
PDP-ll

PAL-11S ASSEMBLER

AND
LlNK-l1S LINKER

(

(

(

PDP-11

PAL-11S ASSEMBLER
AND

LlNK-11S LINKER
PROGRAMMERilMANUAL

February 1972

DEC-11-YRWB-D and
DEC-I1-YRWB-DN

For additional copies, order No. DEC-11-YRWB-p from Digital Equipment
Corporation, Software Distribution Center, Maynard, Massachusetts 01754.

, .

Firs~ Printing, November, 1972

Your attention is invited to the last two pages of this
document. The "How to Obtai-nc Software Information" page
tells you how to, keep up-to-date with DEC's software.
Completion and return of the "Reader's Comments" page is
beneficial to both you and .DEC; c;lll comments received are
acknowledged and are consiclered. when documenting subse-
quent manuals. .

Copyright 1972 by Digital Equipment Corporation

DEC assumes no responsibility for the use or reliability
of its software on equipment which is not supplied by
DEC. The material in this document is for information
purposes and is supject to change without notice.

The following are trademarks of Digital Equipment
Corporation, Maynard, Massachusetts:

CDP
COMPUTER LABS
COMTEX-ll
DDT
DEC
DECTAPE
DIBOL

DIGlTAL
EDUSYSTEM
FLIP CHlP
FOCAL
GLC-8
IDACS
INDACS

KAIO
LAB-8
OMNIBUS
OS/8
OS/l1
PDP
PHA

QUlCKPOINT
RAD-8
RSTS
RSX
SABR
TYPESET-8
UNIBUS

Teletype is a registered trademark of the Teletype
Corporation.

(

(

(.,

/

(

(

(

(

PREFACE

This document describes the PA L-11 S Assembl y Language and Assembler (Chapter 1)

and the Link-llS Linker (Chapter 2).

PAL-11 Sand Link-11 S are stand-alone programs which are compatible subsets of

the Disk Operating System (DOS) PAL-llR and Link-ll system programs. Minimum

hardware requirements are an 8K PDP-11 with a teleprinter. A PCll (high-speed paper

tape punch) and/or LPll (line printer) may be used also.

The inputs and outputs of the stand-alone programs are also compatible with the

DOS counterparts. Thus, a program assembled by PAL-l1R can be linked by Link-llS,

and vice versa. The output of Link-l1 S is loadable by the DOS Loader or the Absolute

Loader from the paper tape system.

PAL-llS has all the capabilities of PAL-llR except for named .CSECT's. PAL-llS

has only the unnamed .CSECT and the .ASECT. PAL-ll S does no~ have the redundant

mnemonics for some of the additional assembler directives. That is, it has .IFZ,

.IFNZ, .IH, and .IFG, but does not have the equivalent names .IFEO, oIFNE,

.IFLT, and .IFGT (PAL-llR has both sets).

Link-ll S has most of the capabilities of Link-ll except for library searching.

Link-llS has a simple initial dialogue which allows the operator to select the I/O devices,

define the addresses where the program is to be I inked, and to request a I ist of undefined

globals. Link-ll S does handle named and unnamed .CSECT's and therefore can link the

output of PAL-ll R.

...
III

CONTENTS

CHAPTER. I PAL-llS ASSEMBLER

1 • Character Set

2. Statements

3. Symbols .,.

4. Expressions

(5. Assembly Location Counter

6. Re location and Linking

7. Addressing

8. Assemb ler Directives

9. Operat ing Procedures

10. Error Codes

,(- 11. Software Error Halts

CHAPTER II L1NK-llS LIN KER

1. Introduction

2. Input and Output

,/ 3. Operating Procedures
~ 4. Preparation

APPENDICES

A ASCII Character Set

-B PAL-llS Assembly Language and Assembler

C Assembling and Linking PAL-ll S

INDEX

(

v

1.0

2.0

(
3.0

/

(4.0 '--~~-

/ 5.0
\

6.0 '--

7.0

(

CHAPTER 1

PAL-llS ASSEMBLER

CHARACTER SET

STATEMENTS

2.1 Label

2.2 Operator

2.3 Operand

2.4 Comments

2.5 Format Control

SYMBOLS

3.1 Permanent Symbo Is

3.2 User-defined Symbols

3.3 Direct Assignment

3.4 Register Symbols

EXPRESSIONS

4.1 Numbers

4.2 Arithmetic and Logical Operators

4.3 ASCII Conversion

4.4 Mode of Expressions

ASSEMBLY LOCATION COUNTER

RELOCATION AND LIN KING

ADDRESSING

7.1 Register Mode

7.2 Deferred Register Mode

7.3 Autoincrement Mode

7.4 Deferred Autoincrement Mode

7.5 Autodecrement Mode

7.6 Deferred Autodecrement Mode

7.7 Index Mode-

7.8 Deferred Index Mode

vii

2

2

3

4

4

4

4

5

5

5

6

7

8

8

9

9

10

11

12

13

14

14

14

14

15

15

15

16

7.9 Immediate Mode and Deferred Immediate (Absolute) Mode

7.10 Relative and Deferred Relative Modes 16 f-,
7. 11 Table of Mode Formats and Codes 17

7.12 Instruction Forms 18

8.0 ASSEMBLER DIRECTIVES 19

8.1 .TITLE 19

8.2 .GLOBL 20

8.3 Program Section Directives (.ASECT, .CSECT) 20

8.4 .EOT 21

8.5 .EVEN 21

8.6 .END 21
(

8.7 .WORD 21

8.8 .BYTE 22

8.9 .ASCI-I 23

8.10 .RAD5,0 23

8.11 • LIMIT 24

8.12 Cond itioned Assembl y Directives 24 (
9.0 OPERATING PROCEDURES 25

9.1 Introduction 25

9.2 Loading PAL-11 S 26

9.3 Initial Dialogue 26

9.4 Assembly Dialogue 31
(

9.5 Assembl y Listing 32

9.6 Object Module Output 33

9.6.1 Global Symbol Directory 33

9.6.2 Text Slock 33

9.6.3 Relocation Directory 33

10.0 ERROR CODES 34

11.0 SOFTWARE ERROR HALTS 35

viii

(

(

(

(

CHAPTER 1

PAL-l1S ASSEMBLY LANGUAGE AN) ASSEMBLER

PAL-l1S (Program Assembly Language for the PDP-11, Relocatable, Stand Alone
Version) enables you to write source (symbolic) programs using letters, numbers, and
symbols which are meaningful to you. The source programs, generated either on-
line using the Text Editor (ED-11), or off-line, are then assembled into object modules
which are processed by the PO P-11 linker, LIN K-11 S. LI NK-11 S produces a load
module which is loaded by the Absolute Loader for execution. Object modules may
contain absolute and/or relocatable code and separately assembled object modules may
be linked with global symbols. The object module is produced after two passes through
the Assembler; an optional third pass produces a complete octal/symbolic listing of the
assembled program. This listing is especially useful for documentation and debugging
purposes.

This chapter not on Iy explains how to write PAL-11 S programs but also how to assemble
the source programs into object modules. All facets of the assembly language are ex­
plained and illustrated with many examples, and the chapter concludes with assembling
procedures. In explaining how to write PAL-llS source programs, it is necessary,
especially at the outset, to make frequent forward references. Therefore, we recommend
that you first read through the entire chapter to get a IIfeel ll for the L<?nguage, and
then reread the chapter, this time referring to appropriate sections as 'indicated, for
a thorough understanding of the language and assembling procedures.

Some notable features of PAL-ll S are:

1. Selective assembly pass functions.

2. Device specification for pass functions.

3. Optional error listing on the teleprinter.

4. Double buffered and concurrent I/o (provided by 10XLPT).

5. Alphabetized, formatted symbol table listing.

6. Relocatable object modules.

7. Global symbols for I inking between object modules.

1-1

8. Conditional assembly directives.

9. Program Sectioning Directives.

The PAL-ll S Assembler requires 8K of memory and provides for about 900 user-defined t-­
symbols (see Section 3.2). In addition, it allows a line printer to be used for program
listing and/or symbol table listing.

The following discussion of the PAL-ll S Assembly Language assumes that you have read
the PDP-ll Handbook 1971, with emphasis on those sections which deal with the PDP-ll
instruction repertoire, formats, and timings -- a thorough knowledge of these is vital to
efficient assembly language programming.

1.0 CHARACTER SET

A PAL-l1 S source program is composed of symbols, numbers, expressions, symbolic in­
structions, assembler directives, argument separators, and I ine terminators written using
the following ASCII* characters.

1. The letters A through Z. (Upper and lower case letters are acceptable, although
upon input, lower case 1etters will be converted to upper case letters.)

2. The numbers 0 thro'Jgh 9.

3. The characters . and $. (These characters are reserved for systems use.)

4. The separating or terminating symbols:

= % # @) II + &

carriage return tab space line feed form feed

2.0 STATEMENTS

(

(

A source program is composed of a sequence of statements, where each statement is on a
single line. The statement is terminated by a carriage return character which must be im-(
mediately followed by either a line feed or form feed character. Should a carriage return '
character be present and not be followed by a line feed or form feed, the Assembler will
generate a Q error (Section 10.0), and that portion of the line following the carriage
return will be ignored. Since the carriage return is a required statement terminator, a
line feed or form feed not immediately preceded by a carriage return will have one in­
serted by the Assembler.

It should be noted that, if the Editor (ED-ll) is being used to create the source program,
a typed carriage return (RETURN key) automatically generates a line feed character.

A statement may be composed of up to four fields which are identified by their order of
appearance and by specified terminating characters as explained below and .5ummarized

* ASC II stands for Ameri can Standard Code for Information Interchange.

1-2

(

(

c_.

~ in Appendix B. The four fields are:

Label Operator Operand Comment

The label and comment fields are optional. The operator and operand fields are inter­
dependent -- either may be omitted depending upon the contents of the other.

2.1 Label

A label is a user-defined symbol (see Section 3.2) which is assigned the value of the
current location counter. This value may be either absolute or relocatable depending on
whether the location counter value is absolute or relocatable. In the latter case, the
final absolute value is assigned by the Linker, i.e., the value + the relocation constant.
A label is a symboHc means of referring to a specific location within a program. If
present, a label always occurs first in a statement and must be terminated by a colon.
For exa~ple,if.thecurrent location is absolute 100S' the statement:

ABCD: MOY A,B

will assign the value 100S to the label ABCDso that subsequent reference to ABCD will

be to location 1 OOS' In the above case if the location counter were re I,ocatable then

t,he final value of ABCD would be 100S+K, where K is the location of the beginning of

the relocatable section in which thelcibel ABCD appears. More than one label may
appear within a single label field; each label within the field will have the same value.
Fo~example, if the current location counter is 100S" multiple labels in the statement:

ABC: $00: A7.7: MOY A,B

will equate each of the three labels ABC, $00, and A7.7 with the value 100S
($ and • are reserved for system software).

The error code M (multiple definition of a symbol) will be generated during assembly
if two or more labels have the same first six characters.

2. 2 Operator

An operator follows the label field in a statement, and may be an instruction mnemonic
or an assembler directive (see Section S and Append ix B). When it is an instruction
mnemonic, it specifies what action is to be performed on any operand(s) which follows
it. When it is an assembler directive, it spec ifies a certain function or action to be
performed during assembly.

The operator may be preceded only by one or more !abels and may be followed by one
or more operands and/or a comment. An operator is legally terminated bya space, tab,
or any of the following characters:

+ @ (II % & ,

line feed form feed carriage return

1-3

The u~e of each character above will be explained in ~this chapter.

Consider the following examples:

MOV ->! A,B
MOVfi A,B

i -->1 (TAB) terminates operator MOV
i @ terminates operator MOV

When the operator stands alone without an operand or comment, it is terminated by a
carriage return followed by a line feed or form feed character.

2.3 Operand

An operand is that part of a statement which is operated on by the operator -- an in­
struction mnemonic or assemble:- directive. Operands may be symbols, expressions, or
numbers. When multiple operands appear wHhin a statement, each is separated from
the next by a comma. An operand may be preceded by an operator and/or label, and
followed by a comment.

The operand field is terminated by a semicolon when followed by a comment, or by a
carriage return followed by a line feed or form feed character when the operand ends
the statement. For example,

LABEL: MOV GEORGE, BOB ;THIS IS A COMMENT

where the space between MOV a,d GEORGE terminated the operator field and began
the operand field; the comma separated the operands GEORGE and BOB; the semicolon
terminated the operand field and began the co:nment.

2.4 Comments

The comment field is optional and may contain any ASCII. character except null, rubout,
carriage return, line feed or form feed. All other characters,' even those with speciaL
significa!)ce are ignored by the Assembler when used iii the comment field.

F-'

(

(
",

,The comment field may be preceded by none, any, or all of the other three fields. It (
must begin with the semicolon and end with a carriage return followed by a line feed or ~
form feed character. For example,

LABEL: CLR HERE ;THIS IS A $1.00 COMMENT

Comments do not affect assembly processing or program execution, but they are useful
in program listings for later analysis, checkout or documentation pu~poses.

2.5 Format Control

The format is contro lied by the space and tab characters. They have no effect on the
assembling process of the source program unless they are embedded within a symbol,
number, or ASCII text; or are used as the op,~rator field terminator. Thus, they can be
used to prov i de a neat, read ab I e program. A statement can be w[i tten:. (_

1-4

(
"

(
'--

(

l

LABEL:MOV(SP)+, TAG;POP VALUE OFF STACK

or, using formatting -characters it can be written~

LABEL: MOV (SP)+, TAG ;POP VALUE OFF STACK

which is much easier to read.

Page size is controlled by the form feed charact~r. A page of n lines is created by
inserting a form feed (CTRl/FORM keys on the keyboard) after the nth line. If no
form feed is present, a page is automatically terminated after 56 lines.

3.0 SYMBOLS

There are two types of symbo Is, permanent and user-d efined • Both are stored i nthe
Assembler's symbol table. Initially, the symbol table contains the permanent symbols,
but as the source program is assemb led, user-defined symbo Is are added to the table.

3.1 Permanent Symbols

Permanent symbols consist of the instruction mnemonics (see Appendix B.3) and assembler
directives (see Section 8.0).'. These symbols are a permanent port of the Assembler's
symbol table and need not be d~fined before being used in the source program.

3.2 User-Defined Symbols

User-defined symbols are those defined as labels (see Section 2.1) or by direct assignment
(see Section 3.3). These symbols are added to the symbol table as they are encountered
during the first pass of the assembly. They can be composed of alphanumeric characters,
dollar signs, and periods only; again $'s and. 's are reserved for system software. , Any
other character is illegal and, if used, wi" result in the error message lor QU (see Section
10 .0) • I is a low priority error which may be flagged as QU first. The follow ing
rules also apply to user-defined symbols:

1. The fi rst character must not be a number.

2. Each symbol must be unique within the first six characters.

3. A symbol, may be written with more than six legal characters but the seventh and
subsequent characters are only checked for legality, and are not otherwise recognized
by the Assembler.

4. Spaces and tabs must not be embedded within a symbol.

A user-defined symbol may d:Jplicate a permanent symbol. The value associated with a
permanent symbol that is also IJser-defined depends upon its use:

1. A permanent symbol encounte~ed in the operator field is associated with its corre­
sponding machine op-code.

2. If a p~rmanent symbol in the operand field is also user-defined, its user-defined
value is associated with the symbol. If the symbol is not found to be user-defined,
then the corresponding machine op-code value is associated with the symbol.

User-defined symbols are either internal or global. All symbols are internal unless
they are explicitly typed as global with the. GLOBL assembler diredive (see Section
8.2). Global symbols are used to provide links between object modules. A global
symbol which is defined (as a label or by direct assignment) in a program is called ':In
entry symbol or e,ntry point. Such symbols may be referred to from other object modules
or assemblies. A global symbol which is not defined in the current assembly is called
an external symbol. Some other as~embly must define the same symbol as an entry point.

3.3 Direct Assignment

A direct assignment statement associates a symbol with a value. When a direct assign­
mentstatement defines a symbol for the first time, that symbol is entered into the As­
sembler's symbol table and the specified value isassodated with it. A symbol may be
red'efined by assigning a new value to a previously defined symbol. The newly assigned (..
value will replace the previous value assigned to the symbol. ~ .

The symbol takes on the relocatable or absolute attribute of the defining expression .
However, if the defining expression is global, the defined symbol will not be global unless
previously defined as such (see Section 4.0). .

The general format for a direct assignment statement is •.

symbol.'= expression.

The following conventions apply:

1. An equal sign (=) must separate the symbo!from the expression d-efinirig the symbol.

2. A direct assignment statement may be preceded by a label and maybe fol·lowed
by a cornmen t •

3. Only one symbol ca, be defined by anyone direct assignment statement.

4. Only one level of forward r.eferencing is allowed.

Example of two levels of forward referencing (illegel):

X=Y
Y=Z
Z = 1

X and Yare both undefined throughout pass 1 and will be listed on the teleprinter as
such at the end of that pass. X is undefined throughout pass 2, and wi II cause a U error
message.

