PDP-11

Paper Tape
Software Handbook
Order No. DEC-11-XPTSA-B-D

PDP-11

Paper Tape
Software Handbook
Order No. DEC-11-XPTSA-B-D

digital equipment corporation - maynard, massachusetts

First Printing, April 1970
Revised: March 1971
January 1972

February 1973

June 1975

April 1976

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use or
reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright@ 1970, 1971, 1972, 1973, 1975, 1976 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0S/8

DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX

COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-10
DECCOMM DECsystem-20 TYPESET-11

7/77-34

CONTENTS

CHAPTER 1 PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

CHARACTER SET
STATEMENTS
Label
Operator
Operand
Comments
Format Control
SYMBOLS

e o o o o
o o o
abdbwN =

.3.1 Permanent Symbols
.3.2 User-Defined Symbols
.3.3 Direct Assignment
.3.4 Register Symbols

. EXPRESSIONS

. Numbers

Arithmetic and Logical Operators
ASCII Conversion
Mode of Expressions
ASSEMBLY LOCATION COUNTER
RELOCATION AND LINKING
ADDRESSING
- Register Mode
Deferred Register Mode
Autoincrement Mode
Deferred Autoincrement Mode
Autodecrement Mode
Deferred Autodecrement Mode
Index Mode
Deferred Index Mode
Immediate Mode and Deferred Immediate
(Absolute) Mode ’
Relative and Deferred Relative Modes
Table of Mode Forms and Codes (6-bit(A)
format only - see Section 1.7.12)
.12 Instruction Forms
ASSEMBLER DIRECTIVES
.1 .TITLE
.2 . GLOBL
3 Program Section Directives (.ASECT and
.CSECT)
.EOT
.EVEN
. END
.WORD
.BYTE
.ASCII
0 .RAD50
1 +LIMIT
2 Conditional Assembly Directives

....
S wWN R

FHEREFHEFRPRPRRHRFRRHERPRRRRRRRRRERRR R P

NSNS NNGI NI N9 oSSR PR OWWWWNNNNDNDNDND

o o
CoOoOJAaAUTdWN -

ENIEN
e
o

o o

FRRRPRRHERPRE RPRERR PP

e o o o o o o o
00 0O 00 00 0O 00 00 0O O
FRFRFEWOWLOJO Ul

iii

Page

=
I
[

R R e b
HIEWOOOONOAOUTUTUTA S S WWNN

1-16

1-18

CONTENTS (CONT.)

Page
1.9 OPERATING PROCEDURES 1-24
1.9.1 Introduction 1-24
1.9.2 Loading PAL-11S 1-24
1.9.3 Initial Dialogue 1-24
1.9.4 Assembly Dialogue 1-28
1.9.5 Assembly Listing 1-30
1.9.6 Object Module Output 1-30
1.9.6.1 Global Symbol Directory 1-30
1.9.6.2 Text Block 1-31
1.9.6.3 Relocation Directory 1-31
1.10 ERROR CODES 1-31
1.11 SOFTWARE ERROR HALTS 1-32
CHAPTER 2 WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS 2-1
2.1 CHARACTER SET 2-2
2.2 STATEMENTS 2-2
2.2.1 Label 2-3
2.2.2 Operator 2-3
2.2.3 Operand 2-3
2.2.4 Comments 2—4
2.2.5 Format Control 2-4
2.3 SYMBOLS 2-5
2.3.1 Permanent Symbols 2-5
2.3.2 User-Defined Symbols 2-5
2.3.3 Direct Assignment 2-5
2.3.4 Register Symbols 2-6
2.4 EXPRESSIONS 2-7
2.4.1 Numbers 2-7
2.4.2 Arithmetic and Logical Operators 2-8
2.4.3 ASCII Conversion 2-8
2.5 ASSEMBLY LOCATION COUNTER 2-8
2.6 ADDRESSING 2-9
2.6.1 Register Mode 2-10
2.6.2 Deferred Register Mode 2-10
2.6.3 Autoincrement Mode 2-10
2.6.4 Deferred Autoincrement Mode 2-11
2.6.5 Autodecrement Mode 2-11
2.6.6 Deferred Autodecrement Mode 2-11
2.6.7 Index Mode 2-11
2.6.8 Deferred Index Mode 2-12
2.6.9 Immediate Mode and Deferred Immediate
(Absolute) Mode 2-12
2.6.10 Relative and Deferred Relative Modes 2-13
2.6.11 Table of Mode Forms and Codes (6-bit (A)
format only - see Section 3.7) 2-13
2.7 INSTRUCTION FORMS 2-14
2.8 ASSEMBLER DIRECTIVES 2=15
2.8.1 .EOT 2-15
2.8.2 .EVEN 2-16
2.8.3 .END 2-16
2.8.4 .WORD 2-16
2.8.5 .BYTE 2-17
2.8.6 .ASCII 2-17
2.9 OPERATING PROCEDURES 2-17
2.9.1 Introduction 2-17
2.9.2 Loading PAL-11A 2-18

iv

CONTENTS (CONT.)

Page
2.9.3 Initial Dialogue 2-18
2.9.4 Assembly Dialogue 2-23
2.9.5 Assembly Listing 2-24
2.10 ERROR CODES 2-25
2.11 SOFTWARE ERROR HALTS 2-26
CHAPTER 3 LINK-11S LINKER 3-1
3.1 INTRODUCTION 3-1
3.1.1 General Description 3-1
3.1.2 Absolute and Relocatable Program Sections 3-2
3.1.3 Global Symbols 3-2
3.2 INPUT AND OUTPUT 3-3
3.2.1 Object Module 3-3
3.2.2 Load Modules 3-3
3.2.3 Load Map 3-4
3.3 OPERATING PROCEDURES 3-5
3.3.1 Loading and Command String 3-5
3.3.1.1 Operational Cautions 3-6
3.3.2 Error Procedure and Messages 3-7
3.3.2.1 Restarting 3-7
3.3.2.2 Non-Fatal Errors 3-7
3.3.2.3 Fatal Errors 3-7
3.3.2.4 Error HALTs 3-8
CHAPTER 4 EDITING THE SOURCE PROGRAM 4-1
4.1 COMMAND MODE AND TEXT MODE 4-1
4.2 COMMAND DELIMITERS 4-2
4.2.1 Arguments 4-2
4.2.2 The Character Location Pointer (Dot) 4-2
4.2.3 Mark 4-3
4,2.4 Line-Oriented Command Properties 4-3
4,2.5 The Page Buffer 4-3
4.3 COMMANDS 4-4
4.3.1 Input and Output Commands 4-4
4,3.1.1 Open 4-4
4,3.1.2 Read 4-4
4,3.1.3 List and Punch 4-5
4.3.1.4 Next 4-5
4.3.1.5 Form Feed and Trailer 4-6
4.3.1.6 Procedure with Low-Speed Punch 4-6
4.3.2 Commands to Move Dot and Mark 4-6
4.3.2.1 Beginning and End 4-6
4.3.2.2 Jump and Advance 4-6
4.3.2.3 Mark 4-7
4.3.3 Search Commands 4-7
4,3.3.1 Get 4-7
4.3.3.2 wHole ' 4-7
4.3.4 Commands to Modify the Text 4-8
4,3.4.1 Insert 4-8
4.3.4.2 Delete and Kill 4-9
4.3.4.3 Change and Exchange 4-9
4.4 OPERATING PROCEDURES 4-10
4.4.1 Error Corrections 4-10
4.4.2 Starting 4-11
4.4.3 Restarting 4-11

CONTENTS (CONT.)

Page
4.4.4 Creating a Paper Tape . ‘ 4-11
4.4.5 Editing Example o 4-12
4.5 SOFTWARE ERROR HALTS : : 4-17
CHAPTER 5 DEBUGGING OBJECT PROGRAMS ON-LINE 5-1
5.1 INTRODUCTION 5-1
5.1.1 ODT-11 and ODT-11X 5-1
5.1.2 ODT's Command Syntax 5-2
5.2 COMMANDS AND FUNCTIONS 5-3
5.2.1 , Opening, Changing, and Closing Locations 5-4
5.2.1.1 The Slash (/) 5-4
5.2.1.2 The LINE FEED Key 5-4
5.2.1.3 The Up-Arrow (%) 5-5
5.2.1.4 The Back-Arrow (<) 5-5
5.2.1.5 Accessing General Registers 0-7 5-5
5.2.1.6 Accessing Internal Registers 5-6
5.2.2 Breakpoints 5-6
5.2.2.1 Setting the Breakpoint (n;B) 5-6
5.2.2.2 Locating the Breakpoint ($B) 5-7
5.2.3 Running the Program(n G and n;P) 5-7
5.2.4 Searches 5-8
5.2.4.1 Word Seach(n;W) 5-8
5.2.4.2 Effective Address Search(n;E) 5-9
5.2.5 Calculating Offsets (n;0) 5-9
5.2.6 ODT'S Priority Level ($P) 5-10
5.3 ODT-11X 5-10
5.3.1 Opening, Changing and Closing Locations 5-10
5.3.1.1 Open the Addressed Location (@) 5-11
5.3.1.2 Relative Branch Offset(>) 5-11
5.3.1.3 Return to Previous Sequence (<) 5-11
5.3.2 Calculating Offsets(n;0) : 5-11
5.3.3 Breakpoints : 5-12
5.3.4 Single-Instruction Mode 5-12
5.4 ERROR DETECTION 5-13
5.5 PROGRAMMING CONSIDERATIONS 5-14
5.5.1 Functional Organization ’ 5-14
5.5.2 Breakpoints - . 5-14
5.5.3 Search : - 5-18
5.5.4 Teletype Interrupt 5-19
5.6 OPERATING PROCEDURES - : 5-20
5.6.1 Linking Procedures (LSI-11 Systems Only) 5-20
5.6.2 Loading Procedures (non-LSI-11 Systems
Only) 5-20
5.6.3 Starting and Restarting : . 5-21
CHAPTER 6 LOADING AND DUMPING MEMORY 6-1
6.1 PAPER TAPE BOOTSTRAPS 6-2
6.1.1 BM792-YA Paper Tape Bootstrap ROM 6-2
6.1.2 BM873-YA Bootstrap Loader ROM 6-2
6.1.3 LSI-11 Firmware Paper Tape Bootstrap 6-3
6.1.4 M9301-YB Bootstrap Loader 6-3
6.1.5 M9301-YA Bootstrap Loader 6-4
6.1.6 Other Bootstrap Loaders 6-4
6.1.6.1 Loading the Loader into Core 6-5

vi

CONTENTS (CONT.)

