain in effect until an­
other ASSIGN is given with the same logical name
or with no arguments, or until the Monitor itself
is reloaded. ASSIGN, given at this time, enables
the user to specify an assignment which will apply
to several programs.

If ASSIGN is given after a program is loaded and
before it has started running (i.e., after a GET
command), the assignment will remain in effect as
long as the program is in core, or until another
ASSIGNment is performed. When the program disap­
pears (by an .EXIT request or a KILL command) I the
assignment is released.

• ASSIGN may also be given after a program is running.
For example, as a recovery from an

(device not ready)

message, the user would do an ASSIGN followed by
a CONTINUE. The assignment will remain in effect
as long as the program is in core, or until the
programmer reassigns the dataset, or until he re­
starts the program with a BEGIN command.

Doing an ASSIGN in this manner is provided for
such emergency situations, but is not recommended
as standard practice because it causes an extra
buffer to be allocated from free core, and it will
be effective only if the program has not already
INITed the dataset to some other device.

2-14

(

BEGIN

2.8.2 The BEGIN Command

Format:

BE[GIN]~ [address]

Purpose:

The BEGIN command starts the execution of an already loaded

program at the stated address. If no address is specified, the normal

start address will be used. This command is valid only if a program

is already in core.

BEGIN is used after a GET, a STOP, or following a fatal error

condition. The GET command followed by a BEGIN command is equiva­

lent to a RUN command. If given after a program has been started,

a BEGIN will restore core to the state which existed immediately

after the program was loaded. It will rename all core allocations

to buffers, device drivers, and assignments made dynamically, and

the stack will be cleared before control is passed back to the pro­

gram. If any files are under creation at this time, they will be

deleted (see section 2.8.15).

To start a program at its normal start address, type:

BE

To start a program at absolute address 3446, type:

BE~3446

2-15

After a Program Crash:

The BEGIN Command is provided not only as a means of starting

a program loaded by GET but also to enable the user to try again

after a program crash, hopefully with a clean slate. At the time

of the crash, the program may already have opened but not closed

output files and the subsequent request to reopen after a restart

could then lead to other failure because these files now exist. To

prevent this, the BEGIN processor tries to delete the files, but not

by the normal Monitor process since this could mean writing out bit­

maps which are currently in core and must be suspect because of the

crash. Instead, it merely removes the names of the files from the

appropriate device directory, and if these are on disk, unlinks any

blocks so far allocat~p; for safety it does not touch the bit-maps

already stored on the device. In almost all cases, this procedure

suffices. However, the following implications should be noted.

1. This automatic deletion by BEGIN will not suit a
user who has already amassed considerable data in
one of his output files and cannot replace it if
he starts over. In this case, KILLing the program
to save his data under a different filename might
be a more appropriate action. However, he should
then realize that he might be transmitting the ef­
fects of his program failure to the device concerned.

2. It is possible that by the time of the crash the
program may have produced a fairly long file. On
a DECtape for which there is only one bit-map, this
is no problem. A disk, however, requires several
bit-maps and the allocation of some of the blocks
for the file may already be permanently recorded
because the appropriate bit-map has been filled and
has been replaced in core by another. Since BEGIN
does not change the maps, these blocks will not be
freed for further use. A series of situations such
as this can, after a time, result in the disk becom­
ing full even though the known files are not seen to
occupy the whole capacity. The user should in this
case consider whether or not he should chance disk­
corruption and use KILL rather than BEGIN. The user
can then delete the file by using PIP-II to avoid the
build-up of the nonavailable blocks described.

2-16

(

(

3. Some programs cannot be restarted with BEGIN (i.e.,
after having been started, they cannot be restarted
with BEGIN.) A FORTRAN program is an example. In
general, a program must be self-initialized if BEGIN
is to be used in this way. Also, since the Monitor
will try to clean up core and delete files, reBEGIN­
ning a program which was badly out of control may
lead to undesirable results. Thus, use BEGIN only
if there is no other al ternati ve. ..

2-17

CONTINUE

2.8.3 The CONTINUE Command

Format:

CO [NTINUE]

Purpose:

This command is used after a WAIT command or a recoverable error

condition (operator action message) to resume program operation at

the point where it was interrupted.

CONTINUE is valid only if a program is already in core.

2-18

(

(

(

2.8.4 The DATE Command

Format:

DA[TE]l;[date]

Purpose:

The DATE command may be used to obtain the current calendar

date and to enter a date value from the keyboard~ the date. is

printed in the dd-rnrnrn-yy format.

To obtain the current calendar date, simply type the DATE

command followed by the RETURN key. For example:

$DATE
20-0CT-72

§.

DATE

The current calendar date is entered by the system or installation

manager, and need not be reentered except when loading a new DOS

Monitor.

To enter a date value from the keyboard, type the DATE

command, the desired date value, and then the RETURN key.

For example:

§.DATE l; dd-rnrnrn-yy

putting the desired date value in place of dd-rnrnrn-yy. The entered

date value is returned in response to subsequent DATE commands

until another date is given. If the desired date value is

an invalid date, e.g., 42-BOB-Al, subsequent responses to DATE

will be meaningless, e.g., ~~-XXX-YY.

DATE is valid at any time.

2-19

DUMP

2.8.5 The DUMP Command

Format:

DU [MPJ'~P' [OJ, [f start /ddr ~ [,end addrJ

Purpose:

The DUMP command is used to print on the Line Printer an abso­

lute copy of the contents of the specified core area, formatted in

octal. The core image is not altered.

The argument 0 specifies the dump to be output from core. An

o is assumed on default, but the comma is required.

The argument ~ is assumed if no "start address" is specified

and the highest word in core is assumed if no "end address" is speci­

fied.

DUMP is valid at any time. If given while a program is run­

ning, the operation of the program will be suspended for the time

required to effect the dump.

The syntax of the DUMP command was chosen to facilitate later

expansion and flexibility of the command.

2-20

(

(

(

(

..

ECHO

2.8.6 The ECHO Command

Format:

EC[HO]

Purpose:

The ECHO command may be used to suppress and restore keyboard

echo, i.e., characters typed by the user will not appear on the

terminal printer. A subsequent ECHO command turns the echo feature

on again. The teleprinter as an output device for the program or

the Monitor is not affected by this command.

ECHO is valid only when a program is running in core and using

the keyboard as an input device.

2-21

END

2.8.7 The END Command

Format:

Purpose:

The END command is used to· terminate using the console as an

input device, i.e., the keyboard or low-speed paper tape reader.

The command tells the Monitor "there is no more input from the

device". The command effectively generates an end-of-file (EOF)

from the keyboard.

When no device is specified in the command, KB is assumed.

The following actions are required with this command

1. Type CTRL/C to obtain the Monitor I s attention.
Since the console is being used for program input
(data mode), the Monitor is not expecting a com­

mand.

2. Issue the END command (with appropriate argument).

3. Type the RETURN key twice; yes, two RETURNs. The
two RETURNs are required to return to the Monitor.

For example: (wheretC

+C
.:.END,KB (CR)

CTRL/C, and (CR) RETURN)

(CR)

END is valid only when the console is being used as an input

device.

2-22

(
'-

(

(

(FINISH

2.8.8 The FINISH Command

Format:

FI[NISH]

Purpose:

The FINISH command informs the Monitor that the current user

is leaving the system. The Monitor deletes all files which are

not protected against automatic deletion on FINISH (see Section

3.9.2.2), and a new copy of the resident Monitor is "booted" into

core.

FINISH is valid only when no user program is in core. There­

fore, unless the last character on the teleprinter is a $, the

uSer should precede a FINISH with CTRL/C followed by KILL. For

example, the printout might be:

+C
:-KILL
$FINISH
TIME:-16:42:00

MONITOR viJ8-~2

§.

In response to a FINISH, the Monitor prints the time and then the

newly booted Monitor identifies itself. The system is now ready

for a user to log in.

2-23

GET

2.8.9 The GET Command

Format:

GE[T]&dataset specifier

Pureose:

The GET command loads the specified file from the specified

device. When a device is not specified, the system device is as­
sumed.

GET is valid only when no program is in core.

Tne User should use a BEGIN or ODT command to commence exe­
cution.

2-24

(

(

KILL

2.8.10 The KILL Command

Format:

KI[ll]

Purpose:

The KILL command stops the execution of the current program

after closing all open files and completing any outstanding I/O.

It then removes the program from core by returning control to

the Monitor.

KILL is valid only when a program is in core.

To resume operations, the user must reload the program or

load another with RUN or GET.

2-25

LOGIN

2.8.11 The LOGIN Command

Format:

LO[GIN]lIuic

Purpose:

The LOGIN command enables a user to gain access to the system.

LOGIN requires a UIC as its argument (see section 2.4). The UIC

indicates which directory (of several possible), on e.ach fi1e­

structured device, will be directly available to the user.

Here the UIC is not enclosed within the square brackets; its
format is simply

nnn,nnn

specifying group, user numbers respectively.

LOGIN is valid only when there is no program loaded in core

and provided no user has logged in and not logged out (FINISHed).

2-26

(

(

MODIFY

2.8.12 The MODIFY Command

Format:

MO [DIFY) 1'1 octal address

octal address/contents: [new contents)

Purpose:

This command allows the user to display and make changes to the

contents of the absolute memory location specified by "octal address"

in the command line. When the RETURN key is typed at the end of the

command line, the system

address. At this point,

«CR) = RETURN keYi(LF)

responds by printing the contents of that

the user can type one of the following

LINE FEED key) :

(CR)

new contents (CR)

(LF)

will leave the contents unmodified.

will change contents to new contents.

will take similar action as CR and
then automatically print the contents
of the next memory location.

To change the contents of location 40000:

$MODIFYI'140000 (CR)
40000/16406: 10406 (CR)

Then to examine the contents of 40000:

$M01'140000
40000/10406:

(CR)
(CR)

To examine the contents of locations 40000 and 40002, the sequence

would be:

$MOMOOOO (CR)
40000/104060: (LF)
40002/000003:

2-27

Entry of an address outside the available core memory as part

of the original MODIFY command will cause an error, .and the command
will be rejected.

MODIFY is valid at any time.

2-28

(

(

OOT

2.8.13 The ODT Command

Format:

Purpose:

The ODT command starts the execution of the ODT-IIR Debugging

Program. The argument specifies which ODT start address is to be

used:

Argument Starts at

(none) START+,0

R START+2

K START+4

Action

Clears ODT breakpoint table with­
out resetting breakpoints.

Clears ODT breakpoint table after
replacing old instructions at
breakpoints.

Leaves breakpoints ekactly as
they are.

This command begins execution at the ODT entry point of the

user's load module. The user must have linked ODT-IIR with his

program and must have identified his program to the Linker with

the /OD switch.

To reset all breakpoint locations at their former instruc­

tions and restart ODT, the user would type:

.0DlIR

ODT is valid only when ODT-llR is linked to a program and

both are in core.

2-29

PRINT

2.8.14 The PRINT Command

Format:

PR[INT]

Purpose:

The PRINT command may be used to suppress and restore tele­

printer printing when the printer is used as an output device to

a user program. A subsequent PRINT command turns the printing

feature on again.

PRINT is valid only when a program is running in core and is

using the teleprinter as an output device.

2-30

(

RESTART

2.8.15 The RESTART Command

Format:

RE[START]~[address]

Purpose:

The RESTART command permits a program to be restarted. As shown,

the user may optionally supply an address at which the program is to

be restarted. If no address is specified, the address set by the

.RESTART programmed request is assumed if a .RSTRT request has

been issued by the program (see Section 3.8.3.2).

If neither address is specified, the command is rejected.

RESTART is valid only when a program is already in core.

Before the program is restarted, the stack is cleared, any

current I/O is stopped, and all internal busy states are removed.

Buffers and device drivers set up for I/O operations will, how­

ever, remain linked to the program for future use.

2-31

RUN

2.8.16 The RUN Command

Format:

RU [N] I:::. dataset specifier

Purpose:

The RUN command loads into core the specified program from the

specified device and starts its execution at the normal start ad­

dress. RUN is equivalent to a GET command followed by a BEGIN com­

mand.

The dataset specifier is of the form:

dev:filenam.ext[uic]

When no device is specified, the system device (disk) is assumed.

The sequence in which the Monitor performs its search for the

specified program depends on the existence and type of filename ex­

tension and on the UIC. various forms of the RUN command are shown

below with the search sequence performed by the Monitor.

• RUNI:::.FILE

Attempt 1
Attempt 2
Attempt 3
Attempt 4

• RUNI:::.FILE.EXT

Attempt 1
Attempt 2

FILE.LDA [current uic]
FILE.LDA [1,1]
FILE [current uic]
FILE [1,1]

FILE.EXT [current uic]
FILE.EXT [1,1]

2-32

• RUN&FILE[x,x]

•

Attempt I
Attempt 2

RUN&FILE.EXT[x,x]

FILE.LOA [x, x]
FILE [x,x]

Attempt I -- FILE.EXT [x,x]

If all attempts fail to find the file, a NO FILE message is printed

on the teleprinter.

Searching for the LOA extension first exploits the fact that

both the Linker and the SAVE command produce LOA extensions, unless

the user specifies otherwise.

RUN is valid only when there is no program in core.

2-33

SAVE

2.8.17 The SAVE Command

Format:

SA[VE]~[dataset specifier] [/RA:low:high]

Purpose:

The SAVE command writes the program in core onto the device in

loader format. The core image is not altered. SAVE is valid only

when a program is in core but not running, i.e., immediately after

loading with a GET command or after being halted by either a STOP

command or a fatal error.

If no dataset specifier is given, the SAVE processor will

automatically set up a file called SAVE.LDA on the system disk

after it has deleted a~y current file of the same name. If the

user wishes to retain the current file, he must first rename it

using PIP-II. If the dataset specifier is given, the file named

must not already exist or the command will be rejected. System

disk is assumed by default if the dataset specifier contains only

a filename. When the filename is specified, the extension should

also be specified.

Normally it is expected that the user will only wish to save

his program area. If this is the case, the range need not be

given and the new file will begin from the program's low limit and

extend to the top of core. If any other area is to be saved, the

user should include the following at the end of the command:

/RA:low:high

where /RA is the range switch, and. low and high define the limits

required (each being valid octal word-bound addresses). The saved

2-34

(

(

(

(

image will be preceded by the same communication information as

that for the original program loaded, except that apy information

about the resident EMT modules will be lost.

The SAVE processor will endeavor to get an extra 256-word

buffer in order to satisfy the command. If this request cannot

be granted because of insufficient free core, the command will

be rejected. The user is therefore advised to use this facility

only after he has released any datasets currently established.

Once the SAVE command has been syntactically verified, any

errors will be handled by the SAVE processor, which will print

a relevant message and return to Monitor listening mode:

DEVICE FULL

FILE ERROR xxx

End of output medium reached

File structures error as indi­
cated by xxx = file status byte

2-35

STOP

2.8.18 The STOP Command

Format:

ST[OP]

Purpose:

This is an emergency command to stop the program and to

abort any I/O in progress (by doing a hardware reset). The pro­

gram may be resumed with either the BEGIN or RESTART command.

STOP is valid only if a program is in core.

STOP differs from KILL in that KILL terminates the program

in an orderly manner and removes the program from core.

2-36

(

•

(

(

(

TIME

2.8.19 The TIME Command

Format:

TI [ME] Ll [time]

Purpose:

The TIME command may be used to obtain the current time-of­
day and to enter' a time value from the keyboard. The time

is printed in the following format.

hh:mm:ss

meaning hours:minutes:seconds.

TO obtain the current time-of-day, simply type the TIME

command followed by the RETURN key. For example:

$TIME
10:43:27
i

The current time-of-day is entered by the system or installation

manager, and need not be reentered except when loading a new DOS

Monitor.

To enter a time value from the keyboard, type the TIME command,

the desired time value, and then the RETURN key.

For example:

iTIME Ll hh: mm: ss

putting the desired time value in place of hh:mm:ss. The entered

time value is returned in response to subsequent TIME commands

until another time value is given.

TIME is valid at any time.

2-37

WAIT (

2.8.20 The WAIT Command

Format:

WA[IT]

Purpose:

The WAIT command suspends the current program and allows any

I/O in progress to finish. The program may be resumed with either

the CONTINUE or RESTART command.

WAIT is valid only if a program is in core.

2-38

(

(

(

(

3.1 INTRODUCTION

CHAPTER 3

PROGRAMMED REQUESTS

The Monitor provides a number of services which are available

to any user or system program. The most prominent of these are

input/output (I/O) services. Other services include directory manage­

ment, retrieval and modification of system parameters, various con­

version routines, and a command string interpreter. The I/O services

provide for linkage to device drivers, access to files in the file

structure, and transfer of data to or from each device.

The user program calls for the services of the Monitor through

programmed requests. Programmed reqaests are macro calls 1 which are

assembled into the user program and interpreted by the Monitor at

execution time. A programmed request consists of a macro call

followed, when appropriate, by one or more.arguments. For example:

.WAIT #LNKBLK

is a programmed request called .WAIT followed by an argument #LNKBLK.

The macro request is expanded at assembly time by the MACRO Assembler 1

into a sequence of instructions which trap to and pass the arguments

to the appropriate Monitor service routine to carry out the specified

function. The assembly language expansion for .WAIT #LNKBLK is:

MOV #LNKBLK,-(SP)
EMT 1

To use the macro call, it is necessary to tell the assembler

that you want the system definition for the macro. This is accom­

plished via the .MCALL assembler directive (Macro-II Assembler Pro­

graw~er's Manual), e.g.,

. MCALL .WAIT

which must appear in the source prior to the first use of .WAIT. When

.MCALL is encountered, the MACRO Assembler will get the definition of

.WAIT from the system macro file (SYSMAC.SML) which is searched for,

first in the current user's disk area, then under user identification

code [1,1].

The system macros will accept most addressing modes as arguments.

They will detect and announce potentially troublesome (e.g. X(SP))

or unlikely (e.g. SP) modes to protect the user.

lUsers with less than 12K of core cannot run MACRO and consequently
must include the assembly language expansion of the programmed re­
quest in their programs instead of the request itself.

3-1

All legal addressing mod,es will appear without alteration in

the expansion. Since the monitor expects the address of the Link

Block on top of the stack at .WAIT time, any of the following macro

calls might be appropriate:

.WAIT #LNKBLK

.WAIT R$

• ~'IAIT POINTR

iADDRESS OF LNKBLK
iIS IN REGISTER R$
iADDRESS OF LNKBLKIS
iIN MEMORY LOCATION POINTR

Refer to the MACRO-II Assembler Programmer's Manual (Order

Number DEC-II-OMACA-A-D) for further details.

The programmed request arguments are parameters or addresses of

tables which contain the parameters of the request. These tables

are part of the user program, and are described in detail in

Figures 3-6 to 3-18.

3-2

(

(

I

~.

(

3.2 TYPES OF PROGRAMMED REQUESTS

Services which the Monitor makes available to the user through

programmed requests. can be classified into three groups:

• requests for input/output and related services

• requests for directory management services

• requests for miscellaneous services

Table 3-1 summarizes the programmed requests available under the

Monitor. Detailed descriptions of each request can be found in

the sections cited in Table 3-1.

3-3

Table 3-1
summary of Monitor Requests

Mnemonic Purpose Section
I

Requests for Ineutfouteut and Related Services:

.INIT

.RLSE

• OPEN

• CLOSE

• READ

• WRITE

.RECRD

• BLOCK

.TRAN

.WAIT

• \A1AITR

.SPEC

• STAT

Associates a dataset with a device driver and
sets up the initial linkage.

Removes the linkage between a device driver and
a dataset, and releases the driver.

Opens a dataset •

Closes a dataset •

Transfers data from a device to a user's line
buffer.

Transfers data from a user's line buffer to a
device.

Transfers one logical record of a file between
a device and a user buffer.

Transfers one physical block of a file between
device and a Monitor buffer.

Transfers data between a device and a user
buffer, independent of any file structure.

3.6.1

3.6.2

3.6.3

3.6.4

3.6.5

3.6.6

3.6.7

3.6.8

3.6.9

Waits for completion of any action on a dataset. 3.6.10

Checks for completion of any action on a dataset, 3.6.11
and provide's a transfer address for a busy return.

Performs special device functions. 3.6.12

Obtains device characteristics. 3.6.13

Reguests for Directorl Management Services:

• ALLOC

• DELET

• RENAM

• APPND

• LOOK

• KEEP

Allocates a contiguous file •

Deletes a file •

Renames a file. Changes a protection code •

Appends one linked file to another •

Searches the directory for a particular filename
and returns information about the file.

Protects a file against automatic deletion on
FINISHing.

3.7.1

3.7.2

3.7.3

3.7.4

3.7.5

3.7.6

Reguests for Miscellaneous Services:

• RUN Loads programs and overlays. 3.8.1.1

• EXIT Returns control to the Monitor • 3.8.2.1

(Continued on next page)

3-4

' ..

(

(

(

Mnemonic

• TRAP

• RSTRT

• CORE

• MONR

• MONF

• DATE

• TIME

• CVTD'f'

• GTUIC

• SY'SDV

.GTPLA

• STPLA

• GTCIL

• GTSTK

• STSTK

.STFPU

.RADPK

• RADUP

• D2BIN

• BIN2D

• 02BIN

• BIN20

• CSIl

(
.CSI2

Table 3-1
Summary of Monitor Requests (Cont.)

Purpose

Sets interrupt vector for the TRAP instruction •

Sets the address used by the RESTART command •

Obtains address of highest word in core memory •

Obtains address of first word above the
resident Monitor.

Obtains address of first word above the
Monitor's .highest allocated free core buffer.

Obtains the date •

Obtains the time of day •

converts internal date or time to ASCII •

Gets current UIC •

Gets Radix-50 name of the system device •

Gets the current program load address.

Sets the program low address •

Gets the base disk address of the CIL •

Gets the current stack base address •

Sets the current stack base address •

Sets the floating point exception vector.

Packs three ASCII characters into one Radix-50
word •

Unpacks one Radix-50 word into three ASCII
characters .•

Converts five decimal ASCII characters into
one binary word •

Converts one binary word into five decimal
ASCII characters •

Converts six octal ASCII characters into one
binary word •

Converts one binary word into six octal ASCII
characters •

Condenses a command string and checks for
proper syntax.

Interprets one command string dataset specifi­
cation.

3-5

section

3.8.3.1

3.8.3.2

3.8.4.1

3.8.4.2

3.8.4.3

3.8.4.4

3.8.4.5

3.8.4.6

3.8.4.7

3.8.4.8

3.8.4.9

3.8.4.10

3.8.4.11

3.8.4.12

3.8.4.13

3.8.4.14

3.8.5.1

3.8.5.2

3.8.5.3

3.8.5.4

3.8.5.5

3.8.5.6

3.8.6.1

3.8.6.2

3.2.1 Requests for Input/Output and Related Services

All user I/O is handled by programmed requests, which provide

three different levels of transfer:

• READ or WRITE

• RECORD or BLOCK

• TRAN

Each level uses a sequence of requests to complete the transfer.

Note the distinction between READ/WRITE, RECORD/BLOCK, and TRAN as

names of transfer levels, and .READ, .WRITE, .RECRD, . BLOCK, and

.TRAN as specific programmed requests within these levels.

Requests for I/O related services perform special device

functions (such as rewinding a tape) and obtain device character­

istics from device status words.

Each request related to I/O services is described in Section 3.6.

3.2.1.1 READ or WRITE Level Requests Most input and output

is done at this level. Processing is sequential, in that each read

or write is applied to the next record or line in the file. Records

may be in either ASCII or binary mode, and a number of formats are

handled by the monitor. Records may also be of variable length:

ASCII records usually contain line terminators while formatted binary

records contain byte counts.

READ or WRITE I/O under the Monitor consists of transferring

the contents of a dataset between a device and a line buffer via a

buffer in the Monitor (Figure 3-la). A line buffer is an area set

up by the user in his program, into which he (or the Monitor) places

data for output (or input). The line buffer is usually preceded

by the line buffer header, in which the user specifies the size and

location of the line buffer and the mode (format) of the data.

3-6

(
'-

(
\

USER PROGRAM

USERS LINE
BUFFER

.RE AD . WRITE ,
. WRITE

J

MONITOR BUFFER iL -\ DEVICE

. READ

Figure 3-la . The Transfer Path

.INIT #LNKBLK

MOV #FILBLK,R,0.

.OPENI #LNKBLK,R,0

r---" . READ #LNKBLK, # BUFHDR

No

.WRITE #LNKBLK

(Proc~ss Data)

. CLOSE #LNKBLK

.RLSE #LNKBLK

LNKBLK:

FILBLK:

(entries)

(entries)

BUFHDR: (entries)

~FOR OUTPUT, REPLACE .OPENI
~ WITH .OPENO
~ADDRESS OF FILBLK IS IN R,0

~FOR OUTPUT, REPLACE .READ
~ WITH .WRITE
~COULD BE REPLACED BY .WAITR

Tables in User's Program

Figure 3-lb Sequence of Requests for READ/WRITE

------------------------~--

Figure 3-1 .READ/.WRITE Input/Output Transfers

3-7

When using READ or WRITE one can specify nine different modes

of transfer, in two categories: ASCII and Binary. Details are

presented in Section 3.6.1 and Figure 3-11.

ASCII Modes:

Binary Modes:

Formatted ASCII Parity - Special

Formatted ASCII Parity - Normal

Formatted ASCII Nonparity - Special

Formatted ASCII Nonparity - Normal

Unformatted ASCII Parity - Normal

Unformatted ASCII Nonparity - Normal

Formatted Binary - Special

Formatted Binary - Normal

Unformatted Binary - Normal

To implement a READ or WRITE transfer, the programmer follows

the sequence of requests shown in Figure 3-lb. First, the

programmer associates the device with the dataset via the .INIT

request. The argument of this request is the address of a table

called the Link Block. Entries in this table specify the device

involved in the approaching transfer so that the Monitor may

eventually establish a link between that device and the dataset.

The Link Block is described in detail in Figure 3-6. The .INIT

request loads the appropriate device driver into the Monitor's

free core area, if it is not already there.

Following the .INIT request, the programmer opens a dataset with

an .OPENx request. This need be done only if the device being used

is a file-structured device. However, it .is advisable to use an

.OPENx even for a non-file-structured device to preserve the device

independence of the program, since it may be desirable to assign

the transfer to a file-structured device later. The arguments of

this request are the address of the Link Block and a register into

which the user has moved the address of a table called the Filename

Block (Figure 3-7). Entries in this table describe the file

involved in the transfer.

A dataset can be opened for input, for output, for update, or

for extension. The last letter of the .OPENx request specifies

which type of open is desired.

A .READ (for input) or a .WRITE (for output) follows the .OPENx.

Either request causes a transfer to take place between the line

buffer and the device via a buffer allocated by the Monitor in

its free core area. The arguments of either request are the address

3-8

(

(

,-

(

of the Link Block for the dataset and the address of the Line Buffer

Header (Figure 3.9). The Line Buffer Header specifies the area

in the user's core area to or from which the data is to be trans­

ferred. During the transfer, the Monitor formats the data according

to the transfer mode and formatting characters in the data itself.

In most modes, terminating characters indicate the end of a line .

. READ or .WRITE is followed by .WAIT, which tests for the

completion of the last transfer, ~nd passes control to the next

instruction when the transfer is complete. Typically, what follows

a .WAIT on an input is a subrbutine to process the portion of data

just read. When the process has been completed, the program checks

to see if there is more data; if there is, the program transfers

control back to the .READ request and the process is repeated. If

all data has been transferred, the .CLOSE request follows to

complete any pending action, update any directories affected, and

release to free core any buffer space the Monitor has allocated from

free core for this dataset. Finally, action on the dataset is

formally terminated with the .RLSE request, which disassociates the

device from the dataset, and releases the driver. Releasing the

driver frees core provided there is no other claim to the driver

from another dataset.

3-9

3.2.1.2 RECORD Level Requests The Record Level request is

used for random access to the records in a file. A program which

uses Read or Write Level requests can only read or write the next

record in the dataset being processed. When Record Level requests

are used, the program always has access to any record in the file.

Record Level requests may be used only with file-structured

devices and only with contiguous files (not with linked files).

Each of the records in the file must contain the same numbers of

bytes. No formatting is done and no line terminating characters

are needed. The length of a record is independent of the block

size of the device (may be the same or smaller or larger; neither

record length nor block size need divide the other, but processing

may be faster if this is arranged, since it can reduce the number

of multi-block transfers).

Some consideration must be given to the manner -in which a

Record Level file is created. Perhaps the most common way to create

such a file ~s by doing an .OPENC (after the file has been allocated)

and using the .WRITE request to enter data. Unformatted ASCII and
unformatted binary are the suggested transfer modes, since they

do not require terminators and do not perform formatting; recall

that all records must be the same length. When such a file is

. CLOSED, a logical end-of-file is established following the last

record written. Subsequent processing of the file by .READ

or .RECRD will be confined to the area just written. At some

later time, the file may be opened for extension (.OPENE) and more

data can be written (.WRITE), provided the original space allocated

to the file is sufficient to contain it. A second way to create a

Record Level file is to st~rt with .OPENU (again the file must have

been allocated previously) and to use .RECRD to do the writing. In

this mode, the logical end-of-file corresponds to the end of the

allocated area). Note also that, unless the program writes in every

record of the file, that some records will be left with meaningless

contents.

Before issuing Record Level requests, the program must issue

an .INIT request to associate the dataset with a file-structured

device. It must then open the dataset; .OPEN is not optional as

with .READ and .WRITE. The dataset may be opened in two ways:

3-10

(

(

,1

USER PROGRAM

USER BUFFER

DEVICE

Figure 3-2a The Transfer Path

Request next
record for
update if
more

.INIT #LNKBLK
MOV #FILBLK,Rl
.OPENU #LNKBLK,Rl
.RECRD #LNKBLK,#RECBLK
. WAIT #LNKBLK

I
(Process Data)

I
.RECRD #LNKBLK,#RECBLK
.WAIT #LNKBLK

.CLOSE #LNKBLK
• RLSE # LNKBLK

LNKBLK:}
FILBLK:
RECBLK:

Tables in User Program

iINIT THE DATASET

iOPEN THE FILE
iINPUT THE RECORD

iOUTPUT THE RECORD

iCLOSE THE FILE
iRELEASE THE DATASET

Figure 3-2b Sequence of Requests for .RECRD

--

Figure 3-2 .RECRD Input/Output Transfers.

3-11

• OPENU

• OPENI

This mode is used if the progr~~ will write
in the dataset. Reading is also permitted.
In fact, quite often the program will read a
record, update it, and write it back.

This mode is used if no writing will be done.
Only reading will be permitted.

The dataset may then be processed using .RECRD requests. If

updating is being done, there will generally be two such requests

in each cycle. Otherwise, there will be only one. Each .RECRD

request should be followed by a .WAIT (or .WAITR) request. When

processing is completed, a .CLOSE request should be issued to

ensure that the last record is actually written to the device (for

output) and that the directory is updated (if necessary). A .RLSE

request is also required, so that the driver can be removed from

core (if not still in use by another dataset). The .RECRD request

has a Link Block and a Record Block as arguments. The Record

Block specifies function (input/output), buffer address, record

length, and record number (see Figure 3-12).

3.2.1.3. BLOCK Level Requests The Block Level request is

used for random access to the physical blocks in a file. The

Block Level is similar to the Record Level. However, at the

Block Level, each request always reads or writes exactly one

physical block of data instead of a user-defined quantity of data,

as is true at the Record Level. In addition, data transfer is to

and from a buffer provided by the monitor, rather than a buffer

provided by the user. The user may do his processing in the

monitor buffer or he may transfer data to his own area. As with

Record Level requests, Block Level requests may be used only with

file-structured devices and only with linked files (not with

contiguous files).

To implement a BLOCK transfer, the programmer follows the

sequence of requests shown in Figure 3-3b. Notice that the transfer

must use .INIT, .OPEN, .WAIT, .CLOSE and .RLSE following the same

rules as the READ or WRITE level. The .BLOCK request has the

address of the Link Block and the BLOCK block for its arguments.

The BLOCK block specifies the function (INPUT, GET, or OUTPUT),

the relative number of the block being transferred to or from, the

Monitor buffer address (supplied by the Monitor), and the length of

the Monitor buffer (supplied by the Monitor). See section 3.6.8.

3-12

(

(

(

USER PROGRAM *Transfers between the
Monitor's buffer and the
user's buffer are optional
and must be done by the
user. POSSIBLE

USER BUFFER

11\

,~ *
. BLOCK OUTPU T

MONITOR BUFFER "" 'l DEVICE
'. BLOCK INPUT ,'-------../

Figure 3-3a The Transfer Path

--
· INIT

MOV

#LNKBLK

#FILBLK,Rl

~OPENU #LNKBLK, Rl

.BLOCK #LNKBLK,#BLKBLK

· WAIT #LNKBLK

(Process Data)

.BLOCK #LNKBLK,#BLKBLK

• WAIT #LNKBLK

Yes~-<

.CLOSE #LNKBLK

.RLSE #LNKBLK

LNKBLK: (entries)

FILBLK: (entries)

BLKBLK: (entries)

;INPUT DESIRED BLOCK

iCOULD BE REPLACED BY .WAITR

iUPDATE DATA

iWRITE UPDATED BLOCK

Figure 3-3b The Sequence of Requests For .BLOCK

--
Figure 3-3 .BLOCK Input/Output Transfers

3-13

3.2.1. 4 TRAN Level Requests - A TRAN level request is a basic

input/output operation. No services are provided for the user other

than to pass his request to the appropriate driver. .TRAN ignores

any file-structure on the device. .TRAN does not operate within a

particular file as do . READ, .WRITE,.RECRD, and . BLOCK; hence no

.OPEN or .CLOSE is used. Because .TRAN does not respect file

structures, the user is strongly cautioned against using it with

file-structured devices, since he can easily do irreparable damage

to information on such a device. Omitting the dataset name from the

Link Block will prevent a file-structured device from being assigned.

Data is transferred directly between the device and a buffer

provided by the user (Figure 3-4a), with no formatting performed .

. TRAN is generally used in 2 situations:

1. When the file structure does not allow the desired

operation (e:g., PIP uses .TRAN to read a directory

block for the directory listing operation).
2. When one does not need or cannot afford the over-

head of doing READ/WRITE processing on a non-file

structured device (e.g, a program to read data

arriving at random intervals from an A/D converter

might use .TRAN to read the data and .BLOCK to

buffer the data on a disk for processing as time

permits.

To implement a TRAN transfer, the programmer follows the sequence

of requests shown in Figure 3-4b. Notice that the transfer must

use .INIT and .RLSE, but must not use .OPEN or .CLOSE. The .TRAN

request has the address of the TRAN Control Block (TRNBLK) as its

argument. This block contains entries which specify the core

starting address of the user's buffer, the device block address,

the number of words to be transferred, and the function to be

performed. TRAN is therefore a device dependent request.
Table 3-2

Transfer Levels for Types of Datasets

Type of Data

Type of Linked Contiguous Nonfile-Structured
Transfer File File Device

READ/WRITE Yes Yes Yes

RECORD No Yes No

BLOCK No Yes No

TRAN * * Yes

* indicates that TRAN may be used on a file-structured
device if the warnings mentioned are observed. Usage
in these cases is not advised.

3-14

(

USER .PROGRAM

.TRAN output

USER BUFFER

.TRAN input

I ,
DEVICE

Figure 3-4a The Transfer Path

. INIT #LNKBLK

.TRAN #LNKBLK,#TRNBLK

.WAIT #LNKBLK

(Process Data)

Yes (:---<.

.RLSE #LNKBLK

LNKBLK: (entries)

TRNBLK: (entries)

;COULD BE REPLACED BY .WAITR

Tables and parameters
in User Program

Figure 3-4b The Sequence of Requests For .TRAN

Figure 3-4 .TRAN Input/Output Transfers

3-15

3.2.2 Requests for D~rectory Management Services

Directory management requests are used to enter filenames into

directories, search for files, update filenames, and protect files

against deletion.

Each directory management request is described in Section 3.7.

3.2.3 Requests for Miscellaneous Services

Requests for miscellaneous services include:

• Requests to Load programs and overlays.

• Requests to return control from a running program to
the Monitor.

• Requests to set Monitor parameters such as the TRAP
vector or a program's restart address.

• Requests to obtain Monitor parameters such as the size
of the Monitor, the date, the time, and the current
user's UIC.

• Requests to perform conversions between ASCII and
Radix-50 packed ASCII, binary and ASCII decimal, and
binary and ASCI I octal.

• Requests to access the Command String Interpreter.

Each miscellaneous service request is described in Section 3.8.

3.3 DEVICE INDEPENDENCE

It is generally preferable to write programs so that each

dataset may be associated with the widest possible variety of

devices. This makes it easier to move a program from one configura­

tion to anothe.r. It also makes it possible to use the program with

a variety of different media. For example, the Assembler accepts

input from disk, paper tape, DECtape, and other devices.

The monitor makes it relatively easy to achieve this objective.

Most I/O operations are completely device independent (i.e., no

special actions by the user are required to accommodate the opera­

tion to the device, specifically .READ, .WRITE, .OPEN, .CLOSE,

.WAIT, .WAITR, .INIT, and .RLSE. In addition, .RECRD and .BLOCK re­

quire only that the device be file structured. Only .TRAN and .SPEC

are typically device dependent.

In all cases, no device is associated with a dataset until an

.INIT request is made. The device name may be specified in any

of the following ways:

• the programmer may specify the name in his Link Block;

• the program can obtain a device name by requesting the
user to enter a command string (section 3.8.6);this will
override any device specified in the Link Block;

3-16

..

(

• the user can use the ASSIGN command (see Chapter 2)
to associate a device (and file name) with the data­
set, this option overrides both preceding options.

Note that when a command string is solicited by the program, it will

always override the link block specification, no matter what is

entered. However, when ASSIGN is not solicited but is entered

at the operator's discretion, it will override the Link Block

only when specified. In the latter case, it is best to supply

a default in the Link Block.

Note that the sUbstituted devices must be compatible. For

example, the user may initially specify a BLOCK transfer from disk.

and later change the assignment to input from DECtape instead.

But, he cannot later specify a paper tape reader as the input

device, since BLOCK level requests do not apply to nonfile­

structured devices.

It is important to note that a device is assigned in a program

to a dataset logical name and that reassigning a device at run

time for one dataset logical name does not reassign that device

for all dataset logical names to which it was originally assigned.

The only transfer requests which are not device independent

are .TRAN and . SPEC.

3.4 SWAPPING ROUTINES INTO CORE

Except for a small, permanently resident portion, the Monitor

routines which process most programmed requests are potentially

swappable. They are normally disk resident and are swapped into

core by the Monitor only when needed. The user may, however,

specify that one or more of·these potentially swappable routines

be made permanently core resident or core resident only for the

duration of his program's run.

Making a potentially swappable routine core resident ties up

core space, but speeds up operation on the associated request. The

user may, for example, be collecting data via a .TRAN request in a

real-time environment. In such a case, even the short time needed

to swap in the .TRAN request processor could cause him to lose data.

Any routine which services a programmed request (other than

.READ or .WRITE) may be made core resident by one of the following

methods:

• Routines may be made permanently core resident at
Monitor Generation time (see the DOS System
Manager's Guide).

3-17

• Routines may be made core resident for the duration
of a program's run by declaring the appropriate
global name (as specified in the definition of each
request in Sections 3.6 through 3.8) in a .GLOBL
assembler directive in the user program. For example,
to make the .'l'TIrul processor resident while prog:r:am
FROP is being run, the following directive would be
included in program FROP:

.GLOBL TRA

Device drivers are swapped into the Monitor's free core area

on an .INIT call and are freed from core on the occurrence of a

.RLSE, provided no other dataset is INITed to that device.

3.5 MONITOR RESTRICTIONS ON THE PROGRAMMER

In return for the services provided by the Monitor, the

programmer must honor certain restrictions:

• The programmer should not use either the EMT or the
lOT instructions for communication within his program.

• It is recommended that the user not raise his
interrupt priority level above 3, since it might
lock out a device that is currently trying to do
input/output.

• HALTS are not recommended. If a HALT is executed
during an I/O operation, most devices will stop,
and only recovery from the console (pressing the
CONTinue switch on the console) will be effective
(recovery from the keyboard will not be immediately
possible, since a HALT inhibits the keyboard
interrupt). Some devices, such as DECtape, will not
see the HALT and will continue moving, will lose
their positions over the block under transfer, and
may even run the tape off the reel.

• The RESET instruction should not be used because it
forces a hardware reset; clearing all buffer registers,
and status flags and disabling all interrupts, includ-.
ing keyboard interrupts. Since all I/O is interrupt
driven, RESET will disable the system.

• The user must not penetrate the Monitor when he is
using the stack. The stack is set by the RUN time
loader just. below the lowest address of the program
loaded. The Monitor checks to see that the stack is
not overflowing each time it honors a request.

• The user may allocate temporary storage areas on
the stack by simply subtracting the size of the
area needed from the current stack pointer value.
When doing so, he should use a .MONF (Section 3.8.4.3) to
determine the highest address being used by the
Monitor. It is generally wise to leave some space
for future Monitor expansion (as a consequence of
programmed requests) and for stack extension (as a
consequence of subroutine .calls, Monitor requests,
device interrupts, etc.). Consult Figure 3-5 for
more information about monitor core usage •.

3-18

(

(

(

(

• The user should be aware that certain requests,
such as .INIT, may change the amount of available
free core, since the instructions may call in drivers
and establish data blocks. Such requests affect the
result of MONF requests.