1-6

(

(

(

(
~-

(

Examples:

A = 1 ;THE SYMBOL A IS EQUATED WITH THE VALUE 1

B = 'A-1 &MASKLOW ;THE SYMBOL B IS EQUATED WITH THE EXPRESSION'S
;VALUE

C: D=3
E: MOV #l,ABLE

3.4 Register Symbols

;THE SYM30L D IS EQUATED WITH 3. THE
;LABELS C AND E ARE EQUATED WITH THE
; NUMERICAL MEMORY ADDRESS OF THE MOV
;COMMAND

The eight general registe;-s of the PDP-l1 aie numbered 0 thro'Jgh 7. These registers . - ~

may be referenced by use of a register symbol; that is, a symbolic name for a register.
A register symbol is defined by means of a direct assignment, where the defin ing ex­
pression contains at least one term preceded by a % or'Jt le':l3t one term proviously de­
fined (]S a ,egister symbol. In addition, the defining expression of a register symbol
must be 'Jbsolute. For example:

RO=%O

R3=R0+3

R4=1+%3

THERE=%2

;DEFINE RO AS REGISTER 0

;DEFINE R3 As REGISTER 3

iDEFINE R4 AS REGISTER 4

;DEFINE "THERE" AS REGISTER 2

It is important to note that all register symbols must be defined before they are referenced.
A forward reference to.'J register symbol wi II generally cause phase errors (see Section 10.0).

The % mal be used in any expression thereby indi cating a reference to .'J register. Such
an expression is a register expression. Thus, the statement:

CLR %6

will clear register 6 while the statement:

CLR 6
will clear the word uf memory address 6. In certain cases a register can be referenced
without the use of a register symbol or register expression. These cases are recognized
through the context of the statement and are thoroughly explained in Sections 7.11 and
7.12. Two obviolJs examples of this are:

JSR 5, SUBR ;THE FIRST OPERAND FIELD MUST ALWAYS
;BE A REG ISTER

1-7

CLR X(2)

4.0 EXPRESSIONS

; ANY EXPRESSION ENCLOSED IN () MUST BE
;A REGISTER. IN THIS CASE, INDEX REGISTER
;2

Arithmetic and logical operqtors (see Section 4.2) may be used to form expre;3sions.
A term of an expression may be a permanent or user-defined symbol (which may be
absolute, relocatable or globar), a number, ASCII data, or the present value of the
assembly location counter represented by the period (see Section 5.0). Expressions are
eval uated from Ie ft to right. Parenthetica I grouping is not allowed.

Expressions are 13va luated as word =!uantities. The operands of a . BYTE directive (S ec­
tion 8.8) are evaluated as word expressions before truncation to the low-order eight
bits. The evaluation of an expression includes the evaluation of the modi~ of the re'­
sultant expression; that is, absolute, relocatable or external. The definition of the
modes of expression are given belowi!1 Section 4.4. (

A missing term, expr~ssion or external symbo! will be interpreted as O. A missing operator
will be. interpreted as +. The error co-::le Q (Questionable syntax) wi II be generated
for a missing operator. For example,

A + -100 ;OPERAND MISSING

will be evaluated as A + 0 - 100, and

TAG ~ LA 177777 ;OPERATOR MISSING

will be evaluated as TAG ~ lA+177777.

The value of an external expression will be the value of the absolute patt of the ex­
pression; e.g., EXT+Awill haye a value of A. This will be modified by the lioke;- to
become EXT+A. . '.

4.1 Numbers

The Assembler accepts both octal and decimal numbers. Oct~1 numbers consist of the
digits 0 through 7 only. Decimal numbers consist of the digits o through 9 follbwedby a
d·ecimal point. If a number contains an 8 or 9 and is not followed by a decimal point,
the N error code (see Section 10.0) will be printed and the number will be interpreted
as decimal. Negative numbers maybe expressed as a number preceded by a minus sign
rather than in a two1s complement form. Positive numbers may be preceded by a plus
sign altho'Jgh this is not reqrJired.

If a number is too la,oge to fit into 16 bits, the number is truncated from the left. In
the assembly listing the stcitementwill be flagged with a Truncation (T) error. Numbers
are always conside;-ed to be ':Jbsolute quantities (that is, not relocatable).

'--

1-8

(

(

----~--------

4.2 Arithmetic and Logical Operators

The arithmetic operators are:

+ indicates addition or a positive number -

indicate:3 subtractior"lor a negative number

The logical operators are:

& indicates the logical AND operation

indicates the logical inclusive OR operation

OR

0
,
· 0 = 0

0
,
· 1 = 1

1
,

0 = 1
1 i 1 = 1 ·

When preceded by an apostropl,e, any ASCII character (except null, rubout, carriage
return, line feed, or form feed) is assigned the 7-bit ASCII value of the character (see
Appendix A). For e)(ample,

'A

isa5signed the value 101 S '

When preceded by a quotation mark, two ASCII characters(notincludingnull, rubout,
carriage return, line feed, or form feed} are assigned 'the 7-bit ASCII values of each of
the characters to be used. Each 7-bit value is stored in an 8-bit byte and the bytes are
combined to form a word. For exa:nple "AB will store the ASCII value of A in the !ow­
ordl~r (even) byte o',d the value of B in the high-ord'3r (ode!) byte:

,-
high-order byte ~ low-:-ord'~r byte

B's value - 1 0 2 i 1 - O· 1 = A's value

~.~,-A--.....~r---..
o 100 001 001 000 001

""--' -'"""-............., ~ '-yo-'
o 4 1 '1 0 1 ,

"AB=041101

ASCII text is always absolute.

]-9

4.4 Mod!:! of Expressions

The mode of an expression may be absolute, relocatable or external as defined below:

A term of a'1 expression is absolute, relocatable or external depending on whether its
definer {i.e., number, symbol, etc.} is absolute, relocatable or external. Numbers,
permanent symbols and generated data are always treated as absolute.

An absolute expression is defined as:

1. Abso'ute term preceded optionally by a single plus or minus sign, or

2. Relocatable expression minus a relocatable term, or

3. Absolute expression followed by an operator followed by an absolute expression.

A relocatable expression is defined as:

1. Relocatable term, or

2. Relocatable expression followed by an arithmetic operator followed by an absolute
expression, or

3. Absolute expression followed by a plus operator followed by a relocatable expression.

An e:.<ternal expression is defined as:

1. External term, or

,2. External expression followed by an arithmetic operator followed by an absolute
term, or

c

(

3. Abso!ute expression followed by a plus operator followed by an external expression. C
In the following example:;:

ABS is an absolute symbol,

REL is a relocatable symbol,

EXT is an external symbol.

Examples:

The following are valid expressions:

(,

1-10

(

EXT + ABS ;External expression

R E L +R E L- R E L· ;Relocatable expression

ABS+REL-REL & ABS ; Absolute express:ion

The following are illegal expressions:

EXT+REL
REL+REL
ABS-EXT

5.0 ASSEMBLY LOCATION COUNTER

The period (.) is the symbol for the assembly location counter. (Note difference of
Program Counter • • 1 PC. See Section 7.0.) When used in the operand field of an
instruction, it represents the address of the first word ()f the instruction. When used in
the operand field of an assembler directive, it represents the address of the current byte
or word. For example,

A: MOV #.,RO

(# is explained in Section 7.9.)

;. refers to location A,
. ;i .e., the address of the
;MOV instruction

At the beginning of each assembly pass, the Assembler clears the location counter.
Normally, consecutive memory locations are assigned to each byte of object data gen­
erated. However, the location where the ob ject data is stored may be changed by a
direct assignment altering the location counter:

• =express ion

Simi lar to other symbols, the location counter symbol II. II has a mode associated with
it. However, the modt~ cannot be external. Neither can one change the existing mode
of the location counter by using a defining expression ofa different mode.

The mod'90f the location counter symbol can be changed by the use of the .ASECT or
• CSECT directive as explained in section 8.3.

The expression defining the location counter must not contain forward references or
symbols that vary from one pass to another.

Examples:

.ASECT
.=500 ;SET LOCATION COUNTER TO ABSOLUTE 500

1-11

FIRST: MOV

.=520

SECOND: MOV

.+10, COUNT

., INDEX

/THE LABEL FIRST HAS THE VALUE 5008

i.+l0 EQUALS 5108' THE CONTENTS OF

iTHE LOCATION 5108 WILt BE DEPOSITED

ilN LOCATION COUNT.

iTHE ASSEMBLY LOCATION COUNTER NOW
iHAS A VALUE OF ABSOLUTE 5208'

iT HE LABEL SECOND HAS THE VALUE 5208'

iTHE CONTENTS OF LOCATION 520ji' THAT
ilS, THE BINARY CODE FOR THE INSTRUC­
iTION ITSELF, WILL BE DEPOSITED IN
iLOCATION INDEX .

. CSECT
.=.+20 iSET LOCATION COUNTER TO RELOCATABLE c­

i20.

THIRD: .WORD 0 iTHE LABEL THIRD HAS THE VALUE OF
iRELOCATABLE 20.

Storage area may be reserved by advancing the location counter. For example, if the
current value of the location counter is 1000, the direct assignment statement

.=.+100

wi II reserve 10°8 bytes of storage space in the program. The next instruction wi II be

stored at 1100.

6.0 RELOCATION AND LINKING

('

The output of the relocatable assembler is an object module which must be processed by c- .'
the PDP-ll Linker, LlNK~llS, before loading and execution. The Linker essentially
fixes (i.e. 1 makes absolute) the values of external or relocatable symbols and creates
another module (load module) which contains the binary data to be loaded and executed.

To enable the Linker to fix the value of an expression the assembler issues certain direc­
tives to the Linker together with the required parameters. In the case of relocatable
expressions the Linker adds the base of the re locatable section (the location in memory
of re locatable 0) to the value of the relocatable expression provided by the Assembler.
In the case of an external expressi~n the value of the external term in the expression is
determined by th~ Linker (since the external symbol must be defined in one of the other
object modules being linked and adds it to the value of the external expression provided
by the Assemb ler •

All instructions that are to be modified as described above will be marked by a single
apostrophe in the assemb Iy listing. Thus the binary text output wi" look as follows
for the given examples:

1-12

c,

f-

(

(

005065' CLR EXTER NAL(5)
000000 iVALUE OF EXTERNAL SYMBOL

iASSUMED ZERO; WILL BE
iMODIFIED BY THE LINKER.

005065' CLR EXTERNAL+6(5)
000006

005065' CLR RELOCATABLE(5) iASSUMING WE ARE IN THE
000040 iABSOLUTE SECTION AND

iTHE VALUE OF RELOCATABLE
ilS RELOCATABLE 40

7.0 ADDRESSING

The Program Counter (register 7 of the eight general registers) always contains the address
of the next word to be fetchedi i. e., the address of the next instruction to be executed,
or the second or third word of the current instruction.

In order to understand how the 'Jddress modes operate and how they assemble, the action
of the Program Counter must be understood. The key ru Ie is:

Whenever the processor implicitly uses the Program Counter to
fetch a word from ~mor~, the Program Counter is automatically
incremented by two after the fetch.

That is, when an instruction is fetched, the PC is incremented by two, so that it is
pointing to the next word in memorYi and, if an instruction uses indexing (see Sections
7.7, 7.8 and 7.10), the processor uses the Program Counter to fetch the base from
memory. Hence, using the rule above, the PC increments by two, and now points to
the next word.

The following conventions are used in this section:

1. Let E be any expression as defined in Section 4. O.

2. Let R be a register expression. This is any expression containing a term preceded
by a % character of a symbol previously equated to such a term.

Examples:

RO = %0
Rl=RO+l
R2 = 1+%1

iGENERAL REGISTER 0
iGENERAL REGISTER 1
iGENERAL REGISTER 2

3. Let ER be a registe:- expression or an expression in the range 0 to 7 inclusive.

4. Let A be a general address specification which produces a 6-bit mode address field
as descr i bed in the PD P-ll Handbook 1971 •

The addressing specifications, A, may now be explained in terms of E, R, and ER as
defined above. Each wi II be illustrated with the single operand instruction CLR or
double operand instruction MOV.

1-13

7.1 Register Mode

The register contains the operand.

Format: R

Example:

RO=%O
CLR RO

7.2 Deferred Register Mode

iDEFINE RO AS REGISTER 0
iCLEAR REGISTER 0

The register contains the address of the operand.

Format: ~ R or (ER)

Example:

CLR "~ R1
or

CLR (1)

7.3 Autoincrement Mode

iCLEAR THE WORD AT THE
iADDRESS CONTAINED IN
iREGISTER 1

The contents of the register are incremented immediately after being used as the address
of the operand.

Format: (ER)+

Examples:

CLR
CLR
CLR

(RO)+
(R0+3)+

(2)+

iCLEAR WORDS AT ADDRESSES
iCONTAINED IN REGISTERS 0, 3, AND 2
iAND INCREMENT REGISTER CONTENTS BY TWO.

NOTE

Both JMP and JSR instructions using mode 2 (non-deferred autoincrement mode),
autoincrement the register before its use.

In double operand instructions of the addressing form %R, (R)+ or %R, -(R)
where the source and destination registers are the same, the source operand
is evaluated as the auto incremented or autodecremented value; but the
destination register, at the time it is used, still contains the originally intended
effective address. For example, if Register 0 contains 100, the followi ng occurs:

MOV RO, (0)+
MOV RO,-(O)

iTHE QUANTITY 102 IS MOVED TO LOCATION 100
iTHE QUANTITY 76 IS MOVED TO LOCATION 76

The use of these forms should be avoided, as they are not guaranteed to remain in
future PD P-l1 l s •

7.4 Deferred Autoincrement Mode

('

(

The register contains the pointer to the addressof the operand. The contents of the register l. I
are incremented after being used.

1-]4

(

c_

Format: ~ (ER)+

. Example:

CLR @(3)+

7.5 Autodl~crement Mode

iCONTENTS OF REGISTER 3 POINT
iTO ADDRESS OF WORD TO BE CLEARED
iBEFORE BEING INCREMENTED BY TWO

The contents of the register are decremented before being used as the address of the
operand (see note in Section 7.3).

Format: -(ER)

Examples:

CLR -(RO)
CLR -(R0+3)
CLR -(2)

iDECREMENT CONTENTS OF REGISTERS
iO, 3 and 2 BEFORE USING
iAS ADDRESSES OF WORDS TO BE CLEARED

7.6 Deferred Autodecrement Modla

The contents of the register are decremented before being used as the pointer to the
address of the operand.

Format: @ -(ER)

Example:

CLR " -(2)

7.7 Index Modo

Format: E(ER)

iDECREMENT CONTENTS OF REG. 2
iBEFORE USING AS POINTER TO ADDRESS
iOF WORD TO BE CLEARED.

The value of an expression E is stored as the second or third word i)f the instruction.
The effective address is calculated as the value of E plus the contents of register ER.
The value E is called the base.

Examples:

CLR X+2(RJ)

CLR -2(3)

iEFFECTIVE ADDRESS IS X+2 PLUS
iTHE CONTENTS OF REGISTER 1

iEFFECTIVE ADDRESS IS -2 PLUS
iTHE CONTENTS OF REGISTER 3

1-15

7.8 Deferred Index Mode

An expression plus the contents of a register gives the pointer to the address of the operand.

Format: ~ E(ER)

Example:

CLR ~ 14(4) ilF REGISTER 4 HOLDS 100, AND LOCATION
i114 HOLDS 2000, LOC.2000 IS CLEARED.

7.9 Immediate Mode and Deferred Immediate (Absolute) Mode

The immediate mode allows the o?erand itself to be stored as the second or third word of
the instruction. It is assembled as an autoincreinent of register 7, the PC.

Format:

Examples:

MOV #100, RO
MOV #X, RO

iMOVE AN OCTAL 100 TO REG ISTER 0
iMOVE THE VALUE OF SYMBOL X TO
iREGISTER O.

The operation of this mode is explained as follows: c

The statement MOV #100,R3 assembles as two words. These are:

012703
000100

Just 'before this instruction is fetched and executed,. the PC points to the first word of the
instruction. The processor fetches the first word cmd increments the PC by two. The source

(

(

operand mode is 27 (autoincrement the·PC). Thus the PC is used as a pointer to fetch the -
operand (the second word of the instruction) before being incremented by two, to point to (/
the next instruction.

If the #E is preceded by @, Especifies an absolute address.

7.10 Relative and Deferred Relative-Mod<9s .
Relative modi:! is the normal mode for memory references.

Format: E

Examples:

CLR 100
MOV X, Y

iCLEAR LOCATION 100
iMOVE CONTENTS OF LOCATION X TO
ilOCATION Y.

] ..]6

c

(

(

(

(-

This modre is assembled as Index mod1e, using 7, the PC, as the register. The base of the
address calculation, which is stored in the second or third word of the instruction, is not
the address of the operand. Rather, it is the number which, when added to the PC, becomes
the address of the operand. Thus, the hase is X-PC. The operation is explained as follows:

If the statement MOV 100, R3 is assembled af absolute location 20 then the assembled
code is:

Location 20: .
Location 22

01 6 7 a 3
000054

The processor fetches the MOV instruction and adds two to the PC sO ~hat it points to
location 22. The source operand modle is 67; that is, indexed by the PC. To pick up
the base, the :processor fetches the word pointed to by the PC and adds two to the PC .

