
..

PDP-11
Paper Tape

Software Handbook
Order No. DEC-11 -XPTSA-8-D

1

PDP-11
Paper Tape

Software Handbook
Order No. DEC-11-XPTSA-B-O

digital equipment corporation · maynard, massachusetts

7/77-34

First Printing, April 1970
Revised: March 1971

January 1972
February 1973

June 1975
April 1976

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use or
reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright(§) 1970,1971,1972,1973,1975,1976 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre­
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DECUS
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM

DECsystem-lO
DECtape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL
INDAC
LAB-8
DECsystem-20

MASSBUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-IO
TYPESET..;"ll

CHAPTER 1

1.1
1.2
1.2.1
1. 2.2
1. 2 ~ 3
1. 2.4
1.2.S
1.3
1. 3.1
1.3.2
1. 3.3
1. 3.4
1.4
1. 4.1
1. 4.2
1.4.3
1. 4.4
loS
1.6
1.7
1. 7.1
1. 7.2
1. 7.3
1. 7.4
1. 7.S
1. 7.6
1. 7.7
1. 7.8
1. 7.9

1. 7.10
1.7.11

1. 7 .12
1.8
1. 8.1
1. 8.2
1. 8.3

1. 8.4
1. 8. S
1.8.6
1.8.7
1. 8.8
1. 8.9
1. 8 .10
1.8.11
1. 8 .12

CONTENTS

PAL-lIS ASSEMBLY LANGUAGE AND ASSEMBLER

CHARACTER SET
STATEMENTS

Label
Operator
Operand
Comments
Format Control

SYMBOLS
Permanent Symbols
User-Defined Symbols
Direct Assignment
Register Symbols

EXPRESSIONS
Numbers
Arithmetic and Logical Operators
ASCII Conversion
Mode of Expressions

ASSEMBLY LOCATION COUNTER
RELOCATION AND LINKING
ADDRESSING

. Register Mode
Deferred Register Mbde
Autoincrement Mode
Deferred AutoincrementMode
Autodecrement Mode
Deferred Autodecrement Mode
Index Mode
Deferred Index Mode
Immediate Mode and Deferred Immediate
(Absolute) . Mode
Relative and Deferred Relative Mode~
Table of Mode Forms and Codes (6-bit(A)
format only ~ see Section 1.7.12)
Instruction Forms

ASSEMBLER DIRECTIVES·
.TITLE
.GLOBL
Program Section Directives (.ASECT and
.CSECT)
.EOT
• EVEN
• END
• WORD
. BYTE
.ASCII
.RADSO
.LIMIT
Conditional Assembly Directives

iii

Page

1-1

1-2
1-2
1-3
1-3
1';"4
1-4
1-4
1-S
1-S
1-S
1-6
1-6
1-7
1-8
1-8
1-8
1-9
1-10
1-11
1-12
1-12
1-13
1-13
1-13
1-14
1-14
1-14
1-14

I-IS
1-lS

1-16
1-17
1-18
1-18
1-18

1-19
1-20
1-20\.
1-20
1-20
1-:-21'
1,;..2L.
1-22··
1-'-23 '
1';"23

1.9
1. 9.1
1. 9.2
1.9.3
1. 9.4
1. 9.5
1. 9.6
1.9.6.1
1:9.6.2
,1. 9.6.3
1.10
1.11

CHAPTER 2

2.1
2.2
2.2.1
2.2.2
2.2.3
2.2 .. 4
2.2.5
2.3
2.3.1
2.3.2
2.3.3
2.3.4
2.4
2.4.1
2.4.2
2.4.3
2.5
2.6
2.6.1
2.6.2
2.6.3
2.6.4
2.6.5
2.6.6
2.6.7
2.6.8
2.6.9

2.6.10
2.6.11

2.7
2.8
2.8.1
2.8.2
2.8.3
2.8.4
2.8.5
2.8.6
2.9
2.9.1
2.9.2

CONTENTS (CONT.)

OPERATING PROCEDURES
Introduction
Loading PAL-lIS
Initial Dialogue
Assembly Dialogue
Assembly Listing
Object Module Output
Global Symbol Directory
Text Block
Relocation Directory

ERROR CODES
SOFTWARE ERROR HALTS

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

CHARACTER SET
STATEMENTS

Label
Operator
Operarid
Comments
Format Control

SYMBOLS
Permanent Symbols
User-Defined Symbols
Direct Assignment
Register Symbols

EXPRESSIONS
Nuinbers
Arithmetic and Logical Operators
ASCII Conversion

ASSEMBLY LOCATION COUNTER
ADDRESSING

Register Mode
Deferred Register Mode
Autoincrement Mode
Deferred Autoincrement Mode
Autodecrement Mode
Deferred Autodecrement Mode
Index Mode
Deferred Index Mode
Immediate Mode arid Deferred Immediate
(Absolute) Mode
Relative and Deferred Relative Modes
Table of Mode Forms and Codes (6-bit (A)
format only - see Section 3.7)

INSTRUCTION FORMS
ASSEMBLER DIRECTIVES

.EOT
• EVEN
• END
• WORD
• BYTE
• ASCII

OPERATING PROCEDURES
Introduction
Loading PAL-11A

iv

Page

1-24
1-24
1-24
1-24
1-28
1-30
1-30
1-30
1-31
1-31
1-31
1-32

2-1

2-2
2-2
2-3
2-3
2-3
"2-4
2-4
2-5
2~5
2-5
2-5
2-6
2-7
2-7
2-8
2-8
2-8
2-9
2-10
2-10
2-10
2-11
2-11
2-11
2-11
2-12

2-12
2-13

2-13
2-14
2-15
2-15
2-16
2-16
2-16
2-17
2-17
2-17
2-17
2-18

I

I

I

2.9.3
2.9.4
2.9.5
2.10
2.11

CHAPTER 3

CHAPTER

3.1
3.1.1
3,.1. 2
3.1. 3
3.2
3.2.1
3.2.2
3.2.3
3.3
3.3.1
3.3.1.1
3.3.2
3.3.2.1
3.3.2.2
3.3.2.3
3.3.2.4

4

4.1
4.2
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.3
4.3.1
4.3.1.1
4.3.1.2
4.3.1.3
4.3.1.4
4.3.1.5
4.3.1.6
4.3.2
4.3.2.1
4.3.2.2
4.3.2.3
4.3.3
4.3.3.1
4.3.3.2
4.3.4
4.3.4.1
4.3.4.2
4.3.4.3
4.4
4.4.1
4.4.2
4.4.3

CONTENTS (CONT.)

Initial Dialogue
Assembly Dialogue
Assembly Listing

ERROR CODES
SOFTWARE ERROR HALTS

LINK-llS LINKER

INTRODUCTION
General Description
Absolute and Relocatab1e Program Sections
Global Symbols

INPUT AND OUTPUT
Object Module
Load Modules
Load Map

OPERATING PROCEDURES
Loading and Command String
Operational Cautions
Error Procedure and Messages
Restarting
Non-Fatal Errors
Fatal Errors
Error HALTs

EDITING THE SOURCE PROGRAM

COMMAND MODE AND TEXT MODE
COMMAND DELIMITERS

Arguments
The Character Location Pointer (Dot)
Mark
Line-Oriented Command Properties
The Page Buffer

COMMANDS
Input and Output Commands
Open
Read
List and Punch
Next
Form Feed and Trailer
Procedure with Low-Speed Punch
Commands to Move Dot and Mark
Beginning and End
Jump and Advance
Mark
Search Commands
Get
wHole
Commands to Modify the Text
Insert
Delete and Kill
Change and Exchange

OPERATING PROCEDURES
Error Corrections
Starting
Restarting

v

Page

2-18
2-23
2-24
2-25
2-26

3-1

3-1
3-1
3-2
3-2
3~3

3-3
3-3
3-4
3-5
3-5
3-6
3-7
3-7
3-7
3-7
3-8

4-1

4-1
4-2
4-2
4-2
4-3
4-3
4-3
4-4
4-4
4-4
4-4
4-5
4-5
4-6
4-6
4-6
4-6
4-6
4-7
4-7
4-7
4-7
4-8
4-8
4-9
4-9
4-10
4-10
4-11
4-11

4.4.4
4.4.5
4.5

CHAPTER 5

5.1
5.1.1
5.1. 2
5.2
5 •. 2.1
5.2.1.1
5.2.1.2
5.2.1.3
5.2.1.4
5.2.1.5
5.2.1.6
5.2.2
5.2.2.1
5.2.2.2
5.2.3
5.2.4
5.2.4.1
5.2.4.2
5.2.5
5.2.6
5.3
5.3.1
5.3.1.1
5.3.1.2
5.3.1.3
5.3.2
5.3.3
5.3.4
5.4
5.5
5.5.1
5.5.2
5.5.3
5.5.4
5.6
5.6.1
5.6.2

5.6.3

CHAPTER 6

6.1
6.1.1
6.1. 2
6.1. 3
6.1.4
6.1. 5
6.1. 6
6.1.6.1

CONTENTS (CONT.)

Creating a Paper Tape
Editing Example

SOFTWARE ERROR HALTS

DEBUGGING OBJECT PROGRAMS ON-LINE

INTRODUCTION
ODT-ll and ODT-lIX
ODT's Command Syntax

COMMANDS AND FUNCTIONS
Opening, Changing, and Closing Locations
The Slash U)
The LINE FEED Key
The Up-Arrow (t)
The Back-Arrow (+)
Accessing General Registers 0-7
Accessing Internal Registers
Breakpoints
Setting the Breakpoimt (niB)
Locating the Breakpoint($B)
Running the Program(niG and-niP)
Searches
Word Seach(niW)
Effective Address Search(niE)
Calculating Offsets(niO)
ODT'S Priority Level($P)

ODT-IIX
Opening, changing and Closing Locations
Open the AddressedLocation(@)
Relative Branch Offset(»
Return to Previous Sequence«)
Calculating Offsets(niO)
Breakpoints
Single-Instruction Mode

ERROR DETECTION
PROGRAMMING. CONSIDERATIONS

Functional Organization
Breakpoints
Search
Teletype Interrupt

OPERATING PROCEOURES'
Linking Procedures (LSI-II Systems Only)
Loading Procedures (non-LS'I-ll Systems
Only)
Starting and Restarting

LOADING AND DUMPING MEMORY

PAPER TAPE BOOTSTRAPS
BM792-YAPaper Tape Bootstrap ROM
BM873-YA Bootstrap Loader ROM
LSI-II Firmware Paper Tape Bootstrap
M9301-YB Bootstrap Loader
M9301-YA Bootstrap Loader
Other Bootstrap Loaders
Loading the Loader into Core

vi

Page

4-11
4-12
4-17

5-1

5-1
5-1
5-2
5-3
5-4
5-4
5-4
5-5
5-5
5-5
5-6
5-6
5-6
5-7
5-7
5-8
5-8
5-9
5-9
5-10
5-10
5-10
5-11
5-11
5-11
5-11
5-12
5-12
5-13
5-14
5-14
5-14
5-18
5-19
5-20
5-20

5-20
5-21

6-1

6-2
6-2
6-2
6-3
6-3
6-4
6-4
6-5

6.1.6.2
6.1.6.3
6.2
6.2.1
6.2.2
6.2.3
6.3
6.3.1
6.3.1.1

6.3.1.2

6.3.2
6.3.3

CHAPTER 7

7.1
7.1.1
7.1.2
7.1. 3
7.2
7.2.1
7.2.2
7.3
7.3.1
7.3.2
7.3.3
7.3.3.1
7.3.3.2
7.3.3.3
7.3.3.4
7.3.4
7.4
7.4.1
7.4.2
7.4.3
7.4.4
7.5
7.5.1
7.5.2
7.5.3
7.5.4
7.5.5.
7.5.6
7.5.7
7.5.8
7.5.9
7.6
7.6.1
7.6.2
7.7
7.8
7.9
7.9.1
7.9.2
7.9.3

CONTENTS (CONT •)

Loading Bootstrap Tapes
Bootstrap Loader Operation

THE ABSOLUTE LOADER
Loading the Loader into Core
Using the Absolute Loader .
Absolute Loader Operation

CORE MEMORY DUMPS
Operating Procedures
Using DUMPAB on Systems without Switch
Registers
Using DUMPAB and DUMPTT on Systems with
Switch Registers
Output Formats .
Storage Maps

INPUT/OUTPUT PROGRAMMING

INTRODUCTION
UsingIOX with the LSI-II Processor
Using IOX with Unibus PDP-II Processors
IOX Interrupt and Trap Vectors

THE DEVICE ASSIGNMENT TABLE
Reset
Initialization

BUFFER ARRANGEMENT IN DATA TRANSFER COMMANDS
Buffer Size
Mode Byte
Status Byte
Non~Fata1 Error Codes (Octal).
Done Bit
End-Of;';'Medium Bit
End-Of-FileBit
Byte Count

MODES
Formatted ASCII
Unformatted ASCII
Formatted Binary
Unformatted Binary

DATA TRANSFERS
Read
Wr~te .
Device Conflicts In Data Transfer Commands
Waitr (Wait, Return)
Waitr vs. Testing the Buffer Done Bit
Single Buffer Transfer6n One Device
Double Buffering
Readr (Real-time Read)
Writr (Real-time Write)

REENABLIN<;i THE READER AND RESTARTING
Seek .
Restart

FATAL ERRORS
EXAMPLE OF PROGRAM USING IOX
IOX INTERNAL INFORMATION

Confltct Byte/Word
Device Interrupt Table (DIT)
Device Status Table (DST)

vii

Page

6-6
6-8
6-10
6-11
6-11
6-13
6-14
6-14

6-15

6-16
6-17
6-17

7-1

7-1
7-3
7-3
7-3
7-3
7-4
7-4
7-4
7-5
7-5
7-6
7-6
7-7
7-7
7-7
7-8
7-8
7-8
7-10
7-10
7-11
7-11
7-11
7-12
7-12
7-13
7-13
7-14
7-15
7-15
7-16
7-16
7-16
7-16
7-17
7-17
7-19
7-19
7-20
7-21

7.9.4
7.9.5
7.9.5.1
7.9.5.2
7.9.5.3

CHAPTER 8

CHAPTER 9

9.1
9.1.1
9.1. 2
9.1. 3
9.1. 4
9.1.4.1
9.1.4.2
9.1.4.3
9.2
9.3
9.3.1
9.3.2

APPENDIX A

APPENDIXB

B.l
B.2
B.3
B.3.1
B.3.2
B.3.3
B.3.4
B.3.5

B.3.6
B.3.7
B.3.8
B.4
B.5
B.6

APPENDIX C

C.l
C.2
C.3
C.3.1
C.3.2
C.3.3
C.3.4
C.3.5

C.3.6

CONTENTS (CONT.)

Teletype Hardware Tab Facility
Adding Devices To lOX
Device Codes
Table Modification
Interrupt Routines

FLOATING POINT MATH PACKAGE OVERVIEW

PROGRAMMING TECHNIQUES

WRITING POSITION .INDEPENDENT CODE
Position Independent Modes
Absolute Modes
Writing Automatic PIC
Writing Non-Automatic PIC
Setting Up The Stack Pointer
Setting Up A Trap or Interrupt Vector
Relocating Pointers

LOADING UNUSED TRAP VECTORS
CODING TECHNIQUES

Altering Register Contents
Subroutines

ASCII CHARACTER SET

PAL-lIS ASSEMBLY LANGUAGE AND ASSEMBLER

TERMINATORS
ADDRESS MODE SYNTAX
INSTRUCTIONS

Double Operand Instructions OP A,A
Single Operand Instructions OP A
Rotate/Shift
Operation Instructions Op
Branch Instructions Op E Where
-12810«E-.-2)/2<127 10
Subroutine Call JSR ER,A
Subroutine Return
Extensions for the LSI-II Version Of PAL-lIS

ASSEMBLER DIRECTIVES
ERROR CODES
INITIAL OPERATING PROCEDURES

PAL-IIA ASSEMBLY LANGUAGE AND ASSEMBLER

Page

7-21
7-21
7-21
7-22
7-23

8-1

9-1

9-1
9-2
9-3
9-3
9-4
9-4
9-4
9-5
9-5
9-6
9-6
9-7

A-I

B-1

B-1
B-2
B-2
B-4
B-4
B-5
B-5

B-6

B-7
B-7
B-7
B-8
B-IO
B-ll

C-l

SPECIAL CHARACTERS C-l
ADDRESS MODE SYNTAX C-2
INSTRUCTIONS C-3

Double-Operand Instructions Op A,A C-4
Single-Operand Instructions Op A C-4
Rotate/Shift Instructions Op A C-5
Operate Instructions Op C-5
Trap Instructions Op or OpE Where 0~E~3778 C-6

Branch InstructionsOp E where
-128 10 ~ (E-.-2)/2~12710

viii

C-7

C.3.7
C.3.S
C.4
C.S
C.6

APPENDIX D

D.l
D.2
D.3
D.4
D.S
D.6
D.7
D.7.l
D.7.2
D. 7.3
D.7.4
D.7.S

APPENDIX E

E.l

APPENDIX F

F.l
F.l.l
F.2
F.3

APPENDIX G

G.l
G.2
G.3

APPENDIX H

H.1
H.2
H.3

APPENDIX I

APPENDIX J

J.l
J .l.1
J.l.l.l
J.l.l.2
J.l.l.3
J .l.2

CONTENTS (CONT •)

Subroutine Call Op ER, A
Subroutine Return Op ER

ASSEMBLER DIRECTIVES
ERROR CODES
INITIAL OPERATING PROCEDURES

TEXT EDITOR, ED-ll

INPUT/OUTPUT COMMANDS
POINTER-POSITIONING COMMANDS
SEARCH COMMANDS
COMMANDS TO MODIFY THE TEXT
SYMBOLS
GROUPING OF COMMANDS
OPERATING PROCEDURES

Loading
Storage Requirements
Starting
Initial Dialogue
Restarting

DEBUGGING OBJECT PROGRAMS ON-LINE, ODT-ll
AND ODT-llX

SUMMARY OF CONTENTS

LOADING AND DUMPING CORE MEMORY

THE BOOTSTRAP LOADER
Loading The Bootstrap Loader

THE ABSOLUTE LOADER
CORE MEMORY DUMPS

INPUT/OUTPUT PROGRAMMING, lOX

INSTRUCTION SUMMARY
PROGRAM FLOW SUMMARY
FATAL ERRORS

SUMMARY OF FLOATING POINT MATH PACKAGE,
FPMP-ll

OTS ROUTINES
NON-OTS ROUTINES
ROUTINES ACCESSED VIA TRAP HANDLER

TAPE DUPLICATION

ASSEMBLY AND LINKING INSTRUCTIONS

SYSTEMS WITHOUT SWITCH REGISTERS
IOX/IOXLPT
Assembling lOX
Assembling IOXLPT
Linking lOX and IOXLPT
ODTllX

ix

Page

C-7
C-S
C-S
C-S
C-9

D-l

D-l
D-2
D-2
D-2
D-3
D-3
D-4
D-4
D-4
D-4
D-4
D-4

E-l

E-l

F-l

F-l
F-l
F-3
F-4

G-l

G-l
G-l
G-2

H-l

H-2
H-7
H-7

I-I

J-l

J-l
J-l
J-l
J-l
J-l
J-l

J.1.2.l
J.1.2.2
J.1. 3
J.1.3.l
J.1.3.2
J.1. 4
J.1.4.l
J.1.4.2
J.1. S
J.1.S.l
J.1.S.2
J.2
J.2.l
J.2.2
J.2.3
J.2.4
J.2.S
J.2.6

APPENDIX K

APPENDIX L

L.l
L.2
L.3
L.3.l
L.3.2
L.3.3
L.3.4

L.3.S

APPENDIX M

APPENDIX N

INDEX

N.l
N.2
N.3

CONTENTS (CONT.)

Assembling "ODTllX
Linking ODTllX
ED-II
Assembling ED-II
Linking ED-II
PAL-llS
Assembling PAL-lIS
Linking PAL-lIS,
LINK-lIS
Assembling LINK-lIS
Linking LINK-lIS

SYSTEMS WITH SWITCH REGISTERS
Assembling PAL-llA
Assembling ED~ll
ODT-ll/ODT-llX
Assembling IOX/IOXLPT
Assembling and Linking PAL-lIS
Assembling and Linking LINK-lIS

STANDARD PDP-II ABBREVIATIONS

CONVERSION TABLES

OCTAL-DECIMAL INTEGER CONVERSIONS
POWERS OF TWO
SCALES OF NOTATION

2x In-Decimal
10±n In Octal
n Log 2 and 10 In Decimal
Addition and Multiplication, Binary and
Octal
Mathematical Constants In Octal

NOTE TO USERS OF SERIAL LA30 AND 600, 1200,
AND 2400 BAUD VTOS'S

USING THE ABSOLUTE LOADER ON PDP-II'S WITHOUT
SWITCH REGISTERS

LSI-ll
M930l-YB BOOTSTRAP LOADER
M930l-YA BOOTSTRAP LOADER

Page

J-l
J-2
J-2
J-2
J-2
J-2
J-2
J-3
J-3
J-4
J-4
J-S
J-S
J-6
J-6
J-7
J-8
J-ll

K-l

L-l

L-l
L-S
L-6
L-6
L-6
L-6

L-6
L-7

M-l

N-l

N-l
N-3
N-4

Index-l

FIGURE

TABLE

5-1
6-1
6-2
6-3
6-4
F-l
F-2
F-3
F-4

1-1
2-1

CONTENTS (CONT .)

FIGURES

Communication and Data Flow
Bootstrap Loader Instructions
Loading and Verifying the Bootstrap Loader
Loading Bootstrap Tapes Into Core
The Bootstrap Loader Program
Loading and Verifying the Bootstrap Loader
Loading Bootstrap Tapes into Core
Loading with the Absolute Loader
Dumping Using DUMPAB or DUMPTT

TABLES

Instruction Operand Fields
Instruction Operand Fields

xi

Page

5-15
6-4
6-7
6-8
6-9
F-2
F-3
F-5
F-6

1-17
2-14

CHAPTER 1

PAL-lIS ASSEMBLY LANGUAGE AND ASSEMBLER

PAL-lIS Assembly (Program Assembly Language for the PDP-II,
Relocatable, Stand Alone Version) enables you to write source
(symbolic) programs using letters, numbers, and symbols which are
meaningful to you. The source programs,generated either on-line
using the Text Editor (ED-II), or off-line, are then assembled into
object modules which are processed by the PDP-II linker, LINK-lIS.
LINK-lIS produces a load module which is loaded by the Absolute Loader
for execution. Object modules may contain absolute and/or relocatable
code and separately assembled object modules may be linked with global
symbols. The object module is produced after two passes through the
Assembler; an optional third pass produces a complete octal/symbolic
listing of the assembled program. This listing is especially useful
for documentation and debugging purposes.

ThLs chapter not only explains how to write PAL-lIS programs but also
how to assemble the source programs into object modules. All facets
of the assembly language are explained and illustrated with many
examples, and the chapter concludes with assembling procedures. In
explaining how to write PAL-lIS source programs, it is necessary,
especially at the outset, to make frequent forward references.
Therefore, we recommend that you first read through the entire chapter
to get a "feel" for the language, and then reread the chapter, this
time referring to appropriate sections as indicated, for a thorough
understanding of the language and assembling procedures.

Some notable features of PAL-lIS are:

1. Selective assembly pass functions.

2. Device specification for pass functions.

3. Optional error listing on the teleprinter.

4. Double buffered and concurrent I/O (provided by IOXLPT).

5. Alphabetized, formatted symbol table listing.

6. Relocatable object modules.

7. Global symbols for linking between object modules.

8. Conditional assembly directives.

9. Program Sectioning Directives.

The PAL-lIS Assembler requires 8K of memory and provides for about 900
user-defined symbols (see Section 1.3.2). In addition, it allows a
line printer to be used for program listing and/or symbol table
listing.

1-1

PAL-lIS ASSEMBLY LANGUAGE AND ASSEMBLER

The following discussion of the PAL-lIS Assembly Language assumes that
you have read the PDP-II Processor Handbook with emphasis on tqose
sections which deal with the PDP-II instruct jon repertoire, forrrt-el>ts,
and timings -- a thorough knowledge of these is vital to efficient
assembly language programming.

1.1 CHARACTER SET

A PAL-lIS source program is composed of symbols, numbers, expressions,
symbolic instructions, assembler directives,-argument separators, and
line terminators written using the following ASCII) characters.

1. The letters A through Z. (Upper and lower case letters are
acceptable, although upon input, lower case letters will be
converted to upper case letters.)

2. The numbers 0 through 9.

3. The characters . and $. ; (These characters are reserved for
systems use.)

4. The separating or terminating symbols:

% # @ " + &

carriage return tab space line feed form feed

1.2 STATEMENTS

A source program is composed of a sequence of statements, where each
statement is on a single line. The statement is terminated by a
carriage return character which must be immediately followed by either
a ~ine feed or form feed character. Should a carriage return
character be present and not be followed by a line feed or form feed,
the Assembler will generate a Q err.or (Section 1.10), and that· portion
of the line following the carriage return will be ignored. Since the
carriage return terminator is a required statement terminator, a line
feed or form feed not immediately preceded by a carriage return will
have one inserted by the Assembler.

It should be noted that, if the Editor (ED-II) is being used to create
the source program, a typed carriage return (RETURN key) automatically
generates a line feed character.

A statement may be composed of. up to four fields which are identified
by their orde~ of appearance and by specified terminating characters
as explained below and summar ized in Appendix .B. The four fields are:

Label Operator Operand Comment

The label and <;::omment fields are optional. The operator and operand
fields are inter-dependent -- either may be omitted depending upon the
contents of the other.

)

ASCII stands for American Standard Code for Information Interchange.

1-2

PAL-lIS ASSEMBLY LANGUAGE AND ASSEMBLER

1.2.1 Label

A label is a user-defined symbol (see Section 1.3.2) which is assigned
the value of the current location counter. This value may be either
absolute or relocatable depending on whether the location counter
value is absolute or relocatable. In the latter case, the final
absolute value is assigned by the Linker, i.e., the value + the
relocation constant. A label is a symbolic means of referring to a
specific location within a program. If present, a label always occurs
first in a statement and must be terminated by a colon. For example,
if the current location is absolute 100 the statement:

ABCD: MOV A,B

will assign the value 100 to the label ABCD so that subsequent
reference to ABCD will be to location 100 In the above case if the
location counter were relocatable the~ the final value of ABCD would
be 100 +K, where K is the location of the beginning of the relocatable
section in which the label ABCD appears. More than one label may
appear within a single label field; each label within the field will
have the same value. For example, if the current location counter is
100 I multiple labels in the statement:

ABC: $DD: A7.7: MOV A,B

will equate each of the three labels ABC, $DD, and A7.7 with the value
100 ($ and . are reserved for system software).

The error code M (multiple definition of a symbol) will
during assembly if two or more labels have the
characters.

1.2.2 Operator

be generated
same first six

An operator follows the label field in a statement, and may be an
instruction mnemonic or an assembler directive (see Section 1.8 and
Appendix B). When it is an instruction mnemonic, it specifies what
action is to be performed on any operand(s) which follows it. When it
is an assembler directive, it specifies a certain function or action
to be performed during assembly.

The operator may be preceded only by one or more labels and may be
followed by one or more operands and/or a comment. An operator is
legally terminated by a space, tab, or any of the following
characters:

+ @ " % &

line feed form feed carriage return

The use of each character above will be explained in this chapter.

Consider the following examples:

MOV -...j A,B
MOV@A,B

i "'I (TAB) terminates operator MOV
;@ terminates operator MOV

When the operator stands alone without an operand or comment, it is
terminated by a carriage return followed by a line feed or form feed
character.

1-3

PAL-lIS ASSEMBLY LANGUAGE AND ASSEMBLER

1.2.3 Operand

An operand is that part of a statement which is operated on
operator -- an instruction mnemonic or assembler directive.
may be symbols, expressions, or numbers. When multiple
appear within a statement, each is separated from the next by
An operand may be preceded by an operator and/or label, and
by a comment.

by the
Operands
operands
a comma.
followed

The operand field is terminated by a semicolon when followed by a
comment, or by a carriage return followed by a line feed or form feed
character when the operand ends the statement. For example,

LABEL: MOV GEORGE"BOB iTHIS IS A COMMENT

where the space between MOV and GEORGE terminated the operator field
and began the operand field; the comma separated the operands GEORGE
and BOB; the semicolon terminated the operand field and began the
comment.

1.2.4 Comments

The comment field is optional and may contain any ASCII character
except null, rubout, carriage return, line feed or form feed. All
other characters, even those with special significance are ignored by
the AsSembler when used in the comment field.

The comment field may be preceded by none, any, or all of the other
three fields. It must begin with the semicolon and end with a
carriage return followed by a line feed or form feed character. For
example,

LABEL: CLR HERE iTHIS IS A $1.00 COMMENT

Comments do not affect assembly processing or program execution, but
they are useful in program listings for later analysis, checkout or
documentation purposes.

1.2.5 Format Control

The format is controlled by the space and tab characters. They have
no effect on the assembling process of the source program unless they
are embedded within a symbol, number, or ASCII text; or are used as
the operator field terminator. Thus, they can be used to provide a
neat, readable program. A statement can be written:

LABEL:MOV(SP)+,TAGiPOP VALUE OFF STACK

or, using formatting characters it can be written:

LABEL: MOV (SP)+,TAG jPOP VALUE OFF STACK

which is much easier to read.

Page size is controlled by the form feed character. A page of n lines
is created by inserting a form' feed (CTRL/FORM keys on the keyboard)
after the nth line. If no form feed is present, a page is
automatically terminated after 56 lines.

1-4

PAL-lIS ASSEMBLY LANGUAGE AND ASSEMBLER

1.3 SYMBOLS

There are two types of symbols J permanent and user-defined. Both are
stored in the Assembler's symbol table. Initially, the symbol table
contains the permanent symbols, but as the source program is
assembled, user~defined symbols are added to the table.

1.3.1 Permanent Symbols

Permanent symbols consist of the instruction mnemonics (see Appendix
B.3) and assembler directives (see Section 1.8). These symbols are a
permanent part of the Assembler's symbol table and need not be defined
before being used in the source program.

1.3.2 User-Defined Symbols

User-defined symbols are those defined as labels (see Section 1.2.1)
or by direct assignment (see Section 1.3.3). These symbols are added
to the symbol table as they are encountered during the first pass of
the assembly. They can be composed of alphanumeric characters, dollar
signs, and periods onlyp again $'s and. 's are reserved for system
software. Any other character is illegal and, if used, will result in
the error message I or QU (see Section 1.10). I is a low priority
error which may be flagged as QU first. The following rules also
apply to user-defined symbols:

1. The first character must not be a number.

2. Each symbol must be unique within thefLrst six characters.

3. A symbol may be written with more than six legal characters
but the seventh and subsequent characters are only checked
for legality, and are not otherwise recognized by the
Assembler.

4. Spaces and tabs must not be embedded within a symbol.

A user-defined symbol may duplicate a permanent symbol. The value
associated with a permanent symbol that is also user-defined depends
upon its use:

1. A permanent symbol encountered in the operator field is
associated with its corresponding machine op-code.

2. If a permanent symbol in the operand field is also
user-defined, its user-defined value is associated with the
symbol. If the symbol is not found to be user-defined, then
t.he corresponding machine op-code value is associated with
the symbol.

User-defined symbols are either internal or global. All symbols are
internal unless they are explicitly typed as global with the .GLOBL
assembler directive (see Section 1.8.2). Global symbols are used to
provide links between object modules. A global symbol which is
defined (as a label or by direct assignment) in a program is called an
entry symbol or entry point. Such symbols may be referred to from
other object modules or assemblies. A global symbol which is not
defined in the current assembly is called an external symbol. Some
other assembly must define the same symbol as an entry point.

1-5

PAL-lIS ASSEMBLY LANGUAGE AND ASSEMBLER

1.3.3 Direct Assignment

A direct assignment statement associates a symbol with a value. When
a direct assignment statement defines a symbol for the first time,
that symbol is entered into the Assembler's symbol table and the
specified value is associated with it. A symbol may be redefined by
assigning a new value to a previously defined symbol. The newly
assigned value will replace the previous value assigned to the symbol.

The symbol takes on the
defining expression.
the defined symbol will
such (see Section 1.4).

relocatable or absolute attribute of the
However, if the defining expression is global,
not be global unless previously defined as

The general format for a direct assignment statement is:

symbol = expression.

The following conventions apply:

1. An equal sign (=) must separate the symbol from the
expression defining the symbol.

2. A direct assignment statement may be preceded by a label and
may be followed by a comment.

3. Only one symbol can be defined by anyone direct assignment
statement.

4. Only one level of forward referencing is allowed.

Example of two levels of forward referencing (illegal):

x Y
Y Z
Z 1

X and Yare both undefined throughout pass 1 and will be listed on the
teleprinter as such at the end of that pass. X is undefined
throughout pass 2, and will cause a U error message.

Examples:

c:
E:

A=l ;THE SYMBOL A IS EQUATED WITH THE VALUE 1

B='A-l&MASKlOW ;THE SYMBOL B IS EQUATED WITH THE EXPRESSION'S
;VAlUE

D=3
MOV livABLE

;THE SYMBOL D IS EQUATED WITH 3. THE
;LABELS C AND E ARE EQUATED WITH THE
;NUMERICAl MEMORY ADDRESS OF THE MOV
;COMMAND

1.3.4 Register Symbols

The eight general registers of the PDP-II are numbered 0 through 7.
These registers may be referenced by use of a register symbol; that
is, a symbolic name for a register. A register symbol is defined by
means of a direct assignment, where the defining expression contains
at least one term preceded by a % or at least one term previously
defined as a register symbol. In addition, the defining expression of
a register symbol must be absolute. For example:

1-6

PAL-lIS ASSEMBLY LANGUAGE AND ASSEMBLER

;DEFINE RO AS REGISTER 0

;DEFINEDR3 AS REGISTER 3

;DEFINE R4 AS REGISTER 4

;DEFINE "THERE" AS REGISTER 2

It is important to note that all register symbols must be defined
before they are referenced. A forward reference to a register symbol
will generally cause phase errors (see Section 1.10).

The % may be used in any expression thereby indicating a reference to
a register. Such an expression is a register expression. Thus~ the
statement:

CLR %6

will clear register 6 while the statement:

CLR 6

will clear the word at memory address 6.
can be referenced without the use of
expression. These cases are recognized
statement and are thoroughly explained
Two obvious examples of this are:

In certain cases a register
a register symbol or register

through the context of the
in Sections 1.7.11 and 1.7.12.

CI ... F~ X en

1.4 EXPRESSIONS

;THE FIRST OPERAND FIELD MUST ALWAYS
; DE A F~EG I STEF~

;ANY EXPRESSION ENCLOSED IN () MUST DE
;A REGISTER. IN THIS CASE? INDEX REGISTER

Arithmetic and logical operators (see Section 1.4.2) may be used to
form expressions. A term of an expression may be a permanent or
user-defined symbol (which may be absolute, relocatable or global), a
number, ASCII data, or the present value of the assembly location
counter represented by the period (see Section 1.5). Expressions are
evaluated from left to right. Parenthetical grouping is not allowed.

Expressions are evaluated as word quantities. The operands of a .BYTE
directive (Section 1.8.8) are evaluated as word expressions before
truncation to the low-order eight bits. The evaluation of an
expression includes the evaluation of the mode of the resultant
expression~ that is, absolute, relocatable or external. The
definition of the modes of ~xpression are given below in Section
1.4.4.

A missing term, expression or external symbol will be
O. A missing operator will be interpreted as +.
(Questionable syntax) will be generated for a missing
example,

A + -100 ;OPERAND MISSING

will be evaluated as A + 0 - 100, and

TAG ! LA 177777 ;OPERATOR MISSING

will be evaluated as TAG LA+177777.

1-7

interpreted as
The error code Q
operator. For

PAL-llS ASSEMBLY LANGUAGE AND ASSEMBLER

The value of an external expression will be the value of the absolute
part of the expression; e.g., EXT+A will have a value of A. This
will be modified by the linker to become EXT+A.

1.4.1 Numbers

The Assembler accepts both octal and decimal numbers. Octal numbers
consist of the digits 0 through 7 only. Decimal numbers consist of
the digits 0 through 9 followed by a decimal point. If a number
contains an 8 or 9 and is not followed by a decimal point, the N error
code (see Section 1.10f will be printed and the number will be
interpreted as decimal. Negative numbers may be expressed as a number
preceded by a minus sign rather than in a two's complement form.
Positive numbers may be preceded by a plus sign although this is not
required.

If a number is too large to fit into 16 bits, the number is truncated
from the left. In the assembly listing the statement will be flagged
with a Truncation (T) error. Numbers are always considered to be
absolute quantities (that is, not relocatable).

1.4.2 Arithmetic And Logical Operators

The arithmetic operators are:

+ indicates addition or a positive numhe.r

indicates subtraction or a negative number

The logical operators are:

& indicates the logical AND operation

indicates the logical inclusive OR operation

AND OR

0 & 0 = 0 0 ! 0 = 0
0 & 1 = 0 0 ! 1 = 1
1 & 0 = 0 1 ! 0 = 1
1 & 1 = 1 1 ! 1 = 1

1.4.3 ASCII Conversion

When preceded by an apostrophe, any ASCII character (except null,
rubout, carriage return, line feed, or form feed) is assigned the
7-bit ASCII value of the character (see Appendix A). For example,

'A

is assigned the value lOIS'

When preceded by a quotation mark, two ASCII characters (not including
null, rubout, carriage return, line feed, or form feed) are assigned
the 7-bit ASCII values of each of the characters to be used. Each
7-bit value is stored in an S-bit byte and the bytes are combined to
form a word. For example "AB will store the ASCII value of A in the
low-order (even) byte and the value of B in the high-order (odd) byte:

l-S

PAL-llS ASSEMBLY LANGUAGE AND ASSEMBLER

B's value
high-order byte
102 I

--------..---.-~ --.. o 100 001 001 000

low-order byte
101 = A's value

--..
001 -- -- -- --o 4 1 o 1

"AB=041101 I

ASCII text is always absolute.

1.4.4 Mode of Expressions

The mode of an expression may be absolute, relocatable or external as
defined below:

A term of an expression is absolute, relocatable or external
on whether its definer (i.e., number, symbol, etc.) is
relocatable or external. Numbers, permanent symbols and
data are always treated as absolute.

An absolute expression is defined as:

depending
absolute,
generated

1. Absolute term (one whose value is defined at assembly time)
preceded optionally by a single plus or minus sign, or

2. Relocatable expression minus a relocatable term, or

3. Absolute expression followed by an operator followed by an
absolute expression.

A relocatable expression is defined as:

.1. Relocatable term (one whose value is not known until link
time), or·

2. Relocatable expression followed by an arithmetic operator
followed by an absolute expression, or

3.- Absolute_ express.ion.followed by a~.plus oper-ator f_ollowed by a
relocatable express.ion.

An external expression is defined as:

1. External term (one whose value is defined outside the
program), or

2. External expression followed by an arithmetic
followed by an absolute term, or

operator

3. Absolute expression followed by a plus operator followed by
an external expression.

In the following examples:

ABS is an absolute symbol,

REL is a relocatable symbol,·

EXT is an external symbol.

1-9

PAL-lIS ASSEMBLY LANGUAGE AND ASSEMBLER

Examples:

The following are valid expressions:

EXT + ABS ;External expression

REL+REL-REL ;Relocatable expression

ABS+REL-REL & ABS ;Absolute expression

The following are illegal expressions:

EXT+REL
REL+REL
ABS-EXT

1.5 ASSEMB'LY LOCATION COUNTER

The period (.) is the symbol for the assembly location counter. (Note
difference of Program Counter. ~PC. See Section 1.7.) When used
in the operand field of an instruction, it represents the address of
the first word of the instruction. When used .inthe .operand field of
an ,assembler directive, it represents'the a'ddress of the current byte
or word. For example,

A: MOV#: .,RO ;.refers to location A,
;i.e., the address of the
;MOV instruction

(#: is explained in Section 1.7.9.)

At the beginning of each assembly pass, the Assembler clears the
location counter. Normally, consecutive memory locations are assigned
to each byte of object data generated. However, the location where
the object data is stored may be changed by a direct assignment
altering the location counter:

.=expression

Similar to other symbols, the location counter symbol "." has a mode
associated with it. However, the mode cannot be external. Neither
can one change the existing mode of the location counter by using a
defining expression of a different mode.

The mode of the location counter symbol can be changed by the use of
the .ASECT or .CSECT directive as explained in Section 1.8.3.

The expression defining the location counter"must not contain forward
references or symbols that vary from one pass to another.

Examples:

.ASECT
.=500 ;SET LOCATION COUNTER TO ABSOLUTE 500

MOV .+10,COUNT ;THE LABEL FIRST HAS THE VALUE 500
;(OCTAL) .+10 EQUALS 510 (OCTAL), THE
;CONTENTS OF LOCATION 510 (OCTAL) WILL
_BE DEPOSITED IN LOCATION COUNT.

+ ::::~520 ;THE ASSEMBLY LOCATION COUNTER NOW
;HAS A VALUE OF ABSOLUTE 520 (OCTAL),

1-10

PAL-lIS ASSEMBLY LANGUAGE AND ASSEMBLER

SECOND: MOV .,INDEX ;THE LABEL SECOND HAS THE VALUE 520
;(OCTAL), THE CONTENTS OF LOCATION 520
;THAT IS, THE BINARY CODE FOR
;INSTRUCTION ITSELF, WILL BE DEPOSITED
tIN LOCATION INDEX.

<.cnECT

.::::.+20

THIF~D : • WDFm ()

;nET LOCATION COUNTER TO RELOCATABLE
;20.

;THE LABEL THIRD HAS THE VALUE OF
; F~ELOCf~TABLE 20.

Storage area may be reserved by advancing the location counter. For
example, if the current value of the location counter is 1000, the
direct assignment statement

.=.+100

will reserve 100 bytes of storage space in the program.
instruction will be stored at 1100.

The next

1.6 RELOCATION AND LINKING

The output of the relocatable assembler is an object module which must
be processed by the PDP-II Linker, LINK-lIS, before loading and
execution. The Linker essentially fixes (i.e., makes absolute) the
values of external or relocatable symbols and creates another module
(load module) which contains the binary data to be loaded anq
executed.

To enable the Linker to fix the value of an expression the assembler
issues certain directives to the Linker together with the required
parameters. In the case of relocatable expressions the Linker adds
the base of the relocatable section (the location in memory of
relocatable 0) to the value of the relocatable expression provided by
the Assembler. In the case of an external expression the value of the
external term in the expression is determined by the Linker (since the
external symbol must be defined in one of the other object modules
being linked and adds it to the value of the external expression
provided by the Assembler.

All instructions that are to be modified as described above will be
marked by a single apostrophe in the assembly listing. Thus the
binary text output will look as follows for the given examples:

0()~:506~3.' CLF~

000000

()O~506~:).' CI..J~

OO()OOt.l

O()~::j06~3' eLI:;:
OO()04()

EXTEF~NAL (~:;)

EXTEF~NAI...Ni (~3)

I:;:EI ... DCATf~BLE (5)

1-11

;VALUE OF EXTERNAL nYMBOL
;AnSUMED ZERO~ WILL BE
;MODIFIED BY THE LINKER.

;ASSUMING WE ARE IN THE
;ABSOLUTE SECTION AND
ITHE VALUE OF RELOCATABLE
tIS RELOCATABLE 40

PAL-lIS ASSEMBLY LANGUAGE AND ASSEMBLER

1.7 ADDRESSING

The Program Counter (register 7 of the eight general registers) always
contains the address of the next word to be fetched; i.e., the
address of the next instruction to be executed, or the second or third
word of the current instruction.

In order to understand how the address modes operate and how
assemble, the action of the Program Counter must be understood.
key rule is:

Whenever the processor implicitly uses the Program
Counter to fetch a word from memory, the Program
Counter is automatically incremented by two after
the fetch.

they
The

That is, when an instruc~ion is fetched, the PC is incremented by two,
so that it is pointing to the next word in memory; and, if an
instruction uses indexing (see sections 1.7.7, 1.7.8 and 1.7.10), the
processor uses the Program Counter to fetch the base from memory.
Hence, using the rule above, the PC increments by two, and now points
to the next word.

The following conventions are used in this section:

1. Let E be any expression as defined in Section 1.4.

2.

Examples:

Let R be a register expression.
containing a term preceded by
previously equated to such a term.

This is any expression
a % character of a symbol

I~O ._.

F~ :L
1~2 --

%0
R<H-:I.
l+%:L

;GENERAL REGISTER 0
;GENERAL REGISTER 1
;GENERAL REGISTER 2

3. Let ER be a register expression or an expression in the range
o to 7 inclusive.

4. Let A be a general address specification which produces a
6-bit mode address field as described in a PDP-II Processor
Handbook.

The addressing specifications, A, may now be explained in terms of E,
R, and ER as defined above. Each will be illustrated with the single
operand instruction CLR or double operand instruction MOV.

1.7.1 Register Mode

The register contains the operand.

Format: R

Example:

RO=%O ;DEFINE RO AS REGISTER 0
CLR RO ;CLEAR REGISTER 0

1-12

PAL-lIS ASSEMBLY LANGUAGE AND ASSEMBLER

1.7.2 Deferred Register Mode

The register contains the address of the operand.

Format:

Example:

@R or (ER)

CLR@F~l

or
CU~(1)

;CLEAR THE WORD AT THE
;ADDRESS CONTAINED IN
;REGISTER 1

1.7.3 Autoincrement Mode

The contents of the register are incremented immediately after being
used as the address of the operand.

Format:

Examples:

(ER)+

CLR
CLR
CLR

(RO>t
(ROt3>t

(2)+

;CLEAR WORDS AT ADDRESSES
;CONTAINED IN REGISTERS 0,3, AND 2
'AND INCREMENT REGISTER CONTENTS
;BY TWO.

NOTE

Both JMP and JSR instructions using mode
2 (non-deferted autoincrement mode),
execute differently on different PDP-II
processors. Avoid use of these
instructions with mode 2 addressing.

Double operand instructions of the
addressing f.o.rm %R, (R) + or %R, -(R)
wbere' the· source and destination
registers are the same, give different
results on different PDP-II processors,
and should be avoided.

1.7.4 Deferred .Autoincrement Mode,

The register 'containsthe' pointer to the address of .the operand. " The
contents of the register are incremented after being used.

Format: @(ER)+

Example:

CLR @(3)t ;CONTENTS OF REGISTER 3 POINT
;TO ADDRESS OF WORD TO BE CLEARED
;BEFORE BEING INCREMENTED BY TWO

1-13

PAL-lIS ASSEMBLY LANGUAGE AND ASSEMBLER

1.7.5 Autodecrement Mode

The contents of the register are :decremented before being used as the
address of the operand (see note in Section 1.7.3).

Format: -(ER)

Examples:

CLR -(RO) 9DECREMENT CONTENTS OF REGISTERS
CLR -(RO+3) ;0, 3 AND 2 BEFORE USING
CLR -(2) 9AS ADDRESSES OF WORDS TO BE CLEARED

1.7.6 Deferred Autodecrement Mode

The contents of the register are decremented before being used as the
pointer to the address of the operand.

Format: @-(ER)

Example:

1.7.7 Index Mode

Format: .E(ER)
~.

;DECREMENT CONTENTS OF REG. 2
9BEFORE USING AS POINTER TO ADDRESS
;OF WORD TO BE CLEARED.

The value of an expression Eis stored as the second or third word of
the instruction. The effective address is calculated as the value of
E plus the contents of register ER. The value E is called the base.

Examples:

CLRX+2(Rl)

CLR -2(3)

1.7.8 Deferred Index Mode

9EFFEGTIVE ADDRESS IS X+2 PLUS
;THE CONTENTS OF REGISTER 1

9EFFECTIVE ADDRESS IS -2 PLUS
9THE CONTENTS OF REGISTER 3

An expression plus the contents of a register gives the pointer to the
address of the operand.

F6rmat: @E(ER)

Example:

CLR @14(4) ;IF REGISTER 4 HOLDS 100, AND LOCATION
;114 HOLDS 2000, LOC.2000 IS CLEARED.

1-14

PAL-lIS ASSEMBLY LANGUAGE AND ASSEMBLER

1.7.9. Immediate Mode .and Deferred Immediate (Absolute) Mode

The immediate mode allows the oper~nd itself
second or third word of the instruct.ion.
autoincrement of register 7, the pc.

to be stored as the
It is assembled as an

Format:· ,'4/:E

Examples: .

MOV :1J:100,RO
MOV :ft:X,RO

;MOV~ AN OCTAL 100 TO REGISTER 0
~MOVE THE VALUE OF SYMBOL X TO
;REGISTER O. .

The operation of this mode is explained as follows:

The statement MOV 4/:100,R3 assembles as two words. These are:

012 703
00 0 1 0 0

Just b~fore this instruction is fetched and executed, the pc points to
the fir~t word of the instruction. The processor fetches ~he first
word and increments the pc by two. The source operand mode is 27
(autoincrement the PC). Thus the PC is used as a pointer to fetch the
operand (the second word of the instruction) before being incremented
by two, to point to the next instruction.

If the #E is preceded by @, E specifies an absolute address.

1.7.10 Relative and Deferred Relative Modes

Relative mode is the normal mode for memory references.

Format: E

Examples:

~CLEAR LOCATION 100 CU';: 100
MOV X,y ;MOVE CONTENTS hF LOCATION X TG

HJJCATION Y.

This mode is assembled as Index mode, using 7, the PC, as
register. The base of the address calculation, which is stored in
second or third word of the instruction, is not the address of
operand. Rather, it is the number which, when added to the
becomes the address of tbe operand. Thus, the· base is X-PC.
operation is explained as follows:

the
the
the
PC,
The

If the statement MOV lOO,R3 is assembled at absolute location 20 then
the assembled code is:

Location 20:
Location 22

01670 3
o 0 0 054

The processor fetches the MOV instruction and adds two to the PC so
that it points to location 22. The source operand mode is 67~ that
is; indexed by the PC .. To.pick up the base, the processor fetches the
word. pointed to by the PC~nd adds two to the PC. The PC now points
to location 24. To calculate the address of the source operand, the
base is added to the designated register. That is, BASE+PC=54+24=100,
the operand address.

1-15

PAL~llS ASSEMBLY LANGUAGE AND ASSEMBLER

Since the Assembler conside~s "." as the address of the first word of
the instruction, an equivalent statement would be

MOV 100 -.- 4(PC),R3

This mode is called relative because the operand address is calculated
relative to the current pc. The base is the distance (in bytes)
between the operand and the current pc. If the operator and its
operand are moved in memory so that the distance b~tween the operator
and data remains constant, the instruction will operate correctly.

If E is preceded by @ the expression's value is the pointer to the
address of the operand.

1.7.11 Table of Mode Forms and Codes (6-bi~(A) format only ~ see
Section 1.7.12)

Each instruction takes at least one word. Operands of the first six
forms listed below, do not increase the length of an instruction.
Each operand in one of the other modes, however, increases the
instruction length by one word.

None
of
these
Iorms
increases
the
instruc­
tion
leng'th.

Any of these
forms adds a
word to the
instruction
length.

Notes:

Form

R
@R or· (ER)
(ER) +
@(ER)+
';"fER)
@-(ER)

Form

E(ER)
@E(ER)
:JI:E
@#E
E
@E

Mode

On
In
2n
3n
4n
5n

Mode

6n
7n
27
37
67
77

Meaning

Register
Register deferred
~AutoincIement
. Autoi-ncrement deferred
Autodecrement
Autodecrement deferred

Meaning

Index
Index deferred
Immediate
Absolute memory reference
Relative
Relative deferred reference

1. An alternate form for @R is (ER). However, the form @O(ER)
is equivalent to @O(ER).

2. The form @:JI:E differs from the form E in that the second or
third word of the instruction contains the absolute address
of the operand rather than the relative distance between the
operand and the PC. Thus, the statement CLR @:JI:100 will clear
location 100 even if the instruction is moved from the point
at which it was assembled.

The Assembler is not particular about left and right and dangling +
and signs in address fields. The following are some examples of
incorrect syntax that assemble as indicated, without an error
indication.

1-16

PAL-lIS ASSEMBLY LANGUAGE AND ASSEMBLER

Form

(R2)A
A- (R2)
A(Rw)+
+(R2)

Assembles As:

A.(R2)
A(R2) or A-O(R2)
A(R2)
(R2)+

1.7.12 Instruction Forms

Form

(R2)-
@ (R2)A
A(R2)+B

Assembles As:

- (R2)
@ A(R2)
A+B (R2)

The instruction mnemonics are given
defines the number and nature of
instructions.

in Appendix
the operand

B. This section
fields for these

In the table that follows, let R, E, and ER represent
defined in Sections 1.4 and 1.7 and let A be
specification of the forms:

E
R
(ER) +

Instr.uction

Double. :6,p.arand
Singl'eOp-erand
OPERATE
Branch

Subroutine Call

@E
@R or (R)
@(ER)+

- (ER)
E (ER)
#E

@ -(ER)
@ E(ER)
@ :fI:E

Table 1-1
Instruction Operand Fields

Form

Qp ·AiA
Qp .A
OP
Op E

where -128«E-.-2)/2<127
JSR ER,A

Subroutine Return RTS ER
EMT/TRAP Op or Op'E

where O<E<377

expressions as
a 6-bit address

Example

MOV (R6)+, ;@Y

CLR-(R2)
HALT
BR X+2
BLO .-4

JSR PC,SUBR
RTS PC
EMT
EMT 31

The branch instructions are one word instructions. The high byte
contains the op code and the low byte contains an 8-bit signed offset
(7 bits plus sign) which specifies the branch addre~s relative to the
PC. The hardware calculates the branch address as follows:

1. Extend the sign of the offset through bits 8-15.

2. Multiply the result by 2. This creates a word offset rather
than a byte offset.

3. Add the result to the PC to form the final branch address.

The Assembler performs the reverse operation to form the byte offset
from the specified address. Remember that when the offset is added to
the PC, the PC is pointing to the word following the branch
instruction; hence the factor -2 in the calculation.

Byte offset = (E-PC)/2 truncated to eight bits.

Since PC = .+2, we have

Byte offset = (E-.-2)/2 truncated to eight bits.

1-17

PAL-lIS ASSEMBLY LANGUAGE AND ASSEMBLER

NOTE

It is illegaltd branch to a lOcation
specified as an external symbol, or to a
relocatable symbol when within. an
absolute section, or to an absolute
symbol when within a relocatable
section.

The EMT and TRAP instructions do not use the _low-order byte' of the
word. This allows information to be transferred to the trap handlers
in the low-order byte. If EMT or TRAP is followed by an expression,
the value is put into the low-order byte of the word~ However, if the
expression is too big(>377 S) it is truncated to eight bits ~nd a
Truncation (T) error occurs.

Do not try to micro-progr~m the condition cod~ operators (see Appendix
B, B.4). This makes sense in the PDP-II hardwarep however, the
current PAL-lIS Assembler does not support this capability. Thus:

CLC!CLV

results in a Q error (see Appendix B, B.5) and the statement is
assembled as CLC.

Expressions in the Assembler 'do, however, allow logical operators and
the use of instruction mnemonics. Thus, the proper ways to write the
above statement:

.WORD CLC!
+CLC!CLV
!CLC!CLV

1.S ASSEMBLER DIRECTIVES

; 0 F' f.H' af"Ji.:I

; Ol"'erand
; DF·e r'i~nd

(:If
of
fJf

• warm
d(f!fal..llt
defi31..11t

.WORD

.WORD

Assembler directives (sometimes called pseudo-ops) direct the assembly
process and may generate data.

Assembler directives may be preceded bya label and followed by a
comment. The assembler directive occupies the operator field. Only
one directive may be placed in anyone statement. . One or more
operands may occupy the operand field or it may be void -- allowable
~perands vary from directive to directive. .

1.S.1 .TITLE

The .TITLE directive is used to name the object module.
assigned by the first symbol following the directive •
. TITLEstatement the default name 'assigned is II ~MAIN. ".

1. S • 2 . GLOBL

The name is
If there is no

The .GLOBL directive is used to declare a symbol as bei~g global. It
may be an entry symbol, in which case itis defined in the program, or
it may be a external symbol, in which case it should be defined in
another program which will be linked with this program by the linker.

The form of the .GLOBL directive is

.GLOBL NAMA, NAMB, .•. ,NAMN

I-IS

PAL-llS ASSEMBLY LANGUAGE AND ASSEMBLER

NOTE

A symbol cannot be declared global by
defining' it as a global,expression in a
direct assignment statement.

If an illegal character is detected in the operand field of a .GLOBL
statement, an error message is not generated; and the Assembler may
ignore the remainder of the statement. Thus:.

GLOBL A,B,@C,D

as~embles without error as:

.GLOBL A,B

1.8.3 Program Section Directives (.ASECT and~CSECT)

The relocatable assembler provides for two program sections, an
absolute section declared by an .ASECT directive and a relocatable
section declared by a .CSECT directive. These directives therefore
enable the programmer to specify that parts of his program be
assembled in the absolute section and others in a relocatable section.
The scope of each directive extends until a directive to the contrary
is given. The Assembler initially starts in the relocatable section:
Thus, if the first statement of a program were

A: .ASECT

the label "A" would be a relocatable symbol which is assigned the
value of relocatable zero. The absolute value of A will be calculated
by the Linker by adding the value of the base of the relocatable
section.

Example:

'. ASECT
.::::1000

A: CL.R X
.CBECT

X: JMP A
.END

;ASSEMBLER IN ABSOLUTE SECTION
9PC = 1000 ABSOLUTE
;A = 1000 ABSOLUTE
9ASSEMBLE IN RELOCATABLE SECTIO~
;x=o RELOCATABLE

The absolute and/or relocatable section may be discontinued (by
~witching to the alternate section) and,then continued where they left
off by using another .ASECT or .CSECT statement.

Example:

.CBECT

.wmm 0,;J,,2 ;ASSEMBLE[I AT RELOCATABLE 0, 2 and 4

.ASECT

.WORD 0,l.,2 .; ASSEMBLED AT ABSOLUTE 0, 2 and 4

.CSECT

.WORD 0 9ASSEMBLED AT RELOCATABLE 6.

.END

If a label is defined twice, first in an absolute section and then in
a relocatable section, the symbol will be relocatable but its value
will be as defined in the absolute section.

},-19

PAL-lIS ASSEMBLY LANGUAGE AND ASSEMBLER

1. 8.4 .EOT

The .EOT directive indicates the physical End Of Tape though not. the
logical end of the program. ,If the .EOT is followed by a single line
feed or form feed, the Assembler will still read to the end of the
tape, but will not process anything past the .EOT directive. If .EOT
is followed by at least two line feeds or form feeds, the Assembler
will stop before the end of the tape. Either case is proper, but it
should be understood that even though it appears as if the Assembler
has read too far, it actually hasn't.

If a .EOT is
follows it,
feeds or form
will be lost.

embedded in a tape, and more information to be assembled
.EOT must be immediately followed by at least two line
feeds. Otherwise, the first line following the .EOT

Any operands following a .EOT directive will be ignored. The .EOT
directive allows several physically separate tapes to be assembled as
one program. The last tape should be terminated by a .END directive
(see Section 1.8.6) but may be terminated with • EDT (spe .END
emulation in Section 1.9.4).

1. 8. 5 . EVEN

The .EVEN directive ensures that the assembly location counter is even
by adding one if it is odd. Any operands following a .EVEN directive
will be ignored.

1. 8.6 '. END

The .END directive indicates the logical and physical end of the
source program. The .END directive may be followed by only one
operand, an expression indicating the prog,r,aIIl's tr,ansfer addresa.

At loadct±me, the load module wEI be loaded and program execution
will begin at the transfer address indicated by the .END directive.
If the address is not specified, the loader will halt after reading in
the load moduler

1. 8.7 • WORD

- The .WORD assembler directive may have one or more operands', separated
by commas. Each operand is stored ina word of the object program.
If there is more than one operand, they are stored in successive
words. The operands may be any legally formed expression. For
example,

.:::::1.420
SAL~-::O

.WORD 177535,.+4,SAL ;STORED IN WORDS 1420, 1422 AND
;1424 WILL BE 177535, 1426, AND 0

Values exceeding 16 bits wil~ be truncated from the left, to word
length.