• Certain requests return data to the user on the stack.
The user must clear the stack himself before the
stack is used again. The Monitor clears the stack
after it honors requests that do not return data to
the user on the stack.

• The user should not use global names that are
listed in Appendix E.

• The Link pointer in the Link Block is set by the
Monitor and must not be altered by the user.

.lNIT

3.6 REQUEST FOR INPUT/OUTPUT SERVICES

3.6.1 .INIT Associate a dataset with a device driver and set up

the initial linkage •

Macro Call: . INIT #LNKBLK

where LNKBLK is the address of the Link Block.

Assembly Language Expansion:

Global Name:

Description:

MOV #LNKBLK,-(SP)
EMT 6

INR

Assigns a device to a dataset and assures that the

appropriate driver exists and is in core. If the driver is not in

core, it is loaded. The device assigned is that specified in the

associated Link Block, unless assignment has been made to the logical

name specified in the Link Block with the ASSIGN command or via"the

"Command String Interpreter. After the .INIT has been completed,

control is returned to the user at the instruction following the

assembly language expansion. The argument is removed from the stack.

Rules: The user must set up within his program a Link Block

of the format explained in section 3.9.1 for each dataset to be

INITed. A dataset which has been .INITed should be .RLSEd prior to

any further .INIT request for any Link Block.

Errors: A nonfatal error message, A003, is printed on the

teleprinter if no assignment has been made through the ASSIGN command,

and the DEFAULT DEVICE is either not ~pecified in the Link Block or

has been specified illegally (Le., no such device on the system).

The user may type in an assignment (ASSIGN) and give the CONTINUE

console command to resume operation.

Control is transferred to the address specified by the error

return address in the Link Block if at any time during an operation

there is not enough space in free core for the necessary drivers,

buffers, or tables. If no address (i.e., a zero) is specified in the

Link Block's ERROR RETURN ADDRESS, a fatal (F007) error is printed

and the program stops.

Example: (see .RLSE).

3-20

(

(

(

.RLSE

3.6.2 . RLSE Remove the linkage between a device driver and a data-

set and release the driver •

Macro Call: . RLSE #LNKBLK

where LNKBLK is the address of the Link Block previously INITed.

Assembly Language Expansion:

MOV #LNKBLK,-(SP)
EMT 7

Global Name: RLS

Description: Dissociates the device from the dataset and releases

the dataset's claim to the driver. Releasing the driver frees core

provided no other dataset has claimed the driver, and provided that

the driver is not permanently core resident.

Rules: The device to be released must have been previously

INITed to the dataset.

If the dataset has been OPENed on a directory device, it must be

CLOSEd before the device is released. On a nondirectory device, a

.RLSE will ensure that any data remaining in the Monitor buffer for

output is dispatched to the device and will return any buffer still

associated with the dataset to free core.

After the release has been completed, control is returned to the

user at the instruction following the assembly language expansioni

the argument is removed from the stack.

Errors: If the dataset has been OPENed to a file-structured

device, a .RLSE not preceded by a .CLOSE will be treated as a fatal

error, F005. A .RLSE error (F005) may also occur if the link pointer

in the Link Block is invalid, indicating probable corruption of the

Monitor or its control blocks.

Example:

.INIT

.RLSE

. WORD
LNK1: . WORD

. RAD50

. BYTE

.RAD50

ERR1:

#LNKl

#LNKl

ERRl
0
/DSI/
1,0
/KB/

iASSOCIATE A DATASET WITH A DEVICE

iERROR RETURN ADDRESS
iPOINTER FOR MONITOR
iLOGICAL NAME OF DATASET
iDEVICE SPECIFIED, UNIT
iSPECIFY KEYBOARD

iERROR PROCESSING LOGIC

3-21

·OPEN

3.6.3 • OPEN Prepare a device (which has been .INITed) for data

transfer and associate the dataset with a file (if the device is file­

structured) •

Macro Call: .OPEN #LNKBLK,#FILBLK

This form assumes that the File Block contains a code indicating how

the file is to be opened (see Description below).

Assembly Language Expansion:

MOV #FILBLK,-(SP)
. MOV #LNKBLK, - (SP)

EMT 16

Alternate Form of Macro Call:

.OPENx #LNKBLK,Rn

where. Rn is a register containing the address of the File Block and

x indicates the type of .OPEN (see Description below).

Assembly Language Expansion:

Global Name:

Description:

MOVB #CODE,-2(Rn)
MOV Rn,-(SP)
MOV #LNKBLK,-(SP)
EMT 16

(see Description below)

OPN (See Appendix C for sUbsidiary routines.)

When used, .OP~N follows .INIT or.CLOSE (if more than

one file is to be opened on the same dataset). When the device being

used is file-structured, .OPEN associates a specific file with the

dataset. .OPEN also acquires a data buffer and prepares the device

or the file for the ensuing data transfers. See Appendix C for details

about specific .OPEN actions for particular devices. .OPEN has five

forms; the desired form may be specif ied by inserting the prope·r

HOW OPEN code in the File Block (see Figure 3-7) or by selecting one

of the alternate forms of the Macro Call. The different .OPEN forms

are described below:

Form

.OPENU

.OPENO

HOW OPEN
Code

1

2

Description

opens a previously created contiguous file
for input and output by .RECRD or .BLOCK
request; .OPENU is rejected if the device
is not file-structured.

a. creates a new linked file and prepares
it for output via .WRITE; the file
must not already exist.

b. prepares a nonfile-structured device
for output via .WRITE (see Appendix C).

3-22

(

.,.

,.

(

(

Form

.OPENE

• OPENI

. OPENC

HOW OPEN
Code

3

4

13

.OPEN (cont)

Description

opens a previously created linked or con­
tiguous file to make it longer via .WRITE;
note that a contiguous file may only be
extended within the area already allocated;
although additional blocks may be added to
a linked file, no additional blocks may be
added to a contiguous file (see .CLOSE);
.OPENE is treated like .OPENO if the device
is not file-structured •

a. opens a previously created linked or
contiguous file for input via .READ,
.RECRD, or • BLOCK.

b. prepares a nonfile-structured device
for input via .READ (see Appendix C) •

opens a previously created contiguous file
for output via .WRITE; when a contiguous
file is first opened for writing (via
.WRITE) , .OPENC must be used; subsequent
opens for output (via .WRITE) must be
.OPENE'Si .OPENC is treated like .OPENO
if the device is not file-structured.

At this point, the user should note the difference between linked

files and contiguous files. A linked file has records allocated to it

one at a time, as they are needed. Each record in the file contains

a pointer to its successor, the User File Directory (UFD) points to

the first record. Because records are allocated as needed, the user

need not concern himself at all with the size of the file nor with the

allocation of any records. Furthermore, a linked file can easily be

extended in the future. However, because records are scattered about

on the disk and because the system must read all intermediate records

to move from one record to another (forward only), linked files can

only be used for sequential processing (.READ or .WRITE).

A contiguous file has all of its records allocated at once in a

contiguous area of the disk which is reserved for the file. Since any

record in the file can easily be located relative to the first record

in the file, random (or direct) access (.RECRD or . BLOCK) is possible

in addition to sequential access. However, it is now necessary to

know in advance how much space will be needed,since no more space can

be added later. Since this may be difficult, one often has to guess

and space is often wasted. Note, however, that a contiguous file can

be extended within the space already allocated, i.e., if the area was

not filled when the file was first written (or extended), more data

can be added. Because the user is responsible for determining the

size of a contiguous file, he is required to allocate it before open­

ing it (compare .OPENC and .OPENO). This may be done with PIP, using

the ALLOCATE command or with the .ALLOC programmed request.

3-23

• OPEN (cont)

After the open request has been processed, control is returned to

the user at the instruction followi-ng the assembly language expansion;

the arguments are removed from the stack. At this time, however, the

device concerned may still be completing operations required by the

request. A summary of transfer requests which may legally follow

.OPEN requests is illustrated in 'l'able 3-3.

Table 3-3

Transfer Requests Which May Follow Open Requests

2>yP
?).P~ ~ o;e
2?c o;e 2> Jlri..J. ~ Linked File Contiguous File ~S:E "J:'q12S:E

~.l" .l? ~.l" Input Output Input Output File ~911 .
Type Of~~ .RECRD .RECRD Already
Open . READ • WRITE • READ • BLOCK • WRITE • BLOCK Exist?

.OPENU Yes Yes Must

.OPENO Yes Must Not

.O~ENE Yes Must

.OPENI Yes Yes Yes Must

.OPENC Yes Must

Rules: a. General Rules for All .OPENx Requests The user must

set up a Filename Block in his program (see Figure 3-7). If the

dataset is a file, the Filename Block must contain a legal file­

name (see Section 2 •. 3). If the dataset is not a file, or if it

will be specified by an .ASsign or via the Command String

Interpreter, the Filename Block need not contain any FILENAME or

EXTENSION entries.

All datasets must have been INITed before they are OPENed.

The .OPEN must be applicable to the type of device (e.g., .OPENI

to the line printer is illegal).

For datasets on directory devices, the User Identification

Code (UIC) in the Filename Block (if specified) must be in the

directory of the device. If the UIC is not specified, the user

must have logged in with a UIC that appears on the device.

The .OPENx request must not violate the protect code of the

file.

If a dataset is opened for any output, it cannot be opened

. again until it has been closed.

3-24

(

.,

.OPEN (cont)

b. Rules for .OPENO The .OPENO request is applicable

only for outputs to nonfile-structured devices or to a linked

file on a file-structured device. It is not applicable to con­

tiguous files.

The .OPENO request creates a linked file on a directory device;

hence, the file referenced in the corresponding Filename Block

cannot exist prior to the .OPENO request.

The .OPENO request will return an error if the disk is

full.

c. Rules for .OPENI .OPENI may be used for inputs from

contiguous or linked files, or nondirectory devices.

The file referenced in the corresponding Filename Block must

exist in the directory.

If a file is open for input (.OPENI), it cannot be opened for

output, but it may be opened for extension or update.

At anyone time, a file can be opened for input to a maximum

of 6210 or 76 8 datasets.

d. Rules for .OPENU, OPENE, and .OPENC The file must

exist and cannot currently be opened for output.

The file cannot currently be opened by another .OPENU, .OPENE,

or .OPENC.

A contiguous file can be opened for extension, provided that

the area already allocated to the file does not need to be en­

larged, which is not possible.

A linked file cannot be opened with .OPENC, which is appli­

cable only to contiguous files.

Errors: If any of the preceding rules are violated, the Monitor

places an error code in the STATUS byte of the Filename -Block (see

Table 3-7) and transfers control via the pointer in the ERROR RETURN

ADDRESS of the Filename Block. If this address is 0, a fatal error

message is printed on the teleprinter. Fatal error messages are

listed in Appendix F.

(See .CLOSE)

3-25

.CLOSE

3.6.4 . CLOSE Close a dataset.

Macro Call: .CLOSE #LNKBLK

where LNKBLK is the address of the Link Block (see Figure 3-7).

Assembly Language Expgnsion:

Global Name:

MOV #LNKBLK,-(SP)
EMT 17

CLS (See Appendix C for subsidiary routines.)

Description: The ~CLOSE request indicates to the Monitor that no

more I/O requests will be made on the dataset. .CLOSE completes any

outstanding processing on the dataset (e.g., on output, it writes the

last buffer; on extension, it links the extension to the old file;

etc.), updates any directories affected by the processing, and re­

leases to free core any buffer space established for the processing.

When a file which has been opened for output is closed, the last block

written and the last byte written are recorded in the directory to

indicate end-of-data. This eliminates the need to pad out blocks with

nulls and allows the written data within a contiguous file to be

extended at a later time.

After the .CLOSE request has been completed, control is returned

to the user at the instruction following the assembly language expan­

sion; the argument is removed from the stack. As with .OPEN, some

appropriate device action may still be in progress at this point (see

Appendix C).

Rules: The dataset to be closed must have previously been

opened if it was a file on a file-structured device.

As with .0PENx, a .CLOSE is not required if the dataset is not

a file, but it is strongly recommended in order to maintain device
independence.

Errors: Dataset Not Inited - Fatal Error FOOO;

Device Parity Error - Fatal Error F017

All error messages are explained in Appendix F.

3-26

(

(

/
\

"

.CLOSE (cont)

Example: Open for input a dataset named IMP, which is file

PROG1.BIN on DECtape unit 3. After the data transfer is complete,

close the file.

.INIT #SETl

. OPEN #SET1, #FILEl

(Input is
Performed
Here) .

• CLOSE #SETl

.RLSE #SETl

• WORD ERRl
SET1: . WORD 0

.RADSO /IMP/
• BYTE 1,3
.RADSO /DT/

• WORD ERFl
• WORD 4

FILE1: .RADSO /PRO/
.RADSO /Gl/
.RADSO /BIN
• BYTE PROG,PROJ
• BYTE 177
• EVEN .

ERR1:

ERF1:

iOPEN SETl FOR INPUT (OPEN CODE
iIS IN FILE BLOCK)

iCLOSE SETl

iDATASET NAME

iPHYSICAL DEVICE NAME

iADDR OF ERROR RTN
iOPEN FOR INPUT
iFILENAME

iEXTENSION

iHERE FOR .INIT, .OPENI, .CLOSE,
iOR .RLSE ERRORS (DEVICE)

iHERE FOR .OPENI ERRORS
i (DATA FILE)

3-27

.READ

3.6.5 .READ - Read the next record in the dataset •

Macro Call: . READ #LNKBLK,#BUFHDR

where LNKBLK is the address of the Link Block, and BUFHDR is the ad­

dress of the line buffer header.

Assembly Language Expansion:

MOV #BUFHDR,-(SP)

MOV #LNKBLK,-(SP)

EMT 4

Global Name: RWN (Routine is permanently core resident).

Description: The .READ request transfers the data from the device to

the user's line buffer as specified in the line buffer header. The

transfer is done via a buffer in the Monitor, into which an entire

device block is read, and from which the desired data is transferred

to the user's line buffer. Each read causes the user to receive the

next record in the data set. Block boundaries are ignored and new

blocks are read as needed. After any I/O transfer has been started,

control is returned to the user at the next instruction, with the argu- (

ments removed from the stack.

Refer to Section 3.9.3.2 for more details on transfer modes.

Rules: If the device is file structured, the .READ request

must be preceded by an .OPEN!. The user must provide in his pro-

gram a line buffer and line buffer header (see Figure 3-9). Further

actions on the dataset by the Monitor will be automatically postponed

until the .READ processing has completed. The user program should,

however, perform a .WAIT or .WAITR to ensure proper completion of trans­

fer before attempting to use the data in the line buffer. Otherwise,

he might find that he is processing before the data he wants has ar­

rived.

Errors: Specification of a transfer mode which is inappropriate

for the device assigned to the dataset, attempting to .READ from or

.WRITE to a file-structured dev~ce for which no file has been .0PENed

or for which the type of .OPEN is incorrect '.vill be treated as fatal

errors and will result in a F010 message.

Note: A dataset can only support transfers in one direction at

one time, i.e., READ only or WRITE only. If the same device is to be

used for both operations, spearate datasets must be used for each.

3-28

.WRITE

3.6.6 .WRITE - Write the next record in the dataset .

Macro Call: . WRITE #LNKBLK,#BUFHDR

where LNKBLK is the address of the Link Block, and BUFHDR is the ad­

dress of the line buffer header.

Assembly Language Expansion:

Global Name:

Description:

MOV #BUFHDR,-(SP)

MOV #LNKBLK,-(SP)

EMT 2

RWN (Routine is permanently core resident).

The .WRITE request initiates the transfer of data from

the user's line buffer to the device assigned. The data is first

transferred to a buffer in the Monitor, where it is accumulated until

a buffer of suitable length for the device is filled. 1 The data in the

Monitor buffer is then transferred to the next device block, and any

data remaining in the user's line buffer is moved to the (now emptied)

Monitor buffer. After any I/O transfer to the device has been started,

control is returned to the user at the next sequential instruction.

The arguments are removed from the stack upon return.

Refer to Section 3.9.3.2 for more details on transfer modes

and t he like.

Rules: If the requested device is file structured, the dataset

must have been opened by an .OPENO or .OPENE for a linked file, or

.OPENC for a contiguous file. The user must provide a line buffer and

its header in his program (Figure 3-9).

Further actions on the dataset by the Monitor after .WRITE will

be automatically postponed until the .WRITE processing has been com­

pleted. Before refilling the line buffer, however, the user program

should perform a .WAIT or .WAITR to ensure proper completion of the

transfer. Otherwise, it might store new data on top of data which has

not yet been written.

Errors: See .READ for errors.

IFor terminal devices, data transfer also occurs when a line
terminator is seen (see Section 3.9.3.2).

3-29

.RECRD

3.6.7 ~CRD - Read or write a specific record in a file.

Macro Call: .RECRD #LNKBLK,#RECBLK

where LNKBLK is the address of the Link Block, and RECBLK is the

address of the Record Block (see Figure 3-12).

Assembly Language Expansion:

MOV #RECBLK,-(SP)
MOV #LNKBLK,-(SP)
EMT 25

Global Name: REC

Description: The .RECRD request causes a specific record to be

transferred to (or from) the user's record buffer. Each record in

the file may be individually addressed, and the user is not restricted

to reading or writing the next record. Data transfer is by way of a

buffer in the Monitor which will contain exactly one physical block

of information. There is no rule concerning the relative sizes of

records and blocks; however, efficiency may be improved if one is a

multiple of the. other. The Record Block specifies record number

(starting at ~), buffer address and length, and transfer direction

(read or write) •. RECRD requests require the use of the .INIT, .RLSE,

.OPEN, • CLOSE, and . WAIT (or • WAITR) requests. After the transfer

has started, control is returned to the user at the instruction

following the assembly language expansion with arguments removed from

the stack.

Rules: The requested device must be file-structured and the

file must be contiguous.

The user must set up a Record Block in his program and must pro­

vide a buffer.

All records must have the same length.

The user should perform a .WAIT or .WAITR to ensure that proces­

sing has completed.

The associated file must have been opened with .OPENU or .OPENI.

Errors: An error causes a return to the user with the type

of error indicated in the FUNCTION/STATUS word of the RECORD BLOCK.

The user should perform the following test after his request to ensure

that the request completed normally.

TSTB RECBLK+l

BNE ERROR

3-30

(

(

...

.BLOCK
3.6.8 .BLOCK - Read or write a specific block in a file •

Macro Call: . BLOCK #LNKBLK,#BLKBLK

where LNKBLK is the address of th~ Link Block, and BLKBLK is the ad­

dress of the BLOCK block (see Figure 3-13).

Assembly Language Expansion:

MOV #BLKBLK,-(SP)
MOV #LNKBLK,-(SP)
EMT 11

Global Name: BLO

Description: BLOCK requests provide for random access to the

blocks of files stored on disk or DECtape.

In this mode, data is transmitted to or from a specified block

in a file with no formatting performed. Transfers take place betw~en

the device block and a Monitor buffer. The user may process the

data in the Monitor buffer or he may transfer the block to and from

his own area. BLOCK requests require the use or the .INIT,.OPEN,

.CLOSE and .WAIT (or .WAITR) requests.

The user must specify one of three functions in the BLOCK block:

INPUT, GET, or OUTPUT (see Figure 3-13). After the transfer has

started, control is returned to the user at the instruction following

the assembly language expansion with arguments removed from the stack.

INPUT:

GET:

OUTPUT:

Rules:

During an INPUT request, the requested block of the
requested file is read into a Monitor buffer, and the
user is given in the BLOCK block (see Figure 3-11)
the address of the buffer and the physical length of
the block transferred.

During a GET request, the Monitor returns in the BLOCK
Block the address and length of a buffer within the
Monitor that he can fill for subsequent output. Only
one GET is required for each time the file is OPENed
and CLOSEd (i.e., once a buffer has been located, it
may be used repeatedly). The user must assure that
he does not over-run the buffer. This request is un­
necessary if an INPUT request has occurred.

During an OUTPUT request, the contents of the buffer
assigned is written on the device in the r~quested
relative position in the requested file.

The associated file must be opened by .OPENlfor input

or .OPENU for input or output.

Access to linked files or nondirectory devices is illegal.

The user must set up the BLOCK block in his program according to

the format of Figure 3-13.

3-31

.BLOCK (cont)

Errors: Error processing causes a normal return to the user,

with the type of error indicated in the FUNCTION/STATUS word of the

BLOCK block. The user should perform

TSTB BLKBLK+l

BNE ERROR

after a .WAIT to assure that his request was error free.

3-32

(
"

,.,

.TRAN
3.6.9 .TRAN - Read or write the specified block (file-structured

device) or the next block (non-file-structured device) .

Macro Call: . TRAN #LNKBLK,#TRNBLK

where LNKBLK is the address of the Link Block, and TRNBLK is the ad­

dress of the TRAN block (see Figure 3-14).

Assembly Language Expansion:

MOV #TRNBLK,-(SP)
MOV #LNKBLK,-(SP)
EMT 10

Global Name: TRA

Description: .TRAN provides nearly direct access to the device on

which the dataset resides. No file processing is done and any file

structure is ignored. Therefore, writing with .TRAN on a file­

structured device is especially risky and many lead to the corruption

of all data on the device. If .BLOCK request can be used instead of

.TRAN, it is recommended. Each .TRAN will transfer one or more blocks,

depending upon the word count in the TRAN Block. Blocks on file­

structured devices are referenced by absolute block number, while blocks

on non-file-structured devices are processed in sequence. .INIT, .RLSE

and .WAIT (or .WAITR) must be used. .OPEN and .CLOSE must not.

After the transfer has started, control is returned to the user at the

instruction following the assembly language expansion. The arguments

are removed from the stack .

Rules: . TRAN must be preceded by an .INIT request on the as-

sociated dataset. .OPEN must not be used. For each .TRAN request,

the user must provide a transfer control block, as shown in Figure

3-12. Further actions on the dataset by the Monitor will be automati­

cally postponed until the .TRAN processing has been completed. The

user program should perform a .WAIT or .WAITR to ensure proper com­

pletion of the transfer before attempting to reference any location

in the data buffer.

Errors: An invalid function code in the transfer control block

will result in an error diagnostic message on the teleprinter at run

time.

Errors in the transfer will be shown in the FUNCTION/STATUS word

of the TRAN block; the last word of the block will be set to show

how many data words have not been transferred.

3-33

• TRAN (cont)

Example: Transfer 2008 words of data from DECtape unit 3,

starting at block 1008 to core starting at location BUFFER .

TAPEl:

BIN40:

ERRl:

BUFFER:
BUFEND:

• INIT #TAPEI

.TRAN #TAPEl, #BIN40

• RLSE #TAPEI

.WORD ERRI

.WORD 0

.RAD50 /TPI/

.BYTE 1,3

.RAD50 /DT/

.WORD 100

.WORD BUFFER

.WORD 200

.WORD 4

.WORD 0

• WORD 0
.BLKW 200

..
• END

iSTARTING BLOCK #
iSTARTING ADDRESS IN CORE
i NUMBER OF WORDS
iINPUT
iFOR MONITOR USE

iERROR ROUTINE FOR DECTAPE

3-34

(

(

..

(

)i

3.6.10 .WAIT - Wait for completion of process on dataset.

Macro Call: .WAIT #LNKBLK

where LNKBLK is the address of the Link Block (see Figure 3-6).

Assembly Language Expansion:

Global Name:

MOV #LNKBLK,-(SP)
m4T 1

(Routine is embedded in the resident Monitor.)

.WAIT

Description: .WAIT tests for completion of the last requested action

on the dataset represented by the referenced Link Block. If the action

is complete (that is, if the request has completed all its action),

control is returned to the user at the next sequential instruction

following the assembly language expansion; otherwise, the Monitor re­

tains control until the action is complete. A .WAIT or .WAITR should

be used to ensure the integrity of data transferred to or· from a line

buffer. The argument is removed from the stack.

Rules: The dataset must be INITed.

Errors: If the dataset is not INITed, a fatal error occurs and

FOOO is printed on the teleprinter.

3-35

·WAITR

3.6.11 .WAITR Check for completion of processing on dataset and

return or transfer •

Macro Call: • WAITR #LNKBLK, #ADDR

where LNKBLK is the address of the Link Block, and ADDR is the address

to which control is transferred if the processing is not complete.

Assembly Language Expansion:

Global Name:

Description:

MOV #ADDR, - (SP)
MOV #LNKBLK,-(SP)
EMTO

(Routine is imbedded in the resident Monitor.)

.WAITR tests for completion of the last requested

action on the specified dataset. If all actions are complete, control

is returned to the user at the next sequential instruction following

the assembly language expansion. If all actions are not complete,

control is given to the instruction at location ADDR. The arguments

are removed from the stack. It is the user's responsibility to return

to the .WAITR to check again.

Rules: The user should use a .WAIT or a .WAITR request to

assure the completion of data transfer to the user's line buffer be­

fore processing the data in the buffer, or moving data into it. The

dataset must be INITed.

Errors: If the dataset is not INITed, a fatal error occurs

and FOOO is printed on the teleprinter.

3-36

(

(

):1

.SPEC
3.6.12 .SPEC Special functions.

Macro Call: .SPEC #LNKBLK,#SPCARG

where LNKBLK is the address of the Link Block, and SPCARG may be

either a special function code or the address of a special function

block containing the code (see Figure 3-15) I depending upon the
function.
Assembly Language Expansion:

MOV #SPCARG,-(SP)
MOV #LNKBLK,-(SP)
EMT 12

Global Name: SPC

Description: This request is used to specify a special function

(action) to a device, such as rewind magnetic tape. A code identifies

the function and must be in the range 0-25510' When the function

requires no supporting data, the code itself is the first parameter

to be placed upon the processor stack in the assembly language call

sequence. However, if the user must supply additional information

or if the ·function expects to return data to the user, the code

is passed within a special function block and the address of the

block is the call parameter. The format of this block is shown in

Figure 3-15.

If a .SPEC request is made to a device which has no special

function code, an immediate return is made showing that the function

has been complete. After the request has been started, control is

returned to the user at the instruction following the assembly lan­

guage expansion. The stack is cleared.

Rules: The dataset must be INITed.

Errors: Fatal error FOOO is returned if the dataset has not

been INITed.

3-37

.STAT

3. 6. 13 • STAT Obtain device status.

Macro Call: .STAT #LNKBLK

where LNKBLK is the address of the Link Block.

Assembly Language Expansion:

MOV #LNKBLK,-(SP)
EMT 13

Global Name: STT

Description: Determine for the user the characteristics of the

device specified in the Link Block. After the request has been com­

pleted, control is returned to the user at the instruction following

the assembly language expansion. This request returns to the user

with the following information at the top of the stack.

SP

SP+2

SP+4

Driver Facilities Word

Device Name (Packed Radix-50)

Device Standard Buffer
Size (in words)

where Driver Facilities Word has the following format;

l~S direc::;:or ~spare .
structured

1 = device is DECtape
1 device is sequential magnetic tap
1 system disk driver----------------~,
1 device has multiple units under

one controller----------------------~
1 device is a terminal------------------~
1 driver has an OPEN entry----------------~

/~
~

= device will support multi­
dataset activity

1 = device will handle output
1 device will handle input

--1 device will handle binary data
---1 device will handle ASCII data

1 driver has a special function
entry

1 driver has a CLOSE entry

Device Name is the Radix-50 packed ASCII standard mnemonic for the

device (Appendix A)i and, Device Standard Buffer Size is the block

size (in words) on a blocked device or an appropriate grouping size

on a character device.

Rules: The dataset must be INITed. The user must clear the

stack upon return.

3-38

(

(,
\

·ALLoe
3.7 REQUESTS FOR DIRECTORY MANAGEMENT SERVICES

3.7.1 .ALLOC Allocate (create a contiguous file).

Macro Call: .ALLOC #LNKBLK,#FILBLK,#N

where LNKBLK is the address of the Link Block, FILBLK is the address

of the Filename Block, and N is the number of 64-word segments re­

quested.

Assembly Language Expansion:

Global Name:

MOV #N,-(SP) or MOV #N+l~¢¢¢0,-(SP)
MOV #FILBLK,-(SP)
MOV #LNKBLK,-(SP)
EMT 15

ALO (See Appendix C for subsidiary routines.)

Description: Searches the device for a free area equal to N 64-

word segments, and creates a contiguous file in the area if it is

found, by making an appropriate entry in the User File Directory (UFD).

If the sign bit (bit 15) of N is set, the UFD pointer will point to

the beginning of the allocated area thereby indicating that the file

is empty. This enables partial filling of the file space and later

extension of the file. If the sign bit of N is not set, the UFD

pointer will point to the end of the allocated area and thereby indi­

cate that the file area is full and may not later be extended.

(Linked files are created by an .OPENO request.) Search begins at

the high end of the device. The number of blocks allocated will be

the minimum number required to contain N segments, i.e.,

[~]
. where B is the number of 64-word segments per block. For example, if

N=9 and the device specified is DECtape, then B=256 = 4. Therefore,
N 9 64
§~= ~ = 3, and 3 blocks will be allocated.

After the request has been completed, control is returned to the

user at the instruction following the assembly language expansion.

The arguments are removed ·from the stack, and the top word of the

stack will be set to -1 to indicate the successful completion of the

request, or to the largest number of segments currently available -if

this is less than the called request. The value will be meaningless

if the call cannot be met by reason of any other error.

3-39

.ALLOC (cont)

Rules: Must be preceded by an .INIT request on the dataset.

A Filename Block must be set up by the user in his program.

Errors: Control is returned either to the ERROR RETURN ADDRESS

in the Filename Block if it is specified, or to the teleprinter for

an error message if it is not. Possible errors are shown below:

Error Code Returned Error Message
Error Condition To Filename Block On Default

Device Not Ready A002

Dataset Not INITed FOOO

File Exists 2 F024

Directory Full 12 F024

UIC Not In Directory 13 F024

Illegal Filename 15 F024

If the error address in the Filename Block is taken, the top word of

the stack is meaningless.

Example: Create a contiguous file of four 25610 word blocks

8n DECtape unit 4. Name the file FREQ.DAT.

FRQ:

FREQIN:

ERRl:

ERR2:

NOROOM:

.ALLOC
INC
BNE

. WORD

. WORD

.RAD50

.BYTE

. RAD50

. WORD

. WORD

.RAD50

. RAD50

.RAD50

. WORD

#FRQ,#FREQIN,#20
@SP
NOROOM

ERRI
o
/DTA/
1,4
/DT/

ERR2
o
/FRE/
/Q/
/DAT/
UIC,PROTI

iTO HERE IF NO BUFFER AVAILABLE
iFOR DRIVER
i TO HERE IF FIL:!! STRUCTURED ERROR

iTO HERE IF NOT ENOUGH CONTIGUOUS
iBLOCKS ON DEVICE

3-40

(

(

(

(

.DELET

3.7.2 .DELET Delete a file.

Macro Call: .DELET #LNKBLK,#FILBLK

where LNKBLK is the address of the Link Block, and FILBLK is the ad­

dress of the Filename Block.

Assembly Language Expansion:

MOV #FILBLK,-(SP)
MOV #LNKBLK,-(SP)
EMT 21

Global Name: DEL (See Appendix C for subsidiary routines.)

Description: Deletes from directory-oriented device the file named

in the Filename Block. After the request has been completed, control

is returned to the user at the instruction following the assembly

language expansion. The arguments are removed from the stack.

Rules: .DELET operates on both contiguous and linked files.

If the file has been OPENed, it must be CLOSEd before it is deleted.

Errors: Control is returned either to the ERROR RETURN ADDRESS

in the Filename Block if it is specified, or to the teleprinter for an

error message if it is not. ·Possible errors are shown below:

Error Condition
Error Code Returned

To Filename Block

Device Not Ready

Dataset Not INITed

Nonexistent File

Protect Code Violation

File Is Open

2

6

14

3-41

Error Message
On Default

A002

FOOO

F024

F024

F024

.RENAM

3.7.3 .RENAM Rename a file. Change protection code.

Macro Call: .RENAM #LNKBLK,#OLDNAM,#NEWNAM

where LNKBLK is the address of the Link Block, OLDNAM is the address of

the Filename Block representing the file, and NEWNAM is the address of

the~Filename Block containing the new information.

Assembly Language Expansion:

MOV #NEWNAM,-(SP)
MOV #OLDNAM,-(SP)
MOV #LNKBLK,-(SP)
EMT 20

Global Name: REN (See Appendix C for subsidiary routines.)

Description: Allows the user to change the name and protection code

(see Section 3.8.6.3) of a file. After the request has been completed,

control is returned to the user at the instruction following the assem­

bly language expansion. The arguments are removed from the stack.

Rules: Dataset must be INITed, and file must not be OPENed.

The user must specify two Filename Blocks: one contains the name and

protection code of the file as it presently is before the .RENAM re­

quest, and the other contains the name and protection code of the file

as it should be after the .RENAM request. The two filenames must be

different. To change just the protection for a file, two .RENAMs must

be requested.

The new filename must not already exist, and the new filename

must be legal. The old file must exist.

NOTE
Renaming a file assigned from the keyboard to the
dataset will effectively be a NOP.

Errors: Control is returned either to the ERROR RETURN ADDRESS

in the offending Filename Block if it is specified and applicable, or

to the Monitor for an error message if it is not. Possible errors

are shown below:

Error Condition

Dataset Not INITed
File Exists (new name)
File Nonexistent (old file)
Protection Violation
File Is Open
Illegal Filename

Error Code Returned
To Filename Block

3-42

2
2
6

14
15

Error Message
On Default

FOOO
F024
F024
F024
F024
F024

"

(

(

(

.APPND

3.7.4 .APPND Append one linked file to another.

Macro Call: .APPND #LNKBLK,#FIRST,#SECOND

where LNKBLK is the address of the Link Block, FIRST is the address of
the Filename Block for the first file (file to be appended to), and

SECOND is the address of the Filename Block for the second file (file

to be appended).
Assembly Language Expansion:

MOV #SECOND,-(SP)
MOV #FIRST,-(SP)
MOV #LNKBLK,-(SP)
EMT 22

Global Name: APP (See Appendix C for subsidiary routines.)

Description: Makes one linked file out of two by appending the

SECOND to the FIRST. The directory entry of the SECOND file is

deleted. When the request is completed, control is returned to the

user at the instruction following the assembly language expansion.

The arguments are removed from the stack. No attempt is made to pack

the two files together, the physical blocks are merely linked together.

Errors: Control is returned either to the ERROR RETURN ADDRESS

in the offending Filename Block if it is specified, or to the tele­

printer for an error message if it is not. Possible errors are

shown below:

Error Condition

Device Not Ready

Dataset Not INITed

First File Nonexistent

Contiguous File

Protect Code Violated

File Opened

Error Code Returned
To Filename Block

2

5

6

14

NOTE

Error Message
On Default

A002

FOOO

F024

F024

F024

F024

Since the last block of a file is typically not
full, there will be a gap (null characters) in
the new file at the junction point. This causes
no problem in ASCII files but might cause
confusion in binary files.

3-43

.LOOK

3.7.5 . LOOK Search the d~vice directory for a specified filename.

Macro Call: .LOOK #LNKBLK,#FILBLK[,l]

where LNKBLK is the address of the Link Block, ahd FILBLK is the

address of the Filename Block.

Assembly Language Expansion:

a. If the optional argument is not specified:

MOV #FILBLK, - (SP)
MOV # LNKBLK,-(SP)
EMT 14

b. If the optional argument is specified:

MOV #FILBLK,-(SP)
CLR -(SP)
MOV #LNKBLK,-(SP)
EMT 14

Global Name: DIR (See Appendix C for subsidiary routines.)

Description: The primary purpose of this routine is to search

through a specified directory for a specified file and return with the

current parameters of the file. Hqw.ever, this routine can also be

used to indicate (bits 0-3) the permissible functions for a nondirec­

tory device (i.e., input, output, update, etc.). By specifying the

optional argument, the user indicates whether he requires two or

three parameters be returned.

The device to be searched is specified in the Link Block, and the

file is specified in the Filename Block. The request returns to the

user with the top elements of the stack as follows

2 Arg. Call 3 Arg. Call

START BLOCK SP

OF BLOCKS SP SP+2

INDICATOR WORD SP+2 SP+4

where # OF BLOCKS is the number of blocks in the file, and the

INDICATOR WORD is coded

Bi t 0=1
Bit 1=1
Bit 2=1
Bit 3=1
Bit 4=0

4=1
Bi t 5=1

as

Bit 6=0
6=1

Bit 7=0
7=1

Bits 8-15

follows:

.OPENC allowed

.OPENI allowed

.OPENE allowed

.OPENU allowed
File is not in use
File is being used by another dataset
Dataset already has a file open

(no search has been performed)
File is linked
File is contiguous
File nonexistent (OPENO allowed)
File exists or .OPENO not allowed·
Protection Code

3-44

(

'<

"

(

(

i;

.LOOK (cont)

After the request has been completed, control is returned to the

user at the instruction following the assembly expansion. The stack

must be cleared by the user. If a file is protected against READ

access, it will be signaled as nonexistent.

Rules: The dataset must be INITed.

Errors: Control is returned either to the ERROR RETURN ADDRESS

in the Filename Block if it is specified, or to the teleprinter for an

error message if it is not. Possible errors are shown below:

Error Code Returned
Error Condition To Filename Block

Device Not Ready

A File Is Open On 14
Requesting Dataset

Illegal Filename 15

Error Message

A002

F024

F024

Note that it is possible to .LOOK for a file and be told that it

does not exist. A subsequent attempt to open the nonexistent file

may lead to an OPEN error (code=2). Hence, it may be more efficient

to simply attempt the .OPEN and check for an error (see Section 3.6.3).

3-45

.KEEP

3.7.6 . KEEP Protect file from automatic deletion.

Macro Call: .KEEP #LNKBLK,#FILBLK

where FILBLK is the address of the Filename Block of the file to be

protected and LNKBLK is the address of the Link Block.

Assembly Language Expansion:

Global Name:

Description:

MOV #FILBLK,-(SP)
MOV #LNKBLK,-(SP)
EMT 24

PRO

Protects the named file from being deleted by the

Monitor upon a FInish Keyboard command (see Chapter 2). It does this by

setting bit 7 of the PROTECT byte in the Filename Block. Automatic
deletion upon FInish is not currently implemented.

3-46

(

(

.~ .

(

3.8 REQUESTS FOR MISCELLANEOUS SERVICES .RUN
3.8.L Load a Program or an Overlay

3 . 8 • 1. 1 • RUN

Macro Call: .RUN #RUNBLK
where RUNBLK is the address of the user's Run Block (see Figure 3-16).
Assembly Language Expansion:

MOV #RUNBLK,-(SP)
EMT 65

;PUSH ADDRESS OF THE RUN BLOCK
~ ONTO THE STACK

Global Name: RUN

Description: The RUN request may be used to load an entire program

or a program overlay. It has several options, among which are:

load a program or load an overlay - when an overlay is
loaded, the existing program environment is not disturbed~
one section of the program is simply replaced by another.
When a new program is loaded, the old program and its
effects (except for data on the stack) are purged from
core, and the new program takes over~ for example, FORTRAN
can use the RUN request to load LINK and LINK can use it
to load and execute the user's program~

load a core image or a load module~

return of control:

instruction following .RUN~

transfer address of load module or core image~

transfer address plus offset (word F)~

alternate return address (word G)~

stack moveni.ent:

leave as is~

move the stack down if it would otherwise be destroyed
by the entity being loaded~

load address:

as specified in file,

as specified by user.

The RUN request requires the following control blocks:

Run Block:

Link Block:

A variable length control block whose address is
passed on the stack. It contains a function word
and various optional parameters. It is described
in Section 3.9.8.

The standard Link Block (section 3.9.1).
scribes the device from which the entity
loaded. It is required unless bit 15 of
word in the Run Block is 1.

3-47

It de­
is to be
the function

• RUN (con t)
File Block: The standard File Block (section 3.9.2). It de­

scribes the file from which the entity is to be
loaded: either an .LDA file or a CIL. It is
required unless bit 15 of the function word
in the Run Block is 1.

The Link Block should not be .INITed, nor should the File Block be

.OPENed, when .RUN is called. RUN will perform .OPEN, • CLOSE , .INIT

and .RLSE processing. The lookup sequence is as follows:

First an extension of LDA is attempted, then no extension,
unless an extension is specified, in which case it alone
is used;

For each extension, the current UIC, then [1,1] is tried,
unless a UIC is specified, in which case it alone is used;

The . RUN request always removes the Run Block address from the stack.

If bit ,0 is ,0., the following information will be returned upon the

stack:

Aside

(SP) - transfer address of loaded module,

2(SP) - size of loaded module in bytes,

4 (SP) - low. address of loaded module.

from this, the stack is not disturbed, although it may be moved.

This means that the stack may be used for passing arguments.

Rules: --- The Link Block should not be • INITed.

The File alock should not be • OPENed.

If an overlay is being loaded, it must not extend
above the bottom of the resident program section,
nor below the top of the Monitor.

If a new program is to be loaded, all datasets used
by the current program must be RLSEd.

The user must be sure that his stack is not inadvert­
ently destroyed.

When options are requested through the func.tion word,
the appropriate supporting data must be present in
the Run Block.

If the stack might be moved, it must not contain
absolute pointers to locations within the stack.
For example:

MOV SP,R,0
HOV R,0,-(SP)

produces a stack which should not be moved. The
user can assure that such a stack will not be moved
by setting bit 1 of the Function word in the RUN
Block to ,0 (see Section 3.9.8).

Errors:. Errors F007, F012, F02l, F022, F024, F045, F054, F274, F276,

and F277 are all possible. All but F007 and F02l are nonfatal, pro­

vided that an error return is provided in the File Block (see Table 3-4).