. The PC noW' points tolocatiori 24. To calculate the address of the source operand, the
base is added to the designated register. That is, BASE+PC=54+24=100, the operand
address.

Since the Assembler considers II. II as the address of the first word of the instruction, an
~quivalent statement would be .

M OV 1 00 -. - 4(PC), R3

This modo is called relative because the operand address is calculated relative to the
current PC. The base is the distance (in bytes) between the operand and the current PC.
If the operator and its operand are moved in memory so that the.distance between the
operator and data remains constant, the instruction wi II operate correctly.

If E is preceded by @ the expression IS value is the pointer to the address of the operand.

7:11 Table of Mode Forms and Codles (6-bit(A) format on Iy - see Section 7.12)

Each instruction takes at least one ord. Operands of the first six forms listed below, do
not increase the length of an instruction. Each operand~ in one-of the other modes,
however; increases the instruCtion length by one word.

None
of
these
forms
increases
the
instruc-
tion
length.

Form

R
@R or (ER)
(ER)+
@(ER)+
-(ER)
~-(ER)

Mode

On
1n
2n
3n
4n
5n

1.;.17

Register
Register deferred
Autoincrement .
Autoincrement deferred
Autodecrement
Autodecrement deferred

Any of these
forms adds a
word to the
instruction
length.

Notes:

Form

E (E R)
@ E(ER)
#E
@ #E
E
@E

Mode

6n
7n
27
37
67
77

Meaning

Index
Index deferred
Immediate
Absolute memory reference
Relative
Relative deferred reference_

1. _ An alternate form for @R is (ER). However, the form @ (ER) is equivalent to @O(ER).

2. The form @ #E differs from the form E in that the second or third word of the instruction con­
tains the absolute address of the operand rather than the relative distance between the operand
and the PC. Thus, the statement CLR @ #100 wi II clear location 100 even if the instruction is
moved from the point at which it was assembled.

The Assembler is not particular about left and right and dangling + and - signs in address
fields. The following are some examples of incorrect syntax that assemble as indicated, without
an error indication.

Form Assembles As: Form -Assembles As:

(R2)A A(R2) (R2)- -(R2)
A-(R2) A(R2) or A-,0'(R2) @ (R2)A @ A(R2)
A(Rw)+ A(R2) A(R2)+B A+B(R2)
+(R2) (R2)+

7. 12 Instructi on Forms

c

The instruction mnemonics are given in Appendix B. This- section defines the number and (_-
nature of the operand fields for these instructions. -

In the table that follows, let R, E, and ER represent "expressions as defined in Sections 4.0
and 7.0 and let A be a 6-bit address specification of the forms:

Instruction

E
R
(ER)+

Double Operand
Single Operand
Operate
Branch

Subroutine Call
Subroutine Return
EMT/TRAP

@E
@ R or (R)
@ (ER)+

-(ER)
E(ER)
#E

Table 1. Instruction Operand Fields

Form --

Op A,A
OpA
OP
Op E

where -128«E-. -2)/2~127
JSR ER,A
RTS ER
Op orOP E
where 0,:::E,:::3778

1-18

@ -(ER)
@ E(ER)
@ #E

Example

MOV (R6)+, ~y
CLR -(R2)
HALT
BR X+2
BLO .-4

JSR PC, SUBR
RTS PC
EMT
EMT 31

(

(

(

(

The branch instructions are one word instructions. The high byte contains the op code and
the low byte contains an 8-bit signed offset (7 bits plus sign) which specifies the branch
address relative to the PC. The hardware calculates the branch address as follows:

1. Extend the sign of the offset through bits 8 -15.

2. Multiply the result by 2. This creates a word offset rather than a byte offset.

3. Add the result to the PC to form_the final branch address.

The Assembler performs the reverse operation to form the byte offset from the specified
address. Remember that when the offset is added to the PC, the PC is pointing to the word
following the branch instruction; hence the factor -2 in the calculation.

Byte offset = (E-PC}/2 truncated to eight bits.

Since PC = .+2, we have

Byte offset = (E-.-2}/2 truncatedto eight bits.

NOTE
It is illegal to branch to a location specified as an external symbol,
or to a relocatable symbol when within an absolute section, or to
an absolute symbol when within a relocatable section.

The EMT and TRAP instructions do not use the low-order byte of the word. This allows in­
formation to be transferred to the trap handlers in the low-order byte. If EMT or TRAP is
followed by an expression, the value is put into the low-order byte of the word. However,
if the expression is too bit (>3778) it is truncated t.o eight bits and a Truncation (T) error occurs.

Do not try to micro-program the condition code operators (see Appendix B, B.4). This makes
sense in the PDP-l1 hardware; however, the current PAl-11S Assembler does not support this
capability. Thus:

ClC:ClV

results in a Q error (see Appendix B, B .5) and the statement is assembled as ClC.

Expressions in the Assembler do, however, allow logical operators and the use of instruction
mnemoni cs. Thus, the proper ways to write the above statement:

.WORD CLC~
+ClC'.ClV
~ClC.ClV

8.0 ASSEMBLER DIRECTIVES

;Operand of • WORD
;Operand of default .WORD
;Operand of default. WORD

Assembler directives (sometimes called pseudo-ops) direct the assembly process and may
generate data.

Assembler directives may be preceded by a label and followed by a comment. The assembler
directive occupies the operator field. Only one directive may be placed in anyone state­
ment. One or more operands may occupy the operand field or it may be void -- allowable
operands vary from directive to directive.

8.1 . TITLE

The . TITLE directive is used to name the object module. The name is assigned by the first
symbol following the directive. If there is no . TITLE statement the default name assigned
is ".MAIN. II.

1-19

8.2 .GLOSL

The .GlOBL directiv~ is used to declare a symbol as being global. It may be an entry
symbol, in which case it is defined in the program, or it may be an external symbol, in
which case it should be defined in another program which will be linked with this program
by the linker.

The form of the .Gl03t directive is

.GLOBL NAMA, NAMB, ... ,NAMN

NOTE
A symbol cannot be declared global by defining it as a
global expression in a direct assignment statement.

If an illegal character is detected in the operand field of a.GLOBL statement, an error
message is not generated; and the Assembler may ignore the remainder of the statement.
Thus: .

GLOBL A,B, @ C, D

assembles without error as:

.GLOBL A,B

8.3 Program Section Directives (.ASECTand .CSECT)

The relocatable assemblerprovides for two program sections, an absolute section declared
by an .ASECT directive and a relocatable section declared by a .CSECT directive. These
directives therefore enable the programmer to specify that parts of his program be assembled (
in the absolute section and others in a relocatable section. The scope of each directive
extends unti I a directive to the contrary is given. The Assembler initially starts in the
relocatable section. Thus, if the first statement of a program were

A: .ASECT

the label HAil would be a relocatable symbol which is assigned the value of relocatable
zero. The absolute value of A will be calculated by the, Linker by adding the value of
the base of the relocatable section. '

Example:

.ASECT

.=1000
A: CLR X

. CSECT
X: JMP A

. END

iASSEMBLER IN ABSOLUTE SECTION
iPC = 1000 ABSOLUTE
iA = 1000 ABSOLUTE
iASSEMBLE IN RELOCATABLE SECTION
iX=O RELOCATABLE

The absolute and/or relocatable section may be discontin'ued (by switching to the alternate
section) and then continued where they left off by using another. ASECT or . CSECT
statement.

Example:

1-20

(

,"

(I

(
"'--

· CSECT
· WORD 0,1,2
.ASECT
· WORD 0,1,2
· CSECT
. WORD 0
· END

iASSEMBLED AT RELOCATABLE 0, 2 and 4

iASSEMBLED AT ABSOLUTE 0, 2 and 4

iASSEMBLED AT RELOCATABLE 6 .

If a label is defined twice, first in an absolute section and then in a relocatable section,
the symbol will be relocatable but its value will be as defined in the absolute section.

8.4 • EOT

The. EOT directive indicates the physical End Of Tape though not the logical end of the
program. If the. EOT is followed by a single I ine feed or form feed, the Assembler will
still read to the end of the tape, but will not process anything past the .EOT directive.
If • EOT is followed by at least two I ine feeds or form feeds, the Assembler wi" stop before
the end of the tape. Either case is proper, but it should be understood that even though
it appears as if the Assembler has read too far, it actually hasn It.

If a . EOT is embedded in a tape, and more information to be assembled follows it, • EOT
must be immediately followed by at least two line feeds or form feeds. Otherwise, the
first I ine following the . EOT wi II be lost.

Any operands following a . EOT directive will be ignored. The. EOT directive allows
several physically separate tapes to be assembled as one program. The last tape should be
terminated by a . END directive (see Section 8.6) but may be terminated with . EOT (see
. END emulation in Section 9.4).

8.5 . EVEN

The . EVE N directive ensures that the assembly location counter is even by adding one if
it is odd. Any operands following a . EVEN directive will be ignored.

(8.6 • END

c_

The. END directive indicates the logical and physical end of the source program. The
. END directive may be followed by only one operand, an expression indicating the pro­
gram IS transfer address.

At load time, the load module will be loaded and program execution will begin at the
transfer address indicated by the. END directive. If the address is not specified, the
loader will halt after reading in the load module.

8.7 . WORD

The. WORD assembler directive may have one or more operands, separated by commas.
Each operand is stored in a word of the ob ject program. If there is more than one operand,
they are stored in successive word!i. The operands may be any legally formed expression.
For example,

1-21

.=1420
SAL=O
• WORD 177535, .+4, SAL ;STORED IN WORDS 1420, 1422 AND ~

;1424 WILL BE 177535,1426, ANDO .

Values exceeding 16 bits will be truncated from the left, to word length.

A . WORD directive followed by one or more void operands separated by commas will
store zeros for the void operands. For example,

.=1430
· WORD ,5,

;ZERO, FIVE, AND ZERO ARE STORED
;IN WORDS 1430, 1432, AND 1434.

An operator field left blank will be interpreted as the. WORD directive if the operand
field contains one or more expressions. The first term of the first expression in the operand
field must not be an instruction mnemonic or assembler directive unless preceded by a
+, -, or one of the logical operators, ~ or &. For example, (

.=440 ;THE OP-CODE FOR MOV, WHICH IS 010000,
LABEL: +MOV, LABEL ;IS STORED IN LOCATION 440. 440 IS

;STORED IN LOCATION 442.

Note that the default. WORD will occur whenever there is a leading arithmetic or rogical
operator I or whenever a leading sYl!lbol is encountered which is not recognized as an
instruction mnemonic or assembler directive. Therefore, if an instruction mnemonic or
assembler directive is misspelled, the. WORD directive is assumed anderrors will result.
Assume that MOV is spelled incorrectly as MaR:

MaR A,B

Two error codes can result: A Q will occur because an expression operator is missing
between MaR and A, and a U will occur if MaR is undefined. Two words will be gen­
erated; one for MaR A and one for B.

8.8 .BYTE

The. BYTE assembler directive may have one or more operands separated by commas. Each
operand is stored in a byte of the object program. If multiple operands are specified, they
are stored in successive bytes. The operands may be any legally formed expression with a
result of 8 bits or less. For example,

SAM=5
. =410
· BYTE 48., SAM

;STORED IN LOCATION 410 WILL BE
;060 (THE OCTAL EQUIVALENT OF 48) .
ilN 411 WILL BE 005.

(:

(

If the expression has a result of more than 8 bits, it will be truncated to its low-order
8 bits and will be flagged as a Terror. If an operand after the • BYTE directive is left
void, it will be interpreted as zero. For example, (.;,

1-22

(

.=420
• BYTE, ,

iZERO WILL BE STORED IN
iBYTES 420, 421 AND 422.

If the expression is relocatable, a warning flag, A, will be given.

8.9 .ASCII

The.ASCil directive translates strings of ASCII characters into their 7-bit ASCII codes
with the exception of null, rubout, carriage return, line feed and form feed. The text
to be translated is delimited by a character at the beginning and the end of the text.
The delimiting character may be any printing ASCII character except colon and equal
sign and those used in the text string. The 7-bit ASCII code generated for each character
will be stored in successive bytes of the object program. For example,

.=500
• ASC II IYESI

• ASCII 15+3/2/

iTHE ASCII CODE FOR Y WILL BE
iSTORED IN 500, THE CODE FOR E
ilN 501, THE CODE FOR SIN 502 •
iTHE DELIMIT! NG CHARACTER OCCURS
iAMONG THE OPERANDS. THE ASCII
iCODES FOR 5, +, AND 3 ARE
iSTORED IN BYTES 503, 504, AND
i505. 2/ IS NOT ASSEMBLED.

The .ASCII directive may be terminated by any legal terminator except for '= and : •
Note that if the text delimiter is also a terminator, the leading text delimiter can also
serve as the .ASCII directive terminator. For example,

.ASCII I ABCDI

• ASC II+ABCD+

8.10 • RAD50

, iTHE SPACE IS REQUIRED
iBECAUSE I IS NOT A TERMINATOR.
i NO SPACE IS REQUIRED.

PDP-ll system, programs often handle symbols in a specially coded form called "RADIX 50"
(this form is sometimes referred to as IIMOD40"). This form allows 3 characters to be
packed into 16 bitsi therefore, any symbol can be held in two words, the form of the
directive is:

.' . RAD50 Iccci

The single operand is of the form Iccci where the slash (the delimiter} can be any printable
character except for = and : • The delimiters enclose the characters to be converted
which may be A through Z, 0 through 9, dollar ($), dot (.) and space (). If there are
fewer than 3 characters they are considered to be left-justified and trailing spaces are
assumed. Any characters following the trailing delimiter are ignored and no error results.

1-23

Examples:

. RAD50 I ABCI

.RAD50 IABI

.RAD50 II

;PACK ABC INTO ONE WORD
;PACK AB (SPACE) INTO ONE WORD;
;PACK 3 SPACES INTO ONE WORD

The packing algorithm is as follows:

A. Each character is translated into its RADIX 50 equivalent as indicated in the following
table:

Character.

(SPACE)
A-Z
$

0-9

RADIX 50 Equivalent (octal)

o
1-32
33
34
36-47

Note that another character can be defined for code 35.

B. The RADIX 50 equivalents for characters 1 through 3 (C1,C2,C3) are combined as
follows:

RESULT={ {C1 *50)+C2)*5OtC3

(

8. 11 . LIMIT (,

A program often wishes to know the boundaries of the relocatable code. The. LIMIT
directive generates two words into which the linker puts the low and high addresses of the
re located code. The low address {inserted into the first word} is the address of the first
byte of code. The high address is the address of the first free byte following the relocated
code~ These addresses will always be even since all relocatable sections are loaded at
even addresses and if a relocatable section consists of an odd number of bytes the linker
adds one to the size to make it even. (

8.12 CONDITIONAL ASSEMBLY DIRECTIVES

Conditional assembly directives provide the programmer with the capability to condi­
tionally include or not include portions of his source c~dein the assembly process. In
what follows, E denotes an expression and S{i) denotes a symbol. The conditional
directives are:

.IFZ
.• IFNZ

.IFL

.IFLE

.IFG

.IFGE

.IFDF

.IFNDF

E
E
E
E
E
E
S (1) [
S (1) [

;IF E=O
;IF Elo
; IF E<O
;IF E~O
;IF E>O
;IF E~

~, &] S (2)
~, & J S (2)

1-24

[~, & J ... [~, &] S{N) C=OR, &=AND) (,i
[~ , & J ... [~, & J S(N)

c

/
.~

If the condition is met, all statements up to the matching. ENDC are assembled. Other­
wise, the statements are ignored until the matching. ENDC is detected.

In the above, .IFDF and .IFNDF mean lIif defined II and lIif undefined II respectively. The
scan is left to right, no parentheses permitted.

Example:

.IFDF S~ T&U

.IFNDF T&U~S

General Remarks:

Means assemble if either S or T is defined
and U is defined

Means assemble if both T and U are undefined
or if S is undefined

An errored or null expression takes the default value 0 for purposes of the conditional
test. An error in syntax, e.g., a terminator other than i, ~, &,orCR results in the
undefined situation for .IFDF and .IFNDF, as does an errored or null symbol.

All conditionals'must end with the. ENDC directive. Anything in the operand field of
rENDC is ignored. Nesting is permitted up to a depth of 12710, Labels are permitted
on conditional directives, but the scan is purely left to right. For example:

A:

A is ignored.

.IFZ 1

.ENDC

A: .IFZ 1
.ENDC

A is entered in the symbo I tab Ie.

If a • END is encountered while inside a satisfied conditional, a Q flag will appear,
but the. END directive will still be processed normally. If more. ENDCs appear than
are required, Q flags appear on the extras.