Page
6.1.6.2 Loading Bootstrap Tapes 6-6
6.1.6.3 Bootstrap Loader Operation 6-8
6.2 THE ABSOLUTE LOADER- . 6-10
6.2.1 Loading the Loader into Core : 6-11
6.2.2 Using the Absolute Loader. - 6-11
6.2.3 Absolute Loader Operation 6-13
6.3 CORE MEMORY DUMPS 6-14
6.3.1 Operating Procedures 6-14
6.3.1.1 Using DUMPAB on Systems without Switch
Registers 6-15
6.3.1.2 Using DUMPAB and DUMPTT on Systems with
Switch Registers 6-16
6.3.2 Output Formats : 6-17
6.3.3 Storage Maps 6-17
CHAPTER 7 INPUT/OUTPUT PROGRAMMING 7-1
7.1 INTRODUCTION 7-1
7.1.1 Using IOX with the LSI-11 Processor 7-3
7.1.2 Using IOX with Unibus PDP-11 Processors 7-3
7.1.3 IOX Interrupt and Trap Vectors 7-3
7.2 THE DEVICE ASSIGNMENT TABLE 7-3
7.2.1 Reset 7-4
7.2.2 Initialization ' - 7-4
7.3 BUFFER ARRANGEMENT IN DATA TRANSFER COMMANDS 7-4
7.3.1 Buffer Size : - 7-5
7.3.2 Mode Byte 7-5
7.3.3 Status Byte 7-6
7.3.3.1 Non=Fatal Error Codes (Octal) 7-6
7.3.3.2 Done Bit 7-7
7.3.3.3 End-0Of-Medium Bit 7-7
7.3.3.4 End-Of-File Bit 7-7
7.3.4 Byte Count 7-8
7.4 MODES : 7-8
7.4.1 Formatted ASCII 7-8
7.4.2 Unformatted ASCII 7-10
7.4.3 Formatted Binary 7-10
7.4.4 Unformatted Binary 7-11
7.5 DATA TRANSFERS 7-11
7.5.1 Read 7-11
7.5.2 Write 7-12
7.5.3 Device Conflicts In Data Transfer Commands 7-12
7.5.4 Waitr (Wait, Return) 7-13
7.5.5 Waitr vs. Testing the Buffer Done Bit 7-13
7.5.6 Single Buffer Transfer on One Device 7-14
7.5.7 Double Buffering . 7-15
7.5.8 Readr (Real-time Read) ; . 7-15
7.5.9 Writr (Real-time Write) 7-16
7.6 REENABLING THE READER AND RESTARTING 7-16
7.6.1 Seek . _ 7-16
7.6.2 Restart ' 7-16
7.7 FATAL ERRORS) 7-17
7.8 EXAMPLE OF PROGRAM USING IOX 7-17
7.9 IOX INTERNAL INFORMATION 7-19
7.9.1 Conflict Byte/Word : 7-19
7.9.2 Device Interrupt Table (DIT) ' 7-20
7.9.3 Device Status Table (DST) 7-21

vii

CONTENTS (CONT.)

Page

Teletype Hardware Tab Facility 7-21
Adding Devices To IOX 7-21
.1 Device Codes 7-21
.2 Table Modification 7-22
.3 Interrupt Routines 7-23

L}
[ai}

CHAPTER 8 FLOATING POINT MATH PACKAGE OVERVIEW

O

CHAPTER 9 PROGRAMMING TECHNIQUES

WRITING POSITION INDEPENDENT CODE
1 Position Independent Modes
2 Absolute Modes
3 Writing Automatic PIC
4 Writing Non-Automatic PIC
4
4
4

°

WWWNH e

.1 Setting Up The Stack Pointer
.2 Setting Up A Trap or Interrupt Vector
.3 Relocating Pointers
LOADING UNUSED TRAP VECTORS
CODING TECHNIQUES
Altering Register Contents
Subroutines

W WV WWLWLWWWYWWLWWYWWLLYOLY
\D\D\DLO\O\ID\D\D\O\D\D\D

N -

b4
1

APPENDIX ASCII CHARACTER SET

>

APPENDIX PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

TERMINATORS

ADDRESS MODE SYNTAX

INSTRUCTIONS
1 Double Operand Instructions OP A,A
2 Single Operand Instructions OP A
3 Rotate/Shift
4
5

1
AUEBWNH H HFHEONNNYN 60 GTOUBBNDNHE H P N e dWWNH

Operation Instructions Op
Branch Instructions Op E Where
-12810<(E-.—2)/2<127lo

.6 Subroutine Call JSR ER,A

.7 Subroutine Return

.8 Extensions for the LSI-11 Version Of PAL-11lS
ASSEMBLER DIRECTIVES
ERROR CODES

. INITIAL OPERATING PROCEDURES

LI T O I I |
= o

APPENDIX PAL-11A ASSEMBLY LANGUAGE AND ASSEMBLER

SPECIAL CHARACTERS

ADDRESS MODE SYNTAX

INSTRUCTIONS
1 Double-Operand Instructions Op A,A
2 Single-Operand Instructions Op A
3 Rotate/Shift Instructions Op A
4
5
6

e o o o o
W WwWWwwwwwn -
I I I |

Operate Instructions Op
Trap Instructions Op or Op E Where 053:3778

Branch Instructions Op E where

128, < (E-.-2)/2<127,

aOQQOQO000 0 WWTWWW W wwwowwwoww W

°

’OOOOOOOOO O Uowwww

¢
~

0

viii

CONTENTS (CONT.)

Cc.3.7 Subroutine Call Op ER, A
C.3.8 Subroutine Return Op ER
C.4 ASSEMBLER DIRECTIVES

C.5 ERROR CODES

C.6 INITIAL OPERATING PROCEDURES

APPENDIX D TEXT EDITOR, ED-11

INPUT/OUTPUT COMMANDS
POINTER-POSITIONING COMMANDS
SEARCH COMMANDS
COMMANDS TO MODIFY THE TEXT
SYMBOLS
GROUPING OF COMMANDS
OPERATING PROCEDURES
Loading
Storage Requirements
Starting
Initial Dialogue
Restarting

NOdNdNdNdNoauke wh e

.
s Wb

vAvlvAvivAvivlvivhvlvlv]

APPENDIX

=

DEBUGGING OBJECT PROGRAMS ON-LINE, ODT-11
AND ODT-11X

E.1l SUMMARY OF CONTENTS
APPENDIX F LOADING AND DUMPING CORE MEMORY

F.l THE BOOTSTRAP LOADER

F.1l.1 Loading The Bootstrap Loader
F.2 THE ABSOLUTE LOADER

F.3 CORE MEMORY DUMPS

APPENDIX G INPUT/OUTPUT PROGRAMMING, IOX
G.1 INSTRUCTION SUMMARY

G.2 PROGRAM FLOW SUMMARY

G.3 FATAL ERRORS

H

SUMMARY OF FLOATING POINT MATH PACKAGE,
FPMP-11

APPENDIX

H.1 OTS ROUTINES
H.2 NON-OTS ROUTINES
H.3 ROUTINES ACCESSED VIA TRAP HANDLER

APPENDIX I TAPE DUPLICATION

APPENDIX ASSEMBLY AND LINKING INSTRUCTIONS
SYSTEMS WITHOUT SWITCH REGISTERS
1 I0X/IOXLPT

1.1 Assembling IOX

1.2 Assembling IOXLPT

1.3 Linking IOX and IOXLPT

2 ODT11X

ix

g
V]
Q
(0]

| T O R O O O B B |
R ERARBWWNDNDNDE [l O 000

vAvivivivivivlvivivivivie N oNoNeRoNe!

TR T
Nan =

H

guLOgy o
PHREHERR =

CONTENTS (CONT.)

Page
J.1l.2.1 Assembling ODT11X J-1
J.1.2.2 Linking ODT11X . J=-2
J.1l.3 ED-11 J-2
J.1.3.1 Assembling ED-11 J-2
J.1.3.2 Linking ED-11 J-2
J.1l.4 PAL-11S J-2
J.1l.4.1 Assembling PAL-11S J-2
J.l.4.2 Linking PAL-11S, J-3
J.1.5 LINK-11S J-3
J.1.5.1 Assembling LINK-11S J-4
J.1.5.2 Linking LINK-11S J-4
J.2 SYSTEMS WITH SWITCH REGISTERS J-5
J.2.1 Assembling PAL-11A J-5
J.2,2 Assembling ED-11 J-6
J.2.3 ODT-11/0DT-11X J-6
J.2.4 Assembling IOX/IOXLPT J-7
J.2.5 Assembling and Linking PAL-11S J-8
J.2.6 Assembling and Linking LINK-11S J-11
APPENDIX K STANDARD PDP-11 ABBREVIATIONS K-1
APPENDIX L CONVERSION TABLES L-1
L.l OCTAL-DECIMAL INTEGER CONVERSIONS -1
L.2 POWERS OF TWO L-5
L.3 SCALES OF NOTATION I-6
L.3.1 2¥ In Decimal L-6
L.3.2 10*1 In Octal L-6
L.3.3 n Log 2 and 10 In Decimal L-6
L.3.4 Addition and Multiplication, Binary and
Octal L-6
L.3.5 Mathematical Constants In Octal L-7
APPENDIX M NOTE TO USERS OF SERIAL LA30 AND 600, 1200,
AND 2400 BAUD VTO05'S M-1
APPENDIX N USING THE ABSOLUTE LOADER ON PDP-11'S WITHOUT
SWITCH REGISTERS N-1
N.1l LSI-11 N-1
N.2 M9301-YB BOOTSTRAP LOADER N-3
N.3 M9301-YA BOOTSTRAP LOADER N-4

INDEX ’ Index-1

CONTENTS (CONT.)

Page
FIGURES
FIGURE 5-1 Communication and Data Flow 5-15
6-1 Bootstrap Loader Instructions 6-4
6-2 Loading and Verifying the Bootstrap Loader 6-7
6-3 Loading Bootstrap Tapes Into Core 6-8
6-4 The Bootstrap Loader Program 6-9
F-1 Loading and Verifying the Bootstrap Loader F-2
F-2 Loading Bootstrap Tapes into Core F-3
F-3 Loading with the Absolute Loader F-5
F-4 Dumping Using DUMPAB or DUMPTT F-6
TABLES
TABLE 1-1 Instruction Operand Fields 1-17
2-1 Instruction Operand Fields 2-14

xi

CHAPTER 1

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

PAL-11S Assembly (Program Assembly Language for the PDP-11,
Relocatable, Stand Alone Version) enables you to write source
(symbolic) programs using letters, numbers, and symbols which are
meaningful to you. The source programs, generated either on-line
using the Text Editor (ED-11), or off-line, are then assembled into
object modules which are processed by the PDP-11 linker, LINK-11S.
LINK~-11S produces a load module which is loaded by the Absolute Loader
for execution. Object modules may contain absolute and/or relocatable
code and separately assembled object modules may be linked with global
symbols. The object module is produced after two passes through the
Assembler; an optional third pass produces a complete octal/symbolic
listing of the assembled program. This listing is especially useful
for documentation and debugging purposes.

This chapter not only explains how to write PAL-11S programs but also
how to assemble the source programs into object modules. All facets
of the assembly language are explained and illustrated with many
examples, and the chapter concludes with assembling procedures. In
explaining how to write PAL-11S source programs, it 1is necessary,
especially at the outset, to make frequent forward references.
Therefore, we recommend that you first read through the entire chapter
to get a "feel" for the language, and then reread the chapter,’ this
time referring to appropriate sections as indicated, for -a thorough
understanding of the language and assembling procedures.