1-20

PAL-lIS ASSEMBLY LANGUAGE AND ASSEMBLER

A .WORD directive followed by one or more void operands separated by
commas will store zeros for the void operands. For example,

.=1430

.WORD ,5,
;ZERO, FIVE, AND ZERO ARE STORED
;IN WORDS 1430, 143~, AND 1434

An. operator field left blank will be interpreted as the . WORD
directive if the operand field contains one or more expressions. The
first term of the first expression in the operand field must not be an
instruction mnemonic or assembler directive unless preceded by a +, -
or one of the logical operators, ! or &. For example,

.::::440
LABEL: +MOV,LABEL

;THE OP-CODE FOR MOV, WHICH IS 010000,
;IS STORED IN LOCATION 440. 440 IS
;STORED IN LOCATION 442.

Note that the default .WORD will occur whenever there is a leading
arithmetic or logical operator, or whenever a leading symbol is
encountered which is not recognized as an instruction mnemonic or
assembler directive. Therefore, if an instruction mnemonic or
assembler directive is misspelled, the .WORD directive is assumed and
errors will result. Assume that MOV is spelled incorrectly as MaR:

MaR A,B

Two error codes can result: A Q will occur because an expression
operator is missing between MaR and A, and a U will occur if MaR is
undefined. Two words will be generated; one for MaR A and one for B.

1. 8.8 .BYTE

The .BYTE assembler directive may have one or more operands separated
by commas. Each operand is stored in a byte of the object program.
If multiple operands are specified, they are stored in successive
bytes. The operands may be any legally formed expression with a
result of 8 bits or less. For example,

SAM:=:5
• :::410
• BYTE 48.,SAM

;STORED IN LOCATION 410 WILL BE
;060 (THE OCTAL EQUIVALENT OF 48) •
;IN 411 WILL BE'005 •

If the expression has a result of more
truncated to its low-order 8 bits and
If an operand after the .BYTE directive
interpreted as zero. For example,

than 8 bits, it will be
will be flagged as a Terror.
is left void, it will be

• """420
• BYTE , ,

;ZERO WILL BE STORED IN
;BYTES 420, 421 AND 422 •

If the expression is relocatable, a warning flag, A, will be given.

1.8.9 .ASCII

The .ASCII directive translates strings of ASCII characters into their
7-bit ASCII codes with the exception of null, rubout, carriage return,
line feed and form feed. The text to be translated is delimited by a
character at the beginning and the end of the text. The delimiting
character may be any printing ASCII character except colon and equal
sign and those used in the text string. The 7-bit ASCII code
generated for each character will be stored in successive bytes of the
object program. For example,

1-21

PAL-lIS ASSEMBLY LANGUAGE AND ASSEMBLER

.=500

.ASCII IYESI

.ASCII 15+3/21

;THE ASCII CODE FOR Y WILL BE
;STORED IN 500~ THE CODE FOR E
;IN 501, THE CODE FOR S IN 502.
9THE DELIMITING CHARACTER OCCURS
9AMONG THE OPERANDS. THE ASCII
;CODES FOR 5 , + , AND 3 ARE
;STORED IN BYTES 503, 504, AND
;505. 21 IS NOT ASSEMBLED.

The .ASCII directive may be terminated by any legal terminator except
for and .• Note that if the text delimiter is also a terminator,
the leading text delimiter can also serve as the .ASCII directive
terminator. For example,

.ASCII IABCDI

• ASCII+ABCD+

9THE SPACE IS REQUIRED
;BECAUSE I IS NOT A TERMINATOR.
9NO SPACE IS REQUIRED •

1.8.10 .RAD50

PDP-II system programs often handle symbols in a specially coded form
caled "RADIX 50" (this form is sometimes referred to as "MOD40").
This form allows 3 characters to be packed into 16 bits; therefore,
any symbol can be held in two words, the form of the directive is:

.RAD50 /CCC/

The single operand is of the form /CCC/ where the slash (the
delimiter) can be any printable character except for = and:. The
delimiters enclose the characters to be converted which may be A
through Z, 0 through 9, dollar ($), dot (.) and space (). If there
are fewer than 3 characters they are considered to be left-justified
and trailing spaces are assumed. Any characters following the
t~ailing delimiter are ignored and no.error results.

Examples:

.RAD50 IABCI

.RAD50 IABI

.1:;:AD~50 I I

;PACK ABC INTO ONE WORD
;PACK AB (SPACE) INTO ONE WORD;
;PACK 3 SPACES INTO ONE WORD

The packing algorithm is as follows:

A. Each character is translated into its RADIX 50 equivalent as
indicated in the following table:

Character

(SPACE)
A-Z
$

0-9

RADIX 50 Equivalent (octal)

o
1-32
33
34
36-47

Note that another character can be defined for code 35.

B. The RADIX 50 equivalents for characters 1 through 3 (Cl,C2,C3) are
combined as follows:

RESULT=((Cl*50)+C2)*50+C3

1-22

PAL-lIS ASSEMBLY LANGUAGE AND ASSEMBLER

1.8.11 .LIMIT

A program often wishes to know the boundaries of the relocatable code.
The .LIMIT directive generates two words into which the linker puts
the low and high addresses of the relocated code. The low address
(inserted into the first word) is the address of the first byte of
code. The high address is the address of the first free byte
following the relocated code. These addresses will always be even
since all relocatable sections are loaded at even addresses and if a
relocatable section consists of an odd number of bytes the linker adds
one to the size to make it even.

1.8.12 Conditional Assembly Directives

Conditional assembly directives provide the programmer with the
capability to conditionally include or not include portions of his
source code in the assembly process. In what follows, E denotes an
expression and S(i) denotes a symbol. The conditional directives are:

.IFZ E iIF E=O

.IFNZ E iIF E*O

.IFL E iIF E<O

.IFLE E iIF E~IO

.IFG E i IF E>O

.IFGE E ;IF E~O

.IFDF S (1) [I , &] S (2) [1,&] ... [1,&] S(N) (I =OR, &=AND)

.IFNDF S (1) [I , &] S (2) [1,&] ..• [1,&] S(N)

If the condition is met, all statements up to the matching .ENDC are
assembled. Otherwise, the statements are ignored until the matching
.ENDC is detected.

In the above,.IFDF and .IFNDF mean "if defined" and "if undefined"
respectively. The scan is left to right, no parentheses permitted.

E"xample:

.IFDF S!T&U

.IFNDF T&LJ!S

General Remarks:

Means assemble if either S or T is
defined and U is defined

Means assemble if both T and U are
undefined or if S is undefined

An errored or null expression takes the default value 0 for purposes
of the conditional test. An error in syntax, e.g., a terminator other
than ;, I, &, or CR results in the undefined situation for .IFDF and
.IFNDF, as does an errored or null symbol.

All conditionals must end with the
operand field of .ENDC is ignored.
of 127 Labels are permitted on
scan is purely l"eft to right. For

.IFZ 1
A: . ENDC

A is ignored.

A: .IFZ 1
.ENDC

A is entered in the symbol table.

.ENDC diIective. Anything in the
Nesting is permitted up to a depth
conditional directives, but the

example:

1-23

PAL-lIS ASSEMBLY LANGUAGE AND ASSEMBLER

If a .END is encountered while inside a satisfied conditional, a Q
flag will appear, but the .END directive will still be processed
normally. If more .ENDC's appear than are required, Q flags appear on
the extras.

1.9 OPERATING PROCEDURES

1.9.1 Introduction

The Assembler enables you to assemble an ASCII tape containing PAL-II
statements into a relocatable binary tape (object module). To do
this, two or three passes are necessary. On the first pass, the
Assembler creates a table of user-defined symbols and their associated
values, and a list of' undefined symbols is printed on the teleprinter.
On the second pass the Assembler assembles the program and punches out
an absolute binary tape and/or outputs an assembly listing. During
the third pass (this pass is optional), the Assembler punches an
absolute binary tape or outputs an assembly listing. The symbol table
(and/or a list of errors) may be output on any of these passes. The
input and output devices as well as various options are specified
during the initial dialogue (see Section 1.9.3). The Assembler
initiates the dialogue immediately after being loaded and after the
last pass of an assembly.

1.9.2 Loading PAL-lIS

PAL-lIS is loaded by the Paper Tape Software Absolute Loader. Note
that on systems with hardware switch registers, the start address of
the Absolute Loader must be in the Switch Register when loading the
Assembler. This is because the Assembler tape has an initial program
which clears all of core up to the address specified in the Switch
Register, and jumps to that address to start loading the Assembler.

1.9.3 Initial Dialogue

After being loaded, the Assembler prints its name and version and then
initiates dialogue by printing on the teleprinter

*S

meaning "What is the Source symbolic input device?" The response may
be

.J use Low-speed reader (.Jdenotes typing the RETURN key)
H meaning High-speed reader
L meaning Low-speed reader
T meaning Teleprinter keyboard

The device specification is terminated, as is all user response, by
typing the RETURN key.

If an error is made in typing at any time, typing the RUBOUT key will
erase the immediately preceding character if it is on the current
line. Typing CTRL/U will erase the whole line on which it occurs.

1-24

PAL-lIS ASSEMBLY LANGUAGE AND ASSEMBLER

After the *S question and response, the Assembler prints:

*B

meaning "What is the Binary output device?" The responses to *B are
similar to those for *S:

H meaning High-speed punch
L meaning Low-speed punch
./ meaning do not output binary tape (./denotes typing

the RETURN key)

In addition to I/O device specification, various options may be
chosen. The binary output will occur on the second pasS unless /3
(indicating the third pass) is typed following the H or L. Errors
will be listed on the same pass if /E is typed. If /E is typed in
response to more than one inquiry, only the last occurrence will be
honored. It is strongly suggested that the errors be listed on the
same pass as the binary output, since errors may vary from pass to
pass.

If both /3 and /E are typed, /3 must
terminated by typing the RETURN key.

precede /E.
Examples:

The response is

*B L/E

*B H/3/E

*B

Binary output on the low-speed punch and
the errors on the teleprinter, both
during the second pass.

Binary output on the high-speed punch
and the errors on the teleprinter during
the third pass.

The RETURN key alone will cause the
Assembler to omit binary output

After the *B question and response, the Assembler prints:

*L

meaning "What is the assembly Listing output device?" The response to
*L may be:

L meaning Low-speed punch
H meaning High-speed punch
T meaning Teleprinter
P meaning Line Printer
.J meaning do not output listing (.Jdenotes typing RETURN)

After the I/O device £pecification, pass and error list options
similar to those for *B may be chosen. The assembly listing will be
output on the third pass unless /2 (indicating the second pass) is
typed following H, L, T, or P. Errors will be listed on the
teleprinter during the same pass if /E is typed. If both /2 and /E
are typed, /2 must precede /E. The response is terminated by typing
the RETURN key. Examples:

*L L/2/E

*.L H

*L

Listing on low-speed punch and errors on
teleprinter during second pass.

Listing on high-speed punch ~uring third
pass

The RETURN key alone will cause the
Assembler to omit listing output.

1-25

PAL-lIS ASSEMBLY LANGUAGE AND ASSEMBLER

After the *L ,question and response, the final question is printed on
the teleprinter:

*T

meaning "What is the symbol Table output device?" The device
specification is the same as for *L question. The symbol table will
be output at the end of the first pass unless /2 or /3 is typed in
response to *T. The first tape to be assembled should be placed in
the reader before typing the RETURN key because assembly will begin
upon typing RETURN to the *T question. The /E option is not a
meaningful response to *T. Example

*T

*T

T/3 Symbol table output on teleprinter at
end of third pass.

Typing the RETURN key alone will cause
the Assembler to omit symbol table
output.

The symbol table is printed alphabetically, three symbols per line.
Each symbol printed is followed by its identifying characters and by
its value. If the symbol is undefined, six asterisks replace its
value. The identifying characters indicate the class of the symbol;
that is, whether it is a label, direct assignment, register symbol,
etc. The following examples show the various forms.

ABCDEF
R3
DIRASM
XYZ
R6
LABEL

001244
%000003
177777

%******

(Defined Label)
(Register Symbol)
(Direct Assignment)
(Undefined direct assignment)
(Undefined register symbol)
(Undefined label)

Generally, undefined symbols and external symbols will be listed as
undefined direct assignments. Multiply-defined symbols are not
flagged in the symbol table printout but are flagged wherever they are
used in the program.

If the symbol is relocatable or global or both, the symbol's value
will be followed by an R, a G or both.

It is possible to output both the binary tape and the assembly listing
on the same pass, thereby reducing the assembly process to two passes
(see Example 1 below). This will happen automatically unless the
binary device and the listing device are conflicting devices or the
same device (see Example 2 below). The only conflicting devices are
the teleprinter and the low-speed punch. Even though the Assembler
deduces that three passes are necessary, the binary and listing can be
forced on pass 2 by including /2 in the responses to *B and *L (see
Example 3 below).

Example 1. Runs 2 passes:

*S
*B
*L
*T

H
H
P
T

High-speed reader
High-speed punch
Line Printet
Teleprinter

Example 2. Runs 3 passes:

H
H
H
T

High-speed reader
High-speed punch
High-speed punch
Teleprinter

1-26

PAL-llS ASSEMBLY LANGUAGE AND ASSEMBLER

Example 3. Runs 2 passes:

H
H/2
H/2
T

High-speed reader
High-speed punch on pass 2
High-speed punch on pass 2
Teleprinter

Note that there are several cases where the binary output can be
intermixed with ASCII output:

a. *B H/2 Binary and listing to punch on pass 2.
*L H/2

b. *B L/E Binary to low-speed punch and error listing to
teleprinter (and low-speed punch).

c. *B L/2/E Binary, error listing, and
*L T/2 listing to low speed punch.

The object module so generated is acceptable to the Linker as long as
there are no CTRL/A characters in the source program. The start of
~very block on the binary tape is indicated by a 001 and the Linker
19nores all information until a 001 is detected. Thus, all source
and/or error messages will be ignored if they do not contain any
CTRL/A characters (octal 001).

If a character other than those mentioned is typed in reponse to a
question, the Assembler will ignore it and print the question again.
Example:

*S
*B
*B

H
Q

High-speed reader
Q is not a valid response
The question is repeated

If at any time you wish to restart the Assembler, type CTRL/P. If the
low-speed reader is the source input device, turn it off before typing
CTRL/P.

When no passes are omitted or error options specified, the Assembler
performs as follows:

PASS 1:

Assembler creates a table of user-defined symbols and their associated
values to be used in assembling the source to object program.
Undefined symbols (not including external globals) are listed on the
teleprinter at the end of the pass. The symbol table is also listed
at this time. If an illegal location statement of the form
.=expression is encountered, the line and error code will be printed
out on the teleprinter before the assembly proceeds. An error in a
location statement is usually a fatal error in the program and should
be corrected.

PASS 2:

Assembler punches the object module, and prints the pass error count
and undefined location statements on the teleprinter.

PASS 3:

Assembler prints or punches the assembly program listing, undefined
location statements, and the pass error count on the teleprinter.

1-27

PAL-lIS ASSEMBLY LANGUAGE AND ASSEMBLER

The functions of passes 2. and 3 will occur simultaneously on pass 2 if
the binary and listing devices are different, and do not conflict with
each other (the low-speed punch and teleprinter conflict).
Furthermore, if the binary object module is not requested, the listing
will be produced on pass 2. .

The following table summarizes the initial dialogue questions:

PRINTOUT INQUIRY

*S What is the input device of the Source symbolic tape?
*B What is the output device of the Binary object tape?
*L What is the output device of th~ assembly Listing?
*T What is the ·output deviqe of the symbol Table?

The following

CHARACTER

table summarizes the legal responses:

RESPONSE INDICATED

Teleprinter keyboard
Low-speed reader or punch
High-speed reader or punch
Line Printer
Pass 1
Pass 2
Pass 3

T
L
H
P
II
12
13
IE

./

Errors listed on same pass (not meaningful
response to *S or *T)
Omit function (except in response .to *S).

Typical examples of complete initial dialogues:

For minimal PDP-II configuration:

*S L Source input on low-speed reader
*B LIE Binary output on low-speed punch

errors during same (second) pass
*L T Listing on teleprinter during pass 3
*T T Symbol table on teleprinter at end of pass 1

For a PDP-II with high-speed IIO devices:

*S H Source input on high-speed reader
*B HIE Binary output on high-speed punch

./
errors during same (second) pass

*L No listing
*T T/2 Symbol table on teleprinter at end of pass 2.

1.9.4 Assembly Dialogue

During assembly, the Assembler wiil pause to print on the teleprinter
various messages to indicate that you must respond in some way before
the assembly process can continue. You may also type CTRLIP, at any
time, if you wish to stop the assembly process and restart the initial
dialogue, as mentioned in the previous section.

When a .EOT assembler directive is read on the tape, the Assembler
prints

and pauses. Our ing this pa"use, the next tape is placed in the reader,
and RETURN is typed to continue the assembly.

1-28

PAL-lIS ASSEMBLY LANGUAGE AND ASSEMBLER

If the specified assembly listing output device is the high-speed
punch and if it is out of tape, or if the device is the Line Printer
and is out of paper, the Assembler prints on the teleprinter

and waits for tape or paper to be placed in the device. Type the
RETURN key when the tape or paper has been replenished; assembly will
continue.

Conditions causing the EOM? messages for an assembly listing device
are:

HSP

No power
No tape

LPT

No power
Printer drum gate open
Too hot
No paper

There is no EOM if the line printer is switched off-line, although
characters may be lost for this condition as well as for an EOM.

If the binary output device is the high-speed punch and if it is out
of tape, the Assembler prints:

The assembly process is aborted and the initial dialogue is begun
again.

When a .END assembler directive is read on the tape, the Assembler
prints:

END ?

and pauses. During the pause the first tape is placed in the reader,
and the RETURN key is typed to begin the next pass. On the last pass,
the .END directive causes the Assembler to begin the initial dialogue
for the next assembly.

If you are starting the binary pass and the binary is to be punched on
the low-speed punch, turn the punch on before typ.ing the RETURN key
for starting the pass. The carriage return and line feed characters
will be punched onto the binary tape, but the Linker will ignore them.

If the last tape ends with a .EOT, the Assembler may be told to
emulate a .END assembler directive by responding with E followed by
the RETURN key. The Assembler will then print

END ?

and wait for another RETURN before starting the next pass. Example:

EOF? E...J
END ?

Note that forcing a .END in this manner causes the error counter to be
incremented by one.

1-29

PAL-lIS ASSEMBLY LANGUAGE AND ASSEMBLER

1.9.5 Assembly Listing

PAL-lIS produces a side-by-side assembly listing of symbolic source
statements, their octal equivalents, assigned addresses, and error
codes, as follows:

EELLLLLL OOOOOOASSS ...•... S
000000
000000

The E's represent the error field. The L's represent the address.
The a's represent the object data in octal. The SiS represent the
source statement. "A" represents a single apostrophe which indicates
that either the second, third or both words of the instruction will be
modified by the Linker. While the Assembler accepts 72 characters
per line on input, the risting is reduced by the 16 characters to the
left of the source statement.

The above represents a three-word statement. The second and third
words of the statement are listed under the command word. No
addresses precede the second and third words since· the address order
is sequential.

The third line is o~itted for a two-word statement~ both· second and
third lines are omitted for a one-word statement.

For a .BYTE directive, the object data field is three octal digits.

For a direct assignment statement, the value of the defining
expression is given in the object code field although it is not
actually part of the code of the object program.

The .ASECT and .CSECT directives cause the current value of the
appropriate location counter (absolute or relocatable) to be printed.

Each page of the listing is headed by a page number (octal).

1.9.6 Object Module Output

The output of the assembler during the binary object pass is an object
module which is meaningful only to the linker. What follows gives an
overview of what the object module contains and at what stage each
part of it is produced.

The binary object module consists of three main types of data block:

a) Global symbol directory
b) Text blocks
c) Relocation Directory

(GSD)
(TXT)
(RLD)

1.9.6.L Global Symbol Directory - As the name suggests, the GSD
contains a list of all the global symbols together with the name of
the object module. Each symbol is in Radix-50 form and contains
information regarding its mode and value whenever known.

The GSD is created at the start of the binary object pass.

1-3Q

,PAL-lIS ASSEMBLY LANGUAGE AND ASSEMBLER

1.9.6.2 Text Block - The text blocks consist entirely of
object data as shown in the listing. The operands
unmodified form.

the binary
are in the

1.9.6.3 Relocation Directory - The RLD blocks consist of directives
to the Linker which may reference the text block preceding the RLD.
These directives control the relocation and linking process.

Text and RLD blocks are constructed during the binary object pass.
Outputting of each block is done whenever either the TXT or RLD buffer
is full and whenever the location counter needs to be modified.

1.10 ERROR CODES

The error codes printed beside the octal and symbolic code in the
assembly listing have the following meanings:

Error Code

A

B

D

I

L

M

N

P

Q

R

S

Meaning

Addressing error. An address within the instruction
is incorrect. Also may indicate a relocation error.

Bounding error. Instructions or word data are being
assembled at an odd address in memory. The location
counter is updated by +1.

Doubly-defined symbol referenced. Reference was
made to a symbol which is defined more than once.

Illegal character detected. Illegal characters
which are also non-printing are replaced by a? on
the listing.

Line buffer overflow. Extra characters on a line
(more than 72) are ignored.

Multiple definition of a label. A label was
encountered which was equivalent (in the first six
characters) to a previously encountered label.

Number containing 8 or 9 has decimal point missing.

Phase error. A label's definition or value varies
from one pass to another.

Questionable syntax. There are missing arguments or
the instruction scan was not completed or a carriage
return was not immediately followed by a line feed
or form feed.

Register-type error. An invalid use of or reference
to a register has been made.

Symbol table overflow. When the quantity of
user-defined symbols exceeds the allocated space
available in the user's symbol table, the assembler
outputs the current source line with the S error
code, then returns to the initial dialogue.

1-31

T

PAL-lIS ASSEMBLY LANGUAGE AND ASSEMBLER ,

Truncation error. A number generated more than 16
bits of significance or an expression gener?ted more
than 8 bits of significance during the use of the
.BYTE directive.

U Undefined symbol. An undefined symbol was
encountered during the evaluation of an expression.
Relative to the expression, the undefined symbol is
assigned a value of zero.

1.11 SOFTWARE ERROR HALTS

PAL-lIS loads all of its unused trap vectors with the code

.WORD .+2,HALT

so that if the trap does occur, the processor will halt in the second
word of the vector. The address of the halt, displayed in the console
address register, therefore indicates the cause of the halt.

Address of Halt (octal) Meaning

12
16
26
32

Reserved instruction executed
Trace trap occurred
Power fail trap
EMT executed

A halt at address 40 indicates an IOXLPT detected error. RO
(displayed in the console lights) contains an identifying code:

Code in RO

0

1
2
3
4
5

Meaning

Illegal memory reference, SP overflow or
illegal instruction.
Illegal lOX command.
Slot number out of range.
Device number illegal
Referenced slot not INITed.
Illegal Data Mode •

. IOXLPT also sets Rl as follows:

If the error code is 0, Rl contains the PC at the time of the error.

If the error code is 1-5, Rl points to some element in the lOT
argument list or to the instruction following the argument list,
depending on whether IOXLPT has finished decoding all the arguments
when it detects the error.

1-32

CHAPTER 2

WRITING PAL-IIA ASSEMBLY LANGUAGE PROGRAMS'

PAL-IIA (Program Assembly Language for the PDP-II's Absolute
Assembler) enables you to write source (symbolic) programs using
letters, numbers, and symbols which are meaningful to you. The source
programs, generated either on-line using the Text Editor (ED-II), or
off-line, are then assembled into object programs (in absolute binary)
which are executable by the computer. The object program is produced
after two passes through the Assembler; an optional third pass
produces a complete octal/symbolic listing of the assembled program.
This listing is especially useful for documentation and debugging
purposes.

This chapter explains not only how to write PAL-IIA programs but also
how·· to assemble the source programs into computer-acceptable object
programs. All facets of the assembly language are explained and
illustratea with many examples, and the chapter concludes with
assembling procedures. In explaining how to write PAL-IIA source
programs it is necessary, especially at the outset, to make frequent
forward references. Therefore, we recommend that you first read
through the entire chapter to get a "feel" for the language, and then
reread the chapter, this time referring to appropriate sections as
indicated, for a thorough understanding of the language and assembling
procedures.

Some notable features of PAL-IIA are:

1. Selective assembly pass functions

2. Device specification for pass functions

3. Optional error listing on Teletype

4. Double buffered and concurrent I/O (provided by IOX)

5. Alphabetized, formatted symbol table listing

The PAL-IIA Assembler is available in two versions: a 4K version and
an 8K version.

The assembly language applies equally to both versions. The 4K
version provides symbol storage for about 176 user-defined symbols,
and the 8K version provides for about 1256 user-defined symbols (see
Section 2.3).

In addition, the 8K version allows a line printer to be used for the
program listing and/or symbol table listing.

lpAL-llA is not currently available for PDP-II systems without switch
registers.

2-1

WRITING PAL-IIA ASSEMBLY LANGUAGE PROGRAMS

The following discussion of the PAL-IIA Assembly Language assumes that
you have read the PDP-II Processor Handbook, with emphasis on those
sections which deal with the PDP-II instruction set, formats, and
timings a thorough knowledge of these is vital to efficient
assembly language programming.

2.1 CHARACTER SET

A PAL-IIA source program is composed of symbols, numbers, expressions,
symbolic instructions, assembler directives, arguments separators, and
line terminators written using the following ASCII l characters.

1. The letters A through Z. (Upper and lower case letters are
acceptable, although upon input, lower case letters will be
converted to upper case letters.)

2. The numbers 0 through 9.

3. The characters. and $ (reserved for system software).

4. The separating or terminating symbols:

: = % # @ () , " I + _ '" !

carriage return tab space line feed form feed

2.2 STATEMENTS

A source program is composed of a sequence of statements, where each
statement is on a single line. The statement is terminated by a
carriage return character and must be immediately followed by either a
line feed or form feed character. Should a carriage return character
be present and not be followed by a line feed or form feed, the
Assembler will generate a Q error (Section 2.10) and that portion of
the line following the carriage return will be ignored. Since the
carriage return is a required statement terminator, a line feed or
form feed not immediately preceded by a carriage return will have one
inserted by the Assembler.

It should be noted that, if the Editor (ED-II) is being used to create
the source program (see Section 4.4.4), a typed carriage return
(RETURN key) automatically generates a line feed character.

A statement may be composed of up to four fields which are identified
by their order of appearance and by specified terminating characters
as explained below and summarized in Appendix B. The four fields are:

Label Operator Operand Comment

The label and comment fields are optional. The operator and operand
fields are interdependent -- either may be omitted depending upon the
contents of the other.

ASCII stands for American Standard Code for Information Interchange.

2-2

WRITING PAL-llA ASSEMBLY LANGUAGE PROGRAMS

2.2.1 Label

A label is a user-defined symbol (see Section 3.3.2) which is assigned
the value of the current location counter. It is a symbolic means of
referring to a specific location within a program. If present, a
label always occurs first in a statement and must be terminated by a
colon. For example, if the current location is 100(octal), the
statement

ABCD: MOV A,B

will assign the value 100(octal) to the label ABCD so that subsequent
reference to ABCD will be to location 100(octal). More than one label
may appear within a single label field; each label within the field
will have the same value. For example, if the current location is
100, multiple labels in the statement

ABC: $DD: A7.7: MOV A,B

will equate each of the three labels ABC, $DD, and A7.7 with the value
100(octal). ($ and are reserved for system software.)

The error code M (multiple definition of a symbol) will
during assembly if two or more labels have the
characters.

be generated
same first six

2.2.2 Operator

An operator follows the label field in a statement, and may be an
instruction mnemonic or an assembler directive (see Appendix B). When
it is an instruction mnemonic, it specifies what action is to be
performed on any operand(s) which follows it. When it is an assembler
directive, it specifies a certain function or action to be performed
during assembly.

The operator may be preceded only by one or more labels and may be
followed by one or more operands and/or a comment. An operator is
legally terminated by a space, tab, or any of the following
characters.

+ @ " % &
line feed form feed carriage return

The use of each character above will be explained in this chapter.

Consider the following examples:

MClV AvB
MmJ@A,B

i~(TAB) terminates operator MOV
i@ terminates operator MOV

When the operator stands alone without an operand or comment, it is
terminated by a carriage return followed by a line feed or form feed
character.

2.2.3 Operand

An operand is that part of a statement which is operated on
operator -- an instruction mnemonic or assembler directive.
may be symbols, expressions, or numbers. When multiple
appear within a statement, each is separated from the next by

2-3

by the
Operands
operands
a comma.

WRITING PAL-IIA ASSEMBLY LANGUAGE PROGRAMS

An operand may be preceded by an operator and/or label, and followed
by a comment.

The operand field is terminated by a semicolon when followed hy a
comment, or by a carriage return followed by a line feed or form feed
character when the operand ends the statement. For example,

LABEL: MOV GEORGE,BOB ;THIS IS A COMMENT

where the space between MOV and GEORGE terminated the
and began the operand field; the comma separated the
and BOB; the semicolon terminated the operand field
comment.

2.2.4 Comments

operator field
operands GEORGE
and began the

The comment field is optional and may contain any ASCII character
except null, rubout, carriage return, line feed or form feed. All
other characters, even those with special significance are ignored by
Assembler when used in the comment field.

The comment field may be preceded by none, any, or all of the other
three fields. It must begin with the semicolon and end with a
carraige return followed by a line feed or form feed character. For
example,

LABEL: CLR HERE iTHIS IS A $1.00 COMMENT

Comments do not affect assembly processing or program execution, but
they are useful in program listings for later analysis, checkout or
documentation purposes.

2.2.5 Format Control

The format is controlled by the space and tab characters. They have
no effect on the assembling process of the source program unless they
are embedded within a symbol, number, or ASCII text; or are used as
the operator field terminator. Thus, they can be used to provide a
neat, readable program. A statement can be written

LABEL:MOV(SP)+,TAGjPOP VALUE OFF STACK

or, using formatting characters it can be written

LABEL: MOV (SP)+,TAG ;POP VALUE OFF STACK

which is much easier to read.

Page size is controlled by the form feed character. A page of n lines
is created by inserting a form feed (CTRL/FORM keys on the keyboard)
after the nth line. If no form feed is present, a page is terminated
after 56 lines.

2-4

WRITING PAL-IIA ASSEMBLY LANGUAGE PROGRAMS

2.3 SYMBOLS

There are two types of symbols, permanent and user-defined. Both are
stored in the Assembler's symbol table. Initially, the symbol table
contains the permanent symbols, but as the source program is
assembled, user-defined symbols are added to the table.

2.3.1 Permanent Symbols

Pe'rmanent symbols consist of the instruction mnemonics (see Appendix
B.3) and assembler directives (see Section 2.8). These symbols are a
permanent part of the Assembler's symbol table and need not be defined
before being used in the source program.

2.3.2 User-Defined Symbols

User-defined symbols are those defined as labels (see Section 2.2.1)
or by direct assignment (see Section 2.3.3). These symbols are added
to the symbol table as they are encountered during the first pass of
the assembly. They can be composed of alphanumeric characters, dollar
signs, and periods only; again, dollar signs and periods are reserved
for use by the system software. Any other character is illegal and,
if used, will result in the error message I (see Section 2.11). The
following rules also apply to user-defined symbols:

1. The first character must not be a number .

. 2. Each .symbol must be unique within the first s.ixcharacters.

3. A symbol may be written with more than six legal characters
but the seventh and subsequent characters are only checked
for legality, and are not otherwise recognized by the
Assembler.

4. Spaces and tabs must not be embedded within a symbol.

A user-defined symbol may duplicate a permanent symbol. The value
associated with a permanent symbol that is also user-defined depends
upon its use:

1. A permanent symbol encountered in the operator field is
associated with its corresponding machine op-code.

2. If a permanent symbol in the operand field is also
user-defined, its user-defined value is associated with the
symbol. If the symbol is not found to be user-defined, then
the corresponding machine op-code value is associated with
the symbol.

2.3.3 Direct Assignment

A direct assignment statement associates a symbol with a value. When
a direct assignment statement defines a symbol for the first time,
that symbol is entered into the Assembler's symbol table and the
specified value is associated with it. A symbol may be redefined by
assigning a new value to a previously defined symbol. The newly
assigned value will replace the previous value assigned to the symbol.

2-5

WRITING PAL-IIA ASSEMBLY LANGUAGE PROGRAMS

The general format for a direct assignment statement is

symbol expression

The following conventions apply:

I. An equal sign (=) must separate the symbol from the
expression defining the symbol.

2. A direct assignment statement may be preceded by a label and
may be followed by a comment.

3. Only one symbol can be defined by anyone direct assignment
statement.

4. Only one level of forward referencing, is allowed.

Example of the two levels of forward referencing (illegal):

x Y
Y Z
Z 1

X and Yare both undefined throughout pass 1 and will be listed on the
printer as such at the end of that pass. X is undefined throughout
pass 2, and will cause a U error message.

Examples:

A ..• :I.

B 'A,,· :1. &MASI\LOW

c ~ D :::: :3
E: 11DV :H::I.? ABLE

2.3.4 Register Symbols

;THE SYMBOL A IS EQUATED WITH THE VALUE :I.

;THE SYMBOL B IS EQUATEP WITH THE EXPRES­
;GION'B VAL.UE.

;THE GYMBOL D IB EQUATED WITH 3. THE
;LABELG C AND E ARE EQUATED WITH THE
;NUMERICAL MEMORY ADDRESS DF THE MOV
; COM1'iAND •

The eight general registers of the PDP-II are numbered 0 through 7.
These registers may be referenced by use of a register symbol, that
is, a symbolic name for a register. A register symbol is defined by
means of a direct assignment, where the defining expression contains
at least one term preceded by a % or at least one term previously
defined as a register symbol.

F~O::::%O

R 3:::: I:;: 0 +3
f~4:::::I.+%:3

THEF~E::::%2

;DEFINE RO AS REGIGTER 0
;DEFINE R3 AS REGIGTER 3
;DEFINE R4 AS REGISTER 4
;DEFINE "THERE" AS REGIBTER 2

It is important to note that all register symbols must be defined
before they are referenced. A forward reference to a register symbol
will generally cause phase errors (see Section 2.10).

2-6

WRITING PAL-IIA ASSEMBLY LANGUAGE PROGRAMS

The % may be used in any expression thereby indicating a reference to
a register. Such an expression is a register expression. Thus, the
statement

CLR %6

will clear register 6 while the statement

CLR 6

will clear the word at memory address 6. In certain cases a register
can be referenced without the use of a register symbol or register
expression. These cases are recognized through the context of the
statement and are thoroughly explained in Sections 2.6 and 2.7. Two
obvious examples of this are:

JSR

CLR X(2)

2.4 EXPRESSIONS

;THE FIRST OPERAND FIELD MUST
;ALWAYS BE A REGISTER.

;ANY EXPRESSION ENCLOSED IN
;() MUST BE A REGISTER. IN
;THIS CASEp INDEX REGISTER 2.

Arithmetic and logical operators (see Section 2.4.2) may be used to
form expressions. A term of an expression may be a permanent or
user-defined symbol, a number, ASCII data, or the present value of the
assembly location counter represented by the period. Expressions are
evaluated from left to right. Parenthetical grouping is not allowed.

Expressions are evaluated as word quantities. The operands of a .BYTE
directive (Section 2.8.5) are evaluated as word expressions before
truncation to the low-order eight bits.

A missing term or expression will be interpreted as O. A missing
operator will be interpreted as +. The error code Q (Questionable
syntax) will be generated for a missing operator. For example,

A + -100 ;OPERAND MISSING

will be evaluated as A + a - 100, and

TAG! LA 177777 ;OPERATOR MISSING

will be evaluated as TAG! LA+177777.

2.4.1 Numbers

The Assembler accepts both octal and decimal numbers. Octal numbers
consist of the digits a through 7 only. Decimal numbers consist of
the digits a through 9 followed by a decimal point. If a number
contains an 8 or 9 and is not followed by a decimal point, the N error
code (see Section 2.10) will be printed and the number interpreted as
decimal. Negative numbers may be expressed as a number preceded by a
minus sign rather than in a two·s complement form. Positive numbers
may be preceded by a plus sign although this is not required.

If a number is too large to fit into 16 bits, the number is truncated
from the left. In the assembly listing the statement will be flagged
with a Truncation (T) error.

2-7

WRITING PAL-IIA ASSEMBLY LANGUAGE PROGRAMS

2.4.2 Arithmetic and Logical Operators

The arithmetic operators are:

+ indicates addition or a positive number

indicates subtraction or a negative number

The logical operators are defined and illustrated below.

& indicates the logical AND operation

indicates the logical inclusive OR operation

AND OR

o & 0 = 0 o o o

0&1 o o 1 = 1

1 & 0 o 1 o 1

1 & 1 = 1 1 1 1

2.4.3 ASCII Conversion

When preceded by an apostrophe, any ASCII character (except null,
rUbout, carriage return, line feed, or form feed) is assigned the
7-bit ASCII value of the character (see Appendix A). For example,

'A

is assigned the value 101(octal).

When preceded by a quotation mark, two ASCII characters (not including
null, rubout, carriage return, line feed, or form feed) are assigned
the 7-bit ASCII values of each of the characters to be used. Each
7-bit value is stored in an 8-bit byte and the bytes are combined to
form a word. For example, "AB will store the ASCII value of A in the
low-order (even) byte and the value of B in the high-order (odd) byte:

high-order byte low-order byte

B I S value = 1 o 2 1 o 1 = A's value

--------~-- --o 100 001 001 000 001

o 4 1 1 o 1

"AB 041101

2.5 ASSEMBLY LOCATION COUNTER

The period (.) is the symbol for the assembly location counter. (Note
difference of Program Counter. . = PC. See Section 2.6.) When used
in the operand field of an instruction, it represents the address of
the first word of the instruction. When used in the operand field of
an assembler directive, it represents the address of the current byte
or word. For example,

2-8

WRITING PAL-IIA ASSEMBLY LANGUAGE PROGRAMS

AI MOV •• ,RO I. REFERS TO LOCATION A, I.E.,
ITHE ADDRESS OF THE MOV INSTRUCTION

(# is explained in Section 2.6.9).

At the beginning of each assembly pass, the Assembler clears the
location counter. Normally, consecutive ~emory locations are assigned
to each byte of object data generated. However, the location where
the object data is stored may be changed by a direct assignment
altering the location counter .

. =expression

The expression defining the period must not contain forward references
or symbols that vary from one pass to another. Examples:

.=500

FIRST: MOV .+10,COUNT ITHE LABEL FIRST HAS THE VALUECOCTAL)
l.tl0 EQUALS 510COCTAL). THE CONTENTS
10F THE LOCATION 510COCTAL) WILL BE DE­
;POSITED IN LOCATION COUNT.

.~520

SECOND: MOV .,INDEX

ITHE ASSEMBLY LOCATION COUNTER NOW
IHAS A VALUE OF 520(OCTAL).

ITHE LABEL SECOND HAS THE VALUE 520(OCTAL).
ITHE CONTENTS OF LOCATION 520(OCTAL),
ITHAT IS, THE BINARY CODE FOR THE
IINSTRUCTION ITSELF, WILL BE DEPOSITED
lIN LOCATION INDEX.

Storage area may be reserved by advancing the location counter. For
example, if the current value of the location counter is 1000, the
direct assignment statement

.=.+100

will reserve 100(octal) bytes of storage space in the program. The
next instruction will be stored at 1100.

2.6 ADDRESSING

The Program Counter (register 7 of the eight general registers) always
contains the address of the next word to be fetched; i.e., the
address of the next instruction to be executed, or the second or third
word of the current instruction.

In order to understand how the address modes operate and how they
assemble (see Section 2.6.11), the action of the Program Counter must
be understood. The key rule is:

Whenever the processor implicitly uses the Program
fetch a word from memory, the Program Counter
incremented by two after the fetch.

Counter (PC) to
is automatically

That is, when an instruction is fetched, the PC is incremented by two,
so that it is pointing to the next word in memory; and, if an
instruction uses indexing (see Sections 2.6.7, 2.6.8, and 2.6.10), the
processor uses the Program Counter to fetch the base from memory.
Hence, using the rule above, the PC increments by two, and now points
to the next word.

2-9

WRITING PAL-llA ASSEMBLY LANGUAGE PROGRAMS

The following conventions are used in this section:

a. Let E be any expression as defined in Section 3.4.

b. Let R be a register expression.
containing a term preceded by
previously equated to such a term.

This is any expression
a % character or a symbol

Examples:

RO %0 iGENERAL REGISTER 0
Rl RO + 1 ; GENERAL REGISTER 1
R2 1 + %1 iGENERAL REGISTER 2

c. Let ER be a register expression or an expression in the range
0 to 7 inclusive.

d. Let A be a general address specification which produces a
6-bit address field as described in the PDP-II Handbook.

The addressing specification, A, may now be explained in terms of E,
R, and ER as defined above. Each will be illustrated with the single
operand instruction CLR or double operand instruction MOV.

2.6.1 Register Mode

The register contains the operand.

Format: R

Example:
RO = %0 iDEFINE RO AS REGISTER 0

CLR RO iCLEAR REGISTER 0

2.6.2 Deferred Register Mode

The register contains the address of the operand.

Format:

Example:

Cl Y'

CI...F~ (:J.)

2.6.3 Autoincrement Mode

@R or (ER)

;CLEAR THE WORD AT THE
;ADDRESS CONTAINED IN
; F~EG I STEF~ :J..

The contents of the register are incremented immediately after being
used as the address of the operand. l

~a. Both JMP and JSR instructions using mode 2 may increment the
register before or after its use, depending on what PDP-II processor
is being used. This mode should be avoided.
b. In double operand instructions of the addressing form %R, (R)+ or
%R,-(R) where the source and destination registers are the same, the
results may be different when executed on different PDP-II processors.
The use of these forms should be avoided!

2-10

WRITING PAL-IIA ASSEMBLY LANGUAGE PROGRAMS

Format:

Examples:

CLR (ROH
CLR (ROt3)t
CLR (2)+

(ER) +

;CLEAR WORDS AT ADDRESSES
;CONTAINED IN REGISTERS 0, 3, AND 2 AND
;INCREMENT REGISTER CONTENTS
ilBY TWO.

2.6.4 Deferred Autoincrement Mode

The register contains the pointer to the address of the operand. The
contents of the register are incremented after being used.

Format:

Example

CLR @(3)t

2.6.5 Autodecrement Mode

@(ER)+

;CONTENTS OF REGISTER 3 POINT
ilTO ADDRESS OF WORD TO BE CLEARED
;BEFORE BEING INCREMENTED BY TWO

The contents of the register are decremented before being used as the
address of the operand. 1

Format:

Examples:

CLR --(RO)
CLF~ - (ROt3)
CLR -(2)

- (ER)

ilDECREMENT CONTENTS OF REG­
ilISTERS 0, 3, AND 2 BEFORE USING
ilAS ADDRESSES OF WORDS TO BE CLEARED

2.6.6 Deferred Autodecrement Mode

The contents of the register are decremented before being used as the
pointer to the address of the operand.

Format:

Example:

. CLI:;; @·-(2)

2.6.7 Index Mode

@-(ER)

;DECREMENT CONTENTS OF REG. 2
ilBEFORE USING AS POINTER TO ADDRESS
;OF WORD TO BE CLEARED

Format: E(ER)

The value of an expression E is stored as the second or third word of
the instruction. The effective address is calculated as the value of
E plus the contents of register ER. The value E is called the base.

1
'See previous footnote.

2-11

Examples:

WRITING. PAL-llA ASSEMBLY LANGUAGE PROGRAMS

CLR Xt2(R1)

CLR -2(3)

;EFFECTIVE ADDRESS IS Xt2 PLUS
;THE CONTENTS OF REGISTER 1

;EFFECTIVE ADDRESS IS -2 PLUS
;THE CONTENTS OF REGISTER 3

2.6.8 Deferred Index Mode

An expression plus the contents of a register gives the pointer to the
address of the operand.

Format:

Example:

CLR @14(4)

@E(ER)

;IF REGISTER 4 HOLDS 100, AND LOCA­
;TION 114 HOLDS 2000, LOC. 2000 IS
;CLEARED

2.6.9 Immediate Mode and Deferred Immediate (Absolute) Mode

The immediate mode allows the operand itself
second or third word of the instruction.
autoincrement of register 7, the PC.

Format: #E

Examples:

to be stored as the
It is assembled as an

MOV $100, RO ;MOVE AN OCTAL 100 TO REGISTER 0

MOV IX, RO ;MOVE THE VALUE OF SYMBOL X TO
;REGISTER 0

The operation of this mode is explained as follows:

The statement MOV #IOO,R3 assembles as two words. These are:

o I 2 7 0 3

o 0 0 I 0 0

Just before this instruction is fetched and executed, the PC points to
the first word of the instruction. The processor fetches the first
word and increments the PC by two. The source operand mode is 27
(autoincrement the PC). Thus, the PC is used as a pointer to fetch
the operand (the second word of the instruction) before being
incremented by two, to point to the next instruction.

If the #E is preceded by @, E specifies an absolute address.

2-12

WRITING PAL-llA ASSEMBLY LANGUAGE PROGRAMS

2.6.10 Relative and Deferred Relative Modes

Relative Mode is the normal mode for memory references.

Format

Examples:

CLI:;: :LOO

MOV X,Y

This mode is assembled
register. The base of
second or third word of
operand. Rather, it

E

~CLEAR LOCATION :LOO

;MOVE CONTENTS OF LOCATION X TO
PLOCATION Y

as Index Mode, using 7, the PC,
the address calculation, which is stored
the instruction, is not the address
is the number which, when added to

as
in

of
the

becomes the address of the operand. Thus, the base is X PC.
operation is explained as follows.

the
the
the
PC,
The

If the statement MOV 100,R3 is assembled at location 20, then the
assembled code is:

Location 20: o 1 6 703 .
Location 22: o 0 0 054

The processor fetches the MOV instruction and adds two to the PC so
that it points to location 22. The source operand mode is 67; that
is, indexed by the PC. To pick up the base, the processor fetches the
word pointed to by the PC and adds two to the PC. The PC now points
to location 24. To calculate the address of the source operand, the
base is added to the designated register. That is, Base + PC = 54 +
24 = 100, the operand address.

Since the Assembler considers . as the address of the first word of
the instruction, an equivalent statement would be

MOV 100-.-4(PC) ,R3

This mode is called relative because the operand address is calculated
relative to the current PC. The base is the distance (in bytes)
between the operand and the current PC. If the operator and its
operand are moved in memory so that the distance between the operator
and data remains constant, the instruction will operate correctly.

If E is preceded by @, the expression's value is the pointer to the
address of the operand.

2.6.11 Table of Mode Forms and Codes (6-bit (A) format only - see
Section 3.7)

Each instruction takes at least one word. Operands of the first six
forms listed below do not increase the length of an instruction. Each
operand in one of the other forms however, increases the instruction
length by one word.

None of these
forms increase
the instruction
length.

Form

(

R
@R or (ER)
(ER) +
@(ER)+
- (ER)
@-(ER)

Mode

On
In
2n
3n
4N
5N

2-13

Meaning

Register
Register n deferred
Autoincrement
Autoincrement deferred
Autodecrement
Autodecrement deferred

WRITING PAL-IIA ASSEMBLY LANGUAGE PROGRAMS

E (ER) 6n Index
Any of these @E(ER) 7n Index deferred
forms adds a #E 27 Immediate
word to the @#E 37 Absolute memory
instruction reference
length E 67 Relative

@E 77 Relative deferred
reference

Notes:

1. An alternate form for @R is (ER). However, the form @(ER) is
equivalent to @O(ER).

2. The form @#E differs from the form E in that the second or
third word of the instruction contains the absolute address
of the operand rather than the relative distance between the
operand and the pc. Thus, the statement CLR @#100 will clear
location 100 even if the instruction is moved from the point
at which it was assembled.

2.7 INSTRUCTION FORMS

The instruction mnemonics are given
defines the number and nature of
ihstructions.

in Appendix
the operand

B. This section
fields for these

In the table that follows, let R, E, and ER represent expressions as
defined in Section 3.4, and let A be a 6-bit address specification of
the forms:

E @E
R @R or (R)
(ER)+ @(ER)+
-(ER) @-(ER)
E(ER) @E(ER)
#E @#E

Instruction

Double Operand

Single Operand

Operate

Branch

Subroutine Call

Subroutine Return

EMT/TRAP

Table 2-1
Instruction Operand Fields

Form

Op A,A

Op A

Op

Op E

where -128 ~(E-.-2)/2~127

JSR ER,A

RTS ER

Op
or

Op E

where O!>E!>.377 (octal)

2-14

Example

MOV (R6)+,@Y

CLR - (R2)

HALT

BR X+2
BLO .-4

JSR PC,SUBR

RTS PC

EMT

EMT 31

WRITING PAL-llA ASSEMBLY LANGUAGE PROGRAMS ,

The branch instructions are one word instructions. The high byte
contains the op code and the low byte contains an 8-bit signed offset
(7 bits plus sign) which specifies the branch address relative to the
PC. The hardware calculates the branch address as follows:

a) Extend the sign of the offset through bits 8-15.

b) Multiply the result by 2. This creates a word offset rather
than a byte offset.

c) Add the result to the PC to form the final branch address.

The Assembler performs the reverse operation to form the byte offset
from the specified address. Remember that when the offset is added to
the PC, the PC is pointing to the word following the branch
instruction; hence the factor -2 in the calculation.

Byte offset = (E-PC)/2 truncated to eight bits.

Since PC = .+2, we have

Byte offset = (E-.-2)/2 truncated to eight bits.

The EMT and TRAP instructions do not use the low-order byte of the
word. This allows information to be transferred to the trap handlers
in the low-order byte. If EMT or TRAP is followed by an expression,
the value is put into the.low-order byte of the word. However, if the
expression is too big (>377(octal)) it is truncated to eight bits and
a Truncation (T) error occurs.

2.8 ASSEMBLER DIRECTIVES

Assembler directives (sometimes called pseudo-ops direct the assembly
process and may generate data. They may be preceded by a label and
followed by a comment. The assembler directive occupies the operator
field. Only one directive may be placed in anyone statement. One or
more operands may occupy the operand field or it may be void
allowable operands vary from directive to directive.

2.8.1 .EOT

The .EOT directive indicates the physical End-of-Tape though not the
logical end of the program. If the .EOT is followed by a single line
feed or form feed, the Assembler will still read to the end of the
tape, but will not process anything past. the .EOT directive. If .EOT
is followed by at least two line feeds or form feeds, the Assembler
will stop before the end of the tape. Either case is proper, but it
should be understood that even though it appears as if the Assembler
has read too far, it actually hasn't.

If a .EOT is
follows it,
feeds or form
will be lost.

embedded in a tape; and more information to be assembled
.EOT must be immediately followed by at least two line
feeds. Otherwise, the first line following the .EOT

Any operands following a .EOT directive will be ignored. The .EOT
directive allows several physically separate tapes to be assembled as
one program. The last tape is normally terminated by a .END directive
(see Section 3.8.3) but may be terminated with .EDT (see .END
emulation in Section 3.9.4).

2-15

WRITING PAL-IIA ASSEMBLY LANGUAGE PROGRAMS

2.8.2 . EVEN

The .EVEN directive ensures that the assembly location counter is even
by adding one if it is odd. Any operands following a .EVEN directive
will be ignored.

2.8.3 .END

The .END directive indicates the logical and physical end of the
source program. The .END directive may be followed by only one
operand, an expression indicating the program's entry point.

At load time, the object tape will be loaded and program execution
will begin at the entry point indicated by the .END directive. If the
entry point is not specified, the Loader will halt after reading in
the object tape.

2.8.4 . WORD

The .WORD assembler directive may have one or more operands, separated
by commas. Each operand is stored in a word of the object program.
If there is more than one operand, they are stored in successive
words. The operands may be any legally formed expressions. For
example,

, :::::1.420
SAL::::O
,WORD :l.77535 •• t4,SAL ;STORED IN WORDS :1.420, :1.422, AND

;:1.424 WILL BE :1.77535, :1.426, AND O.

Values exceeding 16 bits will be truncated from the left, to word
length.

A .WORD directive followed by one or more void operands separated by
commas will store zeros for the void operands. For example, .

, :::::1.4JO
,WOFW .~5,

PZERO, FIVE, AND ZERO ARE STORED
;IN WORDS :1.430. :1.432, AND :1.434.

An operator field left blank will be interpreted as the .WORD
directive if the operand field contains one or more expressions. The
first term of the first expression in the operand field must not be an
instruction or assembler directive unless preceded by a +, -, or one
of the logical operators! or &. For example,

• ::::440
LABEL: tHOV,LABEL

;THE OP-CODE FOR HOV, WHICH IS 010000,
;IS STORED IN LOCATION 440. 440 IS
;STORED IN LOCATION 442.

Note that the default .WORD will occur whenever there is a leading
arithmetic or logical operator, or whenever a leading symbol is
encountered which is not recognized as an instruction mnemonic or
assembler directive. Therefore, if an instruction mnemonic or
assembler directive is misspelled, the .WORD directive is assumed and
errors will result. Assume that MOV is spelled incorrectly as MaR:

MaR A,B

Two error codes can result: a Q will occur because an expression
operator is missing between MOR and A, and a U will occur if MOR is
undefined. Two words will be generated; one for MaR A and one for B.

2-16

WRITING PAL-IIA ASSEMBLY LANGUAGE PROGRAMS

2.8.5 . BYTE

The .BYTE assembler directive may have one or more operands separated
by commas. Each operand is stored in a byte of the object program.
If multiple operands are specified, they are stored in successive
bytes. The operands may be any legally formed expression with a
result of 8 bits or less. For example,

SAM=5
.=410
• BYTE 48.,SAM

;STORED IN LOCATION 410 WILL BE
;060 (THE OCTAL EQUIVALENT OF 48) •
;IN 411 WILL BE 005.

If the expression has a result of more
truncated to its low-order 8 bits and
If an operand after the .BYTE directive
interpreted as zero. For example,

than 8 bits, it will be
will be flagged as a Terror.
is left void, it will be

.=420

.BYTE , ,

2.8.6 .ASCII

;ZERO WILL BE STORED IN
;BYTES 420, 421 AND 422.

The .ASCII directive translates strings of ASCII characters into their
7-bit ASCII codes with the exception of null, rubout, carriage return,
line feed, and form feed. The text to be translated is delimited by a
character at the beginning and the end of the text. The delimiting
character may be any printing ASCII character except colon and equal
sign and those used in the text string. The 7-bit ASCII code
generated for each character will be stored in successive bytes of the
object program. For example,

.=500 ;THE ASCII CODE FOR "Y" WILL BE

.ASCII IYESI ;STORED IN 500, THE CODE FOR "E"
;IN 501, THE CODE FOR as" IN S02 •

• ASCII 15t3/21 ;THE DELIMITING CHARACTER OCCURS
;AMONG THE OPERANDS. THE ASCII
;CODES FOR as", "to, AND "3" ARE
;STORED IN BYTES 503, 504, AND
;505. 21 IS NOT ASSEMBLED.

The ASCII directive must be terminated by a space or a tab.

2.9 OPERATING PROCEDURES

2.9.1 Introduction

The Assembler enables you to assemble an ASCII tape containing PAL-IIA
statements into an absolute binary tape. To do this, two or three
passes are necessary. On the first pass the Assembler creates a table
of user-defined symbols and their associated values, and a list of
undefined symbols is printed on the teleprinter. On the second pass
the Assembler assembles the program and punches out an absolute binary
tape and/or outputs an assembly listing. During the third pass (this
pass is optional) the Assembler punches an absolute binary tape or
outputs an assembly listing. The symbol table (and/or a list of
errors) may be output on any of these passes. The input and output
devices as well as various options are specified during the initial
dialogue (see Section 3.3.9). The Assembler initiates the dialogue
immediately after being loaded and after the last pass of an assembly.

2-17

WRITING PAL-IIA ASSEMBLY LANGUAGE PROGRAMS

2.9.2 Loading PAL-IIA

PAL-IIA is loaded by the Absolute Loader (see Chapter 6 for operating
procedures) . Note that the start address of the Absolute Loader must
be in the Switch Register when loading the Assembler. This is because
the Assembler tape has an initial portion which clears all of core up
to the address specified in the Switch Register, and jumps to that
address to start loading the Assembler.

2.9.3 Initial Dialogue

After being loaded, the Assemb~er initiates dialogue by printing on
the teleprinter:

*S

meaning "Whpt is the Source symbolic input device?" The response may
be:

H meaning High-speed reader

L meaning Low-speed reader

T meaing Teletype keyboard

If the response is T, the source program must be typed at the terminal
once for each pass of the assembly and it must be identical each time
it is typed.

The device specification is terminated, as is all user response, by
typing the RETURN key.

If an error is made in typing at any time, typing the RUBOUT key will
erase the immediately preceding character if it is on the current
line. Typing CTRL/U will erase the whole line on which it occurs.

After the *S question and response, the Assembler prints:

*B

meaning "What is the Binary output device?" The responses to *B are
similar to those for *S:

H meaning High-speed punch

L meaning Low-speed punch

~ meaning do not output binary tape
(--" denotes typing the RETURN key)

In addition to I/O device specification, various options may be
chosen. The binary output will occur on the second pass unless /3
(indicating the third pass) is typed following the H or L. Errors
will be listed on the same pass if /E is typed. If /E is typed in
response to more than one inquiry, only the last occurrence will be
honored. It is strongly suggested that the errors be listed on the
same pass as the binary output, since errors may vary from pass to
pass. If both /3 and /E are ,typed, /3 must precede /E. The response
is terminated by typing the RETURN key. Examples:

2-18

WRITING PAL-IIA ASSEMBLY LANGUAGE PROGRAMS

*BL/E

*B H/3/E

Binary output on the low-speed punch and the
errors on the the teleprinter, both during
the second pass.

Binary output on the high-speed punch and the
errors on the teleprinter; both during the
third pass.

Typing just the RETURN key will cause the
Assembler to omit binary output.

After the *B question and response, the Assembler prints:

*L

meaning "What is the assembly Listing output device?" The response to
*L may be:

L meaning Low-speed punch (outputs a tab as a tab-rubout)

H meaning High-speed punch

T meaning Teleprinter (outputs a tab as multiple spaces)

P meaning line Printer (8K version only)

.J meaning do not output listing
(-/ denotes typing the RETURN key)

After the I/O device specification, pass and error list options
similar to those for *B may be chosen. The assembly listing will be
output to the third pass unless /2 (indicating the second pass) is
typed following H, L, T, or P. Errors will be listed on the
teleprinter during the same pass if /E is typed. If both /2 and /E
are typed, /2 must precede /E. The response is terminated by typing
the RETURN key. Examples:

*L L/2/E

*L H

*L ..J

Listing on low-speed punch and errors
on teleprinter during second pass.

Listing on high-speed punch during
third pass.

The RETURN key alone will cause the
Assembler to omit listing output.

After the *L question and response, the final question is printed on
the teleprinter:

*T

meaning "What is the symbol Table output device?" The device
specification is the same as for the *L question. The symbol table
will be output at the end of the first pass unless /2 or /3 is typed
in response to *T. The first tape to be assembled should be placed in
the reader before typing the RETURN key because assembly will begin
upon typing the RETURN key in response to the *T question. The /E
option is not a meaningful response to *T. Example:

*T T/3

*T ..J

Symbol table output on teleprinter at
end of third pass.

Typing just the RETURN key will cause the
Assembler to omit the symbol table output.

2-19

WRITING PAL-llA ASSEMBLY LANGUAGE PROGRAMS

The symbol table is printed alphabetically, four symbols per line.
Each symbol printed is followed by its identifying characters and by
its value. If the symbol is undefined, six asterisks replace its
value. The identifying characters indicate the class of the symbol;
that is, whether it is a label, direct-assignment, register symbol,
etc. The following examples show the various forms:

ABCDEF

R3 =

DIRASM =

XYZ

R6

LABEL

=

=

001244

%000003

177777

%******

(Defined label)

(Register symbol)

(Direct assignment)

(Undefined direct assignment)

(Undefined register symbol)

(Undefined label)

Generally, undefined symbols (including labels) will be listed as
undefined direct assignments.

Multiply-defined symbols are not flagged in the symbol table printout
but they are flagged wherever they are used in the program.