9.0 OPERATING PROCEDURES

9. 1 Introduction

The Assembler enables you to assemble an ASCII tape containing PAL-11 statements
into a relocatable binary tape (object module). To do this, two or three passes are
necessary. On the first pass, the Assembler creates a table of user-defined symbols and
their associated values, and a list of undefined syrpbols is printed on the teleprinter.
On the second pass the Assembler assembles the program and punches out an absolute
binary tape and/or outputs an assembly listing. During the third pass (this pass is optional),
the Assembler punches an a~solute binary tape.£!:.. outputs an assembly listing. The symbol

1-25

table (and/or a list of errors) may be output on any of these passes. The input and output
devices as well as various options are specified during the initial dialogue (see Section
9.3). The Assembler initiates the dialogue immediately after being loaded and after the f­
last pass of an assembly.

9.2 Loading PAL-11 S

PAL-1I S is loaded by the Paper Tape Software Absolute Loader. Note that the start
address of the Absolute Loader must be in the Switch Register when loading the Assembler.
This is because the Assembler tape has an initial program which clears all of core up to
the address specified in the Switch Register, and jumps to that address to start 10.:lding the
Assembler.

9.3 Initial Dialogue

Afte:: being loaded, the Assembler prints its name and version and then initiates dialogue
by printing on the teleprinte. (

*S

meaning IIWhat is the Source symbolic input device? II The response may be

)
H
L
T

use Low-speed reader () denotes typing the RETURN key)
meaning High-speed reader
meaning Low-sp.':!ed reader
meaning Teleprinter keyboard

The device specification is terminated, as is all user response, by typing the RETURN key.

If an error is made in typing at any time, typing the RUBOUT key will erase the im­
mediately preceding character if it is on the current line. Typing CTRIjU will erase the
whole I ine on which it occurs.

After the *S question and response, the Assembler prints:

*B

me • .:ming IIWhat is the Binary output device? II The responses to *B are similar to those
for *S:

H meaning High-speed punch
L meaning Low-speed punch
) meaning do not o'Jtputbinary tape (). denotes typing the RETURN key)

In 'addition to I/o d·evice specification, various options may be chosen. The binary output
will occur on the second pass unless /3 (indicating the third pass) is typed following the H

(

(

or L. Errors will be listed on the same pass if /E is typed. If /E is typed in re~ponse to more /
than one inquiry, only the last occurrence will be honored. It is strongly suggested that ~.

1-26

(

(

the errors be listed on the sa~e pass as the binary output, since errors may vary from pass
to pass.

If both /3 and /E are typed, /3 must precede /E. The response is terminated by typing
the RETURN key. Examples:

*B L/E

*B H/3/E

*B)

Binary output on the low-speed punch and
. the errors on the teleprinter, both during
the second pass.

Binary output on the high-speed punch
and the errors on the teleprinter during
the third pass.

The RETURN key alone will cause the Assembler
to omit binary output

After the *B question and response, the Assembler prints:

*L

meaning IIWhat is the assembly Listing output device? II The response to *L may be:

L
H
T
P
)

meaning Low-speed punch
meaning High-speed punch
meaning Teleprinter
meaning Line Printer
meaning do not output listing (). denotes typing RETURN)

After: the I/o device specification, pass and error list options similar to those for *B may
be chosen. The assembly listing will be output on the third pass unless /2 (indicating the
second pass) is typed following H, L, T, or P. Errors will be listed on the telepr~nter during
the sa:'Tle pass if /E is typed. If both /2 and /E are typed, /2 must precede /E. The re­
sponse is. terminated by typing the RETURN key. Examples:

*L L/2/E

*L H

*L)

Listing on low-speed punch and errors on
teleprinter d-Jring second pass.

Listing on high-speed punch during third pass

The RETURN key alone will cause the Assembler to
omit listing output.

After the *L question and response, the final question is printed on the teleprinter:

*T

meaning IIWhat is the symbol Table output device? II The device specification is the same

1-27

as for *L question. The symbol table will be output at the end of the first pass unless/2
or /3 is typed in response to *T. The first tape to be assemb led shou Id be placed in the
reader before typing the RETURN key because assembly wi II begin upon typing RETURN
to the *T question. The /E option is not a meaningful response to *T. Example:

*T T/3

*T

Symbol table output on teleprinter at end of third pass.

Typing the RETURN key alo~e will cause the Assembler
to omit symbo! table output.

The symbol table is printed alphabetically, three symbo!s per line. Each symbol printed
is followed by its identifying characters and by its value. If the symbo! is undefined,
six asterisks replace its value. The identifying characters indicate the class of the symbol;
that is, whether it is a label, direct-assignment, register symbo!, etc. The following
examples show the various forms:

ABCDEF 001244 (Defined label)
R3 = %000003 (Register symbol)
DIR,A.SM ,= 177777 (Direct assignment)
XYZ = ****** (Undefinedd'irect assignment)
R6 = O/o**'k*** (Und:efined register symbo!)
LABEL = ****** (Undefined label)

Generally, undefined symbo!s and external symbols will be listed as undefined direct
assignments.

If the symbol is relocatable or global or both, the symbol's value wi II be followed by an
R, a G or both.

It is possible to output both the binary tape and the assembly listing on the same pass,
thereby reducing the a5sembly process to two passes (see Example 1 below). This will
happen automatically unless the binary device ':::Ind the listing d'evice are co~flicting
devices or the same device (see Example 2 below). The only conflicting devices are the
teleprinter and the low-speed punch. Even though the Assembler deduces that three
p''Jsses are necessary, the binary and listing can be forced on P:::1SS 2 by including /2 in the
responses to *B and *L (see Examp!e 3 below).

Example 1. Runs 2 passes:

*S H High-speed reader
*B H High-speed punch
*L P Line Printer
*T T Telep:-inter

1-28

f-.

(

(

(

(

Example 2. Ru ns 3 passes:

*S H l'iigh-speed reader
*B H High-speed punGh
*L H High-speed punch
*T T Teleprinter

Example 3. Runs 2 passes:

*S H High-speed reader
*B H/2 High-speed punch on pass 2
*L H/2 High-speed punch on pass 2
*T T Teleprinter

Note that there a:-e several cases where the binary output can be intermixed with ASCII
output:

a. *B H/2 BinClry and listing to punch on pass 2.
*L H/2

b. *B L/E Binary to low-speed punch and error listing
to teleprinter (and low-speed punch). .

*B L/2/E Binary, error listing, and
*L T/2 listing to low speed punch.

c.

The object module so generated is acceptable to the Linker as long as there are no
CTRl/ A characters in the source program • The start of every block on the binary tape
is indicated by a 001 and the Linker ignores aU information until a 001 is detected.
Thus, all source and/or error messages will be ignored if they do not contain any CTRL/ A
characters (octal 001).

If a character other than those mentioned is typed in response to a question, the Assembler
will ignore it and print the question again. Example:

*S
*B
*B

H High-speed reader
Q Q is not a valid response

The question is repeated

If at any time you wish to restart the Assemb ler, type CTRL/P. If the low-speed reader
is the source input device, turn it off before typing CTRL/P.

When no passes are omitted or error options specified, the Assembler performs as follows:

PASS 1:

Assembler creates a table of user-defined symbols and their associated values to be used
in assembling tine source to object program. Undefined symbols {not including external

1-29

globals) are listed on the teleprinter at the end of the pass. The symbol table is also
listed at this time. If an illegal location statement of the form .=expression is encountered,
the line and error code will be printed out on the teleprinterbefore the assembly proceeds. ~
An error in a location statemef1t is usually a fatal error in the program and should be
corrected.

PASS 2:

Assembler punches the object module, and prints the pass error count and undefined
location statements on the te lepri nter.

PASS 3:

Assembler prints or punches the assembly pfOfJram listing, undefined location statements,
and the P':::JSS error count on the teleprinter.

The functions of passes 2 and 3 will occur simultaneously on pass 2 if the binary and ("
listing devices are different, and do not conflict with each other (the low-speed punch
and teleprinter confl ict). Furthermore, if the binary object module is not requested, the
I i sting w ill be produced on pass 2.

The following table summarizes the initial dialogue questions:

PRINTOUT

*S
*B
*L
*T

INQUIRY

What is the input device of the Sourcesymbo!ic tape?
What is the output device of the Binary object tape?
What is the output device of the ':::Jssembly Listing? .
What is the outp~Jt device of the symbo~ Table?

The following table summarizes the legal responses:

CHARACTER

T
L
H
P
/1
/2
/3
/E
,J,

RESPONSE INDICATED

Te leprinter keyboard
Low-speed reader or punch
High-speed reader or punch
Line Printer
Pass 1
Pass 2
Pass 3
Errors I isted on same PCISS (not mean ingfu I response to *S or *T)
Omit function (except in response to *S).

Typical examples of complete initial dialogues:

For minimal PDP-l1 configuration:

1-30

(

(

(

(

c-

*S
*B

*L
*T

L Source input on low-speed reader
L/E Binary output on low-speed punch

errors during same {second} pass
T Listing on teleprinter during pass 3
T Symbo! table on teleprinter at end of pass 1

For a PDP-ll with high-speed I/o devices:

*S H Source input on high-speed reader
*B HIE Binary output on high-speed punch

errors during same {second} pass
*L) No Usting .
*T T/2 Symbo! table on teleprinter at end of pass 2.

9.4 Assembly Dialogue

During assembly, the Assembler will ~pause to print on the teleprinter various mess:lges to in­
dicate that you must respond in ~ome way before the assembly process can continue. You
may also type CTRL/P, at any time, if you wish to stop the assembly process and restart
the initial dialogue, as mentioned in the previous section.

When a .EOT a:;sembler directive is read on the tape, the Assembler prints

EOF?

and pauses. During this pause, the next tape is placed in the reader, and RETURN is
typed to continue the assembly.

If the specified assembly listing output device is the high-speed punch and if it is out of
tape, or if the device is the Line Printer and is out of paper, the Assembler prints on the
teleprinter

EOM ?

and waits for tape or paper to be placed in the device. Type the RETURN key when the
tape or paper has been replen ished; assembly wi II continue.

Conditions causing the EOM ? messages for an assembly listing device are:

HSP LPT

No power
No tape

No power
Printer drum gate open
To()hot

I

No paper

There is no EOM if the line printer is switched off-line, although characters may be lost
for this condition as well as for an EOM.

1-31

- ----------------------------- - - - -- -- ----- ---
- --- --

If the binary output Jevice btl.;;;: h;gh-.. pc.::J punch and if it is out of tape, the Assembler
prints:

EOM ?
*5

The assembly process is aborted and the initial dialogue is begunagain.

When a . END assembler directive is read on the tape, the Assembler prints:

END?

and pauses. During the pause the first tape is placed in the reader, and the RETURN key
is typed to begin the next pass. On the last pass, the. END directive causes the Assem­
bler to begin the initial dialogue for the next assembly.

If you are starting the binary pass and the binary is to be punched on the low-speed
punch, turn the p'Jnch on before typing the RETURN key for starting the pass. The car- ("
riage return and line feed characters will be punched onto the binary tape, but the Linker
wi II ignore them.

If the last tape ends with a . EaT, the Assembler may be told to emulate a . END assem­
bler directive by responding with E followed by the RETURN key. The Assembler will then
print

END ?

and wait for another RETURN before starting the next pass. Example:

EOF ? E J.
END?

Note that forcing a . END in this manner causes the error counter to be incremented by one.

(

9.5 Assembly Listing (

PAL-ll 5 produces a side-by-side assemb Iy I isting of symbol ic source statements, their
octal equivalents, assigned addresses, and error codes, as follows:

E ELLLLLL 000000AS5S•.. 5
000000
000000

The Els represent the error field. The LiS represent the address. The OIS represent the
object data in octal. The SiS represent the source statement. "A II represents a single
apostrophe which indicates that either the second, third or both words of the instruction
;ViII be mod~fi:d by the Linker. While the Assembler accepts 7210 characters per line on
Input, the listing IS reduced by the 16 chara':::ters to the left of the source statement.

1-32

(

(

The I::Ibove rep~esents a three-word statement. The second and third words of the statement
are I isted unde~ the command word. No ''Jddresses precede the second ::I"d third words
since the address o~der is sequential.

The third line is omitted for a two-word statement; both second and third lines are omitted
for a one-word statement.

For a . BYTE directive, the object data field is three octal digits.

For a direct assignment statement, the value of the defining expression is given in the
object code field 'Jlthough it is not actually part of the code of the object program.

The .ASEeT and .eSECT directives cause the current value of the appropriate location
counter (absolute or relocatable) to be printed.

Each p'::Ige of the listing is headed by a page number (octal).

9.6 Object ModJle Output

The output of the assembler during the binary object pass is an object modiJle which is
meaningful only to the linker. What follows gives an overview of what the object module
contains and at what stage each part of it is produced.

The Sinary object module consists of three main types of data Siock:

a) Global symbol directory
b) Text blocks
c) Relocation Directory

9.6.1 Global Symbol Directory

(GSD)
(TXT)
(RLD)

As the name suggests, the GSD contains a list of all the global symbo's together with the
name of the object modiJ Ie. Each symbo' is in Rad ix-50 fo:-m and contains informatio:1
regarding its mode and value whenever known.

The GSD is created '::It the start of the binary object pass.

9.6.2 Text Block

The text blocks co,sist entirely of the binary object d::lta as shown in the listing. The
operands are in the unmodified form.

The RLD blocks consist of directives to the Linker which ma)! reference the text block
p~eceding the RLD. These directive:; control the relocatio:1 and linking process.

Text and RLD blocks are constructed d;Jring the binary object P::lSS. Outputting of each

1-33

--- - -- - - -- - --~- ---- ------ -- --- ----- ------ --- --- -- ---- - ----- - ~ ---
-- --- --

block is done whenever eithe;- the TXT or RLD buffer is full and.whenever the location
counte, needs to be modified.

10.0 ERROR CODES

The error codes printed beside the octal and symbolic code in the assembly listing have
the following'T1eonings:

Erro~ Cod;~

A

B

D

L

M

N

Q

R

S

Addressing error. An addloess within the instructiO::1
is incorrect. Also may indicate a relocation error.

BOiJnding erro:-. Instructions or word data are being
assembled at an odd address in memory. The location
counter is upd :lted by + 1 •

Dou':>ly-defined symbol referenced. Reference was
;;:;-ad'3 to a symbol which is defined more than once.

Ilteg(11 character detected. Illegal characters which are
also non-p:-inting are replaced by a ? on the listing~

-Line buffer overflow. Extra characters on a line
(more than 72) 0) are ignored.

Multiple definition of a label. A label was enco:.mt­
e.ed which was equivalent (in the first six chara:ters)
to a previously encountered label.

Number cO:1taining 8 or 9 has decimal p,::>int missing.

Phase erro:". A label IS definition or value varies fr,om
'One p,ass to another.

Questionable syntax. There are missing arguments or the
instruction scan was not completed 0:- a carriage return was
not immediately followed by a line feed :>r form feed.

Register-type error. An inval id use of or reference to ':::I

reg ister has been mad,=.

Symbol table overflow. When the quantity of user-defined symbo's
exceeds the allocated space available in the userls symbo! table,
the assemb!er outputs the current source line with the S error code,
then returns to the initial dialogue.

1-34

(

(

c

(

c

Error Code

T

u

Meaning

Truncation error. A number generated more than 16 bits of significance
'Or an expression generated more than 8 bits of significance during
the use of the. BYTE directive.

Undefined symbo~. An undefined symbol was enco'Jntered
dJring the evaluation of an expression. Relative to the
expre;3sion, the undefined symbol is assigned :l value of zero.

11.0 SOFTWARE ERROR HALTS

PAL-ll S loa::ls all of its unused trap vectors with the code

. WORD .+2, HALT

so thot if the trap -::Ioes OCC1Jr, the processor will halt in the second word o,f the vector.
The address of the halt, displayed in the console address registe., therefore indicates
the cause of the halt.

Address of Halt (octal) Meaning

12
16
26
32

Reserved instruction executed
Trace trap o,~curred
Power fai I trap
EMT executed

A halt at add:-ess 40 indicates an IOXLPT d,atected error. RO (displayed in the console
lights) contains an identifying code:

Gode in RO

o

1
2
3
4
5

Illegal memory reference, SP overflow or
illegal instruction.
Illegal lOX command.
S lot number out of range.
Device number illegal
Referenced slot not INlTed.
Illega I Data Mod-;.

IOXLPT also sets Rl as follows:

If the error code is 0, Rl contains the PC at the time of the error.

If the error code is 1-5, Rl po::>ints to some ;;!ement in the lOT argument list 0:- to the
instruction following the l,Ji-gument list, depending on whether IOXLPT has finished de­
coding all the arguments when it detects the error.