Some notable: features of PAL-11S are:

1. Selective assembly pass functions.

2. Device specification for pass functions.

3. Optional error listing on the teleprinter.

4. Double buffered and concurrent I/O (provided by IOXLPT).

5. Alphabetized, formatted symbol table listing.

6. Relocatable object modules.

7. Global symbols for linking between object modules.

8. Conditional assembly directives.

9. Program Sectioning Directives.
The PAL-11S Assembler requires 8K of memory and provides for about 900
user-defined symbols (see Section 1.3.2). In addition, it allows a

line printer to be used for program 1listing and/or symbol table
listing.

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

The following discussion of the PAL-11S Assembly Language assumes that
you have read the PDP-11 Processor Handbook with emphasis on those
sections which deal with the PDP-11 instruction repertoire, formats,
and timings -- a thorough knowledge of these is vital to efficient
assembly language programming.

1.1 CHARACTER SET

A PAL-11S source program is composed of symbols, numbers, expressions,
symbolic instructions, assembler directives, -argument separators, and
line terminators written using the following ASCII' characters.

1. The letters A through 2. (Upper and lower case letters are
acceptable, although wupon input, lower case letters will be
converted to upper case letters.) :

2. The numbers 0 through 9.

‘3. The characters . and $. (These characters are reserved for
systems use.) i

4. The separating or terminating symbols:
= % 0@ () 4, 5 "+ - & !

carriage return tab space . line feed form feed

1.2 STATEMENTS

A source program is composed of a sequence of statements, .where each
statement is on a single line. The statement is terminated by a
carriage return character which must be immediately followed by either
a line feed or form feed character. Should a carriage return
character be present and not be followed by a line feed or. form feed,
the Assembler will generate a Q error (Section 1.10), and that portion
of the line following the carriage return will be ignored. Since the
carriage return terminator is a required statement terminator, a line
feed or form feed not immediately preceded by a carriage return will
have one inserted by the Assembler.

It should be noted that, if the Editor (ED-11) is being used to create
the source program, a typed carriage return (RETURN key) automatlcally
generates a line feed character.

A statement may be composed of up to four fields which are identified
by their order of appearance and by specified terminating characters
as explained below and summarized in Appendix B. The four fields are:

Label Operator Operand Comment
The label and comment fields are optional. The operator and operand

fields are inter-dependent -- either may be omitted depending upon the
contents of the other.

1
ASCII stands for American Standard Code for Information Interchange.

1-2

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

1.2.1 Label

A label is a user-defined symbol (see Section 1.3.2) which is assigned
the. value of the current location counter. This value may be either
absolute or relocatable depending on whether the location counter
value 1is absolute or .relocatable. In the latter case, the final
absolute value is assigned by the Linker, 1i.e., the 'value '+ the
relocation constant. A label is a symbolic means of referring to a
specific location within a program. If present, a label always occurs
first in a statement and must be terminated by a colon. For example,
if the current location is absolute 100 the statement:

ABCD: MOV A,B

will assign the value 100 to the 1label ABCD so that subsequent
reference to ABCD will be to location 100 . In the above case if the
location counter were relocatable then the final value of ABCD would
be 100 +K, where K is the location of the beginning of the relocatable
section in which the label ABCD appears. More than one 1label may
appear within a single label field; each label within the field will
have the same value. For example, if the current location counter is
100 , multiple labels in the statement:

ABC: $DD: A7.7: MOV A,B

will equate each of the three labels ABC, $DD, and A7.7 with the value
100 ($ and . are reserved for system software).

The error code M (multiple definition of a symbol) will be generated
during assembly if two or more 1labels have the same first six
characters. '

1.2.2 Operator

An operator follows the label field in a statement, and may be an
instruction mnemonic or an assembler directive (see Section 1.8 and
Appendix B). When it is an instruction mnemonic, it specifies what
action is to be performed on any operand(s) which follows it. When it
is an assembler directive, it specifies a certain function or action
to be performed during assembly.

The operator may be preceded only by one or more labels and may be
followed by one or more operands and/or a comment. An operator is
legally terminated by a space, tab, or any of the following
characters:

+ - e (" ' s ! & , ;

line feed form feed carriage return
The use of each character above will be explained in this chapter.

Consider the following examples:

MOV ——=| A,B ;——=| (TAB) terminates operator MOV
MOV@A,B ;@ terminates operator MOV

When the operator stands alone without an operand or comment, it 1is
terminated by a carriage return followed by a line feed or form feed
character.

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

1.2.3 Operand

An operand is that part of a statement which is operated on by the
operator -- an instruction mnemonic or assembler directive. Operands
may be symbols, expressions, or numbers. When multiple operands
appear within a statement, each is separated from the next by a comma.
An operand may be preceded by an operator and/or label, and followed
by a comment.

The operand field is terminated by a semicolon when followed by a
comment, or by a carriage return followed by a line feed or form feed
character when the operand ends the statement. For example,

LABEL: MOV GEORGE.,BOB ;THIS IS A COMMENT

where the space between MOV and GEORGE terminated the operator field
and began the operand field; the comma separated the operands GEORGE
and BOB; the semicolon terminated the operand field and began the
comment.

1.2.4 Comments

The comment field is optional and may contain any ASCII character
except null, rubout, carriage return, line feed or form feed. All
other characters, even those with special significance are ignored by
the Assembler when used in the comment field.

The comment field may be preceded by none, any, or all of the other
three fields. It must begin with the semicolon and end with a
carriage return followed by a line feed or form feed character. . For
example,

LABEL: CLR HERE ;THIS IS A $1.00 COMMENT
Comments do not affect assembly processing or program execution, but

they are useful .in program listings for later analysis, checkout or
documentation purposes.

1.2.5 Format Control

The format is controlled by the space and tab characters. They have
no effect on the assembling process of the source program unless they
are embedded within a symbol, number, or ASCII text; or are used as
the operator field terminator. Thus, they can be used to provide a
neat, readable program. A statement can be written:

LABEL:MOV (SP)+,TAG; POP VALUE OFF STACK
or, using formatting characters it can be written:
LABEL: MOV (SP)+,TAG ; POP VALUE OFF STACK
which is much easier to read.
Eage size is controlled by the form feed character. A page of n lines
1s created by inserting a form feed (CTRL/FORM keys on the keyboard)

after the nth 1line. If no form feed 1is present, a page 1is
automatically terminated after 56 lines.

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

1.3 SYMBOLS

There are two types of symbols, permanent and user-defined. Both are
stored 1in the Assembler's symbol table. 1Initially, the symbol table
contains the permanent symbols, but as the source program is
assembled, user-defined symbols are added to the table.

1.3.1 Permanent Symbols

Permanent symbols consist of the instruction mnemonics (see Appendix
B.3) and assembler directives (see Section 1.8). These symbols are a
permanent part of the Assembler's symbol table and need not be defined
before being used in the source program.

1.3.2 User-Defined Symbols

User-defined symbols are those defined as labels (see Section 1.2.1)
or by direct assignment (see Section 1.3.3). These symbols are added
to the symbol table as they are encountered during the first pass of
the assembly. They can be composed of alphanumeric characters, dollar
signs, and periods only; again $'s and .'s are reserved for system
software. Any other character is illegal and, if used, will result in
the error message I or QU (see Section 1.10). I is a 1low priority
error which may be flagged as QU first. The following rules also
apply to user-defined symbols:

1. The first character must not be a number.
2. Each symbol must be unique within the first six characters.

3. A symbol may be written with more than six legal characters
but the seventh and subsequent characters are only checked
for 1legality, and are not otherwise recognized by the
Assembler.

4. Spaces and tabs must not be embedded within a symbol.

A user-defined symbol may duplicate a permanent symbol. The value
associated with a permanent symbol that is also user-defined depends
upon its use:

1. A permanent symbol encountered in the operator field is
associated with its corresponding machine op-code.

2. If a permanent symbol in the operand field is also
user-defined, 1its user-defined value is associated with the
symbol. If the symbol is not found to be user-defined, then
the corresponding machine op-code value is associated with
the symbol.

User-defined symbols are either internal or global. All symbols are
internal unless they are explicitly typed as global with the .GLOBL
assembler directive (see Section 1.8.2). Global symbols are used to
provide 1links between object modules. A global symbol which is
defined (as a label or by direct assignment) in a program is called an
entry symbol or entry point. Such symbols may be referred to from
other object modules or assemblies. A global symbol which 1is not
defined in the current assembly is called an external symbol. Some
other assembly must define the same symbol as an entry point.

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

1.3.3 Direct Assignment

A direct .assignment statement associates a symbol with a value. When
a direct assignment statement defines a symbol for the first time,
that symbol is entered into the Assembler's symbol table and the
specified value 1is associated with it. A symbol may be redefined by
assigning a new value to a previously defined symbol. The newly
assigned value will replace the previous value assigned to the symbol.

The symbol takes on the relocatable or absolute attribute of the
defining expression. However, if the defining expression is global,
the defined symbol will not be global wunless previously defined as
such (see Section 1.4). :
The general format for a direct assignment .statement is:

symbol = expression.

The following conventions apply:

l. 'An equal sign (=) must separate the symbol from the
expression defining the symbol.

2. A direct assignment statement may be preceded by a label and
may be followed by a comment.

3. Only one symbol can be defined by any one direct assignment
statement.

4. Only one level of forward referencing is allowed.

Example of two levels of forward referencing (illegal):

X =Y
Y =12
z =1

X and Y are both undefined throughout pass 1 and will be listed on the
teleprinter as such at the end of that pass. X 1is undefined
throughout pass 2, and will cause a U error message.

Examples:

R FTHE SYMROL A I8 EQUATED WITH THE VALUE 1
B (-1 EMASKLLOW FTHE SYMROL B I8 EQUATED WITH THE EXFRESSION’S
sVALUE
[D=3 $THE SYMROL I IS EQUATED WITH 3. THE
E?3 MOV 1y ABLE SLARELS © AND E ARE EQUATED WITH THE

FNUMERTCAL MEMORY ALDRESS OF THE MOV
5 COMMAND

1.3.4 Register Symbols

The eight general registers of the PDP-11 are numbered 0 through 7.
These registers may be referenced by use of a register symbol; that
is, a symbolic name for a register. A register symbol is defined by
means of a direct assignment, where the defining expression contains
at least one term preceded by a $ or at least one term previously
defined as a register symbol. 1In addition, the defining expression of
a register symbol must bé absolute. For example:

1-6

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

RO=%0 - SNEFINE RO AS REGISTER 0
R3=RO+3 ’ SOEFINED R3:-AS REGISTER 3

‘ RA4=14%3 sOEFINE R4 AS REGISTER 4
THERE=%2 SNEFINE "THERE® AS REGISTER 2

It is important to note that all register symbols must be defined
before they are referenced. A forward reference to a register symbol
will generally cause phase errors (see Section 1.10).

