PDP-11
PAL-11S ASSEMBLER
AND
LINK-11S LINKER
PROGRAMMER'S MANUAL

/ N

PDP-11
PAL-11S ASSEMBLER
AND
LINK-11S LINKER
PROGRAMMER’S MANUAL

February 1972

-YRWB-D and

DEC-1
-YRWB-DN

DEC-1

-

For additional copies, order No. DEC-11-YRWB-D from Digital Equipment

Corporation, Software Distribution Center, Maynard, Massachusetts 01754.

First Printing, November, 1972

Your attention is invited to the last two pages of this
document. The "How to Obtain Software Information" page
tells you how to keep up-to-date with DEC's software.
Completion and return of the "Reader's Comments" page is
beneficial to both you and DEC; all comments received are
acknowledged and are considered when documenting subse-
qguent manuals. ’

Copyright (:) 1972 by Digital Equipment Corporation

DEC assumes no responsibility for the use or reliability
of its software on equipment which is not supplied by
DEC. The material in this document is for information
purposes and is subject to change without notice.

The following are trademarks of Digital Equipment
Corporation, Maynard, Massachusetts:

CDP DIGITAL KAlO QUICKPOINT
COMPUTER LABS EDUSYSTEM LAB-8 RAD-8
COMTEX-11 FLIP CHIP OMNIBUS RSTS

DDT FOCAL 0s/8 RSX

DEC GLC-8 0s/11 SABR
DECTAPE IDACS PDP TYPESET-8
DIBOL INDACS PHA UNIBUS

Teletype is a registered trademark of the Teletype
Corporation.

N

PREFACE

This document describes the PAL-11S Assembly Language and Assembler (Chapter 1)
and the Link=11S Linker (Chapter 2).

PAL-11S and Link=11S are stand-alone programs which are compatible subsets of
the Disk Operating System (DOS) PAL-T1R and Link-11 system programs. Minimum
hardware requirements are an 8K PDP-11 with a teleprinter. A PC11 (high-speed paper

tape punch) and/or LP11 (line printer) may be used also.

The inputs and outputs of the stand-alone programs are also compatible with the
DOS counterparts. Thus, a program assembled by PAL=11R can be linked by Link-11S,
and vice versa. The output of Link=11S is loadable by the DOS Loader or the Absolute

Loader from the paper tape system.

PAL-11S has all the capabilities of PAL~11R except for named .CSECT's. PAL-11S
has only the unnamed ,CSECT and the .ASECT. PAL-11S does not have the redundant
mnemonics for some of the additional assembler directives. That is, it has .IFZ,

JAPNZ, .IFL, and .IFG, but does not have the equivalent names .IFEQ, .IFNE,
JFLT, and .IFGT (PAL-11R has both sets).

Link=11S has most of the capabilities of Link-11 except for library searching.
Link=11S has a simple initial dialogue which allows the operator to select the 1/O devices,
define the addresses where the program is to be linked, and to request a list of undefined
globals. Link=11S does handle named and unnamed .CSECT's and therefore can link the
output of PAL-11R.

~

" CHAPTER |

CHAPTER 1l

APPENDICES

IND EX

CONTENTS

PAL-11S ASSEMBLER

—
[

Character Set

Statements

Symbols

Expressions

Assembly Location Counter

Relocation and Linking

Addressing

Assembler Directives

NO 00O NN O O A WON

Operating Procedures
Error Codes
Software Error Halts

f— (@)
. °

LINK-T1S LINKER

1. Introduction

2, Input and Qutput

3. Operating Procedures
4

. Preparation

A ASCIIl Character Set

PAL-11S Assembly Language and Assembler
C Assembling and Linking PAL-11S

w

TN

TN

1.0
2,0

3.0

4.0

5.0

6.0

7.0

CHAPTER 1

PAL-11S ASSEMBLER

CHARACTER SET
STATEMENTS

2.1
2.2
2,3
2.4
2.5

Label
Operator
Operand
Comments

Format Control

SYMBOLS

3.1
3.2
3.3
3.4

Permanent Symbols
User-defined Symbols
Direct Assignment

Register Symbols

EXPRESSIONS

4.1
4.2
4.3
4.4

Numbers

Arithmetic and Logical Operators
ASCII Conversion

Mode of Expressions

ASSEMBLY LOCATION COUNTER
RELOCATION AND LINKING
ADDRESSING

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

Register Mode

Deferred Register Mode
Autoincrement Mode

Deferred Autoincrement Mode
Autodecrement Mode

Deferred Autodecrement Mode
Index Mode -

Deferred Index Mode

vii

NO N0 00O 00 NN O 0 O O A B A DA W NN

— emd el el e el md wed el ed med d
o O 0 O A A A A W N —- O

8.0

9.0

10.0
11.0

7.9 Immediate Mode and Deferred Immediate (Absolute) Mode
7.10 Relative and Deferred Relative Modes

7.11 Table of Mode Formats and Codes

7.12 Instruction Forms

ASSEMBLER DIRECTIVES

8.1 .TITLE

8.2 .GLOBL

8.3 Program Section Directives (LASECT, .CSECT)

8.4 .EOT

8.5 .EVEN
8.6 .END
8.7 .WORD
8.8 .BYTE
8.9 .ASCH
8.10 .RAD5@
8.11 .LIMIT

8.12 Conditioned Assembly Directives
OPERATING PROCEDURES

9.1 Introduction

9.2 Lloading PAL-11S

9.3 Initial Dialogue

9.4 Assembly Dialogue

9.5 Assembly Listing

9.6 Object Module Qutput
9.6.1 Global Symbol Directory
9.6.2 Text Block

9.6.3 Relocation Directory
ERROR CODES

SOFTWARE ERROR HALTS

vili

16

17
18
19
19
20
20
21
21
21
21
22
23
23
24
24
25
25
26
26
31
32
33
33
33
33
34
35

CHAPTER 1
PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

PAL-11S (Program Assermbly Language for the PDP-11, Relocatable, Stand Alone
Version) enables you to write source (symbolic) programs using letters, numbers, and
symbols which are meaningful to you. The source programs, generated either on-

line using the Text Editor (ED=11), or off-line, are then assembled into object modules
which are processed by the PDP-11 linker, LINK=11S, LINK-11S produces a load
module which is loaded by the Absolute Loader for execution. Object modules may
contain absolute and/or relocatable code and separately assembled object modiles may
be linked with global symbols. The object module is produced after two passes through
the Assembler; an optional third pass produces a complete octal/symbolic listing of the
assembled program. This listing is especially useful for documentation and debugging
purposes.

This chapter not only explains how to write PAL-11S programs but also how to assemble
the source programs into object modules. All facets of the assembly language are ex-
plained and illustrated with many examples, and the chapter concludes with assembling
procedures. In explaining how to write PAL-11S source programs, it is necessary,
especially at the outset, to make frequent forward references. Therefore, we recommend
that you first read through the entire chapter to get a "feel" for the language, and

then reread the chapter, this time referring to appropriate sections as indicated, for

a thorough understanding of the language and assembling procedures.

Some notable features of PAL-11S are:

1. Selective assembly pass functions.

2. Device specification for pass functions.

3. Optional error listing on the teleprinter.

4. Double buffered and concurrent |/O (provided by IOXLPT).

5. Alphabetized, formatted symbol table listing.

6. Relocatable object modules.

7. Global symbols for linking between object modules.

1-1

8. Conditional assembly directives.

9. Program Sectioning Directives.

The PAL-11S Assembler requires 8K of memory and provides for about 900 user-defined h
symbo!s (see Section 3.2). In addition, it allows a line printer to be used for program
listing and/or symbol table listing.

The following discussion of the PAL-11S Assembly Language assumes that you have read
the PDP-11 Handbook 1971, with emphasis on those sections which deal with the PDP-11
instruction repertoire, formats, and timings =- a thorough knowledye of these is vital to
efficient assembly language programming.

1.0 CHARACTER SET

A PAL-11S source program is composed of symbols, numbers, expressions, symbolic in-
structions, assembler directives, argument separators, and line terminators written using
the following ASCII* characters.

1. The letters A through Z. (Upper and lower case letters are acceptable, although
upon input, lower case letters will be converted to upper case letters.)

2. The numbers 0 through 9.

3. The characters . and $. (These characters are reserved for systems use.)

4. The separating or terminating symbols: (
= % t e () , i " '+ - &
carriage return tab space line feed form feed

2.0 STATEMENTS

A source program is composed of a sequence of statements, where each statement is on a
single line. The statement is terminated by a carriage return character which must be im—(
mediately followed by either a line feed or form feed character. Should a carriage return
character be present and not be followed by a line feed or form feed, the Assembler will
generate a Q error (Section 10.0), and that portion of the line following the carriage
return will be ignored. Since the carriage return is a required statement terminator, a

line feed or form feed not immediately preceded by a carriage return will have one in-
serted by the Assembler. '

It should be noted that, if the Editor (ED-11) is being used to create the source program,
a typed carriage return (RETURN key) automatically generates a line feed character.

A statement may be composed of up to four fields which are identified by their order of
appearance and by specified terminating characters as explained below and summarized

* ASCII stands for American Standard Code for Information Interchange.

1-2

- N,

P

in Appendix B. The four fields are:
Label Operator Operand - Comment

The label and comment fields are optional. The operator and operand fields are inter-
dependent -- either may be omitted depending upon the contents of the other.

2.1 Label

A label is a user-defined symbol (see Section 3.2) which is assigned the value of the
current location counter. This value may be either absolute or relocatable depending on
whether the location counter value is absolute or relocatable. In the latter case, the
final absolute value is assigned by the Linker, i.e., the value + the relocation constant.
A label is a symbolic means of referring to a specific location within a program. If
present, a label always occurs first in a statement and must be terminated by a colon.
For example, if the current location is absolute 100, the statement:

8’
ABCD: MOV A,B
will assign the value 1008 to the label ABCD so that subsequent reference to ABCD will
be to location]008. In the above case if the location counter were relocatable then

the final value of ABCD would be 1008+K, where K is the location of the beginning of

the relocatable section in which the label ABCD appears. More than one label may
appear within a single label field; each label within the field will have the same value.
For example, if the current location counter is 1008_, multiple labels in the statement:

ABC: $DD: A7.7: MOV A,B

will equate each of the three labels ABC, $DD, and A7.7 with the value 100
($ and . are reserved for system software).

8

The error code M (multiple definition of a symbol) will be generated during assembly
if two or more labels have the same first six characters.

2.2 Operator

An operator follows the label field in a statement, and may be an instruction mnemonic
or an assembler directive (see Section 8 and Appendix B). When it is an instruction
mnemonic, it specifies what action is to be performed on any operand(s) which follows
it. When it is an assembler directive, it specifies a certain function or action to be
performed during assembly.

The operator may be preceded only by one or more labels and may be followed by one
or more operands and/or a comment. An operator is legally terminated by a space, tab,
or any of the following characters:

for - e ("% &,

line feed i form feed carriage return

1-3

The use of each character above will be explained in this chapter.
Consider the following examples:

MOV —>{ A,B ; —>| (TAB) terminates operator MOV
MOV@& A,B _ ; @ terminates operator MOV

When the operator stands alone without an operand or comment, it is terminated by a
carriage return followed by a line feed or form feed character.

2.3 Operand

An operand is that part of a statement which is operated on by the operator == an in-
struction mnemonic or assembler directive. Operands may be symbols, expressions, or
numbers. When multiple operands appear within a statement, each is separated from
the next by a comma. An operand may be preceded by an operator and/or label, and
followed by a comment.

The operand field is terminated by a semicolon when followed by a comment, or by a (
- carriage return followed by a line feed or form feed character when the operand ends
the statement. For example,

LABEL: MOV CEORGE,BOB ;THIS IS A COMMENT

where the space between MOV and GEORGE terminated the operator field and began
the operand field; the comma separated the operands GEORGE and BOB; the semicolon (
terminated the operand field and began the comment. .

2.4 Comments

The comment field is optional and may contain any ASCII character except null, rubout,
carriage return, line feed or form fead. All other characters, even those with special
significance are ignored by the Assembler when used in the comment field.

The comment field may be preceded by none, any, or all of the other three fields. It
must begin with the semicolon and end with a carriage return followed by a line feed or
form feed character. For example,

LABEL: CLR HERE ;THIS IS A $1.00 COMMENT

Comments do not affect assembly processing or program execution, but they are useful
in program listings for later analysis, checkout or documentation purposes.

2.5 Format Control

The format is controlled by the space and tab characters. They have no effect on the
assembling process of the source program unless they are embedded within a symbo!,
number, or ASCII text; or are used as the operator field terminator. Thus, they can be
used to provide a neat, readable program. A statement can be written: (

1-4

TN

N

g ~,

LABEL:MOV(SP)+, TAG;POP VALUE OFF STACK
or, using formatting -characters it can be written:

LABEL: MOV (SPH+,TAG ;POP VALUE OFF STACK
which is much easier to read.
Page size is controlled by the form feed character. A page of n lines is created by
inserting a form feed (CTRL/FORM keys on the keyboard) after the nth line. If no
form feed is present, a page is automatically terminated after 56 lines.
3.0 SYMBOLS
There are two types of symbols, permanent and user-defined. Both are stored in the
Assembler's symbol table. Initially, the symbol table contains the permanent symbols,

but as the source program is assembled, user-defined symbols are added to the table.

3.1 Permanent Symbols

Permanent symbols consist of the instruction mnemonics (see Appendix B.3) and assembler
directives (see Section 8.0). These symbols are a permanent part of the Assembler's
symbol table and need not be defined before being used in the source program.

3.2 User-Defined Symbols

User-defined symbols are those defined as labels (see Section 2.1) or by direct assignment
(see Section 3.3). These symbols are added to the symbo! table as they are encountered
during the first pass of the assembly. They can be composed of alphanumeric characters,
dollar signs, and periods only; again $'s and .'s are reserved for system software. Any
other character is illegal and, if used, will result in the error message | or QU (see Section
10.0). | isa low priority error which may be flagged as QU first. The following

rules also apply to user-defined symbols: '

1. The first character must not be a number.

2. Each symbol must be unique within the first six characters.

3. A symbol may be written with more than six legal characters but the seventh and
subsequent characters are only checked for legality, and are not otherwise recognized
by the Assembler.

4. Spaces and tabs must not be embedded within a symbol.

A user-defined symbo! may duplicate a permanent symbo!. The value associated with a
permanent symbo! that is also user-defined depends upon its use:

1. A permanent symbo! encountered in the operator field is associated with its corre-
sponding machine op-code.

2. If a permanent symbol in the operand field is also user-defined, its user-defined
value is associated with the symbol. If the symbol is not found to be user-defined,
then the corresponding machine op-code value is associated with the symbol. p

(—

User-defined symbols are either internal or global. All symbols are internal unless
they are explicitly typed as global with the . GLOBL assembler directive (see Section
8.2). Global symbols are used to provide links between object modules. A global
symbol which is defined (as a label or by direct assignment) in a program is called an
entry symbo! or entry point. Such symbols may be referred to from other object modules
or assemblies. A global symbo! which is not defined in the current assembly is called

an external symbol. Some other assembly must define the same symbo! as an entry point.

3.3 Direct Assignment

A direct assignment statement associates a symbol with a value. When a direct assign-
ment statement defines a symbo! for the first time, that symbo! is entered into the As-
sembler's symbo! table and the specified value is associated with it. A symbol may be _
redsfined by assigning a new value to a previously defined symbol. The newly assigned (
value will replace the previous value assigned to the symbol.
The symbol takes on the relocatable or absolute attribute of the defining expression.
However, if the defining expression is global, the defined symbol will not be global unless
previously difined as such (see Section 4.0).
The general format for a direct assignment statement is. -

symbo! = expression. : (
The following conventions apply:

1. An egual sign (=) must separate the symbo! from the expression dsfining the symbol.

2. A direct assignment statement may be preceded by a label and may be followed
by a comment. <

3. Only one symbo! can be defined by any one direct assignment statement.
4. Only one level of forward referencing is allowed.

Example of two levels of forward referencing (illegel):

X=Y
Y=2
Z=1

X and Y are both undefined throughout pass 1 and will be listed on the teleprinter as
such at the end of that pass. X is undefined throughout pass 2, and will cause a U error
message.

