
FP11-A
floating-point processor
user's guide

FP11-A
floating-point processor
user's guide

EK-FP11A-UG-001

digital equipment corporation • maynard, massachusetts

Copyright © 1978 by Digital Equipment Corporation

The material in this manual is for informational
purposes and is subject to change without notice.

Digital Equipment Corporation assumes no respon­
sibility for any errors which may appear in this
manual.

Printed in U.S.A.

This document was set on DIGITAL's DECset-8000
computerized typesetting system.

The following are trademarks of Digital Equipment
Corporation, Maynard, Massachusetts:

DEC
DECCOMM
DECsystem-IO
DECSYSTEM-20

DECtape
DECUS
DIGITAL
MASSBUS

5/82-14

PDP
RSTS
TYPESET-8
TYPESET-II
UNIBUS

lst Edition, May 1978

CHAPTER 1

1.1
1.2
1.2.1
1.2.2
1.3
1.4
1.5

CHAPTER 2

2.1
2.2
2.2.1
2.2.2
2.3
2.3.1
2.3.2

CHAPTER 3

3.1
3.2
3.3
3.4
3.5
3.6

CHAPTER 4

4.1
4.2
4.3
4.3.1
4.3.1.1
4.3.1.2
4.4
4.5

CONTENTS

Page

INTRODUCTION

GENERAL .. 1-1
FEATURES .. 1-1

Floating-Point Instruction Set Features .. 1-1
FPII-A Features .. 1-2

ARCHITECTURE .. 1-2
PHYSICAL DESCRIPTION .. 1-2
RELATED DOCUMENTATION .. 1-3

INSTALLATION AND CHECKOUT

SCOPE .. 2-1
FPII-A FLOATING-POINT PROCESSOR INSTALLATION 2-1

FPII-A Add-On Installation Procedure .. 2-1
BAII-L Box ... 2-4

FPII-AU UPGRADE KIT .. 2-7
FPII-A U Power Components Installation .. 2-7
FPI1-AU Logic Installation ... 2-9

REVIEW OF FLOATING-POINT NUMBERS

INTRODUCTION .. 3-1
INTEGERS ... 3-1
FLOATING-POINT NUMBERS ... 3-1
NORMALIZATION ... 3-2
FLOATING-POINT ADDITION AND SUBTRACTION 3-3
FLOATING-POINT MULTIPLICATION AND DIVISION 3-4

DATA FORMATS

INTRODUCTION .. 4-1
FPII-A INTEGER FORMATS .. 4-1
FPII-A FLOATING-POINT FORMATS .. .4-1

FPII-A Floating-Point Data Word4-1
Floating-Point Fraction .. 4-5
Floating-Point Exponent .. 4-6

FPII-A PROGRAM STATUS REGISTER4-7
PROCESSING OF FLOATING-POINT EXCEPTIONS4-8

iii

CHAPTER 5

5.1
5.2
5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.3.5
5.3.6
5.3.7
5.3.8
5.3.9
5.3.10
5.3.11
5.3.12
5.3.13
5.3.14
5.3.15
5.3.16
5.3.17
5.3.18
5.3.19
5.3.20
5.3.21
5.3.22
5.4

CHAPTER 6

6.1
6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.2.6
6.2.6.1
6.2.6.2
6.2.7
6.3
6.4
6.5
6.6

CONTENTS (Cont)

Page
FLOATING-POINT INSTRUCTIONS

FLOATING-POINT ACCUMULATORS .. 5-1
INSTRUCTION FORMATS .. 5-1
INSTRUCTION SET .. 5-4

Arithmetic Instructions ... 5-1 0
Floating-Modulo Instruction .. 5-11
Load Instruction ... 5-11
Store Instruction ... 5-11
Load Convert (Double-to-Floating, Floating-to-Double) Instructions 5-11
Store Convert (Double-to-Floating, Floating-to-Double) Instructions 5-12
Clear Instruction .. 5-12
Test Instruction .. 5-12
Absolute Instruction ... 5-12
Negate Instruction .. 5-13
Load Exponent Instruction ... 5-13
Load Convert Integer-to-Floating Instruction ... 5-14
Store Exponent Instruction ... 5-15
Store Convert Floating-to-Integer Instruction ... 5-16
Load FPll 's Program Status .. 5-20
Store FPll 's Program Status .. 5-20
Store FPll 's Status ... 5-20
Copy Floating Condition Codes ... 5-20
Set Floating Mode .. 5-20
Set Double Mode .. 5-20
Set Integer Mode .. 5-20
Set Long-Integer Mode ... 5-20

FPI1-A PROGRAMMING EXAMPLES ... 5-21

PROCESSOR ORGANIZA nON

INTRODUCTION .. 6-1
MICROPROCESSOR DESCRIPTION .. 6-2

Microprocessor Organization ... 6-5
Arithmetic/Logical Operations .. 6-5
RAM ... 6-8
Arithmetic Logic Unit (ALU) ... 6-9
Q-Register .. 6-1 0
Source Operands and AL U Functions .. 6-1 0

Logical and Arithmetic Functions ... 6-1 0
Logical Functions for G, P, Cn+4, and OVR 6-10

Summary of Pin Definitions .. 6-1 0
INSTRUCTION STATUS REGISTERS AND DECODE 6-1O
TRI-STA TE TRANSCEIVERS AND BUFFER ... 6-10
BRANCH LOGIC AND TRI-STATE CONTROL ... 6-10
CONSTANTS, BYTE AND SECTOR CONTROL, SHIFT CONTROL 6-14

IV

CHAPTER 7

7.1
7.2
7.2.1
7.2.2
7.2.3
7.3
7.4
7.5

APPENDIX A

Figure No.

I-I
2-1
2-2
3-1
4-1
4-2
4-3
4-4
4-5
4-6
5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-9
6-1
6-2
6-3
6-4
6-5
7-1

CONTENTS (Cont)

Page
MAINTENANCE

INTRODUCTION .. 7-1
FPII-A DIAGNOSTICS ... 7-1

MAINDEC DFFPAA ... 7-1
MAINDEC DFFPBA .. 7-1
MAINDEC DFFPCA .. 7-2

KY11-LB PROGRAMMER's CONSOLE .. 7-2
FPII-A FLOW DIAGRAMS .. 7-2
EXTENDER BOARD ... 7-3

OPTION POWER SPECIFICATIONS

FIGURES

Title Page

KD 11-EA/FP11-A Signal Interface ... 1-2
Maintenance Cable Installation .. 2-5
Backplane Jumpers .. 2-6
Normalization .. 3-3
Integer Formats ... 4-2
Floating-Point Data Formats ... 4-2
Floating-Point Data Words .. 4-3
Interpretation of Floating-Point Numbers4-4
Unnormalized Floating-Point Fraction4-5
FP11-A Status Register FormaL4-7
Floating-Point Accumulators ... 5-1
Instruction Formats ... 5-2
Double-to-Single Precision Rounding ... 5-11
Single-to-Double Precision Appending ... 5-12
Integer Left-Shift Example ... 5-14
Normalized Integer Example .. 5-15
Store Exponent Example No.1 .. 5-15
Store Exponent Example No. 2 ... 5-16
Store Convert Integer Example ... 5-17
KDII-EA/FPII-A Data Flow ... 6-1
Simplified FPI1-A Block Diagram ... 6-2
Microprocessor (AM2901) Block Diagram ... 6-3
RAM Register Usage ... 6-8
AM2901 Pin Connections ... 6-14
Display Information ... 7-3

v

Table No.

4-1
4-2
5-1
5-2
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
A-I
A-2

TABLES

Title Page

FPII-A Status Register .. 4-7
FPII-A Exception Codes ... 4-9
Format ofFPII-A Instructions .. 5-3
FPII-A Instruction Set. .. 5-5
ALU Source Operand Contest .. 6-5
ALU Function Control .. 6-6
ALU Destination Control .. 6-7
Source Operand and ALU Function Matrix ... 6-9
ALU Logic Mode Functions .. 6-11
AL V Arithmetic Mode Functions .. 6-12
Logic Equations for ALU Functions .. 6-12
P, G, CN+4' OVR Functions .. 6-13
PDP-II Family Models and Options Power Requirements A-I
PDP-II Family Options Power Requirements ... A-3

vi

1.1 GENERAL

CHAPTER 1
INTRODUCTION

The FPII-A Floating-Point Processor is a hardware option that enables the PDP-II/34A central
processor to execute floating-point arithmetic operations. The FPII-A performs all floating-point
arithmetic operations and converts data between integer and floating-point formats. Floating-point
representation permits a greater range of number values than is possible with the conventional integer
mode. Thus, the FPII-A option provides a speedier alternative to the use of software floating-point
routines, and system speed is increased without complex arithmetic coding routines that consume
valuable CPU time. The FPII-A features both single- and double-precision (32- or 64-bit) capability
and floating-point modes.

The FPII-A is an integral part of the central processor. It operates using similar address modes, and
the same memory management facilities as the central processor. Floating-point processor instructions
can reference the floating-point accumulators, the central processor's general registers, or any location
in memory.

1.2 FEATURES
The following paragraphs summarize the features of the PDP-II /34A floating-point instruction set
and the FPII-A.

1.2.1 Floating-Point Instruction Set Features

• 32-bit (single-precision) and 64-bit (double-precision) data modes

• Addressing modes compatible with existing PDP-II addressing modes

• Special instructions that can improve input/output routines and mathematical subroutines

• Allows execution of in-line code (i.e., floating-point instructions and other instructions can
appear in any sequence desired)

• Multiple accumulators for ease of data handling

• Can convert 32- or 64-bit floating-point numbers to 16- or 32-bit integers during the Store class
of instructions

• Can convert 32-bit floating-point numbers to 64-bit floating-point numbers and vice-versa
during the Load or Store class of instructions.

I-I

1.2.2 FPII-A Features

• Performs medium-speed, floating-point operations on single- and double-precision data

• Has 17 (decimal) digit accuracy

• Contains its own microprogrammed control store

• Contains six 64-bit floating-point accumulators

• Contains error recovery aids

1.3 AR CHITECTURE
The FPII-A contains scratchpad registers, a floating exception address pointer (FEA), status and
error registers, and six general-purpose accumulators (ACO-AC5).

Each accumulator is interpreted to be 32 or 64 bits long depending on the instruction and the status of
the floating-point processor. For 32-bit instructions, only the left-most bits are used. The remaining
bits are unaffected.

The six general-purpose accumulators are used in numeric calculations and interaccumulator data
transfers. The first four registers (ACO-AC3) are also used for all data transfers between the FPII-A
and the central processor's general registers or memory.

1.4 PHYSICAL DESCRIPTION
The FPII-A consists of a single hex board [M8267 for the PDP-II /34A (KD ll-EA)) and modifica­
tions to the M7265 and M7266 boards used in the PDP-Il/34 central processor. (The modified boards
are designated M8265 and M8266, and the modified processor is designated as the KDII-EA). Figure
1-1 shows the basic signal paths between the central processor and the FPII-A. The bidirectional data
bus transfers instructions and data between the processors. An expanded control store in the KD Il­
EA accommodates floating-point requirements.

KD11-EA

~ ~ INSTRUCTIONS/DATA

PDP FP11-A
11/34 FLOATING
CENTRAL 10 MICRO PROGRAM ADDRESS LINES POINT
PROCESSOR PROCCESSOR
M8265

M8266 CLOCK
IKD11-EA) M8267

INITIALIZE

11-5259

Figure I-I KDlI-EA/FPII-A Signal Interface

1-2

1.S RELATED DOCUMENTATION
The following documents supplement this user's guide on the FPII-A Floating-Point Processor.

Manual

BAII-K Mounting Box Manual
BAII-L Mounting Box Manual
DLlI-W Maintenance Manual
KDII-E Processor Manual (PDP-I 1/34)
M9301 Bootstrap Terminator Maintenance Manual
MMII-C/CPCore Memory Manual
MMII-D/DP Core Memory Manual
MSII-E-J MOS Memory Maintenance Manual
PDP-II Peripherals Handbook
PDP-l 1/04, 34,45,55 Processors Handbook
PDP-I 1/34 Processor Handbook
KDII-EA Processor Manual (PDP-II/34A)

1-3

Document Number

EK-BAIIK-MM
EK-BAIIL-MM
EK-DLlIW-MM
EK-KDIIE-TM
EK-M9301-MM
EK-MMIIB-TM
EK-MMIID-TM
EK-MSIIE-MM
EP-PDPII-HB
EP-PDPll/04-HB
EP-11034-HB
EK-KDIEA-MM

CHAPTER 2
INSTALLATION AND CHECKOUT

2.1 SCOPE
This chapter provides the information necessary for unpacking, inspection, installation, and checkout
of the FPII-A and FPII-AU Floating-Point Processors.

2.2 FPll-A FLOATING-POINT PROCESSOR INSTALLATION
The FPII-A Floating-Point Processor option for the PDP-II /34A CPU consists of the following
parts:

I. M8267 - Floating-point module
2. H8821 - 20-pin over-the-top connector
3. 54-12416 - IO-pin over-the-top connector
4. W9042 - Bus extender module

Prior to the installation of the FP II-A option, the + 5 V dc current available to the PDP-II /34A CPU
backplane must be calculated. The following procedure is designed to help you calculate +5 Vdc
current drain and system configuration.

2.2.1 FPII-A Add-On Installation Procedure

l. Verify system integrity by running the following diagnostics in the order given.

PDP-ll/34 CPU Test
Traps Test (at least Rev. C)
EIS Test

0-124K memory exerciser

2. Is CPU a PDP-ll/34A? (See serial name tag.)

Yes No

DFKAA
DFKAB
FDKAC
DZQMC

I An FPl1-A cannot be installed on a PDP-l 1/34. To upgrade a PDP-l 1/34 to
use an FPII-A, an FPII-AU kit must be used. Refer to Paragraph 2.3.

3. Is CPU box 26.7cm (10.5 in)?

Yes No l Refer to Paragraph 2.2.2, BAll-L Box.

4. Calculate +5 Vdc current drain in the CPU backplane. Calculate +5 Vdc current drain for
all other backplanes in box (Figure 2-1).

2-1

5. Is the total current drain (all backplanes) greater than 57 A? (Does not include M8267
current.)

No Yes

Is expander box available with room and current?

Yes No

Refer to step 17.

Refer to step 6.

6. Is the battery backup (BBU) option present?

No Yes

J
All jumpers must be out of all backplanes in box. Refer to Figure 2-2 and step
9.

7. Do backplane jumpers check as follows?

CPU backplane (DDll-PK).
+ 5 VB to +5 V jumper

In } + 15 VB to +15 V jumper
-15 VB to -15 V jumper

Refer to step 8.

In See Figure 2-2.
In

8. All other backplanes in box (DDII-DK, CK).

+5 VB to +5 V jumper
+ 15 VB to + 15 V jumper
-15 VB to -15 V jumper

Refer to step 9.

out}
In See Figure 2-2.
In

9. Is slot 3 open in CPU backplane?

Yes No

Is cache (M 8268) in slot 3?

No Yes

Cache is placed in slot 3 only if FP is not present. When FP is
added, cache is moved to slot 5. Slots 4A and B are reserved for
M9301/M9312 (Figure 2-1). Remove the over-the-top (OTT) con­
nectors and move cache module (M8268) to slot 5. H8822 (OTT) is
necessary to complete the installation (Figure 2-1). Refer to step
10.

Refer to step 10.

10. Is the MaS memory installed in any backplane other than the CPU backplane?

No Yes

Add 0.5 A at +5 Vdc for each MaS board not installed in the CPU backplane
(CPU box only) to the current drain total for the CPU backplane calculated in
step 4.

Refer to step 11.

2-2

11. Is the CPU backplane current drain less than 25 A at +5 V dc?

Yes No

The devices must be moved from the CPU backplane to some other backplane
in the box in order to vacate slot 3 and to reduce the current drain at +5 Vdc to
25 A or less. This must be done without overloading the second +5 Vdc regu­
lator in the box.

Is reconfiguring within the box possible?

Yes No

Can the devices be moved to an expander box without overloading
the expander box?

No Yes

J
Reconfigure the system until the current in the CPU
backplane is less than 25 A at +5 V dc.

Refer to step 17.

Reconfigure within the box until the CPU backplane current drain at +5 Vdc is
less than 25 A.

Refer to step 12.