1-35

C

C

/

~

CHAPTER 2

L1NK-llS LINKER

Contents

1.0 INTRODUCTION

1.1 General Description

1.2 Absolute and Relocatable Program Sections

1.3 Global Symbols

2.0 INPUT AND OUTPUT

2. 1 Object Module

2.2 Load Module

2.3 Load Map

3.0 OPERATING PROCEDURES

3. 1 Loading and Command String

3.1.1 Operational Cautions

3.2 Error Procedures and Messages

3.2. 1 Restarting

3.2.2 Non-Fatal Errors

3.2.3 Fata I Errors

3.2.4 Error Halts

4.0 PREPARATION

2-i

1

1

2

2

3

3

3

4

5

5

7

7

7

7

8

9

11

(

(

CHAPTER 2

LIN K - l1S LIN KER

1.0 INTRODUCTION

1.1 General Description

L1NK-llS (stand alone) is a PDP-ll system program designed to link and relocate programs
previously assembled by PAL-ll S. This capabi I ity allows the user to separately assemble his
main program and each of his various subroutines without assigning an absolute load address
at assembly time. The binary output of each assembly (called object modu les) is processed
by LlNK-llS (hereafter called the Linker or L1NK-ll) to:

a. Relocate each object modvle and assign absolute addresses.

b. Link the modules by correlating global symbols defined in one module and referenced
in another modu Ie.

c. Print a load map which displays the assigned absolute addresses.

d. Punch a load module which can subsequently be loaded (by the Absolute loader) and
executed.

Some of the advantages of using PAL-ll Sand LlNK-ll are:

~. The progra~ is divided into segments (usually subroutines) which are assembled separately.
If an error is discovered in one segment, only that segment needs to be reassembled. The new
object module is then linked with the other object modules.

b. Absolute addresses need not be assigned at assembly time. The Linker automatically
assigns absolute addresses. This keeps programs from overlaying each other. This also allows
subroutines to change size without influencing the placement of other routines.

c. Separate assembl ies allow the total number of symbols to exceed the number allowed ~n a
single assembly.

d. Internal symbols (symbols which are not global) need not be unique among object modules.
Thus, naming rules .are required only forglobal symbols when separate programmers prepare

(separate subroutines of a single program.
\

2-1

- ----------- --------------- ---------------------::- -----------=----::-::-------:--::--------- ---- --------;:-::::=--:::--:-----=-=-------

e. Subroutines may be provided for general use in object module form to be linked into the
user's program. f-.
LlNK-ll is designed to run on an 8K PDP-ll with an ASR-33. A PCll (high speed paper
tape reader and punch) and an LPll (line printer) may be used if available. The PCll
significantly speeds up the linking process. An LPll provides a fast device for the load map
! isting.

1 .2 Absolute and Relocatable Program Sections

A program assembled by PAL-llS may consist of an absolute program section, declared by
the .ASECT assembler directive, and a relocatable program section, declared by the .CSECT
assembler directive. (If a program has neither an .ASECT or . CSECT directive, the assem- ,.
bier implicitly assumes a . CSECT directive.) The program and data in the absolute section
are assigned absolute addresses as specified by the location counter setting statements (.==x).
The program and data in the relocatable section are assigned absolute addresses by the linker.~_
Address.es are normally assigned suc~ that the relocatable secti.on is a~ the high end. of memo(
The assignment of addresses may be Influenced by command strrng options (see Section 3.2) e

The Linker appropriately modifies al~ instructions and/or data as necessary to account for the
re location of the control section.

LlNK-ll has the capability to handle object modules containing named control (relocatable)
sections as generated by PAL-llR • However, PAL-llS can only create the unnamed ,:ontrol
section (which has the special default name of 6 blanks) and the absolute section (with the (
special name .~ABS.). The unnamed control section is internal to each object module. -
That is, every object module may have an unnamed control section (each with the name 6
blanks) but the Linker trea,ts them independently. Each is assigned an absolute address such
that they occupymutua"y exclusive areas of memory. Named control sections, on the other
hand, are treated globa"y. That is, if different object modules each have control sections
with the same name, they are a" assigned the same absolute load address and the size of the
area reserved for loading of the section is the maximum of the sizes of each section. Thus,
~amed c~n~rol sections a"o:", the sharing. of data and/or programs a!~ong object modules. The'­
IS very Similar to the handling and function of labe"ed COMMON In FORTRAN IV. ~
A restri ction of LI NK-ll S is that the name of a control section must not be the same as
the name of a global entry symbol. This wi" result in multiple aefinition errors.

1.3 Global Symbols

Global symbols provide the links or co:nmunication between objectmodules (or assemblies).
Global symbols are created with the .GLOBAL assembler directive. Symbols which are not
global are called internal symbols. If the global symbol is defined (as a label or direct
assignment) in an object module it is called an entry symbol, and other object modules may
reference it. If the global symbol is not defined in the object module it is an external symbol.
It is assumed j"O be defined (as an entry symbo!) in some other object module.

As the Linker reads the object modules it keeps track of all the global symbol definitions and(­
references. It then modifies the instructions and/or data which reference the global symbols .

2-2

---~---~~

2.0 INPUT AND OUTPUT

r-- 2.1 Ob ject Mod!) Ie

c

"

(
I

LlNK-ll's input is the object module. This is the output of PAL-llS (or anyother program
which can create an object module). The Linker reads each object module twice; that is,
it is a two pass pro cessor .

On pass 1, theLi nker reads each object module to gather enough information so that absolute
addresses can be assigned to all relocatable sections and all globals can be assigned absolute
values. This information appears in the global symbol directory (GSD) of the object module.

On pass 2, the Linker reads all of each object module and produces the load module (see
Section 2.2). The data gathered on pass I guides the relocation and linking process on pass 2.

2.2 Load Modu les

The normal output of the Linker is a load module which may be lodded and run.

A load module consists of formatted binary blocks holding absolute load addresses and object
data as specified for the Paper Tape System Absolute Loader and the PDP-ll Disk Monitor.
The first few words of data wi II be the communications directory (COMD) and will have an
absolute load address equal to the lowest relocated address of the profjram. The absolute
loader will load the COMD at the specified address but then the program will overlay the
COMD*. The disk monitor loader wi II expect the COMD and will load it where the monitor
wants it. The end of the load module will be indicated by a TRA block; that is, a block
containing only a load address. The byte count in the formatted binary block will be 6 on
this block; on all other blocks the byte cO:Jnt will be larger than 6. The TRA (transfer
address) is se lected by the Linker to be the first even transfer address seen. Thus, if four
object modJles are linked together and if the first and second had a .END statement, the
third had a .END A and the fourth had a .END B I the transfer address would be A
of modu Ie three.

*Note:
The overlaying of the COMD by the relocated program is a trick to allow the Absolute Loader
to handle load modules with a COMD. However, a problem arises if a load module is to be
loaded by the absolute loader and either of the following conditions is true:

a. The object modules used to construct the load mod'Jle contained no relocatable code; or

b. The total sizes of the relocatable code is less than 2,0(1,0) bytes (the size of the COMD).

In either case, there is not enough relocatable code to overlay the COMD which means the
COMD will load into parts of memory not intended to be altered by the user. The COMD's
load address, selected by the linker in the above cases, is such that it will be up against the
current top of memo:-y (see *T option in section 3.1). If the top happens to be very low,
the linker will not allow the COMD to be loaded below address,0; it will load it at ,0.

2-3

2.3 Load Map

The load map provides several type$ of information concerning the load module's make-up.· ~
The map begins with an indication of the low and high limits of the relocatable code and the \
transfer address. Then there is a section of the map for each object modu Ie included in the
I inkipg process. Each of these sections begins with the module is name followed by a list
of the control sections and the entry points for each control section. For each control
section; the base of the section (its low oddress) and its size {in bytes} is printed to the right
of the section name (enclosed in angle brackets). Following each section name p:-intout is a
I ist of entry points and their addresses. After all information has been printed for each object
module, any undefined symbols are listed. Note that modules are loodedsuch that if modules
A, S ond C are I inked together I A is lowest and C is highest in memory.

The formot is quite self-explanatory as can be seen from the following example:

LOAD MAP

TRANSFER ADDRESS: ,037434
LOW LIMIT: ,0374,06
HIGH LIMIT: ,03746,0

MODULE MODl
SECTfON ENTRY ADDRESS SIZE
<.ASS.> .,ef ,0,0,0,ef,0 ,0,0,0,0;1,0
< > 91374,06 ,0,ef,0,ef44

X3 ¢37452
X4 %3744~
X5 %3745,0
X7 ,03743,0

MODULE MOD2
SECTION ENTRY ADDRESS SIZE
< > ¢37452 ,0,ef,0,0,06

Xl ,037452 '
X2 ,037452

*********.*
UNDEFINED REFERENCES
X6

2-4

(

(

(

3.0 OPERATING PROCEDURES

3.1 Loqding andCo011mand String

t-- The Linker is loaded by the Absolute Loader and is. self-starHng. It will use a simple command
dialogue which allows the object module, load module and load map devices.to be specified.
During pass I and pass 2, the Linker asks for eachobje'ct module individually.

Note: The non-printing characte.rs carriage return, li l1e feed and space are represented in
this chapter as <CR>; <LF> and <SPACE>.

Operation begil1sby the linker typing its name and version. This, is followed by the input
option printed as * I<SPACE> • The responses are:

<CR>
H<CR>
L<CR>

Read ob ject modJ Ie fro~ HSR.
Read object module from HSR.
Read object module from LSR

(The input option is followEld by the output option *O<SPACE>. The responses are:

co

<CR>
H<CR>
L<CR>

Punch .Ioad module on HSP.
Punch load module on HSP.
Punch load module on LSP.-

LlNK-11 asks if a load map is desired by typing *M<SPACE>. The legal responses are
<CR> for no map, T<CR> or H<CR> or P<CR> for a map on the teleprinter, high-speed punch,
or line printer, respectively.

The next two options concern the placement of the relocated object program in :nemory. The
standard version oftheUnker assumes it is linking for .an 81< machine. It relocates the program
such thcit it is as high as possible in 8K but leavesroorn for the Absolute and Boot Loaders.
[These assumed '"alues may be changed by altering parameters HGHMEM (highest legal
memory address +1) and ALODSZ (number of bytes allocated for Absolute Loaderand Boot Loader)
and reassembl ing the linker .J. The user may control where a program is relocated to with
the *.T and *8 options ~ After the option. *T<SPACE> has been typed, .the user may re­
spondas ·follows:

<CR>

N<CR>

Relocate sothat pr09ram is up against the current
top of memory. If the top has not been changed,
then the top is the assembled-in top (HGHMEM­
A LODSZ). The :3tand::Jrd assumptjon is 16384 .-
112.=16272 (3746,0(8)).

N'is an octal number (unsigned) which defines a
new top address;

If a new top is specified, the *B option is suppressed.

After the optio, *B<SPACE> has been printed the user may respond as follows:

2-5

----- -------- --------------------------------------- -----~-----------~----- ~ -

<CR>

N<CR>

Use current top of memory.

N is an unsigned octal number which defines the
bottom address of the program. That is, a new
top of memory is calculated so that the bottom
of the program corresponds with N .

. On~e a top of memory has been calculated (by *T or *8), that value is used until it is changed.
'.,

_. LlNK-l1 indicates the start of pass one by typing PASS 1. The input is requested by the
Linker, one tape at a time, by typing *<SPACE>. The legal responses are:

<CR>

U<CR>

E<CR>

C<CR>

Read a tape and request more input.

List all undefined globals on the teleprinter and request
more input.

End of input. If there are undefined globals, list them
on the teleprinter and request more input. Otherwise
print the load map, if requested, and enter pass 2.

End of input. Assign ~ to any undefined globals, print
the load map (if requested), and enter pass 2.

(

The Linker indicates the start of pass 2 by typing PASS 2. It then requests each input tape (-
as in pass 1 . .

A <CR> is the only useful response to * on pass 2. The modules must be read on pass 2 in
. the same order as pass 1. When the last module has been read the Linker will automatically
finish the load module and restart itself.

Leader and trailer will be punched on the load module.

Jfthe LSP. is being usedfor the load modlJle output, itshould be turned on before pass 2begins (
Thus, turn it on before typing E<CR> ot C<CR>. The echo of thesa characters (and the load
mapi if printed on the TTY) will be punched on the load module but may be easily removed
since leader is punched on the load module. In any case, ASCII information in a load module
will be ignored by the Absolute and DiskMonitor loaders. However, the LSP can be turned
on while leader is being punched (after the linker has typed PASS 2) to keep the load map,
etc., from being punched onto the tape.

Note:

On all command string options, -except for *T and *B, the linker only examines the last
character typed preceding the carriage return. Thus,

ABCDEFGH<CR>

is equivalent to H<CR>.

2-6

3. 1 • 1 Operational Cautions

The Linker does not give a warning if a program is linked so low in memory that it
goes below address~. However, this case is edsilyseen by examining the low and
high limits which are always printed (on the load map or on the teleprinter).

The Linker reads object modules until an end of medium is detected. Object modules
from the DEC Program Library contain a special checksum at the end of the tape
which must be removed before they are linked. Failure to remove this checksum
can result in fatal Lin,ker errors.

3.2 Error Procedure and Messages

3.2.1 Restarting

Control/P (symbolized as f' P) is used for two purposes by LlNK-ll. If a l' P is typed
while a .Ioad map is being printed, the load map wi! I be aborted and the Linker will continue.
A ".. P typed at any other time will cause the Linker to restart itself.

3.2.2 Non-Fatal Errors

a. Non-unique object module name - this error is detected during pass 1 and results in an
error message and the module is rejected. The message is:

? MODULE NAME XXXXXX NOT UN IQUE

The Linker will then ask for more input.

b. Load map device EOM - this error allows the user an option to fix the device and continue
or abort the map! isting. The Linker prints:

?MAP DEVICE EOM.
TYPE <CR)TO CONTINUE

Any response, terminated by <CR> or <LF> will cause the Linker to continue. A l' Pwill
cause the map be to aborted.

c. A byte relocation error - the Linker will try to relocate and link byte quantities. However,
relocation will usually fail and linking may fail. Failure is defined as the high byte of the
relocated value (or the Unked value) not being all zero. '. In such a case, the value is truncated
to 8 bits and the following message is printed:

?BYTE RELOC ERROR AT ABS ADDRESS XXXXXX.

{ The linker automatically continues.

2-7

---- - ---------- ---------
- -- ._--.- -------

d. If the ob ject modu les are not read- in the same order on pass ~ as pass 1, the Linker wi II
indicate which module should be loaded next by typing:

?LOAD XXXXXX NEXT~

The linker will then ask for more input.

e. Multiply-Defined Globals - this results, during pass 1, in the following error message:

?XXXXXX MULTIPLY DEFINED BY MODULE XXXXXX.

The second definition is ignored and the Linker continues.

3 . 2. 3 Fata I Errors

All of the following errors cause the indicated error message to be printed and the Linker is
restarted. '

a. Symbol Table overflow - the r:nessage is:

?SYMBOL TABLE OVERFLOW - MQDULE XXXXXX, SYMBOL XXX XXX

b. System Errors - this class of errors prints:

?SYSTEM ERROR XX

where XX is an identifying number as follows:

Number Meaning

Unrecognized symbol table entry found.

f'2 A re!ocqtion directory references a global name which
cannot be found in the symbo! table.

,03 A relocatio~ directory contains a location counter modi­
fication command which is not last.

,04 Object module does not start with a GSD.

,05 The first entry in the GSD is not the module'name.

2-8

(

(

c

(,)

/ r-

(

(

~6 An RLD references a section name which cannot
be found.

~7 The TRA specification references a non-existent
module name.

~8 The TRA specification references a non-existent
section name.

~9 An internal jump table index is out of range.

1~ A checksum error occurred on the ob ject modu Ie.

11 An object module binary block is too big (more
than 64(l~) words of d::lta).

12 A device error occurred on the load module
output device.

All system errors except for numbers 1~ and 12 indicate a program failure either in the Linker
or the program which generated the object module. Error ~5 can occur if a tape is read which
is not an object module. .

3 . 2. 4 Error HA L T s

L1NK-ll loads all of its unused trap vectors with the code:

.WORD .+2, HALT

so that if the trap occurs, the processor will halt in the second word of the vector. The
address of the halt I displayed in the console I ights, therefore indicates the cause of the halt.

Address of HALT (octal)

12
"/6
26
32

Meaning

Reserved instruction executed.
Trace trap occurred.
Power fail trap.
EMT executed.

2-9

A halt at address 4~ indicates an IOXLPT detected error. R~ (displayed in the console
lights) contains an identifying code:·

Code in R~

1
2
3
4
5

IOXLPT also sets R1 a3 follows:.

Meaning

Illegal memory reference, SP overflow or
illegal instruction.
Illegal lOX command.
Slot number out of range.
Device number illegal.
Referenced slot not INIT ed.
Illegal data mode.

If the error code is~, R1 contains the PC at the time of the error.

If the error code is 1-5, R1 points to some e!ement in the lOT o!""gument list or to the instruc ...
tio;, following the argument list, depending on whether IOXLPT has finished decoding all the
arguments when It detects the· error.