The % may be used in any expression thereby indicating a reference to
a register. Such' an -expression is a register expression. Thus, .the
statement: :

CLR $6
will clear register 6 while the statement:
CLR 6 |
will clear the word at memory address 6. In certain cases a register
can be referenced without the use of a register symbol or register
expression. These cases are recognized through the context of the

statement and are thoroughly explained in Sections 1.7.11 and 1.7.12.
Two obvious examples of this are: " '

JER Sy BURR FTHE FIRST OFERAND FIELD MUST ALWAYS
PRE A REGISTER :

CGlLR K2 $ANY EXPRESSTON ENCLOSED IN ¢) MUST BRE
6 REGISTER. IN THIS CASE. INDEX REGISTER

R
2

1.4 EXPRESSIONS

Arithmetic and logical operators (see Section 1.4.2) may be wused to
form expressions. A term of an expression may be a permanent or
user-defined symbol (which may be absolute, relocatable or global), a
number, ASCII data, or the present value of the assembly location
counter represented by the period (see Section 1.5). Expressions are
evaluated from left to right. Parenthetical grouping is not allowed.

Expressions are evaluated as word quantities. The operands of a .BYTE
directive (Section 1.8.8) are evaluated as word expressions before
truncation to the 1low-order eight bits. The . evaluation of an
expression includes the evaluation of the mode of the resultant
expression; that 1is, absolute, relocatable or external. The
definition of the modes of expression are given below in Section
1.4.4. . . :

A missing term, expressioﬂ or external symbol will be interpreted as
0. A missing operator will be interpreted as +. The error code Q
(Questionable syntax) will be generated for a missing operator. For
example,

A + =100 . ;OPERAND MISSING
will be evaluated as A + 0 - 100, and

TAG ! LA 177777 ;OPERATOR MISSING

will be evaluated as TAG ! LA+177777.
1-7

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

The value of an external expression will be the value of the absolute
part of the expression; e.g., EXT+A will have a value of A. This
will be modified by the linker to become EXT+A.

l1.4.1 Numbers

The Assembler accepts both octal and decimal numbers. Octal numbers
consist of the digits 0 through 7 only. Decimal numbers consist of
the digits 0 through 9 followed by a decimal point. If a number
contains an 8 or 9 and is not followed by a decimal point, the N error
code (see Section 1.10) will be printed and the number will be
interpreted as decimal. Negative numbers may be expressed as a number
preceded by a minus sign rather than in a two's complement form.
Positive numbers may be preceded by a plus sign although this is not
required.

If a number is too large to fit into 16 bits, the number is truncated
from the left. 1In the assembly listing the statement will be flagged
with a Truncation (T) error. Numbers are always considered to be
absolute quantities (that is, not relocatable).

1.4.2 Arithmetic And Logical Operators

The arithmetic operators are:

+ indicates addition or a positive number

- indicates subtraction or a negative number
The logical operators are:

& indicates the logical AND operation

! indicates the logical inclusive OR operation

AND-: OR
0&0=0 0! 0=0
0&1=0 0!11=1
1&&0=0 110=1
161=1 111=1

1.4.3 ASCII Conversion

When preceded by an apostrophe, any ASCII character (except null,
rubout, carriage return, 1line feed, or form feed) is assigned the
7-bit ASCII value of the character (see Appendix A). For example,

'A

is assigned the value 1018.
When preceded by a quotation mark, two ASCII characters (not including
null, rubout, carriage return, line feed, or form feed) are assigned
the 7-bit ASCII values of each of the characters to be used. Each
7-bit wvalue 1is stored in an 8-bit byte and the bytes are combined to
form a word. For example "AB will store the ASCII value of A in the
low-order (even) byte and the value of B in the high-order (odd) byte:

1-8

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

high-order byte ! low-order byte
B's value = 1 0 2 \ 1 0 1 = A's value
"“N\"—\MA P
0 100 001 001 000 001
—— N~ ~T~' —_— -
0 4 1 i 0 1
"AB=041101"

ASCII text is always absolute.

1.4.4 Mode of Expressions

The mode of an expression may be absolute, relocatable or external as
defined below:

A term of an expression is absolute, relocatable or external depending
on whether its definer (i.e., number, symbol, etc.) is absolute,
relocatable or external. Numbers, permanent symbols and generated
data are always treated as absolute. i

An absolute expression is defined as:

1. Absolute term (one whose value is defined at assembly time)
preceded optionally by a single plus or minus sign, or

2. Relocatable expression minus a relocatable term, or

3. Absolute expression followed by an operator followed by an
absolute expression.

A relocatable expression is defined as:

1. Relocatable term (one whose value is not known until 1link
time), or . .

2. Relocatable expression followed by an arithmetic operator
followed by an absolute expression, or

3. Absolute expression followed by a plus operator followed by a
relocatable expression.

An external expression is defined as:

1. External term (one whose value 1is defined outside the
program), oOr '

2. External expression followed by an arithmetic operator
followed by an absolute term, or

3. Absolute expression followed by a plus operétor followed by
- an external expression.

In the following examples:
ABS is an absolute symbol,
' REL is a relocatable symbol,

EXT is an external symbol.

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

Examples:
Thevfdllowiné are valid expressions:
EXT + ABS | ;External expression-
REL+REL-REL ;Relocatable expression
ABS+REL-REL & ABS ;Absolute expression
The following are illegal expressions:
EXT+REL

REL+REL
ABS-EXT

1.5 ASSEMBLY LOCATION COUNTER

The period (.) is the symbol for the assembly :location counter. (Note
difference of Program Counter. #PC. See Section 1.7.) When used
in the operand field of an instruction, it represents the address of
the first word of the instruction. When used in the operand field of
an .assembler directive, it represents the address of the current byte
or word. - For example,

A: MOV #.,RO :.refers to location A,
si.e., the address of the
; MOV instruction

(# is explained in Section 1.7.9.)

At the beginning of each assembly pass, the Assembler clears the
location counter. 'Normally, consecutive memory locations are assigned
to each byte of object data generated. However, the 1location where
the object data 1is stored may be changed by a direct assignment
altering the location counter:

.=expression

Similar to other symbols, the location counter symbol "." has a mode
associated with it. However, the mode cannot be external. Neither
can one change the existing mode of the location counter . by using a
defining expression of a different mode.

The mode of the location counter symbol can be changed by the wuse of
the .ASECT or .CSECT directive as explained in Section 1.8.3.

The expression defining the location counter must not contain forward
references or symbols that vary from one pass to another.

Examples:

LASECT ~
« =500 SHET LOCATION COUNTER TO ARSOLUTE 500
FIRSTS MOV o410 COUNT STHE LAREL FIRST HAS THE VALUE 00
sCOCTALY 410 EQUALS 510 (0CTALY . THE
SCONTENTS OF LOQCATION 510 (0CTALY WILL
$RE DEFOSTTED IN LOUATION COUNT.

= G20 sTHE ASSEMEBLY LOCATION COUNTER NOW
sHAS A VALUE OF ABSOLUTE H520 (0CTAL).

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

SECONDS MOV . v INDEX s THE LAREL SECOND HAS THE VaALUE 520
S COCTALYy THE CONTENTS OF LOCATION $520
FTHAT I8y THE RBINARY CODE FOR -

FINSTRUCTION ITHEL WILL BE DEFQOSITITED
FIN LOCATION ITNDEX.
LOCBECT
«$o+20 SEET LOCATION COUNTER TO RELOCATARLE
$20.
THIRD? SWORD O THE - LAREL THIRD HAS THE VaALUE OF

wr as

RELOCATARLE 20.

Storage area may be reserved by advancing the location counter. For
example, 1if +the current value of the location counter is 1000, the
direct assignment statement

.=.+100

will reserve 100 bytes of storage space in the program. The next
instruction will be stored at 1100.

1.6 RELOCATION AND LINKING

The output of the relocatable assembler is an object module which must
be processed by the ©PDP-11 Linker, LINK-11S, before loading and
execution. The Linker essentially fixes (i.e., makes absolute) the
values of external or relocatable symbols and creates another module
(load module) which contains the binary data to be 1loaded and
executed.

To enable the Linker to fix the value of an expression the assembler
issues certain directives to the Linker together with the required
parameters. In the case of relocatable expressions the Linker adds
the base of the relocatable section (the location in memory of
relocatable 0) to the value of the relocatable expression provided by
the Assembler. 1In the case of an external expression the value of the
external term in the expression is determined by the Linker (since the
external symbol must be defined in one of the other object modules
being linked and adds it to the value of the external expression
provided by the Assembler.

All instructions that are to be modified as described above will be
marked by a single apostrophe in the assembly listing. Thus the
binary text output will look as follows for the given examples:

QOH06E" CLR EXTERNAL (5) y

Q00000 sVALUE OF EXTERNAL SYMROL
FASSUMED ZEROF WILL RE
FMODIFIED RY THE LINKER.

Q05065 CLR EXTERNAL+6E) §

0000046 v

0050657 CLR RELQCATARLE (3) FASSUMING WE ARE IN THE

000040 FARSOLUTE SECTION AND

$THE VALUE OF RELOCATARLE
18 RELOCATARLE 40

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

1.7 ADDRESSING

The Program Counter (register 7 of the eight general registers) always
contains the address of the next word to be fetched; i.e., the
address of the next instruction to be executed, or the second or third
word of the current instruction.

In order to understand how the address modes operate and how they
assemble, the action of the Program Counter must be understood. The
key rule is:

Whenever the processor implicitly uses the Program
Counter to fetch a word from memory, the Program
Counter is automatically incremented by two after
the fetch.

That is, when an instruction is fetched, the PC is incremented by two,
so that it 1is pointing to the next word in memory; and, if an
instruction uses indexing (see sections 1.7.7, 1.7.8 and 1.7.10), the
processor uses the Program Counter to fetch the base from memory.
Hence, using the rule above, the PC increments by two, and now points
to the next word.

The following conventions are used in this section:

1. Let E be any expression as defined in Section 1.4.

2. Let R be a register expression. This 1is any expression
containing a term preceded by a % character of a symbol
previously equated to such a term.

Examples:
RO
Rl

R2

%0 §GENERAL REGISTER 0O
RO+ GENERAL REGISTER 1
1+%1 $GENERAL REGISTER 2

HoHoH

3. Let ER be a register expression or an expression in the range
0 to 7 inclusive.

4. Let A be a general address specification which produces a
6-bit mode address field as described in a PDP-11 Processor
Handbook.

The addressing specifications, A, may now be explained in terms of E,
R, and ER as defined above. Each will be illustrated with the single
operand instruction CLR or double operand instruction MOV.

1.7.1 Register Mode

The register contains the operand.
Format: R
Example:

RO=%0 STEFINE RO A8 REGISTER O
CLLR RO SCLEAR REGISTER 0O

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

1.7.2 Deferred Register Mode

The register contains the address of the operand.

Format: @R or (ER)

Example:
CLRERL FCLEAR THE WORD AT THE
or FANDRESS CONTAINED IN
ClL.RCL) PREGISTER 1L

1.7.3 Autoincrement Mode

The contents of the register are incremented immediately after being
used as the address of the operand.