It is possible to output both the binary tape and the assembly listing
on the same pass, thereby reducing the assembly process to two passes
(see Example 1 below). This will happen automatically unless the
binary device and the listing device are conflicting devices or the
same device (see Example 2 below). The only conflicting devices are
the teleprinter and the low-speed punch. Even though the Assembler
deduces that three passes are neceSsary, the binary and listing can be
forced on pass 2 by including /2 in the responses to *B and *L (see
Example 3 below).

Example l. Runs 2 passes:

*S H High-speed reader

*B H High-speed punch

*L P Line Printer

*T T Teleprinter

Example 2. Runs 3 passes:

*S H High-speed reader

*B H High-speed punch

*L H High-speed punch

*T T Teleprinter

Example 3. Runs 2 passes:

*S H High-speed reader

*B H/2 High-speed punch on pass 2

*L H/2 High-speed punch on pass 2

*T T Teleprinter

2-20

WRITING PAL-llA ASSEMBLY LANGUAGE PROGRAMS

Note that there are several cases where the binary output can be
intermixed with ASCII output:

a. *B H/2
*L H/2

b. *B L/E

c. *B L/2/E
*L T/2

Binary and
listing to punch on pass 2

Binary to low-speed punch and
error listing to teleprinter
(and low-speed punch)

Binary, error listing, and
listing to low-speed punch.

The binary so ge~erated isloadable by the Absolute Loader as long as
there are no CTRL/A characters in the source program. The start of
every block on the binary tape is indicated by a 001 and the Absolute
Loader ignores all information until a 001 is detected. Thus, all
source and/or error messages will be ignored if they do not contain
any CTRL/A characters (octal 001).

If a character other than those mentioned is typed in response to a
question, the Assembler will ignore it and print the question again.
Example:

*S H High-speed reader

*B Q Q is not a valid response

*B The question is repeated

If at any time you wish to restart the Assembler, type CTRL/P.

When no passes are omitted or error options specified, the Assembler
performs as follows:

PASS 1: Assembler creates a table of user-defined symbols and their
associated values to be used in assembling the source to
object program. Undefined symbols are listed on the
teleprinter at the end of the pass. The symbol table is also
listed at this time. If an illegal location statement of the
form .=expression is encountered, the line and error code
will be printed out on the teleprinter before the assembly
proceeds. An error in a location statement is usually a
fatal error in the program and should be corrected.

PASS 2: Assembler punches 'the object tape, and prints the pass error
count and undefined location statements on the teleprinter.

PASS 3: Assembler prints or punches the
undefined location statements,
the teleprinter.

assembly program listing,
and the pass error count on

The functions of passes 2 and 3 will occur simultaneously on pass 2 if
the binary and listing devices are different, and do not conflict with
each other (low-speed punch and Teleprinter conflict).

2-21

WRITING PAL-IIA ASSEMBLY LANGUAGE PROGRAMS

The following table summarizes the ini Hal dialogue questions:

Printout Inquiry

*S What is the input device of the Source symbolic tape?

*B What is the output device of the Binary object tape?

*L What is the output device of the assembly Listing?

*T What is the output device of the symbol Table?

The following table summarizes the legal responses:

Character Response Indicated

T Teletype keyboard or printer

L Low-speed reader or punch

H High-speed reader or punch

P Line Printer (8K version only)

/1 Pass 1

/2 Pass 2

/3 Pass 3

/E Errors listed on same pass (not meaningful in response to *S
or *T)

./ Omit function

Typical examples of complete initial dialogues:

For minimal PDP-II configuration:

*S L Source input on low-speed reader

*B L/E Binary output on low-speed punch
Errors during same (second) pass

*L T Listing on teleprinter during pass 3

*T T Symbol table on teleprinter at end of pass 1

For a PDP-ll with high-speed I/O devices:

*S H Source input on high-speed reader

*B H/E Binary output on high-speed punch,
Errors during same (second) pass.

*L No listing

*T T/2 Symbol table on teleprinter at end of pass 2

2-22

WRITING PAL-IIA ASSEMBLY LANGUAGE PROGRAMS

2.9.4 Assembly Dialogue

During assembly, the Assembler will pause to print on the teleprinter
various messages to indicate that you must respond in some way before
the assembly process can continue. You may also type CTLR/P, at any
time, if you wish to stop the assembly process and restart the initial
dialogue, as mentioned in the previous section.

When a .EOT assembler directive is read on the tape, the assembler
prints:

EOF ?

and pauses. During this pause, the next tape is placed in the reader,
and RETURN is typed to continue the assembly.

If the specified assembly listing output device is the high-speed
punch and if it is out of tape, or if the device is the Line Printer
and is out of paper, the Assembler prints on the teleprinter:

EOM ?

and waits for tape or paper to be placed in the device. Type the
RETURN key when the tape or paper has been replenished; assembly wil
continue.

Conditions causing the EOM? message for an assembly listing device
are:

HSP LPT

No power No power

No tape Printer drum gate open

Too hot

No paper

There is no EOM if the line printer is switched off-line,
characters may be lost for this condition as well as for an
the binary output device is the high-speed punch and if it is
tape, the Assembler prints:

although
EOM. If

out of

EOM ?
~

The assembly process is aborted and the initial dialogue is begun
again.

When a .END assembler directive is read on the tape, the Assembler
prints:

END ?

and pauses. During the pause the first tape is placed in the reader,
and the RETURN key is typed to begin the next pass. On the last pass,
the .END directive causes the Assembler to begin the initial dialogue
for the next assembly.

If you are starting the
the low-speed punch,
for starting the pass.
will be punched onto
ignore them.

binary pass and the binary is to be punched on
turn the punch on before typing the RETURN key
The carriage return and line feed characters
the binary tape, but the Absolute Loader will

2-23

WRITING PAL-llA ASSEMBLY LANGUAGE PROGRAMS

If the last tape ends with a .EOT, the Assembler may be told to
emulate a .END assembler directive by responding with E followed by
the RETURN key. The Assembler will then pr-int:

END ?

and wait for another RETURN before starting the next pass. Example:

EOF? E
END ?

NOTE

When a .END directive is emulated with
an E response to the EOF? message, the
error counter is incremented.

To avoid incrementing the error counter,
place a paper tape containing only the
line .END in the reader and press the
RETURN key instead of using the E
response.

2.9.5 Assembly Listing

PAL-llA produces a $ide-by-side assembly listing of symbolic source
statements, their octal equivalents, assigned absolute addresses, and
error codes as follows:

EELLLLLL 000000 888 •••••• 8
000000
000000

The E's represent the error field. The L's represent the absolute
address. The O's represent the object data in octal. The S's
represent the source statement. While the Assembler accepts
72(decimal) characters per line on input, the listing is reduced by
the 16 characters to the left of the source statement.

The above represents a three-word statement. The second and third
words of the statement are listed under the command word. No
addresses precede the second and third word since the address order is
sequential.

The third line is omitted for a two-word statement; both second and
third lines are omitted for a one-word statement.

For a .BYTE directive, the object data field is three octal digits.

For a direct assignment statement, the value of the defining
expression is given in the object code field although it is not
actually part of the code of the object program.

Each page of the listing is headed by a page number.

2-24

WRITING PAL-IIA ASSEMBLY LANGUAGE PROGRAMS

2.10 ERROR CODES

The error codes printed beside the octal and symbolic code in the
assembly listing have the following meanings:

Error Code Meaning

A Addressing error.
incorrect.

An address within the instruciton is

B Bounding error. Instructions or word data are being
assembled at an odd address in memory. The location counter
is updated by +1.

D Doubly-defined symbol referenced. Reference was made to a
,symbol which is defined more then once.

I Illegal character detected. Illegal
also non-printing are replaced by a ?

characters which
on the listing.

are

L Line buffer overflow. Extra characters on a line (more than
72(decimal)) are ignored.

M Multiple definition of a label.
which was equivalent (in the
previously encountered label.

A label was encountered
first sit char~cters) to a

N Number containing 8 or 9 has no decimal point.

P Phase error. A label's definition or value varies from one
pass to another.

Q Questionable syntax. There are missing arguments or the
instruction scan was not completed or a carriage return was
not immediately followed by a line feed or form feed.

R Register-type error. An invalid use of or reference to a
register has been made.

S Symbol table overflow. When the quantity of user-defined
symbols exceeds the allocated space available in the user's
symbol table, the assembler outputs the current source line
with the S error code, then returns to the initial dialogue.

T Truncation error. A number generated more than 16 bits of
significance or an expression generated more than .8 bits of
significance during the use of the .BYTE directive.

U Undefined symbol. An undefined symbol was encountered during
the evaluation of an expression. Relative to the expression,
the undefined symbol is assigned a value of zero.

2-25

WRITING PAL-IIA ASSEMBLY LANGUAGE PROGRAMS

2.11 SOFTWARE ERROR HALTS

PAL-IIA loads all unused trap vectors with the code

. WORD .+2,HALT

so that if the trap does occur, the processor will halt in the second
word of the vector. The address of the halt, displayed in the console
address register, therefore indicates the cause of the halt. In
addition to the halts which may occur in the vectors, the standard lOX
error halt at location 40 may occur (see Chapter 7).

Address of Halt

12

16

26

32

40

Meaning

Reserved instruction executed

Trace trap occurred

Power fail trap

EMT executed

lOX detected error

See Appendix B for summaries of PAL-IIA features.

2-26

CHAPTER 3

LINK-llS LINKER

3.1 INTRODUCTION

3.1.1 General Description

LINK-lIS (stand alone) is a PDP-II system program designed to link and
relocate programs previously assembled by PAL-lIS. The user can
separately assemble the main program and each of its various
subroutines without assigning an absolute load address at assembly
time. The binary output of assembly (called an object module) is
processed by LINK-lIS to:

1. Relocate each object mo'dule and assign absolute addresses.

2. Link the modules by correlating global symbols defined in one
module and referenced in other modules.

3. Print a load map which displays the assigned absolute
addresses.

4. Punch a load module which can subsequently be loaded (by the
Absolute Loader) and executed.

Seme of the advantages of using PAL-lIS and LINK-lIS are:

1. The program is divided into segments (usually subroutines)
which are assembled separately. If an error is discovered in
one segment, only that segment needs to be reassembled. The
new object module is then linked with the other object
modules.

2. Absolute addresses need not be assigned at assembly time.
The Linker automatically assigns absolute addresses. This
keeps programs from overlaying each other. This also allows
subroutines to change size without influencing the placement
of other routines.

3. Separate assemblies allow the total number of symbols to
exceed the number allowed in a single assembly.

4.

5.

Internal symbols (symbols which are not global) need
unique among object modules. Thus, naming rules are
only for global symbols when separate programmers
separate subroutines of a single program.

Subroutines may be provided for general use in object
form to be linked into the user's program.

3-1

not be
required
prepare

module

LINK-llS LINKER

LINK-lIS is designed to run on an 8K PDP-II with an ASR-33.
(high. speed paper tape reader and punch) and an LPll (line
may be used if available. The PCll significantly speeds
linking process. An LPll provides a fast device for the
listing.

3.1.2 Absolute and Relocatable Program Sections

A PCll
printer)

up the
loa'tl map

A program assembled by PAL-lIS may consist of an absolute program
section, declared by the .ASECT assembler directive, and a relocatable
program section, declared by the .CSECT assembler directive. (If a
program has neither an .ASECT or .CSECT directive, the assembler
implicitly assumes a .CSECT directive.) The program and data in the
absolute section are assigned absolute addresses as specified by the
location counter setting statements (.=x). The Linker assigns
absolute addresses to the program and data in the relocatable section.
Addressses are normally assigned such that the relocatable section is
at the high end of memory. The assignment of addresses may be
influenced by command string options (see Section 3.3.2).

The Linker appropriately modifies all instructions and/or data as
necessary to account for the relocation of the control section.

LINK-lIS can handle object modules containing named control
(relocatable) sections as generated by PAL-llR. However, PAL-lIS can
create only the unnamed control section (which has the special default
name of 6 blanks) and the absolute section (with the special name
. ABS.). The unnamed control section is internal to each object
module. That is, every object module may have an unnamed control
section (each with the name 6 blanks) but the Linker treats them
independently. Each is assigned an absolute address such that they
occupy mutually exclusive areas of memory. Named control sections, on
the other hand, are treated globally. That is, if different object
modules each have control sections with the same name, they are all
assigned the same absolute load address and the size of the area
reserved or loading of the section is the maximum of the sizes of each
section. Thus, named control sections allow the sharing of data
and/or programs among object modules. This is very similar to the
handling and function of labelled COMMON in FORTRAN IV. A restriction
of LINK-lIS is that the name of a control section must not be the same
as the name of a global entry symbol, as this results in multiple
definition errors.

3.1.3 Global Symbols

Global symbols provide the links for communication between object
modules (or assemblies). Global symbols are created with the .GLOBL
assembler directive~ Symbols which are not global are called internal,
symbols. If the global symbol is defined (as a label or direct
assignment) in an object module it is called an entry symbol, and
other object modules may reference it. If the global symbol is not
defined in the object module it is an external symbol. It is assumed
to be defined (as an entry symbol) in some other object module.

As the Linker reads the object modules it records all the global
symbol definitions and references. It then modifies the instructions
and/or data that reference the global symbols.

3-2

LINK-lIS LINKER

3.2 INPUT AND OUTPUT

3.2.1 Object Module

Input to LINK-lIS is the object module. This is the output of PAL-lIS
(or any other program which can create an object module). The Linker
reads each object module twice; that is, it is a two-pass processor.

On pass 1, the Linker reads each object module to gather enough
information to assign absolute addresses to all reloc~table sections
and absolute values to all globals. This information appears in the
global symbol directory (GSD) of the object module.

On pass 2, the Linker reads all of each object module and produces the
load module (see Section 3.2.2). The data gathered on pass 1 guides
the relocation and linking process on pass 2.

3.2.2 Load Modules

The normal output of the Linker is a load module which may be loaded
and run.

A load module consists of formatted binary blocks holding absolute
load addresses and object data as specified for the Paper Tape System
Absolute Loader and the PDP-II Disk Monitor. The first few words of
data are the communications directory (COMD) and have an absolute load
address equal to the lowest relocated address of the program. The
absolute loader loads the COMD at the specified address but the
program subsequently overlays it. l The disk monitor loader expects the
COMD and loads it where the monitor wants it. The end of the load
module is indicated by a TRA block; that is, a block containing only
a load address. The byte count in the formatted binary block is 6 on
this block; on all other blocks the byte count is larger than 6. The
TRA (transfer address) is selected by the Linker to be the first even
transfer address seen. Thus, if four object modules are linked
together and if the first and second had a .END statement, the third
had a .END A and the fourth had a .END B, the transfer address would
be A of module three.

lThe overlaying of the COMD by the relocated program is a trick to
allow the Absolute Loader to handle load modules with a COMD.
However, a problem arises if a load module is to be loaded by the
absolute loader and either of the following conditions exists:

a. The object modules used to construct the load module
contained no relocatable code; or

b. The total size of the relocatable code is less than 20
(decimal) bytes (the size of the COMD).

In either case, there is not enough relocatable code to overlay the
COMD which means the COMD will load into parts of memory not intended
to be altered by the user. The COMD's load address, selected by the
Linker in the above cases, is such that it will be up against the
current top of memory (see *T .option in section 3.3.1). If the top
happens to be very low, the Linker does not allow the COMD to be
loaded below address 0; it loads it at O.

3-3

L~NK-llS LINKER

3.2.3 Load Map

The load map provides several types of information concerning the load
module's make-up. The map begins with an indication of the low and
high limits of the relocatable code and the transfer address. Then
there is a section of the map for each object module included in the
linking process. Each of these sections begins.with the module name
followed by a list of the control sections and the entry points for
each control section. For each control section, the base of the
section (its low address) and its size (in bytes) is printed to the
right of the section name (enclosed in angle brackets). Following
each section name is a list of entry points and their addresses.
After all information has been printed for each object module, any
undefined symbols are listed. Note that modules are loaded such that
if modules A, Band C are linked together, A is lowest and C is
highest in memory.

The format is quite self-explanatory as can be seen from the following
example:

LOAD MAP

TRANSFER ADDRESS,: 037434
LOW LIMIT: 037406
HIGH LIMIT: 037460

MODULE MODt
SECT I ON ENTRY ADDRESS SIZE
<,0 ABS.> 000000 .000000
< > 037406 000044

X3 037452
X4 037440
X5 037450
X7 037430

MODULE MOD2
SECTION ,ENTRY ADDRESS SIZE
< > 037452 000006

Xl 037452
X2 037452

UNDEFINED REFERENCES
X6

PASS 2

*

3-4

LINK-llS LINKER

3.3 OPERATING PROCEDURES

3.3.1 Loading and Command String

The Linker is loaded by the Absolute Loader and is self-starting. It
uses a simple command dialogue which allows the object module, load
module and load map devices to be specified. During pass 1 and pass
2, the Linker asks for each object module individually.

Operation begins by the linker typing its name and version. This is
followed by the input option printed as *I~. The responses are:

...J Read object module from HSR.
H./ Read object module from HSR.
L...J Read object module from LSR.

The input option is followed by the output option *O/:'. The responses
are:

../ Punch load module on HSP.
H./ Punch load module on HSP.
L...J Punch load module on LSP.

LINK-llS asks if a load map is desired by typing *M/:'. The legal
responses are ..J for no map, T../ or H...,.) or P../for a map on the
teleprinter, high-speed punch, or line printer, respectively.

The next two options concern the placement of the relocated object
program in memory. The standard version of the Linker assumes it is
linking for an 8K machine. It relocates the program such that it is
as high as possible in 8K but leaves room for the Absolute and Boot
Loaders. These assumed values may be changed by altering parameters
HGHMEM (highest legal memory address +1) and ALODSZ (number of bytes
allocated for Absolute Loader and Boot Loader) and reassembling the
Linker. The user may control where a program is relocated to with the
*T and *B options. After the option *T~ has been typed, the user may
respond as follows:

Relocate so that program is up against the
current top of memory. If the top has not
been changed, then the top is the assembled-in
top (HGHMEM-ALODSZ). The standard assumption
is 16272 decimal (16384-112) or 37460 octal.

N is an octal number (unsigned) which defines
a new top address.

If a new top is specified, the *B option is suppressed.

After the option *B~ has been printed the user may respond as follows:

N../

Use current top of memory.

N is an unsigned octal number which defines
the bottom address of the program. That is, a
new top of memory is calculated so that the
bottom of the program corresponds with N.

Once a top of memory has been calculated (by *T or *B), that value is
used until it is changed.

3-5

LINK-llS LINKER

LINK-lIS indicates the start of pass one by typing PASS 1. The input
is requested by the Linker, one tape at a time, by typing *~. The
legal responses are:

C...J

Read a tape and request more input.

List all undefined globals on the teleprinter
and request more input.

End of input. If there are undefined globals,
list them on the teleprinter and request more
input. Otherwise print the load map, if
requested, and enter pass-2.

End of input. Assign 0 to any undefined
globals, print the load map (if requested),
and enter pass 2.

The Linker indicates the start of pass 2 by typing PASS 2.
requests each input tape as in pass 1.

It then

A carriage return is the only useful response to * on pass
modules must be read on pass 2 in the same order as pass 1.
last module has been read the Linker automatically finishes
module and restarts itself.

Leader and trailer are punched on the load module.

2. The
When the

the load

If the LSP is being used for the load module output, it should be
turned on before pass 2 begins. Thus, turn it on before typing E...Jor
c-l The echo of these characters (and the load map, if printed on the
TTY) is punched on the load module but may be easily removed since
leader is punched on the load module. In any case, ASCII information
in a load module is ignored by the Absolute and Disk Monitor loaders.
However, the LSP can be turned on while leader is being punched (after
the linker has typed PASS 2) to keep the load map, etc., from being
punched onto the tape.

Note:

On all command string options, except for *T and *B, the linker
examines only the last character typed preceding the carriage return.
Thus,

ABCDEFGH...J

is equivalent to H-l

3.3.1.1 Operational Cautions ~ The Linker does not give a warning if
a program is linked so low in memory that it goes below address O.
However, this case is easily seen by examining the low and high limits
which are always printed (on the load map or on the teleprinter).

The Linker reads object modules until an end of medium is detected.
Object modules from the DEC Program Library contain a special checksum
at the end of the tape which must be removed before they are linked.
Failure to remove this checksum can result in fatal Linker errors.

3-6

LINK-lIS LINKER

3.3.2 Error Procedure and Messages

3.3.2.1 Restarting - CTRL/P (symbolized as A p) is used for two
purposes by LINK-II. If a Ap is typed while a load map is being
printed, the load map is aborted and the Linker continues. A Ap typed
at any other time causes the Linker to restart itself.

3.3.2.2 Non-Fatal Errors -

1. Non-unique object module name - this error is detected during
pass 1; an error message is issued and the module is
rejected. The message is:

?MODULE NAME xxxxxx NOT UNIQUE

The Linker then asks for more input.

2. Load map device EOM - this error allows the user to fix the
device and continue or abort the map listing. The Linker
prints:

?MAP DEVICE EOM.
TYPE (CR) TO CONTINUE

Any response, terminated by .J or ~ causes the Linker to
continue. A t p causes the map to be aborted.

3. A byte relocation error - the Linker tries to relocate and
link byte quantities. However, relocation usually·fails and
linking may fail. Failure is defined as the high byte of the
relocated value (or the linked value) not being all zero. In
such a case, the value is truncated to 8 bits and the
following message is printed:

?BYTE RELOC ERROR AT ABS ADDRESS xxxxxx.

The Linker automatically continues.

4. If the object modules are not read in the same order on pass
2 as pass 1, the Linker indicates which module should be
loaded next by typing:

?LOAD xxx xxx NEXT!

The linker then asks for more input.

5. Multiply-Defined Globals - this results in the following
error message during pass 1:

?xxxxxx MULTIPLY DEFINED BY MODULE xxxxxx.

The second definition is ignored and the Linker continues.

3.3.2.3 Fatal Errors - Each of the following errors causes the
indicated error message to be printed and the Linker to be restarted.

1. Symbol Table overflow - the message is:

?SYMBOL TABLE OVERFLOW - MODULE xxxxxx, SYMBOL xxxxxx

3-7

LINK-llS LINKER

2. System Errors - this class of errors prints:

1SYSTEM ERROR xx

where xx is an identifying number as follows:

Number Meaning

01

02

03

04

05

06

07

08

09

10

II

12

Unrecognized symbol table entry was found.

A relocation directory
name which cannot be
table.

references a global
found in the symbol

A relocation directory
counter modification
last.

contains a location
command which is not

Object module does not start with a GSD.

The first entry in the GSD is not the module
name.

An RLD references a section name which cannot
be found.

The TRA specification
non-existent module name.

The TRA specification
non-existent section name.

references a

references a

An internal jump table index is out of range.

A checksum error occurred on the object
module.

An object module binary. block is too big
(more than 64 decimal words of data).

A device error occurred on the load module
output device.

All system errors except for numbers 10 and 12 indicate a program
failure either in the Linker or the program which generated the object
module. Error 05 can occur if a tape is read which is not an object
module.

3.3.2.4 Error HALTs - LINK-lIS loads all of its unused trap vectors
with the code:

. WORD .+2, HALT

so that if the trap occurs, the processor halts in the second word of
the vector. The address of the halt, displayed in the console lights,
therefore indicates the cause of the halt.

3-8

LINK-llS LINKER

3.3.2 Error Procedure and Messages

3.3.2.1 Restarting - CTRL/P (symbolized as A p) is used for two
purposes by LINK-II. If a Ap is typed while a load map is being
printed, the load map is aborted and the Linker continues. A Ap typed
at any other time causes the Linker to restart itself.

3.3.2.2 Non-Fatal Errors -

1. Non-unique object module name - this error is detected during
pass 1; an error message is issued and the module is
rejected. The message is:

1MODULE NAME xxxxxx NOT UNIQUE

The Linker then asks for more input.

2. Load map device EOM - this error allows the user to fix the
device and continue or abort the map listing. The Linker
prints:

3.

'i'MAP DE\) I CE EOM.
TYPE (CR) TO CONTINUE

Any response, terminated by ~ or + causes the Linker to
continue. A t p causes the map to be aborted.

A byte relocation error - the Linker tries to relocate
link byte quantities. However, relocation usually fails
linking may fail. Failure is defined as the high byte of
relocated value (or the linked value) not being all zero.
such a case, the value is truncated to 8 bits and
following message is printed:

'i'BYTE RELOC ERROR AT ABS ADDRESS xxxxxx.

The Linker automatically continues.

and
and
the

In
the

4. If the object modules are not read in the same order on pass
2 as pass 1, the Linker indicates which module should be
loaded next by typing:

?LOAD xxx xxx NEXT!

The linker then asks for more input.

5. Multiply-Defined Globals - this results in the following
error message during pass 1:

1xxxxxx MULTIPLY DEFINED BY MODULE xxxxxx.

The second definition is ignored and the Linker continues.

3.3.2.3 Fatal Errors - Each of the following errors causes the
indicated error message to be printed and the Linker to be restarted.

1. Symbol Table overflow - the message is:

1SYMBOL TABLE OVERFLOW - MODULE XXXXXX9 SYMBOL xxxxxx

3-7

LINK-lIS LINKER

2. System Errors - this class of errors prints:

?SYSTEM ERROR xx

where xx is an identifying number as follows:

Number Meaning

01

02

03

04

05

06

07

08

09

10

11

12

Unrecognized symbol table entry was found.

A relocation directory
name which cannot be
table.

references a global
found in the symbol

A relocation directory
counter modification
last.

contains a location
command which is not

Object module does not start with a GSD.

The first entry in the GSD is not the module
name.

An RLD references a section name which cannot
be found.

The TRA specification
non-existent module name.

The TRA specification
non-existent section name.

references a

references a

An internal jump table index is out of range.

A checksum error occurred on the object
module.

An object module binary block is too big
(more than 64 decimal words of data).

A device error occurred on the load module
output device.

All system errors except for numbers 10 and 12 indicate a program
failure either in the Linker or the program which generated the object
module .. Error 05 can occur if a tape is read which is not an object
module.

3.3.2.4 Error HALTs - LINK-lIS loads all of its unused trap vectors
with the code:

. WORD .+2, HALT

so that if the trap occurs, the processor halts in the second word of
the vector. The address of the halt, displayed in the console lights,
therefore indicates the cause of the halt.

3-8

LINK-lIS LINKER

Address of HALT (octal) Meaning

12
16
26
32

Reserved instruction executed.
Trace trap occurred.
Power fail trap.
~MT executed.

A halt at address 40 indicates an IOXLPT detected error. RO
(displayed in the console lights) contains an identifying code:

Code in

0

1
2
3
4
5

RO Meaning

Illegal memory reference, SP overflow or
illegal instruction.
Illegal lOX command.
Slot number out of range.
Device number illegal.
Referenced slot not INIT ed.
Illegal data mode.

IOXLPT also sets Rl as follows:

If the error code is 0, Rl contains the PC at the time of the error.

If the error code is 1-5, Rl points to some element in the lOT
argument list or to the instruction following the argument list,
depending on whether IOXLPT has finished decoding all the arguments
when it detects the error.

3-9

CHAPTER 4

EDITING THE SOURCE PROGRAM

The PDP-II Text Editor program (ED-II) enables you to display your
source program (or any text) on the teleprinter, make corrections or
additions to it, and punch all or any portion of the program on paper
tape. This is accomplished by typing simple one-character commands on
the keyboard.

The Editor commands can be grouped according to function:

1. input/output;

2. searching for strings of characters;

3. positioning the current character location pointer;

4. inserting, deleting, and exchanging text portions.

All input/output functions are handled by lOX, the PDP-II Input/Output
Executive (see Chapter 7).

4.1 COMMAND MODE AND TEXT MODE

Whenever ED-II prints an * on the teleprinter, you may type a command
to it. (Only one command per line is acceptable.) The Editor is then
said to be in Command Mode. While most commands operate exclusively
in this mode, there are five ED-II commands t.hat require additional
information in order for the commands to be carried out. The Editor
goes into Text Mode to receive this text.

Should a nonexistent command be typed or a command appear in incorrect
format, ED-II prints a? This is followed by an * at the beginning
of a new line indicating that the Editor is in Command Mode.

Editor processing begins in Command Mode. When you type a command, no
action occurs until you follow it by typing the RETURN key (symbolized
as..)). If the command is not a text-type command, typing the RETURN
key initiates the execution of the command and ED-II remains in
Command Mode. However, if the command is a text-type command (Insert,
eXchange, Change, Get, or wHole), typing the RETURN key causes the
Editor to to into Text Mode. At this time you should type the text to
be operated on by the command. This can include the non-printing
characters discussed below, as well as spaces and tabs (up to eight
spaces generated by the CTRL/TAB keys).

Note that typing the RETURN key always causes the physical return of
the Teletype print element to the beginning of the line, and
automatically generates a line feed, thereby advancing the carriage to
a new line. In Text Mode, the RETURN key not only serves these

4-1

EDITING THE SOURCE PROGRAM

mechanical functions, allowing you to continue typing at the beginning
of a new line, but at the same time it enters a carriage return and
line feed character into the text. (A carriage return not followed by
a line feed cannot, therefore, be entered from the keyboard.)

RETURN and LINE FEED are both counted as characters and can be edited
along with the printing characters (as can the form feed, discussed in
Section 4.2.5). When you wish to terminate Text Mode and reenter
Command Mode, you must type the LINE FEED key symbolized as ~). A
typed LINE FEED is not considered to be part of the text unless it is
the first character entered in Text Mode.

4.2 COMMAND DELIMITERS

4.2.1 Arguments

Some ED-II commands require an argument to specify the particular
portion of text to be affected by the command or how many times to
perform the command. In other commands this specification is implicit
and arguments are not allowed.

The ED-II command arguments are described as follows:

1. n stands for any number from 1 through 32767 (decimal) and
may, except where noted, be preceded by a + or -

If no sign precedes n, n is assumed to be a positive number.

Where an argument is acceptable, its absence implies an
argument of 1 (or -1 if a - is present).

The role of n varies according to the command with which it
is associated.

2. 0 refers to the beginning of the current line.

3. @ refers to a marked (designated) character location (see
Section 4.2.3).

4. / refers to the end of text in the Page Buffer.

The roles of all arguments are explained
corresponding commands which qualify them.

4.2.2 The Character Location Pointer (Dot)

further with the

Almost all ED-II commands function with respect to a movable reference
point, Dot. This character pointer is normally located between the
most recent character operated upon and the next character and, at any
given time, can be thought of as "where the Editor is" in your text.
There are commands which move Dot anywhere in the text, thereby
redefining the "current location" and allowing greater facility in the
use of the other commands.

4-2

EDITING THE SOURCE PROGRAM

4.2.3 Mark

In addition to Dot, a secondary character pointer known as Mark also
exists in ED-II. This less agile pointer is used with great effect to
mark or "remember" a location by moving to Dot and conditionally
remaining there while Dot moves on to some other place in the text.
Thus, it is possible to think of Dot as "here" and Mark as "there".
Positioning of Mark, which is referenced by means of the argument @,
is discussed below in several commands.

4.2.4 Line-Oriented Command Properties

ED-II recognizes a line as a unit by detecting a line terminator in
the text. This means that ends of lines (line feed or form feed
characters) are counted in line-oriented commands. This is important
to know, particularly if Dot, which is a character location pointer,
is not pointing at the first character of a line.

In such a case, an argument n does not affect the same number of lines
(forward) as its negative (backward). For example, the argument -1
applies to the character string beginning with the first character
following the second previous end-of-line character and ending at Doti
argument +1 applies to the character string beginning at Dot and
ending at the first end-of-line character. If Dot is located, say, in
the center of a line, notice that this affects 1-1/2 lines back or 1/2
line forward, respectively:

Example of List Commands -lL and +lL:

Text

CMPB ICHAR,#033
BEQ $ALT
CMPB ~CHAR' #175
BNE PLACE

Dot is here

4.2.5 The Page Buffer

Command

*-lL

*+lL

Printout

BEQ $ALT
CMPB I

CHAR'#~Dot remains
~here

The Page Buffer holds the text being edited. The unit of source data
that is read into the Page Buffer from a paper tape, is the page.
Normally a page is terminated, and therefore defined, by a form feed
(CTRL/FORM) in the source text wherever a page is desired. (A form
feed is an acceptable Text Mode character.) Overflow, no-tape, or
reader-off conditions can also end a page of input (as described in
Section 4.3.1.2). Since more than one page of text can be in the
buffer at the same time, it should be noted that the entire contents
of the Page Buffer are available for editing.

4-3

EDITING THE SOURCE PROGRAM

4.3 COMMANDS

4.3.1 Input and Output Commands

Three commands are available for reading in a page of text. The Read
command (Section 4.3.1.2) is a specialized input command; the Next
command (Section 4.3.1.4) reads in a page after punching out the
previous page; and the wHole command (Section 4.3.3.2) reads in and
punches out pages of text as part of a search for a specified
character string.

Output commands either list text or punch it on paper tape. The List
command causes specified lines of text to be printed at the terminal
so that they may be examined. Paper tape commands (Next and wHole
also perform input) provide for the output of specified pages, lines,
form feeds (for changing the amount of data that constitutes a given
page), and blank tape. Note that the process of outputting text does
not cause Dot to move.

4.3.1.1 Open - The Open command (0) should be typed whenever a new
tape is put in the reader. This is used when the text file being
edited is on more than one paper tape.

Note also that if the reader is off at the time an input command is
given, turning the reader on must be followed by the Open command.

4.3.1.2 Read - One way of getting a page of text into the Page Buffer
so that ~ can be edited is the Read (R) command. The R command
causes a page of text to be read from either the low-speed reader or
high-speed reader (as specified in the starting dialogue, Section
4.4.2), and appended to the contents (if any) of the Page Buffer.

Text is read in until either:

1. A form feed character is encountered;

2. The page buffer is 128 characters from being filled, or a
line feed is encountered after the buffer has become 500
characters from being filled;

3. The reader is turned off, or runs out of paper tape (see Open
command, Section 4.3.1.1).

Following execution of an R command, Dot and Mark are located at the
beginning of the Page Buffer.

A 4K system can accommodate about 4000 characters of text. Each
additional 4K of memory provides space for about 8000 characters.

NOTE

An attempt to overflow the storage area
causes the command (in this case, R) to
stop executing. A? is then printed,
followed by an * on the next line
indicating that a command may be typed.
No data is lost.

4-4

EDITING THE SOURCE PROGRAM

4.3.1.3 List and Punch - Output commands List (L) and Punch (P) can
be described together, as they differ only in that the device
addressed by the former is the terminal, and the device addressed by
the latter is the paper tape punch. Dot is not moved by these
commands.

nL
nP

-nL
-nP

OL
OP

@L
@P

/L
/P

Lists }
Punches

Lists
Punches

Lists
Punches

Lists
Punches

Lists
Punches

}

}

}

}

the character string beginning at Dot and
ending with the nth end-of-line

the character string beginning with the
first character following the (n+l)th pre­
vious end-of-line and terminating at Dot

the character string beginning with the
first character of the current line and
ending at Dot

the character string between Dot and the
Marked location

the character string beginning at Dot and
ending with the last character in the Page
Buffer

In addition to the above List commands, there are three special List
commands that accept no arguments. The current line is defined as the
line containing Dot, i.e., from the line feed (or form feed) preceding
Dot to the line feed (or form feed) following Dot.

v

<

>

Examples:

Dot is

TEXT

CMPB ICHAR,#033
BEQ $ALT
CMPB/CHAR,#175
BNE LACE

here.

Lists the entire line containing Dot

Same as -lL. If Dot is located at the
beginning of a line, this simply lists
the line preceding the current line

Lists the line following the current line

COMMANDS

v
<

>

CMPB
BEQ
CMPB
BNE

PRINTOUT

Dot remains here.

4.3.1.4 Next - Typing nN punches out the entire contents of the Page
Buffer (followed by a trailer of blank tape if a form feed is the last
character in the buffer), deletes the contents of the buffer, and
reads the Next page into the buffer. It performs this sequence n
times. If there are fewer than the n pages specified, the command is
executed for the number of pages actually available, and a? is
printed out. Following execution of a Next, Dot and Mark are located
at the beginning of the Page Buffer.

4-5

EDITING THE SOURCE PROGRAM

4.3.1.5 Form Feed and Trailer -

F Punches out a Form feed character and four inches of blank
tape

nT Punches out four inches of Trailer (blank) tape n times

4.3.1.6 Procedure with Low-Speed Punch - If the low speed punch is
the specified output device (see Section 4.4.2), the Editor pauses
before executing any tape command just typed (Punch, Form feed,
Trailer, Next, wHole). The punch must be turned on at this time,
after which typing the SPACE bar initiates the execution of the
command. Following completion of the operation, the Editor pauses
again to let you turn the punch off. When the punch has been turned
off, typing the SPACE bar returns ED-II to Command Mode.

4.3.2 Commands to Move Dot and Mark

4.3.2.1 Beginning and End -

B Moves Dot to the Beginning of the Page Buffer

E Moves Dot to the End of the Page Buffer (see also /J
and /A below)

4.3.2.2 Jump and Advance-

nJ Jumps Dot forward past n characters

-nJ Moves Dot backward past n characters

nA Advances Dot forward past n ends-of-lines to the
beginning of the succeeding line

-nA Moves Dot backwards across n ends-of-lines and
positions Dot immediately after n+l ends-of-lines,
i.e., at the beginning of the -n line.

OJ or OA Moves Dot to the beginning of the current line

@J or @A Moves Dot to the Marked location

/J or /A Moves Dot to the end of the Page Buffer (see also E
above)

Notice that while n moves Dot n characters in the Jump command, its
role becomes that of a line counter in the Advance command. However,
because 0, @, and / are absolute, their use with these commands
overrides line/character distinctions. That is, Jump and Advance
perform identical functions if both have either 0, @ or / for an
argument.

4-6

EDITING THE SOURCE PROGRAM

4.3.2.3 Mark - The M command marks ("remembers") the current position
of Dot for late.r reference in a command using the argument @. Note
that only one position at a time can be in a marked state. Mark is
also affected by the execution of those commands which alter the
contents of the Page Buffer:

C o H I K N R x

4.3.3 Search Commands

4.3.3.1 Get - The basic search command nG starts at Dot and Gets the
nth occurrence of the specified text in the Page Buffer. If no
argument is present, it is assumed to be 1. When you type the
command, followed by the RETURN key, ED-II goes into Text Mode. The
character string to be searched for must now be typed. (ED-II will
accept ~ search object of up to 42 characters.) Typing the LINE FEED
key terminates Text Mode and initiates the search.

This command sets Dot to the position immediately following the found
character string, and a OL listing is performed by ED-II. If a
carriage return, line feed, or form feed is specified as part of the
search object, the automatic OL displays only a portion of text -- the
part defined as the last line. Where any of these characters is the
last character of the search object, the OL of course yields no
printout at all.

If the search is unsuccessful, Dot is at the end of the Page Buffer
and a? is printed out. The Editor then returns to Command Mode.

Examples:

1. Text

(

MOV @RMAX,@RS
ADD #6,(RS)+
CLR $CK3
TST R2
BEQ CKCR

Dot was here.

2. CMPB
BEQ
BR

D~

ICHAR,#RUBOUT
SITE
PUT

Command

2G./
CK

G..}
TE./
BR-I-

Printout

BEQ CK

Dot is no\

4.3.3.2 wHole - A second search command, H, starts at Dot and looks
through the wHole text file for the next occurrence of the character
string you have specified in Text Mode. It combines a Get and a Next
such that if the search is not successful in the Page Buffer, the
contents of the buffer are punched on tape, the buffer contents are
deleted, and a new page is read in, where the .search is continued.
This continues until the search object is found or until the complete
source text has been searched. In either case, Mark is at the
beginning of the Page Buffer.

4-7

I -
I

EDITING THE SOURCE PROGRAM

If the search object is found, Dot is located immediately following
it, and a OL is performed by ED-II. As in the Get command, if the
search is not successful Dot is at the end of the buffer and a?
appears on the teleprinter. Upon completion of the command, the
Editor will be in Command Mode. No argument is allowed. Note that an
H command specifying a nonexistent search object can be used to close
out an edit, i.e., copy all remaining text from the input tape to the
output tape.

4.3.4 Commands to Modify the Text

4.3.4.1 Insert - The Insert command (I) allows text to be inserted at
Dot. After I is typed (followed by the typing of the RETURN key), the
Editor goes into Text Mode to receive text to be inserted. Up to 80
characters per line are acceptable. Execution of the command occurs
when the LINE FEED key (which does not Insert a line feed character
unless it is the first key typed in Text Mode) is typed terminating
Text Mode. At this point, Dot is located in the position immediately
following the last inserted text character. If the Marked location
was anywhere after the text to be Inserted, Dot becomes the new Marked
location. .

During an insert, it sometimes happens that the user accidentally
types' CTRL/P rather than SHIFT/P (for @), thus deleting the entire
insert (see Section (.4.1). To minimize the effect of such a mistake,
the insert may be terminated every few lines and then continued with a
new Insert command.

As with the Read command, an attempt to overflow the Page Buf£er
causes a ? to be printed out followed by an * on the next line
indicating that a command may be typed. Allor part of the last line
typed may be lost. All previously typed lines are inserted.
Examples:

Text Command

l. MOV #8. ,EKO, I~
CN

Dot

2. Inserting a carriage return (and

CLR Rl,LR R2 I..-J
..-J

Dot .j.

3. Inserting a single line feed:

LOOK W~ HAPPENS HERE

Dot/"

I~
+
+

4-8

Effect

MOV~~::~;F
Dot

automatic line feed) :

CLR Rl
CLR R2

LOOK WHAT
,APPENS HERE

Dot

EDITING THE SOURCE PROGRAM

4.3.4.2 Delete and Kill - These commands are closely related to each
other; they both erase specified text from the Page Buffer. The
Delete command (D) differs from the Kill command (K) only in that the
former accepts an argument, n, that counts characters to be removed,
while the latter accepts an argument, n, that counts lines to be
removed. 0, @, and / are also allowed as arguments. After execution
of these commands, Dot becomes the Marked location.

nO Deletes the following n characters

-nO Deletes the previous n characters

nK

-nK

Kills the character string beginning at Dot and ending
at the nth end-of-line

Kills the character string
character following the
and ending at Dot

beginning with the first
(n+l)th previous end-of-line

00 or OK Removes the current line up to Dot

@D or @K Removes the character string bounded by Dot and Mark

/0 or /K Removes the character string beginning at Dot and
ending with the last character in the Page Buffer

1.

2.

Text

jCHECK THE MOZXDE

00/
; IS IT A TABt OR
i IS IT A CR \

Dot

Command

-20

2K

Effect

iCHECK THE MODE

Dot

iIS IT A/
Dot/

4.3.4.3 Change and exchange - The Change (C) and eXchange (X)
commands can be thought of as two-phase commands combining,
respectively, an Insert followed by a Delete, and an Insert followed
by a Kill. After the Change or eXchange command is typed, ED-II goes
into Text Mode to receive the text to be inserted. If n is used as
the argument, it is then interpreted as in the Delete
(character-oriented) or Kill (line-oriented), and accordingly removes
the indicated text. 0, @, and / are also allowed as arguments.

nC
xxxx

xxxx

-nC
xxx
nX
xxxx
xxxx

-nX
xxx

Changes the following
n characters

Changes the previous
n characters
eXchanges the character
string beginning at Dot and
ending at the nth end-of-line

eXchanges the character
string beginning with
following the (n+l)th
ending at Dot

4-9

the first character
previous end-of-line and

OC or OX
xxxx xxxx
xxxx xxx x

@C or @X
xxx xxx
xxx xxx

/C or /X
xxx xxx

EDITING THE SOURCE PROGRAM

Replaces the current line up to Dot

Replaces the character string bounded by Dot
and the Marked location

Replaces the character string beginning at Dot
and ending with the last character in the Page
Buffer.

Again, the use of absolute arguments 0, and @, and / overrides the
line/character distinctions that nand -n produce in these commands.

If the Insert portion of a Change or eXchange is terminated because of
attempting to overflow the Page Buffer, data from the latest line may
have been lost, and text removal does not occur. Such buffer overflow
might be avoided by separately executing a Delete or Kill followed by
an Insert, rather than a Change or eXchange, which does an Insert
followed ·by a Delete or Kill. Examples:

;A LINE

;THIS
;IS ON
·FOUR

CLINES

Dot

Text

FEED \IS

Dot

4.4 OPERATING PROCEDURES

4.4.1 Error Corrections

HERE

Command

-9C~
TAB 4-
2X..j

PAPER

Effect

IS HERE

During the course of editing a page of the program, it may become
necessary to correct mistakes in the commands themselves. There are
four special commands which do this:

1. Typing the RUBOUT key removes the preceding typed character,
if it is on the current line. Successive RUBOUTs remove
preceding characters on the line (including the SPACE), one
character for each RUBOUT typed.

2. The CTRL/U combination (holding down the CTRL key and typing
U) removes all the characters in the current line.

3. CTRL/P cancels the current command in its entirety. This
includes all the current command text just typed, if ED-II
was in Text Mode. Do not use another CTRL/P before typing a
line terminator as this will cause an ED-II restart (see 4.
below). If CTRL/P is typed while,a found search object of a
Get or wHole is being printed out, the normal position of Dot
(just after the specified search object) is not affected.

CTRL/P should not be used while a punch operation is in
progress as it is not possible to know exactly how much data
will be output.

4-10

EDITING THE SOURCE PROGRAM

4. Two CTRL/P's not
restart ED-II,
4.4.2.

interrupted by a typed line terminator
initiating the dialogue described in Section

After removing the incorrect command data, the user can directly type
in the desired input.

4.4.2 Starting

The Editor is loaded by the Absolute Loader (see Chapter 6, Section
6.2.2) and starts automatically. Once the Editor has been loaded, the
following sequence occurs:

ED-II Prints User Types

*1 L~ (if the low-speed Reader is to be used
for source input)

H~ (if the high-speed Reader is to be used
for source input)

*0 L...J (if the low-sp,eed Punch is to be used
for edited output)

H.,.} (if the high-speed Punch is to be used
for edited output)

If all text is to be entered from the keyboard (i.e., via the Insert
command) i either L or H may be specified for !nput.

If the output device is the high-speed punch (HSP), the Editor enters
Command Mode to accept input. Otherwise, the sequence continues with:

LSP OFF (when low-speed Punch (LSP) is off)

Upon input of ~ from the keyboard, the Editor enters Command Mode and
is ready to accept input.

4.4.3 Restarting

To restart ED-II, type CTRL/P twice. This
starting dialogue described in Section 4.4.2.
(LSR) is in operation it must first be turned
edited should be loaded (or reloaded) at this

4.4.4 Creating a Paper Tape

initiates the normal
If the Low-speed Reader

off. The text to be
time.

Input commands assume that text is to be read from a paper tape by the
low-speed reader or high-speed reader. However, the five commands
that go into Text Mode enable the user to input from the keyboard.
The Insert command, in particular (Section 4.3.4.1) can be useful for
entering large quantities of text not on paper tape. The Page Buffer
can thus be filled from the keyboard, and a paper tape actually
created by using a command to punch out the buffer contents.

4-11

EDITING THE SOURCE PROGRAM

4.4.5 Editing Example

The following example consists of three parts:

1. The marked up source program listing indicating the desired
changes.

2. The ED-II commands to implement those changes (with comments
on the editing procedure).

NOTE

Typing the RETURN key terminates Command Mode in all
cases. In commands which then go into Text Mode,
typing the LINE FEED key (symbolized as +) produces
the terminator.

3. Th~ edited text.

Part I Original Source for Edit

;COMMON INPUT ROUTINE FOR USE BY NON FILE DEVICES

UNPI.J'T": ADC
CLR
MOV
MOV

~;CI\MODE! BITB
BNE

!I;CKNUL: TSTB
BEt~

$CI<PAFn BITB
BNE
MOVB
JSR
SUB
BE(~

BIS
PAROI\! CLR

BIC
CMPB
BNE
TSTB
BEC~

CL.I:::
~; . .JP~.!CI<! • .lMP

llWHAT
$01\: CMPB

BNE
MOV
INC
MClV
BB-

I CHAR, (1:::~5) +
.. - (LS)
(F'~5) + ,r';:MAX
(1::::5) +, MODADR

;UPDATE CKSUM
II CLEAF'~ DONE
;GET ADR MAX
;GET ADR MODE
;R5 NOW POINTS TO POINTER

@MODADB,IASCII ;IS THIS ASCII
C~,I\·I~.·.·[N "NO 'r , .-.-.- I::':Y l:QNARY

ICHAR llASCII---IS CHAR A NULL
CI\ ;YES--NO GO

(1!MODADF~, :JI:PAFmIT
PAr-WI\
ICHAF~, OCHAR
Fa,PAF'~GEN

I CHAF'~ y ClCHAF'~
PAI:::OK
:1t.PARERR, (!)MCJDADF'~
OCHAR
:U 77200, ICHAH
@1() (I:~ADD) , :IJ:KBD
(JI\O
EI<DCNT
$01<
I CHAr.;:

llLOOK AT MODE TO SEE IF
;SUPPOSED TO CHECK PARITY?
llNO
; YES·----CK IT

;
; OK'!'
;N(J-~-SET ERR BIT

; STRIP PAF~ITY

;IS THIS KBD INPUT
;NO
llYES---DONE EKD OF LAST?
llYES
;NO---DROP NEW CHAR

CK"
--------------------~~ IS THE CHAF~

ICI·Mr.;:? :IJ:CTRLC
(:~'il~PP

:II:UPC,OCHAR
RDUN
:1I:('IBIHAD y 20 (R6)
PLUS:I.

HS IT A ~c
;NO
; YEB-.. ·-ECHO ~C

;DIDDLE RETURN ADR

4-12

CKLJPU:

CMPB
BEl~
BB

CI ... I:;:
MOV
ADD
CLR
BB

CKTAB: CMPB
BNE
MOV
MDV
BB

CKCF~: CMPB
BNE
MOV
INC
BB

EDITING THE SOURCE PROGRAM

F~ESTAD. '
ICHAF~
FWUN
:II:UF'F'v OCHAI:;:

ICHAF~, :fl:RUBClUT
CI<
PUT

CK
:H:BSLASH,OCHAR
(I:;:5H
(]H~:::j

EKO

@r';:5
EKfJ

:rCHAF~, :II:HTAB
CKCI:;:
:I~BLNKS, OCHAF~

TABCNT,EKfJCNT
PUT

ICHAR,:II:CR
!1;CK3
:ft:CFU_F,OCHAR
FWUN
PLUSl

lIS THIS A RUBOUT
I YES-··-· .. · I GNClF~E IT
I NCl-'-"'-

;YES---FClRGET IT
llECHO A \
IF'OINTER=POINTER-l
I BC==BC-'
H~KO

~U'? /

• ES---··-ECHO Y
IPOINTER=BUFADRt6

• BC::"" 0
IECHO

lIS IT A TAB
INO
IYES---ECHCl BLANKS
.SET UP COUNTER

I IS IT A CR'?
INO
IYES---ECHO CRLF

.;(.'.1".1-:------------------ At'" • .. CMPB ICHAR,I033 ~
BEO !ML.T 1\ --______ .. - ;.%1 (HAR. CMPB ICHAI:;:, :IJ::J. 75 /,..,
BEQ !~AL.T ,."., .. ~,
CMPB ICHAR,I:J.76
BNE CK"r--------·&X
IfB'<P H F.IBL, 861IM~ ~

_
__ ~~M~Cl~V~==~li:J.~7~5:,:I:C;H~A~R--~ ,.. :;r;ONG I'Im Ihi ... - "",r ..

H FUT

~AL.T3

~-..

4-13

CI,\LF:

CKFF:

Part II:

CMPB
BNE
INC
BB

MOV
CMPB
BNE
MOV
MOV
BB

EDITING THE SOURCE PROGRAM

I CHAR, :D:I. .. F
CI'\FF
l:mUN
PUT

ICHAF~, OCHAIi:
:r CHAF~, :I~FF
PUT
:H:13 + ,EKDCNT
:fl:I ... FL.F, fJCHAR
PUT

Editing Session

Assume that ED-II has been started, is in Command Mode, and the tape
is in the reader. Underlined matter indicates ED-II output.

*R

*H
2CK:t
$JP2CK:

*G
CK
$JP2CK

*1
DUNt

*G
CKUPFt

*-5C
OKO

*6A

*9K

*L

*1
:.J
t
*A

*4X

*G
CKINP:t
CKINP:

JMP CK

BNE CKUPP

iReads in a page of text

iSearches entire program for 2CK: -
iwhen found ED-II performs a OL

iSearches current page for next CK -
iwhen found ED-II performs a OL

iInserts DUN following CK

iSearches for next CKUPP -
iwhen found ED-II performs a OL

OKO replaces last 5 characters (CKUPP)

iDot is moved 6 lines ahead (including
ia blank line)

i9 lines are killed starting with CKUPP:

iNext line is listed - Dot is not moved
iTHIS IS NOT KBD INPUT

iBlank line is inserted

iDot is moved 1 line ahead to point to
icharacter 0 of OKO:

iFollowing comments replace the next 4
i lines
iFORMATTED AND UNFORMATTED
iASCII ARE HANDLED THE SAMEt

iSearches for next CKINP: -
OL printout occurs when found

4-14

EDITING THE SOURCE PROGRAM

*OJ

:/K

*N

*L
TST 2(R5) iBC=O?

*15K

*2L

CKTAB: CMPB ICHAR,#HTAB

*2G
$CK3+
$CK3

*-C
ALT+

*V
$CKALT: CMPB ICHAR,#Q33

*G
033+
$CKALT: CMPB ICHAR,#033

*1

*G
CKLN

*-2C
EX

*2J

*K

*1
$ALT :+

*A

*M

*B

BNE CKLF

~Dot is moved to the beginning of the
;current line.

iThe rest of the page is killed (3 lines)

;Current page is punched out on paper tape -
ia new page is read in

iThe next line is listed - Dot is not moved

;15 lines are killed starting with TST

;1 blank line and 1 line of text
,are listed - Dot is not moved

,IS IT A TAB

;Searches for 2nd occurrence of $CK3 -
iOL printout verifies it is found

;ALT replaces preceding character

iLists entire current line to verify
;the above-C result

;Searches for the 033 to position Dot
ifor next command -- OL occurs

;The following text is inserted in the
;comment field

iIS CHAR AN ALTMODE?

;Searches for next CKLF -- OL occurs

;EX replaces the preceding two characters
; (LF)

;Jumps Dot past the carriage return and
;line feed characters

,Kills next line (starting with $ALT:)

;Inserts $ALT: at beginning of the fol­
;lowing line

;Advances Dot past 1 line feed to the
;beginning of the next line

;Marks the position of Dot

;Moves Dot to the beginning of the cur­
trent page

4-15

~@P

~@A

*2K

*

EDITING THE SOURCE PROGRAM

iPunches out the lines from Dot to the
iposition just marked - Dot not moved

iMoves Dot from the beginning of the
ipage to the marked position

iKills the next 2 lines

PART III Edited Source

;COMMON INPUT ROUTINE FOR USE BY NON FILE DEVICES

'INPUT: ADD
CLR
MOV
MOV

'CKMODEIBITB
BNE

SCKNULI TSTB
BEQ

SCKPAR: BITB
BNE
MOVB
JSR
SUB
BEQ
BIS

PAROK: CLR
BIC
CMPB
BNE
TSTB
BEQ
CLR

SJP2CK: JMP

'OK:
;WHAT
CMPB
BNE
MOV
INC
MOV
BB

CMPB
BEQ
BB

CKTAB: CMPB
BNE
MOV
MOV
BB

ICHAR,(R5)+
-(LS)
(R5)+,RMAX
(R5)+,MODADR

;UPDATE CKSUM
ICLEAR DONE
IGET ADR MAX
IGET ADR MODE
IR5 NOW POINTS TO POINTER

@MODADB,IASCII lIS THIS ASCII
CKBIN INO---TRY BINARY

ICHAR ;ASCII---IS CHAR A NULL
CK IYES--NO GO

,LOOK AT MODE TO SEE IF
@MODADR,IPARBIT ISUPPOSED TO CHECK PARITY?
PAROK ,NO
ICHAR,OCHAR ;YES---CK IT
R7,PARGEN
ICHAR,OCHAR
PAROK
IPARERR,@MODADR
OCHAR
1177200,ICHAR
@10(RADD),IKBD
OKO
EKOCNT
SOK
ICHAR
CKDUN

IS THE CHAR
ICHAR,ICTRLC
OKO
IUPC,OCHAR
RDUN
IABRTAD,20(R6)
PLUS1

ICHAR,IRUBOUT
CK
PUT
ICHAR,IHTAB
CKCR
IBLNKS,OCHAR
TABCNT,EKOCNT
PUT

I
10K?
;NO--~SET ERR BIT

,STRIP PARITY
lIS THIS KBD INPUT
,NO
;YES---DONE EKO OF LAST?
;YES
,NO---DROP NEW CHAR

,IS IT A -C
,NO
,YES--ECHO -C

,DIDDLE RETURN ADR

,THIS IS NOT KBD INPUT
.FORMATTED AND UNFORMATTED
,ASCII ARE HANDLED THE SAME
,IS THIS A RUBOUT
,YES---IGNORE IT
INO---
lIS IT A TAB
,NO
,YES---ECHO BLANKS
ISET UP COUNTER

4-16

EDITING THE SOURCE PROGRAM

CKCH: CMF'B ICHAr~' :ft:CR
BNE $CK3
MOV :ft:CRLF,OCHAR
INC RDUN
aa PLUS1

~;CKALn CMF'B I CHAH , :&:0:33
BEt~ $ALT
CMPB ICHAR,U75
BEQ $ALT
CMF'B ICHMhU76
BNE CKEX

!~AL T: MOV :ft::I.7:::i, ICHAH
CKLF: CMPB I CHAI~, iLF

BNE CKFF
INC FWUN
BB PUT

CKFF: MOV I CHAF~ , OCHAR
CMBP ICHAR':o:FI::"
BNE PUT
MOV :1(:8, EK()CNT
M()V tl ... FL.F,OCHAR
BB PUT

4.5 SOFTWARE ERROR HALTS

;IS IT A CR?
;NO
; YES-······ECHO CRL.F

;IS CHAR AN ALTMODE?

ED-II loads all unused trap vectors with the code

. WORD .+2,HALT

so that if the trap does occur, the processor halts in the second word
of the vector. The address of the halt, displayed in the console
address register, therefore indicates the cause of the halt. In
addition to the halts which may occur in the vectors, the standard lOX
error halt at location 40 may occur (see Chapter 7).

Address of HALT

12
16
26
32
36
40

Meaning

Reserved instruction executed
Trace trap occurred
Power fail trap
EMT executed
TRAP executed
lOX detected error

4-17

CHAPTER 5

DEBUGGING OBJECT PROGRAMS ON-LINE

5.1 INTRODUCTION

ODT-ll (Qn-line Qebugging ~echnique for the PDP-II) is a system
program which aids in debugging assembled object programs. From the
Teletype keyboard you interact with ODT and the object program to:

print the contents of any location for examination or
alteration

run all or part of an object program using the breakpoint
feature

search the object program for specific bit patterns

search the object program for words which reference a
specific word

calculate offsets for relative addresses

During a debugging session you should have at the terminal the
assembly listing of the program to be debugged. Minor corrections to
the program may be made on-line during the debugging session. The
program may then be run under control of ODT to verify any change
made. Major corrections, however, such as a missing subroutine,
should be noted on the assembly listing and incorporated in a
subsequent updated program assembly.

A binary tape of the debugged program can be obtained by use of the
DUMPAB program (see Chapter 6, section 6.3).

5.1.1 ODT-Il and ODT-IIX

There are two versions of ODT included in the PDP-II Paper Tape
Software System: a standard version, ODT-ll, and an extended version,
ODT-IIX. 1 Both versions are independent, self-contained programs.
ODT-IIX has all the features of ODT-ll, plus some additional features.
Each version is supplied on two separate paper tapes: a source tape
and an absolute binary tape. The purpose of the tapes, and loading
and starting procedures are explained in a later section of this
chapter.