12. Install the FPI1-A module (M8267) in slot 3 of the CPU backplane.

13. Is KYII-LB (M7859) present?

No

I
Yes

Remove the two lO-pin maintenance cables, if necessary, from the CPU
(M8266) and install them in the FP module (M 8267) as shown in Figure 2-1.

Refer to step 14.

14. Install the two over-the-top (OTT) connectors as shown in Figure 2-1. Use H8822 if the
cache and FP are both present.

15. Turn power on and run the following diagnostics in the order given.

PDP-llj34 CPU Test DFKAA
PDP-llj34 Traps Test At least Rev. C DFKAB
PDP-llj34 EIS Test DFKAC
PDP-l1j34 FPP Diagnostic Part 1 DFFPA
PDP-llj34 FPP Diagnostic Part 2 DFFPB
PDP-llj34 FPP Diagnostic Part 3 DFFPC

16. End

17. When it is impossible to reconfigure the box to accommodate the FPI1-A (M8267) without
overloading the +5 V regulator, one alternative is to move some devices to an expander box.
If an expander box is not present on the system, then there are two ways to proceed.

a. Remove some number of devices from the box to compensate for the 7 A at +5 Vdc
used by the FPII-A, and leave these devices out of the system.

b. Postpone installation until an expansion box can be added to the system.
Refer to step 16.

2-3

2.2.2 BAll-L Box

18. Calculate the current drain at +5 Vdc for the backplane (DDII-PK) (Table 2-1 and Figure
2-1).

19. Is slot 3 open in the backplane?

Yes No

Is the cache (M 8268) in slot 3?

No Yes

Remove the over-the-top (OTT) connectors and move the cache
module (M8268) to slot 5. An H8822 OTT is necessary to complete
installation (Figure 2-1).

Refer to step 20.

Refer to step 20.

20. Is the power supply an H777-AA, AB, BB (25 A version)?

Yes No

The power supply must then be an H777-CA, CB, DA, DB (32 A version).

Is the total current drain at + 5 V dc less than 25 A (without M8267)?

Yes No

The devices must be moved from the CPU box to an expansion
box in order to vacate slot 3, if necessary, and to reduce the current
drain at +5 Vdc to 25 A or less. This must be done without over­
loading the expander box power supply.

Is the expander box available with enough room and power?

Yes No

~ Refer to step 17.

Refer to step 12.

21. Is the total current drain at +5 Vdc less than 18 A (without M8267)?

Yes No

The devices must be moved from the CPU box to an expansion box in order to
vacate slot 3, if necessary, and to reduce the current drain at +5 Vdc to 18 A or
less. This must be done without overloading the expander box power supply.

Is the expander box available with enough room and power?

Yes No

t Refer to step 17.

Reconfigure the system until the CPU box current drain at +5 Vdc is less than
18 A.

Refer to step 12.

22. Refer to step 12.

2-4

RED STRIPE
7011 411_10

2-5

RED STRIPE
7012214_20

SLOT NO, 31M8267)

NOTES

1. JUMPERS SHOWN ARE

·15 TO ·15B

+15 TO +15B

+!tTO +5B

2. USE #20 INSULATED
BUS WIRE FOR JUMPERS

+5V JUMPER

PIN A01A1

SEE VIEW A

+ []o
o 0 GND

o 0

<§:]) ·15

o
<§:::]) +15

@:§) +15B

<§:::]) ·15B

<§:::]) +58

<§:::]) ·5

<§:2)DCL

<2::])AC LO

<2::]) LTC

o
<2::]) +20

(00) +5

~

VIEWA

Figure 2-2 Backplane Jumpers

2-6

11-5343

2.3 FPll-AU UPGRADE KIT
The FPII-AU upgrade kit contains power supply components necessary to increase the +5 Vdc cur­
rent levels available from the 26.7 cm (l0.5 in) mounting box. The purpose of the upgrade kit is to
provide a method by which PDP-Il/34 CPUs can use the floating-point (FPII-A) option. Since the
FPII-A is an option for the PDP-ll/34A CPU, additional hardware is required to upgrade the PDP-
11/34 models to include the floating-point option. The following parts are required.

I. M8265 - Data path module
2. M8267 - FP module
3. M8266 - Control module
4. H7441 - Regulator module
5. H8821 - 20-pin over-the-top connector
6. 54-12416 - lO-pin over-the-top connector
7. W9042 - Bus extender module
8. 54-10834Y A - Power distribution board

The tools required are:

I. Phillips screwdriver (medium and large)
2. Slot screwdriver (large)
3. 90 degree offset Phillips screwdriver.

2.3.1 FPII-AU Power Components Installation

CAUTION
Turn off computer system and disconnect it from
power source before performing installation pro­
cedure.

1. Slide BA 11-K mounting box out of the cabinet assembly to the limits of the chassis slides.

2. Release and remove mounting box top cover to gain access to H765 power supply assembly.

3. Loosen and remove cable clamp that secures the cables that are routed across the top of the
power supply.

4. Loosen and remove power supply cover.

5. Rotate the mounting box in such a manner that the bottom of the mounting box faces away
from the cabinet (box rotated 90 degrees).

6. Loosen and remove mounting box bottom cover to gain access to the power distribution
board located between the power supply and the backplane.

CAUTION
Do not remove the hinge screws (one on each side)
located at the junction of the power supply and the
module enclosure near the top side of the mounting
box.

7. Remove four flat-head screws (no washers) located approximately 10 cm (4 in) from the
bottom of the mounting box and at the junction of the power supply and the module enclo­
sure assembly. The power supply can now be swiveled away from the module enclosure.

2-7

8. Locate the H744 +S Vdc regulator assembly. This regulator is the second module from the
right when viewing the bottom of the mounting box from the wire-wrap side of the back­
plane.

9. Locate and remove the two mounting screws and washers located just to the left of the H744
Mate-N-Lok connector. There will be a green safety wire secured by one of these screws.

NOTE
A 90 degree offset Phillips-head screwdriver is re­
quired to remove these screws and attached hard­
ware.

10. Locate and remove the last retaining screw and washer located on the back of the power
supply and to the left of the H744 decal.

11. Release and remove the H744 Mate-N-Lok connector.

12. Remove the H744 regulator by sliding it out through the top of the power supply assembly.
(Note that the mounting box may have to be rotated to accomplish removal.)

13. Replace the H744 regulator with the H744I regulator (included in the upgrade kit).

14. Replace mounting hardware removed in steps 9 and 10. Do not connect the H744I Mate-N­
Lok connector at this time.

IS. Release and remove the three Mate-N-Lok connectors connecting the remaining regulators
to the power distribution board assembly:

16. Locate and remove the black ground wire soldered to the power distribution board (located
near 116). Remove this ground wire from the power supply and the module enclosure assem­
bly.

17. Remove the +S V and ground fastons from the power distribution board (located near 114).

18. Release and disconnect Mate-N-Lok connector from 18 on the power distribution board.

19. Locate and remove four flat-head screws securing the power distribution board to the mod­
ule enclosure assembly. These screws are located (two on each side) S em (2 in) from the
bottom of the mounting box and near the junction of the power supply and the module
enclosure.

NOTE
The removal of these four screws will allow the re­
moval of the power distribution panel which in turn
will allow removal of all backplane Mate-N-Lok
connectors.

20. Release and disconnect all backplane Mate-N-Lok connectors.

21. Release and disconnect two Mate-N-Lok connectors connecting the power distribution
board to the power supply.

22. Remove the power distribution board.

2-8

23. Replace the power distribution board with the new 5410834-Y A power distribution board
(included in upgrade kit).

24. Reverse procedure (steps 22-14 and steps 7-1) to install the new power distribution board
and to return system to normal.

2.3.2 FPll-AU Logic Installation
Refer to Paragraph 2.2.1 and calculate +5 V dc current drain and system configuration.

2-9

3.1 INTRODUCTION

CHAPTER 3
REVIEW OF FLOATING-POINT NUMBERS

This chapter briefly outlines some fundamentals of floating-point arithmetic. It provides useful back­
ground for more advanced topics in later chapters. The reader already familiar with floating-point
numbers and arithmetic may skip this chapter and continue to Chapter 4 for a discussion of FPII-A
data formats.

3.2 INTEGERS
All data within a computer system can be represented in integer form. The numbers that can be
represented in a 16-bit machine range in magnitude from OOOOOOg to 177777g (or from 010 to 65,53610)'
However, this presents problems with integer representation. A number between 1 and 2 (for example)
or numbers greater than 65,53610 can not be represented. Thus, integer representation imposes an
accuracy and a range limitation.

These limitations are imposed by the stationary position of the radix point (e.g., the decimal point in
base 10 notation or the binary point in base 2 notation). An integer's radix point is usually omitted in
integer representation because it always marks the integer's least significant place. That is, there are
never any digits to the right of an integer's radix point. For this reason, an integer is sometimes called a
fixed-point number.

Integer notation, however, can be modified to overcome the range and accuracy limitations imposed
by the fixed radix point. This is accomplished through the use of floating-point notation.

3.3 FLOATING-POINT NUMBERS
Floating-point numbers, unlike integers, have no position restrictions imposed on their radix points. A
popular type of floating-point representation is called scientific notation. With scientific notation, a
floating-point number is represented by some basic value multiplied by the radix raised to some power.

Example

Basic
value

/ /nent

1,000,00010 = l. X 106

~Radix

3-1

There are many ways to represent the same number in scientific notation, as shown in the example
below.

512. = 51200. X 10-2
= 5120. X 10-1
= 512. X 100
= 51.2 X 101
= 5.12 X 102
= .512X 103

The convention chosen for representing floating-point numbers with scientific notation in the FPII-A
requires the radix point to always be to the left of the most significant digit in the basic value (e.g., .512
X 103 in the above example). This modified basic value is called a fraction.

More examples of scientific notation are shown below.

Decimal Decimal Octal Binary
No. Scient. No. Scient. No. Scient. No.

64 0.64 X 102 0.1 X 83 0.1 X 27
33 0.33 X 102 0.41 X 82 0.100001 X 26
1/2 0.5 X 100 0.4 X 80 0.1 X 20
1/16 0.625 X 10-1 0.4 X 8- 1 0.1 X 23

Note that in each of the examples above, only significant digits are retained in the final result and the
radix point is always (by convention) to the left of the most significant digit. Establishing the radix
point in a number whose basic value is greater than or equal to 1 is accomplished by shifting the
number to the right until the most significant digit is to the right of the radix point. Each right shift
causes the exponent to be incremented by 1. Similarly, establishing the radix point in a number whose
basic value is between 1 and 0 (i.e., a fraction) is accomplished by shifting the number to the left until
all leading Os are eliminated. Each left shift causes the exponent to be decremented by 1.

To summarize, the value of the number remains constant if its exponent is incremented for each right
shift of the basic value and decremented for each left shift. The representation for floating-point
fractions in the FPII-A is one in which all nonsignificant leading Os have been removed. The process
used to obtain this representation is called normalization, which is explained in more detail in Para­
graph 3.4.

3.4 NORMALIZATION
In digital computers, the number of bits in a fraction is limited. Retention of nonsignificant leading Os
decreases accuracy by taking places that could be filled by significant digits. For this reason, a process
called normalization is used in the FPII-A. The normalization process consists of testing the fraction
for leading Os and left-shifting it until it is in the form 0.1 The exponent is accordingly decre­
mented by the number of left shifts of the fraction. This ensures that the normalized number retains
equivalence with the original number. Since digits to the right of the binary point are weighted with
inverse powers of2 (i.e., 1/2, 1/4, 1/8 ...), the smallest normalized fraction is 1/2 (0.10000 ...). The
largest normalized fraction is 0.11111 Figure 3-1 shows an unnormalized fraction that must be
left-shifted six places to be normalized. The exponent is decremented by six to maintain equivalence
with the original number.

3-2

EXPONENT FRACTION

UNNORMALIZED 00 100 011 I I o. 000 000 111 111 001

NORMALI ZED 00 011 101 I I O. 111 111 001 000 000 I
DECREASE EXPONENT BY SIX LEFT SHIFT FRACTION SIX PLACES

MA-0285

Figure 3-1 Normalization

Problem A - Represent the number 7510 as a binary normalized floating-point number.

I. Integer conversion
7510 = 10010112

2. Convert to floating-point form
1001011.0 X 20 = 0.1001011 X 27

Fraction = 0.1001011
Exponent = III

Problem B - Represent the number 0.2510 as a binary normalized floating-point number.

I. Integer conversion
0.25 10 = 0.012

2. Convert to floating-point form
0.01 X 20 = 0.1 X 2-1

Fraction = 0.1
Exponent = -I

3.5 FLOA TING-POINT ADDITION AND SUBTRACTION
In order to perform floating-point addition or subtraction, the exponents of the two floating-point
numbers involved must be aligned or equal. If they are not aligned, the fraction with the smaller
exponent is shifted right until they are. Each shift to the right is accompanied by an incrementation of
the associated exponent. When the exponents are aligned or equal, the fractions can then be added or
subtracted. The exponent value indicates the number of places the binary point is to be moved to
obtain the integer representation of the number.

In the example below, the number 710 is added to the number 4010 using floating-point representation.
Note that the exponents are first aligned and then the fractions are added; the exponent value dictates
the final location of the binary points.

+0.101 000000000000 X 26 = 508 = 4010

+0.111 000 000 000 000 X 26 = 78 = 710

3-3

1. To align exponents, shift the fraction with the smaller exponent three places to the right and
increment the exponent by 3, and then add the two fractions.

+0.101 000000 000 000 X 26 = 508 = 4010
+0.000 111 000 000 000 X 26 = 78 = 710

+0.101 III 000 000 000 X 26 = 578 = 4710

2. To find the integer value of the answer, move the binary point six places to the right.

5 7

0.101 111.000000 000
~ 4

3.6 FLOATING-POINT MULTIPLICATION AND DIVISION
In floating-point multiplication, the fractions are multiplied and the exponents are added. For float­
ing-point division, the fractions are divided and the exponents are subtracted.

There is no requirement to align the binary point in floating-point multiplication or division.

Example:

Multiply 710 by 4010.

1. 0.IIIOOOOX23 = 78= 710
XO.IOIOOOO X 26 = 508 = 4010

III
0000

11100

.10001100000000 X 29 (Result already in normalized form.)

2. Move the binary point nine places to the right.

430 --------.100011000.00000 = 4308 = 28010
\ I

Example:

Divide 1510 by 510.

1. .1111000 X 24

.1010000 X 23

1.010000) .1 II 1000 =

1.100000

10 I 0000) 1111000.000000
1010000

101000
101000

o

3-4

2. Exponent: 4 - 3 = 1

3. Result: 1.100000 X 2

Normalized ~ooooo X 22"

Normalized Fraction Normalized Exponent

Move binary point two places to the right.

.11.00000 = 38 = 310
U

3-5

4.1 INTRODUCTION

CHAPTER 4
DATA FORMATS

The FPII-A requires its input data (operands) to be formatted. Formatting allows the FPII-A to
process operands in a meaningful way and produce correct results. There are four different formats for
operands input to the FPII-A: short-integer format (I), long-integer format (L), single-precision for­
mat (F), and double-precision format (D).

Output data from the FPII-A is also formatted. This output data is in the form of:

I. FPII-A status information and FPII-A exception information required by the CPU
2. Data sent to memory (via the CPU), which must be in I, L, F, or D format.

This chapter describes the FPII-A data formats. It is assumed that the reader is familiar with 2's
complement notation.

4.2 FPll-A INTEGER FORMATS
There are two integer formats, short (I) and long (L). The short-integer format is 16 bits long and the
long-integer format is 32 bits long. Data words (operands) in integer format are represented in 2's
complement notation. In both I and L formats, the most significant bit of the data word is the sign bit.
Figure 4-1 shows the integers 5 and -5 in both I and L formats.

Figure 4-2 illustrates the formats in which integers are arranged in memory. Integers sent to memory
must be in one of these formats. Integers received by the FPII-A are arranged and manipulated
according to the type of instruction being executed. Refer to Paragraphs 5.3.11 and 5.3.12 for descrip­
tions of the ways in which incoming integers are manipulated during the load exponent and load
convert integer-to-floating instructions, respectively.