3-48

(

(
'-

.EXIT

3.8.2 Request to Return Control to the Monitor

3.8.2.1 .EXIT Exit from a user program to Monitor.

Macro Call: .EXIT

Assembly Language Expansion:

EMT 60

Global Name: XIT

Description: This is the last statement executed in a user's pro-

gram. It returns control to the Monitor, assures that all of the pro­

gram's data files have been closed and, in general, prepares for the

next keyboard request. After the exit, all Monitor buffer space re­

served for the program, such as Device Assignment Tables (DAT) estab­

lished during program execution, are returned to free core.

3-49

.TRAP (

3.8.3 Requests to Set Monitor Parameters

In addition to the above programmed requests, the user can provide

the Monitor with data to be stored in-Monitor Tables or can request

information on the content of those tables via the EMT level 41 in­

struction. The user communicates his request to the Monitor by pushing

the necessary parameters and an identifier code onto the stack. If the

code is outside the ranges of those currently established, a fatal

error (F002) will result.

3.8.3.1 .TRAP. Set interrupt vector for the trap instruction.

Macro Call: .TRAP #STATUS,#ADDR

where STATUS is the desired status for the trap, and ADDR is the

address for the trap.

Assembly Language Expansion:

MOV #ADDR,-(SP)
MOV #STATUS,-(SP)
MOV #l,-(SP) ;1 is the identifier code for .TRAP
EMT 41

Global Name: GUT

Description: Sets the STATUS and ADDR into trap vector 34. After

the request is completed, control is returned to the user at the in­

struction following the assembly language expansion. The stack is

·cleared. The user may then use,the trap instruction.

Rules: STATUS m~st be a valid Status Byte.
ADDR must specify an address within the user's core area.

Errors: If an invalid code is specified, a fatal (F~~2) error
will result.

3-50

(

(

r;-'

3.8.3.2 • RSTRT

Macro Call:

.RSTRT

Set the default address for use by the REstart
keyboard command •

• RSTRT #ADDR

where ADDR is the restart address.

Assembly Language Expansion:

Global Name:

MOV #ADDR,-(SP)
MOV #2,-(SP)
EMT 41

GUT

:2 is the identifier code for .RSTRT

Description: Sets the address where the program should restart in

response to the keyboard command REstart. This is the assumed .address

in the absence of an address in the REstart command. It can be reset

as often as requested by the program. After the request is completed,

control is returned to the user at the instruction following the

assembly language expansion. The stack is cleared •.

Rules: ADDR must be an address within the user's core area.

3-51

.CORE

3.8.4 Requests to Obtain Monitor Parameters

3.8.4.1 • CORE Obtain address of the highest word in core memory.

Macro Call: . CORE

Assembly Language Expansion:

Global Name:

MOV #l 0 0 , - (SP)
EMT 41

GUT

~CODE

Description: Determines the address of the highest word in core

memory (core size minus 2) and returns it on the top of the stack.

For an 8K machine, it would return 37776. The user must clear the

stack.

Errors: No errors are possible.

3-52

(

"-,

(

(

(

"

.MONR

3. 8. 4. 2 • MONR Obtain the address of the first word not with~n

the resident Monitor.

Macro Call: • MONR

Assembly Language Expansion:

MOV :ftlOl,-(SP)
EMT 41

Global Name: GUT

Description: Determines the first word above the top of the cur­

rently resident Monitor (see Figure 3-5) and returns it to the user

at the top of the stack. This value does not reflect any area

allocated by the Monitor for control blocks, device drivers, data

buffers, etc. (see .MONF, Section 3.8.4.3). After the request is

completed, control is returned to the user at the instruction follow­

ing the assembly language expansion. The user must clear the stack.

Errors: No errors are possible.

3-53

.MONF

3.8.4.3 . MONF Obtain the address of the first word above the

Monitor's highest allocated free core buffer.

Macro Call: • MONF

Assembly Language Expansion:

MOV #102,-(SP)
EMT 41

Global Name: GUT

Description: The address of the first word above total Monitor area

(see Figure 3-5), including the buffer and transient areas current at

the time of the request, is returned to the user at the top of the stack.

After the request is completed, control is returned to the user at the

instruction following the assembly language expansion. The user must

clear the stack.

Rules: Since buffers are allocated by the Monitor in its

processing of certain requests, .MONF should be placed in the program

at the point where the information is actually required.

Figure 3-5

Stack

- - - -- - -+- - - - - - -

Device Assignment Table
Generated After Load Time

Monitor Buffers
(Data Buffers, Data Control

Blocks, Drivers, etc.)

Device Assignment Table
Generated Before Start of Program

Monitor Routines Resident
For Program Duration

Device Assignment Table
Generated Before Load Time

Permanently Resident Monitor

000000
and Vectors

-Top of Core (. CORE)

_ Base of User (. GTPLA)
Programs

_ Top of Full Monitor (.MONF)

Top of Resident Monitor (.MONR)
+---

Core Map of Resident Monitor and Full Monitor.

3-54

(

3 . 8 . 4. 4 . DATE Obtain current date.

Macro Call: . DATE

Assembly Language Expansion:

Global Name:

MOV #103,-(SP)
EMT 41

GUT

.DATE

Description: The current date word is returned to the user at the

top of the stack. The user must clear the stack. The date format is

a binary number equal to Julian-70,OOOlO. If the user requires the

ASCII representation of the date, he should use the .CVTDT request

(see 3. 8. 4. 6) •

Errors: No errors are possible.

3-55

.TIME

3.8.4.5 . TIME Obtain current time of day.

Macro Call: .TIME

Assembly Language Expansion:

Global Name:

MOV #104,-(SP)
EMT 41

GUT

Description: The two current time words are returned to the user

at the top of the stack.

SP: LOW-ORDER TiME IN TICKS

SP+2: HIGH-ORDER TIME
_. ,--,-

where a TICK is 1/60 of a second (1/50 second for 50-cycle lines).

The words are IS-bit unsigned numbers. The user must clear the

stack. See the CVTDT request for how to obtain the ASCII repre­

sentation of current time value.

Errors: No errors are possible.

3-56

(

(

·CVTDT
3.8.4.6 .CVTDT - Convert binary representation of date or time to

ASCII character string .

Macro Call: . CVTDT # CODE, #ADDR [,VALUE]

where CODE identifies the conversion to be done;

CODE .0 Cur ren t da te as stored by monitor,
CODE I CUrrent time as stored by monitor "
CODE 2 Date supplied as VALUE,
CODE 3 Time supplied as VALUE (and VALUE+2)

ADDR is the address of the first byte of the user buffer into which

the ASCII string is to be stored, and VALUE is the address of user

supplied Date or Time (used with CODEs 2 and 3 only).

Assembly Language Expansion:

MOV VALUE+2,-(SP): Code 3 only

MOV VALUE,-(SP); Codes 2 and 3 only

MOV #ADDR,-(SP)
MOV #CODE,.,-(SP)
EMT 66

Global Name: CDT

Description: This request converts either a date or a time from

internal (binary) representation into an ASCII string suitable

for display. The user may specify that the current system value

(of date or time) is to be used for conversion or he may supply

his own value. The string returned has the format of the Date and

Time returned by the Keyboard DATE and TIME commands (see Chapter 2).

Upon return, the call arguments have been removed from the stack and

condition codes N, Z and V are cleared to .0.

Rules: 1. The buffer area supplied by the user program (starting

at ADDR) must provide sufficient room for the text

returned as no check is made. Nine bytes are required

for Date, eight bytes are required for Time.

2. User-supplied VALUEs for Date or Time must comply

with the internal storage format of those values, that

is:

a. Date; I word containing (year-197.0)*I.0.0.0 + day

of the year (Julian).

b. Time; 2, unsigned integer words for high-order

and low-order time in clock ticks.

3-57

Errors: 1.

. CVTDT (cont)

Specification of an illegal CODE (i.e., > 3) causes

fatal error message:

F~34 call address

2. If the currently stored Date or Time is out of range

(i.e., Date> 366 (Modulo l~~$) or Time> 47:59:59), an

operator action message

A~ll CODE($ = Date, 1 = Time)

is printed. The operator should enter the desired

value via the appropriate DAte or TIme keyboard

command and type COntinue to proceed. If 23:59:59

< Time < 48: 00: 00, Date is incremented and Time is

reduced by 24:00:00.

3. If a user supplied Date or Time is out of range as

above, the conversion routine will return without

attempting conversion and the condition code V will

be set to 1. Thus the program shoUld follow the

.CVTDT request with the check:

BVS (error routine).

3-58

(

(

(

3.8.4.7 .GTUlC Get the current user's UlC.

Macro Call: .GTUlC

Assembly Language Expansion:

Global Name:

MOV #105,-(SP)
EMT 41

GUT·

iCODE

Description: The current user's UlC is returned at the

top of the stack. The user must clear the stack.

Errors: No errors are possible.

3-59

.GTUIC

.SVSDV

3.8.4.8 .SYSDV Get name of the system device.

Macro Call: .SYSDV

Assembly Language Expansion:

MOV #106,-(SP)
EMT 41

Global Name: GUT

Description: The name of the system device in Radix-50 notation is

returned to the user at the top of the stack.

Errors: No errors are possible.

3-60

...

(

T,

(

.GTPLA

3 • 8 • 4. 9 • GTPLA Return the current program low address.

Macro Call: .GTPLA

Assembly Language Expansion:

Global Name:

Description:

CLR - (SP)
MOV #5,-(SP)
EMT 41

GUT

The program low address is the address of the first

(lowest) word of the current program. In the case of a program with

overlays, the PLA is the address of the first word of the resident

section. PLA is established when the keyboard RUN command is executed

or when the .RUN request is used to load a new program (not an over­

lay, e.g., when MACRO calls CREF, which then replaces MACRO). Because

the .RUN processor will not load an overlay which extends above this

address, the PLA is also called the Protection Boundary •

• GTPLA allows the user to retrieve this value (see Figure 3-5),

which is returned to the top of the stack. .STPLA allows the user to

set it.

Rules: The user must clear the stack.

Errors: No errors are possible.

3-61

.STPLA

3.8.4.10 .STPLA Set the program low address.

Macro Call: .STPLA #ADDR

where ADDR is the desired new program low address.

Assembly Language Expansion:

MOV #ADDR,-(SP)
MOV #5,-(SP)
EMT 41

GlObal Name: GUT

Description: This request allows the user to establish a new pro-

gram low address. This is done if the user wants par't of his resident

code overlayed or if he wants to reserve additional space between his

resident code and his overlays. Consult the .GTPLA description for

more details.

The old program low address (or a zero) will be returned on top

of the stack upon return from this macro call.

Rules: The user is required to clear the returned address

from the stack.

Errors: The address returned on top of the stack will be zero

when the call is unsuccessful. This occurs when the address is out­

side of available memory.

3-62

(

(

(

t.l

"

.GTCIL

3.8.4.11 .GTCIL Return the address of the first block of the

Monitor core image library (CIL).

Macro Call: .GTCIL

Assembly Language Expansion:

Global Name:

MOV #lll,-(SP)
EMT 41

GUT

Description: This request returns the address of the first block

of the Monitor core image library to the top of the stack.

Rules: The user is required to clear the disk address returned

on the stack.

Errors: No errors are possible.

3-63

.GTSTK

3.8.4.12 .GTSTK Return the current stack base entry.

Macro Call: .GTSTK

Assembly Language Expansion:

CLR -(SP)
MOV #4,-(SP)
EMT 41

Global Name: GUT

Description: The stack base is the highest core address used for

stack storage plus two. A RUN Keyboard command clears the stack and sets

the stack base address to the program low address. A user .RUN request

does not clear the stack (to allow inter-program communication via the

stack) but the stack may be relocated. This request maybe used to

determine the stack base. Following the request the current stack

base entry is returned on top of the stack.

Rules: The user is required to clear the returned value from

the stack.

Errors: No errors are possible.

3-64

(

(

\.'

(

3. 8. 4. 13 • STSTK Modify the stack base entry.

Macro Call: .STSTK #ADDR

where ADDR is the desired new stack base address entry.

Assembly Language Expansion:

Global Name:

MOV #ADDR,-(SP)
MOV #4,-(SP)
EMT 41

GUT

.STSTK

Description: This request is used when the stack is to be relocated.

It does not relocate the stack, but it does record its new base (the

address of the word immediately above the stack; see section 3.8.4.12),

and it returns the old stack base on the stack. EXTREME CAUTION should

be used when moving the stack; it is not recdmmended as a standard

procedure. Note that the .RUN request may be used to move the stack

when that is appropriate.

Rules: The user must clear the old base value from the stack

when control ,is returned.

The User is responsible for moving the stack.

Caution should be used when moving the stack, since the new and

old stack areas may overlap and since Monitor interrupt routines may

use the stack while it is being_moved. Let:

SBl = old stack base (returned on stack)
SB2 = new stack base (supplied by user)
SPl = old stack pointer (current value of SP)
SP2 = new stack pointer (SB2 - SBl + SP1)

First, set SP=min (SP1, SP2) to protect against interrupts. Then if

SB1< SB2, move the stack starting from the base (SBl toSB2), If

SB1>SB2, move the stack starting from the top (SPl to SP2). This

strategy prevents the stack from being corrupted during the move

(since the two stack areas might overlap). Finally, set SP to SP2.

Errors: If the new stack base ADDR is outside available memory

or inside the Monitor, the request is not honored and a zero is re­

turned on the stack.

3-65

.STFPU .STFPU

3.8.4.14 .STFPU Initialize the floating-point exception vector.

Macro Call: .STFPU #PSW,#ADDR

Assembly Language Expansion:

Global Name:

Description:

MOV #ADDR, -(SP)
MOV #PSW,-(SP)

MOV #3,-(SP)
EMT 41

GUT

;ADDRESS OF EXCEPTION ROUTINE
iPROGRAM STATUS WORD FOR
iEXCEPTION RTN
;REQUEST CODE

This request initializes the exception interrupt

vector for the floating-point processor on the PDP-ll/4% or PDP-ll/~5 •.

Any floating-point exception for which interrupt is enabled will, cause

a trap to location ADDR with a new program status word of PSW. The

interrupt vector is at location 244 8 •

Rules: None.

Errors: NOne.

3-66

(

(

(

(.RADPK

t,

3.8.5 Requests to Perform Conversions

Using the EMT level 42 instruction the user can request data

conversions between binary and some external form such as decimal

ASCII or Radix-50. He communicates his request by pushing the nec­

essary parameters and an identifier code onto the stack. If a code

outside the range of those currently established is specified, a

fatal error (F034) will result.

3 • 8. 5. I • RADPK Pack three ASCII characters into one Radix-50 word.

Macro Call: .RADPK #ADDR

where ADDR is the address of the first byte in toe 3-byte string of

ASCII characters to be converted.

Assembly Language Expansion:

MOV#ADDR,-(SP)
CLR -(SP)
EMT 42

Global Name: CVT

iMOVE CALL CODE ONTO STACK

Description: The string of 7- or 8-bit ASCII characters in three

consecutive bytes starting at ADDR is converted to Radix-50 packed

ASCII using the algorithm shown below. The packed value is returned

on the top of the stack, followed by the address of the byte follow­

ing the last character converted. The user must clear the stack.'

Radix-50 is used by the Monitor to store in one word three

characters for half a filename or an extension or other three­

character sets of data.

Because the characters allowed within names (e.g., filenames

or extensions, assembler symbols, etc.) are restricted to letters,

digits, and a few special characters, it is possible to store three

characters within a single word by using the formula:

where CI ' C2 ' and C3 ,are the three characters converted from their

original ASCII value to the value shown in the following table.

3-67

.RADPK (cont)

ASCII Value Radix-50 Value

space 40 0

A-Z 101-132 1-32

$ 44 33

56 34

unused 35

0-9 60-71 36-47

The maximum value for three characters is thus:

47 x 50 2 + 47 x 50 + 47 = 174777

The Radix-50 representation for various peripheral devices is

shown below:

NOTES:

Radix-50
Mnemonic Device Eg:uivalence

CR Card Reader (CRll) 012620
DC RCll Disk 014570
DF RFll Disk 014760
DK (A,B) RKll Disk 015270(+1,2)
DT (A) DECtape (TCll) 016040 (+1)
KB ASR-33 Keybbard/Printer 042420
LP Line Printer (LPll) 046600
MT Magtape (TMll) 052140
PP High-Speed Paper Tape Punch 063200
PR High-Speed Paper Tape Reader 063320
PT ASR-33 Paper Tape Device 063440

a. Device mnemonics may be three letters on some systems.

b.

The third letter is assigned if there is more than one

controller. For example:

DTA for DEC tape controller A
DTB for .DECtape controller B

The device name may be followed by an octal number to

identify a particular unit when the controller has

several device units associated with it. For example:

DTl for unit 1 under a single DEC tape control

DTAl for unit 1 under controller A in a multi~
controller situation.

Errors: The conversion will be stopped if an error condition

is encountered, and the user will be informed of the type of error

via the condition codes in the Processor Status register:

C-bit set means that an ASCII byte outside the valid
Radix-50 set was encountered.

The value returned will be left-justified and correct up to the last

valid byte, ·e.g., DT: = DT ..

the first invalid byte.

The address returned will be that of

3-68

(

(

"

(

.RADPK (continued)

If no errors were encountered during the conversion, the con­

dition codes will be cleared.

Example: Pack a string of 3010 ASCII characters, starting at

UNPBUF, into a buffer starting at PAKBUF.

NEXT:

MOV #PAKBUF,R3
MOV #UNPBUF,-(SP)
CLR -(SP)
EMT 42
BCS ERRC
MOV (SP) +, (R3) +
CMP R3,#PAKBUF+12
BNE NEXT
TST (SP)+

~SET UP POINTER TO PACK BUFFER
~ . RADPK UNBUF

~INVALID ASCII CODE ENCOUNTERED
~MOV PACKED VALUE TO BUFFER
iEND OF STRING?
~NO
~YES - REMOVE POINTER FROM STACK

Note that this example takes advantage of the fact that the Monitor

returns on the stack the address of the byte which follows the last

character converted.

3-69

.RADUP

3 • 8 . 5 • 2 • RADUP Unpack one Radix-50 word into three ASCII characters.

Macro Call: .RADUP #ADDR,WORD

where ADDR is the address of the first of three bytes into which the

unpacked characters are to be placed, and WORD is the Radix-50 word

to be converted.

Assembly Language Expansion:

MOV WORD,-(SP)
MOV #ADDR,-(SP)
MOV #l,-(SP)
EMT 42

iMOVE CALL CODE ONTO STACK

Global Name: CVT

Description: WORD is converted into a string of 7-bit ASCII char-

actors which are placed left-justified with trailing spaces in three

consecutive bytes starting at location ADDR. The stack is cleared.

See section 3.8.5.1 for a definition of Radix-50.

Errors: If an error is encountered, the user will be informed

via the condition codes in the Processor Status register.

C-bit set means: a. a value of WORD was outside the valid
Radix-50 set, 1. e., >174777 (see
Section 3.8.5.1).

b. a Radix-50 byte value was found to be
35, which is currently not used.

Nevertheless, three bytes will be returned with a : as the first of

the three for error type (a), and a / for any of the three bytes for

error type (b).

If the conversion is satisfactory, the condition codes are

cleared.

3-70

f

\

(

(

3. a. 5.3 • D2BIN

binary word.

Macro Call:

.D2BIN

Convert five decimal ASCII characters into one

.D2BIN #ADDR

.where ADDR is the address of the first byte in the 5 byte string of

decimal characters to be converted.

Assembly Language Expansion:

Global ·Name:

Description:

MOV #ADDR,-(SP)
MOV # 2 , - (SP r
EMT 42

CVT

iMOVE CALL CODE ONTO STACK

The 5-byte string of 7- or a-bit decimal ASCII

characters which start at ADDR are converted into their binary equiv­

alent. The converted value is returned to the top of the stack,

right-justified, followed by the address of the byte which follows

the last character converted.

converted is 65,535 (216_1).

The largest decimal number that can be

The user must clear the stack.

Errors: The conversion will be stopped if an error condition

is encountered. The user will be informed of the type of error via

the condition codes in the Processor Status register.

C-bit set means that a byte was not a decimal digit.
V-bit set means that the decimal number was too large,

i.e., greater than 65535.

The value returned will be correct up to the last valid byte. The

address returned will be that of the invalid byte. If the conversion

is satisfactory, the condition codes will be cleared.

3-71

.BIN2D

3.8.5.4 .BIN2D Convert one binary word into five decimal ASCII

characters.

Macro Call: .BIN2D #ADDR,WORD

where ADDR is the address of the first byte of the buffer where the

characters are to be placed, and WORD is the number to be converted.

Assembly Language Expansion:

MOV WORD,-(SP)
MOV #ADDR, - (SP)
MOV #3,-(SP)
EMT 42

Global Name: CVT

iMOVE CALL CODE ONTO STACK

Description: WORD is converted into a string of five decimal

7-bit ASCII characters which are placed into consecutive bytes start­

ing at location ADDR. They are right-justified with leading zeros.­

The stack is cleared.

Errors: No errors are possible.

3-72

(

"

(

(

.02BIN

3.8.5.5 .02BIN

binary word.

Convert six octal ASCII characters into one

Macro Call: .b2BIN #ADDR

where ADDR is the address of the first byte in the 6-byte string of

octal characters to be converted.

Assembly Language Expansion:

Global Name:

Description:

MOV #ADDR,-(SP)
MOV #4,-(SP)
EMT 42

CVT

iMOVE CALL CODE ONTO STACK

The 6-byte string of 7- or 8-bit octal ASCII char-

acters which starts at ADDR is conver.ted into the binary number

equivalent. The converted value is returned to the top of the stack,

right-justified, followed by the address of the byte which follows

the last character converted. The largest octal number which can be

converted is 177777. The stack must be cleared by the user.

Errors: The conversion will be stopped if an error condition

is encountered, and the user will be informed of the typ~ of error

via the condition codes in the Processor Status register:

C-bit set means that a byte was not an octal digit.
V-bit set means that the octal number was too larg.e,

i.e., the first byte was greater than 1.

If the conversion has been satisfactory, the condition codes are

cleared. Following C- or V-bit errors, the value returned will be

correct up to the last valid byte. The address returned will be that

of the first invalid byte.

3-73

.BIN20

3.8.5.6 .BIN20 Convert one binary word into six octal ASCII

characters.

Macro Call: .BIN20 #ADDR,WORD

where ADDR is the address of the first byte of the buffer into which

the six octal ASCII characters are to be placed, and WORD is the

binary number to be converted.

Assembly Language Expansion:

MOV WORD,-(SP)
MOV #ADDR,-(SP)
MOV #5,-(SP)
EMT 42

Global Name: CVT

Description: The WORD is converted into a 6-byte string of 7-bit

octal ASCII characters, right-justified with leading zeros, which is

placed into the buffer addressed by ADDR. The stack is cleared.

Errors: No errors are possible.

3-74

(

(
\

3.8.6 Requests for Interfacing with the Command String Interpreter

A user program may obtain dataset specifications via keyboard

input at run time by calling the Command String Interpreter (CSI)

routine.

keyboard

Appendix

The

This routine is used by many system programs; it accepts

input at program run time in the format presented in

H.

CSI is called in two parts, by two different requests:

.CSII condenses the command string and checks for
syntactical errors .

• CSI2 sets the appropriate Link Block and Filename
Block parameters for each dataset specification
in the command string.

Each command string requires one .CSIl request for the entire command

string, and one CSI2 request for each dataset specifier in the

command string.

The user must first set up a line buffer in his program and

read in the command string. Then he does a .CSIl, which condenses

the string by eliminating spaces, horizontal TABs, nulls, and RUBOUTs,

sets pointers in a table to be referenced by .CSI2, and checks the

command string for syntactical errors. If there are no errors, the

.CSI2 request may be given once for each dataset specification that

the user expects to find in the command string. . CSI2 fills in the

appropriate Link Block and Filename Block parameters according to the

device name, filename, extension, UIC, and switch entries in the

command string.

3-75

.CSI1

3.8.6.1 .CSIl Condense command string and check syntax •

Macro Call: . CSIl #CMDBUF

where CMDBUF is the address of the command buffer header described

under "Rules" below.

Assembly Language Expansion:

MOV #CMDBUF,-(SP)
EMT 56

Global Name: CSX

Description: Condenses the command string by removing spaces,

horizontal TABs, nulls, and RUBOUTs, and checks the entire command

string for syntactical errors. Control is returned to the .user with

.a 0 at the top of the stack if the syntax is acceptable, or with the

address (in the command string line buffer) of the data byte at which

the scan terminated because the first error was encountered.

Rules: The .CSI2 request must be preceded by a .CSIl request,

because .CSI2 assumes it will get a syntactically correct command;

more than one .CSI2 request can follow a single .CSIl request.

The user must set up a line buffer and read in the command string

before doing .CSI1. Command Strings must not be read in dump mode.

It is the user's responsibility to print a # on the teleprinter

to inform the operator that a CSI format is expected (Section 2.1).

If VERTICAL TAB is used as the terminator, the # will be typed

immediately without a carriage return or line feed.

The user must set up a seven-word command buffer header in his

program immediately preceding the header of the line buffer into whicH

the command is to be read. The user is not required at this time to

set up anything in the command buffer header prior to calling .CSI1;

it will be used as a work-and-communication area by the Monitor

routines which process the .CSIl and .CSI2 requests.

The user must clear the stack upon return from the Monitor. I.f

the top of the stack ~ 0 (i.e., if there was a syntax error), .CSI2

must not be called.

. Example: See .CSI2, Section 3.8.6.2 .

3-76

(
"

\<.

.CSI2

3.8.6.2 .CSI2 Interpret one dataset specification of a command

string.

Macro Call: .CSI2 #CSIBLK

where CSIBLK is the CSI control block,. described under "Rules" below.

Assembly Language Expansion:

MOV #CSIBLK,-(SP)
EMT 57

Global Name: CSM

Description: Gets the next input or output dataset specification

from the command string, and sets the PHYSICAL DEVICE NAME entry in

the Link Block, the FILENAME, EXTENSION, and UIC entries in the File­

name Block, and any switch entries in an extension of the Link Block.

Rules:

•

•

•

Before calling .CSI2, the user must:

Call .CSIl to condense the command string and check it for
syntax errors. There must have been no syntax errors.

Set up a CSI control block as follows:

CSIBLK: POINTER TO CMDBUF

POINTER TO LNKBLK

POINTER TO FILBLK

where POINTER TO CMDBUF is the address of the 7-word work
area preceding the command string line buffer header;

POINTER TO LNKBLK is the address of the Link Block of the
dataset whose specification is being requested; and

POINTER TO FILBLK is the address of the Filename Block of
the dataset whose specification is being requested
(currently, CSI allows only one file per dataset specifi­
cation) .

Set the first word (Code Word) of CMDBUF to either 0 or 2.
o means "get next input dataset specification", and 2 means
"get the next output dataset specification". .CSI2 does not
check the validity of the code word.

• Initialize the NUMBER OF WORDS TO FOLLOW entry in the Link
Block to contain the number of words to follow. This must
be at least one, because .CSI2 will alter the following
word, i.e., the PHYSICAL DEVICE NAME word •. CSI2 does not
check the validity of this byte.

The user may specify any number from 1 to 25510 in this
location. All words in excess of 1 are used for switch
space (see the interface with respect to switches, de­
scribed below).

3-77

.CSI2 (cont)

Upon return from the .CSI2 request, the Monitor will have provided the

following information:

• The top of the stack contains two items of information.
Bits 1-0 have the following meaning:

a. 0, which means the dataset specification requested has
been obtained, and there are still more dataset
specifications of the type requested (i.e., input
or output); or

b. 1, which means the dataset specification requested has
been obtained, and there are no further dataset
specifications of the type requested; or

c. 2, which means (a), but this particular dataset specifi­
cation included more switches than would fit in the
space provided; or

c. 3, which means (b), but this particular dataset specifi­
cation included more switches than would fit in the
space provided.

If there are no more dataset specifications and the user
requests one anyway, a null specification will be returned.

Bit 2, when set to one, indicates that the device name in
the Link Block is a default supplied by the system (see
Section 3.4.1).

• With respect to values returned in the Link Block (Figure 3-6):

If the PHYSICAL DEVICE NAME word is zero, the user does not
wish this particular output (input) dataset to be generated
(read); i.e., this entry was omitted when the command
string was typed. If not zero, the PHYSICAL DEVICE NAME and
UNIT NUMBER are appropriately set to the device and unit
specified in the command string.

• Immediately following the PHYSICAL DEVICE NAME word in the
Link Block are the switches specified in the command string.
The interface for each switch is shown in the switch block
below. These switch blocks are written in the area provided
by the progrillnmer in the Link Block. Note that the number
of words to follow in the switch block is not the same
quantity as is specified in the LINK Block.

NUMBER OF WORDS TO FOLLOW

POINTER TO FIRST CHARACTER OF Vn

POINTER TO FIRST CHARACTER OF Vn-l

· ·
·

POINTER TO FIRST CHARACTER OF VI

W(ASCII) I S (ASCII) ;for /SW

3-78

(

(

,-

.CSI2 (cont)

If NUMBER OF WORDS TO FOLLOW is zero, there are no more
switches. Note that the pointers are in reverse order.
After the value pointers are the ASCII bytes which contain
the first two characters of the switch. The first character
is in the low byte, and the second is in the high byte. If
the name of the switch contains only one character, the
ASCII representation of that character will be in the low
byte, and the. high byte will contain a zero. Note that if
the NUMBER OF WORDS TO FOLLOW is not zero, it is the number of
values +1. For example, if the switch /SWITCH:$12:AB is
stored in memory beginning at location 1000 as:

1000 1001 1002 1003 1004 1005 1006
/ S W I T C H

1007 1010 1011 - 1012 1013 1014 1015
$ 1 2 : A B

then the completed interface appears as:

3

1014

1010

l27=W I l23=S

• With respect to the values returned in the Filename
Block (Figure 3-7):

Remark:

a. The FILENAME occupies the two words at FILBLK and
FILBLK+.2. If the Monitor returns zero at FILBLK, no
frilaname was specified in the dataset specification;
if it returns 528 at FILBLK, * was specified as the
filename. Otherwise, the Monitor returns at FILBLK
and FILBLK+2 the first six characters of the filename
specified, in Radix-50 packed ASCII.

b. The EXTENSION occupies the word at FILBLK+4. If the
Monitor returns zero at FILBLK+4 ,no extension was
specified; if it returns 52 8 , * was specified. Other­
wise, the Monitor returns the first three characters of
the extension specified, in Radix-50 packed ASCII.

c. The USER IDENTIFICATION CODE occupies the word at
FILBLK+6. If the Monitor returns zero atFILBLK+6, no
UIC was specified in the dataset specification (the I/O
processors will assume the UIC of this user). If a UIC
was typed in, the Monitor will set this word appropriately.
The Monitor returns 3778 in the high- or low-order byte
of this word if * was specified in either of those positions.

The user may restart at the beginning of the input data-
set or-output dataset side of the command string simply
by recalling .CSIl and issuing a 0 or 2 code, respec-
tively. Note that he may not restart one without re­
starting the other.

There is no error checking with respect to magnitude

when the UNIT or UIC values are converted from octal ASCII to binary.

3-79

LINK Block

3.9 USER FROGRru1 TABLES AND CONTROL BLOCKS

3.9.1 The Link Block (used for all input/output and directory requests)

ERROR RETURN ADDRESS
LNKBLK: 000000 LINK POiNTER (for Monitor use only)

LOGICAL NAME OF DATASET -- Radix-50 Packed ASCII

UNIT NUMBER I NUMBER OFWORDS TO FOLLOW

PHYSICAL DEVICE NAME -- Radix-50 Packed ASCII

Figure 3-6 The Link Block

Each dataset in a user's program must have a Link Block associated

with it. En tries in the Link Block which must be specified by the

user can be written into his program or set by the program itself

before the dataset is INITed. Each entry is explained below.

Address

LNKBLK-2

LNKBLK

LNKBLK+2

LNKBLK+4

Name

ERROR RETURN
ADDRESS

LINK POINTER

LOGICAL NAME
OF DATASET

NUMBER OF
WORDS TO
FOLLOW

Function

This entry must be set by the user to
contain the address where he wants to trans­
fer control in the event that any request
associated with this dataset fails to
obtain required buffer space from the
the Monitor. If no address is speci-
fied here, such an error will be treated
as fatal. This address may be changed
by the user's program at any time.

This location must be set to zero by
the user and must not be modified by
him. The Monitor places a linking ad­
dress here when the dataset is INITed.
Before INITing a dataset, the Monitor
tests this pointer for zero. If it is
not zero, the Monitor assumes that the
dataset was already INITed.

The user can specify a name for the dataset
in this entry. This name, which must be
unique, is used to associate the dataset
with a device which is specified by an
ASSIGN from the keyboard. The name is
stored in Radix-50 packed ASCII by the
.RADSO assembler directive. This speci­
fication is optional, but if it is omitted,
the ASSIGN command cannot be used.

This byte contains the count of the number
of words to follow in the Link Block. The
user should set it to a 0 if he does not
specify any PHYSICAL DEVICE NAME in the

3-80

(

,.

Address

LNKBLK+S

LNKBLK+6

LNKBLK+8
through
LNKBLK+n

Name

UNIT NUMBER

PHYSICAL
DEVICE NAME

OPTIONAL
DATA

.LNKBLK (cant)

Function

next word, or to a 1 if he does. Values
greater than 1 may be used if the Com­
mand String Interpreter is to be called.

This code specifies the unit number of the
device linked to the dataset. For example,
the TCll Controller (DECtape) can drive up
to eight tape drives (units), numbered
0-7.

If the user specified 1 or greater in byte
LNKBLK+4, he may specify here the standard
name (Appendix A) for the device associated
with the dataset in Radix-50 format. If no
name is specified here, the user must specify
LOGICAL NAME OF DATASET and perform an
ASsign command before he runs his program.
If physical device name is specified
both here and in an ASSIGN command, the
device specified in the ASSIGN command
overrides the value given here.

Present only if LNKBLK+4 is greater than 1.
It is used to pass additional information
such as switch informatiop when using the
Command String Interpreter or Resident
EMT information when using .RUN, via the
Link Block.

3-81

FILENAME Block
3.9.2 The Filename Block Each file associated with a dataset

must be described by the user in a Filename Block. If a dataset is

not a file, the Filename Block must still be used (if .OPEN is used)

but FILENAME, EXTENSION, AND PROTECT need not be specified. The file­

name Block is used by OPEN and all directory management requests.

FILBLK:

Address

FILBLK-4

ERROR RETURN ADDRESS

ERROR CODE I HOW OPEN

FILE NAME

FILE NAME

EXTENSION

USER ID CODE

(spare) I PROTECT CODE

Figure 3-7 The Filename Block

Name

ERROR RETURN ADDRESS

Function

The user must specify here the
address to which he wants the
Monitor to return control if one
of the errors in Table 3-4 occurs
during an operation involving the
file. If no address is specified
here, any such error will be trea­
ted as a fatal error.

3.9.2.1 Error Condition Codes (FILBLK-l)

Error Code
In File­

name Block

00

01

Table 3-4

Filename Block Error Conditions

Faulting
Request

.OPENC

.OPENE

.OPENI

. OPENO

.OPENU

Cause Remedy

An attempt was made
to open a dataset
that was previously
opened .

unused

(contlnued on next page)

3-82

(

(

/
\

t-

Error Code
In File­
name Block

02

03

04

05

06

07

11

-12

Table 3-4 (Cont)

Filename Block Error Conditions

Faulting
Request

.OPENO

.OPENC

.OPENE

.OPENI

.OPENU

o RUN

.OPENC

.OPENE

.OPENI

.OPENU

.OPENC

.OPENE

.OPENU

.OPENE

.OPENC

.OPENE

.OPENI
• OPENO
.OPENU
. RUN

.OPENC

.OPENC
.OPENE
.OPENO
• OPENU

.ALLOC

. OPENO

Cause Remedy

An attempt was made If name of file was
to open a file correct, delete the
which already file (with PIP) or
exists. change file name.

An attempt was made
to open a file
for input, exten-
sion, or update
which is currently
opened for output,
or which does not
exist.

The file specified
was already OPENed
for output, or the
file does not exist.

An attempt was made Close file.
to open a file which
has already been
opened the maximum
number of times
(76 8) .

_.

An • OPENC , • OPENE , .CLOSE the previous
or .OPENU attempt open.
was made to open a
file which has al-
ready been opened
for either • OPENC ,
• OPENE, or .OPENU .

. Illegal request to
a contiguous file.

An attempt was made Resolve access pro-
to access a file blem with owner of
which the protection the file.
code prohibits •

Illegal OPEN re-
quest to a contigu-
ous file.

File opened for Close offending file.
output or extension
is already on cur-
rent DECtape unit .

Directory full (DT). Mount another DEC-
tape •

(Continued on next page)

3-83

Error Code
In File­
name Block

13

14

15

16

17

20

21

22

23

Table 3-4 (Cont)

Filename Block Error Conditions

Faulting
Request

.ALLOC

.APPND
• DELET
.RENAM

.ALLOC

.OPENO

. RUN

. RUN

• RUN

. RUN

. RUN

• RUN

Cause

The UIC was not
entered into the
device MFD.

An attempt was made
to perform an
illegal operation
on an opened file.

An attempt was made
to create a file
with an illegal
file name.

All datasets were
not released prior
to issuing the re-
quest.

Load module format
error.

Specified CIL entry
n'ot found.

No transfer address
or illegal trans-
fer address.

Stack base entry in
the System vector
Table (SVT) is
below the Stack
Pointer. Stack can-
not be moved as
requested in the
call.

Module is outside
the boundaries
of the allowable
load area.

3-84

Remedy

Enter UIC via PIP.

wait until file is
closed •

Change file name.

-

Release all datasets
which were INITed.

File must be linked
into a load module.

Add proper entry to
CIL or use correct
name.

Check for END state-
ment in source pro-
gram, or use correct
/TR when linking.

Probably a program
error.

Relink to within
boundar ies. Ensure
that resident portion
of program is not
being overlayed.

(

(

(

. ,}-

(

Address

FILBLK-2

FILBLK-l

FILBLK+O
FILBLK+2

FILBLK+4

FILBLK+6

FILBLK+10

Name

HOW OPEN

ERROR CODE

Function

This is set when the .OPENx macro's
assembly language expansion is executed.
It tells the Monitor which kind. of open
is being requested: .OPENU=l, .OPENO=2,
.OPENE=3, .OPENI=4, .OPENC=13.

This entry should not be set by the user.
It will be set by the Monitor to indicate
the type of error (Table 3-4) which
occurred. It will be cleared of any
previous condition at each .OPEN call.

FILE NAME This two-word entry must be specified by
the user if this dataset, or a portion
thereof, is a file. It is the name of
the file, in packed Radix-50 format.

EXTENSION This entry must be specified if the file
named in the previous entry has an ex­
tension. It is in packed Radix-50 format.

USER I. D. CODE The user may enter his USI;R ID CODE here
in octal:

PROTECT
CODE

GROUP NUMBER USER'S NUMBER

IHigh-Order Byte .Low-Order Byte

If no entry is specified here, the
current user's UIC is assumed.

The user may specify here the protection
to be given to the file ~t its creation
or renaming (see following paragraph).
If 0, a default protection 233 will be
allotted •

3-85

3.9.2.2 The File Protection Codes

7 I 6

Owner

Owner: Bit 6 1

5 I 4 I 3 2 III 0

User Group All Others

Owner cannot write on or delete the
file. This 1s a safeguard to prevent
inadvertent deletion or over-writing.

Bit 7 = 1 = Protect the file from automatic deletion
on FInish.

Figur~ 3-8 File Protection Codes

User Group and All Others
Function

Code Delete Write Read

0 yes yes yes
1 yes yes
2 or 3 yes
4 or 5
6 or 7

Run

yes
yes
yes
yes

Note; yes indicates that the operation is allowed. For
example, if a file belongs to user [23,10], a pro­
tection code· of 3 will allow user [12,4] to read or
run but not delete or write on it.

Figure 3-8 File Protection Codes

3-86

II

(

.~.

"

(

3.9.3 The Line Buffer Header (used by READ and WRITE r~quests)

BUFHDR: MAXIMUM BYTE COUNT

STATUS I MODE

ACTUAL BYTE COUNT

POINTER (Dump Mode only)

Figure 3-9 Line Buffer Header

Each element of the line buffer header table is as follows:

Address

BUFHDR

BUFHDR+2

BUFHDR+3

BUFHDR+4

BUFHDR+6

Name

MAXIMUM BYTE
COUNT

MODE

STATUS

ACTUAL BYTE
COUNT

POINTER
(dump mode)

Function

The count shows the size of the buffer,
in bytes. It must be specified here by
the user on all INPUT operations.

The user specifies here the mode of the
transfer. All modes are listed and ex­
plained in Figure 3-10.

The Monitor will place in this byte the
status of the transfer when control is
returned to the user. Figure 3-11 lists
each bit and its meaning. Errors encoun­
tered executing an I/O transfer will be
flagged in this byte. The user should
always check its content after each trans-
fer completes. '

This count controls the number of bytes to
be transferred on OUTPUT. It must be
initialized by the user before any output
transfer from the line buffer. After any
transfer in or out, it will show how
many bytes have been transmitted (or in
some modes, see Section 3.6, would have
been transferred had some error not been
detected) •

If bit 2 of MODE is 1, the user specifies
here the starting address of the line
buffer. If bit 2 of MODE is 0, the line
buffer header is only three words in length,
and must immediately precede the line
buffer itself. (Section 3.9.6 Note 9.)