ODT-Il is completely described in section 5.2,
features of ODT-IIX are covered in section 5.3.
this chapter, except where specifically'stated,

and the additional
In all sections of
refer~nce to ODT

Only ODT-IIX is available for the LSI-II or the PDP-ll/03.

5~1

DEBUGGING OBJECT PROGRAMS ON-LINE

applies to both versions. Concluding sections discuss ODT's internal
operations -- how it effects breakpoints, how it uses the "trace trap"
and the T-bit, and other useful data.

The following discussion assumes that the reader is f~miliar with the
PDP-II introduction formats and the PAL-IIA Assembly Language as
described in Chapter 3.

5.1.2 ODT's Command Syntax

ODT's commands are composed of the following characters and symbols.
They are often used in combination with the address upon which the
operation is to occur, and are offered here for familiarization prior
to their thorough coverage which follows. Unless indicated otherwise,
n below represents an octal address.

n/

/

n\

\

RETURN

@

>

<

open the word at location n

reopen last opened location

(SHIFT/L) open the byte at location n (ODT-IIX only)

reopen the last opened byte (ODT-IIX only)

(LINE FEED key) open next sequential location

open previous location

close open location and accept the next command

take contents of opened location, index by contents of
PC, and open that location

take contents of opened location as absolute address
and open that location (ODT-llX only)

take contents of opened location as relative branch
instruction and open referenced location (ODT-llX only)

return to sequence prior to last @, >, or
open succeeding location (ODT-IlX only)

command and

$n/ open general register n (0-7)

i B

niB

separates commands from command arguments (used with
alphabetic commands below)

remove Breakpoint(s) (see description of each ODT
version for particulars)

set Breakpoint at location n

lThe circumflex appears on some keyboards and printers in place of the
up-arrow.

2The underline appears on some keyboards and printers in place of the
back-arrow.

5-2

n;rB

;rB

n;E

DEBUGGING OBJECT PROGRAMS ON-LINE

set Breakpoint r at location n (ODT-IIX only)

remove r(th) Breakpoint (ODT~llX only)

search for instructions that
address n

reference Effective

n;W search for Words with bit patterns which match n

inS enable Single-instruction mode (n can have any value
and is not significant); disable breakpoints

;S disable Single-instruction mode

n;G Go to location n and start program run

;P

niP

n/(word)n;O

$B/

$M/

$S/

$P/

Proceed with program execution from breakpoint;
when next breakpoint is encountered or at
program

stop
end of

In Single-instruction mode only (ODT-IIX), Proceed to
execute next instruction only

Proceed with program execution from breakpoint;
after encountering the breakpoint n times.

stop

In single-instruction mode only (ODT-IIX), Proceed to
execute next n instructions.

calculate Offset from location n to location m

open Breakpoint status word (ODT-ll)
open BREAKPOINT D STATUS WORD (ODT-IIX)

open search Mask

open location containing user program's Status register

open location containing ODT's Priority level

With ODT-ll, location references must be to even numbered 16-bit
words. With ODT-IIX, location references may be to 16-bit words or
8-bit bytes.

The semicolon in the above commands is ignored by ODT-ll, but is used
for the sake of consistency, since similar commands to ODT-IIX require
it.

5.2 COMMANDS AND FUNCTIONS

When ODT is started as explained in section 5.6, it indicates its
readiness to accept commands by printing an asterisk (*) on the left
margin of the terminal paper. In response to the asterisk, you can
issue most commands; for example, you can examine and, if desired,
change a word, run the object program in its entirety or in segments,
or even search core for certain words or references to certain words.
The discussion below first explains some elementary features, and then
covers the more sophisticated features.

All commands to ODT are issued using the characters and symbols shown
above in Section 5.1.2.

5-3

DEBUGGING OBJECT PROGRAMS ON-LINE

5.2.1 Opening, Changing, and Closing Locations

An open location is one whose contents ODT has printed for
examination, and whose contents are available for change. A closed
location is one whose contents are no longer available for ch~nge.
Any even-numbered location may be opened using ODT-ll.

The contents of an open location can be changed by typing the new
contents followed by a single character command, which requires no
argument (i.e. -} t RETURN + @ > <). Any command typed to open a
location when another location is already open causes the currently
open location to be closed.

5.2.1.1 The Slash (/) - One way to open a location is to type its
address followed by a slash:

:'1000/012746

Location 1000 is open for examination and is available for change.
Note that in all examples ODT's printout is underlined~ your typed
input is not.

Should you not wish to change the contents of an open location, merely
type the RETURN key and the location will be closed; ODT prints
another asterisk and waits for another command. However, should you
wish to change the word, simply type the new contents before giving a
command to close the location.

*1000/012746

*
012345

In the example above, location 1000 now contains 012345 and is closed
since the RETURN key was typed after entering the new contents, as
indicated by ODT's second asterisk.

Used alone, the slash reopens the last location opened:

*1000/012345
~/002340

2340

As shown in the example above, an open location can be closed by
typing the RETURN key. In this case, ODT changed the contents of
location 1000 to 002340 and then closed the location before printing
the * A single slash then directed ODT to reopen the last location
opened. This allowed us to verify that the word 002340 was correctly
stored in location 1000. (ODT supplies the leading zeroes if not
given.)

Note again that opening a location while another is currently open
automatically closes the currently open location before opening the
new location.

5.2.1.2 The LINE FEED Key - If the LINE FEED key is typed when a
location is open, ODT closes the open location and opens the next
sequential location:

*1000/002340 -}
001002/012740

(+ denotes typing the LINE FEED key)

5-4

DEBUGGING OBJECT PROGRAMS ON:....LINE·

In this example, the LINE FEED key instructed DDT to print the" addres~
of the next location along with its contents and to wait for furth~r
instructions. After the above operation, location 1000 is closed and
1002 is open. The open location may be modified by typin~ the new
contents.

5.2.1.3 The Up-Arrow(t) - The up-arrow (or curcumflex) symbol is
effected by typ1ng the SHOFT and N key combination. If the up-arrow
is typed when a location is open, ODT closes the open location and
opens the previous location (as shown by continuing" from the example
above) :

001002/012740
001000/002340

t (t is printed by typing SHOFT and N)

Now location 1002 is closed and 1000 is open. The o~en location may
be modified by typing-the new contents.

5.2.1.4 The Back-Arrow(+) - The back-arrow (or underline) symbol is
effected by typing the SHIFT and 0 key combination. If the back-arrow
is typed to an open location, ODT interprets the contents of the
currently open location as an address indexed by the Program Counter
(PC) and opens the location so addressed~

*1006/000006 +
001016/100405

(+ is printed by typing SHIFT and 0)

Notice in this example that the open location(1006) was indexed by the
PC as if it were the operand of an instruction with address mode 67 as
explained in Chapter 3.

A modification to the opened location can be made before a + , t, or +
is typed. Also, the new contents of the location will be used for
address calculations using the command. Example:

*100/000222 4+
000102/000111 6t
000100/000004 100+
000202/(contents)

(modify to 4 and open next location)
(modify to 6 and open previous location)
(change to 100 and open location indexed
by PC)

5.2.1.5 Accessing General Registers 0-7 - The program's general
registers 0-7 can be opened using the following command format:

~$n/

where n is the integer representing the desired register (in the range
o through 7). When opened, these registers can be examined or changed
by typing in new data as with any addressable location. For example:

and

~$0/000033

*

*$4/000474 464
1<

(RO was examined and closed)

(R4 was opened, changed, and closed}

DEBUGGING. OBJECT PROGRAMS- ON-LINE

The example above can be verified by typing a slash in response to
ODT's ast.er isk:

~/000464

The .j. , t , +, or @ commands may be used when a register is open (the @
is an ODT-IIX command).

5.2.1.6 Accessing Internal Regist~rs. - The program's Statu& Register
contains the condition codes of the most recent operational results
and the interrupt priority level of the object program. It is opened
using the following command:

~$S/000311

where $S represents the address of the Status Register~ In response
to $S/ in the example above, ODT printed the 16~bit (of which only the
low-order 8 bits are meaningful): Bits 0-3 indicate whether a carry,
overflow, z~ro, or negative (in that order) has resulted, and bits 5-7
indicate the interrupt priority level (in the range 0-7) of the object
program.

The $ is used to open certain other internal locations:

$B

$M

internal breakpoinb status word (see section 5.2.2.2)

mask location for
examined during
5.2.4)

specifying which bits
a bit pattern search

are to be
(see section

$P .location defining the operating priority of ODT (see
section 5.2.6)

$S locatio~ containing the condition codes (bits 0~3) and
interrupt priority level (bits 5-7)

5.Z~2 Breakpoints

The breakpoint feature facilitates monitoring the progress of program
execution. A breakpoint may be set at any instruction which is not
referenced by the program for data. When a breakpoint is set, ODT
replaces the contents of the breakpoint location with a trap
instruction. Thus, when the program is executed and the breakpoint is
encountered, program exeeution is suspended, the original contents of
the breakpoint location are restored, and ODT regains control.

5.2.2.1 .Setting the Breakpoint(n:B) - ODT-11 provides
breakpoint: ODT-IIX provides eight. Breakpoint(s) may
any time. A breakpoint is set by typing the address of
location of the breakpoint followed by :B. For example::

~1020:B

*

only one
be changed at

the desired

sets a breakpoint at location 1020. The breakpoint above. is changed
to location 1120 as shown below.

*1020·B - ,
*1120 ·B - ,
*

5-6

DEBUGGING OBJECT PROGRAMS ON-LINE

Breakpoints should not be set at locations referenced by the program
for data, nor at an lOT, EMT, or TRAP instruction. This restriction
is explained in section 5.5.2.

The breakpoint is removed by typing ;B without an argument, as shown
below.

~1l20 ;B
*;B
"*

(sets breakpoint at location 1120)
(removes breakpoint)

5.2.2.2 Locating the Breakpoint($B) - The command $B/ causes ODT-ll
to print the address of the breakpoint (see also section 5.3.3 on $B
in ODT-IIX):

~$B/001120

The breakpoint was set at location 1120. $B represents the address
containing ODT-ll's breakpoint location. Typing the RETURN 'key in the
example above leaves the breakpoint at locatidn 1120 and returns
control to ODT-ll. The breakpoint could be changed to a different
location:

*$B/001120
"*$B/0011l4

*
1114

The breakpoint was found in location 1120, changed to location 1114,
and the change was verified.

If no breakpoint is set, $B contains an address internal to ODT-ll.

5.2.3 Running the Ptogram(n;G and niP)

Program execution is under control of ODT. There are two commands for
running the program: n;G and niP. The n;G command is used to start
execution (GO) and niP to .continue (Proceed) execution after halting
at a breakpoint. For example:

*IOOO;G

starts execution at location 1000. The program
encounters a breakpoint or until program completion.
enters an infinite loop, it must be restarted or
explained in section 5.6.2.

runs until it
If the program
reentered as

When a breakpoint is encountered, execution stops and ODT-ll prints B;
followed by the address of the breakpoint. Desired locations can then
be examined for expected data. For example:

*IOIO;B
*IOOO;G
B;OOIOIO
*

(breakpoint is set at location 1010)
(execution started at location 1000)
(execution stopped at location 1010)

To continue program execution from the breakpoint, type ;P in response
to ODT-ll's last *.

When a breakpoint is set in a loop, it may be desirable to allow the
program to execute a certain number of times through the loop before

5-7

DEBUGGING OBJECT PROGRAMS ON~LINE

recognizing the breakpoint. This may be, done by typing the n;P
commaI;ldand specifying the number of times the breakpoint is to be
encountered before program execution is suspended (on then(th)
encounter). (See section 5.3.3 for ODT-IIX interpretation of this
command When more than one breakpoint is set in a loop.)

Example:

B;OOlOlO
~1250;B
*4'P - ,
B;001250
*

(execution halted at breakpoint)
(set breakpoint at location 1250)
(continue execution. loop through
breakpoint 3 times and halt on the
4(th) occurrence of the breakpoint)

The breakppint repeat count caI;l be inspected by typing $B/ followed by
LINE FEED. The repeat count is then printed. This also provides an
alternative way of specifying the count. Since the location is open,
its contents can be 'modified in the usual manner by typing new
contents followed by the RETURN key.

*$B/001114 +
nnnnnn/000003
*.

6
(address of breakpoint .is 1114)

.(repeat count wa$ 3, changed to 6)

Breakpoints are inserted when performing an n;G or n;P command. Upon
execution of the n;G or n;P command, the general registers 0-6 are set
to the values in the locations specified as $0-$6 and the processor
status register is set to the value in the location specified as $S.

5.2.4 Searches

wi th ODT yOI,l can ,search all or any specyfied portion of core ,memory
for any specific bit pattern or for references to a specific location.

The location represented by $M is used to specify the mask of the
search. The next two sequential locations contain the lower and upper
limits of the search. Bits set to 1 in the mask are examined during
the search; other bits are ignored. For example,

*$M/OOOOOO 177400 +
~nnnnn/OOOOOO 1000 ~
nnnnnn/OOOOOO 1040
*

(+ denotes typing LINE FEED)
(starting address of search)
(last address in search)

where nnnnnn represents some location in ODT. This location varies
and,is meaningful only for reference purposes. Note that in the first
line above, the slash was used to open $M which now contains 177400,
and that the LINE FEEDs opened the next two sequential locations which
now contain the lower and upper limits of the search.

5.2.4.1 Word Search(n;W) - Before initiating a word search, the mask
and search, limits must be specified as explained above. Then the
search object and the initiating comm~nd are given using the n;W
command where n is the search object. When a match is found, the
address of the unmasked matching word is printed. For example:

*$M/000000177400 +
~nnnnn/OOOOOO 1000 +
nnnnnn/OOOOOO 1040
*400;W
001010/000770
001034/000404
*

(test high order eight bits)

(initiating word search)

5-8

DEBUGGING OBJECT PROGRAMS ON-LINE

In the search process, the word currently
search object are exclusive ORed (XORed),
the mask. If this result is zero, a match
reported at the terminal. Note that
locations within the limits are printed.

being examined and the
and the result is ANDed to
has been found, and is

if the mask is zero, all

5.2.4.2 Effective Address Search(njE) - ODT enables you to search for
words which address a specified location. After specifying the search
limits (section 5.2.4), type niE (where n is the effective address) to
initiate the search.

Words which are either an absolute address (argument n itself) I a
relative address offset, or a relative branch to the effective address
are printed after their addresses. For example:

'::$M/177400 1-
nnnnnn/OOlOOO
nnnnnn/00l040
*1034,E
001016/001006
001054/002767
*1020'E
001022/177774
001030/001020
!

1010 1-
1060

(initiating search)
(relative branch)
(relative branch)
(initiating a new searhc)
(relative address offset)
(absolute address)

Particular attention should be given to the reported references to the
effective address because a word may have the specified bit pattern of
an effective address without actually being so used. ODT will report
these as well.

5.2.5 Calculating Offsets(n,O)

Relative addressing and branching use an offset - the number of wrods
or bytes forward or backward from the current location of the
effective address. During the debugging session it may be necessary
to change a relative address or branch reference by replacing one
instruction offset with another. ODT calculates the offsets in
response to the n;O command.

The command niO causes ODT to print the l6-bit and 8-bit offsets from
the currently open location to address n. In ODT-ll, the 8-bit offset
is printed as a 16-bit word. For example:

*346/000034 414,0
*/000022
*20/000046 200,0
~20/000067

000044 000022

000156 000067

22

67

In the first example, location 346 is opened and the offsets from that
location to location 414 are calculated and printed. The contents of
location 346 are then changed to 22 and verified on the next line.
The l6-bit offset is printed followed by the 8-bit offset. In the
example above, 000156 is the 16-bit offset and 000067 is the 8-bit
offset.

The 8-bit offset is printed only if the 16-bit offset is even, as in
the case above. with ODT-ll only, the user must determine whether the
8-bit offset is out of the range 177600 to 000177 (-128 decimal to 127
decimal) . The offset of a relative branch is calculated and modified
as follows:

5-9

*1034/103421
*

DEBUGGING OBJECT PROGRAMS ON-LINE

1034;0 177776 177777 103777

Note that the modified low-order byte 377 must be combined with the
unmodified high-order byte. Location 1034 was still open after the
calculation, thus typing 103777 changed its contents; the location
was then closed.

5.2.6 ODT'S Priority Level ($P)

$P represents a location in ODT that contains the priority level at
which ODT operates. If $P contains the value 377, ODT operates at the
priority level of the processor at the time ODT is entered. Otherwise
$P may contain a value between 0 and 7 corresponding to the fixed
priority at which ODT operates.

To set ODT to the desired priority level, open $P.
present contents, which may then be changed:

*$P/000006 377

*
If $P is not specified, its value is seven.

ODT prints the

Breakpoints may be set in routines at different priority levels. For
example, a program running at a low priority level may use a device
service routine operating at a higher priority level. If a breakpoint
occurs from a low priority routine, if ODT operates at a low priority,
and if an interrupt does occur from a high priority routine, then the
breakpoints in the high priority routine will not be executed since
they have been removed.

'5;.3 ODT-llX

ODT-IIX. has all the commands and features of ODT-ll as explained in
section 5.2, p~us the following.

5.3.1 Opening, Changing and Closing Locations

In addition to operating on words, ODT-IIX operates on bytes.

One way to open a byte is to type the address of the byte followed by
a backslash:

~1001/025 (\ is printed by typing SHIFT and L)

A backslash typed alone reopens the last open byte. If a word was
previously open, the backslash reopens its even byte.

~1002/000004\004

The LINE FEED and up-arrow (or circumflex) keys operate on bytes if a
byte is open when the command is given. For example:

*1001\025 +
001002\004 t
001001\025
:!:,

5-10

DEBUGGING OBJECT PROGRAMS ON-LINE

5.3.1.1 Open the Addressed Location(@) - The symbol @ optionally
modifies, closes an open word, and uses its contents as the address of
the location to open next.

*1006/001024 @
001024/000500
*1006/001024 2100 @
002100/177774

(open location 1024 next)

(modify to 2100 and open
location 2100)

5.3.1.2 Relative Branch Offset(» - The right angle bracket, >,
optionally modifies, closes an open word, and uses its even byte as a
relative branch offset to the next word opened.

*1032/000407 301 >
000636/000010

(modify to 301 and interpret
as a relative branch)

Note that 301 is a negative offset (-77). The offset is
before it is added to the PC; therefore, 1034 + -176 = 636.

doubled

5.3.1.3 Return to Previous Sequence«) - The left angle bracket, <,
optionally modifies, closes an open location, and opens the next
location of the previous sequence interrupted by a +, @, or > command.
Note that +, @, > cause a sequence change to the word opened. If a
sequence change has not occurred, < simply opens the next location as
a LINE FEED does. The command operates on both words and bytes.

*1032/000407 301 >
000636/000010 <

001034/001040 @
001040/000405\005 <
001035\ 002 <
001036\ 004

5.3.2 Calculating Offsets (n;O)

(> causes a sequence change)
«causes a return to original
sequence)

(@ causes a sequence change)
« now operates on byte)
« acts like -I-)

The command n;O causes ODT to print the 16-bit and 8-bit offsets from
the currently open location to address n. The following examples,
repeated from the ODT-ll section describing this command (see section
5.2.5), show a difference only in printout format:

*346/000034 414;0 ~0~00~0~4~4~~0~2~2
~/000022

22

*1034/103421 1034;0
YI03777

177776 377\021 377

Note that the modified low-order byte 377 must be combined with the
unmodified high-order byte.

5-11

DEBUGGING OBJECT PROGRAMS ON-LINE

5.3.3 Breakpoints

with ODT-IIX you can set up to eight breakpoints concurrently,
numbered 0 through 7. The niB command used in ODT-ll to set the
breakpoint at address n sets the next available breakpoint in ODT-IIX.
Specific breakpoints may be set or changed by the n:mB command where m
is the number of the breakpoint. For example:

~1020;B
~1030iB
*1040;B
*1032;lB

*

(sets breakpoint 0)
(sets breakpoint 1)
(sets breakpoint 2)
(resets breakpoint 1)

The ;B command used in ODT-ll to remove the only breakpoint removes
all breakpoints in ODT-IIX. To remove only one of the breakpoints,
use the inB command, where n is ~he number of t~e break~oint. For
example:

*'2B -' (removes the second breakpoint)
*

The $B/ command opens the location containing the address of
breakpoint O. The next seven locations contain the addresses of the
other breakpoints in order, and thus can be opened using the LINE FEED
key. (The next location is for single-instruction mode, explained in
the next section.) Example:

*$B/00I020 +
nnnnnn/00l032 +
nnnnnn/(address internal to ODT)

In this example, breakpoint 2 is not set. The contents are an address
internal to ODT. After the table of breakpoints is the table ot
Proceed command repeat counts for each breakpoint and for t~e
single-instruction mode (see Section 5.3.4).

nnnnnn/00l036
nnnnnn/nnnnnn
nnnnnn/OOOOOO
nnnnnn/OOOOOO

+
+
+
15 +

(address of breakpoint 7)
(single-instruction address)
(count for breakpoint 0)
(count for breakpoint 1)

It should be noted that a repeat count in a Proceed command refers
only to the most recent breakpoint. Execution of other breakpoints
encountered is determined by their own repeat counts.

5.3.4 Single-Instruction Mode

With this mode you can specify the number of instructions you wish
executed before suspension of the program run. The Proceed command,
instead of specifying a repeat count for a breakpoint encounter,
specifies the number of succeeding instructions to be executed. Note
that breakpoints are disabled when single-instruction mode is
operative. Commands for single-instruction mode follow:

inS Enables single-instruction mode (n can have any value
and serves only to distinguish this form from the form
is) i breakpoints are disabled.

5-12

DEBU~GING OBJECT PROGRAMS ON-L~NE

niP Proceeds with program run for next.n instructions
before reeritering OPT (if n is missing. it is assumed
to be 1). . (Trap instructionsrand' associated' handlers
can affect the Proceed repeat count. See section
5.5.2.)

is Disables single-instruction mode

When the repeat count for single-instruction mode is exhausted and the
program suspends execution, ODT prints:

where n is the address of the next instruction to be executed. The $B
breakpoint table contains this address following. that of, breakpoint 7.
However, unlike the table entries for breakpoints 0-7, the B8 entry is
not affected by direct modification.

Similarly, the repeat count for single-instruction mode follows the
repeat count for breakpoint 7. This table entry, however, may be
directly modified, and thus is an alternative way of setting the
single-instruction mode repeat. count. In such a case, iP implies the
argument set in the $B repeat count table rather than the argument 1.

5.4 ERROR DETECTION

ODT-ll and ODT-IIX inform you of two types of errors:
unrecognizable command and bad breakpoint entry.

illegal or

Neither ODT-ll nor ODT-IIX checks for the legality of an address when
commanded to open a location for examination or modification.

Thus, the command

177774/

references nonexistent memory, and causes a trap through the vector at
location 4. If this vector has not been properly initialized (by IOX~
or the user program if IOX is not used), unpredictable results occur.

Similarly, a command such as

$20/

which references an address eight times the value represented by $2,
may cause an illegal (nonexistent) memory reference.

Typing other than a legal command causes ODT to ignore the command,
print

?

*
and wait for another command. Therefore, to cause ODT to ignore a
command just typed, type an illegal character (such as 9 or RUBOUT)
and the command will be treated as an error, i.e., ignored.

ODT suspends program execution whenever it encounters a breakpoint,
i.e., a trap to its breakpoint routine. If the breakpoint routine is
entered and no known breakpoint caused the entry, ODT prints:

BE001542
*

5-13

DEBUGGING OBJECT PROGRAMS ON-LINE

and waits for another command. In the example above, BE001542 denotes
Bad Entry from location 001542. A bad entry may be caused by an
illegal .trace trap instruction, setting the T-bit in the status
register, or by a jump to the middle of ODT.

5.5 PROGRAMMING CONSIDERATIONS

Information in this section is not necessary for the efficient use of
ODT. However, its content does provide a better understanding of how
ODT performs some of its functions.

5.5.1 Functional Organization

The internal organization of ODT is almost totally modularized into
independent subroutines. The internal structure consists of three
major functions: command decoding, command execution, and various
utility routines.

The command decoder interprets the individual commands, checks for
command errors, saves input parameters for use in command execution,
and send control to the appropriate command execution routine.

The command execution routines take parameters saved by the
decoder and use the utility routines to execute the specified
Command execution routines exit either to the object program
to the. ".command decoder.

command
command.
or back

The utility routines are common routines such as SAVE-RESTORE and I/O.
They are used by both the command decoder and the command executers.

Communication and data flow are illustrated in Figure 5-1.

5.5.Z Breakpoints

The function of a breakpoint is to pass control to ODT whenever the
user program tries to execute the instruction at the selected address.
Upon encountering a breakpoint, the user can utilize all of the ODT
commands to examine and modify his program.

When a breakpoint is executed, ODT removes the breakpoint
instruction(s) from the user's code so that the locations may be
examined and/or altered. ODT then types a message to the user, in the
form Bn(Bm;n for ODT-IIX), where n is the breakpoint address (and m is
the breakpoint number). The breakpoints are automatically restored
when execution is resumed.

A major restriction in the use of breakpoints is that the word

5-14

USER

PROGRAM

DEBUGGING OBJECT PROGRAMS ON-LINE

BREAKPOINT
HANDLER

MANUAL
ENTRY

COMMAND ~
L--rD_E_C.,.O_DE_R..,.---,~

~--------~I~ I ________ ~
I I

PROGRAM
ACTION
COMMANDS

PROGRAM
EXAMINATION a.
MODIFICATION
COMMANDS

I
I

--~--------~---~

r-_=t_--

t

UTILITY ~
L..

___ RO_U_T_I_N_E_S __ ~ O~i~UT (I/O, ETC.)
-------~--------~-

INTERNAL
TABLE MAIN­
PULATION
COMMANDS

ODT
INTERNAL
TABLES

USER ENVIRONMENT ODr

Figure 5'-1

LEGEND

Flow of control - - -
Flow of dolo

Communication and Data Flow

5-15

11-0065

DEBUGGING OBJECT PROGRAMS ON-LINE

where a breakpoint has been set must not be referenced by the program
in any way since ODT has altered the word. Also, no breakpoint should
be set at the location of any instruction that clears the T-bit. For
example:

MOV :It 2 4 a , 1 77 77 6 ;SET PRIORITY TO LEVEL 5.

A breakpoint occurs when a trace trap instruction (placed in the user
program by ODT) is executed. When a breakpoint occurs, ODT takes the
following steps:

1. Set processor priority to seven (automatically set by trap
instruction) .

2. Save registe~s and set up stack.

3. If internal T-bit trap flag is set, go to step 13.

4. Remove breakpoint(s).

5. Reset processor priority to ODT's priority
priori ty.

or user's

6. Make sure a breakpoint or Single-instruction mode caused the
interrupt.

7. If the breakpoint did not cause the interrupt, go to step 15.

8. Decrement repeat count.

9. Go to setp 18 if non-zero, otherwise reset count to one.

10. Save Teletype status.

11. Type message to user about
Single-instruction mode interrupt.

12. Go to command decoder.

the

13. Clear T-bit in stack and internal T-bit flag.

14. Jump to the "GO" processor.

15. Save Teletype status.

breakpoint

16. Type "BE" (Bad Entry) followed by the address.

or

17. Clear the T-bit, if set, in the user status and proceed to
the command decoder.

18. Go to the "Proceed", bypassing the TTY restore routine.

Note that steps 1-5
during which time
running at level 7).

inclusive take
interrupts are

approximately
not permitted

100 microseconds
to occur (ODT is

When a proceed (;P) command is given, the following occurs:

1. The proceed is checked for legality.

2. The processor priority is set to seven.

3. The T-bit flags (internal and user status) are set.

DEBUGGING OBJECT PROGRAMS ON-LINE

4. The user registers, status, and Program Counter are restored.

5. Control is returned to the user.

6. When the T-bit trap occurs, steps 1, 2, 3, 13, and 14 of the
breakpoint sequence are executed, breakpoints are restored,
and program execution resumes normally.

When'a breakpoint is placed on an lOT, EMT, TRAP, or any instruction
causing a trap, the following occurs:

1. When the breakpoint occurs as described above, ODT is
entered.

2. When iP is typed, the T-bit is set and the lOT, EMT, TRAP, or
other trapping instruction is executed.

3. The current PC and status (with the T-bit included) are
pushed on the stack.

4. The new PC and status (no T-bit set) are obtained from the
respective trap vector.

5. The whole trap service routine is executed without any
breakpoints.

6. When an RTI is executed, the saved PC and PS (including the
T-bit) are restored. The instruction following the
trap-causing instruction is executed. If this instruction is
not another trap-causing instruction, the T-bit trap occurs,
causing the breakpoints to be reinserted in the user program,
or the Single-instruction mode repeat count to be
decremented. If the following instruction is a trap-causing
instruction, this sequence is repeated, starting at step 3.

Exit from the
instruction.
will not gain
have not been

NOTE

trap handler
Otherwise, the
control again
reinserted yet.

must be via the RTI
T-bit will be lost. ODT
since the breakpoints

In ODT-ll, the iP command is illegal if a breakpoint has not occurred
(ODT responds with?). In ODT-IIX, iP is legal after any trace trap
entry.

WARNING

Since ODT-ll ignores all semicolons,
typing the ODT-IIX form of breakpoint
command number to ODT-ll, specifying a
breakpoint number n, causes the
following error:

100iB (sets the breakpoint at location
100)

100iOB (sets
location
100i4B (sets the

1004)

the breakpoint at
1000)
breakpoint at

5-17

location

DEBUGGING OBJECT PROGRAMS ON-LINE

The internal breakpoint status words for ODT-ll have the following
format:

1. The first word contains the breakpoint address. If this
location points to a location within ODT, it is assumed no
breakpoint is set for the cell (specifically, ODT has set a
dummy breakpoint within itself).

2. The next word contains the breakpoint repeat count.

For ODT-IIX (with eight breakpoints) the formats are:

1. The first eight words contain the breakpoint addresses for
breakpoints 0-7. (The ninth word contains the address of the
next instruction to be executed in Single-instruction mode.)

2. The next eight words contain the respective repeat counts.
(The following word contains the repeat count for
Single-instruction mode.)

The user may change these words at will, either by using the
breakpoint commands or by direct manipulation with $8.

When program runaway occurs (that is, when the program is no longer
under ODT control, perhaps executing an unexpected part of the program
where a breakpoint has not been placed) ODT may be given control by
pressing the HALT key to stop the machine, and restarting ODT (see
Section 5.6.2). ODT prints *, indicating that it is ready to accept a
command.

If the program being debugged uses the terminal for input or output,
the program may interact with ODT to causes an error since ODT also
uses the terminal. This interactive error does not occur when the
program being debugged is run without ODT.

1. If the terminal output interrupt is enabled upon entry to the
ODT break routine, and no output interrupt is pending when
ODT is entered, ODT is entered, ODT generates an unexpected
interrupt when returning control to the program.

2. If the interrupt of the terminal input (the keyboard) is
enabled upon entry to the ODT break routine, and the program
is expecting to receive an interrupt to input a character,
both the expected interrupt and the character will be lost.

3. If the terminal input (keyboard) has just read a character
into the reader data buffer when the ODT break routine is
entered, the expected character in the input data buffer will
be lost.

5.5.3 Search

The word search allows the user to search for
specified sections of memory. Using the $M/
specifies a mask, a lower search limit ($M+2), and
limit ($M+4). The search object is specified in
itself.

bit patterns in
command, the user

an upper search
the search command

The word search compares selected bits (where ones appear in the mask)
in the word and search object. If all selected bits are equal, ODT
prints the unmasked word.

5-18

DEBUGGING OBJECT PROGRAMS ON-LINE

The search algorithm is:

1. Fetch a word at the current address.

2. XOR (exclusive OR) the word and search object.

3. AND the result of step 2 with the mask.

4. If the result of step 3 is zero,
unmasked word and its contents.
5.

type the address of the
Otherwise, proceed to step

5. Add two to the current address. If the
greater than the upper limit, type
command decoder, otherwise go to step 1.

current address is
* and return to the

Note that if the mask is zero, ODT prints every word between the
limits, since a match occurs every time (i.e., the result of step 3 is
always zero).

In the effective address search, ODT interprets every word in the
search range as an instruction which is interrogated for a possible
direct relationship to the search object.

The algorithm for the effective address search is (where
contents of x, and k denotes the search object):

1. Fetch a word at the current address X.

(x) denotes

2. If (x)=k [direct reference], print contents and go to step 5.

3. If (x)+x+2=k [indexed by PC]. print contents and go to step
5.

4. If (x) is a relative branch to k, print contents.

5. Add two to the current address. If the current address is
greater than the upper limit, perform a carriage return/line
feed and return to the command decoder; otherwise, go to
step 1.

5.5.4 Teletype Interrupt

Upon entering the TTY SAVE routine, the following occurs:

1. Save the LSR status register (TKS).

2. Clear interrupt enable and maintenance bits in the TKS.

4. Clear interrupt enable and maintenance bits in the TPS.

To restore the TTY:

1. wait for completion of any I/O from ODT.

2. Restore the TKS.

3. Restore the TPS.

5-19

DEBUGGING OBJECT PROGRAMS ON-LINE

NOTES

If the TTY printer interrupt is enabled
upon entry to the ODT break routine, the
following may occur:

1. If no output interrupt is pending
when ODT is entered, an additional
interrupt always occurs when ODT
returns control to the user.

2. If an output
upon entry,
occurs when
control.

interrupt is pending
the expected interrupt

the user regains

If the TTY reader (keyboard) is busy or
done, the expected character in the
reader data buffer will be lost.

If the TTY reader (keyboard) interrupt
is enabled upon entry to the ODT break
routine, and a character is pending, the
interrupt (as well as the character)
will be lost.

5.6 OPERATING PROCEDURES

This section describes procedures for linking ODT on LSI-II machines,
and for loading ODT on other PDP-II machines. It describes starting,
restarting, error recovery, and setting the priority level of ODT.

5.6.1 Linking Procedures (LSI-II Systems Only)

For LSI-II systems, ODT-IIX is supplied on relocatable object tapes.
Binary tapes are produced by linking the ODT-IIX object tape with the
object tapes of the program to be debugged (using LINK-lIS). The
ODT-IIX tape should be the first tape processed by LINK-lIS; in this
manner, ODT-IIX is started first when the binary tape is loaded.

5.6.2 Loading Procedures (non-LSI-ll Systems Only)

For all systems other than LSI-II, ODT is supplied on source and
binary tapes. Appendix N explains assembly instructions for source
tapes. Binary tapes are loaded with the Absolute Loader. Since ODT
is started as soon as it is loaded, the program to be debugged should
be loaded prior to ODT.

When supplied on binary tape, ODT-ll loads beginning at location
13026, and occupies about 533 (decimal) words of memory. ODT-IIX
loads beginning at location 12054, and requires about 800 (decimal)
words of memory.

5-20

DEBUGGING OBJECT PROGRAMS ON-LINE

5.6.3 Starting and Restarting

The Absolute Loader starts ODT automatically after loading it into
core. ODT indicates its readiness to accept input by printing an *

The starting address for ODT-ll on binary tape is 13026; the starting
address for ODT-llX on binary tape is 12054. If ODT is reassembled
using PAL-IIA, the starting address in indicated in the symbol table
as the value of the symbol O.ODT. If ODT is linked using LINK-lIS,
the starting address is indicated in the link map as the value of the
global symbol O.ODT.

When ODT is started at its start address, the SP register is set to an
ODT internal stack, registers RO-R5 are left untouched, and the trace
trap vector is initialized. If ODT is started after breakpoints have
been set in a program, ODT ignores the breakpoints and leaves the
program modified, i.e., the breakpoint instructions are left in the
program.

There are two ways to restart ODT:

1. Restart at start address+2

2. Reenter at start address+4

To restart, key in the start address+2, press LOAD ADDRess and then
START. A restart saves the general registers, removes all the
breakpoint instructions from the user program and then ignores all
breakpoints, i.e., simulates the ;B command.

To reenter, key in the load address+4, press LOAD ADDRess and then
START. A reenter saves the general registers, removes the breakpoint
instructions from the user program, and types the BE (Bad Entry) error
message. ODT remembers which breakpoints were set and resets them on
the next ;G command (iP is illegal after a Bad Entry).

5-21

CHAPTER 6

LOADING AND DUMPING MEMORY

This chapter describes procedures for loading programs into memory
(using the Bootstrap Loader and Absolute Loader) and for dumping the
contents of memory (using the DUMPAB and/or DUMPTT programs).

The Bootstrap Loader, which loads short paper tape programs (162 or
fewer octal words), appears on one of three forms, depending upon the
system configuration:

1. Hardware - on some CPUs, the Bootstrap Loader is present as a
ROM chip.

2. Software - on some CPUs, the Bootstrap Loader must be toggled
in via console switches.

3. Firmware - on LSI-lIs, the Bootstrap Loader is a firmware
loader, present as a programmable ROM chip.

Once familiar with the operation of the Bootstrap Loader, the user can
load other programs (such as the Absolute Loader, DUMPAB, and DUMPTT).

The Absolute Loader (see section 6.2) is a system program that enables
the user to load data punched on paper tape in absolute binary format
into any available memory bank. It is used primarily to load the
paper tape system software, binary programs assembled with PAL-llA,
and binary tapes produced by LINK-lIS from object tapes produced by
PAL-llS.

The loader programs are loaded into the upper-most area of available
core and are available for use with system and user programs.
Programs should not use the locations used by the loaders without
restoring their contents; otherwise, the loaders must be reloaded
since they will have been altered by the object program.

Core memory dump programs (see section 6.3) print or punch the
contents of specified areas of core. For example, when developing or
debugging user programs it is often necessary to get a copy of the
program or portions of core. There are two dump ptograms supplied in
the paper tape software system: DUMPTT, which prints or punches the
octal representation of specified portions of core, and DUMPAB, which
punches specified portions of core in absolute binary format suitable
for loading with the Absolute Loader.

6-1

LOADING AND DUMPING MEMORY

6.1 PAPER TAPE BOOTSTRAPS

Procedures for operating the various PDP-II paper tape bootstraps are
described below:

6.1.1 BM792-YA Paper Tape Bootstrap ROM

1. Set the console ENABLE/HALT switch to HALT.

2. Place the bootstrap tape in the desired paper tape reader
with the special bootstrap leader code over the reader
sensors (under the reader station).

3. If the low-speed reader (ASR-33) is to be used, and a
high-speed reader is, present on the system, turn the high
speed reader OFF. If the high-speed reader is to be used,
turn it ON.

4. Set the console ENABLE/HALT switch to ENABLE.

5. Set the console switch register to 773000.

6. Press the
bootstrap
memory.

console START switch. The contents of the
tape will be loaded into the highest locations of

7. The bootstrap transfers control to the program just loaded.
Typically, this program halts.

6.1.2 BM873-YA Bootstrap Loader ROM

1. Set the console ENABLE/HALT switch to HALT.

2.

3.

Place the bootstrap tape in the desired paper tape reader
with the special bootstrap leader code over the reader
sensors (under the reader station).

If the low-speed reader
high-speed reader is
high-speed reader OFF.
used, turn it ON.

(ASR-33) is to
present on the

If the high-speed

be used, and a
system, turn the
reader is to be

4. Set the console ENABLE/HALT switch to ENABLE.

Sa. If the low-speed reader is to be used, set the console switch
register to 773210.

Sb. If the high-speed reader is to be used, set the console
switch register to 773312.

6. Press the
bootstrap
memory.

console START switch. The contents of the
tape will be loaded into the highest locations of

7. The bootstrap transfers control to the program just loaded.
Typically, this program halts.

6-2

LOADING AND DUMPING MEMORY

6.1.3 LSI-II Firmware Paper Tape Bootstrap

1. Press the front panel BOOT/INIT switch.
micro-ODT; an @ prints at the terminal.

This enables the

2.

3.

Place the bootstrap tape in the desired paper tape reader
with the special bootstrap leader code over the reader
sensors (under the reader station).

If the low-speed reader
high-speed reader is
high-speed reader OFF.
used, turn it ON.

(ASR-33) is to
present on the

If the high-speed

be used, and a
system, turn the
reader is to be

4. Type the command/status register address of the input device
followed by L to load the tape.

For example, when loading from the console terminal
reader, type:

@ 177560L

After reading the contents of the tape, the LSI-II
microprocessor starts the program, which typically halts. In
this case, the micro-ODT automatically restarts and prints @
followed by the address of the instruction after the HALT
instruction. For example, after loading the Absolute Loader
on an 8K system, the micro-ODT prints:

@375000
~

The starting address of the Absolute Loader in this case is
375000.

6.1.4 M9301-YB Bootstrap Loader

lao If the system does not have a switch register, press the
front panel BOOT/INIT switch.

lb. If the system does not have a BOOT/INIT switch, set
console switch register to 773000; press LOAD/ADDR;
press START.

the
then

2. Four numbers are printed at the terminal, followed by a $.

3.

These numbers are the contents of the general registers RO,
R4, R6, and R5, respectively. For CPUs without switch
registers (such as the 11/04), R5 contains the contents of
the program counter (PC) at the time BOOT/INIT was pressed.

For example:

007740 012450 00546 004054
$

Place the bootstrap tape in the desired paper tape reader
with the special bootstrap leader code over the reader
sensors (under the reader station).

6-3

LOADING AND DUMPING MEMORY

4. Type the device code (PR for high-speed reader, TT for
terminal reader), and type RETURN, as follows:

or ~TT..J

After reading the contents of the tape, the Bootstrap Loader
transfers control to the program just loaded. Typically,
this program halts.

6.1.5 M9301-YA Bootstrap Loader

If a console terminal is available, boot instructions for the M9301-YA
Bootstrap Loader are the same as for the M9301-YB Bootstrap Loader
(Section 6.1.4).

If no console terminal is available, the auto-boot feature of the
M9301-YA must be used. See the M9301 Maintenance Manual for
instructions on placing'the appropriate paper tape bootstrap in the
M9301 module micro-switch. Then follow the procedure below:

1. Place the bootstrap tape in the desired paper tape reader
with the special bootstrap leader code over the reader
sensors (under the reader station).

2. Set the console HALT/CaNT switch to CaNT.

3. Press the console BOOT/INIT switch. After reading the
contents of the tape, the Bootstrap Loader transfers control
to the program just loaded. Typically, this program halts.

6.1.6 Other Bootstrap Loaders

This section is for users without any of the bootstrap aids listed
above.

The Bootstrap Loader should be loaded (toggled) into the highest core
memory bank. The locations and corresponding instructions of the
Bootstrap Loader are listed and explained below.

Location

xx7744
xx7746
xx7750
xx7752
xx7754
xx7756
xx7760
xx7762
xx7764
xx7766
xx7770
xx7772
xx7774
xx7776

Instruction

016701
000026
012702
000352
005211
105711
100376
116162
000002
xx7400
005267
177756
000765
yyyyyy

Figure 6-1 Bootstrap Loader Instructions

6-4

LOADING AND DUMPING MEMORY

In Figure 6-1, xx represents the highest available memory
example, the first location of the Loader would be
following, depending on memory size, and xx in all
locations would be the same as the first.

bank. For
one of the
subsequent

Location Memory Bank Memory Size

017744 0 4K
037744 1 8K
057744 2 12K
077744 3 16K
117744 4 20K
137744 5 24K
157744 6 28K

Note also in Figure 6-1 that the contents of
reflect the appropriate memory bank in
location.

location
the same

xx7766
manner

should
as the

The contents of location xx7776 (yyyyyy in the Instruction column of
Figure 6-1) should contain the device status register address of the
paper tape reader to be used when loading the bootstrap formatted
tapes. Either paper tape reader may be used, specified as follows:

Teletype Paper Tape Reader
High-Speed Paper Tape Reader

177560
177550

6.1.6.1 Loading the Loader Into Core - Toggle in the Bootstrap Loader
as explained below.

1. Set xx7744 in the Switch Register (SR) and press LOAD ADDRess
(xx7744 is displayed in the ADDRESS REGISTER).

2. Set the first instruction, 016701, in the SR and lift DEPosit
(016701 is displayed in the DATA register).

NOTE

When DEPositing data into consecutive words, the
DEPosit automatically increments the ADDRESS REGISTER
to the next word.

3. Set the next instruction, 000026, in the SR and lift DEPosit
(000026 is displayed in the DATA register).

4. Set the next instruction in the SR, press DEPosit,
continue depositing subsequent instructions (ensure
location xx7766 reflects the proper memory bank) until
000765 has been deposited in location xx7774.

and
that

after

5. Deposit the desired device status register address in
location xx7776, the last location of the Bootstrap Loader.

It is good programming practice to verify that all instructions are
stored correctly. This is done by proceeding at step 6 below.

6. Set xx7744 in the SR and press LOAD ADDRess.

6-5

LOADING AND DUMPING MEMORY

7. Press EXAMine (the octal instruction in location xx7744 is
displayed in the DATA register so that it can be compa~,ed to
the correct instruction, 016701. If the instruction is
correct, proceed to step 8; otherwise go to step 10.

8. Press EXAMine (the instruction of the
the ADDRESS REGISTER is displayed
compare the DATA register contents to
displayed location.

location displayed in
in the DATA register;

the instruction for the

9. Repeat step 8 until all instructions have been verified or go
to step 10, whenever the correct instruction is not displayed.

When an incorrect instruction is displayed, it can be corrected by
performing steps 10 and 11.

10. With the desired location displayed in the ADDRESS REGISTER,
set the correct instruction in the SR and lift DEPosit (the
contents of the SR are deposited in the displayed location).

11. Press EXAMine to ensure that the instruction was correctly
stored (it is displayed in the DATA register).

12. Proceed at step 9 until all instructions have been verified.

The Bootstrap Loader is now loaded into core. The procedures above
are illustrated in the flowchart of Figure 6-2.

6.1.6.2 Loading Bootstrap Tapes - Any paper tape punched in bootstrap
format is referred to as a bootstrap tape (see Section 6.1.3) and is
loaded into core using the Bootstrap Loader. Bootstrap tapes begin
with about two feet of special bootstrap leader code (ASCII code 351,
not blank leader tape as required by the Absolute Loader).

With the Bootstrap Loader in core, the bootstrap tape is loaded into
core starting anywhere between location xx7400 and location xx7743,
i.e., 162 (octal) words. The paper tape input device used is that
which is specified in location xx7776 (see section 6.1.6.1).

Bootstrap tapes are loaded into core as explained below.

1. Set the ENABLE/HALT switch to HALT.

2. Place the bootstrap tape in the specified reader with the
special bootstrap leader code over the reader sensors (under
the reader station).

3. Set the console switch register to xx7744 (the starting
address of the Bootstrap Loader) and press LOAD ADDRess.

4. Set the ENABLE/HALT switch to ENABLE.

5. Press START. The bootstrap tape passes through the reader as
data is being loaded into core.

6. The bootstrap tape stops after the last frame of data (see
Figure 6-5) has been read into core. The program on the
bootstrap is now in core.

The procedures above are illustrated in the flowchart of Figure 6-3.

6-6

NO

SETSRTO
016701

LIFT DEP

SETSRTO
NEXT

INSTRUCTION

LIFT DEP

LOADING AND DUMPING MEMORY

LOAD

INITIALIZE

SETSR TO
xx7744

PRESS
LOADADDR

SETSR TO
CORRECT

INSTRUCTION

LIFT DEP

VERIFY

NO

PRESS EXAM

FINISHED

Figure 6-2 Loading and Verifying the Bootstrap Loader

6-7

NO

LOADING AND DUMPING MEMORY

WITH BOOTSTRAP ! LOADER IN CORE
(SEE FIGURE 6-2)

SET ENABLE/HALT , TO ENABLE

SET ENABLE/HALT
TO HALT

J
t PRESS START

PLACE BOOTSTRAP i TAPE IN SPECIFIED
READER (CODE 351

MUST BE OVER TAPE READS IN
READER SENSORS) AND STOPS AT

~ ENDOF DATA

! SETSR TO
xx7744

DATA IS

~
IN CORE

PRESS
LOADADDR

I
Figure 6-3 Loading Bootstrap Tapes Into Core

Should the bootstrap tape not read in immediately after depressing the
START switch, one of the following conditions may exist:

1. Bootstrap Loader not correctly loaded.

2. Wrong input device used.

3. Code 351 not directly over the reader sensors.

4. Bootstrap tape not properly positioned in reader.

6.1.6.3 Bootstrap Loader Operation - The Bootstrap Loader source
program 1S shown below. The starting address in the example denotes
that the Loader is to be loaded into memory bank zero (a 4K system).

6-8

1
2
3
4
5
6
7
8
9
10 17744

11 17750
12 17752
13
14
15 17754
16 17756
17 17760
18 17762

19 17770

20

LOADING AND DUMPING MEMORY

00 (lJ(lJ0(lJ
000001 Rl
000"''''2 R2
0(lJ0(lJ07 PC
01.7400 LCAD

017744

13167131 START:
01H:'I(lJ26
0127"'2 LCOP:
0013352 DSPMNT:

005211
105711 WAIT:
1013~76
116162

·130"'002
0174"''''
"'05267
177756

.ASECT
= %1
= %2
= %7
.. 17400

; PC I NTER TO. DE'TI CE ADDRESS
;LCAD ADDRESS DISPLACEMENT
; PROGRAM COUNTER
;DATA CANNOT BE LOADED BELo.W
;THIS ADDRESS.

= LCAD+344 ; STARTING ADDRESS

Mo.V DE"I CE .. Rl ; Co.PY DEVI CE ADDRESS

Mo.V CPC)+ .. R2 ;Co.PY ADDRESS DISPLACEMENT
+.-LCAD ; INITIALLY o.FFSET TO. THIS Lo.C

;NCTE THAT THIS LOC IS PART o.F
;PREVIo.US INSTRUCTION

INC @Rl ; START THE PAPER TAPE READER
TSTB @Rl ;FRA~E READY?
BPL\OlAIT ;BRIFNOT
MOVB 2(Rl) .. LOADCR2) ; STORE FRAME READ IN MEMORY

INC DSPMNT ; INCREMENT DISPLACEMENT TO. NEXT

; LO CATION
21 17774 000765 BRNCH: BR LCCP
22 17776 177560 DEVICE: 177560
23

; READ NEXT BYTE
;ADDRESS OF INPUT DEVICE .. MAY BE
;17755'" IF HIGH SPEED READER

24
25 "'00"'01' • END

Figure 6-4 The Bootstrap Loader Program

The program above is a brief example of the PAL-IIA Assembly Language
which is explained in Chapter 2.

Bootstrap tapes are coded in the following format.

351

351

Special bootstrap leader code (at least two feet
in length)

xxx Load .offset (see text below)
AAA
BBB
CCC Program to be loaded (up to 162 words or 344

frames)

ZZZ
301
035
026.
000
302 Boot overlay code, as shown.
025
373
yyy Jump offset (see text below)

Figure 6-5 Bootstrap Tape Format

6-9

LOADING AND DUMPING MEMORY

The Bootstrap Loader starts by loading the device status register
address into RI and 3528 into R2. The next instruction indicates a
read operation in the device and the next two instructions form a loop
to wait for the read operation to be completed. When data is
encountered it is transferred to a location determined by the sum of
the index word (xx7400) and the contents of R2.

Because R2 is initially 3528' the first word is moved to location
xx7752, and it becomes the immediate data to set R2 in the next
execution of the loop. This immediate data is then incremented by one
and the program branches to the beginning of the loop.

The leader code, plus the increment, is equal in value to the data
placed in R2 during the initialization; therefore, leader code has no
effect on the loader program. Each time leader code is read the
processor executes the same loop and the program remains unmodified.
The first code other than leader code, however, replaces the data to
be loaded into R2 with some other value which acts as a pointer to the
program starting location (loading address). Subsequent bytes are
read not into the location of the immediate data but into consecutive
core locations. The program will thus be read in byte by byte. The
INC instruction which operates on the data for R2 puts data bytes in
sequential locations, and requires that the value of the leader code
and the offset be one less than the value desired in R2.

The boot overlay code overlays the first two instructions of the
Loader, because the last data byte is placed in the core location
immediately preceding the Loader. The first instruction is unchanged
by the overlay, but the second instruction is changed to place the
next byte read, jump offset, into the lower byte of the branch
instruction. By changing the offset in this branch instruction, the
Loader can branch to the start of the loaded program or to any point
within the program.

The Bootstrap Loader is self-modifying, and the program loaded by the
Loader restores the Loader to its original condition by restoring the
contents of locations xx7752 and xx7774 to 000352 and 000765
respectively.

6.2 THE ABSOLUTE LOADER

The Absolute Loader is a system program that enables the user to load
data punched on paper tape in absolute binary format into any
available memory bank. It is used primarily to load the paper tape
system software, binary programs assembled with PAL-IIA, and binary
tapes produced by LINK-lIS from object tapes produced by PAL-lIS. The
major features of the Absolute Loader include:

1. Testing of the checksum on the input tape to assure complete,
accurate loads.

2. Starting the loaded program upon completion of loading
without additional user action, as specified by the .END in
the program just loaded.

3. Specifying the load bias of position independent programs at
load-time rather than at assembly time, by using the desired
Loader switch register option.

LOADING AND DUMPING MEMORY

6.2.1 Loading the Loader Into Core

The Absolute Loader is supplied on punched paper tape in bootstrap
format. Therefore, a Bootstrap Loader is used to load the Absolute
Loader into core. It occupies locations xx7474 through xx7743, and
its starting address is xx7500. The Absolute Loader program is
72 words long, and is loaded adjacent to the Bootstrap Loader as
explained in section 6.1.6.2.

6.2.2 Using the Absolute Loader

Paper tapes punched in absolute binary format are also called absolute
tapes, binary tapes, or .LDA tapes. These are the tapes loaded by the
Absolute Loader.

In the following discussion, reference is made to a "switch register."
For systems without switch registers (such as the LSI-II and
PDP-llj04) , this term refers to a software switch register, which is a
memory location internal to the Absolute Loader for systems without
hardware switch registers. The location within the Absolute Loader is
xxx516, where xxx reflects memory size as follows:

Memory xxx

4K 017
8K 037

12K 057
16K 077
20K 117
24K 137
28K 157

When text indicates that a value be placed in a switch register, users
without hardware switch registers must use either the M9301 console
emulator or the LSI-II micro-ODT, as appropriate, to store the switch
register value in location xxx516. Once this value has been stored,
the user starts the Absolute Loader at location xxx500. Once the
Absolute Loader is loaded, it initializes the value of location xxx516
to O. This value changes only when modified by the user.

A normal load occurs when data is loaded into memory according to the
load addresses on the binary tape. The user must set bit 0 of the
switch register to 0 immediately before starting the load.

There are two types of relocated loads:

1. Loading to continue from where the loader left off after the
previous load -

This is used, for example, when the object program being
loaded is contained on more than one tape. It is specified
by setting the switch register to 000001 immediately before
starting the load.

2. Loading into a specific .area of core -

This is normally used when loading position independent
programs. A position independent program is one which may be
loaded and run anywhere in available core. The program is
written using the position independent instruction format
(see Chapter 9). This type of load is specified by setting
the switch register to the load bias and adding 1 to it

6-11

LOADING AND DUMPING MEMORY

(i.e., setting bit 0 to 1). The effect of this is to adq the
value in the switch register to the start address c>n the
tape.

Optional switch ~egister settings for the three types of loads are
listed below.

Switch Register
Type of Load Bits 1-14 Bit 0

Normal (ignored) 0

Relocated - cont-inue 0 1
loading where left off

Relocated - load in nnnnn 1
specified area of core (specified

address)

The absolute tape may be loaded using either of the paper tape
readers. The desired reader is specified in the last word of
available core memory (xx7776), the input device status word, as
explained in section 6.1.6. The input device status word may be
changed at any time prior to loading the absolute tape.

With the Absolute Loader in core as explained in section 6.1.6.2,
absolute tapes are loaded as explained below.

1. Set the ENABLE/HALT switch to HALT.

To use an input device different. from that used when loading
the Absolute Loader, change the address of the device status
word (in location xx7776) to reflect the desired device,
i.e., 177560 for the Teletype reader or 177550 for the
high~speed reader.

2. Set the switch register to xx7500 and press LOAD ADDR.

3. Set the switch register to reflect the desired type of load
(Figure E-3 in Appendix E).

4. Place the absolute tape in the proper reader with blank
leader tape directly over the reader sensors.

5. Set ENABLE/HALT to ENABLE.

6. Press START. The absolute tape begins passing through the
reader station as data is being loaded into core.

If the absolute tape does not begin passing through the reader
station, the Absolute Loader is not in core correctly. Reload the
Loader and start over at step 1 above. If it halts in the middle of
the tape, a checksum error occurred in the last block of data read in.

Normally, the absolute tape stops passing through the reader station
when it encounters the transfer address as generated by tne statement,
.END, denoting the end of a program. If the system halts after
loading, check that the low byte of the DATA register is zero. If so,
the tape is correctly loaded. If not zero, a checksum error
(explained later) has occurred in the block of data just loaded,
indicating that some data was not correctly loaded. Reload the tape
starting at step 1 above.

6-12

LOADING AND DUMPING MEMORY

When loading a continuous relocated load, subsequent blocks of data
are loaded by placing the next tape in the appropriate read~r and
pressing the CONTinue switch.

The Absolute Loader may be restarted at any time by starting at step 1
above .•

6.2~3 Absolute Loader Operation

The Loader uses the eight general registers (RO-R7) and does not
preserve or restore their previous contents. Therefore, caution
should be taken to restore or load these registers when necessary
after using the Loader.

A block of data punched on paper tape in absolute binary format has
the following format.

FRAME 1 001
2 000
3 xxx
4 xxx
5 yyy
6 yyy

zzz

start frame
null frame
byte count (low 8 bits)
byte count (high 8 bits)
load address (low 8 bits)
load address (high 8 bits)
d.ata is

placed
here

last frame contains a block checksum

A program on paper tape may consist of one or more blocks of data.
Each block with a byte count (frames 3 and 4) greater than six causes
subsequent data to be loaded into core (starting at the address
specified in frames 5 and 6 for a normal load). The byte count is a
positive integer denoting the total number of bytes in the block,
excluding the checksum. When the byte count of a block is six, the
specified load address is checked to see whether the address is to an
even or to an odd location. If even, the Loaded transfers control to
the address specified. Thus the loaded program runs upon completion
of loading. If odd, the loader halts.

The transfer address (TRA) may be explicitly specified in the source
program by placing the desired address in the operand field following
the .END statement. For example,

.END ALPHA

specifies the symbolic location ALPHA as the TRA, and

.END

causes the Loader to halt. with

.END nnnnnn

the Loader also halts if the address (nnnnnn) is odd.

The checksum is displayed in the low byte of the DATA register of the
computer console. Upon completion of a load, the low byte of the DATA
register should be all zeros (unlit). Otherwise, a checksum error has
occurred, indicating that the load was not correct. The checksum is
the low-order byte of the negation of the sum of all the previous
bytes in the block. When all bytes of a block including the checksum
are added together, the low-order byte of the result should be zero.

6-13

LOADING AND DUMPING MEMORY

If not, some data was lost during the load or erroneous data was
picked up; the load was incorrect. When a checksum error is
displayed, the entire program should be reloaded, as explained in the
previous section. The loaders occupy core memory as illustrated
below.

xx7776 I/O DEVICE WORD

xx7744 BOOTSTRAP LOADER

xx7500 ABSOLUTE LOADER

xx7474 LOADER STACK

USER AND
SYSTEM

PROGRAMS

6.3 CORE MEMORY DUMPS

A core memory dump program is a system program which enables the user
to dump (print or punch) the contents of any specified portion of core
memory onto the Teletype printer anp/or punch, line printer or
high-speed punch. There are two dump programs available in the Paper
Tape Software System:

1. DUMPTT 1 , which dumps the octal representation of the contents
of specified portions of core onto the teleprinter, low-speed
punch, high-speed punch, or line printer.

2. DUMPAB, which dumps the absolute binary code of the contents
of specified portions of core onto the low-speed punch or
high-speed punch.

Both dump programs are supplied on punched paper tape in bootstrap and
absolute binary formats. The bootstrap tapes are loaded over the
Absolute Loader as explained in section 6.1.6.3, and are used when it
would be undesirable to alter the contents of user storage (below the
Absolute Loader). The absolute binary tapes are position independent
and may be loaded and run anywhere in core as explained in section
6.2.2.

DUMPTT and DUMPAB are similar in function, and differ primarily in the
type of output they produce.