1-6

Examples:

A=1 ;THE SYMBOL A IS EQUATED WITH THE VALUE 1
B ="'A-1&MASKLOW ;THE SYMBOL B IS EQUATED WITH THE EXPRESSION'S
;VALUE
C: D=3 ;THE SYMBOL D IS EQUATED WiTH 3. THE
E: MOV #1, ABLE ;LABELS C AND E ARE EQUATED WITH THE
; NUMERICAL MEMORY ADDRESS OF THE MOV
; COMMAND

3.4 Register Symbols

The eight general registers of the PDP-11 are numbered 0 through 7. These registers
may be referenced by use of a register symbo!; that is, a symbolic name for a register.
A register symbol is defined by means of a direct assignment, where the defining ex-
pression contains at least one term preceded by a % or at least one term proviously de-
fined as a register symbo!.. In addition, the defining expression of a register symbol
must be absolute. For example:

R0O=%0 ;DEFINE RO AS REGISTER O
R3=R0+3 ;DEFINE R3 AS REGISTER 3
R4=1+%3 | ;DEFINE R4 AS REGISTER 4
THERE=%2 | ;DEFINE "THERE" AS REGISTER 2

It is important to note that all register symbo!s must be defined before they are referenced.
A forward reference to a register symbo! will generally cause phase errors (see Section 10.0).

The % may be used in any expression thereby indicating a reference to a register. Such

an expression is a register expression. Thus, the statement:
CLR %6
will clear register 6 while the statement :

CLR 6
will clear the word at memory address 6. In certain cases a register can be referenced
without the use of a register symbo! or register expression. These cases are recognized
through the context of the statement and are thoroughly explained in Sections 7.11 and
7.12. Two obvious examples of this are: '

JSR 5,SUBR | ~;THE FIRST OPERAND FIELD MUST ALWAYS
: ;BE A REGISTER

1-7

CLR X(2) ; ANY EXPRESSION ENCLOSED IN () MUST BE
;A REGISTER. IN THIS CASE, INDEX REGISTER

;2 (; ‘

4.0 EXPRESSIONS

Arithmetic and Ioglcql operators (see Section 4.2) may be used to form expressions.

A term of an expression may be a permanent or user-defined symbo! (which may be
absolute, relocatable or global), a number, ASCII data, or the present value of the
assembly location counter represented by the period (see Section 5.0). Expressions are
evaluated from left to right. Parenthetical grouping is not allowed.

Expressions are evaluated as word gquantities. The operands of a .BYTE directive (Sec-

tion 8.8) are evaluated as word expressions before truncation to the low-order eight

bits. The evaluation of an expression includes the evaluation of the modi of the re-

sultant expression; that is, absolute, relocatable or external. The definition of the

modes of expression are given below in Section 4.4. ' (

A missing term, expression or external symbo! will be interpreted as 0. A missing operator
will be interpreted as +. The arror code Q (Questionable syntax) will be generated
for a missing operator. For example,

A + =100 ;OPERAND MISSING
will be evaluated as A+ 0 - 100, and (
TAG ! LA 177777 ;OPERATOR MISSING

will be evaluated as TAG | LA+177777.

The value of an external expression will be the value of the absolute part of the ex-
pression; e.g., EXT+A will have a value of A. This will be modified by the |mke" to
become EXT+A.

4.1 Numbers

The Assembler accepts both octal and decimal numbers. Octal numbers consist of the
digits O through 7 only. Decimal numbers consist of the digits O through 9 followed by a
decimal point. If a number contains an 8 or 9 and is not followed by a decimal point,
the N error code (see Section 10.0) will be printed and the number will be interpreted
as decimal. Negative numbers may be expressed as a number preceded by a minus sign
rather than in a two's complement form. Positive numbers may be preceded by a plus
sign although this is not required.

If a number is too large to fit into 16 bits, the number is truncated from the left. In

the assembly listing the statement will be flagged with a Truncation (T) error. Numbers
are always considzred to be absolute quantities (that is, not relocatable).
.

1-8

4.2 Arithmetic and Logical Operators

<% The arithmetic operators are:
+ indicates addition or a positive number
- indicates szfracfion ora :1egcfive number
The logical operators are:
& indicates the logical AND operation

: indicates the logical inclusive OR operation

- AND ‘ OR
\
' 0 & 0 =90 0. 0 =0
0 &1 =0 o 1 =1
1 & 0 =0 I ¢+ 0 =1
1 & 1 =1 1 ! 1T = 1
4.3 ASCII Conversion
(When preceded by an apostrophe, any ASCII character (except nu", rubout, carriage
‘ return, line feed, or form feed) is assigned the 7-bit ASCII value of the character (see
Appendix A). For example,
‘A
is assigned the value 10]8.
e When preceded by a quotation mark, two ASCII characters (not including null, rubout,
(\,‘ carriage return, line feed, or form feed) are assigned the 7-bit ASCII values of each of
the characters to be used. Each 7-bit value is stored in an 8-bit byte and the bytes are
combined to form a word. For example "AB will store the ASCII value of A in the low-
order (even) byte and the value of B in the high-ordar (odd) byte:
high-order byte H low-order byte
B's value = 1T 0 2 : " 0 1 = A's value
A N N—
0 100 001 001 000 001
0 4 1 ! 0 1
"AB=041101 |
(ASCII text is always absolute.

4.4 Mod= of Expressions

The modez of an expression may be absolute, relocatable or external as defined below:
A term of an expression is absolute, relocatable or external depending on whether its
definer (i.e., number, symbo!, etc.) is absolute, relocatable or external. Numbers,
permanent symbols and generated data are always treated as absolute.

An absolute expression is defined as:

1. Absolute term preceded optionally by a single plus or minus sign, or

2. Relocatable expression minus a relocatable term, or

3. Absolute expression followed by an operator followed by an absolute expression.
A relocatable expression is defined as:

1. Relocatable term, or

2. Relocatable expression followed by an arithmetic operator followed by an absolute
expression, or

3. Absolute expression followed by a plus operator followed by a relocatable expression. (
An external expression is defined as:
1. External term, or

2. External expression followed by an arithmetic operator followed by an absolute
term, or

3. Absolute expres;ion followed by a plus operator followed by an external expression. (
In the following examples :

ABS is an absolute symbol,

REL is a relocatable symbol,

EXT is an external symbol.
Examples:

The following are valid expressions:

/’/\\\

~

~ EXT + ABS ;External expression
REL+REL-REL - ;Relocatable expression
ABS+REL-REL & ABS ; Absolute expression
The following are illegal expressions:
EXT+REL
REL+REL
ABS-EXT

5.0 ASSEMBLY LOCATION COUNTER

The period (.) is the symbol for the assembly location counter. (Note difference of
Program Counter. . # PC. See Section 7.0.) When used in the operand field of an
instruction, it represents the address of the first word of the instruction. When used in
the operand field of an assembler directive, it represents the address of the current byte
or word. For example,

A: MOV #.,R0 ;. refers to location A,
;i.e., the address of the
;iMOV instruction

(* is explained in Section 7.9.)

At the beginning of each assembly pass, the Assembler clears the location counter.
Normally, consecutive memory locations are assigned to each byte of object data gen-
erated. However, the location where the object data is stored may be changed by a
direct assignment altering the location counter:

.=expression
Similar to other symbols, the location counter symbol "." has a mode associated with
it. However, the mode cannot be external. Neither can one change the existing mode

of the location counter by using a defining expression of a different mode.

The mode of the location counter symbo! can be changed by the use of the . ASECT or
. CSECT directive as explained in section 8.3.

The expression defining the location counter must not com‘oln forward references or
symbols that vary from one pass to another.

Examples:

.ASECT
.=500 ;SET LOCATION COUNTER TO ABSOLUTE 500

FIRST: MOV .+10, COUNT /THE LABEL FIRST HAS THE VALUE 5008
;.+10 EQUALS 5]08. THE CONTENTS OF
;THE LOCATION 510, WILL BE DEPOSITED ﬁ

8
;IN LOCATION COUNT.

.=520 ;THE ASSEMBLY LOCATION COUNTER NOW
;HAS A VALUE OF ABSOLUTE 5208.
SECOND: MOV ., INDEX ;THE LABEL SECOND HAS THE VALUE 5208.

;THE CONTENTS OF LOCATION 520,, THAT
;1S, THE BINARY CODE FOR THE INS%'RUC-
;TION ITSELF, WILL BE DEPOSITED IN

;LOCATION INDEX. -
. CSECT :
.=.+20 ;SET LOCATION COUNTER TO RELOCATABLE
;20. (
THIRD: .WORD 0 ;THE LABEL THIRD HAS THE VALUE OF

;RELOCATABLE 20.

Storage area may be reserved by advancing the location counter. For example, if the
current value of the location counter is 1000, the direct assignment statement

.=.+100 (

will reserve]008 bytes of storage space in the program. The next instruction will be

stored at 1100.

6.0 RELOCATION AND LINKING

The output of the relocatable assembler is an object module which must be processed by :
the PDP-11 Linker, LINK=11S, before loading and execution. The Linker essentially (
fixes (i.e., makes absolute) the values of external or relocatable symbols and creates '
another module (load module) which contains the binary data to be loaded and executed.

To enable the Linker to fix the value of an expression the assembler issues certain direc-

tives to the Linker together with the required parameters. In the case of relocatable

expressions the Linker adds the base of the relocatable section (the location in memory

of relocatable 0) to the value of the relocatable expression provided by the Assembler. g
In the case of an external expression the value of the external term in the expression is

determined by the Linker (since the external symbol must be defined in one of the other

object modules being linked and adds it to the value of the external expression provided

by the Assembler.

All instructions that are to be modified as described above will be marked by a single .
apostrophe in the assembly listing. Thus the binary text output will look as follows (
for the given examples: o

N

e ~

005065' CLR EXTERNAL(5) ;

000000 iVALUE OF EXTERNAL SYMBOL
7ASSUMED ZERO; WILL BE
;MODIFIED BY THE LINKER.

005065' CLR EXTERNAL+6(5) ;

000006 i

005065' CLR RELOCATABLE(5) ;ASSUMING WE ARE IN THE
000040 ;ABSOLUTE SECTION AND

;THE VALUE OF RELOCATABLE
;1S RELOCATABLE 40

7.0 ADDRESSING

The Program Counter (register 7 of the eight general registers) always contains the address
of the next word to be fetched; i.e., the address of the next instruction to be executed,
or the second or third word of the current instruction.

In order to understand how the address modes operate and how they assemble, the action
of the Program Counter must be understood. The key rule is:

Whenever the processor implicitly uses the Program Counter to
fetch a word from memory, the Program Counter is automatically
incremented by two after the fetch.

That is, when an instruction is fetched, the PC is incremented by two, so that it is
pointing to the next word in memory; and, if an instruction uses indexing (see Sections
7.7, 7.8 and 7.10), the processor uses the Program Counter to fetch the base from
memory. Hence, using the rule above, the PC increments by two, and now points to
the next word.

The following conventions are used in this section:
1. Let E be any expression as defined in Section 4.0.

2. Let R be a register expression. This is any expression containing a term preceded
by a % character of a symbol! previously equated to such a term.

Examples:
RO = %0 ;GENERAL REGISTER O
RT = RO+1 ;GENERAL REGISTER 1
R2 = 1+%l ;GENERAL REGISTER 2

3. Let ER be a register expression or an expression in the range 0 to 7 inclusive.

4. Let A be a general address specification which produces a 6=bit mode address field
as described in the PDP-11 Handbook 1971.

The addressing specifications, A, may now be explained in terms of E, R, and ER as
defined above. Each will be illustrated with the single operand instruction CLR or
double operand instruction MOV.

1-13

7.1 Register Mode

The register contains the operand.

Format: R
Example:
RO=%0
CLR RO

7.2 Deferred Register Mode

;DEFINE RO AS REGISTER O
;CLEAR REGISTER O

The register contains the address of the operand.

Format: AR or (ER)

Example:

CLR ™ R1 ;CLEAR THE WORD AT THE
or ;ADDRESS CONTAINED IN
CLR (1) ;REGISTER 1 '

7.3 Autoincrement Mode

The contents of the register are incremented immediately after being used as the address

of the operand.

Format: (ER)+

Examples:
CLR (RO
CLR (RO+3)+
CLR (2)+

;CLEAR WORDS AT ADDRESSES
;CONTAINED IN REGISTERS 0, 3, AND 2

;AND INCREMENT REGISTER CONTENTS BY TWO.

NOTE

Both JMP and JSR instructions using mode 2 (non-deferred autoincrement mode),
autoincrement the register before its use.

In double operand instructions of the addressing form %R, (R)+ or %R, -(R) |
where the source and destination registers are the same, the source operand

is evaluated as the autoincremented or autodecremented value; but the
destination register, at the time it is used, still contains the originally intended
effective address. For example, if Register O contains 100, the followingoccurs:

MOV RO, (0)+
MOV RO, -(0)

;THE QUANTITY 102 IS MOVED TO LOCATION 100
;THE QUANTITY 76 1S MOVED TO LOCATION 76

The use of these forms should be avoided, as they are not guaranteed to remain in

future PDP-11"s.

7.4 Deferred Autoincrement Mode

The register contains the pointer to the address of the operand. The contents of the register

are incremented after being used.

Ve B \\

Format: 2 (ER)+
Example:
CLR @3+ ;CONTENTS OF REGISTER 3 POINT

;TO ADDRESS OF WORD TO BE CLEARED
;BEFORE BEING INCREMENTED BY TWO

7.5 Autodecrement Mode

The contents of the register are decremented before being used as the address of the
operand (see note in Section 7.3),

Format: =(ER)

Examples:
CLR -(RO) ;DECREMENT CONTENTS OF REGISTERS
CLR -(RO+3) ;0, 3 and 2 BEFORE USING

CLR -(2) ;AS ADDRESSES OF WORDS TO BE CLEARED

7.6 Deferred Autodecrement Moda

The contents of the register are decremented before being used as the pointer to the
address of the operand.

Format: @ -(ER)
Example:

CLR @ ~(2) ;DECREMENT CONTENTS OF REG. 2
;BEFORE USING AS POINTER TO ADDRESS
- ;OF WORD TO BE CLEARED.
7.7 Index Mode

Format: E(ER)

The value of an expression E is stored as the second or third word of the instruction.
The effective address is calculated as the value of E plus the contents of register ER.

The value E is called the base.

Examples:

CLR X+2{R1) ;EFFECTIVE ADDRESS IS X+2 PLUS
;THE CONTENTS OF REGISTER 1

CLR -2(3) ;EFFECTIVE ADDRESS IS -2 PLUS
;THE CONTENTS OF REGISTER 3

1-15

7.8 Deferred Index Mode

An expression plus the contents of a register gives the pointer to the address of the operand.
Format: @ E(ER)
Example:

CLR ® 14(4) ;IF REGISTER 4 HOLDS 100, AND LOCATION
;114 HOLDS 2000, LOC.2000 IS CLEARED.

7.9 Immediate Mode and Deferred Immediate (Absolute) Mode

The immediate mode allows the operand itself to be stored as the second or third word of -
the instruction. It is assembled as an autoincrement of register 7, the PC.

Format: #E
Examples:
MOV #100, RO ;MOVE AN OCTAL 100 TO REGISTER O

MOV #X, RO ;MOVE THE VALUE OF SYMBOL X TO
: ;REGISTER 0. o

The operation of this mode is explained as follows: .
The statement MOV #100,R3 assembles as two words. These are:

012703
000100

Just before this instruction is fetched and executed, the PC points to the first word of the
instruction. The processor fetches the first word and increments the PC by two. The source
operand modsz is 27 (autoincrement the-PC). Thus the PC is used as a pointer to fetch the
operand (the second word of the instruction) before being incremented by two, to point to
the next instruction.

If the #E is preceded by ®, E specifies an absolute address.

7.10 Relative and Deferred Relative -Modszs

Relative modz is the normal mode for memory references.
Format: E
Examples:
CLR 100 ;CLEAR LOCATION 100

MOV X,Y ;MOVE CONTENTS OF LOCATION X TO
;LOCATION Y.

1-16

< K

This mod= is assembled as Index mod=, using 7, the PC, as the register. The base of the
address calculation, which is stored in the second or third word of the instruction, is not
the address of the operand. Rather, it is the number which, when added to the PC, becomes
the address of the operand. Thus, the base is X=PC. The operation is explained as follows:

If the statement MOV 100, R3 is assembled at absolute location 20 then the assembled
code is:

Location 20: 016703
Location 22 - 000054

The processor fetches the MOV instruction and adds two to the PC so that it points to
location 22. The source operand mods is 67; that is, indexed by the PC. To pick up
the base, the processor fetches the word pointed to by the PC and adds two to the PC.
The PC now points to location 24. To calculate the address of the source operand, the

base is added to the designated register. That is, BASE+PC=54+24=100, the operand
address.

Since the Assembler considers "." as the address of the first word of the instruction, an
equivalent statement would be B

MOV 100 -.- 4(PC),R3
This mode is called relative because the operand address is calculated relative to the
current PC. The base is the distance (in bytes) between the operand and the current PC.