NOTE

The Monitor will return control to the program
if a device transfer is needed to satisfy a READ
or WRITE request. During this time, the header
words will be used to·store data relevant to the
operation underway. The user should not, there­
fore, attempt to change this content until it is
evident that the transfer has been completely
effected, e.g., after a .WAIT return.

3-87

Spare

Reserved

0= ASCII
1 = Binary

o = Formatted
1 = Unformatted

Set to 1 to suppress for 0= Data follows Header
1 = Dump automatic echo On RSX

CI terminal (keyboard) 0= No Pority

1 = Parity (indirect)
'--____ 0 = Normal

device.

1 = Special

Figure 3-10 The Mode Byte

3.9.3.1 The Transfer Modes The user can specify ASCII or binary

data in nine different modes of transfer:

ASCII Modes: Formatted ASCII Parity - Special
Formatted ASCII Parity - Normal

Formatted ASCII Nonparity - Special
Formatted ASCII Nonparity - Normal

Unformatted ASCII Parity - Special
Unformatted ASCII Nonparity - Normal

Binary Modes: Formatted Binary - Special
Formatted Binary - Normal

Unformatted Binary - Normal

1. Formatted ASCII Normal Data in this mode is assumed by
the Monitor to be in strings of 7-bit ASCII characters termi­
nated by LINE FEED, FORM FEED, or VERTICAL TAB.

READ: The line buffer is fil·led until either a terminator
is seen or the number of bytes transferred becomes
equal to the MAXIMUM BYTE COUNT • If the MAXIMUM
BYTE COUNT is reached before the terminator is
seen, the invalid line error bit in the Status
Register of the buffer header is set, and each re­
maining character through to the terminator is read
into the last byte of the line buffer, i.e., the
surplus bytes are overlayed. After the transfer,
the actual byte count is set to the number of bytes
read (including the excess). RUBOUTs and NULLs are
discarded. The terminator is transferred. LINE
FEED is supplied after RETURN.

WRITE: The line buffer is output until the number of bytes
transferred equals the ACTUAL BYTE COUNT. If the
last character is not a terminator, the invalid line
error bit is set in the STATUS BYTE of the buffer
header. Previous terminators are output as normal
characters.

3-88

(

(

-r

(

t.

2.

For non file-structured devices, TABs are automatically followed
by RUBOUTs; FORH FEEDs are automatically followed by NULLs.

The READ/WRITE processor passes data to the device driver
specified, and. each driver will convert the information to
meet its specific needs. Appendix G summarizes the charac­
teristics of the device drivers. Normally, output is deferred
until the current buffer is full or until a .CLOSE or .RLSE
occurs~ However, for terminal devices, the buffer is written
when a line terminator is seen. VERTICAL TAB plays a special
role here, since it is a terminator but does not cause a
carriage return or paper motion.

Formatted ASCII Special -

READ: The same as formatted ASCII normal with this ex­
ception: if the MAXIMUM BYTE COUNT is reached be­
fore the terminator, the transfer is stopped.
The remaining characters are not overlaid, but are
retained for transfer at the next .READ. An invalid
line error will be returned in the STATUS BYTE, and
ACTUAL BYTE COUNT will equal MAXIMUM.

WRITE: The same as formatted ASCII normal with this excep­
tion: the line buffer is output until the first
terminator; the ACTUAL BYTE COUNT will stop the
transfer if it is reached before the terminator is
seen. In this case, the invalid line error bit is
set in the STATUS BYTE. Note that in this mode only
one line of data can be output at once, but its
byte count need not be exactly specified, provided
it is not greater than the ACTUAL BYTE COUNT.

3. Formatted Binary Normal -

READ: This is an 8-bit transfer. Words 2 and 3, STATUS/
MODE, and ACTUAL BYTE COUNT always accompany
the data during formatted binary transfers. The
counts are adjusted by the Monitor to include the
extra words. On input, the line buffer is filled
until the number of characters transferred equals
the ACTUAL BYTE COUNT read, or the MAXIMUM BYTE
COUNT. If the MAXIMUM is reached before the ACTUAL,
an invalid line error occurs and the remaining
bytes are overlaid into the last byte until the
checksum is verified.· After the transfer, the
ACTUAL BYTE COUNT contains the actual number of data
bYtes read (including the excess).

WRITE: This is an 8-bit transfer. Words 2 and 3 of the
line buffer header are output, and data is trans­
ferred until the number of characters transferred
is equal to the ACTUAL BYTE COUNT; then a checksum
is calculated. The checksum is output at the end.
The byte count is adjusted to reflect the presence
of words 2 and 3 from the line buffer header.

READ: The line buffer is filled until the number of charac­
ters transferred equals the ACTUAL BYTE COUNT read.
If the MAXIMUM COUNT is reached before the ACTUAL,
the remainder of the line is retained by the Monitor.
The MAXIMUM BYTE COUNT is transferred to the line

3-89

buffer and the ACTUAL BYTE COUNT is set to the full
input count, rather than to the number of bytes
actually transferred. The invalid line error will
be set in the STATUS BYTE. The user can compare
the MAXIMUM COUNT with the ACTUAL, determine how much
data remains, and recover it by an unformatted binary
read (allowing 1 extra byte for the checksum).

WRITE: Identical to formatted binary normal

5. Unformatted ASCII Normal or Special This mode is available
to the user who wants to do his own formatting. Seven bits
are transferredi the eighth is always set to zero. NULLs
are discarded.

READ: Transfer stops when the number of bytes transferred
reaches the MAXIMUM BYTE COUNT. Nulls are discarded
but all other characters are treated as valid.

WRITE: All characters are transferred. The transfer stops
when the ACTUAL BYTE COUNT is reached.

6. Unformatted Binary Normal or Special - This mode is identi-
cal to unformatted ASCII except that eight bits are transferred
on both input and output and nulls are not discarded. No
checksum is calculated.

7. Formatted ASCII Parity Identical to formatted ASCII
(Special or Normal) except that even parity is generated in
the eighth bit on OUTPUTi during INPUT it will be checked.
Valid characters will be passed to the user as 7 bitsi
invalid characters will be marked by bit 8 = I, and will
cause the setting of the parity error bit in the STATUS BYTE.

8. Unformatted ASCII Parity Identical to unformatted ASCII
(Special or Normal) except that eight bits are transferred
instead of seven. No parity generating or checking is per­
formed.

9'. Indirect Modes All modes can be specified as indirect,
which means that the word after the ACTUAL BYTE COUNT is
considered to be a pointer to the beginning of the data
rather than the beginning of the data proper. (Section
3.9.4.) This is referred to as DUMP mode.

3-90

(

(

(

t,'

3.9.3.2 The Status Byte

End of medium
(EOM) or

End of file
(EOF)

Device parity
flag

Spare

-Invalid line error
Checksum error '

Character parity error or
illegal binary format

Figure 3-11 Status Byte Format

The function of each status format bit is explained below.

Bit

o
(INVALID

LINE)

1
(CHECKSUM
ERROR)

Mode

ALL

FORMATTED
ASCII NORMAL
(parity or
non-parity)

FORMATTED
ASCII
SPECIAL
(parity or
non-parity)

FORMATTED
BINARY
NORMAL

FORMATTED
BINARY
SPECIAL

ALL
UNFORMATTED
NIODES

FORMATTED
BINARY

Request

• READ/WRITE

• READ

.WRITE

• READ

. WRITE

• READ

. READ

. READ

. READ

3-91

Condition

Appropriate BYTE COUNT = 0
at call.

The MAXIMUM BYTE COUNT ran
out before a line terminator

'was seen. (Last byte has
been overlaid until the termi­
nator has been reached.)

The la'st byte was not a
terminator.

The MAXIMUM BYTE COUNT was
reached before a line
terminator was seen (excess
data has not yet been read).

The ACTUAL BYTE COUNT was
reached before any terminator
was seen.

The MAXIMUM BYTE ran out
before ,the count stored with
the data. (The last byte
has been overlaid in order
to verify the checksum.)

The MAXIMUM BYTE COUNT was
reached before the count
stored with the data. (The
excess data still remains to
be read and checksum has
not been verified.)

BYTE COUNT = the actual number
of byteS transferred. The
reason BYTE COUNT < MAXIMUM
BYTE COUNT is that an EOF or
EOM haa been encountered before
the buffer was full. Bit 6
will also be set.

There was a discrepancy be­
tween the checksum accumulated
during the • READ , and that
stored with the incoming data.

2
(PARITY

FORMAT)

2
(ILLEGAL
BINARY
FORMAT)

6-
(EOM/EOF)

5
(DEVICE
PARITY)

FORMATTED
ASCII PARITY
NORMAL OR
SPECIAL

FOID1ATTED
BINARY

ALL MODES

ALL MODES

. READ

. READ

.READ or

.WRITE

.READ or

. WRITE

3-92

A character was read which had
odd parity. The eighth bit of
the illegal character delivered
is set to a 1. The transfer
continues. If this bit is set
the user need only check each
character returned during proc­
essing of the buffer for bit 8
set to locate the character re­
turned with wrong parity.

This bit is set if a line proc­
essed in a binary mode does not
have a 001 in the first word.
The first word is ignored, i.e.,
no data is returned to the buf­
fer. Subsequent reads access
successive lines and return
error bits or data as appro­
priate.

An input device cannot supply
any more data or an output de­
vice cannot accommodate more,
i.e., the disk has no more
storage space, or the paper
tape reader has run out of
paper tape. No data is re­
turned on .READs unless bit ~
is also set (see bit ~). On
.WRITEs an unspecified por-
tion of the buffer may have been
written (enough data to fill a
partially filled monitor buffer
may have been transferred to
the buffer and written before
the EOM or EOF was detected).
Subsequent requests return to
user with this bit set.

A hardware error has been de­
tected on a bulk storage device.
This could be either a parity
error or a timing error. The
driver will already have tried
to READ or WRITE 8 or 9 times
before setting this bit. (This
flag is a warning that the data
in this line or some subsequent
line still using data from the
same device block may be invalid.
It will be returned for each
transfer call using the same
block.)

(

(

,.

(

RECORD Block

3.9.4 The RECORD Block

ADDRESS

RECBLK

RECBLK+2

RECBLK+4

RECBLK+6
RECBLK+l,0

RECBLK: FUNCTION J STATUS
BUFFER ADDRESS
RECORD LENGTH
HI ORDER RECORD # I

LO QEQlliB. R~~QRQj!

Figure 3-12 The Record Block
FUNCTION

FUNCTION / STATUS WORD

BIT

,0 - Not used
1 - Record Output - Set by user
2 - Record Input - Set by user

3-8 - Not used

(Following bits set by Monitor)

9 -
1,0
11
12
13
14
15

Illegal Function
File is linked or device is not File structured.

- Record requested lies outside the file.
- File not OPEN

Protect code violation, Incorrect Open
- Not used
- Device parity error

The user may set only bits 1 or 2; error bits are set
by the Monitor, and should be tested for by the user
upon return from the request. The error bits are
cleared by the Monitor when a .RECRD request is issued
and are set as appropriate upon return from the Monitor.

BUFFER ADDRESS

The address of the user's buffer. The buffer must
be large enough to contain a record of the length
indicated in the next word, as the Monitor assumes that
sufficient space is available and will overlay data
stored below a buffer of insufficient length.

RECORD LENGTH

The number of bytes of a Record. This value, which
must remain the same for all records in the file, is
supplied by the user.

High Order - Record Number
Low Order - Record Number

This entry identifies the record to be read or
written. Two words are provided in anticipation of
files with more than 65,536 records.

First Record of File is number ,0.

3-93

BLOCK Block

3.9.5 The BLOCK Block ~ (used by BLOCK request only)

Address

BLKBLK

BLKBLK+2

BLKBLK+4

BLKBLK+6

BLKBLK: FUNCTION/STATUS

BLOCK NUMBER

MEMORY BUFFER ADDRESS

LENGTH

Figure 3-13 The BLOCK Block

Name

FUNCTION/STATUS

BLOCK NUMBER

MEMORY BUFFER
ADDRESS

LENGTH

Function

User specifies here the function to be
performed, and the Monitor returns to
the user with the appropriate status bits
set.

Bit

f
u
n
c
t
i
o
n

e
r
r
o
r

s
t
a
t
u
s

Bit = 1 means:

o function is GET

1 function is OUTPUT

2 function is INPUT

3-8 reserved

9

10

11

12

13

14

15

illegal function

file is linked, or device is
not file structured

block number does not exist
in file, i.e., it is greater
than the file length

file not open

protect code violation

end of data error

device parity error

Requested block number to be transferred
relative to the beginning of the file.

First block of file is O.

The address of the buffer (supplied
by the Monitor on INPUT or GET func­
tions).

The length of the buffer in words.
BLKBLK+6 is set by the Monitor on
INPUT or GET functions.

3-94

..

...

(

(

(

,.

(

TRAN Block
3.9.6 The TRAN Block (used by TRAN request only)

TRNBLK: DEVICE BLOCK NUMBER

MEMORY START ADDRESS

POSITIVE WORD COUNT

FUNCTION/STATUS

NUMBER OF WORDS NOT TRANSFERRED

Figure 3-14 The TRAN Block

The user must set up a TRAN block for each .TRAN in his program,

Address

TRNBLK

TRNBLK+2

TRNBLK+4

TRNBLK+6

Name

DEVICE BLOCK
NUMBER

BUFFER
ADDRESS

WORD COUNT

FUNCTION/STATUS

*Must be specified by user.

Function

User specifies here the absolute block num­
ber of the device, at which the transfer is

,to begin. Block jl is the first block on
bulk storage devices. If it is not a bulk
storage device, specify block jl.

User specifies here the core memory address
at which the data transfer is to begin.

User specifies here the total number of
16-bit words to be transferred. Word
count may be more or less than block
size.

Bit

o

1
2

3
4
5
6
7
8
9

10

11

12

13

14

Bit Meaning

Binary = 1, as opposed
to ASCII = 0

Write 1*
Read = 1*

Reserved for Monitor's use

DECtape direction*
o forward
1 = reverse

Reserved for RSX-ll

Invalid call (improper
function/no word count) **

End of medium**

**This bit is cleared by the Monitor upon .TRAN request issue and is
set as appropriate upon return.

3-95

Address

TRNBLK+10

Name

NUMBER OF
WORDS NOT
TRANSFERRED

Function

Bit Bit = 1 means:

15 Recoverable device error
(such as parity, timing, or
record length)**

User leaves this entry blank. If an
EOM occurs during the transfer, the
Monitor will place in this entry the
number of words not transferred.

**This bit is cleared by the Monitor upon .TRAN request issue and is
set as appropriate upon return.

3-96

(

(Special Functions Block

(
\

3.9.7 The Special Functions Block (used for SPEC request only)

SPCBLK:
WORDS TO FOLLOW CODE

ADDITIONAL DATA

WORDS AS NEEDED BY

FUNCTION SPECIFIED

Figure 3-t5

Where a special function requires supporting data the user must set

up a Special Functions Block in his program.

Address

SPCBLK

SPCBLK+l

SPCBLK+2

Name

.CODE

WORDS TO
FOLLOW

Function

The user identifies the function here by
inserting the appropriate code in the
range 0-25510 •

The size of each Special Functions
Block is dependent upon the Function.
The user shows here how many more
words belong to the particular block.

The user places in these words data to
be passed to the function processor or
the function processor will return here
such items as status information, etc •

. The format in each case is determined
by the function.

See Appendix J for a description of the special functions which may

be performed for each device.

3-97

.RUN Block

3.9.8 The RUN Block

The RUN Block is used exclusively with the .RUN request. It is

a variable length control block containing a function word and several

parameter words. The function word is always present; any of the

parameter words may be omitted, depending upon the settings of the

function word.

NOTE

Omitting a parameter word does not mean setting
it to zero, but rather leaving it out. Hence,
no parameter word occupies a set position in the
RUN Block and the block itself is of variable
length. For reference, all words but the func­
tion word are referred to by a letter, not by a
number.

Word* Parameter Present If:

always 1
A
B
C
D
E
F
G

FUNCTION WORD
FILE BLOCK POINTER
LINK BLOCK POINTER
NAME
NAME
LOAD ADDRESS
TRANSFER ADDRESS OFFSET
RETURN ADDRESS

Bit 15=0
Bit 15=0
Bit 15=1 or Bit 13=1
Bit 15=1 or Bit 13=1
Bit 3=1
Bi t 4=1
Bit 5=1

* Words A through G are so designated because any of
them might be omitted under certain conditions.

Figure 3-16 The RUN Block

Address Name Function

RUNBLK FUNCTION

RUNBLK+A FILE BLOCK

RUNBLK+B LINK BLOCK

User specifies here the function to be per­
formed (see below).

Address of the File Block describing the file
which contains the load module or core image
to be loaded.

Address of the Link Block which describes
the device from which the entity is to be
loaded. Sufficient room must be provided in
the Link Block to contain the EMT numbers of
all Monitor modules which are to be loaded
(these are contained in the load module, if
there are any).

3-98

(

(

Address Name Function

RUNBLK+C NAME Two Radix-50 words containing either the name
of the specific core image to be loaded from
a CIL (bit 13=1) or the name of the file to
be loaded if no File Block was given

and RUNBLK+D

(bit 15=1).

RUNBLK+E LOAD ADDRESS Specifies an address at which the entity is
to be loaded, without regard to the load ad­
dress in the load module or CIL. The entity
should be position independent.

RUNBLK+F TRANSFER
ADDRESS
OFFSET

Specifies a value to be added to the transfer
address obtained from the load module or CIL.
Provides for alternate entry points to the
module.

RUNBLK+G TRANSFER
ADDRESS

Specifies an address to which control must be
passed when loading is completed. This
address mayor may not be in the loaded entity.

3.9.8.1 The Function Word

Bit fJ

Reserved for
Expansion

Reserved for Monitor

k-------Load Module/Core Image

~----------Overlay/Program

~---------------File Block, Link Block
Present/Not Present

Return Address

Transfer Address Offset

Load Address

Stack Movement -----__ .J

Argument Return and ---------'
Transfer of Control

Figure 3-17 The Function Word

Argument Return and Transfer of Control

Indicates control is to be returned to the instruction
following the .RUN request after completing the requested
actions, unless bit 5=1. Regardless of the setting of bit 5,
the load module's transfer address, size in bytes, and low
address will be on top of the stack when bit ~=fJ (see
Section 3.8.1.1).

=1 Indicates control is to be switched to the transfer address
of the loaded module after completion of the load, unless
bit 5=1. Regardless of the setting of bit 5, no information
is returned on the stack when bit ~=l, but information may
be passed by the call to the loaded module either on the
stack or in the general registers.

3-99

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 12

Bit 13

=~

=1

=;1

Stack Movemen·t

Indicates that the stack is not to be moved from its pres­
ent position under any condition.

Indicates that stack relocation may be necessary and that
bit 2 of this word must be tested to determine under what
conditions relocation will be necessary.

Movement Condition

Indicates that the stack is to be unconditionally moved to
the area directly below the module to be loaded. In this
position the stack base entry in the System Vector Table
(SVT) will be the same as the low address of the loaded

module.

=1 Indicates that the stack is to be conditionally moved,
based on the relative positions of the stack base and low
address of the module to be loaded. If the stack base
entry in the SVT is higher than the low address of the
module to be loaded, then the stack should be relocated as
described above. If the stack base entry in the SVT is
lower in core or equal to the low address of the module to
be loaded, then the stack will not be relocated.

=~

=1

=P'

=1

=1

Load Address

Indicates thpt no optional load address is specified in the
RUN Block. The load address information in the load
module will be used.

Indicates that the address specified in the RUN Block is
to be used as the load address for the requested module.
This entry overrides the load module information.

Transfer Address Offset

Indicates that no offset from the module's transfer address
is included in the RUN Block.

Indicates that the user desires an offset, specified in
the RUN Block, to be added to the loaded module's transfer
address. This offset is added to the ·transfer address
regardless of the setting of bit 0 of the action word.

Return Address

Indicates that no alternate return address is included in
the RUN Block. Return of control will thus be determined
by the setting of bit o.
Indicates that an alternate return address has been speci­
fied in the RUN Block and that this address will receive
control instead of the address following the .RUN request
or the transfer address of the load module. The setting
of bit 0 will still determine whether information will be
returned on the stack.

Reserved for Monitor

This bit should always be zero.

Load Module/Core Image

Indicates that the entity being loaded is a load module.
If the file identified by the File Block is a CIL, the
first member of the CIL will be loaded.

3-100

(

(

(
\

Bit 13 (continued)

Bit 14

Bit 15

=1 Indicates that the entity to be loaded is a member of Core
Image Library. The File Block identifies the CIL, while
words 4 and 5 of the RUN Block contain the name of the

=f/

=1

ClL member.

Overlay/Pro~ram

Indicates that an overlay is being loaded. Since this is
a continuation of the current program, datasets may be left
open across this call. The overlay may not extend above
the low address of the resident module, nor may it extend
below the top of the Monitor area. System control tables
are not refreshed as a consequence of this call. No addi­
tional Monitor modules may be made resident.

Indicates that a new program is being loaded. This is 'as
if a new program were being RUN from the keyboard. Although
all datasets must be released by the program which called
RUN, RUN itself will do several things to refresh the
environment. This includes releasing Monitor modules made
resident by the previous program, undoing dataset assign­
ments made specif.ically for the previous program, loading
any Monitor modules which should be resident for this pro­
gram, and changing any program-related values in the SVT.

File Block, Link Block

=~ Indicates that a Link Block and a File Block pointer are
in the RUN Block.

=1 Indicates that the caller has provided a short form of the
RUN Block; the short form contains only a function word
and a six-character filename. The Link Block and File
Block are created by the .RUN request itself. The entity
to be loaded must be either in the current user's area
or in the [1,1] UIC area and must have an extension of
LDA or null. All other function bits are ignored. The load
module or core image (first member of CIL) is loaded at·
its normal load address, as if it were an overlay, and
receives control at its normal transfer address. The stack
is not moved.

The following flowchart illustrates the effects of the various

function word bits and their interrelationships.

3-101

Short
')-.....::.;==11 .. Form

LOAD ADDRESS IS
>-_ ~ AS SPECIFIED IN

LOAD ADDRESS IS
AS SPECIFIED IN
':tHE LOAD MODULE

COMD

WORD E OF RUNBL

ER
OR LOAD MODULE AS'

>--~ SPECIFIED IN WORD
Yes

MODULE AS SPECI­
.FIED IN WORDS A

TRANSFER ADDR
= INSTRUCTION
FOLLOWING .RUN
REQUEST

SET CA = TO
TRANSFER ADDR
SPECIFIED IN

C, D AND B OF THE

No

No

3-102

FATAL ERROR
F3,eJ2

Load new module

*Word A of the RUNBLK speci­
fies a Core Image Library or
Load Module to be loaded or
is unspecified. If it is un­
specified, words Cand D speci­
fy a Load Module and bit 13
must be set. If it is speci­
fied and bit 13 is set, words
C and D specify a CIL member
of the CIL specified in word
A.

MOVE STACK
TO BELOW
LOADED MODULE

Stack Movement

Load new module

(

(

SET TRANSFER
ADDRESS TO
CA

Overlay
No

RETURN TO CAL
CULATED TRANS

ER ADDRESS

ADD OFFSET
Yes

>----.-.t SPECIFIED IN
WORD F OF
RUNBLK TO CA

Yes
SET TRANSFER
ADDR = TO WO

>---------~G OF RUNBLK

No

Yes

No

Run

Yes RETURN TO CMI
">----.tFOR BEGIN OR

REESTART

FOR BEGIN,
REESTART OR OD

(SP) =TRANSFER AD.
No SP)+2 .=MODULE SIZE

SP)+4 =PROGRAM LO
ADDRESS

3-103

APPENDICES

(

Mnemonic

DC
DF
DK
DT
KB
LP
MT.
PP
PR
PT
CR
SY

APPENDIX A

PHYSICAL DEVICE NAMES

Device

RCll Disk
RFll Disk
RKll Disk
DEC tape (TCll)
ASR-33 Keyboard/Teletype
Line Printer (LPll)
Magtape (TMll)
High-Speed Paper Tape Punch
High-Speed Paper Tape Reader
ASR-33 Paper Tape Device
Card Reader (CRll)
System Residence Device
(DC, DF, or DK)

014570
014760
015270
016040
042420
046600
052140
063200
063320
063440
012620
075250

a. Device mnemonics may be three letters on a particular
system. The third letter is assigned if there is more
than- one controller, e.g.:

DTA for DECtape controller "A"
DTB for DECtape controller "B"

b. The device name may be followed by an octal number to
identify a particular unit when the controller has
several device units associated with it, e.g.:

DTI indicates unit 1 under a single DECtape
control.
DTAI indicates unit 1 under controller A in
a multicontrol situation.

The Radix-50 equivalence is derived in accordance with the
following formula:

where Cn is a character (legal characters are space A-Z,
$, period, and 1-9. These characters are assigned values
from ~ (for space) through 478 (for 9).

The following program may be used to print the octal repre­
sentation of any 3-character set Radix-5~ equivalence. To
exit type an illegal character.

A-I

(

"

(

"

. '"

EMT Programmed
Code Request

0 .WAITR
1 .WAIT
2 • WRITE
3 2

4 • READ
5 2

6 .INIT
7 .RLSE

10 .TRAN
11 • BLOCK
12 • SPEC
13 • STAT
14 • LOOK
15 .ALLOC
16 .OPENx

.17 • CLOSE
20 .RENAM
21 .DELET
22 .APPND
24 • KEEP
25 .RECRD
26-27 2

30-31 1

32 Diagnostic Print
33-35 1

36-37 2

40
41 General Utilities
42 General Conversions
43-55 1

56,57 Command String Interpreter
60 .EXIT
61-63 1

64
65 • RUN
66 .CVTDT
67 2

68-76 2 (70, reserved for Multi-User
77

APPENDIX B

EMT CODES'

Described
on Page

3-36
3-35
3-29

3-28

3-20
3-21
3-33
3-31
3-37
3-38
3-44
3-39
3-22
3-22
3-26
3-41
3-43
3-46
3-30

3-50,-66
3-67,-74

3-76,77
3-49

3-47
3-57

Operation) .

100-117 (reserved for Communications Executive, COMTEX-ll)
120-137 (reserved for Real-Time Monitor, RSX-ll)
140-167 (reserved for user-implemented routines)

lReserved for Monitor internal communication.

2Reserved for future Monitor expansion.

B-1

(

APPENDIX C

SUBSIDIARY ROUTINES AND OVERLAYS

With the exception of .READ/.WRITE and .WAIT, all Monitor code

for performing programmed requests is potentially non-resident. Since

non-resident modules are limited to a size of 256 words (the size of

the swap buffer) and since many common functions are required, many

of the programmed request modules must make use of subsidiary routines.

The table given below can be used in two ways:

•

•

when assessing the number of disk accesses required
to satisfy a request, the table shows how many mod­
ules (in addition to the primary module) may be
loaded; .

when making certain functions resident, one must
not only make the primary module resident, but
must also make resident each of the subsidiary
modules which may be called. For example, if one
wants all .OPENI processing routines (except for
magtape) resident, he would put the following assembler
directive in his program:

.GLOBL OPN,FOP,LUK,CKX

The following summary explains the codes used in the table.

(blank) = subsidiary routine is never called

x = subsidiary routine is called only when a
file-structured device is referenced

L = subsidiary routine is called only when a
linked file is referenced

·C = subsidiary routine is called only when a
contiguous file is referenced

D = subsidiary routine is called only when
DECtape is referenced

M = subsidiary routine is called only if
magtape is referenced

C-I

'H 0)
0..-1

::I 0)'U
~ £
Z

>t ..-I j..j
cD cD

..Q S o .,-i

..-I j..j
0P<

RWN

OPN

OPN

OPN

OPN

OPN

CLS

ALO

DEL

REN

APP

DIR

PRO

RUN

INR

RLS

Name of Subsidiary Routine

,
.I<: Ul

tJ> U 1.1<: 'U
so: :.: 0 so: u 0) 0) .j..l .,-i

~~
..-I 0) i o 0 .I<: 1 ..-I .,-i .j..l

.j..l III..-I U..-I so: so: .,-i III so:
Ul .,-i >t .,-i III .,-i or... 0) .,-i tJ>r... j..j 0) r... 0) H U .j..l S
~ so: 0 .j..l .j..l.j..l .j..l Ul Ul 0) ~ tJ> 0)
I:il fflal .j..l.£: cD'U .,-i so: cD ::I Ul 0) 0) ::I 'U Q, 0) 0) fa' j..j j..j 0) u u U 0) III ~ U 0 U Ul .j..l .j..l 0 so: cD Z Ul 0) 0)
so: 0) ~~ Ul 0) 0) j..j ~~ o ::I 0) 0) 0) 0) ::I 0) .j..l .j..l so: 'U "g 0)..-1 0..-1 j..j cD .j..l tJ> ..-I tJ> 0) U ..-1..-1 ..-I tJ> Q,U .j..l Q, tJ>0) cD Q, .,-i j..j .,-i ..-I.,-i .,-i 0) ..-I.,-i 0) 0) ..-I.,-i .£: U 0) .,-i 0) .,-i Q,1:il 0) cD cD Q, 0 0
or... UH Ur... QUl ~H 0Ul ~.j..l U ~ Qr... Q.j..l ~Q 0~ ~O H H

'"
P< p:j H ~ ~

~
~ ~ 3 z N ~ 0 p:j N

Request 0 U U i:J III III ~ U P< Z E-t Q Q
r... r... r... H H U U Q Q ~ 0 .~ H H

• READ/WRITE 1 X

.OPENU X X X M

.OPEN0 3 X X X X X M

.OPENE X X X X X M

.OPENI'+ X X X M

.OPENC X X X

.CLOSE'+ X

.ALLOC X X X

.DELET X X L C

.RENAM X X

• APPND X X D

• LOOK X X

• KEEP X X

.RUN'+ X X X X M X X

.INIT5

.RLSE'+

lAlways resident.

2Should never be made resident.

3The .OPENO module requires a second section if a dataset other than CMO
is being opened on the device assigned to CMO.

'+The .RUN EMT calls the following routines:

.INIT

.OPENI

.LDR

.LD2
• CLOSE
.RLSE

(once for each combination of filename and UIC)
(three sections if LDA file; two if CIL file)

(once for each .OPENI)

SThe .INIT module has two sections, but the second has no name. It is
resident automatically if .INIT is resident.

C-2

(

(

APPENDIX D

SUMMARY OF MONITOR COMMANDS

Command Usage

. Commands to Allocate System Resources

ASSIGN Assign a physical device to a logical device name

Commands to Manipulate Core Images

RUN

GET

DUMP

SAVE

Commands to Start a Program

BEGIN

CONTINUE

RESTART

Commands to Stop a Program

STOP

WAIT.

KILL

Load and begin a program

Load a program

Write a specified core area onto a device as a core
image

Write a program onto a device in loader format

Start execution of a program

Resume execution of a halted program

Restart -execution of a previovsly operating program

Halt the current program, including any I/O in pro­
gress

Halt current program after finishing any I/O in progress

Halt the current program, finish any I/O in progress,
close all open files, and pass control back to the Mon­
itor

Commands to Exchange Information with the System

DATE Fetch/Speci fy date

Fetch/Specify time
(continued on next page)

Optional characters are underlined. If any optional character appears, all must appear.

TIME

Command

Commands to Exchange Information with the System (Cont)

LOGIN

MODIFY

FI lli.S.I::i

Miscellaneous Commands

ECHO

PRINT

END

ODI

Enter User Identification Code

Modify contents of memory location

Log off system

Disable/enable keyboard echo to user program

Disable/enable teleprinter output from user program

End input from a device

Begin operation of Octal Debugger (ODT)

Optional characters are underlined. If any optional character appears, all must appear.

D-2

(

tr:1
I
~

,~

Global
Mnemonic

.ALLOC

.APPND

.BIN2D

.BIN20

• BLOCK

• CLOSE

• CORE

.CSIl

.CSI2

!J r,

Function

Allocate a Contiguous File

Append to a Linked File

Convert Binary to Decimai ASCII

Convert Binary to Octal ASCII

Transfer a Block

Close a Dataset

Obtain Core Size

CSI Interface - part 1

CSI Interface - part 2

Macro Call
(see notes)

.ALLOC #LNKBLK,#FILBLK,#N

.APPND #LNKBLK,#FIRST,#SECOND

.BIN2D #ADDR,WORD

.BIN20 #ADDR,WORO

• BWCK #LNKBLK, #BLKBLK

• CLOSE #LNKBLK

• CORE

.CSIl #CMDBUF

.CSI2 #CSIBLK

It "'.-

Assembly Language
Expansion (see notes) Refer to Page

MOV #N,-(SP) 3-39
MOV #FILBLK,-(SP)
MOV #LNKBLK,-(SP)
EMT 15

en
c:
!:

MOV #SECOND,-(SP) 3-43 !:
MOV #FIRST,-(SP) >
MOV #LNKBLK,-(SP) :XI
EMT 22 -<
MOV WORD,- (SP) 3-72
MOV #ADDR,- (SP)

0
."

MOV #3,-(SP) !:
EMT 42 0
MOV WORD,- (SP). 3-74
MOV #ADDR,-(SP)
MOV #5,-(SP)
EMT 42

Z --I
0
:XI
."

MOV #BLKBLK,-(SP) 3-31 :XI
MOV #LNKBLK,- (SP) 0
EMT 11 C)

:XI
MOV #LNKBLK,-(SP) 3-26 >
EMT 17 !:
MOV #100,-(SP) 3-52

s:
m

EMT 41 c>
MOV #CMDBUF,-(SP) 3-76
EMT 56 -

."
:XI." mm

MOV #CSIBLK,·- (SP) 3-77
EMT 57

-------------------------- ---- - - --------

OZ
c:c m-en><
~ m

t:r::I
I

N

Global
Mnell\Onic

.CVTDT

• DATE

.DELET

.D2BIN

.EXIT

.G1'CIL

.GTUIC

.GTPLA

.GTSTK

,~
(

Function

Convert Binary Date or Time to
ASCII character string

Obtain Date

Delete a File

Convert Decimal ASCII to Binary

Exit to Monitor

Get disk address of Core Image
library

Get Current UIC

Get Program Low Address

Get the Stack Base Address

• ~

Macro Call Assembly Language
(see notes) Expansion (see notes) Refer to Page

.CVTDT. #CODE,#ADDR[,VALUE] If Code = 3 3-57

VALUE is an optional argu- MOV VALUE+2,-(SP)
ment specified with Codes

If Code = 2 or 3 2 and 3 only.
"MOV VALUE,-(SP)

All codes

MOV #ADDR,- (SP)
MOV #CODE,-(SP)
EMT 66

• DATE MOV #103,-(SP) 3-55
EMT 41

.DELET #LNKBLK,#FILBLK MOV #FILBLK,-(SP) 3-41
MOV #LNKBLK,-(SP)
EMT 21

.D2BIN #ADDR MOV #ADDR,- (SP) 3-71
MOV #2,-(SP)
EMT 42

.EXIT EMT 60 3-49

.GTCIL MOV #111,- (SP) 3-63
EMT 41

.GTUIC MOV #105,-(SP) 3-59 I
I

EMT 41 I

.GTPLA CLR -(SP) 3-61
MOV #5,-(SP)
EMT 41

I
.GTSTK CLR - (SP) 3-64 I

MOV #4,-(SP)
EMT 41

_. ----~--- ----_L-.-..

/~ ~ '"

trJ
I

W

Global
Mnemonic

.INIT

• KEEP.

• LOOK

.MONF

• MONR

• OPEN

.OPENx

;'I

Function

Initialize a Dataset

Protect a File

Directory Search

Obtain Full Monitor Size

Obtain Size of Resident
Monitor

Open a Dataset

Open a Dataset

~"

Macro Call
(see notes)

.INIT #LNKBLK

.KEEP #LNKBLK,#FILBLK

.LOOK #LNKBLK,#FILBLK[,l]

,1 is an optional argument

.MONF

• MONR

.OPEN #LNKBLK,#FILBLK

.OPENx #LNKBLK., R

~ I;

Assembly Language
Expansion (see notes) Refer to Page

MOV #LNKBLK,-(SP) 3-20
EMT 6

MOV #FILBLK,-(SP) 3-46
MOV #LNKBLK,-(SP)
EMT 24

MOV #FILBLK,-(SP) 3-44
MOV #LNKBLK,- (SP)
EMT 14

or when optional argu-
ment is specified:

MOV #FILBLK,-(SP)
CLR - (SP)
MOV #LNKBLK,-(SP)
EMT 14

MOV #102,-(SP) 3-54
EMT 41

MOV #101,-(SP) 3-53
EMT 41

MOV #FILBLK,-(SP) 3-22
MOV #LNKBLK,-(SP)
EMT 16

MOV #CODE,-2(R) 3-22
MOV R,-(SP)
MOV #LNKBLK,-(SP)
EM'!' 16

CODE=l for .OPENU
2 for .OPENO
3 for .OPENE
4 for .OPENI

13 for .OPENC

t:rJ
I
~

Global
Mnemonic

.02BIN

.RADPK

.RADUP

• READ

.RECRD

.RENAM

.RLSE

.RSTRT

• RUN

• SPEC

,/""'"'~

Function

Convert Octal ASCII to Binary

Radix-50 ASCII Pack

Radix-50 ASCII Unpack

Read from Device

Read or Write a Specified
Record in a File

Rename a File

Release a Dataset

Set REstart address

Load a program or OVerlay

Special Function

, 11

Macro Call Assembly Language
(see notes) Expansion (see notes) Refer to Page

.02BIN #ADDR MOV #ADDR,-(SP) 3-73
MOV #4,-(SP)
EMT 42

• RADPK #ADDR MOV #ADDR,-(SP) 3-67
CLR -(SP)
EMT 42

.RADUP #ADDR,WORD MOV WORD,-(SP) 3-70
MOV #ADDR,-(SP)
MOV #1,- (SP)
EMT 42

.READ #LNKBLK,#BUFHDR MOV #BUFHDR,-(SP) 3-28
MOV #LNKBLK,-(SP)
EMT 4

• RECRD #LNKBLK, #RECBLK MOV #RECBLK,-(SP) 3-30
MOV #LNKBLK,-(SP)
EMT 25

• RENAM #LNKBLK, #OLDNAM, #NEWNAM MOV #NEWNAM,-(SP) 3-42
MOV #OLDNAM, - (SP)
MOV #LNKBLK,-(SP)
EMT 20

• RLSE #LNKBLK MOV #LNKBLK,-(SP) 3-21
EMT 7

• RSTRT #ADDR MOV #ADDR,-(SP) 3-51
MOV #2,-(SP)
EMT 41

• RUN #RUNBLK MOV #RUNBLK,-(SP) 3-47
EMT 65

.SPEC #LNKBLK,#SPCARG MOV #SPCARG,-(SP) 3-37
MOV #LNKBLK,-(SP)
EMT 12

I

,~ .. 1l'

t<:l
I

U1

Global
Mnemonic

• STAT

.STPLA

.STFPU

.STSTK

.SYSDV

• TIME

.TRAN

• TRAP

. WAIT

.WAITR

• WRITE

fC

Function

Obtain Device Status

Set Program Low Address

Initialize the Floating Point
exception vector (11/45)

Set the Stack Base Address

Obtain System Device Name

Obtain Time of Day

Transfer Absolute Block

Set TRAP Vector

Wait for Completion

Wait for Completion; Return
toADDR

Write on a Device

Macro Call
(see notes)

.STAT #LNKBLK

.STPLA #ADDR

.STFPU ~PSW,~ADDR

.STSTK #ADDR

.SYSDV

• TIME

.TRAN #LNKBLK,#TRNBLK

.TRAP #STATUS,#ADDR

.WAIT #LNKBLK

• WAITR #LNKBLK, #ADDR

• WRITE #LNKBLK, #BUFHDR

":i .,

Assembly Language
Expansion (see notes) Refer to Page

MOV #LNKBLK,-(SP) 3-38
EMT 13

MOV #ADDR,-(SP) 3-62
MOV #5,,,"(SP)
EMT 41

MOV #ADDR,-(SP) 3-66
MOV #PSW,-(SP)
MOV #3,-(SP)

J EMT 41

MOV #ADDR,-(SP) 3-65 I
MOV #4,-(SP) i

EMT 41 I

:
MOV #l06,-(SP) 3-60

I
EMT 41

MOV #104,-(SP) 3-56 !

EMT 41
I

MOV #TRNBLK,-(SP) 3-33
MOV #LNKBLK,-(SP)
EMT 10

MOV #ADDR,-(SP) 3-50
I MOV #STATUS,-(SP)

MOV #l,-(SP)
I EMT 41
I

MOV #LNKBLK,-(SP) 3-35
.

EMT 1
i

MOV #ADDR,-(SP) 3-36
MOV #LNKBLK,-(SP)
EMT 0

MOV #BUFHDR,-(SP) 3-29
MOV #LNKBLK,-(SP)
EMT 2

----------- ------ - ---- -- ---- - ---------

NOTES: ADDR
BLKBLK
BUFHDR.
CMDBUF
CSIBLK
FILBLK
FIRST
LNKBLK
N
NEWNAM
OLDNAM
PSW
R
RECBLK
SECOND
SP

I?j SPCARG
I TRNBLK

0'1

r-' !f

a memory address
address of BLOCK Block
address of Line Buffer Header
.address of Command String Buffer
address of Command String Interpreter Control Block
address of Filename Block
address of Filename Block of file which is to be appended to
address of Link Block
number of 64-word segments requested
address of Filename Block containing the file's new name
address of Filename Block containing the file's old name
program status word for an exception routine
register from ~ through RS containing address of Filename Block
address of RECORD Block
address of Filename Block of file which is'appended
Stack Pointer (register R6)
code for Special Function or Address of Special Function Block as determined by Function called.
address of TRAN Block

If
,~.