4.3 FPll-A FLOATING-POINT FORMATS
There are two floating-point formats, single-precision (F) and double-precision (D). The single-precision
format is 32 bits long and the double-precision format is 64 bits long. Figure 4-2 shows that the most
significant bit is the sign of the fraction (and the floating-point number being represented). The next 8
bits contain the value of the exponent, expressed in excess 200 notation (Paragraph 4.3.1.2). The
remaining bits (23 for single-precision, 55 for double-precision) contain the fraction. The fraction and
its associated sign bit are expressed in sign and magnitude notation (Paragraph 4.3.1.1).

4.3.1 FPll-A Floating-Point Data Word
Figure 4-3 illustrates the formats in which floating-point numbers are arranged in memory. Floating­
point numbers sent to memory must be in one of these formats. Floating-point numbers received by
the FPII-A are arranged as illustrated in Figure 4-4.

4-1

INTEGER = 5
I. W OR D 1 --------I

SHORT INTEGER II)

1':1'01+1+1
f

SIGN BIT

I. WOR D 1 ~ i'"---- WO R D 2 ------t
LONGINTEGER(L) 3130 16 1514 0

I 0 I 0 I 0 I 0 I 0 1 0 1 1 0 1 0 I 0 1 0 1 0 I 5 I

f
-- - - SIGN BIT---'NrE:GER:-:;------

I- WORD 1 01

SHORT INTEGER (I)

I· WORD 1 01 i'"---- W 0 R D 2 --------I

LONG INTEGER (Ll 31 30 16 15 14 o

SIGN BIT

Figure 4-1 Integer Formats

~
MEMORY
WORD 1

MEMORY
-I I· WORD 2 °1

31 30 2322 16 15 0
SINGLE-PRECISION

IS I I FLOATING-POINT (F) EXP
FORMAT I I I

I·
MEMORY

FRACTION
MEMORY

I-WORD 2-1
MEMORY MEMORY

WORD1 I-WORD 3 -i I- WORD 4-i

63 62 5554
DOUBLE - PREC I SION

IS I I FLOATI NG- POINT (0) EXP
FORMAT L--.I....-----1-----.I"1 t j t ~ t ~

~ ____________________ ~~~ ____________________ --JJ

FRACTION

S = Sign
EXP = Exponent in excess 200 notation (refer to paragraph 3.3.1.2.).
Fraction = 23 or 55 bit fraction in sign and magnitude
format.

MA-02BO

Figure 4-2 Floating-Point Data Formats

4-2

FRACTION
.A.

7 ~ 0 16 15 14

I > I -I
MEMORY IS] EXP I

> - ---;:> - - >< -::::- - -- ------- - - -- ..;-'- --::,....., - - -
63 62- -_--.----===-- - --.-.:::-- 40 39 -=::--- --!.. 7 6 _

...,...., S-'-J --EXP-:===-t)
-

INITIALLY LOADED

INTO FP11A

63

OVERflOW BIT

HIDDEN BIT ___ -'

MEMORY

INITIALLY LOADED
INTO FPI1A

FPll·AWORD
IN WORKING AREA

OVERflOW BIT

15 14

63

\
\
\
\
\

HIDDEN BIT ----'

ZEROES

39 38

FRACTION

(EXP;o'O. BIT 62=1)

a. Single Precision

7 6 ° 15 ° 15

I
I I
~ /
~ I
17~L.o
1 EXP I

o

ZEROES

11·5254

° 16 °
EXP! I F I I I l I I
~ - - _ / / 7 /' 7/~---..... -;>-?'

,/ --:[7- __ / /' /'/~ /~
.r---L~-_/'/ ./'"

56 /55 /- - /,.?- - - .-

FRACTION

FRACTION

(EXP;o'O. BIT 62=1)

b. Double Precision

I I I
Iii.,
I~

/ /-/7 ___ --,0 I
/ <-I __ Ex_p_--,I

7 6

Figure 4-3 Floating-Point Data Words

4-3

11-5255

SIGN. I
EXPONENT FRACTION

"
.......

15 14 12 11 10 9 8 7 6 5 4 3 2 0

MEMORY 0 0 0 0 0 0 0 0 0 0 0 NUMBER 32 REPRESENTED
IN SIGN AND MAGNITUDE
FORMAT (NUMBER ASSUMED

NORMALIZED)

----0---,
FPll 0 .1 0 0 0 0 0 0 ADDITIONAL I

OPERANDS J
---~I---

S 7 6 5 4 3 2 0 63 62 61 60 59 58 57 56 55 210
I

EXPONENT t FRACTION

HIDDEN
EXPONENT = 206 - 200 = 6 = 2" BIT FRACTION = 1/2 (INSERTION OF HIDDEN BIT)

FLOATING POINT NUMBER = 2" X 1/2 = 32

----- -- -- -- -- ---- -- -- -- -- ------ --

MEMORY

7 6 5

EXPONENT FRACTION
r--------' ----------.,,,r-----~ -----......

14 13 12 11 10 9 8 7 6 5 4 3 2 o

4 3 2 o

o 0 0

o 0

FORMAT(NUMBER ASSUMED

NORMALIZED)

o 1--~D~I~~7"-l
OPERANDS

....... ~ _'"-...r..... _I-................... --J_ - - - ~l- _.J
63 62 61 60 59 58 57 56 55 2 1 0

~ __ ~ __ ~~~~ ____ -J

t EXPONENT FRACTION

HIDDEN

EXPONENT = 177 - 200 = -1 = 2-1 BIT FRACTION = 1/2 + 1/4 + 1/8 = 7/8 (INSERTION OF HIDDEN BIT)

FLOATING POINT NUMBER = 2-1 X 7/8 = 7/16
MA-1448

Figure 4-4 Interpretation of Floating-Point Numbers

4-4

The sign bit, exponent bits, and fraction bits in the FPII-A data word have the same values as the data
word in memory. Note, however, that the FPII-A data word has more bits than its counterpart in
memory. This is because the FPII-A has provisions for generating an overflow bit and a "hidden" bit.

For purposes of discussion, the FPII-A data word can be thought of as being divided into two major
parts:

I. A fraction, with its associated sign bit, hidden bit, and overflow bit.

2. An exponent.

4.3.1.1 Floating-Point Fraction - The fraction is expressed in sign and magnitude notation. The fol­
lowing simple example illustrates the idea behind sign and magnitude notation.

+2

-2

2's Complement
Notation

000010

111110

Sign and Magnitude Notation

,....000010
Sign ~Magnitude

/100010
Sign ~ Magnitude

Only a change of sign bit is required to change the sign of a number in sign and magnitude notation.
Note that a positive n umber is the same in both notations.

Un normalized floating-point fractions have a range from approximately 0 through 2 as shown in
Figure 4-5. The FPII-A, however, normalizes all unnormalized fractions. That is, the fractions are
adjusted such that there is a 0 to the left of the binary point (bit 63) and a I to the right of the binary
point (bit 62). Thus, normalized fractions range in magnitude from 0.1000 ... to 0.1111 or from 1/2 to
approximately I.