If the operator and its operand are moved in memory so that the distance between the
operator and data remains constant, the instruction will operate correctly.

If E is preceded by @ the expression's value is the pointer to the address of the operand.

7.11 Table of Mode Forms and Codes (6-bit(A) format only - see Section 7.12)

Each instruction takes at least one word. Operands of the first six forms listed below, do
not increase the length of an instruction. Each operand in one of the other modes,
however; increases the instruction length by one word.

Form Mode Meaning
None R On Register
of @R or (ER) In Register deferred
these (ER)+ 2n Autoincrement -
forms @ (ER)+ 3n Autoincrement deferred
increases -(ER) 4n Autodecrement
the @-(ER) 5n Autodecrement deferred
instruc- '
tion
length.

F orm Mode Meaning

Any of these E (ER) 6n Index
forms adds a @E(ER) 7n Index deferred
word to the #E 27 Immediate _ ﬁ
instruction @ E 37 Absolute memory reference
length. E 67 Relative
’ @E 77 Relative deferred reference
Notes:

1. An alternate form for @R is (ER). However, the form @ (ER) is equivalent to @O(ER).

2. The form @7E differs from the form E in that the second or third word of the instruction con-
tains the absolute address of the operand rather than the relative distance between the operand
and the PC. Thus, the statement CLR @ #7100 will clear location 100 even if the instruction is
moved from the point at which it was assembled. \

The Assembler is not particular about left and right and dangling + and - signs in address
fields. The following are some examples of incorrect syntax that assemble as indicated, without
an error indication.

Form Assembles As: " Form -Assembles As: (
(R2)A A(R2) (R2)- -(R2) \
A-(R2) A(R2) or A-@(R2) @ (R2)A @ A(R2)

A(Rw)+ A(R2) A(R2)+B A+B(R2)

+(R2) (R2)+

7.12 Instruction Forms

The instruction mnemonics are given in Appendix B. This section defines the number and (
nature of the operand fields for these instructions.

In the table that follows, let R, E, and ER represent expressions as defined in Sections 4.0
and 7.0 and let A be a 6-bit address specification of the forms:

E @E -(ER) @ -(ER)
R @R or (R) E(ER) @ E(ER)
(ER)+ @ (ER)+ #E @ "E
Table 1. Instruction Operand Fields (
Instruction Form Example
Double Operand Op A A MOV (Ré6)+, @Y
Single Operand Op A CLR -(R2)
Operate OP HALT
Branch OpE BR X+2
BLO .-4
where -128<(E-.-2)/2<127
Subroutine Call JSR ER, A JSR PC, SUBR
Subroutine Return RTS ER RTS PC
EMT/TRAP Op or OP E EMT (
where O§E§3778 EMT 31)

1-18

TN

\\

The branch instructions are one word instructions. The high byte contains the op code and
the low byte contains an 8-bit signed offset (7 bits plus sign) which specifies the branch
address relative to the PC. The hardware calculates the branch address as follows:

1. Extend the sign of the offset through bits 8 -15,

2. Multiply the result by 2. This creates a word offset rather than a byte offset.
3. Add the result to the PC to form_the final branch address.

The Assembler performs the reverse operation to form the byte offset from the specified
address. Remember that when the offset is added to the PC, the PC is pointing to the word
following the branch instruction; hence the factor -2 in the calculation.

Byte offset = (E-PC)/2 truncated to eight bits.
Since PC = .+2, we have
Byte offset = (E-.-2)/2 truncated to eight bits.

NOTE
It is illegal to branch to a location specified as an external symbol,
or to a relocatable symbol when within an absolute section, or to
an absolute symbol when within a relocatable section.

The EMT and TRAP instructions do not use the low-order byte of the word. This allows in-
formation to be transferred to the trap handlers in the low-order byte. If EMT or TRAP is
followed by an expression, the value is put into the low-order byte of the word. However,

if the expression is too bit (>3778) it is fruncated to eight bits and a Truncation (T) error occurs.

Do not try to micro-program the condition code operators (see Appendix B, B.4). This makes
sense in the PDP-11 hardware; however, the current PAL-11S Assembler does not support this
capability. Thus:

CLC!CLV

results in a Q error (see Appendix B, B.5) and the statement is assembled as CLC.

Expressions in the Assembler do, however, allow logical operators and the use of instruction
mnemonics. Thus, the proper ways to write the above statement:

.WORD CLC. ;Operand of .WORD
+CLC.CLV ;Operand of default .WORD
.CLC'\CLV ;Operand of default .WORD

8.0 ASSEMBLER DIRECTIVES

Assembler directives (sometimes called pseudo-ops) direct the assembly process and may
generate data. : ‘

Assembler directives may be preceded by a label and followed by a comment. The assembler
directive occupies the operator field. Only one directive may be placed in any one state-
ment. One or more operands may occupy the operand field or it may be void -~ allowable
operands vary from directive to directive.

8.1 .TITLE

The .TITLE directive is used to name the object module. The name is assigned by the first

symbol following the directive. If there is no .TITLE statement the default name assigned
is ".MAIN.".

1-19

8.2 .GLOBL

The .GLOBL directive is used to declare a symbol as being global. It may be an entry ﬁ
symbol, in which case it is defined in the program, or it may be an external symbol, in

which case it should be defined in another program which will be linked with this program

by the linker.

The form of the .GLOBL directive is
.GLOBL NAMA, NAMB, ..., NAMN

NOTE : :
A symbol cannot be declared global by defining it as a
global expression in a direct assignment statement.

If an illegal character is detected in the operand field of a .GLOBL statement, an error
message is not generated; and the Assembler may ignore the remainder of the statement.
Thus: ‘ » :
GLOBL A,B,@C,D (

assembles without error as:
.GLOBL A,B
8.3 Program Section Directives (.ASECT and .CSECT)

The relocatable assembler provides for two program sections, an absolute section declared
by an .ASECT directive and a relocatable section declared by a .CSECT directive. These
directives therefore enable the programmer to specify that parts of his program be assembled
in the absolute section and others in a relocatable section. The scope of each directive
extends until a directive to the contrary is given. The Assembler initially starts in the
relocatable section. Thus, if the first statement of a program were

A: .ASECT

the label "A" would be a relocatable symbol which is assigned the value of relocatable
zero. The absolute value of A will be calculated by the Linker by adding the value of

the base of the relocatable section. (
N
Example:
.ASECT ;ASSEMBLER IN ABSOLUTE SECTION
.=1000 ;PC = 1000 ABSOLUTE -
A: CLR X ;A =1000 ABSOLUTE
.CSECT ;ASSEMBLE IN RELOCATABLE SECTION
X: JMP A ;X=0 RELOCATABLE
.END

The absolute and/or relocatable section may be discontinued (by switching to the alternate
section) and then continued where they left off by using another . ASECT or . CSECT
statement.

Example:

1-20

. CSECT

.WORD 0, 1,2 ;ASSEMBLED AT RELOCATABLE 0, 2 and 4
.ASECT

.WORD 0,1, 2 ;ASSEMBLED AT ABSOLUTE O, 2 and 4

. CSECT

.WORD 0 ;ASSEMBLED AT RELOCATABLE 6.

.END

If a label is defined twice, first in an absolute section and then in a relocatable section,
the symbol will be relocatable but its value will be as defined in the absolute section.

8.4 .EOT

The .EOT directive indicates the physical End Of Tape though not the logical end of the
program. |f the .EOT is followed by a single line feed or form feed, the Assembler will
still read to the end of the tape, but will not process anything past the .EOT directive.

If .EOT is followed by at least two line feeds or form feeds, the Assembler will stop before
the end of the tape. Either case is proper, but it should be understood that even though
it appears as if the Assembler has read too far, it actually hasn't.

If a .EOT is embedded in a tape, and more information to be assembled follows it, .EOT
must be immediately followed by at least two line feeds or form feeds. Otherwise, the
first line following the .EOT will be lost.

Any operands following a . EOT directive will be ignored. The .EOT directive allows
several physically separate tapes to be assembled as one program. The last tape should be
terminated by a . END directive (see Section 8.6) but may be terminated with .EOT (see
.END emulation in Section 9.4).

8.5 .EVEN

The .EVEN directive ensures that the assembly location counter is even by adding one if
it is odd. Any operands following a .EVEN directive will be ignored.

8.6 .END

The .END directive indicates the logical and physical end of the source program. The
.END directive may be followed by only one operand, an expression indicating the pro-
gram's transfer address.

At load time, the load module will be loaded and program execution will begin at the
transfer address indicated by the .END directive. If the address is not specified, the
loader will halt after reading in the load module.

8.7 .WORD

The . WORD assembler directive may have one or more operands, separated by commas.
Each operand is stored in a word of the object program. If there is more than one operand,
they are stored in successive words. The operands may be any legally formed expression.
For example,

1-21

.=1420

SAL=0 .

.WORD 177535, .+4, SAL ;STORED IN WORDS 1420, 1422 AND ﬁ
' ;1424 WILL BE 177535, 1426, AND O

Values exceeding 16 bits will be truncated from the left, to word length.

A .WORD directive followed by one or more void operands separated by commas will
store zeros for the void operands. For example, :

.=1430 ;ZERO, FIVE, AND ZERO ARE STORED
.WORD , 5, ;IN WORDS 1430, 1432, AND 1434.

An operator field left blank will be interpreted as the . WORD directive if the operand

field contains one or more expressions. The first term of the first expression in the operand
field must not be an instruction mnemonic or assembler directive unless preceded by a

+, =, or one of the logical operators, . or &. For example, (

.=440 ;THE OP-CODE FOR MOV, WHICH IS 010000,
LABEL: +MOV, LABEL ;IS STORED IN LOCATION 440. 440 IS
;STORED IN LOCATION 442.

Note that the default . WORD will occur whenever there is a leading arithmetic or logical
operator, or whenever a leading symbol is encountered which is not recognized as an
instruction mnemonic or assembler directive. Therefore, if an instruction mnemonic or g
assembler directive is misspelled, the . WORD directive is assumed and errors will result. (
Assume that MOV is spelled incorrectly as MOR:

MOR A,B

Two error codes can result: A Q will occur because an expression operator is missing
between MOR and A, and a U will occur if MOR is undefined. Two words will be gen-
erated; one for MOR A and one for B.

(

8.8 .BYTE)

The .BYTE assembler directive may have one or more operands separated by commas. Each
operand is stored in a byte of the object program. If multiple operands are specified, they
are stored in successive bytes. The operands may be any legally formed expression with a
result of 8 bits or less. For example,

SAM=5 ;STORED IN LOCATION 410 WILL BE
.=410 ;060 (THE OCTAL EQUIVALENT OF 48).
.BYTE 48.,SAM ;IN 411 WILL BE 005.

If the expression has a result of more than 8 bits, it will be truncated to its low-order
8 bits and will be flagged as a T error. If an operand after the .BYTE directive is left
void, it will be interpreted as zero. For example,

1-22

/\\\

.=420 ;ZERO WILL BE STORED IN
.BYTE, , ;BYTES 420, 421 AND 422.

If the expression is relocatable, a warning flag, A, will be given.

8.9 .ASCII

The .ASCII directive translates strings of ASCII characters into their 7=bit ASCII codes
with the exception of null, rubout, carriage return, line feed and form feed. The text

to be translated is delimited by a character at the beginning and the end of the text.

The delimiting character may be any printing ASCII character except colon and equal
sign and those used in the text string. The 7-bit ASCII code generated for each character
will be stored in successive bytes of the object program. For example,

.=500 ;THE ASCII CODE FOR 'Y WILL BE

LASCIl /YES/ ;STORED IN 500, THE CODE FOR E
;IN 501, THE CODE FOR S IN 502.

.ASCIl /5+3/2/ ;THE DELIMITING CHARACTER OCCURS

;AMONG THE OPERANDS. THE ASCII
;CODESFOR 5, + , AND 3 ARE
;STORED IN BYTES 503, 504, AND
;505. 2/ 1S NOT ASSEMBLED.

The .ASCII directive may be terminated by any legal terminator except for = and
Note that if the text delimiter is also a terminator, the leading text delimiter can also
serve as the .ASCII directive terminator. For example,

.ASCII /ABCD/ + ;THE SPACE IS REQUIRED
;BECAUSE / IS NOT A TERMINATOR.

.ASCI+ABCD+ ;NO SPACE IS REQUIRED.

8.10 .RADS50

PDP-11 system. programs often handle symbols in a specially coded form called "RADIX 50"
(this form is sometimes referred to as "MOD40"). This form allows 3 characters to be
packed into 16 bits; therefore, any symbol can be held in two words, the form of the
directive is:

.RAD50 /ccc/

The single operand is of the form /CCC/ where the slash (the delimiter) can be any printable
character except for = and : . The delimiters enclose the characters to be converted
which may be A through Z, 0 through 9, dollar ($), dot (.) and space (). If there are
fewer than 3 characters they are considered to be left-justified and trailing spaces are
assumed. Any characters following the trailing delimiter are ignored and no error results.

1-23

Examples:

.RAD50 /ABC/ ;PACK ABC INTO ONE WORD
.RAD50 /AB/ ;PACK AB (SPACE) INTO ONE WORD; ﬁ
.RAD50 // ;PACK 3 SPACES INTO ONE WORD ~

The packing algorithm is as follows:

A. Each character is translated into its RADIX 50 equivalent as indicated in the following
table:

Character RADIX 50 Equivalent (octal)

(SPACE) 0

A-Z 1-32)
$ 33

. 34

0-9 36-47 (

Note that another character can be defined for code 35.

B. The RADIX 50 equivalents for characters 1 through 3 (C1,C2, C3) are combined as
follows:

RESULT=((C1*50)+C2)*50+C3

8.11 .LIMIT (

A program often wishes to know the boundaries of the relocatable code. The .LIMIT
directive generates two words into which the linker puts the low and high addresses of the
relocated code. The low address (inserted into the first word) is the address of the first

byte of code. The high address is the address of the first free byte following the relocated
code. These addresses will always be even since all relocatable sections are loaded at

even addresses and if a relocatable section consists of an odd number of bytes the linker ’
adds one to the size to make it even. , (

| 8.12 CONDITIONAL ASSEMBLY DIRECTIVES

Conditional assembly directives provide the programmer with the capability to condi=-
tionally include or not include portions of his source code in the assembly process. In
what follows, E denotes an expression and S(i) denotes a symbol. The conditional
directives are:

IFZ E ;IF E=0

.IFNZ E ;IF E40

JIFL E ;IF E<O

.IFLE E ;IF ESO

.IFG E ;IF EX0

.IFGE E ;IF EX0 Q |
. IFDF S £:,&1S(@ C,&T...0%&71 S(N) (:=OR,&AND) ~—
JFNDF S (DL 5,&71 S(2) L!,&7...0%, &1 S(N)

1-24

ST

TN

If the condition is met, all statements up to the matching . ENDC are assembled. Other-
wise, the statements are ignored until the matching . ENDC is detected.

In the above, . IFDF and . IFNDF mean "if defined" and "if undefined" respectively. The
scan is left to right, no parentheses permitted.

Example:
.IFDF S'T&U Means assemble if either Sor T is defined
and U is defined
.IFNDF T&U.S Means assemble if both T and U are undefined

or if S is undefined
General Remarks:

An errored or null expression takes the default value 0 for purposes of the conditional
test. An error in syntax, e.g., a terminator other than ;, !, &, or CR results in the
undefined situation for . IFDF and . IFNDF, as does an errored or null symbo!.

All conditionals'must end with the .ENDC directive. Anything in the operand field of
+ENDC is ignored. Nesting is permitted up to a depth of 127, . Labels are permitted
on conditional directives, but the scan is purely left to right. ~ For example:

AFZ 1
A: .ENDC
A is ignored .‘
A: LIFZ1
.ENDC

A is entered in the symbo! table.

If a .END is encountered while inside a satisfied conditional, a Q flag will appear,
but the . END directive will still be processed normally. If more .ENDC's appear than
are required, Q flags appear on the exiras.

9.0 OPERATING PROCEDURES

9.1 Introduction

The Assembler enables you to assemble an ASCII tape containing PAL-11 statements

info a relocatable binary tape (object module). To do this, two or three passes are
necessary. On the first pass, the Assembler creates a table of user-defined symbols and
their associated values, and a list of undefined symbols is printed on the teleprinter.

On the second pass the Assembler assembles the program and punches out an absolute

binary tape and/or outputs an assembly listing. During the third pass (this pass is optional),
the Assembler punches an absolute binary tape or outputs an assembly listing. The symbo!