1:.1 11

APPENDIX F

SUMMARY OF DOS ERROR MESSAGES

Following is a complete summary of all error messages which
can appear when using the DOS Monitor and system programs.

F.I Keyboard Command Messages

If a command cannot be executed satisfactorily, an appropriate
message will be printed at the teleprinter and the command will be
ignored. The message will be one of the following.

Message

ILL CMD!

INV CMD!

SYN ERR!

ILL DEV!

NO FILE!

ILL ADR!

NO CORE!

Meaning

Command requested does not exist

Command cannot be accepted at this time (e.g.,
KILL with no program to kill)

Syntax of command is faulty

The device specified is illegal

File specified does not exist or cannot be loaded
by the RUN processor.

Address is illegal (not on word-bound or
in core)

Insufficient core capacity to execute command
(SAVE)

F.2 Error Messages

Error messages are printed on the teleprinter in the following
format.

CNNN XXXXXX

where C is one of five letters identifying the type of message:

I Information
A Action required by the operator
W Warning to the operator
F Fatal error
S System program error

NNN is the message number; and XXXXXX gives appropriate additional
information. Information, Warning, and System program messages
are printed and the program continues.

Action messages are printed and the program is suspended. The
Monitor expects the operator to take some action such as "continue
the program" (type CONTINUE), or "kill the program" (type KILL).

Fatal error messages are printed if possible, and the program
is suspended. The Monitor will not allow the operator to CONTINUE
the program, but expects to see either a BEGIN, RESTART or KILL
command. If a fatal error is a system disk failure and the error
message cannot be printed, the central processor halts. This is the
only time that a halt occurs in the Monitor.

F-I

F.2.l Action Message

Action messages are printed and the program is suspended. The
Moni tor expects the opera tor to take some action such as "continue the
program" (type CONTINUE), or "kill the program" (type KILL).

CODE/ISSUER

DOS

DOS

DOS

DOS

OTS

LINK

DOS

DOS

ADDITIONAL INFORMATION/MEANING

User Call Address
Disk address error.

Device (RADS,0)
Device not ready. For example,
the desired device/unit may be
off-line or it may not be
write-enabled. For DECtape or
magtape, the proper unit may
not have been selected. Make
the device ready and type CO.

Link Block Address
The Link Block contains either
an illegal device code or no
device code at all. Use the
MODIFY command to display the
contents of Link Block+2,
which is the dataset name
(RADS,0), and then use the AS-
SIGN command to assign a de­
vice and/or file; type CO when
ready.

User Call Address
DECtape error. Try adjusting
the tape; type CO to retry the
operation.

Pause Number
A PAUSE was encountered in a
FORTRAN program. Type CO to
contimie.

Correct Module Name
Paper tape loaded out of order
on Pass 2 of Linker. Load cor­
rect module and type CO to con­
tinue.

Call Address
The name of the output file
being created on magtape is the
same as" that of an existing file.
Type CO to write over the old
file or mount another tape and
then type CO.

A parity error occurred when
trying to open a file on magtape.
Type CO to continue searching.
If the file being sought has a
parity error in its label, it
cannot be found.

F-2

(

(

CODE/ISSUER

Atlll
DOS

A.012
DOS

A.043
PIP

BATCH

(
A35.0

DOS

ADDITIONAL INFORMATION/MEANING

.0 = Date is Bad, 1 = Time is Bad
System date or time is not
valid. Re-enter date or time
via the console keyboard and
type CO to continue.

Status Register
Magtape error. After having
made 15 entries on a WRITE or
WRITE EOF, the operation is
still unsuccessful. Type CO to
ignore the error and proceed~ or
type KI to stop the program and
start over with a good tape.

Disk Pack Block Number
This is the block that is bad;
issued by the RPll pack initial i­
zer to provide a list of bad
blocks and to permit job termi­
nation if too many are bad. Type
CO if number of bad blocks thus
far is tolerable.

Batch Stream Wait.
Type CO to continue.

Power has come up following a
power failure. Any I/O in
progress has been lost, but
information in core and in the
registers has been retained.
If you wish to continue, type
CO. Note, however, that if
I/O was in progress, the
driver(s) may have been left
in a state which will not per­
mit your program to be con­
tinued.

F-3

F.2.2 Information Messages

Information messages are printed and the program generally
continues.

CODE/ISSUER

1350
OTS

I35l
FORTRN

I352
FORTRN

1353
OTS

I354
PIP

ADDITIONAL INFORMATION/MEANING

STOP Number
A STOP statement was executed
in a FORTRAN program.

More errors of a specified type
occurred than were allowed~
The program is terminated.

Address of DEVTB Entry
The logical device specified is
not available, (See FORTRAN
device table, DEVTB, for a
layout.)

Error Class Number
No logging device. The command
input device was in use when a
run-time diagnostic message was
to be issued. Because of a device
conflict the normal message could
not be issued.

Illegal response to CONFIRM;
when attempting to zero an
RKll disk cartridge. The disk
was not zeroed. Legal respon­
'ses are:

H for high-density disks (RK~3/~5)
L for low-density disk (RK~2).

F-4

(

(

(
\

F.2.3 Warning Messages

Warning messages are printed and the program generally Gontinues.

CODE/ISSUER

W,043

Wl,0l
RSX

Wl,02
RSX

Wl,03
RSX

Wl,04
RSX

Wl,05
RSX

Wl,06
RSX

Wl,07
RSX

Wll,0
RSX

Will
RSX

W1l2
RSX

W1l3
RSX

Wl14
RSX

W3,0,0
LINK

ADDITIONAL INFORMATION/MEANING

Device Name (RAD5,0)
Device time out.

Block Number
Transfer error while using
.TRAN to zero the disk.

Number of Task Called
Task called by number not present
or call number illegal. Request
ignored.

Addr. in Call Sequence
Delay units not correct in oall
start. Request ignored.

Addr. in Call Sequence
Delay time too large in call
start. Request ignored.

Addr. in Call Sequence
No time slot available. Request
ignored.

Current Run-Time
A level 1 task has exceeded its
maximum'run time. Task continued.

Illegal or unrecognized console
cQmmand. Command ignored.

Report Number
Illegal system report number in
system command. Command
ignored.

Addr. in Call Sequence
Attempted to start a background
task while the background is busy.
Request ignored.

Addr. in Call Sequence
Attempted to clock a background
task. Request ignored.

Symbolic task name not found.
Request ignored.

Command syntax error. Command
ignored.

Addr. in Call Sequence
Illegal clock (call TRNON) time.
Request ignored.

,0, Module Name
Non-unique object module detected
in first pass. Second and sub­
sequent occurrences of the modul·e
are ignored.

F-5

CODE/ISSUER

W3,0l
LINK

W3,02
LINK

W3,03
EDIT

W3,04
EDIT

W3,05
EDIT

W3,06
EDIT

W3,07
EDIT

W3l,0
EDIT

W3ll
EDIT

W3l2
EDIT

W313
EDIT

ADDITIONAL INFORMATION/MEANING

Addr. of Byte Error
Byte relocation error. Linker
automatically continues.

.0, Symbol and Module Names
Multiple definitions of global
symbol. Second definition is
ignored and linking continues.

Buffer overflow. Overflow of
one of the following Editor
buffers:

Command Input Buffer
Save Buffer
Page Buffer

Macro overflow. The command
string as stored in the Save
Buffer was too long to execute,
when requested to do so by an
EM (Execute Macro) command.

Recursive macro. The command
string as stored in the Save
Buffer contains an EM command.

Empty Save Buffer. An EM or U
(Unsave) command was issued with
nothing in the Save Buffe.r.

Search failure. The nth occur­
rence of the search object was
not found in the available test.

Unsave failure. Insufficient
room to copy the contents of
the Save Buffer into the Page
Buffer at dot.

End-of-data detected. The end of
the input file or the end of the
input medium was reached during
the last read of text into the
Page Buffer, last page read was
last in the file.

Illegal line feed. A line feed
character was encountered in the
command string.

Illegal negative argument. A
negative argument was used with a
command that does not accept
negative arguments.

F-6

(

CODE/ISSUER

W3l4
EDIT

W3l5
EDIT

W3l6
EDIT

c' W317
EDIT

W32~
EDIT

W32l
EDIT

W322
LINK

W323
RSX

W324
RSX

W325
RSX

W35~
RSX

W352
RSX

ADDITIONAL INFORMATION/MEANING

Arguments not permitted. The
command specified does not
permi t any argument wi th it.

Illegal argument. The given
argument was not acceptable to
the specified command.

Illegal text string.

Illegal command. The Editor was
unable to execute the specified
command. The command may be an
illegal character, one that is
not an EDIT-ll command character.

Page Buffer almost full. The
Page Buffer was within 128
characters of being full. Write
ou t part or all of the Page
Buffer and then delete from the
Buffer the part that was written.

File closed. An attempt to Read
from or Write to a primary file
after an EF (End-of-File) command
was issued.

Undefined global symbols in load
module. Linking continues.

Illegal size of named .CSECT or
illegal entry in named .CSECT or
task's named .CSECT size too
large.

Too many entries in tasks named
.CSECT.

Illegal priority specification in
real,time header.

Number of Failures
Powerfail interrupt occurred.

Disk Error Code
Disk error detected by RSX.
Codes are:
3 transmission error
5 illegal error
6 undefined file
7 illegal file, i.e., linked
8 block of file out of range

F-7

F.2.4 Fatal Messages

Fatal error messages are printed v if possible, and the program
is suspended. The Monitor will not allow the operator to continue the
program, but eventually expects to see a BEGIN, RESTART. or KILL com­
mand. If a fatal error is a system disk failure and the error message
cannot be printed, the central processor halts. This is the only time
that a halt occurs in the Monitor.

CODE/ISSUER

DOS

DOS

DOS

DOS

DOS

DOS

DOS

DOS

ADDITIONAL INFORMATION/MEANING

Request Address
Dataset not INITed. Program
must issue .INIT before any
other requests to a dataset.

Request Address
Stack overflow. Once loaded, a
program requires additional space
for its stack, buffers and control
blocks. These are allocated as
they are needed. Reduce the size
of the program. If the error has
been caused by a stack overflow,
the stack pointer is reset by
bytes before the message is printed.
This allows the monitor to proceed
(since it needs the stack) and leaves
the top of the stack intact (though
not pointed to by SP). (See F.2.)

Request Address
Invalid EMT call. The EMT code
issued by the program has not been
assigned.

Request Address
Invalid .TRAN function or .TRAN
to an open file.

Error Code
Incorrect OPEN on industry com­
patible magnetic tape. Caused
by program error o.r improperly
assigning devices via datasets.
Defined error code values:
~ - another file currently opened

on tape,
I - attempt to READ or WRITE to

unopened file.

Request Address
~RLSE error. If a .file has been
OPENed, it must be CLOSEd before
a .RLSE can be issued.

Request Address
Device full. No more space exists
on the device being referenced by
the request. For a file­
structured device, use PIP to
look at the number of free blocks
and delete any files which are not
needed.

Request Address
No ~uffer space available. In­
sufficient space for completion
of required operation. Reduce
program size or close open files.

F.-8

;-

(

tr

(

(
\

CODE/ISSUER

F{H/3
DOS

F/311
DOS

F/312

F,fl14
DOS

F,fl15
DOS

F/316
DOS

F,fl17
DOS

F/32j3
DOS

F/321
DOS

Fj322
DOS

ADDITIONAL INFORMATION/MEANING

Request Address
Illegal .READ/.WRITE. Incor­
rect mode for device or file
not opened correctly:

Request Address
Illegal OPEN. OPEN code is not
used or is unsuitable for device.

Request Address
File access violation. You are
trying to OPEN a file that cannot
be opened for the requested
purpose. See Table I below for
details. Assure that the name of
the file requested was correct.

Request Address
Device .error on trying to read
bit map. The system cannot
proceed if it cannot read the
bit map. New files cannot be
created on the device nor can
old files be extended. Existing
files may be copied to a backup
medium for recovery.

Request Address
DECtape·error. Nonexistent memory
addressed or end-zone reached .
during transfer.

Block Number
DEC tape search failure. Block
requested cannot be found.

Device (RAD5j3)
Parity error on file-structured
device.

Irrelevant
Too many data sets using low-speed
paper tape. A maximum of one
each for input or output is al­
lowed. Restart your job and use
the ASSIGN command to reassign
the excess datasets.

Irrelevant
Checksum error or device parity
error while typing to load a pro­
gram. Type KILL then try again.
If that doesn't work, try re­
linking the program. Try recreating
the file. If the error persists,
hardware may be faulty. Call
field service.

Irrelevant
An attempt was made to load for
execution a dataset which is not
forma ted binary or which has no
start address. Typically this
means that the dataset being loaded
is not a load module.

F-9

CODE/ISSUER

F~23
DOS

F~24
DOS

F~2S
PIP

F,026
DOS

F,027
DOS

F,03~
OTS

F,031
OTS

F~32
DOS

F,033
DOS

F,034
DOS

F~3S
DCE

F,036
RSX

F,037

F,04,0
RSX

ADDITIONAL INFORMATION/MEANING

Program Size
Program too large for core
available. Try to overlay the
program or make it smaller.

Request Address .
File access violation. You are
trying to perform an operation
that violates the monitor's
user and file protection scheme.
See Table I below for details.
Resolve access problems with owner.

Device (RADS,0)
Master directory full
tempting to add UIC.
UIC' s can· be added.

when at­
No more

Disk Control Status Register
Disk (RFII or RClI) transfer
failure. Hardware error or
persistent parity failure.

Error Register
Disk (RKII) transfer failure.

Error Class, Number
FORTRAN system error. An
illegal call to the FORTRAN
Error Processor was made.

Addr. of Log Device
No more room on FORTRAN logging
deivce, or illegal end-of-file
was encountered while a FORTRAN
READ was in progress.

Status Register
Magtape hardware error.

Special Function Block Address
Invalid special function block.

Call Address
The call code passed to a conver­
sion request was invalid, e.g.,
5 means binary-to-octal, but 63
is not defined.

Block Number
Illegal block number (RKII).

Lowest Slot Used by Tasks
No slot available.

Lowest Slot used by Tasks
Illegal slot specified.

Low Address of Task Code
Attempted to overlay the execu­
tive for another task.

F-IO

(

.'

(

CODE/lSSUER

F~4l
RSX

F~42
DOS

F~43
DOS

F~44
LINK

F~45
DOS

BATCH

F,05l
BATCH

(
F,052

BATCH

F~53
BATCH

F~54
DOS

F,055
BATCH

Flfl,0
RSX

(

ADDITIONAL INFORMATION/MEANING

Load address of Binary Block
Attempted to load outside
limits defined in the command.

Error Register
Disk (RPll) transfer failure.

Block Number
Illegal block number (RPll).

Error in command string passed by
a Compiler via the .RUN request.

Reguest Address
The RUN EMT cannot find the
requested entry in the speci­
fied core image library. Add
proper entry to CIL or use
correct name.

Request Address
Illegal I/O to batch stream.
Either an illegal mode (e.g.,
unformatted binary when not
in "OWN" mode) or a byte
count less than 83, on formatted
read.

Request Address

PC

PC

Too many successive read errors
or EOF's while reading the
batch stream.

Illegal Open to one of the
Batch Datasets. OPENO and
OPENI are the only legal
OPEN's and OPENO (OPENI) to
an "input (output) dataset
is also illegal.

Illegal request to the BATCH
stream flush EMT. Request
code must be ~, 1, or 2.

Address ofDDB

PC

An attempt was made to load a
new program via the RUN request
(EMT) before releasing all of
the data sets INITed by the
current program. Correct the
program by releasing all INITed
data sets before the RUN request
is issued.

The time limit for the current
job has expired. The current
job has been aborted.

Address in Call Sequence
Insufficient arguments in call
sequence or in console command.

F-ll

CODE/ISSUER

F24.0'
DOS

F274
DOS

F275
OTS

F276
DOS

F277
DOS

F3.0'.0'
FORTRN

F3.0'1
FORTRN

F3~2
DOS

ADDITIONAL INFORMATION/MEANING

Irrelevant
An attempt was made to allocate
a contiguous file, but not
enough contiguous blocks are
free.

Irrelevant
The stack base address has not
properly set. Thus the stack
could not be moved by the RUN
EMT as requested. This is
probably a program error. The
.STSTK request may be used to
set the stack base prior to
issuing the .RUN request.

Incorrect argument to link
subroutine.

Request Address
The transfer address of the
program or overlay to be loaded
(by the RUN or GET commands or
by the .RUN request) was not
specified or is not legal.
Specify a transfer address in
your source program (END state­
ment) or correct the /TR spec­
ification in your linking pro­
cedure.

Request Address
The program or overlay could not
be loaded because it was outside
the legal load area (on top of
the Monitor or the main program
or outside actual memory). Re­
link the program to conform to
allowable boundries. Assure
that the section being improperly
loaded does not overlay the
resident portion of your program.

FORTRAN Compiler overlays cannot
be executed. FORTRN.OVR may be
nonexistent or improperly con­
structed.

No output file specified for
the "/GO" options.

Action ~lord.
Illegal options requested in short
form of RUNlIEMT.

F-12

(
\

"

(

CODE/ISSUER

F34!3'
DOS

F342
DOS

F344
DOS

F346
DOS

F352
DOS

F356
DOS

ADDITIONAL INFORMATION/MEANING

PC at Time of IOT
The DOS error routine was called
with an invalid error code.
This might happen if the program
branched into a data area
since the integer 4 would be
executed as an IOT instruction
(the error routine is called via
an IOT).

Con ten ts of PC
Error trap. Probably caused by a
reference to a byte boundary or
to nonexistent memory or to a
nonexistent device. Could also
be caused as a consequence of
the stack pointer being below
4%% or by executing JMP or
JSR with register mode destina-
tion. .

Contents of PC
Reserved instruction trap. The
instruction just executed is
not a valid PDP-II instruction.
Perhaps you jumped to a point
outside your program or perhaps
you have stored information over
an instruction.

Contents of PC
Trace trap. Bit 4 of the Proc­
essor Status Register is on.
Look for traps in the PDP-II
Processor Handbook.

Contents of PC
Trap Instruction trap. A trap
instruction was issued by your
program and you did not previ­
ously specify a trap address with
the .TRAP request.

Contents of PC
Unexpected device interrupt.
Either a new device has been
added to your system without
initializing the interrupt vec­
tor or a hardware failure has
occurred.

F-13

Table F-I

Recovery from F~12 or F~24 File Access Violations

CONDITION ACTION

Are you logged in? LOgin

Is your UIC entered? Enter it with PIP.

Are you attempting to create a file
which already exists?

Run PIP and DELETE

Does the Input file you are accessing
exist?

Use PIP with /BR or /01
switch to check

Are you attempting to delete a non­
existent file?

Use PIP with /BR or /01
switch to check

Are you attempting to delete a locked
file? (The command to delete is cor­
rect, and the file exists.)

Run PIP and UNlock

Are you attempting to access another
user's file illegally?

Ask PIP to list the user's
directory and see if an
access error results

F.2.5 System Program Messages

System program messages are printed and the program continues.
This class of errOr may be issued by a variety of system programs.
If an ISSUER is specified, the error is unique to the indicated
program. See the appropriate program manual for greater detail.

CODE/ISSUER

S~fH
FORTRN

S2flJflJ

S2flJI

S2~2

S2~3

S2~4

S2~5

S2~6

ADDITIONAL INFORMATION/MEANING

FORTRAN Compiler has exhausted
symbol table space during the
assembly phase of compilation.

Too many .CSECT directives.

Conditionals nested too deeply.

Error Status Byte.
EOD or device
or • READ; the
filled up.

Dev: file, ext.
error on .WRITE
disk may have

Relative address of error call
Illegal switch, or too many
switches, or illegal switch
value, or switch value not
given, or switch in output field.

Relative address of error call
Too many or too few output files.

Too many or too few input files.

Relative address of error call
No input files specified.

F-14

(

(

CODE/ISSUER

S2j'J7

S21.0

S211

S212

S213

S214

S215

(
8216

S217

S22j'J

S223

S225

S226

(

ADDITIONAL INFORMATION/MEANING

ErrOr Status Byte
EOD or device error on .TRAN •

.0, dev:file.ext
Unrecognized symbol table entry
in indicated file •

.0, dev:file.ext
An RLD of the given file refer­
ences a global name which cannot
be found in the symbol table •

.0, dev:file.ext
An RLD of the given file contains
a location counter modification
command which is not last •

.0, dev:file.ext
Object module does not start with
a GSD in the indicated file.

j'J, dev:file.ext
The first entry in the module is
not the module name of the indi­
cated file •

.0, dev:file.ext
An RLD of the given file refer­
ences a section name which cannot
be found.

The TRA specification references
a nonexistent module name.

Relative address at error call.
Insufficient core.

An internal jump table index is
out of range.

NO more room for CSI input buffer
Or Monitor's file manager routine,
or Monitor's library search buf­
fer.

Program too large or top too low
(program has been linked below
zero in memory) •

An open angle bracket, <, is pre~
sent in a line other than the
first.

F-15

CODE/ISSUER

S227

S23,0

S231

S232

S233

S234

S235

S236

S237

S24,0

S241

S242

S243

S244

S245

S246

S247

ADDITIONAL INFORMATION/MEANING

Error Code
Illegal file combinations due to
name conflicts. Defined error
codes are:
1 No Primary File (PRI) output,
2 Secondary File (SEC)

input = SEC output,
3 SEC input PRI output,
4 PRI input = SEC output,
5 PRI input = SEC input,
6 PRI output = SEC output.

Error Status Byte
Error on.BLOCK I/O.

Illegal command, file-structured
device required.

No more than one action switch
permitted.

Specified UIC not found in MFD.

Null filename of "*,, given
where filename required.

No files found in UFO.

Operation applicable to DEC tape
only.

File not found during file re~
covery operation.

No space for file allocate.

MFD is full.

Meaningless command, no action
taken.

An open angle bracket, < , is not
present in the first line.

Already past requested position.

Object module not found, could be
au t of order.

Illegal library format.

Listing requested, but unable to
read output library fromspeci­
fied output device.

F,-16

(

""":

(

CODE/ISSUER

S25jJ

S251

S252

S253

S254

S255

S256

S257

S26~

S262

S263

S264

S265

ADDITIONAL INFORMATION/MEANING

Core library symbol table not
specified first or consecutively.

No files found for "*" request.

Filename given when none al­
lowed.

Linker error.

It is illegal to zero the system
resident disk.

Match found in third of later
binary block in a paper tape
library.

Illegal input device.

File Block Error Code, dev:file.ext
Illegal file operation. For
example, protect code does not
allow transfer of file; UIC dif­
ferent from Login UIC, thus
making certain "wildcard" opera­
tions illegal. The operation in
question is not performed.

Same device needed for input and
output in fast copy operation

Record size too big for buffer.

File Number
File record sizes do not agree
on verify, "/V".

Conflict in standard file name
extension which determines
mode of transfer. Use expli­
cits to resolve.

Operation attempted on device
which is not legal for non­
privileged user, for example,
/PK PIP switch attempted by
a user not logged in under [1,1].

F-17

(

(
\

(

APPENDIX G

LISTING OF SYSMAC.SML (SYSTEM MACRO FILE)

"0a~"I"1~
F<1-, At",
~2.~AC'l2

"3.~"n3
"4.~AC'ld

"5.",,1")5
,,~.~ "n.6
F<7_~AC1

SP-~"C'le;
FCII~""'7
FS~lAr" 77771!
SWR !"I17757 11

• F'N I" to'
.MArRM .!N!T .lBLe~
.tlCALL .A~~DF
·.AMrCF ILBlel(
f~T <"OF>
'.FNf'''

.~Ar::Rr:'I .PUlE .l BLCI<

.~CALL .A~rlDF

.AMI"CE .1 BLCK
EMT <"07>
• ~Nf'~

.~ArRI"I .r1nSF IlBLCK
• ~CAL l • U/I"IDE
.AMr'(:F. .1 SLel<
EMT CAe!?>
.FNi"M

.MAC':!H) .READ .1. Bl.el(, ·.I.~\.;FF

.MCALI. .AMIiDF

.HH'PF .t BUFF

.AMI"OF .tBLC!<
EMT <"04>
IiFNr~

G-l

.~AeRO .hRTTF .lBLCK,:LPLFF
'.MCnl. .4MeDF.
• H1,., DE'. l B (~ F F
.AM~DF .lRLCI<
Et-1T <1102>
.F~r~

.~ACRO

• ~C 6 Ll
.rorE
.()PF~

.n"r",

.rpFN~ .LBLCK,.FPLCK

.eoCE"OPFN

.FBLCI<,cII02>
• L B L C K , '.F ALe K

'. ~ ArIOn
·.~C6Ll

.rpF~r ~lBLCK,.FPLrK
'.eOrlE, ,I'IPFN

• rm-"E .
·.I"IPF~
.fN~'"

'. F ALe K , cAr'l4>
• LBI CK,'.fRLCI(

."'ACRtl

."'CALL

.rarE

.rpF~U .L8LCr<,~F~LCK

.ronE,.I':lPE'N

.FBtCK,cA!'!l>

.1 BLCI(,'.FIiILCI< • ()PF't.;

.fN'-"'"

• ~Ar.~RI'I
• I-AC"U.
.rarE
• !'1PF~
.fNI')'"

.npE~r .lBLCK,.FPLrK

.t'.OOE.,l'lPfN

.FBLCI(,cllljl:!>

.lBlCK,'.FHCI(

.~AC~O

.~C6LL

.rOME

.I"IPFt<

.fN"'~

• rpFNF • LBLCI<, .FHCK
.r"Or.E"OPF.t11
'. F BL CI<, cA03"

·.1 BtCK, '.FFlI.CI(

.MACRI'! .rPEN .lBLC:K,.F~LrK

.~C:6LL .~MnOf

.AMr,CF. .FBLCI<

.AHreF .i AtCI<
F.~T CAO\6>

'. f N"'~

.~ACRn .wA!T .LBLCI<

.MC6LL .AMnoF.

.AHI'IOF .l.BLer<
EMT CAO\>
.fN"'~

.MACRO .L4AtTR .1 Bl.CI<,'.A,.,CR

.~C6LL .AMODF

.AMCDF .AOI'JR
• 6 M (10 F • leU; !(
EMT c.-c~>

.ENI'I~

.~ACRC .~LOcr< .I.BLCI<, .BPI.(,I<

.~CAlL .A"'OO~
.AM"O!:' .FlBlCI<
.AM~"F .LBLCI<
EMT c ll Ofl>
.F.N"~

G-2

(

(

(

.~ArRn .TRAN .LBLCK,:TPLrK

."'CAl' .HH,)DF

.AMrOF .TRLCI(

.~MrOF .1 AICK
F:t-'T ".e H~>
.FNi;~

.~ArR" .~PfC .L8lCI(,.S~R~

.,,"CALI. .A~r,DF

.AMrCF .SARG
• HI r r: F • I 81 C!<
PAT CAr; 12>
'. F"Nr~

.~ArR" .5TAT .lBLtK
;.MCALI .AMIjDF
.AM"'OF .lSI.CIot
EMT "10(;13>
.~Nr~

.~ArRO .ALLor .lBLCI<,.FPlrK,.N

."'CALI .H~CDF

.AMrCE .t<
• 6 t1 r: c ~ • F B LeI<
• AMrOF .1 RLCI<
fMT <Ae,5>
.Ft-Jr,~

.~ArR" .~EL.ET .LBLCK,:FFLfK,

.MeALL .A~tnF

.AMI"CF .F8LCK
• AM!"D!" .1 RLCK
EMT <100'1>
'. FNr,..

.~Ar:R" .RF.NAM .IBl.eK,.c!FE! .. r..iF~

.MCALL .A~t'lDF

.AM~O~ .~:FFI

• HH"Cf • OFF!
.H1f'''rF .1 RLCK
EMT <,t,02e'>

• F-""'r~

."'URQ .APpl\r .LBtC:K·,·.lFe .. ~F~
• MeAt L. A ~ I'll) F

. I.A~rCF'.'FR
.AMI"OF .1FR
.H1re~ .L81.CK
EMT <AC~2>
.FNr,..

.~Ar"'fj .1 ar.K .LALCI<,'.FFllCK,.I'lj:l

.MC~I.L .u~nDr:
• A Mt'lC!: .FBII:I(
.rIF t.'B •• CP,CI.R .. rsP,
.AMt:Cf. .181 OK
F"'T ".0'4>
.r'Nr"
• WAC R n • I(E F P • UI LeI< , '. F P I. (I<

• ~c AU. AMI'!Df
• HIrer: • F8t Cit
.6 M r r: f. .1.. B U: I(
EMT ,,10.0,4>
.FNr'"

G-3

.~'AC'R!'l .FXIT
f~'T <AOfe>
.ENr~

~~ArRn .TRAP .STLS,.AorR
'.MeAl!. .A~ODF
• AMI7!r.E' • ADnR
'.AMrnF .ST(!S
~nv WAQ1,"(SP'
EMT <"!j,41>
'. FNr~

.MArRn .~TFPU .STLs"ADrR

.~~CALl ,.AMCDF

.AM~DF .ADnR

.Hlrr,F .~;rus

Mnv w ... 03,.(SP'
EMT <"1)41>
.f.NI'M

.~~Arc;n .FlEeR" .!.BL(K, .RflLet(
·.t-'CALL.AMr:DF.
• ,HlreF • F;\81,CI<
,AMrnF .I.BLCK
EMT <AC~5>
.FN,.",

.~ArRn .nU~F .LOh,.H!G~,.CnE

.MeALI .A"ClD~

.HH"Df ,.LOw

.AMrCF .HIGI-!

.A/1t'~CF .rop:
E~T C,IoC64>
~FNr'"

.t~Ar.Rn

."'CALI
•. 6 MCI)r:
MflV

.RSTRT • A Df'l I(
'. AM 1''1(') F
.AD!'lR
."02 .. ·(SP'

EMT <A04,,>
.FN!)r'

..... "1"1;,., .rORE
Mrv *AnI0~,~(SP'
F~'T <"041>
'. FNrr-

.~·ArR("I .~O~R

Mnv *"c,ef,.(SP,
Ft.<T <,6,041>
.FN!)M

..... At""" • "'O~F
~rv ~"01e,,~(RP'
E'"'r <"041>
.FNr"M

.~·ArR("I .!)ATE
MI"V wA01e3,-(SP,
fMT <A041>
~FNr'"

G-4

(

(

(
\

(

·"II"'Rf) .TI"'E
M~V ~AoteA,·c~p,

F"T <Al:d'>
.fNrt-'

.~jAI"Rt'l .GTlilr
Mrv WAO'~~,·CRP)
E""T <ACdt>
.~N!"'t-'

."'11"1<("1 .SYSDV
~~v wAat0~,.(SP'
P'T <AC d 1>
.nH'~

.UAr~fj ·,RAr,PK ,AODR

."'CALl .At-rDE

.AMr'CF .Aor,R
elR .rsP'
F"T <"C.ll2>
.• FNr,~

.~Ar~n .PArup .ADDP"wRC

.!ACALI.AMC'Ol"

.AMN~~ ,wRr

.AMrI)F • Hl!')R
Mrv w"01,.C~P'

P'T <"Ccl2>
.FNI"~

.~ArR" .02RIN ,ADDR

.fAC.6U ,AM(,)DE
• AM r IJF • A D n R
Mrv ."o~,.C~P'
E"~T <"0.12>
.F Nr'lM

."'At:Rn ,PIN2n .ADDR •• wRr

."'C"lL .AM!"nF

.,\ Mnr,F. \loR!'"

.,AMI"Cr: .~I)I1R

Mt'lV ~"O~,.CSp,

P'T <"CIl2>
,FNr,~

,MAI"'Rn .r28!~ .ADf"lR
.~'r.AtL .AM!'lDf
.H<lrVF .ACH~R
M!'lV wA Q4,·CSP'
P'T <"0.112> .
• FN"M

.~ArR" .~IN2r .AD"R •• wRr

.MeH!.. .H~nDF.

.AM(,!DF .\;'RI"

.A'-Irr,r: .A(lI"lR
M"V ."D~,.(SP'
FMT <"C.ll2>
.FN!"'~

G-5

.~ArRn .rSI1 .CMDAF
• ~ C "L I, • .H.4 n D F.
.AMrl:p .r~(,HF

f"'T oC"r;!I=6>
.~N"'''

.~ArGD .rST2 .CS8lK

.~CAII,. .A~('IOF

.,Hl1"'r,F .r.S~1.1(

EMT <AC~'>
.PJI'''

• ~J AfIU"
.MeAtl.
.rVTOT
• r N"~'
.... Arlo<1'I
."CALL
.orDT
.PJ~'"

.('ITC-VT .ADI'lR

.I".VTOT
*"(II'!, '. AI'~"p

.T~r:VT ,ADI'lI(

.rVTD'!'
*"0' ,~Ar"DR

."ArRO
'. Mf: ALL
'. ff'
.bMr"f
.FNrc

.rVTDT

.H1(,!DF'
NFl,'.VAU'
.VAL2

.CDF,.AnD~,.VAL~,~VAL~

,.TF N~,.VAU
.A~I'lr:F .IIAU
.FNI':C
• H1(~OF,' • "DrR
~ AMrCF .r.DF.
F.~·T c "C~6"
'. FNr'-'

."ArRn .GTPLA
CLR "(SF')
~rv ~"05,~CSP'
E"'T <"e.41>
~J:'N"'~

."ArRD .STPLA .AonR
'.MeAtL .HH1CF
'.u~"'''F. ,4DrR
~r.v ~"o~,.(gp,

EMT <.1.0.41>
.RN!""

.MArRt'l .GTO!
"rw ~"nn1, .. (Sp~
EMT <"Od1>
'. F'Nr"

.~TSTI(
"(SP)
*"Od,·(5P'

.".4rRrI
CI R
~!'1V
EMT <AOII1>

."'ArRn

.MeAt!
• A "'I"'DJ:

.1i!TSTI(
• A Mnr'IF

~ADDR

. ,

G-6

(

(

(

(
\

(

N~V ~~O.,.(SP'

P'T < ~ Ij.d 1 >
.FNrN

.UArR~ .pw~ .RNRLK

.'-'CAU .~Nr,l')f

.A~"'r.F .RNflL!l
E ~'T < ... C f fl >
I J:" ~.II" /I

,~ArRn ,FLL5~ .rDF
."'CAII .ANe!)F
• AMrI:~F .rDf
E"T <AC'lf7>
.f;Nrt.'

T~E MACRO .ANnDF AcrEPT~ Q~F ARGLME~T AND
A~ A FUNCTlr~ OF THF ADnRfsqI~G MrCE nF
HE APG!IMf~T r,f~E~ATE!I; THE APPRrPRIATF.
IJrv T" _(~R'.

ArI)RE~A MrnF.S THAT ARE TROU~Lfsr~f rEIG~
xtsP,) rR L~LrKF.LV rf~G~ SP' ~IlL RFSULT

• I~ A ~ERHrR Tr rM~ INrLUDI~~ T~F
, VAUE OF Tf.j.F ADr.RES~ MorE (F.r,. x rSP'
, I~ REFRFSF~Tfr AS 1~0r6~), T~F aRGL~ENT ITSFLF
, A~D TWE TFXT "AnDRE~STN~ NcnF IlLFG6L A~ AV~TFM
; "ACPO APG'-NEI\TII'.

"

.TF IF,.SVM .. llr5
Mnv o6RG,-C~P'
• ~1 E Y I T
.Ft\iI"'C

ITF F~,.SvM~lIr7p.II01V
.TF LF,~svM~~r7-1I~6
~I"V •• R~,.(~P'
• ~'E y IT
.FNrr.
.FNI"'C

.TF F~,"SVMRllr6~."'O?e
M"V .ARr,,·(~P'
.uE~TT

.FNI"C

.IF F.~,.SVM~~r,4~-~04~

.!F LF~~SVM&AC7.An5
~nv .ARGJ.(~P'

."F.lIIT
-0 F"JI"'C
• F ~Jr. t':

.TF E~,.SVMRAr67-~O~7
Nrv .jRG,-(~P'

."'FlIIT
• J: N r: c:

p.qR~'* T'" r-HR7H­
, .,~,IJj/ADrR

• r., .. (R C'I 'T ,.. r ., - (R!II ,
, r.1X eRr,'!) Tr t-' lUFP'D

G-7

.FRPCR .SV,",

.cRT"T

.FN"'~

J:A~G ACDRE~SrNG MO~F ILLFGAL
J~S SYSTEM MArRC 'RGU~E~T:

HE ~ACRO ,r-ME SFTS L!P T~E FrUBIOel(
~TT~ 1MF ~cw ~PFN cnDF~

J T~F AnD~FSS OF THF FILERL~rK MU~T
: 8F TN A RFGTSTEP CRP TO RB',

• " A I'" IH'I • r 0 r, E • • F B U< •• ~!
.~TVPF .~V~,.FRLK

.'!'F LF"SV~"Ar;5
~nv~ ~~N •• AO~C:FRlK) J~e TC R5
.~El/IT

.FNr:r;

.fRPCP '.5V~
,.tlR!t-.T
.FNI"'''

,.FPLK AD"RFS~!NG Mr~~ TLiE~AL
'FCR~"P~~ FILE BlorK

G-8

(

(

(

(

(
\

H.l OPERATING THE TELETYPE

APPENDIX H

PERIPHERAL DEVICES

The ASR-33 Teletype is the basic input/output device for PDP-ll

computers. It consists of a printer, keyboard, paper tape reader,

and paper tape punch, all of which can be used either on-line under
program control or off-line. The Teletype controls (Figure H-l)

are described as they apply to the operation of the computer.

OFF

REL.

B. SP.

ON

START -
STOP -
FREE ~

OFF

LINE 0 LOCAL

Figure H-l ASR-33 Teletype Console

H.l.l Power Controls

LINE

OFF

LOCAL

H.1.2 Printer

The Teletype is energized and connected to the
computer as an input/output device, under
computer control.

The Teletype is de-energized.

The Teletype is energized for off-line opera­
tion.

The printer provides a typed copy of input and output at 10

characters per second, maximum.

H-l

H. 1 • 3 Keyboard

The Teletype keyboard is similar to a typewriter keyboard.

However, certain operational functions are shown on the upper part

of some of the key tops. These functions are activated by holding

down the CTRL key while depressing the desired key. For example,

when using the Text Editor, CTRL/U causes the current line of text

to be ignored.

Although the left and right square brackets are not visible on

the keyboard key tops, they are shown in Figure H-2 and are generated

by typing SHIFT/K and SHIFT/M, respectively. The ALT MODE key is

identified as ESC (ESCape) on some keyboards.

CDCDCDCDCDCDOCDG)G)C)O®
@G)QC7)@eQG)(V~®@@
8Q~G:)G)®QQCDe?C)®ee
8G)G)G)QG)Q)CDOGCD8

SPACE

Figure H-2 ASR-33 Teletype Keyboard

H.1.4. Paper Tape Reader

The paper tape reader is used to read data punched on eight­

channel perforated paper tape at a rate of 10 characters per sec­

ond, maximum. The reader controls are shown in Figure H-1 and

described below.

START

STOP

FREE

Activates the reader; reader sprocket wheel
is engaged and operative.

Deactivates the reader; reader sprocket wheel
is engaged but not operative.

Deactivates the reader; reader sprocket wheel
is disengaged.

H-2

(

(

(

(

(

The following procedure describes how to properly position

paper tape in the low-speed reader.

a. Raise the tape retainer cover.

b. Set reader control to FREE.

c. position the leader portion of the tape over the read
pens with the sprocket (feed) holes over the sprocket
(feed) wheel and with the arrow on the tape (printed
or cut) pointing outward.

d. Close the tape retainer cover.

e. Make sure that the tape moves freely.

f. Set reader control to START, and the tape will be read.

H.l.5 Paper Tape Punch

The paper tape punch is used to perforate eight-channel

rolled oiled paper tape at a maximum rate of 10 characters per

second. The punch controls are shown in Figure H-l and described

below.

RELease

B.SP

. ON (LOCK ON)

OFF (UNLOCK)

Disengages the tape to allow tape
removal or loading.

Backspaces the tape one space ~or each
firm depression of the B.SP button.

Activates the punch •

Deactivates the punch.

Blank leader/trailer tape is generated by:

1. Turning the TTY switch to LOCAL

2. Turning the low speed punch on (depress ON button)

3. Typing the HERE IS key

4. Turning the low speed punch off (depress OFF button)

5. Turning the TTY switch to LINE.

H.2 OPERATING TH~ HIGH-SPEED PAPER TAPE READER AND PUNCH UNITS

A high-speed paper tape reader and punch unit is pictured in

Figure H-3 and descriptions of the reader and punch units follow.

H-3

H.2.l Reader Unit

The high-speed paper tape reader is u.sed to read data from
eight-channel fan-folded (non-oiled) perforated paper tape photo­

electrically at a maximum rate of 300 characters per second.
Primary power is applied to the reader when the computer POWER -

switch is turned on. The reader is under program control. How­

ever, tape can be advanced past the photoelectric sensors without

causing input by pressing the reader FEED button.

H.2.2 Punch Unit

The high-speed paper tape punch is used to record computer

output on eight-channel fan-folded paper tape at a maximum rate of

50 characters per second. All characters are punched under program

cont~ol from the computer. Blank tape (feed holes only, no data)

may be produced by pressing the FEED button. Primary power is

available to the punch when the computer POWER switch is turned on.