63 62 61 60 3 2 1 °

~~~LZLEE~~NUMBER,--I 0--'-.1_° ........ 1_0 ~I_o .... 1 ~: : 1 0 I 0 1 0 I' 1 APPROXIMATELY 0 

LARGEST I 
NONZERO NUMBER 

Figure 4-5 Unnormalized Floating-Point Fraction 

4-5 

MA·1447 



The fraction overflow bit (bit 63) is set during certain arithmetic operations. For example, during 
addition, certain sums will produce an overflow such as 0.1000 ... + 0.100 ... which yields 1.000 .... 
This result must be normalized, so the FPII-A right-shifts the fraction one place and increases the 
exponent by one. 

Bit 62 is called the hidden bit. Recall that since fractions are normalized by the FPII-A, the bit 
immediately to the right of the binary point (bit 62) is always a I. This bit is dropped when a fraction is 
sent to memory and appended when a fraction is received from memory. This procedure allows one 
extra bit of significance in floating-point fraction representation. 

4.3.1.2 Floating-Point Exponent - The 8-bit floating-point exponent is expressed in excess 200 nota­
tion. The chart below illustrates the relationship between exponents in 2's complement notation and 
exponents in excess 200 notation. 

Positive 
Exponents 

Negttive 
Exponents 

2's Complement 

177 Most positive exponent 

o Least positive exponent 

377 Least negative exponent 

I 
200 Most negative exponent 

Positive 
Exponents 

Negative 
Exponents 

Excess 200 

377 Most positive exponent 

200 Least positive exponent 

177 Least negative exponent 

a Most negative exponent 

Note that an exponent in excess 200 notation is obtained by simply adding 200 to the exponent in 2's 
complement notation. Thus, 8-bit exponents in excess 200 notation range from a to 377 (or from -200 
to + 177). A number with an exponent of -200 is treated by the FPII-A as O. 

For example, the number 0.12 is actually 0.1 X 20, and the exponent is represented as 10 000 000 
because 2008 represents an exponent of zero. Figure 3-5 illustrates the range of floating-point numbers 
that can be handled by the FPII-A. For simplicity, a fraction length of only three bits is shown. 

4-6 



4.4 FPll-A PROGRAM STATUS REGISTER 
The FP ll-A contains a resident program status register that contains the floating-point condition 
codes (carry, overflow, zero, and negative) that can be copied into the central processor. In other 
words, FN, FZ, FV, and FC can be copied into the CPU's N, Z, V, and C condition codes, respec­
tively. The program status register also contains 3 mode bits and additional bits to I!nable various 
interrupt conditions. Figure 4-6 shows the layout of the program status register. Each bit shown in the 
figure is described in Table 4-1. 

15 

I I 
I 

FER 

Bit Name 

15 FER 

14 FlO 

13 Not Used 

12 Not Used 

11 FIUV 

10 FlU 

NOTE 
The FPll-A has no Unibus addresses. All FPll-A 
registers are accessed by floating-point instructions 
only. 

14 

I 
I 

FlO 

INTERRUPT ENABLES MODE BITS CONDITION CODES 

13 12 11 10 9 8 7 6 5 4 3 2 0 

I 
I I I 

I 
I I I 

I 
I I I I I 

I FI1UV 
I 

I I 
I 

I 
I 

I 
I 

I 
NOT FlV FD FT FN FV 
USED 

NOT FIU FIC FL NOT FZ FC 
USED USED 

MA-1432 

Figure 4-6 FPII-A Status Register Format 

Table 4-1 FPll-A Status Register 

Function 

This bit indicates an error condition of the FPII-A. 

Floating Interrupt Disable - All interrupts by the FPII-A are disabled 
when this bit is on. Primarily for maintenance use. Normally clear. 

Floating Interrupt on Undefined Variable - When this bit is set and a 
-0 is obtained from memory, an interrupt occurs. If the bit is not set, -0 
can be loaded and stored; however, any arithmetic operation treats it as 
if it were a positive O. 

Floating Interrupt on Underflow - When this bit is set, an underflow 
condition causes a floating underflow interrupt. The result of the oper­
ation causing the interrupt is correct except for the exponent, which is 
off by 4008• If the FlU is not set and underflow occurs, the result is set 
to zero. 

4-7 



Bit 

9 

8 

7 

6 

5 

4 

3-0 

Name 

FIV 

FIC 

FD 

FL 

FT 

Not Used 

FN, FZ, FV, 
and FC 

Table 4-1 FPll-A Status Register (Cont) 

Function 

Floating Interrupt on Overflow - When this bit is set, floating overflow 
causes an interrupt. The result of the operation causing the interrupt is 
correct except for the exponent, which is off by 4008. If the FIV bit is 
not set, the result of the operation is the same; the only difference is that 
the interrupt does not occur. 

Floating Interrupt on Integer Conversion Error - When this bit is set 
and the store convert floating-to-integer instruction causes FC to be set 
(indicating a conversion error), an interrupt occurs. When a conversion 
occurs, the destination register is cleared and the source register is un­
touched. When FIC is reset, the result of the operation is the same; 
however, no interrupt occurs. 

Double-Precision Mode Bit - This bit, when set, specifies double-preci­
sion format and, when reset, specifies single-precision format. 

Long-Precision Integer Mode Bit - This bit is employed during con­
version between integer and floating-point format. If set, double-preci­
sion 2's complement integer format of 32 bits is specified; if reset, 
single-precision 2's complement integer format of 16 bits is specified. 

Truncate Bit - This bit, when set, causes the result of any floating-point 
operation to be truncated rather than rounded. 

These bits are the four floating-point condition codes, which can be 
loaded in the CPU's N, Z, V, and C condition codes, respectively. This 
is accomplished by the copy floating condition codes (CFCC) instruc­
tion. To determine how each instruction affects the condition codes, 
refer to Table 5-1. 

4.5 PROCESSING OF FLOATING-POINT EXCEPTIONS 
Location 244 is the interrupt vector used to handle all floating-point interrupts. A total of six possible 
interrupts can occur. These possible interrupt exceptions are encoded in the FPII-A exception code 
(FEC) register. The interrupt exception codes represent an offset into a dispatch table, which routes 
the program to the right error handling routine. The dispatch table is a function of the software. The 
FEC for each exception is briefly described in Table 4-2. 

Refer to the PDP-II /04,34,45,45 Processor Handbook for further details concerning FPII-A excep­
tions. 

In addition to the FEC register, the CPU contains a 16-bit floating exception address (FEA) register, 
which stores the address of the last floating-point instruction that caused a floating-point exception. 

4-8 



FPll-A 
Exception 
Code 

2 

4 

6 

10 

12 

14 

Table 4-2 FPll-A Exception Codes 

Definition 

Floating Op Code Error - The FPll-A causes an interrupt 
for an erroneous op code 

Floating Divide by Zero - Division by zero causes an inter­
rupt if FID is not set 

Floating (or Double) Integer Conversion Error 

Floating Overflow 

Floating Underflow 

Floating Undefined Variable 

NOTE 
The traps for exception codes 6, 10, 12, and 14, can 
be enabled in the FPll-A program status register. 
All traps are disabled if FID is set. 

4-9 





CHAPTER 5 
FLOATING-POINT INSTRUCTIONS 

5.1 FLOATING-POINT ACCUMULATORS 
The FPII-A contains six general-purpose accumulators (ACO-AC5). These accumulators are 64-bit 
read/write scratch pad memories with non-destructive readout. 

Each accumulator is interpreted as being either 32 or 64 bits long, depending on the instruction and the 
FPII-A status (Chapter 4). If an accumulator is interpreted as being 64 bits long, 64 bits of data 
occupy the entire accumulator. If an accumulator is interpreted as being 32 bits long, 32 bits of data 
occupy only the left-most 32 bits of an accumulator as shown in Figure 5-1. 

The floating-point accumulators are used in numeric calculations and interaccumulator data transfers. 
ACO-AC3 are used for all data transfers between the FPII-A and the CPU or memory. 

ACCUMULATORS 

64 BIT ACCUMULATOR 
~ ____________ ~A ______________ ~ 

( 32 BIT ACCUMULATOR '\ 

a 
r---------------r-------------~ 

2 
3r---------------r-------------~ 

4 
r---------------~------------~ 

5 

MSB LSB 

MA-0277 

Figure 5-1 Floating-Point Accum ulators 

5.2 INSTRUCTION FORMATS 
An FPII-A instruction must be in one of five formats. These formats are summarized in Figure 5-2. 

The 2-bit AC field (bits 6 and 7) allows selection of scratchpad accumulators 0 through 3 only. 

If address mode 0 is specified with formats Fl or F2, bits 2-0 are used to select a floating-point 
accumulator. Only accumulators 5-0 can be specified in mode O. If 6 or 7 is specified in bits 2-0 in 
mode 0, the FPII-A traps if floating-point interrupts are enabled (FID = 0). The FEC will indicate an 
illegal op code error (exception code 2). 

5-1 



15 12 " 87 65 0 

F I I OC = 17 FOC I A C I FSRC/FDST I 
15 12 " 6 5 0 

F 21 OC = 17 I FOC I FDST I 
15 12 11 8 7 65 0 

F31 OC = 17 FOC AC I SRC/DST I 
15 12 " 6 5 0 

F41 OC = 17 FOC I SRC/DST I 
15 12 11 0 

F51 OC = 1 7 I FOC I 
11-3730 

Figure 5-2 Instruction Formats 

The fields of the various instruction formats (as summarized in Table 5-1) are interpreted as follows. 

Mnemonic 

OC 

FOC 

SRC 

DST 

FSRC 

FDST 

AC 

Description 

Operation Code - All floating-point instructions are designated by a 4-bit op 
code of 178. 

Floating Operating Code - The number of bits in this field varies with the 
format; the code is used to specify the actual floating-point operation. 

Source - A 6-bit source field identical to that in the PDP-II instruction. 

Destination - A 6-bit destination field identical to that in a PDP-ll instruc­
tion. 

Floating Source - A 6-bit field used only in format Fl. It is identical to SRC, 
except in mode 0 when it references a floating-point accumulator rather than 
a CPU general register. 

Floating Destination - A 6-bit field used in formats F1 and F2. It is identical 
to DST, except in mode 0 when it references a floating-point accumulator 
instead of a CPU general register. 

Accumulator - A 2-bit field used in formats F1 and F3 to specify FP11-A 
scratchpad accumulators 0-3. 

5-2 



Table 5-1 Format of FPll-A Instructions 

Instruction 
Format Instruction Mnemonic 

F2 ABSOLUTE ABSF FDST 
ABSD FDST 

Fl ADD ADDF FSRC, AC 
ADD FSRC,AC 

F2 CLEAR CLRFFDST 
CLRD FDST 

F4 COMPARE CMPF FSRC, AC 
CMPD FSRC, AC 

F5 COPY FLOATING CONDITION CODES CFCC 
Fl DIVIDE DIVF FSRC, AC 

DIVD FSRC, AC 
Fl LOAD LDFFSRC,AC 

LDDFSRC,AC 
Fl LOAD CONVERT LDCFD FSRC, AC 

FDCDF FSRC, AC 
F3 LOAD CONVERT INTEGER LDCIF SRC, AC 

LDCID SRC, AC 
LDCLF SRC, AC 
LDCLD SRC, AC 

F3 LOAD EXPONENT LDEXPSRC,AC 
F4 LOAD FPll'S PROGRAM STATUS LDFPS SRC 
Fl MODULO MODF FSRC, AC 

MOOD FSRC, AC 
Fl MULTIPLY MULF FSRC, AC 

MULD FSRC, AC 
F2 NEGATE NEGFFDST 

NEGDFDST 
F5 SET DOUBLE MODE SETD 
F5 SET FLOATING MODE SETF 
F5 SET INTEGER MODE SETI 
F5 SET LONG INTEGER MODE SETL 
Fl STORE STF AC, FDST 

STDAC, FDST 
Fl STORE CONVERT STCFD AC, FDST 

STCDF AC, FDST 
F3 STORE CONVERT STCFI AC, DST 

FLOA TING TO INTEGER STCFL AC, DST 
STCDI AC, DST 
STCDL AC, DST 

F3 STORE EXPONENT STEXP AC, DST 
F4 STORE FPll 'S PROGRAM STATUS STFPS DST 
F4 STORE FPll 'S STATUS STST DST 
Fl SUBTRACT SUBF FSRC, AC 

SUBD FSRC, AC 
F2 TEST TSTF FDST 

TSTD FDST 

5-3 



5.3 INSTRUCTION SET 
Table 5-2 contains the instruction set of the FPII-A. Some of the symbology may not be familiar. 
Therefore, a brief description follows. 

I. A floating-point flip-flop, designated FD, determines whether single- or double-precision 
floating-point format is specified. If the flip-flop is cleared, single-precision is specified and 
is designated by F. If the flip-flop is set, double-precision is specified and is designated by D. 
Examples are NEGF, NEGD, and SUBD. 

NOTE 
Only the assembler or compiler differentiates be­
tween NEGF and NEGD or LDCID or LDCLD in­
structions. The Floating-point does not differentiate 
between the instructions but depends upon the value 
of FD and FL as usually controlled by SETD, 
SETF, SETC, and SETI instructions (i.e., LDCID 
-+ SETI -+ SETD -+ LDCLD). 

2. An integer flip-flop, designated FL, determines whether short-integer or long-integer format 
is specified. If the flip-flop is cleared, short-integer format is specified and is designated by I. 
If the flip-flop is set, long-integer format is specified and is designated by L. Examples are 
SET! and SETL. 

3. Several convert-type instructions use the symbology defined below. 

CIL,FD - Convert integer to floating 

CFD,IL - Convert floating to integer 

CF D or CD F - Convert single-floating to double-floating or convert double-floating to 
single-floati'ng 

4. UPUM is defined as the largest possible number that can be represented in floating-point 
format. This number has an exponent of 377 (excess 200 notation) and a fraction of allIs. 
Note the UPUM is dependent on the format specified. LOUM is defined as the smallest 
possible number that is not identically O. This number has an exponent of 001 and a fraction 
of all Os except for the hidden bit. 

5. The following conventions are used when referring to address locations. 

(xxxx) = the contents of the location specified by xxxx 
ABS (address) = absolute value of (address) 
EXP (address) = exponent of (address) in excess 200 notation 

6. Some of the octal codes listed in Table 5-2 are in the form of mathematical expressions. 
These octal codes can be calculated as shown in the following examples. 

Example 1: LD FPS Instruction 

Mode 3, register 7 specified (F instruction format) 

170100 + SRC 
SRC field is equal to 37 
Basic op code is 170 I 00 
SRC and basic op code are added to yield 170137. 

5-4 



Example 2: LDF Instruction 

AC2, mode 2, and register 6 specified (Fl instruction format). 

172400 + C * 100 + FSRC 

AC = 2 

2 * 100 = 200 

172400 + 200 = 172600 
FSRC is equal to 26 

172600 + 26 + 172626 

7. AC v 1 means that the accumulator field (bits 6 and 7 in formats Fl and F3) is logically 
ORed with 01. 

Example: 

Accumulator field = bits 6 and 7 = AC2 = 10. AC v 1 = 11. 

The information in Table 5-2 is expressed in symbolic notation to provide the reader with a quick 
reference to the function of each instruction. The following paragraphs supplement the information in 
Table 5-2. 

Mnemonic 

ABSF FDST 
ABSD FDST 

ADDF FSRC, AC 
ADDD FSRC, AC 

CLRF FDST 
CLRD FDST 

Table 5-2 FPII-A Instruction Set 

Instruction Description 

Absolute 
FDST +- minus (FDST) if FDST ~ 0; other-

wise FDST +- (FDST) 
FC +- 0 
FV +- 0 
FZ +- 1 if exp (FDST) = 0; otherwise FZ +- 0 
FN +- 0 

Floating Add 
AC +- (AC) + (FSRC) if I AC I + (FSRC) 
~ LOLIM; otherwise AC +- 0 

FC +- 0 
FV +- 1 if I AC I ~ UPLIM; otherwise FV +- 0 
FZ +- if (AC) = 0; otherwise FZ +- 0 
FN +- 1 if (AC) < 0; otherwise FN +- 0 

Clear 
FDST +- 0 
FC +- 0 
FV +- 0 
FZ +- 1 
FN +- 0 

5-5 

Octal Code 

170600+ FDST 
F2 Format 

172000+AC* 100+ FSRC 
FI Format 

170400+ FDST 
F2 Format 



Mnemonic 

CMPF FSRC, AC 
CMPD FSRC, AC 

CFCC 

DIVF FSRC, AC 
DIVD FSRC, AC 

LDF FSRC, AC 
or 
LDD FSRC, AC 

LDCDF FSRC, AC 
LDCFD FSRC, AC 

Table 5-2 FPll-A Instruction (Cont) 

Instruction Description 

Floating Compare 
FC +- 0 
FV +- 0 
FZ +- 1 if (FSRC) - (AC) = 0; otherwise 

FZ +- 0 
FN +- 1 if (FSRC) - (AC) < 0; otherwise 

FN +- 0 

Copy Floating Condition Codes 
C +- FC 
V+- FV 
Z +- FZ 
N +- FN 

Floating Divide 
AC +- (AC)/(FSRC) if I (AC)/(FSRC) I 
~ LOLIM; otherwise AC +- 0 

FC +- 0 
FV +- 1 if I AC I ~ UPLIM; otherwise FV +- 0 
FZ +- 1 if EXP (AC) = 0; otherwise FZ +- 0 
FN +- 1 if (AC) < 0; otherwise FN +- 0 

Floating Load 
AC +- (FSRC) 
FC +- 0 
FV +- 0 
FZ +- 1 if (AC) = 0; otherwise FZ +- 0 
FN +- 1 if (AC) < 0; otherwise FN +- 0 

Load Convert Double-to-Floating or 
Floating-to-Double 

AC +- CF,D or CD,F (FSRC) 
FC +- 0 
FV +- 1 if I AC I ~ UPLIM; otherwise 

FV +- 0 
FZ +- 1 if (AC) = 0; otherwise FZ +- 0 
FN +- 1 if (A C) < 0; otherwise FN +- 0 

If the current format is single-precision float­
ing-point (FD = 0), the source is assumed to 
be a double-precision number and is con­
verted to single-precision. If the floating-trun­
cate bit is set, the number is truncated; 
otherwise, it is rounded. If the current format 
is double-precision (FD = 1), the source is as­