6.3.1 Operating Procedures

Neither dump program punches leader or trailer tape, but DUMPAB always
punches ten blank frames of tape at the start of each block of data
dumped.

1
DUMPTT is not available for systems without switch registers.

6-14

LOADING AND DUMPING MEMORY

6.3.1.1 Using DUMPAB on Systems without Switch Registers - Operating
procedures for DUMPAB on systems without switch registers are as
follows:

1. Select either the absolute binary or the bootstrap version of
DUMPAB and place it in the reader specified by location
xx7776 (see section 6.1).

2a. If using a bootstrap tape, load the tape using the procedure
outlined in section 6.1. When the computer halts, go to step
3.

2b. If using an absolute binary tape, load the tape using the
procedure outlined in section 6.2.2, relocating as follows:

a. Select the address to which the program is to be
relocated. The relocation offset is then equal to the
loading address. For example, if the desired relocation
address is 000400, the relocation offset is 000401.

b. Deposit the relocation offset with
Absolute Loader's software switch
example from the previous step, the
000401 into location xxx516.

Start the Absolute Loader.

bit 0 set in the
register. Using the
user would deposit

3. When the program halts, find the address in the program
counter. For LSI-II machines, the value is printed at the
console terminal by the micro-ODT. For UNIBUS PDP-II
machines, the user must press the BOOT/INIT switch to obtain
register values at the console terminal (see section 6.1.4).
The last of the four values displayed is the PC contents.

Add 2 to the value of the PC. (For example, the PC contents
for the bootstrap version of DUMPAB are xxx516; adding 2 to
this value gives xxx520.) This new value is the address of
the first of these succeeding parameters, described in
subsequent steps.

4. Deposit the address of the first byte to be dumped into the
first parameter (whose address was determined in the previous
step) .

5. Deposit the address of the last byte to be dumped into the
second parameter (next sequential location).

6. The third parameter contains the value 177564 (a default
specifying the ASR-33 punch). If this is the first time this
step is executed and the high-speed reader is the desired
output device, change the value of the third parameter to
177554.

7a. If using the LSI-II, type P to proceed.

7b. If using a UNIBUS PDP-II, restart the program (at xxx510 if
bootstrap tape); press CONT when the program halts.

8. DUMPAB dumps the specified segment of memory and halts.

9. Repeat steps 4 through 8 until all desired memory segments
have been dumped.

6-15

LOADING AND DUMPING MEMORY

10. A transfer block for DUMPAB must be generated to terminate
the dump. This value mUst be deposited in the first
parameter (step 4) to terminate DUMPAB. If the tape is not
to be self-starting, use 000001 as the transfer address.
Under no conditions can 000000 be used as the transfer
address.

11. Deposit 000000 in the second parameter (as in step 5).

12. Repeat step 7a or 7b, as appropriate, to punch the transfer
block.

6.3.1.2 Using DUMPAB and DUMPTT on Systems with Switch Registers -

1. Select the dump program desired and place it in the reader
specified by location xx7776 (see Section 6.1).

2. If a bootstrap tape is selected, load it using the Bootstrap
Loader, section 6.1.6.2. When the computer halts go to step
4. .

3. If an absolute binary tape is selected, load it using the
Absolute Loader (section 6.2.2), relocating as desired.

Place the proper start address in the switch register, press
LOAD ADDRess and START. (The start addresses are shown in
section 6.3.3).

4. When the computer halts, enter the address of the desired
output device status register in the switch register and
press CONTinue (low-speed punch and teleprinter = 177564;
high-speed punch = 177554; line printer = 177514).

5. When the computer halts, enter in the switch register the
address of the first byte to be dumped and press CONTinue.
This address must be even when using DUMPTT.

6. When the computer halts again enter in the switch register
the address of the last byte to be dumped and press CONTinue.
When using the low-speed punch, set the punch to ON before
pressing CONTinue.

7. Dumping proceeds on the selected output device.

8. When dumping is complete, the computer halts.

If further dumping is desired, proceed to step 5. It is not necessary
to respecify the output device address except when changing to another
output device. In such a case, proceed to the second paragraph of
step 3 to restart.

If DUMPAB is being used, a transfer block must be generated as
described below. If a tape read by' the Absolute Loader does not have
a transfer block, the loader will wait in an input loop. In such a
case, the program may be manually initiated. However, this practice
is not recommended, as there is no ,guarantee that load errors will not
occur when the end of the tape is read.

The transfer block is generated by performing step 5 with the transfer
address in the Switch Register, and step 6 with the transfer address
minus 1 in the Switch Register. If the tape is not to be
self-starting, an odd-numbered addr~ss must be specified in step 5
(000001, for example).

6-16

LOADING AND DUMPING MEMORY

The dump programs use all eight general registers and do not
their original contents. Therefore, after a dump the
registers should be loaded as necessary prior to their
subsequent programs.

6.3.2 Output Formats

The output from DUMPTT is in the following format:

restore
general
use by

xxxxxx>yyyyyy yyyyyy yyyyyy yyyyyy yyyyyy yyyyyy yyyyyy yyyyyy

where xxxxxx is the octal address of the first location printed or
punched, and yyyyyy are words of data, the first of which starts at
location xxxxxx. This is the format for every line of output. There
will be no more than eight words of data per line, but there will be
as many lines as are needed to complete the dump.

The output from DUMPAB is in absolute binary, as explained in section
6.2.3.

6.3.3 Storage Maps

The DUMPTT program is 87 words long. When used in absolute format the
storage map is:

xx7776

xx7744

xx7500
xx7474

xxxxxx+256

xxxxxx

BOOTSTRAP LOADER

ABSOLUTE LOADER

LOADER STACK SPACE

DUMPTT

lWO-WORD STACK SPACE

xxxxxx = desired load address = start address

When used in bootstrap format the storage map is:

6-17

LOADING AND DUMPING MEMORY

xx7776

xx7744

start address = xx7440
xx7434

BOOTSTRAP LOADER

DUMPTT

TWO-WORD STACK SPACE

The DUMPAB program (for systems with a switch register) is 65{lO)
words long. When used in absolute format the storage map is:

xx7776

xx7744

xx7500
xx7474

xxxxxx+244

xxxxxx

BOOTSTRAP LOADER

ABSOLUTE LOADER

LOADER STACK SPACE

DUMPAB

THREE-WORD STACK SPACE

xxxxxx = desired load address = start address

When used in bootstrap format the storage map is:

6-18

LOADING AND DUMPING MEMORY

xx7776

xx7744

start address = xx7510
xx7500

BOOTSTRAP LOADER

DUMPAB

THREE-WORD STACK SPACE

The DUMPAB program (for systems without a switch register) is 82(10)
words long. When used in absolute format the storage map is:

xx7776

xx7744

xx7500
xx7474

xxxxxx+202

xxxxxx

BOOTSTRAP LOADER

ABSOLUTE LOADER

LOADER STACK SPACE

DUMPAB

TWO-WORD STACK SPACE

xxxxxx = desired load address = start address

6-19

LOADING AND DUMPING MEMORY

When used in bootstrap format the storage map is:

xx7776

xx7744

start address = xx7500
xx7474

BOOTSTRAP LOADER

DUMPAB

TWO-WORD STACK SPACE

6-20

CHAPTER 7

INPUT/OUTPUT PROGRAMMING

7.1 INTRODUCTION

The PDP-II Input/Output executive. (lOX), frees the user from dealing
directly with I/O devices. It provides programming formats that allow
programs written for the paper tape software system to be used later
in a monitor environment with only minor coding changes.

lOX provides asynchronous
non-file-oriented devices:

I/O service for the following

1. Teletype keyboard, printer, and tape reader and punch

2. High-speed paper tape reader and punch

For line printer handling, in addition to all lOX facilities, IOXLPT
is available.

Simple I/O requests can be made, specifying devices and data forms for
interrupt-controlled data transfers, that can occur concurrently with
the execution of a user program. Multiple I/O devices can run single­
or double-buffered I/O processing simultaneously.

Real-time capability is provided by allowing user programs to be
executed at device priority levels upon completion of a device action
or data transfer.

Communication with lOX is accomplished by lOT (Input/Output Trap)
instructions in the user's program. Each lOT is followed by two or
three words consisti~g of one of the lOX commands and its operands.
The lOX commands can be divided into two categories:

1. those concerned with establishing necessary conditions for
performing input and output (mainly initializations), and

2. those concerned directly with the transfer of data.

When transfer of data is occurring, lOX is operating at the priority
level of the device. The calling program runs at its priority level,
either concurrent with the data transfer, or sequentially.

Programming format for commands is:

lOT
.WORD .(an address)
.BYTE (a command code), (a slot number)

Before using the data transfer commands, two preparatory tasks must be
performed:

7-1

INPUT/OUTPUT PROGRAMMING

1. Since device specifications are made by referring to "slots"
in lOX's Device Assignment Table (DAT) rather than devices
themselves, the slots specified in the code must have devices
assigned to them.

2. The buffer, whose address is specified in the code, must be
set up with information about the data.

In those non-data-transfer commands where an address or slot number
does not apply, a 0 must be used. Addresses or cod~s indicated can,
of course, be specified symbolically.

The following program segment illustrates a simple
input-process-output sequence. It includes:

WAIT:

1. The setting up of a single buffer

2. All necessary initializations

3. A formatted ASCII read into the buffer

4. A wait for completion of the read

.5. Processing of data just read

6. A write command from the buffer.

F"~ESET::::2

F"~EAD::::ll

WAITR::::4
WRITE::::12

lOT
.WORD 0
.BYTE RESET,O

lOT
• WOF"W BUFFER
.BYTE REA[I,()

roT
.WOFW WAIT

• BYTE WAITI~" 0
(p rocess BUFFEFO

roT
.WORD BUFFER
• BYTE WRITE, 1

;ASSIGN lOX COMMAND CODES

9IOX RESET TO DO NECESSARY
9INITIALIZATIONS INCLUDING
9INITING SLOT 0 FOR KBD, AND 1 FOR TTY

;TRAP TO lOX
;SPECIFY BUFFER
9READ FROM KBD (SLOT 0) TILL
;LINE FEED OR FORM FEED

;TRAP TO lOX
;BUSY RETURN ADDRESS WHILE WAITING
9FOR KBD TO FINISH
;WAIT FOR KBD (SLOT 0) TO FINISH

;TRAP TO lOX
;SPECIFY BUFFER
9WRITE TO TELEPRINTER (SLOT 1)

BUFFER: 100 ;BUFFER SIZE IN BYTES
o
o
.::::.+100

;CODE FOR FORMATTED ASCII MODE
9IOXWILL SET HERE THE NUMBER OF BYTES READ
9STORAGE RESERVED FOR 100 BYTES

In more complex programming it is likely that more than one buffer
will be set up for the transfer of data, so that data processing can
occur concurrently rather than sequentially, as here. Note too, that
there are five lOX commands not used in this example that will help
meet the requirements of I/O problems not as straightforward as this.

7-2

INPUT/OUTPUT PROGRAMMING

7.1.1 Using lOX With The LSI-II Processor

lOX (IOXLPT) is supplied on source and relocatable object tapes. It
is thus unnecessary to assemble lOX unless the program is to be
modified. User object tapes can be linked with the lOX object tape
(using LINK-lIS) to produce an absolute binary tape. Appendix J
describes assembly procedures for source tapes.

lOX requires approximately 633 (decimal) words of core;
requires approximately 724 (decimal) words.

7.1.2 Using lOX with Unibus PDP-II Processors

IOXLPT

lOX (IOXLPT) is supplied on source
describes assembly procedures for
loaded prior to user programs by the
loaded, the Absolute Loader halts.

and binary tapes. Appendix J
source tapes. Binary tapes are

Absolute Loader. After lOX is

IOXLPT is used instead of lOX if the program uses a line printer.

lOX is supplied on an absolute binary tape with a loading address of
15100; the load address for IOXLPT is 34600. If the user desires
different load addresses, the programs must be reassembled as
described in Appendix J.

lOX requires approximately 634 (decimal) words of core;
requires approximately 725 (decimal) words.

7.1.3 lOX Interrupt and Trap Vectors

lOX (IOXLPT) loads the following interrupt and trap vectors:

Console terminal
high speed reader and punch
timeout and other errors
lOT
line printer (IOXLPT only)

7.2 THE DEVICE ASSIGNMENT TABLE

IOXLPT

The Device Assignment Table (OAT) makes programs device-independent by
allowing the user to .refer to a slot to which a device has been
assigned, rather than a specific device itself. Thus, changing the
input or output device becomes a simple matter of reassigning a
different device to the slot indicated in the program.

The OAT is created by means of the Reset and/or Init commands. The
lOX codes for devices (listed in the description of the Init command
below) are assigned to the slots.

7-3

7.2.1 Reset

IOT
.WORD 0
.BYTE 2,0

INPUT/OUTPUT PROGRAMMING

This command must be the first IOX command issued by a user program.
It clears the DAT, initializes IOX, resets all devices to their state
at power-up, enables keyboard interrupts, and initializes DAT slots 0
and 1 for the keyboard and teleprinter, respectively.

7.2.2 Initialization

IOT
.WORD (address of device code)
.BYTE 1, (slot number)

The device whose code (stored as a byte) is found at the specified
address is associated with the specified slot (numbered in the range
0-7). The device interrupt is turned off when necessary. (The
keyboard interrupt always remains enabled.) There is no restriction on
the number of slots that can be initialized to the same device.

DEVICE
DEVICE CODE

Teletype Keyboard (KBD) 1

Teletype printer (TTY) 2

Low-Speed Reader (LSR) 3

Low-Speed Punch (LSP) 4

High-Speed Reader (HSR) 5

High-Speed Punch (HSP) 6

Line Printer
(IOXLPT only) (LPT) 10

Note that a device code is used only in the Initialization (INIT)
command. All other commands that refer to a device do so by means of
a slot. Example:

HSF~CCJD :

INIT:=::L
10T
.WOI:;:D Hm~C(JD

.BYTE 1N:l:T,3

+ BYTE ~)

vTRAF' TO 10X
v 1NITSLOT :3
jl FIJI:;: H81:;:

jl HSF~ CODE

7.3 BUFFER ARRANGEMENT IN DATA TRANSFER COMMANDS

Use of data-transfer commands (Read, Write, Real-time Read, Real-time
Write) requires the creation of at least one buffer. This buffer is
used not only to store data for processing, but to hold information
regarding the quantity, form, and status of the data. The non-data

7-4

INPUT/OUTPUT PROGRAMMING

portion of the buffer is called the
data portion. In data transfer
first word of the buffer header
following the lOT of the command.

buffer header, and precedes the
commands, it is the address of the
that is specified in the word

NOTE

lOX uses the buffer header while
transferring data. The user's program
must not chaQge or reference it.

The buffer format is:

BUFFER
HEADER

Location

Buffer

Buffer+2

Buffer+3

Buffer+4

Buffer+6

7.3.1 Buffer Size

Contents

Maximum number of data bytes
integer)

Mode of data (byte)

Status of data (byte)

{unsigned

Number of data bytes involved in transfer
(unsigned integer)

Actual data begins here

BUFFER SIZE (IN BYTES)

STATUS I MODE

BYTE COUNT

DATA

The first word of the buffer contains the
portion of the buffer as specified by
more than this many data bytes on input.
on output.

size (in bytes) of the data
the user. lOX will not store
Buffer size has no meaning

7.3.2 Mode Byte

The low-order byte of the second word holds information concerning the
mode or transfer. A choice of four modes exists:

Coded as

1. Formatted ASCII 0 (or 200 to suppress echo)

2. Formatted Binary 1

3. Unformatted ASCII 2 (or 202 to suppress echo)

4. Unformatted Binary 3

7-5

INPUT/OUTPUT PROGRAMMING

The term echo applies only to the KBD.
devices never involve an echo.

Data transfers from other

MODE BYTE

Bits 7 6 5 4 3 2 o Bits

1= NO ECHO
UN FOR- '

BINARY
MATTED

=1

FOR- ASCii ECHO MATTED 0= =0

7.3.3 Status'Byte

The high-order byte of the second word of the buffer header contains
information set by IOX on the status of the data transfer:

Bits 0-4 contain the non-fatal error codes (coded octally)

Bit 5 1 = End-Of-File has occurred (attempt at reading data
after an End-Of-Medium)

Bit 6 1 End-of-Medium has occurred (see Section 7.3.3.3)

Bit 7 1 Done (Data Transfer complete)

STATUS BYTE

7 6 5 4 3 2 o
I I

1 = 1 = 1 = SEE CODES
DONE EOM EOF

NON-FATAL ERRORS

7.3.3.1 Non-Fatal Error Codes (Octal) -

2 checksum error

3 truncation of a long line

4 an improper mode

1. A checksum error can occur only on a Formatted Binary read
(see Section 7.4.3).

7-6

INPUT/OUTPUT PROGRAMMING

2. Truncation of a long line can occur on either a Formatted
Binary or Formatted ASCII read (Section 7.4.1). This error
occurs when the binary block or ASCII line is bigger than the
buffer size specified in the buffer header. In both cases,
lOX continues reading characters into the last byte in the
buffer until the end of the binary block or ASCII line is
encountered.

3. An improper mode can occur only on a Formatted Binary read.
Such occurrence means that the first non-null character
encountered was not the proper starting character for a
Formatted Binary block (see Section 7.4.3)

7.3.3.2 Done Bit - When the data transfer to or from the buffer is
complete, the Done Bit is set by lOX.

7.3.3.3 End-Of-Medium Bit - The following conditions cause the EOM
bit to be set in the buffer Status byte associated with a data
transfer command. An EOM occurrence also sets the Done Bit.

HSR

No tape

Off line
No power

HSP

No tape

No power

LSR

Timeout
detected

LPT

No paper

No power
Printer drum gate open
Overtemperature condition

An End-Of-Medium condition on an output device is cleared by a manual
operation such as putting a tape in the high-speed punch. lOX does
not retain any record of an EOM on an output device. However, an EOM
on an input device is recorded by lOX so that succeeding attempts to
read from that device will cause an End-Of-File (see Section 7.3.3.4).
To reenable input the device must be manually readied and a Seek
command (Section 7.6) executed on the proper slot. The INIT and RESET
commands will also clear the EOM condition for the device.

See Section 7.5.3 for information on detection of conditions causing
LSR timeouts.

When an End-Of-Medium has occurred on a Read, there may be data in the
buffer. If an EOM has occurred on a Write, there is no way of knowing
how much of the buffer was written.

7.3.3.4 End-Of-File Bit - An EOF condition appears in the Status byte
if an attempt to read is made after an EOM has occurred. EOF cannot
occur on output. When an EOF has occurred, no data is available in
the buffer.

7-7

INPUT/OUTPUT PROGRAMMING

7.3.4 Byte Count

The third wdrd contains the Byte Count:

Input:

Output:

7.4 MODES

In unformatted data modes, lOX reads as many data bytes
as the user has specifie~. In formatted modes, lOX
inserts here the number of data bytes available in the
buffer. In all modes, if an EOM occurs, lOX will set
the Byte Count equal to the number of bytes actually
read. If an EOF occurs, Byte Count will be set to O.

Byte Count determines the number of bytes output, for
all modes. An HSP end-of-tape or LPT out-of-paper
condition will also terminate output, and EOM will be
set in the Status byte. lOX does not modify the Byte
Count on output.

7.4.1 Formatted ASCII

A Formatted ASCII read transfers 7-bit characters (bit 8 will be zero)
until a line feed or form feed is read. lOX sets the Byte Count word
in the buffer header to indicate the number of characters in the
buffer. If the line is too long, characters are read and overlaid
into the last byte of the buffer until an end-of-line (a line feed or
form feed) or EOM is detected. Thus, if there is no error, the buffer
will always contain a line feed or form feed.

A Formatted ASCII write transfers the
specified by the buffer Byte Count.
zero.

number of 7-bit characters
Bit 8 will always be output as

Device-Dependent Functions

Keyboard

Seven-bit characters read from the keyboard are entered in the buffer
and are echoed on the teleprinter except as follows:

Null

Tab
(CTRL/TAB
keys)

RUBOUT

CTRL/U

Carriage
Return
(RETURN key)

CTRL/P

- Ignored. This character
transferred to the buffer.

is not echoed or

- Echoes as spaces up to the next tab stop. "Stops"
are located at every 8th carriage position.

- Deletes the previous character on the current line
and echoes as a backslash (\). If there are no
characters to delete, RUBOUT is ignored.

- Deletes the current line and echoes as tU.

- Echoes as a carriage return followed by a line feed.
Both characters enter the buffer.

Echoes as +P and causes a jump to the restart
address, if non-zero (see 7.6.2).

The echo may be suppressed by setting bit 7 of the buffer header Mode
byte.

7-8

INPOTjOUTPUT PROGRAMMING

If the buffer overf19ws, only the characters which fit into the buffer
are echoed. Of course, characters which are deleted by RUBOUT or
CTRLjU do not read into the buffer even though they are echoed. If a
carriage return causes an overflow, or is typed after an overflow has
occurred, a carriage return and line feed will be echoed but only the
line feed will enter the buffer.

In the following For.matted ASCII exa.mples:

1. assume there is room for five characters

2. .J indicates:
in left column, the RETURN key
in center column, the execution of a carriage return
in right column, the ASCII code for carriage return

3. + indicates:
in center column, the execution of a line feed
in right column, the ASCII code for line feed

4. RUB indicates the RUBOUT key
OUT

5. CTRL indicates the CTRL and U keys.
U

Typed

ABC..)
ABCD..)
ABCDEF~
ABCDEF RUB..)

OUT

CTRL RUB..)
U OUT

ABCDEF RUB RUB..)
OUT OUT

ABCDEF RUB RUB RUB
OUT OUT OUT

x..)

Echoed

ABC..) +
ABCD~4o
ABCD..J4o
ABCD\..)4o

+U..)+

ABCD\ \..)+

ABCD \ \ \X.J4o

Low-Speed Reader and High-Speed Reader

Entered Buffer

ABC.J+
ABCD+
ABCD+
ABC..)+

AX..) +

All characters are transferred to the buffer except that nulls and
ruboutsare ignored.

Teleprinter

Characters are printed from the buffer as they appear except that
nulls are ignored and tabs are output as spaces up to the next tab
stop.

Low-Speed Punch and High-Speed Punch

Characters are punched from the buffer as they appear except that
nulls are ignored and tabs are followed by a rubout.

7-9

INPUT/OUTPUT PROGRAMMING

Line Printer (IOXLPT only)

Characters are printed from the buffer as they appear except as
follows:

Nulls

Tab

Carriage
Return

Ignored

Output as spaces up to the next tab stop.

Ignored. It is assumed that a line feed or form
feed follows. These characters cause the line
printer "carriage" to advance.

All characters beyond the 80th are ignored except a line feed or form
feed.

7.4.2 Unformatted ASCII

Unformatted ASCII transfers the number of 7-bit characters specified
by the header Byte Count.

Device-Dependent Functions

Keyboard

Characters are read and echoed except as follows;

Tab

CTRL/P

Echoes as spaces up to the next tab stop.

Echoes as Ap and causes a jump to the restart
address, if non-zero (see 7.6.2).

7.4.3 Formatted Binary

Formatted Binary is used to transfer checksummed binary data (a-bit
characters) in blocks. A Formatted Binary block appears as follows:

Byte (Octal)

001
000

~} xxx

DDD
DDD

DDD
DDD

CCC

Meaning

Start of block
Always null

Block Byte Count (low-order followed by
high-order). Count includes data and
preceding four bytes.

Data bytes

Checksum. Negation of the sum of all
preceding bytes in the block.

7-10

INPUT/OUTPUT PROGRAMMING

IOX creates the block on output, from the
The Byte Count word in the buffer header
bytes following, which are to be output.
output is four larger than the header
output, IOX calculates the checksum which
data byte.

buffer and buffer header.
specifies the number of data
Note that the Byte Count
Byte Count. As the block is
is output following the last

On Formatted Binary reads, IOX ignores null characters until the first
non-null character is read. If this character is a 001, a Formatted
Binary block is assumed to follow and is read from the device under
control of the. Byte Count value. If the first non-null character is
not 001, the read is immediately terminated and error code 4 is set in
the Status byte. As the block is read a checksum is calculated and
compared to the checksum following the block. If the checksum is
incorrect, error code 2 is set in the Status byte of the buffer
header. If the binary block is too large (Byte Count less 4, larger
than the Buffer Size specified in the header), the last byte of the
buffer is overlaid until the last data byte has been read; error code
3 is set in the Status byte.

Device-Dependent Functions

None. Eight-bit data characters are transferred to and from the
device and buffer exactly as they appear.

7.4.4 Unformatted Binary

This mode transfers 8-bit characters with no formatting or character
conversions of any kind. For both input and output, the buffer header
Byte Count determines the number of characters transferred.

Device-Dependent Functions

None

7.5 DATA TRANSFERS

7.5.1 Read

IOT
.WORD (address of first word of the buffer header)
.BYTE 11, (slot number)

This command causes IOX to read from the device associated with the
specified slot according to the information found in the buffer
header. IOX initiates the transfer of data, clears the Status byte,
and returns control to the calling program. If the device on the
selected slot is busy, or a conflicting device (see Section 7.5.3) is
busy, IOX retains control until the data transfer can be initiated.
Upon completion of the Read, the appropriate bits in the Status byte
are set by IOX and the Byte Count word indicates the number of bytes
in the data buffer. Note that use of the KBD while an LSR Read is in
progress will intersperse KBD characters into the buffer
unpredictably.

7-11

INPUT/OUTPUT PROGRAMMING

7.5.2 Write

lOT
.WORD (address of first word of the buffer header)
.BYTE 12, (slot number)

lOX writes on the device associated with the specified slot according
to the information found in the buffer header. Transfer of data
occurs in the amount specified by Byte Count (Buffer+4). lOX returns
control to the calling program as soon as the transfer has been
initiated. If the device on the selected slot is busy, or a
conflicting device is busy, lOX retains control until the transfer can
be initiated. Upon completion of the Write, lOX will set the Status
byte to the latest conditions. If a write causes an EOM condition,
the user has no way of determining how much of his buffer has been
written (the Byte Count remains the same.)

7.5.3 Device Conflicts In Data Transfer Commands

Because there is a physical association between the devices on the ASR
Teletype, certain devices cannot be in use at the same time.· When a
data transfer command is given, lOX simultaneously checks for two
conditions before executing the command:

1. Is the device requested already in use? and,

2. Is there some other device in use that would result in an
operational conflict?

lOX resolves both conflict situations by waiting until the first
device is no longer busy, before allowing the requested device to
start functioning. (This is an automatic Waitr command. See next
section.) For example, if the LSR is in use, and either a KBD request
or a second request for the LSR itself is made, lOX will wait until
the current LSR read has been completed before returning control to
the calling program. In the particular case of the LSR, lOX also
performs a timeout check while waiting for it to become available.

When a Read command has been issued for the LSR, lOX waits about 100
milliseconds for each character to be read. If no character is
detected by this time (presumably because the LSR is turned off, or
out of tape), a timeout is declared and lOX sets EOM in the
appropriate buffer Status byte.

The following is a table listing the devices. Corresponding to each
device on the left is a list of devices (or the echo operation) which
would conflict with it in operation.

Device
All Possible Conflicting
Devices or Operations

KBD CHO, KBD, TTY, LSR, LSP
TTY Echo, KBO, TTY, LSP
LSR KBD, LSR
LSP Echo, KBD, TTY, LSP
HSR HSR
HSP HSP
LPT (IOXLPT only)LPT

7-12

INPUTjOUTPUTPROGRAMMING

7.5.4 Waitr (Wait, Return)

lOT
.WORD (busy return address)
.BYTE 4, (slot number)

Waitr, like device conflict resolution, causes lOX to test the status
of the device associated with the specified slot. If the device (or
any possible conflicting device) is not transferring data, control is
passed to the instruction following the Waitr. Otherwise, lOX
transfers program control to the busy return address. If it is
desired to continuously test for completion of data transfer on the
device, the busy return address of the immediately preceding lOT
instruction can be specified, effecting a Wait loop.

If a slot is inited to any device other than the LSR, control is
returned to the calling program about 150 microseconds after execution
of a Waitr. For the LSR, however, the time is about 100 milliseconds.

Note that a not-busy return from Waitr normally means the device is
available. However, in the case of a Write, this only means that the
last character has been output to the device. The device is still in
the process of printing or punching the character. Thus, care must be
exercised when performing an lOX Reset, hardware RESET, or HALT after
a Write-Waitr sequence, since these may prevent the last character
from being physically output.

7.5.5 waitr vs. Testing the Buffer Done Bit

Since lOX permits you to have device-independent code, it may not be
known, from run to run, what devices will be assigned to the slots in
your program. Waitr tests the status, not only of the device it
specifies, but also of all possible conflicting devices.

This means that when Waitr indicates that the device is not busy, the
data transfer on the device of interest may have been done for some
time. Depending on the program and what devices are assigned to the
slots for a given run, the Waitr could have been waiting an additional
amount of time for a conflicting device to become free.

Where this possibility exists and buffer availabili,ty
interest, testing the Done bit of the Status byte
transfer is complete) would be preferable to Waitr;
would be preferable if device availability is what is

is what is of
(set when buffer

whereas waitr
of interest.

This distinction is made in order to write device-independent code.
In the example below:

1. If the devices at slots 2 and 3 could be guaranteed
be conflicting, neither Waitr nor testing the Done
be necessary, because lOX would automatically wait
busy device to finish before allowing the other
begin.

always to
bit would

for the
device to

2. If these devices could be guaranteed never to be conflicting,
it wouldn't matter which of these methods was used, because
Waitr couldn't be waiting extra time for a conflicting device
(of no interest) to become free.

7-13

INPUT/OUTPUT PROGRAMMING

Example: PROGRAM A PROGRAM B

JOT lOT
.WORD BUF2 .WORD BUF2
.BYTE F'~EAD , SUJT2 .BYTE READ, SUJT2

lOT JOT
• WOF'W BUF:L .WORD BUn
.BYTE READ, SLOT~.~ .BYTE READ, SLOT2

101' JOT
.WORD BUF2 .WORD BUF2
.BYTE WRITE, SI .. OT:3 .BYTE WRITE, SLOT3

DUNTST: TSTB BUF1+~~ (IE~VTST : lOT
BPL DUNTST .WORD DEVTST

.BYTE WA ITR, SL.OT~;~

JOT
.WORD SLOT2DEV
.BYTE INIT, SLOT4

Programs A and B do two successive reads from the same device into two
different buffers. Since the devices are the same, lOX waits for the
first read to finish before allowing the second to begin.

In Program A, we wish to process buffer 1. To have issued a Waitr for
the device associated with slot 2 could have meant waiting also for
the device at slot 3 if that device were in conflict. Hence, testing
the Done bit in the buffer header is the proper choice.

In Program B, we wish control of the device at slot 2, so that it can
be assigned to another slot and so we must know its availability.
Therefore, Waitr is appropriate.

7.5.6 Single Buffer Transfer on One Device

At lOT
.WOF'W BUF:L
.BYTE READ,SLOT3

BUSY: IOT
.WORD BUSY
.BYTE WAITR,SLOT3

(process buffer :L)

JMP A

; TF~AP TO lOX
; SF'ECIFY BUFFER
9READ FROM DEVICE AT
;SLOT 3 INTO BUFFER

;TRAP TO lOX
;SPECIFY BUSY RETURN ADDRESS
;WAIT FOR DEVICE AT SLOT
;3 TO FINISH READING

The program segment above includes a waitr which goes to a Busy Return
address that is its own lOT -- continuously testing the device at slot
3 for availability. In this instance, involving only a single device
and a single buffer, a Done condition in the Buffer 1 Status byte can
be inferred from the availability of the device at slot 3. This
knowledge assures us that all data requested for Buffer 1 is available
for processing.

Testing the Done Bit of Buffer 1 might have been used instead, but was
not necessary with only one device operating. Moreover, a Waitr,
unlike a Done Bit test, would detect a timeout on the LSR if that
device happened to be associated with slot 3.

7-14

INPUT/OUTPUT PROGRAMMING

7.5.7 Double Buffering

lOT ;TRAP TO lOX
.WORD BUFI
.BYTE READ,SLOT3

lOT
.WORD BUF2
.BYTE READ,SLOT3

;SPECIFY BUFFER 1
;READ FROM DEVICE AT
;SLOT 3 INTO BUFFER 1

;TRAP TO lOX
;SPECIFY BUFFER 2
READ FROM DEVICE AT SLOT
;3 INTO BUFFER 2

(process BUFI concurrent with Read into BUF2)

lOT
.WORD BUFI
.BYTE READ,SLOT3

;TRAP TO lOX
;SPECrFY BUFFER 1
;READ FROM DEVICE AT
;SLOT 3 INTO BUFFER 1

(process BUF2 concurrent with Read into BUF1)

JMP A

The example above illustrates a time-saving double-buffer scheme
whereby data is processed in Buffer 1 at the same time as new data is
being read into Buffer 2; and, sequentially, data is processed in
Buffer 2 at the same time as new data is being read into Buffer 1.

Because lOX ensures that the requested device is free before
initiating the command, the subsequent return of control from the rOT
at A implies that the read prior to A is complete; that is, that
buffer 1 is available for processing. Similarly, the return of
control from the rOT at B implies that buffer 2 is available. Wai~r's
are not required because lOX has automatically ensured the device's
availability before initiating each Read.

7.5.8 Readr (Real-time Read)

lOT
.WORD (address of first word of the buffer header)
.BYTE 13, (slot number)
.WORD (done-address)

The Readr command functions as the Read except that upon completion of
the data transfer, program control goes to the specified Done-address
at the priority level of the device. Readr is used when you wish to
execute a segment of your program immediately upon completing the data
transfer. lOX goes to the Done address by executing a JSR R7,
Done-address.

The general registers, which were saved when the last character
interrupt occurred, are on the SP stack in the order indicated below:

(SP)~ Return address to lOX
R5
R4
R3
R2
Rl
RO

7-15

INPUT/OUTPUT PROGRAMMING

Return to lOX is accomplished by an RTS R7 instruction. lOX will then
restore all registers and return to the interrupted program Care
should be taken in initiating another data transfer if the specified
device can conflict with device requests at other priority levels.
Waitr cannot be used to resolve conflict situations between priority
levels.

7.5.9 writr (Real-time Write)

lOT
.WORD (address of first word of the buffer header)
.BYTE 14, (slot number of device)
.WORD (done address)

The Writr command functions as the Write except that, upon completion
of the data transfer, program control goes to the specified
Done-address at the priority level of the device. lOX goes to the
Done-address by executing a JSR R7, Done-address. The condition of
the general registers and the return to lOX are the same as for Readr.
Writr is used when you wish to execute a segment of your program
immediately upon completing the data transfer.

As in the Readr, care should be taken in initiating another data
transfer if the specified device can conflict with device requests at
the priority level of the calling program.

7.6 REENABLING THE READER AND RESTARTING

7.6.1 Seek

lOT
.WORD °
.BYTE 5, (slot number of LSR or HSR)

The Seek command clears lOX's internal End-Of-Medium (EOM) indicator
on the LSR or HSR, making possible a subsequent read on those devices.
With no EOM, an EOF cannot occur. The device associated with the
specified slot remains Inited.

7.6.2 Restart

lOT
.WORD (address to restart)
.BYTE 3,0

This command designates an address at which to restart your program.
After this command has been issued, typing CTRL/P on the KBD will
transfer program control to the restart address, providing there is no
LSR read in progress. In such a case, the LSR must be turned off
(causing a timeout) before typing a CTRL/P. If the Restart address is
designated as 0, the CTRL/P Restart capability is disabled.

The Restart command does not cancel any
program's responsibility in its restart
executing a RESET command and ensuring
reset.

7-16

I/O in progress. It is the
routine to clean up any I/O by
that the stack pointer is

INPUT/OUTPUT PROGRAMMING

7.7 FATAL ERRORS

Fatal errors result in program termination and a jump to location 408
(loaded with a HALT by lOX), with RO set to the error code and Rl set
as follows:

If the fatal error was due to an illegal memory reference (code
0), Rl will contain the PC at the time of the error.

If the fatal error was due to an error coded in the range 1-5, Rl
will point to some element in the lOT argument list or to the
instruction following the argument list, depending on whether lOX
has finished decoding the arguments when it detects the error.

Fatal Error Code

0

1

2

3

4

5

Reason

Illegal Memory Reference, SP overflow, illegal
instruction

Illegal lOX command

Slot out of range

Device out of range

Slot not inited

Illegal data mode

Note that the SP stack contains the value of the registers at the time
of the error, namely

(SP)-+ R5
R4
R3
R2
Rl
RO
PC
Processor Status (PS)

(See Section 7.3.3.1 for a discussion of non-fatal errors.)

7.8 EXAMPLE OF PROGRAM USING lOX

This program is used to duplicate paper tape. Note that it could be
altered by changing the device code at RDEV or PDEV. For instance,
the program could easily be made to list a tape.

RO::::%O
Rl::::%l
R2::::%2
r~3:::::;('3

1:;:4::::%4
1:~6::::%6

KBI...OT::::0
TSl..ClT:::: :1.
f~SI...OT::::3

PBI...DT::::4
f~E8ET::::2

RESTRT:::::3
I NIT:::::/.

7-17

INPUT/OUTPUT PROGRAMMING

WAITR=4
READ=ll
WRITE=12
EOF=20000
CR=15
LF=12

MSG1:

MSG1BC:

.=1000
o
o
END1-MSG1BC-2
.BYTE CR,LF

9CR ASSIGNED ASCII CODE FOR CARRIAGE RETURN
9LF ASSIGNED ASCII CODE FOR LINE FEED

;CANNED MESSAGE
;FORMATTED ASCII
;BYTE COUNT

.ASCII / PLACE TAPE IN READER/

.BYTE CR,LF

END1:
.ASCII / STRIKE CR WHEN READY/
.EVEN

BUF3:

RDEV:
PDEV:

2
o
o
o

5
6

BUF1: 100
3
100
.=.+100

BUF2: 100
3
100
.=.+100

BEGIN: MOV $500,R6

At

lOT
o
.BYTE

lOT
BEGIN
.BYTE
MOV
MOV

lOT
MSGI
.BYTE

lOT
BUF3
.BYTE

lOT

A
.BYTE

lOT
RDEV
.BYTE

lOT
PDEV
.BYTE

RESET,O

RESTRT,O
$100,BUF1+4
*100,BUF2+4

WRITE,TSLOT

READ,K8LOT

WAITR,KSLOT

INIT,RSLOT

INIT,PSLOT

9BUFFER SIZE
;FORMATTED ASCII MODE
9BC
;CR LF

9DEVICE CODE FOR HSR
;DEVICE CODE FOR HSP

9BUFFER SIZE
9CODE FOR UNFORMATTED BINARY
;SPECIFIES NUMBER OF BYTES FOR TRANSFER
;RESERVES STORAGE FOR DATA
9BUFFER SIZE
;CODE FOR UNFORMATTED BINARY
;SPECIFIES NUMBER OF BYTES FOR TRANSFER
9RESERVES STORAGE FOR DATA
9SPECIFY ADDRESS FOR BOTTOM OF STACK

9INITIALIZATION

9"BEGIN" SPECIFIED AS RESTART
9ADDRESS FOR CTRL P
98ET UP INITIAL BC ON BUFI
;SET UP INITIAL BC ON BUF2

9TYPE OUT DIRECTIONS

;WAIT FOR HIM TO TYPE A CARRIAGE RETURN,
;LINE FEED

jINIT READER

9INIT PUNCH

7-18

INPUT/OUTPUT PROGRAMMING

LOOP:

c:

IOT
BUn
• BYTE F~EAD, F~SLOT

IOT
BUF2
• BYTE READ, F~SI ... OT

BIT
BNE

IOT
BUF1

~~EOF BUF 1 +2
BEGIN

~BYTE WRITE,PSLOT

IOT
C
.BYTE WAITR,PSLOT

roT
BUF1
.BYTE READ,RSLOT

BIT
BNE

IOT
BUF2

:II:EOF, BUF2+2
BEGIN

.BYTE WRITE,PSLOT

HlT
B
.BYTE WAITR,PSLOT
BR LOOP
.END BEGIN

7.9 lOX INTERNAL INFORMATION

7.9.1 Conflict Byte/Word

;START FIRST READ

;READ INTO 2ND BUFFER

;END OF FILE'?
nES
;NO

;WRITE OUT THIS BUFFER

;WAIT TILL DEVICE HAS FINISHED

;READ INTO 1ST BUFFER

;END OF FILE?

;WRITE OUT BUFFER 2

;WAIT TILL DEVICE HAS FINISHED

The lOX Conflict byte (in IOXLPT, Conflict Word) contains the status
(busy or free) of all devices as well as whether or not an echo is in
progress. Bit 0 is the echo bit, bits 1-6 (and 8 in IOXLPT) refer to
the corresponding codes for devices:

If Bit is Set

Bit o Echo in progress

Bit }

Device
1 = KBD busy

} Bit
2

Device
= TTY busy

Bit }

Device.
3 = LSR busy

7-19

INPUT/OUTPUT PROGRAMMING

Bit } Device
4 LSP busy

Bit } Device
5 HSR busy

Bit } Device
6 HSP busy

lOS

Bit } Device

8
LPT busy

In IOXLPT, the Conflict Byte is expanded to a word in order to
accommodate the line printer, there being no bit 8 to correspond with
that device's code of 10 (octal) (the lowest available code for an
output device - see Section 7.9.5.1).

All possible Conflict
Device Conflicting Devices Number

KBD Echo, KBD, TTY, LSR, LSP 37

TTY Echo, KBD, TTY, LSP 27

LSR KBD, LSR 12

LSP Echo, KBD, TTY, LSP 27

HSR HSR 40

HSP HSP 100

LPT LPT 400

For each of the devices in the left hand column, all the possible
conflicts are listed along with their respective conflict numbers.
These numbers, representing bit patterns of the devices listed in
column two above, are used to resolve any conflicting requests for
devices. The appropriate number is masked with the conflict byte. If
the result is zero, there are no conflicts and the device being tested
has its bit set allowing data transfer to begin.

7.9.2 Device Interrupt Table (DIT)

Each device interrupt handler has associated with it a Device
Interrupt Table (DIT) containing information that the handler needs:

DIT Checksum

DIT+2 Byte size from buffer header

DIT+4 Address of Mode byte in buffer header

DIT+6 Byte Location Pointer

DIT+lO Byte Count

DIT+l2 Device code

7-20

INPUT/OUTPUT PROGRAMMING

DIT+14 Real time done-address

DIT+16 Address of device's data buffer register

The device interrupt routines gain access to the proper data by means
of the DIT entry. When a transfer is complete, they set the
appropriate bits in the buffer header pointed to by the DIT contents.

7.9.3 Device Status Table (DST)

The Device Status Table (DST) is used by lOX to check for EOF
conditions. This table contains a word for each device indicating an
EOM condition with a 1. When an EOM condition is recognized on input,
lOX not only sets the appropriate bit in the buffer status byte
associated with the data transfer, it also records this occurrence in
the DST. When a data transfer command is given, lOX checks the DST
for the EOM condition. If the appropriate word has a value of 1, lOX
sets EOF in the Status byte of the current-command buffer. Since EOF
is only possible for the LSR (code 3), and HSR (code 5), the words
corresponding to those devices are the only ones that can ever be set
to 1.

7.9.4 Teletype Hardware Tab Facility

If the Teletype model has a hardware tab facility, teleprinter output
can be speeded up by:

1. For lOX, deleting the code from I.TTYCK+6 through I.TAB3+3.

2. For IOXLPT, skipping the code from I.IOLF through I.TAB3+3
(for the teleprinter only - not the line printer).

7.9.5 Adding Devices To lOX

In order to add a device to lOX the following tasks must be done:

1. Assign a legal code- to the device

2. Modify the lOX tabies

3. Provide an interrupt routine to handle data for the device.

The line printer (in IOXLPT) will be used as an example throughout
this discussion.

7.9.5.1 Device Codes - The numbers from 7 to 17 (octal) are available
for new-device codes, with the exception of 10 (octal) in the IOXLPT
version. This code has been assigned to the line printer. The device
code must be odd for an input device and even for an output device.
This is so a check can be made for command/device correspondence;
i.e., for a Read from an input device or a write to an output device.

If the newest device was assigned a number that is higher than
codes of all the other devices, I.MAXDEV must be redefined to
value. This is so an out-of-range device specification in an
command can be detected. In IOXLPT, I.MAXDEV=lO.

7-21

the
that
Init

INPUT/OUTPUT PROGRAMMING

Since each device code functions as an index in several word tables,
the entries relating to a given device must be placed at the same
relative position in each appropriate table. That is, the code~~mber
must indicate how many words into the table the entry for that device
will be found. This, of course, means accounting for any unused space
preceding the entry, if the codes are not assigned in strict sequence.
Table entries for the line printer are found at the 10th (octal) word
past the table tag, i.e., at Table+20.

7.9.5.2 Table Modification -

1. I.FUNC - Each entry is the octal value of the bit pattern in
the device Control/Status Register that enables the
corresponding device and/or any interrupt facility it has.
Bit setting this number into the device's Control/Status
register turns the device on; bit clearing turns it off.
Determine this value for the device to be added, and place
the entry in the appropriate device position in the table.
For example, the line printer Control/Status Register has an
Interrupt Enable facility in bit 6. This pattern of 100 is
the LPT entry, and is located at I.FUNC+20.

2. I.SCRTAB - This table contains the addresses of the device
Control/Status registers. The line printer entry I.LPTSCR
has the value 177514, and is located at I.SCRTAB+20.

3. I.DST - (Refer to Section 7.9.3.) Create an entry of 0 for
the device in the proper table location. Inserting a word of
o at I.DST+20 created a device status entry for the line
printer.

4. I.CONSIT - An entry in this table is used to set or clear a
device's busy/free bit in the Conflict Byte (Conflict Word in
IOXLPT). (See Section 7.9.1, and 5. below.) Each value is
obtained by setting one bit only the bit number
corresponding to the device number. The line printer, being
device 10(octal), has a value of 400(octal) (bit 10 set) and
is located at I.CONSIT+20.

In the lOX version without the line printer, entries to this
table are found in the high-order bytes of Table I.CONFLC.
One more input device entry can be added to it. In IOXLPT,
however, I.CONSIT is a separate word table, allowing eight
more devices (four input and four output) to be added. Byte
operations in the lOX I.CONSIT became word operations in
IOXLPT to adapt to this expansion.

5. I.CONFLC - (Refer to Section 7.9.1 on Conflict Byte/Word.)
Entries are bit patterns of conflicting devices. Since the
line printer can only conflict with itself, the I.CONFLC
entry is equal to the I.CONSIT entry. As in the I.CONSIT
table, byte operations were changed to word operations for
I.CONFLC in IOXLPT.

6. Create a DIT for the device
assigning a DIT label and
output device, the address of
be added as an eighth word.

7-22

(refer to Section 7.9.2) by
seven words of O. If it is an

the Device Buffer Register must

INPUT/OUTPUT PROGRAMMING

7. I.INTAB - This is a table of DIT addresses. Place the label
of the DIT (mentioned in 6. above) in the correct position
in the table. I.INTAB+20 contains the line printer entry
I.LPTDIT.

7.9.5.3 Interrupt Routines - write (and assign a label
interrupt routine for the device to:

1. Get a character

to) an

2. Check for errors by means of the device Control/Status
register

3. Do character interpretation according to the device and mode

4. Get a character in or out of the buffer

5. Update lOX's Byte Count

6. Compare lOX's Byte Count to User's Byte Count and Buffer size
specification

7. Return for next character

Place the label of the interrupt routine at the address of the device
vector, and follow it with the value of the interrupt priority in bits
7, 6, and 5. I.LPTIR, the address of the line printer interrupt
routine, is at location 200. Location 202 contains the value 200
(indicating priority level 4).

If the device to be added is similar to the other single-character
devices, steps 3-7 above can be performed by lOX as indicated below:

There are two routines, I.INPUT and I.OUTPUT, that are called from the
interrupt routines. These routines mainly perform common functions
for input and output devices. They are called as follows:

JSR R5,I.INPUT and JSR R5,I.OUTPUT

At the location following one of these calls is the DIT for the proper
device. The routine is thus able to use R5 to reference the DIT
entries.

I.INPUT and I.OUTPUT also contain device-dependent code to perform
functions such as tab counters for the teleprinter and line printer,
and deletion of carriage returns in Formatted ASCII mode for the line
printer. The device index value is used to identify the device. For
the line printer, a symbol I.LPT, has been assigned the value 20 for
convenient reference to the device index.

7-23

CHAPTER 8

FLOATING POINT MATH PACKAGE OVERVIEW]

The new Floating-Point Math Package, FPMP-ll, is designed to bring the
2/4 word floating point format' of the FORTRAN environment to the paper
tape software system of the PDP-II. The numerical r6utines in FPMP-ll
are the same as those of the DOS/BATCH FORTRAN Operating Time System
(OTS) . TRAP and error handlers have been included to aid in
interfacing with the FORTRAN routines.

FPMP-ll provides an easy means of performing basic arithmetic
operations such as add, subtract, multiply, divide, and compare. It
also provides transcendental functions (SIN, COS, etc.), type
conversions (integer to floating-point, 2-word to 4-word, etc.), and
ASCII conversions (ASCII to 2-word floating-point, etc.).

Floating-point notation is particularly useful for computations
involving numerous multiply and divide operations where operand
magnitudes may vary widely. FPMP-ll stores very large and very small
numbers by saving only the significant digits and computing an
exponent to account for leading and trailing zeros.

To conserve core space in a small system, FPMP-ll can be tailored to
include only those routines needed to run a particular user program.

For more information on FPMP-ll, refer to the FPMP-ll User's Manual
(DEC-II-NFPMA-A-D) and to Appendix H of this manual.

I FPMP is not currently available for the LSI-II (PDP-ll/03).
8-1

CHAPTER 9

PROGRAMMING TECHNIQUES

This chapter presents various programming techniques. They can be
used to enhance your programming and to make optimum use of the PDP-II
processor. The reader is expected to be familiar with the PAL-II
assembly language (Chapters 1 & 2).

9.1 WRITING POSITION INDEPENDENT CODE

When a standard program is available for different users, it often
becomes useful to be able to load the program into different areas of
core and to run it there. There are several ways to do this:

1. Reassemble the program at the desired location.

2. Use a relocating loader which accepts specially coded binary
from the assembler.

3. Have the program relocate itself after it is loaded.

4. Write code which is position independent.

On small machines, reassembly is often performed. When the required
core is available, a relocating loader (usually called a linking
loader) is preferable. It generally is not economical to have a
program relocate itself since hundreds or thousands of addresses may
need adjustment. Writing position independent code is usually not
possible because of the structure of the addressing of the object
machine. However, on the PDP-II, position independent code (PIC) is
possible.

PIC is achieved on the PDP-II by using addressing modes which form an
effective memory address relative to the Program Counter (PC). Thus,
if an instruction and its object(s) are moved in such a way that the
relative distance between them is not altered, the same offset
relative to the PC can be used in all positions in memory. Thus, PIC
usually references locations relative to the current location. PIC
may make absolute references as long as the locations referenced stay
in the same place while the PIC is relocated. For example, references
to interrupt and trap vectors are absolute, as are references to
device registers in the external page and direct references to the
general registers.

9-1

PROGRAMMING TECHNIQUES

9.1.1 position Independent Modes

There are three position independent modes or forms of instructions.
They are:

1. Branches the conditional branches, as well as the
unconditional branch, BR, are position independent since the
branch address is computed as an offset to the PC.

2. Relative Memory References
of the form

any relative memory reference

3.

CLR X
MOV X,Y
JMP X

is position independent because the assembler assembles it as
an offset indexed by the PC. The offset is the difference
between the referenced location and the PC. For example,
assume the instruction CLR 200 is at address 100:

:1.001 ()O~5067

:1.021 000074
;FIRST WORD OF CLR 200
;OFFSET = 200-:J.04

The offset is added to the PC. The PC contains 104, i.e.,
the address of the word following the offset.

Although the form CLR X is position independent, the form CLR
@X is not. Consider the following:

St CU~ (l1X ;CLEAR LOCATION A

x: .wmw A ; PO I NTEF, TO A

A: • wmm 0

The contents of location X are used as the address of the
operand in the location labeled A. Thus, if all of the code
is relocated, the contents of location X must be altered to
reflect the new address of A. If A, however, was the name
associated with some fixed location (e.g., trap vector,
device register), then statements S and X would be relocated
and A would remain fixed. Thus, the following code is
position independent.

A'"" 36

CL.F~ (i?X

x: • WClFm A

;ADDRESS OF SECOND WORD OF
; n~AP VECTOI:::
;CLEAR LOCATION A

; POINTEF, TO A

Immediate Operands The assembler addressing form #X
specifies immediate data, that is, the operand is in the
instruction. Immediate data is position independent since it
is a part of the instruction and is moved with the

9-2

PROGRAMMING TECHNIQUES

instruction. Immediate data is fetched using the PC in the
autoincrement mode.

As with direct memory references,
not position independent. As
address is absolute and points
relative to the PC.

the addressing form @#X is
before, the final effective
to a fixed location not

9.1.2 Absolute Modes

Any time a memory location or register is used as a pointer to data,
the reference is absolute. If the referenced data is fixed in memory,
independent of the position of the PIC (e.g., trap-interrupt vectors,
device registers), the absolute modes must be used. l If the data is
relative to the PIC, the absolute modes must not be used unless the
pointers involved are modified. The absolute modes are:

@X

@#X

(R)

(R)+ and - (R)

@(R)+ and @- (R)

X (R) R;i6 or 7

@X(R)

Location X is a pointer

The immediate word is a pointer

The register is a pointer

The register is a pointer

The register points to a pointer

The base, X, modified by (R) is
the address of the operand

The base, modified by (R), is a
pointer

The non-deferred index modes and stack operations require a little
clarification. As described in Sections 3.6.10 and 9.1.1, the form
X(7) is the normal mode to reference memory and is a relative mode.
Index mode, using a stack pointer (SF or other register) is also a
relative mode and may be used conveniently in PIC. Basically the
stack pointer points to a dynamic storage area and index mode is used
to access data relative to the pointer. The stack pointer may be
initially set up by a position independent program as shown in Section
9.1.4.1. In any case, once the pointer is set up, all data on the
stack is referenced relative to the pointer. It should also be noted
that since the form 0 (SP) is considered a relative mode so is its
equivalent @SP. In addition, the forms (SP)+ and -(SP) are required
for stack pops and pushes.

9.1.3 Writing Automatic PIC

Automatic PIC is code which requires no alteration of addresses or
pointers. Thus, memory references are limited to relative modes
unless the location referenced is fixed (trap-interrupt vectors,
etc.). In addition to the above rules, the following must be
observed:

1. Start the program with .=0 to allow easy relocation using the
Absolute Loader (see Chapter 6).

lWhen PIC is not being written, references to fixed locations may be
performed with either the absolute or relative forms.

9-3

PROGRAMMING TECHNIQUES

2. All location setting statements must be of the form .=.±X or
.- function of tags within the PIC. For example, .=A+IO
where A is a local label.

3. There must not be any absolute location setting statements.
This means that a block of PIC cannot set up trap and/or
interrupt vectors at load time with statements such as:

.=34

.WORD TRAPH,340 ;TRAP VECTOR

The Absolute Loader, when it is relocating PIC, relocates all
data by the load bias (see Chapter 6). Thus, the data for
the vector would be relocated to some other place. vectors
may be set at execution time (see Section 9.1.4).

9.1.4 Writing Non-Automatic PIC

Often it is not possible or economical to write totally automated PIC.
In these -cases, some relocation may be easily peformed at execution
time'. Some of the required methods of solution are presented below.
Basically, the methods operate by examining the PC to determine where
the PIC is actually located. Then a relocation factor can be easily
computed. In all examples, it is assumed that the code is assembled
at zero and has been relocated somewhere else by the Absolute Loader.

9.1.4.1
program
follows:

Setting Up The Stack Pointer - Often the
is to set the stack pointer (SP).

first task of a
This may be done as

BEG: MOV PC,SP
TST -CSP)

;BEG IS THE FIRST INSTRUCTION OF
;THE PROGRAM
;SP=ADR BEG+2
;DECREMENT SP BY 2.
;A PUSH ONTO THE STACK WILL STORE
;THE DATA AT BEG-2.

9.1.4.2 Setting Up A Trap or Interrupt Vector - Assume the first word
of the vector is to point to location INT which is in PIC.

x: Mov PC,RO
ADD tINT-X-2,RO
MOV RO,@tVECT

;RO = ADR X+2
;ADD OFFSET
;MOVE POINTER TO VECTOR

The offset INT-X-2 is equivalent to INT-(X+2) and X+2 is the value of
the PC moved by statement X. If PC is the PC that was assumed for
th~ program when loaded at 0, and if PC is the current real PC, then
the calculation is:

Thus, the relocation factor, PC~-PCo' is added to the assembled value
of INT to produce the relocated value of INT.

9-4

PROGRAMMING TECHNIQUES

9.1.4.3 Relocating Pointers - If pointers must be used, they may be
relocated as shown above. For example, assume a list of data is to be
accessed with the instruction

ADD (RO)+,Rl

The pointer to the list, list L, may be calculated at execution time
as follows:

MOV PC,RO ;GET CURRENT PC
ADD tL-M-2,RO ;ADD OFFSET

Another variation is to gather all pointers into a table. The
relocation factor may be calculated once and then applied to all
pointers in the table in a loop.

x:

LOOP!

MOV
SUB
MOV
ADD
MOV
ADD
DEC
BGE

PC,RO
:II:X+:;!,RO
:fI:PTRTBL,Rl
I:;:O,IU
tTBLLEN,R2
RO,(IUH
R2
LOOP

;RELOCATE ALL ENTRIES IN PTRTBL
;CALCULATE RELOCATION FACTOR
;GET AND RELOCATE A POINTER

TO PTRTBL
;OET LENGTH OF TABLE
;RELOCATE AN ENTRY
;COUNT
;BRANCH IF NOT DONE

Care must be exercised when restarting a program which relocates a
table of pointers. The restart procedure must not include the
relocating again, i.e., the table must be relocated exactly once after
each load.

9.2 LOADING UNUSED TRAP VECTORS

One of the features of the PDP-II is the ability to trap on various
conditions such as illegal instructions, reserved instructions, power
failure, etc. However, if the trap vectors are not loaded with
meaningful information, the occurrence of any of these traps will
cause unpredictable results. By loading the vectors as indicated
below, it is possible to avoid these problems as well as gain
meaningful information about any unexpected traps that occur. This
technique, which makes it easy to identify the source of a trap, is to
load each unu"sed trap vector with:

.=trap address

.WORD .+2,HALT

This will load the first word of the vector with the address of the
second word of the vector (which contains a HALT). Thus, for example,
a halt at location 6 means that a trap through the vector at location
4 has occurred. The old PC and status m"ay be examined by looking at
the stack pointed to by register 6.

The trap vectors of interest are:

Vector
Location

4

10

Halt At
Location

6

12

9-5

Meaning

Bus Error; Illegal Instruction;
Stack Overflow; Nonexistent
Memory; Nonexistent Device; Word
Referenced at Odd Address

Reserved Instruction

PROGRAMMiNG TECHNIQUES

14 16 Trace Trap Instruction {000003) or
T-bH. Set in Status Word (used by
ODT)

20 22 IOT Executed (used by IOX)

24 26 Power Failure or Restoration

30 32 EMT Executed (used by FPP-ll)

34 36 TRAP Executed

9.3 CODING'TECHNIQUE~

Because of the great flexibility in' PDP-II coding, time- and
space-saving ways.' of performing operations may not be immediately
apparent. Some comparisons follow.

9.3.1 Altering Register Contents

The techniques described in this section take
automatic stepping feature of auto increment and
when used especially in TST andCMP instructions.
do not alter operands. However, it is important
following:

advantage of the
autodecrement modes
These instructions
to make note of the

• These alternative ways of altering register contents
affect the condition codes differently.

• Register contents must be even when stepping by 2.

• These techniques work properly only if the registers are
pointing to an. existing memory location; otherwise, a
trap is generated.

1 .. Adding 2 to a register might be accomplished by ADD #2.,RO.

2.

3.

How~ver, this takes two words, whereas TST (RO)+ which also
adds 2 to a register, takes only one word.