Format: (ER) +

Examples:

CLR (ROY+ sCLEAR WORDS AT ANDRESSES
CLR (RO+3)+ SCONTAINED IN REGISTERS 023y AND 2
CLLR (234 FAND INCREMENT REGISTER CONTENTS
sRY TWO.
NOTE
Both JMP and JSR instructions using mode
2 (non-deferted autoincrement mode),
execute differently on different PDP-11
processors. Avoid use of these

instructions with mode 2 addressing.

Double operand instructions of the
addressing. form %R, (R)+ or %R, —-(R)
where the source and destination
registers are the same, give different
results on different PDP-11 processors,
and should be avoided.

1.7.4 Deferred Autoincrement Mode

The register ‘contains .the pointer to the address of the operand. : The
contents of the register are incremented after being used.

Format: @ (ER)+
Example:
CLR @(3)+ $CONTENTS OF REGISTER 3 FOINT

$TO ADDRESS OF WORD TO RE CLEARED
SREFORE REING INCREMENTED RY TWO

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

1.7.5 Autodecrement Mode

The contents of the register are decremented before being used as the
address of the operand (see note in Section 1.7.3).

Format: - (ER)
Examples:
CLR ~(ROY SRECREMENT CONTENTS OF REGISTERS

CLR ~(RO+3) $0» 3 AND 2 BEFORE USING
Cl.k —-{2) A5 ADDRESSES OF WORDS TO BE CLEARED

1.7.6 Deferred Autodecrement Mode

The contents of the register are decremented before being used as the
pointer to the address of the operand.

Format: @-(ER)
Example:
CLR @-(2) SOECREMENT CONTENTS OF REG. 2

FREFORE USING AS FOINTER TO ADDRESS
CS30F WORD TO BE CLEARED.

1.7.7 Index Mode

Format: . E(ER)
The value of an éxpressibn E is stored as the second or third word of
the instruction. The effective address is calculated as the value of
E plus the contents of register ER. The value E is called the base.

Examples:

EFFECTIVE ADDRESS 18 X+2 FLUS
FTHE CONTENTS OF REGISTER 1

CLR X+2(R1)

ClLR —203) FEFFECTIVE ARDDRESS I8 -2 PLUS
THE CONTENTS OF REGISTER 3

1.7.8 Deferred Index Mode

An expression plus the contents of a register gives the pointer to the
address of the operand. '

Format:- QE(ER)
Example:

CLE 21404 5IF REGISTER 4 HOLDE 100y aND LOCATION
FLL4 HOLDS 2000 LOC.2000 I8 CLEARED.

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

1.7.9. Immediate Mode and Deferred Immediate (Absolute) Mode .

The immediate mode allows the operand itself to be stored as the
second or third word of the instruction. It. is assembled as an
autoincrement of register 7, the PC.

Format:' . 4E
Examples:

MOU #100sRO $MOVE AN OCTAL 100 TO REGISTER ©
MOV #XeRO FMOVE THE VALUE OF SYMROL X TO |
FREGISTER O,

The operation of this mode is explained as follows:

The statement MOV #100,R3 assembles as two words. These are:
012703
000100
Just before this instruction is fetched and executed, the PC points to
the first word of the instruction. The processor fetches the first
word and increments the PC by two. The source operand mode 1is 27
(autoincrement the PC). Thus the PC is used as a pointer to fetch the
operand (the second word of the instruction) before being incremented
by two, to point to the next instruction.

If the #E is preceded by @, E specifies an absolute address.

1.7.10 Relative and Deferred Relative Modes

Relative mode is the normal mode for memory references.
Format: E
Examples:

ClL.Rk 100 9CLEQR LOCATION 100
MOV XY SMOVE CONTENTS OF LOCATION X T0
PLOCATION Y. .

This mode is assembled as 1Index mode, using 7, the PC, as the
register. The base of the address calculation, which is stored in the
second or third word of the instruction, is not the address of the
operand. Rather, it 1is the number which, when added to the PC,
becomes the address of the operand. Thus, the base 1is X-PC. The
operation is explained as follows: : : :

If the statement MOV 100,R3 is assembled at absolute location 20 then
the assembled code is:

Location 20: 01
00

6 703
Location 22 0 05 4
The processor fetches the MOV instruction and adds two to the PC so
that it points to location 22. The source operand mode is 67; that
is, indexed by the PC. To pick up the base, the processor fetches the
word pointed to by the PC and adds two to the PC. The PC now points
to location 24. To calculate the address of the source operand, the
base is added to the designated register. That is, BASE+PC=54+24=100,

the operand address.

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

Since the Assembler considers "." as the address of the first word of
the instruction, an equivalent statement would be

MOV 100 -.- 4(PC),R3

This mode is called relative because the operand address is calculated
relative to the <current PC. The base is the distance (in bytes)
between the operand and the current PC. If the operator and its
operand are moved in memory so that the distance between the operator
and data remains constant, the instruction will operate correctly.

If E is preceded by @ the expression's value is the pointer to the
address of the operand.

1.7.11 Table of Mode Forms and Codes (6-bit(A) format only - see
Section 1.7.12)

Each instruction takes at least one word. Operands of the first six
forms 1listed below, do not increase the length of an instruction.
Each operand in one of the other modes, however, increases the
instruction length by one word.

Form Mode Meaning
None R On Register
of @R or - (ER) 1n Register deferred
these (ER) + 2n -Autoincrement
forms @(ER)+ “3n ‘Autoincrement deferred
increases -(ER) 4n Autodecrement
the @-(ER) 5n Autodecrement deferred
instruc-
tion
length.
Form Mode Meaning
Any of these E(ER) 6n Index
forms adds a @E(ER) 7n Index deferred
word to the #E 27 Immediate
instruction Q#E 37 Absolute memory reference
length. E 67 Relative
QE 77 Relative deferred reference
Notes:

1. An alternate form for @R is (ER). However, the form @O0 (ER)
is equivalent to @O (ER).

2., The form @#E differs from the form E in that the second or
third word of the instruction contains the absolute address
of the operand rather than the relative distance between the
operand and the PC. Thus, the statement CLR @#100 will clear
location 100 even if the instruction is moved from the point
at which it was assembled.

The Assembler is not particular about left and right and dangling +
and - signs in address fields. The following are some examples of
incorrect syntax that assemble as indicated, without an error
indication.

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

Form Assembles As: Form Assembles As:
(R2)A A(R2) (R2) - -(R2)

A-(R2) A(R2) or A-0(R2) @ (R2)A @ A(R2)

A(Rw) + A(R2) A(R2)+B A+B (R2)

+(R2) (R2) +

1.7.12 1Instruction Forms

The instruction mnemonics are given in Appendix B. This section
defines the number and nature of the operand fields for these
instructions.

In the table that follows, let R, E, and ER represent expressions as
defined in Sections 1.4 ‘and 1.7 and let A be a 6-bit address
specification of the forms:

E QE - (ER) @ -(ER)

R @R or (R) E (ER) @ E(ER)

(ER) + @ (ER) + #E @ #E
Table 1-1

Instruction Operand Fields

Instruction Form Example
Double Operand Op A,A MOV. (R6)+, @Y
Single Operand Op A CLR -(R2)
OPERATE OoP HALT
Branch Op E BR X+2
BLO .-4

where -128<(E-.-2)/2<127
Subroutine Call JSR ER,A JSR PC,SUBR
Subroutine Return RTS ER RTS PC
EMT/TRAP Op or Op E EMT

where 0<E<377 EMT 31

The branch instructions are one word instructions. The high byte
contains the op code and the low byte contains an 8-bit signed offset
(7 bits plus sign) which specifies the branch address relative to the
PC. The hardware calculates the branch address as follows:

1. Extend the sign of the offset through bits 8-15.

2. Multiply the result by 2. This creates a word offset rather
than a byte offset.

3. Add the result to the PC to form the final branch address.
The Assembler performs the reverse operation to form the byte offset
from the specified address. Remember that when the offset is added to
the PC, the PC 1is pointing to the word following the branch
instruction; hence the factor -2 in the calculation.
Byte offset = (E-PC)/2 truncated to eight bits.

Since PC = .+2, we have

Byte offset = (E-.-2)/2 truncated to eight bits.

1-17

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

NOTE

It is illegal to branch to a 1location
specified as an external symbol, or to a
relocatable symbol when within. an
absolute section, or to an absolute
symbol when within a relocatable
section.

The EMT and TRAP instructions do not use the low-order byte of ‘the
word. This allows information to be transferred to the trap handlers
in the low-order byte. If EMT or TRAP is followed by an- expression,
the value is put into the low-order byte of the word. However, if the
expression is too big(>377g) it is truncated to eight bits and a
Truncatlon (T) error occurs.

Do not try to micro-program the condition code operators (see Appendix
B, B. 4) This makes sense in the PDP-11 hardware; however, the
current PAL-11S Assembler does not support this capability. Thus:

CLC!CLV

results in a Q error (see Appendix B, B.5) and the statement 1is
assembled as CLC.

Expressions in the Assembler ‘do, however, allow logical operators and
the wuse of instruction mnemonics. Thus, the proper ways to write the
above statement:

WORD CLEGC! i0rerard of WORD
+CLCTELY J0erand of default WORD
HCL.CTCLY P0rarandg of de ault WORD

1.8 ASSEMBLER DIRECTIVES

Assembler d1rect1ves (sometimes called pseudo-ops) direct the assembly
process and may generate data.

Assembler directives may be preceded by a label and followed by a
comment. The assembler directive occupies the operator field. Only
one directive may be - placed in any one statement. One Or more
operands may occupy the operand field or it may be void -- allowable
‘operands vary from directive to directive. :

1.8.1 .TITLE
The .TITLE directive is used to name the object module. The name is

assigned by the first symbol following the directive. If there is no
.TITLE statement the default name ‘assigned is ":MAIN.".

1.8.2 .GLOBL
The .GLOBL directive is used to declare a symbol as being global. It
may be an entry symbol, in which case it is defined in the program, or
it may be a external symbol, in which case it should be defined 1in
another program which will be linked with this program by the linker.
The form of the .GLOBL directive is

.GLOBL NAMA, NAMB,...,NAMN

1-18

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

NOTE
A symbol cannot be declared global by

defining it as a global expression in a
direct assignment statement.

If an illegal character is detected in the operand field of a .GLOBL

statement, an error message is not generated; and the Assembler may

ignore the remainder of the statement. Thus: : :
GLOBL A,B,@C,D

assembles without error as:

.GLOBL A,B

1.8.3 Program Section Directives (.ASECT andi.CSECT)

The relocatable assembler provides for two program sections, an
absolute section declared by an .ASECT directive and a relocatable
section declared by a .CSECT directive. These directives therefore
enable the programmer to specify that parts of his program be
assembled in the absolute section and others in a relocatable section.
The scope of each directive extends until a directive to the contrary
is given. The Assembler initially starts in the relocatable section:
Thus, if the first statement of a program were i

A: (ASECT

the label "A" would be a relocatable symbol which 1is assigned the
value of relocatable zero. The absolute value of A will be calculated
by the Linker by adding the value of the base of - the relocatable
section. : . ’ AR o

Example:
+ASECT FASSEMRBRLER IN ARSOLUTE SECTION
e 000 sFC o= 1000 ARSOLUTE
Al CLR X A = 1000 ARSOLUTE
LCHECT FASSEMRLE IN RELOCATARLE SECTION
Xt JMF A §X=0 RELOCATARLE
+END

The absolute and/or relocatable section may be discontinued (by
Switching to the alternate section) and then continued where they left
off by using another .ASECT or .CSECT statement.