2-10

(

(

(

(

(

4.0 PREPARATION

LINK-lIS is available as an absolute load module (for an BK machine), as two object modules
(for relinking) and as several ASCII sourc~ tapes. There is one object module for the Linker
and one for IOXLPT. The supplied object modules may be relinked (using the supplied load
module) to load into any size machine larger than BK. However, the resulting Linker will
sti II assume a top of memory corresponding to an BK mach jne (th is can be overridden in the
command string options). The assumed top of memory and reserved Absolute Loader space may
be changed by editing the first linker ASCII tape with ED-II. The parameters to be changed
are HGHMEM (high memory address +1 (always even)) and ALODSZ (Absolute Loader size
(always even)). The source tapes for .the Linker may then be assembled with PAL-lIS and
the new object module can then replQce the supplied Linker object modu Ie.

The tapes are identified as follows:

Library Code

DEC-l1"ZLQA-PA
DEC-II-ZLQA-PA
DEC-ll"'ZLQA-PA
DEC-II-ZLQA-PA

DEC-ll-ZLQA-PA
DEC-lI-ZLQA-PA

DEC-ll-ZLQA-PR
DEC-ll-ZLOA-PR

DEC-ll-ZLQA-PL

Tape 2of6 . One
Tape 1 of 6}

Tape 3 of.6 - Assembly
Tape4of6

Tape 5 of 6\. One
Tape 6 of 6J Assembly

Tapel of 2
Tape 2 of 2

2-11

LI NK .. 11 S (Ma in Program)

IOXLPT

LINK-lIS Object Module
IOXLPT Object Module

LlNK-llS Load Module

('

(

EVEN
PARITY

BIT

o
1

1

o

1

o
o
1
1

o
o

1
o

1

1

o

1
o

o

1

o

1

1
o

o
1
1
o
1
o
o
1
1

7...,BIT
OCTAL

CODE

000
001

002

003

004

005
006
007
010

011
012

013
014

015

016

017

020
021

022

023

024

025

026
027

030
031
032
033
034
035
036
037
040

CHARACTER

NUL
SOH

STX

ETX

EOT

ENQ
ACK
BEL
BS

HT
LF

VT
FF

CR

SO

SI

DLE
DC1

DC2

DC3

DC4

NAK

SYN'
ETB

CAN
EM
SUB
ESC
FS
GS
RS
US
SP

APPENDIX A

ASCII CHARACTER SET

REMARKS

NULL, TAPE FEED, CONTROL SHIFT P.
START OF HEADING; ALSO SOM, START OF
MESSAGE, CONTROL A,
START OF TEXT; ALSO EOA, END OF ADDRESS,
CONTROL B,
END OF TEXT: ALSO EOM, END OF MESSAGE,
CONTROL C,
END OF TRANSMISSION (END) : SHUTS OF TWX
MACHINES,CONTROL D,
ENQUIRY(ENQRY); ALSO WRU, CONTROL E,
ACKNOWLEDGE. ALSO RU, CONTROL F.
RINGS THE BELL. CONTROL G.
BACKSPACE: ALSO FEO, FORMAT EFFECTOR.
BACKSPACE SOME MACHINES,-CONTROL H.
HORIZONTAL TAB. CONTROL I.
LINE FEED OR LINE SPACE(NEW LINE):
ADVANCES PAPER TO NEXT LINE, DUPLICATED
BY CONTROL J.
VERTICAL TAB (VTAB) • CONTROL K.
FORM FEED TO TOP OF NEXT PAGE(PAGE).
CONTROL L.
CARRIAGE RETURN TO -BEGINNING OF LINE.
DUPLICATED BY CONTROL M.
SHIFT OUT: CHANGES RIBBON COLOR TO RED.
CONTROL N.

SHIFT IN: CHANGES RIBBON COLOR
TO BLACK. CONTROL O.
DATA LINK ESCAPE. CONTROL P(DCO).
DEVICE CONTROL 1, TURNS TRANSMITTER
(READER) ON, CONTROL Q (XON) .
DEVICE CONTROL 2 ,TURNS PUNCH OR AUXI- _
LIARY ON. CONT-ROLR (TAPE,AUX ON).
DEVICE CONTROL e ,TURNS TRANSMIT-TER
(READER) OFF, CONTROL'S (XOFF).
DEVICE CONTROL 4. TURNS PUNCH OR AUXI­
LIARY OFF. CONTROL T (TAPE,AUX OFF)
NEGATIVE ACKNOWLEDGE: ALSO ERR. ERROR.
CONTROL U.
SYNCHRONOUS IDLE (SYNC) . CONTROL V.
END OF TRANSMISSION BLOCK: ALSO LEM.
LOGICAL END OF MEDIUM. CONTROL W.
CANCEL (CANCL) . CONTROL X.

- END OF MEDIUM. CONTROL Y.
SUBSTITUTE. CONTROL Z.
ESCAPE. PREFIX.
FILE SEPARATOR. CONTROL SHIFT L.
GROUP SEPARATOR. CONTROL SHIFT M.
RECORD SEPARATOR. CONTROL SHIFT N.
UNIT SEPARATOR. CONTROL SHIFT O.
SPACE,.

A-l

EVEN 7-BIT
PARITY OCTAL

BIT CODE CHARACTER REMARKS

f-
0 041
0 042 "
1 043 #
0 044 $
1 045 %
1 046 &

0 047 ACCUTE ACCENT OR APOSTROPHE.
0 050 (
1 051 .)
1 052 *
0 053 +
1 054
0 055
0 056
1 057 /

(0 060 0
1 061 1
1 062 2
0 063 3
1 064 4
0 065 5
0 066 6
1 067 7
1 070 8
0 071 9 (0 072
1 073
0 074 <
1 075 =
1 076 >
0 077 ?
1 100 @

0 101 A
0 102 B

(1 103 C
0 104 D
1 105 E
1 106 F
0 107 G
0 110 H
1 111 I
1 112 J
0 113 K
1 114 L
0 115 M
0 116 N
1 117 0
0 120 P
1 121 Q

1 122 R
(0 123 S

1 124 T
0 125 U

A-2

EVEN 7-BIT
PARITY OCTAL

BIT CODE .CHARACTER REMARKS

0 126 V
1 127 W
1 130 X
0 131 Y
0 132 Z
1 133 [SHIFT K
0 134 SHIFT L
1 135] SHIFT M
1 136 t SHIFT N
0 137 +-
0 140 ACCENT GRAVE .•
0 175 THIS CODE GENERATED BY ALT MODE.
0 176 THIS CODE GENERATED BY ESC KEY (IF PRES EN'
1 177 DEL DELETE, RUB OUT.

{
". LOWER CASE ALPHABET FOLLOWS (TELETYPE

MODEL 37 ONLY).

1 141 a
1 142 b
0 143 c
1 144 d
0 145 e

(~- 0 146 f
1 147 g
1 150 h
0 151 i
0 152 j
1 153 k
0 154 1
1 155 m
1 156 n

/ 0 157 0

~. 1 160 P
0 161 q
0 162 r
1 163 s
0 164 t
1 165 u
1 166 v
0 167 w
0 170 x
1 .171 Y
1 172 z
0 173
1 174

·c
A-3

(

(

(

APPENDIX B

PAL-lIS ASSEMBLY LANGUAGE AND ASSEMBLER

B.l TERMINATORS

The list below defines all characters which are considered
to be terminators. The order of the J:ist implies the des­
cending hierarchy of significance.

Character

CTRL/FORM

LINE FEED

RETURN

=
%

TAB

BLANK or
SPACE

@

+

&

"

Function

Source line terminator.

Source line terminator.

Source line terminator

Label terminator

Direct assignment delineator

Register term delineator

Item terminator
Field terminator

Item terminator
Field terminator

Immediate expression field indicator

Deferred addressing indicator

Initial register field indicator

Terminal register field indicator

Operand field separator

Comments field delimiter

Arithmetic addition operator

Arithmetic subtraction operator

Logical AND operator

Logical OR operator

Double ASCII text indicator

Single ASCII text indicator.

B-1

B.2 ADDRESS MODE SYNTAX

r is an integer between 0 and 7.

R is a register expression, E is an expression, ER is either a
register expression or an absolute expression in the range of 0
to 7.

Address
Mode

Number

Or

Symbol in
Operand

Address Mode Name Field

Register R

Meaning

Register R contains the operand.
R is a register expression.

lr Deferred Register @R or (R)Register R contains the operand

2r,

3r

4r

5r

Autoincrement

Deferred
Autoincrement

Autodecrement

Deferred

(ER) +

@(ER)+

-(ER)

Autodecrement @-(ER)

Index by the
register

address.

The contents of the register
specified by ER is incremented
after being used as the address
of the operand.

ER contains the pointer to the
address of the operand. ER is
incremented after use.

The contents of register ER is de­
cremented before it is used as the
address of the operand.

The contents of register ER is de­
cremented before it is used as the
pointer to the address of the oper­
and.

(

(
'<

6r Specified E(ER)

Deferred index
by the register

E plus the contents of the register
specified, ER, is the, address of C,-'
the operand-.-

7r

27

37

67

77

specified @E(ER)

Immediate Operand #E

Absolute address @#E

Relative address E

Deferred rela-
tive address. @E

~ added to E~ gives the pointer
to the address of the operand o _

E is the operand.

E is the operand address.

E is the address of the operand.

E is the pointer to the address
of the operand.

B-2

(

B.3 INSTRUCTIONS

The tables of instructions which follow are grouped according to

the operands they take and according to the bit patterns of their

op-codes.

In the representation of op-codes, the following symbols are used:

SS

DD

xx

R

Source operand

Destination operand

8-bit offset to a
location

Integer between 0 and 7

specified by a 6-bit
address mode

specified by a 6-bit
address mode

(branch instructions)

representing a general
register

C Symbols used in the description of instruction operations are:

(

SE Source effective address
DE Destination effective address
() contents of
.. becomes

The condition codes in the processor status word (PS) are affected

by the instruction$i these condition codes are represented as follows:

N
Z
V
C

Negative bit:
Zero bit:
oVerflow bit:
Carry bit:

set if the
set if the
set if the
set if the

result is negative
result is zero
result fuad an overflow
result had a carry

In the representation of the instruction's effect on the condition

codes, the following symbols are used:

* Conditionally set

Not affect...ed

o Cleared

I Set

To set conditionally means to use the instruction's result to deter­

mine the state of the code.

B-3

Logical operators are represented by the following symbols:

Inclusive OR

Exclusive OR

& AND

(used over a symbol) NOT (i.e., lis complement)

B.3.1 Double Operand Instruct ions OJ? A,A

Op-code MNEMONIC Stands for Operation Condition Codes
N Z V C

OlSSDD MOV MOVe (SE)~ DE * * 0
11SSDD MOVB MOVe Byte (
02SSDD CMp· CoMPare (SE)-(DE) * * * *
12SSDD CMPB CoMPare Byte

03SSDD BIT BIt Test (SE) & (DE) * * 0
13SSDD BITB BIt Test Byte

04SSDD BIC BIt Clear (SE) & (DE) ~ DE * * 0
14SSDD BICB BIt Clear Byte (
05SSDD BIS BIt Set (SE) (DE) ~ DE * * 0
15SSDD BISB BIt Set Byte

06SSDD ADD ADD (SE) + (DE)? DE * * * *
16SSDD SUB SUBtract (DE) - (SE) ;'> DE * * * *

B.3.2 SinS[le Operand Instructions OP A

C Con~t':!pn Codes
Op-code Mnemonic Stands for Operation: N -z' V C

00500D CLR CLeaR O~ DE P 1 0 0
1050DD CLRB CLeaR Byte

0051DD COM COMplement (DE) ? DE * * 0 1
1051DD COMB COMplement Byte

0052DD INC INCrement (DE) + 1..",. DE * * * 1
1052DD INCB INCrement Byte

0053DD DEC DECrement (DE) -1 ? DE * * *
1063DD DECB DECrement Byte

0054DD NEG NEGate (DE) + 1 -:-:. DE * * * *
1054DD NEGB NEGate Byte (!

0055DD ADC ADd Carry (DE) + (C) ~ DE * * * *
10~5DD ADCB ADd Carry Byte

B-4

c

(

(

Op-code

0056DD
1056DD

0057DD
10577DD

MNEMONIC Stands for Operation

SBC
SBCB

TST
TSTB

SuBtract Carry (DE)-(C)~ DE
SuBtract Carry Byte

TeST (DE) - 0 ~ DE
TeST Byte

Condition Codes
N Z V C

* * * *

* * 0 0

B.3.3 Rotate/Shift

0060DD ROR

1060DD RORB

006lDD ROL

1061DD ROLB

0062DD ASR

1062DD ASRB

0063DD ASL

1063DD ASLB

OOOIDD JMP

0003DD SWAB

ROtate

ROtate
Byte

Right~ _____________ ._~ :

Right

ROtate Left

ROtat.e Left
Byte

Arithmetic
Shift Right

Arithmetic
Shift Right
Byte

Arithmetic
Shift Left

Arithmetic
Shift Left
Byte

JuMP

e *

~-,=-~*
c * o

DE~ PC

* * *
* * *

* * *
* * *

* * *

* * *

* * *

* * *

SWAp Bytes l"f! f J * * 0 0

B.3.4 Operation Instructions Op

Op-Code

000000

000001

000002

MNEMONIC Stands for

HALT

WAIT

RTI

HALT

WAIT

ReTurn from
Interrupt

B-5

Operation
Condition Codes

N Z V C

The computer stops -
all functions.

The computer stops -
and waits for an
interrupt.

The PC and ST are
popped off the SP
stack:
«SP))~ PC
(SP) +2 4- SP

((SP)) ~ ST

---------~-

Condition Codes
Op-code MNEMONIC Stands for Operation N Z V C

* * * *
000003 000003 breakpoint Trap to location 14. C-i trap This is used to

call ODT-ll.

000004 lOT Input/Output Trap to location * * * *
Trap 20. This is used

to call lOX.

000005 RESET RESET Returns all I/O
device handlers to
power-on state.

Trapping Op or Op E where 0~E~..377 8

104000- EMT EMulator Trap to location * * * *
104377 Trap 30. This is used

to call system

C programs.

104400- TRAP TRAP Trap to location * * * *
104777 34. This is used

to call any routine
desired by the pro-
grammer.

CONDITION CODE OPERATES
(

°E-code MNEMONIC Stands for-

000241 CLC CLear Carry bit in PS

000261 SEC SEt Carry bit.

000252 CLV CLear oVerflow bit.

000262 SEV SEt oVerflow bit
c

000244 CLZ CLear Zero bit.

000264 SEZ SEt Zero bit.

000250 CLN CLear Negative bit.

000270 SEN SEt Negative bit.

000254 CNZ CLear Negative and Zero bits.

000257 CCC CLear all Condition Codes

000277 SCC Set all Condition Codes.

000240 NOP No-operation

B-6

(

B.3.S Branch Instructions Op E where -128 I f(E-'-2)/2<127 10

Op-Code

0004XX

OOIOXX

0014XX

0020XX

0024XX

0030XX

0034XX

1000XX

1004XX

1010XX

1014XX

1020XX

1024XX

1030XX

1034XX

MNEMONIC Stands for
Condition to be

met if branch is to occur

BR

BNE

BEQ

BGE

BLT

BGT

BLE

BPL

BMI

BHI

BLOS

BVC

BVS

BRanch always

Branch if Not Equal to Zero

Branch if EQual (to zero)

Branch if Greater than or
equal(to zero)

Branch if Less Than (zero)

Branch if Greater "Than
(zero)

Branch if Less than or
Equal (to zero)

Branch if PLUS

Branch if MInus

Branch if HIgher

Branch if LOwer or Same

Branch if oVerflow Clear

Branch if oVerflow Set

Z=O

Z=l

N(D V=O

N ([)v = I

Z! (N0V) =0

Z!(N0V)=1

N=O

N=l

C <D Z=O

C!Z=1

V=O

V=l

BCC (or BHIS) Branch if Carry Clear
(or Branch if HIgh or Same) C=O

BCS (or BLO)
Branch if Carry Set (or
Branch if LOw)

C=l

B.3.6 Subroutine Call JSR ER,A

Op-code

004RDD

MNEMONIC Stands for Operation

JSR Jump to Sub- Push register on the SP stack, put
Routine the PC in the register:

B-7

DE~~TEMP -a temporary storage reg­
ister internal to proces

(SP)-2.,lo SP
(REG)"~ (SP)

sor

(PC)+m REG -m depends upon the ad­
dress made,

(TEMP),.,. PC

B.3.7 Subroutine Return

Op-code MNEMONIC

00020R RTS

Stands for

ReTurn from
Subroutine

B.4 ASSEMBLER DIRECTIVES

Operation

Put register contents in PC and
pop old contents from SP stack
into register.

MNEMONIC Operand Stands for Operation

.EOT none End ef Tape Indicate!'" the ;:-,'hysi""::' o~r'1 of! the
SOtlrce in,D't~lt ~pfli.',~

. EVEN none EVEN

.END E END
(E optional)

. WORD E, E, ... WORD
E, E, -... (the void

operator)

. BYTE E, E, ... BYTE

.ASCII /xxx .. . xl ASCII

.TITLE NAME TITLE

.ASECT none ASECT

.CSECT none CSECT

.LIMIT none LIMIT

. GLOBL NAME,NAME, ...
GLOBAL

Insures that the assembly location
counter is even by adding I if it
is odd.