Subtracting 2 from a register can
complementary instructions SUB #2~~0
same conditions as in adding)2.

be done by the
or TST -(RO) with the

This can be extended to adding or
different registers, or 4 from
single-word instruction:

subtracting 2 from two
the same register, in one

CMF-' (FW)·h (ROH ;A[I[I 4 TO RO
CMF-' -·(Rl) ,-(R:L) ;SUBTRACT 4 FROM Rl
CMF-' (ROH"-(F~:L> ;A[lD 2 TO RO, SUBTi=i:ACT 2 FROM Rl
CMF-' -(R3)'-(R:L> ;SUBTRACT 2 FROM BOTH R3 AND Rl
CMF-' (R3H, (ROH ;AD[I 2 TO BOTH F~3 AND RO

9-6

PROGRAMMING TECHNIQUES

4. Variations of the examples above can be employed if the
instructions operate on bytes and one of the registers is the
Stack Pointer. These examples depend on the fact that the
Stack Pointer (ai well as the PC) is always auto incremented
or autodecremented by 2, whereas registers RO-R5 step by 1 in
byte instructions.

CMPB (SP)+,(R3)t
CMPB -(R3),-(SP)
CMPB (R3)t,~(SP)

9ADD 2 TO SP ~ND 1 TO R3
9SUBTRACT 1 FROM R3 AND 2 FROM SP
9ADD 1 TO R3, SUBTRACT 2 FROM SP

5. Popping an unwanted word off the processor stack (adding' 2 to
register 6) and testing another value can be two separate
instructions or one combined instruction:

or

TST (SP)t
TST COUNT

MOV COUNT~(SP)t

;POP WORD
;SET CONDITION CODES FOR COUNT

;POP WORD & SET CODES FOR COUNT

The differences are that the TST instructions take three
words and clear the Carry bit, and the MOV instruction takes
two words and doesn't affect the Carry bit.

9.3.2 Subroutines

1. Condition codes set within a subreutine can be used to
conditionally branch upon return to the calling program,
since the RTS instruction does not affect condition codes.

X:

JSR PC,X
BNE ABC

CMP R2,DEF
RTS PC

;CALL SUBROUTINE X
;BRANCH ON CONDITION SET
;IN SUBROUTINE X

·;SUBROUTINE ENTRY

;TEST CONDITION
;RETURN TO CALLING PROGRAM

2. When a JSR first operand register is not the PC, data stored
following a subroutine call can be accessed within the
subroutine by referencing the register. (The register
contains the return address.)

Y:

JSR R5,Y
.WORD HIGH
.WORD LOW

MOV (RS)t,R2
MOV (RS)+,R4

RTS RS

9-7

;LATEST R5 VALUE WILL POINT HERE

;VALUE OF HIGH ACCESSED
;VALUE OF LOW ACCESSED

;RETURN TO LOCATION
;CONTAINED IN RS

PROGRAMMING TECHNIQUES

Another possibility is:

PSTARG:

JSR R5,SUB
BR PSTARG

.WORD A

.WORD B

.WORD C

;LOW-ORDER BYTE IS OFFSET TO RETURN
;ADDRESS, WHICH EQUALS NO. Qf ARGS.
;ADDRESS OF ARG A
9ADDRESS OF ARG B
9ADDRESS OF ARG C

;RETURN ADDRESS

SUB: MOVD@R5,COUNT ;GET NO. OF ARGS FROM LOW BYTE
90F BR (IF DESIRED).

MOV @14(R5),R2 ;E.G., GET 6TH ARGUMENT
NOV @6(R5),Rl ;GET 3RD ARGUMENT

RTS R5 ;RETURNS TO BRANCH WHICH JUMPS PAST
;ARG LIST TO REAL RETURN ADDRESS

In the example above, the branch instruction contributes two main
advantages:

1. If R5 is unaltered when the RTS is executed, return will
always be to the branch instruction. This ensures a return
to the proper location even if the length of the argument
list is shorter or longer than expected.

2. The operand of the branch, being an offset past the argument
list, provides the number of arguments in the list.

Arguments can be made sharable by separating the data from the main
code. This is easily accomplished by treating the JSR and its return
as a subroutine itself:

CALL: ARGLST:

JSR PC,ARGLST

JSR R5,SUB
DR PSTARG

.WORD A

•

3. The examples above all demonstrate the calling of subroutines
from a non-reentrant program. The called subroutine can be
either reentrant or non-reentrant in each case. The
following example illustrates a method of also allowing
calling programs to be reentrant. The arguments and linkage
are first placed on the stack, simulating a JSR R5,SUB, so
that arguments are accessed from the subroutine via X(R5).
Return to the calling program is executed from the stack.

9-8

CALL:

x:
RET:

JSBR:
BRN:

PROGRAMMING TECHNIQUES

MOV R5,-(SP)
MOV JSBR,-(SP)

MOV BRN,-(SP)
MOV SP,R5
JSR PC, SUB
MOV (SP >+, R5

~JSR R6,@R5
BR .+N+N+2

;SAVE R5 ON STACK.
;PUSH INSTRUCTION JSR R6,@R5 ON
;STACK. PUSH ADDRESSES OF ARGU­
;MENTS ON STACK IN REVERSE ORDER
; (SEE BELOW).
;PUSH BRANCH INSTRUCTION ON STACK
;MOVE ADDRESS OF BRANCH TO R5.
9CALL SUB AND SAVE RETURN ON STACK.
9RESTORE OLD R5 UPON RETURN.

;DATA AREA OF PROGRAM.

;BRANCH PAST N WORD ARGUMENTS

The address of an argument can be pushed on the stack in
several ways. Three are shown below.

a. The arguments A, B, and C are read-only constants which are
in memory (not on the stack):

MOV :IJ:C,·· (SP)
MOV :g:B, - (SP)
MOV :fI:A,-(SP)

;PUSH ADDRESS OF C
;PUSH ADDRESS OF B
9PUSH ADDRESS OF A

b. Arguments A, B, and C have their addresses on the stack at
the Lth, Mth, and Nth bytes from the top of the stack.

MOV N(SP),-(SP)
MOV M+2(SP),-(SP)
MOV L+4(SP),-(SP)

;PUSH ADDRESS OF C
;PUSH ADDRESS OF B
;PUSH ADDRESS OF A

Note that the displacements from the top of the stack are
adjusted by two for each previous push because the top of the
stack is being moved on each push.

c. Arguments A, B, and C are on the stack at the Lth, Mth, and
Nth bytes from the top but their addresses are not.

MOV :fI:N+~~, _. (SP) ;PUSH DISPLACEMENT TO ARGUMENT
ADD SP,@SP ;CAL.CULATE ACTUAL ADm~ESS OF (" .,
MOV :Jf:M+4 , .. (SF')
ADD SP,@SP 9ADDRESS OF B
MOV :IJ:L. +6, ." (SP)
ADD SP,@SP ;ADDREBS OF A

9-9

PROGRAMMING TECHNIQUES

When subroutine SUB is entered, the stack appears as follows:

RET

BR .+N+N+2

A

B

JSR R6.@R5 ;BRANCH IS TO HERE

OLD R5

Subroutine SUB returns by means of an RTS R5, which places R5
into the PC and pops the return address from the stack into
R5. This causes the execution of the branch because R5 has
be"en loaded (at location X) with the address of the branch ..
The JSR branched to then returns control to the calling
program, and in so doing, moves the current PC value into the
SP, thereby removing everything above the old R5 from the
stack. Upon return at RET, this too is popped, restoring the
original R5 and SP values.

4. The next example is a recursive subroutine (one that calls
itself). Its function is to look for a matching right
parenthesis for every left parenthesis encountered. .The
subroutine is called by JSR PC,A whenever a left parenthesis
is enco~ntered (R2 points to the character following it).
When a right parenthesis is found, an RTS PC is executed, and
if the right parenthesis is not the la&t legal one, another
is searched for. When the final matching parenthesis is
found, the RTS returns control to the main program.

Al MOVB (R2)f,RO
CMF'B :If: , (, RO
BNE B
JSR F'C,A
BF: A

CMF'B :J:'),RO

BNE A
Ins F'C

;GET SUCCESSIVE CHARACTERS.
;LOOK FOR LEFT PARENTHESIS.
; FOUND'i'
;LEFT F'AREN FOUND, CALL SEL.
;GO LOOK AT NEXT CHARACTER

;LEFT F'AREN NOT FOUND, LOOK FOR
HUGHT F'AREN.
;FOUND'i' IF NOT, GO TO A.
;RETURN F'AREN FOUND. IF NOT LAST,
;GO TO B. IF LAST, GO TO MAIN PROGRAM.

5. The example below illustrates the use of co-routines, called
by JSR PC,@(SP)+. The program uses double buffering on both
input and output, performing as follows:

Write 01 }
Read II
Process 12

concurrently
Write 02 }
Read 12
Process II

concurrently

JSR PC,@(SP)+ always performs a jump to the address specified
on top of the stack and replaces that address with the new
return address. Each time the JSR at B is executed, it jumps
to a different location; initially to A and thereafter to
the location following the JSR executed prior to the one at
B. All other JSR's jump to B+2.

9-10

BEGIN:

PROGRAMMING TECHNIQUES

PC==%7
(do 1/0 resets, inits, etc.)

lOT ;READ INTO 11 TO START PROCESS
.WORD 11
.BYTE READ,INSLOT
MOV *A,-(6) ;INITIALIZE STACK FOR FIRST JSR
JSR PC,@(6)+ iiDO 1/0 FOR 01 AND 11 OR 02 AND 12

BR B

lOT
.wmm 12

perform processin~

iiMORE I/O
fEND OF MAIN lOOP
; 1/0 CO··-ROUTINES
iiREAD INTO 12

.BYTE READ,INSLOT

set parameters to process 11, 01

JSR PC,@(6H
lOT
.WORD 01

iiRETURN TO PROCESS AT B+2
ii WRITE FROM 01

.BYTE WRIT~,OUTSLOT
lOT iiREAD INTO 11
.wmm 11
.BYTE READ,INSLOT

lOT
.WORD 02

set parameters to process 12, 02

iiRETURN TO PROCESS AT B+2
I WR ITE FROM O~~

.BYTE WRITE, OUTSlOT
BR A .READ INTO 12

6. The trap handler, below, simulates a two-word JSR instruction
with a one-word TRAP instruction. In this example, all TRAP
instructions in the program take an operand, and trap to the
handler address at location 34. The table of subroutine
addresses (e.g., A, B, ...) can be constructed as follows;

TABLE:
CALA::::. --TABLE
.WORD A

CALB::: • _. TABLE
.wmm B

fCALLED BY: TRAP CALA

iiCALLED BY: TRAP CALB

Another way to construct the table:

TABLE:
CALA~.-TABLE+TRAP

.WORD A leALLED BY: CAL A

9-11

PROGRAMMING TECHNIQUES

The TRAP handler for either of the above methods follows:

TRAP34: MOV @SP,2(SP) ;REPLACE STACKED PS WITH Per.
SUB t2,@SP ;GET POINTER TO TRAP INSTRUCTION.
MOV @(SP)+,-(~P);REPLACE ADDRESS OF TRAP WITH

9 TRAP INSTRUCTION ITSELF.
ADD tTABLE-TRAP,@SP ;CALCULATE SUBROUTINE ADDR.
MOV @(SP)+,PC 9JUMP TO SUBROUTINE.

In the example above, if the third instruction had been written
MOV @(SP), (SP) it would have taken an extra word since @(SP) is in
Index Mode and assembles as @O(SP]. In the final instruction, a jump
was executed by a MOV @(SP)+,PC because no equivalent JMP instruction
exists.

Following are some JMP and MOV equivalences (note that JMP does not
affect condition codes).

JMP (R4) MOV R4,PC

JMP @ (R4) MOV (R4) ,PC
(2 words) (1 word)

none = MOV @(R4) ,PC

JMP -(R4) = none

JMP @(R4)+ MOV (R4) ,PC

JMP @-(R4) = MOV -(R4) ,PC

none = MOV @(R4)+,PC

none MOV @-(R4) ,PC

JMP X MOV #X,PC

JMP @X = MOV X,PC

none MOV @X,PC

The TRAP handler can be useful, also, as a patching technique.
Jumping out to a patch area is often difficult because a two-word jump
must be performed. However, the one-word TRAP instruction may be used
to dispatch to patch areas. A sufficient number of slots for patching
should first be reserved _in the dispatch table of the TRAP handler.
The jump can then be accomplished by placing the address of the patch
area into the table and inserting the proper TRAP instruction where
the patch is to be made.

,-.iReplacing the saved PS loses the T-bit status. If a breakpoint has
been set on the TRAP instruction, ODT will not gain control again to
reinsert the breakpoints because the T-bit trap will not occur.

9-12

EVEN
PARITY

BIT

o
1

1

o

1

o
o
1
1

o
o

1
o

1

1

o

1
o

o

1

o

1

1
o

o
1
1
o

7-BIT
OCTAL

CODE

000
001

002

003

004

005
006
007
010

011
012

013
014

015

016

017

020
021

022

023

024

025

026
027

030
031
032
033

APPENDIX A

ASCII CHARACTER SET

CHARACTER

NUL
SOH

STX

ETX

EOT

ENQ
ACK
BEL
BS

HT
LF

VT
FF

CR

SO

SI

DLE
DCl

DC2

DC3

DC4

NAK

SYN
ETB

CAN
EM
SUB
ESC

REMARKS

NULL, TAPE FEED, CONTROL SHIFT P.
START OF HEADING; ALSO SOM, START OF
MESSAGE, CONTROL A,
START OF TEXT; ALSO EOA, END OF ADDRESS,
CONTROL B,
END OF TEXT: ALSO EOM, END OF MESSAGE
CONTROL C,
END OF TRANSMISSION (END): SHUTS OFF TWX
MACHINES, CONTROL D,
ENQUIRY (ENQRY); ALSO WRU, CONTROL E,
ACKNOWLEDGE. ALSO RU, CONTROL F.
RINGS THE BELL. CONTROL G.
BACKSPACE: ALSO FEO, FORMAT EFFECTOR.
BACKSPACE SOME MACHINES, CONTROL H.
HORIZONTAL TAB. CONTROL I.
LINE FEED OR LINE SPACE (NEW LINE) :
ADVANCES PAPER TO NEXT LINE, DUPLICATED
BY CONTROL J.
VERTICAL TAB (VTAB). CONTROL K.
FORM FEED TO TOP OF NEXT PAGE (PAGE).
CONTROL L.
CARRIAGE RETURN TO BEGINNING OF LINE.
DUPLICATED BY CONTROL M.
SHIFT OUT: CHANGES RIBBON COLOR TO RED.
CONTROL N.
SHIFT IN: CHANGES RIBBON COLOR
TO BLACK. CONTROL 0
DATA LINK ESCAPE. CONTROL P (DCO).
DEVICE CONTROL 1, TURNS TRANSMITTER
(READER) ON, CONTROL Q (XON).
DEVICE CONTROL 2, TURNS PUNCH OR AUXI­
LIARY ON. CONTROL R (TAPE, AUX ON).
DEVICE CONTROL e, TURNS TRANSMITTER
(READER) OFF, CONTROL S (XOFF).
DEVICE CONTROL 4. TURNS PUNCH OR AUXI­
LIARY OFF. CONTROL T (TAPE, AUX OFF)
NEGATIVE ACKNOWLEDGE: ALSO ERR. ERROR.
CONTROL U.
SYNCHRONOUS IDLE (SYNC). CONTROL V.
END OF TRANSMISSION BLOCK: ALSO LEM.
LOGICAL END OF MEDIUM. CONTROL W.
CANCEL (CANCL). CONTROL X.
END OF MEDIUM. CONTROL Y.
SUBSTITUTE. CONTROL Z.
ESCAPE. PREFIX.

A-I

ASCII CHARACTER SET

1 034 FS FILE SEPARATOR. CONTROL SHIFT L.
0 035 GS GROUP SEPARATOR. CONTROL SHIFT M.
0 036 RS RECORD SEPARATOR. CONTROL SHIFT N.
1 037 US UNIT SEPARATOR. CONTROL SHIFT O.
1 040 SP SPACE.
0 041
0 042 "
1 043 #
0 044 $
1 045 %
1 046 &
0 047 ACUTE ACCENT OR APOSTROPHE.
0 050 (
1 051)
1 052 *
0 053 +
1 054
0 055
0 056
1 057 /
0 060 b
1 061 1
1 062 2
0 063 3
1 064 4
b 065 5
0 066 6
1 067 7
1 070 8
O. 071 9
0 072
1 073 i
0 074 <
1 075
1 076 >
0 077 ?
1 100 @

0 101 A
0 102 B
1 103 C
0 104 D
1 105 E
1 106 F
0 107 G
0 110 H
1 111 I
1 112 J
0 113 K
1 114 L
0 115 M
0 116 N
1 117 0
0 120 P
1 121 Q
1 122 R
0 123 S
1 124 T
0 125 U
0 126 V
1 127 W
1 130 X
0 131 y
0 132 Z
1 133 [SHIFT K

A-2

ASCII CHARACTER SET

0 134 SHIFT L
1 135] SHIFT M
1 136 t SHIFT N
0 137 -+-

0 140 ACCENT GRAVE.
0 175 THIS CODE GENERATED BY ALT MODE.
0 176 THIS CODE GENERATED BY ESC KEY (IF PRESENT)
1 177 DEL DELETE, RUB OUT.

LOWER CASE ALPHABET FOLLOWS (TELETYPE
MODEL 37 ONLY).

1 141 a
1 142 b
0 143 c
1 144 d
0 145 e
0 146 f
1 147 9
1 150 h
0 151 i
0 152 j
1 153 k
0 154 1
1 155 m
1 156 n
0 157 0
1 160 P
0 161 q
0 162 r
1 163 s
0 164 t
1 165 u
1 166 v
0 167 w
0 170 x
1 171 Y
1 172 z
0 173
1 174

A-3

APPENDIX B

PAL-lIS ASSEMBLY LANGUAGE AND ASSEMBLER

B.l TERMINATORS

The list below defines all characters which are considered to be
terminators. The order of the list implies the descending hierarchy
of significance.

Character

CTRL/FORM

LINE FEED

RETURN

%

TAB --?\

BLANK or
SPACE

@

+

&

"

Function

Source line terminator.

Source line terminator.

Source line terminator

Label terminator

Direct assignment delineator

Register term delineator

Item terminator
Field terminator

Item terminator
Field terminator

Immediate expression field indicator

Deferred addressing indicator

Initial register field indicator

Terminal register field indicator

Operand field separator

Comments field delimiter

Arithmetic addition operator

Arithmetic subtraction operator

Logical AND operator

Logical OR operator

Double ASCII text indicator

Single ASCII text indicator.

B-1

PAL-lIS ASSEMBLy LANGUAGE AND ASSEMBLER

B.2 ADDRESS MODE SYNTAX

r is an integer between 0 and 7.

R is a register expression, E is an expression, ER is either a
register expression or an absolute expression in the range of 0 to 7.

Address Address Mode
Mode Name

Number

Or Register

Symbol in
Operand
Field

R

Meaning

Register R contains the operand. R
is a register expression.

lr Deferred Register @R or (R)Register R contains the. operand

2r

3r

4r

Sr

6r

7r

Autoincrement

Deferred
Autoincrement

(ER) +

@(ER)+

Autodecrement -(ER)

Deferred
Autodecrement @-(ER)

Index by the
register
Specified E(ER)

Deferred index
by the register
specified @E(ER)

27 Immediate Operand #E

37 Absolute address @#E

67 Relative address E

77 Deferred rela­
tive address.

B.3 INSTRUCTIONS

@E

address.

The contents of
specified by ER
after being used as
the operand.

the register
is incremented
the address of

ER contains the pointer
address of the operand.
incremented after use.

to the
ER is

The contents of register ER is de­
cremented before it is used as the
address of the operand.

The contents of register ER is de­
cremented before it is used as the
pointer to the address of the oper­
and.

E plus the contents of the register
specified, ER, is the address of
the operand-.-

E. added to ER gives the pointer to
the address of the operand.

E is the operand.

E is the operand address.

E is the address of the operand.

~ is the pointer to the address of
the operand.

The tables of instructions which follow are grouped according
operands they take and according to the bit patterns
op-codes.

to the
of their

B-2

PAL-lIS ASSEMBLY LANGUAGE AND ASSEMBLER

In the representation of op-codes, the following symbols are used:

SS

DD

xx

R

Source operand

Destination operand

8-bit offset to a
location

Integer between 0 and 7

specified by a 6-bit
address mode

specified by a 6-bit
address mode

(branch instructions)

representing a general
register

Symbols used in the description of instruction operations are:

SE Source effective address

DE Destination effective address

() contents of

-+ becomes

PS Processor Status word

The condition codes in the processor status word (PS) are affected
the instructions; these condition codes are represented as follows:

N Begative bit: set if the result is negative

Z Zero bit: set if the result is zero

V OVerflow bit: set if the result had an overflow

C ~arry bit: set if the result had a carry

by

In the representation of the instruction's effect on the condition
codes, the following symbols are used:

* Conditionally set

Not affected

o Cleared

I Set

To set conditionally means to use the instruction's result to
determine the state of the code.

Logical operators are represented by the following symbols:

Inclusive OR

Exclusive OR

& AND

(used over a symbol) NOT (i.e., l's complement)

B-3

PAL-lIS ASSEMBLY LANGUAGE AND ASSEMBLER

B.3.1 Double Operand Instructions OP A,A

Condition Codes
Op-code MNEMONIC Stands for Operation N Z V C

01ssdd mov move (SE)+DE * * 0
llssdd movb move Byte

02SSDD CMP CoMPare (SE)-(DE) * * * *
12SSDD CMPB CoMPare Byte

03SSDD BIT BIt Test (SE)&(DE) * * 0
13SSDD BITB BIt Test Byte

04SSDD BIC BIt Clear (SE) & (DE)-+DE * * 0
14SSDD BICB BIt Clear Byte

05SSDD BIS BIt Set (SE) (DE)-+DE * * 0
15SSDD BISB BIt Set Byte

06SSDD ADD ADD (SE) + (DE)-+DE * * * *
16SSDD SUB SUBtract (DE) - (SE)-+DE * * * *

B.3.2 Single Operand Instructions OP A

Condition Codes
Op-code MNEMONIC Stands for Operation: N Z V C

0050DD CLR CLeaR O-+-DE 0 1 0 0
1050DD CLRB CLeaR Byte

0051DD COM COMplement (DE)-+-DE * * 0 1
1051DD COMB COMplement Byte

0052DD INC INCrement (DE) + l-+-DE * * * 1
1052DD INCB INCrement Byte

0053DD DEC DECrement (DE) -l-+-DE * * *
1063DD DECB DECrement Byte

0054DD NEG NEGate (DE) + l-+-DE * * * *
1054DD NEGB NEGate Byte

0055DD ADC ADd Carry (DE) + (C)-+DE * * * *
1055DD ADCB ADd Carry Byte

0056DD SBC SuBtract Carry (DE) - (C)-+DE * * * *
1056DD SBCB SuBtract Carry Byte

0057DD TST TeST (DE) - O-+DE * * 0 0
1057DD TSTB TeST Byte

B-4

PAL-llS ASSEMBLY LANGUAGE ANO ASSEMBLER

B.3.3 Rotate/Shift
C

006000 ROR ROtate Right ~ 1 '" '" '" '"
106000 RORB ROtate Right '" '" '" '"

Byte
C

006100 ROL ROtate Left r£H ~ '" '" '" '"
106100 ROLB ROtate Left 1< '" 1< '"

Byte

006200 ASR Ari thmetic C '" '" '" '"
Shift Right 0

106200 ASRB Ari thmetic C '" '" '" '" Shift Right
Byte

006300 ASL Arithmetic C '" '" '" '" Shift Left

ict l ,ll~o * 106300 ASLB Arithmetic '" '" '" Shift Left
Byte

000100 JMP JuMP OE-PC

0003DO SWAB SWAp Bytes C{5J '" '" 0 0

B.3.4 Operation Instructions Op

Condi tion Codes
Op-Code MNEMONIC Stands for Operation N Z V C

000000 HALT HALT The computer stops -
all functions.

000001 WAIT WAIT The computer stops -
and waits for an
interrupt.

000002 RTI ReTurn from The PC and PS are
Interrupt popped off the SP

stack:
((SP)) PC
(SP)+2 SP

((SP)) PS

'" '" * '" 000003 000003 breakpoint Trap to location 14 •
trap This is used to

call OOT-ll.

000004 IOT Input/Output Trap to location * * '" *
Trap 20. This is used

to call IOX.

000005 RESET RESET Returns all I/O
device handlers to
power-on state.

B-5

PAL.,...llS ASSEMBLY LANGUAGE"AND ASSEMBLER

Trapping Op or Op E where O<E<377 - -s
104000-
104377

104400-
104777

EMT

TRAP

EMulator
Trap

TRAP

Trap-to loc~tion * * * *
30. This is used
to call system
programs.

Trap to location * * * *
34. This is used
to call any routine
desired by the pro-
grammer.

CONDITION CODE OPERATES

Op-code

000241

000261

000252

000262

000244

000264

000250

000270

000254

000257

000277

000240

MNEMONIC Stands for

CLC CLear Carry bit in ~S.

SEC SEt Carry bit.

CLV CLear oVerflow bit.

SEV SEt oVerflow bit.

CLZ CLear Zero bit.

SEZ SEt Zero bit.

CLN CLear Negative bit.

SEN SEt Negative bit.

CNZ CLear Negative and Zero bits.

CCC CLear all Condition Codes.

SCC Set all Condition Codes.

NOP No-operation.

B.3.5 Branch Instructions Op E Where -12S10«E-.-2)/2<12710

Condition to be
Op-Code MNEMONIC Stands for met if branch is to occur

0004XX BR BRanch always

OOlOXX BNE Branch if Not Equal to Zero Z=O

OO14XX BEQ Branch if EQual (to zero) Z=l

0020XX BGE Branch if Greater than or N(DV=O
equal (to zero)

0024XX BLT Branch if Less Than (zero) N(DV = 1

0030XX BGT Branch if Greater Than Z! (N(DV) =0
(zero)

0034XX BLE Branch if Less tha.n or Z! (N(DV)=1
Equal (to zero)

B-6

PAL-llS ASSEMBLY LANGUAGE AND ASSEMBLER

IOOOXX BPL Branch if PLUS N=O

IOO4XX BMI Branch if MInus N=l

IOIOXX BHI Branch if HIgher cG)z=o

I014XX BLOS Branch if LOwe'r or Same C!Z=1

I020XX BVC Branch if oVerflow Clear V=O

I024XX BVS Branch if oVerflow Set V=l

I030XX BCe (or BHIS)
Branch if Carry Clear C=O
(or Branch if HIgh or Same)

I034XX BCS (or BLO)
Branch if Carry Set (or C=l
Branch if LOw)

B.3.6 Subroutine Call JSR ER,A

Op-code

004RDD

MNEMONIC Stands for

JSR Jump to Sub­
Routine

B.3.7 Subroutine Return

Op-code

00020R

B.3.8

Op-code

0067dd

I067dd

MNEMONIC Stands for

RTS ReTurn from
Subroutine

Extensions for the LSI-II

MNEMONIC Stands for

SXT Sign eXTend

MFPS Move byte
From PS

Operation

Push register on the SP stack, put
the PC in the register:

DE -+- TEMP -a temporary st'orage reg­
ister int~rnal to proc­
essor

(SP)-2-+-SP
(REG) -+- (SP)
(PC)+m REG -m depends upon the ad­

dress mode.
(TEMP) -+- PC

Operation

Put register contents in PC and
pop old contents from SP stack
into register.

Version Of PAL-lIS

Operation Condition Codes
N Z V C

Nx(-l) DE * 0

(PS) DE * * 0

~These extensions are available only with the LSI-II version of
PAL-llS.

B-7

PAL-llS ASSEMBLY LANGUAGE AND ASSEMBLER

1064ss MTPS Move byte
To PS

074rdd XOR eXclusive OR

070rss MUL MULtiply

07lrss DIV DIVide

072rss ASH Arithmetic
SHift

073rss ASHC Ari thmetic
SHift
Combined

0064nn MARK MARK

077rnn SOB Subtract One
and Branch
if 0

000006 RTT ReTurn from
Trap

B.4 ASSEMBLER DIRECTIVES

MNEMONIC Operand Stands for

.EOT none End Of Tape

.EVEN none EVEN

.END E END
(E optional)

. WORD E, E, ••• WORD
E, E, .•• (the void

operator)

. BYTE E, E ••• BYTE

.ASCII Ixxx • .. xl ASCII

.TITLE NAME TITLE

• ASECT none ASECT

.CSECT none CSECT

.LIMIT none LIMIT

B-8

(SE) PS * * * *

r ! (DE) DE * * 0

r x (SE) r * * 0 *
r I (SE) r * * * *

* * * *

* * * *

SP+2xnn SP
R5 PC
SP~ R5

(r)-l r; if
(r) o then
(PC)-2xnn PC

«SP» PC loaded from stack
«SP»+2 SP
((SP)) PS
(SP)+2 SP

Operation

Indicates the physical end of the
source input medium

Insures that the assembly location
counter is even by adding I if it
is odd.

Indicates the physical and logical
end of the program and optionally
specifies the entry point (E)

Generates words of data
Generates words of data

Generates bytes of data

Generates 7-bit ASCII characters
for text enclosed by delimiters.

Generates a name for the object
module.

Initiates the Absolute section .

Initiates the Relocatable Control
section.

Generates two words containing the

.GLOBL

.RAD50

.IFZ

.IFNZ

.IFL

.IFLE

.IFG

.IFGE

.IFDF

.IFNDF

. EN DC

PAL-lIS ASSEMBLY LANGUAGE AND ASSEMBLER

NAME,NAME, ..•
GLOBAL

/XXX/

E

E

E

E

E

E

NAME

NAME

none

RADIX 50

IF E=O

IF E/O

IF E<O

IF E~O

IF E>O

IF E~O

IF NAME
defined

IF NAME
undefined

End of
Conditional

low and high limits of the reloca­
table section.

Specifies each name to be a global
symbol

Generates the RADIX 50
representation of the ASCII
character in delimiters.

Assemble what follows up to the
terminating .ENDC if the expres­
sion E is O.

Assemble what follows up to the
terminating .ENDC, if the expres­
sion E is not o.

Assemble what follows up to the
terminating .ENDC, if the
expression E is less than O.

B-9

Assemble what follows up to the
terminating .ENDC, if the
expression E is less than or equal
to o.

Assemble what follows up to the
terminating .ENDC, if the
expression E is greater than O.

Assemble what follows up to the
terminating .ENDC, if the
expression E is greater than or
equal to o.

Assemble what follows
terminating .ENDC if
NAME is defined.

up to the
the symbol

Assemble what follows up to the
terminating .ENDC if the symbol
NAME is undefined.

Terminates the range of a condi­
tional directive.

PAL-llS ASSEMBLY LANGUAGE AND ASSEMBLER

B.S ERROR CODES

Error Code

A

B

D

I

L

M

N

P

Q

R

S

T

U

Meaning

Addressing error.
Tnstruction is

An address within the
incorrect. Also includes

relocation errors.

Bounding error. Instructions or word data are
being assembled at an odd address in memory.

Doubly-defined symbol referenced. Reference was
made to a symbol which is defined more than once.

Illegal character detected. Ilegal characters
which are also non-printing are replaced by a ?
on the listing.

Line buffer overflow. All extra characters beyond
72 are ignored.

Multiple definition of a label. A label was
encountered which was equivalent (in the first six
characters) to a previously encountered label.

Number containing an 8 or 9 was not terminated by
a decimal point.

Phase error. A label's definition or value varies
from one pass to another.

Questionable syntax. There are missing arguments
or the instruction scan was not completed, or a
carriage return was not followed by a linefeed or
form feed.

~egister-type error. An invalid use
reference to a register has been made.

of or

Symbol table overflow. When the quantity of
user-defined symbols exceeds the allocated space
available in the user's symbol table, the
assembler outputs the current source line with the
S error code, then returns to the command string
interpreter to await the next command string to be
typed.

Truncation err.or. More than the allotted number
of bits were input so the leftmost bits were
truncated. T error does not occur for the result
of an expression.

Undefined symbol. An undefined symbol was
encountered during the evaluation of an
expression. Relative to the expression, the
undefined symbol is assigned a value of zero.

B-IO

PAL-lIS ASSEMBLY LANGUAGE AND ASSEMBLER

B.6 INITIAL OPERATING PROCEDURES

Loading: Use Absolute Loader. The start address of the
Loader must be in the console switches.

Storage Requirements:PAL-llS uses 8K of memory.

Starting: Immediately upon loading, PAL-lIS will be in
control and initiate dialogue.

Ini tial Dialogue:

Printout Inquiry

*S What is the input device of the ~ource symbolic tape?

*B What is the output device of the .!!inary object tape?

*L What is the output device of the assembly ~isting?

*T What is the output device of the symbol Table?

Each of these questions may be answered by anyone of the following
characters:

Character

T

L

H

P

Answer Indicated

!eleprinter keyboard

~ow-speed reader or punch

gigh-speed reader or punch

Line Printer

Each of these answers may be followed by the other characters
indicating options:

Option Typed Function to be performed

/1 on pass 1

/2 on pass 2

/3 on pass 3

/E errors to be listed on the Teletype on the same pass
(meaningful only for *B or *L) .

Each answer is terminated by typing the RETURN key. A RETURN alone as
answer will delete the function.

Dialogue During Assembly:

Printout

EOF ?

END ?

Response

Place next tape in reader and
statement may be forced by
RETURN.

type RETURN. A .END
typing E followed by

Start next pass by placing first tape in reader and
typing RETURN.

B-11

EOM ?

Restarting:

PAL-lIS ASSEMBLY LANGUAGE AND ASSEMBLER

If the end-of-medium is on the
device may be readied and
continued by typing RETURN.

listing device, the
the assembly may be

If the end-of-medium is on
assembler will discontinue
itself.

the binary device, the
the assembly and restart

Type CTRL/P. The initial dialogue will be started
again.

B-12

APPENDIX C

PAL-IIA ASSEMBLY LANGUAGE AND ASSEMBLER

C.l SPECIAL CHARACTERS

Character

form feed

line feed

carriage return

%

tab

space

@

+

&

"

Function

Source line terminator

Source line terminator

Source statement terminator

Label terminator

Direct assignment indicator

Register term indicator

Item terminator
Field terminator

Ite"m terminator
Field terminator

Immediate expression indicator

Deferred addressing indicator

Initial register indicator

Terminal register indicator

Operand field separator

Comment field indicator

Arithmetic addition operator

Arithmetic subtraction operator

Logical AND operator

Logical OR operator

Double ASCII character indicator

Single ASCII character indicator

Assembly location counter

C-1

PAL-IIA ASSEMBLY LANGUAGE AND ASSEMBLER

C.2 ADDRESS MODE SYNTAX

n is an integer between 0 and 7 representing a register. R is a
register expression, E is an expression, ER is either a register
expression or an expression in the range 0 to 7.

Format

R

@R or (ER)

(ER)+

@(ER)+

-(ER)

@- (ER)

E (ER)

@E (ER)

#E

@#E

E

@E

Address
Mode
Name

Register

Deferred Register

Autoincrement

Deferred Auto­
increment

Autodecrement

Deferred 'Auto­
decrement

Index

Deferred Ind,ex

Immediate

Absolute

Relative

Deferred Relative

C-2

Address
Mode
Number

On

In

2n

3n

4n

5n

6n

7n

27

37

67

77

Meaning

Register R contains the
operand. R is a
register expression.

Register R contains the
operand address.

The contents of the
register specified by ER
are incremented after
being used as the
address of the operand.

ER contains the pointer
to the address of the
operand. ER is
incremented after use.

The contents of register
ER are decremented
before being used as the
address of the operand.

The contents of register
ER are decremented
before being used as the
pointer to the address
of the operand.

E plus the contents of
the register specified,
ER, is the address of
the operand.

E added to ER gives the
pointer to the address
of the operand.

E is the operand.

E is the address of the
operand.

E is the address of the
operand.

E is the pointer to the
address of the operand.

PAL-IIA ASSEMBLY LANGUAGE AND ASSEMBLER

C.3 INSTRUCTIONS

The instructions which follow are grouped according to the operands
they take and the bit patterns of their op-codes.

In the representation of op-codes, the following symbols are used:

SS

DD

xx

R

Source operand specified by a 6-bit address mode.

Destination operand specified by a 6-bit address
mode.

8-bit offset to a location (branch instructions)

Integer between 0 and 7 representing a general
register.

Symbols used in the description of instruction operations are:

SE Source Effective address

DE Destination Effective address

() Contents of

Is transferred to

PS Processor Status word

The condition codes in the processor status word (PS) are affected by
the instructions. These condition codes are represented as follows:

N ~egative bit: set if the result is negative

Z Zero bit: set if the result is zero

V oVerflow bit: set if the operation caused an
overflow

C .£arry bit: set if the operation caused a
carry

In the representation of the instruction's effect' on the condition
codes, the following symbols are used:

* Conditionally set

Not affected

o Cleared

I Set

To set conditionally means to use the instruction's result to
determine the state of the code (see the PDP-II Processor Handbook).

Logical operations are represented by the following symbols:

Inclusive OR

Exclusive OR

& AND

(used over a symbol) NOT (i.e., l's complement)

C-3

PAL-llA ASSEMBLY LANGUAGE AND ASSEMBLER

C.3.l Double-Operand Instructions Op A,A

Status Word
Condition Codes

Op-Code MNEMONIC Stands for Operation N Z V C

OlSSDD MOV MOVe (SE) -.. DE * * 0
llSSDD MOVB MOVe Byte

02SSDD CMP CoMPare _(SE) - (DE) * * * *
l2SSDD CMPB CoMPare Byte

03SSDD BIT BIt Test (SE) & (DE) * * 0
13SSDD BITB BIt Test Byte

04SSDD BIC BIt Clear (SE) & (DE) -.. DE * * 0
14SSDD BICB BIt Clear Byte

05SSDD BIS BIt Set (SE) ! (DE) -.. DE * * 0
l5SSDD BISB BIt Set Byte

06SSDD ADD ADD (SE) + (DE) -.. DE * * * *
l6SSDD SUB SUBtract (DE) - (SE) -.. DE * * * *

C.3.2 Single-Operand Instructions Op A

Status Word
Condition Codes

Op-Codes MNEMONIC Stands for Operation N Z V C

0050DD CLR CLeaR 0 DE 0 1 0 0
lO50DD CLRB CLeaR Byte

005lDD COM COMplement (DE) DE * * 0 1
lO5lDD COMB COMplement Byte

0052DD INC INCrement (DE)+l DE * * *
lO52DD INCB INCrement Byte

0053DD DEC DECrement (DE)-l DE * * *
lO53DD DECB DECr.ement Byte

0054DD NEG NEGate (DE)+l DE * * * *
lO54DD NEGB NEGate Byte

0055DD ADC ADd Carry (DE) + (C) -.. DE * * * *
lO55DD ADCB ADd Carry Byte

0056DD SBC SuBtract Carry (DE)-(C) -.. DE * * * *
lO56DD SBCB SuBtr.act Carry Byte

0057DD TST TeST (DE)-O -"DE * * 0 0
lO57DD TSTB TeST Byte

C-4

PAL-11A ASSEMBLY LANGUAGE AND ASSEMBLER

C.3.3 Rotate/Shift Instructions Op A

Status Word
Condition Codes

Op-Code MNEMONIC Stands for Operation N Z V C
C 15 0

0060DD ROR ROtate Right cD=' 1 * * * *

1060DD RORB ROtate Right even or odd byte
Byte ~, 1 * * * *

0061DD ROL ROtate Left cD~ 1 * * * *

1061DD ROLB ROtate Left even or odd byte
Byte rD.J 1 * * * *

C 1514 110
0062DD ASR Arithmetic

~I~ ~1 Shift Right * * * *

1062DD ASRB Arithmetic even or odd byte
Shift Right

~l~ ~TI * * * *
Byte

c
0063DD ASL Arithmetic

~d: ~2,o Shift Left * *' * *

1063DD ASLB Arithmetic even or odd byte
Shift Left ~:I : «0

* * * *
Byte

0001DD JMP JuMP DE -+ PC

15 f 8·7 ° 0003DD SWAB SWAp Bytes 0 I I I
~~ * * 0 0

.'
C.3.4 Operate Instructions Op

Status Word
Condition Codes

Op-Code MNEMONIC Stands for Operation N Z V C

000000 HALT HALT The computer stops all
functions.

000001 WAIT WAIT The computer stops and
waits for an inter-
rupt.

C-5

PAL-llA ASSEMBLY LANGUAGE AND ASSEMBLER

000002 RTI ReTurn The PC and PS are popped * * * *
from off the SP stack:
Inter-
rupt ((SP)) -+ PC

(SP) +2 SP
«SP» PS
(SP) +2 SP

RTI is also used to re-
turn from a trap.

000005 RESET RESET Returns all I/O devices
to power-on state.

C.3.5 Trap Instructions Op or Op E Where 0~E~377 8

Status Word
Condition Codes

Op-Code MNEMON;IC Stands for Operation N Z V C

*000003 (none) (breakpointTrap to location 14. This * * * *
trap) is used to call ODT.

*000004 IOT Input/Out- Trap to location 20. This * * * *
put Trap is used to call IOX.

104000- EMT EMulator Trap to location 30. This * * * *
104377 Trap is used to call system pro-

grams.

104400 TRAP TRAP Trap to location 34. This * * * *
104777 is used to call any routine

desired by the programmer.

*Op (only)

CONDITION CODE OPERATES

Op-Code MNEMONIC Stands for

000241 CLC CLear Carry bit in PS.

000261 SEC SEt Carry bit.

000242 CLV CLear oVerflow bit.

000262 SEV SEt oVerflow bit.

000244 CLZ CLear Zero bit.

000264 SEZ SEt Zero bit.

000250 CLN CLear Negative bit.

000270 SEN SEt Negative bit.

000254 CNZ CLear Negative and Zero bits.

000257 CCC Clear all Condition Codes.

000277 SCC Set all Condition Codes.

C-6

PAL-IIA ASSEMBLY LANGUAGE AND ASSEMBLER

C.3.6 Branch Instructions Op E where-128 l0 S. (E-.-2)/2s.l27 l0

Condition to be met if
Op-Code MNEMONIC Stands for branch is to occur

0004XX BR BRanch always

OOlOXX BNE Branch if Not Equal Z=O
(to zero)

0014XX BEQ Branch if EQual (to Z=l
zero)

0020XX BGE Branch if Greater than N(DV=O
or Equal (to zero)

0024XX BLT Branch if Less Than N(DV=l
(zero)

0030XX BGT Branch if Greater Than Z! (N(DV) =0
(zero)

0034XX BLE Branch if Less than or Z! (N(DV) =1
Equal (to zero)

1000XX BPL Branch if PLus N=O

1004XX BMI Branch if MInus N=l

1010XX BHI Branch if HIgher C Z 0

1014XX BLOS Branch if LOwer or Same C Z 1

1020XX BVC Branch if oVerflow Clear V=O

1024XX BVS Branch if oVerflow Set V=l

1030XX BCC (or Branch if Carry Clear C=O
BHIS) (or Branch if HIgher or

Same)

1034XX BCS (or Branch if Carry Set (or C=l
BLO) Branch if LOwer)

C.3.7 Subroutine Call Op ER, A

Op-Code MNEMONIC Stands for

004RDD JSR Jump to SubRoutine

C-7

Operation

Push register on the SP
stack,put the PC in the
register:

DE (TEMP) - a
storage
internal

temporary
register

to
processor.

(SP) -2+SP
(REG) -+- (SP)
(PC) -+- REG
(TEMP) -+- PC

PAL-IIA ASSEMBLY LANGUAGE AND ASSEMBLER

C.3.8 Subroutine Return Op ER

Op-Code MNEMONIC Stands for

00020R RTS ReTurn from Sub­
routine

C.4 ASSEMBLER DIRECTIVES

Op-Code MNEMONIC Stands for

.EOT End Of Tape

. EVEN EVEN

.END mEND
(m optional)

. WORD WORD
E,E, ..

Operation

Put register contents into PC
and pop old contents from SP
stack into register.

Operation

Indicates the physical end of
the source input medium

Ensures that the
location counter is
adding I if it is odd

assembly
even by

Indicates the physical and
logical end of the program and
optionally specifies the entry
point (m)

Generates words of data

E, E, ... (the void operator) Generates words of data

.BYTE BYTE Generates bytes of data
E,E, .•.

.ASCII ASCII Generates 7-bit Ascii
Ixxx • .• xl character for the text

enclosed by delimiters

,
C.S ERROR CODES

Error Code Meaning

A ~ddressing error. An address within the instruction is
incorrect.

B Bounding error. Instructions or word data are being
assembled at an odd address in memory.

D Doubly-defined symbol referenced. Reference was made to a
symbol which is defined more than once.

I Illegal character detected. Illegal characters which are
also non-printing are replaced by a? on the listing.

L Line buffer overflow. Extra characters (more than 7210)
are ignored.

M Multiple definition of a label. A label was encountered
which was equivalent (in the first six characters) to a
previously encountered label.

N ~umber containing an 8 or 9 has a decimal point missing.

P Ehase error. A label's definition or value varies from
one pass to another.

C-8

PAL-llA ASSEMBLY LANGUAGE AND ASSEMBLER

Q- Questionable syntax. There are missing arguments or the
instruction scan was not completed, or a carriage return
was not followed by a line feed or form feed.

R Register-type error. An invalid use of or reference to a
register has been made.

S Symbol-table overflow. When the. quantity of user-defined
symbols exceeds the allocated space available in the
user's symbol table, the assembler outputs the current
source line with the S error code, then returns to the
command string interpreter to await the next command
string to be typed.

T Truncation error. A number was too big for the allotted
number of bits; the leftmost bits were truncated. T
error does not occur for the result of an expression.

U Undefined symbol. An undefined symbol was encountered
during the evaluation of an expression. Relative to the
expression, the undefined symbol is assigned a value of
zero.

C.6 INITIAL OPERATING PROCEDURES

Loading: Use Absolute Loader (see Chapter 6). Make sure that the
start address of the absolute loader is in the switches
when the assembler is loaded.

Storage Re- PAL-llA exists in 4K and 8K versions.
quirements:

Starting

Initial
Dialogue:

Immediately upon loading, PAL-llA will be in control and
initiate dialogue.

Printout Inquiry

*S What is the input device of the Source
symbolic tape?

*B What is the output device of the ~inary object
tape?

*L What is the output device of the assembly
:histing?

*T What is the output device of the symbol !able?

Each of these questions may be answered by one of the following
characters:

Character

T

L

H

P

Answer Indicated

~eletype keyboard

:how-speed reader or punch

~igh-speed reader or punch

line Printer (8K version only)

C-9

PAL-IIA ASSEMBLY LANGUAGE AND ASSEMBLER

Each of these answers may be followed by other characters indicating
options:

Option Typed Function to be Performed

II on pass 1

12 on pass 2

13 on pass 3

IE errors to be listed on the Teletype
on the same pass (meaningful or *B
or *L only)

Each answer is terminated by typing the RETURN key. A RETURN alone as
answer will delete the function.

Dialogue during assembly:

Printout

EOF ?

END ?

EOM ?

Response

Place next tape in reader and type RETURN. A
.END statement may be forced by typing E
followed by RETURN.

Start next pass by placing first tape in
reader and typing RETURN.

If listing on HSP or LPT,
paper and type RETURN.
start assembly again.

replenish tape or
If binary on HSP,

Restarting: Type CTRL/P. The initial dialogue will be
started again.

C-IO

APPENDIX D

TEXT EDITOR, ED-II

D.l INPUT/OUTPUT COMMANDS

R Reads a page of text from input device, and appends it to
the contents (if any) of the page buffer. Dot is moved to
the beginning of the page and Marked. (See Band M below.)

o Opens the input device when the user wishes to continue
input with a new tape in the reader.

ARGUMENTS

(n) beginning at Dot and ending
with nth line feed character. ~n} o L Lists the character

string @

/
(-n) beginning with 1st character

following the (n+l)th previous
line feed and terminating at
Dot.

(0) beginning with 1st character
of current line and ending at
Dot.

(@) bounded by Dot and the Marked
location (see M). ~n} o P Punches the character

@

/
string (/) beginning at Dot and ending

with the last character in the
page.

F Outputs a Form Feed character and four inches of blank
tape.

nT Punches four inches of Trailer (blank tape) n times.

nN Punches contents of the page buffer (followed by a trailer
if a form feed is present), deletes the contents of the
buffer, and reads the next page into the page buffer. It
does this n times. At completion, Dot and Mark are located
at the beginning of the page buffer.

V Lists the entire line containing Dot (i.e., from previous
line feed to next line feed or form feed).

< Same as -IL. If Dot is located at the beginning of a line,
this simply lists the line preceding the current line.

> ~iststhe line following the current line.

D-l

TEXT EDITOR, ED-II

D.2 POINTER-POSITIONING COMMANDS

n
-n

o
@

/

B Moves Dot to the beginning of the page.

E Moves Dot to the end of the page.

M Marks the current position of Dot for later reference in a
command using the argument @. Certain commands implicitly
move Mark.

Moves Dot:

A Moves Dot:

(n)
(-n)
(0)
(@)
(/)

(n)
(-n)

(0)
(@)
(/)

forward past n characters
backward past n characters
to the beginning of the current line
to the Marked location
to the end of the page

forward past n ends-of-lin~s
to first characte~ following the (n+l)th
previous end-of-line
to the beginning of current line
to the Marked location
to the end of the page

D.3 SEARCH COMMANDS

nG
XXXX

H
XXXX

Gets (searches for) the nth occurrence of the specified
character string on the current page. Dot is set
immediately after the last character in the found text,
and the characters from the beginning of the line to Dot
are listed on the teleprinter. If the search is
unsuccessful, Dot will be at the end of the buffer and a
? will be printed out.

Searches the wHole file for ,the next occurrence, of the
specified character string. Combines G and N commands.
If search is not successful on current page, it continues
on Next page. Dot is set immediately after the last
charact~r in the found text and the characters from the
beginning of the line to Dot are listed on the
teleprinter. If the Search object is not found, Dot will
be at the end of the buffer and a? will be printed out.
In such a case, all text scanned is copied to the output
tape.

D.4 COMMANDS TO MODIFY THE TEXT

nD
nC
XXXX

-nD
-nC
XXXX

Character-Oriented

DeleteS} the following
Changes n characters

DeleteS} the previous
Changes n characters

D-2

nK
nX
XXXX

-nK
-nX
XXXX

Line-Oriented

Kills }
eXchanges

Kills }
eXchanges

the character string
beginning at Dot
and ending at the
nth end-of-line.

the character strinq
beginning with th
first character fol­
lowing the (n+l)th
previous end-of-line
and ending at Dot.

aD
OC
XXXX
@D
@C
XXXX

/D
/C
xxxx

I
XXXX

TEXT EDITOR, ED-ll

D,eletes } the current line OK Kills } the current line up
Changes up to Dot OX eXchanges to Dot.

XXXX
Deletes } The character @K Kills } the character string
Changes string begin- @X eXchanges beginning at Dot and

ning at Dot and XXXX ending at a previ-
ending at a pre- ously Marked loca-
viously Marked tion.
location.

DeleteS} the character /K Kills } the character
Changes string begin- /X eXchanges string begin-

ning at Dot and XXXX ning at Dot and
ending with the ending with the
last character last character
of the page. of the page.

Inserts the specified text. LINE FEED terminates Text Mode and
causes execution of' the command. Dot is set to the location
immediately following the last character inserted. If text was
inserted before the position of Mark, ED~11 performs an M
command.

D.5 SYMBOLS

D.6

Dot

t

Location following the most recent character operated
upon.

Holding down the CTRL key (not the t key) in
combination with another keyboard character.

RETURN If in command mode, it executes the current command;
goes into Text Mode if required. If in Text Mode, it
terminates the current line, enters a carriage return
and line feed into the buffer and stays in text mode.
At all times causes the carriage to move to the
beginning of a new line. (RETURN ,is often symbolized
as .,..)) .

(Typing the
unless the

LINE FEED key)
first character

executes the current command.

Terminates Text Mode
typed in Text Mode;

CTRL/FORM A Form feed which terminates, and thus defines, a
page of the user's text.

GROUPING OF COMMANDS

No Arguments Argument n only All Arguments (n,-n,O,@,/)

V (Verify: G (Get) A (Advance)
Lists current line) N (Next) C (Change)

< (Lists previous line) T (Trailer) D (Delete)
> (Lists next line) J (Jump)
B (Begin) K (Kill)
E (End) L (List)
F (Form feed) P (Punch)
H (wHole) X (eXchange)
I (Insert)
M (Mark)
0 (Open)
R (Read)

D-3

TEXT EDITOR, ED-ll

Requiring Line Character
Text Mode Oriented Oriented

C (Change) A (Advance) J (Jump)
G (Get) K (Kill) D (Delete)
H (wHole) L (List)
I (Insert) P (Punch)
X eXchange) X eXchange) C (Change)

D.7 OPERATING PROCEDURES

D.7.1 Loading: Use Absolute Binary Loader (see Chapter 5).

D.7.2 Storage Requirements: ED-II uses all of core.

D.7.3 Starting: Immediately upon loading, ED-II will be in control.

D.7.4 Initial Dialogue:

Program Types User Response

*1 L-.J (if LSR is to be used for source input)
H-.J (if HSR is to be used for source input)

*0 L...J (if LSP is to be used for edited output)
H-.J (if HSP is to be used for edited output)

If the output device is the high-speed punch (HSP) , Editor enters
command mode to accept input. Otherwise the sequence continues with:

LSP OFF? ~(when LSP is off)

Upon input of ~ from the keyboard, Editor enters command mode and is
ready to accept input.

D.7.5 Restarting:

Type CTRL/P twice, initiating the normal
initial dialogue. The text to be edited
should be loaded (or reloaded) at this
time.

D-4

APPENDIX E

DEBUGGING OBJECT PROGRAMS ON-LINE, ODT-ll AND ODT-llX

E.I SUMMARY OF CONTENTS

ODT indicates readiness to accept commands by typing * or by opening a
location by printing its contents.

l. ODT-ll
n/

\

RETURN key

+
t

+

$n/

n;G

niB

;B

$B/

i P

niP

$M/

n;W

n;E

n/ (con-
tents) miO

$S/

$P/

opens word n

reopens last word opened

closes open location

opens next location

opens previous location

opens relatively addressed word

opens general register n (0-7)

goes to word n and starts execution

sets breakpoint at word n

removes breakpoint

opens breakpoint status word

proceeds from breakpoint, stops again on next
encounter

proceeds from breakpoint, stops again on nth
encounter

opens mask for word search

searches for words which match n in bits specified
in $M

searches for words which address word n

calculates offsets from n to m

opens location containing user program's status
register

opens location containing ODT's priority level

E-1

DEBUGGING OBJECT PROGRAMS ON-LINE, ODT-II AND ODT-IIX

2. ODT-llX

NOTE

If a word is currently open, new
contents for the word may be typed
followed by any of the commands
RETURN,1-, t, -+- or. The open word will be
modified and closed before the new
command is executed.

In addition to the commands of the regular version, the extended
version has the foll,:owing:

n\

\

@

>

<

n;rB

;rB

;B

$B/

inS

niP

;S

opens byte

reopens last byte opened

opens the absolutely addressed word

opens the word to which the branch refers

opens next location of previous sequence

(r between 0 and 7) sets breakpoint r at word n

removes breakpoint r

removes all breakpoints

opens breakpoint 0 status word. Successive LINE
FEEDs open words for other breakpoints and single­
instruction mode.

enables Single-instruction mode (n can have any
value and is not significant)

in single-instruction mode, Proceeds with program
run for next n instructions before reentering ODT
(if n is missing, it is assumed to be 1)

disables Single-instruction mode

E-2

APPENDIX F

LOADING AND DUMPING CORE MEMORY

F.l THE BOOTSTRAP LOADER

This appendix pertains only to systems with a Switch Register.

F.l.l Loading The Bootstrap Loader

The Bootstrap Loader should be toggled into the highest core memory
bank.

xx7744
xx7746
xx7750
xx7752
xx7754
xx7756
xx7760
xx7762
xx7764
xx7766
xx7770
xx 7772
xx7774
xx7776

016701
000026
012702
000352
005211
105711.
100376
116162
000002
xx7400
005267
177756
000765
yyyyyy

xx represents the highest available memory bank. For example, the
first location of the loader would be one of the following, depending
on memory size, and xx in all subsequent locations would be the same
as the first.

Location Memory Bank Memory Size

017744 0 4K
037744 1 8K
057744 2 12K
077744 3 16K
117744 4 20K
137744 5 24K
157744 6 28K

The contents of location xx7776 (yyyyyy) in the Instruction column
above should contain the device status register address of the paper
tape reader to be used when loading the bootstrap formatted tapes
specified as follows:

Teletype Paper Tape Reader -- 177560

High-speed Paper Tape Reader -- 177550

F-l

LOADING AND DUMPING CORE MEMORY

11-0068

Figure F-l Loading and Verifying the Bootstrap Loader

F-2

LOADING AND DUMPING CORE MEMORY

L..----r-----I

'------.----'

------I see Fig ure E-1

_________ Code 351 must be

over reader sensors

------I see Figure 5-5

11-0067

Figure F-2 Loading Bootstrap Tapes into Core

F.2 THE ABSOLUTE LOADER

1. Loading the Absolute Loader

The Bootstrap Loader is used to load the Absolute Loader into
core. (See Figure F-2.) The Absolute Loader occupies
locations xx7474 through xx7743, and its starting address is
xx7500.

2. Loading with the Absolute Loader

When using the Absolute Loader, there are three types of
loads available: normal, relocated to specific address, and
continued relocation.

Optional switch register settings for the three types of loads are
listed below.

F-3

LOADING AND DUMPING CORE MEMORY

Type of load

Normal

Relocated - continue loading
where left off

Relocated - load in specified
area of core

F.3 CORE MEMORY DUMPS

The two dump programs are

Switch Register
Bits 1-14 Bit 0

(ignored)

o

nnnnn
(speci1ied address)

o
1

1

DUMPTT, which dumps the octal representation of the contents
of all or specified portions of core onto the teleprinter,
low-speed or high-speed punch, or line printer.

DUMPAB, which dumps the absolute binary code of the contents
of specified portions of core onto the low-speed (Teletype)
or high-speed punch.

Both d~mps are supplied on punched paper tape in bootstrap and
absolute binary formats. The following figure summari.zes loading and
using the Absolute binary tapes.

F-4

LOADING AND DUMPING CORE MEMORY

ABS
LOADER)-~N~O~ ____ .,
IN CORE

TAPE
READS IN

YES

CHECK- YES
SUM ERROR)----'--<>-{

NO

HSR = 177550
LSR = 177560
xx IS HIGHEST
CORE MEMORY
BANK

(This is necessary only
if using a reader different
from that used by the
bootstrap loader.)

Figure F-3 Loading with the Absolute Loader

F-5

! SEE FIGURE F-1 !

TOGGLE IN NO
BOOT LOADER

! SEE FIGURE F-21- - - -'-

TTY

LOADING AND DUMPING CORE MEMORY

BOOT

LOADER
IN CORE

YES

LOAD
DUMP TAPE

TTY OR LSP

SETSR TO
177564

OR TTY

PRESS
PUNCH ON

SPECIFY
READER IN

xx7766

OUTPUT
DEVICE FOR

DUMP

LP

SETSR TO
177514

PRESS
CONTINUE

LSR = 177560
HSR = 177550
xx IS HIGHEST CORE
MEMORY BANK

ABS
! SEE FIGURE F-2!