sumed to be a single-precision number and 
loaded left-justified in the AC. The lower half 
of the AC is cleared. 

5-6 

Octal Code 

173400+ AC* 100+ FSRC 
Fl Format 

170000 
F5 Format 

174400+ AC* 100+ FSRC 
Fl Format 

172400+ AC* 100+ FSRC 
Fl Format 

177400+ AC* 100+ FSRC 
Fl Format 
F, D-single-precision to 

double-precision float­
ing 

D, F -double-precision to 
single-precision float­
ing 



Mnemonic 

LDCIF SRC, AC 
LDCID SRC, AC 
LDCLF SRC, AD 
LDCLD SRC, AC 

LDCIF = Single Integer 
to Single Float 

LDCID = Single Integer 
to Double Float 

LDCLF = Long Integer 
to Single Float 

LDCLD = Long Integer 
to Double Float 

LDEXPSRC,AC 

LDFPS SRC 

MODF FSRC, AC 
MODD FSRC, AC 

Table 5-2 FPll-A Instruction (Cont) 

Instruction Description Octal Code 

Load and Convert from Integer to Floating 177000+AC*100+SRC 
AC +- CIL,FD (SRC) F3 Format 
FC +- 0 
FV +- 0 
FZ +- 1 if (AC) = 0; otherwise FZ +- 0 
FN +- 1 if (AC) < 0; otherwise FN +- 0 
CIL,FD specifies conversion from a 2's com­
plement integer with precision I or L to a 
floating-point number of precision F or D. If 
integer flip-flop IL = 0, a 16-bit integer (I) is 
double specified, and if IL = 1, a 32-bit in­
teger (L) is specified. If floating-point flip-flop 
FD = 0, a 32-bit floating-point number (F) is 
specified, and if FD = 1, a 64-bit floating­
point number (D) is specified. If a 32-bit in­
teger is specified and addressing mode 0 or 
immediate mode is used, the 16 bits of the 
source register are left justified, and the re­
maining 16 bits are zeroed before the con­
version. 

Load Exponent 176400+AC*100+SRC 
AC SIGN +- (AC SIGN) F3 Format 
AC EXP +- (SRC) + 200 only if ABS (SRC) 

< 177 
AC FRACTION +- (AC FRACTION) 
FC +- 0 
FV +- I if (SRC) > 177; otherwise FV +- 0 
FZ +- 1 if EXP (AC) = 0; otherwise FZ +- 0 
FN +- 1 if (AC) < 0; otherwise FN +- 0 

Load FPII-A's Program Status Word 170100+SRC 
FPS +- (SRC) F4 Format 

Floating Modulo 171400+AC*100+FSRC 
AC v I +- integer part of (AC)*(FSRC) Fl Format 
AC +- fractional part of (AC)*(FSRC) 

- (AC v 1) if I (AC)*(FSRC) I 
~ LOLIM or FlU = I; otherwise AC +- 0 

FC +- 0 
FV +-1 if I AC I ~ UPLIM; otherwise FV +- 0 
FZ +- 1 if (AC) = 0; otherwise FZ +- 0 
FN +- I if (AC) < 0; otherwise FN +- 0 

The product of AC and FSRC is 48 bits in 
single-precision floating-point format or 59 
bits in double-precision floating-point format. 
The integer part of the product 
[(AC)*(FSRC)] is found and stored in AC v 1. 
The fractional part is then obtained and 
stored in AC. Note that multiplication by 10 
can be done with zero error, allowing decimal 
digits to be stripped off with no loss in preci­
sion. 

5-7 



Mnemonic 

MULF FSRC, AC 
MULD FSRC, AC 

NEGF FDST 
NEGD FDST 

SETD 

SETF 

SETI 

SETL 

STF AC, FDST 
STD AC, FDST 

Table 5-2 FPll-A Instruction (Cont) 

Instruction Description 

Floating Multiply 
AC +- (AC)*(FSRC) if I (AC)*(FSRC) I 
~ LOLIM; otherwise AC +- 0 

FC +- 0 
FV +-1 if I A<;:: I ~ UPLIM; otherwise FV +- 0 
FZ +- 1 if (AC) = 0; otherwise FZ +- 0 
FN +- 1 if (AC) < 0; otherwise FN +- 0 

Negate 
FDST +- minus (FDST) if EXP (FDST) ~ 0; 

otherwise FDST +- 0 
Fe +- 0 
FV +- 0 
FZ +- 1 if if EXP (FDST) = 0; otherwise FZ 

+-0 
FN +- 1 if (FDST) < 0; otherwise FN +- 0 

Set Floating Double Mode 
FD +- 1 

Set Floating Mode 
FD +-0 

Set Integer Mode 
FL +- 0 

Set Long-Integer Mode 
FL +- 1 

Floating Store 
FDST +- (AC) 
FC +- FC 
FV +- FV 
FZ +- FZ 
FN +- FN 

5-8 

Octal Code 

171000+AC*IOOFSRC 
FI Format 

170700+ FDST 
F2 Format 

170011 
F5 Format 

170001 
F5 Format 

170002 
F5 Format 

170012 
F5 Format 

174000+AC*I00+FDST 
FI Format 



Mnemonic 

STCFD AC, FDST 
STCDF AC, FDST 

STCFI AC, DST 
STCFL AC, DST 
STCDI AC, DST 
STCDL AC, DST 

STCFI = Single Float to 
Single Integer 

STCFL = Single Float to 
Long Integer 

STCDI = Double Float 
to Single Integer 

STCDL = Double Float 
to Long Integer 

Table 5-2 FPll-A Instruction (Cont) 

Instruction Description 

Store Convert from Floating-to-Double or 
Double-to-Floating 
FDST +- CF,D or CD,F (AC) 
FC +- 0 
FV +- 1 if I AC I ~ UPLIM; otherwise FV +- 0 
FZ +- 1 if (AC) = 0; otherwise FZ +- 0 
FN +- 1 if (AC) < 0; otherwise FN +- 0 

The STCFD instruction is the opposite of the 
LDCDF instruction; thus, if the current for­
mat is single-precision floating-point (FD = 
0), the source is assumed to be a single-preci­
sion number and is converted to double-preci­
sion. If the floating truncate bit is set, the 
number is truncated; otherwise, it is rounded. 
If the current format is double-precision (FD 
= I), the source is assumed to be double-pre­
cision number and loaded left-justified in the 
AC. The lower half of the AC is cleared. 

Octal Code 

176000+ AC* 100+ FDST 
Fl Format 
F, D-single-precision to 

double-precision float­
ing 

D, F -double-precision to 
single-precision float­
mg 

Store Convert from Floating-to-Integer 175400+ A C* 100+ DST 
Destination receives converted AC if the re- F3 Format 
suiting integer number can be represented in 
16 bits (short integer) or 32 bits (long integer). 
Otherwise, destination is zeroed and C-bit is 
set. 

FV +- 0 
FZ +- I if (DST) = 0; otherwise FZ +- 0 
FN +- 1 if (DST) < 0; otherwise FN +- 0 
C +- FC 
V+- FV 
Z +- FZ 
N +- FN 

When the conversion is to long integer (32 
bits) and address mode 0 or immediate mode 
is specified, only the most significant 16 bits 
are stored in the destination register. 

5-9 



Mnemonic 

STEXP AC, DST 

STFPS DST 

STST DST 

SUBF FSRC, AC 
SUBD FSRC, AC 

TSTF FDST 
TSTD FDST 

Table 5-2 FPll-A Instruction (Cont) 

Instruction Description 

Store Exponent 
DST +- AC EXPONENT - 2008 
FC +- a 
FV +- 0 
FZ +- I if (DST) = 0; otherwise FZ +- 0 
FN +- I if (DST) < 0; otherwise FN +- 0 
C +- FC 
V+- FV 
Z +- FZ 
N +- FN 

Store FPII-A's Program Status Word 
DST +- (FPS) 

Store FPII-A's Status 
DST +- (FEC) 
DST + 2 +- (FEA) if not mode 0 or not imme­

diate mode 

Floating Subtract 
AC +- (AC) - (FSRC) if I (AC) - (FSRC) I 
~ LOLIM; otherwise AC +- 0 

FC +- 0 
FV +- I if AC UPLIM; otherwise FV +- 0 
FZ +- I if (AC) = 0; otherwise FZ +- 0 
FN +- I if (AC) < 0; otherwise FN +- 0 

Test 
Floating 
FC +- 0 
FV +- 0 
FZ +- I if EXP (FDST) = 0; otherwise FZ +- 0 
FN +- I if (FDST) < 0; otherwise FN +- 0 

5.3.1 Arithmetic Instructions 

Octal Code 

175000+C*100+DST 
F3 Format 

170200+DST 
F4 Format 

170300+DST 
F4 Format 

173000+ A C* 100+ FSRC 
Fl Format 

170500+ FDST 
F2 Format 

The arithmetic instructions (Add, Subtract, MUltiply, Divide) require one operand in a source (a 
floating-point accumulator in mode 0, a memory location otherwise) and one operand in a destination 
accumulator. The instruction is executed by the FPII-A and the result is stored in the destination 
accumulator. 

The Compare instruction also requires one operand in a source and one operand in a destination 
accumulator. However, the two operands remain in their respective locations after the instruction is 
executed by the FPII-A, and there is no transfer of the result. 

5-10 



5.3.2 Floating-Modulo Instruction 
The Floating-Modulo (MOD) instruction causes the FPI1-A to multiply two floating-point operands, 
separate the product into integer and fractional parts, and store one or both parts as floating-point 
numbers. The whole-number portion goes into an odd-numbered accumulator and the fraction goes 
into an even-numbered accumulator. 

The whole-number portion of the number, when expressed as a floating-point number, contains an 
exponent greater than 201 in excess 200 notation, which means that the whole number has a decimal 
value of some number greater than one and less than UPUM, where UPUM is the greatest possible 
number that can be represented by the FPII-A. 

The fractional portion of the number, when expressed as a floating-point number, contains an expo­
nent less than or equal to 201 in excess 200 notation. This means that the fraction has a value less than 
one and greater than LOUM, where LOUM is the smallest possible number that can be represented 
by the FPII-A. 

5.3.3 Load Instruction 
The Load instruction causes the FPII-A to take an operand from a source and copy it into a destina­
tion accumulator. The source is a floating-point accumulator in mode 0 and a memory location other­
wise. 

5.3.4 Store Instruction 
The Store instruction causes the FPII-A to take an operand from a source accumulator and transfer it 
to a destination. This destination is a floating-point accumulator in mode 0 and a memory location 
otherwise. 

5.3.5 Load Convert (Double-to-Floating, Floating-to-Double) Instructions 
The Load Convert Double-to-Floating (LDCDF) instruction causes the FPII-A to assume that the 
source specifies a double-precision floating-point number. The FPII-A then converts that number to 
single-precision, and places this result in the destination accumulator. If the floating-truncate (FT) 
status bit is set, the number is truncated. If the FT bit is not set, the number is rounded by adding a I to 
the single-precision segment if the MSB of the double-precision segment is a 1 depending on the prior 
conditions set up by the FD bit (Figure 5-3). If the MSB of the double-precision segment is 0, the 
single-precision word remains unchanged after rounding. 

SINGLE PRECISION 
SEGMENT 

, 
DOUBLE PRECISION 

SEGMENT 

Figure 5-3 Double-to-Single Precision Rounding 

MA-0288 

The Load Convert Floating-to-Double (LDCFD) instruction causes the FPII-A to assume that the 
source specifies a single-precision number. The FPII-A then converts that number to double-precision 
by appending 32 zeros to the single-precision word, and places this result in the destination accumula­
tor. 

Note that for both Load Convert instructions, the number to be converted is originally in the source (a 
floating-point accumulator in mode 0, a memory location otherwise) and is transferred to the destina­
tion accumulator after conversion. 

5-11 



5.3.6 Store Convert (Double-to-Floating, Floating-to-Double) Instructions 
The Store Convert Double-to-Floating (STCDF) instruction causes the FPII-A to convert a double­
precision number located in the source accumulator to a single-precision number. The FPII-A then 
transfers this result to the specified destination. If the floating-truncate (FT) bit is set, the floating­
point n umber is truncated. If the FT bit is not set, the number is rounded. If the MSB (bit 31) of the 
double-precision segment of the word is ai, 1 is added to the single-precision segment of the word, 
depending on the prior conditions set up by the FD bit (Figure 5-3); otherwise, the single-precision 
segment remains unchanged. 

The Store Convert Floating-to-Double (STCFD) instruction causes the FP11-A to convert a single­
precision number located in the source accumulator to a double-precision number. The FPII-A then 
transfers this result to the specified destination. The single-to-double precision is obtained by append­
ing zeros equivalent to the double-precision segment of the word (Figure 5-4). 

Note that for both Store Convert instructions, the number to be converted is originally in the source 
accumulator and is transferred to the destination (a floating-point accumulator in mode 0, a memory 
location otherwise) after conversion. 

L-________ ~~ __ ------~ 

SINGLE PRECISION 
SEGMENT 

DOUBLE PRECISION 
SEGMENT 

Figure 5-4 Single-to-Double Precision Appending 

5.3.7 Clear Instruction 

11- 3728 

The Clear instruction causes the FPII-A to clear a floating-point number by setting all its bits to O. 

5.3.8 Test Instruction 
The Test instruction causes the FPII-A to test the sign and exponent of a floating-point number and 
update the FPII-A status accordingly. The number tested is obtained from the destination (a floating­
point accumulator in mode 0, a memory location otherwise). The FC and FV bits are cleared. The FN 
bit is set only if the destination is negative. The FZ bit is set only if the exponent of the destination is 
zero. If the FIUV status bit is set, a trap occurs (after the test instruction is executed) if a minus zero is 
encountered. 

5.3.9 Absolute Instruction 
The Absolute instruction causes the FPII-A to take the absolute value of a floating-point number by 
forcing its sign bit to O. If mode 0 is specified, the sign of the number in the floating-point destination 
accumulator is forced to O. The exponent of the number is tested, and if it is 0, zeros are written into 
the accumulator. If the exponent is non-zero, the accumulator is unaffected. 

If mode 0 is not specified, the sign bit of the specified data word in memory is zeroed. The exponent of 
this word is tested, and if it is 0, the entire data word in memory is zeroed. If the exponent is non-zero, 
the integer exponent is restored to memory. 

Absolute and Negate instructions are the only instructions that can read and write a memory location. 

5-12 



5.3.10 Negate Instruction 
The Negate instruction causes the CPU (or the FPII-A, in mode 0) to complement the sign of an 
operand. If mode 0 is specified, the sign of the number in the floating-point destination accumulator is 
complemented. The exponent of the number is tested, and ifit is 0, zeros are written into the accumula­
tor. If the exponent is non-zero, the accumulator is unaffected. 

If mode 0 is not specified, the sign bit of the specified data word in memory is complemented. This 
word is then transferred from memory to a floating-point accumulator. The exponent of this word is 
tested, and if it is 0, the entire data word is zeroed and transferred back to memory. If the exponent is 
non-zero, the original fraction and exponent are restored to memory. 

5.3.11 Load Exponent Instruction 
The Load Exponent instruction causes the floating-point processor (FPP) to load an exponent from 
the source (a floating-point accumulator in mode 0, a memory location otherwise) into the exponent 
field of the destination accumulator. In order to do this, the 16-bit, 2's complement exponent from the 
source must be converted to an 8-bit number in excess 200 notation. This process is described further 
below. 

Assume that the 16-bit, 2's complement exponent is coming from memory. The possible legal range of 
16-bit numbers in memory is from 000000 to 1777778• On the other hand, the possible legal range of 
exponents in the FPl1-A falls into two classes. 

1. Positive exponents (0 through 177) - When 200 is added to any of these numbers, the sum 
stays within the legal 8-bit exponent field (i.e., from 200 through 377). 

2. Negative exponents (177601 through 177777) - When 200 is added to any of these numbers, 
the sum stays within the legal 8-bit exponent field (i.e., from 1 through 177). 

Notice that all legal positive exponents coming from memory have something in common: their 9 high­
order bits are all Os. Similarly, all legal negative exponents from memory have their 9 high-order bits 
equal to 1. Therefore, to detect a legal exponent, only the 9 high-order bits need be examined for all 1 s 
or all Os. 

Any number from memory outside these ranges is illegal and will result in either an overflow or an 
underflow trap condition. 

Example 1: LDEXP 000034 

Exponentof34 
200 

00000000 
+ 

00011100 
10000000 

10011100 

234 

The upper 9 bits all equal 0, so this is a legal positive exponent. The number 234 is sent to the 8-bit 
exponent field of the specified accumulator. 

Example 2: LDEXP 201 

Exponentof201 
200 

201 
,----+-----'-,. -'----

00000000 10000001 
+ 0 10000000 

____ L---~ 

Overflow 

00000001 

This is an illegal positive exponent. Notice that when 200 is added to the exponent, an overflow 
occurs. 

5-13 



Example 3: LDEXP 100200 

Exponent of 100200 
200 

1000000 
+ 

~L...-_---l 
Underflow 

2 0 0 

1 00000 
10000000 

00000000 

This is an illegal negative exponent. Notice that when 200 is added to the exponent, a result is 
produced that is more negative than can be expressed by the 8-bit exponent field. Thus, an under­
flow occurs. 

Example 4: Special Case - Exponent of 0: LDEXP 177600 

Exponent of 177600 11111111 
+ 0 

00000000 

10000000 
10000000 

00000000 