1-25

table (and/or a list of errors) may be output on any of these passes. The input and output
devices as well as various options are specified during the initial dialogue (see Section
9.3). The Assembler initiates the dialogue immediately after being loaded and after the
last pass of an assembly. :

9.2 Loading PAL—115S

PAL-11S is loaded by the Paper Tape Software Absolute Loader. Note that the start

address of the Absolute Loader must be in the Switch Register when loading the Assembler.

This is because the Assembler tape has an initial program which clears all of core up to
the address specified in the Switch Register, and jumps to that address to start loading the
Assembler.

9.3 Initial Dialogue

After being loaded, the Assembler prints its name and version and then initiates dialogue
by printing on the teleprinter

*S
meaning "What is the Source symbolic input device?" The response may be

use Low-speed reader () denotes typing the RETURN key)
meaning High-speed reader

meaning Low-speed reader

meaning Teleprinter keyboard

— - TR

The device specification is terminated, as is all user response, by typing the RETURN key.

If an error is mads in typing at any time, typing the RUBOUT key will erase the im-
mediately preceding character if it is on the current line. Typing CTRL/U will erase the
whole line on which it occurs.

After the *S question and response, the Assembler prints:

*B

meaning "What is the Binary output device?" The responses to *B are similar to those
for *S:

H meaning High-speed punch
L meaning Low-speed punch
) meaning do not output binary tape (). denotes typing the RETURN key)

In addition to I/ O device specification, various options may be chosen. The binary output

will occur on the second pass unless /3 (indicating the third pass) is typed following the H

N

or L. Errors will be listed on the same pass if /E is typed. If /E is typed in response to more

than one inquiry, only the last occurrence will be honored. It is strongly suggested that

1-26

TN

r/. \\

the errors be listed on the same pass as the binary output, since errors may vary from pass
to pass.

If both /3 and /E are typed, /3 must precede /E. The response is terminated by typing
the RETURN key. Examples:

*B L/E Binary output on the low=-speed punch and
' - the errors on the teleprinter, both during
the second pass.

*B H/3/E Binary oufpu’f on the high-speed punch
and the errors on the teleprinter during
the third pass.

*B) - The RETURN key alone will cause the Assembler
to omit binary output

After the *B question and response, the Assembler prints:
*L
meaning "What is the assembly Listing output device? " The response to *L may be:

meaning Low=-speed punch

meaning High-speed punch

meaning Teleprinter

meaning Line Printer

meaning do not output listing () = denotes typing RETURN)

v T

After the 1/O device specification, pass and error list options similar to those for *B may

be chosen. The assembly listing will be output on the third pass unless /2 (indicating the
second pass) is typed following H, L, T, or P. Errors will be listed on the teleprinter during
the same pass if /E is typed. If both /2 and /E are typed, /2 must precede /E. The re-
sponse is terminated by typing the RETURN key. Examples:

*L L/2/E Listing on low-spead punch and errors on
teleprinter during second pass.

*L H . Listing on high-speed punch during third pass

L) The RETURN key alone w1|| cause the Assembler to

omit listing output.

After the *L question and response, the final question is printed on the teleprinter:
*T

meaning "What is the symbo! Table output device? " The device specification is the same

1-27

as for *L question. The symbo! table will be output at the end of the first pass unless /2
or /3 is typed in response to *T. The first tape to be assembled should be placed in the
reader before typing the RETURN key because assembly will begin upon typing RETURN
to the *T question. The /E option is not a meaningful response to *T. Example:

*T 1/3 Symbol table output on teleprinter at end of third pass.

*T Typing the RETURN key alone will cause the Assembler
to omit symbo! table output.

The symbo! table is printed alphabetically, three symbo!s per line. Each symbo! printed

is followed by its identifying characters and by its value. If the symbo! is undefined,

six asterisks replace its value. The identifying characters indicate the class of the symbol;
that is, whether it is a label, direct-assignment, register symbo!, etc. The following
examples show the various forms:

ABCDEF 001244 (Defined label)

R3 = 9000003 (Register symbo!)

DIRASM = 177777 (Direct assignment)

XYZ = @ kxwwdkx (Undefineddirect assignment)
R6 = Qi kwEk (Undzfined register symbo!)

LABEL = *##%x% (Undzfined label)

Generally, undefined symbo!s and external symbo's will be listed as undefined direct
assignments.

If the symbol is relocatable or global or both, the symbol's value will be followed by an
R, a G or both.

It is possible to output both the binary tape and the assembly listing on the same pass,
thereby reducing the assembly process to two passes (see Example 1 below). This will
happen automatically unless the binary device and the listing device are conflicting
devices or the same device (see Example 2 below). The only conflicting devices are the
teleprinter and the low-speed punch. Even though the Assembler deduces that three
passes are necessary, the binary and listing can be forced on pass 2 by including /2 in the
responses fo *B and *L (see Examp'e 3 below).

Example 1. Runs 2 passes:

H High-speed reader
H High-speed punch
P Line Printer
T Teleprinter

|21 8l
=il | i w»n

1-28

(

TN
/ \

Example 2. Runs 3 passes:

*S H High-speed reader
*B H High-speed punch
*L H High-speed punch
*T T Teleprinter

Example 3. Runs 2 passes:
*S H High-speed reader _
*B H/2 High-speed punch on pass 2
*L H/2 High-speed punch on pass 2
T T Teleprinter

Note that there a-e several cases where the binary output can be intermixed with ASCII
output: '

a. *B H/2 Binary and listing fo punch on pass 2.
L W2 |
b *B L/E Binary to low=speed punch and error listing
to teleprinter (and low=-speed punch).
c. *B L/2/E Binary, error listing, and
*L T/2 listing to low speed punch.

The object module so generated is acceptable to the Linker as long as there are no
CTRL/A characters in the source program. The start of every block on the binary tape

is indicated by a 001 and the Linker ignores all information until a 001 is detected.
Thus, all source and/or error messages will be ignored if they do not contain any CTRL/A
characters (octal 001),

If a character other than those mentioned is typed in response to a question, the Assembler
will ignore it and print the question again. Example:

H High-speed reader
Q Q is not a valid response
The question is repeated

|5l bl 5
|| W»n

If at any time you wish to restart the Assembler, type CTRL/P. If the low-speed reader
is the source input device, turn it off before typing CTRL/P.

When no passes are omitted or error options specified, the Assembler performs as follows:

PASS 1:

Assembler creates a table of user-defined symbols and their associated values to be used
in assembling the source to object program. Undefined symbols (not including external

1-29

globals) are listed on the teleprinter at the end of the pass. The symbol table is also

listed at this time. If an illegal location statement of the form .=expression is encountered,
the line and error code will be printed out on the teleprinter before the assembly proceeds.
An error in a location statement is usually a fatal error in the program and should be
corrected.

PASS 2:

Assembler punches the object module, and prints the pass error count and undefined
location statements on the teleprinter.

PASS 3:

Assembler prints or punches the assembly program listing, undefined location statements,
and the pass error count on the teleprinter.

The functions of passes 2 and 3 will occur simultaneously on pass 2 if the binary and
listing devices are different, and do not conflict with each other (the low-speed punch
and teleprinter conflict). Furthermore, if the binary object module is not requested, the
listing will be produced on pass 2. '

The following table summarizes the initial dialogue questions:

PRINTOUT INQURY
*S What is the input device of the Source symbolic tape?
*B What is the output device of the Binary object tape?
*L What is the output device of the assembly Listing?
T What is the output device of the symbo! Table?

The following table summarizes the legal responses:

CHARACTER RESPONSE INDICATED
T Teleprinter keyboard
L Low=-speed reader or punch
H High-speed reader or punch
P Line Printer
/1 Pass 1
/2 Pass 2
/3 Pass 3
/E Errors listed on same pass (not meaningful response to *S or *T)
N Omit function (except in response to *S).

Typical examples of complete initial dialogues:

For minimal PDP-11 configuration:

1-30

-

*S L Source input on low=speed reader
*B L/E Binary output on low-speed punch
T errors during same (second) pass
*L T Listing on teleprinter during pass 3
*T

T Symbo! table on teleprinter at end of pass 1
For a PDP-11 with high-speed 1/O devices:

H Source input on high-speed reader
H/E Binary output on high-speed punch
errors during same (second) pass
*L P) No listing .
*T T/2 Symbo' table on feleprmfer at end of passZ

sl &
wln

9.4 Assembly Dialogue

During assembly, the Assembler will ‘pause to print on the teleprinter various messages to in=
dicate that you must respond in some way before the assembly process can continue. You
may also type CTRL/P, at any time, if you wish to stop the assembly process and restart

the initial dialogue, as mentioned in the previous section.

When a .EOT assembler directive is read on the tape, the Assembler prints

EOF ?

and pauses. During this pause, the next tape is placed in the recdér, and RETURN is
typed to continue the assembly. .

If the specified qssembly listing output device is the high-speed punch and if it is out of

‘tape, or if the device is the Line Printer and is out of paper, the Assembler prints on the

teleprinter
EOM ?

and waits for tape or paper to be placed in the device. Type the RETURN key when the
tape or paper has been replenished; assembly will continue.

Conditions causing the EOM ? messages for an assembly listing device are:

HsP L

No power No power

No tape , Printer drum gate open
Too hot) : . , ' /‘
No paper

There is no EOM if the line printer is switched off—line; although characters may be lost

for this condition as well as for an EOM.

1-31

If the binary output Jevice is ilie high=speed punch and if it is out of tape, the Assembler
prints: '

EOM ?

o S
The assembly process is aborted and the initial dialogue is begun again.
When a .END assembler directive is read on the tape, the Assembler prints:

END ?

and pauses. During the pause the first tape is placed in the reader, and the RETURN key
is typed to begin the next pass. On the last pass, the .END directive causes the Assem-
bler to begin the initial dialogue for the next assembly.

If you are starting the binary pass and the binary is to be punched on the low-speed

punch, turn the punch on before typing the RETURN key for starting the pass. The car- '
riage return and line feed characters will be punched onto the binary tape, but the Linker <
will ignore them.

If the last tape ends with a .EOT, the Assembler may be told to emulate a .END assem-
bler directive by responding with E followed by the RETURN key. The Assembler will then
print

END ?
and wait for another RETURN before starting the next pass. Example:

EOF ? E)
END 7

Note that forcing a .END in this manner causes the error counter to be incremented by one.

9.5 Assembly Listing <

PAL-11S produces a side-by-side assembly listing of symbolic source statements, their
octal equivalents, assigned addresses, and error codes, as follows:

EELLLLLL OOOOOOASSS....... S
000000
000000

The E's represent the error field. The L's represent the address. The O's represent the
object data in octal. The S's represent the source statement. "A'" represents a single
apostrophe which indicates that either the second, third or both words of the instruction
will be modified by the Linker. While the Assembler accepts 72, . characters per line on
input, the listing is reduced by the 16 characters to the left of the source statement.

1-32

TN

The above represents a three-word statement. The second and third words of the statement
are listed under the command word. No addresses precede the second and third words
since the address order is sequential.

The third line is omitted for a two-word statement; both second and third lines are omitted
for a one-word statement.

For a .BYTE directive, the object data field is three octal digits.

For a direct assignment statement, the value of the defining expression is given in the
object code field although it is not actually part of the code of the object program.

The .ASECT and .CSECT directives cause the current value of the appropriate location
counter (absolute or relocatable) to be printed.

Each page of the listing is headed by a page number (octal).

9.6 Object Module Output

The output of the assembler during the binary object pass is an object module which is
meaningful only to the linker. What follows gives an overview of what the object module
contains and at what stage each part of it is produced.

The binary object module consists of three main types of data block:

a) Global symbo! directory (GSD)
b) Text blocks (TXT)
c) Relocation Directory (RLD)

9.6.1 Glohal Symbo! Directory

As the name suggests, the GSD contains a list of all the global symbols together with the
name of the object module. Each symbo! is in Radix=50 form and contains information
regarding its mode and value whenever known.

The GSD is created at the start of the binary object pass.

9.6.2 Text Block

The text blocks consist entirely of the binary object data as shown in the listing. The
operands are in the unmodified form.

9.6.3 Relocation Directory

The RLD blocks consist of directives to the Linker which-may reference the text block
preceding the RLD. These directives control the relocation and linking process.

Text and RLD blocks are constructed during the binary object pass. Outputting of each

1-33

block is done whenever either the TXT or RLD buffer is full and .whenever the lozation
counter needs to be modified.

10.0 ERROR CODES

The error codes printed besids the octal and symbolic code in the assembly Ilshng have
the following meanings:

Error Cods Mea n‘ing_

A - Addressing error. An address within the instruction
is incorrect. Also may indicate a relocation error.

B Bounding error. Instructions or word data are being
assembled at an odd address in memory. The location
counter is updated by +1.

D Doubly-defined symbol referenced. Reference was
made to a symbol which is defined more than once.

I _ o llegal charqci‘er detected. Illegal characters which are
‘also non-printing are replaced by a ? on the listing.

L Line buffer overflow. Extra characters on a line
(more than 7210) are ignored.
M Multiple definition of a label. A label was encount-

ered which was equivalent (in the first six characters)
to a previously encountered label.

N Number containing 8 or 9 has decimal point missing.
P : Phase error. A label's definition or value varies from

one pass fo another.

Q Questionable syntax. There are missing arguments or the
instruction scan was not complefed or a carriage return was
not immediately followed by a line feed or form feed.

R Register-type error. An invalid use of or reference to a
register has been mad=.

S Symbo! table overflow. When the quantity of user~defined symbo!s
exceeds the allocated space available in the user's symbo! table,
the assembler outputs the current source line with the S error code,
then returns to the initial dialogue.

1-34

TN

Error Code Meaning

T Truncation error. A number generated more than 16 bits of significance
or an expression generated more than 8 bits of significance during
the use of the .BYTE directive.

u Undefined symbo!. An undefined symbo! was encountered
during the evaluation of an expression. Relative to the
expression, the undsfined symbol is assigned a value of zero.

1.0 SOFTWARE ERROR HALTS

PAL-11S loads all of its unused trap vectors with the code
.WORD .+2,HALT

so that if the trap does occur, the processor will halt in the second word of the vector.
The address of the halt, displayed in the console address register, therefore indicates
the cause of the halt,

Address of Ha!t (octal) Meaning
12 Reserved instruction executed
16 Trace trap occurred
25 Power fail trap
32 EMT executed

A halt at add-ess 40 indicates an IOXLPT datected error. RO (displayed in the console
lights) contains an identifying code:

@2’;{? in RO Me-::niprl;;

0 Illegal memory reference, SP overflow or
illegal instruction.

Illegal 1OX command.

Slot number out of range.

Device numbe: illegal

Referenced slot not INITed.

Illegal Data Mods.

O hhwN —

IOXLPT also sets R1 as follows:
If the error code is 0, R1 contains the PC at the time of the arror.
If the error code is 1-5, R1 points to some zlement in the 10T argument list or to the

instruction following the argument list, depending on whether IOXLPT has finished de-
coding all the arguments when it detects the error.

1-35

-~
~

e N,
\
\

1.0

2.0

3.0

4.0

3
3
3
- 3.2.1 Restarting
3
3
3

CHAPTER 2
LINK - 11S LINKER

Contents

INTRODUCTION

1.1 Ceneral Description
1.2 Absolute and Relocatable Program Sections
1.3 Global Symbols

INPUT AND OUTPUT

2.1 Object Module
2.2 Load Module
2.3 Load Map

OPERATING PROCEDURES

.1 Loading and Command String
01 Operational Cautions

.2 Error Procedures and Messages
.2.2 Non-Fatal Errors
.2.3 Fatal Errors

.2.4 Error Halts

PREPARATION

NV © N N NN O

11

/d\\

CHAPTER 2

LINK - 11S LINKER

1.0 INTRODUCTION

1.1 General De‘scriyp’rion

LINK-11S (stand alone) is a PDP-11 system program designed to link and relocate programs
previously assembled by PAL-11S. This capability allows the user to separately assemble his
main program and each of his various subroutines without assigning an absolute load address
at assembly time. The binary output of each assembly (called object modules) is processed

by LINK-11S (hereafter called the Linker or LINK-11) to:

a. Relocate each object module and assign absolute addresses.

b. Link the modules by correlating global symbols defined in one module and referenced
in another module.

c. Print a load map which displcys the assigned absolute addresses.

d. Punch a load module whlch can subsequently be loaded (by the Absolute loader) and

executed.