NO LOAD
ABS LOADER

YES

LOAD
DUMP TAPE

___ -1 SEE FIGURE F-3!

SETSRTO
TRANSFER
ADDRESS

PRESS
LOADADDR
AND START

HSP

SETSRTO
177554

Figure F-4 Dumping Using DUMPAB or DUMPTT

F-6

LOADING AND DUMPING CORE MEMORY

Figure F-4 (continued). Dumping Using DUMPAB or DUMPTT

F-7

APPENDIX G

INPUT/OUTPUT PROGRAMMING, lOX

G.l 'INSTRUCTION SUMMARY

l. Format

lOT
. WORD (an address)
.BYTE (a command code, a slot number of a device)
. WORD (done address) ;READR AND WRITR ONLY

2. Command Codes:

INIT 1
RESET 2
RSTRT 3
WAITR 4

SEEK 5
READ 11

WRITE 12
READR 13
WRITR 14

G.2 PROGRAM FLOW SUMMARY

1. Set up buffer header:

BUFFER
HEADER

Location

Buffer and
Buffer+l

Buffer+2

Buffer+3
Buffer+4 and
Buffer+5

Buffer+6

Mode Byte Format

Mode Byte Format

Bits 7

1= NO ECHO

0= EC.HO

6 5

Contents

Maximum number of data bytes (unsigned
integer)

Mode of data (byte)

Status of data (byte)
Number of data bytes involved in trans­
fer (unsigned integer)

Actual data begins here.

4 3 2 o Bits

UNFOR-
MATTED BINARY =1

FOR-
MATTED ASCII =0

INPUT/OUTPUT PROGRAMMING, lOX

Coding Mode Byte

Formatted ASCII o (or 200 to suppress echo)

Formatted Binary 1

Unformatted ASCII 2 (or 202 to suppress echo)

Unformatted Binary 3

Status Byte Format

Status Byte Format

7 6 5 4 3 2 o
I I I I

1 = 1 = 1 = SEE CODES
DONE EOM EOF I I I I

NON-FATAL ERRORS

Coding Non-Fatal Errors

2 checksum error (formatted binary)
3 truncation of a long line
4 an improper mode

2. Assign devices to slots in Device Assignment Table:

(RESET and INIT commands)

Slot numbers are in the range 0 to 7.

Device Codes:

KBD
TTY
LSR

1
2
3

LSP
HSR
HSP

4
5
6

LPT 10

3. Use a data transfer command to initiate the transfer.

G.3 FATAL ERRORS

Fatal errors result in a jump to 40 with RO set to the error code.
R1 is set to the value of the PC for error code O.
Rl to be set to an lOT argument or to the instruction

Errors 1-5 cause
following the

arguments.

Fatal Error Code

o

1

2

3

4

5

Reason

Illegal Memory Reference, SP overflow, illegal
instruction

Illegal command

Slot out of range

Device out of range

Slot not inited

Illegal data mode
G-2

APPENDIX H

SUMMARY OF FLOATING POINT MATH PACKAGE, FPMP-II

This appendix lists all the global entry points of FPMP-II and
provides a brief description of the purposes of each. Sections H.l
and H.2 are for reference when it is desired to call FPMP-II routines
directly (i.e., without the use of the TRAP handler). Entry names
preceded by an octal number can be referenced via the TRAP handler.
The number is the "routine number" referred to in the FPMP-II manual.
If the number is enclosed in parentheses, the routine cannot be
accessed by the present TRAP handler, but has been assigned a number
for future use. For a more detailed explanation of the Floating Point
Math Package, refer to the FPMP-II User's Manual DEC-II-NFPMA-A-D.

Examples ~f the calling conventions are:

POLISH MODE:

JSRR:

XX:

JSR R4,$POLSH
$subrl
$subr2

$subrn
• WORD .+2

JSR
BR
• WORD
. WORD

• WORD

RS,subr
XX
argl
arg2

argn

jenter Polish mode
;call desired subroutines

;call last subroutine desired
;leave Polish mode

'jcall desired subroutine

;subroutine argument address

;last argument
ireturn point

---------~--~----~--------~----~-------------------------------------

H-1

JPC:

SUMMARY OF FLOATING POINT MATH PACKAGE, FPMP-ll

push args onto stack
JSR PC,subr

H.l OTS ROUTINES

Thesecare the routines taken from the FORTRAN operating time system.
The codes used in the £ollowingtable ar~:

S Routine is included in the standard single precision (2-word)
package.

D = Routine is included in the standard double precision (4-word)
package.

SD = Routine is included· in both standard packages.

Octal codes shown in parenthe.ses are not yet implemented.

NAME

$ADD

$ADR

AINT

ALOG

ALOGIO

ATAN

ATAN2

$CMD

OCTAL
CODE PKG

14 D

12 S

26 S

53 S

54 S,

42 S

(43) S

16 D

#: OF
ARGU

2

2

1

1

1

1

2

2

MODE

Polish

Polish

J5RR

J5RR

J5RR

J5RR

J5RR

Polish

H-2

DESCRIPTION

The double precision add
routine. Adds the top stack
item (4-words) to the second
item (4-words) and leaves the
four word sum in their place.

The single precision add
routine. Same as $ADD except
it uses 2 word numbers.

Returns sign of
greatest real
absolute value of
in RO;Rl.

argument *
integer =

the argument

Calculates natural logarithm
of its single argument and
returns a two word result in
RO,Rl.

Same as ALOG, except
calculates base-IO logarithm.

Returns th~ arctangent of its
argument in RO,Rl.

Returns ARCTAN (ARGI/ARG2) in
RO,Rl.

Compares top 4 word items on
the stack, flushes the two
items; and returns the
following condition codes:
4(SP) @SP N=l,Z=O
4(SP) @SP N=O,Z=l
4(SP) @SP N=O,Z=O

$CMR.

cos

DATAN

DATAN2

DBLE

$DCI

$DCO

DCOS

DEXP

$DI

$DINT

SUMMARY OF FLOATING POINT MATH PACKAGE, FPMP~11

17 S 2

37 . S 1

44 D .1

(45) D 2

(34) 1

(57) SD 4

(61) SD 5

41 D 1

52 D 1

(11) SD

(76) D 1

Polish

J5RR

J5RR

J5RR

J5RR

. JPC

JPC

J5RR

··J5RR

Polish

Polish

H-3

Same as $CMD except it is for
2 word arguments.

Single precision version of
DCOS.

Double precision version of
ATAN.

Double precision version of
ATAN2.

Returns in RO-R3 the double
precision equivalent of the
single precision (two word)
argument.

ASCII to double conversion.
Calling sequence:

Push address of start of
ASCII field. Push length
of ASCII field in bytes.
Push format scale D (from
W.D) position of assumed
decimal point (see FORTRAN
manual) . Push P format
scale (see FORTRAN
manual). JSR PC,$DCI.

Returns 4 word result on top
of stack.

Double precision to A~CII
conversion. Calling sequence:

Push address of start of
ASCII field. Push length
in bytes of ASCII field (W
part ofW.D) Push D pait
of W.D position of decimal
point). Push P scale.
Push 4 word value to be
converted, lowest order
word first. JSR PC,$DCO.

Calculates the cosine of its
double precision argument and
returns the double precision
result in RO-R3.

Calculates the exponential of
its double precision argument,
and returns the double
precision result in'RO-R3.

Converts double precision
number on the top of the stack
to integer. Leaves result on
stack.

OTS internal function to find
the integer part of a double
precision number.

SUMMARY OF FLOATING POINT MATH PACKAGE, FPMP-ll

DLOG 55 D 1 J5RR Double precision (4 word)
version of ALOG.

DLOGIO 56 D 1 J5RR Double precision (4 word)
version of ALOGIO.

$DR (6) 1 Polish Replaces the. double precision
item at the top of the stack
with its two word, rounded
form.

DSIN 40 D 1 J5RR Calculates the sine of its
double prec1s10n argo and
returns the double precision
result in RO-R3.

DSQRT 47 D 1 J5RR Calculates the square root of
its double ptecision argo and
returns the double precision
result in RO-R3.

$DVD 23 D 2 Polish The double precision division
routine. Divides the second
4-word item on the stack by
the top item and leaves the
quotient in their place.

$DVI (24) 2 Polish The integer division routine.
Calculates 2(SP)/@SP and
returns the integer quotient
on the top of the stack.

$DVR 25 S 2 Polish The single precision division
routine. Same as $DVD, but
for 2 word floating point
numbers.

$ECO (62) SD 5 JPC Single precision to ASCII
conversion according to E
format. Same calling sequence
as $DCO except that a 2-word
value is to be converted.

EXP 51 S 1 J5RR Single precision version of
DEXP. Returns result in
RO,Rl.

$FCALL S Internal OTS routine.

$FCO (64) SD 5 JPC Same as $ECO except uses F
format conversion.

FLOAT (32) 1 J5RR Returns in RO-Rl, the real
equivalent of its integer
argument.

$GCO (63) SD 5 JPC Same as $ECO except uses G
format conversion.

H-4

$ICI

$ICO

IDINT

$ID

IFIX

INT

$INTR

$IR

$MLD

$MLI

$MLR

$NGD

SUMMARY OF FLOATING POINT MATH PACKAGE, FPMP-ll

(65) 2 JPC

(67) 3 JPC

(31) 1 J5RR

(5) SD 1 Polish

(35) 1 J5RR

(30) 1 J5RR

(27) S 1 Polish

(4) SD 1 Polish

22 D 2 Polish

(20) 2 Polish

21 S 2 Polish

(3) SD 2 Polish

H-5

ASCII to integer conversion
calling sequence:

Push address of start of
ASCII field. Push length
in bytes of ASCII field.
JSR PC,$ICI

Returns with integer result on
top of stack.

Integer to ASCII conversion.
Calling sequence:

Push address of ASCII
field. Push length in
bytes of ASCII field.
Push integer value to be
converted. JSR PC,$ICO

Error will return with C bit
set on. Ro-R3 destroyed.

Returns sign of arg * greatest
integer <= arg in RD. Arg
is double precision.

Convert full word argument on
the top of the stack to double
precision and return result as
top 4-words of stack.

Returns the truncated and
fixed real argument in RD.

Same as IDINT
precision args.

for single

Same function as AINT, but
called in Polish mode with
argument and returns result on
the stack.

Convert full word argument on
the top of the stack to single
precision and return result as
top 2-words of stack.

Double
Replaces
on the
product.

precision multiply.
the top two doubles
stack with their

Integer multiply. Replaces
the top 2 integers on the
stack with their full word
product.

Single
Replaces
on the
product.

Negate
number
stack.

precision multiply.
the top two singles
stack with their

the double precision
on the top of the

$NGI

$NGR

$OCI

$OCO

$POLSH

$POPR3

$POPR4

$:POPR5

$PSHRI

$PSHR2

$PSHR3

$PSHR4

$PSHR5

$RCI

$RD

$RI

$SBD

SUMMARY OF FLOA~ING POINT MATH PACKAGE, FPMP-ll

(1) SD 1

(2) SD I

(66) 2

(70) 3

SD

D

D

D

SD

SD

SD

SD

SD

(60) SD 4

(7)

(10) SD

15 D

Polish

Polish

JPC

JPC

Polish

Polish

Polish

Polish

Polish

Polish

Polish

Polish

JPC

Polish

Polish

Polish

H-6

Negate the integer on the top
of the stack.

Negate
number
stack.

the single precision
on the top of the

ASCII to octal conversion.
Same call as $ICI.

Octal to ASCII conversion.
Same call as $ICO.

Called whenever it is desired
to enter Polish mode from
normal in-line code. It must
be called via a JSR R4,$POLSH.

Internal routine to pop
2-words from the stack ~nd
place them into RO,Rl.

Internal routine to pop
4-words from the stack and
place them in RO-R3.

Internal routine to pop
4-words from the stack and
place them in registers RO-R3.

Internal routine to push the
contents of RO onto the stack.

Same as $PSHRI.

Push RO,Rl onto stack.

Push RO-R3 onto stack.

Same as $PSHR4.

ASCII to single
Same

$DCI.
on top

conversion.
sequence as
2-word result

precision
calling
Returns

of stack.

Converts the single precision
number on the top of the stack
to double preclslon format.
Leaves result on stack.

Converts single precision
number on the top of the stack
to integer. Leaves result on
stack.

The double precision subtract
routine. Subtracts the double
precision number on the top of
the stack from the second
double precision number on the
stack and leaves the result on
the top of the stack in their
place.

SUMMARY OF FLOATING POINT MATH .PACKAGE, FPMP-ll

$SBR 13 S Polish Same as $SBD but for single
precision.

SIN 36 S I J5RR Single precision version of
DSIN.

SNGL (33) I J5RR Rounds double precision
argument to single precision.
Returns result in RO,RI.

SQRT 46 S I J5RR Single precision version of
DSQRT.

TANH 50 S I J5RR Single precision hyperbolic
tangent function. Returns
(EXP(2*ARG)-I/(EXP(2*ARG)+I)
in RO,RI.

H.2 NON-OTS ROUTINES

These routines are written especially for FPMP-II and should not be
called directly by the user.

OCTAL
NAME CODE PKG DESCRIPTION

$ERR SD Internal error handler.

$ERRA SD Similar to $ERR.

$LDR 71 S Load FLAC, single precision.

$LDD 72 D Load FLAC, double precision.

$STR 73 S Store FLAC, single precision.

$STD 74 D Store FLAC, double precision.

TRAPH SD The TRAP handler routines and tables.

H.3 ROUTINES ACCESSED VIA TRAP HANDLER

The following is a table of the FPMP-II routines which can be accessed
via TRAPH, the trap handler. Each routine name (entry point) is
preceded by its TRAP code number to be used to access it, and followed
by a brief description of its operation when called via the TRAP
handler. Those entries which are preceded by an asterisk (*) perform
operations only on the FLAC, and address no operands. For example, a
TRAP call to the single precision square root routine can be coded as
follows:

TRAP 46

H-1

SUMMARY OF FLOATING POINT MATH PACKAGE, FPMP-ll

The net effect of the above TRAP instruction is to replace the
contents of the FLAC with its square root and then set the condition
codes to reflect the result. Note that since the FLAC is implicitly
addressed in this instruction, the TRAP call supplies no other
address. For such a TRAP call, the addressing mode bits (bits 6 and 7
of the TRAP instruction) are ignored.

All entries not marked by an asterisk require an operand when called.
The operand is addressed in one of the four addressing modes explained
in section 3.1.1. of the FPMP-ll User's Manual. The addressing mode
is specified in bit 6-7 of the TRAP instruction.

("Operand" is the contents of the location addressed in the TRAP
call.)

OCTAL NAME DESCRIPTION
CODE

14 $ADD Double precision addition routine. Adds
operand to the FLAC. Assumes 4-word
operand.

12 $ADR Single precision addition routine. Adds
operand to the FLAC. Assumes 2-word
operand.

* 26 AINT Replaces contents of the FLAC by its
integer part. SIGN (FLAC) * greatest
integer <= IFLACI . Assumes 2-word
argument in FLAC.

* 53 ALOG Replaces contents of the FLAC by its
natural logarithm. Assumes 2-word
argument in FLAC.

* 54 ALOGIO Same as ALOG, except calculates base-IO
log.

* 42 ATAN Replaces contents of the FLAC by its
arctangent. Assumes 2-word argument in
FLAC.

16 $CMD Compares operand to the contents of the
FLAC, and returns the following condition
codes.

FLAC<operand, N=l,Z=O
FLAC=operand, N=O,Z=l
FLAC>operand, N=O,Z=O

Assumes 4-word operands.

17 $CMR Same as $CMD, but for 2-word operands.

* 37 COS Same as DCOS, but for 2-word argument.

* 44 DATAN Same as ATAN, but for 4-word argument.

* 52 DEXP Replaces the contents of the FLAC by its
exponential. Assumes 4-word argument in
the FLAC.

H-8

*

*

*

*

*

*

*

*

*

55

56

41

40

47

23

25

51

72

71

22

21

15

13

36

46

73

74

50

SUMMARY OF FLOATING POINT MATH PACKAGE, FPMP-Il

DLOG

DLOGIO

DCOS

DSIN

DSQRT

$DVD

$DVR

EXP

$LDD

$LDR

MLD

$MLR

$SBD

$SBR

SIN

SQRT

$STR

$STD

TANH

Same as ALOG, but for 4-word argument.

Same as ALOGIO, but for 4-word argument.

Replaces the contents of the FLAC by its
cosine. Assumes 4-word argument in the
FLAC.

Same as DCOS, but calculates sine instead
of cosine.

Replaces the contents of the FLAC by its
square root. Assumes 4-word argument in
the FLAC.

Double precision division routine.
Divides the FLAC by the operand and
stores the result in the FLAC. Assumes
4-word operands.

Same as $DVD, but for 2-word operands.

Same as DEXP, but for 2-word argument.

Same as $LDR, but assumes 4-word operand.

Replaces the contents of the FLAC by the
operand. Assumes 2-word operand.

Double precision multiplication routine.
Multiplies the contents of the FLAC by
the operand and stores the result in the
FLAC. Assumes 4-word operands.

Same as $MLD, but for 2-word operands.

The double precision sUbtraction routine.
Subtracts the operand from the contents
of the FLAC. Assumes a 4-word operand.

Same as $SBD, but for 2-word operand.

Same as DSIN, but for 2-word argument.

Same as DSQRT, but for 2-word argument.

Stores the contents of the FLAC into the
operand location. The contents of the
FLAC are unchanged.

Same as $STR, but assumes 4-word operand
location.

Replaces the contents of the FLAC by its
hyperbolic tangent. Assumes 2-word
argument.

H-9

APPENDIX I

TAPE DUPLICATION

Duplication of paper tapes can be accomplished via low- or high-speed
I/O devices by toggling (as with the Bootstrap Loader) the following
program directly into memory through the Switch Register. (Refer to
Section 6.1.1 in Chapter 6 if necessary, for toggling procedure.)

1. Turn on appropriate device switches and place tape in desired
reader.

2. Set ENABLE/HALT switch to HALT.

3. Set Switch Register to the desired starting address and press
LOAD ADDR.

4. Set Switch Register to each value listed in the CONTENTS
column below, lifting the DEP switch after each setting.
(Addresses are automatically incremented.) The desired input
device (either Low- or High-Speed Reader) and output device
(Low- or High-Speed Punch) are- specIfied in the last two
words. - - -

ADDRESS

o
2
4
6

10
12
14
16
20
22
24
26
30
32

CONTENTS

016700
000024
016701
000022
005210
105710
100376
105711
100376
022021
111011
000764
177560 (LSR) or 177550 (HSR)
177564 (LSP) or 177554 (HSP)

5. Set Switch Register to starting address specified in 3 above
and press LOAD ADDR.

6. Set ENABLE/HALT switch to ENABLE.

7. Press START switch.

I-I

TAPE DUPLICATION

NOTE

This program is recommended as a simple
way of duplicating the system tapes.
However, for extensive tape duplication,
the program shown in section 7.8 is
recommended.

I-2

APPENDIX J

ASSEMBLY AND LINKING INSTRUCTIONS

J.I SYSTEMS WITHOUT SWITCH REGISTERS

J.I.I IOX/IOXLPT

IOX/IOXLPT is provided in both source and relocatable object form.
Unless modifications are made to the source it is not necessary to
assemble the source tapes. The object tape may be linked with the
user's object tapes to produce an absolute tape (.LDA).

J.I.I.I
-PA3) .

J.I.I.2
to PA2).

Assembling lOX - lOX consists of three source tapes (-PAl to
These tapes are assembled together in sequence with PAL-lIS.

Assembling IOXLPT - IOXLPT consists of two source tapes (-PAl
These tapes are assembled together in sequence with PAL-lIS.

J.I.I.3 Linking lOX and IOXLPT - IOX and lOXLPT are linked by
LINK-lIS with the user's object tapes to produce an absolute tape.

J.I.2 ODTIIX

ODTllX is provided in both source and relocatable object form. Unless
modifications are made to the source, it is not necessary to assemble
the source tape. The object tape may be linked with the user's object
tapes to produce an absolute tape.

J.l.2.1 Assembling ODTIlX - ODTIIX consists of one source tape (-PAL)
which is terminated with the following:

.EOT
form feed
.END O.ODT

When PAL-IlS indicates that it has encountered the .EDT, type return
so that it will process the .END statement.

J-l

ASSEMBLY AND LINKING INSTRUCTIONS

J.1.2.2
is self
so that
program

Linking ODTllX - ODTllX is linked with user object tapes. It
starting and should be the first object tape input to LINK-lIS
it will be the program started by the Absolute Loader when the
is loaded.

J.1. 3 ED-II

The ED-II source file is available only in RT-ll format on a flexible
diskette. The RT-ll MACRO assembler is required to assemble ED-II.
The RT-ll linker (LINK) is us~d to produce the absolute tape.

J.1.3.l Assembling ED-II - The RT-ll commands to assemble ED~ll are
as follows:

.R MACRO
*EDITll=DXl:EDITll

J.1. 3.2 Linking ED-II - The RT-ll commands to link ED-ll are as
follows:

.R LINK
*PP:EDITll/L=EDITll

J.1. 4 PAL-llS

The PAL-lIS source file is available only in RT-ll format on a
flexible diskette. The RT-ll MACRO assembler is required to assemble
PAL-lIS. The RTll linker (LINK) or LINK-lIS may be used to produce
the absolute tape.

J.l.4.l Assembling PAL-lIS - There are three sources which
assembled separately for PAL-lIS. One of these, the symbol
source, is available in three versions: 8K, 12K, and 16K. The
commands to assemble PAL-lIS source files are as follows:

.R MACRO
*RELMEM=DXl:RELMEM.PAL
*PSYM08=DXl:PSYM08.PAL
*PSYM12=DXl:PSYM12.PAL
*PSYM16=DXl:PSYM16.PAL
*PALllS=DXl:PALllS.PAL

Clear Memory Program
8K Symbol Table
12K Symbol Table
16K Symbol Table
Assembler

are
table
RT-ll

In addition to the above, IOXLPT is used by PAL-lIS. The IOXLPT
source is also available in RT-ll format on a flexible diskette. The
commands to assemble IOXLPT are:

.R MACRO
*IOXLPT=DXl:IOXLPT.PAL

J-2

ASSEMBLY AND LINKING INSTRUCTIONS

J.I.4.2 Linking PAL-lIS - PAL-lIS may be linked with LINK-lIS or the
RT-II linker, LINK. The PAL-lIS tape actually contains two programs:
RELMEM and PAL-lIS. RELMEM precedes PAL-lIS on the tape.

Using LINK-lIS, link PAL-lIS as follows:

1. Link RELMEM as a separate program and do not remove the tape
from the punch when finished.

2. Link PALIIS.OBJ, IOXLPT.OBJ, and one of the symbol table
object tapes (PSYM08.0BJ, PSYMI2.0BJ, or PSYMI6.0BJ) in that
order. The symbol table tape is selected depending on the
size of the memory of the computer on which the program is to
be executed. If the target computer has 8K words of memory
then PSYM08.0BJ, if 12K then PSYMI2.0BJ, and if 16K then
PSYMI6.0BJ. Specify a top address of 57460 for 12K and 77460
for 16K.

DO not link PAL-lIS to run above 16K. The size of the symbol
table is fixed, and there is no need to re-link at a higher
address even on large systems.

Using RT-II LINK, link PAL-lIS as follows:

1. Link RELMEM as a separate program as shown

.R LINK
*RELMEM/L=RELMEM

2. Link 8K, 12K, and 16K versions of PAL-lIS

.R UN',
*PAL08/L/B:204=PALllS~IOXLPT~PSYM08

*PAL12/L/B:204~PALllS,IOXLPT,PSYM12
*PAL :l6/L/B: 204~-::PAI ... l:l. S, I OXI...PT, PSYM16

3. Use RT-II PIP to punch the tapes. Remember not to remove the
tape from the punch after punching RELMEM .

• R PIP
*PP:=REI...MEM.I...DA/B
*PP:=PAI...08.I...DA/B

remove 8K PALIIS.LDA from punch

*PP:=REI...MEM.I...DA/B
*PP=::PAL:L2.I...DA/B

remove 12K PALIIS.LDA from punch

*PP:=REI...MEM.LDA/B
*PP:~PAL:l.6.I...DA/B

J.1. 5 LINK-llS

The LINK-lIS source file is available only in RT-II format on a
flexible diskette. The RT-II MACRO assembler is required to assemble
LINK-lIS. LINK-lIS is composed of two components: LINK-lIS proper
and IOXLPT. See Section N.l.4.1 for instructions on how to assemble
IOXLPT using RT-II.

J-3

ASSEMBLY AND LINKING INSTRUCTIONS

J.l.5.l Assembling LINK-lIS - The RT-ll commands to assemble LINK-lIS
follow:

.R MACRO
*LINKll=DX1:LINKll

J.l.5.2 Linking LINK-lIS - LINK-lIS may be linked with LINK-lIS or
the RT-ll linker, LINK. There are two object tapes which ate linked
together to produce LINK-lIS: LINKll.OBJ and IOXLPT.OBJ.

Using LINK-lIS to link LINK-lIS, link the following two tapes in
order: LINKll.OBJ and IOXLPT. If versions are desired for systems
with more than 8K, specify a top address of 57460 for 12K and 77460
for 16K.

Using RT-ll LINK to link LINK-lIS is a two step process because of a
difference in philosophy. An initial link is required which produces
a link map so that the size of LINKllS can be determined. A final
link is then made with the information obtained in the initial link
used to compute the bottom address.

The initial link is executed as follows:

.R LINK
*,TT:=LINKll,IOXLPT

The value displayed for "HIGH LIMIT" is used to compute the bottom
address for the final link. Assume for an example that the following
was displayed:

HIGH LIMIT = 015572

Select 37460, 57460, or 77460 depending on whether an 8K, 12K, or 16K
top address is desired. The bottom address is computed as follows:

B = T - 4 + 1000

Where: B = bottom address
T top address
H high limit

Example: B 37460-15572+1000
B = 22666

Using the figures in the example above, the final link for an 8K
system would be executed as follows:

.R LINK
*PP:/B:22666/L,TT:=LINKll,IOXLPT

As a check, examine the link map produced and verify
limit matches the one used in the calculations above.
the high limit value must be 37460.

J-4

that the high
In the example,

ASSEMBLY AND LINKING INSTRUCTIONS

J.2 SYSTEMS WITH SWITCH REGISTERS

J.2.1 Assembling PAL-IIA

The following procedures are for assembling the PAL-II Assembler
source tapes. An 8K version of the PAL-IIA (V007A) Assembler is
required, thus also requiring at least an 8K PDP-II system.

The Assembler consists of two programs. The first program, on tape 1,
is a memory clear program and is very short (DEC-II-UPLAA-A-PAl). The
second program is the Assembler proper, and consists of eleven ASCII
tapes (DEC-II-UPLAA-A-PA2-PA12). They are assembled as follows:

1. Generate a sufficient amount of blank leader tape.

2. Assemble the memory clear program source tape
(DEC-ll-UPLAA-A-PAl) and assign the binary output to the
high-speed punch. For example, PAL-IIA's initial dialogue to
specify the 2-pass assembly would be:

*S H
*B HIE
*L
*T

END?

000000 ERRORS
C

(PAl assembly - 1st pass)

(PAl assembly - 2nd pass)
(No errors - Do not remove
the binary tape from the punch.)

3. Assemble the rest of the Assembler's source tapes (PA2
PA12) in numerical sequence.

Assign the binary output to the high-speed punch. For
example, the initial dialogue should be answered as follows:

*S H
*B HIE
*L
*T
EOF ? (Enter tape PA2 for 1st pass)
EOF ? (End of tape PA2, enter PA3)
EOF ? (End of tape PA3, enter PA4)
EOF ? (End of tape PA4, enter PAS)
EOF ? (End of tape PAS, enter PA6)
EOF ? (End of tape PA6, enter PA7)
EOF ? (End of tape PA7, enter PA8)
EOF ? (End of tape PA8, enter PA9)
EOF ? (End of tape PA9, enter PAID)
EOF ? (End of tape PAID, enter PAll)
EOF ? (End of tape PAll, enter PA12)
MAXCL13 ****** SIMBC = ****** (End of first pass)
END ?
EOF ? (Enter tape PA2 for 2nd pass)
EOF ? (End of tape PA2, enter PA3)
EOF ? (End of tape PA3, enter PM)
EOF ? (End of tape PA4, enter PAS)
EOF ? (End of tape PAS, enter PA6)
EOF ? (End of tape PA6, enter PA7)
EOF ? (End of tape PA7, enter PA8)
EOF ? (End of tape PA8, enter PA9)
EOF ? (End of tape PA9, enter PAID)
EOF ? (End of tape PAID, enter PAll)
EOF ? (End of tape PAll, enter PAI2)

J-S

ASSEMBLY AND·· LINKING INSTRUCTIONS

000000 ERRORS
C
*S

(End of 2nd pass)

Note that at the end of the first pass there are two undefined
symbols: MAXCl3 and SIMBC. These undefined symbols are resolved so
that there are no errors reported during the second pass.

Be sure that there is sufficient blank trailer tape on the binary
output tape before removing the assembled tape from the punch.

Normally, using high-speed paper tape input and output, this process
requires about 45 minutes. If a symbol table and listing are
requested, there will be about 750 symbols and about 4500 lines of
listing.

J.2.2 Assembling ED-II

ED-II consists of five source tapes (PAl to PAS) which are assembled
together in sequence with 8K PAL-IIA.

J.2.3 ODT-II/ODT-IIX

In subsequent discussion, reference to ODT applies to both versions.
ODT is supplied on both source and absolute binary tapes.

If the program being debugged requires storage where the version of
ODT being used is normally loaded, it is necessary to reassemble ODT
after changing the starting location.

The source tape of ODT is in three segments, each separated from the
next by blank tape. The first segment contains:

.=n (standard location setting statement)

.EOT

where n=13026 for ODT-II or n=12054 for ODT-IIX. This statement tells
the Assembler to start assembling at address n. To relocate ODT to
another starting address, substitute for segment one a source tape
consisting of:

.=n . (n is the new load address for ODT)

.EOT

The .EOT statement tells the Assembler that this is the end of the
segment but not the end of the program -- the Assembler will stop and
wait for another tape to be placed in the reader.

The second segment of tape contains the ODT source program.
segment is also terminated with .EOT.

The third segment of the tape consists of the statement:

.END O.ODT

This

where .END means "end of program" and O.ODT represents the starting
address of the program (see Section 6.2.3).

When relocating ODT, the first segment of the source tape must be
changed to reflect the desired load address. The third segment may be
changed to .END without a start address. The latter will cause the
Loader to halt upon completion of loading.

J-6

ASSEMBLY AND LINKING INSTRUCTIONS

The segmentation allows the following assembly forms:

1. Assemble alone but at a new address. A new segment one must
be generated and assembled with segments two and three.

2. Assemble immediately after the user's program to be debugged.
Assemble the tape of the user's program (ending with .EOT)
followed by ODT's segment two and either segment three or a
new segment three.

3. Assemble inside the program to be debugged. Assemble the
first part of the user program (ending with .EOT) followed by
ODT's second segment followed by the second part of the user
program.

When setting locations before assembling, it must be noted that
immediately preceding ODT a minimum internal stack of 408 bytes is
required for the ODT~ll and 1168 bytes is required· for ODT-IIX.
Additional room must be allocated for subroutine calls and possible
interrupts while ODT is in control. Twelve bytes maximum will be used
by ODT proper for subroutine calls and interrupts, giving a minimum
safe stack space of 528 bytes for ODT-ll or 1308 bytes for ODT-IIX.

Once a new binary tape of ODT has been assembled, load it using the
Absolute Loader as explained in Section 6.2.2. Normally, the program
to be debugged is loaded before ODT, since ODT will automatically be
in control immediately after loading, unless the third segment of
ODT's source tape was altered before assembly. As soon as the tape is
read in, ODT will print an * on the Teletype to indicate that it is
ready for a command.

J.2.4 Assembling IOX/IOXLPT

In subsequent discussion, reference to lOX applies to both versions.
lOX is supplied on both source and absolute binary tapes.

If there is more than 4K of core available and it is desired to load
lOX (or IOXLPT) in other than the normal location, lOX must be
reassembled.

The code

.=15100

.EDT

appears at the beginning of the first lOX
starting address. Create a new tape
address desired; be sure to allow enough
lOX, 72510 for IOXLPT. For example,

tape (PAl) and contains the
containing the new starting

room for 63410 words for

.=25100

.EDT

Use PAL-IIA to assemble rox and substitute the new section of
the first part of the old tape (PAl). After the new section
insert the lOX tape in the reader so the read head is past
starting address and .EOT and type the RETURN key to read in
of the tape.

tape for
is read,
the old
the rest

Now read in the second tape (PA2). An EOF? message is output at the
end of the second tape. Type the RETURN key and the END? message is
printed. Put the tapes through for the second pass of the assembler.

J-7

ASSEMBLY AND LINKING INSTRUCTIONS

lOX (IOXLPT) can also be assembled with a user program if desired.
The .=15100 and .EOT lines must be deleted before lOX is assembled
with a user program.

lOX can be assembled into the program wherever desired but if it is
the first tape read by the assembler, remove it from the reader before
typing the RETURN key (after the EOF? message of the second tape.
lOX and IOXLPT have a .END code which would cause the assembly pass to
end when read). Assembling a user program and lOX together eliminates
the need to read in lOX each time the program is run.

J.2.5 Assembling and Linking PAL-lIS

PAL-lIS consists of two independent programs. The first program is a
memory clear program. The second is the assembler. All programs are
available as ASCII source tapes, object modules and as a load module.

The memory clear program, MEMCLR, (DEC-II-UPLSA-A-PAl) consists of one
ASCII tape. This program should never need to be assembled. The
object module may be used when constructing a new load module of
PAL-lIS.

The assembler consists of three program modules which are assembled
separately and then linked together. The first is the main program
called PAL-lIS. It consists of 13 ASCII tapes (DEC-UPLSA-A-PA2-PA14).
The second module is the symbol table, PALSYM, which consists of 2
ASCII tapes (DEC-II-UPLSA-A-PA15-PA16). The third is IOXLPT
consisting of 2 ASCII tapes (DEC-II-UPLSA-A-PA17-PA18). Also included
is PALSYM, specially created for 12K and 16K, consisting of one tape
each (DEC-II-UPLSA-A-PA19-PA20).

If changes are
assembled by
with the other
these programs

made in any of
PAL-lIS (V003A)
object modules.
will result in:

these modules, that module must be
and the new object module can be linked
It should be noted that assembly of

Program Pages of Listing (Decimal) Number of Symbols (Decimal)

PAL-lIS
PALSYM
IOXLPT

160
11
29

756
32

191

Also note that there will be two undefined symbols listed at the end
of pass 1. These are forward references on direct assignments which
get defined properly in pass 2.

An example of the PAL-lIS assembly follows:

PAL-lIS V003A
*S H
*B H
*L P
*T P/2
END ?
000000 ERRORS

J-8

(first pass on PAl)
(2nd pass on PAl)
(End of tape tl assembly)
(Remove tape from punch)

ASSEMBLY AND LINKING INSTRUCTIONS

PAL-llS V003A
*S H
*B H
*L P
*T P/2 (Insert PA2 for 1st pass)
EOF ? (End of PA2, insert PA3)
EOF ? (End of PA3, insert PA4)
EOF ? (End of PA4, insert PAS)
EOF ? (End of PAS, insert PA6)
EOF ? (End of PA6, insert PA7)
EOF ? (End of PA7, insert PAS)

- EOF ? (End of PAS, insert PA9)
EOF ? (End of PA9, insert PAlO)
EOF ? (End of PAlO, insert PAli)
EOF ? (End of PAll, insert PA12)
EOF ? (End of PA12, insert PAl3)
EOF ? (End of PA13, insertPA14)
BINCNT=****** SIMBC=****** (End of PA14 and 1st pass)
END ? (Insert PA2 for 2nd pass)
EOF ? (End of PA2, insert PA3)
EOF ? (End of PA3, insert PA4) -
EOF ? (End of PA4, insert PAS)
EOF ? (End of PAS, insert PA6)
EOF ? (End of PA6, - insert PA7)
EOF ? (End of PA7, insert PAS)
EOF ? (End of PAS, insert PA9)
EOF ? (End of PA9, insert PAlO)
EOF ? (End of PAlO, insert PAll)
EOF ? (End of PAll, insert PA12)
EOF ? -(End of PA12, insert PAl3)
EOF ? (End of PA13, insert PAl4)
000000 ERRORS (End of PA14 and 2nd pass)

(Remove tape from punch)
PAL-lIS V003A
*S H
*B H
*L P
*T P/2 (1st pass on PAIS)
EOF ? (End of PAIS, insert PA16)
END ? (End of PA16, insert PAIS for 2nd pass)
EOF ? (End of PAIS, insert PA16)
000000 ERRORS (End of 2nd pass)

(Remove tape from punch)
PAL-llS V003A
*S H
*B H
*L P
*T P/2 (1st pass on PA17)
EOF ? (End of PA17, insert PAIS)
END ? (End of PAIS, insert PA17 for 2nd pass)
EOF ? (End of PA17, insert. PAIS)
000000 ERRORS (End of 2nd pass)

(Remove tape from punch)
PAL-llS V003A
*S H
*B H
*L P
*T P/2 (Pass 1 on PA20)
END ? (Pass 2 on PA20)
000000 ERRORS (End of pass 2)

(Remove tape from punch)

J-9

ASSEMBLY AND LINKING INSTRUCTIONS

The final load module is constructed by LINK-lIS. First the· memory
clear program object module is processed by the linker and the
resulting load module is left in the punch while the PAL-lIS, PALSYM,
and IOXLPT object modules are linked to create a second load module.
The resulting tape ~ontains two load modules. The first clears memory
and then jumps to the absolute loader to load the second.

In order to take advantage of core sizes larger than 8K, PALSYM, the
symbol table, specially created for 12K core and 16K core, and the
object modules are included with the assembler. To link for 12K (or
16K), simply sUbstitute the appropriate object tape for PALSYM (use
DEC-II-UPLSA-A-PR5 for 12K or DEC-II-UPLSA-A-PR6 for 16K) specify a
top address to LINK-lIS ~f 57460 for 12K (77460 for 16K) and link as
described in the preceding paragraph.

Do not reI ink PAL-lIS to run above 16K. The size of the symbol table
is fixed, and there is no ne.ed to re-link at a higher address even on
large systems.

The supplied tapes are identified as

Library Code

DEC-II-UPLSA-A-PAI Tape 1 of 20

DEC-II-UPLSA-A-PA2 Tape 2 of 20
DEC-II-UPLSA-A~PA3 Tape 3 of 20
DEC-II-UPLSA-A-PA4 Tape 4 of 20
DEC-II-UPLSA-A-PA5 Tape 5 of 20
DEC-II-UPLSA-A-PA6 Tape 6 of 20
DEC-Il~UPLSA-A-PA7 Tape 7 of 20
DEC-II-UPLSA-A-PA8 Tape 8 of 20
DEC-II-UPLSA-A-PA9 Tape 9 of 20
DEC-II-UPLSA-A-PAIO Tape 10 of 20
DEC-II-UPLSA-A-PAII Tape 11 of 20
DEC-II-UPLSA-A-PA12 Tape 12 of 20
DEC-II-UPLSA-A-PA13 Tape 13 of 20
DEC-II-UPLSA-A-PA14 Tape 14 of 20

DEC-II-UPLSA-A-PA15 Tape 15 of 20 }
DEC-11-UPLSA-A-PA16 Tape 16 of 20

DEC11-UPLSA-A-PA17 Tape 17 of 20 }
DEC-II-UPLSA-A-PA18 Tape 18 of 20
DEC-II-UPLSA-A-PA19 Tape 19 of 20
DEC-II-UPLSA-A-PA20 Tape 20 of 20

DEC-II-UPLSA-A-PRI Tape 1 of 6
DEC-II-UPLSA-A-PR2 Tape 2 of 6
DEC-II-UPLSA-A-PR3 Tape 3 of 6
DEC-II-UPLSA-A-PR4 Tape 4 of 6
DEC-II-UPLSA-A-PR5 Tape 5 of 6

DEC-II-UPLSA-A-PR6 Tape 6 of 6

DEC-II-UPLSA-A~PL

I

follows:

One
Assembly

One
Assembly

One
Assembly

One
Assembly
One Assembly
One Assembly

Contents

RELMEM
(Memory Clear Program)

PAL-lIS (Main Program)

PALSYM (Symbol Table) for 8K

IOXLPT
PALSYM (Symbol Table) for 12K
PALSYM (Symbol Table) for 16K

RELMEM Object Module
PAL-lIS Object Module
PALSYM Object Module for 8K
IOXLPT Object Module
PALSYM Object Module for 12K
assembler
PALSYM Object Module for 16K
Assembler

PAL-lIS Load Module l

This tape is the concatenation of a link of the RELMEM object module
followed by a link of the PAL-lIS, PALSYM for 8K, and IOXLPT object
modules.

J-IO

ASSEMBLY AND LINKING INSTRUCTIONS

J.2.6 Assembling And Linking LINK-lIS

LINK-lIS is available as an absolute load module (for an SK machine),
as two object modules (for reI inking) and as several ASCII source
tapes. There is one object module fo~ the Linker and one for IOXLPT.
The supplied object modules may be reI inked (using the supplied load
module) to load into any size machine larger than SK. However, the
resulting Linker will still assume a top of memory corresponding to an
SK machine (this can be overridden in· the command string options).
The assumed top of memory and reserved Absolute Loader space may be
changed by editing the first linker ASCII tape with ED-II. The
parameters to be changed are HGHMEM (high memory address +1 (always
even)) and ALODSZ (Absolute Loader size (always even)). The source
tapes for the Linker may then be assembled with PAL-lIS and the new
object module can then replace the supplied Linker object module.

The tapes are identified as

Library Code

DEC-II-ULKSA-A-PAI Tape 1
DEC-II-ULKSA-A-PA2 Tape 2
DEC-II-ULKSA-A-PA3 Tape 3
DEC-II-ULKSA-A-PA4 Tape 4

DEC-II-ULKSA-A-PA5 Tape 5
DEC-II-ULKSA-A-PA6 Tape 6

DEC-II-ULKSA-A-PRI Tape 1
DEC-II-ULKSA-A-PR2 Tape 2

DEC-II-ULKSA-A-PL

follows:

of

~ 1
of One
of Assembly
of

of ~ } One
of Assembly

of 2
of 2

J-II

LINK-lIS (Main Program)

IOXLPT

LINK-lIS Object Module
IOXLPT Object Module

LINK-lIS Load Module

APPENDIX K

STANDARD PDP-II ABBREVIATIONS

Abbreviation Definition

ABS absolute
A/D analog-to-digital
ADC add carry
ADRS address
ASCII American Standard Code

for Information Inter-
change

ASL arithmetic shift left
ASR arithmetic shift right

automatic send/receive

B byte
BAR bus address register
BBSY bus busy
BCC branch if carry clear
BCS branch if carry set
BEQ branch if equal
BG bus grant
BGE branch if greater or equal
BGT branch if greater than
BHI branch if higher
BHIS branch if higher or same
BIC bit clear
BIS bit set
BIT bit test
BLE branch if less or equal
BLOS branch if lower or same
BLT branch if less than
BMI branch if minus
BNE branch if not equal
BPL branch if plus
BR branch
BRD bus register data
BRX bus request
BSP back space
BSR bus shift register

back space record
BSY busy
BVC branch if overflow clear
BVS branch if overflow set

CBR console bus request
CLC clear carry
CLK clock
CLN clear negative
CLR clear
CLV clear overflow

K-l

CLZ
CMP
CNPR
CNTL
COM
COND
CONS
CaNT

CP
CSR

D
D/A
DAR
DATI
DATIP
DATa
DATOB
DBR
DCDR
DE
DEC

DEL
DEP
DEPF
DIV
DMA
DSEL
DST
DSX

EMT
ENB
EOF
EOM
ERR
EX
EXAM
EXAMF
EXEC
EXR

F
FCTN
FILa
FLG

GEN

INDIVR
INC

INCF
IND
INH
INIT
INST
INTR
INTRF
I/O
lOT
lOX

STANDARD PDP-II ABBREVIATIONS

clear zero
compare
console nonprocessor request
control
complement
condition
console
contents
continue
central processor
control and status register

data
digital-to-analog
device address register
data in
data in, pause
data out
data out, byte
data buffer register
decoder
destination effective address
decrement
Digital Equipment Corp.
delay
deposit
deposit flag
divide
direct memory access
device select
destination
display, X-deflection register

emulator trap
enable
end-of-file
end-of-medium
error
external
examine
examine flag
execute
external reset

flag (part of signal name)
function
first in,last out
flag

generator

integer divide routine
increment
increase
increment flag
indicator
inhibit
ini tialize
instruction
interrupt
interrupt flag
input/output
input/output trap
input/output executive routine

K-2

IR
IRD
ISR

JMP
JSR

LIFO
LKS
LOC
LP
LSB
LSBY
LSD

MA
MAR
MBR
MEM
ML
MOV
MSB
MSBY
MSD
MSEL
MSYN

ND
NEG
NOR
NPG
NPR
NPRF
NS

ODT
OP

OPR

PA
PAL
PB
PC
PD
PDP
PERIF
PGM
PP
PPB
PPS
PR
PRB

PROC
PRS

PS

PTR
PTS
PUN

STANDARD PDP-ll ABBREVIATIONS

instruction register
instruction register decoder
instruction shift register '

jump
jump to subroutine

last in,first out
line time clock status register
location
line printer
least significant bit
least significant byte
least significant digit

memory address
memory address register
memory buffer register
memory
memory location
move
most significant bit
most significant byte
most significant digit
memory select
master sync

negative driver
negate
normalize
nonprocessor grant
nonprocessor request
nonprocessor request flag
negative switch

octal debugging technique
operate
operation
operator
operand

parity available
program assembly lanquage
parity bit
program counter
positive driver
programmed data processor
peripheral
program
paper tape punch
paper tape punch buffer tegister
paper tape punch status register
paper tape reader
paper tape reader buffer
register

processor
paper tape reader status
register

processor status
positive switch
priority transfer
paper tape software system
punch

K-3

RD
RDR
REG
REL
RES
ROL
ROM
ROR
R/S
RTI
RTS
R/W
R!WSR

S
SACK
SBC
SC
SE
SEC
SEL
SEN
SEV
SEX
SEZ
SI
SP

SR
SRC
SSYN
ST
STPM
STR
SUB
SVC
SWAB

TA

TEMP
TK
TKB
TKS
TP
TPS
TRT
TSC
TST

UTR

VEC

WC
WCR

XDR
XRCG
XWCG

YDR
YRCG
YWCG

STANDARD PDP-II ABBREVIATIONS

read
reader
register
release
reset
rotate left
read-only memory
rotate right
rotate shift
return from interrupt
return from subroutine
read/write
read/write shift register

single
selection acknowledge
SUBTRACT CARRY
s.ingle cycle
source effective address
set carry
select
set negative
set overflow
sign extend
set zero
single instruction
stack pointer
spare
switch register
source
slave sync
start
set trap marker
strobe
subtract
service
swap byte

trap address
track address
temporary
teletype keyboard
teletype keyboard buffer register
teletype keyboard status register
teletype printer
teletype printer status register
trace trap
timing state control
test

user trap

vector

word count
word count register

X-line driver
X-line read control group
X-line write control group

Y-line driver
Y-line read control group
Y-line write control group

K-4

APPENDIX L

CONVERSION TABLES

L.l OCTAL-DECIMAL INTEGER CONVERSIONS

0000
to

0777
(Octal)

0000
to

0511
(Decimal

Octal Decimal
10000 - 4096
20000 - 8192
30000 - 12288
40000-163a4
50000 - 20480
60000 -·24576
70000 - 28672

)

1000 I to
1777

(Octal)

0512
to

1023
(Decimal)

a I

0000 0000 0001
0010 0008 0009
0020 0016 0017
0030 0024 0025
0040 0032 0033
0050 0040 0041
0060 0048 0049
0070 0056 0057

0100 0064 0065
0110 0072 0073
0120 0080 0061
0130 0088 0089
0140 10096 0097
0150 0104 0105
0180 0112 0113
0170 0120 0121

0200 0128 0129
0210 0136 0137
0220 0144 0145
0230 0152 0153
0240 0160 0161
0250 elsa 0169
0260 0176 0177
0270 0184 0185

0300 0192 0193
OliO 0200 0201
0320 0208 0209

10330 0216 0217

i 0340 1 0224 0225
03~0 0232 0233

i ~36~ 10240 0241
0370 0248 02fe

0 I

1000 0512 0513
1010 0520 0521
1020 0528 0529
10301 0536 0537
1040 05H 0545
1050 0552 0553
1060 0560 U561
1070 0568 0569

1100 0576 0571
1110 0584 0585
1120 0592 059.3
1130 0600 0601
1140 0608 0609
1150 0616 0617
1160 0624 0625
1170 0632 0633

1200 0640 0641
1210 0648 0649
1220 0656 0657
1230 0664 0665
1240 0672 0673
1250 0680 0681
1260 0688 0689
1270 0696 0691

1300 0704 0705
IJIO 0712 0713
1320 0720 0721
1330 0728 0729
IHO 0736 0737
1350 0744 0745
1360 0752 0753
1370 0760 07GI

2 3 4

0002 0003 0004
0010 0011 0012
0018 0019 0020
0026 0027 0028
0034 0035 0036
0042 0043 0044
0050 0051 0052
0058 0059 0060

0066 0067 0068
0074 0075 0076
0082 0083 0084
0090 0091 0092
0098 0099 0100
0106 0107 0108
0114 0115 0116
0122 0123 0124

0130 0131 0132
0138 0139 0140
0146 0147 0148
0154 0155 0156
0162 0163 0164
0170 0171 0172
0178 0179 0180
0186 0187 0188

0194 0195 0196
0202 0203 0204
0210 0211 0212
0218 0219 0220
0226 0227 0228
0234 0235 0236
0242 0243 0244
0250 0251 0252

2 3 4

0514 0515 0515
0522 0523 0524
0530 0531 0532
0538 0539 0540
0546 0547 0548
055. 0555 0556
0562 0563 0564
0570 0571 0512

0578 0579 0580
0586 0587 0588
0594 059S 0596
0602 0603 0604
0610 0611 0612
0618 0619 0620
0626 0627 0628
0634 0635 0636

0642 0643 0644
0650 0651 0652
0658 0659 0660
0666 0667 0668
0674 0675 0616
0682 0683 0684
0690 0691 0692
0698 0699 0700

0706 0707 0708
0714 07 I 5 0716
0722 0723 0724
0730 073! 0732
0738 0739 0740
0746 0747 0748
·0754 0755 0756
0762 07&3 0764

5 6 7 0

0005 0006 0007 0400 0256
0013 0014 0015 0410 0264
0021 0022 0023 0420 0272
0029 0030 0031 0430 0280
0037 0038 0039 0440 0288
0045 0046 0047 0450 0296
0053 0054 0055 0460 0304
0061 0062 0063 0470 0312

0069 0070 0071 0500 0320
0077 0078 0079 0510 0328
0085 0086 0087 05~0 0336
0093 0094 0095 0530 0344
0101 0102 0103 0540 0352
0109 0110 0111 0550 0360
0117 0118 0119 0560 0368
0125 0126 0127 0570 0376

0133 0134 0135

1

0600
·0384

0141 0142 0143 0610 0392
0149 0150 0151 0620 0400
0157 0158 0159 0630 0408
0165 0166 0167 0640 0416
0173 0174 0175 0650 0424
0181 0182 0183 0660 I 0432
0189 0190 0191 0670,0440

1
0197 0198 0199 0700' 0448
0205 0206 0207 0710 i 0456
0213 0214 0215 0720,0464
0221 0222 0223 0730! 0472
0229 0230 0231 0740 0480·
0237 0238 0239 0750 0488
0245 0246 0247 0750 0496
0253 0254 02~ 0770 0504

5 6 7 ! 0

11400 I 0768 0517 0518 0519
0525 0526 0527 1410 10776
0533 0534 0535 1420 0784
0541 ~542 0543 1430 0792
0549 0550 0551 1443 08JO
0557 0558 0559 1450 0808
1)565 0566 0567 1460 0816
0573 0574 0575 1470 0824

0581 0582 0583 1500,0832
0589 0590 0591 1510108~0
0591 0598 0599 1520 i 08~8
0605 0606 0607 1530; 0856
0813 0614 0615 1540 I 0864
0621 0622 OE2l 1550' 0872
0629 0630 0631 1560 10880
0637 0638 0639 1570 0888

0645 0646 0647 1600 0896
0653 0654 0655 1610 0904
0661 0662 0663 1320 0912
0669 0670 0671 1630 0920
0677 0678 0679 1640 0928
0685 0686 0607 1650,0936
0693 0694 0695 1660 10944
0701 0702 0703 1670 10952

0109 0710 0711 1100 0960
0717 0718 0719 1710 i0968
0725 0726 0727 1720,0976
0733 0734 073S

"'"11"
0141 0742 0743 1740 0992
0740 0750 0751 1750 1000
0757 0758 075' ITGOlooe
0765 0766 0781 1770 IOU

L-l

I 2 3 4 $ 6 7

0257 0258 0259 0260 0261 0262 0263
0265 0266 0267 0268 0269 0270 0271
0273 0274 0275 0276 0277 0278 0279
0281 0282 0283 0284 0285 0286 0287
0289 0290 0291 OB2 0293 0294 0295
0297 029a 0299 0300 0301 0302 0303
0305 0306 0307 0308 0309 0310 0311
0313 0314 0315 0316 0317 0318 0319

0321 0322 0323 0324 0325 0326 on7
0329 0330 0331 0332 0333 0334 0335
0337 0338 0339 0340 0141 0342 0343
0345 0346 0317 0348 0349 0350 0351
0353 0354 0355 0356 0357 0358 0359
0361 0362 0363 0364 0365 0366 03~7

0369 0310 0371 0372 0373 0374 0375
0377 0378 0379 0380 0381 0382 03B3

0385 0386 0387 0388 0389 0390 0391
0393 0394 0395 0396 0397 0398 0399
0401 0402 0403 040~ 0405 0406 0407 I
0409 0410 0411 0412 0413 04 I 4 0415 ,
0417 0418 0419 0420 0421 0422 0423
0425 0426 0427 0428 0429 0430 0431
0433 0434 0435 0436 0437 0438 0439
0441 OH2 OH3 0444 0445 0446 0447

0449 0450 0451 0452 0453 0454 0455
0457 0458 0459 0460 0.61 0462 0463
0465 0466 0467 0468 0469 0470 0471 i
0473 0414 0~75 0476 0471 0478 0479 1
0481 0~82 0483 0484 0485 0486 0487 i
0489 0490 0491 0492 0493 0494 ~~~i I 0497 0498 0499 0500 05dl· 0502
0505 0506 0507 0508 nS09 0510 05.!..!J - - - - . -- --,

I 2 J 4 5 6 7 i
I

0769 071Q 0771 0712 0713 0774
0775

1 0777 0778 0719 0780 0781 0782 0783
0785 0786 0787 0788 0789 0790 0791 i
0793 0794 0795 0796 0797 0798 0799,
0801 0802 0803 0804 0805 0808 0807i
080~ 0810 0811 0812 0813 0814 0815i
0817 0818 0819 0820 0821 0822 08231
0825 0826 0827 0828 0829 0030

0831
1 0833 0834 0835' 0836 0837 0838 0839

0841 0842 0843 0844 0845 0846 0847 1
0849 0850 0851 0852 0853 0854 0855 1
0857 0858 0859 0860 0861 0852

::::1 0865 0866 0367 0868 0869 0870
0873 0874 0875 0875 0877 0878 0878
0881 0882 0883 0864 0885 0886 0887
0889 0890 0891 0092 oe93 089~' 0095

1
0897 0898 0899 0900 0901 0902 0903 [
0905 0906 0907 0908 0909 0910 09111
0913 0914 0915 0916 0917 0918 0919
0921 0922 0923 0924 0925 0926 0927
0929 0930 0931 0932 0933 0934 0935
0937 0938 0939 0940 0941 0942 0943!
0945 0946 0947 0948 0949 0950 0951!
0953 0954 0955 0956 0957 0958 0959 j

0961 0962 0963 0964 0965 0966 0967
1 0969 0970 0971 0972 0973 0974 0915

0977 0978 0979 0980 Ogel 0982
0983

1

0985 0986 0987 0988 0989 0990 0991
0993 0994 0995 0996 0997 009a 0999
1001 1002 1003 1004 100; 1006

1007
1

1009 1010 1011 IOU 1013 1014 lOIS
1017 IOU 1019 1020 1021 IO~

CONVERSION TABLES

OCTAL-DECIMAL INTEGER CONVERSIONS (Continued)

2000 I 1024 to to
2777 1535

(Octal) (Decimal)

Octal Decimal
10000 - 4096
20000· 8192
30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672

3000
to

3777
(Octal)

1536
to

2047
(Decimal)

I 0 I 2 J ~ 5 6 7

2001l! I02~ 1025 1026 1027 1028 1029 1030 lOll

201°1 1032 1033 1034 1035 1036 1037 1038 1039
202Q 1040 1041 1042 1043 1044 1045 1046 1041
2030! 1048 1049 1050 1051 1052 1053 B054 1055
2040 1056 1051 1058 1059 1060 1061 1062 1063
2050 1064 1065 1066 1067 1068 1069 1070 1071
2060 1072 1073 1074 1075 1076 1077 1076 1079
2070 1080 1081 1002 1083 1084 1085 1086 1081

2100 1088 1089 1090 1091 1092 1093 1094 1095
2110 1096 1097 1096 1099 1100 1101 1102 1103
2120 1104 1105 1106 !I07 1108 1109 1110 1111
2130 1112 1113 1114 1115 1116 1117 1118 1119
2140 1120 1121 1122 1:23 1124 1125 1126 1127

215011128 1129 1130 1131 il3Z 1133 1134 1135
2160 1136 1137 1138 1139 1140 1141 1142 1143
2170 1144 1145 lUG 1147 1148 1149 1150 1151

nOOllU2 1153 1154 1155 1156 liS? 1158 1159
2210 1160 1161 1162 1163 1164 IUS 1166 1167
2220 1168 1169 1170 1171 1112 1173 1174 i175
2230 1176 1177 117a 1179 1180 1181 1182 1183
2240 1184 IIB5 1186 118' 1188 JlB9 1190 USI
22~0 1192 1193 1194 \195 1196 1197 1196 1199
2260 1200 1201 1202 1203 1204 1205 1206 1207
2210 1208 1209 1210 1211 1212 1213 1214 1215

2300 1216 1217 1218 1219 1220 1221 1222 1223
2310 1224 1225 1226 1227 1228 1229 1230 1231
2320 1232 1233 1234 1235 1236 1237 1238 1239
2330 1240 1241 1242 1243 1244 1245 1241 1247
2340 1246 1249 1250 1251 1252 1253 1254 1255
2350 12511 1257 1258 1259 1260 1261 1262 1263
2360 1264 1265 1266 1267' 1268 1269 1270 1271
2370 1212 un 1274 1275 1276 1277 1278 1279

~ 2 3 4 5 6 7

3000 1536 1537 1538 1539 1540 1541 1542 1543
3010 1544 1545 1546 1547 1548 1549 1550 1551
3020 1552 1553 1554 1555 1556 1557 1558 1559
3030 1560 1561 1562 1563 1564 1565 1566 1567
3040 1568 156S 1570 1571 1572 1573 1574 1575
3050 1576 1577 1578 1579 1580 1581 1582 1583
3060 1584 i585. 1586 1587 1588 1589 1590 1591
3070 1592 1593 1594 1595 1596 1597 1598 1599

1100
1

1600 1601 1602 1603 1604 t605 1606 1601
3110 1608 1609 1610 1611 1612 1613 1614 1615

. 3120 1616 1617 1610 1619 1620 1621 1622 1623
3130 1824 1$25 1626 1627 1626 1629 1630 1631
3140 1632 1633 1634 1635 1636 1637 i638 1639
3150 1640 1641 1642 1643 1644 1645 16~6 1647
3160 1648 1649 1650 1651 1652 1653 16.4 1655
3170 1656 1657 J65a 1659 1660 1661 1662 1663

3200 1664 1665 1666 1667 1668 1669 1670 1671
3210 1672 1673 1674 1675 1676 1677 1678 ',679

322011680 1681 1682 1683 1684 1685 1686 1687
3230 1688 1689 1690 1691 1692 1693 169<t 1695
3240 1696 1697 U9a 1699 1700 1701 1702 1703
3250 1104 1705 1706 1707 1708 1109- 1710 1711
326011712 1713 1714 1115 1116 1717 1718 1719
3270 i 1720 1721 1722 1723 1724 1725 1726 1727

3300 '1728 1729 1730 1731 1732 1733 1734 !135
331011736 1137 1738 1739 1740 1741 1742 1143

'1" 1145 1746 1741 1748 1149 1750 1751
3110 Inz 1753 1754 J7~5 1756 1157 1158 1759
3340 1760 176\ 1762 1763 1764 1165 1766 I7G7 tJ50 1768 1769 1770 1171 1772 1173 1774 1775
3360 1776 1777 1778 1779 1780 1731 1782 I7Il
~3!0 }_~~12~.!786 ."81 1188 I~~!J!!