Examplei

+CBECT

+WORD Opls2 sASSEMBLED AT RELOCATARLE O» 2 and 4
+ASECT

+WORD 05152 : SASSEMBLED AT ARSOLUTE 05 2 and 4
+CSECT

+WORD O sASSEMBLED AT RELOCATARLE 6.

+END

If a label is defined twice, first in an absolute section and then in
a relocatable section, the symbol will be relocatable but its value
will be as defined in the absolute section.

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

1.8.4 .EOT

The .EOT directive indicates the physical End Of Tape though not. the
logical end of the program. If the .EOT is followed by a single line
feed or form feed, the Assembler will still read to the end of the
tape, but will not process anything past the .EOT directive. If .EOT
is followed by at least two line feeds or form feeds, the Assembler
will stop before the end of the tape. Either case is proper, but it
should be understood that even though it appears as if the Assembler
has read too far, it actually hasn't.

If a .EOT is embedded in a tape, and more information to be assembled
follows it, .EOT must be immediately followed by at least two line
feeds or form feeds. Otherwise, the first 1line following the .EOT
will be lost.

Any operands following a .EOT directive will be ignored. The .EOT
directive allows several physically separate tapes to be assembled as
one program. The last tape should be terminated by a .END directive
(see Section 1.8.6) but may be terminated with .EOT (see .END
emulation in Section 1.9.4).

1.8.5 .EVEN

The .EVEN directive ensures that the assembly location counter is even
by adding one if it is odd. Any operands following a .EVEN directive
will be ignored.

1.8.6 - .END

The .END directive indicates the logical and physical end of the
source program. The .END directive may be followed by only one
operand, an expression indicating the program's transfer address.

At load time, the load module will be 1loaded and program execution
will begin at the transfer address indicated by the .END directive.
If the address is not specified, the loader will halt after reading in
the load module.

1.8.7 .WORD

" The .WORD assembler directive may have one or more operands, separated
by commas. Each operand is stored in a word of the object program.
If there is more than one operand, they are stored 1in successive
words. The operands may be any legally formed expression. For
example,

+= 1420

SAl.=0

SWORD 177530y 442801 $8TORED IN WORDS 1420 1422 AND
$1424 WILL RE 177533e 1426y AND O

Values exceeding 16 bits will be truncated from the 1left, to word
length.

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

A .WORD directive followed by one or more void operands separated by
commas will store zeros for the void operands. For example,

+=1430 $ZER0Ds FIVEs AND ZERO ARE STORED
+WORDL 5y FIN WORDS 1430y 1432y AND 1434

An operator field 1left blank will be interpreted as the .WORD
directive if the operand field contains one or more expressions. The
first term of the first expression in the operand field must not be an
instruction mnemonic or assembler directive unless preceded by a +, -,
or one of the logical operators, ! or &. For example,

+ =440 STHE OF-CODE FOR MOV WHICH IS 010000,
LAREL Y +MOVyLAREL IS STORED IN LOCATION 440. 440 I8
FOTORED IN LOCATION 442.

Note that the default .WORD will occur whenever there 1is a leading
arithmetic or 1logical operator, or whenever a leading symbol is
encountered which is not recognized as an instruction mnemonic or
assembler directive. Therefore, if an instruction mnemonic or
assembler directive is misspelled, the .WORD directive is assumed and
errors will result. Assume that MOV is spelled incorrectly as MOR:

MOR A,B

Two error codes can result: A Q will occur because an expression
operator is missing between MOR and A, and a U will occur if MOR is
undefined. Two words will be generated; one for MOR A and one for B.

1.8.8 .BYTE

The .BYTE assembler directive may have one or more operands separated
by commas. Each operand is stored in a byte of the object program.
If multiple operands are specified, they are stored 1in successive
bytes. The operands may be any legally formed expression with a
result of 8 bits or less. For example,

SAM=3 SSTORED IN LOCATION 410 WILL BE
+u5410 $060 (THE 0CTAL EQUIVALENT QF 48).
+RBYTE 48, y5AM $IN 411 WILL RE-005.

If the expression has a result of more than 8 bits, it will be
truncated to its low-order 8 bits and will be flagged as a T error.
If an operand after the .BYTE directive 1is 1left wvoid, it will be
interpreted as zero. For example,

+ =420 FZERD WILL RBE STOREX IN
JRBYTE » FRYTES 420y 421 AND 422,

If the expression is relocatable, a warning flag, A, will be given.

1.8.9 .ASCII

The .ASCII directive translates strings of ASCII characters into their
7-bit ASCII codes with the exception of null, rubout, carriage return,
line feed and form feed. The text to be translated is delimited by a
character at the beginning and the end of the text. The delimiting
character may be any printing ASCII character except colon and equal
sign and those used in the text string. The 7-bit ASCII code
generated for each character will be stored in successive bytes of the
object program. For example,

1-21

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

=500 FTHE ASCII CODE FOR Y WILL EE

+ASCIT /SYES/ FBTORED IN 500» THE CODE FOR E
sIN 501y THE CODRE FOR 8 IN 302,

SASCIT /543727 $THE DELIMITING CHARACTER QCCURS

sAMONG THE OFERANDS. THE ASCII
SCONES FOR 5 » + » AND 3 ARE
sSTORED IN BYTES 3503y 504y AND
$303. 2/ I8 NOT ASSEMELED.

The .ASCII directive may be terminated by any legal terminator except
for = and :. ©Note that if the text delimiter is also a terminator,
the leading text delimiter can also serve as the .ASCII directive
terminator. For example,

JASCIT /ARCD/ $THE SFACE IS REQUIRED
SRECAUSE / I8 NOT A TERMINATOR.
+ASCTITHARCIDY $NO SPACE IS REQUIRED.

1.8.10 .RADSO0

PDP-11 system programs often handle symbols in a specially coded form
caled "RADIX 50" (this form is sometimes referred to as "MOD40").
This form allows 3 characters to be packed into 16 bits; therefore,
any symbol can be held in two words, the form of the directive is:

.RAD50 /CCC/

The single operand is of the form /CCC/ where the slash (the
delimiter) can be any printable character except for = and :. The
delimiters enclose the characters to be converted which may be A
through 2, 0 through 9, dollar ($), dot (.) and space (). If there
are fewer than 3 characters they are considered to be 1left-justified
and trailing spaces are assumed. Any characters following the
trailing delimiter are ignored and no _error results.

Examples:

LRADEO /ARC/ FFACK ARC INTO ONE WORD
fRANSO /AR/ FFACK AR (SPACE) INTO ONE WORDS
JSAANE0 S/ FFACK 3 SFACES INTO ONE WORD

The packing algorithm is as follows:

A. Each character is translated into its RADIX 50 -equivalent as
indicated in the following table:

Character RADIX 50 Equivalent (octal)
(SPACE) 0

A-7 1-32

S 33

. 34

0-9 36-47

Note that another character can be defined for code 35.

B. The RADIX 50 equivalents for characters 1 through 3 (C1,C2,C3) are
combined as follows:

RESULT=((C1*50)+C2) *50+C3

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

1.8.11 LIMIT

A program often wishes to know the
The .LIMIT directive generates
the low and high addresses of the
(inserted 1into the first word)
code. The high address 1is the
following the relocated code.
since all relocatable sections are
relocatable section consists of an
one to the size to make it even.

boundaries of the relocatable code.
two words into which the linker puts
relocated code. The 1low address
is the address of the first byte of
address of the first free byte
These addresses will always be even
loaded at even addresses and 1if a
odd number of bytes the linker adds

1.8.12 Conditional Assembly Directives
Conditional assembly directives provide the programmer with the
capability to «conditionally include or not include portions of his
source code in the assembly process. In what follows, E denotes an
expression and S(i) denotes a symbol. The conditional directives are:

.IFZ E ;IF E=0

. IFNZ E ; IF E#0

.IFL E ; IF E<O

.IFLE E ;IF E<0

.IFG E ;IF E>0

. IFGE E ;IF E>0

. IFDF S (1) [!t,&]1 S (2) [!,&]...[1,&] S(N) (1=0R, &=AND)

. IFNDF S (1) [!t,&] S (2) [!,&)...[1,&] S(N)

If the condition is met, all statements up to the matching
the statements are ignored until the matching

assembled. Otherwise,
.ENDC is detected.

In the above,.IFDF and .IFNDF mean
respectively. The scan is left to

Example:

SIFOF 81T

LIFNDF TERUS

General Remarks:

An errored or null expression take
of the conditional test. An error
than ;, !, &, or CR results in the
.IFNDF, as does an errored or null

All conditionals must end with the
operand field of .ENDC is ignored.

of 127 . Labels are permitted on
scan is purely left to right. For
JIFZ 1
Az .ENDC
A is ignored.
A .IFZ 1
.ENDC

A is entered in the symbol table.

.ENDC are

"if defined" and "if undefined”
right, no parentheses permitted.

Means assemble if either S or T 1is

defined and U is defined

Means assemble if both T and U
undefined or if S is undefined

are

s the default value 0 for purposes

in syntax, e.g., a terminator other
undefined situation for .IFDF and
symbol.

.ENDC directive. Anything in the

Nesting is permitted up to a depth
conditional directives,; but. the
example:

1-23

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

If a .END is encountered while inside a satisfied conditional, a Q
flag will appear, but the .END directive will still be processed
normally. If more .ENDC's appear than are required, Q flags appear on
the extras.

1.9 OPERATING PROCEDURES

1.9.1 1Introduction

The Assembler enables you to assemble an ASCII tape containing PAL-11
statements into a relocatable binary tape (object module). To do
this, two or three passes are necessary. On the first pass, the
Assembler creates a table of user-defined symbols and their associated
values, and a list of undefined symbols is printed on the teleprinter.
On the second pass the Assembler assembles the program and punches out
an absolute binary tape and/or outputs an assembly 1listing. During
the third pass (this pass 1is optional), the Assembler punches an
absolute binary tape or outputs an assembly listing. The symbol table
{(and/or a 1list of errors) may be output on any of these passes. The
input and output devices as well as various options are specified
during the initial dialogue (see Section 1.9.3). The Assembler
initiates the dialogue immediately after being loaded and after the
last pass of an assembly.

1.9.2 Loading PAL-11S

PAL-11S is loaded by the Paper Tape Software Absolute Loader. Note
that on systems with hardware switch registers, the start address of
the Absolute Loader must be in the Switch Register when 1loading the
Assembler. This is because the Assembler tape has an initial program
which clears all of core up to the address specified in the Switch
Register, and jumps to that address to start loading the Assembler.

1.9.3 1Initial Dialogue

After being loaded, the Assembler prints its name and version and then
initiates dialogue by printing on the teleprinter

*S

meaning "What is the Source symbolic input device?" The response may
be

use Low-speed reader (</denotes typing the RETURN key)
meaning High-speed reader

meaning Low-speed reader

meaning Teleprinter keyboard

HL".’I!&

The device specification is terminated, as is all wuser response, by
typing the RETURN key.