Some of the advantages of using PAL-11S and LINK-11 are:

a. The program is divided into segments (usually subroutines) which are assembled separately .
If an error is discovered in one segment, only that segment needs to be reassembled. The new
object modiile is then linked with the other object modules.

b. Absolute addresses need not be assigned at assembly time. The Linker automatically
assigns absolute addresses. This keeps programs from overlaying each other. This also allows

subroutines to change size without invfluen’cing the placement of other routines.

c. Separate assemblies allow fhe total number of symbols to exceed the number allowed in a

B smgle assembly .

d. Internal symbols (symbols which are not glebal) need not be unique among object modules.
Thus, naming rules are required only for global symbols when separate programmers prepare
separate subroutines of a single program.

e. Subroutines may be provided for general use in object module form to be linked into the

user's program. \(

LINK-11 is designed to run on an 8K PDP-11 with an ASR-33. A PCI1 (high speed paper
tape reader and punch) and an LP11 (line printer) may be used if available. The PCI1
significantly speeds up the linking process. An LP11 provides a fast device for the load map
listing.

1.2 Absolute and Relocatable Program Sections

A program assembled by PAL-11S may consist of an absolute program section, declared by

the . ASECT assembler directive, and a relocatable program section, declared by the . CSECT
assembler directive. (If a program has neither an .ASECT or .CSECT directive, the assem- -
bler implicitly assumes a . CSECT directive.) The program and data in the absolute section

are assigned absolute addresses as specified by the location counter setting statements (.=x).

The program and data in the relocatable section are assigned absolute addresses by the linker.
Addresses are normally assigned such that the relocatable section is at the high end of memo

The assignment of addresses may be influenced by command string options (see Section 3.2).

The Linker appropriately modifies all instructions and/or data as necessary to account for the
relocation of the control section. ‘

LINK-11 has the capability to handle object modules containing named control (relocatable)
sections as generated by PAL-11R. However, PAL-11S can only create the unnamed control
section (which has the special default name of 6 blanks) and the absolute section (with the ()
special name .AABS.). The unnamed control section is internal to each object module.

That is, every object module may have an unnamed control section (each with the name 6
blanks) but the Linker treats them independently. Each is assigned an absolute address such
that they occupy mutually exclusive areas of memory. Named control sections, on the other
hand, are freated globally. That is, if different object modules each have control sections

with the same name, they are all assigned the same absolute load address and the size of the
area reserved for loading of the section is the maximum of the sizes of each section. Thus,
named control sections allow the sharing of data and/or programs among object modules. Thi~
is very similar to the handling and function of labelled COMMON in FORTRAN IV. ("
A restriction of LINK-11S is that the name of a control section must not be the same as

the name of a global entry symbol. This will result in multiple definition errors.

1.3 Global Symbols -

Global symbols provide the links or communication between object modules (or assemblies).
Global symbols are created with the . GLOBAL assembler directive. Symbols which are not
global are called internal symbols. [f the global symbo! is defined (as a label or direct
assignment) in an object module it is called an entry symbo!, and other object modules may
reference it. If the global symbol is not defined in the object module it is an external symbol.
It is assumed to be defined (as an entry symbol) in some other object module.

As the Linker reads the object modules it keeps track of all the global symbo! definitions and,~
references. It then modifies the instructions and/or data which reference the global symbo!s(\

2-2

AN,
.

) SN
/ \

2.0 INPUT AND OUTPUT

2.1 Object Module

LINK-11's input is the object module. This is the output of PAL-11S (or any other program
which can create an object module). The Linker reads each object module twice; that is,

it is a two pass processor.

On pass 1, thelinker reads each object module to gather enough information so that absolute
addresses can be assigned to all relocatable sections and all globals can be assigned absolute
values. This information appears in the global symbol directory (GSD) of the object module.

On pass 2, the Linker reads all of each object module and produces the load module (see
Section 2.2), The data gathered on pass | guides the relocation and linking process on pass 2.

2.2 Load Modules
The normal output of the Linker is a load module which may be loaded and run.

A load module consists of formatted binary biocks holding absolute load addresses and object
data as specified for the Paper Tape System Absolute Loader and the PDP-11 Disk Monitor.
The first few words of data will be the communications directory (COMD) and will have an
absolute load address equal to the lowest relocated address of the program. The absolute
loader will load the COMD at the specified address but then the program will overlay the
COMD*. The disk monitor loader will expect the COMD and will load it where the monitor
wants it. The end of the load module will be indicated by a TRA block; that is, a block
containing only a load address. The byte count in the formatted binary block will be 6 on
this block; on all other blocks the byte count will be larger than 6. The TRA (iransfer
address) is selected by the Linker to be the first even transfer address seen. Thus, if four
object modules are linked together and if the first and second had a .END statement, the
third had a .END A and the fourth had @ .END B , the transfer address would be A

of module three.

*Note:
The overlaying of the COMD by the relocated program is a trick to allow the Absolute Loader

to handle load modules with a COMD. However, a problem arises if a load module is to be
loaded by the absolute loader and either of the following conditions is true:

a. The object modules used to construct the load module contained no relocatable code; or
b. The total sizes of the relocatable code is less than 20(19) bytes (the size of the COMD).

In either case, there is not enough relocatable code to overlay the COMD which means the
COMD will load into parts of memory not intended to be altered by the user. The COMD's
load address, selected by the linker in the above cases, is such that it will be up against the
current fop of memory (see *T option in section 3.1). If the top happens to be very low,
the linker will not allow the COMD to be loaded below address @; it will load it at @.

2-3

2.3 Load Map

The load map provides several types of information concerning the load module's make-up.
The map begins with an indication of the low and high limits of the relocatable code and the h
transfer address. Then there is a section of the map for each object module included in the

linking process. Each of these sections begins with the module's name followed by a list

of the control sections and the entry points for each control section. For each control

section, the base of the section (its low address) and its size (in bytes) is printed to the right

of the section name {enclosed in angle brackets). Following each section name printout is a

list of entry points and their addresses. Affer all information has been printed for each object
module, any undefined symbols are listed. Note that modules are loaded such that if modules

A, B and C are linked together, A is lowest and C is highest in memory.

The format is quite self-explanatory as can be seen from the following example: -
LOAD MAP

TRANSFER ADDRESS: (37434 (
LOW LIMIT: §37486 |
HIGH LIMIT: @37450

**********‘

MODULE MODI

SECTION ENTRY ~ ADDRESS SIZE

<.ABS.> pooene pddee

< > #37406 @EBBA4)
X3 #37452 (
X4 337443 :
X5 §37458
X7 437430

MODULE MOD2
SECTION ENTRY ADDRESS SIZE

< > 1137452 papAde

X1 437452 | (
X2 437452 |
ThEkkkdhrkk
Ik dkdkdhhrk
UNDEFINED REFERENCES

Xél ‘ . . Q

e '\‘

TN

TN

TN

3.0 OPERATING PROCEDURES

3.1 Loading and Command String

The Linker is loaded by the Abso lute L_oqdier and is sélf%forting.l It will use a simple command
dialogue which allows the object module, load module and load map devices to be specified.
During pass | and pass 2, the Linker asks for each object module individually.

Note: The non-printing characters carriage return, line feed and space are represented in
this chapter as <CR>, <LF>and <SPACE>. '

Operation begins by the linker typing its name and version. This is followed by the input
option printed as *I<SPACE> . The responses are:

<CR> Read object module from HSR.
H<CR> = Read object module from HSR. -
L<CR> Read object module from LSR

The input option is followed by the output option *O<SPACE> . The responses are:

<CR> Pu:néh load module on HSP.
H<CR > Punch load module on HSP.
L<CR> Punch load module on LSP.

LINK-11 asks if a load map is desired by ’ryping *M<SPACE> . The legal responses are
<CR> for no map, T<CR> or HKCR> or P<XCR> for a map on the teleprinter, high-speed punch,
or line printer, respectively.

‘The next two options concern the placement of the relocated object program in memory. The

standard version of the Linker assumes it is linking for an 8K machine. It relocates the program
such that it is as high as possible in 8K but leaves room for the Absolute and Boot Loaders.

[These assumed values may be changed by altering parameters HGHMEM (highest legal

memory address +1) and ALODSZ (number of bytes allocated for Absolute Loader and Boot Loader)
and reassembling the linker 1. The user may control where a program is relocated to with

the *T and *B options. After the option *T<SPACE> has been typed, the user may re-
spond as follows:

<CR> Relocate so that program is up against the current
top of memory. If the top has not been changed,
then the top is the assembled-in top (HGHMEM-
ALODSZ). The standard assumption is 16384 .-
112.=16272 (37440(8)).

N<CR> N is an octal number (unsigned) which defines a
new top address.

If a new top is specified, the *B option is suppressed.

After the option *B<SPACE> has been printed the user may respond as follows:

<CR> Use current top of memory .

N<CR> N is an unsigned octal number which defines the
bottom address of the program. That is, a new
top of memory is calculated so that the bottom
of the program corresponds with N.

Once a top of memory has been calculated (by *T or *B), that value is used until it is changed.

~ LINK=11 indicates the start of pass one by typing PASS 1. The input is requested by the
Linker, one tape at a time, by typing *<SPACE>. The legal responses are:

<CR> Read a tape and request more input.
U<CR> List all undefined globals on the teleprinter and request
more input.
E<CR> End of input. If there are undefined globals, list them

on the teleprinter and request more input. Otherwise -
print the load map, if requested, and enter pass 2.

C<LCR> End of input. Assign @ to any undefined globals, print
the load map {if requested), and enter pass 2.

* The Linker indicates the start of pass 2 by typing PASS 2. It then requests each input tape
as in pass 1.

A <CR> is the only useful response to * on pass 2. The modules must be read on pass 2 in
the same order as pass 1. When the last module has been read fhe Linker will automatically
finish the load module and restart itself.

Leader and trailer will be punched on the load module.

Ifthe LSP.isbeing used for the load module output, it should be turned on before pass 2begins

Thus, turn it on before typing EXCR> ot CKCR>. The echo of these characters (and the load
map, if printed on the TTY) will be punched on the load module but may be easily removed
since leader is punched on the load module. In any case, ASCII information in a load module
will be ignored by the Absolute and Disk Monitor loaders. However, the LSP can be turned
on while leader is being punched (after the linker hos typed PASS 2) to keep the load map,
etc., from being punched onto the tape.

Note:

On all command string options, except for *T and *B, the linker only examines the last
character typed preceding the carriage return. Thus,

ABCDEFGH<CR>

is equivalent to H<CR>.

e ’.\:

p /~\.

3.1.1 Operational Cautions

The Linker does not give a warning if a program is linked so low in memory that it
goes below address . However, this case is easily seen by examining the low and
high limits which are always printed (on the load map or on fhe teleprinter).

The Linker reads object modules until an end of medium is detecfed Object modules
from the DEC Program Library contain a special checksum at the end of the tape
which must be removed before they are linked . Failure to remove this checksum

can result in fatal Linker errors. ' o

3.2 Error Procedure and Messages

3.2.1 Restarting
Control/P (symbolized as T P) is used for two purposes by LINK-11. lfa 1t Pis typed

while a load map is being printed, the load map will be aborted and the Linker will continue.
A T P typed at any other time will cause the Linker to restart itself.

3.2.2 Non-Fatal Errors

a. Non-unique object module name - this error is detected during pass 1 and results in an
error message and the module is rejected. The message is:

?MODULE NAME XXXXXX NOT UNIQUE
The Linker will then ask for more input.

b. Load map device EOM - this error allows the user an opflon to fix the device and continue
or abort the map listing. The Linker prints:

? MAP DEVICE EOM.
TYPE <CR>TO CONTINUE

Any response, terminated by <CR> or <LF> will cause the Linker to continue. A T P will
cause the map be to aborted.

c. A byte relocation error - the Linker will try to relocate and link byte quantities. However,
relocation will usually fail and linking may fail. Failure is defined as the high byte of the
relocated value (or the linked value) not being all zero. In such a case, the value is truncated
to 8 bits and the following message is printed: ‘

?BYTE RELOC ERROR AT ABS ADDRESS XXXXXX.

The linker automatically continues.

d. |If the object modules are not réad-in the same order on pass 2 as pass 1, the Linker will
indicate which module should be loaded next by typing:

?LOAD XXXXXX NEXT!
The linker will then ask for more input.

e. Multiply-Defined Globals - this results, during pass 1, in the following error message:
? XXXXXX MULTIPLY DEFINED BY MODULE XXXXXX.

The second definition is ignored and the Linker continues.

3.2.3 Fatal Errors

All of the following errors cause the indicated error message to be printed and the Linker is
restarted. '

a. Symbo! Table overflow - the message is:

?2SYMBOL TABLE OVERFLOW - MODULE XXXXXX, SYMBOL XXXXXX
b. System Errors - this class of errors prints:

?SYSTEM ERROR XX
where XX is an identifying number as follows:

Number Meaning

a1 Unrecognized symbo! table entry found.

22 A relocation directory references a global name which
cannot be found in the symbo! table.

a3 A relocation directory contains a location counter modi-
fication command which is not last.

24 Object module does not start with a GSD.

@5 The first entry in the GSD is not the module name.

2-8

/ﬂ\\

g6

87

78

29
19
1

12

An RLD references a section name which cannot
be found. v

The TRA specification references a non-existent
module name.

The TRA specification references a non-existent
section name.

An internal jump table index is out of range.
A checksum error occurred on the object module.

An object module binary block is too big (more
than 64(10) words of data).

A device error occurred on the load module
output device.

All system errors except for numbers 1@ and 12 indicate a program failure either in the Linker
or the program which generated the object module. Error @5 can occur if a tape is read which
is not an object module.

3.2.4 Error HALTs

LINK-11 loads all of its unused trap vectors with the code:

.WORD

.+2, HALT

so that if the trap occurs, the processor will halt in the second word of the vector. The
address of the halt, displayed in the console lights, therefore indicates the cause of the halt.

Address of HALT (octal) Meaning

12
16
26
32

Reserved instruction executed.
Trace trap occurred.

Power fail trap.

EMT executed.

2-9

A halt at address 40 indicates an IOXLPT detected error. R@ (displayed in the console
lights) contains an identifying code: ‘

Code in RE Meaning
'} Illegal memory reference, SP overflow or

illegal instruction.
Illegal IOX command.
Slot number out of range.
Device number illegal.

Referenced slot not INIT ed.
Illegal data mode.

OO~

IOXLPT also sets R1 as follows:.
If the error code is @, R1 contains the PC at the time of the error.

If the error code is 1-5, R1 points to some e'ement in the |OT argument list or to the instruc~
tion following the argument list, depending on whether IOXLPT has finished decoding all the
arguments when it detects the error. '

2-10

4.0 PREPARATION

LINK=11S is available as an absolute load module (for an 8K machine), as two object modules
(for relinking) and as several ASCII source tapes. There is one object module for the Linker
and one for IOXLPT. The supplied object modules may be relinked (using the supplied load
module) to load into any size machine larger than 8K. However, the resulting Linker will
still assume a top of memory corresponding to an 8K machine (this can be overridden in the
command string options). The assumed top of memory and reserved Absolute Loader space may
be changed by editing the first linker ASCII tape with ED=11. The parameters to be changed
are HGHMEM (high memory address +1 (always even)) and ALODSZ (Absolute Loader size
(always even)). The source tapes for the Linker may then be assembled with PAL-11S and

the new object module can then replace the supplied Linker object module.

The tapes are identified as follows:

Library Code

DEC-11-ZLQA-PA
DEC-11-ZLQA-PA
DEC-11-ZLOA-PA
DEC-11-ZLQA-PA

DEC-11-ZLQA-PA
DEC-11-ZLQA~-PA

DEC-11-ZLQA-PR

DEC-11-ZLQA-PR

DEC-11-ZLQA-PL

Tape 1 of 6
Tape 2 of 6| One

‘Tape 3 of 6 Assembly

Tape 4 of 6

Tape 5 of 6y One
Tape 6 of 6] Assembly
Tape 1 of 2

Tape 2 of 2

2-11

LINK=11S (Main Program)

IOXLPT

LINK=11S Object Module
IOXLPT Object Module

LINK=11S Load Module

H

\

N

EVEN 7-BIT
PARITY OCTAL
BIT CODE
0 000
1 001
1 002
0 003
1 004
0 005
0 006
1 007
1 010
0 011
0 012
1 013
0 014
1 015
1 016
0 017
1 020
0 021
0 022
1 023
0 024
1 025
1 026
0 027
0 030
1 031
1 032
0 033
1 034
0 035
0 036
1 037
1 040

CHARACTER

NUL
SOH

STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
vT
FF
CR

1510)

SI

DLE
DC1

DC2
- DC3
DC4

NAK

SYN

ETB

CAN
EM
SUB
ESC
FS
GS
RS
us
SP

APPENDIX A

ASCII CHARACTER SET

REMARKS

NULL, TAPE FEED, CONTROL SHIFT P.