This is the one case where the 9 high-order bits are all equal, but the exponent is illegal. This is 
because 177600 represents an exponent of O. This exponent causes an underflow condition to 
exist; that is, it is treated as an illegal negative exponent. 

5.3.12 Load Convert Integer-to-Floating Instruction 
The Load Convert Integer instruction takes a 2's complement integer from memory and converts it to 
a floating-point number in sign and magnitude format. If short-integer mode is specified, the number 
from memory is 16 bits and is converted to a 24-bit fraction (single-precision) or a 56-bit fraction 
(double-precision), depending on whether floating or double mode is specified. If long-integer mode is 
specified, the number from memory is 32 bits and is converted to a single- or double-precision number, 
depending on whether floating or double mode is specified. The integer is loaded into bits 55-40 if 
short integer is specified or into bits 55-24 if long integer is specified. It is then left-shifted eight places 
so that bit 55 is transferred to bit 63 (Figure 5-5). 

63 62 6160 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 

10101010101010101'1'1'111110101'11111'11101010111 

11·5307 

Figure 5-5 Integer Left-Shift Example 

The integer is then assigned an exponent of 2178 short integer. This is the result of adding 2008 (since 
the exponent is expressed in excess 200 notation) to 178 which represents 15\0 shifts. This number of 
shifts is the maximum number required to normalize a number. If long-integer mode is specified, the 
integer is assigned an exponent of 2378 which represents 31 \0 shifts. 

5-14 



The 2's complement integer is tested by examination of bit 63 to see if it is a positive or negative 
number. The number is then normalized by left-shifting until bit 63 becomes a 1. If bit 63 is 1 (negative 
number), the integer is negative, the sign bit is set, the number is 2's complemented, and then normal­
ized. 

To normalize a number, bit 63 (MSB) of the fraction must be equal to a and bit 62 must be made equal 
to 1. To do this, the integer is shifted the required number of places to the left and the exponent value is 
decreased by the number of places shifted (Figure 5-6). 

EXP= 2178 
- 178 
2008 

Shift integer 15 places to the left to normalize. 
Bit 59 = 0, bit 58 = 1 
Decrease exponent by 1510 which is 178. 

When loading a long integer with an FD = 0, if the long integer contains more than 24 significant 
digits, then less significant digits will be truncated with some loss of accuracy. 

115308 

Figure 5-6 Normalized Integer Example 

5.3.13 Store Exponent Instruction 
The Store Exponent (STEXP) instruction causes the CPU to access a floating-point number in the 
FPII-A, extract the 8-bit exponent field from this number, and subtract a constant of 200 (since the 
exponent is expressed in excess 200 notation). The exponent is then stored in the destination as a 16-
bit, 2's complement, right-justified number with the sign of the exponent (bit 07) extended through the 
8 high-order bits. 

The legal range of exponents is from a to 377, expressed in excess 200 notation. This means that the 
number stored ranges from -200 to 177 after the constant of 200 has been subtracted. The subtraction 
of 200 is accomplished by taking the 2's complement of 200 and adding it to the exponent field (Figures 
5-7 and 5-8). 

FLOATING POINT I 
NUMBER IN '.11-' 

EXPONENT 
TRANSFERRED 

15 

S I 

14 13 

0 

12 11 10 9 

EXPONENT (8 BITS) 

0 0 0 

SIGN EXTENSION 

8 7 6 5 4 3 2 0 

FRACTION 

TO MEMORY 0 0 0 0 0 0 0 00 \ 0 0 0 0 
(ORACCUMULATOR)~ __________________________ ~~, ________________________ ~ 

15 14 13 12 11 10 9~ 7 \ 6 5 4 3 2 

~ BIT 7 IS EXTENDED TO 
THE 8 HIGH ORDER BITS. 

Figure 5-7 Store Exponent Example No. I 

5-15 

o 

MA-1433 



15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

FLOATING.POINT I EXPONENT (8 BITS) 
S 0 0 0 0 0 0 FRACTION NUMBER IN FP11-A 

SIGN EXTENSION 

EXPONENT 
TRANSFERRED 
TO MEMORY 1~1 \ 0 0 0 0 0 

(OR ACCUMULATOR) 
15 14 13 12 11 10 9 8~6 5 4 3 2 0 

BIT 7 IS EXTENDED TO 
THE 8 HIGH ORDER BITS. 

MA-1430 

Figure 5-8 Store Exponent Example No.2 

Two examples that illustrate the process follow: one using an exponent greater than 200 and the next 
using an exponent less than 200. 

Example 1: Exponent = 207 

Exponentof207 
2's Complement of 200 

Result = 7 

Example 2: Exponent = 42 

Exponentof42 
2's Complement of 200 

Result = -42 

10000111 
+ 10000000 

/00000!.!l 

Sign Bit 7 

00100010 
+10000000 

/1~0~ 
Sign Bit 4 2 

5.3.14 Store Convert Floating-to-Integer Instruction 
The Store Convert Floating-to-Integer instruction causes the FPP to take a floating-point number and 
convert it to an integer for transfer to a destination. 

The four classes of this instruction are as follows. 

1. STCFI - Convert single-precision, 24-bit fraction to a 16-bit integer (short-integer mode). 
2. STCFL - Convert single-precision, 24-bit fraction to a 32-bit integer (long-integer mode). 
3. STCDI - Convert double-precision, 56-bit fraction to a 16-bit integer (short-integer mode). 
4. STCDL - Convert double-precision, 56-bit fraction to a 32-bit integer (long-integer mode). 

5-16 



The (normalized) floating-point number to be converted is transferred to the FPP. The FPP works 
with the sign bit and one of the following. 

1. The 15 MSBs of the fraction for Floating-to-Integer and Double-to-Floating conversion 
2. The 31 MSBs of the fraction for Double-to-Long conversion 
3. The entire fraction for Floating-to-Long conversion. 

The FPP subtracts 201 from the exponent to determine if the floating-point number is a fraction. If the 
result of the subtraction is negative, the exponent is less than 201, and the absolute value of the 
floating-point number is less than 1. When converted to an integer, the value of this number is 0; a 
conversion error occurs, the FZ bit is set, and Os are sent to the destination. If the result of the 
subtraction is positive ( or zero), it indicates that the exponent is greater than (or equal to) 201, and the 
floating-point number can be converted to a non-zero integer (Figure 4-9). 

BEFORE I I I I I I SHIFTING 1 0 0 0 0 0 o I 0 I 0 I 0 I 0 I 0 I 0 I 

AFTER 

o 1 o 1 01 0 1 0 01 0 1 0 o 1 o 1 o 1 o 11 1 0 1 0 I SHIFTINGI 0 I 
13 PLACES t "----..,----J 

4 
MSB 

MA-0287 

Figure 5-9 Store Convert Integer Example 

A second test is made by the FPP to determine if the floating-point number to be converted is within 
the range of numbers that can be represented by a 16-bit integer (I-format) or 32-bit integer (L­
format). 

Consider the range of integers that can be represented in I and L formats and their floating-point 
equivalents. 

I-Format Floating-Point L-Format Floating-Point 
(16 bits) Equivalent (32 bits) Equivalent 

Most Positive 077777 +.IIII...X215 17777777777 + .1111... X 231 
Integer 

Least Positive 000001 +.IOO ... X 21 00000000001 +.IOO ... X 2' 
Integer 

Least Negative 177777 -.IIII...X216 37777777777 -.llll...X 232 
Integer 

Most Negative 100000 -.IOOO ... X 216 20000000000 -.IOO ... X 232 
Integer 

NOTE 
MSB of integer = sign of integer. 

5-17 



Thus, the exponent of a positive floating-point number to be converted must be less than 1610 (220 in 
excess 200 notation) to convert to I-format or 3210 (240 in excess 200 notation) to convert to L-format. 
The exponent of a negative number to be converted must be less than or equal to 1610 or 3210 to 
convert to 1- or L-formats, respectively. 

The FPP tests whether the floating-point number to be converted is within the range of integers that 
can be represented in I-or L-format by subtracting a constant of 208 (for short integers) or 40s (for long 
integers) from the result of the first test (result of first test = biased exponent - 2018 = unbiased 
exponent - 1). If the result of the subtraction is positive or 0, it indicates that the floating-point number 
is too large to be represented as an integer. In that case, a conversion error occurs and Os are sent to the 
destination. If the result of the subtraction is a negative number other than -I, the floating-point 
number can be represented as an integer without causing an overflow condition. If the result of the 
subtraction is -1, the exponent of the floating-point number is either 220 (short) or 240 (long), and 
converson proceeds. However, the floating-point number is within range only ifits sign is negative and 
its fraction is .100 ... (i.e., ifit is the most negative integer; see table above). If, in this case, the number 
is not the most negative integer, it will be detected by a third conversion error test (see below) after 
conversIOn. 

To convert the fraction to an integer, the FPP shifts it right a number of places as specified by the 
following algorithms. 

Short integer: 

Long integer: 

No. of right shifts = 208 + 2018 - biased exponent - 1 

No. ofright shifts = 408 + 2018 - biased exponen t - 1 

Regardless of the condition of the FT bit, the fractional part of the number is always truncated during 
this shifting process. 

If the floating-point number is positive, the integer conversion is complete after shifting, and the 
number is transferred to the appropriate destination. If, however, the floating-point number is nega­
tive, the integer must be 2's complemented before being sent to its destination. 

After conversion, the FPP performs a third test for a conversion error by comparing the MSB of the 
(converted) integer with the sign bit of the original (uncon verted) n urn ber. I f these signs are not eq ual, 
there has been a conversion error and the FPP traps if the FIe bit is set. This test is performed to detect 
a floating-point number with an exponent of 220 (short) or 240 (long) that has not been converted to 
the most negative integer. 

Example 1: Store Convert Floating-to-Integer (STCFI) 

Exponent = 203 
Sign = 0 

Fraction (24 bits) = .100000000000000000000000 
15 MS Bs 0 f fraction = .100000000000000 

203 (excess 200) = 2 
Fraction = 1/2 Integer to be stored = 1/2 X 2 = 4 

1. Test 1: Is the number to be converted a fraction? 

Exponent: 

No 

2038 
-201 

2 Since this result is positive, the given floating-point 
number is not a fraction and conversion may pro­
ceed without error. 

5-18 



2. Test 2: Is the floating-point number to be converted within range? (We are working with a 
positive short integer.) 

Result of Test 1: 2 
-20 

Yes -16 Indicates that the number to be converted is within 
range and can be represented as a 16-bit integer. 
No conversion error occurs. 

How many right shifts? Use algorithm: 

208 + 2018 - 2038 - 1 = 208 - 38 = 158 = 1310 

= 13 right shifts 

This example involves a positive number, so conversion is complete after 13 right shifts. If 
the number had been negative, the integer would have been 2's complemented. 

3. Test 3: The MSB of the converted integer and the sign bit of the original floating-point 
number are compared. Since they are equal, no conversion error occurs. 

Example 2: Store Convert Floating-to-Integer (STCDL) 

Exponent = 2408 
Sign = 0 

31 MSBs of fraction = .1000000000000000000000000000000 

1. Test 1: Is the number to be converted a fraction? 

Exponent: 2408 
-201 

No 378 Since this result is positive, the given floating-point 
number is not a fraction, and conversion may pro­
ceed (i.e., no conversion error occurs). 

2. Test 2: Is the floating-point number to be converted within range? (We are working with a 
positive long integer.) 

Result of Test 1: 37 
-40 

-1 We know the number is out of range by examining 
the sign bit (in fact, this number is one greater than 
the most positive integer that can be represented). 
However, the FPP does not know this yet, and con­
version proceeds without error at this point. 

How many right shifts? Use algorithm: 

408 + 2018 - 2408 - 1 = 0 

= No right shifts 

Converted 32-bit integer = 200000000008 

Since the number is positive, conversion is now complete (i.e., no need for 2's com­
plementing). 

5-19 



3. Test 3: The most significant bit of the converted integer (which is 1) and the sign bit of the 
original floating-point number (which is 0) are compared. Since they are not equal, a con­
version error occurs, which we predicted in Step 2. 

5.3.15 Load FPll's Program Status 
This instruction causes the FPP to transfer 16 bits from the location specified by the source to the 
floating-point status (FPS) register. These 16 bits contain status information for use by the FPII-A in 
order to enable and disable interrupts, set and clear mode bits, and set condition codes (Paragraph 
4.4). 

5.3.16 Store FPII 's Program Status 
This instruction causes the FPP to transfer the 16 bits of the FPS register to the specified destination. 

5.3.17 Store FPll's Status 
The Store FPll 's Status (STST) instruction causes the FPP to read the contents of the floating excep­
tion code (FEC) and floating exception address (FEA) registers when a floating-point exception (error) 
occurs. 

If mode 0 addressing is enabled, only the FEC is sent to the destination accumulator. If mode 0 
addressing is not enabled, the FEC is stored in memory followed by the FEA. In memory, the FEA 
data occupies all 16 bits of its memory location, while the FEC data occupies only the lower 4 bits of its 
location. 

When an error occurs and the interrupt trap in the CPU is enabled, the CPU traps to interrupt vector 
244 and issues the STST instruction to determine the type of error. 

NOTE 
The STST instruction should be used only after an 
error has occurred, since in all other cases the in­
struction contains irrelevant data or contains the 
conditions that occurred after the last error. 

5.3.18 Copy Floating Condition Codes 
The Copy Floating Condition Codes (CFCC) instruction causes the FPP to copy the four floating 
condition codes (FC, FZ, FY, FN) into the CPU condition codes (C, Z, Y, N). 

5.3.19 Set Floating Mode 
The Set Floating Mode (SETF) instruction causes the FPP to clear the FD bit (bit 07 of the FPS 
register) and indicate single-precision operation. 

5.3.20 Set Double Mode 
The Set Double Mode (SETD) instruction causes the FPP to set the FD bit (bit 07 of the FPS register) 
and indicate double-precision operation. 

5.3.21 Set Integer Mode 
The Set Integer Mode (SETI) instruction causes the FPP to clear the I L bit (bit 06 of the FPS) and 
indicate that short-integer mode (16 bits) is specified. 

5.3.22 Set Long-Integer Mode 
The Set Long-Integer Mode (SETL) instruction causes the FPP to set the IL bit (bit 06 of the FPS) and 
indicate that long-integer mode (32 bits) is specified. 

5-20 



5.4 FPll-A PROGRAMMING EXAMPLES 
This paragraph contains two prcgramming examples using the FPII-A instruction set. In example 1, 
A is added to B, D is subtracted from C, the quantity (A + B) is mUltiplied by (C - D), the product of 
this multiplication is divided by X, and the result is stored. Example 2 calculates DX3 + CX2 + BX + 
A, which involves a 3-pass loop. 

Example 1: [(A + B) * (C - Dj]/X 

SET F 
LDF 
ADDF 
LDF 
SUBF 
MULF 
DIVF 
STF 

A,ACO 
B,ACO 
C,ACI 
D,ACI 
AC1,ACO 
X,ACO 
ACO,Y 

;LOAD ACO FROM A 
;ACO HAS (A + B) 
;LOAD AC 1 FROM C 
;ACI HAS (C - D) 
;ACO HAS (A + D)*(C - D) 
;ACO HAS (A + D)*(C - D)/X 
;STORE (A + D)*(C - D)/X IN Y 

Example 2: DX3 + CX2 + BX + A 

Loop 2 
A r,---- '---~~ 

ACO = [(D * X + C) * X + B] * X + A 

Loop I 
~,-----------y,---------~I 

Loop 3 

ACO = [DX2 + CX + B] * X + A 

ACO = DX3 + CX2 + BX + A 

LOOP; 

SETF 
MOV #3,%0 
MOV#D+4,%1 
LDF (6)+,ACl 
CLRF ACO 
ADDF -(4),ACO 

MULF ACI,ACO 
SOB%O,LOOP 
ADDF -(4),ACO 
STF ACO,-(6) 

5-21 

;SET UP LOOP COUNTER 
;SET UP POINTER TO COEFFICIENTS 
;POP X FROM STACK 
;CLEAR OUT ACO 
;ADD NEXT COEFFICIENT 
;TO PARTIAL RESULT 
;MULTIPLY PARTIAL RESULT BY X 
;DO LOOP 3 TIMES 
;ADD X TO GET RESULT 
;PUSH RESULT ON STACK 





6.1 INTRODUCTION 

CHAPTER 6 
PROCESSOR ORGANIZATION 

The FPII-A Floating-Point Processor connects to the KDII-EA central processor via a tri-state bus 
(Figure 6-1). This interface allows addressing of floating-point memory utilizing the memory manage­
ment option. 

SERV BR PFAIL 

BR PF PEND 

'MPC (10) 

TRI STATE AMUX 