PAPER TAPE

Tape retainer
cover control

PUNCH
Il:CdI FEED

OFF LINE

Figure H-3 High-Speed Paper Tape Reader/Punch

Paper tape is loaded into the reader as explained below.

1. Raise tape retainer cover.

2. Put tape into right-hand bin with channel one of the
tape toward the rear of the bin.

3. Place several folds of blank tape through the reader
and into the left-hand bin.

(

(

4.

5.

6.

Place the tape over the reader head with feed
engaged in the teeth of the sprocket wheel.

Close the tape retainer cover.

Depress the tape feed button until the leader
over the reader head.

CAUTION

Oiled paper tape should not be used in
the high-speed reader or punch - oil
collects dust and dirt which can cause
reader or punch errors.

H.3 THE LPll LINE PRINTER

holes

tape is

The LPll is a line printer with 80 column capacity, capable of

printing more than 300 lines per minute at a full 80 columns, and

more than 1100 lines per minute at 20 columns. The print rate is

dependent upon the data and the number of columns to be printed.

Characters are loaded into the printer memory via the Line

Printer Buffer (LPB) serially. When the memory becomes full (20

characters) the characters are automatically printed. This

continues until the 80 columns have been printed or a carriage

return, line feed, or form feed character is recognized.

H.3.1 Printer Control Panel

Figure H-4 illustrates the printer control panel on which are

mounted three indicator lights and three toggle switches.

Figure H-4

TOP
OF

FORM

PAPER
STEP

ON LINE

OFF LINE

Line Printer Control Panel

H-5

Operation of the lights and switches is as follows:

POWER light

READY light

ON LINE light

TOP OF FORM.switch

PAPER STEP switch

ON LINE/OFF LINE switch

H.3.2 Maintenance Panel

Glows red to indicate main power
switch (located inside cabinet) is
at ON position and power is available
to the printer.

Glows white, shortly after the POWER
light goes on to indicate that in­
ternal components have reached
synchronous state and the printer
is ready to operate.

Glows white to . indicate that ON .LINE/
OFF LINE toggle switch is in ON LINE
position.

This switch is tipped toward the
front of the cabinet to roll up the
form to the top of the succeeding
page. It is spring-returned to
center position,- and produces a
single top-of-form operation each
time it is actuated. The switch
is effective only when the printer
is off line.

Operates similarly to TOP OF FORM
but produces a single line step
each time it is actuated. It is
only effective with printer off line.

This two-position toggle switch is
spring-returned to center. When
momentarily positioned at ON LINE
it logically connects the printer
to the computer and causes the ON
LINE light to glow. Positioned
momentarily at OFF.LINE, the logical
connection to the computer is broken,
the ON LINE light goes off, and the
TOP OF FORM and PAPER STEP switches
are enabled.

The maintenance panel contains controls used for the line

printer's initial set-up and maintenance. It is accessible only

by opening the front cabinet door, located beneath the control panel.

This panel contains three switches, and three indicators.

(

(

c.

(

1. Main AC power swi tah ; (
2. PRINT INHIBIT switch - must be off (down) to enable printing;

3. DRUM GATE indicator - if lit, drum gate not properly
locked,

4. PAPER FAULT - if lit, check for no paper, or torn paper~

5. PRINT INHIBIT indicator - if lit, turn PRINT INHIBIT
switch off~

6. MASTER CLEAR switch - spring-loaded to off (down)~ if
toggled to on (up), resets printer logic, turns off
READY and ONLINE indicators.

H.3.3 Adjustment Controls

Controls are provided as listed in Table H-1.

Table H-1 Adjustment Controls

Control

Drum gate latch

Tractor paper width

Location

Gearshift type knob near
right~hand side of main­
tenance panel.

Function

Unlocks drum gate
which can then be
'swung open for access
to components on back.

(adjustment
Setscrew at far right of
tractor pressure plate
behind drum gate.

Adjusts right tractor
for various paper
widths~ left tractor
is factory adjusted.

\

Tractor horizontal
tension adjustment

COPIES CONTROL lever

Paper vertical ad­
justment control

TOp-of-form in­
dicators

Next to left side of
tractor paper width
adjustment.
Extreme upper right-hand
corner of cabinet just
above drum gate hinge.

Knob at upper left of
cabinet, directly above
right-hand side of
maintenance panel

Red arrows visible when
drum gate is swung open
one on each side of
paper directly below
tractor pressure plates

H-7

Adjusts horizontal
tension of paper.

Adjusts the distance
between hammer bank
and character drum
for different numbers
of printed copies.
Settings are: 1-2,
3 ... 4 and 5-6.

Adjusts vertical
alignment of printing
so that it prints on
lined paper. Can be
adjusted to plus or
minus one line and
may be adjusted while
the printer is in
operation.
Aligns paper during
loading.

H.3.4Loading Paper

1.

Follow the steps listed below to load paper into the printer.

Procedure

Open front door of cabinet to gain access to maintenance
panel and turn main AC power switch on. Verify that con­
trol panel POWER indicator lights.

2. Lift control panel TOP OF FORM switch and release to move
tractors to correct loading position.

3. Open the drum gate by moving the drum gate latch knob to the
left and up. Swing drum gate open.

4. Adjust right-hand tractor paper width adjustment for pnoper
paper width. This is accomplished by loosening the set
screw on the 8~-column model or by using the easy release
mechanism on the l2~ column model. Make certain that the
right-hand tractor is tightened in place after it is
adjusted.

5.

6.

7.

8.

9.

Open spring~loaded pressure plates on both tractors.

Load paper so that a perforation is pointed to by the two
red arrows (top-of-form indicators). Paper should lie
smoothly between tractors without wrinkling or tearing the
feed holes.

Close spring-loaded pressure plates on both tractors.

Adjust the COPIES CONTROL lever to the proper number for
the number of copies to be made. For example, set to 1-2
for single forms, set to 5-6 for six-part forms.

Close drum gate and lock into position with drum gate
latch. After approximately l~ seconds the control panel
READY indicator should light. If it does not, check to see
if any error is indicated. An error is indicated if one of
the following lights is on: DRUM GATE, PAPER FAULT, or
PRINT INHIBIT.

10. Lift TOP OF FORM switch several times to ensure paper is
feeding properly.

11. Set system to on-line mode by lifting ON LINE/OFF LINE
switch and verifying that ON LINE indicator lights.: At
this point, printed matter can be aligned with the paper
lines by rotating the paper vertical adjustment knob.

For further details on the LPll, refer to the LPll Line Printer
Manual, DEC-II-ODLPA-A-D.

H-B

(

(

(

(

(

H.4 THE TU10 MAGTAPE DRIVE

The TU10 is a magnetic tape drive which may be a 7- or 9-track

unit and which will record data in densities of 200, 556 or 800 bits

per inch.

Figure H-5 shows the magnetic tape drive control panel and its

schematic representation. Table H-2 shows the meaning assigned to

each indicator light and Table H-3 explains the function of each switch.

I PWR IILOADII RDY Imll END WILEI ~ PT PROT

I ~I~EII SEL IIWRT II FWD II REV II REwl

BGB PWR OFF OFF·LINE STOP'

8 [~}'B
BR REL SELECT REV

CP·0093

Figure H-5 Magnetic Tape Drive control Panel

H-9

Indicator

PWR
OFF-LINE
LOAD

SEL

RDY

WRT

LD PT

FWD
END PT

REV
FILE PROT

REW

Switch

Table H-2
.status Indicators

Procedure

Indicates that power is being supplied to the drive unit.
Indicates local operation by the control box.
.Indicates that the vacuum system has been enabled and
the unit is prepared to accept on-line or off-line commands.
Indicates t.he tape transport has been selected by the con~
troller (program). .
Indicates that the drive is ready to accept requests for
operation (provided the SEL light is also lit).
Indicates that the program has initiated a write opera­
tion in the tape transport.
Indicates that the tape mounted on this unit is at its
Load point (BOT marker is being sensed). REW command is
disabled.
Indicates that a forward command has been issued.
Indicates that the tape mounted on this unit is at its
end point (EOT marker is being sensed). FWD command is
disabled.
Indicates that a reverse command has been issued.
Indicates that the tape may not be written on (No Write
ring in tape reel).
Indicates that a rewind command has been issued.

Table H-3
Switch Functions

Function

PWR ON/OFF

ONLINE/OFFLINE

Controls power to the drive.

Transfers drive control to processor
(ON LINE) or enables local control box
control by operator (OFF LINE).

START/STOP

LQAD/BR REL

UNIT SELECT

FWD/REW/REV

Initiates or terminates tape movement.

LOAD position causes tape to be drawn
into vacuum columns.
Center position applies reel motion
brakes. .
BR RELposition releases reel motion
brakes.

Assigns a logical unit number (zero
through seven) to this drive.

Selects tape motion direction to be con­
trolled by START/STOP switch. FWD posi­
tion indicates transfer to take-up reel
until EOT (end of tape) marker is sensed,
REV position indicates transfer to file
reel until BOT (beginning of tape) marker
is sensed, REW position indicates transfer
as in REV at a higher tape speed; when the
tape stops at BOT, depressing the start
switch again causes tape to unload.

H-IO

·f·

(

<.

(

, ..

(

H.4.1 Operating Procedures

H.4.1.1 Loading and Threading Tape - Use .the following procedure to
mount and thread the tape:

2

3

4

5

6

7

8

9

10

Procedure
Apply power to the transport by depressing PWR ON
switch.

Ensure the LOAD/BR REL switch is in the center position
(this applies the brakes).

Place a write enable ring in the groove on the file
reel if data is to be written on the tape.

Ensure there is no ring in the groove if data on the
tape is not to be erased or written over.

Mount the file reel onto the lower hub with the groove
facing towards the back. Ensure that the reel is
firmly seated against the flange of the hub.

Install the take-up reel (top) as described in Step 4.

Place LOAD/BR REL switch to the BR REL position.

Unwind tape from the file reel and thread the tape
over the tape guides and head assembly as shown in
Figure H-6.

Wind about five turns of tape onto the take-up reel.

Set the LOAD/BR REL switch to the LOAD position to
draw tape into the vacuum columns.

Select FWD and press START to advance the tape to
Load Point. When the BOT marker is sensed, tape
motion stops, the FWD indicator goes out, and the
LOAD PT indicator comes on.

NOTE

If tape motion continues for more than 10 seconds,
press STOP, select REV (reverse) and press START.
The tape should move to the BOT marker (Load Point)
before stopping.

H.4.1.2

I

2

3

4

5

6

Unloading Tape - To unload the tape proceed as follows:

Procedure

Press OFF-LINE switch if the transport has been
operating in the on-line mode.

Press STOP switch and select REW.

Press START switch. The tape should rewind until
the BOT marker is reached.

Press the LOAD/BR REL switch to release the brakes.

Gently hand wind the file reel in a counterclockwise
direction until all of the tape is wound onto the
reel.

CAUTION

When handwinding the tape, do not jerk the reel.
This can stretch or compress the tape which could
cause irreparable damage.

Remove the file reel from the hub assembly.

TRANSPORT WILL I
'"l~~\'~tJiij'll\

[FAIL-SAFE CONDITION I , __ ,/

POSITIVE
TAPE TENSION
HOLDS TAPE AGAINST
CAPSTAN

R/W ERASE HEAD ASSEMBLY

NOTE: TAPE IS AUTOMATICALLY
DRAWN INTO VACUUM COLUMNS REEL TURNED OFF) 1 II,_~/I T'" "C~3c"~~'rT~~n~r

.". IS SET TO LOAD POSITION ~
WHENLOAD/8RRELSWITCH

,;.----;, TAPE GUIDE

LEFT VACUUM COLUMN

TAPE WILL BE EXTRACTED : :
FROM COLUMNll\ '

{TAKE-UP REEL TURNED ON) Ii'
TRANSPORT WILL I" /1

AUTOMATICALLY ,-.' I

I(

SHUTDOWN~ I

'--'-' I '~) :' I
Lf ~:"'--/1 VACUUM CHAMBER PORT ::

!TO VACUUM MOTOR) ~ \-G/

I~

RIGHT VACUUM
COLUMN

FLLEREEL
TURNED OFF

Figure H-6 Tape Transport Mechanism

H-12

(

(,

H.4.1.3 Restart After Power Failure - In the event of a power

failure, the DECmagtape automatically shuts down and tape motion

stops without damage to the tape. Return of power is indicated when

the PWR indicator lights. To restart the transport proceed as

follows:

Step

1

2

3

4

Procedure

Press the ~OAD/BR REL switch to release the brakes.

Manually wind the reels to take up any slack in the
tape.

Set the LOAD/BR REL switch to the LOAD position to
draw tape into the vacuum columns.

Set ON-LINE/OFF-LINE switch to the desired position
and continue operation.

H.4.l.4 Restart After Fail-Safe - If the tape loop in either buffer

column exceeds the limits shown in Figure H-6, 'the vacuum system

automatically shuts down and tape motion stops without damage to the

tape. When this fail-safe condition occurs, the DECmagtape does not

respond to on-line or off-line commands. To restart the transport,

perform Steps 1 through 4 in Paragraph H.4.l.3.

H.4.1.5 - Tape Handling - Observe the following precautions when

handling magnetic tape:

a. Always handle a tape reel by the hub hole; squeezing the
reel flanges can cause damage to the tape edges when winding
or unwinding tape.

b. Never touch the portion of tape between the BOT and EOT
markers. Oils from fingers attract dust and dirt. Do not
allow the end of the tape to drag on the floor.

c. Never use a contaminated reel of tape. This spreads dirt to
clean tape reels and can affect tape transport operation.

d. Always store tape reels inside their containers. Keep
empty containers closed so dust and dirt cannot get inside.

e. Inspect tapes, reels, and containers for dust and dirt.
Replace take-up reels that are old or damaged.

f. Do not smoke near the transport or tape storage area.
Tobacco smoke and ash are especiallY damaging to tape.

g. Do not place the DECmagtape near a line printer or other
device that produces paper dust.

h. Clean the tape path frequently as described in Paragraph
5.2.1.

H-13

H.S THE TCll DECTAPE DRIVE

Figure H-7 pictures the TCll DECtape drive unit. Table H-4

shows the meaning of each indicator lamp and Table H-S shows the
function of each switch.

Figure H-7 TCll DECtape Drive

To mount a DECtape on the TCll:

1. Move the LOCAL/REMOTE/OFF switch to the OFF position.

2. Mount a DECtape.by centering it over the left band hub
and pushing it firm1y onto the spring loaded hub.

3. Wind sufficient tape to wrap around the recording head
guides and the empty DEC tape reel which should be mounted
on the right hand hub.

4. Take up a few inches to tape on the right hand hub by hand.

5. Move the LOCAL/REMOTE/OFF switch to LOCAL position.

6. Depress the DEC tape motion switch to the LOAD position
until about 6 feet of tape are on the right hand hub.

H-14

.'

(

~,

7. Depress the WRITE PROTECT switch or write enable as
appropriate.

8. Assure that the unit number showing for this drive does
not show on any other drive.

9. Move the LOCAL/OFF/REMOTE switch to the remote position.

To dismount a DECtape from the TCll:

1. Move the LOCAL/OFF/REMOTE switch to the LOCAL position.

2. Depress the tape motion switch in the rewind direction (+)
until all the tape is on the left hand reel.

3. Move LOCAL/OFF/REMOTE switch to OFF position.

4. Pull the DECtape reel from the left hand hub.

H-lS

(

(

APPENDIX

COMMAND STRING INTERPRETER

I.I SYSTEM PROGRAM/USER PROGRAM COMMAND STRINGS

There is a single, general format for all system program

command strings.

may also do so.

Monitor routine,

Section 3.8.6.

All system programs use i,t, and any user program

These command strings are all processed by a

the Command String Interpreter (CSI) which is, in

Any program expecting such a command first types

on the console to indicate the fact to the operator. The general

format is

ds-spec G [ds-spec] •••]] ••• [<ds-spec] [, [ds-spec]] •••

where "ds-spec" represents a dataset specifier (described in the

next section), brackets indicate optional items, and elipsis (•••)

indicates that the preceding item may appear zero or more times.

Items preceding the < (if any) describe output datasets; those

which follow describe input datasets.

I.2 CSI COMMAND FORMAT

Whenever a system program requests input through the CSI, a

will be printed on the teleprinter (exception, ODT-IIR prints an
;

*) and the program will wait for the operator's reply. A CSI command

may consist of one or more output dataset specifications, followed

by <, followed'by one or more input. dataset specifications.

Spaces, horizontal TABs, and nulls may appear anywhere in the

string and are ignored. A command is terminated by typing the

RETURN key, which causes both carriage return and line feed char­

acters to be passed to the program. The line-feed character

'terminates the input. < need not occur. If it does, at least one

input file specification must appear. Only one < per command is

allowed. Commands can not be continued from line to line.

A dataset specification must be delimited by a comma. If no

items appear before the comma, it is interpreted as "this particular

positional field will not be used". For example, suppose a program

requires three (output) data specifications. Then the syntax:

I-I

Dataset Specification"Dataset Specification

indicates that the second (output) dataset specified will not be
generated.

Each dataset specification is a field which describes a data­

set. It generally contains information as to where to find the

dataset, the file name and extension if the dataset is a file, the

user identification code associated with the file, and one or more

switches which request various actions to be performed. A dataset

specification containing all of the above elements would appear as:

dev:filnam.ext[uic]/Swl:vl:···:vn/sw2:vl:···:vn'

where: dev = The device specification consisting of two or three
letters (and often an octal digit) terminated by a
colon. The letters identify the device and the digit
identifies the unit. Units must be given in octal.
The colon delimits this field with one exception;
only physical names as listed in Appendix A may be
specified. For example, DTAl: is the correct speci­
fication for DECtape, controller A, unit 1. The
exception is SY: which is a generic name for the
system residence device (e.g., on an RK system SY:
is equivalent to DK:). If no digit appears, unit 0
is assumed. If the device specification itself does
not appear, the device is assumed to be the device
last specified, on the current side of the <, if
there is one; otherwise, the system disk .(SY:) unit 0
is assumed.

Assumptions (defaults) do not carry across the <, i.e.,
from output to input. .

filnam = The file name specification consists of one or more
letters or digits, or exactly one asterisk. The
first six letters or digits specify the name. The
first character must be a letter. All letters and
digits in excess of six are ignored.

The file name need not appear if the device is not
file-structured or if the program can supply a name •

• ext = The extension specification consists of a period,
followed by one or more letters or digits, or followed
by exactly one asterisk. The first three letters or
digits specify the extension. All letters or digits
in excess of three are ignored.

The extension need not appear.

The asterisk is used to specify "all". For example:

*.EXT specifies all files with extension .EXT,

I-2

(

(

(

[uic]

Isw:vl:···:vn

FIL.* specifies all files with name FIL, and
. specifies all files and all extensions.

The User Identification Code (UIC) specification
consists of a left squa~e bracket, followed by one or
more octal digits or exactly one asterisk, followed
by a comma, followed by one or more octal digits or
exactly one asterisk, followed by a right square
bracket. The field to the left of the comma specifies
the user's group and the field to the right of the
comma specifies the user within the group. Both
fields must be given in octal, and the largest valid
octal number is 376 in both cases (0 is invalid).
For example, [12,136] is the correct specification
for user number 136 of user group 12.

NOTE

The left and right square brackets are not
visible on some keyboard keys; however, they
may be typed using SHIFT/K and SHIFT 1M,
respectively.

As in filnam and .ext, the asterisk specifies "all".
For example:

[* ,136] specifies all users whose number is 136
[12,*] specifies all members of user group 12, and
[* , *] specifies all users.

The user identification code need not appear, in which
case the default is the identification entered with
the LOGIN command.

= A switch specification consists of a slash (I),
followed by one or more letters or digits, and
optionally followed by one or more value specifica­
tions. A value specification is initially delimited
by a colon. The value itself can be null, or consist
of one or more letters, digits, periods, or dollar
signs. Other characters are illegal. The digits 8
and 9 are legal.

For examples: IDATE:12.20.69 might be a switch to
enter December 20, 1969 in a date field.

IDATE:12::69 might enter December, 1969 in a date
field.

Switches need not appear. If a switch does appear,
it need not contain more than one letter or digit
after the slash. For example:

IS and ISWITCH2 are both legal.

The first two characters after the slash uniquely
identify the switch. For example:

IS is treated as if it were IS null.
ISWITCHl and ISWITCH2 are both treated as ISW.

Table I-l summarizes the legal command syntax.

I-3

Table I-I

.CSI Command String Syntax Rules

Item Which Item Immediately Following
Last Appeared

, DEV: FILNAM .EXT UIC /SWITCH < Terminator *
blank 1 * * * E * * * * *
, * * * E * * * * *
DEV: * E * E * * * * *
FILNAM * E E * * * .* * E2

• EXT * E E E * * * * E

UIC * E E E E * * * E

/SWITCH * E E E E * * * E

< * * * E * * E E *

Legend: E indicates error. * indicates legal.

lThe next item encountered is the first item in the command string.

2 .* is legal following FILNAM.

For example, a device specification immediately followed by an exten­

sion specification is an error, whereas a file name specification

immediately followed by a comma is legal. Note that a/SWITCH

specification is always legal even alone. In such a case,' the system

device SY: and a null filename are assumed.

I.3 CSI COMMAND EXAMPLE

An example of a complete command is:

FloEl, ,DTAI :F2 .E2/S: 1<F3 .E3 [11,123] ,DT)3:F4 .E4/ABC ,F5 .E5

which is interpreted as explained below.

a. The first positional output dataset is to be a file named
Fl and will have extension El. It is to be put on disk unit 0,
and catalogued under the ID of the user who entered the command.
No switches are associated with this dataset.

b. The second positional output dataset will not be generated.

c. The third positional output dataset is to be in a file named
F2 and will have extension E2. It is to be put on the
DECtape which is mounted on unit 1 of controller A. This
file is to be catalogued under the ID of the user who entered
the command. The action indicated by switch S with value 1 is
to be performed on this dataset.

I-4

(

(

(

(

I,

(

d. The fourth and subsequent positional output dataset will not
be generated.

e. The first positional input dataset is a file named F3, and
its extension is E3. It can be found on disk unit 0, cata­
logued under the user number 123 of user group 11. No
switches are associated with this dataset.

f. The second positional input dataset is a file named F4, and
·its extension is E4. It can be found on the OECtape currently
mounted on controller B, unit O. Associate the IO of the user
who entered the command with this dataset. Perform the action
indicated by switch AB (not ABC) on this dataset. No values
are associated with toe switch.

g. The third positional input dataset is a file named F5 and its
extension is E5. It can be found on the OECtape currently
mounted on controller B, unit o. Associate the IO of the
user who entered the command with this dataset. No switches
are associated with this dataset.

h. The fourth and subsequent input data sets are not required.

I-5

r;'

"

APPENDIX J

SPECIAL 1/0 FUNCTIONS

Certain ~/O functions are sufficiently device-dependent that they

are beyond the scope of the File System. The .SPEC request (see

Section 3.6.12) is provided as a means of accommodating such functions.

A special function request requires one argument, which must be either

a code in the range 0-255 or a pointer to a special function block.

When a special function block is used, it must contain a code.

In general, special function codes will have similar meanings

from device to device. When a code has no meaning for a device, it

is treated as a no-ope Currently, special functions are defined

only for magtape.

J.l MAGTAPE FUNCTIONS

J.l.l Special Function Block

The magtape driver requires a special function block to perform

the special function requests. The following is the calling sequence

for magtape special functions and the special function block format:

.SPEC #LNKBLK, #SFBLK

..
SFBLK: • BYTE

• BYTE
• WORD
• WORD
• WORD

J.1.2 Functions

Code

1
2
3
4
5
6
7

Special function code
Words to follow (must be 3 or larger)
Tape unit status (returned by driver)
User specified count or control information
Residue count (returned by driver)

Function

Offline (rewind and unload)
Write End-of-File
Rewind
Skip Record(s)
Backspace Record(s)
Set Density and Parity
Obtain Status

J-l

J.I.2.1 OFFLINE (Rewind and Unload) - function Code I

This request causes the magtape to be rewound to the beginning­

of-tape (BOT) marker and SELECT REMOTE status to go off. If the

last command to the driver for this device was a WRITE, three EOF's

are written before rewinding. Thus, this function could cause data

to be lost if it is issued before a CLOSE during READ/WRITE processing.

J.I.2.2 WRITE END-OF-FILE - function Code 2

This request writes an end-of-file (EOF) record on magtape. It

may cause data to be lost as described under OFFLINE.

J.I.2.3 REWIND - function Code 3

The REWIND request performs the same function as OFFLINE except

that the SELECT REMOTE status does not go off.

J.I.2.4 SKIP RECORD(S) - function Code 4

Skips forward over the requested number of records (SFBLK+4)

until either the SKIP count is exhausted or until an EOF record is

encountered, in which case the EOF is spaced over and counted, but

the operation terminates and a residue count (SFBLK+6) is returned

(if any).

J.I.2.5 BACKSPACE RECORD(S) - function Code 5

This request skips backwards over the requested number of rec­

ords until either the SKIP count is exhausted or an EOF or the BOT

marker is encountered. If an EOF is encountered it is spaced over

and counted, but the operation terminates and a residue count is

returned (if any). If the BOT marker is encountered, it is not

skipped or counted. Instead, the operation is terminated and a

residue count is returned.

J.l.2.6 SET DENSITY AND PARITY - function Code 6

This request is ignored for 9-track tapes; it sets density and

parity as follows for 7-track tapes:

J-2

(

(

(

(

<,

c

DENSITY (SFBLK+5) PARITY (SFBLK+4)

~ = 2~~ BPI
1 556 BPI
2 = 8~~ BPI
3= 800 BPI Dump Mode

~ = ODD
1 = EVEN

The default density and parity are 8~~ BpI Dump Mode, ODD. In

this mode, one byte from core is represented as two bytes on 7-track

magtape. Changing from this default causes one byte from core to

be represented by one byte on tape with a loss of the two high order

bits (6-7) of the byte.

J.I.2.7 TAPE UNIT STATUS - function Code 7

This request returns the current status of the tape unit in

SFBLK+2 in the following form:

Bits

~ - 2

3 - 6

7

8

9

l~

11

12

13 - 14

15

Content

Last command was:

~ = OFFLINE
1 READ
2 = WB.ITE
3 = WRITE EOF
4 = REWIND
5 = SKIP RECORD
6 = BACKSPACE RECORD

Unused.

1 = TAPE AFTER EOF (BEFORE EOF IF LAST
COMMAND WAS BACKSPACE)

1 = TAPE AT BOT MARKER

1 = TAPE AFTER EOT MARKER

1 WRITE LOCK ON

PARITY:

~ = ODD
1 EVEN (DEFAULT ODD)

~ = 9 TRACK
1 7 TRACK

DENSITY:

~ = 2~~ BPI
1 556 BPI
2 = 8~~ BPI
3 = 8~~ BPI DUMP MODE

1 = LAST COMMAND CAUSED ERROR

Tape unit status is returned in SFBLK+2 for all special functions.

J-3

APPENDIX K

PROGRAMS

K.l The two following example program listings illustrate

methods for utilizing DOS monitor services. Note that the

assembly language expansions of the programmed requests

are used. Users with less than 12K of core should code

their programs as illustrated and assemble the resultant

code with the 8K assembler. Users with 12K of core or more

may replace the assembly language expansion code with ap­

propriate programmed requests and assemble with MACRO-ll.

K-l

Example Program #1

00000111

0001'104
00~0!O6

ehHHH2
0\110014

00fi!l020

1301411.124
01/10025

00i!!10~2

0000JS
00fd040

00~044

00~0!)eJ
000111~2

00fil05t5
\'l[i)1!l0()0

0011064
~0~(!l66

0~(6072
0~ldtll14

liHHHiIl0

0~010'
i2101l!10!5

fiHi5 ~ 111 (JIf.i
00(l!01i'11
~0~iIlQl~
00(l!Ii!CII3
000004
e!100~~5
000\l1(116
e!e!(1~07
00001:5
\il~0~U
000011
~01!'11(l!7

0127.s6'Bp::GtNI
000~12
H')40~6

111 1:27 MP
~\110324
1040Ci\5
IfIl:?7.sf)!
"0~34~
012746'
0fli{,ll312
1I1!4J(11~

0127461
fIl00355
01~14~1
000324
10401/;
0U746'
OHI((!370
P1U7"6 1
01i11l'!312
lfi!l400~
012 7 iHlI
~001711
'?l0!5"'~0 1..!'10Pl:
02Q1027'
vH')~3(l!2

Hl3714
012746 1
01i:lrll31~
1040('11
i/IIl~146'
0001"2
~12146'
~HW324
1Q.I!lkl~4

~127/:l(P
liH'f'lliS~4

,PROGRAM ~HIC~ TY~ES A MESSAGE ON T~E TEL~TPE wHILE
'ACCEPTING A MESSAGf FROM THE KEY80A~D. PRO~RAM RePEATS

RilI·~0
Rl=U
R2·"'2
RJ=l(3
R'=l(4
R5=%5
SP·"6
PC 11:<7
C~·15
I,.F-12
HTll11
fi.RQR=107

MOV I:fI,.NK1, .. ($P'

EMf 6
MOv ttI..NK2,-(SP)

EMT 6
MOV .FH.t,·CSP)

MOV ttI..Nl(l,"(SP)

EMf 16
MOV .FIl.2, .. (SP)

MOV I:tI..NK2, .. ($P)

t. "IT. 16

, INn I..IIlKt

lINIT I..NI<2

'OPEN FOR OUTPUT

'OPEN FO~ INP\JT

MOV #MSG1,-CSP) 'WRX H: THE MESSAGE

M()V #I.. Nl(l,"(SP,

EM' 2
MOV HI..I81+S,RPl 1SF.:'T THE BUHER POINTER

eLM (R0)+ 'CLEAR THE .ADDRE$S ANn INCRE~ENT
CMP R0,I:tLI81.~0. :END OF BuFFER?

~1..0 LOOPl ;NO, GO BACK I cONTIN0E elfARING
MOV #I,.NK1,-CSP) ;VEs,eONTINuE

EMT 1
MOV 1:11..181,-(81') JNa,~EAO LNK2,LIBl

~MT 4
MOV ttLNK2,-(SP) lWA!T

K-2

(

(

(

(

(

000112
000114

000 UH!
000124

flJlllfll130
0001~2

000136
0001 4 0

0"~144
0!l1014f1

0~0152
01110154

00id162
00121 tel 4
0!iHH65
00illt5e

0;a0310
000312
000314
000316
000311
00032~

1210~322
12100324
000326
0~Ii!~U0
0003$1
000332

;'00334
00!d33e
000337
000340
0~0342
00W'344

1040'211
132761
000101
000043
001.~16
01~748'
elVlCl\3U
104il'l1 1
0127MP
000324
104011
0U74tP
000 3 12
104007
0l27M.P
000324
104001
00\1167
17762{(!

e:RRlI
fRR2:
ERR3'

00~12!1l LItHI
0(110
12100

0!'!! ,,0 G'I 0
000;' U

00016~'
00121121121121 \.Nl<ll
0U~~7

!.1U
IflQlill

042420

0!1!0150'
01210000 I.NK21
016030

001
000

e4,42~

00~000
~0~
01/10

0121(1112100 FII.\ I
01210121"'0
0121001!'0

tMT 1
BITB _EROR,!..I81+3 JANV f.-::RRORS?

SNE ERR3 'VfS,GO 10 THE ER.ROR"3
MOv ~I..Nl<l, .. (SF) 'NO, .CLOSE L~1<1

EMT 17
MOV "I..NK2,"(SP)

EMT 17
MOV '*L.Nl<l,"{SP)

EM'f 7
MOV #!..NI<2,"CSP,

Er.tr 7
J"1P BEGIN

,"'O~I) 80,
.RnE 0,0

'.CLOSE I.N!<2

J.Rl,SE l,Nl<l

I.RLSr:: L.,N!<2

'MAX BYTE COUNT
'FQ~MATHD ASCI!

,~ORO 121 ,ACTUAl. 8VTE COUNT
, = 8 0 t, , R E $ E R VEl H E ~ U F n: R SPA C E.

.~OQD eRR1 '~RRO~ QETURN
,WORD 0'POI/ijT~R
.RADS0 IDS11 'LOGICAl. NAME
.BYTE 1,0 'UNIT ~

,RAr)50 IKBI

• '~ORO ERR2
.lfiORD (II

,RA050 10521
,SHE 1,0

.RAD50 11<81

Jt<EVBOARD

,WORD 0 ,GO TO ,ATAL ERROR MESSAGE
,BYTE 2,121 lOPEN FO~ OUTPUT

K-3

"OD~€SS

0(~03415 1i)~0i.!!(.1(l

Vl~I(JJ:>0 \1V1(}!i1l~h1

0!J~352
l:I((lil.l354
!!1\~fil3i,)5
0"'0356
vJ0rJ3S(.1
000362
0~0364
000366

. et (~(a:3 '\Ii
0!d0312
000373
00113'4
000375
0~0377
0~~4~0

0vH14fr.ll
00il!402
01/l041d3
011i0404
0~!(l4~5

0~0406
000401
0130410
0e!!il411
~~0412
ItHHl413
0~\:1414
0(~0415
0~HI41(j
000417
0~0420
00't.421
0i~ki42~
!.lI~0423
0f1}Vl,,24
00V,1420
00vl42~
0~1Z!427
0~0cl30
000431
00 11 432
1tl~0433
~~0434
0\Ai/:!635
00!d435
0'~0437
00144 4 0
001(14 4 1
11HH1442
0004 4 3
000444

000!J(i\@
iil04
(!Ik'I~

0001t\ltil
M000!J
ii'0~0?0
i'I\lIc;>,\il9Hd
0001Oil!0

00021'"
00lil
0e0

0002~5
015
itl12
~H 1
V? 4 \~
123
120
105
1(.;1
113
C!l41i1
1~2
111
125
107
1 Pl
114
13\
11~~

1:24
tt7
~!40

1. ~~ 1
117
1~5

1~2
~dlil

1 t 4
111
124
124
11. 4
1~:)

04'11
lr,q
it'
131
060
0\0
012

.~O~D 0 :GO To ~ATAL E~RCR
,BYTE 4,0 JOPEN FOR INPUT

.WORD 210

.BYTE 0,~
1 M Ali' iH TE C Cl U rJ T 5
;I"t)RMATnD ASCrr

.~O~D M5GENO~MSG1.~

.BYTE CR,l.p,HT

K-4

;.CrUIL ~VTE COJNr

(

(

(

0~0445 011
0~il!446 000
0~r;,447 040 .ASCII I ANO BE.AT HTM !'!!oIEN HE. SNHZES I
0~04~0 101
0004~1 116
0004!5a 1(~4

0~f11453 (1140
0\110454 1112

<.:;
000455 1\li5
0004f)6 101
i2100457 124
04110460 040
000401 11 eJ
000462 111
0411111463 11 ~
000464 04~
0~\()465 12·1
0004~H\ 110
0(~0461 1~5
0004'~ 1\"
000471 04\~
MI0472 1\0
0~\1413 105
0'dQl474 04h)
00i1l41/S 123
0~047e 115
000471 105
000fhh" 105
000501 132
0016;1112 105
000S03 123
00~504 040
"\~io!!5~5 0U~ .aYTE CR,L.F,MT
ill(.' 0 IS 0 S iiH2
0r.,115'41 011
0",~510 040 ,ASCII I HE ON,-y DOES IT TO ANNOY I
000511 110
000512 U5
0\1V1513 t1,'!1
000!:\14 117
~HIVJ!":i15 116
000!ile 114

Ie 000511 131
11)00520 040
00~521 104
00052.2 117

". (/100523 1·05
000524 1~3
0005ii!:5 040
0~052"'1 111
0~0527 124
0i.1J05h 040
~h'~531 124
0i~0U2 1\1
0~053.3 040
0id0!5~4 1~1

(

K-5

116
118
117
131
040
01~ .BVTE CR,~P,HT
012
011

0005"5
00053e
0\10531
000540
000541
0~05·2
000543
Ql005'.
0~05·5
000546
000547
00~501il
1d0 I!'J 5:1 1
~<aI(H)52
000553
001iHi54
12100555
0~~558
ilHH15~7
0~051!10
0;~0561
0eJi1I5B2
0!Hl553
000564
00~H:l6!5
'd005615
000!;67
\11016510
000571
01/l~H;'2
01i'l0573
12100574
l1HHH515
0100576
~!i'lkl!S71
~ IijlilflS0 ~
~00501
{lI00602

0~0 .ASCII I BECAUSE HE KNOWS IT nAS~~S I

BEGIN
ERR!
PIlo1
I..F
L.N1<2
MSG1
Rl
R4

1~2
105
103
101
12~ -
123
11?J5
040
110
105
\lJ40
1 \ 3
11 e
111
127
1,;,
040
1\1
124
~40

1~4
1~!'S
101
123
105
U~
"40
01~ .BVTE CR,LF
ItIU

~00603 MsGENDa.
000604 .EVEN

0(1101?l~I'IR

!tI01il16QIR
et00341I'1R

II 0~fII012
0003241R
0~031{ilR

a~0Ml~01
= U!1!f1l0V1 01
II 1i'J0!ilf;;'l"~

• ENt)

CR
ERR2
nL2
LIBl
LCIQPl
PC
R2
R5

= 000015
0~~16Q\R
~H'03~~H~
!i1i1:!016:?~
~~idli.'!!)6R

·%000007
·X0tJl((!PJ02
• ''0 vH:'1 005

K-6

f.~nR
ERR3
folT
LNl<t
I'1SGENO
R0
~3

sP

II 1i"~01\IJ7
0:"~ lI'iCIJR

1;1 ~Vl~~l1.

0~0312~
a 0 liHHHI) 3 R
=%~~i(lrl!~~

="0~k'I~H1l3
• " ~ ;1\ !iHHt! !5

(

(

(

L-

/
\

<,

(

Example Program #2

000000

00012104
000fl111J8

0013012
000014

000020
00\1022

0QJ~02B
000030

0000;)4

000042

i210004/5

\1J000!52

0000:,)5

0VJ01(162
01i'J00(54

000010
0~0012

000016

0r~0102
011HiH~4

0014 110
000112

0111000~

0i!l000t5
00Q10~1
0iiH~ilIl!5
000012
000~lt
000004
00(l!~02
1210010,1
040000
1300107

P~OGRAM TO OUP~ICATE A PAPER TAPE
USlNG TRAN.LEVE~ REQUEST$

110;X0
SP'X6
Pc:-U
CRI\5
LF-12
';Tlll
RD-04 , T!UNBI.OCK F'I)NCTION
W,U02 ,TRANBI,.OCI< FUNCTION,
GIU1 ,ASCII G

eOOf FOR .REAO
COOE FOR ,WRITE

EOOl400!2!0 ,TRANBI.OCK FUNCTION/STATUS-EOD
fRORI101

0U'4IPBEGINI MOV '*L.NK1,"'(SP) I.lNIT L.NKl
00041t.:l
10400ei Er-lT " 01274~51 MaV '*I..NK2,-(SP) I.INlT I.. Nl(2
000430
l1iJ4!D06 EMT 6
0127.Hill Mav *1L,NK3, ... (SP) 'INITI.NI<3
000346
10401116 EMT 6
0U1 .. tP MOV jtL.Ni(4,-($P) '.INIT LNI<4
000312
104 01i'16 EMT e
k'l~HHHI1 STARTI CL.R. FL"AGl 'ZERO ENO FI..AG
000210
012757 MOV '*1"0.,61..1<1+4 ,INITIAI.IZE BuFFER SIZE
0(H~144
000344
t11050e' C:L.~ BUFi+6 , INITIAL"Il~ INPUT auFF'E~

Il,iliH13tlS
005061 CI,.R BUF'l+10 ,INITIAL.IZE INPUT BUFFER
000314
0121MP MOV jt!'1SG1,·(SP) ,.wRITE L.~l<3,MSG1
000246
01274~i1 MOV #I.Nl(3, .(SP)
000346
104002 EMf 2
0127461 MOV '*L.NK3,110 CSP) '.~AIT l.NK3
001213415
104001 t::MT 1
01274!5I MOV '*'HJF1,-CSp) I.READ L.Nt<4,aUFl
Q!I/I(II3515
iilU746 1 MOV ItI.N!<4,IIO(SP)
"'0",312
11'1401214 EMT 4
0127MSI MOV ItI..Nl<4,·CSP) I.WAIT 1..[\11<4
000372
1",4001 Et.1T 1
13\?161 SITB ItEROR, f\Uf' t +3
000101
011:10241

K-7

(
\.

0~V1120 00t0!5~ BNE ERR6
001l112~ 122167 eMPS ItG,aUF1·6 1G?

~0~1~1
0M>234

0001i50 00\331 BNt-: START 'NO
001b132 1127f11 lnOpfifl MOVe ,IIRQ,IH .. Kl+6 ,YES,SET UP REAl)

000004
~00250

0i11~140 0121,.~p . MOV Jt6I.,i<1, .. (SP) ,.rRAN L,NI<1,BI..Kl
00M02

000144 0121AtP MOV "L.N~ 1, ... (Sp)
l(1Q!et4tS

0P.l0150 10401 ill EMT 10 ~

000152 0U'·BI MOV ItI..Nt<l, .. CSP) ,.I'lAIT 1..1\11(1
000 4 15

01d!i11:)5 104ihll EMT 1
0rMi}J ~tl 1C13~167 BIT ,*EOOrfH.1<1+6 ,TEST Fl)NCTlON FOR ED!)