START OF HEADING; ALSO SOM, START OF
MESSAGE, . CONTROL A, ‘

START OF TEXT; ALSO EOA, END OF ADDRESS,
CONTROL B, _

END OF TEXT: ALSO EOM, END OF MESSAGE,
CONTROL C,

END OF TRANSMISSION (END): SHUTS OF TWX
MACHINES,CONTROL D,

ENQUIRY (ENQRY) ; ALSO WRU, CONTROL E,
ACKNOWLEDGE. ALSO RU, CONTROL F.

RINGS THE BELL. CONTROL G.
BACKSPACE: ALSO FEO, FORMAT EFFECTOR.
BACKSPACE SOME MACHINES, CONTROL H.
HORIZONTAL TAB. CONTROL I.

LINE FEED OR LINE SPACE (NEW LINE) :
ADVANCES PAPER TO NEXT LINE, DUPLICATED
BY CONTROL J.

VERTICAL TAB(VTAB). CONTROL K.

FORM FEED TO TOP OF NEXT PAGE (PAGE) .
CONTROL L.

CARRIAGE RETURN TO BEGINNING OF LINE.
DUPLICATED BY CONTROL M.

SHIFT OUT: CHANGES RIBBON COLOR TO RED.
CONTROL N.

SHIFT IN: CHANGES RIBBON COLOR
TO BLACK, CONTROL O,

DATA LINK ESCAPE. CONTROL P (DCO).
DEVICE CONTROL 1, TURNS TRANSMITTER
(READER) ON, CONTROL Q (XON) .

DEVICE CONTROL 2, TURNS PUNCH OR AUXI- .
LIARY ON. CONTROL R (TAPE,AUX ON).
DEVICE CONTROL e, TURNS TRANSMITTER
(READER) OFF, CONTROL S (XOFF).

DEVICE CONTROL 4. TURNS PUNCH OR AUXI-
LIARY OFF. CONTROL T (TAPE,AUX OFF)
NEGATIVE ACKNOWLEDGE: ALSO ERR. ERROR.
CONTROL U.

SYNCHRONOUS IDLE (SYNC). CONTROL V.

END OF TRANSMISSION BLOCK: ALSO LEM.
LOGICAL END OF MEDIUM. CONTROL W.
CANCEL (CANCL) .. CONTROL X.

END OF MEDIUM. CONTROL Y.

SUBSTITUTE. CONTROL 7.

ESCAPE. PREFIX.

FILE SEPARATOR. CONTROL SHIFT L.
GROUP SEPARATOR. CONTROL SHIFT M.
RECORD SEPARATOR. CONTROL SHIFT N.
UNIT SEPARATOR. CONTROL SHIFT O.
SPACE.

A-1

EVEN 7-BIT
PARITY OCTAL
BIT CODE CHARACTER REMARKS

041
042
043
044
045

046
047
050
051
052
053
054
055
056
057
060
061
062
063
064
065
066
067
070

071
072
073
074
075
076
077
100
101
102
103
104
105
106
107
110
111
112
113
114
115
116
117
120
121
122
123
124
125

ACCUTE ACCENT OR APOSTROPHE.

4+ =~ =2 00

i~

C)I—-'OI—'i—‘OI—‘OOI—‘OI—‘I—‘OO]_,I—‘OI—‘OOI—‘OI—‘I—‘OE—'OOI—‘I—‘OOI—'OI—JI—-'OI—'OOI‘—‘OI—'I—'OOI—'I—‘OI—‘OO

CHNYWOUWOZRHERUHIEQHEBOQW DUV I AN« OOoOdAUT_WNEHON .

TN

EVEN 7-BIT
PARITY OCTAL
BIT CODE

.CHARACTER

126
127
130
131
132
133
134
135
136
137
140
175
176
177

HFOOCOHKFOHOOHKHO

141
142
143
144
145
146
147
150
151
152
153
154
155
156
157
160
16l
162
163
164
165
166
167
170
171
172
173
174

HOHHOORKOHOOHOHHOHOOHRKHOOHO M I

NN XEdec QWO HAFUWH SO HMD QT

[S—

DEL

REMARKS

SHIFT K
SHIFT L
SHIFT M
SHIFT N

ACCENT GRAVE.

THIS CODE GENERATED BY ALT MODE.

THIS CODE GENERATED BY ESC KEY (IF PRESEN
DELETE, RUB OUT.

LOWER CASE ALPHABET FOLLOWS (TELETYPE
MODEL 37 ONLY).

SN

N

 APPENDIX B

PAL-11§ ASSEMBLY LANGUAGE AND ASSEMBLER

7

B.1 TERMINATORS

The list below defines all characters which are considered
to be terminators. The order of the list implies the des-
cending hierarchy of significance.

Character
CTRL/FORM
LINE FEED

RETURN

%

TAB
BLANK or
SPACE

#

@

Function
Source line terminator.
Source line terminator.
Source line terminator
Label terminator
Direct assignment delineator
»Register term delineator

Item terminator
Field terminator

Item terminator
Field terminator

Immediate expression field indicator
Deferred addressing indicatdr
Initial register field indicator
Terminal register field indicator
Operand field sebarator

Comments field delimiter
‘Arithmetic addition operator
Arithmetic subtraction operator :
Logical AND operator

Logical OR operator

Double ASCII text indicator

Single ASCII text indicator.

B.2 ADDRESS MODE SYNTAX

r is an integer between 0 and 7.

R is a register expression, E is an expression, ER is either a
register expression or an absolute expression in the range of 0

Meaning

Register R contains the operand.
R is a register expression.

Deferred Register @R or (R)Register R contains the operand

to 7.
Address Symbol in
Mode Operand
Number Address Mode Name Field
Or Register R
vlr
2r Autoincrement (ER) +
Deferred
3r Autoincrement @ (ER) +
4r Autodecrement - (ER)
Deferred
5r Autodecrement @- (ER)
Index by the
register
6r Specified E (ER)
Deferred index
by the register
7r specified @E (ER)
27 Immediate Operand #E
37 Absolute address @#E
67 Relative address E
77 Deferred rela-

tive address. @QE

address.

The contents of the register
specified by ER is incremented
after being used as the address
of the operand.

ER contains the pointer to the
address of the operand. ER is
incremented after use.

The contents of register ER is de-
cremented before it is used as the
address of the operand.

The contents of register ER is de-
cremented before it is used as the
pointer to the address of the oper-
and.

E plus the contents of the register
specified, ER, is the address of
the operand.

added to ER cgives the pointer
o the address of the onperand,

the operand.

-
n

the operand address.

= I e I o e Y 5]
l_l
0]

the address of the operand.

-
0]

E is the pointer to the address
of the operand.

(

TN

TN

4

B.3 INSTRUCTIONS

The tables of instructions which follow are grouped according to
the operands they take and according to the bit patterns of their

op-codes.
In the representation of op-codes, the following symbols are used:

SS Source operand specified by a 6-bit
address mode

DD Destination operand specified by a 6-bit
address mode
XX 8-bit offset to a
location (branch instructions)
R Integer between 0 and 7 representing a general

register

Symbols used in the description of instruction operations are:

SE Source effective address

DE Destination effective address
() contents of

-~ becomes

The condition codes in the processor status word (PS) are affected

by the instructions; these condition codes are represented as follows:

N Negative bit: set if the result is negative

vA Zero bit: set if the result is zero

\% oVerflow bit: set if the result had an overflow
c Carry bit: set if the result had a carry

In the representation of the instruction's effect on the condition

codes, the following symbols are used:
* Conditionally set
- Not affected
0 Cleared
1 Set

To set conditionally means to use the instruction's result to deter-
mine the state of the code.

Logical operators are represented by the following symbols:

0

Inclusive OR
Exclusive OR

AND

(used over a symbol) NOT (i.e., 1's complement)

B.3.1 Double Cperand Instructions OP A,A
Op-code MNEMONIC Stands for Operation Condition Codes

N zZ VvV C
01SsSDD MOV MOVe (SE) = DE * ¥ 0 -
11SSDD MOVB MOVe Byte
02SSDD CMP CoMPare (SEY~(DE) * * *x %
12SSDD CMPB CoMPare Byte
035SDD BIT BIt Test (SE)s& (DE) * k0 -
13SSDD BITB BIt Test Byte
04SSDD BIC BIt Clear (§E) & (DE)-> DE * x 0 -
14SSDD BICB BIt Clear Byte
05SSDD BIS BIt Set (SE) ! (DE)-=> DE * * 0 -
15SSDD BISB BIt Set Byte
06SSDD ADD ADD (SE) + (DE)~> DE ¥ * x 0%
16SSDD SUB SUBtract (DE) - (SE) > DE * ok * %
B.3.2 Single Operand Instructions Oo°P A

Condition Codes

Op-code Mnemonic Stands for Operation: N Z VvV C
0050DD CLR CLeaR 0-» DE 0 1 0 O
1050DD CLRB CLeaR Byte
0051DD COM COMplement (DE) » DE * x 0 1
1051DD COMB COMplement Byte
0052DD INC INCrement (DE) + 1 = DE ook %]
1052DD INCB INCrement Byte
0053DD DEC DECrement (DE) -1 = DE * ok ok o
1063DD DECB DECrement Byte
0054DD NEG NEGate (DE) + 1 > DE LA A
1054DD NEGB NEGate Byte
0055DD ADC ADd Carry (DE) + (C) > DE * 0k k%
1055DD ADCB ADd Carry Byte

B-4

(

,/\\\

Op-code MNEMONIC Stands for
0056DD SBC SuBtract Car
1056DD SBCB SuBtract Car
0057DD TST TeST

10577DD TSTB TeST Byte
B.3.3 Rotate/Shift

0060DD ROR ROtate Right

1060DD RORB ROtate Right
Byte
0061DD ROL ROtate Left
ROtate Left
Byte

1061DD ROLB

Arithmetic
Shift Right

0062DD ASR

Condition Codes

Operation N Z VvV C
ry (DE)-(C)= DE * k% %
ry Byte

(DE) - 0 = DE * * 0 0

c
1062DD ASRB Arithmetic ¢ #;;MT———————%h-* * x %
Shift Right byl :
Byte
_ C
0063DD ASL Arithmetic O L Py * * * *
Shift Left Ck//’F 6{
3 (—O
1063DD ASLB Arithmetic ‘ ok kK
Shift Left
Byte
0001DD JMP JuMP DE-— PC - - - -
0003DD SWAB SWAp Bytes ;;EEE;;] * % 0 0
B.3.4 Operation Instructions Op
Condition Codes
Op-Code MNEMONIC Stands for Operation N Z Vv C
000000 HALT HALT The computer stops - - - -
all functions.
000001 WAIT WAIT The computer stops - - - -

ReTurn from

000002 RTI
: Interrupt

and waits for an
interrupt.

The PC and ST are - - -
popped off the SP

stack:

((sp))» PC

(SP)+2—> SP

((sP)) > sT

Condition Codes
Op-code MNEMONIC Stands for Operation N Z V C
* * * *
000003 000003 breakpoint Trap to location 14.
trap This is used to
call oDT-11.
000004 IoT Input/Output Trap to location * % %
Trap 20. This is used
to call IOX.
000005 RESET RESET Returns all I/0 - - - -
device handlers to
power-on state.
Trapping Op or Op E where OiEi3778
104000~ EMT EMulator Trap to location * 0k x %
104377 Trap 30. This is used
to call system
programs.
104400~ TRAP TRAP Trap to location * % x %
104777 34. This is used
to call any routine
desired by the pro-
grammer.
CONDITION CODE OPERATES
Op-code MNEMONIC Stands for -
000241 CLC CLear Carry bit in PS
000261 SEC SEt Carry bit.
000252 CLV CLear oVerflow bit.
000262 SEV SEt oVerflow bit
000244 CLZ CLear Zero bit.
000264 SEZ SEt Zero bit.
000250 CLN “CLear Negative bit.
000270 SEN SEt Negative bit.
000254 CNZ CLear Negative and Zero bits.
000257 CCC CLear all Condition Codes
000277 sccC Set all Condition Codes.
000240 NOP No-operation

B.3.5 Branch Instructions -

Op E where —128164E—-—2)/2<127

10

Condition to be

Op-Code MNEMONIC Stands for met if branch is to occur
0004XxX BR BRanch always
0010XX BNE Branch if Not Equal to Zero Z=0
0014XX BEQ Branch if EQual (to zero) Z=1
0020XX BGE Branch if Greater than or N@ V=0
equal (to zero)
0024XX BLT Branch if Less Than (zero) N@V =1
0030XX BGT Branch if Greater Than zt (N()V)=0
(zero)
0034XX BLE Branch if Less than or Z! (N @V)=l
Equal (to zero)
1000XX BPL Branch if PLUS N=0
1004XX BMI Branch if MInus N=1
1010XX BHI Branch if HIgher c @ z=0
1014XX BLOS Branch if LOwer or Same Cc!z=1
1020XX BVC Branch if oVerflow Clear =0
1024XxX BVS Branch if oVerflow Set =1
1030XX BCC (or BHIS) Branch if Carry Clear
(or Branch if HIgh or Same) C=0
1034XX BCS (or BLO)
Branch if Carry Set (or Cc=1
Branch if LOw)
B.3.6 Subroutine Call JSR ER,A
Op-code MNEMONIC Stands for Operation
004RDD JSR Jump to Sub- Push register on the SP stack, put

Routine

the PC in the register:

DE-#» TEMP -a temporary storage reg-
ister internal to proces-

sor
(sp)-2> SP
(REG)> (SP)

(PC)+m REG -m depends upon the ad-

dress mode,

(TEMP) > PC

B.3.7

Subroutine Return

Op-code

MNEMONIC

Stands for

Operation

00020R

RTS

ReTurn from
Subroutine

B.4 ASSEMBLER DIRECTIVES

MNEMONIC Operand

Stands for

Put register contents in PC and
pop o0ld contents from SP stack
into register.

Operation .

.EOT

.EVEN
.ENDV
.WORD
.BYTE
.ASCII

.TITLE

.ASECT

.CSECT

.LIMIT

.GLOBL

.RAD5M

(E

none

none

E

optional)

E, E,...
E, E,...

E,E,o-.

NAME

none

none

none

End 6f Tape

EVEN
END

WORD
(the void
Operator)

BYTE

. /xxXxX...x7 ASCII

TITLE

ASECT

CSECT

LIMIT

NAME,NAME, ...

/XXX/

GLOBAL

RADIX 5f

Indicates the nhysirnl end of the

source innuk medivum -

Insures that the assembly location
counter is even by adding 1 if it
is odd. <

Indicates the physical and logical
end of the program and optionally
specifies the entry point (E)

words of data
words of data

Generates
Generates
Generates bytes of data (

Generates 7-hit ASCII characters
for text enclosed by delimiters,

Generates a name for the object
module.

Initiates the Absolute section.

Initiates the Relocatable Control
section.

Generates two words containing the
low and high limits of the reloca-
table section.

Specifies each name to be a global
symbol

Generates the RADIX 5@ representation
of the ASCII character in delimiters.

(

Mnemonic

(— .IFZ
.IFNZ
.IFL

. IFLE

.IFG

.IFGE

. IFDF
. IFNDF

.ENDC

Operand

E

NAME

NAME

none

Stands For

IF E=0

IF E£O

IF E<O

IF E<O

IF E>O

IF EX0

IF NAME

defined

IF NAME
undefined

End of
Conditional

Operation
Assemble what follows up to the
terminating .ENDC if the expres-

sion E is O.

Assemble what follows up to the

terminating .ENDC, if the expres-

sion E is not 0.

Assemble what follows up to
the terminating . ENDC, if the
expression E is less than 0. '

Assemble what follows up to

the terminating . ENDC, if the
expression E is less than or '
equal to 0.

Assemble what follows up to
the terminating . ENDC, if the
expression E is greater than 0.

Assemble what follows up to
the terminating .ENDC, if the
expression E is greater than

or equal to 0.

Assemble what follows up to

the terminating . ENDC if the symbol

NAME is defined.

Assemble what follows up to
the terminating . ENDC if the
symbol NAME is undefined.

Terminates the range of a
conditional directive.

ERROR CODES

Error Code

A

"made to a symbol which is defined more than once.

Meaning . f”
Addressing error. An address within the instruc-
tion is incorrect. Also includes relocation

errors.

Eounding error. Instructions or word data are
being assembled at an odd address in memory.

Doubly-defined symbol referenced. Reference was

Illegal character detected. 1Illegal characters
which are also non-printing are replaced by a ?
on the listing.

Line buffer overflow. All extra characters beyond -
72 are ignored. (

Multiple definition of a label. A label was en-
countered which was equivalent (in the first six
characters) to a previously encountered label.

Number containing an 8 or 9 was not terminated by
a decimal point.

Phase error. A label's definition or value varies <’
from one pass to another.

Questionable syntax. There are missing arguments
or the instruction scan was not completed, or a
carriage return was not followed by a linefeed
or form feed.