KD11-EA 
FLOATING 

M8265 LOAD IR POINT 

M8266 MODULE 
MB267 

PROC CLOCK 

PRoe INIT 

(16) (16) 

AMUXO-AMUX15 J TRISTATE BUS 
l 

UNIBUS 

11-5250 

Figure 6-1 KD1I-EA/FPII-A Data Flow 

The CPU software must initiate floating-point operation and originate addresses and data since con­
trol of the FPII-A resides in the CPU. 

6-1 



The FPII-A depends on the CPU to fetch instructions and data from memory in order to initiate 
floating-point operations. If the instruction is not a floating-point instruction, it is ignored by the 
FPII-A. If the decoded instruction is a floating-point instruction (i.e., contains an op code of 
17XXXX), the FPII-A causes the CPU to branch to the FPII-A ROM (read-only memory) micro­
states associated with floating-point instructions. 

The simplified block diagram illustrated in Figure 6-2 shows the major functions of the FPII-A. 

KD11-EA 

BRANCH 
(BUT) 

FP11-A 

TRISTATE 

FP11-A 

FP11-A 
CONTROL 
- BRANCH 
-CONSTANTS 
- BYTE 
- SECTOR 
- SHIFT 

- CLOCKS 
-A.BPORTMUX 

Figure 6-2 Simplified FPII-A Block Diagram 

6.2 MICROPROCESSOR DESCRIPTION 

AM2901 

16-BIT 
TRISTATE BUFFER 

11-5248 

The principal data manipulation element in the floating-point processor is the AM2901 micro­
processor (Figure 6-3). The basic microprocessor is 4 bits wide and 16 of these units are cascaded to 
make up a 16 by 64-bit word for the FPII-A. A general discussion of the microprocessor followed by a 
description of its integration into the overall floating-point processor is given in the following para­
graphs. 

6-2 



RAM 

LOIR 
0'>. 
1 2i-

-~. 
MUX MUX MUX MUX 

AWORD 
ADORES 

CLOCK 
CP 

c>-
S ::~ 

DIREC 
DATA 
INPUT 

T O,z/ C'( 
S D,.I 

Do 

~ ALU 
FUNCTION I. 

I. >-

THREE 
STATE 
CONTRO 

OE 
L 

DECODE 

Do 0, D, D, r-< 
16 BIT BY 4 BIT 2-PORT RAM '---< 

--< 
RAM --< 

Ao Al A2 A3 WE EN Bo Bl B2 B3 

TTl 
I I I 

E A LATCH I 
Ao Al Az A3 I 

E B LATCH 

8081 8z 83 I 

I' 

2-IN 2-IN 2-IN 
MUX MUX MUX 

.. Ro R, R, 

~ 

Cnr 
Fo 

I 

l 

L....-. 7,;'1 2-IN 2-IN 2-IN 
MUX MUX MUX MUX 

A A A 
Yo y, y, y. 

RAM3 

~ 
" ROlLI 

Qo 
"-

B) LO/RI 
Bl B WORD 

B2 ADDRESS B, 

l I I 
r I I T I 3i-i ,i, 1 Fj 1 ,i, 1 Fj ~i" Fj 1 ;;.-' f 
MUX MUX MUX MUX 

Do D, D, D, 

I 
~ 

I 

" 
Q. 

ROlLI 

CP Q REGISTER Q EN 
ALU 
DESTINATION 
DECODE S I. " I. 

~ '--
2-IN 3-IN 3-IN 3-IN 3-IN I:: 
MUX MUX MUX MUX MUX 1""-

R, So 5, 5, 5, ~ 
I---< ARITHMETIC LOGIC UNIT (ALU) 
~ 

F, F, F, I---< 
I I 
I I 

I I 
II 

~"O 
IO/CI 

YF' 

Qo Q, 

ALU 
SOURCE 
OPERAND 
DECODE 

G 
P 
Cn+4 

OVR 

Q, Q, 

~IO 
~" 
H" 

Figure 6-3 Microprocessor (AM2901) 
Block Diagram 

6-3 

11-5267 





6.2.1 Microprocessor Organization 
As shown in Figure 6-3, the major components of the microprocessor are the RAM, the arithmetic 
logic unit (ALU), and the Q-register. 

Information contained in any of the 16 64-bit words of the RAM may be read from the A-port as 
controlled by the 4-bit A-word address (Ao-A3) field. Similarly, data in any of the 16 words of the 
RAM as defined by the B-address (Bo-B3) field input may be simultaneously read from the B-port of 
the RAM. It is also possible to apply the same address code to both the A and B select fields, in which 
case the identical file data will appear at both the RAM A-port and B-port simultaneously. 

New data is always written into the file word specified by the B-address field of the RAM. The RAM 
data input field is driven by a 3-input mUltiplexer which permits shifting of the ALU output. The 3-
input multiplexer allows data to be shifted right 1 bit position, left 1 bit position, or not shifted in 
either direction. 

6.2.2 Arithmetic/Logical Operations 
The arithmetic logic unit (ALU) is capable of performing three arithmetic and five logical operations 
on the two 4-bit input words Ro-R3 and So-S3. The R-input field to the ALU receives its input from a 
2-input multiplexer while S receives its signals from a 3-input multiplexer. The 2- and 3-input multi­
plexers both have an inhibit capability. This is the equivalent of an "0" source operand. 

If the five data inputs to the ALU are combined into pairs, 10 combinations of registers are possible, 
i.e., AB, DA, AQ, OA, OB, BQ, BD, DO, DQ, and OQ, as illustrated in Table 6-1. The microprocessor 
uses eight of these operand pairs. Selection of the ALU source operand pairs is accomplished by the 
microinstruction inputs 10, 11, and 12. 

Table 6-1 ALU Source Operand Contest 

ALU Source 
Microcode Operands 

Octal 

12 1\ 10 Code R S 

L L L a A Q 

L L H I A B 
L H L '"l 0 Q -
L H H 3 0 B 
H L L 4 0 A 
H L H 5 0 A 
H H L 6 0 Q 
H H H 7 0 0 

The direct-data (D) source-operand input port is used to insert all data into the working registers 
inside the 2901 microprocessor. The D-input can also be used by the ALU to modify any of the 
internal data files of the RAM via the F outputs of the ALU. 

The Q-register is a separate 4-bit register intended primarily for multiplication and division routines. 
This register can also be used as an accumulator or buffer register for certain applications. 

6-5 



The ALU performs three arithmetic and five logical functions as directed by the three control bits 13, 
14, and 15 (Table 6-2). 

Table 6-2 ALU Function Control 

Microcode 

Octal ALU 
Is 14 1.1 Code Function Symbol 

L L L 0 R Plus S R + S 
L L H I S Minus R S - R 
L H L , R Minus S R - S -
L H H 3 R OR S RVS 
H L L 4 RAND S R/\S -

R/\S H L H 5 RANDS 
H H L 6 R EX OR S RVS 
H H H 7 R EX NOR S RVS 

ALU output data may be routed to one of eight possible destinations as defined by control bits 16, 17, 
and 18. ALU output data may be a data output from the device or it may be stored in the RAM or the 
Q- register. 

The data output of the microprocessor uses a 2: I multiplexer whose inputs are the A-port of the RAM 
or the ALU outputs (F). Selection of these outputs is controlled by bits 16, 17, and 18 of the micro­
instruction control input (Table 6-3). Note that the left- and right-shift functions in Table 6-3 are re­
versed for the F P ll-A application. 

The FPII-A uses 16 AM2901 units connected in cascade with 3 levels of look-ahead carry logic. This 
configuration results in a 64-bit word. Carry generate (G), and carry propagate (P), are unit outputs 
for use with a look-ahead carry generator. Carry out (Cn+4) is also generated by the microprocessor 
and is available as an output carry flag in a status register. Cn and Cn+4 are both active high. 

Three additional outputs are generated by the ALU. These are F3, F = 0, and overflow (OVR). F3 
represents the most significant bit (sign) of the ALU and can be used to determine positive or negative 
results without enabling the 3-state outputs or while enabling the A-port to output. F3 is non-inverted 
with respect to the sign bit output Y3. F = 0 output is used for zero detect and is an open-collector 
output that can be wire ORed between microprocessor slices. F = 0 is high when all F outputs are low. 
OVR is a flag indicating an arithmetic operation exceeds the available range and is high when the 
overflow condition exists, i.e., when Cn and Cn +4 are not of the same polarity. 

Inputs to the RAM are via a 3-input mUltiplexer. The multiplexer allows input data to be entered into 
the RAM in three modes: 

• Shifted left one place 
• Shifted right one place 
• Unshifted. 

6-6 



The shifting is accomplished by two ports: RAM-LOjRI and RAM-ROjLI. Both ports consist of a 
buffer driver with a tri-state output and an input to the multiplexer. In the shift-up (X2) mode, the RO 
buffer is enabled and the RI multiplexer input is enabled. In the shift-down (-2) mode, the LO buffer 
and LI input are enabled. In the no-shift mode, both the LO and RO buffers are in the high-impedance 
state and the multiplexer inputs are not selected. The microinstruction control bits 16, 17, and 18 oper­
ate the shifter as shown in Table 6-3. 

Table 6-3 ALU Destination Control 

RAM Q-Register RAM Q 
Microcode Function Function Shifter Shifter 

Octal y RAMo RAM3 Qo Q3 
18 17 16 Code Shift Load Shift Load Output LO/RI L1/RO LO/RI L1/RO 

L L L 0 - - None ALU F X X X X 
(F) 

L L H 1 - - - - F X X X X 

L H L ') None ALU - A X X X X - -
(F j ) 

L H H 3 None ALU - - F X X X X 
(F j ) 

H L L 4 Left ALU Left Q-Reg F Fo IN] Qo IN~ 
(Down) (F j + I ) (Down) (Oi+ I) 

H L H 5 Left ALU - - F Fo IN3 00 X 
(Down) (F i + I ) 

H H L 6 Right ALU Right Q-Reg F INo F3 INo 0 3 
(Up) (F i _ l ) (Up) (OJ--l) 

H H H 7 Right ALU - - F INo F3 X 0 3 
(Up) (F j _ , ) 

X = Don't care_ Electrically. the shift pin is a TTL input internally connected to a three state output which 
is in the high impedence state_ 

The Q-register is also driven from a 3-input multiplexer. In the no-shift mode, the multiplexer enters 
ALU data into the Q-register. Operation for the shift-up or shift-down modes is the same as for the 
RAM as indicated in Table 6-3. 

6-7 



The RAM, Q-register, and the A and B data latches are controlled by the clock input. When enabled, 
data latches are also controlled by the clock input and data is clocked into the Q-register on the 
positive-going transition of the clock. When the clock input is high, the A and B data latches are open 
and will pass any data that is present at the RAM outputs. When the clock is low, the latches are closed 
and will retain the last data entered. If the RAM-EN is enabled, new data is entered into the RAM file 
(word) defined by the B-address field when the clock input is low. 

6.2.3 RAM 
The FPll-A RAM register usage is shown in Figure 6-4. This unit, located in the microprocessor, is 
the scratch pad area where the results of arithmetic and logical operations are temporarily stored. The 
contents of the RAM are read into the AL U under control of the FPll-A microcode. It consists of 16 
64-bit words (each of the 16 microprocessors (AM2901) contains a 16- X 4-bit RAM). 

17 FPS 

16 FCCR 

15 FEC 

14 ZERO EFSRC 

13 ZERO EAC 

12 FSRC S E 

11 AC S E 

10 E FSRC S 

7 

6 

5 E AC5 S E 

4 E AC4 S E 

3 E AC3 S E 

2 E AC2 S E 

1 E AC1 S E 

0 E ACO S E 

SECTOR 3 SECTOR 2 SECTOR 1 SECTOR 0 SECTOR 3 

BYTE 6 BYTE 5 I BYTE 4 BYTE 3 I BYTE 2 BYTE 1 I BYTE 0 BYTE 7 

F-REG E-REG 

X-REG 

11-5300 

Figure 6-4 RAM Register Usage 

6-8 



Six of the 64-bit registers are allocated for the accumulators and are accessible to the programmer via 
the FPII-A instruction register. Registers 6 and 7 are unused while registers 10-17 are set aside for 
special functions. Registers 10-17 are accessed only by the control ROM. Registers 10-14 constitute a 
working storage area for the FPII-A microcode. Other functions included are the floating-point status 
register, condition codes, and exception codes. 

6.2.4 Arithmetic Logic Unit (ALU) 
The ALU is the data path component that actually performs the arithmetic/logical operation under 
command of the microcode (Table 6-4). R-inputs are fed in via a 2-input mUltiplexer whose inputs are 
the direct data (0) inputs and the output of the A-port of the RAM. The S-inputs include the A- and 
B-ports of the RAM and the Q-register outputs. 

Table 6-4 Source Operand and ALU Function Matrix 

12 I 0 Octal 0 1 2 3 4 5 6 7 

ALU 
Source 

Is 4 3 Octal A,Q A,B O,Q O,B O,A D,A O,Q 0,0 
ALU 
Function 

C'n=L A+Q A+B Q B A O+A D+Q D 
0 R Plus S 

Cn=H A+Q+I A+B+I Q+I B+I A+I D+A+I D+Q+I D+I 

Cn=L Q-A-I B-A-I Q-I B I Al A-D-I Q-D-I -D-I 
1 S Minus R 

C'n=H Q-A B-A Q B A A-D Q-D -D 

Cn=L A-Q-I A-B-l -Q-I -B-1 -A-l D-A-l D-Q-l D-l 
:2 R Minus S 

Cn=H A-Q A-B -Q B -A D-A D-Q D 

3 R OR S AVQ AVB Q B A D-A DVQ D 

4 RAND S A!\Q A!\B 0 0 0 D!\A D!\Q 0 

5 RAND S A!\Q A!\B Q B A D!\A D!\Q 0 

6 REX-OR S AVQ AV'B Q B A DVA DVQ D 

- --7 REX-NOR S AVQ AVB Q B A DVA DVQ D 

+ = Plus: - = Minus: V= OR,!\ = AND: V = EX OR 

6-9 



ALU output data (F) may be routed to the Q-register or RAM, or may be multiplexed with the A-port 
output data from the RAM as Yo-Y 3. The ALU function decode determines the arithmetic or logical 
function to be performed, while the ALU destination decode determines which of the indicated regis­
ters the data is routed to or whether it will be a data output of the device itself. 

The ALU source operand decode performs the actual register selection. All three of these functions are 
controlled by bits 10-18 of the control word. 

6.2.5 Q-Register 
The Q-register is used primarily during mUltiply and divide operations to store multiplier or product 
operators. Its contents may be shifted left or right or remain unshifted and the register may route data 
to the ALU or receive input from that device. 

6.2.6 Source Operands and ALU Functions 
This paragraph summarizes the arithmetic and logic functions performed by the ALU and presents 
ALU logic and arithmetic functions in separate tabulations. 

6.2.6.1 Logical and Arithmetic Functions - The ALU performs five logical and three arithmetic func­
tions on eight source operand pairs. ALU logic functions and appropriate control bit values (10-15) are 
shown in Table 6-5. The carry input (Cn), has no effect in logic mode but does affect operations in 
arithmetic mode (Table 6-6). Both carry-in LOW (Cn = 0) and carry-in HIGH (Cn = I) are defined. 

6.2.6.2 Logical Functions for G, P, Cn+4 , and OVR - The four signals, G, P, Cn +4, and OVR, as 
described in Paragraph 6.2 are designed to indicate carry and overflow conditions when the micro­
processor is in the add or subtract mode. Table 6-7 indicates the logic equations for these four signals 
for each of the eight ALU functions. The R- and S-inputs are the two inputs selected according to 
Table 6-8. 

6.2.7 Summary of Pin Definitions 
The AM2901 pin definitions are summarized in Table 6-7. Pin assignments for the AM2901-40-pin 
dual in-line package are shown in Figure 6-5. 

6.3 INSTRUCTION STATUS REGISTERS AND DECODE 
The FPII-A contains a 12-bit instruction register and two flip-flop's that are bits of the status registers 
(FD;FL). The possible FPII-A instruction formats are presented in Chapter 2. One bit of the status 
register (FD) specifies double- or single-precision format and the other (FL) designates single- or 
double-precision integer format. The outputs of these registers are fed to the floating-point instruction 
decode register which consists of two 512- X 4-bit ROMS. The ROM outputs then generate micro­
processor control (MPC) outputs to control the microprogram. 

6.4 TRI-STATE TRANSCEIVERS AND BUFFER 
The 8097 tri-state status gales are arranged as tri-state transceivers to communicate between the 
AMUX bus (KDII-EA) and the T-bus (FPII-A), which are 16-bit tri-state buses. 

74S173s, which are tri-state flip-flops, are used to buffer Unibus data being passed to the AM2901s. 

6.5 BRANCH LOGIC AND TRI-ST ATE CONTROL 
This logic is controlled by condition code and T-bus branch ROMs in the FPII-A. Branch (BUT) bits 
are routed to the ROMs whose outputs condition a group of gates. These gates are enabled by the 
various branch conditions that may arise during floating-point operations and direct (point) the micro­
program counter to the appropriate code in the microprogram to service the branch function. The 
BUT conditions include the condition codes, exponent negative, exponent zero, carry, overflow, and 
T-bus bits 0, 1,5,6,8,9, to, II, and 14. These functions include items such as fraction Z-bit, fraction 
negative, bus request, and the like. 

6-tO 



Table 6-5 ALU Logic Mode Functions 

Octal 

1543,1210 Group Function 

40 AI\Q 
41 AI\B 
45 AND DI\A 
46 DI\Q 

30 AVQ 
31 AVB 
3 ::; OR OVA 
36 DVQ 

60 AVQ 
6 1 AVB 
6 5 EXOR DVA 
66 DVQ 

70 AVQ 
7 1 AVB 
7 5 EX NOR DVA 
76 DVQ 

7 2 Q 
7 3 B 
74 Invert A 
7 7 D 

62 Q 
63 B 
64 Pass A 
67 0 

3 2 Q 
3 3 B 
34 Pass A 
3 7 0 

42 0 
43 0 
44 "Zero" 0 
47 0 

50 AI\Q 
5 1 ~!\B 
5 5 Mask D!\A 

-
56 D!\Q 

6-11 



Octal 

Is 43, 12 I 0 

00 
o I 
05 
06 

02 
03 
04 
07 

I 2 
I 3 
I 4 
27 

'1 ! - -
23 
24 
I 7 

I 0 
I I 
I 5 
I 6 
20 
2 I 
25 
26 

Table 6-6 ALU Arithmetic Mode Functions 

Cn = 0 (Low) Cn = 1 (High) 

Group Function Group 

A+Q 
ADD A+B ADD plus 

D+A one 
D+Q 

Q 
PASS B Increment 

A 
0 

Q-I 
Decrement B-1 Pass 

A-I 
0-1 

-Q-I 
I 's Compo -B-1 2's Compo 