0400p!~

000222
0\110166 001406 SEQ LOOPI'I
000110 HHS767 ENOM. SUB

000216
61..1<1+10,6LI<1+4 ,iotESn WORDC:OWNT TO FI~JAL

21013210

001i!1176 012767 MOV Itl,FL.AG1
, 6ufFE~'S SIZE
151:;T EOO .. FL.AG

000fil01
li.!ilI~~4Vl

(0~0U4 1127s1 L.OOPwl MO\l8 #iIIFf, BL.K 1+5 ,SET Lip .. Rtf!!:.
000002
000176

000212 012746' MOlt 11161..1<1, ... eSP) 1. fRAN I,.NK.2,BI."t<1
000402

0002115 0127451 MOV ~L.NI(2,·(SF')
001il4~0

000222 104010 t: ~T 10
000224 012 7 46 1 MOV "I..N!<2, .. (SP) "~"!T I.NK~

000430
000230 10A~01 EMT 1
000Ue 11'!05767 TST FI..AGl

11)1('11210015
'END Of OAT A?

000236 001274 BNE SURT ,YES,STAR'T OVER
00!iJ240 000734 BR 1..00PR ,NO, Gn MORE

IE~Rll f
ERR2.
e:Ri(;!1
ER~41
fRR51
ERRs.
ERl'i11

011'10242 104060 EMT 60 JEICH ON ANY ERROR
000244 00fi1 fd0 I/) FI..AGll .WORO 0 ,1;;>EOP Rt::CEIVEO Q~ READ
00~246 0001M7 MSGn .~OR') 5'.
11100260 1!10~ ,Bne: 0,0
000251 000
000252 000061 . ,WORD 55,
000254 015 ,BYTE CR,L.F,HT

C

K-8

000255 012
000256 ~11
1lI0\62~7 114 • ,ASCII II..OAO TAPE INTO READ.e:RI
000260 1 t 7
000261 101
000262 104
00111263 04f!1
000264 124

,f~ 0i3~26:S 101
000265 120
000261 105
000210 ~40

"f.,.. 000a71 111
iUfII212 116
(1)(110273 124
000214 111
00027~ 04111
00021e 122
000277 105
00"'U!t!I 101
000~01 104
000302 1~5
000303 122
000304 ~U .BYTE CR,L.F,HT
00031115 012
00030& 011
00~31/l1 120 • A$C II IF'USfi G, CR WHEN READYI
00ta;.U0 125
000311 123
1:)0\6312 110
000313 ftl40
000314 040
000315 04~
0011131(5 04ta
000311 101
000320 054
01210321 04111
00~322 103
00032;5 U2
000324 040
01/11i132f) 04~
00~326 a40

/ (Un27 12'
00i6:$30 110
0003~1 1~:5
001"332 1 t 6
0015333 040
00n~4 122
1/l0033r) 105
(n~3i)6 101
000337 104
000340 Ul
~0U41 015 .SYrE CR,I.F"
000342 "12

000"44 ,EVEN
000344 000242' .I'jO~O ERR3

K-9

(

01110345 00Ll!000 I..I\IK31 .I4IORO 0
0003~0 0161!l21 .RAD50 10511
001t'1352 001 .BYTE 1,0
01il0353 000
0003:)4 e42420 .RA050 Il<al
0003~e 0~H1J00 4 BUF!f .iOIO~O 4
0~!i'l360 0~0 .8YTE 0,0 ~,

0021361 000
000362 000O,,4 .wORD 4

000310 ,
13013370 ,EVEN

"" 000310 00111242 , ,wORD ERR4
000312 0000!?!0 L.NK41 ,\lIORD 0
000374 016021 .~A050 10511
0003715 IHH • BYTe: 1, "
000317 000
000400 042420 .RA050 IK61
000402 000000 BlK!1 .WOqO 0
0004ib4 i/l0044~1 .WORD BUf2
0004015 000144 ,WORD 100.
001C'l4U 000000 ,wORD 0
0",111412 000000 ,\IIORD 0
000414 000242 , ,wORD ERR3
0004U 000000 I..NKtc .WORD (/)

000420 016031 .IUD50 10531
000422 "'01 .6HE 1, ill (000423 000
00042. 053320 .RA050 IPRI
000de 0002421 ,WORD ERR2
fiJ00.h 000000 I..N!<21 ,WORD 0
000432 016032 , U050 10541
01110434 001 .8YTE 1,'11
000435 ;'1210
0004;)6 0(53200 .RAO!50 IPPI

000604 BU"21 ,·,+10121.
000(1.101 .fiNO

BEUN 000C1!00R aL.t<l 000402R BUFI 0i{1~356R
SUFi 000440R cR • 000015 END'" Ql0011~R
EOO " 0.0000 EROR • 0!;H1107 ERR1 0Vl0242R
ERR2 000242R ERR3 0002 42R . eRR' 0~024~R

(

ERR5 000;?42R ERR6 00el242R ER~i' 0eJ0242R
FL.AGl 000244R G • 000107 ,~T !II f1! r.HjI \?l11
1..'

, 000012 I.. N!(l 00041t;R I.Ni<2 ~1'l0430R
1..1111<3 001tl346R l.NK4 0t<HiJ372R 1..00PR 000132R
L.OOPII! 0(11020.R MSG1 001tl24fiR PC ·XI(I!fl\!l\llVl7
RO • 000Q104 R0 ;U0~000 sP .%0iIl0"'~6
START 0~:Hj030R l'iR " 0~(iH!Hll2 , • qH!10l;ilI4R

(

K-IO

(APPENDIX L

CONVERSION TABLES

L.l OCTAL-DECIMAL INTEGER CONVERSIONS

0 1 2 3 4 5 6 7

0000 0000 0001 0002 0003 0004 0005 0006 0007
0010 0008 0009 0010 0011 0012 0013 0014 0015
0020 0016 0017 0018 0019 0020 0021 0022 0023

0000 01000 0030 0024 0025 0026 0027 0028 0029 0030 0031
TO TO 0040 0032 0033 0034 0035 0036 0037 0038 0039

0577 0383 0050 0040 0041 0042 0043 0044 0045 0046 0047
(OCTAL) (DECIMAL) 0060 0048 0049 0050 0051 0052 0053 0054 0055

0070 0056 0057 0058 0059 0060 0061 0062 0063

0100 0064 0065 0066 0067 0068 0069 0070 0071
0110 0072 0073 0074 0075 0076 0077 0078 0079
0120 0080 10081 0082 0083 0084 0085 0086 0087
0130 0088 0089 01390 0091 0092 0093 0094 0095
0140 0096 0097 0098 0099 0100 0101 0102 0103
0150 0104 0105 0106 0107 0108 .. 0109 011.0 0111
0160 Q'112 0113 0114 0115 0116 0117 0118 0119
0170 0120 0121 0122 0123 0124 0125 0126 0127

0200 0128 0129 0130 0131 0132 0133 0134 0135
, - 0210 0136 0137 0138 0139 0140 0141 0142 0143

(
\ 0220 0144 0145 0146 0147 0148 0149 0150 0151

OCTAL DECU1AL 0230 0152 0153 0154 0155 0156 0157 0158 0159
1000 4096 0240 0160 0161 0162 0163 0164 0165 0166 0167
2000 8192 0250 0168 0169 0170 0171 0172 0173 0174 0175
3000 12288 0260 0176 0177 0178 0179 0180 0181 0182 0183
4000 16384 0270 0184 0185 0186 0187 0188 0189 0190 0191
5000 20480
6000 24576 0300 0192 0193 0194 0195 0196 0197 0198 0199
7000 28672 0310 0200 0201 0202 0203 0204 0205 0206 0207

0320 0208 0209 0210 0211 0212 0213 0214 0215
0330 0216 0217 0218 0219 0220 0221 0222 0223
0340 0224 0225 0226 0227 0228 0229 0230 0231
0350 0232 0233 0234 0235 0236 0237 0238 0239 .
0360 0240 0241 0242 0243 0244 0245 0246 0247

\' 0370 0248 0249 0250 0251 0252 0253 0254 0255

0400 0256 0257 0258 0259 0260 0261 0262 0263
0410 0264 0265 0266 0267 0268 0269 0270 0271

.,< 0420 0272 0273 0274 0275 0276 0277 0278 0279
0430 0280 0281 0282 0283 0284 0285 0286 0287
0440 0288 0289 0290 0291 0292 0293 0294 0295
0450 0296 0297 0298 0299 0300 0301 0302 0303
0460 0304 0305 0306 0307 0308 0309 0310 0311
0470 0312 0313 e.314 0315 0316 0317 0318 0319

0500 0320 0321 0322 0323 0324 0325 0326 0327
0510 0328 0329 0330 0331 0332 0333 0334 0335
0520 0336 0337 0338 0339 0340 0341 0342 0343
0530 0344 0345 0346 0347 0348 0349 0'350 0351

(
0540 0352 0353 0354 0355 0356 0357 0358 0359

'. 0550 0360 0361 0362 0363 0364 0365 0366 0367
0560 0368 0369 0370 0371 0372 0.373 0374 0375
0570 0376 0377 0378 0379 0380 0381 0382 0383

L-l

(
0 1 2 3 4 5 6 7

121600 0384 0385 0386 0387 0388 0389 0390 0391
0610 0392 0393 0394 0395 0396 0397 0398 0399
0620 0400 0401 0402 0403 0404 0405 0406 0407

~00. 0384 121630 0408 0409 0410 0411 0412 0413 0414 0415
TO TO 0640 0416 0417 0418 0419 0420 0421 0422 0423

1377 0767 0650 0424 0425 0426 0427 121428 0429 0430 0431
(OCTAL) (DECIMAL) 0660 0432 0433 0434 0435 0436 0437 0438 0439

0670 0440 0441 0442 0443 0444 0445 0446 0447
I"

0700 0448 0449 0450 0451 0452 0453 0454 0455
0710 0456 0457 0458 0459 0460 0461 0462 0463
0720 0464 0465 0466 0467 0468 0469 0470 0471
0730 0472 0473 0474 0475 0476 0477 0478 0479

..,

0740 0480 0481 0482 0483 0484 0485 0486 0487
0750 0488 0489 0490 0491 0492 0493 0494 ·0495
0760 0496 0497 0498 0499 0500 0501 0502 0503
0770 0504 0505 0506 0507 0508 0509 0510 0511

1000 0512 0513 0514 0515 0516 0517 0518 0519
1010 0520 0521 0522 0523 0524 0525 0526 0527
1020 0528 0529 0530 0531 0532 0533 0534 0535

OCTAL DECIMAL 1030 0536 0537 0538 0539 0540 0541 0542 0543
1000 4096 1040 0544 0545 0546 0547 0548 0549 0550 121551
2000 8192 1050 0552 0553 0554 0555 0556 0557 0558 0559
3000 12288 1060 0560 0561 0562 0563 0564 0565 0566 0567
4000 16384 1070 0568 0569 0570 0571 0572 0573 0574 0575
5000 20480
6000 24576 1100 0576 0577 0578 0579 121580 0581 0582 121583 (
7000 28672 1110 121584 0585 0586 0587 0588 0589 0590 0591 '.

1120 0592 0593 0594 0595 0596 0597 0598 0599
1130 0600 0601 0602 0603 0604 0605 0606 0607
1140 0608 0609 0610 0611 0612 0613 0614 0615
1150 0616 0617 121618 0619 0620 0621 0622 0623
1160 0624 0625 0626 0627 0628 0629 063121 0631
1170 0632 0633 0634 0635 0636 0637 0638 0639

1200 0640 0641 0642 0643 0644 0645 0646 0647
1210 0648 0649 0650 0651 0652 0653 0654 0655
1220 0656 0657 0658 0659 0660 0661 0662 0663
1230 0664 0665 0666 0667 0668 0669 0670 0671
1240 0672 0673 0674 0675 0676 0677 0678 0679
1250 0680 0681 0682 0683 0684 0685 0686 0687
1260 0688 0689 0690 0691 0692 0693 0694 0695 ~

1270 0696 0697 0698 0699 0700 07fiH 0702 0703

1300 07e<4 0705 0706 0707 07eB 0709 071 (l (;'711
1310 0712 0713 0714 0715 0716 0717 0718 0719 ".
1320 0720 0721 0722 0723 0724 0725 0726 0727
1330 0728 0729 0730 0731 0732 0733 0734 0735
134121 0736 0737 0738 0739 0740 0741 0742 0743
1350 0744 0745 0746 0747 0748 0749 0750 0751
1360 0752 0753 0754 r,755 0756 0757 0758 0759
1370 0760 0761 0762 0763 0764 0765 0766 0767

(

L-2

(
0 1 2 3 4 5 6 7

1400 13768 0769 0770 0771 13172 0773 0774 0775
1410 0776 0777 0778 0779 0780 0781 0782 0783·
1420 0784 0785 0786 0787 0788 0789 0790 0791

141013 0768 1430 0792 0793 0794 0795 0796 0797 0798 0799
TO TO 1440 0800 0801 0802 0803 0804 0805 0806 0807

2171 1151 1450 0808 0809 0810 0811 0812 0813 0814 0815
(OCTAL> (DECIMAL> 1460 0816 0817 0818 0819 0820 0821 0822 0823

.<~ 1470 0824 0825 0826 0827 0828 0829 0830 0831

1500 0832 0833 0834 0835 0836 ~837 0838 0839
1510 0840 0841 0842 0843 0844 0845 0846 0847
1520 0848 0849 0850 0851 0852 0853 0854 0855
1530 0856 0857 0858 0859 0860 0861 0862 0863
1540 0864 0865 0866 0867 0868 0869 087(2' 0871
1550 0872 0873 0874 0875 0876 0877 0878 0879
1560 0880 0881 0882 0883 0884 0885 0886 0887
1570 0888 0889 0890 0891 0892 0893 0894 0895

. 1600 0896 0897 0898 0899 0900 0901 0902 0903
1610 0904 0905 0906 0907 0908 0909 0910 0911
1620 0912 0913 0914 0915 0916 0917 0918 0919

OCTAL DECIMAL 163121 0920 0921 0922 0923 0924 121925 0926 121927
1000 4096 1640 0928 0929 0930 0931 0932 121933 0934 0935
2000 8192 1650 0936 121937 0938 0939 0940 0941 0942 0943
3000 12288 1660 0944 0945 0946 0947 0948 0949 0950 0951
4000 16384 1670 0952 0953 0954 0955 0956 0957 0958 0959

(5000 20480
6000 24576 1700 0960 0961 0962 0963 0964 0965 0966 0967
7000 28672 1710 0968 0969 0970 0971 0972 0973 0974 0975

1720 0976 0977 0978 0979 0980 0981 0982 0983
1730 0984 0985 0986 0987 0988 0989 0990 0991
1740 0992 0993 0994 0995 0996 0997 0998 0999
1750 1000 1001 1002 10e3 1004 1005 1006 1007
1760 1008 1009 1010 1011 1012 1013 1014 1015
1770 1016 1017 1018 1019 1020 1021 1022 1023

2000 1024 1025 1026 1027 1028 1029 1030 1031
2010 1032 1033 1034 1035 1036 1037 1038 1039
2020 1040 1041 1042 1043 1044 11045 1046 1047
2030 1048 1049 1050 1051 1052 1053 1054 1055
2040 1056 1057 1058 1059 1060 1061 1062 1063
2050 1064 1065 1066 1067 1068 1069 1070 1071
2060 1072 1073 1074 1075 1076 1077 1078 1079
2070 1080 1081 1082 1083 112'84 1085 1086 1087

2100 1088 1089 1090 1091 1092 1093 1094 1095.
2110 1096 1097 1098 1099 1100 1101 1102 1103
2120 1104 1105 1106 1107 1108 1109 1110 1111
2130 1112 1113 1114 11'15 1116 1117 1118 1119
2140 1120 1121 1122 1123 1124 1125 1126 1127
2150 1128 1129 1130 1131 1132 1133 1134 1135
2160 1136 1137 1138 1139 1140 1141 1142 1143
2170 1144 1145 ,1146 1147 1148 1149 1150 11 51

L-3

(
0 1 2 3 4 5 6 7

2200 1152 1153 1154 1155 1156 1151 1158 1159
2210 1160 1161 1162 1163 1164 1165 1166 1167
2220 1168 1169 1170 1171 1172 1173 1174 1175

2200 1152 2230 1176 1177 1178 1179 11 80 11 81 1182 1183
TO TO 2240 1184 1185 1186 1187 1188 1189 1190 1191

2:771 1535 2250 1192 1193 1194 1195 1196 1197 1198 1199
(OCTAL) (DEC! MA L) 2260 1200 1201 1202 1203 1204 1205 1206 1207

2270 1208 1209 1210 1 211 1212 1213 12141 21 5
ok-

2300 1216 1217 1218 1219 1220 1221 1222 1223
2310 1224 1225 1226 1227 1228 1229 1230 1231
2320 1232 1233 1234 1235 1236 1237 1238 1239
2330 o 1240 1241 1242 1243 1244 1245 1246 1247
2340 1248 1249 1250 1251 1252 1253 1254 1255
2350 1256 1257 1258 1259 1260 1261 1262 1263
2360 1264 1265 1266 1267 1268 1269 1270 1271
2370 1272 1273 1274 1275 1276 1277 1278 1279

2400 1280 1281 1282 1283 1284 1285 1286 1287
24100 1288 1289 1290 1291 1292 1293 1294 1295
2420 1296 1297 1298 1299 1300 1301 1302 1303

OCTAL DECIHAL 2430 1304 1305 1306 1307 1308 1309 1310 1 311
1000 4096 2440 1312 1313 1314 1315 1316 1317 1318 1319
2000 8192 2450 1320 1321 1322 1323 1324 1325 1326 1327
3000 12288 2460 1328 1329 1330 1331 1332 1333 1334 1335
4000 16384 2470 1336 1337 1338 1339 1340 1341 1342 1343
5000 20480

(6000 24576 2500 1344 1345 1346 1347 1348 1349 1350 1351
7000 28672 2510 1352 1353 1354 1355 1356 1357 1358 1359

2520 1360 1361 1362 1363 1364 1365 1366 1367
2530 1368 1369 1370 1371 1372 1373 1374 1375
2540 1376 1377 1378 1379 1380 1381 1382 1383
2550 1384 1385 1386 1387 1388 1389 1390 1391
2560 1392 1393 1394 1395 1396 1397 1398 1399
2570 1400 1401 1402 1403 1404 1405 1406 1407

2600 1408 1409 1410 1411 1412 1413 1414 1415
2610 1416 1417 1418 1419 1420 1421 1422 1423
2620 1424 1425 1426 1427 1428 1429 1430 1431
2630 1432 1433 1434 1435 1436 1437 1438 1439
2640 1440 1441 1442 1443 1444 1445 1446 1447
2650 1448 1449 1450 1451 1452 1453 1454 1455
2660 1456 1457 1458 1459 1460 1461 1462 1463 t,

o 2670 1464 1465 1466 1467 1468 1469 1470 1471

2700 1472 1473 1474 1475 1476 1477 1478 1479
2710 1480 1481 1482 1483 1484 1485 1486 1487
2720 1488 1489 1490 1491 1492 1493 1494 1495
2730 1496 1497 1498 1499 1500 1501 1502 1503
2740 1504 1505 1506 1507 1508 1509 1510 1 S11
2750 1512 1513 1514 1515 1516 1517 1518 1519
2760 1520 1521 1522 1523 1524 1525 1526 1527
2770 1528 1529 1530 1531 1532 1533 1534 1535

L-4

(
0 1 2 3 4 5 6 7

3000 1536 1537 .1538 1539 1540 1541 1542 1543
3010 1544 1545 1546 1547 1548 1549 1550 1551
3020 1552 1553 1554 1555 1556 1557 1558 1559

300121 1536 303121 1560 1561 1562 1563 1564 1565 1566 1567
TO TO 3040 1568 1569 1570 1571 1572 1573 1574 1575

3577 1919 3050 1576 1577 1578 1579 1580 1581 1582 1583
(OCTAL) (DECIMAL) 3060 1584 1585 1586 1587 1588 1589 1590 1591

3070 1592 1593 1594 1595 1596 1597 1598 1599
<~

3100 1600 1601 1602 1603 1604' 1605 1606 16{?)7
3110 1608 1609 1610 1611 1612 1613 1614 1615
3120 1616 1617 1618 1619 1620 1621 1622 1623
3130 1624 1625 1626 1627 1628 1629 1630 1631
3140 1632 1633 1634 1635 1636 1637 1638 1639
3150 1640 1641 1642 1643 1644 1645 1646 1647
3160 1648 1649 1650 1651 1652 1653 1654 1655
3170 1656 1657 1658 1659 1660 1661 1662 1663

320121 1664 1665 1666 1667 1668 1669 1670 1671
3210 1672 1673 1674 1675 1676 1677 1678 1679
3220 1680 1681 1682 1683 1684 1685 1686 1687

OCTAL DECI1"AL 3230 1688 1689 1690 1691 1692 1693 1694 1695

1000 4096 3240 1696 1697 1698 1699 1700 1701 17212 1703

2000 8192 3250 1704 1705 1706 1707 1708 1709 1710 1711

3000 12288 3260 1712 1713 1714 1715 1716 1717 1718 1719

4000 16384 3270 1720 1721 1722 1723 1724 1725 1726 1727

(
5000 20480
6000 24576 3300 1728 1729 1730 1731 1732 1733 1734 1735

7000 28672 3310 1736 1737 1738 1739 1740 1741 1,742 1743
3320 1744 1745 1746 1747 1748 1749 1750 1751
3330 1752 1753 1754 1755 1756 1757 1758 1759
3340 1760 1761 1762 1763 1764 1765 1766 1767
3350 1768 1769 1770 1771 1772 1773 1774 1775
3360 1776 1777 1778 1779 1780 1781 1782 1783
3370 1784 1785 1786 1787 1788 1789 1790 1791

3400 1792 1793 1794 1795 1796 1797 1798 1799

341'" 1 800 1801 18(62 1803 1804 1805 1806 1807
3420 1808 1809 1810 1811 1812 1813 1814 1815
3430 1816 1817 1818 1819 1820 1821 1822 1823
3440 1824 1825 1826 1827 1828 1829 1830 1831
34?0 1832 1833 1834 1835 1836 1837 1838 1839

(. 3460 1840 1841 1842 1843 1844 1845 1846 1847
3470 1848 1849 1850 1851 18521853 1854 1855

3500 1856 1857 1858 1859 1860 1861 1862 1863

'" 3510 1864 1865 186() 1867 1868 1869 1 8712i 1871
3520 1872 187.3 1874 1875 1876 1877 1878 1879
3530 1880 1881 1882 1883 1884 1885 1886 1887
3540 1888 1889 1890 1891 1892 1893 1894 1895
3550 1896 1897 1898 1899 1900 1901 1902 1903
3560 1904 1905 1906 1907 1908 1909 1910 1911
3570 191 2 1913 1914 1915 1916 1917 1918 1919

L-5

0 2 3 4 5 6 7
(

3600 1920 1921 1922 1923 1924 1925 1926 1927
3610 1928 1929 1930 1931 1932 1933 1934 1935
3620 1936 1937 1938 1939 1940 1941 1942 1943

3600 1920 3630 1944 1945 1946 1947 1948 1949 1950 1951
TO TO 3640 1952 1953 1954 1955 1956 1957 1958 1959

4377 2303 3650 1960 1961 1962 1963 1964 1965 1966 1967
(OCTAL) (DECI]$AL) 3660 1968 1969 1970 1971 1972 1973 1974 1975

3670 1976 1977 1978 1979 1980 1981 1982 1983

3700 1984 1985 1986 1987 1988 1989 1990 1991
3710 1992 1993 1994 1995 1996 1997 1998 1999
3720 2000 2001 2002 2003 2004 2005 2006 2007
3730 2008 2009 2010 2011 2012 2013 2014 2015
3740 2016 2017 2018 2019 2020 2021 2022 2023
3750 2024 2025 2026 2027 2028 2029 2030 2031
3760 2032 2033 2034 2035 2036 2037 2038 2039
3770 2040 2041 2042 2043 2044 2045 2046 2047

4000 2048 2049 2050 2051 2052 2053 2054 2055
4010 2056 2057 2058 2059 2060 2061 2062 2063
4020 2064 2065 2066 2067 2068 2069 2070 2071

OCTAL DECIl1AL 4030 2072 2073 2074 2075 2076 2077 2078 2079
1000 4096 4040 2080 2081 2082 2083 2084 2085 2086 2087
2000 8192 4050 2088 2089 2090 2091 2092 2093 2094 2095
3000 12288 4060 2096 2097 2098 2099 21013 2101 2102 2103
4000 16384 4070 2104 2105 2106 2107 2108 2109 2110 2111
5000 204813

/ 6000 24576 4100 2112 2113 2114 2115 2116 2117 2118 2119 (7000 28672 4110 2120 2121 2122 2123 2124 2125 2126 2127
4120 2128 2129 2130 2131 2132 2133 2134 2135
4130 2136 2137 2138 2139 2140 2141 2142 2143
4140 2144 2145 2146 2147 21413 2149 2150 2151
4150 2152 2153 2154 2155 2156 2157 2158 2159
4160 2160 2161 2162 2163 2164 2165 2166 2167
4170 2168 2169 2170 2171 2172 2173 2174 2175

4200 2176 2177 2178 2179 2HH~ 2181 2182 2183
4210 2184 2185 2186 2187 21E8 21'19 2190 2191
4220 2192 2193 2194 2195 2196 2197 2198 2199
4230 2200 2201 2202 2203 2204 2205 2206 2207
4240 2208 2209 2210 2211 2212 2213 2214 2215
4250 2216 2217 2218 2219 2220 2221 2222 2223
4260 2224 2225 2226 2227 2228 2229 2230 2231 e;

4270 2232 2233 2234 2235 2236 2237 2238 2239

4300 2240 2241 2242 2243 2244 2245 2246 2247
4310 2248 2249 2250 2251 2252 2253 2254 2255
4320 2256 2257 2258 2259 2260 2261 2262 2263
4330 2264 2265 2266 2267 2268 2269 2270 2271
4340 2272 2273 2274 2275 2276 2277 2278 2279
4350 2280 2281 2282 2283 2284 2285 2286 2287
4360 2288 2289 2290 2291 2292 2293 2294 2295
4370 2296 2297 2298 2299 2300 2301 2302 2303

(

L-6

0 2 3 4 5 6 7

4400 2304 2305 23('16 2307 2308 2309 2310 2311
4410 2312 2313 2314 2315 2316 2317 2318 2319
4420 2320 2321 2322 2323 2324 2325 2326 2327

4400 2304 4430 2328 2329 2330 2331 2332 2333 2334 2335
TO TO 4440 2336 2337 2338 2339 2340 2341 2342 2343

5177 2687 4450 2344 2345 2346 2347 2348 2349 2350 2351
(OCTAL) (DECIMAL) 4460 2352 2353 2354 2355 2356 2357 2358 2359

4470 2360 2361 2362 2363 2364 2365 2366 2367

4500 2368 2369 2370 2371 2372 2373 2374 2375
4510 2376 2377 2378 2379 2380 2381 2382 2383
4520 2384 2385 2386 2387 2388 2389 2390 2391
4530 2392 2393 2394 2395 2396 2397 2398 2399
4540 2400 2401 2402 2403 2404 2405 2406 2407
4550 2408 2409 2410 2411 2412 2413 2414 2415
4560 2416 2417 2418 2419 2420 2421. 2422 2423
4570 2424 2425 2426 2427 2428 2429 2430 2431

4600 2432 2433 2434 2435 2436 2437 2438 2439
4610 2440 2441 2442 2443 2444 2445 2446 2447
4620 2448 2449 2450 2451 2452 2453 2454 2455

OCTAL DECIMAL 4630 2456 2457 2458 2459 2460 2461 2462 2463
1000 4096 4640 2464 2465 2466 2467 2468 2469 2470 2471
2000 8192 4650 2472 2473 2474 2475 2476 2477 2478 2479
3000 12288 4660 2480 2481 2482 2483 2484 2485 2486 2487
4000 16384 4670 2488 2489 2490 2491 2492 2493 2494 2495
5000 20480
6000 24576 4700 2496 2497 2498 2499 2500 2501 2502 2503
7000 28672 4710 2504 2505 2506 2507 2508 2509 2510 2511

4720 2512 2513 2514 2515 2516 2517 2518 2519
4730 2520 2521 2522 2523 2524 2525 2526 ?S?7
4740 2528 2529 2530 2531 2532 2533 2534 2535
47'50 2536 2537 2538 2539 2540 2541 2542 2543
4760 2544 2545 2546 2547 25£':'8 2Ei49 255(', 2551
4770 2552 2553 2554 2555 2556 2557 2558 2559

5000 2560 2561 2562 2563 2564 2565 2566 2567
5010 2568 2569 2570 2571 2572 2573 2574 2575
5020 2576 2577 2578 2579 2580 2581 2582 2583
5030 2584 2585 2586 2587 2588 2589 2590 2591
5.040 2592 2593 2594 2595 2596 2597 2598 2599
5050 2600 2601 2602 2603 2604 2605 2606 2607
5060 2608 2609 261 (3 2611 2612 2613 2614 2615
5070 2616 2617 2618 2619 2620 2621 2622 2623

5100 2624 2625 2626 2627 2628 2629 2630 2631
5110 2632 2633 2634 2635 2636 2637 2632 2639
5120 2640 2641 2642 2643 2644 2645 2646 2647
5130 2648 2649 2650 2651 2652 2653 2654 2655
5140 2656 2657 2658 2659 2660 2661 2662 2663
5150 2664 2665 2666 2667 2668 2669 2670 2671
5160 2672 2673 2674 2675 2676 2677 2678 2679
5170 2680 2681 2682 2683 2684 2685 26C6 2687

L-7

0 2 3 4 5 6 7

5200 2688 2689 2690 2691 2692 2693 2694 2695
521 0 2696 2697 2698 2699 2700 2701 2702 2703
5220 2704 2705 2706 2707 2708 2709 2710 2711

5200 2688 5230 2712 2713 2714 2715 2716 2717 2718 2719
TO TO 5240 2720 2721 2722 2723 2724 2725 2726 2727

5777 3(1'71 5250 2728 2729 2730 2731 2732 2733 2734 2735
(OCTAL) (DECHIAL) 5260 2736 2737 2738 2739 2740 2741 2742 2743

5270 2744 2745 2746 2747 2748 2749 2750 2751

5300 2752 2753 2754 2755 2756 2757 2758 27.'19
5310 2760 2761 2762 2763 2764 2765 2766 2767
5320 2768 2769 2770 2771 2772 2773 2774 2775
5330 2776 2777 2778 2779 2780 2781 2782 2783
5340 2784 2785 2786 2787 2788 2789 2790 2791
5350 2792 2793 279L': 2795 2796 2797 2798 2799
536[' 2800 2801 2802 2803 2804 2805 2806 2807
5370 2808 2809 2810 2811 2812 2813 2814 2815

5400 2816 2817 2818 2819 2820 2821 2822 2823
5410 2824 2825 2826 2827 2828 2829 2830 2831
5420 2832 2833 2834 2835 2836 2837 2838 2839

OCTAL DECD':A.L, 5430 2840 2841 2842 2843 2844 2845 2846 2847
1000 4096 5440 2848 2849 2850 2851 2852 2853 2854 2855
2000 8192 5450 2856 2857 2858 2859 2860 2861 2862 2863
3000 12288 5460 2864 2865 2866 2867 2868 2869 2870 2871
4000 16384 5470 2872 2873 2874 2875 2876 2877 2878 2879
5000 20480 (6000 24576 5500 2880 2881 2882 2883 2884 2885 2886 2887
7000 28672 5510 2888 2889 2890 2891 2892 2893 2894 2895

5520 2896 2897 2898 2899 2900 2901 290.2 2903
5530 2904 2905 290.6 2907 2908 2909 2910 2911
5540. 2912 2913 2914 2915 2916 2917 2918 2919
5550 2920 2921 2922 2923 2924 2925 2926 2927
5560 2928 2929 2930 2931 2932 2933 2934 2935
5570 2936 2937 2938 2939 2940 2941 2942 2943

5600 2944 2945 2946 2947 2948 2949 2950. 2951
5610. 2952 2953 2954 2955 2956 2957 2958 2959
5620 2960 2961 2962 2963 2964 2965 2966 2967
5630 2968 2969 2970 2971 2972 2973 2974 2975
5640 2976 2977 2978 2979 2980 2981 2982 2983
5650 2984 2985 2986 2987 2988 2989 2990 2991
5660 2992 2993 2994 2995 2996 2997 2998 2999
5670 300.0 3001 3002 3003 3004 3005 3006 3007

5700 3008 3009 3010 30.11 3012 3013 3014 3015
5710 3016 3017 30.18 3019 3020 3021 3022 3023
5720 3024 3025 3026 30.27 3028 3029 3030 30.31
5730 3032 3033 3034 3035 3036 3037 3038 3039
5740. 3040 3041 3042 3043 3,044 3045 3046 3047
5750. 3048 3049 3050. 3051 3052 3053 3054 3055
5760 3056 3057 3058 3059 3060 3061 3062 3063
5770 30.64 3065 3066 3067 3068 3069 3070 3071

L-8

(

0 1 2 3 4 5 6 7

6000 3072 3073 3074 3075 3076 3077 3078 3079
6010 3080 3081 3082 3083 3084 3085 3086 3087
6020 3088 3089 3090 3091 3092 3093 3094 3095

6000 3072 6030 3096 3097 3098 3099 3100 3101 3102 3103
TO TO 6040 3104 3105 3106 3107 3108 3109 3110 3111

6577 3455 6050 3112 3113 3114 3115 3116 3117 3118 3119
(OCTAL) (DECIr1AL) 6060 3120 3121 3122 3123 3124 3125 3126 3127 ,,- 6070 3128 3129 3130 3131 3132 3133 3134 3135

6100 3136 3137 3138 3139 3140 3141 3142 3143
6110 3144 3145 3146 3147 3148 3149 3150 3151
6120 3152 3153 3154 3155 3156 3157 3158 3159
6130 3160 3161 3162 3163 3164 3165 3166 3167
6140 3168 3169 3170 3171 3172 3173 3174 3175
6150 3176 3177 3178 3179 3180 3181 3182 3183
6160 3184 3185 3186 3187 3188 3189 3190 3191
6170 3192 3193 3194 3195 3196 3197 3198 3199

6200 3200 3201 3202 3203 3204 3205 3206 3207
6210 3208 3209 3210 3211 3212 3213 3214 3215
6220 3216 3217 3218 3219 3220 3221 3222 3223

OCTAL DECIMAL 6230 3224 3225 3226 3227 3228 3229 3230 3231
1000 4096 6240 3232 3233 3234 3235 3236 3237 3238 3239
2000 8192 6250 3240 3241 3242 3243 3244 3245 3246 3247
3000 12288 6260 3248 3249 3250 3251 3252 3253 3254 3255
4000 16384 6270 3256 3257 3258 3259 3260 3261 3262 3263
5000 20480
6000 24576 6300 3264 3265 3266 3267 3268 3269 3270 3271
7000 28672 6310 3272 3273 3274 3275 3276 3277 3278 3279

6320 3280 3281 3282 3283 3284 3285 3286 3287
6330 3288 3289 3290 3291 3292 3293 3294 3295
6340 3296 3297 3298 3299 3300 3301 3302 3303
6350 3304 3305 3306 3307 3308 3309 3310 3311
6360 3312 3313 3314 3315 3316 3317 3318 3319
6370 3320 3321 3322 3323 3324 3325 3326 3327

6400 3328 3329 3330 3331 3332 3333 3334 3335
6410 3336 3337 3338 3339 3340 3341 3342 3343
6420 3344 3345 3346 3347 3348 3349 3350 3351
6430 3352 3353 3354 3355 33~6 3357 3358 3359
6440 3360 3361 3362 3363 3364 3365 3366 3367

~, 6450 3368 3369 3370 3371 3372 3273 3374 3375
6460 3376 3377 3378 3379 3380 3381 3382 3383
6470 3384 3385 3386 3387 3388 3389 3390 3391

<0. 6500 3392 3393 3394 3395 3396 3397 3398 3399
6510 3400 3401 3402 3403 3404 3405 3406 3407
652e 3408 3409 3410 3411 3412 3413 341 tI, 3415
6530 3416 3417 3418 3419 .3420 3421 3422 3423
6540 3424 3425 3426 3427 3428 3429 3430 3431
6550 3432 3433 3434 3435 3436 3437 3438 3439
6560 3440 3441 3442 3443 3444 3445 3446 3447
6570 3448 3449 3450 3451 3452 3453 3454 3455

(

L-9

0 2 3 4 5 6 7

6600 3456 3457 3458 3459 3460 3461 3462 3463
6610 3464 3465 3466 3467 3468 3469 3470 3471
6620 3472 3473 3474 3475 3476 3477 3478 3479

6600 3456 6630 3480 3481 3482 3483 3484 3485 3486 3487
TO TO 6640 3488 3489 3490 3491 3492 3493 3494 3495

7377 3839 6650 3496 3497 3498 3499 3500 3501 3502 3503
(OCTAL) (DECIMJ\L) 6660 3504 3505 3506 3507 3508 3509 3510 3511

6670 3512 3513 3514 3515 3516 3517 3518 3519
9

6700 3520 3521 3522 3523 3524 3525 3526 3527
6710 3528 3529 3530 3531 3532 3533 3534 3535

'" 6720 3536 3537 3538 3539 3540 3541 3542 3543
6730 3544 3545 3546 3547 3548 3549 3550 3551
6740 3552 3553 3554 3555 3556 3557 3558 3559
6750 3560 3561 3562 3563 3564 3565 3566 3567
6760 3568 3569 3570 3571 3572 3573 3574 3575
6770 3576 3577 3578 3579 3580 3581 3582 3583

7000 3584 3585 3586 3587 3588 3589 3590 3591
7010 3592 3593 3594 3595 3596 3597 3598 3599
7020 3600 3601 3602 3603 3604 3605 3606 3607

ecTAL DECIMAL 7030 3608 3609 3610 3611 3612 3613 3614 3615
1000 4096 7040 3616 3617 3618 3619 3620 3621 3622 3623
2000 8192 7050 3624 3625 3626 3627 3628 3629 3630 3631
3000 12288 7060 3632 3633 3634 3635 3636 3637 3638 3639
4000 . 16384 7070 3640 3641 3642 3643 3644 3645 3646 3647

(5000 20480
6000 24576 7100 3648 3649 3650 3651 3652 3653 3654 3655
7000 28672 7110 3656 3657 3658 3659 3660 3661 3662 3663

7120 3664 3665 3666 3667 3668 3669 3670 3671
7130· 3672 3673 3674 3675 3676 3677 3678 3679
7140 3680 3681 3682 3683 3684 3685 36B6 36n7
7150 3688 3689 3690 3691 3692 3693 3694 3695
7160 3696 3697 3698 3699 3700 3701 3702 37r3
7170 3704 3705 3706 3707 3708 3709 3710 3711

7200 3712 3713 3714 3715 3716 3717 3718 3719
7210 3720 3721 3722 3723 3724 3725 3726 3727
7220 3728 3729 3730 3731 3732 3733 3734 3735
7230 3736 3737 3738 3739 3740 3741 3742 3743
7240 3744 3745 3746 3747 3748 3749 3750 3751
7250 3752 3753 3754 3755 3756 3757 3758 3759
7260 3760 3761 3762 3763 3764 3765 3766 3767
7270 3768 3769 3770 3771 3772 3773 3774 3775

·73ee 3776 3777 3778 3779 3780 3781 3782 3783
7310 3784 3785 3,786 3787 3788 3789 3790 3791
7320 3792 3793 3794 3795 3796 3797 3798 3799
7330 3800 3801 3802 3803 3804 3805 3806 3807
7340 3808 3809 3810 3811 3812 3813 3814 3815
7350 3816 3817 3818 3819 3820 3821 3822 3823
7360 3824 3825 3826 3827 3828 3829 3830 3831
7370 3832 3833 3834 3835 3836 3837 3838 3839

L-IO

(
0 2 3 4 5 6 7

74010 3840 3841 3842 3843 3844 3845 3846 3847
7410 3848 3849 3850 3851 3852 3853 3854 3855
7420 3856 3857 3858 3859 3860 3861 3862 38E3

7400 3840 7430 3864 3P'65 3866 3867 3868 3869 3870 3871
TO TO 7440 3872 3873 3874- 3875 3876 3877 3878 3879

0ee'7 4095 7450 3880 3881 3882 3883 3884 3885 3886 3887
(OCTAL) (DECIl-jAL) 7460 3888 3889 3890 3891 3892 3893 3894 3895

,e... 7470 3896 3897 3898 3899 3900 3901 3902 3903

7500 3904 3905 3906 3907 3908 3909 3910 3911
7510 3912 3913 3914 3915 3916 3917 3918 3919

t" 7520 3920 3921 3922 3923 3924 3925 3926 3927
7530 3928 3929 3930 3931 3932 3933 3934 3935
7540 3936 3937 " 3938 3939 3940 3941 3942 3943
7550 3944 3945 3946 3947 3948 3949 3950 3951
7560 3952 3953 3954 3955 3956 3957 3958 3959
7570 3960 3961 3962 3963 3964 3965 3966 3967

7600 3968 3969 3970 3971 3972 3973 3974 3975
7610 3976 3977 3978 3979 3980, 3981 3982 3983
7620 3984 3985 3986 3987 3988 3989 3990 3991

OCTAL DECIHAL 7630 3992 3993 3994 3995 3996 3997 3998 3999
1000 " 4096 7640 41000 4001 41302 4003 4004 4005 4006 4007
2000 8192 7650 4008 4009 4010 4011 4012 4013 4014 412'15
3000 12288 7660 4016 4017 4018 4019 4020 4021 4022 4023
4000 16384 7670 4024 4025 4026 4027 4028 4029 4030 4031
5000 20480
6000 24576 77e0 4032 4033 4034 4035 4036 4037 4038 4e39
7000 28672 7710 4040 4041 4042 4043 4044 4045 4046 4047

7720 4048 4049 4050 4051 4052 4053 4054 4055
7730 4056 4057 4058 4059 406e 4061 4062 4063
7740 4064 4065 4066 40"67 4068 4069 4070 41371
7750 4072 4073 4074 4075 4076 4077 407E 4079
7760 4080 4081 4082 4083 4084 4085 4086 4087
7770 4088 4((89 4090 4091 4092 4093 4094 4095

L-ll

L.2 POWERS OF TWO AND EIGHT

2 N M
,8

2
4
8

16
32
64

128
256
512

I 024
2 048
4 096
8 192

16 384
32 768
65 536

131 072
262 144
524 '288

I 048 576
2 097 152
4 194 304
8 388 608

16 777 216
33 554 432
67 108 864

134 217 728
268 435 456
536 870 912

I 073 741 824
2 147 483 648
4 294 967 296
8 589 934 592

17 179 869 184
34 359 738 368
68 719 476 736

137 438 953 472
274 877 906 944
549 755 813 888
099 511 627 776

2 199 023 255 552
4 398 046 511 104
8 796 093 022 208

17 592 ·186 044 416
35 184 372 088 832
70 368 744 177 664

140 737 488 355 328
281 474 976 710 656
562 949 953 421 312

I 125 899 906 842 624
2 251 799 813 685 248
4 503 599 627 370 496
9 007 199 254 740 992

18 014 398 509 481 984
36 028 797 018 963 968
72 057 594 037 927 936

144 115 188 075 855 872
288 230 376 lSI 711 744
576 460 752 303 423 488

I 152 921 504 606 846 976
2. 305 843 009 213 693 952
4 611 686 018 427 387 904
9 223 372 036 854 775 808

18 446 744 073 709 551 616
36 893 488 147 419 103 232
73 786 976 294 838 206 464

147 573 952 589 676 412 928
29:' .J47 905 179 352 825 856
590 295 810 358 705 651 712

1 180 591 620 717 411 303 424
2 361 183 241 434 822 606 848
4 722 366 482 869 645 213 696

N,M

00
I
2
31
4
5
62
7
8
9·3

10
11
124
13
14
155
16
17
186
19
20
217
22
23
248
25
26
279
28
29
3010
31
32 .