Indicates the physical and logical
end of the program and optionally
specifies the entry point (E) .

Generates words of data
Generates words of data

Generates bytes of data

Generates 7-bit J\SCII characters
for text enclQsed by delimiters.

Generates a name for the object
module.

Initiates the Absolute section.

Initiates the Relocatable Control
section.

Generates two words containing the
low and high limits of the reloca­
table section.

Specifies each name to be a global
symbol

(

(

.RAD5,0 /xxx/ RADIX 5,0 Generates the RADIX 5,0 representation
of the ASCII character in delimiters.

B-8

Mnemonic Operand Stands For Operation

('-, .IFZ E IF E=O Assemble what follows up to the
terminating .ENDC if the expres-
sion E is O.

.IFNZ E IF Efo Assemble what follows up to the
terminating. ENDC, if the expres-
sion E is not O.

.IFL E IF E<O Assemble what follows up to
the terminating. ENDC, if the
expression E is less than O.

.IFLE E IF E<O Assemble what follows up to
the terminating. ENDC, if the

(expression E is less than or
equal to O.

.IFG E IF E>O Assemble what follows up to
the terminating. ENDC, if the
expression E is greater than O.

.IFGE E IF E>O Assemble what follows up to
".

the terminating. ENDC, if the (--' expression E is greater than
or equal to O.

.IFDF NAME IF NAME Assemble what follows up to
d·efined the terminating. ENDC if the symbol

NAME is defined.

/ .IFNDF NAME IF NAME Assemble what follows up to
\. undefined the terminating .ENDC if the

symbol NAME is undefined.

.ENDC none End of Terminates the range of a
Conditional cond itiona I directive.

B-9

-- ------------------------------------- ------ - ---------
- -

B. 5 ERROR CODES

Error Code

A

B

D

I

L

M

N

P

Q

R

S

T

U

Meaning

Addressing error.
tion is incorrect.
errors.

An address within the instruc­
Also includes relocation

Bounding error. Instructions or word data are
being assembled at an odd address in memory.

Doubly-defined symbol referenced. Reference was
made to a symbol which is defined more than once.

Illegal character detected. Illegal characters
which are also non-printing are replaced by a ?
on the listing.

Line buffer overflow.
72 are ignored.

All extra characters beyond

Multiple definition of a label. A label was en­
counteFed which was equivalent (in the first six
characters) to a pre~iously encountered label.

Number containing an 8 or 9 was not terminated by
a decimal point.

(

Phase error. A label's definition or value varies (_­
from one pass to another.

Questionable syntax. There are missing arguments
or the instruction. scan was not completed, or a
carriage return was not followed by a linefeed
Or form feed.

Register-type error. An invalid use of or referen
ce to a register has been made.

Symbol table overflow. When the quantity of user­
defined symbols exceeds the allocated space avail­
able in the user's symbol table, the assembler
outputs the current source line with the S error
code, then returns to the command string inter­
preter to await the next command string to be
typed.

Truncation error. More than the allotted number
of bits were input so the leftmost bits were trun­
cited. T error does not occur for the result of
an expression.

Undefined symbol. An undefined symbol was encoun-

c

.~.

tered during the evaluation of an expression. (-
Relative to the expression, the undefined symbol _)
is assigned a value of zero.

B-lO

(

~

(
"---

B.6 INITIAL OPERATING PROCEDURES

Loading: Use Absolute Loader. The start address of the
Loader must be in the console switches.

Storage Requirements:PAL-llS uses 8K of memory.

Starting:

Initial Dialogue:

Printout

*S What

*B What

*L What

*T What

Immediately upon loading, PAL-llS will be in
control and initiate dialogue.

Inguirl

is the input device of the Source symbolic tape?

is the output device of the Binary object tape?

is the output device of the assembly ~isting?

is the output device of the symbol Table?

Each of these questions may be answered by anyone of the following

characters:

Character

T

L

H

P

Answer Lndicated

Teleprinter keyboard

Low-speed reader or punch

!:!,igh-speed reader or punch

Line Printer

Each of these answers may be followed by the other charqcters indi­

catingoptions:

°Etion Tj~]2ed

/1

/2

/3

/E

Function to be :eerformed

on pass 1

on pass 2

on pass 3

errors to be listed on the Teletype on the same
pa~s (meaningful only for *B or *L).

Each answer is terminated by typing the RETURN key. A RETURN alone
as answer will delete the function.

B-ll

Dialogue During Assembly:

Printout

EOF ?

END ?

EOM ?

Restarting:

Response

Place next tape in reader and type RETURN. A .END
statement may be forced by typing E followed by
RETURN.

Start next pass by placing first tape in reader and
typing RETURN.

If the end-of-medium is on the listing device, the
device may be readied and the assembly may be con­
tinued by typing RETURN.

,-,

If the emd-of-medium is on the binary device, the
assembler will discontinue the assembly and restart
itself.

Type CTRL/P.
again.

B-l2

The initial dialogue will be started (

(

(

(

•. 0;-

(

(

(
\ ..

APPENDIX C

ASSEMBLING AND LINKING PAL-llS

PAL-II S consists of two independent programs. The first program is a memory clear
program. The second is the assembler. All programs are available as ASCII source
tapes, object modules and as a load module.

The memory clear program, MEMCLR, consists of one ASCII tape. This program should
never need to be assembled. The object module may be used when constructing a new
10':ld module of PAL-II S.

The assembler consists of three program modules which are assembled separately and
then linked together. The first is the main program called PAL-11 S. It consists of 13
ASCII tapes. The second mod!Jle is the symbol table, PALSYM, which cons ish of 2
ASCII tapes. The third is IOXLPT consisting of 2 ASCII tapes.

If changes are made in any of these modules, that module must be assembled by PAL-ll S
and the new object modlJlecan be linked with the other object modules. It should be
noted that assembly of these programs will result in:

Program·

PAL-ll S
PALSYM
IOXLPT

Pages of Listing (Decimal)

160
11
29

Number of Symbols (Decimal)

756
32

191

Also note that there will be two undefined symbols listed at the·end of pass 1. These are
forward references on direct assignments which get defined properly in pass 2.

The final load mod.;le is constructed by LI NK-11 S. First the memory clear program
object module is processed by the linker and the resulting I.oad mod:Jle is left in the
punch while the PAL-11S, PALSYM and IOXLPT object modules are linked to create
a second load mod;Jle. The resulting tape contains two load modules. The first clears
memory and then jumps to the absolute loader to load the second.

Do not re-link PAL-IIS to run above 16K. The size of the symbol table is fixed, and
there is no need to re-link at .0 higher address even on large systems.

C-l

*This tape is the concatenation of a link of the RELMEM object module followed by
a link of the PAL-l1S, PALSYM, and IOXLPT object modules.

C-2

(.,

INDEX.

Absolute
expression, 1-10
loader, 1-26
mode, 1-16
program, 2-2

Addition, 1-9
Addresses, 2-2
Addressing, 1-13
Address mode syntax, 1-40
Apostrophe (I) usage, 1-9, 1-12
Argument separators, 1-2
Arithmetic operators, 1-8, 1-9
ASCII

character set, Appendix A
conversion, 1-22

.ASCII directive, 1-22

.ASECT directive, 1-11, 1-20,
1-33, 2-2

Assembler directives, 1-3, 1-19,
B-8

Assembling and linking PAL-IIA,
C-l

Assembly dialogue, 1-31
Assembly listing, 1-25, 1-32

apostrophe usage, 1-12
Asterisk (*) usage, 1-28
Autodecrement mode, 1-15
Autoincrement mode, 1-14

Binary output, 1-29
Branch instructions, 1-19, B-7
.BYTE directive, 1-8, 1-22, 1-33

Carriage return, 1-2, 1-3
Character set, 1-2
Checksum, 2-7
CLR instruction, 1-13
Colon (:) dsage, 1-3, 1-23
Comma (,) usage, 1-4, 1-21
Comments, 1-4

field, 1-3
Communications directory (COMD1,

2-3
Condition codes, B-3, B-6
Conditional directives, 1-24
Conversion, ASCII, 1-9
.CSECT directive, 1-11, 1-20,

1-33, 2-2
CTRL/A,' 1-29
CTRL/P, 1-29, 1-31
CTRL/U, 1-26
CTRL/FORM key, 1-5
Current location counter, 1-3

X-l

Data sharing, 2-2
Decimal numbers, 1-8
Deferred autodecrement mode, 1-15
Deferred autoincrement mode, 1-14
Deferred immediate mode, 1-16
Deferred register mode, 1-14
Deferred relative mode, 1-16
Device specification, 1-26
Dialogue, initial, 1-30, 1-31
Direct assignment statement, 1-6
Directives, Assembler, 1-19, 1-46

.ASCI'l, 1-23

.ASECT, 1-11, 1-20, 1-33, 2-2

.BYTE, 1-8, 1-22, 1-33
conditional, 1-24
.CSECT, 1-11, 1-20, 1-33, 2-2
.END, 1-21
.ENDC, 1-25
. EOT, 1-21
• EVEN, 1-21
.GLOBL, 1-20
.LIMIT, 1-24
.RAD50, 1-23
. TITLE, 1-19
.WORD, 1-21

Double operand instructions, B-4

Editor, 1-2
EMT instructions, 1-19
END?, 1-32
.END directive, 1-21
.ENDC directive, 1-25
End of tape, 1-21
Entry point (entry symbol), 1-6
EOF?, 1-31
EOM?, 1-31
.EOT directive, 1~21
Equal sign (=) usage, 1-23
Error codes, 1-34, B-I0
Error

expression, 1-25
phase, 1-7
software, 1-35
syntax, 1-25
truncation, 1-8
typing, 1-26

Errors, Linker, 2-7, 2-8, 2-9
.EVEN directive, 1-21
Expressions, 1-8

missing, 1-8
mode, 1-10
null, 1-25

External expression, 1-8, 1-10
External symbol missing, 1-8

Features, PAL-lIS, 1-1
Fields, 1-2, 1-3
Format, 1-4, 1-5
Form feed, 1-2, 1-3, 1-5
Forward references, 1-6, 1-11

General registers, 1-7
.GLOBL directive, 1-20
Global symbol directory (GSD),

1-33, 2-3
Global symbols, 1-6, 2-2

Hardware requirements, 1-2

Immediate mode, 1-16
Inclusive OR operation, 1-9
Indexing, 1-13
Index mode, 1-15
In~tia1 dialogues, 1-26, 1-30, 1-31
Instruction mnemonic, 1-3
Internal symbols, 1-6

JMP instruction,
JRS instruction,

1-14
1-14

Label fields, 1-·3
.LIMIT directive, 1-24
Line feed, 1-2, 1-3
Line printer, 1-31
Line terminators, 1-2
Linker operation instructions, 2-5
Linker operational cautions, 2-7
Linking, 1-12
Loading PAL-lIS, 1-26
Load map, 2-4
Load module, 1-1, 1-21
Location counter, 1-11
Logical AND operation, 1-9
Logical inclusive OR operation, 1-9
logical operators, 1-8, 1-9, B-4
Low-speed punch, 1-32

Memory references, 1-16
Missing term, expression, or

external symbol, 1-8
MOD40, 1-23

X-2

Mode, 1-11
address, 1-13 through 1-16
expression, 1-10
forms and codes, 1~17

of operand, 1-16
MOV instruction, 1-13
Multiple definition of symbol

eM), 1-3
Multiple operands, 1-4
Multiple statement labels, 1-3

Null expression, 1-25
Numbers, 1-8

Object modules, 1-1, 1-25, 2-3
output, 1-33 r-

Octal numbers, 1-8 ,,-
Offset, 1-19
Op-code, 1-5
Operands, 1-4, 1-41

fields, 1-3, 1-18
mode, 1-16

Operating procedures
Assembler, 1-25, 1-49
Linker, 2-5 C··

Operational cautions, Linker, 2-7
Operation instructions,

Assembler, B-5
Linker, 2-5

Operators, 1-8, 1-9
fields, 1-3

Output, object module, 1-33

Page size, 1-5 C
PAL-11A, assembling and linking, C
PAL-11R object modules, 2-2
PAL-lIS features, 1-1
PASS 1, 1-29, 2-6
PASS 2, 1-30, 2~6
PASS 3, 1-30
PC, 1-11
Percent sign (%) usage, 1-7
Period (.) usage, 1-11
Phase errors, 1-7
Positive numbers, 1-8
Program counter, 1-11, 1-13
Program sharing, 2-2
Pseudo-ops, 1-19

(,

(

(

Quotation mark usage, 1-9

.RAD50 directive, 1-23
RADIX 50 packing algorithm, 1-24
Register mode, 1-14
Register symbols, 1-7
Relative mode, 1-16
Re1ocatab1e expression, 1-10
Re1ocatab1e program, 2-2
Relocation, 1-12

directory, 1-33
Restarting Linker, 2-7
RETURN key, 1-2, 1-26

. RUBOUT key, 1-26

Tab character, 1-4
Table of mode forms and codes,
Terminators

assembly, B-1
directive, 1-23
of operator, 1-3

Term missing, 1-8
Text block, 1-33
Text Editor, 1-1
.TITLE directive, 1-19
Trap instructions, 1-19
Trap vectors, 2-9
Truncation (T) error, 1-8
Typing error, 1-26

User-defined symbol, 1-3, 1-25
Semicolon (;) usage, 1-4
Single operand instructions,
Slash (/) usage, 1-23
Software, Linker, 2-11
Source program, 1-2

1-42

Source tapes, Linker, 2-11
Space character, 1-4
Statement

direct assignment, 1-6
labels, 1-3
terminator, 1-2

Storage area, 1-12
Symbols, 1-5, 1-6, 1-8

user defined, 1-3
Symbol table, 1-5, 1-28
Subroutine calls, B-7
Subtraction, 1-9

.WORD directive, 1-21, 1-22

X-3

1-17

(

(

HOW TO OBTAIN SOFTWARE INFORMATION

Announcements for new and revised software, as well as programming notes,
software problems, and documentation corrections are published by Software
Information Service in the fol-Iowing newsletters.

Digital Software News for the PDP-8 & PDP-12
Digital Software News for the PDP-II
Digital Software News for the PDP-9/15 Family

These newsletters contain information applicable to software available from
Digital's Program Library, Articles in Digital Software News update the
cumulative Software Performance Summary which is contained in each basic
kit of system software for new computers. To assure that the monthly Digital
Software News is sent to the appropriate software contact at your installation,
please check with the Software Specialist or Sales Engineer at your nearest
Digital office.

Questions or problems concerning Digital's Software should be reported to
the Software Special ist. In cases where no Software Special ist is available,
please send a Software Performance Report form with details of the problem to:

Software Information Service
Digital Equipment Corporation
146 Main Street, Bldg. 3-5
Maynard, Masscichusetts 01754

These forms which are provided in the software kit should be fully filled out
and accompanied by teletype output as well as listings or tapes of the user
program to facilitate a complete investigation. An answer will be sent to the
individual and appropriate topics of general interest will be pr-inted in the
newsletter.

Orders for new and revised software and manuals, additional Software Per­
formance Report forms, and software price lists should be directed to the
nearest Digital Field office or representative. U.S.A. customers may order
directly from the Pro!:,rnm Library in Maynard. When ordering, include the
code nUl1;lber and a brief description of the software requested.

Digital Equipment Computer Users Society (DECUS) maintains a user library
and publishes a catalog of programs as well as the DECUSCOPE magazine
for its members and non-members who request it. For further information
please write to:

DECUS
Digital Equipment Corporation
146 Main Street, Bldg. 3-5
Maynard, Massa chusetts 01754

c

(

(

READER'S COMMENTS

DEC-II-YRWB-D and
DEC-ll-YRWB-DN
PDP-II PAL-lIS ASSEMBLER
and LINK-lIS LINKER
PROGRAMMER'S MANOAL

NOTE: This form is for document comments only. Problems
with software should beoreported on a Software
Problem Repcrt (SPR) form (see the HOW TO OBTAIN
SOFTWARE INFO~~TION page) .

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
'what ma-terial is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

,0 Assembly language programmer

[J Higher-level language programmer

[] Occasional programmer (experienced)

[] tiser with little programming experience

o Student programmer

[] Non-programmer interested in computer concepts and capabilities

Name Date

Organization

Street

City State Zip Code
or

Country

If you .do not require a written reply, please check here. 0

- - - - - - - - - Fold Here -

- - - - - - - - ...,..... - -,- - Do Not Tear - Fold Here and Staple - - - - - - - - - - - -

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THF. UNITED STATI-S

Postage will be paid by:

Digital Equipment Corporation
Software Information Services
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

FIRST CLASS

PERMIT NO. 33

MAYNARD. MASS.

F-I

(

(

(

(~

(

PRODUCT CODE:

PRODUCT NAME:

DATE CREATED:

MAINTAINER:

(

DEC-ll-YRWB-DN

Change Notice for PAL-lIS
Assembler and LINK~llS
Linkercprogrammer's Manual

November, 1972

Development

First Printing, August 1971
Revised, February, 1972

Your attention is invited to the last two pages of this document.