If an error is made in typing at any time, typing the RUBOUT key will

erase the immediately preceding character if it is on the current
line. Typing CTRL/U will erase the whole line on which it occurs.

1-24

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

After the *S question and response, the Assembler prints:
*B

meaning "What is the Binary output device?" The responses to *B are
similar to those for *S:

H meaning High-speed punch

L meaning Low-speed punch

</ meaning do not output binary tape (</denotes typing
the RETURN key)

In addition to I/0 device specification, various options may be
chosen. The binary output will occur on the second pass unless /3
(indicating the third pass) is typed following the H or L. Errors
will be 1listed on the same pass if /E is typed. If /E is typed in
response to more than one inquiry, only the last occurrence will be
honored. It 1is strongly suggested that the errors be listed on the
same pass as the binary output, since errors may vary from pass to
pass.

If both /3 and /E are typed, /3 must precede /E. The response is
terminated by typing the RETURN key. Examples:

*B L/E Binary output on the low-speed punch and
the errors on the teleprinter, both
during the second pass.

*B H/3/E Binary output on the high-speed punch
and the errors on the teleprinter during
the third pass.

*B </ The RETURN key alone will cause the
Assembler to omit binary output

After the *B question and response, the Assembler prints:
*L

meaning "What is the assembly Listing output device?" The response to
*L may be:

meaning Low-speed punch

meaning High-speed punch

meaning Teleprinter

meaning Line Printer

meaning do not output listing (<~/denotes typing RETURN)

t"ﬂ'—iﬂ:t"

After the I/O0 device specification, pass and error 1list options
similar to those for *B may be chosen. The assembly listing will be
output on the third pass unless /2 (indicating the second pass) 1is
typed following H, L, T, or P. Errors will be 1listed on the
teleprinter during the same pass if /E is typed. If both /2 and /E
are typed, /2 must precede /E. The response is terminated by typing
the RETURN key. Examples:

*L L/2/E Listing on low-speed punch and errors on
teleprinter during second pass.

*L H Listing on high-speed punch during third
pass
* </ The RETURN key alone will cause the

Assembler to omit listing output.

1-25

|

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

After the *L question and response, the final question is printed on
the teleprinter:

*T

meaning "What is the symbol Table output device?" The device
specification is the same as for *L question. The symbol table will
be output at the end of the first pass unless /2 or /3 is typed in

response to *T, The first tape to be assembled should be placed in
the reader before typing the RETURN key because assembly will begin
upon typing RETURN to the *T question. The /E option is not a
meaningful response to *T. Example
*T T/3 Symbol table output on teleprinter at
end of third pass.
*T Typing the RETURN key alone will cause
the Assembler to omit symbol table
output.

The symbol table is printed alphabetically, three symbols per line.
Each symbol printed is followed by its identifying characters and by
its value. If the symbol is wundefined, six asterisks replace its
value. The identifying characters indicate the class of the symbol;
that is, whether it is a label, direct assignment, register symbol,
etc. The following examples show the various forms.

ABCDEF 001244 (Defined Label)

R3 = $000003 (Register Symbol)

DIRASM = 177777 (Direct Assignment)

XYZ = Ehkkkx (Undefined direct assignment)
R6 = grEE I KKK (Undefined register symbol)
LABEL = *hkkkkx (Undefined label)

Generally, undefined symbols and external symbols will be 1listed as
undefined direct assignments. Multiply-defined symbols are not
flagged in the symbol table printout but are flagged wherever they are
used in the program.

If the symbol is relocatable or global or both, the symbol's value
will be followed by an R, a G or both.

It is possible to output both the binary tape and the assembly listing
on the same pass, thereby reducing the assembly process to two passes

(see Example 1 below). This will happen automatically unless the
binary device and the listing device are conflicting devices or the
same device (see Example 2 below). The only conflicting devices are

the teleprinter and the low-speed punch. Even though the Assembler
deduces that three passes are necessary, the binary and listing can be
forced on pass 2 by including /2 in the responses to *B and *L (see
Example 3 below).)

Example 1. Runs 2 passes:

High-speed reader
High-speed punch
Line Printer
Teleprinter

315 s
Homm

Example 2. Runs 3 passes:

*S H High-speed reader
*B H High-speed punch
*L H High-speed punch
*T T Teleprinter

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

Example 3. Runs 2 passes:

*S H High-speed reader

H/2 High-speed punch on pass 2
H/2 High-speed punch on pass 2
T Teleprinter

|31 5]

Note that there are several cases where the binary output can be
intermixed with ASCII output:

a. *B H/2 Binary and listing to punch on pass 2.
*L H/2
b. *B L/E Binary to low-speed punch and error 1listing to
teleprinter (and low-speed punch).
c. *B L/2/E Binary, error listing, and
*L T/2 listing to low speed punch.

The object module so generated is acceptable to the Linker as long as
there are no CTRL/A characters in the source program. The start of
every block on the binary tape is indicated by a 001 and the Linker
ignores all information wuntil a 001 is detected. Thus, all source
and/or error messages will be ignored if they do not contain any
CTRL/A characters (octal 001).

If a character other than those mentioned is typed in reponse to a
question, the Assembler will ignore it and print the question again.
Example: ‘

*S H High-speed reader
*B 0] Q is not a valid response
*B The question is repeated

If at any time you wish to restart the Assembler, type CTRL/P. If the
low-speed reader is the source input device, turn it off before typing
CTRL/P.

When no passes are omitted or error options specified, the Assembler
performs as follows:

PASS 1:

Assembler creates a table of user-defined symbols and their associated
values to be wused in assembling the source to object program.
Undefined symbols (not including external globals) are listed on the
teleprinter at the end of the pass. The symbol table is also listed
at this time. If an 1illegal 1location statement of the form
.=expression is encountered, the line and error code will be printed
out on the teleprinter before the assembly proceeds. An error in a
location statement is usually a fatal error in the program and should
be corrected.

PASS 2:

Assembler punches the object module, and prints the pass error count
and undefined location statements on the teleprinter.

PASS 3:

Assembler prints or punches the assembly program 1listing, undefined
location statements, and the pass error count on the teleprinter.

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

The functions of passes 2 and 3 will occur simultaneously on pass 2 if
the binary and listing devices are different, and do not conflict with
each other (the low-speed punch and teleprinter conflict).
Furthermore, if the binary object module is not requested, the listing
will be produced on pass 2. '

The following table summarizes the initial dialogue questions:

PRINTOUT INQUIRY
*S What is the input device of the Source symbolic tape?
*B What is the output device of the Binary object tape?
*L What is the output device of the assembly Listing?
*T What is the output device of the symbol Table?

The following table summarizes the legal responses:

CHARACTER RESPONSE INDICATED

T Teleprinter keyboard

L Low-speed reader or punch

H High-speed reader or punch

P Line Printer

/1 Pass 1

/2 Pass 2

/3 Pass 3

/E Errors listed on same pass (not meaningful
response to *S or *T)

</ Omit function (except in response to *S).

Typical examples of complete initial dialogues:
For minimal PDP-11 configuration:

*S L Source input on low-speed reader
*B L/E Binary output on low-speed punch
errors during same (second) pass
*L T Listing on teleprinter during pass 3
*T T Symbol table on teleprinter at end of pass 1

For a PDP-11 with high-speed I/O devices:

*S H Source input on high-speed reader
*B H/E Binary output on high-speed punch
errors during same (second) pass
*L </ No listing
*T T/2 Symbol table on teleprinter at end of pass 2.

1.9.4 Assembly Dialogue

During assembly, the Assembler will pause to print on the teleprinter
various messages to indicate that you must respond in some way before
the assembly process can continue. You may also type CTRL/P, at any
time, if you wish to stop the assembly process and restart the initial
dialogue, as mentioned in the previous section.

When a .EOT assembler directive is read on the tape, the Assembler
prints

EQF ?

and pauses. During this pause, the next tape is placed in the reader,
and RETURN is typed to continue the assembly.

1-28

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

If the specified assembly listing output device 1is the high-speed
punch and if it is out of tape, or if the device is the Line Printer
and is out of paper, the Assembler prints on the teleprinter

EOM ?
and waits for tape or paper to be placed in the device. Type the
RETURN key when the tape or paper has been replenished; assembly will
continue.

Conditions causing the EOM ? messages for an assembly listing device
are:

HSP . LPT

No power No power

No tape Printer drum gate open
Too hot
No paper

There is no EOM if the line printer is switched off-line, although
characters may be lost for this condition as well as for an EOM.

If the binary output device is the high-speed punch and if it 1is out
of tape, the Assembler prints:

EOM ?
*S

The assembly process is aborted and the initial dialogue 1is begun
again.

When a .END assembler directive is read on the tape, the Assembler
prints:

END ?

and pauses. During the pause the first tape is placed in the reader,
and the RETURN key is typed to begin the next pass. On the last pass,
the .END directive causes the Assembler to begin the initial dialogue
for the next assembly.

If you are starting the binary pass and the binary is to be punched on
the 1low-speed punch, turn the punch on before typing the RETURN key
for starting the pass. The carriage return and line feed characters
will be punched onto the binary tape, but the Linker will ignore them.

If the last tape ends with a .EOT, the Assembler may be told to
emulate a .END assembler directive by responding with E followed by
the RETURN key. The Assembler will then print

END ?

and wait for another RETURN before starting the next pass. Example:

EOF ? E./
END ?

Note that forcing a .END in this manner causes the error counter to be
incremented by one.

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

1.9.5 Assembly Listing

PAL-11S produces a side-by-side assembly listing of symbolic source
statements, their octal equivalents, assigned addresses, and error
codes, as follows:

EELLLLLL OOOOOOASSS....... S
000000
000000

The E's represent the error field. The L's represent the address.
The O's represent the object data in octal. The S's represent the
source statement. "A" represents a single apostrophe which indicates
that either the second, third or both words of the instruction will be
modified by the Linker. While the Assembler accepts 72 characters
per 1line on input, the listing is reduced by the 16 characters to the
left of the source statement.

The above represents a three-word statement. The second and third
words of the statement are 1listed wunder the command word. No

addresses precede the second and third words since the address order
is sequential.

The third line is omitted for a two-word statement; both second and
third lines are omitted for a one-word statement.

For a .BYTE directive, the object data field is three octal digits.
For a direct assignment statement, the value of the defining
expression 1is given in the object code field although it is not
actually part of the code of the object program.

The .ASECT and .CSECT directives cause the current value of the
appropriate location counter (absolute or relocatable) to be printed.

Each page of the listing is headed by a page number (octal).

1.9.6 Object Module Output

The output of the assembler during the binary object pass is an object
module which is meaningful only to the linker. What follows gives an
overview of what the object module contains and at what stage each
part of it is produced.

The binary object module consists of three main types of data block:

a) Global symbol directory (GSD)
b) Text blocks - (TXT)
c) Relocation Directory (RLD)

1.9.6.1 Global Symbol Directory - As the name suggests, the GSD
contains a 1list of all the global symbols together with the name of
the object module. Each symbol is in Radix-50 form and contains
information regarding its mode and value whenever known.