33 11
34
35
3612
37
38
3913
40
41
4214
43
44
4515
46
47
4816
49
50
5117
52
53
5418
55
56
57 19
58
59
60 20
61
62
6321
64
65
6622
67
68
6923
70
71
7224

-N -M
2 ,8

1.0
0.5
0.25
0.125
0.062
0.031 25
0.015 625
0.007 812 5
0.003 906 25
0.001 953 125
0.000 976 562 5
0.000 488 281 25
0.000 244 140 625
0.000 122 070 312 5
0.000 061 035 156 25
0.000 030 517 578 125
0.000 015 258 789 062
0.000 007 629 394 531 25
0.000 003 814 697 265 625
0.000 001 907 348 632 812 5
0.000 000 953 674 316 406 25
0.000 000 476 837 158 203 125
0.000 000 238 418 579 101 562 5
0.000 000 119 209 289 550 781 25
0.000 000 059 604 644 775 390 625
0.000 000 029 802 322 387 695 312 5
0.000 000 014 901 161 193 847 656 25
0.000 000 007 450 580 596 923 828 125
0.000 000 003 725 290 298 461 914 062 5
0.000 000 001 862 645 149 230 957 031 25
0.000 000 000 931 322 514 615 478 515 625
0.000 000 000 465 661 287 307 739 257 812 5
0.000 000 boo 232 830 643 653 869 628 906 25
0.000 000 000 116 415 321 826 934 814 453 125
0.000 000 000 058 207 660 913 4~7 407 226 562 5
0.000 000 000 029 103 830 456 733 703 613 281 25
0.000 000 000 014 551 915 228 366 851 806 640 625
0.000 000 000 007 275 957 614 183 425 903 320 312 5
0.000 000 000 003 637 978 807 091 712 951 660 156 25
0.000 000 000 001 818 989 403 545 856 475 830 078 125
0.000 000 000 000 909 494 701 772 928 237 915 039 062 5
0.000 000 000 000 454 747 350 886 464 118 957 519 531 25
0.000 000 000 000 227 373 675 443 232 059 478 759 765 625
0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5
0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25
0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125
0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5
0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25
0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625
0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5
0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25
0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125
0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5
0.000 000 000 000 000 111 022 302 462 515 654 042 363 166 809 082 031 25
0.000 000 000 000 000 055 511 151 231 257 827 021 181 583 404 541 015 625
0.000 000 000 000 000 027 755 575 615 628 913 510 590 791 702 270 507 812 5
0.000 000 000 000 000 013 877 787 807 814 456 755 295 395 851 135 253 906 25
0.000 000 000 000 000 006 938 893 903 907 228 377 647 697 925 567 626 953 125
0.000 000 000 000 000 003 469 446 951 953 614 188 823 848 962 783 813 476 562 5
0.000 000 000 000 000 001 734 723 475 976 807 094 411 924 481 391 906 738 281 25
0.000 000 000 000 000 000 867 361 737 988 403 547 205 962 240 695 953 369 140 625
0.000 000 000 000 000 000 433 680 868 994 201 773 602 981 120 347 976 684 570 312 5
0.000 000 000 000 000 000 216 840 434 497 100 886 801 490 560 173 988 342 285 156 25
0.000 000 000 000 000 000 108 420 217 248 550 443 400 745 280 086 994 171 142 578 125
0.000 000 000 000 000 000 054 210 108 624 275 221 700 372 640 043 497 085 571 289 062 5
0.000 000 000 000 000 000 027 105 054 312 137 610 850 186 320 021 748 542 785 644 531 25
0.000 000 000 000 000 000 013 552 527 156 068 805 425 093.160 010 874 271 392 822 265 625
0.000 000 000 000 000 000 006 776 263 578 034 402 712 546 580 005 437 135 696 411 132 812 5
0.000 000 000 000 000 000 003 388 131 789 017 201 356 273 290 002 718 567 848 205 566 406 25
0.000 000 000 000 000 000 001 694 065 894 508 600 678 136 645 001 359 283 924 102 783 203 125
0.000 000 000 000 000 000 000 847 032 947 254 300 339 068 322 SOD 679 641 962 051 391 601 562 5
0.000 000 000 000 000 000 000 423 516 473 627 150 169 534 161 250 339 820 981 025 695 800 781 25
0.000 000 000 000 000 000 000 211 758 236 813 575 084 767 080 625 169 910 490 512 847 900 390 625

L-12

(

(

(

[.

/.

L.3 SCALES OF NOTATION

L.3.l 2x In Decimal

x 2' x 2' x 2'

0.001 1.00069 33874 62581 0.01 1.00695 55500 56719 0.1 "1.07177 34625 36293
0.002 1.00138 72557 11335 0.02 1.013!!5 94797 90029 0.2 1.14869 83549 97035
0.003 1.00208 16050 79633 0.03 1.02101 21257 07193 0.3 1.23114 44133 44916
0.004 1.00277 64359 01078 0.04 1.02811 38266 56067 0.4 1.31950 79107 72894
0.005 1.00347 ! 7485 09503 0.05 1.03526 49238 41377 (l.5 1.41421 35623 73095
0.006 1.00416 75432 38973 0.06 1.04246 57608 41121 0.6 1.51571 65665 10398
0.007 1.00486 38204 23785 0.07 1.04971 66836 23067 0.7 1.62450 47927 12471
0.008 1.00556 05803 98468 0.08 1.05701 80405 61380 0.8 1.74110' 11265 92248
0.009 1.00625 78234 97782 0.09 1.06437 01824 53360 0.9 1.86606 59830 73615

L.3.2 10m In Octal

10" n 10-' 10" n 10-'

1 0 1.000 000 000 000 000 000 00 112 402 762 000 10 0.000 000 000 006 676 337 66
12 I 0.063 146 314 631 463 146 31 1 351 035 564 000 11 0.000 000 000 000 537 657 77

144 2 0.005 075 341 217 270 243 66 16 432 451 211). 000 12 0.000 000 000 000 043 136 32
1 750 3 0.000 406 111 564 570 651 77 221 411 634 520 000 13 0.000 000 000 000 003 411 35

23 420 4 0.000 032 155 613 530 704 15 2 657 142 036 440 000 14 0.000 000 000 000 000 264 11

303 240 5 0.000 002 476 132 610 706 64 34 327 724 461 500 000 15 0.000 000 000 000 000 022 01
3 641 100 6 0.000 000 206 157 364 055 37 434 157 115 760 200 000 16 0.000 000 000 000 000 00 1 63

46 113 200 7 0.000 000 015 327 745 152 75 5 432 127 413 542 400 000 17 0.000 000 000 000 000 000 14
575 360 400 8 0.000 000 001 257 143 561 06 67 405 553 164 731 000 000 18 0.000 000 000 000 000 000 01

7 346 545 000 9 0.000 000 000 104 560 276 41

n log 2 and 10 In Decimal

n
1
2
3
4
5

n loglo 2

0.30102 99957
0.60205 99913
0.90308 99870
1.20411 99827
1.50514 99783

n log2 10 n
3.32192 80949 6
6.64385 61898 7
9.96578 42847 8

13.28771 21795 9
16.60964 04744 10

n loglo 2 n log2 10

1.80617 99740 19.93156 85693
2.10720 99696 23.25349 66642
2.40823 99653 26.57542 47591
2.70926 99610 29.89n5 28540
3.01029 99566 33.21928 09489

L.3.4 Addition and Multiplication. Binary and Octal

L.3.5

71'=

71'-1 =

VfT =

In 71' =

108171' =

Vl0 =

0

2

l

4

5

6

7

Addition

0+0 = 0
0+1=1+0= 1

1 + I = 10

01 02 03 04 05

02 03 04 05 06

03 04 05 06 07

04 05 06 07 10

05 06 07 10 11

06 07 10 11 12

07 10 11 12 13

10 11 12 13 14

06

07

10

11

12

13

14

15

Mathematical Constants

3.11037 552421, e=

0.24276 301556. e- I =

1.61337 611067. Ve=

1.11206 404435. 10810e =

1.51544 163223. 1081 e ==

3.12305 407267. 101110 =

Multiplication

Binary Scale

Octal Scale

07

10 2

11

12 4

13 5

14 6

15 7

16

oxO=O
OX1=IXO=0

1 x 1 = 1

02 03 04 05 06

04 06 10 12 14

06 11 14 17 22

10 14 20 24 30

12 17 24 31 36

14 22 30 36 44

16 25 34 43 52

In Octal

2.55760 521305. 'Y=

0.27426 5306611 In'Y =

1.51411 230704. 1081'Y =

0.33626 75425lt V2=

1.34252 166245. In 2 =

3.24464 741136. In 10 =

L-13

07

16

25

34

43

52

61

0.44742 147707.

0.43127 233602.

- 0:62573 030645.

1.32404 746320.

0.54271 027760.

2.23273 067355.

APPENDIX M

CHARACTER CODES

N.l CARD CODES

~
12

11
0

Digit

& - 0 space

1 A J / 1

2 B K S 2

3 C L T 3

4 D M U 4

5 E N V 5

6 F 0 W 6

7 G P X 7

8 H Q Y 8

9 I R Z 9

8-1
,

grave

8-2 [] \
8-3 $, #
8-4 < * % @

8~5 ()
,

-

8-6 + , > =

8-7 ! ? "

12

0

{
a

b

c

d

e

f

g

h

i

CARD CODES
(ANSI X3.26-1970)

12 12
11 11 11

0
9 9

I }
j - SOH DCI

k s STX DC2

1 t ETX DC3

m u

n v HT

0 w BS

p x DEL

q y CAN

r z

EM

VT

FF FS

CR GS

SO RS

SI US

NOTES

12

0 0
9 9 9

SYN

LF

ETB

ESC EOT

NUL

DC4

ENQ NAK

ACK

BEL SUB

To determine the card punch for a particular character, locate the character
in the table and read the corresponding zone punch and then digit punch.
For example, the card punch for a % is 0-8-4.

12
11

9

DLE

To obtain the character corresponding to a particular card punch, locate the
junction of the zone punch and the digit punch. For example, the character
corresponding to the card punch 12-11-9 is r.

Slots that do not contain characters represent card punches for which there
are no ASCII equivalents.

M-l

~ Value

Row
Value

0

1

2

3

4

5

6

7

M.2 ASCII CHARACTER SET

ASCII CHARACTER SET
ASCII-1968 (ANSI X3.4-1968)

To obtain octal or decimal ASCII representation of a character, add the row value
to the column value.

000 008

000 010

NUL BS.

SOH HT

STX LF

ETX VT

EOT FF

ENQ CR

ACK SO

BEL SI

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
SO
SI

016 024 032 040 048 056 064 072

020 030 040 050 060 070 100 110

DLE CAN space (0 8 @ H

DCl EM !) 1 9 A I

DC2 SUB " * 2 B J

DC3 ESC # + 3 , C K

DC4 FS $, 4 < D L

NAK GS % - 5 = E M

SYN RS & 6 > F N

ETB US
,

/ apos 7 ? G 0

080 088 096

120 130 140

P X grave

Q Y a

R Z b

S [c

T \ d

U] e
.......

V (t) f

W (+-)
- g

104 112

150 160

h p

i q

j r

k s

I t

m u

n v

0 w

120

170

x

Y

z

{
I

}
-(ESC)

DEL

} decimal ASCII

} octal ASCII

Differences in the ASCII Standard

Octal (ASCII 1963) ASCII 1968
136 t (circumflex)
137 +- (underline)
176 ESC

NULL DLE DATA LINK ESCAPE (tP)
START OF HEADING (tA) DCl DEVICE CONTROL 1 (tQ)
START OF TEXT (tB) DC2 DEVICE CONTROL 2 (tR)
END OF TEXT (tc) DC3 DEVICE CONTROL 3 (tS)
END OF TRANSMISSION (tD) DC4 DEVICE CONTROL 4 (STOP) (tT)
ENQUIRY (tE) NAK NEGATIVE ACKNOWLEDGE (tU)
ACKNOWLEDGE (tF) SYN SYNCHRONOUS IDLE (tV)
BELL (tG) ETB END OF TRANSMISSION BLOCK (tW)
BACKSPACE (tH) CAN CANCEL (tX)
HORIZ. TABULATION (tI) EM END OF MEDIUM (t Y)
LINE FEED (tJ) SUB SUBSTITUTE (tZ)
VERT. TABULATION (tK) ESC ESCAPE(t[)
FORM FEED (tL) FS FILE SEPARATOR (t\)
CARRIAGE RETURN (tM) GS GROUP SEPARATOR (t])
SHIFT OUT (tN) RS RECORD SEPARATOR (tt)
SHIFT IN (to) US UNIT SEPARATOR (t+-)

DEL DELETE (RUBOUT)

The tx character is produced by depressing the CTRL key and at the same time depressing the x character
key.

M-2

~

(

(~

~,,;

(

1.

NOTES

Teleprinters manufactured by Teletype Corporation, Skokie, Illinois, have used codes 175 (ALT) and
176 for ESC. Programs may forgo the use of} (175) and - (176) in order to use these codes as ESC on
older teleprinters.

2 • ASCII is a seven bit character code with an optional odd parity bit (200) added for many devices. Pro­
grams normally use just seven bits internally; the 200 bit is either stripped or added so the program will
operate with either parity or non-parity generating devices.

ISO Recommendation R646 and CCITT Recommendation V.3 (International Alphabet No.5) is identi­
cal to ASCII except that number sign (043) is represented as £ instead of # and certain characters are
reserved for national use.

M-3

(
APPENDIX N

GLOSSARY AND ABBREVIATIONS

ABS Absolute
t

A/D Analog-to-digital

ADC Add Carry
r;

ADRS Address

ASCII American Standard Code for Information Interchange

ASl Arithmetic Shift left

ASR Arithmetic Shift Right
Automatic Send/Receive

B Byte

"BAR Bus Address Register

BBSY Bus Busy

BCC - Branch if carry clear

(BCS Branch if carry set

BEQ Branch if equal

BG Bus Grant

BGE Branch if greater or equal

BGT Branch if greater than

BHI Branch if higher

BHIS Branch if higher or same

BIC Bit Clear

)
BIS Bit Set

BIT Bit Test

Bit Map A table describing the availability of space. Each bit in the
table indicates the state (occupied or free) of one segment of
storage, for example a block on a bulk storage device.

BlE Branch if less or equal

BlOS Branch if lower or same

BlT Branch if less than

BMI Branch if minus

BNE Branch if not equal

/ BPl Branch if plus (

BR Branch

N-l

BRD Bus Register Data

BRX Bus Request

BSP Back Space

BSR Bus Shift Register
Back Space Record

BSY Busy

Buffer A storage area.
t,

I

Buffer Use Table A bit map in the permanently resident monitor, which describes
the availability of buffers in the free core area.

<,

BYC Branch if overflow clear

BYS Branch if overflow set

CBR Console Bus Request

Cil Core Image Library

CllUS Core Image Library Update & Save Program

ClC Clear Carry

ClK Clock

ClN Clear Negative

ClR Clear
(ClY Clear Overflow

ClZ Clear Zero

CMP Compare

CNPR Console Nonprocessor Request

CNTL Control

COM Complement

COND Condition

CONS Console

CO NT Contents (,
Continue

Contiguous Fi Ie A file consisting of physically contiguous blocks on a bulk
storage device.

Core Bit Map That portion of a Permanent Bit Map which happens to be in
core. Not to be confused with the Buffer Use Table.

Core Image A copy of what a program or other data would look like if
it were in core.

CP Central Processor

CSI Command String Interpreter

CSR Control and Status Register
(

N-2

[

I

\

D

D/A

DAR

DAT

Dataset

DATI

DATIP

DATa

DATOB

DBR

DCDR

DDB

DE

DEC

Default Device

DEL

DEP

DEPF

Device Driver

DIY

DMA

DSEL

DST

DSX

EMT

ENB

EOD

EOF

EOM

ERR

Data

Digital-to-analog

Device Address Register

Device Assignment Table. Contains the specifications from
ASSIGN commands.

A logical collection of data which is treated as an entity by
a program. For a more detailed description see Section 1 .6.1.

Data In

Data In, Pause

Data Out

D.ata Out, Byte

Data Buffer Register

Decoder

Dataset Data Block. Contains Monitor control information
for a dataset.

Destination effective address

Decrement
. Digital Equipment Corporation

The device specified in the Link Block of a dataset, and which
is used for I/O operations on that dataset if there is no other
device assigned in a DAT entry for the dataset.

Delay

Deposit

Deposit Flag

The minimal routine which controls physical hardware
activities on a peripheral device. The device driver is the
interface between a device and the common, devi ce­
independent I/O code in the monitor.

Divide

Direct Memory Access

Device Select

Destination

Display, X-deflection Register

Emulator Trap

Enable

End-of-data

End-of-file

End-of-medium

Error

N-3

EX

EXAM

EXAMF

EXEC

EXR

F

Fatal Error

FBM

FCTN

FIB

File

FILO

FLG

GEN

INC

INCF

IND

INDIVR

INH

INIT

INST

Interleave Factor

INTR

INTRF

I/O

lOT

External

Examine

Examine Flag

Execute

Externa I Reset

Flag (part of signal name)

An error from wh i ch a user's program cannot recover.

File Bit Map - A device-resident bit map with bits flagged for
the blocks used for a single file. Used on DECtape to aid in
the deletion process.

Function

File Information Block. Contains {in core} information from
the UFD and other sources when a file is open.

A physical collection of data which resides on a directory­
structured device and is referenced through its name.

First in, last out

Flag

Generator

Increment
Increase

Increment Flag

Indicator

Integer Divide Routine

Inhibit

Initialize

Instruction

The optimal minimum distonce, measured in number of
physical device blocks, between logically adjacent blocks
of a linked file. Presently it is four on all PDP-ll bulk
storage devices. For example, if physical block N is
assigned to block 1 of a linked file, then physical block
N+4 would be the closest device block that could be
assigned to block 2 of that fi Ie.

Interrupt

Interrupt Flag

Input/Output

Input/Output Trap

N-4

(

(

(
"

L

(

lOX

IR

IRD

ISR

JMP

JSR

Julian Date

KSB

LIFO

Linked File

Linker

LKS

Load Module

LOC

LP

LSB

LSBY

LSD

MA

MAR

MBR

MEM

MFD

ML

MOV

Input/Output Executive Routine

Instruction Register

Instruction Register Decoder

Instruction Shift Register

Jump

Jump to subroutine

A 5-digit (decimal) numerical representation of the date, in
which the two high-order digits give the year (1900=00,
1999=99) and the three low-order digits give the day
within the year (January 1 = 001, December 31 = 365
(366 for leap year)). For example, January 28, 1971
is represented as 71028.

Keyboard Swap Buffer. The non-resident routines which
process keyboard commands are brought into the keyboard
swap buffer.

Last In, First Out

A file consisting of a set of blocks within which an ordering
is specified th~ough the use of a link word imbedded within
each block.

A systems program which creates a load module to be loaded
into core memory. The linker relocates and links internal and
external symbols to provide communication between independ­
ently assembled programs.

Line time clock status register

The output of the linker. A program in absolute binary
form ready for loading and executing on a PDP-11 •

Location

Line Printer

Least Significant Bit

Least Significant Byte

Least Significant Digit

Memory Address

Memory Address Register

Memory Buffer Register

Memory

Master Fi Ie Directory. Contains the names and locatiol)s of
all UFDson a file-structured device.

Memory Location

Move

N-5

MRT

MSB

MSB

MSBY

MSD

MSEL

MSYN

ND

NEG

NOR

NPG

NPR

NPRF

NS

Object Module

ODT

OP

Operator

OPR

PA

PAL

Parity Bit

PB

PBM

PC

PD

PDP

PERIF

Monitor Residency Table. Contains the address (on disk
or in core) of all non-resident Monitor modules.

Most Sign ificant Bit

Monitor Swap Buffer. The non-resident routines which process
requests to the Monitor are brought into the main swap buffer.

Most Significant Byte

Most Significant Digit

Memory Select

Master Sync

Negative Driver

Negate

Normalize

Nonprocessor Grant

Nonprocessor Request

Nonprocessor Request Flag

Negative Switch

The relocatable binary output of an assembler or compiler.

Octal Debugging Technique

Operate
Operation

A user communicating directly with the Monitor through the
keyboard.

Operator
Operand

Parity Available

Program Assembly Language

A binary digit appended to an array of bits to make the
sum of all the bit values always odd or always even.

Parity Bit

Permanent Bit Map - A bit map which describes the avail­
ability of space on a DECtape or disk. It resides. on the
device it describes, and can be read into core in segments,
called Core Bit Maps, for reference or updating.

Program Counter

Positive Driver

Programmed Data Processor

Peripheral

N-6

(

(

(

(

(~-

PGM

PP

PPB

PPS

PR

PRB

PROC

PRS

PS

PTR

PTS

PUN

Radix-50 packed ASC II

RD

RDR

REG

REL
RES

ROL

ROM

ROR

R/S
RTI

RTS

R/W
R/WSR

S

SACK

SAL

SAM

SBC

SC

SE

Program

Paper Tape Punch

Paper Tape Punch Buffer Register

Paper Tape Punch Status Register

Paper' T ape Reader

Paper Tape Reader Buffer Register

Processor

Paper Tape Reader Status Register

Processor Status
Positive Switch

Priority Transfer

Paper Tape Software System

Punch

A format in which 3 ASCII characters (from a subset of all
ASC II characters) are packed into a single 16-bit word.

Read

Reader

Register

Release

Reset

Rotate Left

Read-only Memory

Rotate Right

Rotate/Shift

Return from Interrupt

Return from Subroutine

Read/Write

Read/Write Shift Register

Single

Selection Acknowledge

A friend of SAM.

Swap' Area Manager

Subtract Carry

Single Cycle

Source Effective Address

N-7

SEC

SEL

SEN

SEV

SEX

SEZ

SI

SP

SR

SRC

SSYN

ST

STPM

STR

SUB

SVC

SVT

'YNAB

Swapping

TA

Table

TEMP

TK

TKB

TKS

TP

TPS

TRT

TSC

TST

UFD

UIC

Set Carry

Select

Set Negative

Set Overflow

Sign Extend

Set Zero

Single Instruction

Stack Pointer
Spare

Switch Register

Source

Slave Sync

Start

Set Trap Marker

Strobe

Subtract

Service

System Vector Table

Swap Byte

The movement of programs or program sections from
secondary storage to core.

T rap Address
Track Address

A collection of data in a form suitable for ready reference.

Temporary

Teletype Keyboard

Teletype Keyboard Buffer Register

Teletype Keyboard Status Register

Teletype Printer

Teletype Printer Status Register

Trace Trap

Timing State Control

Test

User File Directory. Contains the names and locations of
all files created under a UIC. (See MFD.)

User Identification Code. A code which associates a user
with one of the UFDs on a device.

N-8

(

(\

(
',---

(~

\
, .'

(

User

User Program

UTR

VEC

WC

WCR

XDR

XRCG

XWCG

YDR

YRCG

WVCG

The person who is using the Monitor. He may use the
Monitor as an operator I or via a program.

Any program written by a user to run under the Monitor,

User Trap

Vector

Word Count

Word Count Register

X-line Driver

X-line Read Control Group

X-line Write Control Group

Y-line Driver

Y -I ine Read Control Group

Y-line Write Control Group

N-9

Extension

ALG
BAS
BAK
BLI
CBL
CIF
CIL
CMD
CRF
DAT
DDT
DGN
FTN
FCL
LBO

LCL
LDA
LDR
LOG
LSP
LST
MAC
MAP
MFD
OBJ
OPR
OVR
PAL
PLI
RNO
ROL
RPG
SNO
SPC
STB
SYM
SYS
TMP
UFD

APPENDIX 0

FILENAME EXTENSIONS

Attribute

ALOGL source file
BASIC source file
Backup file
BLISS source file
COBOL source file
Core Image File
Core Image Library
Command file
Input to cross-referencing program
DATA file for FORTRAN job
Reserved for DDT
Diagnostic message file
FORTRAN source file
FOCAL source list
Library of object modules (other types of

libraries may also be implemented)
Linked core image library

.Load module, Absolute
Load module, Relocatable
Logging file
LISP source file
Listing file
MACRO assembler source file
MAP file
Master file directory
Object module
Program generation information
Overlay
PAL assembler source file
PL/l source file
Reserved for RUNOFF program
Reserved for ROLLIN program
RPG source file
SNOBOL source file
SPEC format text
Symbol Table (Link-II output)
File of symbols
System management
Temporary scratch file
User File Directory

0-1

(

(

c-

Abbreviations, N-l
Access,

direct, 3-33
random, 3-31

.ALLOC request, 3-39

.APPND request, 3-43
ASCII to binary conversion I

3-71, 3-73
ASCII mode transfer, 3-88
ASR-33 Teletype, H-l
Assembler directive,

• GLOBL , 3-18
.GLOBL OPN, C-l
. MCALL, 3-1

ASSIGN command, 2-13, 2-14
Assignment, device, 2-13, 3-17
Automatic deletion, 3-46

BEGIN command, 2-15, 2-16, 2-17
after crash, 2-16

.BIN2D request, 3-72
Binary to ASCII conversion, 3-72,

3-74
Binary mode transfer, 3-88
.BIN20 request, 3-73
BLKBLK (BLOCK block), 3-94
BLOCK level I/O, 1-2
.BLOCK request, 3-31, 3-33
Block,

contiguous, 1-9
file, 3-47, 3-101
linked, 1-9, 3-8, 3-47, 3-101
run, 3-47

Buffer area, 1-4
Buffer,

keyboard, 2-9
line, 3-6

BUFHDR (Line Buffer Header), 3-87

Card punch character codes, M-l
Changing protection code, 3-42
Character codes,

ASCII, M-2
punch card, M-l

Character deletion, 2-7
Characters,

special keyboard, 2-7, 2-8
teleprinter input, 2-2

CIL (Core Image Library), 3-63
.CLOSE request, 3-26
Command conventions, 2-12
Commands,

allocate system resources,
2-11

exchange information with sys­
tem, 2-11

INDEX

keyboard, 1-2, 2-10, 2-11, 3-11,
3-51

legal, 2-3
manipulate core images, 2-11
miscellaneous, 2-11
start program, 2-11
stop program, 2-11
summary, D-l

ASSIGN, 2-13, 2-14
BEGIN, 2-14 through 2-17

after program crash, 2-16
CONTINUE, 2-18
DATE, 2-19
DUMP, 2-20
ECHO, 2-21
END, 2-22
FINISH, 2-23
GET, 2-24
KILL, 2-25
LOGIN, 2-10, 2-26
MODIFY, 2-27
ODT, 2-29
PRINT, 2-30
RESTART, 2-31, 3-51
RUN, 2-32
SAVE, 2-34
STOP, 2-36
TIME, 2-37
WAIT, 2-38

Commands listed by functions, 2-2
Command String Interpreter (CSI),

2-1, 2-5, 3-75 through 3-79, I-I
interfacing with, 3-75

Comments, 2-8
Completion of processing, 3-36
Contiguous file, 1-9, 3-23, 3-30,

creation, 3-39
Contiguous block, 1-9
CONTINUE command, 2-18
Controller, device, 1-8
Conventions, co~and format, 2-12
Conversion,

ASCII to binary, 3-71, 3-73
binary to ASCII, 3~72, 3-74
date/time from binary to ASCII,

3-57
Radix-50, 3-67

Conversion table,
mathematical, L-12
octal-decimal, L-l

.CORE request, 3-42
Core Image Library (CIL) , 3-63
Core map, 1-5
Core organization, 1-4
Crash, program/system, 2-16
CSI (see Command String Interpreter)
.CSII request, 3-76
.CSI2 request, 3-77
CTRL/C keys, 2-7

.X-l

Curr.ent user IS UIC request, 3-59
.CVTDT request, 3-57

Data mode, 2-4
Dataset, 1-8

specifier, 2-12
DATE command, 2-19
Date conversion binary to ASCII,

3-57
.DATE request, 3-55
Debugging, 2-29
DECtape Drive TCll, H-14
.DELET request, 3-41
Deletion,

automatic, 3-46
of characters, 2~7

of file, 3-41
of line, 2-8

Device,
assignment, 2-13, 3-17
controller, 1-8
directory, 1-9
driver level, 1-2
independence, 1-1, 3-8, 3-16
mnemonics, 2-12, 3-68, A-l
name request, 3-60

Devices,
file-structured, 1-9, 3-30
non-file structured, 1-9
peripheral, H-l

Direct access, 3-33
Directory, device, 1-9
.D2BIN request, 3-71
$ symbol, 2-10
DUMP command, 2-20

ECHO command, 2-21
Echo, keyboard, 2-21
EMT instructions, 3-18
EMT codes, summary, B-1
END command, 2-22
Equivalence, Radix-50, A-1
Error conditions, file name block,

3-83 through 3-86
Error messages, 1-6

summary, F-1
Example programs, K-1
Exception interrupt vector, 3-66
Execution start, 2-15
.EXIT request, 3-49

FILBLK (File Block), 3-82
File (definition), 1-8

contiguous, 1-9, 3-23, 3-30
linked, 1-9, 3-23, 3-43

File block, 3-47, 3-101
parameter, 3-75

File,
deletion, 3-41
directories, 1-3
protection, 3-42
protection codes, 3-86
structure, 1-9

Filename Block, 3-82
Filenames, 2-6, 3-42

extension, 2-6
reserved extension, 0-1
search for specified, 3-44

File-structured device, 1-9
FINISH command, 2-23
Floating-point exception vector,

3-66
Format conventions for commands, 2-12
Formatted level I/O, 1-2
Free core, 1-4
Functions, 2-2, 2-3

special I/O, J-1
Function Word, 3-99

GET command, 2-24
Getting on the system, 2-10
Global name restriction, 3-19
Global names

ALO, 3-39
APP, 3-43
BLO, 3-31
CDT, 3-57
CLS, 3-26
CSM, 3-77
CSX, 3-76
CVT, 3-67, 3-70 through 3-74
DEL, 3-41
DIR, 3-44
GUT, 3-50 through 3-56, 3-59

through 3-66
INR, 3-20
OPN, 3-22
PRO, 3-46
REC, 3-30
REN, 3-42
RLS, 3-21
RUN, 3"'47
RWN, 3-28, 3-29
SPC, 3-37
STT, 3-38
TRA, 3-33
XIT, 3-49

.GLOBL assembler directive, 3-18

.GLOBL OPN assembler directive, C-l
Glossary, N-1
.GTCIL request, 3-63
.GTPLA request, 3-61
.GTSTK request, 3-64
.GTUIC request, 3-59

X-2

(

(

c·

Hardware configurations, 1-6
Header, Line Buffer, 3-9, 3-87

.INIT request, 3-20
Interrupt priority level, 3-18
Interrupt vectors, 1-4
I/O functions, special, J-l
I/O levels, formatted, 1-2
I/O services, 3-1
lOT instructions, 3-18

.KEEP request, 3-46
Keyboard,

buffer, 2-9
character processing, 2-9
commands, 1-2, 2-11
echo, 2-21

KILL command, 2-25

Legal commands, Monitor, 2-3
Level of transfer, 3-6
Levels of I/O, 1-2
Line, (definition of), 1-9
Line Buffer Header, 3-6, 3-9, 3-87
Line deletion, 2-8
Link Block, 1-9, 3-8, 3-47, 3-80,

3-101
parameters, 3-75

Link pointer, 3-19
Linked file, 1-9, 3-23, 3-43
Listing of SYSMAC.SML (system

macro file), G-l
LNKBLK (Link Block), 3-80
Load address, 3-100
Load module/core image, 3-100
Logical names, 1-1, 2-12
LOGIN command, 2-10, 2-26
.LOOK request, 3-44
LPll Line Printer, H-5

Magtape Drive, TUIO, H-9
Master File Directory (MFD), 1-9
.MCALL assembler directive, 3-1
Messages, error, 1-6

summary, F-l
MFD (Master File Directory), 1-9
Mnemonics, device, 3-68

summary, A-I
Mode Byte, 3-88
Modes of operation, 2-4
Mode of transfer, 3-8, 3-28
MODIFY command, 2-27
.MONF request, 3-54
.MONR request, 3-53

X-3

Monitor, 1-1
command conventions, 2-12
commands by function, 2-2
core organization, 1-4
messages, 1-6
mode, 2-4
parameters, 3-50, 3-52
requests, summary of, 3-4, 3-5,

E-l
restrictions, 3-18

Names,
logical, 1-1
physical device, A-I

Non-file structured device, 1-9

.02BIN request, 3-73
ODT command, 2-29
.OPN request, 3-22
.0PENx request, 3-22 through 3-26
Organization, core, 1-4
Overlay/Program, 3-101
Overlays and subsidiary routines,

C-l

Paper tape reader/punch, H-3
Parameters,

File Block, 3-75
Link Block, 3-75
Monitor, 3-50, 3-52

Peripheral devices, H-l
Radix-50 representation, 3-68

Physical device names, A-I
Pointer, link, 3-19
PRINT command, 2-30
Processing,

completion of, 3-36
keyboard character, 2-9

Program crash, 2-16
Program low address (PLA), 3-61
Program status, 2-4
Program status Word (PSW), 3-66
Programmed requests, 1-2, 3-1,

3-3, 3-6
summary, E-l

Programmer restrictions, 3-18
PROTECT byte, 3-46
Protection boundary, 3-61
Protection code change, 3-42
PSW (program status word), 3-66

Radix-50,
conversion to packed ASCII, 3-67
equivalence, A-I
representation for peripheral

devices, 3-68
unpacked, 3-70

.RADPK request, 3-67

.RADUP request, 3-70
Random access,

to file records, 3-10, 3-31
to I/O level, 1-2

.READ request, 3-28
READ or WRITE level requests, 3-6
RECBLK (Record Block), 3-93
RECORD level I/O, 1-2
REcord level requests, 3-10
.RECRD request, 3-30
.RENAM request, 3-42
Requests,

block level, 3-12
Monitor code for, C-l
programmed, 1-2, 3-3, 3-6
READ/WRITE level, 3-6
RECORD level, 3-10
summary of, 3-4, 3-5, E-l
TRAN level, 3-14

RESET instruction, 3-18
Restart address, 3-51
RESTART command, 2-31, 3-51
Restrictions,

global name, 3-19
programmer, 3-18

Return address, 3-100
.RLSE request, 3-21
.RSTRT request, 3-51
RUBOUT, 2-9
RUN command, 2-32
.RUN request, 3-47
RUNBLK (RUN Block), 3-98
Run block, 3-47

SAVE cbmmand, 2-34
SearCh for a specified filename,

3-44
Services, I/O, 3-1
SPCBLK (Special Function Block),

3-97
.SPEC request, 3-37
Special Functions Block (SPCBLK),

3-97
Special keyboard characters. 2-7
Square bracket ([]) usage

commands, 2-12
Stack, 1-4

base, 3-64, 3-65
movement, 3-100
storage areas, 3-18

Start execution, 2-15
Starting Monitor, 1-7
.STAT request, 3-38
Status Byte, 3-91
.STFPU request, 3-66
STOP command, 2-8, 2-36
Storage areas on the stack, 3-18
.STPLA request, 3-62
.STSTK request, 3-65
Subsidiary routines and overlays,

C-l

Summary,
of EMT codes, B-1
Monitor commands, D-l
Monitor requests, 3-4

Swapping routines into core, 3-17
.SYSDV request, 3-60
System, see specific subject
SYSMAC.SML (system macro file),

3-1

Table standards, 1-9
TCll DECtape Drive, H-14
Teleprinter input characters, 2-2
Teletype, ASR-33, H-l
Terminology, 1-8
.TIME request, 3-56
TIME command, 2-37
Time conversion, binary to ASCII,

3-57
.TRAN request, 3-33
TRAN Block (TRNBLK), 3-95
TRAN level requests, 3-14
Transfer Address offset, 3-100
Transfer levels, 1-2, 3-6
Transfer modes, 3-28, 3-88

ASCII/binary, 3-8
.TRAP request, 3-50
TRNBLK (TRAN Block), 3~95
TUIO Magtape Drive, H-9

User area, 1-4
User File Directory (UFD), 1-9
User Identification Code (UIC), 2-5

current user UIC request, 3-59
User Mode, 2-4

Vector, floating-point exception,
3-66

WAIT command, 2-38
.WAIT request, 3-35
.WAITR request, 3-36
.WRITE request, 3-29

X-4

(

),

(~

(

(

(

(

HOW TO OBTAIN SOFTWARE INFORMATION

Announcements for new and revised software, as well as programming notes,
software problems, and documentation corrections are published by Software
Information Service in the following newsletters.

Digital Software News for the PDP-8 & PDP-12
Digital Software News for the PDP-II
Digital Software News for the PDP-9/15 Family

These newsletters contain information applicable to software available from
Digital's Program Library, Articles in Digital Software News update the
cumulative Software Performance Summary which is contained in each basic
kit of system software for new computers. To assure that the monthly Digital
Software News is sent to the appropriate software contact at your installation,
please check with the Software Specialist or Sales Engineer at your nearest
Digital office.

Questions or problems concerning Digital's Software should be reported to
the Software Specialist. In cases where no Software Specialist is available,
please send a Software Performance Report form with details of the problem to:

Software Information Service
Digital Equipment Corporation
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

These forms which are provided in the software kit should be fully filled out
and accompanied by teletype output as well as listings or tapes of the user
program to facilitate a complete investigation. An answer will be sent to the
individual and appropriate topics of general interest will be printed in the
newsletter.

Orders for new and revised software and manuals, additional Software Per­
formance Report forms, and software price lists should be directed to the
nearest Digital Field office or representative. U.S.A. customers may order
directly from the Prc~rnm Library in Maynard. When ordering, include the
code number and a brief description of the software requested.

Digital Equipment Computer Users Society (DECUS) maintains a user Iib,rary
and publishes a catalog of programs as well as the DECUSCOPE magazine
for its members and non-members who request it. For further information
please write to:

DECUS
Digital Equipment Corporation
146 Main Street, Bldg. 3-4
Maynard, Massachusetts 01754

(

(

, .;:.-..

REA D ER' S CO MME NTS

DOS Monitor
Programmer's Handbook
DEC-II-OMONA-A-D

Digital Equipment Corporation maintains a continuous effort to improve the quality and usefulness
of its publications. To do this effectively we need user feedback -- your critical evaluation of
th is manua I.

Please comment on this manual's completeness, accuracy, organization, usability and read­
ability.

Did you find errors in this manual? If so, specify by page.

How can this manual be improved?

Other comments?

PI~a~e state your position . _________ """"""-~ _________ Dote: ...,._--_---

'Nome: O~ganization:
',-'.' ~~~~~---------- ------------

Street: Department:
-~------------- -------------

, City: ___ --------Stote: ____:-__ ----"-.'Zip or Country _____ _

- - - - - - - - - - - - - - - - Fold Here - - - -- - - - - - - - ~ - - - - - __

- - - - - - - - - - - - Do Not Tear - Fold Here and Staple - - - - - - - - - - __

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

mamaoma
Digital Equipment Corporation
Software Information Services
Programming Department
Maynard, Massachusetts 01754

FIRST CLASS
PERMIT NO. II

MA YNARD. MASS.

(

{.,\