L-2

--
0 I 2 3 4 5 6 7

1400 1280 1281 \282 1283 12e'4 nos 1286 1287
2410 1288 1289 1290 1291 1292 1293 1294 1295
2420 1296 1297 1298 1299 1100 1301 1302 1303
2430 1304 1305 1306 1307 B308 1309 1310 1311

2440 1312 1313 UI4 1315 1316 1311 1318 1319

2450 1320 1321 132~ 1323 1324 1325 1326 1327

2460 1328 1329 1330 1331 1332 1333 1334 1335

2470 1336 1337 1338 1339 1340 1341 1342 1343

2500 1344 1345 1346 1347 1348 1349 1350 1351
2510 1352 1353 135~ 1355 J 356 1357 1358 1359
2520 1360 1361 1332 1363 1364 1365 1366 1367
2530 1368 1369 1370 1371 1372 1373 i3H IJ1S
2540 1376 1377 1378 1379 1380 1381 1302 138J
2550 1384 1365 1386 1387 1388 1:.189 1390 1391

2560 1392 1393 1394 1395 1396 1397 1398 1399
2570 1400 1401 1402 1403 1404 1405 140e 1407

2600 1408 1409 1410 1411 1412 1413 1414 1415
2610 1416 1417 1418 1419 1420 1421 1422 1423
2620 1424 1425 1426 1427 1428 1429 1430 1431
2630 1432 1433 1434 1435 1436 1437 1438 1'139
2640 1440 1441 1442 1443 1444 1445 1446 1447
265C1 1448 1449 1450 1451 1452 1453 1454 IUS
2660 1456 1457 1458 1459 1460 1461 1462 1463
2670 1464 1465 1466 1467 1468 1469 1470 1471

2700 1472 1473 1474 un 1476 1477 1478 147.
2710 1480 1481 1432 1483 1484 1485 1486 1417
2720 1488 1489 1490 1491 1492 1493 1494 1495
2730 1496 1497 1498 1499 1500 1501 1502 1503
2740 1504 1505 1506 1507 1508 1509 1510 1511
2750 1512 1513 1514 1515 1516 1517 1518 1519
2760 1520 1521 1522 1523 1524 1525 1526 1527
2770 1528 1529 1530 1531 1532 1533 1534 1535

0 I 2 3 4 5 6 7 I
3400 1792 1793 1794 1195 1796 1797 1798 1799
3410 1800 1801 1802 1803 1804 1805 1806 1801
3420 1808 1809 1810 !Gil 1812 1813 1814 Ifil5
3430 1816 1817 1818 1819 1820 1921 1822 1823
3440 1824 1825 1826 1827 1028 1829 1830 1831
3450 1832 1833 1834 1835 1836 1837 1838 18391
3460 1840 1841 1842 _1843 1844 1845 1846 1847 1
3470 1848 1849 1850 \851 1852 1853 1854 1855'

3500 1856 1857 1858 1859 1860 1861 1862 18113
3510 1064 1865 1866 1867 1868 1869 1870 1871
3520 1872 1873 1874 1875 1876 1877 1878 1879
3530 1880 1881 1882 1883 1884 1885 18d6 1887
3540 1888 1889 1890 1891 1892 1893 1894 1895
3550 1896 1897 1898 1899 1900 1901 1902 1903
3560 1904 1905 1906 1907 1908 1909 1910 1911
357D 1912 1913 1914 1915 1916 1917 1910 1919

3600 1920 1921 1922 1923 1924 1925 1926 1921
3610 1928 1929 IUO 1931 1932 1933 1934 1935
3620 1936 1937 1938 1939 1940 1941 1942 1943i
3630 1944 1945 1946 19.7 1948 1949 1950

1951

1

3640 1952 1953 1954 19:'5 1956 1957 1958 1959
3650 1960 1961 1962 1963 1964 1965 1966 19S7
3660 1968 1969 1970 1971 1972 1973 1974 1975
3670 1976 1971 1973 1979 1900 1981 1982

1983
1 3700 1984 1985 1986 1987 1988 1989 1990 1991

3110 1992 11193 1994 199~ 1996 1997 1998 j9!l9
3120 2000 2001 2002 2003 2004 2005 2006 20011
3130 2008 2009 2010 2011 2012 2013 2014 201~

3140 2016 2017 2018 2019 2020 2021 2022 lG,'!.> ,
3'50 2024 2025 2026 2027 ~("g 2029 2030 ~
3160 2,)32 2033 20~4 203; ~036 20J7 20~e 2039
3!'!..Q I 21140 2~,-_2_042 _ 2(101~ __ ~ .. _1~~~'12~ 2M7

CONVERSION TABLES

OCTAL-DECIMAL INTEGER CONVERSIONS (Continued)

~I~ 4777 2559
(Octal) (Decimal

Octal Decimal
10000· 4096
20000·, 8192
30000 . 12288
40000 . 16384
50000 . 20480
60000 . 24576
70000 . 28672

)

4000
4010
4020
4030
4040
4050
4060
4070

4100
4110
4120
4130
4140
4150
4160
4170

4200
4210
4220
4230
4240
4250
4260
421p

4300
4310
4320
4330
4340
4350
4360

0 I 2

2048 20~9 2050
2056 2057 2058
2064 2065 2066
2072 21173 2074
2080 2081 2082
2018 2089 2090
2et6 2091 2098
2104 2105 2106

2112 2\13 2114
2120 2121 %122
2128 2129 2130
2136 2137 2138
2144 2145 2146
2152 2153 2154
2160 2161 2162
2168 2169 2170

2176 2171 2178
218~ 2185 2186
2192 2\93 2\94
2200 2201 2202
2208 2209 2210
2216 2217 2218
2224 2225 2226
2232 2233 22H

2240 2241 2242
2248 2'49 2250
2256 2257 2258
2254 2265 2266
2212 2273 2274
2280 2281 2282
2288 2289 2290

3 4 5 8 7 0 I

2051 2052 2053 2054 2055 4400 2304 2305
2059 2010 2011 2012 2013 4410 2312 2313
2067 2068 2069 2070 2071 4420 2320 2321

,2075 2076 2071 207' 2079 4430,2,328 2329
2083 2084 2085 2086 2017 4440 2336 2331
2091 2092 2093 2094 2095 445012344 2345
2099 2100 ZlOI 2102 2103 4460 2352 2353
2107 2108 2109 2110 2111 4470

1

2360 2361

2115 2116 2117 2118 2119 4500 2368 2369
2123 2124 2125 2126 Zl27 4510 2376 2371
2131 2132 2133 2134 2,135 4520 \2384 2385
2139 2140 2141 2142 2143 4530,2392 2393
2147 2148 2149 2150 2151 45401 2400 2401
2155 2156 2157 2158 2159 4550i 2408 2409
2163 2164 2165 2166 Zl67 4560 2416 2417
2171 2172 217~ 2174 ,2175 457012424 2425

2179 2180 2181 2182 2183 4600 ! 2432 2433
2187 2188 2119 2190 2191 4610 i 2440 2441
2\95 2196 2111~ 2198 2199 4620 2448 2449
2203 2204 2205 2206 2201 4630 i 2456 2457
2211 2212 2213 2214 2215 4640' 2464 2465
2219 2220 2221 2222 ·2223 4650: 2472 2473
2227 2228 2229 2230 2231 4660,24,80 2481
2235 2236 2231 2238 2239 4670 \2488 2489

2243 2244 2245 2246 2247 4700 2496 2497
2251 2252 2253 2254 22S5 471012504 2.505
2259 '2260 2261 2262 2263 4720,2512 2513
2267 22S8 2269 2270 2271 413012520 2511
2275 2216 2277 2278 2279 474012528 2529
Ull 2284 2285. 2286 2287 4150 2536 2537
2291 2292 2293 2294 2295 4760: 2SH 2545

4370 2296 2297 2298 2299 2300 2301 ~302 2303, i4770! 2552 2553

I 0
I

I 2 3 4 5 6 7 I 0 I

5000 2560 2561 2562 2563 2564 2565 2~66
258!1

540012816 2817
5010 2568 256. 2570 2571 2572 2573 2574 2575 541012824 2825
5020 257& 2577 2571 '2579 2580 2511 ~582

2583
1

5420 2832 2833
) 5030 2584 2585 25841 2517 2511 251" 2590 2591 5430 2840 2841

5040 2592 25" 2594 25.5 25,. 2597 25'8 2599 5440 2848 2849
5050 2&00 21101 2102 2S03 2804 2105 2101 2&07 5450 2856 2857

!iOOO I 2560 to to
5777 3071

(Octal) (Decimal

5060 2608 2109 2etO 2811 2&12 Ut3 2114 2615 5460 2864 2865
5070 2616 2617 2618 2619 2620 :1821 2622 2823 5470 2872 2873

510012624 2625 2626 2627 2628 2629 2630 2631 5500 2880 2881
5110 2632 2633 2634 2635 2636 2637 2638 2639 551012888 2889
5120 2640 2641 2642 2643 2644 2645 2646 2647 5520 2896 2897
5\30 2648 2649 2650 2651 2652 2653 2654 2655 5530 2904 2905
5140 2656 2657 2658 2659 2660 2661 2682 2663 5540 29\2 29\3
5150 2664 2665 2666 2667 2668 2669 2670 2671 555012920 2921
5180 2672 2673 2674 2615 2676 2677 2618 2679 5560 2928 2929
5170

1

2680 2681 2682 2683 2684 2685 2686 2687 557012936 2937

5200 2688 2689 2690 2691 2692 2693 2694 2695 5600 12944 2945
5210 2696 2697 2698 2699 2700 2701 2702 2703 '5610 i2952 2953
522012704 2705 2706 2707 2108 2709 2710 2711 562012960 2961
5230 1271 2 2713 2714 2715 27\6 2717 2718 27\9 5630 2968 2969
5240,2720 2721 2722 2723 2724 2725 2726 2727 564012976 29n
5250! 2728 2729 2730 2731 2732 2733 2734 2135 5650 2S8~ 2985
5260 2736 2137 2738 2139 2740 2741 2742 2143 5660 2992 2993
5270 2744 2745 2746 2747 2748 2749 2750 2751 ,5670 3000 3001

5300 2152 2753 275~ 2755 2756 2757 2758 2759 ~700 3008 3009
5310 2160 2761 2762 2763 2764 2765 2766 2767 5710 301'6 3017
5320 2768 2759 2770 2771 2772 2773 2774 2775 5720 3024 3025
5330 2171 2777 2778 2779 2780 2781 2782 2783 5730 3032 3033
5340 2784 2785 2716 2787 2788 2789 2790 2791 5740 3040 3041
5=50 2792 2793 2794 2795 2796 2797 2791 2799 5750 3048 3049
5380 2100 2801 2102 2803 2804 2105 2106 2807 5760 305S 3057
5370 2101 2809 '21t 0 2ItI 2112 2113 2814 2115 5770 3014 3015

L-3

2 3 4 5 • 7

2301 2307 2308 not 2310 ,t;1\
2314 2315 2311 2317 2311,\13.'
2322 2323 2324 232$ 2321 '~327
2330 2331 2332 2333 2334 335
2338 2339 2340 2341 2342 1343
2346 2347 2348 2349 1350 2351
2354 2355 235! 2357 2351 235.
2362 :i363 2364 2365 nil 2317

2370 2371 2372 2373 2374 2375
2378 2379 2380 2311 2312 2383
2386 2387 2388 2389 2390 2311
2394 2395 2396 2397 239. 2.319
2402 2403 2404 2405 2401 2407
2410 2411 2412 2413 2414 2415
24\8 2419 H2O 2421 2422 2423
2426 2427 2428 2429 2430 2431

2H4 '2435 2436 2437 2438 243.
2442 2443 2444 2445 2446 2447
2450 2451 2452 2453 2454 2455
2458 2459 2460 2461 2462 2413
2466 246? 2468 2469 2470 2471
2474 2475 2476 2477 2471 2479
2482 2483 2184 24,85 2485 2417
2490 2491 2U2 2493 2494 2495

2.498 2499 2500 2501 2502 2503
2506 2507 2508 2509 2510 2511
2514 2515 2516 2517 2518 2519
2522 2523 2524 2525 2UI 2527
2530 2531 2532 2533 2534 2535
2538 2539 2540 2541 2542 2543
2546 2547 2548 2549 2550 2551
2554 2555 2~..s6 2557 2558 2559

2 3 4 ~ 6 7

2818 2819 2820 281.1 2822 2121
2826 2827 2828 2829 2130 2131
2834 2835 2836 2837 2831 213.
28~2 2843 2844 2845 2846 :147
2850 2851 2852 2853 2154 2151
2858 2859 2860 2861 2162 2 .. '
2866 2861 2868 2869 2170 2nl
2874 2875 ~876 2877 2871 217"

2882 2883 2884 2885 2886 21.7
2890 289\ 2891 2893 2894 2895
2898 2899 2900 2901 2902 2903
2906 2907 2908 2909 2910 2911
29\4 29\5 2916 2917 2918 21119
2922 2923 2924 2925 29U 2927
2930 2931 2932 2933 2934 2935
2938 '2939 2940 2941 2942 2943

2946 2947 2948 2949 2950 2951
2954 2955 2956 2957 2958 2959
2962 2983 2964 2965 2966 2967
2970 297: 2972 2973 2974 2975
2978 2979 2980 2981 2982 21113
2986 2987 29!8 2989 2990 2911
2994 2995 2996 2997 2998 2919
3002 3003 3004 3005 3006 3007

3010 3011 3012 3013 3014 3015
3018 3019 3020 3021 3022 3023
3026 3027 3028 3029 3030 3031
3034 3035 3036 3037 3038 3039
3042 3043 3044 3045 3046 3047
3050 3051 3052 3053 3054 3055
3051 3059 3010 3061 3012 3013
301S 301~ 3068 3069 3070 3071

CONVERSION TABLES

OCTAL-DECIMAL INTEGER CONVERSIONS (Concluded)

I 0 I

8000 3072 3073

to to 8010 3080 3081
6020 3088 3089

6000 I 3072

6777 3583
(Octal) (Decima I) 6030 3096 3097

3104 3105

Octal Decimal
10000· 4096
20000· 8192
30000·12288
40000 . 16384
50000 . 20480
60000 . 24576
70000 . 28672

7000 I 3584 to 10
7777 4095

(Octal) (DEcimal)

8040
e050 3112 3113
6060,3120 3121
607013128 3129

1
6100 :3136 3137
6110.3144 3145
6120.3152 31,3
G130 i 3160 316i
6140131S8 3169
6150·3176 3177
6160 3184 3185
GJ7D 3192 3193

15200 3200 3201
3210 3208 3209
8220 J216 3!l17
6230 3224 3225
6240 3232 3233
6250 3240 3241
G260 3248 3249
6270 3256 3257

6300,3264 3265
8310 : 3272 3273
832013280 328 !
6330 3288 3289
5340 : 3296 3297
6350 3304 3305
6360,3312 3313
6370 I 3J20 3321

0 1

7000 I 3584 3585
7010 3592 3593
7020 3600 3601
7030 3608 3609
7040 3616 ~617

7050 3624 3625
7060 3632 3633
7070 3640 3641

7100 3648 36~9

7110 3656 3657
7120 3664 3685
7130 3672 3673
7140 36@0 3881
7150 3698 3689
7100 3ege 3691
7170 3704 370~

7200 3712 3713
7210 3720 3721
1220 3721\ ~39
7230 373. 3737
7240 3744 ~745

1250 37~2 3753
7aeo 3780 376\
7270 3108 3769

7300 3778 3717
7310 nB4 3785
7320 3792 3793
7330 ~IOO 3MI
7:140 310S 3809
73$~ 3eu lBn
7~0 3134 3a25
'370 3632 3033

2 3

3074 3075
3082 3083
3090 3091
3098 3099
3108 3107
3114 3115
3122 3123
3130 3131

3138 3139
3146 3147
3154 3155
3162 3163
3170 :'171
3178 31H
3186 3187
3:194 3195

3202 3203
3210 3211
3218 3219
3226 3227
3234 3235
3242 3243
3250 3251
3258 3259

3266 3267
3274 3275
3282 3283
3290 3291
3298 3299
3306 3307
3314 3315
3322 3323

2 3

3586 3587
3594 3595
3602 3603
361U 3611
3618 3619
3626 3627
3634 3635
3642 3643

3650 3651
3658 3659
3666 3667
3674 3675
3682 3683
3690 3691
3698 3699
3706 3707

3714 3715
3723 3723
3730 3731
3738 3139
3746 374?
3754 375~
3782 3763
3770 3771

3778 3779
~718 3797
379~ 3795
3802 3903
lUO 3@1I
1918 3819
3926 3927
Jil34 JUS

4 5 6 7 0 I

3076 3077 3078 3079 64~! me 3329
3084 3085 3086 3087

641°1 3336 3337
3092 3093 3094 3095 6420 3344 334.5
3100 3101 3102 3103 6430 3352 3353
3108 3109 3110 3111 6440 3360 3361
3116 3117 3118 3119 645013368 3369
3124 3125 3126 3127 6460 3376 3377
3132 3133 3134 3135 64701.3384 3385

J 143 3140 3141 3142 6500 3392 3393
3148 3149 3150 JI51 I :~;~: ~:~~ 3401
3156 3157 3158 3159 3409
3164 3165 3166 3167 6530: 3416 3417
3172 3173 3174 3175 .6540 1 3424 3425
3180 3181 3182 3183 6550,3432 3433
3188 3189 3190 3191 6560 3440 3441
3196 3197 3198 JI99 6570 3448 3449

3204 3205 3206 3207 6600 I 3456 3457
3212 3213 3214 3215 1 16610; 3464 3465
3220 3221 3222 3223 6620 3472 3473
3228 3229 3230 3231 ·6630: 3480 3481
3236 3237 3238 3239 6640· 3488 3489
3244 3245 3246 3247 6650 I 3496 3497
3252 3253 3254 3255 6660! 3504 3505
3160 3261 3262 3263 6670i 3512 3513

3269 3270 3271
,

3268 6700 I 3520 3521
3276 3277 3278 3279 16710 13528 3529
3284 3285 3286 3287 16720 I 3536 3531
3292 3293 3294 3295 16730 i 3544 3545
3300 3301 3302 3303 ,6740 3552 3553
3308 3309 3310 3311 1615013560 3561
3316 3317 3318 3319 ,6760: 3568 3569
3324 3325 3326 3327 [!770: 3576 3577

4 5 6 7 0 I

3588 3589 3590 3591 7400 38~0 3841
359. 3597 3598 3599 7110 13848 3849
3604 3605 3608 3607 7420

1
3856 3857

3612 3613 3614 3615 7430 3864 3865
3620 3621 3622 3623 7440 I 3872 3873
3628 3629 3630 3631 7450 3880 3881
3636 3537 3638 3639 7460 30B8 3889
3644 3645 3646 3647 7470 3896 3897

3652 3653 3654 3655 7500 3904 3905
3650 36S1 3662 3663 7510 3912 3913
3568 3569 3670 3671 7520 3920 3921
3676 3677 3678 3679 7530 3928 3929
3664 3685 3688 3687 7540 3936 3937
33Q2 leu 3694 3695 7550 3944 3945
3700 3701 3702 3703 7560 3952 3953
3700 3709 3710 3711 7570 3960 3961

3718 3717 3'18 3719 7600 3968 3969
3724 3725 3726 3727 7610 3976 3977
3732 3733 3734 3735 7620 3904 3985
3HO 3741 3742 3743 7630 3992 3993
3748 3749 3750 3751 7MO 4000 4001
3756 3757 3758 3759 7650 4008 ~OO9
3764 3785 3766 3787 7660 4016 4017
3772 3773 3714 3775 7670 402~ 402~

3780 3781 3782 3783 7700 4032 4033

3768 3789 3790 3791 '7710 ~040 4041

3796 3797 3793 3799 7720 4048 4049

3804 3eos 3106 3807 7730 4056 4057
30U J313 3814 3815 7740 4064 4085

3320 3821 Jan 3823 7no 4072 4073
382S 3929 3UO ~31 7760 4080 4081
3838 3S37 3i3e 31139 7770 ~08e 4089

L-4

--
2 3 4 5 6 7

.3330 3331 3332 3333 3334 3335
3338 3339 3340 3341 3342 3343
3346 3347 3348 3349 3350 3351
3354 3355 3356 3357 3358 3359
3362 3363 3364 3365 3366 3367
3370 3371 3372 3373 3374 3375
3378 3379 3380 3381 ·3382 3383
3386 3387 3388 3389 3390 3391

3394 3395 3396 3397 3398 3399
J402 3403 3404 3405 3406 3407
3410 3411 3412 3413 3414 3415
3418 3419 3420 3421 3422 3423
3426 3427 3428 3429 3430 3431
3434 3435 34~6 3437 3438 3439
3442 3443 3444 3445 3446 3447
3450 3451 3452 3453 3454 H55

3458 3459 3460 3461 3462 3463
3466 3467 3468 3469 3470 3471
3474 3475 3476 3477 3478 3479
3482 3483 3484 3485 3486 3487
3490 3491 3492 3493 3494 3495
3498 3499 3500 3501 3502 3503
3506 3507 3508 3509 3510 3511
3514 3515 3516 3517 3518 3519

3522 3523 3524 3525 3526 3527
3530 3531 35J2 3533 3534 3535
3538 3539 3540 3541 3542 3543
3546 3547 3548 3549 3550 3551
3554 3555 3556 3557 3558 3559
3562 3563 3564 3565 3566 3567
3570 3571 3572 3573 3574 3575
3578 3579 3580 3581· 3582 3583

2 J 4 5 6 7

3842 3843 3844 3845 3846 3847
3850 3851 3852 3853 3854 3855
3858 3859 3860 3861 3862 3663
3866 3867 3863 3869 3870 3871
3874 3875 3876 3877 3878 3879
3882 3883 3884 3885 3886 3807
3890 3891 3892 3893 3894 3395
3899 3899 3900 3901 3902 3903·

3906 3907 3908 3909 3910 3911
3914 3915 3915 3917 3918 3919
3922 3923 3924 3925 3926 3927
3930 3931 3932 3933 3934 3935
393S 3939 39~0 3941 39~2 394JI
3946 3947 3949 3949 3950 3951
3954 3955 3956 3957 3958 3959
3962 3963 3964 3965 3966 3967

3970 3971 3972 3973 39H 3975
3978 3979 3980 3981 3982 3983
3986 3987 3988 3989 3990 3991
3994 3995 3996 3997 3998 3999
4002 4003 400~ 4005 4006 4007
4010 4011 4012 4013 4014 4015
4018 4019 4020 4021 1022 4023
~026 4027 4028 ~O29 4030 4031

4034 4035 4036 4037 4038 403S
4042 4043 4044 4045 4046 4047
4050 Q051 4052 4053 4054 4055
4058 4059 4060 4061 4062 4063
4066 4067 4066 4069 4070 4071
4074 ~O7~ ~076 4071 4078 4079
4082 4083 4034 4085 40GG 4087
4090 4091 4092 4083 ~084 4005

L.2 POWERS OF TWO

CONVERSION TABLES

-2
n

1.0
0.5
0.25
0.125
0.062
0.031 25
0.015 625
0.007 812 5
0.003 906 25
0.001 953 125
0.000 976 562 5
0.000 488 281 25
0.000 244 140 625
0.000 122 070 312 5
0.000 061 035 156 25
0.000 030 517 578 125
0.000 015 258 789 062 5
0.000 007 629 394 531 25
0.000 003 814 697 265 625
0.000 001 907 348 632 812 5
0.000 000 953 674 316 406 25
0.000 000 476 837 158 203 125
0.000 000 238 418 579 101 562 5
0.000 000 119 209 289 550 781 25
0·.000 000 059 604 644 775 390 625
0.000 000 029 802 322 387 695 312 5
0.000 000 014 901 161 193 847 656 25
0.000 . 000 007 450 580 596 923 808 125
0.000 000 003 725 290 298 461 914 062 5
0.000 000 001 862 645 149 230 957 031 25
0.000 000 000 931 322 574 615 478 515 625
0.000 000 000 465 661 287 307 739 257 812 5
0.000 000 000 232 830 643 653 869 628 906 25
0.000 000 000 116 415 321 826 934 814 453 125
0.000 000 oo<i 058 207 660 913 467 407 226 562 5
0.000 000 000 029 103 830 456 733 703 613 081 25
0.000 000 000 014 551 9·15 228 366 851 806 640 625
0.000 000 000 007 275 957 614 183 425 903 320 312 5
0.000 000 000 003 637 978 807 091 712 951 660 156 25
0.000 000 000 001 818 989 403 545 856 475 830 078 125
0.000 000 000 000 909 494 701 772 928 237 915 039 062 5
0.000 000 000 000 454 747 350 886 464 118 957 519 531 25
0.000 000 000 000 227 373 675 443 232 059 478 759 765 625
0.000 000 000 000 113 686 837 721 616 029 739 379 882 812
0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25
0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125
0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5
0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25
0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625
0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5
O.OQO 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25
0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125
0.000000 000 000 000 222 044 604 925 031 308 084 726 333 668 164 062 5
0.000 000 000 000 000 111 022 302 462 515 654 042 363 166 834 582 031 25
0.000 000 000 000 000 055 511 151 231 257 827 021 171 5q.417 041 015 625
0.000 000 000 000 000 027 755 575 615 628 913 510 590 791 708 520 507 812 5
0.000 000 000 000 000 013 877 787 807 814 456 755 215 395 854 260 253 906 25
0.000 000 000 000 000 006 938 893 903 907 228 377 647 697 927 130 126 953 125
0.000 000 000 000 ooQ 003 469 446 951 953 614 188 823 848 963 565 063 476 562
0.000 000 000 000 000 001 734 723 475 976 807 094 411 924 481 782 531 738 281 25
0.000 000 000 000 000 000 867 361 737 988 403 547 205 962 240 891 265 869 140 625

L-5

CONVERSION TABLES

L.3 SCALES OF NOTATION

L.3.1 2x In Decimal

L.3.2

L.3.3

X

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

2'
1.00069 331174 62581
1.00138 72557 11335
1.00208 16050 79633
1.00277 64359 01078
1.00347 17485· 09503
1.00416 75432 30973
1.00486 311204 23785
1.00556 05803 984611
1.00625 78234 97782

l!

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.011
0.09

2'
1.00695 55500 56719
1.01395 94797 90029
1.02101 21257 on93
1.02811 38266 56067
1.03526 49238 41377
1.04246 57608 41121
1.04971 66836 23067
1.05701 80405 61380
1.06437 01824 53360

X

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

+n 10- In Octal

10" n 10-' 10'
I 0 1.000 000 000 000 000 000 00 112 402 762 000

12 1 0.063 146 314 631 463 146 31 I 351 035 564 000
144 2 0.005 075 341 217 270 243 6.6 16 432 451 210- 000

I 750 3 0.000 406 111 564 570 651 77 221 411 634,520 000
23 420 4 0.000 032 155 613 530 704 15 2 ,657.142:036 440 000

303 240 5 0.000 002 476 112 610 706 64 34327724451500000
3 641 100 6 0.000 000 206 157 364 055 37 434 157 lIS 760 200 000

46 113 200 7 0.000 000 015 327 745 152 75 5 432 127 ~13 542 400 000
575 360 400 8 0.000 000 001 257 143 551 06 67 405 553 164 731 000 000

7 346 545 000 9 0.000 000 000 104 560 276 41

n Log 2 and 10 In .Decimal

n n loglQ 2 n IOi] 10 n n IOilo 2
1 0.30102 99957 3.32192 80949 6 1.80617 99740
2 0.60205 99913 6.64385 61898 7 2.10720 99696
3 0.90308 99870 9.96578 42847 II 2.40823 99653
4 1.20411 99827 13.28771 23795 9 2.70926 99610
5 1.50514 99783 16.60964 04744 10 3.01029 99566

2'
UJ7177 34625 36293
1.14869 83549 97035
1.23114 44133 44916
1.31950 79107 12894
1.41421 35623 73095
1.51571 65665 10398
1.62450 4.7927 12471
1.74110 11265 922411
1.116606 59830 73615

n 10-'
10 0.000 000 000 006 676 337 66
11 0.000 000 000 000 537 657 77
12 0.000 000 000 000 043 136 32
13 0.000 000 000 000 003 411 35
14 0.000 000 000 000 000 264 11

15 0.000 000 000 000 000 022 01
16 0.000 000 000 000 000 001 63
17 0.000 000 000 000 000 000 14
111 0.000 000 000 000 000 000 01

n IOi2 10
19.93156 85693
23.25349 66642
26.57542 47591
29.89135 l8540
33.21928 09489

L.3.4 Addition and Mul tipl icatiqn, Binary and Octal

Addition Multiplication

BinaryScalt;l

0+0 = 0 oxo=o
0+1=1:+0= I O:x I=IXO=O

1 1 = 10 1 x 1 = 1

Octal Scale

0 01 02 03 04 05 06 07 1 02 03 04 05 06 07

02 03 04 05 06 07 10 2 04 06 10 12 14 16

03 04 05 06 07 10 11 3 06 II 14 17 22 25

3 04 05 06 07 10 11 12 <4 10 14 20 24 30 34

4 05 06 07 10 II 12 13 5 12 17 24 31 36 43

5 06 07 10 11 12 13 14 6 14 22 30 36 44 52

Ii 07 10 II 12 13 14 15 7 16 25 34 43 52 61

7 10 11 12 13 14 15 16

L-6

CONVERSION TABLES

L.3.S Mathematical Constants In Octal

7r= 3.11037 552421, e= 2.55760 521305, 'Y= 0.44742 147707.

7r- 1 = 0.24276 301556, e- I = 0.27426 53066la In'Y = - 0.43127 233602.

'1/" = 1.61337 611067. 'l/e= 1.51411 230704. 10112 'Y = - 0.62573 030645.

In 7r = 1.11206 404435, 10810 e = 0.33626 754251, '1/2= 1.32404 746320.

10827r = 1.51544 163223. 1012 e = 1.34252 166245. In 2 = 0.54271 027760.

'1/10 = 3.12305 407267. 101210 = 3.24464 741136. In 10 = 2.23273 067355.

L-7

APPENDIX M

NOTE TO USERS OF SERIAL LA30 AND 600, 1200, AND 2400 BAUD VT05'S

The serial LA30 requires that filler characters follow each carriage
return; the 600, 1200, and 2400 baud VT05's require that filler
characters follow each line feed. The following table lists the
filler characters ,needed. The byte at location 448 has been
established as the filler count and the byte at location 4~B contains
the character to be filled. These locations are initially set to zero
by PAL-IIA and ED-II to allow normal operation of the program.

Depending on the terminal, change the locations as follows:

LOC 44

LA30 011

VT05 600 Baud 001

VT05 1200 Baud 002

VT05 2400 Baud 004

LOC 45

015

012

012

012

Resulting Word (binary)

0000110100001001

0000101000000001

0000101000000010

0000101000000100

The proper binary word can be stored at location 44 by using the
console switches as described in section 2.1.2 of this manual.
Furthermore, users with a 2400 baud VT05 should avoid the use of
vertical tab characters in their programs. Vertical tabs will not be
properly filled and may cause characters to be lost.

Once the changes have been made, the program may be dumped to paper
tape by using the bootstrap version of DUMPAB (see section 6.3 in this
manual). However, since programs change each time a new version is
released, it is necessary to have a program listing to determine the
exact memory limits to be dtimped.

The above changes only affect output to the console teleprinter.

Users of IOX or IOXLPT source tapes will find the byte at location 44
tagged "I.44:" and the byte· at location 45 tagged "I.45:". These
locations are defined near the end of the second source tape and can
be changed to appropriate values using ED-II.

ODT-ll uses the locations (44 and 45) but does not set them to zero
initially.

M-l

APPENDIX N

USING THE ABSOLUTE LOADER ON PDP-II'S WITHOUT SWITCH REGISTERS

This appendix describes the procedures for loading and using the
Absolute Loader on PDP-II's without switch registers. The procedures
are divided into LSI-II, M930l-YB bootstrap loader, and M930l-YA
bootstrap loader. Chapter 6 describes the procedures for machines
with switch registers.

N.l LSI-ll

The following are instructions for loading and using the Absolute
Loader on an LSI-II.

1. Press the BOOT/INIT switch on the LSI-II front panel
enable the bootstrap loader. An @ prints at the terminal.

to

2. Place the Absolute Loader tape (DEC-ll-UABLB-A-PO) in the
reader.

3. Type the status register address of the input device and L to
load the Absolute Loader.

For example, when loading from the console terminal paper
tape reader, type:

~177560L

When the tape has been read, an @ followed by the start
address of the Absolute Loader prints at the terminal.

For example, on a machine with 8K memory, type:

@177560L

The Absolute Loader prints the address of the Absolute
Loader:

@37500
@

4. Place the tape to be loaded via the Absolute Loader in the
reader.

5. Select the type of loading from the following:

a. Normal Loading

For normal loading, type the address of the Absolute
Loader (printed at the terminal), followed by G, e.g.,

~xxx500G

N-l

USING THE ABSOLUTE LOADER ON PDP-II'S WITHOUT SWITCH REG

where xxx is the memory size of the system and is:

xxx

017
037
057
077
117
137
157

Memory Size

4K
8K

12K
16K
20K
24K
28K

For example, in an 8K system, type:

@37500G

Normal loading can also be achieved by typing the P
command, e.g.,

@P

b. Relocated Loading

Type the software switch register value and deposit the
relocation value as follows:

@xxx516/yyyyyy zzzzzz.J
~xxx500G

or type:

~xxx516/yyyyyy zzzzzz~
~P

where xxx516 is dependent on memory size and is the
address of the software switch register, yyyyyy is the
old content of the switch register, and zzzzzz is the new
relocation value.

The value of zzzzzz is explained in Section 6.2.2 for the
value of the switch register for relocated loading. For
example, in an 8K system, the dialogue would be:

@37516/yyyyyy zzzzzz.J
~

The following is an example of a normal load on an 8K
machine.

@177560L
@37500
~P

;boot system and put Absolute Loader
;in reader
;Absolute Loader tape is read
;put tape to be loaded in reader
;tape is read ip.

The following is an example of a relocated load on an 8K
machine:

@l77560L
@37500
@37516/000000 1001
@P

N-2

;boot system
;put Absolute Loader tape
;in reader
;put tape in reader
;tape is read

USING THE ABSOLUTE LOADER ON PDP-II'S WITHOUT SWITCH REG

To continue loading, change 1001 in the above example to
1.

6. If more tapes are to be loaded as explained in Section 6.2.2,
put the next tape in the reader and repeat section a or b of
item 5.

7. If the tape is not self-starting, the halt address of the
Absolute Loader is printed, followed by an @' Type the
starting address followed by a G to start the program.

@37500
~xxxxxxG

where xxxxxx is the starting address of the program.

N.2 M9301-YB BOOTSTRAP LOADER

The following are instructions for loading and using the Absolute
Loader on a PDP-II (e.g., PDP-ll/04) without a switch register.

1. Press the BOOT/INIT switch on
enable the bootstrap loader.
the terminal. The four numbers
and the PC, respectively.

For example:

the PDP-II front panel to
A $ and four numbers print at
are the values of RO, R4, R6,

0077400 012450 000546 004054
$

2. Place the Absolute Loader (DEC-II-UABLB-A-PO) in the reader.

3. Type the device code (PR for the PCll high-speed reader or TT
for the terminal reader) to load the Absolute Loader.

~PR~

or

when the tape has read in, the machine halts.

4. Place the tape to be loaded by the Absolute Loader in the
reader.

5. Select the type of loading from the following:

a. Normal Loading

For normal loading, press the CONT switch on the PDP-II
front panel.

b. Relocated Loading

1) Press the BOOT/INIT switch; a $ followed by the four
numbers explained in item 1 prints at the terminal.

2) Load the address of the software switch register as
follows:

~L xxx5l6~

N-3

USING THE ABSOLUTE LOADER ON PDP-ll.'S WITHOUT SWITCH REG

3) Deposit the relocation value in the. software switch
register as follows:

.~P yyyyyy-./

where yyyyyy is the value explained in Section 6.2.2
for relocated loading.

4,) Load. the starting address of the Absolute Loader as
follows:

~L xxx500.)

5) Type S to start running the Absolute Loader.

6. If more tapes are to be loaded as explained in Section 6.2.2,
put the next tape in the reader and repeat section a or b of
item 5.

7. If the tape is not self-starting,

a. Press the BOOT/INIT switch.

b.Load the starting address of the program with the L
command, i.e.,

~L xxxxxx.)

c. Start the program with the Scommand:

The following are examples for PDP-II with 16K words of memory.

Relocated - continuo.us loading:

$L 77516.)

~D 1.)

$L 77500.)

$S.)

Relocated- load in specified area of core:

~L 77516-./

$0 1001--1

~L 77500-./

$S.,)

N.3 M9301-YA BOOTSTRAP LOADER

The instructions for loading and using the Absolute Loader on a PDP-II
(e.g., PDP-II/04) without a switch register but with a console
terminal are the same as described in Section 0.2.

N-4

USING THE ABSOLUTE LOADER ON PDP-II'S WITHOUT SWITCH REG

PDP-II's without console terminals may only be loaded with normal
loading methods. See the M9301 Maintenance Manual for instructions on
placing the address of the paper tape bootstrap in the micro switch on
the M9301 module. The following instructions are for PDP-II's without
console terminals.

1. Place the Absolute Loader tape (DEC-II-UABLB-A-PO) in the
reader.

2. Press the BOOT/INIT switch. When the tape has read in, the
machine halts.

3. Place the self-starting tape to be loaded by the Absolute
Loader in the reader.

4. Press the CONT switch.

N-S

Abbreviations, standard
PDP-II, K-l

Absolute and relocatable
program sections,
LINK-lIS, 3-2

Absolute expressions, PAL-lIS,
1-9

Absolute Loader, 6-1, 6-10, F-3
PAL-lIS, 1-24

Accessing internal registers,
ODT-ll, 5-6

Adding devices to lOX, 7-21
Address Mode syntax,

PAL-IIA, C-2
PAL-lIS, B-2

Addressing,
PAL-llA, 2-9
PAL-lIS, 1-12

Altering register contents,
9-6

Arithmetic and logical
operators,

PAL-llA, 2-8
PAL-lIS, 1-8

ASCII,
character set, A-I
conversion, PAL-IIA, 2-8
conversion, PAL-lIS, 1-8

.ASCII directive,
PAL-llA, 2-17
PAL-lIS, 1-21

.ASECT and .CSECT program
section directives,
PAL-llS, 1-19

Assembler directives,
PAL-IIA, 2-3, 2-15
PAL-lIS, 1-18, B-8

Assembly and linking instruc­
tions, J-I

Assembly dialogue, PAL-IIA,
2-23

Assembly listing,
PAL-IIA, 2-24
PAL-lIS, 1-30

Assembly Location Counter,
PAL-IIA, 2-8
PAL-lIS, 1-10

Assignment, direct,
PAL-IIA, 2-5
PAL-lIS, 1-6

Autodecrement Mode,
PAL-llA, 2-11
PAL-lIS, 1-14

Autoincrement Mode,
PAL-IIA, 2-10
PAL-IIA deferred, 2-11
PAL-llS, 1-13

INDEX

Blank operator field, PAL-IIA,
2-16

Bootstrap Loader, 6-1, F-l
loading and verifying the, 6-7

Bootstrap tapes, loading into
core, 6-8

Bootstraps, paper tape, 6-2
Breakpoints,

ODT-H, 5-6
ODT-IIX, 5-12, 5-14

Buffer arrangement in data
transfer command, 7-4

Buffer size, lOX, 7-5
Buffering, double, 7-15
Byte count, lOX, 7-8
.BYTE directive,

PAL-HA, 2-17
PAL-llS, 1-21

Byte offset, PAL-lIS, 1-17

Calculating offsets,
ODT-11, 5-9
ODT-11X, 5-11

Changing, opening, and closing
locations,

ODT-ll, 5-4
ODT-IIX, 5-10

Character location pointer (Dot),
ED-II, 4-2

Character set,
ASCII, A-I
PAL-IIA, 2-2
PAL-llS, 1-2

Closing, opening, and changing
locations,

ODT-ll, 5-4
ODT-11X, 5-10

Codes, PAL-IIA error, 2-25
Coding techniques, 9-6
Commands and functions, ODT-ll,

5-3
Command delimiters, ED-II, 4-2
Command Mode and Text Mode, ED-II,

4-1
Command properties, line-oriented,

ED-II, 4-3
Commands, ED-II, 4-4

to modify the text, 4-8
to move Dot and Mark, 4-6

Comments,
PAL-IIA, 2-4
PAL-lIS, 1-4

Communication and data flow,
ODT-IIX, 5-15

Communication with lOX, 7-1

Index-I

INDEX (Cont.)

Conditional assembly directives,
PAL-lIS, 1-23

Control format, PAL-lIS, 1-4
Conversion, PAL-lIS ASCII, 1-8
Conversion tables, L-l
Core memory dumps, 6-14, F-4
Counter, PAL-lIS progr~, 1-12
Creating a paper tape, ED-II,.

4-11
CTRL/U, PAL-lIS, 1-24

Data transfer commands,
buffer arrangement in, 7-4
device conflicts in, 7-12

Data transfers, lOX, 7-11
Decimal numbers, PAL-lIS, 1-8
Deferred Autodecrement Mode,

PAL-llA, 2-11
PAL-lIS, 1-14

Deferred Autoincrement Mode,
PAL-llA, 2-11
PAL-lIS, 1-13

Deferred Immediate (Absolute)
and Immediate Mode, PAL-llA,
2-12

Deferred Index Mode,
PAL-llA, 2-12
PAL-lIS, 1-14

Deferred Register Mode, PAL-lIS,
1-13

Deferred Relative and Relative
Mode, PAL-llA, 2-13

Device Assignment Table, lOX,
7-3

Device conflicts in data
transfer commands, 7-12

Device Interrupt Table (DIT),
7-20

Device Status Table, (DST),
7-21

Dialogue,
PAL-llA assembly, 2-23
PAL-llA initial, 2-18
PAL-lIS initial, 1-24

Direct assignment,
PAL-llA, 2-5
PAL-llS, 1-6

Directives,
PAL-llA .ASCII, 2-17
PAL-llA .BYTE, 2-17
PAL-llA .END, 2-16
PAL-llA .EOT, 2-15
PAL-llA • EVEN, 2-16
PAL-llA .WORD, 2-16
PAL-lIS .ASCII, 1-21
PAL-lIS .ASECT, 1-19
PAL-lIS .BYTE, 1-21

Directives (cont.),
PAL-lIS .CSECT, 1-19
PAL-lIS .END, 1-20
PAL-lIS • EaT , 1-20.
PAL-lIS • EVEN, 1-20
PAL-lIS .GLOBL, 1-18
PAL-lIS .LIMIT, 1-23
PAL-lIS .RAD50, 1-22
PAL-lIS .TITLE, 1-18
PAL-lIS .WORD, 1-20

Directory, PAL-lIS global symbol,
1-30

Done bit, lOX, 7-7
(Dot) character 'location pointer,

ED-II, 4-2
Double buffering, 7-15
Dumps,

core memory, 6-14, F-4
output formats, 6-17
storage maps, 6-17

Duplication, tape, I-I

ED-II,
Character location pointer,

(Dot), 4-2
command delimiters, 4-2
Command Mode and Text Mode, 4-1
commands, 4-4
commands to modify the text, 4-8
commands to move Dot and Mark,

4-6
creating a paper tape, 4-11
editing example, 4-12
error corrections, 4-10
grouping of commands, D-3
input and output commands, 4-4,

D-l
line-oriented command properties,

4-3
Mark, 4-3
operating procedures, 4-10, D-4
page buffer, 4-3
pointer-positioning commands,

D-2
restarting, 4-11
search commands, 4-7, D-2
software error halts, 4-17
starting, 4-11
symbols, D-3

Editing example, ED-II, 4-12
Editor (ED-II), PAL-lIS, 1-2
.END directive,

PAL-llA, 2-16
PAL-lIS, 1-20

End-of-File Bit, lOX, 7-7
End-of-Medium Bit, lOX, 7-7

Index-2

INDEX (Cont.)

. EOT directive,.
PAL-llA, 2-15
PAL-lIS, 1-20

Error codes,
lOX, 7-6
PAL-llA, 2-7, 2-25, C-8
PAL-lIS, 1-31, B-lO

Error corrections, BD-ll, 4-10
Error detection, ODT-llX, 5-13
Error halts, PAL-llA software,

2-26
Error procedure and messages,

LINK-lIS, 3-7
Error, Q, PAL-lIS, 1-2
.EVEN directive,

PAL-llA, 2-16
PAL-lIS, 1-20

Example of program using lOX,
7-17

Expressions,
absolute, PAL-lIS, 1-9
external, PAL-lIS, 1-9
mode of, PAL-lIS, 1-9
PAL-llA, 2-7
PAL-lIS, 1-7
relocatable, PAL-lIS, 1-9

External expression, PAL-lIS,
1-9

External symbol, PAL-lIS, 1-5

Fatal errors, lOX, 7-17, G-2
Fields, PAL-llA instruction

operand, 2-14
Format control,

PAL-llA, 2-4
PAL-lIS, 1-4

Format, PAL-lIS statement, 1-2
Forms, PAL-llA instruction,

2-14
FPMP-ll,

non-OTS routines, H-7
OTS routines, H-2
routines accessed via trap

handler, H-7
summary, H-l

Functions and commands, ODT-ll,
5-3

General registers, PAL-lIS,
1-6

Global symbol directory,
PAL-lIS, 1-30

Global symbols,
LINK-lIS, 3-2
PAL-lIS, 1-5

.GLOBL directive, PAL-lIS, 1-18
Grouping of commands, ED-II, 0-3

Halts, PAL-llA software error,
2-26

Immediate and Deferred Immediate
(Absolute) Mode,

PAL-llA, 2-12
PAL-lIS, 1-15

Index Mode,
PAL-llA, 2-11
PAL-lIS, 1-14

Initial dialogue,
PAL-llA, 2-18
PAL-llS, 1-24

Initial operating procedures,
PAL-llA, C-9
PAL-lIS, B-1!

Initialization, 7-4
Input and output, LINK-lIS, 3-3
Input/output commands, ED-II, 4-4,

0-1
Instruction forms,

PAL-llA, 2-14
PAL-llS, 1-17

Instruction mnemonic, PAL-llA,
2-3

Instruction operand fields,
PAL-llA, 2-14
PAL-lIS, 1-17

Instruction summary, lOX, G-l
Instructions,

Assembly and linking, J-l
PAL-llA, C-3
PAL-lIS, B-2

Integer conversions, octal-decimal,
L-l

Internal information, lOX, 7-19
Internal registers, accessing,

ODT-ll, 5-6
Internal symbol, PAL-lIS, 1-5
Introduction, ODT-ll, 5-1
lOX,

Index-3

adding devices to, 7-21
buffer size, 7-5
byte count, 7-8
communication with, 7-1
data transfers, 7-11
device assignment table, 7-3
Done Bit, 7-7
End~of-File Bit, 7-7
End-of-Medium Bit, 7-7
error codes, 7-6
example of program using, 7-17

INDEX (Cont.)

IOX (cont.),
fatal errors, 7-17, G-2
instruction summary, G-l
~nternal information, 7-19
Mode Byte, 7-5
modes, 7-8
program flow summary, G-l
reenabling the reader and

restarting, 7-16
Status Byte, 7-6
using, 7-3

Label,
PAL-llA, 2-3
PAL-lIS, 1-3

.LIMIT directive, PAL-lIS, 1~23
Line-oriented command

properties, ED-II, 4-3
LINK-lIS,

absolute and relocatable
program sections, 3-2

error procedure and
messages, 3-7

global symbols, 3-2
input and output, 3-3
load map, 3-4
load modules, 3-3
loading and command string,

3-5
object module, 3-3
operating procedures, 3-5

Linking and assembly instruc­
tions, J-l

Linking and relocation,
PAL-lIS, l-ll

Listing, assembly,
PAL-llA, 2-24
PAL-lIS, 1-30

Load map, LINK-lIS, 3-4
Load modules, LINK-lIS, 3-3
Loader,

Absolute, 6-1, 6-10, F-3
Bootstrap, 6-1, F-l
PAL-lIS Absolute, 1-24

Loading,
bootstrap tapes into core,

6-8
PAL-IlA, 2-18
PAL-lIS, 1-24
unused trap vectors, 9-5

Loading and command string,
LINK-lIS, 3-5

Loading and verifying the
Bootstrap Loader, 6-7

Location counter, PAL-lIS,
assembly, 1-10

Logic'al and arithmetic. operators,
PAL-llA, 2-8
PAL-lIS, 1-8

Mark, ED-II, 4-3
Mathemat'ical constants in octal,

L-7
Mnemonic, PAL-llA instruction,

2-3
Mode,

IOX, 7-8
PAL-llA, Autodecrement, 2-11
PAL-llA, Autoincrement Deferred,

2-11
PAL-llA, Deferred Autodecrement,

2-11
PAL-llA, Deferred Index, 2-12
PAL-llA, Immediate and Deferred

Immediate (Absolute), 2-12
PAL-llA,lD'ndex, 2-11
PAL-llA, Relative and Deferred

Relative, 2-13
Mode Byte, IOX, 7-5
Mode of expressions, PAL-lIS, 1-9

Negative numbers, PAL-lIS, 1-8
Non-OTS routines, FPMP-ll, H-7
Notation, scales of, L-6
Numbers,

decimal, PAL-lIS, 1-8
negative, PAL-lIS, 1-8
qctal, PAL-lIS, 1-8
PAL-llA, 2-7
positive, PAL-lIS, 1-8

Object module, LINK-lIS, 3-3
Object module output, PAL-lIS,

1-30
Octal-decimal integer conversions,

L-l
Octal numbers, PAL-lIS, 1-8
ODT,

command syntax, 5-2
priority level, 5-10

ODT-ll,

Index-4

accessing internal registers,
5-6

breakpoints, 5-6
calculating offsets, 5~9
commands and functions, 5-3
introduction, 5-1
opening, changing, and closing

locations, 5-4

INDEX (Cont.)

ODT-ll (cont.),
operating procedures, 5-20
running the program, 5-7
searches, 5-8, 5-18
starting and restarting, 5-21
summary, E-l
teletype interrupt, 5-10

ODT-IIX,
breakpoints, 5-12, 5-14
calculating offsets, 5-11
communication and data flow,

5-15
error detection, 5-13
opening, changing, and

closing locations, 5-10
programming considerations,

5-14
single-instruction Mode,

5-12
Offsets,

calculating, ODT-ll, 5-9
calculating, ODT-IIX, 5-11
PAL-lIS byte, 1-17

One device, single buffer
transfer on, 7-14

Opening, changing, and closing
locations,

ODT-ll, 5-4
ODT-IIX, 5-10

Operand,
PAL-IIA, 2-3
PAL-lIS, 1:-4

Operand fields, instruction,
PAL-IIA, 2-14
PAL-lIS, 1-17

Operating procedures,
ED-II, 4-10, D-4
LINK-lIS, 3-5
ODT-ll, 5-20
PAL-IIA, 2-17
PAL-IIA initial, C-9
PAL-lIS, 1-24
PAL-lIS initial, B-li

Operator,
PAL-IIA, 2-3
PAL-lIS, 1-3

Operators,
PAL-IIA, arithmetic and

logical, 2-8
PAL-lIS, arithmetic and

logical, 1-8
OTS routines, FPMP-ll, H-2
Output formats, dumps, 6-17
Output, PAL-lIS object module,

1-30

Page size,
PAL-IIA, 2-4
PAL-lIS, 1-4

PAL-IIA,

Index-5

Address Mode syntax, C-2
addressing, 2-9
arithmetic and logical operators,

2-8
ASCII conversion, 2-8
.ASCII directive, 2-17
assembler directives, 2-3, 2-15
assembly dialogue, 2-23
assembly listing, 2-24
Assembly Location Counter, 2-8
Autodecrement Mode, 2-11
Autoincrement Mode, 2-10
blank operator field, 2-16
.BYTE directive, 2-17
character set, 2-2
comments, 2-4
Deferred Autodecrement Mode,

2-11
Deferred Autoincrement Mode,

2-11
Deferred Index Mode, 2-12
direct assignment, 2-5
.END directive, 2-16
.EOT directive, 2-15
error code, 2-7
error codes, 2-25, C-8
.EVEN directive, 2-16
expressions, 2-7
format control, 2-4
Immediate and Deferred Immediate

(Absolute) Mode, 2-12
Index Mode, 2-11
initial dialogue, 2-18
initial operating procedures,

C-9
instruction forms, 2-14
instruction mnemonic, 2-3
instruction operand fields, 2-14
instructions,C-3
label, 2-3
loading, 2-18
numbers, 2-7
operand, 2-3
operating procedures, 2-17
operator, 2-3
page size, 2-4
permanent symbols, 2-5
Program Counter, 2-9
Register Mode, 2-10
register symbols, 2-6
Relative and Deferred Relative

Mode, 2-13
software error halts, 2-26
special characters, C-l
statements, 2-2

INDEX (Cont.)

PAL-llA (cont.),
user-defined symbols,2-S.
.WORD directive, 2-16

PAL-llS
absolute expression,. 1-:.9
Absolute Loader, 1-24
Address Mode . syntax , B-2
addressing, 1-12
ASCII conversion, 1-8
.ASCII direcd:ve, 1:""21
assembler directives, 1"';18,

B-8
assembly listing~ 1"';30
Autodecrement Mode, 1...,14
Autoincrement Mode, 1-13
.BYTE directive, 1-21 .
byte offset, 1-17
character set, 1-2
comments, 1-4
conditional assembly direc-

tives, 1-23
control format, 1-4
CTRL!U, 1-24
decimal numbers, 1-8
Deferred. Autodecrement

Mode, 1-14
Deferred Autoincrement

Mode, 1...,13
Deferred Index Mode, 1-14
Deferred Register Mode, 1-13
direct assignment, 1-6
Editor (ED-H), 1-2
.END directive, 1-20
.EOT directive, 1-20
error codes, 1-31, B-10
.EVEN directive, 1-20
expressions, 1-7
external symbol, 1-5
general registers, 1-6
global symbol, 1-5
global symbol directory, 1-30
.GLOBL directive, 1,...18
Immediate and Deferred

Immediate (Absolute) Modes,
1-15

Index Mode, 1-14
initial dialogue, 1-24
initial operating procedures,

. B-ll
instruction forms, 1-17
instruction operand fields,

1-17
instructions, B-2
internal symbol, 1-5
label, 1-3
.LIMIT directive, 1-23
loading, 1-24
negative numbers, 1-8
object module output, 1-30

PAL-llS (cont.),
octal numbers, 1-8
operand, 1-4
operating procedures, .1-24
operator, 1-3
page size, 1-4
permanent symbols,· 1-5
positive numbers, 1-8
Program Counte:l:', 1-12
program section directives

(.ASECT:and .CSECT), 1-19
.RAD50 directive, 1-22
Register Mode, 1-12
register symbols, 1-6
Relative and Deferred Relative

Modes, 1-15
relocatable expression, 1-9
relocation and linking,. 1-11
relocation directory, 1-31
RUBOUT, 1-24
software error halts, 1-32
statement format, 1-2
statements, 1-2
symbol table, 1-5
symbols, 1-5
termina.tors, B-1
text block, 1-31
.TITLE directive, 1-18
truncation, 1-8
user-defined symbols, 1-5
.WORD directive, 1-20

Paper tape bootstraps, 6-2
Permanent symbols.,

PAL-llA, 2-5
PAL-llS, 1-5

Pointer-positioning commands,
ED-ll, D-2

Position-independent code, writing,
9-1

positive numbers, PAL-llS, 1-8
Powers of two, L-S
Priority level, ODT, 5-10
Program Counter,

PAL-llA, 2-9
PAL-llS, 1-12

Program flow summary, lOX, G-l
Program section directives

UASECT and .CSECT) PAL-llS,
1-19

Programming considerations,
ODT-llX, 5-14

Q error, PAL-llS, 1-2

Index-6

INDEX (Cont.)

.RAD50 directive, PAL-lIS, 1-22
Real-time capability, 7-1
Reenabling the reader and

restarting, lOX, 7-16
Register contents, altering,

9'-6
Register Mode,

PAL-llA, 2-10
P~L-llS, 1-12

Register symbols,
PAL-llA, 2-6
PAL-lIS, 1-6

Registers, general, PAL-lIS,
1-6

Relative and Deferred Relative
Mode,

PAL-llA, 2-13
PAL-lIS, 1-15

Relocatable expression,
PAL-lIS, 1-9

Relocation and linking,
PAL-llS, 1-11

Relocation directory, PAL-lIS,
1-31

Restarting and starting ODT-ll,
5-21

Restarting ED-II, 4-11
Routines accessed via trap

handler, FPMP-ll, H-7
RUBOUT, PAL-lIS, 1-24
Running the program, ODT-ll,

5-7

Scales of notation, L-6
Search commands, ED-II, 4-7,

0-2
Searches, OOT-ll, 5-8, 5-18
Single buffer transfer on

one device, 7-14
Single-Instruction Mode,

OOT-llX, 5-12
Software error halts,

ED-ll, -4-17
PAL-llA, 2-26
PAL-lIS, 1-32

Special characters, PAL-llA,
C-l

Standard PDP-II abbreviations,
K-l

Starting and restarting OOT-ll,
5-21

Starting ED-II, 4-11
Statement format, PAL-lIS, 1-2
Statements,

PAL-llA, 2-2
PAL-lIS, 1-2

Status Byte, lOX, 7-6

Storage maps, dumps, 6-17
Subroutines, 9-7
Summary,

FPMP-ll, H-l
OOT-ll, E-l

Symbol,
external, PAL-lIS, 1-5
global, PAL-lIS, 1-5
internal, PAL-lIS, 1-5

Symbol table, PAL-lIS, 1-5
Symbols,

ED-II, 0-3
PAL-llA permanent, 2-5
PAL-llA register, 2-6
PAL-llA user-defined, 2-5
PAL-lIS, 1-5
permanent, PAL-lIS, 1-5
register, PAL-lIS, 1-6
user-defined, PAL-lIS, 1-5

Table, symbol, PAL-lIS, 1-5
Tables, conversion, L-l
Tape duplication, 1-1
Techniques, coding, 9-6
Teletype interrupt, OOT-ll, 5-19
Terminators, PAL-lIS, B-1
Text block, PAL-lIS, 1-31
.TITLE directive, PAL-lIS, 1-18
Trap vectors, loading unused, 9-5
Truncation, PAL-lIS, 1-8
Two, powers of, L-5

Unused trap vectors, loading, 9-5
User-defined symbols,

PAL-llA, 2-5
PAL-lIS, 1-5

Using lOX, 7-3

Verifying and loading the boot­
strap loader, 6-7

.WORO directive,
PAL-llA, 2-16
PAL-lIS, 1-20

Writing position-independent
code, 9-1

Index-7

READER'S COMMENTS

PDP-II Paper Tape
Software Handbook
DEC-II-XPTSA-B-D

NOTE: This form is for document comments only. Problems
with software should be reported on a Software
Problem Report (SPR) form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

o Assembly language programmer

[] Higher-level language programmer

[] Occasional programmer (experienced)

[] User with little programming experience

[] Student programmer

[] Non-programmer interested in computer concepts and capabilities

Name Date __________________________ _

Organization __ __

Street __ __

City __________________ Sta te ~ ______ Z ip Code __________ _
or

Country

If you require a written reply, please check here. [J

- - Do Not Tear - Fold Here and Tape

IIIII

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

RT/C SOFTWARE PUBLICATIONS ML 5-5/E45

DIGITAL EQUIPMENT CORPORATION

146 MAIN STREET

MAYNARD, MASSACHUSETTS 01754

No Postage
Necessary

if Mailed in the
United States

-I

I

I

- - - - Do Not Tear - Fold Here -

digital equipment corporation

Printed in U.S.A.