-A-I (Negate) 
-0-1 

Q-A-I 
Subtract B-A-I Subtract 
(I 's Comp.) A-D-I (2's Comp.) 

Q-D-I 
A-Q-I 
A-B-I 
D-A-I 
D-Q-I 

Table 6-7 Logic Equations for ALU Functions 

Definitions (+ =OR) 

Po = Ro + So 
PI = RI + SI 
P2 = R2 + S2 
P3 = R3 + S3 

6-12 

Go = RoSo 
G I = R)S) 
G 2 = R2 S2 
G3 = R3 S3 

Function 

A+Q+I 
A+B+I 
D+A+I 
D+Q+I 

Q+I 
B+I 
A+I 
D+I 

Q 
B 
A 
0 

-Q 
-B 
-A 
-0 

Q-A 
B-A 
A-D 
Q-D 
A-Q 
A-B 
D-A 
D-Q 



Table 6-8 P, G, CN +4' OVR Functions 

Is 4 3 Function P G Cn + 4 OVR 

a R+S P1 P2 P ,PO G 1 + P1G 2 + P1P2 G, + P1P 2 P,G O C4 C 1 C4 

I S - R Same as R + S equations, but substitute R, for R, in definitions · 
~ R - S SaIlle as R + S equations, but substitute S, for S, in definitions • -

01 
I 3 RV S Low P1 P 2 P,PO P 3 P2 P,PO +C n P 1 P 2 P,PO +C n 
w 

4 R /\ S Low G 1 +G 2 +G,+G O G 3 +G 2 +G, +G o +C n G J +G 2 +G, +G o +C n 

.5 R AS Low Same as RA S equations, but substitute R, for R, in lkfinitions • 

h R \f S Same as R \f S, but substitute R, for R, in definitions • 

7 RV S G J +G 2 +G,+G O p}G J +P}P 2 G 2 +P 3 P 2 P,G, +p}P 2 P,PO 
P 3 G 3 +P1 P 2 G 2 +P1P2 P,G, Compll'Illent of 

+P1 P2 PS ,PO (Go +C n ) Cn +4 at Il'ft 

+ = OR 



Qo 

c5E Y3 y, y, Yo P OVR <;'+4 G F3 GND Cn I. I. Do 0, 0, 03 LO/R1 

40 39 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 

Am2901 

• 
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

A, Ao I. I. h RAM3 RAMo VCC F = 0 10 h I, CP 03 80 8, 8, 83 

ROlLI LOIRI ROlLI 

NOTE: PIN 1 IS MARHa FOR ORIENTATION. 
11-5247 

Figure 6-5 AM2901 Pin Connections 

6.6 CONST ANTS, BYTE AND SECTOR CONTROL, SHIFT CONTROL 
The constant ROMs contain the fixed-value numbers required for certain floating-point functions. 
The magnitude of some of the constants depends on whether the floating-point numbers are single- or 
double-precisionend short or long integer. Thus, FD and FL are used as ROM-gating signals for 
proper constant selection. 

The BYTE control lines enable AM2901 outputs onto the T-bus by 8-bit bytes. Any high-byte/low­
byte combination may be enabled. 

Sector control is used to independently select one of four 16-bit sectors of the AM2901. Each sector 
clock clocks four AM2901 slices (16 bits) which are used internally to load the RAM or Q-register. 

Shift and rotate signals are generated to operate the input multiplexers to the RAM and Q-registers of 
the AM290 1. These registers may be left and right shifted and controls are provided for injection of 1 s 
or Os into the bit stream as shifts are carried out. 

6-14 



7.1 INTRODUCTION 

CHAPTER 7 
MAINTENANCE 

This chapter describes some of the maintenance tools and techniques available for maintenance of the 
FPII-A floating-point option. Descriptions of the diagnostics, programmer's console, display fea­
tures, and documentation aids are also included. 

7.2 FPII-A DIAGNOSTICS 
Three diagnostics are available to validate and diagnose the FPII-A. However, since the KDII-EA 
data path is used extensively on floating-point instructions, CPU tests should be run prior to running 
floating-point diagnostics if there is any doubt about the CPU. Successful running of CPU tests does 
not rule out the possibility that a KDII-EA failure may cause only floating-point instructions to fail. 
The three FPII-A diagnostics are listed below with a short description of each. The diagnostics should 
be run in the same order as they are listed because succeeding diagnostics have been run successfully. 
Otherwise, faulty diagnosis of the failed micro-step and where the problem is located may result. 

7.2.1 MAINDEC DFFPAA 
This diagnostic tests the following floating-point instructions. 

LDFPS 
STFPS 
CFCC 
SETF, SETD, SETI, and SETL 
STST 
LDF and LDD (all source modes) 
STD (mode 0 and I) 
ADDF, ADDD, and SUBD (most conditions) 

7.2.2 MAINDEC DFFPBA 
This diagnostic tests the following floating-point instructions. 

ADDF, ADDD, and SUBD (all conditions not listed in DFFPAA) 
CMPD and CMPF 
DIVD and DIVF 
MULD and MULF 
MODD and MODF 

This diagnostic also makes use of a special testing module (M8267-TA), which allows the diagnostic to 
check the ability of the floating-point to abort an ADD, SUB, MVC, DIV, or MOD instruction if an 
interrupt request occurs during the initial portion of one of these instructions. The extra hardware 
tested using the special test module is minimal and it is expected to be used only during manufacturing 
for more complete testing. The diagnostic automatically checks for the test module, and only if pre­
sent, performs the special instruction abort test. A message at the beginning of the program indicates 
the presence of the test module and its use by the diagnostic. If the module is not present, no message is 
generated. 

7-1 



7.2.3 MAINDEC DFFPCA 
This diagnostic tests the following floating-point instructions. 

STF and STD (all modes) 
STCFD and STCDF 
CLRD and CLRF 
NEGF and NEGD 
ABSF and ABSD 
TSTF and TSTD 
NEGF, ABSF, and TSTF (all source modes) 
LDFBS (all source modes) 
LDCIF, LDCLF, LDCID, and LDCLD 
LDEXP 
STFPS (all destination modes) 
STCFL, STCFI, STCDL, and STCDI 
STEXP 
STST 

7.3 KYll-LB PROGRAMMER'S CONSOLE 
Normal console and maintenance features provided by the KYII-LB programmer's console to debug 
and diagnose the KD Il-EA processor are directly extendable in use to the FPII-A floating-point 
option. These features include the normal console functions of examining and depositing into memory 
and general registers, single-instruction stepping, the console maintenance features of single micro­
instruction stepping, and displaying MPC lines, Unibus data, and Unibus address lines. 

The KYII-LB displays the additional MPC line (MPC 09 L) if the proper cable connections between 
the KYII-LB and FPII-A modules are made. Thus, single micro-stepping the machine through float­
ing-point micro-code is possible. 

A change in the KD II-EA processor from the KD ll-E processor enables the AMUX lines onto the 
Unibus data lines in the manual clock mode. (K YII-LB maintenance cables are attached, the console 
is in MAINT mode, and the HLT ISS key has been depressed.) The AMUX to Unibus drivers are not 
enabled, however, if the current micro-step is a DATI, at which time some other device (memory, I/O) 
will be driving the Unibus data lines. Since the console can display the Unibus data lines (EXAM key 
in MAINT mode), the AMUX lines are being indirectly displayed most of the time. This new feature is 
directly extendable to the FPII-A in that the AMUX lines are the data path link between the KDll­
EA and the FPII-A. At any micro-step, the AMUX lines may be displayed and while running floating­
point micro-code, the T-bus lines of the FPII-A are defaulted onto the AMUX lines. This means that 
if the AMUX lines are not specifically being used in a floating-point micro-instruction, the T -bus will 
be enabled onto the AMUX, allowing the T-bus to be displayed. Also, whenever the T-bus is not being 
explicitly used, 2 bytes of the 64-bit data path are enabled onto the T -bus. The actual source of the data 
on the AMUX lines at any micro-step may be determined from the FPII-A flow diagrams. Refer to 
the K Yll-LB Programmer's Console Maintenance Manual for more information on the use and oper­
ation of the KYII-LB for maintenance. Refer to the FPII-A print set for information regarding the 
proper installation of the FPII-A and KYII-B. 

7.4 FPII-A FLOW DIAGRAMS 
Each micro-step in the FPII-A flow diagrams denotes what will be displayed on the Unibus data lines 
when the manual clock is enabled. This information is given just below the dotted line in each block. 

The information may be a constant (such as 100000) or may be defined in a general way such as 
Q(B7:BO), which indicates that bytes 7 and 0 of the Q-register will be displayed. Refer to Figure 7-1. 

7-2 



7.5 EXTENDER BOARD 

1457 8-L 

F12 ~ SRl (F12) 

E12 ~ ZERO 

- - - - - - JUMP!8-M 

D ~ ZERO: F12 (B6) 

DISPLAY INFORMATION 
11-5641 

Figure 7-1 Display Information 

A special extender board (W9042) and two extender cables are included with the FPII-A module on a 
hex extender module. The FPII-A print set shows the correct methods of using the W9042 extender 
board and the included cables. 

7-3 





APPENDIX A 
OPTION POWER SPECIFICATIONS 

A-I 



Table A·I PDp·ll Family Models and Options Power Requirements 

Current Needed (Amperes) AC Line Current 
Model/Option Description +5 V(CPU) +5 V (Options) -IS V +20 V -5 V +15 V (Amperes) 

H765 Power Supply 
(115/230 Vac) 

Regulator Units ** 

I 5 V Regulator Power line monitor 4. 
(5411086) 

11/05-S KDII-B 8.0 0.25 0.05 
MMII-U 5.4 4.4 0.51 
3 SPC 6.0 
2 M930s 2.5 
Total Amperes 16.6 0.25 4.4 0.51 0.05 5.0 

11/35-S KDII-A 10.5 
KEII-F 2.0 
KEII-E 3.0 
KJI I-A (optional) 0.5 
KTII-D 2.5 
KWII-L 0.5 
SPC 2.0 
M981 1.25 
MFII-U (16K) 6.1 
M930 1.25 
Total Amperes 21. 8.6 4.4 0.5\ 6.0 

MFII-U/MMII-U* 16K sense 
(Active) core memory 6.1 4.4 0.51 2.2 
(Standby) (double SU) 5.4 0.56 0.41 0.8 

MFI I-UP/MMI I-UP 16K sense 
(Active) core with parity 7.3 4.4 0.5\ 2.3 
(Standby) (double SU) 5.4 0.56 0.41 0.8 

MFII-L (MMII-L) 8K core 
(Active) memory 3.4 6.0 1.8 
(Standby) (double SU) 1.7 0.5 0.3 

MFII-LP (MMII-LP) 8K parity 
(Active) core memory 4.9 6.0 2. 
(Standby) (double SU) 1.7 0.5 0.3 

*Noninterleaved. 
·*Refer to appropriate appendix for regulator unit output current. 

A-2 



Table A-I PDP-ll Family Models and Options Power Requirements (Cont) 

Current Needed (Amperes) AC Line Current 
Model/Option Description +5 V (CPU) +5 V (Options) -15 V +20V -5 V +15 V (Amperes) 

MMII-S Same as MMII-L Same as 
except in SU MFII-L 
configuration (1 SU) 

PDP-I 1/04 KDII-D 5.0 7.0 
M9301 2.0 
M9302 1.2 

Memory: 
See individual 
memory listings. 

o LlI-W (optional) 2.0 0.15 0.05 
M7850 (optional) 1.0 
KYII-LA 0.1 
KYII-LB (optional) 3.0 0.06 

PDP-ll/34A 9.0 

PDP-ll/34A KDII-EA 11.5 9.0 
M9301 2.0 
M9302 1.2 

Memory: 
See individual 
memory listings. 

DLlI-W (optional) 2.0 0.15 0.05 
M7850 1.0 
KYII-LA 0.1 
KYII-LB (optional) 3.0 0.06 

FPIIA M8267 7.0 

MMII-CP 8K core 
memory 3.0 3.5 0.2 

MMII-DP 16K core 
memory 3.0 4.0 0.5 

MMII-WP 32K parity 
(Active) core memory 6.1 3.4 0.74 2.1 
(Standby) (double SU) 5.5 0.6 0.64 0.8 

MMII-YP 32K parity 
(Active) core memory 5.0 3.5 0.4 2.0 
(Standby) 5.0 0.6 0.4 0.8 

A-3 



Table A-I PDP-ll Family Models and Options Power Requirements (Cont) 

Current Needed (Amperes) AC Line Current 

Model/Option Description +5 V (CPU) +5 V (Options) -IS V +20 V -5 V +15 V (Amperes) 

MSII-EP 4KMOS 1.5 (+5) 0.1 0.34 
MUD memory 0.5 (+5B)*** 

MSII-FP 8KMOS 1.5 (+5) 0.1 0.36 
MUD memory 0.5 (+5B)*** 

MSII-IP 16K MOS 1.5 (+5) 0.1 0.4 
MUD memory 0.5 (+5B)*** 

M7850 Parity control for 1.0 
MUD memories 

***Current from +5 Vb rail if Battery Backup Option is used. If there is no Battery Backup Option. then 2.0 A is drawn from +5 V. 

Table A-2 PDP-ll Family Options Power Requirements 

Current Needed (Amperes)* 
AC Line 

Power Current 

Option Mounting Code Description Harness +5 V -IS V -5 V +15 V (Amperes) 

AAII-D I SU D/A converter subsystem 7009562 3.0 0.3 

AR-II SPC ADC and DACs N/A 5.0 0.5 

BA614 (AAII-D) D/A converter 3.0 0.3 

BM792-Y SPC Bootstrap loader 0.3 0.3 

CDII-A/B ISU 1000 cpm, 80-co\. 7010117 2.5 0.25 
card reader controller 

CDII-E I SU 1200 cpm, 80-co\. 7010117 2.5 0.25 

card reader controller 

CMII SPC 200 cpm, 80-co\. 1.5 0.15 

card reader controller 

*+20 V not used in this configuration. 

A-4 



Table A-2 PDP-ll Family Options Power Requirements (Cont) 

AC Line 
Power Current Needed (Amperes) * 

Current 
Option Mounting Code Description Harness +5 V -15 V -5 V +15 V (Ampere! 

CRII SPC 300 cpm, 80-col. 1.5 0.15 
card reader controller 

DAII-DB ISU Unibus link 4.0 0.4 

DAII-F I SU Unibus window 7010117 5.0 0.5 

DBII-At ISU Bus repeater 7009562 3.2 0.31 

DCII-A I SU Dual clock and system unit 7010117 0.2 0.02 

DCII-DA (DC I I-A) Full duplex module set 2.0 0.2 0.2 0.2 

DDII-B I SU Peripheral mounting panel 7010117 

DHII-AA DLB SU Prog. async 16-line multiplexer 7010118 8.4 0.42 0.9 

DHII-AD DLB SU (a Modern control 7010118 10.8 0.665 0.4 1.33 

Dlll-A I SU Async 16-linc MUX 7010117 4.7 0.25 0.25 0.6 

Dlll-AC ISU Async 16-line MUX 1.0 0.25 

DLlI SPC Async interface 1.8 .15 .016 0.21 

DMII-B (DHII) 16-line modem control (DHIl) 2.4 0.24 

DNII-A I SU Auto calling system unit 7009562 2.6 2.5 

DPII-D I SU Half/full duplex sync interface 7009562 2.56 0.07 o.v ... 0.28 

DPII-C (DPII-D) Data/sync register extender 0.77 0.08 

DPII-K (DPII-D) Internal DPII clock 0.18 0.02 

DQII-D 0.62 

DQII-D ISU Full/half duplex sync interface 7010117 6.0 0.07 0.04 0.62 

* +20 V not used m this configuration. 

tWhen installing a DBll-A bus repeater in a BAII-K 10.5 Inch Mounting Box, the AC LO and DC LO wires must be removed from the harnesses ofal! the options 
(located in the same box) after the DBII-A. 

A-5 



Table A-2 PDP-ll Family Options Power Requirements (Cont) 

Current Needed (Amperes)* 
AC line 

Power Current 
Option Mounting Code Description Harness +5 V -15 V -5 V +15 V (Amperes) 

DQII-E 1 SU I Full/half duplex sync interface 7010117 6.0 0.07 0.04 0.62 

DFCII-A (DU/DP CLOCK) Level converter clock recovery 0.4 0.02 0.02 0.05 

DQII-K (DQII-D/A) Crystal clock 0.05 0.012 

DRII-B SPC General purpose DMA 7009562 3.3 0.32 

DRII-C 1 SU General purpose digital interface 1.5 0.15 

DRII-K SPC Digital I/O N/A 0.15 0.6 

DUII-D SPC Full/half duplex 2.2 2.5 0.05 0.27 

DUII-EA SPC Sync prog. interface 2.6 0.20 0.07 0.33 

DVII DBL SU Sync MUX I 13.5 .083 0.435 0.5 

KGII-A SPC Comm. arith unit 1.2 0.12 

KWII-L (CPU) Line clock 0), 0.08 

KWII-P SPC Prog. line clock 

I 1.0 0.1 

LCII-A SPC LA30 control 1.5 0.15 

LPII-R SPC 1200 LPM printer 1.0 0.1 

LPII-S SPC 900 LPM printer 1.0 0.1 

LPII-W SPC 240 LPM printer 1.5 0.15 

LPII-V SPC 300 LPM printer 1.5 0.15 

LSII-A SPC 60 LPM printer 1.5 0.15 

LVII-B SPC Electrostatic printer, 500 LPM 1.5 0.15 

MRII-DB 2 SPC Bootstrap 

*+20 V not used in this configuration. 

A-6 



Table A-2 PDP-ll Family Options Power Requirements (Cont) 

Current Needed (Amperes)* 
AC Line 

Power Current 
Option Mounting Code Description Harness +5 V -15 V -5 V +15 V (Amperes) 

PCII SPC Papertape 1.5 0.15 

PRII SPC Papertape (reader) 

RHII DBLSU 1.9 0.19 

RKII-D SU Disk and control 7010115 8.0 0.8 

TAII-A SPC Dual cassette interface 

VTII SU Graphic processor 6.5 100. 0.8 

VRII-A SPC Pushbutton box 4. 0.4 

*+20Y not used in this configuration. 

A-7 





FPll-A FLOATING-POINT PROCESSOR 
USER'S GUIDE 
EK-FPIIA-UG-OOI 

Reader's Comments 

Your comments and suggestions will help us in our continuous effort to improve the quality and usefulness of our 
publications. 

What is your general reaction to this manual? In your judgment is it complete, accurate, well organized, well 
wr~ten, etcJ Is ~ easy to use? ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

What faults or errors have you found in the manual? ~~~~~~~~ ______ ~_~ ___ _ 

Does this manual satisfy the need you think it was intended to satisfy? ~~ ______ ~~_~~_ 

Does it satisfy your needs? ~~_~~ __ ~~~~~ __ Why? _____________________ __ 

o Please send me the current copy of the Technical Documentation Catalog, which contains information on 
the remainder of DIGITAL's technical documentation. 

Name ~~~ _____________ _ Street ______ ~ __ ~_~~~~ ___ _ 

Title City ~_~~_~~ __________ _ 

Company~~~_~_~ ____ ~ __ ___ State/Country ______________ _ 

Department ~ _______ ~~_~_~ Zip 

Additional copies of this document are available from: 

Digital Equipment Corporation 
444 Whitney Street 
Northboro, Ma 01532 
Attention: Communications Services (NR2/M 15) 

Customer Services Section 

Order No. ____ E_K __ -F_P_l_l_A_-U_G_-O_O_I ____ _ 



-----------~~-----------

- - - -- -- -- - - Do Not Tear-Fold Here and Staple - - - - - - - -

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES 

Postage will be paid by: 

Digital Equipment Corporation 
Technical Documentation Department 
Maynard, Massachusetts 01754 

FIRST CLASS 
PERMIT NO. 33 

MA YNARD, MASS. 





digital equipment corporation 

Printed in U.S.A. 