The GSD is created at the start of the binary object pass.

1-30

.PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

1.9.6.2 Text Block - The text blocks consist entirely of the binary
object data as shown in the 1listing. The operands are in the
unmodified form.

1.9.6.3 Relocation Directory - The RLD blocks consist of directives
to the Linker which may reference the text block preceding the RLD.
These directives control the relocation and linking process.

Text and RLD blocks are constructed during the binary object pass.
Outputting of each block is done whenever either the TXT or RLD buffer
is full and whenever the location counter needs to be modified.

1.10 ERROR CODES

The error codes printed beside the octal and symbolic code in the
assembly listing have the following meanings:

Error Code Meaning

A Addressing error. An address within the instruction
is incorrect. Also may indicate a relocation error.

B Bounding error. Instructions or word data are being
assembled at an odd address in memory. The location
counter is updated by +1.

D Doubly-defined symbol referenced. Reference was
made to a symbol which is defined more than once.

I Illegal <character detected. Illegal characters
which are also non-printing are replaced by a ? on
the listing.

L Line buffer overflow. Extra characters on a line
(more than 72) are ignored.
M Multiple definition of a label. A label was

encountered which was equivalent (in the first six
characters) to a previously encountered label.

N Number containing 8 or 9 has decimal point missing.

P Phase error. A label's definition or wvalue varies
from one pass to another.

Q Questionable syntax. There are missing arguments or
the instruction scan was not completed or a carriage
return was not immediately followed by a 1line feed
or form feed.

R Register-type error. An invalid use of or reference
to a register has been made.

S Symbol table overflow. When the quantity of
user-defined symbols exceeds the allocated space
available in the user's symbol table, the assembler
outputs the current source 1line with the S error
code, then returns to the initial dialogue.

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

T Truncation error. A number generated more than 16
bits of significance or an expression generated more
than 8 bits of significance during the wuse of the
.BYTE directive.

U Undefined symbol. An undefined symbol was
encountered during the evaluation of an expression.
Relative to the expression, the undefined symbol is
assigned a value of zero.

1.11 SOFTWARE ERROR HALTS

PAL-11S loads all of its unused trap vectors with the code
.WORD .+2,HALT
so that if the trap does occur, the processor will halt in the second

word of the vector. The address of the halt, displayed in the console
address register, therefore indicates the cause of the halt.

Address of Halt (octal) Meaning

12 Reserved instruction executed

16 Trace trap occurred

26 Power fail trap

32 EMT executed
A halt at address 40 indicates an IOXLPT detected error. RO
(displayed in the console lights) contains an identifying code:
Code in RO Meaning

0 Illegal memory reference, SP overflow or

illegal instruction.
Illegal IOX command.

Slot number out of range.
Device number illegal
Referenced slot not INITed.
Illegal Data Mode.

O N

IOXLPT also sets R1 as follows:
If the error code is 0, Rl contains the PC at the time of the error.

If the error code is 1-5, Rl points to some element in the IOT
argument 1list or to the instruction following the argument list,
depending on whether IOXLPT has finished decoding all the arguments
when it detects the error.

CHAPTER 2

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS'

PAL-11A (Program Assembly Language for the PDP-11's Absolute
Assembler) enables you to write source (symbolic) programs using
letters, numbers, and symbols which are meaningful to you. The source
programs, generated either on-line using the Text Editor (ED-11), or
off-line, are then assembled into object programs (in absolute binary)
which are executable by the computer. The object program is produced
after two passes through the Assembler; an optional third pass
produces a complete octal/symbolic listing of the assembled program.
This listing is especially useful for documentation and debugging
purposes.

This chapter explains not only how to write PAL-11A programs but also
how to assemble the source programs into computer-acceptable object
programs. All facets of the assembly language are explained and
illustrated with many examples, and the chapter concludes with
assembling procedures. In explaining how to write PAL-11A source
programs it is necessary, especially at the outset, to make frequent
forward references. Therefore, we recommend that you first read
through the entire chapter to get a "feel" for the language, and then
reread the chapter, this time referring to appropriate sections as
indicated, for a thorough understanding of the language and assembling
procedures.

Some notable features of PAL-11A are:
1. Selective assembly pass functions
2. Device specification for pass functions
3. Optional error listing on Teletype
4. Double buffered and concurrent I/O (provided by IOX)
5. Alphabetized, formatted symbol table listing

The PAL-11A Assembler is available in two versions: a 4K version and
an 8K version.

The assembly language applies equally to both versions. The 4K
version provides symbol storage for about 176 user-defined symbols,
and the 8K version provides for about 1256 user-defined symbols (see
Section 2.3).

In addition, the 8K version allows a line printer to be used for the
program listing and/or symbol table listing.

'"PAL-11A is not currently available for PDP-11 systems without switch
registers.

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

The following discussion of the PAL-11A Assembly Language assumes that
you have read the PDP-11 Processor Handbook, with emphasis on those
sections which deal with the PDP-11 instruction set, formats, and
timings -- a thorough knowledge of these is vital to efficient
assembly language programming.

2.1 CHARACTER SET

A PAL-11A source program is composed of symbols, numbers, expressions,
symbolic instructions, assembler directives, arguments separators, and
line terminators written using the following ASCII' characters.

1. The letters A through Z. (Upper and lower case letters are
acceptable, although upon input, lower case letters will be
converted to upper case letters.)

2. The numbers 0 through 9.
3. The characters . and $ (reserved for system software).
4. The separating or terminating symbols:

t =% 4@ (), "+ -8l

carriage return tab space line feed form feed

2.2 STATEMENTS

A source program is composed of a sequence of statements, where each
statement 1is on a single 1line. The statement is terminated by a
carriage return character and must be immediately followed by either a
line feed or form feed character. Should a carriage return character
be present and not be followed by a 1line feed or form feed, the
Assembler will generate a Q error (Section 2.10) and that portion of
the line following the carriage return will be ignored. Since the
carriage return 1is a required statement terminator, a line feed or
form feed not immediately preceded by a carriage return will have one
inserted by the Assembler.

It should be noted that, if the Editor (ED-11) is being used to create
the source program (see Section 4.4.4), a typed carriage return
(RETURN key) automatically generates a line feed character.

A statement may be composed of up to four fields which are identified
by their order of appearance and by specified terminating characters
as explained below and summarized in Appendix B. The four fields are:

Label Operator Operand Comment
The label and comment fields are optional. The operator and operand

fields are interdependent -- either may be omitted depending upon the
contents of the other.

ASCII stands for American Standard Code for Information Interchange.

2-2

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

2.2.1 Label

A label is a user-defined symbol (see Section 3.3.2) which is assigned
the value of the current location counter. It is a symbolic means of
referring to a specific location within a program. If present, a
label always occurs first in a statement and must be terminated by a
colon. For example, if the current 1location 1is 100(octal), the
statement

ABCD: MOV A,B

will assign the value 100(octal) to the label ABCD so that subsequent
reference to ABCD will be to location 100(octal). More than one label
may appear within a single label field; each label within the field
will have the same value. For example, if the current location is
100, multiple labels in the statement

ABC: $SDD: A7.7: MOV A,B

will equate each of the three labels ABC, $DD, and A7.7 with the value
100 (octal) . ($ and . are reserved for system software.)

The error code M (multiple definition of a symbol) will be generated
during assembly if two or more labels have the same first six
characters.

2.2.2 Operator

An operator follows the label field in a statement, and may be an
instruction mnemonic or an assembler directive (see Appendix B). When
it is an instruction mnemonic, it specifies what action 1is to be
performed on any operand(s) which follows it. When it is an assembler
directive, it specifies a certain function or action to be performed
during assembly.

The operator may be preceded only by one or more labels and may be
followed by one or more operands and/or a comment. An operator is
legally terminated by a space, tab, or any of the following
characters.

¥ + - e ¢ " ' g ! & , ;
line feed form feed carriage return

The use of each character above will be explained in this chapter.
Consider the following examples:

MOV AsR ;=|(TAB) terminates operator MOV
MOVRAY R ;@ terminates operator MOV

When the operator stands alone without an operand or comment, it 1is
terminated by a carriage return followed by a line feed or form feed
character.

2.2.3 Operand

An operand is that part of a statement which is operated on by the
operator -- an instruction mnemonic or assembler directive. Operands
may be symbols, expressions, or numbers. When multiple operands
appear within a statement, each is separated from the next by a comma.

2-3

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

An operand may be preceded by an operator and/or label, and followed
by a comment.

The operand field is terminated by a semicolon when followed by a
comment, or by a carriage return followed by a line feed or form feed
character when the operand ends the statement. For example,

LABEL: MOV GEORGE,BOB ;THIS IS A COMMENT

where the space between MOV and GEORGE terminated the operator field
and began the operand field; the comma separated the operands GEORGE
and BOB; the semicolon terminated the operand field and began the
comment.

2.2.4 Comments

The comment field is optional and may contain any ASCII character
except null, rubout, carriage return, line feed or form feed. All
other characters, even those with special significance are ignored by
Assembler when used in the comment field.

The comment field may be preceded by none, any, or all of the other
three fields. It must begin with the semicolon and end with a
carraige return followed by a line feed or form feed character. For
example,

LABEL: CLR HERE ;THIS IS A $1.00 COMMENT
Comments do not affect assembly processing or program execution, but

they are wuseful in program listings for later analysis, checkout or
documentation purposes.

2.2.5 Format Control

The format is controlled by the space and tab characters. They have
no effect on the assembling process of the source program unless they
are embedded within a symbol, number, or ASCII text; or are used as
the operator field terminator. Thus, they can be used to provide a
neat, readable program. A statement can be written

LABEL:MOV (SP)+,TAG; POP VALUE OFF STACK
or, using formatting characters it can be written
LABEL: MOV (SP)+,TAG ; POP VALUE OFF STACK
which is much easier to read.
Page size is controlled by the form feed character. A page of n lines
is created by inserting a form feed (CTRL/FORM keys on the keyboard)

after the nth line. If no form feed is present, a page is terminated
after 56 lines.

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

2.3 SYMBOLS

There are two types of symbols, permanent and user-defined. Both are
stored in the Assembler's symbol table. 1Initially, the symbol table
contains the permanent symbols, but as the source program is
assembled, user-defined symbols are added to the table.

2.3.1 Permanent Symbols

Permanent symbols consist of the instruction mnemonics (see Appendix
B.3) and assembler directives (see Section 2.8). These symbols are a
permanent part of the Assembler's symbol table and need not be defined
before being used in the source program.

2.3.2 User-Defined Symbols

User-defined symbols are those defined as labels (see Section 2.2.1)
or by direct assignment (see Section 2.3.3). These symbols are added
to the symbol table as they are encountered during the first pass of
the assembly. They can be composed of alphanumeric characters, dollar
signs, and periods only; again, dollar signs and periods are reserved
for wuse by the system software. Any other character is illegal and,
if used, will result in the error message I (see Section 2.11). The
following rules also apply to user-defined symbols:

1. The fi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>