The IIHow to Obtain Software Information ll page tells you how

to keep up-to-date with DEC's software. The II Reader's

Commentsll page, When filled in and mailed, is beneficial

to both you and D ECi all comments received are acknow ledged

and are considered when documenting subsequent documents.

Copyright @ 1971, 1972 by Digital Equipment Corporation

Technical changes to this manual are
indicated by a bar in the margin.

Th is document is for information purposes
and"issubject to change without notice.

Assoc iated documents:

PDP-11 Paper Tape Software Programming Handbook
DEC-ll-GGPC-D '

PDP-11 PAL-l1R Assembler Programmer1s Manual
D EC-11-ASDC-D

The following are trademarks of Digital Equipment
Corporation:

DEC
Digital (logo)
DECtape
Unibus

ii

PDp:" 11
Comtex-11
RSTS-11
RSX-11

(

(

(

(:

(

c-

c

The attached pages should be inserted in

the PAL-llS Assembler and LINK-llS LINKER

Programmer's Manual. Technical changes

have been marked with a bar in the page

margin.

1

CHAPTER I

(
'---

(-~

CHAPTER II

/"

~.-

APPENDICES

INDEX

CONTENTS

PAL-II S ASSEMBLER

1 • Character Set

2. Statements

3. Symbols

4. Expressions

5. Assembly Location Counter

6. Relocation and Linking

7. Addressing

8. Assembler Directives

9. Operating Procedures

10. Error Codes

11. Software Error Holts

LINK-II SLINKER

1. Introduction

2. Input and Output

3. Operating Procedures

4. Preparation

A ASC II Character Set

B

C

PAL-II S Assembly Language and Assembler

Assembling and Linking PAL-lIS

D Note to Users of Serial LA30 and 600, 1200 and
2400 Baud VT05's

v

as for *L question. The symbol table will be output at the end of the first pass unless /2
or /3 is typed in response to *T. The first tape to be assembled should be placed in the
reader before typing the RETURN key because assembly wi II begin upon typing RETURN
to the *T question. The /E option is not a meaningful response to *T. Example

*T T/3 Symbol table output on teleprinter at end of third pass.

*T Typing the RETURN key alone will cause the Assembler
to omit symbol table output.

The symbol table is printed alphabetically, three symbols per line. Each symbol printed
is followed by its identifying characters and by its value. If the symbol is undefined,
six asterisks replace its value. The identifying characters indicate the class of the symbol;
that is, whether it is a label, direct assignment, register symbol, etc. The following
examples show the ¥arious forms.

ABCDEF 001244 (Defined Label)
R3 = %000003 (Register Symbol)
DIRASM = 177777 (Direct Assignment)
XYZ ****** (Undefined direct assignment)
R6 = 0/"***** (Undefined register symbol)
LABEL = ****** (Undefined label)

Generally, undefined symbols and external symbols will be listed as undefined direct
assignments. Multiply-defined symbols are not flagged in the symbol table printout but
are flagged wherever they are used in the program.

If the symbol is relocatable or global or both, the symboPs value will be followed by an
R, a G or both.

It is possible to output both the binary tape and the assembly listing on the same pass,
thereby reducing the assembly process to two passes (see Example 1 below). This will
happen automdtically unless the binary device and the listing device are conflicting
devices or the same device (see Example 2 below). The only conflicting devices are the
teleprinter and the low-speed punch. Even though the Assembler deduces that three
passes are necessary, the binary and I isting can be forced on pass 2 by including /2 in the
responses to *B and *L (see Example 3 below). ~,

Example 1. Runs 2 passes:

*S
*B
*L
*f

H
H
P
T

High-speed reader
High-speed punch
Line Printer
Teleprinter

1-28

(

(

4.0 PREPARATION

LlNK-ll S is available as(;1n absolute load module (for an 8K machine), as two object modules
(for rei inking) and as several ASCII source tapes. There is one object module for the Linker
and one for IOXLPT. The supplied object modules may ~e rei inked (l,.Ising the supplied load
module) to load into any sizemachine larger thqn 8K. However, the resvlting Linker will
sti II assume a top of memory corresponding to an 8K rnqch ine (th is can be overridden in the
command string options). The qssumed top of memory and reserved Absolvte Loader space may
be changed by editing the first linker ASC II tape with ED-ll. The parameters to be changed
are HGHMEM (high memory address +1 (aIWQYs even}) and ALODSZ (Absolute Loader size
(always even)). The sovrce tapes for the Linker may then be ass.embled with PAL-ll Sand
the new object module can then reploce the supplied Linker object module.

The tapes are identified as follows:

Library Code

DEC-ll-ULKSA-A-PAl
DEC-l1-ULKSA-A-PAZ
DEC-l1-ULKSA-A-PA3
DEC-ll-ULKSA-A-PA4

DEC-l1-ULKSA-A-PA5
DEC-ll-ULKSA-A-PA6

DEC ... ll-ULKSA-A-PRl
DEC-ll-ULKSA-A-PR2

DEC-l1-ULKSA-A-PL

Tope 1 of6
Tape20f6
Tope 3 of 6
Tape40f6

Tape 50f6
Tape6of6

Tope 1 of 2
Tape 2 of 2

2-11

1
LlNK-ll S (Main Program)

One
Assembly

)

} One IOXLPT
Assembly

LlNK-l1 S ObjectModule
IOXLPT Object Module

LlNK-l1 S Load Module

APPENDIX C

ASSEMBLING AND LINKING PAL-lIS

PAL-II S consists oftwo independent programs. The first program is a memo.ry c lear program •
The second is thecissembler. All programs are available as ASCII sour5=e tapes, object
modules and as a load module~

The memory clear program, MEMCLR, (DEC-ll-UPLSA-A-PA1) consists of one ASCII tape.
This program should never need to be assembled. The object module may be used when
constructing a new load module of PAL-II S.

The assembler consists of three program modules which are assembled separately and then
linked together. The first is the main program called PAL-lIS. It consists of 13 ASCII
tapes (DEC-UPLSA-A-PA2-PA14).· The second module is the symbol table, PALSYM,
which c~nsists of 2 ASCII tapes (DEC-11-UPLSA-A-PA15-PA16). The third is IOXLPT
consisting of 2 ASCII tapes (DEC-11-UPLSA-A-PAI 7-PAI 8). Also included is PALSYM,
specially created for 12K and 16K, consisting of one tape each (DEC-11-UPLSA-A~PA19-PA20).

If changes are made in any of these modules, that module must be assembled by PAL-II S
(V003A) and the new object module can be linked with the other objecf modules. It
should be noted that assembly of these programs will result in:

Program

PAL-II S
PALSYM
IOXLPT

Pages of Listing (Decimal)

160
11
29

Number of Symbols (Decimal)

756
32

191

Also note that there will be twouridefined symbols listed at the end of pass 1. These are
forward references·on direct assignments wh ich get defined properly in pass 2.

An example of the PAL-II S assembly follows:

PAL-11 S V%%3A
*S H
*B H
*L P
*T P/2
END?
999(>(>(1 ERRO RS

PAL-II S V%%3A
*S H
*B H
*L P
*T P/2
EOF ?
EOF?
EOF?
EOF?
EOF?
EOF?
EOF?

C-l

(first pass on PAl)
(2nd pass on PAl)
(End of Tape #1 assembly)
(Remove tape from punch)

(Insert PA2 for 1 st pass)
(End of PA2, insert PA3)
(End of PA3, insert PA4)
(End of PA4, insert PA5)
(End of PA5, insert PA6)
(End of PA6, insert PA7)
(End of PA7, insert PA8)
(End of PA8, insert PA9)

C-2

(

(-

(

:)

(-

The final load module is constructed by L1NK-11 S. First the memory clear program object
module is processed by the linker and the resulting load module is left in the punch while
the PAL-11 5, PALSYM and IOXLPT object modules are linked to create a second load
module. The resulting tape contains two load modules. The first clears memory and then
jumps to the absolute loader to load the second.

In order to take advantage of core sizes larger than SK, PALSYM, the symbol table,
specially created for 12K core and 16K core, and the object modules are included with
the assembler. To link for 12K (or 16K), simply substitute the appropriate object tape
for PALSYM (use DEC-ll-UPLSA-A-PR5 for 12K or DEC-ll-UPLSA-A-PR6 for 16K)
specify a top address to L1NK-ll 5 of 57460 for 12K (77460 for 16K) and link as described
in the preceding paragraph.

Do not rei ink PAL-11 5 to run above 16K. The size of the symbol table is fixed, and there
is no need to re-link at a higher address even on large systems.

The supplied tapes are identified as follows:

Library Code Contents

DEC-11-UPLSA-A-PA1 Tape 1 of 20) One RELMEM
Assembly (Memory C lear Program)

DEC-11-UPLSA-A-PA2 Tape 2 of 20 PAL-11S (Main Program)
DEC-11-UPLSA-A-PA3 Tape 3 of 20
DEC-11-UPLSA-A-PA4 Tape 4 of 20
DE'""C-11-UPLSA-A-PA5 Tape 5 of 20
DEC-l1-UPLSA-A-PA6 Tape 6 of 20
DEC-11-UPLSA-A-PA7 Tape 7 of 20 One
DEC-11-UPLSA-A-PAS Tape S of 20 Assembly
DEC-11-UPLSA-A-PA9 Tape 9 of 20
DEC-11-UPLSA-A-PA10 Tape 10 of 20
DEC-11-UPLSA-A-PA11 Tape 11 of 20
DEC-11-UPLSA-A-PA12 Tape 12 of 20
DEC-11-UPLSA-A-PA13 Tape 13 of 20
DEC-11-UPLSA-A-PA14 Tape 14 of 20

DEC-11-UPLSA-A-PA15 Tape 15 of 20) One PALSYM (Symbol Table) for SK
DEC-11-UPLSA-A-PA16 Tape 16 of 20 Assembly

DEC-11-UPLSA-A-PA17 Tape 17 of 20) One
IOXLPT

DEC-11-UPLSA-A-PA1S Tape lS of 20 Assembly
DEC-11-UPLSA-A-PA19 Tape 19 of 20 One Assembly PALSYM (Symbol Table) for 12K:
DEC-11-UPLSA-A-PA20 Tape 20 of 20 One Assembly PALSYM (Symbol Table) for 16K

DEC-l1-UPLSA-A-PR1 Tape 1 of 6 RELMEM Object Module
DEC-11-UPLSA-A-PR2 Tape 2 of 6 PAL-11S Object Modure
DEC-l1-UPLSA-A-PR3 Tape 3 of 6 PALSYM Object Module for SK
DEC-l1-UPLSA-A-PR4 Tape 4 of 6 IOXLPT Object Module
DEC-11-UPLSA-A-PR5 Tape 5 of 6 PALSYM Object Module for 12K

assembler
DEC-11-UPLSA-A-PR6 Tape 6 of 6 PALSYM Object Module for 16K

Assembler

DEC-11-UPLSA-A-PL PAL-11S Load Module*

*This tape is the concatenation of a link of the RELMEM object module followed by a link of
the PAL-11 5, PALSYM for SK, and IOXLPT object modules.

C-3

.r

(

(
"'"=-

APPENDIX D

NOTE TO USERS OF SERIAL LA3,£'i AND
6,£'i,£'i, 12,£'i,£'i and 24,£'i,£'i BAUD VT,£'i5'S

The serial LA3,0 requires that filler characters follow each carriage return; the 6,£'i,£'i, 12~ and
24,£'i9' baud VT,£'i5's require that filler characters follow each line feed. The following table lists
the filler characters needed. The byte at location 448 has been establ ished as the filler count
and the byte at location 458 contains the character to be filled. These locations are initially
set to zero by LlNK-llS and PAL-llS to allow normal operation of the program.

Depending on the terminal, change the locations as follows:

LaC 44 LaC 45 Resulting Word (binary)

LA30 ,0'118 ,0'158 ,0',0',0',0'11,0'1,0',0',0',0'1,0',0'1

VT,£'i5 6,£'i9' Baud ,0',0'1 8 ,0'128 ,0',0',0',0'1,0'1,0',0',0',0',0',0',0',0'1

VT,05 12,0',0' Baud ,0',0'28 ,0'128 ,0',0',0',0'1,0'1,0',0',0',0',0',0',0'1,0'

VT,05 24,0',0' Baud ,0',0'48 ,0'128 ,0',0',0',0'1,0'1,0',0',0',0',0',0'1,0',0'

The proper binary word can be stored at location 448 by using the console switches as described
in section 2.1.2 of the Papertape Software Programming Handbook (DEC-ll-XPTSA-A-D).

Furthermore, users with a 24,0',0' baud VT,05 should avoid the use of vertical tab characters
in their programs. Vertical tabs will not be properly filled and may cause characters to be
lost.

Once the changes have been made, the program may be dumped to paper tape by using the
bootstrap version of DUMPAB (see instructions for use in section 6.3 of DEC-l1-XPTSA-A-D).

The above changes only affect output to the console teleprinter.

D-l

(

c

(

Features, PAL-lIS, 1-1
Fields, 1-2, 1-3
Format, 1-4, 1-5 .
Form feed, 1-2, 1-3, 1-5
Forward references, 1 -6, 1 -11

General registers, 1':'7
.GLOBL directive, 1-20
Global symbol directory (GSD),

1-33, 2-3
Global symbols, 1-6, 2-2

Hardware requirements, 1-2

Immediate mode, 1-16
Inclusive OR operation, 1-9
Indexing, 1-13
Index mode, 1-15
Initial dialogues, 1-26, 1-30,1-31
Instruction mnemonic, 1-3
Internal symbols, 1-6

JMP instruction, 1-1.4
JRS instruction, 1-14

LA30 Users, D-l
Label fields, 1-3
.L1MIT directive, 1-24
Line feed, 1-2, 1-3
Line printer, 1-31
Line terminators, 1-2
Linker operation instructions, 2-5
Linker operational cautions, 2-7
Linking, 1-12
Loading PAL-II S, 1-26
Load map, 2-4
Load module, I-I, 1-21
Location counter, 1 -11
Logical AND operation, 1-9
Logical inclusive OR operation, 1-9
Logical operators, 1-8, 1-9, B-4
Low-speed punch, 1 -32

Memory references, 1 -16
Missing term, expression, or external

symbol, 1-8
MOD40, 1-23

Mode, 1-11
address, 1-13 through 1-16
expression, 1-10
forms and codes, 1-17
of operand, 1-16

MOV instruction, 1-13
Multiple definition of symbol (M), 1-3
Multiple operands, 1-4
Multiple statement labels, 1-3

Null expression, 1-25
Numbers, 1-8

Object Modules, I-I, 1-25, 2-3
output, 1 -33

Octal numbers, 1-8
Offset, 1-19
Op-code, 1-5
Operands, 1-4, 1-41

fields, 1-3, 1-18
mode, 1-16

Operating procedures
Assembler, 1-25, 1-49
Linker, 2-5

Operational cautions, Linker, 2-7
Operationa I instructions,

Assemb I er, B-5
Linker, 2-5

Operators, 1-8, 1-9
fields, 1:.3

Output, object module, 1-33

Page size, 1-5
PAL-l lA, assembling and linking, C-l
PAL-II R object modules, '2-2
PAL-II S features, 1-1
PASS I, 1-29, 2-6
PASS 2, 1-30, 2-6
PASS 3, 1-30
PC, 1-11
Percent sign (%) usage, 1-7
Period (.) usage, 1-11
Phase errors, 1-7
Positive numbers, 1-8
Program counter, 1 -II, 1 -13
Program sharing, 2-2
Pseudo-ops, 1-19

X-2

Quotation mark usage, 1-9

.RAD50 directive, 1-23
RADIX 50 packing algorithm, 1-24
Register mode, 1-14
Register symbols, 1-7
Relative mode, 1-16
Relocatable expression, 1-10
Relocatable program, 2-2
Re location, 1 -12

directory, 1 -33
Restarting Linker, 2-7
RETURN key, 1-2, 1-26
RUBOUT key, 1-26

Semicolon 0) usage, 1-4
Single operand instructions, 1-42
S I ash (/) usage, 1 -23
Software, Linker, 2-11
Source program, 1-2
Source tapes, Linker, 2-11
Space character, 1-4
Statement

direct assignment, 1-6
labels, 1-3
terminator, 1-2-

Storage area, 1 -12
Symbols, 1-5, 1-6, 1-8

user defined, 1-3
Symbol table, 1-5,1-28
Subroutine calls, B-7
Subtraction, 1-9

Tab character, 1-4
Table of Mode forms and codes, 1-17
Terminators

assemb Iy, B-1
directive, 1-23
of operator, 1-3

Term missing, 1-8
Text block, 1-33
Text editor, 1-1
• TITLE directive, 1-19
Trap instructions, 1-19
Trap vectors, 2-9
T runC<;Ition (T) error, 1-8
Typing error, 1 -26

User ... def~ned symbol, 1-3, 1-25

VT05 users, D-l

.WORD directive, 1-21, 1-22

X-3

) .

(

(

c

(I

DIGITAL EQUIPMENT CORPORATION
MAYNARD, MASSACHUSETTS 01754