Register-type error. An invalid use of or referen
ce to a register has been made.

Symbol table overflow. When the quantity of user-
defined symbols exceeds the allocated space avail-

able in the user's symbol table, the assembler

outputs the current source line with the S error

code, then returns to the command string inter- -
preter to await the next command string to be

typed.

Truncation error. More than the allotted number
of bits were input so the leftmost bits were trun-
cated. T error does not occur for the result of
an expression.

Undefined symbol. An undefined symbol was encoun-
tered during the evaluation of an expression. -
Relative to the expression, the undefined symbol (}
is assigned a value of zero.

B-10

TN

B.6 INITIAL OPERATING PROCEDURES

Loading: Use Absolute Loader. The start address of the
Loader must be in the console switches.

Storage Requirements:PAL-11S uses 8K of memory.

Starting: Immediately upon loading, PAL-11S will be in
control and initiate dialogue.

Initial Dialogue:

Printout Inquiry
*S What is the input device of the Source symbolic tape?
*B What is the output device of the Binary object tape?
*L What is the output device of‘the assembly Listing?
*T What is the output device of the symbol Table?

Each of these questions may be answered by any one of the following

characters:
Character Answer Indicated
T Teleprinter keyboard
L Low-speed reader or punch
H High-speed reader or punch
P Line Printer

Each of these answers may be followed by the other characters indi-

cating options:

Option Typed Function to be performed
/1 on pass 1
/2 on pass 2
/3 on pass 3°
/E errors to be listed on the Teletype on the same

pass (meaningful only for *B or *L).

Each answer is terminated by typing the RETURN key. A RETURN alone
as answer will delete the function.

Dialogue During Assembly:

Printout Response 6‘*

EOF ? Place next tape in reader and type RETURN. A .END
statement may be forced by typing E followed by
RETURN.

END ? Start next pass by placing first tape in reader and

typing RETURN.

EOM

)

If the end-of-medium is on the listing device, the -
device may be readied and the assembly may be con-
tinued by typing RETURN.

If the end-of-medium is on the binary device, the
assembler will discontinue the assembly and restart
itself.

Restarting: Type CTRL/P. The initial dialogue will be started <
again.

N

7N

APPENDIX C
ASSEMBLING AND LINKING PAL-11S

PAL-11S consists of two independent programs. The first program is a memory clear
program. The second is the assembler. All programs are available as ASCII source
tapes, object modules and as a load module.

The memory clear program, MEMCLR, consists of one ASCII tape. This program should
never need to be assembled. The object module may be used when constructing a new
load module of PAL-11S.

The assembler consists of three program modules which are assembled separately and
then linked together. The first is the main program called PAL-11S. It consists of 13
ASCII tapes. The second module is the symbol table, PALSYM, which consists of 2
ASCII tapes. The third is IOXLPT consisting of 2 ASCII tapes.

If changes are made in any of these modules, that module must be assembled by PAL-11S
and the new object module can be linked with the other object modules. It should be
noted that assembly of these programs will result in: :

Program - Pages of Listing (Decimal) Number of Symbols (Decimal)
PAL-11S 160 756
PALSYM 11 32
IOXLPT 29 191

Also note that there will be two undefined symbols listed at the end of pass 1. These are
forward references on direct assignments which get defined properly in pass 2.

The final load module is constructed by LINK-11S. First the memory clear program
object module is processed by the linker and the resulting load module is left in the
punch while the PAL-11S, PALSYM and IOXLPT object modules are linked to create
a second load modisle. The resulting tape contains two load modules. The first clears
memory and then jumps to the absolute loader to load the second.

Do not re=link PAL-11S to run above 16K. The size of the symbol table is fixed, and
there is no need to re-link at a higher address even on large systems.

The supplied tapes are identified as follows:

Library Code

DEC-11-ASQA-PA

DEC-11-ASQA-PA
DEC-11-ASQA-PA
DEC-11-ASQA-PA
DEC-11-ASQA-PA
DEC-11-ASQA-PA
DEC-11-ASQA-PA
DEC-11-ASQA-PA
DEC-11-ASQA-PA
DEC-11-ASQA-PA
DEC-11-ASQA-PA
DEC-11-ASQA-PA
DEC-11-ASQA-PA
DEC-11-ASQA-PA

DEC-11-ASQA-PA
DEC-11-ASQA-PA

DEC-11-ASQA-PA
DEC-11-ASQA-PA

DEC-11-ASQA-PR

DEC-11-ASQA-PR .

DEC-11-ASQA-PR
DEC-11-ASQA-PR

DEC-11-ASQA-PL

- Tape 10 of 18

Tape 1 of 18 }One

Assembly

Tape 2 of 18]
Tape 3 of 18
Tape 4 of 18
Tape 5 of 19
Tape 6 of 18
Tape 7 of 18
Tape 8 of 18
Tape 9 of 18

One

Tape 11 of 18
Tape 12 of 18
Tape 13 of 18
Tape 14 of 18

Tape 15 of 18 {One

Tape 16 of 18 J Assembly

Tape 17 of 18 YOne

Tape 18 of 18 fAssembly

Tape 1 of 4
Tape 2 of 4
Tape 3 of 4
Tape 4 of 4

Assembly

Contents

RELMEM
(Memory Clear Program)

 PAL-11S (Main Program)

PALSYM (Symbol Table)
IOXLPT

RELMEM Object Module
PAL-11S Object Module
PALSYM Object Module
IOXLPT Object Module

PAL-11S Load Module*

*This tape is the concatenation of a link of the RELMEM object module followed by
a link of the PAL-11S, PALSYM, and IOXLPT object modules.

INDEX _

Absolute
expression,
loader, 1-26
mode, 1-16
program, 2-2

Addition, 1-9

Addresses, 2-2

1-10

Addressing, 1-13
Address mode syntax, 1-40
Apostrophe (') usage, 1-9, 1-12
Argument separators, 1-2
Arithmetic operators, 1-8, 1-9
ASCIT
character set, Appendix A
conversion, 1-22
.ASCII directive, 1-22
.ASECT directive, 1-11, 1-20,
1-33, 2-2
Assembler directives, 1-3, 1-19,
B-8
Assembling and linking PAL-11A,
Cc-1
Assembly dialogue, 1-31
Assembly listing, 1-25, 1-32
apostrophe usage, 1-12
Asterisk (*) usage, 1-28
Autodecrement mode, 1-15
Autoincrement mode, 1-14
Binary output, 1-29
Branch instructions, 1-19, B-7
.BYTE directive, 1-8, 1-22, 1-33
Carriage return, 1-2, 1-3
Character set, 1-2
Checksum, 2-7
CLR instruction, 1-13
Colon () usage, 1-3, 1-23
Comma (,) usage, 1-4, 1-21
Comments, 1-4
field, 1-3
Communications directory (COMD),
2-3
Condition codes, B-3, B-6

Conditional directives, 1-24
Conversion, ASCII, 1-9
.CSECT directive, 1-11, 1-20,
1-33, 2-2
CTRL/A, 1-29
CTRL/P, 1-29,
CTRL/U, 1-26
CTRL/FORM key, 1-5
Current location counter, 1-3

1-31

X=-1

Data sharing, 2-2

Decimal numbers, 1-8

Deferred autodecrement mode, 1-15
Deferred autoincrement mode, 1-14
Deferred immediate mode, 1-16
Deferred register mode, 1-14
Deferred relative mode, 1-16
Device specification, 1-26
Dialogue, initial, 1-30, 1-31
Direct assignment statement, 1-6

Directives, Assembler, 1-19, 1-46
JASCII, 1-23
.ASECT, 1-11, 1-20, 1-33, 2-2
.BYTE, 1-8, 1-22, 1-33
conditional, 1-24
.CSECT, 1-11, 1-20, 1-33, 2-2
.END, 1-21
.ENDC, 1-25
.E0oT, 1-21
.EVEN, 1-21
.GLOBL, 1-20
LLIMIT, 1-24
.RAD50, 1-23
.TITLE, 1-19
.WORD, 1-21

Double operand instructions, B-4

Editor, 1-2

EMT instructions, 1-19
END?, 1-32

.END directive, 1-21
.ENDC directive, 1-25

End of tape, 1-21
Entry point (entry symbol), 1-6
EOF?, 1-31
EoOM?, 1-31
.EOT directive, 1-21
Equal sign (=) usage,
Error codes, 1-34, B-10
Error
expression,
phase, 1-7
software, 1-35
syntax, 1-25
truncation, 1-8
typing, 1-26
Errors, Linker,
.EVEN directive,
Expressions, 1-8
missing, 1-8
mode, 1-10
null, 1-25
External expression, 1-8, 1-10
External symbol missing, 1-8

1-23

1-25

Features, PAL-11S, 1-1
Fields, 1-2, 1-3

Format, 1-4, 1-5

Form feed, 1-2, 1-3, 1-5
Forward references, 1-6, 1-11
General registers, 1-7

.GLOBL directive, 1-20

Global symbol directory (GSD),
1-33, 2-3
Global symbols,

1-6, 2-2

Hardware requirements, 1-2

Immediate mode, 1-16
Inclusive OR operation,
Indexing, 1-13
Index mode, 1-15
Initial dialogues,
Instruction mnemonic,
Internal symbols, 1-6

1-9

1-26, 1-31

1-3

1-30,

1-14
1-14

JMP instruction,
JRS instruction,

Label fields, 1-3

.LIMIT directive, 1-24

Line feed, 1-2, 1-3

Line printer, 1-31

Line terminators, 1-2

Linker operation instructions,
Linker operational cautions,
Linking, 1-12

2-5
2-7

Loading PAL-11S, 1-26
lLoad map, 2-4

Load module, 1-1, 1-21
ILocation counter, 1-11

Logical AND operation, 1-9

Logical inclusive OR operation, 1-9
logical operators, 1-8, 1-9, B-4
Low-speed punch, 1-32

Memory references, 1-16
Missing term, expression, or
external symbol, 1-8

MOD40, 1-23

Mode, 1-11
address, 1-13 through 1-16
expression, 1-10
forms and codes,
of operand, 1-16

MOV instruction, 1-13

Multiple definition of symbol

M)y, 1-3
Multiple operands, 1-4
Multiple statement labels,

1-17

1-3

Null expression, 1-25

Numbers, 1-8

Object modules, 1-1, 1-25, 2-3
output, 1-33
Octal numbers,
Offset, 1-19
Op-code, 1-5
Operands, 1-4, 1-41
fields, 1-3, 1-18
mode, 1-16
Operating procedures
Assembler, 1-25,
Linker, 2-5
Operational cautions, Linker,
Operation instructions,
Assembler, B-5
Linker, 2-5
Operators, 1-8,
fields, 1-3
Output, object module,

-

1-8

1-49

2-7(;

1-9

1-33

Page size, 1-5
PAL-11A, assembling and linking, C

.

-

PAL-11R object modules, 2-2

PAL-11S features, 1-1

PASS 1, 1-29, 2-6

PASS 2, 1-30, 2-6 -
PASS 3, 1-30

pCc, 1-11

Percent sign (%) usage, 1-7 .
Period (.) usage, 1-11

Phase errors, 1-7 '

Positive numbers, 1-8

Program counter, 1-11, 1-13

Program sharing, 2-2

Pseudo-ops, 1-19

N

Quotation mark usage, 1-9

Software, Linker, 2-11
Source program, 1-2
Source tapes, Linker, 2-11
Space character, 1-4
Statement
direct assignment, 1-6
labels, 1-3
terminator, 1-2
Storage area, 1-12
Symbols, 1-5, 1-6, 1-8
user defined, 1-3
Symbol table, 1-5, 1-28
Subroutine calls, B-7

Subtraction, 1-9

Tab character, 1-4
Table of mode forms and codes,
Terminators

.RAD50 directive, 1-23 assembly, B-1
RADIX 50 packing algorithm, 1-24 directive, 1-23
Register mode, 1-14 of operator, 1-3
Register symbols, 1-7 Term missing, 1-8
Relative mode, 1-16 Text block, 1-33
Relocatable expression, 1-10 Text Editor, 1-1
Relocatable program, 2-2 .TITLE directive, 1-19
Relocation, 1-12 Trap instructions, 1-19
directory, 1-33 Trap vectors, 2-9
Restarting Linker, 2-7 Truncation (T) error, 1-8
RETURN key, 1-2, 1-26 Typing error, 1-26
- RUBOUT key, 1-26
User-defined symbol, 1-3, 1-25
Semicolon (;) usage, 1-4
Single operand instructions, 1-42
Slash (/) usage, 1-23 .WORD directive, 1-21, 1-22

1-17

HOW TO OBTAIN SOFTWARE INFORMATION

Announcements for new and revised software, as well as programming notes,
software problems, and documentation corrections are published by Software
Information Service in the following newsletters.

Digital Software News for the PDP-8 & PDP-12
Digital Software News for the PDP-I|
Digital Software News for the PDP-9/15 Family

These newsletters contain information applicable to software available from
Digital's Program Library, Articles in Digital Software News update the
cumulative Software Performance Summary which is contained in each basic
kit of system software for new computers. To assure that the monthly Digital
Software News is sent to the appropriate software contact at your installation,
please check with the Software Specialist or Sales Engineer at your nearest
Digital office. ’

Questions or problems concerning Digital's Software should be reported to
the Software Specialist. In cases where no Software Specialist is available,
please send a Software Performance Report form with details of the problem to:

Software Information Service
Digital Equipment Corporation
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

These forms which are provided in the software kit should be fully filled out
and accompanied by teletype output as well as listings or tapes of the user
program to facilitate a complete investigation. An answer will be sent to the
individual and appropriate topics of general interest will be printed in the
newsletter.

Orders for new and revised software and manuals, additional Software Per-
formance Report forms, and software price lists should be directed to the
nearest Digital Field office or representative. U.S.A. customers may order
directly from the Prooram Library in Maynard. When ordering, include the
code number and a brief description of the software requested.

Digital Equipment Computer Users Society (DECUS) maintains a user library
and publishes a catalog of programs as well as the DECUSCOPE magazine
for its members and non-members who request it. For further information
please write to:

DECUS

Digital Equipment Corporation
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

DEC-11-YRWB-D and
DEC-11-YRWB-DN

PDP-11 PAL-11S ASSEMBLER
and LINK-11S LINKER
PROGRAMMER'S MANUAL

READER'S COMMENTS

NOTE: This form is for document comments only. Problems
with software should be -reported on a Software
Problem Repcrt (SPR) form (see the HOW TO OBTAIN
SOFTWARE INFORMATION page).

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
‘what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience

Student programmer

000000

Non-programmer interested in computer concepts and capabilities

Name Date

Orgahization
Street
City. . State Zip Code
. or
Country

If you do not require a written reply, please check here. Ej

e

——————————————— — FoldHere - - - - - - — - - — — — — — — — — — — —

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

Postage will be paid by:

Digital Equipment Corporation
Software Information Services
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

PRODUCT CODE:

PRODUCT NAME:

DATE CREATED:

MAINTAINER:

DEC-11-YRWB~-DN

Change Notice for PAL-11S
Assembler and LINK-11S
Linker Programmer's Manual
November, 1972

Development

First Printing, August 1971
Revised, February, 1972

Your attention is invited fo the last two pages of this document.
The "How to Obtain Software Information" page tells you how
to keep up~-to~date with DEC's software. The "Reader's
Comments" page, when filled in and mailed, is beneficial

to both you and DEC; all comments received are acknowledged

and are considered when documenting subsequent documents.

Copyright @ 1971, 1972 by Digital Equipment Corporation

Technical changes to this manual are
indicated by a bar in the margin.

‘This document is for information purposes
and is subject to change without notice.
Associated documents:

PDP-11 Paper Tape Software Programming Handbook
DEC-11-GGPC-D

PDP-11 PAL-11R Assembler Programmer's Manual
DEC-11-ASDC-D

The following are trademarks of Digital Equnpmenf
Corporation:

DEC | PDP-11
Digital (logo) Comtex=11 -
D ECtape RSTS-11
Unibus RSX-11

ii

The attached pages should be inserted in
the PAL-11S Assembler and LINK-11S LINKER
Programmer's Manual. Technical changes
have been marked with a bar in the page

margin,

N

TN

CONTENTS

CHAPTER | PAL-11S ASSEMBLER

fa—
.

Character Set

2, Statements
3. Symbols
4, Expressions
5. Assembly Location Counter
6. Relocation and Linking
7. Addressing
8. Assembler Directives
9. Operating Procedures
10, Error Codes
1. Software Error Halts
CHAPTER 1| LINK-11S LINKER
1. Introduction
2. Input and Output
3. Operating Procedures
4, Preparation
APPENDICES
A ASCII Character Set
B PAL-11S Assembly Language and Assembler
C Assembling and Linking PAL-11S
D Note to Users of Serial LA30 and 600, 1200 and
2400 Baud VTO05's
INDEX

TN

TN

as for *L question. The symbol table will be output at the end of the first pass unless /2
or /3 is typed in response to *T. The first tape to be assembled should be placed in the
reader before typing the RETURN key because assembly will begin upon typing RETURN
to the *T question. The /E option is not a meaningful response to *T. Example

T 1/3 Symbol table output on teleprinter at end of third pass.

*T Typing the RETURN key alone will cause the Assembler
- to omit symbol table output.

The symbol table is printed alphabetically, three symbols per line. Each symbol printed

is followed by its identifying characters and by its value. [f the symbol is undefined,

six asterisks replace its value, The identifying characters indicate the class of the symbol;
that is, whether it is a label, direct assignment, register symbol etc. The following
examples show the various Forms.

ABCDEF 001244 (Defined Label)

R3 = %000003 (Register Symbol)

DIRASM = 177777 (Direct Assignment)

XYz = b (Undefined direct assignment)
R6 = Ot %% k% (Undefined register symbol)
LABEL = HE kK (Undefined label)

Generally, undefined symbols and external symbols will be listed as undefined direct
assignments, Multiply-defined symbols are not flagged in the symbol table printout but
are flagged wherever they are used in the program,

If the symbol is relocatable or global or both, the symbol's value will be followed by an

R, a G or both,

It is possible to output both the binary tape and the assembly listing on the same pass,
thereby reducing the assembly process to two passes (see Example 1 below). This will
happen automatically unless the binary device and the listing device are conflicting
devices or the same device (see Example 2 below). The only conflicting devices are the
teleprinter and the low-speed punch. Even though the Assembler deduces that three
passes are necessary, the binary and listing can be forced on pass 2 by including /2 in the
responses to *B and *L (see Example 3 below).

Example 1. Runs 2 passes:

*S H High-speed reader
*B H High-speed punch
L P Line Printer
’:T_ T Teleprinter

1-28

N

4.0 PREPARATION

LINK=-11S is available as an absolute load module (for an 8K machine), as two object modules
(for relinking) and as several ASCII source tapes. There is one object module for the Linker
and one for IOXLPT. The supplied object modules may be relinked (using the supplied load
module) fo load into any size machine larger than 8K, However, the resulting Linker will
still assume a top of memory corresponding to an 8K machine (this can be overridden in the
command string options). The assumed top of memory and reserved Absolute Loader space may
be changed by editing the first linker ASCII tape with ED~11, The parameters to be changed
are HGHMEM (high memory address +1 (always even)) and ALODSZ (Absolute Loader size
(always even)). The source tapes for the Linker may then be assembled with PAL-11S and

the new object module can then replace the supplied Linker object module.

The tapes are identified as follows:

Library Code

DEC-11-ULKSA-A-PA1
DEC~11-ULKSA-A~-PA2
DEC-11-ULKSA-A-PA3
DEC-11-ULKSA-A-PA4

DEC-11-ULKSA-A-PAS
DEC-11-ULKSA-A-PA6

DEC-11-ULKSA-A-PR1
DEC-11-ULKSA~A~PR2

DEC-11-ULKSA-A~PL

Tape 1 of 6

Tape 2 of 6
Tape 3 of 6
Tape 4 of 6

Tape 5 of 6
Tape 6 of 6

Tape 1 of 2
Tape 2 of 2

S~

One
Assembly

One
Assembly

LINK=-11S (Main Program)

IOXLPT

LINK-11S Object Module
IOXLPT Object Module

LINK=11S Load Module

7N

APPENDIX C
ASSEMBLING AND LINKING PAL-11S

PAL-11S consists of two independent programs. The first program is a memory clear program.
The second is the assembler. All programs are available as ASCII source tapes, object
modules and as a load module.

The memory clear program, MEMCLR, (DEC-11-UPLSA-A-PAT) consists of one ASCII tape.
This program should never need to be assembled. The object module may be used when
constructing a new load module of PAL-11S.

The assembler consists of three program modules which are assembled separately and then

linked together. The first is the main program called PAL-11S. [t consists of 13 ASCII

tapes (DEC-UPLSA-A-PA2-PAT14). The second module is the symbol table, PALSYM,

which consists of 2 ASCII tapes (DEC-11-UPLSA-A-PA15-PA16). The third is IOXLPT
consisting of 2 ASCII tapes (DEC-11-UPLSA-A-PA17-PA18). Also included is PALSYM,
specially created for 12K and 16K, consisting of one tape each (DEC-11-UPLSA-A-PA19-PA20).

If changes are made in any of these modules, that module must be assembled by PAL-11S
(VOO03A) and the new object module can be linked with the other object modules. It
should be noted that assembly of these programs will result in:

Program Pages of Listing (Decimal) Number of Symbols (Decimal)
PAL-11S 160 756
PALSYM \ ' 11 32

IOXLPT ‘ ' 29 191

Also note that there will be two undefined symbols listed at the end of pass 1. These are
forward references on direct assignments which get defined properly in pass 2.

An example of the PAL-11S assembly follows:
PAL-11S V@@3A

*S H

*B H

*L P ‘

*T P/2 (First pass on PAT)

END ? ' (2nd pass on PA1)
00000 ERRORS ' (End of Tape #1 assembly)

(Remove tape from punch)

PAL-11S V@@3A

*S H

*B H

*L P

*T P/2 (Insert PA2 for 1st pass)
EOF ? (End of PA2, insert PA3)
EOF ? (End of PA3, insert PA4)
EOF ? (End of PA4, insert PA5)
EOF ? (End of PA5, insert PA6)
EOF ? (End of PA6, insert PA7)
EOF ? (End of PA7, insert PA8)
EOF ? (End of PA8, insert PA9)

EOF ?
EOF ?

EOF ?

EOF ?

EOF ?

BINCNT = %*kkk%%
END ?

EOF ?

EOF ?

EOF ?

EOF ?

EOF ?

EOF ?

EOF ?

EOF ?

EOF ?

EOF ?

EOF ?

EOF ?

#23900 ERRORS

PAL-11S VEE3A
*S H

*B H

*L P

*T P/2

EOF ?

END ?

EOF ?

B3390 ERRORS

PAL-11S V@@3A
*S H

*B H

¥ P

*T P/2

EOF ?

END ?

EOF ?

000833 ERRORS

PAL-11S VE@3A
*S H

*B H

L P

T P/2

END ?

@90008 ERRORS

SIMBC —= kkkkk%k

(End of PA9, insert PA10)
(End of PATOQ, insert PA11)
(End of PA11, insert PA12)
(End of PA12, insert PA13)
(End of PA13, insert PA14)
(End of PA14 and 1st pass)
(Insert PA2 for 2nd poss)
(End of PA2, insert PA3)
(End of PA3, insert PA4)
(End of PA4, insert PA5)
(End of PA5, insert PAG)

~ (End of PA6, insert PA7)

(End of PA7, insert PA8)
(End of PA8, insert PA9)
(End of PA9, insert PA10)
(End of PAT0, insert PATT)
(End of PAI1, insert PA12)
(End of PA12, insert PA13)
(End of PA13, insert PAT4)
(End of PA14 and 2nd pass)
(Remove tape from punch)

(st pass on PA15)

(End of PA15, insert PA16)

(End of PA16, insert PA15 for 2nd pass)
(End of PAI5, insert PA16)

(End of 2nd pass)

(Remove tape from punch)

(st pass on PA17)

(End of PA17, insert PA18)

(End of PA18, insert PA17 for 2nd pass)
(End of PA17, insert PA18)

(End of 2nd pass)

(Remove tape from punch)

(Pass 1 on PA20)

(Pass 2 on PA20)

(End of pass 2)

(Remove tape from punch)

The final load module is constructed by LINK=11S. First the memory clear program object
module is processed by the linker and the resulting load module is left in the punch while
the PAL-11S, PALSYM and IOXLPT object modules are linked to create a second load
module. The resulting tape contains two load modules. The first clears memory and then
jumps to the absolute loader to load the second.

In order to take advantage of core sizes larger than 8K, PALSYM, the symbol table,
specially created for 12K core and 16K core, and the object modules are included with
the assembler. To link for 12K (or 16K), simply substitute the appropriate object tape
for PALSYM (use DEC-11-UPLSA-A-PR5 for 12K or DEC~11-UPLSA-A-PR6 for 16K)
specify a top address to LINK=11S of 57460 for 12K (77460 for 16K) and link as described
in the preceding paragraph .

Do not relink PAL-11S to run above 16K. The size of the symbol table is fixed, and there
is no need to re-link at a higher address even on large systems,

The supplied tapes are identified as follows:

Library Code Contents

RELMEM
(Memory Clear Program)

DEC-11~UPLSA-A-PAI1 Tape 1 of 20 } One

Assembly

DEC~-11-UPLSA-A-PA2 Tape 2 of 20 ") PAL-11S (Main Program)
DEC-11-UPLSA-A=PA3 Tape 3 of 20

DEC-11-UPLSA-A-PA4 Tape 4 of 20

DEC-11-UPLSA-A-PA5 Tape 5 of 20

DEC-11-UPLSA-A-PA6 Tape 6 of 20

DEC-11-UPLSA-A-PA7 Tape 7 of 20 One

DEC-11-UPLSA-A-PA8 Tape 8 of 20 Assembly

DEC-11-UPLSA-A-PA9 Tape 9 of 20

DEC-11-UPLSA-A-PA10 Tape 10 of 20

DEC-11-UPLSA-A-PA11 Tape 11 of 20

DEC-11-UPLSA-A-PA12 Tape 12 of 20

DEC-11-UPLSA-A-PA13 Tape 13 of 20

DEC-11-UPLSA-A-PA14 Tape 14 of 20

DEC-11-UPLSA-A~PA15 Tape 15 of 20 One PALSYM (Symbol Table) for 8K]\
DEC-11-UPLSA-A-PA16 Tape 16 of 20 Assembly]
DEC-11-UPLSA-A-PA17 Tape 17 of 20 One

DEC-11-UPLSA-A-PA18
DEC-11-UPLSA-A-PA19
DEC-11-UPLSA-A-PA20

DEC-11-UPLSA-A-PRI Tape 1 of 6 RELMEM Object Module
DEC-11-UPLSA-A-PR2 Tape 2 of 6 PAL-11S Object Module
DEC-11-UPLSA-A-PR3 Tape 3 of 6 PALSYM Object Module for 8K
DEC-11-UPLSA-A-PR4 Tape 4 of 6 IOXLPT Object Module
DEC-11-UPLSA-A-PR5 Tape 5 of 6 PALSYM Object Module for 12K
assembler
DEC-11-UPLSA-A-PR6 Tape 6 of 6 PALSYM Object Module for 16K

DEC-11-UPLSA-A-PL

Tape 18 of 20 Assembly
One Assembly
One Assembly

Tape 19 of 20
Tape 20 of 20

IOXLPT

PALSYM (Symbol Table) for 12K{
PALSYM (Symbol Table) for 16K

Assembler

PAL-11S Load Module*

*This tape is the concatenation of a link of the RELMEM object module followed by a link of
the PAL-11S, PALSYM for 8K, and IOXLPT object modules.

C-3

y

APPENDIX D

NOTE TO USERS OF SERIAL LA3@ AND
600, 1208 and 2400 BAUD VT@5'S

The serial LA3J requires that filler characters follow each carriage return; the @@, 1208 and
2400 baud VT@5's require that filler characters follow each line feed. The following table lists
the filler characters needed. The byte at location 44g has been established as the filler count
and the byte at location 45g contains the character to be filled. These locations are initially
set to zero by LINK-11S and PAL-11S to allow normal operation of the program.

Depending on the terminal, change the locations as follows:

LOC 44 LOC 45 Resulting Word (binary)
LA3Y gy #15g v aRyay Ayl
VT#5 680 Baud oy g2, Juvabl eyl
VT@5 1208 Baud 2, 12, B000 9 80000091 ¢
Vg5 2408 Baud B84, #2g 2005 01 P gp

The proper binary word can be stored at location 44, by using the console switches as described
in section 2.1.2 of the Papertape Software Programming Handbook (DEC-11-XPTSA-A-D).

Furthermore, users with a 240d baud VT@5 should avoid the use of vertical tab characters
in their programs. Vertical tabs will not be properly filled and may cause characters to be

lost,

Once the changes have been made, the program may be dumped to paper tape by using the
bootstrap version of DUMPAB (see instructions for use in section 6.3 of DEC-11-XPTSA-A-D).

The above changes only affect output to the console teleprinter.

D-1

Features, PAL-11S, 1-1
Fields, 1-2, 1-3

Format, 1-4, 1-5

Form feed, 1-2, 1-3, 1-5
Forward references, 1-6,-1-11

General registers, 1-7

.GLOBL directive, 1-20

Global symbol directory (GSD),
1-33, 2-3

Global symbols, 1-6, 2-2

Hardware requirements, 1-2

Immediate mode, 1-16

Inclusive OR operation, 1-9
Indexing, 1-13

Index mode, 1-15 :
Initial dialogues, 1-26, 1-30, 1-31
Instruction mnemonic, 1-3

Internal symbols, 1-6

JMP insfrucfiovn,, 1—1_4
JRS instruction, 1-14

LA30 Users, D-1

Label fields, 1-3

LIMIT directive, 1-24

Line feed, 1-2, 1-3

Line printer, 1-31

Line terminators, 1-2

Linker operation instructions, 2-5
Linker operational cautions, 2-7
Linking, 1-12

Loading PAL-11S, 1-26

Load map, 2-4

Load module, 1-1, 1-21

Location counter, 1-11

Logical AND operation, 1-9
Logical inclusive OR operation, 1-9
Logical operators, 1-8, 1-9, B-4
Low—speed punch, 1-32

Memory references, 1-16

Missing term, expression, or external
symbol, 1-8

MOD40, 1-23

Mode, 1-11
address, 1-13 through 1-16
expression, 1-10
forms and codes, 1-17
of operand, 1-16
MOV instruction, 1-13
Multiple definition of symbol (M), 1-3
Multiple operands, 1-4
Multiple statement labels, 1-3

Null expression, 1-25
Numbers, 1-8

Object Modules, 1-1, 1-25, 2-3
output, 1-33
Octal numbers, 1-8
Offset, 1-19
Op~-code, 1-5
Operands, 1-4, 1-41
fields, 1-3, 1-18
mode, 1-16
Operating procedures
Assembler, 1-25, 1-49
Linker, 2-5
Operational cautions, Linker, 2-7
Operational instructions,
Assembler, B-5
Linker, 2-5 v
Operators, 1-8, 1-9
fields, 1=3
Output, object module, 1-33

Page size, 1-5

PAL-11A, assembling and linking, C-1
PAL-11R object modules, ©2-2
PAL-11S features, 1-1

PASS 1, 1-29, 2-6

PASS 2, 1-30, 2-6

PASS 3, 1-30

PC, 1-11

Percent sign (%) usage, 1-7
Period (.) usage, 1-11

Phase errors, 1-7

Positive numbers, 1-8
Program counter, 1-11, 1-13
Program sharing, 2-2
Pseudo-ops, 1-19

Quotation mark usage, 1-9

.RADS50 directive, 1-23
RADIX 50 packing algorithm, 1-24
Register mode, 1-14
Register symbols, 1-7
Relative mode, 1-16
Relocatable expression, 1-10
Relocatable program, 2-2
Relocation, 1-12

directory, 1-33
Restarting Linker, 2-7
RETURN key, 1-2, 1-26
RUBOUT key, 1-26

Semicolon (;) usage, 1-4
Single operand instructions, 1-42
Slash (/) usage, 1-23
Software, Linker, 2-11
Source program, 1-2
Source tapes, Linker, 2-11
Space character, 1-4
Statement ‘
direct assignment, 1-6
labels, 1-3
terminator, 1-2-
Storage area, 1-12
Symbols, 1-5, 1-6, 1-8
user defined, 1-3
Symbol table, 1-5, 1-28
Subroutine calls, B -7
Subtraction, 1-9

Tab character, 1-4

Table of Mode forms and codes, 1-17

Terminators
assembly, B-1
directive, 1-23
of operator, 1-3
Term missing, 1-8
Text block, 1-33
Text editor, 1-1
JTITLE directive, 1-19
Trap instructions, 1-19
Trap vectors, 2-9
Truncation (T) error, 1-8
Typing error, 1-26

User-defined symbol, 1-3, 1-25

VT05 users, D-1

WORD directive, 1-21, 1-22

X-3

dlilgliltlall

DIGITAL EQUIPMENT CORPORATION
MAYNARD, MASSACHUSETTS 01754

